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“Where do I go from here?” asked the 
pilgrim. “This depends entirely on you,” 
replied the peasant. “There is a trail that is 
pleasant except for the risk posed by wild 
animals, another on which you may 
encounter mudslides, another that is plagued 
by robbers, and yet another that has no water 
for a long stretch. Each trail carries its own 
risk. What are you best prepared for?” The 
pilgrim pondered the situation. “Whichever 
road I am going to take,” he asked, “will it 
get me to the same destination?” “No,” 
replied the peasant, “you will end up at the 
place that the trail leads you to. Just have 
faith and be prepared for everything.” 
Jesús Peregrino



Preface 

When faced with the daunting task of writing a Preface to this volume, we were 
faced with a number of choices: write a piece that surveys the use and technique 
of stochastic location modeling, simply introduce the authors in this volume to our 
readers, or follow Mazo de la Roche in his introduction to the volume Northern 
Lights, in which he wrote 

After scanning the table of contents, I find that I have not read many of these stories. 
However, this does not much matter, as the names of the authors are assurance enough 
of the interest of what they write. They are Canadians and they carry the weight of their 
responsibility with assurance. 

Having actively planned and solicited chapters from colleagues from all over the 
world and having them refereed by other colleagues does not permit us to take the 
last option. 

The project, initiated by the ever-active and pleasant Dr. Camille Price, sounded 
immediately intriguing. All of us who teach the subject or are even remotely 
associated with it have learned long ago that most location problems are on the 
strategic level. This means they tend to be big-money, long-term decisions that need 
to be made. And, the longer the time frame of a decision, the higher the degree of 
uncertainty. This is where this volume comes in. We subsequently asked colleagues 
working in the field for their contribution. Contrary to our expectations, our 
suggestion was met with much enthusiasm. After the usual vetting and refereeing 
process, we ended up with 15 contributions, which fall into four categories. 

Naturally, the first category includes those contributions that have taken a 
step back, and describe the sources of uncertainty, the risk, the imprecision, and 
similar features. The contribution by Murray addresses this very problem. His 
main thesis is to address uncertainty not by way of different modeling types, but 
as something that gets lost or introduces doubt in the different stages involved 
in finding good locations, and to convert the original problem with all of its 
subtleties and imponderabilities into a more formal, but inherently simpler, model. 
Bronfman, Paredes-Belmar, Marianov, and Eiselt utilize the framework of location 
and transport of hazardous materials to discuss the criteria that can be used to

vii
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deal with their effects on population, environment, and property, as well as taking 
into account public, companies’ and regulating agencies’ concerns. These criteria 
include risk, hazard, and exposure time, combined in different ways. Marianov and 
Méndez-Vogel focus on customer-related uncertainties, what their origin is, how 
these uncertainties affect the choices the customers do, how to model these choices, 
and how to use these models in facility location. They describe the uncertainties 
coming from product heterogeneity, lack of or imperfect information, taste for 
variety, and compulsive behavior. Consumer behavior, in turn, has effects on the 
location chosen by firms. 

The second category groups chapters that deal with protection against (and 
reaction to) acts of nature, and different adversaries: attackers or competitors. The 
first such chapter, by Bayram, Kara, Saldanha-da-Gama, and Yaman, focuses on 
what has been called humanitarian logistics, understood as emergency evacuation 
planning and management in the event of an act of nature, such as hurricanes, floods, 
earthquakes, and similar disasters. The authors discuss hedging against uncertainties 
in shelter location, and approaches to evacuation traffic management, integrating 
both in a stochastic model. Tammy Drezner addresses competitive facility location 
problems and pinpoints the uncertainties in the attraction function utilized in the 
well-known Huff user-choice model. She discusses different forms of the attraction 
function, the estimation of model parameters, uncertainty-based objectives, and 
some refinements of the probabilistic Huff model, such as leader-follower models, 
lost demand, and cannibalization. She wraps up the chapter by applying the Huff 
model to the p-median and its obnoxious version, the hub location problem, and 
a multiple-server location problem. The piece by Chicoisne, Ordóñez, and Castro 
addresses the location of defender’s resources in Stackelberg security games with 
risk aversion. These games are known for their high complexity, as the leader or 
defender has to solve its location problem in such a way as to preempt the best 
attacker’s strategy. They analyze different risk models (among others, maximum 
expected disutility, bounded distortion risk, plain risk minimization, value at risk, 
and conditional value at risk), and how these models are included in the leader’s 
problem to obtain tractable models. In the chapter by Heckmann, Nickel, and 
Saldanha-da-Gama, location analysis is integrated into supply chain analysis, to 
obtain risk-aware decisions. Risk, in this case, refers to a disruption of the supply 
chain due to unexpected events, including strikes, floods, pandemics, and similar. 
The main idea is to maintain the supply chain efficiency (cost minimization) and 
effectiveness (service level). A stochastic facility location model is proposed that 
embeds uncertainty in a time horizon, as well as the possible attitudes of the 
decision-makers toward risk. To end this group, the chapter by Church addresses 
the advanced facility planning and modeling for resilience and protection against 
nature- or human-based disasters. Different approaches are described, including 
r-interdiction and fortification for resilience, to tri-level problems with a leader 
(defender) and followers (attackers) that act in two stages. He also describes, among 
others, approaches in which the loss of efficiency is minimized after disruptive 
events, or the weaknesses of a network are minimized and the network is made 
safer.
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The third part of the book comprises contributions that deal with various aspects 
that involve the response time from facilities to customers or congested facilities. 
The chapter by Stratman, Boutilier, and Albert discusses problems of emergency 
medical services, which include the availability of ambulances (which may be busy 
responding to other calls), uncertain response time, and equally uncertain demand. 
The authors discuss systems in different countries as well as relocation models in 
countries with different income levels. The piece by Aboolian and Karimi deals 
with the location of public facilities under uncertainly, particularly congestion. It 
pinpoints the main difference between public and private facilities as the objective 
and identifies welfare and its proxies as an objective function. Formulations from 
the provider’s and the consumers’ perspective are provided. The work by Zvi 
Drezner starts with the concept of gradual coverage model that, in contrast to the 
original coverage models, allows for the degree of coverage being not only binary. 
Different versions of gradual cover models are discussed, before a stochastic version 
of the gradual covering model is presented. In his “directional covering models,” 
each demand point is represented by a circle, and then the gradual coverage is 
defined and calculated. An extensive series of tests concludes the chapter. The 
piece by Shehadeh and Snyder deals with equity in the delivery of health care. 
In particular, the chapter discusses a number of possibilities to define and model 
“equity,” followed by introducing stochasticity of demand, costs, and travel times. 
The chapter examines the proposed approaches in an example with real data in 
Pennsylvania. 

The fourth and last part of this book comprises contributions that deal with 
methods and approaches for the solution of location models that involve uncertainty 
at some level. Taherkhani and Alumur examine and discuss hub location problems 
with stochastic demand and transportation costs and develop a number of different 
models along with their solution techniques. The authors describe stochastic and 
robust formulations of the problems. Escudero and Monge apply a multistage and a 
scenario approach for different uncertain parameters. They then use a decomposition 
matheuristic to solve the problem. Finally, Albareda-Sambola, Fernández, and 
Saldanha-da-Gama discuss the facility location problem with Bernoulli demand. 
Based on known heuristics, they then develop a tailor-made solution approach for 
the problem. 

Finally, it is our pleasure to thank the many people who have made this volume 
a reality. First and foremost there are, of course, the authors, who have contributed 
their most recent work in the area. Then there is the aforementioned Dr. Price, who 
came up with the idea for this volume, and last, but certainly not least, there are 
the many helpers at Springer-Verlag, such as Mrs. Chockalingam, Ms. Yan, Ms. 
Su, and Ms. Prakash, whom we would like to thank for their active and moral 
support. Without them, this volume would never have seen the light of day. With
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great sadness did we hear a short while ago that our colleague, good friend, and 
contributing author to this volume, Tammy Drezner, has passed on. Our heartfelt 
condolences go out to her husband Zvi and daughter Taly Dawn. She will be missed. 

Fredericton, NB, Canada H. A. Eiselt 
Santiago, Chile Vladimir Marianov 
January 2023
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Sources of Uncertainty in Location 
Analysis 

Alan T. Murray 

Abstract This chapter provides an overview of uncertainty in location analysis, 
highlighting different ways sources of error can be introduced. The chapter inten-
tionally deviates from past efforts discussing uncertainty in location analysis that 
emphasize particular model types, such as risk, robust, and stochastic approaches. 
The rationale is that defining characteristics of uncertainty suggest that doubt is 
key. Accordingly, doubt can be found in a range of identified categories, including 
understanding of problem/issue, abstraction, model specification, attribute(s), loca-
tion, spatial properties, solution, and implementation. The modeling implications for 
select categories are illustrated in various ways in order to highlight the spatial and 
aspatial implications. The intent is to make future avenues for investigation more 
comprehensive and ultimately ensure that uncertainty is addressed in a rigorous 
fashion. 

Keywords Analytics · Abstraction · MAUP · Error 

1 Introduction 

There are many variants of the idea that uncertainty is ever present in our daily lives, 
with quotes and sayings like “ . . .  nothing can be said to be certain, except death 
and taxes . . .  ” by Benjamin Franklin and “the only certainty is uncertainty” echoed 
by many in different ways. In facility location modeling uncertainty is pervasive 
due to problem ambiguity, measurement, data collection/process, computational 
challenges, etc. However, the significance and importance of modeling is to provide 
insight, facilitate decision making, inform policy, etc., putting associated uncertainty 
into perspective. Of course, the implication is that humans and/or decision-making 
processes will somehow reconcile associated uncertainties. As with all modeling 
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4 A. T. Murray

efforts, the hope is that fundamentally important components of a problem are 
sufficiently reflected and relatively certain in associated model(s), making derived 
insights meaningful in various ways. This has arguably been the overarching 
perspective in facility location modeling, with a range of models developed, applied, 
studied, extended, enhanced, and rediscovered to address a wide variety of problem 
contexts and nuanced considerations. Uncertainty too has been acknowledged and 
addressed in different ways, but could be considered rather narrowly interpreted, 
with efforts instead largely focusing on model capabilities, solution potential, and 
planning support insights. 

In this chapter, I offer my own view of uncertainty in facility location modeling, 
outlined in Fig. 1, suggesting understanding of problem/issue, abstraction, model 
specification, attribute(s), location, spatial properties, solution, and implementation. 
This view extends the general summary in Murray (2003) where existing loca-
tion model research incorporating uncertainty is put into categories of objective 
function(s), solution approaches, distance measure, demand location error, attribute 

Understanding 
of problem / 

issue 

Abstrac on 

Model 
specifica on 

A ributes 

Loca on 

Loca on 
proper es 

Solu on 

Implementa on 

Fig. 1 Categories of uncertainty in location analysis
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accuracy, representation, and site placement. The perspective reflected in Fig. 1 
can be contrasted with the more common takes on uncertainty offered in reviews 
by Snyder (2006), Correia and Saldanha-da-Gama (2019), and other related topics 
found in Laporte et al. (2019). Snyder (2006) discusses uncertainty in facility 
location models by categorizing problems as risk, stochastic optimization, and 
robust optimization. Related themes can be found in Correia and Saldanha-da-Gama 
(2019), noting topics of congestion, uncertain parameters, robust, stochastic, and 
chance-constrained approaches. Further highlighted is future work involving multi-
stage stochastic models, algorithm development, and scenario generation. While not 
considered as uncertainty topics per se, a number of chapters in Laporte et al. (2019) 
are focused on uncertainty related themes, including multi-criteria, multi-period, 
and competitive approaches. 

This chapter is meant to be more practically oriented, emphasizing both spatial 
and aspatial elements of location analysis where uncertainty arises. Categories of 
note in the next section include understanding of problem/issue, abstraction, model 
specification, attribute(s), location, spatial properties, solution, and implementation. 
This is followed by specific examples highlighting modeling implications. The 
intent of this chapter is to make future avenues for investigation more comprehen-
sive and ultimately ensure that uncertainty is addressed in a rigorous fashion. The 
chapter ends with discussion and concluding comments. 

2 Uncertainty 

An understanding of uncertainty is something that we all generally possess, at least 
to some degree. Merriam-Webster defines uncertain as “not known beyond doubt” 
or “not clearly identified or defined.” Given this, anything under this broad umbrella 
of uncertainty is a potentially important and significant topic for any analysis 
approach. Since location science has emphasized models, it is not surprising then 
that reviews of uncertainty would focus on different modeling approaches, such 
as those by Snyder (2006) and Correia and Saldanha-da-Gama (2019). However, 
the emphasis on model categories (e.g., risk, stochastic, robust optimization) likely 
ignores important fundamental issues and challenges that must be fully considered 
and rationalized. 

Understanding of the problem or issue being addressed is the first item noted 
in Fig. 1 associated with elements contributing to uncertainty in location analysis. 
This serves as a beginning because it is where we invariably start when undertaking 
location analysis. There would appear to be at least three ways in which uncertainty 
could be introduced as a result of understanding: limited grasp of the relevant issues 
and concerns; incorrect interpretation of the relevant issues and concerns; and the 
wrong method and/or model is proposed/applied. The distinction between these is 
subtle. A limited understanding is meant to denote the situation where all facets 
of the location analysis context may not be known or fully appreciated, often with 
respect to planning, management, policy, etc. A different nuance is an incorrect
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understanding, typically where certain aspects of the problem are interpreted as 
more significant or central, but this could go beyond this. Finally, the wrong 
approach being identified and/or applied for whatever reason is another possibility. 
Along these lines, one could imagine that a p-median problem is proposed, but the 
actual problem of interest is a min-max problem or a coverage problem. Similarly 
there are many cases where a center is sought, but a centroid is identified instead 
(Murray et al. 2020). Such a situation is not inconceivable given access to location 
analysis in commercial packages like ArcGIS and TransCAD (see Murray et al. 
2019) as well as through open-source software (see Chen et al. 2021), where a user 
can easily select a location analysis approach irrespective of whether it is appropriate 
and valid for the given context of analysis. 

The abstraction aspect of uncertainty indicated in Fig. 1 reflects that all models 
are an approximation to some observed system, where the most important elements 
of the system are incorporated into the model in some way. This is equivalent 
to what Marianov (2022) terms “imperfect modeling.” Accordingly, all models 
are an abstraction of an actual process or situation. However, it goes further 
than this because models invariably rely on data inputs, and such data is also an 
abstraction based on observed attributes, objects, interactions, etc. Recognizing and 
accepting these two important realities, a number of abstraction distinctions are well 
recognized in location analysis. The most common is a continuous space model and 
a discrete space model. This has to do with the object or facility being located, and 
the idea that potential locations for siting are anywhere in a region (continuous) 
or limited to a finite and distinct number (discrete). Accordingly, there is a long 
tradition of developing, solving, and applying both continuous and discrete location 
models to address a range of planning and analysis situations. Potential facility 
sites are but one facet of the continuous-discrete abstraction distinction. Other 
aspects include temporal context (static/cross-sectional vs. dynamic/longitudinal) 
and whether demand is conceived to be continuously distributed or occurring at 
discrete (and finite) locations. There are more abstraction-oriented features that 
could be discussed, but are reviewed under other categories of uncertainty due to 
characteristic features. 

The third source of uncertainty in Fig. 1 is model specification. A beginning 
point for uncertainty is recognizing that there are many commonly relied upon 
ways to communicate a problem. These include descriptions, flowcharts, pseudo-
code, and mathematical equations. The significance is that the different forms may 
lend themselves to some degree of ambiguity. Descriptions, flowchart, and pseudo-
code, as an example, may omit an important detail or characteristic in the process of 
summary and generalization. It would be fair to say that mathematical specification 
is the most clear and precise, assuming that it accurately reflects what is actually 
being done. Other aspects of uncertainty in model specification could include an 
incorrect objective(s), missing constraints, logical inconsistences, etc. A final aspect 
of model specification where uncertainty could arise is the modifiable areal unit 
problem (MAUP). This is a recognized issue in location and geographic application 
of quantitative methods, where the results of model application vary based on a 
change of spatial scale or unit definition. Such a topic could also be included
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and discussed under other uncertainty categories in Fig. 1, such as abstraction and 
location, but is included here because model specification that is frame independent 
(not impacted by MAUP) is an elusive goal with a growing number of attempts to 
address this (see Murray 2005, 2018). 

Attributes as a source of uncertainty in Fig. 1 reflect the common treatment in 
operations research of model inputs, or attributes, as being known and absent of 
error. In general such inputs are observed or estimated. For example, an often-
utilized source of expected demand is total population, taken from an official 
census. However, it is well known that such data have limitations, including that 
they are residential population counts, undercount the actual population, and are 
biased. Their usage, therefore, could be problematics in certain circumstances. 
Other attribute-oriented information may similarly be problematic due to human or 
sensor error/bias in their creation or processing. Issues of concern include accuracy, 
precision, validity, reliability, sampling process, intended usage, etc. (Murray & 
Grubesic, 2012). An additional potential source of uncertainty with respect to a 
given attribute is that it is often created through a combining process, such as 
addition, subtraction, etc. of two or more attributes. Uncertainty arises because such 
an approach may mask what is ultimately an underlying multi-objective problem, 
where the individual attributes should be independently optimized. Accordingly, 
solution of a single combined attribute would result in a single optimal solution, 
but individual attributes would reflect Pareto trade-off solutions. Thus, only one of 
potentially many solutions are identified, yet these unidentified trade-off solutions 
are equally valid. They are missed through an unintentional masking process 
that combines attributes in advance, rather than treating them independently. 
Another rather common source of uncertainty arises through the use of interpolated 
attributes. Interpolation (or extrapolation) is a process of estimating an attribute 
value based on a sample of observed values. Thus, estimates are derived at other 
(unobserved) locations based on some interpolation/extrapolation method, making 
use of observed sample attribute values. There are many examples of such data, 
including temperature, rainfall, and air quality. 

Another potential source of uncertainty noted in Fig. 1 is location, recognizing 
that data creation, processing, and manipulation can contribute to whether or not 
geographic position is accurate. This is a topic that has received perhaps the most 
attention in geography and GIS areas, though perhaps not as much in the context 
of location analysis. The creation of location, or geographic, information is often 
accomplished through a process of digitizing existing basemaps, application of 
geocoding, or reliance on GPS (Church & Murray, 2009). Human or automated 
digitizing relies on data layers or physical maps from which location is extracted. 
The reality is that all data layers and maps have limited positional accuracy. This 
is due to how they were created, but also cartographic license and design. As a 
result, they may be very accurate in the location of reported information, within 
centimeters, or very inaccurate, off by hundreds of meters (or more). This ignores, 
of course, the added element of human involvement in the process that may also 
contribute to potential error. Another source of location information is through a 
process known as geocoding, where an address is used to produce an associated
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coordinate reference on the surface of the Earth. Such a process relies on a database 
of street segments, street names, address ranges, etc., a type of look-up process, 
except there is invariably interpolation and street offset involved as well as default 
location used when an address cannot be found in the database. While beyond the 
scope of this discussion, suffice to say that there are many ways in which error and 
inaccuracy could be resident in associated location data relying on a geocoding pro-
cess. What about data generated through the use of GPS? While seemingly accurate, 
it relies on satellites (and base stations) to determine positional location. As a result, 
atmospheric conditions, weather, buildings, mountains, etc. can interfere with signal 
communication, thereby impacting the spatial precision of derived location. Often 
not widely acknowledged, location data may be 2-dimensional, sometimes the by-
product of a projection of an original 3-dimensional data source. The process of 
projecting 3-dimensional location to 2 dimensions cannot be accomplished without 
introducing some source of error. A final observation regarding uncertainty in loca-
tion data is that such data is often the by-product of formal manipulation, including 
aggregation and simplification. Aggregation involves combining neighboring points 
or polygons to create a fewer number of observations, generally intended to reduce 
the computational of spatial analytical methods, such as optimization. Worth noting 
is that location data could be disaggregated as well, the opposite of aggregation, 
with a range of associated uncertainty issues that accompany such manipulation, 
including interpolation. Simplification is manipulation that involves representing a 
spatial object in a less complicated manner. One example is taking a polygon and 
representing its location as a coordinate pair, such as a centroid. Another example 
is a street, highway, or freeway and representing it as a simple line, the centerline. 
This discussion is simply to highlight that data associated with spatial location is far 
from perfect due to various issues. 

The spatial properties (spatial relationships) source of uncertainty noted in Fig. 
1 indicates that geographic attributes play a significant role in location analysis. 
Often these are topographical and/or topological, having to do with proximity and 
arrangement. One possibility for error arises through adjacency, a property reflecting 
that two locations neighbor each other. Adjacency is commonly defined by two 
areas sharing a common boundary or point, but other extended interpretations 
are possible. Thus, there could be variability due to adjacency definition as well 
as object location and position. Distance too is a spatial property, and could 
introduce error in various forms. The most obvious is that there are different ways 
to measure distance, including network, Euclidean, rectilinear, and lp, as well as  
sensitivities to underlying location that arise in assessing distance between two 
objects. Other spatial properties that can be defined in differing ways or impacted by 
location and topological variability include connectivity, contiguity, compactness, 
and shape, among others, and each have been central to location analysis efforts 
and optimization. A final category of spatial properties to point out are cover sets 
and buffers. Cover sets are generally associated with coverage location problems, 
reflecting those demand objects that can be suitably served by a facility sited at 
a particular location. Depending on the assessment criteria and method, such sets 
could be uncertain in various ways, not to mention partial service considerations.
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Somewhat related is the notion of a buffer, reflecting a topographical transformation 
of a location or object using a specified distance or travel time threshold. 

Model solution as a source of uncertainty in Fig. 1 may be a surprising category. 
However, there are actually a number of ways that uncertainty can be introduced 
through a solution process. An exact method is one that produces a guaranteed 
optimal solution, but only if optimality criteria and conditions are met. Mixed-
integer programming (MIP) problems are common in location analysis, with the 
branch and bound being a widely relied upon solution technique. An appealing 
aspect of linear programming combined with branch and bound, as an example, is 
that an optimality gap can be established once a feasible solution has been identified. 
In fact, many difficult MIP problem instances may terminate with a remaining 
optimality gap, offering only a bound on solution quality with some potential for 
a better solution. Uncertainty arises when a solution is not understood to be optimal 
within the stipulated conditions, or perhaps sub-optimal but within a threshold of 
a theoretical bound. Another common form of problem solution involves the use 
of a heuristic process. By definition, a heuristic is an ad hoc method or technique 
that produces a solution to an optimization problem with unknown or unproven 
optimality bounds or quality characteristics. As a result, a heuristically identified 
solution may be of high quality, or low quality. However, if a user, analyst, decision 
maker, etc. is not aware that a heuristic is used, then this is problematic as there 
exists uncertainty about solution quality. There are, in fact, many software packages 
providing access to exact and heuristic methods with essentially no communication 
of the approach used to solve, nor conditions under which the results should be 
interpreted. One could add as well that parameterization too may be a source of 
uncertainty, where a change in method parameters may produce better (or worse) 
result. While perhaps not an issue from a strict theoretical bound perspective, the 
existence of alternative (or multiple) optima may well be a source of uncertainty 
in that there are other solutions that could be considered, perhaps differing in 
significant ways. Finally, problems that are inherently multi-objective may not be 
interpreted and communicated in this manner, as noted above, but also that some 
methods may not be able to identify all Pareto or non-dominated solutions, creating 
some uncertainty about the actual trade-offs that exist. 

The last category to be discussed in Fig. 1 is uncertainty due to implementation. 
Of course, models are viewed as an aid to management, planning, policy, and deci-
sion making more generally. Given this, it is understandable that implementation 
may deviate from the model prescribed results. However, an important question is 
how does this impact the overall solution quality. Is the solution now sub-optimal, 
infeasible, or degraded in some manner? Technically speaking, an optimal solution 
must be implemented as prescribed in order to maintain its theoretical properties. 
Any deviation is potentially significant. Of course, implementation itself is full 
of challenges, involving reconciliation of model abstraction with the realities of 
on-the-ground interpretation. This is precisely why there is invariably deviation 
from optimization prescriptions, yet this does raise concerns and creates associated 
uncertainty.
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The significance of identifying and discussing the categories in Fig. 1 is that 
there is much potential for uncertainty in many different ways, but also a complex 
interaction or co-mingling of these individual items is inevitable. Table 1 offers 
a more detailed summary of Fig. 1, highlighting the various issues raised that 
could impact uncertainty. Summarized in this manner, it is undeniable that co-
mingling is taking place, but more important that the implications are not at all 
understood. Not included in Fig. 1 or Table 1, but certainly worth noting are issues 
of omission, including attributes and objects in data as well as objectives and 

Table 1 Uncertainty in location analysis 

Uncertainty Sources 

Understanding → Limited grasp of relevant issues and concerns 
→ Incorrect interpretation of relevant issues and concerns 
→ Wrong method and/or model proposed/applied 

Abstraction → Data 
→ Continuous space (potential facility sites) 
→ Discrete space (potential facility sites) 
→ Static/cross-sectional 
→ Dynamic/longitudinal 
→ Continuous space (demand) 
→ Discrete space (demand) 

Model specification → Communication (e.g., descriptions, flowcharts, pseudo-code, 
mathematical equations) 
→ Incorrect objective(s), missing constraints, logical inconsistences 
→ Modifiable areal unit problem (e.g., spatial scale, unit definition) 
→ Frame independence 

Attribute(s) → Measurement error 
→ Bias 
→ Sampling 
→ Human error 
→ Masking of multiple attributes/objectives 
→ Interpolation/extrapolation 

Location → Data creation (e.g., digitizing, GPS, geocoding, cartographic 
license, design) 
→ Processing (e.g., map projection) 
→ Manipulation (e.g., simplification, aggregation, disaggregation) 

Spatial properties → Adjacency/neighbor 
→ Distance 
→ Contiguity/connectivity 
→ Cover sets and buffers 

Solution → Exact (e.g., optimality gap) 
→ Heuristic 
→ Parameterization 
→ Multiple / alternative optima 
→ Pareto optima 

Implementation → Modification 
→ Adjustment 
→ Inability to implement precisely
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constraints. Similarly, the suitability of proxy measures and metrics likely could 
be more explicitly considered as well. 

3 Modeling Implications 

The detailed categories of uncertainty (Fig. 1 and Table 1) reflect a range of potential 
issues that could impact interpretation and significance in any location analysis 
and modeling effort to support planning, management, and policy development. 
Space limitations make it difficult to delve into specific instances of each category, 
but this section offers representative examples of how uncertainty is introduced in 
analysis. In particular, I draw upon experience in my own research and application 
of location analytics to highlight aspects of associated uncertainty that arise in 
abstraction, model specification, location, spatial properties, and solution. While 
equally important understanding, attributes, and implementation are left to the 
reader to contemplate. 

3.1 Abstraction Uncertainty Implications 

As introduced above, abstraction is a necessary component of any modeling effort, 
and permeates many aspects of location analysis. Abstraction is the idea that both 
data and a model approximate an associated system, process, or decision-making 
context. I offer one example in location analysis associated with the intent to 
cover or serve a region with a minimal level of resources. Consider the following 
notation: 

i= index of demand objects 
λi= area of demand i 
S= service standard (time or distance) 
fi= coverage function for demand i with respect to service standard S
�= region of analysis 
j= index of facilities providing service
�= set of facilities 

The decision variables in this case are associated with where to site associated 
facilities: 

. 
(
αj , βj

) = location of facility j

This is a classic location analysis problem. If it is assumed that facilities are 
permissible to site anywhere in continuous space, then the following formulation 
represents this particular problem:
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.Minimize |�| (1) 

.Subject to
∫∫

fi (�) d� ≥ λi ∀i (2) 

.
(
αj , βj

) ∈ � ∀j (3) 

The objective, (1), is to site the fewest number of facilities possible. Constraints 
(2) require that the area of each demand object is to be completely covered or served 
within the standard S. Constraints (3) signify that location sites be in the region of 
analysis. 

Associated formulations and analysis of coverage along these lines using (1)– 
(3) can be found in Wei and Murray (2015) and Church and Murray (2009). The 
challenge is that an efficient configuration of facilities is sought in order to serve, or 
cover, each demand object i, with an area of λi (could also be a length if the object is 
a line). Thus, through the combination of individual or combined coverage provided 
by the set of sited facilities, each demand must be served. 

Readers familiar with location analysis may recognize the continuous space 
siting coverage problem in (1)–(3) as equivalent in intent to the location set cover 
problem detailed in Toregas et al. (1971), as well as Berge (1957) and Edmonds 
(1962). A distinction is that potential facility locations are finite and discrete, 
identified a priori. A closer look and comparison is facilitated by the introduction of 
the following additional notation: 

j = index of potential facility sites
� i = set of facilities that suitably cover demand i 

Consider as well these additional decision variables: 

. Xj =
{

1 if facility located at site j

0 otherwise

Thus, in contrast to (1)–(3), specific potential locations for siting facilities are 
known in advance, and finite in number. Accordingly, a decision variable can be 
defined for each location to represent the siting decision, eliminating the need 
to track location in continuous space with the coordinate pair decision variables, 
(αj, β j). With this, a discrete space location problem can be structured. 

.Minimize
∑

j

Xj (4) 

.Subject to
∑

j∈�i

Xj ≥ 1 ∀i (5) 

.Xj = {0, 1} ∀j (6)
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The objective, (4), is to minimize the number of facilities necessary. Constraints 
(5) stipulate that each demand must be suitably served by at least one sited facility. 
Constraints (6) impose binary restrictions on decision variables. 

Both models seek the same outcome, to identify the number and location of 
necessary facilities to cover all demand. However, they are doing so in very 
different ways, as (1)–(3) focuses on continuously distributed demand whereas 
(4)–(6) assumes demand is discrete. This is not particularly surprising or novel 
as most problems can be described, structured, and/or formalized in alternative 
ways, but the abstraction process in this case results in a fundamentally different 
spatial optimization model. The implications are many, including potential methods 
to solve each problem but also the findings that can be expected from each model. 
Since they are different, it should not be a surprise that different outcomes may 
well result. It is therefore in this context that abstraction is noted as a source of 
uncertainty, and is at the essence of what Murray (2018) demonstrates in a more 
expanded manner. 

3.2 Model Specification Uncertainty Implications 

Model specification was characterized as varying in terms of approach taken, includ-
ing description, flowchart, pseudo-code, and mathematical equations. Consider the 
example of the description found in ArcGIS for a location-allocation problem, 
one of seven basic alternatives:1 “MAXIMIZE_COVERAGE—This option solves 
the fire station location problem. It chooses facilities such that all or the greatest 
amount is within a specified impedance cutoff.” Adding to this in ArcGIS is the 
option of including capacity restrictions on facilities. The first sentence likely fails 
to communicate any meaningful problem or model characteristic as many different 
location analysis approaches have been utilized to address fire station siting issues. 
The second sentence is a little more insightful, at least to those working in the 
area of location analysis with familiarity of the maximal and set covering location 
problems, but the description is ambiguous at best raising issues of uncertainty. Xu 
et al. (2020) show that what is implemented in ArcGIS is the maximal covering 
location problem (or capacitated maximal covering location problem when the 
capacity option is elected), with an assumption that potential facility locations are 
discrete and identified in advance. While only the above description is provided in 
ArcGIS, a mathematical formulation is possible. Offered here, using the previous 
notation, is the capacitated maximal covering location problem, based on the 
following additional notation:

1 ArcGIS is arguably the leading commercial GIS (geographic information system) software 
package, produced by Esri (https://www.esri.com/). The different problem types are minimize 
weighted impedance, maximize coverage, maximize coverage and minimize facilities, maximize 
attendance, maximize market share, target market share, and maximize capacitated coverage. 

https://www.esri.com/
https://www.esri.com/
https://www.esri.com/
https://www.esri.com/
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δi = expected service amount associated with demand i 
θ j = service capacity of facility j 
p = number of facilities to locate 

Additional decision variables are necessary for tracking demand allocation to 
facilities, as follows: 

. Yij =
{

1 if demand i is served by facility j

0 otherwise

The above ArcGIS description can then be formally stated as: 

.Maximize
∑

i

∑

j∈�i

δiYij (7) 

.Subject to
∑

j∈�i

Yij ≤ 1 ∀i (8) 

.

∑

j

Xj = p (9) 

.

∑

i

δiYij ≤ θjXj ∀j (10) 

.
Xj = {0, 1} ∀j

Yij = {0, 1} ∀i, j ∈ �i
(11) 

The objective, (7), indicates an intent to maximize total demand covered within 
the service standard. Constraints (8) limit allocation to at most one facility. 
Constraint (9) requires p facilities to be sited. Constraints (10) impose capacity 
restrictions on sited facilities, ensuring that no facility is allocated more than θ j 
total demand. Finally, binary restrictions are noted in constraints (11). This is a 
well-known location model, the capacitated maximal covering location problem (see 
Church and Murray 2018). 

It would be extremely difficult to know with certainty that the above description 
offered in ArcGIS actually corresponds to the formulation given in (7)–(11). 
Regardless, the approach has seen broad and growing use and application, as 
detailed in Xu et al. (2020). This, however, is the essence of uncertainty arising 
in model specification, where a complete understanding and appreciation may 
not be possible with certain approaches accessible through commercial or open-
source software. Further, it opens the door to questionable or inappropriate use and 
application in practice.
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3.3 Location Uncertainty Implications 

Irrespective of the methods used to generate geographic information, there is invari-
ably associated positional error in the location of objects. Most geographic infor-
mation systems conceive of spatial objects as points, lines (polylines), or polygon 
objects. While considerable information and analysis makes use of raster data, it is 
generally only used to represent a continuously distributed attribute or phenomenon, 
not objects per se. Given the reliance on spatial objects, consider their representation 
in technical or formal terms. A point is a coordinate pair, {(x, y)}. A line (or polyline) 
is a collection of sequenced coordinate pairs, {(x1, y1), (x2, y2), (x3, y3), . . . , (xk, yk)}, 
with consecutive coordinates connected by a line segment, often assumed to 
be a straight line. A polygon is a collection of sequenced coordinate pairs, 
{(x1, y1), (x2, y2), (x3, y3), . . . , (xk, yk)}, with consecutive coordinates connected by 
a line segment and the condition that (xk, yk) = (x1, y1), indicating a closure of the 
object to form a polygon. For completeness, each object is illustrated in Fig. 2. As  
shown, the assumption is that the coordinate locations are known with certainty, and 
accurately represent the associated object. In reality, however, positional location is 
uncertain and line segments can only approximate continuous variation. 

One implication of location uncertainty due to data generation processes is that 
any coordinate reference or associated line segment may be off by ε units. One can 
visualize such error, or uncertainty, for each object type. Figure 3 depicts an ε band, 
or buffer, for the point, line, and polygon objects shown in Fig. 2. Accordingly, the 
actual location of the point, as an example, could be anywhere in the uncertainty 
region shown in Fig. 3a. Similarly, the line boundary could be anywhere in the 
uncertainty region given in Fig. 3b. Finally, the polygon boundary could deviate 
within the uncertainty area shown in Fig. 3c. 

The manipulation of geographic data is also a source of potential locational 
uncertainty. Consider the 295 polygons shown in Fig. 4a. It is very common 
that polygons such as these are manipulated to make them easier to evaluate 
and/or use in a location model. One such approach is simplification, where 
objects are often represented as a center or centroid. An example is a poly-
gon {(x1, y1), (x2, y2), (x3, y3), . . . , (xk, yk)} simplified as a point, e.g., . (x∗, y∗) =(∑

lxl
/

k
,

∑
lyl

/

k

)
. The result of such a process is shown in Fig. 4b, indicting 

the 295 centers, or centroids in this case, that represent a simplification of the 
more spatially complex polygon objects given in Fig. 4a. Clearly such a process 
of simplification introduces some level of uncertainty in location since the center 
could be considered for essentially any location within a polygon. Another aspect 
of manipulation is aggregation. This is a process where two or more neighboring 
polygons, as an example, are combined to form a single new polygon, with 
interior boundaries removed. Consider again the 295 polygons in Fig. 4a that have 
undergone aggregation to form the five new polygons shown in Fig. 4c. Notice that 
only exterior boundaries remain for each of the new polygons in Fig. 4c. The by-
product of such a process clearly obscures and removes underlying spatial detail and 
variability, creating locational uncertainty. Often the rationale for aggregation is to
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! 

! Structure (point) 

Road (line) 

Parcel (polygon) 

Fig. 2 Common location analysis objects (points, lines, polygons) 

Fig. 3 Location uncertainty in common object boundaries. (a) Uncertainty in point location, (b) 
uncertainty in line location, and (c) uncertainty in polygon location
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Fig. 4 Location manipulation. (a) Original polygons, (b) point simplification, and (c) aggregation 
of polygons 

enhance computational capabilities in model solution, yet this is invariably being 
done at the expense of locational precision and certainty. 

3.4 Spatial Properties Uncertainty Implications 

The uncertainty in spatial properties (and spatial relationships) is not particularly 
surprising given the broader location uncertainty in geographic data illustrated 
previously. Nevertheless, location analysis generally focuses on spatial properties of 
various sorts in models. That is, the spatial properties are often central to the intent 
of optimization, or reflect primary restrictions and constraining conditions. This 
is especially true for the set covering models noted previously, continuous space 
siting in (1)–(3) and discrete space siting in (4)–(6). What are the important spatial 
properties in this case? Clearly the coverage functions fi and the cover sets � i each 
rely on the service standard S in their respective models. Often coverage is based 
on distance or travel time, yet there are many different metrics that can be used. In 
the case of distance, there is Euclidean, rectilinear, lp, and network travel. Not only 
are these different in strict mathematical terms, but the spatial footprint and length 
of travel can vary significantly. As an example, consider the shortest network travel 
path of 2.7 miles in Fig. 5 to that of Euclidean distance measuring 1.27 miles. This is 
significant, and for obvious reasons given the travel limitations evident in Fig. 5. A  
critical question, however, is how does this impact coverage assessment, particularly 
when uncertainty arises due to distance and proximity. Murray and Grubesic (2012) 
offer an expanded discussion of this topic, but clearly context and the nature of 
service are particularly important for both interpretation and utilization in location 
analysis. 

Of course, there are many other types of spatial relationships that are critical 
in location analysis. Consider the relatively well-understood notion of adjacency. 
Figure 6 illustrates planning units from which adjacent units can be observed. In 
particular, look closely at unit 238. The set of adjacent units based on a shared 
point or boundary in this case would be {221, 225, 226, 234, 239, 240, 241, 
242}. This assumes, of course, that the boundaries are error free, or precise.
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Fig. 5 Contrasting Euclidean distance to network travel 

Shown in Fig. 7, however, is the actual location uncertainty of the boundary 
(or specifically, imprecision), which appears to have significant implications for 
adjacency in this case, particularly with respect to unit 238. Inspection of Fig. 7 
suggests that unit 238 may only be adjacent to {221, 234, 239, 240} with certainty, 
leaving other units uncertain depending on the actual boundary position. Boundary
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Fig. 6 Planning units with adjacent/neighboring units 

imprecision along these lines can be attributed to many factors, including digitizing 
equipment, weather and atmospheric conditions, terrain, human error, etc. but also 
data processing, cleaning, management, and manipulation. Wei and Murray (2012, 
2018) utilized information along these lines to derive probabilities of adjacency 
certainty for inclusion in a location model, offering one approach for addressing 
spatial uncertainty in a structured manner. 

3.5 Solution Uncertainty Implications 

As noted previously, model solution is likely an unexpected source of uncertainty, 
yet there are actually many opportunities for this to create uncertainty. The technical 
details associated with MIP approaches, such as an optimality gap, may well be 
beyond the expertise of many. Nevertheless, communicating these facts is important 
when an associated solution is not confirmed to be optimal. Perhaps the bigger 
challenge is communication encountered in location analysis, when map-based
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Fig. 7 Uncertainty associated with adjacency/neighboring spatial relationships 

figures are relied upon to summarize recommendations and findings derived from 
optimization models. Consider the solution shown in Fig. 8 identified using the 
ArcGIS version 10.5 location-allocation function described previously, accessed 
through the Network Analysis toolbox. As noted above, the formal specification 
of the model is reflected in (7)–(11). Xu et al. (2020) indicate that a heuristic is 
used for solution. The depicted location analysis examines the Special Supplemental 
Nutrition Program for Women, Infants, and Children in the Santa Barbara area, 
seeking the best locations for this federally funded program to provide nutrition, 
healthy foods, breastfeeding education, and health care service to the region. 
Demand corresponds to 2070 census blocks, totaling 200,450 people (e.g.,

∑
iδi= 

200,450). Potential facility sites are identified in advance, totaling 82 potential 
sites. Travel and access are via the road network, with a service coverage standard 
assumed to be 5 miles. In this instance, three (p = 3) facilities are considered, with 
a capacity of θ j= 64,135. The solution shown in Fig. 8 is capable of covering, or 
serving, 170,144 people within the 5-mile travel distance standard. 

In contrast to the heuristic solution, Fig. 9 depicts the optimal solution for this 
problem instance. This solution was obtained using Xpress, and is proven to be
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Fig. 8 ArcGIS capacitated “MAXIMIZE_COVERAGE” results 

within 0.001% of optimal. Noteworthy is that 182,749 people can now be covered 
within 5 min, indicating that the ArcGIS heuristic solution is 6.90% less than the 
optimum. To achieve this, the facility siting and allocation differ in significant ways. 
Since access is incredibly important for social service like this, such an improvement 
is noteworthy. But the important point here is that challenges associated with 
communication, and in particular solution quality, clearly exist. 

4 Discussion 

There is much more that could be said and demonstrated regarding uncertainty in 
location analysis. This chapter offers one perspective, with supporting examples 
to illustrate particular instances that can be observed. At a minimum, there likely 
is a more general issue of effective communication, but perhaps ill-advised usage 
and application of location analysis as well. Returning to the contrast between the 
heuristic results produced by ArcGIS in Fig. 8 compared with exact results shown 
in Fig. 9, a few issues are worth highlighting. The output of analysis carried out in 
ArcGIS, as an example, offers no communication of potential suboptimality with 
the utilized heuristic (Fig. 8), nor is this true for the exact results shown in Fig. 
9. It is likely critical that any ArcGIS location-allocation solution be considered
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Fig. 9 Capacitated MCLP, (7)–(11), optimal results 

uncertain with respect to optimality, as it may or may not be good given the very 
nature of a heuristic. Yet there is an abundant and growing literature detailed in 
Xu et al. (2020) applying this particular model that essentially fails to recognize 
any limitations with derived findings. Further, many often refer to ArcGIS heuristic 
results as “optimal,” which is clearly incorrect. Murray et al. (2019) highlight this as 
well for a different model in ArcGIS, indicating that it is not an isolated incident but 
rather something more widespread and pervasive. Indeed, it is likely the by-product 
of easy-to-use software like ArcGIS, offering access to range of functions, methods, 
procedures, and models, making it possible to misuse them in various ways. And 
as noted previously, the offered documentation is generally lacking with respect to 
the precise model or solution approach, making it very much “black box” in nature. 
This is in contrast to the location modeling literature where problems are explicitly 
detailed and solution method limitations very well understood. 

The included examples of uncertainty implications are admittedly limited, with 
additional nuances emphasized as well as examples associated with understanding, 
model specification, and attributes that could have been explored. While some 
overlap with themes of risk, stochastic optimization, and robust optimization 
appears in Fig. 1/Table 1, important nuances of uncertainty would appear to be 
omitted in previous reviews of uncertainty in location analysis.
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5 Conclusions 

This chapter provided an overview of uncertainty in location analysis. It was noted 
that the categories of uncertainty outlined in Fig. 1 and Table 1 intentionally 
deviate from past reviews of uncertainty in location analysis. Such past reviews 
have focused on particular types of models, such as risk, robust, and stochastic 
approaches. The reason and rationale for viewing this differently is to better 
account for the defining characteristics of uncertainty centered on doubt. In this 
way, understanding of problem/issue, abstraction, model specification, attribute(s), 
location, spatial properties, solution, and implementation all contribute to and have 
major implications for uncertainty. A number of examples illustrating modeling 
implications for select categories were detailed, making it evident how uncertainty 
arises. The intent is to make future avenues for investigation more comprehensive, 
and ultimately ensure that uncertainty is addressed in a rigorous fashion. 
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Risk, Hazard, and Exposure Time 
in Hazmat Location and Routing 

Andrés Bronfman, Germán Paredes-Belmar, Vladimir Marianov, 
and H. A. Eiselt 

Abstract Hazardous materials such as fuel, solvents, organic waste from hospitals, 
used batteries, explosives, and nuclear waste need to be transported to and from 
the facilities that use, produce, and dispose of them. Managing these transports 
requires a design that alleviates negative effects of these activities, such as the 
loss of lives, environmental damage, and the destruction of property. Despite the 
large body of literature addressing numerous aspects regarding hazardous materials, 
there is no clear consensus on how potential adverse effects should be measured 
when optimizing facility location and route design. Our analysis commences with a 
look at the primary stakeholders in these activities: the population that is potentially 
affected by transportation, the firms that pay for it, and the government regulator, 
whose task is to protect the population at large. This chapter proposes two new 
indicators related to these activities, which are easy to compute, avoid the use of 
unreliable very low probability estimations, take care of the regulatory agencies 
and public concern, and, in our view, are more understandable to the public. 
Mathematical programming problems that integrate criteria for all stakeholders are 
formulated and solved. The methodology is then applied to a real case in order to 
determine an optimal transport route for the transport of hazardous materials in and 
out of the city of Santiago, Chile. 
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1 Introduction 

Worldwide, large quantities of hazardous materials are transported through urban 
areas between facilities that use it, produce it, or dispose of it as industrial waste, 
some of them located within these areas, e.g., gas stations. This activity entails 
considerable hazard due to accidental release (spills, fires, explosions, etc.). A 
classification of these materials can be found in EPA (2012). 

Hazard is defined in the Britannica Dictionary as “a source of danger” (The 
Britannica Dictionary, 2022). It is the potential of an undesirable event without 
regard of how likely it is. Risk, on the other hand, as defined by Prince2 (2009), 
is “An uncertain event or set of events that, should it occur, will have an effect 
on the achievement of objectives. A risk is measured by a combination of the 
probability of a perceived threat or opportunity occurring, and the magnitude of 
its impact on objectives.” In other words, risk includes a probability or likelihood 
weighted by a consequence or impact (i.e., an expected value). Hazard and risk are 
sometimes confused in common language, but they are different because hazard 
does not involve probabilities. 

Dealing with situations involving hazardous materials is difficult, as there are 
several stakeholders involved: the main “players” in the game are regulatory 
agencies, the industry, and the public. Regulatory agencies intervene to reduce 
the average risk to the public and the environment, i.e., to minimize the expected 
consequence of incidents averaged over the whole region, and must do so without 
threatening the economic viability of the activity being regulated. With a few 
exceptions, risk is computed considering that all people, buildings, or vulnerable 
environment within a certain distance of a facility or a segment of the route are 
affected in some negative way. 

Firms handling hazardous materials and operators involved in their transportation 
have a different point of view. Their concern is minimizing location and transport 
costs, within the frame established by the regulatory agencies. 

The third point of view is that of the public. The general public typically opposes 
any activity involving hazardous materials in its neighborhood, seeking to minimize 
hazard. The main reason for the general public to choose hazard and not risk as a 
criterion is the public’s inability to determine the probability, its inability to interpret 
it, and the main concern about the possibility of an accident and its impact on 
their own lives. In fact, the announcement that a chemical plant will be open or 
nearby routes will be used for transportation of corrosive liquids, for example, will 
generate strong public opposition, because both are perceived as very hazardous 
by the public, in spite of the fact that the risk to which this population will be 
exposed is usually extremely low, due to the very small probability of an accident. 
For instance, the US Department of Transportation (2022) states that in 2021, while
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there were 23,705 incidents in 2021 (highway, water, rail, and air, almost all of 
them highway), the total number of fatalities in that year was 2. In other words, 
when dealing with hazardous activities, people are not concerned with, or do not 
understand, probabilities and thus the resulting risk; they just consider hazard. In 
their minds, sooner or later an accident could happen, whose likelihood does not 
matter much. Moreover, people are not interested in averages, but in what can 
happen to them, which is assumed to be the worst case. Accidents can have very 
significant consequences on human lives or health, environmental damage, or costly 
damage, which is what the public sees. In the case of undesirable facilities, hazard is 
(correctly) perceived by the public as decreasing with their distance to the facility, so 
they prefer these facilities as well as the transport routes for the hazardous materials 
being as far as possible from them (Hung & Wang, 2011). In order to express the 
sentiment of the public, we use the public understanding of hazard: the potential of 
something bad happening, whose effects decrease with distance. The hazard is then 
a function of the distance between a populated point and the point that generates 
the hazard. To compute the individual hazard to which a route segment exposes a 
populated point, the hazard function is integrated over the length of the segment of 
a transportation route that lies within a safety distance of a population center. This 
individual hazard is then weighted by the population. 

Cost and average risk have been dealt with profusely in the literature and 
practice: definitions of location and transportation cost are standard, and estimators 
of average risk have been calculated in various ways and used as an estimate of 
the disutility imposed on the population. Erkut et al. (2007) identify nine different 
models of risk for hazardous materials routing, each using its own method of 
combining the likelihood or probability of an incident on route segments with the 
associated potential consequences, or one of these factors alone. Mohri et al. (2022) 
offer an overview of hazardous materials transportation problems and present a 
complete table of what they call “risk measures,” the great majority of them using 
some combination of consequences and probabilities. 

Besides the fact that probabilities are not well understood by the public, a further 
drawback of using them is that unwanted events occur with very low probabilities 
and extremely severe consequences (not unlike airplane crashes, terrorist attacks, 
meltdowns of nuclear power plants, or similar catastrophic, but highly unlikely 
events). The estimates of the probabilities of unwanted events in specific points 
or route segments, computed using past history, are highly unreliable, as the rare 
occurrence of events means that there is not enough past data to achieve adequate 
precision. Furthermore, these rare events may have been caused by conditions that 
have no relation to the specific point or route and change in time. The product of 
an unreliable low probability times a large number indicating consequence is also 
unreliable. 

Given the unreliability of probability estimations, as far as the regulator’s 
objective of risk is concerned, we propose a measure that assesses the adverse effects 
in hazardous materials transportation. In particular, we consider the time length of 
exposure of the population to the hazardous material(s), which can also be seen as
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a proxy of probability. Clearly, the longer a part of the population is exposed to a 
dangerous activity, the higher the likelihood of something bad happening to them. 

The firms’ costs are straightforward and no proxy is needed. However, it is 
necessary to annualize the one-time location costs and the recurring transportation 
costs. 

The remainder of the chapter is organized as follows: Sect. 2 reviews the 
literature related to the location and routing of hazardous materials. Section 3 
introduces the estimators of hazard and period of exposure. The formulation of 
models using these new objectives is contained in Sect. 4, while Sect. 5 is devoted to 
a real case in Santiago. Section 6 summarizes the findings of this chapter and points 
at several future research directions. 

2 Literature Review 

The hazardous materials transportation problem has been widely studied, especially 
in the operations research field; see, e.g., Ditta et al. (2019), Holeczek (2019), Ma 
et al. (2020), and Mohri et al. (2022). One of the main concerns in hazardous 
materials transport research is the minimization of some estimator of the adverse 
effects resulting from a possible release of the material during its transportation. 
In terms of these estimators, ReVelle et al. (1991) minimize exposed population; 
Saccomanno and Chan (1985) and Abkowitz et al. (1992) minimize incident 
probability; Pijawka et al. (1985), Batta and Chiu (1988), Alp (1995), and Erkut 
and Verter (1995) minimize the product of incident probability and incident 
consequence; Sivakumar et al. (1993), Sivakumar et al. (1995), and Sherali et al. 
(1997) minimize the expected consequence given that an accident occurs on the 
route; Erkut and Ingolfsson (2000) propose diverse objectives: minimization of 
the maximum population exposure; simultaneous minimization of expected value 
and the variance of the number of people affected by an accident within a circle 
around the event, with both factors represented as attributes of each route link; 
and minimization of the expected disutility, defined as u(X) = exp.(αX) where X 
is the population affected and α > 0 a constant that measures catastrophe aversion. 
Abkowitz et al. (1992) minimize perceived risk imposed by a link, measured as pCq 

where p is the probability of an incident on a link, C the incident consequence, and q 
a risk preference parameter; Erkut and Ingolfsson (2005) assume that the occurrence 
of an incident terminates a trip so that a new shipment must be sent to satisfy the 
original demand, and thus use the total expected consequence of all the necessary 
trips. Finally, Holeczek (2021) studies different risk models, presenting a detailed 
analysis of the impact of load-dependent or load-independent risk models. 

The above objectives are used in various approaches for modeling hazardous 
materials transportation. For example, some works recognize the multiple actors 
involved in decision making and the multi-objective nature of the hazardous 
materials routing problem, such as Zografos and Davis (1989), Marianov and 
ReVelle (1998), Zero et al. (2019), Bula et al. (2019), and Li and Leung (2011).
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Considering the relationship between the carrier and the regulatory agency is a 
concern considered by Kara and Verter (2004), Erkut and Gzara (2008), Verter 
and Kara (2008), Bianco et al. (2009), and Bruglieri et al. (2014). Another group 
of contributions also addresses the issue of population risk equity, among them 
Gopalan et al. (1990), Lindner-Dutton et al. (1991), Carotenuto et al. (2007), and 
Caramia et al. (2010), who develop models that consider equity in the spatial 
distribution of risk along the generated routes. Finally, Abkowitz et al. (1990), 
Lepofsky et al. (1993), Lovett et al. (1997), Chang et al. (1997), Brainard et al. 
(1996), Frank et al. (2000), Chen et al. (2008), and Kim et al. (2011) use  GIS  
tools to support the calculation, comparison, and visualization of the attributes of 
alternative routes, as well as to compare different risk modeling techniques and 
serve as a decision support system for hazardous materials transport. 

An extensive literature review has addressed the location of obnoxious and 
hazardous facilities; see, e.g., Erkut and Neuman (1989), Church and Drezner 
(2022), Cappanera et al. (2003), Melachrinoudis (2011), Daskin (2011), and 
Colebrook and Sicilia (2013). In what follows, we focus on current studies of 
integrated location and routing models for hazardous materials. Different problems 
have been addressed in relation to transportation of hazardous materials. Zografos 
and Samara (1989) presented a mixed programming model to minimize the risks 
of hazardous waste transportation, travel times, and disposal risks to determine 
the location of waste treatment facilities and establish the associated shipping 
routes. ReVelle et al. (1991) minimized transportation risks and the risks per-
ceived by the population. Current and Ratick (1995) considered the transportation 
costs of a unit of hazardous materials and the variable costs at the facilities, 
minimizing the risks and incorporating equity in distributing the risks. Helander 
and Melachrinoudis (1997) presented an integrated model for the location of a 
facility, minimizing the expected number of accidents along multiple hazardous 
materials transportation routes. Giannikos (1998) considered the total operation 
cost, total perceived risk, equitable risk distribution, and equitable distribution of 
the disutility caused by hazardous facility operation as objectives. Samanlioglu 
(2013) developed a programming model with three criteria: minimizing the total 
transportation cost of hazardous materials and waste, as well as the fixed cost of 
treatment, disposal, and recycling centers; minimizing the total transportation risk, 
measured as the population exposed along those routes; and minimizing the total 
risk of the population located around treatment and disposal centers. Zhao and 
Zhao (2010) focused on the diversity of waste types and treatment technologies, the 
compatibility and capacity of treatment technologies, and disposal centers. Asgari et 
al. (2017) addressed the obnoxious waste location-routing problem by considering 
different types of waste and several treatment technologies. They developed an 
optimization model that minimizes the cost of undesirable treatment and disposal 
facilities, and the risk of transporting hazardous materials. 

Rabbani et al. (2018) considered the incompatibility between hazardous waste 
in their multi-objective industrial hazardous waste location-routing problem. The 
authors simultaneously minimized the total cost, transportation risk, and site risk. 
They used the exposed population along the routes as a measure of the transportation
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risk, while the site risk was measured through the product of the amount of waste 
available at each facility and the number of people within a threshold distance 
of it. Ghaderi and Burdett (2019) presented a two-stage stochastic programming 
model for a bi-modal hazardous materials location-routing problem. Road and rail 
transportation are considered. The risk is on the arcs of transportation and in the 
transfer nodes of the bi-modal network. They implement three algorithms: sample 
average approximation, maximum likelihood sampling algorithm, and a combina-
tion of both. Ziaei and Jabbarzadeh (2021) solve a similar problem of Ghaderi and 
Burdett (2019) applied to gasoline transportation. They minimize risk (arcs and 
locations) and cost, addressing uncertainties in parameters of cost and risk and CO2 
emissions. Hassanpour et al. (2021) solve a hazardous materials location-routing 
problem considering edge unavailability (random edge disruptions), time-dependent 
parameters, and time windows. A robust optimization approach is used to solve 
the problem. They minimize cost and risk functions. The risk is considered in 
transportation and in locations. 

In all the above contributions, both for the hazardous materials transport problem 
and for the location-routing problem, the consequence or the risk associated with 
the hazardous materials transportation is always expressed as the risk posed by each 
link of the route to its surroundings, as opposed to the risk to which are exposed 
the population centers, possibly because this approach decreases the number of 
variables. If two or more links or materials affect a single center, however, the 
magnitude of the effect over that particular center will not be captured when a 
route is designed following these approaches. This was recognized by List and 
Mirchandani (1991), Erkut and Verter (1995), and Bronfman et al. (2015) and 
recently in Fontaine et al. (2020). In List andMirchandani (1991), the risk associated 
with each route and population point is defined as a function of an integral, although 
they do not propose any specific functional form. The total risk posed by a given 
route is the sum of the risks each point on it poses to the various population centers. 
In their case study, the authors do not use this estimator but the expected fatalities. 
Furthermore, their formulation requires that the candidate routes be explicitly 
enumerated, and the risk posed by using each one of them be calculated. As it stands, 
it can be used only for choosing routes, not designing them. In a very complete 
work by Erkut and Verter (1995), a first model assumes population distributed at 
points (populated points) in the plane, surrounded by a danger area. The risk to 
which a populated point is exposed is computed as the product of the length of the 
route segment that falls within its danger area, and the population of the center and 
the probability of an incident (release of hazardous materials). Their second model 
assumes population distributed continuously and uniformly over the plane. A route 
segment has a rectangular hazard area around it, with a width of twice the reach 
of an incident (which, in turn, depends on the material being transported). For this 
representation to be valid, the whole area is decomposed so that all route segments 
are straight (making it perfect for vector representations in geographical information 
systems), and the population density is uniform around each route segment. An 
individual within the rectangle is exposed to a risk that is computed as in the first 
model, and the risk is integrated over the rectangle and assigned to the segment as
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an attribute of it. Both models are applied to the selection of one of a set of existing 
routes. 

A different approach was followed by Bronfman et al. (2015), who addressed 
the problem of hazardous materials routing in urban areas. They maximize the 
population-weighted distance from the route to its closest vulnerable point in the 
region, where vulnerable points are hospitals and clinics, schools, senior homes, 
and, in general, sites that are difficult or slow to evacuate. Each such point has a 
hazard circle around it and, ideally, the route must not cross any of these circles. 
They propose an exact model and a reduction technique for the number of variables 
and constraints, as well as an optimal polynomial time heuristic to reduce the total 
length of such crossings, which minimizes the likelihood of possible undesired 
effects on the vulnerable points. In some sense, they use crossing length as a proxy 
of probability. 

Hazard has not been used as an objective for hazardous materials transportation, 
although it has been studied in relation to dangerous activities or natural events. In 
those cases, it has been recognized that the hazard a population is exposed to is 
a function of the distance, an observation that accords with the perception of the 
general public for hazardous facilities (Hung & Wang, 2011; Elliott et al., 1999; 
Brody et al., 2004; Lima,  2004), earthquakes (Lindell & Perry, 2000), hurricanes 
(Arlikatti et al., 2006), and flooding (Wachinger et al., 2013; Miceli et al.,  2008; 
Heitz et al., 2009; Brilly et al., 2005). Saccomanno and Shortreed (1993), Jonkman 
et al. (2003), and Fernández et al. (2000) also point to this fact in their argument that 
the possible consequences for the population in the case of a hazardous materials 
spill incident vary as a function of the distance from the event. 

The next section develops estimators to measure adverse effects on the popula-
tion. Our approach in some sense resembles that of List and Mirchandani (1991), 
although we provide explicit functions of hazard, and we formulate a model that 
allows designing a route, as opposed to choosing one. It is also related to Erkut and 
Verter (1995) and Bronfman et al. (2015). 

3 Proposed Estimators of Adverse Effects 

Each population or vulnerable center is represented as a point k in a plane around 
which a circular hazard zone of radius λt is defined, as shown in Fig. 1, where t 
is the index of the material being dealt with. For the moment and for the sake of 
clarity, we do not use the subscript. The links of the route consist of straight-line 
sections of it. Segments (a, b) of link (i, j) and (d, e) of link (j, l) are the parts of 
a hypothetical route that expose the population to hazard and are therefore denoted 
the exposure segments. Different materials have different hazard zone radiuses and 
therefore different exposure segments. 

Figure 1 depicts how a population center can be affected by more than one link, 
especially in urban areas. By expressing adverse effects as attributes of the affected 
center rather than of a link, we can account for the aggregate effect of all links on a
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Fig. 1 Population at point k, 
with its circular hazard zone 
and exposure segments (a, b) 
and (d, e) 
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given center. The hazard imposed on k is a non-decreasing function of the individual 
hazard values imposed by each of the two link segments (a, b) and (e, d). In this 
chapter, we will use a simple sum of individual hazards to express the total hazard. 
(Depending on the case, that may underestimate the hazard due to an interaction 
effect: loads of household chemicals such as ammonia and bleach will, if mixed 
together, produce chloramines, which are much more of a health risk than ammonia 
and bleach by themselves). The period of exposure of the population of center k 
is the sum of the times during which it is exposed due to the use for hazardous 
materials transport of either link. 

Expanding to the multi-product case, the hazard imposed on k by shipments of 
hazardous materials t is the sum of the hazard values imposed by each shipment t 
on its respective exposure segment. Also, the period of exposure of the point k is the 
sum of the times during which it is exposed to the use of the exposure segments of 
each shipment with hazardous materials t. 

Note that, in most cases, a vulnerable center can be represented by a point on the 
plane. If the population to be protected is continuously distributed over the region, 
aggregation errors may be treated as in Sadigh and Fallah (2009) and Francis et al. 
(2004). Methods for reducing aggregation errors have been proposed by Current and 
Schilling (1990) and Emir-Farinas and Francis (2005). 

3.1 Hazard at a Population Center 

Let a transport network be represented by a directed graph G(N, A), where N is the 
set of nodes and A the set of links. To derive a formal expression for the concept 
of hazard exposure, let f k(x) be the hazard to each individual in population center 
k emanating from a point x on link (i, j). The function f k(x) is assumed to be non-
increasing in the distance r k(x) between x on the link (i, j) and k, and the form of 
the function depends on the type of material being transported. Then let . f k

ij be the 
hazard each individual in k is exposed to by the use of exposure segment (a, b) of  
link (i, j). To determine the value of . f k

ij , we divide the exposure segment (a, b) into  

a finite number .n = |b−a|
�x

of intervals of equal length �x (see Fig. 2). Each interval 
represents a separate hazard to k that depends on the distance between them. Thus, 
the contribution to the hazard to k of a hazardous materials vehicle traveling each 
interval �x in (a, b) is given  by  f k(x)�x. Summing the hazard represented by each



Risk, Hazard, and Exposure Time in Hazmat Location and Routing 33

i j 

k 

h 

Dx 

rk(x) 

DxDx 
bx1a x2 xn-1x3 xi j 

k 

h 

x 

rk(x) 

xx 
bx1a x2 xn-1x3 x 

ji 

f k(x) 

f k(x1) 

Dx DxDx 
bx1a x2 xn-1x3 x ji 

f k(x) 

f k(x1) 

x xx 
bx1a x2 xn-1x3 x 

Fig. 2 Calculation of the hazard k is exposed to by use of segment (a, b) of link (i, j) 

interval in segment (a, b), we obtain the following approximation: 

.f k (x1)�x + f k (x2)�x + · · · + f k (xn)�x =
n∑

q=1

f k
(
xq

)
�x.



34 A. Bronfman et al.

The value of . f k
ij is the limit of this sum as �x tends to 0. Thus, 

.f k
ij = lim

�x→0

n∑

q=1

f k
(
xq

)
�x =

∫ b

a

f k(x)dx. (1) 

The hazard function f k(x) can take various forms. Some of such forms used 
in modeling real situations of hazardous materials dispersion involve quadratic and 
exponential functions, as follows. 

Example 1 Hazard is inversely proportional to the square of the Euclidean distance 
between the population unit and the location of the hazardous materials vehicle: 

.f k(x) = 1

rk(x)2 + ε2
(2) 

where ε ≥ 0 is a constant that ensures f k(x) is not undefined when rk(x) = 0. 

Substituting (2) into (1) and solving the integral, we obtain 

.f k
ij = 1√

h2 + ε2

[
arctan

(
b√

h2 + ε2

)
− arctan

(
a√

h2 + ε2

)]
(3) 

where h is the distance between population unit k and link (i, j), measured along a 
line that is perpendicular to the link. 

Example 2 Hazard is an exponential function of the square of the Euclidean 
distance between the population unit and the location of the hazardous materials 
vehicle: 

. f k(x) = e−θ
[
rk(x)

]2

Substituting this expression into (1) and solving the integral, we obtain 

. 

f k
ij =

√
π

2
√

θ
erf
[√

h2 + x2
√

θ
]

⇒

f k
ij =

√
π

2
√

θ

[
erf
[√

h2 + b2
√

θ
]

− erf
[√

h2 + a2
√

θ
]]

where erf (z) is the integral of the normal distribution: 

.erf(z) = 2√
π

∫ z

0
e−t2dt
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Example 3 Hazard is a logistic function, that is, the exponential of the Euclidean 
distance between the population unit and the location of the hazardous materials 
vehicle: 

. f k(x) = 1

1 + e(α+βrk(x))
,

where α and β > 0 are parameters to be estimated. Substituting this expression into 
(1) and solving the integral, we obtain 

. 

f k
ij =
⎛

⎝√
h2 + b2 −

log

(
e

(
α+

√
h2+b2

)

+1

)

β

⎞

⎠

−
⎛

⎝√
h2 + a2 −

log

(
e

(
α+

√
h2+a2

)

+1

)

β

⎞

⎠ .

This function can model different intensities of hazard to represent the transport 
of different types of hazardous materials. The smaller the value of α, the greater the 
hazard the population is exposed to, and the larger is the value of β, the greater is 
the decrease in the hazard as the distance to the link increases. 

Our proxy for risk is the total population-weighted exposure time .Fk
W facing a 

population center k due to the use of a route W for hazardous materials transport. It 
is given by the following formula, where Gk is the population of center k: 

.Fk
W =

∑

(i,j)∈W

f k
ijG

k (4) 

If the travel speed of hazardous materials transport over the link segment (a, 
b) in Fig.  2, assumed to be constant over the segment’s entire length, is doubled, 
the vehicle’s travel time on (a, b) will be reduced by half. Although the hazard to 
which k is exposed does not change, the period of exposure of the population does. 
Including the additional indicator, we propose next, can capture this effect. 

Obviously, in urban areas, there are multiple factors that make the speed over 
a network arc not constant over time (vehicle congestion, traffic accidents, weather 
conditions, etc.), and there is extensive literature that addresses the time dependency 
in vehicle routing problems; see Malandraki and Daskin (1992) and Ichoua et al. 
(2003). However, to our knowledge, there are no proposed exposure time indicators 
for hazardous materials transport in the literature.
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3.2 Period of Exposure of the Population 

The period of exposure of the population (hereafter simply “period of exposure”) 
depends on the length of the route segments that intercept the hazard zone of the 
population center k, and on the speed sij of the hazardous materials vehicles over 
each link (i, j). Thus, the period of exposure . tkij for k due to the use of link segment 
(i, j) ∈ A is given by 

.tkij = 	k
ij /sij , (5) 

where . 	k
ij is the length of the segment of link (i, j) which exposes population center 

k. Assuming sij is uniform over each link, the period of exposure . T k
W for k due to the 

use of route W to transport a load of hazardous materials is given by the following 
formula: 

.T k
W =

∑

(i,j)∈W

tkij (6) 

4 Hazardous Materials Routing Models with Multiple OD 
Pairs/Multiple Materials 

In what follows we formulate two models for using and comparing two different 
objectives consisting of the indicators proposed in the previous section. These 
objectives can be easily combined with cost objectives. 

The first model, M1, is a bi-objective model that minimizes a linear convex 
combination of a normalized expression of overall population-weighted hazard 
(an objective of interest to the public) and the population-weighted period of 
exposure time (an objective of interest to the regulating agency). We also investigate 
two special versions of model M1: First, there is the bi-objective model M1*, 
which minimizes risk (population-weighted exposure time) and transportation cost 
(the objectives of the regulator and the firm, respectively). The second version is 
the model M2*, which is another bi-objective model that minimizes population-
weighted hazard and transportation costs (i.e., the public and the firms’ objectives. 
We then formulate and solve model M2, which minimizes the total hazard, but puts 
upper bounds on individual hazard and individual periods of weighted exposure. 
As such, it addresses the concerns of the public at large while guaranteeing that no 
single individual is affected too much. 

Let us now Nq denote the set of hazardous materials shipments between the 
origin-destination pair q ∈ Q. Note that different materials are treated as different 
origin-destination pairs. If the same physical origin-destination pair, say q = (a, 
b), requires transportation of two different materials, in the model there will be 
two different “virtual origin-destination pairs” q1 = (a1, b1) and q2 = (a2, b2),
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both referring to physical origin-destination pair (a, b). The hazard radiuses will be 
possibly different (Beneventti et al., 2019). We define the following binary variables: 

. x
tq
ij =

⎧
⎨

⎩

1 if arc (i, j) is used for shipment t ∈ Nq

between the origin-destination pair q ∈ Q

0 otherwise

The first model is formulated as follows: 

.M1 : Min
2∑

i=1

δi

[
fi − Ii

AIi − Ii

]
(7) 

subject to 

.f1 =
∑

k∈K

∑

(i,j)∈A

∑

q∈Q

[
∑

t∈Nq

(
f k

ij x
tq
ij

)
Gk

]
(8) 

.f2 =
∑

k∈K

∑

(i,j)∈A

∑

q∈Q

[
∑

t∈Nq

(
tkij x

tq
ij

)
Gk

]
(9) 

. 
∑

{j/(i,j)∈A}
x

tq
ij −

∑

{j/(j,i)∈A}
x

tq
ji =

⎧
⎨

⎩

1 if i = Oq

− 1 if i = Dq

0 otherwise
∀i ∈ N,∀q ∈ Q,∀t ∈ Nq

(10) 

.x
tq
ij ∈ {0, 1} ∀ (i, j) ∈ A,∀q ∈ Q,∀t ∈ Nq (11) 

Expression (7) corresponds to a normalized linear combination of expressions 
(8, 9), which are the population-weighted hazard and population-weighted period 
of exposure objectives, respectively. In (7), Ii is the best (lowest) possible value of 
objective fi, and AIi is its worst (highest) value. By normalizing the objectives, we 
avoid scaling problems. Each objective is multiplied by a weight factor δi ∈ [0, 
1], with δ1 + δ2 = 1 which is changed in successive runs of the problem; to find 
an approximation of the efficient frontier, see Cohon (1978). Constraint set (10) 
represents flow conservation while (11) defines the nature of the variables. 

Note that problem M1 is separable by origin-destination pairs. As in this model, 
the adverse effects (or perceptions) are aggregated over the whole network; this 
model does not take into account the fact that for a particular center, the hazard or 
the period of exposure can be very high. Our second model M2 addresses the issue. 
In M2, one of the objectives is minimized. Alternatively, it is possible to minimize
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both objectives together or only one of them. Without loss of generality, we have 
chosen to minimize the total hazard. The problem M2 can then be written as follows: 

. M2 : Min
∑

k∈K

∑

(i,j)∈A

∑

q∈Q

[
∑

t∈Nq

(
f k

ij x
tq
ij

)
Gk

]

subject to: (10)–(11) 

.

⎡

⎣
∑

(i,j)∈A

∑

q∈Q

∑

t∈Nq

(
f k

ij x
tq
ij

)
⎤

⎦Gk ≤ βk ∀k ∈ K (12) 

.

⎡

⎣
∑

(i,j)∈A

∑

q∈Q

∑

t∈Nq

(
tkij x

tq
ij

)
⎤

⎦Gk ≤ αk ∀k ∈ K, (13) 

where βk and αk can be set by the decision maker to represent different “protection 
levels,” e.g., for centers k of different vulnerability. 

5 Application 

The models were applied to the real case of the transport of hazardous industrial 
solid waste (HW) between five origin-destination pairs in the city of Santiago, Chile 
(see Fig. 3 and Table 1). 

For this case, we use a single hazardous material, but the extension to multiple 
materials is trivial, as each origin-destination pair can be either a different material 
or a different shipment, or both. The data regarding the road network and vulnerable 
centers are the same as those used in Bronfman et al. (2015). They consist of 6681 
links, 2212 nodes, and 244 vulnerable centers (schools with over a thousand seventy 
students) populated by 386,254 people (students), distributed as shown in Fig. 3. 
The hazard zone radius of a hazardous material incident is taken to be λ = 800 m. 
This distance, about half a mile, is commonly chosen as the boundary line for 
hazardous materials. For each network link, the data include its length, travel speed 
for different times of day (morning peak, evening peak, and off-peak period), and 

Table 1 Hazardous 
materials shipments by 
origin-destination pair, at 
morning peak period 

Origin-destination pair Shipments 

O1-D1 2 
O2-D2 1 
O3-D3 1 
O4-D4 3 
O5-D5 1
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Fig. 3 Transport network and 244 schools with over a one thousand seventy students (vulnerable 
centers) 

geographic coordinates. The transport of hazardous materials is evaluated during 
the morning peak period because students are at school at these times. This is 
done to avoid a worst-case scenario. The students in each school are assumed to be 
concentrated at its center. We identified the intersections of links with the hazard 
circles (exposure segments) of each school center k using simple geometry and 
the open-source geographical information system QGIS, version 3.12.3. We then 
applied Eqs. (3) and (5) to evaluate the hazard and period of exposure for each 
population center due to hazardous materials transport on each network link. The 
hazard function was assumed to be the inverse of the square of the distance as in Eq. 
(2) above, with ε = 10−10. To calculate the hazard exposure for each k, . f k

ij as given 

by Eq. (3) was divided by θ = Max {θk| k ∈ K}, where . θk = max
(i,j)∈Uk

{
f k

ijG
k
}

and Uk is the set of links (i, j) ∈ A with segments within the hazard circle of 
k. The resulting hazard values are dimensionless. The instance was solved on a 
personal computer running Ubuntu 12.04 LTS with a 3.40 GHz Intel 

® 
Core™ i7-
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2600 processor and 16 GB of RAM. The models were coded and solved using 
AMPL Cplex 12.5. 

5.1 Results for M1, M1*, and  M1** 

This subsection solves M1 for different values of the weight δ1 and approximates 
the efficient frontier. As this version of the problem considers only the public and 
regulating agency points of view, we then analyze the effect of considering each 
one of the new objectives on the transportation costs—the transportation company 

concern—represented by the total distance traveled .
∑

(i,j)∈A

∑
q∈Q

[ ∑
t∈Nq

	ij x
tq
ij

]
, where 

lij is the length of arc (i, j). The bi-objective model M1* uses as objectives the 
total weighted exposure time and the transportation cost, while the bi-objective 
model M1** trades off the total hazard imposed on the population against the total 
transportation cost. 

The values of Ii and AIi shown in Tables 2–4 were obtained by solving each bi-
objective model with extreme values of the weights δ1. Tables 2–4 and Figs. 4, 5, 
and 6 show the efficient frontier approximations for the three versions of M1. Also  
shown are the corresponding values of δ1. 

Table 2 shows how, going from δ1 ≈ 1 to  δ1 ≈ 0 in  M1, the total hazard goes 
from 21.82 to 52.87, an increase of 2.4 times, while the population-weighted period 
of exposure decreases from 2874 to 1222 person-hours, a reduction of 57%. Good 
compromise solutions can be found in the efficient frontier; e.g., the hazard can be 
reduced from its maximum at 52.9 to only 32.4, in return for a small increase in 
time of exposure (from 1222 to 1286 person-hours). 

Table 3 shows that a reduction of a 38% in the total transportation cost 
corresponds to an increase in the population-weighted period of exposure from 
1221.5 a 12,340.3 person-hours, more than 10 times. Again, if transportation cost is 

Table 2 Approximation of 
the efficient frontier for M1 

δ1 Hazard Period of exposure (person-hours) 

≈ 0.0 52.9 = AI1 1221.5 = I2 
0.1 36.7 1231.7 
0.2 34.4 1248.0 
0.3 32.4 1286.3 
0.4 32.4 1286.3 
0.5 32.4 1286.3 
0.6 23.2 1819.2 
0.7 22.5 1900.9 
0.8 22.5 1900.9 
0.9 22.3 1943.3 
≈ 1.0 21.8 = I1 2784.4 = AI2
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Table 3 Approximation of 
the efficient frontier for M1* 

δ1 Period of Exposure (person-hours) Length (km) 

≈ 0.0 12,340.3 = AI2 201.94 = I3 
0.1 8690.7 203.1 
0.2 6575.1 205.6 
0.3 4577.3 211.0 
0.4 4113.8 213.1 
0.5 2043.2 224.6 
0.6 2008.3 224.9 
0.7 1833.7 227.1 
0.8 1479.9 233.8 
0.9 1444.7 234.9 
≈ 1.0 1221.5 = I2 278.60 = AI3 

Table 4 Approximation of 
the efficient frontier for M1** 

δ1 Hazard Length (km) 

≈ 0.0 1502.6 = AI2 201.94 = I3 
0.1 270.0 202.5 
0.2 256.3 202.7 
0.3 223.2 203.4 
0.4 167.5 205.6 
0.5 143.4 207.2 
0.6 143.4 207.2 
0.7 78.2 217.4 
0.8 65.1 220.3 
0.9 43.2 228.6 
≈ 1.0 21.8 = I2 311.0 = AI3 

·h
ab
) 

Fig. 4 Approximation of the efficient frontier for M1
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Fig. 5 Approximation of the efficient frontier for M1* 

Fig. 6 Approximation of the efficient frontier for M1** 

increased from its minimum value by only a 4.5%, the period of exposure decreases 
to a 37% of its initial value (δ1 = 0.3). 

Finally, Table 4 shows how an increase of a 54% of the transportation cost 
corresponds to an increase in hazard from 21.8 to 1502.6, equivalent to 68.9 times. 
A small increase of the transportation cost of a 7.1% reduces hazard in 19 times. 

Figures 7a, b, and c show the transportation paths for the extreme values of δ1 for 
each bi-objective model. Origins and destinations are marked in the figures, except 
for O3, which is out of the limits of the drawings. The hazard areas marked in gray 
are those intersected by the route, for one or more hazardous materials shipments. 

Finally, these three tables allow choosing a strategy of a good compromise 
between hazard, risk, and transportation cost.
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Fig. 7 Hazardous materials flows. (a) Model M1 with δ1 ≈ 1, (b) model M1 with δ1 ≈ 0, (c) 
model M1* and M1** with δ1 ≈ 1 (shortest paths) 

5.2 Model M2 

5.2.1 Analysis of M2 for Different Values of αk and βk 

We solved M2 for different values of αk and βk, setting the value of βk at a 
value that was sufficiently high (βk = 30 ∀ k ∈ K), so as to leave constraint (12) 
inactive. The parameter αk was assigned values in the range (132.23; 414.99), in 
steps representing successive increments of 10% over the previous value. There is 
no feasible solution for αk < 132.23 person-hours, ∀ k ∈ K, and for αk > 414.99 
person-hours, ∀ k ∈ K, we obtain the unconstrained solution for minimum hazard. 
Table 5a and Fig. 8a show the results. In this instance, an increase of 33% in the 
maximum period of exposure of each populated or vulnerable center (132.23 to 
176.00 person-hours) reduces the total hazard by 25.45%. Table 5b and Fig. 8b 
show the results of a similar exercise when leaving αk fixed at 460 person-hours and 
changing now the value of βk by steps of 10% starting from its minimum feasible
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Table 5 Hazard and total risk for different values of αk and βk 

(a) M with k β 30 k K and different values of k 
2 α= ∀ ∈

αk Hazard Risk (person-hours) CPU time 
132.23 33.41 2621.61 441.52 
145.45 26.85 2091.55 13.62 
160.00 26.21 2250.79 44.38 
176.00 24.91 2191.14 9.59 
193.60 23.77 2366.81 5.09 
212.96 23.00 2215.55 4.60 
234.26 23.00 2258.52 7.24 
257.68 22.39 2297.96 2.83 
283.45 22.18 2602.25 6.09 
311.80 22.18 2602.25 3.38 
342.97 21.87 2691.68 1.58 
377.27 21.87 2691.68 1.77 
414.99 21.82 2784.42 1.26 
(b) M2 with αk = 460 person-hours ∀ k ∈ K and different values of βk 

βk Hazard Risk (person-hours) CPU time 
2.20 24.83 3807.32 8.25 
2.42 23.65 3382.72 2.58 
2.66 23.60 3475.46 2.20 
2.93 23.60 3475.46 2.47 
3.22 23.60 3475.46 3.12 
3.54 23.60 3475.46 2.80 
3.90 23.18 3096.51 2.66 
4.29 22.71 3129.94 2.11 
4.72 22.71 3129.94 2.17 
5.19 22.71 3129.94 2.80 
5.71 22.52 2734.28 2.49 
6.28 21.82 2784.42 1.08 
6.90 21.82 2784.42 1.06 

(a) (b) 

a b 

Fig. 8 Hazard and total risk for different values of αk and βk. (a) Varying αk and βk = 30 ∀ k ∈ 
K; (b) varying βk and αk = 460 person-hours ∀ k ∈ K
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value. In this case, a tighter constraint on the individual hazard does not increase 
total hazard by a significant amount (just 12.12%). 

5.2.2 Effects of Constraining Hazard and Period of Exposure 
at Individual Points 

The effects of incorporating the constraints on individual hazard and period of 
exposure are shown in Tables 6 and 7 and Fig. 9. 

While Fig. 9 displays solutions of M2, Tables 6 and 7 show the results of M2, 
compared with the results of M1 for δ1 ≈ 1 and δ1 ≈ 0. The first column of Table 
6 displays the identification of each vulnerable center exposed to one or more arc 
segments of the hazardous materials routes. The second column shows the number 
of students in each school. The third, fourth, and fifth columns display the hazard 
and, in parentheses, the population-weighted period of exposure of each school for 
model M1 with δ1 ≈ 1, M1 with δ1 ≈ 0, M2 without constraints (13), and M2, 
respectively. The chosen values of βk and αk are indicated in the top of each column. 

Table 7 shows an apparent dominance of model M1 over M2 in terms of exposed 
students and affected schools. However, when the results are analyzed by vulnerable 
center, as in Table 6, hazard and population-weighted period of exposure are 
concentrated in a few vulnerable centers. For example, when δ1 ≈ 1, schools 114 
(1478 students) and 219 (1132 students) concentrate the 40.5% of the total hazard 
and are exposed during long periods (318.1 and 411.2 person-hours, respectively). 
In this case, the average period of exposure per person is 2.57 min. 

When M1 is solved with δ1 ≈ 0, schools 16, 50, and 114 (representing a 9.1% 
of the students) concentrate the 43.3% of the total period of exposure. However, the 
average period of exposure per person drops to 1.13 min, a decrease of 56.1%. At 
the same time, school 158 is exposed to the 12.7% of the total hazard during a 1.9% 
of the total weighted period of exposure. 

When considering model M2 without constraints (13), the hazard is shared 
among more schools, and none of them is overexposed. However, the period of 
exposure can increase significantly for some centers, e.g., 56, 137, and 168, which 
together increase from an 8.4% to a 23.5% of the total period of exposure, when 
compared with M1 with δ1 ≈ 1. The average period of exposure per student also 
increases to 3.52 min.When constraints (13) are incorporated, this increase in period 
of exposure is controlled. 

Naturally, there is no free improvement of the individual indicators: the imposed 
limit on the individual hazard and period of exposure, in this case, is obtained at the 
expense of an increase of 52.4% in the aggregated hazard and an increase of 169.4% 
in the total period of exposure, as well as an increase of 62.8% in the average period 
of exposure per student. Also, the number of exposed schools and total number of 
exposed students increase. 

These results are mainly due to the chosen tight values for αk = 160 person-hours 
and βk = 2.2. Recall that the smallest value that αk and βk can take are 130 person-
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Table 6 Values obtained for M1 with δ1 ≈ 1, M1 with δ1 ≈ 0, and M2, broken down by vulnerable 
exposed center 

Vulnerable 
center 

No. of 
students 

M1 with 
δ1 ≈ 1 
(Minimum 
hazard) 

M1 with δ1 ≈ 0 
(Min period of 
exposure) 

M2 without 
(13) and  
βk = 2.2 

M2 with 
βk = 2.2 and 
αk = 160 
(person-hours) 

16 2612 0 (0) 4.14 (136.5) 0 (0) 0 (0)  
27 2094 0 (0) 0.73 (18.8) 0 (0) 0 (0)  
39 1940 0 (0) 0 (0) 0 (0) 2.02 (153.6) 
44 1922 0 (0) 0 (0) 0 (0) 0.57 (94.0) 
46 1900 1.01 (274.7) 0 (0) 1.01 (274.7) 0.22 (120.8) 
48 1831 0 (0) 0 (0) 1.58 (264.6) 1.66 (101.0) 
50 1820 0.88 (210.5) 5.49 (128.2) 0.88 (210.5) 1.61 (128.8) 
56 1750 0.69 (71.5) 0 (0) 1.38 (259.2) 0.80 (67.1) 
63 1683 0 (0) 0 (0) 0 (0) 0.44 (47.4) 
66 1668 0.39 (31.0) 0.39 (31.0) 0.13 (10.3) 0.13 (154.7) 
68 1664 0 (0) 0 (0) 1.30 (113.9) 1.30 (113.9) 
85 1602 2.01 (94.0) 2.01 (94.0) 2.01 (94.0) 2.01 (94.0) 
91 1580 0 (0) 0 (0) 0 (0) 0.03 (4.6) 
99 1547 0.32 (150.0) 0.87 (88.0) 1.26 (197.4) 0.32 (150.0) 
106 1495 0 (0) 0.38 (16.4) 0 (0) 0 (0)  
109 1487 0.92 (70.2) 0 (0) 0.92 (70.2) 0.92 (70.2) 
114 1478 6.17 (318.1) 17.1 (263.9) 2.06 (106.0) 2.06 (87.6) 
116 1454 0.72 (153.2) 0 (0) 0.72 (153.2) 0.19 (100.0) 
118 1440 0 (0) 0 (0) 0 (0) 0.55 (65.7) 
122 1414 0 (0) 0 (0) 0 (0) 0.41 (34.4) 
123 1412 0 (0) 0.45 (13.3) 0 (0) 0 (0)  
131 1379 0 (0) 0.51 (13.0) 0 (0) 0.51 (13.0) 
140 1359 0 (0) 0.15 (7.1) 0 (0) 0 (0)  
137 1365 0.25 (129.6) 0 (0) 0.64 (300.2) 1.82 (138.1) 
145 1326 0 (0) 0 (0) 0.86 (71.1) 0.43 (35.5) 
148 1320 0 (0) 0 (0) 0 (0) 2.00 (144.9) 
153 1310 0.58 (80.0) 0 (0) 1.37 (146.1) 0.39 (33.0) 
157 1295 1.36 (77.5) 1.36 (77.5) 1.36 (77.5) 1.36 (77.5) 
158 1290 0.66 (79.2) 6.71 (22.7) 0.66 (79.2) 1.63 (61.7) 
166 1264 0.07 (329.7) 0.27 (22.1) 0.07 (329.7) 0.31 (111.5) 
168 1255 0.02 (31.9) 0 (0) 0.34 (335.7) 0.16 (151.9) 
174 1237 0 (0) 0 (0) 0 (0) 0.83 (74.9) 
179 1221 0.13 (45.2) 0 (0) 0.13 (45.2) 0.13 (45.2) 
205 1173 0 (0) 0 (0) 0.73 (95.7) 0.45 (37.1) 
206 1172 0 (0) 2.02 (51.1) 0 (0) 0 (0)  
215 1137 0.89 (180.2) 0 (0) 1.55 (255.1) 2.06 (145.9) 
216 1137 0 (0) 0 (0) 0 (0) 0.35 (92.0) 
219 1132 2.66 (411.2) 4.25 (86.3) 1.77 (271.1) 0.89 (131.0) 
223 1128 0 (0) 0 (0) 0 (0) 0.69 (78.6) 

(continued)
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Table 6 (continued) 

Vulnerable 
center 

No. of 
students 

M1 with 
δ1 ≈ 1 
(Minimum 
hazard) 

M1 with δ1 ≈ 0 
(Min period of 
exposure) 

M2 without 
(13) and  
βk = 2.2 

M2 with 
βk = 2.2 and 
αk = 160 
(person-hours) 

224 1128 0 (0) 0 (0) 0 (0) 0.30 (71.0) 
225 1123 0 (0) 0 (0) 0 (0) 0.63 (66.3) 
228 1110 0 (0) 0.93 (18.3) 0 (0) 0 (0)  
233 1099 2.09 (46.7) 2.09 (46.7) 2.09 (46.7) 2.09 (46.7) 
237 1089 0 (0) 0 (0) 0 (0) 0.98 (147.4) 
240 1085 0 (0) 3.06 (86.6) 0 (0) 0 (0)  
Total 64,927 21.,82 (2784.4) 52.87 (1221.5) 24.82 (3807.3) 33.26 (3291.1) 

Table 7 Values obtained for M1 with δ1 ≈ 1, M1 with δ1 ≈ 0, and M2 

Attribute 

M1 with δ1 ≈ 1 
(Minimum 
hazard) 

M1 with δ1 ≈ 0 
(Min period of 
exposure) 

M2 without 
(13) (βk = 2,2) 

M2 (βk = 2,2 
and αk = 160 
person-hours) 

Exposed students 27,074 27,913 33,068 52,588 
% Exposed students 7.0% 7.2% 8.6% 13.6% 
Total affected 
vulnerable centers 

19 19 23 37 

CPU Time 
(seconds) 

1.13 1.08 9.89 121.30 

Fig. 9 Hazardous materials flows (a) Model M2, βk = 2.2 and αk = 160 (person·hr) ∀ k ∈ K; (b) 
model M2 without (13), βk = 2.2 ∀ k ∈ K 

hours and 2.2, respectively. For higher values of these parameters, the observed 
increases in hazard and total weighted exposure period will naturally be lower. 

The point here is, however, that the decision maker can find an adequate 
compromise between total hazard and weighted period of exposure and individual 
values of both, i.e., equity of exposure, while keeping transportation costs within 
reasonable values. The models we propose are a useful tool for evaluating each 
strategy.
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6 Conclusions and Future Research 

The chapter presents an approach to the hazardous materials transport route design 
problem that can be applied to real-world situations. In our approach, the population 
is distributed at discrete points or centers in a plane, with a circle of radius λ around 
each one determining zone, in which the population is negatively affected. The 
major players—the regulating agency, the firms, and the general population—are 
identified and their objectives are delineated. 

We then define a general hazard function, and add a weighted period of exposure 
function, both independent of incident probabilities. We then formulate models, in 
which the objectives of the individual players/stakeholders are traded off against 
each other. 

We then apply the proposed methodology to a real instance of hazardous 
materials transport in Santiago, Chile. The results demonstrate that hazard exposure 
is an objective when it is minimized together with the weighted period of exposure. 
Both objectives can be traded off against transportation costs. 

Trading off total hazard and total weighted period of exposure in a two-objective 
model exposes some of the vulnerable centers to high levels of both hazard and 
period of exposure. Consequently, we propose a second model that minimizes 
the total hazard subject to limits on the hazard and exposure period on each 
individual population center. We conclude that the incorporation of such thresholds 
can control the maximum hazard and population-weighted period of exposure for 
each population center, naturally at the expense of increased total hazard and total 
exposure period of the population. An adequate compromise can be easily explored 
by the decision maker. 

The proposed objectives can be combined with other objectives. Probabilities of 
events can be included in the models if desired and reliable estimates are available. 
If speed statistics are known over the network, they can be used to improve the 
estimations of periods of exposure. The models can be solved for different times of 
the day, to consider the different distributions of the population throughout the day. 
Notice the trade-off: higher speed means shorter exposure time, but, at the same 
time, a higher risk of an incident per time unit. 

Yet other possibilities opened up by the proposed approach of representing 
the undesirable effects of hazardous materials transport as attributes of population 
centers rather than network links would be to include emergency response center 
locations and hazardous materials routing as a combined factor in hazardous 
materials transport network design. 

It is interesting to note that in the context of the transportation of hazardous 
materials, an alternative to reducing the possible consequences in some cases is to 
divide a shipment in smaller amounts and route each part through a different route. 
It remains of interest to analyze the trade-off between exposing a few points to a 
higher consequence against exposing many points to a lower consequence.
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Customer-Related Uncertainties 
in Facility Location Problems 

Vladimir Marianov and Gonzalo Méndez-Vogel 

Abstract In many situations, customers choose the facilities they want to interact 
with. One possible objective of the facility managers is to maximize the number of 
customers who use their facilities. In order to achieve this objective, they will need 
to make decisions regarding the features of their facilities, such as product variety, 
parking space, ambiance, prices, and, not least, the location of these facilities, partic-
ularly relative to the location of customers and possible competitors. To make their 
facilities attract as many customers as possible, the firms need to know what makes 
customers behave the way they do. Unfortunately for the firms, customer behavior is 
uncertain. This chapter examines the sources of customer-related uncertainty. These 
include the occurrence of unplanned purchases, the taste for variety—given product 
heterogeneity, imperfect information available to the customers about product and 
store features, and imperfect information on customers available to decision-makers. 
The effects of these uncertainties on customers’ behavior are also described: 
purchases distributed among all competitors, comparison shopping, multipurpose 
trips, and price and feature search. This behavior results in facility locations different 
from those obtained using models that do not consider uncertainty. In particular, 
we do see more agglomeration. The chapter then describes some models that 
include customer probabilistic choice rules and demonstrates how these rules can 
be integrated into facility location models. 
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1 Introduction 

There are facilities that operate without the need of interacting with humans except 
for maintenance, e.g., meteorological radars or remote weather stations. Their 
location is decided considering mainly factors that are related to the efficient 
measurement of the meteorological phenomena. Most of the facilities, however, 
are expected to have physical interaction with their users. When facilities and 
users interact, one of the most important factors—if not the most, in deciding 
their location—is the provision of the best possible service to those who use these 
facilities. This includes locational factors, such as closeness to demand, good access, 
and a good general environment, and non-locational features such as offering good 
products or fast service. Overall, an understanding is required of what the users need 
or desire, which drives users’ or customers’ behavior. 

The importance of customers’ behavior in facility location depends on who 
decides the assignment of users to facilities. It can be a decision-maker associated 
with the facility (we call it “allocation”) or the users themselves (“user choice”). 

Examples of allocation happen in the provision of the Internet through fiber, in an 
ambulance service, or in deliveries from a fulfillment center or warehouse. In these 
cases, it is the provider who decides the locations of the facilities and which users 
will be served by which facility. Users do not need to choose or even know what 
facility serves them as long as the service is adequately provided. The location is 
determined based mostly on cost or timely service. In the allocation case, the user-
related uncertainties are generally limited to the demand: when and how much will 
each user require. In general, having a good statistical representation of the demand 
is enough to design allocation systems with an adequate level of service. 

On the contrary, in a user choice system, customers are free to choose what, 
where, and when to obtain a service or good. They are the ones who choose which 
facilities to use, when to do so, and what and how much of it to obtain. This applies 
to non-competitive environments, such as a network of voluntary vaccination centers 
and libraries, but, far more importantly, to competitive settings. One of the best 
examples of competitive environments is retail, as customers can usually choose to 
purchase a product among different mutual substitute alternatives, and in any of the 
competitors’ facilities. When there is competition, it is vital for competitors to know 
what the users want, when, where, and how much of it they want, and what attributes 
of products and facilities (including location) will make the customers prefer one 
competitor over the others, i.e., the customers’ decision-making processes (Radu, 
2022). This knowledge has to be put into rules of how customers choose, so these 
rules can be used in location decisions. Generally, these decisions will be oriented 
to attract as many customers as possible or maximize the profit obtained from their 
purchases. In this chapter, we will use retail as our context. 

The expected utility model (Mongin, 1998; Coto-Millán, 2003) in its current 
interpretation considers that customers are rational, they are utility maximizers, and 
they have full and correct information. The utility is a quantitative holistic indicator 
that includes a number of dimensions and can have different functional forms. When
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choosing between alternatives, the utility of each one of them is combined with 
a function of the probability of that alternative being chosen, and the expectation 
is computed. Schoemaker (1980) provides an extended treatment of the subject, 
including attitudes toward risk. Several model variants are presented, including the 
prospect theory model by Kahneman and Tversky (1979). Customers possess a 
certain amount of a dummy good (money), which they will use to acquire different 
services and goods, assigning preference to those whose utility is higher until there 
are no more products with a utility that is higher than that of the dummy good, or 
the dummy good is all spent. Note that as more units of an item are acquired, the 
successive marginal utility can decrease. 

What is called “goods” in expected utility theory could go from a piano to 
lettuce, a haircut, or a plane ticket. Unless explicitly stated otherwise, we will 
refer in this chapter mostly to goods that are within a specific category: they are 
substitutes of each other, i.e., goods that serve the same basic purpose but have 
differences in their secondary features. Facility location has dealt with products 
that are either homogeneous (identical substitutes of each other, except for price) or 
heterogeneous—imperfect mutual substitutes (differ in secondary characteristics). 
When products are substitutes for each other, even imperfect ones, choosing one of 
them on a shopping trip excludes purchasing any of the remaining ones: one either 
chooses to travel by car or public transport and purchases only one brand of dog 
food at a time. As customers can pick only a single option, choices are discrete. 

The expected utility theory assumes that customers are, in general, rational. 
However, this is not necessarily the case. In fact, from the point of view of an 
observer, customers behave in a seemingly random way. The single most important 
fact that makes them do so is that the available products are differentiated or 
heterogeneous. This difference is what drives the customers to make choices, as we 
will see in the next section. If the products, e.g., pairs of shoes, were all identical, 
the choice would boil down to deciding where to get the shoes at the least full price, 
that is, the price of the product plus the travel (or delivery) cost. Since the products 
in practice are heterogeneous, their differences make customers choose one pair of 
shoes over another one in the same store, and, when the attributes of the shoes are 
sufficiently different between two competing stores, choose the pair of shoes offered 
by one store over that in the competing store. 

Secondly, customers’ behavior changes over time. It is, to a point, unpredictable, 
although rarely completely so, as we humans act within physical limitations and, in 
most cases, for an individual, similar stimuli result in similar reactions, belonging 
to the same limited set of possibilities. Customers do not use all the possible 
product differentiation factors in their decisions, and the set of factors, and their 
relative importance, change over time. Different customers use different information 
sets, and they are influenced by different factors (Radu, 2022): demographics (age, 
gender, culture), psychological factors (perceptions, attitudes toward a marketing 
message, being tired of the same product), and social factors (income, education 
level, family and friends, social media). In addition, the effect of some of the factors 
is observable, but not of all of them. In synthesis, there is uncertainty about what
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users will do, and what will be their choice when faced with different alternatives. 
And this is exactly what firms need to know to best locate their facilities. 

In this chapter, we address the influence of customer (or user)-related uncer-
tainties on the optimal facility locations. We describe these uncertainties, analyze 
how to model their effects on customer choice, and use these models (customer 
choice rules) when optimizing facility locations. Our analysis is oriented toward this 
single end, as opposed to addressing customer behavior in depth, as psychologists 
or behavioral economists would do, e.g., Solomon (2017), or Foxall (2005). Neither 
do we discuss other kinds of uncertainties involved in facility location (see Murray, 
this volume) nor how to address general uncertainty in optimization (Snyder, 2006; 
Correia & Saldanha-da-Gama, 2019). 

We refer in this chapter to purchases made in physical stores, although most of 
the uncertainties are also present in online shopping. We chose to focus on physical 
stores because even though a big share of retail purchases is made online, this has 
not made and will not make brick-and-mortar stores disappear in the foreseeable 
future. Even more, physical sales are on the rise (Business Insider, 2021; McCall, 
2021; Schnure, 2021; Sheth, 2021; Hübner et al., 2022), and it is more important 
than ever to locate physical stores and choose the products to offer so to attract 
customers (Gauri et al., 2021). 

The remainder of the chapter will deal with sources of uncertainty, customer 
behavior driven by uncertainties, user choice rules with uncertainty, facility location 
models considering customer-related uncertainties, and conclusions. 

2 Sources of Uncertainty 

2.1 Planned and Unplanned Purchases 

There are purchases that are planned, which respond to needs that are previous to 
starting any shopping trip, and are the result of reasoning and a positive decision 
based on the (limited) information the customer has about the required product or 
products. On the other hand, there are unplanned purchases, usually in response 
to some state of mind, time pressure, occasional discounts, in-shop marketing, or 
other stimuli that a shopper receives during a shopping or any other type of trip. 
This is the dominating type of purchase during leisure or entertainment shopping. 
A significant percentage of purchases are driven by impulse. Impulse purchases are 
triggered by a desire to buy a product that is attractively displayed, conveniently 
placed on a shelf, and accessible, or while the customer is window shopping, or 
because of promotions in the store during the customer’s stay in it, or driven by the 
general environment in a store or mall inviting to purchase, and some other factors 
related to the customer’s emotions and, hence, unconscious (Jamal & Lodhi, 2015). 
Figures for the percentage of purchases made impulsively range from 20% of all 
purchases (Bell et al., 2013) to some percentage between 40% and 80% depending
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on the category of product (Amos et al., 2014), who also report that more than 87% 
of American adults admit to engaging in impulse purchases, and impulse purchases 
account for more than 50% of grocery purchases. A very recent survey shows that in 
the USA, 73% of adults said most of their purchases tend to be spontaneous (Tronier, 
2022). Unfortunately, very few authors (Massara et al., 2014) distinguish between 
impulse versus opportunistic purchases. Opportunistic purchases are unplanned, but 
they have a rational trigger: they are driven by real needs that become conscious 
when the product is in view. We will later refer to one of the behaviors that are 
partly a result of opportunistic purchases: multipurpose shopping. 

Most of the remaining causes of uncertainty in this section are applicable to both 
planned and unplanned shopping, unless stated the contrary. 

2.2 Product and Facility Heterogeneity or Differentiation 

For many years since the seminal work of Hotelling (1929), it was common in 
the facility location literature to consider that stores and products were completely 
homogeneous.1 However, all products are heterogeneous. They can be differentiated 
from each other. Chamberlin (1933) states that a product is differentiated if there is 
any significant basis for distinguishing what different stores offer, which suggests 
that the customer “purchases an experience” involving both the product and the 
store. Moreover, this difference can be real or can be in the mind of the customer, 
and includes the secondary features of the product, such as product name, package, 
color, quality, pattern, size, fabric, price, style, and so on, and also the context (store) 
in which it is being sold, as location, the assortment of products, ambiance, courtesy 
and appearance of the personnel, availability of parking space, the neighborhood and 
the existence of other stores in the vicinity, and even attachment to someone in the 
store. What this means is that virtually all tuples (product, store) have differences 
between them, even if belonging to the same firm. If two sellers offer products that 
are sufficiently differentiated, there will also be a reason for customers to prefer one 
seller over the other. 

Product differentiation is the main underlying reason for uncertainties in cus-
tomers’ behavior. If stores were identical, and products were undifferentiated, 
customers would not have choices other than picking the closest place at which 
to obtain whatever is what they need—which is a choice rule that many location 
models actually assume. It may also be a trigger of unplanned purchases when a 
customer discovers a product type that is new and he particularly likes. 

For a long time, market researchers, economists, psychologists, and anthro-
pologists (Li, 2015) have tried to understand what attributes determine how 
brick-and-mortar purchasers choose where and what to buy, in the case of planned

1 Hotelling explicitly refers to product heterogeneity when firms “locate” in a space of customer 
preferences. However, when addressing geographical location, he uses homogeneous products. 
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or unplanned purchases. As mentioned, the secondary features of the heterogeneous 
products have a strong influence. From the point of view of the facilities, Attri and 
Jain (2018), in a field study, determined that the most important factors influencing 
the choice of a facility are store atmospherics, customer demographics, social, and 
psychological factors, marketing communications, service, retail outlet perceptions, 
availability of time, and display at the store. They cite research on the subject 
going back to the 1960s. Other studies include retailers’ assortment, pricing, and 
promotional policies (Fox et al., 2004). 

2.3 Taste for Variety 

In planned purchases, as stores and products are heterogeneous, customers can 
choose among all the stores and products the one they like best, and this depends 
significantly on the features of the store and the products being offered. Many of 
the popular models of customer behavior consider that customers possess all the 
required information and take into account what they consider to be the relevant 
attributes of the product and facility, and rationally weigh each attribute to reach a 
decision on what alternative to choose. 

Although the classical expected utility theory considers so, the human brain is not 
capable of taking into account (and processing) too many factors simultaneously 
(Kahneman & Tversky, 1979; Thaler, 2015), and customers must choose what 
manageable subset of relevant attributes they will consider in the decision making. 
The attributes perceived as the most relevant by the customer, and their weights, 
change over time. As an extreme example, in purchasing a medicine, a customer 
may consider its price in different stores, the travel cost, maybe the brand of 
medicine she prefers, and her time availability to go to a store, among other factors. 
However, the same customer, in urgent need of medicine, will choose the fastest way 
to get it, no matter what the price or time availability is. Customers can also forget 
to take some attributes into account or make an error in estimating their importance 
(Anderson et al., 1992). 

Finally, there are factors that are out of the awareness of the customer, uncon-
scious factors, that have been found to play an important role (Fitzsimons et al., 
2002). In this category may fall personality traits, compulsive behavior, some 
marketing actions, and even social trends. As mentioned, a significant part of all 
purchases is driven by impulse or are opportunistic. 

As a result, the same customer can show a preference for different models of 
shoes on shopping trips made at different times, even a short time apart, under 
apparently identical conditions (Loomes et al., 2009). Or choose not to dine at the 
same restaurant on two occasions. This apparent inconsistency has been called taste 
for variety. Note, though, that there are cases in which customers prefer to stick to 
a store or a brand, as happens with beer or soda drinkers, or (at least some) pub or 
fast-food-goers. This is loyalty. Furthermore, customers have some memory: they
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can purchase because they tried a certain product in the past and it did (or did not) 
well. 

2.4 Imperfect Information Available to the Customer 

Note that in describing taste for variety or diversity, the implicit assumption is 
that the customers have all the necessary information on stores and products. This 
is not so. Customers have imperfect or incomplete information. Due to imperfect 
information, a customer may be undecided about his willingness to pay for a non-
essential product until he visits a store in which the product is displayed, and its 
features can be evaluated. Furthermore, because of product heterogeneity, taste for 
variety, and incomplete information on the attributes or the products in different 
stores, which he cannot acquire by web search, the customer cannot be sure which 
product, among all imperfect mutual substitutes, he will prefer at that particular 
time. 

Some authors consider that taste for variety and imperfect information are 
the two factors of uncertainty that are intrinsic to the customers. Urbany et al. 
(1989), through a factor analysis of empirical data, found these two factors being 
significantly predominant. However, other researchers add evaluation uncertainty 
(Shiu et al., 2011), which is the lack of confidence the customer has in his own 
ability to correctly evaluate choices, even having full information. Evaluation 
uncertainty influences the willingness to search for missing information: the higher 
the evaluation uncertainty, the more likely a customer is to keep searching for his 
ideal product. 

Underlying these sources of uncertainty is also credibility (of the information) 
which negatively impacts the available information, part of it becoming useless 
for the customer. An example of non-credible information is online reviews of a 
product, written by company associates. See Shiu et al. (2011) for a more detailed 
treatment of these factors and an empirical study of their importance. 

In addition to the previous uncertainties, the product portfolio available to the 
customers at stores changes over time, and there may be temporary unavailability 
of certain products at a store, which may be unknown to the customer. Neither can 
the customer predict the conditions in which she will make use of the good, e.g., 
when planning a vacation trip for some time in the future (Loomes et al., 2009). 
There also could be situations in which customers may be uncertain about the future 
availability of a product, or their available budget at future times, which could make 
them overstock, changing a regular pattern of purchases. 

Konishi (2005) calls this seemingly random behavior of the customers, due to 
their apparent uncertainty as to what alternative to choose, taste uncertainty, which 
includes all the factors that make the customer behave in a seemingly semi-random 
way. 

Later in this chapter, we will describe the consequences of all these uncertainties.
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2.5 Imperfect Information of the Decision-Maker 
on Customers 

A different source of uncertainty is the lack of knowledge of the decision-makers 
on customers’ actions. This imperfect and incomplete information is related to 
both the rules the customers use to choose and the value they assign to different 
factors. This uncertainty comes from the imperfect observation and measurement 
or quantification of customer choice behavior. Decision-makers need to know how 
customers choose the best locations and attributes of their stores. This requires 
observing and measuring customers’ actions and inferring from these actions what 
attributes are relevant to them, as well as the weights that customers assign to each 
one of the attributes. Observations must be made of large groups of customers 
(as there is taste dispersion among customers), over periods of time, as different 
individuals behave differently, each one having her own assessment of the important 
attributes and their weights, and each of them having possibly different information 
about the market (Hausman & Newey, 2016) and different tastes. 

Unfortunately, observations are incomplete, and measurements are imprecise. In  
fact, only some of the attributes’ effects are observable. This happens, e.g., with 
price and travel cost. But there are a number of store and product attributes whose 
effect is not observable, e.g., the attraction a customer feels for someone that works 
at a particular store or his preference for a scenic route to go to the store, as 
somewhat extreme examples. 

Neither is observable the sequence in which customers make some choices of 
store and product. Choices can be made simultaneously or sequentially. Suppose a 
customer makes a trip to purchase a pair of shoes. He may change his mind in the 
middle of a trip, or he can remember that he also needs a jacket and engage in a 
multipurpose trip (O’Kelly, 1981; Eaton & Lipsey, 1982). 

Furthermore, not all relevant actions of a customer can be observed. A firm can 
keep track of the purchases of a particular individual in its stores, but it cannot 
know when and how many times the same individual chooses a different chain to 
purchase substitute products, as it is extremely unlikely to have stores sharing this 
information. Moreover, it cannot know what kept that individual from purchasing 
on some occasions. This makes the measurements imprecise, in the sense that the 
parameters have necessarily large confidence intervals. 

The incompleteness and impreciseness of observations added to the intrinsic 
uncertainties in customers’ choices, i.e., their own uncertainty as to what alternative 
to choose, make the customer behavior seem random. Randomness implies unpre-
dictable behavior. Most choice models assume, implicitly or explicitly, that there are 
deterministic and random components in customers’ choices. 

Note, finally, that when customers choose an alternative, they compute what in 
their brains is a deterministic value for the utility of the different alternatives. They 
assign some values to all the relevant parameters and, based on their evaluation, their 
choice is the best, from a deterministic point of view. However, as the factors that are 
considered and their weights are not observable, the utility for an external observer
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can be described as having a deterministic component (the observable factors) and 
a random component (the unobservable factors). 

In general, customer uncertainties and observation uncertainties are treated as 
one phenomenon (“uncertainty”), as most of the time, it is not possible to separate 
them. 

3 Effects of Uncertainties on Customer and Firm Behavior 

3.1 Purchases Are Distributed Among All Available Stores 

The Hotelling (1929) setting for geographical competition, involving product 
homogeneity, was profusely dominant until the 1970s. It is still in use for analyses, 
as it allows us to obtain insights into a variety of problems. However, there are 
goods that must be purchased periodically, and other goods that wear out, and 
must be replaced and, in practice, customers make many trips to purchase from 
different facilities. Another assumption in Hotelling’s analysis is that there is only 
one homogeneous product. This assumption leads to considering only shopping trips 
that have one stop at the chosen store, which is always the same. 

Heterogeneity was introduced in the interaction of firms and customers by 
Papageorgiou and Thisse (1985), to explain facility agglomeration in a linear 
and in a circular market. Their starting point is the assumption that, as products 
are heterogeneous and there is customers’ taste dispersion and taste for variety, 
customers will not always choose the store that offers the least full price, but the 
purchases will be distributed among all the available facilities. In their view, the 
previous results of agglomeration were due to the bounded market, which makes 
facilities agglomerate at the center as that is the position in which they can attract 
more customers in equilibrium. This argument of Hotelling is destroyed when the 
market becomes a circle, as in this case there is no agglomeration. Marianov and 
Eiselt (2016) provide a similar argument: in Hotelling’s setting, two competing 
facilities locate at the center of a line at the equilibrium because that is the location 
at which each one of them maximizes the demand for which the facility of the firm 
is the closest, and that is what they call a “weak force of agglomeration,” but there 
are other forces that are more significant, related to heterogeneity as multipurpose 
and comparison shopping. What Papageorgiou and Thisse (1985) do is dispute the 
well-established notion that full price is the only drive for purchases and replace 
it with the notion that customers prefer diversity, although the full price is indeed 
one of the important factors. Their market is divided into small areas, and each area 
can house some stores. They assume that during a standard period, the customers 
gather information on stores until they have full information.2 Once they have full 
information, the relative frequency of their visits to a particular area, say j, is given

2 Actually, the gathering of information can be more permanent, which result in search behavior. 
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by the ratio between the number of visits to area j and the number of visits to 
all areas. Furthermore, the number of visits to any area is strictly decreasing and 
strictly concave in distance. Also, and here is the importance of heterogeneity in 
customers and products, they argue that a larger number of stores in an area j 
attract more total visits because the area offers a larger variety. Their conclusion 
is that agglomeration of firms and households is because it decreases the total 
transportation costs, increases the frequency of visits, and hence, the total market. 
Firm agglomeration, common in practice, is explained by a higher volume of sales 
due to the taste for variety, rather than due to Hotelling’s explanation. 

De Palma et al. (1985) use a linear market to show that the agglomeration 
principle holds when products and customers are sufficiently heterogeneous (again, 
taste for variety and differences between customers), expressing utility as a sum of 
a deterministic component and a random component: 

They clarify that the random component accounts for the unobservability of the 
taste and valuations of the customers for the different attributes of the heterogeneous 
products. This does not mean the behavior of the customers is irrational but merely 
non-observable. They assume that the customers are distributed along a line, and 
stores can locate anywhere on that line. By allowing each customer to change his 
taste randomly, they represent the choice behavior of the customers by a logit choice 
rule and obtain two important conclusions. First, uncertainty, represented as a ran-
dom component of the utility, makes disappear the formerly abrupt discontinuities 
in Hotelling’s model, replaced by customers’ smooth changes of facility preference 
when any of the parameters (price, location) changes. Secondly, agglomeration 
follows, for two or more facilities, and competition stabilizes, although a larger 
heterogeneity is required to maintain agglomeration when the number of firms 
increases. 

3.2 Search Behavior, Comparison Shopping, 
Multipurpose-Shopping Trips. Firms Agglomerate 

The uncertainties described above make customers unsure about which of the 
available mutual substitute products, let us say shirts, is closer to their ideal at 
the time of their shopping trip. Taste uncertainty, lack of information, evaluation 
uncertainty, and credibility of the available information, added to selectivity (the 
fact that not all the products in the set are acceptable to the customer), result in 
the need of visiting two or more stores, to try the products on, and to check on the 
features and availability, until they find a product that is acceptable for their taste or 
decide that the cost of further search exceeds the benefits of increased information 
(if they believe that the newly acquired information will be reliable and useful for 
choice purposes) and the expected marginal increase in the utility of a more suitable 
product. Search costs and patterns are well described by Anderson and Renault 
(1999). Because of economies of scale in transportation, all the stores are visited
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on the same trip, and the shopping trips become multiple-stop. This behavior is 
called comparison shopping. Note that if products are only slightly different, or 
commodities, there is no strong need for comparison, unless the customers are 
extremely selective. However, a higher differentiation between products or a very 
high range of available options (e.g., shoes) increases the drive for comparison 
(Krider & Putler, 2013; Fischer & Harrington Jr, 1996). 

Comparison shopping has a significant impact on the location of retail stores. 
Eaton and Lipsey (1979) analyze the effect of comparison shopping on the location 
of several competitors located in a linear, bounded market. Customers are distributed 
uniformly, and they must visit exactly two stores, to compare their products each 
time they engage in a shopping trip. As in Hotelling’s setting, the stores cannot 
co-locate but they can locate at an arbitrarily short distance from each other. They 
show that stores locate next to each other in triplets, even though this increases 
their distance from some of their customers, because the triplet attracts customers 
from farther away locations, due to the need to compare. The model was extended 
by Stahl (1982) to the case in which customers search for their preferred product 
from several mutually imperfect substitutes. The search criterion is optimizing the 
product characteristics, and the customers can visit more than two stores. Stahl 
assumes n possible products and n types of customers, uniformly distributed over a 
linear market, each type i having mi ≤ n products that are acceptable, i.e., customers 
are selective. There are several marketplaces at which the stores agglomerate in 
different numbers. Customers visit only one marketplace and can search in all its 
stores at no cost. Note that this implies a two-step choice procedure: choose first 
the marketplace and then the store. The utility of a trip to a marketplace increases 
with the number of stores in it, and therefore, the market radius of a marketplace 
increases with the number of stores. A higher selectivity makes customers avoid 
trips to stand-alone stores and prefer larger marketplaces even if they are farther 
away. In conclusion, comparison shopping draws stores to agglomerate, e.g., in 
food courts, or the wedding dress shopping hub in Brooklyn (Hoo, 2018). Wolinsky 
(1983) finds conditions for a marketplace to attract more customers than a close-
by stand-alone store. In his setting, a stand-alone store attracts customers from its 
neighborhood and becomes a monopoly, while a marketplace with several stores 
attracts customers from longer distances and the stores share the purchases. The 
conditions are established for a customer to prefer a comparison-shopping trip over 
a trip to a single store. In addition to taste uncertainty, Konishi (2005) justifies 
customers’ attraction to marketplaces by a lower price expectation of customers, 
who believe that agglomeration increases competition and, hence, lowers prices. 
However, as Stahl shows, prices are not always lower in this setting. For more 
details, see Marianov and Eiselt (2016). 

Taste uncertainty, impulse shopping, and lack of information also intervene in 
the case of bundles or multipurpose shopping. This activity consists in making 
a trip during which a customer purchases more than one product. The strongest 
driving force for this type of trip is economies of scale in transportation. Customers 
make up a shopping list and decide to take a trip to a marketplace that hopefully 
offers all the products in the list, or at least, is located in such a way that all the
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products can be purchased from nearby stores. However, uncertainties and lack of 
information frequently make a customer change his or her mind during the trip 
and either acquire less or more products than those on the previously made list. 
The shopping list is not always the same (it is uncertain), because the stock of 
different products that the customer has at home changes every time. Furthermore, 
the presence of other services in the shopping places, e.g., coffee shops, fast-food 
restaurants (conveniently located for the customers to do comparison shopping), 
car washing facilities, or other stores, can make customers use these services even 
if it was not planned. A single-stop trip can become a multi-stop trip. Again, this 
multipurpose shopping behavior implies a search for the products in the list, which 
makes it attractive for the customer to patronize marketplaces with more stores 
offering different products and even services, increasing the utility of such places 
and pushing firms to co-locate their stores. Lancaster (1966) proposed what he 
calls a “new approach to customer theory,” in which instead of assuming that the 
products are what generates utility to the purchasers, it is the characteristics of the 
products that gives rise to utilities, which immediately suggests that customers not 
necessarily are looking for a single product, but possibly for a set of products that 
possess a set of characteristics. He analyzes groups of products and their relationship 
as complements or substitutes, which, in turn, leads to multipurpose and comparison 
shopping. 

Regarding comparison shopping, Marianov et al. (2020) proposed and solved 
the follower location problem in a duopoly with comparison shopping. They do not 
force customers to necessarily visit both competitors’ stores but assume that the 
probability of finding a suitable product increases when customers visit one store 
of each competitor. This increases the utility obtained by such action, which results 
in the co-location of the stores of the competitors and larger marked radii of the 
clusters. 

Multipurpose shopping has also been addressed in the literature (Eaton & Lipsey, 
1982; O’Kelly, 1981; Marianov et al., 2018; Khapugin & Melnikov, 2019; Méndez-
Vogel et al., 2022). 

4 Most Representative User Choice Rules Addressing 
Uncertainty 

4.1 Brief Overview of the Fundamental Deterministic Rules 

Hotelling (1929) recognizes that in practice, there is product/store heterogeneity, 
which makes customers take into consideration attributes like “his model of doing 
business is more to their liking, or because he sells other articles which they desire, 
or because he is a relative or a fellow Elk or Baptist, or on account of some 
difference in service or quality, or for a combination of reasons.” However, for 
finding the location equilibrium of two competing stores, he assumes that the only
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attribute that customers in the linear market consider is the full price of a product. 
Customers and products are assumed to be homogeneous. Each customer simply 
chooses the store that minimizes the full price he observes. This choice rule is fully 
deterministic, with binary decisions: choose one or the other. Infinitesimal changes 
in price or location can change the choice, which is one of the handicaps of this 
rule. Hotelling rule was profusely used by researchers in marketing, economics, 
transportation, and retail until the 1970s, and continues to be used nowadays because 
of its simplicity. Hotelling’s rule has been called “binary” rule or “winner-take-all” 
rule, as an infinitesimal difference between the utilities of two alternative stores 
makes a customer to prefer only, and always, the highest utility one. 

In parallel, Reilly (1929), a marketing specialist, made an early attempt of finding 
the “relative” trade areas of marketplaces, using a rule based on the formula of 
gravity. Hence, the name “gravity rule.” In his setting, customers in a small city 
located between two large cities a and b distribute their purchases among them, and 
the businesses attracted by each large city from the small one are in the proportion 
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where 

Ba = the sales volume that city a attracts from the small city 
Bb = the sales volume that city b attracts from the small city 
Pa = Population of city a 
Pb = Population of city b 
Da = Distance from city a to the small city 
Db = Distance from city b to the small city 

The parameters n and N need to be estimated using actual data. Reilly argues in 
favor of setting N = 1, and in his experiments, he finds the mode for n in the range 
1.51–2.5. Most of researchers using this rule assign a value of 2, which is the value 
in Newton’s gravity formula. 

He recognizes that customers tend to open charge accounts in several stores 
rather than in only one, which would indicate either that there is taste dispersion 
or that the customers acquire different products in different stores. Note, though, 
that the formulation does not deal with utilities or individual customers, but only 
with trade areas, sales volume and trade area proportions, and the factors affecting 
these two are populations and distances. The model does not include any random 
factors. 

Still in the deterministic playground, Hakimi (1990) argued that, in practice, 
the purchasing power of a customer is not captured completely by the least full 
price or the closest facility, as in the binary case, but it is divided among facilities 
proportionally to their relative distance to the customer (“proportional” rule)
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where 

wij = portion of customers at i that use the facility at j 
f (dij) = nondecreasing, non-negative function of the distance 
R = set of all facilities available to the customers at i. 

Furthermore, he analyzes the “partially binary” rule, which assumes that faced 
with two or more competitors, each with several stores, a customer will use the 
proportional rule, but consider only the closest facility of each competitor. This 
rule makes sense especially when all the facilities of a competitor offer the same 
product and have homogeneous features, as in the case of franchises. This rule has 
been extended by Fernández et al. (2017) by using utilities that are mainly positive, 
instead of disutility (distance), and by Lin and Tian (2021) to the limited choice set 
rule, which considers not only the closest facility of each competitor but a possibly 
larger set, not containing all the facilities. 

Note that, although the proportional rule does not explicitly address uncertainty, 
it gives the idea that there are factors other than the deterministic (distance, in 
this case), that have an influence on the behavior of the customers, and that make 
them distribute their purchases among several stores. Furthermore, it gives a usable 
expression for Luce’s (1957) choice axiom, described in the next subsection. 

4.2 Choice Rules Explicitly Assuming Uncertainty: 
Proportional and Gravity 

Thirty years after Hotelling and Reilly, Luce (1957) stated the choice axiom in the 
field of psychology, including a formula that he recognizes as closely related to the 
logit analysis that started in the 1830s (see Cramer, 2002). The logit or logistic curve 
was first used to model human growth and some chemical reactions and to represent 
variability in human responses. This axiom indicates implicitly that the choices of 
people are not (at least completely) deterministic, and he proposes a formula for 
the probability of an agent choosing, say a, over all other possible alternatives. One 
of the parts of the axiom proposes a proportional choice rule that measures the 
probability of making a choice or choosing an option a as the ratio 

. PRa = va/
∑
b∈R

vb

where PRa = probability of choosing a among all alternatives in set R and va is 
“the response strength associated with response a”; see Luce (1977). This response 
strength is naturally dependent on the context, so this rule is not applicable to
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product or store choice as it is. In our context, the response strength must be 
determined, and it could be a utility, an attraction level, or any other pertinent 
indicator. 

Huff (1963) formulated what appears to be the first probabilistic choice rule in the 
field of retail analysis. In his setting, customers choose between shopping centers, 
which are “complementary and competing agglomerations of retail firms which are 
geographically contained.” Huff’s rule looks very similar to that of Luce (1977), 
but he proposes an explicit expression for what Luce calls the “response strength.” 
This expression comes from the gravity rule of Reilly (1929), with two important 
differences: Huff’s analysis recognizes the probabilistic nature of choice, and it 
focuses on the utility of an action for segments of customers (“statistical units”), 
rather than sales volume. Referring to the use of Reilly’s formula to determine the 
breaking point between two cities (the point at which the volumes of the trade 
from the smaller, intermediate city are equal), he states that the breaking point 
can be interpreted as the “0.5 probability position between two cities.” Using the 
probabilistic concept, the sales volume proportion that is captured by the city a can 
be written using Reilly’s formula as 
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which resembles the Luce model, in which the left-hand side represents the 
probability of the demand in the small town purchasing at a, and the population 
divided by a power of the distance is the “strength.” Instead, Huff computes what 
would be the strength as “the utility of a shopping center to a customer,” and 
estimates its numerator using the number of items of the type that the customer 
needs that are available at the shopping center, an intuition for multipurpose 
shopping (for which, in a further step, he uses the square footage of the center, 
as a proxy). Huff uses the travel time raised to a power in the denominator, as a 
longer travel time decreases the utility for the customers. Furthermore, he states that 
customers do not know a priori whether their needs will be satisfied at a particular 
shopping center as they make their decisions under uncertainty (lack of information, 
taste uncertainty), but they do know that “the greater the number of items carried by 
such (shopping) centers, the greater is the customer’s expectation that his shopping 
trip will be successful.” 

Finally, Huff’s formula for the utility uij of a shopping center at j to all customers 
located at i is: 

. uij = Sj/T n
ij

where 

Sj = square footage of the shopping center, 
Tij = travel time from i to j, and 
n = parameter to be estimated.
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And the probability Pij of all customers located at a point i of patronizing a 
shopping center located at j is: 

. Pij = Sj/T n
ij∑

k

Sk/T n
ik

as before, n is a parameter to be estimated according to the class of products. 
Huff’s rule has been profusely used and continues in use in the field of facility 

location (Drezner, 2019), using different indicators for the attraction of a shopping 
center, an area, or a store. Among these, are the origin and destination of trips and, 
in the marketing field, a product of attributes of a brand raised to a power (Nakanishi 
& Cooper, 1974). Other distance (or travel time) functions have also been used, as 
a negative exponential (Hodgson, 1981). 

Parallel to Huff, a different, deterministic gravity rule was being used since the 
1940s that estimated the number of trips Tij from zone i to zone j. Its expression is 

. Tij = k
OiDj

d2
ij

where 

Oi denotes the total number of trips originating at i, 
Di counts the total number of trips with j as the destination, 
dij measures the distance between i and j, and 
k is a constant. 

This rule had no other rationality than its resemblance with the gravity formula. 
Wilson (1967) provided a theoretical justification for this gravity formula using an 
analogy to statistical mechanics, obtaining the following form: 

. Tij = AiBjOiDje
−βcij[∑

j

BjDje
−βcij

] [∑
i

AiOie
−βcij

] ,

where the parameters Ai and Bj are balancing factors that enforce .
∑
j

Tij = Oi and 

.
∑
i

Tij = Dj . Instead of using the inverse of the distance to a power as in Huff’s rule, 

a new (exponential) function is introduced of cij, the “impedance” or generalized 
cost of traveling from i to j. In this version of Wilson’s formula, {Tij} is interpreted 
as a distribution of the total number of trips between all origins and destinations. 
Note that the parameters of this rule are estimated using aggregated data on origins 
and destinations. Variations of this model have been used for spatial interaction in 
general (Fotheringham & O’Kelly, 1989).
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4.3 Choice Rules Explicitly Assuming Uncertainty: Random 
Utility Models (RUM) 

McFadden (1974) proposed the first rule that explicitly considers that the utility 
of a customer has two components: a deterministic or observable component and 
a random component. The deterministic component includes all these features of 
the store and product that have an observable effect on the behavior of a customer, 
while the random component takes care of all the uncertainties and factors that the 
customer considers but are not known to an observer. 

In its simplest form, the rule is called the multinomial logit (MNL) rule and it 
assumes the following expression for the utility of a customer i of choosing option 
j: 

. uij =
∑

k

βjkXjk + εij = vij + εij

where vij and εij are the deterministic (observable) and random (non-observable) 
parts of the utility, respectively. In the observable part of the utility, several attributes 
of the product and the store can be included. Xjk is the value of attribute k at store 
j and β jk is the weight of the attribute on the decision of the customer, and it is the 
same for all customers, although it can be specialized for customer segments. 

Assuming that εij are IID, Gumbel distributed, McFadden finds the following 
expression for the probability pij of a customer i using the store at j 

. pij = evij∑
k∈R

evik

De Palma et al. (1985) use the Hotelling settings on a line to significantly extend 
Hotelling’s result. They use the same expression for the utility as the MNL, in which 
the only observable attributes are the valuation of the product by the customer (or 
reservation price), the price of the product, and the distance between the point at 
which the customer is sited and the store at which the product is offered. They 
also assume that the choice rule is MNL. They prove that, when products and 
customers are sufficiently heterogeneous (product heterogeneity, taste dispersion, 
and uncertainty), the principle of minimum differentiation of Hotelling holds and 
does not have the abrupt changes generated by infinitesimal changes in price or 
distance. Furthermore, they prove that beyond a threshold of heterogeneity (a large 
enough standard deviation of the random component), n ≥ 2 firms agglomerate at 
the center of the line. For details, see Marianov and Eiselt (2016). 

Although the rule was developed for an individual customer, it can be used 
for a set of customers and its parameters estimated using data from all customers 
in a set (Anas, 1983). It is interesting to note that Anas (1983) finds that, when 
predicting origin-destination trips, the multinomial Logit model, derived by McFad-
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den (1974) from utility maximization and likelihood maximization for estimating 
its parameters, using small-sample disaggregated data, is equivalent to the gravity 
model derived by Wilson (1967) from statistical entropy minimization (information 
maximization), and estimated using aggregated data. Anas first estimates the 
parameters of an MNL model using both likelihood maximization and entropy 
minimization, aggregated over a small sample of customers, and proves that both 
methods result in the same parameters of the MNL model. Next, he minimizes 
entropy to derive an aggregated version of MNL, i.e., a model for a set of customers. 
By adequately representing the aggregated parameters in the minimization, he 
arrives at the Wilson (1967) formula.  

An aspect that has been criticized of the MNL rule is that it does not consider the 
correlation between alternatives. In fact, take the case of two competing franchises, 
each with stores that are identical to each other except for their location. The MNL 
rule is not capable of including this fact and it will consider all stores as distinct 
options, when they are not. This phenomenon has been represented by the red bus-
blue bus example (Ortúzar & Willumsen, 2022), in which commuters have two 
available alternatives for travel: their car or a red bus. They will distribute in a certain 
proportion among the two alternatives, say one-half each. If a new bus line is added, 
with the exact same bus type, route, and frequencies as the red bus, but the buses 
are blue, the MNL will assume that the new line is a new, distinct alternative and 
the proportions of commuters using a red bus, a blue bus, and car will be one-third 
each. It is similar to assuming that by painting half of the buses of a different color 
will change the preference for that mode of transportation from 50% to 66%. 

There are several extensions of the MNL that take care of the correlation, being 
the nested logit a representative one (Williams, 1977; Daly & Zachary, 1978). In the 
nested logit, customers choose first the “nest,” e.g., the bus over the car in a certain 
proportion, and later, they will choose the options within the nest, e.g., the red bus 
or the blue bus. As an example, assume that there are two franchises as described 
above, and each franchise has several stores. The expression of the utility is now 

. uij = vij + εif + εij |f

in which there are two random components: εif is related to the uncertainties in 
the choice of the franchise f, and εij � f is the random component related to the 
uncertainty in the choice of a store j given that franchise f has been chosen. 
Both choices are assumed to follow the MNL rule, εij � f ∼ Gumbel(0, λ) and 
εif + εij � f ∼ Gumbel(0, μ). Then, the expression of the probability of choosing 
store j according to the Nested Logit rule is: 

.pij = pif pij |f

( ∑
j∈F

eλvij

)μ
λ

( ∑
j∈F

eλvij

)μ
λ

+
( ∑

k∈R

eλvik

)μ
λ

eλvij∑
j∈F

eλvij
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in which F is the set of stores of franchise f, the practice is to set μ = 1, and λ is 
known as the similarity factor. From a more general point of view, nests represent 
options that are correlated, and in our example, a franchise could have more than 
one style of store, i.e., more than one nest. 

Other extensions of the MNL are the mixed logit (McFadden & Train, 2000; see  
also Ortúzar & Willumsen, 2022) which considers that the weights on the attributes 
are random, the constrained MNL (Martínez et al., 2009), and the partially binary 
logit rule (Méndez-Vogel et al., 2022). 

All the rules revised in this section assume single-stop shopping, but they can 
be modified to include comparison shopping and multipurpose shopping. Further 
details on choice rules can be found in Eiselt et al. (2019). 

5 Integrating User Choice Rules with Uncertainty in Facility 
Location Models 

We present a general competitive facility location model in which any probabilistic 
choice rule can be incorporated. We restrict ourselves to the case in which there are 
two competitors, offering mutual substitute products. One of them is already located 
(the leader) and the second one looking for the best locations for its nF stores (the 
follower). Let I, J, and K be the set of customers, the set of candidate locations, 
and the stores located by the leader, respectively. Each customer has a buying power 
of wi. Let us define the variables xj and pij (x). xj takes the value of 1 if a store 
is located in j, and 0 otherwise. pij(x) is the probability that customer i purchases 
the product from the follower’s store located at j given the location vector x. The  
following general model maximizes customers’ capture by the follower: 

. Max
∑
i∈I

wi

∑
j∈J

pij (x) (1) 

.s.t.
∑
j∈J

xj = nF (2) 

.xj ∈ {0, 1} ∀j ∈ J (3) 

.pij (x) ∈ [0, 1] ∀i ∈ I, j ∈ J (4) 

The probability pij (x) is replaced according to the customers’ choice rule. In 
general, a nonlinear objective follows. Using the Huff rule, the model becomes
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.

∑
i∈I

wi

∑
j∈JL

Sjxj /T n
ij∑

k∈J ∗
L

Sk/T n
ik + ∑

k∈JL

Skxk/T n
ik

(5) 

s.t. (2) and (3)where .J ∗
L, JF are the set of located leader’s stores and the set of 

follower’s candidate locations. 
If the rule is the multinomial logit, the model becomes 

. Max
∑
i∈I

wi

∑
j∈J

evij xj∑
k∈J ∗

L

evik + ∑
k∈JF

evik
(6) 

s.t. (2) and (3) 
For non-essential products, a non-purchase option can be included, whose 

utility must be determined exogenously and added as an additional option for the 
customers in the denominator of the expressions. 

The models with objectives (5) and (6) can be linearized as in Aros-Vera et al. 
(2013). Tighter linearizations as well as reformulations of the multinomial logit 
model that make the problem suitable for branch and cut or cutting-plane methods 
have been presented in Benati and Hansen (2002), Haase and Müller (2014), Kress 
and Pesch (2016), Freire et al. (2016), Ljubić and Moreno (2018), Mai and Lodi 
(2020), Altekin et al. (2021), and references therein. Models using gravity rules have 
been presented by multiple authors; see Eiselt et al. (2019) and Drezner (2019). 

In terms of performance, the best-known solution approaches for the multinomial 
logit rule are in Ljubić and Moreno (2018) and Mai and Lodi (2020). Ljubić and 
Moreno proposed a branch and cut approach based on submodular cuts and outer-
approximation cuts. Mai and Lodi (2020) proposed a multi-cut outer-approximation 
approach in a cutting-plane fashion. Both methods require a separation algorithm to 
dynamically generate the cuts since these linear formulations use a big number of 
constraints (one for each possible solution). An easier implementation is possible 
using the new conic reformulation of Altekin et al. (2021). 

It is worth mentioning that in practice, the customer does not always consider 
all available alternatives, as there may be some that are not sufficiently attractive 
to be considered. There are techniques for eliminating these alternatives in the 
multinomial logit case (see Bierlaire et al., 2009; Ortúzar & Willumsen, 2022), and 
in a general proportional rule, as in Lin and Tian (2021), who solve this problem 
using a branch and cut approach based on generalized Benders decomposition. A 
limiting case is when the choice is restricted to only one store of each competitor, 
the one that provides the highest utility. This is the case of competing franchises 
in which all stores have the same features and products. This is the partially binary 
rule, and it has been successfully used by, e.g., Fernández et al. (2017). A partially 
binary logit rule has been recently proposed by Méndez-Vogel et al. (2022). 

One of the important remaining challenges is the implementation of models that 
consider the correlation between alternatives, especially in the case of franchises. 
The action of purchasing at one of the stores of a firm is correlated with the action
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of purchasing at another store of the same firm, as in the example of the red bus/blue 
bus problem: a significant number of features of the combination product-store that 
are relevant for a customer are the same, irrespective of the store of the firm chosen 
by this customer. In fact, the product offered is the same, or the service offered is 
very similar. There might even be a correlation between alternatives of different 
franchises if there are similarities between them. The nested logit rule aims at 
including these types of correlation. However, it has never been possible to propose 
exact methods in the location field because the concavity of the model has not been 
assured (Dam et al., 2022). 

Finally, in relation to other behaviors triggered by uncertainty, a model that 
considers comparison shopping in a deterministic setting has been proposed by 
Marianov et al. (2020), and models taking into account multipurpose shopping by 
Marianov et al. (2018) and Lüer-Villagra et al. (2022), while a probabilistic version 
of the follower problem can be found in Méndez-Vogel et al. (2022). 

6 Conclusions 

In this chapter, we discuss the uncertainty in customers’ behavior and its effect on 
how customers choose a product or a store. We describe the sources of uncertainty. 
We then describe the most relevant families of probabilistic customer choice models 
and end by demonstrating how these choice models can be included in facility 
location models. 

The most important factor driving uncertainty is the heterogeneity of products 
and stores. Due to the heterogeneity, customers need to decide between different 
products that serve the same purpose but have different secondary features. In 
addition to heterogeneity, most of the time there is some lack of information on the 
products, their price, and availability, which complicates and adds randomness to the 
choice process. These two factors, as well as the emotional or psychological state of 
the customers, make customers change their decisions in time, not be trustful about 
the information they receive, and in general, behave in a seemingly random way. 
From the point of view of decision-makers, an added layer of uncertainty comes 
from the fact that they cannot observe each decision by the customers, which makes 
perfect modeling impossible. All these uncertainties are incorporated into choice 
models either indirectly, by assuming a probability of a customer patronizing a store 
and product that depends on their characteristics, or explicitly assuming that the 
customers’ utilities for their different actions have random components. 

Finally, we use these customer choice rules when optimizing facility locations, 
by including them in facility location models. 

Important challenges remain for the facility location community in the appli-
cation of increasingly complex customer choice rules in facility location models. 
Modeling sequential choices and unplanned purchases and finding adequate solution 
methodology for the resulting location models are among these challenges.
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Abstract This chapter focuses on a major area emerging in the context of human-
itarian logistics: emergency evacuation planning and management. Two major 
aspects are covered: shelter site location and evacuation traffic assignment. Both 
are discussed separately before an integrated problem is considered. Throughout 
the chapter, uncertainty in the underlying parameters is assumed. The major sources 
of uncertainty analyzed are the demand for sheltering and capacity of the edges 
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1 Introduction 

Many regions around the globe are vulnerable to disastrous events that can endanger 
human lives and property. Among such events, we find floods, earthquakes, fires, 
landslides, volcanic eruptions, etc. 

Disaster operations management is the term used for the activities concerned 
with making decisions and planning for operations that can anticipate or react to a 
disaster. In this context, one can distinguish among different types of operations: 
pre-disaster and post-disaster operations. The former include (i) mitigation, i.e., 
actions taken to prevent and mitigate the consequences of a disaster, and (ii) 
preparedness, which seeks the elaboration of plans to provide a more efficient 
response when a disaster occurs. The latter are divided into (i) response operations 
–those starting immediately after the event to quickly provide the affected people 
with relief goods (water, food, medical care, shelter, etc.)– and (ii) recovery, which 
gathers the operations aiming at recovering all the damaged (infrastructures) to 
resume the normal functioning of the affected area. 

The Operations Research and Management Science have a prominent role in the 
development of useful (and often decisive) decision-making tools to better plan for 
the above types of operations (alone or combined). Humanitarian logistics is the 
term used to designate the operations focusing on preparedness and response. 

Upon the occurrence of a disaster or when a serious threat is foreseen (e.g., an 
approaching hurricane), the affected or threatened region or part of it may require 
evacuation. A specialized area of humanitarian logistics dealing with planning 
problems within this context is evacuation planning and management. It includes 
decisions related to traffic assignment along with routing, location of support 
facilities, and allocation decisions. Some relevant problems in this area are discussed 
in this chapter. 

The goal of an emergency evacuation operation is to save lives by moving 
people out of the area affected by a disaster or under threat (Lindell et al., 2018). 
In accordance with the US Department of Homeland Security’s (DHS) Federal 
Emergency Management Agency (FEMA) and US Department of Transportation’s 
(DOT) Federal Highway Administration (FHWA) reports, annually 45–75 actual or 
prospective disasters require an evacuation and every 2–3 weeks an evacuation order 
is directed to 1,000 or more people (FHWA, 2007). Only in 2017, over eight million 
people were evacuated in the USA due to several types of disasters such as wildfires, 
hurricanes, and floods (DHS, 2019). Efficiently managing (assigning) evacuation 
traffic is regarded as a critical capability (USDHS, 2013) that must be attained as it is 
challenging to manage an unusual, sudden, and widespread surge in traffic demand 
far beyond the capacity of the existing road network over a large geographical area 
for an extended time that could span days. Failure to do so may lead to further 
losses (Thompson et al., 2017). Evacuation planning and management deals with 
this type of emergency. Two intertwined decisions often need to be made in this case: 
traffic assignment and facility location. The former ensures that if necessary the 
populations can successfully get to safe locations where aid/support can be provided
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and their normal lives can be resumed to the larger possible extent. The latter regards 
the support facilities whose location and establishment should be planned in advance 
to maximize the chances of providing an adequate help to the affected populations. 

When it comes to locating facilities in the context of humanitarian logistics, 
we find different possibilities depending on their function. Dönmez et al. (2021) 
distinguish among six categories, namely, suppliers, distribution centers, points of 
distribution, shelters, field hospitals, and blood centers. When thinking of combining 
evacuation planning with facility location, we conclude that the facilities of interest 
are shelter areas since these are the facilities whose function is exactly to support 
the populations moved away from the disaster region. 

Different from a humanitarian supply chain perspective, in an evacuation man-
agement setting, demand is related to the number of people or vehicles that will 
be evacuated from the area under possible disaster threat, and supply corresponds 
to the capacity of the road network to serve the evacuation demand. Among the 
supply and demand management strategies that are key to a successful evacuation 
operation are location-related decisions such as shelter location, contraflow, zone-
based evacuate or shelter-in-place, and dynamic resource allocation decisions. The 
evacuation studies that account for uncertainty and also consider location decisions 
related to contraflow, zone-based evacuate or shelter-in-place, or dynamic resource 
allocation are rare (Bayram, 2016). 

An important aspect of relevance when planning for pre- or after-disaster opera-
tions regards uncertainty. In the context of humanitarian logistics, different sources 
of uncertainty emerge, which again can be grouped into a few categories (see 
Dönmez et al. 2021 for further details): demand, supply, and network connectivity. 

The above aspects combined set the motivation for the current chapter: to discuss 
how to capture uncertainty in optimization models aiming at support decision-
making in sheltering location and evacuation planning and management. 

The remainder of this chapter is organized as follows. In Sect. 2, we revisit the 
shelter site location problem with emphasis to the underlying decisions, assump-
tions, and objectives; in Sect. 3, we discuss different possibilities for embedding 
uncertainty when planning for the location of shelters. Section 4 focuses on traffic 
assignment decisions and the related efficiency measures assuming that a decision 
has already been made on the shelters to open. In Sect. 5, an integrated approach is 
presented and its relevance discussed. The final section presents an overview of the 
contents presented in the chapter. 

2 The Shelter Site Location Problem 

Depending on the type of the disaster, shelters are selected among existing facilities 
or constructed from scratch to protect a population from the impact of the disaster 
(ARC, 2002; FEMA,  2006, 2008). They can be high grounds and vertical structures 
in a flood or tsunami or safe places out of the reach of or strong facilities that can 
withstand the impact of hazards from tornadoes, hurricanes, or wildfires. Although
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protection of the evacuees is a priority, they may also provide the evacuees with 
food, water, medical care, and accommodation. The facilities to be fortified or 
locations where new shelters will be constructed are chosen before a disaster hits 
during the preparedness phase. 

The shelter site location problem has been studied alone or combined with other 
decisions such as those related with evacuation planning. This is the case in Bayram 
et al. (2015), Kılcı et al. (2015), Kulshrestha et al. (2011), Li and Jin (2010), Li 
et al. (2011), and Li et al. (2012), to mention a few early works on the topic. 
Candidate locations for sheltering typically include parks, yards, schools, parking 
lots, etc. Such locations must be identified beforehand (see Kılcı et al. 2015 for 
many practical details). 

Next we present a base modeling framework for the selection of shelter sites. Let 
I denote the set of potentially affected populations (or populations that need to be 
protected in advance to an approaching threat) and J the potential set of locations 
for the shelter areas. The demand of population .i ∈ I is denoted by . di , and the 
capacity of shelter area .j ∈ J is denoted by . qj . To derive a mathematical model 
for the problem, we consider two sets of decision variables. For .j ∈ J , . yj is a 
binary variable equal to one iff shelter site j is selected; for .i ∈ I and .j ∈ J , 
. xij is equal to one if the affected population i is accommodated in site j and zero 
otherwise. Note that the number of shelters to locate is not known beforehand. In 
fact, it is endogenous and resulting from different aspects still to be discussed. Let 
us denote .(x, y) = (

(xij )i∈I, j∈J , (yj )j∈J

)
and by .f (x, y) the measure(s) of interest 

to optimize. An integer optimization model for the problem can be conceptually 
stated as follows: 

.opt f (x, y), . (1) 

s. t.
∑

j∈J

xij = 1, i ∈ I, . (2) 

∑

i∈I

dixij ≤ qjyj , j ∈ J, . (3) 

yj ∈ {0, 1}, j ∈ J, . (4) 

xij ∈ {0, 1}, i ∈ I, j ∈ J. (5) 

In the above model, Constraints (2) ensure that all potential populations requiring
sheltering are assigned to a shelter site, whereas (3) guarantee that the capacity of
the shelter sites is respected. Looking into the constraints of the above model, we
observe those typically adopted in a capacitated facility location problemwith single
assignment. In fact, in the shelter site location problem, each potentially affected
population is fully assigned to one and only one location.

The above model can be enriched by ensuring that each population is allocated to 
the closest open shelter. If we denote by . �ij the traveling time or distance between 
the site of population i and the shelter site j , then the closest assignment can be
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ensured by using the following constraints (see Espejo et al. 2012 and Wagner & 
Falkson 1975): 

.

∑

s∈J : �is>�ij

xis + yj ≤ 1, i ∈ I, j ∈ J. (6) 

Imposing closest assignment may turn out to be too strict in the presence of 
capacity constraints and may result in a deterioration in the system efficiency. To 
maintain a certain level of efficiency without sacrificing people’s willingness to 
comply, we can define a tolerance, say . λ, and accept that a population can be 
allocated to shelters whose distances are not larger than .(1 + λ) times the distance 
to the closest open shelter: 

.

∑

s∈J : �is>(1+λ)�ij

xis + yj ≤ 1, i ∈ I, j ∈ J. (7) 

Note that the above constraints are valid under the assumption that the decision-
maker is responsible for the evacuation plan or, at least, can decide the shelter sites 
each population is allocated to. Nevertheless, by ensuring such constraints, the final 
decision will certainly be close to what the populations would do by themselves—to 
patronize an open shelter site close to their homes. 

What remains to be discussed is the objective function. In the shelter site location 
problem, the objectives of interest are different from what we observe in facility 
location models emerging in an economic context or even in the context of public 
facilities location. In the problem we are investigating, the potential locations are 
assessed beforehand in terms of their aptitude for the function to accomplish— 
sheltering. The result depends on features such as distance to a hospital, electrical 
infrastructure, sanitary system, etc. Again, the interested reader can refer to Kılcı 
et al. (2015) for all details. Nevertheless, such an aptitude is measured by means of 
a weight in the interval .(0, 1]. In particular, for every .j ∈ J , a value  . wj is found. 
The closer to 1, the better suited the site is for locating shelters. 

A primary objective to consider in the shelter site location problem is fairness, 
i.e., a so-called Rawlsian approach is sought. By fairness in this context, we mean 
to put the focus on the least advantaged victims upon the occurrence of a disaster. 
A surrogate for such objective is a function (to be maximized) accounting for the 
minimum value of the weights across the open shelters: 

.f (x, y) = Wmin = min
j∈J :yj =1

wj . (8) 

Therefore, maximizing .f (x, y) is a natural goal in our problem. Such objective can 
be straightforwardly linearized. Nonetheless, as pointed out by Kınay et al. (2019), 
the above objective does not ensure that the best locations are selected (i.e., locations 
with the highest weights), and thus the authors concluded that a “pure” Rawlsian 
objective may not guarantee the best use of the available resources. This motivates
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another objective—the average weight of the selected shelters: 

.f (x, y) = WAVG =
∑

j∈J wjyj
∑

j∈J yj

. (9) 

to maximize. Again, this objective can be linearized in a standard way (Williams
2013). It must be pointed out that the previous objectives are a consequence of the 
fairness concept that we are adopting. Selecting shelters according to the previous 
criteria does not guarantee that the total distance traveled is minimized, which is an 
aspect of relevance in the context of a disaster. Then, a third objective function can 
be of interest: 

.f (x, y) = ADT =
∑

i∈I,j∈J �ij dixij
∑

i∈I di

. (10) 

to minimize. As above, . �ij is denoting the distance or travel time between population 
.i ∈ I and the shelter site location .j ∈ J . When the three above objective 
functions are of interest, then the problem should be cast in the context of goal 
programming (if a hierarchy exists between the objectives) or in the context of 
vectorial optimization (if no hierarchy exists)—see Kınay et al. (2019) for all details. 

Once evacuation management authorities complete their plans as to which shelter 
sites to open, which evacuation zone to assign to which shelter, and how to route 
each zone to their assigned shelters, public education campaigns through various 
means should be started to inform and educate the public and to increase compliance 
rates of vulnerable populations to evacuation orders (DHS, 2019; FEMA, 2021). The 
education campaigns should make sure people know their evacuation zones, whether 
they will evacuate or shelter-in-place, which shelter to evacuate to, which route(s) 
to use, and other critical information needed. And several warning messages from 
multiple channels such as mobile phones, television, radio, and social media should 
be disseminated to each evacuation zone with more detailed information throughout 
the evacuation management process. 

3 Hedging Against Uncertainty in the Shelter Site Location 
Problem 

A major issue of concern when planning in advance for humanitarian logistics 
operations regards the inherent uncertainty underlying the problems. In fact, it is 
the magnitude of an event (its absolute strength) and the intensity (how seriously it 
affects each population) that determine the demand for sheltering. Note that this is 
the case no matter we are protecting populations against a possible threat or we are 
rescuing people after a catastrophe. Several researchers looked into hedging against 
uncertainty in the shelter site location problem: Kınay et al. (2018), Kınay et al.
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(2019), Mostajabdaveh et al. (2019), and Ozbay et al. (2019). In this section, we 
discuss how uncertainty can be captured in the problem. 

Several paradigms have been proposed for capturing uncertainty in an optimiza-
tion problem. These depend on the specific problem being considered as well as on 
the exact knowledge we have about the uncertainty. When no probabilistic quantifi-
cation exists (either because it could not be determined or because it is irrelevant 
due to the decision-maker’s goal), one typically resorts to robust optimization. 
Different robustness measures have been proposed such as the maximum regret (to 
be minimized). Additionally, when a given cumulative distribution function can be 
associated with the uncertain vector of parameters, one can take advantage from 
stochastic programming models and techniques. Chance-constrained programming 
is a sub-topic within stochastic programming and emerges when we face a setting in 
which the decision-maker is satisfied with a solution that satisfies some constraints 
with some given probability. Next we discuss some of the above paradigms in the 
context of the shelter site location problem. 

When demand for sheltering is now known in advance, the vector . ξ =
(d1, . . . , d|I |) is uncertain. Let . ω designate one possible scenario for the demand. 
In this case, we consider demands given by .ξω = (d1ω, . . . , d|I |ω). If we know 
beforehand that this scenario will occur, then the problem we should solve is the 
following one that we call P. ω: 

.opt f (xω, yω), . (11) 

s. t.
∑

j∈J

xijω = 1, i ∈ I, . (12) 

∑

i∈I

diωxijω ≤ qjyjω, j ∈ J, . (13) 

∑

s∈J :�is>(1+λ)�ij

xisω + yjω ≤ 1, i ∈ I, j ∈ J, . (14) 

yjω ∈ {0, 1}, j ∈ J, . (15) 

xijω ∈ {0, 1}, i ∈ I, j ∈ J. (16) 

In the above problem, variables .xijω (.i ∈ I , .j ∈ J ) and .yjω (.j ∈ J ) emphasize 
that both in terms of the shelter sites to open and in terms of the allocation of 
the potentially affected populations to those sites, we seek a solution for a specific 
demand scenario. Note that closest assignment can be imposed by setting .λ = 0 in 
Constraints (14) .

In what follows, we denote by .V (Pω) the optimal value of the above problem. 
Under uncertainty, we do not know the exact scenario that will be observed. 

Thus, a decision must be made here and now about the shelter sites to select without 
complete information about the future. Suppose that we can foresee a finite set of 
scenarios; denote by . Ω the corresponding index set. Note that we can keep assuming
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that the allocation of the populations to the open shelters depends on the scenarios. 
It is the sheltering location solution that should be decided upon beforehand and 
should be the same no matter the occurring scenario (non-anticipativity decision). 

One possible way to tackle the problem under the above conditions consists 
of planning for a complete risk-averse decision-maker: find the best solution for 
the worst-case scenario. Unfortunately, in the context of the objective functions 
presented above, it is not clear what exactly the worst-case scenario means. Note 
also that the worst-case scenario is dependent on the exact objective adopted. For 
instance, the scenario corresponding to the largest total demand (which sounds 
a really bad one) is not necessarily the worst when it comes to measuring the 
performance of the system using .Wmin. Therefore, an adequate model for the 
problem would require including the scenario sorting in the model (so that the worst 
can be identified). This easily leads to a cumbersome mathematical structure. A 
more interesting alternative is to minimize the maximum regret across all scenarios. 

For a set of selected shelter sites, the regret in a scenario is the difference between 
the value of the solution in case that scenario occurs and the best possible value 
under that scenario (which corresponds to implementing the optimal shelter site 
locations for that scenario). Formally, the regret of a solution, say . ̂y, in scenario 
.ω ∈ Ω is given by .R(ŷ, ω) = |V (Pω | ŷ) − V (Pω)|, with .V (Pω | ŷ) denoting 
the optimal value of problem (11) –(16) fixing . y equal to . ̂y. The use of . |.| in the 
above expression has to do with the fact that we are considering a general objective 
function (to minimize or maximize) and also with the fact that the regret of a 
solution is commonly accepted as being a non-negative quantity with the value zero 
indicating that the solution is optimal for the scenario. 

We can now look for the solution that minimizes the maximum regret, which is 
a solution to the following problem: 

.min ν, . (17) 

s. t. ν ≥ |V (Pω | y) − V (Pω)|, ω ∈ Ω, . (18) 
∑

j∈J

xijω = 1, i ∈ I, ω ∈ Ω, . (19) 

∑

i∈I

diωxijω ≤ qjyj , j ∈ J, ω ∈ Ω, . (20) 

∑

s∈J :�is>(1+λ)�ij

xisω + yj ≤ 1, i ∈ I, j ∈ J, ω ∈ Ω, . (21) 

yj ∈ {0, 1}, j ∈ J, . (22) 

xijω ∈ {0, 1}, i ∈ I, j ∈ J, ω ∈ Ω. (23) 

In the above model, the objective function (17) together with constraints (18)
ensures the adequate computation of the minmax regret. The other constraints were
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already explained before. In particular, closed assignment constraints are a particular 
case of (21) by setting .λ = 0. 

The discussion presented in this section so far relies on the assumption that no 
probabilistic quantification is considered for the uncertainty. Robust optimization 
models and techniques can then come into play for supporting decision-making. 
This research direction has been pursued in the literature as done by Sun et al. 
(2021) who proposed a bi-objective robust optimization model considering two 
injury levels for the people affected by a disaster. In that work, temporary facilities 
(e.g., shelter sites) are to be located as part of the decisions to make. Yahyaei and 
Bozorgi-Amiri (2019) make use of robust optimization to design a relief network 
that includes locating shelter sites for temporary accommodation and selecting 
supportive distribution centers for supplying the shelter sites. The authors consider 
interval uncertainty for the amount of affected people in each population center and 
also assume that some supportive distribution centers may be disrupted by the same 
event affecting the populations to rescue. 

In addition to the lack of probabilistic quantification of the demand, in the above 
contents, we are assuming that the capacity constraints are hard constraints—no 
solution violating them is acceptable. Next, we complement the above contents by 
addressing these issues. 

Let us assume now that the demand vector .ξ = (
d1, . . . , d|I |

)
is actually a 

random vector and that a cumulative distribution function (CDF) has been estimated 
for it (e.g., using historical data). This allows casting the problem as a stochastic 
programming problem. Nevertheless, the exact paradigm of interest depends on the 
specific problem being considered. First, we note that the randomness of . ξ makes 
constraints (3) in models (1) –(6) no longer well-defined. Again we can resort to
a “fat solution” by devising a plan that works no matter the occurring scenario.
Nevertheless, next we consider an alternative.

Suppose that we have soft capacity constraints—if the capacity constraints are 
“slightly” violated, the solution is still acceptable. We could consider a penalty 
associated with surplus demand in the shelters and seek to minimize its expected 
value. This would define another objective in the problem. However, in that case, we 
would be assuming that it is undesirable to have surplus, which is not what we want. 
In fact, we are assuming the setting in which, up to a certain extent, having surplus 
is not an issue. In this case, we can resort to chance-constrained programming. We 
can define thresholds . γj (.j ∈ J ) corresponding to an acceptable probability of 
exceeding the capacity of shelter site j and replace the capacity constraints (3) by

.Pξ

[
∑

i∈I

dixij ≤ qjyj

]

≥ 1 − γj , j ∈ J. (24) 

The use of chance constraints allows us to further enrich the model by also imposing
a minimum throughput that justifies opening a shelter site. In practice, it may not
be acceptable that a shelter site is opened no matter the amount of demand it will
possibly accommodate. Let . β be the minimum threshold for the utilization rate of
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a shelter site. Since demand is stochastic, again, a minimum utilization rate for the 
shelter sites is not meaningful but a probabilistic constraint can be considered: 

.Pξ

[
∑

i∈I

dixij ≥ βqjyj

]

≥ 1 − ζj , j ∈ J. (25) 

In the above inequality, . ζj is the user-defined probability that the minimum 
threshold is not satisfied in shelter site .j ∈ J . A new model emerges: 

.opt (1) 

s. t. (2) , (6) , (4) , (5) ,

(24) , (25) ,

xij ≤ yj , i ∈ I, j ∈ J. (26) 

Note that constraints (26) are redundant when the capacity constraints are not
probabilistic. However, now we must impose them to make sure that allocations
are only made to open shelter sites.

The probabilistic constraints raise some mathematical challenges. In particular, 
we must find a tractable deterministic counterpart (or at least a good approximation 
for it). In practice, there are a few aspects that help us in finding such counterpart: 
(i) the number of demand points is large compared to the number of shelter sites 
opened. This means that a solution will typically consist of assigning many demand 
points to each shelter site. (ii) Often, the demand points result themselves from an 
aggregation—sum of many small demands. (iii) Demands are independent. In fact 
there are many examples of disastrous events that fully affect one population but 
not a nearby one (e.g., with floods or a volcanic eruption). Unfortunately, in other 
situations, there may exist some degree of correlation. Next, we proceed assuming 
independence since the existence of correlation renders our models intractable. 

The above arguments justify invoking the Central Limit Theorem for approxi-
mating the probability distribution of the demand allocated to a shelter site. Kınay 
et al. (2018) take advantage from these facts to tackle the problem considering 
.f (x, y) = Wmin. Kınay et al. (2019) follow the same reasoning to cast the problem 
in a multi-objective setting—the three objective functions revisited in the previous 
section were used. 

To make this chapter self-contained, we briefly review the elements underlying 
the approximate linear counterpart model. Let us define .μi = E[di] and . σ 2

i =
Var[di], .i ∈ I . Additionally, consider .Γ =

√∑
i∈I σ 2

i and denote by . zα the 
.α-quantile of the standard normal distribution. Under the above assumptions, the
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chance constraints can be approximated by 

.

∑

i∈I

μi

Γ
xij + z1−γj

n∑

m=1

λjmbm ≤ qj

Γ
yj , j ∈ J, . (27) 

∑

i∈I

μi

Γ
xij + zζj

n∑

m=1

λjmbm ≥ βqj

Γ
yj , j ∈ J, . (28) 

∑

i∈I

σ 2
i

Γ 2 xij =
n∑

m=1

λjmb2m, j ∈ J, . (29) 

n∑

m=1

λjm = yj , j ∈ J, . (30) 

λjm ≥ 0, j ∈ J, m = 1, . . . , n, . (31) 

(λj1, . . . , λjn) SOS2, j ∈ J. (32) 

In this model, n refers to the division of the .[0, 1] interval considering n break 
points. This number is user-defined. Variables . λ are actually auxiliary variables 
that help in identifying the exact segment of the piecewise linear function that is 
used. This also explains why they define a special ordered set of type 2 (SOS2): 
at most, two . λ variables can be positive, and if exactly two are positive, then they 
must be consecutive. The larger the number of breakpoints considered, the better the 
resulting model is as an approximate counterpart. However, it also becomes larger 
and thus potentially more difficult to tackle. The interested reader can refer to Kınay 
et al. (2018) for all details. 

An alternative to using the above probabilistic constraints consists of casting 
the problem as a two-stage stochastic programming problem: the shelter sites 
are decisions to implement here and now, whereas the allocation of the affected 
populations to the open shelters is implemented after demand is revealed (i.e., when 
an actual threat appears or a catastrophic event occurs, depending on the specific 
setting). A consequence of this two-stage decision process is that the total capacity 
associated with the open shelters may turn out to be not enough for the observed 
demand. In this case, we must consider surplus demand at one or several shelters 
or, similarly, we consider capacity shortage at the shelters. Let us focus on the 
objective function .f (x, y) = Wmin to illustrate this approach. Assuming a risk-
neutral decision-maker, the problem can be formulated as follows: 

.min − Wmin + Q(y), . (33) 

s. t. Wmin ≤ wjyj + M(1 − yj ), j ∈ J, . (34) 

yj ∈ {0, 1}, j ∈ J, (4)
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with .Q(y) = Eξ [Q(y, ξ)] and 

.Q(y, ξ) = min h(x(ξ)), . (35) 

s. t.
∑

j∈J

xij (ξ) = 1, i ∈ I, . (36) 

∑

i∈I

di(ξ)xij (ξ) ≤ qjyj + ψj (ξ), j ∈ J, . (37) 

∑

s∈J :�is>(1+λ)�ij

xis(ξ) + yj ≤ 1, i ∈ I, j ∈ J, . (38) 

xij (ξ) ∈ {0, 1}, i ∈ I, j ∈ J, . (39) 

ψj (ξ) ≥ 0, j ∈ J. (40) 

The first-stage problem seeks a shelter site selection maximizing the minimum
weight across the selected shelters plus a future “consequence” from that decision.
The latter is represented by the recourse function .Q(y). In the second-stage problem, 
the new variables .ψj (ξ) represent a minimum value for the capacity shortage at 
shelter .j ∈ J . Constraints (37) help in finding the shortages. The other second-stage
constraints have a straightforward meaning given the previous contents.

Note that we have one model of type (35) –(40) for every possible realization, . ξ , 
of the random vector . ξ . The notation used for the second-stage parameters highlights 
this. 

A natural second-stage objective is the average capacity shortage at the shelter 
sites, i.e., considering 

.h(x(ξ)) =
∑

j∈J ψj (ξ)
∑

j∈J yj

. (41) 

This is a nonlinear objective function that, nonetheless, can be easily linearized. To
do so, we can replace the fraction with a new variable, say .ψAVG(ξ), and then define 
variables .τj (ξ) = ψAVG(ξ) × yj , .j ∈ J . Now  we  set  

.h(x(ξ)) = ψAVG(ξ), (42) 

and add the following constraints to the second-stage problem:

.τj (ξ) ≤ ψAVG(ξ) × yj , j ∈ J,

τj (ξ) ≤ ψAVG(ξ), j ∈ J,

τj (ξ) ≥ ψAVG(ξ) − [
(1 − yj ) × ψAVG(ξ)

]
, j ∈ J,
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∑

j∈J 
τj (ξ) =

∑

j∈J 
(ψj (ξ) × yj ), 

τj (ξ) ≥ 0, j ∈ J, 

ψAVG(ξ) ≥ 0. 

.ψAVG(ξ) denotes an upper bound on the average capacity shortage. 
The major drawback of the above objective function .h(x(ξ)) is that the magni-

tude of the involved values easily becomes much different from that of .Wmin, which 
is in .(0, 1). This means that a decision will likely be too much influenced by the 
second-stage decision, which may lead to misleading results. This drawback can 
be overcome by considering the relative capacity shortage at the open shelters and 
by defining the second-stage objective function as the maximum relative capacity 
shortage. The second-stage problem can be written as follows: 

.Q(y, ξ) = min ϕ(ξ), . (43) 

s. t. ϕ(ξ) ≥
[∑

i∈I di(ξ)xij (ξ)

qj

− 1

]
− M(1 − yj ), j ∈ J, . 

(44) 
∑

j∈J

xij (ξ) = 1, i ∈ I, . (36) 

∑

s∈J :�is>(1+λ)�ij

xis(ξ) + yj ≤ 1, i ∈ I, j ∈ J, . (38) 

xij (ξ) ∈ {0, 1}, i ∈ I, j ∈ J, . (39) 

0 ≤ ϕ(ξ) ≤ 1. (45) 

In the above model, constraints (44) are those calling for a detailed explanation.
Due to the big M , these constraints are activated if .yj = 1; otherwise, they can be 
discarded. In case shelter site j is set open (i.e., .yj = 1), then 

. 

∑
i∈I di(ξ)xij (ξ)

qj

− 1

represents the relative capacity shortage at the shelter site with respect to the 
total capacity. A negative value indicates no shortage (the capacity is above the 
demand allocated to the shelter). A value greater than one indicates that the demand 
assigned to the shelter is more than the double of its capacity—situation that in 
practice we certainly wish to avoid. Thus, we impose .ϕ(ξ) to be smaller than one 
(constraints (45)), which means that we do not accept a capacity shortage at a
shelter greater than or equal to the capacity itself. Of course this is always feasible
only if the potential overall capacity at the shelter sites is at least equal to half of
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the demand in all scenarios. In the end, constraints (44) ensure that the objective
function represents the maximum relative capacity shortage.

If we have a finite number of scenarios as before, indexed in a set . Ω , then we 
can write the extensive form of the deterministic equivalent. Denoting by . πω the 
probability that scenario .ω ∈ Ω occurs with .πω ≥ 0 and .

∑
ω∈Ω πω = 1, the  full  

problem becomes 

.min − Wmin +
∑

ω∈Ω

πωϕω, . (46) 

s. t. Wmin ≤ wjyj + (1 − yj ), j ∈ J, . (34) 

ϕω ≥
[∑

i∈I diωxijω

qj

− 1

]
− M(1 − yj ), j ∈ J, ω ∈ Ω, . (47) 

∑

j∈J

xijω = 1, i ∈ I, ω ∈ Ω, . (48) 

∑

s∈J :�is>(1+λ)�ij

xisω + yj ≤ 1, i ∈ I, j ∈ J, ω ∈ Ω, . 

(49) 

yj ∈ {0, 1}, j ∈ J, . (4) 

xijω ∈ {0, 1}, i ∈ I, j ∈ J, ω ∈ Ω, . 

(50) 

0 ≤ ϕω ≤ 1, ω ∈ Ω. (51) 

The previous discussion is suitable for a risk-neutral decision-maker. If this 
is not the case, then capturing the future outcome by an expected value is not 
adequate. Due to its mathematical properties, the .α-conditional value-at-risk (.α-
CVaR) emerges as a possibility. This is a popular way to account for risk aversion 
(see, e.g., Shapiro 2021). To make this chapter self-contained, we provide the 
essential details. 

Given a shelter site solution . y, the  .α-CVaR that we denote by .Ψα(y) is given by 
the expected value of the objective function for the .(1− α) × 100% worst scenarios 
(for that shelter site solution), i.e., it is the expected cost conditional to the scenarios 
whose value exceeds a certain threshold, say .ηα(y). The latter is in fact the value-at-
risk (associated with shelter site solution . y), that is, the .α-quantile of the (random) 
objective function. 

It is worth noticing that .α-CVaR contains the expected cost as a particular case. 
In fact, when .α = 0, all scenarios become involved in the evaluation of .Ψα(y). 

In general, unless an analytical representation for .ηα(y) can be derived, it is very 
difficult to find a solution of minimum .α-CVaR. For a given solution . y, it is already 
difficult to express .Ψα(y) since .ηα(y) is involved in its definition. One possibility
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(see, e.g., Rockafellar & Uryasev 2000, 2002) is to consider the function 

. Φα(y, η) = η + 1

1 − α
E [(R(y; ξ) − η) |R(y; ξ) > η] ,

where .R(y; ξ) is the random variable representing the optimal value of the problem 
when we fix the shelter site solution, . y. 

If uncertainty can be captured by finite set of scenarios indexed in a set, say . Ω , 
then the previous function reduces to 

. Φα(y, η) = η + 1

1 − α

∑

ω∈Ω

(
R(y; ξω) − η

)+
πω.

In this case, the .α-CVaR of . y can be computed as 

. Ψα(y) = Φα(y, η(y)) = min
η

Φα(y, η).

The problem of finding a feasible vector .y ∈ {0, 1}|J | with the smallest .α-CVaR 
value can formally stated as 

. min
y∈{0,1}|J |

Ψα(y) = min
y∈{0,1}|J |

Φα(y, η(y)) = min
y∈{0,1}|J |, η

Φα(y, η)

Finally, we can formulate the problem as follows: 

.min η + 1

1 − α

∑

ω∈Ω

πωρω, . (52) 

s. t. ρω ≥
(

−Wmin +
∑

ω∈Ω

πωϕω

)

− η, ω ∈ Ω, . (53) 

ρω ≥ 0, ω ∈ Ω, . (54) 

Wmin ≤ wjyj + (1 − yj ), j ∈ J, . (34) 

ϕω ≥
[∑

i∈I diωxijω

qj

− 1

]
− M(1 − yj ), j ∈ J, ω ∈ Ω, . (47) 

∑

j∈J

xijω = 1, i ∈ I, ω ∈ Ω, . (48) 

∑

s∈J :�is>(1+λ)�ij

xisω + yj ≤ 1, i ∈ I, j ∈ J, ω ∈ Ω, . (49) 

yj ∈ {0, 1}, j ∈ J, . (4)
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xijω ∈ {0, 1}, i  ∈ I, j ∈ J, ω ∈ Ω, . (50) 

0 ≤ ϕω ≤ 1, ω ∈ Ω. (51) 

In line with the above approach, Ozbay et al. (2019) propose a three-stage stochastic 
programming model for a shelter site location problem aiming at hedging against 
the consequences of an earthquake. The authors consider the real circumstance in 
which an aftershock occurs which, sometimes, has consequences not smaller than 
the main event. For this case, the authors consider shelter site selection made in two 
stages with the allocation of affected populations to the shelter sites adapted to the 
aftershock (if advantageous). 

We end this section by emphasizing again the contents presented in terms of 
shelter site location are valid both when we are planning for sheltering populations 
threatened by an upcoming disaster (e.g., a hurricane) and populations that have 
suffered from a catastrophic event (e.g., a landslide or a flood). 

4 Evacuation Traffic Assignment Approaches 

In this section, we assume that shelter location and allocation decisions are already 
given, and we deal with assigning evacuation traffic to routes in the network to 
optimize a system or a user (evacuee) objective or a combination of both. 

The models proposed in the evacuation planning and management literature are 
mostly extensions of existing traffic assignment models (Bayram, 2016). These 
models can mainly be categorized with respect to the traffic assignment approach 
adopted, i.e., system optimal (SO), user equilibrium (UE), nearest allocation (NA), 
and constrained system optimal (CSO). In SO approach, evacuation traffic is 
distributed evenly throughout the road network to reduce congestion effects and to 
minimize total evacuation time. In UE, however, evacuees act selfishly and minimize 
their individual evacuation times under the assumption that they have perfect 
information regarding the road network and the traffic conditions. An equilibrium 
condition is reached when no traveler can improve his/her travel time by changing 
routes (Sheffi, 1985). NA approach assigns evacuees to nearest safe destinations. 
And finally, CSO relaxes the requirement of nearest assignment but ensures that 
evacuees are assigned to acceptable fair paths only (Jahn et al., 2005; Bayram et al., 
2015). For basic theories and models in traffic management problems, the reader is 
referred to Sheffi (1985). 

Consider a directed network .G = (N,A), where N is the set of nodes and A is 
the set of arcs (road segments) in the network. Each arc a is associated with a convex 
travel time function .ta(fa), when the traffic flow on that arc is . fa . Let .I ⊂ N be the 
set of origin (demand) nodes from where the population at risk is to be evacuated, 
and .J ⊂ N is the set of destination nodes (safe shelter sites) evacuees are assigned. 
For .i ∈ I and .j ∈ J , let  . dij be the evacuation traffic demand (trip rate), . vk

ij be the 
flow assigned to route k, and . Pij be the set of all routes from origin i to destination
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j . Below is the UE formulation (Sheffi, 1985): 

.min
∑

a∈A

∫ fa

0
ta(w)dw, . (55) 

s. t.
∑

k∈Pij

vk
ij = dij , i ∈ I, j ∈ J, . (56) 

fa =
∑

i∈I, j∈J

∑

k∈Pij :a∈k

vk
ij , a ∈ A, . (57) 

vk
ij ≥ 0 k ∈ Pij , i ∈ I, j ∈ J. (58) 

The objective function is the sum of the integrals of the travel time functions 
over arcs. Constraints (56) ensure that the flow on all paths connecting each origin-
destination pair i-j is equal to the evacuation demand for that origin-destination. 
Constraints (57) compute traffic flow on every arc, and constraints (58) define the 
variable domains. 

For the SO formulation, the objective function is replaced with 

.

∑

a∈A

ta(fa)fa. (59) 

Given a path k, let .lk = ∑
a∈k la be its normal length, where . la is the normal length 

(geographical distance, free-flow travel time, travel time in UE) of arc a. For  the  
CSO model, objective function is the same as that of SO, and the set of acceptable 
fair paths from origin i to destination j is defined as . P λ

ij = {k ∈ Pij : lk ≤
(1+λ)l∗ij }, where .l∗ij = mink∈Pij

lk is the normal length of the shortest path between 
.i ∈ I and .j ∈ J and .λ ≥ 0 is a tolerance/fairness factor. In other words, the CSO 
model can be obtained by setting .vk

ij = 0 for all .i ∈ I , .j ∈ J , and . k ∈ Pij \ P λ
ij

in the SO model. When .λ = 0, the CSO model is the same as the UE/NA traffic 
assignment model, where only UE travel times/shortest paths can be used. When 
.λ = ∞, a model for the SO traffic assignment is obtained. 

The majority of the evacuation models try to minimize total evacuation time, 
network clearance time, maximum latency, and total risk or maximize the num-
ber/percentage of people evacuated up to a specific time. Whichever goal is pursued, 
it is important to consider the congestion effect in the model. This is achieved 
through travel time functions, which are also referred to as link performance 
functions, link capacity functions, volume-delay curves, link impedance functions, 
and latency functions. These functions represent travel time on a road segment 
as convex, positive, and monotonically increasing functions of traffic flow, i.e., 
as traffic flow (congestion) on a road segment increases, travel speed decreases 
and hence travel time increases. Among these functions, Greenshields’ function 
(Greenshields et al., 1935), Bureau of Public Roads (BPR) function (TAM, 1964), 
and Davidson’s function (Davidson, 1966) are the most commonly used ones.
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Greenshields’ function defines the relationship between speed and density and is 
given below: 

. ϑ(k) = ϑ0

(
1 − k

kj

)
, 0 ≤ k ≤ kj ,

where .ϑ(k) is the speed, . ϑ0 is the free-flow speed, and k and . kj are the density and 
jam density of the road segment, respectively. 

BPR function is represented with the following mathematical expression: 

. t (f ) = t0

(

1 + α

(
f

c

)β
)

,

where .t (f ) is the travel time on the road segment; f and c are the amount of traffic 
assigned to the road segment and the capacity of road segment, respectively; and 
. t0 is the theoretical free-flow travel time when there exist no vehicles on the road 
segment. The parameters .α ≥ 0 and .β ≥ 0 are the tuning parameters defined in 
accordance with the road characteristics, which generally are taken as 0.15 and 4, 
respectively (TAM, 1964). 

Davidson’s function (Davidson, 1966) is formulated as 

. t (ρ) = t0
(
1 + δ

ρ

1 − ρ

)
,

where .t (ρ) is the travel time on the road segment, . δ is a delay parameter, and . ρ =
f/c is the degree of saturation. 

5 Planning for Shelter Locations for an Effective Evacuation 
Management: An Integrated View 

Bayram (2016) points out that not considering evacuation traffic assignment and 
shelter location decisions simultaneously would lead to suboptimal solutions as the 
selection of safe shelter locations has a direct impact on traffic assignment. Most of 
the models found in the evacuation literature that consider shelter location decisions 
are bi-level models, i.e., they decide on the locations and number of shelters in an 
SO manner at the upper level while they assign evacuees to routes and to shelters 
in a UE manner at the lower level. There are also single-level models that optimize 
shelter location and traffic assignment decisions in an SO or CSO manner (see, e.g., 
Abdelgawad & Abdulhai 2009; Xie & Turnquist 2009, as well as Bayram 2016 and 
the references therein). 

Like in any other area of humanitarian logistics and disaster management, 
evacuation operations are planned under uncertain information about the future.
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The sources of uncertainty include evacuation demand due to unpredictability of 
time, exact location, and the impact of the disaster (which may also impact the 
existing shelters) along with the human behavior. The road network may also lose 
some capacity due to debris, flooding, landslides, and damages. Not accounting 
for uncertainty may result in further losses (O’Driscoll et al., 2005; Lindell and 
Prater, 2007). In the literature focusing on evacuation planning and management 
under uncertainty, the problems that also include shelter location decisions are cast 
either as bi-level models (Shen et al., 2008; Kulshrestha et al., 2011; Li et al., 2012) 
or as single-level models (Bayram & Yaman, 2018b,a) as described earlier. While 
Shen et al. (2008) consider the uncertainty in demand and disruption in shelters, 
Kulshrestha et al. (2011) and Li et al. (2012) consider only demand uncertainty 
and disruption in shelters, respectively. Bayram and Yaman (2018a,b) are the only 
studies that consider demand and capacity uncertainty and disruption in shelters 
simultaneously. 

In this section, we extend the CSO model defined in Sect. 4 with the purpose 
of ensuring a fair assignment of evacuees to shelters and to routes. Since the CSO 
model is a generalization of UE/NA models, UE and NA model versions can easily 
be obtained from it as described. The problem consists of deciding where to locate 
p shelters and how to assign evacuees to safe shelters and to routes leading to the 
shelters so as to minimize the total evacuation time. There may be reasons for 
limiting the number of shelters that can be open such as an endogenous budget 
and/or personnel constraints. 

The problem can be cast as a two-stage stochastic programming problem: in the 
first stage, a decision is made about the shelter site locations to open; the recourse 
actions comprise the shelter and traffic assignment decisions. 

We assume that uncertainty can be captured by a finite set of scenarios, indexed 
in set Ω with each scenario specifying the values of all uncertain parameters. As 
before, πω denotes the probability associated with scenario ω ∈ Ω . In particular, we 
assume that the potential shelter site locations may be disrupted upon the occurrence 
of a disaster. Hereafter, we consider the following notation: 

diω, demand at origin i ∈ I under scenario ω ∈ Ω , i.e., number of passenger 
vehicles that will be evacuated under the scenario. 

Jω ⊆ J , set of potential shelters that are not disrupted in scenario ω ∈ Ω . 
caω, (possibly degraded) capacity of road segment a under scenario ω ∈ Ω; 

0 ≤ caω ≤ ca , for all a ∈ A. 
Aω ∈ A, set of usable road segments, i.e., the set of segments such that caω > 0, 

a ∈ Aω. 
Pijω, set of alternative paths from demand point i ∈ I to shelter j ∈ J under 

scenario ω ∈ Ω . 

A shelter site j ∈ J is reachable from demand point i ∈ I under scenario ω ∈ Ω 
if this shelter is not disrupted and if there exists a route with usable arcs from i to 
j under this scenario (i.e., Pijω 	= ∅). Accordingly, we can define J iω as the set of 
reachable shelters for demand point i ∈ I under scenario ω ∈ Ω . For feasibility
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purposes, we assume that there exists at least one reachable shelter for every origin 
i ∈ I under every scenario ω ∈ Ω . 

To ensure fairness, the evacuation planning authority may not be willing to assign 
an evacuee to a path whose normal length is more than (1 + λ) times the normal 
length of a shortest path to the closest open and usable shelter under a given scenario. 
This implies that some evacuees may be assigned to an open shelter within this 
fairness level although it might not be the nearest one. 

We define P λ 
ijω = {k ∈ Pijω : lk ≤ (1 + λ)l∗ijω}. This is the set of acceptable 

and usable paths from origin i to destination j under scenario ω ∈ Ω considering a 
fairness level λ. l∗ijω denotes the length of a shortest path from i to j under scenario 
ω ∈ Ω . To compute the above sets, geographical distances, free-flow travel times 
t0 aω, or travel times in UE solution can be used. For a given origin i ∈ I and a 
scenario ω ∈ Ω , the set of acceptable paths is defined based on the length of a 
shortest path from node i to the closest open and usable shelter. Since the shelters 
that will be open is not known a priori, the actual set of acceptable paths is also not 
known. Nevertheless, we know that this set is a subset of the union of P λ 

ijω over all 
potential shelters j ∈ J . 

To model mathematically the integrated problem, we keep using a binary variable 
yj equal to 1 iff a shelter is located/opened at node j ∈ J . These are the first-stage 
decision variables. As for the second-stage variables, we consider vk 

ijω representing 

the fraction of the demand of origin i ∈ I that uses path k ∈ P λ 
ijω to shelter j ∈ Jω 

under scenario ω ∈ Ω . Finally, faω is the amount of traffic on arc a ∈ Aω under 
scenario ω ∈ Ω . 

The stochastic constrained system optimal (SCSO) evacuation model (Bayram 
& Yaman, 2018b,a) is the following: 

.min
∑

ω∈Ω

πω

∑

a∈Aω

ta(faω)faω, . (60) 

s.t.
∑

j∈J

yj = p, . (61) 

∑

j∈Jω

∑

k∈P λ
ijω

vk
ijω = 1, ∀i ∈ I, ω ∈ Ω, . (62) 

∑

j∈J iω

yj ≥ 1, ∀i ∈ I, ω ∈ Ω, . (63) 

∑

k∈P λ
ijω

vk
ijω ≤ yj , ∀i ∈ I, ω ∈ Ω, j ∈ Jω, . (64) 

∑

s∈Jω

∑

k∈P λ
isω:lk>(1+λ)l∗ijω

vk
isω + yj ≤ 1, ∀i ∈ I, ω ∈ Ω, j ∈ Jω, . (65)
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faω =
∑

i∈I

∑

j∈Jω

∑

k∈P λ 
ijω:a∈k 

diωvk 
ijω ∀ω ∈ Ω, a ∈ Aω, . (66) 

vk
ijω ≥ 0, ∀ω ∈ Ω, k ∈

⋃

i∈I, j∈Jω

P λ
ijω, . (67) 

yj ∈ {0, 1}, ∀j ∈ J. (68) 

The objective function (60) accounts for the expected total evacuation time spent
by the evacuees in the network. Constraint (61) limits the number of shelters open
to this pre-specified number p. Constraints (62) ensure that for every scenario, the
demand of every origin is assigned to a shelter as well as to a route leading to that
shelter. Constraints (63) guarantee at least one open and reachable shelter for each
demand point under each scenario. Constraints (64) prevent assigning demand to a
non-open shelter. Constraints (65) ensure that if the shelter is open and usable under
some scenario, then the demand routed to that shelter should use a path with a length
that respects the imposed fairness level. The equalities (66) account for the traffic on
every arc under each scenario. Finally, Constraints (67) and (68) define the domain
of the decision variables.

Note that in the above model, Constraint (61) can be replaced with a budget
constraint if the data on the associated costs are available.

In some applications, the evacuation management authority may require all the
evacuees from the same origin to be allocated to the same shelter although allowing
the traffic to be distributed between alternative routes connecting the origin to the
shelter. To enable having separate control levels over the assignment of demand to
shelters and to alternative paths, we define an additional set of decision variables:
for i ∈ I , j ∈ J , and ω ∈ ω, xijω is equal to one if origin i is assigned to shelter j

under scenario ω ∈ Ω and zero otherwise. Using these variables, the new condition
can be embedded in the model by adding

.

∑

k∈P λ
ijω

vk
ijω = xijω, i ∈ I, j ∈ J, ω ∈ Ω. (69) 

These constraints impose that the demand originated at i can only be routed using
paths connecting i and the destination shelter.

Another variant of the base model emerges when shelters are capacitated as we
considered in Sects. 2 and 3. In this case, we need to add 

.

∑

i∈I

∑

k∈P λ
ijω

diωvk
ijω ≤ qjyj , ω ∈ Ω, j ∈ Jω, (70) 

to the model. As before, qj stands for the capacity of shelter j ∈ J . Unfortunately,
due to the inclusion of (70), the stochastic problem no longer has (relatively)
complete recourse, i.e., there may be some first-stage feasible solution for which
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no second-stage feasible completion exists for some scenarios. Still, we can try to 
reduce second-stage infeasibility by replacing (70) with

.

∑

j∈J iω

qj yj ≥ diω, ∀i ∈ I, ω ∈ Ω, (71) 

and imposing

.

∑

j∈Jω

qj yj ≥
∑

i∈I

diω, ω ∈ Ω, (72) 

with Jω = ∪i∈I J iω.
The SCSO evacuation problem is NP-hard even when there is a single scenario,

α = 0 (congestion parameter used in expression (60) ), and G is bipartite. In fact,
this specification reduces the problem to the classical p-median facility location
problem.

The SCSO evacuation problem also generalizes the SO and UE/NA traffic
assignment approaches when geographical distances and UE travel times are used
as the length of a path. When λ = 0, we have the UE/NA model, and when λ = ∞,
we obtain a model for the SO traffic assignment.

Finally, the SCSO evacuation problem generalizes the congested facility location
problem (Desrochers et al., 1995; Fischetti et al., 2016) where the congestion 
costs at facilities can be modeled by splitting facility nodes into arcs with convex 
congestion costs. 

6 Conclusions 

This chapter discussed two major classes of problems stemming from the prepared-
ness phase in humanitarian logistics: shelter site location and evacuation traffic 
assignment. Different models were discussed throughout the chapter to highlight 
different assumptions, underlying conditions, decisions to make, and sources of 
uncertainty. Above all, we conclude that the existing knowledge gathered allows 
building progressively more comprehensive models that hopefully can better sup-
port authorities when it comes to planning in advance for evacuation of populations 
either due to a catastrophic event or due to a serious threat foreseen. 

It is important to note that the problems discussed in this chapter involve people 
supposedly affected by a disaster. This is a setting in which human behavior 
becomes of major relevance. In many situations, one cannot expect the affected 
populations to act in a purely rational way. For instance, part of the affected people 
may simply not wait for being rescued or may not look for sheltering in the 
best possible available location. The models discussed neglect this unpredictable 
behavior. The relevance of capturing such source of uncertainty in humanitarian
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logistics is an interesting topic for debate. We refer the reader to Bayram (2016) for  
more details on evacuee behavior analyses and how they can be incorporated into 
evacuation modeling approaches. 

Another aspect of relevance regards the given distribution function assumed 
in the context of stochastic programming and chance-constrained programming. 
Often, there is some “ambiguity” in such distribution. Therefore, the stability of the 
solutions obtained using a specific distribution is certainly an interesting research 
direction. The models presented do not reflect any possible deviations between 
the probability distribution adopted and the real one. Again, this is an interesting 
research line to pursue. 

In any case, the problems and models discussed in this chapter are certainly 
of help when it comes to finding solutions that hedge against uncertainty in 
humanitarian logistics, namely, when planning for sheltering and evacuation. 
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Stochastic Components of the Attraction 
Function in Competitive Facilities 
Location 

Tammy Drezner 

Abstract In this chapter, we briefly review basic competitive facilities location 
models and discuss many extensions that have a stochastic component. Examples 
include the minimax regret objective, the probability of not meeting a threshold, 
and the leader-follower game. The most widely used user choice rule is the one 
applied in the probabilistic gravity model also referred to as the Huff model. 
There are p facilities located in the area. The probability that a customer selects 
a particular facility to patronize is a function of all facilities’ attractiveness levels 
and travel distances. We discuss the assessment of the attractiveness level of 
competing facilities which is based on stochastic analysis. We also present other 
non-competitive location models that apply the gravity rule in the formulation of 
their model. 

Keywords Competitive facilities location · Stochastic models · Minimax regret · 
Leader-follower · Gravity model 

1 Introduction 

The competing facilities location problem is the location of one or more facilities 
among existing competing facilities. The facilities attract demand generated by 
customers in the area. The most common objective is to maximize the market share 
captured by the new facilities. Over the years, many ways of estimating the market 
share captured by each facility were proposed. It is assumed that customers divide 
their buying power among facilities according to the facilities’ attractiveness and 
their distance relative to other facilities. Once the market share attracted by one or 
more facilities can be estimated, a procedure for finding the best locations for the 
new facilities can be constructed. 
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Recent reviews of competitive facilities location models are Berman et al. (2009), 
Eiselt (2011), Drezner (2019), Kress and Pesch (2012), Pelegrín et al. (2018), 
Marianov et al. (2020), Lederer (2020), and Marianov and Eiselt (2016). 

2 Probabilistic Models 

There are several models that assume that the market share captured by a facility is 
determined by the probability that customers are attracted to that facility. 

2.1 The Probabilistic Gravity Model 

The most widely used competitive model is the probabilistic gravity model, which 
is termed in many papers as the gravity model or the Huff model. Reilly (1931) 
proposed the gravity model where the area between facilities is partitioned accord-
ing to the physical law of gravity and all customers in such an area patronize the 
facility determined by the gravity rule. The probabilistic gravity model, sometimes 
referred to as the “Huff” model, was proposed by Huff (1964, 1966). According 
to the probabilistic gravity model, the probability that a customer patronizes a 
facility is proportional to its attractiveness and declines according to a distance 
decay function. The basic probabilistic gravity model is based on p competing 
facilities and n demand points that exist in an area (Drezner, 1994b). A distance 
decay function .f (d, λ) with a parameter . λ, depending on the retail category, is 
defined. For example, the distance decay function for grocery stores is different 
from the one for shopping malls. 

In the original gravity model (Reilly, 1931), it is assumed that the distance decay 
parallels gravity decay and thus .f (d) = 1

d2
. Huff (1964, 1966) suggested a decay 

function .f (d, λ) = 1
dλ . Other distance decay functions include: exponential decay 

.f (d, λ) = e−λd (Wilson, 1976; Hodgson, 1981), .f (d) = e−1.705d0.409 (Bell et al., 
1998), and a logit function (Drezner et al., 1998b). Based on a real dataset, Drezner 
(2006) showed that exponential decay .f (d, λ) = e−λd fits the data better than a 
power decay .f (d, λ) = 1

dλ . It is well recognized that the decay function varies 

across retail categories. For example, for the decay function .f (d, λ) = 1
dλ , it was  

found that .λ = 3 for grocery stores (Huff, 1966), .λ = 3.191 for clothing stores 
(Huff, 1964), .λ = 2.723 for furniture stores (Huff, 1964), and .λ = 1.27 for shopping 
malls (Drezner, 2006).
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Let: 

.Bi be the buying power at demand point i for . i = 1, . . . , n

.dij be the distance between demand point i and facility j 
.Aj be the attractiveness of facility j based on its features, without consider-

ing distances . dij , for . j = 1, . . . , p
.f (d, λ) be the distance decay function 
.λ be the parameter of the distance decay function 
.Mj be the expected market share captured by facility j 

The estimated market share captured by facility j according to the gravity model is: 

.Mj =
n∑

i=1

Bi

Ajf (dij , λ)
p∑

k=1
Akf (dik, λ)

. (1) 

where the distance decay function .f (d, λ) is the same for all competing facilities 
in the same retail category. Note that some models assume a decay function . f (d)

without a parameter . λ. 

2.2 Random Utility 

The random utility rule (Leonardi & Tadei, 1984; Drezner & Drezner, 1996) is an  
extension of the utility rule (Drezner, 1994a). In the utility rule, the utility function 
is defined as a weighted sum of attributes minus the distance. The weight of each 
attribute is determined by a customer’s opinion survey. Hotelling (1929) proposed 
that competitors compete by charging different mill prices and customers select the 
facility that provides the lowest total price of mill price plus the cost of travel. Many 
early competitive location models assumed that each customer patronizes the closest 
facility which is the case that all the weights are zero (Hakimi, 1981; Drezner, 
1982; Hakimi, 1983, 1986, 1990; ReVelle, 1986; Ghosh & Rushton, 1987; Serra 
& ReVelle, 1995). 

In the random utility model, the utility function weights, except for the distance, 
are assumed to be randomly distributed. Each customer patronizes the facility with 
the largest utility according to his assessment of the parameters. Therefore, not all 
customers residing at the same demand point patronize the same facility. 

2.3 Cover-Based Model 

Launhardt (1885) and Fetter (1924) coined the term “economic law of market 
areas.” This concept was formalized by defining a “radius of influence,” which is
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at the core of central place theory (Lösch, 1954; Christaller, 1966). According to 
central place theory, there is a maximum “range of the good,” depending on retail 
category, that customers are willing to travel to obtain the good. ReVelle (1986) 
coined the term “sphere of influence.” Drezner et al. (2011, 2012) proposed that each 
competing facility has a sphere of influence determined by its attractiveness level. 
More attractive facilities have a larger sphere of influence. The buying power spent 
by a customer in the sphere of influence of several facilities is divided among the 
competing facilities. The buying power of a customer located outside all the spheres 
of influence is lost. Drezner et al. (2020a) refined the model by assuming that 
patronage does not drop abruptly at the radius of influence, but declines gradually 
near that radius. 

3 Estimating Model Parameters 

3.1 Distance Correction 

In most location models, it is assumed that demand is generated at demand 
“points.” In reality, demand is generated in neighborhoods, and not all residents in a 
neighborhood reside at the same distance from a facility. The distances between 
demand points and the facility follow some probability distribution such as a 
uniform distribution. Demand generated in an area (for non-competitive location 
models) is investigated in, for example, Wesolowsky and Love (1971). Listing all 
individual customers is impractical. One way, termed the aggregation problem, is 
to partition the set of demand points to subsets and replace each subset by a single 
point (Hodgson & Neuman, 1993; Plastria & Vanhaverbeke, 2007; Francis et al., 
2009). 

Drezner and Drezner (1997) proposed a distance correction to the gravity model. 
They found that if the area of a demand “point” is A and the distance to a facility 
from the center of the area (the demand point) is d, then the corrected distance to be 
used in the gravity model is about .

√
d2 + 0.24A. 

Drezner and Drezner (1997) used an example problem of 100 demand points in a 
square of size 10 by 10 with 7 existing facilities. Each demand point has an area of 
1. The market share captured by the new facility is plotted in Drezner and Drezner 
(1997) and depicted in Fig. 1. On the left, the surface plot of the “standard” gravity 
model using .f (d) = 1

d2
as the decay function is depicted. In the middle, the market 

share captured when demand is continuous in the 10 by 10 square is shown. On the 
right, the market share surface using a decay function of .f (d) = 1

d2+0.24
(distance 

correction) is depicted. When demand is generated at demand “points,” there are 
many local maxima at various locations. The surface on the right is “smooth” and 
very close to the continuous surface with two local maxima.
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Demand generated at points. Continuous demand in the square. Using distance
√

d2 + 0.24. 

Fig. 1 Discrete and continuous market share surfaces 

3.2 On the Attractiveness Level of Competing Facilities 

The models for estimating the captured market share (except for the proximity rule) 
rely on a good estimate of the facilities’ attractiveness levels. Therefore, estimating 
the attractiveness of a facility is an important component required for a successful 
implementation of the models. 

Nakanishi and Cooper (1974) suggested to determine a list of properties and 
calculated the attractiveness of a facility as a product of these properties’ values, 
each raised by a power. Many researchers (e.g., Bell et al., 1998; Jain & Mahajan, 
1979; Schuler, 1981; Timmermans, 1988; Drezner et al., 1998a) conducted public 
opinion surveys to determine the attributes affecting the attractiveness of the 
competing facilities and then establish their attractiveness. 

Properties that were found by opinion surveys to affect attractiveness include: 

Supermarkets: price (Prosperi & Schuler, 1976); price, freshness, availabil-
ity, convenience, quality service, parking (Schuler, 1981); choice range for 
daily/non-daily goods, price for daily/non-daily goods, parking (Timmermans, 
1988); store image, layout, appearance, accessibility, service, employee compo-
sition (Jain & Mahajan, 1979); cleanliness, brands I like, better produce, low 
prices (Drezner, 1994a); cost of products (Bell et al., 1998). 

Clothing: parking availability, choice range (Timmermans, 1982). 
Central Business District: price, visual appearance, reputation, range of goods, 

shopping hours, atmosphere, design, service (Downs, 1970). 
Shopping Malls: variety of stores, mall appearance, favorite brand names 

(Drezner et al., 1998a). They tested six more attributes that were found non-
significant: mall prices, distance to mall, adequate parking, mall safety, food 
court/restaurants, and movies/entertainment. 

Drezner and Drezner (2002) suggested to apply the available data of buying 
power at communities and the reported market share captured by facilities to 
estimate the attractiveness levels of the competing facilities by a least square model. 
The best attractiveness levels that yield market shares as close as possible to the
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reported market shares are found. This method does not require any public opinion 
surveys. 

Drezner (2006) estimated the attractiveness levels of 10 shopping malls in 
Orange County, California, by analyzing data obtained from a survey of 3,112 
intercepted customers. Customers were not asked about their “opinion” on attributes 
of the shopping mall. They were asked only about their residence zip code and 
whether they came from home. 1,660 intercepted customers came from home, and 
their information was used in the analysis. Two distance decay functions were 
tested: power decay . 1

dλ and exponential decay .e−λd . By defining the attractiveness 
levels of the malls and . λ as variables, she compared the best fit between the expected 
number of customers from each zip code to the actual number. In conclusion, 
exponential decay provided better fit to the data and is recommended as the preferred 
decay function. 

Drezner et al. (2020b) proposed that each facility has a different distance decay 
function rather than a multiplicative attractiveness level. As the distance increases, 
the decay in patronage by more attractive facilities is slower than the decay by 
less attractive facilities. The distance decay parameter can be estimated by a simple 
survey of intercepted customers inquiring only about the origin of their trip, and no 
opinion survey, as was suggested in Drezner (2006). No modifications are required 
in order to apply existing solution algorithms to the new model. The effectiveness 
and accuracy of the new approach is demonstrated using the Drezner (2006) dataset. 

Drezner et al. (2022) further refined the gravity model by extending the mod-
ification proposed in Drezner et al. (2020b). When specifying the distance decay 
function, the basic gravity model and its variants use actual distance. But in reality, 
travel time to a retail outlet is only a fraction of the time spent on shopping trips. 
They propose the introduction of an extra distance parameter . α. The resulting 
market share formulation is: 

.Mj =
n∑

i=1

Bi

f (dij + α, λj )
p∑

k=1
f (dik + α, λk)

. (2) 

For .f (d, λ) = e−λd , which is the recommended decay function (Drezner, 2006), 
the formula (2) for the market share is: 

.Mj =
n∑

i=1

Bi

e−λj (dij +α)

p∑
k=1

e−λk(dik+α)

. (3) 

The difference between (3) and (2) is the additional extra distance . α. If  .α = 0, 
formulation (3) is equivalent to (2). Formulation (3) extends the original gravity 
model (1) in two ways. First, every facility may have a different parameter . λj , and 
second, . Aj is replaced by .eλj α . Drezner et al. (2022) found empirically by linear 
regression on the dataset of Drezner (2006) that indeed .Aj ≈ e−αλj for . α = 6.71
with p-value of 0.0025.
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Drezner et al. (2018) suggested a model where attractiveness levels are not 
constants but follow some probability distribution with a mean and variance. All 
models assume a given attractiveness level obtained by surveys or other approaches 
and apply the gravity model based on these values. These attractiveness levels 
are actually the means of the distribution. Drezner et al. (2018) showed that 
the “effective” attractiveness level is lower than the mean and the decrease is 
proportional to the variance divided by the mean. The increase in market share by 
increasing the attractiveness by . Δ is lower than the loss in the market share by 
decreasing the attractiveness by . Δ. Therefore, for a better estimate of the captured 
market share, the attractiveness level should be replaced by the effective one. 

4 Uncertainty-Based Objectives 

4.1 Minimax Regret Criterion 

Drezner (2009) incorporated future market conditions into the gravity model for the 
retail facility location. Future market conditions were analyzed as a set of possible 
scenarios. The best location for a new retail facility is at a location where the market 
share captured at that location is as close to the maximum as possible regardless 
of which future scenario takes place. Each scenario may also span different time 
horizons. The objective is the minimax regret which is used in other models of 
location analysis, for example, Daskin et al. (1997), Puerto et al. (2009), and 
Averbakh and Berman (2000). 

Suppose that there are K possible scenarios, k = 1, . . . , K . For each scenario, we 
can calculate the market share Mk(X) at location X. The maximum buying power 
that can be captured according to each scenario, M∗

k = max 
X 

{Mk(X)}, is calculated. 
The minimax regret objective R(X), to be minimized by selecting the best location 
X, is then: 

. R(X) = max
k=1,...,K

{
M∗

k − Mk(X)
}

Drezner (2009) applied a multi-start heuristic approach to find M∗
k and minimize 

R(X) for the location of one facility in the plane. Exact algorithms that can find the 
optimal solution (Drezner & Suzuki, 2004; Hansen et al., 1981) can be implemented. 

4.2 The Threshold Objective 

Drezner et al. (2002) suggested a different objective for competitive location 
models. Rather than the objective of maximizing the total buying power attracted by 
a chain, there is a minimum buying power threshold T to be met. If the chain fails to
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attract the buying power T , the company fails. The proposed objective is minimizing 
the probability that the company fails to meet the threshold. The threshold concept 
has been employed in financial circles as a form of insurance on a portfolio, either 
to protect the portfolio or to protect a firm’s minimum profit, for example, Jacobs 
and Levy (1996); Olsen (1997); Johansson et al. (1999). 

In competitive facility location, let the buying power at demand point 1 ≤ i ≤ n 
be distributed according to some distribution with a mean of μi and a standard 
deviation σi . The buying powers of two demand points i and j are correlated with a 
correlation coefficient rij . The total buying power attracted by the chain has a mean 
of μ and a standard deviation σ (see Drezner et al. (2002) for detailed calculations). 
The objective function is to minimize p(X) = P

(
Z ≤ T −μ 

σ

)
. Any cumulative 

distribution is monotonically increasing; thus, minimizing p(X) is equivalent to 
minimizing T −μ 

σ . 
This problem was solved heuristically in Drezner et al. (2002). It is possible to 

solve it optimally using BTST (Drezner & Suzuki, 2004) or BSSS (Hansen et al., 
1981). Drezner and Drezner (2011b) replaced the weighted sum objective of the 
p-median problem by the objective of minimizing the probability of exceeding a 
threshold of the weighted sum of distances. 

5 Refinements of the Probabilistic Gravity Model 

5.1 Leader-Follower Models 

Drezner and Drezner (2017) provide a review of the leader-follower model. Other 
papers on the topic are Plastria and Vanhaverbeke (2008); Küçükaydın et al. (2012). 

There are two well-researched two players’ simultaneous and sequential games, 
Nash equilibrium (Nash, 1951) and the leader-follower game, which is also termed 
the von Stackelberg equilibrium (Stackelberg, 1934) and in voting theory is known 
as Simpson’s problem (Simpson, 1969). In the Nash equilibrium game, no player 
can improve his objective when the other player does not change his strategy. 
In many cases, no equilibrium exists (Pelegrín et al., 2018; Bhadury & Eiselt, 
1995; Eiselt & Bhadury, 1998). In the leader-follower game, the leader adopts a 
strategy, and the follower adopts his best strategy knowing the leader’s strategy. The 
follower’s goal is to maximize his objective function, while the leader’s goal is to 
maximize his objective function following the follower’s action. 

Early contributions to the Nash equilibrium location problems include Hotelling 
(1929), Lerner and Singer (1937), Eaton and Lipsey (1975), and Wendell and McK-
elvey (1981). The leader-follower location problem was introduced to competitive 
location models by Hakimi (1981), and published in Hakimi (1983, 1986, 1990), 
for location on network nodes using the premise that each customer patronizes the 
closest facility; see also Hansen and Labbè (1988).
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Drezner (1982) analyzed two competitive location models in the plane. One is the 
location of a new facility that will attract the most buying power from an existing 
facility (the follower’s problem). The other is the location of a facility that will 
secure the most buying power against the best location of a competing facility to 
be set up in the future (the leader’s problem). The proximity rule using Euclidean 
distances is assumed. 

Let n demand points be located in the plane. A buying power bi > 0 is associated 
with demand point i for i = 1, . . . , n. The leader locates his facility at X, and the 
follower locates his facility at Y . Customers will patronize the follower’s facility 
Y if the Euclidean distance between the customer and Y is less than the distance 
between the customer and X. Two problems are considered: 

The follower’s problem: Given the location of an existing facility X serving the 
demand points, find a location for a new facility Y that will attract the most 
buying power from demand points. 

The leader’s problem: Find a location for X such that it will retain the most 
buying power against the best possible location for the follower’s facility Y . 

Drezner and Zemel (1992) considered the following problem: a large number of 
customers are spread uniformly over a given region A ⊆ R2. What configuration of 
facilities that cover the area will best protect against a future competing facility? The 
proximity rule is assumed, i.e., each customer patronizes the closest facility. There 
are three evenly spread configurations that cover the whole R2 plane with equilateral 
polygons depicted in Fig. 2: a triangular grid, a square grid, and an hexagonal grid 
(beehive). No other cover of the plane by identical equilateral polygons exists. 
Drezner and Zemel (1992) found that the solution to the problem of covering the 
whole R2 plane is the hexagonal pattern. Then they analyzed the finite area problem 
and found bounds on the difference between the configurations as the number of 
facilities increases. 

Let A be the area attracted by each facility (the area of the triangle, square, or 
hexagon). It is shown in Drezner and Zemel (1992) that: 

• For the triangular grid, the competitor’s facility can attract a maximum of 2 3A. 

Fig. 2 Various configurations
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• For a square grid, the competitor’s facility can attract a maximum of 9 
16A = 

0.5625A. 
• For an hexagonal grid, the competitor’s facility can attract a maximum of 

0.5127A. 

The hexagonal pattern provides the best protection from a future competitor. It is 
interesting that for hexagonal and square grids, the competitor captures at least half 
of A at any point in the plane. 

Hexagonal pattern is optimal for many location problems with numerous facili-
ties covering a large area, for example: 

• Packing the largest number of circles in an area (Coxeter, 1973; Hilbert & Cohn-
Vossen, 1932; Szabo et al., 2007) 

• p-median (Okabe & Suzuki, 1997), p-center (Suzuki & Drezner, 1996), and p-
cover (Drezner & Suzuki, 2010) 

• p-dispersion (Locatelli & Raber, 2002; Maranas et al., 1995; Nurmela  &  
Oestergard, 1999) 

• Equalizing the load covered by facilities (Suzuki & Drezner, 2009) 

It is also the preferred arrangement for a beehive in nature which has developed over 
the years in the evolutionary process. 

Drezner and Drezner (1998) proposed three heuristic approaches for finding a 
good solution to the leader-follower model where market share is estimated by the 
gravity model: brute force, pseudo-mathematical programming, and gradient search. 
For complete details, see Drezner and Drezner (1998). 

Drezner et al. (2015) investigated a leader-follower competitive location model 
incorporating facilities’ attractiveness (design) subject to limited budgets for both 
the leader and follower. The competitive model is based on the concept of cover 
(Drezner et al., 2011). The leader and the follower each has a budget to be spent 
on the expansion of their chains either by improving their existing facilities or by 
constructing new ones. The objective of the leader is to maximize his market share 
following the follower’s reaction. The follower’s problem is identical to the three 
problems analyzed in Drezner et al. (2012) because market conditions are fully 
known to the follower. A branch and bound algorithm and a tabu search (Glover, 
1977, 1986; Glover & Laguna, 1997) were proposed in Drezner et al. (2012) for  the  
solution of each of these three strategies. For complete details, the reader is referred 
to Kalczynski (2019). 

5.2 Lost Demand 

Customers may choose a substitute product if the product they are looking for is 
located too far. For example, if potential customers are interested in a Chinese 
restaurant but the closest one is too far, they may choose a non-Chinese restaurant 
which is close by or eat at home. This issue was observed by Lösch (1954) and
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Christaller (1966) who developed central place theory and defined the radius of 
influence in deterministic models. 

In the cover models (discussed in Sect. 2.3), the lost demand is automatically 
addressed. If a demand point is outside the sphere of influence of all facilities, its 
demand is lost. 

In the gravity model, the total demand is assigned to the facilities and no demand 

is lost. By Eq. (1), .
p∑

j=1
Mj =

n∑
i=1

Bi . This is also true for  Eqs. (2) and (3). Drezner 

and Drezner (2008) proposed to adjust the buying power . Bi by the distances from 
demand point i to the p facilities and then apply the gravity model. They defined a 
decline of .e−λj dij for a given set of . λj for .j = 1, . . . , p in the buying power spent 
at facility j . The total buying power at demand point i spent at all facilities is 

. Bi

⎧
⎨

⎩1 −
p∏

j=1

[
1 − e−λj dij

]
⎫
⎬

⎭

Therefore, the total lost demand by all demand points is: 

. 

n∑

i=1

Bi

p∏

j=1

[
1 − e−λj dij

]

Drezner and Drezner (2012) added a “dummy” facility to the list of competitors. 
The dummy facility has no actual location, but .dij = D for some distance D. 
The distance D represents a reasonable distance customers are willing to travel to 
patronize a facility. The total buying power attracted by the dummy facility is the 
lost demand. The standard gravity model or any extension of it can be applied. There 
is no need to develop specific solution methods for solving the gravity model and 
variations of it. 

5.3 Cannibalization 

Marketers commonly use a definition of cannibalization that focuses on a company 
eating into its own market by introducing a new product to an existing product line 
or an established brand (product line extension and multi-brand strategies) at the 
expense of the old brand. In such cases, overall company sales may not increase. 
This form of cannibalization is well recognized and well researched in the marketing 
literature. See, for example, Mazumdar et al. (1996), Chandy and Tellis (1998), 
Moorthy and Png (1992), Mason and Milne (1994), and Drezner (2011). 

Another form of cannibalization occurs at the retail level of chain facilities, 
especially in the case of franchises. In this form of cannibalization, opening a new 
retail outlet in close proximity to an existing outlet, the new outlet cannibalizes
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the sales of the existing one. Schneider et al. (1998) report cases of lawsuits 
regarding cannibalization in fast-food franchise systems. This phenomenon is 
referred to as encroachment. A similar problem is observed and documented in the 
hospitality/lodging industry. 

When a retail chain plans an expansion by building additional outlets, two not 
necessarily compatible objectives should be considered: (1) maximize the market 
share captured by the expanding chain and (2) minimize cannibalization of existing 
chain outlets so as not to gain too much market share at the expense of member 
outlets. This consideration is especially critical when the outlets are franchised and 
gain in market share at the expense of member franchisees may be damaging to the 
profitability of the whole chain. 

Drezner (2011) formulated and solved the problem of maximizing the market 
share captured by the chain facilities subject to a given limit of cannibalization. 
The market share captured, and consequently the cannibalized portion of it, was 
calculated using the gravity model discussed in Sect. 2.1. 

Plastria (2005) applied the utility function model (Drezner, 1994b) in which the 
optimal solution to maximizing market share is usually not unique, but there is an 
area in the plane such that a facility located at any point in that area attracts the same 
(maximal) market share. Plastria (2005) suggested to locate the facility at the point 
in that region that minimizes cannibalization, thus maintaining the maximum market 
share. When the gravity model is used, there is only one optimal solution point that 
maximizes chain’s market share, and the planner must accept the cannibalization 
at that point if he or she does not wish to consider suboptimal location solutions 
regarding the market share captured. 

Zeller et al. (1980) considered the market share captured by an expanding 
chain. The franchisor attempts to maximize the total market share of the chain 
(thus implicitly considers the cannibalization of existing outlets), while the new 
franchisee considers the market share captured by his new outlet. They conclude 
that the franchisee of a new store may choose a different location for his store than 
the franchisor. In reality, the franchisee has no input into the location decision, and 
thus his objective is ignored. 

Ghosh and Craig (1991) developed the FRANSYS model for franchise system 
growth. Firms seeking to expand franchise distribution systems have to balance two 
incompatible goals, maximizing system revenues and minimizing the cannibaliza-
tion of sales of existing outlets. The model uses two constraint types: (1) constraints 
that disallow new unit locations that do not provide a minimum revenue threshold 
for the new unit and (2) disallow new units that fail to either protect current revenue 
for existing units as a group or protect current revenue for each existing unit. 

Fernández et al. (2007a) proposed a related model. Their model is a bi-objective 
model of maximizing profit while minimizing cannibalization. They consider the 
location of the new facility along with its attractiveness as a decision variable. The 
construction cost of the new facility is included in the profit function. In addition, 
they added constraints forbidding the location of a facility in the vicinity of demand 
points. All of these components lead to a complicated model that requires extensive 
data collection and relies on many modeling assumptions.
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5.4 Location and Design 

Combining the location decision with the facility design (treating the attractiveness 
level of the facility as a variable) was investigated, for example, in Aboolian et al. 
(2007), Drezner (1998), Fernández et al. (2007b), Plastria and Carrizosa (2004), and 
Toth et al. (2009). 

Drezner (1998) also assumed that the facilities’ attractiveness are variables. A 
budget is available for locating new facilities and for establishing the new facilities’ 
attractiveness levels. The problem is determining the facilities’ attractiveness levels 
within the available budget. It is solved by a gradient search when the budget 
constraint is kept as equality. Plastria and Vanhaverbeke (2008) combined the 
limited budget model with the leader-follower model. 

The analysis in Drezner (1998) for various assumptions about the attractiveness 
as a function of the investment in the facility leads to some interesting insights: 

1. For firms with a decreasing marginal return on investment curve, the fixed budget 
allocation solution with equally divided budget among the new facilities is very 
close to the optimal investment strategy. 

2. For firms with a fixed (constant) marginal return on investment, the fixed budget 
allocation solution with equally divided budget works well and can be used if the 
computational effort required to obtain the flexible budget allocation solution is 
prohibitive. 

3. For a rapidly increasing marginal return, one should consider opening only one 
new facility investing all the budget in it. 

4. Mildly increasing marginal return leads to a middle-ground solution, and none 
of the extreme budget allocation strategies is appropriate. In this case, it is 
recommended to find the best budget allocation by applying the algorithm in 
Drezner (1998). 

Aboolian et al. (2007) studied the problem of simultaneously finding the number 
of facilities, their location, and their design. For the problem with discrete design 
scenarios, the TLA (tangent line approximation) procedure (Aboolian et al., 2007) 
is applied. 

Drezner et al. (2016) suggested a model assuming that the market can be 
partitioned into mutually exclusive sub-markets, for example, expanding a franchise 
around the world in New York, Paris, Tokyo, Beijing, etc. that customers residing 
in one sub-market patronize facilities only in that sub-market. Suppose that a 
procedure for finding the market share at each sub-market for a given budget 
allocated to the sub-market is available. The problem is then to determine the 
allocation of the budget among the sub-markets. A constraint that the sum of these 
individual budgets is equal to the available budget is added. 

Three objectives were investigated: (i) maximizing the firm’s profit, (ii) max-
imizing the firm’s return on investment, and (iii) maximizing profit subject to a 
minimum threshold return on investment. Once the market share for a given budget 
at each individual market can be determined, the allocation of the budget among the
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markets is found by dynamic programming. For complete details, see Drezner et al. 
(2016). 

6 Applying the Probabilistic Gravity Rule to Other Location 
Models 

The probabilistic gravity rule can be applied to other commonly used non-
competitive location objectives. Rather than assuming that a user gets services 
from the closest facility, he chooses a facility according to the gravity rule. The 
probability of patronizing a facility is proportional to the facility’s attractiveness 
and to some decay function of the distance. 

6.1 Gravity p-Median 

In the standard p-median model (Daskin, 1995), it is assumed that each user 
travels to the closest facility. This implicitly implies that facility choice is centrally 
controlled or that all facilities charge the same price for the service. Drezner and 
Drezner (2007) proposed the gravity p-median model. It is assumed that users 
choose from among the facilities providing services according to the gravity rule 
rather than from the closest facility. Users consider facilities’ attractiveness in their 
choice. Similar to the standard p-median problem, the objective is to minimize the 
sum of the expected weighted distances. 

Brimberg et al. (2021) suggested a similar p-median model based on the idea 
that customers do not necessarily patronize the closest facility. A list of probabilities 
.P1 ≥ P2, . . . ,≥ Pp that add up to 1 is constructed. The probability that a customer 
patronizes the closest facility is . P1. The probability he patronizes the second closest 
facility is . P2 and so on. 

6.2 The Gravity Obnoxious p-Median Problem 

Kalczynski and Drezner (2021) proposed and solved the obnoxious p-median 
problem. Each facility must be at least at a given distance D from all demand points, 
and the objective is the minimization of the sum of weighted distances of demand 
points to their closest facility. 

Kalczynski and Drezner (2022) extended the Kalczynski and Drezner (2021) 
model and proposed three obnoxious p-median models where the facilities may 
have different sizes which are proportional to the number of customers patronizing 
the facility. One of the three models is based on the gravity rule. The probability
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that a customer patronizes a facility is proportional to a distance decay function to 
that facility. Facility j must be located at least a distance Dj from all demand points 
where Dj is proportional to the facility size (the volume of services provided by the 
facility) and the average of the Dj distances is a given distance D. 

6.3 Gravity Hub Location 

Drezner and Drezner (2001) applied the gravity rule to the hub location problem. A 
traveler needs to fly from one airport to another. Several potential hubs are available. 
If the origin or the destination is a hub airport, the traveler chooses a non-stop flight. 
Otherwise, the probability that a certain hub is selected is proportional to the hub’s 
attractiveness (price, walking distance from the arrival gate to the connecting one, 
chance of inclement weather, etc.) and to a distance decay function such as the 
total travel distance (or time) raised to a given inverse power. Such a model can be 
generalized to selecting a sequence of two or more hubs. 

6.4 Gravity Multiple Server 

Drezner and Drezner (2011a) considered the gravity rule version of the multiple 
server location problem (Berman & Drezner, 2007). Total service time consists of 
travel time to the facility, waiting time in line, and service time. There is a given 
number of servers to be distributed among the facilities. Each facility acts as an 
M/M/k queuing system. In Drezner and Drezner (2011a), customers select a server 
with a probability proportional to its attractiveness and to a decay function of the 
distance, not necessarily the closest one. Two models are proposed: a stationary one 
and an interactive one. In the stationary model, it is assumed that customers do not 
consider the expected waiting time in line and service time at the facility in their 
facility selection decision simply because they do not know these values. In the 
interactive model, it is assumed that customers know the expected waiting time in 
line and service time at the facility and do consider them in their facility selection 
decision. 

7 Summary and Suggestions for Future Research 

In this chapter, we reviewed competitive location models which are part of the 
field of facility location. Facility location models investigate the location of one 
or more facilities to achieve a certain objective. In competitive location models, the 
objective is to attract as much buying power as possible from competitors’ facilities 
by constructing new facilities and/or improving existing ones. A main component
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of such models is the estimation of how customers select the facility to patronize. 
Demand attracted by a facility depends on its attractiveness, on the buying power 
customers are planning to spend, and on the distance customers need to travel to 
get to the facility. What distinguishes different models is the assessment of the 
relationship between these factors and the market share captured. It is clear that 
higher attractiveness and buying power lead to higher market share, and a greater 
distance lowers the expected market share captured. 

The gravity model (Reilly, 1931; Huff,  1964, 1966) estimates the probability 
of patronizing a facility by these three components. Other approaches include 
the proximity rule (customers patronize the closest facility), utility and random 
utility models, and cover-based models. One important implementation issue is the 
assessment of these components, especially the attractiveness level of a facility. 

Many extensions to the basic models were investigated, for example, anticipating 
future changes in the market, considering lost demand due to long distances, and 
cannibalization of one’s chain facilities. Optimal location of one facility can be 
found by branch and bound algorithms such as big square small square (Hansen 
et al., 1981) or big triangle small triangle (Drezner & Suzuki, 2004). Location of 
multiple facilities is usually solved heuristically by various approaches tailored to 
the specific model or meta-heuristic methods such as tabu search (Glover, 1977, 
1986; Glover & Laguna, 1997), simulated annealing (Kirkpatrick et al., 1983), 
genetic algorithms (Holland, 1975; Goldberg, 2006), variable neighborhood search 
(Mladenović & Hansen, 1997; Hansen & Mladenović, 1997), and others. 

There are many opportunities for future research: improving and fitting the 
models better to real circumstances and obtaining better estimates for attractiveness 
of facilities. There are many solution methods for multiple facilities location models 
and constrained models that can be improved by designing more efficient heuristic 
algorithms that will enable practitioners to solve larger problems. 
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Location and Strategies in Stackelberg 
Security Games with Risk Aversion 

Renaud Chicoisne, Fernando Ordóñez, and Daniel Castro 

Abstract In Stackelberg security games, a leader locates security resources to 
protect a set of targets from strategic adversaries that aim to attack these targets 
after observing the leader’s strategy. In this setting, the leader decision problem is to 
optimize an uncertain reward that can take a discrete set of values with a probability 
distribution that depends on the decision variable. 

We show how diverse risk aversion models of the leader decision problem can 
be formulated as tractable optimization problems, such as imposing a bound on 
the expected disutility, chance constraints, bounded distortion risk, and first- and 
second-order stochastic dominance constraints or optimizing a value at risk and 
conditional value at risk. We detail the resulting optimization problems and present 
computational results that show how the solution changes in two specific settings: 
(1) an entropic risk measure or value-at-risk minimization with a quantal response 
follower and (2) a prospect theory model with optimal follower response. 

Keywords Stackelberg security games · Risk aversion · Quantal response · 
Convex optimization · Mixed-integer programming 

1 Introduction 

A Stackelberg game models the strategic interaction between a leader and one 
or more followers, where the leader decides on a strategy to maximize its utility 
knowing that followers will observe this strategy when deciding their own utility 
maximizing action (Von Stackelberg, 1952). In particular, Stackelberg game models 
have been used in security applications to represent the interaction between 
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defenders (that act as the leader) and attackers (corresponding to followers) (Bier, 
2007; Brown et al., 2006; Kar et al., 2017). We denote by Stackelberg security 
games (SSGs) a Stackelberg game where the leader is the defender that locates 
security resources to protect a subset of targets that can be attacked by one or 
more adversaries (followers) (Paruchuri et al., 2008; Jain et al., 2010). Such SSGs 
have been successfully deployed in real-world security applications to help locate 
the patrols conducted by the Los Angeles International Airport Police on the LAX 
airport and the US Federal Air Marshal Service on transatlantic flights (Jain et al., 
2010), the LA Sheriff department on Los Angeles’ subway system (Delle Fave et al., 
2014), and the US Coast Guard on the ports and waterways in Boston and New York 
City (An et al., 2013). 

In an SSG, both the defender and attacker receive a penalty or a reward depending 
on whether the defender strategy locates security resources on the target attacked 
by the follower strategies. Therefore, the players’ utility functions depend on the 
strategies selected by the adversaries. Assuming that players use mixed strategies, 
i.e., a probability distribution over possible actions, the utility of a player for a given 
strategy is uncertain, depending on the outcome of the combined mixed strategies. 
Note that this means that the uncertainty of the utility functions depends on the 
decision variables. 

Different expressions of the uncertain utility can be considered to solve these 
SSGs with decision variables that modify the probability distribution of the utility 
function. It is natural to consider that players, individually, optimize the expected 
value of these uncertain utility functions (Myerson, 2013; Paruchuri et al., 2008; 
Jain et al., 2010). In other words, players optimize the expectation of a reward 
that is stochastic due to the uncertainty of the adversary’s strategy. In a security 
setting, however, the expected reward utility function does not always provide an 
accurate model of player interaction; see Camerer (1999). If an expected utility 
model is used, the adversary response can be misrepresented which can lead to 
less than optimal strategies. Also, by optimizing the expected utility, the outcome 
of catastrophic unlikely events is not explicitly considered. Doing so can provide 
mixed strategy solutions that are fragile or that have high likelihood of very bad 
outcomes. Both effects can be modeled with nonlinear distortion functions that 
transform the uncertain reward objective, such as prospect theory (Kahneman & 
Tversky, 1979), and risk measures (Artzner et al., 1999; Markowitz, 1952). 

In this work, we investigate how to efficiently formulate and solve an SSG with 
decision variables that influence the uncertainty distribution of the utility function. 
We consider a single follower and a finite set of actions for each player. In particular, 
we focus on modeling risk-averse behavior with respect to the uncertainty due 
to the adversary’s probability distribution over actions (i.e., its mixed strategy). 
We present different mathematical optimization formulations to represent chance 
constraints, perturbed utility functions, stochastic dominance, value at risk (VaR), 
and conditional value at risk (CVaR). Here we explore how to efficiently express 
these formulations and do not make a critical assessment on which model is 
preferable, since that depends on the application, the meaning of the utility function, 
and the decision-maker’s risk attitude. We also present computational results for
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important examples that do not consider the expected reward utility function. In 
particular, we consider Stackelberg security game models where the leader either 
uses an entropic risk measure (Pratt, 1964) and a quantal response model (McKelvey 
& Palfrey, 1995) or a model that uses prospect theory (Kahneman & Tversky, 1979). 
We briefly describe these three concepts below. 

An entropic risk measure amplifies the importance of outcomes that exceed a 
given threshold to model risk-adverse behavior against the attacker’s probability 
over actions. The entropic risk measure of parameter .α ≥ 0 of a random variable 
Y is defined by .α lnE[eY/α]. While all outcomes are weighted, scenarios with a 
payoff larger than . α contribute more to this measure. Therefore, the parameter . α
corresponds to a payoff value of risky outcomes and must be chosen carefully to 
tune the risk aversion level of the decision-maker. 

The quantal response (QR) equilibrium model presented in McKelvey and 
Palfrey (1995) assumes that human adversaries do not behave rationally, sometimes 
selecting actions that do not maximize their utility. In this model, followers use a 
logit discrete choice model to decide between n possible actions, where action i 
(that gives a payoff . Ui) is selected with probability 

. P
[
selecting action i

] = 1
∑n

j=1 eλUj
eλUi ,

where the parameter . λ represents a degree of rationality, with perfect rationality 
(.λ → ∞) or indifference (.λ = 0) as special cases. The QR model has been 
used to model human behavior in various settings, including economics (Haile 
et al., 2008; Stahl & Wilson, 1994), game theory (Wright & Leyton-Brown, 2010), 
transportation engineering (Ben-Akiva & Lerman, 2018), marketing (Gensch & 
Recker, 1979), and security applications (Yang et al., 2011). 

Prospect theory (Kahneman & Tversky, 1979) explicitly represents player 
biases, modeling risk-averse and risk-seeking behavior. It does so by considering 
perturbation functions on both the reward values and the probability distribution 
of possible outcomes. That is, if outcome i has a probability of occurrence . pi and 
payoff . Ui , prospect theory proposes players perceive the following expected utility: 

. V (p,U) =
n∑

i=1

π(pi)V (Ui) .

where .π(·) and .V (·) are perturbation functions with specific properties that model 
how players perceive both payoffs and the likelihood of occurrence. Prospect theory 
has contributed in economics (Tversky & Kahneman, 1986), politics (McDermott, 
2004), online auctions (Brünner et al., 2019), and security (Yang et al., 2011) 
applications. 

We note that some facility location models with random assignment of clients to 
facilities lead to optimization problems with uncertainty that also have probability 
distributions that depend on decision variables and are thus similar to the SSG
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presented. In particular, the SSG with the QR model has a similar structure to the 
maximum capture facility location problem with random utilities (Freire et al., 2016; 
Ljubić & Moreno, 2018). Both these problems can be seen as examples of a facility 
location model with multinomial logit choice probabilities (Haase & Müller, 2014). 

In the next section, we present the SSG problem and fix the notation. Section 3 
formulates an SSG problem for different risk aversion models. Section 4 presents 
the algorithms for computing VaR and CVaR with an uncertainty that depends on 
decision variables. We present some preliminary computational results in Sect. 7 
and conclude the paper in Sect. 8. 

2 Notation and Basic Assumptions 

We begin introducing the Stackelberg security game considered, which is similar 
to the problem in Kiekintveld et al. (2009). The SSG assumes there is a finite set 
of targets denoted by .I = {1, . . . n}. The attacker decides between n actions that 
indicate which target to attack. One of the targets can represent the decision not to 
attack. The defender actions determine where to locate security resources to protect 
or cover a subset of targets. A defender action, or pure strategy, .z ⊂ I indicates 
which targets are covered simultaneously and depends on physical constraints, 
such as the number of defender resources, capacity of defender resources, or target 
compatibility. Let Z denote the set of feasible defender actions. The payoff of each 
player depends only on whether the attacked target .i ∈ I is protected by the defender 
action .z ∈ Z, denoted by .i ∈ z, or not. Given actions .i ∈ I and . z ∈ Z, the reward  
received by the defender (by the attacker) is either a reward . R̄i (a penalty . Pi) if  
.i ∈ z or a penalty . P̄i (a reward . Ri) if .i �∈ z. Here, .R̄i , Ri > 0 and .P̄i , Pi < 0. 
Therefore, under actions .i ∈ I and .z ∈ Z, the utilities of the defender and attacker, 
respectively, are 

. uD(i, z) =
{

R̄i i ∈ z

P̄i i �∈ z
uA(i, z) =

{
Pi i ∈ z

Ri i �∈ z .

We assume players decide on mixed strategies, or probability distributions over their 
set of actions, denoted by .y ∈ I = {y ∈ [0, 1]n : ∑n

i=1 yi = 1} and . q ∈ Z = {q ∈
[0, 1]|Z| : ∑

z∈Z qz = 1}. Since player payoff only depends on whether the attacked 
target is protected or not, we consider the more succinct . x ∈ X = {x ∈ [0, 1]n :
xi = ∑

z∈Z:i∈z qz, q ∈ Z}. The set . X is the projection on .[0, 1]n of the feasible 
mixed strategies of the defender, and, for . x ∈ X , the value . xi is the frequency 
with which target i is protected by a mixed strategy in . Z . The players’ rewards as a 
function of the mixed strategies, denoted by .UD(y, x) and .UA(y, x) for the defender 
and attacker, respectively, are discrete random variables. For example, the defender 
utility equals . P̄i with probability .yi(1 − xi) and equals . R̄i with probability .yixi . 
If . � and . � ′ denote statistics for the leader and follower utilities, we can write the
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problem that optimizes the leader utility as the following bilevel problem: 

.

max � (UD(y, x))

s.t. x ∈ X
y = argmax � ′(UA(y, x))

s.a. y ∈ I .

(1) 

The solution to this problem determines the strong Stackelberg equilibrium of the
Stackelberg game, where the follower breaks ties in favor of the leader (Kiekintveld
et al., 2009). 

For any mixed strategy . x ∈ X , we let .y(x) denote the follower’s best 
response, given by the solution to the subproblem in (1) . Then the leader’s disutility
.D(x) = −UD(y(x), x) is a discrete random variable that takes the value . −R̄i

with probability .xiyi(x) and .−P̄i with probability .(1 − xi)yi(x). All the possible 
disutilities .{−P̄i ,−R̄i}i∈{1,...,n} can be referred to as .{Vv}v∈V , with . |V| = 2n

outcomes that do not depend on the decision variables x. Without loss of generality, 
we assume these values are sorted in increasing order: .V1 ≤ V2 ≤ . . . ≤ V2n. 
However, the probabilities of these discrete outcomes . pv(x) := P[D(x) = Vv]
depend on x. 

Different forms of the best response .y(x) are due to the specifics of the 
subproblem being solved. In the classic Stackelberg setting, the statistic for the 
subproblem . � ′ is the expectation, making the subproblem a linear optimization 
problem, which has optimal pure strategies. Nonlinear statistics, such as variance 
or distortion functions—as in prospect theory—can generate a mixed strategy best 
response. A quantal response (QR) model of the follower replaces the second level 
problem with the assumption that a follower selects an alternative following the 
probability distribution 

. yi(x) = eλUA(i,x)

∑n
j=1 eλUA(j,x)

.

If we assume that the utility statistic of the leader is the expected value, then 
.�[−UD(y(x), x)] = E[D(x)] = ∑

v∈V Vvpv(x). We can then express the leader’s 
optimization problem as 

. min
x∈X

∑

v∈V
Vvpv(x) .

We show in the next section that, under reasonable conditions, this kind of problem 
and generalizations of the form 

. min
x∈X

{f0(x) : f (x) ≤ 0} (2)
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Table 1 Payoff matrix for the two targets, one defender example: each cell contains the utilities 
for [defender, attacker] 

Attack 1 Attack 2 

Patrol 1 3, .−1 . −3, 1  

Patrol 2 . −1, 3 1, . −3

can be tackled efficiently. The generalization considered is able to represent different 
methods to handle and model the uncertainty present in the leader’s utility including 
chance constraints, risk distortion functions, and stochastic dominance constraints. 

Consider now an example where the leader and follower play mixed strategies 
and, therefore, they induce a probability distribution on the outcomes. The example 
has two targets, a single patrol and a single attacker that, observing the mixed 
strategy of the leader, selects its target with a QR model with rationality factor 
.λ = 0.25. The payoffs of this game (where the defender is the row player and 
the attacker is the column player) are given in Table 1. 

The problem of maximizing the expected payoff in this simple setting can be 
written as follows: 

. max
x1+x2=1, x1,x2≥0

ex1−0.75(4x1 − 1) + ex2−0.25(4x2 − 3)

ex1−0.75 + ex2−0.25
,

where . xi represents the frequency at which target .i = 1, 2 is patrolled. The objective 
function attains its maximum value at .x∗ = (0.505, 0.495) which in turn induces 
the adversary’s quantal response into .y(x∗) = (0.622, 0.378). The mixed strategies 
determine the probabilities on the (discrete) set of outcomes: for example, the 
probability that the leader gets attacked on the non-patrolled target 2 will be 

. P(2 not defended) · P(2 attacked) := (1 − x∗
2 ) · y2(x

∗)

= (1 − 0.495) · 0.378 = 0.19 .

3 Efficient Leader Problem Formulations 

Here we present reformulations of (1) in the situation where there is a known
follower best response .y(x) and the disutility function .D(x) takes 2n values that 
do not depend on x with probabilities that depend on x. 

The formulations considered will aim to either maintain some risk measure of the 
disutility .D(x) under a given threshold—translated by some constraints .f (x) ≤ 0— 
or minimize a risk measure of .D(x), which translates into minimizing some function
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.f0(x). We will transform these different problem formulations to constraints over 
the set of decision variables .x ∈ X of the form 

.

∑

v≥v̄

pv(x)ξv ≤ � , (3) 

for a real-valued vector .(ξv)v∈V such that .ξ1 ≤ ξ2 ≤ . . . ≤ ξ|V |, some index .v̄ ∈ V , 
and a right-hand side .� ∈ R. 

Notice that we can assume that .ξv ≥ 0 for .v ≥ v̄. If this is not the case, simply 
define .ζ := maxv≥v̄(−ξv)+ and construct the following non-negative vector . ξ ′

v =
ξv + ζ if .v ≥ v̄ and .ξ ′

v = ζ for .v ≤ v̄ − 1. Then, constraint (3) is equivalent to

. � + ζ ≥
∑

v≥1

pv(x)ξ ′
v .

Constraints of the form (3) are easy to solve if the dependency of x through the
probability functions .pv(x) forms convex constraints on . X . We now show situations 
where enforcing bounded risk of the leader can be modeled with type (3) constraints,
for different choices of . ̄v, . ξ , and . �. 

3.1 Maximum Expected Disutility 

Given a reference disutility .E[D(̃x)] coming from some known solution . ̃x ∈ X , we  
want to find some .x ∈ X having an expected disutility that is no worse than the 
reference disutility from . ̃x. In other words, x must satisfy the following constraint, 
.E[D(x)] ≤ E[D(̃x)], which is by definition equivalent to the generic constraint (3) 
with .� := E[D(̃x)], .ξv := Vv for every .v ∈ V and .v̄ := 1, i.e., 

. 
∑

v∈V
pv(x)Vv ≤ E[D(̃x)] .

3.2 Chance Constraints 

Given a threshold value .Ṽ ∈ R and a tolerance .ε ∈ [0, 1], a chance constraint 
(Mayer, 1992; Charnes & Cooper, 1959) on the disutility .D(x) bounds the 
likelihood that .D(x) ≥ Ṽ by . ε , which means 

.P
[
D(x) ≥ Ṽ

] ≤ ε . (4)
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This constraint over .x ∈ X is equivalent to the generic constraint (3) taking .� = ε, 
.ξv = 1 for every .v ∈ V and .v̄ := arg minv∈V {Vv : Vv ≥ Ṽ }, i.e., 

.

∑

v≥ṽ

pv(x) ≤ ε . (5) 

3.3 Bounded Distortion Risk 

A distortion risk measure (Balbás et al., 2009) is a real-valued function . ρ taking as 
argument a random variable Z that can be described as 

. ρ : Z → d−1 (E [d(Z)]) ,

where .d : R → R is an increasing bijective disutility function. The entropic risk 
measure .Z → α lnE[eZ/α] of parameter .α > 0 is a particular distortion risk 
measure. A constraint that bounds a distortion risk is a constraint over .x ∈ X so 
that the distortion risk is less than a given threshold . ̃ρ, i.e., 

.ρ(D(x)) ≤ ρ̃ . (6) 

Constraint (6) is equivalent to .E[d(D(x))] ≤ d(ρ̃), i.e., .
∑

v∈V pv(x)d(Vv) ≤ d(ρ̃), 
which is exactly the generic constraint (3) with .� = d(ρ̃), .ξv = d(Vv) for every 
.v ∈ V and .v̄ = 1. Because d is increasing, we indeed have .ξ1 ≤ ξ2 ≤ . . . ≤ ξ|V |. 

3.4 First-Order Stochastic Dominance Constraints 

Let .FZ : t → P[Z ≤ t] denote the cumulative distribution of a random variable Z. 
Given two random variables Z and T , Z is said to stochastically dominate T in the 
first order, .Z �(1) T , if .FZ(t) ≥ FT (t) for all .t ∈ R (Dentcheva & Ruszczyński, 
2004). 

Given a reference random variable .D (̃x), we can write a constraint over . x ∈ X
such that .D(x) stochastically dominates .D (̃x) in the first order, i.e., . D(x) �(1)

D(̃x). In our context where both random variables .D(x) and .D(̃x) have the same 
discrete support, this can be rewritten as follows: for every . ̃v ∈ V , we must have  
.FD(x)(Vṽ) ≥ FD(̃x)(Vṽ), i.e., .

∑
v≤ṽ pv(x) ≥ ∑

v≤ṽ pv(̃x). In other words, 

.

∑

v≥ṽ+1

pv(x) ≤ 1 −
∑

v≤ṽ

pv(̃x) ∀ṽ ∈ V . (7)
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The first-order stochastic dominance constraint .D(x) �(1) D(̃x) can thus be 
represented by the .|V| constraints in (7) which are of type (3) with . � = 1 −∑

v≤ṽ pv(̃x), .ξv = 1 for every .v ∈ V , and .v̄ = ṽ + 1. 

3.5 Second-Order Stochastic Dominance Constraints 

The second-order cumulative distribution function of a random variable Z is given 
by 

. F
(2)
Z (η) :=

∫ η

−∞
FZ(t)dt .

Given two random variables Z and T , Z is said to stochastically dominate T in 
the second order, .Z �(2) T , if .F

(2)
Z (η) ≥ F

(2)
T (η) for all .η ∈ R, (Dentcheva & 

Ruszczyński, 2004). 
Given a reference random variable .D (̃x), we want to enforce the fact that . D(x)

stochastically dominates .D (̃x) in the second order, i.e., .D(x) �(2) D (̃x). A result 
from Dentcheva and Ruszczynski (2003) states that .D(x) �(2) D (̃x) is equivalent 
to 

. E
[
(Vṽ − D(x))+

] ≥ E
[
(Vṽ − D (̃x))+

] ∀ṽ ∈ V .

We can rewrite this equivalently as 

. −
∑

v∈V
pv(x)(Vṽ − Vv)+ ≤ −

∑

v∈V
pv(̃x)(Vṽ − Vv)+ ∀ṽ ∈ V . (8) 

In consequence, the second-order stochastic dominance constraint . D(x) �(2) D(̃x)

can be represented by the .|V| constraints in (8) which are of type (3) with . � =
−∑

v∈V pv(̃x)(Vṽ − Vv)+, .v̄ = 1, and .ξv = −(Vṽ − Vv)+ for every . v ∈ V . Note  
that . ξv are also in increasing order. 

3.6 Some Difficult Risk Models 

We say that constraint (3) is tractable if it describes a convex set on the decision
variables or can be reasonably approximated with a handful of binary variables.
While the previous examples show that the risk aversion constraints can be
expressed in a tractable form, there are some examples for which it is not clear
whether there is a tractable transformation or not.
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For example, constraining the variance of .D(x) to be under a given threshold . σ 2, 
i.e., .V[D(x)] ≤ σ 2, boils down to 

. 
∑

v∈V
pv(x)V 2

v −
(

∑

v∈V
pv(x)Vv

)2

≤ σ 2,

which is a complicated constraint for general probability functions . pv(x). The same  
can be said about the upper semideviation .USD : Z → E[(Z − E[Z])+] where 
enforcing .USD(D(x)) ≤ Ũ is equivalent to 

. 
∑

v∈V
pv(x)

(

Vv −
∑

v′∈V
pv′(x)Vv′

)

+
≤ Ũ

Both these constraints suggest non-convex constraints on the decision variables. 
Interestingly, in a classic stochastic optimization setting where the probabilities 

are fixed and the uncertainty is affecting the payoffs alone, modeling chance 
constraints or using the value at risk turns the resulting problem NP-hard in general, 
whereas in our context, chance constraints are perfectly tractable computationally. 

3.7 Risk Minimization 

We now make use of all the machinery available for risk-inducing constraints in 
the context of minimizing risk measures. First, the generic problem (2) can be
equivalently recast as

. min
x∈X ,η

η

s.t. η ≥ f0(x)

f (x) ≤ 0

For several of the aforementioned risk measures such as distortions in Sect. 3.2 or 
the probability of having a poor outcome in Sect. 3.3, . fi for any i can be of the form 

.f0 : x →
∑

v�v̄0

ξ0
v pv(x)

fi : x →
∑

v�v̄i

ξ i
vpv(x) − �i

with 0 ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξ|V |
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Following the ideas in Shieh et al. (2012), Chicoisne and Ordóñez (2016), we 
can iteratively make guesses about the optimal value . η∗ with a binary search: when 
fixing .η = η̃, the latter problem reduces to investigate whether there exists . x ∈ X
satisfying 

. 
∑

v�v̄i

ξ i
vpv(x) ≤ �i, ∀i � 1

∑

v�v̄0

ξ0
v pv(x) ≤ η̃.

In the end, considering a risk measure in the objective is not harder—modulo the 
binary search—than considering a constraint equivalent. 

4 VaR and CVaR Minimization 

In this section, we consider two classic risk measures: the value at risk and the 
conditional value at risk. It remains open if it is possible to express these risk models 
in a tractable form. However, we see below that it is possible to minimize them in 
our context. 

4.1 Value at Risk 

The objective in this subsection is to minimize the value at risk of parameter 
.ε ∈]0, 1[ (. VaRε) of the  disutility of the defender. The value-at-risk-. ε of a disutility 
random variable .D(x) is defined as .VaRε(Z) := inft∈R {t : FZ(t) ≥ 1 − ε}. 
Because .D(x) has a discrete and finite probability distribution, the only values 
.VaRε (D(x)) can possibly take are the payoffs .(Vv)v∈V . In consequence, we have 
that 

. VaRε (D(x)) = min
ṽ∈V

⎧
⎨

⎩
Vṽ :

∑

v≤ṽ

pv(x) ≥ 1 − ε

⎫
⎬

⎭
.

The problem of finding a defense strategy .x ∈ X that minimizes .VaRε (D(x)) can 
then be cast as follows: 

. min
x∈X ,̃v∈V

⎧
⎨

⎩
Vṽ :

∑

v≤ṽ

pv(x) ≥ 1 − ε

⎫
⎬

⎭
. (9)
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After rearranging the minimizations in the latter problem (9) , we obtain

. min
ṽ∈V

⎧
⎨

⎩
Vṽ + min

x∈X

⎧
⎨

⎩
0 :

∑

v≤ṽ

pv(x) ≥ 1 − ε

⎫
⎬

⎭

⎫
⎬

⎭
. (10) 

Notice that the inner problem (10) in x given .̃v ∈ V is a feasibility problem that 
only requires to check if there exists some .x ∈ X such that .

∑
v≤ṽ pv(x) ≥ 1 − ε, 

which is equivalent to 

. 
∑

v≥ṽ+1

pv(x) ≤ ε.

Proposition 1 The feasibility of the inner problem in x from problem (10) can be
checked as follows: the inner problem in x is feasible iff the optimal objective value
. uṽ of the following problem is lesser than or equal to . ε: 

.uṽ := min
x∈X

∑

v≥ṽ+1

pv(x). (11) 

The last problem simulates the fact that if the chosen .̃v ∈ V is associated with a 
value . Vṽ that is too low to guarantee that .FD(x) (Vṽ) ≥ 1 − ε for at least one .x ∈ X , 
then it is an underestimator of the optimal objective value of the original problem 
(9). In consequence, the optimal objective value must lie strictly above . Vṽ , which 
allows us to eliminate from the candidates for the optimal objective value all the 
outcomes . Vv such that .v ≤ ṽ. 

On the other hand, if the chosen .̃v ∈ V is associated with a value . Vṽ that 
guarantees that .FD(x) (Vṽ) ≥ 1−ε for some .x ∈ X , then it is either an overestimator 
of the optimal objective value of the original problem (9) or the optimal objective
value itself. In consequence, the optimal objective value must lie at . Vṽ or under, 
which allows us to eliminate from the candidates for the optimal objective value all 
the outcomes . Vv such that .v > ṽ. 

These observations suggest a binary search scheme iteratively looking for the 
index .v∗ ∈ V that corresponds to the true optimal value .Vv∗ of problem (9) . We
summarize the procedure in Algorithm 1 where the routine solve.(̃v) takes as 
argument an index .̃v ∈ V and returns a tuple .

(
xṽ, uṽ

)
corresponding, respectively, 

to an optimal solution and the optimal value of problem (11) .

Proposition 2 Algorithm 1 returns an optimal solution for problem (9) by solving
.O

(
log2 |V|) times a minimization problem (11) with different values of . ̄v.
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Algorithm 1 
Data: An instance of problem (9) 
Result: An optimal solution x∗ for (9) 

1 (x∗, u):=solve(1); 
2 if u ≥ 1 − ε then 
3 return x∗; 

4 (x∗, u):=solve(|V|); 
5 U := |V|; L := 1; 
6 while U >  L  + 1 do 
7 v := (L + U)/2�; 
8 (x, u):=solve(v); 
9 if  u ≥ 1 − ε then 

10 U := v; x∗ := x; 

11 else 
12 L := v; 

13 return x∗; 

4.2 Conditional Value at Risk 

The objective in this subsection is to minimize the conditional value at risk of 
parameter .ε ∈]0, 1[ (. CVaRε) of the  disutility of the defender, defined as 

. CVaRε(D(x)) := inf
t∈R

{
t + ε−1

E
[
(D(x) − t)+

]}
.

Furthermore, as shown in Rockafellar and Uryasev (2000), the minimum in ta is  
attained at .t∗ = VaRε (D(x)) so that we also have the following alternative identity: 

. CVaRε(D(x)) := VaRε (D(x)) + ε−1
E

[
(D(x) − VaRε (D(x)))+

]
.

We now want to determine an .x ∈ X that minimizes the conditional value at risk 
of .D(x), which is modeled by the following optimization problem: 

.ω∗ := min
x∈X ,t∈R

{
t + ε−1

E
[
(D(x) − t)+

]}
. (12) 

Recalling that .D(x) follows a discrete probability distribution, we also have 

.ω∗ := min
x∈X ,t∈R

{

t + ε−1
∑

v∈V
pv(x) (Vv − t)+

}

. (13)
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In the previous section, we saw that .VaRε (D(x)) ∈ supp (D(x)) = {
(Vv)v∈V

}
, 

meaning that (13) is equivalent to

. ω∗ := min
x∈X ,̃v∈V

{

Vṽ + ε−1
∑

v∈V
pv(x) (Vv − Vṽ)+

}

.

4.2.1 A Basic Algorithm 

First, notice that for any optimal solution .(x∗, t∗) of (13) , we have

. ω∗ := min
x∈X

{

t∗ + ε−1
∑

v∈V
pv(x)

(
Vv − t∗

)
+

}

.

In consequence, we can “guess” the optimal value of t by fixing it to . Vṽ for every 
.̃v ∈ V and then solve the corresponding problem in .x ∈ X : 

. ωṽ := Vṽ + ε−1 min
x∈X

∑

v∈V
pv(x) (Vv − Vṽ)+ .

Because the outcomes are sorted in increasing order, the latter can be rewritten as 

.ωṽ = Vṽ + ε−1 min
x∈X

∑

v≥ṽ+1

pv(x) (Vv − Vṽ)

︸ ︷︷ ︸
uṽ

, (14) 

whose optimal solution is denoted . xṽ . Keeping track of the values . wṽ , we find . ω∗ :=
arg minv∈V wv and return .xv∗

as an optimal solution of the original problem (13) .
The procedure has to solve .|V| = 2n times problem (14) . We summarize the
procedure in Algorithm 2 where the routine solve.(̃v) takes as argument an index 
.̃v ∈ V and returns a tuple .

(
xṽ, uṽ

)
corresponding, respectively, to an optimal 

solution and the optimal value of (14) .

4.2.2 An Improved Algorithm 

Notice that Algorithm 2 requires to solve 2n optimization problems (14) with
different values of . ̃v, whereas minimizing VaR, only .O

(
log2 n

)
problems must 

be solved, as opposed to the classical optimization setting (where the uncertainty 
affects only the outcomes and the probabilities are constant) where minimizing 
VaR is NP-hard, whereas minimizing CVaR can be modeled via additional linear 
constraints and continuous variables. We now present a way to decrease the number 
of problems we need to solve.
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Algorithm 2: Minimize CVaR 
Data: An instance of problem (13) 
Result: An optimal solution x∗ for (13) 

1 v = 1; 
2 w∗ = +∞; 
3 while v �= |V| do 
4 (x, u):=solve(v); 
5 if w∗ > Vv + ε−1u then 
6 x∗ := x; 
7 w∗ := Vv + ε−1u; 

8 v + +; 

9 return x∗; 

Proposition 3 The function .t → t + ε−1 minx∈X
∑

v∈V pv(x)[Vv − t]+ is 
continuous and piecewise concave with breakpoints .(Vv)v∈V . Unfortunately, there 
is no guarantee that even the same function in its discrete form—i.e., restricting its 
domain to .(Vv)v∈V—is convex. However, we can find a locally optimal solution for 
the original problem solving .O

(
log2 n

)
problems in .x ∈ X with t fixed to some . Vv . 

The last proposition allows us to return an upper bound that is hopefully better than 
just solving the problems in a sequential order. Together with the next proposition, 
we show how to prune values . Vv without solving the problem they are associated 
with. 

Proposition 4 Recalling that .VaRε (D(x)) ≤ CVaRε (D(x)), each time we solve a 
problem with fixed .t = Vṽ , we can eliminate from the list of candidates all the . Vvs 
lying over . wṽ as they cannot possibly produce a solution improving the current best 
objective value. Marking each .v ∈ V when we solve its corresponding problem in 
x during the local minimization via binary search in v or when we eliminate it by 
bounds, we can accelerate the practical convergence of the first algorithm. 

Notice that in the worst case, we will solve at most .|V| = 2n problems, which is no 
worse than using Algorithm 2. We summarize the procedure in Algorithm 3 where 
the routine binary_search.

(
V+)

takes as argument a subset .V+ ⊆ V of marked 
outcomes and returns a locally optimal solution x found by binary search with its 
objective value u and the outcome number v it is associated with. The routine also 
updates the set .V+ with the previously nonmarked outcomes it visited during the 
binary search.
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Algorithm 3: Improved CVaR Algorithm 
Data: An instance of problem (13) 
Result: An optimal solution x∗ for (13) 

1 V+ := ∅; 
2 w∗ = +∞; 
3 while V+ �= V do 
4 (x, u, v):=binary_search

(
V+)

; 
5 if  w∗ > Vv + ε−1u then 
6 x∗ := x; 
7 w∗ := Vv + ε−1u; 
8 V+ := V+ ∪ {

v′ ∈ V : w∗ ≤ Vv′
}

9 return x∗; 

5 Quantal Response (QR) 

5.1 Defining the Response Probabilities pv(x) 

Recalling that the expected utility of the attacker when the target i is attacked is 
.Ui(xi) = xiPi + (1 − xi)Ri , if the attacker is not perfectly rational and follows 
a QR of rationality factor .λ > 0 (McKelvey & Palfrey, 1995), the probability that 
target i is attacked is given by 

.yi(x) = eλUi(xi )

n∑

j=1
eλUj (xj )

. (15) 

Defining .R := maxi∈{1,...,n} Ri , for theoretical complexity and computational 
tractability purposes, it is better (Chicoisne & Ordóñez, 2016) to divide by .eλR both 
the numerator and denominator in (15) : .yi(x) = eλ(Ui(xi )−R)/

∑n
j=1 eλ(Uj (xj )−R). 

Defining .βi := eλ(Ri−R) � 0, .γi := λ(Ri − Pi) � 0, and .δi := R̄i − P̄i � 0, we  
obtain that 

. yi(x) = βie
−γixi

n∑

j=1
βj e

−γj xj

.

We link the QR Stackelberg security game with the generic notation as follows: 
The set of payoffs is .{(Vv)v∈V :={1,...,2n}} := {(−P̄i)i∈{1,...,n}, (−R̄i)i∈{1,...,n}}, i.e., 
the set of all possible disutilities sorted in increasing order. Letting .i(v) being the 
target associated with outcome . Vv—be it a penalty or a reward—the probabilities of
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having each outcome are as follows: 

. pv(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

xi(v)βi(v)e
−γi(v)xi(v)/

n∑

j=1
βj e

−γj xj If outcome Vv is a reward

(
1 − xi(v)

)
βi(v)e

−γi(v)xi(v)/
n∑

j=1
βj e

−γj xj If outcome Vv is a penalty

For convenience, let us define for each target .i ∈ {1, . . . , n} the index . vP (i)

(respectively, .vR(i)) corresponding to the payoff of its penalty (respectively, 
reward). 

5.2 Efficient Solution 

We now see that any constraint of type (3) can be put in a tractable way in any
optimization framework: In fact, they can be either piecewise linearly approximated
or, in some reasonable cases, be equivalent to convex constraints. Because the
adversary follows a QR, any type (3) constraint becomes

. 
∑

i:vP (i)≥v̄

ξvP (i)

βie
−γixi

n∑

j=1
βje

−γj xj

(1 − xi) +
∑

i:vR(i)≥v̄

ξvR(i)

βie
−γixi

n∑

j=1
βj e

−γj xj

xi ≤ �

(16) 

i.e.,
∑

i:vP (i)≥v̄

ξvP (i)βie
−γixi (1 − xi) +

∑

i:vR(i)≥v̄

ξvR(i)βie
−γixi xi ≤ �

n∑

i=1

βie
−γixi .

Proposition 5 The following statements hold: 

1. The left-hand side of (16) is separable in the variables . xi and can be conse-
quently piecewise linearly approximated via the use of integer variables (Vielma, 
2015). 

2. If the vector . ξ is such that .ξ1 ≤ ξ2 ≤ . . . ≤ ξ|V |, (16) can be cast as the following
convex constraint:

. 
∑

i:vP (i)≥v̄

ξvP (i)βizi − �

n∑

i=1

βizi

+
∑

i:vP (i)≥v̄

ξvP (i)

βi

γi

zi ln zi −
∑

i:vR(i)≥v̄

ξvR(i)

βi

γi

zi ln zi ≤ 0

after using the change of variables .xi := − ln(zi)/γi .
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Proof The first part is immediate. For the second part, after using the change of 
variables .xi := − ln(zi)/γi , we obtain 

.

∑

i:vP (i)≥v̄

ξvP (i)βizi − �

n∑

i=1

βizi

+
∑

i:vP (i)≥v̄

ξvP (i)

βi

γi

zi ln zi −
∑

i:vR(i)≥v̄

ξvR(i)

βi

γi

zi ln zi ≤ 0.

(17) 

Because of the last term in the left-hand side, it is not obvious that constraints (17) 
define a convex set. However, if a term appears in the last sum of the left-hand side,
it also appears in the penultimate term given that (1) .vP (i) > vR(i) and (2) the 
components . ξv are in increasing order. Let us consider a single target i that appears 
in the complicating last term: its “contribution” wrt each . xi in constraint (17) is

.ξvP (i)βizi − �βizi + ξvP (i)

βi

γi

zi ln zi − ξvR(i)

βi

γi

zi ln zi . (18) 

The first two terms in (18) do not cause any harm to the overall convexity because
of their linearity, whereas the two last terms can be factored into

.
(
ξvP (i) − ξvR(i)

) βi

γi

zi ln zi . (19) 

By hypothesis, we have .ξvP (i) ≥ ξvR(i), making the term (19) convex.

The last proposition tells us that whenever the adversary follows a QR, using risk-
aversion inducing constraints or objective functions is tractable in practice. More 
precisely, if . X is defined by linear constraints: 

1. The first result of Proposition 5 tells us that the full optimization problem can be 
cast as a mixed-integer linear optimization problem. 

2. The second part tells us that if . X is defined by r linear inequalities with 
nonnegative coefficients .(aj )�x ≤ bj ,∀j ∈ {1, . . . , r}, then the constraints 
defining . X after the change of variables .xi := − ln(zi)/γi translate into the r 
following convex constraints: 

. −
n∑

i=1

ai
j

γi

ln(zi) ≤ bi, ∀j ∈ {1, . . . , r}

which is readily solvable by off-the-shelf interior point algorithms (e.g., Pirnay 
et al. (2012), Wachter and Biegler (2006))
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6 Prospect Theory 

Another case in which problem (1) can lead to a tractable solution problem has to
do with approximate solutions of the SSG when both leader and follower consider a
prospect theory decision model. As mentioned in Sect. 1, prospect theory assumes 
players deviate from the expected objective through distortion functions that modify 
the valuations and the probability of occurrence. Under this model, the disutility of 
the leader is 

. PT (D(x)) =
∑

v∈V
π(pv)ν(Vv) ,

where, given parameters .λ, α, β ≥ 0, and .δ ∈ [0, 1], the distortion functions are 

. ν(z) =
{

(z − C)α if z ≥ C

−λ(−z + C)β if z < C
and π(x) = xδ

(xδ + (1 − x)δ)
1
δ

.

where C represents the reference point for the valuation function. Similar expres-
sions are used for the follower for its own distortion functions . π ′ and . ν′. 

To propose a tractable model, we assume that the follower selects an optimal pure 
strategy (a target to attack), i.e., .y ∈ {0, 1}n—an assumption that holds for a linear 
objective of the subproblem. Since . pv is either .yi(v)xi(v) or .yi(v)(1 − xi(v)), we have  
that .π(pv) is either .yi(v)π(xi(v)) or .yi(v)π(1 − xi(v)). Therefore, we express (1) as

. 

max
n∑

i=1

yi

[
π(xi)ν(R̄i) + π(1 − xi)ν(P̄i)

]

s.t. x ∈ X

y = argmax
n∑

i=1

yi

[
π ′(xi)ν

′(Pi) + π ′(1 − xi)ν
′(Ri)

]

s.t.
n∑

i=1

yi = 1, y ∈ {0, 1}n .

This problem with nonlinear objectives in both problems can be solved approx-
imately with piecewise linear approximations and integer variables. For this, 
consider that every . xi variable is partitioned into K segments with breakpoints 
.c0, c1, . . . , cK , with .c0 = 0 and .cK = 1. The perturbation functions . π and . π ′
take values . bk and . b′

k at breakpoints . ck for .k ∈ K . To simplify the constraints, we 
will use a variable .ziK+1 = 0.
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. 

max γ

s.t. x ∈ X
n∑

i=1

yi = 1, y ∈ {0, 1}n
∑

k∈K

zik = 1, zi ∈ {0, 1}|K| i ∈ I

∑

k∈K

ẑik = 1, ẑi ∈ {0, 1}|K| i ∈ I

∑

k∈K

wik = 1, wi ∈ [0, 1]|K| i ∈ I

∑

k∈K

ŵik = 1, ŵi ∈ [0, 1]|K| i ∈ I

wik ≤ zik + zik+1, ŵik ≤ ẑik + ẑik+1 i ∈ I, k ∈ K

xi = ∑

k∈K

ckwik, 1 − xi = ∑

k∈K

ckŵik i ∈ I

qi = ∑

k∈K

bkwik, q̂i = ∑

k∈K

bkŵik i ∈ I

q ′
i = ∑

k∈K

b′
kwik, q̂ ′

i = ∑

k∈K

b′
kŵik i ∈ I

0 ≤ a − [
q ′
iν

′(Pi) + q̂ ′
iν

′(Ri)
] ≤ M(1 − yi) i ∈ I

M(1 − yi) + [
qiν(R̄i) + q̂iν(P̄i)

] ≥ γ i ∈ I

Here, variables . zik and . ̂zik indicate which interval of the piecewise approximation 
is used for . xi and for .1 − xi , respectively. The value of the convex combination is 
given by variables .wik and . ŵik , respectively. The values . qi , . q̂i , . q ′

i , and . q̂ ′
i give the 

expressions of .π(xi), .π(1 − xi), .π ′(xi), and .π ′(1 − xi), respectively. We consider 
that this approximate mixed-integer optimization problem is a tractable model for 
the prospect theory approach. 

7 Computational Results 

7.1 Expected Value and Entropy Minimization with QR 
Adversaries 

In Chicoisne and Ordóñez (2016), we studied risk-neutral and risk-averse objective 
models that minimize either the expected value .E[D(x)] or an entropic risk measure 
.α lnE[exp(D(x)/α)]. The resulting models were able to solve instances within an 
hour with up to .n = 10,000 targets for (1) a basic model where 

.X0 :=
{

x ∈ [0, 1]n :
n∑

i=1

xi ≤ m

}
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Fig. 1 Loss CDFs of the minimizers of . Eα and maximizers of . E with . X0 (left) and . X1 (right) 

Table 2 Difference of the 
optimal strategies in function 
of . α as a % of the . E
solution’s statistics (. X1, 
.n = 1000, .m = 100) 

Objective minimized 

Statistic .Eα=1 .Eα=2 .Eα=5 . Eα=7

.V . −32 . −26 . −17 . −12 

.E . −15 . −5 . −2 . −1 

Worst case .P . −68 . −44 . −14 . −11 

.VaRε=10% . −9 . −10 . −6 . −5 

Exec. time (s) 6.324 5.131 4.085 3.862 

and (2) a more concrete model with disjunctive and precedence constraints 

. X1 :=
⎧
⎨

⎩
x ∈ X0 :

∑

i∈Dd

xi ≤ 1,∀d ∈ {1, . . . , D}, xi ≤ xj ,∀(i, j) ∈ E

⎫
⎬

⎭
.

All payoffs .Ri, R̄i , Pi , and . P̄i belong to .[−10, 10] in this subsection and the next. 
As we can see in Fig. 1, the cumulative distributions corresponding to the risk-

averse strategies (i.e., minimizing entropic risk measures of parameters .α = 5 and 
.α = 10) are stochastically dominating the risk-neutral strategies (i.e., minimizing 
the expected loss) in the tail of the distribution. 

Further, we studied the influence of the entropic risk parameter . α: in Table 2, 
we can see that as . α increases—i.e., the defender becomes less risk-averse—the 
benefit in terms of variance, .VaRε=10%, and the worst case probability reduction 
becomes less important but is significant for lower values of . α. On another hand, 
these benefits come at the moderate cost of having an increased expected loss by 
about 1–15%. 

7.2 VaRε and P[D(x) � ˜V ] Minimization 

Some preliminary experiments were conducted on minimizing .VaRε and . P[D(x) �
Ṽ ] with mid-sized instances of . X0 with .n = 400 and .m = 60. The thresholds .Ṽ
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Table 3 Statistics of the optimal strategies for different objectives as a % of the . E solution’s (. X0, 
.n = 400, .m = 60) 

Objective minimized 

Statistic .VaR20% .VaR10% .VaR5% .VaR1% .P100 .P50 . P20

.V .−9 .−18 .−26 .−36 +9 +1 . −34

.E +6 +17 +29 +49 +10 +2 +45 

.VaRε=2% .−10 .−6 .−4 +5 +18 +5 +4 

.CVaRε=2% .−4 .−10 .−10 .−8 +8 +3 . −9

Exec. time (%) +576 +595 +606 +600 .−25 .−36 . −31

used when minimizing .P[D(x) � Ṽ ] were chosen to be 100%, 50%, and 20% of 
the worst case disutility .−V1, noted, respectively, as .P100, . P50, and . P20. 

The results are summarized in Table 3 where we can see that the variance is 
consistently decreased by using risk measures instead of the expected value, and the 
more risk-averse the defender is, the greater the loss in expected outcome. Because 
minimizing .VaR involves the solution of .O(log2 n) subproblems, it is significantly 
slower than minimizing the probability of being over a threshold. 

7.3 Prospect Theory 

Here, we present computational results evaluating the change in the solution of 
using and not using a prospect theory model over a small random instance with 
.n = 8 targets. Payoffs are generated from .[−10, 10]. We consider seven instances 
with this data, changing the number of security resources that the leader uses, with 
.m = {1, 2, . . . , 7}. We consider a piecewise linear approximation of the probability 
distortion function by partitioning .[0, 1] in five uniformly spaced breakpoints 
.K = 5. We consider three different models, depending on which player considers 
a prospect theory or an expected utility objective. In particular, model Neither 
assumes both the leader and follower minimize the expected utility; model Only 
Follower has a follower with prospect theory and the leader with expected utility; 
and model Both assumes both players use a prospect theory objective. 

In Table 4, we present the leader utility objective (expected utility for Neither and 
Only Follower) and a prospect theory objective in Both over the different instances. 
We observe, as instance number increases (and more security resources are used), 
the disutility decreases for all models. In addition, notice that changing the follower 
utility function does not cause significant change on the leader utility. Finally, the 
decrease in leader utility when the leader uses prospect theory is related to the 
diminishing returns of the utility perturbation because .0 ≤ α < 1. 

In Table 5, we present the change in leader expected utility as we modify the 
reference point C. The change is given as the difference between the leader expected 
utility of the Only Follower model minus the Neither model. As we change the



Location and Strategies in Stackelberg Security Games with Risk Aversion 151

Table 4 Leader utility 
objective function. Model 
identifies if objective is 
prospect theory or expected 
utility 

Instances 

Model 1 2 3 4 5 6 7 

Neither 4.4 5.8 3.8 5.5 1.1 1.6 0.5 

Only follower 4.2 5.9 3.7 5.7 0.9 1.2 0.6 

Both 1.1 1.9 1.1 1.8 0.2 0.1 0 

Table 5 Expected leader 
utility difference (Only 
Follower . − Neither) for  
different follower reference 
points 

Reference Instances 

point 1 2 3 4 5 6 7 

−10 0 . −0.1 1.5 4.3 3 1.8 0.7 

−8 0 . −0.1 1.5 3.3 2.9 1.8 0.7 

−6 . −0.1 . −0.1 1.5 2.2 2.8 1.7 0.7 

−4 . −0.1 . −0.1 1.5 2 2.1 1.6 0.7 

−2 . −0.1 0 1.9 2.9 2.7 1.8 0.7 

0 . −0.2 0.1 . −0.1 0.2 −0.2 −0.4 0.1 

2 0 0 0 0.4 0.5 0.3 0.1 

4 . −3 . −0.7 1.4 1.8 1.3 0.8 0.2 

6 . −2.3 1.3 3 2.7 1.9 1.2 0.2 

8 . −1.9 2 3.5 3.2 2.1 1.2 0.2 

10 0.4 3.2 3.8 3.4 2.1 1.2 0.2 

follower reference point from .−10 to 10 for all instances, the leader expected utility 
difference is U-shaped. This difference decreases and then increases. An explanation 
for this is because for a reference point close to 0, the distortion of the utility value 
of the follower is not so large and thus does not change much from the expected 
utility behavior. Largest changes are for extreme reference values in instances 3, 4, 
and 5, because in this situation, leader policy can be more different. In instance 1, 
most targets are not protected, while in instance 7, most targets are protected. 

8 Conclusions 

The Stackelberg security game considered has an uncertain leader utility whose 
outcome is a discrete random variable with a probability distribution that depends on 
the players’ decisions. In addition, the payoffs for a given leader/follower action pair 
are invariant. The more common situation in optimization under uncertainty is that 
the decision variables influence the utility values, not the probability distribution. 

We present several formulations for risk models of uncertainty that, for the 
leaders’ utility, provide convex constraints or that can be approximated efficiently 
with a few integer variables. These are referred to as tractable models. We show 
that the difficulty of computing certain statistics changes depending on whether 
the decision variables determine the probability or the utility. In particular, VaR 
becomes tractable, while variance seems intractable for the leader utility, a situation
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that is reversed when the probabilities are given and utility values depend on 
decision variables. 

Our computational results illustrate the tractability of the approach in two 
situations, when the follower uses a quantal response model and when the follower 
responds with pure strategies which enables the use of distortion functions (prospect 
theory) for the leader and follower. In the former, we show that we can compute 
different risk measures (entropic risk, VaR, and chance constraint), and in the 
latter, we compare the use or not of prospect theory for different players and the 
effect of the reference point. In Chicoisne and Ordóñez (2023), some particular 
cases of this model are studied. Specifically, that work considers explicitly the 
possibility of multiple adversaries. Extending this work for the multiple adversaries 
setting presented in Chicoisne and Ordóñez (2023) is straightforward, since the 
derivations in Sect. 3 can be used in every utility function and the leader utility 
is the weighted sum of the interaction between the leader with each follower. 
Further work is necessary to evaluate the tractability of a multiple follower SSG 
if the utilities depend in a more complicated nonlinear way of the multiple players’ 
decisions. Another line of future research is exploring the use of these formulations 
in other stochastic optimization problems where the decision variables influence the 
probability distribution. 
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Dentcheva, D., & Ruszczyński, A. (2004). Semi-infinite probabilistic optimization: first-order 
stochastic dominance constrain. Optimization, 53(5–6), 583–601. 

Freire, A. S., Moreno, E., & Yushimito, W. F. (2016). A branch-and-bound algorithm for the 
maximum capture problem with random utilities. European Journal of Operational Research, 
252(1), 204–212. 

Gensch, D. H., & Recker, W. W. (1979). The multinomial, multiattribute logit choice model. 
Journal of Marketing Research, 16(1), 124–132. 

Haase, K., & Müller, S. (2014). A comparison of linear reformulations for multinomial logit choice 
probabilities in facility location models. European Journal of Operational Research, 232(3), 
689–691. 

Haile, P., Hortaçsu, A., & Kosenok, G. (2008). On the empirical content of quantal response 
equilibrium. The American Economic Review, 98(1), 180–200. 

Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., & Ordóñez, F. (2010). Software 
assistants for randomized patrol planning for the LAX airport police and the federal air marshal 
service. Interfaces, 40(4), 276–290. 

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. 
Econometrica, 47(2), 263–291. 

Kar, D., Nguyen, T. H., Fang, F., Brown, M., Sinha, A., Tambe, M., & Jiang, A. X. (2017). Trends 
and applications in Stackelberg security games. Handbook of dynamic game Theory (pp. 1–47). 
Springer International Publishing. 

Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., & Tambe, M. (2009). Computing optimal 
randomized resource allocations for massive security games. In: Proceedings of the 8th AAMAS 
Conference, Budapest, Hungary, (pp. 689–696). International Foundation for AAMAS. 
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Abstract In this chapter, location analysis is put at the core of what is coined as 
supply chain risk analytics. This is accomplished by devising a hierarchy for the 
core elements underlying a new definition introduced for supply chain risk. The 
ultimate purpose of this analysis is to obtain risk-aware decisions for supply network 
design that adequately overcome the information gap. The above elements and 
concepts are operationalized through a capacitated facility location problem with an 
objective that has firm- and customer-oriented features and that includes demand 
uncertainty. This leads to a risk-aware optimization model, which is introduced for 
supply chain network design problems fulfilling gaps identified in contemporary 
research. Additionally, the value of considering risk-aware solutions is discussed 
in the context of supply chain management. Above all, this chapter closes a 
gap existing in the literature, namely, a missing clear objective and quantifiable 
definition of risk in supply chain management. Both researchers and practitioners 
can benefit from the contents of this chapter. 
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1 Introduction 

The role of facility location in logistics network design has been widely recognized 
(see, e.g., Klose & Drexl 2005, Melo et al.  2009, Heckmann & Nickel 2019). The 
impressive advances we have observed in stochastic programming in general and 
stochastic facility location problems in particular explain the increasing attention put 
on the role of facility location in supply chain planning under uncertainty (Correia 
& Saldanha-da-Gama, 2019; Dunke et al., 2016; Heckmann & Nickel, 2019). 

It is commonly accepted that stochasticity leads to risk. However, the concept 
of risk is vague and strongly depends on the specific problem or area in which 
it is being adopted. In the context of supply chain planning, there has been a big 
debate on the topic with different risk concepts being introduced (Dunke et al., 2016; 
Heckmann et al., 2015). 

In this chapter, we discuss how facility location can be put at the core of a 
comprehensive risk definition in supply chain network design. This, in turn, leads to 
a comprehensive stochastic facility location model. In this process, we highlight the 
relevant elements and their hierarchy for handling risk in supply chain management. 

The remainder of the chapter is organized as follows. In Sect. 2, we discuss 
different aspects that lay the foundations for what is later coined as “supply chain 
risk analytics” and also for a new comprehensive definition for supply chain risk. 
In Sect. 3, we show how to operationalize the new risk definition by means of a 
stochastic facility location model. In Sect. 4, we assess the relevance of considering 
risk-aware solutions in the strategic context discussed. In Sect. 5, we illustrate all 
the concepts introduced in this chapter by using a small instance of the new model 
proposed. The chapter ends with several conclusions drawn from the contents and 
illustrations proposed. 

2 Toward Supply Chain Risk Analytics 

Over the past decades, the need for risk assessment and management in general and 
within the context of supply chain planning in particular has become increasingly 
relevant. This is attested by Aven (2016), Baryannis et al. (2019), Dunke et al. 
(2016), Heckmann et al. (2015), and Munir et al. (2020) as well as by the references 
therein. However, the concept of risk in the context of supply chain management— 
“supply chain risk”—has not been clearly defined. The reason for a heterogeneous 
and often ambiguous understanding of such concept has its roots in the long 
history and evolution of the notion of risk itself. Nevertheless, for practitioners 
and researchers, it would be important to have a standardized definition helping 
in the development of more comprehensive optimization models to better support 
decision-making.
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In this section, we discuss recent attempts to formally define supply chain risk, 
and we introduce a new definition that ultimately accounts for all the aspects that, 
in our view, should be considered. 

2.1 Toward a Comprehensive Definition of Supply Chain Risk 

As pointed out by Heckmann et al. (2015), there is a vast literature dealing with 
risk in multiple fields. For the particular case of supply chain management, those 
authors identify a set of core characteristics underlying risk, namely, risk exposition, 
risk attitude, and risk objective. A central aspect indicating the need to cope with 
supply chain risk regards the objectives to achieve and their target values. In that 
same paper, the authors identify two types of goals in modern supply chains: 
functionality (effectiveness) and profitability (efficiency). The former refers, for 
instance, to the availability of resources or to the service level achieved; the 
latter demonstrates competitive advantage, which may depend on factors such 
as the logistics and supply chain costs (e.g., facility location or transportation of 
commodities). Whenever a supply chain is hindered to achieve both types of goals, 
supply chain risk may arise. This possibility, in turn, depends on the exposition of 
the supply chain to unexpected events—the risk exposition. Finally, risk exposition 
is determined by three elements: (i) disruptive triggers, (ii) time-dependent features, 
and (iii) the affected components of the supply chain. 

A disrupting trigger is an event (e.g., a strike, a flood, a pandemic) that initiates 
unexpected changes with an unpredictable outcome. The second element—time— 
is important for assessing the status of a supply chain either before, while, or after 
a disruptive trigger occurs. For instance, if a labor strike occurs, then typically the 
more time the disruption lasts, the more severe are the consequences for the system 
as a whole. Finally, the affected supply chain components have to be identified to 
evaluate their capability to cope with changes that affect their inner processes. 

Last but not the least, the relevance of not achieving the goals set for a 
supply chain—a prime indicator of the presence of risk—is further assessed by 
the risk attitude of the decision-maker. In particular, it depends on the subjective 
interpretation of the decision-maker as well as on how negative a deviation from the 
goal should be evaluated. 

Considering the core characteristics just reviewed, Heckmann et al. (2015) 
offered the following definition: “Supply chain risk is the potential loss for a supply 
chain in terms of its target values of efficiency and effectiveness evoked by uncertain 
developments of supply chain characteristics whose changes were caused by the 
occurrence of triggering-events.” 

More recently, Dunke et al. (2016) argued that often supply chain risk is time-
dependent, unlike suggested by the above definition. For instance, the target values 
set for the goals often vary in time; alternatively, a decision-maker may have a level 
of risk aversion that changes with the time (e.g., more experience/knowledge accu-
mulated). In other words, time dependency cannot be neglected when considering
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the core elements underlying supply chain risk (risk objective, risk exposition, and 
risk attitude). 

By gathering the insights provided by Heckmann et al. (2015) and Dunke et al. 
(2016), we offer an improved definition of supply chain risk: 

Supply chain risk is the time-dependent potential loss for a supply chain in terms of its 
target values of profitability and functionality evaluated by the decision maker’s nature and 
evoked by uncertain changes of the affected supply chain and its processes whose changes 
were caused by the occurrence of triggering-events. 

In the above definition, we highlight in italics the relevant aspects to consider. 
The concept of supply chain process was formally introduced by Dunke et al. 
(2016): it is any activity involved in procuring, producing, storing, or distributing 
goods or any service required to ensure the achievement of the goals set for the 
supply chain. 

Next, we look into the different elements involved in the new definition just 
proposed. 

2.2 Hierarchy of the Core Characteristics of Supply Chain Risk 

In Fig. 1, we illustrate the supply chain risk hierarchy, embracing the main features 
of the new definition just proposed. By jointly considering these features, we can 
eventually operationalize supply chain risk. 

Fig. 1 The core characteristics of supply chain risk hierarchy
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2.2.1 Time Dependency 

The central role of time in supply chain risk has scarcely been considered in the 
literature. Nevertheless, some authors point out its importance when it comes to 
modeling supply chain risk (see, e.g., Hahn & Kuhn 2012, Lockamy & McCormack 
2010, Manuj & Mentzer 2008, Sheffi 2005, and Wagner & Bode 2008). 

A so-called disruption profile is a way to relate time with performance deterio-
ration.1 This was introduced by Sheffi (2005) and Sheffi & Rice (2005), and it was 
discussed by other authors such as Asbjørnslett (2009), Behdani (2013), Craighead 
et al. (2007), Lynch (2012), Melnyk et al. (2008), and Snyder et al. (2016). For 
example, a triggering event can lead to a huge capacity reduction (e.g., in terms 
of production) that recovers slowly over the planning horizon; it can also lead to a 
small reduction that can be quickly compensated. 

Despite the distinct evolution over time usually observed for different parameters 
underlying a problem, the time-dependent integration of these parameters is of 
major relevance. For instance, in the case of the flooding in Thailand in 2011, an 
extreme capacity reduction for exporters of hard disk drives and solid-state drives 
came along with an increased demand for the new solid-state drives (Risk Response 
Network, 2011). 

Accordingly, a quantitative approach for handling risk should account for 
preparedness with respect to possible disruptive triggers. Furthermore, capacity and 
demand shifts are more adequately represented as time-dependent parameters. 

2.2.2 Risk Objective 

Traditionally, risk is perceived as financial risk and assessed with metrics often used 
in finance like variance, mean-variance ratios, value-at-risk, or conditional value-at-
risk (see, for instance, Sarykalin et al. 2008). In supply chain management, we also 
find works perceiving risk as financial risk (see, for instance, Nickel et al. 2012 and 
Osadchiy et al. 2016). 

For the sake of competitiveness, supply chains need to accomplish a cost-efficient 
execution of supply chain processes. However, unlike the overall corporate business 
objective, the main purpose of a supply chain is to satisfy customers’ demand. 
Therefore, it is inaccurate (not to say incorrect) to evaluate supply chain risk only in 
terms of financial risk, i.e., monetary loss. 

While the availability of resources is captured by the concept of effectiveness, the  
competitive advantage is captured by the concept of efficiency. Therefore, as pointed 
out before, a supply chain should seek two main goals: efficiency and effectiveness. 
Both should be considered in a quantitative approach for handling supply chain 
risk.

1 Performance deterioration is the difference (over a certain planning horizon) between the planned 
targeted supply chain performance value and the actual performance value—see Cui et al. (2010). 
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2.2.3 Decision-Maker’s Nature 

Like in most of the cases when dealing with uncertainty, the nature of the decision-
maker when facing uncertainty is a core feature of supply chain risk. When a 
decision-maker is risk-seeking, she/he prefers a chance outcome than a certain 
return with the same expected utility (Kochenderfer et al., 2022). A risk-neutral 
decision-maker is indifferent to a chance outcome or a certain one with the same 
expected utility. This is a very common attitude assumed in the literature; the future 
assets are typically assessed by their expected value. 

When managing a supply chain, two objectives should be considered: ser-
vice level, i.e., proportion of the demand that is satisfied (an effectiveness-rents 
objective), and cost minimization (an efficiency-rents objective). One possibility for 
handling these objectives, which are often conflicting, is to weight them in a single 
objective function. By doing so, it is possible to give more strength to one of them 
or even to look for different trade-offs before making a final decision. Furthermore, 
by playing with the weights, we can actually capture different levels of financial 
risk aversion, and thus we can better adjust a model to the actual nature of the 
decision-maker. This is being highlighted by the stochastic facility location model 
to be introduced later in the chapter. 

2.2.4 Risk Exposition 

The exposition of a supply chain to risk is one of the core characteristics highlighted 
in Fig. 1 that is further specified by the disruptive triggers and the affected 
components of the supply chain. 

Dunke et al. (2016) call potential trigger to an event that can negatively affect the 
efficiency and effectiveness of a supply chain process, resulting in a performance 
deterioration. A potential trigger becomes a disruptive trigger when its occurrence 
results in the actual deterioration of the supply chain performance. 

The consequences of a disruptive trigger typically propagate through the entire 
supply network. For example, a negative event such as a strike or a wart can result 
in a capacity reduction or in a demand increase. It is the interplay of all supply chain 
processes and the actual state of the different supply chain features that define the 
resilience of the system. We recall the concept of supply chain resilience adopted by 
Heckmann (2015) and Ivanov (2018) among other authors: the ability of a supply 
chain to overcome vulnerability with the latter describing the extent to which a 
supply chain is susceptible to some event. Such interaction determines whether the 
first impact of the event on a process provokes the dis-functionality and/or non-
profitability of consecutive processes, propagates through the entire network, and 
finally results in failing to achieve supply chain goals in terms of efficiency and/or 
effectiveness. 

To endow supply chains with the ability to absorb (or to adjust to) the con-
sequences of disruptive triggers, several additional decisions emerge. First, it is 
necessary to assess the need for increasing the supply chain resilience. If the supply
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chain is considered to be able to hedge against uncertain triggers, the installation of 
(further) risk countermeasures is not necessary; otherwise, the supply chain should 
be endowed with an occasional and temporary adjustment of its structures. For 
instance, a facility can be “protected” by options for temporary capacity expansion 
that can be activated if necessary. This is a way to ensure proper countermeasures 
for recovering production capacity, inventory levels, or handling throughput, just to 
mention some possibilities. Note that hedging against risk has costs and that is a 
decision problem by itself. 

2.3 Supply Chain Risk Analytics 

Most contemporary approaches for dealing with supply chain risk focus on reducing 
the financial consequences of uncertain and unexpected developments (Heckmann 
et al., 2015). They predominantly evaluate the impact of changes of monetary 
policies (prices) or fiscal policies (taxation) with measures developed for the 
quantification of financial risk. As discussed above, this is not the same as supply 
chain risk. 

To this date, supply chain risk management suffers from the lack of clear and 
adequate quantitative measures respecting the characteristics of modern supply 
chains. Consequently, it is difficult to adequately quantify risk. Even if it is not 
possible to fully quantify supply chain risk through some measures, still supply 
chain risk and its related core characteristics need to be represented within supply 
chain models. Following these arguments, we introduce a new concept: 

Supply chain risk analytics is a bundle of mathematical methods and measurement 
techniques tailored for determining risk-aware solutions for supply chain design, planning 
and execution. 

The remainder of this chapter materializes this new concept. 

3 Supply Chain Risk Made Operational: A Stochastic 
Facility Location Model 

A renewed definition of supply chain risk as presented in the previous section is 
interesting but is useless if not properly operationalized: it is important to look into 
ways for embedding such a definition into quantitative approaches to better support 
decision-making. As we show next, this can be accomplished by taking advantage 
from the strong role of location analysis in supply chain management, which allows 
putting location problems at the service of the above discussed concepts. 

One fundamental facility location problem is the capacitated facility location 
problem (CFLP) also known as the fixed-charge facility location problem (Fer-
nández & Landete, 2019). When it comes to strategic planning in supply chain
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management, it is often found at the core of comprehensive problems since it 
involves capacity constraints that can be related with production, inventory, or some 
type of handling. 

3.1 Model Formulation: Embedding Time and Uncertainty 

The CFLP consists of deciding where to locate a set of capacitated facilities and how 
to ship some commodity to a set of customers to minimize the total cost associated 
with the facilities and with the transportation of the commodity from the facilities 
to the customers. 

As we have discussed in Sect. 2, when risk is to be accounted for, time and 
uncertainty cannot be neglected. We consider the planning horizon of interest 
divided into time periods. Different arguments support a discretized planning 
horizon (see, e.g., Nickel & Saldanha-da-Gama 2019). Regarding uncertainty, we 
consider its most common source in a facility location problem: demand. We assume 
that uncertainty can be captured by a finite (even if of large cardinality) set of 
scenarios; each scenario determines the demand of all customers in all periods. If we 
further assume that the probability associated with each scenario can be estimated, 
then we can resort to stochastic programming to derive an optimization model for 
the problem. 

We introduce some notation to be used hereafter. I denotes the set of candidate 
locations for the facilities, J represents the set of customers or demand points, T 
stands for the set of time periods in the planning horizon, and S is the set of demand 
scenarios. Regarding the costs, we define . fi as the operation cost of a facility located 
at .i ∈ I , . cij is the unit transportation cost between facility .i ∈ I and customer 
.j ∈ J , and . rj is the unit revenue provided by customer .j ∈ J . Other parameters 
in our problem are . qi , which is the capacity of a facility operating at .i ∈ I , . djts

representing the demand of customer .j ∈ J in period .t ∈ T under scenario .s ∈ S, 
and . πs , which is the probability for scenario .s ∈ S. 

The above notation assumes a single commodity as well as a negligible monetary 
devaluation. In practice, this may not be the case but our analysis can be easily 
extended if necessary. Nevertheless, keeping the setting as simple as possible allows 
to better highlight several aspects of interest. 

The decisions to make are represented by two sets of decision variables: binary 
variables . yi equal to 1 if and only if a facility is set operating at .i ∈ I , and non-
negative continuous variables .xij ts indicating the fraction of the demand of customer 
.j ∈ J in period .t ∈ T supplied from a facility operating at .i ∈ I under scenario 
.s ∈ S. A multi-period stochastic CFLP can be formulated as follows: 

.minimize
∑

i∈I

fiyi +
∑

s∈S

πs

⎛

⎝
∑

t∈T

∑

i∈I

∑

j∈J

(
cij − rj

)
djtsxij ts

⎞

⎠ , . (1) 

subject to
∑

i∈I

xij ts ≤ 1, j ∈ J, t ∈ T , s ∈ S, . (2)
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∑

j∈J 
djtsxij ts ≤ Qiyi, i  ∈ I, t ∈ T ,  s  ∈ S, . (3) 

xij ts ≥ 0, i ∈ I, j ∈ J, t ∈ T , s ∈ S, . (4) 

yi ∈ {0, 1}, i ∈ I. (5) 

The objective function (1) accounts for the total facilities’ operation costs and the
total expected cost for supplying the demand; Constraints (2) ensure that demand is
not oversupplied; Inequalities (3) stand for the capacity of the facilities; finally, (4) 
and (5) state the domain of the decision variables. Due to the presence of revenues
in the objective function, supplying all the demand of all customers in all periods
and scenarios does not necessarily correspond to an optimal decision.

Having considered the above prototype model, we can now proceed by dis-
cussing how the different characteristics of supply chain risk identified in the 
previous section can be embedded in the model. 

3.2 Risk Objective: Efficiency and Effectiveness 

As discussed in Sect. 2.2, one relevant element in the supply chain risk hierarchy is 
the risk objective, which should gather both efficiency and effectiveness. Noticeably, 
the above model is already capturing supply chain efficiency in the objective 
function (1) by means of the total cost associated with the facilities (. fi , .i ∈ I ) 
and the transportation cost between facilities and customers, . cij (.i ∈ I , .j ∈ J ). 

In turn, effectiveness is related with the ability of the supply chain to fulfill its 
function—to supply the customers according to their demand. This is not captured 
by the model. As we mentioned before, a way to account for effectiveness is to 
consider service level as a decision to make and then to use the objective function to 
penalize any shortage with respect to a minimum threshold defined by the decision-
maker—the target service level. 

To extend the model, we introduce some additional notation, namely, .α0 ∈ [0, 1], 
denoting the target service level, and h standing for the unit cost for service level 
shortage (w.r.t. target). The additional decision variables include . αs representing the 
service level achieved under scenario .s ∈ S; . �s , the service level shortage (w.r.t. the 
target value) under scenario .s ∈ S; and . ujts , the proportion of unsupplied demand 
for customer .j ∈ J , in period .t ∈ T under scenario .s ∈ S. 

Using the above notation, for each .s ∈ S, we have  

.αs = 1 −
∑

j∈J

∑
t∈T djtsujts∑

j∈J

∑
t∈T djts

and �s = max
{
0, α0 − αs

}
.
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Note that for each scenario .s ∈ S, we have  .αs ∈ [0, 1], with 0 indicating that no 
demand is supplied and 1 indicating that all demand is supplied. 

Model (1) –(5) can now be extended as follows:

.minimize
∑

i∈I

fiyi +
∑

s∈S

πs

⎛

⎝h �s +
∑

t∈T

∑

i∈I

∑

j∈J

(
cij − rj

)
djtsxij ts

⎞

⎠ , . (6) 

subject to
∑

i∈I

xij ts + ujts = 1, j ∈ J, t ∈ T , s ∈ S, . (7) 

�s ≥ α0 −
(
1 −

∑
j∈J

∑
t∈T djtsujts∑

j∈J

∑
t∈T djts

)
, s ∈ S, . (8) 

(3) –(5) ,

ujts ≥ 0, j ∈ J, t ∈ T , s ∈ S, . (9) 

�s ≥ 0, s ∈ S. (10) 

The possibility of having unsupplied demand has been captured within the 
context of supply chain network design problems in general and within facility 
location problems in particular (see, for instance, Cui et al. 2010, Miranda &Garrido 
2009, and Nickel et al. 2012). In the case of facility location models, unsupplied 
demand can be easily embedded in a classical model since we can consider a dummy 
facility supplying all the missing demand. Nevertheless, explicitly considering the 
unsupplied demand as we are doing above helps to better illustrate the concepts we 
are discussing in this chapter. 

When capacity becomes tight, it will be necessary to decide which customers to 
serve. In the above model, the unit revenues provided by the customers guide such 
decision. Furthermore, the model also allows each customer to be served by multiple 
facilities, which is of particular interest, when, for instance, disruptions prevent the 
supply from a major facility (Ang et al., 2017). 

Finally, we note time and uncertainty being involved in both efficiency and 
effectiveness as it should be the case according to our preliminary discussion. 

3.3 The Attitude Toward Risk 

At a first glance, the extended model just presented seems to indicate that we are 
considering a risk-neutral decision-maker, because our objective function measures 
the expected value of the future outcome. However, a closer look shows that we can 
do more than that. A risk-aware optimization model for supply chain network design 
must seek a trade-off between customer satisfaction and cost. This suggests the 
use of a multicriteria optimization model. However, looking closely into our above
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model, we realize that this is being accomplished through scalarization. In fact, the 
above-mentioned trade-off is assured and “regulated” by parameter h. By playing 
with it, one can capture the extent to which the decision-maker is willing to invest 
for getting more operational capacity to increase the value of customer satisfaction. 
A decision-maker with a higher level of risk aversion with respect to investments 
in the supply chain will certainly choose smaller values for h. Accordingly, despite 
considering the expected value of the future assets, our objective function allows 
defining different risk profiles for decisions-makers when it comes to financial risk. 

This analysis is still valid (and even better stressed) when other costs are included 
in the objective function as we do next. 

3.4 Risk Exposition 

In Sect. 2, we realized that risk exposition in a supply chain stems from disruptive 
triggers since it depends on their impact in the supply chain structures. The most 
common form of disruption in a supply chain concerns its capacity for fulfilling 
demand. In terms of our facility location problem, this corresponds to a capacity 
reduction, thus affecting constraints (3) .

Let us assume that we can identify a set of scenarios in terms of one or several 
disruptive triggers and their impact in the operating capacity of the facilities. If we 
combine each of these scenarios with each scenario already in S, we get an extended 
set of scenarios, each determining all the uncertainty parameters. For this reason, 
w.l.o.g., we keep using the notation S for the enlarged set of scenarios. In particular, 
each scenario now specifies a capacity reduction (in .[0, 1]) for each facility in each 
time period. We need one extra set of parameters, . γits , standing for the proportion 
of the operational capacity of facility .i ∈ I in period .t ∈ T that is available under 
scenario .s ∈ S. Thus, .γits × Qi becomes the actual capacity of facility .i ∈ I in 
period .t ∈ T under scenario .s ∈ S. 

A disruptive trigger can also affect the demand (either by increasing or decreas-
ing it). Moreover, we may face a situation in which a combination of disruptive 
triggers leads to simultaneous changes in the operating capacity and in the demand. 
The notation adopted before for the demand can already capture this situation since 
scenario-indexed parameters are being used. 

Also related with the risk exposition is the affected supply chain and its 
resilience. In this case, additional decisions may be required to ensure the resilience 
of the system, thus bringing it back to a status of efficiency and effectiveness. This 
can be incorporated in our modeling framework by considering temporary capacity 
expansions associated with extra capacity options (see, e.g., Xu & Nozick 2009 
for supplier selection) and thus corresponding to a here-and-now decision. In fact, 
preparedness measures are adequate to react against a disruption but they call for a 
corporation to decide in advance about the possibilities that may need to be activated 
to mitigate sudden changes in the underlying setting. Such decisions are typically 
part of a contingency plan and thus are identified in advance. On the other hand,
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the specific decisions concerning when and at which level to activate an option are 
recourse decisions calling for a more detailed course of action that often can be 
made only after a disruption occurs, i.e., the actual future scenario becomes known. 

Capacity expansion decisions have been considered by several authors as a 
way to react to changing demand although not explicitly in a risk-aware setting. 
The reader can refer to Aghezzaf (2005), Fleischmann et al. (2006), Hugo & 
Pistikopoulos (2005), Julka et al. (2007), Ko & Evans (2007), and Troncoso & 
Garrido (2005). 

We define one extra set L, containing the capacity expansion levels available; 
each level determines a temporary increase in the operational capacity of a facility. 
Additional parameters are also required: . gi is the fixed cost associated with an 
option contracted for facility .i ∈ I to ensure a temporary capacity increase if 
necessary; . b� stands for the unit capacity cost associated with capacity expansion 
level .� ∈ L; and . k� represents the amount of extra capacity associated with capacity 
expansion level .� ∈ L. 

The extended model makes use of the following two additional sets of binary 
variables: . zi is a binary variable equal to 1 if and only if a capacity expansion option 
is contracted for facility .i ∈ I ; .wit�s is also binary: it is equal to 1 if and only if in 
scenario .s ∈ S, expansion level .� ∈ L is installed at facility .i ∈ I in time period 
.t ∈ T . 

We can now formulate a risk-aware multi-period stochastic capacitated facility 
location problem that we denote by CFLP. risk: 

. minimize
∑

i∈I

(fiyi + gizi) +
∑

s∈S

πs

[
(h �s +

∑

i∈I

∑

�∈L

(
b�k�

∑

t∈T

wit�s

)

+
∑

t∈T

∑

i∈I

∑

j∈J

(
cij − rj

)
djtsxij ts

⎤

⎦ , . 

(11) 

subject to
∑

i∈I

xij ts + ujts = 1, j ∈ J, t ∈ T , s ∈ S, . 

(7) 
∑

j∈J

djtsxij ts ≤ γits Qi yi +
∑

�∈L

k�wit�s, i ∈ I, t ∈ T , s ∈ S, . 

(12) 

zi ≤ yi, i ∈ I . (13) 
∑

�∈L

wit�s ≤ zi, i ∈ I, t ∈ T , s ∈ S. (14) 

�s ≥ α0 −
(
1 −

∑
j∈J

∑
t∈T djtsujts∑

j∈J

∑
t∈T djts

)
, s ∈ S, . (8)
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xij ts ≥ 0, i  ∈ I, j ∈ J, t ∈ T ,  s  ∈ S, . (4) 

yi ∈ {0, 1}, i ∈ I.. (5) 

ujts ≥ 0, j ∈ J, t ∈ T , s ∈ S, . (9) 

�s ≥ 0, s ∈ S, . (10) 

zi ∈ {0, 1}, i ∈ I, . (15) 

wit�s ∈ {0, 1}, i ∈ I, t ∈ T , � ∈ L, s ∈ S. (16) 

The above model comprises a two-stage decision-making process: (i) a decision 
that is to be implemented now (facilities to operate and capacity expansion options 
to buy) and (ii) a recourse decision—thus defined for every possible future scenario. 
Therefore, we are facing a two-stage stochastic programming model aiming at 
minimizing the total cost in terms of operating facilities and contracted options 
plus the expected cost associated with the recourse actions (penalty for unsupplied 
demand, capacity expansion, and demand satisfaction). 

In addition to the constraints introduced before, we consider now also con-
straints (12) ensuring that even with the temporary capacity expansions, we cannot
satisfy more demand than the actual operating capacity (in every facility, period, and
scenario). Constraints (13) ensure that options can only be contracted for operating
facilities, whereas constraints (14) guarantee that operating capacity can only be
expanded if an option was previously contracted. Finally, constraints (15) and (16) 
are the domain of the decision variables associated with capacity expansion.

4 The Value of a Risk-Aware Solution 

The analysis presented so far led to a comprehensive stochastic facility location 
model that allows capturing different aspects underlying risk in supply chain 
network design. However, the model easily becomes a large-scale one and thus 
more difficult to tackle. Accordingly, it is important to check whether this increased 
difficulty is compensated by additional insights provided through the risk-aware 
solutions we obtain. 

Two indicators are usually considered for looking into this aspects: the value of 
the stochastic solution (VSS) and the expected value of perfect information (EVPI) 
(Birge & Louveaux, 2011). 

The VSS is the difference between the objective value of the stochastic problem 
evaluated using the optimal solution of the expected value problem (EEV)— 
single-scenario model resulting from replacing the random variables by their 
expectations—and the optimal value of the stochastic problem. Denote by . (ŷ, ẑ)

the optimal solution to the former, and let CFLP.risk(ŷ, ẑ) represent the CFLP.risk
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when the first-stage decision is fixed according to .(ŷ, ẑ). In our case, the VSS is 
formally defined as: 

. VSS = V (CFLPrisk(ŷ, ẑ)) − V (CFLPrisk),

where .V (P) denotes the optimal objective value of model P. 
The EVPI originates in decision theory and represents the value that the decision-

maker is willing to pay to get perfect information about the future. It is determined 
by the difference between the optimal value of the stochastic problem and the 
wait-and-see-solution value. In turn, the latter is the expected value of the random 
variable that represents the optimal value of a single-scenario problem. Denoting 
by CFLP.risk,s the single-scenario problem induced by scenario .s ∈ S, we have  
formally: 

. EVPI = V (CFLPrisk) −
∑

s∈S

πs V (CFLPrisk,s).

As we have largely discussed, although stochasticity is a basic “ingredient” for 
risk, it is not the only one. Accordingly, we may ask whether the VSS and EVPI 
are appropriate measures for evaluating the relevance of a modeling framework 
capturing risk. In our opinion, the answer is a clear “no”: we need some specific 
measure for that purpose. 

The first aspect we should emphasize is that the need for a risk-aware supply 
chain design emerges if hedging against risk has some expected “positive value.” 
Hence, it would be interesting to find a measure producing such a value. A 
second aspect we must point out is that the single-scenario problems induced 
by CFLP. risk (i.e., models CFLP.risk,s , .s ∈ S) do not represent a non-risk-aware 
counterpart. Therefore, VSS and EVPI are not enough for evaluating the advantages 
of considering a risk-aware model and its solution. 

Suppose we knew in advance the exact scenario, say s, we will be facing. In that 
case, neither CFLP. risk nor CFLP.risk,s are appropriate models to consider since we 
know exactly the disruption profile that will occur. What model should be solved 
then? The answer is not straightforward. 

At a first glance, the correct answer could be the deterministic model induced 
by scenario s in models (1) –(5) . However, this is again not true since a solution
obtained from that deterministic model may easily turn out to be infeasible for
some scenarios (disruption profiles).

This discussion suggests that an adequate deterministic counterpart should be 
an extension of the single-scenario version of models (1) –(5) accounting for
unsupplied demand. This way, it becomes possible to evaluate a solution induced
by some scenario (rather than simply concluding that for some other scenarios, it
is infeasible). Note also that under a single-scenario risk-free setting, it makes no
sense to buy options for expanding the capacity since that feature stems from the
uncertainty underlying the problem. Finally, in a deterministic setting, the service



Facility Location and Supply Chain Risk Analytics 169

level is no longer uncertain; it directly results from the decision to make. Therefore, 
setting a target value for it does not make sense either. 

The following multi-period stochastic CFLP (MPSCFLP. s) emerges as an ade-
quate single-scenario model describing a risk-free setting: 

.minimize
∑

i∈I

fiyis +
∑

t∈T

∑

j∈J

ĥdjtsujts +
∑

t∈T

∑

i∈I

∑

j∈J

(cij − rj )djtsxij ts , . 

(17) 

subject to
∑

i∈I

xij ts + ujts = 1, j ∈ J, t ∈ T , . (18) 

∑

j∈J

djtsxij ts ≤ γits Qi yi, i ∈ I, t ∈ T , . (19) 

xij ts ≥ 0, i ∈ I, j ∈ J, t ∈ T , . (20) 

yis ∈ {0, 1}, i ∈ I. (21) 

For each .s ∈ S, we denote by .V (MPSCFLPs) the optimal value of the 
corresponding problem (17) –(21) .

Definition 1.1 (Value of the Supply Chain Risk) The value of a risk-aware supply 
chain solution can now be defined as the difference between the optimal value of 
CFLP. risk and the weighted value of the models induced by each and every scenario, 
i.e., 

.VSCR = V (CFLPrisk) −
∑

s∈S

πs V (MPSCFLPs) (22) 

The above definition bears resemblance with the EVPI. However, the differences 
are clear: (i) the way this value is computed is not the same as for the EVPI since the 
single-scenario problems do not result from considering one scenario in the original 
stochastic model and (ii) this is a measure that can in principle be computed within 
the context of any risk-aware supply chain network design model. 

5 Illustration with a Simple Instance 

In this section, a small instance of CFLP. risk is used to highlight the relevance of 
the features we have been discussing in this chapter. We focus our attention on the 
following aspects: (i) plausibility of the solutions obtained by the model, (ii) value 
of supply chain risk consideration, and (iii) the effect of capturing uncertainty.
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5.1 Data 

For illustrative purposes, we limit the instance size to 2 facilities, 3 customers, and 
12 periods in the planning horizon (e.g., weeks). 

Noticeably, supply chain risk is not necessarily associated with catastrophic 
disruptions and big turmoils (such as a tsunami). They can stem from less smaller 
incidents like short circuits or machine failure at production facilities (see, e.g., 
Norrman & Jansson 2004). These minor incidents typically do not affect cost 
parameters. Hence, for the analysis presented next, we consider deterministic and 
time-invariant costs. In particular, for the potential facility 1, we take both the 
operational cost (. f1t ) and the extra-capacity costs (. g1t ) in each period equal to 100, 
doubling that value for facility 2 (.f2t = g2t = 200). As for the capacities, we 
take the value 10 for both facilities. The unit revenue obtained from the customers 
(. rj ) is set equal to 4 for the three customers. Additionally, we consider a service 
level adherence value .h = 30,000. Finally, in Table 1, we introduce the other 
deterministic parameters that we consider in our illustration. 

For evaluating model CFLP. risk, we generated several scenarios—disruption 
profiles—based on: (i) the start and end time of the disruption, (ii) the average speed 
of capacity decrease and recovery, and (iii) the absolute minimum for the operational 
capacity resulting from the disruption. We worked with three different scenarios that 
differ in terms of the minimum operational capacity. Scenario 1 reflects the situation 
of a major capacity reduction exposed to a minor (negligible) fall in demand. This 
scenario is assumed to have a probability of . 0.1. The second scenario is defined 
by a less intense capacity reduction although it comes along with a higher demand 
level (that is assumed constant for the sake of the simplicity). A probability of . 0.3
is assumed for this scenario. Finally, scenario 3 reflects a normal situation in which 
no disruption occurs and the operating capacity exceeds the demand. A probability 
of . 0.6 is assumed for this case. 

The values considered for the overall capacity and demand for the three scenarios 
are presented in Table 2. Customers are assumed to have the same demand, and thus 
the values presented for the demand in Table 2 must be divided by 3 to obtain the 
individual demand. In that table, we also present the overall capacity deficit in each 
period resulting from the scenario disruptions. A negative deficit indicates that there 
is a surplus of capacity w.r.t. demand. The data we are introducing is assuming a 
disruption lasting for 9 periods. 

Table 1 Expansion levels 
and transportation costs for 
the illustrative example 

Expansion level (. �) 1 (small) 2 (medium) 3 (large)  

Expansion capacity .k� 2 5 10 

Expansion costs .b� 5 8 10 

Transportation costs Customer 

.cij 1 2 3 

Facility 1 3 5 3 

Facility 2 3 5 3
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Table 2 Disruption scenarios for the prototype instance 

Time period 

1 2 3 4 5 6 7 8 9 10 11 12 

Scenario 1 
Operational capacity 20 11 2 4.25 6.5 8.75 11 13.25 15.5 17.75 20 20 

Overall demand 12 12 12 12 12 12 12 12 12 12 12 12 

Capacity deficit −8 1 10 7.75 5.5 3.25 1 . −1.25 . −3.5 . −5.75 −8 −8 

Scenario 2 
Operational capacity 20 14 8 9.5 11 12.5 14 15.5 17 18.5 20 20 

Overall demand 27 27 27 27 27 27 27 27 27 27 27 27 

Capacity deficit 7 13 19 17.5 16 14.5 13 11.5 10 8.5 7 7 

Scenario 3 
Operational capacity 20 20 20 20 20 20 20 20 20 20 20 20 

Overall demand 18 18 18 18 18 18 18 18 18 18 18 18 

Capacity deficit −2 −2 −2 . −2 . −2 . −2 −2 . −2 . −2 . −2 −2 −2 

All models were implemented using the Java optimization modeling library of 
the IBM ILOG Concert Technology. The experiments were solved with ILOG 
CPLEX 12.6, on an Intel Core i7-2640M PC with 2.8 GHz processors and 7.88 
GB RAM. 

5.2 Solution Plausibility 

We solved model CFLP. risk using the data above presented and setting a target 
service level .α0 = 0.95. The optimal solution has value 3147 and calls for opening 
both facilities and for buying expansion options also for both locations (.yi = zi = 1, 
.i = 1, 2). The second-stage decision is more involved since it requires determining a 
course of action for each possible scenario. In Table 3, we present for each scenario 
(i) the expansion decisions for facility 1 (.w1t�s), (ii) the expansion decisions for 
facility 2 (.w2t�s), (iii) the unsupplied demand (.

∑
j∈J ujt1), and (iv) the service level 

(. αs). 
The results are not surprising: capacity expansions are decided for scenarios 1 

and 2. These capacity options are executed in the periods exhibiting capacity deficit, 
and the type of expansion is not over-dimensioned compared to the extra capacity 
required. It is also interesting to see how this solution differs from a solution to the 
simplified model CFLP.risk(ŷ, ẑ). The corresponding second-stage decision as well 
as the unsupplied demand and the scenario service levels are presented in Table 4 
(“N/A” stands for “not applicable”). 

We realize that when capacity reduction is averaged, we observe no extra 
capacity being installed although it would have been necessary in scenario 2. This 
is not surprising since we know that averaging stochastic parameters leads often
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Table 3 Detailed solution obtained when solving CFLP. risk

Time period Service 

1 2 3 4 5 6 7 8 9 10 11 12 level 

Scenario 1 
.w1t�1 2 2 2 2 

.w2t�1 5 5 2 2 2 

.
∑

j∈J ujt1 1 2.0 0.5 

.α1 0.98 

Scenario 2 
.w1t�1 5 5 5 10 5 5 5 5 5 2 5 2 

.w2t�1 2 5 10 5 10 10 5 5 5 5 2 5 

.
∑

j∈J ujt1 3 4 2.5 1 3 1.5 1.5 

.α2 0.95 

Scenario 3 
. w1t�1

. w2t�1

. 
∑

j∈J ujt1

.α3 1.00 

Table 4 Detailed solution obtained when solving CFLP. risk(ŷ, ẑ)

Time period 

1 2 3 4 5 6 7 8 9 10 11 12 

Scenario 1 
.w1t�1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

.w2t�1 10 5 5 2 

.
∑

j∈J ujt1 1 2.75 0.5 1.25 1.0 

.α1 0.95 

Scenario 2 
.w1t�1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

.w2t�1 10 10 10 10 10 10 10 10 10 10 10 10 

.
∑

j∈J ujt1 3 9 7.5 6 4.5 3 1.5 

.α2 0.95 

Scenario 3 
.w1t�1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

. w2t�1

. 
∑

j∈J ujt1

.α3 1.00 

to an underestimation of uncertainty (Savage, 2012). Note also that the objective 
function we are considering strives for cost minimization and (only) punishes the 
non-achievement of the target service level. Therefore, solutions certainly contain 
unsatisfied demand.
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Observing the solutions obtained, we conclude that the risk-aware model seems 
to better hedge against risk. 

5.3 The Relevance of Capturing Uncertainty 

We adopt the two measures discussed in Sect. 4: the VSS and the EVPI. Our analysis 
aims at understanding how “uncertainty” influences those measures. We designed an 
experiment consisting of 100 instances of the problem that differ in the 3 scenarios 
considered for demand and operating capacity. In particular, for each instance, the 
variability of the values associated with the demand and overall capacity change. 

The base value for the overall demand is 6 (2 units per customer). As before, 
we assume that a disruption occurs at the end of period 2 which is fully recovered 
in period 11. Then, for each combination of the steps .δd = 1, . . . , 10 and . δc =
1, . . . , 10, we define three scenarios, each with probability . 13 as described next. 

Scenario 1 corresponds to an increase in demand and a decrease in capacity: 

total demand = .6 + δd × 0.5, 
total operating capacity after disruption (period 3) = .20 × (0.5 − δc × 0.05). 

Scenario 2 corresponds to the average scenario: 

total demand = 6, 
total operating capacity after disruption (period 3) = .20 × 0.5. 

Scenario 3 corresponds to a decrease in the demand and an increase in the 
capacity: 

total demand = .6 − δd × 0.5, 
total operating capacity after disruption (period 3) = .20 × (0.5 + δc × 0.05). 

In total, we have 100 combinations of the steps . δd and . δc. The larger the value of 
. δd (. δc), the larger the variability associated with the overall demand (initial capacity 
reduction). Now, we set the operating costs of the facilities equal to 1000 and 1500, 
respectively, for facilities 1 and 2. This led to the results depicted in Table 5a. 

Observing this table, we conclude that the values greater than zero for the 
EVPI and VSS concentrate in the lower left corner of the table. We note that 
a darker cell indicates a larger value for EVPI. This indicates that the use of a 
stochastic programming model is especially adequate when we expect high demand 
variability. As the value of the stochastic solution reveals, considering all potential 
developments of uncertain parameters rather than averaging out the stochasticity 
leads to improved results. 

Also in Table 5a, we observe positive values for the EVPI in the upper right 
corner. This indicates that the stochastic programming approach might also be 
suitable if variability of the capacity after disruption increases.
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We, therefore, conducted two additional experiments with modified facility 
operating costs: 500 and 600 for facilities 1 and 2, respectively, and 100 and 200, 
respectively, for facilities 1 and 2 as we had initially set. The results are presented 
in Tables 5b and c. 

When decreasing the facility operating costs, the variability of the overall 
capacity after disruption becomes more relevant with respect to EVPI and VSS. 
Accordingly, for smaller facility operating costs, even if capacity is not expen-
sive, the larger the variability observed, the more relevant the stochastic model. 
Once capacity is installed, the range of cost-minimizing actions in the presence 
of disruptions is limited, because the execution costs of expansion options are 
comparably small. In this situation, the application of stochastic programming 
compared to deterministic models seems to be less advantageous. If we consider the 
installation of warehouses, which is much cheaper than the opening of production 
facilities, demand uncertainty/variability, though it might be small, is intensified by 
capacity uncertainty/variability. Hence, the uncertainty/variability in both param-
eters motivates embedding stochasticity in the planning process. On the other 
hand, the installation of distribution centers or small regional warehouses is even 
cheaper. Thus, the allocation of capacity and capacity options has a wide range of 
possibilities. 

Summing up, we conclude that the input data, especially the cost structure, has 
a clear influence in the VSS and EVPI. 

5.4 The Value of a Risk-Aware Solution 

We focus now on the relevance of capturing supply chain risk. With the purpose 
of making a clear distinction between operating a facility and expanding its 
capacity, we consider operating costs equal to 1000 and 1500 for facilities 1 and 2, 
respectively. Furthermore, we weigh the unsatisfied demand by parameter h, which 
is set equal to 50. Additionally, we set the target service level .α0 = 0.95. 

In Sect. 4, we derived an appropriate model to solve in case we know the 
occurring scenario, s: model MPSCFLP. s . We can solve this model for each scenario. 
Moreover, we can still look at the optimal solution obtained by model CFLP. risk. A  
comparison between solutions is provided in Fig. 2. 

Model CFLP. risk yields a solution that calls for opening both facilities and buying 
capacity options at both sites (this is highlighted by additional circles around the 
facility locations). 

On the other hand, for scenario .s = 1, model MPSCFLP. s suggests opening 
a single facility. The decisions determined by this non-risk-aware model reflect 
the case of a company that has not felt the need to consider supply chain risk. 
Risk features such as balancing efficiency- and effectiveness-related objectives are 
not applied for the model formulation. The deterministic solution for scenario 3, 
therefore, implies that all demands are fulfilled, because that is feasible.
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Scenario 1 Scenario 2 Scenario 3 

Capacity 
and demand 
pro les 

MPSFLPs 

1 = 0.76 2 = 0.78 3 = 1.00 

CFLPrisk 

1 = 0.95, 2 = 0.949, 3 = 0.95 

Fig. 2 Comparing the solutions obtained using .CFLPrisk and .MPSCFLPs (.s = 1, 2, 3) 

We can now compute the value of a risk-aware solution according to (22) (the
required information is depicted in Table 6): . VSCR = 0.1 × 2725 + 0.3 × 6100 +
0.6 × 2500 − 3147 = 455.5. 

For the aforementioned business environment, the value of a risk-aware solution 
is positive and motivates the discussion presented in this chapter. 

6 Conclusions 

The analysis presented in this chapter aimed at finding risk-aware decisions for 
supply network design that adequately overcome the information gap. This was 
accomplished using the so-called prescriptive analytics.
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Table 6 Detailed costs for the prototype instance with the optimal values necessary for computing 
the value of the risk-aware solution 

CFLP. risk
Facility costs Scenario 1 Scenario 2 Scenario 3 

Operation 2500 2500 2500 

Expansion 450 1380 300 

Total 2950 3380 2800 

Optimal value 3147 

MPSCFLP. s
Facility costs Scenario 1 Scenario 2 Scenario 3 

Operation 1000 2500 2500 

Expansion 0 0 0 

Total 1000 2500 2500 

Optimal value 2725 6100 2500 

We defined supply chain risk in a very precise way. By doing so, we are able 
to devise a hierarchy for the core elements underlying that new definition and 
eventually lay the foundations for what we can now call supply chain risk analytics. 

The above discussion was complemented by showing that the new concepts can 
be operationalized. The development of an optimization model capturing the new 
risk definition also led to a new concept: value of supply chain risk consideration. 
Finally, we used a prototype example to show that the operationalization proposed 
is fully consistent with the new concepts developed. 

The model presented in this chapter can (and should) be complemented by some 
follow-ups. It is true that the objective function considered in our optimization 
model can capture different attitudes toward financial risk. Nevertheless, they are 
all somehow risk-neutral since we are considering the expected value of the future 
assets. It would be interesting to specifically study other risk attitudes, namely, in 
terms of risk aversion. 

The optimization model proposed is actually a mathematical structure that 
requires further study. In fact, the problem we consider is at the core of many supply 
chain network design problems, and thus having efficient tools for solving such a 
problem may be relevant especially if large instances need to be solved. In that case, 
we may have to resort to heuristic approaches. 
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Designing for Resilience and Protection 

Richard L. Church 

Abstract Disasters can come in many forms ranging from natural events like 
floods, pandemics, and earthquakes to human-based disasters like terrorism and 
accidents like nuclear power plant failures. Because significant disasters do not 
happen very often, most system planners become complacent about risks, such as 
major floods and earthquakes. But when one does happen, such as in the case of the 
Tōhoku earthquake in Japan or the Metcalf Substation attack in California, it is easy 
to tell when the resilience of a system is inadequate. The value of advanced facility 
planning and modeling can help reduce the likelihood of incurring substantial losses 
when disaster strikes. Since the terrorist attack of 9/11, greater attention has been 
directed to studying facility system vulnerability as well as how a system might be 
enhanced to have a high degree of resilience. In this chapter, several different areas 
of facility system design and location are reviewed with the goal of demonstrating 
some major achievements in this fertile research area as well as outlining specific 
areas of research need. 

Keywords Resilient design · Worst-case disruption · Bi-level and tri-level 
optimization · p-median location problem 

1 Introduction 

Location science has evolved since the 1960s with the development of relatively 
simple models, like the location set covering problem (Toregas et al., 1971) and the 
fixed charge plant location problem (Balinski, 1965), where the principal component 
was the selection of one or more sites for facility placement (ReVelle et al., 2008). 
Now problems may include many different components and decisions, like interact-
ing hubs (Campbell & O’Kelly, 2012), integrated vehicle routing (Balakrishnan et 

R. L. Church (�) 
University of California, Santa Barbara, CA, USA 
e-mail: church@geog.ucsb.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
H. A. Eiselt, V. Marianov (eds.), Uncertainty in Facility Location Problems, 
International Series in Operations Research & Management Science 347, 
https://doi.org/10.1007/978-3-031-32338-6_8

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32338-6protect T1	extunderscore 8&domain=pdf

 885 55738 a 885 55738 a
 
mailto:church@geog.ucsb.edu
mailto:church@geog.ucsb.edu
mailto:church@geog.ucsb.edu


184 R.L. Church

al., 1987), and integrated transport system design (station locations, routes, rolling 
stock, and schedules) (Repolho et al., 2016). The notion of uncertainty has also 
been addressed in location design problems, starting with the stochastic nature 
of travel (Mirchandani & Odoni, 1979), different future scenarios (Daskin et al., 
1997; Snyder & Daskin, 2006), and even the availability or reliability of facilities 
(Lim et al., 2010; Snyder & Daskin, 2005) and their servers (ReVelle & Hogan, 
1989; Marianov & ReVelle, 1994, 1996). Other important features have included the 
simultaneous selection of locations and the allocation of different types of service 
(Schilling et al., 1979), systems of interrelated activities (Armour & Buffa, 1963; 
Moore & ReVelle, 1982; Weaver & Church, 1991), and competition (ReVelle, 1986; 
Eiselt et al., 1993, 2019). A number of these facility location problems have been 
designed to address uncertainty in facility availability, but these models are often 
cast to handle the natural variability in demands to be served, the probability of 
receiving service, and other stochastic elements that fall within the normal range 
of operation. The goal of this chapter is to describe some of the research that 
has addressed issues that fall outside of the normal spectrum of events, like an 
intentional strike to destroy a facility or a catastrophic flood that destroys one of 
more facilities in a system. The roots of this newer addition to the field of location 
science began after the terrorist strike of 9/11 when researchers started to address 
questions such as “What is critical?”; “Are there facilities that we cannot afford to 
lose in a system?”; and “Can we protect or fortify them?” 

2 Background 

The terrorist attacks of 9/11 on the World Trade Center in New York City and the 
Pentagon in Washington, DC, underscored that many important facilities may be 
quite easily disrupted and even destroyed. A case in point is the terrorist strike at 
the Metcalf Transmission Substation on April 16, 2013, near San Jose, California. 
Gunmen armed with AK-47 rifles shot at the substation and knocked out 17 large 
transformers in less than 20 min and escaped before police arrived. This substation is 
a key asset in the electrical grid supplying Silicon Valley. It took a concerted effort 
on the part of the electric company and the Independent Service Operator of the 
grid in California to avert a complete blackout. If that had occurred, it is estimated 
that restoring the grid in Silicon Valley might have taken months to accomplish. 
Subsequent work has shown that a simultaneous strike on 9 key substations across 
the USA could possibly sink the entire US electrical grid. To date none of the 
perpetrators have been caught or even identified. In response to this near disaster, 
the USA has focused on building a strategic stockpile of large transformers and 
requiring utilities to strengthen major substation facilities. 

Another example of a disaster is the Tōhoku earthquake and tsunami of March 
11, 2011, that killed more than 20,000 people and disrupted a significant portion 
of the northeast coast of Japan. Among the casualties was the Fukushima Daiichi 
nuclear plant. This power plant was protected by a sea wall that was too low to stop
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the Tsunami. The plant was flooded and operators lost control of the reactors due 
to the fact that the backup power generators were housed in the basement that was 
flooded which rendered the generators useless. Without power, the control system 
could not safely shut down the reactors, causing a meltdown. This particular event 
also underscores the need to fully assess risks and possible impacts to systems of 
facilities. The fact that advanced planning did not identify or quantify the risks of 
backup power placement underscores the need to use decision theory and other 
classical risk assessment techniques as well as to develop new models to quantify 
possible disruption. 

Grubesic and Murray (2006) have discussed the fact that a failure of one system 
can lead to a failure of other systems, which they called a system of cascading 
failures. For example, the Tōhoku earthquake disrupted a number of auto part 
suppliers to Toyota. This disaster was so severe it took six months for Toyota to 
get global production back to normal levels (Shirouzu, 2021). Because of this major 
disruption Toyota initiated the development of a business continuity plan which was 
based upon knowing the source of every part and component in their supply chain. 
This included knowing the suppliers of every component of every product purchased 
by Toyota for their vehicles. The supply chain network database was so detailed 
that news of any disruption involving any company in their supply network could be 
quickly assessed as to the impact to Toyota or any of its prime suppliers. Microchips 
were one of the components that Toyota recognized as so critical to their production 
that the company forced their suppliers to keep a years’ worth of inventory to meet 
Toyota’s needs. This strategic policy has helped Toyota to maintain high levels 
of production during the current global shortage in microchips. Of course, such 
a strategic decision should be made on a cost-benefit basis, where the expected 
costs of inventory and advanced manufacturing of the microchips must be less than 
the estimated costs of delay in revenues from auto sales, the costs of disruption in 
manufacturing, and the impacts of delivery schedules and other supplied parts. This 
shortage is something that its competitors have been significantly hampered with 
during the COVID-19 pandemic of 2020–2022. 

Another recent example of a natural disruption includes hurricane Ida of August, 
2021, that disrupted major facilities like refineries and resin and plastics manufactur-
ing in the Southeast USA. This disruption has cascaded through American industry, 
causing shortages of paint and other products based on these refined products. 
Disruptions can also be accidental like the 2005 chlorine spill in Graniteville, 
South Carolina, and the railroad bridge fire in Sacramento, California (Peterson & 
Church, 2008). Whatever the cause, it is important to address such possibilities in 
facility planning and location whether such events are intentional, natural, or acci-
dental. Some issues are easily mitigated like keeping facilities out of flood plains, 
keeping backup generators in safe locations, and protecting facility perimeters. 
Other disruptions can be mitigated by providing backup facility capacity, holding 
larger inventories, and even fortifying buildings and roadways against earthquakes, 
attackers, and floods. That is, there are a great number of options in providing 
some degree of protection/fortification. There are also a number of options that 
can be used for the analysis of a system and location risk. For example, decision
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trees can be developed to represent possible disruptive events, their probabilities 
of occurrence, and even the costs and benefits of certain actions. Simulation can 
also be used to simulate a system operation under stress or potential disruption 
patterns given a hurricane scenario or a possible earthquake at a known location 
(e.g., along the San Andreas fault in California) as examples. The principal emphasis 
of this chapter is on identifying worst-case impacts to an existing system, optimizing 
protection resources to thwart as best as possible these maximally disruptive events, 
and even designing (by location) a system so that it is as resilient as possible to 
disruption. However, some attention is given to other disruptive events that are not 
necessarily maximally disruptive. 

Before delving into the modeling of facility system disruption, it is important 
to underscore that this is part of a larger literature that has evolved in disas-
ter/emergency management. Disaster management involves a number of possible 
options: (1) risk analysis of possible disruptions and costs; (2) strategic decision 
making on possible mitigation measures (measures that could reduce or even 
eliminate a potential major disruption); and (3) how to operate and respond after 
a major disruption with a damaged system or even a regional catastrophe like a 
famine or flood. Examples of advanced planning, protection, and response include 
humanitarian relief (Özdamar & Ertem, 2015), emergency warning systems (Murray 
et al., 2008; Mathews et al., 2017), evacuation modeling (Lindell, 2008; Cova &  
Church, 1997), shelter location (Jin et al., 2021; Dekle et al., 2005), designing and 
strengthening communication systems (Lei et al., 2019; Eiselt & Marianov, 2012; 
Nicholas & Alderson, 2015), and protecting electrical grids (Yuan & Zeng, 2020; 
Alguacil et al., 2014), among many others. 

3 Initial Developments: Optimizing Disruption 

Wollmer (1964) was the first to address disruption within the context of a military 
supply line. The objective was to strike arcs and render then incapable of being used 
while minimizing the resulting capacity of the network to transport material from 
an origin to a destination. Wollmer (1970) expanded this work on interdiction with 
several algorithms that targeted communication networks. Slater (1982) was one of 
the first to consider elements of a network to serve as a facility which was expanded 
on by Current et al. (1985). In essence, one can consider a facility to be represented 
as a point (Hakimi, 1964), a path (Current et al., 1985), a tree (Hutson & ReVelle, 
1993), or some other connected portion of a network (e.g., a tour; see Current & 
Schilling, 1989). The original work in interdiction was oriented to flow paths and 
shortest paths on a network like the work of Wollmer. Church et al. (2004) were  
the first to consider the interdiction of point-based facilities. They started their work 
within the context of the p-median facility location problem. 

The p-median problem is defined as follows (Hakimi, 1964, 1965): 

Find the p-positions on the network that minimize the total weighted distance of demand.
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Consider a network of nodes and arcs. It is assumed that the demands are 
distributed among the nodes of the network and that facilities could serve all 
demand assigned to them. Since there are no capacity issues, then each demand is 
served by their closest facility. The weighted distance of serving a given demand 
is calculated as the demand weight multiplied by the distance that the demand 
is from its closest facility. Total weighted distance is the sum of all weighted 
distance assignments. Hakimi (1965) proved that at least one optimal solution to 
this problem consisted entirely of a subset of nodes of the network. Because of this 
groundbreaking theorem, researchers have concentrated on finding the best subset of 
p-nodal locations in solving this problem. But let us suppose that we have an existing 
set of operating facilities, where the service protocol is based upon the p-median 
problem, where facilities are not capacitated and demand can always be served by 
their closest operating facility. The natural question that arises when considering 
the possibility of interdiction is are some facilities more critical to system operation 
than others, and if so, which ones are? In an attempt to address this question, Church 
et al. (2004) posed the following problem: 

Of the p different locations of supply, find the subset of r facilities, which when removed, 
yields the highest level of weighted distance 

They called this the r-interdiction median (RIM) problem. It represents the 
objective of an intelligent attacker, an agent that attempts to maximize harm or 
damage to a system. One can think that if an attack is made, then the system operator 
would respond by reallocating service to the remaining facilities so that we can 
formally call this an “attacker-operator” or “attacker-defender” model where after 
the attack and the loss of r-facilities, the operator reassigns those demands that have 
lost their service facility to the closest remaining facilities. This problem could be 
posed as a bi-level optimization problem, but the operator’s demand reassignment 
can easily be incorporated into the same level as the attacker, thereby creating 
a simple one level optimization problem. To formulate this model, consider the 
following notation: 

i=an index used to refer to demand locations, where I is the set of all demands 
j=an index used to refer to demand locations, where F is the set of current facility 

locations 
dij=the shortest distance between nodes i and j 

. sj =
{
1, if a facility located at j is eliminated by interdiction

0, otherwise

. xij =
{
1, if demand i assigns to a facility at j after interdiction

0, otherwise
Tij = {k ∈ F | k �= j and dik > dij}, the set of existing sites (not includ-

ing j) that are as far or farther than j is from demand i
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We can now formulate the r-interdiction median (RIM) problem as the following 
integer-programming problem (Church et al., 2004): 

.RIM : Max Z =
∑
i∈I

∑
j∈F

aidij xij (1) 

Subject to: 

.

∑
j∈F

xij = 1for each i ∈ I (2) 

.

∑
j∈F

sj = r (3) 

.

∑
k∈Tij

xik ≤ sj for all i ∈ I and for all j ∈ F (4) 

.sj ∈ {0, 1} for all j ∈ F (5) 

.xij ∈ {0, 1} for all i ∈ I and for all j ∈ F (6) 

The objective (1) involves maximizing the weighted distance associated with 
assigning each demand to their closest open facility after interdiction. This means 
that the interdictor seeks the most harm to system operation, by attacking and 
destroying r-facilities out of p-facilities. Constraint (2) maintains that each demand 
must assign to a facility after interdiction. Constraint (3) establishes that exactly 
r-facilities are to be eliminated. Constraints (4) maintain that each demand must 
assign to their closest open facility after interdiction. This constraint restricts 
assignment of demand i to a site that is farther than facility j is to demand i unless 
facility j has been interdicted. Altogether, constraints (4) specify that demand i will 
assign to the closest remaining facility. The form of these constraints follows that of 
Hanjoul and Peeters (1987) and Church and Cohon (1976). Constraints (5) and (6) 
restrict the decision variables to be zero or one in value. However, the restrictions on 
the assignment variables are not necessary as they will be integer in value as long as 
the Sj values are integer. There are alternatives to formulating the closest assignment 
constraints (4), which have been explored in Scaparra and Church (2008). 

Figure 1 presents results from applying the RIM model to an optimal 5 facility 
p-median solution involving the ReVelle–Swain (1970) dataset where the level of 
interdiction was r = 2 facilities. The weighted distance before interdiction is 2950. 
The weighted distance after interdiction is 6124, a substantial increase of weighted 
distance. The X’s in the figure denote the facility locations that are interdicted.
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Weighted Distance: 6124. 

Fig. 1 An optimal 5-median solution with weighted distance of 2950 suffers worst-case loss of 
2 facilities at nodes 1 and 3 resulting in a substantial increase of weighted distance to 6124. 
This solution was generated by the RIM model. The X’s indicate the facility locations that are 
interdicted 

4 Optimizing Protection 

Church et al. (2004) demonstrated that even the elimination of one or two facilities 
can significantly impact service efficiency. A logical question to ask is what can 
be done to prevent such losses? That is, can we thwart interdiction? If facilities 
could be hardened to the extent that an interdictor would choose some other target, 
then the answer is a simple yes, especially if such fortification is very inexpensive. 
Fortification measures may be very simple, like building a fortified perimeter, or 
installing a security system. If resources are somewhat limited and the costs of 
fortification are high, it may be that only some of the facilities can be hardened 
or fortified. This is the central issue of the following problem:
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Identify the set of q facilities to secure or harden, so that after interdiction, the remaining 
system operates as efficiently as possible. 

The objective would be to use those resources to thwart an attack to the 
greatest extent possible. This is a form of what is called a “defender-attacker-
defender” problem (Brown et al., 2005; Lazzaro, 2016). It represents a 3-level 
optimization problem. But since the RIM problem can be formulated as a single 
level optimization model, we can use the RIM model to build a bi-level optimization 
model to optimize fortification resources. Consider: 

. zj =
{
1, if a facility located at j is fortified

0, otherwise

If fortification or hardening will thwart an attack or will simply deter someone 
from attacking a facility, then we will assume that an intelligent attacker will choose 
to hit a different facility. That is, a fortified facility will not be attacked or if it was 
the attack would not be successful. This can be specified in the following constraint: 

.sj ≤ 1 − zj (7) 

The bi-level optimization model is composed of the defender or systems planner 
deciding which facilities to fortify (represented by the zj decision variables), 
followed by the attacker deciding which of the unfortified facilities to attack 
(represented by the sj variables): 

.RIMFminimize H(z) (8) 

subject to: 

.

∑
j∈F

zj = q (9) 

.zj ∈ {0, 1} for all j ∈ F (10) 

where: 

.H(z) = max
∑
i∈I

∑
j∈F

aidij xij (11) 

subject to: 

.

∑
j∈F

xij = 1for all i ∈ I (12)
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.

∑
j∈F

sj = r (13) 

.

∑
k∈Tij

xik ≤ sj for all i ∈ I and for all j ∈ F (14) 

.sj ≤ 1 − zj for all j ∈ F (15) 

.sj ∈ {0, 1} for all j ∈ F (16) 

.xij ∈ {0, 1} for all i ∈ I and for all j ∈ F (17) 

The lower level of this bi-level problem is represented by conditions (11)–(17). 
This represents the interdictor’s decisions to attack, which maximizes the weighted 
distance that results from the attack, given the decisions of the defender in terms of 
the facilities that have been fortified. This lower-level problem is the RIM model, 
with the extra condition that the attacker does not select a facility that has been 
fortified by the defender [constraint (15)]. Note that the integer restrictions on the 
xij variables are given for completeness, but as long as the sj variables are integer in 
value, the xij will be integer as well and only need to be specified as non-negative 
variables when solving the problem. 

The upper level of the model represents the defender’s decision to fortify q of 
the existing facilities. The objective of the defender is to keep the value of H(z) 
to be as small as possible. The value of H(z) is based upon the response of the 
interdictor’s decision (11) once the fortification plan is set by the defender. That is, 
any given fortification plan is met with an optimal interdiction plan by the attacker. 
The objective of the defender then represents finding the fortification plan which 
results in the lowest weighted distance after interdiction. This type of problem is 
called a Stackelberg game of a leader and follower, where the follower always 
responds in an optimal/competitive way to the leader’s decisions. It is also important 
to note that when the number of facilities is small and the number of possible 
interdictions is also small, it is possible to formulate this problem as a single-level 
optimization problem (Church & Scaparra, 2007a). There are several strategies that 
have been developed to solve this specific or related problems (Scaparra & Church, 
2008; Lozano & Smith, 2017) as well as solving such problems in general (Brown 
et al., 2008; Alderson et al., 2011). 

The RIMF model was applied to the optimal 5 facility p-median solution that was 
generated using the ReVelle and Swain dataset (1970) and the solution is presented 
in Fig. 2. The solution was generated where the level of fortification was 2 facilities 
and the resulting interdiction was 2 facilities. The weighted distance of the RIM 
model where r = 2 (see Fig.  1) resulted in a weighted distance of 6124. If one 
optimally fortifies 2 facilities and is then subjected to a worst-case loss of 2 facilities, 
the resulting weighted distance is 4185. Thus, selective fortification can result in an 
improved ability to operate after interdiction.
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Fig. 2 An optimal fortification of 2 facilities in a five-facility configuration subject to a worst-
case loss of 2 facilities results in a weighted distance of 4185. Thus, selected fortification of the 
facilities in a configuration reduces the impact of interdiction in a substantial way. The solution 
was generated by RIMF. The X’s represent the facilities that are interdicted. The boxes depict the 
facility locations that are fortified 

5 Adding Complexity 

What makes the above model of fortification and interdiction somewhat easy 
to solve is that the problem can be posed as a bi-level optimization problem. 
Unfortunately, adding a relatively simple component to the problem, e.g., facility 
capacities, presents an additional level of complexity. The reason for this is that 
we can easily structure constraints that force assignment to the closest facility that 
has not been interdicted [see constraints (4) and (13)], but if a facility has a limited 
capacity to serve demands then a given demand allocation may not be to its closest 
open facility. Assignment may be to some facility that is farther away as capacity 
limits may force this to occur, or it may not be possible to serve this demand at all 
as not enough capacity remains in the system after interdiction. Thus, the problem 
of reallocating demand after interdiction when facilities have set capacities can only
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be handled in a three-level optimization problem. To formulate this model, consider 
the following additional or modified notation: 

ci= the capacity of facility j 
tij= per unit cost for serving customer i from facility j 
ϕi= the penalty for not serving customer i (per unit of demand) 
ui= units of demand i that cannot be served after interdiction 

We can now formulate a capacitated version of the RIMF model as follows: 

.CRIMF : Min K(z) (18) 

subject to: 

.

∑
j∈F

zj = q (19) 

.zj ∈ {0, 1} for all j ∈ F (20) 

where (ML 20–23): 

.K(z) = max H(s) (21) 

subject to: 

.

∑
j∈F

sj ≤ r (22) 

.sj ≤ 1 − zj for all j ∈ F (23) 

.sj ∈ {0, 1} for all j ∈ F (24) 

Where (LL: 24–28): 

.H(s) = min
∑
i∈I

∑
j∈F

tij xij +
∑
i∈I

ϕiui (25) 

.

∑
j∈F

xij + ui ≥ ai (26) 

.

∑
i∈I

xij ≤ (
1 − sj

)
cj for all j ∈ F (27)
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.xij ≥ 0 for all j ∈ F and for all i ∈ I (28) 

.ui ≥ 0 for all i ∈ I (29) 

The upper level of the problem is represented by the objective (18) and conditions 
(19) and (20). Here the leader or defender is attempting to minimize the costs of 
suppling demand after interdiction plus any penalties associated with not meeting 
specific demands. We have included penalty values, ϕi, to reflect the penalty of 
not serving specific demands. The reason for this is that keeping the costs or 
weighted distance of assignment as low as possible would mean that mathematically 
we should not serve any demand and keep the costs at zero. We must include 
this penalty to ensure that demands can be met as long as there is capacity left 
somewhere in the system after interdiction and the costs of supplying a given 
demand i do not exceed the penalty ϕi . When facilities are not restricted by capacity 
issues, we assumed as in the RIM model that the closest remaining facility will serve 
each demand. But when each facility has an associated capacity, interdiction may 
reduce system capacity to the extent that not all demand can be served, so it is not 
possible to constrain that that each demand be served after interdiction in constraint 
(26). 

The second or middle level of this 3-level optimization problem represents the 
attacker, where interdiction resources are allocated [constraint (22)] and interdiction 
involves only non-fortified facilities [constraint (23)]. The objective of the inter-
dictor is the antithesis of the defender with the objective of maximizing the costs 
of supply and penalties incurred by the defender [Objective (21)]. However, the 
interdictor’s objective is based upon the response of the defender in optimizing 
demand allocation in the lower or third level of the problem. 

The lower level of bottom level represents the defender’s allocation decisions 
after interdiction, given a fortification plan. This bottom level prevents facilities that 
have been interdicted to supply any demand [constraint (27)] and defines the amount 
of demand that has not been served [constraint (26)]. The defender’s objective 
is to respond to the interdictions with the best distribution plan by minimizing 
distribution costs and penalty costs [objective (25)]. As stated before, solving bi-
level and tri-level problems can be a complex task. One of the techniques developed 
to solve this problem can be found in Scaparra and Church (2012). 

The three models described above represent some rather simple forms of facility 
system interdiction and fortification. They helped form the basis for a growing rich 
body of work in facility disruption and protection. Given an understanding of these 
three models, one can add other issues that can be important. For example, we could 
consider the interdiction of a system that has been designed to cover demands, that 
is an R-interdiction covering problem (see Church et al., 2004). Another important 
issue is the fact that a system operator/defender could rebuild or replace a facility. 
The real issue then becomes how long will an interdiction event continue to degrade
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a system operation or to what extent a facility has degraded service (Losada et al., 
2012) as well as hedging against disruptions (Liberatore et al., 2012). 

It is important to underscore the fact that there are many elements of disruptions 
and risk that should be addressed in planning, design, and operation of facility 
systems. The rest of this chapter is devoted to three very important research 
directions. Each of these directions will be described in greater detail starting with 
the need to compute risk/reliability envelopes of performance for existing facility 
systems. The second research area that is the development of simple models can be 
used to optimize/improve system fragility. The third area is that more work should 
be devoted to the development of facility location models that seek solutions that 
are inherently resilient, without specific attention to fortification or hardening. We 
will include a new prototype model for resilient design. 

6 Beyond the Basics: Reliability Envelopes 

Suppose that we have a system of p-operating facilities servicing a set of demands. 
Further suppose that this system was designed by the use of the p-median problem, 
using one of the well-known approaches for this (ReVelle & Swain, 1970; García 
et al., 2011; Elloumi, 2010; Church, 2008). Let us say that each demand is served 
periodically by a delivery vehicle. We can measure the overall efficiency of the 
system in terms of vehicle-miles of travel needed to supply all of the demand. Let 
us also say that some type of disruption could happen in which one or more facilities 
may be lost or damaged to the extent that they can no longer provide service without 
significant repair. This might occur for any number of possibilities ranging from 
natural disasters to an intentional strike due to a terrorist. If one or more facilities 
could be inoperable or destroyed it is only natural to ask: what is the resulting impact 
to system efficiency (i.e., the resulting increase in vehicle-miles of travel). 

It makes sense to calculate possible losses of efficiency that may occur over 
a range of facility losses or impacts. Figure 3 depicts a hypothetical envelope of 
facility efficiency levels associated with possible facility losses. The x-axis depicts 
the level of facility losses or closures, which would naturally range from zero to 
p. The  y-axis depicts the range of resulting system efficiencies associated with a 
given level of facility losses. If all p-facilities operate, then we will assume that the 
system operates at a level of efficiency of 100%. Any loss to this system will degrade 
operating efficiency. If all facilities are inoperable, we will define the resulting 
efficiency as zero percent (0%). However, if one facility is lost due to some reason, 
then some level of overall efficiency is lost and overall efficiency decreases. One 
can easily enumerate all possibilities of losing one facility and calculate the loss 
of efficiency for each of these p-instances. The best outcome is when the least 
important or critical facility is destroyed, and the worst outcome would happen if 
the most important or critical facility is lost. Other possible outcomes of lowered 
efficiency would occur between the best and worst outcomes.
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Fig. 3 A hypothetical operational efficiency envelope associated with a system of p-facilities, 
where r-facilities are rendered inoperable for some reason 

In Fig. 3, the gray region is bordered by an upper curve of best-case losses of 
efficiency and a lower curve that depicts the worst-case losses of efficiency for each 
value of r. The gray region represents an envelope of possible operational efficiency 
levels due to possible system disruption and was originally developed by Kim and 
O’Kelly (2004) in analyzing potential impacts to a communication system. Church 
and Scaparra (2007b) used the concept to depict the operational region of a set of 
facilities which may be subject to losses. 

The envelope defines the extent that facility interruptions could impact a system 
operation. There are many possible solutions which fall between the upper curve of 
best outcomes and the lower curve of worst possible outcomes. This is a simple 
but informative diagram, which gives managers a good picture of an operation. 
This is the type of information that could guide managers in making strategic 
decisions as to whether specific actions, like fortification, should be pursued. It 
should come as no surprise that the worst-case outcomes can be easily generated 
by the RIM model described in an earlier section of this chapter. The best-case 
outcomes must be generated in a different way. In a manner of speaking, the upper 
curve of best-case outcomes coincides with an intelligent facility closing strategy. 
That is, if you were to optimally close r facilities, which ones would they be? The 
answer of course is to close the facilities that have the least impact on system 
operation in terms of costs, or in this case the least possible impact in terms of 
an increase of weighted distance (vehicle miles for this example). Consider the 
following additional/modified notation:
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. xij =
{
1, if demand i assigns to an open facility at j

0, otherwise

. yj =
{
1, if the existing facility at j is kept open

0, otherwise

. p = the number of existing facilities, comprising set F

. r = the number of facilities to be closed, ranging from 1 to p − 1

Using the notation defined above, we can formulate an optimistic closing (OC) 
model as the following integer-linear programming problem: 

.OC : Min Z =
∑
i∈I

∑
j∈F

aidij xij (30) 

subject to: 

.

∑
j∈F

xij = 1 for each i ∈ I (31) 

.

∑
j∈F

yj = p − r (32) 

.xij ≤ yj for each i ∈ I and each j ∈ F (33) 

.xij ∈ {0, 1} for each i ∈ I and each j ∈ F (34) 

.yj ∈ {0, 1} for each j ∈ F (35) 

The above model essentially closes r-facilities by selecting p−r facilities to 
keep open. The choice of which r facilities is based upon minimizing the resulting 
weighted distance. Constraint (31) specifies that each demand must assign to a 
facility that remains open. Constraint (32) ensures that r facilities are closed, while 
keeping p − r facilities open. Constraints (33) ensure that demand assignments 
are only made to facilities that are kept open. Finally, constraints (34) and (35) 
represent the integer restrictions on the variables. It can be easily shown that the 
integer restrictions in constraints (34) can be relaxed to non-negative conditions 
without impacting identifying optimal integer solutions. It is important to note that 
this model is a restricted form of the p-median model given in ReVelle and Swain 
(1970), but there are other ways in which this model can be formulated (see García 
et al., 2011). 

Using the RIM and OC models the bounds of a reliability envelope can be 
determined. If one decides to fortify a specific set of facilities, then the exercise 
can be repeated to compute the range of outcomes that are possible for that
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fortification. Suppose that each facility is subject to a probability of disruption, 
e.g., the chances that it can be flooded. Then one can use Monte Carlo simulation 
to generate a frequency distribution of weighted distance values associated with a 
given probabilistic loss of r facilities. Another issue is that it is possible in that 
facilities after being impacted by a natural event of even an intentional strike could 
operate at a reduced level (e.g., operate at a capacity, or at increased cost). This 
means that not all impacts should be represented by discrete, complete facility 
closures. This means that the envelope is a cloud of possible outcomes, not just 
at discrete levels of facility loss. This is a prime area for future research. 

7 Beyond the Basics: Simple Approaches to Address Fragility 

Virtually all facilities operate within some type of network. Facility functions 
are contingent on such networks operating. Thus, to ensure lifelines and facility 
operations, the health of networks is a key issue. Modeling and designing fault-
tolerant communication networks has a long history, beginning with Hakimi and 
others (Hakimi, 1969). Virtually all transport, communication systems, electrical 
transmission, and pipeline networks should be analyzed in order to identify the 
range of possible outcomes in terms of the loss of system operability as well as 
identify strategies in which to lessen those risks and potential damages. For example, 
a highway may have one bridge that is especially vulnerable to an earthquake or to 
flooding which might undermine the foundation. Whatever the risk is, it may be 
that this one component is especially at risk. What if the entire route is useless 
if that element is damaged? Then, it may be important to ensure that this one 
component is strengthened or protected so that the risk of losing an important route 
is substantially reduced. The overall strategy would be to identify the elements that 
if protected or reengineered could keep lifeline support systems in operation, e.g., 
water transportation, food, supplies, and communications. Each system needs to be 
analyzed within this perspective. The transportation system is a critical element in 
securing many of the lifeline systems (food, medications, personnel) in the event 
of an emergency so the transport infrastructure should be given a high priority for 
analysis as well as strengthening. 

Designing a transportation system so that it can provide lifeline services, like 
food and emergency services, as well as support evacuation when needed was 
proposed by Viswanath and Peeta (2003). Suppose that there exists a region with 
an existing road network. The network represents roads or highways that connect 
towns or cities. The major cities represent the origins and destinations of specific 
services or commodities. The idea is that routes of commodities or services between 
all major towns should be supported if at all possible. Each town can be thought of 
as a place of demand or destination. Major supply locations can be represented 
as origins. Although a route between a given origin/destination pair should be 
efficient, the route cannot traverse along a given road unless that road has been 
seismically upgraded to withstand a major earthquake. The idea is to provide at
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least one hardened supply route for each city of town if at all possible. Viswanath 
and Peeta optimized road improvements subject to a budget constraint so that as 
many OD (origin-destination) pairs are supported by a seismically safe route. Each 
OD pair is represented as a unique commodity type k. They cast this as a two-
objective problem. The first objective maximized the population served by access 
routes. The second objective minimized the transport cost of providing support for 
each OD provided access. The network is represented as an undirected graph and 
traffic flow can occur in either direction. Consider the following notation: 

. i, j,m = indices used to represent towns and cities.

. k = index of commodity or type of service that represents a specific OD pair

. am = the population at center m

. A = {(i, j) | a road connects towns or cities i and j}

. E = {(i, j) | road link (i, j) needs to be hardened if used}

. i, j,m = indices used to represent towns and cities.

. 
k = index of commodity or type of service between a specific origin

and destination

. am = the population at center m

. O(k) = the origin node i for commodity route k

. D(k) = the destination node i for commodity route k

. ck
ij = the unit cost of routing commodity or service k along link (i, j) ∈ A

. fij = the cost of seismically upgrading road link (i, j) ∈ A

. B = the budget for upgrading road links

.xk
ij =

{
1, if there is a unit of flow of commodity k on link (i, j)

0, otherwise
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. yij =
{
1, if link (i, j) is used on a commodity f low path

0, otherwise

. Zk
m =

{
1, if demand center m is accessible from link on a commodity path k

0, otherwise

The formulation is as follows: 

.Max
∑
m

∑
k

where

m = D(k)

amzk
m (36) 

.Min
∑

k

∑
(i,j)∈A

(
ck
ij x

k
ij + ck

jix
k
ji

)
(37) 

subject to: 

.

∑
(i,j)∈A

xk
ij −

∑
(j,i)∈A

xk
ji =

⎧⎨
⎩

zk
m, if i = O(k)

zk
m, if j = D(k)

0, otherwise
for each i&k (38) 

.xk
ij ≤ yij for all k and (i, j) and (j, i) ∈ E (39) 

.

∑
(i,j)∈E

fij yij ≤ B (40) 

.xk
ij ∈ {0, 1} and xk

ji ∈ {0, 1} for all k and (i, j) ∈ E (41) 

.yij ∈ {0, 1} for all (i, j) ∈ E (42) 

.zm ∈ {0, 1} for all m (43) 

The above model can be used to identify which routes should be made safe so 
that services can be transported or flow between as many communities as possible 
so that feasible evacuation and supply routes exist after an earthquake. The basic 
idea is to design the best “safe-routes” system within budget limitations and serve 
as many communities as possible as well as make the hardened routes as efficient as 
possible. Objective (36) maximizes the population that can be served by a hardened 
route between a given origin and destination pair. Objective (37) minimizes the cost 
of providing service along a hardened route for a given OD pair k. Constraint (38) 
represents that a flow path between a given OD pair exists or it does not. If it 
exists, then a complete safe path must connect that given OD pair k. Constraints 
(39) prevent a specific link from being used if its needs upgrading and has not been
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upgraded. Constraint (40) restricts the cost on seismically upgrading links to be less 
than a given budget B. Constraints 41 through 43 represent the restrictions on the 
variables. We know that the budget may prevent us from upgrading every weakness 
in a short period of time in a network, so one could envision using this model 
to prioritize the upgrading process. The real need is to develop relatively simple 
models that address fragility in networks, including water conveyance systems, 
communication networks, satellite systems, and critical supply facilities, among 
many others. Viswanath and Peeta (2003) give an application involving a form of 
this model in their paper. 

This model is quite simple and conveys an important feature. By setting a 
standard for connection between towns and maximizing connections, one can 
structure a relatively simple model that optimizes the investment in strengthening. 
Such a simple model does not capture the possibility that it may be possible to 
reroute traffic along or around a destroyed element, to handle some of the traffic. 
Another issue is that this model is based upon the assumption that each city pair is 
connected by a single route or pathway, when indeed there can be several such route 
possibilities. That is the model could be extended by adding additional route options 
between a city pair where only one of the routes needs to be strengthened between 
a city pair in order for that city pair to be connected. Additionally, such a refined 
model could be defined where each city pair is represented by a specific commodity 
path that can be completed only when the arcs along a specific commodity path 
connecting a given city pair are fully strengthened [details for a related road 
investment problem for this approach are given in Scaparra and Church (2005)]. 

There are many types of problems where the issue is to keep routes or facilities 
available given the loss or damage to specific system components. For issues such 
as earthquakes and floods, or even a strike by a terrorist, lifelines of support need 
to be present for different needs like hospitals, food, police, etc. Making access 
possible for such lifelines is one way in which a system or a region can be made 
more resilient. Models such as the one given above can be simple yet powerful to 
aid in decision making. 

8 Beyond the Basics: Resilient Design 

Most of the models and discussion presented so far have addressed what could 
happen and developing plans to reduce that risk for systems in place, e.g., fortifying 
a subset of facilities and strengthening network segments. But what if we took 
possible disruption into account when we designed a facility system so that the 
resulting system was as resilient as possible without special efforts to fortify or 
harden any of the facilities. In this section, we present a new model to optimize 
resilience based upon the classic p-median problem. To start we might choose sites 
that are not close to fault lines or in flood plains, or low-lying areas. That is, we 
can screen out possible sites so that we reduce risk as much as possible before we



202 R.L. Church

actually solve a location problem. Consider the following facility location problem 
that is cast within the p-median framework: 

Locate a set of p-facilities in order to minimize weighted distance while at the same time 
minimize the resulting weighted distance when r of these facilities might be inoperable do 
to some natural or intentional event. 

That is, when several facilities are lost to a system, we want the remaining 
configuration to be as resilient as possible, i.e., to be relatively efficient. Resilience is 
the capability of being able to bounce back from some disruptive event. The greater 
resilience, the faster and easier it is for a system to return to a fairly high level of 
efficiency. Consider the following additional or modified notation: 

J = the set of potential facility sites 
Z0 = the weighted distance of the facility system when all p − facilities are in 

operation 
Zr = the weighted distance of a facility system when it is struck with a worst − case 

loss of r − facilities. 

. xr
ij =

⎧⎨
⎩
1, if demand i asssigns to a facility at j when the system

has a loss of r facilities
0, otherwise

. x0
ij =

⎧⎨
⎩
1, if demand i asssigns to a facility at j when the system

operates all p facilities
0, otherwise

. yj =
{
1, if a facility is located at site j

0, otherwise

. sj =
{
1, if a facility located at site j is interdicted

0, otherwise
Tij = {k ∈ I | k �= j and dik > dij}, the set of potential facility sites (not including j) 

that are as far or farther than j is from demand i 

We can now formulate the resilient design p-median (ReDe-PM) problem as a 
bi-level two-objective optimization problem as follows: 

.RD − PMP : MinZ0 (44) 

.Min Zr (45) 

subject to: 

.Z0 =
∑
i∈I

∑
j∈J

aidij x
0
ij (46) 

.

∑
j∈J

xij = 1 for each i ∈ I (47)
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.

∑
j∈J

yj = p (48) 

.x0
ij ≤ yj for all i ∈ I and for all j ∈ J (49) 

.yj ∈ {0, 1} for all j ∈ J (50) 

.x0
ij ∈ {0, 1} for all i ∈ I and for all j ∈ J (51) 

where: 

.Zr(s) = max
∑
i∈I

∑
j∈F

aidij x
r
ij (52) 

subject to: 

.

∑
j∈F

xr
ij = 1 for all i ∈ I (53) 

.

∑
j∈F

sj = r (54) 

.

∑
k∈Tij

xr
ij ≤ sj for all i ∈ I and for all j ∈ J (55) 

.sj ≤ yj for all j ∈ F (56) 

.xr
ij ≤ yj − sj for all i ∈ I and for all j ∈ J (57) 

.sj ∈ {0, 1} for all j ∈ J (58) 

.xr
ij ∈ {0, 1} for all i ∈ I and for all j ∈ J (59) 

The ReDe-PM problem is composed of two levels. The top level comprises 
a classical p-median problem except that it has a modified objective. The first 
objective (44) is that of the p-median problem that involves minimizing the weighted 
distance associated with the location of p-facilities. The second objective (45) 
involves minimizing the weighted distance after a worst-case loss of r-facilities of 
the p-facilities that are being located. The selection of the r-facilities occurs in the 
lower level of the problem, where the intelligent interdictor takes the sites selected 
by the designer and identifies those sites that if removed increase the weighted 
distance the most. The idea is that the designer plans to optimize the system without 
interdiction (or loss) as well as its operation after possible losses of r-facilities. Since 
this is a two-objective model, one would presumably solve this model using a multi-
objective approach in order to generate a trade-off of solutions between efficient but 
fragile design and less efficient but robust design.
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Constraints (46)–(51) represent the classic p-median problem formulation of 
ReVelle and Swain (1970) and the lower-level problem [(objective (52)] and 
constraints (53) through (59) represent a form of the RIM model. Constraints (56) 
have been added in order to ensure that interdiction targets only those sites that 
have been selected for facilities in the upper level of the problem by the designer. 
Constraints (57) have been added to ensure that assignment after interdiction occurs 
only when a site has a facility that has not been interdicted. Constraints (55) ensure 
that a demand assigns to its closest open, non-interdicted facility. 

One can consider the above a passive protection system model, where a degree 
of resilience against destructive events is built into the solution. To give an example 
of the type of solutions that might be generated from the use of this model, consider 
a solution that was generated when a zero weight is assigned to the first objective 
and a weight of one is specified for the second objective. That means the designer is 
interested in finding a solution that is as resilient as possible after interdiction. We 
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Fig. 4 A solution generated by the resilient design p-median model. This solution reduces the 
impact of a worst-case loss of one facility by 19% as compared to the worst-case loss of the 
optimal p-Median solution
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used the classic 55-point dataset used by ReVelle and Swain (1970) and solved for 
the location of 6 facilities. The optimal solution to this problem is given in Figure 4. 
The weighted distance of this solution is 2764. The worst-case loss of a facility 
in this configuration occurs when site 2 is interdicted where weighted distance 
increases to 3252. This results in a weighted distance that is 19% better when the 
optimal 6 median solution is subjected to a loss of 1 facility. Thus, it is possible to 
design a system that is more resilient to facility disruption without fortification. It 
should be noted that for this particular problem the weighted distance of the optimal 
6-median solution without interdiction is 4% less than the weighted distance of the 
optimal resilient pattern. Thus, there are trade-offs between seeking resilience and 
optimal efficiency without resilience. That is exactly what a systems planner should 
understand before making configuration decisions. 

9 Summary and Conclusions 

Disruptions to systems can occur due to human error or accident, by intentional 
due to sabotage by a terrorist, or due to a natural event like a devastating hurricane, 
earthquake, or flood. Perhaps the most notable events have occurred due to failures 
of a system after a natural. Small disruptions in facility operations can often be 
overcome in a reasonably short period of time, but in other disruptions facilities 
are rendered inoperable for months or even years. Events such as the Metcalf 
substation attack have raised concerns among government agencies, utilities, and 
private companies. Disruption of a facility or a system of facilities can occur 
due to loss of resources, the destruction of equipment, or even the collapse of a 
facility. There are numerous accounts of facility losses, ranging from explosions at 
grain storage centers, sugar refineries, and oil refineries to facilities collapsing in 
earthquakes or being flooded. Limits on resources can hamper a facility operation 
and reduce output. The auto industry is currently experiencing limits on computer 
chips that has degraded/reduced production. Despite the fact that there has been a 
surge in demand, chip production has been lost due to a drought in Taiwan and a chip 
plant destroyed by fire in Japan. Shortages and other events can cascade through a 
system causing damage many times greater than the initial event. In this chapter, 
we have presented a few models that have been developed to address risk of loss, 
ranging from using a model to identify worst-case losses within a facility system to 
optimizing fortification of facility assets in order to limit potential losses. 

There are a number of research needs in this area of location science, ranging 
from the need to develop simple models that are designed to improve safety and 
reduce risk to more computer-intensive tasks of generating a range of possible 
outcomes as represented by reliability envelopes. In addition, models for resilient 
design need to be developed for a range of applications. Finally, specific applications 
in interdiction, fortification, and resilient design to electrical grids (Alguacil et 
al., 2014; Yuan & Zeng, 2020), communication systems and grids (Nicholas & 
Alderson, 2015; Lei et al., 2019), supply chains (Snyder et al., 2006; Snyder et al.,
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2016), and critical manufacturing systems present major obstacles due to problem 
size, data needs, and lack of computational resources and algorithms. Bi-level 
and tri-level optimization problems present a major challenge in solving and in 
application due to possible problem sizes. The research frontier must also include 
the development of sophisticated AI techniques to detect weaknesses in systems 
such as hub networks and supply chains as well as the use of quantum computing. 
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Uncertainty in Facility Location Models 
for Emergency Medical Services 

Eric G. Stratman, Justin J. Boutilier, and Laura A. Albert 

Abstract Emergency medical service (EMS) systems aim to respond to emergency 
calls and provide life-saving care to patients. The location of EMS resources is 
critical to providing this care in a timely manner, and as a result, EMS facility 
location problems have received a tremendous amount of attention since the 1960s, 
and their advancement is directly tied to a wide range of facility location problems. 
This chapter reviews uncertainty in facility location problems applied to EMS 
systems and provides an intuition for and understanding of EMS problem settings. 
The chapter begins by explaining EMS response processes and the goals of the early 
deterministic models. Next, it introduces probabilistic formulations that account 
for uncertainty in ambulance availability, response time, and demand. Then, it 
highlights directions within the field and the role of uncertainty in these problem 
settings. This includes EMS systems with tiered units, systems that consider 
resource relocation, EMS systems in developing countries, and several other areas. 
Lastly, it concludes by providing insights into how these models are used in practice. 

Keywords Facility location · Ambulance location · Emergency medicine · 
Public safety · Optimization under uncertainty 

1 Introduction 

Emergency medical service (EMS) systems aim to quickly respond to emergency 
calls and provide life-saving care to patients. The location of the responding EMS 
unit is critical to providing this care in a timely manner. As a result, EMS facility 
location problems have received a tremendous amount of attention since the 1960s, 
and their advancement is directly tied to a wide range of facility location problems. 
EMS facility location problems are similar to many other facility location problems: 
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requests for emergency aid (EMS calls) are demand points at geographic locations 
that must be serviced by EMS units (ambulances, aircraft, etc.) positioned at 
strategically located facilities. Optimization models determine the optimal location 
of EMS stations and/or the optimal allocation of vehicles to a set of candidate 
locations to best meet this demand. 

The early EMS facility location models were adapted from simple deterministic 
location models such as the Maximal Coverage Location Problem (MCLP) and P-
Median Problem (PMP). These models provided high-level insight; however, they 
did not account for the inherent uncertainty of EMS systems and created a need for 
more advanced techniques. To address this need, probabilistic models were created 
specifically for EMS response. Initially, these models were simple extensions of 
deterministic models and addressed a single stochastic element associated with 
EMS response, such as uncertainty in ambulance availability, response time, or 
demand. Over time, improved computing power, new algorithms, and increased 
data availability allowed more advanced models to emerge. Today, the problem of 
locating EMS facilities with uncertainty is still a growing area of research, where 
researchers continue to refine existing models and investigate settings with new 
sources of uncertainty. 

This chapter reviews uncertainty in facility location problems applied to EMS 
systems. The goal is to provide the reader with an intuition for and understanding 
of the EMS problem setting. This chapter does not provide formulations for the 
discussed models and is not a comprehensive literature review. Instead, it focuses on 
the main themes and approaches found in facility location research applied to EMS. 
The remainder of the chapter is structured as follows. Section 2 reviews the EMS 
response process in greater detail. Section 3 briefly presents deterministic EMS 
facility location models that serve as the basis for more advanced models. Section 4 
introduces probabilistic formulations that account for uncertainty in ambulance 
availability, response time, and demand. Section 5 highlights interesting directions 
and applications of EMS facility location problems. Section 6 discusses common 
themes in the successful implementations of EMS facility location models. Lastly, 
Sect. 7 provides references to formal literature reviews that discuss EMS facility 
location problems. 

2 EMS Background 

2.1 The EMS Response Process 

Most EMS systems emphasize the importance of timely care; however, there are 
two primary classifications of modern EMS systems. The scoop and run method is 
practiced in countries such as the United States, Canada, the United Kingdom, New 
Zealand, and Australia. Under this model, the EMS system seeks to quickly reach 
a patient, provide minimal pre-hospital care, and then deliver the patient to a care
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facility for further treatment (e.g., hospital emergency department). The alternative 
approach is the stay and stabilize method, which is practiced in countries such as 
Germany, France, Greece, Malta, and Austria. In these systems, fewer patients are 
delivered to care facilities. Although many studies have compared the outcomes 
and cost-effectiveness of both methods, differences in operational standards and 
context make it nearly impossible to determine if one approach is better than the 
other (Al-Shaqsi, 2010a). However, these differences may influence the way one 
would model the system and the response time threshold chosen. Furthermore, 
EMS agencies may be a public service, operated or funded by a government, or 
a private for-profit business. Once again, there is no clear answer to which approach 
is better in general; rather, this discrepancy is primarily driven by national and 
cultural approaches to healthcare (Narad & Gillespie, 1998). With this in mind, 
no two EMS systems are exactly the same, and every EMS system must adapt to 
differences in available resources, geographic challenges, EMS infrastructure, legal 
requirements, and cultural dynamics. We initially present models for an EMS system 
with a centralized dispatching system under the scoop and run method with a single 
type of ambulance. This distinction is made since these are the assumptions that 
many of the early EMS facility location models used. In Sect. 5, we explore settings 
where these assumptions are relaxed. 

The EMS response process under the scoop and run model is as follows. (1) A 
medical emergency occurs and someone calls an emergency telephone line. On the 
phone, an EMS call taker asks the caller a series of questions to determine where 
the patient is located and estimate their condition. Typically, these questions are 
scripted by a computer system. (2) One or more EMS vehicles are dispatched to 
the patient’s location. In many areas, police or fire vehicles may also be dispatched 
to provide basic care, if they can reach the patient sooner. (3) The EMS vehicle 
arrives at the scene of the patient. (4) The EMS personnel treat the patient. (5) The 
patient is loaded into the vehicle and transported to a care facility. (6) Finally, the 
EMS vehicle reaches the care facility and transfers the patient. (7) After serving 
the patient, the EMS vehicle prepares for the next patient by returning to a station 
or another location. Figure 1 summarizes this process using the standard names for 
each time interval. 

Fig. 1 The EMS process under the scoop and run model. The intervals beneath the figure indicate 
various time components of the EMS process
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2.2 Response Time, Response Time Threshold, and Coverage 

Improving patient outcomes following an emergency is the primary objective of any 
EMS system. Despite this simple goal, patient outcomes are difficult to quantify due 
to their qualitative nature. Response time is defined as the time interval between the 
moment an EMS vehicle is dispatched and an EMS vehicle arrives at the scene of 
a patient (see Fig. 1). In cardiac arrest patients, a 1-minute reduction in response 
time increases the odds of survival by 1–10% in a nonlinear, decaying, relationship 
(Stoesser et al., 2021; Holmén et al., 2020). Therefore, most EMS agencies use 
response time as the primary performance metric and as a proxy for outcomes 
since it is easy to measure and understand. Consequentially, nearly all EMS facility 
location problems have an objective function that evaluates response time. 

The response time threshold (RTT) is a response time standard that many EMS 
agencies are held to. An EMS response time within the RTT is usually considered 
acceptable, and a response time above this threshold is usually considered to be too 
slow. In North America, the most widely used RTT in urban areas is 9 minutes for 
90% of EMS responses (Fitch, 2005). 

This standard is often traced back to several studies from the late 1970s and 1980s 
that concluded that a patient’s odds of survival following an out-of-hospital cardiac 
arrest (OHCA) decrease rapidly after this window (Mullie et al., 1989). In non-
urban areas, this standard may be extended to account for longer travel distances 
and hard-to-reach areas. For example, the US state of California recommends that 
EMS agencies should respond within 20 minutes to patients in rural areas 90% of the 
time (Narad & Driesbock, 1999). Figure 2 presents the response time distribution 
by urbanicity in the United States. Globally, RTT standards vary due to the available 
resources, the type of EMS system used, and the national and cultural approaches to 
healthcare (see Table 1). In any setting, the RTT is extensively used in EMS facility 
location problems because it provides a simple classification for coverage. A request 
for EMS service that can be reached by an ambulance within the RTT is considered 
covered, whereas one that is beyond the RTT is not. Coverage is then implemented 
as a constraint or objective in EMS facility location problems. 

We note that although intuitive and easy to measure, RTT coverage is a binary 
metric. Consider an urban system with an RTT of 9 minutes. From a modeling 
standpoint, a patient that is 30 seconds from a station has the same coverage as a 
patient that is 8:59 minutes from a station. Alternatively, if a patient is uncovered, 
the model does not distinguish if the patient is 9:00 minutes from a station or 
30 minutes from a station. Therefore, throughout this chapter, we also highlight 
several approaches to encourage timely response without using the RTT. This 
includes minimizing average response time (Sect. 3), acknowledging the inherent 
uncertainty in response time (Sect. 4.3.1), and using the objective function to 
encourage favorable patient outcomes (Sect. 4.3.3).
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Fig. 2 Response time distribution by urban and rural areas in the United States (Jan-Feb 2020). 
The 90th percentile of response times is indicated by the dashed red line. As shown, the 90th 
percentile for urban and rural patients is outside the RTT standard of 9 and 20 minutes, respectively 
(data provided by NEMSIS) 

Table 1 RTT standards may be driven by the resources available to the country, the type of EMS 
system used, and the national and cultural approaches to healthcare. For example, Hong Kong 
uses the same RTT standard for urgent and non-urgent patients (Fitch, 2005; Krafft et al.,  2003) 

RTT for 

life-threatening 

Location emergencies (min) Compliance goal Type of system 

Richmond, VA, USA 8:59 90% Scoop and run 

West Midlands, UK 8:00 75% 

Hong Kong 12:00.a 92% 

Bonn, Germany 7:59 90% Stay and stabilize 

Genoa, Italy 8:00 No data 

Ulleval, Norway 9:39 No data 
a For life-threatening and non-life-threatening emergencies



218 E. G. Stratman et al.

3 Deterministic EMS Facility Location 

3.1 Deterministic Single Coverage Models 

We start by introducing deterministic models, inspired by or directly pulled from 
pioneering research on EMS facility location problems.We note that the term station 
is used loosely within this section (and throughout EMS research). A station could 
be any location where ambulances are positioned before being dispatched. Common 
locations include EMS bases, hospitals, and public parking lots. 

• The Location Set Covering Model (LSCM) positions the fewest number of 
stations at a set of predefined locations, such that all demand nodes are within 
the RTT from at least one station (Toregas et al., 1971). 

• The Maximal Coverage Location Problem (MCLP) weighs each demand node 
by its generated demand and then positions a limited number of stations at a set 
of predefined locations to maximize demand within the RTT from at least one 
station (Church & ReVelle, 1974). 

• The P-Median Problem (PMP) positions p stations at a set of predefined locations 
to minimize the average response time to all demand nodes, weighted by 
generated demand (Hakimi, 1964). 

• The P-Center Problem (PCP) positions p stations at a set of predefined locations 
to minimize the maximum response time to a demand node (Hakimi, 1965). 

These models are the building blocks for the models with uncertainty and demon-
strate the varying goals of an EMS system. For example, the LSCM requires 
RTT coverage for all demand nodes; however, the resulting solutions may not be 
achievable in an EMS system with limited resources. The MCLP maximizes RTT 
coverage using a limited number of stations; however, it ignores the response time 
of demand nodes located outside the RTT, which may lead to inequity in response 
time. The PMP minimizes the average response time and considers the effect of 
station location on all demand nodes. However, it may reach fewer patients within 
the RTT, which may lead to worse patient outcomes. Lastly, while the MCLP and 
PMP are inherently biased to serve areas with higher demand, the PCP minimizes 
the longest response time of all the demand nodes to provide near-homogeneous and 
more equitable service. However, the resulting solution may be an inefficient use of 
EMS resources. 

To illustrate the importance of these modeling decisions, Fig. 3 provides a 
comparison of the MCLP and PMP applied to a fictional problem instance with 
five stations. The MCLP maximizes the demand nodes located within the RTT of a 
station, depicted by the gray dashed line, by locating several stations near the area 
with the highest density of demand to achieve a maximal coverage of 85.7%. As 
shown, the solution provides excellent coverage to the areas of denser demand (this 
may be a more populated area, like a city). Given the importance of a 9-minute 
response time for survival following cardiac arrest, one could argue that the MCLP 
is preferred since it can serve the most patients within this threshold. However,
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Fig. 3 The deterministic single coverage models represent the various goals of EMS systems 

the MCLP provides poor coverage to outlier demand nodes. As shown, the 90th 
percentile response time is 17.7 minutes, well beyond the RTT and the threshold for 
resuscitation following cardiac arrest. 

Alternately, the PMP minimizes the average response time of all demand nodes. 
While the PMP must provide quick response to areas with many demand nodes, the 
response times of the outlier demand nodes are also included within the objective 
function. The stations in the PMP solution are slightly more dispersed to attain a 
minimum average response time of 6.1 minutes and a 90th percentile response time 
of 11.0 minutes. This solution is preferable for the areas with fewer demand nodes 
(these may be the more rural areas). However, only 82.7% of demand points are 
covered within 9 minutes, which could lead to overall worse outcomes. These are the 
trade-offs researchers must be aware of. The formulation of an EMS facility location 
model must align with the objectives of the EMS system, and the researcher should 
communicate potential unforeseen implications of their model with practitioners. 

3.2 Deterministic Multi-coverage Models 

The models mentioned above assume that a station is always available to serve 
demand. In practice, all the vehicles at a particular station may be busy serving
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other patients when a request for aid is received. To hedge against this likelihood, 
deterministic multi-coverage models aim to increase the number of stations that can 
cover each demand node. This recognition of uncertainty in station availability is 
a precursor to the probabilistic availability models discussed in Sect. 4.1. There 
are two primary approaches to model multiple coverage: models that encourage 
multiple coverage through the objective function and models that enforce multiple 
coverage through constraints. Models that encourage multiple coverage reward 
demand nodes covered multiple times within their objective function. For example, 
the Hierarchical Objective Set Covering (HOSC) model is an extension of the 
LSCM that positions the fewest number of stations to cover each demand node once 
and maximizes the demand nodes covered multiple times (Daskin & Stern, 1981). 
Similarly, the Double Standard Model (DSM) combines the MCLP and LSCM to 
introduce the idea of multiple coverage radii. The model requires that a specified 
proportion of the demand be located within a distance . r1 of a station, all demand be 
located within a distance . r2 such that .r2 > r1, and maximizes the demand covered 
twice within . r1 (Gendreau et al., 1997). 

Models that use the second approach, enforcing multiple coverage via con-
straints, require a demand node to be located within the RTT from a predefined 
number of stations to be considered covered. This is the approach used in the Tan-
dem Equipment Allocation Model (TEAM), a model that was initially constructed 
for fire systems with multiple types of vehicles (Schilling et al., 1979). Although 
this approach may make sense for fire systems, this method is unrealistic in EMS 
as covering more demand nodes with a single station is often preferable to covering 
just a few demand nodes with multiple stations. The Backup Coverage Problem 
II (BACOP II) is an MCLP-type model that combines both approaches. BACOP 
II rewards demand nodes that are covered by a single station with weight w and 
demand nodes that are covered twice with weight .(1 − w), allowing the decision-
maker to control the trade-off between single and double coverage by adjusting 
.w ∈ [0, 1] (Hogan & Revelle, 1986). This idea of encouraged and enforced 
reliability is similar to the trade-off of expected coverage models and chance-
constrained models, which we discuss in Sects. 4.1.1 and 4.1.2, respectively. 

4 Probabilistic EMS Facility Location 

The models presented in Sect. 3 are the fundamental facility location models as 
applied to EMS systems. However, they rely on several unrealistic assumptions. 
The single coverage models assume that a station is always available to serve 
incoming demand within a known response time. The multi-coverage models hedge 
against station unavailability, but do not quantify this reliability. In this section, we 
present EMS facility location models that address the uncertainty in EMS systems 
to provide more accurate and dependable results. Section 4.1 reviews approaches to 
model the uncertainty in ambulance availability. Section 4.2 focuses specifically on
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the uncertainty in the arrival of EMS requests. Finally, Sect. 4.3 reviews methods to 
model the uncertainty in EMS response time. 

4.1 Uncertainty in Vehicle Availability 

Ambulance availability is (typically) defined as the probability that an ambulance 
will be available when one is needed to respond to an EMS request. In practice, 
availability is a high-level metric that depends on congestion in the system and is 
influenced by demand and service time. However, from a modeling perspective, 
it provides a convenient way to assess how well EMS requests are fulfilled. In 
Sect. 4.1.1, we review expected coverage models, which account for this uncertainty 
within the objective function, and in Sect. 4.1.2, we present models that guarantee a 
level of reliability through chance constraints. 

4.1.1 Expected Coverage Facility Location Models 

An expected coverage model optimizes the long-run probability that a request 
for EMS service is appropriately covered. These models often embed probability 
formulations within their objective functions as an extension to the MCLP. The 
Maximum Expected Covering Location Problem (MEXCLP) is often credited as 
the first EMS facility location problem to incorporate uncertainty in its formulation 
and is the seminal contributor of expected coverage models applied to EMS (Daskin, 
1983). MEXCLP uses an objective function similar to theMCLP; however, it adjusts 
the value of covering a demand node by the long-run probability that an ambulance 
is available within its RTT. This probability is derived using a binomial probability 
distribution and a system-wide busy fraction, an input of the model that represents 
the long-run fraction of time an ambulance is unavailable to be assigned to arriving 
calls. We note that this busy fraction is believed to be the same for all ambulances 
in the system. Figure 4 shows how the objective function of MEXCLP is derived. 

Several other expected coverage models are direct extensions of MEXCLP. The 
Multiple-coverage One-unit FLEET (MOFLEET) model extends this idea for a 
set number of ambulances and stations (Bianchi et al., 1988). The Generalized 
Maximum Expected Coverage (GMEXC) model provides a framework with varying 
time standards for each additional coverage of a node (Daskin et al., 1988). The 
Maximum Expected Covering Location with Time Variation (TIMEXCLP) is an 
extension that considers demand patterns over time (Repede & Bernardo, 1994). 
Although MEXCLP and its direct extensions are a tremendous step forward for the 
field, they rely on several limiting assumptions: 

1. All ambulances share the same system-wide busy fraction. 
2. Ambulances operate independently.
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Deriving the MEXCLP Objective Function: 
Let m′

j ∈ {0, ...,M} be the number of ambulances that cover demand node j ∈ J . Let xjm be a 
binary decision variable such that xjm = 1 if  m ≤ m′

j , else  xjm = 0. Let p be the system busy 
fraction and let dj represent the weight (generated demand) of demand node j ∈ J . 

max
∑

j∈J 

dj ∗ Pr(An ambulance is available to serve demand node j ∈ J) 

max
∑

j∈J 

dj ∗
(
1 − Pr(All m′

j ambulances that cover j ∈ J are busy)
)

max
∑

j∈J 

dj ∗ (1 − pm
′
j ) 

max
∑

j∈J 

dj 

m′
j∑

m=1 

(pm−1 − pm) 

max
x

∑

j∈J 

dj 

M∑

m=1 

(1 − p)pm−1xjm 

Fig. 4 Deriving the MEXCLP objective function 

3. The ambulance busy fraction is invariant to the locations and assignments of the 
ambulances and patients. 

These assumptions are not true in practice. In any EMS system, certain ambulances 
may be utilized more than others depending on how many patients require care 
in a given area. Moreover, how these patients are assigned to a given ambulance 
also impacts the utilization of other vehicles. Lastly, the distance between an 
ambulance and its assigned patient impacts how long an ambulance must travel and 
consequentially its busy fraction. Therefore, it is unsurprising that researchers soon 
found methods to overcome these limitations. 

The Hypercube Queuing Model (HQM) is a method that uses queuing theory 
to determine the steady-state behavior of servers in a multi-server system (Larson, 
1974), can be approximated using correction factors for computational simplicity 
(Larson, 1975), and can distinguish service times dependent on unique server-
patient assignments (Jarvis, 1985). This stream of research led to the Approximate 
MEXCLP (AMEXCLP), a direct extension of MEXCLP that uses correction factors 
to account for ambulance interdependencies. In this work, the authors provide an 
application of the HQM to waive all three assumptions noted above (Batta et al., 
1989). Other models to directly use the HQM approximation in expected coverage 
models include an extension of MEXCLP to allow for two vehicle types (McLay, 
2009) and a model to locate facilities in a system with a cut-off priority queue 
(Yoon & Albert, 2018). We note that these HQM approaches assume that EMS 
requests arrive according to a Poisson process and ambulance service times follow 
an exponential service time. The Poisson arrival assumption is consistent with 
real-world data (Kim & Whitt, 2014), and we elaborate on this in Sect. 4.2. The  
exponential service time assumption may deviate from reality, but several papers 
have shown that the performance of models does not critically depend on the choice
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of service time distribution (Ansari et al., 2017; Jagtenberg et al., 2017). Another 
expected coverage approach addresses the assumptions of MEXCLP without the 
HQM approximation using two models. The first model assumes that there is no 
interaction between stations to screen many solutions, and then this assumption is 
lifted in the second model for a given ambulance allocation. These models utilize an 
Erlang loss queue, which does not assume that EMS service follows an exponential 
distribution; however, they assume that all calls that arrive while all servers are busy 
are unable to be served (Restrepo et al., 2009). 

4.1.2 Chance-Constrained Facility Location Models 

All of the models mentioned in the previous section maximize expected coverage. A 
shortcoming of this approach is that it does not provide a guarantee on the reliability 
of coverage (probability a call arrives and can be served by an ambulance within 
its RTT) for a particular demand node. Presumably, an EMS agency would like to 
cover demand nodes with a given level of reliability. An alternative method is to use 
a chance-constrained model that requires a demand node to be covered with a speci-
fied level of reliability. For example, in the Maximum Availability Location Problem 
(MALP I and MALP II), a method is presented to determine how many ambulances 
must be positioned within the RTT of the demand nodes for a given reliability 
level. The authors present an MCLP variant in which a demand node is considered 
covered only if there are enough ambulances within its RTT to meet the reliability 
level (ReVelle & Hogan, 1989). The Probabilistic Location Set Covering Problem 
(PLSCP) is a similar approach applied to the LSCM (ReVelle & Hogan, 1988). 
However, these models are limited by the same three assumptions described above. 

To address these assumptions, queuing theory is used to determine station-
specific busy fractions, and refinements of these models include the QPLSCP and 
QMALP (Marianov & ReVelle, 1994). The use of queuing theory is then extended 
in the Probabilistic Location-Allocation Set Covering Model with a variable number 
of servers (PLASC. η). PLASC. η positions the minimum number of servers and 
allocates the demand nodes such that a patient will be served within a given 
time limit with pre-specified reliability (Marianov & Serra, 2002). The Extended 
Maximum Availability Location Problem (EMALP) uses the hypercube correction 
factor to adjust MALP to account for server interdependence (Galvão et al., 2005). 
Once again, using queuing theory, these models assume that ambulances arrive 
according to a Poisson process and assume an exponential service time or general 
service time with a loss (zero-length) queue. 

4.2 Uncertainty in Arrival Rate 

The models presented in Sect. 4.1 explore the likelihood that ambulances are busy 
and unable to serve a request for help. In an EMS system, the arrival rate (the
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Fig. 5 Histogram of daily EMS demand in Mecklenburg County, North Carolina (2004), which 
includes the city of Charlotte and the surrounding area. The 10th percentile in demand is 151 
requests per day and the 90th percentile is 194 requests per day. An unusual blizzard caused 
demand to spike to 264 requests in a single day (data provided by MEDIC) 

number and distribution of requests for EMS service) is a factor that significantly 
affects availability. As shown in Fig. 5, demand for EMS requests is highly variable. 
Additionally, disasters and other events can cause EMS demand to spike well-
beyond standard levels and prevent an EMS system from providing timely and 
reliable care to all patients. In this section, we explore models that explicitly model 
arrival rates and are better equipped to examine how this variability in demand 
affects the optimal locations of EMS resources. 

4.2.1 Facility Location Models with Probabilistic Arrivals 

A method to capture uncertainty in the arrival of EMS requests is to incorporate 
the underlying arrival distribution into the constraints of EMS facility location 
problems. One of the first models to do so is Rel-P, a model that considers the 
arrival distribution in a reliability constraint, under the assumption that a station 
serves all demand within its RTT as an upper bound (Ball et al., 1993). In many 
ways, Rel-P is a variation of the chance-constrained models presented in Sect. 4.1.2, 
since it constrains the likelihood of a request arriving while all servers are busy. 
However, this likelihood is derived assuming calls arrive according to a Poisson 
process. Due to the discrete nature, independence, and time invariance (at a high 
level) of EMS requests, using the Poisson distribution is a safe assumption used in 
most models and is consistent with real-world data (Kim & Whitt, 2014). A more 
explicit formulation was later proposed using a stochastic integer program in which 
the marginal probability distribution for the number of arrivals within each region is 
captured within a constraint (Beraldi et al., 2004). To adjust for server dependence, 
this idea is extended to a two-stage model, where the first level locates the EMS 
facilities and the second level determines how the demand is allocated between them 
(Beraldi & Bruni, 2009).
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Robust and scenario optimization are other methods to model uncertainty in 
call arrivals. Rather than embedding the arrival distribution into the model, these 
approaches consider a finite set of demand realizations, called an uncertainty set. 
An element of this set may represent the number of EMS calls in each area of a 
city on a particular day, and the set contains different historical or expected demand 
patterns across multiple days. In robust optimization, the model finds the best EMS 
allocation that satisfies the given constraints across all demand realizations in the 
uncertainty set (Zhang, 2014; Boutilier & Chan, 2020). Scenario optimization is 
similar; however, each element in the uncertainty set is associated with a probability. 
These probabilities are used within the model to constrain the likelihood that some 
condition is violated across all scenarios (Noyan, 2010; Nickel et al., 2016). The 
validity of robust and scenario optimization models depends heavily on the variation 
captured within the uncertainty set. However, robust and scenario optimization offer 
several advantages; these approaches avoid using complicated constraints derived 
from probability distributions, they provide more tractable approaches for larger 
problem instances, and they rely on fewer assumptions regarding the underlying 
probability distributions than stochastic modeling approaches (Zhang, 2014). 

4.2.2 Predicting Arrival Rates 

Traditionally, demand is estimated for EMS facility location models by summariz-
ing historical data, under the assumption that future demand will behave similarly. 
However, there is a growing stream of research that uses advanced machine learning 
and analytical models to predict demand. These methods are especially useful when 
planning for population growth or in areas without reliable historic data. 

Early approaches that explore population, demographic, and spatial information 
associated with EMS demand found that the demand for ambulances is highly 
predictable using socioeconomic and land-use factors (Kamenetzky et al., 1982). 
For example, ambulance use is often higher in low-income, non-white, and elderly 
populations. Other approaches have focused on the daily, weekly, or seasonal cycles 
of EMS demand using a variety of methods (Channouf et al., 2007; Matteson 
et al., 2011). Lastly, there are even more granular models that combine spatial 
and temporal aspects in their forecasts (Zhou et al., 2015; Sariyer et al., 2017). 
Figure 6 demonstrates the daily temporal trend of EMS requests. Emergency 
demand is known to follow a circadian rhythm and is highest midday (Bagai 
et al., 2013). We discuss models that alter their deployment throughout the day 
in Sect. 5.2.1. We note these prediction models were developed using methods that 
require accurate historical data. In settings without historical EMS records, such 
as low- and middle-income countries (LMICs), methods have been developed to 
heavily rely on population estimates and other high-level features (Fujiwara et al., 
1987; Boutilier & Chan, 2020).
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Fig. 6 Daily cycle of EMS demand in the United States (Jan-Feb 2020). EMS demand is highest 
between 10 AM and 3 PM. Demand variability is more prominent in patients with lower acuity 
and emergent needs than for patients with critical needs (data provided by NEMSIS) 

4.3 Uncertainty in Response Time 

As described in Sect. 2, response time is defined as the time interval between the 
moment an EMS vehicle is dispatched and an EMS vehicle arrives at the scene of 
a patient. The majority of the models presented so far assume that response time 
and an ambulance’s ability to respond within the RTT is known with certainty. In 
practice, traffic, weather, and other delays can cause uncertainty in the response time 
of EMS services and can severely affect patient outcomes (Kunkel & McLay, 2013). 
In this section, we review models that explicitly consider uncertainty in response 
time. 

4.3.1 Facility Location Models with Probabilistic Response Time 

The MCLP with Probabilistic Response (MCLP+PR) and MEXCLP with Prob-
abilistic Response (MEXCLP + PR) are simple extensions of the MCLP and 
MEXCLP, respectively, which use a parameter in the objective function that repre-
sents the likelihood a station can reach a demand node within the time limit (Daskin, 
1987; Erkut et al., 2009). A similar idea uses gradual covering to reflect coverage 
uncertainty (Berman et al., 2010; Eiselt & Marianov, 2009). Probabilistic response 
times are also considered in other models that account for server interdependencies 
(Goldberg & Paz, 1991), service level constraints (Alsalloum & Rand, 2006),
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and pre-trip (chute time) delays (Ingolfsson et al., 2008). Robust optimization (as 
described in Sect. 4.2.1) has also been used to model uncertainty in response times 
(Boutilier & Chan, 2020). Lastly, while the models discussed thus far focus on the 
RTT or the average response time, some researchers specifically constrain the tail 
of EMS response times, such as the 90th percentile of response time, using a value 
at risk (VaR) approach (Krishnan et al., 2016; Chan et al, 2017; Boutilier & Chan, 
2022). 

A closely related source of uncertainty is uncertainty in the total service time: 
the time interval from the moment an EMS unit is dispatched until it is available 
to respond to another call (see Fig. 1). While uncertainty in response time affects 
an ambulance’s ability to respond to a call within the RTT, service time affects an 
ambulance’s availability to serve future calls. For this reason, many of the queuing 
methods presented in Sect. 4.1 may be used to represent the distribution of service 
time. 

4.3.2 Predicting Response Time 

Many EMS models use distance from an EMS unit to a demand node as an 
approximation for response time. However, it is important to recognize that distance 
and response time have a nonlinear relationship (Budge et al., 2010). The earliest to 
explore this relationship modeled EMS response time using a variety of factors such 
as distance, acceleration (Ingolfsson et al., 2003), road type (Goldberg et al., 1990), 
and time of day (Hausner, 1975). Modern approaches continue to use similar inputs 
with more refined techniques (Do et al., 2013; Fleischman et al., 2013; Westgate 
et al., 2016). In the last decade, data availability has allowed for more accurate traffic 
pattern predictions and routing (Kok et al., 2012), which, in tandem with machine 
learning techniques, continues to allow for more precise response time predictions 
(Vlahogianni et al., 2014; Woodard et al., 2017; Boutilier & Chan, 2020). 

4.3.3 Response Time and Patient Outcomes 

The models explored so far emphasize timely response. However, improving patient 
outcomes is the ultimate goal of an EMS system. Some researchers in this area 
question whether EMS systems overvalue response time and the response time 
threshold at the expense of other factors important to effective care (Al-Shaqsi, 
2010b). One method to ensure optimal outcomes is to replace the objective function 
based on response time with one that directly measures the survival likelihood 
of cardiac arrest patients (Erkut et al., 2008) or multiple patient types (Knight 
et al., 2012). Another approach is to carefully select response time thresholds that 
maximize survival (McLay & Mayorga, 2010). However, these approaches do not 
transfer well to patients with conditions that are non-life-threatening. Furthermore, 
predicting how EMS response affects outcomes is difficult; patient outcomes and 
response time do not have a linear relationship (Holmén et al., 2020), and there are
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many other factors that influence outcomes (Boutilier & Chan, 2022). For example, 
the odds of survival for a cardiac arrest incident observed by a bystander are 2.31 
times higher than for an unobserved incident (Stoesser et al., 2021). 

5 Notable Directions in EMS Facility Location 

The methods and models described in Sect. 4 are a broad sampling of the techniques 
used to solve EMS facility location problems with uncertainty. These techniques 
account for many of the unknown elements of EMS systems and more accurately 
represent the underlying dynamics of a traditional EMS system than deterministic 
models. However, as mentioned in Sect. 2, it is difficult to generalize EMS systems. 
The methods presented in Sect. 4 may fail to capture the critical dynamics of 
more complicated or less studied settings. In this section, we explore a few of 
the many directions of EMS facility location problems and the advanced modeling 
techniques developed to capture their unique features. Section 5.1 reviews methods 
to model EMS systems with multiple vehicle types. Section 5.2 explores EMS 
facility location models that allow ambulance relocation. Section 5.3 discusses the 
unique challenges of EMS in low- and middle-income countries. Lastly, Sect. 5.4 
briefly highlights a few other new applications and directions of EMS facility 
location research. 

5.1 EMS Vehicle Types and Tiered EMS Systems 

In the United States, it is estimated that over 65% of EMS responses are for patients 
with conditions that are non-life-threatening and unlikely to progress (data provided 
by NEMSIS). To avoid unnecessary utilization of expensive and resource-intensive 
ambulances for these non-urgent patients, many EMS systems implement a tiered 
EMS system in which EMS vehicles with different levels of training and resources 
are matched to the needs of a patient. Some advantages of a tiered EMS system are 
that lower-acuity ambulances are less resource-intensive, they typically allow for 
larger EMS fleets, and they can enable shorter response times for critical patients 
(Stout et al., 2000). However, patient misclassification and under-triage are risks that 
must be carefully managed in such a system (Wilson et al., 1992). In Sect. 5.1.1, 
we review the types of vehicles that may be available in a tiered EMS system, 
and in Sect. 5.1.2, we describe the facility location models that explore the unique 
dynamics and uncertainties of tiered EMS systems. 

5.1.1 Tiered EMS Vehicle Types 

In North America, transport-equipped EMS vehicles are traditionally categorized by 
the level of care they may provide a patient. An advanced life support (ALS) unit
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is a larger and more resource-intensive ambulance, usually with a truck chassis-
cab and a large box-like rear compartment (see Fig. 7a). An ALS ambulance is 
staffed by highly trained paramedics equipped to provide advanced care such as 
administering intravenous fluids, providing controlled medication, using advanced 
airway techniques, and monitoring cardiac conditions in addition to providing basic 
noninvasive care. Regions that do not use a tiered EMS system often use an all-ALS 
ambulance system. Alternatively, a basic life support (BLS) unit is a less resource-
intensive ambulance usually staffed by emergency medical technicians who are 
only equipped to provide noninvasive care such as performing cardiopulmonary 
resuscitation (CPR), immobilizing broken bones, administering oral medications, 
and providing oxygen (see Fig. 7b) (Al-Shaqsi, 2010a). Studies have found that 
85% of calls in the United States are within the scope of BLS ambulances (Pozner 
et al., 2004), but despite their ability to serve the majority of patients, 5 of the 50 US 

(a) (b) 

(c) (d) 

Fig. 7 Different types of vehicles in a tiered EMS system. (a) ALS ambulances are equipped to 
perform invasive care, and are preferred for time-sensitive patients in a tiered system. Photo by Eric 
Stratman. (b) BLS ambulances are equipped to perform non-invasive care, and are preferred for 
lower acuity patients in a tiered system. https://unsplash.com/photos/T5TojXFNnjk (See: https:// 
unsplash.com/license). (c) EMS NTVs may be the sole respondent under the stay and stabilize 
EMS model or they may support transport vehicles under the scoop and run model. https://pixabay. 
com/photos/car-city-medicine-automobile-4368213/ (See: https://pixabay.com/service/license/). 
(d) Fire and Police units, which may act as NTVs, are playing an increasingly important role 
in many EMS systems. https://pixabay.com/photos/fire-in-houston-houston-texas-texas-3252193/ 
(See: https://pixabay.com/service/license/)
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states (Georgia, Hawaii, Missouri, South Dakota, Washington) do not license BLS 
agencies as of 2011 (National Highway Traffic Safety Administration, 2014). 

A non-transport vehicle (NTV) is another common component of an EMS 
system and is defined as any vehicle equipped to respond to an EMS request 
and provide on-scene care, but not intended to transport the patient (Crawford & 
Wilson, 2019). NTV is a very broad definition. A traditional NTV is often a sports 
utility vehicle (SUV) staffed by medical personnel (see Fig. 7c). This is the type 
of vehicle used in European-style stay and stabilize systems where an NTV staffed 
by a medical doctor is the sole respondent to the majority of patients. In a North 
American scoop and run system, an NTV may also be a medically trained fire 
or police unit. From 1977 to 2015, the number of fire incidents has decreased by 
59% (Ahrens, 2017). Due to this extra capacity and the strategic positioning of fire 
companies, researchers and practitioners are exploring ways to use these resources 
in EMS systems (Swersey et al., 1993; McLay & Moore, 2012). 

5.1.2 Facility Location with Tiered EMS 

Tiered EMS systems bring new dynamics and modeling challenges to EMS facility 
location problems. In addition to providing reliable and timely EMS response, a 
tiered EMS system must ensure that the types of resources responding to a patient 
are appropriate for their need. Modeling this dynamic is often the central challenge 
of tiered EMS facility location models. There are three general approaches to 
tiered EMS models: (1) models that assume all patients are of equal priority, (2) 
models that differentiate between patient priority and assume priority is known 
with certainty at the time of dispatch, and (3) models that differentiate between 
patient priority and acknowledge the inherent uncertainty in patient classification. 
We explore all three of these approaches within this section. 

Tiered EMS Without Patient Prioritization Many of the early tiered EMS 
facility location models are extensions of the models reviewed in Sect. 4. They  
provide insights into EMS strategy; however, they do not explicitly consider how 
a tiered EMS unit will respond to individual patients or patient priority classes. 
Rather, the tiered units are used to redefine coverage. For example, the simplest 
approach to model a tiered system is to require a covered demand node to be within 
the RTT of all vehicle types. This is the approach of the early models that position 
resources for fire systems with multiple vehicle types (Marianov & ReVelle, 1992). 
However, unlike fire emergencies that often require multiple types of vehicles, EMS 
emergencies offer more flexibility because they usually only need one appropriate 
ambulance. Another approach is to use lower-acuity vehicle types to fill the coverage 
gaps of the higher-acuity ambulances. For example, a covered demand node must be 
within an RTT from an ALS ambulance; however, this RTT is more lenient (longer) 
for demand nodes that can be quickly reached by a BLS ambulance (Mandell, 
1998). A slightly different tiered approach allows BLS ambulances to be the sole 
respondent to patients believed to meet their criteria for response; however, there is
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a chance that these patients need advanced care and trigger an ALS unit to also be 
dispatched (Marianov & Serra, 2001). While these methods utilize ALS and BLS 
units in a variety of ways, none of these approaches prioritize the need of patients 
with truly life-threatening emergencies. 

Tiered EMS with Known Patient Prioritization The manner in which tiered 
vehicles are used for patients with varying conditions and levels of urgency is an 
important dynamic of tiered EMS systems with many practical implications. One 
approach is to use higher-acuity ambulances for high-priority patients and use lower-
acuity ambulances as the sole respondent to lower-acuity patients. Only when all 
higher-acuity ambulances are busy will a lower-acuity ambulance be used as the sole 
respondent for a high-priority patient. The previously mentioned MEXCLP2 uses 
such an approach (McLay, 2009) as do recent papers that explore more complicated 
vehicle substitutions (Nelas & Dias, 2021). However, in practice, these types of 
vehicle substitutions are likely unfavorable, and some models adjust the reward of 
responding to a call depending on if the patient-vehicle type match. In other words, 
they provide a full reward when the responding ambulance meets or exceeds the 
patient need and a partial reward when the assigned vehicle is lower than a patient’s 
need (Chong et al., 2016; Yoon et al., 2021) or do not allow any coverage when 
the vehicle does not meet a patient’s need (Boujemaa et al., 2018). While these 
models may account for the uncertainty in demand, service time, and ambulance 
availability, they assume that the information used to prioritize patient response 
and inform ambulance type decisions is known with certainty. In practice, EMS 
dispatchers must predict this information using the limited information provided 
during the initial EMS request, which may be inaccurate. 

Tiered EMS with Patient Prioritization Under Uncertainty Following a request 
for emergency care, an EMS dispatcher must use the limited information provided 
during the phone screening to decide which EMS unit should respond to the patient. 
Often EMS personnel act conservatively and assume a higher level of urgency (over-
triage) to avoid delaying the patient from potentially life-saving care. Although 
there is no standard for appropriate rates of over- and under-triage, previous studies 
have estimated that over- and under-triage rates are as high as 78% and 4%, 
respectively (Dami et al., 2015). Optimal dispatching models have demonstrated 
that high uncertainty in patient classification leads to more urgent responses to 
mid-priority patients (McLay & Mayorga, 2013), and many researchers continue to 
investigate methods to assess and improve EMS triage accuracy (Bohm & Kurland, 
2018; Alotaibi et al., 2021). However, it is unlikely that an EMS system will ever 
be perfectly accurate, and one method to hedge against this risk is through multiple 
response: the EMS practice in which multiple units are sent to the same patient. 
This approach ensures that the vehicle that best meets a patient’s need responds to 
the patient while allowing the unneeded vehicle to serve another patient sooner and, 
hence, influences the optimal location of EMS resources (Yoon & Albert, 2020). 
Surprisingly, misclassification in patient priority and the subsequent mitigating 
actions is not well explored in EMS facility location model literature and is certainly 
an area of opportunity for the field.
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5.2 EMS Systems with Relocation 

Thus far, we have presented the location of EMS units as static and implicitly 
assumed that whenever an EMS unit is not in use, it is waiting at a specific location. 
However, given the cyclic trends in EMS demand and the mobility of EMS units, 
ambulance relocation, defined as strategically moving EMS vehicles to improve 
EMS coverage, is a topic that has received much attention in EMS research. This 
is also commonly called System Status Management (SSM) in practice. There are 
two primary classifications for EMS relocation models: multi-period relocation 
and dynamic relocation. A multi-period relocation model relocates EMS units to 
account for the spatial-temporal trends in EMS demand, such as those described in 
Sect. 4.2.2. A dynamic relocation model relocates EMS units to account for gaps 
in coverage that form as EMS units become busy. In this section, we review both 
approaches. 

5.2.1 Multi-period Relocation Models 

Multi-period relocation models account for the cyclic spatial-temporal changes in 
demand for EMS service. For example, during the day, many people are at an office, 
school, or another commercial location. A strategic EMS system may increase the 
number of units located near commercial areas during these times. Then, during the 
evening, most people return home; therefore, it may be advantageous to shift EMS 
units to residential areas during these times (see Fig. 8). This is the basic idea of 
multi-period relocation models. 

The Maximal Expected Coverage Location Model with Time Variation (TIMEX-
CLP) is often credited as the first EMS relocation model (Repede & Bernardo, 
1994). TIMEXCLP is an adaptation of MEXCLP developed in partnership with an 
EMS system in Louisville, Kentucky, and accounts for changes in the EMS fleet size 
and spatial-temporal demand patterns. This application demonstrates the importance 
of relocation by showing that 95% coverage, which required nine ambulances under 
the MEXCLP solution, is achievable with eight ambulances if relocation is used. 
This model does not utilize the advancements of the HQM approach and is therefore 
subject to the limiting assumptions described in Sect. 4.1.1. Nearly 15 years later, 
the Dynamic Available Coverage Location Model (DACL), a multi-period LSCM 
model, was suggested as an extension of the QPLCP (mentioned in Sect. 4.1.2) with 
a correction factor to account for server dependence (Rajagopalan et al., 2008). 
However, a possible shortcoming of both of these models is they do not limit 
ambulance relocations. In practice, a system that relocates ambulances too often 
could be difficult to implement, increase the workload for EMS personnel, and cause 
fatigue (Bledsoe, 2003). To minimize relocations, TIMEXCLP was later extended 
to include relocation and facility costs (van den Berg & Aardal, 2015), and DACL 
was extended to minimize relocations (Saydam et al., 2013). Some additional multi-
period relocation models include extensions that account for time-dependent travel
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Fig. 8 Heat map of EMS demand in Mecklenburg County, North Carolina (2004), which includes 
the city of Charlotte and the surrounding area. The time of day influences the volume and 
distribution of EMS demand (data provided by MEDIC) 

times (Schmid & Doerner, 2010; Degel et al., 2015), a multi-period extension of 
the DSM (Başsar et al., 2011), a model that considers personnel workloads (Enayati 
et al., 2018), and a model tailored for tiered EMS systems (Boujemaa et al., 2020). 

5.2.2 Dynamic Relocation Models 

Whereas multi-period relocation models account for predictable changes in EMS 
demand, dynamic relocation models actively adjust ambulance deployment based 
on the state of the system. As ambulances become busy, dynamic relocation 
models shift other EMS units to fill coverage gaps. The first models in this 
area were real-time dynamic models, which were intended to be solved every 
time an ambulance was dispatched. However, due to computational challenges 
and complexity, implementing these models in practice is difficult. Alternatively, 
offline dynamic models provide pre-computed strategies that can be implemented 
by following a table or other tools. Lastly, we separate relocation models that 
use approximate dynamic programming to generate admissible solutions to larger 
problems while accounting for additional levels of information (e.g., ongoing trip 
duration, travel destination, attributes of queued demand, etc.).
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Real-Time Dynamic Relocation Models The first dynamic model, named .RP t , is  
an extension of the DSM (Gendreau et al., 2001). At its simplest, .RP t can be viewed 
as an extension of the DSM that is solved whenever an ambulance is dispatched. 
However, to limit ambulance relocation and undesirable actions such as a round-
trip, .RP t includes a penalty term in its objective function that is dependent on the 
history of the system. To allow for the model to be implemented in real time despite 
the computational complexity, the authors offer a method to solve for the future 
dispatching possibilities following each decision. There are several other real-time 
relocation models similar to .RP t . Some of these extensions include approaches 
that replace coverage with a preparedness measure (Andersson & Väarbrand, 2007; 
van Barneveld et al., 2017a), a model that allows for multiple vehicle types 
(Mason, 2013), a dynamic extension of MEXCLP (Jagtenberg et al., 2015), a model 
that considers ambulance shift schedules (Naoum-Sawaya & Elhedhli, 2013), an 
extension that allows for the relaxation of the double-coverage constraint (Moeini 
et al., 2015), and a model tailored for rural areas (van Barneveld et al., 2017a). 

Offline Dynamic Relocation Models Real-time relocation models are difficult to 
implement in practice due to computational complexity, technology limitations, and 
workflow burdens. EMS relocation models that focus on developing strategies that 
can be used offline or read from a compliance table—a simple tool that tells EMS 
managers where they should locate ambulances given high-level metrics (number of 
available ambulances, time of day)—are preferred in many settings. For example, as 
mentioned previously, the .RP t computes future dispatching possibilities following 
each EMS unit dispatch. However, in the event of two EMS requests in a short 
period, the model may not have been solved to completion. To address this, 
the authors later proposed the Maximal Expected Coverage Relocation Problem 
(MECRP), one of the earliest offline models (Gendreau et al., 2006). MECRP pre-
computes the optimal ambulance location given the number of ambulances while 
limiting the number of ambulance moves. Other models similar to MECRP that 
generate offline compliance tables include a Markov-chain model that can quickly 
assess the performance of many compliance tables (Alanis et al., 2013), an extension 
that allows for two types of vehicles (van Barneveld et al., 2017b), an approach to 
consider the variation of demand patterns over time and changes in response times 
(Nair & Miller-Hooks, 2009), and a model that considers call priorities (Sudtachat 
et al., 2014). 

ADP Dynamic Relocation Models Dynamic Programming (DP) is well-suited to 
optimize processes with sequential decisions, such as ambulance relocation. How-
ever, due to the high level of detail needed to accurately represent an EMS system, 
DP models quickly become intractable (due to large state spaces). Approximate 
Dynamic Programming (ADP) is a powerful tool that can be used to overcome this 
limitation and generate admissible solutions to complex stochastic and dynamic 
problems. For ADP applied to EMS relocation, the research by Maxwell et al. 
(2010) is often cited as the seminal work in this field. In their paper, the authors 
determine where an EMS unit should be positioned after it transfers a patient to 
the hospital. To inform these decisions, the ADP model uses a basis function,
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a linear function that encodes many details about the state of the EMS system 
to predict the cost of a relocation decision. The inputs of this basis function are 
inspired by queuing theory and an EMS location model. The weights of these inputs 
are tuned using least squares regression to minimize the error between the basis 
function and a cost found via simulation. It is important to note that in any ADP 
model, the final relocation strategy may not be the optimal solution because model 
convergence is highly dependent on the basis function and how the parameters are 
tuned. However, an admissible solution generated by an ADP can inform relocation 
decisions much faster than other real-time models, offers greater flexibility than 
the offline compliance tables since the user can deviate from the suggested solution, 
and allows for solving higher-dimensional problems. Two other refinements to EMS 
relocation using ADP include an approach that considers time-dependent travel 
times and demand (Schmid, 2012) and an approach that allows for the relocation 
of any idle EMS unit (Nasrollahzadeh et al., 2018). We note that since ADPs do 
not guarantee an optimal solution, methods can be used to develop bounds on the 
optimal solution (Maxwell et al., 2014; Nasrollahzadeh et al., 2018). 

5.3 EMS in Low- and Middle-Income Countries 

Time-sensitive medical emergencies, like cardiac arrests, motor vehicle accidents, 
and child or maternal health issues, are a major health concern in low- and middle-
income countries (LMICs), comprising over 50% of all deaths (Moresky et al., 
2019). Globally, LMICs are home to approximately 85% of the world’s population 
and 90% of all healthcare emergencies (Lecky et al., 2020; Prydz & Wadhwa, 
2019). As a consequence, researchers and international organizations have stressed 
the need for increased focus on emergency medical care in LMICs with several 
calls to action (United Nations, 2010). Despite these calls and the widespread 
evidence that emergency medical care in LMICs saves lives, poor access and 
availability continues to be a major problem, with the lack of EMS as one of the 
main barriers (Moresky et al., 2019; Lecky et al., 2020). Many of the high-level 
challenges associated with EMS in LMICs are well-suited to operations research 
and management science tools. For example, recent surveys indicate that poor 
performance is a major barrier for patients attempting to access EMS services, 
with 20–30% of those surveyed indicating they wanted to take an ambulance, but 
response times were too slow or that an ambulance was not available (i.e., busy 
at another call) (Boutilier & Chan, 2020). Moreover, most LMICs are resource-
constrained, presenting an opportunity to optimize the use of EMS resources to 
improve effectiveness and efficiency. 

Early research on EMS in LMICs was primarily focused on rural areas, including 
a variant of the MLCP to determine the optimal location of rural health clinics 
in Colombia (Bennett et al., 1982). A few years later, motivated by the lack of 
an existing EMS system in the Dominican Republic, the HOSC formulation (see 
Sect. 3.2) was extended to include two objectives: one to minimize the number of
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resources and one to maximize demand covered multiple times (Eaton et al., 1986). 
At the time, existing models that accounted for ambulance availability required a 
pre-determined “busy fraction” for each ambulance base, which did not exist for the 
problem of designing a new EMS system, and motivated the authors to develop a 
multiple coverage formulation. More recently, researchers have shifted their focus 
to urban areas in LMICs. The first paper to explore EMS response optimization in a 
developing urban center leveraged MEXCLP to determine ambulance locations and 
conduct a case study in Bangkok, Thailand (Fujiwara et al., 1987). Since then, there 
have been several papers that optimize EMS response in urban centers around the 
world (Boutilier & Chan, 2020). 

In general, EMS network design and response optimization in LMICs presents 
several unique challenges that are not typically found in high-income settings, which 
we highlight below: 

• Traffic can be extremely heavy (especially in urban areas), and it is often not the 
cultural norm to yield for ambulances, implying that ambulances must face the 
same traffic as regular road users. In contrast, ambulances are typically able to 
drive “fast” in high-income countries where it is the cultural norm to yield and 
where infrastructure is designed with EMS in mind (e.g., extra wide shoulders 
on freeways). The difference in road speed and consequential uncertainty in 
response time must be accounted for in models designing EMS systems for 
LMICs (Boutilier & Chan, 2020). 

• Many LMICs do not have a centralized EMS system, instead relying on 
decentralized ambulance services comprised of private and hospital-owned fleets. 
The lack of a centralized EMS system (or even a coordinated public health 
system) presents significant challenges associated with data collection, including 
data that may be required for many facility location models (Eaton et al., 1986). 
In addition, the decentralized nature of these services can lead to a phenomenon 
known as “ambulance abandonment,” where patients simultaneously request 
service from multiple ambulance providers and take the first one to arrive (Marla 
et al., 2021). Future work is needed to explore the competitive nature of these 
decentralized EMS systems. 

• Road infrastructure in LMICs is typically not designed for modern EMS 
resources, especially in dense urban areas and “old towns.” For example, many 
areas in urban slums cannot be accessed by four-wheeled vehicles (like ALS or 
BLS ambulances) and require non-traditional ambulance designs, such as motor-
cycles and three-wheeled vehicles (see Fig. 9a). Moreover, current ambulance 
designs and staff certifications in many LMICs are akin to the early EMS systems 
in high-income settings, where ambulances were staffed by “ambulance drivers” 
with limited first-aid training (rather than certified paramedics or physicians) 
and focused on patient transport, rather than treatment. These differences require 
innovative solutions and models designed to account for multiple vehicle types, 
restricted road access, limited transportation options, and lack of treatment in 
place.



Uncertainty in Facility Location Models for Emergency Medical Services 237

(a) (b) 

(c) (d) 

Fig. 9 EMS facility location models can be adapted for settings that present unique modeling 
challenges. (a) Non-traditional ambulance designs, such a motorcycles, are common in LMIC 
settings. Photo by Justin Boutilier. (b) EMS helicopters offer increased speed and maneuverability 
for remote patients. https://pixabay.com/photos/helicopter-rescue-6392253/ (https://pixabay.com/ 
service/license/). (c) UH-60M Blackhawk helicopters provide urgent care and evacuation to 
military casualties. Photo by Nolan Donahue, Given to and edited by Eric Stratman. (d) Search and 
rescue applications utilize sea and air units with various capabilities. https://pixabay.com/photos/ 
coast-guard-sea-maritime-rescue-6718306/ (https://pixabay.com/service/license/) 

5.4 Other Unique Settings in EMS Facility Location 

The directions discussed in this section are a sampling of the unique areas in 
EMS facility location research. There are numerous directions for applications 
of EMS facility location (aircraft, military, following natural disasters, wilderness 
applications, etc.), and in this section, we provide a summary of a couple of these 
areas to demonstrate how EMS facility location models may be adapted to unique 
settings. 

AED Location Models Automatic electronic defibrillators (AEDs) are portable 
devices designed to deliver life-saving electric shocks to a patient experiencing an 
out-of-hospital cardiac arrest (OHCA). AEDs are safe and easy to use by untrained 
bystanders and significantly improve an OHCA patient’s chances of survival. An 
OHCA patient that receives an AED shock administered by a bystander is 2.36 
times more likely to survive than a patient without AED shock, and the impact
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of EMS delays is significantly reduced following AED treatment (Stoesser et al., 
2021). To improve accessibility, location models similar to those in EMS are used 
to located AEDs and have performed better than the traditional population-based 
AED location methods (Chan et al., 2013). In these models, predicting the location 
and timing of OHCA events is especially important since AEDs are often retrieved 
by bystanders that only travel a short distance from the patient (approximately 100 
meters) and may face barriers to AED access (Sun et al., 2016). AED location 
research builds upon the EMS facility location models and explores dynamics 
unique to the AED application including uncertainty in the time before an OHCA 
is detected (Dao et al., 2012), the dimensionality of locating AEDs in multi-story 
buildings (Dao et al., 2012; Chan, 2017), and emphasise on the spatial probability 
distribution of demand (Chan et al, 2017). 

Aircraft Location Models in EMS Systems Aircraft are an important feature 
of some EMS systems. Although more expensive and dangerous than ground 
units, transportation aircraft may be advantageous in some settings due to their 
increased speed and maneuverability (Steenhoff et al., 2022). Generally, it is only 
recommended that helicopters be used for urgent patients that cannot be reached by 
ground-based units in 30 minutes (Godfrey & Loyd, 2021), and airplanes are only 
used for missions that require over 120 miles (193 km) of travel (Urdaneta et al., 
1987). Historical records indicate that 64% of all patients served by aircraft suffered 
a traumatic injury (data provided by NEMSIS). Given the number of trauma patients 
served by EMS aircraft, many of the aircraft location models consider the optimal 
allocation of both trauma centers and EMS aircraft (Branas et al., 2001); however, 
this leads to added complexity when computing system busy fractions (Cho et al., 
2014). Another approach is to exploit the added range of the aircraft for backup 
coverage in a tiered system with ground-based units (Erdemir et al., 2010). 

In addition to airplanes and helicopters, unmanned aerial vehicles such as drones 
are becoming more common in healthcare applications (Scott & Scott, 2017). 
Several studies explore how drones can be used to transport medical supplies to 
rural areas (Kim et al., 2017; Knoblauch et al., 2019). In EMS systems, drones 
perform a variety of functions including delivering AEDs, critical blood products, 
and medication before EMS arrives to enable timely care to patients (Johnson et al., 
2021). This is especially true in areas with limited EMS coverage. In a drone AED 
delivery system in Toronto, the optimal deployment of drone bases allows for a 
nearly 7-minute reduction in the 90th percentile of urban response time (Boutilier 
et al., 2017). In Sweden, a similar system using drones has already saved the life of 
a cardiac arrest patient (Schierbeck et al., 2021; BBC, 2022). This demonstrates the 
value of emerging technology in EMS and how EMS facility location research can 
be used to influence the deployment of these advanced technologies. 

Military Medical Evacuation Location Models Military medical evacuation 
(MEDEVAC) systems provide urgent care and evacuation to military casualties. 
Unlike EMS systems in which the primary time-sensitive medical emergency is 
often cardiac arrest, loss of blood is the direct cause of 85% of soldiers killed 
in action (Garrett, 2013). To account for the treatment of battlefield injuries,
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MEDEVAC coverage models generally allow for longer RTT thresholds of 60 
minutes for high-priority patients (Bastian et al., 2012; Grannan et al., 2015) or  
prioritize patients by their condition (Fulton et al., 2010). Other works specify that 
MEDEVAC systems need to focus on the time interval fromwhen a soldier is injured 
until the time that they are delivered to a facility equipped to safely perform blood 
transfusion, with a focus on the inherent stochasticity of this process (Lejeune & 
Margot, 2018). Another key difference is in the arrivals; while traditional EMS 
setting requests can be viewed as independent events, battlefield injuries generally 
occur in batches following an attack. Therefore, some of the MEDEVAC models 
try to avoid queuing assumptions that rely on a Poisson process. These models 
generally account for non-Poisson arrivals through either empirical or simulated 
data with some form of robust or scenario optimization (Fulton et al., 2010; Bastian, 
2010; Bastian et al., 2012). We also note that the objectives of MEDEVAC facility 
location may balance facility vulnerability to adverse attacks (Bastian, 2010) and 
the required capabilities of MEDEVAC units (Bastian et al., 2012). Lastly, models 
that inform MEDEVAC dispatching policies are also influential within this stream 
of research (Rettke et al., 2016; Keneally et al., 2016). 

Search and Rescue Location Models Search and rescue (SAR) resource allo-
cation is a field with many connections to EMS facility location problems. SAR 
systems, such as those deployed by national coast guard units, provide potentially 
life-saving aid to people in danger, and the location of resources is critical to 
providing this care in a timely manner. However, unlike EMS, the exact location of 
the person in need may be unknown in SAR missions, and conditions (weather, time 
of day) may dramatically impact the search effort, which is reflected in modeling 
approaches (Başsdemir & Melih, 2000; Abi-Zeid & Frost, 2005). Furthermore, 
unlike EMS systems where there is ample data to predict where an EMS request 
might be generated, the vastness of the areas patrolled by SAR makes it difficult 
to predict where future requests will occur, especially in maritime settings. Models 
have used a variety of methods to predict future demand (Azofra et al., 2007; Akbari 
et al., 2018). Additionally, SAR units must balance scheduled duties, operational 
and political rules, and fleet capabilities for a variety of watercraft and aircraft 
(Wagner et al., 2012; Karatas et al., 2017). We refer the reader to the chapter of 
Karatas et al. (2019) for a detailed review of SAR models. 

6 Implementation of EMS Facility Location Models 

The goal of EMS facility location problems is to develop strategies to better serve 
patients. Despite all of the academic contributions cited within this chapter, not all 
papers directly contribute to the development of an actual EMS implementation. As 
stated by Chaiken (1978), “careful studies of the actual use of models by decision-
makers have drawn sobering conclusions about the chances that such models will 
actually be applied as intended.” Although many models indirectly bolster the
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field by developing newer and more elegant approaches, this field needs to keep 
the ultimate goal in mind and avoid turning into an academic exercise. From our 
review, we summarize the lessons learned and the important themes from several 
implementation-based papers. 

Design for the User Successful implementations of EMS facility location models 
need to be designed with the decision-maker in mind. While we found numerous 
implementations of deterministic and simple probabilistic models, we found very 
few implementations of the more complicated probabilistic models. This is likely 
because these simpler models are easier to explain and be accepted by an EMS 
agency. This is the same rationale that made offline relocation models more 
preferable in our discussion in Sect. 5.2.2. Similarly, in an implementation of the 
probabilistic MEXCLP in Lexington, Kentucky, that project was largely successful 
because the authors worked closely with the decision-makers, utilized a graphical 
interface to explain their ideas (Repede et al., 1993), and gained the EMS agency’s 
trust by modifying their model with their feedback (Repede & Bernardo, 1994). 
Similar collaborations and validations are noted in other implementations (Brandeau 
& Larson, 1986; Goldberg et al., 1990). 

Guide EMS Practice EMS facility location models must be timely and ahead of 
EMS practice. Following the implementation of an EMS facility location design in 
Morgantown, West Virginia, the researchers suggested that sophisticated models are 
only appropriate when given sufficient time for careful model formulation (Baker 
et al., 1980). This is perhaps why many of the most documented EMS facility 
location model implementations are in LMICs with emerging EMS infrastructures, 
as discussed in Sect. 5.3. Unlike areas with well-established EMS operations 
that are unlikely to change their existing strategy or facility locations, these 
emerging infrastructures are less committed and often open to change. The recent 
implementations of EMS facility location models to drone AED delivery systems is 
another example of research being timely and accessible to strategic planning efforts 
(Boutilier et al., 2017; Schierbeck et al., 2021; Boutilier & Chan, 2022). 

Acknowledge EMS Legal Limitations Any implementation will be subject to 
many legislative barriers. According to the General Data Protection Regulation 
(GDPR) law of the European Union, human intervention can be requested, and 
an adequate explanation must be provided for any automated decision (Olhede & 
Wolfe, 2018). Therefore, EMS location models must be robust enough that they still 
perform well should they be overridden by a human decision-maker and intuitive 
enough should an explanation be requested. Once again, these requirements limit 
the complexity of EMS location models. Similarly, EMS agencies are required to 
respond to calls in a reasonable manner. An EMS agency may prefer to always 
send the closest or most highly trained EMS unit to patients to avoid potential legal 
pitfalls. Within the next decade, we hope that EMS researchers expand the visibility 
of their work to lawmakers to demonstrate the benefit of more progressive EMS 
strategies and allow for more cost-effective, efficient, and patient-centered EMS 
care.
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Focus on Accessibility Although not every EMS facility location model is 
designed with a specific implementation in mind, there are many ways in which 
EMS facility location research can make an impact. Many EMS implementations 
use commercial tools, such as ESRI’s Geographic Information System (GIS) 
software, to inform their location problem (Foo et al., 2010). Perhaps the best 
way for EMS facility location modelers to have a direct impact in the field is 
through closer collaboration with these accessible tools. As another example, the 
relocation model developed by Mason (2013) has been implemented by multiple 
ambulance operators through an associated software package. 

We conclude by acknowledging that it was difficult to find clear summaries of 
EMS systems that implement the results of facility location models. As a field 
dedicated to continuous improvement, we believe EMS models in action should 
receive greater attention (even when unsuccessful) to guide future directions and 
modeling efforts. 

7 Additional Resources 

In this chapter, we reviewed the models and methods of EMS facility location 
problems under uncertainty. We focused on the overall themes within this field 
and aimed to provide the reader with an understanding of these models and their 
evolution. In this section, we summarize resources that present more in-depth 
technical reviews of this field for a comprehensive literature review. Since there 
is no shortage of facility location review papers, we limit the cited works to those 
that focus on EMS or address another focus of this chapter. 

• The work of ReVelle et al. (1977) is the earliest literature review of EMS facility 
location problems. They present the deterministic LSCM, MCLP, and PMP 
models context-free and discuss the application of facility location problems to 
EMS and other emergency services. 

• The review by Brotcorne et al. (2003) summarizes the formulation of determin-
istic single and multi-coverage models as well as the early probabilistic models. 
They conclude with a summary of an early dynamic model and predicted their 
continued rise within the field. 

• Goldberg (2004) provides a review of the methods that support EMS facility 
location models, such as travel time modeling, demand prediction, testing model 
validity, and queuing. They classify existing models using a different method 
than the previous reviews and cite models that were directly implemented. 

• The chapter by Henderson (2011) provides a specific focus on EMS models 
with relocation, such as those discussed in Sect. 5.2, and provides additional 
discussion of this practice. 

• The summary by Başsar et al. (2012) provides a helpful taxonomy of facility 
location problems as applied to emergency services. They classify models based
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on their solution methodology, application, objective function, and parameters in 
a concise table. 

• Aringhieri et al. (2017) offer a slightly different perspective than the other 
review papers. In the first part of their paper, they address EMS facility location 
problems with sections related to probability, stochastic, relocation, and equity. 
Then, they discuss EMS dispatching and routing policies and the important 
connection with other components of the healthcare system. 

• The chapter by Karatas et al. (2019) provides a review of military facility location 
problems and provides greater details about the MEDEVAC and SAR settings 
discussed in Sect. 5.4. 

• The review paper by Bélanger et al. (2019) provides an in-depth review of 
deterministic and probabilistic models, providing more details on the model 
formulations. They also offer a thorough discussion on equity, relocation, and 
dispatching decisions in EMS systems. 
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Location of Public Facilities Under 
Congestion 

Robert Aboolian and Majid Karimi 

Abstract In this chapter, we present location models for congested public facilities. 
In contrast with classical location models in which the demand and services are 
deterministic, we consider settings where consumers generate streams of stochastic 
demand for service, and service times are stochastic, which leads to congestion 
in facilities. Because of the congestion, consumers will either wait to receive 
services or leave the facility without being served. Location-allocation decisions 
in congested facilities are particularly important in applications of public service 
systems, with applications ranging from the design of preventive healthcare net-
works to welfare service systems. We particularly focus on congestion models in 
public location theory. After a brief review of congestion models and their impact 
on our understanding of public facilities, we detail state-of-the-art research in the 
operations research literature. To organize our view of the current literature, we 
present a unifying classification of public facility location models with congestion 
and present relevant models, solution approaches, and their strengths and limita-
tions. We conclude this chapter by discussing the current research opportunities for 
location scientists in public location theory from the lens of stochastic modeling and 
congestion. 
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1 Location Analysis in Public Sector 

From the early work that started from the seminal work of Weber (Alfred, 1929), 
considering the location of a factory between two resources and a single market, 
to the influential work by Cooper in locating warehouses, distribution centers, 
communication centers, or production facilities (Cooper, 1967), much of the early 
developments in location science have been attributed to the location-allocation 
problems concerning the private sector. 

Until the 1960s, facility location problems (FLPs) were mainly involved in 
determining the optimal placement of private facilities. Before the seminal work 
of Teitz’s “Toward a theory of urban public facility location” (Teitz, 1968), no 
clear distinction was made between public and private facility location models. 
Motivated by the role of public facilities in urban planning, Teitz (1968) introduced 
a framework for locating urban public facilities. Taking a systematic approach, Teitz 
describes public facility systems as: 

components of the city whose primary function is to facilitate the provision of goods and 
services declared to be wholly or partly within the domain of government. (Teitz, 1968, p.  
38) 

In the operations research literature, Revelle et al. (1970) were one of the earliest 
to distinguish location problems into two categories of private and public. Revelle 
et al. (1970) introduced public FLPs as those involving private sector FLPs with 
the extra challenge that objectives and constraints may not be easily defined or 
quantifiable. 

Armed with the modeling and methodologies of operations research, location 
scientists have tackled public FLPs since the 1970s. In its most general structure, 
public FLPs’ lack of a market-driven environment and their emphasis on welfare– 
as opposed to private FLPs’ profit-oriented decisions—differentiates public facility 
location theory from private sector location theory. Unlike the private FLP’s clarity 
of objective in minimizing cost or maximizing profit, the public FLP’s goal of 
maximizing welfare is less straightforward and more debated. 

The difficulties of modeling the concept of welfare led to the introduction of 
welfare proxies. The earlier literature uses three proxies of accessibility, maximum 
distance, and participation/coverage in an optimization framework, all of which 
are subject to budget (investment) constraints. The other optimization framework 
is to minimize the planner’s cost to achieve a certain level of a welfare proxy. 
Accessibility can be measured with respect to the (weighted) average of consumers’ 
travel distance or travel time between facilities and consumers. If a planner’s 
objective is to increase a systems’ accessibility, then the FLP can be defined as 
minimizing the total average (weighted or maximum) travel distance (or travel time). 
Participation/coverage is based on the assumption that a system’s characteristics 
determine the amount of covered (served) potential demand. If a planner’s objective 
is to increase the participation/coverage, then the FLP can be defined as maximizing 
the overall demand capture or realization. Maximum distance can also be used as 
a proxy, in that a planners’ goal is to minimize the maximum distance (or time)
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a consumer must travel to receive services. A convenient categorization of the 
welfare proxies (accessibility, maximum distance, and participation/coverage) is 
through their mathematical models of p median, p center, and covering problem, 
respectively. See Laporte et al. (2019, Chapters 1–4) for extended coverage of these 
problems and their related literature. 

The simple and elegant formulation of public FLPs as optimization problems 
was significantly influential in many real-world applications. For example, the City 
of Baltimore used the central facility location models of ReVelle and Swain (1970) 
to determine the closure of surplus fire stations (Schilling et al., 1979). 

Despite their advantages, however, the early framework of optimizing welfare 
proxies subject to constraints on investment gave rise to the conflicts of efficiency 
(in financial terms) and (social) equity (McAllister, 1976). In particular, in the 
absence of a competitive market, the earlier normative approaches to solve location-
allocation decisions in public FLPs often lead to configurations with few large 
facilities that may not be equitable (fair) in maximizing the served demand 
(see DeVerteuil (2000) for a comprehensive review). At its core, the efficiency-
equity conflicts in location decisions exemplify the broader efficiency-equity trade-
off in economics and policy (Okun, 2015). Additionally, and from a modeling 
perspective, difficulties in modeling the concept of fairness further complicate the 
issues of equity and efficiency. 

To address the equity-efficiency conflicts, the location science literature focuses 
on two paradigms of research: behavioral studies of location science and normative 
studies of multi-objective optimization. The behavioral studies seek to understand 
the location-allocation problems in a broader context of “human agency” by study-
ing the impact of location decisions on behaviors, experiences, and choices of those 
involved. In multi-objective optimization approaches, researchers have developed 
normative frameworks to incorporate efficiency and welfare simultaneously. It is 
important to note that, even though the incorporation of multi-objective optimization 
problems presents a main distinction between public FLPs and private FLPs, some 
instances of public FLPs—which do not involve equity-efficiency constraints—can 
be applied to private FLPs, which may or may not lead to higher efficiency in private 
settings. For example, the p median problem is an applicable model for public FLPs 
since it minimizes transportation costs for consumers, but it could also be applied 
to private FLPs since it maximizes consumer access by minimizing the average 
customer-facility distance. However, we believe that given the different patterns of 
purchasing behavior from consumers, to model the location of private facilities, a 
model with an implicit objective to maximize revenue or profit is more appropriate. 

A domain where the aforementioned paradigms of research—behavioral and 
operational—naturally meet is the design of service systems. Unlike the traditional 
normative models, viewing public facilities as systems providing services to indi-
viduals (or groups) opens the door for incorporating features and parameters beyond 
the measurement of welfare. When viewed as a service system, the public (and 
private) FLP models allow us to study individuals’ behavior alongside the broader 
system goals, thus expanding the context of location-allocation decisions. Service
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systems are also more suited to multi-objective optimization, as service provision 
often involves balancing conflicting objectives. 

A key feature of the service system view is its stochastic nature. Unlike the static 
and deterministic frameworks, service systems are complex, and frequency involves 
tactical and strategic decisions intended for a considerable time. 

To deal with the uncertainties of service systems, the location-allocation deci-
sions are often formulated as stochastic location models (SLMs) (Berman & Krass, 
2019). In contrast with classical location models in which the demand and services 
are deterministic, SLMs consider settings where consumers generate streams of 
stochastic demands for service, and service times are stochastic. Stochastic demand 
and service time lead to congestion in facilities, resulting in waiting to receive 
services or lost demand. SLMs are particularly important in the applications of 
public service systems, with applications ranging from the design of preventive 
healthcare networks to welfare service systems. 

The first paper to include uncertainty in public FLP is by Carbone (1974), in 
which the number of users at each node is assumed to be a random variable, but 
since it does not include stochastic service times, there is no congestion modeled 
in the facilities. Congestion models in public location theory are the main focus of 
this chapter. Section 2 briefly reviews congestion models and their impact on our 
understanding of public FLPs, detailing state-of-the-art research in the operations 
research literature. In Sect. 3, we further delve into current research opportunities 
for location scientists in public location theory from the lens of stochastic modeling 
and congestion. 

2 Congestion and Its Impact on Public Sector Location 
Decisions 

Nearly five decades ago, Revelle et al. (1970) offered an apt description of 
the application of analytical location models: These methods of analysis are no 
panacea for pouring out “optimal” solutions since the real world with its immense 
complexity tends to defy exact analogs. The results of analyzing these models may 
be optimal and exact in reference to the models, but they are not necessarily the 
optimal results for the real world. Rather, the results are regarded as an aid to the 
analyst’s intuition and not as a replacement for it. 

Since Revelle et al. (1970) made those remarks, analytical models have remained 
a crucial technique for supporting location analysts in their decision-making. As we 
discussed in Sect. 1, a key contributor to the location models’ success—especially 
in public sector applications—is the consideration of uncertainty that results in 
congestion in the facilities. In this section, we review Public Facility Location 
Problem with Congestion (PFLPC) in greater detail and discuss state-of-the-art 
models. Given the fact that most services offered by public facilities are offered at 
the facility, we focus our attention on public facilities with immobile servers, where 
consumers travel to the facilities to receive their service. In Sect. 2.1, we provide an
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overview of the PFLPC with immobile servers and offer a general categorization 
based on modeling assumptions. In Sect. 2.2, we review the exact optimization 
problems considered along with their solution methodologies. 

2.1 Public Facility Location Problem with Congestion 

In its broadest sense, the uncertainty of PFLPC with immobile servers (from now on 
simply referred to as PFLPC) is stemmed from the stochastic supply—in the form of 
service times—and demand. As such, a service provider’s decision must involve the 
capacity of service, as well as its location. One of the most challenging aspects of 
such decisions is congestion. A byproduct of stochastic service times and stochastic 
demand, congestion occurs because demand cannot be served in its entirety, and 
consumers must either wait in queues or leave service systems. To facilitate our 
review of the PFLPC, their strengths, and their limitations, we categorize PFLPC 
based on their modeling attributes. 

One of the broadest categorizations of PFLPC is based on the consideration of 
elastic vs. inelastic demand. Here, elasticity can be defined as the changes in demand 
with respect to changes to consumers’ utility (or disutility) toward a facility offering 
those services. For instance, in situations where the demand decreases when the 
waiting time to receive the services increases, the demand is said to be elastic to 
waiting time. In PFLPC, demand may or may not be elastic. If a public service 
provider is the only source of an essential service, the demand for such service is 
often inelastic. In other words, all consumers are willing to travel any distance and 
wait any time to receive the service (e.g., visiting a specialist in a public healthcare 
system). On the other hand, demand elasticity is more common in situations where 
the public and private providers co-exist or service offered by the public facility 
might not be considered essential to all consumers (e.g., receiving a COVID-19 
vaccination). 

PFLPC also have varying objectives depending on the perspective taken to for-
mulate an optimization problem. The three most common views when determining 
the PFLPC’s goals are: 

• Consumer Perspective: From consumers’ perspective, the goal is to optimize the 
public system for consumers, usually given a limited budget or service capacity. 
The most common goals here are to: 

– Maximize consumer participation. 
– Maximize the coverage of the service. 

• Service Provider Perspective: From providers’ perspective, the goal is to optimize 
the public system for the service provider, usually by ensuring to maintain a 
minimum service quality for consumers. The most common goals here are to: 

– Minimize investment in service capacity. 
– Minimize the overall operating cost of the service provider.
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• Balanced Perspective: From a society’s perspective, the goal is to optimize the 
overall societal benefit by balancing the cost incurred by both consumers and the 
service provider and allowing the objective function to find the optimal capacity. 
FLP models with a balanced perspective are also known as socially optimal 
models. The most common goals here are to: 

– Minimize the sum of operating cost to service provider and accessibility cost 
to consumers. 

– Maximize the overall benefit to the public. 

When considering the constraints of PFLPC, the main restrictions revolve 
around the assignment of consumers to service facilities. A service provider could 
determine the assignment, or the choice could be given to consumers to use the 
service facility they prefer. Such models are often referred to as directed choice and 
consumer choice, respectively. 

For consumer choice models, in particular, a more detailed comparison classifies 
PFLPC by the factor used for consumers’ choice (or their utility). The three most 
frequent factors used for consumers’ choice are the following: 

• Proximity: Some models use distance as the main factor for consumers’ choice. A 
standard assumption in such models is that consumers travel to the closest open 
facility to receive services. 

• Access Time: When access time is used as the factor, consumers are assumed to 
be choosing the facility with the least access time—the sum of travel, waiting, 
and service times. 

• Disutility: When disutility is used as the factor, consumers are assumed to be 
choosing the facility with the least disutility—which could include access time 
as well as other attraction attributes. 

PFLPC could also be classified into planned vs. unplanned congestion. In 
planned congestion, we would like to limit the waiting time for consumers. This 
is achieved either by planning the capacity at each facility when the capacity is 
a decision variable or by directing the consumers to the facilities, especially in 
directed choice models. In unplanned congestion, we allow the system to decide the 
optimal capacity and waiting time in facilities with respect to its specific objective. 
In this case, especially when the capacity at each facility is given, we could end up 
with facilities with a low utilization rate. 

Another classification of PFLPC is the consideration for demand coverage. 
In environments where demand cannot be satisfied in its entirety, some PFLPC 
consider partial demand allocation, which could be probabilistic (when there is a 
chance of demand loss) or deterministic (when a certain percentage of demand must 
be satisfied). 

To gain predictive insight into the congestion attributes of service systems, 
location researchers often use queuing theory. From a queuing perspective, the most 
common categorization of PFLPC is to consider Kendall’s notation of their queuing 
model, among which the most common are M/M/1, M/M/k, and M/G/1 models. 
These queuing systems are often laid out in network structures. In location analysis,
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a network is an abstract model of a spatial environment which often considers two 
sets of demand and facility nodes, with edges representing the distance or travel 
time. 

In this chapter, we use .N = {1, 2, · · · , n} to refer to the set of demand nodes and 
.M = {1, 2, · · · ,m} to refer to the set of facilities. We reserve the index i to refer 
to a demand node and j to indicate a facility throughout the chapter. In the queuing 
systems, we use the symbol . μ for service capacity and . λ for the mean demand rate. 
For M/M/k models, in particular, we use the parameter k to refer to the number of 
servers. We often discuss the system waiting and travel time, which we denote with 
W and t , respectively. 

When discussing the optimization formulations, we reserve . xj to denote the 
binary decision variable that is 1 if facility j—the facility at node j—is open and 
0 otherwise. To indicate the assignment of demand to facilities, we use the binary 
variable . yij , which is 1 if the demand at node i is served at facility j . In some  
cases, demand may be partially served at a facility. In such situations, we denote 
the assignment of demand to facilities with a continuous variable . 0 ≤ yij ≤ 1
representing the fraction of node i’s demand served at facility j . When a continuous 
variable . yij is used, we often use the binary variable . zij that is 1 if any fraction of 
the demand at node i is served at facility j and 0 otherwise. 

2.2 Models and Solutions Methods 

As discussed in Sect. 2.1, models in PFLPC can be classified into two major 
categories of elastic and inelastic demand. Most elastic demand models are used 
for consumer choice models, yet models with inelastic demand have been used for 
both directed and consumer choice models. 

2.2.1 PFLPC Models with Inelastic Demand 

Models with inelastic demand can be classified into three groups. The first group 
of models considers a service provider’s perspective to optimize the provider’s 
performance measures while maintaining a minimum service quality for consumers. 
The second group of models considers the consumers’ perspective to optimize 
service quality while maintaining a minimum service performance. The third group 
of models, also known as socially optimal models, considers a more balanced 
perspective and optimizes performance and quality simultaneously. 

2.2.1.1 PFLPC Models with Service Provider Perspective 

Given the restrictions on operating budgets, service providers often aim to minimize 
their operating costs while maintaining a minimum service quality. In PFLPC
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models, service qualities are usually measured by congestion metrics such as queue 
lengths or waiting times. Consequently, maintaining service quality can be achieved 
by setting an upper bound on waiting time or the number of people waiting to 
receive services. Alternatively, certain levels of service quality can be maintained by 
assuring a lower bound on the probability of waiting or queue length not exceeding 
a certain level. In such settings, consumers can be directed to facilities. A simple 
formulation of PFLPC from a service provider’s perspective is presented in (1) . In
the following formulation, the capacity at each facility is assumed to be known, and
the parameter . fj represents the sum of fixed and capacity costs at facility j . 

.min
∑

j

fj xj . (1a) 

Subject to
∑

j

yij = 1, ∀i, . (1b) 

yij ≤ xj , ∀i, j, . (1c) 

E(Wj ) ≤ Wmax or E(Lj ) ≤ Lmax or

P(Wj ≤ Wmax) ≥ β or P(Lj ≤ Lmax) ≥ β, ∀j, . (1d) 

yij , xj ∈ {0, 1}, ∀i, j, (1e) 

in which .P(·) and .E(·) denote the probability and the expected values, respectively. 
As discussed earlier, the objective in (1) is to minimize the provider’s total cost.

Constraints (1b) ensure that each demand node is covered by exactly one facility,
and Constraints (1c) prevent an assignment of a demand node to a closed facility.
Constraints (1d) ensure a minimum level of service quality, in which .Wmax and 
.Lmax represent a maximum allowed waiting time and a maximum length of queuing 
line, respectively. 

This model can be used for both M/M/1 and M/M/k queuing systems where the 
service rate . μ and number of parallel servers k (for M/M/K) are assumed to be 
known. Similar to Wang et al. (2004), the above model can also be modified for the 
case where the capacity at each location is a decision variable, and . fj is no longer a 
fixed value but a function of the capacity at facility j . 

The main complexity in solving models such as (1) is the nonlinear constraints
of (1d). An efficient solution, however, can be obtained via a linearization of (1d) ,
which results in a mixed-integer linear program (MILP), for which many efficient
solution approaches exist (Marianov & Serra, 1998).
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2.2.1.2 PFLPC Models with Consumer Perspective 

Marianov and Serra (1998) describe the first PFLPC model with inelastic demand 
to study the service design problem from consumers’ perspective. Marianov and 
Serra (1998) consider a probabilistic maximal covering location problem, in which 
the goal is to find a location-allocation for p facilities with known capacities 
to maximize the consumers’ participation while maintaining a minimum service 
quality. 

A general formulation of PFLPC from consumers’ perspective is presented in (2) .

.max
∑

j

∑

i

λiyij . (2a) 

Subject to
∑

j

yij ≤ 1, ∀i, . (2b) 

yij ≤ xj , ∀i, j, . (2c) 
∑

j

xj = p, . (2d) 

E(Wj ) ≤ Wmax or E(Lj ) ≤ Lmax or

P(Wj ≤ Wmax) ≥ β or P(Lj ≤ Lmax) ≥ β, ∀j, . (2e) 

yij , xj ∈ {0, 1}, ∀i, j. (2f) 

The objective in (2a) is to maximize consumer coverage or the total served
demand. Similar to the formulation from a provider’s perspective, Constraints (2b) 
ensure that each demand node is covered by at most one facility, Constraints (2c) 
prevent an assignment of a demand node to a closed facility, and Constraints (2e) 
ensure a minimum level of service quality.

Marianov and Serra (1998) show that the nonlinearity of service quality of 
Constraints (2e) can be linearized by converting them to equivalent constraints that
limit the arrival rate in each facility. Consequently, the problem in (2) becomes an
MILP, which can be solved with any off-the-shelf linear optimization software. In
cases where the capacity is not predetermined, Marianov and Serra (2002) also  
consider a generalization of the problem in (2), in which capacities are modeled
as decision variables at each facility.

Maximizing participation is not the only way to incorporate consumers’ perspec-
tives; a service system can also be designed to optimize service quality. Consumer
perspective models that attempt to optimize service quality are often constrained by
a limited budget or an available service capacity. These models could consider a
fixed capacity at each facility or consider capacity as a decision variable.
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Wang et al. (2002) consider total system waiting time—the sum of travel time 
and the time spent waiting to receive services—as the primary measure of service 
quality. The authors formulate an optimization problem to minimize service waiting 
time given a set number of facilities with a fixed capacity. The authors consider the 
following formulation with a system under which each facility operates an M/M/1 
queues: 

. min
∑

j

∑

i

λi tij yij +
∑

j

∑

i

λiyij

μ − ∑
k λkykj

. (3a) 

Subject to

(2b) –(2c) 
∑

k

tikyij ≤ (
tij − M

)
xj + M, ∀i, j, . (3b) 

yij , xj ∈ {0, 1}, ∀i, j. (3c) 

The first term of (3a) represents the total travel time, and the second term
measures the total time consumers spend to receive services. To optimize quality, the
objective is to minimize the (expected) system waiting time. Here, Constraints (3b) 
ensure that consumers are assigned to a facility that is closest to them.

To solve (3), Wang et al. (2002) suggest a Lagrangian relaxation. As the  main  
complexity of (3) stems from its nonlinear (and concave) objective, we argue
that ε-approximation solutions—such as the tangent linear approximation (TLA)
incorporated in Aboolian et al. (2007)—may provide a more efficient solution. 

Multiple generalizations of (3) have been considered in the literature. Berman
and Drezner (2007) consider a similar setting to Wang et al. (2002), while 
considering decision variables for service capacities and allowing the optimization 
problem to determine the optimal capacities. 

For an M/M/k queue, let Wj

(∑
i λiyij , μ, kj

)
be the waiting time at facility j 

with kj servers (each with a service rate of μ) and a demand rate of
∑

i λiyij . 
Berman and Drezner (2007) consider the following formulation by incorporating 

M/M/k queues: 

.min
∑

j

∑

i

λi tij yij +
∑

j

∑

i

λiyijWj

(
∑

i

λiyij , μ, kj

)
. (4a) 

Subject to

(2b) –(2c) 
∑

j

kj = p, . (4b) 

kj ≤ pxj , ∀j, . (4c)



Location of Public Facilities Under Congestion 261

∑

k 
tikyij ≤

(
tij − M

)
xj + M, ∀i, j, . (4d) 

yij , xj ∈ {0, 1}, kj ∈ {0, 1, . . . , p}, ∀i, j. (4e) 

The objective in (4a) is to minimize consumers’ total traveling and waiting time.
Constraint (4b) is the limited capacity constraint, and it ensures that only a total of
p discrete servers will be assigned to open facilities. Constraints (4c) prevent an
assignment of server(s) to a closed facility, and Constraints (4d) assign consumers
to the closest facility.

Due to nonlinearity of the objective function, Berman and Drezner (2007) did  
not provide an exact approach but instead used tabu search as a heuristic to solve 
the problem. 

Similar to Berman and Drezner (2007), Aboolian et al. (2009) consider capacity 
at each facility as a decision variable while attempting to minimize the maximum 
consumers’ access time (travel + average waiting time). This problem is modeled 
for M/M/k queues with the following formulation: 

.min Z. (5a) 

Subject to

(2b) − (2c) 

(4b) − (4d) 

Z ≥ tij yij + Wj

(
∑

i

λiyij , μ, kj

)
, ∀i, j, . (5b) 

yij , xj ∈ {0, 1}, kj ∈ {0, 1, . . . , p}, ∀i, j. (5c) 

The objective in (5a) is to minimize the maximum consumer traveling and
waiting time. This is enforced using Constraints (5b) .

Due to nonlinearity of Constraints (5b), Aboolian et al. (2009) did not offer any 
exact approach but used a genetic algorithm to solve the problem. 

It is interesting to note that Aboolian et al. (2009) is a  p server version of the p 
center location problem, and Berman and Drezner (2007) is the  p server version of 
the p median location problem. 

2.2.1.3 PFLPC Models with Socially Optimal Perspective 

Designing service systems from the perspective of providers or consumers may 
provide an inefficient solution due to missing one of the parties’ outlooks. A broader 
approach to designing service systems is to take a societal approach by balancing 
providers’ objectives with consumer needs.
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Given the societal scope of PFLPC, socially optimal models are particularly 
interesting in designing service systems in the public sector. 

Designing socially optimal service systems has been the focus of the attention of 
many researchers for the past 20 years. 

One of the most frequent approaches to do so is to minimize the overall cost 
to consumers (cost incurred for traveling, waiting, and service time) plus the 
service providers’ operating costs (fixed facility and variable capacity costs). Amiri 
(1997), Aboolian et al. (2008), Elhedhli (2006), Castillo et al. (2009), Vidyarthi 
and Jayaswal (2014), Elhedhli et al. (2018), and Aboolian and Karimi (2023a) are  
examples in which a socially optimal service system design problem is considered. 
Except for Aboolian et al. (2008) and Aboolian and Karimi (2023a), all papers in 
socially optimal models are directed choice models. The majority of the models in 
the literature also consider an M/M/1 (or M/G/1) queue for each facility. The general 
problem formulation for these models is as follows: 

. min
∑

j

fj xj +
∑

j

ω
(
μj

) +
∑

i

∑

j

cij λiyij

+ α
∑

j

∑

i

λiyijWj

(
∑

i

λiyij , μj , σj

)
, . (6a) 

Subject to
∑

j

yij = 1, ∀i, . (6b) 

yij ≤ xj , ∀i, j, . (6c) 

0 ≤ μj ≤ xj , ∀j, . (6d) 
∑

i

λiyij ≤ μj , ∀j, . (6e) 

yij , xj ∈ {0, 1}, ∀i, j. (6f) 

The objective function of (6a) represents the total cost to the provider and
consumers. The first two terms of (6a) are the total fixed and capacity costs, in
which . fj denotes the fixed cost of operating facility j and .ω(·) is the capacity cost 
function. It is often assumed that capacity cost is a concave function of service 
capacity. As such, the function .ω(·) is usually modeled as a linear or concave 
function. The last two terms of (6a) are the consumers’ traveling and waiting
costs, in which . cij models the traveling cost of consumers who travel from node 
i to facility j to receive services and . α is a scaling factor determining how much 
consumers dislike waiting time. 

Constraints (6b) ensure that each demand node is covered by exactly one facility,
and Constraints (6c) prevent an assignment of a demand node to a closed facility.
To ensure no capacity is assigned to closed facilities, we enforce Constraints (6d).
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We also need to make certain there are enough capacities at each facility, a condition 
ensured by Constraints (6e) .

Even though it is not explicitly mentioned, the current formulation in (6) assumes
a directed choice, in which the service provider assigns facilities to consumers. In
cases where distance can be used as the proxy for consumer choice, the following
constraint can modify the above formulation to ensure consumer choices are
considered:

.

∑

j ′
cij ′yij ′ ≤ (

cij − L
)
xj + L, ∀j (7) 

The formulation in (6) is also for different queuing systems.
For M/G/1 queues, we can calculate waiting time—the function . Wj—using 

Pollaczek-Khinchine formula (Pollaczek, 1930) as follows: 

.Wj

(
∑

i

λiyij , μj , σj

)
=

∑
i λiyij

(
1 + σ 2

j μ2
j

)

2μj

(
μj − ∑

i λiyij

) + 1

μj

; ∀j (8) 

In M/M/1 queues, .σj = 1/μj ; thus, the value for .Wj

(∑
i λiyij , μj , σj

)
takes 

the following simplified form: 

.Wj

(
∑

i

λiyij , μj , σj

)
= 1

μj − ∑
i λiyij

; ∀j (9) 

Amiri (1997), Elhedhli (2006), Castillo et al. (2009) solved the model with 
M/M/1 queues and discrete capacity options for a directed choice model. Amiri 
(1997) used Lagrangian relaxation and Elhedhli (2006) used Bender’s decomposi-
tion to solve the problem. Aboolian et al. (2022) used Search and Cut algorithm to 
solve the model with M/M/1 queues and discrete capacity options for a consumer 
choice model. Aboolian et al. (2008) used a branch and bound method to solve the 
model with M/M/k queues for a consumer choice model. Vidyarthi and Jayaswal 
(2014) used piecewise linear approximation to solve a model with M/G/1 queues, 
with discrete capacity options for a directed choice model. Elhedhli et al. (2018) 
solved the model with M/G/1 queues, with continuous capacity options and concave 
capacity cost functions and for a directed choice model. To solve this problem, 
they used Lagrangian relaxation to decompose the problem and reformulate the 
subproblems as second-order cone programs that are solved at multiple utilization 
levels. Aboolian and Karimi (2023a) used an advanced version of Search and Cut 
algorithm to solve a model with M/G/1 queues, with continuous capacity options 
and concave capacity cost functions both for a directed and consumer choice 
models.
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2.2.2 PFLPC Models with Elastic Demand 

In this section, we will review the PFLPC models with elastic demand. PFLPC 
models often consider a decay function of demand for changes in consumers’ 
disutility to capture demand elasticity. Consequently, the decision variable . yij takes 
a continuous form—.yij ∈ [0, 1]—to represent the fraction of demand at node i who 
are served at facility j . 

Formally, PFLPC models with elastic demand consider the following indirect 
relationship between the consumer disutility and the realized demand at node i: 

.Yi = f (Di ) , (10) 

in which the function .f (·) is a decay function, . Di represents the disutility of 
consumers at node i, and . Yi is the realized demand at node i, i.e., .Yi �

∑
j yij . We  

note that the disutility of consumers at node i, . Di , is usually defined as an increasing 
function of the factors which could negatively influence consumers’ use of services 
(e.g., travel time, waiting time, etc.). 

Inversely, one can also derive consumers’ disutility as a function of the realized 
demand at node i. 

.Di (Yi ) = f −1 (Yi ) , (11) 

This inverse relationship, in particular, has an intuitive interpretation: for a given
value of . Yi , .Di (Yi ) can be interpreted as the largest disutility the consumers at 
node i would incur to receive services. 

One of the earliest works considering such settings is Verter and Lapierre (2002). 
As an implementation of partial coverage, Verter and Lapierre (2002) used a  
linear decay function in modeling participation in preventive healthcare programs. 
Berman and Krass (2002) presented the gradual coverage decay function using a 
step function. Berman et al. (2003) presented the gradual coverage decay model 
with two prespecified threshold distances, where a consumer is considered fully 
covered within the first threshold, partially covered between the two thresholds, and 
“not covered” otherwise. A common theme among the works mentioned above is 
considering the consumer’s access to the facilities, not necessarily to the offered 
service. This is because these studies do not incorporate the congestion at the 
facilities. 

As noted in (10) , PFLPC models with elastic demand assume the consumer
demand for a facility is a function of consumer disutility. Consequently, PFLPC
models with elastic demand often consider a consumer choice setting, assum-
ing consumers choose the facility (or facilities) that minimizes their disutility.
Consumers’ disutility impacts their choice and, in turn, the realized demand at
each facility. Thus, PFLPC models with elastic demand often consider equilibrium
conditions to determine consumers’ choices in a service system environment.

Since consumers incur most of their disutility from travel and waiting time, we 
can model the disutility of node i’s consumers who chose facility j as the following



Location of Public Facilities Under Congestion 265

weighted sum: 

.dij = αtij + βWj , (12) 

in which .α, β ∈ R represent the unequal sensitivity to the disutility incurred by 
waiting and travel time. In particular, the value of . α and . β capture the variety of 
situations under which consumers incur different disutility from different sources 
of time spent to receive services. For instance, when .α > β, consumers dislike the 
time spent traveling to a facility more than the time spent at the facility to receive 
services. 

It is important to note that models that do not include waiting time in the 
consumers’ disutility are less realistic but are generally easier to solve since they 
do not require any equilibrium conditions. 

Given the location of open facilities and allocation of service rates, when 
selecting which facility to use to obtain services, consumers are assumed to choose 
those facilities that minimize their disutility. This view of consumer choice is closely 
related to the concept of user-optimized models in transportation networks (Nagur-
ney, 1998). 

In a user-optimized model of a transportation network, rational users select their 
routes with their own self-interest in mind, and the equilibrium pattern satisfies the 
following principle called Wardrop’s first principle—named after Wardrop (1952): 

The journey times of all routes [of a transportation network that are] actually used are equal 
and less than those which would be experienced by a single vehicle on any unused route. 

Put differently, in a user-optimized equilibrium of a transportation network, only 
those paths that have minimal user costs (a more general measure for “journey 
time”) are used, and their costs are equal to the travel disutility associated with 
traveling between locations (Dafermos, 1982). 

PFLPC models with elastic demand use a similar analogy to define a user 
equilibrium for a service system design problem in a location-allocation framework. 
In particular, given a set of open facilities .S ⊆ M and service rates .μj , j ∈ S, a  
user equilibrium is defined as follows: 

.dij = (
αtij + βWj

(
y�

))
{

= D�
i

(
Y�

i

)
if y�

ij > 0

> D�
i

(
Y�

i

)
if y�

ij = 0,
for i ∈ N, j ∈ S, (13) 

where . y�
ij is the allocation of consumer demand at equilibrium and .Y�

i = ∑
j y�

ij . 
The equilibrium conditions in (13) state that if any fraction of consumers at

location i use facility j to receive services, then the consumers’ disutility from node
i to facility j must be equal to the largest disutility the consumers would accept to
travel to facility j to receive services. Alternatively, if no consumer from location
i is traveling to facility j to receive services, their disutility (if they would have
chosen facility j ) is more than the maximum allowed disutility. As such, under (13),
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consumers cannot reduce their disutility by unilaterally deviating from the assigned 
allocations. 

Models with elastic demand can be classified into three similar groups as brought 
in inelastic demand. 

2.2.2.1 PFLPC Models with Elastic Demand and Consumer Perspective 

The overall objective of these models is to maximize consumer participation given 
a limited server capacity (budget). 

Marianov et al. (2005), Zhang et al. (2010), Drezner and Drezner (2011) all  
consider M/M/k queuing systems and determine how to allocate p available servers 
among facilities and represent the consumers’ sensitivity to the waiting time at a 
facility. 

Marianov et al. (2005) used heuristic concentration to solve small-scale hypo-
thetical problem instances. Drezner and Drezner (2011) considered a similar model 
where the demand at each facility is a function of waiting time, so inherently, 
it becomes a function of itself and requires equilibrium conditions to solve the 
problem. They modeled the problem with the following problem formulation: 

.min
∑

i

∑

j

λi tij yij +
∑

j

Wj

(
∑

i

λiyij , μ, kj

)
, . (14a) 

Subject to

(2b) − (2c) 

(4b) − (4c) 

yij = e−θ(dij +Wj(
∑

i λiyij ,μ,kj ))xj

∑
r e−θ(dir+Wr(

∑
i λiyir ,μ,kr ))xr

, ∀i, j, (14b) 

yij , xj ∈ {0, 1}, kj ∈ N, ∀i, j.

Please note that the formulation is similar to the consumer perspective model 
introduced above. The only difference is that the equilibrium condition (14b) , which
assigns demand in a consumer node to all open facilities, is replaced with (4d) ,
which assigns all the demand in a consumer node to its closest facility. Drezner
and Drezner (2011) used tabu search heuristic to solve the problem without any 
guarantee to find a solution for equilibrium conditions (14b) .

Zhang et al. (2010) consider access time—the sum of travel and waiting time—as 
the main factor for consumers’ disutility, i.e., .dij = tij +Wj and .α = β = 1 in (12) .
Given the equilibrium conditions, Zhang et al. (2010) formulate the problem as a 
bilevel problem where the allocation of consumers to facilities is determined in the 
lower level and the location of facilities and their capacity level are determined in the 
upper level. Their approach is most efficient when the number of capacity options
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is relatively small. However, bilevel programming would be remarkably inefficient 
when capacity is modeled as a continuous variable (as in M/M/1 queuing systems). 

Similarly, Aboolian et al. (2016) also consider access time as the main proxy for 
consumers’ disutility. Unlike Zhang et al. (2010), however, Aboolian et al. (2016) 
consider an M/M/1 queuing systems where service rate (service capacity) at each 
facility is a decision variable and determine how to allocate C service capacity 
among facilities and represent the consumers’ sensitivity to the waiting time at a 
facility. Even with equilibrium conditions that are required for these models, they 
were able to formulate and solve the problem as an exact (single-level) mixed-
integer problem (MIP). 

Here is the original nonlinear formulation of the model: 

. max
∑

i

∑

j

λmax
i yij . (15a) 

subject to :
(2b) –(2c) 

μj −
∑

i

λmax
i yij − xj

Wmax ≥ 0 , j ∈ M , . (15b) 

xjμ
min ≤ μj ≤ xjμ

max , j ∈ M , . (15c) 
∑

j

μj = Cmax , . (15d) 

tij + 1

ε
(
1 − xj

) + μj − ∑
r∈N λmax

r yrj

− fmax
i − ∑

k∈M yik

α
≥ 0 ,

i ∈ N, j ∈ M , . (15e) 

yij

(
tij + 1

ε
(
1 − xj

) + μj − ∑
r∈N λmax

r yrj

− fmax
i − ∑

k∈M yik

α

)
= 0 ,

i ∈ N, j ∈ M , (15f) 

μj , yij ≥ 0, xj ∈ {0, 1} , i ∈ N, j ∈ M .

Constraints (15b) ensure the minimum capacity required at each facility to ensure
system stability, and Constraints (15c) limit the capacity at each facility to what is
attainable. To ensure the overall capacity assigned to open facilities does not exceed
the available level, we enforce Constraints (15d). Constraints (15e) and (15f) are
the consumer traffic equilibrium conditions, which when met consumers have no
incentive to change their choice of facilities.

To solve this model, Aboolian et al. (2016) introduced the linear epsilon-optimal 
MIP equivalent of the model, which could be solved efficiently.
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2.2.2.2 PFLPC Models with Elastic Demand and Service Provider Perspective 

The overall objective of these models is to minimize service providers’ operating 
cost while maintaining a minimum level of service coverage and/or consumer 
participation. 

To our knowledge, Aboolian et al. (2022) is the only work introducing such 
a perspective when demand is elastic. Compared to the previous models used in 
the consumer perspective with elastic demand, they introduced and used a more 
advanced disutility function with different consumer sensitivities to waiting and 
travel time, which aligns more with reality given that in two separate studies 
by Newman (1984) and Jan et al. (2000), survey respondents identified travel time, 
although important, was not as significant a factor as waiting time. 

Aboolian et al. (2022) incorporate consumer choice by considering settings 
under which consumers would like to minimize their disutility from travel and 
waiting times when choosing which facility to patronize. In their setting, consumers’ 
disutility is defined as .dij = tij + βWj , i.e., .α = 1 in (12) .

Aboolian et al. (2022) model the eventual choice of facilities as a user equilib-
rium problem, where at equilibrium, consumers do not have any incentive to change 
their choices. The original nonlinear formulation of the model is as follows: 

. min
∑

j∈M

hjxj +
∑

j∈M

cjμj

subject to :
zij ≤ xj , i ∈ N, j ∈ M , . (16a) 

yij ≤ zij , i ∈ N, j ∈ M , . (16b) 
∑

j∈M

zij ≥ 1 , i ∈ N , . (16c) 

∑

i∈N

λmax
i yij ≥ λmin xj , j ∈ M , . (16d) 

(
tij + β

μj − ∑
r∈N λmax

r yrj

+ ln
(∑

k∈S λmax
i yik

)

α

)
yij = 0 ,

i ∈ N, j ∈ M , . (16e) 

tij + β

μj − ∑
r∈N λmax

r yrj

+ ln
(∑

k∈S λmax
i yik

)

α
≥ 0 ,

i ∈ N, j ∈ M , . (16f)
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tij + βxj 
μj − ∑

k∈N λ
max 
i ykj + (1 − xj )ε

≤ τmax + (1 − zij )L , 

i ∈ N,  j  ∈ M , . (16g) 

μj ≥
∑

i∈N

λmax
i yij , j ∈ M , (16h) 

μj , yij ≥ 0, xj , zij ∈ {0, 1} , i ∈ N, j ∈ M

The objective function terms of this problem represent the total fixed and the 
capacity costs. Constraints (16a) ensure that no consumer is assigned to a closed
facility. Constraints (16b) guarantee that if node i is not assigned to facility j ,
the demand fraction of a node i to facility j is zero and prohibit an assignment
of demand fractions above 100%, otherwise. Constraints (16c) ensure that each
demand node is covered by at least one facility. Constraints (16d) will make
sure that each open facility is assigned at least the minimum demand. Con-
straints (16e) and (16f) make certain the demand allocation equilibrium conditions
are met. Constraints (16g) make sure that consumers’ disutility is capped at .τmax, 
and L is a large enough number that ensures (16g) is enforced only when .zij = 1. 
Finally, Constraints (16h) ensure that the service rate at each facility is greater than
or equal to the demand rate at that facility—a stability condition for Markovian
queuing systems. We note that Constraints (16e) and (16f) make this problem highly
nonlinear.

Although this model belongs to the class of models with equilibrium constraints 
that mostly offer heuristic approaches, and only a few offer efficient optimization 
schemes, Aboolian et al. (2022) exploit the specific structure of the problem, 
allowing to reformulate a highly nonlinear problem as a MILP without any 
approximation, and as a result, they could find exact optimal solutions for fairly 
large instances. The MILP reformulation of the model is as follows: 

. min
∑

j∈M

hjxj +
∑

j∈M

∑

i∈N

cjλ
max
i yij +

∑

j∈M

cjPj

subject to (16a) –(16c) ,

zjj ≥ xj , j ∈ M , . (17a) 

λmax
j yjj ≥ λminxj , j ∈ M , . (17b) 

Pj ≥
(

β

τmax − tij

)
zij , i ∈ N, j ∈ M , . (17c) 

∑

k∈M

yjk ≥ e−α(τmax−tij )zij , i ∈ N, j ∈ M , . (17d) 

tij zij ≤ τmax , i ∈ N, j ∈ M , . (17e)
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∑

k∈M 
yik ≥ qij

∑

k∈M 
yjk  − 1 + xj , i  ∈ N,  j  ∈ M , . (17f) 

∑

k∈M

yik ≤ qij

∑

k∈M

yjk + 1 − zij , i ∈ N, j ∈ M , (17g) 

Pj , yij ≥ 0, xj , zij ∈ {0, 1} , i ∈ N, j ∈ M ,

in which decision variables .Pj , j ∈ M are the inverse of .Wj such that . Pj =
μj − ∑

j∈M λmax
i yij , j ∈ M . Here Constraints (17a) and (17b) are based on

Lemma 1 of Aboolian et al. (2022), which states that if a facility is opened at 
.j ∈ M , then at least some of the consumers at j will use its services. Note 
that Constraints (17b) replace (16d). Constraints (17c) , (17d), and (17e) ensure
that the consumers’ disutility is capped at .τmax. Given the objective function, 
Constraints (17c) more specifically determine the values for . Pj s. Constraints (17f) 
and (17g) like (16e) and (16f) make certain that the allocation of consumer demand
to facilities is a user equilibrium, in which consumers have no incentive to change
their selected facilities.

The MILP formulation is particularly beneficial as there are many out-of-the-box 
optimization implementations of MILPs that are highly efficient. 

2.2.2.3 PFLPC Models with Elastic Demand and Socially Optimal Perspective 

Governments around the globe are actively involved in providing essential services, 
such as healthcare, transportation, education, and utilities. In contrast with the 
private sectors’ mission to maximize profit, governments’ mandate is to maximize 
societal benefit by acting as public agents, and to have a more realistic model, the 
consumers’ behavioral preferences should be considered in the utility (disutility) 
functions. When designing service systems, many models in the public sector focus 
on maximizing accessibility to public services to increase societal benefit. The idea 
is to (re)design the public service to maximize the number of people who will 
benefit from the program given a limited budget, thus using accessibility as a proxy 
for benefit. Such models fail to capture the marginal benefits—savings in costs to 
taxpayers by adding an extra unit of service capacity. 

In a recent work, Aboolian and Karimi (2023c) introduce a more balanced 
approach to model PFLPC with elastic demand. The objective is to find the right 
balance for both the consumer and the service provider (public government). To do 
this, Aboolian and Karimi (2023c) study the problem of determining the optimal 
number, locations, and capacities of a network of facilities to maximize the public’s 
overall benefit. They define the overall benefit as the difference in savings for the 
public by participating in services and the cost of the provided service capacity. 

Like other PFLPC models with elastic demand, the consumers would like to 
maximize their utility (minimize their disutility) when choosing which facility 
to patronize. In Aboolian and Karimi (2023c), consumers’ disutility takes the
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general form of (12) . The authors consider a user equilibrium problem, where, at
equilibrium, consumers have no incentive to change their choices.

The mathematical formulation of this benefit maximization problem is the 
following nonlinear mixed-integer program: 

. max v
∑

i∈N

∑

j∈M

λiyij − c
∑

j∈M

μj

subject to :
yij ≤ xj , i ∈ N, j ∈ M , . (18a) 
(

α tij + β

μj − ∑
r∈N λryrj

+ ln
(∑

k∈M yik

)

γ

)
yij = 0 ,

i ∈ N, j ∈ M , . (18b) 

α tij + β

μj − ∑
r∈N λryrj

+ ln
(∑

k∈M yik

)

γ
≥ 0 , i ∈ N, j ∈ M , . 

(18c) 
∑

i∈N

λiyij ≤ μj , j ∈ M , . (18d) 

μminxj ≤ μj ≤ μmaxxj , j ∈ M , . (18e) 

1

μj − ∑
i∈N λiyij

≤ Wmax , j ∈ M , . (18f) 

∑

i∈N

λiyij ≥ λmin , j ∈ M , (18g) 

μj , yij ≥ 0, xj ∈ {0, 1} , i ∈ N, j ∈ M .

The objective function terms of this problem represent the total benefit of 
serving demand as the total value added minus the cost of the service system. 
Constraints (18a) ensure that demand is only assigned to open facilities while
capping the demand fractions at 1. Constraints (18b) and (18c) make certain
the demand allocation equilibrium conditions are met. Constraints (18d) ensure
stability by enforcing steady-state service capacities. Constraints (18e) ensure that
the service rates are bounded within the desired range. Constraints (18f) guarantee a
maximum waiting time of .Wmax across the entire system. Lastly, Constraints (18g) 
guarantee every open facility serves a demand rate of at least .λmin. 

The main sources of complexity when solving BNDP are the nonlinear Con-
straints (18b) and (18c). To solve this problem, Aboolian and Karimi (2023c) 
offer a reformulation of it with linear constraints and a nonlinear objective. The 
reformulation is amenable to a tangent-line piecewise linear approximation (TLA)
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(Aboolian et al., 2007) technique, which allows them to .ε-optimally solve this 
problem. 

When it comes to solution approaches used to solve the models for these 
three different perspectives, there is not much of a difference, with the exception 
that in the service sector perspective, the model can be transformed into a linear 
model without any approximation, while the other two perspectives use a linear 
approximation to .ε-optimally solve their respective model. However, the results 
of the facility location and capacity allocation for different perspectives could be 
far from similar. In our experience, the consumer or service provider perspective 
solutions most often than not result in a not socially optimal solutions. 

3 Current Challenges and Research Opportunities in 
Location Analysis for Public Sector 

3.1 Current Congestion Models in Public Location Theory: 
Limitations and Extensions 

Since the early facility location models, location science has come a long way 
in supporting location analysts and policymakers. As discussed in Sect. 1, the  
consumer-centric view of service system design and the incorporation of decision-
making under uncertainty have played a big part in the recent advancements of 
public FLPs. In Sect. 2, we also argued that congestion models play a significant 
role in public FLPs as they consider service system design problems in stochastic 
environments. There are situations, however, where current congestion models may 
not provide helpful insight. Following the human-centric view of contemporary 
location applications, we identify two particular settings in which the current 
congestion model can, and arguably should, be extended to provide further insight. 

3.1.1 Incorporating Incentive Initiatives in PFLPC Models 

To overcome the various challenges caused by the COVID-19 pandemic, many 
branches of science and technology have come up with novel solutions and artifacts. 
Even with the grant of emergency permits, arguably, one of the most influential 
breakthroughs was the development of COVID-19 vaccines in record time—a 
process that normally requires 10 to 15 years. However, healthcare providers and 
policymakers soon found a new operational challenge when distributing vaccines: 
vaccine hesitancy. To increase the population of vaccinated individuals, many local 
and federal governments started to offer incentives in monetary prizes, raffles, gift 
cards, etc. (Pennings & Symons, 2021). Clearly, this is a government view of the 
societal benefits which should include consumers’ behavioral preferences in the 
utility (disutility) functions.
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From an operational perspective, the distribution of vaccines is an operational 
location-allocation problem, and location analysis can provide valuable support to 
decision-makers in deciding the number and capacity of vaccination centers and 
where to locate them optimally. PFLPC models, in particular, can be helpful due to 
their stochastic nature. 

In its Quality Chasm report, the Institute of Medicine (IOM) concludes that to 
effectively prevent and manage chronic disease, the US healthcare system requires 
a major realignment of incentives (Plsek, 2001). The need for such realignment 
has led to “pay for prevention” initiatives to reduce the high cost that preventable 
disease could bring to health providers and consumers (Casalino et al., 2003). There 
are many papers that have studied the benefits of incentives for preventive healthcare 
practices such as immunization (Kerpelman et al., 2000), cancer screening (Mayer 
& Kellogg, 1989), and prenatal care (Laken & Ager, 1995) to name a few. 

Current PFLPC models do not incorporate incentives for receiving services. In 
fact, in most congestion models, users are assumed to incur disutility—in the form 
of waiting or travel time—when receiving services. 

In the PFLPC context, the novel idea could be to find the right balance of location, 
service capacity, and incentive level for facilities that will maximize societal benefit. 

The addition of incentives, although costly to the system, reduces consumers’ 
disutility, which in turn increases their participation and adds to the overall benefit 
of the participation. Overall, introducing the incentive level as a decision variable to 
PFLPC makes it an interesting problem to examine. 

Aboolian and Karimi (2023b) introduce such a model assuming a linear relation-
ship between the consumer participation and savings to system due to participation 
(e.g., cost reduction due to preventing a disease). This model while appropriate for 
preventive services such as non-contagious diseases is not suitable for preventive 
healthcare for contagious diseases (e.g., vaccination for COVID-19). This is due 
to the nonlinear relationship between the vaccination and system savings due to 
vaccination. 

3.1.2 Individual Preferences and Behavioral Decision-Making 

When modeling the individual decision-making process, a key assumption in 
congestion models is that individuals are “rational entities” and make optimal 
decisions. There is now mounting evidence in behavioral decision-making that 
illustrates various types of biases affecting individuals’ decisions. Bounded ratio-
nality, for instance, considers a broader setting for individual decision-makers and 
addresses the differences between perfect rationality and observed human behavior. 

Given the people-centric agenda in public service system design—including 
the congestion models discussed in this chapter—understanding how individuals 
(consumers, service providers, or central decision-makers) behave and incorporating 
micro-level individual behavior can lead to better designs and improved processes. 

In particular, two behavioral elements are directly related to the public service 
system design: behavioral decision-making and behavioral queues.
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3.1.2.1 Behavioral Decision-Making 

In contemporary service system design problems, individuals are often assumed to 
behave rationally: choose the utility-maximizing (disutility-minimizing) alternative, 
choose the closest facility, do not stray from the equilibrium allocation, and other 
similar assumptions. There are, however, systematic cognitive biases that can be 
incorporated when considering individuals’ choices. 

For instance, in the anchoring effect (Kahneman et al., 1982), individuals often 
use an initial piece of information (or experience) to make subsequent judgments. If 
consumers use a particular facility to receive services, for example, they may choose 
the said facility in the future, even though they may incur a higher waiting time in 
others. 

Decisions made by human decision-makers in congestion models—made by 
individual consumers or servers at public facilities—are often subject to uncertainty. 
Congestion models often assume that individual decision-makers use probabilities 
to determine expected outcomes and choose the best course of action. Behavioral 
studies, however, often present various behavioral biases when it comes to the 
interpretation of probabilities. When considering probability weighting functions, 
for instance, individuals often substitute outcome weights for probabilities and 
assign a higher probability to unlikely outcomes or lower probabilities to almost 
certain outcomes (Kahneman & Tversky, 2013). 

Incorporating human biases when modeling consumers’ or servers’ decision-
making can broaden the application of congestion models in public FLPs and is 
in line with the human agency research agenda discussed in Sect. 1. To this end, we 
identify the applications of prospect theory in location analysis as one of the main 
research opportunities in location analysis for the public sector. 

3.1.2.2 Behavioral Queues 

Queuing theory is an invaluable tool that allows location analysts to gain predictive 
insight into the system behavior of service systems and predict operational metrics 
such as waiting time, service time, capacity, and utilization. Given the importance 
of such measures on the quality of location-allocation decisions, any assumption 
regarding the formation of queues is subject to validation. Behavioral queuing 
departs from many such assumptions by considering micro-level decision-making 
that often involves behavioral biases in human judgment and decision-making. 

For example, queuing models often assume that consumers’ disutility from wait-
ing is linearly decreasing in waiting time. Many empirical studies have challenged 
the idea and shown that the level of individuals’ disutility from waiting may decline 
with time or steadily increase frustration (Kocas, 2015).
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Allon and Kremer (2018) offer the following conceptualization of behavioral 
queues to identify the impact of micro-level individual behavior on the macro-level 
service outputs. 

.System Waiting = Net Utility × Throughput (19) 

in which net utility is defined as the gross value of receiving services minus the 
weight disutility. In particular, net utility is defined as follows: 

.Net Utility = v − cWTW − cSTS, (20) 

for which v is the gross “service quality”; . TW and . TS represent waiting and service 
times, respectively; and . cW and . cS denote the cost of waiting in queues and in 
services, respectively. Throughput can also be viewed as the multiplication of the 
arrival rate by the probability of individuals waiting to receive services. 

.Throughput =
∑

i

λiP (v ≥ θi) , (21) 

in which . θi denotes a patience threshold of consumer i. 
The above framework allows location analysts to consider various aspects of 

behavioral queues. For example, one of the main findings in the psychology of 
waiting lines is the perception of individuals regarding the occupied vs. unoccupied 
time, in which the latter “feels” longer than the former, i.e., .cW > cS (Allon & 
Kremer, 2018). 

Considering the behavioral aspects of queues and the psychology of waiting lines 
can further bridge the gap between the theory and application of service system 
design and improve location-allocation decisions in the public sector, presenting 
another research opportunity for location researchers and practitioners. 

3.2 Public-Private Relationships 

The study of location problems from a service system design perspective integrates 
the strategic and tactical location-allocation problems with the individual micro-
decisions. As discussed in Sects. 1 and 2, this integration allows us to analyze 
realistic situations influenced by individual behavior, such as social optimum and 
user equilibrium environments. Additionally, the service system design perspective 
facilitates the investigation of cross-sector collaborations. 

Similar to how firms achieve better efficiency when integrating decisions in 
cross-functional collaborations (like Sales and Operations Planning), cross-sector 
collaborations present similar opportunities. The literature often refers to such cross-
sector collaborations as public-private partnership (PPP)—commonly defined as 
cooperative institutional arrangements between public and private sectors. (Wang
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et al., 2018). Given their expansive advantages, PPP projects have been applied 
in many public sector domains such as infrastructure, transportation, water, energy, 
environment protection, humanitarian aids, health, and more (see Wang et al. (2018) 
for a detailed review of PPP adoptions). 

Governments have employed PPPs to offer a long-term and sustainable service 
provision that provides a more efficient expenditure of taxpayer money. Some of 
the cited benefits of employing PPPs are accelerated infrastructure development, 
increased value for money, and improved service quality (see, e.g., Yong (2010)[Ch. 
3]). In healthcare, in particular, PPPs are linked with an improvement in access, 
quality, and efficiency (Sekhri et al., 2011). 

There are few studies of PPPs in service systems in the operations research 
and management science domain, primarily contemporary works carried out in 
the past decade, most of which have been conducted in healthcare applications. 
This is perhaps unsurprising given the many instances of public-private healthcare 
systems—often referred to as two-tier healthcare—coexisting worldwide. 

Andritsos and Tang (2014), one of the earliest operations research works to 
study PPPs in healthcare service systems, consider the impact of private healthcare 
providers on operations of public healthcare systems and the increased patient 
choice. The authors adopt a game-theoretical queuing model to investigate the 
effects of PPPs on welfare requirements, cost, and patient waiting time. The authors 
find that the public healthcare systems can reduce costs given welfare requirements 
without increasing the patients’ waiting time. Andritsos and Aflaki (2015) consider a 
competitive PPP setting under which a public hospital and a private hospital choose 
their service capacity. Their setting is particularly applicable in situations where the 
government uses (and subsidizes) the private healthcare system to satisfy demand 
when the public healthcare system is overly congested. Andritsos and Aflaki (2015) 
also adopt a game-theoretical queuing model and show that providing unconditional 
subsidies to the private hospital leads to a decrease in public hospital capacity, 
which in turn causes an increase in the public hospital’s waiting time. This strand 
of research has been further generalized to consumer choice (Qian et al., 2017), 
coordination (Hua et al., 2016), sustainability (Zhang & Yin, 2021), and more. 

Some of the main characteristics of the current studies of PPPs in service 
systems are the focus on strategic interaction of the public and private entities, 
the emphasis on user equilibrium behavior of consumers, and the focus on service 
quality in conjunction with the cost and benefit of service provision. Researchers 
often model the strategic interaction between the public and private partners as 
competition (duopoly games) or cooperation (coordination games). Game theory 
has been a particularly suitable tool to deal with the inherent complexity of PPPs’ 
strategic interaction and the parties’ possible conflicting interests. In particular, 
when engaged in a PPP, a government’s role may change from supervision to 
cooperation or competition, and oversight affects both partners’ objectives and 
restrictions. When considered, consumer choice has been related to the system 
waiting time—often modeled as the waiting time in an M/M/1 queue—and user
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equilibriums have been formulated to determine consumer demands. Equilibrium 
concepts are especially useful for studying the impact of consumers’ micro-behavior 
on the macro-patterns of demand. When it comes to assessing a particular PPP 
setting, the literature often contrasts the cost of operations with the quality of 
service, which is often measured via consumers’ waiting time. 

In all studies mentioned above, however, location decisions have been over-
looked. In particular, the operational decisions of capacity allocation or tactical 
decisions of public procurement for short- to medium-lived services is the main 
focus of the PPP literature in service system design. Yet, one of the most important 
benefits of PPPs is associated with their “long-term contract” property (Yong, 2010, 
Section 3.1). Given their strategic nature and long-term commitment, location deci-
sions can play a significant role in the success of PPP initiatives, as incorporating the 
exact detail of location decisions when analyzing PPPs may provide further insights 
into system parameters such as cost, benefit, and quality. 

Location decisions also allow (public or private) analysts to assess the allocation 
of risk in a broader sense of risk-benefit analysis. Broadly speaking, each PPP 
initiative can be viewed on a continuum of risk-sharing between two extremes. 
On the one end, governments may outsource the provision of services to private 
entities while bearing the entirety of the risk involved. For instance, governments 
often outsource waste management services on a short-to-medium-term basis. On 
the other end, the government can utilize privatization by transferring service 
provision—and its cost and revenue—entirely to private sectors who bear almost 
all the risk involved. The privatization of telephone landlines is perhaps the most 
prominent example of this extreme. 

An arrangement under which the risk of service provision is shared between 
partners is more likely to be successful and sustainable in the long term (Liu et al., 
2015). Determining the number, location, and ownership of facility locations allows 
for a more accurate risk assessment and brings further transparency in the level 
of shared risk. Furthermore, from an optimization point of view, determining the 
optimal number, location, and capacities of service facilities without consideration 
for public-private interactions may lead to an inefficient allocation of resources. 

Location decisions are also important to the partnership agreement nature of 
PPPs. In particular, PPP environments often exhibit information asymmetry, in 
which the public partner may know more about the consumer population, and the 
private partner may know more about the cost of service provision (Aben et al., 
2021). In the absence of shared information, for example, partners can identify and 
target more profitable segments of the market, leading to a less efficient service 
provision compared to no-partnership benchmarks. To mitigate adverse outcomes 
caused by information asymmetry, partners can rely on long-term location decisions 
as signaling mechanisms to communicate credible actions and establish trust.
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Stochastic Gradual Covering Location 
Models 

Zvi Drezner 

Abstract Most location models assume that the parameters are given and fixed. 
Demand for services is known, and the distance to the facility is given. Real-world 
parameters are not fixed but follow a probability distribution such as a normal 
distribution. Therefore, stochastic models estimate the results (cost, profit, cover) 
more accurately. 

In cover models, facilities need to be located in an area to provide service to a set 
of demand points. Demand points that are within a given distance are covered. Two 
main objectives are investigated in the literature: provide as much cover as possible 
with a given number of facilities and minimize the number of facilities required 
to provide full cover. In gradual cover models, up to a certain distance, the demand 
point is fully covered, and beyond a greater distance, it is not covered at all. Between 
these two extreme distances, the demand point is partially covered. 

In this chapter, we summarize gradual cover models emphasizing on models that 
have stochastic parameters. We also propose a new model analyzing a stochastic 
version of the directional graduate cover. 

Keywords Location analysis · Cover models · Gradual cover models · 
Stochastic analysis 

1 Introduction 

Most location models assume that the parameters are given and fixed. Demand for 
services is “known,” and the distance to the facility is given. If an ambulance or a fire 
truck needs to get to a customer within 10 min, the time is translated to a distance, 
for example, 3 miles, even though the travel speed may depend on traffic conditions 
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and is not a constant. A customer is considered covered within 3 miles even though 
only a proportion of the customers are “covered.” 

Customers are assumed to be located at “demand points” even though in most 
applications customers reside in neighborhoods that are defined by regions. Not all 
customers residing in a neighborhood have the same distance to the facility. Francis 
et al. (2009, 2000) analyzed the selection of a point that represents a set of demand 
points or an area. Drezner and Drezner (1997) showed that the squared distance 
between a demand point located at a center of a circular area and a facility should 
be increased proportionally to the circle’s area. 

It is probably easier to formulate and solve models with known parameters, but 
in reality, stochastic models estimate the results (cost, profit, cover) more accurately. 
Real-world parameters are not fixed but follow a probability distribution such as a 
normal distribution. 

2 Cover Models 

Facilities need to be located in an area to provide service to a set of demand points. 
Demand points that are within a given distance are covered, meaning that they 
are getting the services under consideration (Church & ReVelle, 1974; ReVelle 
et al., 1976). Two main objectives are investigated in the literature: (i) provide as 
much cover as possible with a given number of facilities and (ii) minimize the 
number of facilities required to provide full cover. Such models are used for cover 
provided by emergency facilities such as ambulances, police cars, or fire trucks. 
They are also used to model cover by transmission towers such as cell phone 
towers, TV or radio transmission towers, and radar coverage, among others. For 
a review of cover models, see Plastria (2002), García and Marín (2015), Snyder 
(2011), Church and Murray (2018). Drezner et al. (2011, 2012) applied the cover 
concept to competing facilities. Each competing facility has a “sphere of influence” 
(Launhardt, 1885; Fetter, 1924; Lösch, 1954; Christaller, 1966; ReVelle, 1986), and 
customers patronize a facility up to a certain distance. 

A different covering model where facilities “cooperate” in providing cover was 
proposed in Berman et al. (2010). Each facility emits a signal (such as light posts 
in a parking lot, warning sirens) whose strength declines according to a distance 
decay function. A point is covered if the combined signal from all facilities exceeds 
a certain threshold. For example, a parking spot is covered if the total light received 
at that spot exceeds a given threshold. Recent papers on the cooperative cover are 
Morohosi and Furuta (2017), Karatas (2017), Wang and Chen (2017), Bagherinejad 
et al. (2018).
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3 Gradual Cover Models 

In the gradual cover models, up to a certain distance . R1, the demand point is 
fully covered and beyond a greater distance . R2, it is not covered at all. Between 
these two extreme distances, the demand point is partially covered. Suppose that 
the cover distance in traditional cover models is 3 miles. At a distance of 2.99 
miles, the demand point is fully covered while at a distance of 3.01 miles, it is 
not covered at all. This assumption may be convenient for analyzing and solving 
covering problems. However, in reality, cover does not drop abruptly but the decline 
in cover is gradual. 

Various notations are defined in gradual cover models. To be consistent through-
out this chapter, we define the following variables: 

Notation 

D Cover distance by non-gradual cover models. 
d Distance between a facility and a demand point. 
R1 Full coverage for distance d ≤ R1. 
R2 No coverage for distance d ≥ R2. 
R = R1+R2 

2 .
�R = R2 − R1. 
r radius of a circle centered at the demand point. 

Church and Roberts (1984) were the first to propose the gradual cover model 
(also referred to as partial cover). The facilities must be located within a finite set 
of potential locations. Drezner et al. (1998) investigated the gradual cover model 
in the plane for locating competing facilities. They model the partial cover by a 
logit function. The network version with a step-wise cover function is discussed 
in Berman and Krass (2002). The network and discrete models with a general 
non-increasing cover function were analyzed in Berman et al. (2003b). The single-
facility planar model with a linearly decreasing cover function between R1 and R2 
was optimally solved in Drezner et al. (2004) by the Big Triangle Small Triangle 
(BTST) optimization method (Drezner & Suzuki, 2004). It can also be solved by the 
Big Square Small Square (BSSS) method (Hansen et al., 1981). Location of several 
facilities can be solved optimally by the Big Cube Small Cube method (Schöbel 
& Scholz, 2010). Reasonable run time can be achieved for locating up to three 
facilities. Additional references include Karasakal and Karasakal (2004), Eiselt and 
Marianov (2009), Drezner and Drezner (2014), Berman et al. (2019).
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3.1 Estimating Partial Cover of a Demand Point Covered by 
Several Facilities 

An important issue in gradual cover models is the estimation of the total cover when 
a demand point is covered by several facilities. In traditional non-gradual cover 
models where a demand point is either fully covered by a facility, or not covered at 
all, the rule is straightforward. A demand point is covered if and only if it is covered 
by at least one facility. 

This issue is discussed in Berman et al. (2019). They proposed several “axioms” 
and observations that we term properties, and we added Property 7: 

Property 1: The total cover is between 0 and 1. 
Property 2: If the partial coverage from a facility increases unilaterally, the joint 

coverage cannot decrease. 
Property 3: Adding facilities that provide no coverage cannot change the joint 

coverage received by a demand point. 
Property 4: The joint coverage is not lower than the partial coverage received 

from any one facility. 
Property 5: If a demand point receives positive coverage from only one facility, 

then the joint coverage equals to the individual coverage. 
Property 6: If a demand point is covered fully from any one facility, then the 

joint coverage is full as well. 
Property 7: If all the distances between the demand point and the facilities do 

not increase, the total cover of the demand point cannot decrease. 

We prove the following theorem based on Property 7: 

Theorem 1 The optimal locations of the facilities that maximize the total cover are 
in the convex hull of the demand points. 

Proof By a theorem in Wendell and Hurter (1973), for any location outside the 
convex hull of a set of points, there is a location in the convex hull that is closer to 
each of the points generating the convex hull. Therefore, for any location outside 
the convex hull of the demand points, there is a location in the convex hull with a 
better value of the objective function because all distances are shorter. If there is a 
facility outside the convex hull, a better location for that facility exists in the convex 
hull. The theorem follows by mathematical induction. ��

Let . cj be the partial cover of a demand point by facility j for .j = 1, . . . , p. Eiselt  

and Marianov (2009) proposed a total partial cover of .min

{
p∑

j=1
cj , 1

}
. Partial cover 

can be interpreted as the probability of cover. Assuming that the partial covers are 

not correlated, the total partial cover is: .1 −
p∏

j=1

(
1 − cj

)
(Berman et al., 2003a; 

Drezner & Wesolowsky, 1997; Drezner & Drezner, 2008). The directional gradual 
cover discussed in Sect. 3.4 leads to a different rule for the total cover of several 
facilities.
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3.2 Step-Wise Gradual Cover 

Church and Roberts (1984) and Berman and Krass (2002) proposed a step-wise 
decline in cover. A sequence of k >  1 distances R1 < R2 <  . . . , Rk is defined with 
associated partial covers p1 = 1 > p2 > .  .  .  > pk = 0. Up to a distance R1 cover 
is full (p1 = 1). For distances Ri < d  ≤ Ri+1 for 1 ≤ i ≤ k − 1, the cover is pi+1, 
and for d >  Rk cover is zero. 

3.3 Linear Decline Gradual Cover 

The simplest model for gradual cover is a linear decline in cover between . R1 and 
. R2 as suggested in Drezner et al. (2004). For .d ≤ R1 cover is full (cover of one), 
and for .d ≥ R2 cover is zero. For .R1 ≤ d ≤ R2, the partial cover is .

R2−d
�R

. When 
.R2 → R1(�R → 0), the linear decline model converges to the non-gradual cover 
model. 

3.4 The Directional Gradual Cover 

Drezner et al. (2019a) proposed a different approach to estimate partial cover 
defined as “directional gradual cover.” This model is distinguished from the others 
based on the assumption that each customer point is not a point, but an area. As 
in gradual cover models, up to distance R1 a point is fully covered and beyond a 
distance R2 it is not covered at all. Each demand point is replaced by a circle of 
radius �R 

2 = R2−R1 
2 and a facility covers points within a distance R = R1+R2 

2 
that can be different for different facilities. The intersection area between the disk 
centered at the demand point and the disk of the coverage radius R1+R2 

2 centered at 
the facility is calculated. The ratio between the intersection area and the area of the 
disk centered at the demand point is the partial cover of that demand point. 

The proportion of cover (for complete details, see Drezner et al. (2019a)) is: 

. c(d) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 d ≤ R1

1
2π [2θ − sin 2θ ] + 1

2π
(R1+R2)

2

(R2−R1)
2 [2φ − sin 2φ] R1 ≤ d ≤ R2

0 d ≥ R2

where θ = arccos d
2−R1R2 

d(R2−R1)
; φ = arccos d

2+R1R2 
d(R1+R2) . For d = R1: θ = arccos(−1) = 

π , and φ = arccos(1) = 0, and therefore c(d) = 1. For d = R2: θ = φ = 
arccos(1) = 0, and c(d) = 0.
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Drezner et al. (2019a) tested discrete problems where there is a given set of 
potential locations for the facilities. Drezner et al. (2020a) investigated the objective 
of maximizing the minimum cover among the demand points rather than the total 
cover. Drezner et al. (2021) investigated maximizing the total cover when the 
facilities can be located anywhere in the plane. 

In gradual cover models, it is not obvious how to estimate the total cover if a 
demand point is partially covered by several facilities as discussed in Sect. 3.1. In  
the directional gradual cover (Drezner et al., 2019a), if a demand point is partially 
covered by two or more facilities, the total cover (area) depends on the distances 
between the facilities and the demand point, and on the directions of the facilities 
from the demand point. 

Demand points are usually not mathematical points but represent communities 
that occupy an area and not all the residents at the demand “point” are located at the 
same point. Therefore, facilities at different directions cover different parts of the 
area represented by the demand point. For example, consider one demand point and 
three facilities depicted in Fig. 1. Facilities 1 and 2 cover some of the northern part 
of the community and facility 3 covers part of the southern part of the community. 
Suppose that only facilities 1 and 2 exist in the area. The facilities are located to 
the north of the demand point, and there is an overlap between the covered areas. 
Therefore, the total cover is the area covered by facility 2 and facility 1 does not 
contribute to the total cover. If one facility (either 1 or 2) is located to the north and 
facility 3 to the south, there is usually a smaller overlap if at all. Since all facilities’ 
disks in Fig. 1 do not cover the demand point itself, the total area is the sum of the 
areas because there is no overlap. By any other gradual cover model, the total cover 
is calculated by the partial covers, and the total cover is the same regardless of the 
directions of the facilities. 

When the radius of the demand point is zero, the directional gradual cover 
function is a discontinuous curve and the model is equivalent to the traditional non-
gradual cover. The demand point is either fully covered or not covered at all. 

Fig. 1 Three facilities and 
one demand point 

3 

1 
2 

Demand point Facility
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3.5 Random Limits of Gradual Cover 

Drezner et al. (2010) modified the linear decline model by a model where R1, the  
lowest distance when partial cover starts to decline from full cover, and R2, the upper 
limit of the distance beyond which there is no cover at all are random variables. They 
assumed that cover declines linearly between the random values of R1 and R2. Other 
decline functions can also be investigated in a similar fashion. We summarize the 
formulations reported in that paper. 

Let the cover radius used in the non-gradual covering model be D. Let  φ1(d) and 
φ2(d) be the density function of the probability that R1 and R2, respectively, are at 
distance d. Each demand point may have different values for R1 and R2. Let  c(d) 
be the expected cover at distance d. If  d ≤ R1, the cover is one. If d ≥ R2, the  
cover is zero. For R1 ≤ d ≤ R2 the cover is 

R2−d 
R2−R1 

. Therefore, the expected cover 
at distance d, c(d), is  

.c(d) = Pr(d ≤ R1) +
d∫

0

∞∫
d

z − d

z − y
φ1(y)φ2(z)dzdy (1) 

Note that in (1) it is assumed that  φ1(d) and φ2(d) are independent distributions. 
If they are correlated, then φ1(y)φ2(z) should be replaced with a bi-variate 
distribution. The expected cover c(d) can be calculated by numerical integration. 

They analyzed the case where both distributions are uniform on both sides of a 
radius D and obtained an explicit formula for c(d). Consider the following uniform 
distributions for a given D >  0 (the traditional non-gradual cover radius) and a 
range σ ≤ D for each one. Consequently, R1 = D − σ , and R2 = D + σ . 

. φ1(d) =
⎧⎨
⎩

1
σ

| R1 ≤ d ≤ D

0 | Otherwise
; φ2(d) =

⎧⎨
⎩

1
σ

| D ≤ d ≤ R2

0 | Otherwise

The function c(d) is (for complete details, see Drezner et al. (2010)): 

. c(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 d ≤ R1

1+u
2 + 2u ln 2 − 1

2

{
(u + 1)2 ln(1 + u) − u2 lnu

}
R1 ≤ d ≤ D

1−w
2 − 2w ln 2 + 1

2

{
(w + 1)2 ln(1 + w) − w2 lnw

}
D ≤ d ≤ R2

0 d ≥ R2

(2)

where u = D−d
σ

and w = d−D
σ

. Note that 0 ≤ u,w ≤ 1.
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In Fig. 2, we depict the expression for the expected partial cover c(d) by Eq. (2) 
for R1 = 1 and R2 = 3. By the linear decline gradual cover proposed in Drezner 
et al. (2004) with fixed values of R1 and R2, the graph has a line connecting d = 1 
and c(d) = 1 with d = 3 and c(d) = 0 rather than the depicted curve. When 
σ → 0, the random limit model converges to the non-gradual cover model. 

3.6 The Logit Gradual Cover Function 

Drezner et al. (1998) suggested a logit function 

. 
1

1 + eα+βd+γ d2

for the partial cover. Drezner et al. (2020b) applied a simpler version of the logit 
function with only one parameter α: 

.
1 + eα

eα + eα d
R

. (3) 

These logit functions do not restrict the cover to be partial only between R1 and R2.
A relatively large value of α is required as depicted in Figure 1 in Drezner et al.
(2020b). In Fig. 2 below, a value α = 10 was used so that the cover up to R1 is very 
close to 1 and the partial cover for a distance greater than R2 is very small. 

When α → ∞, the model converges to the traditional non-gradual cover model. 

For d <  R, eα d 
R << eα and becomes negligible compared to eα . Consequently, the 

ratio is close to 1. For d >  R, eα d 
R >> eα and eα becomes negligible compared to 

eα d 
R . Consequently, the ratio is close to 0. 

3.7 An Inverse Cumulative Normal Distribution 

Berman et al. (2019) considered the situation that an ambulance, police car, and 
fire truck needs to reach a demand point within a given time threshold. The time it 
takes to reach a demand point at distance d has a probability distribution that can 
be assumed normal by the central limit theorem. The mean of the distribution is μ 
at which the probability of reaching the demand point in time is 0.5. The standard 
deviation of the normal distribution, σ , reflects the variability of the travel time. 
When σ → 0, the inverse cumulative normal model converges to the non-gradual 
cover model. There is a likely time to reach the demand point within the given 
threshold. Therefore, the probability of not reaching a demand point within the time 
threshold is the cumulative normal distribution and the probability of reaching it is 
the inverse cumulative normal.
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Budge et al. (2010) performed an empirical study of over 7000 ambulance trips 
in the city of Calgary in Alberta, Canada, and developed a graph of the probability, 
which is a measure of coverage, that an ambulance will reach a patient within a 
given time as a function of the distance (the “Golden Half Hour”). The probability 
graph developed in their study is almost identical to the inverse cumulative normal 
curve. 

3.8 Correlated Binomial 

The distribution of ambulance trips in Budge et al. (2010) can be interpreted as a 
binomial distribution of events. Success is when the ambulance arrived on time and 
failure if it did not. The limit of a binomial distribution is a normal distribution. 
The underlying assumption of a binomial distribution is that the events are not 
correlated. What if the events are correlated? Drezner and Farnum (1993) developed 
a “generalized binomial distribution” (GBD) for correlated Bernoulli processes. See 
also Drezner (2019). 

An initial probability of success p is given. An association factor . θ , which is 
similar to the correlation coefficient, is given. Suppose that in the first k events, 
the number of successes is s. The probability of success in the next event is . (1 −
θ)p+θ s

k
. .θ = 0 yields the “standard” binomial distribution where the probability of 

success is p regardless of the number of successes so far. On the other extreme, for 
.θ = 1, if the first event is a success, all subsequent events are successes regardless 
of the value of p. The probability distribution when .θ = 1 consists of two values 
success with probability of p and failure with probability .1−p. It is not a bell shape 
distribution as is obtained by uncorrelated binomial. 

When .θ > 0, if the proportion of successes so far is greater than p, the probability 
of success in the next event is greater than p. If the rate of successes is below p, the  
probability of success is less than p. For example, in sport events, a “good” team 
that has a good record of successes so far in the season is more likely to succeed in 
the next game. Drezner and Farnum (1993) showed that the mean of the distribution 

is np, the same as the binomial distribution, but the variance is .p(1 − p)
n− 1

B(n,2θ)

1−2θ . 
They found that in baseball games .θ = 0.397. For complete details, see Drezner 
and Farnum (1993). 

Drezner (2006) further investigated the limit of the GBD. It is proven that for . θ ≤
0.5 the limit of the GBD, as the number of trials increases to infinity, is the normal 
distribution. For .θ > 0.5, it can be bi-modal. It was also found, by analyzing real 
data, that the grade distribution of 1023 multiple choice exams yielded . θ = 0.5921
and the number of wins of NBA teams at the end of the season yielded .θ = 0.5765; 
both are not a normal distribution. The percentage of “wins” for both exam scores 
and NBA teams are not random but depend on the skill of the individual. Bhootra 
et al. (2015) investigated the performance of mutual funds by the GBD and found 
that the performance of mutual funds is not random, but the skill of the managers 
plays an important role in their performance.
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An interesting gradual decline function is the inverse of the limit of the 
cumulative GBD. For .θ ≤ 0.5, the function is the inverse cumulative normal 
distribution, but for .θ > 0.5, the distribution can be bi-modal. For .θ = 1, the  
distribution is either success or failure, which is actually the traditional non-gradual 
cover function. There is no gradual cover; the cover drops abruptly from full cover 
to no cover. In Fig. 2, the partial cover function is depicted for .θ = 0.9. 

3.9 Comparing Gradual Cover Functions 

In Fig. 2, gradual decline in cover functions are depicted for .R1 = 1 and .R2 = 3. 
In the original non-gradual cover models, there is an abrupt decline in cover at a 
certain distance (distance of .R = 2 in the figure) from full cover to no cover. Church 
and Roberts (1984) and Berman and Krass (2002) proposed a step-wise decline in 
cover discussed in Sect. 3.2. Such approach still has discontinuities in the cover 
as a function of the distance. Drezner et al. (2004) proposed a linear decline in 
cover between . R1 and . R2, discussed in Sect. 3.3. This model is continuous but 
has a discontinuous derivative at .d = R1 and at .d = R2. Drezner et al. (2010) 
proposed that . R1 and . R2 are random variables rather than fixed values. Their model 
is discussed in Sect. 3.5. This partial cover function is continuous with a continuous 
derivative. By the directional cover, described in Sect. 3.4, it is close to linear decline 
and is the only function in Fig. 2 that is not equal to 0.5 at .d = 2. This is because 
the intersection area between the circles when the circle of radius R passes through 
the demand point is not half of the circle’s area. The logit-based gradual cover, 
discussed in Sect. 3.6, is based on Eq. (3). For .α = 10, which was used in the figure, 
the shape of the partial cover function resembles the random function shape. This 
shape also resembles the inverse normal distribution function discussed in Sect. 3.7 
for a standard deviation .σ = R−r

6 . The correlated binomial model, discussed in 
Sect. 3.8, is the inverse cumulative distribution of a possibly bi-modal distribution 
for .θ > 0.5. The graph depicted in the figure is calculated by a simulation using 
.θ = 0.9. The density function is bi-modal and the derivative of the curve has a 
sharper decline near the two modes and a shallow decline near .d = 2, which is the 
low point of the density function between the two modes. 

3.10 Summary and Discussion of Gradual Cover Models 

In the original gradual cover model, there is an abrupt decline from full cover to 
partial cover. In reality, cover does not drop abruptly. Earlier models of gradual 
cover attempted to rectify it by defining a decline of coverage by a step-wise or a 
linear function (Sects. 3.2, 3.3). More recently (see Sect. 3.4), it is assumed that 
every demand “point” is actually a neighborhood and not all customers are at the 
same distance from a facility.
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Fig. 2 Different gradual cover functions for .R1 = 1 and .R2 = 3
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Subsequent models discussed in Sects. 3.5–3.8 assume that the parameters of 
the gradual cover models are random rather than having fixed values. Such an 
assumption is closer to reality and provides more flexibility. For example, in 
Sect. 3.5, it is assumed that the start of partial cover . R1 and the start of no cover 
. R2 are random variables. In Sect. 4, we propose and test a new model assuming 
that the parameters of the directional gradual cover (Sect. 3.4) are random variables, 
which makes the model yet closer to reality. 

4 The Stochastic Directional Gradual Cover Model 

In this section, we propose a stochastic formulation for the directional gradual cover 
model. We incorporate standard gradual cover approaches into the directional cover 
model. As in the directional gradual cover, the demand point is defined by a circle 
of radius r . The facility does not cover a point in the plane by a disk of radius D, 
but there are two radii .R1 ≤ D ≤ R2 so that a point is fully covered within the 
circle of radius . R1, and not covered at all outside the circle of radius . R2. A point in 
the ring between . R1 and . R2 is partially covered. Each point in the circle of radius r 
centered at the demand point is covered at a proportion between 0 and 1. The cover 
of a demand point is the integral over the circle centered at the demand point, where 
the integrand at any point in the circle is its partial cover. 

In Fig. 3, a typical cover of one demand point by one facility is depicted. The 
intersection area within a radius . R1 is fully covered. The area beyond . R2 is not 
covered. The intersection area with the ring between . R1 and . R2 is partially covered. 
In the original directional gradual cover (Drezner et al., 2019a), .R1 = R2, the ring 
is a circle, and there is no area with partial cover. 

The partial cover between . R1 and . R2 can be defined in many ways. For example, 
the gradual cover can be defined by a reverse cumulative of a distribution: (i) a 
normal distribution centered at D with .R = D + 3σ and .r = D − 3σ discussed in 
Sect. 3.7, (ii) a beta distribution, and (iii) a logit distribution (Drezner et al., 2020b) 
discussed in Sect. 3.6. We opted in the computational experiments to define it as 
declining linearly between . R1 and . R2, which is a reverse cumulative of the uniform 
distribution, as proposed in Drezner et al. (2004) and discussed in Sect. 3.3. It is as  
easy to implement it by any gradual cover function as long as an explicit formula 
for the gradual decline is available. 

Suppose that k facilities are located in the area. Each point in the plane may be 
partially covered by several facilities. Let the proportions of cover of a point (not 
necessarily the demand point) by facility .1 ≤ j ≤ k be .0 ≤ pj ≤ 1. This proportion 
. pj can be calculated by a linear decline between . R1 and . R2, or any other rule. 
Interpreting these proportions as uncorrelated probabilities leads to a total cover of 
the point, P : 

.P = 1 −
k∏

j=1

(1 − pj ) (4)
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Fig. 3 Stochastic directional gradual cover 

Note that if .pj = 0, facility j does not affect the total cover, and if .pj = 1 for some 
j , the total cover is full at 100% regardless of the other proportions. 

4.1 Calculating the Total Cover 

The total cover of a demand point is calculated by a two-dimensional integral in the 
disk centered at the demand point. The partial cover at each point (the integrand) in 
the disk is calculated by Eq. (4). 

In the original directional cover model (Drezner et al., 2019a), the cover area of 
a demand point is the union of intersection areas between the circles centered at the 
facilities and the circle centered at the demand point. If at least one facility provides 
full cover, the total cover is full. Facilities that do not provide any cover can be 
removed from consideration. If, for example, there are five facilities that provide 
partial cover, it seems intractable to develop an explicit formula for the union of the 
five areas. It is possible to calculate the proportion of the circumference of a circle 
c with a radius .0 ≤ ρ ≤ r , centered at the demand point that is covered. Each circle 
centered at a facility covers part of the circumference between two angles . θ1 and 
. θ2, which are the intersection points between the circle centered at the facility and 
circle c. The proportion of cover is the union of these parts of the circumference.
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The total cover area of a demand point of radius r can be found by integration. 
Consider a circle of radius . ρ for .0 ≤ ρ ≤ r centered at the demand point. Let . γ (ρ)

be the proportion of the circumference of the circle of radius . ρ that is covered. The 
total cover area A is 

.A =
r∫

0

2πργ (ρ)dρ , (5) 

and the joint cover of a demand point of radius r is

.Cover = A

πr2
= 1

πr2

r∫
0

2πργ (ρ)dρ . (6) 

Note that if the circumference of every circle of radius . ρ is covered, .γ (ρ) = 1, then 
.Cover = 1 by Eq. (6). 

Drezner et al. (2019a) applied this calculation and evaluated the total cov-
ered area by Gaussian numerical quadrature based on Legendre polynomials. 
(Abramowitz & Stegun, 1972). For complete details, see Drezner et al. (2019a). 

In the stochastic directional gradual cover, it is not simple to calculate the 
proportion of a circumference of a circle that is covered. The “circle” centered at 
the facility is actually a ring with various proportions of covers in the ring. There 
is no clear way to evaluate the intersection between the ring and the circumference 
of the circle. It is calculated by an integral for every facility and the union is not 
straightforward to calculate. 

In the stochastic directional cover, as depicted in Fig. 3, it is not sufficient to 
calculate the union of the covered areas because some of the areas are partially 
covered and Eq. (4) need to be applied to each individual point. We therefore 
propose to evaluate the total cover numerically by the hexagonal pattern in the circle 
centered at the demand point as detailed in Drezner et al. (2021, 2019b). The points 
in the hexagonal pattern are defined by two sequences (all the combinations of the 
two lists for x and y): 
.x = 0,±1,±2, . . . ; y = 0,±√

3,±2
√
3, . . ., and 

.x = ± 1
2 ,± 3

2 ,± 5
2 , . . . ; y = ±

√
3
2 ,± 3

√
3

2 ± 5
√
3

2 , . . .. 
These points cover the plane with hexagons centered at each point with sides 

as perpendicular bisectors to six adjacent points. The area of each hexagon is . 
√
3
2 . 

All the points satisfying .x2 + y2 ≤ M for some M are selected. For example, 
.M = 220 results in .N = 805 points. To get N hexagons that cover a disk of radius 
r , we multiply the coordinates by a factor K so that .

√
3
2 NK2 = πr2. Leading 

to a factor of .K = r
√

2π
N

√
3
to get an hexagonal pattern in a circle of radius r 

centered at the origin (0, 0). Note that few hexagons have parts outside the circle and 
a small part of the area of the disk is not covered, but the total area of the hexagons 
is equal to the circle’s area. The perimeter of the covered area is a little ragged.
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Fig. 4 Hexagonal pattern of 
805 points 

Drezner et al. (2019b) investigated applying different areas for hexagons that are 
close to the circle’s perimeter and are either trimmed by the perimeter or have extra 
area bordered by the perimeter, and the results hardly changed. Therefore, such a 
refinement is not suggested. 

There are many values of the number of hexagonal points that can be selected. 
We propose to select 805 points in the hexagonal pattern (see Fig. 4) that lead to 
a good estimate of the integral (Drezner et al., 2021). The partial cover for each 
point is calculated by Eq. (4), the sum S of the partial covers for all 805 points is 
calculated, and the partial cover of the demand point is . S

805 . 
For example, consider a disk of radius 1 centered at the origin (demand point). 

The disk is partially covered by a facility located at (2,0). For a radius .D ≤ 1, there 
is zero cover. As D increases, partial cover increases up to .D = 3. For .D ≥ 3, there 
is full cover. The area can be calculated exactly by Eq. (1). In Table 1, the exact 
area is compared with the hexagonal numerical integration for .N = 805 points for 
various values of .1 ≤ D ≤ 3. The average difference is 0.005. In one case, the 
difference exceeds 0.01 and in all other cases, it is below 0.01. 

4.2 Investigating the Stochastic Directional Gradual Cover 

Any solution method that was applied for (heuristically) solving directional gradual 
cover models can be applied for the stochastic model. Rather than calculating 
the value of the objective function numerically by the directional objective, it is 
calculated by the stochastic objective. The “black box” providing the total partial 
cover by the directional model is replaced by a black box providing total partial 
cover by the stochastic objective. For example, Drezner et al. (2019a) applied the 
ascent algorithm, Tabu search (Glover & Laguna, 1997), and simulated annealing
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Table 1 Comparing exact proportion of the area to the hexagonal result 

D (1) (2) (3) D (1) (2) (3) 

1.0 0.000 0.000 0.000 2.1 0.509 0.512 0.003 

1.1 0.015 0.014 0.001 2.2 0.572 0.573 0.001 

1.2 0.043 0.039 0.004 2.3 0.636 0.645 0.009 

1.3 0.079 0.075 0.004 2.4 0.699 0.708 0.009 

1.4 0.120 0.114 0.006 2.5 0.762 0.770 0.008 

1.5 0.166 0.155 0.011 2.6 0.822 0.829 0.007 

1.6 0.217 0.210 0.007 2.7 0.879 0.888 0.009 

1.7 0.270 0.266 0.004 2.8 0.931 0.937 0.006 

1.8 0.327 0.323 0.004 2.9 0.974 0.976 0.002 

1.9 0.386 0.379 0.007 3.0 1.000 1.000 0.000 

2.0 0.447 0.446 0.001 

(1) The exact proportion of the area 
(2) The hexagonal pattern proportion 
(3) Absolute value of the difference 

(Kirkpatrick et al., 1983). Drezner et al. (2020a) applied the same heuristics but 
generated good starting solutions. Drezner et al. (2021) constructed a genetic 
algorithm (Holland, 1975; Goldberg, 2006) and solved the continuous case by 
SNOPT (Gill et al., 2005) and Nelder-Mead (Nelder & Mead, 1965; Dennis & 
Woods, 1987). 

The justification for using gradual decline in cover rather than abrupt drop in 
cover is that it provides better estimates for the actual cover observed in real 
applications. The question is not whether one model provides greater coverage 
than another but which one estimates the cover more accurately. We believe that in 
reality, cover is stochastic in nature and does not drop abruptly. Therefore, stochastic 
gradual cover estimates the total cover more accurately because it imitates reality 
better. There are examples that total cover by one approach is greater than the total 
cover by another approach for facilities located at the same location. However, this 
does not mean that one model provides more “actual” cover than the other. 

Consider locating one facility to cover four demand points, each with a weight of 
1, located on the vertices of a square of side length of 1. By the non-gradual cover 
objective, if .D < 0.5, a maximum of one demand point is covered for a total cover 
of 1. The four circles of radius D centered at the demand points do not intersect. For 

.0.5 ≤ D <
√
2
2 , the total cover is 2 because the only four intersections are of two 

circles of radius D. For  .D ≥
√
2
2 , all four circles intersect and cover the center of 

the square, and locating a facility there covers all 4 demand points for a total cover 
of 4.
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For the gradual cover model with the linear decline, it is fair to compare the non-
gradual results with D being at the center of the segment connecting . R1 and . R2. For  
.D = 0.499, we investigate the range of .R1 = 0.499 − σ to .R2 = 0.499 + σ . Since 
.R1 ≥ 0 by definition, then .σ ≤ 0.499. If we locate the facility at the center of the 

square, all four distances are equal to . 

√
2
2 . The partial cover of each demand point is 

.
0.499+σ−

√
2
2

2σ and the total cover is .4
0.499+σ−

√
2
2

2σ = 2 + 0.998−√
2

σ
. This total cover is 

greater than 1 for .σ >
√
2 − 0.998 ≈ 0.416, which is better than the non-gradual 

optimal solution. However, for .σ < 0.416, the non-gradual solution is better. 
A different question is whether the gradual cover objective for a given location 

of the facility is higher or lower than the non-gradual cover. It is easy to construct 
examples both ways. Consider the example of four demand points on the vertices of 
a square of side 1 and a facility located at the center of the square. For . D = 0.499
with .R1 = 0.499 − σ and .R2 = 0.499 + σ discussed above, for .σ > 0.416, 
the gradual cover is higher than the non-gradual cover (which is 0). However, for 

.D >
√
2
2 , non-gradual cover is 4 while partial cover is less than 4 when .R1 <

√
2
2 . 

We compared the combined cover by the stochastic directional gradual cover 
model calculated for given locations of facilities to the directional cover and non-
gradual cover model. For the comparison, we generated problems with . n = 100
demand points and up to 100 facilities by a pseudo-random number generator. 

In order to allow for future comparisons, the problems were generated by the 
pseudo-random number generator described in Drezner et al. (2019c). It is based 
on the pseudo-random number generator proposed in Law and Kelton (1991). A 
sequence . rk of integer numbers in the open range (0, 100,000) is generated. A 
starting seed . r1, which is the first number in the sequence, and a multiplier . λ, 
which is an odd number not divisible by 5, are selected. We used .λ = 12,219. 
The sequence is generated by the following rule for .k ≥ 1: 

. rk+1 = λrk −
⌊

λrk

100,000

⌋
× 100,000.

The random number between 0 and 10 is .
rk

10,000 . 
For demand points (with coordinates between 0 and 10), the x coordinates were 

generated by .r1 = 97, and for the y-coordinates, we used .r1 = 367. For the weights, 
we used .r1 = 12,347 and .wi = 1+ ri

100,000 so .1 < wi < 2. Facilities were generated 
by .r1 = 23,431 for the x-coordinates and .r1 = 56,407 for the y-coordinates. 

The points are depicted in Fig. 5, and the first 10 points are listed in Table 2. For  
the non-gradual cover model, a facility covers a demand point within a distance of 
3. For directional cover models, each demand point is defined by a circle of radius 
.r = 1. For the directional cover (Drezner et al., 2019a), the facility covers points 
within a distance of 3. For the stochastic directional model, the facility covers a point 
in a range between 2 and 4. At a distance of 2, the cover is full and at a distance of 
4, there is no cover. Cover declines linearly between 2 and 4.
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Fig. 5 The 100 demand 
points and 20 facilities 
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Table 2 The first 10 
pseudo-randomly generated 
points 

Demand points Facilities 

i x y w x y 
1 0.0097 0.0367 1.12347 2.3431 5.6407 

2 8.5243 8.4373 1.67993 0.3389 3.7133 

3 8.4217 5.3687 1.06467 1.0191 2.8127 

4 4.7523 0.1453 1.20273 2.3829 8.3813 

5 8.3537 5.4207 1.15787 6.6551 1.1047 

6 3.8603 5.5333 1.01353 8.6669 8.3293 

7 9.0057 1.3927 1.32307 0.8511 5.7167 

8 0.6483 7.4013 1.59233 9.5909 2.3573 

9 1.5777 6.4847 1.68027 1.2071 3.8487 

10 7.9163 6.5493 1.21913 9.5549 7.2653 

The comparison of the proportion cover of all 100 demand points by p facilities 
for the traditional cover model that is termed non-gradual, the directional gradual 
cover (Drezner et al., 2019a), the stochastic directional gradual cover model 
proposed in this chapter, are reported in Table 3. The best covers for each p are 
marked in boldface. Note that these are not the optimal solutions but the values of the 
objective function at facilities locations that were randomly generated and depicted 
in Table 2. The procedures were coded in FORTRAN using double precision
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Table 3 Comparing 
non-gradual, directional, and 
stochastic directional covers 

p (1) (2) (3) 

1 0.21401 0.21033 0.21345 

2 0.24379 0.26227 0.26877 
3 0.33405 0.32161 0.32185 

4 0.38197 0.39176 0.39670 
5 0.62032 0.64340 0.63884 

6 0.82693 0.83375 0.82034 

7 0.82693 0.83375 0.82120 

8 0.88800 0.90097 0.88162 

9 0.88800 0.90102 0.88621 

10 0.89564 0.91078 0.90567 

11 0.89564 0.91078 0.90746 

12 0.95949 0.95661 0.94921 

13 0.95949 0.95661 0.95054 

14 0.96974 0.96901 0.96306 

15 0.98192 0.98098 0.97823 

16 1.00000 0.99028 0.98590 

17 1.00000 0.99028 0.98633 

18 1.00000 0.99031 0.98675 

19 1.00000 0.99031 0.98726 

20 1.00000 0.99031 0.98732 

Average 0.79430 0.79676 0.79184 

(1) Non-gradual proportion cover 
(2) Directional proportion cover 
(3) Stochastic proportion cover 

arithmetic and were compiled by an Intel 11.1 FORTRAN compiler using one thread 
with no parallel processing. The programs were run on a desktop with the Intel 
i7-6700 3.4GHz CPU processor and 16GB RAM. We do not report the run times 
because they are mostly less than a millisecond. 

Since the demand points are basically located randomly and uniformly in the 
square, the proportion of cover does not vary by much. The majority of the best 
proportion of cover was found by the non-gradual cover approach, especially for 
.p ≥ 12. The average was the highest (not by much) for the directional model. 

We found the proportions for .p = 1, 2, . . . , 100. The non-gradual model 
provided full cover for .p ≥ 16, the directional cover model yielded full cover for 
.p ≥ 54, and the stochastic directional cover model for .p ≥ 75.
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Equity in Stochastic Healthcare Facility 
Location 

Karmel S. Shehadeh and Lawrence V. Snyder 

Abstract We consider issues of equity in stochastic facility location models for 
healthcare applications. We explore how uncertainty exacerbates inequity and 
examine several equity measures that can be used for stochastic healthcare location 
modeling. We analyze the limited literature on this subject and highlight areas 
of opportunity for developing tractable, reliable, and data-driven approaches that 
might be applicable within and outside healthcare operations. Our primary focus 
is on exploring various ways to model uncertainty, equity, and facility location, 
including modeling aspects (e.g., tractability and accuracy) and outcomes (e.g., 
equity/fairness/access performance metrics vs. traditional metrics like cost and 
service levels). 

Keywords Equity · Healthcare · Facility location · Uncertainty · 
Inequity-averse optimization · Stochastic optimization 

1 Introduction 

Equity and uncertainty concerns arise naturally in many real-life applications (e.g., 
healthcare scheduling, facility location, disaster response operations, air traffic 
control, etc.). Thus, incorporating equity and uncertainty in optimization contexts is 
necessary in order to make accurate, equitable, and robust decisions. Unfortunately, 
however, accounting for equity is a complex task, primarily because there is no 
unique notion of equity that is universally accepted; “equity” is generally understood 
to refer to the fair allocation of resources, but a precise definition often depends on 
the context. Moreover, uncertainty, an intrinsic property of real-life applications, 
interacts with equity in complicated and poorly understood ways. In particular, 
uncertainty complicates the quantification of efficiency loss (e.g., minimizing the 
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fixed cost associated with establishing and locating outpatient clinics) incurred in 
the pursuit of equity (e.g., equitably allocating outpatient clinics across geographical 
areas). For example, we may need to open a larger number of specialty clinics 
(and thus incur higher fixed and operational costs) to ensure equitable allocation 
of outpatient clinics across geographical areas. However, the number of specialty 
clinics needed and the associated costs are not easy to quantify under random 
demands for specialty care, which depend on other random factors such time, 
location, and outspread of chronic and infectious diseases. In addition, deterministic 
models of most real-world problems are often challenging. Thus, incorporating both 
uncertainty and equity metrics or constraints may increase the complexity of these 
problems. 

Historically, equity has been mainly considered in the public sector, with 
considerably less attention in the private sector. In this chapter, we focus on the 
issue of equity in stochastic facility location models for healthcare applications. The 
main motivation behind the attempt to establish equity in healthcare in general— 
and the need for inequity-averse models for healthcare facility (HCF) location in 
particular—is, of course, an ethical one: humans have equal rights, and therefore, 
nobody should be discriminated against by inequitable access to healthcare services 
or distribution of healthcare services. Another more pragmatic motivation for 
striving for equitable HCF location–allocation solutions is the need to avoid adverse 
health outcomes of vulnerable populations who often do not have proper or equal 
access to HCF (Gutjahr & Fischer, 2018). Finally, extending classical models with 
an emphasis on equity and equity–uncertainty interaction is practically relevant and 
technically interesting. 

We first analyze different aspects and measures of equity in the literature. Then, 
we analyze recent static and mobile HCF location models to explore various ways 
to model uncertainty (demand, service time, travel time, etc.), equity, and facility 
location, including modeling aspects (e.g., tractability and accuracy) and outcomes 
(e.g., equity-, fairness-, or access-based performance metrics vs. traditional metrics 
like cost and service levels). Our goal is not to provide a comprehensive survey; 
instead, our goal is to highlight the issue of equity and access and the need for data-
driven and tractable models to address emerging stochastic HCF problems. 

The remainder of this chapter is organized as follows: In Sect. 2, we analyze 
existing definitions and metrics of equity as well as common methods to model 
these metrics. In Sect. 3, we briefly discuss the challenges of incorporating 
uncertainty and equity and demonstrate through a simple example that uncertainty 
and equity interact in ways that should not be ignored. In Sect. 4, we provide a 
high-level analysis of recent stochastic HCF location literature with a particular 
focus on studies that proposed and analyzed inequity-averse approaches. Maybe 
not surprisingly, and sadly, this analysis reveals that there is limited literature 
considering equity and equity–uncertainty interaction. Nevertheless, there are many 
opportunities to use the powerful tools of operations research to address equity 
concerns in emerging HCF location problems and derive inequity-averse stochastic 
HCF location approaches. In Sect. 5, we present some future research opportunities 
and open questions.
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2 What Is Equity, Anyway? 

To account for equity in facility location or any other decisions, one first needs to 
provide an exact meaning of equity. Despite the importance of the subject, there is 
no unique notion (definition) of equity that is generally accepted. Instead, there is a 
wide variety of notions of equity and fairness in the economics and decision theory 
literature that depend on the context. The primary concern for equity in resource 
allocation is treating entities fairly, such that everyone receives the same level of 
service and no one is at a disadvantage. The allocated resource(s) can be a particular 
good, or bad, or a chance of good or bad. The entities can be a population, group 
of people at some location or belonging to some social classes or organizations, etc. 
In general, most equity literature aims at equal distribution of benefits or disutilities 
between entities (Mostajabdaveh et al., 2019). Although there is no single equity 
concept that we can use to design inequity-averse HCF location models, there are 
four key areas of equity research for health systems (Cardoso et al., 2015, 2016). 
These are:

• Equity of access: Informally, accessibility is the relative ease by which patients 
can reach a healthcare facility from a given location (Hawthorne & Kwan, 2013; 
Jin et al., 2015; Wang, 2012). Thus, patients should receive the care they need 
as close as possible to their place of residence or employment. In the case of 
emergency services, accessibility is the ability of a healthcare provider to reach 
the patients. Accessibility measures include both spatial and nonspatial factors 
(Wang, 2012). Spatial factors include the spatial separation between supply (e.g., 
surgical centers) and demand (e.g., patient population needing surgical care) 
and how they are connected in space. Thus, it is a classical aspect in location 
analysis. Nonspatial factors include demographic (e.g., age, gender, sex, etc.) and 
socioeconomic (e.g., income, poverty, female-headed households, etc.) variables, 
which also vary across geographical areas.

• Equity of utilization: Utilization refers to the satisfied demand for different 
services. Ensuring equity of utilization means providing roughly equal service 
levels across services. Note that this diverges from the concept of “deliver the 
cheapest service” often observed in location models that seek cost minimization.

• Socioeconomic equity: Socioeconomic equity stipulates that the unsatisfied 
demand for population groups with lower income should not be greater than that 
of groups with higher income. Decision-makers may also want to ensure that 
unmet demand for lower-income or vulnerable population groups is sufficiently 
low.

• Geographical equity: Geographical equity refers to the ability of the system to 
provide relatively equal levels of unsatisfied (satisfied) demand across geograph-
ical areas. Decision-makers often want to ensure that unsatisfied demand is not 
vastly different across geographical areas, or that some geographical areas do not 
lack healthcare service entirely.
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As with other performance measures in any optimization problem, one can account 
for equity in these areas by putting the related metrics in the objective function 
and/or in the constraints. 

Equity research in other application domains additionally considers social equity 
and diversity. The social equity concept quantifies equity based on how any good 
received is proportional to the need (Levinson, 2010). For example, the volume of 
the demand for a particular health service may differ among demand nodes in rural 
and urban areas. If only a fraction of the demand can be satisfied, measures such as 
the proportion of the satisfied demand can be used to measure equity and service 
quality (Karsu & Morton, 2015). Diversity is another concept that is indirectly 
related to equity. Suppose, for example, that we want to select a set of locations 
to open vaccination centers. The decision-maker may have concerns about diversity 
because they want certain population groups to have a certain degree of coverage 
or access to vaccination by the chosen location. One way to achieve this is to use 
quotas, that is, ensuring that a certain proportion of the vaccination centers will be 
located to cover the groups of concern (Karsu & Morton, 2015). This approach treats 
people with different characteristics differently, such that the selected locations are 
diversified enough in the sense that they cover diverse groups of concerns. 

In contrast to most of the HCF literature (see Sect. 4 and Ahmadi-Javid et al. 
(2017)), inequity measurement has found explicit and extensive consideration in the 
economic and decision theory literature and a few discussions in the humanitarian 
logistics literature. The commonly accepted theme is that there is no one-size-fits-
all solution to ensure equity, and customized methods are needed to measure and 
handle application-specific equity concerns. Using transparent and explicit criteria 
that determine what is equitable and what is not is useful in ensuring that the 
decisions are acceptable, equitable, and implementable in practice. 

There are also different operations research (OR) methods and metrics for 
incorporating equity in the decision process. The precise interpretation of each 
depends on both the structure of the problem at hand and the decision-maker’s 
understanding of equity (Karsu & Morton, 2015). Karsu and Morton (2015) give  
a comprehensive and deep survey on the use of equity concepts connected with 
optimization models. In the following subsections, we provide a high-level overview 
and analysis of the most common equity measures detailed in Karsu and Morton 
(2015). 

2.1 The Rawlsian Approach 

The Rawlsian approach (Rawls, 1999) is one of the oldest, most common, and 
simplistic approaches used in OR to incorporate equity in optimization models. 
This approach represents equity preference by focusing on the worst-off entity, 
that is, the minimum outcome level in a distribution. One can enforce a constraint 
that ensures that the minimum outcome is larger than a predefined level or seek to 
maximize the minimum outcome. For example, in the p-center problem, a Rawlsian
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approach would seek to locate p facilities to minimize the maximum distance 
between any demand point and its nearest facility. One common criticism of the 
Rawlsian approach is that it focuses exclusively on the worst case and ignores the 
performance for all other entities. Some studies extend the Rawlsian approach to 
a maximum lexicographic approach. That is, the welfare of the worst-off is first 
maximized subject to resource and other constraints, then the second worst-off, 
then the third worst-off, and so on (Kostreva et al., 2004). As pointed out by Karsu 
and Morton (2015), the lexicographic maximin approach is a regularization of the 
Rawlsian maximin approach and is inequity averse. 

2.2 Approaches Based on Inequity Indices 

Various studies that involve equity incorporate an inequity index into the model, 
which often assigns a scalar value to any given distribution showing the degree of 
inequity. Inequity indices are often used to assess the disparity in distribution, and 
so they are related to several mathematical concepts of dispersion and variance. 
Inequity indices respect the anonymity property (Chakravarty, 1999) and often 
equal 0 when perfect equity occurs. Anonymity property indicates that an inequity 
measure does not depend on the labeling of individuals. As pointed out by Panzera 
and Postiglione (2020), the anonymity property implies that an inequity measure is 
permutation invariant, which means that very different spatial patterns can give rise 
to the same measure. Suppose we have a set of .i ∈ I individuals (or groups). Let . xi

denote the outcome value at node i. Below we use x to briefly summarize the most 
commonly used inequity indices in the literature (adapted from Karsu and Morton 
(2015)):

• The deviation from the mean (.
∑

i∈I (xi − x̄), where . x̄ is the mean value). This 
index measures the total deviation from the mean. In some applications, the mean 
of the outcome distribution is often unknown, especially at the time when the 
decisions leading to the outcome x are being made. Thus, the mean . x̄ is often 
approximated based on expert knowledge or derived endogenously in the model. 
Some studies use the total absolute deviation from the mean (i.e., .

∑
i∈I |xi − x̄|). 

Note that the mean absolute deviation (MAD) disregards how these deviations 
are distributed. Thus, MAD does not provide an incentive to minimize the gap 
among high values of the outcome (i.e., above or equal to the average) and among 
low values of the outcome (i.e., below or equal to the average). Other studies 
use the mean squared deviation, the maximum component-wise deviation from 
mean, or only the positive or negative deviation from the mean as a measure of 
inequity. Mathematically, if the mean is (assumed) known, then using MAD in 
the objective function or a constraint may yield a linear optimization problem.

• The range or difference between the minimum and maximum levels of outcomes 
(.maxi xi − mini xi). Some studies also minimize this range normalized by the 
minimum outcome or enforce a constraint that ensures that . mini xi

maxi xi
≥ β, where
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. β is an equity or fairness parameter (Chang et al., 2006). This index is used in 
many applications owing to its being simple and easy to understand. However, 
as pointed out by Karsu and Morton (2015), by considering the two extremes 
(e.g., most and least deprived), this index is rather crude as it fails to distinguish 
allocations with the same values of extremes but different levels of other values. 
Thus, the range is sensitive to extreme values and ignores the interior of the 
distribution. Note that the normalized range may lead to a nonlinear and complex 
formulation.

• The variance or standard deviation. A small variance means a low dispersion of 
the outcome. Both variance and standard deviation typically result in nonlinear 
optimization problems.

• The Gini coefficient (.
∑

i∈I

∑
j∈I |xi − xj |/2|I | ∑i∈I xi). The Gini coefficient 

(and indices derived based on it) is one of the most widely used measures 
of income inequity in an economy that satisfies the Pigou-Dalton principle of 
transfers (PD), which states that any transfer from a poorer person to a richer 
person, other things remaining the same, should always lead to a less equitable 
allocation. Note that the Gini index is a dimensionless quantity, and thus, it 
cannot often be incorporated in a natural way with other terms in a multicriteria 
problem (Gutjahr & Fischer, 2018). Moreover, this measure has the disadvantage 
of being highly nonlinear, possibly making the resulting optimization problem 
extremely complex. The Gini index will always assume a value between 0 
(indicating total equity) and 1 (indicating total inequity).

• Sum of pairwise (absolute) differences (.
∑

i∈I

∑
j∈I |xi −xj |) and sum of squared 

deviations between all pairs. In contrast to MAD, the sum of pairwise absolute 
differences (SAD) does consider the spread of the outcome. Like MAD, the SAD 
term can be linearized.

• The deviation from a predefined target: If the predefined target is the best possible 
output, for example, then satisfying it indicates perfect equity. Thus, the larger 
the deviation, the larger the inequity. Minimizing this deviation is often referred 
to as minimizing regret. Related measures include minimizing maximum regret, 
minimizing absolute regret, etc. 

Remark 1 Selecting one of the above (or other) indices implies a particular 
assumption on the decision-maker’s or optimizer’s attitude to equity. 

2.3 Approaches Based on Inequity-Averse Aggregation 
Functions 

Karsu and Morton (2015) propose approaches based on inequity-averse aggregation 
functions, which use the aggregation function of the distribution vector in the model 
that would encourage equitable distributions. Unlike an inequity index, which only 
focuses on the inequity in a distribution, an inequity-averse aggregation function 
reflects concerns for both equity and efficiency. There are several ways to capture
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equity in this approach. For example, some studies use aggregation functions that 
have convenient mathematical properties such as convexity. 

Marín et al. (2010) use ordered median functions—weighted total cost functions 
in which the weights are rank-dependent—as objective functions of flexible discrete 
location problems. We refer to Karsu and Morton (2015) for more details on 
inequity-averse aggregation functions. 

3 Equity Versus Uncertainty 

Uncertainty is intrinsic to many HCF location problems since various key input 
parameters such as demand, costs, and travel times are often unpredictable. While 
inequity-averse optimization in a deterministic context is conceptually relatively 
simple, though often computationally nontrivial and demanding, location decisions 
under uncertainty represented by suitable stochastic models introduce additional 
challenges for the following primary reasons. First, because of uncertainty, the value 
estimates are often not perfectly accurate, whereby the ex post realized values of 
the impact (e.g., access to care, percentage of satisfied demand across geographical 
locations) and alternative decisions rarely coincide with their ex ante estimated 
values. 

Second, in most real-world applications such as HCF location, it is unlikely that 
we can accurately infer the actual distributions of random parameters and thus 
quantify the impacts of decisions on equity, especially with limited data or no 
information during the planning stage. Even when historical data is available, the 
quality of such data may not be sufficient to estimate the distribution of uncertain 
factors accurately, and future uncertainty is often not distributed as the past. Various 
studies show that different distributions can typically explain raw data of uncertain 
parameters, indicating distributional ambiguity (i.e., uncertainty in distribution type 
(Esfahani & Kuhn, 2018; Vilkkumaa & Liesiö, 2021)). 

Third, incorporating equity measures and addressing both uncertainty and 
distributional ambiguity may increase the overall complexity of HCF location 
problems. However, ignoring uncertainty and equity–uncertainty interaction may 
lead to devastating costs and health outcomes. Adverse outcomes associated with 
poor HCF location decisions include increased costs, disparities in service, and 
increased illness or death. For example, a hard-to-access healthcare facility is likely 
to be associated with increased morbidity (disease) and mortality (death). 

In this section, we demonstrate through a simple example that uncertainty and 
equity interact in ways that should not be ignored—the decision one should make in 
the presence of both considerations is often different from the decision under either 
consideration in isolation. As detailed in Ahmadi-Javid et al. (2017) and Daskin and 
Dean (2005), and in Sect. 4, most of the existing HCF location models are extensions 
of basic discrete location problems (in which facilities can be established only at 
candidate locations), including p-median, p-center, covering-based, and fixed charge 
models. For brevity and illustrative purposes, herein, we next analyze extensions of
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Table 1 General notation 

Parameters and sets 

p Number of facilities 

I Set of locations 

.di,j Distance/travel time between any pair of nodes .i ∈ I and . j ∈ I

.wi Demand at node i 
First-stage decision variables 

.xj . 

{
1, if a facility is open at candidate location j, 
0, otherwise. 

.yi,j . 

{
1, if demand point i is assigned to a facility at candidate location j, 
0, otherwise. 

the p-median and p-center using some of the linear equity metrics discussed in the 
previous section. Specifically, we define different equity objectives based on the sum 
or maximum of pairwise (absolute) differences in distances or demand-weighted 
distances. 

Table 1 summarizes the general notation we use in all formulations. The decision 
variables listed in the table are first-stage decision variables; we will introduce 
the second-stage variables shortly, when we discuss stochastic models. We assume 
that all demand nodes are also potential facility locations, but this assumption is 
straightforward to relax if necessary. Using the notation in Table 1, we define the 
following common feasible set among all formulations: 

. X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x, y :
(C1)

∑
j∈I xj = p

(C2)
∑

j∈I yi,j = 1,∀i ∈ I

(C3) yi,j ≤ xj , i ∈ I, j ∈ I

(C4) yi,j ∈ {0, 1}, xj ∈ {0, 1},∀i ∈ I, j ∈ I

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Constraint (C1) specifies the total number of facilities to be established. Con-
straints (C2) ensure that each demand point is assigned to exactly one facility, and 
constraints (C3) limit assignments to open facilities. Constraints (C4) are integrality 
constraints. Table 2 presents several deterministic formulations for locating p 
facilities, including both classical facility location problems such as the p-median 
and p-center, as well as equity-based formulations. We do not claim that the equity-
based approaches listed here are the best models for considering equity. Rather, we 
chose these measures because they are used frequently and because they are useful 
for illustrating the interaction between uncertainty and equity. 

In the next section, we compare the optimal solutions obtained using the 
deterministic formulations in Table 2 and their stochastic programming (SP) 
counterparts. In the SP, travel time and demand are modeled as random variables 
that follow fully known probability distributions. The objective is to minimize the 
expectation of the objective function, where the expectation is taken with respect to 
an assumed known distribution. We approximate solutions to the SP models using
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Table 2 Optimization models 

Model name Formulation 

Median min
{ ∑

i∈I

∑

j∈I 
widi,j yi,j : (x, y) ∈ X

}

Center min
{

max 
i∈I

∑

j∈I 
di,j yi,j : (x, y) ∈ X

}

Total unweighted distance min
{ ∑

i∈I

∑

j∈I 
di,j yi,j : (x, y) ∈ X

}

Total unweighted 
deviation 

min
{ ∑

i∈I

∑

j �=i∈I 
|zi − zj | :  (x, y) ∈ X , zi = ∑

j∈I 
di,j yi,j , ∀i ∈ I

}

Max unweighted deviation min
{

max 
i,j 

|zi − zj | :  (x, y) ∈ X , zi = ∑

j∈I 
di,j yi,j , ∀i ∈ I

}

Total weighted deviation min
{ ∑

i∈I

∑

j �=i∈I 
|zi − zj | :  (x, y) ∈ X , zi = ∑

j∈I 
widi,j yi,j , i  ∈ I

}

Max unweighted deviation min
{

max 
i,j 

|zi − zj | :  (x, y) ∈ X , zi = ∑

j∈I 
widi,j yi,j , i  ∈ I

}

Max sum of unweighted 
deviations 

min
{

max 
i∈I

∑

j∈I 
|zi − zj | : (x, y) ∈ X , zi = ∑

j∈I 
di,j yi,j , ∀i ∈ I

}

Max sum of weighted 
deviations 

min
{

max 
i∈I

∑

j∈I 
|zi − zj | : (x, y) ∈ X , zi = ∑

j∈I 
widi,j yi,j , ∀i ∈ I

}

Sum of maximum 
unweighted deviations 

min
{ ∑

i∈I 
max 
j∈I 

|zi − zj | :  (x, y) ∈ X , zi = ∑

j∈I 
di,j yi,j , ∀i ∈ I

}

Sum of maximum 
weighted deviations 

min
{ ∑

i∈I 
max 
j∈I 

|zi − zj | :  (x, y) ∈ X , zi = ∑

j∈I 
widi,j yi,j , ∀i ∈ I

}

their sample average approximation (SAA). That is, we generate a sample of N 
scenarios (each scenario consists of a vector of realizations of demand and travel 
time which are drawn independently from the distributions corresponding to each 
node and pair of nodes, respectively) and then optimize the sample average of the 
objective. (The technical details of SAA are out of the scope of this chapter, and 
we refer the reader to Kim et al. (2015), Kleywegt et al. (2002), Mak et al. (1999), 
Shapiro et al. (2021) for a thorough discussion.) For example, the SAA of the p-
center model is 

. min

⎧
⎨

⎩

N∑

n=1

1

N
zn : (x, y) ∈ X , zn ≥

∑

j∈I

dn
i,j yi,j , ∀i ∈ I, n ∈ N

⎫
⎬

⎭
(1a) 

Here, the .dn
i,j values are the travel times (distances) under the nth sample, and . zn is 

the optimal objective function value of the (deterministic) p-center problem under 
the nth sample.
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3.1 Example: Where to Locate a New Hospital in Lehigh 
County? 

In this subsection, we consider locating a single hospital (i.e., .p = 1) in a service 
region based on Lehigh County, that is located in the Lehigh Valley region of the US 
state of Pennsylvania. We consider a dataset consisting of 20 selected nodes: the 20 
largest communities in Lehigh County according to the 2010 census, plus the city 
of Easton1 (see Fig. 1.) We calculated the distance and travel time between each 
pair of nodes using the Google API. We use these travel times as the .di,j values 
for the deterministic models. For the stochastic models we set both the average 
travel time (.μd

i,j ) and the standard deviation of travel times (. σd
i,j ) between each 

pair of nodes .(i, j) equal to the calculated travel time, for all . (i, j). We use the  
population estimate in each county based on the 2010 US census (see Table 3) 
to construct the following demand structure. We use the population percentage 
(weight) at each node to generate the mean (average) demand at each node .i ∈ I as 
.μw

i = population% × 1000 (i.e., total demand of 1000). To a certain extent, 
this structure reflects what may be observed in real life, that is, locations with 
more population typically create greater demand. We set the standard deviation as 
.σw

i = 0.5μw
i , for all .i ∈ I . 

We generate the following two sets of N data samples for the parameters w and 
d.

• Set 1: .wi ∼ lognormal (LogN) with mean .μw
i and standard deviation . σw

i , and 
.di,j ∼ U [μd

i,j − �,μd
i,j + �], where .� = 10 minutes.

• Set 2: .wi ∼ LogN with mean .μw
i and standard deviation . σw

i , and .di,j ∼ LogN 
with mean .μd

i,j and standard deviation . σd
i,j . 

We solve the SAA counterparts of the deterministic models in Table 2 with the 
generated data samples. In addition, we solve the deterministic formulations with 
one scenario (.N = 1). Tables 4 and 5 present the optimal solutions under Sets 
1 and 2. We make the following observation from these tables. First, the optimal 
location can change when we consider uncertainty or equity, which is expected 
and not new. Second, incorporating both uncertainty and equity result in a solution 
that is often different from incorporating either one. For example, the deterministic 
and SAA solutions of the p-median problem respectively locate the hospital at 
Catasauqua and Fountain Hill under Set 1. In contrast, the deterministic and SAA 
solutions of the total weighted deviation problem, which minimizes the sum of the 
absolute deviations in demand-weighted travel time, respectively locate the hospital 
at Allentown and Dorneyville. Third, different measures of inequity aversion under 
uncertainty can result in different optimal solutions. Fourth, the SAA solutions may 
be different under different distributions, motivating the need for distribution-free

1 Easton is not in Lehigh County; we included it because it is the third largest city in the Lehigh 
Valley. 
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Table 3 Lehigh County 
nodes and their population 
based on the 2010 census of 
Lehigh County 

City/town/etc. Pop Pop% Avg. demand 

Allentown 118,032 40.9% 409 

Bethlehem 74,982 26.0% 260 

Emmaus 11,211 3.9% 39 

Ancient Oaks 6661 2.3% 23 

Catasauqua 6436 2.2% 22 

Wescosville 5872 2.0% 20 

Fountain Hill 4597 1.6% 16 

Dorneyville 4406 1.5% 15 

Slatington 4232 1.5% 15 

Breinigsville 4138 1.4% 14 

Coplay 3192 1.1% 11 

Macungie 3074 1.1% 11 

Schnecksville 2935 1.0% 10 

Coopersburg 2386 0.8% 8 

Alburtis 2361 0.8% 8 

Cetronia 2115 0.7% 7 

Trexlertown 1988 0.7% 7 

Laurys Station 1243 0.4% 4 

New Tripoli 898 0.3% 3 

Slatedale 751 0.3% 3 

Easton 26,800 9.3% 93 

Total 288,310 

Table 4 Optimal locations yielded by each model under Set 1. Notation: DET is the deterministic 
model solved with 1 scenario, and SAA is the SAA counterpart of each solved with . N = 50

Model DET SAA 

Median Catasauqua Fountain Hill 

Center Dorneyville Catasauqua 

Total unweighted distance Dorneyville Cetronia 

Total unweighted deviation Coplay Cetronia 

Max unweighted deviation Allentown Catasauqua 

Total weighted deviation Allentown Dorneyville 

Max unweighted deviation Catasauqua Dorneyville 

Max sum of unweighted deviations Allentown Catasauqua 

Max sum of weighted deviations Catasauqua Dorneyville 

Sum of maximum unweighted deviations Catasauqua Catasauqua 

Sum of maximum weighted deviations Catasauqua Fountain Hill
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Table 5 Optimal locations yielded by each model under Set 2 

Model DET SAA 

Median Cetronia Allentown 

Center Catasauqua Cetronia 

Total unweighted distance Wescosville Dorneyville 

Total unweighted deviation Catasauqua Cetronia 

Max unweighted deviation Catasauqua Cetronia 

Total weighted deviation Cetronia Allentown 

Max unweighted deviation Cetronia Allentown 

Max sum of unweighted deviations Catasauqua Cetronia 

Max sum of weighted deviations Cetronia Allentown 

Sum of maximum unweighted deviations Catasauqua Catasauqua 

Sum of maximum weighted deviations Cetronia Allentown 

models. For example, the SAA solution for max unweighted deviation locates the 
hospital at Catasauqua and Cetronia under Set 1 and Set 2, respectively. 

4 Is the Stochastic HCFL Literature Inequity Averse? 

In this section, we provide a high-level analysis of recent stochastic approaches 
for HCF location, focusing on studies proposing inequity-averse approaches pub-
lished between 2004 and 2017. By inequity averse, we mean any approach that 
considers one or more of the considerations mentioned above or other equity-
related objectives or constraints. Our goal is to bring attention to a fundamental 
and timely question: Is the stochastic HCF location literature inequity averse?. We  
next analyze the limited literature considering equity and uncertainty, highlighting 
existing equity-related objectives or constraints and the challenges of incorporating 
these. 

For a comprehensive survey on the HCF location–allocation literature, we refer 
to (Rahman & Smith, 2000; Daskin & Dean, 2005; Li et al., 2011; Güneş et al., 
2019; Cissé et al., 2017; Gutiérrez & Vidal, 2013; Grieco et al., 2020; Ahmadi-
Javid et al., 2017). The recent survey by Ahmadi-Javid et al. (2017) provides a 
thorough classification of HCF location problems, models, and solution methods in 
the last decade, identifying gaps and possible future directions. They first provide 
a framework to classify different types of non-emergency and emergency HCFs. 
Then, they analyze the literature on HCF location problems along ten descriptive 
dimensions (e.g., uncertainty, single or multi-period settings, etc.). Next, we dive 
deeper into this literature, highlighting those considering equity and/or uncertainty. 
Note that mathematical differences between optimization models for each type (and 
sub-type) of HCFs are due to, for example, the nature of the service provided (and 
thus different objectives, constraints, and random factors), nature of the operation
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(mobile vs. static, e.g., mobile primary care clinic vs. a primary clinic in a hospital), 
decision-maker perspective, case study, etc. 

4.1 Non-emergency HCF Location 

Non-emergency health services include medical treatment, observation, prevention, 
testing, and other healthcare services provided to patients whose conditions are not 
urgent or considered an emergency. Next, we review some of the literature on major 
non-emergency HCFs. 

4.1.1 Primary Care Facilities 

Primary care facilities (PCF) is a class of HCF that provide primary care to the 
public, including early diagnosis and first-contact care. Most PCFs (e.g., hospitals, 
clinics) are open for 24 hours, and patients often tend to visit the nearest one. 
The optimal location of these facilities has received significant attention from the 
operations research community. Basic location models used include set covering, 
maximal covering, p-median, and fixed-charge. Within this literature, most papers 
proposed deterministic models. Mitropoulos et al. (2006) proposed a bi-objective 
mathematical programming model for locating hospitals and primary healthcare 
centers. The two objectives in this model are (1) minimization of the distance 
between patients and facilities and (2) equitable distribution of the facilities among 
citizens. Güneş et al. (2014) also considered minimizing the maximum travel 
distance in designing a primary care facility network. Other (deterministic) studies 
minimize deviations from a standard distance (Smith et al., 2013). 

Oliveira and Bevan (2006) proposed two location–allocation models to redis-
tribute hospital supply using different objective functions and assumptions about 
the utilization behavior of patients. The first model optimizes equity by minimizing 
variations between predicted and normative utilization (according to need) by small 
area. The second model optimizes equity by minimizing utilization flows between 
small areas and hospitals and a utilization flows target (defined flows of patients 
using closest and central hospitals). 

Rahmaniani et al. (2014) proposed a multi-objective two-stage stochastic nonlin-
ear integer programming model for the location–allocation of hospitals. Uncertainty 
considered includes the fixed cost of opening a facility, travel time (distance) 
between nodes, the capacity of facilities, and demand. They used the expected 
demand weighted travel time as a measure of random accessibility. Due to the 
challenges of solving the model exactly, Rahmaniani et al. (2014) proposed a 
heuristic solution algorithm based on variable neighborhood search (VNS). 

Mestre et al. (2015) proposed two location–allocation models for handling 
demand uncertainty in the strategic design of a hospital network. In addition to 
operational objectives, both models aim to maximize access by minimizing the
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expected travel time to reach hospital services weighted by demand. McCoy et al. 
(2014) proposed equitable allocation strategies for motorcycle trips facilitating 
access to healthcare in rural areas. Ares et al. (2016) used a coverage score to model 
equity in terms of access to healthcare among the different populations. Beheshtifar 
and Alimoahmmadi (2015) proposed a new definition for equity by minimizing the 
variability of access distance to a healthcare clinic, where variability was measured 
in terms of the standard deviation of distances from the place of demand points to 
the related open site. 

4.1.2 Blood Banks 

A blood bank is an HCF that collects blood samples from donors and then stores 
and prepares them for transfusion to recipients. One of the main challenges to blood 
bank location is that human blood is scarce, perishable, and often in high demand. 
Furthermore, both demand and supply of blood are stochastic and subject to various 
disruptions. 

Jabbarzadeh et al. (2014) presents a robust location–allocation model for 
dynamic supply chain network design for the supply of blood in disasters. 
Uncertainty considered includes the capacity of a temporary blood facility, capacity 
of a permanent blood facility, and maximum blood supply of each donor group. 
The objective considers both cost and resilience to disruptions. Fahimnia et al. 
(2017) also proposed a stochastic bi-objective supply chain design model for 
efficient (cost-minimizing) and effective (delivery time-minimizing) blood supply 
in disasters. Uncertainty considered includes demands and various costs. Although 
both studies considered uncertainty, they did not incorporate any equity objective 
or constraints. 

4.1.3 Organ Transplant Centers 

Organ transplant centers (OTC) are the main components of organ transplantation 
programs in most healthcare systems. The demand for organs is a major random 
factor that is often larger than the supply, which is also random. As a result, organ 
transplants suffer from long waiting lists. The time between the request for an 
organ and transplantation, transportation time of organs from donors’ locations 
(e.g., hospital) to OTC, and transportation time of recipients to OTC are vital 
in the process of organ donation/transplantation and subject to a high degree 
of uncertainty. Zahiri et al. (2014a) present a robust probabilistic programming 
approach to multi-period location–allocation of OTCs. They demonstrate that 
solutions derived using their model are robust when taking into account uncertain 
conditions in the form of small yearly demand changes. Zahiri et al. (2014b) propose 
a multi-period location–allocation bi-objective mathematical programming model 
for designing an organ transplant transportation network under uncertainty. The 
model minimizes total cost and time, including waiting time in the queue for the
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transplant operation while considering organs’ priorities. Uncertainty considered 
includes inter-arrival times of organs entering the transplant centers, arrivals of 
patients to the transplant centers, among others. These studies did not consider any 
equity objective or constraints. 

4.1.4 Detection and Prevention Centers 

Detection and prevention centers are HCFs that provide healthcare services defined 
based on local or national detection and prevention programs (Ahmadi-Javid et al., 
2017). The common aim of these HCFs is to reduce the likelihood and severity of 
potentially life-threatening illnesses by protection and early detection. Therefore, 
the level of participation in preventive healthcare programs is crucial in their 
effectiveness and efficiency, so most studies considered participation maximization 
objectives. Other objectives include minimizing travel distance or time to increase 
accessibility and thus participation. 

Zhang et al. (2009) use the total travel time, waiting time, and service time 
required for receiving the preventive service as a proxy for accessibility of a 
healthcare facility and assume that each patient would seek the facility’s services 
with a minimum expected total of these metrics. To capture the congestion level, 
they modeled each facility as an M/M/1 queue. They show that the expected 
number of participants from each population zone decreases with the expected total 
time. They included a constraint that ensures equity among the people living in 
a population zone in terms of access to preventive health services. The model in 
Zhang et al. (2009) is highly nonlinear, so they propose a heuristic. 

Zhang et al. (2010) proposed a bilevel model for preventive healthcare facility 
network design with congestion. They formulate the lower-level problem, which 
determines the allocation of clients to facilities, as a variational inequality, while 
the upper level is a facility location and capacity allocation problem. Major random 
factors considered include the demand rate at each zone, travel times, and service 
times. They incorporate congestion at the facilities in the model and assume that 
clients patronize the facility with the minimum expected total time. Thus, they 
considered the total time needed to receive preventive services at a facility as a 
proxy for its accessibility and did not include equity objectives or constraints. 

Vidyarthi and Kuzgunkaya (2015) analyzed the impact of system-optimal (i.e., 
directed) choice on the design of the preventive healthcare facility network under 
congestion. The problem is set up as a network of spatially distributed M/G/1 
queues and formulated as a nonlinear mixed-integer programming model. The 
model simultaneously determines the location and size of the facilities and the 
allocation of clients to these facilities to minimize the weighted sum of the total 
travel time and the congestion associated with waiting and service delay at the 
facilities. They linearize the model and present a cutting plane-based approach to 
solve the reformulation. The model in Vidyarthi and Kuzgunkaya (2015) does not 
capture the seasonality of the demand, nor does it include any equity objectives 
or constraints. Aboolian et al. (2016) focus on designing facility networks in the
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public sector to maximize the number of people benefiting from their services. 
They propose an analytical framework for the maximal accessibility network design 
problem that involves determining the optimal number, locations, and capacities of 
a network of public sector facilities. They assume that the time spent for receiving 
the service from a facility is a good proxy for its accessibility. Aboolian et al. (2016) 
did not consider equity objectives or constraints. 

4.1.5 Medical Laboratories 

A medical laboratory is an HCF where tests are carried out on clinical specimens 
from the patient to aid in diagnosis, treatment, and disease prevention. Although 
medical laboratories are critical for public health, there is a lack of research on 
the location of these HCFs. Notably, Saveh-Shemshaki et al. (2012) propose a p-
median-based model for designing a network of tuberculosis testing laboratories 
to reduce transportation times and thereby decrease overall test turnaround time. 
They use the travel time from any region to any laboratory as a measure of equity. 
Accordingly, they included a constraint that allows decision-makers to specify an 
upper bound for origin–destination transportation time. Their results suggest that the 
optimal locations and capacities are not sensitive to this additional equity constraint. 

4.1.6 Long-Term Care Centers 

Long-term (nursing) care is an HCF that provides rehabilitative, restorative, and 
ongoing nursing care to patients or residents who need assistance with their health or 
daily living activities. The location of long-term care facilities is crucial to provide 
the best and most equitable possible services to aged people who represent the 
major demand group needing social and medical services. Given that this type 
of HCF provides medical care and social services to inpatients, the simultaneous 
determination of location, optimal capacity levels (e.g., number of beds), inventory 
levels, and locations are essential. Cardoso et al. (2015) proposed a fixed charge 
facility location-based model for planning a long-term care network, which con-
siders demand uncertainty, multiple services, and various forms of equity (access, 
utilization, socioeconomic, and geographical equities) constraints. Cardoso et al. 
(2016) consider equity of access, geographical equity, and socioeconomic equity in 
long-term care (LTC) and network design decisions. They use minimization of total 
travel time for individuals accessing institutional LTC services to ensure equity of 
access, minimization of unmet need in the geographical area with the highest level 
of unmet need to ensure geographical equity, and minimization of unmet need for 
the lower-income groups to ensure socioeconomic equity in their model.
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4.1.7 Other Non-emergency HCFs 

Home healthcare (HHC) services provide healthcare services to people in their 
homes. HHC emerged in the early 50s to reduce the cost of care and health systems 
and improve patients’ quality of life. The home service industry, especially home 
healthcare, has been rapidly growing worldwide due to emergent changes in family 
structures, work obligations, aging populations, and the outspread of chronic and 
infectious diseases. Hence, the operations research community investigated different 
challenges of the HHC services, such as routing, appointment scheduling, staffing, 
and various resource allocation issues. However, as pointed out by Ahmadi-Javid 
et al. (2017), no studies exist for HHC center locations. It follows that there are 
no studies considering equity in HHC center locations. Similarly, the location of 
rehabilitation HCF (i.e., HCF devoted to the physical rehabilitation of patients 
with, e.g., neurological, orthopedic, other medical conditions), doctors’ offices, and 
drugstores are not studied as other types of HCFs. An analysis of equity concerns 
related to, for example, the distribution of these HCFs and access to them under 
uncertainty is an important future research area. 

4.2 Emergency HCF Location 

Life-threatening emergencies, such as a severe injury, stroke, or heart attack, require 
the services of emergency HCFs. In addition, emergency HCFs provide service 
for patients with an injury or illness that does not appear to be life-threatening, 
but the treatment of such patients cannot wait until the next day or for a primary 
care doctor to see them. Ahmadi-Javid et al. (2017) classify emergency HCFs 
according to whether they perform under permanent or temporary emergencies. 
Permanent emergency HCFs provide service regularly, including emergency off-
site public access devices, trauma centers, and ambulance stations. In contrast, 
temporary emergency HCFs are constructed to respond to unexpected health (e.g., 
infectious disease outbreak) and other situations (e.g., disaster). Next, we analyze 
the literature on emergency and trauma centers, ambulance stations, and temporary 
medical centers. 

4.2.1 Emergency and Trauma Centers 

Emergency departments or emergency centers are permanent emergency facilities 
that provide medical and surgical care to both patients arriving in need of immediate 
care or walk-ins (unscheduled patients). They can be part of a hospital or free-
standing. Locating these facilities has not received as much attention as other 
emergency facilities such as ambulance stations. Therefore, there is a need for 
inequity-averse stochastic models for the location of emergency centers, particularly 
those associated with hospitals and clinics or ambulance stations. Silva and Serra
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(2008) is one of the early studies that presented a priority queuing-based covering 
location problem for locating emergency services considering different service 
priority levels. Silva and Serra (2008) did not focus on equity. 

Trauma centers are hospitals that provide specialized medical and nursing care to 
patients suffering from major traumatic injuries (e.g., falls, motor vehicle collisions 
and accidents, gunshot wounds, etc.). Patients are typically transported to trauma 
centers via helicopters or ambulances. To account for air transportation, some 
studies consider a joint location problem of trauma centers and helicopters under 
some budget constraints. Most existing studies for locating trauma centers employ 
maximal coverage location or fixed charge location models. Ahmadi-Javid et al. 
(2017) propose a maximal backup coverage model (BACOP) for the joint location 
problem of trauma centers and helicopters with budget constraints. Although trauma 
centers are rife with uncertainty (especially in demand), none of the papers reported 
in Ahmadi-Javid et al. (2017) has incorporated uncertainty. In addition, equity and 
equity–uncertainty interaction has not been considered. 

4.2.2 Ambulance Stations 

Emergency medical services, more commonly known as EMS, is a system that 
provides out-of-hospital acute medical care and transfers patients to emergency 
centers/departments within or outside hospitals and trauma centers for definitive 
care. The OR community has paid significant attention to the location of ambulance 
stations, the deployment (location, relocation, fleet sizing) of ambulances in the 
stations, and the dispatch of ambulances to the demand points or emergency sites. 

Most of the existing models for this type of HCF are extensions of the basic 
maximum or set covering location, maximum expected coverage location (Daskin, 
1982, 1983), and p-center location models. Note that by focusing on maximizing the 
demand that can be covered, traditional covering models favor locating ambulances 
in more densely populated areas, resulting in longer response times for patients in 
more rural areas. That is, traditional covering models may lead to solutions in which 
the coverage pattern is quite good for those nodes counted as covered but extremely 
poor for those not covered, highlighting the need for equity-based models. 

Most existing models for EMS are stochastic due to the stochastic nature of 
EMS operations. Random factors include, but are not limited to, the busy fraction 
of ambulances, demand or service requests, and travel time (Beraldi et al., 2004; 
Beraldi & Bruni, 2009; Gendreau et al., 2006; Ingolfsson et al., 2008; Rajagopalan 
et al., 2008; McLay, 2009; Rajagopalan & Saydam, 2009; Sorensen & Church, 
2010; Noyan, 2010; Rajagopalan et al., 2011; Naoum-Sawaya & Elhedhli, 2013; 
Zhang & Li, 2015; Yoon et al., 2021). Noyan (2010) considers an EMS system 
design problem with stochastic demand. They proposed a capacitated fixed charge 
facility-like location model to locate the emergency response facilities and vehicles 
to ensure target levels of coverage, which are quantified using risk measures on 
random unmet demand. The model considers target service levels for each demand 
site and also for the entire service area. Noyan (2010) argues that considering the
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individual target service levels may be regarded as an alternative approach to model 
the coverage equity. To present risk preferences, they develop two types of stochastic 
optimization models involving alternate risk measures: integrated chance constraints 
(ICCs) and ICCs with a stochastic dominance constraint. 

Chanta et al. (2011) proposed a minimum p-envy facility location model, aiming 
to find optimal locations for EMS facilities to balance customers’ perceptions of 
equity in receiving service. Specifically, to deal with the issue of equity, they 
assigned an envy function (a function of the distance from a demand zone to its 
closest EMS station and the distance from a demand zone to its backup EMS 
stations weighted by priority of the serving stations and weighted by the proportion 
of demand) to each pair of demand nodes, for each level of priority. This value 
indicates the dissatisfaction level of a demand node with its serving station in 
comparison with other demand nodes that have the same level of priority. 

To address the issue of fairness in semi-rural/semi-urban communities, Chanta 
et al. (2014) propose a bi-objective covering location model for locating EMS 
ambulances at preexisting rescue stations that balances efficiency (i.e., maximizing 
expected coverage) and equity. Specifically, they propose the following alternative 
objective functions for improving fairness in rural areas: minimize the maximum 
distance between uncovered demand zones and their closest opened station, min-
imize the number of uncovered rural demand zones, and minimize the number 
of uncovered demand zones. Chanta et al. (2014) use the .ε-constraint method to 
solve their multi-objective model. Khodaparasti et al. (2016) studied balancing 
efficiency and equity in a location–allocation EMS model under uncertainty using 
data envelopment analysis. Enayati et al. (2019) proposed a multicriteria optimiza-
tion approach to study the trade-offs in equity and efficiency for simultaneously 
optimizing location and multipriority dispatch of ambulances. 

4.2.3 Temporary Medical Centers 

Temporary medical centers (TMCs) provide healthcare services to victims of large-
scale and catastrophic disasters. Examples of TMCs include Red Cross medical 
tents, casualty collection points, and any temporary HCF established before the 
disaster to play a short-term role in the immediate aftermath. TMC location has 
some stochastic characteristics similar to those we see in humanitarian logistics 
that should be considered. Despite the importance of TMC, as pointed out by 
Ahmadi-Javid et al. (2017), only a few papers addressed TMC location problems, 
and surprisingly under deterministic conditions. None of these studies incorporated 
equity objectives or constraints.
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5 Future Directions 

While great research efforts have been reported to improve stochastic HCF location 
theory, much work is still needed to incorporate equity and derive inequity-averse 
stochastic HCF location approaches and insights. We discuss a few critical research 
opportunities for the future in the following subsections. 

5.1 Analyzing Equity Measures 

The World Health Organization defines health equity as the absence of unfair 
and avoidable or remediable differences in health among population groups 
defined socially, economically, demographically, or geographically (WHO, 2021). 
Accordingly, when making HCF location–allocation decisions, one should ensure 
equal distributions of HCF, equal access to HCF, and equal utilization of healthcare 
services/HCFs across geographical areas, social groups, demographics, socioeco-
nomic groups, and identified/non-identified groups under normal and abnormal 
(e.g., disaster, conflict, etc.) conditions. However, to ensure this, one should first 
find the right measure of equity. But is the obvious objective the right one? Are the 
obvious and classical constraints the right ones? Is the impact of decisions obtained 
from classical models with the obvious objectives equitable when compared across 
various people or groups of people? 

To date, we do not have a formal analysis of equity objectives and constraints 
under uncertainty. Thus, the first step toward developing tractable and realistic 
stochastic inequity-averse HCF location approaches is to rigorously analyze the 
mathematical similarities and differences between different mathematical repre-
sentation of a measure of equity under uncertainty, including their mathematical 
properties and their suitability for inclusion in optimization models. 

5.2 Capturing Uncertainty: Optimizer’s Curse and Trade-Offs 

Acknowledging the inevitable uncertainty and the uncertainty–equity interaction in 
HCF location settings is crucial to devising inequity-averse models for emerging 
real-life HCF location problems. One possibility for hedging against uncertainty 
is to capture it in the parameters underlying optimization models to support the 
decision-making process. There are three main stochastic optimization (SO) frame-
works: stochastic programming (SP), robust optimization (RO), and distributionally 
robust optimization (DRO). (In DRO, we assume that the probability distribution of 
the uncertain parameters is unknown but belongs to a certain set, and we wish to 
optimize a system by hedging against the worst-case distribution within that set.) 
The main distinguishing feature among these frameworks concerns the knowledge
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of the probability distribution of the underlying random vector. Hence, adopting 
one of these modeling frameworks depends mainly on the available information 
regarding uncertainty and its distribution. 

If we know the uncertainty distribution or have sufficient and high-quality data 
to represent it, we can use SP to optimize the expected performance. However, 
the SP decision problem evaluates the objective and optimizes the decisions only 
for the given training sample (which may come from a biased distribution). As a 
result, decisions obtained from an SP model can be biased, that is, sensitive to the 
distribution or sample data employed in the SP, and hence perform poorly in the out-
of-sample tests (under unseen data). This phenomenon is known as the optimizers’ 
curse (Smith & Winkler, 2006). Disappointing consequences in healthcare include, 
but are not limited to, disparities in healthcare service and distribution of services, 
poor access to care, increased mortality and morbidity of the vulnerable population, 
and increased costs. Unfortunately, as shown in Sect. 4, most existing studies 
employ SP or other “sample-based” approaches. 

RO models do not make strong distributional assumptions as in SP. Instead, 
one only needs to calibrate the so-called “uncertainty set” of possible outcomes 
of random parameters (Ben-Tal et al., 2015; Bertsimas & Sim, 2004; Soyster,  
1973). Then, optimization is based on the worst-case scenario occurring within 
the uncertainty set, which may inevitably lead to overconservatism and suboptimal 
decisions for the other more likely scenarios (Chen et al., 2020; Rahimian & 
Mehrotra, 2019). 

DRO is an alternative approach to model uncertainty that addresses the opti-
mizer’s curse and the concerns of overconservatism. In DRO, we optimize a system 
by hedging against the worst-case distribution within the predefined ambiguity set. 
DRO is known to offer several benefits, such as mitigating the optimizer’s curse, 
relaxing strong assumptions on distributions, and offering tractable reformulations 
and approximations. 

This suggests that it is worthwhile to consider DRO as an alternative approach for 
modeling uncertainty in HCF location. To date, there are no inequity-averse DRO 
approaches for facility location and other application domains. 

These gaps and challenges call for more efforts toward rigorous analyses of 
equity under different scenarios of information availability and ambiguity. Formal 
analyses are also needed to answer questions about when to use each type of 
modeling approach (SP, DRO, or a trade-off between them) and about what is the 
value of adopting each for inequity-averse HCF location. 

5.3 Dynamic Mapping and Databases 

For many decades, locations or places have played an important role in under-
standing health patterns, disease patterns, and healthcare service distributions. 
Historically, maps have been the primary source for storing and communicating 
spatial information. In the past two decades, the advancement in computer power
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and the emergence of Geographic Information Systems (GIS; a system that captures, 
creates, stores, manages, analyzes, and maps all types of data) has allowed for 
better mapping and more widespread, complex, and comprehensive analyses than 
previously. Such advances have made it possible for governments, researchers, 
and others to seek answers to previously overly complex and computationally 
impractical questions. 

Data accuracy, correctness, and completeness are crucial elements affecting our 
ability to use GIS to analyze health and equity issues effectively. Unfortunately, 
despite the significant improvement in technologies to obtain geographic data, we 
often need to geocode specific data such as patient data (volume, disease, etc.) 
and HCF utilization by different groups to undertake a particular geographical 
analysis. As pointed out by Lyseen et al. (2014), in the absence of standardized data 
collection methods or databases, this process imposes a significant challenge for 
health information systems in collecting data with adequate granularity, ensuring 
reliability and validity of the relevant health data, and maintaining appropriate 
privacy and security for the collected data. Moreover, even when the needed data has 
been collected, it is often unavailable to researchers due to privacy laws regarding 
patients’ medical information (Lyseen et al., 2014). 

Several governments and research groups publish interactive GIS maps of HCF 
locations with basic information. However, these are individual efforts, with no 
integrated or standardized databases even within the same country. Therefore, 
policies and strategies for developing standards-compliant and reliable databases on 
HCF and the ability to integrate these in GIS dynamically as information unfolds 
are important research directions and a prerequisite to developing data-driven 
inequity-averse HCF location models. Such databases may include, for example, 
real-time data on the location, type, characteristics, and utilization of existing 
HCFs, characteristics of people living in each geographical area, and demand and 
access for healthcare and health services across geographical areas and demographic 
categories. 

5.4 Multicriteria Approaches 

The specific approach or criteria to capture inequity is context-dependent and 
depends on the decision-maker’s perception of equity. One can, of course, consider 
a multicriteria objective and a method to optimize multiple equity criteria (e.g., 
equity of access, socioeconomic equity, geographical equity) and efficiency criteria 
(e.g., transportation cost, operational costs). However, to the best of our knowledge, 
and according to a recent survey on HCF location (Ahmadi-Javid et al., 2017) and 
our analysis in Sect. 4, within the limited literature considering equity in stochastic 
HCF location, most studies only consider one equity-related policy objective, and 
only a few multi-objective models exist for the joint attainment of different equity 
objectives under uncertainty.
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When we seek both equity (e.g., equitable allocation of HCF across urban 
and rural areas) and efficiency (e.g., minimum operational cost), there is the 
additional challenge of mathematically integrating them in a tractable model. As 
we mentioned earlier, considering equity may degrade efficiency. Thus, questions 
arise in integrating equity and efficiency; for example, how should one regulate the 
trade-off between the two under uncertainty? What is the price of equity (i.e., the 
efficiency difference between selecting an inequity-averse approach and not using 
an inequity-averse approach)? 

In theory, multicriteria optimization problems such as HCF location with equity 
and efficiency concerns can be modeled and solved using multi-objective opti-
mization (MOO) approaches (see, e,g., Ehrgott (2005)). However, multicriteria 
location models assume that decision-makers can articulate their objectives or have 
a well-defined metric for each objective. In most real-world applications such as 
HCF location, the decision-maker’s priorities, goals, and equity concerns are not 
easy to articulate and could vary over time and among different decision-makers. 
Moreover, we often need to incorporate the (potentially conflicting) perspective of 
many stakeholders. For example, locating hospitals is a process that must take into 
consideration many different stakeholders (Burkey et al., 2012), including patients 
who need access to the hospital, clinical staff who want an attractive and easy-to-
reach workplace, taxpayers who want value for their dollars, politicians who want 
to demonstrate their ability to deliver a better quality of life and healthcare services, 
and more. 

The ability to quantify the trade-off between efficiency and equity would help 
decision-makers make informed and better location decisions (Karsu & Morton, 
2015). In particular, to make decisions, a decision-maker needs to understand (a) 
what the efficiency loss might be and (b) what the equity loss might be for a specific 
solution. Although various studies analyze the price of fairness or price of equity 
(see, e.g., Bertsimas et al. (2012), Bertsimas et al. (2013)), this price has not been 
adequately analyzed in HCF location contexts under uncertainty. 

Analyzing the robustness of solutions obtained from different inequity-averse 
HCF location approaches under uncertainty is another avenue for future research. 
Incorporating multiple equity measures and an analysis of the impact of uncertainty 
on each and the trade-off among them could shed some light on the question of 
how similar or different equity measures are. There are some attempts to analyze 
the commonality and differences of different equity measures in general facility 
location models (Batta et al., 2014; Karsu & Morton, 2015; Mulligan, 1991; López-
De-Los-Mozos & Mesa, 2003). However, such analyses have not been conducted in 
the HCF location literature. 

5.5 Mobile HCF 

A mobile healthcare facility (MHCF) is a facility-like vehicle that can serve 
patients in a way similar to a static HCF when stationary but can also move
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from one place to another to provide health services to communities (Attipoe-
Dorcoo et al., 2020; Malone et al., 2020; McGowan et al., 2020; Shehadeh, 2022; 
Santa González et al., 2020). They offer a wide variety of (prevention, testing, 
diagnostic) health services and are often staffed by a combination of physicians, 
nurses, community health workers, and other health professionals. As long-standing 
community-based service delivery models, mobile facilities have the potential to 
help underserved communities overcome common barriers to accessing healthcare, 
including availability, time, geography, and trust (Clark et al., 2011; Guruge et al., 
2010; Sommers, 2015), and have demonstrated improvements in health outcomes 
and reductions in cost (Brown-Connolly et al., 2014; Oriol et al., 2009; Song et al., 
2013). 

MHCF also offer an alternative healthcare delivery option when a disaster, 
conflict, or other event causes stationary HCFs (e.g., hospitals) to close or stop 
operations (Blackwell & Bosse, 2007; Du Mortier & Coninx, 2007; Fox-Rushby & 
Foord, 1996; Gibson et al., 2011). Classical stochastic mobile facility deployment, 
routing, and scheduling models (see, e.g., Halper and Raghavan (2011), Shehadeh 
(2022), Lei et al. (2014), Lei et al. (2016)) do not incorporate equity objectives or 
constraints and thus may produce such inequitable decisions. 

Developing inequity-averse MHCF location models is more challenging than the 
static HCF for the following reasons. First, there is limited literature on mobile 
facilities as compared to stationary facilities (Ahmadi-Javid et al., 2017). Second, 
in static HCF problems, we usually consider opening facilities at fixed locations. 
In contrast, MHCF location problems have the added challenge of determining a 
routing plan and a time schedule for each MHCF in the fleet (i.e., the node that each 
MHCF is located at in each time period). Mathematically, stochastic routing and 
scheduling are challenging stochastic combinatorial optimization problems. Thus, 
integrated MHCF deployment (e.g., determining the number of mobile vaccination 
clinics) and their capacity, routing, and scheduling problems with equity and 
efficiency criteria under uncertainty represent a new class of complex combinatorial, 
multicriteria, stochastic optimization problems. To date, optimization (or other) 
tools have not been employed to analyze and address these problems. 

6 Conclusion 

In this chapter, we focused on the issue of equity in stochastic HCF locations. We 
recognize that uncertainty is an intrinsic property of HCF location and explore how 
uncertainty and equity interact in ways that should not be ignored. The primary goal 
is to bring attention to equity issues and provide an understanding of the existing 
recent effort to incorporate equity measures in stochastic HCF locations. Our key 
findings are:

• There is limited literature considering equity in HCF location and equity– 
uncertainty interaction.
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• Within the limited literature, most studies use the distance that a patient must 
travel or the travel time to HCF to measure equity and accessibility, with 
minimizing the maximum distance to the nearest facility as the most frequent 
measure. Some other studies account for factors such as spatial accessibility, 
multi-modal travel, temporal service availability, competition, multiple and 
hierarchical services, socioeconomic and personal factors, etc. in order to more 
realistically reproduce users’ behaviors (Bruno et al., 2020; Higgs et al., 2019; 
Jin et al., 2019; Mathon et al., 2018; Mayaud et al., 2019; Lin et al., 2018; Shin 
& Lee, 2018; Yin et al., 2018).

• Most studies, especially in EMS, use covering-based models to ensure equity. 
However, covering-based models favor locating HCFs in more densely populated 
areas, potentially resulting in longer travel or response times for patients in more 
rural areas. In addition, traditional covering models may lead to solutions in 
which the coverage pattern is quite good for those nodes counted as covered 
but extremely poor for those not covered.

• Some studies investigate the trade-off between one or more equity objectives and 
multiple efficiency objectives. However, no study has analyzed the equity–equity 
trade-off (i.e., the trade-off between equity metrics) or the equity–efficiency 
trade-off with multiple equity metrics.

• Existing stochastic optimization (SO) models for HCF location assumes that the 
distribution of uncertainty is fully known or there is sufficient data to model it. To 
date, there are no data-driven and distribution-free inequity-averse HCF location 
models.

• To date, there are no inequity-averse mobile healthcare facility deployment, 
routing, and scheduling models.

• No studies rigorously analyze the mathematical similarities, differences, and 
complexity of equity objectives and constraints. In addition, there are no 
standardized and open-access databases for HCF locations that incorporate all 
the geographical, socioeconomic, and other relevant data that one needs to derive 
and test inequity-averse models. 

We discuss and provide new directions for future research opportunities by 
recognizing these challenges and gaps in the literature. Our main recommendations 
for future research include:

• Conducting formal analyses of equity metrics and their mathematical complexity 
under uncertainty and distributional ambiguity

• Developing data-driven, distribution-free, and tractable multicriteria inequity-
averse static and mobile HCF location approaches

• Developing standardized, granular, and dynamic HCF databases and integrate 
these with recent GIS technology

• Developing robust and resilient inequity-averse stochastic HCF location 
approaches
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Cissé, M., Yalçındağ, S., Kergosien, Y., Şahin, E., Lenté, C., & Matta, A. (2017). Or problems 
related to home health care: a review of relevant routing and scheduling problems. Operations 
Research for Health Care, 13, 1–22. 

Clark, C. R., Soukup, J., Govindarajulu, U., Riden, H. E., Tovar, D. A., & Johnson, P. A. (2011). 
Lack of access due to costs remains a problem for some in massachusetts despite the state’s 
health reforms. Health Affairs, 30(2), 247–255. 

Daskin, M. S. (1982). Application of an expected covering model to emergency medical service 
system design. Decision Sciences, 13, 416–439. 

Daskin, M. S. (1983). A maximum expected covering location model: Formulation, properties and 
heuristic solution. Transportation Science, 17(1), 48–70. 

Daskin, M. S., & Dean, L. K. (2005). Location of health care facilities. Operations Research and 
Health Care, 43–76. 

Du Mortier, S., & Coninx, R. (2007). Mobile health units in emergency operations: a methodolog-
ical approach. Humanitarian Practice Network, Overseas Development Inst. 

Ehrgott, M. (2005). Multicriteria optimization (vol. 491). Springer. 
Enayati, S., Mayorga, M. E., Toro-Díaz, H., & Albert, L. A. (2019). Identifying trade-offs in equity 

and efficiency for simultaneously optimizing location and multipriority dispatch of ambulances. 
International Transactions in Operational Research, 26(2), 415–438. 

Esfahani, P. M., & Kuhn, D. (2018). Data-driven distributionally robust optimization using 
the wasserstein metric: Performance guarantees and tractable reformulations. Mathematical 
Programming, 171(1-2), 115–166. 

Fahimnia, B., Jabbarzadeh, A., Ghavamifar, A., & Bell, M. (2017). Supply chain design for effi-
cient and effective blood supply in disasters. International Journal of Production Economics, 
183, 700–709. 

Fox-Rushby, J. A., & Foord, F. (1996). Costs, effects and cost-effectiveness analysis of a mobile 
maternal health care service in west kiang, the gambia. Health Policy, 35(2), 123–143. 
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Part IV 
Methods and Approaches Location Models 

with Uncertainty



Hub Location Models Under Uncertainty 

Gita Taherkhani and Sibel A. Alumur 

Abstract In this chapter, we review models and methods that incorporate uncer-
tainty in hub location problems. In particular, we present stochastic and robust 
optimization models to formulate different sources of uncertainty including demand 
and costs and confer when each approach is best suited for use. We further describe 
and discuss hybrid modeling approaches and other extensions. We also review 
the common solution methods that are used to solve hub location models under 
uncertainty. 

Keywords Hub location · Uncertainty · Stochastic programming · Robust 
optimization 

1 Introduction 

Hub facilities perform several functions that might involve sorting, switching, 
consolidation, or break-bulk to efficiently distribute the traffic and flow of freight, 
passengers, or data between many origins and destinations. Hub location problems 
address the decisions on how to optimally locate hub facilities, design the hub 
network, and determine the routes of flow on this network. 

Several different versions of hub location problems have been studied in the 
literature for various applications including, but not limited to, the design of airline 
freight and passenger networks, less-than-truckload and truckload transportation, 
postal operations, express shipment, cargo delivery, liner shipping, public transit, 
and telecommunication networks. The interested reader can refer to a number of 
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reviews and surveys written in this area, for example, Alumur and Kara (2008), 
Campbell and O’Kelly (2012), Farahani et al. (2013), Contreras and O’Kelly (2019), 
and Alumur et al. (2021). 

Uncertainty is involved in every decision problem of the world. Since hub 
location can be considered a long-term strategic decision, incorporating uncertainty 
in hub location models is a natural extension to be able to design resilient hub net-
works. In particular, demand between origin-destination (O-D) pairs, transportation 
costs, and travel times, which are among the most common parameters used in hub 
location models, should be modeled under uncertainty as location decisions may 
have a long-lasting effect and their implementation can take a considerable amount 
of time. However, it is not always easy to incorporate and model uncertainty; it 
makes hub location models, which are already difficult in nature, more complicated, 
and even more difficult to solve. 

Optimization under uncertainty generally consists of two streams of approaches: 
stochastic and robust optimization. In stochastic optimization, known probability 
distributions describe the behavior of uncertain parameters, and these distributions 
can be used to optimize the expected value of the objective function (e.g., Sim et al. 
(2009), Contreras et al. (2011), Mohammadi et al. (2014), Sadeghi et al. (2015), 
Correia et al. (2018), Correia and Saldanha-da Gama (2019), Peiró et al. (2019), 
and Taherkhani et al. (2020)). Another stochastic modeling approach is to use 
chance constraints, where a subset of constraints is defined to address the impact of 
uncertainty. The chance constraints are not required to always hold and the decision-
maker is satisfied if they are held for a given probability (see, e.g., Snyder (2006) 
and Correia and Saldanha-da Gama (2019)). 

In robust optimization, on the other hand, no probabilistic information is 
available for the uncertain parameters. In this case, uncertainty can be described 
by using a finite set of scenarios or can be modeled assuming that the values of 
the uncertain parameters can change within predefined intervals (e.g., Meraklı and 
Yaman (2016), Zetina et al. (2017), de Sá et al. (2018), Ghaffarinasab (2018)). 

It is also possible to combine stochastic and robust optimization approaches to 
model uncertainty in hub location problems (see, e.g., Alumur et al. (2012) and 
Taherkhani et al. (2021)). 

This chapter aims to review models and methods that incorporate uncertainty in 
hub location problems. As mentioned above, there are several applications of hub 
location problems, and each application setting, for example, whether it is airline 
passenger travel or less-than-truckload freight transportation, has its own criteria 
and requirements. For the sake of generality, we demonstrate different modeling 
approaches incorporating uncertainty on a classical hub location problem setting, 
with the aim that the formulations we present in this chapter can be used as a basis 
to model uncertainty in more complex problem settings. 

The organization of this chapter is as follows. Before presenting the models with 
uncertainty, in the next section, we introduce the uncapacitated hub location problem 
with multiple allocation and present a deterministic model for this setting. The third 
section of the chapter studies hub location models under stochastic demand and 
stochastic costs and further discusses extensions with stochastic models. The fourth
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section describes robust optimization approaches under uncertain demand, uncertain 
transportation costs, uncertain setup costs, and some extensions with robust models. 
The fifth section presents hybrid models and other approaches including robust-
stochastic models, distributionally robust models, and simulation-optimization. The 
sixth section reviews common solution methods that are used to solve hub location 
models under uncertainty. Finally, we present some concluding remarks in the last 
section. 

2 Deterministic Model 

In this section, we explain the assumptions, define the notation, and present the 
mathematical formulation of the deterministic uncapacitated hub location problem 
with multiple allocation. 

In this classical hub location setting, it is assumed that the demand of all O-
D pairs must be fully satisfied by using at least one hub facility, and hence, direct 
connections between two (non-hub) demand nodes are not allowed. Moreover, there 
are no connection costs for building the network links between the hub nodes as well 
as between non-hub nodes and hub nodes. The objective is to minimize the total cost 
that includes transportation costs as well as setup costs for establishing hubs. When 
the transportation costs are proportional to the distance and when distances satisfy 
the triangle inequality, each hub pair can be directly connected, that is, the hub-level 
network will be a complete subgraph induced by the hub nodes, as there are no fixed 
costs for building the network connections. It is assumed that there are economies 
of scale during transportation between hubs and that the unit transportation costs are 
lower between the hub facilities. 

Consider a directed complete graph .G = (N,A), where N is the set of nodes 
and A is the set of arcs representing all the possible direct links between each pair of 
nodes. The sets of potential hub locations and commodities are denoted by . H ⊆ N

and .K ⊆ N × N , respectively. Each .k ∈ K indicates a unique O-D pair whose 
origin and destination points belong to N . The parameter . wk represents the demand 
for commodity .k ∈ K to be routed from origin .o(k) ∈ N to destination .d(k) ∈ N . 
Moreover, . fi represents the setup cost for establishing a hub located at node . i ∈ H

and .cij = ζdij presents a transportation cost from node .i ∈ N to node .j ∈ N , 
where . dij represents the distance and . ζ is the resource cost per unit distance. 

Given the complete graph and assuming that distances satisfy the triangle 
inequality, every path between an origin .o(k) and a destination .d(k) will contain at 
least one and at most two hubs represented by .Pak = (o(k), a1, a2, d(k)), where . a =
(a1, a2) ∈ A is a hub arc with the ordered pair of hubs . a1 and . a2, which are assigned 
to .o(k) and .d(k), respectively. Accordingly, the unit transportation cost of routing 
commodity k along path .Pak is expressed as .Cak = χco(k)a1 + αca1a2 + δca2d(k), 
where .χ, α, δ are the collection, transfer, and distribution cost factors along the path. 
To reflect economies of scale between hubs, it is assumed that .α < χ and .α < δ.
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Using the above notation and following Hamacher et al. (2004), the deterministic 
uncapacitated hub location (DUHL) problem with multiple allocation can be 
formulated as: 

.DUHL min
∑

k∈K

∑

a∈A

Cakwkxak +
∑

i∈H

fiyi . (1) 

s.t.
∑

a∈A

xak = 1 k ∈ K, . (2) 

∑

a∈A:i∈a

xak ≤ yi i ∈ H, k ∈ K, . (3) 

xak ≥ 0 k ∈ K, a ∈ A, . (4) 

yi ∈ {0, 1} i ∈ H. (5) 

In this formulation, . yi is a binary variable that equals 1 if a hub is located at node 
.i ∈ H , and 0 otherwise; .xak is a continuous variable determining the fraction of 
commodity .k ∈ K that is satisfied through a path with hub arc .a ∈ A. 

The objective function (1) minimizes total cost. Constraints (2) ensure that the
demand of all commodities must be satisfied. Constraints (3) guarantee that the
demands of the commodities are satisfied only through open hubs. Constraints (4) 
and (5) indicate the domains of the decision variables.

The next sections of the chapter describe and detail how to incorporate uncer-
tainty in various problem parameters for this classical hub location problem. 

3 Stochastic Models 

In this section, we present hub location models with stochastic demand and 
stochastic transportation costs and discuss further possible extensions with the 
stochastic models. 

3.1 Stochastic Demand 

In many applications of hub location problems, the demands of the commodities are 
not known in advance. Hence, the values of the parameter . wk , which represents 
the demand for commodity .k ∈ K to be routed from origin .o(k) ∈ N to 
destination .d(k) ∈ N , may not be known with certainty. When the decision-maker 
has prior knowledge of the distribution of the demand, for example, through past 
observations and data, and can describe it by a known probability distribution, 
stochastic optimization can be used to incorporate the uncertainty associated with 
demand.
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To model stochasticity, we can use stochastic programming with recourse, also 
known as two-stage stochastic programming, in which the stages determine the 
problem’s informational context. The first stage, known as ex ante, refers to the 
decisions that need to be made without defining the stochastic parameters, while the 
recourse decisions, known as the second stage decision or ex post, can be determined 
after the stochastic parameters are known. 

To model the uncapacitated hub location problem with stochastic demand, let 
.wk(ψ) denote the random variables describing the future demand for commodity 
.k ∈ K under realization .ψ ∈ Ψ , where . Ψ is the support of . ψ . In this stochastic 
setting with random demands, the strategic location decisions can be considered 
in the first stage, whereas the tactical decisions, including the allocations and the 
optimal routes of flows through the network, are determined in the second stage. 
The two-stage stochastic program for the uncapacitated hub location problem with 
stochastic demand (UHLSD) is modeled as follows: 

.UHLSD min
∑

i∈H

fiyi + Eψ[Q(x, ψ)] . (6) 

s.t. (5), (7) 

where .Eψ denotes the expectation with respect to . ψ and .Q(x, ψ) represents the 
optimal value of the following problem for each realization of .ψ ∈ Ψ : 

.min
∑

k∈K

∑

a∈A

Cakwk(ψ)xak(ψ) . (8) 

s.t.
∑

a∈A

xak(ψ) = 1 k ∈ K. (9) 

∑

a∈A:i∈a

xak(ψ) ≤ yi i ∈ H, k ∈ K. (10) 

xak(ψ) ≥ 0 k ∈ K, a ∈ A. (11) 

In this formulation, .xak(ψ) is a continuous variable determining the fraction of 
commodity .k ∈ K that is satisfied through a path with hub arc .a ∈ A for realization 
.ψ ∈ Ψ and the objective of the problem is to minimize the total cost. 

Contreras et al. (2011) showed that the uncapacitated hub location with stochastic 
demand is equivalent to the expected value problem, in which the deterministic 
model is solved by replacing the random variables with their expected values. 
However, this equivalence with the expected value problem is not true for the 
capacitated versions of the problem. The capacitated hub location problem with 
stochastic demand can be formulated by adding the following constraints to the 
above model: 

.

∑

k∈K

∑

a∈A:i∈a

wk(ψ)xak(ψ) ≤ Γiyi i ∈ H,ψ ∈ Ψ, (12)
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where . Γi is the available capacity for a hub located at node .i ∈ H . Observe that by 
adding this constraint, we cannot replace .wk(ψ) variables by their expected value as 
the optimal solution of the second stage depends on the particular realization of the 
random vector . ψ . Hence, the capacitated version no longer has the equivalency with 
the expected value problem and can be solved as a two-stage stochastic problem. 

3.2 Stochastic Cost 

In some real-life applications, the transportation costs may not be known with 
certainty. When there is prior knowledge on the behavior of the uncertain costs 
and it can be described by a known probability distribution, stochastic optimization 
can be used to incorporate the uncertainty associated with costs. In such a setting, 
the unit transportation cost from node .i ∈ N to node .j ∈ N can be denoted 
with a random variable .cij (ζ ) under realization .ζ ∈ Z, where Z is the support 
of . ζ . The transportation cost associated with each path .Pak can then be defined as 
.Cak(ζ ) = χco(k)a1(ζ ) + αca1a2(ζ ) + δca2d(k)(ζ ). 

To model the problem with stochastic costs, similar to UHLSD, the location 
decisions can be handled in the first stage, while the allocation decisions and 
the optimal routes of flows through the network are considered in the second 
stage. Accordingly, the hub location problem with stochastic transportation costs 
(UHLSC) can be modeled with a two-stage stochastic program. 

In the previous section, under demand uncertainty, we elaborated the first and 
second stage decisions by writing two separate formulations. An alternative notation 
would be to model the first and second stage decisions within a single stochastic 
formulation as demonstrated in the following model with cost uncertainty: 

.UHLSC min Eζ [
∑

k∈K

∑

a∈A

Cak(ζ )wkxak(ζ )] +
∑

i∈H

fiyi . (13) 

s.t.
∑

a∈A

xak(ζ ) = 1 k ∈ K. (14) 

∑

a∈A:i∈a

xak(ζ ) ≤ yi i ∈ H, k ∈ K. 

(15) 

xak(ζ ) ≥ 0 k ∈ K, a ∈ A. 

(16) 

yi ∈ {0, 1} i ∈ H. (17) 

Unlike the equivalency with the expected value problem as shown for the 
UHLSD, note that .Cak(ζ ) variables cannot be replaced by their expected values 
in the above formulation as the optimal values of the second-stage decisions are 
subject to the particular realization of the random vector . ζ .
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In addition to transportation costs, the setup costs can also be considered as 
stochastic parameters (i.e., .fi(ζ )). However, as the optimal values of the second-
stage decisions do not depend on any realization of . ζ , the .fi(ζ ) variables can be 
replaced by their expected value counterparts and thus the problem can be equivalent 
to the deterministic problem if the setup costs are the only stochastic parameters in 
the formulation. 

3.3 Extensions 

A more general variant of the problem would be the case where demand and cost are 
jointly stochastic. This problem can be also formulated using a two-stage stochastic 
program with recourse, where the strategic location decisions are ex ante and the 
routing decisions are ex post (recourse). The main challenge of this extension, 
compared to the cases where demand and costs are separately stochastic, would 
be the possible dependency between these two stochastic parameters. 

Several extensions of stochastic hub location problems have been addressed in 
the literature. In particular, Contreras et al. (2011) study stochastic uncapacitated 
multiple allocation hub location problem in which demand or transportation costs 
are uncertain. Alumur et al. (2012) model single and multiple allocation hub location 
problems jointly under two sources of uncertainty: uncertain setup costs and 
stochastic demand. Correia et al. (2018) develop a two-stage stochastic modeling 
framework for multi-period capacitated multiple allocation hub location problem 
under uncertain demands. Peiró et al. (2019) present a stochastic uncapacitated r-
allocation p-hub median problem with direct connections in which demand and 
transportation costs are associated both with uncertainty. In this problem setting, 
exactly p hubs need to be opened, nodes can be allocated to at most r hubs, and 
direct connections between non-hub nodes are allowed. 

Taherkhani et al. (2020) model a two-stage stochastic program for the profit 
maximizing capacitated hub location problem under stochastic demand from differ-
ent segments of commodities. Taherkhani et al. (2021) extended this setting where 
demand and revenue are jointly stochastic. They consider and model three separate 
cases depending on the interdependence between revenue and demand characterized 
by a linear revenue-demand function. Ghaffarinasab and Kara (2022) study risk-
averse stochastic multiple allocation p-hub median problem in which demand is 
associated with uncertainty. 

The effect of congestion at hubs can be incorporated into hub location models 
using stochastic parameters. Azizi et al. (2018) model hub network design under 
stochastic demand and congestion, where they model hubs as spatially distributed 
M/G/1 queues and congestion is captured using the expected queue lengths. 

As mentioned in the introduction section, stochastic programming with chance 
constraints is another modeling approach that incorporates uncertainty into the 
problem setting, where uncertain parameters are introduced without explicitly 
defining different stages or recourse decisions. Instead, a subset of constraints is
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defined to address the impact of uncertainty and those constraints are to be held only 
for a given probability. Marianov and Serra (2003) model hubs as M/D/c queuing 
systems and use such chance constraints to limit the number of airplanes that can 
queue at a hub airport. 

Travel times can be another stochastic parameter in modeling hub location 
problems. Sim et al. (2009) introduce the stochastic p-hub center problem and 
employ a chance-constrained formulation to model the minimum service-level 
requirement. They take travel time as stochastic parameters in their hub network 
design model where the objective is to minimize the maximum travel time through 
the network. Mohammadi et al. (2014) study a multi-objective stochastic hub 
location problem with uncertain demand. They use chance constraints along with 
a fuzzy multi-objective programming approach to formulate their problem. Sadeghi 
et al. (2015) propose a chance-constrained formulation for modeling a reliable p-
hub covering location problem in which the links of the network are capacitated and 
their capacities are subject to stochastic degradations. 

4 Robust Models 

In some cases, no information is available on the distributions of the uncertain 
parameters. In that case, uncertainty can be introduced in the models by considering 
a finite set of scenarios or it can be modeled assuming that the uncertain parameters 
can take values independently within an interval. As such, this section discusses 
modeling of uncertainty in hub location problems using robust optimization tech-
niques. 

Depending on the attitude of the decision-maker, a min-max (i.e., optimizing for 
the objective under the worst-case scenario) or a min-max regret (i.e., mitigating 
the opportunity loss from not selecting the best scenario) criteria can be used 
for formulating the problems. As mentioned in Aissi et al. (2009), each criterion 
(i.e., min-max and min-max regret) fits best for a conservative decision-maker. 
With the min-max criterion, one can model uncertainty using either a continuous 
interval or a discrete set of scenarios. Using interval uncertainty for max-min, 
however, addresses a more general setting. For the min-max regret, on the other 
hand, only scenario-based uncertainty can be modeled as it requires obtaining the 
optimal solution for each realization. In this section, both of these approaches are 
demonstrated for hub location problems. 

4.1 Uncertain Demand 

Let us first model a robust hub location problem with uncertain demand by using 
the min-max criterion with a budget of uncertainty. As noted above, the min-max
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criterion optimizes the objective against the worst-case scenario to obtain a robust 
solution for a conservative decision-maker. 

Let’s assume that an interval uncertainty for demand can be used in which each 
parameter . wk for .k ∈ K takes values in .[w̄k, w̄k + ŵk], where . w̄k is the nominal 
value of demand (i.e., . wk) and .ŵk ≥ 0 represents the deviation from the nominal 
value. Furthermore, let us define a subset of commodities .Uw ⊆ K and a parameter 
.γw ∈ [0, |K|] with an integer value for the budget of uncertainty, which represents 
the maximum number of demand parameters . wk whose value is allowed to deviate 
from its nominal value. This parameter . γw controls the level of conservatism in the 
objective. The robust hub location problem with uncertain demand (RHLUD) can 
then be modeled as: 

.RHLUD min
(x,y)∈�

∑

k∈K

∑

a∈A

Cakw̄kxak + ν(x) +
∑

i∈H

fiyi, (18) 

where .� = {(x, y) : (2) –(5) are satisfied} and .ν(x) is defined as follows: 

.ν(x) = max
Uw⊆K:|Uw |≤γw

∑

k∈Uw

∑

a∈A

Cakŵkxak. (19) 

In the above formulation, .ν(x) determines the worst-case deviation from the total 
demand over all possible demand scenarios for a given solution vector x. As noted 
in Bertsimas and Sim (2003), this approach finds an optimal solution that optimizes 
against all scenarios under which a number . γw of the demand coefficients can vary 
in such a way so as to maximally influence the objective. 

Note that in the extreme cases when .γw = 0 or .γw = |K| (alternatively, when 
.Uw = ∅ or .Uw = K , respectively), the problem can be reduced to the deterministic 
model and it has trivial solutions such that for all commodities k, in the former case, 
.wk = w̄k , whereas in the latter case, .wk = w̄k + ŵk , where these cases represent 
the least and highest levels of conservatism, respectively. 

The .ν(x) can be reformulated by defining a binary variable . zk that determines 
whether or not commodity .k ∈ K is subject to uncertainty; that is, .zk = 1 if .k ∈ Uw, 
and 0 otherwise: 

.ν(x) = max
∑

k∈K

(
ŵk

∑

a∈A

Cakxak

)
zk. (20) 

s.t.
∑

k∈K

zk ≤ γw . (21) 

zk ∈ {0, 1} k ∈ K. (22) 

Since . γw is integer, .ν(x) simply sorts the commodities k in the nonincreasing order 
of their .ŵk

∑
a∈A Cakxak values and selects the first . γw of them. Hence, without 

losing integrality, constraint (22) can be replaced by its linear relaxation counterpart.
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Observe that model (18) is nonlinear. Bertsimas and Sim (2003) show that by 
using the dual of problem .ν(x), (18) has an equivalent linear formulation. Accord-
ingly, we can define . μ and . λk as the dual variables associated with constraints (21) 
and the linear relaxation of (22), respectively. The dual of problem (20) –(22) can
then be written as:

. ν(x) = min γwμ +
∑

k∈K

λk

s.t. μ + λk ≥ ŵk

∑

a∈A

Cakxak k ∈ K. (23) 

λk, μ ≥ 0 k ∈ K. (24) 

With this formulation of .ν(x), the mathematical model RHLUD (18) can be
reformulated as:

. min
(x,y)∈�

∑

k∈K

∑

a∈A

Cakw̄kxak + γwμ +
∑

k∈K

λk +
∑

i∈H

fiyi

s.t. (23) , (24). (25) 

The above model is a linear mixed-integer programming formulation that can be 
solved using general purpose solvers. 

4.2 Uncertain Transportation Costs 

Let us now model the case where the transportation costs are uncertain and their 
values can change within an interval again using the min-max criterion. Under 
interval uncertainty, each parameter .cij for .i ∈ N and .j ∈ N takes values in 
.[c̄ij , c̄ij + ĉij ], where . ̄cij is the nominal value and .ĉij ≥ 0 its deviation. In this 
situation, each coefficient of the routing variable .xak contains up to three uncertain 
parameters. .Cak = χco(k)a1 +αca1a2 +δca2d(k). Accordingly, the transportation cost 
associated with each path .Pak can be written as: 

. Cak =
∑

(i,j)∈Pak

τ
ij
akcij =

∑

(i,j)∈A

τ
ij
akcij

where .τ ij
ak = χ if .(i, j) = (o(k), a1) ∈ Pak , .τ ij

ak = α if .(i, j) = (a1, a2) ∈ Pak , 

.τ
ij
ak = δ if .(i, j) = (a2, d(k)) ∈ Pak , otherwise .τ ij

ak = 0. Accordingly, robust 
hub location problem with uncertain transportation costs (RHLUC) and min-max
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criterion can be modeled as follows: 

.RHLUC min
(x,y)∈�

∑

k∈K

∑

a∈A

C̄akwkxak + υ(x) +
∑

i∈H

fiyi, (26) 

where .υ(x) is defined as: 

.υ(x) = max
Uc⊆A:|Uc|≤γc

∑

k∈K

∑

a∈A

∑

(i,j)∈Pak∩Uc

ĉij τ
ij
akwkxak. (27) 

In this formulation, .Uc ⊆ A denotes a subset of arcs and .γc ∈ [0, |A|] represents 
the budget of uncertainty for the maximum number of transportation costs whose 
value are allowed to deviate from their nominal value. For a given solution x, . υ(x)
specifies the worst-case deviation from the total transportation cost over all possible 
cost scenarios. The .υ(x) can be reformulated by defining a binary variable . hij , 
which identifies whether or not arc .(i, j) ∈ A is under uncertainty; that is, . hij = 1
if .(i, j) ∈ Uc, and 0 otherwise. 

.υ(x) = max
∑

(i,j)∈Pak∩Uc

(
∑

k∈K

∑

a∈A

ĉij τ
ij
akwkxak

)
hij . (28) 

s.t.
∑

(i,j)∈A

hij ≤ γc . (29) 

hij ∈ {0, 1} (i, j) ∈ A. (30) 

Because of the same arguments we detailed for the RHLUD, constraint (30) can be
replaced by its linear relaxation counterpart. Accordingly, we define . μ and .λij as 
the dual variables associated with constraints (29) and the linear relaxation of (30) ,
respectively. The dual of problem (28) –(30) can then be written as:

. υ(x) = min γcμ +
∑

(i,j)∈A

λij

s.t. μ + λij ≥
∑

k∈K

∑

a∈A:(i,j)∈Pak

ĉij τ
ij
akwkxak (i, j) ∈ A. (31) 

λij , μ ≥ 0 (i, j) ∈ A. (32) 

With this formulation of .υ(x), mathematical model (26) can be reformulated as:

. min
(x,y)∈�

∑

k∈K

∑

a∈A

C̄akwkxak + γcμ +
∑

(i,j)∈A

λij +
∑

i∈H

fiyi

s.t. (31) , (32). (33)
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Similar to RHLUD, we end up with a mixed-integer programming model that 
can be solved using general purpose solvers. 

4.3 Uncertain Setup Cost 

We next model the case with uncertain setup costs. For this case, let us assume 
that a finite set of scenarios describe the uncertainty associated with the setup costs 
and this time let us use a min-max regret objective. As discussed above, the min-
max regret criterion mitigates the opportunity loss by not selecting the best strategy 
(Aissi et al., 2009). 

Let . Sf describe the set of scenarios for uncertain setup costs and . f s
i the amount 

of setup cost for establishing a hub located at node .i ∈ H under scenario .s ∈ Sf . 
The problem for each scenario .s ∈ Sf can then be formulated as: 

.Z∗
s = min

∑

k∈K

∑

a∈A

Cakwkxak +
∑

i∈H

f s
i yi (34) 

s.t. (2) –(5) ,

where . Z∗
s represents the lowest cost (i.e., optimal value) under scenario .s ∈ Sf . 

The regret of a solution .(x, y) under setup cost scenario .s ∈ Sf is defined as the 
difference between the optimal cost that can be obtained under that scenario (i.e., 
. Z∗

s ) and the total cost associated with solution .(x, y). With this definition, the robust 
hub location problem with uncertain setup cost (RHLUSC) is formulated as follows: 

.RHLUSC min max
s∈Sf

{
∑

k∈K

∑

a∈A

Cakwkxak +
∑

i∈H

f s
i yi} − Z∗

s (35) 

s.t. (2) –(5) .

The above formulation can be linearized by replacing the inner maximization 
with a continuous variable V as follows: 

. min V . (36) 

s.t. (2) –(5) 

V ≥
∑

k∈K

∑

a∈A

Cakwkxak +
∑

i∈H

f s
i yi − Z∗

s s ∈ Sf . (37) 

In this fashion, we can linearly model uncertainty in setup cost using the min-
max regret criterion.
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4.4 Extensions with Robust Models 

An immediate extension with the robust models would be to consider a more general 
case of the problem by taking demand and costs simultaneously under uncertainty. 
There are a few studies in the literature modeling different robust hub location 
problems. Meraklı and Yaman (2016, 2017) study the uncapacitated and capacitated 
multiple allocation p-hub median problem under polyhedral demand uncertainty 
with two different uncertainty sets, hose and hybrid, and adopt a min-max criterion. 
In the hose model, they assume that the only available information is the upper limit 
on the total flow adjacent to each node, while in the hybrid model, they additionally 
impose lower and upper bounds on each pairwise demand. Zetina et al. (2017) 
address robust hub location problem with uncertain demand and transportation 
costs. They take interval uncertainty with a min-max objective and linearize the 
formulation by defining an additional continuous variable. 

de Sá et al. (2018) consider an incomplete hub location problem in which a hub 
network can be partially interconnected by hub arcs and where both demand and 
transportation costs are under uncertainty. More recently, Taherkhani et al. (2021) 
take revenue under uncertainty in a profit maximizing hub location problem and 
formulate the problem with a max-min criterion and a min-max regret objective, 
considering both interval uncertainty and a discrete set of scenarios. They evaluate 
the level of robustness and conservatism of each metric in addressing the uncertainty 
associated with revenue, and for a particular case, they prove that the robust-
stochastic version with max-min criterion can be viewed as a special case of the 
min-max regret stochastic model. 

5 Hybrid Models and Other Approaches 

In this section, we first describe a robust-stochastic model, in which two different 
types of uncertainty, including stochastic demand and uncertain transportation 
costs, are simultaneously incorporated into the problem. Then, we briefly discuss 
distributionally robust optimization and simulation-optimization techniques. 

Let us start by modeling a robust-stochastic hub location problem. As explained 
in Sect. 3.1, the uncapacitated hub location problem with stochastic demand is 
equivalent to its expected value counterpart. Therefore, in this setting, we consider 
the capacitated version of the problem under stochastic demand. Assume that 
uncertain transportation costs can change within an interval and let us use the min-
max criterion for formulating this problem. 

Let .Ω(y, ψ) denote the set of all feasible decision variables .xak(ψ) under 
demand realization . ψ that comply with the given location decisions . y. In particular, 

.Ω(y, ψ) = {xak(ψ) : (9) –(12) are satisfied}. (38)
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The robust-stochastic capacitated hub location (RSCHL) problem can then be 
formulated as follows: 

. RSCHL min
(x,y)∈Ω

Eψ[
∑

k∈K

∑

a∈Ak

C̄akwk(ψ)xak(ψ) + ρψ(x)] +
∑

i∈H

fiyi,

(39) 

where .Ω = {(x, y) : x(ψ) ∈ Ω(y, ψ) ∀ψ ∈ Ψ, yi ∈ {0, 1} ∀i ∈ H } is the set of 
solutions .(x, y) that are feasible under all realizations of . ψ , and .ρψ(x) is defined as 
follows: 

.ρψ(x) = max
∑

(i,j)∈Pak∩Uc

(
∑

k∈K

∑

a∈A

ĉij τ
ij
akwk(ψ)xak(ψ)

)
hij (40) 

s.t. (29) –(30) .

By defining .μ(ψ) and .λij (ψ) as the dual variables associated with con-
straints (29) and the linear relaxation of (30) , respectively, and taking the dual of
the problem, the mixed-integer programming formulation of the robust-stochastic
model can be written as:

. min
(x,y)∈Ω

Eψ[
∑

k∈K

∑

a∈A

C̄akwk(ψ)xak(ψ) + γcμ(ψ) +
∑

(i,j)∈A

λij (ψ)] +
∑

i∈H

fiyi . 

(41) 

s.t. μ(ψ) + λij (ψ) ≥
∑

k∈K

∑

a∈A:(i,j)∈Pak

ĉij τ
ij
akwk(ψ)xak(ψ) (i, j) ∈ A. (42) 

λij (ψ), μ(ψ) ≥ 0 (i, j) ∈ A. (43) 

Alternatively, if there is a discrete set of scenarios that can describe the behavior 
of uncertain transportation costs, one can also consider minimizing the regret 
incurred by the lack of perfect information. In this case, the resulting model under 
stochastic demand would be a min-max regret type robust-stochastic model. 

The distributionally robust optimization technique is another approach in mod-
eling uncertainty, where a parameter assumes only a partially known random 
distribution. The distributionally robust models are again formulated using min-
max and min-max regret criteria as detailed above. However, compared to pure 
robust optimization, the advantage of this approach is that it is less conservative as it 
utilizes distribution information. Interested reader can refer to, for example, Wiese-
mann et al. (2014) and Chen et al. (2019) for more information on distributionally 
robust optimization. We would like to note that although both types of uncertainty 
are considered in the above hybrid robust-stochastic RSCHL formulation, it is 
different than the distributionally robust optimization approach by assuming that 
one set of parameters (i.e., demand) have a fully known distribution, while there is 
no known distribution for the other set of parameters (i.e., transportation costs).
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Wang et al. (2020) adopt the distributionally robust optimization approach for 
addressing uncertainty involving both demand and costs in uncapacitated and 
capacitated hub location problems. In their setting, the joint distribution of demand 
and cost is allowed to be ambiguous and is only partially known defined by an 
ambiguity set. The objective is to minimize the worst-case expected cost over 
member distributions arising from this ambiguity set. 

Uncertainty in hub location problems can also be addressed by integrating 
optimization with simulation. For example, Janschekowitz et al. (2023) study 
uncapacitated hub network design problems under various types and levels of uncer-
tainty by implementing an iterative scenario-based hybrid simulation-optimization 
approach to obtain estimated global optimal solutions. They define a metric referred 
to as the value of simulation to compare the solutions obtained by using determinis-
tic data or the expected value problem, with the solutions obtained under uncertainty. 
The advantage of using simulation coupled with optimization is that simulation can 
easily handle more complex settings, such as nonlinear transportation cost functions, 
reliability of hubs, congestion, and even user behavior. 

6 Solution Methods 

Hub location problems are usually very challenging to solve as they belong to a 
class of NP-hard problems involving joint location and network design decisions. 
Their main difficulty stems from the inherent interrelation between two levels of the 
decision process. The first level considers the selection of a set of nodes to locate 
hub facilities, whereas the second level deals with the design of the hub network, by 
selecting the links to connect origins, destinations and hubs, as well as the routing of 
flows through the network (Contreras & O’Kelly, 2019). Incorporating uncertainty 
makes these problems even more difficult to solve to optimality, particularly by 
general purpose solvers. Even with a finite set of scenarios, one often ends up 
with a large-scale mixed-integer linear problem with huge numbers of constraints 
and variables. In such cases, developing exact or heuristic solution approaches are 
required to be able to obtain a solution to the problems. 

In this section, we overview the common approaches employed for solving 
stochastic and robust hub location problems in the literature. We would like to 
remark here that the complexity of the problems in this domain depends on the 
problem setting and its corresponding formulation. Hence, we cannot compare the 
problem complexity, in general, based on the employed modeling approaches (e.g., 
stochastic vs. robust). 

One main difficulty in solving stochastic problems arises when the number of 
scenarios is infinite, and hence, the evaluation of the expected value of the objective 
function is challenging. To overcome this issue, a Monte Carlo simulation-based 
method known as sample average approximation (SAA) scheme can be used as 
suggested by Kleywegt et al. (2002). The main idea of this method is to reduce 
the size of the problem by generating a random sample and approximating the
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second-stage expectation value by the sample average function. This procedure is 
then replicated, and the overall average value is considered as the approximation of 
the optimal value of the stochastic problem. This approach has been successfully 
applied to several stochastic supply chain design as well as hub location problems 
with a large number of scenarios (see, e.g., Santoso et al. (2005), Schütz et al. 
(2009), Contreras et al. (2011), and Taherkhani et al. (2020), Taherkhani et al. 
(2021)). 

Note that with a finite number of second-stage realizations, the full deterministic 
equivalent linear program becomes quite large. Accordingly, as customarily done 
in the literature, developing an exact (e.g., decomposition-based algorithm) or a 
heuristic algorithm (e.g., variable neighborhood search, tabu search, and GRASP) 
for solving the SAA counterpart of the stochastic problem is required. For example, 
Taherkhani et al. (2020, 2021) propose Benders decomposition algorithms coupled 
with SAA for profit maximizing capacitated hub location problem with stochastic 
demands. They further develop acceleration techniques to improve the convergence 
of the algorithms. Ghaffarinasab and Kara (2022) develop exact algorithms based 
on Benders decomposition for solving risk-averse stochastic p-hub median problem 
under demand data uncertainty represented by a finite set of scenarios. Peiró 
et al. (2019) propose a heuristic procedure for an uncapacitated r-allocation p-hub 
median problem with nonstop services in which demand and transportation costs 
are stochastic and stochasticity is captured by a finite set of scenarios. 

The L-shaped algorithm is another approach for solving two-stage stochastic 
integer programs. The main idea of this algorithm is to approximate the nonlinear 
term in the objective including a solution of all second-stage linear programs and 
use the structure of the stochastic linear program for building a master problem and 
a subproblem (Van Slyke & Wets, 1969). Recently, Rostami et al. (2021) consider 
the single allocation hub location problem under demand uncertainty and develop 
a customized solution approach based on cutting planes that computationally 
outperforms the standard L-shaped method. 

Similar to stochastic programming, the scientific community researches for 
efficient exact approaches to solve robust versions of the hub location problems. 
Meraklı and Yaman (2016, 2017) develop two Benders decomposition-based algo-
rithms for robust uncapacitated and capacitated multiple allocation p-hub median 
problem. Zetina et al. (2017) propose a branch-and-cut algorithm to solve the robust 
uncapacitated hub location problem with uncertain demand and transportation cost. 
de Sá et al. (2018) devise a Benders decomposition algorithm for an incomplete 
multiple allocation hub location problem where the hubs are not necessarily fully 
interconnected. They assume that both demands and the fixed costs associated with 
the hubs are under uncertainty. Taherkhani et al. (2021) develop exact algorithms 
based on Benders decomposition integrated with SAA for solving robust-stochastic 
models for profit maximizing hub location problems in which revenue is uncertain. 
Exploiting the repetitive nature of SAA scheme, they propose generic acceleration 
methodologies to enhance the performance of the algorithms enabling them to solve 
large-scale intractable instances of the problem, in particular for the min-max regret 
version, to optimality.
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7 Conclusion 

In this chapter, we addressed essential aspects related to modeling hub location 
problems under uncertainty. We presented several stochastic and robust optimization 
models for a basic hub location problem setting and discussed further extensions 
with hybrid approaches. 

Taking uncertainty into account in hub location models is a challenging field of 
research. Hence, despite the reported studies, the existing literature incorporating 
various uncertainty aspects into hub location problems, in terms of both modeling 
and solution methodology, is still rather limited. Nonetheless, to be able to provide 
resilient networks and routing solutions for the decisions made in the hub location 
domain, it is certainly very important to incorporate uncertainty into the problem 
settings. 
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On Risk Management of Multistage 
Multiscale FLP Under Uncertainty 
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Abstract A tight mixed integer linear programming modeling framework is pre-
sented for the multistage multiscale facility location multiproduct allocation net-
work expansion planning under uncertainty. Two types of decisions are considered, 
namely, the strategic and the operational ones. The strategic decisions are the selec-
tion of facility locations in a network as well as the related capacity dimensioning 
and expansion along a time horizon. A comprehensive literature overview on the 
problem is performed. Two types of uncertain parameters are considered, namely, 
strategic and operational ones, to be represented in multistage and two-stage sce-
nario trees, resp. By using the special structure of the facility location problem, the 
coherent time-consistent risk-averse measure to consider is the expected conditional 
second-order stochastic dominance. Given the intrinsic problem’s difficulty and 
the huge instances’ dimensions, it is unrealistic to seek an optimal solution. A 
specialization of the matheuristic algorithm SFR3 is presented to obtain a (hopefully 
good) feasible solution in reasonable time as well as a lower bound to assess 
the solution quality. The performance of the overall approach is computationally 
validated by considering a dynamic supply network design problem with 100 raw 
material, 50 products, 30 candidate facilities (10 plants and 20 distribution centers), 
31 strategic scenario nodes in the time horizon, and 4 operational ones per stage. 
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1 Introduction and Motivation 

The optimization of real-life facility location planning (FLP) frequently requires 
strong MILP1 modeling for problem-solving. Those dynamic problems are hard to 
solve with the additional difficulty of considering capacity expansion planning along 
a time horizon. Some examples of industrial sectors are energy and petrochem-
ical networks expansion; transportation (aircraft fleet and rapid transit) network 
design; supplying, manufacturing, and distribution network management; forest 
harvesting planning; natural disaster relief preparedness resource allocation; and 
flow distribution through hub networks, just to name a few. Two types of time 
scaling are very frequently encountered in those problems, namely, a long one 
named stage and another shorter time unit.2 Two types of uncertain parameters 
are considered, namely, strategic and operational ones. The strategic decisions 
(facility location, dimensioning, and expansion) and the realization of the uncertain 
strategic parameters take place at the nodes in the scenarios through the stages 
in a given time horizon.3 

. ,4 The operational decisions and the realization of 
the uncertain operational parameters take place at the shorter time units.5 The 
uncertainty in the strategic parameters is stagewise-dependent.6 The uncertainty in 
the operational parameters is only stage-dependent.7 

. ,8 Examples of the former are 
the facility building costs and residual values, and examples of the latter are the 
product demand, raw material costs, and facility capacity disruptions. Both types 
of uncertainties are considered in this work in an interlinked way. The capacitated 
facility location multiproduct allocation and extension planning (CFLEP) to deal 
with consists of selecting a given number of locations for a set of facilities at 
(the beginning of) the stages to manufacture products or producing services at the 
shorter time units. The goal is to minimize the expected cost of facility building,

1 MILP, mixed integer linear programming. 
2 Stage, set of consecutive time units (say semesters, years), such that a facility location decision 
can be made at say (the beginning of) a semester and its operation is performed at shorter time 
units (say hours, days, weeks). 
3 Strategic scenario, node set where the realization of the strategic uncertain parameters is 
represented in a multistage tree from the first stage to the last one along the time horizon, so 
that only one node per stage is considered; see Fig. 1. 
4 Strategic node node in the multistage scenario tree where the realization of the strategic uncertain 
parameters take place for a given stage along he time horizon. 
5 Operational scenario, node where the realization of the operational uncertain parameters is 
represented in a two-stage tree in the time horizon; it belongs to the time units of a stage; see 
Fig. 1. 
6 Stagewise-dependency, property of the strategic uncertainty, so that it depends on the stage and 
also the uncertainty in the previous stages. 
7 Stage-dependency, property of the operational uncertainty, so that it does only depend on the 
stage. 
8 The operational two-stage trees are hanging from the multistage tree, being rooted at the strategic 
nodes, so that the second stage nodes represent the operational scenarios; see Fig. 1. 
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capacitated module installation, and expected cost of supplying, manufacturing, and 
distribution network management so that the solution is feasible under the strategic 
and operational scenarios along the time horizon. This policy is called risk neutral 
(RN)9 in the absence of measures that control the impact in the objective function 
of the black swan scenarios. However, given the high stochasticity of the problem, 
a risk-averse measure (RAM) should be considered.10 That stochasticity is due to 
the high uncertainty in the main strategic and operational parameters along the time 
horizon. 

The coherent time-consistent RAM that is proposed in this work is the so-named 
expected conditional second-order stochastic dominance (ECSD); see Escudero and 
Monge (2018).11 

To the best of our knowledge, a multistage multiscale stochastic approach for 
general CFLEP problems under uncertainty has not yet been considered in the 
literature, much less when the RAM ECSD is instrumented. Given the intrinsic 
problem’s difficulty and the huge instances’ dimensions (due to the network size 
of realistic instances as well as the cardinality of the strategic scenario tree and 
operational ones), it is unrealistic to seek an optimal solution. The matheuristic 
algorithm SFR3 is considered; see Escudero and Monge (2021). It obtains a 
(hopefully good) feasible solution in reasonable time as well as a lower bound of 
the optimal solution value to assess the solution quality. 

The remainder of the work is organized as follows: Sect. 2 is devoted to a 
literature review on FLP variants under uncertainty to take benefit from by the main 
contributions of this work. Section 3 presents the main features of the stochastic 
version of CFLEP, so-named S-CFLEP, to deal with in this work. For completeness 
purposes and setting some notation to be used throughout the work, Sect. 4 reviews 
the main concepts of strategic multistage scenario trees and operational two-stage 
ones. Section 5 presents a strong MILP model for a comprehensive multistage 
multiscale S-CFLEP, where a dynamic supply, production, and distribution general 
facility location and expansion planning is considered. Section 6 specializes the 
decomposition matheuristic algorithm SFR3 to solving S-CFLEP, where the RAM 
ECSD is considered. Section 7 reports the main results of the proposal with 
a commercial state-of-the-art solver as a benchmark. Section 8 draws the main 
conclusions.

9 Risk neutral (RN), policy in problems under uncertainty where the impact of the so-named black 
swan scenarios in the objective function value is balanced with the impact of the good ones. Note: 
A black swan scenario has a low probability of occurrence, and it may have a high negative impact 
in the objective function depending upon the solutions. 
10 Risk-averse measure (RAM), set of constraints and, perhaps, objective function elements that 
prevent solutions with high negative implications of the occurrence of black swan scenarios in the 
expected value of the function. 
11 ECSD, a risk-averse measure that prevent solutions according to the coherent properties 
presented in Artzner et al. (2007) and the time consistency ones presented in, for example, in 
Carpentier et al. (2012), Escudero and Monge (2018), Escudero et al. (2018b), Homem-de-Mello 
and Pagnoncelli (2016), and Werner et al. (2013), by considering a set of cost function thresholds 
that violations are upper bounded. 
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2 Literature Overview 

See a recent comprehensive overview in Escudero and Monge (2021) for hub 
location problems, where the routing has a special importance for flow transporting 
between node pairs in a network. It includes works on uncapacitated and capacitated 
deterministic and Robust Optimization and static, two-stage, multistage, and mul-
tistage multiscale stochastic optimization. In any case, an overview on stochastic 
general FLP is as follows: 

Static Stochastic Most of the works in the literature on static stochastic capacitated 
FLP (CFLP) are usually related to network infrastructure stochastic disruptions, due 
to natural disasters and terrorist attacks. See in Yu and Zhang (2018), Mohammadi 
et al. (2019) two comprehensive reviews on the subject. In particular, Yu and 
Zhang (2018) present a mixed integer nonlinear programming (MINLP) model 
for the uncapacitated FL under stochastic facility disruption, where the related 
risk is dealt with by considering the RAM Conditional Value-at-Risk (CVaR). 
Aghezaaf (2005) presents a Robust Optimization model for a strategic CFLP, where 
the facilities are plants and warehouses in the supply network design (SND) area 
under uncertainty on the demand. A Lagrangean relaxation approach is considered 
where the multipliers are constructed from the LP dual variables. Pagès-Bernaus 
et al. (2019) present a large-scale stochastic e-commerce CFLP for SND with 
uncertain demand. A mixture of a metaheuristic algorithm and simulation so-named 
simheuristic is introduced. 

Two-Stage Stochastic The key parameters in FLP are frequently uncertain at the 
decision-making process in real-life problems. The realization of the uncertain 
parameters in mathematical optimization can usually be structured in a finite 
set of scenarios along a time horizon. Traditionally, special attention has been 
given to optimizing the Deterministic Equivalent Model (DEM),12 in this case, 
by minimizing the expected facility network location and operation costs in the 
scenarios. The parameters’ uncertainty in this field has been studied since the sixties; 
see Louveaux (1993) for a classical review and, more recently, Snyder (2006), 
Correia and Saldanha-da-Gama (2019), and Gago et al. (2022), among others. 
Most of the works in the literature deal with static two-stage models, and related 
algorithms for problem-solving. 

A selected review of stochastic approaches for CFLP is presented in Correia 
and Melo (2021); see also Crainic et al. (2021), where additionally deterministic 
settings are reviewed. Most of the works deal with two-stage single-period MILP 
models, where the uncertainty (usually in the product demand along the time 
horizon) is represented by a set of finite scenarios. The FL decisions (designed 
here as “strategic”) are considered as first-stage variables in the models, where 
no subordination is made to any single scenario but all of them are taken into 
account. On the other hand, the decisions on the allocation of products to facilities

12 Deterministic Equivalent Model (DEM), model equivalent to the stochastic one to represent in 
the deterministic setting the objective function and constraints in the scenarios; see Wets (1966). 



On Risk Management of Multistage Multiscale FLP Under Uncertainty 359

and demand satisfaction (here called “operational”) are considered as second-
stage variables in the scenarios. Ntaimo and Sen (2005) present a very interesting 
approach for CFLP by considering a binary linear optimization (BLO) model for 
the two-stage stochastic server location problem, where the first-stage variables 
are the servers’ location and the second stage ones are the allocation of clients to 
servers in the scenarios. The model is strengthened by generating valid inequalities. 
The divide-and-conquer exact algorithm so-named . D2, see Sen et al. (2002), is 
considered for solving an instance with over one million binary variables. 

Chen et al. (2006) deal with a coherent RAM for single-period FLPs under 
uncertainty, although it can be easily generalized to other types of problems. It is 
presented in a two-stage stochastic BLO model, where the uncertainty is captured in 
a set of scenarios. It is assumed that a modeler-driven number of facilities is selected 
by considering all scenarios but without subordinating it to any of them (i.e., the 
selected set of facilities is a first-stage decision). On the other hand, each customer 
is allocated to a facility under each scenario, that is, the customer allocation is 
a second-stage decision. The aim is to minimize the expectation of the regret 
associated with the scenarios. Note: That regret for a scenario is measured as the 
difference between the demand weighted distance of the facility locations and their 
allocated customers in the proposed solution and the optimal one for the scenario 
alone. Albareda et al. (2011) present a BLO model for two-stage stochastic FLP with 
the following particularity: The location of the facilities as well as the assignment 
of customers to facilities (only one per customer) are first-stage decisions, where 
the number of assignments have a lower bound for each facility. The uncertainty 
relies on whether a customer has demand or not; it is assumed that it follows the 
Bernoulli distribution. If the number of customers with demand among of those 
assigned “a priori” to a facility is higher than a preset upper bound, then the service 
cost has an additional so-named outsourcing one. The aim is to select the facility 
location and the facility-customer assignment to minimize the facility location fixed 
cost plus the expected servicing one. Ivanov and Akmaeva (2021) consider an MILP 
model for two-stage stochastic CFLP with profit maximization, where the facilities 
can be open at the first stage and also under each scenario in the second stage, 
for a given value of the reliability level. The particularities mainly lie on: (a) The 
customer preferences for their facility allocation are taken into account. (b) Since 
the stochastic demand must be served, the quantile of losses is also considered in 
the solution’s feasibility. 

Dehghan et al. (2021) offer a review of the CFL-routing problem under uncer-
tainty. Additionally, a two-stage MILP model is presented for the capacitated depot 
location-vehicle routing problem, where the simultaneous pickup and delivery is 
performed in a supply chain distribution network. The uncertainty on the depot 
disruption is modeled as a set of finite second-stage yes-no scenarios where 
the routing is performed. Several metaheuristics are tailored and computationally 
compared with the classical genetic algorithm. 

Wang et al. (2021) provide a comprehensive review of emergency FLP, and 
most of the works intend to obtain in a static approach the optimal number 
of locations and the appropriate sites for the emergency facilities. Binary and
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general integer models are reviewed, mostly in the deterministic setting together 
with recent works that deal with the uncertainty related to services demand, site 
and resources availability, and cost and traffic congestion, among others. The 
uncertainty is dealt with by considering three methods, namely, chance constrained 
(by bounding the probability of not reaching certain levels of demand service 
covering), Distributionally Robust Optimization (DRO),13 and classical scenario-
based two-stage stochastic optimization. There is a broad variety of decomposition 
methodologies for emergency FLP solving, such as exact ones, matheuristics, 
metaheuristics, etc. Wang et al. (2021a) present a mixed integer second-order 
cone model for multiperiod CFLP to delivering relief supplies to affected areas 
in post-disaster humanitarian logistics. The ambiguity set is considered by the .∞-
Wasserstein distance in chance constraints to assure a high probability of on time 
delivery when facing uncertain demand. Boonmee et al. (2017) present a survey 
on determining locations for emergency response facilities, such as distribution 
centers, warehouses, shelters, debris removal sites, and medical centers. The BLO 
models are static and multiperiod deterministic, two-stage stochastic and Robust 
Optimization in a set of application studies. A two-stage stochastic BLO model is 
presented in Gago et al. (2022) for ambulance location-allocation in an emergency 
medical service. The first stage decisions are the location of ambulance stations and 
fleet sizing, and the second stage decisions are the assignments of ambulances to 
emergencies in a given area under the scenarios. Recently, Zhu et al. (2022) present 
several cost-related two-stage Robust Optimization MILP models for delivering first 
aid products to the demand points. The first stage consists of locating warehouses 
and allocating available drones to them. The second stage assigns drones to demand 
points under the scenarios. A mixture of a column-and-constraint generation method 
and Benders Decomposition (BD) is considered. 

Rahmaniani et al. (2018) present a two-stage stochastic single-period multi-
product CFLP with stochastic demands in the origin-destination node pairs of the 
network. An MILP model is presented where first-stage strategic decisions are 
the subset of arcs to be located in the network, and the scenario-based second-
stage operational decisions are given by the traffic flow through the located arcs 
in the network. The goal is the minimization of the arc investment cost plus the 
expected transportation cost in the scenarios. A set of valid inequalities is introduced 
as well as an accelerated BD methodology. Conde and Leal (2021) deal with 
the uncapacitated version of the two-stage stochastic FLP just presented above, 
by introducing a BLO robust model. The uncertainty is modelled by considering 
polyhedral sets so that the aim is to minimize a maximum regret total cost, by 
considering another tightened BD scheme. Mendoza-Ortega et al. (2021) present 
a two-stage stochastic MILP model for the single-period uncapacitated FLP. An 
MILP model is introduced where the first-stage strategic decisions are related to

13 Distributionally Robust Optimization (DRO), a Robust Optimization framework for problem-
solving, where the uncertainty lies in an ambiguity set that is composed by some probabilistic 
distributions. 
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the facility locations. The scenario-based second-stage decisions are related to a 
multiple product distribution from producers to demand distributors. An agrofood 
case study is also presented, where the uncertainty on the crop yields per hectare is 
modeled. 

An MILP model is presented in Alonso-Ayuso et al. (2003) for two-stage 
stochastic multiperiod CFLP. Its aim consists of production topology selection, 
facility sizing, product selection and allocation among plants, and vendor selection 
for raw material. The objective is the maximization of the expected benefit given 
by the product net profit over the time horizon minus the investment depreciation 
and operation costs. The main uncertain parameters are the product net price 
and demand, the raw material supply cost, and the production cost. The strategic 
decisions are made in the first stage. The tactical decisions are made in the second 
stage in the scenarios along the time horizon, being represented by continuous 
variables. Another MILP model is presented in Alonso-Ayuso et al. (2005) for  
two-stage stochastic multiperiod CFLP. It does product selection and plant location 
and dimensioning to maximize a mixture of the expected profit and the risk-
averse reduction in the scenarios along a time horizon. Two alternative RAMs 
are considered. The first one maximizes the probability of reaching a profit in the 
scenarios satisfying a given threshold. The second one maximizes the VaR profit in 
the scenarios so that the expected number of scenarios that do not satisfy it is not 
higher than a given probability threshold (i.e., chance-constrained approach). An 
algorithm for problem-solving based on a splitting variable modeling object14 via 
scenarios is considered. It uses the Branch-and-Fix Coordination (BFC) algorithm15 

introduced in Alonso-Ayuso et al. (2003a). An approach is presented in Ravi and 
Sinha (2006), where the facility locations could be in any of the two stages. An 
MILP model for a general two-stage stochastic multiperiod covering CFLP is 
presented in Marín et al. (2018). Its aim is to cover the demand of all nodes in 
a network up to a predefined distance threshold from the facility locations (with 
penalization for exceeding it). It is claimed that most of the works in the literature 
(even those with a deterministic subject) are particular cases of the proposed new 
formulation, where the facilities can be opened and closed at the periods. The goal 
consists of minimizing the expected cost in a finite set of scenarios for the demand 
and covering capabilities. Another two-stage stochastic multiperiod approach has 
been recently presented in Correia and Melo (2021), where two MILP models are 
introduced. In the first one, the strategic decisions on CFL are performed at the first 
periods before the uncertainty on the customers’ demand is unveiled. In any way, 
the capacity can be modified (increasing and reducing it) in the periods along the

14 Splitting variable modeling object, a constraint where a variable is equated to their copies such 
that, for example, its dualization allows the model’s Lagrangean decomposition. 
15 Branch-and-Fix Coordination (BFC), an algorithm where the coordination of the selection of 
the branching nodes and branching variables in the scenario subproblems is jointly done for those 
B&C nodes that share the same path on their common variables from the root node to each of them 
in their own branching process. 
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time horizon by considering the ‘here and now’ policy,16 therefore, independently 
of the scenarios (i.e., first-stage decisions). The second model considers that those 
facility capacity modifications in the periods are performed under the scenarios (i.e., 
in the second stage). In both models, the operational decisions on the product flow 
from facilities to customers along the time horizon is carried out at the second stage 
(i.e., under the scenarios). Baptista et al. (2019) present a mixed integer bilinear 
optimization model for the two-stage stochastic multiperiod multiproduct close-
loop chain design problem. The recovered end-of-life products from customers 
are evaluated in disassembly centers, and accordingly, either they are sent back 
to facilities for remanufacturing or leaving the network. In the latter case, either 
they are sold to third parties or sent to disposal. Typical uncertain parameters are 
cost investment on facility location as well as product demand, production cost, 
and returned product pricing, among others. Therefore, the stochastic optimization 
addresses different topology decisions on the location and capacity of some facilities 
(factories and distribution and sorting centers) at the first stage while some others 
(in particular some centers) at the second-stage periods in the scenarios. The goal is 
to maximize the net present value of the expected total profit along the time horizon. 
A mixture of chance-constrained and second-order stochastic dominance coherent 
time-inconsistent RAMs is considered for risk management at intermediate periods 
of the time horizon. A variant of the Fix-and-Relax (FR) methodology17 is also 
presented. For assessing the computational validation of the approach, pilot cases 
are taken from a real-life glass supply chain that main features are retained. 

Liu et al. (2019) present a two-stage DRO model for an emergency capacitated 
service station location problem with joint chance constrained to lower bound the 
probability of medical servicing demand. The problem is converted in a second-
order cone mixed integer optimization model. Another two-stage DRO MILP model 
for CFLP is presented in Gourtani et al. (2020), where semi-infinite and semi-
definite programming approaches are considered for problem-solving. A data-driven 
DRO model for CFLP is studied in Saif and Delage (2021), which distributional 
ambiguity set is represented as a Wasserstein ball around a small sample of the 
uncertain parameters, from where a set of scenarios is generated. Two MILP models 
are presented, one for the two-stage version and the other for the static one. Column 
generation iterative algorithms are proposed. A static CFLP with uncertainty in 
customer demands is presented in Ryu and Park (2021), where a cardinality-
constrained uncertainty set is assumed for the robust problem. A mixture of the 
Dantzig-Wolfe decomposition and a branch-and-price algorithm is considered. A

16 ‘Here and now’ policy, a popular one in stochastic optimization so that the decisions are made 
at the stages (the first one in two-stage settings and at any stage in multistage settings), where the 
scenarios are taken into account but without subordinating to any of them. 
17 Fix-and-Relax (FR), a matheuristic decomposition methodology for solving dynamic determin-
istic MILP problems, introduced in Dillenberger et al. (1994). It consists of solving a sequential 
series of subproblems, such that the variables in each one are partitioned in three subsets. The value 
of the variables in the first one is fixed, the integer variables in the second subset are kept integer, 
and the integrality of the variables in the third subset is relaxed. 
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two-stage DRO MILP model is presented in Basciftci et al. (2021), where the 
customer demand uncertainty is endogenous on the location of the facilities. A 
computational study is conducted to assess its added value by comparing it with the 
deterministic model as well as the classical stochastic and two-stage DRO ones with 
exogenous demand uncertainty. Another Robust Optimization approach is presented 
in Valtsa and Jayaswal (2021) for CFLP, where a two-stage stochastic multiperiod 
MILP problem is introduced by considering the uncertainty in the facility capacity. 
As a pilot case, medical doctors are to be assigned in a primary health center 
location-allocation problem. The approach minimizes the maximum regret between 
the optimal solution for each scenario and the one provided by the model, where the 
facility location is performed at the first stage. Several scenario dominance rules are 
introduced for reducing the model’s dimensions, and a BD refinement is considered 
for problem-solving. 

Given a network with a set of supplying (i.e., origin) nodes of different products 
and a set of receiver (i.e., destination) nodes of those products, but on smaller 
quantities, a cross-dock entity may serve as a consolidation point. The origin nodes 
can deliver the products to the cross-dock so that after being classified by type 
and destination, it can be transported to the destination nodes. As it is pointed 
out in Goodarzi et al. (2020), “cross-docking helps to accelerate the flow of parts 
and material, reduces the number of vehicles, and diminishes inventory costs. The 
main purpose of cross-docking in almost all companies is to collect various supply 
products in the form of pallets, consolidate them into a collection of mixed pallets 
of products with the same destination, and drop them off at the consume point 
(manufacturing/assembly plants/end user), according to the orders.” A cross-dock 
has a number of receiving doors (strip doors) and a number of exiting (stack) doors, 
each of them with a pallet handling capacity during a given time period. The cross-
docking assignment optimization is a young discipline. Most of the literature has 
been published during the last 25 years. See a comprehensive review in Goodarzi 
et al. (2020) focused on deterministic models and metaheuristic algorithms, but 
also considering the uncertainty on disruption, reliability, and reallocation of the 
facilities. However, the literature on cross-dock design under uncertainty is very 
scarce. 

Multistage Stochastic for Capacitated Facility Location, Dimensioning and 
Expansion Planning, S-CFLEP As it can be observed in the approaches reviewed 
above (static stochastic, two-stage single-period stochastic, and two-stage multi-
period stochastic), most of the works in the literature on stochastic CFLEP consider 
that the uncertainty is revealed only at a single moment. However, Current et al. 
(1998), one of the first works on stochastic FLP in a multistage setting, point out that 
“facility location decisions are frequently long-term in nature. Consequently, there 
may be considerable uncertainty regarding the way in which relevant parameters 
in the location decision will change over time.” As Correia and Saldanha-da-Gama 
(2019) recently noted, there are many cases where the uncertainty is revealed along 
a time horizon and where the realization of the uncertainty is frequently stagewise-
dependent. In those cases, the two-stage stochastic multiperiod scenario setting
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is not appropriate, since that approach is a relaxation of the multistage scenario 
tree where the nonanticipativity principle18 is violated. However, there is not a 
broad literature on multistage stochastic FLP under uncertainty with respect to 
its deterministic counterpart. Among the very few works in the literature dealing 
with S-CFLEP, Hernández et al. (2012) present an MILP model and an algorithmic 
approach to location of prison facilities under uncertainty; it is applied to the Chilean 
prison system. The problem consists of finding locations and sizes of a preset 
number of new jails, and determining where and when to increase the capacity 
of both new and existing facilities over a time horizon, while minimizing the 
expected costs of the prison system location. The large-scale instances are solved 
via a heuristic mixture of BFC and B&C schemes to satisfy the constraints in the 
scenarios. Nickel et al. (2012) present an MILP model for S-CFLEP in the SND 
area, where the uncertainty in the customer demand and interest rates is represented. 

Escudero et al. (2018a) present two matheuristric algorithms for providing lower 
and upper bounds for a BLO model that is introduced for large-scale S-CFLEP. Both 
algorithms consider, at each iteration, the solution where the variables’ integrality 
related to the later stages is relaxed in the subproblems supported by the subtrees 
rooted at the nodes of a given stage in the multistage scenario tree. The first 
one, so-named CLD-LH (Cluster split-variable Lagrangean Decomposition and 
Lazy Heuristic),19 

. ,20 is an iterative Lagrange multipliers updating scheme based 
on a scenario cluster split-variable Lagrangean decomposition; see Escudero et al. 
(2017). It is intended for obtaining strong (lower, in case of minimization) bounds 
of the solution value. The second scheme is the Fix-and-Relax Coordination (FRC) 
matheuristic,21 presented in Albareda-Sambola et al. (2013) for S-CFLEP. It also 
works with the integrality relaxation of a subset of variables for different levels 
of the problem so that a lower-bound chain is generated from the LP relaxation 
up to the integer solution value. Additionally, a lazy heuristic scheme, based on 
the solutions of the relaxed problems, is considered in both procedures to obtain 
a (hopefully good) feasible solution of the original problem by fixing to 0 or 1 
the fractional values of the variables based on different criteria. Another multistage 
stochastic MILP model is presented in Quezada et al. (2020) for the uncapacitated 
lot-sizing problem with uncertainty in demand and costs. An extension of the 
stochastic dual dynamic integer programming (SDDiP) algorithm, see Zou et al.

18 Nonanticipativity principle: The scenarios in a two-stage tree or a multistage one that have a 
unique realization in the stages up to a given node should have the same solution; see Wets (1966). 
19 Cluster split-variable Lagrangean Decomposition (CLD), scheme for performing Lagrangean 
Decomposition (LD) where the modeler-driven scenarios in a given cluster are not subjected to 
LD and, on the other hand, the split-variable constraints among the scenario clusters are dualized. 
Those constraints equate copies of the variables in the nodes of the scenario tree that belong to the 
first stages. 
20 Lazy algorithm, a scheme to fix variables in a model to the values retrieved from the solution of 
another algorithm. 
21 Fix-and-Relax Coordination (FRC), an algorithm based on a specialization of the BFC method-
ology. 
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(2019), is proposed, by exploiting the polyhedral structure of the stochastic uncapac-
itated lot-sizing problem. Several Lagrangean relaxation approaches are considered 
in Taghavi and Huang (2020) for S-CFLEP, where temporary and permanent facility 
capacity types are allowed. 

A three-stage stochastic mixed binary quadratic optimization (BQO) model is 
presented in Escudero et al. (2018, 2020) to determine a preparedness resource CFL 
and emergency good rescue allocation for managing natural disaster mitigation. 
Two types of uncertainty are considered: exogenous one due to the lack of full 
knowledge about the probability and intensity of the disaster for each point in a 
given network and endogenous uncertainty22 that is based on the decision-maker’s 
investment to obtain greater accuracy on the occurrence of the disaster to reinforce 
the network infrastructure. Additionally, the risk-averse measure ECSD is presented. 
Several scenario cluster-variants of Progressive Hedging Algorithm (PHA)23 are 
benchmarked. See also some risk-averse two-stage stochastic approaches for the 
same natural disaster relief in Noyan (2012), Rawls and Turnquist (2012). A 
computational comparison between two-stage and multistage MILP models with 
CVaR variants is carried out in Yu et al. (2021). The classical time-inconsistent 
variant is considered for the two-stage models, and the coherent time-consistent 
Expected CVaR (ECVaR)24 is done for the multistage version. 

The cross-dock design under uncertainty along a time horizon is basically 
considered for SND, where the details of the cross-dock capacity design are not 
taken into account. Two works that are representative of the state-of-the art on the 
issue are Soanpet (2012) and Mousavi et al. (2014). In particular, Soanpet (2012) 
presents two stochastic models on cross-dock design for a multiproduct SND with 
origin and destination nodes, where the cross-docks are located to consolidate the 
products and saving transportation and handling costs. The first model is a chance-
constrained BQO model to locate a given number of cross-dock centers, each one 
with a predefined capacity, as well as to assigning nodes and vehicles to the centers. 
The uncertainty lies in the capacity (assumed to follow the Normal Distribution) 
of each cross-dock center. The goal is to minimize the total cost, provided that 
the facility location cost and transportation and handling operations allow that the 
probability of satisfying the capacity of each facility is not smaller than a given 
threshold. The second model is a two-stage stochastic BQO one, where the first 
stage deals with the infrastructure of the cross-dock facilities. And the second stage 
deals with the supply network operations (i.e., assigning nodes and vehicles to the 
facilities) for each scenario, where the uncertainty lies in the cross-dock facility

22 Endogenous uncertainty, also named decision-dependent one, is the uncertainty that results from 
the modification of the exogenous uncertainty by the decisions made in the model. 
23 Progressive Hedging Algorithm (PHA), introduced in Rockafellar and Wets (1991), for pro-
viding the solution of stochastic problems with continuous variables. It was specialized in Gade 
et al. (2016) for obtaining (hopefully good) feasible solutions in stochastic MILP problems. An 
extension is presented in Boland et al. (2018) as a mixture of PHA and a Frank-Wolfe Simplicial 
decomposition for obtaining stronger lower bounds. 
24 ECVaR, Expected Conditional Value-at-Risk, a popular risk-averse measure. 
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capacity disruption. The goal is to minimize the expected total cost of FLP and 
product rooting and handling. For comparison purposes, the deterministic version 
of each of the two models is also presented. Mousavi et al. (2014) considers 
the location of multiple cross-docking facilities; the assignment of origin and 
destination nodes to the facilities; the product entering, stocking, and exiting; and 
the vehicle routing scheduling for supplying and delivering along a time horizon. 
Two MILP models are proposed as well as their integration. A hybrid of fuzzy 
possibilistic and stochastic optimization approaches is introduced to cope with the 
uncertainty in critical parameters, such as product supplying and demand, volume 
capacity of vehicles, required time for each vehicle to move between nodes, and 
transportation and operating costs. 

3 Strategic Stagewise-Dependent and Operational 
Stage-Dependent Scenarios in S-CFLEP. The Subject 
of the Current Work 

In real-life S-CFLEP problems, two types of decisions are to be considered, namely, 
the strategic and the operational ones. As Alumur et al. (2021) point out, “There 
is also a need to better integrate hub [here, facility] location models with service 
network design research to bridge the strategic and tactical [here, operational] 
decision models,. . . to  bridge  long- and short-term decisions, requiring managing 
the time scale differences between the different decisions.” Thus, two types of 
time scaling are considered, namely, a long one (viz., semesters, years) and the 
other scale where the timing is shorter. The strategic decisions are the facility 
location in a network, and its capacity dimensioning and expansion along a time 
horizon. The operational decisions are the raw material supplying, its process-
ing for manufacturing products, the customers satisfaction in the available CFL 
infrastructure, and the related transportation. Two types of uncertain parameters 
are also considered, namely, strategic and operational ones. Examples of strategic 
parameters are the costs of facility building and the cost of the installation of initial 
capacity modules and additional ones along the time horizon. The uncertainty of 
that type of parameters is usually stagewise-dependent, that is, it varies depending 
on the uncertainty in the previous stages. In fact, the parameters in a given stage may 
have different realizations for each set in the previous stage. On the other hand, the 
uncertainty of the operational parameters is only stage-dependent, being represented 
in a two-stage scenario tree, where the nodes in the second stage give the realizations 
(so-named operational scenarios) of those uncertain parameters. Examples of this 
type of parameters are the cost of the raw material supplying, transportation to and 
processing in the facilities, product demand, facility partial or full disruption, etc. 

See in Escudero and Monge (2018) a scheme related to the partition of uncertain 
parameters into strategic and operational ones and, in case, tactical parameters. 
Basically, it consists of considering that the strategic decisions should not depend
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on individual operational uncertainties in the previous stages. By contrary, strategic 
decisions should depend on the realizations of the strategic uncertain parameters 
in the stages as well as on the set of realizations as a whole of the operational 
parameters in the next stages. Therefore, while dealing with uncertainty in multi-
stage scenario trees, that observation is translated into considering that the strategic 
nodes in the tree should not be successors of the individual operational scenarios. 

The multistage multiscale approach is considered in Werner et al. (2013), Kaut 
et al. (2014), and Escudero and Monge (2018), although none of these works 
present any algorithmic approach for empirically validating the proposals for large-
scale instances. Moreover, the approach is also considered in rapid transit network 
design (see Cadarso et al. (2018)), hub network design (see Escudero & Monge 
(2021)), and SND (see (Castro et al., 2023)), where the algorithmic developments 
are empirically validated. In a different context, a multistage forest stand harvesting 
selection planning is presented in Alonso-Ayuso et al. (2020), where a multiperiod 
“tactical” activity replaces the two-stage “operational” one. Note that it is related 
to storable production as opposed to the service one as in the current work, where 
no stocking for later stages is considered. Then, that activity does influence, as an 
expected one, on the decisions to be made in the successor strategic nodes. See also 
strong multistage multiscale-based formulation in Glanzer and Pflug (2020), and on 
the other hand, Maggioni et al. (2020) present a scheme for obtaining lower and 
upper bounds on this type of stochastic problems. 

The S-CFLEP problem addressed in this work involves decisions to be taken 
for FLP, initial capacity dimensioning and facility, and capacity expansion in a 
multistage multiscale stochastic setting. The representation of the uncertain data 
affects the type of decision variables to consider and, then, the type of model and 
decomposition methodologies for problem-solving. Therefore, the quality of the 
solution to offer to the decision-making process is also affected by the type of 
scenario trees to generate. While dealing with large time horizon problems as in the 
current work, there are two types of optimization submodels, namely, the strategic 
and the operational ones. They are very different in all aspects and intrinsically 
interrelated while embedded in a usually large-scale model for real-life problem-
solving. 

Contributions of the Work 

To the best of our knowledge, no work in the literature considers multiple-allocation 
S-CFLEP in a time horizon setting with a multistage multiscale approach for 
modeling and problem-solving. The main contributions are as follows:

• The framework for representing the strategic stagewise-dependent uncertainty in 
S-CFLEP is based on the strategic multistage stochastic tree. Its nodes are rooting 
the two-stage stochastic trees where the operational stage-dependent scenarios 
are represented in the second-stage nodes.
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• The investment on the facilities and capacity dimensioning and expansion is 
assumed to be made at the strategic nodes of the stages along the time horizon. 
The operation of the available facilities in the network is carried out under the 
operational scenarios in the stages. It is considered that the facilities can have 
a total or partial capacity disruption depending on the type of events to occur 
(say sabotage, misuse, etc.) that could diminish their capacity in a stochastic 
way. The objective function to minimize is the expected facility investment 
cost plus the expected operational one in the scenarios, minus the expected 
residual value of the facilities at the end of the time horizon. Therefore, an MILP 
model is introduced where binary, general integer, and continuous variables are 
considered. A key element in the model is the step variable modeling object25 

for representing the facility building in strategic nodes.
• Very few works deal with RAMs in multistage CFLP for reducing the drawbacks 

of the risk neutral (RN) function. As examples, see Yu et al. (2021) for multistage 
non-multiscale CFLP, and Alonso-Ayuso et al. (2020) for multistage multiscale 
CFLEP in the forestry stand harvesting sector; both approaches deal with the 
risk-averse measure ECVaR. By contrast, the current work deals with the impact 
of ECSD on S-CFLEP modeling and problem-solving.

• The large-scale feature of the instances in S-CFLEP is due to the facility 
network cardinality and number of capacity modules in realistic cases as well 
as the cardinality of the strategic scenario tree and operational ones. It renders 
unrealistic to problem-solving up to optimality by straightforward use of MILP 
solvers and, probably, any other current means. So a variant of the constructive 
decomposition matheuristic SFR3 (see (Escudero & Monge, 2021)) is also 
provided for obtaining feasible solutions with optimality gap. The step variable 
modeling object is a key one for the good performance of the matheuristic. 
It allows that state variables only link pairs of consecutive stages; in fact, the 
linking is performed between a strategic node and its immediate ancestor one. 
SFR3 is specialized to consider ECSD. The validity of the proposed approach is 
computationally analyzed.

25 Step variable modeling object, a scheme for modeling (usually integer) variables of which values 
may last for several consecutive periods; it is tighter than its impulse variable counterpart. As an 
example, let us assume that a facility can only be made available once, if any, in a time horizon, 
being .t = 1, 2, 3 the time periods. Let also the so-named impulse binary variable modeling object 
be such that the value 1 for variable . xt means that the facility is built at that stage t and otherwise, 0. 
So the constraint is .x1+x2+x3 ≤ 1. Observe that the solution, say, .x1 = 0.6, x2 = 0.0, x3 = 0.4 is 
a valid one for that constraint in the LP relaxation in the B&C scheme. However, it is not accepted 
by the step variable modeling object .xt−1 ≤ xt , where . xt has the value 1 if the facility is made 
available by period t and otherwise, 0. 
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4 Strategic Multistage Operational Two-Stage Stochastic 
Scenario Trees 

4.1 Strategic Multistage Stochastic Tree 

Let the notation taken from our work Escudero and Monge (2021). The information 
about the strategic nodes and scenarios can be visualized in the tree depicted in 
Fig. 1, where each root-to-leaf path represents a specific scenario and, then, it 
corresponds to a realization of the whole set of the uncertain parameters. Let us 
point out that it is beyond the scope of this work to present a methodology for 
multistage scenario tree generation and reduction; see, for example, Heitsch and 
Römisch (2009), Pflug and Pichler (2014, 2015), Leövey and Römisch (2015), Li 
and Floudas (2016), and Henrion and Römisch (2022), among others. 

t = 1 t = 2 t = 3 t = 4  

Π3 = {e, f} 
N = {0, · · ·  , 14} 
N2 = {1, 2} 
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Fig. 1 Strategic multistage scenario tree with operational two-stage scenario trees
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4.1.1 Lexicographically Ordered Sets in the Strategic Tree 

T , stages, where T = |T |. 
N , strategic nodes in the scenario tree, such that N = {0, · · ·, N  − 1}, where 

N = |N |. 
Nt , nodes that belong to stage t , where Nt ⊂ N , for t ∈ T . Note: By 

construction, |N1|=1.
�, strategic scenarios. Each one is included by the nodes in the Hamiltonian path 

from root node 0 to a node, namely, ω in the last stage, through the stages in set 
T . Note: For convenience, a scenario has traditionally been denoted by its last 
node in the path; therefore, ω = n ∈ NT . 

An, node n and its ancestors, for n ∈ N . Note that A1 is only included by node 
0, where 0 ∈ N1.

�n ⊂ �, scenarios having one-to-one correspondence with node n 
Sn, successors of node n, for  n ∈ N . Note: Sn = ∅, for  n ∈ NT . 
Sn 

1 ⊂ Sn, immediate successors of node n, for  n ∈ N . 

4.1.2 Other Elements in the Strategic Scenario Tree 

wn, weight factor representing the likelihood that is associated with node n, for  
n ∈ N . Note: wn = ∑

ω∈�n wω, where wω gives the modeler-driven likelihood 
associated with scenario ω, such that

∑
ω∈� wω = 1. 

σn, immediate ancestor of node n, for  n ∈ N . Note: It is assumed that σ 0 = −1, 
where −1 is the numbering of a null node that represents the existence of the 
facility network before the beginning of the time horizon under consideration. 

tn, stage to which node n belongs to, therefore, n ∈ Ntn .26 

4.2 Operational Two-Stage Trees Rooted at Strategic Nodes 

The operational uncertainty is represented in a finite set of stage-dependent oper-
ational scenarios in each stage t , for .t ∈ T . Therefore, it is assumed that the 
operational uncertainty is stage-independent of the strategic one. It is structured 
in two-stage trees rooted at the strategic nodes, so the operational realizations 
(i.e., scenarios) are visualized in the nodes of the second stage. Let the following 
additional notation. 

. �t , set of operational scenarios in stage t , for .t ∈ T ; see Fig. 1.

26 By construction, the scenarios in set �n have a unique solution up to stage tn, according with 
the non-anticipativity principle. Observe that the scenarios in �n have the same realizations of the 
strategic uncertain parameters up to stage tn, since they share the nodes in set An. 
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. wπ , weight factor representing the likelihood that is associated with operational 
scenario . π , for .π ∈ �t , such that .

∑
π∈�t

wπ = 1, for .t ∈ T . 

Remark For the unlikely case where the strategic nodes are also stagewise-
dependent on the operational ones, then, instead of the tree depicted in Fig. 1, the full  
combination of strategic and operational scenarios results in a gigantic multistage 
scenario tree.27 

5 Multistage Multiscale Stochastic Assembly Plants 
and Distribution Centers Location Design and Expansion 
Planning 

The aim is to select the locations of a plant subset in set, namely, . P to manufacture 
a product set, namely, . J and to select the locations of a distribution center (DC) 
subset in set, namely, . C, by blending raw material from supply set, namely, . I, along 
a time horizon. It is assumed that once a plant or a DC is available at any stage, then 
it continues being so until the end of the time horizon, although the plant capacity 
can be temporarily diminished due to different types of disruptions. The main 
uncertain strategic parameters are the cost of the plants and DCs building, the costs 
of initial and additional capacity modules in the plants along the time horizon, and 
the residual value of the plants and DCs. The main operational uncertain parameters 
are the cost of the raw material supplying, transportation to and manufacturing in the 
plants, the processing coefficients of the raw material, the cost of plant maintenance, 
the cost of transporting the product from the plans to the DCs, and the product 
demand in the DCs. The strategic variables are related to the location (and, then, the 
availability) of plants and DCs as well as the plant capacity module expansion. The 
operational variables are related to the raw material supplying, transportation to and 
manufacturing in the available plants, the product volume and its transportation to 
the DCs, plus the product demand shortfall at those DCs. For illustrative purposes, 
given the strategic multistage operational two-stage tree depicted in Fig. 1, let a  
representation of the strategic decisions as depicted in Fig. 2 under strategic scenario 
. ω = 5, say set . Aω, composed by the strategic node set .{0, 2, 5}. The figure shows 
the plants initial availability and expansion, module capacity expansion, and DC 
availability. It also depicts a sketch of the raw material and product’s traffic as 
operational decisions in a given operational scenario for each node in the strategic 
set .{0, 2, 5}.

27 Escudero and Monge (2021) report that for a case with .T = 5, .|N | = 31, . |Sn
1 | = 2 ∀n ∈ N :

tn < T , the scenario tree is composed of .23, 405 nodes and .|�| = 16, 384 scenarios for .|�t | = 4, 
and .629, 145 nodes and .524, 288 scenarios for .|�t | = 8 ∀t ∈ T . Therefore, it is useful to consider 
the proposed approximation type in order to have an affordable structure for the case where the 
strategic uncertainty in a stage also depends on the operational one at the previous stage. 
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Fig. 2 Supplying, manufacturing plants, and distribution center network design and extension 

5.1 Strategic Multistage Operational Two-Stage-Based Model 

Let the notation of the elements, where capital letters and the symbol . (.) usually 
denote data, and lowercase and Greek letters usually denote variables. 

5.2 Additional Sets 

Ij ⊆ I, raw material to blend for manufacturing product j , for  j ∈ J . 
Jp ⊆ J , candidate products to be manufactured in plant p, for p ∈ P . 
A, candidate arcs (pc) for transporting product from plant p to DC c, for  p ∈ 

P, c  ∈ C. 

5.3 Deterministic Data 

γ̂ P,−1 
p and γ̂ C,−1 

c , binary data on the current existing capacity of plant p, for  
p ∈ P , and current existing DC c, for  c ∈ C, resp., at the beginning of the time 
horizon. Note: γ̂ P,−1 

p = 0 (resp., γ̂ C,−1 
c = 0) means that plant p (resp., DC c) is  

anew. 
δ̂−1 
p , number of capacity modules already installed in plant p, for  p ∈ P . Note: 

For simplification purposes, it is assumed that the modules are identical in any 
plant. 

γ P , γ C , maximum number of plants and DCs centers that can be available, resp., 
at any stage. 

δ, maximum number of capacity modules that are allowed to be installed (i.e., 
built) in any plant at any stage.



On Risk Management of Multistage Multiscale FLP Under Uncertainty 373

δ, maximum number of capacity modules that are allowed in any plant at any 
stage, independently of their stage installation. 

Kp, reference module capacity in plant p, for  p ∈ P . 
Bt , budget available for plant (either initial capacity or expansion) investment at 

stage t , for  t ∈ T . 
xi , maximum volume of raw material i that can be supplied at any stage (i.e., 

under any operational scenario), for i ∈ I. 
xt 

ip, upper bound on the supplying and transportation of raw material i to plant p 
at stage t , for  i ∈ I, p  ∈ P, t  ∈ T . 

yt 
jpc, upper bound on the flow of product j from plant p to DC c at stage t , for  
j ∈ J , p  ∈ P, c  ∈ C : (pc) ∈ A, t ∈ T . 

Qjc, product j demand shortfall unit penalization for DC c at any stage, for j ∈ 
J , c  ∈ C. 

5.4 Uncertain Strategic Data in Node n, for  n ∈ N 

C
P,n 
p and C δ,n 

p , cost of plant p building and unit cost of capacity module 
installation, resp., for p ∈ P . Note: P and δ stand for plant and capacity module, 
resp., to make a difference with the other Cn-costs. 

C
C,n 
c , cost of DC c building, for c ∈ C. Note 1:  C stand for DC. Note 2: For 

simplification purposes, it is assumed that a DC has a fixed capacity, if any, that 
is enough for product handling to satisfy product demand. 

5.5 Uncertain Strategic Data in Node n, for  n ∈ NT 

V P,n 
p and V δ,n 

p , residual value of the investment on plant p and one capacity 
module, resp., at the end of the time horizon, for p ∈ P . 

V C,n 
c , residual value of the investment on DC c at the end of the time horizon, for 
c ∈ C. 

5.6 Uncertain Operational Data Under Scenario π , for  
π ∈ �t, t  ∈ T 

Cπ 
ij , unit cost of raw material i supplying, transportation to and manufacturing in 

plant j , for  i ∈ I, j  ∈ P , and unit cost of product transportation from plant i to 
DC j , for  i ∈ P, j  ∈ C : (ij) ∈ A.
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M
P,π 
p and MC,π 

c , maintenance cost of plant p and DC c, resp., for p ∈ P, c  ∈ C. 
M δ,π 

p , maintenance cost of a capacity module in plant p, for  p ∈ P . 
Uπ 

ijp, volume requirement of raw material i for manufacturing a unit of product j 
in plant p, for  i ∈ Ij , j  ∈ Jp, p  ∈ P . 

Rπ 
jp, capacity requirement of plant p for manufacturing a unit of product j , for  
j ∈ Jp, p  ∈ P . 

Dπ 
jc, product j demand in DC c, for  j ∈ J , c  ∈ C. 

ρπ 
p , fraction disruption of the capacity in plant p, in case that it is available, for 
p ∈ P . 

5.7 Strategic Variables in Node n, for  n ∈ N 

γ P,n 
p , step binary variable of which value 1 means that plant p has been made 

available (jointly with some initial capacity modules) for product manufacturing 
by strategic node n and otherwise, 0.28 

δn 
p, step general integer variable that gives the total number of capacity modules 

installed in plant p by strategic node n, and otherwise, 0.29 

γ C,n 
c , step binary variable which value 1 means that DC c has been made available 

for product distribution by strategic node n and otherwise, 0. 
γ P,−1 
p , δ−1 

p and γ C,−1 
c , variables that represent the plant-DC network status 

already available at the beginning of the time horizon. 

As an example, Fig. 2 can be interpreted as |J | =  1 with the following facility 
locations along the stages:

• In n = 0: γ P,n 
1 := 1 then set |P | :=  1, δn 

1 := 1, γ C,n 
1 := 1 and γ C,n 

2 := 1 then 
set |C| := 2.

• In n = 2: γ P,n 
2 := 1 then update |P| := 2, δn 

2 := 2.

• In n = 5: γ P,n 
3 := 1 then update |P| :=  3, δn 

3 := 3, γ C,n 
3 := 1 then update 

|C| := 3.

28 γ P,n 
p − γ P,σ n 

p = 1 means that plant p has been made available (i.e., built) at strategic node n. 

On the other hand, γ P,n 
p −γ P,σ n 

p = 0 means that plant p has been made available by strategic node 

σn for γ P,σ n 
p = 1, and it has not yet been made available for γ P,n 

p = 0. Note: γ P,σ n 
p ≤ γ P,n 

p . 
29 δn 

p−δσn 
p > 0 gives additional number of capacity modules that are installed at node n. Therefore, 

observe that δn 
p is the result of the cumulated number of capacity modules that has been installed 

at the previous strategic nodes back to stage t = 1, including node n (i.e., set An). 
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5.8 Operational Variables Under Scenario π in Strategic Node 
n, for  π ∈ �tn, n  ∈ N 

x n,π 
ip , volume of raw material i to be supplied and transported to plant p, for  

i ∈ I, p  ∈ P . 
y n,π 
jpc , product j volume to be transported from plant p to DC c, for  j ∈ Jp, p  ∈ 
P, c  ∈ C : (pc) ∈ A. 

s n,π 
jc  , slack variable that gives the product j demand shortfall in DC c, for  j ∈ 
J , c  ∈ C. 

5.9 Elements of the Coherent Time-Consistent Risk-Averse 
Measure ECSD

• Sets. 

T ⊆ T , stages of which strategic scenario nodes in the multistage tree have 
one-to-one correspondence with the scenario groups where ECSD is to be 
considered for. 

Bn, profiles on strategic and operational costs, for n ∈ Nt , t  ∈ T .

• Parameters in profile b for strategic scenario group �n, for  b ∈ Bn , n  ∈ Nt , t  ∈ 
T . 

φb, cost threshold in profile b as a target for any scenario ω in the group, being 
composed by the strategic cost plus the expected operational one minus the 
expected residual value. 

rb, upper bound on the surplus over cost threshold φb in any scenario ω in the 
group. 

r b 
, upper bound on the expected surplus over cost threshold φb in the group. 

w′ω, weight factor representing the likelihood that is associated with scenario 
ω in the group. It can be expressed as w′ω = wω /

∑
ω′∈�n wω′

.

• rω,b, continuous variable that gives the surplus over cost threshold φb under 
scenario ω in strategic group �n, for  n ∈ Nt , t  ∈ T . 

5.10 Model for the Strategic Multistage Operational Two-Stage 
S-CFLEP 

Let .Fn denote the strategic and related operational cost for node .n ∈ N . It can be 
expressed 

. Fn =
∑

p∈P

[
CP,n

p

(
γP,n
p − γP,σn

p

)
+ Cδ,n

p

(
δn
p − δσn

p

)]
. (1a)
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+
∑

c∈C 
CC,n 

c

(
γ C,n 
c − γ C,σn 

c

)
. (1b) 

+
∑

π∈�tn

wπ

⎡

⎣
∑

p∈P

(
MP,π

p γP,n
p + Mδ,π

p δn
p

)
+

∑

c∈C
MC,π

c γ C,n
c . (1c) 

+
∑

p∈P

⎛

⎝
∑

i∈I
Cπ

ipx
n,π
ip +

∑

c∈C:(pc)∈A

Cπ
pc

∑

j∈Jp

y
n,π
jpc

⎞

⎠

⎤

⎦ (1d) 

Expression (1a) gives the plant building costs in strategic scenario n, including the
related capacity modules installation costs. Expression (1b) gives the DC building
costs in strategic scenario n. Expression (1c) gives the maintenance expected cost
in the operational scenarios for strategic node n. And expression (1d) gives the
raw material supplying, transportation and blending expected costs, plus product
transportation expected costs from the plants to DCs.

Let .V ω denote the residual value of the facility network assets investment at the 
end of the time horizon under strategic scenario . ω, for .ω ∈ �. It can be expressed 

. V ω =
∑

p∈P

(
V P,ω

p γP,ω
p + V δ,ω

p δω
p

) +
∑

c∈C
V C,ω

c γ C,ω
c . (2) 

Recall that .ω = n ∈ NT . 
Let . P n denote the penalization of the product demand shortfall, for .n ∈ N , com-

posed by the penalization of the overall demand shortfall . 
∑

j∈J
∑

π∈�tn
QjcD

π
jc

in the operational scenarios for the unavailable DCs, and the penalization of 
the demand shortfall .

∑
j∈J

∑
π∈�tn

Qjcs
π
jc in the operational scenarios for the 

available DCs. It can be expressed 

. P n =
∑

j∈J

∑

c∈C

∑

π∈�tn

Qjc

(
Dπ

jc(1 − γ C,n
c ) + s

n,π
jc

)
(3) 

Given the RHS of constraint (4o), it is easy to show that the elements . Dπ
jc(1−γ

C,n
c )

and .sn,π
jc are exclusive of each other. 

The DEM can be expressed 

. min
∑

n∈N
wn(Fn + P n) −

∑

ω∈�

wωV ω
. (4a) 

s.t. γ
P,n
p ∈ {0, 1}, γP,σn

p ≤ γ
P,n
p ∀p ∈ P, n ∈ N . (4b) 

γ
C,n
c ∈ {0, 1}, γ C,σn

c ≤ γ
C,n
c ∀c ∈ C, n ∈ N . (4c) 

δn
p ∈ Z

+, δσn

p ≤ δn
p ∀p ∈ P, n ∈ N . (4d)
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γ P,n 
p ≤ δn 

p ≤ δγ P,n 
p ∀p ∈ P, n  ∈ N . (4e) 

∑

p∈P
γP,n
p ≤ γP ∀n ∈ N . (4f) 

∑

c∈C
γ C,n
c ≤ γ C ∀n ∈ N . (4g) 

δn
p − δσn

p ≤ δ ∀p ∈ P, n ∈ N . (4h) 
∑

p∈P

[
CP,n

p (γP,n
p − γP,σn

p ) + Cδ,n
p (δn

p − δσn

p )
] ≤ Btn ∀n ∈ N . (4i) 

γ
P,−1
p = γ̂

P,−1
p , δ−1

p = δ̂−1
p ∀p ∈ P. (4j) 

γ
C,−1
c = γ̂

C,−1
c ∀c ∈ C. (4k) 

∑

j∈Jp

Rπ
jp

∑

c∈C:(pc)∈A

y
n,π
jpc ≤ (1 − ρπ

p )Kpδn
p ∀p ∈ P,

π ∈ �tn, n ∈ N . (4l) 

x
n,π
ip =

∑

j∈Jp :i∈Ij

Uπ
ijp

∑

c∈C:(pc)∈A

y
n,π
jpc ∀i ∈ I, p ∈ P,

π ∈ �tn, n ∈ N . (4m) 
∑

p∈P
x

n,π
ip ≤ xi ∀i ∈ I,

π ∈ �tn, n ∈ N . (4n) 
∑

p∈P :(pc)∈A

y
n,π
jpc + s

n,π
jc = Dπ

jcγ
C,n
c ∀j ∈ J ,

c ∈ C, π ∈ �tn, n ∈ N (4o) 

. 0 ≤ x
n,π
ip ≤ xtn

ip ∀i ∈ I, p ∈ P, π ∈ �tn, n ∈ N . (4p) 

0 ≤ y
n,π
jpc ≤ ytn

jpc ∀j ∈ Jp, p ∈ P, c ∈ C : (pc) ∈ A, π ∈ �tn, n ∈ N . (4q) 

0 ≤ s
n,π
jc ∀j ∈ J , c ∈ C, π ∈ �tn, n ∈ N (4r) 

.

∑

n′∈Aω

F n′ − V ω − rω,b ≤ φb ∀ω ∈ �n, b ∈ Bn, n ∈ Nt , t ∈ T . (4s) 

0 ≤ rω,b ≤ rb ∀ω ∈ �n, b ∈ Bn, n ∈ Nt , t ∈ T . (4t) 
∑

ω∈�n

w′ωrω,b ≤ r
b ∀b ∈ Bn, n ∈ Nt , t ∈ T . (4u)



378 L. F. Escudero and J. F. Monge

The objective function (4a) to minimize consists of the expected cost (1) minus
the expected residual value (2) of the facilities in the strategic scenarios, plus the
DC product demand’s expected shortfall penalization (3) .

The strategic constraint system (4b) –(4d) introduce the step variable modeling
object for plant and DC building as well as for the initial and expansion capacity
module installation in the strategic nodes. (It is assumed that the investment in the
plants is performed at the beginning of the stages.) The strategic constraints (4e) 
force that one capacity module is installed, at least, at the same strategic node
where the related plant is built. Additionally, an upper bound is imposed on the
modules that are allowed in any plant. The strategic constraints (4f) –(4g) upper
bound the cardinality of the subsets of plants and DCs locations that are available at
the stages. The strategic constraints (4h) impose an upper bound on the number of
capacity modules to install in each plant at the stages. The strategic constraints (4i) 
impose budget limitations on the investment for plant building, initial capacity and
expansion at the stages. A zero-value for the constraints (4j) –(4k) means that the
facility network is anew.

The operational constraint system (4l) –(4r) refers to the system under the
operational scenarios for each strategic node. Constraints (4l) bound the product
manufacturing volume to the capacity of the available plants. Constraints (4m) 
define the raw material requirements by the product manufacturing in each plant.
Constraints (4n) bound the raw material volume to cover the manufacturing needs
in the plants. Observe that it is assumed the zero-stock policy at the end of the stages.
The operational constraints (4o) balance the product j manufactured in the plant set
for each available DC c and its demand and, therefore, defining the product demand
shortfall in case .γ

C,n
c = 1 (i.e., DC c is available) in node n. 

The minimization of function (4a) is constrained by the ECSD constraint
system (4s) –(4u) so that the negative impact of the cost related to the black swan
scenarios on the expected overall cost is kept under preset limits. Constraints (4s) 
define the cost surplus over the thresholds in the policy profiles under the scenarios
in the strategic groups that have been selected based on the modeler chosen stages.
Constraints (4t) and (4u) bound the scenario cost shortfall and the overall expected
cost shortfall in the scenario groups, resp.

6 Specialization of SFR3, a Decomposition Matheuristic 
Algorithm 

Given the dimensions of the large-scale instances of the S-CFLEP model (4) ,
straightforward use of a state-of-the-art MILP optimizer requires very high com-
putational effort; see Sect. 7. There is a broad literature on exact and inexact 
decomposition algorithms for stochastic MILP problem-solving; see Escudero et al. 
(2017) for a literature overview. However, the model solving up to optimality 
even for a single scenario along a time horizon could be unaffordable. Therefore,
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a Lagrangean-based approach, in principle, would have no practical interest for 
solving interconnected scenario-based submodels. As we know, a type of algorithms 
that could be considered is the Stochastic Nested Decomposition methodology (see 
Zou et al. (2019); Escudero et al. (2020a); Ahmed (2022)), among others, where 
single strategic nodes-based submodels are very attractive in the location framework 
for the risk neutral variant of the problem. However, the computing time could be 
expensive even in that case. 

This section briefly presents the specialization of the constructive matheuristic 
algorithm SFR3 (see (Escudero & Monge, 2021)), to solve S-CFLEP model (4) .
SFR3 stands for Scenario variables Fixing and constraints and variables’ integrality
iteratively Randomizing Relaxation Reduction. It provides feasible solutions with
good optimality bounds for medium- and large-scale instances. It is based on the
Fix-and-Relax (FR) methodology, where the partition of the variables results from
an ordering that is established a priori, and the variables declared integer in each
subproblem define the so-named FR level. In particular, the variables that are fixed
at level . � are the variables fixed at level .� − 2 plus the variables of which values are 
retrieved from the solution in level .�−1. The approach has given good results while 
solving large-scale dynamic MILP real-life problems; see, for example, Escudero 
and Salmerón (2005), Baena et al. (2015), and Escudero and Pizarro (2017) for  
deterministic settings, and Alonso et al. (2000), Albareda-Sambola et al. (2013), 
and Escudero and Monge (2021) for stochastic ones. However, as a matter of fact, 
the relaxation of the integrality in a sizable subset of variables in the original 
model (4) prevents to take benefit of that integrality feature when solving the
submodels in classical FR. Note that the knowledge of the variables’ integrality
by any solver strongly helps to model’s tightening by performing probing, fixing
variables, redundant constraints elimination, and new cuts appending. Therefore,
the computing effort could be unaffordable for problem-solving by straightforward
use of the solver as well as by using classical FR in the presence of a high number
of integer variables in the instances.

Some of those FR drawbacks can be reduced in SFR3. It starts by partitioning the 
set of stages into modeler-driven so-named stage blocks; each one is a disjoint subset 
of consecutive stages, thus creating a collection of subtrees rooted at the strategic 
nodes .{n} that belong to the first stage in the block. It is worth to point out that 
SFR3 independently solves relaxations of the submodels of model (4) supported
by the scenario subtrees rooted at those strategic nodes . {n}. Those submodels are 
composed of the constraints and variables in the root nodes .{n} and successors in 
its own stage block and, in a partial relaxation, the constraints and variables in the 
other successors up to the leaf ones in the scenario tree. That relaxation is randomly 
reduced in the successive iterations of the algorithm. So two of the main modeler-
driven SFR3 parameters are . αt ′ and . βt ′ , the assigned probabilities of operational 
scenario . π in set .�

tn
′ and strategic node . n′ in .Sn ∩ Nt ′ , resp., not to be relaxed in 

the n-submodel, where . t ′ is a stage that does not belong to the given stage block. 
At a given iteration, the solution of the n-submodels is retrieved for node n and 
its successors that belong to its own block. That partial solution is fixed in the .n′-
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submodels at the next iteration, for .n′ ∈ Sn′′
1 , which node set .{n′′} is composed of 

the nodes that belong to the last stage in the block. Figure 3 depicts the supporting 
scenario tree rooted at node n, for .n = 0 (then, first SFR3 iteration), which related 
stage block is .{1, 2}. As an illustration, the node set is composed of the non-relaxed 
nodes (i.e., the non-shadowed ones). Observe that, by construction, the nodes that 
belong to the stage block that node n belongs to are not relaxed. The rationale behind 
that scheme consists of keeping the submodels’ dimensions within affordable limits 
until obtaining a (hopefully good) feasible solution. 

Note that, by construction, none of the strategic nodes in a non-relaxed scenario 
can be relaxed. On the other hand, the number of non-relaxed scenarios in each 
group . �n, for .n ∈ ⋃

t∈T Nt , should be kept above a given threshold in order to keep 
its representativeness in the stochastic dominance constraints (4s) –(4u) for ECSD.
As an illustration, let us assume .t = 2, n = 2 for the case depicted in Fig. 3, where 
.T = 4, n = 0. Note that the strategic nodes in the scenarios given by the paths 
.{0, 1, 3, 7} and .{0, 2, 5, 12} in Fig. 3 are non-relaxed ones. 

7 Computational Results 

7.1 Introduction. Computational Environment 

This section reports the main computational results that have been obtained while 
experimenting with a test bank composed of a variety of instances from medium 
one up to large-scale sizing. The computational experiment was conducted on a PC 
with a 2.9 gigahertz dual-core Intel Core i5 processor, 8 gigabyte of RAM, and 
operating system OS X 10.12.1. The modeling approach as well as SFR3 have been 
implemented in a C.++ experimental code. The default options of CPLEX v20.1.0 
are used for the full model (4) solving as well as for the n-submodels to be optimized
in the matheuristic. However, given the difficulty of the problem, the optimality
tolerance has been set to 1%.

Table 1 shows the S-CFLEP dimensions in the experiment. These instances 
contain both strategic and operational uncertainties. The scenario tree dimensions 
are .T = 5 stages, .|N | = 31 strategic nodes, .|Sn

1 | = 2 immediate successors of node 
n, for .n ∈ N : tn < T , and .|�t | =4, for .t ∈ T ; see Fig. 1. For illustrative purposes 
on the strength of the risk-averse measure ECSD, let us consider . |T | = 1, T =
{1}, 0 ∈ N1, .|B0| = 1 and .1 ∈ B0, such that ECSD is to be performed on the whole 
set of scenarios. 

The data for the experiment have been randomly generated according to the 
following distributions: .CP,n

p = 1000 + 100.(σ n) + 100000.n, . Cδ,n
p = 100 +

100.(σ n) + 10000.n and .C
C,n
c = 10000 + 1000.(σ n) + 10000.n, being the 

maintenance costs 25%, 15% and 25%, and the residual value 45%, 35% and 30%
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t = 1 t = 2 t = 3 t = 4  

Variables’ integrality is not relaxed 

Variables’ integrality is relaxed 

Strategic and operational nodes 
are relaxed 

A7 = {7, 3, 1, 0} 
A12 = {12, 5, 2, 0} 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Fig. 3 Strategic multistage scenario tree with operational two-stage scenario trees. SFR3 nodes 
relaxation 

Table 1 S-CFLEP 
dimensions 

inst .|I| .|J | .|P| .|C| .γP .γ C . δ

i1 20 5 5 10 3 8 3 

i2 20 10 10 20 5 15 5 

i3 50 20 10 20 5 15 5 

i4 100 50 10 20 5 15 5 

of the investments, resp., for .p ∈ P, c ∈ C, n ∈ N ; .Cπ
ip := U(4, 10) and 

.Cπ
pc := U(6, 12); .Uπ

ijp = U(2, 4); and . Dπ
jc = U(40.tn.(π + 1)/|�t | + 80.(tn +

1)/T , 50 + 40.tn.(π + 1)/|�t | + 80.(tn + 1)/T )), for . i ∈ I, j ∈ J , p ∈ P, c ∈
C, π ∈ �t, t ∈ T . (The data and other results are available from the authors under 
request).
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Tables 2 and 3 show the main results obtained by CPLEX straightforward use 
(Sect. 7.2) and SFR3 (Sect. 7.3), resp., to solve model (4). The common headings to
both approaches use the following result:

• . zω
(.), cost under scenario . ω related to function .(F − V ) in the solution value of 

variant . (.) of model (4), for .ω ∈ �, where .(.) = RN is the risk neutral (4a) –(4r) 
and .(.) = SD is the risk- averse measure ECSD (4a) –(4u) . It is computed as
.
∑

n∈Aω F n − V ω, where . Fn and .V ω are given in (1) and (2) , resp.

The headings are as follows:

• . ∇φ, modeler-driven fraction of .zω
RN to consider as the cost threshold in ECSD, 

where .ω = argmaxω∈�{zω
RN } (i.e., the scenario with the highest cost in the RN 

variant of model (4)).
• .a(F − V ), expected value of function .(F − V ) to be computed as .

∑
ω∈� wωzω

(.), 
for .(.) ∈ {RN, SD}.

• .d(F − V ), expected value of the absolute deviation of the z-cost in the scenarios 
with respect to .a(F − V ), to be computed as .

∑
ω∈� wω|zω

(.) − a(F − V )|, for  
.(.) ∈ {RN, SD}. 

7.2 CPLEX Straightforward Use. Results 

Table 2 shows the dimensions of model (4) and the CPLEX main results. The
new headings are as follows: m, n01, ngi and nc, number of constraints, binary,
general integer, and continuous variables, resp.; dens%, density of the constraint
matrix nonzero elements; .z

CPX
, lower bound of the solution value (i.e., value of 

the best node in the B&B tree up to the optimization’s interruption); .zCPX and 
.tCPX, incumbent MILP solution value (i.e., the smallest expected cost (4a) ), and its
computing time (in seconds, as for all experiments), resp.; and .GAPCPX, optimality 
gap of the incumbent solution, being computed as .100.

zCPX−zCPX

zCPX
. Observe that for 

the large instances, there are .ngi = 300 general integer variables of which the range 
is .{0, 5}; it highly increases the difficulty of the instances i3 and i4 solving. Note: 
The dimensions’ difference of the variants of a model only lies on the number of the 
new continuous variables that are required by ECSD. 

Table 2 has two blocks of results for each instance ix, for .x = 1, 2, 3, 4. The  
first block, say i. x.0, has only one line; it shows the results for the RN variant. The 
second block has one line for each value of the risk averse parameter . ∇φ, say 0.90 
for ix.1, 080 for ix.2 and 0.70 for ix.3, so that the cost threshold in (4s) of ECSD
functional is given by .φ = ∇φ.zω

RN . A 4h computing time limit is imposed for all 
instances in the test bank, but for i4 which limit is 8h. 

It can be observed in the table that CPLEX straightforward use provides good 
quality results for instances i1 and i2. The cost threshold . φ constraining implies 
an increase on the expected objective function value .zCPX and a decrease on the 
expected cost .a(F −V ). Note that ECSD constraint system is also impacting on the
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computing time from, say, 652s for i2.0 to 1567s for i2.3 (.∇φ = 0.70). The large 
instance i3 has also small optimality gaps. Anyway, it reaches the time limit for i3.1; 
see also the increase on .zCPX with respect to i3.0. The performance on instance i4.0 
is very good (note that .GAPCPX = 0.19%), but the computing time is very high. 
However, no solution is provided for i4.1 in the time limit. 

7.3 SFR3 Matheuristic. Results 

The section reports the main results for solving the original model (4) by using
SFR3. For lack of space only, the results of the following strategy are shown: . e = 5
executions, .αt = 0.50, βt = 0.50 ∀t ∈ T . The computing time limit has been set to 
2h for each n-submodel solving. 

Table 3 reports the main results for the best of the executions of SFR3 in 
the variants RN and ECSD of model (4). As in Table 2, it is also organized in 
two blocks for each instance. The new headings are as follows: .z

FR3 and .tFR3, 
lower bound of the optimal solution value (see below) and computing time, resp.; 
.zFR3, incumbent solution value in the scenarios; .GAPFR3, optimality gap of the 
incumbent solution, being computed as .100.

zFR3−zFR3
zFR3

; and .GRFR3, goodness ratio 
of the SFR3 incumbent solution .zFR3 over the CPLEX one, being computed as 
.
zFR3
zCPX

, where the smaller .GRFR3 < 1, the better performance of SFR3 versus 
CPLEX straightforward use. Additionally, .tFR3 gives the computing time that is 
required by the whole set of the . e executions, and .z̃FR3 gives the median of the 
expected cost in the set of those executions. 

The lower bound .z
FR3 is independently obtained by considering the strategy . e =

1, αt = 1.00, βt = 1.00 ∀t ∈ T for node .n = 0, where the variables’ integrality is 
relaxed at all stages but .t = 1 (i.e., it is the first level of the classical FR approach; 
see Sect. 6). 

It can be observed in Table 3 that SFR3 provides a solution for all of the instances 
in the two variants, requiring a reasonable computing time, anyway, much smaller 
than the CPLEX one. Additionally, the goodness ratio .GRFR3 is very close to 1 
for the cases where CPLEX obtains a solution, and on the other hand, . GAPFR3
is reasonable (not higher than 4.22%). It is worth to point out the small 2.53% 
optimality gap for the most difficult instance, i4.1, where CPLEX does not find any 
solution. The overall SFR3 computing time in the .e = 5 executions in any variant 
of any instance is much smaller than the one required by CPLEX. Even adding the 
computing times .tFR3 and .tFR3, the total time is smaller.
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8 Conclusions 

In this work, a comprehensive literature review is performed on FLP under 
uncertainty. Additionally, an MILP model is presented for the difficult problem 
where the capacity and location expansion planning under uncertainty is considered 
along a multiscale time horizon. It has been named S-CFLEP. Two variants are 
considered, namely, the risk neutral (RN) and its counterpart risk management. In 
this work, the coherent time-consistent expected conditional second-order stochastic 
dominance risk-averse functional ECSD is considered. Given the time scaling nature 
of the problem, difficult types of decisions have to be made, namely, strategic and 
operational ones. It has been proved with empirical validation; first, the importance 
of having two-stage scenario trees to represent the operational uncertainty, being 
rooted at the nodes of the multistage strategic scenario tree; second, the efficiency 
of the step variable modeling object for representing the state variables; and, third, 
the usefulness of ECSD in order to have a balance between the negative impact 
of the occurrence of black swan scenarios in the objective function value and its 
RN minimization. On the other hand, large-scale S-CFLEP instances are difficult 
to be straightforward solved even by state-of-the-art optimizers, as CPLEX. The 
matheuristic decomposition algorithm SFR3 has been proved to be very efficient on 
providing solutions with small optimality gap, and being very close to the CPLEX 
ones for the instances where the latter gives a solution. 

Perspectives of the Current Work The structure of model S-CFLEP (4) can be
considered on other types of system or network expansion planning, where risk
management should be considered in a multistage multiscale framework. Examples
are those policies where the goal is to maximize the expected overall profit in the
presence of uncertainty on the main parameters as market uncertainty (product price
and demand), strategic and operational costs, facility disruptions due to accidental
and non-accidental events, etc. Note that the risk-averse functional considered in
this work allows to prevent, up to some extent, solutions that do not consider certain
thresholds on other functions as well.
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Abstract In this chapter, we consider discrete facility location problems with 
uncertainty and focus on the case where the service demand of each customer 
follows a Bernoulli distribution. This problem can be modeled as a two-stage 
stochastic programming problem where the first stage determines a set of facilities 
to open together with a tentative allocation of customers to open facilities, and the 
second stage builds the actual assignment of customers to open plants for each 
possible realization of the customers’ demands. The objective is to minimize the 
sum of the cost of the first-stage decision plus the expected cost of the recourse 
action. Given that, in practice, the exact evaluation of the recourse function becomes 
computationally unaffordable, we illustrate the application of possible heuristics. 
We discuss GRASP and Path Relinking as the building blocks of a heuristic solution 
method for the considered problem. We also present mathematical programing 
formulations for the case where uncertainty is expressed by means of a given set of 
scenarios, which can be embedded in a Sample Average Approximation algorithm. 
Numerical results from computational experiments are discussed and analyzed. 
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1 Introduction 

Discrete facility location problems (FLPs) determine one fundamental class of 
problems within location analysis (see, e.g., Eiselt & Marianov, 2011; Daskin, 2013; 
Laporte et al., 2019). Broadly speaking, input data consists of (i) a discrete set of 
potential locations for the facilities, with associated setup costs and capacities, (ii) 
a set of customers with associated demands, and . (iii) transportation costs between 
the potential facilities and the customers. The goal is to establish what facilities to 
open and how to allocate the customers demand to open facilities so as to minimize 
the sum of setup plus transportation costs. 

One common characteristic of many FLPs is the strategic nature of the location 
decisions, which should be long-lasting, in the sense that the selected facilities 
should operate for long periods of time. Since the external circumstances are 
likely to change during the planning horizon, but their actual evolution is typically 
unknown at the moment when decisions have to be made, very often uncertainty 
is present in FLPs. Uncertainty may involve setup costs, travel times and costs, 
availability of supply, demands, etc. Uncertainty may even affect the underlying 
setting of the problem, namely, the set of potential facilities or available connections 
between facilities and customers. 

Under uncertainty, the use of a classical deterministic model for FLP may 
produce a solution that is no longer optimal or is even infeasible, when it has to be 
implemented. Thus, it may be necessary to build a new solution from scratch. It is 
thus better to model FLPs with uncertainty as two-stage problems (see, e.g., Birge & 
Louveaux, 2011; Klein Haneveld et al., 2020) in which the first-stage decision is to 
select a set of facilities (plants) to open together with a tentative (a priori) allocation 
of customers within the set of selected facilities. The second-stage solution is guided 
by the recourse function, which modifies the solution built in the first stage in order 
to render it feasible (or cheaper) once the uncertainty is revealed. 

When no probabilistic information on the random parameters is available, the 
possible realizations of uncertain parameters are expressed by a set of scenarios. 
In principle, when probability information on the random parameters is available, 
uncertainty could be described using the corresponding probability distributions. 
Unfortunately, even when probabilistic information is available, it is most often the 
case that no algebraic expressions are available representing the involved probability 
distributions; thus, the probabilistic information cannot be embedded within a 
mathematical optimization model that can be handled with off-the-shelf solvers. 
In such a case, uncertainty must also be handled by means of a suitable set of 
scenarios. 

As pointed out in Snyder (2006), an advantage of working with scenarios is that 
it allows more flexibility for modeling uncertain parameters. On the other hand, 
working with scenarios involves two main types of difficulties. One is to identify an 
appropriate set of scenarios and to assign suitable probabilities to them. The second 
is to find a trade-off between the number of scenarios (which for computational 
purposes should be relatively small) and the size of the set of decision states that
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are actually evaluated, which should represent sufficiently the whole search space. 
Moreover, even if the number of scenarios is relatively small, the computational 
burden for evaluating solutions with sufficient accuracy may be too high so as 
to resort to exact solution methods, and it can be the case that heuristic solution 
methods are the only realistic alternative. 

In FLPs, very often the source of uncertainty is driven by the motivating appli-
cation. Thereby, for problems focusing on potential applications related to natural 
disasters (Dönmez et al., 2021), it can be very hard to estimate in advance (i) what 
potential locations will be available for emergency facilities, (ii) what areas will 
require humanitarian relief, or (iii) what connections will be available to reach the 
damaged areas from the installed facilities. Similar sources of uncertainty emerge 
in FLPs arising in supply chain management aiming at reducing vulnerability due 
to disruptions (see, e.g., Snyder & Daskin, 2005). In the above contexts, it seems 
suitable to adopt a conservative robust optimization approach, focusing on the 
worst-case performance of the system by looking for first-stage solutions that are 
robust against all possible realizations (scenarios) in the second stage. Instead, 
the vulnerability of other FLPs arising in supply chain management may stem 
from seasonal demand or fluctuations in commodity prices, which do not have a 
direct effect on the transportation network to be used, but may impact strongly on 
location and allocation decisions. In such contexts, it seems suitable to consider 
an optimization model looking for first-stage solutions that minimize the expected 
value over all possible realizations in the second stage. 

In this chapter, we illustrate the application of possible heuristic approaches for 
this latter type of FLPs with uncertainty using the facility location problem with 
Bernoulli Demand (FLBD). The FLBD is an FLP in which the only source of 
uncertainty is demand. The capacity of the facilities is expressed in terms of the 
maximum number of customers that they can actually serve, and it is assumed 
that the service demand of each customer follows a Bernoulli distribution. The 
FLBD can be modeled as a two-stage stochastic programming problem: the first-
stage decision is to select a set of facilities to open together with a tentative a 
priori allocation of customers to open facilities, and the second stage builds the 
actual assignment of customers to open plants for each possible realization of the 
customers’ demands. The objective is to minimize the sum of the cost of the first-
stage decision plus the expected cost of the recourse action. 

The FLBD models situations where a facility provides a service and demand 
refers to whether a customer requires to be served. Companies providing repair or 
maintenance services fit within this modeling framework. In this case, customers can 
be grouped (e.g., according to their location) and assigned to a facility that should 
handle the existing demand. The term “facility” should be considered in a generic 
way. For instance, it may refer to a worker or a team. Moreover, facilities may be 
mobile in the sense that service can be provided at the customer’s locations. One 
particular example is elevator maintenance: each repair or maintenance team must 
assist (serve) a prespecified set of customers in case they call for service. If the actual 
demand turns out to be higher than the service capacity, then the service still has to 
be provided. This may call for temporary relocation of workers from other teams
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or simply for outsourcing the service to a third party. Mobile health clinics provide 
another potential application of the FLBD. In this type of application, “facilities” 
assist some specific area or region previously assigned to them. In case the occurring 
demand is higher than the service capacity, extra personnel is necessary, which may 
incur additional costs. Other examples of settings fitting the FLBD include target-
oriented advertisement activities, door-to-door product demonstration, etc. In all 
these cases, potential customers are previously assigned to the facility and may or 
may not have actual demand. 

We address a general version of the FLBD, where demand probabilities are not 
necessarily the same for all customers. Such assumption often holds in practice and 
reflects the fact that different customers usually have different demands. We further 
assume that customer’s demands are uncorrelated. This is also a natural assumption, 
which holds when customers do not obey to some common interest and demand 
is not seasonal. Unfortunately, the generality gained when assuming that different 
customers may have different probabilities of demand comes at the expenses of 
some additional difficulties. To the best of our knowledge, it is not possible to 
express the joint probability distribution of the customer’s demand by means of 
algebraic expressions that can be handled with off-the-shelf solvers. Then the exact 
evaluation of the recourse function (the expected costs of service plus outsourcing), 
essentially amounts to enumerate, for each open facility, all possible subsets of the 
set of customers assigned to it in the a priori  solution that actually have demand. 
Such an enumeration becomes computationally unaffordable. Then either heuristic 
methods are used in which the value of solutions is estimated, for instance, with 
Monte Carlo sampling, or the use of optimization models is restricted to those in 
which uncertainty is expressed by means of a given set of scenarios. In this chapter, 
we discuss both possibilities although the latter is focused within the context of a 
Sample Average Approximation (SAA) algorithm. We also summarize the GRASP 
and Path Relinking heuristic proposed in Albareda-Sambola et al. (2017). 

The chapter is organized as follows. Section 2 gives a short overview of some 
of the existing literature on problems related to the FLBD, and in Sect. 3, we  
introduce some notation that we will use and formally define the FLBD. In Sect. 4, 
we give a generic introduction to GRASP and Path Relinking, which are the building 
blocks of the FLBD heuristic of Albareda-Sambola et al. (2017) that is presented in 
Sect. 5. Section 6 focuses on the two outsourcing policies introduced in Albareda-
Sambola et al. (2011) and presents the mathematical programming formulations for 
the case where uncertainty is expressed by means of a given set of scenarios. These 
formulations will be embedded in the SAA algorithm that can be used for problems 
in which uncertainty is expressed in a probabilistic way, which is presented in 
Sect. 7. Section 8 is dedicated to the computational experiments. The sets of test 
instances that we have used and their characteristics are described in Sect. 8.1 
and some relevant implementation details in 8.2. The results of the GRASP . +PR 
heuristic in Sect. 8.3, and those of the SAA algorithm, are presented in Sect. 8.4. 
The chapter ends in Sect. 9 with some conclusions and final comments.
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2 Some Related Literature 

There are several alternatives for addressing location problems with uncertainty in 
service demands, depending on their nature. Queuing location models have been 
used to model situations where the goal is to optimize the system performance (e.g., 
Marianov & ReVelle, 1996; Carrizosa et al., 1998; Fernández et al., 2005). Several 
references can be found where a certain level of service is guaranteed by means of 
probabilistic constraints (see, e.g., Toregas et al., 1971; Beraldi & Bruni, 2009). 

Examples of uncertain location problems where robustness is measured by 
the cost associated with the most adverse scenario are Averbakh and Berman 
(1997, 2000, 2003), Carrizosa and Nickel (2003), Conde (2007), and Wagner 
et al. (2009) or, more recently, Alvarez-Miranda et al. (2015). Two-stage models 
for uncapacitated FLPs considering the minimization of the expected cost of the 
recourse function have been studied in Louveaux and Peeters (1992) and Laporte 
et al. (1994a). 

Heuristic Methods for FLPs with Uncertainty Despite of the difficulty of FLPs 
with uncertainty, the literature on heuristic methods for problems of this type is 
scarce. Two examples are mentioned next. 

Albareda-Sambola et al. (2013) propose a Fix-and-Relax-Coordination 
matheuristic for a multi-period location/allocation problem under uncertainty. 
Uncertainty is assumed on the costs and on some of the requirements along the 
planning horizon. A compact 0–1 formulation is proposed for the deterministic 
equivalent counterpart of the problem under two alternative strategies for the 
location decisions. The results of an extensive computational experience allow 
to compare the alternative modeling strategies and assess the effectiveness of the 
proposed approach versus the plain use of an off-the-shelf solver. Pagès-Bernaus 
et al. (2019) present two facility–location models to represent two alternative 
distribution policies in e-commerce (one based on outsourcing and another one 
based on in-house distribution). The authors propose two-stage mathematical-
programming models and show that, because of the computational effort they 
involve, they are not useful for solving large-scale instances. Furthermore, a 
simheuristic is also introduced, to deal with large-scale instances in short computing 
times. Extensive computational experiments on benchmark instances illustrate the 
efficiency of the simheuristic. 

More recently, Turkěs et al. (2021) develop a matheuristic to solve a stochastic 
facility location problem under uncertainty. The latter is triggered by demands 
inventory spoilage and transportation network availability. The problem aims at 
determining the location and size of storage facilities, the quantities of various types 
of supplies stored in each facility, and the assignment of demand locations to the 
open facilities, which minimize unmet demand and response time in lexicographic 
order. The proposed matheuristic resorts to iterated local search to look for good
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location and inventory configurations, whereas optimal assignments for the selected 
configurations are obtained by means of a mathematical programming formulation. 

Stochastic Combinatorial Problems with Bernoulli Demand Several stochastic 
combinatorial optimization problems with Bernoulli demands have been addressed 
in the literature in the context of the minimization of a recourse function. This is the 
case of the probabilistic traveling salesman problem. Jaillet (1988) introduces this 
problem and presents a closed expression for computing efficiently the expected 
value of the length of any given tour. Laporte et al. (1994b) propose a linear 
stochastic program, which is solved with a branch-and-cut approach. More recently, 
Bianchi and Campbell (2007) propose a heuristic approach for the same problem. 
The reader is referred to this latter work for additional references on this problem. 
Berman and Simchi-Levi (1988) study a single-vehicle location-routing problem 
with Bernoulli demands. The authors formulate the problem and develop a lower 
bound on the value of the optimal a priori  tour. In Albareda-Sambola et al. (2007) 
study a location-routing problem with Bernoulli demands. The authors propose 
heuristics and lower bounds to minimize the expected value of the defined recourse 
function. The Stochastic Generalized Assignment Problem, where it is assumed 
that the customer’s demands follow a Bernoulli distribution, is studied in Albareda-
Sambola et al. (2006), where the authors propose an exact algorithm for minimizing 
the expected cost of a recourse function. 

Unit-Demand FLPs Deterministic FLPs with unit-demand customers have been 
widely studied in the literature, motivated by different types of applications mostly 
in telecommunications (e.g., Fortz, 2015) and healthcare (e.g., Ahmadi-Javid et al., 
2017). To the best of our knowledge, the stochastic counterparts of these problems 
have yet received little attention (Albareda-Sambola et al., 2011, 2017; Bieniek, 
2015). Still, examples of non-deterministic unit demands abound in logistics-related 
discrete location problems where demand levels might change over time (postal 
services, distribution systems of goods with seasonal demand, airports, etc.) 

The FLBD and Extensions The FLBD was motivated and introduced in Albareda-
Sambola et al. (2011) for the particular case when the distributions of the customers’ 
demands are independent, all with the same demand probability. Such an assump-
tion reflects situation where there are no common underlying reasons for the 
change of demand, for example, seasonal, economic up- or downturns. In that 
work, two different outsourcing policies were considered, and closed forms for the 
corresponding recourse functions were presented. The obtained numerical results 
showed that the proposed methodology was computationally highly demanding as 
the sizes of the instances increased. In Albareda-Sambola et al. (2017), the same 
authors addressed the heterogeneous version of the problem where the demand 
probabilities are not necessarily the same, for the same two outsourcing policies, 
again under the assumption of independent demands. Several heuristics, based on 
GRASP and Path Relinking, were proposed for that case. In Albareda-Sambola 
et al. (2022), the previous work on the FLBD was extended in several ways. First, it 
was no longer assumed that the probability distributions of the customers’ demands
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are independent. Second, the set of outsourcing policies considered in Albareda-
Sambola et al. (2011, 2017) was extended with two additional strategies. Finally, 
an empirical comparison among the considered outsourcing policies was carried 
out in terms of both their computational performance as well as their capability of 
producing good quality solutions for the other policies. 

The FLBD and some of its variants have attracted the attention of other 
researchers. A bi-objective version of the FLBD has been considered in Shiripour 
and Mahdavi-Amiri (2019). A recourse function is considered, which includes a 
penalty for unmet demand (instead of outsourcing the deficit of capacity). The first 
objective is to minimize the sum of the setup costs plus the expected cost of the 
recourse function. The second objective is to balance the number of customers 
allocated to activated facilities. Small problems are solved with the augmented .ε-
constraint method, whereas two metaheuristic solution algorithms are proposed for 
solving large problems. 

Bieniek (2015) studies an FLP with uncertainty in demand, which extends the 
FLBD for the case of independent demands, as they are assumed to be indepen-
dent and identically distributed with arbitrary distribution. The author studies the 
recourse functions for two outsourcing policies. In each case, a closed expression 
is given for the recourse function as well as a deterministic equivalent formulation. 
Numerical results from some computational experiments are also presented. 

3 Definition of the Problem 

Let I and J , with .n = |J |, denote the set of indices for the potential locations of 
facilities and for customers, respectively. We assume that the demands for service of 
customers follow independent Bernoulli probability distributions, with probabilities 
.pj , j ∈ J . We denote by . � the set of all possible scenarios, by . πω the probability of 
scenario . ω (.

∑
ω∈� πω = 1), and by .dω

j ∈ {0, 1} the demand of customer .j ∈ J in 
scenario .ω ∈ �. Since . dω

j takes binary values, .Dω = ∑
j∈J dω

j indicates the number 
of customers with (non-zero) demand in scenario . ω. Following the terminology 
introduced in Albareda-Sambola et al. (2011), such customers will be referred to 
as customers with demand or just as demand customers. 

We have the following additional data. For each potential location .i ∈ I , . fi

is the fixed setup cost for opening facility i; . �i is a lower bound on the number 
of customers that have to be assigned to facility i if it is opened; and . Ki is the 
maximum number of customers that can be served from facility i if it is opened. For 
each pair .i ∈ I, j ∈ J , . cij is the cost for serving customer j from facility i. 

For a given scenario .ω ∈ �, not all the customers need to have demand. Hence, 
we distinguish between the assignment of customers to open plants, which is done a 
priori and is independent of the potential realizations, and the service of customers 
from open plants, which is decided a posteriori, once the realization is known. An 
a priori  solution is given by a set of operating (open) facilities together with an
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assignment of all the customers to these facilities, such that for any open plant i, 
the number of customers that are assigned to it is at least . �i . Since . Ki is an upper 
bound on the number of customers that can be served from an open plant, it does not 
affect the feasibility of a priori  solutions. Let .i(j) ∈ I denote the facility to which 
customer .j ∈ J is assigned in the a priori  solution and .Ji = {j ∈ J : i(j) = i}, the  
set of customers assigned to facility i in the a priori  solution. 

Given an a priori  solution, the a posteriori solution indicates the decisions to 
make once demand customers are known, that is, it describes the actual services to 
demand customers. Let .Jω

i = Ji ∩ {j ∈ J : dω
j = 1} denote the set of customers 

assigned to facility .i ∈ I with demand in scenario . ω, and .ηω
i = |Jω

i | the number of 
such customers. If .ηω

i ≤ Ki , then in the a posteriori solution all customers indexed 
in . Jω

i receive service from plant i, each of them incurring a service cost . cij , .j ∈ J . 
Instead, when .ηω

i > Ki , the  a posteriori solution consists of serving . Ki (out of . ηω
i ) 

demand customers from facility i and outsourcing to some third party the remaining 
.ηω

i − Ki . A penalty cost . gi is incurred for every outsourced demand customer. The 
way in which, for a realization, it is decided whether a demand customer assigned 
to a plant with .ηω

i > Ki is actually served from i or outsourced depends on the 
outsourcing policy that is applied (see Sect. 6). The recourse function is the expected 
cost of the a posteriori solution, over all possible realizations of the demand vector. 

The FLBD consists of finding a set of facilities to open and an allocation of the 
customers to the opened facilities, such that the lower bounds . �i are satisfied, and 
the sum of the fixed cost associated with the open facilities and the recourse function 
is minimized. 

To formulate the FLBD, we define two sets of decision variables: For .i ∈ I , . yi is 
a binary variable equal to one if and only if facility i is established; . xij is a binary 
variable indicating whether costumer .j ∈ J is assigned (a priori) to facility .i ∈ I . 

The generic formulation for the FLBD proposed in Albareda-Sambola et al. 
(2011) is:  

.(P ) min
∑

i∈I

fiyi + Q(x),. (1) 

s. t.
∑

i∈I

xij = 1, j ∈ J, . (2) 

xij ≤ yi, i ∈ I, j ∈ J, . (3) 

�iyi ≤
∑

j∈J

xij , i ∈ I, . (4) 

yi ∈ {0, 1}, i ∈ I, . (5) 

xij ∈ {0, 1}, i ∈ I, j ∈ J, (6) 

where the recourse function is .Q(x) = E
[
Service cost + Penalty cost

]
. Con-

straints (2) assure that all customers will be assigned to (exactly) one facility while
constraints (3) impose that these assignments are only done to operating facilities.
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Constraints (4) state the minimum number of customers that must be assigned to
each operating facility. Finally, (5) –(6) define the domain of the variables. The
objective function (1) includes the fixed costs for opening the facilities and the
recourse function. Needless to say, the precise definition of this function will depend
on the outsourcing policy adopted. The choice of the outsourcing policy is a very
relevant issue in these problems as it determines the criterion according to which
the quality of a priori solutions will be evaluated. In particular, the choice of the
outsourcing policy may have a notable impact on the specific location/allocation
selections, given that different outsourcing policies may lead to different solutions.
This issue will be further discussed in Sect. 6. 

4 Two Well-Known Heuristics: GRASP and Path Relinking 

In this section, we describe the main elements of GRASP and Path Relinking, two 
well-known heuristics, that we use as the building blocks of the heuristic solution 
algorithm for the FLBD that will be presented in Sect. 5. 

GRASP is the acronym for Greedy Randomized Adaptive Search Procedure and 
was introduced in Feo and Resende (1995). Despite its simplicity, it has proven to 
be highly effective for different classes of difficult optimization problems. GRASP 
is an iterative procedure that combines at each iteration the two essential features 
of any heuristic method: a constructive phase followed by an improvement phase. 
The constructive phase builds a solution from scratch by incorporating step-by-
step additional elements to the solution under construction. A randomized greedy 
criterion is used at each step to select the element to be incorporated in the current 
partial solution. This combines the rationale of a greedy search with the effect 
of a (partial) randomization, thus overcoming one of the major drawbacks of 
pure greedy methods by diversifying the outcome of the construction phase and 
(possibly) producing different solutions when the process is repeated. Typically, the 
improvement phase is a local search where one (or more) neighborhood is explored 
leading to a local optimum. 

Algorithm 1 presents a template for a generic GRASP. The greedy criterion is 
measured through a given function . ϕ and a Restricted Candidate List (RCL) is used 
at each step, which contains the elements that potentially could enter the solution 
under construction. In particular, .RCL = {j /∈ S : ϕj ≤ ϕmin + α (ϕmax − ϕmin)}, 
where (i) S denotes the current partial solution, (ii) .ϕmin and .ϕmax are, respectively, 
the best and worse values, relative to the greedy function . ϕ, of the elements that do 
not belong to the partial solution S, and (.iii) the parameter .0 ≤ α ≤ 1 determines 
the level of randomization of the search as it regulates the size of the RCL. Note that 
.α = 0 leads to a purely greedy method and .α = 1 to a totally randomized one. The 
current solution S is extended at each step by adding to it a new element randomly 
chosen from RCL. 

The local search aims at iteratively improving the current solution by exploring 
a (prespecified) neighborhood until no further improvement can be obtained.
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Algorithm 1 GRASP Template(. α) 
1: stop ← false; 
2: while (not stop) do 

// Constructive Phase 
3: S ← ∅; 
4: while (S not solution) do 
5: Identify ϕmin and ϕmax as the best and worse values of the elements not 

in S; 
6: RCL ← {j /∈ S : ϕj ≤ ϕmin + α (ϕmax − ϕmin)}; 
7: Randomly select j∗ ∈ RCL; 
8: S ← S ∪ {j∗}; 

// Improvement Phase: Local Search on a neighborhood N 
9: while (not stop) do 

10: Select S′ ∈ N(S); 
11: if (f (S′) < f  (S))  then 
12: S ← S′; 
13: else 
14: stop←true; 
15: Update best solution; 

Path Relinking (PR) (see, e.g., Glover, 1997; Glover & Laguna, 1997) is a  
generalization of Scatter Search (Glover et al., 2000). Similarly to other evolutionary 
methods, it operates with a reference set (RS) obtained from a pool of solutions 
rather than with a single solution at a time. The initial RS can be obtained in 
multiple ways, and any procedure able to produce high-quality solutions together 
with diverse solutions can be used to generate it. Later in this chapter, we will use 
GRASP for this purpose. PR creates new solutions from paths connecting pairs of 
solutions of RS. To generate a path from a source solution . Sc to a target one, . St , it  
is only necessary to perform moves that progressively introduce in . Sc attributes of 
. St . It may be needed to modify the intermediate solutions of the paths so as to make 
them feasible. The feasible solutions are then improved with some intensification 
method and the RS updated according to the new solutions obtained. The procedure 
is repeated until the RS does not change. A template for a generic PR procedure is 
presented in Algorithm 2. 

Indeed, Algorithms 1 and 2 are very general and can be applied nearly to any 
optimization problem, independently of whether or not it incorporates uncertain 
elements. The main difficulty that may arise in the case of problems with uncertainty 
is to have procedures for evaluating the objective function value of the different 
solutions that are tested at the different steps of the heuristic. For two-stage 
stochastic problems with recourse function, the exact evaluation of an a priori  
solution would involve to identify the a posteriori solution for each possible 
scenario, evaluate its corresponding value, and then compute the expectation 
over all these values. Since the computational burden of such an enumeration
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Algorithm 2 PR Template 
1: Generate a starting reference set RS; 
2: stop ← false 
3: while (not stop) do 
4: Select Sc, St ∈ RS; 

// Create new solutions from a path connecting Sc and St ; 
5: while Sc 
= St do 
6: S ← next(Sc); //Obtain S introducing in Sc some attribute of St 
7: if (S not feasible) then 
8: S ← feas(Sc); //Apply a restoration mechanism to make S feasible. 
9: S ← intens(Sc); //Apply intensification method to S. 

10: Sc ← S; 
11: Check if RS can be updated; 

12: if (RS has not been updated) then 
13: stop← true; 

may be unaffordable, the exact evaluation of solutions must be substituted by 
some approximate evaluation based, for instance, on Monte Carlo sampling. In 
its turn, this may distort the performance of the heuristics, due to the lack of 
precision of the considered approximations. Finding a trade-off between these 
two difficulties increases substantially the difficulty (and reduces the reliability) of 
heuristic methods when applied to optimization problems with uncertainty as the 
FLBD. 

5 GRASP with Path Relinking for the FLBD 

In this section, we present the main elements of the two-phase heuristic for obtaining 
an a priori  solution for the FLBD proposed in Albareda-Sambola et al. (2017), 
where the interested reader may find further details. The first phase consists of a 
GRASP Feo and Resende (1995), which produces two pools of solutions: the elite 
pool containing a certain number of the best solutions found and the diverse pool 
containing the most diverse solutions among the ones in both pools. Both pools have 
a limited size, denoted by nElite and nDiverse, respectively. When one pool is full 
and we want to insert a solution there, then the worst solution in the pool is removed. 

When both pools have been built, the second phase starts. It is an intensification 
phase consisting of a PR. It repeatedly chooses a target solution from the elite pool 
and then, starting from a solution selected at random from the diverse pool, explores 
a path linking them in an attempt to find better feasible solutions.
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The overall procedure is summarized in Algorithm 3. In the first phase (lines 1 
to 17), the GRASP is executed .max_iter times. In each execution, a solution S is 
constructed (line 5—function GreedyRandomizedConstruction(. α,. p+)) 
and repaired (RepairSolution(S)) if it is infeasible (lines 6 and 7). A local 
search (LocalSearch_1(S)) is applied at the end. All moves are evaluated by 
estimating their impact in the solution cost. 

Algorithm 3 Heuristic Framework for the FLBD 
// initialization 

1: elite_pool , worstV alueElite ; 
2: diverse

← ∅ ← ∞
_pool ← ∅; worstDiverseV alue ← 0.0; 

3: initializeConstruction() 
// phase 1: GRASP used for building two pools of solutions; 

4: for k = 1, . . . , max_iter do 
5: S ← GreedyRandomizedConstruction(α,p+); 
6: if S not feasible then 
7: S ← RepairSolution(S); 
8: S ← LocalSearch_1(S); // cost variation estimated in all moves; 

“// solution cost estimated at the end of the local search;” 
9: f (S)  ← estimateCost(S,highP recision); 

10: if S /∈ elite_pool and f (S) < worstV alueElite then 
11: elite_pool ← insertInElitePool(S,worstV alueElite); 
12: else 
13: if S /∈ diverse_pool then 
14: dist(S) ← pool_distance(S); 
15: if dist(S) > worstDiverseV a lue then  
16: diverse_pool ← insertInDiversePool(S,worstDiverseV alue); 

17: S∗ ← argminS∈elite_pool{f (S)}; // best solution so far; 
// end of phase 1; 
// phase 2: a PR procedure is used for improving the solution; 

18: for � = 1, . . . , nRep  do 
19: for all S ∈ elite_pool do 
20: St ← S; 
21: Sc  getRandom(diverse_pool); 

 22: S

←
∗ ← pathRelinking(Sc,St,S∗); 

// end of phase 2; 
23: return S∗. 

Once a solution is built, we decide whether to insert it in one of the pools— 
lines 9 to 16. The value of the solution produced by the local search is estimated 
(see line 9, estimateCost(S,highP recision)) and we check if its quality 
indicates that it should be inserted into the elite pool. In this case, we insert it in the 
pool (see in line 11 the call for insertInElitePool(S,worstV alueElite)),
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updating if necessary the worst value among all solutions of the pool. Other-
wise, we check whether the solution should be inserted into the diverse pool. 
If so, the solution enters that pool (function insertInDiversePool(S, 
worstDiverseV alue)) and the worst diverse value among solutions in the pool 
is updated (if necessary). The implementation details of the function estimating 
the cost of a solution (estimateCost(S, highP recision)) are provided in 
Sect. 8.2.1. At termination of GRASP (line 17), the best solution found in all 
executions of the GRASP is set as the incumbent solution (. S∗). 

In the PR procedure (lines 18–23), paths are explored for pairs of solutions, one 
from the elite pool and the other one from the diverse pool. The former is selected 
sequentially and is set as the target solution (. St); the latter is randomly selected and 
is set as the current solution (. Sc). After defining a target and a current solution, a path 
linking them is explored. The incumbent solution is updated every time a solution is 
found with a better cost estimate. The PR procedure is repeated . |elite_pool|×nRep

times. 
Below we detail the different functions invoked by this heuristic. 

5.1 The Greedy Randomized Procedure 

As usual, the construction phase of the GRASP is the randomization of a greedy 
algorithm. At each iteration, an element is randomly selected from a RCL, which 
contains the best elements that could be incorporated into the partial solution 
according to some prespecified greedy criterion. The selected element is then 
incorporated to the solution under construction and the procedure repeated. 

In our case, a partial solution is given by a set of open facilities together with an 
assignment of customers to the current set of open facilities. The construction phase 
ignores constraints (4) , imposing a lower limit on number of customers assigned to
every open facility. Hence, since it may produce an infeasible solution, a feasibility
restoration mechanism is applied at the end, if needed. The procedure terminates
with a local search in an attempt to improve the feasible solution obtained. All these
elements are detailed next.

5.1.1 Construction Phase 

This phase starts by opening one single facility, randomly chosen from the RCL, and 
assigning all the customers to it. In a general step k, a new facility is opened and 
some customers are reassigned to it. The full procedure is detailed in Algorithm 4. 
We denote by . I k the set of open facilities at the end of step k, by .(ỹk, x̃k) the current 
partial solution, and by .i(j) the plant to which customer .j ∈ J is currently assigned. 
Again we denote by . Ji the set of customers assigned to i in the a priori  solution.



404 M. Albareda-Sambola et al.

In the first iteration (see line 2), each candidate facility is evaluated according to 

.δ0i ← 1

ui

⎛

⎝fi +
∑

j∈J

cij

⎞

⎠ , (7) 

where . ui is an auxiliary assignment capacity of facility i, which remains constant 
for all executions of the GRASP. In particular, 

. ui = max

⎧
⎪⎨

⎪⎩
�i,Ki,

⎢
⎢
⎢
⎢
⎣

n

p

Ki
∑

t∈I

Kt

⎥
⎥
⎥
⎥
⎦

⎫
⎪⎬

⎪⎭
,

where . p denotes the average of the demand probabilities . pj , .j ∈ J . 
In subsequent iterations, the incremental cost of facility i, . δk

i (line 18), is 
estimated as 

. δk
i ← fi +

ri∑

t=1

σij[t]

where . ri is the number of customers that would be assigned to facility i if it were 
open (determined in line 17). 

For each .j ∈ J , . σij is the estimated variation in its service costs when reassigning 
customer j to facility i, computed as (line 15) 

.σij = cij − ci(j)j − pj × g(i(j))
(ri(j) − Ki(j))

+

ri(j)

. (8) 

The RCL is built with the non-open facilities that seem most promising if opened 
(line 21). It contains all closed facilities with an incremental cost within the interval 
.[δmin, δkmin + αk(δkmax − δkmin)], where .δkmin and .δkmax respectively denote the 
smallest and largest nonpositive incremental costs . δk

i . Based on preliminary testing, 
we used .αk = 2α in the first iteration (.k = 0), whereas in subsequent iterations 
(.k > 0) .αk = α, where . α is a given parameter. After the next facility to open is 
randomly chosen from the RCL (line 23), the set of customers assigned to each 
open facility is updated in the loop 25–27. 

The termination criterion of the construction phase is not fixed in advance. Usu-
ally, the constructive phase would continue until all facilities are open or until all the 
non-open facilities have a nonnegative incremental cost. Preliminary computational 
testing, however, indicated that these criteria tend to produce solutions with too 
many open facilities. For this reason, an additional parameter .p+ is introduced, 
which denotes the probability with which the process terminates even if none of the 
above termination criteria are met (lines 10, 11).
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Algorithm 4 GreedyRandomizedConstruction(. α,. p+, u) 
// choose the first facility to open 

1: k ← 0; 
2: Compute {δk 

i }i∈I using (7) , αk ← 2α; 
3: RCL ← {

i ∈ I : δk min � δk 
i � δk min + αk (δk max − δk min)

}
; 

 4: ik ← RandomSelect(RCL); 
5: I k ← {ik}; 
6: i(j) ← ik , j ∈ J ; 
7: Jik ← J , Ji ← ∅, i ∈ I \ {ik}; 

// main loop 
8: repeat 
9: k ← k + 1; 

10: β ← RandomSelect([0, 1]); 
11: if (β > p+) then Stop; 
12: else 
13: for (i ∈ I )  do 
14: for (j ∈ J )  do 
15: Compute σij according to  (8) ; 

16: j[1], . . . , j[n  ] sort_σ_increasing(J); 
17:

{ } ←
ri ← min

{
ui,max

{
�i,max{q 

ri

: σij[q <]  0}}}; 
18: δk 

i ←  fi + 
∑

σ , αk
ij t

← α; 
t=1 

[ ]

19: δk min ← min
{
0,min{   max δk : i ∈ I }}, δk

{
i ← min 0  
 ,max{δk

i : i ∈ I }}; 
20: if  min δk < 0 then 
21: RCL ←  {

min   min   max  mini ∈ I : δk � δk � δk + αk(δk )i − δk
}
; 

22: if RCL then  
 23:

= ∅
ik ← RandomSelect(RCL); 

24: I k ← I k−1 ik ; 
25: for (j

∪ { }
 = [1], . . . , [rik

26:

]) do 
Ji(j) ← Ji(j) \ {j

27:

}; i(j) ← ik; 
Jik 

k min 

← Jik ∪ {j}; 
28: until δ ≥ 0; 
29: return I k and i(j), j J . 




 ∈ 

5.1.2 Feasibility Restoration 

When the outcome of the construction phase violates the lower limit . �i on the 
number of assigned customers of some open facility (.|Ji | < �i), the follow-
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ing two-step feasibility restoration procedure is applied (Algorithm 3—function 
RepairSolution(S)): 

Step 1: We check whether the current solution satisfies .
∑

i∈I k �i > n. If this is the  
case, facilities are closed one at a time until .

∑
i∈I k �i ≤ n. In each iteration, 

the facility that is closed is 

. i∗ ∈ arg max
i∈I k : �i>|Ji |

⎧
⎨

⎩
f (i) +

∑

j∈Ji

cij + g(i)
(
pi × |Ji | − Ki

)+
⎫
⎬

⎭
,

where . pi denotes the average demand probability of all customers assigned 
to facility i. 

After closing facility . i∗, all the customers of . Ji are reassigned among the 
remaining open facilities. This is done in a greedy way. For each involved 
customer j , we estimate the increase in the solution cost for reassigning it 
to open facility i as 

. cij + max{|Ji | + 1 − Ki, 0}pj

gi × Ki

|Ji | × (|Ji | + 1)
.

Then j is reassigned to the open facility i that contributes the least to the 
estimated increase in the solution cost. 

Step 2: After ensuring that .
∑

i∈I k �i ≤ n, we check whether the constraint (4) 
associated with some open facility i is still violated, that is, .|Ji | < �i . In this  
case, some customers currently assigned to facilities . i′ such that . |Ji′ | > �i′
are assigned to facility i. Again, this is done in a greedy way. First, the 
reassignment cost of j to . i′ is estimated as 

. pj (cij − ci′j ) + max{|Ji | + 1 − Ki, 0}pj

gi × Ki

|Ji | × (|Ji | + 1)

− max{|Ji′ | − Ki′ , 0}pj

gi′ × Ki′

|Ji′ | × (|Ji′ | − 1).

Then the reassignment that is chosen is the one that produces the least 
estimated increase in the solution cost. 

5.1.3 Local Search 

In the local search, the set of open facilities remains fixed so the considered 
neighborhoods only affect the assignment of customers within that set. Two different 
neighborhoods are considered: (i) those induced by reassignments of customers and 
(ii) those induced by interchanges of assignments between pairs of customers. Both
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types of neighborhoods are explored with a first improving policy relative to the 
estimated variation in the solution cost, computed as follows: 

Reassignments 
The estimated cost variation when reassigning customer .j ∈ Ji1 to . i2 is: 

. σj,i2 = pj (ci2j − ci1j ) + max{|Ji2 | + 1 − Ki2 , 0}gi2pj ×
|Ji2 |
∑

s=Ki2

Bin(|Ji2 |, p̄i2 , s)

− max{|Ji1 | − Ki1 , 0}gi1pj ×
|Ji1 |
∑

s=Ki1+1

Bin(|Ji1 |, p̄i1 , s),

where .pi1
and .pi2

denote the arithmetic average of the demand probabilities 
for the customers of . Ji1 and . Ji2 , respectively, and .Bin(ζ, p, s) the probability 
that a binomial random variable with parameters . ζ and p takes value s; that is 
.Bin(ζ, p, s) = (

ζ
s

)
ps(1 − p)ζ−s . 

Feasibility is kept by considering only customers j with .|Ji(j)| > �i(j). 
Note that since cost variations are only estimated, cycles of reassignments could 

happen. This is avoided by estimating simultaneously the cost of a reassignment and 
the cost of its reverse move and only performing moves such that the direct move 
has a better cost estimate than the reverse one. 

Interchanges 
For the assignment interchange of two customers .j1, j2, with .j1 ∈ Ji1 , j2 ∈ Ji2 , we  
assume w.o.l.g. that .pj1 > pj2 . Then the estimate of the cost variation is: 

. σj1j2 = ci1j2 + ci2j1 − ci1j1 − ci2j2

+ gi2

(
pj1 − pj2

)
[(|Ji1 | − Ki1

)+

|Ji1 |
−

(|Ji2 | − Ki2

)+

|Ji2 |

]

.

For both, reassignments and interchanges, we set an upper limit for the number 
of times that any customer can be reassigned to the same facility. We alternate the 
exploration of the two neighborhoods until there are no further promising moves. 

5.1.4 Diversity Measure 

In the GRASP, when a solution S is not inserted in the elite pool, we check 
whether it should be inserted in the diverse pool. The diversity measure that is used 
(pool_distance(S)) evaluates the average number of noncoincident customer
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assignments over all the solutions in one of the pools, namely, 

. 
1

ne + nd

⎛

⎝
∑

Se∈elite pool

|{j ∈ J : iSe (j) 
= iS(j)}|

+
∑

Sd∈diverse pool

|{j ∈ J : iSd
(j) 
= iS(j)}|

⎞

⎠ ,

where . ne (. nd ) is the current number of elite (diverse) solutions and .is(j) denotes 
the facility to which customer j is assigned in solution s. 

5.2 Path Relinking 

The second phase of the heuristic consists of a PR that explores paths linking pairs 
of current and target solutions, .(Sc, St), as detailed in Algorithm 3. Recall also that 
. S∗ stands for the incumbent solution. 

Algorithm 5 pathRelinking(. Sc,. St,. S∗) 
// initialization; 

1: nOpenCurrent ← countFacilitiesOpen(Sc); 
2: nOpenTarget ← countFacilitiesOpen(St); 

// end of initialization; 
3: β ← RandomSelect([0, 1]); 
4: while (β ≤ p++) and (nOpenCurrent > nOpenTarget) do 
5: Sc ← closeFacility(Sc); 
6: nOpenCurrent ← nOpenCurrent-1; 
7: S∗ ← updateIncumbent(S∗,Sc); 
8: β ← RandomSelect([0, 1]); 
9: (Sc, S

∗) ← exchangeFacilities(Sc); 
10: (Sc, S

∗) ← closingFacilities(Sc); 
11: (Sc, S

∗) ← openingFacilities(Sc); 
12: S∗ ← localSearch_2(Sc, S∗); 
13: return S∗. 

In Albareda-Sambola et al. (2017), two versions of the PR were implemented. 
The first one, referred to as PR1, is sketched in Algorithm 5. The second one, 
referred to as PR2, is as PR1 but without the cycle in lines 4–8. Both versions apply 
three types of local moves for transforming the current solution, . Sc, into the target, 
. St : (i) closing a facility that is closed in . St , (ii) opening a facility that is open in . St , 
or (iii) interchanging a facility that is open in . Sc but closed in . St by a facility that
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is closed in . Sc and open in the . St . Each of the above moves includes the necessary 
reassignments of customers and updates the incumbent solution when the estimated 
value of . Sc is better than that of . S∗. The loop in lines 4–8 used in PR1 explores the 
close-facility neighborhood only and is regulated by a probability .p++ of changing 
to other neighborhoods before the number of open facilities in . Sc and . St coincides. 
In both versions, when . St has been reached, a local search is applied to the current 
incumbent, consisting of reassignments of customers only. Again, a check is applied 
at the end to see if . S∗ should be updated. Some details of Algorithm 5 are given 
below. 

Incumbent Update As will be explained in Sect. 8.2.1.2, the cost estimation of a 
solution can be computed with different precisions. Since a higher precision requires 
a higher computing time, in both versions of the PR, the higher precision is only 
used when trying to update the incumbent. Algorithm 6 gives the details of function 
updateIncumbent(. S∗, . Sc), where a tolerance factor is used as a threshold 
for the acceptance of a solution that is candidate to become the new incumbent. 
This function is called at the end of each of the functions called in lines 9–12 of 
Algorithm 5. 

Algorithm 6 updateIncumbent(. S∗, . Sc) 

1: f (Sc) ← estimateCost(Sc, lowPrecision); 
2: if f (Sc) < (tolerance × f (S∗)) then 
3: f (Sc) ← estimateCost(Sc, highPrecision); 
4: if f (Sc) < f  (S∗) then 
5: S∗ ← Sc; 
6: f (S∗) ← f (Sc); 

7: return S∗. 

Facility Moves We next detail the three facility moves that are considered in PR. In 
order to differentiate among customers assignments of different solutions, we will 
use . J s

i to denote the set of customers assigned to facility i in solution s. 

Closing facilities: When some of the facilities that are open in . Sc are closed in . St, 
we choose one of them for closing. This is done in a greedy way. For each facility 
i candidate for closing, we estimate the cost increment in the current solution if 
i is closed as 

. − fi +
∑

j∈J
Sc
i

pj (c
min
j − cij ),
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where, for each customer .j ∈ J
Sc
i , .cmin

j is its minimum service cost among the 
set of open facilities in . Sc (except for the facility i, which is being checked for 
closing). 

When a facility is eventually closed, each customer of .J Sc
i is taken in turn. 

If the facility to which it is assigned in . St is open, it is directly assigned to 
that facility. Otherwise, it is assigned greedily using the function defined in the 
GRASP constructive procedure. 
Opening facilities: Facilities that are open in . St but are closed in . Sc are the 
candidates for being opened. Again, the facility chosen to be opened is the one 
producing the least estimated increase in the solution cost. The estimate for a 
given facility i is 

. fi +
∑

j∈J
St
i

pj (cij − ci(j),j ),

where .i(j) is the facility to which customer j is assigned in . St . 
When a facility is opened, all customers assigned to it in . St are automatically 

reassigned to it. When doing so, infeasibilities with respect to the lower bound 
on the number of customers assigned to open plants may arise. In such a case, 
we use the repair mechanism introduced in Sect. 5.1.2. 
Exchange facilities The goal of these moves is to swap pairs of facilities that 
do not have the same status in . Sc and in . St . Let  . i1 be a facility that is open in 
. St but closed in . Sc. Let also . i2 be a facility that is closed in . St but open in . Sc. 
Then swapping . i1 and . i2 means that in . Sc, facility . i1 is opened and . i2 closed. 
Furthermore, all the customers initially assigned to . i2 are reassigned to . i1. If  
.�1 > �2 and there are less than . �1 customers initially assigned to . i2, then the 
new solution will violate the lower bound constraint associated with . i1. In such a 
case, we apply the restoration mechanism explained in Sect. 5.1.2. 

As for the selection of the pair to swap, for each candidate pair (. i1, . i2), we 
estimate the variation in the solution cost after the swap, taking into account 
that all customers currently assigned to . i2 in . Sc should be reassigned if . i2 is 
closed. Thus, we consider the partition of .J Sc

i2
given by .J Sc

i2
= J 1

i2
∪ J 2

i2
, with 

.J 1
i2

= J
Sc
i2

∩ J
St
i1

and .J 2
i2

= J
Sc
i2

\ J 1
i2
. The estimation of the variation in the 

solution cost is 

. fi1 − fi2 +
∑

j∈J 1
i2

pj (ci1,j − ci2,j ) +
∑

j∈J 2
i2

pj (c
min
j − ci2,j ),

where .cmin
j denotes the minimum service cost for customer j computed among 

the facilities that are open in .(Sc \ {i2}) ∪ {i1} (except for . i2, which is the facility 
being checked for closing). 

Customer Moves Algorithm 5—LocalSearch_2(S) performs a local search 
involving the customers. It consists of a reassignment procedure, different from the
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one used in the GRASP, which is based on the following estimation for the variation 
of the solution cost when reassigning customer j from plant .i1 = i(j) to . i2: 

. ci2j − ci1j + gi2

pj

|Ji2 | + 1
max{|Ji2 | + 1 − Ki2 , 0} − gi1

pj

|Ji1 |
max{|Ji1 | − ki1 , 0}.

6 Outsourcing Policies for the FLBD 

As we already mentioned when introducing the FLBD, the choice of the outsourcing 
policy is on itself a strategic decision that must be made in advance, which may 
have a notable impact on the specific location/allocation selections, given that 
different outsourcing policies may lead to different solutions. Below, we describe 
the two outsourcing policies that will be used in the remainder of this chapter. 
They are called facility outsourcing (FO) and customer outsourcing (CO). For each 
outsourcing policy, we present a mixed-integer linear programming formulation, 
which allows to optimally solve the problem when uncertainty is expressed via 
a set of scenarios, and will be used in the SAA solution algorithm discussed in 
Sect. 7. FO and CO have been used in Albareda-Sambola et al. (2011, 2017); 
alternative outsourcing policies have been considered and compared with FO and 
CO in Albareda-Sambola et al. (2022). 

6.1 Facility Outsourcing 

With the facility outsourcing (FO) policy, under scenario . ω, facility i takes delivery 
of the whole set . Jω

i . When .ηω
i > Ki , then .ηω

i − Ki units of product are outsourced 
to a third party, at a unit cost . gi . Then facility i serves the overall demand of its 
assigned customers, . ηω

i , at the same cost . cij that would be incurred if it were not 
outsourced. 

To formulate the FO-FLBD, in addition to the y and x decision variables 
introduced above, we consider . θω

i denoting the number of demand customers 
outsourced at facility .i ∈ I under scenario .ω ∈ �. Additionally, we use . zω to 
represent the total penalty incurred under scenario .ω ∈ �. The formulation is: 

.FO min
∑

i∈I

fiyi +
∑

i∈I

∑

j∈J

pj cij xij +
∑

ω∈�

πωzω, . (9) 

s. t. (2) − (4) ,

θω
i �

∑

j∈J

dω
j xij − Kiyi, i ∈ I, ω ∈ �, . (10) 

zω �
∑

i∈I

giθ
ω
i , ω ∈ �, . (11)
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zω � 0, θω 
i � 0, i  ∈ I, ω ∈ �, . (12) 

yi ∈ {0, 1}, i ∈ I, . (13) 

xij ∈ {0, 1}, i ∈ I, j ∈ J. (14) 

The objective function (9) includes the costs for opening facilities plus the expected
value of the service plus outsourcing costs. As explained, Constraints (2) –(4) 
guarantee the feasibility of the a priori solution. Constraints (10) force . θ variables 
to take consistent values, and Constraints (11) compute the penalty cost of each
scenario and will hold as equality in any optimal solution. Thus, they are not strictly
needed, as their right-hand side could be substituted in the last term of the objective
function instead of using the variables . zω. The domain of the variables is defined 
by (12) –(14) . Note that given the structure of the formulation, integrality constraints
on the z and . θ variables can be relaxed to nonnegativity constraints. 

Formulation (9) –(14) uses .|I |(1 + |J |) + |�|(|I | + 1) variables and has . |J |(1 +
|I |) + |I | + |�|(|I | + 1) constraints. Depending on the size of . �, these numbers 
can be quite high, even for moderate numbers in terms of customers and facilities. 
Hence, enhancing the formulation can be very useful to decrease the computing 
time required to solve such model to proven optimality using an off-the-shelf solver. 
Inequalities (15) and (16) below have proven to give a good balance between the
increase in the size of the formulation and the improvement obtained when solving
the model.

.

∑

ω∈�

πωθω
i �

∑

j∈J

pjxij − Kiyi, i ∈ I, . (15) 

∑

i∈I

Kiyi +
∑

i∈I

θ ω̃
i � Dω̃. (16) 

Inequality (15) states that the expected number of demand customers outsourced
at facility i (.i ∈ I ) is at least the expected number of demand customers assigned 
to that facility minus the capacity of the facility. Note that these constraints are 
activated only if .yi = 1. In  (16) , .ω̃ ∈ � is the scenario with the largest number 
of demand customers (. Dω̃). This constraint ensures that the maximum number of 
customers that can be served by the open facilities plus the outsourced demand 
customers is never below the total demand. This constraint holds for every scenario, 
but adding such a constraint for all scenarios would increase considerably the size 
of the formulation, which explains why we consider solely (16) .

6.2 Customer Outsourcing 

With the customer outsourcing (CO) strategy, in the scenarios where the number of 
demand customers assigned to facility i exceeds its capacity . Ki , that is, .ηω

i > Ki ,
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exactly . Ki customers are served directly from facility i, whereas the remaining 
.ηω

i − Ki customers of . Jω
i are outsourced and receive service from an external 

third party. Service costs . cij are incurred for the customers served from facility 
i, whereas a penalty . gi is incurred for each outsourced customer, which depends 
on the facility the customer is assigned to. Hence, to formulate the FLBD with 
a CO policy, additional decision variables are needed, to identify the outsourced 
customers. In particular, we define a binary variable, . sω

ij equal to one if and only if 
customer .j ∈ J is served from facility .i ∈ I under scenario .ω ∈ �. 

In the CO policy that we use here, in the scenarios where .ηω
i > Ki , the demand 

customers that are served from facility i are selected according to a FIFO policy, 
relative to the order in which requests of service have arrived. With this CO policy, 
a scenario .ω ∈ � is not fully characterized by its probability and demand customers, 
since the order in which calls for service from demand customers arrive must also 
be known. We use the notation .j ′ ≺ω j to indicate that customers .j, j ′ ∈ J have 
demand under scenario . ω and . j ′ requested service before j . A formulation for the 
CO is then: 

.CO min
∑

i∈I

fiyi +
∑

ω∈�

∑

i∈I

∑

j∈J

cij s
ω
ij+

∑

ω∈�

πωzω, . (17) 

s. t. (2) − (4) ,

∑

ω∈�

sω
ij �

(
∑

ω∈�

dω
j

)

xij , i ∈ I, j ∈ J, . (18) 

∑

j∈J

dω
j sω

ij � Ki, i ∈ I, ω ∈ �, . (19) 

∑

j∈J

dω
j sω

ij + θω
i �

∑

j∈J

dω
j xij , i ∈ I, ω ∈ �, . (20) 

zω �
∑

i∈I

giθ
ω
i , ω ∈ �, . (21) 

Kid
ω
j (xij − sω

ij ) �
∑

j ′≺ωj

dω
j ′sω

ij ′ , i ∈ I, ω ∈ �, j ∈ J.. (22) 

zω � 0, θω
i � 0, i ∈ I, ω ∈ �, . (23) 

yi ∈ {0, 1}, i ∈ I, . (24) 

xij ∈ {0, 1}, i ∈ I, j ∈ J, . (25) 

sω
ij ∈ {0, 1}, i ∈ I, j ∈ J, ω ∈ �. (26) 

Again, Constraints (2) –(4) guarantee the feasibility of the a priori solution.
The second-stage variables . sω

ij are now used to compute the expected service cost. 
Constraints (18) ensure that service from open facilities is only provided according
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to the a priori  assignments dictated by the x variables. Constraints (19) –(20) state
the service capacities of the facilities and set the right value to the number of
outsourced units at each facility, respectively. Finally, constraints (22) ensure that
the FIFO policy is followed for selecting the customers that will be served from
a given facility when .ηω

i > Ki . Note that if this last set of constraints is relaxed, 
then the decision on the customers to serve is made solely based on a cost criterion 
(see Albareda-Sambola et al., 2022 for further details). Again, the structure of the 
problem allows to relax integrality constraints on . θ variables and restrict them to be 
just nonnegative. 

The number of variables of formulation CO has increased in .|I |× |J |× |�| with 
respect to the number of variables of the FO formulation. Its number of constraints 
is also larger, as it has raised to .|J |(1 + 2|I |) + |I | + |�|(2|I | + |I ||J | + 1). 

7 Sample Average Approximation 

A common approach to deal with two-stage problems where the unknown param-
eters are described through their probability distributions is Sample Average 
Approximation (SAA) (Kleywegt et al., 2001). The basic idea of SAA is to use 
Monte Carlo simulation to estimate the value of the stochastic program. To this 
end, an iterative procedure is used. At each iteration, the recourse function is 
approximated by the average cost over a sample of possible scenarios generated 
according to the assumed probability distribution. The so-called sample average 
optimization problem is solved and both its optimal value and its solution are stored. 
The output of the algorithm is the average of the optimal values obtained in the 
different runs (different samples), which is taken as an estimate of the optimal value 
of the stochastic problem, and the best solution found along the process, denoted 
by . x∗. Algorithm 7 illustrates a generic SAA implementation in pseudocode. In 
this pseudocode, .v(�t ) stands for the optimal value of the sample average problem 
defined by the scenarios in . �t , and .f (x) stands for the actual value of x as a solution 
of the two-stage program. 

Depending on the structure of the recourse function, the actual value of this 
solution can be exactly computed or estimated using again Monte Carlo simulation, 
typically with a larger sample than those used in the sample average problems. On 
the other hand, the average of the optimal values of the sequence of subproblems 
solved, .z ← 1

t

∑t
s=1 zs , produces an estimate of the optimal value of the stochastic 

problem, which provides a basis for assessing the quality of the best solution found. 
Moreover, its convergence gives a termination criterion. 

Note that the only requirement needed for implementing SAA is to have an 
oracle for solving the sample average problem; that is, the stochastic problem 
restricted to a subset of scenarios, all with the same weight. Thus, mathematical 
programming formulations are needed within an SAA algorithm. Indeed, such 
formulations depend on the chosen recourse action. For the FLBD, we will use the 
FO and CO formulations presented in Sect. 6.
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Algorithm 7 Generic SAA pseudocode 
procedure SAA (max_it) 

1: Set z∗ ← ∞, z ← ∞, t ← 0; 
2: while (t <  max_it and z̄ has not converged) do 
3: t ← t + 1; 
4: Select a sample of possible scenarios Ωt ; 
5: zt ← v(Ωt ), xt ∈ argmin v(Ωt ); 
6: if (f (xt ) < z∗) then 
7: z∗ ← f (xt ); 
8: x∗ ← xt ; 
9: end; 

10: z ← 1 
t

∑t 
s=1 z

s ; 

11: end; 
12: return z, z∗, x∗; 

8 Computational Experiments 

We next describe the computational experiments carried out to test the approximate 
methods described in this chapter and analyze the results that they produce. 

8.1 Test Instances 

The results that we present correspond to instances of two different classes: with 
homogeneous demand and with heterogeneous demand. For the homogeneous case, 
we selected some of the instances from Albareda-Sambola et al. (2011), and for 
the class with general demands, we took instances from those used by Albareda-
Sambola et al. (2022). The main characteristics of the generation process are 
detailed next. 

The basis for the homogeneous instances is the traveling salesman problem (TSP) 
instances taken from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/: 
berlin52, eil51, eil76, kroA100, kroB100, kroC100, kroD100, 
kroE100, pr76, rqt99, and st70. From those TSP instances, FLBD instances 
of two sizes were generated: small instances, with .|I | = 15 and .|J | = 30, and large 
instances with .|I | = 20 and .|J | = 60. To do so, nodes were selected randomly 
from the original TSP instance. Naturally, the smaller TSP instances with less than 
80 nodes were only used for generating small instances. For each combination of 
plants and customers, the remaining data were generated considering three different 
values for the probability of demand (. 0.1, . 0.5, and . 0.9) and two different capacity 
levels (low and high). In total, we considered a set of 306 homogeneous instances.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Each homogeneous instance is identified by a label of the form 
name_id_pr_. γ_h, where name is the name of the original TSP instance (with 
the prefix L for large instances), id .∈ {1, 2, 3} identifies the instance among the 
three generated from the same original TSP instance, pr .∈ {1, 5, 9} indicates the 
homogeneous demand probability (“1” corresponds to . 0.1, “5” corresponds to . 0.5, 
and “9” corresponds to . 0.9), .γ ∈ {1, 4} is the value of the parameter . γ used for 
generating the capacities of the facilities, and finally, h stands for “homogeneous.” 

For the class of heterogeneous FLBD instances, we consider the 306 instances 
introduced by Albareda-Sambola et al. (2022). They were generated from the 
306 homogeneous instances just described, with customers classified as low-, 
medium-, and high-probability demand customers. The demand probability of each 
customer was randomly taken from .U(0.10, 0.25), .U(0.40, 0.60), or .U(0.75, 0.90), 
depending on the customer class. Then three patterns for the demand are considered: 
In pattern 1 (PT1), there are 60% of low-probability demand customers, 20% 
medium, and 20% high. In pattern 2 (PT2), these percentages are 20%, 60%, and 
20%, respectively, and finally, in pattern 3 (PT3), they are 20%, 20%, and 60%. The 
reader is referred to Albareda-Sambola et al. (2022) for further details. 

Summarizing, for each combination of one of the two capacity levels and one 
of the three demand probabilities (resp. probability patterns), we have a set of 33 
small instances and a set of 18 large instances of the homogeneous (resp. non-
homogeneous) FLBD. 

8.2 Implementation Details 

All algorithms analyzed in this section were coded in C, using CPLEX 12.6 
callable libraries for solving MIP formulations. All the tests were carried out on 
a Pentium(R) 4, 3.2GHz, 1.0GB of RAM. Next, we give some implementation 
details specific for the different methods. 

8.2.1 Grasp + Path Relinking 

The evaluation of each particular solution of the FLBD, especially in the non-
homogeneous case, is a relevant issue in the implementation of the GRASP and 
Path Relinking methods. Therefore, exact evaluation is used only in some cases, 
whereas in other cases, the solution values are approximated. In this section, we 
provide the details of these evaluations/estimations. The final choices for parameter 
values used in the algorithm are summarized in Table 1.
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Table 1 Values set for the parameters 

Parameter Usage Description Value 

nElite GRASP (Algorithm 3) Maximum number of 
solutions in the . elite_pool

15 

nDiverse GRASP (Algorithm 3) Maximum number of 
solutions in the 
. diverse_pool

15 

max_iter GRASP (Algorithm 3) Number of GRASP iterations 500 

.α GRASP (Algorithm 4) Range for the RCL 0.15 

.p+ GRASP (Algorithm 4) Probability ruling the process 
of opening further facilities 
while the stopping criteria are 
not met 

0.9 

nMoves GRASP 
(LocalSearch_1(S)) 

Maximum number of times 
the same reassignment can be 
done in the interchange and 
reassignment moves 

2 

rep Algorithm 3 Number of times each elite 
solution will be used 

2 

.p++ PR1 Probability of keeping 
closing facilities in the first 
phase of converting the 
current solution into the 
target 

0.9 

lower 
precision 

PR1 and PR2 
(Algorithm 6) 

Lower precision for 
simulating the cost of an a 
priori solution 

5E-4 

higher 
precision 

GRASP, PR1 and PR2 
(Algorithms 3 and 6) 

Higher precision for 
simulating the cost of an a 
priori solution 

1E-5 

tolerance GRASP, PR1 and PR2 
(Algorithms 3 and 6) 

Tolerance used to exclude a 
given solution as a candidate 
to become an incumbent 

1.05 

iterMin Antithetic estimator Minimum number of random 
sequences to generate 
independently of the stopping 
criteria 

500 

ntop Solution evaluation 
(customer outsourcing) 

Maximum number of 
demand customers assigned a 
priori to one facility for 
which we compute the 
service cost exactly 

20
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8.2.1.1 Evaluating a Feasible Solution 

Enumerating independently the sets of scenarios restricted to each . Ji reduces 
notably the full enumeration of potential subsets of demand customers. Still, it can 
be computationally very demanding, particularly for instances with low-demand 
probabilities where sets . Ji tend to be large. This can become unaffordable, even 
for one single evaluation. This becomes especially true when customer outsourcing 
is considered. Indeed, in this case, scenarios are defined not only by the actual set 
of demand customers but also by their calling sequence. Therefore, in this case, 
the exact evaluation would require to enumerate all possible call sequences for each 
possible subset of . Ji . Thus, we simulate the expected service cost of an open facility 
when .|Ji | is beyond some threshold, nMax. Since the above type of evaluation 
cannot be used repeatedly due to unaffordable computing times, we decided to apply 
it only once, for the final solution returned by the heuristic. 

8.2.1.2 Estimating the Cost of a Feasible Solution (General FLBD) 

We apply Monte Carlo simulation and use as an estimate of this cost the average cost 
associated with a sample of scenarios. However, in the context of the PR heuristic, 
we do not fix the sample size; instead, we run the simulation until we achieve the 
convergence of the average: 

.100 ×
∣
∣
∣
∣
previous average − current average

previous average

∣
∣
∣
∣ < precision, (27) 

where “precision” is a small value defined exogenously.
Different strategies exist to accelerate the computation of this average. The use 

of antithetic estimators proved useful to accelerate this convergence. The basis of 
antithetic estimates (the reader is referred to Hammersley and Mauldon (1956) for  
the seminal paper on the topic) is to use couples of negatively correlated estimators 
instead of a single estimator at each iteration. In particular, at each iteration, a 
sequence .u1, . . . u|Ji | of numbers is drawn from a .U(0; 1) distribution, one sample 
is built by setting .d1

j = 1 if .uj < pj and .d1
j = 0 otherwise, and a second one by 

setting .d2
j = 1 if .1 − ui < pj and .d2

j = 0 otherwise. The costs associated with 
these two scenarios are two estimates of the actual cost of the solution with negative 
correlation. Their average is used as the iteration estimate, which is averaged with 
the estimates of all the other iterations. 

Regarding the convergence of the average stated in (27) , two different precision
levels were used in our implementation (see Algorithms 3 and 6). For evaluating 
most solutions, we used a low precision. Indeed, we only evaluated solutions sys-
tematically with high precision during the first phase of the heuristic (Algorithm 3, 
lines 1–17). In the second phase (Algorithm 3, lines 18–23), we use low precision 
most of the time and resort to high precision only when we find a solution that
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is potentially better than the incumbent. Therefore, we always have an accurate 
estimate of the value of incumbent solutions. 

Preliminary experiments were carried out using different functions for the 
approximation of the solution costs such as (i) the exact evaluation of the cost 
function (see above), (ii) the exact evaluation function associated with the homo-
geneous case using the average demand probability, (iii) the exact cost evaluation 
assuming that all customers assigned to the same facility have an equal demand 
probability given by their average probability, (iv) the cost function simulated as 
above but always using the lower precision, and (v) the cost function simulated 
as above but always using the higher precision. The obtained results showed that 
the above-described simulation function is the most effective one, among those we 
tested. 

Since for the homogeneous case an exact evaluation of the cost is possi-
ble by making use of the probabilities corresponding to a binomial distribu-
tion, when Algorithm 3 is applied to an instance of that problem, function 
estimateCost(S,precision) is replaced by a function that returns the exact 
value. 

8.2.2 Sample Average Approximation 

A major issue in the design and implementation of an SAA method is the choice of 
the sample size in the definition of the sample average problems. In general terms, 
large sample sizes involve large computational times at each iteration, and on the 
other side, smaller samples require more iterations before convergence. After some 
preliminary tests on randomly generated instances, we set a sample size . |�k| =
180 for both outsourcing policies. The algorithm terminates after five consecutive 
iterations with a modification of the . z∗ estimate below 1. � or a maximum of 200 
iterations. It is well known that under some technical conditions, the probability 
that .xt ∈ argmin f (�t ) is optimal to the original problem converges to 1 as . |�t |
increases, and similarly, the set of .ε-optimal solutions to . �t converges to the set of 
.ε-optimal solutions to the original problem as the sample size increases. So in our 
executions, we did not force optimization of the SAA subproblems to optimality, 
but we accepted .ε-optimal solutions with .ε = 0.1 aiming at converging to .ε-optimal 
solutions of the FLBD. 

For evaluating the solution obtained at each iteration, we have combined an exact 
and an approximate evaluation as described next. Note that for a given a priori  
assignment of customers to facilities, if service requests of different customers are 
independent, the cost associated with a particular facility i is independent from the 
possible requests for service of customers not assigned to it. Therefore, as in the 
case of GRASP and PR, to compute this cost, it is enough to enumerate all possible 
outcomes of the demand requests of customers in . Ji , ignoring any other customer. 
Even if the size of this set of outcomes can be large, it will be in general much 
smaller than the full set of possible scenarios considering all customers. Thus, to 
evaluate the cost of a particular solution, we evaluate separately the costs associated
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with each of the facilities opened in that solution. According to our preliminary 
experiments, the exact evaluation of such costs is affordable for facilities with, 
at most, 15 assigned customers. The costs associated with facilities with more 
customers is approximated by Monte Carlo simulation. Since the convergence of the 
algorithm using these estimates was rather slow, again we used antithetic estimators 
as explained in 8.2.1 for the GRASP . + PR (see Freimer et al., 2012) to reduce the 
variance of each estimate. 

8.3 Results for GRASP+Path Relinking 

For evaluating the heuristics based on GRASP and Path Relinking, we used both 
classes of instances: homogeneous and non-homogeneous ones. We performed 
five runs of the GRASP with PR for every instance. In the case of homogeneous 
instances, as a basis for comparison, we took the optimal solution values obtained 
in Albareda-Sambola et al. (2011) for the set of homogeneous instances considered 
in this chapter. 

We start by presenting in Table 2 for the homogeneous instances the average 
percentage of optimal solutions found over all the runs on each instance. In this 
table, results are aggregated according to the original TSP they were generated 
from. Hence, each line shows the averages over the 18 instances of five-run 
averages. Separate results are provided for GRASP and the two variants of Path 
Relinking presented. This is done in columns 2–4 for facility outsourcing and in 
columns 5–7 for customer outsourcing. In this table, the major conclusion is that 
complementing the GRASP with Path Relinking leads to a significant increase in 
terms of the percentage of optimal solutions found. Regarding both versions of 
the Path Relinking, we also see that none of them dominates the other. A further 
difference between FO and CO that we can appreciate from the table is that the 
percentage of runs where the optimal solution was found is slightly higher in the 
former. 

8.3.1 Homogeneous Instances 

We continue our analysis on the homogeneous instances by analyzing the percentage 
gap of the feasible solutions obtained by the approximate algorithms (GRASP, PR1, 
and PR2) as well as the computing times required. 

For FO, this is depicted in Figs. 1 (gap) and 2 (computing times in seconds). In 
each instances group, the first bar corresponds to the average value associated with 
executing the GRASP procedure alone. The two following bars correspond to the 
two Path Relinking variants. In the case of computing times, these bars refer only to 
the Path Relinking phase. 

From Fig. 1, we conclude that in the case of homogeneous instances, GRASP 
alone already finds quite good solutions that are often under 1% away from the
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Table 2 Homogeneous case | percentage of optimal solutions found 

Facility outsourcing Customer outsourcing 

GRASP GRASP GRASP GRASP 
GRASP . + PR1 . +PR2 GRASP . + PR1 . + PR2 

berlin52 27.8 44.4 41.1 7.8 35.6 30.0 

eil51 0.0 30.0 28.9 5.6 35.6 36.7 

eil76 16.7 46.7 36.7 15.6 40.0 44.4 

kroA100 20.0 46.7 45.6 15.6 47.8 45.6 

kroB100 16.7 47.8 44.4 11.1 34.4 36.7 

kroC100 16.7 40.0 37.8 16.7 41.1 40.0 

kroD100 20.0 45.6 42.2 11.1 38.9 42.2 

kroE100 10.0 47.8 48.9 12.2 40.0 40.0 

pr76 16.7 35.6 30.0 16.7 37.8 26.7 

rat99 2.2 46.7 45.6 11.1 40.0 35.6 

st70 5.6 38.9 31.1 0.0 13.3 7.8 

LkroA100 11.1 26.7 28.9 6.7 16.7 16.7 

LkroB100 0.0 27.8 25.6 0.0 16.7 16.7 

LkroC100 21.1 25.6 25.6 11.1 14.4 15.6 

LkroD100 0.0 30.0 30.0 0.0 16.7 13.3 

LkroE100 4.4 14.4 15.6 0.0 13.3 13.3 

Lrat99 5.6 16.7 15.6 11.1 16.7 15.6 
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Fig. 1 Homogeneous case—facility outsourcing—gap (%) 

optimal solution, being .1.81% the largest gap. Indeed, in many instances, it could 
already find the optimal solution. This is especially true for the set of smaller 
instances. These gaps are further reduced after applying any of the proposed PR
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Fig. 3 Homogeneous case—customer outsourcing—gap (%) 

procedures. In both cases, the reduction is quite significant, and there is not a clearly 
dominating variant. 

As far as computing times are concerned, we can see that they are really small, 
even for the sets of larger instances. Although in those cases the GRASP computing 
time dominates the overall time of the heuristic, the total time is still very small. 
Adding the time of the GRASP and the time of any of the PR procedures, we do 
not reach one second of average in any instances group. As it happened with the 
solution quality, no PR variant dominates the other in terms of efficiency. 

Following the structure of the previous results, Figs. 3 and 4 summarize the 
experiments made with GRASP and PR for the homogeneous instances when the 
CO outsourcing policy is considered. 

In terms of solution quality, we observe that the behavior of GRASP is similar 
to what we could see for the FO policy, maybe with less differences between the 
quality of the solutions in small and larger instances. Percent gaps are again around 
. 1%, being the largest average .1.62%. Again, both PR alternatives help improving
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Fig. 4 Homogeneous case—customer outsourcing—computing time (sec.) 

these figures yielding percent deviations from the optimum below . 1% on average 
in all the groups of instances. The differences in solution quality between both PR 
variants are again very small. 

The computational effort required for dealing for the CO outsourcing policy is 
similar to what we observed under FO. Again, times are extremely small. We can 
observe that as it happened with FO, the computing times for the GRASP procedure 
increase significantly with the instance size while those associated with PR do not. 
This is because the number of iterations and the size of the pools of solutions within 
the PR do not depend on the instance characteristics. 

Summing up the information depicted in this subsection, we can say that the 
heuristic framework presented here is extremely effective for the homogeneous 
FLBD, under any of the considered outsourcing policies. 

8.3.2 Results for the General Problem 

As opposite to what happens for the homogeneous case, there is no exact algorithm 
available for solving the problem under non-homogeneous probability demands. 
Therefore, to assess the efficiency and efficacy of GRASP . + PR in this case, we 
compare it with SAA. To this end, for each considered instance, we performed five 
runs of GRASP . + PR with each PR variant, and one run of SAA, and recorded the 
best solution found over all runs. Then percent deviations from that best known 
solution are computed for each of the methods. 

Figures 5 and 6 depict the average percent deviations under the FO and CO 
policies, respectively. As it was already explained in Sect. 8.4, in the case of the 
CO policy, SAA was only affordable for the small instances so the larger ones are 
not included in Fig. 6. 

Looking into these figures, we observe that using SAA, the average deviation 
is above zero which is an indication that not always the best feasible solution was
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obtained with SAA but with GRASP and PR. Indeed, when CO outsourcing policy 
is considered, the average deviations of the SAA solutions tend to be worse than 
those of GRASP . + PR2 solutions. In fact, the deviations of the solutions provided 
by the GRASP method are already quite small, especially under FO. 

Again, like in the homogeneous case, the solution improvements achieved by the 
PR procedures are quite significant. Now, additionally, we can observe a superior 
performance of PR2 as compared to PR1, at least under the CO policy (Fig. 6). 
We can see that the maximum percent deviation associated with GRASP . + PR2 
is approximately .1% for the FO policy and .0.9% under CO. The results of the 
computing times are depicted in Figs. 7 and 8. SAA times had to be represented 
relative to the second axis, to make it possible to appreciate the differences 
among the other times. In fact, the requirements of GRASP . + PR are negligible as
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compared to those of SAA. In Fig. 7, we can see how, as observed before, the SAA 
time increases substantially with the instance size. In contrast, the time increase 
for GRASP and PR is moderate. In this regard, we observe that now PR times are 
more sensitive to instance size than GRASP times, as opposite to what happened for 
the homogeneous instances. We believe that this difference is due to the additional 
effort required for evaluating the candidate solutions. In general, times are quite 
homogeneous across instances of the same size. As for the comparison between 
PR1 and PR2, again, computation times are quite similar. 

All the computations performed indicate that the heuristic framework proposed 
is robust as evidenced by the outcome of the five runs executed for each instance, 
which yielded similar results. We can also observe a slight superiority of PR2 on 
average, even if PR1 is able to find the optimal solution in more instances.
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8.4 Results of the SAA 

As mentioned in the introduction, the formulations presented in Albareda-Sambola 
et al. (2011) for the homogeneous case allow to solve the problem quite efficiently. 
On the other hand, the computational burden associated with the SAA is naturally 
considerable. Therefore, the natural application of the SAA presented in this work is 
on the heterogeneous case, for which there is no exact algorithm in the literature. For 
this reason, we have tested this algorithm only with the non-homogeneous instances 
presented above. 

We first tested the SAA for the FO policy. The obtained results are depicted in 
Tables 3 and 4. In both tables, instances are grouped by capacity level and demand 
probability pattern. In Table 3, each of these groups contains 33 instances, whereas 
in Table 4, each group contains 18 large instances. For each group, we report the 
computing time, in seconds (minimum, average, and maximum), as well as the 
percent deviation of the value of the best solution found, . z∗, with respect to the 
optimal value estimate, . ̄z (provided by the average of the optimal values of the 

Table 3 SAA results for small instances with facility outsourcing 

Computing time % dev. from estim. 

Min Avg. Max Min Avg. Max 

PT1 .γ = 1 99.2 242.5 667.6 . −1.1 0.0 1.7 

.γ = 4 66.8 136.1 211.2 . −1.1 −0.1 1.2 

PT2 .γ = 1 348.1 688.6 3424.1 . −0.7 0.1 0.9 

.γ = 4 116.6 175.5 258.0 . −4.1 −0.2 0.2 

PT3 .γ = 1 10.3 383.0 686.1 . −2.5 −0.1 0.1 

.γ = 4 5.2 165.3 432.2 . −1.6 0.0 0.2 

Total 5.2 298.5 3424.1 . −4.1 −0.1 1.7 

Table 4 SAA results for large instances with facility outsourcing 

Computing time % dev. from estim. 

Min Avg. Max Min Avg. Max 

PT1 .γ = 1 1300.5 2484.7 4780.8 . −1.6 0.8 5.3 

.γ = 4 511.5 804.5 2036.8 . −1.6 −0.2 0.9 

PT2 .γ = 1 1401.5 2477.8 6563.1 . −0.3 0.1 1.4 

.γ = 4 613.2 766.7 931.3 . −2.0 −0.2 0.1 

PT3 .γ = 1 34.5 1277.8 2588.1 . −2.7 −0.1 0.0 

.γ = 4 18.3 574.4 967.8 . −0.9 0.0 0.1 

Total 18.3 1397.7 6563.1 . −2.7 0.2 5.3
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sample average subproblems): .100 z∗−z̄
z̄

. Again, minimum, average, and maximum 
values, over the set of instances, are provided. 

Comparing the two tables, we can appreciate that the instance size has a great 
impact on the computing times required to solve the instances. Indeed, while the 
solution times range between . 5.2 seconds and 57 minutes for the small instances, 
the times required by the larger ones range between .18.3 seconds and . 1.8 hours. 
Regarding the computing times, we also observed that they increase significantly 
with the proportion of medium demand customers and decreases with the capacity 
level. Indeed, the hardest instances to solve in both cases (small and large instances) 
were those with the largest proportion of medium-demand customers (PT2) and the 
lowest capacity level (.γ = 1). 

This behavior might seem counterintuitive. However, we think that since cus-
tomers with high-demand probability will have demand in most scenarios and those 
with low-demand probability will seldom appear, most of the variability in the 
solutions is caused by the customers with medium-demand probability and the 
algorithm will take longer to converge for instances with more customers in this 
group. On the other side, instances with large facility capacities will require less 
facilities to be opened, which reduces the set of solutions with low costs. 

Regarding the solution quality, we can appreciate that deviations of the obtained 
solution values from the SAA estimate of the optimal value are in general small. 
This makes us very confident on the quality of the obtained solutions. Note that the 
absolute value of the average deviations within the different groups of instances is 
at most .0.8% and it is below .0.2% in most cases. Here, there is not a clear influence 
of the parameters describing the instances on the values of these deviations. 

Finally, Table 5 summarizes the results obtained by SAA for the CO policy on 
the small instances. As expected, instances are much harder to solve under this 
policy. For this reason, now, only one instance for each combination of original TSP 
instance, probability demand pattern, and capacity level was considered. Table 5 has 
the same structure as the two previous ones, excepting that, now, each cell of the 
table refers to 11 instances, and not 33 as in Table 3. We observe that the computing 

Table 5 SAA results for small instances with order driven—customer outsourcing 

Computing time % dev. from estim. 

Min Avg. Max Min Avg. Max 

PT1 .γ = 1 14,273.7 24,855.5 38,476.7 −5.1 1.0 4.3 

.γ = 4 3986.1 5581.7 7013.6 −9.3 −3.2 1.7 

PT2 .γ = 1 50,331.3 94,692.7 175,558.6 −5.1 −0.4 3.4 

.γ = 4 11,323.3 16,671.2 26,335.8 −9.7 −4.1 5.3 

PT3 .γ = 1 7377.0 53,809.1 103,566.0 −4.9 −1.8 0.6 

.γ = 4 6083.9 14,312.6 30,016.5 −13.0 −5.3 2.6 

Total 3986.1 34,987.1 175,558.6 −13.0 −2.3 5.3
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times for these small instances range between . 1.1 and .48.8 hours. For this reason, 
we did not test the SAA on the larger instances. 

The effect of the proportion of medium demand probability is now more evident 
than in the FO case. Indeed, on the average, solving each instance in group PT2 
took almost three times as much time as the corresponding instance in group P3 and 
more than 3.5 times the time it took to solve the corresponding instance in group 
PT1. 

As far as the quality of the solutions is concerned, deviations of the value of 
the best solution found throughout the process from the optimum value estimate 
provided by the average of the problems solved at the different iterations are larger 
than in the FO policy. These deviations range now from .−13% to .5.3%, and on 
the average, their absolute value is .3.5%. In  .38% of the instances, it is below . 2%, 
and in .24% of them, it is below . 1%. Given the complexity of the problem, we 
believe that these results are reasonably good. Indeed, from Table 5, it might give 
the impression that in the case of the CO policy, the algorithm was often terminated 
before convergence because of the iterations limit. However, we can observe that 
the larger deviations do not correspond to the most demanding instance sets for any 
policy, which contradicts this argument. We believe that these larger deviations are 
due to a deterioration of the quality of the optimal value estimate in this last policy. 

9 Conclusions 

In this chapter, we studied the use of approximate methods for discrete facility loca-
tion under uncertainty. We discussed several challenges and ways for overcoming 
them. The main challenge identified is the evaluation of the objective function, for 
which several strategies based on Monte Carlo simulation have been explored. The 
analysis was illustrated with a specific facility location problem, namely, that in 
which demands follow a Bernoulli distribution. 

Two different approximate algorithms were revisited both having advantages and 
disadvantages when compared with each other. Sample Average Approximation is 
a method that relies on a mathematical model restricted to a subset of scenarios. 
This explains the computational effort it involves and its difficulty in tackling large 
instances of problems with more involved recourse functions. On the other hand, 
the GRASP with Path Relinking is an algorithm prepared to handle large-scale 
instances. Therefore, we cannot say promptly that one algorithm overcomes the 
other for the illustrative problem used in this chapter. Sample Average Approx-
imation is certainly worth trying for small instances of the stochastic problem 
we considered, whereas when large instances are considered with more involved 
recourse functions, the GRASP with Path Relinking is certainly advisable. 

The chapter highlights the need to develop further work in terms of the 
development of heuristics for stochastic facility location problems. This includes 
the application of existing heuristics to facility location problems other than the



Some Heuristic Methods for Discrete Facility Location with Uncertain Demands 429

ones addressed in this chapter and also the development of especially tailored 
approximate algorithms (e.g., constructive procedures). 

The focus of this chapter was put on two-stage stochastic facility location 
problems. In some settings, the problems may easily become multistage, as it 
happens when time-dependent and interrelated decisions are to be made. For 
such cases, existing approximate algorithms that have been successfully applied to 
multistage stochastic mixed-integer programming, such as the progressive hedging 
procedure, could be a promising avenue of research. 
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