
Patrick Diehl · Peter Thoman · Hartmut Kaiser ·
Laxmikant Kale (Eds.)

LN
CS

 1
38

61

Asynchronous Many-Task Systems
and Applications
First International Workshop, WAMTA 2023
Baton Rouge, LA, USA, February 15–17, 2023
Proceedings

Lecture Notes in Computer Science 13861
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Patrick Diehl · Peter Thoman · Hartmut Kaiser ·
Laxmikant Kale
Editors

Asynchronous Many-Task Systems
and Applications

First International Workshop, WAMTA 2023
Baton Rouge, LA, USA, February 15–17, 2023
Proceedings

Editors
Patrick Diehl
Louisiana State University, CCT
Baton Rouge, LA, USA

Hartmut Kaiser
Louisiana State University, CCT
Baton Rouge, LA, USA

Peter Thoman
University of Innsbruck
Innsbruck, Austria

Laxmikant Kale
University of Illinois at Urbana-Champaign
Urbana, IL, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-32315-7 ISBN 978-3-031-32316-4 (eBook)
https://doi.org/10.1007/978-3-031-32316-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3922-8419
https://orcid.org/0000-0002-8712-2806
https://doi.org/10.1007/978-3-031-32316-4

Preface

This volume contains some papers presented at WAMTA 2023, the inaugural edition
of the Workshop on Asynchronous Many-Task Systems and Applications, held at the
Center for Computation and Technology on the Louisiana State University campus in
Baton Rouge, LA, USA, on February 15–17, 2023. The workshop was a hybrid event,
with the option for authors and attendees to present, attend and interact both in-person
and online.

WAMTA was created in response to the ever-growing scale of high performance
computing, and in recognition of the increasing strain this growth puts on software
systems at all levels. Core challenges in this context include load-balancing, fast data
transfers, and efficient resource utilization. Task-based models and runtime systems
have shown that it is possible to address these challenges by providing mechanisms
such as oversubscription, task/data locality, sharedmemory, and data-dependence-driven
execution.

The objective of WAMTA is to provide a forum for exploring the advantages
and challenges of task-based programming on modern and future HPC systems. It
allows developers, users, and proponents of these models and systems to share experi-
ence, discuss how they meet the challenges posed by Exascale system architectures,
and explore opportunities for increased performance, robustness, productivity, and
full-system utilization.

Seven papers were submitted to WAMTA 2023, and the 24 members of the Program
Committee (PC) assessed the quality, relevance, and presentation of these contributions.
Each paper received at least three reviews by PC members. If the three reviews did not
agree, a fourth review was consulted. In the end, a total of six papers were accepted. For
each paper, one author in the author list was chosen to present the work. Unfortunately,
for one of the accepted papers the authors were not able to present their talk at WAMTA
2023; however, the paper is still included in the proceedings. In addition, some papers
represent extended versions of the talks given atWAMTA2023, including further authors
added to the coauthor teams of the accepted papers. The result is six papers of very high
quality.

In addition to the presentations of these technical papers, the two and a half day
workshop program included three keynote talks, an industrial talk, and 15 technical
talks, as well as a poster session.

We would like to thank all authors, speakers, chairs, organizers, PC members and
attendees for their contributions towards the success of WAMTA 2023.

vi Preface

Furthermore, we would like to thank our sponsors: Tactical Computing Lab,
HPE Enterprise, National Science Foundation, and LSU Center of Computation &
Technology.

February 2023 Patrick Diehl
Hartmut Kaiser
Peter Thoman

Laxmikant Kale

Organization

Steering Committee

Patrick Diehl Louisiana State University, USA
Peter Thoman University of Innsbruck, Austria
Hartmut Kaiser Louisiana State University, USA
Laxmikant Kale University of Illinois at Urbana-Champaign, USA

Program Committee

Jeff Hammond NVIDIA, USA
Bita Hasheminezhad NASA Ames Research Center, USA
Pedro Valero-Lara Oak Ridge National Laboratory, USA
H. Metin Aktulga MSU College of Engineering, USA
Keita Teranishi Sandia National Laboratories, USA
Weile Wei Lawrence Berkeley National Laboratory, USA
Brad Richardson Sourcery Institute, USA
Patricia Grubel Los Alamos National Laboratory, USA
Kevin Huck University of Oregon, USA
Dirk Pflüger University of Stuttgart, Germany
Roman Iakymchuk Sorbonne Université, France
Huda Ibeid Intel, USA
Ben Bergen Los Alamos National Laboratory, USA
Dirk Pleiter KTH Royal Institute of Technology, Sweden
Didem Unat Koç University, Turkey
Daisy Hollman Google, USA
Gregor Daiß University of Stuttgart, Germany
Najoude Nader Louisiana State University, USA
Sebastian Eibl Max Planck Computing & Data Facility, Germany
Sebastian Ohlmann Max Planck Computing & Data Facility, Germany

Sponsors

LSU Center for Computation & Technology
Tactical Computing Lab
HPE Enterprise
National Science Foundation (NSF award 2229751)

Contents

Extending Hedgehog’s Dataflow Graphs to Multi-node GPU Architectures 1
Nitish Shingde, Martin Berzins, Timothy Blattner, Walid Keyrouz,
and Alexandre Bardakoff

Command Horizons: Coalescing Data Dependencies While Maintaining
Asynchronicity . 13

Peter Thoman and Philip Salzmann

Shared Memory Parallelism in Modern C++ and HPX . 27
Patrick Diehl, Steven R. Brandt, and Hartmut Kaiser

Framework for Extensible, Asynchronous Task Scheduling (FEATS)
in Fortran . 39

Brad Richardson, Damian Rouson, Harris Snyder, and Robert Singleterry

Scalability of Gaussian Processes Using Asynchronous Tasks: A Comparison
Between HPX and PETSc . 52

Alexander Strack and Dirk Pflüger

Scheduling Many-Task Applications on Multi-clouds and Hybrid Clouds 65
Shifat P. Mithila, Peter Franz, and Gerald Baumgartner

Author Index . 79

Extending Hedgehog’s Dataflow Graphs
to Multi-node GPU Architectures

Nitish Shingde1(B) , Martin Berzins1 , Timothy Blattner2 ,
Walid Keyrouz2 , and Alexandre Bardakoff2

1 University of Utah, Salt Lake City, UT 84112, USA
{nitish,mb}@sci.utah.edu

2 National Institute of Standards and Technology, Gaithersburg, MD, USA
{timothy.blattner,walid.keyrouz}@nist.gov,

a.bardakoff@prometheuscomputing.com

Abstract. Asynchronous task-based systems offer the possibility of
making it easier to take advantage of scalable heterogeneous architec-
tures. This paper extends the National Institute of Standards and Tech-
nology’s Hedgehog dataflow graph models, which target a single high-
end compute node, to run on a cluster by borrowing aspects of Uintah’s
cluster-scale task graphs and applying them to a sample implementa-
tion of matrix multiplication. These results are compared to implemen-
tations using the leading libraries, SLATE and DPLASMA, for illustra-
tive purposes only. The motivation behind this work is to demonstrate
that using general purpose high-level abstractions, such as Hedgehog’s
dataflow graphs, does not negatively impact performance.

Keywords: Hedgehog · multi-node GPU · dataflow · task graphs ·
Uintah · MPI

1 Introduction

Continuing innovations in hardware pose challenges to developing portable soft-
ware, particularly for new heterogeneous architectures. These challenges may be
addressed by the adoption of new programming models for efficient node use
that should represent parallel constructs and make it easier to instrument and
reason about an application’s performance, thereby allowing developers to gain
deeper insight. Two examples of such models are the Hedgehog software [1] and
the Uintah Computational Framework [7,16]. Hedgehog specializes in node-level
performance and uses C++ threads and NVIDIA CUDA. Uintah specializes in
large-scale simulations and uses an MPI+X hybrid parallelism model. Both sys-
tems use asynchronous execution to achieve. This paper shows that Hedgehog
may be extended by making use of the general philosophy of Uintah. It compares
the performance that may be achieved with a prototype version against the well-
known DPLASMA and SLATE frameworks. This work builds on the prior work

Supported by organization NIST.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Diehl et al. (Eds.): WAMTA 2023, LNCS 13861, pp. 1–12, 2023.
https://doi.org/10.1007/978-3-031-32316-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32316-4_1&domain=pdf
http://orcid.org/0000-0002-2616-7971
http://orcid.org/0000-0002-5419-0634
http://orcid.org/0000-0002-4964-5403
http://orcid.org/0000-0003-3807-813X
http://orcid.org/0000-0003-2770-8052
https://doi.org/10.1007/978-3-031-32316-4_1

2 N. Shingde et al.

of Holeman [10]; the vehicle for comparison is the well-studied problem of dense
matrix-matrix multiplication.

Matrix multiplication performance has improved greatly with the advance-
ment of accelerated devices. Two of the best-known libraries out there that
use out-of-core matrix multiplication on multi-GPU accelerated nodes are
DPLASMA [5] and SLATE [3]. DPLASMA provides a generic and flexible
matrix-matrix multiplication algorithm C = A×B for multi-GPU accelerated
distributed-memory platforms for matrices unrestricted by the size of the GPU
memory. The implementation relies on the classical tile-based outer-product
algorithm but enhances it with several control dependencies to increase data
reuse and optimize communication flow from/to the accelerators within each
node. The implementation uses the Parsec runtime system, another task-based
runtime system. SLATE is designed to deliver fundamental dense linear algebra
capabilities for current and upcoming distributed-memory systems. It is built on
top of standards, such as MPI and OpenMP, and de-facto industry solutions,
such as NVIDIA CUDA and AMD HIP.

The rest of the paper is organized as follows. Section 2 discusses the various
frameworks that deal with multi-GPU distributed-memory platforms. With the
matrix multiplication problem as a vehicle, the section discusses how some exist-
ing state-of-the-art techniques tackle the situation. Section 3 presents the design
principles used to implement matrix multiplication for a multi-GPU accelerated
distributed-memory platform. Section 4 discusses the design principles of matrix
multiplication using Hedgehog. After describing Hedgehog’s single-node multi-
GPU solution, the extension to multiple nodes will be given. Section 5 compares
Hedgehog’s results against those of SLATE and DPLASMA. Section 6 concludes
the paper leaving Sect. 7 with possible future plans.

2 Existing Approaches

2.1 Uintah

Part of the original motivation for the extension of the Hedgehog system to mul-
tiple nodes is the scalability of asynchronous many-task (AMT) runtime systems
and their use in helping manage the increased concurrency, deep memory hierar-
chies, and heterogeneity. Such runtime systems are advantageous for their ability
to handle increasing node-level parallelism through the task overdecomposition
of an application while also managing low-level system details necessary for effi-
cient resource utilization behind-the-scenes. Examples include Charm++ [14],
HPX [13], Legion [6], PaRSEC [8], and Uintah [7].

While Uintah has demonstrated large scale scalability on heterogeneous archi-
tectures [16], it started as a fixed task-graph execution code and was extended to
dynamic task execution [15]. Uintah’s runtime system manages the asynchronous
and out-of-order (where appropriate) execution of these tasks and addresses the
complexities of (global) MPI and (per node) thread-based communication. Exe-
cution is managed by the task scheduler, which interacts with per-MPI process
task queues to select and execute ready tasks (e.g., tasks with satisfied data

Extending Hedgehog’s Dataflow Graphs to Multi-node GPU Architectures 3

dependencies). In extending Uintah to heterogeneous architectures, Kokkos [9],
was used to meet the challenges posed by diverse heterogeneous systems. Uintah
application code then is decomposed into individual tasks that are executed on
either the host or device and that make use of Uintah’s intermediate portability
layer [12], with options to use Kokkos. The resulting tasks are then compiled into
a task graph and dynamically executed by the heterogeneous runtime system in
an asynchronous out-of-order manner. Scaling capabilities have been shown for
two benchmarks using Uintah’s MPI+Kokkos scheduler [11] and the accompa-
nying portable abstractions [12] to execute workloads representative of typical
Uintah applications. The recent results in [16] at scale shows good strong-scaling
to 24,576 NVIDIA V100 GPUs and 8,192 IBM POWER9 processors and demon-
strate Uintah’s preparedness for the diverse heterogeneous systems accompany-
ing Exascale computing. The key lessons from Uintah for this work are to use
separate task graphs per MPI process and to prioritize external communication
while hiding its impact using overdecomposition.

2.2 DPLASMA

DPLASMA is a distributed parallel linear algebra software targeted toward mul-
ticore architectures. The matrix multiplication algorithm uses the Parameterized
Task Grap (PTG), a type of Domain Specific Language (DSL), and exposes it in a
compact and problem-size independent format that is queried on-demand to dis-
cover data dependencies in a distributed fashion. It depicts algorithms using data
flow principles as pure data dependencies between BLAS kernels. The resulting
dataflow depiction uses PaRSEC, a state-of-the-art runtime system, to run it in
a distributed environment. The algorithm uses several control dependencies like
b and c (block sizes for matrix C), d (depth), and l (look-ahead) to increase the
data reuses and optimize the communication flow from/to accelerators within
each node. It uses cuBLAS’s General Matrix Multiplication (GEMM) kernel for
computation and MPI for nodal communication.

2.3 SLATE

Software for Linear Algebra Targeting Exascale, also known as SLATE, aims to
provide newer linear algebra packages targeting modern many-node HPC clus-
ters. It uses a newer matrix storage format where tiles are the first-class objects,
thus leaving the traditional dense linear algebra software like ScaLAPACK, Ele-
mental, and DPLASMA to use contiguous memory to represent the local matrix
in each process. SLATE uses a collection of individual tiles to represent the
matrices, with no correlation between the tile’s position in the matrix versus in
memory. SLATE uses MPI for distributed node parallelism, OpenMP for explicit
thread parallelism within nodes, implicit thread parallelism within the vendor’s
node-level BLAS, and SIMD vector instructions for vector parallelism. SLATE
relies on explicit dataflow information for communication, where it will broad-
cast the required tiles to the processes where it is needed. This approach yields

4 N. Shingde et al.

a multicore performance of 170 TFLOP/s on 16 nodes and a peak accelerator
performance of 339.2 TFLOP/s when processing double-precision matrices [4].

2.4 Hedgehog

Hedgehog [20] is a C++header-only library without any dependencies for devel-
oping general purpose coarse-grained parallel algorithms. It targets a heteroge-
neous single-node compute units with one or multiple CPUs and one or multi-
ple GPUs. Its execution model works without any added scheduler; the inner
threads, attached to Hedgehog nodes, are only managed by the operating sys-
tems, and execute based on the presence of data.

The Hedgehog nodes are attached with edges representing the flow of data
using queues that store unprocessed data. The nodes and edges are structured
under the form of a dataflow graph. These nodes are independent persistent enti-
ties that accept and produce data. A node starts its execution as soon as input
data are available. Because a node can be linked to another node and each of
them are living on different threads they form an inherent parallel asynchronous
data pipeline. This pipeline is used to get performance: it simplifies paralleliz-
ing I/O, data motion, and computation, and It maximizes system utilization
by leveraging data streaming. This implementation aims to design portable per-
forming graphs for heterogeneous nodes (e.g., featuring multiple GPUs).

Hedgehog operates with a variety of nodes. Multi-threaded tasks are respon-
sible for doing heavy computation. These tasks form a group, which share the
same input and output edges consisting of queues and synchronization contexts.
State manager tasks use localized state, which are thread-safe shareable envi-
ronments, used for data synchronization. A graph is also a node, allowing graph
composition and code sharing. This separation of concerns is considered as a
first-class citizen as it facilitates the programmability of the library.

Diverse metaprogramming techniques secure the graph by checking its con-
sistency and validity at compile-time. It is also possible to build a compile-time
representation of the graph allowing user-defined tests execution on this repre-
sentation while compiling and consequently modifying the outcome of the com-
pilation.

Bardakoff et al. have demonstrated the performance of this approach with
single-node computations in [1]. The Hedgehog LU decomposition with partial
pivoting performed on par with the Linear Algebra Package (LAPACK) dgetrf
routine compiled with OpenBLAS in multi-threaded mode. For the matrix-
multiplication (BLAS-like GEMM routine), running specific matrix sizes, Hedge-
hog achieves > 95% of theoretical peak across 4 NVIDIA V100 GPUs, outper-
forming cuBLASMg and cuBLAS-XT baseline libraries.

3 Extending Hedgehog to Multiple Nodes

Hedgehog executes the dataflow graph entirely scheduler-free based on the flow
of data. The order in which this execution model passes data to tasks is non-
deterministic, relying entirely on the order in which the operating system context

Extending Hedgehog’s Dataflow Graphs to Multi-node GPU Architectures 5

switches threads. This out-of-order design is a staple in how Hedgehog obtains
performance but poses some design challenges for getting performance on dis-
tributed systems. For example, typical MPI programs expect a structured app-
roach that embeds a specific ordering of messages between nodes. Additionally,
Hedgehog nodes are designed in its model for non-overlapping usage to achieve
a separation of concerns. For instance, the state manager in Hedgehog is a spe-
cialized task that manages the state between two or more tasks. We follow the
same separation of concerns design and maintain Hedgehog’s execution model
when augmenting Hedgehog’s abstractions to support multi-node scaling with
two new specialty tasks: (1) Sender and (2) Receiver tasks. Similarly to Uintah
[7], each node has its own local task graph instead of having a global task graph
to manage work across the nodes for scalability. Each of these local graphs con-
tains these two new specialty tasks to establish a form of communication. In
Sect. 4 the Sender and Receiver tasks are implemented for matrix multiplica-
tion and deal with point-to-point communication. Though these tasks use MPI
underneath as their communication framework, they are designed to be agnos-
tic of such communication models. In the following section, the term data will
signify data that flow within a local Hedgehog task graph, whereas the term
message will represent the data that travel across nodes.

3.1 DataPacket

Serialization/deserialization of data converts complex data structures into a byte
stream and vice versa. DataPacket has a buffer to help store these byte streams.
We define a MatrixTile class that composes and uses the DataPacket class to
store the tile’s metadata and the two dimensional matrix-tile data for matrix
multiplication. By making DataPacket part of the MatrixTile, we use the Dat-
aPacket’s buffer to store and use the metadata and data directly. This helps
circumvent the overhead of allocating a new DataPacket object and copying the
serialized bytes from the tile to the DataPacket.

3.2 Sender Task

A Sender task processes data from within the graph and sends them to Receiver
tasks across processes/nodes. The incoming data to the sender task specify the
destination node; the sender does not implement any logic to decide where the
message should go. In addition to sending the message, it also sends a context ID
as metadata. In MPI, this is possible in the form of tags. The context ID helps the
receiver task to deduce the type of message. In the case of matrix multiplication,
the “output state” feeds the accumulated tile along with the destination node
for the Sender task to pack the data into a DataPacket and send it across to the
Receiver task of the receiving node.

6 N. Shingde et al.

3.3 Receiver Task

Similar to the Sender task, the Receiver task registers all possible data types
involved in inter-node communication in the form of template parameters. The
receiver task is a daemon thread, which polls for any incoming messages without
actually receiving the message. The receiver task obtains the context ID from
the polling (tags in MPI), deduces the appropriate data type and buffer size, and
enqueues an asynchronous receive call for the incoming message. The receiver
task periodically checks this queue for any completed received messages, and
based on the data type, it deserializes and pushes the data out through the
appropriate outgoing edge. These connections are established when adding edges
in the graph between the receiver tasks and their endpoints. The Receiver task
is defined in this way in order to handle the out-of-order execution and handle
spurious sends based on the flow of data within other processes. There is room for
improvement in this approach as the daemon becomes a thread that periodically
sleeps. One potential optimization will be if a communicator uses a monitor-
based implementation when sending/receiving messages. This would allow for
the receiving thread to enter into a wait state until a message is incoming.

4 Matrix Multiplication Using Hedgehog

The algorithm implemented here is an extension of the single node setup imple-
mented in Sect. 4.3 of Alexandre’s thesis [20]. The thesis explores the algorithm’s
evolution from CPU only to CPU+GPU to CPU+multiple GPUs using Hedge-
hog. We briefly revisit the single-node setup and then its subsequent evolution to
multiple nodes using the abstractions mentioned in Sect. 3. While the approach
used here lays down the general approach to extend Hedgehog to multiple nodes,
the communication model used here is hardwired to this case for matrix multi-
plication. While the peer-to-peer and one-sided communication requirement is
more aligned with Hedgehog’s design principle, it makes scaling more challeng-
ing, which needs to be addressed in future work.

The terms M , N , and K represent the dimensions of the matrices. T repre-
sents the tile size, and MT , NT , and KT represent the number of tiles along the
M , N , and K dimensions of the matrices, respectively.

4.1 Single-Node Setup

Figure 1 highlights the data and work distribution. Each matching pair of
columns and rows from matrices A and B depicts a unit of work per GPU.

Extending Hedgehog’s Dataflow Graphs to Multi-node GPU Architectures 7

Fig. 1. (a) represents the data distribution. For each GPU, only 1 column of tiles from A
and 1 row of tiles from B are considered at a time. For matrix C, each GPU gets p partial
product tiles (reusable), for storing the partial GEMM computations. (b) represents
the work distribution on the GPUs. It is quite similar to the data distribution, where
each GPU calculate the partial result for all the elements in matrix C.

The workload is offloaded to each GPU in a round-robin fashion to ensure
equal distribution of work. Tiles from matrices A and B are copied to the respec-
tive GPUs, where all the tiled-GEMM kernel execution occurs. One thing to note
here is that all the GPUs work independently. As we use the outer-product app-
roach, each unit of work asynchronously outputs a partial result for the whole
matrix C in the form of tiles. These tiles, called product tiles, are copied back
to host memory from the GPU memory for accumulation with matrix C. The
accumulation is done on the CPU. There are MT ∗ NT ∗ KT such tile accumu-
lations, i.e., M ∗ N ∗ K

T addition operations in total. It is important to note
that the factor K

T here keeps these CPU-side accumulation tasks from being the
bottleneck. The GPU memory needs to be large enough to accommodate MT

tiles from a column of matrix A, Nt tiles from a row of matrix B, and 4–8 tiles
for storing the product tiles. For detailed information on the Hedgehog data flow
graph and its working, refer to Sect. 4.3.1 from Alexandre’s thesis [20].

In Hedgehog, the task graph is instantiated only once during its creation.
When a task receives new data, the data simply wait in a queue if all the threads
concerning the tasks are busy. This differs from traditionally used task graphs in
systems like StarPU [18], PLASMA, and CILK [19], where the directed acyclic

8 N. Shingde et al.

graph (DAG) gets unrolled as it keeps receiving data. The actual performance
in this approach comes from pipelining the memory copies and kernel execution
tasks using NVIDIA’s streams and asynchronous API calls. The CUDA streams
help synchronize the host-to-device memory copies of tiles from matrices A and
B, cuBLAS GEMM kernel execution using those tiles, and device-to-host mem-
ory copy of the product tiles outputted by the kernels.

4.2 Multiple Node Setup

Figure 2 highlights the data distribution in a multi-node setup. Matrices A and
B are partitioned in a 1D column and row block-cyclic fashion, respectively. This
nature of the data distribution allows us to treat these sub-matrices of A and B
as matrices themselves and use the previous single-node setup to independently
compute partial results for every element in matrix C. In the current design,
every node calculates a partial result for all the elements in matrix C. We need
to reduce the matrix C present on each node to get the final result. There are two
types of accumulations happening here, one within a node, which we will simply
call accumulation, and the other is inter-node, which we will call reduction, to
help distinguish between the two. The cost of reducing matrices is significant and
grows as the matrix size and/or the number of nodes increase. The accumulation
of matrix C tiles (within a node) happens in stages. So instead of waiting for the
whole matrix C to get accumulated, we asynchronously send the accumulated
tile as soon as it is ready. Figure 2 depicts the round-robin target distribution
of the tiles in matrix C. This distribution of matrix C helps evenly distribute
the sends and receives. Using this approach helped spread the communication
cost over the execution of the hedgehog graph instead of dealing with a costly
singular reduction call. To achieve this asynchronicity, we use the sender and
receiver task approach, as detailed in Sect. 3. For the receiver task we had first-
hand knowledge of the type of messages and their count from the beginning.
Since only 1 type of message was involved, namely, the tiles from matrix C, we
could skip the polling step and directly initiate/enqueue an asynchronous receive
call.

4.3 Communications

As discussed above, no inter-node communication occurs for matrices A and B.
The only communication that takes place is for matrix C. Even with the above
asynchronous approach for reducing the matrix C, the communication volume
is equivalent to a collective reduction call, which is MT ∗ NT ∗ (n − 1) number
of tiles, where n is the number of nodes.

Extending Hedgehog’s Dataflow Graphs to Multi-node GPU Architectures 9

Fig. 2. Data distribution of matrices across multiple nodes. Matrices A and B are
distributed in a 1D Block Column and 1D Block Row fashion respectively. Matrix C,
as a whole, redundantly resides all the nodes with the ownership marked in 2D Block
cyclic fashion.

Within a node, while copying the matrix data to GPU memory, only tiles
from matrices A and B are transferred, and that too only once. In total, for a
given node, all the MT ∗ KT

n tiles from submatrix A, and NT ∗ KT

n tiles from
submatrix B are transferred from the host memory to the GPU memory. The
partial computations are stored in an uninitialized memory in GPU, called prod-
uct tiles. These product tiles are computed and copied from GPU memory to
host for MT ∗ NT ∗ KT

n times. Therefore, the total communication volume, in
terms of tiles, to and fro per node is KT

n (MT ∗ NT + MT + NT).

5 Results

All the experiments were conducted at CHPC, the Center for High-Performance
Computing at the University of Utah. We picked 6 compute nodes, each con-
taining a 64-core AMD third-generation (Milan) 7713P processor. Two nodes
consisted of 8 Nvidia RTX A6000 48 GB GPUs per node; the other two nodes
consisted of 2 Nvidia A100 80 GB PCIe GPUs per node, and the remaining
two nodes consisted of 8 Nvidia A100 80 GB SXM4 per node. The first four
nodes had 256 GB of CPU memory, while the last two had 512 GB. Each node
had connectX6 HDR Infiniband cards connected with EDR Infiniband. For the
4-node experiment, 3 GPUs per node were used, and for the 6-node experiment,
2 GPUs per node. Both experiments used 12 GPUs in total. Every run is mea-
sured over ten iterations and presented as mean and standard deviations of the
execution times (seconds) and performances (TFLOP/s).

10 N. Shingde et al.

Tables 1 and 2 show the performance results for single precision square matri-
ces for A, B, and C of length 192K with different node configurations. The best
tile size was selected for DPLASMA and SLATE based on all runs with variable
tile sizes on our nodes. The Hedgehog implementation performs on par with
DPLASMA and SLATE on both 4-node and 6-node experiments. The double
precision experiments were not conducted due to the lack of accelerated double
precision performance in the Nvidia RTX A6000 GPUs.

Table 1. Mean and standard deviation of run times and performance on 4 nodes, with
3 GPUs per node configuration, using single precision 192K x 192K matrices.

Algo Time (seconds) TFLOP/s

DPLASMA 85.23 ± 0.90 178.34 ± 1.87

SLATE 82.74 ± 0.18 183.70 ± 0.42

Hedgehog 85.86 ± 1.89 177.09 ± 3.87

Table 2. Mean and standard deviation of run times and performance on 6 nodes, with
2 GPUs per node configuration, using single precision 192K x 192K matrices.

Algo Time (seconds) TFLOP/s

DPLASMA 85.52 ± 0.55 177.73 ± 1.15

SLATE 82.31 ± 0.21 184.64 ± 0.49

Hedgehog 85.92 ± 2.44 177.01 ± 4.77

6 Conclusions

This work aims to extend Hedgehog’s abstractions while maintaining its pro-
gramming model to operate in a cluster environment. We have shown that it
is possible to obtain performance in multi-node Hedgehog that is on par with
well-known libraries.

The extension of Hedgehog to multiple nodes has been accomplished in a
relatively straightforward fashion. The specialized Sender and Receiver tasks
help provide a communication model that aligns with Hedgehog’s out-of-order
design while remaining agnostic of any particular communication framework like
MPI.

There are some caveats with the current approach for matrix multiplication,
as it is not yet fully scalable because of redundant copies of matrix C on every
node. This implementation also fails to apply proper load balancing for over-
subscribed GPUs. The DPLASMA and SLATE libraries outperformed Hedgehog
by a margin of 30% and 20%, respectively, when more GPUs were allocated for
the same matrix configuration. However, the results are a good starting point for
the proposed future work using Hedgehog on more general parallel computing
examples.

Extending Hedgehog’s Dataflow Graphs to Multi-node GPU Architectures 11

7 Future Work

The matrix multiplication algorithm could also be tackled by partitioning the
work, i.e., focusing on matrix C part by part, like a sliding window. This tech-
nique also provides the flexibility to accommodate the possible limitations of
GPU and host memory, but at the cost of increased intra-node communication.

One important next step to this work is to add two abstractions to general-
ize the approach; first, a serialization/deserialization abstraction to our Sender
and Receiver task to help deal with complicated data structures; and second,
an abstraction for defining decomposition strategies, which can be used to auto-
matically determine where data reside across nodes.

Disclaimer. Certain equipment, instruments, software, or materials, commer-
cial or non-commercial, are identified in this paper in order to specify the experi-
mental procedure adequately. Such identification is not intended to imply recom-
mendation or endorsement of any product or service by NIST, nor is it intended
to imply that the materials or equipment identified are necessarily the best avail-
able for the purpose.

References

1. Bardakoff, A., Bachelet, B., Blattner, T., Keyrouz, W., Kroiz, G.C., Yon, L.: Hedge-
hog: understandable scheduler-free heterogeneous asynchronous multithreaded
data-flow graphs. In: 2020 IEEE/ACM 3rd Annual Parallel Applications Work-
shop: Alternatives To MPI+X (PAW-ATM), pp. 1–15 (2020). https://doi.org/10.
1109/PAWATM51920.2020.00006

2. Herault, T., Robert, Y., Bosilca, G., Dongarra, J.: Generic matrix multiplication
for multi-GPU accelerated distributed-memory platforms over PaRSEC. In: 2019
IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems (ScalA), pp. 33–41 (2019). https://doi.org/10.1109/ScalA49573.
2019.00010

3. Kurzak, J., Gates, M., Charara, A., YarKhan, A., Yamazaki, I., Dongarra, J.:
Linear systems solvers for distributed-memory machines with GPU accelerators.
In: Yahyapour, R. (ed.) Euro-Par 2019. LNCS, vol. 11725, pp. 495–506. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29400-7 35

4. Gates, M., Kurzak, J., Charara, A., YarKhan, A., Dongarra, J.: SLATE: design
of a modern distributed and accelerated linear algebra library. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2019), Article 26, pp. 1–18. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3295500.3356223

5. Bosilca, G., et al.: Flexible development of dense linear algebra algorithms on mas-
sively parallel architectures with DPLASMA. In: 2011 IEEE International Sym-
posium on Parallel and Distributed Processing Workshops and Phd Forum, pp.
1432–1441 (2011). https://doi.org/10.1109/IPDPS.2011.299

6. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society Press (2012)

https://doi.org/10.1109/PAWATM51920.2020.00006
https://doi.org/10.1109/PAWATM51920.2020.00006
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1007/978-3-030-29400-7_35
https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1109/IPDPS.2011.299

12 N. Shingde et al.

7. Berzins, M., et al.: Extending the uintah framework through the petascale modeling
of detonation in arrays of high explosive devices. SIAM J. Sci. Comput. 38(5), 101–
122 (2016)

8. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J.J.:
PaRSEC: exploiting heterogeneity to enhance scalability. Comput. Sci. Eng. 15(6),
36–45 (2013)

9. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

10. Holmen, J.K., Sahasrabudhe, D., Berzins, M., Bardakoff, A., Blattner, T.J., Key-
rouz, W.: Uintah+hedgehog: combining parallelism models for end-to-end large-
scale simulation performance. Scientific Computing and Imaging Institute (2021)

11. Holmen, J.K., Sahasrabudhe, D., Berzins, M.: A heterogeneous MPI+PPL task
scheduling approach for asynchronous many-task runtime systems. In: Proceed-
ings of the Practice and Experience in Advanced Research Computing 2021 on
Sustainability, Success and Impact (PEARC 2021). ACM (2021)

12. Holmen, J.K., Peterson, B., Berzins, M.: An approach for indirectly adopting a
performance portability layer in large legacy codes. In: 2nd International Workshop
on Performance, Portability, and Productivity in HPC (P3HPC), SC 2019 (2019)

13. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: a task based
programming model in a global address space. In: Proceedings of the 8th Inter-
national Conference on Partitioned Global Address Space Programming Models
(Eugene, OR, USA) (PGAS 2014), Article 6. ACM, New York (2014)

14. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++. In: Proceedings of the Eighth Annual Conference on Object-
oriented Programming Systems, Languages, and Applications (Washington, D.C.,
USA) (OOPSLA 1993), pp. 91–108. ACM, New York (1993)

15. Meng, Q., Humphrey, A., Berzins, M.: The uintah framework: a unified heteroge-
neous task scheduling and runtime system. In: Digital Proceedings of The Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2012, WOLFHPC 2012 Workshop, pp. 2441–2448 (2012)

16. Holmen, J.K., Sahasrabudhe, D., Berzins, M.: Porting uintah to heterogeneous
systems. In: Proceedings of the Platform for Advanced Scientific Computing Con-
ference (PASC22) Best Paper Award. ACM (2022)

17. Vandevoorde, D., Josuttis, N.M., Gregor, D.: C++ Templates: The Complete
Guide, 2nd edn. Addison-Wesley Professional (2017). ISBN 0321714121

18. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03869-3 80

19. Blumofe, R.D., Leiserson, C.E.: Space-efficient scheduling of multithreaded com-
putations. SIAM J. Comput. 27(1), 202–229 (1998)

20. Bardakoff, A.: Analysis and Execution of a Data-Flow Graph Explicit Model Using
Static Metaprogramming. Université Clermont Auvergne (2021). https://theses.
hal.science/tel-03813645

https://doi.org/10.1007/978-3-642-03869-3_80
https://theses.hal.science/tel-03813645
https://theses.hal.science/tel-03813645

Command Horizons: Coalescing Data
Dependencies While Maintaining

Asynchronicity

Peter Thoman(B) and Philip Salzmann

Distributed and Parallel Systems Group, University of Innsbruck,
Technikerstraße 21a, Innsbruck, Austria

{peter.thoman,philip.salzmann}@uibk.ac.at

Abstract. In runtime systems for distributed memory parallel comput-
ing which automatically manage dependencies and data transfers, a fun-
damental trade-off exists between the fidelity of dependency tracking and
the overhead incurred by its implementation.

Precise tracking of data state allows for effective scheduling, which can
leverage opportunities for compute and transfer parallelism. However, it
also induces more overhead, and with some data access patterns this
overhead can grow with e.g. the number of iterations of an algorithm.

We present the concept of command horizons, which allow coalesc-
ing of previous fine-grained tracking information while maintaining an
easily configurable scheduling window with full information precision.
Furthermore, they enable consistent cluster-wide decision points with-
out requiring any inter-node communication, and effectively cap the size
of state tracking data structures even in the presence of problematic
access patterns.

Experimental evaluation on microbenchmarks demonstrates that hori-
zons are effective in keeping the scheduling complexity constant, while
their own overhead is negligible – below 10µs per horizon when build-
ing a command graph for 512 GPUs. We additionally demonstrate the
performance impact of horizons – as well as their low overhead – on a
real-world application.

Keywords: dependency tracking · task graph · asynchronicity ·
command generation · gpu cluster

1 Introduction and Related Work

Modern high performance computing (HPC) hardware platforms feature many
layers of parallelism, memory and communication. While they employ state-of-
the-art methods to keep latencies as low as possible, the increase in computa-
tional throughput and bandwidth outpaces reductions in latency. Communica-
tion latency is thus an important limiting factor for performance, particularly
at larger scales. As such, software for HPC systems is frequently designed to
leverage asynchronicity as much as possible, enabling e.g. communication and
computation overlapping.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Diehl et al. (Eds.): WAMTA 2023, LNCS 13861, pp. 13–26, 2023.
https://doi.org/10.1007/978-3-031-32316-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32316-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-32316-4_2

14 P. Thoman and P. Salzmann

Developing software which implements these techniques is a challenging
endeavor, particularly while relying on the established de-facto standard app-
roach to developing distributed GPU applications: “MPI + X”, where the Mes-
sage Passing Interface (MPI) [12] is combined with a data parallel programming
model such as OpenMP, CUDA or OpenCL. As a consequence of this complex-
ity, development of new software for HPC is typically left to the select few,
and research is often performed using a small set of domain specific software
packages.

Parallel Runtime Systems. One promising avenue for improving programma-
bility or enabling more flexible development of and experimentation with high
performance code for distributed memory GPU clusters are higher-level runtime
systems. These typically introduce a broad API and custom terminology, as well
as enabling ecosystems of tooling and derived software projects.

A notable example is StarPU [1], an extensible runtime system for program-
ming heterogeneous systems. It offers a wide array of scheduling approaches, from
simple FCFS policies, over work-stealing and heuristics, to dedicated schedulers
for dense linear algebra on heterogeneous architectures [11,15]. Nevertheless,
StarPU’s C API is rather low level and requires the explicit handling of data
distribution when executing in cluster environments.

Legion [2] is a runtime system designed to make efficient use of heterogeneous
hardware through highly configurable and efficient work splitting and mapping
to the available resources. Its C++API is intricate and precise, with the explicit
intent of putting performance first, before any programmability considerations,
making it unsuitable for non-expert users.

HPX [9] is a C++ runtime system for parallel and distributed applications
of any scale with a particular focus on enabling asynchronous data transfers
and computation. Its heterogeneous compute backend supports targeting both
CUDA and SYCL [6].

PaRSEC [3] uses a custom graph representation language called JDF to
describe the dataflow of an application [4]. Either automatically generated or
written by hand, this representation enables a fully decentralized scheduling
model and automatic handling of data dependencies across a distributed sys-
tem, although the initial distribution of data needs to be provided by the user.

The Celerity programming model [16] was designed to minimally extend the
SYCL programming standard [14] while enabling automated distributed memory
execution, specifically for clusters of GPU-like accelerators. It asynchronously
generates and executes a distributed command graph from an implicit task graph
derived from data access patterns.

A related category comprises those projects which extend the grammar of
existing programming languages, for example the pragma-based OmpSs [7], or
introduce entirely new languages altogether, such as Chapel [5], X10 [8] or
Regent [13].

What is clear from this broad and sustained interest is that ways to quickly
develop distributed applications and efficiently experiment with different work
and data distribution patterns are widely desired. Depending on the level of

Command Horizons 15

abstraction targeted by a system, data distribution and synchronization is either
manual, semi-automatic or fully automatic.

Tracking Data State. For those systems which transparently manage distributed
memory transfers and/or derive their task and command graphs from memory
access patterns, tracking the state of data in the system at any given point in time
is a significant challenge. On the one hand, all opportunities for asynchronous
compute and transfer operations should be leveraged, but on the other hand, in
an HPC context, scheduling and command generation also need to be sufficiently
fast to scale to potentially thousands of cluster nodes.

While for some data access patterns – e.g. stencil-like computations – this is
quite manageable with a relatively simple approach, more unusual patterns can
present additional difficulties. In particular, as we will outline in more detail in
Sect. 2.3, generative patterns have the potential to overwhelm data tracking.

In this work, we present Horizons, a concept which manifests as a special type
of node in task or command graphs for distributed parallel runtime systems. Core
design goals and features of Horizons include:

– Maintaining asynchronous command generation and execution.
– Allowing for a configurable tradeoff in the level of detail regarding data state

available for command generation.
– Never directly introducing a synchronization point.
– Requiring no additional inter-node communication.

Our implementation of Horizons in the Celerity runtime system achieves all
of these goals. Section 2 provides a concise overview of the Celerity system, and
describes the type of access patterns which Horizons are particularly effective at
managing. Section 3 explains how Horizons are generated, managed and applied,
illustrating their impact on command generation. In Sect. 4 we present an in-
depth empirical evaluation of the implementation of Horizons in Celerity, includ-
ing both microbenchmarks and real-world applications. Finally, Sect. 5 concludes
the paper.

2 Background

2.1 The Celerity Runtime System

Celerity is a modern, open C++ framework for distributed GPU computing [16].
Built on the SYCL industry standard [14] published by the Khronos Group, it
aims to bring SYCL to clusters of GPUs with a minimal set of API extensions. A
full overview of the SYCL and Celerity APIs is beyond the scope of this paper1,
so in this section we will focus on how Celerity extends the data parallelism of
SYCL kernels to distributed multi-GPU execution, and the data state tracking
requirements this induces for the runtime system.
1 Readers may refer to [10,16] and [14], as well as the Celerity documentation at

https://celerity.github.io/docs/getting-started.

https://celerity.github.io/docs/getting-started

16 P. Thoman and P. Salzmann

Listing 1 A basic matrix operation in Celerity.
1 distr_queue queue;

2 auto rg = range<2>(512, 512);

3 buffer<float, 2> buf_in(hst_in.data(), rg);

4 buffer<float, 2> buf_out(rg);

5

6 queue.submit([=](handler& cgh) {

7 accessor in{buf_in, cgh, access::one_to_one{}, read_only};

8 accessor out{buf_out, cgh, access::one_to_one{}, write_only};

9 cgh.parallel_for(rg, [=](item<2> itm) {

10 out[itm] = in[itm] * 2.f;

11 });

12 });

A typical SYCL program is centered around buffers of data and kernels
which manipulate them. The latter are wrapped in so-called command groups
and submitted to a queue, which is then processed asynchronously with respect
to the host process. Crucially, buffers are more than simple pointers returned by
a malloc-esque API: they are accessed through so-called accessors, which are
declared within a command group before a kernel is launched. Upon creating
buffer accessors, the user additionally has to declare how a buffer will be accessed,
i.e., for reading, writing or both. This allows the SYCL runtime to construct a
task graph based on the dataflow of buffers through kernels.

SYCL – in the same fashion as CUDA and OpenCL – abstracts the concept
of a (GPU) hardware thread: it allows users express their programs in terms of
linear-looking kernel code, which is invoked on an N-dimensional range of work
items. Celerity extends this concept to distributed computation. While Celerity
kernels are written in the same way as in SYCL, they can be executed across
multiple devices on different nodes, with all resulting data transfers handled
completely transparently to the user.

The most fundamental extension to SYCL introduced by Celerity are range
mappers, functions that provide additional information about how buffers are
accessed from a kernel. By evaluating these range mappers on sub-domains of
the execution range, the Celerity runtime system infers which parts of a buffer
will be read, and which ones will be written – at arbitrary granularity.

Tasks. Listing 1 shows an example of a simple matrix operation implemented
in Celerity. To transparently enable asynchronous execution, all compute oper-
ations in a Celerity program are invoked by means of a queue object. In the
first line of Listing 1, this queue of type celerity::distr_queue is created.
Subsequently, two two-dimensional buffer objects are created, with the former
initialized from some host data hst_in.

The central call to distr_queue::submit on line 6 submits a command
group, which creates a new task that will later be scheduled onto one or more
GPUs across the given cluster. The index space of this task (the 2D range rg in
this example) will be split into multiple chunks that can be executed by different
workers. The provided callback (the kernel code) is subsequently invoked with

Command Horizons 17

an index object (itm) of corresponding dimensionality, which is used to uniquely
identify each kernel thread.

Range Mappers. This program closely resembles a canonical SYCL program,
with one important difference: Each constructor for celerity::accessor is
provided with a range mapper, in this case a two-dimensional instance of the
one_to_one mapper. This particular range mapper indicates that every work
item of the 512 × 512 global iteration space accesses exactly one element from
buf_in and buf_out each – precisely at the work item index.

In general, range mappers can be user-defined functions, allowing for a high
degree of flexibility, with the included one-to-one, slice, neighborhood and fixed
range mappers serving only to reduce verbosity in common cases.

Execution Principle. The actual execution of Celerity program involves three
major steps, each of which proceeds asynchronously with the others in a pipelined
fashion: (i) task graph generation, (ii) command graph generation, and (iii)
execution.

The task graph encapsulates the behaviour of the program at a high level.
Essentially, every submission on the queue is represented by a task, and depen-
dencies are computed based on each task’s accessor specification. In the lower-
level command graph, task executions are split up for each GPU, and the required
commands for transfers are also generated. Therefore, the number of nodes in
the command graph is generally larger than the task graph by a factor of at
least O(N). These commands are finally executed on a set of parallel execution
lanes.

Summary. While Celerity can be considered a task-based runtime system, its
default mode of operation differs significantly from the more common approach
taken, particularly in distributed memory settings. Instead of leaving the choice
of how to split work or data fully or partially to the user, the Celerity approach
is to consider each data-parallel computation as a single splittable task. The
runtime system is provided with sufficient information, primarily by means of
accessors and their associated range mappers, to split these tasks in various ways
and distribute them across the cluster.

2.2 Data State Tracking

From a theoretical point of view (in practice, custom acceleration data struc-
tures are employed), the runtime system has to track the state of each individual
data element, in order to be able to build a data dependence graph and con-
struct the necessary transfer commands. These data structures – one for each
buffer managed by the runtime system – track the last operation which wrote
to any particular data element. As such, they need to be updated for each write
operation performed by a program, and are queried whenever a buffer is read,
and the performance of these operations is crucial to the overall efficiency of the
runtime system.

18 P. Thoman and P. Salzmann

For data access patterns common in many physical simulations and linear
algebra, the number of individual regions which need to be tracked generally
scales with the number of GPUs in the system, as all elements are replaced in
each successive time step or iteration of the algorithm. In these cases, distributed
command graph generation, which only locally tracks the perspective on the total
system state which is required for the operations on one node, is highly effective
and can scale up to thousands of GPUs. However, it can not mitigate tracking
data structure growth with some more complex access patterns.

2.3 Generative Data Access Patterns

Fig. 1. State tracking with a gener-
ative access pattern.

In some domains, data access patterns iter-
atively generate new data over the execu-
tion of a program, and might refer to all the
generated data in some subsequent compu-
tations. We call these access patterns gen-
erative, and they present a unique challenge
for data state tracking.

Figure 1 illustrates the state of the track-
ing data structure of a 2D buffer with a gen-
erative data access pattern running on two
nodes, after one, two and 5 time steps. In
this example pattern, every time step one
row of the buffer is generated in parallel,
and every subsequent time step requires all
previously computed data. For this example,
we assume a static 50:50 split in computa-
tion between the two participating nodes. As
such, after timestep t1, each node will push
its computed data to the other in order to
perform the computation at t2, and so forth.

With N GPUs, this means that the
tracking data structure will contain O(N ∗t)
separate last writer regions at time step t. Even with a highly efficient data struc-
ture, the time to query the full previously computed area (e.g. all rows up to
t − 1) will thus scale linearly with the number of time steps.

A simple solution to this particular problem might appear to be to only track
whether some data is available locally or on some other node, rather than precise
information on which command will have generated it. While this would result
in a functionally correct execution, it also implies a complete sequentialization
of the command graph up to the most recent data transfer. This would prevent
e.g. automatic communication and computation overlapping, the asynchronous
sending or receiving of many separate data chunks, or the parallel execution

Command Horizons 19

of several independent kernels accessing the same buffers. Horizons provide an
elegant solution to this dilemma.

Fig. 2. Command graph and buffer tracking for a generative data pattern.

3 Horizons

Figure 2 illustrates a simplified view of the command graph generated for the
first five iterations of a computation with a basic generative data pattern (see
Sect. 2.3) scheduled on two nodes/GPUs. It includes compute commands, as well
as data push and receive commands. As each row of the involved data buffer is
generated by subsequent time steps, the number of dependencies in the command
graph scales with the iteration count, as indicated in the figure at location 1 .

Horizons solve this issue by selectively coalescing data structures and depen-
dencies, asynchronously and with a configurable level of detail being maintained.
From a high-level point of view,”Horizons” describe synchronization points dur-
ing the execution of a program, in both the task and command graph.

However, it is crucial to note that no single horizon implies full and immedi-
ate synchronization. Instead, at any point during the scheduling and command
generation for a program (after the startup phase), two relevant Horizons exist:
the older of the two is the most recent Horizon which was applied, which means
that all tracking data related to commands scheduled before it was subsumed
and coalesced; the newer of the two is the most recent Horizon to be generated
– it will eventually be applied, but as of now it imposes no synchronization.

20 P. Thoman and P. Salzmann

As such, the window between the applied Horizon and the current execution
front maintains all opportunities for parallel and asynchronous execution and
fine-grained scheduling which would be available without Horizons.

For clarity, we split our detailed description of the Horizons concept into
three parts: (i) the decision making procedure, (ii) horizon generation, and (iii)
horizon application.

Horizon Decision Making. The decision on whether to generate a new Horizon is
made during task graph generation. When nodes are inserted into the task graph,
they track the current critical path length C from the start of the program. We
also track the most recent Horizon position H, where e.g. H = 5 means that the
most recent Horizon was generated at critical path length 5.

A dynamically configurable value S > 0, the Horizon Step Size, then defines
how frequently new Horizons are generated. A new Horizon task is inserted into
the task graph every time the critical path length grows by S, that is, whenever

C > H ∧ (C − H) mod S ≡ 0 .

Fig. 3. Command graph and buffer tracking for a generative data pattern with Hori-
zons, using the minimum step size S = 1.

Horizon Generation. When command generation encounters a new Horizon task,
a corresponding per-node horizon command is generated. This command has a
true dependency on each of the nodes in the entire current per-node execution
front of the command graph, which is easily tracked throughout the command

Command Horizons 21

generation process and contains all commands for which there currently are no
successors. As a consequence, after each Horizon generation, the execution front
contains only the horizon command. Figure 3 shows the generation of Horizon 0
at 2 and Horizon 1 at 3 . Note that the commands associated with the former
only depend on the initial compute commands of each respective node, while all
later horizons depend on both the most recent compute and receive commands
on their respective node.

Whenever a Horizon is generated for e.g. critical path length C, if a previous
Horizon generated for critical path length C − S exists, it is applied.

Horizon Application. Applying a Horizon is arguably the most crucial step of
the process, as it is what allows for the consolidation of tracking data structures.
Crucially, Horizons are always applied with a delay of one step, which maintains
fine-grained tracking for the most recent group of commands.

When a given Horizon is applied, all references to previous writers in the
tracking data structures which refer to commands preceding the Horizon are
updated to instead refer to the Horizon being applied. In the example shown in
Fig. 3, at 3 Horizon 0 is applied, thus replacing Compute 0 in the track-
ing data structures. As such, in any subsequent command generation steps,
dependencies which would have been generated referring to any of these prior
commands directly will instead refer to the appropriate Horizon. A comparison
between 4 in Fig. 3 and 1 in Fig. 2 illustrates how Horizons thus maintain a
constant command dependency structure with generative data access patterns.

The Horizon approach as presented has the following advantages: (i) it is
independent of the specifics of the data access pattern, (ii) it maintains a con-
stant maximum on the per-node dependencies which need to be tracked, (iii) a
window of high-fidelity dependency information is maintained, and the size of
this window can be adjusted by setting the step size S, (iv) horizon generation
is efficient, as the required information (current critical path length and execu-
tion front) can be tracked with a small fixed overhead during the generation of
each command, (v) horizon application is highly efficient, as due to the number-
ing scheme of commands a simple integer check suffices (no graph traversal is
required), and (vi) no additional communication is required.

4 Evaluation

In this section, we present empirical results which illustrate the effectiveness
and efficiency of the Horizon approach as it is currently implemented in the
Celerity runtime system. We first present microbenchmarks of simple generative
data patterns to precisely track the impact of Horizon step sizes on command
generation times.

Secondly, we demonstrate that Horizons have negligible overhead at both
small and large scales, and can even be beneficial for programs without genera-
tive access patterns, using dry-run benchmarks. In dry-run mode, the Celerity
runtime system performs all the scheduling and command generation work of a

22 P. Thoman and P. Salzmann

Fig. 4. Per-iteration time for 2D generative access microbenchmark; each line shows a
different horizon step setting S (or no Horizons), as indicated in the legend.

real program, but skips the execution of its kernels. This allows us to quickly
execute benchmarks on a large – simulated – number of nodes and observe the
impact of various optimizations and data structure choices on task and command
graph generation performance, without occupying a large-scale HPC cluster.

Finally, we show the impact of Horizons on a full run of a real-world appli-
cation in room response simulation, which exhibits a generative access pattern.

The hardware and software stack for the microbenchmarks and dry-run
benchmarks comprises a single node featuring an AMD Threadripper TR-2920X
CPU, running Ubuntu Linux 22.04. As the dry-run benchmarks need no addi-
tional hardware and are relatively quick to complete, 30 runs of each con-
figuration were performed and the median result is reported. The real-world
application benchmarks were performed on the Marconi-100 supercomputer2 at
CINECA in Bologna, Italy, with 5 runs each.

Microbenchmarks. Figure 4 shows the per-iteration time spent on command gen-
eration for a cluster of 512 GPUs, in a microbenchmark of a 2D generative access
pattern, with different Horizon configurations. Note that this plot is logarithmic
in the Y axis, to better capture the differences between the settings.

Without Horizons (the solid black line), the command generation overhead
grows with each iteration of the benchmark, as expected due to the growth
of dependencies outlined in Section 3. With a Horizon step size of 16, a drop
in overhead is seen for the first time in iteration 33, as the Horizon generated
after iteration 16 was applied in iteration 32. The same pattern is visible for
the smaller step sizes 4 and 2, but at a smaller scale. With step size 1, the
per-iteration time is almost entirely flat.

Figure 5 illustrates the total execution time (blue diamond, left axis) and
total time spent on horizon generation and application (green triangle, right
axis) of the same microbenchmark. Besides the remarkable decrease in the over-
all benchmark runtime due to Horizons, which matches the per-iteration results,
2 https://www.top500.org/system/179845/.

https://www.top500.org/system/179845/

Command Horizons 23

Fig. 5. Total times for 2D generative access microbenchmark.

the behaviour of the Horizon overhead is interesting: when generating a Horizon
every time step, the overhead is slightly higher, then it drops, but increases again
at S = 16. This result can be explained by the fact that, although Horizons are
generated far less frequently, the accumulated complexity in the data tracking
structure and command graph after 16 iterations makes Horizon generation sig-
nificantly more expensive. However, even in this case, the Horizon generation
overhead only amounts to a total of 12 ms over 256 iterations.

Overhead. For Horizons to provide a suitable solution for coalescing depen-
dencies in a general runtime system, they need to have no significant negative
performance impact in applications with non-generative access patterns. Figure
6 summarizes results for two such applications: WaveSim, a 2D stencil compu-
tation, and Nbody, an all-pairs N-body physics simulation.

In the WaveSim application, the overall impact of Horizons is negligible: the
total dry-run time varies by less than 3 ms with and without Horizon use and
with different step sizes, and less than 0.5 ms outside of the extreme Horizon
step size setting of S = 1. For the Nbody benchmark, there is a more notable
impact – although it is still minor compared to applications with generative
patterns. Two particular results stand out: the horizon overhead at step size 1,
and the fact that the introduction of Horizons has a positive overall performance

Fig. 6. Horizon impact and overhead for two non-generative applications. X-axis shows
Horizon use/step size.

24 P. Thoman and P. Salzmann

Fig. 7. Horizon impact on RSim application.

impact on the order of 7%. The former is explained by the particular structure
of this application, which has two different types of main compute kernels, one of
which features only a one-on-one read dependency that can be satisfied locally,
while the other requires all-to-all communication. With a Horizon step size of 1,
Horizons are inserted after the latter kernel, requiring a much larger number of
dependencies. The overall positive impact of Horizons can be explained by their
application being utilized to clean up various internal data structures, which can
be slightly beneficial even in non-generative cases.

Real-World Application. To confirm the data obtained using microbenchmark-
ing and dry-run experimentation, Fig. 7 shows the result of a strong scaling
experiment with the Celerity version of RSim [17], a room response simulation
application, over 1000 time steps. RSim computes the spread of a light impulse
through a 3D space modeled as a set of triangles. In each time step, the incident
light for each triangle depends on the radiosity of all other triangles visible from
it, at a point in time that depends on the spatial – and therefore also temporal
– distance between the two triangles. As such, the main computational kernel
of RSIM exhibits a generative access pattern in which subsequent time steps
depend on the per-element radiosity computed in prior time steps.

We compare the current default setting of the Celerity runtime system, Hori-
zon step size 2, with no Horizons. In the latter case, with 4 and more GPUs,
command generation overhead starts to dominate the overall simulation run
time. With Horizons, near-linear strong scaling is maintained up to 16 GPUs,
and strong scaling continues to 32 GPUs. The remaining drop from linear scal-
ing, particularly at 32 GPUs, is not caused by overhead in the runtime system.
Instead, it can be attributed to the fact that this is a strong scaling experiment
with per-timestep communication requirements.

5 Conclusion

In this paper, we have presented Command Horizons, an approach to limiting the
data tracking and command generation overhead in data-flow-driven distributed

Command Horizons 25

runtime systems with automatic communication, particularly in the presence of
generative data access patterns, while maintaining asynchronicity.

Based on their current implementation in the Celerity runtime system, we
have demonstrated that Horizons can be generated and applied very efficiently
and with low overhead in a variety of applications, and that they are effective
at capping command generation overhead at a stable level.

Horizons also have additional applications, e.g. in providing a consistent dis-
tributed state for decision making without requiring communication, which we
hope to explore in the future.

Acknowledgements. This project has received funding from the European High Per-
formance Computing Joint Undertaking, grant agreement No 956137.

References

1. Augonnet, C., Clet-Ortega, J., Thibault, S., Namyst, R.: Data-aware task schedul-
ing on multi-accelerator based platforms. In: 2010 IEEE 16th International Con-
ference on Parallel and Distributed Systems (2010)

2. Bauer, M., Treichler, S., Slaugther, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: 2012 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC). IEEE (2012)

3. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J.J.:
PaRSEC: exploiting heterogeneity to enhance scalability. Comput. Sci. Eng. 15(6),
36–45 (2013)

4. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: a generic distributed DAG engine for high performance computing.
In: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, pp. 1151–1158 (2011). ISSN 1530-2075

5. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

6. Copik, M., Kaiser, H.: Using SYCL as an implementation framework for HPX.
compute. In: Proceedings of the 5th International Workshop on OpenCL, pp. 1–7
(2017)

7. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett. 21(02), 173–193 (2011)

8. Ebcioglu, K., Saraswat, V., Sarkar, V.: X10: programming for hierarchical paral-
lelism and non-uniform data access. In: Proceedings of the International Workshop
on Language Runtimes, OOPSLA, vol. 30. Citeseer (2004)

9. Heller, T., Diehl, P., Byerly, Z., Biddiscombe, J., Kaiser, H.: HPX - an open source
C++ standard library for parallelism and concurrency. In: Proceedings of Open-
SuCo, vol. 5 (2017)

10. Knorr, F., Thoman, P., Fahringer, T.: Declarative data flow in a graph-based dis-
tributed memory runtime system. In: International Symposium on High-Level Par-
allel Programming and Applications (HLPP 2022) (2022)

11. Kumar, S.: Scheduling of dense linear algebra kernels on heterogeneous resources.
Ph.D. thesis, Université de Bordeaux (2017)

12. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
Version 3.1 (2015)

26 P. Thoman and P. Salzmann

13. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: a high-
productivity programming language for HPC with logical regions. In: SC 2015:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–12 (2015). ISSN 2167-4337

14. The Khronos Group: SYCL Specification, Version 2020 Revision 5 (2022)
15. Thibault, S.: On runtime systems for task-based programming on heterogeneous

platforms. Thesis, Université de Bordeaux (2018)
16. Thoman, P., Salzmann, P., Cosenza, B., Fahringer, T.: Celerity: high-level C++ for

accelerator clusters. In: Yahyapour, R. (ed.) Euro-Par 2019. LNCS, vol. 11725, pp.
291–303. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29400-7 21

17. Thoman, P., Wippler, M., Hranitzky, R., Gschwandtner, P., Fahringer, T.: Multi-
GPU room response simulation with hardware raytracing. Concurr. Comput.
Pract. Exp. 34(4), e6663 (2022)

https://doi.org/10.1007/978-3-030-29400-7_21

Shared Memory Parallelism in Modern
C++ and HPX

Patrick Diehl1,2(B) , Steven R. Brandt1, and Hartmut Kaiser1

1 Center of Computation and Technology, Louisiana State University,
Baton Rouge, USA

{pdiehl,sbrandt,hkaiser}@cct.lsu.edu
2 Department of Physics and Astronomy, Louisiana State University,

Baton Rouge, USA

Abstract. Parallel programming remains a daunting challenge, from
the struggle to express a parallel algorithm without cluttering the under-
lying synchronous logic, to describing which devices to employ in a cal-
culation, to correctness. Over the years, numerous solutions have arisen,
many of them requiring new programming languages, extensions to pro-
gramming languages, or the addition of pragmas. Support for these vari-
ous tools and extensions is available to a varying degree. In recent years,
the C++ standards committee has worked to refine the language features
and libraries needed to support parallel programming on a single compu-
tational node. Eventually, all major vendors and compilers will provide
robust and performant implementations of these standards. Until then,
the HPX library and runtime provides cutting edge implementations of
the standards, as well as proposed standards and extensions. Because of
these advances, it is now possible to write high performance parallel code
without custom extensions to C++. We provide an overview of modern
parallel programming in C++, describing the language and library fea-
tures, and providing brief examples of how to use them.

Keywords: C++ · HPX · parallel libraries and programming language
standards · Parallelism

1 Introduction

Parallel programming is an essential part of modern software development and
is supported in recent programming languages such as Julia or Rust. However,
in older languages such as C++, parallel programming features were not originally
included as language or library features. To address this omission, POSIX threads,
so-called pthreads, a C library, was created for the Unix operating system. The
application program interface (API) for pthreads was defined by the POSIX.1C
thread extension (IEEE Std 1003.1c-1995). However, with the C++ 11 standard
std::thread was added in C++ as a low level interface. At a higher abstraction
layer, std::async and std::future for asynchronous programming were added.
In addition, parallel programming utilities, such as smart pointers and lambda
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Diehl et al. (Eds.): WAMTA 2023, LNCS 13861, pp. 27–38, 2023.
https://doi.org/10.1007/978-3-031-32316-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32316-4_3&domain=pdf
http://orcid.org/0000-0003-3922-8419
http://orcid.org/0000-0002-8712-2806
https://doi.org/10.1007/978-3-031-32316-4_3

28 P. Diehl et al.

Fig. 1. timeline of the parallel features added to the C++ standard from the beginning
of std::thread with C++ 11 up to the most recent features of C++ 20.

functions, were added. With the C++ 14 standard, generic lambda functions and
shared mutexes were added as utilities. In the C++ 17 standard, parallel algorithms
were added. These features allow programmers most of the algorithms added to
the C++ 98 standard, e.g. std::sort or std::reduce, to be executed on mul-
tiple threads. With the C++ 23 standard, coroutines were added. The keywords
co_return, co_yield, and co_await added functionality to suspend and resume
functions. Also, in the C++ 23 standard, the ranges library was added, which can
be seen as the generalization and extension of the algorithm library. Finally, util-
ities such as semaphores, latch, and barrier were added. In the near future, it is
expected that std::async will become deprecated to be succeeded by the sender
and receiver library (which has yet to be accepted) (Fig. 1).

The C++ standard library for parallelism and concurrency (HPX) implements
all the latest features, both proposed and accepted in the C++ standard. In
addition, HPX provides extensions to the functionality of the standard, provid-
ing mechanisms for distributed parallel programming, alternative ways to create
asynchrony, and more.

What is HPX? HPX is an asynchronous many-task runtime system. HPX
employs light-weight (user-level) threads that are cooperatively scheduled on top
of operating system threads and performs context switches to enable blocked
threads to get back to work.

For more details about HPX, we refer to Sect. 3. Because HPX conforms to the
C++ standard, any conforming C++ code can be easily converted to HPX code by
changing some headers and namespaces. To conclude, while parallelism is included
in the C++ standard and no external libraries or language extensions are needed,
HPX provides a reliable way to stay on the cutting edge of the standard.

In this paper, we will introduce asynchronous programming, parallel algo-
rithms, and coroutines, senders and receivers (see P2300), and compare the perfor-
mance between (standard) C++ using operating systems threads and HPX using
light-weight threads. Finally, we will discuss the benefits of each approach.

2 RelatedWork

In the past, parallelism in C++ was usually achieved by using the OpenMP and
Cilk as language extensions; Intel Thread Building Blocks (TBB), Microsoft Par-

Shared Memory Parallelism in Modern C++ and HPX 29

allel Patterns Library (PPL) provided access to parallelism through libraries.
More recently, Kokkos [3] has provided a library interface to both parallel and
heterogeneous computing. While all these approaches have different advantages,
they also have different interfaces and none of them are part of the C++ standard.
Conforming to the standard might mean that future versions of a conforming code
compile and run more reliably, and is one important consideration among many
in constructing a new parallel program or adding parallelism to an existing code.

Another longtime player in the asynchronous many-thread library arena is
Charm++ [6]. Like HPX, Charm++ also provides facilities for distributed pro-
gramming (for which, at present, the C++ provides no standard). For a comparison
of Charm++ and HPX with OpenMP and MPI (a widely accepted standard for dis-
tributed parallel programming) using Task Bench, we refer to [10]. Other notable
AMTS are: Chapel [1], X10 [2], and UPC++ [12]. For a more detailed comparison
of AMTs, we refer to [9].

3 HPX

HPX [5] is an Asynchronous Many-task Runtime System (AMT) that exposes
an ISO C++ standards conforming API for shared memory parallel program-
ming, and extenions to that API library that enable distributed computing. This
API enables asynchronous parallel programming through futures, senders and
receivers, channels, and other synchronization primitives. This API also eases the
burden on a new programmer while learning how to use HPX. It also guaran-
tees application portability in terms of code and performance. HPX employs a
user-level threading system that provides a means to fully exploit available par-
allel resources through fine-grain parallelism on a wide variety of contemporary
and emerging high-performance computing architectures. HPX makes it possi-
ble to create scalable parallel applications that expose excellent parallel efficiency
and high resource utilization. HPX’s asynchronous programming model enables
intrinsic overlapping of computation and communication, prefers moving work to
data over moving data to work, and does so while exposing minimal overheads.

In the context of this paper, we focus on assessing the performance of HPX’s
implementation of futures and parallel algorithms as mandated by the C++ 17, 20,
and 23 standards.

4 Approaches

To showcase the various approaches to shared memory parallelism, we will imple-
ment the Taylor series for the natural logarithm in parallel. The Maclaurin series
for the natural logarithm ln with the basis e reads as

ln(1 + x) =
∞∑

n=1

(−1)n+1x
n

n
= x − x2

2
+

x3

3
− . . . ,with |x| < 1. (1)

30 P. Diehl et al.

For simplicity we will omit the main method and all headers from the code exam-
ples. However, we will mention the specific headers in the text, and we provide the
complete code for all examples on GitHub R©.

4.1 Futures and Futurization

The current abstractions for parallel programming in C++ are low-level threads
std::thread, std::async, and std::future. However, in a future C++ stan-
dard, it is expected that some of these facilities will become deprecated and will
be replaced by sender and receivers. HPX, however, will continue to support an
extended version of futures which share many of the capabilities of senders and
receivers, including a then() method, a when all() method, executors, and so
on.

Futures represent a proxy for a result that may not yet be computed and pro-
vide a relatively intuitive way to express asynchronous computations. The C++
standard allows programmers to retrieve the value of futures using the get()
method, but HPX allows programmers to attach a continuation to the future

using the then(std::function<T>) method. This capability, combined with a
when_all() method for waiting for future groups, makes it possible to write asyn-
chronous subroutines and algorithms that never block. This is an important con-
sideration for libraries which rely on a pool of workers to carry out parallel com-
putations. Blocking one or more of them might lead not only to slower code, but
also blocked code. Routines that are rewritten in this way to run in parallel but
without calling get() are said to be futurized. As of this writing, futurized code
is only possible with HPX, and not with the C++ standard.

Listing 1.1 shows the implementation. The amount of work is divided into
num_threads of partitions with the size partition_size. In Line 14, a lambda
function is launched to act on each chunk of work asynchronously and an hpx::
future<double> is returned. Note that we do not need to wait for the lambda
function to be finished, and the for loop proceeds. This happens because the hpx
::future is a placeholder for the result of the lambda function, freeing us from
the need to wait for it to be computed. In Line 29 a barrier is introduced to collect
the partial results using hpx::when_all. Here, the HPX runtime waits until all
futures are ready, which means that the computation in the lambda function has
finished. In Line 30 we specify which lambda function is called. We use the .get()
function to collect all the partial results. Note that if the result is not ready, HPX
would wait here for the result to be ready. However, due to the hpx::when_all all
results are ready. In Line 36, we need to call .get() since hpx::when_all returns
a future for integration in the asynchronous dependency graph.

Listing 1.1. Parallel implementation of the natural logarithm using hpx::async and
hpx::future.

1 double run(size_t n, size_t num_threads , double x) {

2 std::vector <double > parts(n);

3 std::iota(parts.begin (), parts.end(), 1);

4

Shared Memory Parallelism in Modern C++ and HPX 31

5 size_t partition_size = n / num_threads;

6

7 std::vector <hpx::future <double >> futures;

8 for (size_t i = 0; i < num_threads; i++) {

9 size_t begin = i * partition_size;

10 size_t end = (i + 1) * partition_size;

11 if (i == num_threads - 1) end = n;

12

13 hpx::future <double > f = hpx::async(

14 [begin , end , x, &parts]() -> double {

15 std:: for_each(parts.begin () + begin ,

16 parts.begin () + end , [x](double& e) {

17 e = std::pow(-1.0, e + 1) * std::pow(x, e) / (e);

18 });

19

20 return hpx:: reduce(parts.begin () + begin ,

21 parts.begin () + end , 0.);

22 });

23

24 futures.push_back(std::move(f));

25 }

26

27 double result = 0;

28

29 hpx:: when_all(futures)

30 .then ([&](auto&& f) {

31 auto futures = f.get();

32

33 for (size_t i = 0; i < futures.size(); i++)

34 result += futures[i].get();

35 })

36 .get();

37

38 return result;

39 }

4.2 Coroutines

With C++ 20 coroutines, functions that can be suspended and resumed were
added. The three following return types are available for coroutines: co_return
which is similar to return, but the function is suspended; co_yield returns the
expression to the caller and suspends the current coroutine; and co_await which
suspends the coroutine and returns the control to the caller.

A coroutine version of Listing 1.1 can be found in Listing 1.2 In Line 5 of
Listing 1.2 we define the function run as our coroutine by having it return an
hpx::future. Next, we copied the code from Listing 1.1 for the evaluation of the
Taylor series, however, we changed three lines to use the new coroutine features.
First, in Line 33, we use co_await while we wait for all futures. Second, in Line 36,

32 P. Diehl et al.

we use co_await to collect the partial results of all futures. Note in Listing 1.1, we
had to call .get() here to wait for the futures. Third, in Line 36, we call co_return
at the end of our coroutine. Note that internally HPX will call .get() where we
use co_await, so the code is easier to read but will not run faster.

Listing 1.2. Example for the computation of the Taylor series for the natural logarithm
using HPX’s futures and coroutines.

1 #include <coroutine >

2

3 hpx::future <double > run(size_t n,

4 size_t num_threads ,

5 double x) {

6 std::vector <double > parts(n);

7 std::iota(parts.begin (), parts.end(), 1);

8

9 size_t partition_size = n / num_threads;

10

11 std::vector <hpx::future <double >> futures;

12 for (size_t i = 0; i < num_threads; i++) {

13 size_t begin = i * partition_size;

14 size_t end = (i + 1) * partition_size;

15 if (i == num_threads - 1) end = n;

16

17 hpx::future <double > f = hpx::async(

18 [begin , end , x, &parts]() -> double {

19 std:: for_each(parts.begin () + begin ,

20 parts.begin () + end , [x](double& e) {

21 e = std::pow(-1.0, e + 1) * std::pow(x, e) / (e);

22 });

23

24 return hpx:: reduce(parts.begin() + begin ,

25 parts.begin() + end , 0.);

26 });

27

28 futures.push_back(std::move(f));

29 }

30

31 double result = 0;

32

33 auto futures2 = co_await hpx:: when_all(futures);

34

35 for (size_t i = 0; i < futures2.size(); i++)

36 result += co_await futures2[i];

37

38 co_return result;

39 }

Shared Memory Parallelism in Modern C++ and HPX 33

4.3 Parallel Algorithms

The algorithms within the C++ standard library introduced with the C++ 98 stan-
dard were extended with parallel execution in the C++ 17 standard. Listing 1.3
shows the complete code. In Line 14 we use the algorithm std::for_each to iter-
ate over each element of the std::vector to evaluate the value x of the Taylor
series. In Line 20 the algorithm std::reduce is used to compute the sum of all
evaluations. Note that the only difference between the C++ 98 standard is the first
argument of both algorithms, the execution policy. The following execution poli-
cies in the header #include <execution> are currently available:

– std::execution::par: The algorithm is executed in parallel using multiple
operating system threads.

– std::execution::seq: The algorithm is executed in parallel using one oper-
ating system thread.

– std::execution::par_unseq: The algorithm is executed in parallel using
multiple operating system threads and vectorization for additional optimiza-
tions.

Note that this is still an experimental feature and, as of this writing, only the
GNU compiler collection (GCC) ≥ 9 and Microsoft Visual C++ compiler ≥ 15.7
support this feature. Intel’s One API compiler uses Thread Building Blocks (TBB)
to implement this feature.

Listing 1.3. Implementation of the Taylor series of the natural logarithm using C++
parallel algorithms.

1 #include <iostream >

2 #include <future >

3 #include <vector >

4 #include <algorithm >

5 #include <numeric >

6 #include <execution >

7 #include <cmath >

8 double run(size_t n, size_t num_threads , double x) {

9 std::vector <double > parts(n);

10 std::iota(parts.begin (), parts.end(), 1);

11

12 std:: for_each(std:: execution ::par ,

13 parts.begin (),

14 parts.end(), [x](double& e) {

15 e = std::pow(-1.0, e + 1) * std::pow(x, e) / (e);

16 });

17

18 double result = std:: reduce(std:: execution ::par ,

19 parts.begin (),

20 parts.end(), 0.);

21 return result;

22 }

34 P. Diehl et al.

The same functionality for execution of parallel algorithms is available within
HPX. However, HPX extends the current features available in the C++ 17 stan-
dard, allowing execution policies with chunk sizes to specify the amount of each
thread is operates on at once. The following chunk sizes are available:

– hpx::execution::static_chunk_size: The container elements are divided
into pieces of given size and then assigned to the threads.

– hpx::execution::auto_chunk_size: Chunk size is determined after 1% of
the total container elements were executed.

– hpx::execution::dynamic_chunk_size: Dynamically scheduled among the
threads and if one thread is done it gets dynamically assigned a new chunk.

For details about the effect of chunk sizes on performance, we refer to [4]. A
machine learning approach to determining chunk size is presented here [7,8]. With
respect to vectorization, HPX provides the execution policy hpx::execution::
simd to execute the algorithm using vectorization. In addition, HPX provides a
combined execution policy hpx::execution::par_simd to combine parallelism
and vectorization. Here, std::experimental:simd [11], Vc, and Eve are possi-
ble backends. Furthermore, HPX’s parallel algorithms can be combined with the
asynchronous programming. Here, an hpx::future is returned and can be inte-
grated into HPX’s asynchronous execution graph.

Listing 1.4 shows the usage of the chunk size feature. In Line 4 a static chunk
size of ten is defined and passed to the hpx::for_each in Line 9 by using .with()
. In Line 12 the parallel algorithm hpx::reduce is wrapped into a future, which
can be integrated within HPX’s asynchronous dependency graph.

Listing 1.4. Implementation of the Taylor series of the natural logarithm using parallel
algorithms.

1 #include <hpx/execution/executors/static_chunk_size.hpp >

2

3 double run(size_t n, size_t num_threads , double x) {

4 hpx :: execution :: static_chunk_size scs (10);

5 std::vector <double > parts(n);

6 std::iota(parts.begin(), parts.end(), 1);

7 hpx:: for_each(

8 hpx:: execution ::par.with(scs),

9 parts.begin (), parts.end(),

10 [x](double& e) { e = std::pow(-1.0, e + 1) * std

::pow(x, e) / (e); });

11

12 hpx::future <double > f =

13 hpx:: reduce(hpx:: execution ::par(hpx:: execution ::

task),

14 parts.begin (), parts.end(), 0.);

15 return f.get();

16 }

17

18 int main() {

Shared Memory Parallelism in Modern C++ and HPX 35

19 int n = 1000;

20 double x = .1;

21 double result = run(n,10,x);

22 std::cout << "Result�is:�" << result << std::endl;

23 std::cout << "Difference�of�Taylor�and�C\texttt {++}�

result�"

24 << result - std::log1p(x) << "�after�"

25 << n << "�iterations." << std::endl;

26 }

4.4 Senders and Receivers

A new framework for writing parallel codes is currently being debated by the C++
standards committee: senders and receivers. One of the goals of this framework is
to make it easier to execute codes on heterogeneous devices. The various devices
are expressed as schedulers. In principle, these could be GPUs, different NUMA
domains, or arbitrary groups of cores.

Each step of a calculation is expressed as a sender. Senders are typically
chained together using the pipe operator in analogy to the bash shell. Values, error
conditions (exceptions), as well as requests to stop a computation can be carried
through the pipeline.

By default, building the pipeline does nothing. Execution begins only when
ensure_started(), sync_wait(), or start_detached() is called.

Receivers are usually implicit, hidden in the call to sync_wait() at the end.
We note that this proposal was not accepted into the C++ 23 standard, partly

because it was proposed too close to the deadline. It may also need further devel-
opment. In our experiments writing short codes to use senders and receivers, we
attempted to write a recursive fibonacci routine which took a sender as input and
produced a sender as output and did not itself call sync_wait() to get the result.
In order to write it, we needed to make use of then any_sender<T> class provided
in the HPX implementation but not specified in the standard. Whether additions
of this kind turn out to be necessary, or whether the proposal itself will ultimately
be accepted, remains for the committee to decide.

Listing 1.5. Implementation of the Taylor series of the natural logarithm using sender
and receivers.

1 #include <hpx/execution.hpp >

2 #include <hpx/execution/algorithms/sync_wait.hpp >

3 #include <hpx/execution_base/sender.hpp >

4

5 using namespace hpx:: execution :: experimental;

6

7 template <typename T> concept sender = is_sender_v <T>;

8

9 namespace tt = hpx:: this_thread :: experimental;

10

11 double run(size_t n, size_t num_threads , double x) {

36 P. Diehl et al.

12 thread_pool_scheduler sch {};

13

14 size_t partition_size = n/num_threads;

15 std::vector <double > partial_results(partition_size);

16

17 sender auto s = schedule(sch) |

18 bulk(num_threads , [&](auto i) {

19 size_t begin = i * partition_size;

20 size_t end = (i + 1) * partition_size;

21 if (i == num_threads - 1) end = n;

22 double partial_sum = 0;

23 for(int i=begin; i <= end; i++) {

24 double e = i+1;

25 double term = std::pow(-1.0, e+1) * std::pow(x, e

)/e;

26 partial_sum += term;

27 }

28 partial_results[i] = partial_sum;

29 }) | then ([&]() {

30 double sum = 0;

31 for(int i=0;i<partition_size;i++)

32 sum += partial_results[i];

33 return sum;

34 });

35 auto result = hpx::get <0>(*tt:: sync_wait(std::move(s)))

;

36 return result;

37 }

38

39 int main() {

40 double x = .1;

41 double r = run (10000 ,10 ,x);

42 double a = log (1+x);

43 std::cout << "r=" << r << "� " << a<< " => " << fabs(r-a) <<
std::endl;

5 Performance Comparison

For performance measurements on different CPUs, we compiled all examples using
gcc 12.1.0 for Arm, using gcc 9.2.0 for AMD and Intel. HPX 1.8.1 was compiled
with the following dependencies: boost 1.78.0, hwloc 2.2.0, and jemalloc 5.2.0.

Figure 2 shows the performance obtained for all four of the programming mech-
anisms presented in this paper for ARM A64FX, AMD EPYC

TM
7543, and Intel R©

Xeon R© Gold 6140, respectively. To create an artificial work load, we computed the
Taylor series in Eq. (1) for n = 1000 000 000. We used perf on the Intel CPU to
obtain the floating point operations of 1 00 000 028 581 on a single core. For futures
using std::future and hpx::future (a), we see that on Arm both implementa-
tions perform the same. A similar behavior is obtained for Intel. However, on AMD

Shared Memory Parallelism in Modern C++ and HPX 37

Fig. 2. The obtained performance for two concepts for ARM A64FX, AMD EPYC
TM

7543, and IntelR© XeonR© Gold 6140, respectively. Futurization using std::future and
hpx::future (a) and HPX’s parallel algorithm using hpx::for_each (b). On Arm64FX
coroutines and sender & receiver were tested (c). To create a artificially work load, we
computed the Taylor series in Eq. (1) for n = 1000 000 000 andmeasured 100 000 028 581
floating point operations using perf on a single Intel core.

hpx::future performs better. Here, the overhead of using HPX is negligible. For
more details on the overheads of HPX and Charm++, we refer to [10]. For HPX’s
parallel algorithms using hpx::for_each (b), AMD performed better as Intel and
Arm is around one order of magnitude slower. Coroutines and sender and receiver
were not tested on AMD and Intel since the gcc compiler was too old on the clus-
ter. However, the results on Arm64FX are shown in (c). For the two more recent
C++ features, the performance is one order of magnitude slower on Arm than on
the two others architectures. Senders and receivers showed the best performance
on Arm, however, one should not draw the conclusion that this paradigm is inher-
ently faster from this test.

6 Conclusion

We have shown that Modern C++, through its standard libraries and language fea-
tures, provides a full and expressive shared memory parallel programming infras-
tructure for a single node. Therefore, no external libraries or language exten-
sions are necessary to write high-quality parallel C++ applications. We sketched
an example of how to use futures, coroutines, and parallel algorithms in the cur-
rent C++ standard based on a Taylor series code. Furthermore, we provided an
introduction to senders and receivers, a framework which might be available in
a future C++ standard. For most of these programming mechanisms, we show-
cased the implementation using the C++ Standard Library using system threads
and using the C++ library for concurrency and parallelism (HPX). We did this
because HPX provides a cutting-edge implementation of the parallel library pro-
posals being considered by the C++ standards committee.

A performance comparison on a Intel R© CPU, AMD CPU, and ARM R© A64FX
demonstrates that the proposed parallel programming mechanisms do achieve
portability of performance without code changes.

38 P. Diehl et al.

SupplementaryMaterials

The code for all examples is available on GitHub R©1 or Zenodo
TM2, respectively.

Acknowledgments. The authors would like to thank Stony Brook Research Comput-
ing and Cyberinfrastructure, and the Institute for Advanced Computational Science
at Stony Brook University for access to the innovative high-performance Ookami com-
puting system, which was made possible by a $5M National Science Foundation grant
(#1927880).

References

1. Chamberlain, B.L., et al.: Parallel programmability and the chapel language. Int.
J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

2. Ebcioglu, K., et al.: X10: programming for hierarchical parallelism and non-uniform
data access. In: Proceedings of the International Workshop on Language Runtimes,
OOPSLA, vol. 30. Citeseer (2004)

3. Edwards, H.C., et al.: Kokkos: enabling manycore performance portability through
polymorphic memory access patterns. J. Parallel Distrib. Comput. 74(12), 3202–
3216 (2014)

4. Grubel, P., et al.: The performance implication of task size for applications on the
HPX runtime system. In: 2015 IEEE International Conference on Cluster Comput-
ing, pp. 682–689. IEEE (2015)

5. Kaiser, H., et al.: HPX - the C++ standard library for parallelism and concurrency.
J. Open Source Softw. 5(53), 2352 (2020)

6. Kale, L.V., Krishnan, S.: Charm++ a portable concurrent object oriented sys-
tem based on C++. In: Proceedings of the Eighth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, pp. 91–108 (1993)

7. Khatami, Z., et al.: HPX smart executors. In: Proceedings of the Third International
Workshop on Extreme Scale Programming Models and Middleware, pp. 1–8 (2017)

8. Shirzad, S., et al.: Scheduling optimization of parallel linear algebra algorithms
using supervised learning. In: 2019 IEEE/ACM Workshop on Machine Learning in
High Performance Computing Environments (MLHPC), pp. 31–43. IEEE (2019)

9. Thoman, P., et al.: A taxonomy of task-based parallel programming technologies for
high-performance computing. J. Supercomput. 74(4), 1422–1434 (2018). https://
doi.org/10.1007/s11227-018-2238-4

10. Wu, N., et al.: Quantifying Overheads in Charm++ and HPX using Task Bench
(2022). https://doi.org/10.48550/ARXIV.2207.12127

11. Yadav, S., et al.: Parallel SIMD - a policy based solution for free speed-up using C++
data-parallel types. In: 2021 IEEE/ACM 6th International Workshop on Extreme
Scale Programming Models and Middleware (ESPM2), pp. 20–29 (2021)

12. Zheng, Y., et al.: UPC++: a PGAS extension for C++. In: 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium, pp. 1105–1114. IEEE (2014)

1 https://github.com/STEllAR-GROUP/parallelnumericalintegration.
2 https://zenodo.org/record/7515618.

https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.48550/ARXIV.2207.12127
https://github.com/STEllAR-GROUP/parallelnumericalintegration
https://zenodo.org/record/7515618

Framework for Extensible, Asynchronous
Task Scheduling (FEATS) in Fortran

Brad Richardson1(B) , Damian Rouson1,2 , Harris Snyder1 ,
and Robert Singleterry3

1 Archaeologic Inc., Oakland, CA, USA
{brad,damian,harris}@archaeologic.codes

2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
rouson@lbl.gov

3 NASA Langley Research Center, Hampton, VA, USA
robert.c.singleterry@nasa.gov

https://archaeologic.codes, https://www.lbl.gov,

https://www.nasa.gov/langley

Abstract. Most parallel scientific programs contain compiler directives
(pragmas) such as those from OpenMP [1], explicit calls to runtime
library procedures such as those implementing the Message Passing Inter-
face (MPI) [2], or compiler-specific language extensions such as those pro-
vided by CUDA [3]. By contrast, the recent Fortran standards empower
developers to express parallel algorithms without directly referencing
lower-level parallel programming models [4,5]. Fortran’s parallel fea-
tures place the language within the Partitioned Global Address Space
(PGAS) class of programming models. When writing programs that
exploit data-parallelism, application developers often find it straightfor-
ward to develop custom parallel algorithms. Problems involving complex,
heterogeneous, staged calculations, however, pose much greater chal-
lenges. Such applications require careful coordination of tasks in a man-
ner that respects dependencies prescribed by a directed acyclic graph.
When rolling one’s own solution proves difficult, extending a customiz-
able framework becomes attractive. The paper presents the design, imple-
mentation, and use of the Framework for Extensible Asynchronous Task
Scheduling (FEATS), which we believe to be the first task-scheduling
tool written in modern Fortran. We describe the benefits and compro-
mises associated with choosing Fortran as the implementation language,
and we propose ways in which future Fortran standards can best support
the use case in this paper.

Keywords: Modern Fortran · Task Scheduling · Framework · coarray

1 Introduction

Modern computing hardware has evolved to offer a variety of opportunities to
exploit parallelism for high performance – including multicore processors with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Diehl et al. (Eds.): WAMTA 2023, LNCS 13861, pp. 39–51, 2023.
https://doi.org/10.1007/978-3-031-32316-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32316-4_4&domain=pdf
http://orcid.org/0000-0002-3205-2169
http://orcid.org/0000-0002-2344-868X
http://orcid.org/0000-0002-2983-4514
http://orcid.org/0000-0002-5725-8825
https://doi.org/10.1007/978-3-031-32316-4_4

40 B. Richardson et al.

vector units, superscalar pipelines, and embedded or off-chip graphics processing
units. Exploiting the abundance of opportunities for parallel execution requires
searching for a variety of forms of parallelism. Chief among the common parallel
programming patterns are data parallelism and task parallelism [6]. Parallel pro-
gramming languages have evolved native features that support data parallelism.
In Fortran 2018, for example, such features include giving the programmer the
ability to define teams (hierarchical sets) of images (processes) that execute
asynchronously with each image having one-sided access to other team mem-
bers’ local portions of “coarray” distributed data structures [4]. These features
have now seen use in production codes running at scale for simulating systems
ranging from weather [7] and climate [8] to plasma fusion [9].

By contrast, task parallelism generally proves much more challenging for
application developers to exploit without deep prior experience in parallel pro-
gramming. Although data parallelism maps straightforwardly onto a bulk syn-
chronous programming model in which periods of computation are interspersed
with periods of communication followed by barrier synchronization, efficient exe-
cution of independent tasks generally requires asynchronous execution with more
loose forms of coordination such as semaphores. To wit, it takes roughly 15 source
lines of code to implement a bulk synchronous “Hello, world!” program using
Fortran’s barrier synchronization mechanism, the sync all statement; whereas
it takes more than three times as many lines to write a similar, asynchronous
program taking advantage of Fortran’s event_type derived type, the language’s
mechanism supporting semaphores [10].

A central challenge in writing asynchronous code to coordinate tasks centers
around task parallelism’s more irregular execution and communication patterns.
Whereas partial differential equation solvers running in a data parallel manner
typically involve a predictable set of halo data exchanges between grid partitions
at every time step, task parallelism generally enjoys no such regular communica-
tion pattern. Programmers generally represent task ordering requirements in a
Directed Acyclic Graph (DAG) of task dependencies [11]. Tasks can execute in
any order that respects the DAG. Moreover, the DAG can change considerably
from one problem to the next and even from one execution to the next. For
example, a DAG describing the steps for building a software package will vary
over the life of the software as internal and external dependencies change.

Writing code to handle the level of flexibility needed efficiently is daunting
for most application developers, which makes the use of a task-scheduling frame-
work attractive. Fortran programmers face the additional challenge that the
task scheduling frameworks of which the authors are aware are written in other
programming languages such as C++ [12] and UPC++ [13]or target specific
domains such as linear algebra [14]. FEATS aims to support standard Fortran
2018 with a standard Fortran 2018 framework and is unique in these aspects.

Rumors of Fortran’s demise are greatly exaggerated. Despite longstanding
calls for Fortran’s retirement [15] and descriptions of Fortran as an “infantile
disorder,” [16] the world’s first widely used high-level programming language
continues to see important and significant use. Fortran is arguably enjoying a
renaissance characterized by a growing list of new compiler projects over the

Framework for Extensible, Asynchronous Task Scheduling (FEATS) 41

past several years and a burgeoning community of developers at all career stages
writing new libraries [17], including some in very non-traditional areas such as
package management [18]. The National Energy Research Scientific Computing
Center (NERSC) used system monitoring of runtime library usage to determine
that approximately 70% of projects use Fortran [19] and found that the vast
majority of projects use MPI.

In MPI, the most advanced way to achieve the aforementioned requirements
of loosely coordinated, high levels of asynchronous execution required for efficient
task scheduling involves the use of the one-sided MPI_Put and MPI_Get functions
introduced in MPI-3. In the authors’ experience, however, the overwhelming
majority of parallel MPI applications use MPI’s older two-sided communication
features, such as the non-blocking MPI_ISend and MPI_IRecv functions partly
due to the challenges of writing one-sided MPI. Our choice to write and support
Fortran’s native coarray communication mechanism enables us to take advantage
of the one-sided MPI built into some compiler’s parallel runtime libraries, e.g.,
in the OpenCoarrays [20] runtime used by gfortran, or whatever communica-
tion substrate a given compiler offeror chooses to best suit particular hardware.
Moreover, this choice implies that switching from one communication substrate
to another might require no more than switching compilers or even swapping
compiler flags and ultimately empowers scientists and engineers to focus more
on the application’s science and engineering and less on the computer science.

2 Implementation

FEATS itself consists of eight Fortran modules. Before they can be described,
there is one key upstream dependency which must be noted: dag, a sepa-
rate library for manipulating directed acyclic graphs in Fortran. Using dag,
directed acyclic graphs can be assembled directly in Fortran code, or as a JSON
(JavaScript Object Notation) file which is read at run time. FEATS leverages
the dag library to store the graph of tasks to be executed.

FEATS is designed around the use of Fortran coarrays to provide distributed
multiprocessing and data exchange between application images. FEATS auto-
matically assigns the first image to be the “scheduler” image, responsible for
tracking what work has been completed and which tasks can be executed next
based on the task dependency graph, and assigning work to the other (“com-
pute”) images. The image m module provides an image t derived type, which
encapsulates the data required for the operation of an image and exposes a single
“run” procedure. That run function is given an application t object (provided
in the module application m), which stores a list of task objects (described
below) and a dag graph, which describes the dependencies between tasks.

Tasks in FEATS are represented as objects. FEATS provides an abstract
derived type task t, which the user should extend in their own derived type
definition, and provide the necessary “execute” function required to complete
the task. This design is convenient for the user, but a side-effect is that the tasks
will be of different types (granted, with a common base type). Since Fortran does

42 B. Richardson et al.

not allow an array to be created where the elements of the array have different
types, it was necessary to create a wrapper type, task item t, which stores a
class(task t) as an allocatable member. With this wrapper type, an array of
task item t values can be created and stored. While an implementation detail,
in general, a user will not have to interact with task item t in order to simply
use FEATS.

Tasks have inputs and outputs, so there must be some mechanism by which
to transmit those inputs and outputs between images. This transmission is done
using coarrays, though it should be noted that all image control and coarray
code is internal to the FEATS library, meaning that the user need not directly
deal with any details related to parallel programming, or even understand coar-
rays. The “execute” function of each task type can accept and return payload t
objects, which encode task inputs and outputs. Different tasks will of course
have different input and output types based on their purpose, which brings up
another difficulty of implementing FEATS as a library. Since the library code
cannot know the details of different tasks’ input and output types, it must rep-
resent these payloads in some generic way so that it can be transmitted between
images. FEATS solves the problem by storing payloads as an array of integers
(just a string of bytes in memory), and the user must use the Fortran transfer
statement to serialize their data into and out of payloads. This serialization does
come with some caveats; the user needs to ensure that the types they use as pay-
loads can be serialized and deserialized safely (for example, a simple derived type
with inline elements will work correctly, whereas one with pointers and allocat-
able components likely will not). Although arguably an aesthetically “inelegant”
approach, the authors see it as an acceptable engineering tradeoff in the interest
of generality.

The mailbox m module contains the actual payload coarrays used for data
exchange, and the final task m module contains a task type that serves as a
signal to the compute images that all work has been completed. Both of these
modules are implementation details, and the user never needs to interact with
them directly.

The final module constituting FEATS is feats result map m. Tasks, partic-
ularly ones at the graph’s terminal nodes, may have outputs which the user
wants to access after the whole graph has been processed. The aim of the
feats result map m module is to offer a derived type that tracks which image
has the results from terminal nodes in the graph. As of this writing, implemen-
tation of the type has not yet been completed. Implementation of such a type
should be fairly straightforward, and we plan to add it.

3 Advantages, Disadvantages, and Examples

This section discusses how the features of Fortran enable/support the develop-
ment of FEATS, and aspects of the language that currently serve as impediments
to the desired features of the framework.

Framework for Extensible, Asynchronous Task Scheduling (FEATS) 43

3.1 Advantages

There are several features of the modern Fortran language that make it a natural
fit for implementing a task scheduling framework. Several aspects have featured
prominently in the implementation, but in this section we will discuss what
makes them beneficial for implementing a task scheduling framework.

Coarrays and Events. The fundamental problem of task scheduling requires
methods of communicating data between tasks, and coordinating the execution
of those tasks to enforce prerequisite tasks are completed before subsequent tasks
begin. The coarray feature of Fortran provides a simple and effective method of
performing one-sided communication between the scheduler and executor images
to facilitate data transfer between tasks. While other languages and libraries
have methods of communicating data between processes, they often require two-
sided operations (i.e. both processes must participate in the communication),
require calls to external library procedures, or require significant expertise to
use correctly. Having the communication facilities as a native feature of the
language simplifies the syntax and implementation complexities and reduces the
number of external dependencies.

Although other language and library communication methods are generally
sufficient for implementing coordination mechanisms, doing so manually requires
a high level of expertise and adds complexity to the implementation. Having
a native feature of the language explicitly designed for the purposes of coor-
dination, namely event types, again simplifies the syntax and implementation
complexities and reduces the number of external dependencies.

Teams. Although there may be task scheduling algorithms that do not require a
reserved process to act as a scheduler, these algorithms generally come at the cost
of increased overhead in terms of coordination and complexity of implementa-
tion. However, having a dedicated scheduler can introduce a communication and
coordination bottleneck in cases of large tasks graphs being executed by large
numbers of processes. While we have not yet implemented it, the teams feature
of Fortran allows for a simple and natural partitioning of processes such that
multiple schedulers can coordinate with segments of executor images operating
on partitions of the task graph.

Polymorphism. Although it may be possible to implement a task-scheduling
framework without polymorphism, it would require implementation of a pre-
determined set of possible task interfaces, which would likely be limiting for
potential users. By making use of abstract type definitions and type-extension,
and defining a generic interface for a task, the procedure of defining a task and
including it in a graph becomes a natural process for users, with help from the
compiler in enforcing that they have done so properly. The process of defining
new tasks involves creating a new derived type which extends from the frame-
work’s task t type and providing an implementation for the run procedure.
A task can then be created by instantiating an object of this new type, to be
included in the dependency graph.

44 B. Richardson et al.

Fortran’s History. Fortran’s long history of use in scientific computing means
that there are likely a large number of applications that could benefit from a
Fortran-specific task scheduling framework. We have already identified a poten-
tial target application in NASA’s OLTARIS [21], space radiation shielding soft-
ware. Other prime target applications are those which perform a series of differ-
ent, but long running calculations, or those which perform parallel calculations
(or easily could), but which experience load balancing issues.

3.2 Disadvantages

There are some ways in which the Fortran language lacks some important fea-
tures that would allow for an even better implementation. We will discuss these
shortcomings and the ways in which the language could be improved to address
them, or how they can be worked around.

Data Communication. The lack of ability to utilize polymorphism in coar-
rays means that communication of task input and output data cannot be done
as seamlessly as users would like. In order to communicate the inputs and outputs
between tasks, users are forced to manually serialize and deserialize the data into a
pre-defined format for transfer between processes. This means it will also be diffi-
cult for users to make use of polymorphism in their calculations, as deserialization
of polymorphic objects can be done only with a predefined set of possible result
types. Further, the lack of ability to communicate polymorphic objects via coar-
rays means that each image must have a complete copy of the dependency graph
and its tasks, because the tasks themselves cannot be communicated to the exe-
cuting images later. This represents a moderate inefficiency in data storage and in
initial execution for each image to compute/construct the dependency graph. A
strategic relaxation of a single constraint in the Fortran standard is all that would
be required to enable the use of polymorphism in the data communication.

Task Detection, Fusion or Splitting. Because Fortran lacks any features for
introspection or reflection, it is not possible for the framework to automatically
detect tasks, fuse small tasks together, or split large tasks apart. All task defini-
tion must be performed manually by the user, with no help from the framework.
It would be possible to allow users to manually provide information about task
and data sizes to encourage certain sequences of tasks to be executed on one
image, but would likely be difficult and error prone. Future work could involve
exploring avenues for annotating tasks to help the scheduler more efficiently
assign tasks to images.

Task Independence. Task independence is a problem for all task based appli-
cations, but Fortran provides few avenues for mitigating or catching possible
mistakes. Any data dependencies between tasks not stated explicitly in the
dependency graph and communicated as arguments to the task or its output

Framework for Extensible, Asynchronous Task Scheduling (FEATS) 45

allow for the possibility of data races. In other words, all tasks must be pure
functions with all dependencies defined. Many existing Fortran applications were
not written in this style, and may require extensive work to refactor to a form in
which they could take advantage of a task scheduling framework. It is the opin-
ion of the authors that most applications could benefit from such refactoring
to enable parallel execution regardless of the desire to use this framework, but
understand that the costs involved do not always make this refactoring feasible.
Users could make these dependencies explicit without using the framework to
transmit the data, but it may be beneficial to develop tools to help users identify
these “hidden” dependencies.

Lagging Compiler Support. While the features necessary for developing this
framework have been defined by the language standard since 2018, compilers
have been slow to implement them, and support is still buggy and lacking. For
example, we were able to work around a bug in gfortran/OpenCoarrays regarding
access of allocatable components of derived types in a corray on remote images
by defining the payload size to be static for the purposes of demonstrating the
examples shown below. The other compilers with support for the parallel features
have other bugs which have thus far not allowed us to compile and execute the
examples with them. Specifically Intel’s ifort/ifx has a bug which reports find-
ing duplicate symbols when compiling one of our dependencies. The Numerical
Algorithm Group’s (NAG) nagfor has a few bugs related to declaring coarrays
in submodules. Cray/HPE’s Fortran compiler reports mismatches between the
interface declared for a procedure in a module and that specified in the sub-
module, despite the interface not being redeclared in the submodule. We have
reported these bugs to those compilers, and are awaiting their resolution to try
our framework with them.

3.3 Examples

The examples described in this section can be found in the FEATS repository at
https://github.com/sourceryinstitute/feats. In order to give the reader a sense
of the compiler landscape, we present one example that is blocked by bugs in cur-
rent compilers and one example that works correctly with at least one currently
available compiler.

A Quadratic Root Finder. The typical algorithm/equation for finding the
roots of a quadratic equation can be defined as tasks and FEATS can then
be used to perform the calculations. The use of such a simple example can
be beneficial for demonstrating the use of the framework. Given a quadratic
equation of the form:

a ∗ x2 + b ∗ x + c = 0 (1)
then the equation to determine the values of x which satisfy the equation (the
roots), is:

−b ± √
b2 − 4 ∗ a ∗ c

2 ∗ a
(2)

https://github.com/sourceryinstitute/feats

46 B. Richardson et al.

The diagram in Fig. 1 illustrates how this equation can be broken into separate
steps and shows the dependencies between them.

The equivalent FEATS application can be constructed as follows, assuming
the tasks have been appropriately defined. We also note that the dag library used
(and thus the solver object) is capable of producing (and was used to produce
nearly exactly) the graphviz source code used to generate the image in Fig. 1.

s o l v e r = dag t (&
[v e r t e x t ([i n t e g e r : :] , ”a ”) &
, v e r t e x t ([i n t e g e r : :] , ”b”) &
, v e r t e x t ([i n t e g e r : :] , ” c ”) &
, v e r t e x t ([2] , ”#∗∗2”) &
, v e r t e x t ([1 , 3] , ”4∗#∗#”) &
, v e r t e x t ([4 , 5] , ” s q r t (# − #)) &
, v e r t e x t ([2 , 6] , ”−# +− #”) &
, v e r t e x t ([1] , ”2∗#”) &
, v e r t e x t ([8 , 7] , ”# / #”) &
, v e r t e x t ([9] , ” p r i n t r oo t s ”) &
])

ta sk s = &
[t a s k i t em t (a t (2 . 0)) &
, t a s k i t em t (b t (−5.0)) &
, t a s k i t em t (c t (1 . 0)) &
, t a s k i t em t (b squared t ()) &
, t a s k i t em t (f o u r a c t ()) &
, t a s k i t em t (s qua r e r o o t t ()) &
, t a s k i t em t (minus b pm square root t ()) &
, t a s k i t em t (two a t ()) &
, t a s k i t em t (d i v i s i o n t ()) &
, t a s k i t em t (p r i n t e r t ()) &
]

app l i c a t i on = app l i c a t i o n t (so lve r , t a sk s)

This example produces output like the following, with a slightly different
order of execution being possible each time except that an operation is never
performed prior to the results of the operations on which it depends.

c = 1.00000000
b = −5.00000000
a = 2.00000000
2∗a = 4.00000000
b∗∗2 = −5.00000000
4∗a∗c = 8.00000000
sq r t (b∗∗2 − 4∗a∗c) = 4.12310553 −4.12310553
−b +− s q r t (b∗∗2 − 4∗a∗c) = 9.12310600 0.876894474
(−b +− s q r t (b∗∗2 − 4∗a∗c)) / (2∗ a) = 2.28077650 0.219223619

The roo t s are 2.28077650 0.219223619

Framework for Extensible, Asynchronous Task Scheduling (FEATS) 47

Fig. 1. Graphical representation of the computational tasks involved in calculating the
roots of a quadratic equation.

Compiling FEATS. Compiling software projects is a common example of
an application involving tasks. By defining the dependencies between files, and
defining their compilation as a task, it becomes possible to use FEATS to compile
itself. The FEATS source file dependencies are described by the image in Fig. 2,
and the FEATS application can be constructed as follows.

f e a t s = dag t (&
[v e r t e x t ([i n t e g e r : :] , name str ing (assert m)) &
, v e r t e x t ([i n t e g e r : :] , name str ing (dag m)) &
, v e r t e x t (&

[dag m , task item m] , name str ing (app l i ca t ion m)) &
, v e r t e x t (&

[assert m , app l i ca t ion m] , &
name str ing (a pp l i c a t i o n s)) &

, v e r t e x t (&
[i n t e g e r : :] , name str ing (f ea t s r e su l t map m)) &

, v e r t e x t (&
[payload m , task m] , name str ing (f i n a l t a s k m)) &

, v e r t e x t ([f i n a l t a s k m] , name str ing (f i n a l t a s k s)) &
, v e r t e x t (&

[appl i cat ion m , f eat s re su l t map m , payload m] , &
name str ing (image m)) &

, v e r t e x t (&
[dag m , f i na l t a sk m , image m , &
mailbox m , task item m] , &
name str ing (image s)) &

, v e r t e x t ([payload m] , name str ing (mailbox m)) &
, v e r t e x t ([i n t e g e r : :] , name str ing (payload m)) &
, v e r t e x t ([payload m] , name str ing (pay load s)) &
, v e r t e x t (&

[payload m , task m] , name str ing (task item m)) &
, v e r t e x t ([task item m] , name str ing (t a s k i t em s)) &

48 B. Richardson et al.

, v e r t e x t ([payload m] , name str ing (task m)) &
, v e r t e x t ([task m] , name str ing (t a s k s)) &
])

ta sk s = [(t a s k i t em t (c omp i l e t a s k t (name str ing (i))) , &
i = 1 , s i z e (names))]

a pp l i c a t i on = app l i c a t i o n t (f e a t s , t a sk s)

This example produces output like the following, with a slightly different
order of execution being possible each time except that a file is never started
compiling prior to a file it depends on first completing its compilation, and with
a possibly different image executing each task.

Compiling : dag m on image number : 3
Compiling : asser t m on image number : 4
Compiling : f ea t s r e su l t map m on image number : 2
Fin i shed Compiling : asser t m
Compiling : payload m on image number : 4
Fin i shed Compiling : dag m
Fin i shed Compiling : f ea t s r e su l t map m
Fin i shed Compiling : payload m
Compiling : mailbox m on image number : 4
Compiling : task m on image number : 2
Compiling : pay load s on image number : 3
Fin i shed Compiling : mailbox m
Fin i shed Compiling : task m
Compiling : task item m on image number : 2
Fin i shed Compiling : pay load s
Compiling : t a s k s on image number : 3
Compiling : f i n a l t a s k m on image number : 4
Fin i shed Compiling : f i n a l t a s k m
Compiling : f i n a l t a s k s on image number : 4
Fin i shed Compiling : task item m
Compiling : app l i ca t ion m on image number : 2
Fin i shed Compiling : app l i ca t ion m
Compiling : a p p l i c a t i o n s on image number : 2
Fin i shed Compiling : t a s k s
Compiling : image m on image number : 3
Fin i shed Compiling : f i n a l t a s k s
Compiling : t a s k i t em s on image number : 4
Fin i shed Compiling : t a s k i t em s
Fin i shed Compiling : a p p l i c a t i o n s
Fin i shed Compiling : image m
Compiling : image s on image number : 4
Fin i shed Compiling : image s

Framework for Extensible, Asynchronous Task Scheduling (FEATS) 49

Fig. 2. Graphical representation of the tasks involved in compiling the FEATS library.

4 Conclusion

We believe the existing Fortran applications, and the Fortran ecosystem gen-
erally, would greatly benefit from a native tasking framework. The prototype
implementation of FEATS has successfully demonstrated that implementing a
task scheduling framework in Fortran is feasible. Working around limitations of
the language and the bugs in various compilers’ coarray feature implementation
has proven a challenging but not impassible barrier. With this demonstration
of a working prototype implementation, we have taken a significant first step
towards providing such a capability to Fortran users.

We look forward to working on several unresolved issues in FEATS. The
first order of business will be to implement the result map t type to allow for
further processing of results after completed execution of a task graph. Also, we
will submit and follow up on bug reports to the writers of the compilers that we
have attempted to use for executing the examples presented. Further, we will
begin to explore the performance characteristics of the framework as we use the
framework to execute larger task graphs on machines with larger numbers of
processors.

Longer term work planned will involve collaborating with the Fortran stan-
dard committee to add capabilities to the language that will enable FEATS
behaviors such as communication of polymorphic objects between images using
coarrays. We have identified a targeted relaxation of a specific constraint in the
standard to allow for the needed functionality. We will also explore graph parti-

50 B. Richardson et al.

tioning algorithms and the use of the Fortran 2018 teams feature to potentially
improve the ability of the framework to scale to large problems and systems. We
also hope to find potential users of the framework and help them to integrate it
into their applications. Possible initial target applications include parallel builds
with the Fortran package manager [18] and works-stealing with the Intermediate
Complexity Atmospheric Research model [8].

References

1. Miguel, H.: Parallel programming in Fortran 95 using OpenMP. Technique report,
Universidad Politecnica De Madrid (2002)

2. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 4.0 (2021). https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

3. Reutsch, G., Fatica, M.: CUDA Fortran for scientists and engineers: best pracices
for efficient CUDA Fortran programming. Elsevier (2013)

4. Numrich, R.: Parallel Programming with Co-Arrays. Chapman and Hall/CRC,
Boca Raton (2018)

5. Curcic, M.: Modern Fortran: Building Efficient Parallel Applications. Manning
Publications (2021)

6. Massingill, B., Sanders, B., Mattson, T.G.: Patterns for Parallel Programming.
Pearson Education, United Kingdom (2004)

7. Mozdzynski, G., Hamrud, M., Wedi, N.: A partitioned global address space imple-
mentation of the European centre for medium range weather forecasts integrated
forecasting system. Int. J. High Perform. Comput. Appl. 29(3), 261–273 (2015)

8. Gutmann, E., Barstad, I., Clark, M., Arnold, J., Rasmussen, R.: The intermediate
complexity atmospheric research model (ICAR). J. Hydrometeorol. 17(3), 957–973
(2016)

9. Preissl, R., Wichmann, N., Long, B., Shalf, J., Ethier, S., Koniges, A.: Multi-
threaded global address space communication techniques for gyrokinetic fusion
applications on ultra-scale platforms. In: Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp.
1–11 (2011)

10. Sourcery Institute: Hello-world (2022). https://github.com/sourceryinstitute/
hello-world

11. Sourcery Institute (2022). https://github.com/sourceryinstitute/dag
12. Bauer, L., Grudnitsky, A., Shafique, M., Henkel, J.: PATS: a performance aware

task scheduler for runtime reconfigurable processors. In: 2012 IEEE 20th Inter-
national Symposium on Field-Programmable Custom Computing Machines, pp.
208–215. IEEE (2012)

13. Basilio, B., Fraguela, B.B., Andrade, D.: The new UPC++ DepSpawn high perfor-
mance library for data-flow computing with hybrid parallelism. In: International
Conference on Computational Science (2022)

14. Song, F., YarKhan, A., Dongarra, J.: Dynamic task scheduling for linear algebra
algorithms on distributed-memory multicore systems. In: Proceedings of the Con-
ference on High Performance Computing Networking, Storage and Analysis, pp.
1–11. IEEE (2009)

15. Cann, D.: Retire Fortran? A debate rekindled. Commun. ACM 35(8), 81–89 (1992)
16. Dijkstra, E.W.: How do we tell truths that might hurt? ACM Sigplan Notices

17(5), 13–15 (1982)

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://github.com/sourceryinstitute/hello-world
https://github.com/sourceryinstitute/hello-world
https://github.com/sourceryinstitute/dag

Framework for Extensible, Asynchronous Task Scheduling (FEATS) 51

17. Kedward, L.J., et al.: The state of fortran. Comput. Sci. Eng. 24(2), 63–72 (2022)
18. Ehlert, S., et al.: Fortran package manager. In: International Fortran Conference

2021, Zurich, Switzerland, hal-03355768, v1 (2021). https://hal.archives-ouvertes.
fr/hal-03355768

19. Austin, B., et al.: NERSC-10 Workload Analysis (2020). https://doi.org/10.25344/
S4N30W

20. Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., Rouson, D.:
OpenCoarrays: open-source transport layers supporting coarray Fortran compilers,
In: Proceedings of the 8th International Conference on Partitioned Global Address
Space Programming Models, pp. 1–11 (2014)

21. Singleterry, R. C., et al.: OLTARIS: on-line tool for the assessment of radiation in
space. In: NASA/TP-2010-216722 (2010). http://oltaris.nasa.gov

https://hal.archives-ouvertes.fr/hal-03355768
https://hal.archives-ouvertes.fr/hal-03355768
https://doi.org/10.25344/S4N30W
https://doi.org/10.25344/S4N30W
http://oltaris.nasa.gov

Scalability of Gaussian Processes Using
Asynchronous Tasks: A Comparison

Between HPX and PETSc

Alexander Strack(B) and Dirk Pflüger

Institute of Parallel and Distributed Systems, University of Stuttgart,
70569 Stuttgart, Germany

{alexander.strack,dirk.pflueger}@ipvs.uni-stuttgart.de

Abstract. Gaussian processes are a widely used alternative to neural
networks for non-linear system identification. The method requires com-
puting the inversion of a large covariance matrix. In this work, we intro-
duce our new task-based asynchronous implementation, focusing on its
most popular solver, the Cholesky decomposition. Our implementation is
based on HPX, utilizing its asynchronous many-task runtime system. We
can therefore investigate its scaling on multi-core hardware and for GPU
offloading. Furthermore, we compare our HPX implementation against
a high-level reference implementation based on PETSc. We demonstrate
that the HPX implementation’s performance is directly tied to the chosen
tile size. Compared to the PETSc reference, our task-based implementa-
tion is faster in the entire node-level strong scaling experiment on EPYC
ROME, showing better parallel efficiency.

Keywords: Asynchronous many-task systems · HPX · PETSc · Tiled
Cholesky decomposition · Gaussian processes

1 Introduction

Conventional parallel implementations based on message-based execution mod-
els like MPI rely on global synchronization barriers. These barriers can become
major performance bottlenecks in complex applications such as coupled numer-
ical simulations or system identification (SI) in control theory [20]. Barriers can
be typically found at least at the end of each sub-task, neglecting that some
down-stream computations could have already started based on partially avail-
able data. We, therefore, study a promising alternative, asynchronous many-task
execution models.

Our application is non-linear system identification with Gaussian processes
(GPs). This method, employed frequently in control theory [13], aims to build
a surrogate of a real-world system with a black-box approach. In other words,
no knowledge about the underlying problem can be assumed, but the problem
can be run for different parameter settings. Learned from that data, a com-
puted surrogate can then make predictions about the real system. This work, in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Diehl et al. (Eds.): WAMTA 2023, LNCS 13861, pp. 52–64, 2023.
https://doi.org/10.1007/978-3-031-32316-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32316-4_5&domain=pdf
http://orcid.org/0000-0002-9939-9044
http://orcid.org/0000-0002-4360-0212
https://doi.org/10.1007/978-3-031-32316-4_5

Scalability of Gaussian Processes Using Asynchronous Tasks 53

particular, compares two GP implementations. One based on the asynchronous
execution model HPX [12] and one based on the widely used PETSc library [2].

Although linear algebra libraries exist that use shared-memory parallelization
(see Sect. 2), we choose PETSc as it provides a large variety of functionalities.
It includes not only sparse and dense data structures and corresponding linear
algebra routines but also iterative solvers that are essential for many applica-
tions. The rich feature set, easy-to-use high-level API, and MPI parallelization
make PETSc a reference tool in the scientific computing community.

Our main contributions in this work include:

• A new, fully asynchronous task-based implementation of a GP prediction
using HPX and multiple different tiled algorithms,

• A reference implementation using PETSc’s KSP solver,
• A performance investigation of the tiled algorithms for different tile sizes on

multi-core systems and GPU offloading,
• A thorough comparison between the HPX and PETSc implementations in a

node-level strong scaling test on a dual socket AMD EPYC 7742 CPU.

The remainder of this work is structured as follows. In the next section,
we present related work considering GPs, HPX, and linear algebra libraries.
Section 3 describes the scientific application and derives the basics of GPs for
SI. We describe the numerical algorithms in Sect. 4, discussing tiled versions of
the Cholesky decomposition. Information about the software frameworks we use
for the implementations is provided in Sect. 5. The results of our work, including
different scaling plots, can be found in Sect. 6. In Sect. 7, we then conclude and
give an outlook on future research.

2 Related Work

In contrast to linear SI, the surrogate in non-linear SI does not live on a hyper-
plane, but a high-dimensional manifold [20]. This property makes the problem
much more complex and machine learning methods attractive. Most approaches
in literature use either neural networks (NNs) [5,18] or GPs [14,19]. One advan-
tage of GPs is that they contain a built-in uncertainty measure. However, making
predictions for unseen data requires computing the inverse of a covariance matrix
dependent on the training set size, which can quickly become very expensive. In
contrast to sparse matrix approaches [22], which try to reduce the matrix size,
we focus on computing the inverse in parallel as fast as possible.

Therefore, we use tiled algorithms and a task-based asynchronous execution
model. Several different asynchronous many-task runtimes exist, and a general
taxonomy is provided in [21]. In this work, we focus on HPX [12]. Applications
of HPX include the astrophysics simulation code Octo-Tiger [15] that enables
the simulation of star mergers. There already exist linear algebra libraries that
support task-based parallelization. The PLASMA [7] library is currently the
reference and uses OpenMP tasks for a shared-memory parallelization of dense
linear algebra. Like our approach, it is based on quadratic tiles. On the other

54 A. Strack and D. Pflüger

hand, the LASs and sLASs [23] libraries provide dense and sparse linear alge-
bra routines. Both take advantage of the OmpSs runtime system. Considering
distributed libraries, there is SLATE [9], which provides dense routines with the
help of OpenMP tasks and MPI. Furthermore, there is the C library Chameleon
[1] developed at Inria. It supports different runtime systems and has distributed
capabilities by using StarPU.

3 Scientific Application

For this work, we choose non-linear SI with GPs as an application. The next two
subsections introduce the basics of GPs and how they are adapted to a concrete
SI application.

3.1 Gaussian Processes

This subsection contains a short introduction to GPs. For more advanced theory,
we refer to the book of Kocijan [14]. The general problem is formulated as a black-
box approach where the objective is to learn a non-linear function f . Learning
in this context refers to the construction of a surrogate given data that is noisy,
e.g., caused by measurement errors. Only a so-called feature matrix

Z = [z1, z2, . . . , zN]T (1)

containing N feature vectors zi ∈ R
D and the corresponding noisy observations

y = [y1, y2, . . . , yN]T , yi ∈ R, (2)

are provided as information to learn the function. There are several ways to
interpret GPs [17]. One is to view a GP as a collection of random variables f(zi),
that all share a joint Gaussian distribution f(zi) ∼ N (0,K). Note that here the
mean of the distribution is set to zero. In practice, it is often used to incorporate
prior knowledge. The GP tries to find a good mapping between the feature
matrix and the observations by building the covariance matrix K ∈ R

N×N with
the feature vectors. Each matrix entry is computed by evaluating two feature
vectors with a covariance function. For simplicity, we use the squared exponential
kernel. It is given by

C(zi, zj) = ν · exp

[
− 1

2l

D∑
d=1

(zi,d − zj,d)2
]

+ δijσ (3)

where D is the length of the feature vectors. Observe that this function con-
tains three additional parameters. Those are called hyperparameters. Namely
the lengthscale l, the vertical lengthscale ν, and the noise variance σ on the
diagonal. They have a crucial influence on the quality of the GP and are typi-
cally optimized. The GP can then be used to predict M new observations from

Scalability of Gaussian Processes Using Asynchronous Tasks 55

unseen data. Therefore, we have to build the joint distribution of the N known
and M unknown observations ŷ[

y
ŷ

]
∼ N

(
0,

[
K KZ,Ẑ

KẐ,Z KẐ,Ẑ

])
. (4)

Here, KẐ,Ẑ ∈ R
M×M is the prior covariance matrix, built with the feature

matrix of the unseen data Ẑ. Whereas KẐ,Z ∈ R
M×N is the cross-covariance

matrix built with the feature vectors of Ẑ and Z. The GP prediction of the new
observations is given by the mean of this distribution, which is expressed as

ŷ = KẐ,ZK−1y. (5)

In addition, GPs provide a prediction uncertainty based on the variance of
the joint distribution. It is given by the diagonal of the posterior covariance
matrix K̂, which can be computed via

K̂ = KẐ,Ẑ − KẐ,ZK−1KZ,Ẑ . (6)

Since typically N > M , the main bottleneck of the prediction (5) is the
inversion of the covariance matrix. Hence, the overall computational complexity
is O(N3) with a direct solver for computing K−1y. Nevertheless, the common
choice is the Cholesky decomposition to compute the Cholesky factor L of the
factorized matrix K = L · LT . The big advantage of this approach is that the
Cholesky factor can be reused for computing the prediction uncertainty (6). This
work focuses on the Cholesky decomposition and only implements a basic GP
around it. We set the hyperparameters to the empirical moments of our data,
following the moment-based initialization in [3]. With this, we omit the hyper-
parameter optimization, which is crucial to optimize the prediction accuracy.
Note that the negative-log likelihood loss function is often used in literature to
optimize the hyperparameters [14] that again benefits from the Cholesky decom-
position: It maximizes the likelihood of the training data y|Z ∼ N (0,K) and is
given by

L(l, ν, σ) = −1
2

log(|K|) − 1
2
yTK−1y − N

2
log(2π). (7)

With the precomputed Cholesky factor L the function evaluation simplifies
to

L(l, ν, σ) = −1
2

log

(
N∏
i

L2
ii

)
− 1

2
βT · β − N

2
log(2π) , (8)

with β ∈ R
N being the solution of L−1 · β = y.

3.2 System Identification

GPs are used in control theory as an alternative to NNs for identifying non-
linear systems. The goal is to predict the system behavior for unseen control

56 A. Strack and D. Pflüger

inputs based on only a given set of input and output time sequences. By filling
the feature vectors with so-called regressors, which contain lagged system states,
GPs can be used for SI. For simplicity, we use a non-linear finite impulse response
model [19]. It only requires the input time sequences as regressors. As a result,
the feature vectors have the form

zi = (ui−D, ...,ui) (9)

where the ui are the control inputs and D is the number of regressors.
As a concrete example, we consider a system of coupled mass-spring dampers.

Through non-linear force profiles in the springs between the masses, non-linearity
is introduced into the system. The control input is the force applied to the
initial mass, while the observations consist of the position of the final mass. The
authors of [18] provide a total of N = 105 training samples and a test set of size
M = 5000. To make the Cholesky decomposition more stable, we normalized
the input data and standardized the output data.

4 Parallel Algorithms

This section describes the tiled algorithms we use in our task-based implemen-
tation. First, we must divide the symmetric and positive semi-definite matrix K
into tiles. Since we restrict operations to entire tiles, we can only use quadratic
tiles. Hence, dividing N samples equally across T tiles leads to a total of T 2 tiles.

Considering the computational effort, our GP application consists of three
main parts:

• Assembly of the covariance matrix K in O(N2),
• Cholesky solve of K · α = y in O(N3),
• Matrix-vector multiplication ŷ = KẐ,Zα in O(M · N2).

The parallel assembly is trivial. There are no data dependencies, as only read
operations are performed on the feature vectors. As a result, the different tiles
can be computed embarrassingly in parallel. Since K is symmetric, only the lower
triangular tiles need to be assembled. The prediction (5) simplifies, after α ∈ R

N

is computed, to a parallel matrix-vector multiplication. Like its sequential equiv-
alent, the tiled Cholesky solve algorithm first requires a Cholesky decomposition
of the matrix and then a forward and backward substitution with the Cholesky
factor. We denote the tile in the k-th row and n-th column as Kkn.

4.1 Tiled Cholesky Decomposition

Decomposing the matrix K in parallel requires different BLAS routines operating
on the matrix tiles. In total, the algorithm needs four BLAS operations [4]:

• Cholesky decomposition (POTRF): Lkk = Cholesky(Kkk),
• Triangular matrix solve (TRSM): LT

kk · Lmk = Kmk,
• Symmetric rank-k update (SYRK): Kmm = Kmm − Lmk · LT

mk,

Scalability of Gaussian Processes Using Asynchronous Tasks 57

• General matrix-matrix multiplication (GEMM): Kmn = Kmn − Lmk · LT
nk.

The algorithm can work in-place to save storage. For pseudocode of the right-
looking variant, see Algorithm 1. Two more variants exist, namely the left-looking
and top-looking Cholesky algorithms, that only differ by the loop arrangements.
For more details, we refer to [8]. A closer look at the illustration in Fig. 1 reveals
that performance improvements through parallelism are only gained by triangu-
lar solving and updating the remaining lower triangular matrix in parallel. Note
that the number of parallel tasks reduces as the algorithm progresses down the
sub-matrix. That leads to a decrease in parallel efficiency.

for k = 0 to T − 1 do
Kkk = POTRF(Kkk)
for m = k + 1 to T − 1 do

Kmk = TRSM(Kkk,Kmk)
end
for m = k + 1 to T − 1 do

Kmm = SYRK(Kmk,Kmm)
for n = k + 1 to m− 1 do

Kmn = GEMM(Kmk,Knk,Kmn)
end

end

end
Algorithm 1: In-place tiled Cholesky
decomposition Fig. 1. Tiled Cholesky illustration

In general, for a matrix divided into T 2 tiles, the algorithm executes a total
of T POTRF, T ·(T−1)

2 TRSM and SYRK, and T ·(T−1)·(T−2)
6 GEMM operations.

The most significant impact on the overall performance has the GEMM opera-
tion. For example, for T = 200, the tiled algorithm executes 200 POTRF, around
20000 TRSM and SYRK, and over a million GEMM operations.

4.2 Tiled Triangular Solve

After computing the Cholesky factor L, it can be used to solve K−1 · y = α by
first performing a forward substitution L · x = y with the intermediate vector
x ∈ R

N . Then x is used as the right-hand side for the backward substitution
LTα = x. The tiled versions of these algorithms require the two BLAS operations

• triangular vector solve (TRSV), Lkk · xk = yk, and
• general matrix-vector multiplication (GEMV), ym = ym − Lmk · xk.

Depending on whether forward or backward substitution is used, the operations
must be executed on different tiles. The corresponding pseudocode is given in
Algorithms 2 and 3. They also work in-place to reduce storage.

58 A. Strack and D. Pflüger

for k = 0 to T − 1 do
yk = TRSV(Lkk,yk)
for m = k + 1 to T − 1 do

ym = GEMV(Lmk,yk,ym)
end

end
Algorithm 2: In-place tiled forward
substitution

for k = T − 1 to 0 do
yk = TRSV(Lkk,yk)
for m = k − 1 to 0 do

ym = GEMV(LT
km,yk,ym)

end

end
Algorithm 3: In-place tiled back-
ward substitution

4.3 Research Questions and Hardware Setup

In this section, we state our main research questions. Furthermore, we describe
the experimental setup and hardware we used. The research focus can be divided
into two major interests. Firstly, the impact of the tile size on the computation
time. We implemented the GP prediction with the help of HPX such that futures
allow asynchronous parallelism in the tiled algorithms. What is the optimal tile
size for our setup? Can this result be generalized to other hardware and problem
sizes? Does outsourcing the matrix update to GPUs improve the performance,
and does it impact the optimal tile size?

Secondly, we are interested in the strong scaling of our HPX implementation.
How does it compare to an MPI-based implementation regarding overall com-
putation time and parallel efficiency? How do the three main computation parts
scale? To compare our tiled algorithms, we used PETSc and implemented the
same procedure with the help of the KSP solver. In contrast to setting the tile
size ourselves, we let PETSc decide how to partition the matrix. Note that we
use PETSc’s KSP solver, which was originally intended as an iterative Krylov-
subspace method. However, it can perform a Cholesky decomposition by only
applying a preconditioner to the matrix.

Considering the hardware setup, we ran our benchmarks on two different
systems. The first, which we will refer to as system 1, is a dual socket system
containing two AMD EPYC 7742 CPUs with 128 cores combined. The second
system consists of one Intel i9-10980XE CPU with 18 cores and one NVIDIA
RTX3080 GPU. We will refer to this heterogeneous system as system 2 and use
it to investigate the performance of the GEMM offloading.

5 Software Framework

The two main software tools we use are the High-Performance ParalleX run-
time system [12], short HPX, and the Portable, Extensible Toolkit for Scientific
Computing [2], short PETSc.

5.1 HPX

HPX, first released in 2008, is a task-based execution model [12]. It is under
active development by the STE||AR Group. Contrary to message-based execu-
tion models like MPI, it uses an entirely asynchronous approach that does not

Scalability of Gaussian Processes Using Asynchronous Tasks 59

rely on global synchronization barriers. By incorporating HPX futures, it is pos-
sible to write fully asynchronous code. The HPX source code is almost entirely
written in C++, and the API is even C++ standard conform. HPX only provides
low-level functionalities and does not directly implement any BLAS routines.

Nevertheless, the Boost library set, an installation prerequisite, comes with
uBLAS. Although not the best-performing BLAS library, it works out of the
box with the HPX wrapper. Furthermore, HPX contains a CUDA executor that
allows targeting NVIDIA GPUs [6]. It can access the cuBLAS library of a CUDA
installation. To measure the runtimes, we use the APEX library [10]. It can be
installed alongside HPX, allowing to time and count annotated function calls.

5.2 PETSc

PETSc, first released in 1995, contains several sparse and dense data structures
and routines for scientific computing [2]. As many applications rely on parallelism
to be computed in a reasonable time, PETSc uses the MPI standard to handle
the necessary communication. It is mainly written in C and is developed by the
Argonne National Laboratory. However, it can also be used in C++, Fortran, and
even Python code. Due to its extensive functionality and high-level structure, it
is part of many scientific computing libraries. The core functionality of PETSc
is built around the KSP module. It contains a versatile solver based on precon-
ditioned Krylov-subspace methods. Not all parallel algorithms are part of the
standard installation. Thus, we had to configure PETSc to install the Elemental
library [16] to access the parallel Cholesky preconditioner. A BLAS library in
the background handles the numerical computations. PETSc supports different
BLAS libraries, but we chose the default option, i.e., fblaslapack.

6 Results

The first part of this section discusses the performance impact of the BLAS
libraries. Then, we present our results on the influence of different tile sizes.
We finally show the node-level strong scaling results and compare the HPX
implementation with the PETSc implementation.

Considering the different tiled Cholesky variants, we did not see noticeable
performance differences. This observation contrasts the results of [8], where the
authors observed significant performance differences using OpenMP on Intel
Knights Corner. However, an in-depth investigation of this behavior exceeds the
scope of this work. As a result, we only present the runtimes of the right-looking
variant (see Algorithm 1). All runtimes are averaged over five runs.

The performance of the BLAS libraries, especially its GEMM operation, is
crucial for the overall performance. Recall that the two implementations we com-
pare do not use identical BLAS libraries. Thus, we ran a benchmark comparing
the performance of uBLAS and PETSc with fblaslapack for the relevant oper-
ations. For the tile size we used in our strong scaling benchmark, we did not
observe a significant performance difference between both libraries. Note that

60 A. Strack and D. Pflüger

the performance of both implementations could be improved by using faster
BLAS libraries, e.g., MKL [11]. If the BLAS operations were directly computed
on a GPU using cuBLAS, a significant performance advantage can be expected.
However, a substantial overhead is introduced by offloading the matrix update
to the GPU: Each GEMM operation requires to transfer three matrix tiles to
the GPU and one matrix tile back to the CPU. As a result, the performance
of the cuBLAS -based GEMM operation decreases for shrinking tile size. Here,
we focus on a first proof-of-concept considering GPU offloading. In a real-world
application, the tile size would have to be optimized for each GPU architecture.

6.1 Tile Scaling

In Fig. 2, the performance of the task-based implementation is illustrated for
different tile sizes. We set the accuracy to single precision and choose a problem
size of N = 20000 and M = 5000. The first interesting observation is that the
runtime is higher for two tiles per dimension than for the single-tile sequential
algorithm. The overhead is introduced by splitting a single sequential BLAS
operation on the whole matrix into four but strictly sequential BLAS operations.
Parallelism is introduced starting at more than two tiles per dimension. This
then leads to significant performance improvements for T > 2. Systems 1 and 2
perform about equally well for 16 cores and 18 cores, respectively. Using all 128
cores on system 1 results in much better performance. Choosing a too-small tile
size cripples the performance. This becomes visible at T = 500, where the overall
performance is the same for 16 and 128 cores. Here, the dual socket architecture
of System 2 acts as a bottleneck, resulting in bad parallel efficiency.

Fig. 2. Tile scaling comparison on two different systems. The workload size is N =
20000 and M = 5000. Furthermore, all computations are in single precision. Runtimes
of system 1, consisting of a dual socket AMD EPYC 7742 with 128 cores, are illustrated
with circles. Squares plot system 2 runtimes, which consists of an 18-core Intel i9-
10980XE and an NVIDIA RTX3080.

Scalability of Gaussian Processes Using Asynchronous Tasks 61

Adding the GPU to system 2 significantly improves the performance and
allows it to compete with the 128 cores of system 1 up to 25 tiles per dimension.
The runtime increase for larger T has two reasons. First, GPUs require larger
workloads to leverage the advantages of their massively parallel architecture.
Second, the offloading requires the transfer of four complete matrix tiles per
operation. As a result, the optimal tile size for GPU use would be larger.

6.2 Strong Scaling Comparison

For the strong scaling benchmark of the HPX and the PETSc implementation,
we again choose a workload size of N = 20000 and M = 5000. Furthermore, we
set the accuracy of the task-based implementation to double precision. Based
on the results of the previous subsection, we set T = 200, resulting in a tile size
of 100 × 100. Figure 3 shows the total runtime and the different computation
blocks’ runtimes. The assembly and prediction can be neglected as the Cholesky
solve contributes nearly 92% to the total computation time. Across all cores, the
task-based implementation has a slight performance advantage. Considering the
corresponding parallel efficiency in Fig. 4, both implementations have the same
tendency due to hardware limitations. The efficiency drops significantly from 32
to 128 cores. Nonetheless, the efficiency of the HPX implementation is higher
and nearly optimal for up to four cores. Finally, performing the benchmark in
single precision results in faster runtime for 64 and 128 cores of up to 15% and
better efficiency than double precision.

Fig. 3. Node-level strong scaling comparison between the HPX and PETSC imple-
mentation on a dual socket AMD EPYC 7742 with 128 cores. The tile size was set to
100× 100 for a workload size of N = 20000 and M = 5000. Both implementations use
double precision.

62 A. Strack and D. Pflüger

Fig. 4. Parallel efficiency of the strong scaling benchmark in Fig. 3 for the whole appli-
cation with both PETSc and HPX in double precision. For comparison, we additionally
show the results with HPX in single precision.

7 Conclusion and Outlook

We have investigated the scaling and performance impact of the tile size for
a tasked-based asynchronous Cholesky decomposition in a GP prediction. In
our benchmarks, the optimal tile size on CPUs was around 100 × 100. However,
whether this result can be generalized to bigger workloads remains open. Offload-
ing the GEMM operations to a GPU with the CUDA executor integrated into
HPX resulted in a noticeable performance improvement. Due to data transfers,
the optimal tile size for this approach was around 1000 × 1000 for our hardware
and workload size. The results indicate the potential of GPU offloading in this
application, even though our proof-of-concept could not outperform the 128-core
execution.

Furthermore, we benchmarked our tiled HPX implementation against a ref-
erence implementation based on PETSc using MPI. The task-based implemen-
tation was not only faster but also had better parallel efficiency on single-node
systems. Therefore, the task-based asynchronous execution model HPX can com-
pete with established software tools based on MPI in this non-distributed GP
application.

As the next step, we want to include faster BLAS libraries. Furthermore,
the HPX implementation will be adjusted to the distributed setting allowing a
large-scale comparison on more powerful hardware. We plan to investigate other
numerical algorithms in the future.

Supplementary Materials

The source code and benchmark data are available at Zenondo. Both implemen-
tations contain build scripts that allow the reproduction of our results using
identical software versions. We use the GCC compiler at version 9.4.0 for our
direct PETSc and HPX comparison.

https://doi.org/10.5281/zenodo.7535794

Scalability of Gaussian Processes Using Asynchronous Tasks 63

References

1. Agullo, E., et al.: Achieving High Performance on Supercomputers with a Sequen-
tial Task-based Programming Model. Research report, Inria Bordeaux (2016)

2. Balay, S., et al.: PETSc, the portable, extensible toolkit for scientific computation.
Argonne National Laboratory, vol. 2 (1998)

3. Basak, S., Petit, S., Bect, J., Vazquez, E.: Numerical issues in maximum likelihood
parameter estimation for Gaussian process interpolation. In: Nicosia, G., et al.
(eds.) Machine Learning, Optimization, and Data Science. LNCS, vol. 13164, pp.
116–131. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95470-3 9

4. Buttari, A., et al.: A class of parallel tiled linear algebra algorithms for multicore
architectures. Parallel Comput. 35, 38–53 (2009)

5. Chen, S., Billings, S.A., Grant, P.M.: Non-linear system identification using neural
networks. Int. J. Control 51(6), 1191–1214 (1990)

6. Daiß, G., et al.: Beyond fork-join: integration of performance portable Kokkos
kernels with HPX. In: 2021 IEEE IPDPSW, pp. 377–386 (2021)

7. Dongarra, J., et al.: Plasma: parallel linear algebra software for multicore using
OpenMP. ACM Trans. Math. Softw. 45(2), 1–35 (2019)

8. Dorris, J., Kurzak, J., Luszczek, P., YarKhan, A., Dongarra, J.: Task-based
cholesky decomposition on knights corner using OpenMP. In: Taufer, M., Mohr, B.,
Kunkel, J.M. (eds.) High Performance Computing. LNCS, vol. 9945, pp. 544–562.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46079-6 37

9. Gates, M., et al.: Slate: design of a modern distributed and accelerated linear
algebra library. In: SC 2019. Association for Computing Machinery (2019)

10. Huck, K., et al.: An autonomic performance environment for exascale. Supercom-
put. Front. Innov. 2, 49–66 (2015)

11. Intel: Intel math kernel library (2023). https://www.intel.com/content/www/us/
en/developer/tools/oneapi/onemkl.html

12. Kaiser, H., et al.: HPX - the C++ standard library for parallelism and concurrency.
J. Open Source Softw. 5(53), 2352 (2020)

13. Kocijan, J.: Gaussian process models for systems identification (2008)
14. Kocijan, J.: Modelling and Control of Dynamic Systems Using Gaussian Process

Models. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21021-6
15. Marcello, D.C., et al.: Octo-Tiger: a new, 3D hydrodynamic code for stellar mergers

that uses HPX parallelization. Mon. Notices Royal Astron. Soc. 504(4), 5345–5382
(2021)

16. Poulson, J., et al.: Elemental: a new framework for distributed memory dense
matrix computations. ACM Trans. Math. Softw. 39(2), 1–24 (2012)

17. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press (2006)

18. Revay, M., Wang, R., Manchester, I.: A convex parameterization of robust recurrent
neural networks. IEEE Contr. Syst. Lett. 5, 1363–1368 (2021)

19. Särkkä, S.: The Use of Gaussian Processes in System Identification. In: Baillieul,
J., Samad, T. (eds.) Encyclopedia of Systems and Control, pp. 1–10. Springer,
London (2019). https://doi.org/10.1007/978-1-4471-5102-9 100087-1

20. Schoukens, J., Ljung, L.: Nonlinear system identification: a user-oriented road map.
IEEE Control Syst. 39, 28–99 (2019)

21. Thoman, P., et al.: A taxonomy of task-based technologies for high-performance
computing. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10778, pp. 264–274. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78054-2 25

https://doi.org/10.1007/978-3-030-95470-3_9
https://doi.org/10.1007/978-3-319-46079-6_37
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://doi.org/10.1007/978-3-319-21021-6
https://doi.org/10.1007/978-1-4471-5102-9_100087-1
https://doi.org/10.1007/978-3-319-78054-2_25
https://doi.org/10.1007/978-3-319-78054-2_25

64 A. Strack and D. Pflüger

22. Titsias, M.: Variational learning of inducing variables in sparse Gaussian processes.
J. Mach. Learn. Res. Proc. Track 5, 567–574 (2009)

23. Valero-Lara, P., et al.: sLASs: a fully automatic auto-tuned linear algebra library
based on OpenMP extensions implemented in OmpSs (LASs library). J. Parallel
Distrib. Comput. 138, 153–171 (2020)

Scheduling Many-Task Applications
on Multi-clouds and Hybrid Clouds

Shifat P. Mithila1 , Peter Franz2 , and Gerald Baumgartner2(B)

1 Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
smithila@agcenter.lsu.edu

2 Division of Computer Science and Engineering, Louisiana State University,
Baton Rouge, LA 70803, USA

{pfranz1,gb}@lsu.edu

Abstract. A centralized scheduler can become a bottleneck for placing
the tasks of a many-task application on heterogeneous cloud resources.
We have previously demonstrated that a decentralized vector schedul-
ing approach based on performance measurements can be used success-
fully for this task placement scenario. We then extended this approach
to task placement based on latency measurements. Each node collects
the performance measurements from its neighbors on an overlay graph,
measures the communication latency, and then makes local decisions on
where to move tasks. Our recent experiments in CloudLab with nodes
allocated on multiple cloud sites demonstrate that using latency in our
vector scheduling approach results in better performance and resource
utilization. While our algorithm for configuring the overlay graph based
on latency measurements was beneficial with simulated communication
delays, it was not beneficial in the multi-cloud environment.

Keywords: Many-task computing · Decentralized scheduling · Cloud
middleware

1 Introduction

As scientific fields as diverse as quantum chemistry or astrophysics continue to
develop, the demand for computational power increases. Historically, researchers
have run such applications on clusters or supercomputers. For computational
needs beyond what is available at a single university, supercomputer grids and
large-scale desktop grids have been developed for certain types of applications.
In the last decade, cloud computing has become available as a commercial alter-
native that allows researchers to rent their computing needs instead of dealing
with the expense of purchasing and maintaining a supercomputer.

While it is possible to rent a cluster from a cloud provider, the cheapest
resources that can be rented are virtual resources. However, the use of virtu-
alization makes a set of virtual machines behave like a heterogeneous cluster
with varying compute performance of the nodes and varying throughput and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Diehl et al. (Eds.): WAMTA 2023, LNCS 13861, pp. 65–78, 2023.
https://doi.org/10.1007/978-3-031-32316-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32316-4_6&domain=pdf
http://orcid.org/0009-0008-5747-7594
http://orcid.org/0009-0005-9061-6304
http://orcid.org/0009-0007-1162-159X
https://doi.org/10.1007/978-3-031-32316-4_6

66 S. P. Mithila et al.

latency of the network connections. Applications with course-grain parallelism,
such as MapReduce [9] or graph-parallel algorithms [26] work well in a virtu-
alized environment. However, applications that rely on frequent node-to-node
communication or fine-grained parallelism, such as linear algebra code, do not
work well with virtual resources

An efficient method for utilizing supercomputer resources is to structure an
application as a many-task application [20]. In this approach, an application is
broken up into a large number of smaller tasks that are then scheduled. For an
early example, Rajbhandari et al. [21] have structured a tensor contraction equa-
tion from quantum chemistry as a task graph with dependencies and successfully
scaled the application to over 250,000 cores.

We argue that for running a many-task application with fine-grained par-
allelism in the cloud, it is necessary to identify the performance characteristics
of the cloud nodes and their network connections and to map the performance
requirements of the tasks onto nodes with matching performance characteristics.
E.g., for efficiently running a distributed matrix multiplication algorithm in the
cloud it is important that all the nodes that participate in that matrix multi-
plication have similar performance and low latency connections between them.
In a large system, however, collecting the performance information and schedul-
ing tasks on nodes based on that performance information can become very
expensive and could cause a centralized task scheduler to become a bottleneck.

This bottleneck of a central scheduler can be eliminated by decentralizing
part or all of the scheduling functionality. In IBM’s Air Traffic Control (ATC)
algorithm [2] decentralized schedulers (air traffic controllers) are directing tasks
from a central job queue to the worker nodes. This approach decentralizes the
scheduling decisions based on performance information, but it leaves the central
job queue as a potential bottleneck. The Organic Grid [5,6] is a fully decen-
tralized approach, in which nodes forward tasks to their neighbors in an over-
lay network. However, it was designed as a desktop grid infrastructure that
assumed unreliable networks, which made the scheduling algorithm too complex
and expensive for cloud scheduling.

Peterson et al. [18,19] developed a lightweight fully decentralized task
scheduling algorithm for the cloud. In this approach, each node maintains a
tasks queue and decides where to migrate extraneous tasks based on perfor-
mance measurements of its neighbors in an overlay network. In their approach,
scheduling decisions are made based on the queue length and the compute per-
formance of each node. Their experiments, however, were simplistic and did not
take communication aspects into consideration.

Mithila and Baumgartner [15,16] generalized Peterson et al.’s approach to
include latency information, both in the construction of the overlay network
and for making scheduling decisions. Their experiments were carried out in a
single cloud site and relied on simulated communication delays. In this paper,
we report on our recent experiments in a cloud environment with multiple cloud
sites and a combination of physical and virtual compute resources. We report
on what works, what does not work, and what future research is necessary to

Scheduling Many-Task Applications on Multi-clouds and Hybrid Clouds 67

achieve the goal of running realistic many-task applications in multi-clouds and
hybrid clouds. In particular, we were able to show that it is beneficial to use
latency in making scheduling decisions. However, using latency in the overlay
graph construction was not beneficial for the particular cloud resources we used.

The rest of the paper is organized as follows: We discuss our decentralized
cloud scheduling approach and a summary of our previous experiments in Sect. 2.
The results of our new multi-cloud experiments are presented in Sect. 3. Section 4
reviews prior work in the literature. Finally, we conclude the paper and discuss
future work in Sect. 5.

2 Decentralized Cloud Scheduling Approach

2.1 Overlay Graph Construction

Peterson et al. used performance measurements of individual nodes to develop a
vector-based task scheduling algorithm to optimize overall computation. As the
initial network, they used a random graph with 20% connectivity produced with
the Erdös-Rényi algorithm. This random construction results in connections that
are a combination of slower and faster links.

We intend to generate a better initial overlay graph by utilizing communi-
cation information between the nodes. If successful, this would result in better
work allocation from the beginning of the experiment. Our assumption is that an
overlay graph that reflects the physical architecture, i.e., the distances between
nodes, should result in better performance. We start with a full graph and use
latency information to drop slower and more distant links. In this process, the
experiment controller creates a full graph and sends it to all the worker nodes.
Each worker node, upon receiving information about all other nodes, collects
their latency measurements and sends them back to the controller. Then the
controller, uses a Hierarchical Clustering algorithm to group the worker nodes
according to the communication distances between them. Each individual clus-
ter has a larger number of connections between the nodes, while there are fewer
connections in the overlay graph between distant clusters.

Mithila and Baumgartner [16] presented an overlay graph construction algo-
rithm in which each cluster of nodes forms a clique and in which only 50% of the
connections are maintained between a pair of distant clusters. Figure 1 shows an
example of how nodes are connected in this graph. In their experiments with
simulated communication delays between the clusters, this graph construction
algorithm resulted in improved overall performance compared to a random over-
lay graph.

2.2 Three-Dimensional Vector Scheduling

In our vector scheduling approach, each node advertises its task queue length, its
measured performance, and its communication latency to each of its neighbors in
the overlay graph. Each node then normalizes the measurements for its neighbors

68 S. P. Mithila et al.

Fig. 1. Connection pattern in our proposed centralized graph construction.

in a [−1.0, 1.0] interval for each dimension and forwards tasks to neighbors in
the desired direction. E.g., a node might send tasks to neighbors with shorter
queue length, higher performance, and low communication latency.

Mithila and Baumgartner added latency to the scheduling vector along with
the neighbors’ queue lengths and performance. That is, instead of using two-
dimensional (2D) vector scheduling for work distribution as in Peterson et al’s
work, they designed a three-dimensional (3D) cube with the components queue
length, performance, and latency. It is possible to extend this approach to other
measurement dimensions.

As an example, an experiment might start with an initial scheduling vector
of [−1.0, 0, −0.5], i.e. initially more work will be distributed to the nodes having
shortest queue length and some will be distributed to the closer nodes. Then
later when about 70% of the work is completed, the scheduling strategy will
swap to vector [−1.0, 0, −0.4] i.e., a greater portion of tasks will still be sent to
the starving nodes and some tasks will be sent to slightly higher latency nodes
while the performance characteristics of nodes do not make any difference.

2.3 Simulated Performance and Latency Variations

For implementation in the cloud, we initially requested a small number of phys-
ical machines from a single CloudLab site. In Peterson et al’s experiments, as
well as in some of Mithila and Baumgartner’s experiments, variations in per-
formance were simulated by varying the number of CPU cores available to a
given number of worker nodes. Multiple worker nodes are encapsulated inside a
Docker container, which is run on varying numbers of CPU cores of the physical
machines. For improved repeatability of the experiments, the architectures of
the nodes were kept the same.

Since the physical nodes from a single CloudLab clusters are not very distant,
Mithila and Baumgartner also introduced artificial communication delays for
some of the communication links, such that there are multiple clusters of nodes
with low latency within a cluster and higher latency between nodes from different
clusters.

Scheduling Many-Task Applications on Multi-clouds and Hybrid Clouds 69

To isolate the impact of the additional latency component, variables that
could influence performance were minimized or eliminated. To do this, we
designed the experiments such that nodes had uniform performance, and that
the performance parameter for vector scheduling was kept at zero. Each worker
node group is deployed within a docker container. We simulate a situation that
worker nodes inside a container portrays nodes situated closely together, so no
additional delay is imposed on their links. Groups of nodes inside the same phys-
ical machine have some additional delays simulating them slightly more distant
from each other, and links to groups in different physical machines have com-
paratively longer delays to depict them as clusters far from each other. In later
experiments, both performance and latency were varied. All of these experiments
showed benefits of both the graph construction algorithm that takes latency into
consideration and of using latency as one of the dimensions in the vector schedul-
ing algorithm.

2.4 Using Virtual Machines

While using individual sets of cores of physical machines makes the experiments
more repeatable, it is not sufficiently realistic. For more realistic experiments,
Vannikkarasan varied the task size and introduced communication overhead
between tasks [23]. Mithila and Baumgartner then ran additional experiments
with these variable loads on a set of virtual machines commissioned from Cloud-
Lab.

For virtual machines (VMs) in the cloud, the physical locations of the nodes
are not predictable. Therefore, the performance characteristics of virtual nodes
and the communication behavior among them can be more unpredictable. For
these experiments, each worker node was put into a designated virtual machine.

We requested 47 virtual nodes from the CloudLab Wisconsin site and were
given 47 VMs in 10 physical machines of different processor types where the
physical nodes consisted of different numbers of VMs ranging from 2 to 7. We
varied the task sizes and types and compared the results between random graphs
with scheduling only based on the queue length, random graphs with scheduling
based on queue length and performance, and our centralized graph construction
algorithm with 3-dimensional vector scheduling.

The experiment results for 13 consecutive runs of each of these three sce-
narios are shown in Fig. 2. The experiments with the random graph and 2D
scheduling (in green) show somewhat better performance than for the random
gram and queue length-based scheduling (in red) until about three quarters of
the experiment. However, both end up performing similarly in the end. Our cen-
tralized graph construction with 3D vector scheduling resulted in a lower overall
computation time. The shading in the figure indicates the error bars.

70 S. P. Mithila et al.

Fig. 2. Experiment results for 13 consecutive runs on VMs comparing a random graph
(BP) to our centralized graph construction algorithm (CA) with different scheduling
strategies. (Color figure online)

Fig. 3. Cloud node allocation on three sites with physical and virtual machines. (Color
figure online)

3 Multi-cloud Experiments

We implemented support in our platform for running experiments that span
multiple cloud sites as well as using local machines together with cloud resources.
Since our local machines are behind a router with network address translation,
which our platform does not handle yet, we simulated a hybrid cloud by using
a mix of physical and virtual machines from three different CloudLab [10] sites.

Figure 3 shows our machine configuration with five nodes at CloudLab Utah
(in orange), two nodes at CloudLab Wisconsin (in green) and three nodes at
CloudLab Clemson (in blue). From the Clemson site, we requested six virtual
machines. All of them were allocated in a single physical machine (the blue
square). For introducing performance variations, we requested a mix of different
architectures for the physical machines.

Scheduling Many-Task Applications on Multi-clouds and Hybrid Clouds 71

Because of constraints in getting appropriate resources, we used shorter-
running tasks than in our previous experiments and ran most experiment only
five times, with a few select experiments ten or 13 times. Each task was a 65 × 65
matrix multiplication, where one of the argument matrices was shipped as data
along with the task to increase the communication overhead, while the other
matrix was randomly generated. Each experiment consisted of 400 such tasks
and was run on 46 worker nodes. All physical machines we got from CloudLab
were configured so that multiple worker nodes on different sets of cores of the
same physical machine.

Our experiments demonstrated that our scheduling approach can successfully
distribute the tasks for a many-task computation between geographically disjoint
computing resources and keep the load on these computing resources reasonably
well balanced.

However, because of the large search space of different parameters in our
scheduling framework and the characteristics of the available resources, we were
not yet able to identify the ideal parameter combinations and to minimize the
overall execution time. In this paper, we report on what works, what does not
work, and what are promising leads for future work in reducing the overall
execution time.

Each experiment consists of four stages:

1. Configuring the overlay graph,
2. Flooding the nodes with tasks,
3. Keeping the nodes busy, and
4. Finishing the last few tasks.

The intuition for the development of our decentralized graph scheduling algo-
rithm was that an overlay graph that reflects the physical distances between the
compute node will likely result in improved overall performance, so that, e.g.,
tasks with large amounts of data do not get sent unnecessarily over long dis-
tances. Our experiments with simulated latencies between nodes proved this
assumption correct, as shown in Fig. 2.

However, we found that for the multi-cloud experiments using our central-
ized algorithm for constructing the overlay graph based on latency information
resulted in worse performance than using the random graph. One reasons for
this is likely that the compute resources we obtained from the different Cloud-
Lab sites were not variable enough. Our algorithm assumes that there are various
different latencies between groups of nodes, as one would expect from a large
commercial cloud provider. The nodes we got from each CloudLab site had very
short latencies between them, which suggests that they might have been in the
same or in neighboring racks.

Our graph construction algorithm then forms a clique between all neighbor-
ing nodes with similar latencies between them. This resulted in the nodes of
each CloudLab site forming a clique with too many connections between them,
compared to only 20% connectivity for the random graph. It appears that this
resulted in tasks being forwarded to new nodes too often before they eventually
were executed. For future research, this requires further analysis and tracking

72 S. P. Mithila et al.

Fig. 4. Sample execution of run emphasizing queue length and ignoring latency.

how often tasks are forwarded between nodes and improvements to our graph
construction algorithm.

The next part of the experiment is to ensure that tasks get sent to all nodes
as quickly as possible so that the nodes can start computing and do not sit idle
in the beginning.

In our previous experiments with 2D scheduling based on queue length and
compute performance, it worked best if at the start of the experiment the perfor-
mance of nodes was disregarded and scheduling was based purely on the queue
length.

In our multi-cloud experiments, we found that ignoring latency did not result
in good performance and often caused several nodes to be starved at the begin-
ning of the experiment. Figure 4 shows a particularly slow start of the exper-
iment. It used an initial scheduling vector of [−1,−0.5, 0], i.e., a short queue
length was emphasized (the first parameter), but performance was considered as
well (the second parameter). Most of the best performing runs used a positive
latency scheduling parameter, i.e., tasks were pushed away from the local cloud
site and were sent across longer latency connections. Figure 5 shows an example
of such a run, where the initial scheduling parameters were [−1,−0.5, 0.5], with
the third parameter being the latency component.

In these figures, the port numbers identify the individual worker nodes. Each
task is indicated by a box. Smaller boxes in a row indicate that this is a faster
node. The large gaps at the beginning of the experiment show the time it took
for the application to saturate all nodes. The gaps in between tasks show cases
where a node was waiting for a task or where a node was slow in communicating.

For the third stage of the experiment, the goal is to keep all nodes busy as
long as possible. In our previous 2D scheduling experiments on a single cloud
site with simulated performance variations [19], we found that the strategy that
worked best was to make scheduling decisions only based on queue length until
about 70% of the total running time of the experiment and then to switch to a
balanced queue-length and performance strategy. The emphasis on queue length
saturated the nodes at the beginning of the experiment as well as kept them

Scheduling Many-Task Applications on Multi-clouds and Hybrid Clouds 73

Fig. 5. Sample execution of run considering all three metrics with initial positive (push-
away) latency component.

busy later on. For our multi-cloud experiments with latency, especially for the
push-away latency parameter, we found that the scheduling strategy needed to
be switched no later than about halfway through the experiment. In most of our
experiments we switched it after about 30% of the total running time.

During this phase of the experiment, the goal is also to avoid nodes becom-
ing temporarily idle. Ideally, a new task should arrive in the queue just before
the previous task completed. Furthermore, we want to avoid tasks from being
bounced between nodes multiple times before they are executed. In our previ-
ous 2D experiments, concentrating on queue-based scheduling and only having
a 20% connectivity in the overlay graph achieved this. Having longer running
tasks also helped in reducing gaps caused by waiting for the next task. With
latency being a consideration, it is difficult to dial in the scheduling parameters,
because there are conflicting goals. Both Figs. 4 and 5 show some larger gaps
between tasks, where there is room for improvement.

Towards the end of the experiment, when there are not enough tasks left
to keep all nodes busy, it is beneficial to give more emphasis to performance so
that the faster nodes execute the remaining tasks. In both figures, the experiment
becomes inefficient towards the end, where it takes too long for all the remaining
tasks to be executed. In part this is due to not putting enough emphasis on
performance, in part it is because more tasks might be left on one of the sites
but then are not sent to another site to compute.

What our experiments suggest is that the scheduling parameters should be
switched at least twice throughout the experiment, but our platform does not
support this yet. Ideally, there should be an initial scheduling strategy that
pushes tasks to other sites to ensure that every node gets a task as soon as
possible. Then we should give preference to the queue length and migrate tasks
primarily within a cloud site to keep all nodes busy while preventing the large
communication overhead of shipping tasks back and forth between cloud sites.
The final phase should emphasize performance more heavily so the remaining
tasks are completed by the fasted nodes, but it also might be necessary to push

74 S. P. Mithila et al.

Fig. 6. Performance comparison for multi-cloud experiments. (Color figure online)

tasks to other sites (across high latency links) to balance the tasks between all
sites instead of finishing them one site. This switching of the scheduling strategy
will need to be performed by an appropriate algorithm. This could be either a
decentralized algorithm, where each node makes its own decision on adapting
the scheduling vector based on information from its parents, or it could be a
centralized algorithm where task completion times are sent to the experiment
controller, which then switches the scheduling strategy.

The comparison of two representative sets of experiments in Fig. 6 shows
that ignoring latency in scheduling (shown in blue) results in larger job com-
pletion times at the end of an experiment. Initially, the differences between the
scheduling strategies were not significantly different. Towards the end, however,
the strategy that initially emphasized pushing tasks away across links with high
latency and that also took latency into consideration at the end of the experi-
ment performed best. For these experiments, we switched the scheduling strategy
after 30% of the total running time. While the difference between the scheduling
strategies is not large, it is statistically significant. The average over ten runs
for ignoring latency (the blue line) was 100.9s, while the average time for using
latency as a scheduling parameter was 89.8s. However, for a better comparison,
these experiments would need to be repeated for a larger variety of scheduling
parameters (including for scenarios where the scheduling strategy is switched
twice) and for a larger variety of hardware configurations.

4 Related Work

In traditional grid scheduling [1,22], the meta scheduler focuses on finding an
optimal computation schedule given up-to-date and detailed knowledge of the
system state. While this approach utilizes resources efficiently, it does not scale
to very large numbers of heterogeneous machines or in the presence of unreliable
networks.

Scheduling Many-Task Applications on Multi-clouds and Hybrid Clouds 75

Desktop grids have been designed as master-worker configurations of
machines that are able to scavenge compute resources from a large number of
arbitrary machines, even in the pretense of unreliable networks [4,8,14]. While
this technology is very mature, it relies on a computational problem to be pop-
ular for people to donate their spare compute cycles. E.g., in March 2020, Fold-
ing@home, a project aimed as simulating protein dynamics, achieved an aggre-
gate compute power of 1.1 exaFLOPS [25]. However, to prevent the central
scheduler (master) from becoming a bottleneck, individual tasks are typically
very long running, especially, if they are also data intensive. Furthermore, these
systems are designed for independent task applications with no communication
between worker nodes.

Cloud computing has become successful as a commercial alternative.
Providers offer a variety of services from renting entire clusters to renting sets of
virtual machines as well as for specialized purposes, such as file storage. For many
applications, MapReduce [9] and graph-parallel algorithms [26] have proved suc-
cessful, but they are fairly course-grained and do not have frequent communi-
cation between cloud nodes. Applications with fine-grained parallelism, such as
the NAS MPI benchmarks [24] or atmospheric monitoring programs [11] have
not resulted in satisfactory performance, because of the heterogeneity of cloud
nodes and the variations in communication latency.

Several approaches have been developed that attempt to schedule fine-
grained tasks in the cloud. Luo et al. [13] and Gutierrez-Estevez et al. [12] have
proposed fine-grained centralized schedulers that take the application needs into
consideration. Mohammadzadeh et al. [17] proposed a centralized scheduling
algorithm for a many-task application in which they used multiple objectives for
solving scheduling problems.

The Organic Grid demonstrated the feasibility of decentralized scheduling in
the context of a desktop grid. As demo applications the authors used the BLAST
sequence alignment, an independent task application, as well as a Cannon-style
distributed matrix multiplication [5,6]. The algorithms employed in the Organic
Grid, however, are too expensive for cloud scheduling. Barsness et al. described
the Air Traffic Controller algorithm in an IBM patent [2] that dynamically orga-
nizes the worker nodes and results in good performance at the expense of a
higher communication overhead for the central job queue and the leader nodes
that are organizing the worker nodes.

We argue that for large-scale applications in the cloud with fine-grained paral-
lelism, any centralized schedulers run the risk of becoming a bottleneck, while the
decentralized algorithms of the Organic Grid are computationally too expensive.
Peterson et al. [18,19] have developed a decentralized vector scheduling approach
that used the concept of an overlay network from the Organic Grid, but with
a light-weight scheduling algorithm. Mithila and Baumgartner. However, both
sets of experiments relied on simulating performance differences and latency dif-
ferences, respectively. In this paper, we have described our experiments without
simulation in a multi-cloud and hybrid cloud environment.

76 S. P. Mithila et al.

5 Conclusion and Future Work

We have designed a computational platform for running large-scale many-task
high-performance applications in the cloud. Because of the heterogeneity of cloud
resources, scheduling applications with fine-grained parallelism requires match-
ing the requirements of a task with the performance characteristics of cloud
nodes. Since this task scheduling can become a bottleneck for a centralized sched-
uler, we have proposed a mostly decentralized scheduling approach.

Our scheduling approach relies on an overlay graph for nodes to exchange
performance information with neighboring nodes and to send tasks to neighbor-
ing nodes. Our previous experiments have used both random graphs and graphs
constructed based on latency measurements between pairs of nodes. In our vec-
tor scheduling approach, each node collects performance information from its
neighbors and decides to which neighbors to send additional tasks.

For making scheduling decisions, a node places its neighbors into a 3D space
with the dimensions queue length, performance, and latency and sends tasks to
neighbors in the direction of the desired scheduling vector.

We have summarized the experimental results from our prior research and
then described our multi-cloud experiments in CloudLab with both physical
and virtual nodes from three sites. Our measurements have shown the need for
improvements in our scheduling mechanisms. Unlike earlier experiments with
simulated latency, the multi-cloud experiments perform best with a random
graph, suggesting that our latency-based graph construction algorithm added
too many edges to the graph resulting in tasks being migrated unnecessarily.
Also, in the multi-cloud experiments the large differences in latency required a
different approach to scheduling parameters than for a single cloud site. This
indicates the need for an algorithm that adapts the desired scheduling vector
as needed during the execution of a many-task application. As an alternative to
pushing tasks to nodes, we also plan to experiment with work stealing on the
overlay graph, where an idle node steals a task from one of its neighbors.

Our goal is to use our platform for running applications such as the quan-
tum chemistry coupled cluster model for ab initio electronic structure model-
ing [3,21], which is expressible as a tensor contraction equation. Tensor con-
traction equations, which consist of many compute-intensive generalized matrix
multiplications, can be transformed into sets of smaller tasks to be executed as
a many-task application.

Tensor contraction equations, however, have additional requirements for our
scheduling framework. Instead of a set of tasks, the application is constructed as
a task graph with dependencies between the tasks. Furthermore, groups of tasks
that are communicating with one another, e.g., for a distributed matrix multi-
plication, need to be scheduled on neighboring nodes with uniform performance
characteristics. And, finally, it will be necessary to take the location of the input
data for a task into consideration when migrating a task to another node.

A disadvantage of purely decentralized scheduling is that it can result in
longer idle times of nodes in between tasks. We are planning to explore using
different performance measurements, corresponding to the dimensions of our

Scheduling Many-Task Applications on Multi-clouds and Hybrid Clouds 77

scheduling vectors. We will also explore using decentralized scheduling together
with some centralized aspects. E.g., the experiment controller could monitor the
application and dynamically adjust the scheduling parameters, or the decentral-
ized scheduling approach could consider information from a workflow manage-
ment system [7].

For a many-task application on a supercomputer, individual tasks can be as
short as 200–300 ms. Such a small task granularity would not work in the cloud,
since the overhead of sending a task to another virtual machine is too high.
On the other hand, if the running time of individual tasks is fairly long, then
a centralized scheduler may be more efficient than our decentralized scheduling
approach without causing a bottleneck. Additional research is needed for finding
the right balance between centralized and decentralized approaches to minimize
the task size that can be run efficiently in the cloud.

References

1. Abramson, D., Giddy, J., Kotler, L.: High performance parametric modeling with
Nimrod/G: killer application for the global grid? In: Proceedings of 14th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2000), pp. 520–528
(2000). https://doi.org/10.1109/IPDPS.2000.846030

2. Barsness, E.L., Darrington, D.L., Lucas, R.L., Santosuosso, J.M.: Distributed job
scheduling in a multi-nodal environment. US Patent 8,645,745 (2014)

3. Baumgartner, G., et al.: Synthesis of high-performance parallel programs for a
class of ab initio quantum chemistry models. Proc. IEEE 93, 276–292 (2005)

4. Buaklee, D., Tracy, G., Vernon, M., Wright, S.: Near-optimal adaptive control of
a large grid application. In: Proceedings of the 16th International Conference on
Supercomputing, pp. 315–326 (2002)

5. Chakravarti, A.J., Baumgartner, G., Lauria, M.: The Organic Grid: self-organizing
computation on a peer-to-peer network. IEEE Trans. Syst. Man Cybern.-Part A:
Syst. Hum. 35(3), 373–384 (2005)

6. Chakravarti, A.J., Baumgartner, G., Lauria, M.: Self-organizing scheduling on the
Organic Grid. Int. J. High Perform. Comput. Appl. 20(1), 115–130 (2006)

7. Chen, J., et al.: Beeflow: a workflow management system for in situ processing
across HPC and cloud systems. In: 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pp. 1029–1038 (2018). https://doi.org/
10.1109/ICDCS.2018.00103

8. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: architecture and perfor-
mance of an enterprise desktop grid system. J. Parallel Distrib. Comput. 63(5),
597–610 (2003)

9. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

10. Duplyakin, D., et al.: The design and operation of CloudLab. In: Proceedings of
the USENIX Annual Technical Conference (ATC), pp. 1–14 (2019). https://www.
flux.utah.edu/paper/duplyakin-atc19

11. Evangelinos, C., Hill, C.: Cloud computing for parallel scientific HPC applications:
feasibility of running coupled atmosphere-ocean climate models on Amazon EC2.
Ratio 2(2.40), 2–34 (2008)

https://doi.org/10.1109/IPDPS.2000.846030
https://doi.org/10.1109/ICDCS.2018.00103
https://doi.org/10.1109/ICDCS.2018.00103
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19

78 S. P. Mithila et al.

12. Gutierrez-Estevez, D.M., Luo, M.: Multi-resource schedulable unit for adaptive
application-driven unified resource management in data centers. In: 2015 Interna-
tional Telecommunication Networks and Applications Conference (ITNAC), pp.
261–268. IEEE (2015)

13. Luo, M., Li, L., Chou, W.: ADARM: an application-driven adaptive resource man-
agement framework for data centers. In: 2017 IEEE International Conference on
AI & Mobile Services, pp. 76–84 (2017)

14. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic map-
ping of a class of independent tasks onto heterogeneous computing systems. J.
Parallel Distrib. Comput. 59(2), 107–131 (1999)

15. Mithila, S.P.: Scheduling Many-Task Computing Applications for a Hybrid Cloud.
LSU doctoral dissertation. 5928, Louisiana State University and Agricultural and
Mechanical College (2022)

16. Mithila, S.P., Baumgartner, G.: Latency-based vector scheduling of many-task
applications for a hybrid cloud. In: 2022 IEEE 15th International Conference
on Cloud Computing (CLOUD), pp. 257–262 (2022). https://doi.org/10.1109/
CLOUD55607.2022.00047

17. Mohammadzadeh, A., Masdari, M., Gharehchopogh, F.S.: Energy and cost-aware
workflow scheduling in cloud computing data centers using a multi-objective opti-
mization algorithm. J. Netw. Syst. Manag. 29(3), 1–34 (2021)

18. Peterson, B.: Decentralized Scheduling for Many-Task Applications in the Hybrid
Cloud. LSU doctoral dissertation. 4223, Louisiana State University and Agricul-
tural and Mechanical College (2017)

19. Peterson, B., Fazlalizadeh, Y., Baumgartner, G., Wang, Q.: A vector-scheduling
approach for running many-task applications in the cloud. In: Luo, M., Zhang,
L.-J. (eds.) CLOUD 2018. LNCS, vol. 10967, pp. 3–19. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94295-7 1

20. Raicu, I., Foster, I.T., Zhao, Y.: Many-task computing for grids and supercomput-
ers. In: 2008 Workshop on Many-Task Computing on Grids and Supercomputers,
pp. 1–11. IEEE (2008)

21. Rajbhandari, S., Nikam, A., Lai, P., Stock, K., Krishnamoorthy, S., Sadayappan,
P.: A communication-optimal framework for contracting distributed tensors. In:
SC 2014: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 375–386. IEEE (2014)

22. Taylor, I., Shields, M., Wang, I.: Resource management for the triana peer-to-
peer services. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource
Management, pp. 451–462. Springer, Boston (2004). https://doi.org/10.1007/978-
1-4615-0509-9 27

23. Vannikkarasan, H.: Decentralized scheduling in cloud with variable size tasks. Tech-
nical report, Louisiana State University (2021)

24. Walker, E.: Benchmarking Amazon EC2 for high-performance scientific computing.
Mag. USENIX SAGE 33(5), 18–23 (2008)

25. Wikipedia: Grid computing (2023). https://en.wikipedia.org/wiki/Grid
computing

26. Xin, R., Gonzalez, J., Franklin, M., Stoica, I.: Graphx: a resilient distributed graph
system on spark. In: First International Workshop on Graph Data Management
Experiences and Systems, pp. 1–6 (2013)

https://doi.org/10.1109/CLOUD55607.2022.00047
https://doi.org/10.1109/CLOUD55607.2022.00047
https://doi.org/10.1007/978-3-319-94295-7_1
https://doi.org/10.1007/978-1-4615-0509-9_27
https://doi.org/10.1007/978-1-4615-0509-9_27
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Grid_computing

Author Index

B
Bardakoff, Alexandre 1
Baumgartner, Gerald 65
Berzins, Martin 1
Blattner, Timothy 1
Brandt, Steven R. 27

D
Diehl, Patrick 27

F
Franz, Peter 65

K
Kaiser, Hartmut 27
Keyrouz, Walid 1

M
Mithila, Shifat P. 65

P
Pflüger, Dirk 52

R
Richardson, Brad 39
Rouson, Damian 39

S
Salzmann, Philip 13
Shingde, Nitish 1
Singleterry, Robert 39
Snyder, Harris 39
Strack, Alexander 52

T
Thoman, Peter 13

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
P. Diehl et al. (Eds.): WAMTA 2023, LNCS 13861, p. 79, 2023.
https://doi.org/10.1007/978-3-031-32316-4

https://doi.org/10.1007/978-3-031-32316-4

	 Preface
	 Organization
	 Contents
	Extending Hedgehog's Dataflow Graphs to Multi-node GPU Architectures
	1 Introduction
	2 Existing Approaches
	2.1 Uintah
	2.2 DPLASMA
	2.3 SLATE
	2.4 Hedgehog

	3 Extending Hedgehog to Multiple Nodes
	3.1 DataPacket
	3.2 Sender Task
	3.3 Receiver Task

	4 Matrix Multiplication Using Hedgehog
	4.1 Single-Node Setup
	4.2 Multiple Node Setup
	4.3 Communications

	5 Results
	6 Conclusions
	7 Future Work
	References

	Command Horizons: Coalescing Data Dependencies While Maintaining Asynchronicity
	1 Introduction and Related Work
	2 Background
	2.1 The Celerity Runtime System
	2.2 Data State Tracking
	2.3 Generative Data Access Patterns

	3 Horizons
	4 Evaluation
	5 Conclusion
	References

	Shared Memory Parallelism in Modern C++ and HPX
	1 Introduction
	2 Related Work
	3 HPX
	4 Approaches
	4.1 Futures and Futurization
	4.2 Coroutines
	4.3 Parallel Algorithms
	4.4 Senders and Receivers

	5 Performance Comparison
	6 Conclusion
	References

	Framework for Extensible, Asynchronous Task Scheduling (FEATS) in Fortran
	1 Introduction
	2 Implementation
	3 Advantages, Disadvantages, and Examples
	3.1 Advantages
	3.2 Disadvantages
	3.3 Examples

	4 Conclusion
	References

	Scalability of Gaussian Processes Using Asynchronous Tasks: A Comparison Between HPX and PETSc
	1 Introduction
	2 Related Work
	3 Scientific Application
	3.1 Gaussian Processes
	3.2 System Identification

	4 Parallel Algorithms
	4.1 Tiled Cholesky Decomposition
	4.2 Tiled Triangular Solve
	4.3 Research Questions and Hardware Setup

	5 Software Framework
	5.1 HPX
	5.2 PETSc

	6 Results
	6.1 Tile Scaling
	6.2 Strong Scaling Comparison

	7 Conclusion and Outlook
	References

	Scheduling Many-Task Applications on Multi-clouds and Hybrid Clouds
	1 Introduction
	2 Decentralized Cloud Scheduling Approach
	2.1 Overlay Graph Construction
	2.2 Three-Dimensional Vector Scheduling
	2.3 Simulated Performance and Latency Variations
	2.4 Using Virtual Machines

	3 Multi-cloud Experiments
	4 Related Work
	5 Conclusion and Future Work
	References

	Author Index

