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Introduction 

We believe we are not far away from reality if, following the lines of extreme 
simplification, we say that Personalized/Systems Medicine and, by extension, P4 
(Predictive, Preventive, Participatory, and Personalized) Medicine were born when 
advanced mathematical sciences and bioinformatics entered in full the generation of 
evidence and the consequent extraction of knowledge from Biomedical Data, mainly 
from Big Data stemming from omics sciences. 

In recent years, mathematical technologies, conjugated with computing 
capabilities have made (together with more affordable large scale precision analyt-
ics) advanced techniques available in a reliable and sustainable way at “the Lab” 
level paving the way (especially) for Machine Learning powering (and empowering) 
Computer Systems to become, under the definition of “Artificial Intelligence”, an  
everyday tool to face boldly medical complexity to an extent that was considered 
unmanageable “just yesterday”. These new and enhanced capabilities have made 
clinical data, in addition to omics data, a target at hand for the synthesis of outcome 
knowledge from Real-World Experience(s). 

Hence, Artificial Intelligence (AI) possibly boosted by the emotional engagement 
(not necessarily in a “neutral” manner) and intended here with a very pragmatic 
definition as a “system” working by ingesting large amounts of data through which it 
trains itself (more or less supervised by a “human touch”) and makes analyses 
oriented at identifying, essentially, correlations and patterns. These are used to 
make predictions. AI tools are believed to perform, if compared with other systems, 
more quickly and with relatively few errors when it comes to transform huge 
volumes of Data into actionable knowledge and information. 

Unfortunately, the emotional component inherent with the coupling of the words 
“Artificial” with “Intelligence” created from one side, possibly, an excessive expec-
tation (possibly as an effect of anthropomorphism and emotional receptivity) that, 
finally, biomedical complexity was going to be solved at a fingers snap and, from the 
other, a hype that created (some) confusion with regard to the pragmatic and 
accountable benefits AI could bring in understanding the mechanisms at the basis 
of the transition from a status of health to one of disease. The reliability of models 
that mimic diseases in real world scenarios is currently tested in AI-driven and 
simulated environments.
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This hype has been fuelled, as well, by “consumer” level “weak AI” (yes, one of 
the ways to categorize AI is “weak” versus “strong”, whereas weak AI or “narrow” 
AI refers to systems trained to execute one specific task and “strong” AI, or 
“Artificial General Intelligence” (AGI), put simply, can mimic cognitive capabilities 
of the human brain and thus be capable, beyond the task for which it is initially 
trained, to solve, autonomously, unfamiliar ones) because weak AI is at the base of 
the personalized virtual assistants we use every day to find a route on a navigator, to 
connect our position to a cab, and in “n” other situations with which we are very 
familiar. 

A different story is when we deep dive into the exercise of finding pragmatic, 
substantial, and structured situation in which AI has become “handy” in 
Personalized Medicine (PM). This is the focus of this book that is structured into 
three sections. We have pivoted on the editors’ personal and professional trajectories 
to focus on the use and usefulness of AI in the field of PM from the extraction of 
actionable biomarkers’ profiles from omics Data to make computer vision reliable 
and actionable into Surgery, passing through the extraction of criteria potentially 
useful for clinical decision support from Lifestyle (behavioural) Data to solve 
complex phenotypes in cancer, chronic diseases, and beyond. 

Finally, we elaborate on the concept of Metaverse, from a cross-industry perspec-
tive analysing where Health Care and Research stand in terms of uptake and 
experimentation to the forecast of building entirely new models for R&D not only 
in the deep science content but, as well, in everyday design and discovery operations 
with initial real-life deployment of “metaverse like” (still in the augmented virtual 
reality endeavour) solutions into clinical trials. 

In Part I, several perspectives provide a comprehensive state of the art that 
includes scientific, technological, and regulatory challenges of using AI in 
PM. Chapter 1 by Cascini and colleagues focuses on how PM is developing by 
integrating AI solutions through the lenses of Public Health, which interacts with the 
main audience of healthcare: all citizens. Chapter 2 by Laino and Savevski dives into 
the practical evolution to Digital Health, providing a broad scenario in which AI is 
used in the biomedical field and the main challenges encountered worldwide. 
Chapter 3 by Giorgianni offers a lucid vision of the current status of data flow in 
Europe, introduces the professional figure of the Data Protection Officer, and 
envisions a way forward for data protection. Chapter 4 by Recchia and Gussoni 
draws a distinction between Digital Health, Digital Medicine, and Digital Therapeu-
tics (DTx) while introducing why the latter can potentially transform the treatment of 
chronic diseases, without neglecting practical issues such as clinical evidence, data 
safety, and patients’ literacy. The section closes with Chap. 5 by Tagliaferri and 
colleagues that considers current methodological constraints of using AI in PM from 
an academic point of view, while proposing the avenue of Deep Humanism as a way 
through which patients can be considered more holistically with digital and techno-
logical instruments. 

Part II is entirely focused on consolidated evidence from a stratified landscape of 
AI-based solution applications in PM practice. In Chap. 6, Kyriazakos and 
colleagues show a detailed application of how big data and AI algorithms can



improve clinical research with a specific focus on DTx. In Chap. 7, Villoslada and 
colleagues explain how network analysis of signalling pathways can improve the 
development of combination therapy in multiple sclerosis, as a beautiful example of 
how AI can boost the progress of Systems Pharmacology for immunotherapy. In 
Chap. 8 by Surendran and colleagues, we enter in the field of virtual trials: a 
meticulous methodology leads the reader to understand how virtual patient cohorts 
can be generated with an application in the field of oncology. Chapter 9 by Giacò and 
colleagues explores the issue of Deep Phenotyping and how it can be achieved 
nowadays by taking COVID-19 variants as prominent example. On the other hand, 
Chap. 10 by González-Colom and colleagues provides the example of the Synergy-
COPD project to demonstrate multiscale modelling to predict chronic obstructive 
pulmonary disease (COPD) towards Systems Medicine and AI. In Chap. 11 by 
Tagliaferri and colleagues, AI is used to ameliorate radiotherapy workflows, espe-
cially in high-complexity organizations such as research hospitals. This section 
closes with Chap. 12 by Mascagni et al., in which several applications of AI in 
surgery are provided, highlighting the novel scenario of Surgical Data Science. 
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Part III provides a broader perspective on upcoming technologies with resource-
ful insight about the near future. In Chap. 13, Bellina and Jungmann explore the 
dialogue between start-ups and established organizations as a virtuous collaboration 
through which healthcare and PM could find a sustainable innovation process. In 
Chap. 14, Neumann and colleagues elucidate how AI augments the field of Medtech, 
especially with Software in a Medical Device (SiMD) and Software as a Medical 
Device (SaMD) solutions, explained with a strong regulatory framework. In 
Chap. 15, Patarnello explores the fascinating field of Quantum Computing and 
how it will help enhancing precision medicine, while indicating current challenges 
that still need to be addressed. In Chap. 16, Pagliai depicts an interesting representa-
tion of how the Metaverse Continuum is evolving health care to the next level and 
leads to re-imagine this field. On the other hand, Chap. 17 addresses the very 
interesting topic of human-like interactions while using anthropomorphic 
technologies in health care, such as chatbots, robots, and virtual avatars. 

With Chap. 18, Manto and D’Oria wrap up the main aspects of using AI in PM by 
focusing on some ethical and educational issues that regard individual and algorith-
mic “identity”. Finally, Chap. 19 by D’Oria and colleagues prepares the seeds for 
thinking about a broader perspective on the relationship between AI possibilities and 
human limits, to critically reflect on how this relationship affects AI-guided PM. 

With the hope that this book will be helpful to envision the current and future 
scenarios of medical research and care, we warmly thank Dr. Ina Karen Stoeck at 
Springer Nature, whose precious care has guided us in this beautiful journey we are 
really proud about, and Mr. Bibhuti Bhusan Sharma at Springer Nature, for his



constant dedication in managing this international project. We are also glad to all the 
staff at Springer Nature involved in making this dream possible. 
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Personalized Medicine Through Artificial 
Intelligence: A Public Health Perspective 1 
Fidelia Cascini, Stefan Buttigieg, Roberta Pastorino, Walter Ricciardi, 
and Stefania Boccia 

Abstract 

Digital technologies are leading the transformation of the healthcare sector and 
are bringing new models of health service delivery that are mostly focused on 
prevention and based on personalization and precision. From a Public Health 
perspective, personalized medicine implies a transformation of health systems 
that facilitates improved targeting of healthcare services based on specific popu-
lation sub-group needs, to maximize their effectiveness and relevance. The 
digitalization of healthcare systems and the use of health data-driven approaches 
allow the development of novel, targeted Public Health solutions, which are 
necessary in the complexity of the healthcare ecosystem. The growing amount
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of health data generated every year makes big data platforms an essential tool for 
data management and analytics. Although various different artificial intelligence 
systems are being developed with the aid of such platforms, they generally share 
similar objectives: to assist health systems’ response to specific emerging health 
demands; to design healthcare services that are able to scale their provision 
according to the growth of populations; to improve public health resilience and 
responsiveness, to promptly control epidemic-related emergencies; to better 
differentiate patient communities through risk stratification and to inform indi-
vidual decision-making, both essential for the personalized medicine movement. 
In this chapter, we present the development of artificial intelligence and its 
promising applications allowing targeted Public Health interventions, and current 
limitations to address as well.

4 F. Cascini et al.

Keywords 
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1.1 The International Landscape of Artificial Intelligence 
for Healthcare Purposes 

Artificial Intelligence (AI), defined as a system’s ability to correctly interpret 
external data, to learn from such data, and to use those learnings to achieve specific 
goals and tasks through flexible adaptation, can be considered one of the major 
drivers of the digital transformation challenge we are faced with. 

Digital technologies, machine learning algorithms, and AI are transforming 
medicine, medical research, and Public Health. The United Nations Secretary-
General has stated that safe deployment of new technologies, including AI, can 
help the world to achieve the United Nations Sustainable Development Goals, which 
would include the health-related objectives under Sustainable Development Goal 
3 (United Nations 2022). AI could also be the key to improve global commitments 
on achieving universal health coverage. 

The EU’s coordinated approach to make the most out of the opportunities offered 
by AI and to address the challenges that it brings is based on its Digital Single 
Market, where rules and regulations on various related topics (data protection, 
business development, etc.) create an environment for growth without leaving single 
countries lagging (European Commission 2022). In its seminal White Paper on 
Artificial Intelligence, the European Commission (2020a) describes the 
characteristics of the policy framework necessary to develop trustworthy and secure 
AI applications for all areas, including healthcare. The EU must be: 

– An “ecosystem of excellence”, starting in research and innovation, where the 
right incentives accelerate the adoption of solutions based on AI, including by 
small- and medium-sized enterprises.
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– An “ecosystem of trust” in which compliance with EU rules and regulations is 
enforced, including the rules protecting fundamental rights and consumers’ 
rights, especially for AI systems operated in the EU which pose a high risk. 

The use of AI technologies to improve healthcare systems holds a promising 
future, with progress already being made in various health-related fields, such as 
drug discovery, medical imaging, screening/prevention. AI could be fundamental in 
assisting healthcare providers, helping to avoid errors, and allowing clinicians to 
focus on providing care and solving complex cases. However, from a Public Health 
perspective, to maximize the benefits for society, the legal, ethical, regulatory, 
economical, and social constraints of AI must be addressed rapidly. 

AI technologies are usually designed by companies or through public–private 
partnerships (PPPs). To strengthen European competitiveness in the PPPs on AI and 
to engage various stakeholders and investors in the technological development of the 
EU, the European Commission spent between 20 and 50 million € per year to fund 
partnerships on AI Data and Robotics from 2014 to 2020, with an overall 1.1 billion 
€ spent under the Horizon 2020 research and innovation programme, which included 
big data (Pastorino et al. 2019) and healthcare (OECD 2019). 

Some of the world’s largest technology companies are developing new 
applications and services, which they either own or invest in. The potential benefits 
of these technologies and the economic and commercial potential of AI for health 
care are warranting an ever-greater use of AI worldwide (WHO 2021a). 

The European Commission categorizes AI applications as “generally high-risk” 
because they are both employed in sectors where significant risks are expected to 
occur and in such a manner that increases the amount of predictable risk to be taken 
(these include healthcare, transportation, the energy sector, etc.). This is particularly 
true for healthcare systems, where applications can have unpredictable and 
far-reaching consequences, which might affect patient safety, access to care, quality 
of care, and certain fundamental human rights. The European Commission has 
continued to build on this work and has adopted the risk stratification process, 
varying from “Unacceptable Risk” to “Minimal Risk” in the ongoing discussion 
on the harmonized rules on Artificial Intelligence or what is better known as the “AI 
Act” (European Commission 2021). In parallel, this legislation is furthermore 
supported by the work being done on the “Data Governance Act”, “The Open 
Data Directive”, and the initiatives under the “European strategy of data”. In the 
European strategy of data, there is a focus on the relevant deployment of data 
infrastructures, tools, and computing for the European Health Data Space which 
will determine the availability of high-quality data essential for training and further 
developing Artificial Intelligence systems (European Commission 2020b). This 
specific space will facilitate non-discriminatory access to health data and the training 
of artificial intelligence algorithms on those datasets, in a privacy-preserving, secure, 
timely, transparent, and trustworthy manner supported by institutional governance. 

In fact, through this regulatory framework, the European Commission is seeking 
to ensure common normative standards for all high-risk AI systems. The health 
sector’s involvement in high-stakes situations which require the use of sophisticated



diagnostic systems and systems supporting human decisions need to be reliable and 
accurate. Building on this aspect is the important element of “Human Oversight” 
outlined in Article 14 of the “AI Act”, where human oversight will play an important 
role in preventing or minimizing the risks to health that may emerge because of the 
implementation of a high-risk AI System. 
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Different organizations throughout the world are building on this important 
discussion. The Pan American Health Organization (PAHO) offers its own guiding 
principles for all AI applications in healthcare or Public Health (PAHO 2021): 

– People-centred: AI technologies must respect the rights of the individual. 
– Ethically grounded: progress and discussion must be made in compliance with the 

principles of human dignity, non-maleficence, and justice. 
– Transparent: when developing AI algorithms, having clear objectives and goals is 

mandatory. 
– Data protection: data privacy and security are paramount in AI development. 
– Demonstrates scientific integrity: AI applications must be reliable, reproducible, 

fair, honest, and accountable, according to the best practices. 
– Open and shareable: openness and shareability must be the founding principles of 

every AI development process. 
– Non-discriminatory: AI for Public Health must be based on fairness, equality, and 

inclusiveness. 
– Human-controlled: all automated decisions must be reviewed by human beings. 

These guiding principles will be fundamental in developing global cooperation 
initiatives centred on AI in Public Health and navigating the complex legislative and 
policy environment that is being developed for the safety of our increasingly 
interconnected society. 

1.1.1 Artificial Intelligence Systems Suitable for Public Health 
Applications 

AI encompasses many fields of scientific enquiry, and its objective of mimicking 
human cognitive functions has many facets. To deploy and implement AI systems in 
healthcare settings they need to undergo a process of training, in which various types 
of input data, depending on the use case, will be “fed” to the algorithm and return 
associations or predictions. In this way, clinical data, diagnosis data, or screening 
results can be used to predict individual or population trends, help diagnose disease 
or create associations between various features of care (FDA 2013). 

Machine Learning (ML) is based on algorithms that improve automatically 
through experience, feedback, and use of data. The trained algorithm then generates 
rules that can be used to classify new data or predict future data; this has many 
applications in a Public Health perspective, as it can be used to understand the 
complex connections between genetics, environment, and diseases or to predict 
illness. ML algorithms can be divided into two major categories: unsupervised



learning and supervised learning, with the latter being based on labelled data (the 
machine has some positive and negative examples of what it should be able to 
identify). Unsupervised learning is best applied to extract patterns and features from 
data, whilst supervised learning is more suitable for predictive modelling, given its 
ability, for example, to build relationships between the patient traits (age, gender, 
etc.) and the outcome of interest (i.e., cardiovascular disease) (Jiang et al. 2017). 
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Deep Learning (DL) leverages algorithms as networks of decisions to learn from 
data. These networks are called neural networks or deep neural networks, depending 
on the number of layers in the network. DL can identify diseases thanks to imaging 
and can predict health status relying on health records (e.g. diabetic retinopathy in 
retinal fundus photographs). Its main advantage over other learning algorithms is its 
returned performance over bigger databases, being able to draw patterns in an 
abundance of unlabelled data, making it highly scalable. 

Different learning methods can then be used to create disparate types of AI that 
have applications in Public Health. Natural language-related AI is a subfield of AI 
that aims to bridge the divide between the languages that humans and computers use 
to operate. Specifically, Natural Language Processing (NLP) automates the ability to 
read and understand human language, and by doing so, it ensures behaviour and 
sentiment analysis through social media and consumer-generated data. Natural 
Language Understanding (NLU) understands human writing using a coded compre-
hension of grammar, syntax, and semantics; this might be employed, for example, in 
the identification of loneliness or depression in older adults based on the content and 
patterns of their text messages. Finally, Natural Language Generation (NLG) 
transforms structured data into plain language or text, which can be useful to 
automatically remove identifiers and sensible information from electronic medical 
records or to produce automated medical reports given certain exam results as input. 

Automated scheduling and automated planning are a branch of AI focused on 
organizing and prioritizing the activities required to achieve the desired goal, and 
expert systems (also known as knowledge-based systems) are AI programs that have 
expert-level competence in solving specific problems. Possible functions of expert 
systems and management systems include identifying and eliminating fraud or 
waste, scheduling patients, predicting which patients are unlikely to attend a sched-
uled appointment, assisting in the identification of staffing requirements, optimizing 
the allocation of health-system resources by geographical location according to 
current health challenges, and using administrative data to predict the length of 
stay of health workers in underserved communities (NHS UK 2019). Digital 
Decisioning Platforms represent the evolution of automated scheduling and planning 
expert systems. Generative AI, powered by advanced models like GPTs and stable 
diffusion, is rapidly developing. Public health has been involved in this pro-
cess mainly regarding tasks such as analyzing patient data, creating informative 
presentations, and writing public health messages. However, more research is 
needed to fully understand generative AI potential and limitations, also in the Public 
Health field. 

Other domains of AI can benefit Public Health indirectly. One such example is 
Cognitive Search, which employs AI systems to merge and understand digital



contents from different sources by deriving contextual insights from conceptual data, 
improving the relevance of the results generated from a user search, for example in a 
search engine. This could help evaluate the quality and intent of information 
distributed during health emergencies, and sift through emerging information 
based on source and credibility. During the COVID-19 pandemic, this has been 
applied to the most utilized search engines to give citizens the most up-to-date 
information on prevention and medication use, filter obsolete information and reduce 
confusion (Microsoft New Zealand News Centre 2021). 
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1.1.2 Improving Healthcare Services Using Artificial Intelligence 

One of the main focuses of AI development in healthcare is creating a support 
system to improve the early diagnosis of various diseases. This is being particularly 
explored in the field of oncology, where AI is being evaluated for use in radiological 
diagnoses, such as in whole-body imaging, colonoscopies, and mammograms. AI 
can also aid in optimizing radiological treatment dosing, recognizing malignant 
disease in dermatology or clinical pathology, and guiding RNA and DNA sequenc-
ing for immunotherapy (Bi et al. 2019). 

In general, AI developments in early diagnosis are being studied in most health-
related fields, such as in the early diagnosis of diabetic retinopathy, cardiovascular 
disease, liver disease, and neurological disorders (Kamdar et al. 2020). Currently 
there are only a handful of prospective clinical trials on the effectiveness of AI in 
early diagnosis, with some showing promise of equivalent detection ability to human 
professionals in specific tasks, with even fewer focusing on the potential benefits of 
human–machine partnerships. One of the risks in relying excessively on AI and 
machine learning algorithms is the development of an automation bias, where 
medical practitioners might not consider other important aspects in patient care 
and overlook errors that should have been spotted by human-guided decision-
making (The Swedish National Council on Medical Ethics 2020). 

AI can also be used to digitalize and store traditional paper medical records and 
process large amounts of data from images and other types of inputs or signals (such 
as motion data or sound data). Steps in image and signal processing algorithms 
typically include signal feature analysis and data classification using tools such as 
artificial neural networks, which work via complex layers of decision nodes (Wahl 
et al. 2018). Medical imaging is one of the most rapidly developing areas of AI 
application in healthcare. Whilst improving automated image interpretation and 
analysis is a priority, other important aspects of AI application to medical imaging 
are being explored, such as data security and user privacy solutions for medical 
image analysis, deep learning algorithms for restoration/reconstruction and segmen-
tation of complex imaging and creation of fuzzy sets or rough sets in medical image 
analysis (Xia 2021). 

Furthermore, with health systems, in general, growing more complex every year, 
administration and management of care are becoming increasingly laborious. AI can 
be used to assist personnel in complex logistical tasks, such as optimization of the



medical supply chain, to assume mundane, repetitive tasks or to support complex 
decision-making (Schwalbe and Wahl 2020). This is made possible by a combina-
tion of AI advancements in the fields of natural language processing, automated 
scheduling and planning, and expert systems (PAHO 2021). 
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Many AI tools can also be used in specific public health programmes or in wide 
public health approaches to improve wellbeing. AI can be used for health promotion 
or to identify target populations or locations with “high-risk” behaviour concerning 
communicable and non-communicable diseases. AI can improve the effectiveness of 
communication and messaging specifically directed to certain sub-populations, both 
in terms of its ability to recognize priority groups and in its adaptiveness in creating 
tailor suited messages to benefit population health (micro-targeting) (Privacy Inter-
national 2021). One example of such application is micro-targeting individuals or 
communities with technological, linguistic, or cultural barriers to better communi-
cate the importance and safety of vaccinations, such as the COVID-19 vaccination 
(NBC News 2021). AI tools could therefore be adapted to improve access and equity 
of care, furthering the development of truly personalized medicine. 

AI can also have a leading role in performing analyses of patterns of data for 
health surveillance and disease detection (Russell and Norvig 2010; Alcantara et al. 
2017; Morgenstern et al. 2021; CDC Foundation 2022): AI tools can be used to 
identify bacterial contamination in water treatment plants, identify foodborne 
illnesses in restaurants or hospitals, simplify detection and lower the costs. Sensors 
can also be used to improve environmental health, such as by analysing air pollution 
patterns or using machine learning to make inferences between the physical envi-
ronment and healthy behaviour (Roski et al. 2019). 

Another application of AI in public health surveillance is evidence collection and 
its use to create mathematical models to make decisions. Although many public 
health institutions are not yet making full use of all possible sources of data, some 
fields, such as real-time health surveillance, are steadily improving. This has 
improved the public health outlook on pandemic preparedness and response, though 
the long-term ramification of such important changes will only be evident in the 
future (Whitelaw et al. 2020). 

The development of public health policy also proves to be fertile ground for 
artificial intelligence where attempts at analysing argumentation on food quality in a 
public health policy was attempted. Models with new recommendations based on 
stakeholders’ arguments by target specific audiences have been consequently 
generated (Bourguet et al. 2013). Healthcare has always depended in part on 
predictions, prognoses, and the use of predictive analytics. AI is just one of the 
more recent tools for this purpose, and many possible benefits of prediction-based 
health care rely on the use of this technology. For example, AI can be used to assess 
an individual’s risk of disease, which could be used for the prevention of diseases 
and major health events (OECD 2019). 

Various studies suggest that artificial intelligence may improve several 
pathologies, such as heart failure, utilizing predictive models and telemonitoring 
systems for clinical support and patient empowerment. For example, given the 
expected increase in the number of heart failure patients in the future due to the



ageing of the population, predicting the risk of a patient having heart failure could 
prevent hospitalizations and readmissions, improving both patient care and hospital 
management, which would have a high impact on costs and time (Larburu et al. 
2018). 
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Machine learning is also increasingly being applied to make predictions related to 
population health: using novel big data resources, ripe with different data types, may 
allow for improvements in prediction algorithms necessary to navigate the complex 
health data ecosystem successfully (Alcantara et al. 2017). A good example of this, 
is the integration of data types to better understand complex associations between 
genetics, environment, and disease. The Harvard group has been using large admin-
istrative datasets to untangle the relationship between genetics and environment in 
all diseases recorded in health insurance claims data (Lakhani et al. 2019). Using 
biobanks and their massive datasets allows scientists around the world to discover 
new genetic variants (e.g. through genome-wide association studies) and novel risk 
factors associated with disease more efficiently and with higher sensitivity and 
specificity compared to traditional “one-at-a-time” methods (CDC 2019). 

Using electronic medical record data, machine- and deep-learning algorithms 
have been able to predict many important clinical parameters, including suicide, 
Alzheimer’s disease, dementia, severe sepsis, septic shock, hospital readmission, 
all-cause mortality, in-hospital mortality, unplanned readmission, prolonged length 
of stay, and final discharge diagnosis (Topol 2019). 

All in all, predictive models have been used much more widely by clinicians than 
by public health professionals. However, on closer inspection, any application 
improving patient care at any level can be considered relevant to the field of public 
health. The ability of clinicians and healthcare providers to make better informed 
decisions on patient health will be improved by context-specific algorithms, that use 
massive quantities of clinical, physiological, epidemiological, and genetic data. 
Precision Medicine will further benefit from these advanced algorithms, as their 
accuracy, timeliness, and appropriateness in clinical care improve over time, 
decompressing our reliance on human resources. This advancement, however, still 
necessitates computer-literate physicians, who are up to date with new generation 
data-driven approaches. The key to a complete incorporation of AI into clinical care 
will therefore be the integration of human clinical judgement with advanced clinical 
machine learning algorithms (Khemasuwan et al. 2020). 

Table 1.1 shows the most common AI applications in healthcare: 

1.2 Current Limitations of AI Applications in Public Health 

AI poses major technological, ethical, and social challenges, which need competent 
professionals to address. In fact, beyond the many opportunities, artificial intelli-
gence presents some critical issues that could slow down the adoption of these 
applications. With Public Health interventions targeting entire populations, the 
introduction of AI might either improve or worsen health inequities on a large 
scale (Weiss et al. 2018); as assessed by many ethics and policy guidance



documents, the promotion of AI deals with personalized recommendations and 
individual action, but this should not threaten the importance of collective action 
to take care of social and structural determinants of health (Panch et al. 2019). 
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Table 1.1 Most advanced AI applications in the field of healthcare 

Diagnosis and 
clinical care uses 

Administration and management of 
healthcare services 

Predictive models for 
public health purposes 

Medical Imaging: 
– Interpretation 
– Analysis 
– Data security 
– Restoration 
– Fuzzy/Rough Sets. 
– Image quality 
Oncology: 
– Radiological 
Diagnosis 
– Treatment dosing 
– Clinical pathology 
classification 
– Immune therapy 
gene sequencing 

– Guiding complex logistical tasks 
– Reduce the burden of mundane/ 
repetitive tasks 
– Support complex decision-making 
– Optimization of medical supply chain 
– Time and cost management 
– Communicating information in a timely 
and cost-effective manner 

– Micro-targeting 
– High-risk behaviours 
profiling 
– Predict water 
contamination 
– Identify patterns in 
foodborne illnesses 
– Predict air pollution 
patterns 
– Real-time health 
surveillance 
– Population Health 
predictions 
– Genome-wide 
associations 

Moreover, like all public health interventions, AI has the potential to create 
enduring benefits but will require not just a broad coalition of support and partner-
ship between the public and private sector but also the trust and enduring support of 
patients. 

Currently, despite their wide testing, AI-based prediction algorithms that affect 
patient care have not reached a sufficient level of accuracy needed for precise long-
term predictions. This poses a serious challenge for healthcare workers, as long-term 
predictions of limited reliability could impact an individual’s life for years in the 
future: for example, both false-positive and false-negative predictions on an essential 
diagnosis could affect the level of risk clinicians are willing to undertake in order to 
treat a health condition, thus heavily impacting health outcomes. Furthermore, these 
prediction algorithms could be biased towards or against certain population 
sub-groups (e.g., ethnic groups, religious groups), both in terms of potentially 
discriminatory health practices suggested and issues about individual autonomy on 
personal data use and informed consent. These potential pitfalls of AI-based 
algorithms and their long-term health inferences raise essential ethical concerns 
that have to be addressed by all the stakeholders involved (WHO 2021b). 

One of the main and most obvious implications of AI introduction in Public 
Health is the risk of inequalities in accessing technologies, in the opportunity to 
benefit from them and in the burdens generated by them (IEEE Standards Associa-
tion 2019). An example is represented by developing countries that depend on 
AI-based platforms developed by other richer countries, which also leads to a 
significant financial burden. Most AI developments in healthcare respond to the 
needs of high-income countries (HICs), where most research is conducted, however



low- and middle-income countries, where workforce shortages and limited resources 
constrain the access to quality of care, could also benefit from the implementation of 
AI in Public Health. 
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Another element that exacerbates this digital divide is the lack of availability and 
accessibility of Internet services: Mobile Health apps, which make heavy use of 
Artificial Intelligence, are of no use for people living in areas that do not have 
Internet access. Not only could this gap manifest between population groups, but 
also between researchers, public and private sectors and even health systems (Smith 
et al. 2020). A similar difference could present between those who choose to actively 
use AI technologies and those who do not. AI systems might be programmed 
according to certain values and judgements that could create or worsen health 
inequities, for instance, those related to gender, race or belonging to minority groups 
(Norris 2001). Moreover, there could be disagreement about the system of values 
that inform AI systems (Caliskan et al. 2017). 

Through harmonized standards and requirements, both at the research stage and 
in the evaluation phase, it is essential to ensure effectiveness for the patient as well as 
safety in use. The current scientific landscape will see an increase in the number of 
clinical trials that verify the effectiveness and efficacy of AI in Public Health; proper 
development of a precautionary supervised system of trials will ensure that they are 
ethical, legal, and inclusive in scope. Nevertheless, the next decade will shed light on 
how the broad political, economic, and cultural global framework in which these 
technologies are developed will transform public health through the use of AI 
(Larburu et al. 2018). 

The biggest challenge for AI in these healthcare domains will be ensuring their 
adoption in everyday clinical practice. Widespread adoption of AI systems must be 
approved by regulators, integrated with digital health platforms through health 
data pipelines, standardized at a level such that similar products perform similarly, 
taught to clinicians, accepted by the patients, paid for by public or private payer 
organizations, and updated over time. The change is expected to be based on 
multilevel—from local to supranational—collaborations, and supported by regu-
latory bodies acting for Public Health interests (Davenport and Kalakota 2019). 
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Abstract 

With the scientific and technological progress achieved through -omic sciences 
(e.g., genomics, proteomics) and the development of sophisticated Artificial 
Intelligence (AI)-based solutions, Personalized Medicine has reached new 
opportunities for patient prevention and care in a new clinical avenue called 
“Digital Health” (DH). Investments in this field are rapidly increased worldwide. 
The chapter shows how AI is used in DH by elucidating four principal 
applications reported by the literature. AI-based solutions can support in retriev-
ing big data, in analyzing Real-World Data (RWD) to produce Real-World 
Evidence (RWE), in predicting prognostic outcomes and risks, in personalizing 
clinical diagnostics, while customizing therapy development and monitoring 
patients’ adherence. The chapter finally summarizes some challenges that still 
need to be addressed by the stakeholders involved in the field of DH. 

Keywords 

Artificial Intelligence · Digital Health · Patient management · Predictive model · 
Virtual ward · Patient support program 

2.1 Introduction 

The scientific progress achieved with the -omics (e.g., genomics, proteomics, 
metabolomics, radiomics, etc.), and the technological advances brought by Informa-
tion Technology (IT), bioinformatics, and data sciences have rapidly increased the 
prognostic and diagnostic opportunities for Personalized Medicine (PM), aiming at
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delivering “the right treatment to the right patient at the right time” (Cesario et al. 
2021). The boost of innovation in biomedical research has rapidly increased life 
expectancy worldwide, leading healthcare systems to face a higher demand for their 
services and workforce, to meet patients’ and citizens’ specific needs. Several 
challenges affect this demand such as changes in patients’ expectations, a shift in 
lifestyle choices, or the continuous innovation of services, technologies, and clinical 
possibilities (Spatharou et al. 2020). For example, it has been estimated that by 2050, 
one in four people in Europe and North America will be over the age of 65, meaning 
that the health systems will deal with more chronic and complex needs.
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The management of such needs is therefore expensive and requires systems to 
transform their organizations in a more proactive and long-term way (Spatharou 
et al. 2020). To this aim, several investments have been made in the field of 
biomedicine regarding Artificial Intelligence (AI)-based solutions to address several 
challenges such as remote patient management and disease prediction. Conse-
quently, biomedical infrastructures are going to integrate novel evidence-based AI 
solutions to promote a new clinical avenue called “Digital Health” (DH) that can 
potentially revolutionize this field by addressing some of the mentioned challenges 
(Cesario et al. 2022). 

This chapter will introduce the role of AI in DH by giving an overview of the 
main global trends in using AI solutions for biomedical purposes, without neglecting 
current limitations and challenges that still need to be overcame. 

2.2 The Role of Artificial Intelligence in Digital Health 

Artificial Intelligence is a discipline that outlines how computers can simulate, 
reproduce, and eventually enhance human intelligence mechanisms. According to 
the Medical Subject Heading (MeSH) Browser, AI is defined as: 

Theory and development of Computer Systems which perform tasks that normally require 
human intelligence. Such tasks may include speech recognition, learning; visual perception; 
mathematical computing; reasoning, problem solving, decision-making, and translation of 
language (MeSH Browser 2022). 

On the other hand, Digital Health is a discipline that includes digital and techno-
logical care programs to enhance the efficiency of healthcare delivery and make 
medicine more personalized and precise; it uses remote monitoring tools and 
AI-driven solutions to facilitate understanding of health problems and challenges 
faced by individual citizens and subpopulations of patients (WHO 2021). 

To take a glance at the international framework, a search performed within the 
PubMed database on June 16, 2022, shows the trend represented in Fig. 2.1, for a 
total of 357 results. This trend is likely to increase exponentially. 

Even if the AI’s impact and efficacy for DH is still at its roots, we could expect 
interesting evolutions by looking at the pipeline of industrial and academic ideas on

https://meshb.nlm.nih.gov/record/ui?ui=D003199
https://meshb.nlm.nih.gov/record/ui?ui=D007858
https://meshb.nlm.nih.gov/record/ui?ui=D014796
https://meshb.nlm.nih.gov/record/ui?ui=D008432


the global market. Currently, we envision four main directions of using AI solutions 
within the international medical field: 
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Fig. 2.1 Trend of scientific publications on PubMed for the query “artificial intelligence” [Title/ 
Abstract] AND “digital health” [Title/Abstract], without setting any filter for year, language, or 
publication type 

a. Support for prognostic outcomes and risk prediction 
b. Support for clinical diagnostic personalization 
c. Support for therapy development or improvement 
d. Support for data collection and analysis [synthetic data, Real-World Data (RWD), 

Real-World Evidence (RWE)] 

These directions will be elucidated in the following paragraphs. 

2.2.1 Prognostic Outcomes and Risk Prediction 

Prognostic outcomes and risk prediction is a process that involves the classification 
of individuals with certain characteristics or conditions and their classification 
according to stage, severity, and other clinical variables (European Parliament 2022). 

One of the first fields in which AI-aided detection and prediction is applicable 
(but not limited to) is medical imaging. For example, starting from a database 
containing a considerable number of images of a neoplasm that are then compared 
with images of healthy cells and tissues, AI algorithms can be trained to early detect



cancer by comparing images among them (Bi et al. 2019). The comparison of 
massive information allows the algorithm to identify if key features of that specific 
neoplasm are present within the patient’s diagnostic images. The recognition helps 
anticipating the risk of disease manifestation/recurrence. Algorithms can therefore 
develop a “predictive model” (e.g., probabilistic and/or statistical analysis) that help 
doctors in creating a dedicated preventive path. In Part II of this book, several 
chapters will provide specific examples. 
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A sophisticated way in predictive modeling is the creation of Human Digital 
Twins (HDTs), computerized avatars that simulate the information ecosystem of the 
patient (although it represents a sampling of data and not the totality of his/her 
health), by connecting the medical history (including family history, if available) 
with current illnesses and symptoms (Valentini and Cesario 2021). HDT are impor-
tant for clinicians and patients because they give a comprehensive overview of the 
clinical history to develop a personalized plan. Some interesting reflections will be 
reported in this book regarding the identity of the patient and the ethical aspects (see 
Manto and D’Oria, infra). Currently, HDTs are expected to compare the patient 
specimen with those of others to achieve stratified clusters of subpopulations in 
predictive medicine, to anticipate disease onset or exacerbation. 

2.2.2 Clinical Diagnostics Personalization 

AI-based algorithms show their greatest utility in multifactorial analyses of big data 
and RWD to create accurate predictive models for diagnostics and the reduction of 
clinical errors (Miller and Brown 2018). Predictive modeling starts from large 
datasets (based on the information retrieved from a patient, subpopulations with 
related characteristics, populations with the same disease, or seemingly distinct 
populations), whose data are classified according to similarities, rules, connections, 
neural networks, statistics, or probabilities. 

The main tasks of these algorithms for diagnostics are as follows:

• Risk prediction and diagnosis of several diseases in their types, features, and 
levels of complexity (Kourou et al. 2014).

• Integration of omics and multi-omics data for complex diseases personalized 
diagnostics (Fornecker et al. 2019).

• Discovery of novel associations between diseases, including comorbidities and 
multimorbidities (Deparis et al. 2018).

• Observation of different pathology-specific therapeutic outcomes to identify key 
instances (e.g., mutations or genetic alterations) that originate new cancers 
(Zhang et al. 2017). 

AI-based algorithms are prevalently used for disease prevention and therapeutic 
outcome prediction in several fields (e.g., radiology, radiation therapy, ophthalmol-
ogy, dermatology (Naylor 2018), gastroenterology, gynecologic oncology, senology 
(Kourou et al. 2014), hematology (Radakovich et al. 2020), and infectious diseases



(Peiffer-Smadja et al. 2020; Ozsahin et al. 2020). Specifically, their use helps 
personalizing preventive diagnostics and therapeutic choices by gathering interper-
sonal features within the same cluster of patients, and therefore identify discordance 
from intrapersonal variability. 
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2.2.3 Therapy Development or Improvement 

Another example that demonstrates how AI is utilized in the biomedical field regards 
the development/improvement of drugs and therapies to predict their outcomes 
(including the assessment of possible toxicity or the onset of adverse events) and 
personalize them according to each patient’s characteristics (Bhinder et al. 2021). 
Such models, like those based on quantitative structure–activity relationship 
(QSAR) approaches (Golbraikh et al. 2012; European Parliament 2022), can help 
predicting large numbers of new compounds for various biological end points. These 
models can further facilitate greater understanding of molecules’ behavior (e.g., 
potential antimicrobial activity) by screening a large volume of molecules and 
virtually test them to identify antibacterial compounds structurally distant from 
known antibiotics (Stokes et al. 2020; European Parliament 2022). 

Besides, the current way of manufacturing pharmaceutical products and related 
existing logistic solutions is not mature for this revolution, since one of the current 
challenges is cybersecurity. A potential solution could be the envisioned in the 
concept of “cryptopharmaceuticals” elaborated by Nørfeldt et al. (2019), where 
pharmaceutical products are connected in a patient-specific blockchain of individual 
dosage units for personalized medication and, potentially, avoid counterfeit 
products. 

AI-based models are also used for randomized controlled trials (RCTs) design, to 
increase the success rates or personalize patients’ enrollment (Harrer et al. 2019), or 
to assess the risks and benefits of medical interventions. Sometimes, undertaking a 
RCT is not always possible under certain clinical conditions; therefore, Machine 
Learning (ML)/Deep Learning (DL) algorithms can be used in designing in silico 
clinical trials (ISCTs), computerized simulations often customized on HDTs that 
study the development or regulatory evaluation of a virtual drug, a device or a 
therapeutic intervention (the chapter of Surendran and colleagues—infra— 
elucidates very well the approaches to generating virtual patient cohorts in oncol-
ogy). To this aim, studies with real patients may be reduced in favor of sophisticated 
simulations that predict, for example, the safety and efficacy of a treatment on a 
specific patient [the so called “N-of-1 clinical trials” (Lillie et al. 2011)], or a subset 
of patients with similar clinical pathophenotype. 

2.2.4 Deep Data Collection and Analysis 

AI solutions in clinical practice must be based on RWE from clinical trials, espe-
cially to implement clinical decision-support tools. Important preconditions for AI to



deliver its full potential in global medicine and healthcare are the integration of 
broader data sets across organizations, a strong governance to improve data quality, 
and a greater confidence from practitioners, and patients in AI solutions and the 
ability to manage the related risks. Recently, many studies have been published in 
the field of synthetic data generation for healthcare, which can be applied and 
applied across a variety of domains (Goncalves et al. 2020). Indeed, generative 
neural networks—AI models that produce realistic data from a training dataset—are 
listed between the most innovative ideas proposed in the last decades (Laino et al. 
2022). They represent promising tools in protecting patient privacy, diversifying 
datasets, for training and educational purposes, and in accelerating clinical research 
(Arora and Arora 2022). Synthetic data could help in any field of healthcare in 
coping with the data lack, anonymity, and quality (Elazab et al. 2020). Furthermore, 
when applied to medical imaging, generative neural networks have proven to be 
useful in many fields, such as: 
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– The generation of different images within the same modality [i.e., generating T1 
images from T2 images at Magnetic Resonance (MR)] or from different 
modalities [i.e., producing MR from Computed Tomography (CT) scans], 
which could lead to a reduction in radiation exposure and an improvement in 
image interpretation (Kossen et al. 2021). 

– The reconstruction of images, with reduction of artifacts and improvement of 
image quality, which could help in reducing CT radiation exposure and MR 
acquisition time. 

– The data augmentation and the improvement of data availability and quality at a 
low cost, which is especially helpful for rare diseases (Laino et al. 2022). 

However, since the type and quality of generated data are strictly dependent on 
the training dataset, and since it carries a lot of problems for their implementation in 
the clinical practice—as hallucination, deepfake, misdiagnosis of medical conditions 
(Laino et al. 2022)—the generation of synthetic data finds at the moment few clinical 
applications, while remaining a very active topic in biomedical research (Sorin et al. 
2020). 

2.3 Digital Health for Personalized Patient Compliance 
and Flow Management 

Two main applications of DH can improve and personalize the clinical experience: 

a. Monitoring patients’ symptoms and adherence to therapy 
b. Digitalization of clinical pathways 

Both applications will be described below and require the integration of AI 
solutions with the hospital and home settings, specifically when DH focuses on 
several specialties (e.g., oncology, cardiology, neurology) to provide a holistic care.
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2.3.1 Monitoring Patients’ Symptoms and Adherence to Therapy 

Patients can actively provide healthcare professionals with some information regard-
ing their daily biometrics (e.g., hours of sleep, heart rate, and steps taken in a day), as 
well as their psychological state through dedicated questionnaires. This kind of 
information, obtainable through apps, sensors, and wearable devices (e.g., electronic 
bracelets), is known as “Internet-of-Medical-Things” (IoMT)—a subset of informa-
tion deriving from the broader Internet-of-Things (IoT)—and represents the patients’ 
data ecosystem to facilitate remote and real-time monitoring of certain parameters 
which, otherwise, could not be retrievable except with a physical visit. 

According to Al-kathani and colleagues (Al-Kahtani et al. 2022), many 
technologies are rapidly evolving in healthcare to assist patients, and to collect/ 
interpret data such as: “ambient intelligence communications technologies” with 
embedded human–computer interaction (HCI); remote monitoring with wearable 
devices (including smartphones, necklaces, etc.); Augmented Reality 
(AR) technologies for immersive medical education and training; smart robots to 
automatize some routinary activities of the patient or to transport the patient from a 
location to the another in the hospital. The urgency of remote monitoring has been 
accelerated during the COVID-19 pandemic (Khan et al. 2021), since social distanc-
ing required healthcare professionals to find alternative and smart solutions to 
communicate with patients, to transmit clinical data in a secure way, while improv-
ing the accuracy of care. A comprehensive example of patients remote monitoring is 
represented in the chapter of Kyriazakos and colleagues in this book [see infra]. 

2.3.2 Digitalization of Clinical Pathways 

DH solutions are likely to address repetitive and largely administrative tasks that 
absorb significant time of doctors and nurses, optimizing healthcare operations and 
increasing their adoption. For example, they can facilitate the transition from 
hospital-based to home-based care toward virtual assistants, remote monitoring, 
and personalized alerts since patients are progressively increasing ownership about 
their care. Embedding AI in clinical workflows through a proactive engagement of 
several stakeholders (e.g., regulatory bodies, healthcare providers) requires combin-
ing well-designed DH solutions with the existing and the newest technologies, as 
well as managing cultural change and capability building within the organization. 

a. Virtual wards. Virtual wards are a remote care experience to follow patients who 
cannot go to the hospital remotely (Hutchings et al. 2021). If a cancer patient is 
unable to travel from home (for example, due to an infection such as COVID-19), 
he/she can still be followed by doctors by checking his/her own biometric 
parameters (e.g., oxygen levels) after being adequately informed and trained for 
the correct use of the measuring instruments. Information is delivered (via video 
call, call, or messaging) to healthcare professionals who are in daily contact with 
the patient, offering telemedicine services and recalling him/her to the hospital for
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observation or treatment if necessary. Algorithms can support in data processing 
to predict the future course of the patient’s condition and help the physician to 
make more personalized data-driven decisions. 

b. Patient Support Programs (PSP). A broader way through which provide care 
continuity to patients beyond the outpatient setting are PSP. By making use of 
multiple remote monitoring tools (apps, wearable devices, questionnaires, etc.) 
provided to the patient, healthcare professionals can check his/her health status in 
real time, be in constant contact with him/her, and intervene when appropriate. 
PSP are based on AI algorithms that can predict the risk of relapse (either physical 
or psychological), and they are specifically designed to monitor patients in the 
time distances between two clinical encounters (i.e., when he/she is not physically 
present in the hospital and may live outside the region). Patients are trained in 
using properly the monitoring tools and have access to apps/portals for educa-
tional materials on disease management. Additionally, they can request virtual 
coaching sessions with dedicated health professionals (psychologist, nutritionist, 
etc.). 

Both solutions can strengthen patients’ adherence to treatments (Su et al. 2022), 
and could also improve the therapeutic alliance with the whole team of experts that 
follows the patient. 

2.4 Investments in the AI and DH Environment 

The race to build and adopt AI tools as well as investing in AI start-ups is fast 
growing, with commercial uses of AI becoming an important reality worldwide 
(Mou 2019). Companies in every sector—from retail to agriculture—are more and 
more including AI software into their products or administrative management. This 
explains why AI is actually leading technology investments. The landscape of 
healthcare AI startup companies is progressively expanding with solutions aimed 
to solve some of the industry, hospital, or healthcare providers’ most pressing 
problems (Young 2022). 

This growing significance of AI and DH solutions to deliver precise and effective 
healthcare solutions has promoted the number of venture capital investors along with 
start-ups to invest in healthcare. Enormous potential and wide range of application in 
this sector could enhance patient management while minimizing costs, thus 
expediting market growth. For example, in the first half of 2022, Digital health 
ventures headquartered in Europe captured US 2.43 billion across 124 deals, with an 
average deal size of US 19.6 million. 

In the future, the global market size of AI for healthcare is expected to reach US 
$45 billion by 2026 and 67.4 billion by 2027 [Artificial Intelligence in Healthcare 
Market Worth $45.2 Billion by 2026 (Markets and Markets 2020)]. On the other 
hand, AI integration in daily life will have a significant impact on major economic 
sectors, leading to the need to confront the possibility of job losses and rearranging 
our life habits (Mou 2019).
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2.5 Further Considerations 

According to the Organization for Economic Co-operation and Development 
(OECD) “High expectations must be managed, but real opportunities should be 
pursued” when considering the potential of AI in medicine and healthcare (OECD 
2020). Indeed, some dimensions must be carefully examined to achieve sustainable 
goals for all patients and communities. 

For example, although DH and AI can enable rapid and inexpensive information 
sharing, some concerns about privacy and personal health data still exist. Regulatory 
challenges go from data to privacy protection (see Giorgianni, infra), touching the 
framework on Digital Therapeutics (see Recchia and Gussoni, infra), and the 
approval of Regulatory Bodies about the introduction of medtech for personalized 
patient treatment (see Neumann et al., infra). 

Another concern regards the possibility of augmenting the digital divide among 
minority groups in using and trusting DH systems, and therefore delivery 
jeopardized access to PM opportunities. The gap between low- and high-income 
populations should be managed effectively by fostering digital health literacy skills. 
In facts, it is not guaranteed that the healthcare professional and the patient would be 
able to master and understand DH tools, hence education about the technologies and 
the wording of the world of AI is a pivotal asset to consider. Specific programs on 
DH could be implemented to empower communities to embrace digital transforma-
tion with AI and IoMT in a sustainable manner (WHO 2021; Lin and Wu 2022). 

Third, risk prediction should be considered as a “probability” and not a “proph-
ecy”: HDTs do not represent “the patient” but a sampling of the information 
available about the person (Valentini and Cesario 2021). Besides, every result 
coming from the calculation of an algorithm—even when precise, evident, and 
fully accurate—must always be contextualized and carefully explained by the 
healthcare professional to patients to increase their understanding and awareness. 
This perspective cannot be separated from the promotion of a transparent communi-
cation between all the stakeholders involved in this field that elucidate the real 
benefits that these technologies can bring to patients. 
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GDPR as a First Step Towards Free Flow 
of Data in Europe 3 
Francesco Giorgianni 

Abstract 

The purpose of this short essay is to describe how the European Union is willing 
to promote a true European Market for Data. Data is more than the new oil: oil is 
going to end one day; data multiplies as much as humans “produce” them. To 
properly monetize data, it is paramount to protect them. The international success 
of the General Data Protection Regulation (GDPR) stems from this vision. We 
analyse the key pillars of GDPR: Data Protection Officer (DPO), security 
measures, and sanctions. GDPR stays at the core of data protection regulation. 
We touch base with Digital Service Act and Digital Market Act acknowledging 
that they are aimed at eliminating obstacles to data free flow in Europe and allow 
GDPR architecture to truly succeed in a competitive scenario, by eliminating 
barriers to entry of new digital business, especially in the health digital medicine 
market where cross selling and interlocking of customers by large gatekeepers is 
more than a risk. 

Keywords 

Europe · Data protection · GDPR · Digital market · Regulation 

3.1 The GDPR Revolution 

The General Data Protection Regulation (GDPR) is a European Regulation adopted 
in 2016, and entered into force in May 2018, which has profoundly innovated the 
compliance systems of companies. The “Mother” Directive 95/46/EC on privacy had 
been adopted by the various countries of the European Union (in Italy with the
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Privacy Code) in a very uneven way, creating interpretative gaps, the same that 
forced the Court of Justice, on several occasions, to intervene to restore a “level 
playing field” adequate to the circulation of data in Europe.1 
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In fact, the European regulatory breakthrough inaugurated with the GDPR was 
then recently strengthened and clarified through the approval of the Digital Service 
Act and the Digital Market Act. The Union, on the one hand, demands a strict 
protection of the data of its citizens, but on the other hand starts a season aimed at 
breaking the oligopoly of the GAFAM (Google, Apple, Facebook, Amazon, 
Microsoft, or the “gatekeepers”) and opening the platforms for non-discriminatory 
access by the large European players of goods and services, which would find an 
obstacle precisely in the impossibility of monetizing the circulation of data to their 
advantage. 

The GDPR is grafted on a solid European privacy regulation tradition, which 
must be revised to the needs imposed by the digital transformation of the global 
economy. In fact, many contents of the Mother Directive are found in EU Regulation 
2016/679 GDPR, but it is precisely the setting of the GDPR that overturns the 
philosophy of personal data protection (Table 3.1). 

In summary: companies that offer digital medicine services must be able to equip 
themselves with their own privacy risk assessment system, without counting, as in 
the past, upon legal review by the Supervisory Data Protection Authority (SDPA). 
With the GDPR, in the event of a breach of personal data (data breach), or inspection 
following complaints from the interested parties, the SDPA will verify whether the 
company has adopted “adequate” security measures to mitigate the privacy risk. The 
burden of proof of these security measures is proportional to the quality of the 
“compliance tools” adopted, and therefore to the ability to generate reliable KPIs to 
quantitatively and qualitatively measure the excellence of the preventive activity 
carried out by the data controller. 

The first pivot on which a GDPR compliance programme leverages is, in fact, the 
principle of accountability (“active responsibility”) of the data controller. The 
second pivot is the figure of the Data Protection Officer (DPO).

1 Please, see the milestone judgement of the European Court of Justice of May 13th, 2014 (Personal 
data—Protection of individuals with regard to the processing of such data—Directive 95/46/EC— 
Articles 2, 4, 12 and 14—Material and territorial scope—Internet search engines—Processing of 
data contained on websites—Searching for, indexing and storage of such data—Responsibility of 
the operator of the search engine—Establishment on the territory of a Member State—Extent of 
that operator’s obligations and of the data subject’s rights—Charter of Fundamental Rights of the 
European Union—Articles 7 and 8). In Case C-131/12, REQUEST for a preliminary ruling under 
Article 267 TFEU from the Audiencia Nacional (Spain), made by decision of 27 February 2012, 
received at the Court on 9 March 2012, in the proceedings Google Spain SL, Google Inc. v Agencia 
Española de Protección de Datos (AEPD), Mario Costeja González.
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Table 3.1 Principal innovations between the Directive 95/46/EC and the GDPR REG UE 2016/ 
679 

DIRECTIVE 95/46/EC GDPR REG UE 2016/679 

– Data processing must be “regulated” and 
sometimes “authorized” by the Supervisory 
Data Protection Authority (command & 
control regulation). 
– Sanctions are National (Eu Member States 
opted for negligible or minimal sanctions). 
– Security measures must be minimal. 
– The international transfer of data by cloud 
providers to countries deemed “inadequate” 
must be guaranteed at least by Standard 
European Contractual Clauses. 

– Data processing is justified according to the 
principle of “accountability” (self-regulation) 
of the data controller and the data processor. 
– The sanctions are European and reach up to 
4% of the group’s global turnover. 
– Security measures must be adapted to the risk 
inherent in the processing of data. 
– The international transfer of data by cloud 
providers to countries deemed “inadequate” is 
allowed, provided that in the country to which 
the data are transferred the rights of the 
interested parties are guaranteed. 
– Mandatory registration of the processing of 
personal data and data breach. 
– Mandatory (for some treatments) of the data 
protection impact assessment. 
– Mandatory appointment of the Data 
Protection Officer (e.g. for large corporate 
groups or even small entities that process very 
sensitive data). 

3.2 The DPO According to the GDPR and the Guidelines of the 
European Data Protection Board 

The DPO is appointed according to professional qualities, specialized knowledge of 
privacy legislation, and the ability to fulfil the following duties: 

– Providing advice on the mapping of treatments (and applications) and identify the 
main areas of the company exposed to privacy risk 

– Defining a processing log model, data breach register, and a risk analysis meth-
odology aimed at building the company’s burden of proof 

– Providing advice to the competent business areas on technical and organizational 
security measures and verify the effectiveness of the minimum ones adopted 

– Supporting the General Counsel in the negotiation of contracts related to interna-
tional data transfers (e.g. cloud contracts) 

– Supporting the General Counsel in contracts and in the drafting of privacy 
policies, as well as in the management of the rights of the interested parties 
(verifying the effectiveness of business processes in compliance with the times 
and methods provided for by the GDPR) 

– Training employees and management on the obligations arising from the GDPR 
(accountability) 

– Monitoring the application of the GDPR, define company policies and 
appointments on the subject
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– Carrying out data protection audits on infrastructures, applications, and 
treatments used by the company and third parties 

– Supporting the company in the “privacy by design & by default” processes for the 
construction of apps, customer services, HR process management, and in all 
activities aimed at the digital transformation of business processes 

– Providing opinions on the Data Protection Impact Assessment (DPIA) and 
collaborate in the definition of the methodology as well as in the drafting of the 
DPIA themselves 

– Relating to the SDPA, not only in inspections and events of personal data 
breaches, but also maintain with the authority a correct relationship aimed at 
representing regulatory and provisional solutions on privacy issues of corporate 
and sector interest 

With reference to large industrial groups, or companies managing sensitive data 
like in the digital medicine business, the European guidelines suggest the adoption of 
a team of DPOs that can be inspired by the company’s organizational model, without 
being a slavish photocopy. Because the DPO must be placed—from an organiza-
tional point of view—“close” to the processing activities of personal data and must 
have visibility on the life cycle of the data, precisely to ensure respect for the rights 
of the interested parties to access it, request its correction, inhibit or limit its 
processing, and finally request its oblivion or cancellation. 

Another very lively discussion was recorded in the imminence of the entry into 
force of the GDPR and concerned the issue of the independence of the DPO and its 
authority, or to be able to report directly to the top management. Over time, the issue 
of independence has been measured by the SDPAs in proportion to the budget and 
resources assigned to the DPO to meet its tasks, but also according to the company 
assignment. It is therefore desirable that the DPO can report not only to the Chief 
Executive Officer, but also to the Board of Directors, in compliance with the 
governance rules chosen by the group. 

The solutions that provided for the placement of the DPO in the Audit, ICT, or 
Corporate Protection functions were immediately discarded: these functions perform 
tasks that are in conflict of interest with the delicate mission entrusted to the DPO. 
The only corporate function that appears the most suitable to “host” the DPO is the 
Legal area, provided that the hierarchical carryover does not go to the detriment of 
the autonomous judgment capacity that the DPO must have, as expressly required by 
the GDPR. It is also permissible that the Lawyer can count on a privacy structure at 
the service of the company, but it is always suggested that the DPO can integrate all 
the privacy skills into his team, precisely to avoid professional competition and 
duplication of roles that are difficult to explain in complex contexts such as industrial 
groups. Not speaking about small medium enterprises that cannot find efficient to 
manage privacy issues through the diarchy DPO—Privacy Corporate Lawyer. 

The DPO can also be “external” to the company organization, and this choice can 
be useful and functional to a transitional path aimed at reorganizing the DPO 
function of a large industrial group. Whereas for small medium companies the



external DPO can be a solution provided that the Board of Directors is made aware 
and that there is solid data protection governance within the company. 
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3.3 Security Measures and “Privacy” Crimes 

The GDPR provides that security measures must be “technical” and “organiza-
tional”. The latter consist of operational indications for management and employees 
contained in policies and operating instructions, assignment of privacy roles 
accompanied by training activities on data protection issues. Technical security 
measures, on the other hand, involve both physical and logical security measures. 
The DPO has a key role in monitoring, alongside the data controller, in maintaining 
the measures, negotiating with cloud providers data protection agreements, and 
verifying that the standard controls prepared by the provider of both cloud and 
hybrid infrastructure are adequate from the point of view of privacy legislation. 

The digital platforms containing the register of processing, register of incidents 
and data breach and data protection impact assessment of applications and data 
processing, basically constitute not only the burden of proof of the data controller but 
also an additional technical and organizational security measure. 

The GDPR provides (art. 84) that it is the task of the individual Member States to 
regulate criminal matters, with sanctions that are “effective, proportionate and 
dissuasive”. The Italian legislator has revised the criminal cases provided for by 
the Privacy Code (Legislative Decree 196/2003 and subsequent amendments), 
introducing the provision of damage as a characterizing element as an alternative 
to the purpose of profit. Therefore, it will not only be held against the economic 
profit of the offender but also against the damage caused to the interested parties, 
including the damage to the image and reputation of the victim. 

The new privacy offences are as follows: 

– Unlawful processing of data (art. 167) 
– Unlawful communication and dissemination of personal data subject to large-

scale processing (art. 167 bis) 
– Fraudulent acquisition of personal data subject to large-scale processing (art. 

167 ter) 
– Falsehood in the declarations to the SDPA and interruption of the execution of the 

tasks or the exercise of the powers of the SDPA (art. 168) 
– Non-compliance with provisions of the SDPA (art. 170)

• Infringements of remote controls on workers (Art. 171) 

Unfortunately, these crimes do not fall into the category of ground crimes 
provided for by Law 231/2001 and, therefore, by the related corporate crime 
prevention model. It therefore becomes fundamental to evaluate the ability to 
prevent these forms of crime by the corporate Privacy Framework and the related 
appointments letters to Privacy Referent (broadly speaking the first- and second-
lines management).
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3.4 “Sensitive” Personal Data 

Art. 4 of the GDPR includes data relating to health among the sensitive data: 
“personal data relating to the physical or mental health of a natural person, including 
the provision of health care services, which reveal information relating to his state of 
health”. Considering this, the following must be reflected as health-related data: 

– Information about the person collected during patient registration before receiv-
ing health services 

– The pseudonyms (numbers or other pseudo-identification tools) attributed to 
patients for the management of their healthcare path within the structure 

– The results of examinations, diagnostic checks, medical visits, anamnesis, 
diagnoses, etc. 

– Any information collected on the patient who will compose his health file, 
including financial data, payment systems, etc., which the Italian privacy code 
attracts to the health data regime, considering them sensitive also in this sense 

As part of the activity of providing health services, it will also be necessary to 
collect and process other sensitive data such as data relating to sex life, or identity— 
sexual preferences; genetic data (RNA/DNA resulting from analysis of biological 
samples; unique information on the physiology of the individual and hereditary 
characteristics). 

Biometric data (physical and physiological characteristics, facial features, 
photographs, or fingerprints that allow the unique identification of the individual), 
or data on racial or ethnic origin, data relating to religious beliefs and consequences 
in the health field regarding limitations of health treatments, etc. 

3.5 “Data Monetization” 

Technological advances and big data analytics capabilities, through artificial intelli-
gence and machine learning, have made it easier to profile and automat automated 
decision-making, with potentially significant repercussions on the rights and 
freedoms of individuals. The widespread availability of personal data on the Internet 
and those that can be obtained from Internet-of-Things (IoT) devices, associated 
with the ability to find correlations and create links, can allow the determination, 
analysis, and prediction of aspects of a person’s personality, behaviour, interests, and 
habits. Profiling and automated decision-making can be useful for individuals and 
organizations, offering them benefits such as: efficiency improvements and resource 
savings. They also have many commercial applications: for example, they can be 
used to better segment markets and tailor services and products to individual 
customer needs. 

Integrated mobility and intermodality services offer indisputable advantages and 
opportunities to customers and to the community in general, as they allow an 
optimization of routes, a reduction in the resources used, and a reduction in



significant emissions. However, the guidelines of the European privacy SDPAs 
consider that “profiling and automated decision-making can entail significant risks 
to the rights and freedoms of natural persons, which require adequate safeguards. 
These processes can be opaque. Natural persons may not know that they are being 
profiled or do not understand the consequences”. 
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In fact, data controllers in the automotive or transport sectors could be able to 
exploit big data relating to the movements of millions of customers on their network 
and carriers, but all this must be done in a manner consistent with the privacy 
regulations in force. In this sense, the role of the DPO is fundamental to drive data 
monetization in a legitimate and sustainable way. This can be accomplished using 
rigorous and consistent privacy by design and default procedures. 

3.6 The Way Forward 

In the Strategic Plan of the European Commission of 2022, there is a key assumption 
that is worth to highlight: 

We tackled the social and economic impact of the pandemic, together with Member States, 
through a series of ambitious, far-reaching programmes and instruments. The combined 
firepower of the Union’s long-term budget and NextGenerationEU will deliver EUR 2.018 
trillion to boost our economy and rebuild a post COVID-19 Europe that is greener, fairer, 
more digital and more resilient. 

The European Union is aiming at a green, resilient, and digital Europe. The 
resources dedicated to these objectives have an unprecedented financial dimension 
and this will be igniting a process of revision of the Stability Pact and the Treaties, in 
order to adapt the European decision-making process to the new challenges ahead. 
This is coherent with a previous strategic statement by Ursula Von Der Leyen: 
“balance the flow and use of data while preserving high privacy, security, safety and 
ethical standards” (von der Leyen 2019). 

Coherently with her statement of 2019, on April 23rd of this year, once the 
Trialogue (European Commission, European Parliament, and European Council of 
Ministers) found the agreement on the Digital Service Act, she stated: 

Today’s agreement on the Digital Services Act is historic, both in terms of speed and of 
substance. The DSA will upgrade the ground-rules for all online services in the EU. It will 
ensure that the online environment remains a safe space, safeguarding freedom of expression 
and opportunities for digital businesses. It gives practical effect to the principle that what is 
illegal offline, should be illegal online. The greater the size, the greater the responsibilities of 
online platforms. Today’s agreement—complementing the political agreement on the Digi-
tal Markets Act last month—sends a strong signal: to all Europeans, to all EU businesses, 
and to our international counterparts. (European Commission 2022a). 

Moreover: 

The digital services impacted by the new discipline are:



34 F. Giorgianni

– Intermediary services offering network infrastructure: Internet access providers, domain 
name registrars 

– Hosting services such as cloud computing and webhosting services 
– Very large online search engines with more than 10% of the 450 million consumers in the 

EU, and therefore, more responsibility in curbing illegal content online 
– Online platforms bringing together sellers and consumers such as online marketplaces, 

app stores, collaborative economy platforms, and social media platforms 
– Very large online platforms, with a reach of more than 10% of the 450 million consumers 

in the EU, which could pose risks in the dissemination of illegal content and societal 
(European Commission 2022a) 

All these players are the turbines that generate data upon data, analysed by 
powerful machine learning, supporting multi profiling of our preferences in the 
market for goods and services. Not to speak about the influence of gatekeepers 
into the democratic processes and the polarization of public opinion on sensitive 
controverted topics. 

Concretely, the DSA contains: 

1. Measures to counter illegal goods, services, or content online, such as:
• a mechanism for users to easily flag such content and for platforms to cooperate with 

the so-called trusted flaggers
• new obligations on traceability of business users in online marketplaces 

2. New measures to empower users and civil society, including:
• the possibility to challenge platforms’ content moderation decisions and seek redress, 

either via an out-of-court dispute mechanism or judicial redress
• provision of access to vetted researchers to the key data of the largest platforms and 

provision of access to NGOs as regards access to public data, to provide more insight 
into how online risks evolve

• transparency measures for online platforms on a variety of issues, including on the 
algorithms used for recommending content or products to users 

3. Measures to assess and mitigate risks, such as:
• obligations for very large platforms and very large online search engines to take risk-

based action to prevent the misuse of their systems and undergo independent audits of 
their risk management systems

• Mechanisms to adapt swiftly and efficiently in reaction to crises affecting public 
security or public health

• New safeguards for the protection of minors and limits on the use of sensitive personal 
data for targeted advertising 

4. Enhanced supervision and enforcement by the Commission when it comes to very large 
online platforms. The supervisory and enforcement framework also confirms important 
role for the independent Digital Services Coordinators and Board for Digital Services 
(European Commission 2022a) 

GAFAM online platforms act as “gatekeepers” in digital markets. That is why 
together with the Digital Service Act, the Digital Markets Act approved by the 
European Commission on December 15th, 2020, aims to ensure that these platforms 
behave in a fair way online. Together with the Digital Services Act, the Digital 
Markets Act is one of the centrepieces of the European digital strategy (European 
Commission 2022b).
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The sanctions for the gatekeepers? Fines of up to 10% of the company’s total 
worldwide annual turnover, or up to 20% in the event of repeated infringements. It 
also provides periodic penalty payments of up to 5% of the average daily turnover 
and, in case of systematic infringements of the DMA obligations by gatekeepers, 
additional remedies may be imposed on the gatekeepers after a market investigation. 
Such remedies will need to be proportionate to the offence committed. If necessary 
and as a last resort option, non-financial remedies can be imposed. These can include 
behavioural and structural remedies, e.g., the divestiture of (parts of) a business 
(European Commission 2020a). 

GDPR stays at the core of data protection regulation. Digital Service Act and 
Digital Market Act are aimed at eliminating obstacles to data free flow in Europe and 
allow GDPR architecture to truly succeed in a competitive scenario, by eliminating 
barriers to entry of new digital business, especially in the health digital medicine 
market where cross selling interlocking of customers by large gatekeepers is more 
than a risk. 

We are at the beginning of an interesting European regulatory season which has 
seen Antitrust and Data Protection Portfolio converging to the same Commissioner 
(Vestager)—but mostly, the season of accountability opened by GDPR continues its 
pathway. Self-regulation—coupled with high sanctions—is the best way to address 
digital transformation in a global market for data where Europe wants to count not 
only as a rich market that produces personal data to be exploited by others (European 
Commission 2020b). 
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Abstract 

Digital Health Technologies have the potential to improve human health and 
well-being, optimize the quality and safety of care, increase access to treatment, 
making health services more efficient and reducing overall health care costs. 
Within the framework of Digital Health and Medicine, Digital Therapeutics are 
an emerging class of therapeutics that offer interventions driven by high-quality 
software programs, based on scientific evidence obtained through methodologi-
cally rigorous confirmatory clinical investigation, to prevent, manage, and treat a 
broad spectrum of physical, mental, and behavioural conditions. Similar to drugs, 
Digital Therapeutics consist of active ingredients and excipients. While the 
“digital active ingredient” is primarily responsible for the clinical outcome, 
“digital excipients” (virtual assistant, reminders, reward systems, etc.) are neces-
sary to ensure the best user experience to the patient and to allow the prolonged 
use of the therapy. The research and development process of Digital Therapeutics 
may be divided into different phases, like research, discovery, pilot, and full 
clinical development. The confirmatory randomized controlled clinical trials are 
critical to generate evidence of benefit for regulatory approval, reimbursement, 
and prescription. Digital Therapeutics have the potential to transform the man-
agement of chronic diseases and to represent the first therapeutic option offered 
by doctors to their patients with chronic disease and dependence. In order to fulfil 
this transformative potential of Digital Therapeutics, it is necessary to address 
several barriers that prevent their uptake in medical practice, such as clinical
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evidence, reimbursement, data safety and privacy issues, information and educa-
tion of patients and healthcare professionals.
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4.1 Introduction 

The research for new therapies depends on the availability of new science and new 
technologies. The potential to improve patients’ health outcomes, in particular for 
chronic diseases, has led in recent years to a growing interest in digital technologies 
and in particular in Digital Therapeutics (DTx). 

However, the lack of agreed definitions has created considerable confusion about 
their role and partly hindered their development (Recchia et al. 2020). The taxonomy 
released by the Digital Medicine Society, Digital Therapeutics Alliance, and others 
has recently proposed a classification of products (applications, systems, platforms, 
and others) based on digital technologies that can represent a useful basis for 
in-depth analysis and discussion (Table 4.1). 

4.2 Digital Health 

Digital Health includes technologies, platforms, and systems that engage consumers 
for lifestyle, wellness, and health-related purposes; capture, store, or transmit health 
data; and/or support life science and clinical operations (Goldsack 2019). Digital 
Health applications (apps) are primarily of interest to consumers who aim at 
improving their well-being, for example by enhancing/optimizing certain physiolog-
ical functions. Among the products represented in this category there are most of the 
more than 350,000 digital applications that can be downloaded from virtual stores 
(IQVIA 2021) and for which—in most cases—no clinical evidence is available. 

As it is increasingly common for doctors to recommend such apps for managing 
specific aspects of well-being, there is a need to guide doctors, patients, and citizens 
on the quality of the proposed health apps. Among the most interesting experiences, 
the American Psychiatric Association (APA) has developed AppAdvisor (APA 
2022), a model for the assessment of digital mental health apps, based on the analysis 
and evaluation of several app characteristics, namely access and basic information, 
data privacy and cybersecurity, clinical evaluations, usability and data integration 
with other health systems.
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Table 4.1 Definitions and characteristics of Digital Health, Digital Medicine, and Digital Thera-
peutics (Goldsack 2019) 

Digital health 

Digital medicine 

Digital therapeutics 

Definition Digital health includes 
technologies, platforms, 
and systems that engage 
consumers for lifestyle, 
wellness, and health-
related purposes; 
capture, store, or 
transmit health data; 
and/or support life 
science and clinical 
operations. 

Digital medicine 
includes evidence-based 
software and/or 
hardware products that 
measure and/or 
intervene in the service 
of human health. 

Digital therapeutic 
(DTx) products deliver 
evidence-based 
therapeutic 
interventions to prevent, 
manage, or treat a 
medical disorder or 
disease. 

Clinical 
evidence 

Typically do not require 
clinical evidence. 

Clinical evidence is 
required for all digital 
medicine products. 

Clinical evidence and 
real-world outcomes are 
required for all DTx 
products. 

Regulatory 
oversight 

These products do not 
meet the regulatory 
definition of a medical 
device and do not require 
regulatory oversight 

Requirements for 
regulatory oversight 
vary. Digital medicine 
products that are 
classified as medical 
devices require clearance 
or approval. Digital 
medicine products used 
as a tool to develop other 
drugs, devices, or 
medical products require 
regulatory acceptance by 
the appropriate review 
division. 

DTx products must be 
reviewed and cleared or 
certified by regulatory 
bodies as required to 
support product claims 
of risk, efficacy, and 
intended use. 

4.3 Digital Medicine 

Digital Medicine is a subset of Digital Health and includes evidence-based software 
and/or hardware products that measure and/or treat in the service of human health 
(Goldsack 2019). These products are about the patient, the doctor and therefore the 
disease dimension. In most cases, they are applications for mobile devices, with both 
measurement and treatment functions. 

Digital Medicine products for measurement can be used to support the process of 
diagnosis, to monitor the progression of a disease or therapy, to guide the treatment 
of the disease with a drug or a medical device. Data can be generated by the patient 
either in passive mode through the use of wearable, ingestible or implanted sensors, 
or in active mode by filling in questionnaires or performing online tests.
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Digital devices developed to prevent or treat a disease can deliver therapy, 
rehabilitation, or patient support in different modes, such as: 

– Digital Self-Management, Education & Support: applications that provide patient 
education, instructions, and proven guidance on how to manage different aspects 
of diseases such as diabetes mellitus (Nkhoma et al. 2021), high blood pressure 
(Alessa et al. 2019), asthma (Khusial et al. 2020). Education and support may be a 
‘digital active ingredient’ of a DTx. 

– Digital Drug Supports: applications providing the optimal conditions for the use 
of a drug with which they are associated or combined. This is addressed through 
the reminder of the assumption, the drug dosage calculation, the support to the 
management of adverse events, the connection with the doctor or other patients 
with previous experience of the same therapy, etc. (Brittain et al. 2022). 

– Digital Rehabilitation: digital motor, cognitive, pulmonary, cardiologic, or other 
rehabilitation systems, aimed at recovering compromised functions and capacities 
through measurements (e.g. with t-shirts equipped with inertial sensors) and 
treatment (e.g. with serious games engaging the patient in different motor 
exercises) (Seron et al. 2021). They can be considered a type of DTx. 

– Digital Connected Devices: devices such as subcutaneous pumps that deliver the 
right dose of drug (e.g. insulin) at the right time in response to an algorithm that 
processes information received from sensors (e.g. continuous glucose measure-
ment sensors) (Nimri et al. 2020). 

– Digital Therapeutics (see below). 

Since the data generated by these products can have an impact on the patient’s 
pathway and on the physician’s decisions, these products are generally classified as 
medical devices from a regulatory perspective, subject to the various regulations 
(European Union 2017). Requirements for regulatory oversight vary. Digital medi-
cine products that are classified as medical devices require clearance or approval. 

4.4 Digital Therapeutics 

As a subset of Digital Medicine, DTx are medical devices aimed at therapeutic 
intervention, in most cases designed to modify the dysfunctional behaviours of the 
patient, developed through randomized controlled clinical trials, approved for use in 
clinical practice by regulatory bodies, ideally reimbursed by insurance companies or 
health services, prescribed by the physician (although some therapies that meet these 
criteria could be offered in a similar way to over-the-counter drugs). 

What differentiates DTx from drugs is the mechanism of action and the active 
ingredient, i.e. the element responsible for the clinical effect, which is a chemical or 
biological molecule for drugs, while being an algorithm for DTx (Recchia et al. 
2020). DTx are mainly indicated for the treatment of chronic diseases, in particular 
mental and metabolic diseases. Although only a limited number of therapeutics have



been approved to date, many of them are under active development, and this 
category of products is evolving rapidly (Patel and Butte 2020). 
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4.4.1 Definition 

According to the above-mentioned taxonomy (Goldsack 2019), these products 
deliver evidence-based therapeutic interventions to prevent, manage, or treat a 
medical disorder or disease. However, in recent years, some doubts emerged both 
on their meaning (often confused with Digital Drug Supports) and on the quality of 
clinical evidence needed to support their use. Updates to this definition have 
therefore been proposed, to emphasize the quality of the confirmatory evidence 
and the independence of their benefit from the drug, such as: 

Technologies that offer therapeutic interventions driven by high-quality software programs, 
based on scientific evidence obtained through methodologically rigorous confirmatory 
clinical investigation, to prevent, manage, and treat a broad spectrum of physical, mental, 
and behavioural conditions. (Gussoni 2021). 

This definition underlines that DTx deliver an independent therapeutic interven-
tion through confirmatory RCTs. 

4.4.2 Digital Forms 

Like the active ingredient of the drug, which has to take a pharmaceutical form 
(tablet, vial, cream, etc.) to deliver the clinical benefit, the DTx algorithm has to take 
a form that can interact with the patient. This can be an app for the smartphone, a 
serious game for a console, or a program for virtual reality visors. The choice of the 
most appropriate digital form depends both on the characteristics of the patient 
(adult, child, elderly) and on the therapeutic indication. 

4.4.3 Mode of Action 

In most cases, the modification of the patient’s dysfunctional behaviour by DTx is 
achieved through the delivery of education and support, cognitive-behavioural 
therapy (CBT) specific to the indication of interest (e.g. chronic insomnia (Baglioni 
et al. 2020), addiction/abuse, eating disorders, etc.) or other psychotherapeutic 
interventions, such as motivational interviewing, psychoeducation, and others. In 
these latter cases, DTx can be considered as an alternative mode of delivering a 
proven therapeutic intervention (NICE 2018). 

In other cases [such as Attention Deficit Hyperactivity Disorder (ADHD) or 
autism], digital therapy is based on serious games to promote the learning of specific 
functions or the development of certain activities, probably by inducing remodelling



of synaptic connections in the brain or multiple features of attentional control in 
children with ADHD (Gallen et al. 2021). 
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4.4.4 Composition 

A Digital Therapeutic may consist of several elements, functionally integrated with 
each other. The Digital Active Ingredient is the element responsible for the clinical 
effect, whether positive (clinical benefit) or negative (adverse effect). It represents, 
for example, the flow of activities in a CBT that from the first meeting with the 
patient are performed, in order to achieve the improvement of health outcomes such 
as preliminary request of information about the health status; analysis of the patient’s 
answers; provision of information to the patient about the disease and the therapy; 
collection of information from the patient about his health status; reports on the 
therapeutic progress, and other. 

In addition to the active ingredient, digital excipients may be the other building 
block of the patient-facing application (Ambrose et al. 2020). In general, the purpose 
of excipients is to enhance the uptake of the active ingredient, making it as bioavail-
able as possible. In the case of DTx, the aim of the digital excipient is to involve 
efficiently the patient in the use of the application for the expected duration of the 
therapy, making the active ingredient “digitally bioavailable”. The various digital 
excipients include modules for rewarding the patient, reminders to take the digital 
therapy and complementary therapies, modules to connect the patient with his/her 
doctor and with other patients with the same disease, social support, etc. 

It is therefore conceivable that the same active ingredient may have different 
therapeutic effects depending on the digital excipients, which may make it more or 
less digitally bioavailable to the patient. DTx also include a platform for downloads 
and a dashboard for the prescribing physician, who can supervise and control the 
patient’s therapy and aggregate the information of different patients. 

4.4.5 Regulatory Classification 

While, in the USA, the FDA Digital Health Software Precertification Program is a 
pilot scheme that takes the novel approach of regulating the company rather than the 
product, in the European Union DTx must comply with the Medical Device Regula-
tion 2017/745 (MDR) standard (European Union 2017). Under this regulation, the 
majority of apps that can self-classify as class I (and therefore do not required 
authorization by a Notified Body) under the previously active Directive 2007/47/ 
CEE (MDD) will be “up-classed” to class IIa under MDR, meaning they will need to 
meet more stringent criteria to receive a CE mark.

https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-program
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4.4.6 Research & Development (R&D) 

The R&D programme for new DTx is closely dependent on the product objectives, 
which are to achieve certification as a medical device (a necessary but not sufficient 
condition to qualify the product as DTx) and to achieve reimbursement and compet-
itive advantage. Although there are many similarities with the R&D of drugs, the 
process with DTx is characterized by some specific aspects that must be considered 
both in the design phase and in its execution. 

4.4.6.1 Research and Discovery 
The first step, performed in a “pre-clinical laboratory environment”, is to develop 
the therapeutic intervention that will be used in the software design. This interven-
tion can be either selected from the scientific literature (as for many CBT) or 
developed ex novo, using elements of therapies described in the literature that are 
combined with each other on the basis of the personal experience of patients, 
specialists, and/or practitioners involved in the team of experts. 

The combination of digital active ingredient and digital excipients, in a digital 
form suitable for the best use by a patient, is the output of this pre-clinical phase of 
development which is aimed at providing a minimum detail for DTx necessary to 
activate the clinical development phase (in terms of identification of the intended 
use, usability, minimization of risks, adherence to the best standards for privacy and 
cybersecurity, and possibly simulated clinical verification). 

4.4.6.2 Pilot Development 
Once the software prototype is available, the pilot development aims to produce the 
data and information that will allow an appropriate assessment of the opportunity to 
complete or not the development through confirmatory RCT. Since full development 
is by far the most expensive phase in terms of resources and time, the decision to 
continue the development is crucial and must be based on sufficiently supportive 
data, in order to minimize the risk of wasting money and time in a therapy that does 
not have the opportunity to offer a real benefit to the patient. 

The first test to perform in this phase concerns the evaluation of the usability and 
acceptability of the application by the patient. This test may be performed on healthy 
volunteers or on patients with the disease to be treated, in order to have a better 
representativeness of the results, and should involve subjects with different levels of 
technology literacy. Then a pilot clinical study should be performed on a limited 
number of patients, with a trial design that may involve both the presence and 
absence of a control and the possible use of patient self-administered measurements, 
e.g. in the case of depression. 

4.4.6.3 Full Development 
The results of the pilot phase may lead to a review of the software, either by fixing 
the digital active ingredient to improve the expected therapeutic outcomes or to 
upgrading the excipients with new value-added utilities to improve the user experi-
ence. Based on these results, the decision to commit to full development can be



taken, considering both technical aspects (quality of the software, interface, utility, 
etc.) and strategic and commercial aspects (competitors, costs, reimbursement 
issues, etc.). 
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The full development phase consists of one or more confirmatory RCTs that must 
generate the full evidence of benefit of the candidate DTx for its approval, reim-
bursement, prescription, and use. The design of the RCTs depends on the expected 
use of the Digital Therapeutic. If used in combination with a specific drug, the trial 
should demonstrate the therapeutic superiority of the combination over the drug 
alone and non-inferiority with respect to tolerability. In the case of standalone DTx 
that may be prescribed in addition (add-on) to the patient’s usual therapy, the trial 
should demonstrate the therapeutic superiority of the candidate DTx over therapy as 
usual. 

In these trials, the digital placebo is represented by an app (or the appropriate 
digital form) comparable with the DTx being tested, in terms of content (the placebo 
carries all the information provided by the DTx, but using static rather than interac-
tive interfaces) or in terms of graphic presentation (it presents the same interfaces 
and introduces the same user routine, but without the elements responsible for the 
clinical effect) (Ritterband et al. 2017). 

In our opinion, the digital active ingredient tested in the confirmatory clinical trial 
cannot be changed or modified during the trial, except within “windows of possible 
modification” (Torous et al. 2019), identified among the standards and ethical 
principles of the development of these therapeutics. This is however a critical 
point, due to the frequent advisability/need to update the technology. While the 
confirmatory randomized controlled design is the best condition for the clinical trial, 
the operational and logistic execution of the study could benefit from the 
opportunities offered by the Decentralized Clinical Trial approach. This modality 
could reduce the time and costs of DTx development, and at the same time improve 
patient involvement and data quality (Khozin and Coravos 2019). 

4.4.6.4 Post-Marketing Surveillance 
As occurs with any effective therapy, potential benefits may be accompanied by 
unintended and/or adverse effects in the short or long term. In the STARS-Adjunct 
clinical trial of AKL-T01, for example, 18% of participants experienced a device-
related adverse event during the 12-week trial (Kollins et al. 2021). Therefore, after 
product approval and launch, the DTx post-marketing surveillance is necessary to 
identify new potential adverse effects and/or evaluate the benefit/risk profile of the 
product. More generally, post-marketing surveillance studies provide an excellent 
opportunity to collect important information in terms of treatment compliance and 
user experience, while potentially providing new information with a view to enhanc-
ing and updating software.
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4.4.7 Digital Therapeutics and Drug Therapy 

With respect to drug therapy, a standalone DTx with the same indication could either 
replace or be added to the patient’s existing or newly prescribed drug therapy. 
Another option could be the joint development of a DTx–drug combination. In the 
latter case, the confirmatory clinical development of Digital Therapy must be 
performed in combination with a specific drug, and the results of such development 
can only be referred to this combination and are not transferable to other compounds, 
even if similar. Due to a convergence of opportunities, several agreements have been 
signed between drug companies and DTx startups, with the final aim to develop a 
new bio-digital pipeline of products (Table 4.2). 

4.4.8 Challenges for Adoption in Medical Practice 

DTx have the potential to transform the management—both clinical and economic— 

of chronic diseases, which represent a major health emergency in most countries in 
the world. However, despite the claimed benefits in terms of efficacy and tolerability, 
DTx use is still very limited. Although some DTx are already available and some are 
reimbursed in countries like the USA, Germany, France, and others, that does not 
imply that they have already entered into medical practice. 

A number of barriers exist to the introduction and adoption of DTx in medical 
practice, and can be related—as for other innovations—to healthcare professionals, 
institutions, and patients (Table 4.3) (Frederix et al. 2019). To overcome these 
barriers, it is necessary to address and remove the main critical issues and to create

Table 4.2 Some agreements between drug companies and DTx startups 

DTx Company Pharma Company Year Therapeutic Indication 

GAIA AG Servier 2015 Depression 

Voluntis Sanofi 2017 Diabetes 

Click Therapeutics Sanofi 2018 Various indications 

Pear Therapeutics Novartis 2018 Schizophrenia 

Voluntis AstraZeneca 2018 Oncology 

Voluntis Abbvie 2018 Immunology diseases 

Akili Laboratories Shionogi 2019 ADHD—Autism 

Click Therapeutics Otsuka 2019 Depression 

Voluntis Novartis 2019 Oncology 

Noom Novo Nordisk 2019 Obesity 

Wellthy Therapeutics Bayer 2019 Various indications 

Welldoc Astellas 2019 Diabetes 

Voluntis BMS 2020 Oncology 

Click Therapeutics Boehringer Ingelheim 2020 Schizophrenia 

KAIA AG Chiesi Farmaceutici 2020 COPD 

daVi DigitalMedicine Polifarma 2022 Insomnia—Hypertension



the necessary conditions for the introduction of DTx and their benefits in medical 
practice.
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Table 4.3 Some barriers to adoption in healthcare and medical practice (The Lancet 2018) 

Main barriers to large-scale deployment Key measures on how to address the barriers 

Stakeholder resistance to adopt digital 
health based care: 
– Lack of patient motivation and digital 
health literacy skills. 
– Lack of healthcare provider belief in 
digital health care. 

Stakeholder resistance to adopt digital health 
based care: 
– Establish patient digital health education 
programmes. 
– Redesign contemporary workflow models. 

Legal, ethical, & technical barriers: 
– Mobile data privacy, security & liability 
concerns. 
– Lack of interoperability. 

Legal, ethical, & technical barriers: 
– Establish European-wide digital health 
certification programmes. 
– Assure compliance to applicable digital health 
directives. 
– Assure interoperability of digital health 
services. 

Other barriers: 
– Lack of health economical evaluations. 
– Lack of reimbursement. 

Other barriers: 
– Encourage economical evaluations of digital 
health based care. 
– Inform health insurance industry & policy 
makers. 
– Stimulate digital health-related knowledge and 
experience sharing. 

4.4.8.1 Clinical Evidence 
The use of these technologies requires clinical evidence, which can have different 
levels of intensity depending on the nature of the device and the relevance of the risk 
to the patient. Randomized controlled trials (RCTs), the gold standard of evidence, 
have so far rarely been used in the development of digital medicine products, partly 
because the current classification of clinical trials does not fit the iterative nature of 
product design and because the cost of such trials is high relative to the perceived 
risk level of the product. 

Although such digital products may collect a large amount of data in real time, 
and therefore new methods of assessing their efficacy and tolerability can be 
developed, as long as there is no consensus on such alternative methods, it seems 
inappropriate to invoke digital exceptionalism (Frederix et al. 2019). Today, only 
results from confirmatory RCTs can provide the clinical evidence needed to reassure 
all stakeholders of the therapeutic value of DTx, and overcome the lack of healthcare 
provider belief in digital health care. 

4.4.8.2 Technology Assessment 
Each new health technology, after regulatory approval, must undergo a technologi-
cal assessment to determine its therapeutic value and place in therapy with the aim of 
informing and supporting decision-makers at different levels in decisions regarding 
purchase, reimbursement, and use. In the case of emerging health technologies, such



as DTx, the need for a comprehensive and systematic multidisciplinary assessment 
of the welfare, economic, social, and ethical consequences determined by their 
adoption in health practice, becomes even more critical and relevant. Experience 
to date is limited and in Europe mainly concerns the assessments of the National 
Institute for Health and Care Excellence (NICE) of Deprexis (NICE 2018), a Digital 
Therapeutic for the treatment of depression, and of Sleepio (Darden et al. 2021) for 
the treatment of insomnia. 
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4.4.8.3 Reimbursement 
In several European countries, where public health is the core of care, the reimburse-
ment of a proven technology is a necessary, though not sufficient, condition for its 
adoption in medical practice. 

The implementation in Germany, in 2020, of the new Digital Health Law 
[Digitales Versorgungsgesetz (DVG)] which provides for the reimbursement of 
DTx and other digital health technologies for German citizens covered by public 
health insurance, has the potential to represent a turning point for the entry of DTx 
into European medical practice (Lauer et al. 2021). 

With Germany’s DIGA Fast Track process set in place, several EU countries have 
implemented as Belgium (mHealthBelgium 2022), or are willing to implement as 
France (HealthcareITNews 2021), a similar assessment framework to evaluate 
digital health apps and to provide a direct access to the public reimbursement system. 
However, the majority of EU countries have not yet shown a notable interest in 
providing a standardized process for digital health services into their statutory health 
insurance system (Chawla 2022). 

4.4.8.4 Data Safety and Privacy 
As a result of the increased perception of the risks of misuse of online data (email, 
social media), health apps and in particular DTx must ensure that storage, use, and 
sharing fulfil the standards for handling patient health electronic data (Torous et al. 
2019). Recommendations from an international panel of experts were recently 
proposed and concern: (a) agreed standards for data storage, use, and sharing are 
needed; (b) data storage, use, and sharing policies must be made transparent to users 
of the app; (c) if data are shared with external partners (e.g. researchers), the partner’s 
storage, use, and sharing plans must be shared with the end user; (d) the end user 
must have the option to “opt out” of sharing his/her information; (e) any language 
regarding data storage, use, and sharing must be written at a maximum of a sixth 
grade reading level; (f) technical security reviews and data audits are necessary to 
guarantee that apps follow the standards they set out, and ensure that new 
vulnerabilities are quickly identified (Torous et al. 2019). 

4.4.8.5 Information e Education 
In the world of tomorrow, we must rely on digitally empowered and capable citizens, 
a digitally skilled workforce and digital experts (European Commission 2022). 
Raising public awareness on digital health technologies in general and on DTx in 
particular is a necessary condition to overcome the lack of patient motivation to use



these technologies. At the same time, healthcare professionals need to become aware 
of the potential benefit to patients from the use of DTx in order to adopt these 
products into the care workflow. 

48 G. Recchia and G. Gussoni

Medicine and healthcare (at least at the beginning of the COVID-19 pandemic) 
are lagging behind other sectors in terms of digital transformation processes, and in 
many countries Human Capital and Digital Skills, as documented in the Digital 
Economy and Society Index, is still very low. 

Physician and patient training represent a critical activity in this process, as well 
as the availability of expert patients in digital health technologies who could work as 
team members in the research and development of new DTx. 

4.5 Conclusions 

Digital Health and Medicine has the potential to change the way health systems are 
organized and financed, the type of health professionals needed, the role of those 
professionals and of patients, as well as the health services provided and the process 
of delivery (World Economic Forum 2019). 

As a result, we expect a different healthcare system, which will move to a 
“consumer-centric” model, based on patient empowerment, self-management, 
shared decision-making, and goal orientation towards the achievement of life goals 
of individuals. These changes will allow citizens to have much more responsibility 
for managing their health and healthcare (De Maeseneer and Boeckxstaens 2012). 
As the grey areas around DTx are still large, the introduction, implementation, use, 
and funding of digital health technologies should be carefully evaluated and moni-
tored. In the context of public healthcare, such evaluation and monitoring are 
necessary and must be performed in relation to the goals health systems pursue 
(Ricciardi et al. 2019). 

DTx are not futuristic or future therapeutics, they are already available in a 
number of Countries worldwide. However, information, training, research, and a 
system of rules for their appropriate evaluation, reimbursement, and use are needed, 
in order to remove the barriers that still limit their success. The commitment of all 
health actors, starting with the institutions, is the necessary condition for these new 
health promises to be confirmed and delivered. 
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been developed for similar targeted populations and outcomes. Predictive models 
are used and tested in a wide range of realities to achieve Deep Medicine, and it is 
therefore difficult to map every product in biomedicine, bioinformatics, and 
robotic surgery. Although we are beginning to understand the chances provided 
by these solutions, attention is growing among the academic community to define 
validated methodologies and guidelines for AI systems development and use, to 
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aspects of academic research to identify possibilities and challenges that lie 
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5.1 Introduction 

Artificial Intelligence (AI) and other statistical methods are providing new 
opportunities of data modelling for patient benefit. Although we are beginning to 
understand the chances provided by these solutions, attention is growing among the 
academic community to define validated methodologies and guidelines for AI 
systems development and use, to undergo the same level of inspection. 

According to Vollmer and colleagues, research on AI must address four 
challenges to consolidate evidence and deliver health benefits: transparency, repli-
cability, ethics, and effectiveness (TREE) (Vollmer et al. 2020). Transparency is 
fundamental to recognize the reliability of data sources and methodological trust-
worthiness of algorithms validation. Patients’ data must follow a plain process of 
retrieving, storage, elaboration, analysis, and dissemination. Research methodology 
and results replicability are mandatory for evidence generation and scalability. 
Moreover, the ethics and algorethics (the ethics of algorithms) framework covers 
several issues, from preserving intellectual property to patients’ rights, from securing 
data usage and interpretation to reach empirical evidence without neglecting 
innovation. Finally, the effectiveness of such algorithms have to be demonstrated, 
especially if they are modelled to reproduce, and therefore represent the patient 
(especially with multi-morbidity or co-morbidity conditions). 

This chapter explores some methodological aspects of academic research to 
identify possibilities and challenges that lie behind an Intelligent-Based Medicine 
(Chang 2020). 

5.2 Understanding the Methodological Pathway 

Research methodology comprises specific procedures and techniques to identify, 
select, analyse, and interpret information on a specific phenomenon. Methodological 
rigour allows a critical evaluation of the study as well as enables the replicability of 
the study on the same phenomenon under similar conditions. For this purpose, 
research on AI-driven predictive models must give clear understanding of the 
methodological pathway to understand its implications. Research methodology 
varies for several aspects, for example the nature of the selected data source. 

Observational and interventional studies can retrieve data from several sources 
(excel files, relational databases, omics containers, data warehouses, or real-world 
data), and each of them must be analysed through specific methods related to 
biostatistics and bioinformatics (Fig. 5.1), even if a different mention should be 
spent for big data analysis, since it requires proper bio-machine learning algorithms. 

Confirmation of conformity relies on clinical data, which evaluation must follow 
a rigorous methodology (Vollmer et al. 2020). The process that goes from the 
research question to the use of predictive models in real life follows three steps 
represented in Fig. 5.2. Choosing the right methodology helps researchers find 
trustworthy results to support decisions when translated into medical practice.
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Fig. 5.1 The data-driven choices framework 

Fig. 5.2 The three-step process for predictive model validation 

More specifically, researchers can investigate AI-driven predictive models for 
two main reasons: 

1. To find hidden regularities among data towards a deductive/determinist or pre-
dictive/probabilistic approach 

2. To explore new hypothesis towards an abductive approach 

Deterministic and probabilistic models are both data-driven and knowledge-
based approaches. When results are achieved, the proof of concept must undergo a 
clinical verification to consolidate evidence on their effectiveness. Algorithms must 
be validated and optimized through supervised trainings to sustain scientific replica-
bility and credibility. To achieve this goal, two approaches can be followed: 

1. The Oxford approach: it aims at investigating and replicating the research method 
through which results are achieved. 

2. The TRIPOD-AI approach: it focuses on investigating and replicating the results.
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Once clinical verification has been made, it is mandatory to undergo a regulatory 
approval from Notifying Bodies—the European Medicines Agency (EMA), the 
Food and Drug Administration (FDA), etc.—to validate the model before using it 
for clinical practice. The accreditation of computational models and simulations 
(e.g. in silico clinical trials [a form of augmented clinical trials] for drug develop-
ment) should fit in a well-defined landscape for evaluation and assessment of health 
technologies, such as the Good Simulation Practices (GSPs) as standards of best 
practice. 

5.3 Current Deep Medicine Interventions 

The number of studies on AI-driven predictions is increasingly growing, since 
hundreds of models have been developed for similar targeted populations and 
outcomes (Collins and Moons 2019). Predictive models are used and tested in a 
wide range of realities to achieve Deep Medicine, and it is therefore difficult to map 
every product in biomedicine, bioinformatics, and robotic surgery (Cesario et al. 
2022). 

Indeed, ML/DL algorithms seem to unravel clinical pathophenotypes from quan-
titative imaging, to monitor and assess risk from real-world data, and to predict 
therapeutic outcomes through biomarkers detection and image analysis (Ahmed 
et al. 2020; Cho et al. 2019; Cruz and Wishart 2007; Huang et al. 2018). The 
algorithms incorporation into clinical practice is also helpful in personalizing onco-
logic patient management and follow-up (Esteva et al. 2017; Haenssle et al. 2018; 
Hosny et al. 2018; Langlotz et al. 2019). The potential of ML/DL is also indicated in 
gastrointestinal endoscopy for early disease detection (Min et al. 2019), and some 
real-world applications are applied in ophthalmology (e.g. to detect diabetic retinop-
athy) (Gulshan et al. 2016). Most AI solutions are related to radiology and biomedi-
cal imaging, for example to interpret breast cancer or cardiovascular imaging, but 
also applied to neurological diseases (e.g. the Alzheimer’s disease) (O’Bryant et al. 
2010). On the other hand, public health surveillance can benefit from AI tools for 
detection, monitoring, and control of local and global epidemic (Tayarani 2020). 
Future research should deepen understanding on user acceptance and interpretation 
of AI models, especially “virtual patients” that should “represent” a sample of a 
wider ontology and not the “whole” ecosystem of the person. 

This scenario challenges academic research and clinical practice; hence, it is 
mandatory to develop recognized standards for integration of AI systems in medi-
cine (Xing et al. 2020). To this aim, the CONSORT-AI and guidelines SPIRIT-AI 
represent the first international standards for AI-supported clinical trials and ensure 
transparent reporting of protocols whilst potentially improve their design and deliv-
ery (Ibrahim et al. 2021).
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5.3.1 Patient Profiling and Deep Humanism 

The preliminary step for developing AI-driven predictive models is patient profiling. 
Patient profiling gives a holistic view of the person and his/her preferences, to 
forecast tailored treatment and supportive therapies, allowing real-time monitoring 
of the patient. Despite the still controversial aspect on the ethical usage of patient 
profiling for misjudgement and mistreatment of their information, to which we 
should pay careful attention and maximum respect, some validated clinical 
applications are available in our context, such as: 

– The creation of large databases for large multicentric databases analysis (data 
mining) or modelling (distributed learning) (Tagliaferri et al. 2016, 2018a, b; 
Lancellotta et al. 2020). 

– The analysis that combines administrative data and clinical data to identify 
critical aspect within clinical process (process mining) (Lenkowicz et al. 2018; 
Gatta et al. 2018). 

– The quantitative analysis of radiological images to generate new predictive 
models or clinical decision support systems (Gatta et al. 2019; Cusumano et al. 
2020a, b, 2021; Soror et al. 2020; Chiloiro et al. 2020) even using AI (Fionda 
et al. 2020). 

Patient profiling can be obtained by integrating clinical data with Internet-of-
Medical Things and artistic stimuli. This integration lies at the basis of Deep 
Humanism considered as an opportunity to understand emotional preferences of 
the patient (especially those with oncological diseases). An example of Deep 
Humanism in medicine is the “Art4ART” project of the Advanced Radiation 
Therapy (ART) department at Fondazione Policlinico Universitario A. Gemelli 
IRCCS (Rome, Italy). The goal of the project is to empower patients by offering a 
clinical experience which connects artistic narratives (cinema, music, painting, 
nature, literature, and design) and the spiritual dimensions of human beings (friend-
ship, love, passion, faith, etc.). 

Artistic stimuli are strategically placed in several department places, aiming at 
welcoming the patient in a more familiar context during her/his journey. In this 
scenario, AI can be helpful: 

– To customize artistic stimuli according to models of patients’ preferences 
– To tailor patients’ communication and education by focusing on their preferences 

related to their mood, disease phase, and treatment, to enable their resilience 
during the oncological journey 

The pathway to use artistic products to patients according to their humanistic and 
clinical profiling is represented in Fig. 5.3. 

The impact of integrating digital technologies with artistic inputs can positively 
affect psychological, clinical, organizational, and territorial context. Psychological 
effects are measured with validated tools in order to assess: patient distress and



anxiety/depression (Holtzman et al. 2018; Mackenzie et al. 2013), effects of amuse-
ment and awe (Allen 2018), illness experience (Al-Rashdan et al. 2021), and 
functional coping styles (Morris et al. 2018). Consequently, patient profiling also 
leads clinicians to understand how therapeutics acts are perceived from a patient-
centred perspective. The concept of individualized treatment is thus evolving 
towards that of personalized care: digital health not only helps in choosing the 
best treatment for that specific patient, it also contributes to a better patient welcom-
ing and, through patient profiling, allows to identify eventually pattern of choice that 
should correlate with better outcomes, such as lower toxicity, improved management 
of certain symptoms moving from entertainment to an integral part of the treatment. 
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Fig. 5.3 Patients accessing Gemelli ART’s clinical services can interact with digital devices to 
receive personalized artistic stimuli (music, images, etc.) to ameliorate their illness experience. The 
interaction generates patient-specific information that, in combination with data from wearables to 
understand their lifestyle (Internet-of-Things, IoT), and clinical data generated by the services of the 
department (uploaded in the organizational IT system (TrakCare) that populates a DataMart safe-
by-design), allows a semantic profilation. All information is collected in a “Jukebox” that stores 
several artistic features (music, images, etc.), which are used to improve patients’ Quality of Life 
according to his/her humanistic and clinical profile. Artistic stimuli are intertwined in a major care 
experience convened towards compassion and treatments 

5.4 Safety in Research and Development 

The regulatory and scientific framework guides research to comply with standards 
while incentivizing innovation. Research & Development (R&D) must ensure 
privacy-preserving behaviours and procedures, along with cybersecurity and data 
protection. In a practical fashion, predictive modelling is achieved through the 
combination of clinical and experimental information with data from patients having 
similar characteristics. The scientific community agrees on building a safe ecosystem



between disciplines and actors that share the same assumptions (ethical, at least) to 
preserve patient information, while validating secure standards and methodologies, 
especially in multi-stakeholder collaborations (e.g. multicentric studies) and 
algorithms training on external databases. Predictive models’ generation should 
pursue “quality by design”, an approach that regulates the quality of the product 
towards statistical, analytical, and risk-management methodologies (EMA 2022). 
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5.5 Outlook for an Intelligence-Based Medicine 

If we want to manage R&D, some improvements are suggested to update medical 
education. The awareness on AI potential has increased, but many physician still feel 
uncomfortable with AI-driven research because of a limited understanding of tech-
nical language and methodologies. Students, clinicians, and faculties should be 
educated to acquire an AI-literacy since Intelligence-Based Medicine will progres-
sively blend the actual knowledge on human complexity with stratified heteroge-
neous data (omics, RWD, etc.) on diseases patterns. Educational topics should cover 
not only technical jargon, basic knowledge of statistics (e.g. sample size, overfitting, 
underfitting, cross validation), and a broad knowledge of the metrics and interpreta-
tion of ML/DL algorithms (Handelman et al. 2019); a dedicated digital health 
education needs to be closely integrated with clinical disciplines. In fact, it is 
reported in the literature that there is a knowledge gap that needs to be bridged in 
order to safely apply new technologies in healthcare (Casà et al. 2021; Khamisy-
Farah et al. 2021). 
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Abstract 

Healthcare is among the pioneering industries in the velocity of generation of big 
data, from the time that Electronic Health Records, Internet-of-Things, and 
electronic medical devices have been introduced. Researchers around the world 
are curating large volumes of data and applying Artificial Intelligent 
(AI) algorithms that give meaning to medical conditions, as well as prediction 
of clinical outcomes. The clinical research domain, which has been a laggard in 
digital transformation, is running today at high speed, utilizing electronic 
solutions that enable capturing of Real-World Data (RWD) in decentralized 
virtual clinical studies that aim to shorten the life cycle of drug development 
and the associated costs. At the same time, the domain of Digital Therapeutics 
(DTx) has been recently established, with various electronic solutions that pro-
cess RWD to provide digital interventions that improve health-related endpoints. 
In this chapter, we will review how clinical research and DTx domains have been 
accelerated by the existence of Big data and AI algorithms and we will describe 
smart services that are expected to further boost the healthcare industry. 
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6.1 Introduction 

Clinical research studies are demanding in terms of time, resources and cost, while 
actual outcomes are usually different from the expected ones and often not repro-
ducible (Henegan et al. 2017; Nivel et al. 2018). The outcomes’ difference is often 
caused by parameters, such as adherence and compliance to the trial protocol, patient 
dropout rate, and the recording of adverse effects (Fogel 2018). As a result of the 
differences in outcomes, drug profit margins may decrease due to the intervention 
results, the marketed solution loses competitiveness, and foremost the overall 
benefits to the citizens are reduced. 

Further to that, hard facts about the cost and development duration indicate 
the size of the problem, which can be described with these numbers: $1.5–2B is 
the average R&D expenditure per new drug, with 50% of the cost accounting for the 
clinical studies; 10–15 years is the duration of development of a new drug (Harrer 
et al. 2019). Another parameter in drug development and clinical research is the fact 
that lifestyle is not considered, even though studies say it can be up to 40% health 
determinant. 

Digital transformation is the vehicle to change these facts, while an improvement 
of the above numbers is already observed, whenever big data technologies and AI 
are applied. In this challenging environment, the regulatory framework is a manda-
tory component for safety of patients, data integrity, and credibility of results, while 
at the same time it is often creating barriers. Especially in the DTx domain, where 
electronic applications could offer effective digital interventions, the regulatory 
authorities demand solutions that are certified against the potential risks they 
might be linked to and often reject AI approaches; at least those that are not well 
justified. 

The rest of the chapter is organized around four sections. In Sect. 6.2, Big data 
and Real-World Data collection mechanisms are presented, followed by the 
outcomes of processing with AI algorithms for both clinical research and DTx 
domains in Sect. 6.3. Next, in Sect. 6.4, we present the challenges of patients’ 
engagement, as a major factor for the adoption of digital technologies by the patients 
and finally, we sum up with the conclusions in Sect. 6.5. 

6.2 Big Data and RWD Collection 

Data is the new medicine (Sinipuru 2021). When shared, reused in a privacy-
respecting way and maintaining the control to the people providing it, data can 
improve patient outcomes, foster research, and accelerate deployment of novel 
health services (Hämäläinen et al. 2020). 

Health data are readily associated with clinical tests performed invasively on 
samples taken from our bodies, or non-invasively using modern sensing techniques. 
Such is the clinical data obtained in a clinical setting that cover the lifetime of 
subjects in a study, however, not forming the complete spectrum of health data.
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Hippocrates (approx. 460–370 BC), the father of medicine, believed that disease 
was not a punishment inflicted by the Gods but rather the product of environmental 
factors, diet, and living habits, a fact that is well-established today (Grey 2017). Our 
living habits can be enumerated using data attributes about our lifestyle, obtained in 
our natural environment, outside of the clinical setting. This data is termed “Real-
World Data” (RWD) and although it does not provide a detailed understanding of the 
clinical status of a person, its ubiquitous collection allows a dense description of 
peoples’ lifestyle. RWD are formally defined by the FDA (2017) as: 

data related to patient health status and/or the delivery of health care routinely collected from 
EHRs, claims and billing data, data from product and disease registries, patient-generated 
data including home-use settings, and data gathered from other sources that can inform on 
health status, such as mobile devices. 

While clinical data is generated sparingly, during testing or hospitalization 
sessions, RWD is generated continuously, throughout the days, weeks, and months 
of our lifetime. It would thus be good practice to actually collect RWD in a 
continuous mode, rather than the sporadic mode in which clinical data are collected. 

6.2.1 Attributes of RWD 

RWD comprises attributes that enumerate different important aspects of the way we 
live our lives. The attributes are grouped in the physiological, psychological, social, 
and environmental categories discussed next. 

The physiological attributes of RWD have to do with the human body, its 
activities and adverse events. They are mostly measured using activity trackers 
and/or smartphones but are also reported (Kyriazakos et al. 2021). The measured 
attributes related to activity are steps and distance walked, elevation (expressed as 
floors climbed), energy burned, time spent in different activity intensity zones (e.g., 
mild, moderate, and high intensity physical activity, as it is formally defined as a 
function of age), and auto-detected exercise activities (walking, running, cycling, 
etc.), as well as their distribution in the day. The location services of smartphones 
facilitate the detection of indoors or outdoors presence. Composite physical activity 
measurements can also be obtained via physical tests like the six-minute walk test 
(6MWT), the frailty test, or games specifically designed to measure muscular 
responses (tapping on a mobile phone screen for Parkinson’s disease or performing 
other exercises while monitored and analyzed by depth cameras to measure features 
important in stroke or accident rehabilitation). All these tests are scripted and hence 
can be measured using sensors and audio-visual instructions to the people on their 
smartphone. Measurements of attributes related to the heart include the heart rate 
variability, the time spent in different heart rate zones, and the resting heart rate. 
Measurement of sleep related attributes include the time spent in the different sleep 
stages (awake in bed, light, REM, deep sleep), the sleep duration and quality.



66 S. Kyriazakos et al.

Other physiological attributes can be self-reported by the participant. Symptoms 
of interest in general or to specific therapeutic areas (e.g., headache, body tempera-
ture, blood pressure, pains, diarrhea, fatigue, nausea), including their intensity can be 
collected. Weight should be regularly reported, and less so height (especially at 
younger or older ages). Nutrition is paramount, starting at a higher level with the 
consumption of food categories of interest, but more detailed analysis can also be 
used when available. Water, coffee, tea, refreshments, and alcohol intake can be 
reported. Finally, the menstrual cycle can also be of importance. 

The psychological RWD attributes refer to the emotions of the study participants 
(Kyriazakos et al. 2021). They are mostly reported, either as simple emotional state 
self-assessment, or, when deemed necessary, using standardized reports from pro-
fessional therapists monitoring the patients. Measurements can also be used to 
indirectly capture psychological aspects. Video recordings of the face can be 
analyzed by computer vision algorithms for emotion recognition. Speech sentiment 
analysis of voice audio and text analysis of the social media posts also yield emotion 
measurements. An indication of the psychological state can be given by the places 
visited (which, how diverse they are). Finally, aspects like the weather or spending 
unusual time commuting can have some importance. 

The social RWD attributes enumerate study participants’ social life. Such infor-
mation can be measured indirectly using attributes about the usage of the phone 
(diversity, duration, frequency of calls) and social media (diversity, number, fre-
quency of interactions). More direct information can be reported using 
questionnaires on activities with friends, family, or co-workers, or can be obtained 
in conversation with a digital virtual coach. 

The environmental RWD attributes attempt to enumerate the environment the 
study participants live in. They include reported environmental indicators for the 
assessment of the quality of life, like the 11 attributes of the OECD better life index 
(OECD 2021). Precise measurements of living or working environment quality can 
be obtained by integrating relevant commercial devices (e.g., for air quality analy-
sis), or by integrating with data services that report, e.g., Air Quality Index at specific 
locations. 

6.2.2 Collecting RWD 

RWD are collected outside the clinical setting, directly from the study participants 
using ubiquitous, easy to operate devices, or simply by asking people about the 
necessary information. 

RWD measurements involve devices that are commonly used by people. An 
important source of physiological information is the activity tracker. These are 
consumer devices gaining popularity amongst health- and wellness-aware people. 
Study participants can already own one, easily get a cheap one, or the studies can 
distribute them for free as a participation incentive, especially for longer studies. 
Other devices can be scales and ubiquitous medical devices (e.g., thermometers, 
blood pressure monitors, SPO2 monitors). Even more specialized medical devices



can be included here, of the type used at home not by the general population, but by 
certain patient categories. 
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No matter the devices, there are two modes of measurement collection: the 
automatic and the manual. Automatic measurement collection refers to having the 
measurement device integrated with the data collection system, the measurements 
flowing from the device into the RWD collection system in an unattended manner. 
Manual measurement collection refers to having the study participant reading out the 
measurement from the device and manually reporting the measurement to the RWD 
collection system. 

The automatic is clearly the preferred option, the only one when the 
measurements have high volume and/or frequency. It minimizes study participants’ 
burden and data entry errors. It is of this option only that “measurement from 
devices” refers to. Devices can be integrated with RWD capturing systems in 
two ways: 1) by employing the devices manufacturers’ provided API, or 2) through 
SDK. To understand the difference, it is important to understand the flow of 
information from the device. 

All devices have a short-range communication capability, which is almost always 
Bluetooth Low Energy (BLE). This necessitates the use of another device that 
collects the information, called a controller, base station, edge node or bridge 
depending on the manufacturer. In case of domotics devices being fixed in some 
location, this controller is a fixed device, located somewhere in the home. In the case 
of wearables, the most natural choice is to use the mobile phone that is mostly around 
the study participant as a controller, in which case the controller is some software 
installed on the phone. The controller receives the information from the device(s) it 
is paired with using the BLE protocol of its communication module. It then transmits 
this information to the servers of the device manufacturers using WLAN. The study 
participants control the devices using SW on their mobile phones and/or on the web. 
They also view (and control) their data using the same apps. The process is depicted 
in the upper section of Fig. 6.1, the third-party device section. 

Since the study participants need to be more in control of their data and the advent 
of GDPR, device manufacturers typically offer means to the study participants to get 
their data, not just view it. Data exports in files have long been available, but recently 
there are more automated options, allowing the study participants to get their data in 
online ways. APIs and/or SDKs are being offered so that requests are forwarded by 
third-party SW systems to get the data. The study participants only need to authorize 
these third-party SW systems to collect the data on their behalf. 

When a device manufacturer offers an API to get data, then the data is captured 
from the cloud platform of the integrated device. The API offers endpoints to be used 
by an authenticated entity to get data they are authorized for. When the entity is a 
data collection system, the API endpoints are called by the data collection cloud 
platform. Depending on the manufacturer, the API can passively wait to be utilized 
to offer the requested data, or can notify the data collection system of the availability 
of new data to be collected. The data loop back to the study participant is closed by 
one of the tasks of the mobile app of the data collection system: It utilizes another



API, that of the data collection system, to get the integrated device data and visualize 
it alongside the rest of the secondary data it collects. 
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Fig. 6.1 RWD collection via the device API 

While the usage of a third-party API is very easy to support by the data collection 
system, the downside of the API approach is that many SW entities are involved (the 
two apps and the two cloud platforms) and the round trip of the data that travels from 
the device to the mobile phone, to two different cloud platforms back to the mobile 
phone, is very long. The device integration via the provided API is presented in 
Fig. 6.1. 

When a device manufacturer offers an SDK, then the data collection app receives 
the data from a local source, without involving the device cloud platform. The SDK 
offers direct access to the device, effectively sending the collected data to the data 
collection app of the mobile phone, as depicted in Fig. 6.2. 

A variant of the SDK access is when the devices being integrated are the actual 
sensors on the mobile phone. In this case, the SDK used is the phone’s SDK, which 
is always well known and documented. On Android devices a data collection service 
is programmed within the data collection app. On iPhone devices, the Apple Health 
Kit is used to access the data from Apple Health, the app that collects all health and 
wellness sensor data of the phone or other integrated devices. Similar solutions to 
Apple Health exist from all the big Android players (e.g., Samsung Health) but the 
Android manufacturer segmentation does not allow a data collection system to 
interface with one such app and get data from a significant portion of the possible 
study participants. Apart from Android manufacturer segmentation, another



usability issue arises. For the mobile phone sensors to be used, the mobile phone 
must be used as a wearable, always in the pocket of the study participant, which is 
clearly not feasible for most people. Additionally, the location of measuring (i.e., the 
pocket) is of influence in the accelerometer-based estimation of a person’s energy 
expenditure throughout the day. When using the mobile phone as a measurement 
device, this location of wearing is not always known, and not always the same. 
Wrist-worn devices—especially when it is known whether the user is wearing it on 
the dominant or non-dominant hand, and therefore preferred. 
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Fig. 6.2 RWD collection by direct access to the device via its SDK 

Obviously, the easiest integration method is the API, but the most open to the 
needs of the data collection system is the SDK that allows direct access to a device. 
Unfortunately, the device measurement method is not for the data collection system 
to select. Almost all device manufacturers offer API access to the collected data (the 
manufacturer maintains ownership of the data), while only a handful offer an SDK, 
and those that do usually represent more experimental and less commercial devices. 
Also, API usage is usually free, while SDK access is reserved for very large clients 
of the device manufacturers, or comes with a very high cost. Finally, device 
manufacturers can apply usage constraints in both modes of access, limiting the 
data attributes offered, the temporal granularity, the number of times data can be 
requested, or the volume of transferred data. All these aspects need to be taken into 
account when selecting the device to integrate. 

Automated measurements cannot cover all aspects of RWD. Study participants 
need to report on outcomes and their experiences, quantifying measures about them: 
the patient-reported outcome measures (PROMs) and patient-reported experience 
measures (PREMs). Traditionally the collection of the reports had been a manual 
process involving pen and paper, but now ePRO systems are facilitating this process 
in three important ways: 

– Scheduled questionnaires can be addressed to study participants and the answers 
can be collected and processed much easier with the online ePRO tools. 

– Spontaneous answers can be included with study participants reporting on 
outcomes and experiences at the moment they happen, without needing to collect
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them and report them at predefined times. This is very important for event-type 
outcomes like a symptom, affliction, or discomfort. It is also important for manual 
measurement entry, like weight logging. 

– Continuous editing for incremental data collection can be facilitated for attributes 
that need to be accumulated throughout the day (e.g., the daily water consumption 
is easier to report when the study participant just adds this information regularly 
in the day, or retrospectively for the previous one), or automated measurements 
that need some correction (e.g., the sleep start and end times). Both can be 
achieved using widgets, i.e. UI elements at the disposal of the study participant 
for continuous data entry. 

6.2.3 Healthentia for RWD Collection and Management 

The data collection is facilitated by Healthentia, an e-clinical platform. The platform 
provides secure, persistent data storage and role-based, GDPR-compliant access. It 
collects the data from the mobile applications of all study participants, facilitating 
smart services such as risk assessment, and providing both original and processed 
information to the mobile and portal applications for visualization. The high-level 
architecture of the platform is shown in Fig. 6.3. This is a layered architecture, 
comprising the API, data management, core functionalities, study management, and 
services layers. 

The Healthentia API layer provides the means to connect Healthentia with the 
outside world. Data importing (IoT integration) and exporting (eCRF integration), as 
well as internal communication with the portal and mobile apps is facilitated through 
it. The low-level operations on the data are hosted in the data management layer. The 
data handling functionalities are utilized by the API I/O endpoints. The smart data 
generation functionalities drive synthetic data generation. The Healthentia core layer 
comprises high-order functionalities on top of the data, like role-based control, 
participant management, participants’ reports management, and ML functionalities. 
The study layer allows managing of the studies, the entities in which HCP, 
participants and their data are organized. They can be formal clinical studies, or 
informal ones managed by pharmaceutical companies, hospitals, or research centers. 
Finally, the services layer implements the necessary functionalities of the web portal 
and the mobile application. These include dashboard services in both portal and 
mobile apps, e-diary for reporting by study participants and other services like 
treatment adherence, teleconsultation, and smart services. 

The Healthentia mobile application (Fig. 6.4) enables data collection at the study 
participant end. Measurements are obtained from IoT devices, third-party mobile 
services, or a proprietary sensing service. Study participants’ reports are obtained via 
answering questionnaires that are either regularly pushed to the study participants’ 
phones or are accessed on demand by the study participants themselves. Both the 
measured and reported data are displayed to the study participants, together with any 
insights offered by the smart services of the platform.
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Fig. 6.4 Healthentia mobile application 

Fig. 6.5 Healthentia portal application—viewing measurements and creating questionnaires. 
Adapted from (Pnevmatikakis et al. 2021), originally published under the terms and conditions of 
the Creative Commons Attribution (CC BY) 

The Healthentia portal application (Fig. 6.5) targets the HCP. It provides an 
overview of the study participants of each clinical partner and details for each 
study participant. Both overview and details include analytics based on the collected 
data and the risk assessment insights. It also facilitates managing the studies, 
e.g. provides a questionnaire management system to determine the types of self-
assessments and reports provided by the participants.
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6.3 AI in Clinical Research and Digital Therapeutics 

The Healthentia DTx functionalities are provided by the smart services shown in 
Fig. 6.6. The depicted user-interface components (the Mobile App and the Web 
Portal) have already been discussed in Sect. 6.2.3. The central component—the User 
Data Service—handles storage of and access to all collected RWD. The main digital 
therapeutic functionalities are provided by the five surrounding services: Real-World 
Data Collection Service (already discussed in Sect. 6.2.3), Learning- and Intelligent 
Decision Services, Clinical Pathway Services, and the Virtual Coaching Services. 

6.3.1 AI for Patients’ Selection and Adherence 

Patient recruitment accounts on average for one third of the clinical study duration, 
therefore, it is highly important to identify the most appropriate candidates in the 
cohort. Harrer (2015) demonstrated that the assessment of suitability of subjects can 
be assisted by using patient-specific diagnostic genome-to-exposome profiling for 
determining whether biomarkers are sufficiently strongly represented in the patient 
profile. In addition, AI can be used to enhance patient cohort selection through one 
or more of the following means identified in (FDA 2019). The first recommendation 
of the FDA is to reduce the population heterogeneity. Furthermore, clinical 
investigators using AI mechanics for subjects’ recruitment can choose patients that 
are more likely to have measurable clinical endpoints, the so-called prognostic 
enrichment. Finally, clinical investigators can identify through AI a study population 
that is more capable of responding to a treatment, the so-called predictive 
enrichment. 

Fig. 6.6 Healthentia smart services for DTx
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The dropout rate across clinical trials varies based on the pathology and other 
study parameters, however 30% or more is a very likely scenario for many of the 
cases. In general, the patients’ drop out is linked with lack of adherence and 
compliance to trial protocol. A linear increase of the non-adherence rate results in 
an exponential increase in additional patients required to be recruited to maintain the 
statistical power of the outcomes (Harrer et al. 2019). Processing of RWD from 
various sources, including IoTs and wearables, as well as legacy big data with AI can 
result in services for the PIs to improve patients’ adherence. Such services include: 
(a) Patients’ diary; (b) Medication reminders; (c) Virtual Coaching; and (d) Risk 
stratification with automatic alerts. 

6.3.2 Discovering Digital Composite Biomarkers and Phenotypes 

Healthentia DTx considers RWD as the primary source of patient information, and it 
uncovers second-order information through close collaboration between its learning 
and intelligent decision services, as described in (op den Akker et al. 2021). The 
system employs signal processing to obtain the simpler forms of second-order 
information, such as long- and short-time averages and trends of the collected 
data. More complex processes using machine learning are also utilized to extract 
second-order information. Firstly, the system predicts important clinical outcomes 
from composite biomarkers. Then, it analyzes the outcome decisions to model the 
attributes of patients that have the most influence on the decisions. Finally, it groups 
patients into phenotypes based on their unique characteristics. 

Biomarkers are quantities that describe a clinical outcome or a stage of disease 
(Coravos et al. 2019), and they can be direct, indirect, or composite. Direct 
biomarkers are values of a single quantity that allow for the diagnosis of a disease 
outcome or stage, and they are typically measured in a clinical setting. Indirect 
biomarkers, on the other hand, are values of quantities that are indirectly associated 
with a factor or product of the disease and are highly correlated with it. Indirect 
biomarkers can be obtained using ubiquitous devices in everyday life settings. 
Indirect biomarkers can also be combined into composite biomarkers (Kovalchick 
et al. 2017), which are non-linear combinations of multiple quantities into a single 
value that characterizes an outcome. Composite biomarkers are better at correlating 
with outcomes than single quantities alone. In some cases, the combination can be 
done analytically, such as with the Body Mass Index (Garrow and Webster 1985), 
which is a simple composite biomarker used to measure obesity. Body mass and 
height are nonlinearly combined in a simple equation to yield the composite bio-
marker. Finally, biomarkers can be digital if they are collected using sensors and 
software or hardware computational tools. 

Analytic combinations are the exception when it comes to composite biomarkers. 
In most cases, predictive models are used to perform non-linear combinations. These 
models are learnt using machine learning algorithms (Geron 2019), which can be 
classifiers or regressors. Classifiers are used when biomarker values are finite and 
discrete, while regressors are used when they are continuous. For example, Random



Forests (Breiman 2001) can be employed to learn a predictive model forming a 
binary classifier that predicts whether the systolic blood pressure of patients is 
expected to improve or worsen. 
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The process of learning the models is done offline and involves various experts. 
Initially, domain experts are consulted to determine the outcomes of interest and the 
direct or indirect biomarkers that are expected to affect them. These biomarkers are 
used as attributes to be combined nonlinearly by the predictive model. The 
attributes’ input vector is formed, and the outcomes to be predicted from the output 
vector. When faced with multiple outcomes, then a machine learning engineer can 
opt either for one predictive model with multiple outputs, or for multiple models, 
each with a single output. The process of model learning involves collecting data 
through the user data services and processing it. The processing aims at the correc-
tion of measurement errors, the imputation of missing values, and the anonymization 
(Jaidan et al. 2019). The processed and anonymized data are then split into three 
sets—training, validation, and testing sets. Candidate models are trained using the 
training set, and their performance is evaluated by tuning their hyperparameters with 
the validation set. The final model is trained using the optimal parameters with the 
combination of the training and validation sets, while the performance is evaluated 
with the testing set. Finally, the resulting model is stored using the user data services. 

The Healthentia DTx’s Intelligent Decision Services use the learned models to 
generate composite biomarkers. These services include timed components that 
periodically request new data from the user data services for the patients, enumerate 
all the attributes of the predictive models, and evaluate the composite biomarkers. 
The resulting composite biomarkers are then stored as second-order data for the 
patients using the user data services. It is important to note that unlike model 
learning, the data used to evaluate the composite biomarkers is not anonymized 
but is processed for measurement errors and missing values imputation. 

After the composite biomarkers are evaluated, they are analyzed to identify the 
most important single quantities, which are the predictive model attributes that have 
the greatest influence on the predicted outcome. This analysis is done using SHapley 
Additive exPlanations (SHAP) analysis (Lundberg et al. 2020), which for the given 
decision and patient, assigns a SHAP coefficient to each model attribute value 
indicating its significane in this decision. 

The Healthentia DTx utilizes the SHAP coefficients obtained from the analysis of 
composite biomarkers in its Learning Services. By accumulating the SHAP 
coefficients across patients, the system can identify attributes that have minimal 
impact on the overall decisions. This allows for the model complexity to be reduced 
without sacrificing performance, or even improving it, especially when working with 
small training sets. The individual SHAP coefficients, on the other hand, are used in 
an online learning process facilitated by the Learning Services. The Healthentia DTx 
generates models for each attribute and patient, providing insight into the attribute’s 
significance for a particular outcome. These models are updated continuously as new 
decisions are made, and the SHAP coefficients are analyzed to provide ongoing 
optimization of the learning process.



76 S. Kyriazakos et al.

Phenotypes are models that describe the appearance of groups of patients who 
share similar characteristics. These characteristics are identified by analyzing the 
most impactful attributes and second-order data, such as time averages, trends, and 
composite biomarkers. These attributes form the phenotype clustering space, and 
their values form the data vectors that are used to cluster patients. Clustering is 
performed using unsupervised machine learning algorithms, such as k-means or 
hierarchical clustering (Theodoridis and Koutroumbas 2008), to uncover the under-
lying structure in the data. Each patient’s snapshot is then assigned to a cluster, and 
all of their data attributes are considered to belong to that cluster. Once a patient’s 
snapshot is clustered, certain attributes are selected as representative of the patient 
within the particular therapeutic area, forming the phenotype modeling space. 
Gaussian Mixture Models are then used to describe each cluster based on 
the attributes in the phenotype modeling space. These models are trained using the 
Expectation-Maximization algorithm (Theodoridis and Koutroumbas 2008). The 
aim of creating phenotypes is to group patients based on their characteristics, 
which can help clinicians better understand the disease and develop more 
personalized treatment plans. 

The intelligent decision services use the learnt phenotype models for patient 
phenotyping, which involves assigning each patient snapshot in time to one of the 
phenotype models. This allows each patient to be considered as exhibiting a partic-
ular phenotype for a time interval, with the weight of that phenotype being updated 
every time a new snapshot of the patient is clustered. If the weight of a particular 
phenotype exceeds those of all others, the patient is considered to exhibit that 
phenotype for the time interval. While transitions to different phenotypes are not 
frequent, they are considered important and are monitored, as they often correspond 
to a transition to a new disease stage or new behavioral habits. 

6.3.3 Virtual Coaching for DTx 

Virtual Coaching in Healthentia is the set of services that can aid the end-users— 
whether they are patients or citizens—in setting and reaching their own health-
related goals. The Healthentia Virtual Coaching platform is a set of technological 
tools that allows clinicians to define how and when to deliver coaching content to 
patients. In the Healthentia approach, we focus on virtual coaching as delivered 
through conversational agents that interact with end-users using natural language. 
Such conversational agents (or virtual agents, or virtual coaches) are receiving 
growing interest in the healthcare domain (e.g., Provoost et al. 2017; Laranjo et al. 
2018); however, when applied to the field of chronic conditions, the literature is still 
scarce (Schachner et al. 2020). We first shortly discuss the principles of our virtual 
coaching approach, and then present the technology framework on which the virtual 
coaching platform is built. 

The ultimate aim of virtual coaching in our supported use cases is to accompany 
patients throughout the use of Healthentia, and to assist them in making positive 
changes in their health-related behavior. Behavior change is difficult, especially



when it comes to internalizing change in the long-term (Bouton 2014). As such, we 
believe that supporting an individual in achieving this change cannot be achieved by 
simple nudges, reminders, or visualizations of performance alone. The support that 
is needed is complex and deep, and thus the medium of delivery should support this 
rich type of interaction. This is our first principle, and the core motivator to focus on 
virtual coaching based on natural language conversations between the coach and 
user. A conversation, especially when combined with visual aids such as graphs, is a 
very rich medium for conveying information from a computer system to an end-user. 
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Fig. 6.7 High-level approach 
to Virtual Coaching in 
Healthentia, based on the 
principles of using natural 
language, tailoring and 
explainable AI 

Every individual end-user is different, and this includes the individual’s 
preferences when it comes to receiving health-related coaching. Tailoring is the 
mechanism of adjusting the timing, the intention, the content, or the representation of 
communication to the user of an eHealth system (op den Akker et al. 2014). Within 
an eHealth application, the system’s communication may be tailored to the user 
based on information from the user’s profile. In Healthentia, the user’s profile is rich 
due to the focus on real-world data collection. We thus have motive and opportunity 
to tailor our virtual coaching to the end-users. Tailoring is the second principle 
underlying our virtual coaching approach, meaning that every conversation with the 
user should be carefully adjusted to the individual and his or her context. 

When building systems that automatically tailor elements of conversation to the 
user, such as what to say or how to say it, or even when to say it, certain decision-
making components must be integrated into the system. These decision-making 
components are artificially intelligent: they operate in a fluid environment (the user 
and his/her context) and reason about certain actions to take (e.g., starting a conver-
sation about healthy eating). Such decisions, although not immediately dictating life 
or death, are impacting someone’s life and health. The final design principle is that it 
must be understandable at all times, why the virtual coach is delivers specific 
messages, by using expertly designed scripted dialogues as a basis, and Explainable 
AI (Goebel et al. 2018) as a guiding principle for the development of decision-
making components. 

Combined, our high-level virtual coaching approach is depicted in Fig. 6.7. The 
basis is an open dialogue platform that allows us to use expert knowledge to script



coaching dialogue content for the various use cases served by the Healthentia 
platform. Then, a tiered approach to automated decision-making is applied, whereby 
the decision on when to say what and how to deliver it to the user is split up into a 
logical sequence of simpler decisions. Finally, an embodied conversational agent is 
used to deliver the coaching dialogue to the end-users of the platform. 
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6.3.4 Clinical Pathways 

The clinical pathways of Healthentia encapsulate expert knowledge on the digital 
therapy plan to be offered to patients. This knowledge is turned into a set of 
predefined rules enabling actions and transitions to other branches of the pathway. 
A patient enters the pathway for their pathology at any of the defined entry nodes, 
their treatment being orchestrated by the pathway and their progress along it, until 
they reach the exit node. 

Healthentia employs an offline visual pathway modeler and a pathway execution 
service. The modeler is offline, in the sense that it is used at the design phase of the 
digital therapy plan. It is implemented around Business Process Modeling Notation 
(BPMN), offering the visual tools to define pathways for different chronic diseases. 
The modeler is built having the healthcare professionals as its intended users. Their 
expertise, clinical practice, and medical knowledge will be encapsulated into the 
pathways they design for different pathologies. 

Patients are initially assigned to any of the start states in the pathway, whereupon 
the pathway execution service maintains their state. The pathway execution service 
operates during the digital therapy execution phase, i.e., is an online service. It is 
implemented around Camunda that updates patient states and acts upon them. 

6.4 Patient Engagement 

Patient engagement in the last few years is becoming a key metric in the field of Life 
Sciences and Healthcare. It improves participation in clinical studies and ensures 
cost effectiveness. In the standard clinical care evidence also shows that when 
patients are actively engaged in their health management by gathering information 
of their symptoms, disease evolution, and medication adherence, it can lead to better 
patient’s outcomes, faster recovery, reduced hospitalizations or readmissions, and as 
an extent a lower cost of care in general. 

In the case of Healthentia, its role is to accompany patients in their disease 
journey whether they are part of a clinical study, or part of a clinical care program. 
It allows the possibility to gather lifestyle and disease related information and offers 
valuable insights to clinical teams and study sponsors. In patient programs, different 
strategies are used to address patient engagement, as follows: 

– Identify & Group patients. In order to identify patients at higher risk or with 
special needs we use tagging, alerts, and clustering mechanisms. By
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understanding the different needs in terms of care, risks, or communication, the 
clinical team can better address them. 

– Patient Education. It is essential for patients to understand their disease and 
therapy in order to be engaged, comply with a care plan, and see improvements 
in their outcomes. When clinicians educate their patients and give them 
personalized content and guidelines then they are more likely to see how their 
engagement efforts will result into their benefit. 

– Co-design & Feedback. To ensure patient engagement in a program or study it is 
essential in the design process to include patients and share decision-making. It is 
a co-design process usually with focus groups with the participation of all 
stakeholders in collecting user requirements and objectives in order to address 
them with suitable features and processes. Thus, patients feel co-ownership and 
are more motivated to comply and advocate to others. An important aspect of 
co-design is the user evaluation for technology acceptance and user experience by 
patients, using established protocols, such as TAM+ and UEQ. The Technology 
Acceptance Model (TAM+) questionnaire consists of 34 items, divided into 
7 domains: enjoyment, aesthetics, control, trust in technology, perceived useful-
ness, ease of use, and intention to use (Davis 1989). The User Experience 
Questionnaire (UEQ) is used to analyze the system’s attractiveness, perspicuity, 
efficiency, dependability, stimulation, and novelty (Laugwitz et al. 2008). Attrac-
tiveness is defined as a pure valence dimension. Perspicuity, Efficiency, and 
Dependability are pragmatic quality aspects which are goal-directed, while Stim-
ulation and Novelty are hedonic quality aspects that are not goal-directed. UEQ 
offers a benchmark to classify a product into 5 categories of the 6 scales: 
excellent, good, above average, below average, and bad (UEQ). 

– Continuity of Care & Accessibility. Healthentia as a virtual solution enables 
patient engagement as it helps a clinical team create personalized care plans but 
also offers a continuity of care outside the hospital by collecting and monitoring 
patient data in real-time. At the same time patients from the comfort of their home 
can have access to a care team and a personalized and consistent care plan and 
support throughout their disease journey, which can lead to better outcomes for 
healthcare organizations and patients alike. 

6.5 Conclusions 

This chapter described the use of big data and AI technologies to improve the current 
status in clinical studies and DTx. Both big data and AI technologies are widely used 
in several industries and especially those that are not highly regulated can demon-
strate big impact on key performance indicators, as well as multiplying the benefits 
for the end-user. Healthcare is the perfect industry to demonstrate improvement by 
applying such technologies, also including the social dimension due to the patient-
centric focus; however, the sensitivity of collected data and the regulatory frame-
work have delayed these outcomes for around a decade, compared to other 
industries. Nevertheless, the natural evolution of the penetration of such



technologies in the healthcare domain and other events, such as the COVID-19 
pandemic that accelerated their application, have created new horizons and are 
expected to contribute to the healthcare system, by improving the efficacy of 
drugs, the R&D duration and expenditure, as well as enabling the use of digital 
ingredients in the form of DTx applications. 
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Abstract 

Developing combination therapies aimed to target different biological processes 
is a sought-after goal for treating complex diseases. However, there are 
drawbacks due to the number of combinations of different targets, doses, thera-
peutic regimens, and individual patient responses, making this a severe combina-
torial problem. In the case of immunotherapies, this is further hampered due to the 
complexity of immune responses and significant individual variability. In Multi-
ple Sclerosis (MS), for instance, physicians have considerable difficulties 
selecting the proper treatment for each patient, even though there are more than 
20 immunotherapies available. Consequently, the disease is far from being 
controlled. Systems Pharmacology, specifically network modeling of signaling 
pathways, provides a framework to address such complexity at both the research 
and clinical levels. Network analysis can help us search for new targets and 
combination therapies to achieve better control of MS. By examining signaling 
networks in immune cells combining in vitro assays, proteomic analysis, and 
logic network modeling, network models can predict response to therapy at the 
individual patient level. A druggability algorithm identifies the network nodes 
(proteins) that will qualify as therapeutic targets in combination with approved 
drugs. These efforts are showing that network pharmacology can be a valuable
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tool for supporting drug discovery efforts, and for guiding clinicians in testing the 
most promising drug combinations in immunotherapy.
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7.1 Introduction 

Complex diseases involve the participation of many biological pathways leading to 
similar cell phenotypes that generate tissue damage, but with significant inter-patient 
heterogeneity (Villoslada et al. 2009). From a therapeutic perspective, this implies 
that the traditional model successfully used in the twentieth century of “one gene/ 
protein—one disease—one drug” is not valid for curing or controlling most of these 
diseases. A possible solution to overcome this limitation is systems pharmacology, 
which aims to provide a new, dynamic method for drug discovery and therapeutics 
(Butcher 2005; Pujol et al. 2010; Trame et al. 2016). 

Complex diseases often operate by perturbing the signal transduction machinery 
among pathways and cells. Hence, the treatment of complex diseases such as cancer, 
cardiovascular, immunological, or brain disorders focuses on modifying sequences 
of molecular reactions (pathways) to stop the progression of the disease. As a result, 
kinases (enzymes responsible for the phosphorylation of proteins transmitting the 
information from membrane receptors to the nucleus) have become a primary focus 
of many illnesses (Owens 2007). However, using therapies acting upon single 
molecular targets to treat complex diseases has seen modest success. There is hope 
that using multiple treatments that target simultaneously various molecules and/or 
pathways will allow more precise manipulation of the underlying mechanisms of the 
disease (Jia et al. 2009; Cully 2015). It has been nevertheless difficult to date to 
determine how the combination of multiple therapies will modify a complex signal-
ing network, avoiding unwanted secondary effects such as drug-induced interference 
between the pathways (Bozic et al. 2013; Klinger et al. 2013). 

As an additional source of complexity, patients differ in the characteristics of their 
disease, regarding both the symptoms manifested and their underlying molecular 
signaling networks. This makes the efficacy of the treatment difficult to predict in a 
clinical setting. Finally, the combinatorial nature of composite therapies in terms of 
the number of targets, drugs, doses, and therapeutic regimen implies many 
experiments and associated costs, preventing a complete analysis for all possible 
alternatives. Altogether, the field of combination therapy has not reached its full 
potential, and modeling-based studies may be the key to characterize the effect of 
drug combinations at the molecular level, allowing prediction of both efficacy and 
reduction of off-target effects (Lee et al. 2012; Bozic et al. 2013; Korkut et al. 2015). 

Systems Biology, by considering signaling networks instead of collections of 
parallel pathways and applying modeling techniques to discover proper



combinations of treatments, may provide a new way to approach this question (Jia 
et al. 2009; Villoslada et al. 2009). Understanding the biochemical mechanisms 
underlying the network allows predicting how cells respond to stimuli, either 
naturally from the environment or due to drug effects. Much work has already 
been done to identify the signaling cascades among cells, and systems biology can 
bolster how exactly they interact (Kholodenko et al. 2010; Kolch et al. 2015; Davis 
et al. 2017). Furthermore, pathway changes can be associated with disease 
outcomes. Ultimately, the efficacy and safety of combination therapies can be 
expected to decrease the number of drugs to be tested in vivo and clinical trials. 
Mathematical modeling of signaling networks has been used to identify targets for 
therapies and specific molecular aspects of the disease, such as cell surface receptors 
or intracellular molecules, by training models to monitor responses of key pathway 
components in combinatorial in vitro assays using inhibitors and activators (Palacios 
et al. 2007; Klinger et al. 2013; Korkut et al. 2015). Within that context, logic models 
are a helpful tool to determine the makeup of the signaling network underlying a 
disease and how it would respond to a given drug. Computationally, these types of 
models are useful because they can describe large networks with a low number of 
parameters (Bernardo-Faura et al. 2014; Flobak et al., 2015; Eduati et al. 2017; 
Silverbush et al. 2017). 
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7.2 Systems Pharmacology for Combination Therapy 
in Multiple Sclerosis 

MS is an autoimmune disease in which the immune system is chronically activated, 
damaging the central nervous system (CNS) (Ransohoff et al. 2015). The deregula-
tion of the immune system in MS manifests in changes in the activity of blood 
lymphocytes and monocytes (Ransohoff et al. 2015) and through its association with 
genetic polymorphisms of immune genes (Sawcer et al. 2011). In addition, several 
immune-related pathways have been identified as dysregulated in MS, including 
NfKB, MAPK, and others (Fig. 7.1) (Kotelnikova et al. 2015). 

At present, there are more than twenty FDA-approved immunomodulatory drugs 
for MS, with many others being currently tested in trials. These drugs mainly act by 
controlling, to a certain degree, the levels of inflammation in patients with 
MS. However, these treatments can only control the disease to a certain extent. 
Sometimes treatments are not effective enough, some cause further problems to the 
immune system, and there is a need for those that can protect or even regenerate 
neural tissue (Villoslada and Steinman 2020). Combination therapies may surpass 
these limitations but predicting how patients would react to a specific combination of 
therapies remains an unresolved challenge (Conway and Cohen 2010; Kieseier and 
Stuve 2011; Milo and Panitch 2011; Kotelnikova et al. 2015). 

Systems pharmacology can be used to predict new combination therapies using 
signaling networks in primary immune cells obtained from the blood for MS 
patients, based on the differences between treated MS patients and controls 
(Bernardo-Faura et al. 2021). The first step of the approach is to build a network
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of signaling interactions based on existing literature and databases (Saez-Rodriguez 
et al. 2009), including the pathways involved in immune and MS signaling 
(Kotelnikova et al. 2015). Next, Boolean logic models are applied to the signaling 
network and trained to represent the kinase de/phosphorylation levels in peripheral 
blood mononuclear cells (PBMCs) of healthy controls and MS patients, after they 
are perturbed with ligands and drugs. The kinase interactions that the drugs failed to 
revert to a healthy-like activity level in the ex vivo assays become candidates to be 
targeted by a second drug, with the goal of developing a personalized combination 
therapy. To guide target identification and combination selection, a score of 
co-druggability of signaling interactions can be defined according to quantitative 
differences in network topology among healthy controls and untreated and treated 
MS patients guides. This network-based approach can predict combination therapies 
based on current immunomodulatory drugs.
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7.2.1 Modeling Signaling Pathways from Ex Vivo Proteomic Assays 
in MS 

A literature-based search is performed as the first step to build the MS-related 
immune signaling network that connects molecular species based on their biochemi-
cal interactions, such as kinase phosphorylation. The network is constructed using 
omics data, functional assays, and target pathways of MS therapies (Kotelnikova 
et al. 2015), including interferon response, B and T cell receptor signaling, cellular 
survival and apoptosis, innate immunity, and multi-drug response genes (Fig. 7.2). 

Once the network is built, experimental data from ex vivo phosphoproteomic 
assays in PBMCs is used to constrain it to the specific case of patients with MS using 
Boolean logic models (Poussin et al. 2014). Since the outputs of the Boolean gates 
are binary, the data from the assays need to be normalized. This rigorous method has 
two aims: first, to transform the raw phosphorylation levels to values between 0 and 
1 using a non-linear mapping (Saez-Rodriguez et al. 2009), and second to remove 
the measurements which did not undergo a significant change in phosphorylation 
when perturbed. The modeling tool CellNOpt is used to optimize the Boolean 
model, selecting the model which best reproduces the assay data while avoiding 
large models with unnecessary edges (Terfve et al. 2012). This optimization is 
repeated ten times for each patient to ensure that the model is robust. The final 
model is selected to have the median value (within the relative tolerance of the best 
solution) for each reaction between proteins. 

Individual models for each subgroup of subjects (untreated MS patients, MS 
patients with treated with each drug, and healthy controls) are merged using the 
mean of each interaction per subgroup to characterize MS signaling. To confirm that 
the modeling approach can capture the effect on signal transduction of MS drugs, the 
Jaccard similarity index is calculated to assess both intra- and inter-patient model 
similarity, by quantifying the number of interactions in pairs of networks that are 
equal over the total interactions, after stratification of patients by treatment 
subgroups. The pathways found to be active for each patient group uncovered the



signaling activity in PBMCs from MS patients, providing a map of interactions 
(directed graph of activation or inhibition) for each subgroup (Fig. 7.2). The MS 
network shows the activation of several pathways in PBMCs after stimulation both 
in patients and controls, namely T cell receptor (TCR), STAT-JAK, PI3K, TLR3, 
NTRK1, TRAD, or MKO3 pathways. This method can identify previously described 
pathways through the ex vivo analysis of human PBMCs and propose new ones. 
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Fig. 7.2 Logic modeling identifies MS-specific signaling pathways. The background network 
shows the literature-based signaling network for MS. Experimentally activated pathways between 
healthy controls [HC] and untreated MS patients (MS) are highlighted: controls (blue), untreated 
MS patients (orange), and both (brown). Gray: Inactive interactions from the MS, immune- and 
treatment-related network (reproduced with permission from Bernardo-Faura et al. 2021) 

7.3 Network Topology-Based Prediction of Targeted 
Combination Therapy 

To predict novel combination therapies for MS, the therapeutic goal is to use a 
combination of treatments to alter the kinase reactions within the signaling network 
in MS patients, to bring it closer to that of the healthy controls. The combinations are 
first defined using an approved MS drug as the base to determine the topology of its



respective signaling network. Although these drugs are indeed effective in treating 
MS, their associated signaling networks do not fully reflect those of the healthy 
controls. The goal then is to determine the kinase reactions (influenced by the 
ongoing therapy) that are crucial to change the network into one that more closely 
resembles a healthy state. To that end, the algorithm searches for a co-druggable 
interaction, which is when the selected treatment could not return to a healthy-like 
state. These should be the model interactions with a signaling value more distant 
between healthy controls and MS drug models than between healthy and MS 
models. To identify the co-druggable interactions, the quantitative network interac-
tion scores of untreated MS patients are subtracted from those from healthy controls, 
and similarly between the healthy controls and the model for each MS drug 
(Fig. 7.3). 
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Fig. 7.3 Druggability algorithm. The algorithm considers all combinatorial options to define if a 
given interaction of the signaling network models is a candidate to be modulated by a drug based on 
its differential activation between healthy controls, untreated MS patients, and MS-drug specific 
models. For example, interaction with a negative co-druggability score indicated a treatment effect 
that produced signaling activity different from that found in healthy patients and was selected as 
co-druggable. Conversely, a co-druggability score of 0 indicated that there was no effect due to drug 
treatment. From those cases, the interactions in which signaling activity differed between healthy 
donors and treated patients were also selected as co-druggable, i.e., those where the drug alone 
failed to revert signaling to a healthy state. The double or single red squares identify Co-druggable 
interactions (reproduced with permission from Bernardo-Faura et al. 2021) 

This provides a score for each interaction that tells whether it is a candidate to be 
considered co-druggable. These co-druggable interactions are both those that are 
different from healthy controls due to both the disease and unintended effects from 
the treatment (Fig. 7.4a). In the last step, the co-druggable interactions are integrated 
into the signaling network assessed for each subgroup (Fig. 7.4b). Mapping the 
co-druggability scores in this way allows additional therapies to be suggested due to 
the makeup of the networks for the individual treatments. Finally, a graph search 
algorithm is used to determine the co-druggable interactions that can be activated by 
the given in vitro stimuli used in the study. For example, Fig. 7.4c shows the
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validation of co-druggable interactions upon fingolimod with the predicted kinase 
TAK1 in the animal model of MS.
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7.4 Lessons from Network Analysis to Understand MS 

By analyzing the signaling network in patients with MS, specific signaling reactions 
are found to be deregulated by the disease, showing higher activation of the NFkB 
pathway (TAK1 to IKKB), enhanced pro-survival effects of the trophic factor 
signaling pathway (SLP76 to AKT1), and modulation of the interferon pathway 
(JAK1 to STAT3). Furthermore, the NfkB pathway has been reported to be 
overactivated in PBMCs from patients with MS (Moreno et al. 2006; Chen et al. 
2016) as well as to contribute to the genetic susceptibility of the disease (Housley 
et al. 2015; Hussman et al. 2016). These observations support the pro-inflammatory 
state of immune cells in MS. Furthermore, the trophic factor pathway involving 
SLP76 and AKT has been associated with MS (Kotelnikova et al. 2015). Addition-
ally, the MS-susceptibility gene CD6 has been found to modulate SLP76 (Hassan 
et al. 2006; Johnson et al. 2010; International Multiple Sclerosis Genetics et al. 
2013). Therefore, considering these pathways suggests that T and B cells are under a 
signaling state of pro-survival concerning inflammation of the microenvironment. 
Finally, there is an overactivation of the cytokine/interferon pathway (JAK1), 
previously reported in MS (Kotelnikova et al. 2015). Moreover, STAT3 has been 
confirmed as a susceptibility gene for the disease [International Multiple Sclerosis 
Genetics et al. 2013], and its activation is impaired in response to IL-10 in MS 
patients (Martinez-Forero et al. 2008), suggesting an inadequate response of regu-
latory Tr1 cells. 

There are additional interactions that are downregulated, including the inhibition 
of LCK over STAT-1, suggesting impairment of the regulation of T/B cell signaling, 
and IL-2 trophic effects (Beyer et al. 2011) or cytotoxicity (Slavin-Chiorini et al. 
2004), as well as the regulation of the ubiquitination system modulated by CBLB 
(Swaminathan and Tsygankov 2006). LCK is modulated by EVI5 and influences 
STAT-1 in our analysis, both of which are susceptibility genes for MS (International 
Multiple Sclerosis Genetics et al. 2013). Another inhibited interaction involved the 
MS-susceptibility gene CBL-B (Sanna et al. 2010), which regulates TCR, 
co-stimulatory signals, and immune tolerance through its ubiquitin E3-ligase activ-
ity. For MS patients, the expression of CBL-B is lowered, and the type I interferon 
pathway is modified in CD4 cells (Sellebjerg et al. 2012; Sturner et al. 2014). In 
addition, CBLB is activated by EGFR, leading to inhibition of several pathways by 
ubiquitination, including the EGFR itself (Galisteo et al. 1995; Tarcic et al. 2009). In 
summary, systems pharmacology analysis can verify the downregulation of the MS 
pathways mentioned in the previous studies above (Kotelnikova et al. 2015), 
suggesting both over-stimulation of pathways that trigger inflammatory responses 
and the suppression of pathways responsible for immune tolerance.
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7.5 A System Pharmacology Approach for Designing 
Combination Therapies Beyond MS 

The proposed algorithm identifies additional treatments to combine with ongoing 
therapies through analysis of signaling networks in PBMCs. The method searches 
for potential co-druggable interactions within the networks of the individual 
therapies, by considering those that were still not reverted to a healthy state after 
treatment (Fig. 7.1). In more concrete terms, the co-druggability score is used to 
identify these interactions, allowing the combination of therapies to be predicted 
from the topology of the signaling networks (Fig. 7.3). This pragmatic approach has 
the advantage of enabling the prediction of combinations between immunotherapies 
currently used in patients with cancer or autoimmune diseases and compounds that 
can stimulate signaling for those drugs that cannot fully revert the signaling activity 
to a healthy-like state. 

Many strategies have been developed to predict drug combinations (Bulusu et al. 
2016). Some have used phosphorylation data upon perturbation, using approaches 
such as applying principal component analysis and partial least square analysis (Lee 
et al. 2012), data-driven network inference (Korkut et al. 2015), or a combination of 
mechanistic and Bayesian network modeling (Halasz et al. 2016). For their simplic-
ity, logic networks provide excellent topological descriptions of the signaling 
networks and simplify the dynamic analysis by assuming the interactions to be 
binary, providing a valuable framework to study and predict drug combinations 
(Flobak et al. 2015; Eduati et al. 2017; Silverbush et al. 2017). 
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Abstract 

Virtual clinical trials (VCTs) have gained popularity for their ability to rationalize 
the drug development process using mathematical and computational modelling, 
and to provide key insights into the mechanisms regulating patient responses to 
treatment. In this chapter, we cover approaches for generating virtual cohorts with 
applications in cancer biology and treatment. VCTs are an effective tool for 
predicting clinical responses to novel therapeutics and establishing effective 
treatment strategies. These VCTs allow us to capture interindividual variability
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(IIV) which can lead to diversity in patient drug responses. Here we discuss three 
main methodologies for capturing IIV with a VCT. First, we highlight the use of 
population pharmacokinetic (PopPK) models, which extrapolate from empirical 
data population PK parameters that best fits the individual variability seen in drug 
disposition using non-linear mixed effects models. Next, we show how virtual 
patients may be sampled from a normal distribution with mean and standard 
deviation informed from experimental data to estimate parameters in a mechanis-
tic model that regulates drug PKs. Lastly, we show how optimization techniques 
can be used to calibrate virtual patient parameter values and generate the VCT. 
Throughout, we compare and contrast these methods to provide a broader view of 
the generation of virtual patients, and to aid the decision-making process for those 
looking to leverage virtual clinical trials in their research.
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8.1 Introduction 

Cancer is a heterogeneous disease with complex (sub)types, genetic compositions, 
and tumour spatial arrangements, all of which make designing and scheduling 
effective and minimally toxic cancer treatments more challenging. Despite the 
long-term concerted investment in highly intensive cancer research, the goal of 
precision and personalized medicine remains largely unrealized. The difficulty 
establishing new cancer treatment strategies is compounded by the complexity of 
the drug development pipeline, since getting a drug to market is a lengthy and 
expensive process. There have been many recent encouraging advances in cancer 
therapy, particularly the development of immunotherapies like T-VEC (an oncolytic 
virus to treat late-stage melanoma) (Andtbacka et al. 2015, 2016), and immune 
checkpoint inhibitors including nivolumab and pembrolizumab (Seidel et al. 2018). 
However, a number of disappointing trial results have highlighted the need for 
improved predictive and quantitative models to help guide clinical trials in oncology. 
Quantitative systems pharmacology (QSP) seeks to answer this call by developing 
systemic mathematical and computational models to explore dosing ranges and 
therapeutic regimens prior and concurrent to clinical trials. 

Drug development in oncology and in general relies on the use of clinical trials. A 
randomized clinical trial evaluates new medical approaches by randomly dividing 
participants into separate groups, or arms. In these trials, either a new medical 
approach is compared to a placebo, or to an existing treatment (e.g. standard drug) 
in a non-inferiority trial. In a cross-over trial, multiple study arms may receive both



treatments after a washout period which is calculated according to each drug’s half-
life (Brown 1980; Piantadosi 2017). In all scenarios, the trial population is randomly 
separated into study arms to satisfy the requirement of equally distributed cohorts for 
reproducibility and comparability (Bland and Altman 2011). This randomization is 
of course never perfect or identical, something which the virtual clinical trials we 
will describe later aim to address. In early phases, drug tolerability is tested and dose 
escalation is performed before a drug’s efficacy in treating the target is measured 
(Lipsky and Sharp 2001). At each stage, between patient variability (e.g. genetic, 
physiological, etc.) leads to diversity in patient drug responses (Alfonso et al. 2020). 
Accounting for this inherent variability is often a significant obstacle for establishing 
effective and tolerable treatment schedules. Improperly estimating heterogeneity 
when planning trials, or observing a high degree of interindividual variability (IIV) 
contributes to decreased drug development success rates, which explains the high 
degree of attrition along the drug development pipeline (Kozłowska et al. 2019). In 
response, new approaches encompassing virtual clinical trials (VCT) have been 
increasingly integrated to (pre-)clinical drug development efforts as a means to 
quantify the effects of variable environmental, spatial, and genetic, etc., factors on 
therapeutic regimens and patients (Alfonso et al. 2020). 

8 Approaches to Generating Virtual Patient Cohorts with Applications in Oncology 99

VCTs arose with the emergence of QSP (Polasek and Rostami-Hodjegan 2020; 
Ma et al. 2021) and enable finding potentially non-intuitive drug regimens that help 
to increase drug approval success rates and, in turn, reduce drug costs (Alfonso et al. 
2020). To that end, VCTs have been shown to be an effective tool in mitigating 
various challenges arising at different stages of the drug development pipeline, 
particularly understanding heterogeneous responses to novel therapeutics, 
establishing efficacious treatment strategies and treatment schedules, and precision 
dosing in individual patients (Polasek and Rostami-Hodjegan 2020). Virtual clinical 
trials have been applied to a broad range of diseases including HIV (Stadeli and 
Richman 2013; Kirtane et al. 2018), tuberculosis (Pitcher et al. 2018), SARS-CoV-
2 (Jenner et al. 2021a), sepsis (Clermont et al. 2004; An  2004; Vodovotz and Billiar 
2013), diabetes (Visentin et al. 2014; Gyuk et al. 2019), cardiovascular diseases 
(Corral-Acero et al. 2020), and different tumours, including breast (Switchenko et al. 
2019; Corral-Acero et al. 2020), brain (Agosti et al. 2018), melanoma (Barish et al. 
2017; Cassidy and Craig 2019; Milberg et al. 2019), and lung (Jafarnejad et al. 2019; 
Sayama et al. 2021). The successful implementation of VCTs heavily depends on the 
ability to generate heterogeneous virtual patients that mimic a broad spectrum of 
patients with a multitude of disease presentations, as would be observed in real-
world clinical studies. 

As detailed in later sections, VCTs generally follow the same basic steps. First, a 
mathematical or computational model of a disease is constructed using prior infor-
mation and domain expertise. Model parameters are estimated from existing 
biological studies, targeted experimentation, or ongoing or completed trials. Next, 
the sensitivity of model predictions to perturbations in parameter values is deter-
mined through local or global sensitivity analyses. To simulate a population-level 
response, with variations in individual patient responses (Cassidy and Craig 2019), 
the mathematical model is solved for each individual-based parameter set. These



patient-mimicking parameter sets are informed by the sensitivity analyses and 
constructed either statistically, by imposing physiologically-appropriate ranges and 
distributions on the values, or by probabilistic data-fitting, to ensure that model 
predictions lie within ranges of experimental or clinical observations, using optimi-
zation schemes. Importantly, parameter value ranges may be pruned to ensure that 
model predictions recapitulate physiologically reasonable ranges and observations 
(Allen et al. 2016). If generated statistically, virtual patients are selected by randomly 
sampling each parameter value from the chosen distributions, and the resulting 
parameter set is accepted into the trial if predicted outcomes are within acceptable 
deviations from the known outcomes. If generated through probabilistic data-fitting, 
virtual patients are constructed as a set of parameter values by each successful fit of  
the optimization algorithm, and are thus automatically accepted into the trial. 
However generated, virtual patients accepted into the VCT are twinned/cloned and 
assigned to multiple identical cohorts. Therapeutic outcomes for each virtual patient 
in each cohort are then simulated and compared using a variety of statistical 
techniques. This virtual study design is evocative of a cross-over study, with the 
advantage that patients can be assigned to multiple cohorts at once, implying that 
differences observed between cohorts can be attributed to mechanistic causes 
(as cohorts are identical). VCTs using the strategies described above have been 
applied to non-chronic diseases (Alfonso et al. 2020; Jenner et al. 2021a) and to 
identify causal mechanisms controlling outcomes (Cassidy and Craig 2019; Alfonso 
et al. 2020; Jenner et al. 2021a). 
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Typically, for large models with many parameter values, not all parameters will 
be assigned to the patient-specific parameter sets, as leaving some parameters 
constant across the population can simplify the VCT construction and analysis. 
When choosing which model parameters to fix as constants for the whole population, 
and which to vary across virtual patients, there are three key aspects of the mathe-
matical model to consider: identifiability, sensitivity, and the biological interpreta-
tion of parameters. Model identifiability refers to the ability of model parameter 
values to be uniquely determined by comparing to observations. For example, if 
data are limited or incomplete, certain parameter values may not be well constrained 
by data-fitting algorithms, resulting in a wide range of acceptable values that 
qualitatively fit the data. Performance may then be improved by identifying these 
parameters first and estimating their values from other sources or studies if possible. 
Or, these parameters may represent significant biological mechanisms that are a 
desirable addition to the patient-specific parameter set. Model sensitivity analysis 
compares the dependence of model predictions to small changes in each parameter 
value. A parameter with high sensitivity coefficient, for example, may be useful to 
capture population-level variance with minimal dimensionality in the patient-
specific parameter sets. However, a parameter with low sensitivity coefficient may 
represent a significant biological mechanism that is desired in the variable parameter 
set. Thus, the decision of which parameters to fix, and which to allow to vary 
involves integration of all three above-mentioned key aspects. Once the composition 
of the variable parameter set is determined, these parameters may be used as 
potential biomarkers (Jafarnejad et al. 2019) to classify the virtual population.
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For a number of reasons, VCTs are particularly attractive in cancer therapy 
development. Recent estimates put the probability that a candidate drug entering 
Phase I study today will obtain regulatory approval at around 10% (Hay et al. 2014), 
requiring around $3.953 billion USD for out-of-pocket and capitalized research and 
development costs (DiMasi et al. 2016) over 13 years (Mohs and Greig 2017). Yet, 
this probability is even lower in oncology (Hay et al. 2014), demonstrating the need 
for improved approaches in this area. Among the therapies that have met with 
disappointing real-world trial results are new cancer therapy strategies that aim to 
use the body’s natural immune response against tumours. One reason for disappoint-
ing trial results with such immunotherapies is the complex, heterogeneous, and 
dichotomous nature of tumour–immune interactions (Wilkie and Hahnfeldt 2017; 
Jafarnejad et al. 2019; Wang et al. 2020). Another reason for the high failure rate in 
cancer clinical trials is the evolution of drug resistance (Bozic et al. 2010; Tirosh 
et al. 2016; Craig et al. 2019). 

Drug resistance in particular can be addressed using VCTs, as in Emilia 
Kozłowska et al. 2018 where the authors constructed a model to find promising 
drug regimens to prevent platinum resistance of ovarian tumours typically treated 
with surgery and platinum-based chemotherapy. Unfortunately, relapses of ovarian 
tumours are highly frequent, but combination therapy with different platinum-
taxanes (paclitaxel or docetaxel) can increase the amount of platinum sensitive 
cancer cells and the time to tumour relapse by administering drugs in six different 
combinations, optimally with three-to-four drugs (Emilia Kozłowska et al. 2018). A 
second study by Kozłowska et al. compared treatments using three different drugs. A 
combination of trientine, a copper chelating agent, and birinapant in biomarker-
selected treatments, was compared with a biomarker-unselected treatment with 
Wee1 inhibitor resulting in an increased survival of Wee1 inhibitor-treated virtual 
patients. Other such VCTs have also been investigated in the context of preventing 
the evolution of resistance. 

To further improve cancer treatment, VCTs have focused on the reduction of 
toxicity (and therefore increased tolerance) to improve therapeutic outcomes, and 
have studied new immunotherapies (Barish et al. 2017; Sové et al. 2020). For 
example, QSP-IO is a platform for modelling immuno-oncology (IO), which 
accommodates varying degrees of model complexity based on specific research 
questions (Sové et al. 2020). To build QSP-IO, the authors implemented several 
different modules, including aspects of T cell behaviour or the effects of immune 
checkpoint inhibitors (Jafarnejad et al. 2019; Ma et al. 2021). By applying those 
platforms on data from triple-negative breast cancer clinical trials with administra-
tion of placebo and nab-paclitaxel or atezolizumab and nab-paclitaxel concurrent 
therapies of atezolizumab and nab-paclitaxel were found to be the best therapy 
options (Wang et al. 2021). Similarly, VEPART (Barish et al. 2017) is a tool for 
identifying robust optimal treatment protocols integrating experimental data, mathe-
matical modelling, and statistical analyses that was applied to a melanoma mouse 
model treated with immunostimulatory oncolytic viruses and dendritic cell vaccines 
to investigate optimal dose scheduling. Barish et al. 2017 found that, subject to a 
number of constraints on dose and treatment length, only one optimal combination



(three days of oncolytic virus, followed by three days of dendritic cell therapy) led to 
total tumour eradication in the population average. Subsequent analyses have shown 
that this optimal strategy is located in a fragile region of the dosing space, suggesting 
that other treatment regimens would lead to more robust results in heterogenous 
cohorts (Jenner et al. 2021b). 
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Thus, VCTs have emerged as platforms with which to interrogate heterogeneous 
responses to drugs, delineate effective scheduling, and improve drug administration 
(Wang et al. 2008; Barish et al. 2017; Pérez-García et al. 2019; Cassidy and Craig 
2019). In preclinical research, VCTs can also contribute to the decision-making 
process by distinguishing drug regimens leading to therapeutic successes and 
failures (Allen et al. 2016; Alfonso et al. 2020), and help to decipher individual 
patient risk classes and optimize drug-specific parameters (Viceconti et al. 2016; 
Boem et al. 2020). Across the multiple applications of virtual clinical trial strategies, 
the generation of virtual patient populations is paramount. Unfortunately, there is no 
solid consensus on the means of generating virtual patients. Here we address this 
specific issue by outlining popular approaches to virtual patient generation and 
highlighting their advantages and disadvantages using three case studies. 

8.2 Using Population Pharmacokinetic Models to Generate 
Patients 

In pharmacometric analysis, the standard method of evaluating and predicting the 
kinetics of plasma drug concentrations is through the assessment of drug pharmaco-
kinetics (“what the body does to the drug”). Population pharmacokinetic (PopPK) 
models are built to discern population- and individual-level PKs using non-linear 
mixed effects (NLME) modelling. NLME models are statistical models that assume 
a fixed effect for the population and represent individual variation in the form of 
random effects. Let P be a set of parameters in the PK model. These parameters 
typically include factors like bioavailability (F), volume of distribution (Vd), transit 
rates (kij, where i and j denote model compartments), and clearance (CL). In its 
simplest form, a PopPK model for an individual k is given by the parameter vector Pk 

calculated as: 

Pk =Peηk ð8:1Þ 
where P is the set of fixed (or population-level) parameters, ηk is a normally 

distributed random variable with mean of 0 and variance ω2 
p (ηk � N 0,ω2 

p ), and 

eηk represents the resulting individual variability. Building a PopPK model using 
NLME models relies on population-level empirical data (usually from a clinical trial) 
from which the best pharmacokinetic model is defined. Here the “best” model is 
heuristic and determined by evaluating the calculated objective function after fitting 
several PK models. Multiple software packages, including R, NONMEM, and



ð Þ þ ð Þ ð Þ

ð Þ

Monolix, can be used to perform NLME estimates and establish population PK 
models from data. 
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As PopPK models are empirically established and not generally built from 
mechanistic principles, they are primarily relevant for the specific population upon 
which they were constructed. Nonetheless, during drug development, we may be 
interested in establishing dosing strategies, exploring the potential for toxicity due to 
reduced kidney or liver function, etc., within a given population that go beyond the 
scenarios explored in a clinical trial. Here, leveraging a PopPK model is particularly 
attractive because it inherently accounts for individual variation within the popula-
tion studied. To demonstrate how a PopPK model can be used to generate a virtual 
cohort, we considered a simple model of Gompertzian tumour growth and its 
treatment by gemcitabine, a synthetic pyrimidine nucleoside prodrug used as a 
chemotherapeutic agent in a variety of solid tumours (Joerger et al. 2014). 

Let N(t) be the number of tumour cells at time t. The Gompertz model given by: 

dN 
dt 

= β ln 
K 
N0 

e- βt N, ð8:2Þ 

models saturable sigmoidal tumour growth to a carrying capacity of K. Here, β 
denotes the tumour growth rate (that decreases exponentially in time), and N0 the 
initial number of tumour cells. The PK model of gemcitabine is given by: 

dG1 

dt 
= - kelG1 tð Þ þ k21G2 tð Þ- k12G1 tð Þ, ð8:3Þ 

dG2 

dt 
= - k21G2 t k12G1 t : 8:4 

Each equation represents one of two compartments defined through a previous 
PopPK analysis (Jiang et al. 2007). These equations model the transfer of the drug 
between the central (G1(t)) and peripheral (G2(t)) compartments at rates k12 and k21, 
respectively. Gemcitabine was modelled as being administered directly into the 
central compartment from which it is eliminated linearly at rate (kel): 

k12 = k21 = 
Q 
V

ð8:5Þ 

kel = 
CL 
V 

8:6 

The between-subject variability (BSV%) for Q, CL, V and the range for body 
surface area (BSA) were previously estimated using NLME modelling (Jiang et al. 
2007). Here, BSA is used to calibrate gemcitabine doses. 

We modelled the cytotoxic effects of chemotherapy on tumour growth using an 
inhibitory Hill effect function given by:



2
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Table 8.1 Parameter values for gemcitabine inhibition of tumour growth 

Parameter Units Value BSV% Ref 

β day-1 0.0251 – Chosen 

K cells 5.157 × 10 ^ 8 – Chosen 

C0 cells 2 × 10 ^ 6 – Chosen 

Imax unitless 0.768 – Chosen 

h unitless 0.518 – Chosen 

IC50 μM 297 – Chosen 

Q L/min 0.7 44 Jiang et al. (2007) 

CL L/min 2.7 31 Jiang et al. (2007) 

V L 15 39 Jiang et al. (2007) 

BSA m2 Median: 1.8 Range: 1.2 - 2.5 Jiang et al. (2007) 

Parameters with reported variation were used to generate the virtual cohort 

E D  tð Þð Þ= 1- Imax 
D tð Þh 

D tð Þh þ ICh 
50 

, ð8:7Þ 

where E(D(t)) denotes the effect of a drug D(t) at time t, Imax represents the drug’s 
maximum inhibitory effect, IC50 the drug concentration at which inhibition is 50% 
its maximum, and h is the usual Hill coefficient controlling the slope of the curve. 
Integrating this into Eq. 8.2 we have the following model for the effects of 
gemcitabine on tumour growth: 

dN 
dt 

= β ln 
K 
C0 

e- βt N E G1 tð Þð Þ: ð8:8Þ 

To generate virtual patients, we considered tumour cell parameters to be fixed at 
their previously estimated values and varied only the PK parameters according to the 
PopPK model for gemcitabine (Table 8.1). Assuming BSA to be normally 
distributed (Sacco et al. 2010), we calculated the mean and standard deviation 
required for the generation of BSA values (Hozo et al. 2005). 

We then sampled a set of parameter values using between-subject variability 
specific to that parameter. For example, a vector of normally distributed values with 
mean (e.g. Q) and standard deviation based on the BSV% of Q was used to generate 
a set of values {Qk}, k 1, 2, 3, . . ., n (where n is the cohort size) using: 

Qk =Qeηk where ηk � N 0, Q � BSV% 
2 
: ð8:9Þ 

The jth virtual patient is then given by the jth value from the PK vector such that 
each patient is described as a set Pj = (Qj,CLj,Vj,BSAj). Transit rates (k12, j and k21, j) 
and elimination rates (kel, j) for each patient j were calculated using Eqs. 8.5 and 8.6, 
and the dose for each patient j was calculated using the dosage 1000 mg/m2 , where 
BSAj (m

2 ) is patient-specific body surface area. Using this process, we generated



200 virtual patients with their own dosage and model parameters tied to their 
assigned PK values (Fig. 8.1). 
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Fig. 8.1 Histograms of parameter values generated for 200 virtual patients. (a) Q, (b) CL under 
30 L/min, (c) CL including outliers, (d) BSA, (e) V under 100 L, and (f) V outliers above 100 L. The 
red line on each plot represents the average or median value found in Table 8.1 

A schematic of the PopPK/PD model is provided in Fig. 8.2a. As expected, model 
simulations predicted that dynamics of cancer cell growth in the virtual cohort 
differed based on individual patients’ PK parameters (Fig. 8.2). For the most part, 
we observed that drug concentrations fell within expected ranges in the central 
gemcitabine compartment (Fig. 8.2) and peripheral compartment (Fig. 8.2). The 
pharmacokinetics of gemcitabine has been shown to be linear up to 2500 mg/m2 

which coincides closely with maximum-tolerated dose in a dose escalation study 
(Fossella et al. 1997). The dynamic of such a high gemcitabine initial concentration 
can be seen in red in Fig. 8.2c–f. However, the virtual population contained obvious 
outliers (Fig. 8.2), with more than one virtual patient exhibiting markedly different 
drug concentrations from the rest of the cohort to the extent where toxic or lethal 
concentrations of gemcitabine were predicted. This highlights an obvious downfall 
of using PopPK models without integration of prior knowledge of inter-parameter 
relationships to generate virtual patients. Since the “top-down” approach (versus the 
“bottom-up” of mechanistic models) used here is not constrained by known mecha-
nistic interactions, unrealistic (potentially dangerous) outcomes can be generated 
from what we may believe to be reasonable parameter ranges. This issue arises due 
to the method used to randomly sample parameter values from the previously 
established PopPK model with no built-in approach to verify that any specific 
combination of parameters (i.e. a virtual patient) is physiologically realistic. Though 
we may be able to clearly distinguish virtual patient outliers visually and remove



them from the cohort, a systematic approach to remove parameter sets that generate 
unrealistic individuals despite being drawn from realistic distributions is needed. 
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Fig. 8.2 Tumour growth and gemcitabine concentrations in a cohort of 200 virtual patients. (a) 
Schematic of the model and dynamics of (b) cancer cell growth (N(t)) over 30 days. (c) The central 
gemcitabine compartment (G1(t)) and (d) the peripheral gemcitabine compartment (G2(t)) for 
reasonable drug doses and concentrations below a near maximum dose of 2500 mg/m2 (red). 
Outliers in (e) the central gemcitabine compartment (G1(t)) and (f) the peripheral gemcitabine 
compartment (G2(t)) compared to the average PopPK patient following different initial doses. Blue 
solid lines: average cohort response after 1000 mg/m2 dose of gemcitabine; red solid lines: average 
cohort response after 2500 mg/m2 dose of gemcitabine; grey solid lines: individual virtual patients 

We can better understand how this random mismatch of parameters leads to 
potentially problematic virtual patients and outcomes by analyzing the PK 
parameters we generated and their implementation within the model considered 
here. As mentioned above, the elimination rate kel, j for each patient was calculated 
by dividing their clearance (CLj) by their compartment volume (Vj) (Eq.  8.6). 
Theoretically, because all parameter values are randomly drawn from established 
ranges, it is possible that a high clearance and a small volume may be paired. 
However, at the extreme for each parameter, this combination is likely to be 
unrealistic. This problem is further compounded as dose sizes are calculated for 
each patient based on their BSA, and empirically-estimated correlates of BSA to the 
other model parameters were not reported. For example, it would be rare to have a 
patient with a lower BSA relative to the cohort mean, but with higher compartment 
volumes and low transit and thus elimination rates. The lack of explicit physiological 
constraints during the virtual patient generation phase provides no explicit guarantee 
that the random combinations of parameters will lead to realistic individuals. 

Despite these shortcomings, the generation of virtual patients from PopPK 
models is a simple process that can be implemented rapidly and with ease. Therefore, 
to mitigate the risks of generating non-viable virtual individuals from PopPK
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models, we suggest a thorough investigation of the parameter combinations resulting 
from the sampling process. Furthermore, imposing limits on parameter ranges will 
help to ensure physiologically relevant sampling is achieved. This process should be 
guided by known physiology to not overly restrict sampling and virtual-patient 
generation, and thus reduce bias in the VCT. 
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8.3 Establishing Theoretical Bounds from Experimental 
Measurements 

In the previous section, we explored the generation of virtual individuals using only 
PK parameters while physiological parameters remained fixed. The emergence of 
QSP approaches has increasingly integrated detailed mechanistic models of physio-
logical systems and disease processes to PK/PD models to provide a more holistic 
understanding of the effects of xenobiotics. We have previously shown that QSP 
models account for interindividual PK variability by the nature of their construction 
(Craig et al. 2016; Le Sauteur-Robitaille et al. 2021). Therefore, it is reasonable to 
generate virtual patients by uniquely varying physiological parameters in the model, 
since it is primarily physiological heterogeneity driving variable responses to drugs. 

To demonstrate the generation and use of a virtual clinical trial incorporating 
virtual patients generated by sampling physiological parameters from theoretically-
defined parameter ranges, we considered a model for the interaction between a 
cytotoxic chemotherapy drug ([drug] ng  ∙ ml-1 ), a population of tumour cells 
(S(t)), and the immune system (T(t)). In this model, we investigated how the 
introduction of a chemotherapy drug may impact the antitumour immune response 
by reducing the pool of tumour cells and hence affecting the immune recruitment. 
We model cancer cells as growing logistically with proliferation rate r (day-1 ) and 
carrying capacity K (cells). The effects of the immune system on the tumour are 
modelled by supposing that cancer cells undergo apoptosis through contact with 
immune cells at a rate κ (cells-1 day-1 ). We assumed that immune cells are recruited 
at a rate proportional to the amount of tumour cells a (day-1 ) and die at a rate d (day-
1 ), giving the model: 

dS 
dt 

= rS 1-
S 
K

- κST -
δ drug½ �
drug½ � þ  η 

S, ð8:10Þ 

dT 
dt 

= aS- dT , 8:11 

d drug½ �
dt 

= - ρ drug , 8:12 

A schematic summary of the system can be found in Fig. 8.3a. 
The model was parameterized using data of tumour growth in the absence of the 

immune system (Oh et al. 2017) (control tumour growth) and data of tumour growth



in the presence of the immune system, but under suppressive virotherapy (Kim et al. 
2011). We assumed the latter data to be representative of the immune-suppressed 
tumour growth model. Tumour volume was measured using callipers in mice and the 
average was used to fit parameters in the model. The data here were deployed solely 
for illustrative purposes, and we parameterized the model to the data using a 
simultaneous fitting approach (Gray and Coster 2016; Jenner et al. 2018). 
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Fig. 8.3 Virtual cohort example in immune-tumour-anti-cancer drug model. (a) Model schematic. 
Cancer cells S(t) grow logistically and are killed by a cytotoxic chemotherapy drug ([drug]) and 
through tumour–immune (T(t)) interactions. (b–c) Resulting model trajectories after parameter fits 
to untreated tumour growth without immune (b, control data; Oh et al. 2017) and untreated tumour 
growth in the presence of the immune system (c, immune-suppressed data; Kim et al. 2011). (d) 
Schematic overview of the generation of virtual patients informed by experimental data. (e–f) 
Predicted responses of tumour volume under control and treatment scenarios of the virtual patients 
accepted into the virtual patient cohort (light blue) with corresponding data measurements. (g) 
Evolution of virtual cohorts’ tumour volume under chemotherapy treatment where the drug was 
administered every 7 days. Individual patient predictions (grey) and the cohort average evolution 
(blue) are illustrated. 

Simultaneous fitting to the data was performed by setting the appropriate parts of 
the model to zero for each data set. In other words, for the control data, the drug and 
the immune population were set to zero and for the suppressed tumour growth data 
(immune-present data) the drug parameters and variables were set to zero. The 
remaining parameters in the drug-free model, r, K, κ, a and d were then fit simulta-
neously using non-linear least-squares fitting with the objective of minimizing the



residual of the model to both sets of data simultaneously. The fitted parameters can 
be found in Table 8.2, and the resulting model approximation to the data is in 
Fig. 8.3b and c. To parametrize the models for chemotherapy drug decay and 
drug-induced tumour cell death we used parameters for PAC-1 (first procaspase 
activating compound) fit previously from in vitro experiments (Crosley et al. 2021). 
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Table 8.2 Parameter values for the tumour growth under immune suppression and chemotherapy 
treatment 

Parameter Units Description Value Ref 

r day-1 Tumour cell proliferation rate 0.2349 Fit Fig. 8.2 

K cells Tumour carrying capacity 10190 Fit Fig. 8.2 

κ day-
1 cells-1 

Immune cell induced tumour cell 
death rate 

0.0021 Fit Fig. 8.2 

a day-1 Immune cell recruitment rate 7.086 Fit Fig. 8.2 

d day-1 Immune cell death rate 162.5 Fit Fig. 8.2 

δ day-1 Drug-induced tumour cell death 2.64 Crosley et al. 
(2021) 

η ng ∙ ml-1 Drug half-effect concentration 5 Crosley et al. 
(2021) 

ρ day-1 Drug elimination rate 0.903 Crosley et al. 
(2021) 

Parameters for the tumour growth and immune dynamics were obtained through fitting to data (Kim 
et al. 2011; Oh et al. 2017). The remaining parameters were estimated from PAC-1 (first procaspase 
activating compound) dynamics (Crosley et al. 2021) 

Next, to create n virtual patients, we sampled parameters from a normal distribu-
tion centred at μ with standard deviation σ, rejecting any negative parameters 
(Fig. 8.3d). We fixed μ to be the set of parameter values obtained from our fitting 
procedure for r, K, κ, a and d as we assumed individuals would vary in both the 
tumour growth and immune dynamics. The standard deviation σ was fixed to 
σ = 0.2μ to minimize the likelihood of sampling negative parameter values while 
maximizing the variation on the parameters chosen for our virtual population. 
Sampling with this σ resulted in 634 random samples being rejected to make 
200 virtual patients. Increasing to σ = 0.5μ resulted in a higher number of negative 
parameter samples, which are set to zero, and also a higher number of samples 
rejected (1917). It is possible to also estimate σ from the standard deviation in the 
data (Jenner et al. 2021a). 

To create a realistic representation of patients, we restricted the inclusion of 
virtual patients to those whose simulated control tumour growth and immune-
suppressed tumour growth was within physiological reasonable regimes which we 
designated to be three standard deviations (3 σ) of the mean control data and five 
standard deviations (5 σ) of the immune-suppressed tumour growth data (Fig. 8.3b 
and c). Different thresholds were chosen for each case as it was not possible to 
generate patients within 3σ of tumour measurements at day 9 and 10 in the immune-
suppressed data (Fig. 8.3f) with a fixed underlying parameter distribution for 
sampling. As such, we increased the tumour volume trajectories for the immune-



suppressed data to lie within 5σ of the data. Any virtual patient whose simulated 
tumour growth in the absence of drug lay outside these intervals was rejected from 
the virtual trial. Remaining patients were accepted into the trial and the distribution 
of all model-predicted tumour growths lay close to the data (Fig. 8.3e and f). This 
step mimics the selection process of clinical trials (for example, including only those 
patients with a specific grade of a cancer). 
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Following this generation approach, tumour growth in both the control and 
treatment scenarios was confirmed to fall within the prescribed heterogeneity bounds 
(Fig. 8.3e and f). Over time, we see the variation in virtual patient growths increasing 
with large variations of patient dynamics by day 19 in both the control and immune-
suppressed case. Simulating drug administration every seven days starting at day 
0, we observe a similar trend, where virtual patients respond similarly in the first 
cycle before more significant differences in tumour volume emerge (Fig. 8.3g). 

As in the approach described in the previous section, the techniques described 
here are relatively straightforward to implement. However, in contrast to basing the 
virtual patient generation solely on PopPK parameters, this technique integrates 
constraints on the mechanistic (or physiological) model parameters through the 
integration of biological experimental data. Unfortunately, the procedure described 
above is still not able to capture parameter correlations (for example, a patient’s 
tumour growth rate (r) and carrying capacity (K )), although it would be possible to 
address this shortcoming by performing statistical tests to guide the parameter 
sampling. The additional step of comparing model prediction to measured outputs 
responds to the limitation of creating unrealistic virtual patients. In practice, a large 
number of proposed virtual patients may need to be generated in order to ensure that 
the final trial cohort is sufficiently large In this section, virtual patients trajectories 
were restricted to lying between 3σ and 5σ for the control and immune-suppressed 
data, respectively. The difference in these ranges for the physiological regimes was 
driven by the inability to achieve trajectories within 3σ of the immune-suppressed 
data. As described in the next section, this limitation can be overcome by adding a 
step within the virtual patient generation phase to ensure that all parameter samplings 
result in model trajectories that describe clinical observations. 

8.4 Quantitative Systems Pharmacology Approaches 

As more mechanisms are included, model complexity and the sparsity of relevant 
data complicate the implementation of VCTs. Accordingly, methods to generate 
virtual populations that reproduce the heterogeneity in patients as well as allow for 
the exploration of parametric uncertainty have been devised to overcome these 
challenges. One of the best-known approaches in this vein is that of Allen et al. 
2016 who proposed a method to generate a large cohort of heterogeneous virtual 
patients by sampling a parameter set from a bounded interval informed by physio-
logical constraints, and optimizing predicted trajectories to ensure model outcomes 
are within clinically-observed ranges. Therefore, this methodology expands upon the 
approach studied in the previous section, by explicitly integrating the constraint that



dT

model predictions for each virtual patient must fall within empirically-determined 
ranges, into the virtual patient generation process through an optimization step. 
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To demonstrate the generation of a virtual patient population using this approach, 
we will again use the cancer–immune interaction model introduced in Eqs. 8.10, 
8.11, 8.12. Here we limit our focus solely on generating virtual patients using this 
alternative approach and thus ignore the effect of the drug, and reduce the model to a 
system of ODEs describing the time evolution of tumour (S(t)) and immune (T(t)) 
cells: 

dS 
dt 

= rS 1-
S 
K

- κST , 

dt 
= aS- dT : 

All parameters are as previously defined in Table 8.2. A schematic of various 
steps involved in virtual patient generation using the Allen et al. (2016) method is 
presented in Fig. 8.4. 

A key component that determines the successful implementation of the Allen 
et al. (2016) method is the ability to define realistic bounds for the model parameters. 
In typical applications, these bounds can be inferred through empirical estimates 
from physiological experiments or through theoretical considerations. In our 
simulations, we consider parameter values within three standard deviations (3 σ) 
from mean (μ) values presented in Table 8.2 as plausible ranges for the model 
parameters, r, K, κ, a and d. As we described in the previous section, the mean 
parameter values are obtained by non-linear least-squares fitting. In the prior section, 
each parameter value was assumed to be normally distributed with standard devia-
tion σ = 0.2μ, so here we are considering a much broader range of plausible 
parameter values. 

To start the patient generation process, we constructed an initial parameter set 
where each parameter is drawn from a uniform distribution bounded by the plausible 
ranges discussed above. Next, we optimized each set of parameters (r, K, κ, a and d ) 
using simulated annealing (a probabilistic optimization algorithm implemented as 
the simulannealbnd function in MATLAB (Mathworks 2020) to ensure that 
predicted model trajectories fall within physiological ranges. For our purposes, 
these bounds on model outputs were assumed to be within three standard deviations 
of the control and immunosuppressed tumour growth data means. We defined the 
objective function of the simulated annealing scheme to be: 

g pð  Þ= 
i 
max M p, tð Þ- li þ ui 

2 

2

-
ui 
2
-

li 
2 

2 

, 0  , 

and minimized g(p). Here, M(p, t) denotes the model output for parameter set p at 
time t and li and ui denotes the i

th plausible upper and lower bounds of the data. By 
defining the objective function in this fashion, we are guaranteed that the
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contribution of M(p, t) - (li + ui)/2 is zero if the parameters lead to an outcome 
within the plausible range. If the optimization converges, the resulting parameter set 
was considered to belong to a physiologically-valid virtual patient and was added to 
the trial population.
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Following these steps, we generated a virtual population of 500 patients using the 
Allen et al. (2016) method. The trajectories of all virtual patients were confirmed to 
lie within the physiological bounds determined for the model outputs (Fig. 8.5c and 
d). Thus, this method generates a large pool of patients with realistic disease 
dynamics without manual verification as was required in the methods discussed in 
Sects. 8.2 and 8.3. It should be noted that for specific applications, e.g. to consider 
patients with certain levels of tumour growth, we can subsample from the resulting 
virtual patient cohort. We may also exploit predetermined, empirical parameter 
distributions to create specific subpopulations of patients. For example, the posterior 
distribution of both r and κ was found to differ significantly from their prior 
(Fig. 8.5a and b), suggesting a mechanistic role of both parameters that may drive 
heterogeneity and segregate patient responses. Narrowing in on specific values of 
each (in isolation and in combination) could reveal specific subpopulations of virtual 
patients and allow for further tailoring of treatment strategies. 

We have seen that the generation of VPs from PopPK models may lead to patients 
with disease dynamics beyond physiological limits, when using random parameter 
sampling without any built-in mechanism to incorporate physiological constraints 
and correlations. In contrast, the Allen et al. approach, which leverages 
physiologically-informed bounds on parameters and model outputs together with 
robust optimization using the simulated annealing algorithm, ensures the generation 
of realistic patient cohorts. While the second method we described based on 
obtaining bounds from experimental measurements is a reliable approach to get a 
realistic patient population with dynamics within the physiological bounds, the brute 
force way of generating a large number of candidate patients to eventually select the 
total size of the cohort is not efficient. On the other hand, the Allen et al. (2016) 
method is an alternative that produces a patient cohort without relying on generating 
a large candidate population. This comes, however, at a computational cost as every 
virtual patient must undergo optimization prior to being accepted into the virtual 
cohort. In response, recent extensions of the method involving augmenting optimi-
zation of the cost function (nested simulated annealing) or adopting alternative 
optimization routines (modified Metropolis–Hastings and genetic algorithms) have 
been shown to lead to more efficient generation of virtual patients (Rieger et al. 
2018). 

8.5 Discussion 

Designing and developing new xenobiotics in immuno-oncology is complicated and 
costly, driven by our sometimes-limited knowledge of the mechanisms regulating 
therapeutic efficacy. Mathematical and computational modelling are increasingly 
integrated along the drug development pipeline and in fundamental studies to help
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identify regulators of drug responses. Given the high degree of variability observed 
within patient populations, quantitative approaches that can also capture the hetero-
geneity in outcomes are now frequently deployed to assess the degree to which 
variability affects outcomes and to discern the sources of such heterogeneity.

8 Approaches to Generating Virtual Patient Cohorts with Applications in Oncology 115

In silico clinical trials are therefore well-situated to help guide the preclinical-to-
clinical translation of candidate molecules, to assess the best candidate populations 
for a given treatment, to delineate successful combination strategies, and to establish 
optimal dosing schedules. Virtual patient populations are at the heart of these 
computational trials and must be reflective of the variability we observe in real 
patient populations. However, there is no universally accepted method of generating 
a virtual patient population, and each approach comes with its own set of advantages 
and limitations. Here we have described three widely-deployed methods to generate 
a virtual cohort, starting from the most simple implementation using empirically-
defined population pharmacokinetic models to the more complex, and perhaps most 
robust, approach described by Allen et al. (2016) that verifies a virtual patient’s 
trajectory within the generation step. 

Whether the patient population is generated using statistical methods or probabi-
listic data-fitting methods, it is clear that the choice of which parameters are used to 
define the population, and thus which remain constant across the population, 
depends on the mathematical model and the application. For models with a large 
number of model parameters, a high-dimensional patient-specific parameter set may 
be challenging to both appropriately set-up and to optimize. Consideration of key 
aspects such as model identifiability, parameter sensitivity, and significant biological 
mechanisms can help inform which parameters to include in the patient-specific set. 
Additionally, the assumptions made during the set-up phase of VCT construction 
will have implications on the conclusions of the simulated study, and these 
implications should be explored. Further, as new methods for creating virtual 
patients continue to be proposed in the literature, it is important to establish standards 
for virtual clinical trials, in terms of the data needed to perform them, the dimension-
ality of the patient-specific parameter sets, how interpatient variability is represented 
by the data, and how the output of these trials is used and validated. Clearly there is 
still lots of work to be done in the theory of VCT design, implementation, and 
assessment. To that end, new approaches integrating machine learning and data 
dimensionality reduction techniques may also prove useful for selecting parameters 
of interest to generate the virtual cohort. 

Ultimately, the choice of method for generating a virtual cohort depends on a 
number of factors, most predominately the level of complexity required, and the time 
allowed for model generation and implementation of the method. Once created, 
virtual patient populations and in silico clinical trials are powerful new tools that can 
provide biological insights that may be difficult or impossible to otherwise identify 
(Jenner et al. 2021a). When used in complement to experimental and clinical studies, 
virtual clinical trials have the potential to markedly decrease attrition rates along the 
drug development pipeline, helping to reduce disappointing trial results and improve 
patient outcomes.
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Abstract 

In this chapter, we will provide an overview of the research and applications of 
artificial intelligence and deep phenotyping on and around the COVID-19 pan-
demic. Although the COVID-19 pandemic has found us ill prepared for an 
immediate reaction, it came to a time when the data, tools, rationales, and 
collaboration schemas were ripe for a worldwide application of machine learning, 
artificial intelligence, big data analytics, and deep phenotyping. It is our hope that 
those examples will be repeated in the future, not motivated by the urgency to 
manage and extinguish this pandemic but as standards of collaborative science. 
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9.1 SARS-CoV-2 and COVID-19 

The past two decades were marked with the outbreaks of many viral diseases such as 
Chikungunya, Ebola, Zika, Nipah, H7N9 Bird Flu, H1N1, SARS, and MERS. In late 
2019, a new severe acute respiratory disease appeared in the Hubei province of 
China, caused by a coronavirus identified as SARS-CoV-2. This virus is a beta 
coronavirus of zoonotic origin belonging to the subgenus Sarbecovirus in the 
Orthocoronavirinae subfamily of the family Coronaviridae transmitted to humans 
in a spillover event. Bats are thought to be the animal reservoir of SARS-CoV-2 but 
the other likely intermediate animal host is yet to be formally identified, although 
authors have suggested the Kolonok (a bat-hunting mustelid) (Maurin et al. 2021), 
snakes or pangolin (Mahdy et al. 2020) as possible intermediates. 

The World Health Organization (WHO) named the disease caused by the SARS-
CoV-2 virus “COVID-19”, an acronym of Coronavirus Disease 2019, on the 11th of 
February 2020, then declared a pandemic status on 11th of March 2020 (WHO 
2020a). As of November second, 2021, 246,594,191 confirmed cases have been 
reported, resulting in 4,998,784 deaths (WHO 2020b), numbers likely to be vastly 
underestimated. 

The COVID-19 pandemic has found us ill prepared for an immediate reaction to a 
situation that had not been anticipated properly. However, new technologies such as 
machine learning, deep phenotyping, and artificial intelligence (AI) have been used 
fruitfully to help monitor and tackle this pandemic. Here, we present an overview of 
deep phenotyping and AI models, with a special focus on the very timely and 
relevant research around COVID-19 variants. 

9.2 Overview of Deep Phenotyping in COVID-19 

While the medical community has gained insight into the epidemiology of COVID-
19 (using AI tools, see further), important questions remain about the clinical 
complexities and underlying mechanisms of disease phenotypes. Deep 
phenotyping—or the precise and comprehensive characterization of observable traits 
representing unique morphological, biochemical, physiological, or behavioural 
properties of the identified patient populations (Weng et al. 2020; Robinson 
2012)—has been used extensively to try and elucidate the mechanisms of the 
COVID-19 infection. 

Deep phenotyping efforts have been conducted in the past two years using 
various sources of data. First and mainly, the clinical records of COVID-19 patients 
can and are being used to characterize the clinical presentations of patients in the



hospital and identify risk factors for more severe forms of the disease (Burn et al. 
2020; Planchuelo-Gómez et al. 2020; Deer et al., 2021), but also to differentiate the 
COVID-19 disease from previous viral respiratory diseases (SARS, MERS). 
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Deep phenotyping based on clinical data of hospitalized patients has facilitated 
tailoring therapies and improved outcomes. One study in the USA has used EHR 
data for 1022 patients admitted between March and August 2020 across 14 hospitals 
(Lusczek et al. 2021). They performed ensemble clustering using 33 clinically-
relevant variables and identified 3 phenotypes, with different levels of severity and 
mortality. They then associated comorbidities, clinical complications and outcomes 
with the clusters through regression models and suggested this model could be used 
as a guide for clinical decision support. 

Another study gathered records for 34,128 patients across the USA, South Korea, 
and Spain, comparing their clinical characteristics between centres and comparing 
COVID-19 characteristics with those of Influenza using data for more than 85,000 
patients hospitalized between 2014 and 2019 (Burn et al. 2020). 

9.3 Deep Phenotyping of COVID-19 Variants 

9.3.1 Epitope: Antibody Background 

Antigens recognition by the antibodies plays a key role in the humoral immune 
system response against pathogens. The antigen part recognized by the antibody 
Fragment Antigen Binding (FAB) domain, is known as B-cell epitope and the 
structural properties of these epitopes, or antigenic determinants, lead to the speci-
ficity of the antibody/epitope interaction. The knowledge of these interactions is the 
first fundamental step to design and develop therapeutics, peptide-based vaccines 
and diagnostics tools. On this basis, the computational approach becomes pivotal to 
investigate the molecular basis of epitope recognition from antibodies. Several 
computational tools were developed in the last years, using different methods, to 
study and predict epitope–antibody interactions. 

The SARS-CoV-2 pandemic triggered an effort in the scientific community to 
develop therapies to fight the COVID-19 disease. Some of these, like RNA-based 
vaccines and monoclonal antibody therapies, are based on the interaction between 
antibody and the SARS-CoV-2 Spike protein. Monoclonal antibody therapy could 
be a good strategy to mitigate COVID-19 respiratory illness and the RNA-vaccines 
are designed to stimulate the humoral immune system to produce antibodies against 
the Spike protein. This antibody-based approach revealed a decrease of infection 
(Menni et al. 2021) and illness (Sterlin et al. 2021) related to SARS-CoV-2 and 
indicates this strategy as a good approach to exit from the global pandemic.
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9.3.2 Spike Protein and Variants 

Coronavirus 2 Spike protein (S protein) is a trimeric surface glycoprotein that, 
interacting with Angiotensin-converting enzyme 2 (ACE2) of host cells, allows to 
infect human cells as: ciliate cells in lung, proximal tubular cells in kidneys, 
cardiomyocytes in heart tissue. The Spike structure is composed of S1 and S2 
principal domains and can be found in open and closed states. The S1 domain is 
involved in protein–host interaction, while the S2 domain contains several 
sub-domains involved in the membrane host fusion process. The receptor binding 
domain (RBD) is located in the S1 subunit and its up-conformation is related to the 
protein open state. In this structural conformation, the protein is able to bind ACE2 
and infect the host cells. The S2 subunit contains HR1 and HR2 sub-domains, 
required for the fusion to the host cellular membrane; these two sub-domains 
constitute a six-helix bounded structure (6-HB) high conserved between SARS-
CoV and SARS-CoV-2. 

The RBD-ACE2 interaction is the critical step during virus-host infection; in the 
“down” state, RBD is not able to interact with the ACE2 protein. The conformational 
transition from “down” to “up” state makes the Spike protein able to engage the host, 
forming a Spike-ACE2 complex. Interfering into this flow could be a strategy to 
avoid the host infection, like monoclonal antibodies able to work as competitors, 
binding the RBD and breaking the infection mechanism. Understanding the Spike-
ACE2 complex, as the sub-domains interaction, is useful to know which RBD 
domains can be an antibody target. 

WHO provides to the scientific community the “state of the art” of SARS-CoV-
2 variants circulating over the countries updated on a regular basis (CDC 2020a). 
WHO classified the variants in three categories: Variant of Interest (VOI), Variants 
of Concern (VOC), and Variants Under Monitoring (VUM). Spike protein 
substitutions and clinical attributes are provided for each variant. 

The VOI includes all variants related to a change of RBD Spike domain which is 
observed as a neutralization reduction of antibodies produced by vaccination or 
against infection. A VOI is associated with an increased potential transmissibility, 
disease severity, and diagnostic impact. In VOC are included all variants where there 
exists evidence of increased transmissibility, reduced neutralizing antibodies and 
vaccine treatments effectiveness and diagnostic detection failure. In the VUM are 
included all those variants for which the epidemiological impact is unclear and 
requires more evidence to understand their impact. 

9.3.3 Spike–Antibody Interaction 

The therapeutic option of monoclonal antibodies, in parallel with vaccines, is 
justified by the important technical progress in this field that allows the development 
of targeted therapies in a short period of time, with high confidence in their safety. It 
is possible to evaluate the interaction of antibodies against the RBD domain of 
Protein S and study its stability through molecular dynamics experiments.
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The RBD domain is in fact immunodominant and represents the target of 90% of 
the neutralizing activity present in SARS-CoV-2 immune sera (Menni et al. 2021). 

The number of structure complex RBD/Antibody stored in the Protein Data Bank 
(PDB) is increasing and some complexes involve monoclonal antibodies used in the 
therapy against COVID-19. On the other hand, a great number of RBD/Antibody 
isolated from patients are available and the number of structures could be the starting 
point to understand the antibodies interaction mechanisms against the RBD Spike 
domain. 

In this context, the synergy of two computational methodologies, Molecular 
Docking and Molecular Dynamics, plays a role to anticipate the behaviour of 
variants with the antibodies in disease care using monoclonal therapy. 

9.4 Overview of AI for COVID-19 

Many AI and advanced modelling approaches have been and are being used to date 
in the context of the fight against COVID-19. AI is being successfully used in the 
identification of disease clusters, monitoring of cases, prediction of future outbreaks, 
mortality risk, diagnosis for COVID-19, disease management by resource allocation, 
facilitating training, record maintenance, and pattern recognition for studying the 
disease trend. 

9.4.1 AI in Prediction and Tracking 

Using social media platforms, online discussion, and news sites, AI can forecast the 
spread of viruses and help develop early warning systems (Hussain and Sheikh 
2021). It can then provide useful information about vulnerable regions and for 
prediction of morbidity and mortality. For example, Andreadis et al. (2021) have 
developed an analytics platform to collect and analyse tweets about the pandemic in 
Italy, using deep learning to geotag the tweets and predict places at risk and cases of 
overcrowding (Chen et al. 2020). Another group (Cresswell et al. 2021) used AI to 
perform a sentiment-based analysis to understand public views and concerns based 
on Facebook and Twitter content. In general, access to the appropriate data and using 
the proper models is crucial in building a useful AI model (Santosh 2020). 

9.4.2 AI in Contact Tracing and Population Control 

Contact tracing has proven to be key to slowing the spread of COVID-19 (CDC 
2020b). The example set by Singapore in its control of epidemic risks, with the 
support of technology, is certainly unique and difficult to extend to other countries 
because of the social acceptance of restrictive measures. In China, AI has been 
extensively used in support of such mass surveillance policies, such as using devices 
to measure temperature remotely or facial recognition (COE 2020). In Israel, South



Korea, Taiwan, or Italy, smartphone apps have been developed to track people’s 
location using the phone’s geolocalization and AI to alert when people are either not 
complying with lockdown or isolation periods, or visiting crowded places (Laurent 
2020). 
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9.4.3 AI in Monitoring of COVID-19 Cases 

AI techniques are applied for monitoring patients in clinical settings and prediction 
of course of treatment. Based on the data derived from vital statistics and clinical 
parameters, AI provides support for clinical decision-making and resource allocation 
in Intensive Care Units (ICU) (Arora et al. 2020), or help doctors perform remote 
monitoring of vital signs and symptoms of COVID-19 (Rohmetra et al. 2021), 
thereby avoiding contacts with infected patients, decreasing contaminations and 
freeing time and resources in overburdened hospitals. 

9.4.4 AI in Early Diagnosis 

AI can help harnessing data from mobile health applications, for example to distin-
guish cough from patients with COVID-19 from other illnesses (Imran et al. 2020). 
Data from wearable devices (temperature, oxygen saturation levels, breathing rate, 
cough and lung sound monitoring, ECG, blood pressure. . .) combined with AI has 
been used to speed up the screening process of the spread of the virus or 
distinguishing mild from severe infections (Channa et al. 2021). Additionally, AI 
can be used to speed up the diagnosis process, for example in reading Computed 
Tomography (CT) scans of patients presenting at the hospital (Li et al. 2020). 

9.4.5 AI in Reducing the Burden for Healthcare Staff and Medical 
Practitioners 

AI-based triage systems can help in reducing the work burden of medical staff and 
healthcare professionals by automating several processes such as helping in training 
practitioners, treatment decision support, digitization of patients reports and 
minimizing contacts with infected patients, distant monitoring through chatbots or 
remote monitoring, and classification of patients based on medical records (Iwendi 
et al. 2020; Miner et al. 2020; Rasheed et al. 2020; Wu et al. 2020). 

9.4.6 AI in Curbing the Spread of Misinformation 

There is an overwhelming amount of sometimes conflicting information and various 
doubts and conspiracies spreading online and having an impact on the fight against 
the pandemic. AI has been and is being used to identify and monitor false



information and help curtail rumours and misinformation (Khan et al. 2020). AI 
techniques can be further used to clearly and usefully present updated information to 
fight misinformation and identify gaps (Samuel et al. 2020). AI can then further be 
used to track new evidence in diagnosis, treatment, and outcomes, helping clinicians 
make the best possible choice to treat their patients and help the public overcome fear 
and doubts. 
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9.4.7 AI in COVID-19 Variants 

Molecular dynamic simulations have employed to compare the relative dynamics, 
stabilities, and energy differences between the SARS-CoV and the SARS-CoV-2/ 
ACE2 complexes (Pavlova et al. 2021). Recent advances in hardware and software 
made molecular simulations possible, by harnessing the large amount of data 
available and machine learning or AI algorithms to perform those simulations. 

9.5 Future Directions 

One of the few positive aspects of the COVID-19 pandemic has been the accrued 
collaboration in the scientific world, including in data sharing and in building 
models. As shown above, AI has benefitted from this trend, and demonstrated it 
can yield significant and useful results in many aspects around the pandemic and its 
impact on the health systems around the world. We hope this effort can be applied 
with benefits to a broader set of clinical and research settings, and that the general 
population will become better informed about AI and the positive contribution it can 
have on our lives. In research, we hope that the trend of data sharing will continue to 
be adopted and strengthened, as has been the case, for example, at our hospital by the 
“Gemelli against COVID-19” group (Murri et al. 2021) and within the COVID-19 
Disease Map Community (Ostaszewski et al. 2020, 2021) so that more big data, 
machine learning, and AI analyses and modelling can take place, for the benefit 
of all. 
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Abstract 

Key lessons learnt in the Synergy-COPD project, that aimed at a systems medi-
cine approach to patients with chronic obstructive pulmonary disease (COPD), 
contributed to formulate the concept of multisource predictive modelling for 
enhanced clinical risk assessment described in the chapter. Further research and 
innovation developments in the field, as well as practicalities learnt during the 
process of digitalization of the regional health system in Catalonia have been 
main sources for the current report that aims to provide a summary description of 
the steps needed for implementation and adoption of a Learning Healthcare 
System. 
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10.1 Multisource Predictive Modelling for Enhanced Clinical 
Risk Assessment 

Physician’s best judgement, combined with rules-based management, are the two 
components of conventional clinical decision-making across all healthcare tiers. 
While health professionals’ judgement relies on knowledge, training, and experi-
ence; rules-based management consists of thresholds of target variables articulating 
evidence-based decision criteria, often emerging from randomized controlled trials 
(RCTs). 

Current clinical practice is facing major challenges due to the enormous evolution 
of computational sciences, as well as quick progress of digital medicine towards 
large-scale clinical application. Computational modelling is already a powerful tool 
extensively used for highly standardized medical procedures, like analysis of imag-
ing techniques. However, it is expected that multilevel predictive modelling will 
offer valuable support to enhance clinical decision-making, complementing but not 
substituting clinical judgement (Rajpurkar et al. 2022). 

The use of dynamic multisource predictive modelling approaches for clinical 
decision support that establishes relationships between multilevel and multiscale sets 
of predictors, targeting specific health outcomes by the use of statistical techniques 
and/or Artificial Intelligence/Machine Learning (AI/ML), is still in its infancy (Doos 
et al. 2016). However, it is a natural step towards customization of care to individual 
patient’s needs. 

Several interconnected factors, such as: current changes in healthcare paradigm, 
well-identified complexities in the healthcare scenario, as well as complexities of 
multilevel data integration and data security and privacy, explain the barriers 
encountered to define, deploy, and adopt operational strategies to facilitate preven-
tive, value-based (Porter 2008) healthcare for acute and chronic patients using 
computational modelling in real-world clinical settings, with a twofold aim: (i) to 
slow-down chronic patients’ progression towards the tip of the population-based risk 
stratification pyramid through cost-effective preventive strategies; and (ii) to 
enhance reliable decision-making. 

It has become widely accepted that health risk assessment for patient stratification 
is a relevant component in the strategies for regional adoption of integrated care 
because of its contribution in the design of healthcare policies and services using a 
population-based approach, as well as for enhanced clinical management for indi-
vidual patients. 

The foundations of health risk assessment proposed in the chapter rely on two 
concepts generated within the Synergy-COPD project (Synergy-COPD Consortium 
2010). Briefly, Cano et al. (2014a) reported on the concept and operational aspects of 
a Digital Health Framework (DHF), defined as the articulation of open and modular 
digital components supporting the interplay among four types of data sources: 
(i) patients’ self-tracking data including lifestyles, environmental, behavioural 
aspects, and sensors; (ii) healthcare data from electronic health records (HER); (iii) 
biomedical research data; and (iv) population-based registry data. The basic idea is 
that an operational DHF could overcome current health-related silos of information,



being the core component of a Learning Healthcare System (LHS). The concept of 
LHS was first formulated in 2012 by the Institute of Medicine as a strategy to 
improve the quality and efficiency of healthcare (Ferguson 2012). Thereafter, the 
American Heart Association (AHA) (Maddox et al. 2017) further developed the 
practicalities of the LHS concept and proposed specific steps to make it operational 
and evaluate its implementation. 
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Fig. 10.1 Dynamic enhancement of multilevel clinical predictive modelling feeding clinical 
decision support systems (CDSS). Development of enhanced clinical predictive modelling requires 
consideration, and eventual integration, of computational modelling of four different dimensions: 
(i) Underlying biological mechanisms (biomedical research); (ii) Current evidence-based clinical 
knowledge (healthcare); ( iii) Patients’ self-tracked data, including sensors, behavioural, environ-
mental, and social information (informal care); and (iv) Population-based health risk assessment 
data (population health). Figure taken from Roca et al. (2020) 

The second major pillar (Dueñas-Espín et al. 2016) refers to the huge potential for 
enhancing clinical risk predictive modelling by incorporating the four categories of 
variables alluded to above as covariates using a multilevel approach, as described in 
Fig. 10.1. 

The analyses of facilitators and barriers expected in the deployment of multilevel 
clinical predictive modelling within a DHF clearly indicate that achievement of 
personalized management of patients into real-world scenarios will be a stepwise, 
medium-term, process requiring proper adoption strategies that must necessarily 
consider the different dimensions described in (Dueñas-Espín et al. 2016).
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10.2 Computational Modelling for Enhanced Understanding 
and Management of COPD and Its Co-morbidities: The 
Synergy-COPD Project 

Chronic Obstructive Pulmonary Disease (COPD) is a disorder that generates a high 
burden on healthcare systems worldwide (Murray and Lopez 2013; Blumenthal et al. 
2016) being the third cause of mortality among chronic conditions, causing 3.23 
million deaths in 2019 (Mathers et al. 2019), with a prevalence of 9–10% in adult 
population. 

COPD generates an increasingly high healthcare impact mostly due to 
hospitalizations, partly avoidable with adequate patient stratification strategies lead-
ing to better selection of integrated care services. Despite highly relevant 
contributions of international recommendations for COPD management, mostly 
pulmonary-oriented, during the last twenty years (Halpin et al. 2021), it is nowadays 
widely accepted that optimal care of patients with COPD requires a systems medi-
cine approach (as proposed in Roca et al. 2020; Roca et al. 2014). This is due to a 
combination of factors, such as important heterogeneities of patients’ phenotypes, 
high rate of co-morbidities, and overlapping of diagnosis with other obstructive 
pulmonary diseases, with under- and overdiagnosis of the disorder (Diab et al. 
2018). 

The EU project Synergy-COPD (Synergy-COPD Consortium 2010), running 
from 2011 to 2014 (FP7-ICT-270086), was a systems research programme on 
multimorbidity taking COPD as a use case. The project focused on non-pulmonary 
phenomena often seen in patients with COPD addressing unknown aspects of 
skeletal muscle dysfunction/wasting (Maltais et al. 2014) and the phenomenon of 
co-morbidity clustering (Barnes 2015). The research was designed as an iterative 
process wherein data from several sources, encompassing animal experimentation 
(Davidsen et al. 2014), human studies (Rodríguez et al. 2011, 2012), epidemiologi-
cal research and registry information (Vela et al. 2018; Gomez-Cabrero et al. 2016), 
were articulated and analysed using different, and in some cases complementary, 
computational modelling techniques. The details of the research design and meth-
odological issues were reported in a dedicated monograph (Gomez-Cabrero et al. 
2014) and the project outcomes addressing three biomedical areas: (i) Skeletal 
muscle dysfunction; (ii) COPD co-morbidities; and (iii) Proposals for enhanced 
transfer of knowledge into clinical practice, have been described in different scien-
tific publications (Marín De Mas et al. 2017; Tényi et al. 2018a, b; Cano et al., 
2014b). 

Briefly, the project findings contributed to better understand the interplay of 
factors modulating non-pulmonary manifestations in patients with COPD. 
Abnormalities in co-regulation of core biological pathways (i.e. bioenergetics, 
inflammation, and tissue remodelling) at systemic level seem to play a central role 
on both skeletal muscle dysfunction and co-morbidity clustering (Fig. 10.2), with 
evidence of the relevant role of oxidative stress as a characteristic mechanism in 
these patients (Barnes 2015).
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Fig. 10.2 Disease effects network modules. Panel (a) depicts the four network modules associated 
to COPD disease effects on skeletal muscle and their composing genes. Genes are coloured 
according to their differential regulation, namely: up regulation—red nodes; and down regulation— 
blue nodes. Significantly, differentially expressed genes are indicated by * (FDR ≤ 0.05). Panel (b) 
shows the significant correlations of independent measurements with any of the network modules’ 
first three principal components. Blue squares depict exercise related independent variables; red 
squares show blood cytokines levels; yellow squares correspond to serum amino acids levels; and 
green squares represents redox biomarkers. It is noted that abnormal skeletal muscle findings, 
associated to poor patients’ prognosis, showed significant correlations with aerobic capacity, but not 
with lung function measurements at rest (Tényi et al. 2018a). Figure taken from Roca et al. (2020) 

Synergy-COPD generated experience on integration of records from approxi-
mately 13 million patients from the Medicare database with disease-gene maps that 
were derived from several resources including a semantic-derived knowledgebase 
(Gomez-Cabrero et al. 2016). The results demonstrated higher prevalence of most of 
the diseases, as comorbid conditions, seen in elderly patients with COPD compared 
with non-COPD subjects, an effect confirmed latter (Tényi et al. 2018b) in a regional 
EU dataset (1.4 million patients). Moreover, the analysis of temporal order of disease 
diagnosis showed that comorbid conditions in elderly patients with COPD tend to 
appear after the diagnosis of the obstructive disease, rather than before it. Overall, 
the results (Vela et al. 2018) demonstrated high impact of COPD co-morbidities on 
health risk stratification with major negative impact on mortality, hospitalizations, 
and use of healthcare resources (Fig. 10.3) and highly encourage developments of 
AI/ML tools using health registries and data from EHR to build robust health risk 
stratification strategies. 

Figure 10.4 displays the distribution of individual costs per year in patients with 
COPD based on their multimorbidity level: from low (left column) to very high risk 
associated to co-morbidities (right column), indicating huge heterogeneities among 
patients’ healthcare expenditure per year, explained by multimorbidity. The analysis 
of distribution of costs clearly indicates the high impact of hospitalizations and



pharmacy on overall costs, as well as the relatively reduced impact of primary care 
on overall patients’ cost. 
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Fig. 10.3 Regional population-based study of patients with COPD. Left panel depicts three 
population-based risk stratification pyramids build using AMG as multimorbidity index: (i) Left, 
the entire regional population (7,7 M); (ii) Centre, citizens above 39 years; and, (iii) Right, display 
the distribution of the 264 k patients with COPD in the region across AMG risk grades: baseline 
(1%), low (15%), moderate (46%), high (29%), and very high risk (9%). Right panel depicts the 
distribution of individual costs per year comparing overall cost for the regional Health System 
expressed as percentages (outer circle) and the relative costs ascribed to patients with COPD (inner 
circle) in the left-hand side figure indicates that Hospitalization costs (€ 2291.8 M, 29%, and € 
356.6 M, 33%, respectively) and, Pharmacy costs (€ 2193.4 M, 27%, and € 325.8 M, 33%) are 
relatively higher in COPD patients than in the overall health system; whereas, Primary Care costs (€ 
1745.0 M, 22%, and € 158.9 M, 15%) are relatively lower in COPD than in the overall health 
system. The item: Others, includes home-based respiratory therapies, dialysis, outpatient rehabili-
tation, and non-urgent healthcare transportation (Vela et al. 2018) 

14000 

12000 

10000 

8000 

6000 

4000 

2000 

0 
Low risk Moderate risk High risk Very high-risk 

Other 

Skilled nursing facility 

Emergency Department 

Out-patient care 

Primary Care 

Pharmacy 

Hospitalization 
1284 

2944 

5933 

11537 

Fig. 10.4 Global yearly expenditure, expressed in €, of COPD patients by morbidity scoring at 
regional level (Vela et al. 2018) (264 k patients with COPD) 

All in all, the research strongly pointed out the need for a broader vision in the 
care and management of COPD by adopting a patient-oriented approach that 
addresses much more than just the pulmonary manifestations of the disease. 

One of the major strengths of the Synergy-COPD project was the combination of 
well-defined biomedical goals with parallel technological developments beyond the



state of the art in terms of novel modelling approaches, knowledge generation tools, 
and digital technologies supporting care coordination. 
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10.3 Multilevel Data Integration and Advanced AI/ML: Beyond 
Synergy-COPD 

Beyond the project lifespan, developments on multilevel data integration and 
advanced AI/ML are allowing to further explore factors modulating multimorbidity 
aiming at transferring novel knowledge into the clinical arena. Two specific areas 
raising high expectations are: 

The use of sparse Bayesian Direct Morbidity Maps (BDMM) to improve con-
struction of comorbidity patterns (Marx et al. 2017). The method shows clear 
advantages compared to conventional hypothesis-free exploration of comorbid 
conditions using pairwise methods often leading to confounders due to large number 
of pairwise associations arising indirectly through other comorbidity associations 
(Fig. 10.5). 

Recent studies are benefiting from the experience of using BDMM for the 
analysis of multilevel datasets (Trajectome 2020). Consolidated achievements in 
the analysis of temporal disease map-based stratification of depression-related 
multimorbidity can be transferred to other chronic conditions, such as COPD to 
enhance our understanding of the use case, but also to improve management of 
co-morbidities in general. 

Fig. 10.5 Network representation of disease-disease comorbid relations assessed with pairwise 
χ2 statistical associations (purple) and Bayesian Direct Multimorbidity Maps (BDMM – gold) in the 
UK Biobank dataset (Marx et al. 2017). In red metabolic syndromes, in blue diseases of the nervous 
system, and in green mental and behavioural disorders
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Fig. 10.6 Federated Learning approach for Multilevel data integration and advanced 
AI/ML. Development of enhanced dynamic clinical predictive modelling will require consider-
ation, and eventual integration, of computational modelling of different dimensions, as described in 
Fig. 10.1. The current figure illustrates the steps from model elaboration, model training, evaluation 
and feeding clinical decision support systems (CDSS) to be applied in a real-world healthcare 
setting 

A second area of interest is the use of the Adjusted Morbidity Groups (AMG) 
morbidity index (Monterde et al. 2016, 2018, 2020; Vela et al. 2021) as covariate in 
multilevel computational modelling (Calvo et al. 2020). It is of note that AMG is an 
open, publicly owned algorithm, weighted by the real impact of morbidities in each 
healthcare system. AMG offers clear advantages against all other morbidity indices. 
The algorithm is already extensively used for both policy makers and clinicians. Its 
site transferability has been proven and is currently being successfully tested at EU 
level within the ongoing Joint Action on implementation of digitally enabled 
integrated person-centred care (JADECARE 2020). Moreover, knowledge generated 
from BDMM, and disease trajectories could be used to enrich the current AMG tool 
to improve management of multimorbidity in general, beyond COPD. 

Progress in this field needs to take advantage of Federated Learning 
(FL) (Rajpurkar et al. 2022) to decentralize AI/ML across data controllers to 
collaboratively learn a shared prediction model that ultimately could feed a clinical 
decision support system (CDSS) (Fig. 10.6). To this end, Bayesian multilevel 
systems-based analysis from consolidated methodological developments (Marx 
et al. 2017; Trajectome 2020) can be used to address fusion of heterogeneous 
information sources (registry data, clinical information, genetic information, and 
other biological markers) and outcomes from data owners. 

However, further biomedical research is still needed to identify causal factors of 
co-morbidities clustering in COPD and to gain insight on the heterogeneities seen in 
these patients. Specific examples of target aspects requiring research are: (i) in-born 
genetic susceptibility; (ii) epigenetic changes associated with unhealthy lifestyles; 
and (iii) unknown interactions with gut microbiome, among others. Likewise, 
identification of plasma metabolomics patterns facilitating early identification of



subsets of patients with COPD that are candidates for secondary prevention of 
co-morbidities would also be a major achievement to significantly reduce the burden 
of multimorbidity. 
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With the perspective of some years after completion of the Synergy-COPD 
project, we can conclude that targeting COPD as a use case and adopting a systems 
approach to address the analysis of non-pulmonary phenomena in these patients was 
a right choice because it facilitated to the researchers involved to think “outside of 
the box”. On the other hand, the concurrence of three intertwined phenomena: 
(i) relatively poor knowledge of underlying mechanisms; (ii) marked heterogeneities 
of these patients; and (iii) taxonomy problems (Celli and Augustì 2018) perfectly 
justified the choice for a systems approach. 

Moreover, the analysis of co-morbidities in these patients has provided relevant 
new knowledge on multimorbidity in general, with high positive impact on manage-
ment strategies for chronic patients aiming at effectively reduce the burden of 
non-communicable conditions on health systems. A major lesson learnt was the 
huge potential of multilevel integrative analyses of registry data, biomedical research 
information, EHR and patients’ self-tracking data for enhanced clinical decision 
support, as displayed in Fig. 10.1. It clearly constitutes a high priority to pave the 
way towards enhanced clinical management and personalized medicine for patients 
with chronic disorders (Dueñas-Espín et al. 2016). 

10.4 From Systems Medicine to Integrated Care 

All the above results indicate that convergence between a systems medicine 
approach to chronic disorders and care coordination, integrated care (JADECARE 
2020), may conform an optimal scenario to foster cross-fertilization between bio-
medical research and clinical practice (Ferguson 2012; Maddox et al. 2017). The two 
approaches have several common aspects: (i) holistic and multidisciplinary 
approach; (ii) use of computational modelling; and (iii) digitalization as enabler. It 
is clear, however, that optimal efficiencies can only be obtained by incorporating a 
new healthcare setting represented by LHS, as alluded to above. 

In a LHS, digitalization of healthcare is a fundament pillar to foster quick transfer 
and application of scientific knowledge into the clinical scenario. It simultaneously 
facilitates data collection and gain novel insights from real-world settings towards 
academia promoting both healthcare discovery and scientific innovation. Such that a 
LHS generates a virtuous cycle stimulating value-based healthcare as well as 
scientific excellence in an iterative manner. It is of note that the model, LHS, implies 
strong complementarities, and synergies, between classical study designs to generate 
evidence on efficacy, such as randomized clinical trials, and novel methodological 
approaches targeting generation of evidence in real-life scenarios. The process 
ultimately results in a necessary reduction of the efficacy-effectiveness gap seen in 
clinical interventions, which is often limiting healthcare value generation. 

The LHS relies on the existence of an operational DHF including two main 
components. One of them is accessibility of interoperable health-related data



covering different domains: (i) clinical data across healthcare layers, (ii) population-
health registries; (iii) patient’s self-tracking data encompassing citizens reported 
outcomes and experience of care, sensor monitoring and environmental information; 
and (iv) biological research data relevant for clinical purposes. The second key 
component of the DHF are tools that process data, such as predictive modelling, 
defined care paths and clinical decision support embedded into care paths. Such tools 
should contribute to gain on accessibility, personalization, as well as predictive and 
preventive approach to value-based healthcare. A building blocks strategy for 
implementation and sustainable adoption of such a system is needed to ensure 
interoperability of reliable data, technological maturity, compliance with the regu-
latory frame and a prepared workforce ensuring professionals engagement and active 
participation of citizens. Computed patient risk then can be used to stratify patients to 
intervention groups that help in the optimal service selection for the patient with a 
preventive approach. The real challenge is to define and implement appropriate 
strategies fostering evolution towards the new health scenario. 
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10.5 Deployment and Adoption Strategies 

While the conceptual frame of multilevel clinical predictive modelling, as well as the 
final desirable healthcare scenario, is well-defined; deployment and adoption of the 
novel approach are exceedingly challenging with similar barriers and facilitators 
already mentioned for deployment of LHS. However, there are specific steps for any 
given computational modelling that should be considered for a successful deploy-
ment and adoption of enhanced multilevel clinical risk assessment, as briefly 
described below: 

1. Digitalization and standardization to a common data model. There is a need for 
resolving how enhanced risk prediction can be implemented within country and 
organizational boundaries in a manner that supports federated AI/ML learning 
and that has a standard base, international user-base, and data volume content 
base large enough to warrant investment. A choice is to build on existing 
standards promoted by the European Health Data & Evidence Network 
(EHDEN) for data harmonization to a common data model that can scale. 

2. Data acquisition using federated learning. Healthcare organizations should adopt 
a new framework to facilitate a shift from a “break-fix” to a “predict-prevent” 
model of healthcare to deliver better patient outcomes, while preserving data 
security and privacy to ensure citizen’s trust. It should be achieved providing 
healthcare organizations a decentralized federated learning model, as the under-
lying GDPR-compliant framework for harmonizing existing and newly acquired 
datasets. Such a federated learning model allows the creation of a suite of tools 
and the testing of data AI/ML readiness by supplying existing risk prediction and 
patient stratification algorithms to local teams without exchanging the data itself. 

3. Co-design and development of a collaborative learning framework for 
accelerating the use of multilevel assessment in clinical care. Use of currently
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available tools from the Observational Health Data Sciences and Informatics 
(OHDSI) multi-stakeholder, interdisciplinary and collaborative programme to 
drive implementation of multilevel predictive models. By achieving this specific 
objective, clinicians and medical professionals will be involved throughout an 
AI/ML development process that will conclude with validated tools for health 
risk assessment and patient stratification. 

4. To drive inclusive and equitable utilization of data and risk prediction models. 
The development of Best Practices to act as beacons of excellence internationally 
to ensure risk prediction models can be relied upon for fair outputs that aid 
decision-making and translate to daily life in support of clinical care. To this 
end, it will foster a transparent data and AI/ML eco-system that can be open to 
ethical and technical challenge to build trust and utilization. Health care 
professionals should be able to utilize robust, trustworthy, and privacy-preserving 
computational modelling that provide quantitative indicators valuable to identify 
and prioritize individuals with higher risk. 

5. To perform proof of concept, as well as clinical validation, studies in real-world 
settings. There is a need for organizing evaluation studies in real-world settings to 
in silico assess the technical robustness of the developed AI/ML tools for risk 
assessment. Based on the evaluation studies, specific personalized preventive 
interventions should be piloted to assess healthcare value generation in compari-
son to the standard-of-care. Maturity of AI/ML tools in terms of Technology 
Readiness Level (TRL = 9) and health value generation will ultimately determine 
adoption provided that regulatory acceptability prior to deployment is 
demonstrated. Case-related reimbursement models to incentivize adoption 
could be envisaged. 

10.6 Conclusions 

Current evidence fosters multilevel integrative analyses including registry data, 
biomedical research information, EHR and patients’ self-tracking data to elaborate, 
assess, and deploy predictive modelling, using AI/ML tools, for patients’ stratifica-
tion to properly pave the way towards enhanced clinical management and truly 
predictive, preventive, personalized, and participatory medicine, or “P4 medicine” 
(Auffray et al. 2010). 
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Abstract 

Radiation oncology is a discipline in which a treatment is delivered to the tumor 
using three main modalities: external beam radiotherapy (ERT), which is based 
on the use of highly technological linear accelerators producing ionizing radiation 
(electrons or X-rays); interventional radiotherapy (IRT, brachytherapy), which is 
characterized by placing radioactive sources nearby or directly inside the tumor 
volume to treat, thus allowing us to obtain the optimal therapeutic ratio; and 
metabolic radiotherapy, which is characterized by the administration of 
radiopharmaceuticals (orally or intravenously) with a high affinity and selectivity 
for binding to tumor cells. The role of artificial intelligence (AI) in ERT has been 
described in several publications, while in the field of IRT and metabolic radio-
therapy it has gained great attention only recently among researchers. There are at 
least four distinct areas where AI could be useful to the ERT and IRT’s workflow, 
including providing clinical decision support, mining “omics” and analyzing 
data, facilitating repetitive tasks (thus optimizing time), and modeling behaviors 
in heterogeneous contexts). Large databases are very useful tools for generating 
evidence, especially in the field of AI-based software which needs to be further
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implemented and integrated into clinical practice. Applications are different in 
ERT and IRT, but AI will certainly play an increasingly important role in the 
future of both.
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11.1 Introduction 

Radiation oncology (RO) is a discipline in which a treatment is delivered to the 
tumor using three main modalities: 

1. External beam radiotherapy (ERT), which is based on the use of highly techno-
logical linear accelerators producing ionizing radiation (electrons or X-rays) 

2. Interventional radiotherapy (IRT, brachytherapy), which is characterized by 
placing radioactive sources nearby or directly inside the tumor volume to treat, 
thus allowing us to obtain the optimal therapeutic ratio 

3. Metabolic radiotherapy, which is characterized by the administration of 
radiopharmaceuticals (orally or intravenously) with a high affinity and selectivity 
for binding to tumor cells 

The role of artificial intelligence (AI) in ERT is described in several publications, 
while in IRT it has recently gained great attention among the radiation oncology 
community (Fionda et al. 2020). In fact, differently from ERT—which is facing a 
phase of renovation by incorporating and exploiting the precious contributions 
provided by AI, IRT has remained mainly based on the operator’s knowledge and 
experience until nowadays. Such a technological gap, however, allows for a huge 
potential for embodying AI into IRT, thus making it possible to save time especially 
in repetitive tasks (Banerjee et al. 2021). In recent years, the role of AI is also 
explored in the frame of metabolic radiotherapy (Currie and Iqbal 2021). 

There are at least four distinct areas where AI could be useful to the IRT’s 
workflow, in detail: 

1. In providing clinical decision support 
2. In mining “omics” and analyzing data 
3. In facilitating repetitive tasks, thus optimizing time 
4. In modeling behaviors in heterogeneous contexts
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11.2 Impact of AI and Automation in External Beam 
Radiotherapy Workflow 

Artificial intelligence can support the entire process of external beam radiotherapy. 
According to the ERT workflow, we can identify six phases: first patient consulta-
tion, delineation, planning, setup, treatment session delivery, and end of treatment. A 
summary of AI contributions in each phase of the process is shown in Fig. 11.1. 

In the following paragraphs, we present the most recent evidence in the literature 
for each phase, supporting the use of AI in ERT. Many diseases with multidisciplin-
ary approach and different variables to take into account for clinical approach can 
benefit from AI supporting. In particular, breast and prostate cancer are relevant 
fields for AI application, due to the complexity of these pathologies. 

11.2.1 First Patient Consultation 

Defining the clinical indication for a radiation treatment based on different 
parameters can be very complex. AI can be used for guiding the decision process, 
also in a multidisciplinary team. An example is the application of AI during the 
decision process. Decision tools based on AI algorithms use evidence from big data 
to personalize treatments according to patient and tumor’s individual characteristics 
(Kazmierska et al. 2020). In general, AI tools for first consultation are models for 
outcome prediction to support decision calculating benefit from such an intervention 
(Luo et al. 2019). Outcome prediction models can be output from traditional 
classifiers, such as logistic regressions, up to more complex models such as random 
forests, Bayesian networks, and neural networks. An example of a logistic regression 
model is the Salvage Radiation Therapy Nomogram, predicting whether a recur-
rence of prostate cancer after radical prostatectomy can be treated successfully with
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Fig. 11.1 Potential contribution of artificial intelligence in external beam radiotherapy. Modified 
from Fionda et al. (2020)



salvage radiation therapy (external beam radiation given after the prostate cancer 
returns) (Stephenson et al. 2007).
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Another example of outcome prediction model was developed for two-year 
survival prediction in lung cancer patients treated with radiotherapy (Jayasurya 
et al. 2010). This tool uses a Bayesian network that also includes clinical data that 
otherwise could have been overlooked. 

11.2.2 Delineation 

In this phase of ERT, physicians identify target volumes and organs at risk. Delin-
eation is usually based on a radiological atlas but may vary between operators. AI 
tools developed to aid in this phase have the purpose of facilitating a repetitive task 
and optimize time while collecting retrospective data for prediction tools. A consor-
tium of French centers has recently developed a deep learning (DL) auto-contouring 
system for breast cancer radiotherapy, based on the ESTRO recommendations. A DL 
algorithm is an artificial neural network (ANN) with more than one hidden layer. 
This AI tool has limited human interactions and the workflow is quite fluid (Robert 
et al. 2021). Another extensive experience is found in the field of automatic 
segmentation using DL for radiotherapy of lung cancer. A review of these 
experiences confirms that Dice similarity indexes close to 0.9 are obtained for 
large OARs, 0.8 for GTVs, and between 0.7 and 0.8 for small OARs like esophagus 
(Liu et al. 2021). These findings support the efficacy of a time optimization AI 
application, but there are still some issues to be solved, in particular low contrast 
zones, dataset extension according to stage, and possible modification in consensus 
guidelines. 

11.2.3 Treatment Planning 

Treatment planning is the phase in which medical physicists and physicians elabo-
rate treatment plans with treatment plan systems (TPS) and evaluate them according 
to clinical feasibility and quality. AI-based software can be integrated to TPS within 
specific tools. 

AI applications in the treatment planning phase have two different purposes: time 
optimization and quality improvement of treatment plans. Time optimization can be 
obtained through software that reduce time and human intervention in plan elabora-
tion. In breast cancer, there are several experiences of the RapidPlan (Varian, a 
Siemens Healthineers company in Palo Alto, CA) software application for 
optimizing treatment plan. RapidPlan was tested to predict if left-sided supine breast 
cancer patients would benefit from the deep inspiration breath-hold (DIBH) tech-
nique (Rice et al. 2019). This application addresses treatment plan elaboration with 
DIBH only of patients who benefit from it, resulting in time optimization. Another 
application of RapidPlan for breast cancer was addressed in volumetric modulated 
arch therapy (VMAT). Rago et al. (2021) created a knowledge-based model of



treatment plan (TP) optimization on RapidPlan, with and without optimization 
structures. Results showed that all TP elaborated by these models were better than 
the original ones. 
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Another potentially useful contribution of AI to the TP phase is the construction 
of mixed models, both from clinical and dosimetric data to predict toxicity and create 
prospective optimization systems. An interesting experience conducted by Johns 
Hopkins University led to learning a classification and regression tree (CART) 
prediction model for weight loss (WL) in head and neck cancer (HNC) patients 
treated with radiation therapy (RT) (Cheng et al. 2017). The CART prediction 
model, based on a decision tree, includes anatomic tumor site, dosimetric 
parameters, and age. 

11.2.4 Setup 

In the setup phase, a radiation therapist positions the patients for ERT. In this phase, 
the physical positioning and the radiographic control of the positioning take place 
with corrections when needed. Given the high rate of human intervention depen-
dence of this important phase, no deep implementations of AI have been published. 
It would be desirable to have systems automatically identify patient’s features and 
implement the setup phase, although this remains as of today highly operator 
dependent. In particular, researchers have shown great interest toward 3D surface 
positioning systems, a field in which AI seems to be extremely promising (Zhao et al. 
2021). 

11.2.5 Treatment Delivery 

Treatment delivery is the phase in which RT is administered and intrafraction 
changes are tracked. This is the phase in which AI offers very interesting solutions 
to improve the accuracy and personalization of treatments. Even more, images 
acquired during therapy are used for models to predict the response in order to 
modulate the treatments themselves. 

In an experience by de Jong et al., cone beam CTs (CBCT) were used during 
therapy to adapt the TP on daily anatomy variations. Thanks to AI, applications 
based on structure-guided deformation and the synthetic CT scan contours were 
adapted by the system to match the anatomy on the CBCT. Specifically in this case 
the algorithm generated delineations of the rectum and bladder, called “influencer 
structures” as they influence the deformation of the target volumes using structure-
guided deformable registration (de Jong et al. 2021). Another similar experience was 
conducted by Romaguera et al. (2021). The authors developed a model trained to 
simultaneously create a low-dimensional manifold representation of 3D non-rigid 
deformations and to predict the motion of the treatment target. The purpose of these 
models is to deliver a more accurate ERT.
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Another field of interest in this phase is the response prediction during radiother-
apy. In particular, fractal-based radiomic features studies applied to imaging 
acquired during magnetic resonance-guided radiotherapy (MRgRT) could predict 
pathological response in neoadjuvant treatments (Boldrini et al. 2019). 

11.2.6 End of Treatment 

After ERT treatment, beyond site and purpose of treatments, machine learning 
(ML) can be used to predict patients’ characteristics associated with both toxicity 
and local or symptoms control. The CART model also included a second model 
based on a prediction tree for weight loss prediction after ending of head and neck 
cancer radiation therapy (Cheng et al. 2017). Variables included in this model were 
patient reported quality of life, dosimetry parameters, RT toxicity during therapy, 
and shape relationship (i.e., distance between PTV and larynx). Finally, complex 
models such as multi-objective Bayesian networks (MO-BNs) approach can corre-
late toxicity and outcomes variables not only to RT parameters and patients’ 
characteristics but also to microenvironmental features. An example of MO-BNs 
was developed by Luo et al. (2018) with the purpose of prediction for response-
adapted personalized treatment planning, also evaluating single nucleotide 
polymorphisms (SNPs), microRNAs, pretreatment cytokines, and pretreatment 
PET radiomics together with lung and tumor characteristics. 

A complete list of the studies discussed in this chapter about AI and ERT is 
reported in Table 11.1. 

Table 11.1 Complete list of the studies discussed about AI and ERT 

Phase Author Year of Publication 

First patient consultation Stephenson et al. 
Jayasurya et al. 

2007 
2010 

Luo et al. 
Kazmierska et al. 

2019 
2020 

Delineation Robert et al. 2021 

Liu et al. 2021 

Planning Cheng et al. 2017 

Rice et al. 2019 

Rago et al. 2021 

Treatment session delivery Boldrini et al. 
de Jong et al. 
Romaguera et al. 

2018 
2021 
2021 

End of treatment Cheng et al. 
Luo et al. 

2017 
2018
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11.3 Impact of AI and Automation in Interventional 
Radiotherapy (IRT) Workflow 

All the aforementioned contributions may be considered also along the entire IRT 
workflow. In comparison with ERT, a possible contribution of AI for IRT can be 
considered during implantation, while the setup phase is negligible. AI in IRT can be 
considered starting from the first patient consultation, during the implant, the 
delineation, planning, and treatment session delivery until the end of treatment. A 
summary of the contributions in each phase of the process is shown in Fig. 11.2. 

We will now go into deeper details for each phase summarizing the latest 
evidence available in the literature supporting the use of AI in IRT. The most 
clinically relevant sites are by far prostate, breast, and cervix cancer; therefore, we 
will mainly focus on them, also including other sites in the following discussion. 

11.3.1 First Patient Consultation 

At the moment, there is limited evidence about the role of AI in guiding the decision 
process either within the multidisciplinary setting or in the usual workflow. A good 
example is the case of prostate cancer where artificial neural networks may be useful 
in aiding the decision process to evaluate whether IRT may be used as the sole 
treatment strategy or if there is a high risk of lymph node involvement, therefore 
requiring the addition of ERT (Gamito et al. 2000). In fact, ERT is required in those 
cases where there is a high risk of lymph node involvement in order to provide a 
better disease-free survival. 

Another interesting application is about the chance to help identify early stages of 
disease for breast cancer that, after undergoing a surgical approach, may benefit from 
receiving a complementary accelerated partial breast irradiation by inserting plastic
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Modified from Fionda et al. (2020)



tubes within the tumor bed and, then, by using a dedicated remote after-loader 
irradiating the tumor bed (Polgar et al. 2010).
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11.3.2 Implant 

Regarding this phase of the IRT workflow, there is extensive evidence in the 
literature about the valuable addition that AI may provide specifically about the 
optimization of the applicators’ location. The first reports about this topic go back to 
the late 1990s and considered the location of seeds implantation for low-dose-rate 
(LDR) IRT in prostate cancer (Yu et al. 1999); the first experiences focused on 
simulated annealing and artificial neural networks (Miller et al. 2001). 

Nicolae et al. (2017) used ML to extract preplans which were optimized from a 
dosimetrical point of view in terms of seeds location; when comparing the results to 
those obtained by expert physicians, they found that the quality of the plan was 
comparable in terms of target coverage, normal tissue avoidance, implant confi-
dence, and the need for plan modifications; moreover, a consistent reduction in terms 
of planning time had been achieved: the average time required by the ML approach 
was 0.84 ± 0.57 minutes, compared to 17.88 ± 8.76 minutes for the expert planner. 

Great attention has also been paid to cervix cancer where there are preliminary 
experiences with DL used to guide the type of applicator for high-dose-rate (HDR) 
IRT; more specifically Stenhouse et al. have validated the process to choose between 
interstitial and intracavitary applicators considering the shape and geometry of high-
risk clinical target volumes (HR-CTV) (Stenhous et al. 2021). 

Also within the gynecological field there are interesting papers on the use of ML 
in preventing the formation of rectovaginal fistulas for patients receiving interstitial 
IRT (Tian et al. 2019). Another interesting experience, again with the aim to predict 
and reduce toxicities, has been released about side effects of CT-guided implantation 
of 125-I seeds for recurrent malignant tumors of the head and neck assisted by 3D 
printing of a non-co-planar template (Jiang et al. 2018). Focusing on other types of 
cancer, some initial outcomes have also been published about permanent interstitial 
125-I seed implantation as a salvage therapy for pediatric recurrent or metastatic soft 
tissue sarcoma (Yao et al. 2015). 

11.3.3 Delineation 

This phase of the IRT process includes the identification of the organs at risk 
(OARs), the target, and reconstruction of applicator/catheters. Regarding the delin-
eation of OARs and target volumes, so far there have been no clinical 
implementations, whereas the greater amount of evidence in this case is about the 
reconstruction of catheters and applicators. For example, DL may be used to 
adequately reconstruct tandem and ovoid applicators for cervix cancer in less than 
25 s (Defuel et al. 2020); similarly DL may also be used to reconstruct interstitial 
needles (Jung et al. 2019). Interestingly, DL methods have shown promising results



with MRI-based catheter reconstruction in procedures up to 35 catheters (Zaffino 
et al. 2019). 
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11.3.4 Treatment Planning 

Regarding prostate cancer, several investigations have been conducted according to 
the different implantation techniques used by the centers (ultrasound or CT based); 
in particular, ultrasound-based preplanning protocols and techniques turned out to be 
similar, whereas computerized tomography-based post-implant dosimetry varied 
because of differing estimations of the prostate volume (Al-Qaisieh 2003). ML has 
been used in prediction of prostate IRT rectal toxicity (Leydon et al. 2015) but also to 
prove the non-inferiority of an ML-based planning workflow for LDR IRT in terms 
of time savings and operational efficiencies compared to conventional treatment 
planners (Nicolae et al. 2020). 

Another potentially revolutionary contribution in this setting has been given in 
cervix cancer where Shen et al. developed an inverse treatment planning for 
HDR-IRT based on a weight-tuning policy network (WTPN) that observes dose-
volume histograms of a plan and outputs an action to adjust organ-weighting factors, 
like the behaviors of an expert physician. The WTPN was trained by end-to-end 
reinforcement learning neural network (Shen et al. 2019). 

11.3.5 Treatment Session Delivery 

About this phase of IRT workflow, there are some very interesting reports regarding 
cervix cancer. In fact, there is data about the use of artificial neural networks (ANN)-
based models to predict intra-fractional OAR dose-volume histogram parameters 
variations during intracavitary IRT. The models were trained to propose an adapted 
treatment plan to compensate for dosimetrical changes between applicators and 
OARs keeping the prescribed dose at the target volume (Jaberi et al. 2017). 

11.3.6 End of Treatment 

After IRT treatment, ML may be useful in identifying patients’ characteristics 
associated with recurrence in prostate cancer. Valdes et al. have developed decision 
tree-based algorithms including classification and regression trees, MediBoost, and 
random forests which allowed us to reach the conclusion that patients with a fraction 
of positive cores ≥0.35 and a disease-free interval <4.12 years after their initial 
treatment are at higher risk of biochemical failure (Valdes et al. 2018). 

A complete list of the studies discussed in this chapter about AI and IRT is 
reported in Table 11.2.
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Table 11.2 Complete list of the studies discussed about AI and IRT 

Phase Author Year of publication 

First patient consultation Gamito et al. 2000 

Polgár et al. 2010 

Implant Yu et al. 1999 

Miller et al. 2001 

Yao et al. 2015 

Nicolae et al. 2017 

Jiang et al. 2018 

Tian et al. 2019 

Stenhouse et al. 2021 

Delineation Jung et al. 2019 

Zaffino et al. 2019 

Deufel et al. 2020 

Planning Al-Qaisieh et al. 2003 

Leydon et al. 2015 

Shen et al. 2019 

Nicolae et al. 2020 

Treatment session delivery Jaberi et al. 2017 

End of treatment Valdes et al. 2018 

11.4 Large Databases 

Large databases are very useful tools for generating evidence, especially in the field 
of artificial intelligence. Large databases can be monocentric or multicentric. Direct 
connection with hospital systems and data repositories, such as that achieved by 
Gemelli Generator Real-World Data (Damiani et al. 2021) is fundamental. “GEN-
ERATOR Breast DataMart” is an example of a Breast Cancer Data Discovery 
System for Research and Monitoring, a computerized system to manage information 
and encourage the generation of evidence. The GENERATOR Breast DataMart was 
created for supporting breast cancer pathways of care. An AI-based process auto-
matically extracts data from different sources and uses them for generating trend 
studies and clinical evidence. Two PoCs were performed, by which waiting time 
interval for radiotherapy and performance index of breast unit were tested and made 
available inside the hospital system (Marazzi et al. 2021). 

The AI approach to knowledge extraction from data in radiotherapy is strongly 
encouraged by the European Commission, with the approval of Horizon projects 
such as iHelp: Personalised Health Monitoring and Decision Support Based on 
Artificial Intelligence and Holistic Health Records, approved in 2020 under the 
Digital transformation in Health and Care track (Pagliara et al. 2020). The iHelp 
project aims at building full-spectrum AI-enabled models of pancreatic cancer from 
the active prevention phase to the therapeutic or palliative path for diagnosed 
patients. In particular, the project will study the integration of clinical data with



real life data obtained via smartphones and Internet-of-Things (IoT) devices to 
follow patients during the external radiotherapy period to improve prediction of 
adverse effects, toxicities, and overall decrease of quality of life based on both 
objective and subjective elements, thus adding totally new dimensions to the already 
available traditional hospital data (Manias et al. 2021). 
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Regarding the field of interventional and metabolic radiotherapy, “COBRA” is an 
example of multicenter large database and avatar implementation in clinical practice. 
Large databases are a natural extension of traditional statistical approaches, a 
valuable and increasingly necessary tool for modern healthcare system. The 
COBRA Ontology is a good solution to the multidimensional criticalities of data 
collection, retrieval, and usability. It allows us to create a software for large 
multicentric databases with implementation of specific remapping functions wher-
ever necessary. Future analysis of the collected multinational and multicenter data 
will show whether the use of the system can produce high-quality evidence to 
support multidisciplinary management and utilizing this information for 
personalized treatment decisions (Tagliaferri et al. 2018; Lancellotta et al. 2020; 
Pagliara et al. 2020). 

11.5 Conclusion 

First applications for usage of AI in radiotherapy, either in ERT or IRT, are already 
published for various phases in the treatment process. Applications are different both 
in ERT and IRT. AI-based software needs to be further implemented and integrated 
into clinical practice. AI will play an increasingly important role in the future of 
radiotherapy. 
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Abstract 

Modern surgery is a highly effective sociotechnical process susceptible to errors. 
Surgical data science is a novel transdisciplinary research field aiming at improv-
ing surgical care using advanced data analytics such as artificial intelligence (AI). 
This chapter presents several applications of AI tools in perioperative and post-
operative surgery that can help to achieve personalized precision surgery while 
considering current limitations and ethical aspects. 
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12.1 Introduction 

In the last decade, the effectiveness and volume of surgery has significantly 
increased with more than 300 million procedures performed in 2012 (Weiser et al. 
2015). Still, a large part of medical mistakes, the third leading cause of death in the 
USA (Makary and Daniel 2016), happens in surgery (Zegers et al. 2011). Fortu-
nately, more than half of these surgical adverse events are considered preventable 
(Zegers et al. 2009). Given the prevalence of modern surgery and the great opportu-
nity for quality improvement, surgical safety is today considered a global health 
priority. 

In the era of personalized and precision medicine, great attention is given to 
assuring “the right cure to the right patient, at the right time” (Nimmesgern et al. 
2017). Similarly, in the context of modern surgery, it is important to give the surgeon 
“the right assistance, at the right time” (Maier-Hein et al. 2017). In fact, when 
performing a surgical procedure, surgeons interact with a highly specialized team 
of collaborators, while recalling and projecting surgical principles into the present 
scenario, capturing, and interpreting several signals from high-tech devices, 
anticipating consequences of decisions, and acting timely for the benefit of patients. 
The proper coordination of this complex socio-technical process requires physical, 
relational, and cognitive efforts: any imperfection can be potentially harmful for 
patients (Schreuder et al. 2020; Mascagni 2021). Moreover, errors have a tremen-
dous cost on patients, surgeons, and healthcare systems (Berci et al. 2013). 

Surgical adverse events derive from technical errors as well as from perceptual 
illusions which are, for example, the leading cause of major bile duct injuries (BDIs) 
(Way et al. 2003). 

The growing availability of digital data from surgical procedures using endos-
copy, laparoscopy, surgical microscopy, robotic minimally invasive surgery, and 
hybrid platforms which also combine advanced intraoperative imaging technologies, 
together with the increased accessibility to advanced analytics, such as artificial 
intelligence (AI) and machine learning (ML), could converge to improve surgical 
safety and efficiency. In addition, knowledge generation in surgery can be enriched 
with extra data generated in the operating room (OR) (e.g., anesthesia monitors, OR 
devices usage, environmental cameras, microphones) and during perioperative care 
(e.g., patients’ clinical history and outcomes stored in electronic medical records, 
imaging studies in Picture Archiving and Communication System [PACS]) 
(Mascagni 2021). 

This has led computer scientists and surgeons to partner in surgical data science 
(SDS), a new transdisciplinary field that aims at improving the quality of surgery and 
other interventional disciplines using data and advanced analytics (Maier-Hein et al. 
2022). Recent developments in this field have transformed the way experts envision 
the future of surgery. In fact, while offline analysis of surgical data allows 
accumulating detailed knowledge on the surgical process, intraoperative online 
inference could give surgeons actionable insights to ameliorate surgical care 
(Mascagni 2021). However, while an increasing number of data-driven approaches



and clinical applications have been studied in radiological and clinical data science, 
translational success stories are still lacking in surgery (Maier-Hein et al. 2022). 
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In this chapter, we introduce basic concepts of AI and overview its possible 
applications in the perioperative and intraoperative settings, envisioning the way 
forward for achieving personalized precision surgery. 

12.2 Surgical Data and Fundamentals AI Concepts 

Imaging is one of the pillars for the ongoing evolution of surgical precision 
(Mascagni et al. 2018). In fact, digital endoscopic videos guide surgical actions 
and decisions and are a natural source of unbiased information on intraoperative 
events. If properly analyzed, these videos are more reliable than operator dictated 
postoperative reports (Eryigit et al. 2020; van de Graaf et al. 2019). Moreover, the 
growing number of intraoperative imaging techniques constantly introduced within 
the surgical practice could be interpreted with algorithms to inform surgeons about 
the best strategies for improving safety, becoming in turn an important input for AI 
algorithms generation (Mascagni et al. 2018). 

As described in Alapatt et al. (2020), AI and related methods are rapidly evolving 
and set to become an important tool to enable the vision of SDS and precision 
surgery. If a traditional computer software is explicitly programmed with certain 
functions to analyze data and generate outputs for a desired information, in ML those 
functions are learned by the algorithm itself, without the need for explicitly knowing 
the function. The ability of ML to learn how to perform complex tasks by analyzing 
high-quality data is what makes AI revolutionary: it would be unpractical to program 
a priori every function needed to perform complex tasks such as interpreting 
complex unstructured data like surgical images. ML can serve several purposes 
ranging from data acquisition to information generation and from visual and motor 
assistance to case-specific update and follow-up. Powerful ML tools are artificial 
neural networks, algorithmic architectures inspired by the biological one and 
conceived as a collection of interconnected “neurons,” each of them taking a set of 
inputs, processing them, and sending a signal (a numerical one in this case) that in 
turn serves as inputs to other neurons. Each network consists of an input layer, one or 
more hidden layers used to extract meaningful information from the input, and 
finally an output layer that aggregates information into the desired form. For 
example, if the input layer is a CT scan slice of a suspicious lesion, the output 
could represent its probability of malignancy. 

When multiple hidden layers occur between the input and output layers, the 
network is called deep neural network and its training process is known as deep 
learning (DL). In DL, lower layers can extract simple information (e.g., edges 
of images) and higher layers build on that information to develop an understanding 
of more complex shapes and concepts. Most DL tasks on images fit into one of 
following three categories based on the type of output expected from the model 
(Fig. 12.1):
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Fig. 12.1 Examples of common computer vision tasks in minimally invasive surgery. (a) Classi-
fication of surgical tools; (b) Detections of surgical tools; (c) Anatomy and tools segmentation 

– Classification refers to the task of categorizing a given input into two or more 
possible classes (e.g., discrimination between benign or malignant lesions). 

– Detection refers to the task of identifying the category of an object of interest 
(e.g., a malignant lesion on a tissue) in the input and localizing its position 
spatially (e.g., contouring the malignant lesion with a bounding box). 

– Semantic segmentation refers to the task of classifying every pixel of an image 
into a particular category (e.g., highlighting healthy tissue versus malignant 
tissue). 

12.3 Potential Application of AI in Surgery 

12.3.1 Perioperative Applications 

In perioperative settings, AI could be used for several applications such as patient 
stratification, operative planning, resource allocation, documentation, and training. 

For example, an ensemble of specifically trained algorithms could identify a 
laparoscopic cholecystectomy (LC)1 case in the surgical waiting list, use text mining 
techniques to analyze digital medical record and computer vision (CV) to extract 
features from preoperative images such as ultrasound or CT/MRI scans to estimate 
the case complexity, and present it to a surgeon recognized as having the right 
expertise and technical skills (Vannucci et al. 2022). Similarly, algorithms could also 
stratify postoperative risks and prognosis to better tailor patients’ treatment and 
follow-up. Moreover, AI/ML solutions could automatically reserve an appropriate

1 The most common abdominal surgical procedure (Pucher et al., 2018) is usually performed 
laparoscopically. This minimally invasive procedure is associated with less pain, less scarring, 
and a faster return to normal activities; despite research confirming its safety (ibidem), surgeries can 
have various complications that may impact the life of patients, like iatrogenic bile duct injuries 
(BDIs) that still complicate 0.32–1.5% of LCs (Törnqvist et al.; 2012; Pucher et al., 2018), a rate 
that is higher than the incidence commonly reported in open surgery (Southern Surgeons Club, 
1991). 



OR slot for the patient so as to optimize OR scheduling and resource allocation. 
Once in the OR, a virtual “assistant” can inform the OR staff about the case 
peculiarities and expected events and guides the WHO Surgical Safety Checklist 
time-out before skin incision (Conley et al. 2011; Mascagni 2021). This scenario 
envisions a personalization of the whole surgical pathway, from training to patient’s 
presentation and discharge. 
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Furthermore, DL models can be translated into surgery for the automatic genera-
tion of documentation (e.g., surgical reports) and the production of short videos clips 
which selectively document critical moments of procedures, such as the critical view 
of safety (CVS) in LC where it is possible to reliably locate the time of the cystic duct 
division and efficiently video document CVS despite the highly variable workflows 
(Mascagni et al. 2021a, 2022). 

AI could serve surgical training by automatizing and expediting performance 
assessment, so to provide unbiased formative feedback to foster and personalize the 
learning experience. A recent systematic review on the topic (Pedrett et al. 2022) has 
analyzed 37 original papers using AI for technical skills assessment in minimally 
invasive surgery, finding that most approaches leverage either endoscopic videos or 
kinematics data from robots and sensors to assess tasks execution, to this day mostly 
in simulated settings. 

12.3.2 Intraoperative Applications 

In intraoperative settings, AI can be used for performance assessment, improving 
OR staff communication, providing guidance and better visualization, and robotic 
assistance. 

OR black boxes and surgical control towers have been proposed to systematically 
capture broad data on surgical procedures and to oversee and assist during OR 
activities, respectively (Mascagni and Padoy 2021). In this regard, AI could be 
used to make sense of these big surgical data to assess surgical performances in 
terms of technical judgments, team routine, and communication patterns while 
offering the opportunity to conduct prospective intraoperative studies of human 
performance and allows postoperative discussion, review, and teaching (Guerlain 
et al. 2005). 

OR data can be streamed continuously to an external surgical control room from 
which senior surgeons could remotely proctor multiple cases and administrators can 
monitor OR status (Mascagni and Padoy 2021). Thanks to the current availability of 
powerful computational resources and advances in algorithms efficiency, surgical 
data analysis could be performed in real time and online, to give the surgeons 
feedbacks during procedures. This would allow us to translate all the data available 
into actionable information with case-specific feedbacks during procedures as well 
as recognizing phases and tools to efficiently coordinate OR staff and inform on ORs 
status (Mascagni and Padoy 2021). 

AI-driven devices could provide guidance and better visualization to surgeons 
while operating. For example, CV could support intraoperative navigation within



complex and deformable environments (such as the abdominal cavity), especially 
when equipped with ML/DL solutions to identify critical events such as bleeding 
(Hashimoto et al. 2018; Mascagni et al. 2022). In addition, CV could be used to 
provide timely intraoperative cognitive aids, to make sure that the right information 
is recalled at the appropriate moment and delivered to the right team member 
(Treadwell et al. 2014; Mascagni et al. 2021b). 
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The ML/DL powered analysis presented could be integrated in robotic platforms. 
In this scenario, surgical robots could serve as data capture platforms and, in turn, be 
augmented by AI tools. These robotic surgical systems powered by AI could deliver 
a paradigm shift in which AI-assisted robotic surgery first automates repetitive tasks 
to ease surgeons’ workload and finally performs complex maneuvers to deliver more 
precise and better care to patients. However, while AI may help with several 
assistance functions, the surgeon will always remain in the loop to oversee and 
control decisions and gestures (Sapre et al. 2022). 

12.4 The Future Ahead 

The use of AI to analyze and improve surgical activities together with the integration 
of precise robotic platforms will provide surgeons with smart assistance in percep-
tual, cognitive, and physical tasks. To date, AI in surgery has mostly focused on 
understanding the context and workflow of procedures, team behaviors, and factors 
that affect surgical safety (Padoy 2019; Mascagni and Padoy 2021). 

Some key aspects should be addressed before translating and exploiting the full 
potential of AI within surgical practice. In the white paper “Surgical Data Science: A 
consensus perspective” drafted following the 1st International Workshop on Surgi-
cal Data Science, the authors suggest that several matters still hinder the application 
of AI in surgery. For example, data privacy, security, and ownership, especially 
when treating highly sensitive health information, are still open issues, requiring 
solutions for advanced patient digital data acquisition, anonymization, storage, and 
handling (Maier-Hein 2018). Information and communication technology (ICT) 
infrastructures should be safe by design for data collection, storage, and access, 
and fully compliant with national and international regulations and procedures, 
including data protection. 

Another relevant issue is that annotating raw data with surgical knowledge 
requires rare and expensive physician time, an important bottleneck slowing the 
development of DL models in surgery is the scarcity of well-annotated datasets 
(Mascagni 2021). There is the need for methods to facilitate large-scale data 
annotation that could be based on concepts of crowdsourcing, expert data augmen-
tation, or self-supervised learning. 

Validation and ethical issue will also need to be solved. Indeed, when a machine 
is more precise than humans, but it is validated by labels provided by them, the 
intrinsic nature of the learned process (and its practical application) is called into 
ethical questions (Rudzicz and Saqur 2021). Before AI will be fully integrated within 
surgery practices, algorithms must undergo a strong scientific validation to promote



to guarantee generalization of performance across practices and surgical scenarios. 
Altogether, algorithms should be monitored for their fairness and biases. 
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To achieve personalization and precision in medicine, further technological 
advances should be made, such as the improvement of methods to analyze 
multimodal and heterogeneous datasets (e.g., with genetics, biomarkers, imaging, 
peri- and intraoperative information). Such holistic modeling of sparse clinical 
information is key for advancing knowledge-based medicine as well as applying 
these tools in clinical practice. 

Finally, surgical–technical partnerships should be encouraged to develop and 
evaluate ML/DL models to improve surgical safety. We believe that education 
plays a crucial role in bringing awareness on the potential and the pitfalls of the 
available AI and SDS solutions, and these outlooks should be promoted toward 
academic courses and hands-on immersive training (Edu4SDS 2022). 
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Abstract 

While there is no cookbook recipe to developing an artificial intelligence solution 
from conception to market launch in healthcare, some key principles must be 
observed just like in other areas of healthcare. The preliminary phases of design 
and setting the cross-functional team with the right capabilities, assets, and 
financial resources are crucial for making a project solid and speeding up the 
subsequent phases. Examples include the need of deal flow with methodological 
rigour and incremental scientific research grounded in robust evidence to which 
we can apply new technologies. It is also critical to continuously review the ever-
evolving needs of doctors and patients throughout the project lifecycle and the 
dynamic business model and go to the market model with an entrepreneurial 
mindset to make the AI solution scalable and sustainable overtime. The end users 
should be an integral part of the co-design process as they will ultimately drive the 
adoption of any new solution. Start-ups, patients, facilities, and investment funds 
today have everything to achieve the expected impact of AI in the health world. 
Will we be able to overcome the barriers that, fortunately less and less often, do 
not lead to collaborations in the medium to long term? If we look back, it is better 
to have remorse for a failure (and learn) than regret for not doing it. There is a 
tendency to seek early proof that an “s-curve” type of scalability can be achieved. 
We strongly recommend resisting this temptation and instead focus on 
experiments that start small—even if the big, scalable idea should be kept in 
mind at every design stage. This means making agreements revisable and flexible 
and combining them with a well-defined exit strategy to avoid wasting resources
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on satisfying needs that have proven throughout the project to no longer be the 
key priority. Especially in more complex collaborations, there is a tendency to 
“stick to past” promises even if they appear less sensible in hindsight. Setting the 
right foundation means creating milestones based on clinical evidence and 
efficiency to speed up stop-and-go decisions. It also reduces efforts and capital 
needed to scale the solution further down the road.
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13.1 Landscape: Why Are Partnerships Between Start-ups 
and Established Organisations Relevant for Personalised 
Medicine and AI? 

Artificial intelligence (AI) has the potential to revolutionise healthcare and help its 
systems address existing challenges in increasing care delivery efficiency and in 
achieving superior health outcomes for patients. There are several definitions of AI, 
but for our purposes, we draw on the concise and helpful wording proposed by the 
European Parliament (2016): 

AI is the capability of a computer program to perform tasks or reasoning processes that we 
usually associate with intelligence in a human being. 

Because of its potential, AI is now at the forefront for healthcare decision-makers, 
governments, investors, innovators, and the European Union itself. 

13.1.1 Problem 

Digital, big data, and AI are currently impacting the healthcare pathway in connec-
tion with remote care, connectivity, real-time analytics, and automation. Even if 
these tools come to full fruition, healthcare remains “one of the industries with the 
lowest automation potential, with only 35 per cent of time spent estimated as 
potentially automatable and only 15 percent predicted to be automated” (EIT Health 
2020). Given this, the role of AI has become over-hyped, so to speak, in regard to the 
expectation of a peak in the next 5 to 10 years (as proposed in 2018). 

If we look at the current reality with an eye towards collaboration and partnership 
around these solutions, example AI use cases are present across the entire healthcare 
value chain (chronic care management, self-care/prevention/wellness, care delivery, 
triage and diagnosis, diagnostics, and clinical decision support) and in improving the 
following three main areas:
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Fig. 13.1 AI areas of impact in healthcare (EIT Health 2020) 

1. Population-health management 
2. Operations 
3. Innovation 

Worries exist about AI replacing jobs, but healthcare is a complex ecosystem that 
requires human attention regardless of innovation. Further, the field of medicine 
currently faces a significant workforce gap (and likely will in the future) that AI has 
the potential to help bridge. Indeed, the impact of AI on healthcare workers extends 
far beyond losing or gaining jobs. The greatest changes will be felt in the nature of 
their work, and this presents opportunities for substantially improved patient care, as 
expressed in Fig. 13.1. 

While AI is considered a tool to free doctors and healthcare staff from burden-
some administrative task (estimated to take up to 70% of practitioner time), AI also 
has the potential to enhance several areas of clinical activities that will lead to 
improved care quality and superior patient outcomes: 

– Assisting healthcare workers access patient information 
– Enabling remote monitoring 
– Faster and easier access to knowledge 
– Faster and more accurate diagnostics 
– Facilitates self-care options for patients 

Empowering AI for these solutions is no small task and requires not only training 
and new skills but changing healthcare education as we know it. As stated in a joint



report from EIT Health and McKinsey & Company (2020) about the transformative 
nature of AI: 
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This will all require bringing new activities and skills into the sector, and it will change 
healthcare education – shifting the focus away from memorising facts and moving to 
innovation, entrepreneurship, continuous learning and multidisciplinary working. The big-
gest leap of all will be the need to embed digital and AI skills within healthcare 
organisations – not only for physicians to change the nature of consultations, but for all 
frontline staff to integrate AI into their workflow. This is a significant change in 
organisational culture and capabilities, and one that will necessitate parallel action from 
practitioners, organisations and systems all working together. 

13.1.2 From Inside Out to Outside in: Applying AI 

According to this report “the biggest leap of all will be embedding digital and AI 
skills within healthcare organizations” (EIT Health 2020). Not only will changes 
permeate the day-to-day lives of doctors and frontline staff (integrating AI into 
workflow), but this leap requires significant development in organisational culture 
and in widely collaborative efforts between staff, practitioners, relevant 
organisations, start-ups, and healthcare systems. 

To be reductive, we can simply say that collaboration and partnership in AI hold 
the potential to design artificial intelligence solutions together in a structured 
manner that could improve care pathways, increase efficiency workflow at provider 
level, and result in superior clinical outcomes. An entity alone, however, cannot 
make great headway in AI. For example, Europe, as a whole, ranks well in AI 
research and investment but in reality is limited by fragmentation (region- or 
country-specific approaches). A targeted EIT Health survey even found that “44 
percent of the healthcare professionals had never been involved in the development 
or deployment of an AI solution in their organization” (EIT Health 2020). 

The focus then of this chapter is to shift the perspective. How can we move away 
from hyped interest for a technology like AI and from the business perspective (the 
inside-out approach), and instead towards an outside-in process that prioritises 
healthcare professionals, providers, and patients? 

This shift hones in on the problems of these end users in all aspects of disease 
management and in regard to workflow inefficiencies when moving from hospital-
based to home-based care. Just as importantly, this shift creates space for MedTech 
and established organisations to collaborate from the beginning on meaningful, 
multidisciplinary AI-based innovation, enabling superior outcomes for patients, 
superior UX experience for healthcare professionals, and increased sustainability 
due to effective and widespread introduction.
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13.2 The Power of Design and Open Innovation 

The private sector continues to play a significant role here. Venture capital 
(VC) funding for the top 50 firms in healthcare-related AI has reached $8.5 billion 
(EIT Health 2020). AI has attracted a variety of relevant players, including health 
insurers, start-ups, pharmaceutical and medical device companies, and, as expected, 
big tech. The fastest growth, however, is currently seen in Asia, where consumer-
focused healthcare AI has already taken off. Ping An’s Good Doctor (a visionary, 
unicorn start-up spun off from a large insurer in China) ranks as the leading online 
health management platform with more than 300 million users. 

The different perspectives between the private sector and healthcare 
(HC) professionals, however, can be problematic. Among start-up executives, less 
than 15 per cent considered the input of healthcare professionals as critical during the 
early design phase. On the other side, healthcare professionals generally viewed the 
private sector as holding a minimal or “non-existent” role in aggregating and 
analysing data, providing a secure space for data lakes, or training staff (EIT Health 
2020). The start-up perspective combined with a low involvement of users 
(clinicians, patients, and hospital administration) in the design of AI enabled or 
assisted solutions makes it clear that the different languages spoken in healthcare 
must be harmonised into new pathways of collaboration. 

Another major obstacle for successful implementation of AI solutions is the 
current lack of communication regarding clinical evidence. Healthcare practitioners 
are understandably reluctant to utilise tools related to patient care without under-
standing how an AI solution functions, how data are collected, and if there are biases 
in the algorithms. This is why collaboration with transparency is critical to scaling 
efforts. 

This transparency should extend to final end users as well. Experts in the field 
supported the idea that user-centric design encourages better data: “If AI design 
delivers value to end users, those users are more likely to pay attention to the quality 
of data they contribute, thereby improving the AI and creating a virtuous circle” (EIT 
Health 2020). 

Thus, partnerships between hospital researchers, MedTech start-ups, and VCs 
must be established with a cooperative focus on a human-centred design process that 
applies the principle of value-based healthcare. This focus serves as a blue sheet for 
the challenges being addressed (e.g. clinical needs and/or operational inefficiencies) 
and the methods to solve these challenges or produce superior patient/doctor 
experiences using AI solutions (which by design should be user-friendly and 
scalable within/between organisations). 

13.2.1 A Closer Look: The Need for Meaningful Collaboration 

Data are the foundation for AI solutions, firstly to identify and target problems 
(critical needs and/or operational inefficiencies), and secondly to develop and train



algorithms. Meaningful collaboration across start-ups and established organisations 
is hugely critical to collect and mobilise quality data into valuable solutions. 
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How do I collect and 
prepare my data? 

• Collection from clinical systems
• Data preparation

• Normalization
• Data aggregation
• Ground truth generation

• Understanding methods
   for model creation

• Validating derived assets in
  operational context

• Clinical & operational integration
• Health monitoring
• Scaling

• Creating an ecosystem 

Data 
acquisition 

Data 
integration 

Insights 
generation 

Clinical 
validation 

Deployment 
and testing 

Share 
(optional) 

Which method to 
train and validate is 
appropriate? 

How do I deploy 
without disruption? 

Fig. 13.2 Philip’s framework for AI-enabled solutions development/deployment (Huffman 2018) 

To understand the nuance of this collaboration need from start to finish, we offer a 
working example of the AI development process. Taking a very vested interest in AI, 
Philips leadership has finalised a framework for AI solutions from data acquisition to 
deployment to testing as shown in Fig. 13.2 (Huffman 2018). 

As is suggested by this framework, involving healthcare providers and clinicians 
is at the core of the partnership. Further, this involvement must be present from the 
beginning; otherwise it will likely create “major barriers to addressing quality issues 
early on and [to] adopting solutions at scale” (EIT Health 2020). 

Additionally, there are several other areas and roles (non-vertically integrated at 
HC provider level) necessary for effective collaboration. According to the 
EIT/McKinsey report (2020):
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Clinical engagement will also be required in product leadership, in order to determine the 
contribution of AI-based solutions within broader clinical protocols. Designers specializing 
in human-machine interactions on clinical decision making will help create new workflows 
that integrate AI. Data architects will be critical in defining how to record, store and structure 
clinical data so that algorithms can deliver insights, while leaders in data governance and 
data ethics will also play vital roles. In other data-rich areas, such as genomics, new 
professionals would include ‘hybrid’ roles, such as clinical bioinformaticians, specialists 
in genomic medicine, and genomic counsellors. Institutions will have to develop teams with 
expertise in partnering with, procuring, and implementing AI products that have been 
developed or pioneered by other institutions. Orchestrating the introduction of new 
specializations coming from data science and engineering within healthcare delivery will 
become a critical skill in itself. 

While these AI solutions seem to create entirely new ecosystem within them-
selves, we must interweave existing areas for integration and further development 
purposes. Many of the technical skills and innovative areas mentioned in the report 
are ones already found in MedTech start-ups today. However, while these start-ups 
have the vision for an AI solution, its integration, and its future, what they lack is the 
data to validate their vision and the components to fine-tune concepts with patients 
(in their day-to-day real life) and in real-world healthcare delivery. 

Regardless of the need to collaborate, there are different advantages and 
drawbacks for each stakeholder involved in partnerships (large organisations, 
healthcare groups, and the start-ups with the technical skills to create health solutions 
enabled by AI algorithms). In 2018, the World Economic Forum (WEF) validated 
and published a white paper entitled “Collaboration between start-ups and 
Corporates: A practical Guide for mutual understanding”, which aimed to provide 
guidelines that would accelerate collaboration between the various stakeholders. 
This chapter offers insights into the field of health and the challenges for those 
involved in developing AI-enabled solutions. The authors firmly believe, however, if 
these challenges are overcome, it will lead to transformational health solutions and 
personalised medicines by emerging technological trends, the most relevant of 
which is AI. 

13.2.2 The Advantages 

As iterated in the WEF paper (2018) and seen in Fig. 13.3, there are different benefits 
for each stakeholder in start-up–corporate partnership.

Advantages from the start-up perspective: 

– Revenues and independence from external capital (VC) 
– Success story for the future sales 
– Scalable customer base (especially in case of collaboration with a large group of 

hospitals) 
– Riskless internationalisation 
– Attractive retail channel
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Fig. 13.3 Advantages of collaboration between corporates/established organisations and start-ups 
(WEF 2018)

– Access to proprietary asset 
– Market knowledge and mentoring 

Advantages from the corporate and healthcare provider/hospital group 
perspective: 

– External Innovation and disruption 
– More innovative suppliers 
– Customer focus 
– Entrepreneurial and more agile culture 
– Staying on top of market development 
– New revenue streams and business lines 

While the advantages are indeed attractive, the challenges can act as failure-
causing obstacles. For example, one challenge start-ups often face is gaining support 
of the “decision-makers, policymakers, and economic buyers” during early phases. 
Instead of attracting attention based on patient outcomes and return of investment 
(ROI), many start-ups focus on superficial features or how the technology works, 
which are actually less important factors for decision-makers (i.e. corporate and 
organisations) (WEF 2018). 

13.2.3 The Challenges 

Next, we examine the challenges to be overcome to create successful start-up– 
corporate partnership (WEF 2018) (also seen in Fig. 13.4 below). 

Challenges from the start-up perspective:
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Fig. 13.4 Challenges faced in collaborative efforts between corporates/established organisations 
and start-ups (WEF 2018) 

– Duration of sales cycle 
– Client’s protective middle management 
– Insufficient resources 
– Chasm between the proof-of-concept and real projects 
– Trust without references 
– Top-down approach 

Challenges from the corporate and healthcare provider/hospital group 
perspective: 

– Managerial support 
– Not-invented-here problem 
– Siloed approach (i.e. between hospital departments, administration, IT) 
– Understanding change 
– Innovative organisation 

13.2.4 Beyond the Challenges: Understanding the Risks 

Projects that possess the potential to radically change personalised and precision 
medicine through the use of AI are not without risks, and the nature of these risks is 
different for each stakeholder in a collaboration. 

First, we can look from the view of an innovative and early-stage start-up or 
MedTech company. Without additional financing, or even if VC-mediated, the



window of time to identify and gain new customers or new revenue sources is 
limited. This can lead to poor choices in collaborative partners, and consequently 
being narrowed into developing siloed products without scalability, wide usage, or 
room to grow. 
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Another risk, start-ups can encounter delays due to the bureaucratic and adminis-
trative complexity present in larger organisations, which can drain money and 
energy/efforts. These risks are especially important to be aware of and to mitigate 
because time to scale remains a pivotal factor in success or failure. Solutions require 
quick scalability, but many also require certification of safety and validation of 
impact based on clinical research. Considerations of time stand out as critical 
elements, and start-ups can risk losing their agility and failure-culture mindset 
when working with larger, slower-moving organisations. 

Next, we observe the perspective of large companies, by which we mean complex 
organisations of various kinds (large hospital groups, government bodies, pharma-
ceutical companies, or other players in the healthcare system) that have the ambition 
to use AI for better personalised and precision medicine as well as for increased 
workflow efficiency and resource optimisation (please note: this includes 
optimisation of resources, not reduction in costs to treat/cure specific conditions). 
For these large organisations, the phrase “safety first” is indeed first and maintaining 
company reputation runs a close second. A corporate or large group must evaluate 
upfront every aspect that could lead, both in the short and long term, to potential 
reputational damage deriving from the development of an AI solution. Research and 
development of any solution in healthcare, AI or otherwise, is by its nature expen-
sive not only for direct development costs but also for validation, certification, and 
scaling resources. Despite planning, and as evident from the number currently on the 
market, not all solutions are truly ready. If this is the case, corporates and 
organisations risk substantial or total investment losses. This is acknowledged as 
one of the great paradigms of innovation, which must always be taken into 
consideration. 

Organisations may not be ready for this paradigm. There is always risk in 
innovation, in a transformational unknown. However, acceptance of this unknown 
(which is part of the start-up mindset) is generally at odds with the business models 
of many corporations. Whether employees are too siloed to understand the impor-
tance of an AI project, whether they worry too much about failure, or whether they 
feel threatened by new processes or a business culture that encourages rocking the 
status quo, it can take a large leap in mentality for both leadership and employees. 
This general uncertainty can be mitigated by understanding the business model first 
and foremost (how a solution will generate value for all stakeholders). However, lack 
of the right mindset and lack of readiness to adopt or adapt the solution and its 
business model “inherently lead to a fruitless collaboration,” otherwise known as 
maturity misalignment (WEF 2018). For the full risk comparison, see Fig. 13.5. 

Learning the benefits, challenges, and risks is only the first step. As is clear and to 
put it simply, it is not easy to create and structure an effective collaboration between 
several complex parts (small and medium-sized enterprises in MedTech, VC, HC 
organisation, clinicians, and patients). In conjunction with the benefits, risks, and



challenges, the following themes need to be addressed by all players in the 
healthcare ecosystem in order to build, validate, and scale AI solutions. 
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Fig. 13.5 Risks in collaboration for corporates and start-ups (WEF 2018) 

– Quality of the partnership 
– Cross-contamination of skills and education (a guide for mutual understanding 

between corporate, start-up, and HC organisations) 
– Data quality, governance, security, and interoperability 
– Working at scale 
– Risk management and regulations 
– Funding 
– Intellectual properties (IP) and future monetisation models present in the term 

sheet agreement between all the parties. 

It is quite easy to discuss these in theory, but effectively addressing them in 
practice is not. This leads us back to the question of how innovations in personalised 
medicine and AI can happen at the intersection of start-ups and corporates. As 
previously clarified, these two players cannot be the only stakeholders at the 
intersection. However, for an effective multidisciplinary collaboration to succeed 
in creating high-impact and sustainable solutions, it needs to make sense from a 
business point of view. 

After investigating and observing various collaboration frameworks from several 
real-life use cases involving AI-based solutions and considering theoretical models, 
we have identified the most responsive solution to that pressing question: “How can 
we develop an AI-driven biomedical product from conception to market launch?”
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13.3 A Decision Perspective Framework 

The decision perspective framework provides clear decision-making junctions and 
marks where agreement is needed between parties (founders, investors, and other 
key stakeholders). This framework was recently published by David Higgins (Berlin 
Institute of Health) and Vince L. Madai, (Charitè Lab for Artificial Intelligence) in an 
article entitled From Bit to Bedside: A practical Framework for Artificial Intelli-
gence Product Development in Healthcare, which aimed to close the translational 
gap that currently restricts deployment of AI/machine learning (ML)-based tools. 
Despite the innovative progress of the tools themselves, implementation continues to 
drag behind. The authors of this chapter go so far as to classify this gap as a “major 
public health challenge,” and hope that the framework will guide digital health 
entrepreneurs in their efforts and resource allocation. 

13.3.1 Framework for Artificial Intelligence Clinical Product 
Development 

This decision perspective framework contains three consecutive phases in each of 
the four domains. We will briefly discuss both the phases and the domains. 

13.3.1.1 Phases 
1. Form. This phase encompasses forming a small group around a solution, 

investigating its feasibility, and formulating its journey to market. The last of 
which requires not only validating its clinical need but “understanding of regu-
latory and clinical validation paths” (Higgins and Madai 2020). 

2. Build. This phase involves the newly formed, cross-functional team offering 
sufficient time/efforts and committing to an 18-month to 5-years collaboration. 
With this team in place, they then work towards building a solution that is solid 
from a clinical and regulatory standpoint. 

3. Launch. Solutions must pass certification and be proven effective through clinical 
studies. The end goal of this phase is readiness for product deployment. 

13.3.1.2 Domains 
Next, we examine the domains to be taken into consideration to manage expectations 
between the different stakeholders in an AI solution collaboration. According to 
Higgins and Madai, the framework should be applied to the following four domains 
(2020): 

– Clinical domain (clinical validation) 
– Regulatory domain 
– Data domain 
– Algorithm domain (or model development)
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Fig. 13.6 The clinical domain centres around validation of clinical needs (Higgins and Madai 
2020, originally published under the terms of the Creative Commons Attribution License; # 2020 
The Authors) 

Clinical Domain (Clinical Validation of an AI Product) 
The clinical domain connects use cases of a solution with real-world needs in the 
clinical setting, and involves continual validation of these needs throughout project 
development. Usability and interoperability also come into play here. See details in 
Fig. 13.6.



184 F. Bellina and S. Jungmann

Regulatory Domain 
AI-enabled healthcare products will likely be subject to medical device requirements 
and regulations. In this domain, entrepreneurs and developers need to take the steps 
to fully comprehend and comply with regulatory processes in order to minimise risks 
(Fig. 13.7). 

Data Domain 
As is clear, the right data is a make-or-break condition in the development of an AI 
solution. This domain concerns obtaining the right data, access to that data, and 
ensuring data sources are sufficient for certification and clinical validation, as shown 
in Fig. 13.8. 

Algorithm Domain, or Model Development 
This domain addresses the choice of AI methods, i.e. the algorithms. Special 
attention should be given to amount of data and the scalability and biases of 
algorithms. Please note in Fig. 13.9 below that considerations for the right collabo-
ration between different parties (partner clinics and pilot environments) are essential 
in this framework. 

13.4 Discussion and Conclusion 

In conclusion, we can say that there is no magic formula or standard rules to activate 
successful collaborations on developing a biomedical product based on artificial 
intelligence from conception to market launch. If that had been the case, artificial 
intelligence in the life sciences would be much more widespread. However, we still 
have a lot to do and many challenges to overcome. One thing, however, is clear: like 
in other areas of healthcare, we need methodological rigour and incremental scien-
tific research grounded in robust evidence to which we can apply new technologies. 
Our success will hinge on our ability to overcome the challenges that all involved 
parties face in the collaborative project. We need to proactively address the risks that 
slow down or prevent the birth of promising ideas of transformative healthcare 
solutions and personalised treatments. 

Start-ups and incumbents cannot be the only stakeholders at the crossroads. To 
build an effective multidisciplinary collaboration from a business design point of 
view, they must make sense not only in the beginning but also throughout their 
lifecycle. The best way to achieve that is by keeping the eyes close on the ever-
evolving needs of doctors and patients who are ultimately the users who will 
co-design and adopt these new solutions. A project therefore, like experiments, 
has the imperative to start small but already with the idea of being scalable. Toward 
this end, dynamic collaboration agreements based on incremental milestones make 
the difference. In other words: don’t overcommit to certain goals early on and 
forcibly stick to it. Instead, create a structure that allows for flexibility as things 
evolve. This means making agreements revisable and flexible and combining with a 
well-defined exit strategy to avoid wasting resources and losing focus, which is, of
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Fig. 13.7 Regulatory domain involves proactively avoiding pitfalls of high regulation (Higgins 
and Madai 2020, originally published under the terms of the Creative Commons Attribution 
License; # 2020 The Authors)



course, the need of the clinicians and patients. However, to the people and 
organisations involved, there should also be a palpable benefit that justifies 
everybody’s investments (financial, reputational, or otherwise).
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Fig. 13.8 Data domain focuses on the quality and applicability of data (Higgins and Madai 2020, 
originally published under the terms of the Creative Commons Attribution License; # 2020 The 
Authors)
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Fig. 13.9 Algorithm development requires an interdisciplinary approach and constant attention to 
assumptions and biases (Higgins and Madai 2020, originally published under the terms of the 
Creative Commons Attribution License; # 2020 The Authors) 

We recommend adopting a long-term view rather than rushing to deliver a 
solution. Setting the right foundation means creating milestones based on clinical 
evidence and efficiency to speed up stop-and-go decisions. It also reduces efforts and 
capital needed to scale the solution further down the road. Therefore, it is perfectly 
fine to stop or change the development of one project and bringing the insights into 
the others. Too often, managers cling to existing projects because they would view it



as an admittance of failure. Yet, this is part of the exploration process and allows us 
to focus energies on where the benefits are greatest. 
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However, before you get there, the question is: “How to start if I have a clinical 
need and an idea to solve it?” Spending enough time on the analysis of the 
multidisciplinary skills necessary for future implementation and guaranteeing a 
constant commitment to functional milestones is what makes a difference for 
engagement and speed. 

If a project has potential, which should be evaluated early on, it is also right to 
agree on how future revenues will be split between the parties. It is tempting to leave 
this to the end, but this might lead to frustrations and unearth misalignment when 
stakes are already high. Doing it early might help get everyone to walk the extra 
mile. The evolutionary and incremental dynamics of collaborations are therefore 
fundamental and each domain expert (e.g. MedTech lawyers or privacy experts or 
Chief Medical Officer) will have to set up a decision-making governance body and 
analyse the milestones well. 

This governance body might also have expand the network of collaborations as 
the evidence and solidity of the solution grow. This is important to expand the 
database and the strength of the evidence and submit everything to the regulatory 
bodies and on the other hand to develop a business model aimed at entering into 
commercial agreements to support the continuous growth of the solution as well as 
the evolution of a digital AI solution. After all, it is not certain that the assets and 
skills with which we started at the beginning remain stable and are sufficient over 
time, because the needs during the life cycle of a product change; or its intended use 
will evolve. To make the parallel with pharmaceutical research, an oncological drug 
can be born with an indication in the colon but then also have breast and hepatocel-
lular carcinoma or vice versa. 

Our hope is that this chapter will inspire successful use cases but above all 
examples and experiments of fast and creative collaborations. 
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Abstract 

Artificial intelligence (AI)-augmented medical device technology provides an 
important opportunity to optimize the detection, diagnosis, and treatment out-
come for individual patients. By combining AI-augmented medical devices with 
closed loop feedback from continuous sensor measurements performed on the 
patient, AI-augmented Medtech has the potential to deliver truly personalized 
patient treatment. This chapter provides an overview of common AI definitions 
and highlights current misconceptions of artificial intelligence. It describes ongo-
ing efforts by regulators to develop a regulatory framework for medical software 
and discusses a classification for AI learning schemes. Usage examples providing 
added patient value, in observation, visual analysis, diagnostics, or treatment, are 
provided. Data sources to train AI are discussed as well as data quality, a critical 
prerequisite for the development of safe and effective medical devices augmented 
by AI. The ethical aspects of AI in healthcare are presented as well as the changes 
and adaptations envisaged for the medical profession and physician education. 
The chapter concludes that the field of personalized AI-augmented Medtech will 
be one of the core applications for AI in healthcare and is expected to grow 
continuously over the next years, despite potential challenges such as product 
liability and data privacy regulations. 
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14.1 A Definition of Personalized Medtech 

The term “personalized medical devices” has been defined by the International 
Medical Device Regulators Forum (2018), as “a generic term to describe any of 
the types of medical devices that are intended for a particular individual, which 
could either be a custom-made, patient-matched, or adaptable medical device.” 
Manufacturing technologies such as additive and subtractive manufacturing have 
brought the classical custom-made devices within reach of specific patients on a 
much greater scale and IMDRF (2020) issued a guidance document on regulatory 
pathways for different types of personalized medical devices. However, in this 
context the term personalized is different from the meaning when used to define 
personalized medicines, as the term personalized medical devices refers to hardware 
devices that are matched to each individual patient based on their physical anatomy 
or adapted to suit an individual patient’s specific anatomic-physiologic features prior 
to use. 

This chapter will use the term AI-augmented Medtech for either medical devices 
that incorporate AI software, so-called Software in a Medical Device (SiMD), or for 
AI software used as a stand-alone medical device, so-called Software as a Medical 
Device (SaMD). 

14.2 A Definition of Artificial Intelligence for Medtech 
Applications 

Artificial intelligence (AI) is already ubiquitous today, even if many people are 
currently confronted with it unconsciously in their everyday lives—whether through 
chatbots, targeted advertising, smart home devices, or other means. AI in many 
industries is already causing a paradigm shift today. The use of new AI applications 
has a profound impact on a multitude of areas within business and public 
organizations. Slowly but surely, AI is also impacting healthcare. In many cases, 
AI can be utilized to provide added value if well specified and when developed on a 
valid data basis. 

In addition to AI, the medical domain also has embarked on developing machine 
learning-driven approaches to speed up reproducible processes and steps in patient 
management and care (e.g., assisted imaging analysis in radiology). 

Overall, progress to date is still limited—the main hurdles are gaps in the 
regulatory framework, lack of regulatory clarity and understanding, and the caveat 
raised by physicians that not knowing what AI means hampers its use. These hurdles 
tend to delay a breakthrough in adopting AI in medicine and Medtech. 

In general, AI refers to the attempt to reproduce complex decision-making 
structures (of humans). It is often described as a system that interacts independently 
with its environment and uses the collected and aggregated information to process/ 
solve complex problems. The core attribute of AI is its inherent learning ability. In 
the medical area, AI is being used in medical devices, medicines, complex 
workflows, and non-linear decision-making processes. Compared to algorithmic



approaches of solving problems, AI applications are not defined by the exact series 
of procedures/steps that must be solved, but instead by defining the desired outcome. 
The algorithm then “trains” based on real-life data to identify the most suitable and 
efficient way to come to a desired clinical outcome. This is contrary to a procedural 
approach which relies on exact input-output relations and a well-defined transition. 
This must be ensured in a different way using AI approaches. 
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Despite the apparent differences of AI’s learning behavior, the term AI is often 
being used wrongly for any algorithm that solves a complex or not easy to describe 
problem – independent from the actual solution approach. Kaplan and Haenlein 
(2020) define AI as “the ability of a system to correctly interpret external data, learn 
from that data, and use those insights to achieve specific goals and tasks through 
flexible adaptation.” 

A more general definition of AI, encompassing all product groups including 
medical devices and other healthcare products, and that also includes the AI 
techniques and sub-disciplines that are currently used to build AI systems, was 
provided by the High-Level Expert Group on Artificial Intelligence (2019a). The 
definition below is a succinct version of the AI-HLEG definition, not including the 
current scientific techniques and approaches as these are described in detail in 
section 14.6: 

Artificial Intelligence (AI) refers to human-designed systems that act on a complex goal in 
the physical or digital world by perceiving their environment, interpreting the structured or 
unstructured data they collect, reasoning about the knowledge derived from that data, and 
deciding the best action(s) (according to predefined parameters) to achieve the given goal. AI 
systems can also be designed to learn to adapt their behavior by analyzing how the 
environment is affected by their past actions. 

As to machine learning-enabled medical devices (MLMD), the International 
Medical Device Regulators Forum (IMDRF) (2021) issued a draft definition for 
MLMD. At the time of writing this chapter, the IMDRF proposed document is still 
under public consultation and may be amended based on comments received. 
However, as the authors state in the introduction of this document, the purpose of 
this document is to establish internationally accepted terms and definitions across the 
medical device Total Product Life Cycle to promote consistency, support global 
harmonization efforts, and provide a foundation for the development of future 
guidelines related to MLMD. The IMDRF definition of MLMD, as provided in the 
proposed document, is “A medical device that uses machine learning, in part or in 
whole, to achieve its intended medical purpose.” The document includes the stan-
dard definition of a medical device with some notes, e.g., to clarify that in some 
jurisdictions, products are considered medical devices but not in others, and it 
includes definitions for different machine learning approaches.



194 D. Neumann et al.

14.3 Misconceptions of Artificial Intelligence 

Even though healthcare has adopted AI technology in medical devices, workflows, 
and decision-making processes, there are still misconceptions in the operational 
adoption of AI that may hamper or delay innovative activities and projects. We 
present here, without deeper discussion, popular misconceptions in the usage and 
implementation of AI. 

High complexity in the use if AI applications is an often-expressed remark 
hindering its implementation. Considering human-centric innovations, such as 
Amazon’s Alexa or Apple’s Siri, which do not need any kind of training or 
additional software, these are applications that are easy to adopt. Today, there are 
several applications which serve as invisible AI in medical practices, as many are 
naturally integrated with electronic health records (EHRs). Examples are products 
produced by CareCloud or Athenahealth (https://www.athenahealth.com/), 
healthcare technology companies that market a suite of proprietary, cloud-based 
solutions for healthcare organizations. 

High cost of investment is also a known misconception, resulting in an aversion of 
investment even before the development of a proper business case. Many AI-focused 
services (e.g., appointments, invoices/billing) have adapted and either provide 
subscriptions for a standard fee, or apply usage-based billing, or charge customers 
a standard subscription fee for a plan with a set usage limit. The risks of inaccurate 
billing are still a challenge in this field and the large amount of data involved is prime 
territory for AI applications. Companies are developing machine learning [ML] and 
natural language processing (NLP) to automatically recognize and extract data from 
medical documents for proper coding and billing for medical applications impacting 
the patient directly. 

Replacement of human employment is a third issue raised in the adoption of AI 
concepts and applications. Creativity, patient empathy, compassion, understanding, 
honesty, competence, commitment, and humanity are profoundly human qualities 
required of health professionals. Such distinctively human qualities and abilities can 
never be replaced in the medical field. And for end-of-life situations, it is almost 
impossible to imagine compassionate care being delivered in a hospital by 
algorithms. Instead, bots assist with time-consuming and repetitive activities, freeing 
up skills of human resources for more useful work. Rather than replacing the human 
component of healthcare delivery, AI will become a vital tool to improve efficiency 
of care and consequently freeing up time for human caretakers to improve patient 
satisfaction. Improving patient satisfaction is key to building a strong patient– 
provider relationship, boosting patient engagement, and improving the overall health 
outcomes. As Davenport and Kalakota (2019) stated: “Perhaps the only healthcare 
providers who will lose their jobs over time may be those who refuse to work 
alongside artificial intelligence.”

https://www.athenahealth.com/
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14.4 Toward a Regulatory Framework for AI in MedTech 

As technology continues to advance every aspect of healthcare, software 
incorporating AI, and specifically the subset of AI known as ML, has become an 
important part of an increasing number of medical devices. One of the greatest 
potential benefits of ML resides in its ability to create new and important insights 
from the vast amount of data generated during the delivery of healthcare every day. 

Over the past decade, the US FDA has reviewed and authorized a growing 
number of devices legally marketed (via 510(k) clearance, granted De Novo request, 
or approved PMA) with ML across many different fields of medicine—and expects 
this trend to continue. Over time, the FDA has issued numerous non-binding 
guidance documents on various software-related issues and made several attempts 
to develop rules for medical device software; however, the FDA has not yet released 
a separate regulatory framework, nor classifications, for software devices. It should 
be noted that this includes hardware medical devices with embedded software, 
so-called SiMD as well as SaMD, as defined by the IMDRF, who formed the 
Software as a Medical Device Working Group (SaMD WG) to develop guidance 
supporting innovation and timely access to safe and effective Software as a Medical 
Device globally. The term “Software as a Medical Device” is defined by IMDRF as 
“software intended to be used for one or more medical purposes that perform these 
purposes without being part of a hardware medical device.” 

Medical device guidance on software was issued by the US FDA for public 
consultation on November 4, 2021 (FDA 2021a). This guidance document 
was intended to provide information regarding the recommended documentation 
sponsors should include in premarket submissions for the FDA’s evaluation of the 
safety and effectiveness of device software functions, which are functions that meet 
the definition of a device under section 201(h) of the Federal Food, Drug, and 
Cosmetic Act (FD&C Act). The recommendations in this guidance document pertain 
to device software functions, SiMD and SaMD. As with all guidance, it does not 
establish any rights for any person and is not binding on the FDA or the public. One 
can use an alternative approach if it satisfies the requirements of the applicable 
statutes and regulations, in this case of the FDA. To discuss an alternative approach, 
one can contact the FDA staff or Office responsible for this guidance. 

Muehlematter et al. (2021) searched governmental and non-governmental 
databases and identified 222 devices approved in the USA and 240 devices in 
Europe. They highlighted that the number of approved AI/ML-based devices has 
increased substantially since 2015, with many being approved for use in radiology. 
Only very few devices were qualified as high-risk devices. As stated above, in the 
US, EU, or any other jurisdiction, there is currently no special regulation for medical 
devices with AI-based software components; however, this may soon change. 
Considering the potential of AI and machine learning-based software to transform 
healthcare and have individual patients benefit from the iterative improvement of 
their therapy that such learning-based software could offer, there is a critical need for 
a regulatory framework to develop such innovations. In response to this need, the US 
FDA published on April 2, 2019, a paper entitled Proposed Regulatory Framework



for Modifications to AI/ML-based SaMD – Discussion Paper and Request for 
Feedback. This proposed regulatory framework will be briefly discussed in the 
section AI Learning Schemes further down in this chapter. 
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In the current absence of a regulatory framework, all products that meet 
the definition of a medical device in their intended purpose are required to fulfill 
the requirements for a certain market related to their classification. For example, in 
the EU, the typical requirement for medical devices is defined in the EU Medical 
Device Regulation, (EU) 2017/745 in Annex I, Chapter 1, Clause 1 of the MDR: 

Devices shall achieve the performance intended by their manufacturer and shall be designed 
and manufactured in such a way that, during normal conditions of use, they are suitable for 
their intended purpose. They shall be safe and effective and shall not compromise the clinical 
condition or the safety of patients, or the safety and health of users or, where applicable, 
other persons, provided that any risks which may be associated with their use constitute 
acceptable risks when weighed against the benefits to the patient and are compatible with a 
high level of protection of health and safety, taking into account the generally acknowledged 
state of the art. 

The same regulation states in Clause 2 that risks must be reduced as far as 
possible without adversely affecting the benefit–risk ratio. Consequently, the MDR 
requires the manufacturer to demonstrate for any medical device, with or without 
software incorporated, that: 

1. The performance/effectiveness of the product is achieved during normal 
conditions as designated by its intended purpose, and that the use of the product 
does not compromise the clinical condition or the safety of the patient, user, or 
any other person; hence the device should ensure reliability, defined as the 
probability that an item will perform a required function without failure under 
stated conditions for a specified period of time. 

2. Risks must be reduced as far as possible without adversely affecting the clinical 
benefit–risk ratio; hence safety must be ensured without compromising clinical 
performance. 

Software, incorporated in either a medical device or software that itself is a 
device, hence a SaMD, needs to demonstrate compliance with an additional require-
ment: repeatability. This is stated in Annex I, Chapter 2, Clause 17.1. 

Devices that incorporate electronic programmable systems, including software, or software 
that are devices in themselves, shall be designed to ensure repeatability, reliability, and 
performance in line with their intended use. In the event of a single fault condition, 
appropriate means shall be adopted to eliminate or reduce as far as possible consequent 
risks or impairment of performance. 

Finding your way through the regulations, state-of-the-art standards, and 
interpretations applicable to health software, and in particular, SaMD, can be 
challenging. A recommended reference book is Software as a Medical Device, 
Regulatory and Market Access Implications (Cobbaert and Bos 2021). This book,



published in 2021 by the Regulatory Affairs Professionals Society (RAPS), offers a 
guide through this complex landscape and provides the expertise of leading software 
experts. 
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In April 2021, the EU Commission published a proposal for a Regulation laying 
down harmonized rules on artificial intelligence (Artificial Intelligence Act) (2021). 
The proposal sets harmonized rules for the development, placement on the market, 
and use of AI systems in the Union following a proportionate risk-based approach. 
The draft regulation provides core artificial intelligence rules that apply to all 
industries, hence including the medical technology industry. It proposes a single 
future-proof definition of AI. The proposal lays down a risk methodology to define 
“high-risk” AI systems that pose significant risks to the health and safety or 
fundamental rights of persons. Those AI systems will have to comply with a set of 
horizontal mandatory requirements for trustworthy AI and follow conformity assess-
ment procedures before those systems can be placed on the Union market. As 
regards high-risk AI systems which are safety components of products, this proposal 
will be integrated into the existing sectoral safety legislation. As regards high-risk AI 
systems related to products covered by the New Legislative Framework (NLF) 
legislation (e.g., machinery, medical devices, toys), the requirements for AI systems 
set out in this proposal will be checked as part of the existing conformity assessment 
procedures under the relevant NLF legislation. 

As this draft Regulation is still a proposal, this chapter will not discuss the 
content, but this will be a very critical Regulation that will regulate the development 
and marketing in the EU of AI for medical technology and it will depend on how this 
proposal will be integrated into the existing sectoral safety legislation for medical 
devices. 

14.5 AI Learning Schemes and Regulatory Compliance 

The AI learning scheme applied by a medical device with AI-based software 
components should determine how to satisfy the regulatory requirements presented 
in the previous paragraph. 

14.5.1 AI Learning Schemes 

To outline the impact of the regulatory requirements, a classification of different AI 
learning schemes, as introduced by Cobbaert (2021), is laid out below. 

14.5.1.1 Locked Learning Scheme 
When a locked learning scheme is applied, learning data are collected in the field and 
used during the development or update of the product to train the AI. The product is 
released with a fixed model that is not updated in the field. The only possible way to 
change an output of the AI to a given set of inputs is by changing the working point



on the operating curve, which will repeatedly yield the same results for the same 
setting and the same input. 
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14.5.1.2 Discrete Learning Scheme 
A discrete learning scheme allows a medical device that is released with a starting 
model to be updated in the field with real-world data collected during usage at certain 
points in time based on a qualified set of in-field training data. For this purpose, 
either the health delivery organization or the manufacturer performs quality assur-
ance measures that the model, updated based on the real-world data, satisfies the 
performance that is designated by its intended use while performing adequately, 
without risk of bias or nonergodicity (cf. 14.9.1 Data sources), on the target popula-
tion of the manufacturer. The quality assurance mechanisms may also be performed 
automatically. It can be summarized that the update, hence the change, occurs within 
the intended use, and is restricted by predefined change boundaries, and is executed 
according to the manufacturer’s algorithm change protocol (ACP), a protocol that 
explains how the algorithm will learn and change while remaining safe and effective, 
as intended by the manufacturer. 

14.5.1.3 Continuous Learning Scheme 
If a continuous learning scheme is applied, the product is released with a model as a 
starting point that is updated in the field based on training data collected during 
usage. Changes in the training data lead to a re-learning of model and therefore the 
output of the AI may verify over time with the same input. It is not guaranteed that 
the performance, hence effectiveness and safety, as designated by the intended use, 
can be achieved after learning. In their proposed regulatory framework, the FDA 
uses the term Good Machine Learning Practice (GMLP) to describe a set of AI/ML 
best practices and standards that should ensure the safety and effectiveness of such 
devices all along through post-market performance. 

14.5.2 Regulatory Compliance 

If a locked learning scheme is applied, the generation of evidence that demonstrates 
the fulfillment of the requirement is not different from any other medical device that 
is not incorporating AI-based software components as the performance in the field is 
predetermined. 

The question is how to evaluate and monitor a software product that applies a 
non-locked learning scheme and where modifications to the SaMD occur during the 
post-market phase. Considering the potential of AI and machine learning-based 
software to transform healthcare and have individual patients benefit from the 
iterative improvement of their therapy that such learning-based software could 
offer, there is a critical need for a regulatory framework and guidance to develop 
such innovations. As mentioned above, in response to this need, the US FDA 
published a paper entitled “Proposed Regulatory Framework for Modifications to 
AI/ML-based SaMD”—Discussion Paper and Request for Feedback (2019). This



paper describes the FDA’s foundation for a potential approach to premarket review 
for AI and machine learning-driven software modifications, as the FDA’s traditional 
medical device regulation was not designed for continuous learning scheme 
AI-based software components. The FDA’s idea for a tailored regulatory framework 
that can handle these types of AI components relies on IMDRF’s risk categorization 
principles for SaMD, the FDA’s benefit–risk framework as well as the risk manage-
ment principles described in the software modifications guidance, and the 
organization-based total product lifecycle approach. 
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As part of this proposed framework, the FDA described a “Predetermined Change 
Control Plan” in premarket submissions. This plan would include the types of 
anticipated modifications (SaMD Pre-Specifications) and the associated methodol-
ogy being used to implement those changes in a controlled manner that manages risk 
to patients, referred to as the Algorithm Change Protocol (ACP). If such a 
predetermined learning scheme is applied, the initial generation of evidence is 
similar as for products that use a locked learning scheme. As the APC and the 
change boundaries are predetermined and included in the initial premarket submis-
sion, one could expect a reasonable assurance of safety and effectiveness while 
benefitting from the iterative improvement of performance and/or safety of the 
medical device, and this to the ultimate benefit of the individual patient, provided 
the manufacturer that performs the qualification of the changes adheres to the ACP 
and change boundaries. In principle, this is like calibrations that are currently 
performed in the field from service technicians during service and maintenance. 

For a continuous learning scheme, the challenge is how to demonstrate that the 
performance and safety of the product remains achieved over time and that after 
continuous learning the effectiveness and safety of the patient remains as intended 
by the manufacturer. This kind of dynamic change is not a recognized approach 
within the current regulatory frameworks and it will be very interesting to see how 
the FDA will approach this under the proposed regulatory framework as without a 
specific regulatory framework for a medical device that incorporates a continuous 
learning-based software, the effectiveness and safety of such medical devices may 
only be achieved if qualified personnel will act on the patient based on the output of 
the system and monitor the effectiveness and safety of such action. In addition, the 
estimation and evaluation of the risk during normal use and of potential misuse may 
become very complex. In their proposed regulatory framework, the FDA uses the 
term Good Machine Learning Practice (GMLP) to describe a set of AI/ML best 
practices and standards and announced to be actively collaborating with other 
national and international stakeholders on standardization efforts in support of the 
development of GMLP. 

AI and machine learning-based software have the potential to transform 
healthcare and offer individual patients the benefit of the iterative improvement of 
their therapy that such learning-based software could offer. Ultimately, AI and 
machine learning-based software could contribute to the development of truly 
personalized medical device treatment. However, as mentioned earlier, there is a 
critical need for a regulatory framework to develop such innovations and industry



stakeholders are looking forward to collaborating with FDA and other regulatory 
bodies on the development and implementation of such a framework. 
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14.6 AI Technology Overview 

As pointed out earlier in this chapter, artificial intelligence has two defining criteria: 
autonomy and adaptability. Although they help with differentiating from algorithmic 
and procedural technologies, they are not sufficient to cover potentials of federated 
learning and rising demands to data efficiency and generalization. Additionally, 
understanding why an AI application has delivered a specific outcome is not always 
understood and this is often discussed, sometimes (Goebel et al. 2018) ironically 
referring to the number 42.1 

The European Commission’s High-Level Expert Group on Artificial Intelligence 
(HLEG AI 2019a) differentiates the umbrella term artificial intelligence into tech-
nique groups which themselves are again umbrella terms for sub-disciplines and 
techniques. These technical groups and some of the sub-disciplines are: 

1. Reasoning and decision making: 
(a) Knowledge representation—transform data to knowledge; how to best model 

knowledge 
(b) Reasoning—making inferences 
(c) Planning and scheduling 
(d) Searching through a large set of solutions 
(e) Optimization among all possible solutions 
(f) Decide what action to take 

2. Learning: 
(a) Machine learning approaches: 

Supervised learning 
Unsupervised learning 
Reinforcement learning 

(b) Machine learning techniques: 
Neural networks, deep learning, decision trees, and other learning 

technique 
3. Robotics 

The classification of different AI learning schemes by Cobbaert (2021) will 
support the discussion on the development of an AI regulatory pathway, as well as 
discussions on ethics, regulatory oversight and control, and other policy areas. It also 
helps us in differentiating AI usage examples. As shown above, all techniques used

1 In The Hitchhiker’s Guide to the Galaxy, published by Douglas Adams in 1979, 42 was the answer 
to the ultimate question of life, the universe, and everything, calculated by a supercomputer named 
Deep Thought over a period of 7.5 million years. 



for the development of AI systems can be bundled into two main groups, based on 
their intrinsic capabilities, learning and reasoning. The third technique group is 
robotics. Each group is discussed below. 
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14.6.1 Reasoning 

This group of techniques includes knowledge representation and reasoning, 
planning, scheduling, search, and optimization. In this group, knowledge represen-
tation is the central building block for converting data into knowledge, resulting in a 
model. Once such model has been developed based on a large amount of training 
data, new sensor-derived data can be reasoned about (knowledge reasoning). 
Reasoning AI systems draw conclusions through symbolic rules, assessing the 
new, sensor-derived data against a large set of solutions, and ultimately identifying 
the most appropriate solution from all possible solutions to a problem. The reasoning 
of such an AI system is usually complex and can be based on a combination of the 
above-described techniques. Such a black-box type of approach can lead to a lack of 
confidence with physicians who need thorough evidence that they can rely on the 
predictions in the real world where real lives are at stake. In the end, the final 
question is who takes the clinical decision, the AI model or the physician? We 
will come back on this question in the next paragraph on Learning. 

14.6.2 Learning 

ML enables a system to learn how to independently solve problems that cannot be 
specified precisely or whose solution method cannot be described by symbolic 
reasoning rules. Typical examples of human perceptual abilities, like speech and 
language comprehension as well as computer vision, are relatively easy for most 
humans to learn and apply, but challenging for the AI system, especially when 
unstructured data must be interpreted. ML can be classified, with a reasonable degree 
of fuzziness, into supervised learning, unsupervised learning, and reinforcement 
learning. 

In supervised ML, the system is trained using input/output data, but no system 
behavior rules are specified. If the system has access to enough training examples of 
good data quality, and “good quality” meaning non-biased, complete, and preferably 
ergodic (cf. 14.9.1 Data sources), it learns to generalize and will be able to solve the 
“problem” for similar content without knowing the output in advance. Besides data 
quality in structure and semantics, the risk of using biased data from historical 
datasets must be avoided. Bias is any prejudiced or partial personal or social 
perception of a person or group. Bias can enter the AI development chain at different 
points (one is training data). Algorithm bias could pose a risk for a racially and 
ethnically diverse intended patient population. Therefore, to ensure that medical 
devices augmented with AI/ML are well suited for a racially and ethnically diverse 
intended patient population, the FDA (2021b) emphasizes the crucial importance of



applying methods for the identification of bias and improvement of machine learning 
algorithms. 
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This approach of supervised machine learning is already used in healthcare where 
medical devices equipped with learning AI can effectively assist the clinical expert 
in screening large quantities of images from scanning equipment or data from 
different sensors. The clinical expert ultimately makes the decision while the AI 
potentially improves the accuracy of the decision as it is not subject to any form of 
human distraction or fatigue. Moreover, the expert clinician can continue to train AI 
as the quantity and quality of clinically relevant data increases over time. In this 
chapter, the section “AI learning Schemes and Compliance with Regulatory 
Requirements” discussed how such AI incorporated in a medical device can be 
updated once it has been placed on the market. 

Some ML approaches use neural network-based algorithms: small processing 
units, mimicking the functioning of the human brain where connected neurons 
interact in a weighted-input manner. During computation, these weights are adjusted 
to best match the training examples. The quality of such a neural network machine 
learning approach is defined by the accuracy of the result, expressed as the percent-
age of correct answers. Deep learning (DL) in this context describes a neural network 
approach that has multiple layers between input and output, which allows learning in 
single sequential steps. This increases the accuracy and reduces the need for human 
guidance. In the field of healthcare research, deep learning AI could be a useful tool 
to study the relationship between output and input parameters, specifically in case of 
multi-parameter correlations. This provides an opportunity to refine or redefine the 
trained existing relationships, with objective to improve the healthcare, whether 
diagnostic or treatment, of the individual patient. As already mentioned in the 
paragraph on Learning, the challenge of machine learning algorithms is that the 
connections between the inputs (i.e., data) and the outputs (e.g., predictions) can be 
very hard to understand. This black-box type of approach can lead to a lack of 
confidence with physicians who need thorough evidence that they can rely on the 
predictions in the real world where real lives are at stake (Schork 2019). In case the 
AI technique is only capable to identify correlations between input and output, and 
does not identify causal relationships, such an AI technique could potentially support 
the research and development of such causal relationships, hence being used as 
research tool and not directly as a clinical decision support system (CDSS). 

Whether the AI is based on reasoning or learning, in the end, the final question is: 
who takes the clinical decision, the AI model or the physician? Van Baalen et al. 
(2021) approached this question and discussed the intricacies of the development 
and implementation of a class of AI for clinical practice, the so-called CDSS. They 
suggest that it is more appropriate to think of a CDSS as a “clinical reasoning support 
system” (CRSS) and conclude that developing CRSS that support clinicians’ 
reasoning process requires that: a) CRSSs are developed based on relevant and 
well-processed data and b) the system facilitates an interaction with the clinician, 
and, that this can only be achieved if medical experts collaborate closely with the AI 
experts developing the CRSS. Moreover, they state that responsible use of a CRSS 
requires that the data generated by the CRSS are empirically justified through an



empirical link with the individual patient. This conceptional approach of Van Balen 
et al. can optimize AI to achieve personalized, truly individualized medical treat-
ment. Finally, van Balen et al. advocate proper implementation of CRSS by com-
bining human and AI into hybrid intelligence, where clearly delineated and 
complementary empirical tasks are assigned to the human and to the supporting 
CRSS, where the CRSS assists with statistical reasoning and finding patterns in 
complex data, while the clinical expert focuses on interpretation, integration, con-
textualization, and ultimately, taking the clinical decision. 
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Another type of ML is reinforcement learning. The AI system receives feedback 
for each decision it makes, and the system is designed to maximize positively 
evaluated decisions. This type of AI could be useful in healthcare to provide 
feedback from patients to healthcare providers and institutions regarding human 
factors that, in conjunction with the clinical effect of specific medicinal or medical 
device treatment, could improve the overall well-being and clinical treatment expe-
rience of patients. Reinforcement learning could be a useful tool for those who 
implement value-based health care (VBHC). Since its introduction by Porter and 
Teisberg (2006), VBHC has received growing attention, and healthcare 
organizations in several countries are targeting strategies toward VBHC. 

14.6.3 Robotics 

Robotics is concerned with the development and training of robots that interact with 
humans and the world at large in predictable ways and, as stated by the European 
Commission’s High-Level Expert Group on AI (HLEG AI 2019a), it can be under-
stood as “AI in action in the physical world,” a physical machine that must cope with 
the dynamics, uncertainties, and complexities of the physical world, while percep-
tion, reasoning, action, learning, and interaction capabilities with other systems, and 
particularly with physicians, are typically built into the control architecture of the 
robotic system. However, current efforts also revolve around the use of deep 
learning to train robots to manipulate situations and act with some degree of 
autonomy. Besides AI experts, it is indispensable that physicians play a key role 
in the design and operation of robots applied to healthcare. In addition, mechanical 
engineering and control theory in biomedical engineering are essential disciplines 
that play a critical role in the design and operation of medical robotic applications. In 
day-to-day life the public is aware of certain robots, such as robotic manipulators, 
autonomous vehicles (e.g., cars, drones, flying taxis), humanoid robots that serve as 
help desk, and moreover, vacuum cleaning robots. In the healthcare environment, 
there are four types of robots to improve the current standard of care while also 
helping humans to do things that they may not have been able to do in the past or do 
things quicker and with fewer errors. These four types of robots are surgical robots, 
exoskeletons, care robots, and hospital robots.
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14.7 Successful AI Applications 

The success of adopting AI concepts in medical device technology (and healthcare in 
general) depends on the combination of the following factors: 

– The benefit(s). Clearly defined patient treatment objectives, hence clearly defined 
benefit/risk ratio improvement(s).2 

– The application. The identified benefit(s) needs to be incorporated into the 
clinical context to become an application.3 

– The technology. The usage of the appropriate and adequate medical technology to 
fully benefit from the identified added value of the AI application.4 

– The user(s). The actual user/patient and the healthcare provider being involved 
with the application, and the user/patient benefiting from the output of the 
application.5 

By appropriately aligning the benefit, the application, the technology, and the 
user, AI concepts can be successfully adopted in healthcare. 

14.8 Examples of AI Usage in Medical Technology 

The examples below are all showing an appropriate alignment of benefit, applica-
tion, technology, and user. 

14.8.1 Optimization of Patient’s Medication Administration 

Minimizing harm and optimizing the effect of patient-individual dosing by 
shortening the observation-treatment cycle is a lever toward individualized and 
improved medicine. Especially for data-intensive treatment journeys such as with 
type 1 and type 2 diabetes, the digitalization of logbooks and therefore the assistance 
in medication adjustment has proven beneficial to individual diabetes management.

2 The benefit can be an improved treatment, safety, or outcome, and/or an increased efficiency of 
utilization of resources, and/or a measurable relief of personnel resources. 
3 One frequently observes AI applications which only provide a command-line interface (CLI) and 
that rely on manual integration in every clinical pathway or remain in the state of an academic result. 
4 AI as a data-driven approach does not necessarily need to be the right option for every digitaliza-
tion initiative. 
5 This is where the added value is being realized. Understanding the context and perspective of both 
the clinical problem and the application is critical for obtaining the benefit, hence providing value to 
the user/patient. Not involving user/patient and healthcare provider, hence not fully understanding 
the clinical performance objectives and risks, is a major factor of failing AI projects in medicine. 
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Fig. 14.1 Usage example. Optimization of patient’s medication administration 

As example, DreaMed’s Advisor Pro6 (Fig. 14.1), an AI-based clinical decision 
support system, assists healthcare providers in the management of diabetes patients 
who use insulin pumps or injections and monitor their glucose using a continuous 
glucose monitor (CGM) and/or blood glucose meters. The clinical objective of this AI 
technology is to optimize the glucose levels in blood, hence, to optimize the time-in-
range (TIR) (Battelino et al. 2019). This TIR concept has been defined by the 
International Consensus on TIR as the time spent in the target range for blood glucose 
between 70 and 180 mg/dL while reducing time in hypoglycemia for patients using 
CGM. TIR was validated as an outcome measure for clinical trials complementing 
other components of glycemic control like blood glucose and HbA1c. 

DreaMed Advisor pro is indicated for use by healthcare professionals when 
analyzing CGM monitoring or self-monitoring blood glucose (SMBG) and pump 
data to generate recommendations for optimizing a patient’s insulin pump settings to 
improve the management of patients with type 1 diabetes. This application has 
proven to be beneficial to personalize diabetes management, although it cannot be 
used for automated dosing as the AI was not originally designed to support a closed 
loop system. 

14.8.2 Improvement of Visual Analysis 

AI applications in visual analysis primarily focus on an increase of detection success 
for specific diagnoses carried out by physicians. Currently known beneficial areas

6 FDA Re: K191370, Trade/Device Name: DreaMed Advisor Pro, Insulin therapy adjustment 
device, Regulatory class: Class II, Product code: QCC. 



are radiology in general, but also other image-based diagnostics techniques (e.g., in 
coloscopy) are generally of interest for AI applications. 
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Fig. 14.2 Usage example. Improvement of visual analysis 

The presented usage example is an existing product by Qure.ai Technologies for 
computer-assisted triage and notification. The product qER-Quant7 (Fig. 14.2) is  a  
medical image management and processing system intended for automatic labeling, 
visualization, and quantification of segmentable brain structures from a set of 
non-contrast head CT (NCCT) images. The algorithms for head CT scans are 
based on deep neural networks that have been trained on over 300,000 head CT 
scans. The product is device agnostic, meaning it may be used with any non-contrast 
scan device. Through a picture archiving and communication system (PACS), a 
computerized means of replacing the roles of conventional radiological film, images 
are acquired, stored, transmitted, and displayed digitally. When such a system is 
installed throughout the hospital, a filmless clinical environment results. PACS 
combined with worklists, the program interfaces directly with the radiology 
workflow, providing information about bleed subtypes and target head abnormalities 
to facilitate review. The program pre-populates radiologist templates with data from 
the results. 

The underlying study used to validate the algorithms exhibits accuracy against a 
3-radiologist majority on 500 images and a 25,000-scan validation dataset, 
demonstrating that it can detect important anomalies.

7 FDA Re: K211222, Trade/Device Name: qER-Quant, Medical image management and processing 
systems, Regulatory Class: Class II, Product Code: QIH 
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Fig. 14.3 Usage example. Assisted diagnostics by AI 

14.8.3 Assisted Diagnostics by AI 

A third use case which will benefit from AI is the pattern recognition of patient’s 
health data to indicate diseases. The provided example is called Sight OLO8 

(Fig. 14.3) which is a quantitative multi-parameter automated hematology analyzer 
intended for in vitro diagnostic use in screening capillary or venous whole blood 
samples collected in K2EDTA blood collection tubes, or fingertip samples collected 
using the Sight OLO test kit micro-capillary tubes. This device provides a blood 
analysis in combination with a central data platform and AI algorithms able to 
diagnose anomalies in red blood cells, white blood cells, and platelets. 

The following example is an approved medical technology treatment system that 
can provide treatment in automated mode based on an algorithm connected to a 
continuous monitoring system that provides feedback to the algorithm. 

14.8.4 Automated Insulin Delivery System 

Systems comprised of an insulin pump connected to a continuous glucose monitor, 
which delivers doses of insulin determined by a software algorithm, have for a long 
time been called “artificial pancreas” or “closed loop system.” Recently, 
manufacturers and the US FDA have been using “automated insulin dosing” system 
or “automated insulin delivery” system (both abbreviated as AID). There are several

8 FDA Re: K190898, Trade/Device Name: Sight OLO, Regulation Number: 21 CFR 864.5220, 
Regulation Name: Automated Differential Cell Counter, Regulatory Class: Class II, 
Product Code: GKZ. 



manufacturers of such AID systems. The example presented here is the MiniMed 
770G System,9 manufactured by Medtronic. 
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The MiniMed 670G System, identical to the MiniMed 770G System except for 
the lack of Bluetooth communication capability, was first approved by the FDA in 
2016 for use in diabetes type-1 patients of age ≥14 years. In 2018, the indications for 
use were expanded to include users 7 to 13 years and up. In 2019, the 770G system 
was granted breakthrough device status by the FDA because the device is expected 
to provide more effective treatment of type 1 diabetes mellitus in the 2–6 years old 
population for which no approved or cleared alternatives existed at that time. 

As all other AID systems, the 770G system is a combination of an insulin pump, 
an algorithm, and a continuous glucose monitoring system that provides real-time 
feedback to the insulin pump. With the 770G, the CGM includes the algorithm 
software package to aid in the evaluation of glucose trends over several days to 
detect patterns which may indicate a need to adjust therapy such as changes to basal 
rates and bolus dose instructions. Threshold and predictive alert settings allow for 
high alerts, low alerts, and alerts regarding insulin delivery suspension. The system 
can be used in manual or in Auto Mode. When Auto Mode is active, the device can 
automatically adjust basal insulin by increasing, decreasing, or turning off basal 
insulin delivery based on sensor glucose levels. The Auto Mode algorithm will 
determine when to deliver safe basal or safe basal low, depending on the patient’s 
sensor glucose value. Verification and validation testing was conducted to confirm 
that the Auto Mode algorithm used in the MiniMed 770G System meets all specified 
requirements and that the software will operate reliably and safely under normal or 
abnormal use conditions. The software verification and validation were carried out in 
accordance with the FDA Guidance Document, General Principles of Software 
Validation: Final Guidance for Industry and FDA Staff (2002). 

Automated insulin delivery (AID) systems close the loop between a glucose 
sensing device and an insulin delivery device to compute and deliver insulin 
(typically every 5 min) to achieve a desired glucose level while reducing the risk 
of extreme glucose variations below (hypoglycemia) or above desired range (hyper-
glycemia) in individuals with type-1 diabetes. There is increasing evidence that AID 
systems improve outcomes over conventional open-loop therapy for adults and 
children. The core of the AID technology is the algorithm that analyzes, predicts, 
and automatically adjusts basal insulin with objective to ensure TIR (see example 
1 in this paragraph). The use of AI has enabled improved outcomes for many type-1 
diabetes patients. 

However, several limitations still need to be addressed, such as requiring user-
initiated meal and correction insulin boluses, and challenges remain in improving 
these systems for different subpopulations (e.g., young children, athletes, pregnant 
women, seniors, and those with hypoglycemia unawareness).

9 FDA—Premarket Approval Application (PMA) Number: P160017/S076Device Trade Name: 
MiniMed 770G System, Device Procode: OZP, Medtronic MiniMed, Inc. 
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14.9 Data Sources and Data Quality 

The use of AI-augmented medical device technology can facilitate the development 
of models to predict patient treatment outcomes. As in most applications, the use of 
AI comes with limitations and risks if not implemented cleanly. In healthcare, 
implementation often hinges on the availability of valid and representative historical 
clinical datasets used to train the AI algorithm. 

14.9.1 Data Sources 

The increasing number of digital health devices generates huge amounts of data, but 
most of it is in silos. The data are often unstructured and non-standardized and follow 
proprietary protocols. This leads to difficulties in harnessing (cross-
manufacturer) data. 

Considering that the training of AI currently involves deriving vast amount of 
data generated during the delivery of healthcare to a large number of patients, both 
their personal parameters and their treatment input data and their clinical results data 
over time, a generally recognized limitation of such an approach is that combining 
information from a large number of individuals to identify patterns that reflect 
population-level relationships between data points does not necessarily result in 
relevant individual-level relationships. This potential lack of ergodicity (Fisher 
et al. 2018), specifically, the lack of generalizability from group to individual 
statistical estimates, could result in treatment models that are not useful for making 
adequate individual treatment decisions. Fisher et al. stated that as part of the 
validation of large datasets, one needs to demonstrate the consistency between 
individual and group variability before generalizing results across levels of analyses, 
that is, from group to individual statistical estimates. Adolf and Fried (2019) 
commented on the paper from Fisher et al. and stressed that ergodicity is sufficient, 
but not necessary, to draw inferences across levels. In our view, considering the 
critical importance of patient safety, it is advisable to apply tests for (non)ergodicity 
as part of the validation of the data used for the training of AI algorithms. This 
ergodicity challenge might be overcome in practice by applying a machine learning 
approach as this process will be based on a single patient using the medical device 
where the initial AI algorithm is based on a large dataset, and where the algorithm 
can be adapted based on the patient’s own data generated during use. 

A second limitation in data sources used for training of algorithms would be 
incomplete or unanticipated sources of bias in the datasets, as such datasets could 
lead to suboptimal, misguided, and in some instances even harmful 
recommendations for patient treatment. Moreover, once the AI system is launched 
to the market, a total product lifecycle approach must be adopted and real-world data 
should be collected and analyzed to identify opportunities for improvement of the 
algorithm, and to proactively respond to safety or usability concerns.
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14.9.2 Data Quality 

Every medical decision in diagnosis and therapy relies on good information. AI also 
requires a good quality database. Much of the data available today does not meet the 
required standards for clinical evidence and having access to big data that does not 
meet the required standards for clinical evidence will not help. 

14.9.3 Sensitivity of Data 

Health data is deeply personal, sensitive, as well as complex, and therefore subject to 
strict privacy and data protection regulations. Those EU member states that have 
established electronic health record systems have gained the trust of users by putting 
in place strong safeguards that limit or completely prevent the availability of the data 
for research or development of AI by commercial entities. It makes sense to reflect 
on whether public–private partnerships can be established where such sensitive data 
are anonymized by the public partner and provided to the private partner as 
aggregated data to train the AI. Ultimately, the development of AI-based systems 
that can be used efficiently and safely in the healthcare sector precisely requires this 
medical data as a basis. There are reservations (especially in some countries, e.g., 
Germany) among the population about making such data available. There are 
methods for anonymization or pseudonymization with which one can certainly do 
justice to both, the preservation of the privacy of patients while at the same time 
using this data to the benefit of future patients. 

14.9.4 Digression Data Sources 

One of the largest sources of data in medicine is imaging systems. The spectrum of 
systems ranges from X-ray machines and CTs to MRIs. All systems have different 
(physical) characteristics and have different processes of image acquisition. Each of 
these systems may also come from different manufacturers, so in principle, although 
there are certain standards, the first step is to establish comparability of data. 

To build a valid data pool for the development of an AI application, the following 
steps are always necessary: 

– Preprocessing to make the data comparable, align formats, etc. 
– Qualification of the data by medical experts 
– Validation of the selected datasets 
– Anonymization or pseudonymization of the data 
– Training of the AI application and clinical testing



14 Artificial Intelligence Augmented Medtech: Toward Personalized Patient Treatment 211

14.10 Ethics, Acceptance, and Liability 

14.10.1 Ethics 

Ethics generally comprises the basic values and principles for human coexistence 
and human behavior in a society. Therefore, every country differs in its organization, 
according to its moral and ideological preferences, adapted to the political structure 
and its method of financing healthcare. Computer scientists have the responsibility to 
think about the ethical aspects of technologies they are involved in and mitigate or 
resolve any issues. 

For the use of artificial intelligence in healthcare, ethical issues are of particular 
importance because, as already shown, the decisions of AI applications usually have 
a direct impact on the diagnosis and therapy of patients. The limited controllability 
and traceability of AI systems entail a limitation in terms of transparency and the 
decision-making authority of the users. Ethical discussions also arise from the 
economic incentives and the ethical values of the manufacturers of the AI 
applications, in the sense of a “bias”: the tendency of a statistic to overestimate or 
underestimate a parameter (Frederking et al. 2019). 

In addition to the impact on the individual patient, the introduction of AI into 
healthcare could be accompanied by a change in the role of healthcare professionals 
as it could lead to the displacement of competencies. Of course, the opposite can also 
occur, and core competencies could be strengthened by relieving the health system 
of certain repetitive tasks using AI. Considering that most healthcare systems today 
are running at full capacity, which during 2020 and 2021 was not necessarily driven 
by the coronavirus pandemic only, AI can increase efficiency of operational 
activities, and improve the effectiveness of patient treatments. This could support 
physicians and other healthcare operators to focus better on the duty of care and use 
more effective methods to treat patients. Against this backdrop, exclusion of AI 
systems from healthcare would be considered ethically questionable. 

14.10.1.1 Ethics Guidelines & Recommendations 
The papers issued by the Ethical Framework for a Good Artificial Intelligence 
Society (Floridi et al. 2018) and the High-Level Expert Group on Artificial Intelli-
gence of the European Commission (AI-HLEG 2019b) both provide a comprehen-
sive framework of ethical consideration for the field of AI in medicine. The 
following key requirements emerge from an ethical perspective for AI. These are 
classified in the field of medicine (technology). 

– Priority of human agency and oversight. In the case of AI applications without 
approval as a medical product and without the involvement of medical specialists, 
the patient decides individually on the use of the results. If the AI tools are 
integrated into the treatment process for decision support, the healthcare profes-
sional makes the decision. Only for autonomous (closed loop systems) is the 
system able to transform acquired information into an action. This system class 
may only be used if there are demonstrably major advantages.
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– Technical robustness and safety. The medical device must be safe in all conceiv-
able events, hence there is no difference to standard medical devices. 

– Privacy, data quality management, and data governance. From an ethical point 
of view, a decisive point is the handling of sensitive patient data. In the EU, the 
General Data Protection Regulation (GDPR, EU2016/679) forms the basis for 
this. For example, in Germany, this is also regulated through the Federal Data 
protection Act, as amended (BDSG). Nevertheless, the explicit consent of the 
individual patient is required if his or her data are used for a machine learning 
system. 

– Transparency. The focus here is on the ability to explain, also toward the patient, 
who must understand the diagnosis to explicitly agree to the therapy based on it 
(informed consent—duty to explain). This means that a critical examination is 
necessary as to whether the AI application provides explainable results and in 
which type of application the patient must be informed about the use of AI. If the 
AI is a “black box,” at least the basis for the decision must be verified and 
clarified. 

– Diversity, on-discrimination, and fairness. Training data must be prevented from 
containing a bias, and from leading to a preference for certain patient groups. 

– Environmental and societal well-being. These aspects must also be considered for 
the use of AI in healthcare. Here, the relationship between doctor and patient is 
the central aspect, which is discussed below. 

– Responsibility and accountability. Accountability is of particular interest in case 
of error that occurs and has been discussed from a legal perspective in the field of 
liability. It is important that any error that occurs due to an insufficient database, 
mechanisms are in place to detect such a faulty database. This should include 
methods for the identification and elimination of bias and ergodicity. 

In conclusion, the same ethical requirement applies to the use of AI-based 
medical devices as to all medical devices. However, there are also the aspects of 
data protection, traceability, and the special requirements for autonomously acting 
systems (Floridi et al. 2018; AI-HLEG 2019b). 

14.10.2 Acceptance 

The potential of AI in healthcare lies in the use of data and the application of models 
that enable predictions and classifications. The greatest added value could be 
provided by AI applications where data availability is ensured due to standardized 
procedures and medical technology (e.g., radiology). However, despite this value 
adding potential, there is still the question of acceptance of using artificial intelli-
gence technology among healthcare workers and patients (Frederking et al. 2019). 
On the patient side, acceptance is already high today (despite the currently low 
penetration of corresponding AI applications). Sixty percent of respondents would 
like to see AI introduced as a mandatory second opinion if AI has a higher 
probability of making the right diagnosis (Frederking et al. 2019). Even 75% see



huge potential in the digital twin concept for the patient. However, the level of 
approval always varies with the specific area of application. A diagnosis that is made 
exclusively by an AI is currently not popular according to these surveys (Thielscher 
and Antes 2019; Arnold and Wilson 2017). The debate among physicians is contro-
versial. The advantages that can be achieved with AI are undisputed. Nevertheless, 
skeptics see sudden failures of the technology, hacker attacks, and the lack of human 
attention as points of criticism of the technology and its application in everyday 
clinical practice. There are no reservations about the use of AI in non-patient 
processes, e.g., to optimize inventories or automate billing and documentation 
processes. 
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The medical profession will change: The question is not whether or not healthcare be 
improved as a result of Big Data and AI ─ it undoubtedly will in some cases ─ but whether 
the physician in the future will be the user of an auxiliary device or the machinist at the 
computer, stated Prof. Thielscher and Antes (2019). 

Today, however, the available AI applications only map individual fragments of 
the patient journey; the autonomous takeover of entire diagnosis or therapy pro-
cesses is still a long way off. In addition, the area of patient interaction (empathy in 
speech and action) has not yet been addressed at all. Accordingly, the role of the 
physician and other healthcare providers will not change soon; however, over time 
the use of AI applications will create free time that can be spent on other healthcare-
related activities. In the somewhat distant future, the physician could primarily 
assume a governance and control function, linking analysis results and connecting 
them to the individual patient situation, as well as developing the appropriate therapy 
plan together with the patient. 

In summary, it is expected that not only the daily work but also the role of the 
specialist in the care process will change in the long term if it can be ensured that the 
relationship between physician and patient is not damaged by the introduction of AI 
in healthcare. Today in most cases the AI system functions as an advisor or as 
support to the physician. The relationship with the patient is preserved, the quality of 
treatment increases, and the medical professionals are relieved. It is not expected that 
physicians will be replaced by AI, but it is almost certain that doctors who use AI 
will replace doctors who do not use AI. An important aspect in this context will be 
the training of physicians, who must have a much better understanding of AI. What 
knowledge and skills will be needed by such a workforce? Better technical and 
computational skills will be required—something that has already been recognized 
in academic medicine. AI basics need to be integrated into the training of physicians. 
They should be able to apply the technology, question it, interpret it, and know the 
respective limitations. Furthermore, a basic understanding of data security and 
quality should be taught. Since many practicing physicians will become confronted 
with AI systems, a corresponding basic knowledge must also be given a permanent 
place in continuing medical education and training [Bundesministerium für Bildung 
und Forschung (BMBD) 2019].



214 D. Neumann et al.

14.10.3 Liability 

In principle, product liability (e.g., ProdHaftG in Germany, and the European 
Council Directive 85/374/EEC from 25 July 1985) also applies to medical devices. 
This mainly covers manufacturing defects, design defects, and instruction errors. A 
defect is defined here as a lack of justified expectation of safety, taking all 
circumstances into account, including (a) the presentation of the product, (b) the 
use to which it could reasonably be expected that the product would be put, and 
(c) the time when the product was put into circulation. A product shall not be 
considered defective for the sole reason that a better product is subsequently put 
into circulation. 

Transposed to SaMD and AI, this means that the defined purpose (intended use) 
of the medical device dictates the scope of the manufacturer’s liability. For example, 
a CDSS is to be considered in the sense of a second opinion. Thus, in case the output 
of the CDSS is clinically correct, and the physician decides to ignore this output, 
then liability clearly lies with the physician using it. 

All AI applications approved today can at most be regarded as CDSSs, which 
means that the liability issue is relatively simple to clarify. These systems are still 
locked (cf. 14.5.1.1: Locked Learning Scheme), so that no intentional further 
development of the system can have led to the misinformation unless the algorithm 
has a performance issue under specific patient circumstances that leads occasionally 
to misinformation. In such a case, the CDSS provides misinformation, and if the 
physician relies on the output from the CDSS, liability lies with the manufacturer. 

Furthermore, the overarching EU Medical Device Regulation (MDR) 
(2017) applies to the legal manufacturer of the SaMD, AI, or a machine learning 
device. The legal manufacturer is responsible to comply with all relevant legal 
obligations dictated by the MDR, e.g., performance and safety of the medical device, 
its design, manufacturing, associated labeling and instructions for use, as well as 
post-market product monitoring, and relevant post-market surveillance duties to 
prevent, detect, and mitigate the use of any hazardous device distributed to the 
market. 

Additional liability regulations for artificial intelligence are not currently 
deemed necessary. The current law contains comprehensive liability provisions for 
damage caused using technical devices. It thus should sufficiently safeguard against 
risks that can be caused by AI systems. However, potential gaps in the current 
liability regulations are not clearly identified (AcaTech 2020; Kriesel 2020). The EU 
Parliament confirmed this position when it concluded that, although it believes that 
there is no need for a complete revision of the well-functioning liability regimes, the 
complexity, connectivity, opacity, and vulnerability, the capacity of being modified 
through updates, the capacity for self-learning, and the potential autonomy of AI 
systems, as well as the multitude of actors involved, represent nevertheless a 
significant challenge to the effectiveness of Union and national liability framework 
provisions. It considered that specific and coordinated adjustments to the liability 
regimes are necessary to avoid a situation in which persons who suffer harm or 
whose property is damaged end up without compensation. The EU Parliament also



stated that it firmly believes that in order to efficiently exploit the advantages and 
prevent potential misuses of AI systems and to avoid regulatory fragmentation in the 
Union, uniform, principle-based, and future-proof legislation across the Union for all 
AI systems is crucial, and is of the opinion that, while sector-specific regulations for 
the broad range of possible applications are preferable, a horizontal and harmonized 
legal framework based on common principles seems necessary to ensure legal 
clarity, to establish equal standards across the Union, and to effectively protect our 
European values and citizens’ rights. On October 20, 2020, the European Parlia-
ment10 issued a Resolution 2020/2014(INL) with recommendations to the EU 
Commission on a civil liability regime for artificial intelligence. The EU Commis-
sion adopted the Resolution. 
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In April 2021, the European Commission published a Proposal for a Regulation 
that lays the groundwork for addressing the risks associated with the use of artificial 
intelligence. The proposed regulation applies to AI systems, broadly defined as 
systems that are “developed with one or more of the techniques and approaches 
listed in Annex I of the proposed Regulation and can, for a given set of human-
defined objectives, generate outputs such as content, predictions, recommendations, 
or decisions influencing environments they interact with.” The proposal, while 
confirming that the EU institutions remain clearly focused on innovation, analyzes 
and proposes potential solutions to the challenges arising from AI applications. The 
proposal provides a detailed and balanced risk-based approach to the regulation of 
new technologies, with particular attention paid to the liability regime of the subject 
involved in the whole value chain. 

As it will take some time before the proposed EU Regulation becomes effective, 
the technical, ethical, and legal evaluation of a Medtech product incorporating AI 
(SiMD), or a SaMD AI product, should in the meantime be done based on the 
existing Medical Device Regulation (EU) 2017/745 (2017) and the existing Product 
Liability Directive 85/374/EEC. 

14.11 Conclusion 

Despite various open questions, AI has the potential to transform healthcare. The 
constantly increasing digital capabilities to analyze a vast amount of real-world data 
generated during healthcare delivery offers tremendous opportunities to develop 
treatment plans to achieve better patient outcomes. Real-world performance moni-
toring over the lifecycle of the medical device will facilitate the implementation of 
iterative improvements to the algorithm, provided that any proposed regulatory 
framework includes a methodology that allows such modifications to be 
implemented timely. And, by combining AI-augmented medical devices and using

10 P9_TA (2020)0276 Civil liability regime for artificial intelligence. European Parliament resolu-
tion of October 20, 2020, with recommendations to the Commission on a civil liability regime for 
artificial intelligence (2020/2014(INL)). 



closed loop feedback from sensors, performing continuous measurements on the 
patient, to the AI component of the medical device, AI-augmented medical device 
technology is expected to further develop into truly personalized patient treatments, 
optimizing individual patient treatment outcomes. 
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Real-world data collection during disease treatment should enable to prevent or 
mitigate health-related suffering or complaints through medical or therapeutic access 
at any time. Therefore, wearables and health apps are important to capture such data 
and transfer this to the physician, who can initiate personalized individual patient-
oriented medical care. 

There are already various applications bridging between computer models and 
real-world data, building virtual representations, or “digital twins,” of medical 
devices to predict how the individual patient will respond under various 
circumstances, e.g., dosing for diabetes patients. 

An absolute prerequisite for the development of innovative personalized AI 
applications is the availability of a regulatory framework for medical technology 
augmented with AI or ML. Another prerequisite is the regulation of authorized data 
access. Compliance with data protection is a clear requirement; however, this arch 
must not be overstretched judicially, as the medical importance speaks for itself. 
Nevertheless, the field of personalized Medtech will be one of the core applications 
for AI and ML in healthcare and is expected to grow continuously over the next 
years. 
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and Challenges 15 
Stefano Patarnello 

Abstract 

Progress in digital healthcare and evidence-based medicine implies constantly 
growing demand for high-performance computing, and a strong cooperation 
between medical research, IT experts, and data scientists. In this scenario, the 
potential of new paradigms and technology solution such as quantum computing 
(QC) can boost progress and technical feasibility of such advanced software 
solutions. This chapter provides a short overview of the key principles of func-
tioning of QC, some examples of the benefits for computing methods, and 
specific use cases for healthcare and life science. 
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15.1 Introduction 

The role of information technology (IT) to support medical research and practice is 
constantly expanding, thanks to two driving factors: new algorithms and software 
techniques becoming available in many domains (medical imaging, genomic 
research, AI-based decision support system, etc.), which are exploited through 
easier-to-use packaged solution and the availability of technical resources more 
and more focused on digital healthcare segment, and increasing computing power 
“at reach” both in terms of user-oriented devices and workstation (i.e., more power at
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the desk of the clinical researcher), as well as high-performance computers which 
can help solving fundamental research questions.
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This steady progress has proven already to bring material impact to daily 
practices and quality of care. One example is that of interventional radiotherapy. 
In the pioneering stage, the use of artificial intelligence (AI) techniques to analyze 
medical imaging was embraced as a tool to test scientific hypothesis within research 
projects. With the increasing accuracy of algorithms for multiple uses (contouring, 
feature extraction and interpretation, support to dosimetry, analysis of response to 
treatments, etc.) this domain has reached full maturity, in terms of technical readi-
ness and scientific validation, such that AI-driven techniques are an integral part of 
electromedical apparatus and adopted in daily practices as supporting tools for 
medical staff. 

The learning curve goes together with the exponential increase of healthcare data. 
These are very diverse in terms of sources and formats (electronic health records, 
image files from diagnostics, laboratory data, real-world data from wearable, etc.), 
and their growth rate is among the largest across industries, since every day new IT 
systems or supporting technologies are adopted from healthcare providers, and these 
deliver a huge amount of insightful data on a daily basis. 

It is very reasonable to expect that any new inflection point in IT can trigger major 
steps forward in some of the algorithms that researchers are experimenting in clinical 
research, these being artificial intelligence algorithms to help predicting disease 
evolution, or number-crunching software packages for sequencing or molecular 
modeling. 

Quantum computing (QC) is certainly a new paradigm that can significantly 
expand the art of the possible for what concerns the impact of new IT techniques 
in many domains of healthcare. There is an increasing consensus that the so-called 
quantum advantage (when a quantum computer will perform better than classical 
ones in a realistic application) can take place in the next 2 to 5 years. While the 
impact of this much advocated inflection point may need to be better qualified under 
many angles (extent of usefulness, economical affordability, skills augmentation, 
etc.), it certainly means that now is the right time to better understand the 
implications of quantum technology for many domains of application, healthcare 
being on the forefront for the benefit and acceleration that this may bring. In doing 
so, one can also understand what would be required in terms of preparedness, skills 
growth, conceptual experiments, and prototyping. 

This chapter aims at providing some insight in this domain and provide some 
elements to understand the implications in some of the application areas where IT for 
healthcare is widely adopted, with a specific focus on data-driven techniques and 
AI. We will start by providing some elements to understand the basic mechanism of 
quantum computing; then we describe some of the building blocks (software 
algorithms) where quantum computing is expected to provide material advantage; 
we continue by showing some examples of the impact that this can bring to specific 
healthcare applications. We conclude the chapter by giving our perspective on some 
of the attention points (and potential gaps) that are worth considering, to make sure



that the promise of such increased capability will transform into real advances that 
ultimately bring benefit to research and quality in healthcare. 
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15.2 Quantum Computing: Basic Concepts 

The fundamental difference of quantum computers versus classical ones is the way 
in which data are represented, stored, and computed. The idea at the base of QC is 
that to solve problems in physics and chemistry which are intrinsically bound to 
quantum physics phenomena (including wave-particle dualism) the best solution 
was to build computers based on such subatomic physical entities. From these 
original needs, in the theory of computational models it was made clear that there 
are also other problems of increasing complexities in other application areas, such as 
other fields of simulation of complex physical systems, optimization, machine 
learning, cryptography, and many others to come. 

The first conceptual design of quantum computers dates to the work of Richard 
Feynman (1982), Jurii Manin, and David Deutsch (Deutsch and Penrose 1997), who 
were able to demonstrate that for a simulation of physical quantum systems with 
complex interactions, a computer based on quantum particles (and their changes of 
state) would have been more effective than classical computers based on binary 
logic. The concept of “universal quantum computer” was introduced by Deutsch, as 
a quantum Turing machine able to simulate any physical system, provided the right 
level of isolation (very low temperature) and stability was established. Starting from 
those novel design points, research efforts have constantly progressed to be able to 
develop and manage a quantum computer, to the extent that today several 
implementations are available from different industrial and research institutions. 

The basic idea for QC is to apply the principles of quantum mechanics to the way 
a system performs computation. This means that a quantum system becomes a 
computing device that can move from one quantum state to another (thus performing 
a basic operation) through an external forcing agent that triggers a transition of state 
in the sense of quantum mechanics. The two most important quantum phenomena at 
the base of the functioning of QC are the quantum superposition principle and the 
mechanism of entanglement. 

Quantum superposition principle describes the fact that any two quantum states 
can be added together (“superposed”) and the result will be another valid quantum 
state, and conversely, that every quantum state can be represented as a sum of two or 
more other distinct states. This leads to the introduction of the quantum bit or qubit, 
which is the basic entity in quantum information processing, and it is a quantum 
superposition of deterministic states. Contrary to a classical bit that can only be in the 
state corresponding to 0 or the state corresponding to 1, a qubit may be in a 
superposition of both states. This property implies a significant advantage for 
complex computational models, since the same operation can be performed on 
different instances or samples, each corresponding to a different state/combination 
of the two “basic” states 0/1. This means that a quantum computation can



simultaneously produce different elementary computations with a resulting overall 
increased speed of execution. 
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Entanglement is a characteristic of multiple quantum subsystems which coexist 
and are intrinsically correlated. This implies that any measurement or basic operation 
on a subsystem has also an impact on other subsystems that are connected even at 
larger distances. Therefore, the principle of entanglement is the base for very 
effective “collective computation” since two subsystems which are in an entangled 
state perform computing operation at same very high speed. 

Due to the non-binary nature of qubits, they can handle information in a contin-
uum fashion; a computation on a qubit is a state change, which happens through a 
series of operations defined as quantum circuits. A state of a qubit is a multidimen-
sional vector and an operation on a qubit is a rotation in this virtual space. The 
multidimensional, continuum nature of qubits implies that certain complex 
operations can be performed more effectively than with a classical computer. This 
advantage may imply to achieve fast progress in many industries and use cases 
where high-performance computing is required, provided that the problem to be 
solved can be mapped into quantum-compatible algorithms and software solutions. 

The two quantum mechanisms (superposition and entanglement) are unique 
features of quantum computation that result in a much faster computation execution 
than for classical computers. On the other hand, a quantum system can be unstable 
(due to interference with external systems) due to the interaction with the environ-
ment and the state of a qubit can stay unchanged for a very short time (this is known 
as the decoherence issue). This problem worsens with the increasing number of 
qubits, which is the complexity that arises when building a complete computing 
system that must be based on a very large number of computing units. To solve the 
issue, sophisticated and costly manufacturing methods are being used, such as 
cryogenic cooling or error connection code techniques. 

Notwithstanding these challenges, the pace of progress from many vendors is 
remarkable: in November 2021, IBM announced the new Eagle 127-qubit quantum 
computer, so far the largest implementation release in the market. Other important IT 
players such as Microsoft and Google are delivering their QC solutions, and some 
companies such as D-Wave Solutions, ColdQuanta, or Regetti are “born in the 
quantum era” and completely focused on this breakthrough technology. 

15.3 Quantum Computing Models and Algorithms 

15.3.1 Computing Models Examples: Quantum Gate Array 
and Quantum Annealer 

The Quantum gate array (QGA) model is based on computing modules which are 
organized as quantum “gates” much like the design model of classical electronics, 
where basic operations are performed from modules organized in a standard way, 
and the results of such basic operations are then combined for more complex 
computation. In the QGA model, these computing modules (quantum circuits) are



the main components based on quantum execution mechanisms. While on a classical 
computer the logical gates performing basic operations are designed and built using 
transistor-based circuits, quantum gates are implemented via electromagnetic fields 
with a characteristic frequency associated with each qubit and dependent on the 
specific manufacturing technology. QGA systems can be implemented with quan-
tum components such as superconductors, trapped ions, or photonics. QGA model 
can also be simulated using traditional hardware, introducing quantum logic in the 
way these systems compute, and using noise models to reproduce QC instability. 
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The other computing model for the design and implementation of QC is based on 
simulated annealing principle, which is an algorithm developed in the 1980s to solve 
complex optimization problems and can be broadly characterized as an approach to 
optimize cost functions, by searching the global minimum in a “landscape of 
solutions” with several local minima (which is why the corresponding problem to 
be solved has a high degree of complexity). In the context of quantum computing, 
the design methodology has been defined as “quantum annealing” (Kadowaki and 
Nishimori 1998) and the computing model for this class of quantum computers is the 
so-called quantum annealer (QA). The peculiar feature of QA is that they can 
represent many possible solutions (energy level), and it is possible to explore 
many such energy configurations in a short time by taking advantage of superposi-
tion and entanglement properties of qubits. Therefore, the search for an optimal 
solution (i.e., the lowest energy state) is performed very efficiently. 

It has been demonstrated that this general mapping into a multi-particle physical 
system that gets into a minimum state (as it happens in a physical annealing process) 
is equivalent to the cost function optimization for the class of problems known as 
combinatorial quadratic unconstrained binary optimization (QUBO) which can be 
solved only with non-polynomial algorithms. For this overview, this implies that 
many complex optimization problems, in many research fields and industry, where 
the optimal solution depends on the interaction of many elementary entities, can be 
mapped into such an annealing methodology—and for some of them a QA type of 
computer can be the most effective (i.e., fastest) solution. 

As it is the case for QGA, also for QA computing model, there are solutions in the 
market of “quantum-inspired” annealing computers, which emulates on a traditional 
architecture the way in which qubits operate in the search process of a minimum cost 
function in a quantum computer based on annealing. 

15.3.2 Algorithms Implemented on QC: Some Examples 

Fundamental physics and chemistry are by definition among the fields where new 
simulation approaches and algorithms are being developed. In chemistry, through 
quantum computers it is possible to model energies related to ground and excited 
states at molecular level, and this will enable the investigation of many reaction 
pathways. Other fundamental topics include the understanding of electronic distri-
bution between atoms and the nature of chemical bonds.



224 S. Patarnello

Likewise, the adoption of QC to model the behavior of subatomic particles and 
forces is a natural research path in fundamental physics, covering areas such as 
quantum field theories, quantum electrodynamics, and strong and weak interactions. 
As an example, quantum chromodynamics (QCD) has always been a research field 
where supercomputers and highly sophisticated simulation methods were used to 
test some of the most important theories and models. The introduction of quantum 
computing will certainly open new avenues and will trigger a step change in this 
research domain. 

It is also relevant to see some examples in computer science and algorithms, 
which can be used in many use cases and industries. It has been already described 
how a QA type of computer can help addressing those problems where the goal is the 
minimization of an “energy” or “cost” function depending on many variables, with 
many similar solutions competing in a search process for the best (optimal) solution. 
This affinity for the annealing-based architecture is very promising for a wide range 
of applications in optimization and operational research, including search for 
shortest paths, fleet and shift management, and financial modeling. 

An algorithmic area where quantum computers are expected to deliver faster 
performances is the search process in very large sets of data. This problem is very 
general, with several applications and use cases, and can be formulated in simple 
terms as the time required by a system to search for an element within a list of items 
not organized sequentially. The intuitive description is that of the steps required to 
find an item “hidden” in one drawer out of N identical drawers. This is also referred 
to as the Grover algorithm within the class of NP problems (classically solved in a 
non-deterministic polynomial time). With standard methods the time for the algo-
rithm to complete the task would grow with N. It has been demonstrated that a 
quantum computer will solve the problem in a time proportional to √N, thus leading 
to a much faster execution time for very large N. The Grover algorithm can be 
therefore efficiently implemented in quantum gate array system, and this implies that 
adopting such new approach to perform the equivalent of an exhaustive search opens 
new possibilities. 

This can have important implications in many domains of IT. If a quantum 
computer can perform this search so fast, then trying to break the protection of 
cryptography by testing all possible instances of a key would be a more affordable 
procedure. It means that the whole domain of cybersecurity needs to consider this 
type of threats, and new ideas to design highly secure protection systems are needed. 

In the area of AI and machine learning (ML), the intrinsic nature of quantum 
computing—able to handle very efficiently the analysis of multiple states and 
configuration of several interacting systems (the qubits)—can be a major enabler 
to achieve faster speed of execution, which in turn means a much-increased ability to 
scale problems in size and accuracy. In the last two decades, one of the AI methods, 
which has shown the largest success, is that of artificial neural network (NN). This 
can be formulated in a very general way and with a wide range of applicability. NN 
systems can manage large quantities of data, analyze them to find correlations and 
key interactions, and then produce inferences and so-called learning capabilities.



These methods can therefore build rules with a significant degree of generalization 
from the datasets analyzed. 
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The most common NN architecture is based on a large set of communicating 
nodes, typically organized in subsequent layers, which exchange information 
through basic operations among connected nodes, leading to a relationship between 
input (a set of the network “external” nodes) and output, which is the result of these 
cascading elementary steps and the weights of the links between communicating 
nodes. These systems can be trained on a specific problem, meaning that weights 
among nodes (i.e., the sequence of cascading elementary operations that produce an 
output as the result of such composite computations) can be iteratively adjusted to 
learn a given task, on the basis of a large number of configuration examples which 
are specific values of input and output nodes, which are provided to the system as the 
knowledge base to be trained on the target task. A NN that can generalize is a 
computing system that, after being trained on a large set of examples, will calculate 
an output for a new case which is consistent with the training process and produce 
results which were not known a priori. Obviously, the organization of such comput-
ing nodes, and the process that leads to determine the connecting weights and 
composite output, mimics the conceptual scheme of a brain portion, with neurons 
connected through synapses, and where the connection network and intensity evolve 
as a result of learning/cognitive processes. 

The way in which a computation is executed on a quantum computer bears many 
analogies with the process of building a learning neural network in the classical 
approach which has been just described. In fact, qubits can be organized in 
connected layers and their elementary computations are executed through the quan-
tum circuits or gates. Therefore, an iterative learning process can be fulfilled by 
executing many instances of computation across the qubits, and the gates can be 
adaptively defined with parametrized weights or circuit components. Given the 
speed at which qubits perform elementary operation, the collective process of 
training a large set of qubits with many different configurations (due to the superpo-
sition principle) can be very fast, and so would be the generation of a neural network 
for a specific task. 

With the speed of progress in testing and improving training methods of different 
nature, it is not unreasonable to consider that very soon a new generation of neural 
networks built on quantum computers will be made available, each specialized for 
specific class of problems (in fact, one of the most promising techniques is referred 
to as parametrized quantum circuits; Humble et al. 2018), much like in previous 
steps of information technology “special-purpose processors” were attached to 
classical computers, to perform a specific task with unparallel speed of execution. 

While many of the promises in such algorithmic areas have yet to be fulfilled, 
these and many other use cases have raised expectations and triggered new energies 
with regard to QC for every industry, also in conjunction with exponential growth of 
data from consumers and enterprises and front-end and back-end processes. In the 
next section, some of the use cases from healthcare will be described.
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15.4 Healthcare Use Cases 

15.4.1 Genome Analysis 

The rapid and reliable whole-genome analysis would be a very significant and 
promising area for various applications including personalized medicine. This 
requires solving tasks of high computational complexity to manage techniques 
such as de novo genome assembly, which is used for the analysis of genomic 
rearrangements, chromosome phasing, and genome reconstruction. 

De novo assembly is a method for constructing the original DNA sequence from 
the unstructured set of reads without any prior knowledge of the source DNA 
sequence length, layout, or composition, which is essential for studying new species 
and structural genomic changes that cannot be detected by reading mapping. The 
complexity of de novo assembly depends on the genome size, abundance, length of 
repetitive sequences, and possible polyploidy and a task of such build on human 
genome can take some days of computation. This time scale is acceptable in research 
tasks, but it is a limitation for emergency applications (including the clinical use). De 
novo assembly is currently used in transcriptome and cancer analysis, as gene 
fusions and genome rearrangements are common causes of malignant tumors. 
Decreasing the costs of sequencing makes whole-genome sequencing an irreplace-
able part of personalized medicine and cancer treatment. The utility of sequencing 
technologies requires improved workflows with de novo assemblers to uncover 
significant genomic rearrangements in cancer and normal tissues. 

From the computation modeling standpoint, de novo assembly process can be 
mapped into well-developed graph techniques known as overlap layout consensus 
(OLC) methods. These methods map the read and matches into “connected” vertex 
and therefore graphs. Then genome reconstruction is achieved by finding the 
sequence of connections (paths) that touches all vertex only once, which produces 
the complete sequence. It has been demonstrated (Boev et al. 2021) that this graph 
configuration search can be mapped into an optimization problem where the goal is 
to explore the landscape of possible configuration for a collective system of binary 
states (so-called Ising spins, which are magnetic states with two states up or down) to 
minimize a given cost function (or energy function, in the analogy of a complex 
systems of Ising spins). Once the mapping of a graph of reads (in the context of 
genomic de novo assembly) is reformulated as an optimization problem, a QA type 
of computer can be very effective, since it is able to explore the landscape of possible 
solutions (i.e., the assembly graph) at very high speed, since the energy minimization 
of an Ising Hamiltonian can be transformed into a QUBO problem, which is the type 
of algorithms where quantum annealer type of computer is highly specialized. 

The simulations have been performed until now on short sequences, since to 
reach the scale of the realistic size of sequences, the underlying quantum technology 
needs to reach a higher level of stability (improving the decoherence time). As these 
technical limitations will be overcome, the proof of concepts performed until now 
will evolve into real-life cases providing a material impact to the advance of 
assembly techniques.
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15.4.2 Machine Learning for Precision Medicine 

ML- and AI-based methods are more and more contributing to gain new insights and 
support decision-making in clinical research and practices. In general terms, these 
methods are based on three steps: first, the retrospective knowledge base for a 
specific pathology is created, by organizing all available past patients data which 
describe demographic data, biomarkers, disease progression, and treatment 
outcomes. This is a complex integration task which involves collecting, 
transforming, and validating large quantities of data; then, a wide range of comput-
ing techniques are exploited to analyze the different factors that link patients’ health 
status over time, evolution of disease, and outcome of treatments for those patients/ 
groups of patients. This is generally achieved by adopting statistical methods to 
discover correlation among concurring factors and outcomes and applying ML to 
create evidence-based discovery, such as predictive algorithms that provide risk 
assessment for negative disease progression. This step is commonly known as the 
“training” phase where the correlation and prediction is built using a subset (yet very 
large) of patient cohorts (the training set). After the most effective algorithms and 
related parameters are achieved for the training set, the validation of the overall 
methods is achieved by testing the validity of the developed algorithms on a new set 
of patients, allowing us to evaluate in a rigorous fashion the predictive generalization 
power of the method, and the accuracy this method can provide when treating a new 
patient in a perspective approach. These methods are usually more powerful (i.e., the 
degree of validation much stronger), if data from different medical sites are exploited 
with a multi-centric setup. 

With the upcoming availability of mature QC technologies, all the steps outlined 
for the end-to-end cycle of predictive methods in support of decisions and 
personalized treatments may improve in a material way. 

Firstly, data collection and build-up of multimodal data models (study ontologies) 
will get more efficient throughput; in particular, the integration of genomic, clinical, 
demographics data may potentially be accelerated; real-world data collection from 
IoT and wearable devices will also become more feasible for building retrospective 
knowledge, which includes behavioral data, quality of life, and environmental 
critical information. 

The process of building up the predictive algorithms from retrospective knowl-
edge entails several steps demanding high computational powers: correlation analy-
sis to understand the weight and relevance of different factors and patients’ data 
require multimodal data collection and organization. Research progress is leading 
rapidly to the integration of high quantity data (such as those from medical imaging 
or different omics) with demographic and clinical data, and sometimes this integra-
tion requires intermediate computational steps (e.g., features in radiomics or in 
genomic data classification) which can be very intensive. To add to that, the 
goldmine of information that stems from medical reports in free text format needs 
also very sophisticated processing (through natural language processing, which will 
be discussed in the next use case). Therefore, the development of the input data



model per se is a numerically intensive task, which can greatly benefit from the 
availability of mature quantum computing implementations. 
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When it comes to the definition and execution of training algorithms, these will 
get material improvements from the development of robust quantum computing 
models. Unsupervised learning algorithms are the most suitable approach when very 
little a priori knowledge is available about the predictive mechanism and the type/ 
range of outcomes must be extracted from the learning process. These are the kinds 
of problems which can be mapped into the cost-optimization techniques comparable 
to the minimization of the energy landscape which depends on many variables 
concurring to define different similar configuration—as for the genomic use case, 
a QA or quantum-inspired annealer can be considered as a special-purpose computer 
that can greatly accelerate the optimization process and therefore the identification of 
prediction mechanisms. 

In the case of supervised learning, where the possible outcomes (e.g., the predic-
tion of a disease critical condition or death) are known a priori, the training of the 
predictive model involves the determination of several weights that connect a 
decision system based on neural networks, and this is also a high-performance 
computing task that can be hosted on a quantum-based system. 

The final validation step, where the accuracy of the predictive method is tested for 
new patient data, combines the complexities of the data collection and prediction 
stages, and can be mapped onto a quantum-based approach with expected strong 
benefits in the overall response time. This will be extremely useful when these 
methods will shift from research domain to clinical practice, where the need of a 
real-time (or quasi real time) response system is critically important. 

15.4.3 Natural Language Processing for Medical Reports 

One of biggest challenges for data-driven healthcare research is the extraction, 
interpretation, and exploitation of the huge amount of information that is delivered 
daily from different staff in the clinical centers in the form of free-text medical 
reports. These may include consultancies from clinical specialists; nurse diaries 
which include very relevant information such as measures, symptoms, and vital 
functions; diagnostic reports from instrumental exams delivered by diagnostics 
specialists and technicians; and many other examples. The goal of natural language 
processing (NLP) is that of transforming these free-text datasets into actionable 
information in the form of categorical variables (presence/absence of a given 
biomarker or outcome, classifications of outcomes with different grading levels, 
etc.); in some other use cases researchers are confronted with the even more complex 
task of extracting key concepts that can be expressed in very different formats.1 To

1 For example by providing an overall assessment of the health status of the patient, by pointing to a 
collection of symptoms or evidence from instrumental exams, and maybe combining the same 
observations with patient-specific risk factors, familiarity of disease, and lifestyle specific features. 



add to this, typically a data-driven study must extract and process this type of 
information from medical reports produced by different doctors, who may adopt 
different terms, or different style in the sentences they compile for the medical 
report. 
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A very representative use case is the rigorous characterization of disease progres-
sion in cancer-focused studies. To define repeatable criteria from real-world evi-
dence (e.g., by analyzing all medical reports for a retrospective cohort of several 
thousand patients), the data scientist and clinical joint team have to compare and 
combine information from many sources, and the majority of these are located in 
medical reports of different kinds: CT-scan diagnostic reports analyze the size of 
tumor, numbers and sites of metastasis, and status of lymph nodes; oncologist 
reports address topics ranging from disease evolution to general patient’s symptoms 
analysis of response to treatments, plus all evidence from diagnostics; sometime this 
multimodal set of information includes structured, quantitative data from laboratory 
exams which are easier to interpret. When looking at this diverse yet all relevant 
unstructured and structured information, these must be analyzed and integrated to 
discover and validate rules/criteria to define (and possibly quantify) disease progres-
sion in the different domains of cancer treatment. NLP techniques are the key 
building blocks that help the understanding and classification of this information. 

With supervised NLP methods, expert knowledge can be injected into the 
recognition system, in the form of annotation or basic rules to identify sentences 
that are clear markers of critical information (the next step for a solid NLP approach 
is that of generalizing such criteria, and therefore identify in all medical reports other 
forms of expression and sentences that amount to the same outcome). With unsuper-
vised algorithms, the more general problem of extracting concepts and classes 
(which translates into outcomes such as disease progression) is managed without 
injecting external expert knowledge, enabling the AI algorithms to find the concepts 
and associate them with the different report instances. Once NLP methods have 
helped transforming unstructured information into categorical data, downstream 
learning algorithms (statistical methods, neural networks, optimization techniques) 
can be used to develop systems predicting outcomes from the input data in an 
automated fashion. 

Considering the amount of information, which is available in free text in medical 
reports, and the goal to integrate these computing tools in the daily clinical practice 
as supporting decision tools, the development of highly performant NLP algorithms 
is a trigger factor that can transform NLP-based research prototypes into validated 
tools and potentially decision support medical devices. Quantum computing can 
provide a great impulse to the development of such high-performance versions for 
such medical reports “intelligent search engines.” In broad terms, the affinity 
between NLP techniques and quantum computers architecture lies in the fact that a 
string of words (sentence) and/or strings of sentence can be seen as interacting 
entities, connected at different distances and with different intensity, which is a 
similar logic to the organization of qubit as previously described (Di Sipio et al. 
2021). One example of implementation of this mapping from NLP to quantum 
computers is lambeq, a development toolkit implemented by Cambridge Quantum



(2021), which helps transforming sentences into strings of symbols which are then 
mapped onto quantum circuits (or simulator). Once this transformation is achieved, 
it will be possible to use the high power of a quantum architecture to implement 
language models that combine statistical methods with symbolic/semantic methods. 
Such hybrid methods have proven as the most successful to deliver multi-language 
NLP systems. Though this approach is certainly at an early stage, it is very promising 
since it combines high-performance computing with multi-level modeling of the 
language understanding domain. 
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15.5 Discussion 

There is little doubt that quantum computing will have a significant impact in the 
advances of many domains of industry and research. The momentum is also increas-
ing in designing fit-for-purpose algorithms, and the community of researchers from 
many domains that is tackling unsolved issues is increasing and progressing at very 
high pace. Yet, there are many aspects that will require special focus and efforts that 
are worth mentioning as food for thought. 

Firstly, the efforts to make the technology stable and functioning are still ongo-
ing, and a lot needs to be done. The fact is that systems of qubit are still exposed to 
noise from external sources and therefore they may lose information and need to be 
corrected (the common way to characterize this early development phase is NISQ 
which stands for noisy intermediate scale quantum technology). The good news is 
that all technology providers and base research players are working to solve these 
issues which may require a few years at least for intermediate scale systems. And it is 
worth underlying that these base technology challenges do not impede progress in 
developing realistic use cases and put in place robust development frameworks 
(algorithms, libraries and complete simulation environments) that will allow 
researchers from all domains to build their applications while the base technology 
challenges are being solved. 

It will also important to get a thorough understanding of where the adoption of a 
quantum computing model can fit the goals and bring advantage, and sometimes it is 
worth comparing this with more “classical” approaches where, by exploiting in a 
smart way what is already available, similar or better results can be achieved in terms 
of computing speed, time to resolution, and accuracy of results (Bernaschi et al. 
2021). Simply stated, the ongoing research efforts in benchmarking classical (and 
very well-tuned) algorithms designed for the current technologies versus new 
quantum computing based ones are very relevant and will result in better software 
design for the larger user communities in both scenarios. 

While there are research domains where a complete mapping into a quantum 
computing architecture is a natural choice, as it is the case for computational 
chemistry or material science, where quantum algorithms can be used to predict 
electronic structures or configurations, we should expect that some of the 
applications of such new technologies will happen in a hybrid fashion, where the 
overall algorithmic setup to solve a complete problem is managed on a traditional



computing system, and part of the computation/algorithmic step is executed on a 
quantum computer which will act as a “special-purpose processor” very suitable for 
a specific task. This is not very different from what happens already today in the 
usage of graphical processing units (GPUs) within AI or image processing type of 
applications, including healthcare (Bernaschi et al. 2021). 
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Finally, the importance of expanding skill and knowledge of these techniques 
across the value chain of research and industries cannot be stressed enough. We are 
witnessing an increasing weight of quantum computing in basic and advanced 
education, which is certainly an enabling factor for the progress in the field. 
Likewise, industries and applied research institutions should take the bold steps of 
investing in prototypes and proof of concepts, even if these bring along significant 
efforts in time and skill upgrade. This will certainly shorten the cycle to allow for this 
new, promising inflection point to bring material benefit to multiple applied 
domains, where healthcare could be in the “lead pack” for this new frontier of 
computation. 
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Abstract 

The Metaverse is bringing the next digital era in our society and economy. It is 
shaped by several attributes (e.g., physical and virtual places, multidimensional 
human experiences, multisensorial creativity, extended communities, life-centric 
markets, cross industries collaborations, new social and business values, 
products, and services) and enabled by new technologies (cloud and artificial 
intelligence, extended reality, blockchain, digital twins, and edge). This chapter 
focuses on the attributes to understand how to manage them to create the 
Metaverse future. The Metaverse will encourage us to reimagine healthcare, 
since it also provides the healthcare ecosystem with a virtual–real collaboration 
space in which to create robust, meaningful experiences for all value chain 
stakeholders. Looking at the first actions into the global markets we envision 
how to bring together people, spaces, and things in both the virtual and physical 
worlds, and how to enable users to “inhabiting” the new digitally enhanced 
healthcare worlds. The future of healthcare depends on how we will be able to 
effectively improve the healthcare delivery and patient experiences thanks to the 
Metaverse. We see that there is a strong demand from people/patients to leverage 
new digital healthcare solutions—technologically advanced and able to actively 
and intelligently use patient data. But no single player can build and lead the 
future meta-care; therefore, nowadays there is an urgent need for the healthcare 
ecosystem participants (both new entrants and incumbents) to speed up the 
process of collaboration in a pre-competitive environment to make meta-care a 
concrete reality for a better and healthy world. 
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16.1 Introduction 

The Metaverse is, at its root, an evolution of the Internet. It started with an Internet of 
Data in the 1990s and moved to the Internet of People in the 2000s. In the 2010s, we 
saw the Internet of Things with connected phones, devices, and machines. The 2020s 
have brought with them two key mutations that give the Metaverse its distinctive 
character: 

– The Internet of Place brings together people, spaces, and things in both the virtual 
and physical worlds. 

– The Internet of Ownership (typified by the crypto community and non-fungible 
tokens) enables unique, portable, durable digital products to be created, 
exchanged, and valued in virtual and real markets. 

Then there is Web3—a way for users and developers to own what they produce 
on a platform and also own the platform itself. Technologies like blockchain and 
tokenization will enable more technologies to be incorporated into the Metaverse. 
The Metaverse heralds an even greater era of digital transformation shaped by 
several attributes: physical and virtual place, multidimensional human experiences, 
creativity and utility, community, identity, market structure, value, and product and 
service. All of them should be considered in detail and managed to create the 
Metaverse future. They are: 

– Creativity and utility: the catalyst to combine all attributes into meaningful 
experiences that deliver on brands’ purpose and value and cater to people’s needs. 

– Multi-dimensionality: the Metaverse must consider the many dimensions of 
human experience, the most prominent being spatial health but including many 
more senses including hearing, touch, and smell. 

– Virtual place: a  synthetic world with spaces, things, and people to explore using a 
computer, console, mobile, wearable technology, and more. 

– Physical place: the physical world we live in (spaces, people, and things). It is 
enhanced with virtual layers. 

– Community: the Metaverse is social. Value is driven by group consensus and 
amplified by network effects. This affects both financial and social capital. 

– Identity: people’s ability to express themselves, claim identity (or multiple 
identities), or have social belongings and communicate a status.
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– Market structures: a shift to a virtual structure is needed to enable transaction of 
virtual value for both real and digital worlds in primary, secondary, and tertiary 
markets. 

– Virtual value: value in the virtual economy is tied to many factors, including 
uniqueness, exclusivity, status, utility, history, and ownership. 

– Product: products can be experienced in your physical world (AR), in virtual 
world (WR) or paired with real-world goods. 

– Portability and persistence: digital elements that are persistent across time, either 
in a virtual place or the physical world, with a history of exchange or use. 

16.2 Enter the Metaverse Continuum 

The Metaverse should be seen as a continuum. It brings together people, spaces, and 
things in both the virtual and physical worlds and enables a user to move from 
“browsing” to “inhabiting” the Internet in an ongoing, shared experience that spans 
all digitally enhanced worlds, physical realities, and business models. From 2D to 
3D and from cloud and artificial intelligence to extended reality, blockchain, digital 
twins, and edge technologies—every aspect of business will be transformed in the 
Metaverse: 

– Payments: digital currency and embedded business logic to simplify payment 
processes, cash management, purchasing, and sales 

– Customer experiences: immersive experiences delivered to customers in the 
context of their lives 

– Employee experiences: seamless teaming and collaboration anywhere, with any-
one via any channel 

– The products you make: native digital products, digitally augmented physical 
products 

– How you make your products: digital twins and immersive experiences enabling 
rapid design of new buildings, processes, products, and services 

– Supply chains: new digital supply chains for digital objects and enhanced collab-
orative and transparent physical supply chains 

– Enterprise management: digital twins of entire enterprises enabling immersive 
and collaborative information control and insights 

The Metaverse will provide the healthcare ecosystem with a virt-real collabora-
tion space in which to create robust, meaningful experiences for all value chain 
stakeholders. Those stakeholders can then implement innovation-driven transforma-
tion spanning the ecosystem from drug discovery and development to patient 
journey management. But as a continuum of rapidly emerging capabilities, use 
cases, technologies, and experiences, the Metaverse should be developed with 
responsibility at its core. It must protect data ownership, security, and personal 
safety and facilitate inclusion, diversity, and sustainability.



236 A. Pagliai

The Metaverse Continuum enables truly humanized digital ecosystems across the 
value chain—from product design and production to sales, after-sales service, 
training, and supply chain management. It will transform how healthcare providers 
interact with their customers, patients, and experts and will influence how work is 
done. End-to-end visibility (of patients, processes, products, and materials) creates 
opportunities for more accessible, worldwide, equitable healthcare. Blockchain, 
confidential computing, and distributed computing technology will help to solve 
underlying challenges in healthcare like protecting identity, data security, and health 
records management. Significant changes in health and life sciences will include: 

– A new reality in clinical trial participation. Anyone could be part of ongoing 
global clinical trials at any point. Wearables, implantables, and other sensors 
could make large-scale decentralized trials a reality, with real-time trial data 
seamlessly accessible to the right people in the right format, across the globe. 

– Global collaboration between healthcare professionals (HCPs) in a “world” 
where HCPs can “gather” to study and learn from one another’s patient cases. 
Such “meta–tumor boards” would allow professionals to share images, blood 
tests, and patient medical records and even “hear” from the avatars of patients on 
their individual care journeys—to prevent and cure at speeds never possible 
before. 

– Collaboration between research and manufacturing teams in meta-labs, which 
would shorten time to market and lower the total cost of going to market with a 
new therapy. 

The Metaverse Continuum transcends time and space to simulate interactions and 
shorten learning cycles and complex practice procedures, such as in surgical train-
ing. It enables more life-like virtual therapeutics, empowering patients to manage 
their health and even perform some self-care. 

16.3 It Is Time to Pause and Reimagine Healthcare 

What role will ecosystem members play in each world, and what trusted patient 
experiences should be co-constructed in the next decade? It is time to reimagine the 
worlds in which they operate, to avoid ending up in worlds designed by, and for, 
someone else. To shape the healthcare future in the Metaverse continuum we need 
sufficient quality and quantity of talent. That means the right workforce skills, the 
right culture, the right ways of working, the right employee experience, and the right 
current and future customer service approach. The Metaverse Continuum’s rise will 
be boosted and influenced by four transformative global technology trends 
(Fig. 16.1), described in Accenture’s Digital Health Technology Vision 2022: 
WebMe, Programmable Word, The Unreal, and Computing the Impossible.
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Fig. 16.1 Healthcare Technology Trends 2022 (Accenture 2022) 

Fig. 16.2 Technology Vision 2022 Global Consumer Survey. Global N = 24,000 (Agree 
Net = Agree/Strongly Agree) (Accenture 2022) 

16.3.1 WebMe: What It Means 

WebMe allows people to live personal lives virtually—to an unprecedented extent 
(Fig. 16.2). Technology empowers humans by means of transparency and transla-
tion. WebMe acts as a personal interface between the physical and virtual and will 
address a key pain point—patient adherence. Recognizing and personalizing com-
plex medical treatments and therapies, knowing the individual, and sharing trusted, 
transparent metrics among healthcare ecosystem players will increase safety and 
reduce relapse or comorbidities, reducing the cost of care.
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16.3.2 Programmable World: What It Means 

Programmable World tracks how technology is being threaded through our physical 
environments in increasingly sophisticated ways. Disruptive technologies like 
extended reality (XR) and 5G will challenge existing business models in the 
healthcare ecosystem by providing targeted, accurate solutions that go beyond 
two-dimensional technologies. Augmented reality (AR) is another potential game 
changer, applied across the value chain (including clinical trials, manufacturing, 
sales and marketing, and patient education). With the Metaverse as a foundation, 
XR/AR, 5G technologies, automation, and cloud computing could enable virtual, 
global gatherings in meta-labs to conduct experiments, share real-time insights and 
lab instruments, and conduct impact analysis across geographical locations and time 
zones. 

Healthcare ecosystem companies could also extract the full potential of digital 
twin technology, even in the manufacturing space. The XR and digital twins for 
enhanced consumer and marketing engagement are already being piloted, especially 
in the learning and knowledge sharing area, but digital twins hold great promise in 
therapeutic areas requiring high-quality, multi-dimensioned clinical trial and real-
world data. 

16.3.3 The Unreal: What It Means 

The Unreal is a trend where our environments and businesses are increasingly filled 
with machines that are passably human. “Unreal” qualities are becoming intrinsic to 
the artificial intelligence (AI) and data that enterprises aspire to integrate into 
mission-critical functions. With the Metaverse as the foundation real technologies 
will determine how competitive advantage could be enhanced by leveraging existing 
data strategies, algorithms, and AI. Identify where unreal content like chatbots or 
AI-generated images, videos, or content could help extend your brand and/or create 
preferred interactions with HCPs and patients. 

16.3.4 Computing the Impossible: What It Means 

Computing the impossible is showing us the outer limit of what is computationally 
possible, and how it is being disrupted as a new class of machines emerges. 
Quantum, biologically inspired, and high-performance computers are allowing 
companies to tackle grand challenges that once defined and shaped the very core 
of their industries. With the Metaverse as foundation these technologies will make 
healthcare ecosystem partnerships mandatory. We should start building relationships 
with next-generation computing providers now and cooperating with other ecosys-
tem players. The industry must enable and exploit the power of AI’s application to 
drug discovery, for example, translating complex biological problems into easier 
computational ones.
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16.4 It Is Happening Already 

Healthcare companies are pushing the boundaries of the Metaverse Continuum to 
deliver excellent new clinical, operational, and recreational experiences. 

Health Metaverse use cases are beginning to emerge. Healthcare companies are 
beginning to push the boundaries of Metaverse technologies to deliver novel clinical, 
operational, and recreational experiences. For example (starting with proven 
examples and moving toward the possible): 

– Immersive training: through virtual reality, we can create immersive learning 
experiences to better engage, train, and empower employees. This includes 
clinical social worker or customer service empathy training settings, for example. 

– Patient education: immersive environments enable a new standard for patient 
education. This leads to better health literacy and care plan cooperation during 
disease state and treatment explanations and post-discharge recovery plan 
compliance. 

– Digital therapeutics: clinical evidence continues to be built for XR therapies, 
delivering care for pain management, mental health, physical therapy, and more. 
Examples include behavioral health therapy and medication and therapy for 
chronic pain management. 

– Digital diagnostics: through AR we can use movement, space, and interaction to 
enable different types of diagnoses, like vision assessment for glaucoma patients. 

– Augmented health: AR can enable users to overlay relevant information while 
completing an activity. . .  so everything they need is at their fingertips. This could 
include guidance during surgical procedures and aided medical tasks. 

– Care plan and delivery: immersive technologies help to simulate procedures, 
enabling the next evolution in care planning and procedural preparation. 
Examples could be digital patient twins for immersive care planning and 
pre-operative preparation. 

16.5 Immersive Training 

Medical simulation is an experiential form of education, using simulated healthcare 
environments where “real-life” skills and experiences can be replicated. The 
Metaverse could enhance the way we provide patient-specific pre-op planning and 
education (printing your spine in 3D before surgery, for example). Current projects 
include: 

– Case Western Reserve and Cleveland Clinic is building a 485,000-square-foot 
Health Education Campus to support interprofessional learning. Instead of 
cadavers, anatomy classes will involve HoloLens headsets to see the body’s 
organs and systems (CWRU 2015). 

– Dreamscape Learn (DL) is a partnership between Arizona State University and 
Dreamscape Immersive. The Metaverse technology allows students to work in a
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meta-lab with a plethora of fictional animal species that adhere to biological laws 
(Arizona State University News 2020). 

– Seoul National University Bundang Hospital is providing training to medical staff 
in a smart operating room in the Metaverse. The Asian Society for Cardiovascular 
and Thoracic Surgery (ASCVTS) has already used the smart OR for lung cancer 
surgery training to over 200 thoracic surgeons (Korea Biomedical Review 2021). 

16.6 Patient Education 

Metaverse environments can be personalized to help patients interact with situations 
that cause them anxiety in safe, controlled, and monitored environments. People who 
fear hospitals could be acclimated in advance with virtual tours of the facility and 
therapy path using a 360-degree video. Current projects include: 

– Dr. Rob Lewis, a Californian neurosurgeon, uses advanced VR surgical tools to 
take patients through their own anatomy to understand tumor anatomy and the 
therapeutic approach he will take (Plug&Play Tech Center 2022). 

– Akdeniz University pediatric nursing is developing a Metaverse-based program, 
the MetaHealth-Youth Project, to encourage healthy behaviors in young people. 
In the multi-country clinical trial, participants enter Metaverse rooms to learn 
about nutrition, exercise, and stress management to reduce noncommunicable 
disease (NCD) risk factors (Clinical Trials Arena 2022). 

16.7 Digital Therapeutics and Diagnosis 

HoloLens 2 devices can be based at care homes, enabling remote round-the-clock 
interaction and support. They can also be installed in patients’ homes, so that 
consultants wearing HoloLens 2 headsets can share their opinions with other 
consultants using Remote Assist and provide patients with highly specialized, 
properly informed treatment. Medical notes and X-rays can be placed alongside 
the call in the wearer’s field of view to allow in-person and remote consultants to 
triage collaboratively. This is where digital twins also come into play—a digital twin 
is a virtual model/simulation, of any object, process, or system, generated using real-
world data, for the purpose of learning more about its real-world counterpart. In the 
case of the Metaverse, the digital twin could be of the patient themselves. Digital 
twins will eventually become personalized “test dummies” to forecast everything 
from postoperative recovery rates to patient reactions to specific medicines. This will 
be aided by increasingly sophisticated gene mapping and interpretation. Current 
projects: 

– Precision Os is an FDA-approved VR tool used to “fly” through the patient’s 
body and examine it before reconstructive surgery (PrecisionOS 2022).
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– Torbay and South Devon NHS Foundation Trust are piloting Microsoft HoloLens 
2 and Dynamics 365 Remote Assist in the Breast Care Unit where specialist 
nurses send real-time video feeds to consultants to get immediate advice on a 
patient’s needs. Consultants can add digital markers and annotations to the videos 
to guide nurses (Health Tech Newspaper 2021). 

16.8 Augmented Health 

The Metaverse opens a new frontier for telemedicine. Moving beyond home care, it 
takes remote care to extremes, hosting patients and doctors in virt-real spaces 
available 24/7 and just a click away. Patients are no longer limited to local clinicians 
but can choose doctors based on public biographies that detail their expertise. 
Doctors could also be made available to areas with a shortage of medical 
professionals, or to patients located in remote regions. Current projects: 

– Microsoft’s HoloLens technology has already been explored in non-operative as 
well as surgical cases to provide medical care remotely (Healthcare Outlook 
2022). 

– DeHealth announced the creation of a decentralized Metaverse where doctors can 
interact with each other and with patients in 3D and earn virtual assets (DeHealth 
2021). 

– HealthLand.io, formerly known as Healthify, allows fitness/sports trainers and 
health experts to open their own gyms. People can join in the HealthLand 
metaverse and receive low-cost emotional health consultations and fitness train-
ing from the comfort of their homes. 

– AccuVein is a vein imaging system company trying to eliminate bruising after 
injections. Cosmetic surgeons can see the enormous network of veins and blood 
vessels beneath the skin before treatment thanks to AccuVein’s game-changing 
technology (Healhtcare Outlook 2022). 

16.9 Care Plan and Delivery 

The Metaverse gives patients access to their personal health records and care plans. It 
could also help patients create goals based on analysis of their personal data and 
provide motivation by illustrating potential therapy results using digital twins. 
Current projects: 

– CVS Health has become the first pharmacy to enter the Metaverse. It has filed 
with the US Patents office to trademark its logo and establish an online store and 
create downloadable virtual goods ranging from prescription drugs to beauty and 
personal care products (CNBC 2022). 

– Akuvera uses thermal cameras based on algorithms to detect and predict whether 
a patient will adhere to bedrest requirements (Plug&Play Tech Center 2022).

https://www.healthifyme.com/in/
https://www.accuvein.com/
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– Evolve Rehab is using a Microsoft Kinect camera to trace person’s movement and 
gamify physical rehabilitation (Plug&Play Tech Center 2022). 

– IoTeX is a project that, with its existing remote monitoring capabilities, has the 
potential to assist patients through the Health Blocks project, which rewards users 
for changing their daily habits to live a healthy lifestyle (Healthcare Outlook 
2022). 

16.10 Introducing Meta-Care 1 

The future of healthcare depends on a sound understanding of context with respect to 
effective healthcare delivery and patient experiences. The motivation for the 
Metaverse Continuum is clear. Digital transformation plans succeed or fail on patient 
readiness to adopt digital solutions and improve their interactions with the healthcare 
ecosystem and live healthier lives with minimum effort. 

The 2021 Accenture Health and Life Sciences Experience Survey reveals how the 
healthcare experience has changed during the COVID-19 pandemic and could help 
to define what it will look (Accenture 2021a) like going forward. Key results of the 
study show: 

– Satisfaction with healthcare experiences is generally low and not homogeneous 
among surveyed countries, but as patients move along the patient journey, they 
increasingly leverage emerging digital health technologies. 

– The quality of access to healthcare elicited strong dissatisfaction, which has 
worsened since the pandemic. Given these statistics regarding access to key 
healthcare services, digital health is a prime candidate to provide information 
about who to talk to, how to understand therapies, and where to get expert 
guidance more easily. 

– Digital technologies like virtual consultations and appointments show significant 
potential to boost digital care, based on patient interest. Among the Italian 
respondents, Accenture research says that 15% would use and pay for services 
or digital technologies for disease prevention, but an impressive 34% would pay 
if it were at a low or discounted cost—38% would only use these services 
or technologies if they were free, while 10% would not use these services or 
technologies at all. Younger generations are more willing to pay full or 
discounted prices for this—a trend that holds across all countries surveyed, as 
well. Willingness to pay full or discounted prices for these services/technologies 
is slightly higher in Italy (49%) than in France (37%), Germany (33%), and Spain

1 Meta-care is the new patient experience of healthcare—shaped using opportunities created by 
the Metaverse Continuum. It is the patient-focused result of humanized digital healthcare 
ecosystems—from product design and production to sales, after-sales service, and supply chain 
management. A transformed interaction with patients by healthcare providers, meta-care implies 
accessible, worldwide, equitable healthcare that improves care outcomes while maintaining trust 
through effective data governance. 

https://iotex.io/
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Fig. 16.3 Willingness to pay for services or digital technologies for disease prevention, per 
country. Q: What would the cost need to be for you to consider services or digital technologies 
for disease prevention (e.g., healthcare services to improve my health and wearable device to track 
my fitness goals)? (Accenture 2021a) 

(40%). This same trend applies to ongoing disease management and regular 
health check-ups (Fig. 16.3). 

While digital health technology is often viewed as impersonal (counter-
intuitively) it can increase the frequency and quality of care and create a more 
connected experience for patients if used appropriately. In fact, Italian respondents 
are more likely to say they experience anxiety during in-person appointments than 
virtual ones (Fig. 16.4). 

16.11 How Does One Neutralize Potential Healthcare-Related 
Anxiety? 

For a positive experience with medical providers, respondents expect them to 
explain their condition and treatment clearly, listen, and provide emotional support. 
This is in line with other European countries surveyed, where people also expect 
efficient digital visits—something which could be enhanced by meta-care. 

Meta-care should take into consideration the perceived benefits of a well-shaped 
hybrid digital–physical experience and mitigate the anxiety created by the current 
physical care pathways. It should also leverage the fact that Italian people are more 
comfortable using apps powered by AI to determine if they need a diagnosis (51%, 
in Italy vs. 38% in France, 27% in Germany, and 47% in Spain), and using digital 
technology and AI to get diagnoses/treatments (52% in Italy, vs. 35% in France, 33% 
in Germany, and 47% in Spain). 

If you ask people whether they would consider using digital therapeutics, almost 
one-third say they would. That applies to disease prevention (when healthy), for 
symptomatic treatment or for ongoing disease monitoring. Trust is key for meta-care 
to grow and succeed, now and in the future. Respondent data indicates that



traditional healthcare players (providers, pharmacists) enjoy more patient trust than 
non-traditional players (technology companies, government, pharmaceutical 
companies, health insurance) (Fig. 16.5). 
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Fig. 16.4 How Italian respondents feel when accessing several types of care virtually and 
in-person, in-person or at a hospital. Q: Think back to the LAST time you had a virtual healthcare 
appointment (e.g., a medical appointment over the phone, via an app), an appointment with a 
medical provider in-person (e.g., with a doctor, specialist, nurse), and an appointment in-person at a 
hospital (i.e., either a planned appointment or an unplanned appointment). Which, if any, of the 
following emotions describe how each interaction made you feel? Select all that apply (Accenture 
2021b) 

My local or national government 
11% 

10% 
9% 

10% 

9% 
23% 

7% 
7% 

12% 

Spain 

5% 
10% 
10% 

35% 

Germany 

France 

Italy 

44% 
40% 

30% 

Health insurance companies 

Pharmaceutical companies 

My healthcare providers (e.g., doctors., hospitals) 

Q: 40 “Very much” responses 

Fig. 16.5 Healthcare providers are still the most trusted source of healthcare information by a 
significant margin. Q: Overall, how much do you trust information provided by the following 
sources? “Very much” responses (Accenture 2021a) 

This reality is vital to creating effective meta-care. Clear, transparent communi-
cation is vital to trust. Some providers have struggled to engage properly with 
patients, yet being able to do so is a key success factor for meta-care. Patients are



changing their habits. They have changing needs and are finding new ways to 
manage their lives and their healthcare experiences. Whether it is buying medicines, 
managing their health regime, or gathering health information, people’s expectations 
are changing faster than clinicians, pharmaceutical companies, and healthcare 
organizations can adapt—creating a mismatch. The gap will only grow if the 
healthcare ecosystem does not respond quickly, and meta-care is a swift way to 
close it. 
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16.12 Meta-Care Is Key, But It Is Not Enough 

In the last few years, patients have expressed a strong demand for more digital health 
management tools and services across all care types and at every touchpoint. From 
prevention to actual therapeutic care—more responsive, agile, and accessible tools 
must be used to ensure higher adherence, pre-empting, limiting, and more effectively 
managing illnesses and comorbidities. 

The human touch remains vital, though, even in meta-care. So, while it will 
undoubtedly form a crucial part of healthcare’s future, meta-care must include 
human contact for patients. Meta-care does not completely replace physical care, 
but rather augments it. It creates better accessibility for greater and more frequent 
doctor–patient interaction, a smoother immersive experience for medical personnel, 
and better outcomes. However, meta-care also presents a variety of potential 
challenges—from providing equitable access to technology to keeping patient data 
secure and ensuring patient safety as they explore care in new realms on their own 
terms and in their own time. As we enter this new era, the right governance and 
regulations must ensure that enthusiasm for meta-care’s great potential does not 
come at the expense of caution and care for the human at the center of the experience. 
Organizations need to lead with people-centric experiences and help consumers 
unify their digital ones (Fig. 16.6). 

Fig. 16.6 Technology Vision 2022 Global Consumer Survey. Global N = 24,000 (Agree 
Net = Agree/Strongly Agree) (Accenture 2022)
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It will be critical to ensure that access to meta-care is genuinely equitable. Tech 
companies’ efforts to generate profit must be regulated, and less tech-savvy groups 
like older or underprivileged people may find themselves further disenfranchised 
without the right safeguards. Technically speaking, interoperability is a critical 
component of meta-care and the whole healthcare industry should be pushing for 
data and communication standards. Costs should also be evaluated since meta-care’s 
full potential depends on high-tech hardware such as glasses, gloves, sensors, and 
other wearables capable of reading patients’ vital signs. Reimbursement methods 
and payer support should be reshuffled and linked to the outcomes to avoid making 
technology available only to those who can afford it. 

16.13 It Takes an Ecosystem: You Can’t Do It Alone 

No single player can lead meta-care. There is an urgent need for healthcare ecosys-
tem participants (both new entrants and incumbents) to speed up the process of 
collaboration in a pre-competitive environment and to define new rules of engage-
ment that allow the ecosystem to jointly build new, trusted capabilities and services 
into meta-care. Clear and precise terms of engagement will open the gates of 
investment and should reflect all stakeholders’ desired outcomes so that value is 
demonstrated upfront and for all—and realized through disciplined implementation. 
The call for change is louder everywhere—and so is the willingness to adopt new 
meta-care solutions. The scene is set, and it is time for the actors to take the stage. 
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Abstract 

The fascinating concept of anthropomorphic technologies refers to those digital 
technologies appearing as human-like in its design, and in terms of attribution of 
human-like characteristics to these non-human objects (e.g., chatbots, robots, 
virtual avatars, and so on). In the healthcare sector, new anthropomorphic 
technologies may revolutionize the service delivery process, contributing to a 
reduction in physical distance and enriching the doctor–patient relationship. 
Furthermore, considering the evolutionary trend toward digital business models 
in healthcare, these new digital technologies could lead the healthcare system to a 
futuristic level. Through an exploratory research design, using a sample of 
382 participants, in this preliminary study we investigated the combined effect 
of perceived human-like interaction level and anthropomorphism in influencing 
individuals’ reactions (intention to use) toward these new medical digital 
technologies. Discussions for healthcare managers and policymakers, together 
with food for thought for healthcare management and technology innovation in 
social services, are offered. 
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17.1 Introduction 

The impact of new technologies in healthcare in recent years has been disruptive 
(Rahimi et al. 2018). Digital health technologies use information platforms, connec-
tivity, software, and sensors to pursue a wide range of objectives (Lupton 2014; 
Edirisinghe 2022) from achieving and maintaining a general level of well-being to 
developing medical and diagnostic devices in order to better monitor and operate 
actively on the health of patients (see Värri 2020 for a review). Thus, today it is 
possible to use precision digital tools during surgical operations (e.g., as in Adamo 
et al. 2020), to monitor patients remotely (e.g., Sestino et al. 2023), or to manage the 
entire patient lifecycle (e.g., Triantafyllidis and Tsanas 2019). For instance, thanks to 
the ability to read medical records (Dinh-Le et al. 2019), artificial intelligence-based 
algorithms are able to formulate treatment plans and prevent serious diseases 
(Bhinder et al. 2021; Cesario et al. 2021a), e.g., as for cancer (Cesario et al. 
2021b), develop new drugs, and even analyze samples of cancerous and 
non-cancerous tissue (Mak and Pichika 2019). Blockchain technologies, for exam-
ple, may certify patient medical records and their hospitalization history (Hasselgren 
et al. 2020). Internet-of-Things devices may be exploited to monitor patients and 
intervene when requested (Sestino et al. 2020). Among the recent technological 
innovations, the Metaverse, despite in its infancy, may also deploy its maximum 
effects in the healthcare sector. The Metaverse consists of a virtual and parallel 
reality, similar to the concept of a virtual world that combines elements of many 
technologies including AI, immersive reality, advanced connectivity, and Web3. 
With this combinatorial technology, individuals may enter the digital world through 
virtual identity (avatars), virtually do their daily activities, socialize, work, shop, do 
sport, and meet friends (Sparkes 2021). Thus, the Metaverse can be considered an 
important value-creation technology for both consumers and industries such as 
healthcare, automotive, education, and luxury (McKinsey 2023; Sestino et al. 2022). 

By its nature, the Metaverse could revolutionize the entire process of providing 
healthcare services with reference to telemedicine (Wang et al. 2022). Indeed, 
telehealth is a video conversation via a computer or telephone where a doctor uses 
a telephone or computer to assist a patient who is off site (VandenBos and Williams 
2000). In addition, telehealth employs electronic information and 
telecommunications technologies to support and promote long-distance clinical 
healthcare, professional education, patient information, public health, and health 
systems administration (Mort et al. 2003). These technologies include video confer-
encing, media streaming, and wireless communications (Fong et al. 2020). 

Thinking about the possibility of the Metaverse to “turn” the real world into a 
virtual reality by catapulting the participants into a sort of parallel reality, the whole 
livable healthcare experiences may be magnified (Damar 2021; Dwivedi et al. 2022). 
Furthermore, the Metaverse could enable precision medicine and encourage greater 
research and development capacity through the possibility of creating avatars, which 
are digital representations of human beings in the virtual world. Thus, from the 
perspective of the Metaverse’s final users (i.e., the patients), the convergence of the 
aforementioned new technologies could allow medical professionals to provide a



range of highly integrated, deliberate, and individualized care without being 
constrained by the siloed nature of current healthcare models in a “parallel” daily 
life environment (Sun et al. 2022). By taking the doctor–patient relationship to a 
future level, the Metaverse may promote quickness in both doctor–patient and 
doctor–doctor communication, enabling hitherto unheard-of levels of complexity 
in prevention, diagnosis, and treatment. Summarizing, the Metaverse is emerging as 
an immersive combinatorial technology with great potential to offer value-centric 
patient care across the healthcare spectrum (Dwivedi et al. 2023). 
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One of the enabling technologies of the Metaverse refers to the avatar of 
participants (e.g., both doctors and patients) in a virtual environment in the 
Metaverse. The avatar can closely resemble its user in real life or be different 
depending on how this is built in the design phase (Nowak and Fox 2018). Thanks 
to the total abstraction of the body and its transposition into virtual reality, it will be 
incredibly possible to even enter a virtual human body and understand its 
mechanisms, understand its functioning in the smallest details, be able to study its 
characteristics and pathologies in all evolutionary phases, and determine the most 
effective drug therapies. The digital transposition of patients and doctors implies the 
creation of their virtual “duplications” capable of interacting in a totally digital-based 
environment. Nevertheless, this new digital technology simulating interactions in a 
parallel virtual reality where avatars are digital transposition of patients and doctors 
in the real world cannot underestimate the importance of human-like interactions for 
its value-based implementation. 

Given these premises, through an exploratory research design, this chapter sheds 
light on the role of two important variables in the human-like interaction level, and 
anthropomorphism, which prove to be important antecedents of the intention to use 
these new digital anthropomorphic technologies. An experiment has been conducted 
among a sample of randomly recruited 382 participants. Results highlight that the 
level of individuals’ perceived human-like interaction (high vs. low) on their 
reactions (intention to use) toward anthropomorphic technologies is mediated by 
their perceived anthropomorphism. More specifically, results confirm that higher 
level of perceived human-like interaction level leads to a higher intention to use 
anthropomorphic medical digital technologies because of increased level of 
individual’s perception. 

This chapter is organized as follows. In the second section, we provide some 
foundations about the concept of anthropomorphic technologies explaining the 
reasoning behind our preliminarily study. In the third section, we describe the 
methodological approach implemented together with details on the experiment. In 
the fourth section, we present the results of our experiment. Finally, in the fifth 
section, we conclude offering some insights for healthcare marketers, managers, and 
policymakers in approaching medical virtual agents’ design.
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17.2 Overview of the Study 

17.2.1 Anthropomorphic Technologies 

The concept of anthropomorphism has long been studied in the literature. Such a 
concept refers to the interpretation of what is not human or personal in terms of 
human or personal characteristics, through a sort of humanization. To clarify, the 
concept of anthropomorphism relates to individual’s propensity to see inanimate 
objects as having human-like characteristics (Guthrie 1993). It entails the process of 
inferring from things and non-human entities that have exterior traits, motives, 
actions, and underlying states that are typical of humans (Epley et al. 2008; Guido 
and Peluso 2015). Individual’s perceptions of anthropomorphism may have a direct 
impact on whether they intend to use an intelligent agent that resembles a person, 
depending on the type of agent (e.g., robot gender, individual likeness, and so on) or 
the sort of service (Blut et al. 2021). This person’s aim is mostly motivated by the 
resemblance they attach to digital tools like chatbots or avatars (Sheehan et al. 2020). 
Indeed, anthropomorphism, previously defined as the attribution of human-like 
characteristics, behaviors, or mental states to non-human entities such as objects, 
brands, animals, and, more recently, technological devices may include a wide range 
of characteristics, from physical appearance to the various mental states that charac-
terize human beings, such as engaging in reasoning, making moral judgments, and 
forming intentions (Golossenko et al. 2020; Kim and McGill 2011), even when 
perceived as acting as humans (Guido et al. 2019). The metaphorical manifestation 
of anthropomorphism known as personification of a non-human creature is likewise 
a kind of this (Wang 2017). More importantly, anthropomorphism may make users 
feel more connected to technology due to a great sense of connectedness (Kang and 
Kim 2020): Thus, a greater sense of closeness leads to more favorable individuals’ 
reactions to anthropomorphic technologies. 

By considering the technology-related stream of research, an anthropomorphic 
technology (AT) is technology that is human-like in design and motivates anthropo-
morphism, reached through attribution of human-like characteristics to non-human 
objects (see Li and Suh 2022 for an extensive literature review on this domain). As 
for anthropomorphism, Kang and Kim (2020) have found that anthropomorphism 
increases the sense of connectedness between user and the technology. According to 
their study, the increased sense of connectedness in turn evokes more positive user 
responses toward the technology (Kang and Kim 2022). By considering the virtual 
agents as part of anthropomorphic technologies, such as those usable in the 
healthcare industries (e.g., medical chatbots or doctors’ avatars interacting in the 
Metaverse), individuals’ perceived anthropomorphism may thus have a fundamental 
explanatory effect in undermining their intention to use (Han 2021). For instance, in 
the Metaverse the presence of anthroponomic forms of virtual agents such as avatars 
may boost the communication between doctors and patients as well as among 
doctors themselves, enabling hitherto unheard-of levels of complexity in prevention, 
diagnosis, and treatment (Dubosc et al. 2021).



17 Patients’ Reactions to Anthropomorphic Technologies in Healthcare.. . . 253

17.2.2 Human-Like Interaction Level 

In the context of anthropomorphic technologies, a further fundamental characteristic 
that cannot be overlooked is that relating to the interaction modality between 
technologies (e.g., computers, virtual agents, and so on) and individuals (Dix 
2016; Karray et al. 2008). Previous research shows that when a technology that 
mimics a person may engage and display empathy with human users, it may be more 
widely accepted by final users (Pelau et al. 2021). 

Anthropomorphic traits are significant in the relationship between individuals and 
the intention to use new technologies, according to existing studies (Pelau et al. 
2021; Strait et al. 2014; Wan and Aggarwal 2015). For instance, according to the 
computer as social actors theory (Nass and Moon 2000) humans mindlessly apply 
the same social heuristics used for human interactions to computers because they call 
to mind similar social attributes as humans. Thus, individuals may exhibit stronger 
intention to utilize anthropomorphic technologies if they believe that such 
interactions are comparable to those that may be with human peers (Heerink 2010; 
Kim and Sundar 2012). Indeed, such perception toward new digital technologies 
increases their acceptance in different situations as it gives them greater power and a 
sense of equality with humans. 

When considering the healthcare sector and the new technology for service 
delivery, not all the available virtual agents exhibit the same level of human-like 
interaction. For example, chatbots could be perceived as more limited and less 
interactive as they are based on a finite knowledge base, and their ability to react 
is exhausted when they are no longer able to answer the set of questions known to 
them (Chung and Park 2019; Gentner et al. 2020). Otherwise, the avatars in the 
Metaverse could be perceived as more interactive since, being guided—like 
puppets—by the man behind them, they are able to react exactly like these, almost 
as if they were their “extension” in the virtual world. Despite efforts by medical 
chatbots to become more anthropomorphic in the healthcare industry (Bhattacharya 
et al. 2022; Bulla et al. 2020), individuals may be more accepting of avatars since 
they are thought to be more like the individuals they represent in the real world (such 
as doctors or clinicians) (Sun et al. 2022). Additionally, because humans are in 
charge of the avatars rather than computers, they may embody all the positive 
qualities, behave like individual, and avoid making technological mistakes. Addi-
tionally, due to the limited knowledge base on which completely automated virtual 
agents like chatbots are constructed, they are susceptible to mistakes, which may 
have a negative impact on individual’s intentions to use such technologies (Sheehan 
et al. 2020). 

Based on above literature, in this study we suggest that the human-like interaction 
level of the technology may positively influence individuals’ intentions to use 
through the effect of their perceived anthropomorphism. 

Thus, we formally hypothesize that:
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Fig. 17.1 Human-like interaction level and perceived anthropomorphism effects on individuals’ 
intention to use anthropomorphic medical digital technologies 

Hypothesis Individuals’ perceived human-like interaction level positively 
influences their intention to use anthropomorphic medical digital technologies, 
through the effect of their perceived anthropomorphism. 

Figure 17.1 below presents the proposed conceptual framework for which we 
seek empirical validation. 

17.3 Methodology 

To test the aforementioned hypothesis, through an explorative research design we 
conducted an experimental study where we manipulated the perceived human-like 
interaction level (high vs. low) to sage the effect of individuals’ perceived anthropo-
morphism on their intention to use anthropomorphic medical digital technologies. 

More specifically, the experimental design was based on a two-cell experiment 
and conducted by manipulating the level of human-like interactions in a digital-
based healthcare service delivery. Building on the previous literature, explaining the 
different level of perceived human-like interaction levels, we manipulate human-like 
interaction level by exposing half sample to a scenario describing the use of chatbot 
for healthcare service delivery (to define the low condition of perceived human-like 
interaction level). The other half of the sample has been exposed to a scenario 
describing a Metaverse-based healthcare service delivery where users were able to 
interact via their avatars (to manipulate the high condition level). 

Coherently with our explorative research design, a survey-based experiment was 
implemented. The survey was organized into three sections. In the first one, 
participants were welcomed and invited—on the basis of our two-cell experiment— 
to see the two alternative scenarios. Participants were then randomly assigned to two 
different settings where we manipulated the level of human-like interaction of the 
online digital-based healthcare service delivery (low level of human-like 
interaction vs. high level of human-like interaction). In the second section, we 
gathered information for participants’ intention to use anthropomorphic medical 
digital technologies by using a two-items scale drawn by Fishbein and Ajzen 
(1977) (e.g., “I intend to use this digital healthcare service in the future”), and 
their perceived anthropomorphism by using the four-items scale drawn by McLean 
and Osei-Frimpong (2019) (e.g., “The interaction experience with the digital doctor



is close to that with a human being”). Both individuals’ intention to use anthropo-
morphic medical digital technologies and perceived anthropomorphism, together 
with their reported emotional receptivity, were assessed on a 7-point Likert scale. 
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The survey was built via the software Qualtrics and distributed through the online 
platform Mechanical Turk (Aguinis et al. 2021). We recruited a sample of 
382 participants, aged between 22 and 71 (Mage = 33.13; SDage = 10.01), consisting 
of 219 males (67%) and 108 females (33%). The large part of the sample declared to 
have a B.Sc. or M.Sc. (271 participants; 83%) or to hold a degree lower or equal to a 
high school diploma (40 participants or 12%) or a Ph.D. (17 or 5%). As for their 
geographical location, the sample consisted of only European participants. 

17.4 Results 

To test our hypothesis, we ran the simple mediation model (Model 4) developed by 
Hayes’ (2017) using the PROCESS macro for SPSS (Table 17.2). The mediation 
model included the advertised travel communication focus (-1 = high level of 
perceived human-like interaction and 1 = low level of perceived human-like inter-
action defined as the independent variable (X), individuals’ intention to use anthro-
pomorphic medical digital technologies as the dependent variable (Y ), and 
individuals’ perceived anthropomorphism as a mediator (Me) in explaining the effect 
of the independent variable on the dependent variable). Results report a significant 
and negative effect (b = -0.511, t = -8.156, p = 0.000) of the type of effects of 
human-like interaction level on individuals’ perceived anthropomorphism, 
confirming how such technology characteristic (human-like interaction) is funda-
mental in making perceptible digital tools as anthropomorphic (Tables 17.1 and 
17.2). 

However, individuals’ perceived anthropomorphism seems to exert a positive and 
significant effect on their intention to use anthropomorphic medical digital 
technologies (b = 0.810, t = 19.111, p = 0.000). More importantly, results reveal 
a significant and direct effect of the perceived anthropomorphism on individuals’ 
intention to use anthropomorphic medical digital technologies through the effect of 
the different levels of human-like interaction (b = 0.035; t = 0.620; p = 0.002). 

Thus, our result show that, due to higher level of human-like interaction level, 
individuals may perceive the digital tools as more anthropomorphic, finally 
exhibiting greater intention to use anthropomorphic medical digital technologies.

Table 17.1 Effects on individuals’ perceived anthropomorphism 

Dependent variable: Perceived anthropomorphism (Me) b SE t p  

Constant 5.802 0.063 92.570 0.000 

Human-like interaction level (X) -0.511 0.063 -8.156 0.000 

R2 = 0.149, MSE = 1.038, F (1, 380) = 66.519 
p = 0.000 

Note. N = 382



Conversely, when the human-like interaction level is perceived as low, the effects on 
individuals’ perceived anthropomorphism decrease, together with their intention to 
use. The results generally confirm that a higher level of human-like interaction leads 
to an equally higher perception of the anthropomorphism of the digital medical tools. 
This effect positively influences the individuals’ intention to use anthropomorphic 
medical digital technologies.
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Table 17.2 Result of the mediation analysis 

Dependent variable: Intention to use anthropomorphic 
medical digital technologies (Y ) b SE t p  

Constant 1.184 0.251 4.713 0.000 

Human-like interaction level (X) 0.035 0.056 0.620 0.002 

Perceived anthropomorphism (Me) 0.810 0.042 19.111 0.000 

R2 = 0.537, MSE = 0.709, F (2, 379) = 220.187 p = 0.000 

The combined effect of human-like interaction level and perceived anthropomorphism on 
individuals’ intention to use anthropomorphic medical digital technologies 
Note. N = 382 

17.5 Discussion and Conclusion 

In a complex set of new healthcare technologies, virtual agents today have the ability 
to use a virtual character created through computer generation, animation, and 
artificial intelligence as customer service agents. These virtual agents can be “less 
autonomous” as in the case of chatbots, which are able to answer questions posed on 
the basis of a fixed knowledge base (however capable of continuous learning), or 
“more autonomous” as in the event of the avatars of individuals in the Metaverse as 
guided by them, almost like an extended self. Such autonomy has been interpreted 
by research as a characteristic of these anthropomorphic technologies, also known as 
human-like interaction, able to measure how much a virtual agent is able to 
interact—interactively—with humans. 

Drawing from previous studies, in this chapter we demonstrate that, by consider-
ing the digital healthcare services for teleconsulting delivery, individuals’ perceived 
human-like interaction level (high vs. low) of these virtual agents may positively 
influence their intention to use anthropomorphic medical digital technologies 
through their perceived anthropomorphism. This means that when patients perceive 
the virtual agents replacing “flesh and blood” doctors as interactive as a human but 
also anthropomorphic, the combined effect can boost their intention to use such 
digital technologies. 

These preliminary insights are interesting in the current technological and social 
landscape in which new digital technologies, such as the Metaverse, are rapidly 
emerging. The Metaverse could catapult individuals into a “twin” reality parallel to 
the real one and favor, for example, new healthcare services delivery by breaking 
down geographical distances enhancing the doctor–patient relationship. With regard 
to teleconsultation services, both doctors and patients through their avatars could



access the Metaverse, meet, discuss, and act as if they were in the doctor’s office. 
Furthermore, the doctor can “digitally show” any materials related to the patient 
(e.g., X-rays and body analyses), directly on the patient’s avatar, in line with the 
augmented reality paradigm. 
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Our preliminary results can contribute to the research in several ways. From a 
theoretical perspective, they add knowledge to theories, such as that of computers as 
social actors’ theory (Nass and Moon 2000), or to the line of research related to 
human–robot interaction (HRI), as a field of study dedicated to understanding, 
designing, and evaluating robotic systems for use by or with humans. By definition, 
interactions require communication between robots and humans. Indeed, we explain 
how the combined effect of high levels of human-like interaction and perceived 
anthropomorphism may lead to higher patient intention to use anthropomorphic 
medical digital technologies in the healthcare service delivery. 

Moreover, from a managerial perspective, our findings provide important insights 
for healthcare marketers, managers, and policymakers. For instance, our findings 
suggest that in the design of new digital health services, such as teleconsultation, 
higher level value-centric patient care services than telephone calls or video calls 
embrace more immersive technologies to provide wider support to the final patient. 
From a healthcare policymaker perspective, our findings suggest the imperative to 
introduce such new technologies into the healthcare systems as soon as possible to 
enrich the value proposition of new digital-based services. Indeed, the fact that new 
technologies are pushing healthcare toward a digitization of treatments and doctor– 
patient relationships is now well established, especially following the health emer-
gency of COVID-19 pandemic, telemedicine systems and, in general, connected care 
systems have been developed, tracing the direction toward the decentralization 
of care. 

New opportunities, such as those considered in our experiment, could open a new 
frontier in this sense. Indeed, the Metaverse combinatorial technology is not limited 
to bringing treatment to the patient’s home, but takes this concept of decentralization 
to extremes, hosting patients and doctors in new physical/virtual spaces thanks to 
their avatars. 

More importantly, the delivery of healthcare services in Metaverse could provide 
new opportunities and unexplored solutions, giving such patients the possibility to 
access medical care provided by health facilities physically located in other regions, 
in other states, and on other continents, breaking down, on one hand, the geographi-
cal distances and, on the other hand, offering the possibility to patients with reduced 
mobility to reduce the inconveniences due to physical movement. 

Despite the promising results of our research, this study has some limitations. 
First, in light of the exploratory approach used, starting from the theories offered 
(e.g., Nass and Moon 2000), our study considered only the human-like interaction 
level (manipulated through a scenario) and perceived anthropomorphism as 
antecedents of individuals’ intention to use. Further studies should necessarily enrich 
this model, for example by leveraging further theoretical models, such as those 
referable to the acceptance of technology (Davis 1989). Moreover, future studies 
should consider further patient-related variables, such as empathy, emotional



receptivity, or the effect of patients’ tendency to human contact, as other complex 
elements to keep unchanged in totally digital-based environments. Although ade-
quate for a preliminary experimental study, further studies could test the effects of 
the proposed model with other variables and on a larger population, or by leveraging 
real use cases. 
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in Personalized Medicine and Healthcare 
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Andrea Manto and Marika D’Oria 

Abstract 

Starting from the recent issues elucidated by the European Parliament, the 
following contribution focuses on how algorithms are perceived by society as 
characterized by a “personhood” that may convey prejudice and how, conversely, 
the metaverse can influence human behavior by leading to interesting changes in 
identity. A deeper reflection explores the common root of “health” and “salva-
tion” (salus-ūtis) that lies as the basis of the concept of “salutogenesis” (a sense of 
coherence that human beings have about their identity, in every aspect of care). 
This reflection helps to understand what we seek for when we ask for some 
posthuman solutions that may harm human dignity. Ethical and educational 
suggestions are provided. 

Keywords 

Ethics · Education · Identity · Algorithm · Metaverse · Prejudice · Artificial 
intelligence · Personalized medicine 

18.1 Introduction 

In May 2022, the European Parliament published a review encompassing the current 
implementations of artificial intelligence (AI) in healthcare. The document 
highlighted some issues, including: 
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– Misuse of medical AI tools and patient harm due to AI errors 
– Gaps in AI accountability and lack of transparency 
– Privacy and security issues 
– Obstacles to implementation in real-world healthcare, risk of bias, and perpetua-

tion of inequities 

International stakeholders and policy makers at different levels of governance 
should consider assess the impact of using AI in healthcare, for individual and public 
health. Besides, the European Parliament proposed some solutions to face these 
issues (European Parliament 2022): 

– The reduction of the European divide in medical AI 
– The creation of mechanisms for enhancing medical AI traceability, trust, and 

transparency 
– The promotion of multi-stakeholders engagement and co-creation collaborations 

All these solutions should be integrated within education programs aiming at 
enhancing literacy and skills in professionals as well as in citizens. However, since 
personalized medicine (PM) is tailored to “the person” (Cesario et al. 2021), it is 
crucial to consider ethical implications of using AI starting by taking into account the 
possible scenarios from an individual and collective perspective. 

18.2 “Are Algorithms Racist?,” “Is LaMDA Sentient?,” and Other 
Wonder-Full Questions 

Several examples from the literature (Zou and Schiebinger 2018; Singh 2021; 
Layland et al. 2022) on algorithms developing discriminatory outcomes, and the 
recent (retreated) news from a former Google engineer (Lemoine 2022) on the 
“sentient” algorithm LaMDA (Wired 2022), are keeping the global attention focused 
on the possible development of a “personhood” by intelligent algorithms. 

In the era of personalized precision medicine, we should take care of the words 
that are used in explaining some outcomes of AI, especially when compared to 
humans, because of the possible illusion of overlapping humans with machines. In 
the abovementioned examples, when the algorithm is biased by design, meaning that 
the rules through which it learns represent an unconscious prejudice (e.g., cultural 
biases) of the programmer, it learns to analyze data and report information with an 
unfair approach, by “privileging” some variables instead of others. 

The most obvious forms of discrimination related to cultural bias are (NASEM 
2017): 

– Racism: which distributes more resources and power over one race/ethnicity than 
others 

– Sexism: which privileges one gender over another (in many cases, men have more 
privileges than women do)
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– Heterosexism: which prefers heterosexual people to those with other orientations 
– Classism: which gives unfair disadvantage to those who have more wealth and 

higher social status than others do 
– Xenophobia: which gives more rights and power to non-migrants than 

immigrants 
– Ableism: which prefers people without disabilities to those who have them 

In this scenario, wonder plays a crucial role in exaggerating or, conversely, 
minimizing the potential of these technologies on all creatures and the environment. 
Believing an algorithm could be “racist” recalls a fascinating imaginary in which 
humans attribute human properties and behaviors to things and machines by 
addressing them with behavioral tags. 

Consequently, the algorithm becomes “racist,” “sentient,” “superintelligent,” etc. 
Indeed, some automatisms and robots have been conceived to emulate, and actually 
replace, humans in some fields and activities. The collective imaginary that 
fantasizes on the fear that the “creature” (AI) will go beyond (and, eventually, kill) 
its “creator” (humans): the myths of Pygmalion, Oedipus, and Cronos represented 
this fearful fantasy very well. 

However, fantasies and fears on AI should be analyzed toward ethical and 
educational lenses, since humans and technologies are intrinsically different. 
Using a language that matches humans with machines can lead to confusion (e.g., 
by using metaphors and analogies that compare our memory to a computer, the AI to 
a superbrain, naming algorithms with the same name of neural networks, etc.). 

On the other hand, the fear of being replaced and forgotten recalls the necessity of 
human beings to reconnect with their intimate meaning, to discover their real nature 
(not reduced to automatic, yet sophisticated, actions and functions) and how they are 
necessary and different in this world. 

18.3 Behavior, Identity, and the Metaverse 

If mass and social media are persuasive tools that influence people’s attitudes and 
behaviors, the metaverse is instead a transformative technology, capable of 
modifying what people think reality is because it “works like our minds” 
(Wiederhold 2022). Specifically, the technologies behind a metaverse trigger several 
cognitive mechanisms, such as proprioception (the experience of being in a place 
and in a body), brain-to-brain synchrony, and experiencing/inducing emotions (Riva 
and Wiederhold 2022). By using AI, augmented reality (AR), virtual reality (VR), 
and connectivity (such as 5G networks), the metaverse could create more immersive, 
experiential, and interactive online environments, aiming at becoming “the most 
advanced form of human–computer interaction allowing individuals to act, commu-
nicate and become present in digital and digitally enhanced physical environments” 
(Riva et al. 2021). 

The word “metaverse” refers to a virtual reality existing beyond reality, and it is 
composed by the word of “meta” (going beyond, over, transcendence) and



“universe” (world, cosmos, space) (Kim 2020). After this concept appeared in a 
1990s science fiction novel (Snow crash) for the first time, extensive efforts have 
been made to make the metaverse a reality (Wiederhold 2022). Today, the metaverse 
can be defined as “a 3D-based virtual reality in which daily activities and economic 
life are conducted through avatars representing the real themselves” (Go et al. 2021; 
Kye et al. 2021). 
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This is not a simple “combination” of the physical and virtual worlds, but an 
“interaction” of both, in which daily life and economic activities are “conducted in a 
unified way” (Kye et al. 2021). In addition, the metaverse means “a world in which 
virtual and reality interact and co-evolve, and social, economic, and cultural 
activities are carried out in it to create value” (Lee 2021). In other words, the avatar 
in the metaverse is identified with one’s real self by engaging in social, economic, 
and cultural activities in the metaverse world. 

In 2006, the Acceleration Studies Foundation (ASF) presented a metaverse 
roadmap that explained the existing types of the metaverse, by drawing a distinction 
between “augmentation” vs “simulation” technologies, and “intimate” vs “external” 
worlds (Smart et al. 2007; Kye et al. 2021). Specifically: 

– Augmentation technology adds a new function to an existing real system, by 
superimposing information on the physical environment we perceive. 

– Simulation technology provides a unique environment for interaction by 
modeling reality. 

These technologies can create different metaverses if the virtual information is 
implemented in physical or virtual reality. Moreover, metaverses can also be distin-
guished from their focus on the inner or the external/outer world (Smart et al. 2007; 
Kye et al. 2021): 

– The inner world focuses on the identity and behavior of an individual that has 
direct agency in the environment, by using or embodying an avatar or 
digital twin. 

– The external/outer world focuses on aspects of external reality, by displaying 
information about the user environment and how to manage it. 

The metaverse could impact healthcare due to the convergence of three major 
technological trends (Table 18.1) that could come together to create entirely new 
means for delivering care, potentially lowering costs, and vastly improving patient 
outcomes (Wiederhold 2022). 

Clearly, these possibilities define new scenarios with positive and negative 
outcomes (Riva and Wiederhold 2022). Some of its possibilities regard the change 
in body perception, and therefore behavioral assets and contextual interactions: for 
example, VR can be used to visually substitute a person’s body by a life-sized virtual 
one. Such embodiment results in a perceptual illusion of body ownership over the 
virtual body: research has shown that the form of the VB can influence implicit 
attitudes, such as in particular, embodying White people in a Black virtual body is



associated with an immediate decrease in their implicit racial bias against Black 
people (Banakou et al. 2016). Another research shows that participants embodying 
the Einstein body performed better on a cognitive task than the Normal body, 
considering prior cognitive ability (IQ), with the improvement greatest for those 
with low self-esteem. Einstein embodiment also reduced implicit bias against older 
people. Hence virtual body ownership may additionally be used to enhance execu-
tive functioning (Banakou et al. 2018). It would be interesting to understand whether 
these technologies can empower or disempower patients in different clinical 
scenarios (from addictions to chronic conditions, from mental to physical illness, 
etc.). 
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Table 18.1 Short description of the main technological trends, according to Wiederhold (2022) 

Tech trends Short description 

Telepresence The immersion (the sense of “being there”) provided by VR enhances the 
experience of telepresence, allowing both patients and their providers to interact 
naturally, just as they would in person. Decades of research has shown that for 
many patients, lasting change happens when they are able to confront the 
situations that cause them distress and learn how to cope with them 
constructively with the help of a therapist. The metaverse can serve as a 
transitional stage between current in-person VR therapy sessions and real-world 
experiences. As the metaverse materializes, healthcare providers can begin to 
engage in therapy with patients in the metaverse and only after that have them 
practice on their own, eventually translating coping skill sets to the real world. 

Digital twin A digital twin is “a virtual model, or simulation, of any object, process, or 
system, generated using real-world data, for the purpose of learning more about 
its real-world counterpart.” in the case of exposure therapy within the metaverse, 
the digital twin could be a version of a patient’s classroom or office, or even a 
visual reproduction of patients themselves. In the metaverse, there is the 
opportunity for healthcare providers to truly accompany patients into specific 
individualized environments, thus enhancing the efficacy of treatment. 

Blockchain Blockchain is defined as “distributed and encrypted databases that allow data to 
be stored and transferred securely in a way that no one except the data owner can 
tamper with.” In healthcare, blockchain use would be in the management and 
security of individual health data. Unlike reams of paper or transfer via unsecured 
email or online portals, blockchain could allow patients to own their medical 
records on a secure personal file. Purportedly blockchain is unhackable, yet it is 
simple to give consent to any clinician anywhere in the world to review the 
records with the click of a button. The metaverse, with its capabilities for 
immersion, customization, and security, has an important role to play in the 
future of healthcare, allowing for the proactive prediction, prevention, and 
treatment of health concerns, leading to better patient outcomes. 

On the other hand, it is likely that situational and embodiment variables may lead 
to severe consequences similar to the Stanford prison experiment performed in 1971. 
In the study, some volunteers were randomly selected to be “guards” of the Palo Alto 
prison and were given uniforms specifically to de-individuate them while instructed 
to prevent “prisoners” volunteers from escaping. Over the following 5 days, psycho-
logical abuse of the “prisoners” by the “guards” became increasingly brutal 
(Stanford News 1997).
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Further limitations of the metaverse may weaken social connections, the possi-
bility of privacy infringement, the misuse of data, or maladaptation to the real world 
(Kye et al. 2021). Educating ourselves as to its promise, and the challenges it may 
present, is a necessity (Riva and Wiederhold 2022): policy makers and stakeholders 
(including healthcare professionals) should carefully analyze how people understand 
the metaverse, while designing environments to solve problems cooperatively and 
creatively (Kye et al. 2021). Likewise, research from neuropsychology, linguistics, 
and social sciences should broaden understanding on the effects that virtual simula-
tion and embodiment (still recognized at the roots of cognition, emotion, and 
attachment) have on individual and collective lifelong learning in terms of attitudes, 
behaviors, and identity. 

18.4 Health, Salvation, and Dignity: Are we Ready for Deep 
Humanism? 

If PM aims at providing “the right treatment to the right person, at the right time” 
(Cesario et al. 2021), we should consider what a person really expects to receive 
when a personalized treatment is proposed. Even though it is impossible to give a 
compelling answer to this question, the personalization of a treatment leads to the 
implicit promise that a patient is “unique” and, therefore, special. Besides this 
implicit promise, we should also consider that every patient desires to regain the 
former equilibrium of her or his health and, in some cases, to seek for salvation. The 
terms “health” and “salvation” have the same origin from the Latin root salus-ūtis: it  
is interesting to recall the concept of “salutogenesis” by Antonovsky, understood as 
everything that “creates health” by enabling people to make conscious health choices 
toward their internal and external resources, to proactively increase their resilience 
even in severe adversity (disability, trauma, chronic illness, etc.). In this sense, 
“health” and “salvation,” which in the Hebrew העּוׁשי (yeshû‛âh), Greek sotería, 
and Latin salus, often overlap, and the same etymological derivation “salus” brings 
us back to the common meaning of wholeness, fullness. 

Fundamental to salutogenesis is a “sense of coherence” considered as a “compre-
hensive and deep feeling that whatever happens in life can become understandable 
and be managed.” Medical and technological ethics should assure the sense of 
coherence (or decoherence) in a patient’s identity in all aspects of care (prevention, 
personalization, participation, prediction, etc.). To this aim, educating healthcare 
professionals to use AI in their practice therefore requires a salutogenic understand-
ing of the patient that recognizes suffering as a natural condition of existence: 

The terrain of human suffering is much broader, much more varied, and multidi-
mensional. Human beings suffer in different ways that are not always covered by 
medicine, even in its most advanced specializations. Suffering is something even 
broader than illness, more complex, and at the same time even more deeply rooted in 
humanity itself. A certain idea of this problem comes to us from the distinction 
between physical suffering and moral suffering. This distinction takes as its



foundation the twofold dimension of the human being and points to the bodily and 
spiritual element as the immediate or direct subject of suffering (John Paul II 1984 
No. 5). 
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The first challenge that ethics and education should help address concerns the 
protection of the dignity of the person. While we celebrate the universal value of 
human dignity, we must consider how its legal recognition has been declined in 
different statuses (e.g., minorities, people with disability, people living in poverty, 
children, women) over time. 

We can agree with the Italian psychiatrist Eugenio Borgna (2015) in saying that 
what drives the failure to recognize the dignity of the other is prejudice (individual, 
collective), which primarily results in discrimination. Prejudice wounds the dignity 
of each person even more when unable to defend themselves from the gaze of others 
that denies them recognition of their dignity as persons. At the root of prejudice are 
indifference and contempt for people who are not “like us,” who are not “us.” As 
Pope Francis said (Acistampa 2020): 

it is the distorted view of the person, a gaze that ignores his dignity and his relational 
character. Sometimes we look at others as objects, to be used and discarded. 

How does the question of human dignity arise in connection with human life and 
death, which are increasingly subject to technological domination? If dignity 
belongs to humans regardless of their living conditions, it affects humans from the 
moment of conception and beyond their natural death. If, on the other hand, dignity 
is also manifested in his or her being capable of openness and acceptance of the 
other, then it also includes the possibility of self-expression whereby, by giving him 
or her the opportunity to do so, we respect his or her dignity. If, however, we identify 
the person with functions he or she performs we would exclude his or her potential 
capabilities, with the risk of cosigning him or her by reducing him or her to an 
instrument. 

Considering that we are not our data but our data belong to us, it is crucial to 
understand that humans have the power and the responsibility of what they delegate 
to machines (Valentini and Cesario 2021). As suggested by Valentini and Cesario in 
their contribution, we can consider Deep Humanism (patient profiling obtained by 
integrating clinical data with Internet-of-Medical Things and artistic stimuli) “as an 
opportunity to understand emotional preferences of the patient,” in order to create 
personalized models specifically for a patient of a subpopulation of patients. 

However, the question of when human life begins, when it ends, and what is it is 
not new, but today it has become decisive as we increasingly advance toward 
posthuman models of existence that are eroding the very concept of humanity and 
life itself. Of course, one cannot condemn new scientific and technological 
discoveries if they help to defeat genetic diseases or to live better with the support 
of prostheses or artificial organs: but the question about human dignity remains 
(De Rosa 2009), as well as our inquiry about our readiness for Deep Humanism.



268 A. Manto and M. D’Oria

References 

Acistampa (2020) Papa Francesco, la visione distorta della persona è una malattia sociale. La 
catechesi del Papa dedicata alla riflessione sulla pandemia, Source: https://www.acistampa.com/ 
story/papa-francesco-la-visione-distorta-della-persona-e-una-malattia-sociale-14802 Last con-
sultation: 11/01/2021 

Banakou D, Hanumanthu PD, Slater M (2016) Virtual embodiment of white people in a black 
virtual body leads to a sustained reduction in their implicit racial bias. Front Hum Neurosci 10: 
601. https://doi.org/10.3389/fnhum.2016.00601 

Banakou D, Kishore S, Slater M (2018) Virtually being Einstein results in an improvement in 
cognitive task performance and a decrease in age bias. Front Psychol 9:917. https://doi.org/10. 
3389/fpsyg.2018.00917 

Borgna E (2015) La dignità ferita. Feltrinelli, Milano 
Cesario A, D'Oria M, Bove F et al (2021) Personalized clinical phenotyping through systems 

medicine and artificial intelligence. J Pers Med 11(4):265. https://doi.org/10.3390/ 
jpm11040265 

De Rosa E (2009) La dignità umana: dottrina sociale della Chiesa, Source: http://www.cssbachelet. 
org/wp-content/uploads/2009/12/La-dignit%C3%A0-umana-Dottrina-Sociale-della-
Chiesa-S.-E.-Mons.-Michele-De-Rosa.pdf Last consultation: 11/01/2021 

European Parliament (2022) Artificial intelligence in healthcare. Applications, risks, and ethical and 
societal impacts, Source: https://www.europarl.europa.eu/RegData/etudes/STUD/2022/729512/ 
EPRS_STU(2022)729512_EN.pdf Last consultation: 11/07/2022 

Go SY, Jeong HG, Kim JI, Sin YT (2021) Concept and developmental direction of metaverse. 
Korea Inf Process Soc Rev 28:7–16 

John Paul II (1984) Salvifici Doloris, n. 5. Source: https://www.vatican.va/content/john-paul-ii/it/ 
apost_letters/1984/documents/hf_jp-ii_apl_11021984_salvifici-doloris.html Last consultation: 
25/12/2021 

Kim S (2020) Metaverse: digital world, world of emerging items. PlanB Design, Hwaseong 
Kye B, Han N, Kim E et al (2021) Educational applications of metaverse: possibilities and 

limitations. J Educ Eval Health Prof 18:32. https://doi.org/10.3352/jeehp.2021.18.32 
Layland EK, Maggs JL, Kipke MD, Bray BC (2022) Intersecting racism and homonegativism 

among sexual minority men of color: latent class analysis of multidimensional stigma with 
subgroup differences in health and sociostructural burdens. Soc Sci Med 293:114602. https:// 
doi.org/10.1016/j.socscimed.2021.114602 

Lee S (2021) Log in Metaverse: revolution of human×space×time (IS-115). Seongnam: Software 
Policy & Research Institute, Source: https://spri.kr/posts/view/23165?code=issue_reports Last 
consultation: 11/07/2022 

Lemoine B (2022) Is LaMDA Sentient? – an Interview, Source: https://cajundiscordian.medium. 
com/is-lamda-sentient-an-interview-ea64d916d917 Last consultation: 11/07/2022 

National Academies of Sciences, Engineering, and Medicine (NASEM) (2017) Communities in 
action: pathways to health equity. National Academies Press, Washington DC 

Riva G, Wiederhold BK (2022) What the metaverse is (really) and why we need to know about 
it. Cyberpsychol Behav Soc Netw 25(6):1–5. https://doi.org/10.1089/cyber.2022.0124 

Riva G, Di Lernia D, Sanjo E, et al (2021) Virtual reality therapy in the Metaverse: merging VR for 
the outside with VR for the inside. Ann Rev Cyberther Telemed 19 

Singh S (2021) Racial biases in healthcare: examining the contributions of point of care tools and 
unintended practitioner bias to patient treatment and diagnosis. Health 7:13634593211061215. 
https://doi.org/10.1177/13634593211061215 

Smart J, Cascio J, Paffendorf J (2007) Metaverse roadmap: pathway to the 3D web [Internet]. 
Acceleration Studies Foundation, Ann Arbor. Source: https://metaverseroadmap.org/ 
MetaverseRoadmapOverview.pdf Last consultation: 11/07/2022 

Stanford News (1997) The Stanford Prison Experiment: Still powerful after all these years, Source: 
https://news.stanford.edu/pr/97/970108prisonexp.html Last consultation: 11/07/2022

https://www.acistampa.com/story/papa-francesco-la-visione-distorta-della-persona-e-una-malattia-sociale-14802
https://www.acistampa.com/story/papa-francesco-la-visione-distorta-della-persona-e-una-malattia-sociale-14802
https://doi.org/10.3389/fnhum.2016.00601
https://doi.org/10.3389/fpsyg.2018.00917
https://doi.org/10.3389/fpsyg.2018.00917
https://doi.org/10.3390/jpm11040265
https://doi.org/10.3390/jpm11040265
http://www.cssbachelet.org/wp-content/uploads/2009/12/La-dignit%C3%A0-umana-Dottrina-Sociale-della-Chiesa-S.-E.-Mons.-Michele-De-Rosa.pdf
http://www.cssbachelet.org/wp-content/uploads/2009/12/La-dignit%C3%A0-umana-Dottrina-Sociale-della-Chiesa-S.-E.-Mons.-Michele-De-Rosa.pdf
http://www.cssbachelet.org/wp-content/uploads/2009/12/La-dignit%C3%A0-umana-Dottrina-Sociale-della-Chiesa-S.-E.-Mons.-Michele-De-Rosa.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2022/729512/EPRS_STU(2022)729512_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2022/729512/EPRS_STU(2022)729512_EN.pdf
https://www.vatican.va/content/john-paul-ii/it/apost_letters/1984/documents/hf_jp-ii_apl_11021984_salvifici-doloris.html
https://www.vatican.va/content/john-paul-ii/it/apost_letters/1984/documents/hf_jp-ii_apl_11021984_salvifici-doloris.html
https://doi.org/10.3352/jeehp.2021.18.32
https://doi.org/10.1016/j.socscimed.2021.114602
https://doi.org/10.1016/j.socscimed.2021.114602
https://spri.kr/posts/view/23165?code=issue_reports
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://doi.org/10.1089/cyber.2022.0124
https://doi.org/10.1177/13634593211061215
https://metaverseroadmap.org/MetaverseRoadmapOverview.pdf
https://metaverseroadmap.org/MetaverseRoadmapOverview.pdf
https://news.stanford.edu/pr/97/970108prisonexp.html


18 Some Ethical and Educational Perspectives on Using Artificial. . . 269

Valentini V, Cesario A (2021) Oltre la persona: cos’è lo  ‘Human Digital Twin’ nella medicina 
personalizzata. In: Anelli F, Cesario A, D’Oria M, Giuliodori C, Scambia G (eds) Persona 
e Medicina: sinergie sistemiche per la Medicina Personalizzata. Milano, FrancoAngeli, pp 
70–76 

Wiederhold BK (2022) Metaverse games: game changer for healthcare? Cyberpsychol Behav Soc 
Netw 25(5):267–269. https://doi.org/10.1089/cyber.2022.29246.editorial 

WIRED (2022) LaMDA and the Sentient AI Trap, Source: https://www.wired.com/story/lamda-
sentient-ai-bias-google-blake-lemoine/ Last consultation: 11/07/2022 

Zou J, Schiebinger L (2018) AI can be sexist and racist – it’s time to make it fair. Nature 559(7714): 
324–326. https://doi.org/10.1038/d41586-018-05707-8

https://doi.org/10.1089/cyber.2022.29246.editorial
https://www.wired.com/story/lamda-sentient-ai-bias-google-blake-lemoine/
https://www.wired.com/story/lamda-sentient-ai-bias-google-blake-lemoine/
https://doi.org/10.1038/d41586-018-05707-8


The “Human Factor” Beyond Humans: 
Perspectives for an AI-Guided Personalized 
Medicine 

19 

Marika D’Oria, Alfredo Cesario, Luciano Giacò, Andrea Manto, 
Charles Auffray, and Giovanni Scambia 

Abstract 

AI-guided machines can improve safety within areas where “human variables” 
can lead to “human errors,” such as medicine. Surgical interventions require high 
precision, and tele-robotic surgery may help augment human capabilities in order 
to achieve it. The chapter focuses on understanding the possible degrees of 
coordination between humans and (intelligent) machines to support medical 
decision-making. Several robotic functions are indicated and subdivided by 
analytical, procedural, prosocial, and second-order functions. However, perfor-
mance should not be confused with competence. Despite machines can be trained 
to perform actions and calculi, structural needs drive human decision-making. 
Decision-support systems based on personalized data can prevent adverse events 
or ineffective therapies, and because these systems should support in life and 
death decisions, it is crucial to deepen the understanding of priority computing. 
Although AI-guided machines and algorithms can support (but not substitute) 
human decisions in medicine, some practical and ethical implications should be 
seriously taken into account. 
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19.1 Big Data, Machine Learning, and Complex Adaptive 
Systems 

Several research projects contributed to stratify human complexity by collecting 
biomedical data and leveraging -omic sciences, thus contributing to an innovated 
personalized/precision medicine framework. Historical examples are the analysis of 
the physiome (the Physiome Project in 1989), the genome (the Human Genome 
Project in 1990), the musculoskeletal asset (the Living Human Project in 2002), 
computational physiology (the Virtual Physiological Human project in 2005), and 
the immunological system (the ImmunoGrid project in 2006). Current projects 
equally contribute to this aim by contributing artificial intelligence/machine learning 
solutions, such as the “GATK” on DNA sequencing for mutations identification by 
the Broad Institute (2021) (Peltenburg et al. 2016), the Google algorithm 
“DeepVariants” on genetic variants (Poplin et al. 2018), or the “AlphaFold” program 
on proteins folding developed by EMBL-EBI and Google’s DeepMinds (2021). 

All these projects, combined with evidence-based clinical and epidemiology 
research, are precious sources that help medicine integrating patient-specific data 
with population-based representations, as well as making accurate predictions, 
differential diagnoses, and decisions, or propose personalized treatments. Prediction 
can be a serious challenge when phenomena are variable and chaotic (such as the 
weather); despite this, the modern meteorological models are quite reliable. Nobel 
Prize winner in Physics Professor Giorgio Parisi conducts cutting-edge research on 
disorder, fluctuations, and frustration as necessary elements in complex systems 
while bridging biology, neurosciences, and machine learning (Hwang et al. 2020; 
Baity-Jesi et al. 2021; Charbonneau et al. 2021). This demonstrates that using 
artificial intelligence (AI) to understand complex adaptive systems is possible, albeit 
challenging. Because human beings are complex adaptive systems, this premise can 
help us imagine what could happen when medicine uses AI to create patient-specific 
predictive models and simulations, such as human digital twins (HDTs), and inves-
tigate whether these models are capable to process cognitive mimesis.1 

1 Cognitive mimesis in HDTs is the ability “to mimic how people process information in order to 
design intelligent technologies” (see Saariluoma and Karvonen 2020).
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19.2 Machines, Artificial Intelligence, and Human 
Augmentation 

In order to understand the possible degrees of coordination between humans and 
“intelligent” machines, we should think about the “human factors” that influence our 
decision-making. Human factors can be defined as “human and individual 
characteristics, which influence behaviour at work in a way which can affect health 
and safety” (Health and Safety Executive 2021). Studies on “human factors” have 
been introduced in the fields of aviation, nuclear energy, and medicine. 

By analyzing human decision-making processes, several factors contribute to 
situation analysis. First, psychological and physiological functions and needs (e.g., 
digestion, differentiation, growth, metabolism, respiration, excretion, reproduction, 
safety, and need for survival) (National Cancer Institute 2021). Other aspects regard 
mammalian structural coupling with the environment (including water supply, 
oxygen, nutrients, heat, shelter, and pressure). In some conditions, human cannot 
survive while machines can; therefore, human decision-making is intertwined with 
Maslow’s primary needs (including self-actualization and esteem). 

Human factors are subdivided into (Proctor and Van Zandt 2017): 

– Perceptual: recognition, interpretation, and evaluation of visual, auditory, olfac-
tory, gustative, and tactile information, and proprioception (the ability of feeling 
where and how our own body is located within the space) 

– Actional: response selection and aptness with the context, movement learning, 
action, and control 

– Cognitive: attention and mental workload, information comprehension and reten-
tion, problem-solving and decision-making, learning. 

– Environmental: anthropometrics, spatial ergonomics, and safety. 

We should add to this list (pro)social factors (e.g., the ability to connect with 
people, and to empathize). Despite machines can be trained to say they love 
someone, sociality is crucial for humans since we are “social animals” with structural 
needs of belonging (e.g., social acceptance, the desire to be recognized) and rela-
tional care (e.g., the desire to be loved, mother–child symbiosis), which shape our 
decisions. 

As stated before, our focus is to understand the possible degrees of coordination 
between humans and (intelligent) machines. Indeed, some human functions are 
empowered/substituted with powerful calculi performed by machines, conceived 
as systems for human aid or augmentation (Sang-won et al. 2018). A non-exhaustive 
list of functions is shown in Table 19.1, even though other classifications can be 
equally useful. 

An interesting usage of mixed technologies can be seen in the world of automa-
tion. In August 2021, the announcement of the Tesla Bot # (humanoid robot) by 
CEO Elon Musk opened an exciting yet surprising scenario on AI-autopilot robots 
(Tesla 2021). Musk said the realization of a Tesla Bot is possible since we can use 
old technology (robots with wheels) combined with the emerging one. Just to have a

https://api.seer.cancer.gov/rest/glossary/latest/id/55591998e4b031c70bba3401
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Table 19.1 List of mechanic/robotic functions (both AI-driven and not). For each function, there 
could be several definitions. The following are indicative 

Analytical functions 
Functions conducted or assessed according to a set of principles of validity, in order to perform 
specified tasks 

Analysis Examine data in an organized way to retrieve relevant information 
(e.g., analogies, hidden patterns, differences) 

Assessment Evaluate the amount, value, quality, or importance of data 

Prediction Estimate what could happen in the future (e.g., deterministic/ 
probabilistic modeling) 

Memory Storage of information (big data), with the possibility to retrieve it 
when necessary 

Search Retrieve information that the operator wants to find, starting from 
digital (text, button)/vocal input 

Execution Execute tasks by input from coding, digital, or vocal inputs (e.g., 
Alexa #, SIRI #) 

Translation Change the words of one language into the words of another 
language that have the same meaning 

Planning Organize a strategy to solve a problem according to a previous 
analysis of the situation and/or possible alternatives (Russell and 
Norvig 2003; Luger and Stubblefield 2004) 

Playing Act and react in real time, according to a set of shared rules. It is an 
analytical function because machines do not enjoy a game (there is 
no playfulness involved) 

Problem-solving Find strategic (and unexpected) solutions to linear and complex 
problems (e.g., chess and Go games) 

Decision-making Take decisions according to previous training (machine/deep 
learning) 

Simulation Virtual reconstruction/reproduction of real-life scenarios 

Procedural function 
Functions related to a set of actions involving physical maneuvers. 

Movement (automated 
activity) 

Change position or enact physical movements by following 
instructions (e.g., robotic arms for precise intervention) 

Movement (self-directed 
behavior) 

Change position toward a real-time analysis for self-driving (e.g., the 
Boston Dynamics’ robots able to parkour) 

Emulation Mechanically mimic something or someone by imitating it according 
to some recognizable features (e.g., facial expressions of human 
emotions) 

Prosocial functions 
Functions related to the promotion of sociality, acceptance, and engagement 

Communication (output 
generation) 

Give a visual or auditory feedback (e.g., speaking) regarding social 
interactions (Miklósi and Gácsi 2012). It also includes textual 
messages (e.g., chatbots) that trigger human emotions according to 
the user’s preferences (and generating the so-called artificial 
empathy) 

Recognition (input 
decoding) 

Know something because it has been experienced before. 
Recognition can occur through images (texts, patterns, faces) 
(Dhamecha et al. 2014) or sounds (music, vocals, also through 
natural language processing) (see Spicer and Sanborn 2019)



glimpse into Tesla Bot # technology, it is composed of Full Self-Driving (FSD) 
hardware, multi-cam video, neural networks (planning), auto-labeling, simulation 
tools, autonomy algorithms, deep learning training system (Dojo training), evalua-
tion infrastructure, and the mechanical robotic engine.
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Table 19.1 (continued)

Analytical functions 
Functions conducted or assessed according to a set of principles of validity, in order to perform 
specified tasks 

Second-order functions 
Functions related to abstraction. All the following categories are recognized by the literature as 
“umbrella terms,” so they may vary according to the source or reference 

Creativity Develop original ideas, things, or procedures (artworks, paintings, 
music, jokes, texts) toward conceptual blending 

Mind Adapt one’s own capabilities according to internal and external 
factors. In black-box models, human operators do not know what 
happens to the machine while processing the input, but also the 
output can be known 

Intelligence Acquire and apply knowledge and skills 

Understanding Grasp the meaning of something by shaping the new information to 
experienced data. It is different from recognition (input = output) 
because understanding involves framing the input also on situational/ 
environmental assumptions 

Thinking Formulate “ideas” or “opinions” on something 

Learning Gain knowledge through training toward specific procedures (e.g., 
trials and errors, reinforcement, machine learning, and deep learning) 

Autonomy Make choices rather than being influenced by external decisions 

19.3 Some Differentiating Challenges in Human-Machine 
Interaction 

AI-guided machines can improve safety within areas where “human variables” can 
lead to “human errors” (Bogner 1994; Leape 1994). For example, machines can help 
when there is a lack of attention, perception, or memory, when humans need to 
manage stress, tiredness, and fatigue, as well as when they are dominated by 
boredom or worries. Machines can also help in extreme environmental conditions 
and to improve situational awareness. Surgical interventions require high precision, 
and tele-robotic surgery may help achieving it (Valentini et al. 2022). However, 
performance should not be confused with competence (Firestone 2020). 

Another important reflection comes within communication between humans and 
machines (Guzman and Lewis 2019), and the field that studies the interaction among 
them is social robotics. Humanoids and ML algorithms (e.g., chatbots) may help 
people in “feeling listened” while supporting them to overcome daily struggles 
(Fiske et al. 2019). To this aim, these technologies are largely used in the field of 
medical assistance, pediatrics (ASD, diabetes), rehabilitation, and surgery. However,



some affective and engagement issues can arise in their interaction, impacting on 
trust and compliance (Hertz and Wiese 2019). The “Uncanny Valley” is well known 
throughout the literature, as an unexpected reaction by humans who express uncom-
fortable reactions to android robots specifically designed to have pleasant social 
interaction with them (Cheetam et al. 2014; Wiese and Weis 2020). The phenome-
non can be explained with Fig. 19.1. 
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Fig. 19.1 The “Uncanny Valley” phenomenon (represented in red) shows human discomfort when 
seeing or interacting with robots/machines that seem like ill representations of the human body. 
Image adapted from Cheetam et al. (2014) 

The Uncanny Valley phenomenon indicates humans really perceive robots as 
social partners and expect them to have intentional stances such as thought, beliefs, 
and desires (Dennett 1989). For instance, research on human–machine interaction 
should broaden its boundaries embracing the fields of psychology, pedagogy, 
sociology, and anthropology. 

The ability of “feeling” something is related to the human structural and func-
tional anatomy of receptors. It is impossible for machines to “feel” like humans 
unless they will be programmed with organic elements equally as a human being. 
This means that an AI “feels” no stress, no effort, and no pain. AI does not 
experience emotional consciousness. Human beings struggle with their limitations, 
and they could desire to thrive them. Indeed, they act desiring to overcome their 
limitations. Human beings can physically feel desire, by perceiving a sense of lack, 
and emotions. Human beings act to fill the gap left by an absence. So, human actions 
are driven by emotions and regulated by the brain. Robots act according to a 
program. We can physically experience frailty, loneliness, fear of death, and



rejection (as well as love, sympathy, etc.) while machines do not. Because illness or 
loss is associated with pain (one of the driving forces for human actions) and 
complex situations such as chronic pain or rare diseases involve several dimensions 
of human affection, emotions, and sense-making, it is difficult to match humans and 
machines in those situations where real empathy is required. Most human 
experiences can be shared through language (Di Ciaccia 1996); therefore, they can 
be “linguistically emulated” through modern algorithms. However, some 
experiences cannot be shared (ecstasies, madness, hallucinations, mystical visions) 
because they are too overwhelming and break the rules of language (Lacan et al. 
1977). 
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Machines can/should learn by trials and errors. We can do errors and, despite the 
fact we know what the “correct” solution is, persevere in doing mistakes (e.g., 
addictions). We also face with the coexistence of contradictory knowledge and 
cognitive biases (through which we make decisions, too). Interesting examples can 
be retrieved from political communication. Another distinctive part of human 
decision-making is the instinct: we have anticipatory feelings that do not belong to 
machines. Last but not least, the centrality of the soul through which we are guided is 
a form of vocation or inner guidance. Sometimes it is linked with consciousness, 
even though consciousness cannot be the sole attribution to be considered as human, 
especially in cases where people have disorders of consciousness. Therefore, the 
connection with the environment as living creatures is strictly intertwined and 
interconnected with others. Beyond that, quantum physics shows interesting 
experiments on entangled particles, demonstrating how they immediately influence 
each other despite distance. 

19.4 Modern and Future Directions 

In a linear logic framework, classical machines are designed to be predictable for 
humans. Their planned behavior can be easily managed and supervised by people. 
However, it is not possible to predict what AI-guided algorithms will learn and 
deliver, for example, when they are asked to find hidden patterns. 

The learning process could be misled if limited to an “if-then” logic. To under-
stand this issue, it is worth mentioning a classical “if-then” error toward Bateson’s 
“syllogism in grass” (Bateson 1991). 

Syllogism in BARBARA [correct learning] Syllogism in GRASS [wrong learning] 

Men die 
Socrates is a man 
Socrates will die 

Grass dies 
Men die 
Men are grass 

Just to give a deterministic example, if an algorithm analyzes several databases on 
the demographics of patients with the same disease, it can learn that “marriage” is a 
risk factor for that disease only because this information regularly occurs in most 
patients’ information. Other patterns could be found that not always represent correct



evidence, and this is why corrective functions have been implemented in statistics 
and mathematics. With the epistemological change from biomedicine (disease-
centered medicine, deterministic approach) to a progressively complex and probabi-
listic approach with systems medicine (finally, personalized precision medicine), the 
evolution of artificial intelligence not only has accelerated but also has helped 
medicine in seeing things with more layers of complexity in systems dynamics. 
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Personalized medicine simulations seem to be promising in tailoring medical 
treatments based on patient’s specific characteristics (e.g., genetic profile, 
demographics, and microbiota). Although AI-guided machines and algorithms can 
support (but not substitute) human decisions in medicine, some practical and ethical 
implications should be seriously considered. According to Musk, AI will represent a 
serious potential threat, “more dangerous than nukes” (CNBC 2018). In the example 
of self-driving machines in a complex scenario, AI-guided cars may be put in a 
situation of deciding whether running over a person on the street or crashing the car 
with the driver inside. 

Consequently, to completely delegate decision-making to AI-guided machines 
seems to be potentially harmful and thus machines always need human supervision, 
especially because their lack of common sense. Decision-support systems based on 
personalized data can prevent the patient experience adverse events or ineffective 
therapies, and because these systems should support in life and death decisions, it is 
crucial to deepen the understanding of priority computing (Sadiq et al. 2008). In a 
collaborative manner, future research and philosophical analysis should reflect on 
what happens when humans find a third, creative, alternative in a paradoxical 
situation (even absurd or unpredictable—but life-saving—like an insight, a discov-
ery, or serendipity), probably related to human insights. 
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Conclusion

The chapters presented in this book show how the discipline of Artificial Intelligence
(AI) has several potential applications for achieving Personalized Medicine, thus
highlighting how some transversal challenges should be considered and addressed.

Since the biomedical scenario grows rapidly and beyond imagination, every
progress we make could become “obsolete” in the very near future. In our effort to
show how this discipline is going to be integrated within biomedical practices, we
identified some consolidated experiences while underlying that the regulatory,
methodological, and ethical frameworks should remain a key transversal asset for
current and future evolutions in this field.

If innovation and technological progress run fast in this field, we do not expect the
same fastness within the mentioned frameworks. On the one hand, there is a need for
strong, consolidated evidence. On the other hand, there is the necessity for under-
standing the true potential and pitfalls of emerging and future technologies. Biomed-
ical research and care aim at possibly responding to the needs of all patients with
novel sustainable treatments, global stakeholders and policy makers are making
significant improvements to drive together the change from different perspectives.
Moreover, constraints from the market can shape how progress will develop, for
example by investing more in some technologies and research lines instead of others.
Thus, the outlook of future biomedicine is progressively in definition.

Above all these considerations, there is a need for further literacy and education
for research and care practitioners in order to go “beyond the hype” and the fears that
a still uncertain scenario carries in the collective expectations. To this aim, we hope
that this book will help students, researchers, and professionals involved in the
biomedical and data science fields to further question and investigate how scientific,
economic, and progress will shape human care.
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