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Abstract. Massive Multiple-Input Multiple-Output (M-MIMO) uses
hundreds of antennas in mobile communications base stations to increase
the amount of transmitted data and the number of connected devices in
5G and beyond. However, M-MIMO systems increase the complexity
of recovering the transmitted data (detection phase). To address this
challenge, we leverage low-precision arithmetic in recent NVIDIA GPUs
to improve the latency/scalability/accuracy of M-MIMO detection. We
propose a GPU tree-based detection algorithm that aggregates multiple
tree levels and formulates the computation as a matrix multiplication
operation followed by a square-norm calculation and sorting (reduction)
phase. This process is repeated until reaching the last level of the detec-
tion tree. The obtained results show near-optimal data detection with
a 10× speedup compared to a two-socket 28-core IceLake CPU imple-
mentation. We further deploy low-precision arithmetic operations. We
show that moving from single-precision 32-bit floating-point arithmetic
(FP32) to half-precision 16-bit representation (FP16) does not affect the
accuracy performance while translating into an additional 1.7× speedup.
In addition, exploiting 8-bit integer representation results in an accept-
able error rate degradation that can be compensated by increasing the
number of aggregated levels. In addition, we propose a multi-GPU ver-
sion that computes the matrix-multiplication operation of subsequent
iterations in parallel. This latter operation represents more than 80% of
the elapsed time for dense constellations. Results with four A100 GPUs
show an additional 2.3× relative speedup compared to our single GPU
version. The achieved accuracy/scalability balance may accelerate the
deployment of this technology and promote low-precision GPU compu-
tations within the wireless communication community.
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1 Introduction

GPU accelerators enable an increase in computational power by lowering the
arithmetic precision. This paper demonstrates the gains achievable by using
GPUs with various arithmetic precision to meet the requirements of Next-
Generation mobile communication networks in general and Massive Multiple-
Input Multiple-Output (M-MIMO) detection in particular. M-MIMO technology
is a key enabling technology for 5G and 6G mobile communication networks.
It uses hundreds of antennas to send and receive data [7,11]. However, when
increasing the number of antennas, the signal detection phase, which estimates
the transmitted data, becomes a bottleneck, with an exponential complexity in
the number of transmit-antennas for optimal detection. In this context, our goal
is to speed up this phase using multiple GPUs with various arithmetic precision.
Two main categories of detection methods exist, i.e., linear and nonlinear algo-
rithms. On the one hand, linear detection algorithms operate under real-time
constraints but fail to estimate the transmitted data correctly due to noise. On
the other hand, nonlinear algorithms, e.g., the Sphere Decoder (SD) [6,8], give
an excellent estimation of the transmitted data but require significant execution
time. Nonlinear algorithms operate on a search tree that models all possible
combinations of the transmitted data. Each path is defined by a set of symbols
(data), from which a distance from the received signal can be calculated. The
detection goal is to find the path with the shortest distance representing the
originally transmitted data.

In this paper, we introduce a low-precision multi-level approach. It itera-
tively extends one path with several symbols representing the best combination
in terms of distance within a window until we reach a complete path (solution).
At each iteration, the algorithm combines successive levels within a window and
computes all distances via a matrix-matrix multiplication exploiting tensor core
capabilities in recent NVIDIA GPUs. The matrix shape is short and wide in
dimensions representing the number of levels and all possible paths in a win-
dow. We then calculate the square norm and launch a sorting (reduction) phase
to select the best extension. By increasing the number of aggregated levels, we
improve the accuracy, but this comes at the price of higher complexity, there
being a trade-off between complexity and accuracy. To mitigate the complex-
ity and maintain good accuracy, we first exploit low-precision arithmetic (i.e.,
FP16 and INT8) and engage NVIDIA tensor cores with fast matrix engines. We
report results on A100 GPU and achieve a 10× speedup compared to multicore
CPU implementation on a two-socket 28-core Intel IceLake CPU. In addition,
exploiting low-precision gives an additional 1.7× speedup without impacting the
accuracy in terms of error rate. To further reduce the complexity, we propose a
multi-GPU version that improves the complexity by reducing the matrix multi-
plication time, representing more than 80% of the global execution time for dense
constellations. The idea is to overlap all matrix multiplication operations per-
formed during the detection process since they are entirely independent and can
be processed in an embarrassingly parallel fashion using multiple GPUs. This
breaks the inherent sequential behavior of the detection phase, which results
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in an additional 2.3× improvement. Overall, we achieved up to 40× relative
speedup compared to our multi-CPU implementation.

The rest of the paper is structured as follows. Section 2 introduces basic
mobile communication concepts. Section 3 reviews the literature on high-
performance MIMO processing. Section 4 presents the system model. Section 5
describes the details of our multi-level approach and its implementation. Results
and discussions about the complexity and performance are given in Sect. 7.
Finally, Sect. 8 concludes this paper and highlights our future plans.

2 Brief Background

M-MIMO incorporates hundreds of antennas in telecommunication base stations
to enhance the quality of service for several 5G applications, from video stream-
ing and gaming to self-driving cars and smart cities. The more antennas we
integrate, the more data we can send (resp. receive) simultaneously. i.e., One on
each antenna.

2.1 Modulation

Modulation is the act of changing a signal to transmit data. It represents a col-
lection of symbols that can be sent directly on one antenna in one transaction.
A symbol is represented by a complex number, i.e., real and imaginary parts.
The number of symbols in a given modulation is defined as 2b, where b is the
number of bits encapsulated in a symbol. For instance, in Binary Phase-shift
keying (BPSK) modulation, one bit is sent per symbol (b = 1). Therefore, this
modulation includes two symbols (1,0) and (−1,0). In 64 Quadrature Amplitude
Modulation (64-QAM), we can send six bits per symbol (b = 6). This repre-
sents 64 symbols in total. The higher the modulation, the better the data rate.
However, it also increases the communication system’s error rate and complexity.

2.2 Signal to Noise Ratio (SNR)

The SNR measures the relevant signal strength in decibels (dB) compared to the
noise signal that can get in the way. Therefore, the higher the SNR, the better
the communication system. A high-SNR value indicates that the user is close to
the transmit antenna. A user can be assigned a specific modulation based on the
SNR value. For instance, a BPSK modulation in the low-SNR regime versus a
64-QAM modulation if the user has a high SNR.

2.3 Error Rate and Time Complexity

The error rate performance is a ratio between transmitted data and the one
recovered correctly at the receiver side. The error rate varies according to the
detection algorithm used. The lower the error rate, the better the communication
system is. In general, 10−2 uncoded symbol error rate (SER) is considered an
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acceptable error performance for many applications. For systems with powerful
error correction codes, the previous SER readily translates into 10−5−10−6 SER
error performance. The detection latency also depends on the complexity of the
detection algorithm and the application area. In general, 10 ms is considered
an acceptable latency for mobile communications. A good detection algorithm
achieves a good trade-off between complexity and error rate performance.

For more information about communication science and engineering, please
refer to e.g., [13].

3 Related Work

Many researchers have exploited multi-core CPUs and GPUs to accelerate non-
linear detection algorithms.

Chen and Leib [4] propose a GPU-based Fixed Complexity Sphere Decoder.
The authors reported a relative speedup of 7× for large MIMO systems. However,
the time of the approach is an order of magnitude higher compared to 10 ms
requirements.

Arfaoui et al. [3] propose a GPU-based SD algorithm in which a Breadth-
First Search (BFS) exploration strategy is used to increase the GPU resource
occupancy. However, BFS increases the complexity, especially in low SNR region.
The authors reported excellent error rate performance. However, the proposed
approach has a scalability limitation, especially for large constellations due to
the exponential complexity of the SD.

Husmann et al. [9] propose a flexible parallel decoder for MIMO systems using
GPU and field-programmable gate array (FPGA) architectures. Their algorithm
contains two phases. A first pre-processing phase chooses parts of the SD search
tree to explore, and a second phase maps each of the chosen parts of the SD tree
to a single processing element (GPU or FPGA). The results are presented for a
maximum of a 12 × 12 MIMO system using 64-QAM modulation.

Nikitopoulos et al. [10] propose the design and implementation of a parallel
multi-search SD approach using multicore CPU and Very-Large-Scale Integra-
tion (VLSI) architectures. After the pre-processing phase, in which they obtain
a processing order of the tree branches, the authors split the search tree into
several sub-trees. Each sub-tree is then mapped on a processing element and
explored using a depth-first strategy. However, the authors do not consider the
load-balancing problem, which may arise in modulations with dense constella-
tions. The authors approximate results for a maximum of 16×16 MIMO system
using 64-QAM modulation.

Dabah et al. [2,5] propose a parallel multi-agent approximate approach that
runs simultaneously a single agent with a SD instance while the remaining agents
execute concurrent k-best algorithm to accelerate SD search tree.

Despite the decent error rate performance, the above-proposed methods still
suffer from scalability limitations. For example, the largest MIMO configuration
reported in the above works is for 32 antennas under 10 ms requirements, which
is far from massive MIMO potential. In fact, all works mentioned above are based
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on the SD algorithm, which has an exponential complexity (2b)M , with M the
number of antennas and b the number of bits per symbol. Our GPU multi-level
algorithm has a linear complexity M(2b)L, where L is the number of combined
levels L ∈ {1, .., 4}. As a result, we report a good error rate performance for up
to 100 × 100 antennas while maintaining an excellent error rate under real-time
requirements.

Fig. 1. Example of a MIMO system where the vector s is transmitted by M transmitter
antennas via a channel matrix H . The received vector y is a collection of N receiver
antennas’ observations.

4 System Model

In this paper, we consider a MIMO system consisting of M transmit anten-
nas and N receive antennas, as depicted in Fig. 1. The transmitter sends M
data streams simultaneously to a receiver using multiple antennas via a flat-
fading channel. i.e., We consider a small-scale fading channel which is a stan-
dard model in the literature [3]. The following equation describes the base-band
MIMO model: y = Hs + n, where the vector y = [y0, ..., yN−1]T represents
the received signal. H is an N × M channel matrix, where each element hij is
a complex Gaussian random variable, with mean 0 and variance 1, that mod-
els the fading gain between the j-th transmitter and i-th receiver. The vector
s = [s0, ..., sM−1] represents the transmitted vector, where si belongs to a finite
alphabet set denoted by Ω. The input s is subject to an average power con-
straint ρ, i.e., E[‖s‖2] ≤ ρ. Finally, n = [n0, ..., nN−1]T represents the additive
white Gaussian noise with zero mean and covariance IN , where IN designates
the identity matrix of size N . With regard to the noise and channel normaliza-
tion, the average power ρ also designates the average SNR per receive antenna.
For convenience, let us consider S as the set of all possible combinations of the
transmitted vector s. The possible number of combinations corresponds to the
complexity of the MIMO system and it is calculated as follows: |S|=|Ω|M .

The two main options for decoding the received signal are linear decoders
characterized by low complexity and poor error rate performance and nonlinear
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(optimal or near-optimal) decoders characterized by good error rate quality but
relatively high complexity.

Linear decoders multiply and map the received signal using a matrix denoted
by Hinv (M×N), obtained from the channel matrix H. The most common linear
decoders are Zero Forcing (ZF) and Minimum Mean Square Error (MMSE). As
for nonlinear decoders, the Maximum Likelihood [12] is the optimal decoder,
exhibiting prohibitive complexity. It calculates a posteriori probability for each
possible transmitted vector s ∈ S. In other words, the algorithm performs a
brute-force exploration of the entire search space, as shown in Eq. 1:

ŝ = argmin
s∈S

||y − Hs||2. (1)

The SD algorithm [1,14] mimics the ML decoder, but limits the search for
the optimal solution inside a sphere of radius r set initially by the user, as shown
in the Eq. 2:

||y − Hs||2 < r, where s ∈ S. (2)

The radius may then be updated subsequently at runtime to further prune the
search space and reduce the complexity.
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Fig. 2. Detection search tree for a MIMO system with three transmit antennas. One
symbol is fixed at each level.
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4.1 Tree-Based Representation

The problem in Eq. 2 can be transformed into another equivalent problem by
performing the QR decomposition of the channel matrix H as follows:

||y − Hs||2 = ||y − QRs||2
= ||ȳ − Rs||2, where ȳ = QHy

where Q ∈ CN ×N is an orthogonal matrix and R ∈ CN ×M is an upper
triangular matrix.

Thus, finding the supposed transmitted vector (ŝ) in Eq. (1) is equivalent to
solving the following minimization problem:

min
M∑

k=1

gk(sM −1, ..., sM −k), where (3)

gk(sM−1, ..., sM−k) = ||ȳM−k −
M−1∑

i=M−k

(r(M−k),isi)||2 (4)

where (4) represents the partial distance (PD) of a search tree node (path).
Indeed, this latter formulation of the problem allows to model all possible com-
binations of the transmitted vector as a search tree with M layers. To find the
path with the minimum distance from the received signal, the SD performs a
tree exploration to retrieve the best path.

Algorithm 1: Multi-Level Detection Pseudo-code.
Require: ȳ, R

P = {} solution vector L number of aggregated levels M number of antennas

1: while |P |! = M do

2: Generate partial paths Pi i ∈ {1, ΩL}
3: Calculate PDi i ∈ {1, ΩL}
4: Locate Pm such that PDm = min{PDi, i ∈ {1, ΩL}}
5: P = P ∪ Pm

6: end while

7: return P

5 Multi-level Approach

This section describes a multi-level approach that relies on two factors to keep
real-time requirements and a good error rate. The first factor is algorithmic
based on our multi-level technique. The second factor is efficiently exploiting the
computing power of GPU resources and its large number of processing elements.
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As depicted in Algorithm 1, our approach operates on a search tree with M
levels (number of transmit antennas) and constructs only one solution named
P (complete path). Usually, one symbol is detected at each level, starting from
symbol Sm−1 at level 1 to finally reach symbol S0 at level M . Our idea is
to combine the detection of multiple and successive symbols simultaneously.
Despite the increase in the number of successors from |Ω| to |Ω|L, combining the
detection of L symbols increases the accuracy in terms of error rate performance
and reduces the number of iterations of our multi-level approach from M to
M/L. Starting from a partial path P (initially empty), our approach creates |Ω|L
partial paths (Pi / i=1,.., |Ω|L) that extend P with all possible combinations of
L symbols. After that, we calculate the partial distance (PDi) for each partial
path Pi using Eq. (5) Next, we replace P with the best partial path Pi in terms of
partial distance (minimum PDi). We repeat this process until reaching the last
level of the tree, where we return P as an approximate solution to the MIMO
detection problem.

Increasing the constellation size to 64-QAM (transmitting six bits per sym-
bol) increases the error probability to fall into neighboring symbols instead of
the transmitted one due to the noise. Our approach overcomes this issue by using
coefficients of the next lower levels to confirm which of these symbols is the right
one.

6 GPU-Based Multi-level Approaches

Increasing the aggregated levels increases the accuracy. However, it also increases
the complexity. To keep practical time complexity and good error rate even for
large constellations, we exploit low precision tensor core capacity in recent GPU
hardware. All parts of our Multi-level approach are implemented and executed
on GPU to avoid all data-transfer over the slow PCIe bus.

6.1 GPU Multi-level

We formulate our multi-level algorithm as a linear algebra operation that com-
putes the PD (evaluation) of all partial paths simultaneously and then chooses
the best one for the next iteration. Indeed, our algorithm is implemented to avoid:
(1) thread divergence, especially in generating the partial paths; (2) increasing
the compute portion of the algorithm by reformulating this process as matrix
algebra operation A ∗B + αC; and finally (3) relying on a reduction process to
find the best candidate for following iterations. More detail on efficiently exploit-
ing GPU resources in general, and half-precision in particular, is given in what
follows.

Complex to Real Transformation. Wireless communication data are mod-
eled as complex numbers. In order to exploit low-precision arithmetic, we must
perform a transformation from complex to real because there is no GPU sup-
port for low-precision computation for complex numbers. There are two ways
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(b) Avoiding redundancy in computation by removing half the columns of matrices B and C

(a) Replacing each complex number by a 2x2 matrix

Fig. 3. Complex to real transformation.

to do the transformation. In the first way, we split a complex matrix into two
matrices, one matrix representing the real part and the other one representing
the imaginary part. This option creates an overhead of managing two matrices
instead of one, thus inducing an overhead in computation and memory access.
The other interesting option (preferred) is to replace each complex number with
a 2 × 2 matrix. This option is depicted in Fig. 3 (a). Therefore, Matrix A with
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m rows and k columns will be transformed to a matrix with 2∗m rows and 2∗k
columns. We do the same for matrices B and C.

Matrices B and C can have millions of columns, inducing a huge number
of floating-point operations (FLOPS) and memory access. We can notice that
matrix C (multiplication result) has duplicated information (r1,i1), and (−i1,r1)
(See Fig. 3 (b)). Here, we exploit this redundancy to cut down by half the number
of flops and memory accesses in the multiplication. In this way, we reduce the size
of matrix B from 2k * 2n to 2k * n. Similarly, for matrix C. This is important
since the number of columns of matrices B and C can reach several million.

Avoiding Thread Divergence. Thread divergence appears when threads
within the same warp don’t follow the same instruction path (if-else), result-
ing in negative performance consequences. The thread divergence situation is
known when exploring trees on GPU since the branching process has many if-
else instructions.

Exploring a search tree and generating partial paths (successor nodes) at each
iteration represents a bottleneck on GPU since it involves many if-else conditions.
To answer this issue when generating partial paths (all possible combinations of
L symbols), we divide a partial path into two parts. A part common with all
partial paths (from root to node x) and a distinct part that is unique for each
partial path. For instance, the partial paths in Fig. 4 second iteration have two
parts: a common part (marked in red) from root to node x, followed by the unique
part for each partial path. The distinct part for all partial paths is represented
by a matrix B. This latter contains all possible combinations of L symbols such
that each column represents a partial path. This matrix is generated once and
does not change from one iteration to another. The only thing that changes from
one iteration to another is the common part modeled as a vector V c.

On the one hand, this decomposition allows to avoid thread divergence situ-
ations. On the other hand, it also allows reducing the size (memory and flops) of
matrix B (resp. C). Without the aforementioned decomposition, the common
part will be duplicated for all partial paths |Ω|L, which can reach millions.

New Incremental Evaluation: The evaluation for each partial path is calculated
using Eq. 4. To increase the arithmetic intensity of our algorithm, we grouped the
evaluation for all partial paths as a matrix multiplication as follows: A∗B+αC.

EPi = Ep +
L−1∑

k=0

‖Cki + Vk‖ (5)

The evaluation of a partial path Pi is the evaluation of the constructed path P
(calculated in the previous iteration) plus the square norm over column Ci + V .
Following the decomposition we did earlier, the evaluation is divided into two
parts, i.e., matrix-matrix multiplication and matrix-vector multiplication. The
square matrix A is obtained from matrix R (QR decomposition page 6.), such
that it contains the rows of L fixed symbols in the current iteration. The matrix
B is defined in the earlier section as all possible combinations of the L sym-
bols, which can reach millions of columns. Finally, the matrix C represents the
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Fig. 4. Branching scheme of the multi-level approach.

elements of ȳ corresponding to the L symbols in the current iteration duplicated
|Ω|L times.

The other part of the evaluation is a matrix-vector multiplication that multi-
plies Matrix A′ obtained from matrix R with the common vector V c defined ear-
lier. Sorting (Reduction): After the evaluation phase, our algorithm chooses the
best partial path in terms of evaluation, i.e., distance from the received signal.

6.2 Multi-GPU Version

As earlier stated, the multiplication used to compute the evaluation for each
partial path (A ∗ B + αC) requires nearly 80% of execution time (see Fig. 6).
In addition to using low-precision mode for computing the above multiplica-
tion, we aim to accelerate this phase further using multiple GPUs. Thanks to
our path decomposition to avoid thread divergence, matrix B remains the same
from one iteration to another. In addition, matrix A for each iteration is known
in advance. The idea behind this multi-GPU version is to overlap all the mul-
tiplication used during the detection process using multiple GPUs. As depicted
in Fig. 5, all multiplications from different iterations are performed on multiple
GPUs at the same time. This reduces all the matrix multiplication operations
to the complexity of one multiplication. The only phases that need to be done
sequentially are the norm calculation and min.
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Fig. 6. Time partition of different ker-
nels (single precision) of our approach
for a 100× 100 MIMO system with 64-
QAM modulation and four levels.

7 Results and Discussions

In the following, we conduct experiments to assess our GPU-based approach’s
accuracy (error rate) and complexity. For that, we use MMSE linear detection
and the optimal GPU-SD in [3]. The exponential complexity of the SD prevents
it from dealing with large MIMO systems. For this reason, we include its per-
formance for a small MIMO system. We perform our experiments using a server
with four NVIDIA A100 GPUs with 40GB and a two-socket Intel IceLake CPU
2 GHz with 28 CPU-core and 1024 GB of main memory. For all the experiments,
we consider the case of perfect channel state information. This means that the
channel matrix is known only at the receiver. Each experiment uses randomly
generated symbols (data set). As a result, the data sets are different from one
execution to another which is close to real wireless data. All level three BLAS
operations are performed using the vendor-optimized cuBLAS library.

Figure 7 illustrates the impact of increasing the number of combined levels on
the error rate and complexity of our ML approach. We compare our results with
the accuracy of the optimal SD algorithm to show how far we are from optimal
results. Despite the attractive latency of the MMSE algorithm, this latter has
poor error rate performance, which makes it not suitable for M-MIMO. The
first observation from sub-figure (a) is the good impact of increasing the number
of levels on the error rate performance. Indeed, the accuracy of our multi-level
technique is quite close to the performance of the optimal GPU-SD [3] when
using four and five levels. However, if we look at the complexity (sub-figure (b)),
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Fig. 7. Accuracy and latency results of our GPU ML approach compared to the linear
MMSE and the optimal SD results.

we can see a significant gap in complexity between the two approaches. Indeed,
The GPU-SD [3] has high latency since it enumerates all possible combinations of
the transmitted signal inside a given radius, which results in a massive number of
explored paths. This is not the case with our approach, which combines multiple
levels to target the best path in the search tree. This results in a limited number
of explored nodes (low latency) while achieving high accuracy. On average, our
approach (ML 5) is 40x faster than GPU-SD [3] for this small configuration.
By increasing the number of levels of our approach from one to four, we reach
the acceptable accuracy (10−2) at 13 dB instead of 22 dB, thus saving 9 dB
in power consumption with a slight increase in complexity. This represents a
good accuracy/complexity balance for communication users. Thus, increasing
the number of levels in our approach is crucial for achieving better accuracy.
However, the complexity increases accordingly. To scale the number of antennas
while keeping reasonable complexity, we exploit tensor-core capability in recent
GPUs.

Figure 6 shows the time partition of our GPU kernels for a 100 × 100 MIMO
system with 64 QAM modulation and four levels. The matrix-matrix multiplica-
tion required to evaluate partial paths represents 76% of the total execution time.
In this configuration, we have 16777216 partial paths that need to be evaluated
as matrix-matrix multiplication with m, k, and n equal to 8, 8, and 16777216,
resp. As a result, lowering the time complexity of our approach requires reducing
the complexity of the matrix multiplication operation. To achieve this goal and
study the impact of low-precision data structure on the wireless communication
field in general and MIMO detection in particular, we exploit FP16 and INT8
as follows.

Figure 8 shows the error rate performance of our approach using different
arithmetic precisions (FP32, FP16, and INT8) using respectively three and four
combined levels (ML 3, ML 4) for a 100×100 MIMO with 64-QAM modulation.
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(a) ML 3 Error rate using FP32, FP16, and INT8 precisions.
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(b) ML 4 Error rate using FP32, FP16, and INT8 precisions.
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Fig. 8. Error rate performance using different arithmetic precision from float 32 bits
precision to the smallest integer 8 bits for a 100×100 MIMO with 64-QAM modulation.
Sub-figures (a) and (b) give the results of our algorithm with three levels (ML 3) and
four levels (ML 4), respectively.

The interesting observation from both sub-figures (a) and (b) is that our
approach performs well and can support precision loss even when using the
smallest representation of 8 bits (size of a register). Indeed, we can see from the
two sub-figures that passing from FP32 to FP16 representation of matrices A,
B, and C has no effect on the accuracy for all SNR regions. This means that the
conversion, multiplication, and accumulation in FP16 does not lead to accuracy
loss. In turn, this means that the multiplication and accumulation operations
performed during the GEMM are all within the range of FP16. Furthermore,
when moving to the smallest representation that can fit into a register(INT8),
we see a moderate variation in error rate performance. This means we are losing
some useful information. Since the accumulation for INT8 is done in integer 32
bits, the precision loss occurs when converting matrix A from Float 32 bits to
Integer 8 bits. Indeed, when scaling up matrix A, we may be out of the INT8
range (−127,127), which affects the accuracy in error rate, especially in the
high SNR region. Figure 9 shows the effect of increasing the scaling number in
the float to INT8 conversion of matrix A on the accuracy. We can identify two
phases, a first one where increasing the scaling number improves the accuracy,
and a second phase where increasing the scaling number negatively affects the
accuracy. Indeed, a large scaling number leads to integer values out of the INT8
range (−127, 127). Thus, all values above (resp. under) 127 (resp. −127) are
represented by 127 (resp. −127). Therefore, we lose useful information, which
explains the decrease in accuracy.

It seems that increasing the number of levels positively impacts the accuracy
of the INT8 version. Figure 10 investigates this behavior for 100 × 100 MIMO
with 16-QAM modulation. It shows the impact of increasing the number of levels
on the accuracy of the INT8 version in terms of error rate performance. We can
see clearly the good impact of increasing the number of levels on the accuracy
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Fig. 9. Impact of scaling number in the
float to INT8 conversion on the error
rate performance for a 100×100 MIMO
64-QAM modulation using ML 4 and
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Fig. 10. Impact of multi-level tech-
nique in supporting integer 8-bits accu-
racy for 100×100 MIMO with 16-QAM
modulation.

of the INT8 version by saving up to five dB in power consumption, which is an
important aspect in the wireless communication domain.

From Fig. 8, we can identify two SNR regions. Low SNR region between 0 and
16 dB, where INT8 version has a similar error rate compared to FP16 and FP32
versions. After that, a second region begins where we can see the loss in error
rate performance of the INT8 version. On the one hand, reducing the precision
in the low SNR region affects the chosen path. However, this is not visible since
the error rate is very high in this region, even when using the FP32 version.
On the other hand, reducing the precision has a visible impact on the accuracy
of MIMO detection. However, Fig. 10 shows that combining more levels (ideally
four levels) reduces the impact of precision loss. Indeed, increasing the number
of levels increases the difference in terms of evaluation between the optimal path
and neighboring symbols. This compensates for the precision loss in this SNR
region.

Figure 11 gives a general view of INT8 performance for different modulations
from BPSK where we send only one bit per antenna, to 64-QAM where six bits
are sent together per antenna. We can see from Fig. 11 the limited impact of
precision loss on the accuracy of MIMO detection for all modulation and SNR
regions. We can see that the more dense the constellation, the more impact
of precision loss. Indeed, increasing the constellation size increases the error
probability and increases the impact of precision loss since this lost information
can influence the chosen path.

Figure 12 shows the impact of using different arithmetic precision on the time
complexity of our approach using four levels. We can see that 1.7× improvement
in complexity going from FP32 (32 bits) to FP16 (16 bits) without any impact
on the accuracy, as we saw earlier. We can also see that INT8 precision does not
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significantly impact time complexity due to the limited support in CUDA driver
11.6. Indeed, tensor cores are currently not activated for the non-transpose cases
when launching this specific CUDA INT8 GEMM kernel. However, even when
using half-precision, which has mature support on the GPU hardware, we are
not close to the theoretical 18× speedup. Our hypothesis is that the shape of
the matrix for our approach deeply affects the performance gain using tensor
cores. Figure 13 investigates this and shows the performance gain using driver
matrix multiplication with two kinds of matrices. The first is the short and wide
matrix shape from our MIMO multi-level detection, i.e., A(8 × 8), B(8 × 16M).
The second kind is a square matrix A(4k × 4k) and B(4k × 4k).

Figure 13 confirms our suggestion that the shape of the matrices significantly
impacts the improvement factor using tensor cores. Indeed, with a square shape
of A and B matrices, we are getting close to the theoretical peak performance
using both FP32 and FP16, with an improvement factor around 15×. On the
other hand, the low performance achieved by the wide and short matrices (MIMO
shape) is explained by two reasons. The main reason is that this latter shape
of matrices engenders a memory-bound regime of execution with an Arithmetic
Intensity (AI) in flops per byte of only 4 compared to an AI of 682 square shape
matrices. Such matrix shape does not engender enough data reuse for such an
operation to be in the compute-bound regime of execution, as usually noticed
for traditional square matrix-matrix multiplication. The same conclusion is also
valid for INT8 precision.

In addition to using low-precision, we exploit multiple GPUs to overlap the
matrix multiplication performed during the detection process. Figure 14 shows

Fig. 11. ML 4 error rate heat-map using low-precision arithmetic for different modu-
lations and SNR values for a 100 × 100 with 64-QAM modulation.
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Fig. 14. complexity versus the number of GPUs for our multi-GPU approach for a 100
× 100 MIMO system with 64-QAM using four levels.

the impact of scaling the number of GPUs to further reduce the time-to-solution
of the main kernel, i.e., the matrix-matrix multiplication. This latter represents
more than 80% of the elapsed time for dense constellations. The idea is to exe-
cute matrix-matrix multiplications from subsequent iterations using multiple
GPUs simultaneously. However, the remaining 20% of the code must be executed
sequentially, which may impede strong scaling performance. Figure 14 shows the
complexity (a) and speedup (b) of our multi-GPU approach for a 100 × 100
MIMO system with 64-QAM modulation and four levels. Sub-figure (b) shows
the theoretical best speedup (red curve) and achieved speedup (blue curve) by
our multi-GPU approach. We can notice two regimes: the first between one and
four GPUs, where the complexity decreases, and the second between four and
eight GPUs, where increasing GPUs has no effect on the complexity. The first
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Fig. 15. Complexity and speedup of our proposed approaches for a 100 × 100 MIMO
with 64-QAM modulation.

regime is characterized by a rapid decrease in complexity and a near-optimal
speedup. This is due to a high compute-to-communication ratio. After that,
increasing the number of GPUs increases the communication-to-computation
ratio, which indicates that the increased communication neutralizes the ben-
efit achieved by overlapping addition iterations. Despite the fact that matrix
multiplication represents 80% of the execution time, we still need to perform
the norm and min kernels. This results in synchronization and data transfer
between GPUs. Indeed, the communication when using one to four GPUs is
performed using the high-speed NVLink interconnect, whereas increasing the
number of GPUs further leads the communication through the slow PCIe bus.
This increases significantly the communication, which neutralizes the gain from
overlapping more multiplication operations for this particular data set. Adding
more levels will allow supporting more than four GPUs; however, the complexity
will increase beyond the acceptable threshold for mobile communication.

Figure 15 shows the overall performance against a multi-core CPU implemen-
tation on IceLake architecture for a 100× 100 MIMO with 64-QAM modulation
(ML 4). For a fair comparison, the CPU implementation is also based on real
matrix representation as explained in Fig. 3. The best performance for the par-
allel CPU version is reached around 30 threads and remains the same up to 56
threads. Solid fill indicates the time to solution, while dashed bars report the
speedup achieved. Figure 15 shows that going from the multi-CPU version with
30 physical threads FP32 to one GPU A100 with FP32 single precision leads to
10× improvement in complexity. Moreover, exploiting half-precision arithmetic
(FP16) pushes the speedup to 17×. Furthermore, our multi-GPU version is 2.3×
faster than the single-GPU version with half-precision mode. In total, our multi-
GPU version is 40× faster than the parallel CPU implementation. As a result,
we achieve a good complexity/accuracy trade-off.
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Regarding power consumption, our approach requires an average of 78 W
which is below the 90 W cap imposed by wireless vendors.

8 Conclusion and Perspectives

Recent GPUs have fast tensor-core operations that leverage low-precision arith-
metic to achieve performance gain. This paper exploits this capability to over-
come M-MIMO detection overhead for a large number of antennas. In this paper,
we demonstrate the positive impact of low-precision arithmetic operations (32
bits, 16 bits, and 8 bits) on the complexity (1.7×) while maintaining a good
accuracy performance of our multi-level detection algorithm. To further reduce
the complexity while maintaining the same accuracy performance, we proposed a
multi-GPU approach that overlaps the matrix-multiplication operations on sub-
sequent iterations. This resulted in an additional 2.3× speedup. To summarize,
we have improved the complexity by a factor of 4× compared to a single-precision
single-GPU approach and 40× compared to the multi-core CPU implementation
on a two-socket 28-core IceLake.

In future work, we will investigate the potential gain of a Field-Programmable
Gate Array (FPGA) on both complexity and power consumption.
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