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Abstract. The optimum location of signal sensors in actual buildings to determine
the structural damage condition using machine learning is discussed in this study.
The target buildings are a local government office and a Fire Station in Japan, with
two acceleration sensors located on the ground and the roof level of the buildings.
An additional sensor location is considered in this study. The structural damage
condition is evaluated by machine learning (ML) methods from the sensor signals
for five cases of single and multiple sensor locations. The maximum story drift
is used as an identifier of the structural damage condition. Seven ML methods
are developed, and their accuracy is compared. Several intensity measures (IM)
obtained from each sensor signal are used as input features for the ML models,
and the prediction importance level of each IM is evaluated in order to establish
its usefulness. Finally, the results are compared to the methodology using wavelet
power spectrum and convolutional neural network to predict the damage condition
of buildings.

Keywords: Damage condition · Machine learning · Monitored buildings ·
Sparse number of sensors · Structural Health Monitoring

1 Introduction

Currently, seismic instrumentation by acceleration sensors is used worldwide because it
allows for characterizing the structure’s performance before, during, and after an earth-
quake occurrence. For example, according to earthquake-resistance design standards, a
minimum of 12 sensors are required for buildings with a number of stories from 6 to
10 above the ground for evaluating all structural directions [1, 2]. However, researchers
have developed methodologies with a sparse number of sensors to predict the perfor-
mance of buildings immediately after an earthquake occurs. For instance, Xu and Mita
[3] presented a method that estimates the maximum story drift ratio and time histories
of the relative story displacements of buildings using one acceleration sensor on the
roof level. Besides, Moscoso and Saito [4] proposed a methodology to identify the dam-
age condition of structures based on the Convolutional Neural Network (CNN) method
using wavelet power spectrum (WPS) from the acceleration signal of a sensor on the top
floor. Also, studies on optimal sensor placement for damage detection were developed
by researchers [5–7].
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This study presents a methodology to obtain the structural damage condition of
buildings (represented by the maximum story drift ratio) and the optimum location of a
sparse number of sensors using Intensity Measures (IMs) and Machine Learning (ML)
methods. The IMs represent the structural characteristic of signals based on acceleration,
velocity, displacement, or a combination among them (hybrid) [8]. They are obtained
from the sensor’s signals and used as features for training seven ML models. In order
to establish the optimumML method and sensor’s location, the accuracy and dispersion
(represented by the determination coefficient and the standard deviation of themaximum
story drift ratios) are compared by applying them to the Tahara City Hall and Toyohashi
Fire Station buildings (target buildings). Also, the results are compared to the methodol-
ogy using wavelet power spectra and the convolutional neural network method to predict
the damage condition [4].

2 Research Methodology

This research studies three sensor locations: Ground, Roof floor, and Rooftop sensor
locations, as defined in Fig. 1.

Fig. 1. Definition of the sensor’s location on the target building.

From the location of the sensors, five cases are studied for the target buildings
(Table 1):

The procedure to obtain the damage condition of buildings is as follows and its
scheme is shown in Fig. 2:

1. Obtain the signal acceleration by the sensors.
2. Obtain the Intensity Measures.
3. Use the IMs as features for the ML models.
4. Predict the maximum story drift ratio with the ML models.
5. Classify the predicted maximum story drift ratio to obtain the damage condition of

the building.
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Fig. 2. Procedure scheme of the study.

Table 1. Sensor location cases.

Abbreviation Case according to the sensor location usability

G Only using the Ground sensor

RF Only using the Roof floor sensor

Rt Only using the Rooftop sensor

G + RF Using the Ground and Roof floor sensor

G + Rt Using the Ground and Rooftop sensor

3 Intensity Measures (IMs)

The IMs can be obtained based on either acceleration (A), velocity (V), displacement (D),
or combining them (H: hybrid IM). They have been studied over the years to characterize
the structural building responses using only the ground motion acceleration [9]. Table 2
shows the IMs used in this study.

Since the acceleration sensors were considered in this study, the double integration
process was used to obtain the velocity and displacement signals.
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Table 2. Intensity Measures

N° Name Abbreviation Based
on

Definition Reference

1 Peak Ground
Acceleration

PGA A PGA = max
0≤t≤tf

|ü| [10]

2 5% damped
first-mode
Spectral
Acceleration

Sa(T1, 5%) A Sa(T1, 5%) =
∣
∣max(ü(T1,5%) + üg)

∣
∣

[10, 11]

3 Average
Spectral
Acceleration

Saavg A
Saavg =

(
n∏

t=1
Sa(Ti)

) 1
n [12]

4 Effective Peak
Acceleration

EPA A EPA = 1
2.5 ∗ ∫ 0.5

0.1Sa(T ,h=5%)dT [13]

5 SR Power-law
form IM

IMSR A IM SR = Sa(T1)
1−αSa

(√
RT1

)α
[14]

6 CR Power-law
form IM

IMCR A IMCR = Sa(T1)
1−αSa

(
3√RT1

)α
[14]

7 Earthquake
Power Index

EPI A EPI = 1
t ∗ ∫ t

0a(τ )
2dτ [15]

8 Root Mean
Square Acc

RMS A RMS = √
EPI [15]

9 Bojórquez &
Iervolino IM

INp A INP = Sa(T1, 5%) ·
(

Saavg
Sa(T1,5%)

)α
[16]

10 Arias Intensity AI A AI = π
2g ∗ ∫ t

0a(τ )
2dτ [17]

11 Sarma & Yang
IM

A95 A A95 = 0.05 · ∫ t
0a(τ )

2dτ [18]

12 Characteristic
Intensity

IC A Ic = RMS1.5 · t95_t050.5 [19]

13 Riddell &
Garcia
Acceleration
IM

Ia A Ia = amax · t95_t051/3 [20]

14 Cumulative
Absolute
Velocity

CAV A CAV = ∫ t
0

∣
∣a(τ )

∣
∣dτ [21]

(continued)
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Table 2. (continued)

N° Name Abbreviation Based
on

Definition Reference

15 Standardized
Cumulative
Absolute
Velocity

S-CAV A S − CAV =
N∑

t=1

(

H(PGAi−0.025)
∫ i
i−1 |a(t)|dt

)

[22]

16 Two-parameter
hazard IM

TPH A RSa = Sa(Tf )
/

Sa(T1)

TPH = Sa(T1) · Rα
Sa

[23]

17 Peak Ground
Velocity

PGV V PGV = max
0≤t≤tf

∣
∣v(t)

∣
∣ [10, 24]

18 Squared
Velocity

Vsq V Vsq = ∫ t
0v(τ )

2dτ [8]

19 Root Squared
Velocity

Vrms V Vrms = √

Vsq [8]

20 Fajfar et al. IM IF V IF = PGV · t95_t050.25 [25]

21 Riddell &
Garcia Velocity
IM

Iv V Iv = PGV 2/3 · t95_t051/3 [20]

22 5% damped
first-mode
Spectral
Velocity

Sv(T1, 5%) V Sv(T1, 5%) = Sv(T1,h) [10, 11]

23 Housner
Spectrum
Intensity

SIH V SIH = ∫ 2.5
0.1SV dτ [26]

24 Peak Ground
Disp.

PGD D PGD = max
0≤t≤tf

∣
∣u(t)

∣
∣ [10]

25 5% damped
first-mode
Spectral
Displacement

Sd(T1, 5%) D Sd (T1, 5%) = Sd(T1,h) [10, 11]

26 Riddell &
Garcia Velocity
IM

Id D Id = PGD · t95_t051/3 [20]

27 Cosenza &
Manfredi IM

Iz H IZ = ∫ t
0 a

2
(t)dt

/

(PGA · PGV ) [27]
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4 Machine Learning Methods

The following seven ML methods are used, and their hyperparameters are calibrated
after several runnings (training process) in order to optimize the prediction. The optimum
IMs for predicting are obtained from feature importance level (from 0 to 1), which was
obtained using the Gini importance technique [28, 29] of the regression tree methods
(no for Linear regression and Multilayer perception).

(a) Linear Regression
This linear model method assumes the output (prediction) is linearly dependent on

the features. The coefficients (weights) are updated in order to minimize the prediction
error obtained from the reference and predicted values. [30, 31].

(b) Decision Tree
This method builds the best decision-making tree by splitting and selecting the order

of the roots and leaves.The leaves are chosenwhen it is not possible formoreoptimization
below those nodes. [32, 33].

(c) Random Forest
This method builds several decision trees (forest) from bootstrapped datasets (a new

random dataset with the same size as the original one), increasing its accuracy in this
way. The new data to predict is evaluated in the forest. [28, 34].

(d) Gradient Boosting (Gradient Boost)
This method makes a tree to obtain residuals instead of predictions. Then, a new

predictor is built using the previous predictor (the first one predicts the same value
for all and then is updated) and adds the residuals predictor (a learning rate scales it).
Therefore, the new predictor is based on the previous tree’s errors. [28].

(e) AdaBoost
This method fits a regressor on the original dataset. Then it fits additional copies of

the regressor on the same dataset, but the weights of instances are adjusted according to
the error of the current prediction. [28].

(f) Extreme Gradient Boosting (XGBoost)
This ML method is called extreme because it is built with several parts. Like Gra-

dient Boost, the regression tree is obtained using residuals instead of predictions by the
similarities and gain values method for splitting and getting the thresholds. The pruning
method is used to reduce this tree. Also, this method uses the Regularization parameter
to minimize the prediction’s sensitivity to individual observations. Finally, it uses the
original previous predictor and learning rate to obtain a new predictor. [35].

(g) Multilayer Perceptron
It interconnects a group of perceptrons and transmits data to others inspired by the

biological neural networks that constitute animal brains. Each connection has weights
that are adjusted to reduce the error. [32, 36].
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5 Case Study

5.1 Target Buildings

The Tahara City Hall (TCH) and Toyohashi Fire Station (TFS) buildings located in
Japan are studied in this research (shown in Fig. 3 and Fig. 4, respectively). They are
instrumented with two sensors in G and the RF locations. However, this research also
evaluates the case of the sensor on the rooftop (Rt location).

(a) (b)

Fig. 3. (a) Tahara City Hall building. (b) Elevation drawing view.[4]

(a) (b)

Fig. 4. (a) Toyohashi Fire Station Building. (b) Elevation drawing view. [4]

5.2 Structural Model

The buildings are modeled by the STERA_3D software developed by one of the authors
as follows [4]:

– Three-dimensional frame models are carried out.
– The elastic and inelastic behavior of their members is as follows:

• For the beams, nonlinear flexural springs are used at both ends of the member.
Degrading trilinear slip and bilinear hysteretic models are considered for RC and
steel sections, respectively.
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• For the columns, nonlinear multi-spring cross-section models are used at both
ends of themember in order to consider the bidirectional-flexural and axial effects.
Bilinear hysteretic models are considered for steel (tension and compression) and
concrete (only compression).

• A nonlinear shear spring is used in the middle of the beams and columns, and an
origin-oriented poly-linear hysteretic model is considered.

– Only unidirectional nonlinear dynamic analysis is carried out.

5.3 Input Earthquake Ground Acceleration Records

A database of earthquake records was obtained from the Center for Engineering Strong
Motion Data by USGS and the California Geological Survey [37]. In order to reduce the
computation time of the structural analyses, 183 records were selected with a maximum
of 3000 samples, a minimum PGA of 400 gal, and a time range from 5% to 95% of the
Arias Intensity [4, 17].

5.4 Incremental Dynamic Analyses

The Incremental Dynamic Analysis (IDA) obtains the structural responses (maximum
story drift ratio), increasing the groundmotion intensity by a representative IM. The scale
factors are selected in order to cover the elastic and inelastic behavior. The characteristics
of the IDA are as follows:

– Sa(T1, 5%) is used as IM for developing the incremental analysis [38].
– All the records were scaled in order to obtain the same Sa(T1, 5%).
– The minimum, maximum and incremental steps of Sa(T1, 5%) were 25, 2000, and

25 gal, respectively.
– Since the TCH building has an irregular structural configuration, the incremental step

of Sa(T1, 5%) over 250 gal was each 5 gal.

Therefore, 65 880 and 14 640 nonlinear time-history analyses were carried out for
TCH and TFS buildings.

5.5 Structural Damage Condition of Buildings

The damage condition is obtained from Moscoso et al. [39] and shown in Table 3.
Since the collapse state is greater than 1/75 (0.0133), results greater than 0.02 were

not considered in order to increase and reduce the accuracy and dispersion of the ML
models, respectively.
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Table 3. Structural damage condition.

Damage condition Maximum story drift ratio

No damage <1/300

Minor damage ≥1/300 but <1/150

Significant damage ≥1/150 but <1/100

Severe damage ≥1/100 but <1/75

Collapse ≥1/75

6 Data Analysis and Results of ML Methods

6.1 Training and Testing Process

For the training and testing process, 146 (80%) records and 37 (20%) new records were
randomly selected, respectively. In order to increase the number of results for each
ML model (to reduce a biased process), 50 random records selection were carried out.
Therefore, 50 prediction results are obtained.

The prediction accuracy of theMLmodels is evaluated by the coefficient of determi-
nation (R2) (an example result is shown in Fig. 5(a)). A normal distribution function of
the R2 from the 50 prediction results is assumed (see Fig. 5(b)). The maximum (Max.),
mean, and standard deviation (σ) of the R2 are computed to compare the effectiveness
and the dispersion among the ML models and sensor locations. Besides, the importance
level of the features (IMs) for predicting is obtained for each case, as shown in Fig. 5(c).

6.2 ML Method Results

Table 4 and Table 5 show the best ML method results for the Tahara City Hall and
Toyohashi Fire Station buildings. The IMs are ordered descending from left to right
(collected from the feature importance levels greater than 0.05).

For the CNN method [4], only the maximum R2 was obtained from Rt location,
which is 0.825 and 0.909 for Tahara City Hall and Toyohashi Fire Station buildings,
respectively. Notice that the Gradient Boosting method provides better results than the
CNN method.
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(a) (b)

(c)

Fig. 5. Results example (a) Story drift prediction and reference (R2 = 0.94). (b) Normal distri-
bution function of the R2 from the 50 records selection cases (mean = 0.931; σ = 0.009). (c)
Importance levels of the features (IMs).

Table 4. Tahara City Hall building Results.

Sensor Location Gradient Boost

Max Mean σ IM

G 0.908 0.865 0.024 SaT1 / EPA

Rt 0.897 0.857 0.021 PGA / PGV

RF 0.904 0.845 0.031 PGA

G + Rt 0.926 0.892 0.021 G_SaT1 / R_PGA / R_EPA / G_INp

G + RF 0.914 0.875 0.02 R_PGA/G_SaT1
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Table 5. Toyohashi Fire Station building Results.

Sensor Location Gradient Boost

Max Mean σ IM

G 0.915 0.873 0.022 SIH / EPA

Rt 0.951 0.931 0.009 PGV / PGA / RMS

RF 0.908 0.865 0.02 PGV / Ic/EPA / EPI / RMS / PGA

G + Rt 0.95 0.928 0.012 R_PGV / R_RMS / G_SaT1

G + RF 0.925 0.893 0.016 G_SIH/G_PGV/R_RMS

7 Conclusions and Discussion

In this research, a proposed methodology is proposed to obtain the structural damage
condition of buildings and the optimum location of a sparse number of sensors using
Intensity Measures andMachine Learning methods. This methodology is applied to two
actual buildings, Tahara City Hall and Toyohashi Fire Station buildings, and the results
are summarized as follows:

– For the Tahara City Hall building, the Gradient Boost is the ML method that gives
the best maximum, mean, and σ of the R2 results, which are 0.926, 0.892, and 0.021,
respectively. They are obtained using the G + Rt sensor location. They are greater
than the given by the CNN method [4].

– For the Toyohashi Fire Station building, the Gradient Boost is the ML method that
gives the optimum maximum, mean, and σ of the R2 results, which are 0.951, 0.931,
and 0.009, respectively. They are obtained using the Rt sensor location. They are
greater than the given by the CNN method [4].

– The optimum sensor location is when the Ground and Rooftop sensors work
simultaneously or only the Rooftop sensor.

– The acceleration intensity measures are the main features for predicting the Tahara
City Hall building’s damage condition.

– The velocity intensity measures are the main intensity measures for Toyohashi Fire
Station.

Instrumental buildings can use this methodology for future earthquakes to define the
best sensor’s location and intensity measures for predicting their damage condition with
high accuracy.

References

1. Akelyan MS et al (2020) An alternative procedure for seismic analysis and design of tall
buildings located in the los angeles region 2020 edition. Los Angeles Tall Buildings Structural
Design Council 2020

2. PEER Center (2010) Guidelines for performance-based seismic design of tall buildings;
Pacific Earthquake Engineering Research Center, College of Engineering



Structural Damage Condition of Buildings with a Sparse Number of Sensors 139

3. Xu K, Mita A (2020) Estimation of maximum drift of MDOF shear structures using only one
accelerometer. In: Materials Research Proceedings 2020, p 18

4. Moscoso Alcantara EA, Saito T (2022) Convolutional neural network-based rapid post-
earthquake structural damage detection: case study. Sensors 22:6426

5. Capellari G, Chatzi E, Mariani S (2016) An optimal sensor placement method for SHM based
on Bayesian experimental design and Polynomial Chaos Expansion. In: Proceedings of the
ECCOMAS congress 2016 PROCEEDINGS, pp 6272–6282

6. Zhang J, Maes K, De Roeck G, Reynders E, Papadimitriou C, Lombaert G (2017) Optimal
sensor placement for multi-setup modal analysis of structures. J Sound Vib 401:214–232

7. Tan Y, Zhang L (2020) Computational methodologies for optimal sensor placement in
structural health monitoring: a review. Struct Health Monit 19:1287–1308

8. Buratti N (2012) A comparison of the performances of various ground–motion intensity
measures. In: Proceedings of the Proceedings of the 15th world conference on earthquake
engineering, Lisbon, Portugal, pp 24–28

9. Xu Y, Lu X, Tian Y, Huang Y (2020) Real-time seismic damage prediction and comparison
of various ground motion intensity measures based on machine learning. J Earthq Eng, 1–21

10. Douglas J (2003) Earthquake groundmotion estimation using strong-motion records: a review
of equations for the estimation of peak ground acceleration and response spectral ordinates.
Earth Sci Rev 61:43–104

11. ChopraAK (2007) Elastic response spectrum: a historical note. EarthquakeEngStructDynam
36:3–12

12. Baker JW, Allin Cornell C (2006) Spectral shape, epsilon and record selection. Earthquake
Eng Struct Dynam 35:1077–1095

13. Newmark NM, Hall WJ (1982) Earthquake spectra and design. Engineering monographs on
earthquake criteria

14. Mehanny SS (2009) A broad-range power-law form scalar-based seismic intensity measure.
Eng Struct 31:1354–1368

15. Housner G (1975) Measures of severity of earthquake ground shaking. In: Proceedings of the
Proceedings of US National Conference on Earthquake Engineering, p 6

16. Bojórquez E, Iervolino I (2011) Spectral shape proxies and nonlinear structural response. Soil
Dyn Earthq Eng 31:996–1008

17. Arias A (1970) A measure of earthquake intensity. Seismic design for nuclear power plants.
Massachusetts Institute of Technology

18. Sarma S, Yang K (1987) An evaluation of strong motion records and a new parameter A95.
Earthq Eng Struct Dynam 15:119–132

19. Park Y-J, Ang AH-S, Wen YK (1985) Seismic damage analysis of reinforced concrete
buildings. J Struct Eng 111:740–757

20. Riddell R, Garcia JE (2001) Hysteretic energy spectrum and damage control. Earthq Eng
Struct Dynam 30:1791–1816

21. Reed JW, Kassawara RP (1990) A criterion for determining exceedance of the operating basis
earthquake. Nucl Eng Des 123:387–396

22. Campbell KW, Bozorgnia Y (2011) Prediction equations for the standardized version of
cumulative absolute velocity as adapted for use in the shutdown of US nuclear power plants.
Nucl Eng Des 241:2558–2569

23. Cordova PP, Deierlein GG,Mehanny SS, Cornell CA (2000) Development of a two-parameter
seismic intensity measure and probabilistic assessment procedure. In: Proceedings of the
second US-Japan workshop on performance-based earthquake engineering methodology for
reinforced concrete building structures, pp 187–206

24. Bommer JJ, Alarcon JE (2006) The prediction and use of peak ground velocity. J Earthquake
Eng 10:1–31



140 E. A. Moscoso Alcantara and T. Saito

25. Fajfar P, Vidic T, Fischinger M (1990) A measure of earthquake motion capacity to damage
medium-period structures. Soil Dyn Earthq Eng 9:236–242

26. Housner GW (1952) Intensity of ground motion during strong earthquakes
27. Cosenza E, Manfredi G (1998) A seismic design method including damage effect. In:

Proceedings of the 11th european conference on earthquake engineering, pp 6–11
28. Géron A (2022) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow,

O’Reilly Media, Inc. Sebastopol
29. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 4. Springer,

Heidelberg
30. Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning: From theory to

algorithms. Cambridge University Press, Cambridge
31. SuX,YanX, Tsai CL (2012) Linear regression.Wiley InterdiscipRevComput Stat 4:275–294
32. Daumé, H (2017) A course in machine learning. Hal Daumé III
33. Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD (2004) An introduction to decision

tree modeling. J Chemometrics J Chemometrics Soc 18:275–285
34. Biau G, Scornet E (2016) A random forest guided tour. TEST 25(2):197–227. https://doi.org/

10.1007/s11749-016-0481-7
35. Chen T et al (2015) Xgboost: extreme gradient boosting. R package version 0.4-2, 1:1–4
36. Noriega L (2005) Multilayer perceptron tutorial. School of Computing. Staffordshire

University, vol 4, p 5
37. Center for Engineering StrongMotionData (CESMD). https://www.strongmotioncenter.org/.

Accessed 1 Mar 2021
38. Shome N (1999) Probabilistic seismic demand analysis of nonlinear structures. Stanford

University
39. Moscoso Alcantara EA, Bong MD, Saito T (2021) Structural response prediction for damage

identification using wavelet spectra in convolutional neural network. Sensors 21:6795

https://doi.org/10.1007/s11749-016-0481-7
https://www.strongmotioncenter.org/

	Structural Damage Condition of Buildings with a Sparse Number of Sensors Using Machine Learning: Case Study
	1 Introduction
	2 Research Methodology
	3 Intensity Measures (IMs)
	4 Machine Learning Methods
	5 Case Study
	5.1 Target Buildings
	5.2 Structural Model
	5.3 Input Earthquake Ground Acceleration Records
	5.4 Incremental Dynamic Analyses
	5.5 Structural Damage Condition of Buildings

	6 Data Analysis and Results of ML Methods
	6.1 Training and Testing Process
	6.2 ML Method Results

	7 Conclusions and Discussion
	References




