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Abstract. This paper considers one dimensional unsteady heat condi-
tion in a media with temperature dependent thermal conductivity. When
the thermal conductivity depends on the temperature, the correspond-
ing heat equation is nonlinear. At one or both boundaries, a relaxing
boundary condition is applied. It is a time dependent condition that
approaches continuously, as time increases, a certain time independent
condition. Such behavior at the boundaries arises naturally in some phys-
ical systems. As an example, we propose a simple model system that can
give rise to either Dirichlet or convective relaxing boundary condition.
Due to the dependence of the thermal conductivity on the temperature,
the convective condition is nonlinear. For the solution of the problem, we
propose a new numerical approach that first discretizes the heat equa-
tion in time, whereby a sequence of two-point boundary value problems
(TPBVPs) is obtained. We use implicit time discretization, which pro-
vides for unconditional stability of the method. If the initial condition is
given, we can solve consecutively the TPBVPs and get approximations
of the temperature at the different time levels. For the solution of the
TPBVPs, we apply the finite difference method. The arising nonlinear
systems are solved by Newton’s method. A number of example problems
are solved demonstrating the efficiency of the proposed approach.
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1 Introduction

This work considers unsteady one dimensional heat conduction in a solid body
with temperature dependent thermal conductivity. The body occupies a finite
space region. The exchange of energy within the body and at the boundaries
is assumed to be due to heat transfer only. It is assumed that no energy is
exchanged through radiation and that there are no internal heat sources. Since
we consider the one dimensional case, the temperature u within the body is a
function of one space variable only. This variable is denoted by x. The tempera-
ture at any position x may depend on the time t, hence u = u(x, t). Heat transfer
processes for which the temperature changes with time are called unsteady. If
we are given some initial distribution of the temperature within the body, i.e.
a function u(x, 0), and certain appropriate boundary conditions, we should be
able, in principle, to predict how the temperature distribution evolves with time,
i.e. to find the function u(x, t).

From the energy balance in a differentially small element of the body, we can
derive a partial differential equation (PDE) for the temperature u(x, t). This
equation is called a heat equation and must hold at any point x within the
considered space interval and any time t > 0. Solving this equation, subject to
the given initial and boundary conditions, would yield the sought function u(x, t)
When the thermal conductivity of the media is constant, this equation is a linear
parabolic equation. This PDE has been studies extensively over the years and
many analytical and numerical methods for its solution have been developed
[1]–[6]. However, when the thermal conductivity of the media depends on the
temperature, which is the considered case, the heat equation is nonlinear. This
nonlinear equation is quite significant in science and engineering but is much
more difficult to solve. Because of that various methods for particular cases and
approximate techniques have been developed [7]–[14]. An important numerical
method for solving the equation is the method of lines (MOL). The method
was originally introduced in 1965 by Liskovetz [15]–[17] for partial differential
equations of elliptic, parabolic, and hyperbolic type. The method first discretizes
the equation in space, whereby, adding the boundary conditions, a system of first
order ordinary differential equations (ODEs) is obtained. The system, together
with the initial condition, constitutes an initial value problem (Cauchy problem).
It can be solved using various numerical approaches. However, when explicit
time-discretization schemes are applied, the method is only conditionally sable.

To overcome this and other drawbacks of the MOL, the authors have recently
proposed a method [18] that first discretizes the heat equation in time using
implicit discretization scheme. The discretized PDE is a sequence of second
order ODEs which, together with the boundary conditions, forms a sequence
of two-point boundary value problems (TPBVPs). Using the initial condition,
we can solve the first TPBVP from the sequence and get an approximation of the
temperature u(x, t) at the first time level t = t1. Then, using the obtained solu-
tion, we can solve the second TPBVP, and so on, getting approximations of the
temperature at each time level t = t1, t2, . . . For the solution of the TPBVPs, we
employ the finite difference method (FDM) with Newton iteration. An important
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feature of the proposed method is that it is unconditionally stable. The technique
was applied successfully for solving nonlinear heat and mass transfer problems
[18]–[19]. Originally, the method was developed for Dirichlet boundary condi-
tions. These boundary conditions are linear and time-independent. However,
many important physical situations require the application of time-dependent
or even nonlinear time-dependent boundary conditions. This paper extends the
proposed method to incorporate such boundary conditions. To motivate their
use, we propose a simple physical model that naturally gives rise to the so called
relaxing boundary conditions. They have been introduced first for certain dif-
fusion processes [20] but, as shown in this work, can be applied successfully in
certain heat transfer problems. Roughly speaking, a relaxing boundary condition
is a time-dependent condition that approaches continuously, as time increases, a
certain time-independent condition. The relaxing boundary condition can be a
Dirichlet type, which is linear, but also a Neumann or a Robin type, which, given
the nonlinear nature of the considered process, lead to nonlinear time-dependent
conditions at the boundary.

2 Physical System and Mathematical Model

This section presents a continuous mathematical model of a simple physical
system that gives rise to one dimensional nonlinear heat transfer with relaxing
boundary condition. A silicon rod is situated along the x-axis between x = a
and x = b (Fig. 1). The temperature in the silicon is denoted by u(x, t). Because
of the symmetry of the problem, the temperature in the rod is a function of one
spatial variable only. We have chosen the substance silicon because its thermal
conductivity depends on the temperature. The silicon rod is laterally insulated
so that no energy, in any form, can be transferred through the lateral surface.
At the point x = a the silicon rod is in thermal contact with a tank filled
with liquid. Heat can flow freely through the contact surface in both directions.
Apart from the thermal contact with the silicon, the tank is well insulated. The
temperature in the tank is denoted by T (t). It is homogenous inside the tank.
A possible exception could be a thin layer close to the silicon contact surface,
where the temperature may not be equal to T (t). There are two pipes connected

Fig. 1. Physical system
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to the tank. Through one of them liquid at temperature Tr is being pumped
into the tank at a constant volume flow rate. Through the other pipe liquid at
temperature T (t) is going out of the tank at the same volume flow rate. We
assume that the liquid in the tank is well stirred throughout the process so that
the incoming liquid is mixed with the liquid inside the tank fast enough. We also
assume that the density and heat capacity do not depend on the temperature.
How to find the function T (t) and how to use it to set the boundary condition
at x = a will be shown in the next section. In this section we will derive the heat
equation for the silicon rod and set the other necessary conditions.

To derive the heat equation we consider a differentially small volume element
in the silicon rod, e.g. the element shown with dashed line in Fig. 1. Energy can
enter or leave the volume element only via heat transfer through the two vertical
surfaces. Let the left surface be at position x and the right at position x+Δx. Let
κ = κ(u) be the thermal conductivity of the silicon. The energy flux through
the left surface is −κ(u)∂u

∂x |x. It tells us how much energy per unit time per
unit area enters the volume element. Note that, by definition, a positive value
of the flux means that the energy flows in the positive direction of the axis,
i.e. from left to right in Fig. 1. The sign minus in the flux expression ensures
that the energy moves from regions with high temperature to regions with low
temperature. The energy flux through the right surface is −κ(u)∂u

∂x |x+Δx. It tells
us how much energy per unit time per unit area leaves the volume element. Let
A be the area of the cross section of the silicon rod. Then, the energy that enters
the element per unit time minus the energy that leaves the element per unit time
divided by the volume of the element is

A(−κ(u)∂u
∂x |x) − A(−κ(u)∂u

∂x |x+Δx)
AΔx

. (1)

Since there are no internal heat sources within the silicon rod, we can equate
the limit of (1) as Δx → 0 to the rate of change of the energy density (energy
per unit volume) at point x:

ρcp
∂u

∂t
= − ∂

∂x

(
− κ(u)

∂u

∂x

)
. (2)

In this equation ρ is the density of the silicon, and cp is its heat capacity at
constant pressure. In our model they are assumed to be constant. The left hand
side of the equation represents the rate of change of the energy density. The
quantity in the brackets on the right hand side is the energy flux, while the
right hand side itself can be viewed as the negative divergence of the energy
flux. Equation (2) is the heat equation for the silicon rod. It is a PDE for the
unknown function u(x, t) and must hold for any x ∈ (a, b) and any t > 0. If κ
were a constant, the equation would be a linear parabolic PDE. However, since
κ = κ(u), the equation is a nonlinear PDE.
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To define the particular process that is taking place, however, in addition
to (2), we need to provide the initial condition and the boundary conditions at
x = a and x = b. Let the temperature distribution in the silicon rod at time
t = 0 be u0(x). Then, the initial condition is

u(x, 0) = u0(x), x ∈ [a, b]. (3)

At the boundary x = b, we consider a simple Dirichlet boundary condition,
namely

u(b, t) = β, t > 0. (4)

Other boundary conditions can also be applied.
In the next section, we discuss possible approaches to define the boundary

condition at x = a and show that the considered physical system leads naturally
to the so called relaxing boundary condition.

3 Relaxing Boundary Condition

Let the temperature in the tank at some initial time t = 0 be T0. Obviously, if
the temperature Tr of the incoming liquid is different from T0, the temperature
in the tank T (t) will be changing. Now we proceed to find the temperature in the
tank T (t). Let Q be the volume flow rate of the incoming liquid (bottom pipe in
Fig. 1). The rate at which energy is entering the tank with the incoming liquid
is ρlcp,lTrQ, where ρl is the density of the liquid and cp,l is its heat capacity
at constant pressure. The volume flow rate of the outgoing liquid (top pipe in
Fig. 1) is also Q. Therefore, the rate at which energy is leaving the tank with
the outgoing liquid is ρlcp,lT (t)Q. Note that the mechanism of energy transfer
through the pipes is convective, i.e. liquid with some energy density moves in
and replaces (pushes out) liquid with different energy density. As a result the
total energy contained in the tank is changing. Since in our model we assume
that the tank is well insulated and no heat transfer between the tank and its
surroundings occur, conservation of energy tells us that

ρlcp,l
dT (t)

dt
V = ρlcp,lTrQ − ρlcp,lT (t)Q, (5)

where V is the volume of the tank. The left hand side of the equation is the
rate of change of the tank energy. Note that we have neglected the heat transfer
through the contact surface separating the liquid from the silicon rod. This is
justifiable as long as the contact surface area A is small enough. In fact, since
(1) is independent of A, as long as A is not zero, we can choose it to be as small
as necessary without causing a change in the heat equation (2). Simplifying (5),
we get

dT (t)
dt

= −Q

V
(T (t) − Tr). (6)
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Equation (6) is a first order linear ordinary differential equation for the unknown
function T (t). Solving the equation and taking into account the initial condition
T (0) = T0, we get

T (t) = Tr + (T0 − Tr)e− Q
V t. (7)

Hence, the temperature in the tank T (t) is an exponentially relaxing function.
As t approaches infinity, the temperature approaches the finite value Tr. For
Tr > T0, the function T (t) is monotonically increasing and looks like the one
shown with blue in Fig. 2.

Fig. 2. The temperature at x = a as a function of time for the Dirichlet relaxing
boundary condition (solid blue line) and the traditional Dirichlet boundary condition
(dashed line).

Now we are ready to set the boundary condition at x = a. The first approach
is to equate the temperature of the silicon at x = a to the temperature in the
tank

u(a, t) = T (t), t > 0. (8)

This boundary condition is called Dirichlet relaxing boundary condition [20].
The main feature of this condition is that the temperature value at the boundary
increases (or decreases) gradually with time and approaches some finite value. In
the traditional Dririchlet boundary condition, the temperature at the boundary
changes abruptly at t = 0 and stays constant for all t > 0, i.e. it is a Heaviside
function of time (the dashed line in Fig. 2).

The second approach to set the boundary condition at x = a is to apply
the so called convective boundary condition (= convection boundary condition)
wherein we equate the energy flux at x = a expressed through the thermal
conductivity and the temperature gradient in the silicon to the same energy flux
expressed through the transport properties and the state of the liquid system:

− κ(u(a, t))
∂u(x, t)

∂x
|x=a = c(T (t) − u(a, t)), t > 0, (9)

where c is the mean convection heat transfer coefficient. Condition (9) holds,
to a good approximation, for solid-liquid contact surfaces where the heat trans-
port mechanism is mainly due to convection in the liquid system. For this type
of boundary condition, unlike in (8), the temperature at the surface u(a, t) is
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Fig. 3. The temperature profile in the tank (x < a) and along the silicon rod (x ≥ a)
at time t for (i) Dirichlet boundary condition and (ii) convective boundary condition
(convection).

deemed essentially different from the temperature T (t) in the interior of the
tank. In Fig. 3 you can see a typical temperature profile for the Dirichlet and
the convective boundary condition when T0 = 0, Tr > T0, and u0(x) = 0. Note
that, in the case of convective boundary condition, the temperature inside the
tank is T (t) but close to the silicon contact surface it differs from T (t). Since
the thermal conductivity κ of the silicon depends on the temperature, condition
(9) is nonlinear. The numerical method proposed for solving the heat equation
(2) was originally developed for linear boundary conditions. In this paper, we
show how the method can be changed to incorporate the nonlinear condition (9).
Condition (9), besides being nonlinear, is time dependent. As time increases, the
function T (t) approaches the constant value Tr, hence the condition approaches
a certain time independent steady state condition. Thus, the unsteady state is
transient and will approach a steady state. Any time dependent boundary con-
dition that approaches continuously some time independent condition can be
considered a relaxing boundary condition. Hence, condition (9) will be called
convective relaxing boundary condition.

4 Numerical Method

In this section we briefly introduce the numerical method proposed in [18] and
then we show how it can altered in order to incorporate the nonlinear condition
(9). Discretizing Eq. (2) on the time mesh tn = nτ, n = 1, 2, . . . , we get

ρcp
un − un−1

τ
= ∂uκ(un)

(dun

dx

)2

+ κ(un)
d2un

dx2
, (10)

where un = un(x) approximates the unknown function u(x, t) at time t = tn.
Equation (10) is a second order ODE for the unknown function un(x). In a more
compact form (10) can be written as

d2un

dx2
= f(un, vn;un−1), (11)

where f(un, vn;un−1) = φn/κ(un), φn = ρcp(un − un−1)/τ − ∂uκ(un)v2
n, vn =

dun/dx. Equation (11), together with the given boundary conditions, is a
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TPBVP [21]. If un−1(x) is given, we can solve the problem and obtain un(x).
Therefore, starting from the initial condition u0(x), we can solve consecutively
the TPBVP for n = 1, 2, . . . and get u1(x), u2(x), . . . To solve the problem, the
finite difference method (FDM) is used [21]–[23]. We introduce a uniform mesh
on x ∈ [a, b] : xi = a + (i − 1)h, i = 1, 2, . . . , N, h = (b − a)/(N − 1). The ODE
(11) is discretized, using the central difference approximation

un,i+1 − 2un,i + un,i−1

h2
= f(un,i, vn.i;un−1,i), i = 2, 3, . . . , N − 1, (12)

where un,i is an approximation of un(xi) and vn,i = (un,i+1 − un,i−1)/(2h).
Equations (12), together with the two equations for the boundary conditions,
form a nonlinear system of N equations for the N unknowns un,i, i = 1, 2, . . . , N .
To solve the system, we apply the Newton method. To implement the method,
we need the partial derivatives of the function f with respect to un and vn. Let
fn = f(un, vn;un−1), then:

qn =
∂fn

∂un
=

1
κ(un)

(
− fn∂uκ(un) +

∂φn

∂un

)
, pn =

∂fn

∂vn
=

1
κ(un)

∂φn

∂vn
, (13)

where ∂φn/∂un = ρcp/τ − ∂2
uuκ(un)v2

n, ∂φn/∂vn = −2∂uκ(un)vn. Now we can
implement the Newton method. First, we introduce the vector

Gn = [Gn,1, Gn,2, . . . Gn,N ]T

where
Gn,i = un,i+1 − 2un,i + un,i−1 − h2fn,i, i = 2, 3, . . . , N − 1. (14)

The components Gn,1 and Gn,N come from the boundary condition. They are
given later on in the section. The nonlinear system can be written as Gn(un) = 0,
where un = [un,1, un,2, . . . , un,N ]T . Using un−1 as initial guess u(0)

n , we apply
Newton iteration for k = 0, 1, . . .

u(k+1)
n = u(k)

n − (L(k)
n )(−1)Gn(u(k)

n ),L(k)
n =

∂Gn

∂un
(u(k)

n ). (15)

The nonzero elements of the Jacobian L(k)
n for rows i = 2, 3, . . . , N − 1 are

L
(k)
n(i,i−1) = 1 +

1
2
hp

(k)
n,i , L

(k)
n(i,i) = −2 − h2q

(k)
n,i , L

(k)
n(i,i+1) = 1 − 1

2
hp

(k)
n,i . (16)

The elements of the first row are determined from the first boundary condition,
and the elements of row N from the second boundary condition.

First, we show how to apply the Dirichlet relaxing boundary condition (8).
The boundary condition at time level n is u(a, tn)−T (tn) = 0. Replacing u(a, tn)
by un(a) and then un(a) by un,1 as required by the FDM, we get un,1−T (tn) = 0.
Let

Gn,1 = un,1 − T (tn). (17)
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Then, the only nonzero element of the first row of the Jacobian is

L
(k)
n(1,1) =

∂Gn,1

∂un,1
|
un=u

(k)
n

= 1. (18)

Analogously, the convective relaxing boundary condition (9) yields

Gn,1 = κ(un,1)(un,2 − un,1) + hcT (tn) − hcun,1, (19)

where we have used the forward finite difference to approximate ∂u/∂x. The two
nonzero elements of the first row of the Jacobian are

L
(k)
n(1,1) =

∂Gn,1

∂un,1
|
un=u

(k)
n

= ∂uκ(u(k)
n,1)(u

(k)
n,2 − u

(k)
n,1) − κ(u(k)

n,1) − hc, (20)

L
(k)
n(1,2) =

∂Gn,1

∂un,2
|
un=u

(k)
n

= κ(u(k)
n,1). (21)

For the silicon rod, where κ = κ0e
χu [24], formula (19) becomes

Gn,1 = κ0e
χun,1(un,2 − un,1) + hcT (tn) − hcun,1, (22)

and formulas (20)–(21) become

L
(k)
n(1,1) =

∂Gn,1

∂un,1
|
un=u

(k)
n

= χκ0e
χu

(k)
n,1(u(k)

n,2 − u
(k)
n,1) − κ0e

χu
(k)
n,1 − hc, (23)

L
(k)
n(1,2) =

∂Gn,1

∂un,2
|
un=u

(k)
n

= κ0e
χu

(k)
n,1 . (24)

Finally, we apply the right boundary condition (4). At time level n the con-
dition is u(b, tn) − β = 0. Replacing u(b, tn) by un(b) and then un(b) by un,N ,
we get un,N − β = 0. Let

Gn,N = un,N − β. (25)

Then, the only nonzero element of the last row of the Jacobian is

L
(k)
n(N,N) =

∂Gn,N

∂un,N
|
un=u

(k)
n

= 1. (26)

Of course, at x = b, instead of the simple condition (4), we can apply Dirichlet
relaxing boundary condition or convective relaxing boundary condition. The
approach is analogous to the one described for x = a. In the next section we
show examples with Dirichlet relaxing condition at the left or right boundary,
and also at both boundaries.
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5 Computer Experiments

In this section the proposed numerical approach is applied for the solution of sev-
eral nonlinear heat transfer problems with relaxing boundary condition. Exam-
ple 1 compares the Dirichlet with the convective relaxing boundary condition. In
Example 2 and Example 3, Dirichlet relaxing boundary conditions are applied
at one or both boundaries. In all examples thermal conductivity κ = 0.1e0.5u is
considered. This dependence is similar to the one exhibited by silicon but the
numerical values are different [24]. The density and the heat capacity are chosen
to be ρ = 1 and cp = 1. The solid rod is placed between x = 1 and x = 3. The
heat equation is

∂u

∂t
=

∂

∂x

(
0.1e0.5u ∂u

∂x

)
, x ∈ [1, 3]. (27)

The initial condition is u(x, 0) = 1, x ∈ [1, 3].

Example 1. We choose the following parameters for the liquid containing tank
system: Tr = 2, T0 = 1, Q = 1, V = 1, hence T (t) = 2 − e−t. At the right
boundary the temperature is kept fixed at 1, i.e. u(3, t) = 1. At the left boundary,
we first apply the Dririchlet relaxing boundary condition (8):

u(1, t) = 2 − e−t, t > 0. (28)

Then, we apply the convective relaxing boundary condition (9) with c = 0.1:

− e0.5u(1,t) ∂u(x, t)
∂x

|x=1 = 2 − e−t − u(1, t), t > 0. (29)

Results are shown in Fig. 4.

Fig. 4. Example 1 - solution of (27) for the Dirichlet relaxing BC (28) (left) and the
convective relaxing BC (29) (right).

Example 2. Equation (27) is solved with the same initial condition and a
Dirichlet relaxing boundary condition at the left, right, and both boundaries.
First we apply T (t) = 2 − e−t (Fig. 5 - top line) and then T (t) = e−t (Fig. 5 -
bottom line).
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Example 3. Equation (27) is solved with the same initial condition and Dirich-
let relaxing boundary conditions u(1, t) = 2− e−t, u(3, t) = e−t. Then, the prob-
lem is solved with u(1, t) = e−t, u(3, t) = 2 − e−t. Results are shown in Fig. 6.

Fig. 5. Example 2 - solution of (27) with Dirichlet relaxing BC at the left, right, and
both boundaries for T (t) = 2 − e−t (top) and T (t) = e−t (bottom).

Fig. 6. Example 3 - solution of (27) with u(1, t) = 2 − e−t, u(3, t) = e−t (left) and vice
versa (right).

6 Conclusion

This paper considered unsteady nonlinear heat transfer in a thin silicon rod in
thermal contact with liquid media that is being heated or cooled convectively.
The mathematical model describing the system consists of nonlinear heat equa-
tion with initial condition and a Dirichlet relaxing or convective relaxing bound-
ary condition. The convective condition is nonlinear. To solve the problem a new
numerical approach was proposed that first discretizes the heat equation in time.
The discretization scheme is implicit, which results in unconditional stability of
the method. The resulting TPBVPs were solved by FDM with Newton method.
Computer experiments were performed demonstrating the suitability of the app-
roach for solving the nonlinear heat equation with variety of time-dependent and
nonlinear conditions at the boundaries.
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