
Command Horizons: Coalescing Data
Dependencies While Maintaining

Asynchronicity

Peter Thoman(B) and Philip Salzmann

Distributed and Parallel Systems Group, University of Innsbruck,
Technikerstraße 21a, Innsbruck, Austria

{peter.thoman,philip.salzmann}@uibk.ac.at

Abstract. In runtime systems for distributed memory parallel comput-
ing which automatically manage dependencies and data transfers, a fun-
damental trade-off exists between the fidelity of dependency tracking and
the overhead incurred by its implementation.

Precise tracking of data state allows for effective scheduling, which can
leverage opportunities for compute and transfer parallelism. However, it
also induces more overhead, and with some data access patterns this
overhead can grow with e.g. the number of iterations of an algorithm.

We present the concept of command horizons, which allow coalesc-
ing of previous fine-grained tracking information while maintaining an
easily configurable scheduling window with full information precision.
Furthermore, they enable consistent cluster-wide decision points with-
out requiring any inter-node communication, and effectively cap the size
of state tracking data structures even in the presence of problematic
access patterns.

Experimental evaluation on microbenchmarks demonstrates that hori-
zons are effective in keeping the scheduling complexity constant, while
their own overhead is negligible – below 10µs per horizon when build-
ing a command graph for 512 GPUs. We additionally demonstrate the
performance impact of horizons – as well as their low overhead – on a
real-world application.

Keywords: dependency tracking · task graph · asynchronicity ·
command generation · gpu cluster

1 Introduction and Related Work

Modern high performance computing (HPC) hardware platforms feature many
layers of parallelism, memory and communication. While they employ state-of-
the-art methods to keep latencies as low as possible, the increase in computa-
tional throughput and bandwidth outpaces reductions in latency. Communica-
tion latency is thus an important limiting factor for performance, particularly
at larger scales. As such, software for HPC systems is frequently designed to
leverage asynchronicity as much as possible, enabling e.g. communication and
computation overlapping.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Diehl et al. (Eds.): WAMTA 2023, LNCS 13861, pp. 13–26, 2023.
https://doi.org/10.1007/978-3-031-32316-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32316-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-32316-4_2


14 P. Thoman and P. Salzmann

Developing software which implements these techniques is a challenging
endeavor, particularly while relying on the established de-facto standard app-
roach to developing distributed GPU applications: “MPI + X”, where the Mes-
sage Passing Interface (MPI) [12] is combined with a data parallel programming
model such as OpenMP, CUDA or OpenCL. As a consequence of this complex-
ity, development of new software for HPC is typically left to the select few,
and research is often performed using a small set of domain specific software
packages.

Parallel Runtime Systems. One promising avenue for improving programma-
bility or enabling more flexible development of and experimentation with high
performance code for distributed memory GPU clusters are higher-level runtime
systems. These typically introduce a broad API and custom terminology, as well
as enabling ecosystems of tooling and derived software projects.

A notable example is StarPU [1], an extensible runtime system for program-
ming heterogeneous systems. It offers a wide array of scheduling approaches, from
simple FCFS policies, over work-stealing and heuristics, to dedicated schedulers
for dense linear algebra on heterogeneous architectures [11,15]. Nevertheless,
StarPU’s C API is rather low level and requires the explicit handling of data
distribution when executing in cluster environments.

Legion [2] is a runtime system designed to make efficient use of heterogeneous
hardware through highly configurable and efficient work splitting and mapping
to the available resources. Its C++API is intricate and precise, with the explicit
intent of putting performance first, before any programmability considerations,
making it unsuitable for non-expert users.

HPX [9] is a C++ runtime system for parallel and distributed applications
of any scale with a particular focus on enabling asynchronous data transfers
and computation. Its heterogeneous compute backend supports targeting both
CUDA and SYCL [6].

PaRSEC [3] uses a custom graph representation language called JDF to
describe the dataflow of an application [4]. Either automatically generated or
written by hand, this representation enables a fully decentralized scheduling
model and automatic handling of data dependencies across a distributed sys-
tem, although the initial distribution of data needs to be provided by the user.

The Celerity programming model [16] was designed to minimally extend the
SYCL programming standard [14] while enabling automated distributed memory
execution, specifically for clusters of GPU-like accelerators. It asynchronously
generates and executes a distributed command graph from an implicit task graph
derived from data access patterns.

A related category comprises those projects which extend the grammar of
existing programming languages, for example the pragma-based OmpSs [7], or
introduce entirely new languages altogether, such as Chapel [5], X10 [8] or
Regent [13].

What is clear from this broad and sustained interest is that ways to quickly
develop distributed applications and efficiently experiment with different work
and data distribution patterns are widely desired. Depending on the level of



Command Horizons 15

abstraction targeted by a system, data distribution and synchronization is either
manual, semi-automatic or fully automatic.

Tracking Data State. For those systems which transparently manage distributed
memory transfers and/or derive their task and command graphs from memory
access patterns, tracking the state of data in the system at any given point in time
is a significant challenge. On the one hand, all opportunities for asynchronous
compute and transfer operations should be leveraged, but on the other hand, in
an HPC context, scheduling and command generation also need to be sufficiently
fast to scale to potentially thousands of cluster nodes.

While for some data access patterns – e.g. stencil-like computations – this is
quite manageable with a relatively simple approach, more unusual patterns can
present additional difficulties. In particular, as we will outline in more detail in
Sect. 2.3, generative patterns have the potential to overwhelm data tracking.

In this work, we present Horizons, a concept which manifests as a special type
of node in task or command graphs for distributed parallel runtime systems. Core
design goals and features of Horizons include:

– Maintaining asynchronous command generation and execution.
– Allowing for a configurable tradeoff in the level of detail regarding data state

available for command generation.
– Never directly introducing a synchronization point.
– Requiring no additional inter-node communication.

Our implementation of Horizons in the Celerity runtime system achieves all
of these goals. Section 2 provides a concise overview of the Celerity system, and
describes the type of access patterns which Horizons are particularly effective at
managing. Section 3 explains how Horizons are generated, managed and applied,
illustrating their impact on command generation. In Sect. 4 we present an in-
depth empirical evaluation of the implementation of Horizons in Celerity, includ-
ing both microbenchmarks and real-world applications. Finally, Sect. 5 concludes
the paper.

2 Background

2.1 The Celerity Runtime System

Celerity is a modern, open C++ framework for distributed GPU computing [16].
Built on the SYCL industry standard [14] published by the Khronos Group, it
aims to bring SYCL to clusters of GPUs with a minimal set of API extensions. A
full overview of the SYCL and Celerity APIs is beyond the scope of this paper1,
so in this section we will focus on how Celerity extends the data parallelism of
SYCL kernels to distributed multi-GPU execution, and the data state tracking
requirements this induces for the runtime system.
1 Readers may refer to [10,16] and [14], as well as the Celerity documentation at

https://celerity.github.io/docs/getting-started.

https://celerity.github.io/docs/getting-started


16 P. Thoman and P. Salzmann

Listing 1 A basic matrix operation in Celerity.
1 distr_queue queue;

2 auto rg = range<2>(512, 512);

3 buffer<float, 2> buf_in(hst_in.data(), rg);

4 buffer<float, 2> buf_out(rg);

5

6 queue.submit([=](handler& cgh) {

7 accessor in{buf_in, cgh, access::one_to_one{}, read_only};

8 accessor out{buf_out, cgh, access::one_to_one{}, write_only};

9 cgh.parallel_for(rg, [=](item<2> itm) {

10 out[itm] = in[itm] * 2.f;

11 });

12 });

A typical SYCL program is centered around buffers of data and kernels
which manipulate them. The latter are wrapped in so-called command groups
and submitted to a queue, which is then processed asynchronously with respect
to the host process. Crucially, buffers are more than simple pointers returned by
a malloc-esque API: they are accessed through so-called accessors, which are
declared within a command group before a kernel is launched. Upon creating
buffer accessors, the user additionally has to declare how a buffer will be accessed,
i.e., for reading, writing or both. This allows the SYCL runtime to construct a
task graph based on the dataflow of buffers through kernels.

SYCL – in the same fashion as CUDA and OpenCL – abstracts the concept
of a (GPU) hardware thread: it allows users express their programs in terms of
linear-looking kernel code, which is invoked on an N-dimensional range of work
items. Celerity extends this concept to distributed computation. While Celerity
kernels are written in the same way as in SYCL, they can be executed across
multiple devices on different nodes, with all resulting data transfers handled
completely transparently to the user.

The most fundamental extension to SYCL introduced by Celerity are range
mappers, functions that provide additional information about how buffers are
accessed from a kernel. By evaluating these range mappers on sub-domains of
the execution range, the Celerity runtime system infers which parts of a buffer
will be read, and which ones will be written – at arbitrary granularity.

Tasks. Listing 1 shows an example of a simple matrix operation implemented
in Celerity. To transparently enable asynchronous execution, all compute oper-
ations in a Celerity program are invoked by means of a queue object. In the
first line of Listing 1, this queue of type celerity::distr_queue is created.
Subsequently, two two-dimensional buffer objects are created, with the former
initialized from some host data hst_in.

The central call to distr_queue::submit on line 6 submits a command
group, which creates a new task that will later be scheduled onto one or more
GPUs across the given cluster. The index space of this task (the 2D range rg in
this example) will be split into multiple chunks that can be executed by different
workers. The provided callback (the kernel code) is subsequently invoked with



Command Horizons 17

an index object (itm) of corresponding dimensionality, which is used to uniquely
identify each kernel thread.

Range Mappers. This program closely resembles a canonical SYCL program,
with one important difference: Each constructor for celerity::accessor is
provided with a range mapper, in this case a two-dimensional instance of the
one_to_one mapper. This particular range mapper indicates that every work
item of the 512 × 512 global iteration space accesses exactly one element from
buf_in and buf_out each – precisely at the work item index.

In general, range mappers can be user-defined functions, allowing for a high
degree of flexibility, with the included one-to-one, slice, neighborhood and fixed
range mappers serving only to reduce verbosity in common cases.

Execution Principle. The actual execution of Celerity program involves three
major steps, each of which proceeds asynchronously with the others in a pipelined
fashion: (i) task graph generation, (ii) command graph generation, and (iii)
execution.

The task graph encapsulates the behaviour of the program at a high level.
Essentially, every submission on the queue is represented by a task, and depen-
dencies are computed based on each task’s accessor specification. In the lower-
level command graph, task executions are split up for each GPU, and the required
commands for transfers are also generated. Therefore, the number of nodes in
the command graph is generally larger than the task graph by a factor of at
least O(N). These commands are finally executed on a set of parallel execution
lanes.

Summary. While Celerity can be considered a task-based runtime system, its
default mode of operation differs significantly from the more common approach
taken, particularly in distributed memory settings. Instead of leaving the choice
of how to split work or data fully or partially to the user, the Celerity approach
is to consider each data-parallel computation as a single splittable task. The
runtime system is provided with sufficient information, primarily by means of
accessors and their associated range mappers, to split these tasks in various ways
and distribute them across the cluster.

2.2 Data State Tracking

From a theoretical point of view (in practice, custom acceleration data struc-
tures are employed), the runtime system has to track the state of each individual
data element, in order to be able to build a data dependence graph and con-
struct the necessary transfer commands. These data structures – one for each
buffer managed by the runtime system – track the last operation which wrote
to any particular data element. As such, they need to be updated for each write
operation performed by a program, and are queried whenever a buffer is read,
and the performance of these operations is crucial to the overall efficiency of the
runtime system.



18 P. Thoman and P. Salzmann

For data access patterns common in many physical simulations and linear
algebra, the number of individual regions which need to be tracked generally
scales with the number of GPUs in the system, as all elements are replaced in
each successive time step or iteration of the algorithm. In these cases, distributed
command graph generation, which only locally tracks the perspective on the total
system state which is required for the operations on one node, is highly effective
and can scale up to thousands of GPUs. However, it can not mitigate tracking
data structure growth with some more complex access patterns.

2.3 Generative Data Access Patterns

Fig. 1. State tracking with a gener-
ative access pattern.

In some domains, data access patterns iter-
atively generate new data over the execu-
tion of a program, and might refer to all the
generated data in some subsequent compu-
tations. We call these access patterns gen-
erative, and they present a unique challenge
for data state tracking.

Figure 1 illustrates the state of the track-
ing data structure of a 2D buffer with a gen-
erative data access pattern running on two
nodes, after one, two and 5 time steps. In
this example pattern, every time step one
row of the buffer is generated in parallel,
and every subsequent time step requires all
previously computed data. For this example,
we assume a static 50:50 split in computa-
tion between the two participating nodes. As
such, after timestep t1, each node will push
its computed data to the other in order to
perform the computation at t2, and so forth.

With N GPUs, this means that the
tracking data structure will contain O(N ∗t)
separate last writer regions at time step t. Even with a highly efficient data struc-
ture, the time to query the full previously computed area (e.g. all rows up to
t − 1) will thus scale linearly with the number of time steps.

A simple solution to this particular problem might appear to be to only track
whether some data is available locally or on some other node, rather than precise
information on which command will have generated it. While this would result
in a functionally correct execution, it also implies a complete sequentialization
of the command graph up to the most recent data transfer. This would prevent
e.g. automatic communication and computation overlapping, the asynchronous
sending or receiving of many separate data chunks, or the parallel execution



Command Horizons 19

of several independent kernels accessing the same buffers. Horizons provide an
elegant solution to this dilemma.

Fig. 2. Command graph and buffer tracking for a generative data pattern.

3 Horizons

Figure 2 illustrates a simplified view of the command graph generated for the
first five iterations of a computation with a basic generative data pattern (see
Sect. 2.3) scheduled on two nodes/GPUs. It includes compute commands, as well
as data push and receive commands. As each row of the involved data buffer is
generated by subsequent time steps, the number of dependencies in the command
graph scales with the iteration count, as indicated in the figure at location 1 .

Horizons solve this issue by selectively coalescing data structures and depen-
dencies, asynchronously and with a configurable level of detail being maintained.
From a high-level point of view,”Horizons” describe synchronization points dur-
ing the execution of a program, in both the task and command graph.

However, it is crucial to note that no single horizon implies full and immedi-
ate synchronization. Instead, at any point during the scheduling and command
generation for a program (after the startup phase), two relevant Horizons exist:
the older of the two is the most recent Horizon which was applied, which means
that all tracking data related to commands scheduled before it was subsumed
and coalesced; the newer of the two is the most recent Horizon to be generated
– it will eventually be applied, but as of now it imposes no synchronization.



20 P. Thoman and P. Salzmann

As such, the window between the applied Horizon and the current execution
front maintains all opportunities for parallel and asynchronous execution and
fine-grained scheduling which would be available without Horizons.

For clarity, we split our detailed description of the Horizons concept into
three parts: (i) the decision making procedure, (ii) horizon generation, and (iii)
horizon application.

Horizon Decision Making. The decision on whether to generate a new Horizon is
made during task graph generation. When nodes are inserted into the task graph,
they track the current critical path length C from the start of the program. We
also track the most recent Horizon position H, where e.g. H = 5 means that the
most recent Horizon was generated at critical path length 5.

A dynamically configurable value S > 0, the Horizon Step Size, then defines
how frequently new Horizons are generated. A new Horizon task is inserted into
the task graph every time the critical path length grows by S, that is, whenever

C > H ∧ (C − H) mod S ≡ 0 .

Fig. 3. Command graph and buffer tracking for a generative data pattern with Hori-
zons, using the minimum step size S = 1.

Horizon Generation. When command generation encounters a new Horizon task,
a corresponding per-node horizon command is generated. This command has a
true dependency on each of the nodes in the entire current per-node execution
front of the command graph, which is easily tracked throughout the command



Command Horizons 21

generation process and contains all commands for which there currently are no
successors. As a consequence, after each Horizon generation, the execution front
contains only the horizon command. Figure 3 shows the generation of Horizon 0
at 2 and Horizon 1 at 3 . Note that the commands associated with the former
only depend on the initial compute commands of each respective node, while all
later horizons depend on both the most recent compute and receive commands
on their respective node.

Whenever a Horizon is generated for e.g. critical path length C, if a previous
Horizon generated for critical path length C − S exists, it is applied.

Horizon Application. Applying a Horizon is arguably the most crucial step of
the process, as it is what allows for the consolidation of tracking data structures.
Crucially, Horizons are always applied with a delay of one step, which maintains
fine-grained tracking for the most recent group of commands.

When a given Horizon is applied, all references to previous writers in the
tracking data structures which refer to commands preceding the Horizon are
updated to instead refer to the Horizon being applied. In the example shown in
Fig. 3, at 3 Horizon 0 is applied, thus replacing Compute 0 in the track-
ing data structures. As such, in any subsequent command generation steps,
dependencies which would have been generated referring to any of these prior
commands directly will instead refer to the appropriate Horizon. A comparison
between 4 in Fig. 3 and 1 in Fig. 2 illustrates how Horizons thus maintain a
constant command dependency structure with generative data access patterns.

The Horizon approach as presented has the following advantages: (i) it is
independent of the specifics of the data access pattern, (ii) it maintains a con-
stant maximum on the per-node dependencies which need to be tracked, (iii) a
window of high-fidelity dependency information is maintained, and the size of
this window can be adjusted by setting the step size S, (iv) horizon generation
is efficient, as the required information (current critical path length and execu-
tion front) can be tracked with a small fixed overhead during the generation of
each command, (v) horizon application is highly efficient, as due to the number-
ing scheme of commands a simple integer check suffices (no graph traversal is
required), and (vi) no additional communication is required.

4 Evaluation

In this section, we present empirical results which illustrate the effectiveness
and efficiency of the Horizon approach as it is currently implemented in the
Celerity runtime system. We first present microbenchmarks of simple generative
data patterns to precisely track the impact of Horizon step sizes on command
generation times.

Secondly, we demonstrate that Horizons have negligible overhead at both
small and large scales, and can even be beneficial for programs without genera-
tive access patterns, using dry-run benchmarks. In dry-run mode, the Celerity
runtime system performs all the scheduling and command generation work of a



22 P. Thoman and P. Salzmann

Fig. 4. Per-iteration time for 2D generative access microbenchmark; each line shows a
different horizon step setting S (or no Horizons), as indicated in the legend.

real program, but skips the execution of its kernels. This allows us to quickly
execute benchmarks on a large – simulated – number of nodes and observe the
impact of various optimizations and data structure choices on task and command
graph generation performance, without occupying a large-scale HPC cluster.

Finally, we show the impact of Horizons on a full run of a real-world appli-
cation in room response simulation, which exhibits a generative access pattern.

The hardware and software stack for the microbenchmarks and dry-run
benchmarks comprises a single node featuring an AMD Threadripper TR-2920X
CPU, running Ubuntu Linux 22.04. As the dry-run benchmarks need no addi-
tional hardware and are relatively quick to complete, 30 runs of each con-
figuration were performed and the median result is reported. The real-world
application benchmarks were performed on the Marconi-100 supercomputer2 at
CINECA in Bologna, Italy, with 5 runs each.

Microbenchmarks. Figure 4 shows the per-iteration time spent on command gen-
eration for a cluster of 512 GPUs, in a microbenchmark of a 2D generative access
pattern, with different Horizon configurations. Note that this plot is logarithmic
in the Y axis, to better capture the differences between the settings.

Without Horizons (the solid black line), the command generation overhead
grows with each iteration of the benchmark, as expected due to the growth
of dependencies outlined in Section 3. With a Horizon step size of 16, a drop
in overhead is seen for the first time in iteration 33, as the Horizon generated
after iteration 16 was applied in iteration 32. The same pattern is visible for
the smaller step sizes 4 and 2, but at a smaller scale. With step size 1, the
per-iteration time is almost entirely flat.

Figure 5 illustrates the total execution time (blue diamond, left axis) and
total time spent on horizon generation and application (green triangle, right
axis) of the same microbenchmark. Besides the remarkable decrease in the over-
all benchmark runtime due to Horizons, which matches the per-iteration results,
2 https://www.top500.org/system/179845/.

https://www.top500.org/system/179845/


Command Horizons 23

Fig. 5. Total times for 2D generative access microbenchmark.

the behaviour of the Horizon overhead is interesting: when generating a Horizon
every time step, the overhead is slightly higher, then it drops, but increases again
at S = 16. This result can be explained by the fact that, although Horizons are
generated far less frequently, the accumulated complexity in the data tracking
structure and command graph after 16 iterations makes Horizon generation sig-
nificantly more expensive. However, even in this case, the Horizon generation
overhead only amounts to a total of 12 ms over 256 iterations.

Overhead. For Horizons to provide a suitable solution for coalescing depen-
dencies in a general runtime system, they need to have no significant negative
performance impact in applications with non-generative access patterns. Figure
6 summarizes results for two such applications: WaveSim, a 2D stencil compu-
tation, and Nbody, an all-pairs N-body physics simulation.

In the WaveSim application, the overall impact of Horizons is negligible: the
total dry-run time varies by less than 3 ms with and without Horizon use and
with different step sizes, and less than 0.5 ms outside of the extreme Horizon
step size setting of S = 1. For the Nbody benchmark, there is a more notable
impact – although it is still minor compared to applications with generative
patterns. Two particular results stand out: the horizon overhead at step size 1,
and the fact that the introduction of Horizons has a positive overall performance

Fig. 6. Horizon impact and overhead for two non-generative applications. X-axis shows
Horizon use/step size.



24 P. Thoman and P. Salzmann

Fig. 7. Horizon impact on RSim application.

impact on the order of 7%. The former is explained by the particular structure
of this application, which has two different types of main compute kernels, one of
which features only a one-on-one read dependency that can be satisfied locally,
while the other requires all-to-all communication. With a Horizon step size of 1,
Horizons are inserted after the latter kernel, requiring a much larger number of
dependencies. The overall positive impact of Horizons can be explained by their
application being utilized to clean up various internal data structures, which can
be slightly beneficial even in non-generative cases.

Real-World Application. To confirm the data obtained using microbenchmark-
ing and dry-run experimentation, Fig. 7 shows the result of a strong scaling
experiment with the Celerity version of RSim [17], a room response simulation
application, over 1000 time steps. RSim computes the spread of a light impulse
through a 3D space modeled as a set of triangles. In each time step, the incident
light for each triangle depends on the radiosity of all other triangles visible from
it, at a point in time that depends on the spatial – and therefore also temporal
– distance between the two triangles. As such, the main computational kernel
of RSIM exhibits a generative access pattern in which subsequent time steps
depend on the per-element radiosity computed in prior time steps.

We compare the current default setting of the Celerity runtime system, Hori-
zon step size 2, with no Horizons. In the latter case, with 4 and more GPUs,
command generation overhead starts to dominate the overall simulation run
time. With Horizons, near-linear strong scaling is maintained up to 16 GPUs,
and strong scaling continues to 32 GPUs. The remaining drop from linear scal-
ing, particularly at 32 GPUs, is not caused by overhead in the runtime system.
Instead, it can be attributed to the fact that this is a strong scaling experiment
with per-timestep communication requirements.

5 Conclusion

In this paper, we have presented Command Horizons, an approach to limiting the
data tracking and command generation overhead in data-flow-driven distributed



Command Horizons 25

runtime systems with automatic communication, particularly in the presence of
generative data access patterns, while maintaining asynchronicity.

Based on their current implementation in the Celerity runtime system, we
have demonstrated that Horizons can be generated and applied very efficiently
and with low overhead in a variety of applications, and that they are effective
at capping command generation overhead at a stable level.

Horizons also have additional applications, e.g. in providing a consistent dis-
tributed state for decision making without requiring communication, which we
hope to explore in the future.

Acknowledgements. This project has received funding from the European High Per-
formance Computing Joint Undertaking, grant agreement No 956137.

References

1. Augonnet, C., Clet-Ortega, J., Thibault, S., Namyst, R.: Data-aware task schedul-
ing on multi-accelerator based platforms. In: 2010 IEEE 16th International Con-
ference on Parallel and Distributed Systems (2010)

2. Bauer, M., Treichler, S., Slaugther, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: 2012 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC). IEEE (2012)

3. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J.J.:
PaRSEC: exploiting heterogeneity to enhance scalability. Comput. Sci. Eng. 15(6),
36–45 (2013)

4. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: a generic distributed DAG engine for high performance computing.
In: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, pp. 1151–1158 (2011). ISSN 1530-2075

5. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

6. Copik, M., Kaiser, H.: Using SYCL as an implementation framework for HPX.
compute. In: Proceedings of the 5th International Workshop on OpenCL, pp. 1–7
(2017)

7. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett. 21(02), 173–193 (2011)

8. Ebcioglu, K., Saraswat, V., Sarkar, V.: X10: programming for hierarchical paral-
lelism and non-uniform data access. In: Proceedings of the International Workshop
on Language Runtimes, OOPSLA, vol. 30. Citeseer (2004)

9. Heller, T., Diehl, P., Byerly, Z., Biddiscombe, J., Kaiser, H.: HPX - an open source
C++ standard library for parallelism and concurrency. In: Proceedings of Open-
SuCo, vol. 5 (2017)

10. Knorr, F., Thoman, P., Fahringer, T.: Declarative data flow in a graph-based dis-
tributed memory runtime system. In: International Symposium on High-Level Par-
allel Programming and Applications (HLPP 2022) (2022)

11. Kumar, S.: Scheduling of dense linear algebra kernels on heterogeneous resources.
Ph.D. thesis, Université de Bordeaux (2017)

12. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
Version 3.1 (2015)



26 P. Thoman and P. Salzmann

13. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: a high-
productivity programming language for HPC with logical regions. In: SC 2015:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–12 (2015). ISSN 2167-4337

14. The Khronos Group: SYCL Specification, Version 2020 Revision 5 (2022)
15. Thibault, S.: On runtime systems for task-based programming on heterogeneous

platforms. Thesis, Université de Bordeaux (2018)
16. Thoman, P., Salzmann, P., Cosenza, B., Fahringer, T.: Celerity: high-level C++ for

accelerator clusters. In: Yahyapour, R. (ed.) Euro-Par 2019. LNCS, vol. 11725, pp.
291–303. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29400-7 21

17. Thoman, P., Wippler, M., Hranitzky, R., Gschwandtner, P., Fahringer, T.: Multi-
GPU room response simulation with hardware raytracing. Concurr. Comput.
Pract. Exp. 34(4), e6663 (2022)

https://doi.org/10.1007/978-3-030-29400-7_21

	Command Horizons: Coalescing Data Dependencies While Maintaining Asynchronicity
	1 Introduction and Related Work
	2 Background
	2.1 The Celerity Runtime System
	2.2 Data State Tracking
	2.3 Generative Data Access Patterns

	3 Horizons
	4 Evaluation
	5 Conclusion
	References




