
AgBFPN: Attention Guided Bidirectional
Feature Pyramid Network for Object

Detection

Lanjie Jiang1,2, Xiang Zhang1,2(B), Ruijing Yang1,2, and Yudie Liu1,2

1 University of Electronic Science and Technology of China, Chengdu 611731,
Sichuan, China

{202052012112,202022012111,202152011924}@std.uestc.edu.cn
2 Yangtze Delta Region Institute (Quzhou), University of Electronic Science and

Technology of China, Quzhou 324000, Zhejiang, China
uestchero@uestc.edu.cn

Abstract. Object detection is increasingly in demand in IoT service
applications. Deep learning based object detection algorithms are now
in fashion. As the most popular multi-scale object detection network at
present, Feature Pyramid Network achieves feature augmentation by fus-
ing features of neighboring layers. It is widely used in the most advanced
object detectors to detect objects of different scales. In this paper, we
propose a new attention mechanism guided bidirectional feature pyra-
mid architecture named AgBFPN to enhance the transfer of semantic
and spatial information between each feature map. We design Channel
Attention Guided Fusion(CAGF) Module and Spatial Attention Guided
Fusion(SAGF) Module to enhance feature fusion. The CAGF mitigates
the loss of information induced by channel reduction and better trans-
fers the semantic information from high-level to low-level features. The
SAGF passes the rich spatial information of shallow features into deep
features. Our experiments show that AgBFPN achieves higher Average
Precision for multi-scale object detection.

Keywords: Deep learning · Object detection · Feature pyramid
network · Attentional mechanisms

1 Introduction

With the rapid expansion of IoT, there is an increasing demand for object detec-
tion in IoT application scenarios such as intelligent transportation and public
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safety. Object detection algorithms based on the deep convolutional network have
already achieved significant advancements in recent years. The object scale is the
important factor related to the performance of object detection. Some detailed
information about small objects is contained in shallow features. With deeper
layers, the geometric details may vanish entirely (oversized receptive field), mak-
ing it hard to detect small objects using deep features. Deeper feature maps can
provide semantic information about large objects. Thus, object detection with
a wide range of object scale changes is still a challenging problem [1].

Deep features in convolutional neural networks have a large receptive field
and rich semantic information but lose geometric detail information. In contrast,
shallow features have rich detail information with small receptive fields, but lack
of semantic information. Multi-scale learning combines deep semantic informa-
tion and shallow representation information, which is an effective strategy to
improve the performance of object detection [2–4]. FPN [4] is the frequently uti-
lized multi-scale object detection network at present. It passes down the high-
level feature information and supplements the low-level semantics to solve the
multi-scale problem in object detection.

We think about two issues that may exist in feature pyramid network. The
first is before feature fusion, different level features will go through a convolu-
tional layer with a convolution kernel of size 1× 1 to reduce feature channels,
and excessive channel attenuation will bring about unavoidable information loss.
In addition, in the top-down pathway, the top-level pyramid does not get supple-
mentary information, so the reduction of channels will lose information instead.

Based on these issues, we design the Channel Attention Guided Fusion
(CAGF) Module, which introduced the attention mechanism. The features of
high-level layers with sufficient classification details can be applied as attention
to guide the low-level features. It transfers different scale semantic features from
top to bottom, so that can obtain high-resolution and strong semantic features,
which is beneficial to the detection of multi-scale objects. Furthermore, we add a
new bottom-up spatial perception pathway by Spatial Attention Guided Fusion
(SAGF) Module to pass the rich spatial information of shallow features into
deep features. Combined Channel Attention Guided Fusion Module and Spatial
Attention Guided Fusion, our AgBFPN architecture archives effective accuracy
improvements on PASCAL VOC2007 [5] and MS COCO [6].

Based on these issues, the main contributions of our paper are as follows:

– Firstly, we design the Channel Attention Guided Fusion (CAGF) Module,
which introduces the attention mechanism. The deep features have sufficient
classification information to guide the shallow features. It conveys semantic
feature information from top to bottom at various scales, which helps multi-
scale object detection.

– Furthermore, we add a new bottom-up spatial perception pathway by Spatial
Attention Guided Fusion (SAGF) Module to pass the rich spatial information
of shallow features into deep features.
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– Combined Channel Attention Guided Fusion Module and Spatial Attention
Guided Fusion, our AgBFPN architecture archives effective accuracy improve-
ments on PASCAL VOC2007 [5] and MS COCO [6].

2 Related Work

Early multi-scale detection has two ideas. One is to utilize different convolution
kernel sizes to acquire various scale information through different sizes of the
receptive field, and the other is to use image pyramids to detect different scale
objects by inputting images at various scales. However, these two methods are
computationally expensive and suffer from a limited range of receptive fields.
Later, multi-scale detection is gradually developed to execute object detection
based on the feature pyramid, using feature maps of various stages to build
a feature pyramid network to detect multi-scale objects. Since FPN [4] was
proposed, multiple versions have been iterated successively [9–12], from no fusion
to top-down unidirectional fusion, and then gradually to bidirectional fusion as
in Fig. 1.
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Fig. 1. Evolution of Feature Pyramid Networks: a) No fusion; (b) Top-down unidirec-
tional fusion; and (c) Simple bidirectional fusion

2.1 No Fusion

Most classical object detection networks use the last layer of deep neural net-
works to make predictions. However, it is going to be hard to detect small objects
in the last feature map due to the loss of spatial and detailed feature informa-
tion. SSD [2] is one of the typical representatives of no fusion using multi-scale
features. It uses shallower feature maps to detect smaller objects and Deeper
feature maps to detect larger objects.

2.2 Top-Down Unidirectional Fusion

The current object detection model’s main fusion mode is top-down unidirec-
tional fusion FPN [4]. It introduces a top-down network architecture to enhance
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features with feature fusion from neighboring layers. Based on FPN [4], Liang [8]
proposes a deep feature pyramid network, which enhances the semantic features
of small objects by using feature pyramids with lateral connections. Libra R-
CNN [9] fuses and refines multi-scale feature elements with a balanced feature
pyramid. AugFPN [10] proposes a series of FPN enhancement methods.

2.3 Bidirectional Fusion

Only top-to-bottom feature maps are fused by FPN [4]. Secondary fusion from
bottom to top has been proposed for the first time by PANet [13]. Based on
traditional feature pyramid networks, PANet [13] increases the shallow infor-
mation to the deep layer just by adding a bottom-up fusion pathway. Since the
proposal of PANet [13] proves the effectiveness of bidirectional fusion, several rel-
evant researches try more complex bidirectional fusion, such as NAS-FPN [14],
ASFF [15] and BiFPN [16]. NAS-FPN [14] employs neural architecture search
to learn all cross-scale connections for better fusion. For simple and fast feature
fusion, BiFPN [16] proposes a weighted bidirectional feature pyramid network.

3 Proposed Methods

We describe our attention guided bidirectional Feature Pyramid Network archi-
tecture in this section. By introducing an attention mechanism, it fully uti-
lizes semantic information from deep features and spatial information from shal-
low features to optimize the fusion of feature information at different scales.
In AgBFPN, two main components are proposed: a Channel Attention Guided
Fusion (CAGF) Module and a Spatial Attention Guided Fusion (SAGF) Module.
We will describe them in detail below.

Fig. 2. An overview of our Attention guided Bidirectional Feature Pyramid Net-
work(AgBFPN)
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3.1 Overall

Figure 2 depicts the overall framework of AgBFPN. Following the config-
uration of FPN [4], the outputs of the backbone features are indicated
as {C2, C3, C4, C5} to build a feature pyramid, which corresponds to the
{4, 8, 16, 32} strides. We separate C2 from the four-level input features entering
the feature pyramid network because the C2 would take up more computational
resources. We keep {C3, C4, C5} to build the feature pyramid. In FPN, horizon-
tal connections are required to reduce the number of channels of each feature
layer to the same 256. Different from this, we retain the number of input chan-
nels and complete the top-down semantic information transfer between different
features through the CAGF. {P3, P4, P5} are the features generated by the
top-down path of the feature pyramid. We build a spatial perception bottom-
top pathway with the SAGF that successively transfers the spatial information
from low-level features to high-level features. {M3,M4,M5} are the features
generated by the spatial perception bottom-top pathway.

3.2 Channel Attention Guided Fusion Module

Fig. 3. The structure of Channel Attention Guided Fusion Module (CAGF)

With output channels of {256, 512, 1024, 2048}, residual network [17] is fre-
quently applied as backbone network, where low-level feature maps include rich
spatial information and high-level feature maps include rich semantic informa-
tion.

In the top-down pathway, FPN [4] firstly uses a convolutional layer with
a convolution kernel of size 1× 1 to decrease the channel dimension of Ci to
256. On the basis that each feature map has the same number of channels,
FPN [4] uses nearest neighbor interpolation to upsample and then fuse them
by adding to transfer the features from the upper layer to the bottom. This
approach reduces the number of channels of the top-level feature C5 from 2048
to 256 before fusion, which will result in severe loss of channel information. For
this purpose, we introduce a method to fuse the features of neighboring layers
without changing the number of channels.
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We design Channel Attention Guided Fusion Module (CAGF) inspired by
PAN [18]. The channel attention mechanism is introduced in CAGF, as illus-
trated in Fig. 3. Each channel mapping of high-level layer features can be seen
as the response to a specific class. Obtaining the interdependence between dif-
ferent channel mappings can effectively enhance the characterization of feature
maps for specific semantics. High-level layer features have adequate classifieds,
that can be directed as the attention to direct the low-level.

The basic idea is that high-level features are weighted by predicting a chan-
nel weight mask and then weighting the low-level features. In specific, high-level
feature map channel weight masks are predicted using a channel attention mod-
ule [19].

This mask is then multiplied by the low-level feature map after the batch
normalization layer to obtain a weighted feature map. At last, the high-level
feature maps upsampled by transposed convolution are fused to the weighted
low-level feature map and passed layer by layer.

3.3 Spatial Attention Guided Fusion Module

The top-down pathway complements the semantics from high-level features for
high-resolution low-level features. But the features of the top-level pyramid lose
information due to the reduction of channels in the top-level feature map. So
we build a bottom-up spatial awareness path, aiming to supplement high-level
features with spatial and detailed information from low-level to help multi-scale
object detection.

After the top-down pathway, the result passes through a 3× 3 convolution to
mitigate the upsample aliasing effect. At this point, each layer of the feature map
has the same number of 256 channels. For the deepest feature C5, the number
of channels is reduced from 2048 to 256 without additional information, so there
is a loss of information instead.

CoordConv

High-level 
feature

Low-level 
feature

Spatial
Attention

Fig. 4. The structure of Spatial Attention Guided Fusion Module (SAGF)

As Fig. 4 shows, we construct a spatial attention guided fusion module
(SAGF) in the spatial perception pathway, which introduces a spatial atten-
tion mechanism in SAGF. The high-resolution low-level features have enough
detailed spatial information to complement the high-level features.
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To obtain the spatial attention map, low-level features are first passed
through the spatial attention module. Then, applying the spatial attention map
to the original feature map completes the spatial information calibration. After
that, we downsample the low-level features using CoordConv [20], which adds
two coordinate channels to enable the convolutional downsampling process to
sense the feature map’s spatial information. The downsampled low-level features
are additively fused with the high-level features so that the high-level features
fuse the spatial information from the low-level features.

Fig. 5. Result comparison: (a) is the original image; (b) is the result of RetinaNet with
FPN; (c) is the result of RetinaNet with AgBFPN (ours).

Fig. 6. Qualitative result comparison. The first row is the original image, the second
row is the result of RetinaNet with FPN and the third row is the result of RetinaNet
with AgBFPN (ours).
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4 Experiments

4.1 Dataset and Evaluation Metric

We conduct experiments on the PASCAL VOC2007 [5] and MS COCO2017 [6]
detection datasets. PASCAL VOC2007 [5] has 9,963 images with 20 classes, 50%
of which are used for training/validation and 50% for testing. MS COCO2017 [6]
has 80 classes and provides train2017 containing 115k images, val2017 containing
5k images, and test2017 containing 20k images.

For PASCAL VOC2007 [5], we report Mean Average Precision(mAP) on
the basis that the IOU threshold is selected as 0.5. For MS COCO2017 [6], all
reported results adhere to the standard COCO-style Mean Average Precision
(mAP) metrics at multiple IoU thresholds from 0.5 to 0.95 with a 0.05 interval.

Table 1. Comparison of object detection performance on COCO test-dev. The asterisk
(*) indicates that the results were re-implemented with MMDetection v2.0.

Baseline Neck Dataset Schedule AP AP50 AP75 APS APM APL

RetinaNet∗ [21] FPN COCO 1x 34.6 52.7 36.7 19.3 37.8 45.3

RetinaNet∗ [21] PAFPN [13] COCO 1x 36.0 55.5 38.4 20.1 39.9 47.0

RetinaNet∗ [21] FPN mini 2x 24.6 39.9 25.8 12.6 28.4 33.9

Faster RCNN∗ [7] FPN mini 1x 24.2 45.4 23.8 12.5 30.5 32.6

FCOS∗ [23] FPN mini 1x 18.3 31.3 18.8 12.5 20.2 23.8

RetinaNet AgBFPN COCO 1x 37.1 56.6 39.2 22.2 40.9 47.5

RetinaNet AgBFPN mini 1x 21.4 36.0 22.9 12.6 25.7 30.5

RetinaNet AgBFPN mini 2x 26.4 42.7 26.7 15.9 31.7 36.1

FCOS AgBFPN mini 1x 20.2 33.7 21.5 14.2 24.6 27.5

Faster RCNN AgBFPN mini 1x 27.0 48.6 27.3 15.5 31.7 34.9

Table 2. Comparison of object detection performance on VOC test-dev. The asterisk
(*) indicates that the results were re-implemented with MMDetection v2.0.

Baseline Neck Dataset Schedule AP

RetinaNet∗ [21] FPN VOC 1x 72.4

RetinaNet∗ [21] PAFPN [13] VOC 1x 72.7

RetinaNet∗ [21] NASFPN [14] VOC 1x 73.1

RetinaNet AgBFPN VOC 1x 74.7
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4.2 Implementation Details and Main Results

Each of our experiments is based on MMDetection v2.0 [22]. By default, we
train the networks for 12 epochs using NVIDIA 3060 TI (2 images per GPU).
For the training process, the 1x schedule represents 12 epochs and the 2x schedule
represents 24 epochs. The initial learning rate is 0.001. It respectively decreases
by 0.1 at 9 and 12 epochs in the 1x schedule, corresponding to the 17 and 23
epochs in the 2x schedule.

Figure 5 compares the outcomes between the FPN and our AgBFPN. As can
be observed, our AgBFPN is more sensitive to multi-scale object detection. More
contrast can be seen in Fig. 6.

We assess AgBFPN on the COCO test-dev subset to validate the effective-
ness of our approach for performance enhancement. To facilitate the verification,
we randomly extracted part of the data of the MS COCO2017 detection dataset
as miniCOCO (the same ratio of train/val/test to COCO) for part of the exper-
iments.

To guarantee the designed network’s generalization capabilities, we train the
model on training data, validate on validation data, and lastly test with the
optimal parameters on test data.

We exhibit re-implemented results of the corresponding baselines for fair
comparisons. By swapping out FPN for AgBFPN, RetinaNet using ResNet-50
as the backbone achieves 37.1 AP on COCO test-dev, 2.5 points above the
baseline, as demonstrated in Table 1. The same network achieves 74.7 AP on
VOC test-dev, 2.3 points above the baseline, as demonstrated in Table 2.

4.3 Ablation Experiments

we also test the impact of each proposed AgBFPN component with Reti-
naNet [21] baseline on PASCAL VOC2007 [5] in Table 3. The training procedure
runs on 1x schedule (12 epochs). For fair comparisons, ablation experiments are
conducted under the same conditions.

Table 3. Effect of each component on VOC test-dev.

baseline CAGF SAGF AP

� 72.4

� � 73.4

� � 73.3

� � � 74.7
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Table 4. Ablation studies of Channel Attention Guided Fusion Module on VOC test-
dev.

baseline SE CAM BN AP

� 72.4

� � 72.7

� � � 73.2

� � 72.6

� � � 73.4

Channel Attention Guided Fusion Module. CAGF introduces channel
attention to optimize feature fusion of adjacent feature layers in the top-down
pathway and CAGF boosts performance by 1.0 AP.

We conduct ablation experiments in this module to examine the impact of
different attentional mechanisms. In addition, to better integrate semantic infor-
mation from higher levels, we verified the effectiveness of adding a Bn layer before
the fusion of low-level features shown in Table 4.

We speed up network convergence by adding a Batch Normalization [24]
layer. To avoid the gradient from vanishing or exploding and speed up training,
Batch Normalization can address the issue that the middle layer’s data distri-
bution changes during the training process.

Spatial Attention Guided Fusion Module. Then we add SAGF on Reti-
naNet with the CAGF. According to Table 3, the combined module increases AP
by 2.3 points above the corresponding baseline. Adding the SAGF module raises
the AP by 1.3 points above the CAGF-only baseline. We also do ablation tests
to assess CoordConv’s effect compared with the traditional 3× 3 convolution
downsample layer in Table 5.

Table 5. Ablation studies of Spatial Attention Guided Fusion Module on VOC test-
dev.

baseline w/ CAGF Conv CoordConv AP

� 73.4

� � 73.3

� � 74.7

5 Conclusion

In this paper, we propose a novel Attention guided Bidirectional Feature Pyra-
mid Network (AgBFPN) for object detection to further improve the performance
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of multi-scale learning. To better convey the semantic information in the deep
feature maps, we design a Channel Attention Guided Fusion Module. The mod-
ule uses the higher-level feature maps to guide the lower-level feature maps
during the top-down pathway in the feature pyramid network. Moreover, we
build a Spatial Perception Bottom-up Pathway with Spatial Attention Guided
Fusion Module to effectively transfer the spatial information in the underlying
feature maps. According to the results of our experiment, the proposed methods
can improve the performance of object detection algorithms based on the FPN
framework on MS COCO2017 and PASCAL VOC2007 object detection bench-
mark. AgBFPN improves RetinaNet by 2.3 points AP on PASCAL VOC2007
and 2.5 points AP on MS COCO2017 when using ResNet50 as the backbone.
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