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Abbreviations

CD Cluster of differentiation
CK Cytokeratin
CLET  Cultivated limbal epithelial 

transplantation
DED Dry eye disease
EVs Extracellular vesicles
GVHD Graft-versus-host disease
HLA-DR Human leukocyte antigen-DR
IL Interleukin
LESCs Limbal epithelial stem cells
LSCD Limbal stem cell deficiency
MSCs Mesenchymal stem cells
oGVHD Ocular graft-versus-host disease
TNF-α Tumour necrosis factor alpha
Treg Regulatory T cells
TSG-6  Tumour necrosis factor-stimulated 

gene/protein-6

Key Points
• Mesenchymal stem cells (MSCs) have signifi-

cant therapeutic potential to regenerate the 
ocular surface.

• Preclinical evidence demonstrates that MSCs 
can be used for the treatment of ocular surface 
diseases.

• MSCs have been successfully applied in clini-
cal settings for the treatment of some ocular 
surface diseases.

• Work must continue to overcome the technical 
and scientific challenges that remain unsolved 
to establish the use of MSCs as a widely 
accepted treatment for ocular surface 
diseases.

 Regeneration of the Ocular Surface 
by Mesenchymal Stem Cells

The integrity of the corneal epithelium is crucial 
for maintaining corneal transparency and visual 
function. Corneal damage due to different cir-
cumstances such as chemical or thermal burns, 
eye surgeries, cicatrizing-autoimmune patholo-
gies, severe dry eye disease (DED), infections, 

transplant rejections, or congenital disorders can 
disrupt the integrity of the corneal epithelium. 
This type of loss is an important cause of visual 
impairment and blindness that affects millions of 
people worldwide [1]. The corneal epithelium 
has an extremely high turnover rate (4–7 days) 
that is mediated by the limbal epithelial stem 
cells (LESCs) located in the palisades of Vogt 
within the corneo-scleral limbal niche [2–4]. 
LESC deficiency or dysfunction and/or the 
destruction of the niche microenvironment pro-
duces a condition known as limbal stem cell defi-
ciency (LSCD). LSCD reduces the regeneration 
and repair of the corneal epithelium, and the cor-
neal surface is gradually replaced by conjunctival 
epithelium. This process is accompanied by 
chronic inflammation of the ocular surface, 
chronic pain, ulceration, and neovascularization, 
all of which result in corneal blindness due to the 
loss of corneal transparency [5].

At present, among the stem cell-based thera-
pies, cultivated limbal epithelial cell transplanta-
tion (CLET) is the treatment of choice for LSCD. 
In unilateral cases of LSCD, treatment by autolo-
gous CLET is possible following acquisition of 
limbal tissue from the contralateral healthy eye 
[6–11]. However, bilateral cases of LSCD are 
more frequent; therefore, it is necessary to use 
allogeneic limbal tissue. Consequently, this 
requires one year of immunosuppression to avoid 
immune rejection, resulting in an increased risk 
of patient morbidity and associated medical costs 
[11]. To avoid this immunosuppression, it is nec-
essary to seek either an extraocular autologous 
source of stem cells or a non-immunogenic allo-
geneic source.

In recent years, the use of mesenchymal stem 
cells (MSCs) has remarkably increased in the 
fields of cell therapy and regenerative medicine. 
Collectively, these stromal-derived cells retain 
some intrinsic developmental and differentiation 
features after they are derived from a variety of 
animal and human tissues, including bone mar-
row, adipose tissue, dental pulp, umbilical cord, 
and ocular limbal stroma, among others [12]. 
They are defined by their adherence to plastic 
substrates when cultured in standard conditions 
and their multipotent differentiation capacity to 
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form bone, cartilage, and adipose tissue in vitro. 
Importantly, the MSCs exhibit expression of a 
characteristic set of specific surface antigens, 
including positive expression for the cluster of 
differentiation (CD) 73, CD90, and CD105 [13]. 
However, they do not express antigens CD34, 
CD45, CD11b or CD14, CD19 or CD79α, or 
human leukocyte antigen-DR (HLA-DR) mark-
ers [13].

Moreover, MSCs present four potential advan-
tages over LESCs with regard to their utility in 
cell therapy and tissue regeneration. First, acqui-
sition of MSCs is not restricted to deceased 
donors or healthy eyes of living donors as they 
can be easily obtained from several different liv-
ing tissues [12]. Second, they can be cultured 
in vitro to clinical scales in a short period of time, 
thus overcoming the limitations of LESCs, which 
are difficult to isolate and culture [14, 15]. Third, 
the stem cell phenotype is maintained even dur-
ing cryopreservation [16]. Fourth, they are not 
immunogenic; therefore, immunosuppression is 
not necessary after allogeneic transplantation 
[17, 18].

MSCs have additional advantages over 
LESCs, especially for ocular surface repair. For 
instance, the capacity of MSCs for differentiation 
following transplantation enables them to 
undergo integration, proliferation, and differenti-
ation in the damaged tissues, and in many cases, 
facilitate tissue regeneration [19–21]. MSCs may 
also reduce inflammation, apoptosis, and fibrosis 
and improve tissue regeneration by activating 
endogenous progenitor cells [22]. MSCs also 
have immunomodulatory properties that enable 
the regulation of T cells, B-cells, and natural 
killer cells, thus mitigating the secretion of 
inflammatory cytokines [23, 24].

Considering all, MSCs have emerged as very 
attractive candidates for cell-based therapies in 
numerous and highly varied clinical applications 
including the treatment of some ocular surface 
diseases such as LSCD, DED, or even as a poten-
tial treatment to improve corneal allograft sur-
vival [11, 25]. This chapter summarizes the main 
existing preclinical and clinical evidence that 
currently supports MSC-based therapies as safe 

and effective for the regeneration of the ocular 
surface.

 Preclinical Evidence of MSC Efficacy 
in Ocular Surface Regeneration

Currently, there are many published preclinical 
studies showing the potential restorative effects 
of MSCs for ocular surface pathologies in experi-
mental models [26, 27]. These studies were con-
ducted with MSCs obtained from different 
sources such as bone marrow, adipose tissue, lim-
bal stroma, umbilical cord, and others, and they 
were administered by different routes. The most 
relevant therapeutic preclinical studies that sup-
port the use of MSCs for the treatment of ocular 
surface diseases are described below.

 MSCs for the Treatment of LSCD 
and Corneal Epithelial Damage

CLET is the current treatment of choice among 
stem cell-based interventions for LSCD. This 
surgical procedure aims to replace the destroyed 
limbal stem cell population by an autologous or 
allogeneic cell population with full functionality 
[6, 7]. However, this treatment has some limita-
tions such as the low availability of donor tissues, 
or the difficulty in culturing the limbal epithelial 
cells [11]. Nevertheless, in recent years MSCs 
have been shown to be safe and effective and, 
therefore, good candidates for the treatment of 
LSCD [8, 11].

In experimental models of corneal epithelial 
damage and LSCD, transplantation of both bone 
marrow- and adipose tissue-derived MSCs 
reduces the clinical signs of LSCD such as neo-
vascularization, corneal opacity, and epithelial 
defects (Fig. 15.1). The cells can be administered 
using routes such as sub-conjunctival injection 
[29–37], topical administration [38, 39], applica-
tion of MSC-bearing amniotic membrane [28, 
40–43] or MSC-bearing biopolymers [44–47], or 
by intravenous [48–53] and intraperitoneal injec-
tion [51]. MSCs obtained from other cell sources 
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Fig. 15.1 Histological evaluation of ocular surface tis-
sues from a rabbit model of total limbal stem cell defi-
ciency (LSCD) treated with human adipose tissue-derived 
mesenchymal stem cells (AT-MSCs). Representative 
images of periodic acid-Schiff staining of ocular surface 
tissues obtained from healthy control eyes, untreated 
LSCD eyes, and LSCD eyes 8 weeks after being trans-
planted with AT-MSCs on amniotic membranes. 

Compared to healthy control eyes, untreated LSCD eyes 
had fewer epithelial layers, a disorganized corneal epithe-
lium and stroma, and the presence of inflammatory cells 
(in dark purple) in the stroma of the central cornea. 
However, LSCD eyes transplanted with AT-MSCs showed 
fewer inflammatory cells and less disorganization in the 
epithelium and stroma of the central cornea than the 
untreated eyes. (Results from [28])

such as limbal stroma [35, 54, 55] or dental pulp 
[56] are also able to decrease these clinical signs 
in experimental models of LSCD. The preclinical 
data have also demonstrated that transplantation 
of MSCs to treat LSCD does not induce adverse 
events or toxicological effects, even with xenoge-
neic transplantation [28, 32, 38, 40, 41, 49, 51, 
53, 54, 56, 57].

The molecular mechanism(s) of MSC-based 
tissue restoration is not yet fully understood. 
However, we do know that the transplanted cells 
reduce inflammation in the ocular surface of 
experimental models of corneal epithelial dam-
age or LSCD, both by decreasing inflammatory 
infiltrates [28, 33, 38–40, 43, 57–59] and reduc-
ing proinflammatory cytokines such as tumour 
necrosis factor-alpha (TNF-α), IL-6, and IL-1β, 
among others [29–31, 34, 37, 53]. In addition, 
some authors have described the tumour necrosis 
factor-stimulated gene/protein-6 (TSG-6) as one 
of the molecules involved in the anti- inflammatory 
effect of MSCs in the cornea [29, 37, 51, 53]. 

Furthermore, other authors have also shown that 
MSCs have an antioxidant effect on the ocular 
surface of experimental models of corneal burns 
or LSCD [45–47, 49, 51]. Some authors have 
demonstrated migration and engraftment of the 
cells on the ocular surface after topical adminis-
tration [28, 38–40, 42, 56], sub-conjunctival 
injection [29, 34, 35, 54], and intravenous injec-
tion [48, 50, 52, 58]. However, others did not 
observe the presence of MSCs at the area of dam-
age after topical administration on amniotic 
membranes [55], or sub-conjunctival [30, 33, 
37], intravenous, or intraperitoneal injections 
[51]. Therefore, the evidence suggests that MSCs 
can promote therapeutic effects at a distance 
from the target tissues by releasing trophic 
factors.

Additionally, some preclinical data showed 
recovery of the differentiated corneal epithelial 
cell markers cytokeratin (CK) 3 and CK12 [28, 
41, 43, 47, 50, 56, 60] and the limbal epithelial 
stem cell markers p63, CK15, and ATP-binding 
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cassette sub-family G member 2 [28, 29, 41, 50, 
56, 58, 61] in the ocular surface of the MSC- 
transplanted experimental LSCD models. 
Although transdifferentiation of MSCs into cor-
neal and limbal epithelial cells has not been dem-
onstrated in vivo, MSCs seem to contribute to the 
recovery of the corneal and limbal phenotype by 
secreting factors and helping resident stem cells.

 MSCs for the Treatment of DED

DED is a multifactorial and inflammatory-based 
pathology [62] that affects between 5.5% and 
35% of the world population [63]. It presents 
with varying severity of symptoms such as pain 
and blurred vision, and the most severe cases can 
lead to corneal ulcers, infections, and even perfo-
rations [64, 65]. DED is also characterized by an 
increase of inflammatory molecules and reactive 
oxygen species and by a decrease of anti- 
inflammatory and growth factors in the ocular 
surface [66, 67].

In this context, MSCs have been proposed as a 
possible treatment for patients affected by the 
most severe forms of DED. MSCs isolated from 
bone marrow [68–72], adipose tissue [73–75], or 
umbilical cord [76] have been therapeutically 
administered in experimental in vivo DED mod-
els using different routes of delivery such as topi-
cal application through eye drops [69], intraorbital 
injection around or directly into lacrimal glands 
[70, 73–75], and intraperitoneal [71] or intrave-
nous injections [68, 72, 76, 77]. These studies 
have shown that MSC therapy to treat DED 
improves tear volume and tear film stability [69–
72, 74–76], maintains corneal epithelial integrity 
[72, 74], increases the number of conjunctival 
goblet cells [69, 70], and reduces ocular surface 
hyperemia [74–76]. Some studies also reported 
lacrimal gland regeneration [72, 77]. Moreover, 
several authors found decreased ocular surface 
inflammation following MSC treatment. The 
reduced inflammation was associated with 
decreased lymphocytic foci [71, 73] or CD4+ T 
cell infiltration [70], maintained or increased reg-
ulatory T cell (Treg) and Th2 presence [68, 71, 

72], modulation of macrophage infiltration [77] 
or macrophage maturation [76], decreased proin-
flammatory factors such as TNF-α [72, 76], IL-1 
[72], or IL-6 [76], and/or increased anti- 
inflammatory factors such as IL-10 [72, 76] or 
epidermal growth factor [72].

One of the most severe forms of DED occurs 
in the context of chronic graft-versus-host dis-
ease (GVHD) that can develop after allogeneic 
haematopoietic stem cell transplantation, appear-
ing in 60% of patients [78]. GVHD with ocular 
damage (oGVHD) is caused by the immune 
response produced by the immunocompetent 
cells from the donor graft that “attack” the recipi-
ent ocular surface (conjunctiva, cornea, limbus, 
and tear film) and all of the glands that produce 
tear components. This attack produces chronic 
ocular inflammation and ocular tissue destruction 
[79–83].

Because of the high immunoregulatory and 
immunosuppressive capacity and the ocular anti- 
inflammatory and ocular tissue regenerative 
potential of MSCs, they have been successfully 
tested as therapy in vivo models of DED associ-
ated with oGVHD [83–86]. Sub-conjunctival 
injection of bone marrow-derived MSCs in a 
mouse model of GVHD decreased both the pres-
ence of CD3+ T cells in corneal tissues and cor-
neal keratinization [84, 85]. In addition, other 
authors showed that for mice with GHVD, MSCs 
can engraft into lacrimal gland tissues and secrete 
collagen type I that reduces the pathogenic fibro-
sis of the gland [86]. All of these preclinical 
results suggest that MSCs are a promising cell 
therapy to treat DED, although more studies are 
needed to optimize it [87–89].

 MSCs Promote Corneal Allograft 
Survival

Corneal transplantation or keratoplasty is the 
most frequent type of human tissue transplant 
[90]. In low-risk patients, the survival rate of full- 
thickness corneal grafts at 1 year is around 90% 
(even without donor-recipient major histocom-
patibility complex matching). However, in high- 
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risk patients with corneal neovascularization and 
inflammation, the long-term prognosis is lower 
than 50% [91, 92]. Topical corticosteroids are 
currently the most common immunosuppressive 
drugs used in corneal transplantation. However, 
their effectiveness is lower in high-risk patients, 
and prolonged application can provoke numerous 
side effects [93, 94]. Therefore, alternative thera-
peutic strategies are required to improve the 
prognosis of long-term corneal transplantation 
and to diminish the adverse side effects of the 
current pharmacological treatments.

Preclinical studies have shown that systemic 
and sub-conjunctival administration of MSCs 
can prolong corneal allograft survival. Therefore, 
their administration in combination with or in the 
absence of immunosuppressive drugs could help 
prevent immune rejection of the corneal graft 
[95–97]. The mechanism by which MSCs modu-
late corneal allograft survival has not been fully 
elucidated yet; however, it has been associated 
with inhibition of antigen-presenting cell activa-
tion, change in Th1/Th2 balance, reduction of 
CD4+ T cell infiltration, and induction of Treg 
proliferation [95, 96, 98, 99]. These immuno-
modulatory and immunosuppressive actions are 
related to the MSC-dependent secretion of solu-
ble factors such as TSG-6, hepatocyte growth 
factor, nitric oxide, and prostaglandin E2 [100, 
101]. Despite the encouraging preclinical results 
obtained so far, there are still many issues and 
challenges that need to be overcome before the 
clinical application of this therapeutic approach 
in humans is attempted. These include determi-
nation (1) if one or a few sources of MSCs pro-
duce better clinical results than others, (2) the 
best dose and route of administration, and also 
(3) the most effective frequency and timing of 
cell administration [95, 96].

 Clinical Evidence of MSC Efficacy 
in Ocular Surface Pathology

Most studies of ocular surface stem cell func-
tional failure have focused on the LESCs that 
reside in the corneoscleral limbal niche. However, 

there are several other potential stem cell niches 
in the ocular surface that could help maintain cel-
lular homeostasis of the corneal stroma, conjunc-
tiva, and meibomian glands [102]. And although 
the main stem cell deficiency at the ocular sur-
face is the LSCD, causing corneal opacity, other 
pathologies are starting to be thought of as ame-
nable to therapy with stem cells, as reviewed in a 
previous section on preclinical studies. The fol-
lowing are the most relevant ocular surface 
pathologies for which stem cell treatment, most 
specifically with MSCs, have already been trans-
lated into clinical practice and published.

 MSCs for the Treatment of LSCD

The destruction or dysfunction of the stem cells 
residing in the limbal niche, leading to LSCD, 
can have several aetiologies: chemical injuries, 
immune-mediated cicatrizing diseases of the 
ocular surface (e.g., Stevens-Johnson syndrome 
and its spectrum, mucous membrane pemphi-
goid, atopic keratoconjunctivitis, ocular rosacea), 
sequelae of infectious keratitis, or primary causes 
such as congenital aniridia or ectodermal dyspla-
sia. All of these conditions lead to neovascular 
pannus, an unstable corneal surface, and eventu-
ally, visual deficit and chronic nociceptive pain 
[11]. Diseases leading to LSCD are difficult to 
manage, requiring complex medical and surgical 
approaches. Upon the development of LSCD, the 
problem becomes unsolvable unless new stem 
cells can be provided in the correct location 
[103]. Since the first transplantations of autolo-
gous limbal tissue in 1989 [104] and the culti-
vated autologous limbal cells in 1997 [105] to the 
more recent techniques of delivering limbal tis-
sue (simple limbal epithelial transplantation) in 
2012 [106] or the cultivation of autologous and 
allogeneic stem cells (reviewed in [11]), many 
cases have been successfully treated.

There is still a big need for the development of 
safer, more accessible techniques that avoid the 
necessity of immunosuppression when the source 
of tissue or cells must be allogeneic, as it is often 
the case in bilateral diseases. This can be achieved 
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with MSCs due to their many beneficial proper-
ties, especially the absence of immunogenicity. 
The use of allogeneic bone marrow-derived 
MSCs has already been applied in the clinic. A 
randomized controlled clinical trial demonstrated 
the benefits of this stem cell type, which was 
assessed to be comparable and slightly superior 
to CLET in the management of LSCD [8]. This 
methodology avoids the use of immunosuppres-
sion but can only be applied in places where a 
Cell Processing Unit that complies with the 
accepted standards of good manufacturing proce-
dures [107] is available. Therefore, work must 
progress to find solutions that are more accessi-
ble and that perhaps can do more to replace the 
damage limbal niche instead of just providing 
stem cells.

 MSCs for the Treatment of DED

The most severe forms of DED are still difficult 
to manage with current therapies. Undoubtedly, 
DED associated with chronic GVHD is one of 
the most, if not the most, severe form of DED. It 
can be devastating with unbearable pain, photo-
phobia, and reduced quality of life [108]. The 
therapeutic efficacy of MSCs in the treatment of 
DED was first reported in a 2012 clinical study of 
22 chronic GVHD patients with refractory 
DED. The patients were intravenously transfused 
with allogeneic MSCs, and 55% achieved clini-
cal improvement that was attributed to the gen-
eration of CD8+CD28-Tcells [109].

In 2020, 7 patients with severe Sjögren’s 
syndrome- associated DED were treated with adi-
pose tissue-derived MSCs that were delivered by 
a single transconjunctival injection into the main 
lacrimal gland. The treatment was well tolerated, 
and patients showed great improvement that 
lasted up to 16 weeks [110].

In 2022, a clinical trial demonstrated the ben-
eficial effects of exosomes from human umbilical 
cord MSCs that were administered as eye drops 
to treat DED associated with chronic GVHD in 
14 patients [111]. Exosomes are a sub-type of 
extracellular vesicles (EVs) of endosomal origin 

with a size range of ∼30 to ∼200 nm in diameter. 
EVs are lipid-encapsulated membranous vesicles 
that are released by cells into the extracellular 
spaces and contain components (protein, DNA, 
and RNA) from the cells that release them. While 
that trial was run for only 14 days, the signs and 
symptoms of the GVHD-dependent DED were 
significantly mitigated. Thus, this cell-free 
approach for delivering MSC components to treat 
DED in general and specifically DED associated 
with chronic GVHD is promising. The long-term 
effects and safety remain to be demonstrated, and 
MSC exosome-based therapy still faces chal-
lenges such as determining the stability during 
storage and transport, and determination of the 
heterogeneity of the exosome composition.

 Conclusions and Future 
Perspectives

MSC-based therapies for ocular surface pathol-
ogy, from corneal blindness due to LSCD, to 
immune-based inflammatory diseases such as 
DED, or to corneal transplantation, show great 
potential to reduce the onset of vision loss. 
Current preclinical evidence has already been 
partially translated into clinical applications. 
These studies, of course, still need to be con-
firmed with larger controlled clinical trials, and 
some questions and technical problems remain to 
be solved. Among them, it should be elucidated if 
some MSC sources are better than others, and 
what are the safest and most clinically effective 
MSC doses and routes of administration. In addi-
tion, it is essential to develop standardized proto-
cols for the culture and characterization of MSCs 
so that the results obtained in different preclinical 
and clinical centres can be properly compared. 
Despite all the challenges and unknowns that 
remain, the future of MSCs in the ocular surface 
is certainly promising (Fig. 15.2).

Over the last few years, EVs derived from 
MSCs have strongly emerged as a potential 
alternative to MSC treatment. EVs appear to 
replicate many of the therapeutic effects of 
MSCs but without most of the safety risks and 
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Fig. 15.2 Mesenchymal stem cells for the regeneration of the ocular surface: from preclinical to clinical evidence

regulatory issues related to live cell therapies 
[112, 113]. As a consequence, MSC-derived 
EVs could represent a safer and more cost-
effective alternative than cell therapies with 
live MSCs. Currently, a lot of preclinical evi-
dence supports the idea that MSC-derived EV 
application in corneal disease models induces 
anti-fibrotic, anti-apoptotic, and anti-inflamma-
tory effects, and that it promotes corneal epi-
thelial cell proliferation. These observations are 
consistent with the induction by EVs of accel-
erated corneal epithelial wound healing and 
reduced corneal epithelial defects [114, 115]. 
The therapeutic development of EVs is still at 
an early stage, and the EV mechanism of action 
in ocular surface diseases remains to be fully 
elucidated. Nevertheless, the solid evidence 
obtained from preclinical studies strongly sug-
gests that, in the near future, isolated MSC-
derived EVs could become a new therapeutic 
strategy for patients suffering from ocular sur-
face diseases.

Take Home Notes
• MSC-based treatments for ocular surface 

pathology have shown potential therapeutic 
value.

• Preclinical studies have revealed that MSCs 
can prolong corneal allograft survival.

• Preclinical evidence supporting the use of 
MSCs for treating LSCD and DED has already 
been translated into clinical practice.

• Although the results obtained so far on the use 
of MSCs for ocular surface pathology are very 
encouraging, more preclinical and clinical 
studies are needed to confirm them.

• The clinical future of MSC-based therapy, and 
potentially MSC-derived EV therapy, in the 
ocular surface, is undoubtedly very 
promising.
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