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Abstract Most location models assume that the parameters are given and fixed. 
Demand for services is known, and the distance to the facility is given. Real-world 
parameters are not fixed but follow a probability distribution such as a normal 
distribution. Therefore, stochastic models estimate the results (cost, profit, cover) 
more accurately. 

In cover models, facilities need to be located in an area to provide service to a set 
of demand points. Demand points that are within a given distance are covered. Two 
main objectives are investigated in the literature: provide as much cover as possible 
with a given number of facilities and minimize the number of facilities required 
to provide full cover. In gradual cover models, up to a certain distance, the demand 
point is fully covered, and beyond a greater distance, it is not covered at all. Between 
these two extreme distances, the demand point is partially covered. 

In this chapter, we summarize gradual cover models emphasizing on models that 
have stochastic parameters. We also propose a new model analyzing a stochastic 
version of the directional graduate cover. 

Keywords Location analysis · Cover models · Gradual cover models · 
Stochastic analysis 

1 Introduction 

Most location models assume that the parameters are given and fixed. Demand for 
services is “known,” and the distance to the facility is given. If an ambulance or a fire 
truck needs to get to a customer within 10 min, the time is translated to a distance, 
for example, 3 miles, even though the travel speed may depend on traffic conditions 
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and is not a constant. A customer is considered covered within 3 miles even though 
only a proportion of the customers are “covered.” 

Customers are assumed to be located at “demand points” even though in most 
applications customers reside in neighborhoods that are defined by regions. Not all 
customers residing in a neighborhood have the same distance to the facility. Francis 
et al. (2009, 2000) analyzed the selection of a point that represents a set of demand 
points or an area. Drezner and Drezner (1997) showed that the squared distance 
between a demand point located at a center of a circular area and a facility should 
be increased proportionally to the circle’s area. 

It is probably easier to formulate and solve models with known parameters, but 
in reality, stochastic models estimate the results (cost, profit, cover) more accurately. 
Real-world parameters are not fixed but follow a probability distribution such as a 
normal distribution. 

2 Cover Models 

Facilities need to be located in an area to provide service to a set of demand points. 
Demand points that are within a given distance are covered, meaning that they 
are getting the services under consideration (Church & ReVelle, 1974; ReVelle 
et al., 1976). Two main objectives are investigated in the literature: (i) provide as 
much cover as possible with a given number of facilities and (ii) minimize the 
number of facilities required to provide full cover. Such models are used for cover 
provided by emergency facilities such as ambulances, police cars, or fire trucks. 
They are also used to model cover by transmission towers such as cell phone 
towers, TV or radio transmission towers, and radar coverage, among others. For 
a review of cover models, see Plastria (2002), García and Marín (2015), Snyder 
(2011), Church and Murray (2018). Drezner et al. (2011, 2012) applied the cover 
concept to competing facilities. Each competing facility has a “sphere of influence” 
(Launhardt, 1885; Fetter, 1924; Lösch, 1954; Christaller, 1966; ReVelle, 1986), and 
customers patronize a facility up to a certain distance. 

A different covering model where facilities “cooperate” in providing cover was 
proposed in Berman et al. (2010). Each facility emits a signal (such as light posts 
in a parking lot, warning sirens) whose strength declines according to a distance 
decay function. A point is covered if the combined signal from all facilities exceeds 
a certain threshold. For example, a parking spot is covered if the total light received 
at that spot exceeds a given threshold. Recent papers on the cooperative cover are 
Morohosi and Furuta (2017), Karatas (2017), Wang and Chen (2017), Bagherinejad 
et al. (2018).
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3 Gradual Cover Models 

In the gradual cover models, up to a certain distance . R1, the demand point is 
fully covered and beyond a greater distance . R2, it is not covered at all. Between 
these two extreme distances, the demand point is partially covered. Suppose that 
the cover distance in traditional cover models is 3 miles. At a distance of 2.99 
miles, the demand point is fully covered while at a distance of 3.01 miles, it is 
not covered at all. This assumption may be convenient for analyzing and solving 
covering problems. However, in reality, cover does not drop abruptly but the decline 
in cover is gradual. 

Various notations are defined in gradual cover models. To be consistent through-
out this chapter, we define the following variables: 

Notation 

D Cover distance by non-gradual cover models. 
d Distance between a facility and a demand point. 
R1 Full coverage for distance d ≤ R1. 
R2 No coverage for distance d ≥ R2. 
R = R1+R2 

2 .
�R = R2 − R1. 
r radius of a circle centered at the demand point. 

Church and Roberts (1984) were the first to propose the gradual cover model 
(also referred to as partial cover). The facilities must be located within a finite set 
of potential locations. Drezner et al. (1998) investigated the gradual cover model 
in the plane for locating competing facilities. They model the partial cover by a 
logit function. The network version with a step-wise cover function is discussed 
in Berman and Krass (2002). The network and discrete models with a general 
non-increasing cover function were analyzed in Berman et al. (2003b). The single-
facility planar model with a linearly decreasing cover function between R1 and R2 
was optimally solved in Drezner et al. (2004) by the Big Triangle Small Triangle 
(BTST) optimization method (Drezner & Suzuki, 2004). It can also be solved by the 
Big Square Small Square (BSSS) method (Hansen et al., 1981). Location of several 
facilities can be solved optimally by the Big Cube Small Cube method (Schöbel 
& Scholz, 2010). Reasonable run time can be achieved for locating up to three 
facilities. Additional references include Karasakal and Karasakal (2004), Eiselt and 
Marianov (2009), Drezner and Drezner (2014), Berman et al. (2019).
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3.1 Estimating Partial Cover of a Demand Point Covered by 
Several Facilities 

An important issue in gradual cover models is the estimation of the total cover when 
a demand point is covered by several facilities. In traditional non-gradual cover 
models where a demand point is either fully covered by a facility, or not covered at 
all, the rule is straightforward. A demand point is covered if and only if it is covered 
by at least one facility. 

This issue is discussed in Berman et al. (2019). They proposed several “axioms” 
and observations that we term properties, and we added Property 7: 

Property 1: The total cover is between 0 and 1. 
Property 2: If the partial coverage from a facility increases unilaterally, the joint 

coverage cannot decrease. 
Property 3: Adding facilities that provide no coverage cannot change the joint 

coverage received by a demand point. 
Property 4: The joint coverage is not lower than the partial coverage received 

from any one facility. 
Property 5: If a demand point receives positive coverage from only one facility, 

then the joint coverage equals to the individual coverage. 
Property 6: If a demand point is covered fully from any one facility, then the 

joint coverage is full as well. 
Property 7: If all the distances between the demand point and the facilities do 

not increase, the total cover of the demand point cannot decrease. 

We prove the following theorem based on Property 7: 

Theorem 1 The optimal locations of the facilities that maximize the total cover are 
in the convex hull of the demand points. 

Proof By a theorem in Wendell and Hurter (1973), for any location outside the 
convex hull of a set of points, there is a location in the convex hull that is closer to 
each of the points generating the convex hull. Therefore, for any location outside 
the convex hull of the demand points, there is a location in the convex hull with a 
better value of the objective function because all distances are shorter. If there is a 
facility outside the convex hull, a better location for that facility exists in the convex 
hull. The theorem follows by mathematical induction. ��

Let . cj be the partial cover of a demand point by facility j for .j = 1, . . . , p. Eiselt  

and Marianov (2009) proposed a total partial cover of .min

{
p∑

j=1
cj , 1

}
. Partial cover 

can be interpreted as the probability of cover. Assuming that the partial covers are 

not correlated, the total partial cover is: .1 −
p∏

j=1

(
1 − cj

)
(Berman et al., 2003a; 

Drezner & Wesolowsky, 1997; Drezner & Drezner, 2008). The directional gradual 
cover discussed in Sect. 3.4 leads to a different rule for the total cover of several 
facilities.
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3.2 Step-Wise Gradual Cover 

Church and Roberts (1984) and Berman and Krass (2002) proposed a step-wise 
decline in cover. A sequence of k >  1 distances R1 < R2 <  . . . , Rk is defined with 
associated partial covers p1 = 1 > p2 > .  .  .  > pk = 0. Up to a distance R1 cover 
is full (p1 = 1). For distances Ri < d  ≤ Ri+1 for 1 ≤ i ≤ k − 1, the cover is pi+1, 
and for d >  Rk cover is zero. 

3.3 Linear Decline Gradual Cover 

The simplest model for gradual cover is a linear decline in cover between . R1 and 
. R2 as suggested in Drezner et al. (2004). For .d ≤ R1 cover is full (cover of one), 
and for .d ≥ R2 cover is zero. For .R1 ≤ d ≤ R2, the partial cover is .

R2−d
�R

. When 
.R2 → R1(�R → 0), the linear decline model converges to the non-gradual cover 
model. 

3.4 The Directional Gradual Cover 

Drezner et al. (2019a) proposed a different approach to estimate partial cover 
defined as “directional gradual cover.” This model is distinguished from the others 
based on the assumption that each customer point is not a point, but an area. As 
in gradual cover models, up to distance R1 a point is fully covered and beyond a 
distance R2 it is not covered at all. Each demand point is replaced by a circle of 
radius �R 

2 = R2−R1 
2 and a facility covers points within a distance R = R1+R2 

2 
that can be different for different facilities. The intersection area between the disk 
centered at the demand point and the disk of the coverage radius R1+R2 

2 centered at 
the facility is calculated. The ratio between the intersection area and the area of the 
disk centered at the demand point is the partial cover of that demand point. 

The proportion of cover (for complete details, see Drezner et al. (2019a)) is: 

. c(d) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 d ≤ R1

1
2π [2θ − sin 2θ ] + 1

2π
(R1+R2)

2

(R2−R1)
2 [2φ − sin 2φ] R1 ≤ d ≤ R2

0 d ≥ R2

where θ = arccos d
2−R1R2 

d(R2−R1)
; φ = arccos d

2+R1R2 
d(R1+R2) . For d = R1: θ = arccos(−1) = 

π , and φ = arccos(1) = 0, and therefore c(d) = 1. For d = R2: θ = φ = 
arccos(1) = 0, and c(d) = 0.
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Drezner et al. (2019a) tested discrete problems where there is a given set of 
potential locations for the facilities. Drezner et al. (2020a) investigated the objective 
of maximizing the minimum cover among the demand points rather than the total 
cover. Drezner et al. (2021) investigated maximizing the total cover when the 
facilities can be located anywhere in the plane. 

In gradual cover models, it is not obvious how to estimate the total cover if a 
demand point is partially covered by several facilities as discussed in Sect. 3.1. In  
the directional gradual cover (Drezner et al., 2019a), if a demand point is partially 
covered by two or more facilities, the total cover (area) depends on the distances 
between the facilities and the demand point, and on the directions of the facilities 
from the demand point. 

Demand points are usually not mathematical points but represent communities 
that occupy an area and not all the residents at the demand “point” are located at the 
same point. Therefore, facilities at different directions cover different parts of the 
area represented by the demand point. For example, consider one demand point and 
three facilities depicted in Fig. 1. Facilities 1 and 2 cover some of the northern part 
of the community and facility 3 covers part of the southern part of the community. 
Suppose that only facilities 1 and 2 exist in the area. The facilities are located to 
the north of the demand point, and there is an overlap between the covered areas. 
Therefore, the total cover is the area covered by facility 2 and facility 1 does not 
contribute to the total cover. If one facility (either 1 or 2) is located to the north and 
facility 3 to the south, there is usually a smaller overlap if at all. Since all facilities’ 
disks in Fig. 1 do not cover the demand point itself, the total area is the sum of the 
areas because there is no overlap. By any other gradual cover model, the total cover 
is calculated by the partial covers, and the total cover is the same regardless of the 
directions of the facilities. 

When the radius of the demand point is zero, the directional gradual cover 
function is a discontinuous curve and the model is equivalent to the traditional non-
gradual cover. The demand point is either fully covered or not covered at all. 

Fig. 1 Three facilities and 
one demand point 

3 

1 
2 

Demand point Facility
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3.5 Random Limits of Gradual Cover 

Drezner et al. (2010) modified the linear decline model by a model where R1, the  
lowest distance when partial cover starts to decline from full cover, and R2, the upper 
limit of the distance beyond which there is no cover at all are random variables. They 
assumed that cover declines linearly between the random values of R1 and R2. Other 
decline functions can also be investigated in a similar fashion. We summarize the 
formulations reported in that paper. 

Let the cover radius used in the non-gradual covering model be D. Let  φ1(d) and 
φ2(d) be the density function of the probability that R1 and R2, respectively, are at 
distance d. Each demand point may have different values for R1 and R2. Let  c(d) 
be the expected cover at distance d. If  d ≤ R1, the cover is one. If d ≥ R2, the  
cover is zero. For R1 ≤ d ≤ R2 the cover is 

R2−d 
R2−R1 

. Therefore, the expected cover 
at distance d, c(d), is  

.c(d) = Pr(d ≤ R1) +
d∫

0

∞∫
d

z − d

z − y
φ1(y)φ2(z)dzdy (1) 

Note that in (1) it is assumed that  φ1(d) and φ2(d) are independent distributions. 
If they are correlated, then φ1(y)φ2(z) should be replaced with a bi-variate 
distribution. The expected cover c(d) can be calculated by numerical integration. 

They analyzed the case where both distributions are uniform on both sides of a 
radius D and obtained an explicit formula for c(d). Consider the following uniform 
distributions for a given D >  0 (the traditional non-gradual cover radius) and a 
range σ ≤ D for each one. Consequently, R1 = D − σ , and R2 = D + σ . 

. φ1(d) =
⎧⎨
⎩

1
σ

| R1 ≤ d ≤ D

0 | Otherwise
; φ2(d) =

⎧⎨
⎩

1
σ

| D ≤ d ≤ R2

0 | Otherwise

The function c(d) is (for complete details, see Drezner et al. (2010)): 

. c(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 d ≤ R1

1+u
2 + 2u ln 2 − 1

2

{
(u + 1)2 ln(1 + u) − u2 lnu

}
R1 ≤ d ≤ D

1−w
2 − 2w ln 2 + 1

2

{
(w + 1)2 ln(1 + w) − w2 lnw

}
D ≤ d ≤ R2

0 d ≥ R2

(2)

where u = D−d
σ

and w = d−D
σ

. Note that 0 ≤ u,w ≤ 1.
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In Fig. 2, we depict the expression for the expected partial cover c(d) by Eq. (2) 
for R1 = 1 and R2 = 3. By the linear decline gradual cover proposed in Drezner 
et al. (2004) with fixed values of R1 and R2, the graph has a line connecting d = 1 
and c(d) = 1 with d = 3 and c(d) = 0 rather than the depicted curve. When 
σ → 0, the random limit model converges to the non-gradual cover model. 

3.6 The Logit Gradual Cover Function 

Drezner et al. (1998) suggested a logit function 

. 
1

1 + eα+βd+γ d2

for the partial cover. Drezner et al. (2020b) applied a simpler version of the logit 
function with only one parameter α: 

.
1 + eα

eα + eα d
R

. (3) 

These logit functions do not restrict the cover to be partial only between R1 and R2.
A relatively large value of α is required as depicted in Figure 1 in Drezner et al.
(2020b). In Fig. 2 below, a value α = 10 was used so that the cover up to R1 is very 
close to 1 and the partial cover for a distance greater than R2 is very small. 

When α → ∞, the model converges to the traditional non-gradual cover model. 

For d <  R, eα d 
R << eα and becomes negligible compared to eα . Consequently, the 

ratio is close to 1. For d >  R, eα d 
R >> eα and eα becomes negligible compared to 

eα d 
R . Consequently, the ratio is close to 0. 

3.7 An Inverse Cumulative Normal Distribution 

Berman et al. (2019) considered the situation that an ambulance, police car, and 
fire truck needs to reach a demand point within a given time threshold. The time it 
takes to reach a demand point at distance d has a probability distribution that can 
be assumed normal by the central limit theorem. The mean of the distribution is μ 
at which the probability of reaching the demand point in time is 0.5. The standard 
deviation of the normal distribution, σ , reflects the variability of the travel time. 
When σ → 0, the inverse cumulative normal model converges to the non-gradual 
cover model. There is a likely time to reach the demand point within the given 
threshold. Therefore, the probability of not reaching a demand point within the time 
threshold is the cumulative normal distribution and the probability of reaching it is 
the inverse cumulative normal.
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Budge et al. (2010) performed an empirical study of over 7000 ambulance trips 
in the city of Calgary in Alberta, Canada, and developed a graph of the probability, 
which is a measure of coverage, that an ambulance will reach a patient within a 
given time as a function of the distance (the “Golden Half Hour”). The probability 
graph developed in their study is almost identical to the inverse cumulative normal 
curve. 

3.8 Correlated Binomial 

The distribution of ambulance trips in Budge et al. (2010) can be interpreted as a 
binomial distribution of events. Success is when the ambulance arrived on time and 
failure if it did not. The limit of a binomial distribution is a normal distribution. 
The underlying assumption of a binomial distribution is that the events are not 
correlated. What if the events are correlated? Drezner and Farnum (1993) developed 
a “generalized binomial distribution” (GBD) for correlated Bernoulli processes. See 
also Drezner (2019). 

An initial probability of success p is given. An association factor . θ , which is 
similar to the correlation coefficient, is given. Suppose that in the first k events, 
the number of successes is s. The probability of success in the next event is . (1 −
θ)p+θ s

k
. .θ = 0 yields the “standard” binomial distribution where the probability of 

success is p regardless of the number of successes so far. On the other extreme, for 
.θ = 1, if the first event is a success, all subsequent events are successes regardless 
of the value of p. The probability distribution when .θ = 1 consists of two values 
success with probability of p and failure with probability .1−p. It is not a bell shape 
distribution as is obtained by uncorrelated binomial. 

When .θ > 0, if the proportion of successes so far is greater than p, the probability 
of success in the next event is greater than p. If the rate of successes is below p, the  
probability of success is less than p. For example, in sport events, a “good” team 
that has a good record of successes so far in the season is more likely to succeed in 
the next game. Drezner and Farnum (1993) showed that the mean of the distribution 

is np, the same as the binomial distribution, but the variance is .p(1 − p)
n− 1

B(n,2θ)

1−2θ . 
They found that in baseball games .θ = 0.397. For complete details, see Drezner 
and Farnum (1993). 

Drezner (2006) further investigated the limit of the GBD. It is proven that for . θ ≤
0.5 the limit of the GBD, as the number of trials increases to infinity, is the normal 
distribution. For .θ > 0.5, it can be bi-modal. It was also found, by analyzing real 
data, that the grade distribution of 1023 multiple choice exams yielded . θ = 0.5921
and the number of wins of NBA teams at the end of the season yielded .θ = 0.5765; 
both are not a normal distribution. The percentage of “wins” for both exam scores 
and NBA teams are not random but depend on the skill of the individual. Bhootra 
et al. (2015) investigated the performance of mutual funds by the GBD and found 
that the performance of mutual funds is not random, but the skill of the managers 
plays an important role in their performance.
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An interesting gradual decline function is the inverse of the limit of the 
cumulative GBD. For .θ ≤ 0.5, the function is the inverse cumulative normal 
distribution, but for .θ > 0.5, the distribution can be bi-modal. For .θ = 1, the  
distribution is either success or failure, which is actually the traditional non-gradual 
cover function. There is no gradual cover; the cover drops abruptly from full cover 
to no cover. In Fig. 2, the partial cover function is depicted for .θ = 0.9. 

3.9 Comparing Gradual Cover Functions 

In Fig. 2, gradual decline in cover functions are depicted for .R1 = 1 and .R2 = 3. 
In the original non-gradual cover models, there is an abrupt decline in cover at a 
certain distance (distance of .R = 2 in the figure) from full cover to no cover. Church 
and Roberts (1984) and Berman and Krass (2002) proposed a step-wise decline in 
cover discussed in Sect. 3.2. Such approach still has discontinuities in the cover 
as a function of the distance. Drezner et al. (2004) proposed a linear decline in 
cover between . R1 and . R2, discussed in Sect. 3.3. This model is continuous but 
has a discontinuous derivative at .d = R1 and at .d = R2. Drezner et al. (2010) 
proposed that . R1 and . R2 are random variables rather than fixed values. Their model 
is discussed in Sect. 3.5. This partial cover function is continuous with a continuous 
derivative. By the directional cover, described in Sect. 3.4, it is close to linear decline 
and is the only function in Fig. 2 that is not equal to 0.5 at .d = 2. This is because 
the intersection area between the circles when the circle of radius R passes through 
the demand point is not half of the circle’s area. The logit-based gradual cover, 
discussed in Sect. 3.6, is based on Eq. (3). For .α = 10, which was used in the figure, 
the shape of the partial cover function resembles the random function shape. This 
shape also resembles the inverse normal distribution function discussed in Sect. 3.7 
for a standard deviation .σ = R−r

6 . The correlated binomial model, discussed in 
Sect. 3.8, is the inverse cumulative distribution of a possibly bi-modal distribution 
for .θ > 0.5. The graph depicted in the figure is calculated by a simulation using 
.θ = 0.9. The density function is bi-modal and the derivative of the curve has a 
sharper decline near the two modes and a shallow decline near .d = 2, which is the 
low point of the density function between the two modes. 

3.10 Summary and Discussion of Gradual Cover Models 

In the original gradual cover model, there is an abrupt decline from full cover to 
partial cover. In reality, cover does not drop abruptly. Earlier models of gradual 
cover attempted to rectify it by defining a decline of coverage by a step-wise or a 
linear function (Sects. 3.2, 3.3). More recently (see Sect. 3.4), it is assumed that 
every demand “point” is actually a neighborhood and not all customers are at the 
same distance from a facility.
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Fig. 2 Different gradual cover functions for .R1 = 1 and .R2 = 3
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Subsequent models discussed in Sects. 3.5–3.8 assume that the parameters of 
the gradual cover models are random rather than having fixed values. Such an 
assumption is closer to reality and provides more flexibility. For example, in 
Sect. 3.5, it is assumed that the start of partial cover . R1 and the start of no cover 
. R2 are random variables. In Sect. 4, we propose and test a new model assuming 
that the parameters of the directional gradual cover (Sect. 3.4) are random variables, 
which makes the model yet closer to reality. 

4 The Stochastic Directional Gradual Cover Model 

In this section, we propose a stochastic formulation for the directional gradual cover 
model. We incorporate standard gradual cover approaches into the directional cover 
model. As in the directional gradual cover, the demand point is defined by a circle 
of radius r . The facility does not cover a point in the plane by a disk of radius D, 
but there are two radii .R1 ≤ D ≤ R2 so that a point is fully covered within the 
circle of radius . R1, and not covered at all outside the circle of radius . R2. A point in 
the ring between . R1 and . R2 is partially covered. Each point in the circle of radius r 
centered at the demand point is covered at a proportion between 0 and 1. The cover 
of a demand point is the integral over the circle centered at the demand point, where 
the integrand at any point in the circle is its partial cover. 

In Fig. 3, a typical cover of one demand point by one facility is depicted. The 
intersection area within a radius . R1 is fully covered. The area beyond . R2 is not 
covered. The intersection area with the ring between . R1 and . R2 is partially covered. 
In the original directional gradual cover (Drezner et al., 2019a), .R1 = R2, the ring 
is a circle, and there is no area with partial cover. 

The partial cover between . R1 and . R2 can be defined in many ways. For example, 
the gradual cover can be defined by a reverse cumulative of a distribution: (i) a 
normal distribution centered at D with .R = D + 3σ and .r = D − 3σ discussed in 
Sect. 3.7, (ii) a beta distribution, and (iii) a logit distribution (Drezner et al., 2020b) 
discussed in Sect. 3.6. We opted in the computational experiments to define it as 
declining linearly between . R1 and . R2, which is a reverse cumulative of the uniform 
distribution, as proposed in Drezner et al. (2004) and discussed in Sect. 3.3. It is as  
easy to implement it by any gradual cover function as long as an explicit formula 
for the gradual decline is available. 

Suppose that k facilities are located in the area. Each point in the plane may be 
partially covered by several facilities. Let the proportions of cover of a point (not 
necessarily the demand point) by facility .1 ≤ j ≤ k be .0 ≤ pj ≤ 1. This proportion 
. pj can be calculated by a linear decline between . R1 and . R2, or any other rule. 
Interpreting these proportions as uncorrelated probabilities leads to a total cover of 
the point, P : 

.P = 1 −
k∏

j=1

(1 − pj ) (4)



Stochastic Gradual Covering Location Models 293

Fig. 3 Stochastic directional gradual cover 

Note that if .pj = 0, facility j does not affect the total cover, and if .pj = 1 for some 
j , the total cover is full at 100% regardless of the other proportions. 

4.1 Calculating the Total Cover 

The total cover of a demand point is calculated by a two-dimensional integral in the 
disk centered at the demand point. The partial cover at each point (the integrand) in 
the disk is calculated by Eq. (4). 

In the original directional cover model (Drezner et al., 2019a), the cover area of 
a demand point is the union of intersection areas between the circles centered at the 
facilities and the circle centered at the demand point. If at least one facility provides 
full cover, the total cover is full. Facilities that do not provide any cover can be 
removed from consideration. If, for example, there are five facilities that provide 
partial cover, it seems intractable to develop an explicit formula for the union of the 
five areas. It is possible to calculate the proportion of the circumference of a circle 
c with a radius .0 ≤ ρ ≤ r , centered at the demand point that is covered. Each circle 
centered at a facility covers part of the circumference between two angles . θ1 and 
. θ2, which are the intersection points between the circle centered at the facility and 
circle c. The proportion of cover is the union of these parts of the circumference.
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The total cover area of a demand point of radius r can be found by integration. 
Consider a circle of radius . ρ for .0 ≤ ρ ≤ r centered at the demand point. Let . γ (ρ)

be the proportion of the circumference of the circle of radius . ρ that is covered. The 
total cover area A is 

.A =
r∫

0

2πργ (ρ)dρ , (5) 

and the joint cover of a demand point of radius r is

.Cover = A

πr2
= 1

πr2

r∫
0

2πργ (ρ)dρ . (6) 

Note that if the circumference of every circle of radius . ρ is covered, .γ (ρ) = 1, then 
.Cover = 1 by Eq. (6). 

Drezner et al. (2019a) applied this calculation and evaluated the total cov-
ered area by Gaussian numerical quadrature based on Legendre polynomials. 
(Abramowitz & Stegun, 1972). For complete details, see Drezner et al. (2019a). 

In the stochastic directional gradual cover, it is not simple to calculate the 
proportion of a circumference of a circle that is covered. The “circle” centered at 
the facility is actually a ring with various proportions of covers in the ring. There 
is no clear way to evaluate the intersection between the ring and the circumference 
of the circle. It is calculated by an integral for every facility and the union is not 
straightforward to calculate. 

In the stochastic directional cover, as depicted in Fig. 3, it is not sufficient to 
calculate the union of the covered areas because some of the areas are partially 
covered and Eq. (4) need to be applied to each individual point. We therefore 
propose to evaluate the total cover numerically by the hexagonal pattern in the circle 
centered at the demand point as detailed in Drezner et al. (2021, 2019b). The points 
in the hexagonal pattern are defined by two sequences (all the combinations of the 
two lists for x and y): 
.x = 0,±1,±2, . . . ; y = 0,±√

3,±2
√
3, . . ., and 

.x = ± 1
2 ,± 3

2 ,± 5
2 , . . . ; y = ±

√
3
2 ,± 3

√
3

2 ± 5
√
3

2 , . . .. 
These points cover the plane with hexagons centered at each point with sides 

as perpendicular bisectors to six adjacent points. The area of each hexagon is . 
√
3
2 . 

All the points satisfying .x2 + y2 ≤ M for some M are selected. For example, 
.M = 220 results in .N = 805 points. To get N hexagons that cover a disk of radius 
r , we multiply the coordinates by a factor K so that .

√
3
2 NK2 = πr2. Leading 

to a factor of .K = r
√

2π
N

√
3
to get an hexagonal pattern in a circle of radius r 

centered at the origin (0, 0). Note that few hexagons have parts outside the circle and 
a small part of the area of the disk is not covered, but the total area of the hexagons 
is equal to the circle’s area. The perimeter of the covered area is a little ragged.
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Fig. 4 Hexagonal pattern of 
805 points 

Drezner et al. (2019b) investigated applying different areas for hexagons that are 
close to the circle’s perimeter and are either trimmed by the perimeter or have extra 
area bordered by the perimeter, and the results hardly changed. Therefore, such a 
refinement is not suggested. 

There are many values of the number of hexagonal points that can be selected. 
We propose to select 805 points in the hexagonal pattern (see Fig. 4) that lead to 
a good estimate of the integral (Drezner et al., 2021). The partial cover for each 
point is calculated by Eq. (4), the sum S of the partial covers for all 805 points is 
calculated, and the partial cover of the demand point is . S

805 . 
For example, consider a disk of radius 1 centered at the origin (demand point). 

The disk is partially covered by a facility located at (2,0). For a radius .D ≤ 1, there 
is zero cover. As D increases, partial cover increases up to .D = 3. For .D ≥ 3, there 
is full cover. The area can be calculated exactly by Eq. (1). In Table 1, the exact 
area is compared with the hexagonal numerical integration for .N = 805 points for 
various values of .1 ≤ D ≤ 3. The average difference is 0.005. In one case, the 
difference exceeds 0.01 and in all other cases, it is below 0.01. 

4.2 Investigating the Stochastic Directional Gradual Cover 

Any solution method that was applied for (heuristically) solving directional gradual 
cover models can be applied for the stochastic model. Rather than calculating 
the value of the objective function numerically by the directional objective, it is 
calculated by the stochastic objective. The “black box” providing the total partial 
cover by the directional model is replaced by a black box providing total partial 
cover by the stochastic objective. For example, Drezner et al. (2019a) applied the 
ascent algorithm, Tabu search (Glover & Laguna, 1997), and simulated annealing
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Table 1 Comparing exact proportion of the area to the hexagonal result 

D (1) (2) (3) D (1) (2) (3) 

1.0 0.000 0.000 0.000 2.1 0.509 0.512 0.003 

1.1 0.015 0.014 0.001 2.2 0.572 0.573 0.001 

1.2 0.043 0.039 0.004 2.3 0.636 0.645 0.009 

1.3 0.079 0.075 0.004 2.4 0.699 0.708 0.009 

1.4 0.120 0.114 0.006 2.5 0.762 0.770 0.008 

1.5 0.166 0.155 0.011 2.6 0.822 0.829 0.007 

1.6 0.217 0.210 0.007 2.7 0.879 0.888 0.009 

1.7 0.270 0.266 0.004 2.8 0.931 0.937 0.006 

1.8 0.327 0.323 0.004 2.9 0.974 0.976 0.002 

1.9 0.386 0.379 0.007 3.0 1.000 1.000 0.000 

2.0 0.447 0.446 0.001 

(1) The exact proportion of the area 
(2) The hexagonal pattern proportion 
(3) Absolute value of the difference 

(Kirkpatrick et al., 1983). Drezner et al. (2020a) applied the same heuristics but 
generated good starting solutions. Drezner et al. (2021) constructed a genetic 
algorithm (Holland, 1975; Goldberg, 2006) and solved the continuous case by 
SNOPT (Gill et al., 2005) and Nelder-Mead (Nelder & Mead, 1965; Dennis & 
Woods, 1987). 

The justification for using gradual decline in cover rather than abrupt drop in 
cover is that it provides better estimates for the actual cover observed in real 
applications. The question is not whether one model provides greater coverage 
than another but which one estimates the cover more accurately. We believe that in 
reality, cover is stochastic in nature and does not drop abruptly. Therefore, stochastic 
gradual cover estimates the total cover more accurately because it imitates reality 
better. There are examples that total cover by one approach is greater than the total 
cover by another approach for facilities located at the same location. However, this 
does not mean that one model provides more “actual” cover than the other. 

Consider locating one facility to cover four demand points, each with a weight of 
1, located on the vertices of a square of side length of 1. By the non-gradual cover 
objective, if .D < 0.5, a maximum of one demand point is covered for a total cover 
of 1. The four circles of radius D centered at the demand points do not intersect. For 

.0.5 ≤ D <
√
2
2 , the total cover is 2 because the only four intersections are of two 

circles of radius D. For  .D ≥
√
2
2 , all four circles intersect and cover the center of 

the square, and locating a facility there covers all 4 demand points for a total cover 
of 4.
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For the gradual cover model with the linear decline, it is fair to compare the non-
gradual results with D being at the center of the segment connecting . R1 and . R2. For  
.D = 0.499, we investigate the range of .R1 = 0.499 − σ to .R2 = 0.499 + σ . Since 
.R1 ≥ 0 by definition, then .σ ≤ 0.499. If we locate the facility at the center of the 

square, all four distances are equal to . 

√
2
2 . The partial cover of each demand point is 

.
0.499+σ−

√
2
2

2σ and the total cover is .4
0.499+σ−

√
2
2

2σ = 2 + 0.998−√
2

σ
. This total cover is 

greater than 1 for .σ >
√
2 − 0.998 ≈ 0.416, which is better than the non-gradual 

optimal solution. However, for .σ < 0.416, the non-gradual solution is better. 
A different question is whether the gradual cover objective for a given location 

of the facility is higher or lower than the non-gradual cover. It is easy to construct 
examples both ways. Consider the example of four demand points on the vertices of 
a square of side 1 and a facility located at the center of the square. For . D = 0.499
with .R1 = 0.499 − σ and .R2 = 0.499 + σ discussed above, for .σ > 0.416, 
the gradual cover is higher than the non-gradual cover (which is 0). However, for 

.D >
√
2
2 , non-gradual cover is 4 while partial cover is less than 4 when .R1 <

√
2
2 . 

We compared the combined cover by the stochastic directional gradual cover 
model calculated for given locations of facilities to the directional cover and non-
gradual cover model. For the comparison, we generated problems with . n = 100
demand points and up to 100 facilities by a pseudo-random number generator. 

In order to allow for future comparisons, the problems were generated by the 
pseudo-random number generator described in Drezner et al. (2019c). It is based 
on the pseudo-random number generator proposed in Law and Kelton (1991). A 
sequence . rk of integer numbers in the open range (0, 100,000) is generated. A 
starting seed . r1, which is the first number in the sequence, and a multiplier . λ, 
which is an odd number not divisible by 5, are selected. We used .λ = 12,219. 
The sequence is generated by the following rule for .k ≥ 1: 

. rk+1 = λrk −
⌊

λrk

100,000

⌋
× 100,000.

The random number between 0 and 10 is .
rk

10,000 . 
For demand points (with coordinates between 0 and 10), the x coordinates were 

generated by .r1 = 97, and for the y-coordinates, we used .r1 = 367. For the weights, 
we used .r1 = 12,347 and .wi = 1+ ri

100,000 so .1 < wi < 2. Facilities were generated 
by .r1 = 23,431 for the x-coordinates and .r1 = 56,407 for the y-coordinates. 

The points are depicted in Fig. 5, and the first 10 points are listed in Table 2. For  
the non-gradual cover model, a facility covers a demand point within a distance of 
3. For directional cover models, each demand point is defined by a circle of radius 
.r = 1. For the directional cover (Drezner et al., 2019a), the facility covers points 
within a distance of 3. For the stochastic directional model, the facility covers a point 
in a range between 2 and 4. At a distance of 2, the cover is full and at a distance of 
4, there is no cover. Cover declines linearly between 2 and 4.
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Fig. 5 The 100 demand 
points and 20 facilities 

Demand point Facility 
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3 

2 

1 

0 
0 1 2 3 4 5 6 7 8 9  10  

Table 2 The first 10 
pseudo-randomly generated 
points 

Demand points Facilities 

i x y w x y 
1 0.0097 0.0367 1.12347 2.3431 5.6407 

2 8.5243 8.4373 1.67993 0.3389 3.7133 

3 8.4217 5.3687 1.06467 1.0191 2.8127 

4 4.7523 0.1453 1.20273 2.3829 8.3813 

5 8.3537 5.4207 1.15787 6.6551 1.1047 

6 3.8603 5.5333 1.01353 8.6669 8.3293 

7 9.0057 1.3927 1.32307 0.8511 5.7167 

8 0.6483 7.4013 1.59233 9.5909 2.3573 

9 1.5777 6.4847 1.68027 1.2071 3.8487 

10 7.9163 6.5493 1.21913 9.5549 7.2653 

The comparison of the proportion cover of all 100 demand points by p facilities 
for the traditional cover model that is termed non-gradual, the directional gradual 
cover (Drezner et al., 2019a), the stochastic directional gradual cover model 
proposed in this chapter, are reported in Table 3. The best covers for each p are 
marked in boldface. Note that these are not the optimal solutions but the values of the 
objective function at facilities locations that were randomly generated and depicted 
in Table 2. The procedures were coded in FORTRAN using double precision
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Table 3 Comparing 
non-gradual, directional, and 
stochastic directional covers 

p (1) (2) (3) 

1 0.21401 0.21033 0.21345 

2 0.24379 0.26227 0.26877 
3 0.33405 0.32161 0.32185 

4 0.38197 0.39176 0.39670 
5 0.62032 0.64340 0.63884 

6 0.82693 0.83375 0.82034 

7 0.82693 0.83375 0.82120 

8 0.88800 0.90097 0.88162 

9 0.88800 0.90102 0.88621 

10 0.89564 0.91078 0.90567 

11 0.89564 0.91078 0.90746 

12 0.95949 0.95661 0.94921 

13 0.95949 0.95661 0.95054 

14 0.96974 0.96901 0.96306 

15 0.98192 0.98098 0.97823 

16 1.00000 0.99028 0.98590 

17 1.00000 0.99028 0.98633 

18 1.00000 0.99031 0.98675 

19 1.00000 0.99031 0.98726 

20 1.00000 0.99031 0.98732 

Average 0.79430 0.79676 0.79184 

(1) Non-gradual proportion cover 
(2) Directional proportion cover 
(3) Stochastic proportion cover 

arithmetic and were compiled by an Intel 11.1 FORTRAN compiler using one thread 
with no parallel processing. The programs were run on a desktop with the Intel 
i7-6700 3.4GHz CPU processor and 16GB RAM. We do not report the run times 
because they are mostly less than a millisecond. 

Since the demand points are basically located randomly and uniformly in the 
square, the proportion of cover does not vary by much. The majority of the best 
proportion of cover was found by the non-gradual cover approach, especially for 
.p ≥ 12. The average was the highest (not by much) for the directional model. 

We found the proportions for .p = 1, 2, . . . , 100. The non-gradual model 
provided full cover for .p ≥ 16, the directional cover model yielded full cover for 
.p ≥ 54, and the stochastic directional cover model for .p ≥ 75.
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