
Abhinav Bhatele · Jeff Hammond ·
Marc Baboulin · Carola Kruse (Eds.)

LN
CS

 1
39

48 High Performance
Computing
38th International Conference, ISC High Performance 2023
Hamburg, Germany, May 21–25, 2023
Proceedings

Lecture Notes in Computer Science 13948
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Abhinav Bhatele · Jeff Hammond ·
Marc Baboulin · Carola Kruse
Editors

High Performance
Computing
38th International Conference, ISC High Performance 2023
Hamburg, Germany, May 21–25, 2023
Proceedings

Editors
Abhinav Bhatele
University of Maryland
College Park, MD, USA

Marc Baboulin
Université Paris-Saclay
Gif-sur-Yvette, France

Jeff Hammond
NVIDIA
Helsinki, Finland

Carola Kruse
CERFACS
Toulouse, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-32040-8 ISBN 978-3-031-32041-5 (eBook)
https://doi.org/10.1007/978-3-031-32041-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
Chapters “Efficient GPU Offloading with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically
Adaptive Meshes”, “Massively Parallel Genetic Optimization Through Asynchronous Propagation of Popu-
lations” and “Analyzing Resource Utilization in an HPC System: A Case Study of NERSC’s Perlmutter” are
licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/). For further details see license information in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3069-3701
https://orcid.org/0009-0006-0903-1307
https://orcid.org/0000-0003-3181-8190
https://orcid.org/0000-0002-4142-7356
https://doi.org/10.1007/978-3-031-32041-5
http://creativecommons.org/licenses/by/4.0/

Preface

ISCHigh Performance Computing—formerly known as the International Supercomput-
ing Conference—was founded in 1986 as the Supercomputer Seminar. Originally orga-
nized by Hans Meuer, Professor of Computer Science at the University of Mannheim,
and former director of its computer center, the seminar brought together a group of 81
scientists and industrial partners who shared an interest in high-performance computing
(HPC). Since then, the annual conference has become a major international event within
the HPC community. It has grown well beyond its humble beginnings, and moved out
of Mannheim into other cities throughout the years: Frankfurt, Heidelberg, Dresden,
Hamburg, and Leipzig. Over the years, the conference has witnessed a steady increase
in the number of high-quality research papers submitted to the conference, and a cor-
responding growth in the number of conference attendees. ISC-HPC 2023 was held in
person in Hamburg, Germany, from May 21–25.

The call for submissions to ISC-HPC 2023 was issued in Fall 2022, inviting the
researcher and developer communities to submit their latest results for review by the
Program Committee. In total, 78 papers were submitted by authors from all over the
world. The Research Papers Program Committee consisted of 70 members from 16
countries. After at least three double-blind reviews were completed, a rebuttal process
offered the authors an opportunity to respond to reviewers’ questions and help clarify
issues the reviewers might have had. To come to a final consensus on the papers, a virtual
Program Committee meeting was held to discuss the papers. Finally, the committee
selected 21 papers for publication.

For the past several years, the ISC-HPC conference has presented an ISC-sponsored
award to encourage outstanding research in high-performance computing and to honor
the overall best research paper accepted for publication at the conference. Some years
ago, this annual award was renamed in memory of the late Dr. Hans Meuer, general
chair of the ISC-HPC conference from 1986 through 2014, and a co-founder of the
TOP500 project. This year, from the set of accepted research papers, the Research Papers
Program Committee selected the best paper based on its technical merit, including its
novelty and impact on the HPC community. During a live ceremony, the following paper
was bestowed with the Hans Meuer Award: Expression Isolation of Compiler-Induced
Numerical Inconsistencies in Heterogeneous Code by Dolores Miao from the Univer-
sity of California, Davis, USA, Ignacio Laguna from Lawrence Livermore National
Laboratory, USA, and Cindy Rubio-González from the University of California, Davis,
USA. The paper addresses the challenge of ensuring numerical accuracy in CPU- and
GPU-based parallel applications using an automated approach that is both precise and
efficient. Application programmers can spend weeks or months identifying numerical
problems caused by compiler optimizations, and be forced to reduce the performance
of their entire application just to solve a problem that might be caused by a single line
of code. The winning paper implements a method that works with industry standard
compilers for CPUs and GPUs, and is more than 99% accurate across a wide range of

vi Preface

experiments. The tool developed by the authors provides hope for complex applications
that cannot compromise on numerical accuracy or performance.

As chairs of the Research Papers Committee, we would like to express our gratitude
to the HPC community for submitting papers to ISC-HPC. We also wish to extend our
thanks to the track chairs, members of the Best Paper Committee, and members of the
Research Papers Committee, who provided the reviews and helped us arrive at the final
decisions for manuscript acceptance.

May 2023 Abhinav Bhatele
Jeff Hammond

Organization

Program Chair

John Shalf Lawrence Berkeley National Laboratory, USA

Program Deputy Chair

Michela Taufer University of Tennessee, USA

Research Papers Program Committee

Research Papers Chairs

Abhinav Bhatele (Chair) University of Maryland, USA
Jeff Hammond (Deputy Chair) NVIDIA, Finland

Architecture, Networks, and Storage

Venkatram Vishwanath (Chair) Argonne National Laboratory, USA
James Dinan NVIDIA, USA
Murali Emani Argonne National Laboratory, USA
Maria Garzaran Intel, USA
Sidharth Kumar University of Alabama, USA
Julian Kunkel Georg-August-Universität Göttingen, GWDG,

Germany
Zhiling Lan Illinois Institute of Technology, USA
Preeti Malakar Indian Institute of Technology Kanpur, India
Hai Ah Nam Lawrence Berkeley National Laboratory, USA
Sarp Oral Oak Ridge National Laboratory, USA and

OpenSFS, China
Swapna Raj NVIDIA, USA
Aditya Tanikanti Argonne National Laboratory, USA
François Tessier Inria, France

viii Organization

HPC Algorithms and Applications

Cynthia Phillips (Chair) Sandia National Laboratories, USA
Sameh Abdulah KAUST, Saudi Arabia
Mehmet Belviranli Colorado School of Mines, USA
Giselle Fernández-Godino Lawrence Livermore National Laboratory, USA
Xing Cai Simula Research Laboratory and University of

Oslo, Norway
Lin Gan Tsinghua University and National

Supercomputing Center Wuxi, China
Christian Glusa Sandia National Laboratories, USA
Clemens Grelck University of Amsterdam, The Netherlands
Yang Ho Sandia National Laboratories, USA
Israt Nisa Lawrence Berkeley National Laboratory, USA
Gabriel Noaje NVIDIA, Singapore
Lena Oden Fernuniversität in Hagen, Germany
Swapna Raj NVIDIA, USA
Johann Rudi Virginia Tech, USA
George Slota Rensselaer Polytechnic Institute, USA
Tuğba Torun Koç University, Turkey
Miwako Tsuji RIKEN, Japan
Ichitaro Yamazaki Sandia National Laboratories, USA
Abdurrahman Yasar NVIDIA, USA

Machine Learning, AI, and Quantum Computing

Bettina Heim (Chair) NVIDIA, Switzerland
Michael Beverland Microsoft, USA
Nikoli Dryden ETH Zurich, Switzerland
Tobias Grosser University of Edinburgh, UK
Thomas, Häner AWS, Switzerland
Jiajia Li North Carolina State University, USA
Bogdan Nicolae Argonne National Laboratory, USA
Mostofa Patwary NVIDIA, USA
Edgar Solomonik University of Illinois at Urbana-Champaign, USA
Abhinav Vishnu AMD, USA

Organization ix

Performance Modeling, Evaluation, and Analysis

Marc Casas (Chair) Barcelona Supercomputing Center, Spain
Ivy B. Peng Lawrence Livermore National Laboratory, USA
Jean-Baptiste Besnard ParaTools, France
Wanling Gao ICT, CAS, China
Diana Goehringer Technische Universität Dresden, Germany
Bilel Hadri KAUST Supercomputing Laboratory,

Saudi Arabia
Andra Hugo Apple, France
Tanzima Islam Texas State University, USA
John Linford NVIDIA, USA
Filippo Mantovani Barcelona Supercomputing Center, Spain
Kengo Nakajima University of Tokyo, Japan
Scott Pakin Los Alamos National Laboratory, USA
Kento Sato RIKEN, Japan
Nathan Tallent Pacific Northwest National Laboratory, USA
Guangming Tan Institute of Computing Technology, China
Michèle Weiland University of Edinburgh, UK

Programming Environments and Systems Software

Ivona Brandić (Chair) Vienna University of Technology, Austria
Bilel Hadri KAUST Supercomputing Laboratory,

Saudi Arabia
Guido Juckeland HZDR, Germany
Michael Klemm AMD and OpenMP ARB, Germany
Pouya Kousha Ohio State University, USA
John Linford NVIDIA, USA
István Z. Reguly Péter Catholic University, Hungary
Martin Ruefenacht Leibniz Supercomputing Centre, Germany
Roxana Rusitoru Arm, UK
Thomas R.W. Scogland Lawrence Livermore National Laboratory, USA
Hiroyuki Takizawa Tohoku University, Japan
Christian Terboven RWTH Aachen University, Germany

Proceedings Chairs

Marc Baboulin (Chair) Université Paris-Saclay, France
Carola Kruse (Deputy Chair) CERFACS, France

Contents

Architecture, Networks, and Storage

CPU Architecture Modelling and Co-design . 3
Bine Brank and Dirk Pleiter

Illuminating the I/O Optimization Path of Scientific Applications 22
Hammad Ather, Jean Luca Bez, Boyana Norris, and Suren Byna

Efficient Large Scale DLRM Implementation on Heterogeneous Memory
Systems . 42

Mark Hildebrand, Jason Lowe-Power, and Venkatesh Akella

HPC Algorithms and Applications

Efficient GPU Offloading with OpenMP for a Hyperbolic Finite Volume
Solver on Dynamically Adaptive Meshes . 65

Mario Wille, Tobias Weinzierl, Gonzalo Brito Gadeschi,
and Michael Bader

Shallow Water DG Simulations on FPGAs: Design and Comparison
of a Novel Code Generation Pipeline . 86

Christoph Alt, Tobias Kenter, Sara Faghih-Naini, Jennifer Faj,
Jan-Oliver Opdenhövel, Christian Plessl, Vadym Aizinger, Jan Hönig,
and Harald Köstler

Massively Parallel Genetic Optimization Through Asynchronous
Propagation of Populations . 106

Oskar Taubert, Marie Weiel, Daniel Coquelin, Anis Farshian,
Charlotte Debus, Alexander Schug, Achim Streit, and Markus Götz

Steering Customized AI Architectures for HPC Scientific Applications 125
Hatem Ltaief, Yuxi Hong, Adel Dabah, Rabab Alomairy,
Sameh Abdulah, Chris Goreczny, Pawel Gepner, Matteo Ravasi,
Damien Gratadour, and David Keyes

GPU-Based Low-Precision Detection Approach for Massive MIMO
Systems . 144

Adel Dabah, Hatem Ltaief, Zouheir Rezki, Slim Alouini, and David Keyes

xii Contents

A Mixed Precision Randomized Preconditioner for the LSQR Solver
on GPUs . 164

Vasileios Georgiou, Christos Boutsikas, Petros Drineas, andHartwig Anzt

Ready for the Frontier: Preparing Applications for the World’s First
Exascale System . 182

Reuben D. Budiardja, Mark Berrill, Markus Eisenbach,
Gustav R. Jansen, Wayne Joubert, Stephen Nichols, David M. Rogers,
Arnold Tharrington, and O. E. Bronson Messer

End-to-End Differentiable Reactive Molecular Dynamics Simulations
Using JAX . 202

Mehmet Cagri Kaymak, Samuel S. Schoenholz, Ekin D. Cubuk,
Kurt A. O’Hearn, Kenneth M. Merz Jr., and Hasan Metin Aktulga

Machine Learning, AI, and Quantum Computing

Allegro-Legato: Scalable, Fast, and Robust Neural-Network Quantum
Molecular Dynamics via Sharpness-Aware Minimization . 223

Hikaru Ibayashi, Taufeq Mohammed Razakh, Liqiu Yang,
Thomas Linker, Marco Olguin, Shinnosuke Hattori, Ye Luo,
Rajiv K. Kalia, Aiichiro Nakano, Ken-ichi Nomura, and Priya Vashishta

Quantum Annealing vs. QAOA: 127 Qubit Higher-Order Ising Problems
on NISQ Computers . 240

Elijah Pelofske, Andreas Bärtschi, and Stephan Eidenbenz

Quantum Circuit Simulation by SGEMM Emulation on Tensor Cores
and Automatic Precision Selection . 259

Hiryuki Ootomo, Hidetaka Manabe, Kenji Harada, and Rio Yokota

Performance Modeling, Evaluation, and Analysis

A Study on the Performance Implications of AArch64 Atomics 279
Ricardo Jesus and Michèle Weiland

Analyzing Resource Utilization in an HPC System: A Case Study
of NERSC’s Perlmutter . 297

Jie Li, George Michelogiannakis, Brandon Cook, Dulanya Cooray,
and Yong Chen

Contents xiii

Overcoming Weak Scaling Challenges in Tree-Based Nearest Neighbor
Time Series Mining . 317

Amir Raoofy, Roman Karlstetter, Martin Schreiber, Carsten Trinitis,
and Martin Schulz

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study . . . 339
Ioannis Sakiotis, Kamesh Arumugam, Marc Paterno, Desh Ranjan,
Balša Terzić, and Mohammad Zubair

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA
Vector Supercomputer . 359

Keichi Takahashi, Soya Fujimoto, Satoru Nagase, Yoko Isobe,
Yoichi Shimomura, Ryusuke Egawa, and Hiroyuki Takizawa

Programming Environments and Systems Software

Expression Isolation of Compiler-Induced Numerical Inconsistencies
in Heterogeneous Code . 381

Dolores Miao, Ignacio Laguna, and Cindy Rubio-González

SAI: AI-Enabled Speech Assistant Interface for Science Gateways in HPC 402
Pouya Kousha, Arpan Jain, Ayyappa Kolli, Matthew Lieber,
Mingzhe Han, Nicholas Contini, Hari Subramoni,
and Dhableswar K. Panda

Author Index . 425

Architecture, Networks, and Storage

CPU Architecture Modelling and
Co-design

Bine Brank1 and Dirk Pleiter2(B)

1 Microsoft, Munich, Germany
2 Division of Computational Science and Technology,

KTH Royal Institute of Technology, Stockholm, Sweden
pleiter@kth.se

Abstract. Co-design has become an established process for both devel-
oping high-performance computing (HPC) architectures (and, more
specifically, CPU architectures) as well as HPC applications. The co-
design process is frequently based on models. This paper discusses an app-
roach to CPU architecture modelling and its relation to modelling theory.
The approach is implemented using the gem5 simulator for Arm-based
CPU architectures and applied for the purpose of generating co-design
knowledge using two applications that are widely used on HPC systems.

Keywords: HPC architectures · computer architecture modelling ·
computer architecture simulation · HPC applications · gem5 · Arm ·
Graviton 2 · GROMACS · GPAW

1 Introduction

Co-design has become an established approach in the area of HPC (see, e.g.,
[20]). It is a process involving, on the one hand, computer architects and, on
the other hand, experts that cover different aspects of the development and
implementation of applications for HPC systems. The aim is to optimise HPC
architectures, and more specifically CPU architectures, based on an understand-
ing of the relevant workloads and conversely to optimise applications based on
an understanding of the hardware architectures. One recent success story for this
approach is the design of the Fugaku supercomputer and its Arm-based A64FX
CPU [19] which involved HPC architects and application experts from Fujitsu
and RIKEN. The co-design approach may become more relevant in the future
as the ongoing need for reducing the energy consumption of a given workload
may result in increased adoption of domain-specific accelerators, i.e. computer
architectures optimised for applications from a particular domain [7].

Due to the high complexity of both modern computer architectures as well
as HPC applications, implementing a co-design process can become extremely
challenging. One strategy for reducing complexity and facilitating a faster and
easier exploration of design spaces both for computer architectures as well as
application and algorithms design is the use of models. Models can be created
and implemented in different ways and with different levels of detail.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 3–21, 2023.
https://doi.org/10.1007/978-3-031-32041-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_1&domain=pdf
http://orcid.org/0000-0001-7296-7817
https://doi.org/10.1007/978-3-031-32041-5_1

4 B. Brank and D. Pleiter

In the context of the development of CPU architectures, the use of the gem5
simulator has become popular [5]. gem5 is an open-source simulator that contin-
ues to be actively developed (see, e.g., [15]), can model at cycle granularity, is fast
enough to boot unmodified Linux-based operating systems and run full applica-
tions, and supports multiple instruction set architectures (ISA). This includes,
in particular, recent versions of the Arm ISA.

The Arm ISA is increasingly used for CPU solutions suitable for HPC sys-
tems. The success of the aforementioned A64FX CPU was largely due to the
recent extension of the ISA by the Scalable Vector Extension (SVE) [22]. SVE
includes SIMD instructions with operands of different lengths (512 bit in the case
of the A64FX). Various server-class CPU solutions that have been brought to
market or are under development are based on Arm’s new family of Neoverse
cores [18] and do support SVE. Examples are CPUs from AWS (Graviton 2 and
3), NVIDIA (GRACE), Ampere, and SiPearl.

The focus of this paper is the development of gem5-based models for Arm-
based CPU cores using Graviton 2 as a reference architecture. Particular atten-
tion is given to the use of the new SVE ISA. Our intention is to not only use
gem5 for creating co-design input for future architectures but also for reviewing
and analysing the performance of existing architectures. The resulting insights
can be exploited by application developers.

This paper makes the following contributions:

1. We introduce an approach to CPU architecture modelling and discuss related
relevant aspects of modelling theory.

2. Our approach is used for constructing a parametric model based on the
gem5 simulator using the Graviton 2 CPU as a reference architecture. This
Graviton 2 configuration for gem5 has been made publicly available for other
researchers.

3. We use our parametric model to explore selected HPC applications and derive
co-design insights for both CPU architects and application experts.

This paper is organised as follows: In the next section, we provide a discus-
sion on the concept of modelling before introducing the technical details of our
methodology in Sect. 3. In Sect. 4 we document our results for tuning the param-
eters of our model and model validation. Next, we describe the used workloads
as well as the porting of these applications to the target architecture in Sect. 5.
The results obtained from applying our parametric model for selected applica-
tions are presented in Sect. 6. In Sect. 7 we present related work before providing
a summary and conclusions in Sect. 8.

2 Approach to Modelling

Models are crucial in research on the development of computer architectures
(as well as their use for computational science research). For instance, perfor-
mance models are used to predict the amount of work per time unit that can

CPU Architecture Modelling and Co-design 5

be performed by a given computer architecture. Models are also used for defin-
ing computer architectures or for design verification. However, connection to
modelling theory is often lacking despite the merits of modelling theory being
increasingly recognized including its value in education [10,11].

In this paper, we follow the definition of the term model as documented by
Thalheim [24], who introduces models as material or virtual artefacts with nine
abstract properties. Most importantly, a model should satisfy a mapping prop-
erty that means that it relates to an origin, which can be a material world or
an artificial artefact. The model and the latter typically share only relevant fea-
tures, which is called the truncation property. Models may also deviate from the
origin as they may feature extensions (amplification property), specific changes
(distortion property), or be scoped to an ideal state of affairs (idealisation prop-
erty). Furthermore, models are formulated in a particular language, e.g. for the
purpose of using particular modelling tools (carrier property). Other important
properties, which are often not explicitly specified, are the pragmatic property
as well as the purpose property and added value. The former property takes into
account that the use of models is only justified for particular model users within
a particular scope. Both latter properties highlight that models are designed for
a specific purpose and intended to generate specific values and benefits.

In the context of this work, the mainstream gem5 simulator framework is
used to formulate a CPU architecture model. As the origin, a specific existing
hardware implementation of an Arm-based CPU has been selected, namely the
AWS Graviton 2 processor. The purpose of the model is the following:

1. Derive for selected applications, which are widely used on HPC systems, CPU
architecture requirements, and

2. Derive implementation requirements for these applications based on insights
into architectural constraints.

This defines also the added value we wanted to create as we generate knowledge
relevant for CPU architects and/or implementers of applications as foreseen in
a co-design process. Note that the purpose was not to create a model that is
uniquely assigned to the chosen origin but to rather explore the design space
taking ongoing evolutions of the market of Arm-based CPU implementations
into account. For instance, the ISA of our model has been amplified by adding
support for a recent SIMD ISA, namely SVE.

In the following, we distinguish between different model parameters: con-
figuration parameters, tuned parameters and variable parameters. Configuration
and tuned parameters are chosen to improve mapping between the origin and
the model. The configuration parameters are chosen based on the technical spec-
ifications of the origin, e.g. size of caches. The tuned parameters are fixed such
that observables like the execution time of a benchmark, which is run both on
the origin and model, are similar. Such tuning is required due to the truncation
property of the model, which does not implement all features of the origin. This
was in parts due to simplifications of the architecture as our model includes,
e.g., only one instead of 64 cores. Furthermore, not all architectural details of
the origin are publicly known (e.g., the configuration of memory prefetchers).

6 B. Brank and D. Pleiter

Table 1. Key hardware characteristics of the Graviton 2 CPU.

Core model Neoverse N1

Number of cores 64

Clock frequency 2.5 GHz

SIMD pipelines 2× Neon

L1-I&L1-D per core 64 kiByte

L2 per core 1MiByte

L3 per core 512 kiByte

Nominal memory bandwidth 204.8 GByte/s

Number of memory channels 8

This tuning step also serves as a validation of the model. Variable parameters
are used for systematic distortion of the model. This allows exploring the archi-
tectural design space, e.g. by changing the operand width of SIMD instructions
or the number of SIMD pipelines.

3 Methodology

Model construction starts from a choice of origin. Here the Graviton 2 processor
was chosen, which was the first widely accessible server-class CPU based on
Arm’s Neoverse family of cores, namely the Neoverse N1 core [18]. Selected
hardware characteristics of the Graviton 2 processor are listed in Table 1.

Secondly, the model is defined within the gem5 framework. As a starting
point, the available Arm O3 v7 has been selected, which was adjusted to improve
the mapping between the model and origin. The most significant changes were
the configuration of instruction’s execution latencies, the Execution Units (EU)
in the core backend, and buffer sizes. Information about these is publicly avail-
able, yet the distorted mapping of instructions to functional units in the Gem5
model requires certain simplifications for branch and integer pipelines. Addition-
ally, we modified the sizes of various buffers (most importantly, reorder buffer
and load-store queue) for the out-of-order execution. Where these are not dis-
closed by Arm, we relied on unofficial sources and, to a small degree, other com-
parable processors.1 A selection of the configuration parameters is documented
in Table 2. Configuration parameters not listed there are set according to the
hardware characteristics listed in Table 1. Compared to the origin, the model
has been truncated in several ways. Only a single core is used, i.e. the on-chip
network properties are not considered. For the memory, the simplest possible
model, namely the gem5 simpleMemory model, was selected and only a single
memory channel is used.

1 The used simulator source including configuration are available at https://github.
com/binebrank/gem5/tree/neoverse model.

https://github.com/binebrank/gem5/tree/neoverse_model
https://github.com/binebrank/gem5/tree/neoverse_model

CPU Architecture Modelling and Co-design 7

Table 2. Key gem5 configuration parameters.

Core model O3CPU

Reorder buffer (ROB) size 128

Load (store) queue depth 68 (72)

Instruction queue depth 120

General-purpose registers 120

Vector registers 128

Number of cores 1

L3 8 MiByte

Memory model Classic

Number of memory channels 1

Memory pre-fetcher Tagged at L2 level (degree = 16)

Some hardware characteristics details are not publicly available, like for the
memory pre-fetcher. Arm claims that their Neoverse N1 design includes a mem-
ory pre-fetcher that is able to detect different memory access patterns and coor-
dinate the requests to multiple levels of cache [18]. We chose to use the tagged
pre-fetcher available in gem5.

Next, the tuned parameters need to be identified. Here, the following tuned
parameters have been chosen: Memory bandwidth and latency, L3 cache size,
and the degree and queue size of the tagged pre-fetcher. To tune the mapping
between the origin and model and validate the model, the following benchmarks
are used:

– STREAM benchmarks with arrays of length 107 [16],
– Tinymembench2 random dual read benchmark,
– C-version3 of the NAS Parallel Benchmarks [4] using the small workloads (S).

Note that all benchmarks had been used to obtain a single setting for the given
origin.

Fourthly, the variable parameters need to be selected that allow for sys-
tematic distortions of the model to reflect properties from CPU architectures
different from the origin. The following variable parameters have been chosen:

– Number of SVE pipelines NSVE,
– Width of the SVE operands bSVE.
– Configuration of execution latencies (either based on the N1 or A64FX back-

end).

2 https://github.com/ssvb/tinymembench.
3 https://github.com/benchmark-subsetting/NPB3.0-omp-C.

https://github.com/ssvb/tinymembench
https://github.com/benchmark-subsetting/NPB3.0-omp-C

8 B. Brank and D. Pleiter

Fig. 1. Comparison of STREAM benchmarks results.

4 Model Tuning and Validation

This section shows the results of setting the tuned parameters of the model by
comparing results obtained on the origin, i.e. a Graviton 2 CPU (using a single
core), and the gem5-based model. We show that good results are obtained by
setting the memory bandwidth to 25.6 GByte/s, the memory latency to 50 ns,
the L3 cache size to 8 MiByte, and the degree and queue size of the tagged
pre-fetcher to 16.

In Fig. 1 results are shown using a binary compiled for NEON. The bandwidth
figures are as reported by the benchmark. There are several differences between
the origin and the model that contribute to the observed differences. The origin
features multiple memory channels. As the observed memory bandwidth exceeds
the nominal bandwidth of a single channel, a Graviton 2 CPU core is able to
saturate more than one channel. Furthermore, the model implements a write-
allocate cache policy, while the origin features a write buffer that avoids reading
cache lines that are fully overwritten. Finally, the memory pre-fetchers of origin
and model can be expected to differ. Figure 1 shows gem5-based model results
both with memory pre-fetcher disabled and enabled. The large difference between
both results shows that the pre-fetcher has a strong impact on performance.

In Fig. 2 memory latency results are shown as a function of the size of the
memory region used for random memory loads. The numbers are as reported by
the Tinymembench dual random read benchmark. The results both for the origin
and model reflect the cache structure with clearly visible changes in latency when
L1, L2, and L3 capacity are exceeded. The different L3 sizes explain why for
two data points larger differences are observed. For the Graviton 2 processor, an
increase in the latency is observed for increasing memory region size that exceeds
the L2 but fits in the L3 cache. This could be explained by the organisation of
the L3 cache in 32 slices with a size of 1 MiByte each.

CPU Architecture Modelling and Co-design 9

Fig. 2. Random read measurements using Tinymembench.

In Fig. 3 the performance results obtained for the NAS Parallel Benchmarks
using origin and model are compared. The results are in units of million oper-
ations per second (MOp/s) as reported by the benchmark suite. The difference
between the results does not exceed 15% for most benchmarks with the excep-
tions of the conjugate gradient (cg) and integer sort (is) benchmarks. The cg
benchmark is memory bandwidth limited and the observed difference is in line
with the observations for the STREAM benchmark. The integer sort bench-
mark is expected to be memory latency sensitive. However, the about 2.6 times
lower performance observed for the model is not consistent with the results from
Tinymembench. Further investigation of this difference has been deferred due to
the focus on applications where floating-point instructions dominate.

In addition to the comparison of performance, also a comparison of the num-
ber of cache accesses has been performed as shown in Fig. 4. The counters have
been measured using the perf tool for the Graviton 2 and gem5 statistics in the
case of the model. The used counters are documented in Table 3. While a good
agreement is observed for the L1 cache, the results for the L3 cache differ by up
to an order of magnitude. This could be related to the different behaviour of the
memory pre-fetchers. We note that we tried several configurations of different
memory pre-fetcher parameters, and none yielded more satisfactory results.

Table 3. Measured cache-access statistics.

Neoverse N1 gem5

L1 0x04 (L1 cache access) dcache.overallAccesses::total

L2 0x16 (L2 data cache access) l2cache.overallAccesses::total

L3 0x36 (last level cache access, read) l3cache.overallAccesses::total

10 B. Brank and D. Pleiter

Fig. 3. NAS Parallel Benchmarks performance results.

Fig. 4. Absolute cache access counters for the NAS Parallel Benchmarks.

5 Applications

In this section we introduce the co-design applications, document the relevant
performance critical code regions (kernels), and describe efforts to add support
for SVE instructions where needed.

CPU Architecture Modelling and Co-design 11

5.1 GROMACS

GROMACS is a popular choice for molecular dynamics simulations in bio-
chemistry, due to its high performance in high-performance computing (HPC)
environments [1]. The software utilizes a modified Verlet algorithm and particle
mesh Ewald algorithm to calculate forces and solve equations of motion. Its het-
erogeneous design, incorporating intrinsic functions, OpenMP, MPI, and GPU
support, enables efficient simulation of both bonded and nonbonded interactions.
In particular, the application has a dedicated SIMD back-end implemented with
intrinsics with support for SVE.

The most computationally expensive part of simulations is the computation
of the nonbonded interactions, on which we focus here. For performance evalu-
ation, the nonbonded benchmark provided by GROMACS is used. GROMACS
provides two different SIMD-optimised implementations of the kernel, called
4×M and 2×MM. Both feature a high fraction of SIMD floating-point instruc-
tions but differ in how data is distributed over SIMD registers. The 4×M kernel
can be used for SIMD operands width of 128 and 256 bit, whereas the 2×MM
kernel is used for 256 and 512 bit. The SVE version of these kernels leverages
the Arm C Language Extensions (ACLE) with operand width fixed at compile
time. The throughput of SIMD floating-point instructions is heavily affected by
read-after-write dependencies between instructions.

5.2 GPAW

GPAW is a simulation software for calculating materials’ electronic structures
and atomic properties, applicable in various fields such as physics, chemistry, and
materials sciences [8]. It is optimised for use on parallel architectures supporting
MPI and OpenMP parallelization. The software utilizes functional density theory
(DFT) based on the projector-augmented wave (PAW) method and the atomic
simulation environment (ASE). It employs three main numerical methods: finite
differences, linear combination of atomic orbitals, and plane-wave method. In
this work, the carbon-nanotube use case from the Unified European Application
Benchmark Suite (UEABS) [14] is used.

For this use case, a significant fraction of the execution time is spent in
external numerical libraries, which are not considered here. Instead, we focus
on the implementation of the discrete Laplace operator. This stencil-operator
kernel is called bmgs fd (see Listing 1.1). On the reference architecture about
15% of the execution time is spent there. While this is relatively small fraction
of the overall execution time, the Laplace kernel is a good representation of a
general class of stencil operators that are found in many HPC applications. The
inner-most loop involves loading of 3 array elements and 3 arithmetic operations,
i.e. the operational intensity is low. Note that the access to the array a is non-
contiguous, and, therefore, requires gather-load instructions. The auto-vectorizer
of GCC-11 is able to generate SVE instructions for the inner-most loop. The
computation is performed using a normal fmul instruction in combination with
the fadda instruction, which performs a sum-reduction to x.

12 B. Brank and D. Pleiter

For our analysis, we also study the outer-loop vectorisation. Due to the used
compiler not being able to generate this type of vectorisation, we vectorised
it manually using intrinsic functions. Compared to the inner-loop, vectorising
the outer outer-loop kernel removes the latency-heavy fadda instruction, since
different intermediate sums of x are computed concurrently in separate lanes of
the SIMD register. Outer-loop vectorisation instead relies on normal fadd and
fmla instructions. Also, the scalar stores of b[j] is replaced by vector stores of
subsequent elements of b.

To evaluate only this specific kernel, the bmgs fd function has been extracted
from the GPAW application into a standalone benchmark. Here we relied on the
UEABS carbon-nanotube benchmark, to extract the relevant bmgsstencil data
which uses a 19-point stencil (the inner-loop goes over 19 iterations).4 All other
used parameters are set to the same values to completely replicate the memory
access of the real application.5 The simulations are performed for 10 iterations
of the kernel.

Listing 1.1. GPAW’s bmfs fd kernel.
void
Z(bmgs fd) (const bmgss tenc i l ∗ s , const T∗ a , T∗ b)
{

/∗ Skip the l ead ing halo area . ∗/
a += (s−>j [0] + s−>j [1] + s−>j [2]) / 2 ;

f o r (i n t i 0 = 0 ; i 0 < s−>n [0] ; i 0++) {
f o r (i n t i 1 = 0 ; i 1 < s−>n [1] ; i 1++) {

#i f d e f OPENMP
#pragma omp simd
#end i f

f o r (i n t i 2 = 0 ; i 2 < s−>n [2] ; i 2++) {
i n t i = i 2

+ i1 ∗ (s−>j [2] + s−>n [2])
+ i0 ∗ (s−>j [1] + s−>n [1] ∗ (s−>j [2] + s−>n [2])) ;

i n t j = i 2 + i1 ∗ s−>n [2] + i0 ∗ s−>n [1] ∗ s−>n [2] ;
T x = 0 . 0 ;

f o r (i n t c = 0 ; c < s−>ncoe f s ; c++)
x += a [i + s−>o f f s e t s [c]] ∗ s−>c o e f s [c] ;

b [j] = x ;
}

}
}

}

6 Results

In this section we document the results obtained for the application kernels
introduced in the previous section using the earlier created model.

4 In the carbon nanotube use case, 19-point stencil is used in combination with a
7-point stencil, which we have not evaluated.

5 The used source code, together with manually vectorized functions, is available at
https://gitlab.jsc.fz-juelich.de/brank1/gpaw-benchmarks.

https://gitlab.jsc.fz-juelich.de/brank1/gpaw-benchmarks

CPU Architecture Modelling and Co-design 13

6.1 GROMACS

In Fig. 5 nonbonded kernel performance results are shown for the Graviton 2
and A64FX processors using NEON and SVE instructions with operand widths
of 128 and 512 bit, respectively. Furthermore, results obtained from the gem5-
based model using SVE instructions of different widths are plotted. The sim-
ulations have been performed using different numbers of particles. Within the
given range, the number of particles barely impacts the performance. Despite
the use of slightly different SIMD ISA, the performance results obtained from
the origin, i.e. the Graviton 2 processor, and the model agree well. More details
obtained from the simulator are provided in Table 4 including the number of
clock cycles (numCycles) and committed instructions (committedInsts) per ker-
nel invocation. Also documented are the number of so-called fuBusy events.
These events are triggered if a micro-instruction cannot be issued to the func-
tional unit (FU) as soon as it is ready. This usually happens when the unit is
stalled or if the CPU tries to issue several micro-instructions during the same
clock cycle. The fuBusyRate denotes the number of fuBusy events per number
of committed instructions. Furthermore, the number of times the re-order buffer
(ROBFullEvents) and register file (fullRegistersEvents) become full are counted.

Table 4. GROMACS gem5 counters for 12,000 particles.

SVE configuration 2× SVE-128 2× SVE-256 2× SVE-256 2× SVE-512

Kernel implementation 4×M 4×M 2×MM 2×MM

numCycles 56.4 · 107 33.1 · 107 35.7 · 107 20.8 · 107

committedInsts 141.6 · 107 81.8 · 107 70.2 · 107 42.2 · 107

fuBusy 83.2 · 107 44.6 · 107 21.2 · 107 13.0 · 107

fuBusyRate 0.59 0.54 0.30 0.30

ROBFullEvents 9.0 · 106 9.4 · 106 1.0 · 106 1.5 · 106

fullRegistersEvents 4.3 · 107 2.5 · 107 4.6 · 107 2.7 · 107

For SVE operand width of 256 bit (SVE-256) both kernel implementations
introduced in Sect. 5.1 can be used. It can be observed that for this configuration,
the 4×M is 8% faster compared to the 2×MM kernel despite the 17% larger
number of committed instructions. The larger fuBusyRate indicates a higher
readiness of instructions to be executed, yet, the 4×M kernel executes 28% more
instructions per cycle. The main reason for this is the reduced number of register
file full events. We confirmed this by inspecting the rename stage of the model,
where the 4×M kernel reported roughly 30% fewer cycles in which the rename
component6 of the model was blocked or idle. A large number of re-order buffer
(ROB) and register file full events indicates that in the case of the SVE-256
configuration and the 4×M kernel implementation, the number of cycles could
be reduced if the ROB or register file were enlarged.
6 The rename component in gem5 stalls if there are no physical registers available or

the ROB is full.

14 B. Brank and D. Pleiter

Fig. 5. GROMACS model and hardware results for different numbers of particles.

We now use the model to explore the performance of the GROMACS kernel
for different configurations with different numbers of SVE pipelines NSVE and
SVE operand width b while keeping NSVE · b = 512 bit fixed. In other words,
the throughput of floating-point instructions is the same for all three considered
configurations. The results are documented in Table 5. The best performance
is observed using a single SVE-512 pipeline. The performance noticeably drops
using four SVE-128 pipelines. This is likely due to instruction dependencies that
prevent the good filling of a larger number of pipelines, as indicated by the
drop of the fuBusyRate. Better performance is expected from optimized kernel
implementations.

Table 5. GROMACS model results for 3,000 particles using different core configura-
tions with the same peak performance.

SVE configuration 4× SVE-128 2× SVE-256 2× SVE-256 1× SVE-512

Kernel implementation 4×M 4×M 2×MM 2×MM

Useful pairs/µsec 123 189 175 198

fuBusy 24.7 · 106 110.2 · 106 52.4 · 106 215.4 · 106

fuBusyRate 0.07 0.54 0.30 1.99

ROBFullEvents 2.1 · 106 2.2 · 106 0.4 · 106 0.8 · 106

fullRegistersEvents 7.9 · 106 6.3 · 106 11.8 · 106 12.7 · 106

From Fig. 5, a large deviation can be observed between the SVE-512 model
and the A64FX hardware performance. A key difference between the Neoverse
N1 core, used in the Graviton 2 processor that serves as the origin for our model,

CPU Architecture Modelling and Co-design 15

and the A64FX is the much larger latencies of the arithmetic pipelines. As the
throughput of SIMD floating-point instructions, in the case of this kernel, is
limited by read-after-write dependencies, this is a likely cause for reduced per-
formance. To check this hypothesis, we changed the model configuration param-
eters defining the latency of the SVE instructions to match those of the A64FX
CPU. For example, latencies for (fadd,fmul,fmla) instructions were changed
from (2,3,4) to (9,9,9) cycles. The model statistics for both configurations are
compared in Table 6. We observe a performance that is in much better agreement
with what is observed on the A64FX processor hardware.

Table 6. GROMACS model results using different pipeline depths configured for the
Neoverse N1 and A64FX architecture.

Model configuration Neoverse N1 A64FX

Useful pairs/µsec 302 102

fuBusy 129.6 · 106 439.4 · 106

fuBusyRate 0.30 1.03

ROBFullEvents 1.5 · 106 2.2 · 106

fullRegistersEvents 26.9 · 106 40.5 · 106

6.2 GPAW

In Fig. 6, we compare execution times obtained for the bmgs fd kernel. The
implementation based on vectorisation of the inner-most loop (in the following
labelled with Bf-1) is available for both NEON and SVE instructions. Therefore,
a comparison between Graviton 2 and SVE-128 model results is possible. Again
a good agreement between real hardware and the model is observed. Doubling
the width of the SVE operands improves performance only by a factor of 1.61.
Much less benefit is obtained when increasing the width to 512 bit.

The situation is much better in the case of outer-loop vectorisation (labelled
Bf-2). When using 128 bit wide SIMD instructions, the outer-loop vectorisation
improves performance compared to the inner-loop vectorisation case by 15%.
Doubling and quadrupling the operand width results in a speed-up of 1.6 and
2.6, respectively.

To further explore the difference between both implementations, let us con-
sider the gem5 statistics for the SVE-512 case shown in Table 7. The Bf-2 features
both a smaller number of instructions as well as a higher throughput of instruc-
tions. In both cases, the number of executed micro-instructions is much larger
than the number of instructions, which is a consequence of gather load instruc-
tions. (In the case of SVE-512, each gather load instruction is decoded into 8
micro-instructions.) Both kernels feature a rather high fuBusy rate indicating
a high pressure on the execution pipelines. More specifically, the counter stat
FUBusy::MemRead indicates a large number of load micro-instructions wait-
ing to be executed. The behaviour of the caches in terms of the number of

16 B. Brank and D. Pleiter

Fig. 6. GPAW results using inner-most (Bf-1) or outer-most loop vectorisation (Bf-2).

cache line replacements is almost the same in both cases. Since the applica-
tion kernel features both low operational intensity as well as indirect mem-
ory accesses, performance is expected to be impacted both by memory band-
width and latency. The gem5 simulator collects statistics on the time needed
to complete requests in the load-store queue (LSQ). Table 7 shows the num-
ber of samples (lsq0.loadToUse::samples) as well as the average time for load
micro-instructions to complete (lsq0.loadToUse::mean). The values are rather
small, namely 4–6 cycles, indicating that most loads hit a cache line available
in the L1 cache. Next, let us consider the bandwidth measured at the mem-
ory controller (mem ctrls.bwTotal::total). From the difference in execution time
and the observed similarity of cache line refill counters, the bandwidth for the
Bf-2 implementation is expected to be about 60% larger compared to the Bf-1
implementation. This is indeed what is observed. However, both implementations
utilize only a small fraction of the available memory bandwidth.

To explain this behaviour, we focus on the Bf-2 implementation. In our
gem5 model, each gather load instruction is translated into multiple load micro-
instructions, namely one per element of the SVE operand. As can be seen from
the MemRead counters shown in Table 7, most of the committed instructions
are load micro-instructions. Based on the assumption of perfect filling of the
load-store pipelines (LSP) in the backend, a lower bound for the execution time
Δtmin can be determined:

Δtmin =
MemRead + MemWrite

NLSP
= 100 · 106 cycle, (1)

where NLSP = 2 is the number of LSPs. Therefore, the model indicates that the
Bf-2 implementation runs at 74% of the peak performance determined by the
throughput of load/store micro-instructions.

CPU Architecture Modelling and Co-design 17

In the case of Bf-1, a similar analysis shows that the model executes at 69%
of peak performance. However, unlike Bf-2, Bf-1 is limited by SVE arithmetic
instructions. Especially, the sum-reduction fadda instructions present a signifi-
cant bottleneck. In our gem5 model, these are configured as non-pipelined, i.e.
they block the SVE pipeline for 8 cycles. Such configuration was selected to
mimic the Neoverse V1 and A64FX CPUs, where these instructions are decoded
into bSV E sequential micro-instructions. A way to reduce their high latency is to
use faddv instructions, but this was not further investigated in the simulations.

Table 7. GPAW memory subsystem statistics for SVE-512.

Vectorization Bf-1 Bf-2

numCycles 213.0 · 106 135.5 · 106

committedInsts 325.9 · 106 222.9 · 106

committedInsts/numCycles 1.53 1.64

MemRead 232.3 · 106 192.0 · 106

MemWrite 7.7 · 106 8.0 · 106

fuBusy 155.7 · 106 93.8 · 106

statFuBusy::MemRead 90.6 · 106 87.7 · 106

dcache.replacements 8.1 · 106 8.1 · 106

l2cache.replacements 2.1 · 106 2.1 · 106

l3cache.replacements 2.1 · 106 2.1 · 106

lsq0.loadToUse::samples 232.3 · 106 192.0 · 106

lsq0.loadToUse::mean 4.34 5.95

mem ctrls.bwTotal::total (GByte/s) 2.3 GByte/s 3.7 GByte/s

7 Related Work

Computer architecture simulations in the context of HPC have a long history.
One of the challenges is to obtain a good balance between the level of simulation
granularity, the covered scope, and simulation performance. The simulation of
full HPC systems requires the adoption of multi-level simulations. For the scope
of a single processor, simulators like gem5 provide detailed granularity as well
as good performance for evaluating full applications.

gem5 has, in particular, been used for exploring specific parts of the design
space of modern CPU architectures like system-level cache designs [6], memory
pre-fetchers [17], or on-chip network topologies [9]. More recently, extensions
have been implemented to include the simulation of heterogeneous architectures
with compute accelerators like gem5-Aladdin [21]. gem5 has been successfully
used for full CPU architecture designs in the case of the A64FX processor [12].
A recent effort in the context of the EPI project resulted in a comparison of the
gem5 simulator with two other simulators, namely MUSA and SESAM/VPSim

18 B. Brank and D. Pleiter

[26]. MUSA has the advantage of being a multi-level simulator, while SESAM
supports coupling with detailed hardware simulators.

Some of the cited work does not involve detailed comparison with exist-
ing hardware. Work on Arm-based and x86-based architectures paid particular
attention to a comparison between existing hardware and gem5-based models
[2,25]. The approach taken in this work is to start from a model that reproduces
the behaviour of existing hardware reasonably well and use this as a starting
point for different model configurations.

Many of the papers presenting gem5-based result focus on hardware archi-
tectures. More recently, there is a growing interest in using gem5 for application
development and preparing applications for upcoming architectures and ISA
extensions. Examples are the work on preparing stencil applications [3] or the
FFT library SPIRAL [23] for upcoming CPU architectures supporting SVE.
This work extends this effort towards real-life HPC applications from the area
of bio-physics and materials sciences.

With the improved support of gather/scatter instructions by modern CPU
architectures and a large number of HPC applications with sparse memory access
patterns, there is a growing interest in the performance of such instructions.
Recently, a dedicated benchmarking framework has been developed, called Spat-
ter [13]. The use of Spatter in conjunction with the model presented here would
be an interesting next step.

8 Summary and Conclusions

A conceptional approach to the modelling of CPU architectures has been intro-
duced and put into perspective with modelling theory. The approach has been
used for creating a gem5-based model that uses AWS’ Graviton 2 as the ori-
gin but includes amplifications and distortions suitable for exploring the design
space and model more recent Arm-based server-class processors. One feature of
the model is that thanks to the vector-length agnostic feature of the SVE ISA,
different SIMD operand widths can easily be explored. The purpose of the model
was to facilitate the generation of insights and knowledge for co-design processes,
providing feedback to both CPU architects as well application developers.

In the case of the GROMACS kernel for computing non-bonded interactions,
in certain configurations, frequent stalls due to full re-order buffer (ROB) and/or
register file have been observed. Therefore, optimising their size should be consid-
ered for future CPU core architectures. Furthermore, the model results support
the hypothesis that deep pipelines for floating-point SIMD instructions cause
performance degradations as observed for the A64FX processor. The perfor-
mance of the evaluated GPAW kernel was severely limited by the performance
of SIMD gather load instructions. The resulting large number of load micro-
instructions caused the load pipeline to become a bottleneck. Optimised support
of gather load instructions would improve the performance of this application.

In the case of GROMACS, the good exploitation of SIMD parallelism could
be systematically explored by changing the operand width. Using the model a

CPU Architecture Modelling and Co-design 19

parallel efficiency of 68% has been found comparing operand widths of 128 and
512 bit. The current implementations of the kernel for computing non-bonded
interactions are, however, lacking support for instruction-level parallelism (ILP),
which is relevant for new CPU architectures like Graviton 3 and GRACE that
feature a larger number of SIMD pipelines (here: 4) with more narrow operand
width (here: 128 bit).

While also in case of GPAW wide SIMD instructions can be leveraged, the
parallel efficiency breaks down due to the aforementioned serialisation of the
SIMD gather load instructions. Assuming that it is difficult to avoid serialisa-
tion of SIMD gather load instructions, the feedback for application developers,
therefore, is to consider improved data layouts that result in simpler memory
access patterns.

An important outcome of this (and related work) is that gem5 has become
a useful tool for application developers that could be more widely exploited.
This requires, however, better availability of relevant models that can easily
be used. Furthermore, an extension to multi-core simulations is desirable. In
this work, due to the simplified memory model a simplified interconnect has
been used, which cannot be expected to map well to the reference architecture.
This shortcoming could be overcome by using the gem5’s more detailed Ruby
memory system with a network model based on Arm’s AMBA 5 CHI architecture
specification.

Acknowledgements. The authors would like to thank the Stony Brook Research
Computing and Cyberinfrastructure, and the Furthermore, we want to thank the Open
Edge and HPC Initiative for access to an Arm-based development Funding for parts
of this work has been received from the European Commission H2020 program under
Grant Agreement 779877 (Mont-Blanc 2020), and from the Swedish e-Science Research
Centre (SeRC).

References

1. Abraham, M.J., et al.: GROMACS: high performance molecular simulations
through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–
25 (2015). https://doi.org/10.1016/j.softx.2015.06.001

2. Akram, A., Sawalha, L.: Validation of the gem5 simulator for x86 architectures. In:
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), pp. 53–58 (2019). https://doi.org/10.
1109/PMBS49563.2019.00012

3. Armejach, A., et al.: Stencil codes on a vector length agnostic architecture. In:
Proceedings of the 27th International Conference on Parallel Architectures and
Compilation Techniques (PACT 2018). Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3243176.3243192

4. Bailey, D.H.: The NAS parallel benchmarks. Tech. rep., LBNL (2009). https://doi.
org/10.2172/983318

5. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2),
1–7 (2011). https://doi.org/10.1145/2024716.2024718

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1109/PMBS49563.2019.00012
https://doi.org/10.1109/PMBS49563.2019.00012
https://doi.org/10.1145/3243176.3243192
https://doi.org/10.2172/983318
https://doi.org/10.2172/983318
https://doi.org/10.1145/2024716.2024718

20 B. Brank and D. Pleiter

6. Cataldo, R., et al.: Architectural exploration of last-level caches targeting homo-
geneous multicore systems. In: Proceedings of the 29th Symposium on Integrated
Circuits and Systems Design: Chip on the Mountains (SBCCI 2016). IEEE Press
(2017)

7. Dally, W.J., Turakhia, Y., Han, S.: Domain-specific hardware accelerators. Com-
mun. ACM 63(7), 48–57 (2020). https://doi.org/10.1145/3361682

8. Enkovaara, J., et al.: Electronic structure calculations with GPAW: a real-space
implementation of the projector augmented-wave method. J. Phys.: Condens. Mat-
ter 22(25), 253202 (2010). https://doi.org/10.1088/0953-8984/22/25/253202

9. Ghosh, A., Sinha, A., Chatterjee, A.: Exploring network on chip architectures using
GEM5. In: 2017 International Conference on Information Technology (ICIT), pp.
50–55 (2017). https://doi.org/10.1109/ICIT.2017.16

10. Halloun, I.A.: Modeling Theory in Science Education, vol. 24. Springer, Dordrecht
(2007). https://doi.org/10.1007/1-4020-2140-2

11. Hestenes, D.: Toward a modeling theory of physics instruction. Am. J. Phys. 55(5),
440–454 (1987). https://doi.org/10.1119/1.15129

12. Kodama, Y., Odajima, T., Asato, A., Sato, M.: Evaluation of the RIKEN Post-K
processor simulator. CoRR abs/1904.06451 (2019). http://arxiv.org/abs/1904.
06451

13. Lavin, P., et al.: Evaluating gather and scatter performance on CPUs and GPUs.
In: The International Symposium on Memory Systems (MEMSYS 2020), pp. 209–
222. Association for Computing Machinery, New York, NY, USA (2020). https://
doi.org/10.1145/3422575.3422794

14. Lioen, W., et al.: D7.4: evaluation of benchmark performance (Final). Tech. rep.,
PRACE (2021). https://prace-ri.eu/wp-content/uploads/PRACE6IP-D7.4.pdf

15. Lowe-Power, J., et al.: The gem5 simulator: version 20.0+ (2020). https://doi.org/
10.48550/ARXIV.2007.03152

16. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Comput. Soc. Tech. Committee Comput. Archit. Newsl.
2, 19–25 (1995)

17. Ortega, C., et al.: Data prefetching on in-order processors. In: 2018 International
Conference on High Performance Computing and Simulation (HPCS), pp. 322–329
(2018). https://doi.org/10.1109/HPCS.2018.00061

18. Pellegrini, A., et al.: The Arm Neoverse N1 platform: building blocks for the next-
gen cloud-to-edge infrastructure SoC. IEEE Micro 40(2), 53–62 (2020). https://
doi.org/10.1109/MM.2020.2972222

19. Sato, M., et al.: Co-design for A64FX manycore processor and “Fugaku”. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC 2020). IEEE Press (2020)

20. Shalf, J., Quinlan, D., Janssen, C.: Rethinking hardware-software codesign for
exascale systems. Computer 44(11), 22–30 (2011). https://doi.org/10.1109/MC.
2011.300

21. Shao, Y.S., et al.: Co-designing accelerators and SoC interfaces using gem5-
Aladdin. In: 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 1–12 (2016). https://doi.org/10.1109/MICRO.2016.
7783751

22. Stephens, N., et al.: The ARM scalable vector extension. IEEE Micro 37(2), 26–39
(2017). https://doi.org/10.1109/MM.2017.35

https://doi.org/10.1145/3361682
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1109/ICIT.2017.16
https://doi.org/10.1007/1-4020-2140-2
https://doi.org/10.1119/1.15129
http://arxiv.org/abs/1904.06451
http://arxiv.org/abs/1904.06451
https://doi.org/10.1145/3422575.3422794
https://doi.org/10.1145/3422575.3422794
https://prace-ri.eu/wp-content/uploads/PRACE6IP-D7.4.pdf
https://doi.org/10.48550/ARXIV.2007.03152
https://doi.org/10.48550/ARXIV.2007.03152
https://doi.org/10.1109/HPCS.2018.00061
https://doi.org/10.1109/MM.2020.2972222
https://doi.org/10.1109/MM.2020.2972222
https://doi.org/10.1109/MC.2011.300
https://doi.org/10.1109/MC.2011.300
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1109/MM.2017.35

CPU Architecture Modelling and Co-design 21

23. Takahashi, D., Franchetti, F.: FFTE on SVE: SPIRAL-generated kernels. In: Pro-
ceedings of the International Conference on High Performance Computing in Asia-
Pacific Region (HPCAsia2020), pp. 114–122. Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3368474.3368488

24. Thalheim, B.: The conceptual model ≡ an adequate and faithful artifact enhanced
by concepts. Front. Artif. Intell. Appl. 260, 241–254 (2014). https://doi.org/10.
3233/978-1-61499-361-2-241

25. Walker, M., et al.: Hardware-validated CPU performance and energy modelling.
In: 2018 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 44–53 (2018). https://doi.org/10.1109/ISPASS.2018.00013

26. Zaourar, L., et al.: Multilevel simulation-based co-design of next generation
HPC microprocessors. In: 2021 International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS),
pp. 18–29 (2021). https://doi.org/10.1109/PMBS54543.2021.00008

https://doi.org/10.1145/3368474.3368488
https://doi.org/10.3233/978-1-61499-361-2-241
https://doi.org/10.3233/978-1-61499-361-2-241
https://doi.org/10.1109/ISPASS.2018.00013
https://doi.org/10.1109/PMBS54543.2021.00008

Illuminating the I/O Optimization Path
of Scientific Applications

Hammad Ather1,2 , Jean Luca Bez1(B) , Boyana Norris2 ,
and Suren Byna1,3

1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
{hather,jlbez,sbyna}@lbl.gov

2 University of Oregon, Eugene, OR 97403, USA
hather@uoregon.edu, norris@cs.uoregon.edu

3 The Ohio State University, Columbus, OH 43210, USA
byna.1@osu.edu

Abstract. The existing parallel I/O stack is complex and difficult to
tune due to the interdependencies among multiple factors that impact the
performance of data movement between storage and compute systems.
When performance is slower than expected, end-users, developers, and
system administrators rely on I/O profiling and tracing information to
pinpoint the root causes of inefficiencies. Despite having numerous tools
that collect I/O metrics on production systems, it is not obvious where
the I/O bottlenecks are (unless one is an I/O expert), their root causes,
and what to do to solve them. Hence, there is a gap between the cur-
rently available metrics, the issues they represent, and the application of
optimizations that would mitigate performance slowdowns. An I/O spe-
cialist often checks for common problems before diving into the specifics
of each application and workload. Streamlining such analysis, investi-
gation, and recommendations could close this gap without requiring a
specialist to intervene in every case. In this paper, we propose a novel
interactive, user-oriented visualization, and analysis framework, called
Drishti . This framework helps users to pinpoint various root causes of
I/O performance problems and to provide a set of actionable recommen-
dations for improving performance based on the observed characteristics
of an application. We evaluate the applicability and correctness of Drishti
using four use cases from distinct science domains and demonstrate its
value to end-users, developers, and system administrators when seeking
to improve an application’s I/O performance.

Keywords: I/O · insights · visualization · I/O optimization

1 Introduction

The parallel I/O stack deployed on large-scale computing systems has a plethora
of tuning parameters and optimization techniques that can improve application
I/O performance [4,8]. Despite that, applications still face poor performance
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 22–41, 2023.
https://doi.org/10.1007/978-3-031-32041-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_2&domain=pdf
http://orcid.org/0000-0002-0023-8145
http://orcid.org/0000-0002-3915-1135
http://orcid.org/0000-0001-5811-9731
http://orcid.org/0000-0003-3048-3448
https://doi.org/10.1007/978-3-031-32041-5_2

Illuminating the I/O Optimization Path of Scientific Applications 23

when accessing data. Harnessing I/O performance is a complex problem due
to the multiple factors that can affect it and the inter-dependencies among the
layers of the software and hardware stack.

When applications suffer from I/O performance slowdowns, pinpointing the
root causes of inefficiencies requires detailed metrics and an understanding of the
stack. There is a variety of I/O performance profiling and characterization tools,
which are very helpful in diagnosing the I/O bottlenecks in an application. How-
ever, none of these tools provide a set of actionable items to guide users in solving
the bottlenecks in the application. For instance, I/O profiling tools collect met-
rics to provide a coarse-grain view of the application’s behavior when accessing
data. Darshan [11] and Recorder [40] profilers can also trace I/O requests and
provide a fine-grain view of the transformations the requests undergo as they
traverse the parallel I/O software stack. Nonetheless, despite the availability of
such fine-grained traces, there is a gap between the trace collection, analysis,
and tuning steps.

A solution to close this gap requires analyzing the collected metrics and
traces, automatically diagnosing the root causes of poor performance, and then
providing user recommendations. Towards analyzing the collected metrics, Dar-
shan [11,13] provides various utilities to summarize statistics. However, their
interpretation is left to the user to identify root causes and find solutions. There
have been many studies to understand the root causes of performance problems,
including IOMiner [42] and Zoom-in I/O analysis [41]. However, these studies and
tools are either application-specific or target general statistics of I/O logs. Exist-
ing technologies lack the provision of feedback and recommendation to improve
the I/O performance or to increase utilization of I/O system capabilities [10].

To address these three components, i.e., analysis of profiles, diagnosis of root
causes, and recommendation of actions, we envision a solution that meets the
following criteria based on a visualization approach.

1© Provide interactive visualization based on I/O trace files, allowing users to
focus on a subset of MPI processes or zoom in to specific regions of the
execution;

2© Display contextual information about I/O calls (e.g., operation type, rank,
size, duration, start and end times);

3© Understand how the application issues its I/O requests over time under dif-
ferent facets: operation, request sizes, and spatiality of accesses;

4© Observe transformations as the requests traverse the I/O software stack;
5© Detect and characterize the distinct I/O phases of an application;
6© Understand how the ranks access the file system in I/O operations;
7© Provide an extensible community-driven framework so new visualizations

and analysis can be easily integrated;
8© Identify and highlight common root causes of I/O performance problems;
9© Provide a set of actionable items based on the detected I/O bottlenecks.

In this paper, we propose a novel interactive web-based analysis framework
named “Drishti” to visualize I/O traces, highlight bottlenecks, and help under-
stand the I/O behavior of scientific applications. Using Drishti , which is based

24 H. Ather et al.

on the nine requirements mentioned above, we aim to fill the gap between the
trace collection, analysis, and tuning phases. However, designing this framework
has several challenges in analyzing I/O metrics for extracting I/O behavior and
illustrating it for users to explore, automatically detecting the I/O performance
bottlenecks, and presenting actionable items to users. To tackle these challenges,
we devised a solution that contains an interactive I/O trace analysis component
for end-users to visually inspect their applications’ I/O behavior, focusing on
areas of interest and getting a clear picture of common root causes of I/O per-
formance bottlenecks. Based on the automatic detection of I/O performance
bottlenecks, our framework maps numerous common and well-known bottle-
necks and their solution recommendations that can be implemented by users.
This paper builds upon initial feedback on some of the components of Drishti
[5,8]. Nonetheless, it describes a broader picture, encompassing novel work and
features such as the I/O bottleneck detection from extended tracing logs, I/O
phase analysis, and file system usage. Our proof-of-concept uses components and
issues that are often investigated by I/O experts when end-users complain about
I/O performance. Though some might be obvious to an I/O expert, end-users
often face a barrier. Drishti seeks to streamline the process and empower the
community to solve common I/O performance bottlenecks.

We designed Drishti to be scalable through different approaches, and not
limited by the number of processes/cores. Our goal in using interactive visu-
alizations is to overcome the limitations of static plots where information and
bottlenecks cannot be displayed completely due to pixel limitations. In combi-
nation with the I/O analysis and recommendations of triggered issues, one can
pinpoint the causes of those issues as they are highlighted in the visualization
and zoom into areas of interest. A limiting issue might arise when an applica-
tion issues millions of small requests using all the ranks for a longer period of
time. To tackle this challenge, we provide options to generate multiple time-
sliced plots. We also laid out the foundations for a community-based effort so
that additional metrics could be added to Drishti , combined into more complex
bottleneck detection, and integrated into the interactive visualization compo-
nent. We demonstrate our framework with multiple case studies and visualize
performance bottlenecks and their solutions.

The remainder of the paper is organized as follows. In Sect. 2, we discuss
related work. Our approach to interactively explore I/O behaviors is detailed in
Sect. 3, covering design choices, techniques to detect I/O phases and bottlenecks,
and available features. We demonstrate its applicability with case studies in
Sect. 4. We conclude the paper in Sect. 5 and discuss future efforts.

2 Related Work

We discuss a few tools that target I/O performance analysis, visualization, or
bottleneck detection in HPC applications and highlight the novelty of our work.

NVIDIA Nsight [27] and TAU [29] are used for the performance analysis and
visualization of HPC applications. They provide insights into issues from the

Illuminating the I/O Optimization Path of Scientific Applications 25

perspective of CPU and GPU usage, parallelism and vectorization, and GPU
synchronization, which can help optimize the overall performance of applica-
tions. In addition to these tools, Recorder [40] and IOMiner [42] are also used
extensively to analyze the I/O performance of HPC applications. Some tools
(e.g., TAU, Score-P [15], HPC Toolkit [1]) provide profiling/traces of I/O opera-
tions, with preliminary reports on observed performance. Furthermore, most of
the performance visualization tools draw a line in displaying traces and metrics.
The interpretation and translation of actions impose a steep learning curve for
non-I/O experts. We push the state of the art by providing interactive visu-
alizations with root cause analysis, bottleneck identification, and feedback to
end-users.

The Total Knowledge of I/O (TOKIO) [21] framework provides a view of
the performance of the I/O workloads deployed on HPC systems by connecting
data and insights from various component-level monitoring tools available on
HPC systems. It seeks to present a single coherent view of analysis tools and
user interfaces. The Unified Monitoring and Metrics Interface (UMAMI) [22]
introduces a holistic view of the I/O system of large-scale machines by integrating
data from file systems, application-level profilers, and system components into a
single interface. Both focus on the global view of the I/O system at a large scale
rather than on the particular I/O issues of each application.

Tools like AI4IO [35] rely on artificial intelligence to predict and mitigate I/O
contention in HPC systems. AI4IO includes two tools, PRIONN and CanarIO,
which work together to predict I/O contention and take steps to prevent it.
INAM [17] is a technique for profiling and analyzing communication across HPC
middleware and applications, which can help identify bottlenecks and provide
significant speedup by resolving those bottlenecks. H5tuner [4] is an auto-tuning
solution for optimizing HPC applications for I/O usage.

All the aforementioned tools target I/O performance visualization and detect-
ing I/O bottlenecks in HPC systems. Despite several efforts, none of the existing
tools fill the translation gap which exists between determining the I/O bottle-
necks and coming up with suggestions and recommendations to get rid of those
bottlenecks. Our work fills this translation gap by providing interactive visu-
alizations showing the I/O performance of the application and providing a set
of actionable items or recommendations based on the detected I/O bottlenecks.
Furthermore, auto-tuning approaches complement our work, as they could har-
ness the provided insights and bottleneck detection to reduce their search space.

3 Visualization, Diagnosis, and Recommendations

We have designed and developed Drishti based on feedback gathered at two
supercomputer facilities, the I/O-research community, and targeted end-users.
In the following subsections, we discuss the design choices to support interactive
visualizations, I/O behavior analysis, I/O phase detection, and how we efficiently
map bottlenecks to a set of actionable items in a user-friendly way. In Fig. 1, we
show the various components of Drishti .

26 H. Ather et al.

Fig. 1. Drishti generates meaningful interactive visualizations and a set of recommen-
dations based on the detected I/O bottlenecks using Darshan DXT I/O traces.

PyDarshan + Pandas

darshan−dxt−parser + CSV

0 5 10 15 20
Runtime (seconds)

Dataframe Parsing

Fig. 2. Comparison of methods to extract and combine the I/O behavior metrics from
Darshan DXT traces required to pinpoint I/O issues and generate visualizations.

3.1 Extracting I/O Behavior from Metrics

Darshan [11] is a tool deployed on several large-scale computing systems to
collect I/O profiling metrics. Darshan collects aggregated statistics with minimal
overhead providing a coarse-grain view of application I/O behavior. An extended
tracing module of Darshan, DXT [44], can capture fine-grain POSIX and MPI-IO
traces. Due to its widespread use, we use Darshan logs as input.

To characterize an application’s I/O behavior, we require an efficient way to
analyze possibly large traces collected by Darshan DXT logs that are in binary
format. Darshan provides a command line solution named darshan-dxt-parser

as part of the darshan-util library to parse DXT traces out of the binary Darshan
log files. The parsed data is stored in a pre-defined textual format which could
then be transformed into a CSV file to be analyzed. Figure 2 summarizes the
time taken to obtain the required data in such approach. The trace file used in
Fig. 2 is an OpenPMD use case with 1024 ranks over 64 nodes. The original trace
file was of size 1.9 MB and after our transformations, the size was 23.6 MB.

Because of multiple conversions, these additional steps add to the user-
perceived time. As an alternative, we have also explored PyDarshan [13], a novel
Python package that provides interfaces to binary Darshan log files. With PyDar-
shan, we get direct access to the parsed DXT trace data in the form of a pandas
[39] DataFrames. Figure 2 compares the performance of both approaches. How-
ever, PyDarshan also has shortcomings when the analysis requires an overall

Illuminating the I/O Optimization Path of Scientific Applications 27

view of application behavior. It currently returns a dictionary of DataFrames
containing all trace operations issued by each rank. This data structure is not
optimal if the visualization requires an overall view of the application behav-
ior, which is the case in Drishti . Therefore, an additional step has to be taken
to iterate through the dictionary of DataFrames and merge them into a single
DataFrame for both analysis and interactive visualization. For the trace in Fig. 2,
this additional merging operation represents 87.3% of the time. If PyDarshan
can provide direct access to all ranks in form of a single DataFrame, costly data
transformations such as the one shown in Fig. 2 can be avoided.

3.2 Exploring I/O Behavior Interactively

I/O traces can be large for applications with longer runtimes or even for rel-
atively short applications with a large number of small I/O requests, making
analysis and visualization of the behavior difficult. Static plots have space con-
straints and pixel resolution issues. Thus they often hide the root causes of I/O
bottlenecks in plain sight. For instance, when thousands of ranks issue I/O oper-
ations concurrently, but some of them suffer interference at the server level, those
lines are not visible in a static plot at a regular scale.

Towards developing a modular and extensible framework (criterion 7 in §1),
we consider two solutions. Our initial prototype to move from a static to inter-
active and dynamic visualization relied on plots generated in R using ggplot2. R
is a programming language for statistical computing used in diverse fields such
as data mining, bioinformatics, and data analysis. ggplot2 is an open-source
data visualization package for R to declaratively create graphics, based on The
Grammar of Graphics [43] schema. A plot generated using this library could
be converted into an interactive visualization by using the open-source ggplotly
graphing library powered by Plotly. Plotly is a data visualization library capable
of generating dynamic and interactive web-based charts.

However, integrating with the data extraction discussed in Sect. 3.1 would
require the framework to combine features in different languages, compromis-
ing modularity, maintainability, and increasing software dependencies, possibly
constraining its wide adoption in large-scale facilities. We have opted to rely on
PyDarshan to extract the data. Using the open-source Plotly.py Python wrappers
would simplify the code without compromising features or usability. Furthermore,
it would easily allow I/O data experts to convert their custom visualizations into
interactive ones and integrate them into Drishti . It also brought the advantage of
reducing the total user-perceived time by 84.5% (from avg. of 69.45s to 10.74s),
allowing such time to be better spent on detailed analysis of I/O behavior. Figure 3
summarizes this difference. This is the same OpenPMD use case, with write/read
operations, of Fig. 2. Note that Fig. 3 only accounts for I/O phase analysis and
plotting. The results on both Fig. 2 and Fig. 3 should be combined for the total
runtime, i.e., they depict complementary information. Section 3.3 covers the I/O
behavior analysis to pinpoint the root causes of bottlenecks.

As scientific applications often handle multiple files during their execution,
which overlap in time (e.g., file-per-process or multiple processes to multiple

28 H. Ather et al.

Python + Plotly.py

R + ggplotly

0 20 40 60
Runtime (seconds)

Phases Plotting

Fig. 3. Comparison of solutions to generate the interactive plots and detect I/O phases
from Darshan DXT traces. Both approaches use the Plotly.js library under the hood
to generate web-based interactive plots.

(a) Operation (b) Zoom-in and contextual information

(c) Transfer Size (d) Spatiality

Fig. 4. Drishti reports focusing on different facets of the I/O behavior: (a) operations;
(b) contextual information regarding the operations; (c) transfer sizes; and (d) spatial
locality of the requests into the file. Combined, they provide a clear picture of the I/O
access pattern and help identify the root causes of performance problems.

files approaches), Drishti should provide a separate visualization for each. Fur-
thermore, those visualizations should shine some light on the application’s I/O
behavior from multiple perspectives, i.e., criterion 3 : operation, data transfer,
and spatiality. Figure 4 shows the reports of particle and mesh-based data from a
scientific simulation. Plotly also meets our criteria by allowing a user to dynam-
ically narrow down the plot to cover a time interval of interest or zoom into a
subset of ranks to understand the I/O behavior (criterion 1).

Because of the complexity of the parallel I/O stack, the requests issued by
an application are transformed before reaching the file system. Those transfor-
mations originate from different mappings between the data model used by an
application and its file representation or by the application of I/O optimization
techniques such as collective buffering and data-sieving [37] or request scheduling
[6,9,12]. To shed light on these transformations, Drishti depicts every plot using

Illuminating the I/O Optimization Path of Scientific Applications 29

two synchronized facets: the first representing the MPI-IO level, and the second,
its translation to POSIX level (criterion 4). For each request, by hovering over
the depicted interval, it is possible to inspect additional details such as the oper-
ation type, execution time, rank, and transfer size, meeting criterion 2 . Inter-
active examples are available in our companion repository jeanbez.gitlab.io/isc23.

When visualizing an application’s I/O behavior, we are one step closer to
understanding the root causes of any performance bottlenecks, demystifying data
transformations, and guiding users to apply the most suitable set of optimiza-
tion techniques to improve performance. We highlight that there is a lack of a
straightforward translation of the I/O bottlenecks into potential tuning options.
In this paper, we seek to close this gap by providing a framework to bring those
issues to light, automatically detecting bottlenecks and meaningfully conveying
actionable solutions to users.

3.3 Automatic Detection of I/O Bottlenecks

Several tools seek to analyze the performance of HPC applications, as discussed
in Sect. 2. However, few of them focus on I/O and neither provide support for
auto-detection of I/O bottlenecks in the application nor provide suggestions
on how to fix those. We summarize common root causes of I/O performance
bottlenecks in Table 1. Some issues require additional data or a combination of
metrics collected from profilers, tracers, and system logs. For instance, Darshan’s
profiler only keeps track of the timestamp of the first and last operations to a
given file. In contrast, its Extended Tracing module (DXT) tracks what happens
in between, such as different behaviors or I/O phases.

Table 1. Root causes of I/O performance bottlenecks

Root Causes Darshan DXT System Drishti

Too many I/O phases [41] � � � �

Stragglers in each I/O phase [36] � � � �

Bandwidth limited by a single OST I/O bandwidth [23,41] � � � �

Limited by the small data size [41] � � � �

Rank 0 heavy-workload [46] � � � �

Unbalanced I/O workload among MPI ranks [41] � � � �

Large number of small I/O requests [41] � � � �

Unbalanced I/O workload on OSTs [41,46] � � � �

Bad file system weather [22,41] � � � �

Redundant/overlapping I/O accesses [12,30] � � � �

I/O resource contention at OSTs [32,45] � � � �

Heavy metadata load [23] � � � �

Drishti seeks to provide interactive web-based visualizations of the tracing
data collected by Darshan, but it also provides a framework to detect I/O bot-
tlenecks in the data (from both profiling and tracing metrics) and highlights
criterion 8 those on the interactive visualizations along with providing a set
of recommendations (criterion 9) to solve the issue. Drishti relies on counters
available in Darshan profiling logs to detect common bottlenecks and classify

https://jeanbez.gitlab.io/isc23

30 H. Ather et al.

the insights into four categories based on the impact of the triggered event and
the certainty of the provided recommendation: HIGH (high probability of harming
I/O performance), WARN (detected issues could negatively impact the I/O per-
formance, but metrics might not be sufficient to detect application design, con-
figuration, or execution choices), OK (the recommended best practices have been
followed), and INFO (details relevant information regarding application configu-
ration that could guide tuning solutions). The insights module is fully integrated
with the parsing and visualization modules of the framework, so the identified
issues and actionable items can enrich the reports.

Table 2. Triggers evaluated by Drishti for each Darshan log.

Level Interface Detected Behavior

HIGH STDIO High STDIO usage∗ (> 10% of total transfer size uses STDIO)

OK POSIX High number∗ of sequential read operations (≥ 80%)

OK POSIX High number∗ of sequential write operations (≥ 80%)

INFO POSIX Write operation count intensive∗ (> 10% more writes than reads)

INFO POSIX Read operation count intensive∗ (> 10% more reads than writes)

INFO POSIX Write size intensive∗ (> 10% more bytes written then read)

INFO POSIX Read size intensive∗ (> 10% more bytes read then written)

WARN POSIX Redundant reads

WARN POSIX Redundant writes

HIGH POSIX High number∗ of small† reads (> 10% of total reads)

HIGH POSIX High number∗ of small† writes (> 10% of total writes)

HIGH POSIX High number∗ of misaligned memory requests (> 10%)

HIGH POSIX High number∗ of misaligned file requests (> 10%)

HIGH POSIX High number∗ of random read requests (> 20%)

HIGH POSIX High number∗ of random write requests (> 20%)

HIGH POSIX High number∗ of small† reads to shared-files (> 10% of reads)

HIGH POSIX High number∗ of small† writes to shared-files (> 10% of writes)

HIGH POSIX High metadata time∗ (one or more ranks spend > 30 seconds)

HIGH POSIX Rank o heavy workload

HIGH POSIX Data transfer imbalance between ranks (> 15% difference)

HIGH POSIX Stragglers detected among the MPI ranks

HIGH POSIX Time imbalance∗ between ranks (> 15% difference)

WARN MPI-IO No MPI-IO calls detected from Darshan logs

HIGH MPI-IO Detected MPI-IO but no collective read operation

HIGH MPI-IO Detected MPI-IO but no collective write operation

WARN MPI-IO Detected MPI-IO but no non-blocking read operations

WARN MPI-IO Detected MPI-IO but no non-blocking write operations

OK MPI-IO Detected MPI-IO and collective read operations

OK MPI-IO Detected MPI-IO and collective write operations

HIGH MPI-IO Detected MPI-IO and inter-node aggregators

WARN MPI-IO Detected MPI-IO and intra-node aggregators

OK MPI-IO Detected MPI-IO and one aggregator per node
∗ Trigger has a threshold that could be further tunned. Default value in parameters.
† Small requests are consider to be < 1 MB.

Illuminating the I/O Optimization Path of Scientific Applications 31

The interactive visualizations are enhanced using multi-layered plots, with
each layer activated according to the detected bottleneck keeping the original
behavior in the background (criterion 8). The idea behind highlighting the
bottlenecks on the interactive visualizations, apart from classifying the bottle-
necks in different categories, is to allow the user to actually visualize where
the bottlenecks are in the application. This will allow them to get more detailed
information about the bottlenecks and give them more clarity about the applica-
tion behavior which the textual information alone cannot provide. Furthermore,
we complement the interactive visualization with a report based on 32 checks
covering common I/O performance pitfalls and good practices, as summarized
in Table 2. We provide the multi-layered plot functionality for the operation plot
for now. Each layer of the plot shows a different variant of the base graph, for
example, one layer can show one of the bottlenecks in the graph, and the other
can show the base chart.

3.4 Exploring I/O Phases and Bottlenecks

HPC applications tend to present a fairly consistent I/O behavior over time, with
a few access patterns repeated multiple times over their execution [20]. Request
scheduling [6,9], auto-tuning [2–4] and reinforcement-learning [7,19] techniques
to improve I/O performance also rely on this principle to use or find out the best
configuration parameters for each workload, allowing the application to fully ben-
efit from it in future iterations or executions. We can define an I/O phase as a
continuous amount of time where an application is accessing its data following
in a specific way or following one or a combination of access patterns. Nonethe-
less, factors outside the application’s scope could cause an I/O phase to take
longer, such as network interference, storage system congestion, or contention,
significantly modifying its behavior. Seeking to detect I/O phases, Drishti adds
an interactive visualization based on DXT trace data. This visualization gives a
detailed picture of I/O phases and I/O patterns in the data and is very helpful
in extracting information related to bottlenecks such as stragglers, meeting our
criterion 5 .

Finding the I/O phases from trace data is not trivial due to the sheer amount
of data, often representing millions of operations in the order of milliseconds. We
use PyRanges [31] to find similar and overlapping behavior between an applica-
tion’s MPI ranks and a threshold value to merge I/O phases closer to each other.
PyRanges is a genomics library used for handling genomics intervals. It uses a
2D table to represent the data where each row is an interval (in our case, an
operation), and columns represent chromosomes (i.e., interface and operation),
the start and end of an interval (i.e., operation).

While identifying the I/O phases, we keep track of the duration between
each I/O phase that represents computation or communication. Once we have
the duration of all the intervals between the I/O phases, we calculate the mean
and standard deviation of such intervals. A threshold is calculated by summing
up the mean and the standard deviation, and it is used to merge I/O phases
close to each other into a single I/O phase. We do that because due to the small

32 H. Ather et al.

Algorithm 1. Merging I/O phases by a threshold
end ← df [end][0]
prev end ← 0
while i < len(df) do

if df [start][i] − end <= threshold then
prev end ← df [end][i]

end if
if df [start][i] − end > threshold OR i = len(df) − 1 then

chunk end ← df [prev index : i].copy()
end ← df [end][i]
prev end ← i

end if
end while

time scale of the operations, we might end up with a lot of tiny I/O phases
that, from the application’s perspective, represent a single phase. As of now,
the merging threshold cannot be changed dynamically from the visualization
interface. Algorithm 1 describes the merging process. We take an I/O phase and
check if the difference between the end of the last I/O phase and the start of
this I/O phase is less than equal to the threshold value. We keep on merging the
I/O phases till they satisfy this condition.

Figure 5 shows a sample I/O phases visualization, that is fully interactive
supporting zoom-in/zoom-out. The phases are generated for MPIIO and POSIX
separately. Hovering over an I/O phase displays the fastest and slowest rank in
that phase and their durations.

Fig. 5. Interactive I/O phases visualization in MPI-I/O and POSIX layers.

Understanding an application’s I/O phases allow the detection of additional
performance bottlenecks, as detailed by Table 1. To showcase how Drishti could
be used in this context, we briefly cover synchronous and asynchronous requests,
stragglers, and multiple I/O phases.

Illuminating the I/O Optimization Path of Scientific Applications 33

Blocking I/O Accesses. From a scientific application’s perspective, I/O oper-
ations can be synchronous or asynchronous. Asynchronous I/O is becoming
increasingly popular to hide the cost associated with I/O operation and improve
overall performance by overlapping computation or communication with I/O
operations [26,33]. Multiple interfaces (e.g., POSIX and MPI-IO) and high-level
I/O libraries (e.g., HDF5) provide both blocking and non-blocking I/O calls. For
HDF5, the Asynchronous I/O VOL Connector [34] can explore this feature.

If we consider only the profiling data available in Darshan, it only captures the
number of non-blocking calls at the MPI-IO level and not when they happened.
To provide a detailed and precise suggestion of when asynchronous could benefit
the application, we rely on the I/O phases and the intervals between those to pro-
vide such recommendations. We demonstrate a use case with a block-structured
adaptive mesh refinement application in Sect. 4.

I/O Stragglers. I/O stragglers in each phase define the critical path impairing
performance. Drishti has an exclusive visualization to highlight the I/O phases
and their stragglers (Fig. 6). We handle each interface separately due to the
transformations that happen as requests go down the stack. The dotted lines
represent the boundaries of an I/O phase. In each, the fastest and the slowest
rank is shown. Combined with contextual information, it is possible to detect
slow ranks across the entire execution or storage servers consistently delivering
slow performance.

Fig. 6. Stragglers are identified in red for each I/O phase. (Color figure online)

3.5 Towards Exploring File System Usage

Additional logs are required to correctly detect bottlenecks related to unopti-
mized file system accesses, as detailed in Table 1. Nonetheless, Darshan DXT

34 H. Ather et al.

captures some information that could provide an initial overview of the storage
servers’ use if the underlying file system is Lustre and that integration is enabled.
Drishti provides an exclusive visualization to explore the OST usage of the I/O
requests, as depicted in Fig. 7. Furthermore, because of file stripping, a request
at the MPI-I/O level might be broken down and require access to multiple stor-
age devices to be completed, which explains why the information at both levels
is not the same. Drishti can also depict the data transfer sizes (writes and reads)
for each OST at both the MPI-I/O and POSIX levels.

Fig. 7. Lustre data storage (OST) access over time.

4 Results

We selected the OpenPMD (Sect. 4.2) and AMReX (Sect. 4.3) use cases from
distinct science domains to demonstrate Drishti ’s value to end-users, develop-
ers, and system administrators. Both came from interactions with their core
developers about concerns related to poor I/O performance. Existing solutions
previously tried did not uncover all the root causes of performance inefficiencies.
Experiments were conducted in two production supercomputing systems: Cori
at the National Energy Research Scientific Computing Center (NERSC) and
Summit at the Oak Ridge Leadership Computing Facility (OLCF). We have
also probed the I/O research community and targeted end-users to gather feed-
back on the tool’s features and helpfulness. For instance, highlighting bottlenecks
uncovered by the heuristic analysis, indexing, and filtering the generated visual-
izations based on the file are some enhancements added from community-driven
feedback. User-interface presentation of the contextual data was also shaped
based on such evaluation.

Illuminating the I/O Optimization Path of Scientific Applications 35

4.1 I/O Systems in NERSC and OLCF

Cori is a Cray XC40 supercomputer at NERSC. It has 2, 388 Intel Xeon Haswell,
and 9, 688 Intel Xeon Phi Knight’s Landing (KNL) compute nodes. All compute
nodes are connected to a ≈ 30 PB Lustre parallel file system with a peak I/O
bandwidth of 744 GB/s. Cori’s PFS is comprised of 244 Object Storage Servers.

Summit is a 4, 608 compute nodes IBM supercomputer at OLCF. Summit
is connected to a center-wide 250 PB Spectrum Scale (GPFS) file system, with
a peak bandwidth of 2.5 TB/s. It has 154 Network Shared Disk servers, each
managing one GPFS Native RAID serving as data and metadata server.

4.2 I/O Bottlenecks in OpenPMD

Open Standard for Particle-Mesh Data Files (OpenPMD) [14] is an open meta-
data schema targeting particle and mesh data in scientific simulations and exper-
iments. Its library [16] provides back-end support for multiple file formats such
as HDF5 [38], ADIOS [25], and JSON [28]. In the context of this experiment,
we focus on the HDF5 format to store the 3D mashes [65536 × 256 × 256],
represented as grids of [64 × 32 × 32] composed by [64 × 32 × 32] mini blocks.
The kernel runs for 10 iteration steps writing after each one. Figure 8 depicts a
baseline execution of OpenPMD in the Summit supercomputer, with 64 com-
pute nodes, 6 ranks per node, and 384 processes, prior to applying any I/O
optimizations alongside the triggered issues. For this scenario, OpenPMD takes
on average 110.6 s (avg. of 5 runs).

Based on the initial visualization and the provided report (Fig. 8), it becomes
evident that the application I/O calls are not using MPI-IO’s collective buffering
tuning option. Furthermore, the majority of the write and read requests are small
(< 1MB), which is known to have a significant impact on I/O performance [41].
Moreover, Drishti has detected an imbalance when accessing the data. This is
further highlighted when the user selects that issue in the interactive web-based
visualization.

Nonetheless, after careful investigation, we confirmed that the application
and the HDF5 library supposedly used collective I/O calls, though the visualiza-
tion depicted something entirely different. Drishti aided in discovering an issue
introduced in HDF5 1.10.5 that caused collective operations to be instead issued
as independent by the library. Once that was fixed, we noticed that the applica-
tion did not use collective metadata operations. Furthermore, Drishti reported
misaligned accesses which pointed us toward tuning the MPI-I/O ROMIO col-
lective buffering and data sieving sizes to match Alpine’s 16MB striping configu-
ration and the number of aggregators. Following the recommendations provided
by Drishti , the runtime dropped to 16.1 seconds, a 6.8× speedup from the base-
line execution. The complete interactive report for the optimized execution is
available in our companion repository.

36 H. Ather et al.

Fig. 8. Interactive visualization and recommendations report generated by Drishti for
the OpenPMD baseline execution in Summit.

Illuminating the I/O Optimization Path of Scientific Applications 37

4.3 Improving AMReX with Asynchronous I/O

AMReX [47] is a C++ framework developed in the context of the DOE’s Exas-
cale Computing Project (ECP). It uses highly parallel adaptive mesh refinement
(AMR) algorithms to solve partial differential equations on block-structured
meshes. AMReX-based applications span different areas such as astrophysics,
atmospheric modeling, combustion, cosmology, multi-phase flow, and particle
accelerators. We ran AMReX with 512 ranks over 32 nodes in Cori supercom-
puter, with a 1024 domain size, a maximum allowable size of each subdomain
used for parallel decomposal as 8, 1 level, 6 components, 2 particles per cell, 10
plot files, and a sleep time of 10 seconds between writes. Table 3 (left) shows the
interactive baseline execution and the report generated by Drishti .

Table 3. Drishti report generated for the AMReX in Cori.

From the provided recommendations, since AMReX uses the high-level HDF5
library, we have added the asynchronous I/O VOL Connector [34] so operations
are non-blocking and we could hide some of the time spent in I/O while the
application continues its computation. Furthermore, as Drishti looks at the ratio
of operations to trigger some insights, for this particular case, we can verify
that the majority of write requests are small (< 1MB) for all 10 plot files. To

38 H. Ather et al.

increase those requests, we have set the stripe size to 16MB. Table 3 (right)
shows the optimized version with a total speedup of 2.1× (from 211 to 100 s).
The interactive report is available in our companion repository.

As demonstrated by design choices and these two use cases, Drishti meets all
the initial criteria (defined in Sect. 1) we set to close the gap between analyzing
the collected I/O metrics and traces, automatically diagnosing the root causes of
poor performance, and then providing users with a set of actionable suggestions.
The designed solution provides a framework that can further be extended and
refined by the community to encompass additional triggers, interactive visual-
izations, and recommendations. We have also conducted a similar analysis for
h5bench [18] and the end-to-end (E2E) [24] domain decomposition I/O kernel.
These are available in our companion repository.

5 Conclusion

Pinpointing the root causes of I/O inefficiencies in scientific applications requires
detailed metrics and an understanding of the HPC I/O stack. The existing
tools lack detecting I/O performance bottlenecks and providing a set of action-
able items to guide users to solve the bottlenecks considering each application’s
unique characteristics and workload. In this paper, we design a framework to face
the challenges in analyzing I/O metrics: extracting I/O behavior and illustrating
it for users to explore interactively, detecting I/O bottlenecks automatically, and
presenting a set of recommendations to avoid them.

Drishti , an interactive web-based analysis framework, seeks to close this gap
between trace collection, analysis, and tuning. Our framework relies on the auto-
matic detection of common root causes of I/O performance inefficiencies by
mapping raw metrics into common problems and recommendations that can be
implemented by users. We have demonstrated its applicability and benefits with
the OpenPMD and AMReX scientific applications to improve runtime.

Drishti is available on GitHub at github.com/hpc-io/drishti with an open-
source license. Scientific community can expand the set of triggers and recom-
mendations. Due to the interactive nature of our solution, we have also provided
a companion repository jeanbez.gitlab.io/isc23 with all traces, visualizations, and
recommendations in this work.

In our future work, we will integrate additional metrics and system logs to
broaden the spectrum of I/O performance issues we can detect and visualize by
providing a global API to consume metrics from distinct sources (e.g., Recorder’s
traces and parallel file system logs). We will also make the thresholds used for
I/O phase visualization more generic so that they take into account different fac-
tors such as parallel file system performance degradation etc. Apart from this,
we will work on approaches to map performance optimization recommendations
to the exact source code line numbers through static code analysis and enhance
the sample solutions in Drishti reports with modified code instead of generic
snippets. Lastly, we plan to prepare guidelines on how the community can con-
tribute to this tool as this will aid in keeping up with the latest advancements
in I/O libraries and systems. As novel systems come online, we will also reach
out to them to provide the necessary support.

https://github.com/hpc-io/drishti
https://jeanbez.gitlab.io/isc23

Illuminating the I/O Optimization Path of Scientific Applications 39

Acknowledgment. This research was supported in part by the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration. This research was
also supported by The Ohio State University under a subcontract (GR130303), which
was supported by the U.S. Department of Energy (DOE), Office of Science, Office of
Advanced Scientific Computing Research (ASCR) under contract number DE-AC02-
05CH11231 with LBNL. This research used resources of the National Energy Research
Scientific Computing Center under Contract No. DE-AC02-05CH11231.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,
Tallent, N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel
programs. CCPE 22(6), 685–701 (2010). https://doi.org/10.1002/cpe.1553

2. Agarwal, M., Singhvi, D., Malakar, P., Byna, S.: Active learning-based automatic
tuning and prediction of parallel I/O performance. In: 2019 IEEE/ACM Fourth
International Parallel Data Systems Workshop (PDSW), pp. 20–29 (2019). https://
doi.org/10.1109/PDSW49588.2019.00007

3. Bağbaba, A.: Improving collective I/o performance with machine learning sup-
ported auto-tuning. In: IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 814–821 (2020). https://doi.org/10.1109/
IPDPSW50202.2020.00138

4. Behzad, B., Byna, S., Prabhat, Snir, M.: Optimizing I/O performance of HPC
applications with autotuning. ACM Trans. Parallel Comput. 5(4) (2019). https://
doi.org/10.1145/3309205

5. Bez, J.L., Ather, H., Byna, S.: Drishti: guiding end-users in the I/O optimiza-
tion journey. In: 2022 IEEE/ACM International Parallel Data Systems Workshop
(PDSW), pp. 1–6 (2022). https://doi.org/10.1109/PDSW56643.2022.00006

6. Bez, J.L., Boito, F.Z., Schnorr, L.M., Navaux, P.O.A., Méhaut, J.F.: TWINS:
server access coordination in the I/O forwarding layer. In: 2017 25th Euromicro
International Conference on Parallel, Distributed and Network-based Processing
(PDP), pp. 116–123 (2017). https://doi.org/10.1109/PDP.2017.61

7. Bez, J.L., Zanon Boito, F., Nou, R., Miranda, A., Cortes, T., Navaux, P.O.: Adap-
tive request scheduling for the I/O forwarding layer using reinforcement learning.
Futur. Gener. Comput. Syst. 112, 1156–1169 (2020). https://doi.org/10.1016/j.
future.2020.05.005

8. Bez, J.L., et al.: I/O bottleneck detection and tuning: connecting the dots using
interactive log analysis. In: 2021 IEEE/ACM 6th International Parallel Data Sys-
tems Workshop (PDSW), pp. 15–22 (2021). https://doi.org/10.1109/PDSW54622.
2021.00008

9. Boito, F.Z., Kassick, R.V., Navaux, P.O., Denneulin, Y.: AGIOS: application-
guided I/O scheduling for parallel file systems. In: International Conference on Par-
allel and Distributed Systems, pp. 43–50 (2013). https://doi.org/10.1109/ICPADS.
2013.19

10. Carns, P., Kunkel, J., Mohror, K., Schulz, M.: Understanding I/O behavior in
scientific and data-intensive computing (Dagstuhl Seminar 21332). Dagstuhl Rep.
11(7), 16–75 (2021). https://doi.org/10.4230/DagRep.11.7.16

11. Carns, P., et al.: Understanding and improving computational science storage
access through continuous characterization. ACM Trans. Storage 7(3) (2011).
https://doi.org/10.1109/MSST.2011.5937212

https://doi.org/10.1002/cpe.1553
https://doi.org/10.1109/PDSW49588.2019.00007
https://doi.org/10.1109/PDSW49588.2019.00007
https://doi.org/10.1109/IPDPSW50202.2020.00138
https://doi.org/10.1109/IPDPSW50202.2020.00138
https://doi.org/10.1145/3309205
https://doi.org/10.1145/3309205
https://doi.org/10.1109/PDSW56643.2022.00006
https://doi.org/10.1109/PDP.2017.61
https://doi.org/10.1016/j.future.2020.05.005
https://doi.org/10.1016/j.future.2020.05.005
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/ICPADS.2013.19
https://doi.org/10.1109/ICPADS.2013.19
https://doi.org/10.4230/DagRep.11.7.16
https://doi.org/10.1109/MSST.2011.5937212

40 H. Ather et al.

12. Carretero, J., et al.: Mapping and scheduling hpc applications for optimizing I/O.
In: Proceedings of the 34th ACM International Conference on Supercomputing.
ICS’20 (2020). https://doi.org/10.1145/3392717.3392764

13. Darshan team: pyDarshan. https://github.com/darshan-hpc/darshan/tree/main/
darshan-util/pydarshan

14. Huebl, A., et al.: openPMD: a meta data standard for particle and mesh based
data (2015). https://doi.org/10.5281/zenodo.1167843

15. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastruc-
ture for periscope, scalasca, TAU, and vampir. In: Brunst, H., Müller, M.S., Nagel,
W.E., Resch, M.M. (eds.) Tools High Perform. Comput., pp. 79–91. Springer,
Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
31476-6 7

16. Koller, F., et al.: openPMD-api: C++ & python API for scientific I/O with
openPMD (2019). https://doi.org/10.14278/rodare.209

17. Kousha, P., et al.: INAM: cross-stack profiling and analysis of communication
in MPI-based applications. In: Practice and Experience in Advanced Research
Computing (2021). DOIurl10.1145/3437359.3465582

18. Li, T., Byna, S., Koziol, Q., Tang, H., Bez, J.L., Kang, Q.: h5bench: HDF5 I/O
kernel suite for exercising HPC I/O patterns. In: CUG (2021)

19. Li, Y., Bel, O., Chang, K., Miller, E.L., Long, D.D.E.: CAPES: unsupervised stor-
age performance tuning using neural network-based deep reinforcement learning.
In: SC’17 (2017). DOIurl10.1145/3126908.3126951

20. Liu, Y., Gunasekaran, R., Ma, X., Vazhkudai, S.S.: Server-side log data analyt-
ics for I/O workload characterization and coordination on large shared storage
systems. In: SC16: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 819–829. IEEE (2016). https://doi.org/10.
1109/SC.2016.69

21. Lockwood, G.K., Wright, N.J., Snyder, S., Carns, P., Brown, G., Harms, K.:
TOKIO on ClusterStor: connecting standard tools to enable holistic I/O perfor-
mance analysis. CUG (2018). https://www.osti.gov/biblio/1632125

22. Lockwood, G.K., et al.: UMAMI: a recipe for generating meaningful metrics
through holistic I/O performance analysis. In: PDSW-DISCS, p. 55–60 (2017).
https://doi.org/10.1145/3149393.3149395

23. Lockwood, G.K., et al.: A year in the life of a parallel file system. In: SC’18 (2018).
https://doi.org/10.1109/SC.2018.00077

24. Lofstead, J., et al.: Six degrees of scientific data: reading patterns for extreme scale
science IO. In: HPDC’11, pp. 49–60. ACM, New York (2011). https://doi.org/10.
1145/1996130.1996139

25. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and
integration for scientific codes through the adaptable IO system (ADIOS). In:
CLADE, pp. 15–24. ACM, NY (2008). https://doi.org/10.1145/1383529.1383533

26. Nicolae, B., et al.: VeloC: towards high performance adaptive asynchronous check-
pointing at large scale. In: IPDPS, pp. 911–920 (2019). https://doi.org/10.1109/
IPDPS.2019.00099

27. NVIDIA: Nsight systems. https://developer.nvidia.com/nsight-systems
28. Pezoa, F., et al.: Foundations of JSON schema. In: Proceedings of the 25th Inter-

national Conference on World Wide Web, pp. 263–273 (2016)
29. Shende, S., et al.: Characterizing I/O performance using the TAU performance

system. In: ParCo 2011, Advances in Parallel Computing, vol. 22, pp. 647–655.
IOS Press (2011). https://doi.org/10.3233/978-1-61499-041-3-647

https://doi.org/10.1145/3392717.3392764
https://github.com/darshan-hpc/darshan/tree/main/darshan-util/pydarshan
https://github.com/darshan-hpc/darshan/tree/main/darshan-util/pydarshan
https://doi.org/10.5281/zenodo.1167843
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.14278/rodare.209
https://doi.org/10.1109/SC.2016.69
https://doi.org/10.1109/SC.2016.69
https://www.osti.gov/biblio/1632125
https://doi.org/10.1145/3149393.3149395
https://doi.org/10.1109/SC.2018.00077
https://doi.org/10.1145/1996130.1996139
https://doi.org/10.1145/1996130.1996139
https://doi.org/10.1145/1383529.1383533
https://doi.org/10.1109/IPDPS.2019.00099
https://doi.org/10.1109/IPDPS.2019.00099
https://developer.nvidia.com/nsight-systems
https://doi.org/10.3233/978-1-61499-041-3-647

Illuminating the I/O Optimization Path of Scientific Applications 41

30. Snyder, S., et al.: Modular HPC I/O characterization with darshan. In: ESPT ’16,
pp. 9–17. IEEE Press (2016). https://doi.org/10.1109/ESPT.2016.006

31. Stovner, E.B., Sætrom, P.: PyRanges: efficient comparison of genomic inter-
vals in Python. Bioinformatics 36(3), 918–919 (2019). https://doi.org/10.1093/
bioinformatics/btz615

32. Sung, H., et al.: Understanding parallel I/o performance trends under various
HPC configurations. In: Proceedings of the ACM Workshop on Systems and Net-
work Telemetry and Analytics, pp. 29–36 (2019). https://doi.org/10.1145/3322798.
3329258

33. Tang, H., Koziol, Q., Byna, S., Mainzer, J., Li, T.: Enabling transparent asyn-
chronous I/O using background threads. In: 2019 IEEE/ACM 4th International
Parallel Data Systems Workshop (PDSW), pp. 11–19 (2019). https://doi.org/10.
1109/PDSW49588.2019.00006

34. Tang, H., Koziol, Q., Ravi, J., Byna, S.: Transparent asynchronous parallel I/O
using background threads. IEEE TPDS 33(4), 891–902 (2022). https://doi.org/10.
1109/TPDS.2021.3090322

35. Taufer, M.: AI4IO: a suite of Ai-based tools for IO-aware HPC resource manage-
ment. In: HiPC, pp. 1–1 (2021). https://doi.org/10.1109/HiPC53243.2021.00012

36. Tavakoli, N., Dai, D., Chen, Y.: Log-assisted straggler-aware I/O scheduler for
high-end computing. In: 2016 45th International Conference on Parallel Processing
Workshops (ICPPW), pp. 181–189 (2016). https://doi.org/10.1109/ICPPW.2016.
38

37. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective I/O in ROMIO. In:
Proceedings Frontiers ’99 7th Symposium on the Frontiers of Massively Parallel
Computation, pp. 182–189 (1999). https://doi.org/10.1109/FMPC.1999.750599

38. The HDF Group: Hierarchical data format, version 5 (1997). http://www.
hdfgroup.org/HDF5

39. The pandas Development Team: pandas-dev/pandas: Pandas (2020). https://doi.
org/10.5281/zenodo.3509134

40. Wang, C., et al.: Recorder 2.0: efficient parallel I/O tracing and analysis. In: 2020
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 1–8 (2020). https://doi.org/10.1109/IPDPSW50202.2020.00176

41. Wang, T., et al.: A zoom-in analysis of I/O logs to detect root causes of I/O
performance bottlenecks. In: CCGRID, pp. 102–111 (2019). https://doi.org/10.
1109/CCGRID.2019.00021

42. Wang, T., et al.: IOMiner: large-scale analytics framework for gaining knowledge
from I/O Logs. In: IEEE CLUSTER, pp. 466–476 (2018). https://doi.org/10.1109/
CLUSTER.2018.00062

43. Wilkinson, L.: The Grammar of Graphics (Statistics and Computing). Springer-
Verlag, Berlin (2005)

44. Xu, C., et al.: DXT: darshan eXtended tracing. CUG (2019)
45. Yildiz, O., et al.: On the root causes of cross-application I/O interference in HPC

storage systems. In: IEEE IPDPS, pp. 750–759 (2016). https://doi.org/10.1109/
IPDPS.2016.50

46. Yu, J., Liu, G., Dong, W., Li, X., Zhang, J., Sun, F.: On the load imbalance
problem of I/O forwarding layer in HPC systems. In: International Conference on
Computer and Communications (ICCC), pp. 2424–2428 (2017). https://doi.org/
10.1109/CompComm.2017.8322970

47. Zhang, W., et al.: AMReX: block-structured adaptive mesh refinement for multi-
physics applications. Int. J. High Perform. Comput. Appl. 35(6), 508–526 (2021).
https://doi.org/10.1177/10943420211022811

https://doi.org/10.1109/ESPT.2016.006
https://doi.org/10.1093/bioinformatics/btz615
https://doi.org/10.1093/bioinformatics/btz615
https://doi.org/10.1145/3322798.3329258
https://doi.org/10.1145/3322798.3329258
https://doi.org/10.1109/PDSW49588.2019.00006
https://doi.org/10.1109/PDSW49588.2019.00006
https://doi.org/10.1109/TPDS.2021.3090322
https://doi.org/10.1109/TPDS.2021.3090322
https://doi.org/10.1109/HiPC53243.2021.00012
https://doi.org/10.1109/ICPPW.2016.38
https://doi.org/10.1109/ICPPW.2016.38
https://doi.org/10.1109/FMPC.1999.750599
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1109/IPDPSW50202.2020.00176
https://doi.org/10.1109/CCGRID.2019.00021
https://doi.org/10.1109/CCGRID.2019.00021
https://doi.org/10.1109/CLUSTER.2018.00062
https://doi.org/10.1109/CLUSTER.2018.00062
https://doi.org/10.1109/IPDPS.2016.50
https://doi.org/10.1109/IPDPS.2016.50
https://doi.org/10.1109/CompComm.2017.8322970
https://doi.org/10.1109/CompComm.2017.8322970
https://doi.org/10.1177/10943420211022811

Efficient Large Scale DLRM
Implementation on Heterogeneous

Memory Systems

Mark Hildebrand(B) , Jason Lowe-Power , and Venkatesh Akella

University of California, Davis, USA
{mhildebrand,jlowepower,akella}@ucdavis.edu

Abstract. We propose a new data structure called CachedEmbeddings
for training large scale deep learning recommendation models (DLRM)
efficiently on heterogeneous (DRAM + non-volatile) memory platforms.
CachedEmbeddings implements an implicit software-managed cache and
data movement optimization that is integrated with the Julia program-
ming framework to optimize the implementation of large scale DLRM
implementations with multiple sparse embedded tables operations. In
particular we show an implementation that is 1.4X to 2X better than the
best known Intel CPU based implementations on state-of-the-art DLRM
benchmarks on a real heterogeneous memory platform from Intel, and
1.32X to 1.45X improvement over Intel’s 2LM implementation that treats
the DRAM as a hardware managed cache.

1 Introduction

Deep Learning Recommendation Models (DLRM) are state of the art AI/ML
workloads underlying large scale ML-based applications [16]. These models
require hundreds of gigabytes of memory and thousands of sparse embedding
table operations [16], which makes them challenging to implement on current
computer systems. As shown in Fig. 1, DLRM model operates on a collection of
dense features and sparse features. Dense features are processed by a standard
Multi-Level Perceptron (MLP) network. The sparse features, on the other hand,
are used to index into embedding tables to extract dense features. Sparse fea-
tures can encode information such as a user id, product id, etc. The outputs of
the individual embedding table lookups are concatenated together and combined
with the output of the bottom MLP using various feature interaction techniques.
Post interaction tensors are processed by a final top MLP before yielding a final
result. The architectural implications of these networks has been investigated in
depth in the literature [7]. Embedding table lookup and update operations are
memory bandwidth intensive while the dense MLP layers, on the other hand,
are compute intensive. This combination stresses many architecture subsystems.
Further complicating matters is the size of these embedding tables, which can
occupy tens to hundreds of gigabytes and are expected to grow [7,12].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 42–61, 2023.
https://doi.org/10.1007/978-3-031-32041-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_3&domain=pdf
http://orcid.org/0000-0001-6105-1643
http://orcid.org/0000-0002-8880-8703
http://orcid.org/0000-0003-3014-5326
https://doi.org/10.1007/978-3-031-32041-5_3

DLRM Implementation on Heterogeneous Memory Systems 43

Fig. 1. Generalized DLRM architecture

Emerging heterogeneous memory based platforms that combine terabytes of
non-volatile RAM such as 3DXpoint [11] and hundreds of gigabytes of DRAM
are naturally attractive as they meet the memory demands of DLRM work-
loads at a reasonable power/cost [2,4]. When moving to these heterogeneous
memory systems, we must manage the data movement and placement smartly
to achieve the best performance. There are three classes of techniques to move
data in these heterogeneous memory systems: hardware (usually at a 64-byte
block granularity), operating system (usually at a page granularity), or directly
by the application (at any granularity). Unfortunately, each of these techniques
come with significant downsides. Hardware-based data movement wastes mem-
ory bandwidth by requiring up to four extra memory accesses on every demand
request and can lead to poor performance [9]. OS-based data movement is not
always timely and can be wasteful for applications with sparse memory access
patterns [13,22]. Finally, requiring the application developer to manually move
data is burdensome and requires modifying the algorithm and deep application
changes [3,20].

Naive methods for heterogeneous memory embedding table management may
fall short for several reasons. First, just placing the tables in non-volatile mem-
ory will not yield good performance due to the significantly lower performance
of non-volatile memory technologies such as 3DXpoint when compared with
DRAM. Next, the reuse pattern of entries within an embedding table can vary
significantly from essentially random highly local and can change over time [5].
This suggests the need for a dynamic policy that is capable of meeting these
different requirements. Further, while researchers have investigated using het-
erogeneous memory to store portions of these embedding tables [4], these works
tend to focus on using NVMe SSDs for their tiered storage. The main issue with
simple caching is that embedding table are sparsely accessed and lookups have
little spatial locality and varying temporal locality.

In this paper, we focus on deep learning recommendation workloads with very
large sparse embedding tables. We will show the data use/reuse patterns with
sparse embedding tables is complex and there are complex interactions between
due to the sparsity of the tables, batch size, features size, number of tables
accessed, number of accesses, and parallelization techniques for lookup/update

44 M. Hildebrand et al.

operation which cause poor performance for hardware caches. To decrease the
burden on programmers but get the performance benefits of manually data move-
ment, we introduce CachedEmbeddings which is a new runtime-optimized data
structure for the embedding tables of the Deep Learning Recommendation Model
(DLRM) workload. Specifically, we will target data movement during the embed-
ding table lookup and gradient descent update operations. In this paper, we refer
to a system with DRAM and non-volatile memory as a heterogeneous memory
system and Intel’s Optane Persistent Memory which is based on 3DXpoint non-
volatile memory technology as PM (Persistent Memory).

The novel contributions of this work are two fold. First, almost all the prior
work in this area has focused on optimizing the embedding table operations on
a homogeneous memory platform (CPU or GPU) taking advantage of the statis-
tical distribution of the embedding table rows with clever partitioning and data
layout techniques. In this work, we first perform benchmarking and analysis of
a heterogeneous memory platform and show that it introduces a different set of
tradeoffs (Sect. 3). Second, the core contribution of this work is a data tiering
framework (or algorithm) that is centered around a new data structure (called
CachedEmbeddings) and an API to implement different platform-specific data
movement optimizations integrated with Julia programming framework. So, the
proposed framework can be used for future workloads that may have different
access patterns, model capacities, and statistical distributions, and more impor-
tantly different hardware platforms. The proposed data tiering framework goes
beyond a traditional software-managed cache in terms of providing a comprehen-
sive mechanism for memory allocation and deallocation, prefetching, and moving
data at larger granularity that is closer to the semantics of the data. This makes
it easier for the programmer to use the proposed API.

We evaluate our implementation of DLRM based on CachedEmbeddingsand
find it is 1.4X to 2X better than the best known Intel CPU based implemen-
tations on state-of-the-art DLRM benchmarks on a real heterogeneous memory
platform from Intel [12], and 1.32X to 1.45X improvement over Intel’s 2LM
implementation that treats the DRAM as a hardware managed cache for the
non-volatile memory.

2 Related Work

Bandana [5] aims to reduce the amount DRAM required for DLRM inference
workloads on CPU clusters by using a combination of DRAM and SSDs, using
heuristics to determine how to cache embedding vectors in DRAM. Like our
work, Bandana also caches hot vectors in DRAM. However, Bandana needs to
overcome the coarse read granularity of SSDs and must use hypergraph parti-
tioning to group vectors with spatial locality to the same sector within the SSD.
Persistent memory does not have this limitation, so this work investigates fine-
grained vector caching while still maintaining high read and write bandwidth
to PM. A performance model for DLRM training on GPUs is presented in [14]

DLRM Implementation on Heterogeneous Memory Systems 45

and using heterogeneous memory for DLRM inference to lower power consump-
tion and cost is presented in [2] and DLRM inference on CPU cluster is pre-
sented in [8]. There are two state-of-the-art implementations of DLRM training
in recent literature. Facebook’s NEO [16] is software/hardware codesign of large
scale DLRM models on a custom GPU-based hardware platform called ZionEX.
It uses a customized 32-way set-associative software cache with LRU and LFU
cache replacement policies and enables fine grain control of caching and replace-
ment. Though NEO is focused on the GPU ecosystem, it provides motivation for
the need of software managed caches to deal with large embedding tables. Intel’s
DLRM implementation [12] focuses on efficient parallelization across multiple
CPU and a novel implementation of the SGD optimizer targeting mix-precision
training. We extend this work by proposing a scale-up solution taking advantage
of heterogeneous memory. Recently there has been work [1,19,21] in identifying
and storing “hot” vectors in faster memory. Further, recent work [6] proposed
a software caching idea similar to ours for GPU-based DLRM training, though
with a different implementation mechanism.

To the best of our knowledge this is the first work on implementation and
optimization of large scale DLRM training on a system with DRAM and non-
volatile RAM (Intel’s Optane Persistent Memory). In addition, this work intro-
duces a generic data management API for optimizing embedded table imple-
mentations on heterogeneous memory systems that is useful beyond just DLRM
workloads. This work goes beyond just caching frequently used vectors to pro-
viding a mechanism to the programmer to tailor the movement of data algo-
rithmically to meet the unique constraints/features of the underlying hardware
platform.

3 Implementing Embedding Tables in Heterogeneous
Memory Systems

As noted in prior works [1,16,17,19] embedding table operations have high band-
width demands and low computation intensity, and moreover, one size doest
not fit all. So, it is a challenge even on a homogeneous memory system like a
CPU or GPU. Heterogeneous memory introduces new challenges. Performance of
embedding tables depends on a variety of parameters such as number of threads,
whether the feature size is fixed as a compiler-time parameter or dynamic, which
means known at runtime, the feature size (we sweep from 16 to 256), the number
of accesses, number of tables (we vary from 10 to 80), the location of the tables,
whether they are in PM or DRAM, number of worker threads, direct vs indirect
lookup (one memory access to retrieve the pointer to the vector and one more
access to retrieve the vector) standard vs non-temporal stores for conducting the
final write operation of an embedding table update. Non-temporal stores hint
to the hardware that the associated data is not intended to be used in the near
future, enabling CPU cache optimizations.

Methodology. Experiments were conducted on a single socket, with one thread
per core on a 2-socket 56 core (112 thread) Intel Xeon Platinum 8276L run-

46 M. Hildebrand et al.

ning Ubuntu 21.10 with 192 GiB (6x32 GiB) DRAM and 1.5 TB (6x256 GiB)
Optane DC NVRAM (3DXpoint-based PM) per socket. We used an embedding
table library written in Julia1 to decouple embedding table operations from data
structure implement. For deep learning primitives, we wrote a Julia wrapper
around Intel’s oneDNN library2.

The experiments consisted of running the kernel of interest multiple times
until 20-s of wall-clock time had elapsed, the execution time for each invocation
was logged. For each invocation of the kernel, new lookup/update indices where
generated randomly from a uniform distribution. Execution time for the gradient
descent update kernels includes the time for reindexing. In addition to execution
time, hardware performance counters for DRAM and PM read and write traffic
were also collected, sampled at the beginning and end of each kernel invocation.
All experiments used a large batchsize of 16384. Embedding tables were sized to
occupy a memory footprint between 1 GiB and 80 GiB to minimize the effect of
the L3 cache.

16 64 128 256
0

2,000

4,000

6,000

511

1,258

2,140

4,317

814

1,230

2,494

4,527

Featuresize

R
un

ti
m
e
(u
s)

Static Dynamic

(a) Non-reducing lookup using DRAM.

16 64 128 256
0

5,000

10,000

594

1, 943

3 ,980

8,090

2 ,210

2,003

4 ,117

7,826

Featuresize

R
un

ti
m
e
(u
s)

Static Dynamic

(b) Non-reducing lookup using PM.

16 64 128 256
0

100

200

8

25

50

101

41 40

81

155

Featuresize

R
un

ti
m
e
(m

s)

Static Dynamic

(c) Reducing lookup using DRAM.

16 64 128 256
0

200

400

21

67

125

227128 96

174

340

Featuresize

R
un

ti
m
e
(m

s)

Static Dynamic

(d) Reducing lookup using PM.

Fig. 2. Comparing the execution time of static versus dynamic feature-sizes for a single
embedding table lookup operation using a single thread. Figures cover the range of non-
reducing and reducing (accesses = 40) operations with the embedding table in either
DRAM or Optane PM. Within each regime, a range of feature sizes is explored. All
runs used single-precision floating point with a batchsize of 16, 384 and nvectors =
10, 000, 000

1 https://github.com/darchr/EmbeddingTables.jl.
2 https://github.com/hildebrandmw/OneDNN.jl.

https://github.com/darchr/EmbeddingTables.jl
https://github.com/hildebrandmw/OneDNN.jl

DLRM Implementation on Heterogeneous Memory Systems 47

Systems equipped with Optane can run in two modes, an app direct mode
where memory is explicitly allocated on PM with loads and stores going directly
to the devices and a 2LM cache mode where DRAM acts as a transparent direct-
mapped cache for PM [11]. Unless otherwise specified, all of our experiments were
conducted in app direct mode. Next, we present relevant and interesting results
from the large number of experiments conducted.

Static and Dynamic Featuresize. First, we investigate the trade-off between
dynamic and static feature size definitions for both reducing and non-reducing
lookups. Figure 2 compares the execution time of static versus dynamic fea-
tures sizes for a single embedding table lookup using a single thread across the
combinations of reducing (accesses = 40) and non-reducing lookups with the
embedding table in DRAM and Optane PM. In different situations, embedding
table definitions may or may not know a priori the size of the embedding table
entries, which leads to different code generation and different performance. With
static feature sizes, the compiler can specialize the embedding table lookup code
for a single feature size. In the dynamic case, the compiler cannot optimize
the embedding table accesses. Additionally, when feeding the embedding table
lookup results into the dense MLP in DLRM, sometimes a single embedding table
entry is used (non-reducing) and other times many entries from the embedding
table are reduced into a single value which is sent the MLP. We find that for
non-reducing accesses there is little difference in performance, but when multi-
ple lookups are required for each output, the static implementation outperforms
the dynamic one in the reducing case. Finally, the performance of PM in these
applications is on the order of 2× slower than DRAM showing that even for a
single thread, memory location matters. This demonstrates that kernel imple-
mentation matters and knowledge of the underlying hardware is key to achieving
high performance for these types of workloads.

To show that the lookup implementation is highly performant, we demon-
strate that the implementation achieves close to the theoretical bandwidth of the
platform. When the tables are located in DRAM, we achieve close to 100 GB/s
of read bandwidth. This is close to the theoretical bandwidth of 110 GB/s. THe
PM bandwidth achieved during ensemble lookup is between 10 GB/s (feature-
size 16) and 25 GB/s (featuresize 256), which tracks well with the expected
random-access read-only bandwidth for these devices [11].

SGD Update Performance - Worker Threads and Nontemporal Stores. Figure 3
shows an example ensemble gradient update performance broken down between
DRAM and PM, number of worker threads, and usage of standard versus non-
temporal stores. The performance of DRAM (Figs. 3a and 3b) increases with the
number of threads with little performance difference between standard and non-
temporal stores during the update phase. However, for DRAM, the indexing time
to create the new CSR array for gradient updates dominates the total update
time except for the largest embedding element sizes.

Persistent memory (Figs. 3c and 3d) exhibits more nuanced behavior. Because
the write bandwidth to PM is much lower, reindexing time is less of a bottle-

48 M. Hildebrand et al.

neck than it is for DRAM. Furthermore, non-temporal stores tend to perform
significantly better, especially for larger feature sizes. This is likely because non-
temporal stores evict the corresponding cachelines from the cache. This causes
the writes to appear at the memory controller as a group allowing for write-
combining within the Optane memory controller (this generation of Optane
DIMMs have a 256 B access granularity). Without non-temporal stores, the
corresponding cache lines only arrive at the memory controller when evicted
from the L3 cache, leading to lower spatial locality.

16 (S)
16 (NT

)
64 (S)

64 (NT
)
256

(S)
256

(NT
)

0

500

1,000

737
(259)

788
(261)

62
(258)

194
(254)57

(258)

164
(254)

Featuresize (Storetype)

R
un

ti
m
e
(m

s)

(Index Time) Update Time

(a) Tables in DRAM with 12 threads.

16 (S)
16 (NT

)
64 (S)

64 (NT
)
256

(S)
256

(NT
)

0

500

1,000
644
(253)

625
(253)

40
(256)

129
(253)39

(256)

124
(254)

Featuresize (Storetype)

R
un

ti
m
e
(m

s)

(Index Time) Update Time

(b) Tables in DRAM with 28 threads.

16 (S)
16 (NT

)
64 (S)

64 (NT
)
256

(S)
256

(NT
)

0

10,000

20,000

30,000

40,000 29403
(254)

28653
(253)

732
(256)

2591
(254)

1095
(256)

4490
(254)

Featuresize (Storetype)

R
un

ti
m
e
(m

s)

(Index Time) Update Time

(c) Tables in PM with 12 threads.

16 (S)
16 (NT

)
64 (S)

64 (NT
)
256

(S)
256

(NT
)

0

20,000

40,000 29621
(254)

34408
(254)

903
(256)

4874
(253)1428

(256)

5911
(256)

Featuresize (Storetype)

R
un

ti
m
e
(m

s)

(Index Time) Update Time

(d) Tables in PM with 28 threads.

Fig. 3. Execution time for embedding table SGD application comparing the use of non-
temporal (NT) and standard (S) stores. 40 independent tables were used with 1 million
vectors each, 40 tables accesses per output, batchsize 16384. Times to perform the
update (no parentheses) and the indexing procedure (in parentheses) are given above
each bar.

For these experiments, the time taken by the reindexing procedure is mostly
constant and takes a large fraction of the overall execution time when the embed-
ding tables are in DRAM. This is largely because the reindexing procedure is
largely targeted for situations where the number of unique indices accessed is
relatively small compared to the number of vectors in the table. A choice of
data structures and reindexing operation targeted more specifically at this “high
density” situation may reduce the this time.

Note that in all cases exhibit a sharp increase in execution time when moving
from a feature size of 64 (256 bytes) to 256 (1024 bytes). This is because the

DLRM Implementation on Heterogeneous Memory Systems 49

contiguous memory accesses of 1024 bytes are sufficient to trigger the stream-
ing prefetcher, which fetches more than just the necessary cache lines causing
bandwidth bloat. This phenomenon goes away when the streaming prefetcher
is disabled in the system BIOS. In our experimental data is reported with the
prefetcher enabled as we expect this to be a more common scenario.

Design Space Exploration Summary. Through our experiments, we make the fol-
lowing conclusions. First, placing the tables in PM results in lower performing
lookup and update operations than DRAM. Further, this highlights the need to
perform some kind of heterogeneous memory management to get the capacity
advantage of PM without paying the full performance price. Second, higher per-
formance implementations of embedding table operations requires cooperation
with and understanding of the underlying hardware and the best implementa-
tion can change depending on the particular operation. For example, the use
of non-temporal stores for update operations is beneficial for performance when
embedding tables are in PM, but makes little difference when DRAM is used.
Finally, in the context of multithreaded ensemble lookups and updates, an extra
level of indirection can be tolerated limited performance penalty (about a 2×
overhead for featuresize 16 down to about 10% for a feature size of 128). This
is the main idea behind our idea of memory management for these tables which
will be presented in the next section. Adding this indirection allows individual
vectors to be stored in either PM or DRAM. With careful selection, we should be
able to move frequently accessed vectors into DRAM while leaving infrequently
accessed ones in PM, providing most of the performance of an all DRAM with
the capacity of PM.

4 Cached Embeddings

In this section, we discuss how to apply the framework of heterogeneous memory
management to embedding table lookups and updates into an approach called
CachedEmbeddings.3 Key aspects to keep in mind are that (1) access to each
embedding table is performed on the granularity of feature vectors, (2) there
is no reason to expect accesses to exhibit spatial locality, and (3) accesses may
exhibit temporal locality. The key insight of CachedEmbeddings is to add an
extra level of indirection to each feature vector access, allowing individual feature
vectors to be cached in DRAM while stored in PM.

Figure 4 shows an overview of our approach. Base data for the embedding
table is located in PM (beginning at address 0x1000 in the example). Each
embedding table maintains a cache in DRAM that vectors can be migrated to.
Internally, the embedding table maintains a vector of pointers, one for each row,
pointing to where the primary region for that row is. Since embedding table rows
are relatively large (>64B), these pointers have unused lower order bits. We use
the least significant bit (LSB) to encode whether the corresponding row is in the
base data or in a cache page. The second LSB is used as a lock-bit. A thread
3 https://github.com/darchr/CachedEmbeddings.jl.

https://github.com/darchr/CachedEmbeddings.jl

50 M. Hildebrand et al.

Fig. 4. Overview of CachedEmbeddings. Base data lives in PM, (with a base address
of 0x1000 as an example). In this example, each feature vector occupies 16 bytes.
A pointer table tracks the actual location of each vector with the least significant bit
indicating whether it’s cached. Upon a lookup access, vectors are moved into cache
pages. Each page contains backedges, which indicates whether the corresponding slot is
filled and if so, the vectors original location.

wanting to move a row uses an atomic compare-and-swap to gain ownership of
the row. If ownership is acquired, the thread is free to move the row into the
cache and unlock the row.

To support multithreaded access, the cache is composed of multiple cache
pages with synchronization for allocation. If the most recent cache page is full,
then the thread must acquire a lock for the table in order to allocate new cache
page. The cache has a configurable maximum size, beyond which no more feature
vectors can be migrated until the cache is flushed. Each cache page also maintains
a vector of backedge pointers to each cached row’s original location (or null if the
slot is empty) to facilitate this flushing. The cache is flushed one page at a time.
If the cache page is entirely clean (in the case that only lookups were performed
with no update operations), flushing a cache page simply involves updating the
pointer table back to each vector’s original location and then deleting the cache
page. If the vectors are dirty (e.g., the table was used during training) then
the vectors within the cache page must also be written back to their original
location.

The size of the cache is determined by two parameters. The parameter
cachelower is a soft lower bound for the size of the cache. When the cache is
flushed, pages will be sequentially flushed until the size of the cache is less than
cachelower. The parameter cacheslack is flexible space to allow the cache
to grow. New vectors can be cached until the total size of the cache exceeds
cachelower + cacheslack. Thus, the size of the DRAM cache for each table
can fluctuate between cachelower and cachelower + cacheslack.

Table 1 outline the API for a CachedEmbeddingTable. At a high level, the
functions access_and_cache and access provides methods for retrieving fea-
ture vectors while optionally migrating vectors into the table’s DRAM cache. Set-

DLRM Implementation on Heterogeneous Memory Systems 51

Table 1. API for a CachedEmbeddingTable.

Operation Description

access_and_cache Get the pointer for the requested feature vector, caching it
in DRAM if (1) the cache is not full, (2) the vector is not
already cached, and (3) ownership of the row is acquired

access Get the pointer for the requested feature vector without
caching. This function is connected to the rowpointer
function for all other access contexts besides Forward

set_cachelower Set the cachelower variable
set_cacheslack Set the cacheslack variable
isfull Return true if the cache is full. Otherwise, return false

flush_clean Purge the oldest cache pages until the size of the cache is
less than cachelower. Do not write back data from cache
pages to the base array

flush_dirty Purge the oldest cache pages until the size of the cache is
less than cachelower. Do write back data from cache
pages to the base array

ters set_cachelower and set_cacheslack are used to modify their correspond-
ing cache size parameter variables. Finally, flush_clean and flush_dirty pro-
vide methods for reducing the size of the cache to enable future vector accesses
to be cached. With this API, we can simply extend CachedEmbeddings to new
memory architectures (e.g., CXL) by modifying the backend implementations
of these functions. On the user-facing side of the API, there will be no changes
required to port the application to a new memory technology.

We evaluated the performance impact of a level of indirection and found it
does not have a significant impact on the embedding table lookup time. An extra
level of pointer chasing causes a slight slowdown when embedding tables are in
DRAM, but it has roughly performance parity when the tables are in PM. In
this bandwidth constrained environment with a large number of threads, the
overhead introduced by an extra level of pointer chasing is negligible. Thus, we
can add a level of indirection, allowing individual feature vectors to be located
in either DRAM or PM, without a large sacrifice in performance.

4.1 CachedEmbeddings Performance

In this section, we perform experiments to determine the performance of the
CachedEmbeddings.

Methodology. When comparing the performance of CachedEmbeddings to
standard embedding tables, we focus on the lookup operation performance. This
is because, in the context of DLRM training, feature vectors will be cached in
DRAM during the lookup operation and simply accessed during the gradient

52 M. Hildebrand et al.

descent operation. The performance of this update operation and subsequent
cache flushing is harder to micro-benchmark for a couple of reasons. First, in
the context of DLRM training, we would expect all embedding tables entries
accessed during the update phase to already be cached. Second, the frequency of
a flush operation is dependent on the input index distribution and thus doesn’t
necessarily occur on every training iteration. Consequently, we will examine
update performance when we study then end-to-end performance of DLRM with
CachedEmbeddings in Sect. 6.

For our benchmarks, we want to target conditions where a mix of DRAM
and PM makes sense (i.e., the total memory footprint is high). To that end,
we investigate ensemble lookups with 80 tables and 28 threads with featuresizes
of 16 and 256 and accesses of 1 and 40. Furthermore, each table consisted of 1
million vectors and a batch size of 16384 was used. To investigate the effects of
cache size, we set cacheslack to be 5% and cachelower to 10%, 25%, 50%,
75% and 100% of each table’s total memory footprint.

To investigate the effects of temporal locality (e.g., users frequently returning
to a web application), the lookup indices for each table are drawn from either a
uniform distribution (which has low temporal locality) or a Zipf [18] distribution
with α = 1 (which has high temporal locality). In order to avoid spatial locality
introduced by the Zipf distribution, the index sampling is followed by a maximum
length linear feedback shift register (LFSR) using a different seed for each table.

For comparison points, the same experiments were run for standard embed-
ding table with either all data stored in DRAM or PM and no indirection in
the lookup accesses. As before, each lookup operation is invoked multiple time
with different indices until the total benchmark runtime exceeds 20 s. For the
experiments conducted using CachedEmbeddings, the flush_clean operation is
run after each invocation.

Results. Figure 5 shows the results for a non-reducing embedding table ensem-
ble lookup. The left-most and right-most bars in each figure show the perfor-
mance of a standard embedding table with all DRAM and PM respectively. In
between is shown the performance of a CachedEmbeddings, with the label giving
the sum of cachelower and cacheslack as a percent of the ensemble’s total
memory footprint. For a featuresize of 16 (Fig. 5a and 5b), the overhead of cache
management overheads dominates resulting in significant slowdown over the all
PM simple table. Even with the larger featuresize of 256, CachedEmbeddings
requires a fairly large cache size to outperform the all PM standard table.

There are a number of reasons for this. First, non-reducing lookups are essen-
tially a memory copy from either DRAM to DRAM or PM to DRAM. This higher
DRAM write traffic can, to some extent, help mitigate the lower read bandwidth
of PM which we can see with the 2× lower performance of the PM based simple
tables than the DRAM based ones for the uniform distribution. Second, because
flush_noclean is called after every invocation and only at most 16384 are
accessed on each lookup (around 1.6% of the embedding table) the table never
reaches the state where the cache is full (recall that cacheslack was set to 5%

DLRM Implementation on Heterogeneous Memory Systems 53

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

10

20

30

3 4
11

18
25

28

8

Cache Size (Percent of Whole Table)

R
un

ti
m
e
(m

s)

(a) Featuresize 16 - Uniform

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

5

10

2 3 4
5

7
9

4

Cache Size (Percent of Whole Table)

R
un

ti
m
e
(m

s)

(b) Featuresize 16 - Zipf (α = 1)

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

50

100

150

49 58 71
85

99 108
87

Cache Size (Percent of Whole Table)

R
un

ti
m
e
(m

s)

(c) Featuresize 256 - Uniform

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

20

40

60

80

41 48 48 50 55 60 58

Cache Size (Percent of Whole Table)
R
un

ti
m
e
(m

s)

(d) Featuresize 256 - Zipf (α = 1)

Fig. 5. Comparison of CachedEmbeddings with standard embedding tables located in
DRAM or PM for nonreducing lookups for uniform and zipf distributions. Runs were
conducted with 80 embedding tables and 28 worker threads.

of the overall table size). This means that the CachedEmbeddings table is always
doing extra work and cannot necessarily take advantage of preexisting cached
vectors.

Figure 6 shows the performance of CachedEmbeddings for reducing lookups
(with accesses = 40). Again, the smaller feature sizes yield poorer performance
advantages (or even performance regressions at smaller cache sizes) because the
time spent moving data around is so low enough that the extra steps required by
CachedEmbeddings can dominate. However, for larger feature sizes like 64 and
256, the performance of CachedEmbeddings nearly interpolates linearly between
the performance of all DRAM and all PM. This is because with a batchsize
of 16384 and 40 accesses per batch, a large portion of each embedding table is
accessed on each lookup operation, resulting in the each embedding table’s cache
staying “full” for a large portion of the lookup operation. When full, the extra
level of indirection for the embedding tables is amortized by the large number of
worker threads, providing a performance benefit over all PM when an accessed
vector is in DRAM with little overhead when it is not. This effect is magnified
with the Zipf distribution which yields a very high DRAM hit rate with only a
modest cache size.

Discussion. There are several regimes where this approach of fine-grained het-
erogeneous memory management can be effective. When the hit rate into the
managed DRAM cache is sufficiently high (in the case of the Zipf index distri-
bution) and the feature size is large enough to amortize the overhead of adding

54 M. Hildebrand et al.

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

200

400

37
88

204 239
305 347 319

Cache Size (Percent of Whole Table)

R
un

ti
m
e
(m

s)

(a) Featuresize 16 - Uniform

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

100

200

19
58

94
132

154 163
123

Cache Size (Percent of Whole Table)

R
un

ti
m
e
(m

s)

(b) Featuresize 16 - Zipf (α = 1)

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

2,000

4,000

871 928 1,258 1,585
2,254

2,723
3,590

Cache Size (Percent of Whole Table)

R
un

ti
m
e
(m

s)

(c) Featuresize 256 - Uniform

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

1,000

2,000

454 576 622 724 800 863

1,800

Cache Size (Percent of Whole Table)
R
un

ti
m
e
(m

s)

(d) Featuresize 256 - Zipf (α = 1)

Fig. 6. Comparison of CachedEmbeddings with standard embedding tables located in
DRAM or PM for reducing lookups with 40 Runs were conducted with 80 embedding
tables and 28 worker threads using the preallocation strategy.

indirection to vector access, then CachedEmbeddings can outperform all PM
with a relatively small amount of DRAM. Even in cases where the hit rate is
not particularly high (the case of the uniform index distribution), CachedEm-
beddings can still achieve a level of performance between all DRAM and all PM
provided the cache becomes full and the amount extra work involved on each
access decreases. At this operating point, each vector access just adds a level of
indirection, sometimes hitting in DRAM and sometimes hitting in PM. Those
accesses to DRAM are accelerated while those to PM have little penalty over
the all PM case.

This suggests another use strategy for CachedEmbeddings called the static
approach. If the input distribution is known to have little locality or if hot
entries in the distribution are known a priori, then an appropriate subset of the
table can be preemptively moved to DRAM (using access_and_cache) until
the table’s cache is full. At this point, further accesses will only fetch and not
move feature vectors. This approach will not respond dynamically to changes
in the input distribution, but as we pointed out, may be appropriate is some
situations.

5 DLRM Implementation Methodology

We implemented the DLRM model in Julia4, and to verify our model perfor-
mance, we compared our DLRM implementation Intel’s optimized PyTorch [12]
4 https://github.com/darchr/DLRM.jl.

https://github.com/darchr/DLRM.jl

DLRM Implementation on Heterogeneous Memory Systems 55

Table 2. Model hyperparameters used for DLRM PyTorch comparison.

Small Mode Large Model

Featuresize 16 128
Num Embeddings Tables 26 26
Embedding Table Sizes min = 3, max = 8.9e6, μ ≈ 1.2e6, σ = 2.6e6

Bottom MLP 512-256-64-16 512-256-128
Top MLP 512-256-1 1024-1024-512-256-1
Batchsize 8192 32768

submission to MLPerf [15]. This reference model using custom PyTorch exten-
sions to enable BFloat16 for high performance dense network computations. We
were able to acquire temporary access to an Intel Cooperlake server, a genera-
tion equipped with vector instructions for BFloat16 based dot products. Since
our implementation is build on top of oneDNN (which supports the BFloat16
datatype), we incorporated the BFloat16 data type into our model as well.

We used two models for comparison, a small model used as Facebook’s offi-
cial DLRM sample model and the model used in MLPerf 2019 training [15]. The
hyper parameters for these tables is shown in Table 2. The optimized PyTorch
implementation used split SGD [12] for their BFloat16 weights. With this opti-
mizer, MLP and embedding table weights are kept in BFloat16, and each weight
array is associated with a similar sized array filled with 16-bit integers. During
the weight update phase of training, these BFloat16 variables are concatenated
with their respective 16-bit integer in their sibling array to create a full 32-bit
float. The gradient update is applied to this 32-bit value, which is the decomposed
back into a BFloat16 and 16-bit “mantissa”. Using this strategy, the authors keep
a full 32 bits of precision for training while using 16 bits of precision for inference.
Importantly, this technique does not decrease the memory requirement of the
embedding tables. Consequently, we implement the split SGD trick for the MLP
layers of our implementation, but keep our embedding tables in full Float32.

Training data came from the Kaggle Display Advertising Challenge dataset.
Both small and large models were run for a single epoch of training on the
dataset, iterating over the data in the same order. Further, both our model and
the PyTorch model began with the same initial weights.

Figure 7 shows the loss progression of our model and the optimized PyTorch
model for the small and large networks. Figures 7a and 7c show loss as a function
of iteration number while Figs. 7b and 7d show loss as a function of time.

We found that our model has slightly higher (worse) loss per iteration, imply-
ing our treatment of BFloat16 is not quite as precise as the PyTorch. However,
our model has a significant less in loss over time because each iteration is pro-
cessed much more quickly. When comparing end-to-end performance for training
DLRM, our Julia model is slightly faster than the optimized PyTorch demon-
strating that we have a high-performant implementation of DLRM to investigate
the impacts of different embedding table lookup algorithms.

56 M. Hildebrand et al.

0 1,000 2,000 3,000 4,000 5,000
0.45

0.5

0.55

Iteration

L
os
s

Intel’s
Ours

(a) Small model, training loss per itera-
tion.

0 50 100 150
0.45

0.5

0.55

Time (S)

L
os
s

Intel’s
Ours

(b) Small model, training loss over time.

0 200 400 600 800 1,000 1,200

0.5

0.55

Iteration

L
os
s

Intel’s
Ours

(c) Large model, training loss per itera-
tion.

0 100 200 300

0.5

0.55

Time (S)
L
os
s

Intel’s
Ours

(d) Large model, training loss over time.

Fig. 7. Convergence comparison between the PyTorch optimized DLRM and ours. Our
model has a slightly higher loss per iteration, but lower loss per wall clock time.

Figure 8 shows the time breakdown of each iteration for both implementations
and models. Our performance benefit comes from three major areas. First, our
MLP backward pass is much faster. This is because we are using an up to date
version of oneDNN to compute our backward pass kernels while the PyTorch
model at the time was using libxsmm. It should be noted that Intel’s extensions
for PyTorch have since switched to using oneDNN. Second, our implementation
has a faster embedding table and weight update through our parallel embedding
table update and parallel weight update strategies. Note that even though the
wall-clock time for the large network embedding lookup is slightly larger than
PyTorch, we’re moving twice the amount of data because our tables were kept
in Float32 while PyTorch used BFloat16. Finally, our implementation has less
miscellaneous overhead, a factor especially apparent for the small network where
PyTorch.

6 End-to-End DLRM Performance

In this section, we investigate the performance of CachedEmbeddings for full
DLRM training. We investigate several different management schemes built on
top of CachedEmbeddings and compare their performance with Intel’s built-in
2LM hardware managed DRAM cache.

Policies. We implemented three simple policies on top of CachedEmbeddings.
The simple policy leaves all embedding vectors in PM, using DRAM to store
the results of an embedding table lookup and intermediate data for the dense
computations. This policy uses a simple embedding table without the level of

DLRM Implementation on Heterogeneous Memory Systems 57

Intel’s
Implementation

Ours
0

50

100

150

200

250

300
8.17

10.26

40

35.31

4.69

12.55

8.56

15.89
170

93.35

30
22.4819.84 4.02

R
un

ti
m
e
(m

s)

(a) Large Network

Intel’s
Implementation

Ours
0

5

10

15

20

25

30
1

0.5

3

2.33

0.32

0.91

0.89

0.79

9

6.63

5

1.91

8.92

0.29

R
un

ti
m
e
(m

s)

Embedding Lookup
MLP Forward
Interaction

Interaction Back
MLP Backward
Weight Update

Misc

(b) Small Network

Fig. 8. Timing breakdown of key layers in our DLRM comparison.

indirection required for a CachedEmbedding table. The static policy allocates
a specified amount of memory in DRAM as cache pages, fills these cache pages
with random rows, then disables all dynamic row caching. At run time, a row
access will either be serviced from DRAM (if one of the rows that was cached
ahead of time) or from PM. The dynamic policy involves dynamically moves
feature vectors into cache pages in DRAM. During lookup of a particular row,
the current thread checks if the accessed row is cached and if so directly returns
a pointer. If the row is not cached, the thread attempts to dynamically cache
the row using the mechanism described above before returning the pointer. If
the row fails to obtain ownership of the row, a pointer to the base data is used.

Over time, the dynamic policy will increase the footprint of the cache pages
as more rows are moved into DRAM. In order to compare fairly with memory
mode (which has access to all of DRAM), we need a per-table cache size small
enough to fit in DRAM along side all memory used by the dense computations
but large enough to achieve high utilization of the available DRAM. Thus, we
set a cache size limit of 2 GiB for each table for a total memory footprint of
128 GiB across the ensemble. Cache pages are sized to be a fraction of this limit
and when the limit is reached, the oldest cache page is cleaned up.

If the sparse input distributions are known, then policies can be updated on
a per-table basis, (e.g., changing the amount of cache allowed for a table).

Methodology. To test CachedEmbeddings, we used a very large DLRM with
the hyper parameters shown in Table 3. This model has large and deep MLPs
and a memory footprint of around 393 GB for its embedding tables. For this
large model, both embedding table operations and dense computations take a
significant fraction of overall training iteration time. Models with smaller dense
networks will be more bottlenecked on embedding table operations, and models
with fewer tables or with fewer lookups per output will be more compute bound.

The input distributions for embedding tables used in industry are proprietary,
though literature suggest that there is at least some temporal locality. In this

58 M. Hildebrand et al.

Table 3. Parameters for the large DLRM model used for benchmarking.

Parameter Value Parameter Value

Number of Tables 64 Rows per Table 6000000
Featuresize 256 Lookups per Output 100
Bottom MLP Length 8 Bottom MLP Width 2048
Top MLP Length 16 Top MLP Width 4096
Batchsize 512

work, we chose to select two extremes. First, we use a uniform random input
distribution for all tables. This is nearly the worst case for caching as there is
limited reuse. Second, we use a Zipf [18] distribution with α = 1 for each table,
scrambling the input for each table using a maximum length LFSR starting at a
random phase. This distribution has significant temporal locality. Dense inputs
were generated using a normal distribution.

2LM CE
Simple

CE
Static

CE
Dynamic

0

500

1,000

1,500

694 226

133 171

233 659
447 480

532 417 422 423

R
un

ti
m
e
(m

s)

(a) Uniform.

2LM CE
Simple

CE
Static

CE
Dynamic

0

200

400

600

800 173 136
84

60131 337 240 163

548
416 418 418R

un
ti
m
e
(m

s)

Lookup Update
Computation

(b) Zipf (α = 1.0)

Fig. 9. Performance with different sparse input distributions. Operations “Lookup” and
“Update” refer to embedding table lookup and update respectively. All other operations
are grouped into “Computation”. Abbreviation “CE” stands for “CachedEmbeddings” and
“2LM” stands for Intel’s default hardware cache.

Results. The results for our large DLRM model are shown in Fig. 9. Figure 9a
shows performance when a uniform distribution is used to drive sparse accesses
while Fig. 9b demonstrates the same model for the Zipf distribution. The baseline
that we compare to is “2LM” or using the DRAM as a hardware-based cache
for the PM. Since the embedding table size greatly exceeds the DRAM size,
only a small part cache be cached in DRAM at any time, and during training
all of these entries will be updated and must be written back to PM when new
entires are moved into the DRAM (i.e., it is a writeback cache). These writebacks
mostly occur during the lookup which is why that portion of the bar in Fig. 9a is
dominate. In the case with more locality (Fig. 9b) the writebacks mostly occur
during the MLP computation. By explicitly managing the memory movement in
software, we avoid these hardware cache actions.

DLRM Implementation on Heterogeneous Memory Systems 59

For the CachedEmbeddings runs, the performance of the dense layers is nearly
the same. This is expected since now all dense computations are performed with
memory in DRAM. The simple case is capable of achieving nearly the whole
bandwidth of the PM devices. However, since embedding table updates must be
done directly into PM, we see a performance degradation due to the low PM write
bandwidth. The static policy performs the best. In this mode, embedding table
lookup and update operations are serviced from both DRAM and PM. Thus,
there is a performance benefit if for accessing rows in DRAM over the simple
policy without a performance loss if the vector is in PM. The dynamic policy is
able to perform a little better than the simple one because all embedding table
updates go to DRAM. However, it is slower then static for embedding table
lookups because the eager caching of embedding table vectors incurring more
DRAM write bandwidth, competing with PM reads. Further more, dynamic
incurs a slightly higher update penalty due to cache management (writing back
dirty rows from old cache pages).

When switching from a uniform distribution (low reuse) to a Zipf distribu-
tion (α = 1, high reuse), we observe speedups in embedding table and lookup
performance across the board. Several factors are at play here. First, with this
level of reuse, CPU caches become effective, reducing overall memory traffic. The
embedding table update sees further performance increases due to our gradient
aggregation strategy where the entire gradient for each embedding table vector
is accumulated before applying the optimizer. With higher reuse, there are fewer
indices per lookup and lower write traffic to PM.

Finally, we can see the effect of 2LM and CachedEmbeddings based caching
mechanisms. The lookup performance of 2LM increases by 4× as the DRAM
cache stops experiencing such a high miss rate. Further, the performance of
dynamic improves by 2.85× compared to with the uniform distribution, sur-
passing the static strategy since it is able to correctly cache the hot vectors in
DRAM. Indeed, we observe that there is a slight performance regression of sim-
ple when compared to 2LM as there is enough locality in the accessed vectors
to overcome some of the issues associated with the hardware managed DRAM
cache.

We again see the benefit of adding knowledge of program behavior to the
memory management policy. When the sparse input distribution is uniform, our
cache is too small to have a high enough hit rate to offset the overhead of moving
vectors into the cache. In this case, a static partition of the data structures results
in better utilization of the multiple levels of memory. However, when there is
enough temporal locality in the input distribution for caching to be effective,
fine grained memory management is exactly what we need. Tailoring of policy
to the specifics of hardware and runtime situation is essential for performance.

7 Conclusions and Future Work

In this work, we presented the design space exploration of implementing multiple
large and sparse embedding table operations on a heterogeneous memory plat-
form using a new data structure called CachedEmbeddings. The main technique

60 M. Hildebrand et al.

presented in this paper works best at larger feature sizes where the effort required
to maintain the embedding table is out-weighed by the cost of the embedding
table operation itself. Nevertheless, the existence of a caching mechanism for
embedding table entries allows for custom policies to be implemented, tailored
to the observed distribution in embedding table accesses.

Large and sparse embedding tables are not unique to DLRM workloads but
also are useful in other ML workloads such as Transformers [10]. As a software-
only technique, CachedEmbeddings can be adapted to future disaggregated mem-
ory systems, for instance CXL-based fabric-attached memory platforms.

References

1. Adnan, M., Maboud, Y.E., Mahajan, D., Nair, P.J.: Accelerating recommendation
system training by leveraging popular choices. Proc. VLDB Endow. 15(1), 127–140
(2021). https://doi.org/10.14778/3485450.3485462

2. Ardestani, E.K., et al.: Supporting massive DLRM inference through software
defined memory. CoRR abs/2110.11489 (2021). https://arxiv.org/abs/2110.11489

3. Dhulipala, L., et al.: Sage: parallel semi-asymmetric graph algorithms for
NVRAMs. Proc. VLDB Endow. 13(9), 1598–1613 (2020). https://doi.org/10.
14778/3397230.3397251

4. Eisenman, A., et al.: Reducing DRAM footprint with NVM in Facebook. In: Pro-
ceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal,
23–26 April 2018, pp. 42:1–42:13 (2018). https://doi.org/10.1145/3190508.3190524

5. Eisenman, A., et al.: Bandana: using non-volatile memory for storing deep learning
models. CoRR abs/1811.05922 (2018). http://arxiv.org/abs/1811.05922

6. Fang, J., et al.: A frequency-aware software cache for large recommendation system
embeddings (2022). https://arxiv.org/abs/2208.05321

7. Gupta, U., et al.: The architectural implications of Facebook’s DNN-based per-
sonalized recommendation. CoRR abs/1906.03109 (2019). https://arxiv.org/abs/
1906.03109

8. Gupta, U., et al.: Deeprecsys: a system for optimizing end-to-end at-scale neural
recommendation inference. In: 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA), pp. 982–995. IEEE (2020)

9. Hildebrand, M., Angeles, J.T., Lowe-Power, J., Akella, V.: A case against hardware
managed dram caches for NVRAM based systems. In: 2021 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 194–
204 (2021)

10. Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., Hoefler, T.: Data movement is all
you need: a case study on optimizing transformers. Proc. Mach. Learn. Syst. 3,
711–732 (2021)

11. Izraelevitz, J., et al.: Basic performance measurements of the Intel Optane DC
persistent memory module. CoRR abs/1903.05714 (2019). http://arxiv.org/abs/
1903.05714

12. Kalamkar, D., Georganas, E., Srinivasan, S., Chen, J., Shiryaev, M., Heinecke, A.:
Optimizing deep learning recommender systems training on CPU cluster architec-
tures. In: International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2020, pp. 1–15. IEEE (2020)

https://doi.org/10.14778/3485450.3485462
https://arxiv.org/abs/2110.11489
https://doi.org/10.14778/3397230.3397251
https://doi.org/10.14778/3397230.3397251
https://doi.org/10.1145/3190508.3190524
http://arxiv.org/abs/1811.05922
https://arxiv.org/abs/2208.05321
https://arxiv.org/abs/1906.03109
https://arxiv.org/abs/1906.03109
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714

DLRM Implementation on Heterogeneous Memory Systems 61

13. Kim, J., Choe, W., Ahn, J.: Exploring the design space of page management
for multi-tiered memory systems. In: 2021 USENIX Annual Technical Conference
(USENIX ATC 2021), pp. 715–728 (2021)

14. Lin, Z., et al.: Building a performance model for deep learning recommendation
model training on GPUs (2022). https://arxiv.org/abs/2201.07821

15. Mattson, P., et al.: MLPerf training benchmark (2019)
16. Mudigere, D., et al.: Software-hardware co-design for fast and scalable training

of deep learning recommendation models. In: Proceedings of the 49th Annual
International Symposium on Computer Architecture, ISCA 2022, pp. 993–1011.
Association for Computing Machinery, New York (2022). https://doi.org/10.1145/
3470496.3533727

17. Naumov, M., et al.: Deep learning recommendation model for personalization
and recommendation systems. CoRR abs/1906.00091 (2019). http://arxiv.org/
abs/1906.00091

18. Powers, D.M.W.: Applications and explanations of Zipf’s law. In: New Methods in
Language Processing and Computational Natural Language Learning (1998)

19. Sethi, G., Acun, B., Agarwal, N., Kozyrakis, C., Trippel, C., Wu, C.J.: RecShard:
statistical feature-based memory optimization for industry-scale neural recommen-
dation. In: Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2022, pp.
344–358. Association for Computing Machinery, New York (2022). https://doi.org/
10.1145/3503222.3507777

20. Shanbhag, A., Tatbul, N., Cohen, D., Madden, S.: Large-scale in-memory ana-
lytics on intel R© optaneTM DC persistent memory. In: Proceedings of the 16th
International Workshop on Data Management on New Hardware, DaMoN 2020.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3399666.3399933

21. Xie, M., et al.: Fleche: an efficient GPU embedding cache for personalized recom-
mendations. In: Proceedings of the Seventeenth European Conference on Computer
Systems, EuroSys 2022, pp. 402–416. Association for Computing Machinery, New
York (2022). https://doi.org/10.1145/3492321.3519554

22. Yan, Z., Lustig, D., Nellans, D., Bhattacharjee, A.: Nimble page management for
tiered memory systems. In: Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2019, Providence, RI, USA, 13–17 April 2019, pp. 331–345 (2019).
https://doi.org/10.1145/3297858.3304024

https://arxiv.org/abs/2201.07821
https://doi.org/10.1145/3470496.3533727
https://doi.org/10.1145/3470496.3533727
http://arxiv.org/abs/1906.00091
http://arxiv.org/abs/1906.00091
https://doi.org/10.1145/3503222.3507777
https://doi.org/10.1145/3503222.3507777
https://doi.org/10.1145/3399666.3399933
https://doi.org/10.1145/3399666.3399933
https://doi.org/10.1145/3492321.3519554
https://doi.org/10.1145/3297858.3304024

HPC Algorithms and Applications

Efficient GPU Offloading with OpenMP
for a Hyperbolic Finite Volume Solver

on Dynamically Adaptive Meshes

Mario Wille1(B) , Tobias Weinzierl2 , Gonzalo Brito Gadeschi3 ,
and Michael Bader1(B)

1 TUM School of Computation, Information and Technology,
Technical University of Munich, Garching, Germany

{mario.wille,michael.bader}@tum.de
2 Department of Computer Science, Institute for Data Science—Large-scale

Computing, Durham University, Durham, UK
tobias.weinzierl@durham.ac.uk

3 NVIDIA, Munich, Germany
gonzalob@nvidia.com

Abstract. We identify and show how to overcome an OpenMP bottle-
neck in the administration of GPU memory. It arises for a wave equa-
tion solver on dynamically adaptive block-structured Cartesian meshes,
which keeps all CPU threads busy and allows all of them to offload sets of
patches to the GPU. Our studies show that multithreaded, concurrent,
non-deterministic access to the GPU leads to performance breakdowns,
since the GPU memory bookkeeping as offered through OpenMP’s map
clause, i.e., the allocation and freeing, becomes another runtime challenge
besides expensive data transfer and actual computation. We, therefore,
propose to retain the memory management responsibility on the host:
A caching mechanism acquires memory on the accelerator for all CPU
threads, keeps hold of this memory and hands it out to the offload-
ing threads upon demand. We show that this user-managed, CPU-based
memory administration helps us to overcome the GPU memory book-
keeping bottleneck and speeds up the time-to-solution of Finite Volume
kernels by more than an order of magnitude.

Keywords: GPU offloading · Multithreading · OpenMP ·
Dynamically adaptive mesh refinement

This research has been supported by EPSRC’s ExCALIBUR programme (projects
EX20-9, PAX–HPC and MGHyPE), by the German Ministry of Education and
Research (BMBF, project targetDART) and by Intel’s Academic Centre of Excellence
at Durham University. Supercomputing resources and support was provided by the
ARCHER2 UK National Supercomputing Service, the Erlangen National High Per-
formance Computing Center, Jülich Supercomputing Center and CINECA. See the
Acknowledgements section for details.
c© The Author(s) 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 65–85, 2023.
https://doi.org/10.1007/978-3-031-32041-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_4&domain=pdf
http://orcid.org/0000-0003-2567-643X
http://orcid.org/0000-0002-6208-1841
http://orcid.org/0000-0003-1138-3679
http://orcid.org/0009-0000-4334-1938
https://doi.org/10.1007/978-3-031-32041-5_4

66 M. Wille et al.

1 Introduction

GPUs are the workhorses of exascale: In exascale machines, the biggest per-
formance share is offered by multiple GPUs per node, being orchestrated by
modestly powerful CPUs. However, exascale simulation software also needs to
run efficiently on smaller machines, where more CPU-centric nodes are accom-
panied by few GPUs as accelerators for specific tasks. It is also not yet clear if
future top-end systems will continue to be GPU-centric.

Various orthogonal concepts to operate GPUs exist: (i) GPUs can be the
sole data owners [19], they can own parts of the data and be compute cores on
equal footing with the host cores [13,14], or they can be treated as offloading
devices providing services to the host for compute-heavy phases. (ii) GPUs can
be interpreted as a few devices with large internal concurrency, or they can be
read as compute units accepting many tasks concurrently. In this case, we either
split up the GPU internally or toggle between tasks. (iii) Finally, GPUs can
be associated statically to particular cores, or we can allow multiple cores to
share them. Simulation software is expected to navigate flexibly within these
dimensions, as it is not yet clear which paradigm will dominate the future. This
challenges the software’s design and parallelisation concept.

We study ExaHyPE [15], a wave equation solver that employs explicit time
stepping and dynamically adaptive mesh refinement (AMR) with Peano [20]. It
uses patches of cells constructed through octree-type AMR (cf. [6] and references
therein), and implements a Finite Volume scheme over these patches1.

ExaHyPE and Peano follow the MPI+X paradigm, i.e., we have many ranks,
each hosting several threads. Each thread can take Finite Volume patches and
offload them to the GPU. We work in a coupled multiscale and multiphysics
environment. As the physics, control, and algorithmic logic reside on the CPU
cores which in turn potentially needs access to all simulation data, the GPU is
used in offloading mode for the “number crunching”. This comes at the cost of
additional data movement between GPU and CPU [19].

To construct GPU compute kernels with a high computational load,
ExaHyPE provides the opportunity for the host to gather multiple of our patches
into a batch of patch update tasks which are handled in one rush on the acceler-
ator via one kernel call [22]. This way, one offload action potentially can occupy
the whole GPU. Yet, as we work with dynamically adaptive meshes, we do not
constrain at any point which core can access a GPU, and multiple cores poten-
tially may hit the accelerator simultaneously.

ExaHyPE’s reference implementation realises the offloading per thread via
OpenMP’s target constructs (cf. [10,18]). Our measurements suggest that the
major OpenMP implementations avoid race conditions on the GPU by locking
the GPU per data transfer: Whenever the runtime encounters a target map
clause or implicit data offloading, the target GPU is halted. This is a reasonable
design pattern to realise remote memory access in any system. Unfortunately, it

1 Peano and ExaHyPE are available under a modified BSD license at https://gitlab.
lrz.de/hpcsoftware/Peano.

https://gitlab.lrz.de/hpcsoftware/Peano
https://gitlab.lrz.de/hpcsoftware/Peano

Efficient GPU Offloading with OpenMP 67

introduces significant overhead and synchronisation. Developers face a triad of
challenges: To design compute kernels of sufficient load, to overlap computation
and data transfer, and to avoid that data is allocated or freed while computations
run. Our work presents data for the NVIDIA ecosystem, but we have observed
qualitatively the same challenging behaviour for core LLVM and AMD’s offload-
ing. Similar results have been reported for pure CUDA [14].

We study two approaches tackling the latter two challenges: The first app-
roach reserves memory on the GPU upon demand, yet does not free it anymore.
Instead, it hands out pre-reserved memory to threads whenever they decide to
offload. As the memory ownership resides on the host, most synchronisation and
coordination can be handled there. The GPU is only interrupted whenever we
have to grow the pre-allocated memory. Approach number two relies on virtual
shared memory between the GPU and the host. Pre-allocated shared memory
regions are held on the host. Logical data transfers to the GPU become plain
memory copies on the CPU into the pre-allocated shared memory regions, while
the actual data transfer then is realised via the GPU’s page fault mechanisms.
The allocations on the host come along with overheads—offloading-ready data
for example, has to be aligned properly and requires the operating system to
physically allocate memory immediately—yet do not interrupt the accelerator.

Our studies suggest that it is reasonable to withdraw memory management
from the accelerator where possible and to assign it to the host [14]. Through
a host-centric realisation, we speed up some calculations by an order of mag-
nitude, without imposing a static offloading pattern of patches, huge patches,
fixed subtimestepping, or a distributed task/patch management [14,19]. Though
motivated by a real-world science case, we deliberately work with a worst-case
scenario—small kernels, a memory-bound numerical scheme, and an offloading-
only approach—to spotlight the challenges. Yet, we think that our techniques are
of relevance for a broad range of applications that require flexible GPU usage.

In Sects. 2, we sketch our software architecture and the science cases. Mea-
surements for a straightforward realisation with OpenMP’s map (Sect. 3) suggest
that we have to avoid the allocation and deallocation on the GPU. We introduce
a realisation of this approach in Sect. 4 before we provide experimental evidence
of the payoff (Sect. 5). A longer discussion of our approach in the light of exist-
ing implementations vs. fundamental challenges as well as some generic lessons
learned (Sect. 6) lead into an outlook closing the discussion (Sect. 7).

2 Science Case and Code Architecture

ExaHyPE’s [15] finite volume solver, which is now in its second generation,
accepts hyperbolic partial differential equations (PDEs) in first-order formula-
tion

∂Q

∂t
+ ∇ · F (Q) +

d∑

i=1

Bi(Q)
∂Q

∂xi

= S(Q) with Q : R3+1 �→ R
N , (1)

describing time-dependent wave equations. ExaHyPE offers a suite of explicit
time-stepping schemes for these equations: Finite Volumes (FVs), Runge-
Kutta Discontinuous Galerkin (DG) and Arbitrary high order using Derivatives

68 M. Wille et al.

(ADER)-DG (see [15,21]). Users are furthermore offered a set of solver ingredi-
ents from which they can pick to assemble their solver, while they can decide
which terms of Eq. (1) to employ within the numerical scheme of choice.

Science Case. Our ambition is to study gravity and non-standard gravity models
subject to strong solution gradients and solution localisation such as neutron
stars or black holes. Two particular flavours of Eq. (1) demand our attention:

The Euler equations yield a system of N = d + 2 non-linear PDEs which
describe the evolution of the scalar density, the scalar energy and the d-
dimensional velocity on a cosmological scale. We employ the textbook Euler
fluxes F in Eq. (1), while gravity enters the equations as source term S(Q)
with Q determined by the previous time step. Bi = 0, i.e., there are no non-
conservative terms. Even though the governing PDE is non-linear, the arithmetic
intensity of the arising functions is low.

With Euler, small inhomogeneities in the initial mass density distribution
lead to a spherical accretion scenario: Gravity pulls more and more matter into
a few overdensity centres, such that the Hubble expansion is locally compen-
sated and we observe matter concentration instead of spreading out. Around
the accretion centre, the density eventually exceeds a critical threshold and we
obtain a shock which again pushes material outwards. It is an open question
to which degree the temporal and spatial shape of the arising expansion and
contraction horizons are preserved under non-standard gravity models [3,22].

Our second setup of interest results from a first-order formulation of the con-
formal and covariant Z4 (CCZ4) equations [1,8]. They are available for d = 3
only and model the evolution of the space-time curvature as a constrained wave
equation. Different to the Euler equations, gravity is not modelled via a (quasi-
)elliptic, Poisson-type term impacting some governing equations. Instead, we
evolve it explicitly. CCZ4 models gravitational waves as they arise from rotat-
ing binary neutron stars, but also describes the environment around static and
rotating black holes, i.e., singularities of the density concentration.

As we work with a first-order rewrite of CCZ4 to fit into the scheme of
Eq. (1), we have to evolve N = 59 equations. Common to all codes working
with variations of these equations (cf. [5,7,9,11], e.g.) is the observation that
the arithmetic intensity within the PDE evaluations is very high; leading even
to register spilling on GPUs [9]. In our first-order formulation (Eq. 1), this high
arithmetic intensity materialises in complex Bi and S terms, while F (Q) = 0.

Problem Statement 1. Both equations of interest require dynamic AMR as
they study strongly localised effects. Both have high computational demands, but
their compute characteristics are completely different.

Software Architecture. For the spatial discretisation of the computational
domain, ExaHyPE employs dynamically adaptive Cartesian meshes. It relies
on the PDE framework Peano [20] to realise them through a generalisation of
the popular octree approach: We embed the computational domain into a cube,
and then subdivide this cube recursively and locally. This yields, on the finest

Efficient GPU Offloading with OpenMP 69

subdivision level, an adaptive Cartesian mesh of cubes. The code thus falls into
the class of octree AMR [6,14,19]. The grid structure can change at every time
step.

While the code base supports various numerical discretisations, we focus in
this paper on its straightforward Finite Volume solver with a generic Rusanov
Riemann solver: The code embeds p×p (2D) or p×p×p (3D) regular Cartesian
meshes which we call patches into each and every cube, i.e., we work with a block-
structured adaptive Cartesian mesh. This mixture of tree code and patches is
popular to obtain a reasonable arithmetic load relative to the mesh management
overhead (cf. [5,6,14,15,22], e.g.). The code base traverses through the mesh once
per time step and progresses each patch in time. For this compute kernel, the
actual update due to Eq. (1) is determined by the source term plus the flow
through the volume faces. These terms are injected by the user via a callback
mechanism. All other program logic including mesh traversal order, data storage
and parallelisation is hidden. Other codes have propagated such an “inject your
domain knowledge” before under the term Hollywood principle [20].

We employ three layers of parallelism: The domain spanned by the spacetree
is first decomposed into non-overlapping chunks with one chunk per MPI rank.
We cut the domain along a Peano space-filling curve (SFC) and hence end up
with connected subdomains with a good surface-to-volume ratio, i.e., limited
communication compared to compute load [2]. Next, we cut each MPI parti-
tion again into chunks along the SFC and deploy the resulting subdomains to
the CPU’s threads. We obtain hierarchical MPI+X parallelism where the threads
own subdomains. Bulk-synchronous processing (BSP) is the programming model
for the traversals, as the individual subdomain traversals are triggered at the
same time per time step. Realisation via MPI and OpenMP is straightforward.
In the context of quickly varying AMR, we however found this MPI+X paralleli-
sation algorithmically insufficient (similar to observations by Dubey et al. [6]),
as the domain decomposition on the threading side struggles to load balance.

Each thread, therefore, identifies within its subdomain patches to be deployed
as separate tasks: All the patches which do feed into MPI—these patches are
time-critical on supercomputers and they have to feed into MPI in-order—or
have to realise adaptive mesh refinement are directly executed throughout the
mesh traversals. The remaining patches are deployed as separate tasks. This
enclave tasking concept [4] allows us to balance out imbalances between threads,
i.e., within the BSP sections [16].

GPU Offloading. Furthermore, we can pool the tasks in a separate queue: We
wait until this queue contains ‖PGPU‖ enclave tasks (‖PGPU‖ being a user-defined
threshold), and then deploy all patches within the queue in one rush to the GPU.
The arising compute kernels over batches or sets of patches make up our fourth
level of parallelism. Fifth, we note that our kernel implementations rely heavily
on data parallelism yielding vector concurrency.

We note that the pooling or batching of tasks allows us to write GPU compute
kernels that have very high concurrency [12]. The individual tasks within a
batch are, by definition, all ready tasks, i.e., can be processed concurrently,

70 M. Wille et al.

and all of them expose additional internal concurrency on top. Our concept
stands in the tradition of the enclave concept by Sundar et al. [17], who deployed
subdomains to Intel Xeon Phi coprocessors. However, we do not identify the
enclaves geometrically ahead of a mesh traversal—the “enclave” tasks enqueue
on the fly—but can fuse segments of enclaves on the fly whenever a task that
enqueues GPU tasks finds that the queue size exceeds the GPU threshold and
hence deploys a whole batch to the accelerator. This added flexibility allows
us to obtain large GPU offloading tasks even though the code might encounter
geometrically small enclaves scattered among the threads’ subregions.

Due to the processing in batches of size ‖PGPU‖, a proper choice of ‖PGPU‖
should allow users to exploit all parallel potential of a GPU. Contrary to that, a
large ‖PGPU‖ might imply that only a few batches become ready per time step
and can, potentially, overlap each other [14]. We thus aim for a small ‖PGPU‖
which is just about large enough to utilise the GPU efficiently. Let Nthreads
traverse their subdomain per node and produce tasks. Hence, up to Nthreads
might concurrently decide that they each would like to deploy a batch of ‖PGPU‖
patches to the GPU. Many threads offload to the GPU simultaneously. A GPU
serves multiple cores.

Problem Statement 2. In ExaHyPE, multiple threads offload to the GPU
simultaneously. Due to the dynamic AMR, the offloading pattern is not deter-
ministic or known beforehand.

3 A Realisation of GPU Offloads with target map

Let KEuler,2D
p , KEuler,3D

p and KCCZ4
p describe the compute kernels of interest. Each

kernel takes the solution representation over a patch of p × p or p × p × p finite
volumes and returns the solution at the next timestep. When we benchmark
the whole patch update cycle of such an update, we actually measure the cost
including all data transfer, i.e., we measure

(R ◦ F ◦ K ◦ A ◦ P)
Q(t)

where the operator P takes the solution Q(t) and transports it to the GPU, while
R retrieves the solution and brings it back into the user memory. A allocates on
the device all temporary variables required by K, while F frees these memory
blocks. ExaHyPE works with sets of patches and therefore processes sets

{(R ◦ F ◦ K ◦ A ◦ P)
Qc(t)

}

c∈[1,‖PGPU‖]
. (2)

Realisation. Our plain realisation of the GPU offloading through OpenMP imple-
ments Eq. (2) as follows (also, cf. Algorithm 1):

1. The data per patch are stored en bloc in one large array of structures (AoS)
on the host, but the individual patches are scattered over the main memory
as we invoke the batched GPU kernel (cf. Eq. 2). We thus deep copy a list of

Efficient GPU Offloading with OpenMP 71

Algorithm 1: OffloadMap(‖PGPU‖):
Offloads ‖PGPU‖ to the GPU using OpenMP’s map clause. First, patch and
temporary data are allocated on the host and the respective device pointers
are constructed. After offloading to the GPU, results are copied back to the
host and the data is freed.
1 Procedure offload_map(‖PGPU‖, host_patch_data):
2 mapped_pointers ← allocate_host(‖PGPU‖)
3 for i ← 0 to ‖PGPU‖ do
4 patch_data ← host_patch_data[i]
5 #pragma omp target enter data map(to:patch_data)
6 mapped_pointers[i] ← omp_get_mapped_ptr(patch_data)
7 end
8 temporary_data ← allocate_host(‖PGPU‖)
9 #pragma omp target teams distribute map(to:mapped_pointers)

map(alloc:temporary_data)
10 for i ← 0 to ‖PGPU‖ do
11 // Do computations on Finite Volumes
12 end
13 temporary_data ← free_host()
14 for i ← 0 to ‖PGPU‖ do
15 patch_data ← host_patch_data[i]
16 #pragma omp target exit data map(from:patch_data)
17 end
18 mapped_pointers ← free_host()

pointers to patch data to the device: A for loop maps each patch’s data onto
the device trough omp target enter data map(to:...). Due to the loop,
the kernel can handle arbitrary ‖PGPU‖. The copying per se is trivial, as the
patch data is one large, continuous array of doubles. After that, we construct
the list of pointers on the GPU and befill it with the device pointers. For this,
OpenMP offers declare mapper constructs though we prefer to build up the
list of device pointers via omp_get_mapped_ptr.

2. For all temporary data that the kernel requires to handle the ‖PGPU‖ patches,
we allocate one large block. There is only one A‖PGPU‖ allocation realised
through a map(alloc:...).

3. The actual kernel invocation is an omp target block supplemented with a
distribute directive.

4. We free all temporary data in one rush.
5. With OpenMP’s map clauses, copying the GPU outcomes back into the host

memory is realised by a loop over the patches. We issue one omp target exit
data map(from:...) call per patch and time step.

We conceptually end up with the following realisation of Eq. (2):
{

Rmap
}

c∈[1,‖PGPU‖]
◦ F‖PGPU‖ ◦

{
K

}

c∈[1,‖PGPU‖]
◦ A‖PGPU‖ ◦

{
Pmap

}

c∈[1,‖PGPU‖]
.

(3)

72 M. Wille et al.

1 2 4 8 16 32 64 128 256

Number of patches per kernel call ‖PGPU‖
10−9

10−8

10−7

10−6

10−5

10−4

10−3

T
im

e
pe
r
FV

up
da
te

[s
]

Euler 2D (map): p = 172

1 thread
2 threads

4 threads
8 threads

16 threads
32 threads

64 threads
128 threads

Fig. 1. Time per degree of freedom update for the 2D Euler equations with patch
size 17 × 17. We benchmark the throughput for different numbers of patches ‖PGPU‖
handled by each kernel invocation (x-axis). We also let different thread counts Nthreads

access the GPU at the same time (different bars).

The scheme mirrors batched linear algebra, where a matrix is applied to mul-
tiple right-hand sides in one sweep. Each kernel K has some internal concurrency
such as “loop over all faces” or “loop over all volumes”. The batching pays off, as
we obtain, on top of this, another outer loop over [1, ‖PGPU‖] which we annotate
with OpenMP’s distribute. We leave it to OpenMP to distribute the patches
over the streaming multiprocessors (SMs) or to deploy multiple patches onto
one SM via multiple warps, while the SM threads are used to process all finite
volumes within a patch.

Experimental Setup. To benchmark the offloading including all data transfers, we
disable all calculations on the host, we artificially ensure that all work between
the CPU threads is perfectly balanced, we make all cores use one GPU only, and
we disable MPI. Next, we vary the number of threads Nthreads which offload to
the GPU simultaneously and let each thread deploy 100 patches, grouped into
sets of ‖PGPU‖. In the big picture, it translates to a setup where each GPU of
a compute node is governed by one MPI rank, in which multiple threads run in
parallel, flooding the GPU with offloaded tasks. However, real simulations barely
will encounter situations where all Nthreads threads offload exactly at the same
time. We focus on this worst-case constellation. It is a stress test.

Efficient GPU Offloading with OpenMP 73

All tests are run on the Alex cluster hosted by the Erlangen National High
Performance Computing Center (NHR). Each node of our testbed is equipped
with two AMD EPYC 7713 Milan processors (64 cores per chip) which accom-
modate eight NVIDIA A100 GPUs. Each GPU features 80 GB main memory.
Our experiments use the NVIDIA HPC Software Development Kit (SDK) in
the version 23.1 as well as the Compute Unified Device Architecture (CUDA) in
the version 12.0 as the underlying software stack. NVIDIA SDK’s collection of
compilers, libraries, and software tools supports OpenMP GPU target offloading
and OpenMP loop transformations as used by our compute kernels. However,
some features have to be used with care2.

Benchmark Results. For all different kernel variants as well as p choices, we get
qualitatively similar results (Fig. 1):

Observation 1. It is important to batch multiple patches into one GPU com-
pute kernel to exploit the hardware concurrency of the accelerator.

This is not a surprising observation once we take into account what hardware
concurrency current GPUs offer. Our data however showcase that we quickly run
into some saturation: Regardless of the number of threads used, the measured
time per finite volume update decreases until it starts to saturate from around
‖PGPU‖ = 16 patches. It barely pays off to merge more than ‖PGPU‖ = 16
patches for the two-dimensional Euler. With a patch size of 17 × 17 and 128
threads, the GPU becomes saturated by keeping around 5.24 · 105 finite volume
updates in flight at any point.

Observation 2. If we launch multiple kernels from multiple threads, the per-
formance of our straightforward implementation deteriorates.

In theory, spawning kernels in parallel from multiple threads should pay off
performance-wisely, as we can hide memory transfers of one kernel behind the
computations of another kernel that has already started to work. Tutorials
around the usage of streaming buffers or nowait (async) kernel launches exploit
this. Even as the threads start to offload at the same time in a stress test, we
should at least be able to scale up to the number of supported hardware streams.
Our data however show that simultaneously firing kernels to the GPU reduces
the throughput by at least two orders of magnitude. This is counterintuitive!

Observation 3. The cheaper a compute kernel, the more severe the impact of
concurrent data transfers.

For the three-dimensional Euler, ‖PGPU‖ = 8 is reasonable, while CCZ4 has
‖PGPU‖ = 4 (not shown). As the saturation thresholds are lower, the penalties
for concurrent kernel launches kick in stronger for lower thread counts.

Rationale. While modern GPUs can manage several compute kernels in flight,
the maximum number of such kernels is relatively small, and each kernel launch
2 See https://doi.org/10.5281/zenodo.7741217 for supplemental material.

https://doi.org/10.5281/zenodo.7741217

74 M. Wille et al.

introduces overhead. While this motivates why the code benefits from larger
‖PGPU‖, it does not explain the penalties resulting from parallel kernel launches
from multiple threads. It does not explain the performance degradation once we
increase Nthreads.

GPU offloading in OpenMP is realised through address mapping: The run-
time manages a table per accelerator which stores which addresses from the
CPU are mapped onto which GPU addresses including the corresponding mem-
ory sizes. From these data, the runtime can identify all reachable memory regions
on the accelerator. An allocation of a new memory region on the GPU inserts a
new entry into the device table. If an entry is removed, subsequent inserts will
be able to use the “freed” memory regions again.

If any thread accesses the memory table, the runtime first has to avoid races
with other threads. Secondly, the GPU itself might want to allocate GPU mem-
ory. Our kernels do not require dynamic memory, but it is not clear to what
degree the compiler synthesises this knowledge from the source code. Thirdly,
the GPU hardware can only read from page-locked host-pinned memory to copy
data from the host to the device. In general, memory passed to target map is
not page-locked. Therefore, additional staging is required. Our data suggest
that this triad of challenges makes the memory manager suspend all running
GPU kernels before it allocates or frees memory.

Observation 4. Memory allocations on the GPU are expensive and potentially
delay running kernels if multiple threads offload to the GPU concurrently.

We consider this final Observation 4 to be a flaw in GPU offloading runtimes.
To the best of our knowledge, it does not attract attention in current literature.

4 User-Managed Memory Management

To avoid memory allocations on the GPU, we propose to make the host the
owner of the memory blocks on the GPU which are used for host-GPU data
transfer. We propose to introduce a GPU memory manager [14], and we provide
two realisations of such a manager.

Algorithmic Framework. Let each rank hold one instance of a GPU memory
manager. Without loss of generality, we can assume that there is one manager
per host CPU, i.e., for all Nthreads threads sharing one GPU. If a code wants to
deploy a memory chunk to the accelerator, it allocates memory through the GPU
memory manager by passing the size of the memory chunk plus its address, as
well as a device number if multiple GPUs are hosted on one node. The allocation
routine returns a device pointer, i.e., an address that is valid on the respective
device. The GPU memory manager guarantees that the resulting device pointer
points to a valid device region that can be accessed consecutively from the call-
ing code. The counterpart of the allocation is a free which releases the device
memory. It is given another host address into which the GPU memory manager

Efficient GPU Offloading with OpenMP 75

dumps the kernel results. Access to the GPU memory manager is made thread-
safe through global semaphores—which is sufficient, as the map simply handles
out pointers.

Internally, the GPU memory manager hosts a hash map of tuples of integers
onto a sequence of tuples of device addresses plus a boolean marker:

M : N+ × N
+ �→ (

A × {�,⊥})+.

The key tuple represents the combination of the device number and memory
block size (to be allocated). When the code requests (allocates) memory on a
particular device of a particular size, we construct the key and study the image
in M which is a sequence of addresses on the device. Each address either holds
� which means that this address is currently in use. The manager may not hand
out this address again. If it is labelled with ⊥, then the address is not in use.

If the GPU memory manager can serve an allocation with an existing address
with the label ⊥, it toggles the flag to � and returns the corresponding address.
If there is no address with ⊥ available—and notably if a key tuple points to an
empty list—it is the GPU memory manager’s responsibility to acquire new GPU
memory and then return the corresponding address. When memory is freed, the
manager retrieves the result from the GPU into the user address space that
is passed. After that, it sets the corresponding entry in M to ⊥. As our com-
pute kernels rely on the managed memory, they can use the manager’s returned
pointers within target compute kernels by labelling them as is_device_ptr
and effectively avoiding the staging of host memory.

The algorithmic framework sketches a code utility that allocates memory
and hands it out upon demand. As it does not free memory but re-uses memory
blocks which are not in use anymore, we avoid repeated memory allocations.
Notably, we share pre-allocated data between different threads. The exact allo-
cation mechanism is subject to two different realisation flavours.

4.1 Data Pre-allocation on the GPU

A GPU-centric variant of the GPU memory manager acquires all memory
requested via omp_target_alloc directly on the GPU: If no free memory blocks
are held within M , we reserve GPU memory and store the GPU memory’s
address within the hash map. Whenever we identify a fitting pre-allocated mem-
ory region (or have literally just acquired memory), the manager transfers the
user data to the allocated memory via an omp_target_memcpy. Bringing data
back is another explicit omp_target_memcpy call (cf. Algorithm 2).

Employing the OpenMP API routines mirrors the behaviour behind the
map(alloc) and map(to) pragma clauses. Internally, the compiler breaks down
an omp target enter data map(to: ...) statement into

(P ◦ A)
, where

the A operator denotes the explicit memory allocation on the GPU via
omp_target_alloc which is followed by the actual data transfer.

76 M. Wille et al.

Algorithm 2: OffloadManaged(‖PGPU‖):
Offloads ‖PGPU‖ to the GPU using the managed memory approach. We
allocate patch and temporary data through the GPU memory manager.
After offloading to the GPU, results are copied back to the host and the
data handles are freed for re-use.
1 Procedure offload_managed(‖PGPU‖, host_patch_data):
2 patch_data ← GPUMemoryManager→allocate_device(‖PGPU‖)
3 patch_data ← omp_target_memcpy(host_patch_data, ‖PGPU‖)
4 temporary_data ← GPUMemoryManager→allocate_device(‖PGPU‖)
5 #pragma omp target teams distribute is_device_ptr(patch_data,

temporary_data)
6 for i ← 0 to ‖PGPU‖ do
7 // Do computations on Finite Volumes
8 end
9 temporary_data ← GPUMemoryManager→free()

10 host_patch_data ← omp_target_memcpy(patch_data, ‖PGPU‖)
11 patch_data ← GPUMemoryManager→free()

Compared to Eq. (3), the present GPU memory manager variant eliminates,
in most cases, the allocations, while we omit the frees. In all cases where our
pre-allocated memory regions can serve the user code requests, we reduce the
actual kernel invocation cost to

{
Rcopy

}

c∈[0,|C|−1]
◦

{
K

}

c∈[0,|C|−1]
◦

{
Pcopy ◦ Â

}

c∈[0,|C|−1]
, (4)

where Â is a no-operation. Only in the cases where we cannot serve a memory
request with pre-allocated memory blocks, Â becomes an actual A. As the F
and A operations halt the GPU temporarily, we obtain a fast code stripped of
these stops. Solely the orchestration overhead to launch the batched compute
kernel for

{K}
c∈[0,|C|−1]

remains.

4.2 Pre-allocation on the CPU with Unified Memory

Our second approach works on GPUs which offer unified memory. In this case,
we exploit that the GPU has full access to the host address space and that the
hardware can migrate pages from the main memory via page faults to the CPU
upon demand. GPU and CPU form one NUMA domain.

On such systems, it is possible to replace all memory allocations with a
shared allocation, i.e., to enable the system to migrate any data automatically
between host and accelerator. However, such allocations differ from “normal”
allocations in that they induce particular memory layouts and arrangements.
Even though the NVIDIA software stack allows developers to enable this CUDA
Unified Memory globally at compile time through a flag, we refrain from using it
globally, as it is not compatible with static memory regions employed for global
constants, e.g. Instead, we distinguish the allocation on the GPUs A from an

Efficient GPU Offloading with OpenMP 77

allocation Ashared on the CPU which allocates memory that can be transferred
to the GPU. For the latter, we introduce the memory copy operators Chost�→shared

and Cshared �→host. While P transfers data directly to the GPU, both C operators
copy data on the host from a “normal” memory region into a region that can
be migrated to the GPU upon demand. They are plain CPU memory copies
between two memory regions on the host.

Whenever the GPU kernel accesses a unified memory region that resides on
the host the access might page fault and trigger a page migration to the GPU
which we denote as Ppf with pf for page fault. Moving data back would be Rpf.
With this formalism, our kernel launch becomes
{

Cshared �→host ◦ Rpf
}

c∈[0,|C|−1]
◦

{
K ◦ Ppf

}

c∈[0,|C|−1]
◦

{
Chost�→shared

}

c∈[0,|C|−1]
.

(5)
Initially, we simply copy our data on the host. This is cheap compared to the

data transfer to the GPU. Notably, nothing stops multiple threads to copy their
data in parallel, once the GPU memory manager has identified or created well-
suited shared memory blocks. Immediately after that, we launch the kernel. In
RAM, the algorithmic latency caused by memory transfers is significantly lower
than in our previous managed approach, while the bandwidth is usually higher.
While the kernel launches immediately, it has to retrieve data from the host via
page fault Ppf. The actual data transfer is prolonged yet has the potential to
delay the kernel execution. However, it is realised in hardware, and the GPU is
good at orchestrating such data transfer. Getting data back is again a relatively
cheap host-internal memory transfer which might however trigger data transfers
Rpf back from the GPU. There might be additional latency here, though the
GPU hardware might also trigger the corresponding page faults ahead of time.

Technically, the second variant is close to trivial: We take the first managed
approach and replace the OpenMP memory allocations with NVIDIA’s CUDA
allocations. The OpenMP data copies become plain C++ memory copies.

5 Results

We first benchmark the three-dimensional Euler equations and the CCZ4 setup
where the offloading’s data transfer is organised via a plain map. A fixed total
number of patches is split into chunks (batches) of ‖PGPU‖ and offloaded con-
currently by the threads to the GPU. We vary the thread count Nthreads. This
is a classic strong scaling setup that again simplifies real-world simulation runs
where the Nthreads ·‖PGPU‖ patches never become available in one rush. The total
number of patches used is empirically chosen such that the average runtime per
patch becomes invariant, i.e., the experimental setup avoids burn-in effects.

Our data (Fig. 2) confirm that both bigger patch sizes p and higher number
of patches per batch ‖PGPU‖ pay off performance-wisely. However, the size of
the individual patches is the more decisive performance lever: We can distribute
a batch of patches over the GPU streaming multiprocessors but if the individual
patch is very small, the batching is not able to close the performance gap to

78 M. Wille et al.

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

Euler 3D (map): p = 53

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

CCZ4 3D (map): p = 53

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

Euler 3D (map): p = 93

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5
T
im

e
pe
r
FV

up
da
te

[s
]

CCZ4 3D (map): p = 93

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

Fig. 2. Time per FV degree of freedom (volume) update for three-dimensional Euler
(left) and CCZ4 (right). Lower is better. Each patch either hosts 53 (top) or 93 (bot-
tom) Finite Volumes along each Cartesian coordinate axis. All data transfer is realised
through OpenMP’s map clauses (cf. Sect. 3).

a run employing big expensive patches right from the start. In any setup, the
Nthreads hold Nthreads ·‖PGPU‖·p3 finite volumes in flight on the GPU. While this
corresponds to a reasonable memory footprint for CCZ4 with its 59 unknowns
per volume—we also have to allocate temporary data for the non-conservative
fluxes in all three directions plus the source term—the saturation for ‖PGPU‖ ≈ 8
is reached early.

All measurements confirm that offloading to the GPU simultaneously from
many threads comes along with a significant performance penalty. If we split up
the total work equally among the threads and deploy the batches concurrently,
the throughput relative to the threads plateaus quickly and eventually rises
again. Indeed, we see a speedup if and only if the number of offloading threads
is small, and if we offload only a few patches per batch.

When we rerun the experiments with our GPU memory manager, we dra-
matically improve the robustness of the concurrent offloading (Fig. 3). Batching,
i.e., large ‖PGPU‖, and reasonably large individual patches aka p remain key
performance ingredients, but concurrent offloading can help robustly to improve

Efficient GPU Offloading with OpenMP 79

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

Euler 3D (user-managed): p = 53

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

CCZ4 3D (user-managed): p = 53

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

Euler 3D (user-managed): p = 93

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

CCZ4 3D (user-managed): p = 93

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

Fig. 3. Experiments from Fig. 2 with our user-managed memory (cf. Sect. 4.1).

performance. Robust here means that the gain through multi-threaded offload-
ing might eventually plateau, yet, we do not pay a performance penalty. Given
enough threads that access the GPU at the same time, setups employing smaller
‖PGPU‖ match the throughput of setups with large ‖PGPU‖. We also see that
the best-case throughput becomes independent of the p-choice.

Once we replace our manual copies with pre-allocated GPU memory using
CUDA unified memory, concurrent offloading to the GPU yields no performance
improvement anymore and overall runtime suffers (Fig. 4). With CUDA unified
memory, we postpone the data movement penalty to the point when the data
is actually required. As the data access is spread out temporarily, bandwidth
demands are spread out, too. This however does not manifest in better perfor-
mance. Notably, it stops us from profiting from multiple threads which offload at
the same time—we assume that the interconnect is kept busy by a single kernel
already and multiple kernel launches interfere and compete with each other.

We provide full details on how to reproduce the results presented in this
paper on https://doi.org/10.5281/zenodo.7741217.

https://doi.org/10.5281/zenodo.7741217

80 M. Wille et al.

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

Euler 3D (CUDA-unified): p = 53

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

CCZ4 3D (CUDA-unified): p = 53

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5

T
im

e
pe
r
FV

up
da
te

[s
]

Euler 3D (CUDA-unified): p = 93

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

1 2 4 8 16 32 64 128

Nthreads

10−9

10−8

10−7

10−6

10−5
T
im

e
pe
r
FV

up
da
te

[s
]

CCZ4 3D (CUDA-unified): p = 93

‖PGPU‖ =1
‖PGPU‖ =2

‖PGPU‖ =4
‖PGPU‖ =8

‖PGPU‖ =16
‖PGPU‖ =32

Fig. 4. Experiments from Fig. 2, using CUDA-unified memory (cf. Sect. 4.2): The GPU
memory manager accepts data that has to be offloaded and packs it into unified memory
on the host. It is then the responsibility of the CUDA runtime to bring the data from
shared managed memory regions into the GPU.

6 Discussion and Conclusions

Our observations, proposed solutions, and runtime measurements allow us to
draw conclusions for our algorithms as well as the used runtime:

Tasks of high computational load are important to exploit the concurrency
on modern GPUs, and batching is one technique to construct such tasks while we
stick to small patches (cf. Observation 1). With the concurrent offloading onto
the GPU through multiple threads, we eventually manage to make the best-case
throughput of this combination independent of p, and we are able to reduce
the minimal batch size ‖PGPU‖. Yet, a reasonable value continues to depend
on the algorithmic fingerprint of the underlying PDE. We assume that other
discretisations such as DG have a major impact here, too.

The insight contradicts the rule of thumb knowledge which suggests that an
efficient GPU utilisation becomes impossible in the presence of a totally adaptive
AMR with tiny patches. If we employ tiny patches where the meshing has to
track data flow and dependencies between small Cartesian meshes, the stream-

Efficient GPU Offloading with OpenMP 81

ing compute properties per patch are not sufficient to keep a GPU busy [14].
However, small patches, i.e., small p-values in our case, are key to efficient AMR
in an algorithmic sense: Large patches constrain the AMR, as we cannot rep-
resent rapid resolution changes accurately. They hence reduce the algorithmic
efficiency, i.e., invested cost per numerical accuracy.

Conclusion 1. The combination of parallel offloading, user-managed GPU
memory, and batching yields a fast GPU code that works with relatively small
patches.

Indeed, our approach abandons the concept of a geometric “streamability” and
instead translates this idea into the data space: Patches are batched into sets
that can be processed in a streaming fashion, even though there might be no
geometric correlation between those patches.

Our data suggest that OpenMP GPU offloading is vulnerable to concurrent
access by multiple threads. Our GPU memory manager mitigates this shortcom-
ing and renders Observations 2 and 3 invalid. It is not clear if the need for it
(cf. Observation 4) is a shortcoming of the employed GPU runtime or an intrinsic
property of any GPU runtime, as we obtained qualitatively comparable data for
LLVM and AMD’s runtime, too. We hypothesise that, as long as a GPU kernel is
allowed to make dynamic allocations, any GPU allocation has to be thread-safe
and hence introduces some synchronisation: To be thread-safe, any data transfer
to the GPU has to stop all running kernels to prevent them to make allocations;
unless the memory region for data exchange and the local heap is strictly sepa-
rated, or a compiler derives a priori if a kernel does not require dynamic memory
allocation and hence does not need to be stopped.

Conclusion 2. Multithreaded access to GPU offloading in combination with
dynamic memory allocation on the device requires special care on the program-
mer’s side and eventually benefits from a deployment of the GPU’s memory
management onto the CPU.

This argument gains importance for software which—in line with ExaHyPE—
deploys algorithmically irregular and unstructured operations such as AMR
administration to the CPU, yet keeps other data and work persistently on the
GPU [19]. It might notably gain weight in the context of local time stepping,
where patch interaction patterns quickly become challenging.

Conclusion 3. Our data do not support the idea that managed memory is a
competitive replacement for well-designed manual data migration of dynamically
allocated memory regions.

Our data yields “disappointing” results for managed memory, much in line with
disappointing data of cache architectures compared to algorithms which explic-
itly exploit write-through or streaming capabilities. However, we have exclusively
studied an offloading approach which requires dynamic allocations within the
managed memory, and we have used a code base which is likely PCIe latency-
bound. In this context, we assume that managed memory in combination with
CUDA prefetching allows for significantly more elegant and faster code.

82 M. Wille et al.

7 Summary and Outlook

With the advent of more and more cores on the host and with more GPUs being
added to each node, in-depth analysis, and discussion around multi-threaded
accelerator usage is imminent. Our work orbits around flaws that we document
for the multithreaded usage of GPUs. Future versions of the employed OpenMP
runtimes might fix those flaws and supersede our user-defined memory man-
agement. Even so, any future runtime development has to be contextualised in
which way software operates GPUs:

Keeping data permanently on the accelerator [19] is beyond the scope of the
present studies, as we let our ExaHyPE solver construct worst-case stress tests
where each and every patch is offloaded to the GPU and eventually brought
back. In contrast, many simulation codes try to hold data on the GPU as long
as possible, i.e., let the GPU own the data, as the fastest data transfer is avoided
data transfer. Therefore, it remains relevant to assess to which degree data trans-
fer has to interrupt running GPU kernels. For our GPU memory manager, a fix
could imply that parts of the memory administration are deployed to the GPU,
i.e., that the GPU memory manager is distributed, too. We furthermore hypoth-
esise that kernels could continue to run despite threads offloading to the GPU
as long as the compiler is aware that no dynamic memory allocation is required
for these kernels, and as long as the compiler can derive the maximum call stack
size. No interaction with any dynamic memory management should be required.

Our work confirms that a GPU performs best if we deploy kernels with a
huge concurrency level. We achieve this through batching. As the strict rule of
lock-stepping comes to an end on the hardware side, we assume that smaller
and smaller batch sizes become feasible. In this context, it remains to be seen if
fewer restrictions on the lock-stepping side go hand in hand with the support of
more active kernels and how this affects the concurrent offloading to the GPU
from many threads.

Our GPU memory manager is basic and can be improved in many ways.
A canonical extension is garbage collection, e.g., [14]. Fundamentally new chal-
lenges arise from switching to a multi-process view: Once multiple ranks are
deployed per CPU—to accommodate multiple NUMA domains, e.g.,—our GPU
memory manager becomes a distributed memory allocator which requires cross-
process synchronisation and the coordination of multiple ranks requesting access
to the GPU’s pre-allocated memory at the same time. It remains open to which
degree future OpenMP runtimes can and will accommodate the requirement to
support multi-rank setups, and in which way they support a dynamic association
of GPU compute resources to these ranks.

Acknowledgements. This research has been supported by EPSRC’s ExCALIBUR
programme through its cross-cutting project EX20-9 Exposing Parallelism: Task Par-
allelism (Grant ESA 10 CDEL). It uses the code base Peano as supported through
ExCALIBUR’s project PAX–HPC—Particles At eXascale on High Performance Com-
puters (EP/W026775/1) and MGHyPE—An ExCALIBUR Multigrid Solver Toolbox
for ExaHyPE (EP/X019497/1). We appreciate the support by the German Ministry

Efficient GPU Offloading with OpenMP 83

of Education and Research (BMBF) via the project targetDART (16ME0634K), and
by Intel’s Academic Centre of Excellence at Durham University which allowed the
team to investigate into OpenMP GPU offloading as facilitated through OpenMP. We
also gratefully acknowledge support through the embedded CSE programme of the
ARCHER2 UK National Supercomputing Service (http://www.archer2.ac.uk) under
grant no ARCHER2-eCSE04-2, and the scientific support and HPC resources pro-
vided by the Erlangen National High Performance Computing Center (NHR@FAU)
of the Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) under the NHR
project PeanoMP. NHR funding is provided by federal and Bavarian state authori-
ties. NHR@FAU hardware is partially funded by the German Research Foundation
(DFG)—440719683. The authors acknowledge Jülich Supercomputing Center for pro-
viding access to the JURECA DC Evaluation Platform. This work was completed in
part at the CINECA GPU Hackathon, part of the Open Hackathons program. Finally,
the authors would like to acknowledge OpenACC-Standard.org for their support.

References

1. Alic, D., Bona-Casas, C., Bona, C., Rezzolla, L., Palenzuela, C.: Conformal and
covariant formulation of the Z4 system with constraint-violation damping. Phys.
Rev. D 85(6), 064040 (2012)

2. Bader, M.: Space-Filling Curves–An Introduction with Applications in Scientific
Computing. Texts in Computational Science and Engineering, vol. 9. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-31046-1

3. Bertschinger, E.: Self-similar secondary infall and accretion in an Einstein-de Sitter
universe. Astrophys. J. Suppl. Ser. 58, 39–65 (1985)

4. Charrier, D., Hazelwood, B., Weinzierl, T.: Enclave tasking for DG methods on
dynamically adaptive meshes. SIAM J. Sci. Comput. 42(3), C69–C96 (2020)

5. Daszuta, B., Zappa, F., Cook, W., Radice, D., Bernuzzi, S., Morozova, V.: GR-
Athena++: puncture evolutions on vertex-centered oct-tree adaptive mesh refine-
ment. Astrophys. J. Suppl. Ser. 257(2), 25 (2021)

6. Dubey, A., Berzins, M., Burstedde, C., Norman, M.L., Unat, D., Wahib, M.: Struc-
tured adaptive mesh refinement adaptations to retain performance portability with
increasing heterogeneity. Comput. Sci. Eng. 23(05), 62–66 (2021)

7. Dumbser, M., Fambri, F., Tavelli, M., Bader, M., Weinzierl, T.: Efficient imple-
mentation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE
engine. Axioms 7(3), 63 (2018)

8. Dumbser, M., Guercilena, F., Köppel, S., Rezzolla, L., Zanotti, O.: Conformal and
covariant Z4 formulation of the Einstein equations: strongly hyperbolic first-order
reduction and solution with discontinuous Galerkin schemes. Phys. Rev. D 97,
084053 (2018)

9. Fernando, M., et al.: A GPU-accelerated AMR solver for gravitational wave propa-
gation. In: 2022 SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1078–1092. IEEE Computer Society (2022)

10. Huber, J., et al.: Efficient execution of OpenMP on GPUs. In: 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pp. 41–52
(2022)

11. Kidder, L., et al.: SpECTRE: a task-based discontinuous Galerkin code for rela-
tivistic astrophysics. J. Comput. Phys. 335, 84–114 (2017)

http://www.archer2.ac.uk
https://www.openacc.org/
https://doi.org/10.1007/978-3-642-31046-1

84 M. Wille et al.

12. Li, B., Schulz, H., Weinzierl, T., Zhang, H.: Dynamic task fusion for a block-
structured finite volume solver over a dynamically adaptive mesh with local time
stepping. In: Varbanescu, A.L., Bhatele, A., Luszczek, P., Marc, B. (eds.) ISC
High Performance 2022. LNCS, vol. 13289, pp. 153–173. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07312-0_8

13. Peterson, B., et al.: Automatic halo management for the Uintah GPU-
heterogeneous asynchronous many-task runtime. Int. J. Parallel Programm. 47(5–
6), 1086–1116 (2018). https://doi.org/10.1007/s10766-018-0619-1

14. Qin, X., LeVeque, R., Motley, M.: Accelerating an adaptive mesh refinement code
for depth-averaged flows using GPUs. J. Adv. Model. Earth Syst. 11(8), 2606–2628
(2019)

15. Reinarz, A., et al.: ExaHyPE: an engine for parallel dynamically adaptive simula-
tions of wave problems. Comput. Phys. Commun. 254, 107251 (2020)

16. Schulz, H., Gadeschi, G.B., Rudyy, O., Weinzierl, T.: Task inefficiency patterns for
a wave equation solver. In: McIntosh-Smith, S., de Supinski, B.R., Klinkenberg,
J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp. 111–124. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85262-7_8

17. Sundar, H., Ghattas, O.: A nested partitioning algorithm for adaptive meshes on
heterogeneous clusters. In: Proceedings of the 29th ACM on International Confer-
ence on Supercomputing, ICS 2015, pp. 319–328 (2015)

18. Tian, S., Chesterfield, J., Doerfert, J., Chapman, B.: Experience report: writing
a portable GPU runtime with OpenMP 5.1. In: McIntosh-Smith, S., de Supin-
ski, B.R., Klinkenberg, J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp. 159–169.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85262-7_11

19. Wahib, M., Maruyama, N., Aoki, T.: Daino: a high-level framework for parallel and
efficient AMR on GPUs. In: SC 2016: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 621–632
(2016)

20. Weinzierl, T.: The Peano software–parallel, automaton-based, dynamically adap-
tive grid traversals. ACM Trans. Math. Softw. 45(2), 14 (2019)

21. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER dis-
continuous Galerkin finite element schemes with a posteriori sub-cell finite volume
limiting. Comput. Fluids 118, 204–224 (2015)

22. Zhang, H., Weinzierl, T., Schulz, H., Li, B.: Spherical accretion of collisional gas in
modified gravity I: self-similar solutions and a new cosmological hydrodynamical
code. Mon. Not. Roy. Astron. Soc. 515(2), 2464–2482 (2022)

https://doi.org/10.1007/978-3-031-07312-0_8
https://doi.org/10.1007/s10766-018-0619-1
https://doi.org/10.1007/978-3-030-85262-7_8
https://doi.org/10.1007/978-3-030-85262-7_11

Efficient GPU Offloading with OpenMP 85

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Shallow Water DG Simulations
on FPGAs: Design and Comparison
of a Novel Code Generation Pipeline

Christoph Alt1(B) , Tobias Kenter2 , Sara Faghih-Naini1,3 , Jennifer Faj2,
Jan-Oliver Opdenhövel2, Christian Plessl2 , Vadym Aizinger3 ,

Jan Hönig1 , and Harald Köstler1

1 Friedrich Alexander Universität, Erlangen, Germany
{christoph.alt,jan.hoenig,harald.koestler}@fau.de

2 Paderborn University, Paderborn, Germany
{kenter,jfaj,joo,plessl}@mail.uni-paderborn.de

3 University of Bayreuth, Bayreuth, Germany
{sara.faghih-naini,vadym.aizinger}@uni-bayreuth.de

Abstract. FPGAs are receiving increased attention as a promising
architecture for accelerators in HPC systems. Evolving and maturing
development tools based on high-level synthesis promise productivity
improvements for this technology. However, up to now, FPGA designs
for complex simulation workloads, like shallow water simulations based
on discontinuous Galerkin discretizations, rely to a large degree on man-
ual application-specific optimizations. In this work, we present a new
approach to port shallow water simulations to FPGAs, based on a code-
generation framework for high-level abstractions in combination with a
template-based stencil processing library that provides FPGA-specific
optimizations for a streaming execution model. The new implementa-
tion uses a structured grid representation suitable for stencil computa-
tions and is compared to an adaptation from an existing hand-optimized
FPGA dataflow design supporting unstructured meshes. While there are
many differences, for example in the numerical details and problem scal-
ability to be discussed, we demonstrate that overall both approaches can
yield meaningful results at competitive performance for the same target
FPGA, thus demonstrating a new level of maturity for FPGA-accelerated
scientific simulations.

Keywords: FPGA · Reconfigurable Computing · Shallow Water
Simulations · Code Generation · Dataflow · SYCL · OpenCL ·
Discontinuous Galerkin Method

1 Introduction

Porting applications to new hardware architectures often boils down to re-
implementing major parts of the code, especially when some of the involved
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 86–105, 2023.
https://doi.org/10.1007/978-3-031-32041-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_5&domain=pdf
http://orcid.org/0000-0001-8897-5205
http://orcid.org/0000-0002-5088-0267
http://orcid.org/0009-0009-1880-2822
http://orcid.org/0000-0001-5728-9982
http://orcid.org/0000-0002-1061-3084
http://orcid.org/0000-0002-6200-9321
http://orcid.org/0000-0002-6992-2690
https://doi.org/10.1007/978-3-031-32041-5_5

Shallow Water DG Simulations on FPGAs: Design and Comparison 87

hardware is not based on a classical von Neumann architecture. Code gen-
eration is a promising way to overcome this difficulty as it allows to specify
the application on an abstract, machine-independent level, whereas specialized
backends take over the role of generating optimized code for various hardware
architectures. FPGAs are a special target architecture that through its recon-
figurability supports direct mapping of algorithmic behavior to the hardware.
The recent generation of FPGAs provides ample resources, so FPGAs emerge
as a relevant accelerator device for computationally intensive tasks in Scientific
and High Performance Computing (HPC) – in this work represented by shallow
water simulations.

Generation of Higher-Order Discretizations Deployed as ExaSlang Specifica-
tions (GHODDESS) [5] implements an abstract specification of a quadrature-
free discontinuous Galerkin (DG) discretization of the shallow water equations
(SWE) that uses a structured grid representation and so far has been used to
generate code for CPUs and GPUs. In this work, we present a new Code Genera-
tion Pipeline (CGP) that uses GHODDESS specifications and a template-based
FPGA-specific processing library for stencils called StencilStream to generate
applications that fully run on FPGA hardware. This creates a beneficial sep-
aration of concerns, where the compiler and code generation chain performs
optimization tasks like data layout transformations and symbolic expression
simplification, whereas the FPGA-specific pipeline architecture with its cus-
tomized streaming buffers is specified by the template library that can be sepa-
rately improved over time and also be used directly from other application code.
This is a difference to many other code generation approaches, where lots of
target-specific knowledge is directly integrated into the code generation backend
and cannot be improved without updating the compilation chain. The proposed
methodology with its clear separation of application-, numerics-, algorithm-, and
hardware-specific parts can be easily adapted to a very wide range of different
numerical PDE solvers based on finite element or finite volume discretizations;
the specific code generation and optimization techniques realized in our imple-
mentation may be directly transferred to many hyperbolic solvers (e.g. Euler
equations of gas dynamics).

We compare the designs generated with this new approach to an existing
hand-optimized FPGA dataflow design supporting unstructured grids, observ-
ing very similar performance for the piecewise constant problem formulation
but also interesting differences and trade-offs. As further analysis, we present
our adaption of the roofline model suitable for FPGA hardware and our CGP
designs.

2 Background

2.1 Mathematical Model and Numerical Scheme

Using the methodology presented in [4,5,13] we consider the two-dimensional
SWE model, which describes the time evolution of the free surface elevation

88 C. Alt et al.

and flow velocity in coastal ocean described by conservation of mass (1) and
conservation of momentum (2) equations

∂tξ + ∇ · q = 0, (1)

∂tq + ∇ ·
(
qqT /H

)
+ τbfq +

(
0 −fc
fc 0

)
q + gH∇ξ = F , (2)

where ξ is the water elevation with respect to some datum (e.g., the mean sea
level). We denote by H = hb + ξ the total water depth where hb is the bathy-
metric depth (sea bed topography), and by q ≡ (U, V)T , the depth integrated
horizontal velocity vector is denoted. fc is the Coriolis coefficient, g the grav-
itational acceleration, and τbf the bottom friction coefficient. The body force
F = (Fx, Fy)T can contain gradients of atmospheric pressure and tidal poten-
tial. SWE are widely used for the simulation of tides, tsunamis, and storm surges
or, augmented with additional equations, for ecological and environmental stud-
ies.

In our work, the numerical solution of the above nonlinear partial differential
equation (PDE) system is carried out using the DG method [1,5]. Unlike clas-
sical finite elements, which only require evaluation of element integrals or finite
volume methods relying on flux computations over edges, DG schemes contain
both. However, due to the locality of DG stencils for all approximation orders,
the element integrals can be computed on each element independently, whereas
edge flux evaluations only involve two elements sharing the edge. Fluxes over
exterior (land or sea) boundaries must be handled separately using physically
relevant boundary conditions (e.g., prescribing known free surface elevation for
open sea boundaries or enforcing no normal flow at the land boundaries). [5]
introduced a new quadrature-free discretization which eliminated the innermost
loop over the quadrature points, offering thereby a better code optimization
and p-adaptivity potential. The accuracy and stability of this formulation were
shown to be comparable to those of the quadrature-based method.

2.2 Simulation Scenario: Radial Dam Break

As a test problem, we have chosen a radial dam break scenario from [4]. Such
problems serve as prototypes for flooding simulations and are often used as
benchmarks since they pose high robustness requirements for the numerical
scheme. Additionally, this test case is often used when developing and test-
ing slope limiters, as in [9]. We set Ω = [0, 5] × [0, 5], g = 1, and a constant
bathymetry hb = 0. The initial conditions are set as

ξ(x, y, t) =

{
2, (x − 2.5)2 + (y − 2.5)2 < 0.25,

1, otherwise,
U(x, y, t) = 0, V (x, y, t) = 0.

The reference results for piecewise linear polynomials (p = 1) shown in Fig. 1
(left) were obtained using GHODDESS (c.f. Sect. 3.1) on a randomly perturbed
uniform mesh with 512 triangles, whereas those displayed in Fig. 1 (middle: piece-
wise constants (p = 0), right: p = 1) used the same mesh refined twice in a uni-
form fashion, i.e., they contain 8,192 elements. Since all external boundaries use

Shallow Water DG Simulations on FPGAs: Design and Comparison 89

land boundary conditions, the wave is reflected as illustrated in Fig. 1 (bottom),
which corresponds to t = 3 s. No limiting is used in the simulations.

Fig. 1. Radial dam break: Elevation solution for t = 0.1 s (top), t = 1 s (middle), and
t = 3 s (bottom). Linear approximation (p = 1) on a grid with 512 elements (left),
constant (p = 0) (middle), and linear (p = 1) (right) approximations on a grid with
8,192 elements.

2.3 FPGAs

FPGAs are reconfigurable computing devices that are not defined by an instruc-
tion set but allow a direct mapping of algorithms to hardware similarly to the
design of an application specific integrated circuit (ASIC). In contrast to ASICs,
FPGAs can be (re-)configured repeatedly to fit different application needs. On a
circuit level, FPGAs are built as an array of logic elements and RAM blocks that
are connected with a configurable interconnect. The logic elements (denoted as
ALMs for Intel FPGAs) contain Look Up Tables (LUT) and Flip-Flops (FFs),
such that each LUT can represent every boolean function with a given number
of inputs (typically 4–6) and the FFs allow to implement sequential circuits or
to pipeline operations. The RAM blocks are used as an on-chip memory to store
intermediate data that does not fit into FFs or requires a random access pattern.
Since each RAM block provides a separate access port with single-cycle latency,
enormous aggregate bandwidths can be achieved. In practice, multiple blocks
are often combined to provide the required capacity and bit width required by
a given data structure. In addition to logic blocks and RAM blocks, modern
FPGAs typically contain Digital Signal Processing (DSP) blocks that provide
more area-efficient and lower latency arithmetic operations compared to the logic
resources. For a historic perspective on the evolution of FPGA architecture, also

90 C. Alt et al.

refer to Trimberger [21]. The DSP blocks of the Stratix 10 architecture targeted
in this work can perform entire single precision floating-point operations with-
out the use of additional logic resources. For applications like those shown in
this work, the FPGA is configured to build a computation pipeline where the
calculations are mapped (mostly) to DSPs and the data flow and the pipeline
stages are realized with the help of logic elements and RAM blocks.

The process of creating a configuration from the developer’s input is called
synthesis. After multiple steps including a time-consuming resource placement
and routing phase, a bitstream is generated that contains the configurations for
all the blocks on the device. This bitstream can be generated from a specification
in a hardware description language, like Verilog or VHDL, or via high-level
synthesis also from a higher-level programming language, like SyCL/oneAPI or
OpenCL respectively used in the two approaches in this work (see also [10]).

3 Proposed Code Generation Pipeline (CGP)

This section gives an overview of the implemented code generation pipeline by
first briefly presenting the preexisting tools used (white boxes in Fig. 2) then
describing the newly developed interface layers to integrate them (blue arrows
in Fig. 2). Previously, GHODDESS (c.f. Sect. 3.1) and pystencils (c.f. Sect. 3.2)
were only used to generate CPU and GPU code. To generate FPGA code, we
now transform the abstract formulation of the SWE discretization scheme imple-
mented in GHODDESS in such a way that it can be used as input for pystencils
to generate code for StencilStream (c.f. Sect. 3.3) with a newly implemented pys-
tencils backend. Finally we implemented a layer to automatically wrap this code
into a full application, so that it can run completely on FPGA hardware.

3.1 GHODDESS

GHODDESS 1 is a Python package that implements a quadrature-free DG
method for the SWE and generates ExaSlang Layer 4 specifications from it.
ExaSlang is the layered Domain Specific Language (DSL) for ExaStencils, a
code generation framework that transforms abstractions to an optimized C++
or CUDA code, which can be compiled further to an executable [16].

GHODDESS [4] uses SymPy to implement the quadrature-free DG-scheme
using piecewise constant (polynomial degree p = 0), linear (p = 1), quadratic
(p = 2), and cubic (p = 3) DG discretizations. A major advantage of this tech-
nique is a representation of terms that is close to a mathematical expression
and the use of basic abstractions for, e.g., basis functions just as classes repre-
senting triangles and data fields. To match the capabilities of the ExaStencils
source-to-source compiler, the discretization uses a block-structured quadrilat-
eral grid [23,24], which allows for predictable and regular memory access pat-
terns. To apply our DG method that utilizes triangular meshes, we divide each

1 https://i10git.cs.fau.de/ocean/ghoddess-release.

https://i10git.cs.fau.de/ocean/ghoddess-release

Shallow Water DG Simulations on FPGAs: Design and Comparison 91

quadrilateral into a lower and an upper triangle and call it a cell in the follow-
ing. For time integration, GHODDESS provides Runge-Kutta (RK) methods of
orders 1, 2, and 3.

3.2 pystencils

pystencils2 [2] is a Python package for generating stencil codes. It converts stencil
operations formulated as assignments with the symbolic math library SymPy [17]
to a target language such as C or CUDA. The output language is chosen along
with a specific backend for each language with C and CUDA backends available
as default options. It is possible to provide own, custom backends to add support
for other languages or dialects, which we make use of in this work to generate
the StencilStream kernel functions.

3.3 StencilStream

StencilStream3 is a C++ template library that embeds an arbitrary stencil ker-
nel function into an efficient FPGA design. This is done using Intel oneAPI, a
toolchain that implements the SyCL standard and supports writing both host
and FPGA device code in one source base.

StencilStream applications implement their stencil kernel function as an invo-
cable class and use this class as a template parameter for the executor class. The
executor encapsulates the FPGA-specific architecture, which streams the current
state of the grid from memory, applies the kernel function to it, and writes the
resulting stream back cell by cell. The stencil kernel function is inserted into this
architecture, which results in a synthesizable, application-specific FPGA design.
The part of the pipeline that applies the kernel function is called a stage and
can be replicated, depending on resource availability. Every stage in the pipeline
works independently from another, which exploits the temporal parallelism of
stencil applications.

If applications need to alternate between different stencil kernel functions
(denoted as kernels in Sect. 3.4), they can be expressed as different cases within a
single kernel function. These cases are then implemented as separate, specialized
stages. In the StencilStream repository, this is demonstrated for a finite-difference
time-domain application with two alternating kernels but so far was not applied
to an application as complex as targeted in this work.

3.4 Integration

Here we present the implemented interface layers, which are represented as the
blue arrows in Fig. 2, and describe how they interact with the individual tools
(white boxes in Fig. 2).

2 https://i10git.cs.fau.de/pycodegen/pystencils.
3 https://github.com/pc2/StencilStream.

https://i10git.cs.fau.de/pycodegen/pystencils
https://github.com/pc2/StencilStream

92 C. Alt et al.

GHODDESS
pystencils

StencilStream
InteloneAPI

FPGA

ghoddess2pystencils

pystencils backend

pystencils2program

Bitstream generation

Discretization of SWE

Stencil Generator

Stencil Library for FPGAs

Vendor Toolchain

Hardware

Fig. 2. Structure of the code generation pipeline: the boxes represent the tools used,
and the blue arrows represent the implemented interfaces. (Color figure online)

GHODDESS is the starting point of the pipeline, to which the designer pro-
vides the target grid size, the selected polynomial order p, the order of the RK
method, and the desired number of temporal pipeline replications. From this
specification, it generates an Abstract Syntax Tree (AST) that represents the
discretization of the DG scheme to solve the SWE. During a regular run of
GHODDESS, this AST is parsed and printed as ExaSlang specifications which
are used as input for the ExaStencils compiler to generate C++ source code.
Here, instead of printing this AST to an ExaSlang file, it is converted to a new
intermediate representation (IR) with an interface module that we call ghod-
dess2pystencils. In the ghoddess2pystencils phase, the data layout is transformed
from multiple scalar-valued 2D fields to a single 2D field with a complex cell type.
This is necessary because StencilStream can only modify a single grid, whereas
GHODDESS defines numerous individual fields.

As mentioned in Sect. 3.2, pystencils builds its AST from a list of SymPy
assignments. Therefore, in the ghoddess2pystencils layer, the GHODDESS dis-
cretizations are parsed, and the expressions are mapped to the corresponding
SymPy expressions and assembled to SymPy assignments. In this step, the
accesses to fields are replaced with accesses to the transformed field data struc-
ture. During this parsing process, these SymPy expressions are simplified with
SymPy ’s simplify() function. This is a crucial step to reduce the number of
operations and thus save some resources on the FPGA later on.

The specification that is generated at this point consists of multiple loops
over the domain arranged in functions. To map this to a single kernel function,
as it is needed as input for StencilStream, the loops are transformed to kernels,
and the function calls are flattened so that in the end the new AST is a list
with 33 kernels for RK1 and 66 kernels for RK2 setups. These kernels are then
mapped to StencilStream stages so that in the end it is possible to represent
the whole GHODDESS application as a single kernel function. As StencilStream
automatically decouples every stage from the previous one with row buffers to
make sure the outputs of the previous stage are valid for every position within
the stencil span, a dedicated stage for every original kernel may involve unnec-
essary resource usage for these buffers, if no direct dependency between two
stages exists. These resource costs are particularly high for an application with
many fields encoded in the cell status, like the one investigated in this work.
To overcome that issue, the possibility to merge stages is implemented into the
CGP. Since the kernels are gathered from loops, the same requirements need to

Shallow Water DG Simulations on FPGAs: Design and Comparison 93

be checked as it would be checked if these loops would be fused. Therefore, the
assignments are analyzed for dependencies, and kernels are merged whenever
there is no loop-carried dependency between them.

When the same function is invoked multiple times, as it happens with the
higher order RK methods, the same kernels and, after transformations, the
according stages are generated multiple times. In order to save resources, we
implemented a mechanism that reorders these stages such that the logic can be
reused without synthesizing them multiple times on the FPGA. Once all kernels
are arranged, pystencils is used with a custom backend to transform every kernel
into a pystencils AST. In this step, the assignments of every kernel are wrapped
into guard nodes, which ensure that every assignment is only performed on cells
that lay within the former loop bounds.

As pystencils itself is only intended as a code generation tool for stencils
applications without further control flow, some extra effort is needed to gener-
ate a whole application. This is realized in the interface module we call pysten-
cils2program. This module takes all the ASTs that were generated with pystencils
and fuses them into a single AST. Thereby, AST nodes that represent control
flow blocks like conditionals and loops are inserted, as pystencils user interface
does not originally support such. Finally, this AST that now represents a com-
plete StencilStream kernel function is printed with a modified pystencils code
printer as C++ code to a file. Further, pystencils2program generates a Makefile,
header files, scripts for synthesis and execution, and other boilerplate code.

4 Existing Dataflow Design

The existing dataflow design used as reference here was implemented manually
using OpenCL and first published in [13] in 2021. Its validation used a tidal
wave simulation on an unstructured mesh for a bay in the Bahamas region.
It uses traditional quadrature-based DG formulation in contrast to the novel
quadrature-free approach based on GHODDESS. Apart from this, the support
for unstructured meshes is a major difference to block-structured grids targeted
by the new code generation approach that impacts the design in two regards.

Firstly, it is organized with lists of elements and edges, over which it iterates
in two main kernels, correspondingly denoted as element kernel and edge kernel.
When switching between the element and edge perspectives, it has to rely on
indirect indexing, in particular, to access the two elements adjacent to an edge.
Architecturally, this makes the access pattern behave as random access. Thus,
in order to supply all inputs – including the indirectly indexed ones – with
deterministic performance to the computation pipeline, the full mesh data is
kept in on-chip RAM blocks for this design, thus limiting the design to smaller
supported mesh sizes compared to the designs instantiated by StencilStream,
which rely only on row buffers.

Secondly, given the quasi random access pattern during edge kernel, all
updates from the previous step need to be completed before the calculations
of edge integrals can begin. This enforces one synchronization point per step

94 C. Alt et al.

and prevents exploitation of temporal parallelism as used when StencilStream
instantiates multiple execution units within the same pipeline. Only between
two subsequent synchronization points, the dataflow design is able to overlap all
kernel stages, such that asymptotically n elements are processed in n+λ cycles,
where λ denotes the aggregate latency of the pipeline. Figure 3 illustrates the
execution schedule for 2,048 elements.

Fig. 3. Execution schedule of dataflow design for 2,048 elements.

In order to perform the simulations for the dam break scenario, a few adap-
tations were made for this work. Most importantly, an earlier optimization that
exploited the property of the original mesh to contain only elements with at
most one external (land or sea) edge had to be revised. This can either be done
in a way that utilizes more on-chip memory resources but preserves the full
throughput of the earlier design or by sharing local memory ports, such that the
occupancy of the pipeline gets slightly reduced. By default, we use the former
approach for the presented experiments, except for one design (denoted as arbi-
tration design), where the latter approach is required to fit within the available
resource budget. Further small changes include support for the required starting
conditions and for time steps <1 s.

5 FPGA Designs, Experiments and Evaluation

Table 1 summarizes the key differences between the two presented FPGA design
approaches along with a CPU reference that is generated via the ExaStencils
optimization infrastructure from the same GHODDESS specification as the
newly proposed FPGA CGP. The colors in the tables of this section and in Fig. 4
highlight combination of polynomial order and order of the RK-method where we
had results to compare CGP, the exsiting dataflow designs and CPU. Thereby,
encodes blue p = 0 with RK1, red p = 1 with RK1 and green p = 1 with RK2.
Table 2 summarizes the synthesis results of different design points generated
with both FPGA approaches. We see that, thanks to the underlying structured
grid representation, the designs from the code-generation pipeline support much

Shallow Water DG Simulations on FPGAs: Design and Comparison 95

Table 1. Overview of investigated designs.

FPGA dataflow FPGA CGP (Sect. 3) CPU CGP

(Sect. 4)

mesh unstructured structured quadrature-free

DG formulation normal quadrature

tool flow

GHODDESS GHODDESS

pystencils exastencils

OpenCL StencilStream

Intel OpenCL SDK Intel oneAPI GNU GCC 9.4

target platform Stratix 10 GX2800 Stratix 10 GX2800 Xeon Gold 6148

base architecture 1 triangle per cycle 1 rectangle stencil = vectorization with

2 triangles per cycle intrinsics

on-chip buffers full mesh buffer row buffers cache blocking

replication – temporal replication –

mesh size upper limit fixed at fixed at compile time

compile time

time step size runtime parameter fixed at compile time

larger meshes, because they use on-chip RAM resources only for row buffers,
in contrast the dataflow designs that keep the full mesh on-chip. When looking
further at resources of comparable designs of both approaches, e.g. for p = 0 and
p = 1, with RK1 and 2,048 elements and for the CGP with a single temporal
replication, we need to first keep in mind that each step in the CGP processes
two elements in contrast to one element in the dataflow approach. Considering
this, we see that with regard to DSP usage, the CGP is more resource efficient,
partially due to differences in the problem formulation (quadrature free), but
mostly due to the combination of expression simplification in SymPy and auto-
matic optimizations in the oneAPI phase, that lead to improved reuse of partial
results. The logic (ALM) usage on the other hand is higher, partially because the
complete cell data is moved through registers in every sub-stage of the stencil.
The CGP allows for the automatic generation of temporally unrolled designs,
which scales up to 8 temporal replications before being limited by logic resources.
In contrast, the dataflow approach does not support this form of replication due
to its synchronization point required by the unstructured mesh. Thus, lots of
compute resources remain unused and only contribute in the p = 1 cases, where
in turn the CGP is also limited to a single temporal replication and the efficiency
gains of automatic optimizations seem to vanish.

Table 3 shows the performance measured with these generated designs. First
looking at the time per RK-step, which is the metric that characterizes perfor-
mance at the application level, for p = 0 with the CGP designs with the highest
temporal parallelism, we see that both FPGA approaches reach a similar per-
formance with around 7 µs per timestep for 2,048 elements and 22–26 µs for

96 C. Alt et al.

Table 2. Resource usage and clock frequency for FPGA designs on Intel Stratix
10 GX 2800. Replicates is the number of temporal replications of the CGP designs
(c.f. Sect. 3.3). Numbers in parenthesis relative to resources available for kernels on
Bittware 520N cards with OpenCL BSP 20.4.0. For code generation based designs
ALM: 705,500, RAM: 9,094 DSP: 4,713 using an area optimized hpc BSP; for dataflow
designs ALM: 698,450, RAM: 8,953 DSP: 4,713 using the default max BSP; (*arbitra-
tion design variant).

p integrator elements replicates ALM RAM DSP MHz

New FPGA CGP

0 RK1 2,048 1 219,553 (31%) 1,097 (12%) 278 (6%) 423.33

8 537,691 (76%) 4,304 (47%) 2,199 (47%) 262.50

8,192 1 222,056 (31%) 1,097 (12%) 278 (6%) 423.33

8 538,136 (76%) 4,304 (47%) 2,199 (47%) 235.42

32,768 1 221,683 (31%) 1,097 (12%) 278 (6%) 404.17

8 537,115 (76%) 4,306 (47%) 2,199 (47%) 253.33

131,072 1 221,177 (31%) 1,295 (14%) 278 (6%) 413.33

8 537,827 (76%) 5,885 (65%) 2,199 (47%) 248.00

524,288 1 221,687 (31%) 1,686 (19%) 278 (6%) 380.00

8 536,521 (76%) 9,018 (99%) 2,199 (47%) 248.00

1 RK1 2,048 1 362,643 (51%) 2,257 (25%) 1,784 (38%) 295.83

8,192 1 362,577 (51%) 2,257 (25%) 1,784 (38%) 302.50

32,768 1 365,740 (52%) 2,257 (25%) 1,784 (38%) 316.67

131,072 1 363,758 (52%) 2,766 (30%) 1,784 (38%) 297.50

524,288 1 363,231 (51%) 3,794 (42%) 1,784 (38%) 262.00

RK2 2,048 1 459,893 (65%) 3,388 (37%) 1,820 (39%) 222.22

8,192 1 460,654 (65%) 3,388 (37%) 1,820 (39%) 270.83

32,768 1 458,778 (65%) 3,388 (37%) 1,820 (39%) 183.33

131,072 1 459,358 (65%) 4,427 (49%) 1,820 (39%) 180.56

Existing FPGA dataflow approach

0 RK1 2,048 1 95,970 (14%) 2,270 (25%) 455 (10%) 358.33

8,192 1 105,300 (15%) 5,034 (56%) 455 (10%) 342.50

1 RK1 2,048 1 143,077 (20%) 3,716 (42%) 1,171 (25%) 340.00

8,192 1 159,529 (23%) 8,604 (96%) 1,171 (25%) 308.33

RK2 2,048 1 148,954 (21%) 3,843 (43%) 1,200 (25%) 320.00

*8,192 1 171,980 (25%) 8,155 (91%) 1,200 (25%) 272.50

8,192 elements. CGP achieves this performance while performing only around
half of the GFLOP/s (and total Floating-Point Operations (FLOP), not shown
in Table 3). This is achieved by optimizations like SymPy simplify, which can
also include shared expressions over two elements within the same stencil, and by
differences in the original problem formulation (in particular quadrature-free).

Shallow Water DG Simulations on FPGAs: Design and Comparison 97

Table 3. Performance of FPGA designs. Times per RK-step correspond to a full time
step at p = 0. Cycles per update designate cell updates for CGP, element updates
for dataflow. FLOP count for GFLOP/s calculation based on report parsing for CGP,
manual counts for dataflow. *Arbitration design variant.

p integrator elements replicates time/RK-step
[μs]

time/update
[cycles]

Perf
[GFLOP/s]

Power
[W]

New FPGA CGP

0 RK1 2,048 1 58.94 24.37 5.19 72.30

8 7.02 1.80 43.60 82.65

8,192 1 81.24 8.40 15.07 73.37

8 21.97 1.26 55.75 84.92

32,768 1 271.06 6.69 18.07 77.56

8 61.31 0.95 79.91 90.90

131,072 1 945.15 5.96 20.73 82.70

8 216.74 0.82 90.41 93.69

524,288 1 4,065.92 5.89 19.28 79.43

8 820.59 0.78 95.52 94.13

1 RK1 2,048 1 68.30 19.73 36.30 81.81

8,192 1 218.75 16.16 45.33 80.99

32,768 1 584.51 11.30 67.86 84.05

131,072 1 2,200.36 9.99 72.11 86.72

524,288 1 9,567.62 9.56 66.33 86.61

RK2 2,048 1 296.14 64.27 8.54 78.21

8,192 1 715.20 47.29 14.15 81.46

32,768 1 2,946.64 32.97 13.73 77.30

131,072 1 10,427.00 28.73 15.52 76.99

Existing FPGA dataflow approach

0 RK1 2,048 1 7.63 1.33 110.66 75.15

8,192 1 26.37 1.10 128.01 78.32

1 RK1 2,048 1 8.08 1.34 386.67 78.39

8,192 1 29.35 1.10 425.70 82.21

RK2 2,048 1 8.57 1.34 364.49 78.21

*8,192 1 33.17 1.10 376.59 80.83

Next in Table 3, we look at the clock cycles used per basic update (cell update
for the CGP design, element update for the dataflow design). For a fully occu-
pied pipeline, this should ideally be 1, or 1

s for s temporal replications of the
CGP design. We see that the dataflow design is relatively close to this value,
with the differences caused by the pipeline latency between two subsequent syn-
chronization points, whereas the CGP designs are farther away, partially due
to off-chip bandwidth limitations, partially due to a higher pipeline latency. For

98 C. Alt et al.

larger mesh sizes, this overhead becomes smaller, partially due to reduced impact
of the fixed one-time pipeline latency. For the mesh with 131,072 elements, which
is beyond the capacity of the dataflow design, the CGP design almost doubles
its performance compared to 2,048 elements.

Now looking at p = 1 in Table 3, we see that the dataflow designs clearly
outperform the CGP designs for corresponding sizes, both in terms of time per
RK-step and in GFLOP/s. This is due to the fact that the dataflow designs
are not bandwidth limited due to their complete on-chip buffers, whereas the
bandwidth limitation of the CGP designs aggravates with more data required
per cell, materializing in large deviations from the ideally 1 cycle per cell update
also for larger meshes. In contrast to the p = 0 case, these can no longer be
compensated with temporal data reuse due to resource limitations. Neverthe-
less, within the CGP designs for RK1, the throughput in terms of GFLOP/s is
similar between p = 0 and p = 1, since more operations are performed per cell
update. The dataflow design almost retains its only latency limited ratio of 1.1–
1.3 cycles per element update for p = 1 and improves its arithmetic throughput
to almost 400 GFLOP/s. On the other hand, only the CGP designs scale to
524,288 or 131,072 supported elements (RK1 and RK2 respectively) and also
display improved efficiency and throughput with increasing problem sizes.

5.1 Performance of the CPU Reference and Validation

To measure the performance of the CPU reference version, we used the appli-
cations generated by GHODDESS and ExaStencils, which are optimized with
cache blocking and vectorization with intrinsics, and compiled them with the
GCC 9.4 compiler. The benchmarks were conducted on a Intel Xeon Skylake
Gold 6148 CPU, where the frequency was fixed to 2.2 GHz. Every setup was
executed with 1, 10, 20, and 40 OpenMP (OMP) threads. Every for loop within
in GHODDESS was thereby parallelized with the OMP pragma schedule(static).
Table 4 shows for every setup and number of threads the results for the combina-
tion with the lowest execution time. For the smallest grids with 2,048 elements,
the execution time actually very similar for all thread counts. The runtime was
measured by the application itself and any further metrics were gathered with
the likwid-perfctr [8] tool.

Table 4 summarizes the measurements of the CPU reference for the presented
scenarios and Fig. 4 visualizes them in terms of time/RK-step compared to the
FPGA designs. The results show that despite their bandwidth limitations, the
FPGA CGP designs are competitive to this highly optimized CPU reference over
a large range of experiments, with advantages for p = 0 and for smaller grids,
but with performance challenges in the RK2 case. For the mesh sizes that are
supported by the buffer architecture of the FPGA dataflow design, this takes a
clear lead over the other approaches for p = 1.

As validation, we show the difference for the free surface elevation ξfpga−ξcpu
in Fig. 5. With at most 10−6, the differences are within the expected numerical
differences for the single precision floating point format used.

Shallow Water DG Simulations on FPGAs: Design and Comparison 99

Table 4. Performance results for the CPU reference on a Intel Xeon Skylake Gold 6148
CPU. Fastest configuration out of 1, 10, 20, and 40 OpenMP threads reported. Cycles
relative to base clock of 2.2 GHz.

p integrator elements threads time/RK-step
[us]

cycles/cell update
[cycles]

Perf
[GFLOP/s]

Power
[W]

0 RK1 2,048 20 50.81 109.16 11.91 37.95

8,192 10 95.89 51.51 25.04 60.10

32,768 10 159.64 21.44 59.95 60.13

131,072 20 286.58 9.62 133.32 89.58

524,288 20 1,163.68 9.77 131.22 138.82

1 RK1 2,048 20 385.63 828.50 9.15 36.07

8,192 10 344.11 184.82 40.73 59.60

32,768 40 555.06 74.53 100.67 89.05

131,072 40 1,628.60 54.67 137.03 96.46

524,288 40 8,791.08 73.78 101.47 105.25

RK2 2,048 10 390.35 838.65 9.09 35.95

8,192 10 364.08 195.55 38.70 59.14

32,768 40 562.10 75.48 99.94 88.80

131,072 40 1,788.94 60.05 125.41 96.32

524,288 40 10,093.75 84.71 88.93 108.19

2,048 8,192 32,768 131,072 524,288

101

102

103

104

#Elements

ti
m
e/
R
K
-s
te
p
[µ
s]

CPU: p=0 RK1 FPGA CGP: p=0 RK1 FPGA dataflow: p=0 RK1
CPU: p=1 RK1 FPGA CGP: p=1 RK1 FPGA dataflow: p=1 RK1
CPU: p=1 RK2 FPGA CGP: p=1 RK2 FPGA dataflow: p=1 RK2

Fig. 4. Double-log line plot of time/RK-step for all designs. The color encodes the
setup blue for p = 0, RK1, red for p= 1, RK1, and green for p= 1, RK2. The lighter
colors mark the highlighted numbers from the Table 4 and Table 3. (Color figure online)

100 C. Alt et al.

Fig. 5. Radial dam break solution: ξfpga − ξcpu difference plots at t = 0.1 s (top), t =
1 s (middle) and t = 3 s (bottom).

6 Analysis

The roofline model [22] in its original formulation assumes that the performance
of an application is either limited by the peak performance of the execution
units (Ppeak) or the bandwidth between data-path and off-chip memory and
gives an intuitive visualization which of them is the bottleneck. The application
is characterized by its Operational Intensity (OI), which quantifies the work done
per transferred byte, and by its actual performance. In this section, we apply the
roofline analysis to the CGP approach, leaving out the dataflow designs, since
for those, meaningful bandwidth and OI values could only be formulated with
regard to on-chip memory.

To calculate Ppeak for FPGAs, Siracusa et al. [20] have introduced a formu-
lation that takes into account the application-specific configurability of FPGAs.
It is based on the hardware operators of an idealized implementation scaled to
the available hardware resources and assumes that every operator can produce a
useful value within every clock cycle. To model the Ppeak for StencilStream appli-
cations, we adapted this procedure. As the base, we use the number of FLOP
that are performed within a single call of the kernel function (oflop), obtained
from the report generated from the oneAPI toolchain.

Shallow Water DG Simulations on FPGAs: Design and Comparison 101

As described in Sect. 3.3 and shown in Sect. 5, it is possible to increase
the performance of kernel functions with low resource usage by replicating the
required stages as multiple temporal replications. To take this into account, we
introduce the replication factor RF , which predicts how many temporal repli-
cations can be synthesized on the device and is similar to the Scalabilty as it
was proposed by da Silva et al. in [19]. It is obtained by dividing the number
of resources that are available for kernels (avr) by the number of resources that
are occupied by the logic for the kernel function (kfr) of every resource type
r ∈ R = {DSP,RAM,ALM} (c.f. Eq 3). As a design can only be replicated
completely, this factor is rounded to the next lower integer. These numbers can
be obtained from the synthesis report, as it lists the resource usage for each
function. Similar to the ideal hardware implementation in [20], we assume that
at peak performance the hardware can perform RF -times invocations of the ker-
nel function in a clock cycle. Our formula for Ppeak is shown in Eq. 4 where f
denotes the frequency of the device.

RF = �min
r∈R

avr
kfr

� (3) Ppeak = oflop × RF × f (4)
To model the maximum bandwidth from the off-chip memory, we used the

bitwidths of the memory interface that is used for reading and for writing, and
multiplied it by f .

To quantify the amount of work that is done in a kernel function, we use
oflop with a single temporal replication and scale this with the number of actual
temporal replications. For every invocation of a StencilStream kernel function,
the transferred data has the size of two grid cells since one is read and the other
one is written back. Consequently the OI for CGP designs is:

OI =
oflop × stages

sizeof(celltype) × 2
(5)

The code generation pipeline maps the whole solve phase from the original
CPU formulation to the kernel function, which is then used to generate an FPGA
design. Therefore, this kernel function also contains boundary handling and not
only the hotspot loops of the application. So the presented model has the same
- coarse - granularity.

Figure 6 shows this model applied to the designs generated with the new
CGP approach. As a target frequency for the used Intel Stratix 10 GX 2800 we
assumed 432 MHz, which is the target frequency shown in all reports for these
designs. We assumed the maximum bandwidth as the maximum throughput
for reading and writing as BW = 64 Byte × 432 Mhz × 2 = 55.30 GB/s for
the data path from the off-chip memory. Ppeak and OI are calculated as shown
in the previous part of this section and Pmax = min{Ppeak, OI × BW}. For
the designs for p = 0 and RK1, performing a single RK step needs 299 FLOP
and, as shown in Table 2, the limiting resource is the ALMs. A single instance
of the kernel function uses around 6.5% of the available ALM, which yields
RF = 11 and Ppeak = 299FLOP × 11× 432 MHz = 1.421 TFloating-Point
Operations per second (FLOP/s). The cell size for this setup is 47 floats, leading
to OI = 299

47×4×2 = 0.795 for one temporal replication and 6.36 for eight temporal

102 C. Alt et al.

replications. For the configurations with p = 1, the FLOP per RK step are 2421
(RK1) and 2470 (RK2) and for both the RF = 2, the cell size is 123 for RK1 and
141 for RK2, consequently the OIs (2.46 and 2.19 FLOP/Byte) and Ppeak values
(2.092 and 2.134 TFLOP/s) are relatively close. Consequently, on the x-axis
of Fig. 6, the designs for p = 1 fall in between the designs with one replication
for p = 0 and those with eight replications. Although using more temporal
replications leads to increased performance, it shows that the difference between
Pmax and the actual performance is higher with eight temporal replications. This
can be explained by lower clock frequency for these designs (c.f. Table 2). It also
shows for all setups, that grids with fewer elements are further away from Pmax.
This can be explained by the overhead that it takes to fill the pipeline, which
becomes less dominating for larger grids. Furthermore, Fig. 6 shows, that every
configuration is below the memory-roofline and left of the ridge point (denoted
as RP in the plot). Consequently, further optimizations which either increase the
maximum bandwidth or reduce the transferred data would be most beneficial.

Fig. 6. Roofline plot for all the presented setups. RP is the OI at the point where
Ppeak = OI × MAX BW . N× means the number of temporal replications.

7 Related Work

Other work that shows the use of FPGAs to run shallow water simulations is
presented in [15], in [14] and in [18]. All are used for tsunami simulations, using
a splitting approach for the SWE and are manually implemented without code
generation and do not use a DG discretization. All of them also use tempo-
ral pipeline stages, with [18] additionally analyzing spatially parallel pipelines.
Architecturally similar FPGA designs [11,25] have also been presented for other
stencil applications, whereas an earlier FPGA design [12] with DG discretization
on unstructured meshes relied on higher polynomial orders (order 3–6) relied on

Shallow Water DG Simulations on FPGAs: Design and Comparison 103

the high operational intensity of these orders to achieve good overall perfor-
mance.

Using code generation to increase the productivity of FPGA programming
has also been part of other research beyond the SWE domain. One example
is the SODA framework [3], which generates stencil codes for FPGAs that are
optimized for computation reuse, but in contrast to our CGP is not a full stack
code generation pipeline. A code generation pipeline for FPGAs was presented
in [7], which uses its own high-level stencil description language and implements
various FPGA specific code optimizations. Compared to our work, where the
FPGA architecture template is provided by StencilStream, both [3,7] encode
more of the target-specific knowledge in optimization stages.

8 Conclusion and Outlook

In this work, we have presented a new Code Generation Pipeline for shallow
water simulations on FPGAs and compared it to an existing, manually optimized
FPGA dataflow design approach. Despite many differences, in tooling, mesh
representation, quadrature rules, and parallelism, we find that both approaches
are able to effectively simulate the presented scenario and achieve performance
on par and better than a highly optimized CPU reference. Given the challenging
application domain, this result represents a new level of maturity of FPGA design
flows that so far were a limiting factor to FPGA adoption in HPC.

Both FPGA approaches have the potential for further optimizations that may
enable them to clearly outperform the CPU reference in more scenarios. For the
CGP, there is potential to implement further code transformations. In particular,
the size of the grid cells can be reduced by storing elements from constant fields
in global memory. Also within the library scope, there is optimization potential
regarding the global memory interface of StencilStream. As StencilStream was
originally developed to target simple stencils with not more than 512 bits of cell
data, it does not fully exploit the four DDR3 memory channels present at the
target FPGA board, let alone the bandwidth potential of newer FPGAs with
HBM2. When switching to a block-structured grid representation, the manual
FPGA dataflow design could also be adapted to a streaming design using DDR or
HBM memory to support larger problem sizes – and use temporal parallelism to
use more computational resources, particularly for the piecewise constant p = 0
designs. In an alternative direction towards support of larger meshes, we have
recently made progress with a spatially distributed multi-FPGA design [6] that
could be scaled up further after overcoming topology limitations.

Acknowledgments. The authors gratefully acknowledge the funding of this project
by computing time provided by the Paderborn Center for Parallel Computing (PC2).
The authors gratefully acknowledge the scientific support and HPC resources provided
by the Erlangen National High Performance Computing Center (NHR@FAU) of the
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The hardware is funded
by the German Research Foundation (DFG). The work in this paper was supported in

104 C. Alt et al.

part by the DFG through grant AI 117/6-1 ‘Performance optimized software strategies
for unstructured-mesh applications in ocean modeling’.

References

1. Aizinger, V., Dawson, C.: A discontinuous Galerkin method for two-dimensional
flow and transport in shallow water. Adv. Water Resour. 25(1), 67–84 (2002).
https://doi.org/10.1016/S0309-1708(01)00019-7

2. Bauer, M., et al.: Code generation for massively parallel phase-field simulations.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2019), pp. 1–32. Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3295500.3356186

3. Chi, Y., Cong, J.: Exploiting computation reuse for stencil accelerators. In: 2020
57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, San Fran-
cisco, CA, USA (2020). https://doi.org/10.1109/DAC18072.2020.9218680

4. Faghih-Naini, S., Aizinger, V.: p-adaptive discontinuous Galerkin method for the
shallow water equations with a parameter-free error indicator. Int. J. Geomath.
13(1), 18 (2022). https://doi.org/10.1007/s13137-022-00208-3

5. Faghih-Naini, S., Kuckuk, S., Aizinger, V., Zint, D., et al.: Quadrature-free dis-
continuous Galerkin method with code generation features for shallow water equa-
tions on automatically generated block-structured meshes. Adv. Water Resour.
138, 103552 (2020). https://doi.org/10.1016/j.advwatres.2020.103552

6. Faj, J., Plessl, C., Kenter, T., Faghih-Naini, S., Aizinger, V.: Scalable multi-FPGA
design of a discontinuous Galerkin shallow-water model on unstructured meshes.
In: Proceedings of the Platform for Advanced Scientific Computing Conference
(PASC) (2023, to appear)

7. de Fine Licht, J., Kuster, A., De Matteis, T., Ben-Nun, T., et al.: Stencilflow:
mapping large stencil programs to distributed spatial computing systems. In:
2021 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), pp. 315–326. IEEE (2021). https://doi.org/10.1109/CGO51591.2021.
9370315

8. Gruber, T., Eitzinger, J., Hager, G., Wellein, G.: LIKWID. Zenodo (2022). https://
doi.org/10.5281/ZENODO.7432487

9. Hajduk, H., Kuzmin, D., Aizinger, V.: New directional vector limiters for discon-
tinuous Galerkin methods. J. Comput. Phys. 384, 308–325 (2019). https://doi.
org/10.1016/j.jcp.2019.01.032

10. Kenter, T.: Invited tutorial: OpenCL design flows for Intel and Xilinx FPGAs:
using common design patterns and dealing with vendor-specific differences. In:
Proc. Int. Workshop on FPGAs for Software Programmers (FSP), collocated with
Int. Conf. on Field Programmable Logic and Applications (FPL) (2019)

11. Kenter, T., Förstner, J., Plessl, C.: Flexible FPGA design for FDTD using
OpenCL. In: Proc. Int. Conf. on Field Programmable Logic and Applications
(FPL), pp. 1–7. IEEE (2017). https://doi.org/10.23919/FPL.2017.8056844

12. Kenter, T., et al.: OpenCL-based FPGA design to accelerate the nodal discontin-
uous Galerkin method for unstructured meshes. In: Proc. IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pp. 189–196. IEEE (2018).
https://doi.org/10.1109/FCCM.2018.00037

13. Kenter, T., Shambhu, A., Faghih-Naini, S., Aizinger, V.: Algorithm-hardware co-
design of a discontinuous Galerkin shallow-water model for a dataflow architecture

https://doi.org/10.1016/S0309-1708(01)00019-7
https://doi.org/10.1145/3295500.3356186
https://doi.org/10.1109/DAC18072.2020.9218680
https://doi.org/10.1007/s13137-022-00208-3
https://doi.org/10.1016/j.advwatres.2020.103552
https://doi.org/10.1109/CGO51591.2021.9370315
https://doi.org/10.1109/CGO51591.2021.9370315
https://doi.org/10.5281/ZENODO.7432487
https://doi.org/10.5281/ZENODO.7432487
https://doi.org/10.1016/j.jcp.2019.01.032
https://doi.org/10.1016/j.jcp.2019.01.032
https://doi.org/10.23919/FPL.2017.8056844
https://doi.org/10.1109/FCCM.2018.00037

Shallow Water DG Simulations on FPGAs: Design and Comparison 105

on FPGA. In: Proceedings of the Platform for Advanced Scientific Computing
Conference, pp. 1–11. ACM, Geneva, Switzerland (2021). https://doi.org/10.1145/
3468267.3470617

14. Kono, F., Nakasato, N., Hayashi, K., Vazhenin, A., Sedukhin, S.: Evaluations of
OpenCL-written tsunami simulation on FPGA and comparison with GPU imple-
mentation. J. Supercomput. 74(6), 2747–2775 (2018). https://doi.org/10.1007/
s11227-018-2315-8

15. Lavrentiev, M., Lysakov, K., Marchuk, A., Oblaukhov, K., et al.: Algorithmic
design of an FPGA-based calculator for fast evaluation of tsunami wave danger.
Algorithms 14(12), 343 (2021). https://doi.org/10.3390/a14120343

16. Lengauer, C., et al.: ExaStencils: advanced multigrid solver generation. In: Bun-
gartz, H.-J., Reiz, S., Uekermann, B., Neumann, P., Nagel, W.E. (eds.) Software
for Exascale Computing - SPPEXA 2016-2019. LNCSE, vol. 136, pp. 405–452.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47956-5 14

17. Meurer, A., Smith, C.P., Paprocki, M., Čert́ık, O., et al.: SymPy: symbolic comput-
ing in python. PeerJ Comput. Sci. 3, e103 (2017). https://doi.org/10.7717/peerj-
cs.103

18. Nagasu, K., Sano, K., Kono, F., Nakasato, N.: FPGA-based tsunami simulation:
Performance comparison with GPUs, and roofline model for scalability analysis.
J. Parallel Distrib. Comput. 106, 153–169 (2017). https://doi.org/10.1016/j.jpdc.
2016.12.015

19. Silva, B., Braeken, A., Touhafi, A., D’Hollander, E.: Performance modeling for
FPGAs: extending the roofline model with high-level synthesis tools. Int. J. Recon-
figurable Comput. 2013, 7 (2013). https://doi.org/10.1155/2013/428078

20. Siracusa, M., Del Sozzo, E., Rabozzi, M., Di Tucci, L., et al.: A comprehensive
methodology to optimize FPGA designs via the roofline model. IEEE Trans. Com-
put. 71(8), 1903–1915 (2022). https://doi.org/10.1109/TC.2021.3111761

21. Trimberger, S.M.S.: Three ages of FPGAs: a retrospective on the first thirty years
of FPGA technology: this paper reflects on how Moore’s law has driven the design
of FPGAs through three epochs: the age of invention, the age of expansion, and the
age of accumulation. IEEE Solid-State Circuits Mag. 10(2), 16–29 (2018). https://
doi.org/10.1109/MSSC.2018.2822862

22. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

23. Zint, D., Grosso, R., Aizinger, V., Faghih-Naini, S., et al.: Automatic generation of
load-balancing-aware block-structured grids for complex ocean domains. In: 30th
International Meshing Roundtable (SIAM IMR 2022). Zenodo (2022). https://doi.
org/10.5281/zenodo.6562440

24. Zint, D., Grosso, R., Aizinger, V., Köstler, H.: Generation of block structured grids
on complex domains for high performance simulation. Comput. Math. Math. Phys.
59(12), 2108–2123 (2019). https://doi.org/10.1134/S0965542519120182

25. Zohouri, H.R., Podobas, A., Matsuoka, S.: Combined spatial and temporal blocking
for high-performance stencil computation on FPGAs using OpenCL. In: Proc. Int.
Symp. on Field-Programmable Gate Arrays (FPGA 2018), pp. 153–162. ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3174243.3174248

https://doi.org/10.1145/3468267.3470617
https://doi.org/10.1145/3468267.3470617
https://doi.org/10.1007/s11227-018-2315-8
https://doi.org/10.1007/s11227-018-2315-8
https://doi.org/10.3390/a14120343
https://doi.org/10.1007/978-3-030-47956-5_14
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1016/j.jpdc.2016.12.015
https://doi.org/10.1016/j.jpdc.2016.12.015
https://doi.org/10.1155/2013/428078
https://doi.org/10.1109/TC.2021.3111761
https://doi.org/10.1109/MSSC.2018.2822862
https://doi.org/10.1109/MSSC.2018.2822862
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.5281/zenodo.6562440
https://doi.org/10.5281/zenodo.6562440
https://doi.org/10.1134/S0965542519120182
https://doi.org/10.1145/3174243.3174248

Massively Parallel Genetic Optimization
Through Asynchronous Propagation

of Populations

Oskar Taubert(B) , Marie Weiel , Daniel Coquelin , Anis Farshian ,
Charlotte Debus , Alexander Schug , Achim Streit , and Markus Götz

Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT),
76344 Eggenstein-Leopoldshafen, Germany
{oskar.taubert,markus.goetz}@kit.edu

Abstract. We present Propulate, an evolutionary optimization algo-
rithm and software package for global optimization and in particular
hyperparameter search. For efficient use of HPC resources, Propulate
omits the synchronization after each generation as done in conventional
genetic algorithms. Instead, it steers the search with the complete pop-
ulation present at time of breeding new individuals. We provide an
MPI-based implementation of our algorithm, which features variants
of selection, mutation, crossover, and migration and is easy to extend
with custom functionality. We compare Propulate to the established opti-
mization tool Optuna. We find that Propulate is up to three orders of
magnitude faster without sacrificing solution accuracy, demonstrating
the efficiency and efficacy of our lazy synchronization approach. Code
and documentation are available at https://github.com/Helmholtz-
AI-Energy/propulate/.

Keywords: Genetic Optimization · AI · Parallelization · Evolutionary
Algorithm

1 Introduction

Machine learning (ML) algorithms are heavily used in almost every area of
human life today, from medical diagnosis and critical infrastructure to trans-
portation and food production. Almost all ML algorithms have non-learnable
hyperparameters (HPs) that influence the training and in particular their pre-
dictive capacity. As evaluating a set of HPs involves at least a partial train-
ing, state-free approaches to HP optimization (HPO), like grid and random
search, often go beyond available compute resources [15]. To explore the high-
dimensional HP spaces efficiently, information from previous evaluations must
be leveraged to guide the search. Such state-dependent strategies minimize the
number of evaluations to find a useful model, reducing search times and thus the
energy consumption of the computation. Bayesian and bio-inspired optimizers
are the most popular of these AutoML approaches. Among the latter, genetic

c© The Author(s) 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 106–124, 2023.
https://doi.org/10.1007/978-3-031-32041-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_6&domain=pdf
http://orcid.org/0000-0002-3707-499X
http://orcid.org/0000-0001-9648-4385
http://orcid.org/0000-0001-8552-5153
http://orcid.org/0000-0002-9888-0653
http://orcid.org/0000-0002-7156-2022
http://orcid.org/0000-0002-0534-502X
http://orcid.org/0000-0002-5065-469X
http://orcid.org/0000-0002-2233-1041
https://github.com/Helmholtz-AI-Energy/propulate/
https://github.com/Helmholtz-AI-Energy/propulate/
https://doi.org/10.1007/978-3-031-32041-5_6

Propulate 107

algorithms (GAs) are versatile metaheuristics inspired by natural evolution. To
solve a search-for-solutions problem, a population of candidate solutions (or indi-
viduals) is evolved in an iterative interplay of selection and variation [23,30].
Although reaching the global optimum is not guaranteed, GAs often find near-
optimal solutions with less computational effort than classical optimizers [8,9].
They have become popular for various optimization problems, including HPO
for ML and neural architecture search (NAS) [14].

To take full advantage of the increasingly bigger models and datasets, design-
ing scalable algorithms for high performance computing (HPC) has become a
must [40]. While Bayesian optimization is inherently serial, the structure of GAs
renders them suitable for parallelization [34]: Since all candidates in each itera-
tion are independent, they can be evaluated in parallel. To breed the next gen-
eration, however, the previous one has to be completed. As the computational
expenses for evaluating different candidates vary, synchronizing the parallel evo-
lutionary process affects the scalability by introducing a substantial bottleneck.
Approaches to reducing the overall communication in parallel GAs like the island
model (IM) [34] do not address the underlying synchronization problem.

To solve the issues arising from explicit synchronization, we introduce Pro-
pulate, a massively parallel genetic optimizer with asynchronous propagation of
populations and migration. Unlike classical GAs, Propulate maintains a contin-
uous population of already evaluated individuals with a softened notion of the
typically strictly separated, discrete generations. Our contributions include:

– A novel parallel genetic algorithm based on a fully asynchronous island model
with independently processing workers, allowing to parallelize the optimiza-
tion process and distribute the internal evaluation of the objective function.

– Massive parallelism by asynchronous propagation of continuous populations
and migration.

– A prototypical implementation in Python using extremely efficient commu-
nication via the message passing interface (MPI).

– Optimal use of parallel hardware by minimizing idle times in HPC systems.

We use Propulate to optimize various benchmark functions and the HPs of a deep
neural network on a supercomputer. Comparing our results to those of the popu-
lar HPO package Optuna, we find that Propulate is consistently drastically faster
without sacrificing solution accuracy. We further show that Propulate scales well
to at least 100 processing elements (PEs) without relevant loss of efficiency,
demonstrating the efficacy of our asynchronous evolutionary approach.

2 Related Work

Recent progress in ML has triggered heavy use of these techniques with
Python as the de facto standard programming language. Tuning HPs requires
solving high-dimensional optimization problems with ML algorithms as black
boxes and model performance metrics as objective functions (OFs). Most com-
mon are Bayesian optimizers (e.g. Optuna [2], Hyperopt [7], SMAC3 [24,27],
Spearmint [32], GPyOpt [5], and MOE [38]) and bio-inspired methods such as

108 O. Taubert et al.

swarm-based (e.g. FLAPS [39]) and evolutionary (e.g. DEAP [16], MENNDL [40]) algo-
rithms. Below, we provide an overview of popular HP optimizers in Python, with
a focus on state-dependent parallel algorithms and implementations. A theoret-
ical overview of parallel GAs can be found in surveys [3,4,12] and books [29,37].

Optuna adopts various algorithms for HP sampling and pruning of unpromis-
ing trials, including tree-structured Parzen estimators (TPEs), Gaussian pro-
cesses, and covariance matrix adaption evolution strategy. It enables parallel
runs via a relational database server. In the parallel case, an Optuna candidate
obtains information about previous candidates from and stores results to disk.

SMAC3 (Sequential Model-based Algorithm Configuration) combines a
random-forest based Bayesian approach with an aggressive racing mecha-
nism [24]. Its parallel variant pSMAC uses multiple collaborating SMAC3 runs which
share their evaluations through the file system.

Spearmint, GPyOpt, and MOE are Gaussian-process based Bayesian optimiz-
ers. Spearmint enables distributed HPO via Sun Grid Engine and MongoDB.
GPyOpt is integrated into the Sherpa package [22], which provides implementa-
tions of recent HP optimizers along with the infrastructure to run them in par-
allel via a grid engine and a database server. MOE (Metric Optimization Engine)
uses a one-step Bayes-optimal algorithm to maximize the multi-points expected
improvement in a parallel setting [38]. Using a REST-based client-server model,
it enables multi-level parallelism by distributing each evaluation and running
multiple evaluations at a time.

Nevergrad [31] and Autotune [25] provide gradient-free and evolution-
ary optimizers, including Bayesian, particle swarm, and one-shot optimization.
In Nevergrad, parallel evaluations use several workers via an executor from
Python’s concurrent module. Autotune enables concurrent global and local
searches, cross-method sharing of evaluations, method hybridization, and multi-
level parallelism. Open Source Vizier [33] is a Python interface for Google’s
HPO service Vizier. It implements Gaussian process bandits [19] and enables
dynamic optimizer switching. A central database server does the algorithmic
proposal work, clients perform evaluations and communicate with the server
via remote procedure calls. Katib [18] is a cloud-native AutoML project based
on the Kubernetes container orchestration system. It integrates with Optuna
and Hyperopt. Tune [26] is built on the Ray distributed computing platform.
It interfaces with Optuna, Hyperopt, and Nevergrad and leverages multi-level
parallelism.

DEAP (Distributed Evolutionary Algorithms in Python) [16] implements gen-
eral GAs, evolution strategies, multi-objective optimization, and co-evolution of
multi-populations. It enables parallelization via Python’s multiprocessing or
SCOOP module. EvoTorch [36] is built on PyTorch and implements distribution-
and population-based algorithms. Using a Ray cluster, it can scale over mul-
tiple CPUs, GPUs, and computers. MENNDL (Multi-node Evolutionary Neural
Networks for Deep Learning) [40] is a closed-source MPI-parallelized HP opti-
mizer for automated network selection. A master node handles the genetic opera-
tions while evaluations are done on the remaining worker nodes. However, global
synchronization hinders optimal resource utilization [40].

Propulate 109

Algorithm 1: Basic GA. In each generation, the individuals are evaluated
in terms of the optimization problem’s OF. Genetic operators propagate
them to the next generation: The selection operator chooses a portion of
the current generation, where better individuals are usually preferred. To
breed new individuals, the genes of two or more parent individuals from
the selected pool are manipulated. While the crossover operator recombines
the parents’ genes, the mutation operator alters them randomly. This is
repeated until a stopping condition is met.
Input: Search-space limits, population size P , termination condition,

selection policy, crossover probability, mutation probability.
1 Initialize population pop of P individuals within search space.
2 while not termination condition do // OPTIMIZE

3 Evaluate individuals in pop. // EVALUATE

4 Choose parents from pop following selection policy. // SELECT

5 foreach individual in pop do // VARY

6 if random ≤ crossover probability then // RECOMBINE

7 Recombine individuals randomly chosen from parents.
8 if random ≤ mutation probability then // MUTATE

9 Mutate.
10 Update individual in pop.

Result: Best individual found (i.e., with lowest OF value for minimization).

3 Propulate Algorithm and Implementation

To alleviate the bottleneck inherent to synchronized parallel genetic algorithms,
our massively parallel genetic optimizer Propulate (propagate and populate)
implements a fully asynchronous island model specifically designed for large-
scale HPC systems. Unlike conventional GAs, Propulate maintains a continuous
population of evaluated individuals with a softened notion of the typically strictly
separated generations. This enables asynchronous evaluation, variation, propa-
gation, and migration of individuals. To ensure interoperability with existing
data science and ML workflows, we provide a Python implementation. In most
applications, evaluating the OF represents the largest contribution to the total
resource consumption. Performance-relevant paths inside the OF evaluation are
expected to be implemented and optimized in CUDA and C/C++ or Fortran.
With the aforementioned workflows, this is typically already the case.

Propulate’s basic mechanism is that of Darwinian evolution, i.e., beneficial
traits are selected, recombined, and mutated to breed more fit individuals (see
Algorithm 1). On a higher level, Propulate employs an IM, which combines inde-
pendent evolution of self-contained subpopulations with intermittent exchange of
selected individuals [34]. To coordinate the search globally, each island occasion-
ally delegates migrants to be included in the target islands’ populations. With
worse performing islands typically receiving candidates from better performing
ones, islands communicate genetic information competitively, thus increasing
diversity among the subpopulations compared to panmictic models [11]. Inde-
pendent from the breeding mechanism used on each single island of a synchronous

110 O. Taubert et al.

IM, this migrant exchange occurs simultaneously after a fixed number of syn-
chronously evaluated generations, with no computation happening in that time.
The following hyperparameters characterize an IM:

– Island number and subpopulation sizes
– Migration (pollination) probability
– Number of migrants (pollinators): How many individuals migrate from

the source population at a time.
– Migration (pollination) topology: Directed graph of migration (pollina-

tion) paths between islands.
– Emigration policy: How to select emigrants (e.g., random or best) and

whether to remove them from the source population (actual migration) or
not (pollination).

– Immigration policy: How to insert immigrants into the target population,
i.e., either add them (migration) or replace existing individuals (pollination,
e.g., random or worst).

Propulate’s functional principle is outlined in Algorithm 2. We consider mul-
tiple PEs (or workers) partitioned into islands. Each worker processes one indi-
vidual at a time and maintains a population to track evaluated and migrated
individuals on its island. To mitigate the computational overhead of synchro-
nized OF evaluations, Propulate leverages asynchronous propagation of contin-
uous populations with interwoven, worker-specific generations (see Fig. 1). In
each iteration, each worker breeds and evaluates an individual which is added
to its population list. It then sends the individual with its evaluation result
to all workers on the same island and, in return, receives evaluated individu-
als dispatched by them for a mutual update of their population lists. To avoid
explicit synchronization points, the independently operating workers use asyn-
chronous point-to-point communication via MPI to share their results. Each one
dispatches its result immediately after finishing an evaluation. Directly after-
wards, it non-blockingly checks for incoming messages from workers of its own
island awaiting to be received. In the next iteration, it breeds a new individ-
ual by applying the evolutionary operators to its continuous population list of
all evaluated individuals from any generation on the island. The workers thus
proceed asynchronously without idle times despite the individuals’ varying com-
putational costs.

After the mutual update, asynchronous migration or pollination between
islands happens on a per-worker basis with a certain probability. Each worker
selects a number of emigrants from its current population. For actual migration1,
an individual can only exist actively on one island. A worker thus may only
choose eligible emigrants from an exclusive subset of the island’s population to
avoid overlapping selections by other workers. It then dispatches the emigrants
to the target islands’ workers as specified in the migration topology. Finally, it
sends them to all workers on its island for island-wide deactivation of emigrated
individuals before deactivating them in its own population.

1 See github.com/Helmholtz-AI-Energy/propulate/tree/master/supplementary for
pseudocode with migration and explanatory figure.

https://github.com/Helmholtz-AI-Energy/propulate/tree/master/supplementary

Propulate 111

Algorithm 2: Propulate with pollination.
Input: Search-space limits; hyperparameters n islands, island sizes Pi

(i = 1, . . . , n islands), number of iterations generations, evolutionary
operators (including selection policy, crossover probability,
mutation probability etc.), pollination probability, pollination topology,
emigration policy, immigration policy.

1 Configure n islands islands with Pi workers each. Each worker evaluates one
individual at a time and maintains its own population list pop of evaluated and
migrated individuals on the island.

2 /* START OPTIMIZATION. */

3 for each worker do in parallel
4 while generation ≤ generations do // Loop over generations.

5 Breed and evaluate individual. Append it to pop. Send it to other
workers on island to synchronize their populations lists:
evaluate individual() // BREED AND EVALUATE

6 Check for and possibly receive individuals bred and evaluated by other
workers on island. Append them to pop:
receive intra isle individuals() // SYNCHRONIZE

7 if random ≤ pollination probability then // EMIGRATE

8 Choose pollinators from currently active individuals on island
according to emigration policy. Send copies of pollinator(s) to
workers of target islands according to pollination topology :
send emigrants()

9 Check for and possibly receive pollinators sent by workers from other
islands. Add them to pop. Determine individuals to be replaced by
incoming pollinators according to immigration policy. Send
individuals to be replaced to other workers on island for deactivation:
receive immigrants() // IMMIGRATE

10 Check for and possibly receive individuals replaced by pollinators on
other workers on island. Try to deactivate them in pop. If an
individual to be deactivated is not yet in pop, append it to history list
replaced and try again in the next generation:
deactivate replaced individuals() // SYNCHRONIZE

11 Go to next generation: generation += 1

12 /* OPTIMIZATION DONE: FINAL SYNCHRONIZATION */

13 Wait for all other workers to finish: MPI.COMM WORLD.barrier()

14 Final check for incoming messages so all workers hold complete population.
15 Probe for individuals evaluated by other workers on island:

receive intra isle individuals()

16 Probe for incoming pollinators immigrating from other islands:
receive immigrants()

17 Probe for individuals replaced by other workers on island to be
deactivated: deactivate replaced individuals()

Result: n individuals with smallest OF values.

In the next step, the worker probes for and, if applicable, receives immigrants
from other islands. It then checks for individuals emigrated by other workers of its
island and tries to deactivate them in its population. Due to the asynchronicity,

112 O. Taubert et al.

Fig. 1. Asynchronous propagation. Interaction of two workers on one island. Indi-
viduals bred by worker 1 and 2 are shown in blue and red, respectively. Their origins
are given by a generation sub- and an island superscript. Populations are depicted as
round grey boxes, where most recent individuals have black outlines. Varying evaluation
times are represented by sharp boxes of different widths. We illustrate the asynchronous
propagation and intra-island synchronization of the population using the example of
the blue individual indi1

g3. This individual is bred by worker 1 in generation 3 by apply-
ing the propagator (yellow) to the worker’s current population. After evaluating indi1

g3,
worker 1 sends it to all workers on its island and appends it to its population. As no
evaluated individuals dispatched by worker 2 await to be received, worker 1 proceeds
with breeding. Worker 2 receives the blue indi1

g3 only after finishing the evaluation of
the red indi1

g2. It then appends both to its population and breeds a new individual for
generation 3. (Color figure online)

individuals might be designated to be deactivated before arriving in the popula-
tion. Propulate continuously corrects these synchronization artefacts during the
optimization.

For pollination (see Fig. 2), identical copies of individuals can exist on mul-
tiple islands. Workers thus can choose emigrating pollinators from any active
individuals in their current populations and do not deactivate them upon emi-
gration. To control the population growth, pollinators replace active individ-
uals in the target population according to the immigration policy. For proper
accounting of the population, one random worker of the target island selects the
individual to be replaced and informs the other workers accordingly. Individuals
to be deactivated that are not yet in the population are cached to be replaced in
the next iteration. This process is repeated until each worker has evaluated a set
number of generations. Finally, the population is synchronized among workers
and the best individuals are returned.

Propulate uses so-called propagators to breed child individuals from an exist-
ing collection of parent individuals. It implements various standard genetic
operators, including uniform, best, and worst selection, random initialization,

Propulate 113

Fig. 2. Asynchronous pollination. Consider two islands with N (blue) and M (red)
workers, respectively. We illustrate pollination (dark colors) by tracing worker N on
island 1. After evaluation and mutual intra-island updates (light blue, see Fig. 1), this
worker performs pollination: It sends copies of the chosen pollinators to all workers
of each target island, here island 2. The target island’s workers receive the pollinators
asynchronously (dark blue arrows). For proper accounting of the populations, worker
1 on island 2 selects the individual to be replaced and informs all workers on its island
accordingly (middle red arrow). Afterwards, worker N receives incoming pollinators
from island 2 to be included into its population. It then probes for individuals that have
been replaced by other workers on its island, here worker 1, in the meantime and need
to be deactivated. After these pollination-related intra-island population updates, it
breeds the next generation. As pollination does not occur in this generation, it directly
receives pollinators from island 2. This time, worker N chooses the individual to be
replaced. (Color figure online)

stochastic and conditional propagators, point and interval mutation, and several
forms of crossover. In addition, Propulate provides a default propagator: Having
selected two random parents from the breeding pool consisting of a set num-
ber of the currently most fit individuals, uniform crossover and point mutation
are performed each with a specified probability. Afterwards, interval mutation
is performed. To prevent premature trapping in a local optimum, a randomly
initialized individual is added with a specified probability instead of one bred
from the current population.

4 Experimental Evaluation

We evaluate Propulate on various benchmark functions (see Sect. 4.4) and an
HPO use case in remote sensing classification (see Sect. 4.5) which provides a
real world application. We compare our results against Optuna since it is the
most widely used HPO software.

114 O. Taubert et al.

4.1 Experimental Environment

We ran the experiments on the distributed-memory, parallel hybrid supercom-
puter Hochleistungsrechner Karlsruhe (HoreKa2) at the Steinbuch Centre for
Computing, Karlsruhe Institute of Technology. Each of its 769 compute nodes
is equipped with two 38-core Intel Xeon Platinum 8368 processors at 2.4 GHz
base and 3.4 GHz maximum turbo frequency, 256 GB (standard) or 512 GB
(high-memory and accelerator) local memory, a local 960 GB NVMe SSD disk,
and two network adapters. 167 of the nodes are accelerator nodes each equipped
with four NVIDIA A100-40 GPUs with 40 GB memory connected via NVLink.
Inter-node communication uses a low-latency, non-blocking NVIDIA Mellanox
InfiniBand 4X HDR interconnect with 200 Gbit/s per port. A Lenovo Xclar-
ity controller measures full node energy consumption, excluding file systems,
networking, and cooling. The operating system is Red Hat Enterprise Linux 8.2.

4.2 Benchmark Functions

Benchmark functions are used to evaluate optimizers in terms of convergence,
accuracy, and robustness. The informative value of such studies is limited by how
well we understand the characteristics making real-life optimization problems
difficult and our ability to embed these features into benchmark functions [28].
We use Propulate to optimize a variety of traditional and recent benchmark
functions emulating situations optimizers have to cope with in different kinds of
problems (see Table 1).

– Sphere is smooth, unimodal, strongly convex, symmetric, and thus simple.
– Rosenbrock has a narrow minimum inside a parabola-shaped valley.
– Step represents the problem of flat surfaces. Plateaus pose obstacles to opti-

mizers as they lack information about which direction is favorable.
– Quartic is a unimodal function padded with Gaussian noise. As it never

returns the same value on the same point, algorithms that do not perform
well on this test function will do poorly on noisy data.

– Rastrigin is non-linear and highly multimodal. Its surface is determined by
two external variables, controlling the modulation’s amplitude and frequency.
The local minima are located at a rectangular grid with size 1. Their func-
tional values increase with the distance to the global minimum.

– Griewank’s product creates sub-populations strongly codependent to paral-
lel GAs, while the summation produces a parabola. Its local optima lie above
parabola level but decrease with increasing dimensions, i.e., the larger the
search range, the flatter the function.

– Schwefel has a second-best minimum far away from the global optimum.
– Lunacek’s bi-sphere’s [28] landscape structure is the minimum of two

quadratic functions, each creating a single funnel in the search space. The
spheres are placed along the positive search-space diagonal, with the optimal
and sub-optimal sphere in the middle of the positive and negative quadrant,

2 https://www.scc.kit.edu/en/services/horeka.php.

https://www.scc.kit.edu/en/services/horeka.php

Propulate 115

Table 1. Benchmark functions.

Name Function Limits Global minimum

Sphere f1 = x2
1 + x2

2 ±5.12 f (0, 0) = 0

Rosenbrock f2 = 100
(
x2
1 − x2

)2
+ (1 − x1)

2 ±2.048 f (1, 1) = 0

Step f3 =
∑5

i=1 int (xi) ±5.12 f (xi ≤ −5) = −25

Quartic f4 =
∑30

i=1

(
ix4

i + Ni (0, 1)
) ±1.28 f (0, ..., 0) =

∑
i Ni

Rastrigin f5 = 200 +
∑20

i=1 x2
i − 10 cos (2πxi) ±5.12 f (0, ..., 0) = 0

Griewank f6 = 1 + 1
4000

∑10
i=1 x2

i − ∏10
i=1 cos

xi√
i

±600 f (0, ..., 0) = 0

Schwefel f7 = 10V − ∑10
i=1 xi sin

√|xi| ±500 f
(
x∗
1, ..., x∗

10

)
= 0,

with V = 418.982887 x∗
i = 420.968746

Bi-sphere f8 = min
(∑30

i=1 (xi − μ1)
2 , ±5.12 f (μ1, ..., μ1) = 0

30 + s · ∑30
i=1 (xi − μ2)

2
)

with

μ1 = 2.5, μ2 = − (
s−1

(
μ2
1 − 1

))1/2
,

s = 1 −
(
2
√
50 − 8.2

)−1/2

Bi-Rastrigin f9 = f8 + 10
∑30

i=1 1 − cos 2π (xi − μ1) ±5.12 f (μ1, ..., μ1) = 0

respectively. Their distance and the barrier’s height increase with dimension-
ality, creating a globally non-separable underlying surface.

– Lunacek’s bi-Rastrigin [28] is a double-funnel version of Rastrigin. This
function isolates global structure as the main difference impacting problem
difficulty on a well understood test case.

4.3 Meta-optimizing the Optimizer

Propulate itself has HPs influencing its optimization behavior, accuracy, and
robustness. To explore their effect systematically and give transparent recom-
mendations for default values, we conducted a grid search across the six most
prominent HPs. The search space is shown in Table 2. We ran the grid search
five times for the quartic, Rastrigin, and bi-Rastrigin benchmark functions (see
Table 1 and Sect. 4.4), each with a different seed consistently used over all points
within a search. All three functions have their global minimum at zero. They
were chosen for their high-dimensional parameter spaces (30, 20, and 30, respec-
tively) and different levels of difficulty to optimize. For quartic, Propulate found a
minimum below 0.01±0.005 for 80.12% of all points across the five grid searches.
This increases to 94.94% for minima found within 0.1± 0.05 of the global mini-
mum. In comparison, the tolerances have to be relaxed considerably for the more
complex Rastrigin and bi-Rastrigin. While only 18.57% of all grid points had a
function value less than 1.0 ± 0.5 for Rastrigin, only a single point resulted in
an average value of less than 10 for bi-Rastrigin. Although the average value of
bi-Rastrigin was only less than 10 once, we found the minimum across each of
the five searches to be less than 1.0 for 3.31% of the grid points.

116 O. Taubert et al.

Table 2. Grid search parameters. All experiments use 144 CPUs equally distributed
between two nodes. Random-initialization probability refers to the chance that a new
individual is generated entirely randomly.

Number of islands 2 4 8 16 32

Island population size 72 36 18 9 4

Migration (pollination) probability 0.1 0.3 0.5 0.7 0.9

Pollination True False

Crossover probability 0.1 0.325 0.55 0.775

Point-mutation probability 0.1 0.325 0.55 0.775

Random-initialization probability 0.1 0.325 0.55 0.775

Considering grid points with at least one result smaller than 1.0, 86.61% used
either 16 or 36 islands, while the remainder used eight. As Propulate initializes
different islands at different positions in the search space, the chance that one of
them is at a very beneficial position increases with the number of islands. This
is further confirmed by a migration probability of 0.7 or 0.9 for 61.41% of these
points. If one of the islands is well-initialized, it thus will quickly notify others.

With every best grid point using pollination, we clearly find pollination to be
favorable over real migration. To determine the other HPs, we compute the aver-
ages of the results for the top ten grid points across all three functions. The top
ten were determined by grouping over the lowest average and standard deviation
of the function values, sorting by the averages, and sorting by the standard devi-
ations. This method reduces the chances of a single run simply benefiting from
an advantageous starting seed. Average crossover, point-mutation, and random-
initialization probabilities are 0.655 ± 0.056, 0.363 ± 0.133, and 0.423 ± 0.135,
respectively. The average number of islands was 28.800 ± 6.009 which equates
to an island population of 5.00 ± 1.043. The average migration probability was
0.527±0.150. These values provide a reasonable starting point towards choosing
default HPs for Propulate (see Table 3). As the grid searches only considered
functions with independent parameters, we assume a relatively high random-
initialization probability to be useful due to the benefits of random search [6].
On this account, we chose to reduce the default random-initialization probabil-
ity to 0.2. As the migration probability might also be lowered artificially by this
phenomenon, we set its default to 0.7. The default probabilities for crossover
and point-mutation were chosen as 0.7 and 0.4, respectively. The island size was
set at four individuals. This is a practical choice as our test system has four
accelerators per node and the number of CPUs per node is a multiple of four.

Propulate 117

Table 3. Propulate HPs for benchmark function minimization.

Number of islands 38

Island population size 4

Pollination probability 0.7

Crossover probability 0.7

Point-mutation probability 0.4

Sigma factor 0.05

Random-initialization probability 0.2

Generations per worker 256

Selection policy Best

Pollination topology Fully connected

Number of migrants 1

Emigration policy Best

Immigration policy Worst

4.4 Benchmark Function Optimization

For each function, we ran each ten equivalent Propulate and Optuna optimiza-
tions, using the same compute resources, degree of parallelization, and number
of evaluations. Figure 3 shows the optimization accuracy over wallclock time
comparing Propulate with default parameters determined from our grid search
(see Table 3) to Optuna’s default optimizer. In terms of accuracy, Propulate and
Optuna are comparable in most experiments. For many functions, e.g. Schwe-
fel, bi-Rastrigin, and Rastrigin, Propulate even achieves a better OF value. In
terms of wallclock time, Propulate is consistently at least one order of magni-
tude faster. This is due to Propulate’s MPI-based communication over the fast
network, whereas Optuna uses relational databases with SQL and is limited by
the slow file system. Since the functions are cheap to evaluate, optimization and
communication dominate the wallclock time. In particular for problems where
evaluations are cheap compared to the search itself, we find that Optuna’s compu-
tational efficiency suffers massively from the frequent file locking inherent to its
parallelization strategy, reducing its usability for large-scale HPC applications.

In addition, we inspected the evolution of the population over wallclock time
for both Propulate and Optuna. An example for minimizing the Rastrigin function
is shown in Fig. 4. Propulate is roughly three orders of magnitude faster and
makes significantly greater progress in terms of both OF values and distance to
the global optimum. Due to this drastic difference in runtime, we measured only
46.27 Wh for Propulate compared to Optuna’s 2646.29 Wh.

118 O. Taubert et al.

Fig. 3. Benchmark function minimization accuracy over wallclock time. Low-
est function values found by Propulate (red) and Optuna (blue) versus wallclock time
to reach them, each averaged over ten runs. Step is not shown since both optimizers
achieve a perfect value of −25 within 0.6 s and 278.2 s, respectively. (Color figure
online)

4.5 HP Optimization for Remote Sensing Classification

BigEarthNet [35] is a Sentinel-2 multispectral image dataset in remote sensing.
It comprises 590 326 image patches each of which is assigned one or more of the
19 available CORINE Land Cover map labels [10,35]. Multiple computer vision
networks for BigEarthNet classification have been trained [35], with ResNet-
50 [20] being the most accurate. While a previous Propulate version was used to
optimize a set of HPs and the architecture for this use case [13], a more versatile
and efficient parallelization strategy in the current version makes it worthwhile
to revisit this application. Analogously to [13], we consider different optimizers,
learning rate (LR) schedulers, activation functions, loss functions, number of
filters in each convolutional block, and activation orders [21]. The search space
is shown in Table 4. Optimizer parameters, LR functions, and LR warmup are
included as well. We only consider SGD-based optimizers as they share common
parameters and thus exclude Adam-like optimizers from the search. We theorize
that including Adam led to the difficulties seen previously [13]. The training is
exited if the validation loss has not been increasing for ten epochs. We prepared
the data analogously to [13]. The network is implemented in TensorFlow [1].

For both Propulate and Optuna, we ran each three searches over 24 h on
32 GPUs. We use 1 − F val

1 with the validation F1 score as the OF to be min-
imized. On average, Optuna achieves its best OF value of (0.39 ± 0.01) within
(7.05 ± 3.14) h. Propulate beats Optuna’s average best after (5.30 ± 2.41) h and
achieves its best OF value of (0.36 ± 0.00) within (13.89 ± 5.15) h.

Propulate 119

Fig. 4. Evolution of the population over wallclock time for the Rastrigin
function. Propulate (left) versus Optuna (right). OF values (blue) use the left-hand
scale, distances to the global optimum (purple) use the right-hand scale. Pastel dots
show each individual’s OF value/distance. Solid (dashed) lines show the minimum
(median) value and distance achieved so far. Maximum value and distance are shown
in black. Both optimizers perform 38 912 evaluations. Note the difference on the time
axis. (Color figure online)

4.6 Scaling

Finally, we explore Propulate’s scaling behavior for the use case presented in
Sect. 4.5. Figure 5 shows our results for weak and strong linear scaling. Our
baseline configuration used two nodes. Since each node has four GPUs, we cal-
culate speedup and efficiency with respect to eight workers. For strong scaling,
we fix the total number of evaluations at 512 and increase the number of work-
ers, i.e., GPUs. We average over three runs with different seeds and keep four
workers per island while increasing the number of islands. Speedup increases up
to 128 workers, where we reach approximately half the optimal value. This is an
expected decline since each worker only processes few individuals, so the vari-
ance in evaluation times leads to larger idle times of the faster workers before
the final population synchronization at the end. Additionally, as the number of
workers approaches the total number of evaluations, the randomly initialized
evolutionary search in turn approaches a random search. This means that the
search performance is likely to be worse than what the pure compute perfor-
mance might suggest. It is still possible to apply Propulate on these scales, but
the other search parameters have to be adjusted accordingly as shown in the weak
scaling plot (see Fig. 5 top). The early super-scalar behavior is likely due to the
non-sequential baseline. For small node counts, the performance is influenced by
effects stemming from cluster utilization beyond the use case studied here, like
file system congestion or inter-node distance in the network. With larger node

120 O. Taubert et al.

counts relative to total cluster size, these effects average out or approach the
worst case, which is consistent with the trend shown in Fig. 5. Weak efficiency
only drops to 95% on average at our largest configuration of 128 workers.

Table 4. HP search space of ResNet-50 for BigEarthNet classification.

Optimizers Optimizer parameters LR warmup parameters

Adagrad Initial accum. value 10−4, 0.5 LR warmup steps 100, 104

SGD Clipnorm [−1,−1000] Initial LR 10−5, 10−1

Adadelta Clipvalue [−1, 1000] Decay steps 102, 105

RMSprop Use EMA Boolean LR warmup power 10−1, 101

EMA momentum [0.5, 1.0]
EMA overwrite 1, 103

Momentum [0.0, 1.0]
Nesterov Boolean
Rho [0.8, 0.99999]
Epsilon 10−9, 10−4

Loss functions LR parameters

Binary CE Categorical CE Categorical hinge Decay rate [0.8, 0.9999]
Hinge KL divergence Squared hinge Staircase inverse Boolean

time decay

Activation functions Decay rate [0.1, 0.9]

ELU ReLU Softplus Staircase poly- Boolean
Exponential SELU Softsign nomial decay
Hard sigmoid Sigmoid Swish End LR 10−4, 10−2

Linear Softmax Tanh Power [0.5, 2.5]

Fig. 5. Scaling with respect to a baseline of eight workers. Weak efficiency
(top) and strong linear speedup (bottom). Use case and search space are described
in Sect. 4.5. Weak-scaling problem size is varied via the number of OF evaluations.
Results are averaged over three runs.

Propulate 121

5 Conclusion

We presented Propulate, our HPC-adapted, asynchronous genetic optimization
algorithm and software. Our experimental evaluation shows that the fully asyn-
chronous evaluation, propagation, and migration enable a highly efficient and
parallelizable genetic optimization. To our knowledge, all existing Python-based
genetic optimization tools use synchronization schemes that are not tailored to
application in HPC environments. Harder to quantify than performance but
very important is ease of use. Especially for HPC applications at scale, some
parallelization and distribution models are more suited than others. A purely
MPI-based implementation as in Propulate is not only extremely efficient for
highly parallel and communication-intensive algorithms but also easy to set up
and maintain, since the required infrastructure is commonly available on HPC
systems. This is not the case for any of the other tools investigated, except for the
not publicly available MENNDL. In addition, Propulate’s asynchronicity facilitates
a tighter coupling of individuals during the optimization, which enables a more
efficient evaluation of candidates and in particular early stopping informed by
previously evaluated individuals in the NAS case. Propulate was already success-
fully applied to HPO for various ML models on different HPC machines [13,17].
Another avenue for future work is including variable-length gene descriptions.
Mutually exclusive genes of different lengths, such as the parameter sets for
Adam- and SGD-like optimizers in our NAS use case, can thus be explored effi-
ciently. While this is already possible, it requires an inconvenient workaround of
including inactive genes and adapting the propagators to manually prevent the
evaluation of many individuals differing only in inactive genes.

Acknowledgments. This work is supported by the Helmholtz AI platform grant and
the Helmholtz Association Initiative and Networking Fund on the HAICORE@KIT
partition.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pp. 265–283 (2016)

2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2623–2631 (2019). https://doi.org/10.1145/3292500.3330701

3. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002). https://doi.org/10.1109/TEVC.2002.800880

4. Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms. Com-
plexity 4(4), 31–52 (1999)

5. The GPyOpt authors: GPyOpt: A Bayesian Optimization Framework in Python
(2016). https://github.com/SheffieldML/GPyOpt

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1109/TEVC.2002.800880
https://github.com/SheffieldML/GPyOpt

122 O. Taubert et al.

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization.
J. Mach. Learn. Res. 13(10), 281–305 (2012). https://jmlr.org/papers/v13/
bergstra12a.html

7. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In: Inter-
national Conference on Machine Learning, pp. 115–123. PMLR (2013). https://
proceedings.mlr.press/v28/bergstra13.pdf

8. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on meta-
heuristics for stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287
(2009). https://doi.org/10.1007/s11047-008-9098-4

9. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003).
https://doi.org/10.1145/937503.937505

10. Bossard, M., Feranec, J., Otahel, J., et al.: CORINE land cover technical guide -
Addendum 2000, vol. 40. European Environment Agency Copenhagen (2000)

11. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms, vol. 1. Springer
Science & Business Media, Berlin, Heidelberg (2000). https://doi.org/10.1007/978-
1-4615-4369-5

12. Cantú-Paz, E., et al.: A survey of parallel genetic algorithms. Calculateurs paral-
leles, reseaux et systems repartis 10(2), 141–171 (1998)

13. Coquelin, D., Sedona, R., Riedel, M., Götz, M.: Evolutionary optimization of neural
architectures in remote sensing classification problems. In: 2021 IEEE International
Geoscience and Remote Sensing Symposium IGARSS, pp. 1587–1590. IEEE (2021).
https://doi.org/10.1109/IGARSS47720.2021.9554309

14. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach.
Learn. Res. 20(1), 1997–2017 (2019)

15. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L.,
Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-05318-5 1

16. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.:
DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175
(2012)

17. Funk, Y., Götz, M., Anzt, H.: Prediction of optimal solvers for sparse linear systems
using deep learning. In: Proceedings of the 2022 SIAM Conference on Parallel
Processing for Scientific Computing, pp. 14–24. Society for Industrial and Applied
Mathematics (2022). https://doi.org/10.1137/1.9781611977141.2

18. George, J., et al.: A Scalable and Cloud-Native Hyperparameter Tuning System
(2020). https://doi.org/10.48550/arXiv.2006.02085

19. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google
Vizier: a service for black-box optimization. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1487–1495 (2017). https://doi.org/10.1145/3097983.3098043

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

21. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

22. Hertel, L., Collado, J., Sadowski, P., Baldi, P.: Sherpa: hyperparameter optimiza-
tion for machine learning models. In: 32nd Conference on Neural Information Pro-
cessing Systems (NIPS 2018) (2018). https://github.com/sherpa-ai/sherpa

https://jmlr.org/papers/v13/bergstra12a.html
https://jmlr.org/papers/v13/bergstra12a.html
https://proceedings.mlr.press/v28/bergstra13.pdf
https://proceedings.mlr.press/v28/bergstra13.pdf
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1145/937503.937505
https://doi.org/10.1007/978-1-4615-4369-5
https://doi.org/10.1007/978-1-4615-4369-5
https://doi.org/10.1109/IGARSS47720.2021.9554309
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1137/1.9781611977141.2
https://doi.org/10.48550/arXiv.2006.02085
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1007/978-3-319-46493-0_38
https://github.com/sherpa-ai/sherpa

Propulate 123

23. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT
Press, Cambridge (1992). https://doi.org/10.7551/MITPRESS/1090.001.0001

24. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

25. Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin, J., Xu, Y.: Autotune: a
derivative-free optimization framework for hyperparameter tuning. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 443–452 (2018). https://doi.org/10.1145/3219819.3219837

26. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune:
a research platform for distributed model selection and training (2018). arXiv
preprint arXiv:1807.05118

27. Lindauer, M., et al.: SMAC3: a versatile Bayesian optimization package for hyper-
parameter optimization. J. Mach. Learn. Res. 23, 54–1 (2022)

28. Lunacek, M., Whitley, D., Sutton, A.: The impact of global structure on search.
In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008.
LNCS, vol. 5199, pp. 498–507. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87700-4 50

29. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Applica-
tions, vol. 367. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22084-5

30. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

31. Rapin, J., Teytaud, O.: Nevergrad - A Gradient-free Optimization Platform (2018).
https://github.com/FacebookResearch/Nevergrad

32. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of
machine learning algorithms. In: Pereira, F., Burges, C., Bottou, L., Wein-
berger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25.
Curran Associates, Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/
05311655a15b75fab86956663e1819cd-Paper.pdf

33. Song, X., Perel, S., Lee, C., Kochanski, G., Golovin, D.: Open source Vizier: dis-
tributed infrastructure and API for reliable and flexible blackbox Optimization. In:
Automated Machine Learning Conference, Systems Track (AutoML-Conf Systems)
(2022). https://github.com/google/vizier

34. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.)
Springer Handbook of Computational Intelligence, pp. 929–959. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-43505-2 46

35. Sumbul, G., et al.: BigEarthNet Dataset with a New Class-Nomenclature for
Remote Sensing Image Understanding (2020). arXiv preprint arXiv:2001.06372

36. Toklu, N.E., Atkinson, T., Micka, V., Srivastava, R.K.: EvoTorch: advanced
evolutionary computation library built directly on top of PyTorch, created at
NNAISENSE (2022). https://github.com/nnaisense/evotorch

37. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/
3-540-29938-6

38. Wang, J., Clark, S.C., Liu, E., Frazier, P.I.: Parallel Bayesian global optimization
of expensive functions. Oper. Res. 68(6), 1850–1865 (2020). https://doi.org/10.
1287/opre.2019.1966

https://doi.org/10.7551/MITPRESS/1090.001.0001
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1145/3219819.3219837
http://arxiv.org/abs/1807.05118
https://doi.org/10.1007/978-3-540-87700-4_50
https://doi.org/10.1007/978-3-540-87700-4_50
https://doi.org/10.1007/978-3-642-22084-5
https://doi.org/10.1007/978-3-642-22084-5
https://github.com/FacebookResearch/Nevergrad
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://github.com/google/vizier
https://doi.org/10.1007/978-3-662-43505-2_46
http://arxiv.org/abs/2001.06372
https://github.com/nnaisense/evotorch
https://doi.org/10.1007/3-540-29938-6
https://doi.org/10.1007/3-540-29938-6
https://doi.org/10.1287/opre.2019.1966
https://doi.org/10.1287/opre.2019.1966

124 O. Taubert et al.

39. Weiel, M., Götz, M., Klein, A., Coquelin, D., Floca, R., Schug, A.: Dynamic parti-
cle swarm optimization of biomolecular simulation parameters with flexible objec-
tive functions. Nat. Mach. Intell. 3(8), 727–734 (2021). https://doi.org/10.1038/
s42256-021-00366-3

40. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H., Patton, R.M.: Optimizing
deep learning hyper-parameters through an evolutionary algorithm. In: Proceed-
ings of the Workshop on Machine Learning in High-Performance Computing Envi-
ronments, pp. 1–5 (2015). https://doi.org/10.1145/2834892.2834896

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1038/s42256-021-00366-3
https://doi.org/10.1038/s42256-021-00366-3
https://doi.org/10.1145/2834892.2834896
http://creativecommons.org/licenses/by/4.0/

Steering Customized AI Architectures
for HPC Scientific Applications

Hatem Ltaief1(B), Yuxi Hong1, Adel Dabah1, Rabab Alomairy1,
Sameh Abdulah1, Chris Goreczny3, Pawel Gepner4, Matteo Ravasi2,

Damien Gratadour5, and David Keyes1

1 Division of Computer, Electrical, and Mathematical Sciences and Engineering,
Extreme Computing Research Center, King Abdullah University of Science and

Technology, Thuwal, Jeddah 23955, Saudi Arabia
{Hatem.Ltaief,Yuxi.Hong,Adel.Dabah.1,Rabab.Alomairy,

Sameh.Abdulah,David.Keyes}@kaust.edu.sa
2 Division of Physical Sciences and Engineering, Extreme Computing Research

Center, King Abdullah University of Science and Technology,
Thuwal, Jeddah 23955, Saudi Arabia

Matteo.Ravasi@kaust.edu.sa
3 Graphcore, Gdańsk, Poland

chrisgo@graphcore.ai
4 Warsaw University of Technology, Warsaw, Poland

pawel.gepner@pw.edu.pl
5 Paris Observatory, Paris, France

damien.gratadour@obspm.fr

Abstract. AI hardware technologies have revolutionized computational
science. While they have been mostly used to accelerate deep learning
training and inference models for machine learning, HPC scientific appli-
cations do not seem to directly benefit from these specific hardware
features unless AI-based components are introduced into their simula-
tion workflows, for instance, as a replacement of their numerical solvers.
This paper proposes to take another direction in an attempt to democ-
ratize customized AI architectures for HPC scientific computing. The
main idea consists in demonstrating how legacy applications can lever-
age these AI engines after a necessary algorithmic redesign. It is critical
that the resulting software implementations map onto the underlying
memory-austere hardware architectures to extract the expected perfor-
mance. To facilitate this process, we promote the matricization tech-
nique for restructuring codes (1) by exploiting data sparsity via algebraic
compression and (2) by expressing the critical computational phases in
terms of tile low-rank matrix-vector multiplications (TLR-MVM) and
batch matrix-matrix multiplications (batch GEMM). Algebraic com-
pression enables to reduce memory footprint and to fit into small local
cache/memory, while batch execution ensures high occupancy. We high-
light how we can steer the Graphcore AI-focused Wafer-on-Wafer Intel-
ligence Processing Units (IPUs) to deliver high performance for both
operations. We conduct a performance benchmarking campaign of these
two matrix operations that account for most of the elapsed times of four

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 125–143, 2023.
https://doi.org/10.1007/978-3-031-32041-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_7&domain=pdf
https://doi.org/10.1007/978-3-031-32041-5_7

126 H. Ltaief et al.

real applications in computational astronomy, seismic imaging, wireless
communications, and climate/weather predictions. We report bandwidth
and execution rates with speedup factors up to 150X/14X/25X/40X,
respectively, on IPUs compared to other systems.

Keywords: BLAS for Graphcore IPU · Low-rank matrix
computations · Batch matrix operations · HPC scientific applications

1 Introduction

Heterogeneity is ubiquitous in today’s hardware landscape. From large dis-
tributed data centers supporting cloud computing to on-premise HPC Super-
computers, the scientific community has witnessed major deployments of main-
stream system configurations composed of CPU hosts (e.g., x86/ARM) with
accelerator/vector devices. In fact, the adoption of hardware heterogeneity is a
clear matter and smartphones equipped with a myriad of specific hardware fea-
tures (with a neural engine, graphic cores, processing cores, etc.) may represent
the ultimate example, which may indicate a pathfinder of where high-end HPC
architectures may be heading. While this hardware heterogeneity trend legit-
imately raises serious concerns on general software development, productivity
and sustainability, the advancements of AI-focused hardware technologies have
been tremendous during the last decade. These have been supported by a busi-
ness market continuously expanding in size with applications in natural language
processing (with transformers) and computer vision (with convolutional neural
network).

This paper demonstrates the capabilities of AI-focused architectures in solv-
ing some of the HPC grand-challenge scientific problems in computational
astronomy [28], seismic imaging [24,34], wireless communications [10], and
climate/weather predictions [5,6,11,13]. In particular, we extend Graphcore
AI-focused Wafer-on-Wafer Intelligence Processing Units (IPUs) functionali-
ties [20,21,38] to address the computational challenges raised by the aforemen-
tioned applications with regards to real-time constraints and memory-bound
mode of execution. The programming efforts required to steer these customized
AI accelerators for supporting HPC scientific applications are part of a general
call for action. Indeed, while it is true that fast matrix engines may not be
inherent to real applications for which sustained bandwidth is the main metric
for performance [17], algorithmic innovations are key to make compatible HPC
workloads with the underlying AI architectures. This necessitates to express the
algorithms in terms of matrix structures to be compliant with the specific fea-
tures provided by hardware accelerators (e.g., NVIDIA Tensor Cores). Although
this may sometimes come at the price of performing more floating-point opera-
tions (flops), the computational power of the fast matrix engines may compensate
the flops increase. Here, we instead redesign the algorithms that drive the sim-
ulations of these four real applications by means of tile low-rank matrix-vector
multiplication (TLR-MVM) for the computational astronomy and seismic imag-
ing applications and batch matrix-matrix multiplications (batch GEMM) for

Steering Customized AI Architectures for HPC Scientific Applications 127

the wireless communication and climate/weather applications. The former oper-
ation actually reduces memory footprint using algebraic compression to fit in
memory-austere environment of IPUs and leverage the high bandwidth of local
on-processor memory, while improving time complexity. The latter operation
permits to cast original memory-bound operations into batch GEMM operations
to improve the hardware occupancy. In particular, MVM accounts for 90% of the
real-time controller required on major ground-based deployed telescopes (e.g.,
the Very Large Telescope [4], the Keck Observatory [2], the Subaru telescope [3],
the European Extremely Large Telescope [1], etc.) to compensate for the atmo-
spheric turbulence. For the seismic imaging application, TLR-MVM accounts for
90% of the total elapsed time, as highlighted in Fig. 1 of [24]. As for the batch
GEMM kernel, it accounts for 80% of the total elapsed time of the wireless com-
munication [10,15] as well as the climate/weather applications [13,14]. These
algorithmic changes turn out to be key in extracting performance across various
architectures [11,13,24,28], but most importantly, makes IPUs (and potentially
similar wafer-on-wafer chip technologies with limited on-chip memory) and their
resource disaggregation compatible with these HPC scientific applications.

We develop TLR-MVM and batch GEMM operations on IPUs and report
time-to-solution, sustained bandwidth, and execution rate. The two latter met-
rics permit to assess how some of the memory-bound workloads on standard
x86 or GPUs can translate into compute-bound mode of operation (from an
absolute performance perspective) once deployed on IPUs. We compare our
implementations against other hardware architectures and highlight the perfor-
mance superiority of our numerical algorithms. We achieve on IPUs speedup fac-
tors up to 150X/14X/25X/40X for computational astronomy, seismic imaging,
wireless communication, and climate/weather predictions, respectively, against
a myriad of hardware systems. These speedups correspond to the performance
improvement of the most time-consuming kernels from these applications that
are offloaded to IPUs, while the remaining ones run on the host, similar to the
hybrid CPU/GPU trend observed in the HPC community.

The remainder of the paper is as follows. Section 2 presents related work and
list our main contributions. Section 3 recalls the batch execution model and the
TLR-MVM algorithm, while emphasizing on the importance of the matrization
when designing numerical algorithms to remain on par with the AI hardware evo-
lution. We present the Graphcore IPU hardware technology in Sect. 4. Section 5
describes the four HPC scientific applications of interest in this paper. We pro-
vide implementations details of our numerical algorithms in Sect. 6. Section 7
reports the performance results in time-to-solution, sustained bandwidth, and
execution rate obtained on IPUs and compare our implementation against other
hardware architectures. Section 8 discusses current IPU hardware limitations
and gives some perspectives moving forward to further steer IPUs as a general-
purpose chip. We conclude in Sect. 9.

128 H. Ltaief et al.

2 Related Work and Research Contributions

Leveraging AI-focussed hardware architectures for general-purpose HPC work-
loads is still at its infancy due to the significant efforts it requires to map the
existing numerical algorithms on these chips, originally designed for machine
learning workloads (i.e., training and inference) as studied in [9,26]. Previous
work for accelerating breadth-first graph traversals on IPUs [12] have demon-
strated performance improvement for the class of graph algorithms. Stencil com-
putations for solving the 3D wave equation using finite-difference method in seis-
mic imaging applications have been ported into Graphcore IPU [26] and Cere-
bras Wafer-Scale Engine (WSE-2) [25]. The authors in the latter work rely on a
localized communication strategy to mitigate internal data movement overheads,
while ensuring data locality for maximum bandwidth extraction from local flat
on-chip memory. This matrix-free algorithmic approach that represents the core
engine for PDE solvers is friendly to Graphcore and Cerebras hardware tech-
nologies thanks to its minimal memory footprint.

In this paper, we revisit the numerical algorithms of real HPC applications,
as originally introduced in computational astronomy [28], seismic imaging [24,
34], wireless communications [10], and climate/weather predictions [5,13]. We
integrate low-rank matrix compressions and batch executions to reconcile them
with IPU hardware design. Based on the numerical kernel primitives used for
machine learning on IPUs, we develop these operations by composing higher-
level APIs for linear algebra operations, i.e., Level-2 and Level-3 BLAS routines,
that were not available natively on the vendor-optimized numerical library. We
further tune memory accesses of our algorithms on IPUs and achieve significant
performance improvement.

We emphasize the three main contributions of this paper: (1) the matri-
cization approach that enables these HPC applications, otherwise intractable,
to exploit IPUs by casting computations on compressed data structures, (2)
the batch mode of execution to maintain high hardware utilization, and (3)
the reported significant performance speedups that may further democratize AI
hardware and accelerate their adoption into the wide HPC application landscape
on heterogeneous environments.

3 Batching/Compression or Why Matricization Matters?

We are interested in leveraging IPU computational and throughput capabilities
to accelerate HPC scientific applications that rely on matrix formulations. We
employ batched kernel executions to map the matrix operation onto IPU local
memory and address the resource disaggragation challenge. In addition, if the
dataset is large and does not fit on the chip, we exploit Tile Low-Rank (TLR)
matrix approximation, an algorithmic technique that consists in splitting the
matrix operator into tiles and compressing them using an algebraic method of
choice (e.g., rank-revealing QR, randomized SVD, etc.), while enabling matrix
algebra on the compressed data structures. Figures 1–6 highlight the compression

Steering Customized AI Architectures for HPC Scientific Applications 129

Fig. 1. Dense MVM. Fig. 2. Compress. Fig. 3. Stack bases U/V.

Fig. 4. V-Batch of MVM. Fig. 5. Slicing V->U. Fig. 6. U-Batch of MVM.

procedure for a 4 × 6 tiled matrix followed by the Matrix-Vector Multiplication
(MVM) applied to its compressed form. We refer to [6,7,28] for more techni-
cal details. The approximation error introduced is controlled by an accuracy
threshold that maintains the application’s numerical integrity [5,13,24,34].

Matricization is an approach for enabling numerical algorithms to track AI
hardware evolution so that the specific hardware features (e.g., fast matrix
engines with support for mixed-precision computations) can be easily integrated
and adopted by HPC scientific applications. There is no free lunch and matri-
cization may not be straightforward for all applications. However, when possible,
the redesigning efforts may be worth it and these efforts are usually upfront. The
main benefits of matricization are twofold: (1) significant performance improve-
ment in bandwidth for memory-bound codes and higher execution rates for
compute-bound kernels thanks to dedicated matrix engines (e.g., Intel AMX,
NVIDIA Tensor Cores, Graphcore AMP), while being on par with the over-
all hardware evolution, and (2) high user-productivity when deploying on new
hardware architectures across vendors.

4 The Graphcore IPU Hardware Technology

4.1 Architecture Principles and Hardware Details

The Bulk Synchronous Parallel (BSP) model forms the basis for the hardware
architecture of Graphcore’s Bow Intelligence Processing Unit (IPU) and Poplar
graph framework software. The BSP model is fundamental to the operation of
IPU processors, which use this parallel computing scheme to schedule data pro-
cessing and exchange operations. BSP involves a three-step process alternating
compute, communication and data synchronisation.

130 H. Ltaief et al.

Asynchronous Computation. Each process performs local computations
using only local memory. This phase does not involve any communication
between processes.

Communication. Data is exchanged by the processes and each process may
communicate with its target counterpart. In addition to exchanging intermediate
computation results, processes may also engage in remote direct memory access
in which they request access to data from remote memories. This remote data is
then received in a subsequent communication phase. Each process can therefore
access other local memory as a remote memory, effectively enabling it to retrieve
any memory from the entire aggregate system memory.

Synchronization. The synchronization phase acts as a check point or barrier.
Once a process reaches this phase, it will only continue to the next phase once
all processes have reached this check point. This stage does not involve any
computation or communication unless the barrier itself specifically requires this.

In terms of its hardware architecture, the IPU is defined as a massively paral-
lel, distributed memory, multiple-instruction, multiple data (MIMD) processor.
The IPU has been designed from the ground up to process machine learning
algorithms, with explicit programming instructions. The IPU’s tile Instruction
Set Architecture-ISA [37] comprises of hardware elements such as Accumulat-
ing Matrix Product-AMP units (i.e., dot product) and Slim Convolution Units-
SLICs, which enable the IPU to complete up to 64 multiply-add instructions
per clock cycle. These AMP units are eventually used to compose the necessary
kernels and accelerate the HPC applications studied in this paper.

4.2 Programming Model and Poplar Development Kit

Graphcore’s Poplar software is designed alongside the IPU to serve as a pro-
gramming interface. Poplar is a graph programming framework that enables
direct programming in Python and C++, building on the capability of C++
to form a new IPU operation model founded on three elements - vertices, com-
putation graphs and control programs. The IPU computation graphs define the
input/output relationship between variables and operations. Within the com-
putation graph, there are tensor variables (i.e., the variables in the graph), the
compute tasks (vertices) and the edges that connect them. In terms of the tensor
variables, data is stored in the graph in fixed-size multi-dimensional tensors. A
vertex is a specific task to be performed and the edges determine which variable
elements the vertex should process. A vertex can connect to a single element or
multiple elements. A codelet is associated with every vertex: this is a piece of
code that defines the inputs, outputs and internal state of a vertex. The codelet
is implemented in assembly or standard C++11 [26]. Finally, we have the control
program, which organizes the selection of processors, loads compiled graphs into
the hardware and then executes graph programs. This includes the mapping of
data transfers between the IPU and the host, memory structures, and initiating

Steering Customized AI Architectures for HPC Scientific Applications 131

transfers. As soon as the program has been implemented, all the code and data
structures required to run the program sit in the IPU’s distributed memory [26].
Thanks to the control programs, the appropriate vertices can be executed. On
top of low-level Poplar framework, Graphcore provides a PopLibs C++ library
that contains higher-level mathematical and machine-learning functions. These
underlie the Graphcore implementation of industry-standard ML frameworks,
such as TensorFlow and PyTorch, but can also be used for other purposes. The
massive parallelism and memory locality of IPU processor is well abstracted by
PopLibs. For large data operations like matrix-matrix multiplications, Graphcore
software handles the work distribution between IPU tiles to keep even memory
and compute utilisation across all cores for load balancing purposes.

5 HPC Scientific Applications

This section describes the background of four major HPC applications in compu-
tational astronomy [28], seismic imaging [24,34], wireless communications [10],
and climate/weather predictions [5,11,13]. We identify the necessary algorith-
mic changes before deploying the most time-consuming computational kernels
on Graphcore IPUs.

5.1 Adaptive Optics in Computational Astronomy

Using Deformable Mirrors (DM), arranged in closed-loop feedback control with
wavefront sensors (WFS) in Adaptive Optics (AO) systems [16], correcting for
optical aberrations introduced by atmospheric turbulence, giant optical tele-
scopes are able to acquire sharp high-contrast images of faint and distant targets.
As shown in Fig. 7, the real-time controller (RTC) [18] is responsible for inter-
preting measurements from WFS into commands to the DM actuators, adapting
in real-time to the rapidly changing atmospheric turbulence conditions. Thanks
to advances in computing, WFS and DM technologies, AO systems are becoming
more capable and can be deployed on today’s largest ground-based telescopes.
However, classical AO correction is only valid in a very small patch of sky.
Multi-Conjugate Adaptive Optics (MCAO) solves this by using a series of DMs
to compensate the turbulence in volume [35]. This increase in AO complexity
inevitably translates into a significant additional load on the RTC sub-system.

A robust control scheme for AO is based on regular dense Matrix-Vector
Multiplication (MVM), which has a low arithmetic intensity and is thus lim-
ited by sustained memory bandwidth. Assuming a typical atmosphere coherence
time of a few ms and in order to compensate for most of the accessible frequency
content of the turbulence, the AO RTC latency should be kept below 250 µs [22].
This 250 µs specification leads to a memory bandwidth requirement of about
1600 GB/s for single precision floating-point MVM, i.e., several times larger than
what is achievable on current high-end dual-socket CPU servers and typically
even higher than on a single high-end GPU. Can the IPUs stand as an alter-
native hardware solution to outsmart the atmospheric turbulence and meet the

132 H. Ltaief et al.

real-time computational challenges of ground-based giant optical telescopes? A
batched dense MVM is necessary to evenly split the matrix across local memories
of the IPUs and match the underlying IPU hardware architecture.

5.2 Seismic Processing and Imaging

Reflection seismology is a remote sensing technique that uses principles of wave
propagation to image the Earth’s subsurface from reflected seismic waves. Most
algorithms for processing and imaging of seismic data, originally developed in
the 80’s and 90’s, operate on individual shot gathers (i.e., ensemble of traces
recording the energy produced by a single source at the time); this naturally lends
to embarrassingly parallel implementations that loop over the dataset once per
processing step. A paradigm shift has however emerged in the early 2000s, with
a large portion of modern algorithms relying on wave-equation, inversion-based
formulations [42]: such algorithms require repeated access to the entire seismic
data in order to evaluate the so-called Multi-Dimensional Convolution (MDC)
operator and its adjoint and solve an underlying inverse problem. Examples
of such a kind are closed-loop SRME [27], estimation of primaries by sparse
inversion [23], multi-dimensional deconvolution [8,33,39], and Marchenko-based
processing and imaging [30,31,40,44].

Fig. 7. End-to-end AO simulation [19]
relies on MVM in the RTC to outsmart
the atmospheric turbulence.

Fig. 8. From seismic acquisition to pro-
cessing data for the MDC operator that
involves TLR-MVM operations.

From a practical standpoint, the MDC operator can be viewed as the chain
of the following three linear operations: a Fast Fourier Transform (FFT) to con-
vert the input seismic data from the time to the frequency domain, followed by
a batched dense Matrix-Vector Multiplication (MVM) with the frequency rep-
resentation of the kernel of the MDC operator, and by an Inverse FFT (IFFT)
to bring back the output to the time domain (see Fig. 8 and [24,32,34] for more
details). Whilst the kernel of the MDC operator varies from application to appli-
cation, its sheer size renders the batched MVM to be the main computational

Steering Customized AI Architectures for HPC Scientific Applications 133

bottleneck of all of the above mentioned algorithms. As discussed in Sect. 3,
TLR-MVM can be used in an attempt to reduce both the memory requirements
and computational cost. When performing MDC with dense frequency matrices,
the arrangement of sources (along the rows of each matrix) and receivers (along
the columns of each matrix) can be arbitrary as long as they remain consistent
with that of the input vector. Such reordering becomes much more relevant in
the context of TLR algebraic compression as it may lead to better or worse
block compression capabilities. Following [34], the Hilbert space-filling curve
algorithm has been chosen as the best performing re-arrangement approach.
We refer to [24,34] for a detailed study on the impact of accuracy. Compression
and reordering are key algorithmic aspects to consider, when deploying big data
applications on hardware with limited memory capacities, e.g., IPUs.

5.3 Climate/Weather Prediction Applications

Geostatistical emulations for climate/weather prediction applications rely on
computational statistics methods based on the maximum likelihood estimation.
The optimization model requires solving a large system of linear equations. This
involves a Cholesky factorization of the covariance matrix of dimension the num-
ber of geospatial locations, at every iteration of the optimization process. To
reduce algorithmic complexity and memory footprint, we exploit the data spar-
sity structure of the operator and perform TLR matrix approximation based
on algebraic compression, as originally introduced in [5,6,13,14]. This necessi-
tates the development of new kernels composed of several successive calls to
BLAS/LAPACK functions (e.g., QR/GEMM/SVD), including the most time-
consuming, i.e., TLR-GEMM operating on thin-shaped pairs of U/V matrices
using the lower part of the symmetric matrix. To increase hardware occupancy,
a left-looking variant of the TLR-Cholesky is employed in [11], which then per-
mits to expose opportunities for batched GEMM kernel executions. For instance,
Fig. 9 shows the updates on the matrix tile in red that requires batched GEMMs
involving the compressed tiles located in the green/yellow/blue (overlapped)
regions. These algorithmic steps are critical to make the IPU compatible with
such big data applications otherwise intractable.

5.4 Wireless Communications

The increased number of connected devices and data demand under extreme low
latency puts today’s base station under a huge burden. Massive Multiple-Input
Multiple-Output (M-MIMO) technology uses hundreds of antennas at base-
station to fulfill the requirement of next-generation networks in terms of data
rate and service quality while supporting a huge number of connected devices.
However, this technology suffers from high signal detection complexity and accu-
racy, which is critical for several applications, such as self-driving cars.

Indeed, reducing M-MIMO detection latency to meet the real-time require-
ment while guaranteeing good detection accuracy represents a challenging prob-
lem. Linear detection algorithms maintain low complexity. However, their lack of

134 H. Ltaief et al.

reliability cannot be accepted [43]. Optimal non-linear detection approaches [41]
have high accuracy, but they are not scalable due to the M-MIMO exponential
complexity. The multi-level detection approach proposed in [10,15] is a promis-
ing scalable and accurate approach for M-MIMO detection problem. It itera-
tively extends a single path with several symbols within L levels until reaching
a complete solution path with the shortest distance among all existing paths.
These symbols represent the best combination of aggregating multiple levels.
This technique increases the accuracy in terms of error rate performance since it
uses coefficients from multiple levels to better distinguish the optimal path. As
a result, the more levels used, the more confident we are in getting near-optimal
solutions.

Fig. 9. Tile low-rank Cholesky factoriza-
tion powered by a batch GEMM for cli-
mate applications.

Fig. 10. Massive MIMO workflow pow-
ered by a batch GEMM detection for
wireless communication.

The computation of these distances can be casted in terms of small matrix-
matrix multiplication operations (i.e., GEMM) with dimensions M=K=L and N
the number of paths within the window. These well-established GEMM kernels
increase the arithmetic intensity of the algorithm and may account up to 80%
of the global execution time of the method. However, as highlighted in Fig. 10,
the resulting matrix generated by this multi-level algorithm has a short and
wide shape, which may prevent it from extracting the full hardware potential,
especially in presence of disaggregated memory resources as in IPUs. The sin-
gle short and wide GEMM must be redesigned into a batched GEMM, while
mapping each Bi and Ci blocks along with A onto the local memory.

Steering Customized AI Architectures for HPC Scientific Applications 135

6 Implementation Details

In the case of the Graphcore Poplar SDK, all linear algebra operations like
MVM and GEMM are exposed in form of the PopLibs C++ API that was built
from the ground up as a foundation for AI frameworks such as PyTorch and
TensorFlow. It is well optimized for this task and allows the user to leverage a
high number of independent tiles without needing to manually split the workload
among them. It is also based on the concept of computation graphs whereby all
compute operations are first compiled into one or more graphs and only then
run in this form on the IPU. Those two assumptions make the PopLibs API
very different from the standard BLAS interface where parallelism is handled
outside of BLAS and compute kernels are run as soon as they are called. It is
not straightforward to create a translation layer of BLAS calls which the CPU
implementation of TLR-MVM is dependent on to be used on the PopLibs API.

The logical equivalent of MVM and GEMM BLAS calls in FP32 in PopLibs
is the matMul function. For the computational astronomy applications, the real
datasets fit in IPU local memory so a single call to PopLibs matMul function
can be issued, while ensuring proper mapping is done onto the disaggregated
memory resources to achieved the required throughput. For the seismic imag-
ing application and its large datasets, the TLR-MVM algorithm comes to the
rescue to reconcile the IPU architecture with the application. TLR-MVM algo-
rithm performs multiple MVM kernels on stacked tile columns (Fig. 4) and rows
(Fig. 6), with in-between intermediate slicing phase (Fig. 5). PopLibs offers a
matMulGrouped call that aggregates multiple independent MVM or GEMM
into a single call and schedules all of them to be performed in parallel, dis-
tributed amongst IPU tiles. The TLR-MVM implementations on IPUs comes
down to a sequence of three functions, as described in Algorithm 1: (1) perform
batched MVM on the group of matrix-vector pairs where each pair consists of
stacked tile column Vj and corresponding nb portion of the input vector x to
get the set of output vectors Y v, (2) project/slice the set of output vectors Y v
from Vj bases to Uj bases to get the set of output vectors Y u, and (3) per-
form batched MVM on group of matrix-vector pairs where each pair consists of
stacked tile row Ui and corresponding output vector column of Y u. However,
the dimensions in all multiplications must be equal. In TLR-MVM, each stacked
tile column/row can have different dimensions after matrix compression, as seen
for the seismic imaging application. To leverage the parallelism capabilities of
PopLibs, it is then necessary to make all dimensions equal to avoid overheads
from stragglers due to the BSP model of IPU, as explained in Sect. 4. There-
fore, as shown in Algorithm 2, we need to pad stacked tiles columns/rows with
zeros at least up to the size of the biggest element. The actual size of padding
is then determined empirically to deliver the best performance with acceptable
overheads on memory utilization.

For the climate application, the large dense data-sparse matrix needs to be
compressed first using TLR algebraic compression [6,13,14]. The TLR Cholesky
factorization can then be redesigned in a left-looking variant [11] to further
expose batched GEMM operations that account for most of the elapsed time.

136 H. Ltaief et al.

Algorithm 1: Poplar pseudo-code of TLR-MVM.
1: Yv = poplin::matMulGrouped(V,X) (i.e., batch MVM of V bases, see Fig. 4)
2: Yu = popops::multiSlice(Yv) (i.e., project from Yv to Yu via slicing, see Fig. 5)
3: Y = poplin::matMulGrouped(U,Yu) (i.e., batch MVM of U bases, see Fig. 6)

For the wireless communication application, the redesign of the detection algo-
rithm into an efficient GEMM-based approach [10,15] enables to leverage high
throughput of customized hardware features for such a massively parallel oper-
ation. Both applications can offload their batched GEMM on IPUs by using
PopLibs matMulGrouped function to address the computational and curse of
dimensionality challenges for the former and to meet the real-time constraints
for the latter by achieving high hardware occupancy.

Algorithm 2: Pseudo-code of the offline zero padding step.

Require: Compress A
Ensure: max = 0
1: for each tile column do
2: if sum of ranks > max then
3: max = sum of ranks
4: end if
5: end for
6: for each tile row do
7: if sum of ranks > max then
8: max = sum of ranks

9: end if
10: end for
11: mod = 200 (identified empirically)
12: max = max + mod - max % mod
13: for each stacked tile column Vi do
14: append (max - sum of ranks) zeros
15: end for
16: for each stacked tile row Ui do
17: append (max - sum of ranks) zeros
18: end for

7 Performance Results

Fig. 11. Hardware/software descriptions and programming models.

The experiments are carried on six architectures, i.e., Intel IceLake (codenamed
ICX), AMD Epyc Milan (Milan), Fujitsu A64FX (A64FX), NEC SX-Aurora

Steering Customized AI Architectures for HPC Scientific Applications 137

TSUBASA (Aurora), NVIDIA A100 GPU (A100), and Graphcore Bow IPUs
(IPUs). A detailed hardware and software descriptions along with the program-
ming models are illustrated in Fig. 11. We report performance from the median
obtained out of 1000 runs on IPUs. All computations are performed using IEEE
754 FP32 arithmetic.

Figure 12 shows the performance of batched dense MVM for the astron-
omy application. The main numerical kernel, i.e., FP32 Level-2 BLAS MVM, is
deployed on single IPU using the real datasets from the MAVIS flagship MCAO
instrument for ESO’s Very Large Telescope [36], which engenders batched MVM
operations on a 5K X 20K matrix size [28] to be performed in real-time. Our
batched dense MVM implementation on IPUs achieves 5X speedup factor against
Aurora and up to 150X against Milan (DDR4 memory). In terms of absolute
performance, our batched dense MVM implementation scores 2 Tflops/s for a
Level-2 BLAS operation that is usually limited in performance by the bus bandi-
wdth. To give a perspective, the obtained performance is equivalent to half of
LINPACK benchmark (FP32) on the two-socket 26-core Intel IceLake system.

(a) Time-to-solution. (b) Sustained bandwidth. (c) Execution rate.

Fig. 12. Performance of Dense MVM for the astronomy application.

For the seismic imaging application, the batched dense MVM is not an option
anymore for IPUs since the large matrix size in addition to the single complex
precision do not allow the matrix to fit on the on-chip memory. Therefore, we
have to use TLR algebraic compression on the matrix and deploy our TLR-MVM
kernel. We design our single complex TLR-MVM into two FP32 TLR-MVM for
handling the real and imaginary parts. With TLR matrix approximations, the
matrices can now fit into the local memory of the IPUs. To further improve
performance, we apply two optimizations: reordering and padding, as explained
in Sects. 5.2 and 6, respectively. The former reduces memory footprint and time
complexity, while the latter ensures load balance on IPUs. Figure 13 shows the
impact of padding (represented by the stairs shape since matrices are clustered
into bins to mitigate the padding overheads) in terms of MB with limited over-
head on all frequency matrices using the default and Hilbert ordering schemes.

138 H. Ltaief et al.

(a) Normal ordering. (b) Hilbert ordering.

Fig. 13. Overhead (in MB) of padding for the seismic imaging application.

Figure 14 shows the performance of TLR-MVM for the seismic imaging appli-
cation using Hilbert ordering on two IPUs. We do not show the slower perfor-
mance obtained for the default ordering due to space limitation. The scalability
on two IPUs is a bit limited but this is also expected due to the small memory
footprint after applying Hilbert ordering that does not permit saturation.

(a) Time-to-solution. (b) Sustained bandwidth. (c) Execution rate.

Fig. 14. TLR-MVM performance for the seismic application on two IPUs.

(a) Time-to-solution. (b) Sustained bandwidth. (c) Execution rate.

Fig. 15. TLR-MVM performance comparisons for the seismic application.

Figure 15 highlights performance comparisons of TLR-MVM on 150 fre-
quency matrices for the seismic imaging application against other hardware

Steering Customized AI Architectures for HPC Scientific Applications 139

architectures. Our TLR-MVM implementation achieves up to 14X performance
speedup against Milan. In terms of absolute performance, our implementation
scores more than 1 Tflops/s for a kernel that is intrinsically memory-bound.

Figure 16 shows the performance of batched GEMM for wireless commu-
nication and climate prediction applications. We only compare against GPUs
since x86/ARM/Vector are not meant for compute-bound kernels. The wireless
communication batch size (M=N=K=8) comes from aggregating four tree
levels, resulting in a real matrix A with eight rows and columns. The batch
count, on the other hand, refers to the total number of possible combinations.
For instance, aggregating four levels with 32-QAM modulation generates 8M
combinations computed resulting in a batch count close to 1M. The batched
GEMM in the climate application needs to be grouped until each single matrix
block fits the local memory, while ensuring an even workload distribution. Com-
pared to [10] (but rerun on NVIDIA A100 with 1.1 Tflops/s) and [11] (results
obtained on NVIDIA V100 with 1.1 Tflops/s), we achieve 25X and 40X for wire-
less communication and climate applications, respectively. By launching these
kernels in batched mode, we activate all tiles on the IPUs, allowing high abso-
lute performance, while preserving the integrity of the IPU hardware resource
disaggregation.

Fig. 16. Batched GEMM performance for MIMO and climate applications.

8 Limitations and Perspectives

While the paper demonstrates the capabilities of IPUs, there are some areas
for improvement for Poplar SDK, e.g., enabling support for a standard
BLAS/LAPACK interface. Currently, porting HPC applications based on TLR-
MVM kernels requires the developer to write a separate implementation for IPU
that is fundamentally different from industry-standard solutions. This type of
support is a challenging task to accomplish considering how the Poplar SDK is

140 H. Ltaief et al.

designed. However, Graphcore is already working on delivering this. For instance,
this will enable to run the compression phase on IPUs instead of the host and
ensure the whole computational pipeline is resident on the chip. While this may
not be a problem for seismic imaging application since the compression is needed
only once upfront, it may raise performance bottlenecks for the climate/weather
applications application that requires matrix factorization and solve at every
iteration of the optimization procedure. One element that has not been men-
tioned yet is the graph compilation time. Poplar builds one compute graph that
contains all the operations instead of running small compute kernels. This allows
for greater runtime performance as there is very little communication required
between the x86 host and the IPU. It also allows Poplar to apply multiple graph-
level optimisations that further improves performance, but at the cost of graph
compilation time increase. In some cases, this can become problematic and reach
minutes of x86 host time to perform a fraction of a second of compute on the
IPU. Whereas it can work very well for AI tasks when the same set of operations
is run thousands of times, this can become problematic for the one-time compute
kernels which are commonplace in HPC.

9 Conclusion and Future Work

This paper presents necessary algorithmic techniques to make the Graphcore
Bow IPUs compliant with state-of-the-art HPC scientific applications. Based
on low-rank matrix approximations and batched matrix-matrix multiplication,
we leverage the high bandwidth and throughput of IPUs and deliver high per-
formance with four different applications that share common matrix algebra
operations. We report speedup factors up to 150X/14X/25X/40X for computa-
tional astronomy, seismic imaging, wireless communication, and climate/weather
predictions, respectively, against a myriad of hardware architectures. This high-
lights the need to pursue the matricization efforts to ensure HPC applications
can keep up with latest AI hardware advancements. In terms of algorithmic
innovation, algebraic compression and batched execution appear to be critical
ingredients with a significant impact on performance and throughput, not only
on IPUs as studied herein, but also on a myriad of hardware architectures from
a relative performance perspective. For future work, we would like to explore
FP16 for some of these HPC applications and demonstrate the applicability of
mixed-precision computations [29].

References

1. The European Extremely Large Telescope (2023). https://elt.eso.org/
2. The Keck Observatory (2023). https://keckobservatory.org/
3. The Subaru Telescope (2023). https://www.subarutelescope.org/en/
4. The Very Large Telescope (2023). https://www.eso.org/public/teles-instr/

paranal-observatory/vlt/

https://elt.eso.org/
https://keckobservatory.org/
https://www.subarutelescope.org/en/
https://www.eso.org/public/teles-instr/paranal-observatory/vlt/
https://www.eso.org/public/teles-instr/paranal-observatory/vlt/

Steering Customized AI Architectures for HPC Scientific Applications 141

5. Abdulah, S., Ltaief, H., Sun, Y., Genton, M.G., Keyes, D.E.: ExaGeoStat: a high
performance unified software for geostatistics on manycore systems. IEEE Trans.
Parallel Distrib. Syst. 29(12), 2771–2784 (2018). https://doi.org/10.1109/TPDS.
2018.2850749

6. Akbudak, K., Ltaief, H., Mikhalev, A., Keyes, D.: Tile low rank Cholesky factor-
ization for climate/weather modeling applications on manycore architectures. In:
Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC High Performance 2017.
LNCS, vol. 10266, pp. 22–40. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-58667-0 2

7. Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.Y., Weisbecker,
C.: Improving multifrontal methods by means of block low-rank representations.
SIAM J. Sci. Comput. 37(3), A1451–A1474 (2015)

8. Amundsen, L.: Elimination of free-surface related multiples without need of a
source wavelet. Geophysics 66, 327–341 (2001)

9. Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUs for cosmology appli-
cations (2021). https://doi.org/10.48550/ARXIV.2106.02465

10. Arfaoui, M.A., Ltaief, H., Rezki, Z., Alouini, M.S., Keyes, D.: Efficient sphere
detector algorithm for massive MIMO using GPU hardware accelerator. Procedia
Comput. Sci. 80, 2169–2180 (2016). https://doi.org/10.1016/j.procs.2016.05.377

11. Boukaram, W., Zampini, S., Turkiyyah, G., Keyes, D.E.: H2OPUS-TLR: high per-
formance tile low rank symmetric factorizations using adaptive randomized approx-
imation. CoRR abs/2108.11932 (2021)

12. Burchard, L., Moe, J., Schroeder, D.T., Pogorelov, K., Langguth, J.: iPUG: acceler-
ating breadth-first graph traversals using manycore Graphcore IPUs. In: Chamber-
lain, B.L., Varbanescu, A.-L., Ltaief, H., Luszczek, P. (eds.) ISC High Performance
2021. LNCS, vol. 12728, pp. 291–309. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-78713-4 16

13. Cao, Q., et al.: Reshaping geostatistical modeling and prediction for extreme-scale
environmental applications. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (2022). https://
doi.org/10.5555/3571885.3571888

14. Cao, Q., et al.: Extreme-scale task-based cholesky factorization toward climate
and weather prediction applications. In: Proceedings of the Platform for Advanced
Scientific Computing Conference, pp. 1–11 (2020)

15. Dabah, A., Ltaief, H., Rezki, Z., Arfaoui, M.A., Alouini, M.S., Keyes, D.: Perfor-
mance/complexity trade-offs of the sphere decoder algorithm for massive MIMO
systems. arXiv preprint arXiv:2002.09561 (2020)

16. Davies, R., Kasper, M.: Adaptive optics for astronomy. Annu. Rev. Astron.
Astrophys. 50(1), 305–351 (2012). https://doi.org/10.1146/annurev-astro-081811-
125447

17. Domke, J., et al.: Matrix engines for high performance computing: a paragon of per-
formance or grasping at straws? In: IPDPS, pp. 1056–1065. IEEE (2021). https://
doi.org/10.1109/IPDPS49936.2021.00114

18. Ferreira, F., et al.: Hard real-time core software of the AO RTC COSMIC platform:
architecture and performance. In: Schreiber, L., Schmidt, D., Vernet, E. (eds.)
Adaptive Optics Systems VII. vol. 11448, p. 1144815. International Society for
Optics and Photonics, SPIE (2020). https://doi.org/10.1117/12.2561244

19. Ferreira, F., Gratadour, D., Sevin, A., Doucet, N.: Compass: an efficient GPU-
based simulation software for adaptive optics system. In: 2018 International Con-
ference on High Performance Computing and Simulation (HPCS), pp. 180–187
(2018). https://doi.org/10.1109/HPCS.2018.00043

https://doi.org/10.1109/TPDS.2018.2850749
https://doi.org/10.1109/TPDS.2018.2850749
https://doi.org/10.1007/978-3-319-58667-0_2
https://doi.org/10.1007/978-3-319-58667-0_2
https://doi.org/10.48550/ARXIV.2106.02465
https://doi.org/10.1016/j.procs.2016.05.377
https://doi.org/10.1007/978-3-030-78713-4_16
https://doi.org/10.1007/978-3-030-78713-4_16
https://doi.org/10.5555/3571885.3571888
https://doi.org/10.5555/3571885.3571888
http://arxiv.org/abs/2002.09561
https://doi.org/10.1146/annurev-astro-081811-125447
https://doi.org/10.1146/annurev-astro-081811-125447
https://doi.org/10.1109/IPDPS49936.2021.00114
https://doi.org/10.1109/IPDPS49936.2021.00114
https://doi.org/10.1117/12.2561244
https://doi.org/10.1109/HPCS.2018.00043

142 H. Ltaief et al.

20. Gepner, P.: Machine learning and high-performance computing hybrid systems, a
new way of performance acceleration in engineering and scientific applications. In:
2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS),
pp. 27–36 (2021). https://doi.org/10.15439/2021F004

21. Graphcore: Tile Vertex ISA (2022). https://docs.graphcore.ai/projects/isa/en/
latest/ static/Tile-Vertex-ISA 1.2.3.pdf

22. Gratadour, D., et al.: MAVIS real-time control system: a high-end implementation
of the COSMIC platform. In: Schreiber, L., Schmidt, D., Vernet, E. (eds.) Adaptive
Optics Systems VII, vol. 11448, p. 114482M. International Society for Optics and
Photonics, SPIE (2020). https://doi.org/10.1117/12.2562082

23. van Groenestijn, G.J., Verschuur, D.J.: Estimating primaries by sparse inversion
and application to near-offset data reconstruction. Geophysics 74, 1MJ–Z54 (2009).
https://doi.org/10.1190/1.3111115

24. Hong, Y., Ltaief, H., Ravasi, M., Gatineau, L., Keyes, D.: Accelerating seismic
redatuming using tile low-rank approximations on NEC SX-Aurora TSUBASA.
Supercomput. Front. Innov. 8 (2021). https://doi.org/10.14529/jsfi210201

25. Jacquelin, M., Araya-Polo, M., Meng, J.: Scalable distributed high-order stencil
computations. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (2022). https://doi.org/10.
5555/3571885.3571924

26. Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU
architecture via microbenchmarking. arXiv preprint arXiv:1912.03413 (2019)

27. Lopez, G.A., Verschuur, D.: Closed-loop surface-related multiple elimination and
its application to simultaneous data reconstruction. Geophysics 80, V189–V199
(2015). https://doi.org/10.1190/geo2015-0287.1

28. Ltaief, H., Cranney, J., Gratadour, D., Hong, Y., Gatineau, L., Keyes, D.: Meeting
the real-time challenges of ground-based telescopes using low-rank matrix com-
putations. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (2021). https://doi.org/10.1145/
3458817.3476225

29. Ltaief, H., Genton, M.G., Gratadour, D., Keyes, D.E., Ravasi, M.: Responsibly
reckless matrix algorithms for HPC scientific applications. Comput. Sci. Eng.
24(4), 12–22 (2022). https://doi.org/10.1109/MCSE.2022.3215477

30. van der Neut, J., Vasconcelos, I., Wapenaar, K.: On Green’s function retrieval by
iterative substitution of the coupled Marchenko equations. Geophys. J. Int. 203,
792–813 (2015). https://doi.org/10.1093/gji/ggv330

31. Ravasi, M.: Rayleigh-Marchenko redatuming for target-oriented, true-amplitude
imaging. Geophysics 82, S439–S452 (2017). https://doi.org/10.1190/geo2017-0262.
1

32. Ravasi, M., Vasconcelos, I.: An open-source framework for the implementation
of large-scale integral operators with flexible, modern HPC solutions - enabling
3D Marchenko imaging by least-squares inversion. Geophysics 86, WC177–WC194
(2021). https://doi.org/10.1190/geo2020-0796.1

33. Ravasi, M., Vasconcelos, I., Curtis, A., Kritski, A.: Multi-dimensional free-surface
multiple elimination and source deblending of Volve OBC data. In: 77th Conference
and Exhibition, EAGE, Extended Abstracts (2015). https://doi.org/10.3997/2214-
4609.201413355

34. Ravasi, M., Hong, Y., Ltaief, H., Keyes, D., Vargas, D.: Large-scale Marchenko
imaging with distance-aware matrix reordering, tile low-rank compression, pp.
2606–2610 (2022). https://doi.org/10.1190/image2022-3744978.1

https://doi.org/10.15439/2021F004
https://docs.graphcore.ai/projects/isa/en/latest/_static/Tile-Vertex-ISA_1.2.3.pdf
https://docs.graphcore.ai/projects/isa/en/latest/_static/Tile-Vertex-ISA_1.2.3.pdf
https://doi.org/10.1117/12.2562082
https://doi.org/10.1190/1.3111115
https://doi.org/10.14529/jsfi210201
https://doi.org/10.5555/3571885.3571924
https://doi.org/10.5555/3571885.3571924
http://arxiv.org/abs/1912.03413
https://doi.org/10.1190/geo2015-0287.1
https://doi.org/10.1145/3458817.3476225
https://doi.org/10.1145/3458817.3476225
https://doi.org/10.1109/MCSE.2022.3215477
https://doi.org/10.1093/gji/ggv330
https://doi.org/10.1190/geo2017-0262.1
https://doi.org/10.1190/geo2017-0262.1
https://doi.org/10.1190/geo2020-0796.1
https://doi.org/10.3997/2214-4609.201413355
https://doi.org/10.3997/2214-4609.201413355
https://doi.org/10.1190/image2022-3744978.1

Steering Customized AI Architectures for HPC Scientific Applications 143

35. Rigaut, F., Neichel, B.: Multiconjugate adaptive optics for astronomy. Annu. Rev.
Astron. Astrophys. 56(1), 277–314 (2018)

36. Rigaut, F.E.A.: MAVIS conceptual design. In: Society of Photo-Optical Instrumen-
tation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, vol. 11447, p. 114471R (2020). https://
doi.org/10.1117/12.2561886

37. Rojek, K., Wyrzykowski, R., Gepner, P.: AI-accelerated CFD simulation based
on OpenFOAM and CPU/GPU computing. In: Paszynski, M., Kranzlmüller, D.,
Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS,
vol. 12743, pp. 373–385. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77964-1 29

38. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990). https://doi.org/10.1145/79173.79181

39. Vargas, D., Vasconcelos, I., Ravasi, M., Luiken, N.: Time-domain multidimen-
sional deconvolution: a physically reliable and stable preconditioned implemen-
tation. Remote Sens. 13, 3683 (2022). https://doi.org/10.3390/rs13183683

40. Vargas, D., Vasconcelos, I., Ravasi, M., Sripanich, Y.: Scattering-based focusing
for imaging in highly-complex media from band-limited, multi-component data.
Geophysics (2021). https://doi.org/10.1190/geo2020-0939.1

41. Viterbo, E., Boutros, J.: A universal lattice code decoder for fading channels. IEEE
Trans. Inf. Theory 45(5), 1639–1642 (1999). https://doi.org/10.1109/18.771234

42. Wapenaar, C.P.A., Berkhout, A.J.: Elastic wave field extrapolation: redatum-
ing of single- and multi-component seismic data. Elsevier Science, Philadel-
phia (2014). https://www.elsevier.com/books/elastic-wave-field-extrapolation/
berkhout/978-0-444-88472-5

43. Xie, Z., Short, R.T., Rushforth, C.K.: A family of suboptimum detectors for coher-
ent multiuser communications. IEEE J. Sel. Areas Commun. 8(4), 683–690 (1990).
https://doi.org/10.1109/49.54464

44. Zhang, L., Thorbecke, J., Wapenaar, K., Slob, E.: Transmission compensated pri-
mary reflection retrieval in the data domain and consequences for imaging. Geo-
physics 84, Q27–Q36 (2019). https://doi.org/10.1190/geo2018-0340.1

https://doi.org/10.1117/12.2561886
https://doi.org/10.1117/12.2561886
https://doi.org/10.1007/978-3-030-77964-1_29
https://doi.org/10.1007/978-3-030-77964-1_29
https://doi.org/10.1145/79173.79181
https://doi.org/10.3390/rs13183683
https://doi.org/10.1190/geo2020-0939.1
https://doi.org/10.1109/18.771234
https://www.elsevier.com/books/elastic-wave-field-extrapolation/berkhout/978-0-444-88472-5
https://www.elsevier.com/books/elastic-wave-field-extrapolation/berkhout/978-0-444-88472-5
https://doi.org/10.1109/49.54464
https://doi.org/10.1190/geo2018-0340.1

GPU-Based Low-Precision Detection
Approach for Massive MIMO Systems

Adel Dabah1(B), Hatem Ltaief1, Zouheir Rezki2, Slim Alouini1,
and David Keyes1

1 Division of Computer, Electrical, and Mathematical Sciences and Engineering,
King Abdullah University of Science and Technology,

Thuwal, Jeddah 23955, Saudi Arabia
{Adel.Dabah.1,Hatem.Ltaief,slim.alouini,David.Keyes}@kaust.edu.sa

2 University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
zrezki@ucsc.edu

Abstract. Massive Multiple-Input Multiple-Output (M-MIMO) uses
hundreds of antennas in mobile communications base stations to increase
the amount of transmitted data and the number of connected devices in
5G and beyond. However, M-MIMO systems increase the complexity
of recovering the transmitted data (detection phase). To address this
challenge, we leverage low-precision arithmetic in recent NVIDIA GPUs
to improve the latency/scalability/accuracy of M-MIMO detection. We
propose a GPU tree-based detection algorithm that aggregates multiple
tree levels and formulates the computation as a matrix multiplication
operation followed by a square-norm calculation and sorting (reduction)
phase. This process is repeated until reaching the last level of the detec-
tion tree. The obtained results show near-optimal data detection with
a 10× speedup compared to a two-socket 28-core IceLake CPU imple-
mentation. We further deploy low-precision arithmetic operations. We
show that moving from single-precision 32-bit floating-point arithmetic
(FP32) to half-precision 16-bit representation (FP16) does not affect the
accuracy performance while translating into an additional 1.7× speedup.
In addition, exploiting 8-bit integer representation results in an accept-
able error rate degradation that can be compensated by increasing the
number of aggregated levels. In addition, we propose a multi-GPU ver-
sion that computes the matrix-multiplication operation of subsequent
iterations in parallel. This latter operation represents more than 80% of
the elapsed time for dense constellations. Results with four A100 GPUs
show an additional 2.3× relative speedup compared to our single GPU
version. The achieved accuracy/scalability balance may accelerate the
deployment of this technology and promote low-precision GPU compu-
tations within the wireless communication community.

Keywords: GPU MIMO detection · Low-Precision Arithmetic

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 144–163, 2023.
https://doi.org/10.1007/978-3-031-32041-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-32041-5_8

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 145

1 Introduction

GPU accelerators enable an increase in computational power by lowering the
arithmetic precision. This paper demonstrates the gains achievable by using
GPUs with various arithmetic precision to meet the requirements of Next-
Generation mobile communication networks in general and Massive Multiple-
Input Multiple-Output (M-MIMO) detection in particular. M-MIMO technology
is a key enabling technology for 5G and 6G mobile communication networks.
It uses hundreds of antennas to send and receive data [7,11]. However, when
increasing the number of antennas, the signal detection phase, which estimates
the transmitted data, becomes a bottleneck, with an exponential complexity in
the number of transmit-antennas for optimal detection. In this context, our goal
is to speed up this phase using multiple GPUs with various arithmetic precision.
Two main categories of detection methods exist, i.e., linear and nonlinear algo-
rithms. On the one hand, linear detection algorithms operate under real-time
constraints but fail to estimate the transmitted data correctly due to noise. On
the other hand, nonlinear algorithms, e.g., the Sphere Decoder (SD) [6,8], give
an excellent estimation of the transmitted data but require significant execution
time. Nonlinear algorithms operate on a search tree that models all possible
combinations of the transmitted data. Each path is defined by a set of symbols
(data), from which a distance from the received signal can be calculated. The
detection goal is to find the path with the shortest distance representing the
originally transmitted data.

In this paper, we introduce a low-precision multi-level approach. It itera-
tively extends one path with several symbols representing the best combination
in terms of distance within a window until we reach a complete path (solution).
At each iteration, the algorithm combines successive levels within a window and
computes all distances via a matrix-matrix multiplication exploiting tensor core
capabilities in recent NVIDIA GPUs. The matrix shape is short and wide in
dimensions representing the number of levels and all possible paths in a win-
dow. We then calculate the square norm and launch a sorting (reduction) phase
to select the best extension. By increasing the number of aggregated levels, we
improve the accuracy, but this comes at the price of higher complexity, there
being a trade-off between complexity and accuracy. To mitigate the complex-
ity and maintain good accuracy, we first exploit low-precision arithmetic (i.e.,
FP16 and INT8) and engage NVIDIA tensor cores with fast matrix engines. We
report results on A100 GPU and achieve a 10× speedup compared to multicore
CPU implementation on a two-socket 28-core Intel IceLake CPU. In addition,
exploiting low-precision gives an additional 1.7× speedup without impacting the
accuracy in terms of error rate. To further reduce the complexity, we propose a
multi-GPU version that improves the complexity by reducing the matrix multi-
plication time, representing more than 80% of the global execution time for dense
constellations. The idea is to overlap all matrix multiplication operations per-
formed during the detection process since they are entirely independent and can
be processed in an embarrassingly parallel fashion using multiple GPUs. This
breaks the inherent sequential behavior of the detection phase, which results

146 A. Dabah et al.

in an additional 2.3× improvement. Overall, we achieved up to 40× relative
speedup compared to our multi-CPU implementation.

The rest of the paper is structured as follows. Section 2 introduces basic
mobile communication concepts. Section 3 reviews the literature on high-
performance MIMO processing. Section 4 presents the system model. Section 5
describes the details of our multi-level approach and its implementation. Results
and discussions about the complexity and performance are given in Sect. 7.
Finally, Sect. 8 concludes this paper and highlights our future plans.

2 Brief Background

M-MIMO incorporates hundreds of antennas in telecommunication base stations
to enhance the quality of service for several 5G applications, from video stream-
ing and gaming to self-driving cars and smart cities. The more antennas we
integrate, the more data we can send (resp. receive) simultaneously. i.e., One on
each antenna.

2.1 Modulation

Modulation is the act of changing a signal to transmit data. It represents a col-
lection of symbols that can be sent directly on one antenna in one transaction.
A symbol is represented by a complex number, i.e., real and imaginary parts.
The number of symbols in a given modulation is defined as 2b, where b is the
number of bits encapsulated in a symbol. For instance, in Binary Phase-shift
keying (BPSK) modulation, one bit is sent per symbol (b = 1). Therefore, this
modulation includes two symbols (1,0) and (−1,0). In 64 Quadrature Amplitude
Modulation (64-QAM), we can send six bits per symbol (b = 6). This repre-
sents 64 symbols in total. The higher the modulation, the better the data rate.
However, it also increases the communication system’s error rate and complexity.

2.2 Signal to Noise Ratio (SNR)

The SNR measures the relevant signal strength in decibels (dB) compared to the
noise signal that can get in the way. Therefore, the higher the SNR, the better
the communication system. A high-SNR value indicates that the user is close to
the transmit antenna. A user can be assigned a specific modulation based on the
SNR value. For instance, a BPSK modulation in the low-SNR regime versus a
64-QAM modulation if the user has a high SNR.

2.3 Error Rate and Time Complexity

The error rate performance is a ratio between transmitted data and the one
recovered correctly at the receiver side. The error rate varies according to the
detection algorithm used. The lower the error rate, the better the communication
system is. In general, 10−2 uncoded symbol error rate (SER) is considered an

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 147

acceptable error performance for many applications. For systems with powerful
error correction codes, the previous SER readily translates into 10−5−10−6 SER
error performance. The detection latency also depends on the complexity of the
detection algorithm and the application area. In general, 10 ms is considered
an acceptable latency for mobile communications. A good detection algorithm
achieves a good trade-off between complexity and error rate performance.

For more information about communication science and engineering, please
refer to e.g., [13].

3 Related Work

Many researchers have exploited multi-core CPUs and GPUs to accelerate non-
linear detection algorithms.

Chen and Leib [4] propose a GPU-based Fixed Complexity Sphere Decoder.
The authors reported a relative speedup of 7× for large MIMO systems. However,
the time of the approach is an order of magnitude higher compared to 10 ms
requirements.

Arfaoui et al. [3] propose a GPU-based SD algorithm in which a Breadth-
First Search (BFS) exploration strategy is used to increase the GPU resource
occupancy. However, BFS increases the complexity, especially in low SNR region.
The authors reported excellent error rate performance. However, the proposed
approach has a scalability limitation, especially for large constellations due to
the exponential complexity of the SD.

Husmann et al. [9] propose a flexible parallel decoder for MIMO systems using
GPU and field-programmable gate array (FPGA) architectures. Their algorithm
contains two phases. A first pre-processing phase chooses parts of the SD search
tree to explore, and a second phase maps each of the chosen parts of the SD tree
to a single processing element (GPU or FPGA). The results are presented for a
maximum of a 12 × 12 MIMO system using 64-QAM modulation.

Nikitopoulos et al. [10] propose the design and implementation of a parallel
multi-search SD approach using multicore CPU and Very-Large-Scale Integra-
tion (VLSI) architectures. After the pre-processing phase, in which they obtain
a processing order of the tree branches, the authors split the search tree into
several sub-trees. Each sub-tree is then mapped on a processing element and
explored using a depth-first strategy. However, the authors do not consider the
load-balancing problem, which may arise in modulations with dense constella-
tions. The authors approximate results for a maximum of 16×16 MIMO system
using 64-QAM modulation.

Dabah et al. [2,5] propose a parallel multi-agent approximate approach that
runs simultaneously a single agent with a SD instance while the remaining agents
execute concurrent k-best algorithm to accelerate SD search tree.

Despite the decent error rate performance, the above-proposed methods still
suffer from scalability limitations. For example, the largest MIMO configuration
reported in the above works is for 32 antennas under 10 ms requirements, which
is far from massive MIMO potential. In fact, all works mentioned above are based

148 A. Dabah et al.

on the SD algorithm, which has an exponential complexity (2b)M , with M the
number of antennas and b the number of bits per symbol. Our GPU multi-level
algorithm has a linear complexity M(2b)L, where L is the number of combined
levels L ∈ {1, .., 4}. As a result, we report a good error rate performance for up
to 100 × 100 antennas while maintaining an excellent error rate under real-time
requirements.

Fig. 1. Example of a MIMO system where the vector s is transmitted by M transmitter
antennas via a channel matrix H . The received vector y is a collection of N receiver
antennas’ observations.

4 System Model

In this paper, we consider a MIMO system consisting of M transmit anten-
nas and N receive antennas, as depicted in Fig. 1. The transmitter sends M
data streams simultaneously to a receiver using multiple antennas via a flat-
fading channel. i.e., We consider a small-scale fading channel which is a stan-
dard model in the literature [3]. The following equation describes the base-band
MIMO model: y = Hs + n, where the vector y = [y0, ..., yN−1]T represents
the received signal. H is an N × M channel matrix, where each element hij is
a complex Gaussian random variable, with mean 0 and variance 1, that mod-
els the fading gain between the j-th transmitter and i-th receiver. The vector
s = [s0, ..., sM−1] represents the transmitted vector, where si belongs to a finite
alphabet set denoted by Ω. The input s is subject to an average power con-
straint ρ, i.e., E[‖s‖2] ≤ ρ. Finally, n = [n0, ..., nN−1]T represents the additive
white Gaussian noise with zero mean and covariance IN , where IN designates
the identity matrix of size N . With regard to the noise and channel normaliza-
tion, the average power ρ also designates the average SNR per receive antenna.
For convenience, let us consider S as the set of all possible combinations of the
transmitted vector s. The possible number of combinations corresponds to the
complexity of the MIMO system and it is calculated as follows: |S|=|Ω|M .

The two main options for decoding the received signal are linear decoders
characterized by low complexity and poor error rate performance and nonlinear

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 149

(optimal or near-optimal) decoders characterized by good error rate quality but
relatively high complexity.

Linear decoders multiply and map the received signal using a matrix denoted
by Hinv (M×N), obtained from the channel matrix H. The most common linear
decoders are Zero Forcing (ZF) and Minimum Mean Square Error (MMSE). As
for nonlinear decoders, the Maximum Likelihood [12] is the optimal decoder,
exhibiting prohibitive complexity. It calculates a posteriori probability for each
possible transmitted vector s ∈ S. In other words, the algorithm performs a
brute-force exploration of the entire search space, as shown in Eq. 1:

ŝ = argmin
s∈S

||y − Hs||2. (1)

The SD algorithm [1,14] mimics the ML decoder, but limits the search for
the optimal solution inside a sphere of radius r set initially by the user, as shown
in the Eq. 2:

||y − Hs||2 < r, where s ∈ S. (2)

The radius may then be updated subsequently at runtime to further prune the
search space and reduce the complexity.

Root

4

19

s={+1,-1,+1}

Evaluation of this leaf node is equal to
9 = g(-1)+g(-1,+1)+g(-1, +1,-+1)

13 16

s0 =-1 s0 =+1

10 9

s={+1,-1,-1}

s0 =+1s0 =-1

3

12 6

s2 =-1 s2 =+1

s1 =-1
s1 =+1s1 =-1

s1 =+1

s0 =-1 s0 =+1

7 9

Leaf
nodes

s={-1,-1,-1} s={-1,+1,+1}
s={-1,+1,-1}

s={-1,-1,+1}

Optimal
solution

8

Fig. 2. Detection search tree for a MIMO system with three transmit antennas. One
symbol is fixed at each level.

150 A. Dabah et al.

4.1 Tree-Based Representation

The problem in Eq. 2 can be transformed into another equivalent problem by
performing the QR decomposition of the channel matrix H as follows:

||y − Hs||2 = ||y − QRs||2
= ||ȳ − Rs||2, where ȳ = QHy

where Q ∈ CN ×N is an orthogonal matrix and R ∈ CN ×M is an upper
triangular matrix.

Thus, finding the supposed transmitted vector (ŝ) in Eq. (1) is equivalent to
solving the following minimization problem:

min
M∑

k=1

gk(sM −1, ..., sM −k), where (3)

gk(sM−1, ..., sM−k) = ||ȳM−k −
M−1∑

i=M−k

(r(M−k),isi)||2 (4)

where (4) represents the partial distance (PD) of a search tree node (path).
Indeed, this latter formulation of the problem allows to model all possible com-
binations of the transmitted vector as a search tree with M layers. To find the
path with the minimum distance from the received signal, the SD performs a
tree exploration to retrieve the best path.

Algorithm 1: Multi-Level Detection Pseudo-code.
Require: ȳ, R

P = {} solution vector L number of aggregated levels M number of antennas

1: while |P |! = M do

2: Generate partial paths Pi i ∈ {1, ΩL}
3: Calculate PDi i ∈ {1, ΩL}
4: Locate Pm such that PDm = min{PDi, i ∈ {1, ΩL}}
5: P = P ∪ Pm

6: end while

7: return P

5 Multi-level Approach

This section describes a multi-level approach that relies on two factors to keep
real-time requirements and a good error rate. The first factor is algorithmic
based on our multi-level technique. The second factor is efficiently exploiting the
computing power of GPU resources and its large number of processing elements.

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 151

As depicted in Algorithm 1, our approach operates on a search tree with M
levels (number of transmit antennas) and constructs only one solution named
P (complete path). Usually, one symbol is detected at each level, starting from
symbol Sm−1 at level 1 to finally reach symbol S0 at level M . Our idea is
to combine the detection of multiple and successive symbols simultaneously.
Despite the increase in the number of successors from |Ω| to |Ω|L, combining the
detection of L symbols increases the accuracy in terms of error rate performance
and reduces the number of iterations of our multi-level approach from M to
M/L. Starting from a partial path P (initially empty), our approach creates |Ω|L
partial paths (Pi / i=1,.., |Ω|L) that extend P with all possible combinations of
L symbols. After that, we calculate the partial distance (PDi) for each partial
path Pi using Eq. (5) Next, we replace P with the best partial path Pi in terms of
partial distance (minimum PDi). We repeat this process until reaching the last
level of the tree, where we return P as an approximate solution to the MIMO
detection problem.

Increasing the constellation size to 64-QAM (transmitting six bits per sym-
bol) increases the error probability to fall into neighboring symbols instead of
the transmitted one due to the noise. Our approach overcomes this issue by using
coefficients of the next lower levels to confirm which of these symbols is the right
one.

6 GPU-Based Multi-level Approaches

Increasing the aggregated levels increases the accuracy. However, it also increases
the complexity. To keep practical time complexity and good error rate even for
large constellations, we exploit low precision tensor core capacity in recent GPU
hardware. All parts of our Multi-level approach are implemented and executed
on GPU to avoid all data-transfer over the slow PCIe bus.

6.1 GPU Multi-level

We formulate our multi-level algorithm as a linear algebra operation that com-
putes the PD (evaluation) of all partial paths simultaneously and then chooses
the best one for the next iteration. Indeed, our algorithm is implemented to avoid:
(1) thread divergence, especially in generating the partial paths; (2) increasing
the compute portion of the algorithm by reformulating this process as matrix
algebra operation A ∗B + αC; and finally (3) relying on a reduction process to
find the best candidate for following iterations. More detail on efficiently exploit-
ing GPU resources in general, and half-precision in particular, is given in what
follows.

Complex to Real Transformation. Wireless communication data are mod-
eled as complex numbers. In order to exploit low-precision arithmetic, we must
perform a transformation from complex to real because there is no GPU sup-
port for low-precision computation for complex numbers. There are two ways

152 A. Dabah et al.

(b) Avoiding redundancy in computation by removing half the columns of matrices B and C

(a) Replacing each complex number by a 2x2 matrix

Fig. 3. Complex to real transformation.

to do the transformation. In the first way, we split a complex matrix into two
matrices, one matrix representing the real part and the other one representing
the imaginary part. This option creates an overhead of managing two matrices
instead of one, thus inducing an overhead in computation and memory access.
The other interesting option (preferred) is to replace each complex number with
a 2 × 2 matrix. This option is depicted in Fig. 3 (a). Therefore, Matrix A with

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 153

m rows and k columns will be transformed to a matrix with 2∗m rows and 2∗k
columns. We do the same for matrices B and C.

Matrices B and C can have millions of columns, inducing a huge number
of floating-point operations (FLOPS) and memory access. We can notice that
matrix C (multiplication result) has duplicated information (r1,i1), and (−i1,r1)
(See Fig. 3 (b)). Here, we exploit this redundancy to cut down by half the number
of flops and memory accesses in the multiplication. In this way, we reduce the size
of matrix B from 2k * 2n to 2k * n. Similarly, for matrix C. This is important
since the number of columns of matrices B and C can reach several million.

Avoiding Thread Divergence. Thread divergence appears when threads
within the same warp don’t follow the same instruction path (if-else), result-
ing in negative performance consequences. The thread divergence situation is
known when exploring trees on GPU since the branching process has many if-
else instructions.

Exploring a search tree and generating partial paths (successor nodes) at each
iteration represents a bottleneck on GPU since it involves many if-else conditions.
To answer this issue when generating partial paths (all possible combinations of
L symbols), we divide a partial path into two parts. A part common with all
partial paths (from root to node x) and a distinct part that is unique for each
partial path. For instance, the partial paths in Fig. 4 second iteration have two
parts: a common part (marked in red) from root to node x, followed by the unique
part for each partial path. The distinct part for all partial paths is represented
by a matrix B. This latter contains all possible combinations of L symbols such
that each column represents a partial path. This matrix is generated once and
does not change from one iteration to another. The only thing that changes from
one iteration to another is the common part modeled as a vector V c.

On the one hand, this decomposition allows to avoid thread divergence situ-
ations. On the other hand, it also allows reducing the size (memory and flops) of
matrix B (resp. C). Without the aforementioned decomposition, the common
part will be duplicated for all partial paths |Ω|L, which can reach millions.

New Incremental Evaluation: The evaluation for each partial path is calculated
using Eq. 4. To increase the arithmetic intensity of our algorithm, we grouped the
evaluation for all partial paths as a matrix multiplication as follows: A∗B+αC.

EPi = Ep +
L−1∑

k=0

‖Cki + Vk‖ (5)

The evaluation of a partial path Pi is the evaluation of the constructed path P
(calculated in the previous iteration) plus the square norm over column Ci + V .
Following the decomposition we did earlier, the evaluation is divided into two
parts, i.e., matrix-matrix multiplication and matrix-vector multiplication. The
square matrix A is obtained from matrix R (QR decomposition page 6.), such
that it contains the rows of L fixed symbols in the current iteration. The matrix
B is defined in the earlier section as all possible combinations of the L sym-
bols, which can reach millions of columns. Finally, the matrix C represents the

154 A. Dabah et al.

Iteration 1

Iteration 2

Iteration 3

Root node

1 2 8 {S8, S7, S6}

1 82

82

{S5, S4, S3}

{S2, S1, S0}1

1

Matrix B

Matrix B

x

821

Matrix B

Matrix B

Iteration k

Fig. 4. Branching scheme of the multi-level approach.

elements of ȳ corresponding to the L symbols in the current iteration duplicated
|Ω|L times.

The other part of the evaluation is a matrix-vector multiplication that multi-
plies Matrix A′ obtained from matrix R with the common vector V c defined ear-
lier. Sorting (Reduction): After the evaluation phase, our algorithm chooses the
best partial path in terms of evaluation, i.e., distance from the received signal.

6.2 Multi-GPU Version

As earlier stated, the multiplication used to compute the evaluation for each
partial path (A ∗ B + αC) requires nearly 80% of execution time (see Fig. 6).
In addition to using low-precision mode for computing the above multiplica-
tion, we aim to accelerate this phase further using multiple GPUs. Thanks to
our path decomposition to avoid thread divergence, matrix B remains the same
from one iteration to another. In addition, matrix A for each iteration is known
in advance. The idea behind this multi-GPU version is to overlap all the mul-
tiplication used during the detection process using multiple GPUs. As depicted
in Fig. 5, all multiplications from different iterations are performed on multiple
GPUs at the same time. This reduces all the matrix multiplication operations
to the complexity of one multiplication. The only phases that need to be done
sequentially are the norm calculation and min.

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 155

Root node

1 2 8

1 82

821

1

A0 B+αC0

A1 B+αC1

A2 B+αC2

Ak B+αCk

GPU0

GPU1

GPU2

GPUk821

x

Fig. 5. Multi-GPU version where the
matrix multiplication operations dur-
ing the whole detection process are
performed simultaneously on several
GPUs.

matrix multiplication

79%

matvec
6%

min kernel
15%

Fig. 6. Time partition of different ker-
nels (single precision) of our approach
for a 100× 100 MIMO system with 64-
QAM modulation and four levels.

7 Results and Discussions

In the following, we conduct experiments to assess our GPU-based approach’s
accuracy (error rate) and complexity. For that, we use MMSE linear detection
and the optimal GPU-SD in [3]. The exponential complexity of the SD prevents
it from dealing with large MIMO systems. For this reason, we include its per-
formance for a small MIMO system. We perform our experiments using a server
with four NVIDIA A100 GPUs with 40GB and a two-socket Intel IceLake CPU
2 GHz with 28 CPU-core and 1024 GB of main memory. For all the experiments,
we consider the case of perfect channel state information. This means that the
channel matrix is known only at the receiver. Each experiment uses randomly
generated symbols (data set). As a result, the data sets are different from one
execution to another which is close to real wireless data. All level three BLAS
operations are performed using the vendor-optimized cuBLAS library.

Figure 7 illustrates the impact of increasing the number of combined levels on
the error rate and complexity of our ML approach. We compare our results with
the accuracy of the optimal SD algorithm to show how far we are from optimal
results. Despite the attractive latency of the MMSE algorithm, this latter has
poor error rate performance, which makes it not suitable for M-MIMO. The
first observation from sub-figure (a) is the good impact of increasing the number
of levels on the error rate performance. Indeed, the accuracy of our multi-level
technique is quite close to the performance of the optimal GPU-SD [3] when
using four and five levels. However, if we look at the complexity (sub-figure (b)),

156 A. Dabah et al.

0 5 10 15 20

10−6

10−5

10−4

10−3

10−2

10−1

100

SNR

Sy
m
bo

l
E
rr
or

R
at
e
(S
E
R
)

(a) Multi-Level (ML) and optimal SD error rate results
for 11x11 MIMO with 16-QAM.

MMSE
ML 1
ML 2
ML 3
ML 4
ML 5
GPU-SD [3]

MMSE ML 1 2 3 ML 4 ML 5 GPU-SD [3]

10−1

100

Detection Approaches

D
et
ec
ti
on

ti
m
e
(m

s)

(b) Average detection time for11x11 MIMO with 16-QAM.

Fig. 7. Accuracy and latency results of our GPU ML approach compared to the linear
MMSE and the optimal SD results.

we can see a significant gap in complexity between the two approaches. Indeed,
The GPU-SD [3] has high latency since it enumerates all possible combinations of
the transmitted signal inside a given radius, which results in a massive number of
explored paths. This is not the case with our approach, which combines multiple
levels to target the best path in the search tree. This results in a limited number
of explored nodes (low latency) while achieving high accuracy. On average, our
approach (ML 5) is 40x faster than GPU-SD [3] for this small configuration.
By increasing the number of levels of our approach from one to four, we reach
the acceptable accuracy (10−2) at 13 dB instead of 22 dB, thus saving 9 dB
in power consumption with a slight increase in complexity. This represents a
good accuracy/complexity balance for communication users. Thus, increasing
the number of levels in our approach is crucial for achieving better accuracy.
However, the complexity increases accordingly. To scale the number of antennas
while keeping reasonable complexity, we exploit tensor-core capability in recent
GPUs.

Figure 6 shows the time partition of our GPU kernels for a 100 × 100 MIMO
system with 64 QAM modulation and four levels. The matrix-matrix multiplica-
tion required to evaluate partial paths represents 76% of the total execution time.
In this configuration, we have 16777216 partial paths that need to be evaluated
as matrix-matrix multiplication with m, k, and n equal to 8, 8, and 16777216,
resp. As a result, lowering the time complexity of our approach requires reducing
the complexity of the matrix multiplication operation. To achieve this goal and
study the impact of low-precision data structure on the wireless communication
field in general and MIMO detection in particular, we exploit FP16 and INT8
as follows.

Figure 8 shows the error rate performance of our approach using different
arithmetic precisions (FP32, FP16, and INT8) using respectively three and four
combined levels (ML 3, ML 4) for a 100×100 MIMO with 64-QAM modulation.

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 157

5 10 15 20 25 30

10−3

10−2

10−1

100

SNR

Sy
m
bo

l
E
rr
or

R
at
e
(S
E
R
)

(a) ML 3 Error rate using FP32, FP16, and INT8 precisions.

INT8
FP16
FP32
10−2 SER

5 10 15 20 25 30

10−3

10−2

10−1

100

SNR

Sy
m
bo

l
E
rr
or

R
at
e
(S
E
R
)

(b) ML 4 Error rate using FP32, FP16, and INT8 precisions.

INT8
FP16
FP32
10−2 SER

Fig. 8. Error rate performance using different arithmetic precision from float 32 bits
precision to the smallest integer 8 bits for a 100×100 MIMO with 64-QAM modulation.
Sub-figures (a) and (b) give the results of our algorithm with three levels (ML 3) and
four levels (ML 4), respectively.

The interesting observation from both sub-figures (a) and (b) is that our
approach performs well and can support precision loss even when using the
smallest representation of 8 bits (size of a register). Indeed, we can see from the
two sub-figures that passing from FP32 to FP16 representation of matrices A,
B, and C has no effect on the accuracy for all SNR regions. This means that the
conversion, multiplication, and accumulation in FP16 does not lead to accuracy
loss. In turn, this means that the multiplication and accumulation operations
performed during the GEMM are all within the range of FP16. Furthermore,
when moving to the smallest representation that can fit into a register(INT8),
we see a moderate variation in error rate performance. This means we are losing
some useful information. Since the accumulation for INT8 is done in integer 32
bits, the precision loss occurs when converting matrix A from Float 32 bits to
Integer 8 bits. Indeed, when scaling up matrix A, we may be out of the INT8
range (−127,127), which affects the accuracy in error rate, especially in the
high SNR region. Figure 9 shows the effect of increasing the scaling number in
the float to INT8 conversion of matrix A on the accuracy. We can identify two
phases, a first one where increasing the scaling number improves the accuracy,
and a second phase where increasing the scaling number negatively affects the
accuracy. Indeed, a large scaling number leads to integer values out of the INT8
range (−127, 127). Thus, all values above (resp. under) 127 (resp. −127) are
represented by 127 (resp. −127). Therefore, we lose useful information, which
explains the decrease in accuracy.

It seems that increasing the number of levels positively impacts the accuracy
of the INT8 version. Figure 10 investigates this behavior for 100 × 100 MIMO
with 16-QAM modulation. It shows the impact of increasing the number of levels
on the accuracy of the INT8 version in terms of error rate performance. We can
see clearly the good impact of increasing the number of levels on the accuracy

158 A. Dabah et al.

10 20 30 40 50

10−2

10−1

100

Scaling Number

Sy
m
bo

l
E
rr
or

R
at
e
(S
E
R
)

ML 4 INT8

Fig. 9. Impact of scaling number in the
float to INT8 conversion on the error
rate performance for a 100×100 MIMO
64-QAM modulation using ML 4 and
SNR = 28 dB.

5 10 15 20 2510−6

10−5

10−4

10−3

10−2

10−1

100

SNR

Sy
m
bo

l
E
rr
or

R
at
e
(S
E
R
)

INT8 ML 2
INT8 ML 3
INT8 ML 4

Fig. 10. Impact of multi-level tech-
nique in supporting integer 8-bits accu-
racy for 100×100 MIMO with 16-QAM
modulation.

of the INT8 version by saving up to five dB in power consumption, which is an
important aspect in the wireless communication domain.

From Fig. 8, we can identify two SNR regions. Low SNR region between 0 and
16 dB, where INT8 version has a similar error rate compared to FP16 and FP32
versions. After that, a second region begins where we can see the loss in error
rate performance of the INT8 version. On the one hand, reducing the precision
in the low SNR region affects the chosen path. However, this is not visible since
the error rate is very high in this region, even when using the FP32 version.
On the other hand, reducing the precision has a visible impact on the accuracy
of MIMO detection. However, Fig. 10 shows that combining more levels (ideally
four levels) reduces the impact of precision loss. Indeed, increasing the number
of levels increases the difference in terms of evaluation between the optimal path
and neighboring symbols. This compensates for the precision loss in this SNR
region.

Figure 11 gives a general view of INT8 performance for different modulations
from BPSK where we send only one bit per antenna, to 64-QAM where six bits
are sent together per antenna. We can see from Fig. 11 the limited impact of
precision loss on the accuracy of MIMO detection for all modulation and SNR
regions. We can see that the more dense the constellation, the more impact
of precision loss. Indeed, increasing the constellation size increases the error
probability and increases the impact of precision loss since this lost information
can influence the chosen path.

Figure 12 shows the impact of using different arithmetic precision on the time
complexity of our approach using four levels. We can see that 1.7× improvement
in complexity going from FP32 (32 bits) to FP16 (16 bits) without any impact
on the accuracy, as we saw earlier. We can also see that INT8 precision does not

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 159

significantly impact time complexity due to the limited support in CUDA driver
11.6. Indeed, tensor cores are currently not activated for the non-transpose cases
when launching this specific CUDA INT8 GEMM kernel. However, even when
using half-precision, which has mature support on the GPU hardware, we are
not close to the theoretical 18× speedup. Our hypothesis is that the shape of
the matrix for our approach deeply affects the performance gain using tensor
cores. Figure 13 investigates this and shows the performance gain using driver
matrix multiplication with two kinds of matrices. The first is the short and wide
matrix shape from our MIMO multi-level detection, i.e., A(8 × 8), B(8 × 16M).
The second kind is a square matrix A(4k × 4k) and B(4k × 4k).

Figure 13 confirms our suggestion that the shape of the matrices significantly
impacts the improvement factor using tensor cores. Indeed, with a square shape
of A and B matrices, we are getting close to the theoretical peak performance
using both FP32 and FP16, with an improvement factor around 15×. On the
other hand, the low performance achieved by the wide and short matrices (MIMO
shape) is explained by two reasons. The main reason is that this latter shape
of matrices engenders a memory-bound regime of execution with an Arithmetic
Intensity (AI) in flops per byte of only 4 compared to an AI of 682 square shape
matrices. Such matrix shape does not engender enough data reuse for such an
operation to be in the compute-bound regime of execution, as usually noticed
for traditional square matrix-matrix multiplication. The same conclusion is also
valid for INT8 precision.

In addition to using low-precision, we exploit multiple GPUs to overlap the
matrix multiplication performed during the detection process. Figure 14 shows

Fig. 11. ML 4 error rate heat-map using low-precision arithmetic for different modu-
lations and SNR values for a 100 × 100 with 64-QAM modulation.

160 A. Dabah et al.

FP32 FP16 INT8

3

3.5

4

4.5

5

5.5

·10−2

T
im

e
(s
)

Detection time (s)

Fig. 12. Detection latency using ML 4 with
different arithmetic precision for a 100 ×
100 MIMO with 64-QAM modulation.

FP32 FP16

100

101

102

FP32 Peak

FP16 Peak

T
F
L
O
P
S

FLOPS

8× 16M 4k × 4k

Fig. 13. FLOPs using ML 4 with differ-
ent arithmetic precision.

2 4 6 8
1

1.5

2

2.5

3

3.5
·10−2

Number of GPUs

de
te
ct
io
n
T
im

e
(s
)

Multi-level-approach

2 4 6 8
1

1.5

2

2.5

3

3.5

4

Number of GPUs

Sp
ee
du

p

Best theoretical
Multi-GPU approach

Fig. 14. complexity versus the number of GPUs for our multi-GPU approach for a 100
× 100 MIMO system with 64-QAM using four levels.

the impact of scaling the number of GPUs to further reduce the time-to-solution
of the main kernel, i.e., the matrix-matrix multiplication. This latter represents
more than 80% of the elapsed time for dense constellations. The idea is to exe-
cute matrix-matrix multiplications from subsequent iterations using multiple
GPUs simultaneously. However, the remaining 20% of the code must be executed
sequentially, which may impede strong scaling performance. Figure 14 shows the
complexity (a) and speedup (b) of our multi-GPU approach for a 100 × 100
MIMO system with 64-QAM modulation and four levels. Sub-figure (b) shows
the theoretical best speedup (red curve) and achieved speedup (blue curve) by
our multi-GPU approach. We can notice two regimes: the first between one and
four GPUs, where the complexity decreases, and the second between four and
eight GPUs, where increasing GPUs has no effect on the complexity. The first

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 161

Fig. 15. Complexity and speedup of our proposed approaches for a 100 × 100 MIMO
with 64-QAM modulation.

regime is characterized by a rapid decrease in complexity and a near-optimal
speedup. This is due to a high compute-to-communication ratio. After that,
increasing the number of GPUs increases the communication-to-computation
ratio, which indicates that the increased communication neutralizes the ben-
efit achieved by overlapping addition iterations. Despite the fact that matrix
multiplication represents 80% of the execution time, we still need to perform
the norm and min kernels. This results in synchronization and data transfer
between GPUs. Indeed, the communication when using one to four GPUs is
performed using the high-speed NVLink interconnect, whereas increasing the
number of GPUs further leads the communication through the slow PCIe bus.
This increases significantly the communication, which neutralizes the gain from
overlapping more multiplication operations for this particular data set. Adding
more levels will allow supporting more than four GPUs; however, the complexity
will increase beyond the acceptable threshold for mobile communication.

Figure 15 shows the overall performance against a multi-core CPU implemen-
tation on IceLake architecture for a 100× 100 MIMO with 64-QAM modulation
(ML 4). For a fair comparison, the CPU implementation is also based on real
matrix representation as explained in Fig. 3. The best performance for the par-
allel CPU version is reached around 30 threads and remains the same up to 56
threads. Solid fill indicates the time to solution, while dashed bars report the
speedup achieved. Figure 15 shows that going from the multi-CPU version with
30 physical threads FP32 to one GPU A100 with FP32 single precision leads to
10× improvement in complexity. Moreover, exploiting half-precision arithmetic
(FP16) pushes the speedup to 17×. Furthermore, our multi-GPU version is 2.3×
faster than the single-GPU version with half-precision mode. In total, our multi-
GPU version is 40× faster than the parallel CPU implementation. As a result,
we achieve a good complexity/accuracy trade-off.

162 A. Dabah et al.

Regarding power consumption, our approach requires an average of 78 W
which is below the 90 W cap imposed by wireless vendors.

8 Conclusion and Perspectives

Recent GPUs have fast tensor-core operations that leverage low-precision arith-
metic to achieve performance gain. This paper exploits this capability to over-
come M-MIMO detection overhead for a large number of antennas. In this paper,
we demonstrate the positive impact of low-precision arithmetic operations (32
bits, 16 bits, and 8 bits) on the complexity (1.7×) while maintaining a good
accuracy performance of our multi-level detection algorithm. To further reduce
the complexity while maintaining the same accuracy performance, we proposed a
multi-GPU approach that overlaps the matrix-multiplication operations on sub-
sequent iterations. This resulted in an additional 2.3× speedup. To summarize,
we have improved the complexity by a factor of 4× compared to a single-precision
single-GPU approach and 40× compared to the multi-core CPU implementation
on a two-socket 28-core IceLake.

In future work, we will investigate the potential gain of a Field-Programmable
Gate Array (FPGA) on both complexity and power consumption.

References

1. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE
Trans. Inf. Theory 48(8), 2201–2214 (2002)

2. Alouini, M.S., Keyes, D.E., Ltaief, H., Dabah, A., Rezki, Z.: Massive multiple-input
multiple-output system and method (14 Dec 2021). US Patent 11,201,645

3. Arfaoui, M.A., Ltaief, H., Rezki, Z., Alouini, M.S., Keyes, D.: Efficient sphere
detector algorithm for massive MIMO using GPU hardware accelerator. Procedia
Comput. Sci. 80, 2169–2180 (2016)

4. Chen, T., Leib, H.: GPU acceleration for fixed complexity sphere decoder in large
MIMO uplink systems. In: IEEE 28th Canadian Conference on Electrical and Com-
puter Engineering (CCECE 2015), pp. 771–777. IEEE (2015)

5. Dabah, A., Ltaief, H., Rezki, Z., Arfaoui, M.A., Alouini, M.S., Keyes, D.: Perfor-
mance/complexity trade-offs of the sphere decoder algorithm for massive MIMO
systems. arXiv preprint arXiv:2002.09561 (2020). To be submitted

6. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)

7. Foschini, G.J.: Layered space-time architecture for wireless communication in a
fading environment when using multi-element antennas. Bell Labs Tech. J. 1(2),
41–59 (1996)

8. Hassibi, B., Vikalo, H.: On the sphere-decoding algorithm I. expected complexity.
IEEE Trans. Signal Process. 53(8), 2806–2818 (2005)

9. Husmann, C., Georgis, G., Nikitopoulos, K., Jamieson, K.: FlexCore: massively
parallel and flexible processing for large MIMO access points. In: 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2017), pp.
197–211 (2017)

http://arxiv.org/abs/2002.09561

GPU-Based Low-Precision Detection Approach for Massive MIMO Systems 163

10. Nikitopoulos, K., Georgis, G., Jayawardena, C., Chatzipanagiotis, D., Tafazolli, R.:
Massively parallel tree search for high-dimensional sphere decoders. IEEE Trans.
Parallel Distrib. Syst. 30(10), 2309–2325 (2018)

11. Paulraj, A.J., Kailath, T.: Increasing capacity in wireless broadcast systems using
distributed transmission/directional reception (DTDR) (6 Sep 1994). US Patent
5,345,599

12. Simon, M.K., Alouini, M.S.: Digital Communication over Fading Channels (Wiley
Series in Telecommunications and Signal Processing), 2nd edn. Wiley-IEEE Press,
New York (2004)

13. Sklar, B., et al.: Digital Communications, vol. 2. Prentice Hall, Upper Saddle River
(2001)

14. Viterbo, E., Boutros, J.: A universal lattice code decoder for fading channels. IEEE
Trans. Inf. Theory 45(5), 1639–1642 (1999)

A Mixed Precision Randomized
Preconditioner for the LSQR Solver

on GPUs

Vasileios Georgiou1(B) , Christos Boutsikas2 , Petros Drineas2 ,
and Hartwig Anzt1,3

1 Steinbuch Centre for Computing, Karlsruhe Institute of Technology,
Karlsruhe, Germany

{vasileios.georgiou,hartwig.anzt}@kit.edu
2 Purdue University, West Lafayette, USA

{cboutsik,pdrineas}@purdue.edu
3 Innovative Computing Lab, University of Tennessee, Knoxville, TN, USA

Abstract. Randomized preconditioners for large-scale regression prob-
lems have become extremely popular over the past decade. Such pre-
conditioners are known to accelerate large-scale regression solvers both
from a theoretical and a practical perspective. In this paper, we present a
mixed precision randomized preconditioner for LSQR solvers, focusing on
overdetermined, dense least squares problems. We implement and eval-
uate our method on GPUs and we demonstrate that it outperforms the
standard double precision version of randomized, preconditioned LSQR
by up to 20% on the NVIDIA A100. We present extensive numerical
experiments utilizing the half-precision and tensorcore units to demon-
strate that, in many cases, constructing the preconditioner in reduced
precision does not affect the convergence of LSQR solvers. This leads to
important speedups without loss of accuracy.

Keywords: Mixed Precision · Randomized Preconditioners ·
Over-determined Least Squares · LSQR · GPUs

1 Introduction

Solving overdetermined least squares problems is a common yet computationally
expensive challenge in scientific computing. Standard approaches include a vari-
ety of direct and iterative methods. The former rely either on computing the QR
factorization of the input matrix or on solving the so-called normal equations.
Orthogonalization methods used for factorization utilize variants of the Gram-
Schmidt algorithm [5,8,10,33], Householder reflectors [21,32,41], or Givens rota-
tions [7,25]. Additionally, the Cholesky factorization is often used to solve the
normal equations [42]. Among the iterative solvers that have been proposed
to tackle least squares, LSQR [38] is one of the most popular methods mainly
because of its numerical robustness. Alternatives include GMRES [28,37] and
CGLS [9,23,35]. The main factor determining the runtime of iterative methods
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 164–181, 2023.
https://doi.org/10.1007/978-3-031-32041-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_9&domain=pdf
http://orcid.org/0009-0000-6169-3195
http://orcid.org/0000-0002-6977-5934
http://orcid.org/0000-0003-1994-8670
http://orcid.org/0000-0003-2177-952X
https://doi.org/10.1007/978-3-031-32041-5_9

Mixed Precision LSQR 165

is the number of iterations required in order to converge to the specified toler-
ance. Several techniques for transforming the original problem to one which is
easier to solve, i.e., one that requires fewer iterations, have been developed over
the years. The most important family of such techniques are the preconditioning
methods, which are essential in both theory and practice of least-squares solvers.

Preconditioning includes a spectrum of techniques ranging from those tai-
lored to a specific application to general purpose, “black-box” methods, which
are broadly applicable but more inefficient in special cases. It is worth noting
that constructing the preconditioner could be relatively expensive compared to
the overall runtime of the solver, which often argues against using the “tailored”
approach, unless the problem input has very specific characteristics. Iterative
least squares solvers are often popular for solving sparse problems, which has
led to a variety of preconditioners based on sparse approximations [16,17] and
incomplete factorizations [6,11,18]. On the other hand, there are significantly
fewer results for preconditioning dense overdetermined least squares problems.
Over the past decade, randomized “black-box” preconditioners have emerged
as a robust way to solve large-scale regression problems, outperforming dense
QR-based approaches [3,4].

Randomization has often been used as a resource in tackling data-intensive
linear algebra problems. A popular example is performing principal components
analysis (PCA) on massive datasets by sketching or sampling the input matrix.
Another example has been randomized preconditioning, which first creates a
“sketch” of the input matrix that is used to compute the preconditioner [3].
Theoretical analyses of such methods provide error guarantees that depend on
the number of samples or the size of the sketch, which are typically indepen-
dent of the data size. Such methods effectively reduce the dimensionality of the
original data, a process that is somewhat akin to processing a noisy version
of the input matrix. This makes randomized linear algebra algorithms perfect
candidates for incorporating elements of mixed precision computations, taking
advantage of modern hardware to achieve speedups without significant loss of
accuracy.

The introduction of native support for 16-bit precision formats on modern
GPUs has led to increased interest in mixed-precision versions of numerical
methods. Mixed precision algorithms use at least two different precision for-
mats, performing the most computationally intensive steps in lower precision to
benefit from faster execution on hardware accelerators. Another way to speedup
memory-bound computations is by communicating the data in reduced precision
while executing the computations in the original (or higher) precision [2,27]. This
is beneficial since for memory-bounded problems the cost of communicating data
across devices dominates the overall runtime.

Even though early work on mixed precision numerical algorithms was mostly
focused on the solution of linear systems of equations, this has changed over
time. Some notable mixed precision methods for solving least squares problems
include [15,29], as well as iterative refinement approaches [14] and scaling tech-
niques [30] for recovering (at least partially) the accuracy which is inevitably lost
when converting to lower precision. There has also been some work on mixed

166 V. Georgiou et al.

precision preconditioners in [22,26]. However, to the best of our knowledge, there
has not been much progress in the development and implementation of mixed
precision randomized preconditioners for least-squares problems.

In this paper, we address the aforementioned gap. We develop a mixed preci-
sion randomized preconditioner to be used with our novel LSQR implementation
for solving dense overdetermined least squares problems on GPUs. Despite con-
structing the preconditioner in lower precision, our results show that this loss in
precision does not negatively affect the convergence of LSQR. This leads to sig-
nificant speedups of up to 140% in terms of the runtime required for constructing
the preconditioner, and up to 20% in terms of the overall runtime, without any
loss of accuracy. In our analysis we provide some insights, regarding the factors
that affect the performance of the preconditioner. Both the randomized precon-
ditioner and the LSQR solver are implemented in C++ using the MAGMA and
the CUDA runtime libraries and operate exclusively on the GPU. This is the
first implementation and systematic evaluation of mixed-precision, randomized
preconditioned LSQR on GPUs.

The rest of the paper is structured as follows: In Sect. 2, we provide some
background on randomized preconditioners. In Sect. 3, we explain the details
of the implementation of our method, and in Sect. 4 we showcase performance
results from our experiments on different datasets. Lastly, in Sect. 5, we summa-
rize our findings and discuss potential extensions.

2 Background

Given a coefficient matrix A ∈ R
m×n, and a right-hand side vector b ∈ R

m,
the overdetermined (m ≥ n) least-squares (LS) solution is the vector x� which
minimizes the Euclidean norm residual

x� = arg min
x∈Rn

‖b − Ax‖2. (1)

For large linear systems, iterative solvers are usually preferred for solving (1).
However, such solvers can become impractical and exhibit slow convergence if the
condition number of the input matrix A is large (ill-conditioned systems). One
potential remedy for this challenge is to transform (1) into a mathematically
equivalent problem with more favorable properties. Such a transformation is
called preconditioning, and in particular, the right preconditioned LS system is
given by

y� = arg min
y∈Rn

‖b − AM−1y‖2, y∗ = Mx�. (2)

The matrix M ∈ R
n×n is called the preconditioner. We can design M having

various requirements in mind (e.g., spectral properties, approximating the pseu-
doinverse, etc.). In practice, we are mostly interested in decreasing the condition
number of AM−1 (at least compared to the condition number of A) and being
able to solve linear systems with M inexpensively. In this paper, we solve (2)
using the LSQR (Algorithm 1), which is theoretically equivalent to applying
conjugate gradients on ATA, but with better numerical properties [38].

Mixed Precision LSQR 167

Algorithm 1. Preconditioned LSQR
Input: matrix A, initial solution x0, right-hand side b, tolerance tol, maximum

number of iterations maxiter, preconditioner M
Output: solution x, relative residual relres
1: procedure [x, relres] = LSQR(A, x0, b, tol, maxiter, M)
2: β = ‖b‖2,u = b/β
3: v = (M�)\(A�u)
4: α = ‖v‖2,v = v/α
5: w = v
6: φ̄ = β, ρ̄ = α, iter = 0
7: while (1) do
8: u = A(M\v) − αu
9: β = ‖u‖2,u = u/β

10: v = M�\(A�u) − βv
11: α = ‖v‖2,v = v/α
12: ρ =

√
ρ̄2 + β2

13: c = ρ̄/ρ
14: s = β/ρ
15: θ = s · α
16: ρ̄ = −c · α
17: φ = c · φ̄
18: φ̄ = s · φ̄
19: x = x + M\((φ/ρ)w)
20: w = v − (θ/ρ)w
21: r = b − Ax, relres = ‖r‖2/‖b‖2, iter + = 1
22: if ((iter == maxiter)‖(relres < tol)) then
23: break
24: end if
25: end while
26: end procedure

2.1 Related Work

Over the last two decades, Randomized Linear Algebra has left its mark on con-
structing preconditioners through sketching-based methods. Rokhlin and Tygert
[40] developed a preconditioner for overdetermined systems by applying a Sub-
sampled Randomized Fourier Transform (SRFT) on the input matrix and then
pivoted-QR on the preconditioned system. Similar to that setting, Avron et al.
[3] constructed the randomized solver Blendenpik which consists of four steps:

1. Mix the rows of A by premultiplying it by an appropriate random matrix
(i.e., the Randomized Hadamard Transform matrix, the Randomized Discrete
Cosine Transform matrix, etc.). Let G ∈ R

m×m be this random matrix.
2. Sample s rows (uniformly at random) from the “mixed” matrix GA to create

the sampled matrix (GA)s ∈ R
s×n.

3. QR factorization on (GA)s to construct the preconditioner M .
4. Call Algorithm 1 to solve (2).

168 V. Georgiou et al.

Intuitively, the “mixing” procedure of step (1) distributes the importance of
the rows, thus improving the accuracy guarantees of uniform sampling in the
following steps. In other words, the mixing procedure uniformizes the so-called
leverage scores of the rows of the input matrix A; leverage scores play a crucial
role in regression problems and random sampling and sketching [20,31]; It is
known that the aforementioned transformation reduces the maximum leverage
score (coherence). The Blendenpik algorithm is actually a general template for
designing randomized preconditioners. For example, [36] proposes the use of
a Gaussian matrix instead of the Randomized Hadamard Transform, followed
by an alternative approach to the QR decomposition using the Singular Value
Decomposition. More recently, Tropp et al. [24] described a preconditioner for
Conjugate Gradient (CG) via a randomized low-rank Nyström approximation.

The concept of employing mixed-precision arithmetic to improve performance
has been recently applied to a range of problems [1]. Furthermore, it has been a
well-established approach for linear systems. The recent work of Carson and
Daužickaitė, [13] provides an analysis of a Nyström mixed-precision precon-
ditioner for CG. In [12], the authors use a combination of 32-bit and 64-bit
floating point arithmetic for iterative refinement of dense linear systems. Also
recently, Lindquist et al. [34] presented mixed-precision restarted GMRES for
sparse linear systems. However, their work differs from ours in various ways: they
provide a mix of single and double-precision implementation but do not focus on
half precision. Moreover, they construct each preconditioner in double precision
and then store it in single precision for the reduced-precision algorithm, unlike
our work (see Sect. 3).

3 Design and Implementation of the Mixed Precision
Preconditioner

Our mixed precision implementation uses a Gaussian random matrix G ∈ R
s×m

in order to sketch the input matrix by computing As = G · A. For the pre-
conditioner we use the triangular factor of the economy qr factorization of the
matrix As, following the approach proposed in [3]. In Matlab notation, this is
computed as [∼,M] = qr(As, 0). In Algorithm 2, we present the mixed precision
version of this preconditioner. The demote and promote functions convert the
matrix entries between the required precisions. All the steps of the algorithm
are executed on the GPU, using MAGMA [43] routines for the linear algebraic
operations and custom CUDA kernels to perform the conversions to different
precisions. The Gaussian matrices are generated using the cuRAND functions1.
You can access our implementation at https://github.com/vasilisge0/randLS/.

In Algorithm 2, we store matrices in high or low precision, as indicated by the
types high prec and low prec. The only floating point format for high precision
we consider in this paper is double, or fp64. For the low precisions, we experi-
mented with the following types: single or fp32; half or fp16; and TensorFloat-32

1 cuRand v12.0.0 https://docs.nvidia.com/cuda/curand/index.html.

https://github.com/vasilisge0/randLS/
https://docs.nvidia.com/cuda/curand/index.html

Mixed Precision LSQR 169

or tf32. The latter is a 19-bit representation for which NVIDIA provides native
support on the Ampere architecture. It uses eight bits for representing the expo-
nent (the same as fp32), but only ten bits for the mantissa (the same as fp16).
An additional bit is required to store the sign. Table 1 depicts the precisions used
by our implementations of the preconditioner and the solver.

Table 1. Precisions used in implementing our preconditioner and the LSQR solver.

high precision low precision

preconditioner fp64 fp64, fp32, tf32, fp16

solver fp64 fp64

Algorithm 2. Mixed precision gaussian preconditioner
Input: m × n matrix A, number of samples s, precision types high prec, low prec
Output: s × n preconditioner M
1: procedure [M] = generate precond(A, s, high prec, low prec)
2: generate s × m Gaussian matrix G
3: Ĝ = demote(G, low prec)
4: Â = demote(A, low prec)
5: Âs = ĜÂ
6: As = promote(Âs, high prec)
7: [∼,M] = qr(As, 0)
8: end procedure

The central components underlying the construction of the preconditioner and
the solver are BLAS operations. The dominant computation for generating the
preconditioner is one matrix-matrix multiplication, while the dominant compu-
tation for the solver are dense matrix-vector multiplications. For this purpose,
we decided to use the MAGMA library [19,43], which ports BLAS operations on
various GPU architectures. In this paper, we want to target specifically NVIDIA
devices following the Ampere architecture, in order to test the fp16 and tf32
precision formats. Choosing MAGMA instead of vendor-specific libraries like
cuBLAS2 will allow us to extend our implementation to different architectures
in future work. It should be noted that MAGMA provides BLAS functionality
either by calling custom CUDA kernels or by directly calling cuBLAS. Mecha-
nisms to make such decision on the fly are also provided.

The following code snippet is our implementation of Algorithm 2. We use
value type internal as the reduced precision type for performing the compute-
intensive operations and value type for the original precision of the input data.
When value type internal and value type are different, the entries of the
input matrix and the sketch matrix are converted to the precision indicated by
value type internal and the matrix multiplication dmtx rp = sketch mtx ×
2 cuBlas v12.0 https://developer.nvidia.com/cublas.

https://developer.nvidia.com/cublas

170 V. Georgiou et al.

mtx is performed. The output is then converted back into the original precision. If
value type internal is the same as value type then no conversion is required.
Afterwards, the economy QR factorization is computed in value type precision
and the preconditioner is stored in dr factor.

– preconditioner::gaussian::generate()

1 // Gene ra t e s the p r e c o n d i t i o n e r and measures runt ime .
2 template <typename value_type_internal , typename value_type ,
3 typename index_type >
4 void generate(index_type num_rows_sketch , index_type num_cols_sketch ,
5 value_type* dsketch , index_type ld_sketch ,
6 index_type num_rows_mtx , index_type num_cols_mtx ,
7 value_type* dmtx , index_type ld_mtx , value_type* dr_factor ,
8 index_type ld_r_factor ,
9 state <value_type_internal , value_type , index_type >&

precond_state ,
10 detail:: magma_info& info , double* runtime , double* t_mm ,
11 double* t_qr)
12 {
13 // Per fo rms matr ix−mat r i x m u l t i p l i c a t i o n i n v a l u e t y p e i n t e r n a l
14 // p r e c i s i o n and promotes output to v a l u e t y p e p r e c i s i o n .
15 i f (!std::is_same <value_type_internal , value_type >:: value) {
16 cuda:: demote(num_rows_mtx , num_cols_mtx , dmtx , num_rows_mtx ,

precond_state.dmtx_rp , num_rows_mtx);
17 cuda:: demote(num_rows_sketch , num_cols_sketch , dsketch ,

num_rows_sketch , precond_state.dsketch_rp , num_rows_sketch);
18 blas::gemm(MagmaNoTrans , MagmaNoTrans , num_rows_sketch ,

num_cols_mtx , num_rows_mtx , 1.0, precond_state.dsketch_rp ,
num_rows_sketch , precond_state.dmtx_rp , num_rows_mtx , 0.0,
precond_state.dresult_rp , num_rows_sketch , info);

19 cuda:: promote(num_rows_sketch , num_cols_mtx , precond_state.
dresult_rp , num_rows_sketch , dr_factor , num_rows_sketch);

20 } else {
21 // v a l u e t y p e i n t e r n a l == va l u e t y p e −> no c o n v e r s i o n s r e q u i r e d
22 blas::gemm(MagmaNoTrans , MagmaNoTrans , num_rows_sketch ,

num_cols_mtx , num_rows_mtx , 1.0, dsketch , num_rows_sketch ,
dmtx , num_rows_mtx , 0.0, dr_factor , ld_r_factor , info);

23 }
24
25 // Per fo rms qr f a c t o r i z a t i o n i n v a l u e t y p e p r e c i s i o n .
26 magma_int_t info_qr = 0;
27 blas:: geqrf2_gpu(num_rows_sketch , num_cols_mtx , dr_factor ,

ld_r_factor , tau , &info_qr);
28 i f (info_qr != 0) {
29 magma_xerbla("geqrf2_gpu", info_qr);
30 }
31 }

Listing 1.1. Generate preconditioner.

The object state<value type internal, value type, index type> is a
struct containing the input matrix, the sketch matrix and their product com-
puted in value type internal precision. It also contains the array tau, which
is allocated on the cpu and used by the QR factorization.

Mixed Precision LSQR 171

– state<value type internal, value type, index type>

1 template <typename value_type_internal , typename value_type ,
2 typename index_type >
3 struct state{
4 value_type_internal* dmtx_rp = nullptr;
5 value_type_internal* dsketch_rp = nullptr;
6 value_type_internal* dresult_rp = nullptr;
7 value_type* tau = nullptr;
8
9 void allocate(index_type ld_mtx , index_type num_cols_mtx ,

10 index_type num_rows_sketch , index_type num_cols_sketch ,
index_type ld_sketch ,

11 index_type ld_r_factor) {
12 memory:: malloc(&dmtx_rp , ld_mtx * num_cols_mtx);
13 memory:: malloc(& dsketch_rp , ld_sketch * num_cols_sketch);
14 memory:: malloc(&dresult_rp , ld_r_factor * num_cols_mtx);
15 memory:: malloc_cpu (&tau , num_rows_sketch);
16 }
17
18 void free() {
19 memory::free(dmtx_rp);
20 memory::free(dsketch_rp);
21 memory::free(dresult_rp);
22 memory:: free_cpu(tau);
23 }
24 };

Listing 1.2. State used for storing reduced precision information.

The following code snippet is a our high level implementation of Algorithm 1.

– solver::lsqr::run()

1 template <typename value_type_internal , typename value_type ,
2 typename index_type >
3 void run(index_type num_rows , index_type num_cols , value_type* mtx ,
4 value_type* rhs , value_type* init_sol , value_type* sol ,
5 index_type max_iter , index_type* iter , value_type tol ,
6 double* resnorm , value_type* precond_mtx ,
7 index_type ld_precond , magma_queue_t queue)
8 {
9 temp_scalars <value_type , index_type > scalars;

10 temp_vectors <value_type_internal , value_type , index_type > vectors;
11 initialize(num_rows , num_cols , mtx , rhs ,
12 precond_mtx , ld_precond , iter , scalars ,
13 vectors , queue , t_solve);
14 while (1) {
15 step_1(num_rows , num_cols , mtx , precond_mtx , ld_precond , scalars ,
16 vectors , queue);
17 step_2(num_rows , num_cols , mtx , rhs , sol , precond_mtx ,
18 ld_precond , scalars , vectors , queue);
19 i f (check_stopping_criteria(num_rows , num_cols , mtx , rhs , sol ,
20 vectors.temp , iter , max_iter , tol ,
21 resnorm , queue)) {
22 break;
23 }
24 }
25 finalize(vectors);
26 }

Listing 1.3. High level implementation of the LSQR solver.

172 V. Georgiou et al.

Similar to preconditioner::gaussian::generate() the type value type
internal is associated with the precision used in computing the most compute-
intensive operations, which, in this case, are the MV operations. In this paper, we
consider value type internal and value type to be the same for the solver.
The variables scalars and vectors contain all linear algebraic objects asso-
ciated with the LSQR algorithm. From an implementation standpoint, Algo-
rithm 1 can be dissected into three consecutive parts: lines 8–11 are implemented
in step 1 and compute the new basis vectors; lines 12–20 are implemented by
step 2 and update the current solution; finally, lines 21–24 are implemented by
the check stopping criteria function, which tests whether convergence has
been reached.

4 Numerical Experiments

4.1 Experiment Setup

We evaluate the effectiveness and performance of our preconditioned LSQR
implementation as follows: We use a selection of m × n (with m � n) matrices
A and we set the “true” least squares solution to x = randn(n, 1), in Matlab
notation, with b = Ax. This allows us to modify the tolerance in the LSQR
algorithm, in order to stress-test the effectiveness of the preconditioner. For our
numerical experiments, we use the following datasets (Table 2): (a) a human
genetics dataset from the Human Genome Diversity Panel and (b) the CIFAR
image dataset.

HGDP: HGDP 1 dataset has emerged from a population genetics application;
see [39] and references therein for details. The coefficient matrix related to the
regression problem is a tall-and-thin matrix whose entries are −1, 0, 1, 2. Exact
details of the underlying genetic application are not relevant for our work here,
since the matrix is only used for numerical evaluations. As regards HGDP 2, we
modify HGDP 1 to get an ill-conditioned matrix (κ(A) ≈ 106) with different
dimensions as follows: Initially, we get the first 6000 rows of HGDP 1 and sub-
sequently, we add a few columns by randomly picking existing ones and change
a tiny fraction of their elements (<1%). We carefully act on every change to
preserve each entry to be {−1,0,1,2}. The dimensions of the respective datasets
are in Table 2.

CIFAR: The CIFAR dataset consists of 60, 000 32 × 32 color images belonging
in ten (non-overlapping) classes. In our setting, each row represents an image
(we vectorize each 32 × 32 × 3 = 3, 072 matrix). Our CIFAR 2 dataset consists
of 20, 000 randomly chosen images. We normalize all grayscale values to belong
in the [0, 1] interval. For the CIFAR 1 dataset, we created a somewhat “thinner”
tall and thin matrix by randomly choosing for each image 1, 000 pixels out of
the 3, 072.

Mixed Precision LSQR 173

Table 2. Matrices used in experimental evaluation.

datasets rows columns cond aspect ratio

HGDP 1 643,862 425 O(103) 1.5e3

HGDP 2 60,000 1,000 O(106) 6.0e1

CIFAR 1 20,000 1,000 O(103) 2.0e1

CIFAR 2 20,000 3,072 O(104) 6.5e0

Our experiments were conducted on a system, equipped with AMD EPYC
7742 64-Core Processor cluster CPUs and A100 80GB SXM NVIDIA GPUs. Our
tests were run exclusively on a single node and utilized one GPU. The NVIDIA
A100, which we ran our tests on, has native support for operations in fp16 and
tf32 formats, and features tensor cores for matrix operations in fp64, fp16, and
tf32. We used as termination criterion for LSQR, the relative residual norm
‖b−Ax(i)‖

‖b‖ , setting the tolerance to 10−10 for our numerical experiments with the
HGDP and 10−12 for the experiments with the CIFAR dataset. For the reported
results, GCC 11.3.0, CUDA 14.4.4 and MAGMA 2.6.2 were used.

The goals of our experiments are three-fold: We seek to demonstrate that (i)
constructing the preconditioner in reduced precision does not severely affect the
convergence of the LSQR solver, and (ii) modest speedups can be achieved in
constructing the preconditioner, which eventually lead to reductions of the total
runtime of the preconditioned solver. In our analysis we also attempt to (iii)
determine the factors that affect the performance of preconditioned LSQR. Those
factors are related to properties of the input matrix, but also on implementation
choices and underlying hardware.

For each matrix, we report (for varying values of the sampling coefficient) (a)
the breakdown into preconditioner generation cost and solver iteration cost. This
plot forms a runtime profile for each test matrix; (b) the iteration count of the
LSQR solvers using different preconditioners; (c) the corresponding runtimes;
and (d) the speedup with regard to the double precision reference precondi-
tioned LSQR solver. The sampling coefficient controls the number of rows of
the sketched matrix (and of the resulting preconditioner) as rows sampled =
sampling coeff × rows mtx. As the value of the sampling coefficient increases,
more random samples are generated leading to preconditioners which are more
effective, but also more expensive to generate. The data presented in the plots
have been averaged over five executions and collected after five warmup runs.

4.2 Discussion

Every figure presented in this section corresponds to a problem with a
unique combination of runtime profile and matrix aspect ratio, i.e., the frac-
tion #rows

#columns . The matrices in descending aspect ratio order are, HGDP 1,
HGDP 2, CIFAR 1 and CIFAR 2, (HGDP 1 having the largest and CIFAR 2
the smallest aspect ratio). Their runtime profiles, as indicated by the solver

174 V. Georgiou et al.

to preconditioner-generation runtimes, range from the solver dominating the
total runtime (HGDP 1), runtimes being proportional (HGDP 2, CIFAR 1) and
preconditioner-generation dominating the total runtime (CIFAR 2). In all of our
tests, computing the preconditioner in fp32 is slower than the fp64 implementa-
tion. This is related to the lack of specialized hardware units for executing single
precision matrix operations (the A100 GPU features tensor cores for fp64, fp16,
and tf32 operations but not fp32).

Figure 1 depicts the outcomes of our experimental evaluation for matrix
HGDP 1. Firstly, we observe that the convergence of preconditioned LSQR is
not affected when the preconditioner is generated in fp32, tf32 or fp16 formats,
as depicted in the top-right plot. The corresponding runtimes of the precondi-
tioner generation step are shown in the bottom-left plot. For scaling coefficients
greater than 1.5, we notice a significant reduction in the preconditioner gener-
ation runtime when tf32 and fp16 are used. The bottom-right plot depicts the
speedup for the preconditioner generation and the overall runtime of the fp16

Fig. 1. Evaluation of the mixed precision preconditioner for the HGDP 1 test matrix.
Top left: Runtime breakdown of the LSQR algorithm; Top right: Convergence of LSQR
using a mixed precision preconditioner; Number of iterations for the 4 precisions over-
lap. Bottom left: Runtime of the preconditioner generation; Bottom right: Speedup
when generating the preconditioner in fp16. Tolerance: 1e−10.

Mixed Precision LSQR 175

Fig. 2. Evaluation of the mixed precision preconditioner for the HGDP 2 test matrix.
Top left: Runtime breakdown of the LSQR algorithm; Top right: Convergence of LSQR
using a mixed precision preconditioner; Number of iterations overlap for fp64, fp32 and
tf32 precisions; Bottom left: Runtime of the preconditioner generation; Bottom right:
Speedup when generating the preconditioner in tf32. Tolerance: 1e−10

implementation. Despite the 2.4× speedup for the preconditioner generation, we
only see a moderate 1.20× overall algorithm speedup. This is because of the
costly solver iteration phase for the HGDP 1 problem (see top-left plot).

Figure 2 presents the evaluation results for the HGDP 2 matrix. This matrix
is generated by manipulating HGDP 1 as described in Sect. 4.1. Computing the
preconditioner in fp32 and tf32 formats does not affect the convergence of LSQR
but generating the preconditioner in fp16 requires 3× as many LSQR itera-
tions to reach convergence. In the bottom-left plot, we present the runtimes for
preconditioner generation and on bottom right the speedup for generating the
preconditioner in the tf32 format. The observed speedups of the preconditioner
generation step for HGDP 2 are smaller in comparison to HGDP 1. However,
the preconditioner overtakes the solver runtime for sampling coefficients greater
than 2.5. As a result, the overall speedups are similar to those reported for
HGDP 1.

176 V. Georgiou et al.

Fig. 3. Evaluation of the mixed precision preconditioner for the CIFAR 1 test matrix.
Top left: Runtime breakdown of the LSQR algorithm; Top right: Convergence of LSQR
using a mixed precision preconditioner; Iteration plots overlap across different formats;
Bottom left: Runtime of the preconditioner generation; Bottom right: Speedup when
generating the preconditioner in fp16. Tolerance: 1e−12

In Figs. 3 and 4, we present experimental results for CIFAR 1 and CIFAR 2
matrices. In both cases, for moderate and large sampling coefficients, the pre-
conditioner generation step becomes more expensive than the solver iteration
phase. Convergence is not affected for CIFAR 1 when changing the precision for-
mat. Conversely, for CIFAR 2, the convergence suffers when generating the pre-
conditioner in fp16. For CIFAR 2, the preconditioner generation cost is almost
independent of the precision format used. This behaviour can be explained by
taking into consideration the following; Firstly the aspect ratio of the matrix is
too small (approximately 6.5 for CIFAR 2 compared to over 1,500 for HGDP 1),
making the theoretical complexity of qr, O(sn2), similar to that of the matrix
multiplication, O(smn), since m becomes proportional to n. This effect is
further amplified by the implementation of the preconditioner on GPU. Even
though those components (i.e. matrix multiply and qr) have similar complex-
ity, implementations of matrix-matrix multiplication achieve better perfor-
mance on GPUs. On the other hand, qr is harder to parallelize, because it

Mixed Precision LSQR 177

Fig. 4. Evaluation of the mixed precision preconditioner for the CIFAR 2 test matrix.
Top left: Runtime breakdown of the LSQR algorithm; Top right: Convergence of
LSQR using a mixed precision preconditioner; Iteration plots overlap for fp64, fp32
and tf32 precisions; Bottom left: Runtime of the preconditioner generation; Bottom
right: Speedup when generating the preconditioner in tf32. Tolerance: 1e−12

requires operating on the columns of a matrix in a sequential fashion. The above
suggest that QR factorization becomes the dominant component of the precon-
ditioner generation when the aspect ratio of the matrix is small, and since it is
always computed in double precision, the speedup observed is modest at best.
This is also evident from Fig. 5, where the runtimes of the major preconditioner
components, namely the matrix-matrix multiplication and the qr factorization
are presented. We observe that only for the case of HGDP 1 the matrix multi-
plication is the dominant operation of the preconditioner generation stage.

178 V. Georgiou et al.

Fig. 5. Runtimes of preconditioner components. Top left: HGDP 1; Top right:
HGDP 2; Bottom left: CIFAR 1; Bottom right: CIFAR 2.

5 Conclusion

In this paper, we describe a mixed precision implementation of a randomized
preconditioner for solving the dense overdetermined least squares problem and
present results on the NVIDIA A100 GPU. In our numerical experiments with
matrices from the HGDP and CIFAR datasets, we show that convergence is not
affected when using the tf32 format for generating the preconditioner, but we
may experience delayed convergence when using fp16 in the preconditioner gen-
eration step. Part of our analysis explores how performance is affected by the
properties of the input matrix. Attractive runtime savings can be achieved for
matrices with high aspect ratio, since mixed precision is applied on the dominant
operation of the preconditioner generation stage. Speedups can also be achieved
for matrices with balanced row/column ratio, because the preconditioner gener-
ation stage requires a significant portion of the total runtime.

In future work, we are interested in combining our preconditioner with a
mixed precision implementation of the LSQR solver. This will allow us to fur-
ther investigate the effect of mixed precision computations on the solution of
regression problems. Lastly, we would like to explore the use of mixed preci-
sion randomized preconditioning for potentially accelerating sparse least squares
solvers and uncovering the factors that impact performance on GPUs.

Mixed Precision LSQR 179

Acknowledgements. PD and CB were partially supported by NSF grants CCF-
2209509, CCF- 1814041, DMS-1760353, and DOE grant DE-SC0022085. This research
was also supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration. The authors would like to thank the Innovative Computing
Lab at University of Tennessee, for providing access to their compute cluster, to run
the numerical experiments. They are also grateful to the reviewers for their insightful
comments that helped improve this paper. CB and VG would like to thank Eugenia
Kontopoulou for motivating them to pursue the topic of this paper and Efstratios
Gallopoulos for introducing them to the Blendenpik algorithm.

References

1. Abdelfattah, A., et al.: A survey of numerical linear algebra methods utilizing
mixed-precision arithmetic. Int. J. High Perform. Comput. Appl. 35(4), 344–369
(2021)

2. Aliaga, J.I., Anzt, H., Grützmacher, T., Quintana-Ort́ı, E.S., Tomás, A.E.: Com-
pressed basis GMRES on high-performance graphics processing units. Int. J. High
Perform. Comput. Appl. https://doi.org/10.1177/10943420221115140

3. Avron, H., Maymounkov, P., Toledo, S.: Blendenpik: supercharging LAPACK’s
least-squares solver. SIAM J. Sci. Comput. 32(3), 1217–1236 (2010). https://doi.
org/10.1137/090767911

4. Baboulin, M., Becker, D., Bosilca, G., Danalis, A., Dongarra, J.: An effi-
cient distributed randomized algorithm for solving large dense symmetric indef-
inite linear systems. Parallel Comput. 40(7), 213–223 (2014). https://doi.
org/10.1016/j.parco.2013.12.003. https://www.sciencedirect.com/science/article/
pii/S0167819113001488. 7th Workshop on Parallel Matrix Algorithms and Appli-
cations

5. Balabanov, O., Grigori, L.: Randomized Gram–Schmidt process with application
to GMRES. SIAM J. Sci. Comput. 44(3), A1450–A1474 (2022). https://doi.org/
10.1137/20M138870X

6. Benzi, M., Tuma, M.: A robust preconditioner with low memory requirements for
large sparse least squares problems. SIAM J. Sci. Comput. 25(2), 499–512 (2003).
https://doi.org/10.1137/S106482750240649X

7. Bindel, D., Demmel, J., Kahan, W., Marques, O.: On computing givens rotations
reliably and efficiently. ACM Trans. Math. Softw. 28(2), 206–238 (2002). https://
doi.org/10.1145/567806.567809

8. Björck, A.: Solving linear least squares problems by Gram-Schmidt orthogonaliza-
tion. BIT Numer. Math. 7, 1–21 (1967). https://doi.org/10.1007/BF01934122

9. Björck, R., Elfving, T., Strakos, Z.: Stability of conjugate gradient and Lanczos
methods for linear least squares problems. SIAM J. Matrix Anal. Appl. 19(3),
720–736 (1998). https://doi.org/10.1137/S089547989631202X

10. Björck, A.: Numerics of Gram-Schmidt orthogonalization. Linear Algebra
Appl. 197–198, 297–316 (1994). https://doi.org/10.1016/0024-3795(94)90493-6.
https://www.sciencedirect.com/science/article/pii/0024379594904936

11. Björk, A.: SSOR preconditioning methods for sparse least squares problems, pp.
21–25 (1979)

12. Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., Kurzak, J.: Mixed
precision iterative refinement techniques for the solution of dense linear systems.
Int. J. High Perform. Comput. Appl. 21(4), 457–466 (2007)

https://doi.org/10.1177/10943420221115140
https://doi.org/10.1137/090767911
https://doi.org/10.1137/090767911
https://doi.org/10.1016/j.parco.2013.12.003
https://doi.org/10.1016/j.parco.2013.12.003
https://www.sciencedirect.com/science/article/pii/S0167819113001488
https://www.sciencedirect.com/science/article/pii/S0167819113001488
https://doi.org/10.1137/20M138870X
https://doi.org/10.1137/20M138870X
https://doi.org/10.1137/S106482750240649X
https://doi.org/10.1145/567806.567809
https://doi.org/10.1145/567806.567809
https://doi.org/10.1007/BF01934122
https://doi.org/10.1137/S089547989631202X
https://doi.org/10.1016/0024-3795(94)90493-6
https://www.sciencedirect.com/science/article/pii/0024379594904936

180 V. Georgiou et al.

13. Carson, E., Daužickaitė, I.: Single-pass Nyström approximation in mixed precision
(2022). https://doi.org/10.48550/ARXIV.2205.13355

14. Carson, E., Higham, N.J.: Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput. 40(2), A817–A847 (2018).
https://doi.org/10.1137/17M1140819

15. Carson, E., Higham, N.J., Pranesh, S.: Three-precision GMRES-based iterative
refinement for least squares problems. SIAM J. Sci. Comput. 42(6), A4063–A4083
(2020). https://doi.org/10.1137/20M1316822

16. Cui, X., Hayami, K.: Generalized approximate inverse preconditioners for least
squares problems. Jpn. J. Ind. Appl. Math. 26(1) (2008). https://doi.org/10.1007/
BF03167543

17. Cui, X., Hayami, K., Yin, J.F.: Greville’s method for preconditioning least squares
problems. Adv. Comput. Math. 35 (2011). https://doi.org/10.1007/s10444-011-
9171-x

18. Davis, T.A.: Algorithm 915, SuiteSparseQR: multifrontal multithreaded rank-
revealing sparse QR factorization. ACM Trans. Math. Softw. 38(1) (2011). https://
doi.org/10.1145/2049662.2049670

19. Dongarra, J., et al.: Accelerating numerical dense linear algebra calculations with
GPUs. Numer. Comput. GPUs 1–26 (2014)

20. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Sampling algorithms for L2
regression and applications. In: Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, pp. 1127–1136 (2006)

21. Dubrulle, A.A.: Householder transformations revisited. SIAM J. Matrix Anal.
Appl. 22(1), 33–40 (2000). https://doi.org/10.1137/S0895479898338561

22. Flegar, G., Anzt, H., Cojean, T., Quintana-Ort́ı, E.S.: Adaptive precision Block-
Jacobi for high performance preconditioning in the Ginkgo linear algebra software.
ACM Trans. Math. Softw. 47(2) (2021). https://doi.org/10.1145/3441850

23. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson, G.A.
(ed.) Numerical Analysis, pp. 73–89. Springer, Heidelberg (1976). https://doi.org/
10.1007/bfb0080116

24. Frangella, Z., Tropp, J.A., Udell, M.: Randomized Nyström preconditioning. arXiv
preprint arXiv:2110.02820 (2021)

25. George, A., Liu, J.W.: Householder reflections versus givens rotations in sparse
orthogonal decomposition. Linear Algebra Appl. 88–89, 223–238 (1987). https://
doi.org/10.1016/0024-3795(87)90111-X. https://www.sciencedirect.com/science/
article/pii/002437958790111X

26. Göbel, F., Grützmacher, T., Ribizel, T., Anzt, H.: Mixed precision incomplete
and factorized sparse approximate inverse preconditioning on GPUs. In: Sousa,
L., Roma, N., Tomás, P. (eds.) Euro-Par 2021. LNCS, vol. 12820, pp. 550–564.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85665-6 34

27. Grützmacher, T., Anzt, H., Quintana-Ort́ı, E.S.: Using Ginkgo’s memory accessor
for improving the accuracy of memory-bound low precision BLAS. Softw. Pract.
Exp. 53(1), 81–98 (2023). https://doi.org/10.1002/spe.3041. https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.3041

28. Hayami, K., Yin, J.F., Ito, T.: GMRES methods for least squares problems. SIAM
J. Matrix Anal. Appl. 31(5), 2400–2430 (2010). https://doi.org/10.1137/070696313

29. Higham, N.J., Pranesh, S.: Exploiting lower precision arithmetic in solving sym-
metric positive definite linear systems and least squares problems. SIAM J. Sci.
Comput. 43(1), A258–A277 (2021). https://doi.org/10.1137/19M1298263

https://doi.org/10.48550/ARXIV.2205.13355
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/20M1316822
https://doi.org/10.1007/BF03167543
https://doi.org/10.1007/BF03167543
https://doi.org/10.1007/s10444-011-9171-x
https://doi.org/10.1007/s10444-011-9171-x
https://doi.org/10.1145/2049662.2049670
https://doi.org/10.1145/2049662.2049670
https://doi.org/10.1137/S0895479898338561
https://doi.org/10.1145/3441850
https://doi.org/10.1007/bfb0080116
https://doi.org/10.1007/bfb0080116
http://arxiv.org/abs/2110.02820
https://doi.org/10.1016/0024-3795(87)90111-X
https://doi.org/10.1016/0024-3795(87)90111-X
https://www.sciencedirect.com/science/article/pii/002437958790111X
https://www.sciencedirect.com/science/article/pii/002437958790111X
https://doi.org/10.1007/978-3-030-85665-6_34
https://doi.org/10.1002/spe.3041
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3041
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3041
https://doi.org/10.1137/070696313
https://doi.org/10.1137/19M1298263

Mixed Precision LSQR 181

30. Higham, N.J., Pranesh, S., Zounon, M.: Squeezing a matrix into half precision,
with an application to solving linear systems. SIAM J. Sci. Comput. 41(4), A2536–
A2551 (2019). https://doi.org/10.1137/18M1229511

31. Ipsen, I.C., Wentworth, T.: The effect of coherence on sampling from matrices with
orthonormal columns, and preconditioned least squares problems. SIAM J. Matrix
Anal. Appl. 35(4), 1490–1520 (2014)

32. Kaufman, L.: The generalized householder transformation and sparse matri-
ces. Linear Algebra Appl. 90, 221–234 (1987). https://doi.org/10.1016/0024-
3795(87)90314-4. https://www.sciencedirect.com/science/article/pii/00243795879
03144

33. Leon, S.J., Björck, Gander, W.: Gram-Schmidt orthogonalization: 100 years and
more. Numer. Linear Algebra Appl. 20(3), 492–532 (2013). https://doi.org/10.
1002/nla.1839. https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1839

34. Lindquist, N., Luszczek, P., Dongarra, J.: Accelerating restarted GMRES with
mixed precision arithmetic. IEEE Trans. Parallel Distrib. Syst. 33(4), 1027–1037
(2021)

35. Ludwig, R.: Ausgleichung vermittelnder und bedingter Beobachtungen, pp. 58–79.
Vieweg+Teubner Verlag, Wiesbaden (1969). https://doi.org/10.1007/978-3-322-
98459-3 4

36. Meng, X., Saunders, M.A., Mahoney, M.W.: LSRN: a parallel iterative solver for
strongly over- or underdetermined systems. SIAM J. Sci. Comput. 36(2), C95–
C118 (2014). https://doi.org/10.1137/120866580

37. Paige, C.C., Rozlozńık, M., Strakos, Z.: Modified Gram-Schmidt (MGS), least
squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl.
28(1), 264–284 (2006). https://doi.org/10.1137/050630416

38. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math. Softw. (TOMS) 8(1), 43–71 (1982)

39. Paschou, P., Lewis, J., Javed, A., Drineas, P.: Ancestry informative markers for
fine-scale individual assignment to worldwide populations. J. Med. Genet. 47(12)
(2010). https://doi.org/10.1136/jmg.2010.078212

40. Rokhlin, V., Tygert, M.: A fast randomized algorithm for overdetermined
linear least-squares regression. Proc. Natl. Acad. Sci. 105(36), 13212–
13217 (2008). https://doi.org/10.1073/pnas.0804869105. https://www.pnas.org/
doi/abs/10.1073/pnas.0804869105

41. Rotella, F., Zambettakis, I.: Block householder transformation for parallel
QR factorization. Appl. Math. Lett. 12(4), 29–34 (1999). https://doi.org/10.
1016/S0893-9659(99)00028-2. https://www.sciencedirect.com/science/article/pii/
S0893965999000282

42. Terao, T., Ozaki, K., Ogita, T.: LU-Cholesky QR algorithms for thin QR decompo-
sition. Parallel Comput. 92, 102571 (2020). https://doi.org/10.1016/j.parco.2019.
102571. https://www.sciencedirect.com/science/article/pii/S0167819119301620

43. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Comput. 36(5–6), 232–240 (2010).
https://doi.org/10.1016/j.parco.2009.12.005

https://doi.org/10.1137/18M1229511
https://doi.org/10.1016/0024-3795(87)90314-4
https://doi.org/10.1016/0024-3795(87)90314-4
https://www.sciencedirect.com/science/article/pii/0024379587903144
https://www.sciencedirect.com/science/article/pii/0024379587903144
https://doi.org/10.1002/nla.1839
https://doi.org/10.1002/nla.1839
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1839
https://doi.org/10.1007/978-3-322-98459-3_4
https://doi.org/10.1007/978-3-322-98459-3_4
https://doi.org/10.1137/120866580
https://doi.org/10.1137/050630416
https://doi.org/10.1136/jmg.2010.078212
https://doi.org/10.1073/pnas.0804869105
https://www.pnas.org/doi/abs/10.1073/pnas.0804869105
https://www.pnas.org/doi/abs/10.1073/pnas.0804869105
https://doi.org/10.1016/S0893-9659(99)00028-2
https://doi.org/10.1016/S0893-9659(99)00028-2
https://www.sciencedirect.com/science/article/pii/S0893965999000282
https://www.sciencedirect.com/science/article/pii/S0893965999000282
https://doi.org/10.1016/j.parco.2019.102571
https://doi.org/10.1016/j.parco.2019.102571
https://www.sciencedirect.com/science/article/pii/S0167819119301620
https://doi.org/10.1016/j.parco.2009.12.005

Ready for the Frontier: Preparing Applications
for the World’s First Exascale System

Reuben D. Budiardja(B) , Mark Berrill , Markus Eisenbach , Gustav R. Jansen ,
Wayne Joubert , Stephen Nichols , David M. Rogers , Arnold Tharrington ,

and O. E. Bronson Messer

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
{reubendb,berrillma,eisenbachm,jansengr,joubert,nicholsss,

rogersdm,arnoldt,bronson}@ornl.gov

Abstract. Frontier, a supercomputer at the Oak Ridge Leadership Computing
Facility (OLCF), debuted atop the Top500 list of the world’s most powerful super-
computers in June 2022 as the very first computer to produce exascale perfor-
mance. Making sure scientific applications are optimized on this architecture is
the critical link necessary to translate the newly available computational power
into scientific insight and solutions. To that goal, the OLCF developed the Center
for Accelerated Application Readiness (CAAR) program to ensure that a suite of
highly optimized applications is ready for scientific runs at the onset of produc-
tion operations for Frontier. This paper describes our experience in porting and
optimizing such suite of applications in the OLCF’s CAAR program.

1 Introduction and Background

Frontier debuted atop the Top500 list of the world’s most powerful supercomputers in
June 2022 [5] as the very first computer to produce exascale performance. The machine
also represents the latest iteration of performance for hybrid CPU-GPU supercomput-
ers that was initiated with the arrival of Titan at the Oak Ridge Leadership Computing
Facility (OLCF) in 2012. Since Titan’s debut, GPU-enabled scientific computing has
moved from a somewhat exotic and perhaps niche methodology for a limited number
of algorithms and codes to become the dominant method to achieve maximum perfor-
mance on today’s most computationally demanding applications.

Making sure scientific applications are optimized on this architecture is the criti-
cal link necessary to translate the newly available computational power into scientific
insight and solutions. Herein we provide the details of code porting and optimization
work done to take maximum advantage of Frontier’s new exascale architecture.

Notice: This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and
the publisher, by accepting the article for publication, acknowledges that the US government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 182–201, 2023.
https://doi.org/10.1007/978-3-031-32041-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_10&domain=pdf
http://orcid.org/0000-0003-0395-8532
http://orcid.org/0000-0002-4525-3939
http://orcid.org/0000-0001-8805-8327
http://orcid.org/0000-0003-3558-0968
http://orcid.org/0000-0003-4771-998X
http://orcid.org/0000-0003-3484-2735
http://orcid.org/0000-0002-5187-1768
http://orcid.org/0000-0002-2877-8768
http://orcid.org/0000-0002-5358-5415
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-031-32041-5_10

Ready for the Frontier 183

It was recognized during the project to build Titan at the beginning of the last decade
that substantial effort would be needed to bring scientific applications to the point of
effective use of hybrid CPU-GPU platforms. The Center for Accelerated Application
Readiness (CAAR) was then formed to carry out this program of work. CAAR is a
development program designed to ensure that the OLCF’s hybrid CPU-GPU platforms
deliver on their promise to advance scientific discovery. Following on from an initial
small set of applications during the Titan project, CAAR has developed into a larger
program with competitive proposals resulting in the formation of integrated teams of
code stakeholders and developers, OLCF personnel, and vendor Center of Excellence
collaborators brought together to work concertedly on a set of established application
codes.

The experience of the OLCF and partners in previous instantiations of CAAR have
been provided in [9] and [15]. Like these earlier experiences, the CAAR program for
Frontier has a number of related, but distinct, aims. First is to have a suite of highly
optimized applications ready for scientific runs at the onset of production operations for
Frontier. Via close collaboration with teams dedicated to the development of the Fron-
tier programming environment and tools, CAAR also serves to improve the environ-
ment for users and application developers in future, non-CAAR projects. Furthermore,
CAAR serves as a laboratory for OLCF staff to develop platform-specific expertise,
enabling a smooth transition to and effective support of user programs on Frontier. The
experiences of CAAR teams are also translated into a robust training program and used
to produce documentation of best practices on the machine.

An important ingredient in the optimization work undertaken by CAAR teams is
the formulation of a “challenge problem” to be undertaken on Frontier at the close of
development work. Although most modern scientific application codes are under near-
constant development and may have a variety of specific simulation aims, the choice
of a singular simulation target has proven invaluable to focus the optimization work.
Nevertheless, the use of portable and maintainable approaches is a primary design cri-
terion. All of these concerns are, of course, also highly dependent on the specifics of the
Frontier platform. Another ingredient of a CAAR project is the formulation of a Figure
of Merit (FOM) to allow us to have a quantitative measure of the development work.
The FOM represents a performance of a CAAR application. At its simplest, a FOM is
a measure of the amount of useful work the code can do per unit of time. A baseline
FOM was taken on OLCF Summit at the beginning of the project, with the anticipation
that a final FOM will be produced on Frontier at the end of the project. The final FOM
captures both software- and hardware- improvements.

This paper is organized as follows. In the next section we briefly describe the
pertinent OLCF systems for this work: Summit and Frontier. In Sect. 3 we describe
the CAAR applications—their scientific domains, algorithmic motifs, performance
characteristics—and the porting and optimization work for these applications for Fron-
tier. We share some initial and early performance results from running these applications

184 R. D. Budiardja et al.

on Frontier and Crusher, an early access system with identical hardware to Frontier.
In Sect. 4 we share some lessons learned and optimization techniques common to the
applications discussed here. We close by providing concluding remarks in Sect. 5.

2 Systems Overview

2.1 Summit

Summit is a production system at the OLCF. Debuted as the number one system in the
June 2018 Top500 list, it currently sits as the fifth in the latest Top500 list with the
theoretical peak speed at 200 Petaflops.

Summit consists of over 4608 IBM Power System AC922 compute nodes inter-
connected by a dual-rail EDR InfiniBand network in a non-blocking fat-tree network
topology. Each of Summit compute node has two IBM Power9 CPUS and six NVIDIA
Volta V100 GPUs. Three GPUs and one CPU are interconnected with NVLink, while
the two CPUs are connected by an X-Bus. Each Power9 has 22 cores and is connected
to 256 GB DDR4 DRAM, with one core reserved for operating system tasks. Each
of the V100 GPUs is connected to a 16 GB High-Bandwidth Memory (HBM). More
detailed descriptions on Summit architecture, including the measured speed-and-feeds
of the system, can be found in the OLCF User Documentation [19].

Several programming models are supported on Summit: CUDA for GPU pro-
gramming, OpenMP for multithreading on CPUs, OpenMP offload and OpenACC for
directive-based GPU programming. Users have also built portability layers such as
Kokkos and Raja on top of these programming models. Common numerical and I/O
libraries are also provided as environment modules.

To aid with the development and porting work to Frontier, HIP is also provided on
Summit. On systems with NVIDIA GPUs such as Summit, HIP acts as thin portability
layers which then called the underlying CUDA compiler (e.g. nvcc). HIP-provided
tools for porting are also available on Summit. Prior the deployment of Frontier and
its early access systems, Summit was the primary development system for the CAAR
program.

2.2 Frontier

Frontier supercomputer consists of 9408 HPE/Cray EX compute nodes and several ser-
vice nodes. Each compute node has a single 64-core AMD EPYC 7A53 “Optimized
3rd Gen EPYC” processor and four AMD InstinctTM MI250X Accelerator. Each of the
MI250X Accelerators consists of two Graphics Compute Dies (GCDs) and are being
presented to application as two devices (i.e. two GPUs). Therefore from an application
perspective, eight GPUs (i.e. GCDs) are available to use. Each GCDs has 64 GB of high-
bandwidth memory while the CPU is equipped with 512 GB DDR4 memory. The CPU
and GPUs are interconnected with AMD Infinity Fabric, allowing peak bandwidths of
36 GB/s and 200 GB/s between host-and-device and device-to-device, respectively. A
unique architectural feature of Frontier is that the four network interfaces are directly
connected to the accelerators. The HPE Slingshot interconnect provides inter-node con-
nectivity in a dragonfly topology providing 100 GB/s network bandwidth.

Ready for the Frontier 185

Frontier’s programming environment (PE) includes AMD ROCm and ROCm
libraries [1] with HIP for GPU programming. HIP, similar to CUDA, is a C++ exten-
sion and runtime API to allow developers to write computational kernels for GPUs.
HIP’s similarity to CUDA, other than pattern-discernible name changes to the API and
library routine calls, allows for a straightforward porting of kernels written in CUDA.
The HPE Cray provided PE also includes the Cray Compiling Environment (CCE) and
AMD compilers capable of OpenMP for multithreading and offload to the GPUs. As
with Summit, common numerical and I/O libraries are available via environment mod-
ules (see [19]).

The OLCF also provides an early-access system called Crusher. Crusher is virtually
identical to Frontier except for its size: Crusher has 192 compute nodes total.

3 Applications

3.1 CoMet

The CoMet (Combinatorial Metrics) application [10] computes similarity metrics
between vectors stored in large datasets for the purpose of solving clustering problems
in areas such as genomics, climate, bioenergy and pandemics [13]. CoMet searches a
very large combinatorial space in order to find clusters manifesting strong similarity
relationships that indicate correlation characteristics of scientific interest. Its primary
computational expense involves mixed precision GEMM operations comprising up to
90% or more of compute cycles for a typical run.

CoMet was initially ported to AMD GPUs using the HIP interface. Rather than
using the HIP interoperability layer, the ported code uses #ifdefs in selected locations
to allow compilation for either ROCm HIP or CUDA, thus allowing more controlled
usage of the relevant libraries such as cuBLAS and rocBLAS. Subsequent development
work focused on performance optimizations for the Frontier platform, primarily cen-
tered on the highly computationally intensive 3-way vector clustering code path. First,
the formation of the matrix taken as input to the GEMMs was moved to the GPU,
in keeping with the continuing theme of moving increasingly more computations to the
GPU. Second, an algorithm change was made enabling the number of GEMMs required
per result to be reduced from three to two with no change in the final answer, resulting
in up to 50% performance improvement (see [13]). Finally, the thresholding process for
the correlation metrics, which is used to discard all results except for the very small
fraction of highly correlated values, was moved to the GPU. This not only made it pos-
sible to apply lossless compression (via the AMD rocPRIM library) to the results for
much faster GPU-CPU transfer performance but also greatly reduced the CPU memory
footprint for storing the metrics, making it possible to solve much larger problems.

Preliminary performance results on Frontier are shown in Fig. 1 for the 3-way CCC
method, showing near-perfect linear scaling. CoMet has achieved over 6.71 Exaflops
(FP16/FP32 mixed precision) at scale on Frontier. The FOM or figure of merit for
CoMet is measured as the rate of science output in units of vector element compar-
isons per second of runtime, On Frontier, CoMet achieved 419.9 quadrillion compar-
isons/second on 9,074 compute nodes, a factor of 5.16X faster than the Summit baseline

186 R. D. Budiardja et al.

of 81.2 quadrillion comparisons per second, this speedup resulting from the combina-
tion of algorithmic improvements and increase in mixed precision flop rate of Frontier
over Summit.

Fig. 1. CoMet Frontier scaling performance

3.2 Cholla: Computational Hydrodynamics on Parallel Architecture

Cholla is as a hydrodynamics code with radiative cooling originally written to run
natively on NVIDIA GPUs [25]. It has since evolved and is acquiring additional physics
modules relevant for astrophysics and cosmological simulations such as self-gravity
solver, particle tracking, and magneto-hydrodynamics. Cholla computational kernels
are written in CUDA, with the CPU responsible only to manage inter-process commu-
nications via MPI and data movement between CPU and GPU memory. Prior to this
project, Cholla has been productively used to perform scientific simulations with pub-
lished results (see for example, [24] and references therein).

The challenge problem for this CAAR project is to perform simulations of a Milky
Way-like galaxy that allow for self-consistent star formation and feedback within inter-
stellar medium. Motivated by recent observational campaigns that have drastically
increased the availability of exquisite data about the Milky Way, computational astro-
physicists are eager to have simulations results that can reproduce the observational
data at the requisite resolutions to be able to make detailed predictions of the galaxy
evolution. Considering factors such as the size of the galaxy and star clusters, the target
resolutions for such simulations are approximately 100003 covering about fifty parsecs
of computational domain.

For this project, we define the FOM as FOM = nCells×nCycles
Walltime , where nCells is the

total number of cells, nCycles is the number of cycles, and Walltime is the elapsed
wall-clock time in seconds.

Porting Cholla to Frontier is relatively straightforward due to the similarity of
CUDA and HIP. Every CUDA library routine used by Cholla map to a correspond-
ing HIP library routine, allowing simple name changes for porting. We started by using
the Hipify tool to transition to HIP. The following considerations, however, urged us to

Ready for the Frontier 187

come up with an alternative approach. If we had ported everything to HIP as a separate
code base, we will be burdened with maintaining two codes: HIP-based and CUDA-
based. If we had ported to HIP in-place, Cholla’s users on CUDA systems will have the
additional burden of installing HIP1. Even if performance impact is minimal, we felt
that this is a significant burden to users on CUDA system.

Our approach is to instead have a simple conditional compilation file—using C
preprocessor—that does the translation from CUDA to HIP calls based on a compilation
flag. The small number of CUDA library calls used in Cholla made this a relatively
simple process.2

When Cholla was originally written, the GPU high-bandwidth memory size was
typically only a fraction of the available host memory. It therefore utilized the “sub-
grid splitting” technique—where the grid is split into multiple blocks, copied into
GPU memory on which computations are performed, and copied back to the CPU
consecutively—to fit larger volume than what was possible on GPU memory only. This
assumption is no longer true on Frontier, where the size of GPU memory is equal to
that of host memory. By removing the subgrid splitting feature, we actually introduced
a large speed up by virtue of removing data movement to and from GPU memory while
at the same time simplifying the code.

Fig. 2. Timing (green and blue bars) and Speedups (red bars) of computational portions for Cholla
on Summit’s Nvidia V100 (green) and Crusher’s AMD’s MI250X GCD (blue). The timing for
Hydro, Boundaries, Gravitational potential, Particle boundaries are scaled down by factor of 10,
10, 100, 2, and 100 respectively to fit the scale of the chart. (Color figure online)

Keeping the data persistently on GPU memory is also motivated by another archi-
tectural feature of Frontier: hardware- and software-supported GPU-aware MPI. Since

1 On CUDA systems, HIP acts as a thin portability layers that then calls the CUDA compiler
nvcc.

2 How we do this can be observed from the file available from the Cholla public repository:
https://github.com/cholla-hydro/cholla/blob/main/src/utils/gpu.hpp.

https://github.com/cholla-hydro/cholla/blob/main/src/utils/gpu.hpp

188 R. D. Budiardja et al.

Frontier’s network interfaces are connected directly to the GPU memory, it is more effi-
cient for communications to be done on data residing on GPU memory. We modified
Cholla to utilize GPU-aware MPI for the data already residing on GPUs.

Figure 2 shows timings and speedups of computational portions of Cholla for the
FOM problem. This test problem was run with 64 GPUs on Summit NVIDIA V100
and 64 GCDs on Crusher’s AMD MI250X. This comparison was performed after all
the software changes discussed above. As we can see from the plot, most of the com-
putational portions show some speedup on AMD MI250X GCD, with some achieving
more than 5X speedup. The total speedup is more than a factor of 3X. We attribute this
to mostly two factors. First is the fact that the network interfaces are directly attached to
the GPUs. The computational portions that get the most speedups are communication-
heavy. The second contributing factor is the higher memory-bandwidth available on
Frontier’s hardware.

Fig. 3. Cholla FOM as a function of number of
GPUs (Summit) or GCDs (Frontier).

Figure 3 shows the total speedup on
Frontier over baseline runs on Summit.
Note that the baseline runs were per-
formed with the version of the code prior
to the developments described above.
The FOM speedups on Frontier’s 64,000
AMD MI250X GCDS is 20X versus the
baseline code on Summit with 26,624
NVIDIA V100 GPUs. From the results
shown in Fig. 2, we can infer that soft-
ware developments contribute a speedup
over ∼4X, while hardware improve-
ments contribute at least∼4X to make up
the total 20X speedups.

3.3 GESTS: GPUs for Extreme-Scale Turbulence Simulations

The GESTS project performs direct numerical simulations (DNS) of turbulent fluid
flows across a wide range of scales according to the Navier-Stokes equations. The algo-
rithms developed by GESTS use a Runge-Kutta scheme in time and a Fourier-spectral
representation in space to create a pseudo-spectral method that computes the nonlinear
terms in physical space and performs all other computations in wave number space. The
original GPU-enabled algorithm along with previous results from Summit are presented
in [23].

The basic elements of the GESTS algorithm include a domain decomposition
among the MPI processes, transposes of the solution domain to allow FFTs to be
taken in each direction, local data movements arising from the non-contiguous nature
of messages for the required all-to-all communication, as well as data movements
between the host and device memory. This 3D FFT problem is in fact well known
for being communication intensive, which can limit scalability at large problem sizes.
The challenge—which is shared by many other user application codes—is to allow
a communication-intensive algorithm to benefit fully from heterogeneous platforms
whose principal advantage is fast computation.

Ready for the Frontier 189

The GESTS codes are written in modern Fortran using MPI for communication and
OpenMP for CPU multi-threading and GPU offloading. The codes are formed around
a custom-built 3D FFT algorithm that computes the FFTs on both CPUs and GPUs via
FFTW (for CPUs), CUDA cuFFT (for NVIDIA GPUs), or ROCm rocFFT (for AMD
GPUs). OpenMP offloading functionality is used to manage data movement between
the host and device, to enable GPU-Direct MPI communications, and to accelerate a
variety of array operations on the GPUs.

Two variants of codes have been developed: a “Slabs-” and a “Pencils-” decomposi-
tion (see Fig. 4). For a N3 problem across P MPI processes, the “Slabs” decomposition
cuts the domain in only one of the three dimensions at a time to form P partitions. This
decomposition allows the code to perform the FFT computations for two of the three
dimensions before requiring expensive MPI communications to form contiguous data
for the FFT computations in the third dimension. Since each slab must contain a full 2D
slice of the domain, the “Slabs” code can have a maximum of P = N MPI processes,
which can be a critical limitation for very large problems.

The “Pencils” decomposition divides the domain in two dimensions at a time. This
decomposition allows the use of up to N2 MPI processes, but requires an expensive MPI
communication between each FFT computation since only one direction is contiguous
at a time. Specifically, for an N3 problem across P MPI processes, one dimension is
divided into Pr pieces and a second dimension is divided into Pc pieces such that P =
Pr ×Pc. Figure 4 demonstrates both decomposition approaches.

0
1
2
3

x

y

z
mz

my

0
1

2
3

x

y

z

mz

my
mx

Slabs Pencils

Fig. 4. Slab vs Pencil Decomposition

As seen in Tables 1 and 2, the MPI communications consume approximately 70%
of the runtime for the multi-node jobs while the forward and inverse FFT transforms in
the three coordinate directions account for roughly 20% of the runtime. Virtually all of
the MPI communications are used to transpose the arrays into contiguous pencils for the
FFT computations. As a result, the 3D FFT algorithm consumes upwards of 90% of the
runtime for the DNS codes. This demonstrates clearly how efficient DNS computations
depend critically on a highly performant 3D FFT algorithm.

The Figure of Merit (FOM) chosen for GESTS is defined as the total number of grid
points in the simulation divided by the average time to compute each time step and is
presented in Eq. 1

FOM =
N3

Δ t̃
(1)

190 R. D. Budiardja et al.

Table 1. Timings for “Slabs” code on Frontier

N3 Nodes Ranks FFT(s) Pack+Unpack(s) MPI(s) Other(s) Total(s)

20483 1 8 1.364 0.243 1.841 0.635 4.083

40963 8 64 1.432 0.246 6.930 0.658 9.266

81923 64 512 1.583 0.255 8.110 0.672 10.620

163843 512 4096 2.200 0.269 8.427 0.675 11.571

327683 4096 32768 3.420 0.276 9.220 0.704 13.62

Table 2. Timings for “Pencils” code on Frontier

N3 Nodes Pr Pc FFT(s) Pack+Unpack(s) MPI(s) Other(s) Total(s)

20483 1 2 4 1.820 1.092 2.333 0.590 5.835

40963 8 2 32 1.643 0.786 8.070 0.791 11.290

81923 64 2 256 1.454 0.610 8.760 0.686 11.510

163843 512 2 2048 2.340 0.600 9.460 0.730 13.130

327683 4096 4 8192 3.385 0.608 10.470 1.337 15.800

The reference FOM was computed on Summit as part of an INCITE 2019 project [23]
and is provided in Table 3 along with timings from Frontier (see Tables 1 and 2). As
Table 3 shows, GESTS sees a >5x speedup on Frontier on 4096 nodes for both decom-
position strategies which exceeds the CAAR project goal of a 4x speedup. Tests are
ongoing for N = 32768 on 8192 Frontier nodes with the “Pencils” code, and full pro-
duction simulations are expected in the near future. These 327683 cases are the largest
known DNS computations to date with a point total in excess of 35 trillion grid points.
Frontier is the only machine in the world with the memory capacity to complete these
simulations.

Table 3. Comparison of FOM on Summit and Frontier

Machine Decomposition #GPUs N3 (points) Δ t̃ (sec) FOM (points/sec) Speedup

Summit Slab 18432 184323 14.24 4.398 × 1011 —

Frontier Slab 32768 327683 13.62 2.583 × 1012 5.87x

Frontier Pencil 32768 327683 15.8 2.227 × 1012 5.06x

3.4 LBPM: Lattice Boltzmann Methods for Porous Media

The LBPM software package relies on lattice Boltzmann methods to model transport
processes in systems with complex microstructure, including flows through porous
media, multiphase flow, and membrane transport processes. Microscope image data—
such as 3D data from x-ray micro-computed tomography that reveals the internal struc-
ture of complex materials—is commonly used to specify input geometries for LBPM.

Ready for the Frontier 191

Digital rock physics is a core capability of LBPM, particularly direct pore-scale sim-
ulations of two-fluid flow through geological materials such as rock or soil. LBPM is
freely available through the Open Porous Media project [7,17]. The LBPM multiphase
flow solver uses a color Lattice-Boltzmann model that is defined by a set of three lat-
tice Boltzmann equations (LBEs), corresponding to one momentum transport equation
and two mass transport equations. The LBEs are defined based on a quadrature scheme
to discretize the velocity space in the continuous Boltzmann transport equation. LBPM
includes a thread-based framework to carry out in situ analysis of the flow behavior. The
analysis framework is configured to compute integral measures from the flow that cap-
ture essential aspects of the behavior. In addition, the analysis framework can identify
and track connected and disconnected parts of the fluid performing the integral analysis
over these individualized sub-regions [18].

The LBPM code is written in object-oriented C++ using MPI for communication.
Analysis routines and I/O are handled in separate CPU threads using the native C++11
thread capabilities. The code used CUDA for the initial GPU capabilities. While the
GPU routines represent the computationally expensive portion of the physics, analysis
and IO routines are performed on the CPU. The porting effort focused on updating
GPU routines to HIP to target the AMD GPUs. The majority of the simulation data
remains on the GPU during the calculations over all timesteps with communication
from the GPU to the host occurring every n-th timestep for analysis or IO needs. The
communication between nodes utilizes pack/unpack routines that are implemented on
the GPU to avoid copying the entire domain to the host and the communication can
take advantage of the GPU direct MPI communication. The code includes a number of
unit tests that were leveraged throughout the porting process to ensure correctness and
to test the performance of individual routines such as communication.

To compare performance across multiple architectures and scale the project defined
a FOM (Figure of Merit) defined as the number of Millions of Lattice Updates Per Sec-
ond (MLUPS). Table 4 shows the weak scaling performance data obtained on Summit.
Weak scaling demonstrated 80% scaling efficiency on Summit at full machine using the
original version of the code. Table 5 shows the weak scaling performance data obtained
on Crusher after porting to AMD GPUs.

Table 4. Performance on Summit

Ranks Nodes MFLUPS (per rank) MLUPS (total)

6,144 1024 384 2.36e6

12,288 2048 369 4.54e6

24,576 4096 313 7.71e6

3.5 LSMS

The Locally-Selfconsistent Multiple Scattering (LSMS) code implements a scalable
approach for first principles all-electron calculations of alloys and magnetic solid state
systems. It is available under an open source license [14]. LSMS solves the Schrödinger

192 R. D. Budiardja et al.

Table 5. Performance on Crusher

Ranks Nodes MLUPS (per rank) MLUPS (total)

1 1 640 640

8 1 610 4880

64 8 594 37,952

512 64 595 304,640

equation for the electrons inside a solid using the Kohn-Sham density functional theory
(DFT) formalism [12]. This transforms the interacting many electron problem into a
tractable effective one-electron problem. In the transformed problem, the many body
effects are captured by the exchange-correlation functional, for which various approxi-
mations are available. While most widely used DFT codes diagonalize the Kohn-Sham
Hamiltonian, LSMS is inspired by the Korringa-Kohn-Rostoker method [20] and it
employs a real space multiple scattering formalism to calculate the electronic Green’s
function.

LSMS calculates the local spin density approximation to the diagonal part of the
electron Green’s function. The electron and spin densities and energy are readily deter-
mined once the Green’s function is known. Linear scaling with system size is achieved
in LSMS by using several unique properties of the real space multiple scattering app-
roach to the Green’s function, namely: 1) the Green’s function is “nearsighted”, there-
fore, each domain, i.e. atom, requires only information from nearby atoms in order
to calculate the local value of the Green’s function. 2) the Green’s function is ana-
lytic everywhere away from the real axis, therefore, the required integral over electron
energy levels can be analytically continued onto a contour in the complex plane where
the imaginary part of the energy further restricts its range; and 3) to generate the local
electron/spin density an atom needs only a small amount of information(phase shifts)
from those atoms within the range of the Green’s function. The very compact nature
of the information that needs to be passed between processors and the high efficiency
of the dense linear algebra algorithms employed to calculate the Green’s function are
responsible for the scaling capability of the LSMS code. The LSMS code is written
in C++ with a few remaining legacy routines written in Fortran and it utilizes MPI for
communication as well as OpenMP for multi-threaded CPU execution. GPU acceler-
ation is achieved through CUDA or HIP kernels as well as through the use of dense
linear algebra libraries.

For LSMS we defined a figure of merit that captures both strong and weak scaling
opportunities as well as increases in the physical accuracy captured during the calcula-
tions. Thus FOMLSMS combines the number of atoms in the simulation Natom, the num-
ber of energies on the integration contour Nenergies, the number of sites in the local inter-
action zone NLIZ, the maximum angular momentum lmax and time per selfconsistency
iteration in seconds titeration as FOMLSMS = NatomNenergies

(
(lmax+1)2NLIZ

)3
/titeration.

The results for scaling runs on Frontier are shown in Table 6.
The port of LSMS to the AMD GPU architecture of Frontier builds on our GPU

implementation for the Titan system at OLCF [9]. The main kernel that accounts for

Ready for the Frontier 193

Table 6. FOM results for LSMS on Frontier and comparison to Summit.

Atoms Nodes FOM FOM/Node FOM(Frontier)/FOM(Summit)

128 2 2.11E+12 1.05402E+12 6.270912661

1024 16 1.51E+13 9.464E+11 5.63065207

8192 128 1.20E+14 9.37336E+11 5.576724997

65532 1024 9.43E+14 9.21091E+11 5.480073895

65532 2048 1.81E+15 8.85586E+11 5.268835897

65532 4096 3.49E+15 8.52815E+11 5.073863288

131072 2048 1.86E+15 9.09072E+11 5.408568929

131072 4096 3.62E+15 8.84375E+11 5.261631366

more than 95% of the floating point operations in a typical LSMS run calculates the
block diagonal parts of the Green’s function in the local interaction zone approximation.
This requires the calculation of a small block of the inverse of a dense non-Hermitian
complex matrix. This task can be readily solved using the dense matrix multiplication,
LU factorization and solver routines in the rocBLAS and rocSolver libraries. Additional
kernels that construct the matrices that enter the solvers are written in HIP. While these
follow the same structure as the equivalent CUDA kernels, the performance was signifi-
cantly improved by rearranging the matrix index calculations to alleviate the contention
between integer and floating point operations on the AMD accelerators.

With the ports to AMD GPUs described above for LSMS we have obtained early
scaling and performance measurements on Frontier. In Fig. 5a we show the weak scaling
of FePt calculations from 2 nodes to 4096 nodes with 64 atoms per node (8 atoms per
GPU). For comparison we show the time on Summit for a single node with the same

0 1,000 2,000 3,000 4,000

500

1,000

1,500

Nodes

T
im

e/
sc
f
lo
op

[s
ec
]

Frontier
Summit

(a) Weak scaling of LSMS for FePt (lmax =
7) with 64 atoms per node from 2 to 4096
Frontier nodes.

1,000 2,000 3,000 4,000

100

150

200

250

300

Nodes

T
im

e/
sc
f
lo
op

[s
ec
]

65536 atoms
131072 atoms

(b) Strong scaling of LSMS for FePt (lmax= 7)
from 1024 to 4096 Frontier nodes.

Fig. 5. Weak- and strong-scaling of LSMS.

194 R. D. Budiardja et al.

number of atoms per GPU. Additionally we also have early strong scaling results for
65,536 and 131,072 atom systems on Frontier that are shown in Fig. 5b. These results
indicate that, together with the CAAR improvements in LSMS, we can, at present,
expect an ≈5.5× per node speedup on Frontier when compared to Summit.

3.6 NUCCOR/NTCL

NUCCOR (Nuclear Coupled-Cluster Oak Ridge) is a nuclear physics application
designed to compute properties of atomic nuclei from first principles using high-
performance computing resources at Oak Ridge National Laboratory (ORNL). From
its inception at the start of the millennium [3], it has changed the perception of ab-initio
nuclear physics from impractical and too computationally expensive to practical and
state-of-the-art. Since NUCCOR uses the coupled-cluster method, a method that scales
polynomially with the number of particles present in the atomic nucleus, it has a sig-
nificant advantage over other competing methods that only scale exponentially. With
the exponential growth in the availability of high-performance computing resources at
ORNL over the past two decades, NUCCOR has gone from computing properties of
oxygen-16, a nucleus with only eight protons and eight neutrons, in 2004 [3], to lead-
208, a nucleus with 82 protons and 126 neutrons, in 2022. Frontier will increase the
reach of ab-initio nuclear theory to encompass all atomic nuclei and test the theoretical
foundations that define low-energy nuclear physics.

NUCCOR solves the time-independent Schrödinger equation for many interacting
protons and neutrons, collectively called nucleons, using the coupled-cluster method.
The coupled-cluster method rewrites the Schrödinger equation as an eigenvalue prob-
lem in a finite basis set. By constructing a similarity transformation for the Hamilto-
nian matrix using a fixed-point iteration, the eigenvalue problem can be truncated to a
smaller basis set and solved at a lower computational cost. However, the basis set is still
too large for the eigenvalue problem to be solved exactly, so Krylov sub-space methods,
like Arnoldi and non-symmetric Lanczos, are used to extract the lowest eigenpairs to a
specified precision.

Due to the inherent symmetries in an atomic nucleus, block-sparse tensor contrac-
tions dominate the computational cost of the NUCCOR application. Each iteration con-
sists of multiple tensor contraction terms, where each term is block-sparse. NUCCOR
exploits the sparsity patterns to convert them into a series of local, dense tensor contrac-
tions of different dimensions. The number of tensor contractions and the dimensions of
each contraction depend on the nucleus and the size of the chosen basis set. Typically,
the size of the basis set is on the order of thousands, while the dimensions of the tensor
contractions vary from less than ten to several million. A balanced distribution scheme
among MPI ranks is critical for excellent performance on Summit and Frontier, as well
as a highly tuned tensor contraction library.

Ready for the Frontier 195

main

factory

implementation

abstract interface

global API

initializer

application

plugin

Fig. 6. NTCL implements a plugin structure
using the strategy and abstract factory patterns.
The application knows only the architecture-
independent API, while the main program unit
initializes the architecture-dependent API.

NUCCOR uses the Nuclear Tensor
Contraction Library (NTCL) [8] to per-
form distributed block-sparse tensor con-
tractions and dense local tensor contrac-
tions. NTCL presents an architecture-
independent API to the user and sup-
ports multiple hardware backends using
a plugin structure. For example, the HIP
backend supports Crusher and Frontier,
while the CUDA backend supports Sum-
mit. For the CAAR project, we ported
the CUDA plugin to HIP, which was
very straightforward. After a search-and-
replace operation, we only had to per-
form minor adjustments, primarily to
accommodate 64 work items in a wave-
front, compared to 32 threads in a warp
using CUDA.

NTCL and NUCCOR are written in
modern Fortran and use features from the

Fortran 2018 standard. Internally, NTCL implements the plugin structure using a stan-
dard strategy pattern to encapsulate memory, dependencies, and algorithms. In addition,
an abstract factory pattern enables the user to write plugin-independent code for maxi-
mum efficiency. Figure 6 shows the overall structure.

Fig. 7. Tensor contraction speedups in NTCL using a single GCD of the MI250X on Crusher,
compared to a single V100 on Summit for different tensor shapes and sizes. The column label
denotes the datatype, the tensor dimensions, and the tensor contraction type in Einstein summa-
tion notation.

Figure 7 shows preliminary performance results from Crusher. Each column iden-
tifies the speedup from an NV100 on Summit to a single GCD on the MI250X on
Crusher. We need Frontier to run a representative use case for NUCCOR. If we run a
use case appropriate for Crusher, it will result in many small tensor contractions and
skew the performance results. Instead, we show a selection of tensor contractions that
are important for the figure of merit – the number of tensor contraction operations per
second.

196 R. D. Budiardja et al.

3.7 NAMD

NAMD [22] is a C++ molecular dynamics (MD) code that simulates atomistic biologi-
cal systems on CPU and GPU architectures. It has demonstrated scalable performance
on systems consisting of millions of atoms over several hundred thousand cores [21].
NAMD is implemented with Charm++ [11], a message passing parallel programming
framework that provides migratable objects, asynchronous methods, and an adaptive
runtime system.

As is typical for molecular dynamics codes, the calculation of forces, pairwise 2-
body non-bonded, bonded, angle, and dihedral interactions are the computational bot-
tleneck. To reduce the time-to-solution, NAMD uses a spatial-domain decomposition
to partition the force calculations over the processor. This had been ported to CUDA.

The methodology of porting NAMD to Frontier was to use HIP. Because HIP and
CUDA kernels are syntactically the same, we used a common header file that defines
C preprocessor macros to redefine CUDA calls to HIP calls such as the ones shown
below:

#define cudaGetDevice hipGetDevice
#define cudaStream hipStream

HIP does have limitations in adapting to CUDA’s API (these limitations are listed in
the HIP documentation). Consequently, it is advisable to keep the CUDA code simple
to avoid these limitations.

Another difference between HIP and CUDA kernels is that the warp size in CUDA
is 32 while that for HIP is 64. Many NAMD kernels had hard-coded the warp size
which resulted in deleterious performance effects when run on the AMD GPUs. As part
of this project, we improved the code portability on different GPUs by using a variable
to represent warp size.

With AMD devices having larger warp sizes that NVIDIA devices, it is important
to carefully consider and benchmark performance effects of problem decomposition
over the GPUs. In NAMD, the atom’s tiles sized was tightly coupled and set equal to
the device warp size. This had the side effect of increasing the number of neighboring
atoms in which lowered the percentage of effective interacting pairs. This problem was
addressed by decoupling the tile sizes from the device’s warp size.

For biological MD simulations long-ranged electrostatics effects are significant and
are typically calculated with methods that involve Fast Fourier Transforms (FFTs). We
initially attempted to use rocFFT to do this but found out that it did not deliver superior
performance to the VkFFT library.

NAMD’s use of the Charm++ parallel programming framework requires the Open
Fabrics Interfaces (OFI) target on Frontier to perform optimally. Unfortunately, the we
encountered functionality issue with using OFI on the current Slingshot 11 on Frontier.
While we continue to work with the vendor to resolve this issue, we had to resort to
using the Charm++ MPI target which is not nearly as performant as the OFI target.

3.8 PIConGPU

PIConGPU is a particle-in-cell code that solves the Maxwell electromagnetic equa-
tions simultaneously with the motion a plasma of electrons [2]. Internally, electric and

Ready for the Frontier 197

magnetic fields are stored on a staggered, Yee-grid and updated using finite-difference
time-domain methods. Electrons are propagated in time by moving ‘macroparticles’.
Each macroparticle represents a group of electrons within a deformable spatial shape.

This explicit representation of particles and fields is necessary to create high fidelity
models of high-energy plasmas because it contains the full relativistic physics of
particle-field interactions. Results from these simulations can be used to parameterize
continuum, density-based models like the Vlasov-Poisson equation. As a time-domain
code, PIConGPU’s scaling is governed by a Courant-Friedrichs-Lewy (CFL) condition
for the electromagnetic wave velocity.

In the traveling wave electron acceleration experiment (TWEAC) [4], a short, 10-
femtosecond burst from two crossed beams of ultraviolet light accelerate electrons to
nearly the speed of light. The accelerated electrons leave behind a cavity that can extend
10-s of micrometers. A full simulation of these events requires observing a length scale
of 100-s of micrometers over hundreds of femtoseconds, a volume which contains, at
minimum, around 1014 electrons and 1012 grid cells simulated for thousands of time-
steps.

For systematically exploring the design of these laser-accelerated plasma setups, it
is essential to have a high-performance, parallel application with good weak scaling
to large simulation volumes. PIConGPU has shown extremely good weak scaling effi-
ciency, even up to full Frontier scale (Fig. 8). Its strong scaling is essentially limited
by needing at least 2003 cells per GPU in order to saturate the GPU’s compute speed.
PIConGPU’s FOM thus measures number of time-steps completed per second times a
weighted average of particles (90%) and grid cells (10%).

PIConGPU faced unique challenges increasing its throughput because of several
factors. Primarily, the application had already been heavily optimized for GPU compu-
tations: GPU-resident data, use of 32-bit floats in most places, and hand-optimization
of kernels ranked slowest on existing hardware. On the other hand, more than 90%
of its run-time is already spent in kernels, directly enabling the code able to utilize
faster GPUs. Frontier’s MI250x GPUs have the same FLOP-rate for 32-bit as 64-bit
floats, a factor which doesn’t directly benefit existing use cases. Instead, faster double-
precision arithmetic enables simulating previously inaccessible laser setups that require
high-fidelity.

Figure 8 shows PIConGPU’s achieved FOM during a full-Frontier simulation of the
TWEAC system. In this particular configuration, the simulation size included 2.7 ·1013
macroparticles in 1012 grid cells. One thousand time-steps completed in a mere 6 and
a half minutes. The right panel shows significant variations in the wall-time per simu-
lated time-step. These may potentially be a symptom of network congestion effects. If
confirmed, performance will increase with network upgrades.

The average FOM in the run above (65.7 TUpdates/sec) was a factor of 3.9 higher
than the Summit benchmark run completed at the start of the project (16.8 TUp-
dates/sec). Achieving this progress happened in several steps. First, the team added
ROCm support to their performance-portability libraries, alpaka and cupla [16]. The
team also compiled and tested the I/O backend library, openPMD [6]. The initial test
run was 20% slower on a single AMD MI100 GPU3 as it would have on a NVIDIA

3 MI100 is a previous generation of AMD accelerators.

198 R. D. Budiardja et al.

Fig. 8. TWEAC laser simulation weak scaling at 14.6×106 cells per GCD (left panel) and (right
panel) 9216-node Frontier run showing system power utilization (left scale) and instantaneous
figure of merit (units of 1012 updates per second, right scale).

V100. There were also program crashes observed during development that originated
from within the GPU andMPI library and device driver stacks. Once found, these issues
were raised with the compiler and hardware vendors, which lead to help troubleshoot-
ing, improved libraries, and issue resolution.

Timing GPU kernels was done without any code changes using nvprof and rocprof.
It showed that about 92% of the execution time was spent running GPU kernels on
both platforms. Individually, all the kernels were faster on MI100 except for the ker-
nel computing the driving ‘background’ laser field. This kernel evaluates sin and cos
functions, and requires significant GPU register space. After gaining some a few per-
cent speedup by trying some mathematical reformulations, the developers eventually
decided to use time-propagation instead of direct calculation for this field. The result
was a 25% speedup in the single MI250x GCD vs. V100 comparison. Scaling this up
by the number of GPUs available on Frontier, the overall increase in throughput is 4
times higher than Summit.

4 Lessons Learned

We summarize in this section the common insights and lessons learned from porting
and optimizing the CAAR applications on Frontier.

We first note that all of the CAAR applications described in this paper had been
“production-ready” applications at the beginning of the program. In other words, these
applications have been used to perform simulations with published results and have
been fairly well optimized on pre-exascale systems such as Summit. Almost by neces-
sity, this means that these applications were already GPU-accelerated at the beginning
of the CAAR program.

For porting from CUDA to HIP, the resemblance of the two language extensions
tremendously helped the porting efforts. Although the HIP-ify tool was initially help-
ful, applications chose to instead use a simpler translation layer via C-preprocessor
or header include file. This header file provides a name-translation layer between
CUDA and HIP routines (for example, see Sect. 3.7 and 3.2). In other cases, developers
used OpenMP offloading (GESTS) or reliance on cross-platform libraries (NUCCOR,
NAMD, CoMet) to achieve performance portability.

Ready for the Frontier 199

After the initial porting, further optimizations were then obtained by the following
techniques common to these applications:

– Abstracting out hardware-dependent limits: GPU thread size, warp size, or work-
groups should not be hardwired to the kernel or kernel launch parameters so that
they can be changed depending on the system on which the application is being run

– Exploiting larger HBM size: since Frontier has more HBM capacity per GCD, sizing
the problem appropriately increases FOM speedups by reducing or eliminating data
movement to/from the host DRAM

– Using GPU-aware MPI: with the network interfaces directly connected to the GPUs,
MPI communications with data residing on HBM are much more efficient.

– Making data on the GPU as persistent as possible to reduce transfer costs.
– Performing pack/unpack of data on the GPU when appropriate to minimize transfer
costs.

– Using OpenMP threads to speed up computations that remain on the CPU.

Beyond this list, specific optimizations due to hardware and algorithmic differences
may still be unavoidable (as discussed in Sect. 3.1, Sect. 3.5, and Sect. 3.8).

Some challenges we faced for this work can be attributed to the fact that the pro-
gramming environments and profiling tools for Frontier were much less mature com-
pared to the ones we had been accustomed to. Through this work and close collabora-
tions with our vendor partners, the programming environments (compilers and software
libraries) and profiling tools are now much improved.

5 Conclusions

In this paper, we described the porting and optimization of a suite of applications to be
ready for Frontier. Via the CAAR program, this work ensures that these applications
are ready to capitalize Frontier’s computational power for new scientific insights on the
first day of Frontier’s production period.

With this suite of applications, we show that Frontier delivers on its performance
potential. Most applications described here achieve significant FOM speedups com-
pared to their baseline on Summit. While the initial code porting is generally straight-
forward, architecture-specific optimizations and tuning are also crucial in achieving
those speedups. We have described those optimizations in this paper which would serve
as guides for future oncoming applications.

The CAAR program has also served its purpose in improving Frontier’s environ-
ment by uncovering many initial issues not atypical to a maiden system. The resolutions
of these issues benefit applications that will be and are currently being onboarded to
Frontier. Meanwhile, we continue to work with our vendor partners to resolve remain-
ing open issues.

Acknowledgments. This research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

The work described here were collaboratively performed by members of the respective
project teams and Frontier’s Center of Excellence. We acknowledge their significant contributions

200 R. D. Budiardja et al.

to the success of the Frontier’s CAAR program. They include P.K. Yeung (Georgia Tech), Rohini
Uma-Vaideswaran (Georgia Tech), Kiran Ravikumar (HPE), Steve Abbott (HPE), Matt Turner
(HPE), Alessandro Fanfarillo (AMD), Swarnava Ghosh (ORNL), Kariia Karabin (ORNL), Yang
Wang (Carnegie Mellon University), Vishnu Raghuraman (Carnegie Mellon University), Franco
Moitzi (University of Leoben), Alessandro Fanfarillo (AMD), David Hardy (University of Illinois
Urbana-Champaign), Julio Maia (AMD), Josh Vermass (Michagan State University), TimMattox
(HPE), Morten Hjorth-Jensen (MSU), Gaute Hagen (ORNL), Justin Lietz (ORNL), Rene Widera
(Helmholtz-Zentrum Dresden-Rossendorf - HZDR), Klaus Steiniger (HZDR), Sergei Bastrakov
(HZDR), Michael Bussmann (HZDR), Fabian Mora (U. Delaware), Richard Pausch (HZDR),
Guido Juckeland (HZDR), Jeffrey Kelling (HZDR), Matthew Leinhauser (U. Delaware), Jef-
fery Young (Georgia Tech.), Franz Pöschl (HZDR), Alexander Debus (HZDR), Sunita Chan-
drasekaran (U. Delaware), Evan Schneider (U. Pittsburgh), Bruno Villasenor (U. California Santa
Cruz, AMD), Brant Robertson ((U. California Santa Cruz), Robert Caddy (U. Pittsburgh), Alwin
Mao (U. Pittsburgh), Trey White (HPE), Dan Jacobson (ORNL), Jakub Kurzak (AMD).

References

1. AMD: New AMD ROCM information portal (2022). https://rocmdocs.amd.com/en/latest/.
Accessed 01 June 2022

2. Bussmann, M., et al.: Radiative signatures of the relativistic Kelvin-Helmholtz instability,
pp. 5:1–5:12 (2013). https://doi.org/10.1145/2503210.2504564

3. Dean, D.J., Hjorth-Jensen, M.: Coupled-cluster approach to nuclear physics. Phys. Rev. C
69, 054320 (2004). https://doi.org/10.1103/PhysRevC.69.054320

4. Debus, A., et al.: Circumventing the dephasing and depletion limits of Laser-Wakefield accel-
eration. Phys. Rev. X 9, 031044 (2019). https://doi.org/10.1103/PhysRevX.9.031044

5. Dongarra, J., Strohmaier, E., Simon, H., Meuer, M.: TOP500 (2022). https://www.top500.
org/lists/top500/2022/11/

6. Huebl, A., et al.: openPMD: a meta data standard for particle and mesh based data (2015).
https://doi.org/10.5281/zenodo.591699

7. The Open Porous Media Initiative: Open porous media project (2022). https://opm-project.
org/. Accessed 30 Dec 2022

8. Jansen, G.R.: NTCL – nuclear tensor contraction library (2022). https://gitlab.com/ntcl/ntcl
9. Joubert, W., et al.: Accelerated application development: the ORNL titan experience. Com-

put. Electr. Eng. 46, 123–138 (2015). https://doi.org/10.1016/j.compeleceng.2015.04.008
10. Joubert, W., et al.: Attacking the opioid epidemic: determining the epistatic and pleiotropic

genetic architectures for chronic pain and opioid addiction. In: International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2018, pp. 717–730
(2018). https://doi.org/10.1109/SC.2018.00060

11. Kalé, L.V.: Charm++, pp. 256–264. Springer, Boston (2011)
12. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects.

Phys. Rev. 140, A1133–A1138 (1965)
13. Lagergren, J., et al.: Climatic clustering and longitudinal analysis with impacts on food,

bioenergy, and pandemics. Phytobiomes J. (2022). https://doi.org/10.1094/PBIOMES-02-
22-0007-R

14. LSMS: LSMS: scalable first principles calculations of materials using multiple scattering
theory (2022). https://github.com/mstsuite/lsms. Accessed 30 Dec 2022

15. Luo, L., et al.: Pre-exascale accelerated application development: the ORNL summit expe-
rience. IBM J. Res. Dev. 64(3/4), 11:1–11:21 (2020). https://doi.org/10.1147/JRD.2020.
2965881

https://rocmdocs.amd.com/en/latest/
https://doi.org/10.1145/2503210.2504564
https://doi.org/10.1103/PhysRevC.69.054320
https://doi.org/10.1103/PhysRevX.9.031044
https://www.top500.org/lists/top500/2022/11/
https://www.top500.org/lists/top500/2022/11/
https://doi.org/10.5281/zenodo.591699
https://opm-project.org/
https://opm-project.org/
https://gitlab.com/ntcl/ntcl
https://doi.org/10.1016/j.compeleceng.2015.04.008
https://doi.org/10.1109/SC.2018.00060
https://doi.org/10.1094/PBIOMES-02-22-0007-R
https://doi.org/10.1094/PBIOMES-02-22-0007-R
https://github.com/mstsuite/lsms
https://doi.org/10.1147/JRD.2020.2965881
https://doi.org/10.1147/JRD.2020.2965881

Ready for the Frontier 201

16. Matthes, A., Widera, R., Zenker, E., Worpitz, B., Huebl, A., Bussmann, M.: Tuning and opti-
mization for a variety of many-core architectures without changing a single line of imple-
mentation code using the alpaka library (2017). https://arxiv.org/abs/1706.10086

17. McClure, J.: LBPM software package (2022). https://github.com/opm/lbpm. Accessed 30
Dec 2022

18. McClure, J.E., Berrill, M.A., Prins, J.F., Miller, C.T.: Asynchronous in situ connected-
components analysis for complex fluid flows. In: 2016 Second Workshop on In Situ Infras-
tructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), pp. 12–17 (2016).
https://doi.org/10.1109/ISAV.2016.008

19. Oak Ridge Leadership Computing Facility: OLCF user documentation (2022). https://docs.
olcf.ornl.gov/. Accessed 30 Dec 2022

20. Korringa, J.: On the calculation of the energy of a Bloch wave in a metal. Physica 13, 392–
400 (1947)

21. Perilla, J., Schulten, K.: Physical properties of the HIV-1 capsid from all-atom molecular
dynamics simulations. Nat. Commun. 8(15959) (2017)

22. Phillips, J.C., et al.: Scalable molecular dynamics on CPU and GPU architectures with
NAMD. J. Chem. Phys. 153(4), 044130 (2020)

23. Ravikumar, K., Appelhans, D., Yeung, P.: GPU acceleration of extreme scale pseudo-spectral
simulations of turbulence using asynchronism. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC 2019, pp.
1–22 (2019). https://doi.org/10.1145/3295500.3356209

24. Schneider, E.E., Ostriker, E.C., Robertson, B.E., Thompson, T.A.: The physical nature of
starburst-driven galactic outflows. Astrophys. J. 895(1), 43 (2020). https://doi.org/10.3847/
1538-4357/ab8ae8

25. Schneider, E.E., Robertson, B.E.: Cholla: a new massively parallel hydrodynamics code
for astrophysical simulation. Astrophys. J. Suppl. Ser. 217(2), 24 (2015). https://doi.org/10.
1088/0067-0049/217/2/24

https://arxiv.org/abs/1706.10086
https://github.com/opm/lbpm
https://doi.org/10.1109/ISAV.2016.008
https://docs.olcf.ornl.gov/
https://docs.olcf.ornl.gov/
https://doi.org/10.1145/3295500.3356209
https://doi.org/10.3847/1538-4357/ab8ae8
https://doi.org/10.3847/1538-4357/ab8ae8
https://doi.org/10.1088/0067-0049/217/2/24
https://doi.org/10.1088/0067-0049/217/2/24

End-to-End Differentiable Reactive
Molecular Dynamics Simulations Using

JAX

Mehmet Cagri Kaymak1(B), Samuel S. Schoenholz4, Ekin D. Cubuk3,
Kurt A. O’Hearn1, Kenneth M. Merz Jr.2, and Hasan Metin Aktulga1

1 Department of Computer Science and Engineering, Michigan State University,
East Lansing, MI 48824, USA

{kaymakme,ohearnku,hma}@msu.edu
2 Department of Chemistry, Michigan State University,

East Lansing, MI 48824, USA
merz@chemistry.msu.edu

3 Google Research, Mountain View, CA, USA
4 OpenAI, San Francisco, CA, USA

Abstract. The reactive force field (ReaxFF) interatomic potential is a
powerful tool for simulating the behavior of molecules in a wide range of
chemical and physical systems at the atomic level. Unlike traditional
classical force fields, ReaxFF employs dynamic bonding and polariz-
ability to enable the study of reactive systems. Over the past couple
decades, highly optimized parallel implementations have been developed
for ReaxFF to efficiently utilize modern hardware such as multi-core pro-
cessors and graphics processing units (GPUs). However, the complexity
of the ReaxFF potential poses challenges in terms of portability to new
architectures (AMD and Intel GPUs, RISC-V processors, etc.), and limits
the ability of computational scientists to tailor its functional form to their
target systems. In this regard, the convergence of cyber-infrastructure for
high performance computing (HPC) and machine learning (ML) presents
new opportunities for customization, programmer productivity and per-
formance portability. In this paper, we explore the benefits and limi-
tations of JAX, a modern ML library in Python representing a prime
example of the convergence of HPC and ML software, for implement-
ing ReaxFF. We demonstrate that by leveraging auto-differentiation,
just-in-time compilation, and vectorization capabilities of JAX, one can
attain a portable, performant, and easy to maintain ReaxFF software.
Beyond enabling MD simulations, end-to-end differentiability of trajec-
tories produced by ReaxFF implemented with JAX makes it possible
to perform related tasks such as force field parameter optimization and
meta-analysis without requiring any significant software developments.
We also discuss scalability limitations using the current version of JAX
for ReaxFF simulations.

S. S. Schoenholz—Work done while at Google.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 202–219, 2023.
https://doi.org/10.1007/978-3-031-32041-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_11&domain=pdf
https://doi.org/10.1007/978-3-031-32041-5_11

End-to-End Differentiable Reactive MD 203

Keywords: reactive molecular dynamics · HPC/ML software ·
auto-differentiation · hardware portability

1 Introduction

Molecular dynamics (MD) simulations are widely used to study physical and
chemical processes at the atomistic level in fields such as biophysics, chemistry
and materials science. Compared to quantum mechanical (QM) MD simulations,
which involve solving the Schrodinger’s equation, classical MD simulations are
cost-effective. They enable the study of large systems over significantly long
time frames by making certain approximations. In this approach, the atomic
nucleus and its electrons are treated as single particle. The atomic interactions
are governed by a force field (FF), a set of parameterized mathematical equations
that capture known atomic interactions such as bonds, angles, torsions, van der
Waals, and Coulomb interactions. To ensure the predictive power of empirical
force fields, they must be fitted to reference data obtained through high-fidelity
quantum mechanical computations and/or experimental studies.

Classical MD models typically adopt static bonds and fixed partial charges
which make them unsuitable for studying reactive systems. To remedy these
limitations, different reactive force fields have been developed [10,27,30]. In this
paper, we focus on the ReaxFF, which is one of the most impactful and widely
used reactive force fields [26,30]. It allows bonds to form and break throughout
the simulation and dynamically calculates partial charges using suitable charge
models. Due to the dynamic nature of bonds and partial charges, ReaxFF is
significantly more complex and computationally expensive than classical force
fields.

1.1 Related Work

To enable large-scale and long duration simulations, several ReaxFF implemen-
tations with different features and architectural support have been developed
over the past couple decades. PuReMD has shared and distributed-memory
versions for both CPUs and GPUs (CUDA-based), all of which are main-
tained separately [2,3,14], and several of these versions have been integrated
into LAMMPS and AMBER [19]. More recently, to ensure hardware portability
and simplify code maintenance and performance optimizations, a Kokkos-based
implementation of ReaxFF has been developed in LAMMPS [29]. Kokkos is a
performance portable programming model and allows the same codebase imple-
mented using its primitives to be compiled for different backends. The current
ReaxFF/Kokkos software also supports distributed-memory parallelism. In addi-
tion to the above open-source software, SCM provides a commercial software that
includes ReaxFF support [22].

The success of ML techniques in fields such as computer vision and nat-
ural language processing has triggered its wide-spread use also in scientific
computing. Specifically, in molecular modeling and simulation, a new class of

204 M. C. Kaymak et al.

force fields called machine learning potentials (MLP) such as SNAP [28], the
Behler/Parrinello potential [7], SchNet [25], OrbNet [18], and NequIP [6] has
emerged. More recently, we started witnessing an increase in the number of sci-
entific applications adopting ML libraries such as Tensorflow [1], PyTorch [17],
and JAX [9], not only for ML approaches but as a general purpose programming
model even when using conventional techniques. This can be attributed to the
convenience of advanced tools developed around these programming models and
libraries such as auto-differentiation, auto-vectorization, and just-in-time compi-
lation. Such tools have enabled fast prototyping of new ideas as well as hardware
portability without sacrificing much computational efficiency.

Intelligent-ReaxFF [12] and JAX-ReaxFF [13] implementations both lever-
age modern machine learning frameworks. However, they are both primarily
designed for force field fitting, and as such they are designed to work with molec-
ular systems typically containing tens of atoms, and they cannot scale beyond
systems with more than a couple hundred atoms. More importantly, they both
lack molecular dynamics capabilities.

1.2 Our Contribution

The aforementioned features of ML cyber-infrastructure are highly attractive
from the perspective of MD software, considering the fact that existing force
field implementations are mostly written in low-level languages and tuned to
the target hardware for high performance. As such, we introduce a portable,
performant, and easy-to-maintain ReaxFF implementation in Python built on
top of JAX-MD [24]. This new implementation of ReaxFF is

– easy-to-maintain because it only requires expressing the functional form of
the potential energy for different atomic interactions in Python. MD simula-
tions require calculation of forces which are calculated by taking the gradient
of the potential energy with respect to atom positions at each time step. This
can simply be accomplished with a call to the grad() function in JAX,

– hardware portable because for its functional transformations, JAX uses
XLA (Accelerated Linear Algebra) [23], which is a domain specific compiler
for vector and matrix operations. Since XLA has high performance implemen-
tations across different CPUs (x86 64 and ARM) as well as GPUs (Nvidia and
AMD), porting our ReaxFF implementation does not require any additional
coding,

– performant because we ensure that our underlying ReaxFF interaction lists
are suitable for vectorization, and we leverage just-in-time compilation effec-
tively through a carefully designed update/reallocation scheme,

– versatile because we designed our implementation such that the same inter-
action kernels can be re-used in either a single high performance run (needed
for long MD simulations) or multiple small single-step runs (needed for param-
eter optimization) settings. This allows our implementation to be suitable for
force field training as well. Also, it simplifies the study of new functional forms
for various interactions in the ReaxFF model.

End-to-End Differentiable Reactive MD 205

2 Background

2.1 ReaxFF Overview

ReaxFF uses the bond order concept to determine the interaction strength
between pairs of atoms given their element types and distances, and then applies
corrections to these initial pairwise bond orders based on the information about
all surrounding atoms. The corrected bond order is used as the main input for the
energy terms such as bond energy (Ebond), valence angle energy (Eval), and tor-
sion angle energy (Etors). To account for atoms that may not attain their optimal
coordination, additional energy terms such as under-/over-coordination energies,
coalition, and conjugation energies are used, which we denote as Eother for sim-
plicity. The van der Waals energy (EvdWaals) and electrostatic energy terms
(ECoulomb) constitute the non-bonded terms. Since bond orders are dynamically
changing, an important pre-requisite for calculation of electrostatic energy is
the charge equilibration procedure which dynamically assigns charges to atoms
based on the surroundings of each atom. For systems with hydrogen bonds, a
special energy term (EH-bond) is applied. Bonded interactions are typically trun-
cated at 5 Å, hydrogen bonds are effective up to 7.5 Å, and the non-bonded
interaction cutoff is typically set to 10–12 Å. Equation (1) sums up the vari-
ous parts that constitute the ReaxFF potential energy, and we summarize the
dependency information between them in Fig. 1.

Esystem = Ebond + Eval + Etors + EH-bond

+ EvdWaals + ECoulomb + Eother.
(1)

2.2 JAX and JAX-MD Overview

Since the new ReaxFF implementation is developed in JAX-MD, important
design and implementation decisions were based on how JAX and JAX-MD
work. As such, we first briefly describe these frameworks.

JAX [9] is a machine learning framework for transforming numerical functions.
It implements the Numpy API using its own primitives and provides high order
transformation functions for any Python function written using JAX primitives.
The most notable of these transformation functions are automatic differentiation
(grad), vectorization on a single device to leverage SIMD parallelism (vmap), par-
allelization across multiple devices (pmap), and just-in-time compilation (JIT).
These transformations can be composed together to enable more complex ones.
JAX uses XLA, a domain specific compiler for linear algebra, under the hood
to achieve hardware portability. This allows any Python code written in terms
of JAX primitives to be seamlessly compiled for CPUs, GPUs, or TPUs. Since
XLA is also used extensively to accelerate Tensorflow models, XLA is supported
for almost all modern processors, including GPUs by Nvidia and AMD. With
JIT, XLA could apply performance optimizations targeted specifically for the

206 M. C. Kaymak et al.

Atom
Positions

Charge
Equilibration

Determine
bond orders

(BO)

EvdWaals
EBondECoulomb EValence ETorsion

Determine
angles and

torsions

Correct BO for
local

overcoordination

EsystemNonbonding Bonding

Nonbonded
Interaction List

Bonded
Interaction List

3-body and 4-body
Interaction Lists

EHBond

Fig. 1. Task dependency graph for calculations performed in ReaxFF.

selected device. The main limitation of JAX is that it expects the input data to
the transformed functions to have fixed sizes. This allows XLA to adopt more
aggressive performance optimizations during compilation, but when the size of
the input data changes, the code needs to be recompiled.

JAX-MD [24] is an MD package built in Python using JAX. It is designed
for performing differentiable physics simulations with a focus on MD. It sup-
ports periodic and non-periodic simulation environments. JAX-MD employs a
scalable 3D grid-cell binning based algorithm to construct the neighbor list for
atoms in a given system. It includes integrators for various kinds of ensembles
as well as Fast Inertial Relaxation Engine (FIRE) Descent [8] and Gradient
Descent based energy minimizers. Various machine learning potentials such as
the Behler-Perrinello architecture [7] and graph neural networks including the
Neural Equivariant Interatomic Potentials (NequIP) [6], based on the GraphNet
library [5], are also readily available. When combined with the capabilities of
JAX, this rich ecosystem enables researchers to easily develop and train hybrid
approaches for various chemistry and physics applications.

End-to-End Differentiable Reactive MD 207

3 Design and Implementation

In this section, we describe the overall design considerations and present the final
design for our ReaxFF implementation in JAX-MD. To simplify the design and
ensure modularity, generation of the interaction lists have been separated from
the computation of partial energy terms. For overall efficiency and scalability,
special consideration has been given to memory management.

3.1 Memory Management

To avoid frequent re-compilations, sizes of input to JAX’s transforming functions
must be known and fixed. As such, we separate the logic for handling the inter-
action list generation into allocate and update parts. The allocate function
estimates the sizes of all interaction lists (see Fig. 2) and allocates the needed
memory with some buffer space (default 20%). Due to its dynamic nature, JAX
transformations such as vmap and jit cannot be applied to the allocate function.
The update function works with the already-allocated interaction lists, and fills
them based on atom positions while preserving their sizes. Since the update
function works on arrays with static sizes, JAX transformations such as vmap
and jit can be and are applied to this function. For effective use of vmap, the
update function also applies padding when necessary. Finally, while filling in the
interaction lists, it also checks whether the utilization of the space allocated for
each list falls below a threshold mark (default 50%) where the utilization is the
ratio of the true size to the total size. If it does, a call to the allocate function is
triggered to shrink the interaction lists as shown in Algorithm 1, which in turn
causes JAX to recompile the rest of the code since array dimensions change.

Algorithm 1. General structure of computations in an MD simulation.
1: interLists ← Create the interaction lists using the allocate function
2: for timestep = 1, 2, . . . do
3: Calculate forces
4: Update positions using the calculated forces
5: overflow ← Update the interaction lists
6: if overflow then
7: interLists ← Reallocate based on the most recent utilizations
8: end if
9: end for

Another important aspect of our memory management scheme is the filtering
of interaction lists. In ReaxFF, while bonds are calculated dynamically, not all
bonds are strong enough to be chemically meaningful, and therefore they are
ignored (a typical bond strength threshold is 0.01). This has ramifications for
higher-order interactions such as 3-body, 4-body, and H-bond interactions as
well because they are built on top of the dynamically generated bond lists. As

208 M. C. Kaymak et al.

Non-bonded
interactions
(up to 10-12 Å)

Bonded
interactions
(up to 5 Å)

3-body
interaction list
generation
with filtering

4-body
interaction list
generation
with filtering

Non-bonded
interaction filtering
(based on atom
type and distance)

Bonded
interaction filtering
(based on atom
type and BO)

H-bond
interaction list
generation
with filtering

ReaxFF Potential

Atom Positions
Box Info.

Bonded
interaction
filtering
(Based on BO)

: Grid based neighbor list
generation
: Filtration based
interaction list generation

: Input

Filtered bonded
interactions

Filtered bonded and
non-bonded interactions

Fig. 2. Flow graph describing the generation of the interaction lists.

we discuss in more detail below, the acceptance criteria for each interaction is
different. For 3-body and 4-body interactions, acceptance criteria depends on the
strength of bonds among the involved atoms as well as force field parameters
specific to that group of atoms; for H-bonds, it is a combination of acceptor-donor
atom types and bond strengths. However, the steps for filtering all interaction
lists are similar and can be implemented as a generic routine with a candidate
interaction list and an interaction-specific acceptance criterion. The interactions
that require filtering and their relevant input data are shown as yellow nodes
in Fig. 2. First, the candidate interaction list is populated. Then, candidates
get masked based on the predefined acceptance criterion. Finally, the candidate
list is pruned and passed onto its corresponding potential energy computation
function. While actually pruning the candidate list might be seen as an overhead,
we note that the number of unaccepted 3-body and 4-body interactions are
so high that simply ignoring them during the potential energy computations
introduce a significant computational overhead. Also, the memory required to
keep the unfiltered 3-body and 4-body interaction lists would limit the scalability
of our implementation for GPUs due to their limited memory resources.

End-to-End Differentiable Reactive MD 209

The filtering logic discussed above is JAX-friendly because the shapes of the
intermediate (candidate) and final (pruned) data structures are fixed. As such,
vmap and jit transformations can be applied to the filtering procedure, too.
As with un-pruned lists, filtered interaction list generation also keeps track of
utilization of the relevant lists and sets the overflow flag, when necessary.

3.2 Generation of Interaction Lists

Rcutoff

Rcutoff

Fig. 3. Illustration of grid-cell neighbor search used to generate neighbor lists.

Pair-Wise Bonded Interactions: In ReaxFF, bond order (BO) between atom
pairs are at the heart of all bonded potential energy computations. The BOs are
computed in two steps. First, uncorrected BOs are computed according to Eq.
(2), where rij is the distance between the atom pair i-j, and rσ

o , rπ
o , and rππ

o are
the ideal bond lengths for σ-σ, σ-π and π-π bonds, respectively.

BO′
ij = BOσ

ij + BOπ
ij + BOππ

ij

= exp
[
pbo1 ·

(
rij

rσ
o

)pbo2
]

+ exp
[
pbo3 ·

(
rij

rπ
o

)pbo4
]

+ exp
[
pbo5 ·

(
rij

rππ
o

)pbo6
]

.

(2)

After uncorrected bond orders are computed, the strength of BO′
ij is corrected

based on the local neighborhood of atoms i and j. The corrected BO (BOij)
represents the coordination number (i.e., number of bonds) between two atoms.
Corrected bonds below a certain threshold get discarded as they do not corre-
spond to chemical bonds. Hence, they do not contribute to the total energy.

210 M. C. Kaymak et al.

To calculate uncorrected BO, for each atom in a given system, their neighbors
are found using a grid-cell binning based neighbor search algorithm (Fig. 3).
This allows us to generate the bonded neighbor lists in O(Nk) where N is the
number of atoms and k is the average number neighbors per atom. The side
length of the grid cell is set to 5.5 Å, as a buffer space of 0.5 Å is added
to the 5 Å actual bonded interaction cutoff to avoid frequent updates to the
neighbors list. Since the cell size is almost the same as the bonded interaction
cutoff, neighbor search only requires checking the nearby 33 grid cells. Neighbor
information is stored in a 2D format where the neighbors of atom i are located
on ith row with padding and alignment, as necessary. This format which is very
similar to the ELLPACK format [32] is highly amenable for vectorization and
memory coalescing on modern GPUs. It also simplifies bond order corrections
because the neighbor indices for a given atom are stored consecutively. As will
be discussed later, it also helps creating 3-body (for valency) and 4-body (for
torsion) interactions since they use BOs as the main input. After creating the 2D
neighbor array, BO terms are calculated and pairs with small BOs are filtered
out as described above.

ℓ

ij
k

Atom i

Filtered bonded
interactions

j k Atom j (or k)

ij
kℓ

3-body interaction 4-body interaction

Fig. 4. Atoms and their interactions involved in formation of the 3-body and 4-body
interactions.

Higher Order Bonded Interactions: After pruning the bonded interactions,
3-body and 4-body interaction lists are generated (Fig. 4). For each atom, every
two neighbor pairs are selected to form the candidate list for 3-body interactions.
In a system with N atoms and k neighbors per atom, there will be O

(
Nk2

)
candidates. Then the candidates are masked and filtered based the involved BO
terms to form the final array with shape M × 3 where M is the total number
of interactions and columns are atom indices. After that, the finalized 3-body
interaction list is used to generate the candidates for the 4-body interactions.
For each 3 body interaction i-j-k, neighbors of both j and k are explored to
form the 4-body candidate list and then the candidates get filtered based on the
4-body specific mask.

When the molecule involves hydrogen bonds, the hydrogen interaction list is
built using the filtered bonded and non-bonded interactions. A hydrogen bond
can only be present if there are hydrogen donors and acceptors. While the accep-
tor and the hydrogen are covalently bonded (short range), the acceptor bonds to

End-to-End Differentiable Reactive MD 211

the hydrogen through a dipole-dipole interaction, therefore it is long ranged (up
to 7.5 Å). Hence, to find all possible hydrogen bonds involving a given hydrogen
atom, both its bonded neighbors and non-bonded neighbors are scanned. Using
the appropriate masking criterion, the final interaction list is formed to be used
for potential energy calculations.

Atom i

Filtered bonded
interactions

Filtered nonbonded
interactions

H (ith atom)Donor

Acceptor

Fig. 5. Atoms and their interactions involved in formation of hydrogen bonds.

Non-bonded Interactions: In ReaxFF, non-bonded interactions are effective
up to 10–12 Å, and they are smoothly tapered down to 0 beyond the cutoff.
Similar to the pair-wise bonded interactions, the long range neighbor lists are
also built using the grid-cell binning approach, this time using a buffer distance
of 1 Å to avoid frequent neighbor updates. The neighbors are again stored in
a 2D array similar to the ELLPACK format. This simplifies accessing the long
range neighbors of a given atom while building the Hydrogen bond interactions
list (as shown in Fig. 5). Also, the sparse matrix-vector multiplication kernel
(SpMV) required for the dynamic charge calculation becomes simpler and more
suitable for GPUs [31].

The non-bonded interaction list is used to compute van der Waals and
Coulomb energy terms. While EvdWaals computation is relatively simple as it only
involves the summation of the pair-wise interaction energies, ECoulomb requires
charges to be dynamically computed based on a suitable charge model such as
the charge equilibration (QEq) [21], electronegativity equalization (EE) [16], or
atom-condensed Kohn-Sham density functional theory approximated to second
order (ACKS2) method [33]. Our current JAX-based implementation relies on
the EE method.

The EE method involves assigning partial charges to individual atoms while
satisfying constraints for both the net system charge and the equalized atom
electronegativities. For a given system with n atoms, let the charges and the
positions be q = (q1, q2, . . . , qn) and R = (r1, r2, . . . , rn), respectively. The elec-
tronegativity constraint can be formalized as follows

ε1 = ε2 = · · · = εi = ε,

212 M. C. Kaymak et al.

where εi is the electronegativity of atom i and ε is the average electronegativity.
The net system charge constraint is expressed as

n∑
i=1

qi = qnet,

where qnet is the net system charge. The constraints and the parameterized long
range interactions can be expressed as a set of linear equations with the partial
charges q being the solution to

[
H 1n

1T
n 0

] [
q
ε

]
=

[−χ
qnet

]
,

where χ is an n × 1 vector of target electronegativities and H is a symmetric
n × n matrix describing the interactions between atoms. Hi,j is defined as

Hi,j = δi,j · ηi + (1 − δi,j) · Fi,j

where δi,j is the Kronecker delta operator and ηi is the idempotential. Lastly,
Fi,j is defined as

Fi,j =

⎧⎨
⎩

1
3
√

r3
i,j+γ−3

i,j

, ri,j ≤ Rcutoff

0, otherwise

where ri,j is the distance between atom i and j, γi,j is the pair-wise shielding
term, and Rcutoff is the long range cutoff.

Since the size of the above linear system is (n + 1) × (n + 1), it is pro-
hibitively expensive to solve it with direct methods when n is becomes large
(beyond a few hundred). Hence, we employ an iterative sparse linear solver.
The iterative solvers available in JAX only expect a linear operator as a func-
tion pointer that can perform the matrix-vector multiplication. This allows us to
define the SpMV operation directly using the non-bonded neighbor lists provided
in an ELLPACK-like format described earlier without applying any transforma-
tions. Another optimization to accelerate the charge equilibration is to use initial
guesses to warm start the iterative solver. Since the charges fluctuate smoothly
as the simulation progresses, we use the cubic spline extrapolation to produce
the initial guesses based on past history [2].

3.3 Force Field Training

Predictive capabilities of empirical force fields are arguably more important than
their performance. For this, it is crucial for force field parameters to be optimized
using high-fidelity quantum mechanical training data. In contrast to MD simu-
lations involving a single system iterated over long durations, this optimization
process typically involves executing several (on the order of hundreds to thou-
sands, depending on the model and target systems) small molecular systems

End-to-End Differentiable Reactive MD 213

Algorithm 2. Gradient-based parameter optimization.
1: θ ← Initialize the model parameters
2: training set ← Align the training set by padding with dummy atoms
3: lossFunction ← Create a loss function by utilizing vmap(energyFunction)
4: calculateGradients ← jit(grad(lossFunction))
5: while stopping criterion not met do
6: Xi, Yi ← Sample a minibatch of data from the training set
7: Create the interaction lists for Xi

8: g ← calculateGradients(θ, interLists, Yi)
9: θ ← Update the model parameters using g

10: end while

for a single step using different parameter sets in a high-throughput fashion.
While evolutionary algorithms have traditionally been used for Reax force field
optimizations, as JAX-ReaxFF [13] and Intelligent-ReaxFF [12] have recently
demonstrated, using gradient-based optimization techniques can accelerate the
training process by two to three orders of magnitude. However, the gradient
information needed for force field optimization is much more complex than that
of MD simulation – one needs to calculate the derivative of the fitness func-
tion which is typically formulated as a weighted sum of the difference between
predicted and reference quantities over all systems in the training dataset with
respect to parameters to be optimized (which is usually on the order of tens of
parameters for ReaxFF). While this would be a formidable task using analytical
or numerical techniques, the auto-differentiation capabilities of JAX enable us to
easily repurpose the above described ReaxFF MD implementation for parame-
ter optimization. By composing different transformations, a simple loss function
defined for a single sample can extended to work for a batch of training data as
shown in Algorithm 2. To fully take advantage of SIMD parallelism, especially
on GPUs, we ensure that different molecules in the training dataset are prop-
erly divided into small batches. To reduce the number of dummy atoms and the
amount of padding within each batch, the training set could be clustered based
on how much computation they require. Given the allocate/update mechanism
described in Sect. 3.1, the different sizes of interaction lists for different molecular
systems in a batch data does not cause additional challenges.

4 Experimental Results

4.1 Software and Hardware Setup

To verify the accuracy of the presented JAX-based ReaxFF implementation,
simulations were performed using molecular systems shown in Table 1. The
Kokkos-based LAMMPS implementation of ReaxFF was chosen for validation
and benchmarking comparisons due to its maturity and maintenance. For this
purpose, we used the most recent stable release of LAMMPS (git tag sta-
ble 23Jun2022 update3), and experimented on both Nvidia and AMD GPUs.

214 M. C. Kaymak et al.

LAMMPS was built using GCC v10.3.0, OpenMPI v4.1.1, and CUDA v11.4.2
for the Nvidia GPUs, and with ROCm v5.3.0, aomp v16.0, and OpenMPI v4.1.4
for the AMD GPUs (using device-specific compiler optimization flags for both).
For the JAX experiments, Python v3.8, JAX v0.4.1, and JAX-MD v0.2.24 were
paired with CUDA v11.4.2 for the Nvidia GPUs, and ROCm v5.3.0 for the AMD
GPUs. Hardware details are presented in Table 2. The compute nodes at the
Michigan State University High-Performance Computing Center (MSU-HPCC)
and the AMD Cloud Platform are used for the experiments.

Table 1. Molecular systems used in the performance evaluation section, with the third
column (N) indicating the number of atoms, the fourth one denoting the dimensions
of the rectangular simulation box, and the last column showing the force field used to
simulate the system.

Name Chem. Rep. N Sim. Box (Å) Force Field

Water H2O 2400 29.0 × 28.9 × 29.3 [11]

Silica SiO2SiO2 6000 36.9 × 50.7 × 52.5 [11]

Table 2. Hardware details of the platforms used for performance experiments.

GPU CPU Cluster

A100 Intel Xeon 8358 (64 cores) MSU-HPCC

V100 Intel Xeon Platinum 8260 (48 cores) MSU-HPCC

MI210 AMD EPYC 7742 (64 cores) AMD Cloud Platform

MI100 AMD EPYC 7742 (64 cores) AMD Cloud Platform

4.2 Validation of MD Capabilities

Figure 6 shows that the JAX-based ReaxFF energies almost perfectly match
those from LAMMPS in actual MD simulations. The deviation only becomes
visible after 2000 MD steps which is inevitable due to machine precision limita-
tions. The relative energy difference is around 10−7 for both the water and silica
systems.

4.3 Performance and Scalability

We compare the performance of JAX-based ReaxFF to Kokkos/ReaxFF package
in LAMMPS on both Nvidia and AMD GPUs. While Kokkos/ReaxFF supports
MPI parallelism, we use a single GPU for all tests. Kokkos/ReaxFF incurs min-
imal communication overheads when there is a single MPI process. The perfor-
mance comparison on AMD GPUs is possible through Kokkos’ ROCm backend
support, as well as the availability of JAX/XLA on AMD GPUs.

To create systems with varying size, the molecular systems shown in Table 1
have been periodically replicated along the x, y, and z dimensions. The number

End-to-End Differentiable Reactive MD 215

Fig. 6. Comparison of absolute (top plots) and relative difference (bottom plots) in
potential energies for NVE simulations with a time step of 0.2 fs and a CG solver with
1e-6 tolerance for the charge calculation.

of atoms vary from 2400 to 19200 for the water systems and from 6000 to 24000
for the silica systems. For each experiment, NVE simulations with a time step of
0.2 fs were run for 5000 steps, and the average time per step in ms was reported.
For both the Kokkos and JAX-based implementations, the buffer distance for
the non-bonded interactions was set to 1 Å. While reneighboring is done every 25
MD steps for Kokkos, the JAX implementation keeps track of how much atoms
move since the last neighborhood update and only reneighbors when atoms move
more than the buffer distance. As suggested by the Kokkos documentation, the
half-neighbor list option is used.

While written in Python using JAX primitives, the proposed implementation
is faster when the system size is small on all GPUs. As the number of atoms
increases, while the time increases linearly for the JAX implementation, the
Kokkos one increases sublinearly. The sublinear scaling for Kokkos indicates
that it cannot fully utilize the resources when the problem size is small unlike
JAX. As the problem size increases, Kokkos starts to utilize the GPU better
and yield better performance. The Kokkos implementation achieves up to 3.2×
speedup for the largest water systems on AMD GPUs (MI100 and MI210). On
Nvidia GPUs (V100 and A100), it is around 2.3× faster for the same water
system with 19200 atoms. For the silica systems where there are no hydrogen
bonds, Kokkos is around 2× faster on the AMD GPUs and 1.5× on the Nvidia
GPUs. On the other hand, when the problem size is small, JAX achieves up to
1.8× speedup on an A100 GPU (Fig. 7).

216 M. C. Kaymak et al.

Fig. 7. Average time per MD step (in ms) for the water systems with varying sizes.

4.4 Training

To demonstrate the training performance of the described implementation, we
trained the ReaxFF parameters on the public QM9 dataset of about 134k relaxed
organic molecules made up of H, C, N, O, and F atoms, with each molecule
containing up to nine non-hydrogen atoms [20]. All systems are calculated at
the B3LYP/6-31G(2df,p) level of theory. To simplify the dataset, we removed
the molecules that contain F atoms which resulted in around 130k molecules.
During optimization, 80% of the data is used for training and the remaining
20% for testing. The training is done using the AdamW optimizer [15] from the
Optax library [4] with a batch size of 512 and the learning rate is set to 0.001.

The ReaxFF model is typically fit to the training data containing relative
energy differences between molecules with the same type of atoms (different
conformations and configurations) and the energies of the individual atoms get
canceled out. Since the QM9 dataset only contains the absolute energies, we
added a new term to the ReaxFF potential to remedy the energy shifts caused
by the self-energies of the individual atoms (Fig. 8).

Esystem = EReaxFF + Eself-energy

Eself-energy =
N∑

i=1

si

(3)

In Eq. (3), EReaxFF is the original ReaxFF potential designed to capture the
interaction related terms and Eself-energy is the newly added parameterized self-
energy term to capture the energy shifts, and si is the self energy of atom i solely
determined by the atom type. Hence, the new term only contains 4 parameters
as there are 4 atom types in the modified QM9 dataset. In total, around 1100
ReaxFF parameters are optimized during the training. The training is performed

End-to-End Differentiable Reactive MD 217

Fig. 8. Average time per MD step (in ms) for the silica systems with varying sizes.

on an A100 GPU with each epoch taking approximately 8 s. Figure 9 shows the
mean absolute error (MAE) per epoch. Since the ReaxFF model has a relatively
small number of parameters compared to most modern ML methods, the training
and test MAE perfectly overlap throughout the training. The final MAE of the
model on the test data is 3.6 kcal/mol. While this is higher than the ideal target
of 1 kcal/mol error, we note that this is a straight optimization without any
fine-tuning to demonstrate the capabilities of the new ReaxFF implementation.

Fig. 9. Training progress of the ReaxFF model on the QM9 dataset, with the final
MAE on the test data being 3.6 kcal/mol.

218 M. C. Kaymak et al.

5 Conclusion

With the accelerator landscape changing rapidly and becoming more complex,
cross platform compilers gain more importance as they enable the same codebase
to be used on different architectures. By leveraging modern machine learning
cyber-infrastructure, we developed a new JAX-based ReaxFF implementation
that is easy-to-maintain, hardware portable, performant, and versatile. Using
auto-differentiation, forces in MD simulations are computed directly from energy
functions implemented in Python without requiring any extra coding. It also
allows the same code to be used for both MD simulations and parameter opti-
mization which are both essential to study any system of interest with ReaxFF.
While Kokkos is an another cross-platform solution, it lacks auto-differentiation
and batching optimization capabilities. Although it is more performant for bigger
molecules, the JAX implementation is faster for small ones while also providing
new functionalities.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283 (2016)

2. Aktulga, H.M., Fogarty, J.C., Pandit, S.A., Grama, A.Y.: Parallel reactive molec-
ular dynamics: numerical methods and algorithmic techniques. Parallel Comput.
38(4–5), 245–259 (2012)

3. Aktulga, H.M., Pandit, S.A., van Duin, A.C., Grama, A.Y.: Reactive molecular
dynamics: numerical methods and algorithmic techniques. SIAM J. Sci. Comput.
34(1), C1–C23 (2012)

4. Babuschkin, I., et al.: The DeepMind JAX ecosystem (2020). http://github.com/
deepmind/jax

5. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261 (2018)

6. Batzner, S., et al.: E (3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. Nat. Commun. 13(1), 1–11 (2022)

7. Behler, J., Parrinello, M.: Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007)

8. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P.: Structural relax-
ation made simple. Phys. Rev. Lett. 97(17), 170201 (2006)

9. Bradbury, J., Frostig, R., et al.: JAX: composable transformations of Python+
NumPy programs. Version 0.2 5, 14-24 (2018)

10. Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott,
S.B.: A second-generation reactive empirical bond order (REBO) potential energy
expression for hydrocarbons. J. Phys.: Condens. Matter 14(4), 783 (2002)

11. Fogarty, J.C., Aktulga, H.M., Grama, A.Y., Van Duin, A.C., Pandit, S.A.: A reac-
tive molecular dynamics simulation of the silica-water interface. J. Chem. Phys.
132(17), 174704 (2010)

12. Guo, F., et al.: Intelligent-ReaxFF: evaluating the reactive force field parameters
with machine learning. Comput. Mater. Sci. 172, 109393 (2020)

http://github.com/deepmind/jax
http://github.com/deepmind/jax
http://arxiv.org/abs/1806.01261

End-to-End Differentiable Reactive MD 219

13. Kaymak, M.C., Rahnamoun, A., O’Hearn, K.A., Van Duin, A.C., Merz Jr., K.M.,
Aktulga, H.M.: JAX-ReaxFF: a gradient-based framework for fast optimization of
reactive force fields. J. Chem. Theory Comput. 18(9), 5181–5194 (2022)

14. Kylasa, S.B., Aktulga, H.M., Grama, A.Y.: PuReMD-GPU: a reactive molecular
dynamics simulation package for GPUs. J. Comput. Phys. 272, 343–359 (2014)

15. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

16. Mortier, W.J., Ghosh, S.K., Shankar, S.: Electronegativity-equalization method
for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108(15),
4315–4320 (1986)

17. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. Adv. Neural Inf. Process. Syst. 32 (2019)

18. Qiao, Z., Welborn, M., Anandkumar, A., Manby, F.R., Miller III, T.F.: OrbNet:
deep learning for quantum chemistry using symmetry-adapted atomic-orbital fea-
tures. J. Chem. Phys. 153(12), 124111 (2020)

19. Rahnamoun, A., et al.: ReaxFF/AMBER-a framework for hybrid reac-
tive/nonreactive force field molecular dynamics simulations. J. Chem. Theory
Comput. 16(12), 7645–7654 (2020)

20. Ramakrishnan, R., Dral, P.O., Rupp, M., Von Lilienfeld, O.A.: Quantum chemistry
structures and properties of 134 kilo molecules. Sci. Data 1(1), 1–7 (2014)

21. Rappe, A.K., Goddard III, W.A.: Charge equilibration for molecular dynamics
simulations. J. Phys. Chem. 95(8), 3358–3363 (1991)

22. ReaxFF, S.: Theoretical chemistry (2020)
23. Sabne, A.: XLA: compiling machine learning for peak performance (2020)
24. Schoenholz, S., Cubuk, E.D.: JAX MD: a framework for differentiable physics.

Adv. Neural. Inf. Process. Syst. 33, 11428–11441 (2020)
25. Schütt, K., Kindermans, P.J., Sauceda Felix, H.E., Chmiela, S., Tkatchenko, A.,

Müller, K.R.: SchNet: a continuous-filter convolutional neural network for modeling
quantum interactions. Adv. Neural. Inf. Process. Syst. 30 (2017)

26. Senftle, T.P., et al.: The ReaxFF reactive force-field: development, applications
and future directions. NPJ Comput. Mater. 2(1), 1–14 (2016)

27. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicompo-
nent systems. Phys. Rev. B 39(8), 5566 (1989)

28. Thompson, A.P., Swiler, L.P., Trott, C.R., Foiles, S.M., Tucker, G.J.: Spectral
neighbor analysis method for automated generation of quantum-accurate inter-
atomic potentials. J. Comput. Phys. 285, 316–330 (2015)

29. Trott, C.R., et al.: Kokkos 3: programming model extensions for the exascale era.
IEEE Trans. Parallel Distrib. Syst. 33(4), 805–817 (2021)

30. Van Duin, A.C., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive
force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)

31. Vazquez, F., Garzón, E.M., Martinez, J., Fernandez, J.: The sparse matrix vec-
tor product on GPUs. In: Proceedings of the 2009 International Conference on
Computational and Mathematical Methods in Science and Engineering, vol. 2, pp.
1081–1092. Computational and Mathematical Methods in Science and Engineering
Gijón, Spain (2009)

32. Vázquez, F., Fernández, J.J., Garzón, E.M.: A new approach for sparse matrix
vector product on NVIDIA GPUs. Concurr. Comput.: Pract. Exp. 23(8), 815–826
(2011)

33. Verstraelen, T., Ayers, P., Van Speybroeck, V., Waroquier, M.: ACKS2: atom-
condensed Kohn-Sham DFT approximated to second order. J. Chem. Phys. 138(7),
074108 (2013)

http://arxiv.org/abs/1711.05101

Machine Learning, AI, and Quantum
Computing

Allegro-Legato: Scalable, Fast, and Robust
Neural-Network Quantum Molecular Dynamics

via Sharpness-Aware Minimization

Hikaru Ibayashi1(B), Taufeq Mohammed Razakh1, Liqiu Yang1, Thomas Linker1,
Marco Olguin2, Shinnosuke Hattori3, Ye Luo4, Rajiv K. Kalia1, Aiichiro Nakano1,

Ken-ichi Nomura1, and Priya Vashishta1

1 Collaboratory for Advanced Computing and Simulations, University of Southern California,
Los Angeles, CA 90089, USA

ibayashi@usc.edu
2 Center for Advanced Research Computing, University of Southern California, Los Angeles,

CA 90089, USA
3 Advanced Research Laboratory, R&D Center, Sony Group Corporation, Atsugi Tec. 4-14-1

Asahi-cho, Atsugi-shi, Kanagawa 243-0014, Japan
4 Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439,

USA

Abstract. Neural-network quantummolecular dynamics (NNQMD) simulations
based on machine learning are revolutionizing atomistic simulations of materi-
als by providing quantum-mechanical accuracy but orders-of-magnitude faster,
illustrated by ACM Gordon Bell prize (2020) and finalist (2021). State-of-the-art
(SOTA) NNQMD model founded on group theory featuring rotational equivari-
ance and local descriptors has provided much higher accuracy and speed than
those models, thus named Allegro (meaning fast). On massively parallel super-
computers, however, it suffers a fidelity-scaling problem, where growing number
of unphysical predictions of interatomic forces prohibits simulations involving
larger numbers of atoms for longer times. Here, we solve this problem by com-
bining the Allegro model with sharpness aware minimization (SAM) for enhanc-
ing the robustness of model through improved smoothness of the loss landscape.
The resulting Allegro-Legato (meaning fast and “smooth”) model was shown to
elongate the time-to-failure tfailure, without sacrificing computational speed or
accuracy. Specifically, Allegro-Legato exhibits much weaker dependence of time-
to-failure on the problem size, tfailure ∝ N−0.14 (N is the number of atoms)
compared to the SOTA Allegro model (tfailure ∝ N−0.29), i.e., systematically
delayed time-to-failure, thus allowing much larger and longer NNQMD simula-
tions without failure. The model also exhibits excellent computational scalabil-
ity and GPU acceleration on the Polaris supercomputer at Argonne Leadership
Computing Facility. Such scalable, accurate, fast and robust NNQMD models
will likely find broad applications in NNQMD simulations on emerging exaflop/s
computers, with a specific example of accounting for nuclear quantum effects in
the dynamics of ammonia to lay a foundation of the green ammonia technology
for sustainability.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 223–239, 2023.
https://doi.org/10.1007/978-3-031-32041-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-32041-5_12

224 H. Ibayashi et al.

Keywords: Molecular dynamics · Equivariant neural network ·
Sharpness-aware minimization

1 Introduction

Neural-network quantummolecular dynamics (NNQMD) simulations based onmachine
learning are revolutionizing atomisticmodeling ofmaterials by following the trajectories
of all atoms with quantum-mechanical accuracy at a drastically reduced computational
cost [1]. NNQMD not only predicts accurate interatomic forces but also captures quan-
tum properties such as electronic polarization [2] and electronic excitation [3], thus the
‘Q’ in NNQMD. NNQMD represents one of the most scalable scientific applications
on the current high-end supercomputers, evidenced by ACM Gordon Bell prize winner
in 2020 [4] and finalist in 2021 [5]. A more recent breakthrough in NNQMD is dras-
tically improved accuracy of force prediction [6] over those previous models, which
was achieved through rotationally equivariant neural networks based on a group theo-
retical formulation of tensor fields [7]. The state-of-the-art (SOTA) accuracy has now
been combined with a record speed based on spatially localized descriptors in the latest
NNQMD model named Allegro (meaning fast) [8].

Fig. 1. Number of outliers in atomic force inference during NNQMD simulation: As the
simulation progresses, the dynamic of atoms becomes unstable due to an increasing number of
unphysically large force values (over 5σ) predicted by the original Allegro model. This resulted
in the eventual failure after 2.6 × 106 MD steps (red). On the other hand, the proposed model
(Allegro-Legato) maintains a nearly constant number of outliers and the simulation stable (blue).
(Color figure online)

Allegro-Legato: Scalable, Fast, and Robust Neural-Network 225

Despite its remarkable computational scalability, massively parallel NNQMD simu-
lation faces a major unsolved issue known as fidelity scaling [9]. In large-scale NNQMD
simulations, small prediction errors can propagate and lead to unphysical atomic forces
that degrade the accuracy of atomic trajectory over time. These force outliers can even
cause the simulation to terminate unexpectedly (Fig. 1). As simulations become spa-
tially larger and temporarily longer, the number of unphysical force predictions is
expected to scale proportionally, which could severely limit the fidelity of NNQMD
simulations on new exascale supercomputing platforms, especially for the most exciting
far-from-equilibrium applications [3, 10].

In this paper, we solve the fidelity-scaling issue taking a cue from a recent devel-
opment in machine learning. Solving the fidelity-scaling issue requires robustness of
the NNQMD model, i.e., reduced number of unphysical force-prediction outliers when
simulation trajectories encounter atomic configurations outside the training dataset. It
has been observed that the robustness of a neural-network model can be enhanced by
sharpness-aware minimization (SAM) [11]—a training algorithm that regularizes the
sharpness of the model (i.e., the curvature of the loss surface) along with its training
loss. We thus apply SAM to train the fast Allegro model to smoothen its loss land-
scape, thereby enhancing its robustness. The resulting Allegro-Legato (meaning fast and
“smooth”)model is shown to increase the time-to-failure tfailure, i.e., howmanyMD steps
a NNQMD simulation can run under microcanonical ensemble, while maintaining the
same inference speed and nearly equal accuracy. Specifically, Allegro-Legato exhibits
much weaker dependence of time-to-failure on the problem size, tfailure ∝ N−0.14 (N
is the number of atoms) compared to the SOTA Allegro model (tfailure ∝ N−0.29), thus
allowing much larger and longer NNQMD simulations without failure. Along with this
main contribution, we find that the fidelity-scalability of the NNQMD model correlates
with sharpness of the model more than the number of parameters in the model.1

The fast and robust Allegro-Legato model has been implemented in our scalable
parallel NNQMD code named RXMD-NN. We have achieved a weak-scaling parallel
efficiency of 0.91 on 480 computing nodes, each with an AMDEPYC central processing
unit (CPU) and four NVIDIA A100 graphics processing units (GPUs), of the Polaris
supercomputer at Argonne Leadership Computing Facility (ALCF). The code has also
achieved a 7.6-fold single-node performance acceleration using four GPUs over single
32-core CPU of Polaris.

Allegro-Legato allows much larger spatio-temporal scale NNQMD simulations than
are otherwise possible. Unlike MD simulation with heat bath often used in “effective”
long-time sampling ofmolecular configurations (e.g., for protein folding),which disrupts
dynamic trajectories, Allegro-Legato enables “true” long-time Hamiltonian dynamics
that can be directly compared with fine vibrational modes observed in high-resolution
spectroscopic experiments. Specifically, we can now satisfy the prohibitive computa-
tional demand of accounting for subtle nuclear quantum effects in the dynamics of
ammonia based on path-integral molecular dynamics, which is essential for resolving a
mystery in a recent high-resolution neutron-scattering experimental observation at Oak
RidgeNational Laboratory. Synergy between themost advanced neutron experiment and

1 Code is available at github.com/ibayashi-hikaru/allegro-legato.

https://github.com/ibayashi-hikaru/allegro-legato

226 H. Ibayashi et al.

leadership-scale NNQMD simulation lays a foundation of the green ammonia-based fuel
technology for achieving a sustainable society.

2 Method Innovation

This section first summarizes (1) NNQMD simulation method, along with the SOTA
Allegro model, and (2) SAM for robust neural-network model training. We then present
the key method innovation of SAM-enhanced Allegro model, Allegro-Legato, followed
by its scalable parallel implementation.

2.1 Summary of Neural-Network Quantum Molecular Dynamics

Molecular dynamics (MD) simulation follows time evolution of the positions
{ri|i = 1, . . . ,N } (i.e., trajectories) of N atoms,

mi
d2

dt2
ri = fi = − ∂

∂ri
E({ri}), (1)

wheremi and fi are the mass of the i-th atoms and the force acting on it, whereas E is the
interatomic potential energy that is dictated by quantum mechanics (QM). In NNQMD,
neural networks are trained to reproduce ground-truth QM values, E({ri}t), for a set
of atomic configurations

{{ri}t |t = 1, . . . ,Ntraining
}
(Ntraining is the number of training

configurations) [1–5]. In the SOTA Allegro model, the energy E is composed of pair-
wise embedding energies, Eij, between atomic pairs (i, j) within a finite cutoff distance
to preserve data locality [8]. Key to the high accuracy of Allegro is that all energy terms
are group-theoretically equivariant with respect to rotation, inversion and translation,
i.e., to the Euclidean group E(3) [6, 7]. This is achieved by representing the energy
in terms of tensors up to rank � and tensor products using their irreducible represen-
tations. In short, Allegro attains accuracy through group-theoretical equivariance and
computational speed through data locality.

2.2 Summary of Sharpness-Aware Minimization

Neural networks are trained byminimizing the loss functionL(w)wherew represents the
weight parameters of the neural network. Design choice of optimization methods plays a
crucial role in machine learning, as it impacts various factors such as convergence speed
and generalization performance [12]. In particular, vulnerability to adversarial attacks
is a problem unique to neural networks [13], which has actively been studied in various
fields such as computer vision [14] and natural language processing [4]. Recent studies
suggest that the fidelity-scalability inNNQMDcan also be viewed as a robustness against
“adversarial attacks” during large-scale simulations [15, 16], where atomic trajectories
are “attacked” by the accumulated unphysical predictions, i.e., “adversarial perturba-
tions” throughout the long and large-scale simulation. Therefore, it is natural to expect
that optimization methods for adversarial attack would enhance the fidelity-scalability
in NNQMD.

Allegro-Legato: Scalable, Fast, and Robust Neural-Network 227

Sharpness-aware minimization (SAM) is one of such robustness-enhancing meth-
ods proposed in the computer vision area [11]. The key component of SAM is that it
minimizes “sharpness” of the model defined as

max‖ε‖2≤ρ
{L(w + ε) − L(w)}, (2)

where ρ (the size of neighborhood) is a hyperparameter to define sharpness. While
computing the sharpness directly is infeasible, it has been shown that minimizing L(w)+
max‖ε‖2≤ρ{L(w + ε) − L(w)} (training loss + sharpness) can be achieved through the
following update rule:

w = w − η∇w′L
(
w′)∣∣

w′=w+ρ
∇wL(w)

‖∇wL(w)‖
(η : learning rate), (3)

which utilizes first-order derivatives, i.e., ∇wL(w). This allows for the optimization of
sharpness without the need for computationally expensive second-order derivatives.

2.3 Key Innovation: Allegro-Legato: SAM-Enhanced Allegro

As explained above, our hypothesis is that smoothened loss landscape through SAM
enhances fidelity scaling of NNQMD. To quantitatively test this hypothesis, we incor-
porate SAM into the training of the Allegro NNQMD model [8], which entails SOTA
accuracy and computational speed. We call the resulting SAM-enhanced Allegro model
as Allegro-Legato (In music, Legato means “smooth without sudden breaking between
notes”).

To find an appropriate strength of sharpness regularization, SAM’s hyper parameter
ρ is tuned so as to provide the most robust model, i.e., the longest time-to-failure,
tfailure, in a small-scale simulation (N = 432). Table 1 shows the result of our grid
search over ρ ∈ {0.001, 0.0025, 0.005, 0.01, 0.025, 0.05}, from which we found that
ρ = 0.005 gives the longest tfailure in our setup. For the small-scale simulation test, we
used LAMMPS, which is a widely used open-source MD simulation software (https://
www.lammps.org). See Sect. 4.5 for the detailed training settings.

Table 1. SAM strength ρ vs. time-to-failure tfailure:We tune ρ by conducting a grid search in
the range of 0.001 to 0.05. A model with ρ = 0.005 gives the largest tfailure with a small-scale
simulation (N = 432).

ρ 0.001 0.0025 0.005 0.01 0.025 0.05

tfailure 4030 6420 8480 4760 4210 3780

2.4 RXMD-NN: Scalable Parallel Implementation of Allegro-Legato NNQMD

For large-scale testing of computational and fidelity scaling, we implement the proposed
Allegro-Legato NNQMD model in our RXMD-NN software [3, 9], which is an exten-
sion of our scalable parallel reactive MD software, RXMD [17]. RXMD-NN employs

https://www.lammps.org

228 H. Ibayashi et al.

a hierarchical divide-and-conquer scheme to realize “globally-scalable and local-fast”
(or “globally-sparse and locally-dense”) parallelization [18]: (1) globally scalable spa-
tial decomposition that is best suited for massively parallel computing platforms; and
(2) locally efficient linked-list decomposition and subsequent neighbor-list construction
to achieve the O(N) computational complexity. Interprocess communication is imple-
mented using non-blocking application programming interfaces (APIs) ofMessage Pass-
ing Interface (MPI) library, and the communication pattern is designed to be lock-free
with minimal internode-data exchange.While it is one of the most widely adapted strate-
gies in large-scale MD applications, this is particularly suitable for NNQMD algorithm
to take advantage of the modern high-performance computing (HPC) architecture, in
which a few very powerful GPU cards do the heavy lifting by accelerating computation-
ally demanding kernels while random memory access and out-of-order data processing
are concurrently executed by many-core CPUs. In RXMD-NN, CPU is responsible for
the adjacency-list construction in parallel. The constructed adjacency list, together with
atom position and type information, is converted to PyTorch tensor object for force infer-
ence on GPUs. RXMD-NN allows to control the computational granularity, such as the
number of atoms per domain and domains per node, to find an ideal balance between
horizontal and vertical scalability to utilize available hardware resources.

PyTorch has become a standard Python library in machine learning community due
to its APIs for complex model architectures that enables highly efficient training and
inference onGPU.However, production platforms such asHPC clusters, mobile devices,
and edge nodes often demand a set of requirements that Python is not designed for, e.g.,
multithreading, low latency computing, and massively parallel distributed architectures.
GPU Offloading of Allegro model is realized by TorchScript, which is statically typed
intermediate representation to create serialized and optimizable ML models. The serial-
ized model can be loaded from other programming language such as C++ allowing to be
deployed in environments that are difficult for python codes to run without sacrificing
multithreading and optimization opportunities.

3 Results

We test both fidelity and computational scalability of the proposed Allegro-Legato
NNQMDmodel as implemented in theRXMD-NNcodeona leadership-scale computing
platform, Polaris, at Argonne Leadership Computing Facility (ALCF).

3.1 Experimental Platform

Weconduct numerical experiments on the Polaris supercomputer at ALCF. It is aHewlett
Packard Enterprise (HPE) Apollo 6500 Gen 10+ based system consisting of two com-
puting nodes per chassis, seven chassis per rack, and 40 racks, with a total of 560
nodes. Each Polaris node has one 2.8 GHz AMD EPYC Milan 7543P 32-core CPU
with 512 GB of DDR4 RAM, four NVIDIA A100 GPUs with 40GB HBM2 memory
per GPU, two 1.6 TB of SSDs in RAID0 and two Slingshot network endpoints. Polaris
uses the NVIDIA A100 HGX platform to connect all 4 GPUs via NVLink, with a GPU
interconnect bandwidth of 600 GB/s. Designed by Cray, the Slingshot interconnect is

Allegro-Legato: Scalable, Fast, and Robust Neural-Network 229

based on high radix 64-port switches arranged in dragonfly topology, offering adap-
tive routing, congestion control and bandwidth guarantees by assigning traffic classes
to applications. Polaris is rated at a production peak performance of 44 petaflops with
node-wise performance at 78 teraflops for double precision.

3.2 Fidelity-Scaling Results

For the fidelity-scaling test, we trained Allegro and Allegro-Legato with � = 1 and
examined their robustness in terms of tfailure, i.e. the greater tfailure, the more robust.
The parameters of MD simulation for the test are carefully chosen so that each MD
simulation is expected to fail within a reasonable time but not immediately. While the
constant-temperature ensemble method based on Nose-Hoover thermostat (i.e., NVT
ensemble) is used to study thermal-equilibrium properties, it could suppress and hidden
unphysical model predictions by connecting atoms with an external thermostat. Micro-
canonical ensemble (NVE) method is the most rigorous test on the model robustness
by simply integrating the equations of motion without an external control (also it has
broader applicability to nonequilibrium processes). In each simulation instance, the liq-
uid ammonia system is first thermalized at a temperature of 200 K using NVT ensemble
for 1,000 steps. We subsequently switch the ensemble to NVE and continue the simu-
lation until it fails to determine tfailure (see the arrow in Fig. 1). The time step �t of 2
femto-seconds (fs) is chosen throughout the robustness test. For each system size, over
ten independent simulation instances are averaged to measure tfailure.

Figure 2 shows tfailure as a function of the system size (i.e., the total number of atoms,
N) ranging from N = 432 to 27,648. Firstly, regardless of the system size, we observe a
significant improvement in the averaged sustained MD simulation steps using Allegro-
Legato model. We observe the greatest improvement of the simulation robustness in the
largest systemwithN = 27,648, where 2.6-times longerMD simulation (14,600 steps) is
achieved with SAM in Allegro-Legato than that with the original Allegro model (5,500
steps). In theMD simulation framework, even a single misprediction of atomic force can
lead to catastrophe through chain reactions. An error in atomic force is integrated into
its velocity, then into atom coordinates. Too large atomic displacement in a single MD
step could result in unphysically strong collisions with other atoms, which propagate
throughout the system within a few MD steps, known as “the billiard effect.” MD simu-
lations with large number of atoms or longer simulation time will inevitably suffer from
higher probability of having such model mispredictions, thus fail faster than a smaller
system. Our test demonstrates that SAM successfully improves the robustness of model
prediction, realizing a stable MD simulation for greater time steps.

To quantify fidelity scaling, we define a fidelity-scaling exponent N−β through the
scaling relation,

tfailure = αN−β, (4)

where α is a prefactor. A smaller β value (i.e., weaker fidelity scaling) indicates
delayed time-to-failure, thus a capability to study larger spatiotemporal-scale processes
accurately on massively parallel computers. The Allegro-Legato model has drastically
improved fidelity scaling, βAllegro−Legato = 0.14 < βAllegro = 0.29 beyond statistical
uncertainty (see the error bars in Fig. 2), thus systematically delaying time-to-failure.

230 H. Ibayashi et al.

Fig. 2. Fidelity scaling of NNQMD simulation:Here, tfailure is measured using NVE ensemble
with a timestep of 2 fs. Statistically improved tfailure is observed in even the smallest system size,
which is further pronounced as the system size increases. The exponent of power law fitting shows
nearly a factor of two reduction using Allegro-Legato model.

3.3 Computational-Scaling Results

We measure the wall-clock time per MD step with scaled workload—6,912P-atom
ammonia system on P MD domains. In this test, each MD domain consists of 6,912
atoms that are offloaded to single GPU. In addition to the force inference, the execu-
tion time includes the adjacency list construction, data transfer between host and GPU
memory, and internode communication via network fabric. Figure 3 shows wall-clock
time as a function of P. By scaling the problem size linearly with the number of GPUs,
the runtime increases only slightly, indicating an excellent scalability.

Here, we quantify the parallel efficiency by defining the speed of NNQMD algo-
rithm as the product of the total number of atoms multiplied by the number of MD steps
executed per second. The isogranular speedup is given by the speed on P MD domains
relative to the speed of single domain as baseline. The parallel efficiency of weak scala-
bility thus is obtained by the isogranular speedup divided by P. With the granularity of
6,912 atoms per domain, we have obtained an excellent weak-scaling efficiency, 0.91 for
up to 13,271,040 atoms on 1,920 A100 GPUs. Despite the relatively large granularity
of 6,912 atoms per domain, we obtained a fast time-to-solution of 3.46 s per MD step
enabling 25,000 MD steps per day for production runs.

Figure 4 shows GPU acceleration of NNQMD algorithm on single Polaris node. The
histogram presents the reduction in wall-clock time per MD step (averaged over 10 MD
steps) using the runtime obtained with CPU only (32 cores with 32 threads) as baseline.
Here, we examined: (1) three system sizes of N = 1,728, 6,912, and 13,824 ammonia

Allegro-Legato: Scalable, Fast, and Robust Neural-Network 231

Fig. 3. Wall-clock time of the RXMD-NN code per MD step, with scaled workloads—6,912P
atom ammonia liquid using P A100 GPUs (P = 1,…, 1,920).

atoms; and (2) three domain decompositions such as single, double and quadruple sub-
domains. Atoms in each domain are assigned to one GPU. With N = 1,728 system, we
observe a marginal GPU acceleration up to 1.24× speedup, which has been substantially
improved with greater system sizes. We have achieved a 7.6x speedup usingN = 13,824
atom system with four subdomains.

4 Discussions

While SAM-enhanced Allegro model, Allegro-Legato, has achieved improved robust-
ness over the SOTA Allegro model as shown in the previous section, we here discuss
the imprecation of SAM training to other aspects such as accuracy and computational
speed.

4.1 Simulation Time

First of all, MD simulation time is not affected by SAM since SAM only applies to
the training stage but not the inference stage in MD simulation. Table 2 compares the
simulation time per MD time step for the baseline Allegro model and the proposed
Allegro-Legato model. Hereafter, we use the default value, � = 1, for the maximum
tensor rank, thus the same number of parameters for the two models. The simulation
time is identical for bothmodelswithin themeasurement uncertainty due to nondedicated
access to the experimental platform.

232 H. Ibayashi et al.

Fig. 4. GPU acceleration of NNQMD algorithm: Three system sizes of N = 1728, 6912 and
13,824 atoms are examined. The histogram presents the reduction in wall-clock time per MD step
over the runtime with 32 CPU cores without GPU as reference. Detail of the benchmark platform
as well as the GPU and CPU architectures are presented in the main text. We have achieved 7.6×
speedup using four GPUs with N = 13,824 atoms.

As a comparison, Table 2 also shows the baseline Allegro model with two other
tensor ranks, � = 0 and 2. Larger � generates more accurate but larger models (i.e.,
larger numbers of parameters) and hence incur longer simulation times. Based on
the accuracy/computational-cost trade-off, production NNQMD simulations with the
Allegro model typically use � = 1.

Table 2. Simulation-time comparison: As SAM only applies to the training stage and does not
modify the size of architecture, the computational cost for simulation is not affected.

Model # of parameters Time/step (ms)

Allegro 133,544 916

Allegro-Legato 133,544 898

Reference Models

Allegro (� = 0) 95,656 395

Allegro (� = 2) 183,720 2,580

Allegro-Legato: Scalable, Fast, and Robust Neural-Network 233

4.2 Training Time

Asmentioned in Sect. 2.2, SAM’s shortcoming is that it requires more computation time
than the base optimizer, because each epoch has to compute the first-order gradients
twice. However, in our setting, SAM converges faster than the default optimizer, and
thus the total training time is not significantly affected (Table 3). As references, we also
measured the training time of Allegro models with different maximum tensor ranks,
� = 0 and 2 and we observed that the training cost increases drastically for larger �. In
summary, Allegro-Legato improves the robustness of Allegro without incurring extra
training cost.

Table 3. Training-time comparison: Although SAM takes longer per-epoch training time, it
converges faster and thus does not significantly affect total training time. Compared to the refer-
ence training times of variations of Allegro models, the extra training cost of Allegro-Legato is
negligible.

Model Total time (hours) Per-epoch time (seconds) Epochs

Allegro 11.1 248 161

Allegro-Legato 13.6 433 113

Reference Models

Allegro (� = 0) 4.4 127 127

Allegro (� = 2) 19.6 636 111

4.3 Model Accuracy

While faithful reproduction of system energy is necessary to properly guide model
training, the most crucial to MD simulations is accurate force prediction. We obtained
the validation error in atomic force as 15.9 (root mean-square error, RMSE) and 11.6
(mean absolute error, MAE) with Allegro-Legato (� = 1) model, and 14.7 (RMSE) and
10.7 (MAE) with the original Allegro model (� = 1), respectively. All error values are
in a unit of meV/Å. Chmiela et al. recently provided a guideline that MAE required
for reliable MD simulations is 1 kcal/mol/Å, which corresponds to 43.4 meV/Å [19].
Although Allegro-Legato incurs a slight increase in the force prediction error (about 8%
in the liquid ammonia dataset) compared to the original Allegro model, the obtained
force error is about a factor four smaller than the guideline for reliably performing
MD simulations. Namely, Allegro-Legato improves the robustness without sacrificing
accuracy.

4.4 Implicit Sharpness Regularization in Allegro

Whilewe propose to explicitly control the sharpness ofmodels, we found that one control
parameter in the baseline Allegro model (i.e., maximum rank of tensors to represent

234 H. Ibayashi et al.

features) implicitly regulate the sharpness of the model. In Table 4, besides our Allegro-
Legato model having smaller sharpness, Allegro � = 1, 2 models have significantly
smaller sharpness and higher tfailure compared to Allegro � = 0 model. Namely, Allegro
with higher � implicitly regularizes sharpness, resulting in higher robustness (i.e., larger
tfailure), but with increasing computational cost. Allegro-Legato (� = 1) model achieves
the same level of sharpness as Allegro (� = 2) model with much less computing time;
see Tables 2 and 3.

Table 4. Implicit sharpness regularization by Allegro: While our Allegro-Legato model has
smaller sharpness thanAllegro, Allegromodelswith larger � have progressively smaller sharpness.
Here,wemeasure sharpness, max‖ε‖2≤ρ

{L(w + ε) − L(w)}, by takingmaximumof 1,000 independent

random samples around the 0.05-neighborhood of each minimum.

Model Allegro (� = 0) Allegro (� = 1) Allegro (� = 2) Allegro-Legato (� = 1)

Sharpness 5.0 × 10−4 3.2 × 10−4 9.8 × 10−5 1.2 × 10−4

Figure 5 visualizes the loss surface of Allegro (� = 0, 1, and 2) and Allegro-Legato (�
= 1) models. The figure confirms: (1) progressive smoothening (i.e., smaller sharpness)
for larger � within the Allegro model due to implicit regularization through accuracy
but with increasing computational cost; and (2) explicit smoothening of Allegro-Legato
through SAM over Allegro with the same � without extra computational cost.

Fig. 5: Loss surface visualization:One dimensional visualization of loss surface of each model.
Following the definition of sharpness (Eq. 2), we randomly sample a vector, d, that gives the
sharpness direction to compute L(w + pd) for p ∈ [−1, 1].

Allegro-Legato: Scalable, Fast, and Robust Neural-Network 235

4.5 Training Details

Lastly, we provide detailed training configuration for completeness (Table 5). For fair
comparison, we used the default hyperparameters that are released as the SOTA model
and SAM training uses the default optimizer as its base optimizer.

Table 5. Detailed training setting:All training setups in this paper adopt these parameters unless
otherwise noted.

Material type Liquid NH3

Number of atoms per a configuration 432

of training examples (Ntraining) 4,500

of validation examples 500

rmax for cutoff 6.0

Maximum tensor rank (�) 1

Batch size 4

Peak learning rate 2e−3

Learning rate decay ReduceLROnPlateau

Learning rate scheduler patience 50

Learning rate scheduler factor 0.5

(Base) Optimizer Adam

Adam’s
(
β1, β2

)
(0.9, 0.999)

Loss function Per atom MSE

Loss coefficient (force, total energy) (1.0, 1.0)

Stopping criterion �Lvalidation ≤ 3e − 3 for 100 epochs

5 Applications

The improved robustness of the proposed Allegro-Legato model, while preserving the
SOTA accuracy and computational speed of Allegro, enables large spatio-temporal scale
NNQMD simulations on leadership-scale computers. A compelling example is the study
of vibrational properties of ammonia. Development of dynamical models that accurately
reproduce the vibrational spectra of molecular crystals and liquids is vital for predic-
tions of their thermodynamic behavior, which is critical for their applications in energy,
biological, and pharmaceutical systems [20]. In particular, there has been growing devel-
opment of green ammonia-based fuel technologies for sustainable society over the past
few years. Ammonia (NH3) has a higher energy density than even liquid hydrogen, but
ammonia can be stored at a much less energy-intensive –33 °C versus –253 °C, and
thanks to a century of ammonia use in agriculture, a vast ammonia infrastructure already

236 H. Ibayashi et al.

exists [21]. Over 180 million metric tons of ammonia is produced annually, and 120
ports are equipped with ammonia terminals [21]. Development of technologies based
on ammonia will be reliant on our ability to understand and model the complex physical
and chemical interactions that give rise to its unique properties.

There are multiple complicating factors that require careful considerations such as
nuclear quantum effects (NQEs) and its coupling with vibrational anharmonicity when
developing computational frameworks that accurately describe vibrational properties
[20]. Standard first-principles calculations for vibrational properties only treat electrons
quantum mechanically and vibrational properties can be determined by Fourier trans-
form and matrix diagonalization of the unit-cell Hessian, which is at most on the order
of a few 100 entries [22]. Evaluating the role of NQEs and its coupling with vibra-
tional anharmonicity is done in the so-called path integral MD (PIMD) approach, which
samples the quantum partition function for the entire quantum system [23, 24]. This
requires long-time simulations of a large number of replicas of large MD systems that
are harmonically coupled to each other as interacting ring-polymers, especially at low
temperatures [23, 24]. The background of Fig. 6a shows a typical first principles-based
simulation, where the atoms are treated classically and the electron charge density is
treated quantum-mechanically to compute atomic forces, which is illustrated as blue
iso-surfaces. In the foreground we have highlighted one NH3 molecule from a PIMD
simulation of the same atomic configuration, where each atom has 32 replicas that are
harmonically coupled together. The computation of the replica simulations is embar-
rassingly parallel, with only fixed nearest replica communication, and the major cost is
computing the energy and forces for the atoms within each replica simulation, which is
typically done from first principles. However, our Allegro-Legato model with enhanced
robustness allows for stable long-time MD simulations at near quantum accuracy, and
thus can replace expensive first-principles calculations in the PIMD simulations, which
would make accurate evaluation of ammonia’s low energy inter-molecular vibrational
modes intractable.

We have performed massively parallel PIMD simulations with our Allegro-Legato
model, computing the energy and forces within each replica simulation to evaluate the
phonon spectra for inter-molecular modes of ammonia. The Allegro-Legato model is
found to produce the expected softening of high-energy modes at finite temperature with
inclusion of nuclear quantum effects in comparison to standard matrix diagonalization
within the harmonic approximation,which is illustrated inFig. 6b. In particular, reduction
of the energy of the vibrational modes in the 30–90 meV is consistent with high-end
neutron experiments for the vibrational spectrum performed by the authors at Oak Ridge
National Laboratory in the last summer (these results will be published elsewhere).

Allegro-Legato: Scalable, Fast, and Robust Neural-Network 237

Fig. 6. Computed vibrational spectra of ammonia: (a)While typical first-principles simulation
treats atoms classically and electrons quantum-mechanically, PIMD simulation uses multiple
replicas of each atom to mimic nuclear quantum effect (NQE). (b) Top curve shows vibrational
spectrum computed at zero temperature without NQE, while bottom at finite temperature with
Allegro-Legato PIMD simulation. With the inclusion of NQE, Allegro-Legato PIMD correctly
shows softening of high-energy inter-molecular modes expected at finite temperature and explains
high-end neutron-scattering observations.

6 Related Work

There has been an explosion in the development and application of NNQMD simulations
[1–3, 6, 8] and their scalable parallel implementation [4, 5]. On the other hand, it was
only recently that the robustness of NNQMD was quantified in terms of time-to-failure
tfailure [25] and its deteriorating reduction with the problem size (i.e., fidelity-scaling
problem) was pointed out [9]. This work is the first to: (1) formally quantify the fidelity
scaling by introducing the fidelity-scaling exponent β through tfailure ∝ N−β (N is the
number of atoms); and (2) propose the solution to the fidelity-scaling problem using
sharpness-aware minimization.

Robustness against adversarial attacks is a central and widely studied issue in
machine learning [4, 13, 14]. Compared to typical adversarial attacks, it is nontrivial
to generate adversarial perturbations for NNQMD. This is because the attack we con-
sider is not only focused on the accuracy of the model, but also on the time to failure
(tfailure) of the model, which can only be determined through long-time simulations
[15, 16]. Generative adversarial network (GAN) is one possible approach for sampling
molecular configurations in a learning-on-the-fly setting [26]. However, we remark that
the real strength of MD simulation is its ability to compute dynamic correlations that
can directly explain high-resolution spectroscopic experiments, which requires a long
uninterrupted Hamiltonian trajectory, to which adversarial networks are generally not
applicable. In this domain, Allegro-Legato thus provides a unique solution.

238 H. Ibayashi et al.

7 Conclusion

We have introduced the proposed SAM-based solution to the fidelity-scaling problem
into the Allegro NNQMD model,[8] which represents the state-of-the-art accuracy and
speed. The resulting Allegro-Legato model has drastically improved fidelity scaling by
exhibiting a significantly lower exponent, βAllegro−Legato = 0.14 < βAllegro = 0.29,
thus systematically delaying time-to-failure. Such improved fidelity scaling is central to
ensure that meaningful scientific knowledge is extracted from large-scale simulations on
leadership-scale parallel computers. Our scalable parallel implementation of Allegro-
Legato with excellent computational scaling and GPU acceleration combines accuracy,
speed, robustness and scalability, thus allowing practical large spatiotemporal-scale
NNQMD simulations for challenging applications on exascale computing platforms.

Acknowledgement. This work was supported as part of the Computational Materials Sciences
Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences,
under award number DE-SC0014607. H.I. and K.N. were partially supported by an NSF grant,
OAC-2118061. The simulations were performed at the Argonne Leadership Computing Facility
under the DOE INCITE program, while scalable code development was supported by the Aurora
ESP program. The authors acknowledge the Center for Advanced Research Computing at the
University of Southern California for providing computing resources that have contributed to the
research results reported within this publication. We are grateful to Dr. Makiko Hirata for valuable
discussions regarding Allegro-Legato.

References

1. Behler, J.: Constructing high-dimensional neural network potentials: a tutorial review. Int. J.
Quantum Chem. 115(16), 1032–1050 (2015)

2. Krishnamoorthy, A., et al.: Dielectric constant of liquid water determinedwith neural network
quantum molecular dynamics. Phys. Rev. Lett. 126(21), 216403 (2021)

3. Linker, T., et al.: Exploring far-from-equilibrium ultrafast polarization control in ferroelec-
tric oxides with excited-state neural network quantum molecular dynamics. Sci. Adv. 8(12),
eabk2625 (2022)

4. Jia, W., et al.: Pushing the limit of molecular dynamics with ab initio accuracy to 100 million
atoms with machine learning. Proceedings of Supercomputing, vol. 5. ACM/IEEE (2020)

5. Nguyen-Cong, K., et al.: Billion atom molecular dynamics simulations of carbon at extreme
conditions and experimental time and length scales. In: Proceedings of Supercomputing, vol.
4. IEEE/ACM (2021)

6. Batzner, S., et al.: E(3)-equivariant graph neural networks for data-efficient and accurate
interatomic potentials. Nat. Commun. 13, 2453 (2021)

7. Thomas, N., et al.: Tensor field networks: rotation-and translation-equivariant neural networks
for 3D point clouds. arXiv:1802.08219 (2018)

8. Musaelian, A., et al.: Learning local equivariant representations for large-scale atomistic
dynamics. arXiv:2204.05249 (2022)

9. Rajak, P., et al.: Ex-NNQMD: extreme-scale neural network quantum molecular dynamics.
In: Proceedings of IPDPSW21, pp. 943–946. IEEE (2021)

10. Misawa, M., et al.: Application of first-principles-based artificial neural network potentials to
multiscale-shock dynamics simulations on solidmaterials. J. Phys.Chem.Lett.11, 4536–4541
(2020)

http://arxiv.org/abs/1802.08219
http://arxiv.org/abs/2204.05249

Allegro-Legato: Scalable, Fast, and Robust Neural-Network 239

11. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for effi-
ciently improving generalization. In: Proceedings of International Conference on Learning
Representations, ICLR, vol. 1839 (2021)

12. Schmidt, R.M., Schneider, F., Hennig, P.: Descending through a crowded valley - bench-
marking deep learning optimizers. In: Proceedings of International Conference on Machine
Learning, ICML, vol. 139, pp. 9367–9376 (2021)

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In:
Proceedings of International Conference on Learning Representations, ICLR (2015)

14. Shafahi, Aet al.: Adversarial training for free! In: Proceedings of NeurIPS, vol. 32 (2019)
15. Schwalbe-Koda, D., Tan, A.R., Gómez-Bombarelli, R.: Differentiable sampling of molecular

geometries with uncertainty-based adversarial attacks. Nat. Commun. 12(1), 5104 (2021)
16. Cubuk, E.D., Schoenholz, S.S.: Adversarial forces of physical models. In: Proceedings of

NeurIPS-MLPS (2020)
17. Nomura, K., Kalia, R.K., Nakano, A., Rajak, P., Vashishta, P.: RXMD: a scalable reactive

molecular dynamics simulator for optimized time-to-solution. SoftwareX 11, 100389 (2020)
18. Nomura, K., et al.: Metascalable quantum molecular dynamics simulations of hydrogen-on-

demand. In: Proceedings of SC14, pp. 661–673. IEEE/ACM (2014)
19. Chmiela, S., Sauceda, H.E., Müller, K.-R., Tkatchenko, A.: Towards exact molecular

dynamics simulations with machine-learned force fields. Nat. Commun. 9(1), 3887 (2018)
20. Hoja, J., Reilly, A.M., Tkatchenko, A.: First-principles modeling of molecular crystals:

structures and stabilities, temperature and pressure. WIREs Comput. Mol. Sci. 7(1), e1294
(2017)

21. Chehade, G., Dincer, I.: Progress in green ammonia production as potential carbon-free fuel.
Fuel 299, 120845 (2021)

22. Togo, A., Tanaka, I.: First principles phonon calculations in materials science. Scripta Mater.
108, 1–5 (2015)

23. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill (1965)
24. Rossi, M., Ceriotti, M., Manolopoulos, D.E.: How to remove the spurious resonances from

ring polymer molecular dynamics. J. Chem. Phys. 140(23), 234116 (2014)
25. Fu, X., et al.: Forces are not enough: benchmark and critical evaluation for machine learning

force fields with molecular simulations. arXiv:2210.07237 (2022)
26. Jinnouchi, R., Miwa, K., Karsai, F., Kresse, G., Asahi, R.: On-the-fly active learning of

interatomic potentials for large-scale atomistic simulations. J. Phys. Chem. Lett. 11(17),
6946–6955 (2020)

http://arxiv.org/abs/2210.07237

Quantum Annealing vs. QAOA: 127
Qubit Higher-Order Ising Problems

on NISQ Computers

Elijah Pelofske(B), Andreas Bärtschi, and Stephan Eidenbenz

Los Alamos National Laboratory, CCS-3 Information Sciences, Los Alamos, USA

epelofske@lanl.gov

Abstract. Quantum annealing (QA) and Quantum Alternating Opera-
tor Ansatz (QAOA) are both heuristic quantum algorithms intended for
sampling optimal solutions of combinatorial optimization problems. In
this article we implement a rigorous direct comparison between QA on
D-Wave hardware and QAOA on IBMQ hardware. These two quantum
algorithms are also compared against classical simulated annealing. The
studied problems are instances of a class of Ising models, with variable
assignments of +1 or −1, that contain cubic ZZZ interactions (higher
order terms) and match both the native connectivity of the Pegasus
topology D-Wave chips and the heavy hexagonal lattice of the IBMQ
chips. The novel QAOA implementation on the heavy hexagonal lattice
has a CNOT depth of 6 per round and allows for usage of an entire heavy
hexagonal lattice. Experimentally, QAOA is executed on an ensemble of
randomly generated Ising instances with a grid search over 1 and 2 round
angles using all 127 programmable superconducting transmon qubits
of ibm washington. The error suppression technique digital dynamical
decoupling is also tested on all QAOA circuits. QA is executed on the
same Ising instances with the programmable superconducting flux qubit
devices D-Wave Advantage system4.1 and Advantage system6.1 using
modified annealing schedules with pauses. We find that QA outperforms
QAOA on all problem instances. We also find that dynamical decoupling
enables 2-round QAOA to marginally outperform 1-round QAOA, which
is not the case without dynamical decoupling.

Keywords: QAOA · Quantum Alternating Operator Ansatz ·
Quantum annealing · dynamical decoupling · higher-order Ising ·
Pegasus graph · heavy-hex lattice

1 Introduction

Quantum annealing (QA) in the transverse field Ising model is an analog com-
putation technology which utilizes quantum fluctuations in order to search for
ground state solutions of a problem Hamiltonian [1–5]. D-Wave quantum anneal-
ers are programmable hardware implementations of quantum annealing which
use superconducting flux qubits [6,7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 240–258, 2023.
https://doi.org/10.1007/978-3-031-32041-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-32041-5_13

QAOA and QA on Higher-Order Ising Models 241

Quantum Alternating Operator Ansatz (QAOA) is a hybrid quantum clas-
sical algorithm for sampling combinatorial optimization problems [8–10], the
quantum component of which can be instantiated with a programmable gate-
based universal quantum computer. The Quantum Approximate Optimization
Algorithm [11] was the first variational algorithm of this type, which was then
generalized to the Quantum Alternating Operator Ansatz algorithm [8].

QAOA is effectively a Trotterization of the Quantum Adiabatic Algorithm,
and is overall similar to Quantum Annealing. In particular both algorithms
address combinatorial optimization problems. The exact characteristics of how
both QA and QAOA will scale to large system sizes is currently not fully under-
stood, in particular because quantum hardware is still in the NISQ era [12–14].
For example, there is evidence that QAOA may be more difficult for classical
computers to simulate than quantum annealing, which could make it a viable
candidate for quantum advantage [15]. Quantum annealing in particular has
been experimentally evaluated against classical algorithms in order to determine
for what problem types and under what settings quantum annealing could pro-
vide a scaling advantage over the next best state-of-the-art classical approaches
[13,14,16–18]. Generally these results are encouraging and show that quantum
annealing can indeed sample certain problem types better than classical meth-
ods such as simulated annealing. There have been a number of studies that
directly compare Quantum Annealing and QAOA for a number of different sam-
pling tasks [19–23], however this paper presents, to the best of our knowledge,
the largest direct comparison between Quantum Annealing and QAOA to date.
There have been experimental QAOA implementations which used up to 40
qubits [24], 27 qubits [25], and 23 qubits [26]. There have also been QAOA
experiments which had circuit depth up to 159 [27] and 148 [28].

The contributions of this article are as follows:

1. We provide a direct comparison between QAOA and Quantum Annealing
in terms of experiments on D-Wave and IBMQ hardware. This comparison
uses a comparable parameter search space for QA and QAOA, uses no minor
embedding for quantum annealing, and uses short depth QAOA circuits, thus
providing a fair comparison of the two algorithms. A comparison of this prob-
lem size has not been performed before to the best of our knowledge. We show
that QAOA is better than random sampling, and quantum annealing clearly
outperforms QAOA. A comparison against the classical heuristic algorithm
simulated annealing is also presented.

2. The QAOA algorithm we present is tailored for short depth circuit construc-
tion on the heavy hexagonal lattice (CNOT depth of 6 per round), therefore
allowing full usage of any heavy hexagonal topology quantum processor in the
future. We use all 127 qubits of the ibm washington chip in order to execute
the largest QAOA circuit, in terms of qubits, to date. Each QAOA circuit
uses thousands of gate operations, making these results one of the largest
quantum computing experiments performed to date.

3. The Ising models that are used to compare quantum annealing and QAOA
are specifically constructed to include higher order terms, specifically three

242 E. Pelofske et al.

Table 1. NISQ hardware summary at the time the experiments were executed. The
hardware yield (e.g., the number of available qubits or two qubit interactions) for all
of these devices can be less than the logical lattice because of hardware defects, and
can also change over time if device calibration changes.

Device name Topology/chip
name

Available
qubits

Available
couplers/
CNOTs

Computation type

Advantage system4.1 Pegasus P16 5627 40279 QA

Advantage system6.1 Pegasus P16 5616 40135 QA

ibm washington Eagle r1
heavy-hexagonal

127 142 Universal gate-model

variable (cubic) terms. QAOA can directly implement higher order terms,
and quantum annealing requires order reduction using auxiliary variables to
implement these higher order terms. This is the largest experimental demon-
stration of QAOA with higher order terms to date.

4. In order to mitigate errors when executing the QAOA circuits, we utilize dig-
ital dynamical decoupling. This is the largest usage of dynamical decoupling
in terms of qubit system size to date, and the results show that digital dynam-
ical decoupling improves performance for two round QAOA, suggesting that
it will be useful for computations with large numbers of qubits in the noisy
regime.

In Sect. 2 the QAOA and QA hardware implementations, and the simulated
annealing implementation are detailed. Section 3 details the experimental results
and how the two quantum algorithms compare, including how simulated anneal-
ing compares. Section 4 concludes with what the results indicate and future
research directions. The figures in this article are generated using matplotlib
[29,30], and Qiskit [31] in Python 3. Code, data, and additional figures are avail-
able in a public Github repository1.

2 Methods

The Ising models are defined in Sect. 2.1. In Sect. 2.2 the QAOA circuit algo-
rithm and hardware parameters are defined. In Sect. 2.3 the quantum annealing
implementation is defined. Section 2.4 defines the simulated annealing implemen-
tation.

2.1 Ising Model Problem Instances

The NISQ computers which are used in this comparison are detailed in
Table 1; the clear difference between the D-Wave quantum annealers and

1 https://github.com/lanl/QAOA vs QA.

https://github.com/lanl/QAOA_vs_QA

QAOA and QA on Higher-Order Ising Models 243

ibm washington is the number of qubits that are available. The additional qubits
available on the quantum annealers will allow us to embed multiple problem
instances onto the chips. The current IBMQ devices have a graph topology
referred to as the heavy-hexagonal lattice [32]. Therefore, for a direct QAOA
and QA comparison we would want to be able to create QAOA circuits which
match the logical heavy-hexagonal lattice and the quantum annealer graph topol-
ogy of Pegasus. For this direct comparison we target D-Wave quantum anneal-
ers with Pegasus graph hardware [33,34] connectivities. The two current D-
Wave quantum annealers with Pegasus hardware graphs have chip id names
Advantage system6.1 and Advantage system4.1. The goal for this direct com-
parison is that ideally we want problems which can be instantiated on all three
of the devices in Table 1. In particular, we want these implementations to not
be unfairly costly in terms of implementation overhead. For example we do not
want to introduce unnecessary qubit swapping in the QAOA circuit because
that would introduce larger circuit depths which would introduce more decoher-
ence in the computation. We also do not want to introduce unnecessary minor-
embedding in the problems for quantum annealers.

The other property of these problem instances that is of interest is an intro-
duction of higher order terms, specifically cubic ZZZ interactions [35] also
referred to as multi-body interactions [36], in addition to random linear and
quadratic terms. These higher order terms require both QAOA and QA to be
handle these higher order variable interactions, which is an additional test on
the capability of both algorithms. QAOA can naturally handle higher order
terms [37]. Implementing high order terms with QA requires introducing auxil-
iary variables in order to perform order reduction to get a problem structure that
is comprised of only linear and quadratic terms, so that it can be implemented
on the hardware, but whose optimal solutions match the optimal solutions of
the original high order polynomial (for the non-auxiliary variables) [4,38–41].

Taking each of these characteristics into account, we create a class of ran-
dom problems which follow the native device connectivities in Table 1. The
problem instances we will be considering are Ising models defined on the hard-
ware connectivity graph of the heavy hexagonal lattice of the device, which for
these experiments will be ibm washington. For a variable assignment vector
z = (z0, . . . , zn−1) ∈ {+1,−1}n, the random Ising model is defined as

C(z) =
∑

v∈V

dv · zv +
∑

(i,j)∈E

di,j · zi · zj +
∑

l∈W

dl,n1(l),n2(l) · zl · zn1(l) · zn2(l) (1)

Equation (1) defines the class of random minimization Ising models with
cubic terms as follows. Any heavy hexagonal lattice is a bipartite graph with
vertices V = {0, . . . , n − 1} partitioned as V = V2 ∪ V3, where V3 consists of
vertices with a maximum degree of 3, and V2 consists of vertices with a maximum
degree of 2. E ⊂ V2 × V3 is the edge set representing available two qubit gates
(in this case CNOTs where we choose targets i ∈ V2 and controls j ∈ V3).
W is the set of vertices in V2 that all have degree exactly equal to 2. n1 is a

244 E. Pelofske et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

71 72 73 74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

90 91 92 93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

109 110 111 112

113 114 115 116 117 118 119 120 121 122 123 124 125 126

Fig. 1. Left: ibm washington graph connectivity, where qubits are connected by
CNOT (also referred to as cx) gates. The ideal lattice is called the heavy-hexagonal
lattice. Note that there are two missing graph edges from the lattice between qubits
8-9 and 109-114. The total number of qubits (nodes) is 127. The edges of the graph
are three colored (red, blue, and green) such that no node shares two or more edges
with the same color. The node colorings of light and dark gray show that the heavy
hexagonal lattice is bipartite (meaning it can be partitioned into two disjoint sets). The
three edge coloring is consistent with the QAOA circuit construction in Fig. 2. Right:
Example of a single random problem instance with cubic terms (see Eq. (1)) on the
ibm washington graph. The linear and quadratic terms are shown using two distinct
colors (red and green). The nodes and edges colored red denote a weight of −1 and the
nodes and edges colored green denote a weight of +1. The cubic terms are represented
by ovals around the three qubits which define the cubic variable interactions. Like the
linear and quadratic terms, the color of the oval representing the cubic terms represents
the sign of the weight on the terms, where green is +1 and red is −1. (Color figure
online)

function that gives the qubit (variable) index of the first of the two neighbors of a
degree-2 node and n2 provides the qubit (variable) index of the second of the two
neighbors of any degree-2 node. Thus dv, di,j , and dl,n1(l),n2(l) are all coefficients
representing the random selection of the linear, quadratic, and cubic coefficients,
respectively. These coefficients could be drawn from any distribution - in this
paper we draw the coefficients from {+1,−1} with probability 0.5. Equation (1)
therefore defines how to compute the objective function for a given variable
assignment vector z.

The heavy hexagonal topology of ibm washington, along with an overlay
showing one of the random problem instances with cubic terms defined on
ibm washington, is shown in Fig. 1. Each term coefficient was chosen to be
either +1 or −1, which in part helps to mitigate the potential problem of lim-
ited precision for the programming control on all of the NISQ devices. 10 random
instances of this class of problems are generated and sampled using QAOA and
QA, the implementations of each will be discussed next.

QAOA and QA on Higher-Order Ising Models 245

2.2 Quantum Alternating Operator Ansatz

Given a combinatorial optimization problem over inputs z ∈ {+1,−1}n, let
C(z) : {+1,−1}n → R be the objective function which evaluates the cost of the
solution vector z. For a maximization (or minimization) problem, the goal is to
find a variable assignment vector z for which f(z) is maximized (or minimized).
The QAOA algorithm consists of the following components:

– an initial state |ψ〉,
– a phase separating Cost Hamiltonian HC ,

which is derived from C(z) by replacing all spin variables zi by Pauli-Z oper-
ators σz

i

– a mixing Hamiltonian HM ; in our case, we use the standard transverse field
mixer, which is the sum of the Pauli-X operators σx

i

– an integer p ≥ 1, the number of rounds to run the algorithm,
– two real vectors γ = (γ1, ..., γp) and β = (β1, ..., βp), each with length p.

The algorithm consists of preparing the initial state |ψ〉, then applying p
rounds of the alternating simulation of the phase separating Hamiltonian and
the mixing Hamiltonian:

|γ,β〉 = e−iβpHM e−iγpHP

︸ ︷︷ ︸
round p

· · · e−iβ1HM e−iγ1HP

︸ ︷︷ ︸
round 1

|ψ〉 (2)

Within reach round, HP is applied first, which separates the basis states of
the state vector by phases e−iγf(x). HM then provides parameterized interference
between solutions of different cost values. After p rounds, the state |γ,β〉 is
measured in the computational basis and returns a sample solution y of cost
value f(y) with probability | 〈y|γ,β〉 |2.

The aim of QAOA is to prepare the state |γ,β〉 from which we can sample
a solution y with high cost value f(y). Therefore, in order to use QAOA the
task is to find angles γ and β such that the expectation value 〈γ,β|HP |γ,β〉
is large (−HP for minimization problems). In the limit p → ∞, QAOA is effec-
tively a Trotterization of the Quantum Adiabatic Algorithm, and in general
as we increase p we expect to see a corresponding increase in the probability
of sampling the optimal solution [42]. The challenge is the classical outer loop
component of finding the good angles γ and β for all rounds p, which has a high
computational cost as p increases.

Variational quantum algorithms, such as QAOA, have been a subject of large
amount of attention, in large part because of the problem domains that varia-
tional algorithms can address (such as combinatorial optimization) [43]. One of
the challenges however with variational quantum algorithms is that the classical
component of parameter selection, in the case of QAOA this is the angle finding
problem, is not solved and is even more difficult when noise is present in the
computation [44]. Typically the optimal angles for QAOA are computed exactly
for small problem instances [20,45]. However, in this case the angle finding app-
roach we will use is a reasonably high resolution gridsearch over the possible

246 E. Pelofske et al.

angles. Note however that a fine gridsearch scales exponentially with the num-
ber of QAOA rounds p, and therefore is not advisable for practical high round
QAOA [9,11]. Exactly computing what the optimal angles are for problems of
this size would be quite computationally intensive, especially with the intro-
duction of higher order terms. We leave the problem of exactly computing the
optimal QAOA angles to future work.

Figure 2 describes the short depth QAOA circuit construction for sampling
the higher order Ising test instance. This algorithm can be applied to any heavy
hexagonal lattice topology, which allows for executing the QAOA circuits on the
127 variable instances on the IBMQ ibm washington backend. For the class of
Ising models with higher order terms defined in Sect. 2.1, the QAOA angle ranges
which are used are γ1, . . . , γp ∈ [0, π) and β1, . . . , βp−1 ∈ [0, π), βp ∈ [0, π

2) where
p is the number of QAOA rounds. Note that the halving of the angle search space
for β applies when p = 1. For optimizing the angles using the naive grid search
for p = 1, β0 is varied over 60 linearly spaced angles ∈ [0, π

2] and γ0 is varied over
120 linearly spaced angles ∈ [0, π]. For the high resolution gridsearch for p = 2,
β1 is varied over 5 linearly spaced angles ∈ [0, π

2] and γ0, γ1, and β0 are varied
over 11 linearly spaced angles ∈ [0, π]. Therefore, for p = 2 the angle gridsearch
uses 6655 separate circuit executions (for each of the 10 problem instances), and
for p = 1 the angle gridsearch uses 7200 separate circuit executions. Each circuit
execution used 10, 000 samples in order to compute a robust distribution for
each angle combination.

In order to mitigate decoherence on idle qubits, digital dynamical decoupling
(DDD) is also tested for all QAOA circuits. Dynamical Decoupling is an open
loop quantum control technique error suppression technique for mitigating deco-
herence on idle qubits [46–51]. Dynamical decoupling can be implemented with
pulse level quantum control, and digital dynamical decoupling can be imple-
mented simply with circuit level instructions of sequences of gates which are
identities [50]. Note that digital dynamical decoupling is an approximation of
pulse level dynamical decoupling. Dynamical decoupling has been experimentally
demonstrated for superconducting qubit quantum processors including IBMQ
devices [46,52,53]. Dynamical decoupling in particular is applicable for QAOA
circuits because they can be relatively sparse and therefore have idle qubits [46].
DDD does not always effective at consistently reducing errors during computa-
tion (for example because of other control errors present on the device [46,49]),
and therefore the raw QAOA circuits are compared against the QAOA circuits
with DDD in the experiments section. In order to apply the DDD sequences
to the OpenQASM [54] QAOA circuits, the PadDynamicalDecoupling2 method
from Qiskit [31] is used, with the pulse alignment parameter set based on the
ibm washington backend properties. The circuit scheduling algorithm that is
used for inserting the digital dynamical decoupling sequences is ALAP, which
schedules the stop time of instructions as late as possible3. There are other

2 https://qiskit.org/documentation/locale/bn BN/stubs/qiskit.transpiler.passes.
PadDynamicalDecoupling.html.

3 https://qiskit.org/documentation/apidoc/transpiler passes.html.

https://qiskit.org/documentation/locale/bn_BN/stubs/qiskit.transpiler.passes.PadDynamicalDecoupling.html
https://qiskit.org/documentation/locale/bn_BN/stubs/qiskit.transpiler.passes.PadDynamicalDecoupling.html
https://qiskit.org/documentation/apidoc/transpiler_passes.html

QAOA and QA on Higher-Order Ising Models 247

Fig. 2. A 1-round QAOA circuit: (left) The problem instance is a hardware-native
bipartite graph with an arbitrary 3-edge-coloring given by Kőnig’s line coloring the-
orem. (right) Any quadratic term (colored edge) gives rise to a combination of two
CNOTs and a Rz-rotation in the phase separator, giving a CNOT depth of 6 due to the
degree-3 nodes. When targeting the degree-2 nodes with the CNOT gates, these con-
structions can be nested, leading to no overhead when implementing the three-qubit
terms: these always have a degree-2 node in the middle (see Eq. (1)). (Color figure
online)

scheduling algorithms that could be applied which may increase the efficacy
of dynamical decoupling. There are different DDD gate sequences that can be
applied, including Y-Y or X-X sequences. Because the X Pauli gate is already a
native gate of the IBMQ device, the X-X DDD sequence is used for simplicity.

Note that the variable states for the optimization problems are either −1 or
+1, but the circuit measurement states are either 0 or 1. Therefore once the
measurements are made on the QAOA circuits, for each variable in each sample
the variable state mapping of 0 → 1, 1 → −1 is performed. For circuit execution
on the superconducting transom qubit ibm washington, circuits are batched into
jobs where each job is composed of a group of at most 250 circuits - the maximum
number of circuits for a job on ibm washington is currently 300, but we use
250 in order to reduce job errors related to the size of jobs. Grouping circuits
into jobs is helpful for reducing the total amount of compute time required to
prepare and measure each circuit. When submitting the circuits to the backend,
they are all first locally transpiled via Qiskit [31] with optimization level=3.
This transpilation converts the gateset to the ibm washington native gateset,
and the transpiler optimization attempts to simplify the circuit where possible.
The QAOA circuit execution on ibm washington spanned a large amount of
time, and therefore the backend versions were not consistent. The exact backend
software versions were 1.3.7, 1.3.8, 1.3.13, 1.3.15, 1.3.17.

2.3 Quantum Annealing

Quantum annealing is a proposed type of quantum computation which uses
quantum fluctuations, such as quantum tunneling, in order to search for the
ground state of a user programmed Hamiltonian. Quantum annealing, in the
case of the transverse field Ising model implemented on D-Wave hardware, is

248 E. Pelofske et al.

explicitly described by the system given in Eq. (3). The state begins at time
zero purely in the transverse Hamiltonian state

∑
i σx

i , and then over the course
of the anneal (parameterized by the annealing time) the user programmed Ising
is applied according the function B(s). Together, A(s) and B(s) define the anneal
schedules of the annealing process, and s is referred to as the anneal fraction.
The standard anneal schedule that is used is a linear interpolation between s = 0
and s = 1.

H = −A(s)
2

(n∑

i

σx
i

)
+

B(s)
2

(
Hising

)
(3)

The adiabatic theorem states that if changes to the Hamiltonian of the sys-
tem are sufficiently slow, the system will remain in the ground state of problem
Hamiltonian, thereby providing a computational mechanism for computing the
ground state of optimization problems. The user programmed Ising Hising, act-
ing on n qubits, is defined in Eq. (4). The quadratic terms and the linear terms
combined define the optimization problem instance that the annealing procedure
will ideally find the ground state of. As with QAOA, the objective of quantum
annealing is to find the variable assignment vector z that minimizes the cost
function which has the form of Eq. (4).

Hising =
n∑

i

hiσ
z
i +

n∑

i<j

Jijσ
z
i σz

j (4)

The goal is to be able to implement the Ising models defined in Sect. 2.1 on D-
Wave quantum annealers. In order to implement the higher order terms, we will
need to use order reduction in order to transform the cubic terms into linear and
quadratic terms [4,38–41]. This order reduction will result in using additional
variables, usually called auxiliary or slack variables. Figure 3 shows the embed-
dings of the problem instances onto the logical Pegasus P16 graph, including the
order reduction procedure which is used. The order reduction procedure outlined
in Fig. 3 allows for direct embedding of the order reduced polynomials onto the
hardware graph, regardless of whether the cubic term coefficient is +1 or −1.
This order reduction ensures that the ground state(s) of the cubic term are also
the ground states of the order reduced Ising. Additionally, this order reduction
ensures that for every excited state of the cubic term, there are no slack variable
assignments which result in the original variables having an energy less than
or equal to the ground state of the original cubic term. This order reduction
procedure allows any problem in the form of Eq. (1) to be mapped natively to
quantum annealing hardware which accepts problems with the form of Eq. (4).
Importantly, this procedure does not require minor-embedding, even including
the auxiliary variables.

In order to get more samples for the same QPU time, the other strategy that
is employed is to embed multiple independent Ising model instances onto the
hardware graph and thus be able to execute several instances in the same anneal-
ing cycle(s). This technique is referred to as parallel quantum annealing [40,55]

QAOA and QA on Higher-Order Ising Models 249

Fig. 3. (left) Two different embeddings for cubic +1/−1 terms. Each embedding needs
two slack variable qubits. Our overall embedding alternates between these two cubic
term embeddings. Any embedding with only one slack variable needs a 4-clique between
the slack and the three original variables, which is not possible to embed for consecutive
cubic terms. (right) Embedding structures of the problem instances with higher order
terms embedded in parallel (independently) 6 times onto the logical Pegasus P16 graph.
The view of this graph has been slightly partitioned so that not all of the outer parts
of the Pegasus chip are drawn. The light grey qubits and couplers indicate unused
hardware regions. The cyan coloring on nodes and edges denote the vertical qubits and
CNOTs on the ibm washington hardware graph (see Fig. 1). The red coloring on nodes
and edges denote the horizontal lines of qubits and CNOTs on ibm washington. The
green nodes and edges denote the order reduction auxiliary variables. Note that the top
right hand and lower left hand qubits are not present on the ibm washington lattice -
but for the purposes of generating the embeddings, these extra qubits are filled in to
complete the lattice. (Color figure online)

or tiling4. Figure 3 (right) shows the parallel embeddings on a logical Pegasus
graph. Because some of the logical embeddings may use a qubit or coupler which
is missing on the actual hardware, less than 6 parallel instances can be tiled onto
the chips to be executed at the same time. For Advantage system4.1, 2 indepen-
dent embeddings of the problem instances could be created without encountering
missing hardware. For Advantage system6.1, 3 independent embeddings of the
problem instances could be created. The structure of the heavy-hexagonal lattice
onto Pegasus can be visually seen in Fig. 3; the horizontal heavy-hex lines (Fig. 1)
are mapped to diagonal Pegasus qubit lines that run from top left to bottom

4 https://dwave-systemdocs.readthedocs.io/en/samplers/reference/composites/
tiling.html.

https://dwave-systemdocs.readthedocs.io/en/samplers/reference/composites/tiling.html
https://dwave-systemdocs.readthedocs.io/en/samplers/reference/composites/tiling.html

250 E. Pelofske et al.

Fig. 4. All modified (forward) quantum annealing schedules which are tested in order
to find the best anneal schedule with a pause. The symmetric pause inserted into
the normal linearly interpolated schedule defining the A(s) and B(s) functions can
provide better ground state sampling probability. The anneal fraction at which this
pause occurs is varied between 0.1 and 0.9 in steps of 0.1. The pause duration, as a
fraction of the total annealing time, is also varied between 0.1 and 0.9 in steps of 0.1.
Although not shown in this figure, the annealing times are also varied between 10, 100,
1000, and 2000µs.

right of the square Pegasus graph rendering. Then the vertical heavy-hexagonal
qubits are mapped to QA qubits in between the diagonal qubit lines.

In order to optimize the quantum annealing parameters, with relatively simi-
lar complexity to the angle parameter search done for QAOA, the forward anneal
schedule with pausing is optimized over a gridsearch. Pausing the anneal at the
appropriate spot can provide higher chances of sampling the ground state [56].
Figure 4 shows this anneal schedule search space - importantly the annealing
times used in these schedule are also optimized for. The total number of QA
parameters which are varied are 9 anneal fractions, 9 pause durations, and 4
annealing times (10, 100, 1000, 2000 microseconds). Therefore, the total num-
ber of parameter combinations which are considered in the grid search is 324.
2000 microseconds is the longest annealing time available on the current D-
Wave quantum annealers. The number of anneals sampled for each D-Wave job
was 500. The annealing times and the anneal schedules were varied in a simple
grid search. Readout and programming thermalization times are both set to 0
microseconds. All other parameters are set to default, with the exception of the
modified annealing schedule.

2.4 Simulated Annealing Implementation

In order to provide a reasonable basis of comparison, the 10 Ising model problem
instances are also sampled using simulated annealing. Simulated annealing is a
standard high accuracy and general purpose classical heuristic algorithm [57],
and has been used as a reasonable comparison against quantum algorithms [13].
The simulated annealing implementation that we utilize is an open source imple-

QAOA and QA on Higher-Order Ising Models 251

mentation5. The settings we use are all set to default and 1000 samples are drawn
for each Ising model. The simulated annealing implementation does not natively
handle higher order terms, and therefore order reduction must be applied to
the Ising model’s before being sampled by simulated annealing. Order reduction
introduces additional variables into the computation. The order reduction is per-
formed using the python package dimod6. The order reduction penalty strength
is set to 2, which ensures that the optimal solution of the original higher order
Ising matches the order reduced Ising model (excluding the ancillary variables
introduced by the order reduction).

3 Results

Figures 5 and 6 combined show the detailed energy distributions for all 10 cubic
Ising models sampled using the best parameter choices found for QA and QAOA.
These histograms include the four variants of QAOA - 1 and 2 rounds with and
without digital dynamical decoupling. The histograms include 10000 random
samples (binomial distribution with p = 0.5) on the 10 Ising models.

QA Performs Better than QAOA: The most notable observation across
these histograms is that clearly quantum annealing results in better variable
assignments compared to all tested variations of QAOA; this clear stratification
of the algorithms capabilities is consistent across all 10 problem instances. Notice
that the minimum energies achieved by QAOA (marked by the solid vertical
lines) do not reach the energy distribution sampled by the quantum annealers.
The characteristics of each of the 10 problem instances are slightly different, but
this trend is very clear.

QAOA Performs Better than Random Sampling: Both QA and QAOA
sampled better solutions than the 10000 random samples. Although an obvious
observation from the distributions in Figs. 6 and 5, it is not trivial that the QAOA
samples had better objective function values compared to random sampling. The
reason this is not trivial is because at sufficient circuit depth, which is not difficult
to reach, the computation will entirely decohere and the computation will not be
meaningful. This result is encouraging because it shows that short depth circuit
constructions, combined with increasing scale of near term quantum computers,
can begin to yield relevant computations for larger system sizes (in this case,
127 variables).

The Effect of Digital Dynamical Decoupling: The dataset shown in Fig. 6
also allows for a direct quantification of how successful the digital dynamical
decoupling passes were at improving the QAOA circuit executions. Table 2 shows
a comparison of the four QAOA implementations. For 2-round QAOA, DDD
improved the mean sample energy for 10 out of the 10 Ising models. For 1-
round QAOA, DDD improved the mean sample energy for 4 out of the 10 prob-
lem instances. This shows that digital dynamical decoupling does not uniformly
5 https://github.com/dwavesystems/dwave-neal.
6 https://github.com/dwavesystems/dimod.

https://github.com/dwavesystems/dwave-neal
https://github.com/dwavesystems/dimod

252 E. Pelofske et al.

Fig. 5. Direct objective function (e.g. energy) histogram comparison of QA and QAOA
results for one of the 10 minimization problem instances. A distribution of simulated
annealing energies are also shown to provide a comparison against a reasonable clas-
sical heuristic. Here the energies being plotted are the full energy spectrum for the
parameters which gave the minimum mean energy across the parameter grid searches
performed across the QA and QAOA parameters. The optimal parameter combination
for each distribution is given in the figure legend. For QA parameters, the annealing
time in microseconds, the forward anneal schedule (symmetric) pause fraction, and
anneal fraction, are given in the legend. If the default linearly interpolated quantum
annealing schedule performed the best, only the annealing time reported in the legend.
For the QAOA angle parameters, the format is [β, γ], and are rounded to 3 decimal
places. The mean for each dataset is marked with vertical dashed lines and the min-
imum energy found in each dataset is marked with solid vertical lines. The energy
histogram plots for the other 9 Ising models are shown in Fig. 6.

improve the performance of the QAOA circuits. This suggests that the qubits
in the 2-round QAOA circuits have more available idle time compared to the
1-round QAOA circuits, which would allow for DDD to improve the circuit per-
formance. The 2-round QAOA results had better average energy compared the
1-round results in 6 out of the 10 problem instances.

Optimal Parameter Choices - QAOA: The optimal 2-round QAOA angles
for all 10 problems with and without dynamical decoupling is the same. The opti-
mal 1-round QAOA angles are not consistent across all problems, and even vary
between the with and without DDD circuit executions. However, even though
the exact optimal angle assignments are not consistent across all problems the,
they are very close to each other which is notable because it indicates that the
optimal angles may be identical or nearly identical but the search space is being
obscured by the noise in the computation.

QAOA and QA on Higher-Order Ising Models 253

Fig. 6. Direct energy histogram comparison of QA and QAOA results for the other
nine problem instances, continuing from Fig. 5. The mean of each energy distribution is
marked with vertical dashed lines, and the minimum energy of each dataset is marked
with vertical solid lines. Note that for several of the distributions there are overlapping
minimum energies.

Optimal Parameter Choices - QA: Figure 6 also allows examination of how
stable the different parameters are, both across the 10 Ising models but also
within each problem instance. In the case of quantum annealing, but the optimal
annealing times are always 2000 and the optimal pause schedule is not incredibly
consistent with pause fraction durations ranging from 0.1 to 0.9 and with anneal
fractions s ranging from 0.5 to 0.7.

D-Wave Devices Performance Differences: One last observation from Fig. 6
is that there a small but consistent performance difference between the two quan-
tum annealers; the slightly older generation Advantage system4.1 yields lower
mean energy than Advantage system6.1. Simulated annealing is comparable
to the quantum annealing distributions, with simulated annealing performing
marginally better than the quantum annealing distributions.

4 Discussion

It is of considerable interest to determine how effective quantum annealing and
QAOA are at computing the optimal solutions of combinatorial optimization
problems. Combinatorial optimization problems have wide reaching applicabil-
ity, and being able to solve them faster or to get better heuristic solutions is

254 E. Pelofske et al.

Table 2. How the four different QAOA implementations, one and two rounds with and
without DDD, compare against each other in terms of in how many of the 10 random
instances each method was better than the other three methods in terms of mean
objective function value across the 10000 samples (for the best angle combination).
There is a clear finding in the order of performance of the four methods; p = 2 with no
DDD performed the worse, p = 1 with no DDD performed the next best, p = 1 with
DDD performed the next best, and p = 2 with digital dynamical decoupling performed
the best overall.

p = 1 p = 2 p = 1 with DDD p = 2 with DDD

p = 1 (no DDD) better than – – 10/10 5/10 4/10

p = 2 (no DDD) better than – 0/10 – 2/10 0/10

p = 1 (with DDD) better than – 5/10 8/10 - 4/10

p = 2 (with DDD) better than – 6/10 10/10 6/10 –

a very relevant topic in computing. In this article, we have presented experi-
mental results for a fair direct comparison of QAOA and quantum annealing,
implemented on the state-of-the-art currently accessible quantum hardware via
cloud computing. We leave more detailed benchmarking against state of the art
classical solvers on these Ising model instances to future work. This research has
specifically found the following:

1. Quantum annealing finds higher quality solutions to the random test Ising
models with higher order terms compared to the short depth QAOA p = 1
and p = 2 circuits, with reasonably fine grid searches over the QAOA angles
and quantum annealing schedules with pauses.

2. QAOA performs noticeably better than random sampling - this is mostly
due to the short depth QAOA circuit constructions which allow reasonably
robust computations to be executed without the qubits decohering on current
quantum computers.

3. The short depth QAOA circuit construction is notable because it allows for
higher order terms in the Ising, and is scalable to a heavy-hexagonal lattice
of any size, therefore this circuit construction can be used for future imple-
mentations of QAOA on devices with heavy-hexagonal lattices for heavy-hex
native Ising models.

4. Dynamical decoupling can improve the computation of QAOA on NISQ com-
puters.

Acknowledgments. This work was supported by the U.S. Department of Energy
through the Los Alamos National Laboratory. Los Alamos National Laboratory is oper-
ated by Triad National Security, LLC, for the National Nuclear Security Administration
of U.S. Department of Energy (Contract No. 89233218CNA000001). The research pre-
sented in this article was supported by the Laboratory Directed Research and Develop-
ment program of Los Alamos National Laboratory under project number 20220656ER
and the NNSA’s Advanced Simulation and Computing Beyond Moore’s Law Program
at Los Alamos National Laboratory. This research used resources provided by the

QAOA and QA on Higher-Order Ising Models 255

Darwin testbed at Los Alamos National Laboratory (LANL) which is funded by the
Computational Systems and Software Environments subprogram of LANL’s Advanced
Simulation and Computing program (NNSA/DOE). This research used resources pro-
vided by the Los Alamos National Laboratory Institutional Computing Program. We
acknowledge the use of IBM Quantum services for this work. The views expressed are
those of the authors, and do not reflect the official policy or position of IBM or the
IBM Quantum team. The authors would like to thank the anonymous reviewers for
their helpful comments which helped to improve the manuscript. LA-UR-22-33077.

References

1. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model.
Physical Review E, 58(5), 5355–5363 (1998). https://doi.org/10.1103/physreve.58.
5355

2. Morita, S., Nishimori, H.: Mathematical foundation of quantum annealing. J.
Math. Phys. 49(12), 125210 (2008). https://doi.org/10.1063/1.2995837

3. Das, A., Chakrabarti, B.K.: Colloquium: quantum annealing and analog quan-
tum computation. Rev. Modern Phys. 80(3), 1061 (2008). https://doi.org/10.1103/
revmodphys.80.1061

4. Hauke, P., Katzgraber, H.G., Lechner, W., Nishimori, H., Oliver, W.D.: Perspec-
tives of quantum annealing: methods and implementations. R. Progress Phys.
83(5), 054401 (2020). https://doi.org/10.1088/1361-6633/ab85b8

5. Yarkoni, S., Raponi, E., Bäck, T., Schmitt, S.: Quantum annealing for industry
applications: introduction and review. Rep. Progress Phys. 85(10), 104001 (2022).
https://doi.org/10.1088/1361-6633/ac8c54

6. Lanting, T., et al.: Entanglement in a quantum annealing processor. Phys. Rev.
X, 4, 021041 (2014). https://doi.org/10.1103/PhysRevX.4.021041

7. King, A.D., et al.: Coherent quantum annealing in a programmable 2000-qubit ising
chain (2022). arXiv preprint arXiv:2202.05847, https://doi.org/10.1038/s41567-
022-01741-6

8. Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E., Venturelli, D., Biswas, R.: From
the quantum approximate optimization algorithm to a quantum alternating oper-
ator ansatz. Algorithms, 12(2), 34 (2019). https://doi.org/10.3390/a12020034

9. Cook, J., Eidenbenz, S., Bärtschi, A.: The quantum alternating operator ansatz
on maximum k-vertex cover. In: 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), pp. 83–92 (2020). https://doi.org/10.1109/
QCE49297.2020.00021

10. Wang, Z., Rubin, N.C., Dominy, J.M., Rieffel, E.G.: Xy mixers: analytical and
numerical results for the quantum alternating operator ansatz. Phys. Rev. A
101(1) (2020). https://doi.org/10.1103/physreva.101.012320

11. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm (2014). https://arxiv.org/abs/1411.4028

12. Phillip, C., et al.: Scaling quantum approximate optimization on near-term hard-
ware. Sci. Rep. 12(1) (2022). https://doi.org/10.1038/s41598-022-14767-w

13. Albash, T., Lidar, D.A.: Demonstration of a scaling advantage for a quantum
annealer over simulated annealing. Phys. Rev. X, 8, 031016 (2018). https://link.
aps.org/doi/10.1103/PhysRevX.8.031016, https://doi.org/10.1103/PhysRevX.8.
031016

https://doi.org/10.1103/physreve.58.5355
https://doi.org/10.1103/physreve.58.5355
https://doi.org/10.1063/1.2995837
https://doi.org/10.1103/revmodphys.80.1061
https://doi.org/10.1103/revmodphys.80.1061
https://doi.org/10.1088/1361-6633/ab85b8
https://doi.org/10.1088/1361-6633/ac8c54
https://doi.org/10.1103/PhysRevX.4.021041
http://arxiv.org/abs/2202.05847
https://doi.org/10.1038/s41567-022-01741-6
https://doi.org/10.1038/s41567-022-01741-6
https://doi.org/10.3390/a12020034
https://doi.org/10.1109/QCE49297.2020.00021
https://doi.org/10.1109/QCE49297.2020.00021
https://doi.org/10.1103/physreva.101.012320
https://arxiv.org/abs/1411.4028
https://doi.org/10.1038/s41598-022-14767-w
https://link.aps.org/doi/10.1103/PhysRevX.8.031016
https://link.aps.org/doi/10.1103/PhysRevX.8.031016
https://doi.org/10.1103/PhysRevX.8.031016
https://doi.org/10.1103/PhysRevX.8.031016

256 E. Pelofske et al.

14. King, A.D., et al.: Scaling advantage over path-integral monte carlo in quan-
tum simulation of geometrically frustrated magnets. Nature Commun. 12(1), 1–6
(2021). https://doi.org/10.1038/s41467-021-20901-5

15. Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate
optimization algorithm (2016). https://arxiv.org/abs/1602.07674

16. Mandrà, S., Zhu, Z., Wang, W., Perdomo-Ortiz, A., Katzgraber, H.G.: Strengths
and weaknesses of weak-strong cluster problems: a detailed overview of state-of-
the-art classical heuristics versus quantum approaches. Phys. Rev. A 94(2) (2016).
https://doi.org/10.1103/physreva.94.022337

17. Boixo, S., et al.: Evidence for quantum annealing with more than one hundred
qubits. Nature Phys. 10(3), 218–224 (2014). https://doi.org/10.1038/nphys2900

18. Tasseff, B., et al.: On the emerging potential of quantum annealing hardware for
combinatorial optimization (2022). https://arxiv.org/abs/2210.04291

19. Lubinski, T., Coffrin, C., McGeoch, C., Sathe, P., Apanavicius, J., Neira, D.E.B.:
Optimization applications as quantum performance benchmarks (2023). https://
arxiv.org/abs/2302.02278

20. Pelofske, E., Golden, J., Bartschi, A., O’Malley, D., Eidenbenz, S.: Sampling on
NISQ devices: “Who’s the Fairest One of All?”. In: 2021 IEEE International Con-
ference on Quantum Computing and Engineering (QCE). IEEE (2021). https://
doi.org/10.1109/qce52317.2021.00038

21. Ushijima-Mwesigwa, H., Shaydulin, R., Negre, C.F.A., Mniszewski, S.M., Alexeev,
Y., Safro, I.: Multilevel combinatorial optimization across quantum architectures.
ACM Trans. Quant. Comput. 2(1) (2021). ISSN 2643–6809. https://doi.org/10.
1145/3425607

22. Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing
(2019). https://arxiv.org/abs/1901.01903

23. Pelofske, E., Bärtschi, A., Eidenbenz, S.: Quantum annealing vs. QAOA: 127 qubit
higher-order ising problems on nisq computers (2023). https://arxiv.org/abs/2301.
00520

24. Pagano, G., et al.: Quantum approximate optimization of the long-range ising
model with a trappedion quantum simulator. In: Proceedings of the National
Academy of Sciences, vol. 117, no. 41, pp. 25396–25401 (2020). https://doi.org/10.
1073/pnas.2006373117

25. Weidenfeller, J., et al.: Scaling of the quantum approximate optimization algorithm
on superconducting qubit based hardware. Quantum 6, 870 (2022). ISSN 2521–
327X. https://doi.org/10.22331/q-2022-12-07-870

26. Matthew, P., et al.: Quantum approximate optimization of non-planar graph prob-
lems on a planar superconducting processor. Nature Phys. 17(3), 332–336 (2021).
https://doi.org/10.1038/s41567-020-01105-y

27. Niroula, P., et al.: Constrained quantum optimization for extractive summarization
on a trapped-ion quantum computer. Sci. Rep. 12(1), 1–14 (2022). https://doi.org/
10.1038/s41598-022-20853-w

28. Herman, D., et al.: Portfolio optimization via quantum zeno dynamics on a quan-
tum processor (2022). https://arxiv.org/abs/2209.15024

29. Caswell, T.A., et al.: matplotlib/matplotlib
30. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3),

90–95 (2007). https://doi.org/10.1109/MCSE.2007.55
31. Treinish, M., et al.: Qiskit/qiskit: Qiskit 0.34.1 (2022)

https://doi.org/10.1038/s41467-021-20901-5
https://arxiv.org/abs/1602.07674
https://doi.org/10.1103/physreva.94.022337
https://doi.org/10.1038/nphys2900
https://arxiv.org/abs/2210.04291
https://arxiv.org/abs/2302.02278
https://arxiv.org/abs/2302.02278
https://doi.org/10.1109/qce52317.2021.00038
https://doi.org/10.1109/qce52317.2021.00038
https://doi.org/10.1145/3425607
https://doi.org/10.1145/3425607
https://arxiv.org/abs/1901.01903
https://arxiv.org/abs/2301.00520
https://arxiv.org/abs/2301.00520
https://doi.org/10.1073/pnas.2006373117
https://doi.org/10.1073/pnas.2006373117
https://doi.org/10.22331/q-2022-12-07-870
https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.1038/s41598-022-20853-w
https://doi.org/10.1038/s41598-022-20853-w
https://arxiv.org/abs/2209.15024
https://doi.org/10.1109/MCSE.2007.55

QAOA and QA on Higher-Order Ising Models 257

32. Chamberland, C., Zhu, G., Yoder, T.J., Hertzberg, J.B., Cross, A.W.: Topological
and subsystem codes on low-degree graphs with flag qubits. Phys. Rev. X, 10,
011022 (2020). https://link.aps.org/doi/10.1103/PhysRevX.10.011022, https://
doi.org/10.1103/PhysRevX.10.011022

33. Zbinden, S., Bärtschi, A., Djidjev, H., Eidenbenz, S.: Embedding algorithms for
quantum annealers with chimera and pegasus connection topologies. In: Sadayap-
pan, P., Chamberlain, B.L., Juckeland, G., Ltaief, H. (eds.) ISC High Performance
2020. LNCS, vol. 12151, pp. 187–206. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-50743-5 10

34. Dattani, N., Szalay, S., Chancellor, N.: Pegasus: the second connectivity graph for
large-scale quantum annealing hardware (2019). https://arxiv.org/abs/1901.07636

35. Tseng, C.H., et al.: Quantum simulation of a three-body-interaction hamil-
tonian on an NMR quantum computer. Phys. Rev. A, 61, 012302 (1999).
https://link.aps.org/doi/10.1103/PhysRevA.61.012302, https://doi.org/10.1103/
PhysRevA.61.012302

36. Chancellor, N., Zohren, S., Warburton, P.A.: Circuit design for multi-body inter-
actions in superconducting quantum annealing systems with applications to a
scalable architecture. NPJ Quant. Inf. 3(1), 1–7 (2017). https://doi.org/10.1038/
s41534-017-0022-6

37. Campbell, C., Dahl, E.: QAOA of the highest order. In: 2022 IEEE 19th Inter-
national Conference on Software Architecture Companion (ICSA-C), pp. 141–146
(2022). https://doi.org/10.1109/ICSAC54293.2022.00035

38. Valiante, E., Hernandez, M., Barzegar, A., Katzgraber, H.G.: Computational
overhead of locality reduction in binary optimization problems. Comput. Phys.
Commun. 269, 108102, 2021. ISSN 0010-4655. https://doi.org/10.1016/j.cpc.2021.
108102. https://www.sciencedirect.com/science/article/pii/S0010465521002149

39. Ishikawa, H.: Transformation of general binary MRF minimization to the first-order
case. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1234–1249 (2011). https://
doi.org/10.1109/TPAMI.2010.91

40. Pelofske, E., Hahn, G., O’Malley, D., Djidjev, H.N., Alexandrov, B.S.: Quantum
annealing algorithms for boolean tensor networks. Sci. Rep. 12(1) (2022). https://
doi.org/10.1038/s41598-022-12611-9

41. Jiang, S., Britt, K.A., McCaskey, A.J., Humble, T.S., Kais, S.: Quantum annealing
for prime factorization. Sci. Rep. 8(1), 1–9 (2018). https://doi.org/10.1038/s41598-
018-36058-z

42. Golden, J., Bärtschi, A., Eidenbenz, S., O’Malley, D.: Evidence for super-
polynomial advantage of QAOA over unstructured search (2022). https://arxiv.
org/abs/2202.00648

43. Cerezo, M., et al.: Variational quantum algorithms. Nature Rev. Phys. 3(9), 625–
644 (2021). https://doi.org/10.1038/s42254-021-00348-9

44. Wang, S.: Noise-induced barren plateaus in variational quantum algorithms. Nature
Commun. 12(1), 1–11 (2021). https://doi.org/10.1038/s41467-021-27045-6

45. Zhu, Y.: Multi-round QAOA and advanced mixers on a trapped-ion quantum com-
puter. Quantum Sci. Technol. 8(1), 015007 (2022). https://doi.org/10.1088/2058-
9565/ac91ef

46. Niu, S., Todri-Sanial, A.: Effects of dynamical decoupling and pulse-level opti-
mizations on IBM quantum computers. IEEE Trans. Quan. Eng. 3, 1–10 (2022).
https://doi.org/10.1109/tqe.2022.3203153

47. Suter, D., Álvarez, G.A.: Colloquium: protecting quantum information against
environmental noise. Rev. Mod. Phys., 88, 041001 (2016). https://link.aps.org/
doi/10.1103/RevModPhys.88.041001

https://link.aps.org/doi/10.1103/PhysRevX.10.011022
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1007/978-3-030-50743-5_10
https://doi.org/10.1007/978-3-030-50743-5_10
https://arxiv.org/abs/1901.07636
https://link.aps.org/doi/10.1103/PhysRevA.61.012302
https://doi.org/10.1103/PhysRevA.61.012302
https://doi.org/10.1103/PhysRevA.61.012302
https://doi.org/10.1038/s41534-017-0022-6
https://doi.org/10.1038/s41534-017-0022-6
https://doi.org/10.1109/ICSAC54293.2022.00035
https://doi.org/10.1016/j.cpc.2021.108102
https://doi.org/10.1016/j.cpc.2021.108102
https://www.sciencedirect.com/science/article/pii/S0010465521002149
https://doi.org/10.1109/TPAMI.2010.91
https://doi.org/10.1109/TPAMI.2010.91
https://doi.org/10.1038/s41598-022-12611-9
https://doi.org/10.1038/s41598-022-12611-9
https://doi.org/10.1038/s41598-018-36058-z
https://doi.org/10.1038/s41598-018-36058-z
https://arxiv.org/abs/2202.00648
https://arxiv.org/abs/2202.00648
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1088/2058-9565/ac91ef
https://doi.org/10.1088/2058-9565/ac91ef
https://doi.org/10.1109/tqe.2022.3203153
https://link.aps.org/doi/10.1103/RevModPhys.88.041001
https://link.aps.org/doi/10.1103/RevModPhys.88.041001

258 E. Pelofske et al.

48. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum sys-
tems. Phys. Rev. Lett., 82, 2417–2421 (1999). https://link.aps.org/doi/10.1103/
PhysRevLett.82.2417,https://doi.org/10.1103/PhysRevLett.82.2417

49. Ahmed, M.A.A., Álvarez, G.A., Suter, D.: Robustness of dynamical decoupling
sequences. Phys. Rev. A 87(4) (2013). https://doi.org/10.1103/physreva.87.042309

50. LaRose, R.: A software package for error mitigation on noisy quantum computers.
Quantum 6, 774 (2022). https://doi.org/10.22331/q-2022-08-11-774

51. Kim, Y.: Scalable error mitigation for noisy quantum circuits produces competi-
tive expectation values. Nature Phys. (2023). https://doi.org/10.1038/s41567-022-
01914-3

52. Ezzell, N., Pokharel, B., Tewala, L., Quiroz, G., Lidar, D.A.: Dynamical decoupling
for superconducting qubits: a performance survey (2022). https://arxiv.org/abs/
2207.03670

53. Pokharel, B., Anand, N., Fortman, B., Lidar, D.A.: Demonstration of fidelity
improvement using dynamical decoupling with superconducting qubits. Phys.
Rev. Lett., 121, 220502 (2018). https://link.aps.org/doi/10.1103/PhysRevLett.
121.220502

54. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly
language (2017). https://arxiv.org/abs/1707.03429

55. Pelofske, E., Hahn, G., Djidjev, H.N.: Parallel quantum annealing. Sci. Rep. 12(1)
(2022). https://doi.org/10.1038/s41598-022-08394-8

56. Marshall, J., Venturelli, D., Hen, I., Rieffel, E.G.: Power of pausing: advanc-
ing understanding of thermalization in experimental quantum annealers. Phys.
Rev. Appl. 11, 044083 (2019).https://doi.org/10.1103/PhysRevApplied.11.044083,
https://link.aps.org/doi/10.1103/PhysRevApplied.11.044083

57. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983). https://doi.org/10.1126/science.220.4598.
671

https://link.aps.org/doi/10.1103/PhysRevLett.82.2417
https://link.aps.org/doi/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/physreva.87.042309
https://doi.org/10.22331/q-2022-08-11-774
https://doi.org/10.1038/s41567-022-01914-3
https://doi.org/10.1038/s41567-022-01914-3
https://arxiv.org/abs/2207.03670
https://arxiv.org/abs/2207.03670
https://link.aps.org/doi/10.1103/PhysRevLett.121.220502
https://link.aps.org/doi/10.1103/PhysRevLett.121.220502
https://arxiv.org/abs/1707.03429
https://doi.org/10.1038/s41598-022-08394-8
https://doi.org/10.1103/PhysRevApplied.11.044083
https://link.aps.org/doi/10.1103/PhysRevApplied.11.044083
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671

Quantum Circuit Simulation by SGEMM
Emulation on Tensor Cores

and Automatic Precision Selection

Hiryuki Ootomo1(B) , Hidetaka Manabe2 , Kenji Harada2 ,
and Rio Yokota1

1 Tokyo Institute of Technology, Tokyo, Japan
ootomo.h@rio.gsic.titech.ac.jp, rioyokota@gsic.titech.ac.jp

2 Kyoto University, Kyoto, Japan

manabe@acs.i.kyoto-u.ac.jp, harada.kenji.8e@kyoto-u.ac.jp

Abstract. Quantum circuit simulation provides the foundation for the
development of quantum algorithms and the verification of quantum
supremacy. Among the various methods for quantum circuit simulation,
tensor network contraction has been increasing in popularity due to its
ability to simulate a larger number of qubits. During tensor contraction,
the input tensors are reshaped to matrices and computed by a GEMM
operation, where these GEMM operations could reach up to 90% of the
total calculation time. GEMM throughput can be improved by utiliz-
ing mixed-precision hardware such as Tensor Cores, but straightforward
implementation results in insufficient fidelity for deep and large quantum
circuits. Prior work has demonstrated that compensated summation with
special care of the rounding mode can fully recover the FP32 precision
of SGEMM even when using TF32 or FP16 Tensor Cores. The exponent
range is a critical issue when applying such techniques to quantum cir-
cuit simulation. While TF32 supports almost the same exponent range
as FP32, FP16 supports a much smaller exponent range. In this work,
we use the exponent range statistics of input tensor elements to select
which Tensor Cores we use for the GEMM. We evaluate our method on
Random Circuit Sampling (RCS), including Sycamore’s quantum circuit,
and show that the throughput is 1.86 times higher at maximum while
maintaining accuracy.

Keywords: Quantum circuit simulation · Tensor Cores · Mixed
precision

1 Introduction

Quantum circuit simulators are vital for the development of quantum algorithms
and verification of quantum supremacy, and are considered as one of the key
applications for HPC systems in the Exa-scale era [13,17,30]. In a quantum
computer, all operations follow quantum mechanics: preparing qubits (a quan-
tum version of classical bits), applying unitary gates, and measuring qubits to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 259–276, 2023.
https://doi.org/10.1007/978-3-031-32041-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_14&domain=pdf
http://orcid.org/0000-0002-9522-3789
http://orcid.org/0009-0002-2302-0357
http://orcid.org/0000-0003-0231-7880
http://orcid.org/0000-0001-7573-7873
https://doi.org/10.1007/978-3-031-32041-5_14

260 H. Ootomo et al.

Fig. 1. An image of quantum circuit simulation using tensor network simulation and
the part of the computation that we improve.

get classical data. The goal of quantum circuit simulation is to reproduce the
classical result obtained by these quantum operations only with a classical com-
puter.

There exist various types of quantum simulators [8,11,28,29]. For general
circuits dominated by non-Clifford gates, the two types of simulators: 1) state
vector and 2) tensor network methods are widely used. We choose these simula-
tion methods according to the objectives. The state vector simulations require
2n complex values on memory, where n is the number of qubits. For instance, to
simulate Google’s Sycamore [1], which has 53 qubits, we would require 128 PB of
memory. Since the total memory capacity of the current largest supercomputers
is in the order of a few PB, state vector methods are limited by memory capacity.
One advantage of state vector methods is that the computational complexity for
a circuit of depth d is O(2n × d) and scales linearly with d. Furthermore, there
are some studies to reduce the required memory size, such as by splitting the
circuit [3]. On the other hand, the tensor contraction method [16] can simulate
several thousands of qubits with low-depth layers at a slightly higher computa-
tional cost. Therefore, tensor contraction is the method of choice for many recent
studies that aim to validate quantum supremacy in both quantum computing
and high performance computing [15,22,30]. In tensor contraction methods, the
quantum circuit is represented as a tensor network, where each node represents
a quantum gate, and the edge represents the quantum wire, as shown in Fig. 1.
The appearance probability of an output bitstring is calculated through the
contraction of the tensor network. Since the computational complexity of the
contraction heavily depends on its order of computation, many studies focus on
finding the near-optimal contraction order [7,9,12,22].

The simplest way to compute a tensor contraction is to form nested loops
for each tensor index. In practice, the TTGT (Transpose-Transpose-GEMM-

Quantum Circuit Simulation on Tensor Cores APS 261

Fig. 2. Left: The comparison of simulation accuracy of a 4 × 4 rectangular lattice Ran-
dom Quantum Circuit simulation for each GEMM precision. TF32TCEC, FP16TCEC,
and CUBLAS have single-precision mantissa accuracy, and TF32TC and FP16TC have
half-precision. The circuit consists of a Hadamard gate layer (1+), N -CZ gate layers,
and a Hadamard gate layer (+1). Right: The throughput comparison of each CGEMM
implementation.

Transpose) algorithm is widely used since it can leverage the existing high per-
formance GEMM implementations on various processors such as Intel MKL and
NVIDIA cuBLAS. In this algorithm, the input tensors are first reshaped into
matrices, where rows or columns separate the contracted and non-contracted
indices. Then, it computes the matrix multiplication of the input matrices and
transposes them to fit into the output tensor if necessary. Although this app-
roach requires additional memory to store the transposed tensors, it can leverage
the high performance GEMM implementation, which can effectively utilize the
hierarchical cache and memory of the target processor.

The chain of GEMM operations in tensor contraction can be accelerated
by improving both the algorithm and implementation. In terms of algorithmic
improvement, Huang et al. [10] applied Strassen’s algorithm to tensor contraction
and slightly reduced its computational complexity. With respect to implementa-
tion, leveraging the existing high performance GEMM implementations on Ten-
sor Cores would seem like a natural fit, but quantum circuit simulations require
at least single precision accuracy, as we will show later. Tensor Cores are mixed-
precision matrix multiply-add units on NVIDIA GPUs, and have 7.5 ∼ 15×
throughput compared to the standard arithmetic units on NVIDIA A100 GPUs.
Although the data type of input matrices for multiplication are low-precision
(FP16 or TF32), the computation inside Tensor Cores is performed in higher-
precision (FP32). However, when we compute an SGEMM on Tensor Cores,
we need to convert the input matrices to low precision, which causes accuracy
degradation. Markidis et al. propose a method to recover the accuracy through
compensated summation, but their method cannot fully recover the FP32 accu-
racy [14]. Our previous study identified the cause of this problem as the rounding
mode inside the Tensor Cores, and developed a method that circumvents this
issue with minimal performance degradation [19]. As a result, our method out-
performs the theoretical peak performance of FP32 SIMT Cores on NVIDIA
A100 GPUs while the FP32 accuracy is fully recovered. This method can be

262 H. Ootomo et al.

applied to TF32 Tensor Core error correction (TF32TCEC) and FP16 Tensor
Core error correction (FP16TCEC). The TF32 version supports almost the same
exponent range as FP32, while the FP16 version supports only a limited expo-
nent range but has higher throughput. Therefore, there is a trade-off between
the supported exponent range and throughput. In the case of quantum circuit
simulation using tensor network contraction, it is difficult to compute the simu-
lation in high precision on Tensor Cores without the error correction when the
number of computations is large, as shown in Fig. 2. Therefore, error correction
is necessary when using Tensor Cores for the simulation. However, it is difficult
to determine which tensor contraction requires TF32TCEC or if FP16TCEC is
sufficient. To the extent of the authors’ knowledge, there is no framework for
automatically selecting between these two operations. Although Liu et al. use
a dynamic scaling method for FP16 computation in the simulation, they select
the parts to be computed with FP16 heuristically [13] by performing an analysis
of the tensor network contraction a priori. Furthermore, their method causes
overflow in some cases, which causes the entire computation to fail.

In the present work, we drastically improve the throughput of quantum cir-
cuit simulation while retaining sufficient accuracy by using the SGEMM emu-
lation on Tensor Cores and automatic precision selection. To select between
TF32TCEC and FP16TCEC for each tensor contraction, we use the exponent
statistics of elements in the input matrices measured before the GEMM opera-
tion.

The summary of our contributions is as follows:

1. We develop a library for SGEMM emulation on Tensor Cores, cuMpSGEMM,
that can be used without any change to the source code of the target applica-
tions. This library intercepts SGEMM function calls of the cuBLAS dynamic
library and executes the SGEMM emulation on Tensor Cores instead, and sur-
passes the performance of SGEMM while fully retaining the accuracy. This
library is not limited to quantum circuit simulation and can be used for any
other application that calls cuBLAS SGEMM, CGEMM, and their batched
variants and is open-source and available on GitHub1.

2. We develop a method to select the GEMM precision, TF32TCEC,
FP16TCEC, or FP16TCEC with scaling, for improving the throughput by
taking the exponent statistics of input matrix elements before the GEMM
operation. We have tested our method on a random tensor network contrac-
tion and confirmed that it successfully avoids the underflow error with a slight
overhead.

3. We evaluate the accuracy and throughput of Random Circuit Sampling
(RCS) simulation, including Sycamore’s quantum circuit. In RCS, our method
improves the throughput by 1.86 times for a quantum circuit of 9 × 9,
depth = 33, and 1.44 times for the Sycamore circuit while retaining the accu-
racy of the baseline implementation.

1 https://github.com/enp1s0/cuMpSGEMM.

https://github.com/enp1s0/cuMpSGEMM

Quantum Circuit Simulation on Tensor Cores APS 263

2 Background

2.1 NVIDIA Tensor Core and SGEMM Emulation

NVIDIA Tensor Core computes a matrix multiplication and addition,

DF32 ← Alow · Blow + CF32, (1)

where the subscript denotes the data type of the matrix: the “low” is low-
precision, FP16 or TF32, and “F32” is FP32. Although Alow and Blow are
low-precision, the multiplications and additions are computed in FP32. How-
ever, when it comes to computing single-precision matrix multiplication on Ten-
sor Cores, we must convert the input matrices from single-precision to low-
precision, which causes a loss of accuracy in the final computation result. To
recover the loss of accuracy, Markidis et al. propose an error correction method
based on compensated summation [14], but their method does not recover the
full FP32 accuracy. Our previous study improves upon this method by avoiding
the rounding inside Tensor Cores and can recover the full FP32 accuracy with
minimum overhead [19]. In this method, a single-precision matrix-multiplication
CF32 ← AF32 · BF32 is computed approximately as follows.

Alow ← toLow (AF32)

ΔAlow ← toLow
(
(AF32 − toF32 (Alow)) × 211

)

Blow ← toLow (BF32)

ΔBlow ← toLow
(
(BF32 − toF32 (Blow)) × 211

)

CF32 ≈ Alow · Blow + (ΔAlow · Blow + Alow · ΔBlow) /211, (2)

where “toLow” is the conversion from FP32 to low-precision and “toF32” is
from low-precision to FP32. In this scheme, each matrix element in AF32 and
BF32 is split into two low-precision elements in Alow,Blow and ΔAlow,ΔBlow,
respectively. Then the single-precision matrix multiplication is computed approx-
imately in Eq. (2) using Tensor Cores, where the multiplication and addition are
performed on specialized arithmetic units in a precision that is equivalent to
FP32. Furthermore, this method uses FP32 SIMT Cores for addition with RN
(Round to Nearest, ties to even) mode for Alow · Blow to avoid the RZ (Round
toward Zero) rounding inside Tensor Cores. We show the matrix-matrix multipli-
cation implementations and their supporting input accuracy in Table 1. When we
use TF32 for the input type of Tensor Cores, we can emulate the single-precision
matrix multiplication in both the mantissa and exponent (TF32TCEC). On the
other hand, when we use FP16 for the low-precision, the supported exponent
range of the input matrices is limited (FP16TCEC). However, the theoretical
peak performance of FP16TCEC is higher than TF32TCEC, as shown in the
table. Therefore, there is a trade-off between the supported exponent range and
the throughput. We can achieve a higher throughput using FP16TCEC with-
out loss of accuracy if the elements of the input matrices are in the supported

264 H. Ootomo et al.

Table 1. The comparison of GEMM implementations using Tensor Cores on NVIDIA
A100 GPU. Each throughput represents theoretical peak performance and is calculated
by an assumption that the Tensor Core instruction is issued every clock.

Input type of Tensor Core

TF32 FP16

Error correction Yes TF32TCEC
Exponent:FP32, Mantissa:FP32
[52 TFlop/s]

FP16TCEC
Exponent:FP16, Mantissa:FP32
[104 TFlop/s]

No TF32TC
Exponent:FP32, Mantissa:FP16
[156 TFlop/s]

FP16TC
Exponent:FP16, Mantissa:FP16
[312 TFlop/s]

representation range. Furthermore, we can use these SGEMM emulation meth-
ods for a single-precision tensor contraction. In the TTGT algorithm, the input
tensors are reshaped to matrices, and the contraction is computed as matrix
multiplication. Thus, improving the throughput of GEMM leads to improving
the throughput of tensor contraction.

2.2 Quantum Circuit Simulation and Tensor Network Contraction

A quantum circuit consists of quantum gates and wires, as shown in Fig. 1
(a), similar to a classical logic circuit. A quantum state of n qubits is repre-
sented as a normalized complex vector of length 2n. For instance, a typical 1-
qubit state called computational basis states is represented as |0〉 := (1, 0)T and
|1〉 := (0, 1)T. The quantum gate for k qubits is represented as a 2k × 2k unitary
matrix. For instance, the Hadamard gate, which is one of the single-qubit gates,

is represented as H =
[
1 1
1 −1

]
/
√

2, and T gate is T =
[
1 0
0 exp(iπ/4)

]
, where i is

the imaginary unit. The change of the quantum states by applying a quantum
gate is represented as a multiplication of the quantum gate matrix and the state
vector of the quantum states. For instance, applying the Hadamard gate to the
quantum state |0〉, we obtain the new state as follows:

|ψ〉 = H |0〉 =
1√
2

(
1
1

)
.

The quantum state is a superposition state, from which we can not extract
information directly. Instead, we conduct measurements to get the information
of the quantum state indirectly. In the case of an n-qubits system, a quantum
state |φ〉 is a superposition of 2n states, |00 · · · 00〉 , |00 · · · 01〉 , · · · , |11 · · · 11〉 in
the computational basis, and represented as follows:

|φ〉 =
11···11∑

j=00···00
αj |j〉 ,

Quantum Circuit Simulation on Tensor Cores APS 265

where αj is called the amplitude of the state |j〉 and
∑11···11

j=00···00 |αj |2 = 1. When
measuring the state |φ〉, we obtain an n-length bitstring j with a probability
|αj |2. We conduct the measurements many times and obtain the distribution
of the output bitstrings to extract the information of the quantum state. In
contrast, the quantum circuit simulation directly calculates the amplitude of
given bitstrings. However, calculating the amplitude of a large qubit system and
circuit generally requires large computational costs and memory.

Fig. 3. An example of the tensor network diagram.

One of the methods to compute the amplitude is tensor network contraction.
A simple example of tensor network formalism is shown in Fig. 3. A rank-r tensor,
which is an element of Cd1×···×dr with indices of dimension di, is represented as
a node with r edges. The connection of the edges in a network corresponds to
Einstein’s summation over the corresponding index. A quantum circuit can be
represented as a tensor network. The initial state |00 · · · 00〉 and the measuring
state |x〉 are a set of rank-1 tensors, n-qubits gates are rank-2n tensors, and
the wires represent contraction. The amplitude is calculated by the contraction
of the whole tensor network. Therefore, the primary workload of the quantum
circuit simulation by the tensor network contraction is GEMM.

The time complexity of a tensor network contraction strongly depends on its
contraction order or contraction path. In the example in Fig. 3, calculating in
order

d∑

jkm=1

AijkBjlmCkm =
∑

km

Ckm

⎛

⎝
∑

j

AijkBjlm

⎞

⎠

requires computational complexity O(d5). On the other hand,

d∑

jkm=1

AijkBjlmCkm =
∑

j

(
∑

km

AijkBjlmCkm

)

requires only O(d4). In general, finding the optimal contraction path is NP-
complete [4] and even contracting the entire tensor network is #P-complete
[27]. Therefore, there is no evidence that quantum circuit simulators by the ten-
sor network contraction method perform well. However, in practice, by using
advanced techniques such as hyperparameter optimization and hypergraph par-
titioning to find a near-optimal contraction order and by massively distribut-
ing the computation, the tensor network methods outperform the state vector

266 H. Ootomo et al.

Fig. 4. The evaluation of numerical error of 4× 4 Random Quantum Circuit simulation.

method, especially for systems with large qubits and shallow circuits [7,9,13,21].
For instance, [13] performed the Sycamore simulation in only 304 s by carefully
selecting the contraction path and parallelizing on tens of millions of CPU cores.

The computation of tensor network contraction for quantum circuit simula-
tion is performed in single precision. For the computation of an n-qubit circuit
simulation, it is required to be able to represent 2−(n−1)/2 by a floating point
value at least to represent the resulting amplitude. Therefore, FP16, which only
has 5 bits of the exponent, is insufficient. From the perspective of mantissa
accuracy, we also need single precision. We show the numerical accuracy of a
quantum circuit simulation in Fig. 4, where the qubits are arranged in a 4 × 4
rectangular lattice, and the quantum circuit is RQC explained later in Sect. 5.3.
Since the number of qubits 4 × 4 is small enough for using FP16 in terms of
the exponent range, we can ignore the underflow error and evaluate only the
effect of mantissa accuracy. As we can see in the graph, the numerical errors of
TF32TC and FP16TC are larger than the others. This results in worse simula-
tion accuracy (fidelity) in Fig. 2, even for relatively shallow circuits. Therefore,
using low-mantissa-length arithmetics without error correction is unsuitable for
quantum circuit simulation.

3 SGEMM Emulation Library on Tensor Cores

We have implemented an SGEMM emulation library, cuMpSGEMM, that can
be used in existing applications that call the NVIDIA cuBLAS SGEMM without
modifying the source code of the applications. The implementation is made from
scratch using NVIDIA WMMA API (Tensor Core device API), and WMMA
API extension library [20]. This library supports single-precision real and com-
plex GEMM (SGEMM/CGEMM) and their batched variants. We extend the
SGEMM emulation to CGEMM by decomposing the real part and imaginary
part of the input matrices and computing it as 4 SGEMMs as follows:

Ccomplex
F32 ←Acomplex

F32 · Bcomplex
F32

=
(
Areal

F32 · Breal
F32 − Aimag

F32 · Bimag
F32

)
+

(
Areal

F32 · Bimag
F32 + Areal

F32 · Bimag
F32

)
i.

Quantum Circuit Simulation on Tensor Cores APS 267

Fig. 5. The accuracy and throughput of the CGEMM implementation on Tensor Cores
using the error correction method.

This library intercepts the function calls to cuBLAS SGEMM functions and exe-
cutes the SGEMM emulation functions instead of the original functions. There-
fore, we can use the SGEMM emulation without changing the source code of the
target application if the application uses the cuBLAS dynamic library. All we
need to do is to build the library, set an environmental variable LD PRELOAD, and
execute the target application as usual. We have confirmed that this library can
intercept cuBLAS calls in PyTorch [23], CuPy [18], and our custom applications
just by following these steps. The different implementations shown in Table 1
can be selected by defining an environment variable.

We perform a unit test for our CGEMM implementation as shown in Fig. 5.
We denote the shape of GEMM as (m,n, k), which is the multiplication of m×k
and k × n matrices. To measure the accuracy, we calculate a relative error of
a single-precision complex matrix-matrix multiplication CF32 ← AF32 · BF32 as
follows:

Relative Error = ||CF32 − CF64||F /||CF64||F , (3)

where CF64 is the result in FP64, and each element of AF32 and BF32 is chosen
from a uniform distribution (−1, 1). Since the values are in the order of 10−7 −
−10−6 for each matrix size, FP32 is sufficient, but FP16 is not. To evaluate
the throughput, we measure the computing time and calculate the throughput.
The maximum throughput of FP16TCEC and TF32TCEC are 54.2 [TFlop/s]
and 31.0 [TFlop/s], respectively. This performance is almost identical to the
implementation using NVIDIA CUTLASS [19].

4 Automatic Precision Selection

Although FP16TCEC supports a limited exponent range compared to
TF32TCEC, it is faster than TF32TCEC. Therefore, we can improve SGEMM
throughput by selecting FP16TCEC when its accuracy loss is permissible. How-
ever, it is generally impossible to predetermine whether FP16TCEC is tolerable
before the actual computation. To check the tolerance, we take the statistics of

268 H. Ootomo et al.

Fig. 6. The overview of the automatic kernel selection by the exponent statistics of
the input matrices.

the exponent distribution of the input matrices before the GEMM operation, as
shown in Fig. 6, and select the GEMM computing mode dynamically. In addition
to FP16TCEC and TF32TCEC, we can select FP16TCEC w/ scaling mode.
This mode can be used when the required exponent range is sufficient for FP16,
even when the values themselves are small enough to underflow in FP16. This
requires an additional overhead for scaling all elements in the input and output
matrices.

The challenge in implementing the automatic precision selection method is
to get the statistics correct while keeping its computational overhead negligibly
small relative to the GEMM computing time. To achieve this, we adopt two
strategies as follows:

– We check all elements in the matrix to take the statistics. Although we can
reduce the overhead by sampling only part of the elements, this can lead to
overflow in some cases. We check all elements to prevent overflow and compute
the tensor contraction correctly.

– We do not transfer the statistics data from GPU to CPU to minimize the
overhead. Although we need the exponent statistics to control which GEMM
kernel we use, it results in an additional overhead for synchronizing CUDA
kernels and sending the statistics data on the device memory to host mem-
ory. To reduce the overhead, we preemptively launch all CUDA kernels and
kill some if they are not necessary instead of controlling the kernels to be
launched.

We explain the detail of the two components above in the following sections.

4.1 Exponent Statistics and Computing Mode Selection Rule

To determine that a given tensor can tolerate FP16TCEC or FP16TCEC w/
scaling, we take the exponent statistics of each element in two stages.

Stage 1: Obtain the number of elements that are larger than the minimum value
of FP16 (N1) and the max value of the exponent (emax). When N1 is
larger than the underflow admissibility threshold, we mark the matrix
that can tolerate FP16TCEC and skip the next stage.

Quantum Circuit Simulation on Tensor Cores APS 269

Stage 2: Obtain the number of elements within the shifted FP16 exponent
range (N2), where the range is shifted so that the maximum exponent
becomes 14, which is the maximum exponent value of FP16. When
N2 is larger than the threshold, we mark the matrix that can tolerate
FP16TCEC w/ scaling; otherwise, we use TF32TCEC.

The threshold is shared in the two stages above and can control the accuracy of
the tensor contraction. We check the tolerance for both input matrices. When
either input matrix can not tolerate FP16TCEC and FP16TCEC w/ scaling, we
use TF32TCEC for the GEMM operation. When either of the input matrices
can not tolerate FP16TCEC, we use FP16TCEC w/ scaling. Otherwise, we use
FP16TCEC. Note that we only check the underflow since the absolute values of
all real and imaginary values of tensor elements in the quantum circuit simulation
are smaller or equal to 1.

4.2 Dynamic Kernel Selection

We select the GEMM kernel function depending on the result of the exponent
statistics of two input matrices. The simplest way to realize this is to offload the
statistics to the host and launch the selected GEMM kernel function. However,
this requires GPU-to-host data transfer and may result in throughput degrada-
tion. Although NVIDIA provides the Dynamic Parallelism API for such situa-
tions that can launch a kernel function from another, we can not use this API
since there is a limitation related to the dynamic shared memory size config-
uration we use. Instead, we use another method: we launch all CUDA kernel
functions possibly used and kill some if they are not. For instance, we launch
both TF32TCEC and FP16TCEC kernel functions, but one of them exits at the
beginning of the execution by checking the computing mode flag on the device
memory. The entire flow of execution is shown in Fig. 7. We use two buffers
on the device memory to control the kernel execution, exp stats buffer and
mode flag buffer. The kernel function for taking the exponent statistics stores
N1, N2 and emax on exp stats buffer and the tolerance on mode flag buffer.
Based on the mode flags of input matrices, the GEMM mode selection kernel
(select kernel) selects the computing mode by the selection rule in 4.1. When
the mode is FP16TCEC w/ scaling, the scaling kernel (scale) scales the matrix
elements so that the maximum exponent value becomes 14, and after computing
the GEMM operation in FP16TCEC, we scale the resulting matrix to balance
out. Note that we do not restore the scaled input matrices since they are not
reused in the quantum circuit simulation2.

2 The library itself has an optional functionality to restore the scaled input matrices
for general purpose.

270 H. Ootomo et al.

Fig. 7. The dynamic kernel selection mechanism to compute a tensor contraction
(TTGT) using the mode flag buffer on the device memory.

4.3 The Overhead of the Exponent Statistics

The operations for taking the exponent statistics and scaling elements are mem-
ory bandwidth intensive. We have measured their throughput efficiency shown
on the left side of Fig. 8. When the matrix size is large, they achieve more than
90 % of the theoretical peak throughput. In the case of n = 211, the throughput
of the Scaling A/B kernel function outperforms the theoretical bandwidth since
the data is on the L2 cache, since it is loaded in the Exp stats 2 kernel func-
tion executed just prior to it. We have also investigated the time breakdown of
the automatic precision selection shown on the right of Fig. 7. When the matrix
size is small, the overheads of the automatic precision selection and the scaling
operation are not negligible. Therefore, we use the following rule for automatic
precision selection when the matrix size is large:

– When m,n, k ≥ 2048: Use the automatic precision selection.
– Otherwise and when m,n, k ≥ 512: Use TF32TCEC.
– Otherwise: Use cuBLAS.

Quantum Circuit Simulation on Tensor Cores APS 271

Fig. 8. Left: The bandwidth efficiency of the exponent statistics and scaling kernel
function. Right: The breakdown of the automatic precision selection in the case
where FP16TCEC is selected.

5 Experiment

5.1 Preparation

Quantum Circuit Simulation on GPU. We use the Python library Ten-
sorNetwork [25], and quimb [6] for the quantum circuit simulation using the
tensor network contraction, cotengra [7], kahypar [26] and opt einsum [5] for
path optimization, and CuPy [18] for the computational backend on GPUs.
Although there are several quantum circuit simulators such as NVIDIA cuTen-
sorNet3, it is not possible to perform a fair comparison against them since their
method to avoid explicit transposing on device memory is not open-source. While
our method focuses on improving the CGEMM throughput after transposing
input tensors, cuTensor, which is used in cuTensorNet for the tensor contrac-
tion, focuses on reducing data movement by avoiding explicit transposing on
device memory, etc. Therefore, technically, we can apply our method to cuTen-
sorNet if it is open-source. We have confirmed experimentally that cuTensorNet
is faster than our methods depending on the problem sizes and contraction paths
since the GEMM and transposition time ratio vary.

Fast Implementation for Irregular Shaped GEMM. In quantum circuit
simulation, the irregular shape of GEMMs, for instance, (2, 2N , 2) and (2N , 2, 2)
for N ≥ 10, are computed many times for the contraction of a single-qubit
gate tensor. However, the cuBLAS CGEMM function for these shapes is not
optimized. The memory bandwidth bounds the throughput of the GEMMs for
these shapes. We have implemented specialized CGEMM kernel functions for
these shapes and achieved up to 90% of the theoretical device memory bandwidth
on A100 GPU, while that of cuBLAS is 10%. We enable this kernel function in
all experiments in all computing modes, including the baseline CUBLAS mode.

3 https://docs.nvidia.com/cuda/cuquantum/cutensornet/index.html.

https://docs.nvidia.com/cuda/cuquantum/cutensornet/index.html

272 H. Ootomo et al.

Fig. 9. The computing time (top) and accuracy (bottom) of a random tensor network
contraction for different types of element initializations.

5.2 Exploratory Experiment

We check the behavior of the automatic precision selection on a tensor network
contraction which is randomly constructed. The tensor network consists of 10
nodes with 2–4◦. Each dimension of the tensors is 128, and all elements are
initialized as follows.

Type-1: With standard distribution N (0, 10−4). All computing modes can com-
pute with high accuracy.

Type-2: After Type-1 initialization, all elements are scaled 10−6. FP16TCEC
can not compute with high accuracy without scaling.

Type-3: After Type-2 initialization, set 10 ∼ 20 elements 1. FP16TCEC can not
compute with high accuracy, even with scaling.

The accuracy is the error relative to FP64 computation. We denote our method
as AUTO-t, where t is the underflow tolerance threshold. For instance, when
t = 0, the mode that can avoid all underflows is selected. We show the computing
time and accuracy in Fig. 9. Throughout all types, the AUTO modes select the
proper computing mode to avoid underflow automatically, and their computing
accuracy is close to the same level as the baseline (CUBLAS). In Type-2, the
computing time of AUTO-0.5 is shorter than AUTO-0.1 since it selects different
computing modes while maintaining accuracy. That implies that the underflow
tolerance is being used in some cases. However, it is not feasible to find an
appropriate tolerance value t since it is also related to the positional distribution
of the input matrix elements, such as sparsity. In Type-2 and 3, the accuracy
of FP16TCEC underflows to zero. Although the median error of TF32TCEC,
AUTO, and FP16TCEC w/ scaling is larger than the baseline by about 2 bits
of mantissa, we consider that the cause is computation order, and the accuracy
is considered sufficiently single-precision. However, each result of FP16TCEC
w/ scaling sometimes underflows to zero or has low accuracy. In summary, we
have confirmed that the AUTO mode automatically selects high throughput
computing mode while achieving the same level of accuracy as the baseline.

Quantum Circuit Simulation on Tensor Cores APS 273

5.3 Random Quantum Circuit Simulation

We evaluate the automatic precision selection on the Random Circuit Sampling
(RCS) problem [2], which is the task to demonstrate the so-called quantum
advantage [24]. In the RCS problem, we sample the output bitstrings of a random
quantum circuit (RQC) U . The bitstring x follows the distribution:

pU (x) := | 〈x|U |0〉 |2, (4)

where pU (x) is the appearance probability of x. On a quantum device, the sam-
pling can be accomplished by preparing an initial zero state, applying a unitary
circuit U , and measuring each qubit on a computational basis. On the other
hand, on a classical computer, we first decide a (random) bitstring and compute
its appearance probability through Eq. 4. From the computed probability, we
decide whether we accept the bitstring as the output of the quantum circuit or
not. Since the computation of one amplitude is independent of other amplitude
computations, the throughput scales linearly with computing resources. Gener-
ally, the sampling cost on a classical computer can be much higher than on a
quantum device since we reject much more bitstrings than we accept. However,
in the case of RCS, the frugal reject sampling [15] technique can be used to
sample them on a classical computer at about the same computational cost as
on a quantum device by reducing the number of rejected bitstrings. Therefore,
many studies focus on improving the throughput of computing one amplitude.

We evaluate our method on the rectangular lattice RQC defined in [2] and
Sycamore circuit [1]. As mentioned above, all quantum circuits and measure-
ments are represented as tensor networks, and one amplitude is obtained by
contracting them. Since the computational cost of the Sycamore circuit is high,
we typically divide it into slices and merge the result of their contraction. We
measure the computing time for one amplitude for the rectangular lattice RQC
and one slice for the Sycamore circuit. The computation is conducted 10 times
for different output bitstrings, and we show their median.

Rectangular Lattice RQC. The rectangular lattice RQC has m × n qubits
arranged in a lattice, and we apply a specific set of quantum gates. Furthermore,
the quantum gates are also arranged in a rectangular lattice, and the number of
the rectangular lattice layers is called “depth”. We denote the depth d = 1+X+1
since we apply the Hadamard gate for all qubits in the first (1+) and last (+1)
stages of the circuit. We have evaluated the automatic precision selection on four
kinds of rectangular lattice RQCs, as shown in Fig. 10. Throughout all circuits,
the AUTO modes avoid the underflow automatically and achieve the same level
of accuracy as the baseline (CUBLAS) while achieving higher throughput than
TF32TCEC. The AUTO-0.5 mode has achieved up to 1.86 times higher through-
put than the baseline in the 9×9 quantum circuit, which has a small computing
time ratio for the tensor transposition. The TF32TCEC mode has not been
selected in the AUTO modes since it has sufficed to use FP16TCEC w/ scaling
in all cases. Therefore, the throughput of the AUTO modes is almost the same

274 H. Ootomo et al.

Fig. 10. The computing time (top) and accuracy (center) of obtaining one amplitude
for each RQC and the GEMM shape time breakdown in the CUBLAS mode (bottom)
of the rectangular lattice RQCs.

Fig. 11. The computing time (left), accuracy (center), and GEMM shape time break-
down in the CUBLAS mode (right) of Google Sycamore sampling simulation.

as FP16TCEC w/ scaling mode. Although the throughput of FP16TCEC is also
higher than TF32TCEC, accuracy loss occurs due to the underflow when the
qubit size is large. We have also investigated the computing time breakdown for
GEMM shapes in each quantum circuit. In all circuits, a large shape of GEMM
dominates the whole GEMM computing time. In this case, we can improve the
efficiency of our method since the SGEMM emulation methods achieve higher
throughput, and the exponent statistics have a relatively lower overhead.

Sycamore. In the Sycamore circuits, 53 qubits are arranged in 2-D, and we
apply (1 + 20 + 1)-depth quantum gates layers. The evaluation result of the
Sycamore circuit is shown in Fig. 11. The AUTO modes have achieved 1.45
times higher throughput than the baseline (CUBLAS) while achieving the same
level of accuracy. In this quantum circuit, the large shape GEMMs dominate the
whole GEMM computing time, and we can efficiently improve the throughput
of the simulation. Although the underflow ratio of the elements in the large
GEMMs has differed from the output strings, FP16TCEC w/ scaling is selected

Quantum Circuit Simulation on Tensor Cores APS 275

in all computations. As we mentioned above, since the throughput of the RCS
is proportional to the throughput of one amplitude computation, we believe our
method improves the whole Sycamore circuit simulation to the same extent.

6 Conclusion

We improve the throughput of the quantum circuit simulation using the SGEMM
emulation method on Tensor Cores and automatic precision selection. Our
method automatically selects the GEMM computing modes in the tensor con-
tractions to improve the throughput while avoiding accuracy loss due to under-
flow. We have achieved up to 1.86 times throughput in 9 × 9 RQC and 1.45 times
in Google Sycamore circuits compared to the baseline simulation using cuBLAS
CGEMM while keeping the accuracy. Furthermore, we have also achieved up to
1.27 times in 9 × 9 RQC, 1.11 times faster throughput in the Sycamore circuit
than SGEMM emulation using TF32 Tensor Core, which clearly can improve the
throughput. Through this study, we show an example that Tensor Core, which
is developed for machine learning, can be used for another HPC field of research.

Acknowledgements. This work was partially supported by JSPS KAKENHI
22H03598, 21J14694, and 20K03766. This work was partially supported by “Joint
Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures”
in Japan (Project ID: jh220022-NAHI).

References

1. Arute, F., Arya, K., et al.: Quantum supremacy using a programmable supercon-
ducting processor. Nature 574(7779), 505–510 (2019)

2. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat.
Phys. 14(6), 595–600 (2018)

3. Chen, Z.Y., Zhou, Q., Xue, C., Yang, X., Guo, G.C., Guo, G.P.: 64-qubit quantum
circuit simulation. Sci. Bull. 63(15), 964–971 (2018)

4. Chi-Chung, L., Sadayappan, P., Wenger, R.: On optimizing a class of multi-
dimensional loops with reduction for parallel execution. Parallel Process. Lett.
07(02), 157–168 (1997)

5. Daniel, G., Gray, J.: Opt einsum - a Python package for optimizing contraction
order for einsum-like expressions. J. Open Source Softw. 3(26), 753 (2018)

6. Gray, J.: quimb: a python package for quantum information and many-body cal-
culations. J. Open Source Softw. 3(29), 819 (2018)

7. Gray, J., Kourtis, S.: Hyper-optimized tensor network contraction. Quantum 5,
410 (2021)

8. Guerreschi, G.G., Hogaboam, J., Baruffa, F., Sawaya, N.P.D.: Intel quantum sim-
ulator: a cloud-ready high-performance simulator of quantum circuits. Quantum
Sci. Technol. 5(3), 034007 (2020)

9. Huang, C., Zhang, F., Newman, M., et al.: Efficient parallelization of tensor net-
work contraction for simulating quantum computation. Nat. Comput. Sci. 1(9),
578–587 (2021)

276 H. Ootomo et al.

10. Huang, J., Yu, C.D., van de Geijn, R.A.: Implementing strassen’s algorithm with
CUTLASS on NVIDIA Volta GPUs. arXiv:1808.07984 (2018)

11. Jones, T., Brown, A., Bush, I., Benjamin, S.C.: QuEST and high performance
simulation of quantum computers. Sci. Rep. 9(1), 10736 (2019)

12. Liang, L., et al.: Fast search of the optimal contraction sequence in tensor networks.
IEEE J. Sel. Top. Sig. Process. 15(3), 574–586 (2021)

13. Liu, Y.A., et al.: Closing the “quantum supremacy” gap: achieving real-time sim-
ulation of a random quantum circuit using a new Sunway supercomputer. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC’21, pp. 1–12 (2021)

14. Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.: NVIDIA tensor
core programmability, performance & precision. In: 2018 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW), pp. 522–531
(2018)

15. Markov, I.L., Fatima, A., Isakov, S.V., Boixo, S.: Quantum supremacy is both
closer and farther than it appears. arXiv:1807.10749 (2018)

16. Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor net-
works. SIAM J. Comput. 38(3), 963–981 (2008)

17. Nguyen, T., Lyakh, D., Dumitrescu, E., Clark, D., Larkin, J., McCaskey, A.: Tensor
network quantum virtual machine for simulating quantum circuits at exascale.
arXiv:2104.10523 (2021)

18. Okuta, R., Unno, Y., Nishino, D., Hido, S., Loomis, C.: CuPy: a numpy-compatible
library for NVIDIA GPU calculations (2017)

19. Ootomo, H., Yokota, R.: Recovering single precision accuracy from tensor cores
while surpassing the FP32 theoretical peak performance. Int. J. High Perform.
Comput. Appl. 36(4), 475–491 (2022)

20. Ootomo, H., Yokota, R.: Reducing shared memory footprint to leverage high
throughput on tensor cores and its flexible API extension library. In: Proceedings
of the International Conference on High Performance Computing in Asia-Pacific
Region, HPC Asia’23, pp. 1–8 (2023)

21. Pan, F., Chen, K., Zhang, P.: Solving the sampling problem of the sycamore quan-
tum circuits. Phys. Rev. Lett. 129(9), 090502 (2022)

22. Pan, F., Zhang, P.: Simulation of quantum circuits using the big-batch tensor
network method. Phys. Rev. Lett. 128(3), 030501 (2022)

23. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

24. Preskill, J.: Quantum computing and the entanglement frontier (2012)
25. Roberts, C., et al.: TensorNetwork: a library for physics and machine learning

(2019)
26. Schlag, S., Heuer, T., Gottesbüren, L., Akhremtsev, Y., Schulz, C., Sanders, P.:

High-quality hypergraph partitioning. ACM J. Exp. Algorithmics 27, 1–39 (2022)
27. Schuch, N., Wolf, M.M., Verstraete, F., Cirac, J.I.: The computational complexity

of PEPS. Phys. Rev. Lett. 98(14), 140506 (2007)
28. Suzuki, Y., et al.: Qulacs: a fast and versatile quantum circuit simulator for research

purpose. Quantum 5, 559 (2021)
29. Treinish, M., Gambetta, J., et al.: Qiskit/qiskit: Qiskit 0.38.0 (2022)
30. Villalonga, B., et al.: Establishing the quantum supremacy frontier with a 281

Pflop/s simulation. Quantum Sci. Technol. 5(3), 034003 (2020)

http://arxiv.org/abs/1808.07984
http://arxiv.org/abs/1807.10749
http://arxiv.org/abs/2104.10523

Performance Modeling, Evaluation,
and Analysis

A Study on the Performance Implications
of AArch64 Atomics

Ricardo Jesus(B) and Michèle Weiland

EPCC, The University of Edinburgh, Edinburgh, UK
rjj@ed.ac.uk

Abstract. Atomic operations are indivisible operations guaranteed to
execute as a whole. One of the most important and widely used atomic
operations is “compare-and-swap” (CAS), which allows threads to per-
form concurrent read-modify-write operations on the same memory loca-
tion, free of data races. On recent Arm architectures, CAS operations
can be implemented either directly via CAS instructions, or via load-
linked/store-conditional (LL-SC) instruction pairs.

In this paper we explore the performance of the CAS and LL-SC
approaches to implement CAS operations on recent high-performance
Arm-based CPUs, namely the A64FX, ThunderX2, and Graviton3. We
observe that CAS and LL-SC instructions can lead to fundamentally dif-
ferent performance profiles. On the A64FX, for example, the newer CAS
instructions—often preferred by compilers over the older LL-SC pairs—
can lead to a quadratic increase in average time per successful CAS
operation as the number of threads increases, whereas the older LL-SC
approach shows the expected linear scaling. For high thread counts, this
difference translates into a speedup of more than 20x when using LL-SC
instructions. We characterise the conditions under which the LL-SC or
CAS approaches are superior on each CPU, and the speedup that can
be realised by preferring one strategy over the other.

Keywords: A64FX · Graviton3 · ThunderX2 · atomics ·
benchmarking · compare-and-swap · performance analysis

1 Introduction

In the context of concurrent programming, atomic operations are indivisible
operations guaranteed to run to completion without interference from other
threads. Atomic operations are essential for the synchronisation and cooperation
of threads in a multi-threaded program [1]. One of the most common and general
atomic operations is the “compare-and-swap” (CAS), which allows a thread to
atomically compare a value stored in memory with another value, and, if the
values match, to overwrite the memory with a new value. In practice, CAS oper-
ations enable threads to perform generic read-modify-writes on a same memory
location concurrently and free of data races. The applicability of CAS operations
ranges from low-level synchronisation primitives such as locks and semaphores to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 279–296, 2023.
https://doi.org/10.1007/978-3-031-32041-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_15&domain=pdf
https://doi.org/10.1007/978-3-031-32041-5_15

280 R. Jesus and M. Weiland

higher-level codes such as concurrent data structures [14,17,21] and in-memory
databases [19].

Although the performance of CAS and other atomic operations has been
considered in the past for x86 targets [11,12,23,28,30], AArch64 CPUs by com-
parison have received significantly less attention. However, it can be argued that
atomic and other synchronisation operations are even more important for Arm-
based processors [24] because of Armv8’s weakly-ordered memory model, which
dictates that the order of memory accesses is not required to follow the program
order for load and store operations [2]. This contrasts with the x86 architecture,
which offers stronger guarantees such as reads not being reordered with other
reads, and writes not being reordered with older reads, for example [16, §8.2].

While evaluating the performance of several Arm-based chips, we identified
one kernel from the RAJAPerf suite [15] that scaled particularly poorly on TX2
and A64FX CPUs (Sect. 2.1). The kernel in question stress tests OpenMP atomic
floating-point (FP) operations, which, on recent Arm-based CPUs like the two
above, are implemented with CAS instructions. In this kernel, those particular
instructions caused a slowdown of 48x on the TX2 and of 70x on the A64FX when
scaling from 1 to 48 threads (Fig. 1). This led us to question the performance of
CAS on Arm-based CPUs and wonder (i) if there was a fundamental issue with
these instructions across Arm microarchitectures, and (ii) if the “legacy” method
used to implement CAS operations prior to the introduction of Armv8.1, load-
linked/store-conditional (LL-SC) pairs of instructions, could offer any benefit
over the more recent CAS instructions. We perform our analyses on the Arm-
based TX2, A64FX, and Graviton3 processors, and use the x86-based EPYC
7742 and Intel Xeon Gold 6330 CPUs for comparison. Overall, our results show
that the newer CAS instructions do not perform well on TX2 and A64FX, and
the older LL-SC instructions can bring significant performance improvements on
all Arm-based systems tested (Fig. 4). The main contributions of this paper are:

1. We demonstrate the negative impact that the newer CAS instructions (chosen
by default by compilers) can have on parallel codes;

2. We perform a detailed performance study of CAS and LL-SC instructions on
state-of-the-art AArch64 CPUs;

3. We describe the conditions under which each approach (CAS or LL-SC)
delivers better performance when implementing atomic operations, includ-
ing “latency thresholds” that govern performance on A64FX.

As far as we are aware, this is the most extensive and comprehensive study on
the performance of atomic instructions on state-of-the-art Arm-based CPUs.

The remainder of this paper is organised as follows. In Sect. 2 we describe
the performance issues we observed with the RAJAPerf kernel that led us to
investigate CAS operations on Arm-based CPUs. In Sect. 3 we discuss the ways
in which a CAS operation can be implemented for the AArch64 architecture
and present the micro-benchmarks we developed to assess their performance.
In Sect. 4 we present the main results of the paper, namely the performance
of different approaches to implement CAS operations on Arm-based CPUs and
their scaling behaviours. In Sect. 5 we discuss related work and, in Sect. 6, we
conclude the paper.

A Study on the Performance Implications of AArch64 Atomics 281

2 The Problem

In this section we describe the problem that motivated our study of atomic
operations on Arm-based CPUs. Our goal is to (i) contextualise our work and
describe how it came into being, (ii) provide concrete examples of codes where
the issues we address in this work emerge, and (iii) demonstrate their possible
implications for performance.

2.1 RAJAPerf and the PI_ATOMIC kernel

The RAJA Performance Suite (RAJAPerf)1 is a benchmark suite designed to
assess the performance of various parallel programming models and runtimes
on a wide range of loop-based kernels common to HPC codes [15]. The suite
consists of roughly 50 kernels implemented in C++11, and parallel libraries and
runtimes such as OpenMP, CUDA and RAJA. The kernels are mainly extracted
from HPC applications. Each kernel is implemented in a variety of “variants”,
such as baseline sequential and OpenMP versions. To allow for a fair comparison
between programming models, all variants of a kernel perform roughly the same
mathematical operations and their loop bodies are implemented identically.

One of RAJAPerf’s kernels is the PI_ATOMIC kernel, which calculates an
approximation of π via the identity

π

4
= arctan(1) =

∫ 1

0

1
1 + x2

dx. (1)

In the kernel’s most basic version, the baseline sequential variant, the integration
on the right-hand side is carried out in a simple sequential loop. In C-based
pseudocode, this corresponds to the code shown in Listing 1. The baseline multi-
threaded version of the kernel uses OpenMP atomics to accumulate the value of
π in the body of the loop (line 10). Although not a particularly efficient way to
parallelise this computation, the code is designed to measure the performance of
OpenMP atomics in a context of high contention.

2.2 Performance Results

As we were using RAJAPerf to identify codes where Arm-based processors cur-
rently underperform compared to x86 competitors, the PI_ATOMIC kernel stood
out as the worst-performing kernel on A64FX and TX2 by a large margin. In
Fig. 1 we plot the average runtime of the PI_ATOMIC kernel (as reported by
RAJAPerf) as a function of the number of threads used on the A64FX and TX2
processors, and (as comparison) on the EPYC 7742 (results for the Xeon 6330
are identical). The kernel runs for 50 repetitions of 1,000,000 iterations each
(the default parameters of RAJAPerf). Compilers, optimisation flags, and other
experiment parameters are those described in Sect. 4.

1 https://github.com/LLNL/RAJAPerf/tree/v0.11.0. Accessed on 29 April 2022.

https://github.com/LLNL/RAJAPerf/tree/v0.11.0

282 R. Jesus and M. Weiland

Listing 1. The PI_ATOMIC kernel.

1 double PI_ATOMIC() {
2 const int N = ...; // num

sub-intervals↪→
3 const double dx = 1.0 / (double)N;
4

5 double pi = 0.0;
6 //#pragma omp parallel for
7 for(int i = 0; i < N; ++i) {
8 double x = ((double)i + 0.5) * dx;
9 //#pragma omp atomic

10 pi += dx / (1.0 + x * x);
11 }
12 pi *= 4.0;
13

14 return pi;
15 }

Uncomment for
multi-threaded
OpenMP version.

Fig. 1. Performance of the multi-
threaded PI_ATOMIC kernel on A64FX,
TX2, and EPYC 7742 CPUs. (Log-log
scale.)

As the figure shows, on EPYC 7742, for runs with at least two threads, the
runtime of the kernel stays approximately constant as the number of threads
increases. This is the expected behaviour—the atomic operation acts as a seri-
alisation point that prevents much parallelism, and therefore, since the total
number of atomic operations is kept constant across different runs, the system
as a whole (ideally) takes the same amount of time to perform those operations,
regardless of the number of threads that execute them. On the A64FX and TX2
however, this is not the case. On these processors, going from 1 thread to 48
causes a slowdown of about 70x on A64FX and of 48x on TX2. We observed
identical behaviour using non-GNU compilers, namely LLVM (Clang) 11.0.0 and
the Arm C/C++ Compiler 21.0. Moreover, we have also measured similar slow-
downs with CircusTent [29], a benchmark suite for atomic operations, and with
the VTK-m [22] AtomicArray benchmark2.

2.3 A Closer Look at OpenMP Floating-Point Atomics

Profiling the PI_ATOMIC kernel revealed the cause of the slowdown to be the
atomic FP addition. To confirm that the scaling issues observed were not due
to an implementation inefficiency in the OpenMP runtime, we examined how
the atomic addition is implemented in assembly, shown in Listing 2 for the
Zen 2 (EPYC 7742) and A64FX microarchitectures. As the code shows, the
assembly generated for the two targets is virtually identical. At a high-level,
the atomic variable to update is moved from a general-purpose (GP) register
to an FP register, the addition is performed (using FP instructions), and the
result is moved back into a GP register. Then, an (atomic) CAS instruction
is attempted. If it succeeds, execution continues its normal path; otherwise,
the whole operation is restarted. A minor inefficiency in the assembly is the
2 https://gitlab.kitware.com/vtk/vtk-m/-/tree/master/benchmarking. Accessed on

04 August 2022.

https://gitlab.kitware.com/vtk/vtk-m/-/tree/master/benchmarking

A Study on the Performance Implications of AArch64 Atomics 283

conditional jump to label .L4, which is unnecessary if the registers used for the
CAS instructions are changed as done in Listings 4 and 5. Nevertheless, this is
a minor issue that does not play any significant part in the slowdowns observed.

3 Benchmarking CAS Operations

In this section we discuss how CAS operations can be implemented and present
a set of micro-benchmarks we developed to study the performance of these oper-
ations on Arm-based CPUs in more detail.

3.1 Compare-and-Swap Operations

At the machine level, there are two main ways of implementing a CAS opera-
tion: either via an explicit CAS instruction, or via a pair of load-linked/store-
conditional (LL-SC) instructions. We briefly describe these alternatives below.
A third option would be via “transactional memory”, which is similar in princi-
ple to the LL-SC approach, but allows multiple loads and stores to be effected
atomically at once. We do not consider this approach as it is currently not widely
available in practice. Nevertheless, the Armv9 architecture considers this option
in its (optional) Transactional Memory Extension (TME) [6,7], which might fea-
ture in future systems. A more exhaustive discussion on ways to implement CAS
and other atomic operations is provided in [18, §6.1.1] and references therein.

CAS Utilising an explicit CAS instruction to perform the CAS operation is, gen-
erally speaking, the most straightforward option (assuming there is hardware
support for it). In the case of the x86 architecture, this can be accomplished
with a lock cmpxchg instruction. In AArch64, such an instruction did not
exist until the introduction of the Large System Extension (LSE), which first
appeared in Armv8.1 [5]. For Armv8.1 and subsequent architectures, a CAS
operation can be effected via one of several instructions that vary in the size

284 R. Jesus and M. Weiland

of the operands on which they operate (from 8 to 128-bits), and in the mem-
ory order semantics they utilise for the load and store parts of the operation.
For example, for 64-bit operands, the mnemonics for these instructions are
cas, casa, casl and casal, where in the case of casa and casal the load is
performed with acquire semantics; in casl and casal the store has release
semantics; and cas has neither acquire nor release semantics (memory order
semantics are discussed in more detail in Sect. 3.2).

LL-SC Prior to the availability of LSE, CAS operations on the Arm architecture
(Armv8) were implemented via pairs of load-linked/store-conditional (LL-
SC) instructions. In this approach, a store-conditional to a memory address
will only succeed, thereby writing to the location, if no other write to the
same location has happened since a previous load-linked instruction. This
approach closely follows the load/store philosophy of Arm and other RISC
architectures. For Armv8 (AArch64) targets, an LL-SC CAS operation can
be implemented with ldxr, ldaxr, stxr and stlxr instructions. The first
two perform a load-exclusive with and without acquire semantics (respec-
tively), whilst the latter two perform a store-exclusive with and without
release semantics (also respectively).

The hardware implementations of these approaches vary from microarchitecture
to microarchitecture, and are often not public in the case of proprietary designs.
Nevertheless, here we briefly describe how these instructions are implemented in
Arm’s Neoverse cores connected to CHI-based interconnects (like the Graviton3)
to illustrate how they can be implemented in general. In Arm’s Neoverse cores,
LL-SC instructions manage an exclusive monitor in the L1 memory system that
keeps track of exclusive access to a cache line. This monitor is set by load-
linked instructions and checked (and/or cleared) by store-exclusive instructions.
Meanwhile, CAS instructions (on CHI-based interconnects) can be performed
either as near (in the CPU), or as far (in the interconnect) atomics, depending
on where data resides [3]. Since far atomics cannot be performed speculatively
(whereas the read prior to the execution of a near atomic could), by default they
are disabled in Neoverse CPUs [4].

3.2 Benchmark Description

To assess the performance of CAS operations on different CPUs we developed
a set of micro-benchmarks where a counter is incremented concurrently by a
number of threads. The increment is performed atomically using one of the
CAS strategies mentioned in the previous section, thereby avoiding data races.
Overall, we are interested in measuring the average time required to perform
an increment (or iteration) per thread, as well as the average number of times
each thread has to attempt the CAS operation, per increment, before it succeeds.
Listing 3 presents sample C++ code implementing the benchmark, to facilitate its
general understanding. However, it should be noted that most of our benchmark
kernels are implemented in assembly so that we have precisely control over the
instructions used for the atomic operation, as well as their placement.

A Study on the Performance Implications of AArch64 Atomics 285

Listing 3. Reference C++ imple-
mentation of the CAS kernel.

1 # include <cstdint>
2 typedef uint64_t u64;
3

4 template <typename counter_t>
5 u64 kernel(u64 iters, counter_t* mem,
6 bool weak, int memorder)
7 {
8 u64 attempts = 0;
9 do {

10 counter_t expected = *mem, desired;
11 do {
12 desired = expected+1; attempts++;
13 } while(!__atomic_compare_exchange(
14 mem, &expected, &desired,
15 weak, memorder, memorder));
16 } while(--iters);
17 return attempts;
18 }

Listing 4. Assembly kernels for x86
targets.

1 kernel_dbl_x86:
2 xor %r8d, %r8d
3 vmovsd one, %xmm0
4 loop_dbl_x86:
5 mov (%rsi), %rax
6 try_dbl_x86:
7 inc %r8
8 vmovq %rax, %xmm1
9 vaddsd %xmm0, %xmm1, %xmm2

10 vmovq %xmm2, %rcx
11 lock cmpxchg %rcx, (%rsi)
12 jne try_dbl_x86
13 dec %rdi
14 jne loop_dbl_x86
15 mov %r8, %rax
16 ret
17 one:
18 .double 1.0

Change to
lea 0x1(%rax), %rcx

for integer kernel

Besides the number of iterations and threads, each benchmark takes three
main parameters: (i) the data type utilised for the counter, (ii) the “strategy”
used to implement the CAS operation, and (iii) the memory order semantics
for the atomic operation. Table 1 summarises the values we consider for these
parameters, which we describe below in more detail.

Counter Type. We consider two data types for the counter in the benchmark:
uint64_t and double. The former is a conventional 64-bit unsigned integer,
whilst the latter is an IEEE 754 double-precision FP type. The main reason for
considering these two types is that they indirectly allow us to evaluate how the
latency of the CAS loop (i.e. time between loading the value of the counter and
computing the value to store) affects the performance of the CAS operation. The
version using a double type spends more time setting up the operation, which
(as we will see in later sections) can affect performance significantly. Further-
more, the implementation that uses a double counter resembles the PI_ATOMIC
kernel described in Sect. 2.1 more closely, and therefore is a more faithful rep-
resentation of the problem. We also ran experiments with other types, namely
uint32_t and float, but, since they exhibited the same performance as their
64-bit counterparts, they are not considered further here.

Strategy. “Strategy” refers to the way in which the CAS operation is imple-
mented, as described in Sect. 3.1. For x86 targets we only consider implemen-
tations with CAS instructions, whereas for Arm targets we consider both CAS
and LL-SC. Note that if we were concerned with the increment operation per
se, and we only used an integer type for the counter, then the increment could
be achieved directly via, for example, a lock add in x86 or a ldadd in Armv8.1
(and subsequent) architectures. However, in the context of this benchmark, the
increment is a mere vehicle to assess the performance of CAS operations, and
therefore we do not consider these approaches.

286 R. Jesus and M. Weiland

Memory Order. The memory order semantics of an atomic operation specify
how memory accesses, including regular, non-atomic ones, are to be ordered
around the atomic operation. The semantics of atomic operations are particularly
important in architectures such as the Armv8 that employ a weakly ordered
memory model, since on such architectures the order of memory accesses is not
necessarily required to follow the program order for load and store operations [2].
In this benchmark, we consider a subset of the memory orders defined in the
C/C++ 11 standard: relaxed, acquire, release, and acquire-release. In general
terms, acquire operations perform a “one-way barrier” that guarantee that all
memory operations after the acquire cannot be reordered to take place before it.
Similarly, release operations perform a one-way barrier in the opposite direction:
they guarantee that all memory operations before the release operation cannot
be reordered after it. Acquire-release imposes both an acquire and a release,
whilst relaxed does neither. In Armv8 these memory orders are enforced via
appropriate CAS/LL-SC instructions as described in Sect. 3.1.

3.3 Assembly Kernels

As mentioned in Sect. 3.2, the kernels used to measure the performance of
CAS operations are implemented in assembly. This has been done to control
the instructions used in the kernels and to stop the compilers from introducing
differences across machines that may affect the kernels’ performance. These ker-
nels, presented in Listing 4 for x86 targets and Listing 5 for Arm-based ones,
result from an optimised transliteration of the reference C++ kernel (Listing 3)
and were specialised for a relaxed memory order on Arm. Other memory orders

A Study on the Performance Implications of AArch64 Atomics 287

Table 1. CAS benchmark parameters.

Parameter Options

counter type uint64_t, double
strategy CAS, LL-SC
memory order relaxed, acquire, release,

acquire-release

Table 2. CPUs and compiler versions.

System Processor Compiler

ARCHER2 EPYC 7742 GCC 11.2.0
ICX Xeon Gold 6330 GCC 11.2.0
Fulhame ThunderX2 GCC 10.1.0
Isambard 2 A64FX GCC 11.1.0
C7g Graviton3 GCC 10.3.1

are achieved by replacing the cas, ldxr and stxr instructions with the appro-
priate instructions as mentioned in Sect. 3.1. In the A64 assembly, x0 and x1 are
the kernel arguments, i.e. number of iterations and address of memory location
to update, respectively; x2 is the value loaded from the memory location in a
given iteration; and x9 is used to accumulate the number of attempts of the CAS
loop. Other registers are temporaries to compute the increment and set up the
CAS operation, for example.

4 Experiments and Observations

In this section we present the main results of this work, concerning the perfor-
mance of CAS operations on Arm-based CPUs. We utilise the following systems
in our tests:

ARCHER2 HPE Cray EX system with dual AMD EPYC 7742 64-core CPUs
(128 cores per node). Zen 2 “Rome” microarchitecture (x86).

ICX System with dual Intel Xeon Gold 6330 28-core CPUs (56 cores per node).
Ice Lake Sunny Cove microarchitecture (x86).

Fulhame HPE Apollo 70 cluster with dual 32-core Marvell ThunderX2 CPUs
(64 cores per node). Armv8.1 architecture.

Isambard 2 HPE Apollo 80 system with Fujitsu A64FX 48-core processors.
Armv8.2 architecture.

C7g AWS c7g.16xlarge instance with 64 vCPUs of a Graviton3 processor. Based
on a modified Neoverse V1 core (Armv8.4).

All measurements were taken using the system’s compute nodes in exclusive
mode to guarantee dedicated access to the resources. Threads were pinned to
cores and placed close to each other with the variables OMP_PLACES=cores and
OMP_PROC_BIND=close. As such, the cores of a system were occupied sequen-
tially “by NUMA region”, i.e. a NUMA region was fully filled before the cores
of another were used. All kernels were compiled with GCC using the versions
specified in Table 2. In all cases the optimisation flags used were -O3 -fopenmp
-march=native/-mcpu=native (the former for x86-based systems, the latter for
Arm-based). Unless otherwise stated, all results were obtained running 100,000
iterations per thread.

288 R. Jesus and M. Weiland

Fig. 2. Top: Performance of the new CAS instructions introduced in Armv8.1
LSE on the 64-bit integer and double variants of the benchmark described in
Sect. 3. The y axis represents the average time spent by each thread, in microsec-
onds, performing an increment of the kernel. The gray lines are guides to help
illustrate the trends of the curves. Bottom: Average number of times each thread
attempts the CAS loop, per increment, until the loop succeeds. (Log-log scale.)

The results presented in the remainder of this section use relaxed mem-
ory ordering since we did not observe significant differences in behaviour when
using other, more restrictive memory orders. We confirmed this by computing
the Pearson product-moment correlation coefficient between implementations
with relaxed memory order and other memory orders. Nearly all coefficients
are extremely high (above 0.99), meaning that the trends of the curves are the
same. The exception is the LL-SC tests on Graviton3, where the coefficient
drops marginally to 0.96–0.98 (still indicating very strong correlation). As we
will see in Sect. 4.3, this is due to increased variability in the LL-SC runs on
this processor. Finally, note that we also carried out the tests presented through-
out this section on Graviton2 using an AWS c6g.metal instance. However, since
the results obtained are identical to those obtained on Graviton3, due to space
constraints we have omitted them from this paper.

4.1 Evaluating the Performance of CAS

In Fig. 2 (top) we evaluate the performance of the CAS instructions introduced in
Armv8.1 LSE. These are the instructions currently used by default by compilers
to implement operations such as the atomic FP updates as seen in Sect. 2.3. We
carry out this evaluation on A64FX, Graviton3, TX2, EPYC 7742 and Xeon Gold
6330 CPUs. We consider both the integer and double variants of the benchmark,
as presented in Sect. 3.2.

We see two main lines of behaviour: in most cases, the average time spent by
each thread performing an increment grows roughly linearly with the number of

A Study on the Performance Implications of AArch64 Atomics 289

threads attempting the increment concurrently. This is an effect of the serialising
nature of the atomic operation mentioned in Sect. 2.2: since the total system
throughput to update the counter is fixed, the average time of each operation
is bound to increase at least linearly with the number of threads attempting
to update the counter concurrently [10]. However, the A64FX (in the double
kernel) and the TX2 (in both kernels), exhibit significantly more pronounced
slowdowns. Instead of displaying the expected linear scaling, these CPUs exhibit
an approximately quadratic slowdown: as we increase the number of threads
by a factor of two, the time spent by each thread performing an increment
grows roughly by a factor of four. In other words, as we double the number of
threads, the throughput of the system halves. This behaviour is consistent with
the performance issues seen in Sect. 2.2, and it stems from an increase in the
number of CAS operations that fail—and therefore have to be reattempted—
as more threads run concurrently. This is demonstrated in Fig. 2 (bottom),
where we plot the average number of times each thread performs the CAS loop
per successful increment as a function of the number of threads utilised. The
trends shown in this figure are akin to those seen in Fig. 2 (top): in systems
that exhibit linear scaling of average time per increment, the average number
of attempts per successful CAS operation remains flat, whereas in systems that
exhibit quadratic increase in runtime, the number of attempts grows linearly.
This behaviour suggests a lack of built-in backoff mechanisms on the A64FX
and TX2, causing threads to interfere more frequently with each other (thus
invalidating their work) as more threads run concurrently.

We note that the dip exhibited by the TX2-based system at 32 threads is
due to the crossover of NUMA domains (this system has two 32-core processors,
each of which corresponds to one NUMA domain). Other systems do not exhibit
such clear NUMA effects.

4.2 A Closer Look at A64FX

As seen in the previous section, the A64FX exhibits both linear and quadratic
behaviours, the former in the integer and the latter in the double kernel. The
body of the CAS loop is the only place where the two kernels differ, implying
that it is the source of the difference in performance. The body of the integer
kernel consists only of a small number of integer instructions, whereas the body
of the double kernel includes instructions to move data between general-purpose
and FP registers, in addition to the FP instructions that perform the counter
arithmetic itself. Incidentally, these FP instructions have fairly high latencies
on A64FX [13]. For example, a scalar integer addition has a latency of 1 cycle,
whereas a scalar FP addition has a latency of 9 cycles. The disparate scaling
behaviours of the A64FX can be traced back to the latency of the CAS loops of
the integer and double kernels. In Fig. 3 (top) we plot the average runtime and
number of attempts, per increment, obtained in a modified version of the inte-
ger kernel where the kernel’s CAS loop was filled with single-cycle instructions
to increase the overall latency of the loop body prior to the CAS instruction.
The extra instructions were inserted right before the CAS instruction (before

290 R. Jesus and M. Weiland

Fig. 3. Top: Effect of modifying the CAS loop body size (critical section) on the
average running time and average number of attempts of the CAS loop on A64FX
(uint64_t kernel). Bottom: Effect of modifying the size of the region outside the
CAS loop (non-critical section) on the average running time and average number
of attempts of the CAS loop (double kernel) on A64FX. The legend denotes the
number of single-cycle instructions inserted (roughly equivalent to latency in
clock cycles).

line 12). The number of instructions added corresponds approximately to the
increased latency (in cycles) of the modified kernel. Looking at the average time
per increment, the A64FX exhibits the linear scaling behaviour observed in the
(original) integer kernel so long as the number of instructions inserted remains
below or equal to 39. However, once 40 or more instructions are inserted, the
modified kernel shifts to the quadratic scaling observed in the double kernel.
Analogous trends are observed in terms of the average number of attempts per
increment: whilst the number of additional instructions is kept below or equal to
39, the modified kernel behaves mostly as the integer kernel, whereas for greater
values it behaves like the double kernel. These results indicate that the CAS
instructions on the A64FX are not optimised for CAS operations with high-
latency critical sections (i.e. loop bodies). The high latencies of FP instructions
on the A64FX exacerbate the problem, causing atomic FP operations as simple
as the addition carried out in the double kernel to exhibit the quadratic scaling
we have observed. Indeed, if we consider the double kernel, on A64FX the fmov
takes around 10–14 cycles depending on the direction of the move, GP to FP
register or vice-versa, and the FP addition takes 9, which leads to a total of
10+9+14 = 33 cycles. If we consider the latencies of the initial load and of the

A Study on the Performance Implications of AArch64 Atomics 291

CAS instruction itself, which take at least 5 and 8 cycles respectively, we get a
grand total of 38–41 cycles, which puts us in the quadratic scaling regime.

Meanwhile, in Fig. 3 (bottom) we plot the average runtime and number
of attempts, per increment, obtained using a modified version of the double
kernel where the region outside the kernel’s CAS loop, i.e. the non-critical region,
was extended with single-cycle instructions. The figure demonstrates that it is
possible to eliminate the adverse linear scaling in average number of attempts
on the A64FX by increasing the size of the non-critical region. However, the
higher the number of threads attempting the CAS operation concurrently, the
bigger the non-critical region needs to be. In our experiments, the smallest non-
critical region that exhibits a constant CAS attempt rate for all thread counts
is about 60,000 (1-cycle) instructions per CAS operation. The need to increase
the non-critical region for higher thread counts means that, unless the increase
translates into “useful work”, it is not possible to improve the total kernel runtime
significantly as the size of the non-critical region will dominate execution time.

4.3 Testing LL-SC Implementations

In Fig. 4 (a–b) we compare the performance of CAS and LL-SC strategies on
TX2 and A64FX processors. We consider the Graviton3 independently later
since, as we shall see below, it exhibits the peculiar characteristic that, when
using the LL-SC strategy, the average time per increment increases with the
number of increments each thread performs (i.e. on Graviton3, the LL-SC strat-
egy is not invariant with respect to the number of operations performed). As
the figure shows, on TX2 the LL-SC strategy is consistently faster than the
CAS strategy, beating it by a factor of 2–3x in both integer and double kernels.
On A64FX however, we observe two distinct trends. On the one hand, the two
strategies are similar in the integer kernel, with CAS marginally outperforming
LL-SC by a factor of roughly 1.2x. On the other hand, in the double kernel, the
LL-SC strategy proves to be far superior to CAS. Indeed, in terms of scaling,
LL-SC causes the double kernel to behave like the integer kernel, whereby the
average time per iteration scales linearly with the number of threads, instead
of quadratically as with CAS. In practice, this causes the speedup obtained by
LL-SC vs. CAS to increase with the number of threads. For large threads counts,
this means that the LL-SC strategy outperforms the CAS strategy by factors of
over 20x. We presume this difference in behaviour on the A64FX is due to the
load-linked instructions on the A64FX reserving the cache line for some time.
In case of concurrent access, the CPU owning the cache line is favoured. This
does not happen with CAS because the “plain” load before the CAS does not
reserve the cache line. Nevertheless, this hypothesis necessitates confirmation
from Fujitsu. We confirm that using LL-SC to implement the FP atomic update
of the PI_ATOMIC kernel (Listing 1) solves the scaling issues initially observed on
the A64FX, leading to a running time of approximately 6.6 s with 48 threads.

292 R. Jesus and M. Weiland

Fig. 4. Performance of LL-SC vs. CAS strategies. (a-b) Results on A64FX and
TX2 CPUs for the integer (a) and double (b) kernels. (c) Results on Graviton3
for different iteration counts. In (c) the LL-SC runs are plotted in colour whilst
CAS is plotted in black (all CAS lines fall on top of each other); furthermore,
only results for the integer kernel are shown since the results for the double
kernel are identical. Annotations show speedup (tslowest/tfastest).

In the case of the Graviton3 processor, a new behaviour emerges. So far, all
results we have shown are stable in terms of the number of iterations run, i.e.
there are no significant differences between running the kernels for a thousand,
ten thousand, a hundred thousand, etc., iterations in terms of the (average)
quantities we have shown. On Graviton3, however, this is not true. As shown
in Fig. 4(c), when LL-SC is used on Graviton3, the average time per iteration
increases with the number of iterations. In practice, this means that when using
64 threads the average time per iteration at 1,000,000 iterations is almost 10x
higher than the average time at 1,000 iterations. This behaviour contrasts with
that seen using the CAS strategy, where, as expected, the average time per
iteration is invariant with respect to the number of iterations. Nevertheless, the
LL-SC strategy can still be of interest on Graviton3. Indeed, for low iteration
counts (below 100,000) LL-SC can be significantly faster than CAS. For example,
at 1,000 iterations, LL-SC is around 2–3x faster than CAS across all thread
counts. This means that in scenarios where threads are not expected to contend
for the same memory location repeatedly for a long period of time, the LL-
SC strategy should be preferred over the CAS strategy as it can provide very
substantial speedups. However, given the scope for LL-SC to perform poorly,
such an approach should encompass a fallback method that switches to the CAS
strategy for instance after a number of failed LL-SC attempts has been reached.

4.4 Summary and Recommendations

Our study demonstrates that CAS instructions do not perform optimally on
either the TX2 or the A64FX as the number of threads contending for the
operation increases (Fig. 2). On A64FX, however, this behaviour only arises
when the time to set up CAS reaches a critical threshold (Fig. 3). Below this
threshold we observe linear scaling, the expected behaviour given the serialising

A Study on the Performance Implications of AArch64 Atomics 293

nature of CAS. The linear behaviour is also observed on the Graviton3 and on the
x86 systems used on our experiments. On all Arm-based systems that we tested,
the older (pre-Armv8.1) LL-SC instructions can bring significant performance
improvements (Fig. 4). On the TX2 and Graviton3, this translates into roughly
2–3x performance improvement over the CAS instructions, though in the case
of the Graviton3 this only applies when the number of CAS loops repeated in a
quick succession is relatively low. On A64FX, however, the LL-SC instructions
improve the runtime to the expected linear scaling; for a large number of threads,
this translates into speedups of more than 20x. Based on our results we make
the following recommendations to users of Arm-based systems who would like
to verify whether or not atomics are the root cause of poor performance:

1. Test the performance impact of LL-SC by disabling LSE support (and thus
CAS instructions) in the compiler, i.e. do not simply rely on the default, CAS,
to give the best performance.

2. If possible, verify the impact of reducing work inside the critical section.
3. Verify the impact of adding work outside the critical section.

The first recommendation can be achieved by using the architecture option
nolse on GNU and LLVM compilers. Depending on the version of the compilers,
the flag -mno-outline-atomics might also be necessary to disable wrappers
that are otherwise automatically generated. As a caveat, we note that compilers
tend to generate inefficient LL-SC code that might limit performance gains.
This happens because compilers tend to wrap the LL-SC sequence in a “normal
load” prior to the critical section, then do the load-linked (after the critical
section), and finally check if the value loaded by the load-linked matches the
value originally loaded by the normal load; if the values differ, they branch
and try from the beginning, otherwise they attempt the store-conditional. A
more efficient way of implementing the LL-SC sequence is to do it as we have
shown in Listing 5, where the critical region is enclosed with load-linked and
store-conditional instructions. Furthermore, it is worth noting that the last two
recommendations are largely problem and algorithm dependent. Nevertheless,
due to the key roles they play in CPUs such as the TX2 and A64FX, users and
implementers ought to be aware of them. As an example, it might be worth
moving work to immediately after an atomic operation on A64FX, so as to
increase the size of the relevant non-critical region. Compilers and runtimes can
help in this task by moving code unrelated to a CAS operation to nearer the
CAS non-critical region, where it is safe to do so. The scheduler of a runtime can
also fill the CAS non-critical region with pending work (for example, pending
OpenMP tasks).

5 Related Work

The performance of CAS and other atomic operations has been extensively con-
sidered in the past for x86 targets [11,12,23,28,30]. Here we focus on AArch64
CPUs, which, by comparison, have received much less attention.

294 R. Jesus and M. Weiland

In [26] the authors study the performance of CAS and LL-SC instructions
on Graviton2 and Kunpeng 920 processors using LockHammer [8] and Splash-
3 [27]. They find that CAS instructions tend to perform better on Graviton2,
whereas LL-SC usually does better on the Kunpeng 920. Crucially, they do not
identify nor characterise the fundamentally different scaling trends we observed
on A64FX and TX2, and they do not study how the Graviton2/3 respond to
loops of varying duration—and therefore do not realise the speedups that LL-
SC instructions can bring in short CAS loops on Graviton2/3 CPUs. Meanwhile,
in [25] the authors consider the optimisation of the Hierarchical Mellor-Crummey
and Scott (HMCS) lock [9,20] on Kunpeng 920 CPUs. They compare the per-
formance of several variants of the HMCS lock compiled with and without LSE
instructions (i.e. with CAS and LL-SC, respectively) and find that, in a single-
thread scenario, the targets built without LSE outperform those built with it
by 2–4x. However, they do not perform multi-threaded tests to compare the
two approaches. Finally, in [10] the authors compare the performance of atomic
integer operations implemented with and without LSE instructions on TX2 and
A64FX processors. They do not restrict the LSE instructions considered to the
cas instructions, and therefore they compare two significantly distinct imple-
mentations: one (LL-SC) similar to our integer kernel where a compare-and-
swap loop is attempted until successfully performing an increment, and another
that utilises ldadd instructions, and therefore needs no such loops. As could be
expected, they find that the ldadd approach performs significantly faster than
LL-SC.

6 Conclusions

In this paper we have shown that the CAS instructions introduced in Armv8.1
(LSE) do not always bring performance benefits, and can in fact induce a sig-
nificant quadratic slowdown whereby the average time to successfully preform
a CAS operation roughly quadruples as the number of threads attempting the
operation concurrently doubles. On the A64FX this behaviour arises in codes
where the time to prepare the CAS operation (i.e. the time between the first
read from a memory location and the corresponding write attempt) rises above
a critical threshold. Graviton3 does not exhibit these issues.

Furthermore, we have shown that the classic LL-SC instruction pairs should
not be neglected as they can bring significant performance improvements. Imple-
menting the CAS operation via LL-SC causes the A64FX to exhibit the expected
linear behaviour instead of the quadratic slowdown experienced with the CAS
instructions. In practice, for high thread counts this means that the LL-SC app-
roach offers speedups of more than 20x over the CAS approach. LL-SC also
offers 2–3x speedups on the TX2 and Graviton3, though in the latter case the
performance of the LL-SC strategy drops significantly if a high number of CAS
operations is performed in a quick succession.

A Study on the Performance Implications of AArch64 Atomics 295

Acknowledgements. This work used the ARCHER2 UK National Supercomputing
Service (https://www.archer2.ac.uk); the Isambard UK National Tier-2 HPC Service
(http://gw4.ac.uk/isambard/) operated by GW4 and the UK Met Office and funded by
EPSRC (EP/P020224/1); and Fulhame, an HPE Apollo 70 system supplied to EPCC,
the supercomputing centre at the University of Edinburgh, as part of the Catalyst UK
programme, a collaboration with HPE, Arm and SUSE to accelerate the adoption of
Arm based supercomputer applications in the UK. We would also like to thank John
Linford (Nvidia) and Oliver Perks (Rivos Inc.) for the helpful technical inputs and
discussions.

References

1. Alessandrini, V.: Concurrent access to shared data. In: Shared Memory Application
Programming, pp. 101–127. Morgan Kaufmann, Boston (2016). https://doi.org/10.
1016/B978-0-12-803761-4.00005-8

2. Arm Limited: ARMv8-A Memory Systems. Document ID 100941_0100_en (2017)
3. Arm Limited: Arm Neoverse V1 Core. DDI 101427, 0101-05 (2021)
4. Arm Limited: Do near or far atomics give the best performance on Neoverse sys-

tems? (2021). https://developer.arm.com/documentation/ka004706/1-0
5. Arm Limited: Arm Architecture Reference Manual for A-profile architecture. DDI

0487 H.a (2022)
6. Arm Limited: Arm® Architecture Reference Manual Supplement Armv9, for

Armv9-A architecture profile. DDI 0608 B.a (2022)
7. Arm Limited: Overview of Arm Transactional Memory Extension. Document ID

102873_0100_en (2022)
8. Arm Limited: Synchronization Benchmarks (2022). https://github.com/ARM-

software/synchronization-benchmarks
9. Chabbi, M., Fagan, M., Mellor-Crummey, J.: High performance locks for multi-

level NUMA systems. In: Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 215–226. ACM, San Francisco
(2015). https://doi.org/10.1145/2688500.2688503

10. Cownie, J.: Atomics in AArch64 (2021). https://cpufun.substack.com/p/atomics-
in-aarch64

11. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know
about synchronization but were afraid to ask. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pp. 33–48. ACM, Farminton
Pennsylvania (2013). https://doi.org/10.1145/2517349.2522714

12. Dice, D., Hendler, D., Mirsky, I.: Lightweight contention management for efficient
compare-and-swap operations. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par
2013. LNCS, vol. 8097, pp. 595–606. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40047-6_60

13. Fujitsu Limited: A64FX Microarchitecture Manual. Revision 1.6 (2021). https://
github.com/fujitsu/A64FX

14. Herlihy, M., Shavit, N., Luchangco, V., Spear, M.: The Art of Multiprocessor Pro-
gramming. MA, second edn, Morgan Kaufmann, Cambridge (2021)

15. Hornung, R., Hones, H.: RAJA Performance Suite. Lawrence Livermore National
Laboratory (LLNL), Livermore, CA (United States) (2017). https://doi.org/10.
11578/DC.20201001.36

16. Intel Corporation: Intel® 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3A: System Programming Guide, Part 1. Order Number 253668–
077US (2022)

https://www.archer2.ac.uk
http://gw4.ac.uk/isambard/
https://doi.org/10.1016/B978-0-12-803761-4.00005-8
https://doi.org/10.1016/B978-0-12-803761-4.00005-8
https://developer.arm.com/documentation/ka004706/1-0
https://github.com/ARM-software/synchronization-benchmarks
https://github.com/ARM-software/synchronization-benchmarks
https://doi.org/10.1145/2688500.2688503
https://cpufun.substack.com/p/atomics-in-aarch64
https://cpufun.substack.com/p/atomics-in-aarch64
https://doi.org/10.1145/2517349.2522714
https://doi.org/10.1007/978-3-642-40047-6_60
https://doi.org/10.1007/978-3-642-40047-6_60
https://github.com/fujitsu/A64FX
https://github.com/fujitsu/A64FX
https://doi.org/10.11578/DC.20201001.36
https://doi.org/10.11578/DC.20201001.36

296 R. Jesus and M. Weiland

17. Klemm, M., Cownie, J.: 6 mutual exclusion and atomicity. In: High Performance
Parallel Runtimes: Design and Implementation, pp. 146–193. De Gruyter Olden-
bourg, Berlin(2021). https://doi.org/10.1515/9783110632729-006

18. Klemm, M., Cownie, J.: High Performance Parallel Runtimes: Design and Imple-
mentation. De Gruyter Textbook, De Gruyter Oldenbourg, Berlin (2021)

19. Makreshanski, D., Levandoski, J., Stutsman, R.: To lock, swap, or elide: on the
interplay of hardware transactional memory and lock-free indexing. Proc. VLDB
Endowment 8(11), 1298–1309 (2015). https://doi.org/10.14778/2809974.2809990

20. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991).
https://doi.org/10.1145/103727.103729

21. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing - PODC 1996, pp. 267–275. ACM
Press, Philadelphia, Pennsylvania (1996). https://doi.org/10.1145/248052.248106

22. Moreland, K., et al.: VTK-m: accelerating the visualization toolkit for massively
threaded architectures. IEEE Comput. Graph. Appl. 36(3), 48–58 (2016). https://
doi.org/10.1109/MCG.2016.48

23. Morrison, A., Afek, Y.: Fast concurrent queues for x86 processors. In: Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming - PPoPP 2013, p. 103. ACM Press, Shenzhen (2013). https://doi.
org/10.1145/2442516.2442527

24. Oberhauser, J., et al.: VSync: push-button verification and optimization for syn-
chronization primitives on weak memory models. In: Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 530–545. ACM, Virtual USA (2021). https://doi.org/
10.1145/3445814.3446748

25. Oberhauser, J., Oberhauser, L., Paolillo, A., Behrens, D., Fu, M., Vafeiadis, V.:
Verifying and optimizing the HMCS lock for Arm servers. In: Echihabi, K., Meyer,
R. (eds.) NETYS 2021. LNCS, vol. 12754, pp. 240–260. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91014-3_17

26. Pardos, V.S.: Characterization and Modeling of Atomic Memory Operations in
Arm Based Architectures. Master’s thesis, Universitat Politècnica de Catalunya,
BarcelonaTech (2022). https://upcommons.upc.edu/handle/2117/363728

27. Sakalis, C., Leonardsson, C., Kaxiras, S., Ros, A.: Splash-3: a properly synchronized
benchmark suite for contemporary research. In: 2016 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pp. 101–111.
IEEE, Uppsala (2016). https://doi.org/10.1109/ISPASS.2016.7482078

28. Schweizer, H., Besta, M., Hoefler, T.: Evaluating the cost of atomic operations on
modern architectures. In: 2015 International Conference on Parallel Architecture
and Compilation (PACT), pp. 445–456. IEEE, San Francisco (2015). https://doi.
org/10.1109/PACT.2015.24

29. Williams, B., Leidel, J., Wang, X., Donofrio, D., Chen, Y.: CircusTent: a bench-
mark suite for atomic memory operations. In: The International Symposium on
Memory Systems, pp. 144–157. ACM, Washington (2020). https://doi.org/10.
1145/3422575.3422789

30. Wu, H., Becchi, M.: Evaluating thread coarsening and low-cost synchronization on
intel xeon phi. In: 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1018–1029. IEEE, New Orleans (2020). https://doi.org/
10.1109/IPDPS47924.2020.00108

https://doi.org/10.1515/9783110632729-006
https://doi.org/10.14778/2809974.2809990
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/248052.248106
https://doi.org/10.1109/MCG.2016.48
https://doi.org/10.1109/MCG.2016.48
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1007/978-3-030-91014-3_17
https://upcommons.upc.edu/handle/2117/363728
https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1109/PACT.2015.24
https://doi.org/10.1109/PACT.2015.24
https://doi.org/10.1145/3422575.3422789
https://doi.org/10.1145/3422575.3422789
https://doi.org/10.1109/IPDPS47924.2020.00108
https://doi.org/10.1109/IPDPS47924.2020.00108

Analyzing Resource Utilization
in an HPC System: A Case Study

of NERSC’s Perlmutter

Jie Li1(B) , George Michelogiannakis2 , Brandon Cook2 ,
Dulanya Cooray3 , and Yong Chen1

1 Texas Tech University, Lubbock, TX 79409, USA
{jie.li,yong.chen}@ttu.edu

2 Berkeley Lab, Berkeley, CA 94720, USA
{mihelog,bgcook}@lbl.gov

3 University of California, Berkeley, CA 94720, USA
dulanya@berkeley.edu

Abstract. Resource demands of HPC applications vary significantly.
However, it is common for HPC systems to primarily assign resources
on a per-node basis to prevent interference from co-located workloads.
This gap between the coarse-grained resource allocation and the varying
resource demands can lead to HPC resources being not fully utilized. In
this study, we analyze the resource usage and application behavior of
NERSC’s Perlmutter, a state-of-the-art open-science HPC system with
both CPU-only and GPU-accelerated nodes. Our one-month usage anal-
ysis reveals that CPUs are commonly not fully utilized, especially for
GPU-enabled jobs. Also, around 64% of both CPU and GPU-enabled
jobs used 50% or less of the available host memory capacity. Additionally,
about 50% of GPU-enabled jobs used up to 25% of the GPU memory,
and the memory capacity was not fully utilized in some ways for all jobs.
While our study comes early in Perlmutter’s lifetime thus policies and
application workload may change, it provides valuable insights on per-
formance characterization, application behavior, and motivates systems
with more fine-grain resource allocation.

Keywords: HPC · Large-scale Characterization · Resource
Utilization · GPU Utilization · Memory System · Disaggregated
Memory

1 Introduction

In the past decade, High-Performance Computing (HPC) systems shifted from
traditional clusters of CPU-only nodes to clusters of more heterogeneous nodes,
where accelerators such as GPUs, FPGAs, and 3D-stacked memories have been
introduced to increase compute capability [7]. Meanwhile, the collection of open-
science HPC workloads is particularly diverse and recently increased its focus

c© The Author(s) 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 297–316, 2023.
https://doi.org/10.1007/978-3-031-32041-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_16&domain=pdf
http://orcid.org/0000-0002-5311-3012
http://orcid.org/0000-0003-3743-6054
http://orcid.org/0000-0002-4203-4079
http://orcid.org/0009-0000-1727-6298
http://orcid.org/0000-0002-9961-9051
https://doi.org/10.1007/978-3-031-32041-5_16

298 J. Li et al.

on machine learning and deep learning [4]. Heterogeneous hardware combined
with diverse workloads that have a wide range of resource requirements makes it
difficult to achieve efficient resource management. Inefficient resource manage-
ment threatens to not fully utilize expensive resources that can rapidly increase
capital and operating costs. Previous studies have shown that the resources of
HPC systems are often not fully utilized, especially memory [10,17,20].

NERSC’s Perlmutter also adopts a heterogeneous design to bolster perfor-
mance, where CPU-only nodes and GPU-accelerated nodes together provide a
three to four times performance improvement over Cori [12,13], making Perl-
mutter rank 8th in the Top500 list as of December 2022. However, Perlmutter
serves a diverse set of workloads from fusion energy, material science, climate
research, physics, computer science, and many other science domains [11]. In
addition, it is useful to gain insight into how well users are adapting to Perlmut-
ter’s heterogeneous architecture.

Consequently, it is desirable to understand how system resources in Perlmut-
ter are used today. The results of such an analysis can help us evaluate current
system configurations and policies, provide feedback to users and programmers,
offer recommendations for future systems, and motivate research in new archi-
tectures and systems. In this work, we focus on understanding CPU utilization,
GPU utilization, and memory capacity utilization (including CPU host mem-
ory and GPU memory) on Perlmutter. These resources are expensive, consume
significant power, and largely dictate application performance.

In summary, our contributions are as follows:

– We conduct a thorough utilization study of CPUs, GPUs, and memory capac-
ity in Perlmutter, a top 8 state-of-the-art HPC system that contains both
CPU-only and GPU-accelerated nodes. We discover that both CPU-only and
GPU-enabled jobs usually do not fully utilize key resources.

– We find that host memory capacity is largely not fully utilized for memory-
balanced jobs, while memory-imbalanced jobs have significant temporal
and/or spatial memory requirements.

– We show a positive correlation between job node hours, maximum memory
usage, as well as temporal and spatial factors.

– Our findings motivate future research such as resource disaggregation, job
scheduling that allows job co-allocation, and research that mitigates potential
drawbacks from co-locating jobs.

2 Related Work

Many previous works have utilized job logs and correlated them with system
logs to analyze job behavior in HPC systems [3,5,9,16,26]. For example, Zheng
et al. correlated the Reliability, Availability, and Serviceability (RAS) logs with
job logs to identify job failure and interruption characteristics [26]. Other works
utilize performance monitoring infrastructure to characterize application and
system performance in HPC [6,8,10,18,19,23,24]. In particular, the paper pre-
sented by Ji et al. analyzed various application memory usage in terms of object

A Case Study of NERSC’s Perlmutter 299

access patterns [6]. Patel et al. collected storage system data and performed
a correlative analysis of the I/O behavior of large-scale applications [18]. The
resource utilization analysis of the Titan system [24] summarized the CPU and
GPU time, memory, and I/O utilization across a five-year period. Peng et al.
focused on the memory subsystem and studied the temporal and spatial mem-
ory usage in two production HPC systems at LLNL [19]. Michelogiannakis et
al. [10] performed a detailed analysis of key metrics sampled in NERSC’s Cori
to quantify the potential of resource disaggregation in HPC.

System analysis provides insights into resource utilization and therefore
drives research on predicting and improving system performance [2,17,20,25].
Xie et.al developed a predictive model for file system performance on the Titan
supercomputer [25]. Desh [2], proposed by Das et al., is a framework that builds
a deep learning model based on system logs to predict node failures. Panwar et
al. performed a large-scale study of system-level memory utilization in HPC and
proposed exploiting unused memory via novel architecture support for OS [17].
Peng et al. performed a memory utilization analysis of HPC clusters and explored
using disaggregated memory to support memory-intensive applications [20].

3 Background

3.1 System Overview

NERSC’s latest system, Perlmutter [13], contains both CPU-only nodes and
GPU-accelerated nodes with CPUs. Perlmutter has 1,536 GPU-accelerated
nodes (12 racks, 128 GPU nodes per rack) and 3,072 CPU-only nodes (12 racks,
256 CPU nodes per rack). These nodes are connected through HPE/Cray’s Sling-
shot Ethernet-based high performance network. Each GPU-accelerated node fea-
tures four NVIDIA A100 Tensor Core GPUs and one AMD “Milan” CPU. The
memory subsystem in each GPU node includes 40 GB of HBM2 per GPU and
256 GB of host DRAM. Each CPU-only node features two AMD “Milan” CPUs
with 512 GB of memory. Perlmutter currently uses SLURM version 21.08.8 for
resource management and job scheduling. Most users submit jobs to the reg-
ular queue that has no maximum number of nodes and a maximum allowable
duration of 12 h.

The workload served by the NERSC systems includes applications from a
diverse range of science domains, such as fusion energy, material science, cli-
mate research, physics, computer science, and more [11]. From the over 45-year
history of the NERSC HPC facility and 12 generations of systems with diverse
architectures, the traditional HPC workloads evolved very slowly despite the
substantial underlying system architecture evolution [10]. However, the number
of deep learning and machine learning workloads across different science dis-
ciplines has grown significantly in the past few years [22]. Furthermore, in our
sampling time, Perlmutter was operating in parallel with Cori. Thus, the NERSC
workload was divided among the two machines and Perlmutter’s workload may
change once Cori retires. Therefore, while our study is useful to (i) find the gap
between resource provider and resource user and (ii) extract insights early in

300 J. Li et al.

Compute Node

LDMS Sampler

CPU Nodes

GPU Nodes

Compute Node

Compute Nodes

Aggregation Node

Metrics Aggregator

Aggregation Node(s) Storage Node(s)

LDMS & DCGM Sampler

CSV les

LDMS_ETL

Fig. 1. Data are collected from CPU-only and GPU nodes, aggregated by aggregation
nodes, stored in CSV files, and then processed using python’s parquet library after
being joined by job-level data provided by SLURM.

Perlmutter’s lifetime to guide future policies and procurement, as in any HPC
system the workload may change in the future. Still, our methodology can be
reused in the future and on different systems.

3.2 Data Collection

NERSC collects system-wide monitoring data through the Lightweight Dis-
tributed Metric Service (LDMS) [1] and Nvidia’s Data Center GPU Manager
(DCGM) [14]. LDMS is deployed on both CPU-only and GPU nodes; it sam-
ples node-level metrics either from a subset of hardware performance counters
or operating system data, such as memory usage, I/O operations, etc. DCGM is
dedicated to collecting GPU-specific metrics, including GPU utilization, GPU
memory utilization, NVlink traffic, etc. The sampling interval of both LDMS
and DCGM is set by the system at 10 s. The monitoring data are aggregated
into CSV files from which we build a processing pipeline for our analysis, shown
in Fig. 1. As a last step, we merge the job metadata from SLURM (job ID, job
step, allocated nodes, start time, end time, etc.) with the node-level monitoring
metrics. The output from our flow is a set of parquet files.

Due to the large volume of data, we only sample Perlmutter from Novem-
ber 1 to December 1 of 2022. The system’s monitoring infrastructure is still
under deployment and some important traces such as memory bandwidth are
not available at this time. A duration of one month is typically representative in
an open-science HPC system [10], which we separately confirmed by sampling
other periods. However, Perlmutter’s workload may shift after the retirement of
Cori as well as the introduction of policies such as allowing jobs to share nodes
in a limited fashion. Still, a similar extensive study in Cori [10] that allows node
sharing extracted similar resource usage conclusions as our study. Therefore,
we anticipate that the key insights from our study in Perlmutter will remain
unchanged, and we consider that studies conducted in the early stages of a sys-
tem’s lifetime hold significant value.

A Case Study of NERSC’s Perlmutter 301

We measure CPU utilization from cpu id (CPU idle time among all cores in
a node, expressed as a percentage) reported from vmstat through LDMS [1]; we
then calculate CPU utilization (as a percentage) as: 100−cpu id. GPU utilization
(as a percentage) is directly read from DCGM reports [15]. Memory capacity uti-
lization encompasses both the utilization of memory by user-space applications
and the operating system. We use fb free (framebuffer memory free) from DCGM
to calculate GPU HBM2 utilization and mem free (the amount of idle memory)
from LDMS to calculate host DRAM capacity utilization. Memory capacity uti-
lization (as a percentage) is calculated as MemUtil = MemTotal−MemFree

MemTotal ×100,
where MemTotal, as described above, is 512 GB for CPU nodes, 256 GB for
the host memory of GPU nodes, and 40 GB for each GPU HBM2. MemFree is
the unused memory of a node, which essentially shows how much more memory
the job could have used.

In order to understand the temporal and spatial imbalance of resource usage
among jobs, we use the equations proposed in [19] to calculate the temporal
imbalance factor (RItemporal) and spatial imbalance factor (RIspatial). These
factors allow us to quantify the imbalance in resource usage over time and across
nodes, respectively. For a job that requests N nodes and runs for time T, and
its utilization of resource r on node n at time t is Un,t, the temporal imbalance
factor is defined as:

RItemporal(r) = max
1≤n≤N

(1 −
∑T

t=0 Un,t
∑T

t=0 max0≤t≤T (Un,t)
) (1)

Similarly, the spatial imbalance factor is defined as:

RIspatial(r) = 1 −
∑N

n=1 max0≤t≤T (Un,t)
∑N

n=1 max0≤t≤T,1≤n≤N (Un,t)
(2)

Both RItemporal and RIspatial are bound within the range of [0, 1]. Ideally, a
job uses fully all resources on all allocated nodes across the job’s lifetime, cor-
responding to a spatial and temporal factor of 0. A larger factor value indicates
a variation in resource utilization temporally/spatially and the job experiences
more temporal/spatial imbalance.

We exclude jobs with a runtime of less than 1 h in our subsequent analysis,
as such jobs are likely for testing or debugging purposes. Furthermore, since our
sampling frequency is 10 s, it is difficult to capture peaks that last less than 10 s
accurately. As a result, we concentrate on analyzing the behavior of sustained
workloads. Table 1 summarizes job-level statistics in which each job’s resource
usage is represented by its maximum resource usage among all allocated nodes
throughout its runtime.

3.3 Analysis Methods

To distill meaningful insights from our dataset we use Cumulative Distribution
Functions (CDFs), Probability Density Functions (PDFs), and Pearson correla-
tion coefficients. The CDF shows the probability that the variable takes a value

302 J. Li et al.

Table 1. Perlmutter measured data summary. Each job’s resource utilization is repre-
sented by its peak usage.

Metric Statistics of all jobs Statistics of jobs ≥ 1h

Median Mean Max Std Dev Median Mean Max Std Dev

CPU Jobs 21.75% of CPU jobs ≥ 1h

Allocated nodes 1 6.51 1713 37.83 1 4.84 1477 25.43

Job duration (hours) 0.16 1.40 90.09 3.21 4.19 5.825 90.09 4.73

CPU util (%) 35.0 39.98 100.0 34.60 51.0 56.68 100.0 35.89

DRAM util (%) 13.29 22.79 98.62 23.65 18.61 33.69 98.62 30.88

GPU Jobs 23.42% GPU jobs ≥ 1h

Allocated nodes 1 4.66 1024 27.71 1 5.88 512 23.33

Job duration (hours) 0.30 1.14 13.76 2.42 2.2 4.12 13.76 3.67

Host CPU util (%) 4.0 19.60 100.0 23.53 4.0 18.00 100.0 24.81

Host DRAM util (%) 17.57 29.76 98.29 12.51 18.04 28.24 98.29 20.94

GPU util (%) 96.0 71.08 100.0 40.07 100.0 83.73 100.0 30.45

GPU HBM2 util (%) 16.28 34.07 100.0 37.49 18.88 40.23 100.0 36.33

less than or equal to x, for all values of x; the PDF shows the probability that
the variable has a value equal to x. To evaluate the resource utilization of jobs,
we analyze the maximum resource usage that occurred during each job’s entire
runtime, and we factor in the job’s impact on the system by weighting the job’s
data points based on the number of nodes allocated and the duration of the job.
We then calculate the CDF and PDF of job-level metrics using these weighted
data points. The Pearson correlation coefficient, which is a statistical tool to
identify potential relationships between two variables, is used to investigate the
correlation between two characteristics. The correlation factor, or Pearson’s r,
ranges from −1.0 to 1.0; a positive value indicates a positive correlation, zero
indicates no correlation, and a negative value indicates a negative correlation.

4 Results

In this section, we start with an overview of the job characteristics, including
their size, duration, and the applications they represent. Then we use CDF and
PDF plots to investigate the resource usage pattern across jobs, followed by the
characterization of the temporal and spatial variability of jobs. Lastly, we assess
the correlation between the different resource types assigned to each job.

4.1 Workloads Overview

We divide jobs into six groups by the number of allocated nodes and calculate the
percentage of each group compared to the total number of jobs. The details are
shown in Table 2. As shown, 68.10% of CPU jobs and 65.89% of GPU jobs only
request one node, while large jobs that allocate more than 128 nodes are only

A Case Study of NERSC’s Perlmutter 303

Table 2. Job size and duration. Jobs shorter than one hour are excluded.

Job Size (Nodes) 1 (1, 4] (4, 16] (16, 64] (64, 128] (128, 128+)

CPU Jobs Total Number: 21706 14783 2486 3738 550 62 87

Percentage (%) 68.10 11.45 17.22 2.54 0.29 0.40

GPU Jobs Total Number: 24217 15924 5358 1837 706 318 74

Percentage (%) 65.89 22.04 7.56 2.90 1.31 0.30

Job Duration (Hours) [1, 3] (3, 6] (6, 12] (12, 24] (24, 48] (48, 48+)

CPU Jobs Total Number: 21706 8879 4109 6300 2393 15 10

Percentage (%) 40.90 18.94 29.02 11.02 0.07 0.05

GPU Jobs Total Number: 24217 14495 3888 4916 918 0 0

Percentage (%) 59.86 16.05 20.30 3.79 0 0

0.40% and 0.30% on CPU and GPU nodes, respectively. Also, 40.90% of CPU
jobs and 59.86% of GPU jobs execute for less than three hours (as aforemen-
tioned, jobs with less than one hour of runtime are discarded from the dataset).
We also observe that about 88.86% of CPU jobs and 96.21% of GPU jobs execute
less than 12 h, and only a few CPU jobs and no GPU jobs exceed 48 h. This is
largely a result of policy since Perlmutter’s regular queue allows a maximum of
12 h. However, jobs using a special reservation can exceed this limit [13].

Next, we analyze the job names obtained from Slurm’s sacct and estimate the
corresponding applications through empirical analysis. Although this approach
has limitations, such as the inability to identify jobs with undescriptive names
such as “python” or “exec”, it still offers useful information. Figure 2 shows that
most node hours on both CPU-only and GPU-accelerated nodes are consumed
by a few recurring applications. The top four CPU-only applications account
for 50% of node hours, with ATLAS alone accounting for over a quarter. Over
600 CPU applications make up only 22% of the node hours, using less than
2% each (not labeled on the pie chart). On GPU-accelerated nodes, the top
11 applications consume 75% of node hours, while the other 400+ applications
make up the remaining 25%. The top six GPU applications account for 58% of
node hours, with usage roughly evenly divided.

We further classify system workloads into three groups according to their
maximum host memory capacity utilization. In particular, jobs using less than
25% of the total host memory capacity are categorized as low intensity, jobs
that use 25–50% are considered moderate intensity, and those exceeding 50%
are classified as high intensity [19]. Node-hours and the number of jobs can
also be decomposed in these three categories, where node-hours is calculated by
multiplying the total number of allocated nodes by the runtime (duration) of
each job.

As shown in Fig. 3a, CPU-only nodes have about 63% of low memory capacity
intensity jobs. Although moderate and high memory intensity jobs are 37% of the

304 J. Li et al.

(a) CPU-only nodes. (b) GPU-accelerated nodes.

Fig. 2. Decomposition of node-hours by applications. Infrequent applications are not
labeled.

(a) CPU-only jobs. (b) GPU-accelerated jobs.

Fig. 3. Node-hours and job counts by host memory capacity intensity (utilization).

total CPU jobs, they consume about 54% of the total node-hours. This indicates
that moderate and high memory intensity jobs are likely to use more nodes
and/or run for a longer time. This observation holds true for GPU nodes in which
37% of memory-intensive jobs compose 58% of the total node-hours. In addition,
we observe that even though the percentage of high memory intensity jobs on
GPU nodes (17%) is less than that on CPU nodes (26%), the corresponding
percentages of the node-hours are close, indicating that high memory intensity
GPU jobs consume more nodes and/or run for a longer time than high memory
intensity CPU jobs.

A Case Study of NERSC’s Perlmutter 305

Fig. 4. Maximum CPU utilization of CPU node-hours (left) and GPU node-hours
(right).

Observation: The analysis shows that both CPU and GPU nodes have
around two-thirds of jobs that only occupy one node. GPU jobs have a higher
proportion of short-lived jobs that run for less than three hours compared
to CPU jobs. Additionally, jobs rarely allocate more than 128 nodes, which
suggests that the majority of jobs can be accommodated within a single rack
in the Perlmutter system. Furthermore, the analysis indicates that jobs that
are intensive in host memory tend to consume more node-hours, despite rep-
resenting a relatively small proportion of total jobs.

4.2 Resource Utilization

This subsection analyzes resource usage among jobs and compares the charac-
teristics of CPU-only jobs and GPU-enabled jobs. We consider the maximum
resource usage of a job across all allocated nodes and throughout its entire run-
time to represent its resource utilization because maximum utilization must be
accounted for when scheduling a job in a system. As jobs with larger sizes and
longer durations have a greater impact on system resource utilization, and the
system architecture is optimized for node-hours, we calculate the resource uti-
lization for each job and multiply the number of data points we add to our
dataset that measure that utilization by the job’s node-hours.

CPU Utilization. Figure 4 shows the distribution of the maximum CPU uti-
lization of CPU jobs and GPU jobs weighted by node-hours. As shown, 40.2% of
CPU node-hours have at most 50% CPU utilization, and about 28.7% of CPU
node-hours has a maximum CPU utilization of 50–55%. In addition, 24.4% of
jobs reach over 95% CPU utilization, creating a spike at the end of the CDF line.
Over one-third of CPU jobs only utilize up to 50% of the CPU resources available,
which could potentially be attributed to Simultaneous Multi-threading (SMT)
in the Milan architecture. While SMT can provide benefits for specific types
of workloads, such as communication-bound or I/O-bound parallel applications,
it may not necessarily improve performance for all applications and may even
reduce it in some cases [21]. Consequently, users may choose to disable SMT,

306 J. Li et al.

Fig. 5. Maximum host memory capacity utilization of CPU node-hours (left) and GPU
node-hours (right).

leading to half of the logical cores being unused during runtime. Additionally,
certain applications are not designed to use SMT at all, resulting in a reported
utilization of only 50% in our analysis even with 100% compute core utilization.

In contrast to CPU jobs, GPU-enabled jobs exhibit a distinct distribution of
CPU usage, with the majority of jobs concentrated in the 0–5% bin and only
a small fraction of jobs utilizing the CPUs in full. We also obverse that node-
hours with high utilization of both CPU and GPU resources are rare, with only
2.47% of node-hours utilizing over 90% of these resources (not depicted). This is
because the CPUs in GPU nodes are primarily tasked with data preprocessing,
data retrieval, and loading computed data, while the bulk of the computational
load is offloaded to the GPUs. Therefore, the utilization of the CPUs in GPU-
enabled jobs is comparatively low, as their primary function is to support and
facilitate the GPU’s heavy computational tasks.

Host DRAM Utilization. We plot the CDF and PDF of the maximum host
memory utilization of job node-hours in Fig. 5. To help visualize the distribution
of memory usage, the red vertical lines at the X axis indicate the 25% and 50%
thresholds that we previously used to classify jobs into three memory intensity
groups. A considerable fraction of the jobs on both CPU and GPU nodes use
between 5% and 25% of host memory capacity, respectively. Specifically, 47.4% of
all CPU jobs and 43.3% of all GPU jobs fall within these ranges. The distribution
of memory utilization, like that of CPU utilization, displays spikes at the end of
the CDF lines due to a small percentage of jobs (12.8% for CPU and 9.5% for
GPU, respectively) that fully exhaust host memory capacity.

Our results indicate that a significant proportion of both CPU and GPU
jobs, 64.3% and 62.8% respectively, use less than 50% of the available memory
capacity. As a reminder, the available host memory capacity is 512 GB in CPU
nodes and 256 GB in GPU nodes. While memory capacity is also not fully utilized
in Cori [10], the higher memory capacity per node in Perlmutter exacerbates the
challenge of fully utilizing the available memory capacity.

A Case Study of NERSC’s Perlmutter 307

Fig. 6. Maximum GPU (left) and HBM2 capacity (right) utilization of GPU-hours.

GPU Resources. The utilization of GPUs in DCGM indicates the percentage
of time that GPU kernels are active during the sampling period, and it is reported
per GPU instead of per node. Therefore, we analyze GPU utilization in terms of
GPU-hours instead of node-hours. The left subfigure of Fig. 6 displays the CDF
plot of maximum GPU utilization, indicating that 50% of GPU jobs achieve
a maximum GPU utilization of up to 67%, while 38.45% of GPU jobs reach a
maximum GPU utilization of over 95%. To assess the idle time of GPUs allocated
to jobs, we separate the GPU utilization of zero from other ranges in the PDF
histogram plot. As shown in the green bar, approximately 15% of GPU hours
are fully idle.

Similarly, we measure the maximum GPU HBM2 capacity utilization for each
allocated GPU during the runtime of each job. As shown in the right subfigure
of Fig. 6, the HBM2 utilization is close to evenly distributed from 0% to 100%,
resulting in a nearly linear CDF line. The green bar in the PDF plot suggests
that 10.6% of jobs use no HBM2 capacity, which is lower than the percentage of
GPU idleness (15%). This finding is intriguing as it indicates that even though
some allocated GPUs are idle, their corresponding GPU memory is still utilized,
possibly by other GPUs or for other purposes.

The GPU resources’ idleness can be attributed to the current configuration
of GPU-accelerated nodes, which are not allowed to be shared by jobs at the
same time. As a result, each user has exclusive access to four GPUs per node,
even if they require fewer resources. Sharing nodes may be enabled in the future,
potentially leading to more efficient use of GPU resources.

Observation: After analyzing CPU and host DRAM utilization, we find that
GPU node-hours consume fewer CPU and host memory resources in compari-
son to CPU node-hours, likely because the computation is offloaded to GPUs.
Although most GPU-hours reach high GPU utilization rates, we find that
15% of them have fully idle GPUs, and 10.6% of GPU-hours do not utilize
HBM2 capacity, due to current configurations that do not allow for job shar-
ing of GPU nodes. Allowing GPU sharing could alleviate the idleness of GPU
resources and increase their average utilization.

308 J. Li et al.

(a) Constant pattern. (b) Dynamic pattern. (c) Sporadic pattern.

Fig. 7. Temporal patterns illustrated with the memory capacity utilization metrics
of randomly selected jobs in Perlmutter, one representative job for each of the three
categories. Each color represents the memory capacity utilization (%) of each node
assigned to the job over the job’s runtime. The area plots at the bottom show the
normalized metrics for the node that has the maximum temporal factor among nodes
allocated to the job; the percentage of the blank area corresponds to the value of
RItemporal of a job. A larger blank area indicates more temporal imbalance.

4.3 Temporal Characteristics

Memory capacity utilization can become temporally imbalanced when a job does
not utilize memory capacity evenly over time. Temporal imbalance is particu-
larly common in applications that consist of phases that require different mem-
ory capacities. In such cases, a job may require significant amounts of memory
capacity during some phases, while utilizing much less during others, resulting
in a temporal imbalance of memory utilization.

We classify jobs into three patterns by the RItemporal value of host DRAM
utilization: constant, dynamic, and sporadic [19]. Jobs with RItemporal lower
than 0.2 are classified in the constant pattern, where memory utilization does
not show significant change over time. Jobs with RItemporal between 0.2 and 0.6
are in the dynamic pattern, where jobs have frequent and considerable memory
utilization changes. The sporadic pattern is defined by RItemporal larger than
0.6. In this pattern, jobs have infrequent and sporadic higher memory capacity
usage than the rest of the time.

Figure 7 illustrates three memory utilization patterns that were constructed
from our monitoring data. Each color in the scatter plot represents a differ-
ent node allocated to the job. The constant pattern job shows a nearly con-
stant memory capacity utilization of about 80% across all allocated nodes for its
entire runtime, resulting in the bottom area plot being almost fully covered. The
dynamic pattern job also exhibits similar behavior across its allocated nodes, but
due to variations over time, the shaded area has several bumps and dips, result-
ing in an increase in the blank area. For the sporadic pattern job, the memory
utilization readings of all nodes have the same temporal pattern, with sporadic
spikes and low memory capacity usage between spikes, resulting in the blank
area occupying most of the area and indicating poor temporal balance.

The CDFs and PDFs of the host memory temporal imbalance factor of CPU
jobs and GPU jobs are illustrated in Fig. 8, in which two vertical red lines sep-
arate the jobs into three temporal patterns. Overall, both CPU jobs and GPU

A Case Study of NERSC’s Perlmutter 309

(a) CPU jobs. (b) GPU jobs.

Fig. 8. CDFs and PDFs of the temporal factor of host memory capacity utilization
across nodes. The larger the value of the temporal factor, the more temporal imbalance.

(a) Temporal categories. (b) Spatial categories.

Fig. 9. Host DRAM distribution by temporal and spatial categories. The left portion
of each subfigure represents CPU jobs and the right portion GPU jobs.

jobs have good temporal balance: 55.3% of CPU jobs and 74.3% of GPU jobs
belong to the constant pattern, i.e., their RItemporal values are below 0.2. Jobs
on CPU nodes have a higher percentage of dynamic patterns: 35.9% of CPU jobs
have RItemporal value between 0.2 and 0.4, while GPU jobs have 24.9% in the
dynamic pattern. On GPU nodes, we only observe very few jobs (0.8%) in the
sporadic pattern, which means the cases of host DRAM having severe temporal
imbalance are few.

We further analyze the memory capacity utilization distribution of jobs in
each temporal pattern; the results are shown in Fig. 9a. We extract the maxi-
mum, minimum, and difference between maximum and minimum memory capac-
ity used from jobs in each category and present the distribution in box plots. The
minimum memory used for all categories on the same nodes is similar: about 25
GB and 19 GB on CPU and GPU nodes, respectively. 75% of jobs in the constant
category on CPU nodes use less than 86 GB while 75% jobs on GPU nodes use
less than 56 GB. As 55.3% CPU jobs and 74.3% GPU jobs are in the constant
category, 41.5% CPU jobs and 55.7% GPU jobs do not use 426 GB and 200 GB
of the available capacity, respectively. The maximum memory used in the con-

310 J. Li et al.

(a) Convergent pattern. (b) Scattered pattern. (c) Deviational pattern.

Fig. 10. Spatial patterns illustrated with the memory capacity utilization metrics of
randomly selected jobs in Perlmutter, one representative job for each of the three
categories. Each color represents memory utilization (%) of a different node allocated
to each job.

stant pattern is 150 GB on CPU nodes and 94 GB on GPU nodes, both of which
do not exceed half of the memory capacity. Jobs using high memory capacity
are only observed in dynamic and sporadic patterns, where 75% sporadic jobs
use up to 429 GB on CPU nodes and 189 GB on GPU nodes, respectively.

Observation: Our analysis suggests that GPU nodes exhibit a greater pro-
portion of jobs with temporal balance in host DRAM usage compared to CPU
nodes. While over half of both CPU and GPU jobs fall under the category
of temporal constant jobs, jobs with temporal imbalance, characterized by
dynamic and sporadic patterns, generally require higher maximum memory
capacity compared to constant pattern jobs. Furthermore, the distribution
of host memory capacity usage among jobs with different temporal patterns
reveals that memory capacity is not fully utilized for constant pattern jobs,
whereas dynamic and sporadic pattern jobs may achieve high memory capac-
ity utilization at some point during their runtime.

4.4 Spatial Characteristics

The job scheduler and resource manager of current HPC systems do not consider
the varying resource requirements of individual tasks within a job, leading to
spatial imbalances in resource utilization across nodes. One common type of
spatial imbalance is when a job requires a significant amount of memory in a
small number of nodes, while other nodes use relatively less memory. Spatial
imbalance of memory capacity quantifies the uneven usage of memory capacity
across nodes allocated to a job.

To characterize the spatial imbalance of jobs, we use Eq. 2 presented
in Sect.3.2 to calculate the spatial factor RI spatial of memory capacity usage
for each job. Similar to the temporal factor, RI spatial falls in the range [0, 1]
and larger values represent higher spatial imbalance. Jobs are classified into one
of three spatial patterns: (i) convergent pattern that has RI spatial less than
0.2, (ii) scattered pattern that has RI spatial between 0.2 and 0.6, and (iii)
deviational pattern with its RI spatial larger than 0.6.

A Case Study of NERSC’s Perlmutter 311

(a) CPU jobs. (b) GPU jobs.

Fig. 11. CDFs and PDFs of the spatial factor of host memory capacity utilization of
jobs. The larger the value of the spatial factor, the more spatial imbalance.

As shown in the examples in Fig. 10, a job that exhibits a convergent pattern
has similar or identical memory capacity usage among all of its assigned nodes.
A job with a scattered pattern shows diverse memory usage and different peak
memory usage among its nodes. A spatial deviational pattern job has a similar
memory usage pattern in most of its nodes but has one or several nodes deviate
from the bunch. It is worth noting that low spatial imbalance does not indi-
cate low temporal imbalance. The spatial convergent pattern job shown in the
example has several spikes in memory usage and therefore is a temporal sporadic
pattern.

We present the CDFs and PDFs of the job-wise host memory capacity spatial
factor in Fig. 11. Overall, 83.5% of CPU jobs and 88.9% of GPU nodes are in
the convergent pattern and very few jobs are in the deviational pattern. Because
jobs that allocate a single node always have a spatial imbalance factor of zero, if
we include single-node jobs, the overall memory spatial balance is even better:
94.7% for CPU jobs and 96.2% for GPU jobs.

We combine the host memory spatial pattern with the host memory capac-
ity usage behavior in each job and plot the distribution of memory capacity
utilization by spatial patterns; the results are shown in Fig. 9b. Similar to the
distribution of the temporal patterns, we use the maximum, minimum, and dif-
ference of job memory to evaluate the memory utilization imbalance. Spatial
convergent jobs have relatively low memory usage. As shown in the green box
plots, 75% of spatial convergent jobs (upper quartile) use less than 254 GB
on CPU nodes and 95 GB on GPU nodes. Given that spatial convergent jobs
account for over 94% of total jobs, over 70% of jobs have 258 GB and 161 GB of
memory capacity unused for CPU and GPU nodes, respectively. Memory imbal-
ance, i.e., the difference between the maximum and minimum memory capacity
usage of a job (red box plots), is also the lowest in convergent pattern jobs. For
spatial-scattered jobs on CPU nodes, even though they are a small portion of
the total jobs, the memory difference spans a large range: from 115 GB at 25%
percentile to 426 GB at 75% percentile. Spatial deviational CPU jobs have a
shorter span in memory imbalance compared to GPU jobs; it only ranges from
286 GB to 350 GB at the lower and upper quartiles, respectively.

312 J. Li et al.

(a) CPU jobs. (b) GPU jobs.

Fig. 12. Correlation of job node-hours, maximum memory capacity used, temporal,
and spatial factors.

Observation: Our analysis shows that a significant number of CPU and
GPU jobs on Perlmutter have a convergent pattern of spatial balance for host
memory capacity usage across allocated nodes. Even after eliminating single-
node jobs, the proportion of jobs with a convergent spatial pattern remains
high, suggesting that Perlmutter’s jobs generally have good spatial balance.
However, jobs with scattered and deviational spatial patterns, albeit fewer
in number, tend to consume more memory capacity in some allocated nodes,
leading to uneven memory capacity utilization across nodes and some nodes
exhibiting low memory capacity utilization.

4.5 Correlations

We conduct an analysis of the relationships between various job characteris-
tics on Perlmutter, including job size and duration (measured as node hours),
maximum CPU and host memory capacity utilization, and temporal and spa-
tial factors. The results of the analysis are presented in a correlation matrix
in Fig. 12. Our findings show that for both CPU and GPU nodes, job node-
hours are positively correlated with the spatial imbalance factor (ri spatial).
This suggests that larger jobs with longer runtimes are more likely to experience
spatial imbalance. Maximum CPU utilization is strongly positively correlated
with host memory capacity utilization and temporal factors in CPU jobs, while
the correlation is weak in GPU jobs. Moreover, the temporal imbalance factor
(ri temporal) is positively correlated with maximum memory capacity utiliza-
tion (mem max), with correlation coefficients (r-value) of 0.75 for CPU jobs and
0.59 for GPU jobs. These strong positive correlations suggest that jobs requiring
a significant amount of memory are more likely to experience temporal memory
imbalance, which is consistent with our previous observations. Finally, we find
a slight positive correlation (r-value of 0.16 for CPU jobs and 0.29 for GPU

A Case Study of NERSC’s Perlmutter 313

jobs) between spatial and temporal imbalance factors, indicating that spatially
imbalanced jobs are also more likely to experience temporal imbalance.

5 Discussion and Conclusion

In light of the increasing demands of HPC and the varied resource require-
ments of open-science workloads, there is a risk of not fully utilizing expensive
resources. To better understand this issue, we conducted a comprehensive analy-
sis of memory, CPU, and GPU utilization in NERSC’s Perlmutter. Our analysis
spanned one month and yielded important insights. Specifically, we found that
only a quarter of CPU node-hours achieved high CPU utilization, and CPUs on
GPU-accelerated nodes were typically utilized for only 0–5% of the node-hours.
Moreover, while a significant proportion of GPU-hours demonstrated high GPU
utilization (over 95%), more than 15% of GPU-hours had idle GPUs. Moreover,
both CPU host memory and GPU HBM2 were not fully utilized for the major-
ity of node-hours. Interestingly, jobs with temporal balance consistently did not
fully utilize memory capacity, while those with temporal imbalance had vary-
ing idle memory capacity over time. Finally, we observed that jobs with spatial
imbalance did not have high memory capacity utilization for all allocated nodes.

Insufficient resource utilization can be attributed to various application char-
acteristics, as similar issues have been observed in other HPC systems. Although
simultaneous multi-threading can potentially improve CPU utilization and mit-
igate stalls resulting from cache misses, it may not be suitable for all applica-
tions. Furthermore, GPUs, being a new compute resource to NERSC users, may
be currently not fully utilized because users and applications are still adapt-
ing to the new system, and the current configurations are not optimized yet to
support GPU node sharing. Furthermore, it is important to note that in most
systems, various parameters such as memory bandwidth and capacity are inter-
dependent. For instance, the number and type of memory modules significantly
impact memory bandwidth and capacity. Therefore, when designing a system,
it may be challenging to fully utilize every parameter while optimizing others.
This may result in some resources being not fully utilized to improve the overall
performance of the system. Thus, not fully utilizing system resources can be an
intentional trade-off in the design of HPC systems.

Our study provides valuable insights for system operators to understand and
monitor resource utilization patterns in HPC workloads. However, the scope of
our analysis was limited by the availability of monitoring data, which did not
include information on network and memory bandwidth as well as file system
statistics. Despite this limitation, our findings can help system operators identify
areas where resources are not fully utilized and optimize system configuration.

Our analysis also reveals several opportunities for future research. For
instance, given that 64% of jobs use only half or less of the on-node host DRAM
capacity, it is worth exploring the possibility of disaggregating the host memory
and using a remote memory pool. This remote pool can be local to a rack, group
of racks, or the entire system. Our job size analysis indicates that most jobs

314 J. Li et al.

can be accommodated within the compute resources provided by a single rack,
suggesting that rack-level disaggregation can fulfill the requirements of most
Perlmutter jobs if they are placed in a single rack. Furthermore, a disaggregated
system could consider temporal and spatial characteristics when scheduling jobs
since high memory utilization is often observed in memory-unbalanced jobs. Such
jobs can be given priority for using disaggregated memory.

Another promising area for improving resource utilization is to reevaluate
node sharing for specific applications with compatible temporal and spatial char-
acteristics. One of the main challenges in job co-allocation is the potential for
shared resources, such as memory, to become saturated at high core counts
and significantly degrade job performance. However, our analysis reveals that
both CPU and memory resources are not fully utilized, indicating that there
may be room for co-allocation without negatively impacting performance. The
observation that memory-balanced jobs typically consume relatively low memory
capacity suggests that it may be possible to co-locate jobs with memory-balanced
jobs to reduce the probability of contention for memory capacity. By optimiz-
ing resource allocation and reducing the likelihood of resource contention, these
approaches can help maximize system efficiency and performance.

Acknowledgment. We would like to express our gratitude to the anonymous review-
ers for their insightful comments and suggestions. We also thank Brian Austin, Nick
Wright, Richard Gerber, Katie Antypas, and the rest of the NERSC team for their
feedback. This research used resources of the National Energy Research Scientific Com-
puting Center (NERSC), a U.S. Department of Energy Office of Science User Facility
located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-
AC02-05CH11231. This work was supported by the Director, Office of Science, of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research
was supported in part by the National Science Foundation under grants OAC-1835892
and CNS-1817094.

References

1. Agelastos, A., et al.: The lightweight distributed metric service: a scalable infras-
tructure for continuous monitoring of large scale computing systems and applica-
tions. In: SC 2014: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 154–165. IEEE (2014)

2. Das, A., Mueller, F., Siegel, C., Vishnu, A.: Desh: deep learning for system health
prediction of lead times to failure in HPC. In: Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing, pp. 40–51
(2018)

3. Di, S., Gupta, R., Snir, M., Pershey, E., Cappello, F.: LogAider: a tool for mining
potential correlations of HPC log events. In: 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 442–451. IEEE
(2017)

4. Gil, Y., Greaves, M., Hendler, J., Hirsh, H.: Amplify scientific discovery with arti-
ficial intelligence. Science 346(6206), 171–172 (2014)

A Case Study of NERSC’s Perlmutter 315

5. Gupta, S., Patel, T., Engelmann, C., Tiwari, D.: Failures in large scale systems:
long-term measurement, analysis, and implications. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–12 (2017)

6. Ji, X., et al.: Understanding object-level memory access patterns across the spec-
trum. In: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 1–12 (2017)

7. Kindratenko, V., Trancoso, P.: Trends in high-performance computing. Comput.
Sci. Eng. 13(3), 92–95 (2011)

8. Li, J., et al.: MonSTer: an out-of-the-box monitoring tool for high performance
computing systems. In: 2020 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 119–129. IEEE (2020)

9. Madireddy, S., et al.: Analysis and correlation of application I/O performance
and system-wide I/O activity. In: 2017 International Conference on Networking,
Architecture, and Storage (NAS), pp. 1–10. IEEE (2017)

10. Michelogiannakis, G., et al.: A case for intra-rack resource disaggregation in HPC.
ACM Trans. Archit. Code Optim. (TACO) 19(2), 1–26 (2022)

11. NERSC: NERSC-10 Workload Analysis (Data from 2018) (2018). https://portal.
nersc.gov/project/m888/nersc10/workload/N10 Workload Analysis.latest.pdf

12. NERSC: Cori (2022). https://www.nersc.gov/systems/cori/
13. NERSC: Perlmutter (2022). https://www.nersc.gov/systems/perlmutter/
14. NVIDA: NVIDIA DCGM (2022). https://developer.nvidia.com/dcgm
15. NVIDA: NVIDIA DCGM Exporter (2022). https://github.com/NVIDIA/dcgm-

exporter/blob/main/etc/dcp-metrics-included.csv
16. Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs.

In: 37th annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2007), pp. 575–584. IEEE (2007)

17. Panwar, G., et al.: Quantifying memory underutilization in HPC systems and using
it to improve performance via architecture support. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 821–835
(2019)

18. Patel, T., Byna, S., Lockwood, G.K., Tiwari, D.: Revisiting I/O behavior in large-
scale storage systems: the expected and the unexpected. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–13 (2019)

19. Peng, I., Karlin, I., Gokhale, M., Shoga, K., Legendre, M., Gamblin, T.: A holistic
view of memory utilization on HPC systems: current and future trends. In: The
International Symposium on Memory Systems, pp. 1–11 (2021)

20. Peng, I., Pearce, R., Gokhale, M.: On the memory underutilization: exploring disag-
gregated memory on HPC systems. In: 2020 IEEE 32nd International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), pp.
183–190. IEEE (2020)

21. Tau Leng, R.A., Hsieh, J., Mashayekhi, V., Rooholamini, R.: An empirical study of
hyper-threading in high performance computing clusters. Linux HPC Revolution
45 (2002)

22. Thomas, R., Stephey, L., Greiner, A., Cook, B.: Monitoring scientific python usage
on a supercomputer (2021)

23. Turner, A., McIntosh-Smith, S.: A survey of application memory usage on a
national supercomputer: an analysis of memory requirements on ARCHER. In:
Jarvis, S., Wright, S., Hammond, S. (eds.) PMBS 2017. LNCS, vol. 10724, pp.
250–260. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72971-8 13

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://www.nersc.gov/systems/cori/
https://www.nersc.gov/systems/perlmutter/
https://developer.nvidia.com/dcgm
https://github.com/NVIDIA/dcgm-exporter/blob/main/etc/dcp-metrics-included.csv
https://github.com/NVIDIA/dcgm-exporter/blob/main/etc/dcp-metrics-included.csv
https://doi.org/10.1007/978-3-319-72971-8_13

316 J. Li et al.

24. Wang, F., Oral, S., Sen, S., Imam, N.: Learning from five-year resource-utilization
data of titan system. In: 2019 IEEE International Conference on Cluster Comput-
ing (CLUSTER), pp. 1–6. IEEE (2019)

25. Xie, B., et al.: Predicting output performance of a petascale supercomputer. In:
Proceedings of the 26th International Symposium on High-Performance Parallel
and Distributed Computing, pp. 181–192 (2017)

26. Zheng, Z., et al.: Co-analysis of RAS log and job log on blue Gene/P. In: 2011
IEEE International Parallel & Distributed Processing Symposium, pp. 840–851.
IEEE (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Overcoming Weak Scaling Challenges
in Tree-Based Nearest Neighbor Time

Series Mining

Amir Raoofy1,4(B), Roman Karlstetter2,4, Martin Schreiber3,4,
Carsten Trinitis4, and Martin Schulz4

1 Leibniz Supercomputing Centre, Munich, Germany
amir.raoofy@lrz.de

2 IfTA GmbH, Puchheim, Germany
roman.karlstetter@ifta.com

3 Université Grenoble Alpes (UGA), Grenoble, France
martin.schreiber@univ-grenoble-alpes.fr

4 Technical University of Munich, Munich, Germany
{carsten.trinitis,martin.w.j.schulz}@tum.de

Abstract. The mining of time series data plays an important role in
modern information retrieval and monitoring infrastructures. In particu-
lar, the identification of similarities within and across large time series is
of great importance in analytics and knowledge discovery. For this task,
the matrix profile similarity indexing approach, which encodes the corre-
lations among snapshots of a time series, is well-established. However, it
is computationally expensive, especially for long time series, as existing
exact approaches mostly rely on exhaustive, exact query (search) opera-
tions and are inefficient. Similarly, existing approximate approaches are
limited with respect to parallelism, scalability, or their extent of practi-
cality. We, therefore, focus on an approximate parallel tree-based nearest-
neighbors approach and address the weak scaling challenges raised when
applied to large time series in HPC settings.

We build on the existing concept of parallel iterative tree-based near-
est neighbor solvers and introduce a novel approach for the approxi-
mate calculation of the matrix profile. To improve the performance and
overcome weak scalability challenges, we exploit a mix of creating a for-
est of parallel trees on exclusive ensembles of resources combined with
pipelining of iterations. We provide an implementation targeting large-
scale CPU-based HPC systems and illustrate the performance of this
new approach with experimental data. Finally, we demonstrate the min-
ing of time series at billion-records-scale datasets on the SuperMUC-NG
system.

1 Introduction

Time series and their analysis are mainstream in many areas, from infrastruc-
ture monitoring [12] (power grid, renewable energy generation, ...) to mobility
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 317–338, 2023.
https://doi.org/10.1007/978-3-031-32041-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_17&domain=pdf
https://doi.org/10.1007/978-3-031-32041-5_17

318 A. Raoofy et al.

data [27] (self-driving cars, plane safety systems, ...), from environmental sen-
sors [21] (weather monitoring, data-driven architecture, ...) to factory automa-
tion [9] (predictive maintenance, intelligent material flow, ...). As the size of such
datasets grows (in many such use cases, billions of data samples are already not
uncommon), we need scalable, high-performance approaches to process them,
e.g., to extract similarities and patterns with a reasonable time-to-solution (e.g.,
in order of minutes). This highlights the importance of using suitable parallel
scalable algorithms and tools on large-scale HPC systems to meet the processing
speed, efficiency, and memory requirements for processing large datasets, as they
appear in real-world use cases.

Matrix profile [33] is a well-established indexing approach for the explorative
analysis of time series data. This approach was introduced in 2016 by Yeh et al.
in a series of papers [33,34,39] and has been successfully applied to mine simi-
larities and patterns in datasets from various fields, such as seismology [28] and
medical science [5], and used for various data mining and machine learning tasks,
such as semantic segmentation, clustering, and anomaly detection [40]. Since its
introduction, due to its various performance, scalability, accuracy, and practi-
cality advantages, it has gained significant momentum in research communities
as a fundamental approach for time series mining.

The matrix profile itself is a meta index that encodes similarity in time series
data and its computation corresponds to a nearest-neighbors problem with the
well-known classical exact approaches to compute it based on exhaustive search
operations for nearest neighbors [8,33]. These exact solutions are generally inef-
ficient for large datasets as the computational costs scale quadratically with the
size of the datasets (i.e., the number of records). These approaches typically rely
on mitigating the computational costs for the search operations by extensive
arithmetic optimizations of compute kernels [37], or using accelerators for com-
putation [11,39], and deploying on cloud-based [41] or HPC systems [20,24]. On
the other hand, approximate approaches [26,37] are drawing increasing attention
as they can provide solutions that are much more efficient to compute while also
being accurate enough in practice. However, existing approaches still suffer either
from excessive computational costs [37] (e.g., it takes days to compute matrix
profile for 1 billion records on GPUs [41]), are restricted to specific settings [26]
and application scenarios [15], or lack parallelization.

To our best knowledge, no research in the literature focuses on classical
nearest-neighbor approaches for the computation of matrix profiles to prune
the search space and reduce computational costs. In this paper, we focus on
these approaches, specifically on the family of the iterative approximate nearest-
neighbor exploiting KD-tree-based data structures and randomized approximate
nearest neighbor approach [1] in distributed memory setting [32] as state of the
art. To address computation for large datasets, we target large-scale CPU-based
HPC systems and use weak scaling as the relevant scenario to scale to larger
datasets. We demonstrate that, when applied to matrix profile computation in
weak scaling, the state-of-the-art nearest neighbor approach method suffers from
excessive communication overheads. We address these scaling challenges.

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 319

We specifically introduce two optimizations to address scaling challenges: 1)
we pipeline the stages of the nearest neighbor algorithm in consecutive iterations
to overlap the construction of the parallel tree data structure and the follow-on
search operations; and 2) we enable control over the granularity of parallelism
by constructing a forest of parallel trees on smaller ensembles of resources.

Overall, the tree-based solution enables us to exploit and explore approximate
tree-based nearest-neighbor schemes for the first time in matrix profile compu-
tation. Consequently, we achieve a competitive solution to the alternatives for
matrix profile computation. Additionally, once combined with the weak-scaling
optimizations, the tree-based solution outperforms the state-of-the-art nearest
neighbor algorithms when applied to matrix profile computation on HPC sys-
tems. We make the following contributions:

– We develop and, for the first time, apply an iterative tree-based nearest neigh-
bor algorithm for the approximate computation of the matrix profile.

– We perform a detailed analysis of the performance, accuracy, and scaling
behavior of the iterative tree-based approach and demonstrate its benefits.

– We extend the state-of-the-art iterative nearest neighbor with a combination
of a pipelining mechanism and creating a forest of trees to scale the matrix
profile computation on the HPC systems.

– We demonstrate the region of benefit where the tree-based approach is supe-
rior to alternatives when applied to real-world datasets and scenarios.

We further demonstrate that once compared to the prior art, our optimiza-
tions improve the scalability of the tree-based matrix profile computation on
HPC systems by doubling the parallel efficiency when increasing the resources
by three orders of magnitude on the SuperMUC-NG system. We also show-
case the performance of our approach for large-scale problems by computing the
approximate matrix profile for time series with 1 billion records on 48K cores of
the system with 99% accuracy in under 20 min, which is 3–100 folds faster than
other alternative approaches.

2 Matrix Profile Background and Performance-Accuracy
Trade-offs

Matrix profile is an indexing approach to represent the similarities of local chunks
of two input time series. These input time series are the query time series TQ ∈ R

q

with q records, and the reference time series TR ∈ R
r with r records. The chunks

(also known as segments or subsequences) are small overlapping windows of m
consecutive samples of either of the input time series generated by moving a
window of size m over the input time series. m is called the subsequence length
or window size. The reference time series is often a well-known historical time
series dataset and is used to characterize motifs, patterns, and anomalies in the
unknown query time series. The two input series can also be identical.

Matrix profile computation is based on comparing all the local chunks of the
two input series, and for this, a distance (or correlation) matrix is calculated.

320 A. Raoofy et al.

For chunks in the query time series, the best matching fellow chunks in the ref-
erence time series, i.e., the chunks with maximum correlations, are determined.
This way, the best matching chunks with the most similarities are retrieved. The
matrix profile P itself is a real-valued vector of the distances of best matching seg-
ments of TQ to their nearest neighbor segments in TR. The matrix profile index I
is an indexing vector indicating the location of the aforementioned nearest neigh-
bor segments in TR. With these definitions, computing the matrix profile, i.e.,
computing P and I, can be done using any nearest neighbor algorithm applied
to set of segments, R and Q, as input data. The dimensionality of members of
these sets corresponds to the subsequence length m.

Computing the matrix profile for two input time series, each including n
records (r = q = n) require O(m · n2) computation corresponding to the
cost to compute the distance matrix. However, state-of-the-art methods (e.g.,
SCRIMP++ [37]) achieve this in O(n2) by using a so-called streaming dot prod-
uct formulation for distance computation. Tree-based methods cannot employ
this formulation; however, they can prune parts of the computation of elements
in the distance matrix that are less likely to be needed, rendering sub-quadratic
costs in n while keeping the linear cost in m. Therefore the tree-based approach
has a performance trade-off compared to the state-of-the-art for different subse-
quence lengths: In state-of-the-art methods, the runtime does not scale with the
subsequence lengths, which is a beneficial feature for the analysis of arbitrar-
ily large sequences and patterns. The tree-based approach trades this property
in favor of enabling fast analysis of larger time series. With such a trade-off,
this method becomes beneficial for the cases where the number of records n is
large (e.g., n > 1, 000, 000), and the window size is relatively small (also see
the problem settings in the work of Lu et al. [15]). Additionally, problems with
large window sizes are not the ideal setting for tree-based approaches, and the
efficiency of the tree data structure might be suboptimal due to the curse of
dimensionality [10,32]: Still, often these approximate methods [32] remain effec-
tive even in high dimensional settings (depending on the properties of datasets),
where this dimensionality can grow and reach 100 s to 1,000 s as they appear
in many real-world use cases. On the other hand, we still argue that cases with
extremely large window sizes, e.g., m > 10, 000 (e.g., scenarios reported in this
work of Zhu et al. [37]), are typically over-sampled scenarios and can be down-
sampled and mapped to problems with much smaller window sizes, where the
tree-based approach is still advantageous. We shed light on this trade-off in
practice in Sect. 7.1.

Moreover, in the approximate case, only parts of retrieved neighbors match
the exact reference segments; an approximate method sacrifices the accuracy
of retrieved results in favor of computational efficiency. Consequently, there is
a trade-off between the accuracy and computational efficiency of methods (see
Fig. 1 – more details in Sect. 7.1).

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 321

2.1 Related Work

A
cc

ur
ac

y

Computational Efficiency

SCRIMP

SCAMP

PreSCRIMP

LAMP

Exact

SCRIMP++

DAMP
+ Pipeline
+ Ensemble

Approximate
Tree

Approximate This WorkLegend: HPC

Fig. 1. Accuracy vs. comp. efficiency
trade-off existing methods. (Color figure
online)

We identify four main categories of
approaches in the literature that relate
to our work: Fig. 1 illustrates various
approaches and visualizes these cate-
gories on a schematic accuracy-efficiency
trade-off graph.

Exact Methods (Blue Region in
Fig 1): The state-of-the-art exact met-
hod for computing matrix profile, SCAMP
[41] algorithm, offers O(n2) complexity.
SCAMP exploits GPUs for accelerated
computation and targets Cloud environ-
ments. Zhu et al. [37] proposed SCRIMP which is also an exact approach and has
similar computational properties to SCAMP. This approach is further extended
and deployed on HPC systems [20]. Approximate approaches (e.g., tree-based
approach) suggest reasonable alternatives to reduce computational costs.

Approximate Methods(Red Region in Fig 1): Zhu et al. propose
the approximate methods, PreSCRIMP, and SCRIMP++ [37]. Although Pre-
SCRIMP is introduced as a preprocessing step for the SCRIMP++ algorithm, it
stands as a standalone approximate solution as well. SCRIMP++ itself is both
an exact and approximate solution that iteratively refines an initial approximate
solution computed using PreSCRIMP. However, despite the promising results
and properties, none of them accomplish sub-quadratic computational costs.
LAMP [26] uses a neural network model to approximate matrix profile indices.
Although this approach achieves significant speedups in comparison to exact
solutions, it targets computation of matrix profile for data streams in real-time
settings and therefore is not ideal for batch processing of large-scale datasets.
Moreover, the authors clarify that the accuracy (e.g., false-positive rates) signif-
icantly depends on the quality of a reference dataset used to train the model.
Finally, Zimmerman et al. [41] investigate the approximation of a matrix pro-
file using reduced-precision computation and conclude that a single-precision
computation suffers from a significant loss of accuracy. Our investigations sug-
gest that this loss mainly stems from the propagation of numerical errors in the
streaming dot product formulation used as the core in all existing methods [11].
None of the above-mentioned limitations applies to the tree-based approach.

Tree-Based Nearest Neighbor Methods(Green Region in Fig 1): Tree-
based algorithms are traditionally used to accelerate ModSim computations:
Barnes-Hut [2] and Fast Multipole Methods [25] are examples of such algorithms
that have been used to mainly speedup force computations in N-body problems.
These algorithms constantly attract attention in other fields, e.g., in the field of
data analytics, where for instance, Van Der Maaten [31] exploits a Barnes-Hut

322 A. Raoofy et al.

method to accelerate the t-SNE method. The family of nearest-neighbors prob-
lems has also benefited from tree-based algorithms for many years [1]. These
problems are proven to gain “substantial speedups” [31] by exploiting tree data
structures, such as KD-trees. Xiao et al. [32] use parallel randomized KD-
trees [10] to solve nearest-neighbors problems with approximation targeting high-
dimensional datasets and show that, in case of low intrinsic dimensionality in
the dataset, their approach can solve exact nearest-neighbors in linearithmic
time. Although the dual-tree algorithms are the “fastest known way to per-
form nearest-neighbor search” [4], their distributed memory support is limited,
and studies are restricted to smaller dimensionalities [29]. Further, a distributed
memory approach based on dual-tree methods would result in similar overheads
(e.g., overheads in tree construction and not only search overheads), which we
are addressing in our work.

Methods Targeting HPC Systems (Encircled in dashed ellipses in
Fig 1): Among all the approaches discussed, only SCRIMP is deployed on
large-scale HPC systems. However, it is still implemented as an exact approach
with O(n2) computational costs.

Despite the long history, there are limited tree-based nearest neighbor meth-
ods targeting HPC systems: main approaches are FLANN [17], PANDA [19],
and RKDT [32,35]. Among these, RKDT approach [32,35] is well studied on
distributed memory systems and works well on large datasets with fairly high
dimensionality (which is a requirement in the case of matrix profile computa-
tion), and therefore is used as the base in our work. However, as we discuss
later, still in the scope of matrix profile computation, it suffers from various effi-
ciencies. In this paper, we experimentally demonstrate these inefficiencies and
provide algorithmic redesigns and optimizations to enable a more scalable tree-
based matrix profile computation on HPC systems.

2.2 Potentials of Tree-based Methods

101 102 103 104

Time (s)

25

50

75

100

A
cc

ur
ac

y
(%

)

4.3x speedup

Tree
SCRIMP++

Fig. 2. Tree-based approach compared
to the classical SCRIMP++ method,
both iteratively progressing (single core
runs, n = 1000K, m = 128).

In real-world cases, we are increasingly
dealing with larger datasets, and bil-
lions of records in these time series are
becoming common. In such scenarios, it
is increasingly important to provide the
community with algorithms that can facil-
itate the analysis of such a large num-
ber of records. Tree-based approaches
particularly fit these cases and promise
sufficiently accurate approximate solu-
tions with much better computational effi-
ciency compared to the state-of-the-art.
No method in the literature exploits tree-based nearest-neighbors in the con-
text of matrix profile computations and our work demonstrates the benefits (see
Fig. 2).

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 323

64 128 256 512
number of nodes

15
20
25
30
35
40

tim
e

(s
)

1.00
0.85

0.64

0.48Parallel efficiency numbers are annotated in green

ideal weak scaling

Fig. 3. Weak scaling of the forefront
tree-based nearest-neighbor method
used for matrix profile computation.

Additionally, the state-of-the-art tree-
based method [32] suffers from inefficiency
in weak scaling when applied to matrix
profile computation (See Fig. 3). Conse-
quently, when exploiting these methods,
computing matrix profiles for larger time
series becomes inefficient as we increase
the size of input datasets along with the
number of resources. In our work, we
explicitly focus on the scalability issues
and provide optimization methods to
improve the scalability of tree-based approaches. With these optimizations, we
are able to compute matrix profiles for large datasets more efficiently.

Nevertheless, as we are targeting large time series, the tree-based method
is demanding with respect to compute, memory, and networking resources, and
therefore we are targeting HPC systems. However, given accuracy, and compu-
tational efficiency, the tree-based approach is highly beneficial and competitive.

3 Current Parallel Tree-Based Approach and Its
Shortcomings

Pseudocode 1 Computation of matrix profile based

on randomized KD-tree in parallel .

Input: The reference and query time series TR and TQ.
Output: The matrix profile P and index I.
Sources of overheads and comp. costs are highlighted in red.

1: I ← {-1}, P ← {∞}
2: R, Q = sliding window and znormalize distribute (TR, TQ)

3: for i ←0 to T do

4: S0 = random direction broadcast () � Phase 1 (P1)

5: Rrot0 , Qrot0 = random transform parallel (R, Q, S0)

6: for l←0 to L do

7: medl = max var quick select (Rrotl , Sl) � Phase 2 (P2)

8: Sl+1,Rrotl+1, Qrotl+1 = split redist balance (Rrotl , Qrotl ,

medl)

9: for leaf in tree leaves do

10: Ii Pi = NN parallel (Qrotleaf ,Rrotleaf) � Phase 3 (P3)

11: I, P = merge iteration results all2all (I, Ii, P, Pi)

Given reference (R) and query
(Q) time series TR ∈ R

r and TQ ∈
R

q, and subsequence length m, we
formulate matrix profile compu-
tation by deriving two datasets
R ∈ R

r×m and Q ∈ R
q×m of

local chunks by sliding windows if
size m on each (Line 2 in Pseu-
docode 1). Matrix profile compu-
tation is formulated as a Nearest
Neighbor (NN) solver applied to
Q and R to find the best matches
with the lowest Euclidean dis-
tance: P, I = NN (R,Q).

We propose addressing the computation through an iterative and pruned
method exploiting KD-tree data structures instead of directly solving NN (R,Q)
by computing pairwise distances (and streaming dot product formulation). In
Pseudocode 1, we provide a method based on the approach of Xiao et al. [32] to
compute the matrix profile.

Tree-Based Approach: This approach starts with initializing the resulting matrix
profile (P and I) to neutral values (Line 1) and iteratively updates (merges) par-
tial results computed in each iteration (Line 11). This iterative process continues
for a predefined number of iterations or until a certain accuracy level estimation

324 A. Raoofy et al.

is reached. Next, the two datasets R and Q are computed by applying sliding
windows on the input series and z-normalizing each sample (Line 2).

Next, in multiple iterations (Line 3), the input datasets (Rrot and Qrot) are
randomly rotated (Phase 1), specifically, a householder transformation is applied
to both the reference and query sets (Lines 4–5). In each iteration, a tree is
constructed (Lines 6–8, (Phase 2)) on top of the rotated datasets, where at each
level of the tree (Line 6), Rrot and Qrot are partitioned (Line 8) into smaller
subsets based on the median (Line 7) of the principal direction (i.e., the direction
with maximum variance). After building the tree, a pruned nearest neighbor in
each leaf of the tree is solved which exploits BLAS (DGEMM) operations (i.e.,
greedy search on leaves – Line 10). At the end of each iteration, the partial results
of iterations are merged (Line 11, (Phase 3)) using element-wise minimum and
arg-minimum operations.

Parallelization Approach: When moving to a distributed memory setting, the
same scheme with extra parallelization mechanisms, e.g., multi-processing and
message passing, is realized [32]. In this approach, a distributed tree data struc-
ture is constructed to collocate the reference and query points with the most
similarity in the leaf in each node/process. The reference and query sets (Q
and R) are statically partitioned among different nodes/processes initially. Dur-
ing the iterations, these sets are partitioned and shuffled around in parallel to
construct the tree, i.e., to bring similar reference and query data in the same
nodes/processes of the tree (Lines 7 and 8 in parallel). Then the matrix profile
computation is reduced to a series of BLAS operations (DGEMM) in the leaves
of the tree running on different node/processes in parallel (Line 9).

Overall, the parallel approach additionally includes static partitioning of ref-
erence and query sets (distribute in Line 2), broadcasting the transforma-
tion direction (in Line 4), a series of reductions and pair-wise data exchanges
as part of distributed approximate quick select mechanism used to compute
medians (Line 7). The reference and query sets are split according to the median
value (redistribute and balance) using a series of pairwise exchanges during
the construction of the tree (Line 8). Also, an additional all-to-all operation
in Line 11 is used is used to merge iteration results Pi and Ii. This brings the
resulting Pi and Ii to the right process/node, where the original reference sets
are residing according to the static partitioning in the first step, and finally, it
merges the results using element-wise comparisons. All these mechanisms add
extra communication overhead. These overheads under the matrix profile setting
running on the large number of nodes are extreme, where communication over-
heads dominate the runtime when compared to the time spent on transformation
and DGEMM operations that run fully in parallel. In more detail, in large sce-
narios, i.e., the all-to-all collectives in merge iteration results all2all grow
drastically and dominate the runtime. Additionally, the pairwise exchanges in
split redist balance, as well as the reductions in max var quick select, are
another major scaling bottleneck. For instance, our evaluations show that these
overheads combined comprise ≈50% of the runtime for large jobs (see Sect. 7 for
a detailed analysis of overheads).

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 325

4 Overcoming the Scalability Challenges

We provide two complementary mechanisms to avoid these extra overheads:

1. Based on the analysis of these overheads (see Sect. 7), we identify three
Phases, P1-P3, in Pseudocode 1 (highlighted from top to bottom in green,
red and blue) and introduce a scheme to pipeline the phases (by adjust-
ing Lines 3 and 6 in Pseudocode 1). This allows for concurrent and partial
execution of multiple iterations resulting in the overlap of communication
and computation of multiple phases and therefore hiding the communication
latencies of the phases. This approach is in particular effective to reduce the
latencies of all-to-all collectives.

2. Complementary to the pipelining mechanism, we create a forest of trees
on multiple exclusive ensembles of resources (by adjusting Line 3 in
Pseudocode 1). Overall, this allows to coarsen the granularity of parallelism
and therefore reduces the communication overheads. This approach is par-
ticularly effective in reducing the communication costs in the series of pair-
wise exchanges in split redist balance, and the series of reductions in
max var quick select.

4.1 Pipelining Mechanism

We introduce a pipelining mechanism [3] to stagger the communication within
the phases in iterations of Pseudocode 1. This pipelining mechanism intends
to enable communication/computation overlap for multiple (enough) iterations
(the intention is not to introduce more compute parallelism).

Such pipelining mechanisms are well-known techniques for hiding communi-
cation latencies of phases in parallel SPMD applications. Specifically, the shallow
pipeline with a length of one, i.e., staggering a computation and a communica-
tion phase is a straightforward optimization in parallel programs and is typically
enabled through non-blocking communication calls. In the case of the tree-based
matrix profile computation, lengthier (i.e., deep enough) pipelines are required
to enable latency hiding on a larger setup: for the runs on large portions of the
HPC systems, the network latency become the bottleneck (e.g., in a fat-tree
network topology of the target system). In this case, staggering multiple phases
and/or deeper pipelines is beneficial.

Figure 4 provides a simplified schematic representation for this pipelining
scheme. We illustrate how the phases of Pseudocode 1 are pipelined, where the
benefit of deeper pipelines is visible. While this pipelining mechanism applies to
an SPMD program, for simplification, we are only sketching the pipeline for the
phases spawned by a single execution process (i.e., a single MPI process). We use
a parameter l to represent the pipeline length (depth), as the main configuration
setting for the pipelining mechanism, allowing for flexible pipelining of multiple
(l) iterations (l is set to three for the sketch in Fig. 4). The value of l can be
set according to the experimental setup and tuned based on the overall scale
of the problem and the performance on the system. Each phase consists of a

326 A. Raoofy et al.

P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3 P3P2P1 WP1 WP2 WP3 P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3

Iteration 1 Iteration 2 Iteration 3

Iterations 1-3

Iterations 4-6

Iterations 7-9

P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3

Pipeline with depth 3

No pipeline

Iterations

Fig. 4. Pipelining the iteration phases (P1, P2, and P3) in Pseudocode 1. Blocking

wait operations for phases are annotated with WP1 , WP2 , and WP3 .

Iterations

P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3

P3P2P1 WP1 WP2 WP3

A

P3P1 WP3

P3P1 WP3

P3P1 WP3

P1

P1

P1

Concurrent execution of P1 & P2 More realistic matrix profile computation at large scale

B

Fig. 5. A : A scenario with potential performance drawbacks due to concurrent exe-

cution of P1 and P2 on the same resource. B : More realistic pipeline.

blocking wait call (annotated with WP in Fig. 4) to ensure the completion of
communications of a phase at the start of the successive phase.

Figure 5 provides more details about this pipelining mechanism: this pipelin-
ing mechanism can have a potential drawback in the performance of the phases
that are, in the end, scheduled for concurrent execution on the same computing
resources. An example of such a scenario is illustrated in Fig. 1 left A . We are
explicitly preventing this scenario. Moreover, in our evaluations, we observe that
the all-to-all communications (i.e., waits corresponding to MPI Ialltoall) are
the major communication bottleneck at large scale. Therefore at this stage, we
end up with a pipeline that is similar to the sketch in Fig. 5 right B , where we
stagger the all-to-all communications along with other phases, which prevents all-
to-all communications from dominating the runtime in large jobs (see Sect. 3).

Pseudocode 2 Pipeline mechanism to stagger the
all-to-all communications
Input: (l) represents the pipeline depth.
1: wait handles p3 = Initialize pipeline ()

2: for i←0 to T+l with step l do in pipes

3: ... �End of P1

4: wait all pipes (syn handles p3) �Wait WP3

5: ... �End of P2

6: ... �(Details are removed) P3

7: for j ← 0 to l do concurrently

8: merge iteration results()

9: launch comms async (wait handles p3[j]) �Trigger Comm P3

Implementation: Pseudocode 2
describes the pipelining mecha-
nism in more details. However, for
conciseness, we are only present-
ing the pipelining mechanism for
Phase 3, i.e., merge iteration
results all2all. Specifically, we
discuss the non-blocking all-to-
all communications and their cor-
responding wait operation (the

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 327

same can be applied to other phases as well). In Line 1, we initialize the wait
handles as well as separate buffers to enable concurrent execution of l itera-
tions. In Line 2, we start the main iteration loop in which the iterator i is
incremented by the pipeLine length l. Another nested loop triggers the con-
current execution of l iterations (Line 7). In particular, in the j loop in Line
7, after calling to merge iteration results, the asynchronous communica-
tions are spawned (l times). We then call the corresponding wait operations
wait all pipes (wait handles p3) in the next iteration, at the latest point
possible.

As we target HPC systems, we realize this pipelining mechanism using
non-blocking all-to-all communication, i.e., in Phase 3, MPI Ialltoall and
MPI Waitall operations are used.

4.2 Forest of Trees on Ensembles of Resources:

While pipelining is promising for improving the performance of Phases 2 and 3,
it is not suitable for the optimization of communications in the second phase,
namely staggering the communications in the series of reductions and pair-wise
data exchanges (redistribute and balance) during the tree construction and
embedding phase (2): The main reason is that pipelining the tree construction
loop in Line 6 in Pseudocode 1, requires another level of nested pipelining due to
the dependency of the iterations of this loop. However, creating another pipeline
level would be infeasible in practice due to excessive memory consumption over-
heads of nested pipes (i.e., another level of the pipeline requires the allocation
of extra buffers).

We take a different approach to address the overheads. The key idea here
is to utilize the parallelism in the outermost loop at Line 2 of Pseudocode 1.
Therefore, instead of using all the resources for constructing a single tree (Fig. 6
left), we construct a forest of multiple trees of a certain size (four in Fig. 6 right),
each of which is built on an exclusive ensemble of resources (nodes/processes)
in parallel. For example, in Fig. 6 right, the illustrated work corresponds to four
iterations, each assigned to one of the ensembles, which then run independently
in parallel.

Pseudocode 3 Forest of trees on ensembles of
resources
Input: (e) represents the number of ensembles.

1: C ensemble, C trans = create ensemble comm context (e)

2: Part = partition iterations (e)

3: for itere = Part.start to Part.end do in parallel on ensembles

4: ... �Run P1 on C ensemble

5: ... �Run P2 on C ensemble

6: Ie, Pe = P3 (C ensemble) �Run P3 on C ensemble

7: I, P = merge partial results ({Ie ,Pe}, C trans)

This scheme results in reduced
communication overheads, as ensem-
bles of nodes/processes working on
different trees do not communicate
across. Also, this scheme allows
coarsening the parallelism in the
inner computations and commu-
nications (Lines 4–11 in Pseu-
docode 1), including the partition-
ing involved in the KD tree construction (Phase 2 of Pseudocode 1). Specifi-
cally, it allows the reductions and pair-wise data exchanges in redistribute
and balance as well as the collectives in other phases to run on coarse-grained
parallelism in smaller communication contexts (i.e., communicators). This can

328 A. Raoofy et al.

ensemble 0 ensemble 1 ensemble 2 ensemble 3
B: Forest of parallel treesA: Single parallel tree

Fig. 6. Single parallel tree vs. forest trees. Pink circles represent the resources, e.g.,
processes. Rectangular enclosures with unique colors represent the communication con-
texts (i.e., MPI communicators) at different levels of a parallel tree. Each parallel tree
is represented by a hierarchy of boxes with a unique color. (Color figure online)

also be observed in the example in Fig. 6: The largest communication context in
Fig. 6 left includes eight processes/nodes, while the forest approach uses only two
processes/nodes, at the top level of the tree. The main caveat for this approach
is the high memory consumption, which scales with the number of ensembles.

Implementation: Pseudocode 3 provides the details of the forest of trees app-
roach. We split the available resources into smaller sets, i.e., ensembles (Line 1 in
Pseudocode 3). Ensembles have the same amount of resources (processes/nodes).
Assuming fairly uniform iterations, we statically partition the iterations of the
loop in Line 2 of Pseudocode 1 and assign them to these ensembles (Lines 2 and
3 in Pseudocode 3). We then run the iteration phases on these ensembles (Line
4–6). We perform a final merging step across the ensembles (Line 7) to aggregate
partial matrix profiles in ensembles. This is optionally done during the iterations
to estimate the overall accuracy among all ensembles.

We implement this approach in MPI by splitting MPI’s default communicator
using MPI Comm split. The resulting communicators represent the communica-
tion context and corresponding ensembles. The final merging step is realized
using MPI Allreduce.

5 Modeling the Impact of Optimizations on Complexity

To better understand the performance characteristics of the tree-based method,
we reuse the complexity analysis of Xiao et al. [32] and adapt it according to
the pipelining and forest mechanisms. For this complexity analysis, the following
assumptions and simplifications are made: (1) We assume that the size of the
reference and query sets are equal (i.e., q = r = n). (2) We assume that the tree
data structure is fully parallel running on p processes/nodes, and the number of
subsequences within each leaf of the tree is represented by nleaf .

We split the time for the execution of a single iteration into smaller chunks
(Eq. (1)) based on the phases that we introduced in Sect. 3.

TIteration = TP1 + TP2 + TP3 (1)

TP1 = Ttransformation + Tbroadcast = O
(
n ·m/(p/e)

)
+ O

(
log(p/e)

)
(2)

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 329

TP2 = Tmax var quick select + Tsplit redist balance =

O
(

log(p/e) · log(n) + n/(p/e)
)

+ O
(

log(n) · log2(p/e)
)
+

O
(
n ·m/(p/e)

)
+ O

(
n ·m · log(p/e)/(p/e)

) (3)

TP3 = TNN + Tmerge = O
(
nleaf

2 ·m
)

+ O
(
n ·m log(p/e)/(p/e)

)
+ O

(
p/e

)
(4)

The first phase (Eq. (2)) only includes the parallel transformations of data
as well as a broadcast. The pipelining mechanism staggers and eliminates the
overheads of the reduction (the term highlighted in red) in this phase, and the
forest mechanism reduces the size of the communication context of the reduction
operation.

In the second phase (Eq. (3), only the forest mechanism affects the size of
the communicators and slows down the growth of the overheads by a factor e,
i.e., the size of the forest.

In the last phase (Eq. (4)), the pipelining mechanism staggers the overheads
of all-to-all operations (highlighted in red) into other phases. Also, similar to
the other phases, the forest mechanism has a similar effect on reducing the
communicator size for the all-to-all operations (factor e).

From these equations, we observe that the time to run the iterations of the
tree-based approach is similar to its parent randomized KD tree method, i.e.,
regardless of the parameters chosen for the pipelining and forest mechanisms, the
time complexity of the iterations of the tree-based method is sub-quadratic. This
results in an overall sub-quadratic complexity which is unlike SCRIMP++, that
overall scales quadratically with problem size. However, the randomized tree-
based approach requires multiple iterations, i.e., multiple rounds of creation
and searching in the tree. Therefore, there is an additional multiplier in the
overall time complexity and overheads of the tree-based approach. Similar to the
assumptions made in [23], we assume that running the tree-based approach with
a certain number of iterations can reach a certain accuracy level and eventually
converge to the exact solution. Analyzing these conditions falls out of the scope
of this paper, but what we want to highlight here is that the overall performance
of the tree-based method relies on the content of the time series dataset, as well
as the required accuracy level. If the exact solution is needed, the tree-based
approach would not be the right scheme.

Note that, unlike SCRIMP++, the tree-based approach cannot benefit from
the affinity of neighboring subsequences in the evaluation of distances and does
not allow the use of the streaming dot product formulation [41]. Therefore
observe the terms in Eq. (3) scale linearly with the parameter m. This sug-
gests that the tree-based approach is more suitable for large time series (large
n), and mining of fine-grained patterns (small m). This, however, is a frequent
problem setup in analysis use cases where the subsequence length is much smaller
than the time series length m � N . We summarized a list of such use cases in
Table 1, which we will discuss later.

330 A. Raoofy et al.

6 Experimental Setup

We describe implementation and experimental setup used in this paper below.

Implementation: We implement1 the tree-based matrix profile approach in C++
using pure MPI for parallelization. Our implementation targets CPU-based HPC
systems, and it relies on vectorized sorting and searching kernels as well as
optimized DGEMM kernels in the Intel MKL for distance computation.

System Specification: Our targeted system for the experiments of this paper is
the SuperMUC-NG system at the LRZ2 featuring Intel Xeon 8174 CPU with
48 cores per node. In all experiments, we use the Intel OneAPI package v21.2.0,
including the Intel C++ compiler v21.2.0, with the highest optimization level
(-Ofast) for compilation, and the Intel MPI v21.2.0.

Baseline: We use the C++ implementation of SCRIMP++ (and also Pre-
SCRIMP) [37] as the baseline to compare the tree-based method. Due to the
limitations of other approximate approaches, discussed in Sect. 2.1, we are lim-
iting our comparisons to SCRIMP++. Besides, in all these implementations,
the parallelization support is limited, and often analysis of large datasets is
at least an order of magnitude slower in comparison to the parallel tree-based
method [15]. We are also excluding downsampling of the input time series as an
approximation method in our evaluation as it is out of the scope of matrix pro-
file computation methodologies (see also discussion in Sect. 2). Finally, we are
not comparing the performance of the tree-based method to any exact method
(except for SCRIMP++), as the performance characteristics of all these methods
are similar to SCRIMP++.

Statistical Significance: We report the metrics for the average of 5 repeated runs,
and we do not discuss statistical errors where they are insignificant.

Selected Datasets: In our experiments, we use a variety of datasets from differ-
ent sources listed in Table 1. We selected these datasets carefully to reflect the
regions of benefits (see Sect. 7.1) for the tree-based approach. These datasets
are mainly derived from real-world applications and scenarios. While various
window sizes can be configured for matrix profile computation, we mainly use
the configurations listed in Table 1, which reflect analysis scenarios discussed in
sources listed in Table 1. Table 1 also illustrates a short snapshot of these datasets
together with the recommended window sizes in the mentioned sources.

For stress tests and scaling experiments (Sect. 7.1, and 7.3–7.6), we use ran-
dom walk dataset [41] (not listed in Table 1). We use problem sizes to enable
straightforward comparisons to prior works (e.g., experiments in [32]).

1 The implementation can be provided upon request.
2 Leibniz Supercomputing Centre.

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 331

Table 1. List of datasets used for the experiments. We also include the configurations
used in various sources in the literature.

Metrics of Accuracy: We evaluate the quality of the results by comparing the
matrix profile index against the exact computation (i.e., brute force computa-
tion). For this comparison, we specifically use Recall3 (R) on the matrix profile
index. Recall is defined [32] as the ratio of the number of the matching (signum)
matrix profile indices computed by the tree approach (ITi) with the exact com-
putation (IEi) to the total number of subsequences (N − m + 1):

R =
∑
i

signum(|IEi − ITi |)/(n−m + 1) (5)

7 Evaluations

In our evaluations, we address the applicability of the tree-based approach, assess
its accuracy in real-world datasets, and also discuss its scaling overheads. We
start each subsection with a research question (RQ) and address this question
subsequently. In the end, we provide a demonstration of computing the matrix
profile for a time series with a billion records.

7.1 Region of Benefit

RQ1: Considering the performance advantages and trade-offs discussed in
Sect. 2 where is the tree-based approach beneficial in comparison to the exist-
ing approximate approaches? We make a comparison of the tree-based method
to SCRIMP++ to address this question. Looking back at the discussion in Sect. 2
and 5, the performance advantage of the tree-based method directly depends on
the size of the two input time series n, and the windows m. Therefore, we use
random walk datasets with different combinations of n and m parameters to
compare the two methods. For a fair comparison, we fix the accuracy level and
compare the time to get to at least R = 99.99% accuracy for both methods.
3 Other metrics are also used in the literature, and some might be subjective to par-

ticular practical use cases. An investigation of such alternative metrics is beyond the
scope of the present work.

332 A. Raoofy et al.

103 104 105 106

size of input series (n)

101

102

103

w
in

do
w

si
ze

(d
)

Tree is better

SCRIMP++ is better

Fig. 7. Color-coded region of benefit,
when comparing tree-based approach
vs. SCRIMP++ (single core execution).
(Color figure online)

Figure 7 illustrates the results of this
experiment by providing a region of ben-
efit (the green area) for the tree-based
method. We observe that as the size of
the input datasets increase (towards the
right in the graph) relative to the window
size, the tree-based approach becomes
superior. This is also in accordance with
the scope and practicality discussions in
Sect. 2. Also, again by looking at Table 1,
we can observe that many (but certainly
not all) real-world scenarios lie in the
region of the benefit of the tree-based
approach.

Note that to keep this region of benefit relevant for parallel computation, the
parallel efficiency of the tree method should be high. One of the main contri-
butions of our work is to address the high parallel efficiency of the tree-based
method through the approaches discussed in Sect. 4.

7.2 Performance on Real-World Datasets

Table 2. Time to 99.9% accuracy among
various methods (single-core execution).

Time (s) To 99.9% Accuracy
Dataset

PreSCRIMP SCRIMP++ Tree

HPC-ODA ✗ 8.96 16.88
Earthquake ✗ 13.47 32.62
Penguin ✗ 7070.79 245.15
ASTRO ✗ 1156.18 2615.70
PSML ✗ 5936.69 303.60
GT ✗ 7875.80 3104.13
GAP ✗ 3320.65 2482.38
EMG ✗ 7648.17 2874.43
InsectEPG ✗ 9474.30 1282.58
ECG ✗ 6060.12 1240.75
MGAB ✗ 10749.50 20.67

RQ2: Considering the performance-
accuracy trade-offs discussed in Sect. 2,
when applied to real-world datasets,
how much is the tree-based approach
performant in comparison to the exist-
ing approximate approaches? We use
the accuracy metric defined by Eq. (5)
and run an experiment on various
datasets listed in Table 1. We set the
input parameters according to columns
(n and m) in Table 1. We run all exper-
iments sequentially and compare the
time to reach a certain accuracy level
(i.e., 99.9% accuracy). Table 2 summarizes the results of this experiment.
Our measurements suggest that the tree-based approach is overall faster than
SCRIMP++ (8 out of 11 cases in Table 1 highlighted in green for tree approach).
Three cases are exceptions: note that these cases do not lie on the region of bene-
fit for the tree-based methods (again see Fig. 7 and parameters in Table 1). Also,
we observe that for none of the datasets, PreSCRIMP is able to achieve 99.9%
accuracy. Another observation is that the tree-based the approach is superior
for the datasets with a larger number of records, i.e., it is superior for the lower
rows of Table 2.

Overall, this experiment validates that the tree approach can achieve high
accuracy in a reasonable time, and it can be superior to existing approximate

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 333

methods. While there are real-world cases, similar to the first rows of Table 1
or the experiments in [37], where the tree approach is not superior, many cases
similar to the one we report in Table 2 can benefit from it.

7.3 Single-Node Performance

Fig. 8. Single-node performance of the
tree approach, with (✓) and with-
out (✗) pipelining or forest mecha-
nism (n = 6K per core, m = 512,
random walk dataset). Configurations

annotated with ✗ mark are algorith-
mically not supported.

RQ3: Going beyond the single core runs,
how does the performance of the tree-
based approach scale on a single node,
and what are the sources of overheads?
Can the proposed mechanism improve the
scalability? To answer these questions,
we run a set of weak scaling experi-
ments on single nodes of the SuperMUC-
NG system. Figure 8 summarizes these
experiments. We present four different
cases; on the top left graph, we show the
runtime and overheads of the tree-based
method once scaling on a single node. We
observe large overheads (≈100%) even
on such a small scale. Digging further
into the overheads, we notice that the
sources of them are mainly in Phases 2
and 3 of Pseudocode 1. Specifically in all the cases max var quick select and
merge iteration results all2all comprise at least 60% of the run time. How-
ever, merge iteration results all2all is only responsible for small portion
of it, and as we will show, this overhead only appears in larger setups.

Fig. 9. Breakdown for the time spent
in various phases, with (✓) and with-
out (✗) pipelining or forest mechanisms.
(n = 4K per core, m = 256, random
walk).

We repeat the experiment and enable
the pipelining mechanism with a depth of
four (top right). We observe almost negli-
gible improvements. However, we observe
on the graph at the bottom left, that set-
ting the size of the forest (the number
of ensembles) to eight would reduce the
overheads significantly. When we com-
bine the two mechanisms (bottom right),
we almost completely overcome the over-
heads and reach ≈ 100% parallel effi-
ciency on a single node.

7.4 Scaling Overheads

RQ4: Going beyond the single-node runs,
how does the performance of the tree-
based approach scale, and what are the
sources of overheads? We run a set of weak scaling experiments on the

334 A. Raoofy et al.

SuperMUC-NG system, with a setup starting from a single node up to 1024
nodes. On the top graph in Fig. 9, we observe the breakdown for the time
spent in different phases of Pseudocode 1 for computing matrix profile. As
we scale the problem and resources, the overhead in max var quick select,
merge iteration results all2all, and split redist balance scales drasti-
cally; When we use 1,024 nodes, the overheads comprise more than 75% of the
runtime, where the largest overhead is traced to the all-to-all operations in
merge iteration results all2all.

We repeat the same scaling experiments and switch the two mechanisms on,
one at a time. Once the pipelining mechanism is switched on (middle graph in
Fig. 9), the overhead of all to all operations is removed. However, this optimiza-
tion alone only has around 9% performance improvements. On the other hand,
once the forest mechanism is enabled (bottom graph in Fig. 9), the overhead of
all the phases is significantly shrunk (by ≈55%).

7.5 Effects of Pipelining and Forest Mechanisms

Fig. 10. Effect of pipelining and forest
mechanisms on scaling overheads (n =
65K per node and m = 256, 32 itera-
tions, random walk).

RQ5: How do the proposed pipelining
and forest mechanisms affect the over-
heads how do they interplay? To bet-
ter understand the effects of the two
optimization mechanisms, we conduct a
series of weak scaling experiments on
the SuperMUC-NG system with various
pipeline depth (l) and forest size (e)
configurations. Figure 10 summarizes the
results of these experiment: In Fig. 10
top, we revisit the overhead of the all-to-
all operations in split redist balance
which only appears in the setups larger
than 64 nodes. We observe that in all the
cases enabling the pipelining mechanism
is highly beneficial, and increasing the
depth of the pipeline can help to almost
completely eliminate the all to all overheads. In Fig. 10 bottom, we focus on
the overhead of split redist balance, which was the main target for enabling
the forest mechanism. We observe that increasing the size of the forest in all
the experiments improves the performance. Also, similar to the results shown in
Fig. 9, we also observe positive effects on other overheads (not shown in Fig. 9).

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 335

Fig. 11. Weak scaling results with (✓)
and without (✗) optimizations (n =
65K per node, m = 256, 32 iterations,
random walk).

The two mechanisms have a comple-
mentary effect on performance improve-
ments. Our further experiments suggest
enabling them simultaneously and tuning
e and l parameters is beneficial.

7.6 Scaling Results

RQ6: How does the tree-based approach
scale overall? We conduct a weak scaling
experiment on the SuperMUC-NG sys-
tem to illustrate the overall scaling performance of the tree-based matrix profile
approach. In this experiment, we use two cases; in the first case, we disable all
the optimization mechanisms, and in the second case, we enable the pipelin-
ing mechanism with depth l = 4 as well as a forest of size e = 4. Figure 11,
illustrates the results of this experiment: Again, we observe that the tree-based
approach results in scaling bottlenecks if no optimization is used. In this case,
starting from one node and increasing the number of MPI processes by 3 orders
of magnitude on SuperMUC-NG, i.e., going beyond a single island, results in
14% parallel efficiency, which is also in accordance with the experiments of Xiao
et al. [32]. However, applying the two pipelining and forest mechanisms improves
efficiency to 31%, which is a large improvement. Note that this efficiency shrinks
the region of benefit (i.e., Fig. 7), however overall, the method stays beneficial
for larger time series, as discussed in Sect. 7.1. Finally, we trace the remaining
scaling overheads to the series of pairwise exchanges in split redist balance.
Although the forest mechanism improves the overheads of data shuffling and
load balancing in Phase 2 of Pseudocode 1, it still does not entirely eliminate
the latencies of the blocking calls in this phase.

7.7 Billion Scale Experiment

To showcase the capabilities of the tree-based approach, we run a matrix profile
computation on a billion-record random walk dataset (n = 1 billion) with a
window size m = 128, using 48K cores of the SuperMUC-NG to 99% in 19
minutes. This run reaches ≈338 TFlops maximum kernel performance. There
are only 2 previous works that conduct experiments at this scale: 1) Zimmerman
et al. [41] computed matrix profile for 1-billion-record time series on AWS spot
instances using the SCAMP algorithm, which took between 10.3 h to 2.5 days.
Compared to that, the tree-based approach reaches 1–2 orders of magnitude
faster speed. 2) Just recently, Lu et al. [15] conducted anomaly detection using
DAMP algorithm on 1-billion-record in around 1 h on a commodity desktop
system in a single run. While the tree-based method is still 3x faster, it is highly
inefficient compared to DAMP. However, the matrix profile computed with the
tree-based method can be applied to various data mining and machine learning
tasks, while DAMP only targets anomaly detection.

336 A. Raoofy et al.

8 Conclusions

In this work, we presented an approximate parallel iterative tree-based approach
for the computation of matrix profiles, targeting CPU-based HPC systems. We
analyzed the scaling bottlenecks state-of-the-art tree-based approach for matrix
profile computation in our work. We provided a pipelining and forest mecha-
nisms to improve the scalability of the tree-based approach. Our optimizations
improved parallel efficiency on 32K cores by a factor of 2. The optimization
mechanisms presented can be generalized and applied to similar problems (e.g.,
nearest neighbor computations or randomized iterative algorithms).

With the presented work, it is feasible to compute matrix profile for large
time series, which previously required days to compute, in just a few minutes.
We demonstrated a billion-scale experiment with up to 99% accuracy in 19 min
which is 3–100 folds faster than existing approaches. This provides a competitive
computation time compared to the alternative approaches.

Acknowledgements. This work is partially funded by Bayerische Forschungsstiftung
under the research grants Optimierung von Gasturbinen mit Hilfe von Big Data (AZ-
1214-16), and Von der Edge zur Cloud und zurück: Skalierbare und Adaptive Sensor-
datenverarbeitung (AZ-1468-20). The authors gratefully acknowledge the Gauss Cen-
tre for Supercomputing e.V. (www.gauss-centre.eu) for funding this work by providing
computing time on GCS Supercomputer SuperMUC-NG at at Leibniz Supercomputing
Centre (www.lrz.de).

References

1. Arya, S., et al.: An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. J. ACM 45(6), 891–923 (1998)

2. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature
324(6096), 446–449 (1986)

3. Cools, S., et al.: Improving strong scaling of the conjugate gradient method for solv-
ing large linear systems using global reduction pipelining. ArXiv abs/1905.06850
(2019)

4. Curtin, R.R.: Faster dual-tree traversal for nearest neighbor search. In: Amato,
G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp.
77–89. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25087-8 7

5. Dau, H.A., Keogh, E.: Matrix profile V: a generic technique to incorporate domain
knowledge into motif discovery. In: 23rd ACM SIGKDD, pp. 125–134 (2017)

6. Eamonn Keogh: Electrocardiography Dataset. https://www.cs.ucr.edu/∼eamonn/
ECG one day.zip. Accessed 15 Aug 2022

7. Gharghabi, S., et al.: Domain agnostic online semantic segmentation for multi-
dimensional time series. In: Data Mining and Knowledge Discovery (2018)

8. Heldens, S., et al.: Rocket: efficient and scalable all-pairs computations on hetero-
geneous platforms. In: Proceedings of SC 2020. IEEE Press (2020)

9. Jirkovský, V., et al.: Big data analysis for sensor time-series in automation. In:
IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–8 (2014)

10. Jones, P.W., et al.: Randomized approximate nearest neighbors algorithm. Proc.
Natl. Acad. Sci. 108(38), 15679–15686 (2011)

www.gauss-centre.eu
www.lrz.de
https://doi.org/10.1007/978-3-319-25087-8_7
https://www.cs.ucr.edu/~eamonn/ECG_one_day.zip
https://www.cs.ucr.edu/~eamonn/ECG_one_day.zip

Overcoming Weak Scaling Challenges in Tree-Based NN Time Series Mining 337

11. Ju, Y., et al.: Exploiting reduced precision for GPU-based Time series mining. In:
IEEE IPDPS, pp. 124–134 (2022)

12. Karlstetter, R., et al.: Turning dynamic sensor measurements from gas turbines
into insights: a big data approach. In: Turbo Expo, vol. 6 (2019)

13. Karlstetter, R., et al.: Living on the edge: efficient handling of large scale sensor
data. In: 2021 IEEE/ACM CCGrid 2021, pp. 1–10 (2021)

14. Linardi, M., et al.: Matrix profile X: VALMOD - scalable discovery of variable-
length motifs in data series. In: ACM SIGMOD, p. 1053–1066 (2018)

15. Lu, Y., et al.: Matrix profile XXIV: scaling time series anomaly detection to trillions
of datapoints and ultra-fast arriving data streams. In: ACM SIGKDD (2022)

16. Mercer, R., et al.: Matrix profile XXIII: contrast profile: a novel time series prim-
itive that allows real world classification. In: IEEE ICDM (2021)

17. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

18. Netti, A.: HPC-ODA dataset collection (2020). https://doi.org/10.5281/zenodo.
3701440

19. Patwary, M.M.A., et al.: PANDA: extreme scale parallel k-nearest neighbor on
distributed architectures. CoRR abs/1607.08220 (2016)

20. Pfeilschifter, G.: time series analysis with matrix profile on HPC systems. Master
thesis, Technische Universität München (2019)

21. Raksha, S., et al.: Weather forecasting framework for time series data using intel-
ligent learning models. In: 5th ICEECCOT 2021, pp. 783–787 (2021)

22. Rakthanmanon, T., et al.: Searching and mining trillions of time series subse-
quences under dynamic time warping. In: ACM SIGKDD, pp. 262–270 (2012)

23. Ram, P., Sinha, K.: Revisiting KD-tree for nearest neighbor search. In: KDD 2019,
pp. 1378–1388. Association for Computing Machinery, New York (2019)

24. Raoofy, A., Karlstetter, R., Yang, D., Trinitis, C., Schulz, M.: Time series min-
ing at petascale performance. In: Sadayappan, P., Chamberlain, B.L., Juckeland,
G., Ltaief, H. (eds.) ISC High Performance 2020. LNCS, vol. 12151, pp. 104–123.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50743-5 6

25. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J.
Comput. Phys. 60(2), 187–207 (1985)

26. Schall-Zimmerman, Z., et al.: Matrix profile XVIII: time series mining in the face of
fast moving streams using a learned approximate matrix profile. In: IEEE ICDM,
pp. 936–945 (2019)

27. Schmidl, S., et al.: Anomaly detection in time series: a comprehensive evaluation.
Proc. VLDB Endow. 15(9), 1779–1797 (2022)

28. Shakibay Senobari, et al.: Using the similarity matrix profile to investigate fore-
shock behavior of the 2004 parkfield earthquake. In: AGU Fall Meeting Abstracts,
vol. 2018, pp. S51B–03 (2018)

29. Steinbusch, B., et al.: A massively parallel barnes-hut tree code with dual tree
traversal. In: PARCO (2015)

30. Thill, M., et al.: MarkusThill/MGAB: The Mackey-glass anomaly benchmark
(2020). https://doi.org/10.5281/zenodo.3760086

31. Van Der Maaten, L.: Accelerating T-SNE using tree-based algorithms. J. Mach.
Learn. Res. 15(1), 3221–3245 (2014)

32. Xiao, B., Biros, G.: Parallel algorithms for nearest neighbor search problems in
high dimensions. SIAM J. Sci. Comput. 38(5), S667–S699 (2016)

33. Yeh, C.M., et al.: Matrix profile I: all pairs similarity joins for time series: a unifying
view that includes motifs, discords and shapelets. In: IEEE ICDM, pp. 1317–1322
(2016)

https://doi.org/10.5281/zenodo.3701440
https://doi.org/10.5281/zenodo.3701440
https://doi.org/10.1007/978-3-030-50743-5_6
https://doi.org/10.5281/zenodo.3760086

338 A. Raoofy et al.

34. Yeh, C.M., et al.: Matrix profile III: the matrix profile allows visualization of salient
subsequences in massive time series. In: IEEE ICDM, pp. 579–588 (2016)

35. Yu, C.D., et al.: Performance optimization for the K-nearest neighbors kernel on
X86 architectures. In: ACM SC (2015)

36. Zheng, X., et al.: PSML: a multi-scale time-series dataset for machine learning
in decarbonized energy grids (dataset) (2021). https://doi.org/10.5281/zenodo.
5130612

37. Zhu, Y., et al.: Matrix profile XI: SCRIMP++: time series motif discovery at
interactive speeds. In: IEEE ICDM, pp. 837–846 (2018)

38. Zhu, Y., et al.: Matrix profile VII: time series chains: a new primitive for time
series data mining. In: 2017 IEEE ICDM 2017, pp. 695–704 (2017)

39. Zhu, Y., et al.: Matrix profile II: exploiting a novel algorithm and GPUs to break
the one hundred million barrier for time series motifs and joins. Knowl. Inf. Syst.
54(1) (2018)

40. Zhu, Y., et al.: The swiss army knife of time series data mining: ten useful things
you can do with the matrix profile and ten lines of code. In: KDD 2020, vol. 34,
pp. 949–979 (2020)

41. Zimmerman, Z., et al.: Matrix profile XIV: scaling time series motif discovery with
GPUs to break a quintillion pairwise comparisons a day and beyond. In: ACM
SoCC, pp. 74–86 (2019)

https://doi.org/10.5281/zenodo.5130612
https://doi.org/10.5281/zenodo.5130612

Porting Numerical Integration Codes
from CUDA to oneAPI: A Case Study

Ioannis Sakiotis1(B) , Kamesh Arumugam2 , Marc Paterno1,3 ,
Desh Ranjan1 , Baľsa Terzić1 , and Mohammad Zubair1

1 Old Dominion University, Norfolk, VA 23529, USA
{isaki001,bterzic}@odu.edu, {dranjan,zubair}@cs.odu.edu

2 NVIDIA, Santa Clara, CA 95051-0952, USA
karumugam@nvidia.com

3 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
paterno@fnal.gov

Abstract. We present our experience in porting optimized CUDA
implementations to oneAPI. We focus on the use case of numerical inte-
gration, particularly the CUDA implementations of PAGANI and m-
Cubes. We faced several challenges that caused performance degradation
in the oneAPI ports. These include differences in utilized registers per
thread, compiler optimizations, and mappings of CUDA library calls to
oneAPI equivalents. After addressing those challenges, we tested both
the PAGANI and m-Cubes integrators on numerous integrands of var-
ious characteristics. To evaluate the quality of the ports, we collected
performance metrics of the CUDA and oneAPI implementations on the
Nvidia V100 GPU. We found that the oneAPI ports often achieve com-
parable performance to the CUDA versions, and that they are at most
10% slower.

1 Introduction

Historically, general-purpose GPU programming has been characterized by diver-
gent architectures and programming models. A lack of widely adopted common

The authors would like to thank Intel Corporation and Codeplay for providing technical
support in the code migration process. The authors are also grateful for the support
of the Intel oneAPI Academic Center of Excellence at Old Dominion University. Work
supported by the Fermi National Accelerator Laboratory, managed and operated by
Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy. The U.S. Government retains and the publisher, by accepting
the article for publication, acknowledges that the U.S. Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for U.S. Government purposes.
FERMILAB-CONF-23-007-LDRD-SCD. We acknowledge the support of Jefferson Lab
grant to Old Dominion University 16-347. Authored by Jefferson Science Associates,
LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02- 06CH11357.
code available at https://github.com/marcpaterno/gpuintegration.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 339–358, 2023.
https://doi.org/10.1007/978-3-031-32041-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_18&domain=pdf
http://orcid.org/0000-0002-1988-0314
http://orcid.org/0000-0002-6482-6237
http://orcid.org/0000-0003-0808-8388
http://orcid.org/0000-0002-8298-7093
http://orcid.org/0000-0002-9646-8155
http://orcid.org/0000-0002-5449-1779
https://github.com/marcpaterno/gpuintegration
https://doi.org/10.1007/978-3-031-32041-5_18

340 I. Sakiotis et al.

standards led to the development of different ecosystems comprised of compilers
and tools that were practically exclusive to specific GPU architectures. Most
importantly, the emergent architectures themselves were not compatible with
all ecosystems. Portability could only be achieved through the maintenance of
multiple code bases. Traditionally, the proprietary CUDA programming model
has been the most popular but is exclusively targeted to Nvidia GPUs.

In the absence of universally adopted standards, a viable solution for achiev-
ing general portability is to rely on platform-agnostic programming models that
target multiple architectures via a unifying interface. This enables the execution
of a single code base across various architectures. These programming mod-
els would ideally enable the utilization of platform-specific low-level features
on their native hardware. This would allow highly-optimized implementations in
such portable programming models to remain competitive with platform-specific
alternatives. Without these capabilities, use cases with extreme performance
requirements would disqualify the use of such portable models.

The need for performant multi-platform execution is only increasing with
the emergence of exascale supercomputers such as Frontier and Aurora that
do not carry Nvidia GPUs. Projects requiring computing cores at that scale
must develop new software solutions compatible with non-Nvidia GPUs or port
existing CUDA implementations without significant loss of performance.

Portable programming models such as RAJA, Kokkos, and oneAPI have been
in development and are already available for use. These portable alternatives
lack maturity when compared to proprietary alternatives. As such, applications
requiring portable solutions must be evaluated to quantify any necessary con-
cessions.

In this paper, we discuss the porting process of two numerical integration
implementations, PAGANI and m-Cubes, from CUDA to Data Parallel C++
(DPC++), which is oneAPI’s SYCL implementation. The oneAPI ecosystem
provides a suite of compilers, libraries, and software tools, including Intel®

DPC++ Compatibility Tool (DPCCT), that automates the majority of the port-
ing process. Reliance on the C++ and SYCL standards as well as the capability
to quickly port large CUDA implementations, places oneAPI at the forefront of
the portability initiative.

We faced challenges during the porting process due to the lack of support
for certain libraries utilized by the CUDA implementation. For example, the
CUDA implementation of PAGANI uses the Nvidia Thrust library to perform
common parallel operations on the host side, such as inner product and min-max.
Even though there is a multitude of library options in oneAPI, we encountered
difficulties with the DPCCT mapping of Nvidia Thrust library calls, which were
not fully supported on all backends.

We also observed performance degradation for the ported oneAPI imple-
mentations. We conducted numerous experiments with integrands of various
characteristics to identify the issues. Most of these issues pertained to opti-
mization differences between the NVCC and Clang compilers, and time differ-
ences when executing mathematical functions. After addressing these challenges,

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study 341

the oneAPI ports were on average 10% slower than the optimized CUDA ver-
sions. We observe that the cases with the highest performance penalties for the
oneAPI ports, require significantly more registers than the CUDA originals. This
decreases the occupancy in the oneAPI implementation and causes performance
degradation. When the number of registers is similar to the CUDA version, we
observe penalties lower than 5%.

The remainder of this paper is structured as follows. First, we provide back-
ground information on oneAPI and other portability solutions in Sect. 2. Then,
we discuss the two numerical integration CUDA implementations in Sect. 3.
Section 4 details the porting process and challenges we faced using DPCCT and
the oneAPI platform. In Sect. 5, we present a performance comparison of the
CUDA and oneAPI implementations of PAGANI and m-Cubes. We finish in
Sect. 6 with a discussion of our conclusions regarding the oneAPI platform’s via-
bility and ease of use. We demonstrate that the oneAPI implementation does
not induce significant performance penalties and that it is a viable platform for
attaining performance on Nvidia GPUs.

2 Background

There are multiple programming models targeting different architectures. Among
the most prominent, are OpenCL [16,24], OpenACC [5], OpenMP [1], RAJA,
Alpaka [30], and Kokkos [10]. The Khronos group was the first to address porta-
bility by developing the OpenCL standard to target various architectures. The
same group later followed with the SYCL standard. SYCL is a higher-level lan-
guage that retained OpenCL features but significantly improved ease of use with
the utilization of C++ and the adoption of a single-source model. There are mul-
tiple implementations of SYCL such as DPC++, ComputeCpp, HipSYCL, and
triSYCL [28]. DPC++ is conformant to the latest SYCL and C++ standards
and is integrated into the oneAPI ecosystem [2].

2.1 oneAPI and SYCL

oneAPI provides a programming platform with portability across multiple archi-
tectures at the core of its mission. Intel’s implementation of oneAPI includes an
oneAPI Base Toolkit that includes various tools along with the DPC++ language
which was based on the SYCL and C++ standards [8]. The reliance on these
open standards that are intended to evolve over time is one of the most attractive
features of DPC++. Such evolution is facilitated by DPC++ extensions with
various features that can be later introduced to the standards after periods of
experimentation. Such examples include the use of Unified Memory and filtered
Device selectors, which were missing from SYCL 1.2.1 but were later included
in the SYCL 2020 standard. DPC++ achieves execution platform portability
through its use of SYCL and various backends (implemented as shared libraries)
that interface with particular instruction sets such as PTX for Nvidia GPUs
and SPIR-V for Intel devices. It is worth noting that there is no reliance on

342 I. Sakiotis et al.

OpenCL, which is instead one of several available backends. As such, DPC++
implementations can target various CPUs, GPUs, and FPGAs. This is a similar
approach to Kokkos, Alpaka, and RAJA.

2.2 CUDA-Backend for SYCL

While CUDA is the native and most performant programming model for Nvidia
GPUs, Nvidia provided support to the OpenCL API [25]. As a result, non-CUDA
implementations could be executed on Nvidia GPUs. The ComputeCpp imple-
mentation of SYCL by CodePlay, provided such functionality through OpenCL,
but its performance was not comparable to native CUDA as not all functionality
was exposed [3].

As such, CodePlay developed the CUDA-backend for DPC++, which is part
of the LLVM compiler project. CUDA support is not enabled by default and is at
an experimental stage. To enable the backend, we must build the LLVM compiler
project for CUDA. This can be achieved through easy-to-follow instructions that
involve CUDA-specific flags, and the use of clang++ instead dpcpp to compile
source code. As a result, DPC++ code can generate PTX code by using CUDA
directly instead of relying on the OpenCL backend. This approach not only
enables the use of Nvidia libraries and profiling tools with DPC++ but also the
capability to theoretically achieve the same performance as CUDA.

2.3 Related Work

The oneAPI programming model may not be as mature as CUDA but the liter-
ature already includes several examples of utilizing DPC++. The authors of [12]
validated the correctness of a DPC++ tsunami simulator ported from CUDA. A
Boris Particle Pusher port from an openMP version was discussed in [27], where
a DPC++ implementation was 10% slower than the optimized original. In [14],
CUDA and DPC++ implementations of a matrix multiplication kernel were
compared on different matrix sizes; the execution time on an NVIDIA GPU was
slower with DPC++ code by 7% on small problem sizes but as much as 37% on
larger ones. On the contrary, [15] and [13] included experiments where a DPC++
biological sequence alignment code showed no significant performance penalty
compared to CUDA, and even a case of 14% speedup. Spare matrix-vector mul-
tiplication kernels and Krylov solvers in [26] reached 90% of a CUDA version’s
bandwidth. There were also cases with non-favorable performance for DPC++
ports. In [17] a bioinformatics-related kernel performed twice as fast in CUDA
and HIP than in DPC++. In [11] DPC++ versions generally reported compa-
rable performance to CUDA but there were multiple cases where the penalty
ranged from 25–190%.

There seems to be a deviation in the attainable performance. This is reason-
able due to the variety of applications and the relatively early stage of develop-
ment for the oneAPI ecosystem. We also expect that the level of optimization in
CUDA implementations is an important factor. In our experience, highly opti-
mized codes typically yield performance penalties in the range (5–10%). There

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study 343

are multiple cases displaying approximately 10% penalty compared to native
programming models. This indicates that DPC++ can achieve comparable per-
formance to CUDA, though careful tuning and additional optimizations may be
needed.

3 Numerical Integration Use Case

Numerical integration is necessary for many applications across various fields
and especially physics. Important examples include the simulation of beam
dynamics and parameter estimation in cosmological models [6,9,21]. Even ill-
behaving integrands (oscillatory, sharply peaked, etc.) can be efficiently inte-
grated with modest computational resources, as long the integration space is low
dimensional (one or two variables). On the contrary, solving medium to high-
dimensional integrands is often infeasible on standard computing platforms. In
such cases, we must execute on highly parallel architectures to achieve perfor-
mance at scale. There are a few GPU-compatible numerical integration algo-
rithms [7,19,22,23,29]. Unfortunately, exploration of execution-platform porta-
bility has been limited, with CUDA being the most common choice. Since CUDA
is a proprietary language, such optimized implementations cannot be executed
on non-NVIDIA GPUs. To our knowledge, the only mentions of potential porta-
bility in numerical integration libraries are found in [22] where a Kokkos imple-
mentation of the PAGANI integrator is briefly mentioned to be in development
and in [23] which compares the CUDA implementation of m-Cubes with an
experimental Kokkos version.

3.1 PAGANI

PAGANI is a deterministic quadrature-based algorithm designed for massively
parallel architectures. The algorithm computes an integral by evaluating the
quadrature rules, which are a series of weighted summations of the form∑feval

i=1 wi · f(xi). The computation involves an integrand function f which we
invoke at d-dimensional points xi. Each xi point has a corresponding weight wi

and there are feval such points in the summation. PAGANI computes an ini-
tial integral and error estimate, and it progressively improves its accuracy until
reaching a user-specified threshold. The accuracy improvement is achieved by
applying the quadrature rules in smaller regions of the integration space and
accumulating those values to get a new integral estimate.

The most computationally intense kernel of PAGANI is the Evaluate
method (listed in Algorithm 2 of [22]) which consistently takes more than 90%
of total execution time. Its function is to compute an integral/error estimate for
each region and select one of the dimensional axes for splitting. As such, it can
be viewed as the core of PAGANI, both from an algorithmic and performance
standpoint. For the remainder of this paper, we will refer to this method as
Pagani-kernel.

344 I. Sakiotis et al.

In Pagani-kernel, each thread-group processes a different region and uses
all threads in the group to parallelize the integrand function evaluations. The
function evaluations are accumulated through a reduction operation at the end
of the kernel. Since all threads within a group operate on the same region, we can
store region-related data in shared memory and broadcast it to all threads. This
avoids repeated access to the slower global memory for each function evaluation.
The threads must also access several read-only arrays which are stored in global
memory due to their larger size. Once all computations are finished, thread zero
of each group writes the computed integral and error estimate of the region in
corresponding output arrays.

The CUDA implementation was optimized for the NVIDIA V100 GPU. The
kernel is launched in groups of 64 threads and the function evaluations, which
are greater in number than the number of threads in a group, are performed in
a strided fashion. This allows the threads to coalesce accesses to the read-only
arrays in global memory. For those read-only arrays, the kernel utilizes on the
“ldg” intrinsic, to suggest to the compiler their placement in the read-only cache.

3.2 m-Cubes

m-Cubes is a probabilistic Monte Carlo algorithm based on the VEGAS inte-
grator [20]. It computes integrals by randomizing the sample generation across
the integration space and relies on the standard deviation of the Monte Carlo
estimate to produce error estimates for the computation. The algorithm parti-
tions the integration space into m sub-cubes and assigns them in batches to all
available threads.

The V-Sample kernel, we will refer to as mcubes-kernel, is the most
computational intense method in the algorithm [23]. The kernel involves the
sample generation, invocation of the d-dimensional integrand f at the random
points, and the computation of an integral and error estimate. At the beginning
of the kernel, each thread is assigned a number of sub-cubes and processes them
serially. During the sampling of those cubes, the threads randomly generate a
series of d-dimensional points within certain bin boundaries and evaluate the
integrand at those points. The magnitude of each function evaluation must then
be stored in d corresponding memory locations that represent the d bins used to
generate the point. The kernel uses atomic addition to perform these memory
writes since there are possible collisions due to a lack of one-to-one mapping
between bins and threads. Once the threads in a group have evaluated all their
points across all their assigned sub-cubes, a reduction operation accumulates
the function evaluations within a thread-group. Then, the results of all thread-
group are accumulated through atomic addition, providing an integral and error
estimate.

The CUDA implementation was optimized for the V100 GPU. The kernel
consisted of 128 threads per block and utilized 500 bins per dimensional axis.
The reduction operations utilize warp-level primitives, though limited shared
memory is used to accumulate the values from the different warps.

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study 345

1 void cuda_wrapper(const Sub_regions& regions) {

2 const size_t nBlocks = regions.size;

3 const size_t nThreads = 64;

4 kernel <<<nBlocks , nThreads >>>(regions.leftcoord);

5 cudaDeviceSynchronize ();

6 }

Listing 1.1. Passing Arguments to CUDA Kernel

4 Porting Process

The maturity of the CUDA programming model along with the more widespread
utilization of highly performant NVIDIA GPUs make CUDA an intuitive
choice for high-performance applications. As such, PAGANI and m-Cubes were
designed and optimized for CUDA on a V100 NVIDIA GPU [22,23]. This makes
DPCCT the most appropriate tool to facilitate the porting process from CUDA
to DPC++. DPCCT is intended to automate the majority of CUDA code migra-
tion to DPC++, instead of performing a total conversion [4]. In our experience
as well as those reported in [14,18] and many others, DPCCT functions exactly
as intended. An easy-to-complete conversion process requires few manual code
insertions.

4.1 Challenges

Errors in Automated Code Migration. A source of errors for DPCCT gen-
erated code was our use of C++ structures to encapsulate input/output data
that resided in the device memory space. We used C++ to automate alloca-
tion, deallocation, and initialization for much of the data needed by our CUDA
kernels. The constructors and destructors of these non-trivial C++ structures
included calls to the CUDA API (cudaMalloc, cudaFree), while member func-
tions involved host-side processing and even invoked CUDA kernels to perform
parallel operations.

DPCCT translated the API calls from CUDA to SYCL without errors for
all of our C++ structures. The problem arises when passing members of those
structures as parameters to the lambda expressions that define the parallel code.
This is a problem because the SYCL standard requires that all objects copied
between host and device are trivially-copyable. Execution of parallel code is
enabled due to the copying of lambda expressions to the device. To make the
lambda copyable, any objects captured by the lambda must be trivially-copyable
as well. Our C++ structures are not trivially-copyable because they have user-
defined constructors and destructors to allocate and free their data on the device.
Even though we do not use the objects themselves in the parallel code, but only
to conveniently pass their members as parameters, they are captured nonetheless
and cause a static assert error.

346 I. Sakiotis et al.

1 void bad_sycl_wrapper (Sub_regions* regions) {

2 sycl::queue q(sycl:: gpu_selector ());

3 const size_t nBlocks = regions ->size;

4 const size_t nThreads = 64;

5

6 q.submit ([&](sycl:: handler& h) {

7 using range = sycl::range <1>;

8 using ndrange = sycl::nd_range <1>;

9 using nditem = sycl::nd_item <1>;

10 auto total_size = range(nBlocks) * range(nThreads);

11 auto group_size = range(nThreads);

12 auto kernel = [=](nditem item_ct1){

13 // accessing captured wrapper function ’s argument

14 // yields a run -time error.

15 double x = regions ->leftcoord [0];

16 ...

17 };

18 h.parallel_for(nd_range(total_size , group_size),

19 kernel);

20 });

21 q.wait_and_throw ();

22 }

Listing 1.2. Unsuccessful Passing of Arguments to SYCL Kernel

We demonstrate this in Listings 1.1, 1.2 and 1.3, where we use the Sub regions
struct to encapsulate the device-allocated list leftcoord and use it as parameter to
a kernel. We pass the regions objects to the CUDA wrapper-function (Listing 1.1)
by reference (line 1). The leftcoord member is then passed by value (line 4) to the
kernel without issue. In SYCL, the same approach would result in a compilation
error due to the lambda capturing the non-trivially-copyable regions object.
Thus, the SYCL wrapper-function (Listing 1.2) receives a pointer to the regions
object. This approach removes the trivially-copyable related compilation error,
but accessing leftcoord in the parallel code causes an illegal access run-time
error (line 15). To solve this issue, we must store any data that we want to
be captured by our lambda, into scope-local variables. We demonstrate this in
Listing 1.3, where the local variable at line 5 is captured by the lambda instead
of the class member, resolving all issues.

Another issue we encountered in the DPCCT converted code was the incor-
rect conversion of atomic addition in our parallel code. DPCCT converted the
atomicAdd CUDA function call to dpct::atomic fetch add. The use of this partic-
ular function triggers an unresolved extern error for the spirv AtomicFAddEXT
function. This is an improper mapping for atomic addition to the CUDA-
backend. The same command works on Intel devices. We resolve this problem
by using a function directly from the SYCL namespace (see Listing 1.4).

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study 347

1 void sycl_wrapper(Sub_regions* regions) {

2 sycl::queue q(sycl:: gpu_selector ());

3 const size_t nBlocks = regions ->size;

4 const size_t nThreads = 64;

5 const double* leftcoord = regions ->leftcoord;

6

7 q.submit ([&](sycl:: handler& h) {

8 using range = sycl::range <1>;

9 using ndrange = sycl::nd_range <1>;

10 using nditem = sycl::nd_item <1>;

11 auto total_size = range(nBlocks) * range(nThreads);

12 auto group_size = range(nThreads);

13 auto kernel = [=](nditem item_ct1){

14 // accessing captured local variable is fine.

15 double x = leftcoord [0];

16 ...

17 };

18 h.parallel_for(nd_range(total_size , group_size),

19 kernel);

20 });

21 q.wait_and_throw ();

22 }

Listing 1.3. Successful Passing of Arguments to SYCL Kernel

1 //ptxas fatal : Unresolved extern function

2 dpct:: atomic_fetch_add <double ,

3 sycl:: access :: address_space :: generic_space >(

4 &result_dev [0], fbg);

5

6 // functional replacement

7 auto v = sycl::atomic_ref <double ,

8 sycl:: memory_order ::relaxed ,

9 sycl:: memory_scope ::device ,

10 sycl:: access :: address_space :: global_space >(result_dev [0]);

11 v += fbg;

Listing 1.4. Atomic Addition

Porting Issues with NVIDIA Thrust Library. PAGANI uses Thrust to
perform common parallel operations on device-data from the host side. Such
operations include reduction, dot-product, prefix sum, and finding the mini-
mum/maximum value in a list. DPCCT successfully automates the translation
of these Thrust library calls to SYCL, mainly through the use of equivalent func-
tions in the dpct namespace. This requires including the dpct/dpct.hpp header
which is present in the DPCCT installation. In our experience, the one excep-
tion where DPCCT fails to translate a CUDA Thrust library call is the min-
max element function. DPCCT inserts a placeholder that prevents compilation

348 I. Sakiotis et al.

and inserts a warning in the code to indicate the issue. We addressed this lim-
itation by using the min max function from the oneMKL library’s Summary
Statistics domain. This approach worked on Intel GPUs and CPUs but we later
found that there was no mapping for that function in the CUDA-backend, which
caused an undefined reference error. To solve this issue, we used the iamax and
iamin routines from the oneMKL library’s BLAS domain.

We faced a similar CUDA-backend mapping issue with the dpct::inner
product method, which caused a no matching function compilation error. We
first found the row major::dot method as an alternative in the oneMKL library
but it was not implemented for the CUDA-backend. Instead, we used the equiv-
alent routine in the column major namespace which worked for both Intel and
NVIDIA devices. The only limitation of the oneMKL dpct::inner product rou-
tine was that it required the two input lists to be of the same type. In contrast,
the Thrust routine allows the user to compute the dot-product between floating
point and integer lists. In most cases, any performance impact from this feature
would be negligible, but the impact on memory can be critical for PAGANI.
Computationally intense integrands, can require multiple lists with sizes in the
order of millions and PAGANI uses memory-saving routines when the avail-
able memory is close to being exhausted. Using a floating-point type instead of
integer-types for certain lists, can trigger costly memory-saving routines in the
oneAPI implementation that may not occur in the CUDA original and thus lead
to inferior performance. This scenario is applicable in extreme cases and is not
expected to impede average-case execution.

Performance Degradation. We encountered more difficulties when attempt-
ing to achieve comparable performance to the original CUDA implementations.
The parallel codes for SYCL and CUDA were near-identical, yet we found dif-
ferences in terms of register pressure and shared memory allocation size. These
factors contributed to degraded performance in the SYCL implementations, with
execution times often being more than 50% larger than the CUDA originals. The
critical optimization that on average minimized execution times to within 10%
of the CUDA implementation, was manual loop-unrolling but only after setting
the inline-threshold to 10, 000. In our initial SYCL implementations, the default
inline-threshold limited code inlining and loop-unrolling (even when using unroll
directives).

Another method to limit register usage in SYCL was the use of one-
dimensional nd item objects (used for indexing and coordinating threads in a
group). DPCCT defaults to using 3D nd item even when converting CUDA
code that does not utilize multi-dimensional indexing. This is the case for
both PAGANI and m-Cubes which organize multi-dimensional data in one-
dimensional lists and thus have no need for 2D grids. Using the one-dimensional
nd item in m-Cubes decreased register usage by 10 and yielded small (1–2%)
but consistent performance improvement.

Additionally, we found that in many cases, using a custom function to per-
form work-group reduction through shared memory was faster than the built-in

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study 349

reduce over group. Computing a six-dimensional integral where PAGANI used
the built-in reduction, increased the register count from 100 to 132 and the exe-
cution time from 757 ms to 778 ms. We observed that the slowdown was sensitive
to the inline-threshold. When using the default threshold, the built-in method
yielded equivalent performance to our custom function.

Another challenge in our attempt to achieve comparable performance to
CUDA was deviations in the performance of SYCL and CUDA mathematical
functions. There is no guarantee that the mathematical functions in SYCL have
the same implementations as the functions in the CUDA Math API. In some
cases, we must use different functions (e.g. sycl::pown instead pow) which could
make small deviations unavoidable. Exponential functions displayed comparable
performance on benchmark kernels. On the contrary, we observed a slowdown
of various degrees in SYCL when using power or trigonometric functions. This
is most likely attributed to the compilers utilizing different optimizations. It is
worth noting that we did not use any fast-math flags, since high accuracy is
critical in numerical integration use cases.

Finally, the use of atomic addition in m-Cubes caused orders of magni-
tude slowdown on both the mcubes-kernel and benchmark kernels. This
was attributed to the lack of an architecture-specific flag that must be set to
enable efficient atomics when supported. After setting the Volta architecture
flag, atomic addition was as performant as in the native CUDA implementation.

Software Engineering Issues. We faced non-intuitive compilation errors due
to our use of the Catch2 testing framework. Test code which included the same
headers as benchmark code (except the Catch2 headers) failed to compile. We
found that including oneDPL library and Catch2 headers was causing the issue.
Listing 1.5 illustrates a minimal example that causes a compilation error. Remov-
ing the oneDPL header at line 4 eliminates the error. It is worth noting that the
same issue occurs if we use dpct/dpct.hpp and dpct/dpl utils.hpp instead of the
headers at lines 3–4. These dpct headers were included by DPCCT to utilize
the parallel policies of standard library functions such as std::exclusive scan and
std::reduce.

Utilization of CMake for building executables and tests was largely successful
but more error-prone when targetting the CUDA-backend. We had to include
separate CMake commands and flags when building for NVIDIA GPUs. As illus-
trated in Listing 1.6, we needed additional flags for the CUDA-backend (lines
9 and 12) to specify the GPU architecture, CUDA-backend, and the inline-
threshold. Using the oneMKL library, required the -lonemkl flag to CMake’s
target compile options and the oneMKL location to the target link directories
command, which had to be manually set through the initial CMake command.
Building for the P630 Intel GPU was simpler. We did not need any flags to
compile a target, and the oneMKL CMake package made the utilization of the
library less verbose. Our supplement of extra flags for the CUDA-backend does
not follow standard CMake practices and is error prone. As support for the
CUDA-backend exits its experimental stage, we expect such software engineer-
ing issues will be less pronounced.

350 I. Sakiotis et al.

1 #define CATCH_CONFIG_MAIN

2 #include "catch2/catch.hpp"

3 #include <oneapi/dpl/execution >

4 #include <oneapi/dpl/algorithm >

5

6 //error: ranges/nanorange.hpp :3303:46: error: reference to ’

match_results ’ is ambiguous

7

8 TEST_CASE("TEST HEADER INCLUSION")

9 {

10 sycl:: queue q;

11 }

Listing 1.5. Header Inclusion Issues with Catch2 Testing Framework

5 Experimental Results

We conducted a series of experiments to evaluate the performance and correct-
ness of the oneAPI ports relative to the optimized CUDA implementations of
PAGANI and m-Cubes. We used a single node with a V100 NVIDIA GPU and a
2.4 GHz Intel Xeon R Gold 6130 CPU. We also used the Devcloud environment
to verify that the DPC++ implementations were portable and could be executed
on a P630 Intel GPU. Due to the V100 GPU having significantly more comput-
ing cores than the P630, we do not make any performance comparisons between
the two GPUs. Instead, we focus on the attainable performance of DPC++ on
NVIDIA hardware.

When executing the CUDA implementations, we used gcc 8.5 and CUDA
11.6. For the CUDA-backend execution, we used the same environment but
compiled with clang 15, an inline threshold of 10000, and the following com-
pilation flags: “-fsycl -fsycl-targets=nvptx64-nvidia-cuda -Xsycl-target-backend
–cuda-gpu-arch=sm 70”. We verified the correctness of our ports, by comparing
the results on both the NVIDIA (V100) and Intel (P630) GPUs, to the results
generated by the CUDA originals on a V100 GPU.

In terms of evaluating performance, we chose the same benchmark integrands
originally used to evaluate PAGANI and m-Cubes in [22] and [23]. These func-
tions belong to separate integrand families with features that make accurate
estimation challenging. We list those integrands in equations 1 to 6. All experi-
ments use the same integration bounds (0, 1) on each dimensional axis. Similar
to [22] and [23], we perform multiple experiments per integrand.

We deviate from [22] and [23] in that we do not execute the PAGANI and m-
Cubes methods in their entirety. Instead, we execute their main kernels pagani-
kernel and mcubes-kernel, which is where more than 90% of execution is
spent. With this approach, we can evaluate the effectiveness of each programming
model in terms of offloading workloads to the device. It allows us to separate
kernel evaluation from memory management operations (allocations, copies, etc.)

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study 351

1 # For Intel P60 GPU

2 find_package(MKL REQUIRED)

3 add_executable(exec_name filename.cpp)

4 target_link_libraries (exec_name PUBLIC MKL:: MKL_DPCPP)

5

6 # For CUDA backend

7 #we must store the path to oneMKL library in the CMake

8 # variable ONEMKL_DIR store GPU architeture in CMake variable

TARGET_ARCH

9 set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS } -fsycl -fsycl -targets

=nvptx64 -nvidia -cuda -Xsycl -target -backend --cuda -gpu -

arch=${TARGET_ARCH}")
10 add_executable(exec_name filename.cpp)

11 target_link_directories (exec_name PUBLIC "${ONEMKL_DIR}")
12 target_compile_options (exec_name PRIVATE "-lonemkl" "-mllvm"

"-inline -threshold =10000")

Listing 1.6. Using CMake

and library usage. This comparison of custom kernel implementations is a better
indicator of performance implications when porting CUDA codes to DPC++.

f1,d (x) = cos

(
d∑

i=1

i xi

)

(1)

f2,d (x) =
d∏

i=1

(
1

502
+ (xi − 1/2)2

)−1

(2)

f3,d (x) =

(

1 +
d∑

i=1

i xi

)−d−1

(3)

f4,d (x) = exp

(

−625
d∑

i=1

(xi − 1/2)2
)

(4)

f5,d (x) = exp

(

−10
d∑

i=1

|xi − 1/2|
)

(5)

f6,d (x) =

{
exp

(∑d
i=1 (i + 4)xi

)
if xi < (3 + i) /10

0 otherwise
(6)

352 I. Sakiotis et al.

5.1 Offloading Mathematical Computations to Kernels

A critical stage in pagani-kernel and m-Cubes-kernel is the invocation of
the integrand at various d-dimensional points. Integrands with trigonometric or
exponential functions and table look-ups will have larger execution times com-
pared to other simple integrands that only contain basic mathematical opera-
tions. To attain satisfactory performance, both the invocation of the integrand
functions and the remaining operations within the kernels must achieve compa-
rable performance to the CUDA implementation.

We tested the efficiency of the integrand oneAPI implementations with a sim-
ple kernel that performs a series of invocations on many d-dimensional points.
The points are randomly generated on the host and then copied to device mem-
ory. Each thread invokes the integrand serially 1 million times and writes its
accumulated results to global memory. Writing the results prevents the NVCC
and Clang compilers from disregarding the integrand computations due to opti-
mization.

We first tested simple integrands that contained only a particular function
such as sin, pow, powf, sycl::exp, sycl::pow, sycl::pown. We invoked these math-
ematical functions with d arguments that comprise each d-dimensional point.
We did not use fast-math flags as accuracy is critical in numerical integration.
We observed small but consistent penalties of at most 2% when invoking the
power and exponential functions. On the contrary, trigonometric functions are
approximately 40% slower on the CUDA-backend.

We performed the same experiment on the six benchmark integrands for
dimensions 5 to 8. We summarize the results in Table 1. The timings in CUDA
and oneAPI columns are the means of 10 kernel executions per integrand. The
ratio of those timings shows that the oneAPI version is at most 4% slower.
The largest penalty is observed in the f1 integrand which makes use of the
cos function. The remaining integrands only make use of exponential and power
functions and yield small penalties.

These experiments on the execution time of the integrand invocations demon-
strate that the user-defined computations do not display significant performance
penalties. The one exception is the extended use of trigonometric functions. None
of the benchmark integrands make extended use of trigonometric functions (f1
has one call to cos per invocation). As such, we do not expect any slowdown
larger than 5% in either PAGANI or m-Cubes to be attributed to the integrand
implementations.

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study 353

Table 1. Mean (μ) and standard deviation (σ) of execution times for invoking 5− 8D
benchmark integrands

id μ CUDA (ms) μ oneAPI (ms) σ CUDA σ oneAPI µ oneAPI
µ CUDA

f1 1866.4 1952.4 13.3 21.4 1.04

f2 8413.9 8487.3 5012.5 5042.9 1.009

f3 1812.4 1828.3 18.5 27.1 1.009

f4 11416.1 11410.1 2184.9 2148.1 0.99

f5 634.3 654.4 73.5 67.3 1.03

f6 300.4 300.8 32.05 32.6 1.001

5.2 Benchmark Integrands Performance Comparison

Another set of experiments involved the invocation of the pagani-kernel and
mcubes-kernel on the benchmark integrands. To address different degrees of
computational intensity, we vary the number of thread-blocks used to launch the
kernels. For the mcubes-kernel, we achieve this effect by varying the required
number of samples per iteration in the range (1e8, 3e9). This leads to different
block sizes per kernel. For pagani-kernel, the number of thread blocks corre-
sponds to the number of regions being processed. We perform high-resolution
uniform splits to generate region lists of different sizes and supply them to the
pagani-kernel for evaluation.

We report the penalty of using oneAPI for the benchmark integrands, in the
ratio columns of Tables 2 and 3. We used four thread-block sizes for each inte-
grand for the kernel executions. Each kernel configuration (number of thread
groups) was repeated 100 times to provide a statistical mean and standard devi-
ation for the execution times.

Across our experiments, the average execution time ratio (oneAPI
CUDA) is in the

range (0–10%). The f2 and f4 integrands which make repeated use of the power
function display the largest performance penalties for both PAGANI and m-
Cubes. It is worth noting that both f2 and f4 display the largest execution
times among the benchmark integrands for both integrators.

5.3 Simple Integrands Performance Comparison

In addition to the benchmark integrands, we also evaluate integrands that only
perform a summation of the arguments (

∑d
i=1 xi) where d is the number of

dimensions. This avoids any bias in the comparison by avoiding mathematical
functions that could either call different implementations, cause differences in
register usage or lead to different optimizations. The ratios in Tables 4 and 5,
display timings on addition integrands for dimensions five to eight. Once more,
we observe penalties smaller than 10% and for both integrators these penalties
decrease on higher dimensionalities.

354 I. Sakiotis et al.

Table 2. m-Cubes: mean (μ) and standard deviation (σ) of execution times for 8D
benchmark integrands in CUDA and oneAPI

id μ CUDA (ms) μ oneAPI (ms) σ CUDA σ oneAPI µ oneAPI
µ CUDA

f1 286.7 286.7 2.1 0.9 1.0

f2 402.1 443.1 2.6 0.9 1.1

f3 284.5 285.8 1.6 1.4 1.0

f4 385.7 423.5 2.4 0.5 1.1

f5 284.3 285.9 2.1 1.7 1.0

f6 283.8 285.4 1.9 1.6 1.0

Table 3. PAGANI: mean (μ) and standard deviation (σ) of execution times for 8D
benchmark integrands in CUDA and oneAPI

id μ CUDA (ms) μ oneAPI (ms) σ CUDA σ oneAPI µ oneAPI
µ CUDA

f1 172.3 177.5 0.9 1.2 1.02

f2 1500.4 1651.0 0.3 2.1 1.1

f3 286.4 290.7 0.8 0.4 1.01

f4 1434.7 1524.9 0.4 1.9 1.06

f5 166.5 170.7 0.6 0.4 1.03

f6 136.8 139.4 0.4 0.2 1.02

5.4 Factors Limiting Performance

Particularly for compute-bound kernels such as pagani-kernel and mcubes-
kernel, which perform thousands of computations for each byte of accessed
memory, occupancy is a critical performance factor. The amount of allocated
shared memory and registers per thread limits warp occupancy, and thus any
large deviation in those values for the SYCL implementation can degrade per-
formance.

In most cases, the SYCL implementations assigned more registers to each
thread compared to their CUDA equivalents. We illustrate the magnitude of
this difference in registers per thread in Figs. 1 and 2. We observe the largest
difference in integrands f2 and f4, which make extended use of the power func-
tion. It is the same functions that display the two largest execution time penalties
for the benchmark integrands in Tables 2 and 3.

We observe a similar pattern on the simple addition integrands (Table 4 and
5). In those cases, there are no mathematical functions (pow, exp, etc.) and the
integrands only perform a summation. The difference in registers decreases on
higher dimensions, leading to degraded performance on low dimensions. This
is evident in Tables 4 and 5 where higher-dimensional integrands have smaller
values in the oneAPI

CUDA column. The same pattern is observed for the benchmark
integrands, where the high dimensional versions perform better than the low

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study 355

Table 4. m-Cubes: mean (μ) and standard deviation (σ) of execution times for addition
integrands (

∑d
i=1 xi) in CUDA and oneAPI

id μ CUDA (ms) μ oneAPI (ms) σ CUDA σ oneAPI µ oneAPI
µ CUDA

5D 206.1 214.5 2.1 1.7 1.04

6D 214.1 217.2 2.2 1.0 1.01

7D 234.1 235.2 1.8 0.9 1.005

8D 284.7 285.7 1.9 1.9 1.005

Table 5. PAGANI: mean (μ) and standard deviation (σ) of execution times for addition
integrands (

∑d
i=1 xi) in CUDA and oneAPI

id CUDA (ms) oneAPI (ms) Std. CUDA Std. oneAPI oneAPI
CUDA

5D 1.5 1.7 0.05 0.06 1.1

6D 24.8 26.7 0.3 1.4 1.1

7D 129.8 131.6 0.7 0.2 1.01

8D 137.4 137.6 1.3 1.0 1.001

mcubes pagani

3 4 5 6 7 8 3 4 5 6 7 8
−5

0

5

10

15

ndim

R
eg

is
te

r d
iff

er
en

ce

Fig. 1. Register difference on simple
addition integrands (

∑d
i=1 xi). The y-

axis displays the number of additional
registers per thread in the DPC++
implementation.

F_4 F_5 F_6

F_1 F_2 F_3

6 7 8 6 7 8 6 7 8

0
20
40

0
20
40

ndim

R
eg

is
te

r d
iff

er
en

ce

mcubes pagani

Fig. 2. Register difference on the
benchmark integrands. The y-axis dis-
plays the number of additional registers
per thread in the DPC++ implementa-
tion.

dimension equivalents. It can be seen in Fig. 1, that this effect is more prominent
in m-Cubes, since it displays a larger deviation across all dimensions. These
observations lead us to believe that register difference and its effect on occupancy
is the main reason behind the performance degradation.

356 I. Sakiotis et al.

6 Conclusion

We presented our experience of porting two numerical integration implemen-
tations, PAGANI and m-Cubes, from CUDA to DPC++. We utilized Intel’s
DPCCT to automate the conversion process from CUDA to SYCL and success-
fully attained the capability to execute the same implementation on both Intel
and NVIDIA GPUs. We experimented with various workloads consisting of dif-
ferent mathematical functions. We found that the assigned registers per thread
can deviate in oneAPI and CUDA codes. This affects occupancy which in turn
can negatively impact performance, particularly in compute-bound kernels. We
faced additional challenges with mapping library calls to oneAPI equivalents,
matching compiler optimizations of NVCC with Clang, and using build and
testing libraries like CMake and Catch2. We addressed those challenges and
demonstrated that the performance penalty of using oneAPI ports instead of
optimized CUDA implementations can be limited to 10% on NVIDIA GPUs.
Additionally, numerous cases exhibited comparable performance to the origi-
nal CUDA implementations, with execution time differences in the 1–2% range.
We compared oneAPI and CUDA implementations on the same NVIDIA V100
GPU. We were able to execute on an Intel P630 GPU but we did not compare
these timings with those on the V100 GPU due their significant difference in
computing power. In the future, we plan to execute on the high end Intel Ponte
Vecchio GPU and compare performance metrics with NVIDIA high end GPUs
such as A100.

The vast array of libraries, ease of portability, and small margin of perfor-
mance degradation, make oneAPI an appropriate software solution for the use
case of numerical integration.

References

1. https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.
pdf

2. Argonne leadership computing facility. https://www.alcf.anl.gov/support-center/
aurora/sycl-and-dpc-aurora#:∼:text=DPC%2B%2B%20Data%20Parallel%20C,
versions%20of%20the%20SYCL%20language

3. ComputecppTM community edition. https://developer.codeplay.com/products/
computecpp/ce/2.11.0/guides/#computecpp

4. Migrate cuda* to dpc++ code: Intel®dpc++ compatibility tool. https://www.
intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.
html#gs.lx007q

5. What is OpenACC?. https://www.openacc.org/
6. Giannini, G., et al.: Dark energy survey year 3 results: redshift calibration of the

MagLim lens sample from the combination of SOMPZ and clustering and its impact
on cosmology (2022)

7. Arumugam, K., Godunov, A., Ranjan, D., Terzic, B., Zubair, M.: A memory effi-
cient algorithm for adaptive multidimensional integration with multiple GPUs.
In: 20th Annual International Conference on High Performance Computing, pp.
169–175. IEEE (2013)

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora#:~:text=DPC%2B%2B%20Data%20Parallel%20C, versions%20of%20the%20SYCL%20language
https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora#:~:text=DPC%2B%2B%20Data%20Parallel%20C, versions%20of%20the%20SYCL%20language
https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora#:~:text=DPC%2B%2B%20Data%20Parallel%20C, versions%20of%20the%20SYCL%20language
https://developer.codeplay.com/products/computecpp/ce/2.11.0/guides/#computecpp
https://developer.codeplay.com/products/computecpp/ce/2.11.0/guides/#computecpp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html#gs.lx007q
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html#gs.lx007q
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html#gs.lx007q
https://www.openacc.org/

Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study 357

8. Ashbaugh, B., et al.: Data parallel c++: enhancing sycl through extensions for
productivity and performance. In: Proceedings of the International Workshop on
OpenCL, IWOCL 2020. Association for Computing Machinery, New York (2020).
https://doi.org/10.1145/3388333.3388653

9. Bridle, S., et al.: CosmoSIS: a system for mc parameter estimation. In: Journal of
Physics: Conference Series, vol. 664, no. 7, p. 072036 (2015). https://doi.org/10.
1088/1742-6596/664/7/072036

10. Carter Edwards, H., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore per-
formance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

11. Castaño, G., Faqir-Rhazoui, Y., Garćıa, C., Prieto-Mat́ıas, M.: Evaluation of
Intel’s DPC++ compatibility tool in heterogeneous computing. J. Parallel Dis-
trib. Comput. 165, 120–129 (2022). https://doi.org/10.1016/j.jpdc.2022.03.017.
https://www.sciencedirect.com/science/article/pii/S0743731522000727

12. Christgau, S., Steinke, T.: Porting a legacy CUDA stencil code to oneAPI. In:
2020 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pp. 359–367 (2020). https://doi.org/10.1109/IPDPSW50202.
2020.00070

13. Costanzo, M., Rucci, E., Garćıa-Sánchez, C., Naiouf, M., Prieto-Mat́ıas, M.:
Migrating CUDA to oneAPI: a smith-waterman case study. In: Rojas, I., Valen-
zuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2022. LNCS, pp.
103–116. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07802-6 9

14. Costanzo, M., Rucci, E., Sanchez, C.G., Naiouf, M.: Early experiences migrating
CUDA codes to oneAPI (2021)

15. Costanzo, M., Rucci, E., Sánchez, C.G., Naiouf, M., Prieto-Mat́ıas, M.: Assessing
opportunities of sycl and intel oneAPI for biological sequence alignment (2022)

16. Doerfert, J., et al.: Breaking the vendor lock-performance portable programming
through OpenMP as target independent runtime layer. Technical report, Lawrence
Livermore National Lab. (LLNL), Livermore, CA (United States) (2022)

17. Haseeb, M., Ding, N., Deslippe, J., Awan, M.: Evaluating performance and porta-
bility of a core bioinformatics kernel on multiple vendor GPUs. In: 2021 Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC),
pp. 68–78 (2021). https://doi.org/10.1109/P3HPC54578.2021.00010

18. Jin, Z., Vetter, J.: Evaluating CUDA portability with HIPCL and DPCT. In:
2021 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pp. 371–376 (2021). https://doi.org/10.1109/IPDPSW52791.
2021.00065

19. Kanzaki, J.: Monte Carlo integration on GPU. Eur. Phys. J. C Particles Fields
71(2), 1–7 (2011)

20. Peter Lepage, G.: A new algorithm for adaptive multidimensional integra-
tion. J. Comput. Phys. 27(2), 192–203 (1978). https://doi.org/10.1016/
0021-9991(78)90004-9. https://www.sciencedirect.com/science/article/pii/
0021999178900049

21. Ranjan, N., Terzić, B., Krafft, G., Petrillo, V., Drebot, I., Serafini, L.: Simulation of
inverse Compton scattering and its implications on the scattered linewidth. Phys.
Rev. Accelerators Beams 21(3), 030701 (2018)

22. Sakiotis, I., Arumugam, K., Paterno, M., Ranjan, D., Terzić, B., Zubair, M.:
PAGANI: a parallel adaptive GPU algorithm for numerical integration. Association
for Computing Machinery, New York (2021). https://doi.org/10.1145/3458817.
3476198

https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1088/1742-6596/664/7/072036
https://doi.org/10.1088/1742-6596/664/7/072036
https://doi.org/10.1016/j.jpdc.2022.03.017
https://www.sciencedirect.com/science/article/pii/S0743731522000727
https://doi.org/10.1109/IPDPSW50202.2020.00070
https://doi.org/10.1109/IPDPSW50202.2020.00070
https://doi.org/10.1007/978-3-031-07802-6_9
https://doi.org/10.1109/P3HPC54578.2021.00010
https://doi.org/10.1109/IPDPSW52791.2021.00065
https://doi.org/10.1109/IPDPSW52791.2021.00065
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://www.sciencedirect.com/science/article/pii/0021999178900049
https://www.sciencedirect.com/science/article/pii/0021999178900049
https://doi.org/10.1145/3458817.3476198
https://doi.org/10.1145/3458817.3476198

358 I. Sakiotis et al.

23. Sakiotis, I., Arumugam, K., Paterno, M., Ranjan, D., Terzić, B., Zubair, M.: m-
cubes: an efficient and portable implementation of multi-dimensional integration
for GPUs. In: Varbanescu, A.L., Bhatele, A., Luszczek, P., Marc, B. (eds.) ISC
High Performance 2022. LNCS, pp. 192–209. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-07312-0 10

24. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010)

25. Su, C.L., Chen, P.Y., Lan, C.C., Huang, L.S., Wu, K.H.: Overview and compar-
ison of OpenCL and CUDA technology for GPGPU. In: 2012 IEEE Asia Pacific
Conference on Circuits and Systems, pp. 448–451 (2012). https://doi.org/10.1109/
APCCAS.2012.6419068

26. Tsai, Y.M., Cojean, T., Anzt, H.: Porting sparse linear algebra to Intel GPUs. In:
Chaves, R., et al. (eds.) Euro-Par 2021. LNCS, pp. 57–68. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-06156-1 5

27. Volokitin, V., Bashinov, A., Efimenko, E., Gonoskov, A., Meyerov, I.: High perfor-
mance implementation of Boris particle pusher on DPC++. A first look at oneAPI.
In: Malyshkin, V. (ed.) PaCT 2021. LNCS, vol. 12942, pp. 288–300. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86359-3 22

28. Wong, M., et al.: Sycl - C++ single-source heterogeneous programming for accel-
eration offload (2014). https://www.khronos.org/sycl/

29. Wu, H.Z., Zhang, J.J., Pang, L.G., Wang, Q.: ZMCintegral: a package for
multi-dimensional Monte Carlo integration on multi-GPUs. Comput. Phys. Com-
mun. 248, 106962 (2020). https://doi.org/10.1016/j.cpc.2019.106962. https://
www.sciencedirect.com/science/article/pii/S0010465519303121

30. Zenker, E., et al.: Alpaka - an abstraction library for parallel kernel acceleration.
Cornell University Library, Ithaca (2016)

https://doi.org/10.1007/978-3-031-07312-0_10
https://doi.org/10.1007/978-3-031-07312-0_10
https://doi.org/10.1109/APCCAS.2012.6419068
https://doi.org/10.1109/APCCAS.2012.6419068
https://doi.org/10.1007/978-3-031-06156-1_5
https://doi.org/10.1007/978-3-030-86359-3_22
https://www.khronos.org/sycl/
https://doi.org/10.1016/j.cpc.2019.106962
https://www.sciencedirect.com/science/article/pii/S0010465519303121
https://www.sciencedirect.com/science/article/pii/S0010465519303121

Performance Evaluation of a Next-Generation
SX-Aurora TSUBASA Vector Supercomputer

Keichi Takahashi1(B) , Soya Fujimoto2, Satoru Nagase2, Yoko Isobe2,
Yoichi Shimomura1, Ryusuke Egawa3 , and Hiroyuki Takizawa1

1 Tohoku University, Sendai, Japan
{keichi,shimomura32,takizawa}@tohoku.ac.jp

2 NEC Corporation, Tokyo, Japan
{s-fujimoto,s.nagase,y-isobe-pi}@nec.com

3 Tokyo Denki University, Tokyo, Japan
egawa@mail.dendai.ac.jp

Abstract. Data movement is a key bottleneck in terms of both performance and
energy efficiency in modern HPC systems. The NEC SX-series supercomputers
have a long history of accelerating memory-intensive HPC applications by pro-
viding sufficient memory bandwidth to applications. In this paper, we analyze
the performance of a prototype SX-Aurora TSUBASA supercomputer equipped
with the brand-new Vector Engine (VE30) processor. VE30 is the first major
update to the Vector Engine processor series, and offers significantly improved
memory access performance due to its renewed memory subsystem. Moreover, it
introduces new instructions and incorporates architectural advancements tailored
for accelerating memory-intensive applications. Using standard benchmarks, we
demonstrate that VE30 considerably outperforms other processors in both perfor-
mance and efficiency of memory-intensive applications. We also evaluate VE30
using applications including SPEChpc, and show that VE30 can run real-world
applications with high performance. Finally, we discuss performance tuning tech-
niques to obtain maximum performance from VE30.

Keywords: performance evaluation · SX-Aurora TSUBASA ·

memory-intensive applications · vector processor · vector supercomputer

1 Introduction

The memory wall is a longstanding challenge in HPC that refers to the continuously
widening gap between arithmetic computing performance and memory performance
in a computing system. Due to the memory wall problem, memory-intensive appli-
cations are bottlenecked by data movement and unable to fully utilize the arithmetic
computing performance of a system. Not only does this hurt the performance of appli-
cations, but it also degrades energy efficiency. The HPC community has therefore been
actively exploring novel architectures to tackle the memory wall, such as adopting high-
bandwidth memory devices for off-chip memory [4,24], implementing large amounts
of on-chip memory [16,21], and reducing memory accesses by directly exchanging data
between processing elements [9,11].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 359–378, 2023.
https://doi.org/10.1007/978-3-031-32041-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_19&domain=pdf
http://orcid.org/0000-0002-1607-5694
http://orcid.org/0000-0001-8966-867X
http://orcid.org/0000-0003-2858-3140
https://doi.org/10.1007/978-3-031-32041-5_19

360 K. Takahashi et al.

However, these exotic architectures completely differ from general-purpose CPUs,
and often require the programmer to become familiar with unconventional programming
models. For example, the device could require multiple magnitudes larger degree of
parallelism than a CPU, or data movement across the memory subsystem might require
explicit management by the programmer. As a consequence, developing software for
such emerging hardware is generally time-consuming and expensive. If a large body of
users exists, the cost for developing optimized software for a specialized system could be
amortized (e.g., deep learning). However, it is often the case in HPC that a scientifically
important software package is maintained by a handful of programmers and used by a
small group of users. In such a case, the development cost becomes prohibitive.

NEC’s SX-Aurora TSUBASA (SX-AT) supercomputer aims to achieve both world-
class memory performance and high productivity by a unique combination of latest
memory technology with the vector architecture. The vector architecture has a long his-
tory and recently regained interests from the community. This trend can be seen in the
ARM Scalable Vector Extension [28] and upcoming RISC-V Vector Extension [20], both
of which are heavily inspired by the vector architecture. Since most HPC applications
exhibit high data-level parallelism that can be automatically exploited by a vectorizing
compiler, conventional software targeted for general-purpose CPUs can run with minor
modifications. To keep feeding data to the high-performance vector cores, High Band-
width Memory (HBM) is tightly coupled with the processor. As a result, SX-AT offers
massive memory performance to applications while ensuring programmer productivity.

NEC has recently been prototyping a brand-new vector processor named Vector
Engine 3.0 (VE30) for SX-AT. VE30 takes a big leap from the previous Vector Engine
series, and brings a number of architectural advancements beyond peak compute and
memory performance increase. Specifically, VE30 introduces bypassable per-core pri-
vate L3 caches as a new level in the memory hierarchy to accelerate cache-intensive
applications. In addition, a new instruction that performs indirectly addressed vector
accumulation within a compute-capable LLC is added.

Since these combined improvements are expected to accelerate applications beyond
the improvement of peak performance, application performance cannot be trivially
estimated. We therefore carry out the first performance analysis of a next-generation
vector supercomputer based on the VE30 processor. The main contributions of this
paper are summarized as follows.

– This is the first work to evaluate the performance of a next-generation vector super-
computer equipped with VE30 processors. Using industry-standard benchmarks and
several applications, we assess the basic and application performance of VE30.

– This is the first evaluation of a vector processor using the SPEChpc 2021 benchmark
suite. Since the benchmarks included in SPEChpc are carefully selected from a wide
spectrum of scientific domains, we believe that our evaluation shows the real-world
performance of VE30.

– This paper elucidates the performance gain obtained by each architectural improve-
ment newly introduced in VE30 using microbenchmarks. Understanding the per-
formance benefit of these features is vital for tuning applications for VE30, and
establishes a foundation for developing novel tuning techniques.

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Supercomputer 361

– This paper discusses several performance tuning techniques to take advantages of
the new architectural capabilities of VE30 to accelerate application performance.

The rest of this paper is organized as follows. Section 2 introduces the NEC SX-
AT supercomputer and describes the basic architecture of the VE30 processor. Section 3
extensively evaluates the performance of VE30 using standard benchmarks, microbench-
marks and real-world workloads. Section 4 discusses performance tuning techniques to
fully exploit the potential of the VE30 processor. Section 5 concludes this paper.

2 Overview of SX-Aurora TSUBASA VE30

In this section, we first outline the architecture of the SX-AT supercomputer, and intro-
duce the newly developed VE30 processor. We then describe the architectural enhance-
ments of VE30 from its predecessor.

2.1 The SX-Aurora TSUBASA Product Family

The SX-Aurora TSUBASA (SX-AT) is the latest product family in the NEC SX vector
supercomputers series. While SX-AT inherits the well-established and successful design
philosophy of its predecessors, it also embraces the current de facto standard HPC
software ecosystem. The first-generation SX-AT based on the Vector Engine 1.0 (VE10)
processor was released in 2018 [13], which was followed by the second-generation
SX-AT based on the Vector Engine 2.0 (VE20) processor released in 2020 [7]. The
third-generation SX-AT based on the Vector Engine 3.0 (VE30) processor, which is
evaluated in this paper, was released in October 2022.

SX-AT employs a heterogeneous architecture consisting of a Vector Host (VH) and
a Vector Engine (VE). The VH is an x86 server responsible for running the OS and
performing tasks such as process and memory management and I/O. The VE is a vector
processor implemented on a PCI Express (PCIe) card, and executes the application. The
VH communicates with the VE over the PCIe link and controls the VE.

Although on the surface a VE resembles an accelerator such as a GPU, its execution
model differs substantially from that of a conventional accelerator. Applications are
fully executed on the VE, and system calls are forwarded to the VH and handled by
proxy processes running on the VH. This design eliminates kernel launch overhead and
reduces data transfer found in conventional accelerators. Furthermore, this design allows
users to develop their applications using standard MPI and OpenMP-based programming
models, and does not require any knowledge of a vendor-specific programming language
or framework.

2.2 Basic Architecture of the VE30 Processor

Figure 1 illustrates an overview of a prototype VE30 processor, and Fig. 2 depicts the
memory hierarchy of a VE30 processor. The VE30 processor integrates 16 vector
cores, a shared LLC and six HBM2E modules. Each vector core can perform up
to 307.2 GFLOP/s (DP) or 614.4 GFLOP/s (SP), and thus a single socket performs

362 K. Takahashi et al.

Fig. 1. Block diagram of the VE30 proces-
sor.

Fig. 2. Memory hierarchy of the VE30 pro-
cessor.

4.91 TFLOP/s (DP) or 9.83 TFLOP/s (SP) in total. The six HBM2E modules have 96 GB
of capacity and provide an aggregate memory bandwidth of 2.45 TB/s to the cores. The
shared LLC is 64 MB in size. The cores and LLC are interconnected through a 2-
dimensional Network on Chip (NoC). Similar to the Sub-NUMA Clustering (SNC) [10]
in the recent Intel processors, VE30 provides a partitioning mode, which splits the
cores, LLC and HBM in the processor into two NUMA nodes. This increases the
aggregate effective LLC bandwidth by alleviating congestion in the NoC, and benefits
LLC-intensive applications.

A vector core in VE30 comprises a Scalar Processing Unit (SPU) and a Vector
Processing Unit (VPU). The SPU fetches and decodes instructions, executes scalar
instructions and dispatches vector instructions to the VPU. An SPU contains a 64 KB
L1 instruction cache, a 64 KB L1 data cache, and a 512 KB unified L2 cache. A VPU
contains 64 architectural vector registers that are renamed to 188 physical vector registers.
A single vector register holds up to 256 double-precision floating point elements (i.e.,
2 KB). A VPU contains 32 vector pipelines, each of which has three Fused-Multiply Add
(FMA) execution units. Thus, in total, a vector core can perform 96 FMA operations in
a single cycle. The SPU and VPU share a 2 MB unified write-through L3 cache.

2.3 Architectural Improvements from the VE20 Processor

VE30 features a significantly advanced memory subsystem compared to its predecessor.
First, the introduction of a new level in the memory hierarchy, per-core private L3 caches,
alleviates LLC contention and enables cache-intensive applications to achieve higher
performance. Second, the LLC capacity and bandwidth are increased by 4× and 2.13×,
respectively. Third, both the capacity and bandwidth of the HBM are also improved. The
peak HBM bandwidth is increased by 1.60× from 1.53 TB/s to 2.45 TB/s, and the HBM
capacity is doubled from 48 GB to 96 GB. These drastic improvements to the memory
subsystem combined are expected to significantly accelerate both memory-intensive and
cache-intensive applications.

In addition to the enhancements made to the memory subsystem, the core count
is increased from 10 to 16 cores, which increases the peak single-socket performance
from 3.07 TFLOP/s to 4.91 TFLOP/s. It should be noted that, despite the increase in

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Supercomputer 363

the number of cores, the per-core cache and memory performance is either increased or
maintained.

Furthermore, a number of improvements are made to the core. First, VE30 relaxes
the alignment requirement for single-precision floating point vectors, and improves
the performance single-precision applications. Second, VE30 introduces a dedicated
hardware mechanism for accelerating vector accumulation with indirect addressing.
These improvements do not directly contribute to the peak FLOP/s rate, but are expected
to benefit the performance of real-world applications.

3 Performance Evaluation

In this section, we first reveal the basic performance of VE30 using industry-standard
benchmarks. We then use microbenchmarks to examine the performance gains delivered
by architectural improvements introduced in VE30. Finally, we use workloads that
represent practical applications to assess the real-world performance of VE30. Note that
the performance measurements on VE30 are conducted using prototype software and
hardware. Thus, the results may be subject to change on the final product.

3.1 Evaluation Environment

Table 1. Specifications of the evaluated processors.
VE Type 20B VE Type 30A A64FX Xeon Platinum 8368 A100 80 GB PCIe

Frequency [GHz] 1.6 1.6 2.2 2.4 1.412
Performance per Core
[GFLOP/s]

307 (DP) 614 (SP) 307 (DP) 614 (SP) 70 (DP) 140 (SP) 83.2 (DP)a 166 (SP) 181 (DP) w/ Tensor Core 90
(DP) w/o Tensor Core 181
(SP)

Number of Cores 8 16 48 38 108
Performance per
Socket [TFLOP/s]

2.4 (DP) 4.9 (SP) 4.9 (DP) 9.8 (SP) 3.3 (DP) 6.7 (SP) 3.1 (DP)a 6.3 (SP) 19.5 (DP) w/ Tensor Core 9.7
(DP) w/o Tensor Core 19.5
(SP)

LLC Bandwidth [TB/s] 3.0 6.4 3.6 3.2b 4.9b

LLC Capacity [MB] 16 64 32 54 40
Memory Bandwidth
[TB/s]

1.53 2.45 1.024 0.204 1.935

Memory Capacity
[GB]

48 96 32 256 80

Process Rule [nm] 16 7 7 10 7
a The peak performance is calculated based on the AVX-512 Turbo Frequency when all cores are
active.
b The LLC bandwidth (L2 bandwidth on IceLake-SP) is measured using the Empirical Roofline
Toolkit (https://bitbucket.org/berkeleylab/cs-roofline-toolkit) since the peak bandwidth is not dis-
closed by the manufacturers.

Table 1 summarizes the specifications of the processors used in this evaluation. We
compare VE30 to a variety of latest processors used in HPC spanning from a vector pro-
cessor, GPU, many-core processor and general-purpose CPU: NEC Vector Engine Type

https://bitbucket.org/berkeleylab/cs-roofline-toolkit

364 K. Takahashi et al.

20B (an 8-core SKU of VE20) [7], NVIDIA A100 40 GB and 80 GB PCIe models [4],
Fujitsu A64FX [24], and Intel Xeon Platinum 8368 (IceLake-SP) [19]. As shown in
Table 1, the peak performance of A100 doubles when the Tensor Cores are included. We
use the peak performance including the Tensor Cores when calculating the efficiency of
HPL, and the peak performance excluding the Tensor Cores for the other benchmarks.
This is because all benchmarks except HPL do not use the Tensor Cores.

Multi-node measurements for VE30 are carried out on a cluster composed of 16
VHs interconnected with a dual-rail InfiniBand HDR 200 Gbps network. Each VH is
equipped with eight Vector Engine Type 30A cards, an AMD EPYC 7713P processor
and 512 GB of DDR4-3200 SDRAM. As for the multi-node measurements for the other
processors, the AOBA-C system at Tohoku University is used for VE20, the Flow Type
I Subsystem at Nagoya University is used for A64FX, and the SQUID CPU and GPU
nodes are used for IceLake-SP and A100.

3.2 Basic Benchmarks

We use four widely recognized benchmarks in HPC to evaluate the basic performance
of VE30: the High Performance Linpack (HPL) [6] benchmark, STREAM benchmark,
High Performance Conjugate Gradients (HPCG) [5] and Himeno benchmark [8].

HPL is a compute-intensive benchmark that solves a dense system of linear equations
using LU decomposition with partial pivoting. The STREAM benchmark measures the
effective memory bandwidth. HPCG is a memory-intensive benchmark that solves a
sparse linear system using the conjugate gradient method and a geometric multigrid
preconditioner. The Himeno benchmark is also memory-intensive, and solves the Poisson
equation using the Jacobi method. Only the Himeno benchmark uses single-precision
floating point numbers for computation and the rest use double-precision floating point
numbers. Since HPL and HPCG executables optimized for the A64FX processor are
unavailable to us, the HPL and HPCG performance of A64FX is calculated based on
the Top500 result of an A64FX-based system (Fugaku [24]).

0

2

4

6

8

10

12

14

VE20 VE30 A64FXIceLake A100
40GB

A100
80GB

0

20

40

60

80

100

T
F
LO

P
/s

E
f
ci
en

cy
[%

]

Performance Ef ciency

2.13

4.43

2.78
1.83

11.8
12.5

86%
90%

82%

57%
60%

64%

Fig. 3. HPL benchmark performance.

0

500

1000

1500

2000

VE20 VE30 A64FXIceLake
×2

A100
40GB

A100
80GB

0

20

40

60

80

100

G
B
/s

E
f
ci
en

cy
[%

]

Performance Ef ciency

1230

1793

826

163

1410

165780%

72%

81% 80%

91%
86%

Fig. 4. Effective memory bandwidth.

Figure 3 compares the HPL performance of different processors. The NVIDIA A100
clearly stands out from the other processors. The A100 40 GB model achieves over

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Supercomputer 365

11.8 TFLOP/s in HPL performance, and the 80 GB model achieves a slightly higher
performance of 12.5 TFLOP/s due to the increased problem size and higher TDP. The
VE30 processor delivers 4.43 TFLOP/s and surpasses both A64FX and IceLake-SP.
With respect to efficiency, VE30 is the highest with an efficiency of 90%, followed by
A64FX and VE20. A100 shows relatively low efficiency as it cannot maintain the GPU
boost clock due to power throttling.

Figure 4 compares the effective memory bandwidth of the different processors mea-
sured using STREAM. The effective memory bandwidth of VE30 exceeds 1.79 TB/s
and is clearly the highest among the evaluated processors. Compared to its predecessor,
VE20, the effective memory bandwidth of VE30 is 1.45× higher.

0

50

100

150

200

250

300

VE20 VE30 A64FX IceLake A100
40GB

A100
80GB

0

1

2

3

4

5

6

7

G
F
LO

P
/s

E
f
ci
en

cy
[%

]

Performance Ef ciency

139

258

106

29

222

259
5.6%

5.2%

3.1%

0.94%

2.2%
2.6%

Fig. 5. HPCG benchmark performance.

0

100

200

300

400

500

600

700

800

900

VE20 VE30 A64FXIceLake A100
40GB

A100
80GB

0

5

10

15

20

G
F
LO

P
/s

E
f
ci
en

cy
[%

]

Performance Ef ciency

388

837

342

75

553

634

16%
17%

10%

2.3% 2.8% 3.2%

Fig. 6. Himeno benchmark performance
(XL size).

Figure 5 shows the HPCG performance of the evaluated processors. VE30 attains
258 GFLOP/s and outperforms VE20, A64FX, IceLake-SP and the A100 40 GB model.
It achieves almost identical performance as the A100 80 GB model. In terms of efficiency,
VE30 achieves 5.2% of the peak performance, which is considerably higher than that of
the other processors: 1.97× higher than the A100 80 GB model and 5.72× higher than
IceLake-SP. Furthermore, VE30 achieves the highest energy efficiency among all proces-
sors. The energy efficiency of VE30 when executing HPCG reaches 1.034 GFLOP/s/W,
while A100 40 GB and 80 GB models achieve 0.909 GFLOP/s/W and 0.999 GFLOP/s/W,
respectively. These results highlight that VE30 successfully strikes the balance between
memory performance and floating-point performance, whereas other processors heavily
prioritize floating-point performance over memory performance.

Figure 6 shows the performance of the Himeno benchmark. VE30 is the best-
performing one among all processors. It marks 837 GFLOP/s and surpasses the A100
40 GB and 80 GB models by a factor of 1.51× and 1.32×, respectively. Interestingly,
the speedup exceeds the difference in memory bandwidth. For example, VE30 has
1.27× higher memory bandwidth than the A100 80 GB model, but its performance is
1.32× higher. The speedup over VE20 that achieves 388 GFLOP/s is 2.15×, which is
again much larger than the 1.60× peak memory bandwidth improvement. This is likely
because the alignment restriction for single-precision vectors is relaxed in VE30, and
single-precision applications can be executed more efficiently.

366 K. Takahashi et al.

0.1

1

10

100

1000

1 10 100
0

20

40

60

80

100

T
F
LO

P
/s

E
f
ci
en

cy
[%

]

of VEs

HPL Performance
HPCG Performance

Himeno Performance

HPL Ef ciency
HPCG Ef ciency

Himeno Ef ciency

Fig. 7. Multi-node scaling performance of HPL,
HPCG and Himeno benchmarks.

Table 2. Summary of the Tohoku Uni-
versity kernel collection.

Kernel Domain Bottleneck

Earthquake [1] Seismology Mem. B/W

Turbulent Flow [30] Fluid dynamics LLC B/W

Antenna [22] Electronics Mem. B/W

Land Mine [23] Electronics Mem. B/W

Turbine [30] Fluid dynamics Mem. latency

Plasma [12] Geophysics Mem. latency

Finally, we assess the multi-node scalability of HPL, HPCG and Himeno benchmarks.
Figure 7 shows the multi-node performance of the two benchmarks as a function of the
number of VEs. The results indicate that all three benchmarks scale almost linearly
from 1 VE to 128 VEs with minor drop in efficiency. On 128 VEs, or 16 VHs, the HPL
performance reaches 537 TFLOP/s with an efficiency of 85.5%. The HPCG benchmark
achieves 30.6 TFLOP/s on 128 VEs with an efficiency of 4.9%. The Himeno benchmark
achieves 919 TFLOP/s on 128 VEs with 15.2% efficiency.

3.3 Evaluation of Architectural Improvements

Bypassable L3 Cache. VE30 incorporates per-core private L3 caches into the memory
hierarchy. This design choice was made based on the observation that cache-intensive
applications suffered from degraded LLC performance on previous generations of the
VE. This is largely due to the congestion in the NoC and cache contention in the LLC. The
introduction of private L3 caches is expected to improve the effective cache bandwidth
by alleviating NoC congestion and LLC contention.

Furthermore, the L3 cache can be bypassed by software. Similar to non-temporal
loads and stores in CPUs and GPUs [17], each load or store instruction can specify
whether to bypass the L3 cache or not. Selectively caching data that exhibit high temporal
locality is expected to reduce cache pollution and allow applications to efficiently utilize
the limited cache capacity. From the programmer’s perspective, selective caching is
enabled by inserting a compiler directive #pragma _NEC on_adb(var) in the source
code, where var indicates the array to be L3-cached.

Note that the L3 cache bypassing is different from the LLC retention control [18]
that was available in the previous VE generations. The LLC retention control allows
applications to mark data as either temporal or non-temporal when issuing loads and
stores. The LLC then prioritizes temporal data over non-temporal data when evicting
cache lines. However, even if an access is marked as non-temporal, it is still cached in
LLC. Thus, non-temporal data can still occupy a certain amount of the cache. The L3
cache bypassing, on the other hand, completely bypasses the L3 cache.

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Supercomputer 367

To assess the contribution of the L3 cache to application performance, we utilize
the L3 cache bypassing feature and compare the performance of applications with and
without enabling the L3 cache. Here, we use the Tohoku University kernel collection [13,
26], a set of computational kernels extracted from production applications developed by
the users of the Cyberscience Center, Tohoku University. As summarized in Table 2, the
kernel collection comprises six kernels spanning a wide variety of scientific domains
and performance characteristics.

Figure 8 presents the performance of each kernel with and without enabling the
L3 cache. The results reveal that Turbulent Flow, Antenna, Turbine and Plasma clearly
benefit from the L3 cache. Since the L3 cache saves LLC and memory bandwidths by
serving portion of the memory requests, LLC-intensive and memory-intensive applica-
tions such as Turbulent Flow and Antenna are accelerated. Contrastingly, Earthquake
and Land Mine do not benefit from the L3. These two kernels are memory-intensive and
may either have poor data locality or a large working set size that does not fit in the L3
cache. The memory latency sensitive kernels, Turbine and Plasma, are also accelerated
as the L3 cache reduces memory latency. Accessing the LLC incurs higher latency than
the L3 cache since the LLC is physically farther away than the L3 cache, and requires
communication over the potentially congested NoC.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Earthquake

Turbulent
Flow

Antenna

Land Mine

Turbine
Plasma

T
F
LO

P
/s

w/o L3 cache w/ L3 cache

Fig. 8. Impact of L3 Cache on Tohoku University kernel
collection performance.

0

10

20

30

40

50

60

70

VE20w/o packed

VE30w/o packed

VE30w/ packed

G
F
LO

P
/s

Fig. 9. Single-core performance
of a single-precision 27-point sten-
cil kernel.

Relaxed Alignment Restriction for Packed Instructions. The packed instructions in
SX-AT operate on vectors of 32-bit values, where each 64-bit element of a vector register
holds a pair of 32-bit values. For example, a vector register can store 512 single-precision
floating point numbers using the packed format. However, previous generations of the
VE imposed an alignment restriction, requiring that the starting address of a packed
vector is 8-byte aligned. Otherwise, the packed format cannot be used, and each element
of a vector register holds only one 32-bit value instead of two. VE30 lifts this restriction
and only requires 4-byte alignment for single-precision vectors.

368 K. Takahashi et al.

To evaluate the speedup offered by the packed format, we measure the performance of
a single-precision 27-point stencil kernel. Figure 9 presents the single-core performance
of the 27-point stencil kernel on VE20 and on VE30 with and without using the packed
format. Using the packed format on VE30 improves the performance by 1.48× compared
to VE20 and VE30 without using the packed format. There is no improvement from
VE20 without packed vectors because the per-core memory bandwidth remains the
same.

Hardware Support for Indexed Vector Accumulation. The VE30 processor intro-
duces hardware support for vector accumulation with indirect addressing (i.e., axpyi
in Sparse BLAS). Such computation is fundamental in applications including finite ele-
ment and particle methods. An example of an indexed vector accumulation is shown in
Listing 1.1. In this example, array y is indirectly accessed using array l[i] as indices.
This loop cannot be automatically vectorized by the compiler because loop-carried
dependencies exist if some of the indices in l overlap.

Listing 1.1. Indexed vector accumulation.
� �

for (int i = 0; i < n; i++)
y[l[i]] = y[l[i]] + x[i];

� �

Prior to VE30, programmers needed to manually examine whether l[i]may overlap,
and either insert the ivdep or list_vector compiler directive to the loop. The ivdep
directive is specified when there are no overlaps of indices, and simply vectorizes the
loop. In the case where the indices do overlap, the list_vector directive must be
specified. The list_vector directive instructs the compiler to generate a code that (1)
computes the results using vector instructions ignoring loop-carried dependencies, (2)
checks the overlaps of indices, and (3) corrects the results for overlapping indices using
scalar instructions. However, the overhead incurred by the corrections increases as the
number of overlapping indices in vector l increases.

VE30 adds specialized hardware for atomic accumulation in the LLC along with a
new instruction, vlfa. The vlfa instruction sends the vector of indices (l in Listing 1.1)
and the added vector (x) to the LLC, and then performs the accumulation in the LLC.
The vlfa instruction should perform better than list_vector because scalar-based
corrections are unneeded, and the latency of vector gather is eliminated. Programmer
productivity is also improved since programmers no longer have to spend effort in
identifying whether the indices might overlap or not. Note, however, that vlfa still
slows down when the number of overlapping indices increases because contention may
occur in the LLC.

To investigate the performance of the vlfa instruction, we use the indexed vector
accumulation kernel shown in Listing 1.1. Here, we compare the following five variants:
scalar-only on VE20 and VE30, list_vector on VE20 and VE30, and vlfa on VE30.
We vary the number of overlapping indices to quantify the performance degradation
caused by the overlap of indices. This is achieved by initializing the index vector l as
the following:

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Supercomputer 369

𝑙 [𝑖] =

{
0 if 𝑖 mod 32 < 𝑘

𝑖 otherwise,
(1)

where 𝑘 is varied from 1 to 32.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 12 16 20 24 28 32

G
F
LO

P
/s

of Overlapping Indices

VE20 scalar
VE20 list_vector

VE30 scalar
VE30 list_vector

VE30 vlfa

Fig. 10. Single-core performance of indexed vector accumulation.

Figure 10 shows the performance of indexed vector accumulation for each variant.
Evidently, vlfa outperforms all other variants when the number of overlapping indices
is small; it is 3.48× faster than list_vector and 4.72× faster than scalar-only when
4 out of 32 indices overlap. The performance of vlfa starts to decline with more than
8 overlapping indices, and falls below scalar-only with more than 20 identical indices.
However, such large degree of address overlap is unlikely in real-world applications. This
indicates that programmers generally do not need to specify the ivdep or list_vector
directives on VE30, hence the productivity is improved.

Listing 1.2. A kernel loop involving indexed vector accumulation.
� �

DO N = nstart,nend
IF(flag3(N)==1) THEN
COF(7,WI(N),WJ(N),WK(N))=COF(7,WI(N),WJ(N),WK(N))+W_TAUWC(N) * W_AREA_1(N)
SOC(WI(N),WJ(N),WK(N))=SOC(WI(N),WJ(N),WK(N))+W_TAUWS(N) * W_AREA_1(N)

ENDIF
ENDDO

� �

Listing 1.2 shows a kernel loop extracted from a real-world fluid dynamics appli-
cation. Here, two 3-dimensional arrays COF and SOC are accumulated in a single loop.
In this example, arrays are initialized such that 4 out of 256 indices overlap (there are
two pairs of identical indices). Prior to VE30, the VE compiler was unable to vectorize
this kind of code. On VE30, the compiler can vectorize this code with the help of the
vlfa instruction. As a result, this kernel takes 175.6s to run on VE30 without the vlfa
instruction, but only takes 12.0s to run with the vlfa instruction, resulting in a 14.6×
speedup.

370 K. Takahashi et al.

3.4 Real-World Workloads

SPEChpc 2021 Benchmark Suite. SPEChpc [15,27] is a benchmark suite developed
by the Standard Performance Evaluation Corporation (SPEC), and comprises a set of
carefully selected applications that represent a wide range of real-world HPC applica-
tions. The latest version of the SPEChpc benchmark suite, SPEChpc 2021, was released
in October 2021. It supports multiple programming models and can run on both CPUs
and GPUs. In this evaluation, we use MPI+OpenMP on VE20, VE30, A64FX and
IceLake-SP, and MPI+OpenACC on A100.

We first use the tiny workload from the SPEChpc 2021 benchmark suite to compare
the single-socket performance of the processors. The smallest tiny workload consists of
nine benchmarks and requires approximately 60 GB of memory. We plot the speedups to
a reference system (a 2-socket 12-core Intel Haswell system) reported by the SPEChpc
benchmark script for each processor. If a processor needs more than one socket due
to the memory footprint requirement, the speedup is divided by the number of sockets
to make a fair comparison. Since the compilers for VE30 are still under development
as of writing this paper, we could not obtain the performance results for SOMA and
Minisweep on VE30.

0

5

10

15

20

25

30

35

LBM TeaLeaf CloverLeaf POT3D SPH-EXA HPGMG-FV miniWeather

S
pe

ed
up

ov
er

B
as

el
in
e
S
ys
te
m

VE20 x2
VE30 x1

A100 80GB x1
A100 40GB x2

A64FX x3
IceLake-SP x1

Fig. 11. SPEChpc 2021 tiny workload performance.

Figure 11 summarizes the SPEChpc tiny workload performance on the different
processors. VE30 outperforms all other processors in LBM, TeaLeaf and POT3D. The
speedups of these three benchmarks over the A100 80 GB model are 1.29×, 1.36×
and 1.24×, respectively. The speedups of LBM and TeaLeaf exceed the difference in
memory bandwidth, suggesting that the architectural enhancements such as the newly
introduced L3 cache and increased LLC capacity and bandwidth, are contributing to the
performance gain.

VE30 also clearly outperforms A64FX and IceLake-SP in CloverLeaf and mini-
Weather, but slightly underperforms the A100 40 GB and 80 GB models. This is because
the time-consuming kernels in CloverLeaf require a large number of vector gather opera-
tions, and it appears that VE30 struggles at hiding the latency of vector gather operations
compared to A100. The miniWeather benchmark contains a mix of memory-intensive

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Supercomputer 371

and compute-intensive kernels. Although memory-intensive kernels are faster on VE30
than on A100, compute-intensive kernels are slower on VE30 and dominate the runtime.

SPH-EXA and HPGMG-FV perform poorly on VE30. SPH-EXA [3] is mainly
bottlenecked by the construction of an octree-based spatial index and nearest neighbor
queries over the index. Both of these functions inherently require recursive function
calls and cannot be vectorized. To achieve better performance on vector processors, the
nearest neighbor search needs to be changed to a vector-friendly algorithm.

HPGMG-FV suffers from short loop length. The HPGMG-FV tiny workload decom-
poses a 5123 cubic domain into 323 cubic boxes and distributes the boxes to MPI ranks.
The most time-consuming Gauss-Seidel Red-Black smoother kernel sweeps over a box
with a triple-nested loop each corresponding to a spatial dimension. As a result, each
loop runs for 32 times, but this is too short compared to the vector length of a VE, which
is 256 double-precision elements. A potential optimization is collapse the nested loops
and increase the loop length. Another possible optimization is to offload the coarse grid
levels to the VH and process fine grid levels on the VE.

0

5

10

15

20

25

30

35

40

LBM TeaLeaf CloverLeaf POT3D HPGMG-FV miniWeather

S
pe

ed
up

ov
er

B
as

el
in
e
S
ys
te
m

VE20 x128
VE30 x128

A100 40GB x128
A64FX x128

IceLake-SP x128

Fig. 12. SPEChpc 2021 medium workload performance.

To evaluate the multi-node scalability, we also compare the performance of the
SPEChpc medium workload. The medium workload consists of six benchmarks and
requires approximately 4 TB of memory. Here, we execute the workload using 128
sockets on all processors. Results for the A100 80 GB model are unavailable since we
do not have access to a large-scale deployment of the A100 80 GB model. Figure 12
summarizes the medium workload performance. Here, VE30 is the fastest in four out
of the six benchmarks, which are LBM, TeaLeaf, CloverLeaf and POT3D. The speedup
of VE30 over A100 40 GB generally shows a similar trend as the tiny workload. For
example, the speedup of VE30 over A100 is 1.27× in the LBM tiny workload, while the
speedup is 1.35× in the medium workload. Similarly, the performance of miniWeather
on VE30 compared to A100 is 0.83× and 0.84× in the tiny and medium workloads,
respectively. This would be because both the problem size and the number of sockets
are increased, and thus the problem size per socket remains roughly identical to that of
the tiny workload.

We analyze the impact of MPI communication time to the total performance on VE30
and A100. Figure 13 shows the breakdown of runtime obtained using MPI profilers.

372 K. Takahashi et al.

MPI functions that consume more than 0.5% of the total runtime are shown in the
plot. Concordant to previous work [2], MPI_Allreduce and MPI_Waitall (i.e., non-
blocking point-to-point communication) consume majority of the communication time.
The difference in communication time between VE30 and A100 is not significant (<1.5×)
in LBM, TeaLeaf and miniWeather. However, in CloverLeaf, POT3D and HPGMG-FV,
the communication time on VE30 is 2.45×, 1.60× and 2.39× slower, respectively. This
may be resulting from the immaturity of the software stack for VE30, or difference in
the interconnects of the two systems used for evaluation. These points will be further
investigated in our future work.

0

20

40

60

80

100

120

140

160

VE30 A100 VE30 A100 VE30 A100 VE30 A100 VE30 A100

R
un

tim
e
[s
]

Others
MPI_Init(_thread)

MPI_Reduce
MPI_Barrier

MPI_Waitall
MPI_Allreduce

MPI_Irecv
MPI_Isend

miniWeatherPOT3DCloverLeafTeaLeafLBM

0

100

200

300

400

500

600

700

VE30 A100

R
un

tim
e
[s
]

HPGMG-FV

Fig. 13. Runtime breakdown of SPEChpc 2021 medium workload.

Tohoku University Kernel Collection. As described in Sect. 3.3, the Tohoku Univer-
sity kernel collection represents real-world applications developed by the users of the
Cyberscience Center at Tohoku University. Figure 14 shows the performance of the
Tohoku University kernels on VE20 and VE30. Evidently, VE30 consistently outper-
forms VE20 with all kernels. The speedup is especially significant for Turbulent Flow,
Turbine and Plasma, all of which perform more than 2.3× faster on VE30 than on VE20.
Given that Turbulent Flow is bound by LLC bandwidth on VE20, we believe the perfor-
mance gain is obtained from the 2.13× LLC bandwidth increase and the newly added
L3 cache. Turbine and Plasma benefit from the reduction in memory latency thanks to
the L3 cache as discussed in Sect. 3.3.

Rainfall-Runoff-Inundation Model. The Rainfall-Runoff-Inundation (RRI)
Model [25,29] is a 2-dimensional numerical model that is widely adopted in Japan
to conduct flood forecasts. The RRI model discretizes the domain into slope (land) cells
and river channel cells. Surface and subsurface flows on slope cells are calculated using
a 2-dimensional diffusive wave model, and flows on river cells are simulated using a
1-dimensional diffusive wave model. The interaction between slope and river cells is
modeled considering the slope and river water levels. Vertical infiltration is also modeled
using the Green-Ampt infiltration model. The governing equations are solved using the

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Supercomputer 373

fifth-order Runge-Kutta method with adaptive time step control. From the computational
point of view, the major kernels in the RRI model are memory-intensive, thereby suited
for execution on VEs.

In this evaluation, we use an implementation of the RRI model optimized for SX-AT
with OpenMP parallelization [25], and measure the runtime required for conducting a 2-
hour flood prediction in the entire Tohoku region of Japan. Figure 15 shows the runtime
of the RRI model on VE20 and VE30. VE30 achieves 1.32× higher performance than
VE20. The speedup of the parallel regions is 1.60×. Considering that the peak memory
bandwidth is increased by 1.60× from VE20 to VE30 and the RRI model is memory-
intensive, the observed speedup matches the expectation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Earthquake

Turbulent
Flow

Antenna

Land Mine

Turbine
Plasma

T
F
LO

P
/s

VE20 VE30

Fig. 14. Tohoku University kernel collection performance.

0

100

200

300

400

500

600

VE20 VE30

R
un

tim
e
[s
]

Serial region
Parallel region

Fig. 15. Runtime of a 2-h flood pre-
diction using the RRI model.

4 Performance Tuning for VE30

Basic optimization techniques for VE include facilitating vectorization by factoring out
unvectorizable code from loops, increasing the vector length using various loop trans-
formations, and offloading unvectorizable computation to the VH. In addition to these
optimization techniques, further performance can be exploited by utilizing the architec-
tural features introduced in VE30. In this section, we present such tuning techniques and
quantify their performance impact.

4.1 Selective L3 Caching

On VE30, programmers can take advantage of the bypassable L3 cache to selectively
cache frequently reused data. To demonstrate the effect of selective L3 caching, we use
the Himeno benchmark as an example. Listing 1.3 shows the time-consuming Jacobi

374 K. Takahashi et al.

Listing 1.3. Jacobi method kernel in the Himeno benchmark.
� �

for(i=1 ; i<imax-1 ; ++i)
for(j=1 ; j<jmax-1 ; ++j)
for(k=1 ; k<kmax-1 ; ++k){
s0 = a[0][i][j][k] * p[i+1][j][k] + a[1][i][j][k] * p[i][j+1][k]

+ a[2][i][j][k] * p[i][j][k+1]
+ b[0][i][j][k] * (p[i+1][j+1][k] - p[i+1][j-1][k]

- p[i-1][j+1][k] + p[i-1][j-1][k])
+ b[1][i][j][k] * (p[i][j+1][k+1] - p[i][j-1][k+1]

- p[i][j+1][k-1] + p[i][j-1][k-1])
+ b[2][i][j][k] * (p[i+1][j][k+1] - p[i-1][j][k+1]

- p[i+1][j][k-1] + p[i-1][j][k-1])
+ c[0][i][j][k] * p[i-1][j][k] + c[1][i][j][k] * p[i][j-1][k]
+ c[2][i][j][k] * p[i][j][k-1] + wrk1[i][j][k];

ss = (s0 * a[3][i][j][k] - p[i][j][k]) * bnd[i][j][k];
wgosa += ss*ss;
wrk2[i][j][k] = p[i][j][k] + omega * ss;
// Copy wrk2 to wrk and sum wgosa across all ranks

}
� �

kernel in the Himeno benchmark. Arrays a, b, c, wrk1 and bnd are accessed in a
consecutive manner and not reused. On the other hand, array p is accessed in a stencil-
like manner. Although ideally 18 out of 19 accesses to p should hit in cache, the accesses
to the other arrays pollute the cache and degrade the cache hit ratio of p. This cache
pollution can be mitigated by caching p only and bypassing the cache when accessing
a, b, c, wrk1 and bnd.

0

100

200

300

400

500

600

700

800

900

S M L XL

G
F
LO

P
/s

Problem Size

Cache all
Bypass all

Cache p only

Fig. 16. Performance of Himeno benchmark
with different problem sizes and L3 caching
policies.

240

242

244

246

248

250

252

254

W
at
t

Cache all
Bypass all

Cache p only

(a) Power Consump-
tion

3.0

3.1

3.2

3.3

3.4

3.5

3.6

G
F
LO

P
/s

pe
r
W
at
t

Cache all
Bypass all

Cache p only

(b) Power Efficiency

Fig. 17. Power efficiency of Himeno bench-
mark (L size). Note the y-axis is truncated.

Figure 16 compares the performance of the Himeno benchmark under three different
caching policies: (1) cache all arrays in the L3 cache, (2) always bypass the L3 cache,
and (3) only cache p in the L3 cache. We also compare four different problem sizes: S

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Supercomputer 375

(26×26×27), M (27×27×28), L (28×28×29), and XL (29×29×210). The results indicate
that caching all arrays does not show any notable improvement over bypassing all arrays.
This suggests that the L3 cache is polluted by non-temporal data and thus the cache hit
ratio of p is low. Selectively caching p improves 6.5%, 5.7% and 6.9% over caching all
arrays for problem sizes S, M and L, respectively. This indicates that selective caching
alleviates cache pollution. Contrastingly, no performance improvement is observed for
the XL problem size. This is because p does not fit in the L3 cache in the XL size.

To investigate if selective caching has an impact on power consumption and power
efficiency, we use the NEC Monitoring & Maintenance Manager (MMM)1 tool and
measure the power consumption of the VE30 PCIe card while running the Himeno
benchmark. Figure 17 compares the power consumption and efficiency of the VE30
card under different caching policies. The plot shows the average of three measure-
ments. The results indicate that selectively caching p reduces the power consumption
by 0.6% compared to caching all arrays because the number of memory accesses is
reduced. Combined with the performance improvement, selective caching improves the
power efficiency by 8.2%, resulting in a power efficiency of 3.57 GFLOP/s/W. Com-
pared to VE20 that achieves 2.21 GFLOP/s/W and the A100 40 GB model that achieves
2.14 GFLOP/s/W [14], VE30 achieves 1.61× and 1.66× higher power efficiency, respec-
tively.

Furthermore, we apply selective L3 caching to the Land Mine kernel to study if selec-
tive caching is beneficial for real-world applications. Figure 18 shows the performance,
power consumption and power efficiency of the Land Mine kernel under different L3
caching policies. Bypassing the L3 cache yields the lowest performance of 299 GFLOP/s.
Enabling the cache slightly improves the performance to 312 GFLOP/s, and selective
caching further improves the performance to 339 GFLOP/s. In terms of power consump-
tion, caching all arrays and selective caching both consume slightly more power than
bypassing the cache. This is because the increase in cache power outweighs the reduction
in memory power. However, the performance gain of selective caching is large enough
that its power efficiency is the highest.

4.2 Partitioning Mode

As mentioned in Sect. 2.2, the partitioning mode increases the effective LLC band-
width by relieving the congestion in the NoC that interconnects the cores and the LLC.
Therefore, enabling the partitioning mode may accelerate cache-intensive applications.
Although the partitioning mode has been available in the previous generations of VEs,
its benefits are expected to be larger on VE30 since NoC congestion becomes heavier
due to the increased number of cores.

To assess the effect of the partitioning mode on VE30, we measure the performance
of the Himeno benchmark with and without the partitioning mode. The results are shown
in Fig. 19. As expected, the partitioning mode does not have a significant impact on VE20
since the NoC is not congested. Contrastingly, the performance is increased by 7.1%
by enabling the partitioning mode on VE30. This suggests that the NoC congestion

1 https://sxauroratsubasa.sakura.ne.jp/documents/guide/pdfs/InstallationGuide_E.pdf.

https://sxauroratsubasa.sakura.ne.jp/documents/guide/pdfs/InstallationGuide_E.pdf

376 K. Takahashi et al.

260

280

300

320

340

G
F
LO

P
/s

Cache all
Bypass all
Selective

(a) Performance
200

205

210

215

220

225

230

W

Cache all
Bypass all
Selective

(b) Power Con-
sumption

1

1.1

1.2

1.3

1.4

1.5

1.6

G
F
LO

P
/s
/W

Cache all
Bypass all
Selective

(c) Power Effi-
ciency

Fig. 18. Performance and power efficiency of the Land
Mine kernel under different L3 caching policies. Note
the y-axis is truncated.

0

100

200

300

400

500

600

700

800

900

VE20 VE30

G
F
LO

P
/s

w/o Partitionig Mode
w/ Partitionig Mode

Fig. 19. Impact of the partitioning
mode to Himeno benchmark perfor-
mance (XL size).

is alleviated by the partitioning mode. Thus, the use of partitioning mode should be
considered when running cache-intensive applications on VE30.

5 Conclusions

In this paper, we carried out an extensive performance evaluation of a next-generation
SX-AT supercomputer equipped with the brand-new VE30 processor. VE30 attains
massive performance in memory-intensive standard benchmarks such as the Himeno
benchmark and outperforms other processors. The speedup of VE30 over the other pro-
cessors exceeds the difference in the peak compute and memory performance, indicating
the benefits of the novel architectural enhancements introduced in VE30. VE30 also out-
performs other processors in many real-world applications such as SPEChpc. Finally,
we presented performance tuning techniques to fully exploit the potential of VE30.

These evaluation results clearly demonstrate that VE30 can achieve high sustained
performance comparable to latest GPUs and CPUs, while allowing programmers to use
conventional programming models, i.e., MPI+OpenMP. This proves the next-generation
SX-AT to be an attractive choice for users seeking real-world application performance.

Acknowledgments. This work was partially supported by MEXT Next Generation High Per-
formance Computing Infrastructures and Applications R&D Program “R&D of A Quantum-
Annealing-Assisted Next Generation HPC Infrastructure and its Applications,” and JSPS KAK-
ENHI Grant Numbers JP20H00593, JP20K19808, JP21H03449 and JP22K19764. Part of the
experiments were carried out using AOBA-A and AOBA-C at the Cyberscience Center, Tohoku
University, SQUID at the Cybermedia Center, Osaka University, and Flow at the Information
Technology Center, Nagoya University.

Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Supercomputer 377

References

1. Ariyoshi, K., Matsuzawa, T., Hasegawa, A.: The key frictional parameters controlling spatial
variations in the speed of postseismic-slip propagation on a subduction plate boundary. Earth
Planet. Sci. Lett. 256(1–2), 136–146 (2007)

2. Brunst, H., et al.: First experiences in performance benchmarking with the new SPEChpc 2021
suites. In: 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), pp. 675–684 (2022)

3. Cavelan, A., Cabezón, R.M., Grabarczyk, M., Ciorba, F.M.: A smoothed particle hydrody-
namics mini-app for exascale. In: Platform for Advanced Scientific Computing Conference
(PASC 2020), pp. 1–11 (2020)

4. Choquette, J., Gandhi, W., Giroux, O., Stam, N., Krashinsky, R.: NVIDIA A100 tensor core
GPU: performance and innovation. IEEE Micro 41(2), 29–35 (2021)

5. Dongarra, J., Heroux, M.A., Luszczek, P.: High-performance conjugate-gradient benchmark:
a new metric for ranking high-performance computing systems. Int. J. High Perform. Comput.
Appl. 30(1), 3–10 (2016)

6. Dongarra, J.J., Luszczek, P., Petite, A.: The LINPACK benchmark: past, present and future.
Concurr. Comput. Pract. Exp. 15(9), 803–820 (2003)

7. Egawa, R., et al.: Exploiting the potentials of the second generation SX-Aurora TSUBASA.
In: Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS 2020), vol. 2, pp. 39–49 (2020)

8. Himeno, R.: Himeno benchmark. https://i.riken.jp/en/supercom/documents/himenobmt/
9. Hsu, K.C., Tseng, H.W.: Accelerating applications using edge tensor processing units. In:

International Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC 2021), pp. 1–14 (2021)

10. Iyer, R., et al.: Advances in microprocessor cache architectures over the last 25 years. IEEE
Micro 41(6), 78–88 (2021)

11. Jouppi, N.P., et al.: Ten lessons from three generations shaped Google’s TPUv4i. In: 48th
Annual International Symposium on Computer Architecture (ISCA), pp. 1–14 (2021)

12. Katoh, Y., Ono, T., Iizima, M.: Numerical simulation of resonant scattering of energetic
electrons in the outer radiation belt. Earth Planets Space 57(2), 117–124 (2005). https://doi.
org/10.1186/BF03352555

13. Komatsu, K., et al.: Performance evaluation of a vector supercomputer SX-Aurora TSUBASA.
In: International Conference for High Performance Computing, Networking, Storage and
Analysis (SC 2018), pp. 685–696 (2018)

14. Komatsu, K., et al.: Performance and power analysis of a vector computing system. Super-
comput. Front. Innov. 8(2), 75–94 (2021)

15. Li, J., et al.: SPEChpc 2021 benchmark suites for modern HPC systems. In: Companion of the
2022 ACM/SPEC International Conference on Performance Engineering, pp. 15–16 (2022)

16. Louw, T., Mcintosh-Smith, S.: Using the graphcore IPU for traditional HPC applications. In:
3rd Workshop on Accelerated Machine Learning (AccML) (2021)

17. Mittal, S.: A survey of cache bypassing techniques. J. Low Power Electron. Appl. 6(2) (2016)
18. Onodera, A., Komatsu, K., Fujimoto, S., Isobe, Y., Sato, M., Kobayashi, H.: Optimization of

the himeno benchmark for SX-Aurora TSUBASA. In: Wolf, F., Gao, W. (eds.) Bench 2020.
LNCS, vol. 12614, pp. 127–143. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
71058-3_8

19. Papazian, I.E.: New 3rd Gen Intel® Xeon® scalable processor. In: Hot Chips Symposium
(2020)

20. RISC-V Foundation: RISC-V “V” Vector Extension. Technical report (2021). https://github.
com/riscv/riscv-v-spec/releases/tag/v1.0

https://i.riken.jp/en/supercom/documents/himenobmt/
https://doi.org/10.1186/BF03352555
https://doi.org/10.1186/BF03352555
https://doi.org/10.1007/978-3-030-71058-3_8
https://doi.org/10.1007/978-3-030-71058-3_8
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0

378 K. Takahashi et al.

21. Rocki, K., et al.: Fast stencil-code computation on a wafer-scale processor. In: International
Conference for High Performance Computing, Networking, Storage and Analysis (SC20)
(2020)

22. Sato, H., Takagi, Y., Sawaya, K.: High gain antipodal fermi antenna with low cross polariza-
tion. IEICE Trans. Commun. E94-B(8), 2292–2297 (2011)

23. Sato, M., Kobayashi, T., Zeng, Z., Fang, G., Feng, X.: High resolution GPR system for land-
mine detection. In: Proceedings of International Conference Requirements and Technologies
for the Detection, Removal and Neutralization of Landmine and UXO, pp. 548–553 (2003)

24. Sato, M., et al.: Co-design for A64FX manycore processor and “Fugaku”. In: International
Conference for High Performance Computing, Networking, Storage and Analysis (SC 2020),
pp. 1–15 (2020)

25. Shimomura, Y., et al.: A real-time flood inundation prediction on SX-Aurora TSUBASA. In:
29th International Conference on High Performance Computing, Data, and Analytics (HiPC)
(2022)

26. Soga, T., et al.: Performance evaluation of NEC SX-9 using real science and engineering
applications. In: International Conference on High Performance Computing Networking,
Storage and Analysis (SC 2009), pp. 1–12 (2009)

27. Standard Performance Evaluation Corporation: SPEChpc 2021 (2021). https://www.spec.org/
hpc2021/

28. Stephens, N., et al.: The ARM scalable vector extension. IEEE Micro 37(2), 26–39 (2017)
29. The International Centre for Water Hazard and Risk Management: Rainfall-Runoff-

Inundation (RRI) model. https://www.pwri.go.jp/icharm/research/rri/index.html
30. Tsukahara, T., Iwamoto, K., Kawamura, H.: Evolution of material line in turbulent channel

flow. In: The 5th International Symposium on Turbulence and Shear Flow Phenomena, pp.
549–554 (2007)

https://www.spec.org/hpc2021/
https://www.spec.org/hpc2021/
https://www.pwri.go.jp/icharm/research/rri/index.html

Programming Environments
and Systems Software

Expression Isolation of Compiler-Induced
Numerical Inconsistencies
in Heterogeneous Code

Dolores Miao1(B), Ignacio Laguna2, and Cindy Rubio-González1

1 University of California, Davis, Davis, CA 95616, USA
{wjmiao,crubio}@ucdavis.edu

2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
ilaguna@llnl.gov

Abstract. As the demand for developing and porting numerical appli-
cations to heterogeneous computing platforms increases, such programs
may exhibit numerical inconsistencies caused by architectural differ-
ences and aggressive compiler optimizations. These numerical incon-
sistencies can negatively impact reproducibility and debugging. This
paper presents Ciel, designed to identify the root cause of compiler-
induced numerical inconsistencies in heterogeneous programs. Ciel uses
a floating-point precision enhancement strategy, guided by a recursive
bisection search algorithm with increasing search granularity, to iden-
tify the program expressions that induce numerical inconsistencies due
to compiler optimizations. Ciel achieves 99.4% precision in isolating
numerical inconsistencies in both CPU and GPU programs, including
330 synthetic GPU programs, benchmark applications like NAS Paral-
lel Benchmarks and Rodinia, and real-world scientific applications such
as CLOUDSC, a cloud microphysics parameterization mini-app for the
ECMWF IFS. Furthermore, when compared with the state of the art,
which only isolates lines of code in CPU programs, Ciel runs 24.5%
fewer searches for statement isolation, and produces more precise results
for 84.9% of the programs. Finally, manual inspection of hundreds of
compiler-induced numerical inconsistencies in heterogeneous programs
reveals common characteristics.

1 Introduction

Heterogeneous computing uses different processing cores, such as CPUs and
graphics processing units (GPUs), to run programs with maximized perfor-
mance [8]. Software engineers from various fields use GPUs to form heterogeneous
architectures and accelerate large-scale parallel computations. General-purpose
computing on GPUs (GPGPUs) has become the go-to choice for physics simu-
lations, digital signal processing, machine learning, and climate research.

Compiler optimizations are often the first method software engineers con-
sider when optimizing programs. Aggressive optimization options are also often
invoked to push program performance as much as possible. Additionally, switch-
ing or upgrading compilers in the middle of a project is also a frequent industrial
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 381–401, 2023.
https://doi.org/10.1007/978-3-031-32041-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_20&domain=pdf
https://doi.org/10.1007/978-3-031-32041-5_20

382 D. Miao et al.

practice. Unfortunately, such modifications on a project global scale can have a
negative impact on software reliability, particularly on floating-point arithmetic
which could result in local errors that may propagate to the final program’s out-
put. In cases found in the literature [5,18,21], it has required significant effort
and domain knowledge to isolate and fix these issues.

Numerical Reproducibility Challenges. Given the large number of hard-
ware architectures, compilers and host environments involved in executing het-
erogeneous programs, maintaining numerical consistency and reproducibility
is equally important to their pure CPU counterparts. Most hardware devices
and compilers follow the IEEE 754–2008 standard [1], but offer optimization
options, such as -ffast-math in Clang, that further push computational per-
formance at the cost of strict IEEE 754–2008 compliance. Such non-compliant
optimizations can yield different computation results—numerical inconsisten-
cies—between CPU- and GPU-computed results, or for CPU- or GPU-only
computations optimized at different levels. These inconsistencies often result in
numerical correctness bugs, some of which are reported in widely adopted numer-
ical libraries [15]. Many applications, when ported to GPU platforms, struggle
to find a balance between performance speedup and avoiding compiler-induced
numerical variability impacting the precision of the results [21]. Such impact has
already been acknowledged by the floating-point research community concerned
with ensuring numerical accuracy on heterogeneous computing systems [17].

Simply disabling compiler optimizations, or increasing precision uniformly
across an application, may solve compiler-induced variability, but they are not
practical solutions. Instead, developers strive to find the root cause of these
compiler-induced inconsistencies and manually fix them to reduce their impact
without disabling compiler optimizations. Currently, identifying the root cause
of such issues in heterogeneous programs is a manual effort, requires domain
knowledge, and is a time-consuming task.

Main Contributions.We present Ciel (which stands for Compiler-induced
Inconsistency Expression Locator), the first tool that automatically isolates
numerical inconsistencies in heterogeneous programs at the expression level. Prior
work [18,28] has proposed automated approaches to isolate such inconsistencies
in pure CPU programs. FLiT [28] works at the function level, while pLiner [18]
isolates lines of code that cause inconsistencies, but neither targets GPU code nor
isolates at expression level, which further reduces developer workload.

In numerical program error analysis, replacing floating-point operations with
higher precision variants is widely employed [7,16,30] to more accurately approx-
imate the results of operations in infinite precision. Higher precision operations
have a smaller ulp (unit in last place) error, and exceptions such as subnormal
numbers and infinity are much less likely to be triggered. It is shown in [18] that
compiler-induced inconsistencies can be minimized by enhancing precision. Ciel
operates on the same assumption that compilers will produce enhanced precision
binary instructions when specific source code regions are in enhanced precision.

Compared to the state-of-the-art [18] for CPUs where each code block at
each level is treated individually, our approach traverses the abstract syntax

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 383

tree (AST) of each function and performs a bisection search for all adjacent sib-
ling code blocks, maintaining the adjacency relationship between them; during
precision enhancement, adjacent code blocks are either combined into a single
code region or have variable checkpoints where redundant type conversions are
removed. Furthermore, Ciel isolates code down to the expression level rather
than the statement level (line level in [18]). Since the program statements caus-
ing the compiler-induced inconsistencies may include many floating-point opera-
tions involving different operators, variables, constants, or function calls, isolat-
ing at the expression level provides a more precise insight into the inconsistencies,
pointing users directly to their root cause and potential fix.

In particular, to adapt to features and limitations on GPU platforms, such
as the lack of floating-point arithmetic beyond double precision or the built-in
vector arithmetic, Ciel supports extended precision libraries, and can transform
built-in vector arithmetic to enhanced precision. Ciel detects code written for
different target platforms (CPU or GPU code) and automatically transforms
them according to platform specifications, e.g., platform-specific language con-
structs and data types. Ciel provides a solid foundation for extending support
to other platforms, such as OpenMP or OpenCL [3], as long as they are sup-
ported by Clang. To the best of our knowledge, Ciel is the only tool capable of
isolating code regions in heterogeneous computing programs that, combined with
compiler optimizations, produce inconsistent numerical results.

We evaluate Ciel on a set of heterogeneous programs, including 330 syn-
thetic GPU programs, and on GPU programs from the NAS [6] and Rodinia [10]
benchmarks. Ciel achieves a precision of 99.4% in isolating compiler-induced
inconsistencies in these programs. Moreover, Ciel finds the root cause of a real-
world compiler-induced inconsistency in the C version of ECMWF Cloud Physics
mini-app CLOUDSC [14] in only 7min. The root cause of the inconsistency has
been confirmed by ECMWF domain experts. Finally, compared to pLiner [18],
the state of the art in isolating lines of code in CPU programs, Ciel performs
24.5% fewer searches for statement isolation, and produces more precise isolation
results for 84.9% of the pLiner’s CPU benchmarks.

In summary, the contributions of this paper are as follows:

– An approach for isolating minimal code regions that cause compiler-induced
numerical inconsistencies in heterogeneous programs. Our approach uses a
more efficient bisection search compared to the state of the art for CPU pro-
grams that operates on simplified ASTs and provides a finer search granularity
at the expression level (Sects. 3.1 and 3.2).

– A precision enhancement strategy that more accurately reflects the resolvabil-
ity of inconsistencies under precision enhancement, and addresses challenges
specific to transforming heterogeneous code to higher precision (Sect. 3.3).

– An implementation of our approach in the tool Ciel, and an evaluation that
shows (1) efficacy at isolating inconsistencies in a large and diverse set of
heterogeneous programs: 330 synthetic GPU programs, NAS and Rodinia
GPU benchmarks, and the real-world mini-app CLOUDSC (Sect. 4.1), and (2)

384 D. Miao et al.

higher precision and efficiency in comparison with the state of the art in
isolating numerical inconsistencies in CPU programs (Sect. 4.2).

– A manual inspection of the isolated code that causes compiler-induced incon-
sistencies, which reveals common characteristics (Sect. 4.1).

2 Examples of Compiler-Induced Inconsistencies

Table 1. Inconsistencies in BT.S.
Compiler Options Runtime Error
nvcc -O0 0.104 s 6.98176E-13
nvcc -O3 -use_fast_math 0.052 s 9.73738E-13
clang -O0 0.349 s 8.32928E-13
clang -O3 -ffast-math 0.059 s 3.50905E-12

Compilers for CPU and GPU code,
such as Clang [4] and nvcc [2], offer
various levels of optimization flags
from -O0 to -O3. With higher opti-
mization levels, program performance
is improved, sometimes significantly, but at the cost of potentially generating
non-compliant IEEE 754–2008 floating-point code. There are optimization flags
that explicitly violate the IEEE 754–2008 standard, but in cases where precision
is of less concern, they offer good speedups. For example, consider the CUDA
version of the BT NAS program with input class S. Table 1 shows the program
runtime and the maximum relative error for each compiler and optimization
flag combination. Using -O3 -use_fast_math with nvcc yields 100% speedup
compared to -O0, but at the cost of the error being 39% larger. Performance
and error with Clang is generally worse, with the largest error in clang -O3
-ffast-math being 403% larger than nvcc -O0.

In real-world applications, such compiler-induced numerical inconsistencies
occur frequently. They can happen when migrating software to other hard-
ware/software platforms, switching applications to a new compiler, or just using
more aggressive optimization flags for compilation. These inconsistencies may
cause major software failures that take tremendous amount of effort to iden-
tify and resolve. A documented case [18,21] in the Laghos (LAGrangian High-
Order Solver) application [9] is observed when ported to the Lawrence Livermore
National Laboratory’s Sierra system using the IBM xlc compiler. This triggered
an inconsistency in the energy computed by the application under xlc -O3 but
not with xlc -O2. In another documented case in [5], the Community Earth Sys-
tem Model (CESM) failed its verification using the CESM-ECT quality assur-
ance framework when it was ported to the Mira machine at Argonne National
Laboratory. Both took from weeks to months for scientists and engineers to
identify the source code that caused such failures.

Issues like the above are bound to occur when real-world scientific applica-
tions are written or ported to new platforms. Automatically resolving such issues
without extensive domain knowledge would save a massive amount of time and
increase programming productivity.

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 385

c_func2()
c_func1()
main()

cuda_func1()
cuda_func2()
...

Program Source

(1) Hierarchy Extraction

Simplified AST

ST4ST3ST2ST1

BB2

cuda_func1()
func

BB1 (2) Hierarchical
Code Isolation

Minimal Region Set

ST4ST3ST2ST1

BB2

cuda_func1()
func

BB1

Cannot isolate
Further

Select either half of code

ST4ST3ST2ST1

BB2

cuda_func1()
func

BB1(3) Precision Enhancement
c_func2()
c_func1()
main()

cuda_func1_t()
cuda_func2()
...

Enhanced Source

(4) Differential Testing

Can isolate
Further

Keep or discard the selected half based on
if the inconsistency is resolved

Fig. 1. The workflow of Ciel.

3 Technical Approach

Problem Statement. Given heterogeneous programs with known compiler-
induced numerical inconsistencies, a practical problem for software developers is
how to isolate the expressions that cause such inconsistencies in a precise and
efficient manner. Ciel is designed with the goal of tackling this problem. Specif-
ically, Ciel takes as input a program P and its associated input, which under
compilers C1, C2, ..., Cn and optimization flags Oi1, Oi2, ..., Oik for each compiler
Ci, produces inconsistent results. Ciel outputs the minimal region Rm in m
searches, which means that by generating program variants P ′

1, P
′
2, ..., P

′
m it iso-

lates the root cause of the inconsistency to a code region as narrow as possible.
Below we present definitions that will be used throughout the rest of the paper.

Definition 1. The output of program P given a specific error threshold ε under
compiler Ci and optimization flags Oij is written as f(P, ε, Ci, Oij).

Definition 2. Compiler-induced inconsistencies occur if there are two sets
of compiler/optimization flag combinations Ci, Oij and Ck, Okl, where
f(P, ε, Ci, Oij) �= f(P, ε, Ck, Okl). When any two sets of combinations have the
same output, the inconsistencies are considered to be resolved.

Definition 3. A region set R of a program P is defined as a set of regions in
P , each of which is a straight-line code fragment with an entry point and one or
more exit points.

Definition 4. A region set Rm is minimal if (a) the inconsistency is resolved
when code in Rm is executed in higher precision, and (b) either Rm consists of
only one expression, or leaving any expression in Rm in lower precision would
result in unresolved inconsistencies.

386 D. Miao et al.

Ciel’s Workflow. The overall workflow of Ciel is illustrated in Fig. 1. To
find the minimal region that causes the numerical inconsistency, Ciel performs
hierarchical bisection search on the source code—first between functions, then
between code regions in the suspected functions. Each iteration increases the
search granularity. The search algorithm identifies regions suspected of caus-
ing compiler-induced inconsistencies. For each region R1, R2, ..., Rm, Ciel then
creates a mutated variant of the program P ′

1, P
′
2, ..., P

′
m for which code in the cor-

responding region is in enhanced precision. Whether the variant resolves these
inconsistencies is then used to guide the further, narrower isolation of source
code that triggers inconsistencies. The isolation process ends when region Rm

satisfies the conditions of a minimal region. The modules in Ciel are described
below:

1 Hierarchy Extraction traverses the AST of the functions under analysis,
extracting information relevant to floating-point operations, and generating a
simplified AST for these functions. This is the entry point of the analysis.

2 Hierarchical Code Isolation performs a hierarchical bisection search on
the simplified AST to generate regions for subsequent precision enhancement.

3 Precision Enhancement increases the precision of the code regions iden-
tified by hierarchical code isolation. The output is the transformed source code
with the floating-point operations in specific code regions written in higher pre-
cision.

4 Differential Testing compiles and runs the transformed program with
specified compilers and optimization flags in parallel. The output of these combi-
nations of compilers and flags is compared to determine if the compiler-induced
inconsistencies are resolved.

The rest of the section describes modules 1–3 in more detail.

3.1 Hierarchy Extraction

The hierarchy extraction module traverses the program AST and extracts source
code hierarchy information for each function in the form of a simplified AST. The
simplified AST acts as a data exchange format between modules, and contains
additional data specific to Ciel that includes whether a node should be enhanced
in precision (enabled/disabled), and the list of all floating-point operations such
as reads, writes, declarations, function calls, and constants in every statement
under a node. The simplified AST classifies statement structure of a function
into five node categories:

1. Each statement that ends with a semicolon (declaration, expression, and
return/break) is a statement node on the simplified AST. Each statement
node also contains its expression AST hierarchy.

2. A set of statements with only one entry point and one exit point is grouped
as a basic block (BB) node.

3. For a selection statement such as if-else or switch-case statement, one BB
node is assigned to each branch; and then a conditional block node is
assigned for the whole selection statement as a code block.

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 387

1 void compute(/*var args*/){
2 for(int i=0; i<n; ++i) { //ST1 -3
3 comp = x-1.6f; //ST4
4 float t = +1.4697 E36f; //ST5
5 comp += t+1.4E-41f; //ST6
6 if (comp < sinhf(y)) { //ST7
7 comp = tanf(z); //ST8
8 }
9 }

10 printf("%.17g",comp); //ST9
11 }

(a) Sample function compute. Variables
comp, x, y and z are function arguments
of type float.

compute

BB1 BB6

BB2 BB3

BB4 BB5
ST1 ST2 ST3

ST4 ST5 ST6 ST7 ST8

ST9

(b) Simplified AST of compute. The inconsis-
tency is in ST6. Dark filled nodes are hierar-
chically isolated. Stripe filled nodes are con-
sidered in the bisection search at each level of
hierarchy, but not isolated. White nodes are
not considered during bisection search.

Fig. 2. Sample function and its simplified AST.

4. For a loop statement such as a for or do-while statement, one BB node is
assigned to the condition, another to the loop body, and then a loop block
node is assigned for the whole loop statement as a code block.

5. A function node is assigned to the whole function.

The relationship between a sample program and its simplified AST repre-
sentation is shown in Fig. 2. Each expression statement (for-loop header in Line
2; if condition in Line 6; statements in Lines 3, 4, 5, 7, 10) in Subfigure 2a has
its own statement node, which is organized into block nodes. The corresponding
simplified AST is shown in Subfigure 2b.1

3.2 Hierarchical Code Isolation

When hierarchy extraction is complete, the simplified ASTs for all functions are
output to the hierarchical code isolation module. As code isolation progresses, it
marks nodes on the simplified ASTs as enabled or disabled depending on whether
the node is still in consideration as a potential cause of inconsistencies.

Bisection search is the basis for the approach, followed by a 1-minimal
check [31]. Bisection has shown to be an effective search strategy in the con-
text of code isolation in CPU programs [18,28]. Ciel bases its search algorithm
on the same idea of partitioning the program into functions, code blocks, and
statements, but improves on how the hierarchical search is performed to reduce
search time and improve precision. In particular, Ciel proposes a refined hier-
archical region isolation with the explicit goal of improving isolation accuracy
by reducing unnecessary type conversions when enhancing precision. Further-
more, unlike previous work, Ciel explores expression-level granularity during
the search.

Ciel isolates a minimal region of code amongst a set of code regions by recur-
sively bisecting suspicious code regions into two halves and verifying if enhancing
1 Statements and blocks with no floating-point operations are recorded but excluded

from precision enhancement.

388 D. Miao et al.

Algorithm 1: Hierarchical Code Isolation.
1 Function BisectionSearch(regions) :
2 if regions.size() > 1 then
3 regions1, regions2 = ArraySplit(regions, 2);
4 if HasResolvedInHighPrecision(regions1) then
5 BisectionSearch(regions1);

6 else if HasResolvedInHighPrecision(regions2) then
7 BisectionSearch(regions2);

8 else
9 BisectionSearch(regions1);

10 BisectionSearch(regions2);

11 Function RegionIsolation(regions) :
12 BisectionSearch(regions);
13 foreach region in regions do
14 if region.hasSubBlocks() && region.inHighPrecision() then
15 RegionIsolation(region.getSubBlocks());

16 Function FuncIsolation(Funcs):
17 Funcs.setHighPrecision();
18 BisectionSearch(Funcs);
19 minFuncs = Funcs.getHighPrecisionFuncs();
20 foreach func in minFuncs do
21 RegionIsolation(func.getBlocks());

either half resolves the inconsistency (Line 1 in Algorithm 1). Hierarchical search
first sets the whole program in enhanced precision (Line 17 in Algorithm 1), then
finds the minimal region in increasing granularity, following two stages:

1. Function Isolation. During the function isolation stage (Line 16 in Algo-
rithm 1), bisection search is performed at the function level, and the result is
a minimal set of functions that cause the inconsistencies.

2. Hierarchical Region Isolation. For each function isolated in the first stage,
during the hierarchical region isolation (Line 11 in Algorithm 1), bisection
search is performed at increasingly granular levels, from code block level to
statement level, and ultimately to expression level.

Ciel traverses the simplified AST of each function isolated in the function
isolation stage, and isolates child nodes of the current node(s) that cause the
compiler-induced inconsistency: from the child nodes of the function node, to
child nodes of BB nodes, to all isolated statement nodes, until within the small-
est subexpression in a statement node, e.g., a variable, constant, or function call.
A difference of this code isolation method, compared to prior work, is that these
child nodes are continuous blocks or statements, which are split into two continu-
ous sets of code blocks or statements. For example, n continuous code blocks are
split into the first �n/2� blocks and the remaining n − �n/2� blocks. Combined
with the region merge pass (Sect. 3.3), all blocks are merged into as few contin-
uous code regions as possible, reducing redundant type conversions. Section 4.2
shows that by removing redundant type conversions, the transformed program
can more accurately and efficiently reflect the resolvability of compiler-induced
numerical inconsistencies under precision enhancement.

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 389

Furthermore, given how statements in loops could accumulate errors that
could exacerbate compiler-induced inconsistencies, our bisection search priori-
tizes loop structures. Thus, loop BBs at the current level of the AST hierarchy
are isolated first. If inconsistencies are resolved then the search is narrowed down
to the identified loop BBs; otherwise the search proceeds normally.

We use the sample function from Subfigure 2a to illustrate hierarchical region
isolation within a function. The statement that causes the compiler-induced
inconsistency is in Line 5 (ST6 in Subfigure 2b). The algorithm first searches
in the loop BBs at the top level, between BB1 and BB6. The inconsistency is
resolved with BB1 in enhanced precision, thus BB1 is isolated and further split
into BB2 and BB3. BB3 is isolated next, which is then split into BB4 and BB5,
with BB4 then isolated and split into statements ST4, ST5 and ST6, from which
the constant expression 1.4E − 41f in ST6 is found to be the root cause of the
inconsistency.

3.3 Source-to-Source Precision Enhancement

The precision enhancement module takes as input the marked simplified AST
from the hierarchical code isolation module, and produces a transformed pro-
gram where all floating-point operations in an enabled code region, whether it
is a whole function or a continuous code segment, are in enhanced precision.
Source-to-source program transformation allows the resulting programs to be
successfully compiled by the same compilers that trigger the original inconsis-
tencies. Furthermore, a source-level transformation, in contrast to IR or assem-
bly level, is not affected by aggressive optimization passes such as instruction
reordering which would obscure and obfuscate the boundaries between source
code statements during binary generation.

Ciel detects and classifies CUDA host and device functions according to
language-specific modifiers in the AST, such as the __global__ and __device__
modifiers in the function signature, and transforms code accordingly.

In terms of enhancing precision for CUDA kernels, while CPU program-
ming platforms generally natively support floating-point types beyond double
precision, GPU platforms do not. Thus we design Ciel to support precision
enhancement with custom extended precision floating-point types that support
operator overloading and math functions. Some examples of extended precision
libraries include CAMPARY [19] and CUMP [25], but only GPUprec [24] fits
the above criteria for integration. GPUprec only requires modest effort to be
integrated with Ciel. We use its quadruple precision type to perform precision
enhancement because it offers the most support for math functions.

Ideally, all code executed is available to Ciel when isolating code within a
code region. However, external functions whose code is not available may be
called within a code region. Even though it would not be possible to isolate indi-
vidual expressions within such external functions, isolating the function call site
itself may still be helpful in isolating numerical inconsistencies. In cases where
inconsistencies exist in external functions, and an enhanced precision version of
the same function is available, replacing the original function calls with calls

390 D. Miao et al.

to their corresponding enhanced-precision functions is expected to resolve the
inconsistencies. Thus, for functions called within enhanced code regions, Ciel
automatically replaces those given in a customizable replacement function list,
most of which are math library functions, with an enhanced precision version.
In the example in Subfigure 2a, sinhf and tanf would be replaced with sinh
and tan, respectively. On the other hand, precision enhancement of variables
and constants consists of two stages: region and expression transformation, with
targeted strategies for different categories of variables.

Stage 1: Region Transformation. This stage enhances the precision of
floating-point operations in a specific code region including scalar variables,
built-in vectors and constants. Region transformation consists of three passes:
region merge, variable categorization, and code transformation.

Pass 1: Region Merge. This pass merges all basic blocks and statements to be
enhanced into as few continuous code regions as possible. Compared to prior
work, this pass is added specifically as an improvement in removing unneces-
sary type conversions in precision enhanced code. If two adjacent code blocks
on the same level of the AST hierarchy are to be enhanced, then these blocks
are merged into one single block. For example, ST5 and ST6 in Subfigure 2b are
adjacent and on the same level in the AST, thus they are merged into one block.
If two adjacent code blocks that are on different levels of the AST hierarchy are
to be enhanced, we insert a variable checkpoint between them so that redundant
type conversions can be detected and removed during the Code Transformation
pass. For example, ST6 and BB5 in Subfigure 2b are adjacent but on different
levels in the AST, a variable checkpoint is inserted here so that there would be
no redundant type conversions in between for variables such as comp.

Pass 2: Variable Categorization. This pass iterates through all variable uses in a
code region, and categorizes scalar and built-in vector floating-point variables2
into four groups. Our variable categorization algorithm is based on [18] which,
in essence, separates read-after-write variables in a code region that require allo-
cating temporary storage from variables that just require casting when refer-
enced. We then categorize the read-after-write variables into two groups based on
whether the variable declaration is inside (reviseVars) or outside (replaceVars)
the code region since they require different transformation strategies. Finally we
group the variables that only require casting when referenced by checking if they
are only read (rdVars) or only written (wrVars). The last category (wrVars) was
added in Ciel to implement precision enhancement in GPU programs with cus-
tom extended precision floating-point types described later in this subsection.

Pass 3: Code Transformation. This pass transforms variables according to their
categorization:
2 Pointers and array references are not categorized; their dereferences are directly cast.

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 391

T1 For reviseVars, the declarations of these variables (originally inside the
region) are replaced with a temporary variable in higher precision; any refer-
ence to this variable inside the code region is replaced with its corresponding
temporary variable; the declaration of the original variable is moved prior
to the region’s exit points, and initialized with the temporary variable.

T2 For replaceVars, a temporary variable declaration is inserted at the entry
of the region, initialized with the value of the original variable (declared
outside the region); any reference to this variable inside the code region is
replaced with the temporary variable; the value of the temporary variable
is assigned back to the original variable at region exit points.

T3 For rdVars, any reference to the variable inside the code region is explicitly
upcast to higher precision.

T4 For wrVars, any assignment to the variable inside the code region is explicitly
downcast to lower precision (reads may occur only outside the region).

Lastly, type conversion statements from/back to original precision are
inserted at the entry/exit point(s) of a code region. Note that calls to func-
tions that are not included in the replacement function list are treated as special
exit points of the code region, and their arguments are cast to original precision
prior to the function call. Additionally, if the exit/entry of a code region is a
variable checkpoint, Ciel finds all the variables shared between the two code
regions, and simply assigns the enhanced-precision replacement variable in the
first region to the one in the second region. By doing so, Ciel prevents redundant
type conversions between these two code regions.

Custom extended-precision floating-point types present unique challenges
compared to built-in floating-point types. C++ allows implicit conversions
among floating-point types, even when such conversions incur precision loss,
such as from double to float. However, such implicit conversions are not pos-
sible for custom floating-point types. For example (assuming the type name is
dd_real):

dd_real a = 1.0; dd_real b = a + 2.0;

There is ambiguity in a + 2.0, which can either be interpreted as an addition
of two dd_real values or two double values before assigning the result to b.
For such code to pass compilation, Ciel inserts explicit casts back to original
precision in value assignments, function arguments, and other possible situations.
These explicit casts require Ciel to categorize variables that are only written in
a code region, hence a new category, wrVars, was added.

Another challenge when enhancing the precision of CUDA kernels is built-in
floating-point vector classes. These classes provide vertex and matrix calculation
in 2 to 4 dimensions and are widely used. Ciel supports transforming built-in
vector type operations to enhanced precision, including type conversions for func-
tion arguments passed by reference or by dereferencing. This requires creating
temporary variables that are live only during the function call. For this purpose,
we implemented converter template class instances as anonymous variables in
function arguments. Upon construction, they accept a reference or a pointer of
the source variable, convert it to the target type, and provide a reference or

392 D. Miao et al.

a pointer in the target type to the function calls. When the function call is
finished, destructors for these converter classes are invoked, and we assign the
return value of these references/pointers back to the original variable.

Stage 2: Expression Transformation. This transformation is only applied
when the code has been successfully isolated at the statement level. Specified
subexpressions in each isolated statement are converted to enhanced precision.
Ciel traverses the AST starting from the subexpression node, cast all variable
reads and constants from subexpressions to enhanced precision, and the whole
subexpression is explicitly converted back to original precision. For example,
the subexpression b*2.0f in expression a = b*2.0f+c would be transformed to
(float)((double)b*2.0) in enhanced precision.

4 Experimental Evaluation

This experimental evaluation answers the following research questions:

RQ1 How effective is Ciel at isolating compiler-induced numerical inconsisten-
cies in heterogeneous programs?

RQ2 How does Ciel compare with the state of the art in isolating compiler-
induced numerical inconsistencies in CPU programs?

4.1 RQ1: Numerical Inconsistencies in Heterogeneous Programs

Benchmarks. We collected a total of 339 compiler-induced inconsistencies: 330
inconsistencies observed in floating-point synthetic GPU programs, 5 inconsis-
tencies triggered in NAS Parallel Benchmarks for GPU (NPB-GPU) [6], 3 incon-
sistencies triggered in the CUDA version of the Rodinia Benchmark suite for
heterogeneous computing [10], and a real-world inconsistency found in the C
version of the ECMWF Cloud Physics mini-app CLOUDSC [14].

The synthetic GPU programs were generated with Varity [21], a framework
that randomly generates small programs written in CUDA C along with an
input for which a numerical inconsistency is observed when using nvcc -O3
-fastmath in comparison to nvcc -O0. These programs use single-precision
floating-point arithmetic, various C syntax mechanisms such as for-loop and
if statements, and calls to external math functions.

The CUDA NAS Parallel Benchmarks demonstrate the ability of Ciel to iso-
late compiler-induced floating-point inconsistencies in programs originally writ-
ten for CPU architectures and ported to GPUs. These programs use double
precision, which means the extended precision capabilities of Ciel are used. On
the other hand, the Rodinia programs are originally written as heterogeneous
applications for which single and double precision implementations are available.
Therefore, we use the version in single precision.

Finally, CLOUDSC is a standalone mini-app of the ECMWF cloud micro-
physics parameterization, which tests the CLOUDSC cloud microphysics scheme
of the ECMWF Integrated Forecasting System (IFS). We choose CLOUDSC as

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 393

Table 2. Numerical inconsistencies in NAS, Rodinia and CLOUDSC programs.

Benchmark Program LOC Input Epsilon Compilation Command

NPB-GPU BT 5062 S 3.0e-12 clang -O3 -ffast-math

NPB-GPU CG 1868 S 1.1e-15 clang -O3 -ffast-math

NPB-GPU CG 1868 W 4.0e-16 clang -O3 -ffast-math

NPB-GPU LU 4437 S 1.9e-12 nvcc -O3 -use_fast_math

NPB-GPU MG 2349 W 2.9e-14 clang -O3 -ffast-math

Rodinia LUD 717 256 1.2e-5 nvcc -O0

Rodinia CFD 647 097K 7.2e-2 nvcc -O0

Rodinia CFD 647 193K 1.9e-1 nvcc -O0 & -O3 -ffast-math

N/A CLOUDSC 2593 N/A 1.0e-11 gcc -O3 -ffast-math

a candidate to demonstrate the efficacy of Ciel in finding compiler-induced
inconsistencies in real-world applications, and show its capability of adapting to
other software platforms and languages supported by Clang.

Experimental Environment. We use a PC with octa-core Intel(R) i7-11800H
processors, and NVIDIA RTX 3070 GPU with 5120 CUDA cores, running
Ubuntu 20.04 LTS. We use Clang version 14.0.6 to perform source-to-source
transformation, which supports CUDA SDK versions up to 11.1 with Compute
Capability up to 8.6. Clang 14.0.6 and nvcc 11.1 are also the compiler versions
we use to compile transformed GPU programs. For CPU programs, we use gcc
9.4.0. Our methodology is independent of GPU models as long as they have the
same Compute Capability. For all compilers, we considered two sets of compiler
flags: -O0, and -O3 with fastmath.

Methodology for Triggering Numerical Inconsistencies. The compiler-
induced numerical inconsistencies in NAS, Rodinia and CLOUDSC were pre-
viously unknown, and were discovered through testing. Specifically, we rely on
verification routines that compare the relative errors in output values to an
epsilon value ε to determine whether the results meet accuracy constraints. A
compiler-induced inconsistency exists if a program passes its verification routines
for some compiler settings but not for others.

For six of the NAS programs (BT, CG, FT, LU, MP and SP) and Rodinia
LUD, we utilize existing verification routines where results are either compared
to precalculated ground truth embedded in the program source code, or in the
case of Rodinia LUD, the resulting two matrices are multiplied and then com-
pared against the original matrix. For the Rodinia CFD Solver, we calculate the
total density energy (TDE) as specified in [22] and compare it to the reference
TDE value precalculated by running the double-precision version of CFD Solver
compiled with nvcc -O0. For CLOUDSC, we compare relative errors for the
main variables at the end of program execution against ground truth precalcu-
lated by running the original cloud scheme from IFS in FORTRAN.

We follow an existing methodology to trigger numerical inconsistencies, first
introduced in [18]. Specifically, we set the epsilon value ε between the minimum
and maximum errors observed amongst all compiler/optimization flag combi-

394 D. Miao et al.

Table 3. Categorization of inconsistencies found in synthetic GPU programs.

Categories # Programs Percentage Sample Code

Subnormal Arithmetic 125 37.9% +1.8922E-42f + var_3
Inf or NaN Arithmetic 53 16.0% +1.3797E-35f / -0.0f
Math Functions 41 12.4% sinf(+1.0195E25f)
Rounding Errors 18 5.5% -16458 / 1.67329e-16

Program Inputs 164 49.7% N/A
Print Statements 11 3.3% N/A

nations for a given program, and maximize the ε value such that the program
passes its verification routines only for some compiler settings but not for others.
Table 2 lists the inputs, epsilon values, and compiler commands used to trigger
each of the 9 numerical inconsistencies reported for these programs.

Evaluation Results. We find that Ciel is effective at isolating code respon-
sible for the numerical inconsistencies in 337 out of 339 instances (99.4%). In
terms of isolation granularity, Ciel isolates at expression level in 318 out of 339
instances (93.8%), while the rest of the inconsistencies are isolated at line, block,
or function level. Below we describe the results per benchmark.

Synthetic GPU Programs. Ciel isolates all inconsistencies: individual expres-
sions in 310 cases, a code block in 18, and a function in the remaining 2. We
manually examined the source code, inputs, outputs, and in some cases the
assembly code of each of program. Our inspection revealed that Ciel correctly
isolated 328 out of 330 (99.4%) inconsistencies while only 2 (0.6%) were false
positives.

We identified six categories of true compiler-induced numerical inconsisten-
cies isolated by Ciel. Table 3 lists these categories, the number of occurrences,
and sample code. Note that an inconsistency may belong to multiple categories.

The first four categories are purely related to floating-point operations. Sub-
normal arithmetic indicates that subnormal numbers are involved in the floating-
point operations. Math functions are often involved in which extreme values may
be computed differently depending on the implementations. For example, nvcc
compiles sinf() as a single fast approximation instruction instead of a full func-
tion. Also in some cases, Inf or NaN values are involved, which are not strictly
IEEE 754–2008 compliant under fast math. We also found that the results of
some operations differ under different optimization flags due to rounding errors.

The last two categories are related to the setup of the benchmark programs
themselves. We observed cases where resolving compiler-induced inconsistencies
also required enhancing the precision of their program inputs. And lastly, we
found a few instances for which the final line of code where the computation
result is printed byte by byte is the cause of the inconsistency. This is because the
result of the computation is subnormal when converted from enhanced precision.

As for false positives, we found two cases where Ciel isolates statements that
have no effect on the computation. Specifically, a variable is assigned a value

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 395

Table 4. NPB-GPU and Rodinia Experiment Results. Time is given in mm:ss.

Statement Level Expression Level

Program Isolated Function Line(s) # Cfgs Time Exp. # Cfgs Time
BT.S exact_solution 1874-1886 10 1:23 zeta 20 2:10
CG.S sparse 1710,1722 18 1:23 size,shift 24 1:52
CG.W sparse 1710,1713,1765 19 1:34 size,scale 28 2:24
LU.S ssor_gpu_kernel_2 4023 8 1:03 tmp 11 1:15
MG.W rprj3_gpu_kernel 2045-2050 14 1:16 x2,y2 34 3:02
CFD 097K cuda_compute_step_factor 283 14 6:01 sqrtf, 26 10:10

speed_sqd
CFD 193K compute_speed_sqd 252 10 7:29 velocity, 40 22:11

257 speed_sqd
LUD 256 lud_internal — 17 1:16 — — —

that is immediately overwritten by another value. These assignment statements
are located inside a loop. When the precision of the entire loop is enhanced,
the inconsistency is resolved; but if only the precision of the statements after
the initial assignment is enhanced, the inconsistency persists because of type
conversions inserted by Ciel at the end of the region inside the loop.

Overall, Ciel took a total of 3 h and 2min to analyze all 330 programs, and
33 s per program on average.

NAS and Rodinia. Ciel isolated all 8 numerical inconsistencies in NAS and
Rodinia programs. Table 4 shows the results for each program for both state-
ment and expression level isolation. For BT.S, LU.S, MG.W, Ciel isolates vari-
able expression(s) in one statement that causes the compiler-induced inconsis-
tency. In CFD 097K, Ciel isolates a function call with a variable parameter.
For CG and CFD 193K, Ciel isolates 2 variables across 2 to 3 statements as
the cause of the inconsistencies. In all cases above, the isolated expressions are
inside deeply nested loops, so even a slight offset can be accumulated into a
larger inconsistency that exceeds the error threshold. The only exception is the
LUD program where only a function, lud_internal is isolated. Upon inspec-
tion, the reason seems to be that a variable sum is read and written throughout
the function, affecting the whole matrix, and any type conversion would cause
the inconsistency to persist.

Ciel isolated each inconsistency within 22min, used less than 20 searches
(configurations) for statement isolation, and used no more than 40 searches for
expression isolation. About 1%–5% of run time is used on code transformation.

CLOUDSC. Ciel isolated a constant expression (float)0.4 as the cause of the
inconsistency. After looking further into the code repository [13] and reporting
the issue to ECMWF scientists, we confirmed Ciel’s result. It turns out ECMWF
scientists had meant to temporarily introduce a bug during testing with the type
casting but had forgotten to remove it; Ciel correctly suggests increasing the
precision of that same argument to resolve the inconsistency. Ciel took 7min
to isolate the inconsistency, from which 8% is spent on program transformation.

396 D. Miao et al.

Table 5. NPB CPU Experiment Results. Time is in minutes:seconds.

Ciel Statement Level pLiner Statement Level Ciel Expression

Prog. Function Line(s) #Cfgs Tline Function Line(s) #Cfgs Tline Exp. #Cfgs Texp

CG.B sparse 814,819,876 19 16:23 sparse — 7 3:53 — — —
SP.A tzetar 65,69 16 6:56 y_solve 68 25 7:50 r4,t2 23 9:36
SP.B exact_solution 44-47 9 17:28 exact_solution 44-47 17 24:51 zeta 19 34:57

Answer to RQ1:Ciel isolated 337 out of 339 inconsistencies in minutes with
a precision of 99.4%, which included 328 synthetic GPU programs, NAS and
Rodinia programs, and the mini-app CLOUDSC. In 318 cases (93.8%), Ciel
isolated expressions. Manual inspection revealed inconsistency characteristics,
such as the involvement of Inf, NaN, or subnormal numbers in arithmetic.

4.2 RQ2: Comparison with the State of the Art

Baseline.We compare Ciel to pLiner [18], to the best of our knowledge, the only
tool available to isolate inconsistencies at the statement level in CPU programs.

Benchmarks. Due to pLiner capabilities, this evaluation is limited to CPU
programs. We adopt benchmarks from the publicly available pLiner repository
(SHA ef94b40)3 originally used to evaluate pLiner, which include 50 floating-
point synthetic CPU programs on Intel CPU platforms, and 3 programs from
the C version of the NAS Parallel Benchmark: CG.B, SP.A, and SP.B. We use
the same compiler, optimization flags, and error thresholds as pLiner in our
evaluation.

Evaluation Results. Ciel achieves more precise isolation results than pLiner
for 84.9% of the programs. When isolating at the same statement level as pLiner,
Ciel is 24.5% more efficient in terms of number of searches. The rest of this
section describes the results per benchmark.

Synthetic CPU Programs. In 42 out of 50 programs, Ciel successfully isolates
code at the statement level, and subsequently at the expression level. In 36
of these programs, Ciel isolates the same statement (line) as pLiner. In the
remaining 6 cases, Ciel isolates at the statement level while pLiner can only
isolate at code block or function level. Ciel explores 29.7% fewer configurations
to achieve this result. On average, Ciel explores 5.2 configurations for statement
isolation compared to 7.4 configurations explored by pLiner. Expression level
isolation incurs in exploring additional configurations: 16.5 on average.

For the remaining 8 programs, there are two cases in which Ciel isolates
a smaller code block than pLiner. There are four programs for which neither
Ciel nor pLiner can resolve the inconsistencies by using precision enhancement.
Lastly, there are two programs for which we were not able to reproduce the

3 https://github.com/LLNL/pLiner/commit/ef94b40.

https://github.com/LLNL/pLiner/commit/ef94b40

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 397

numerical inconsistencies. Note that in these cases, pLiner still proceeded with
the search while Ciel immediately detected the absence of an inconsistency.

NAS CPU Benchmarks.Results for the NAS CPU
benchmark are shown in Table 5. In CG.B, Ciel isolates three statements in func-
tion sparse, which has 227 lines of code, while pLiner can only isolate the whole
function. pLiner stopped after it failed to resolve the inconsistency even when all
basic blocks in sparse are in enhanced precision; Ciel prevents this by avoiding
unnecessary type conversions between basic blocks. In SP.B,Ciel first isolates the
same statement as pLiner in function exact_solution, and then further isolates
a variable. Finally in SP.A, Ciel and pLiner isolate different functions (tzetar
vs. y_solve) due to exploring different areas of the search tree. We confirmed that
precision enhancement of either function resolves the inconsistency. If we were to
limit the search in Ciel to only explore function y_solve, thenCielwould isolate
the same statement as pLiner. Ultimately, Ciel isolates two variables.

In terms of efficiency, Ciel uses fewer configurations than pLiner to isolate
inconsistencies in SP.A (16 vs. 25) and SP.B (9 vs. 17) at the statement level.
Ciel uses more configurations for CG.B (19 vs. 7), but it isolates the same
function with only 4 configurations, and isolates at a finer granularity. Expres-
sion isolation requires an additional 7 and 10 configurations for SP.A and SP.B,
respectively.

Answer to RQ2: Ciel shows comparable or superior results in isolating
the inconsistencies in 44 out of 48 (92%) of synthetic CPU programs and
the NAS programs. Overall, Ciel isolates inconsistencies at the same level
of granularity than pLiner but with higher efficiency, or at a finer level of
granularity with an additional cost, in particular in the case of expression
isolation.

4.3 Threats to Validity

While our evaluation set of programs is large and diverse, our results may not
generalize to all applications. Also, compiler-induced numerical inconsistencies
are input dependent, thus it is possible that other inputs could trigger additional
inconsistencies in the same code regions, or elsewhere. Complementary use of
dynamic analysis or code coverage information may be useful. Ciel does not han-
dle non-deterministic applications, but some of such programs could still be ana-
lyzed by removing certain sources of non-determinism for testing purposes [27].

Ciel’s implementation only handles a subset of C/C++ and CUDA platform
constructs. Features such as anonymous functions or the auto keyword, intro-
duced in C++11, are not currently supported. Handling some of these features
may require a new approach in simplified AST generation and code isolation.
Nevertheless, given how Ciel can differentiate between host and device code,
it could be adapted to any platform supported by the Clang compiler frontend,
such as OpenMP and OpenCL [3].

398 D. Miao et al.

Code isolation may be further impacted by special floating-point values such
as ±0.0, Inf, and NaN. The processing of these values, if consistent across preci-
sions but inconsistent between different optimization flags, may become a blind
spot for precision enhancement. The choice of extended precision library may
also impact search results and efficacy. GPUprec, for example, has known issues
with math functions when it should return NaN but returns zero instead, which
could affect isolation results. Finally, Ciel requires source code when enhancing
precision. However, if the source code for a function is not available, Ciel may
still isolate the call site if an enhanced precision variant of the function exists.

5 Related Work

Detecting and Isolating Numerical Errors. pLiner [18] isolates known
compiler-induced numerical inconsistencies in C/C++ CPU programs at the
line level. pLiner’s approach also includes hierarchical code isolation and preci-
sion enhancement as a method to isolate inconsistencies. Unlike pLiner, Ciel
works on heterogeneous programs, which pose unique challenges when isolating
numerical inconsistencies, as described in Sect. 3.3. Furthermore, Ciel isolates
inconsistencies to the expression level rather than lines. FLiT [28] generates and
runs custom-made tests under different optimization levels to trigger compiler-
induced numerical inconsistencies, which are then isolated at the function level
only. Compared to Ciel, FLiT does not employ precision enhancement for incon-
sistency isolation, and focuses on CPU programs.

There are also tools that automatically detect or isolate specific categories
of numerical errors but not compiler-induced inconsistencies. FPChecker [20]
is a tool that automatically detects floating-point exceptions in GPU applica-
tions, which also uses Clang to transform CUDA code, but it does so at the IR
level. While FPChecker operates on GPU programs, it does not isolate compiler-
induced numerical inconsistencies. FPChecker also inspired other tools, such as
Predoo [33] in the field of precision testing for Deep Learning (DL) operators.
On the other hand, PFPSanitizer [12] detects numerical errors by performing
shadow execution with higher precision in parallel. Shadow execution with pre-
cision enhancement is also employed by Herbgrind [26] and FPDebug [7] with
the goal of finding floating-point precision errors.

Testing Compilers and Numerical Code. Ciel transforms source code in
small increments and tests whether numerical inconsistencies are resolved. Ciel
is inspired by prior work on compiler mutation testing. Le et al. [23] introduce
equivalent modulo inputs (EMI) which mutates programs on unexecuted paths to
expose compiler bugs that incorrectly execute these paths. ClassFuzz [11] uses
EMI by mutating Java classfiles on predefined mutation operators, and send
them to various JVM implementations for differential testing. Zhu and Zaid-
man [34] propose new mutator operations alongside conventional ones to expose
bugs in GPU programs, but their work does not involve floating-point arith-
metic. HeteroFuzz [32] introduces a multi-pronged fuzzing approach to detect
platform-dependent divergence in heterogeneous programs running on FPGAs,

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 399

using techniques including dynamic probabilistic mutations to reduce the long
latency between invocations to hardware simulators. Overall, none of the above
tools focus on exposing or isolating compiler-induced numerical inconsistencies.

Ciel performs differential testing to check whether compiler-induced incon-
sistencies exist by providing the same input to a series of programs compiled
from the same source code but with various compilers and optimization flags.
Differential testing has been applied before to numerical programs. FPDiff [29]
performs differential testing between automatically identified synonymous func-
tions across various numerical libraries to identify inconsistencies between the
results from these functions under certain inputs. Unlike Ciel, FPDiff tests dif-
ferent implementations of a given function, and it does not consider different
compilers or optimization flags.

6 Conclusion

With scientific code ported or developed on GPUs, compiler-induced numerical
inconsistencies can arise at various stages of development. Unfortunately, auto-
matic tools to isolate such problems are nonexistent, which harms productivity
in GPU computing. In this paper, we demonstrate a practical method to identify
the root cause of such inconsistencies in heterogeneous code. We implemented
our approach in the tool Ciel based on the effective bisection search algorithm,
and improved over the state of the art for CPU programs in both efficiency and
accuracy. Most importantly, Ciel addresses a number of challenges to handle
heterogeneous code. Our evaluation on synthetic GPU programs, GPU bench-
marks, and real world mini-app shows the effectiveness of Ciel at isolating
inconsistencies in heterogeneous code with a precision of 99.4%. Our code and
experimental data are publicly available at https://github.com/LLNL/Ciel/.

Acknowledgments. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 (LLNL-CONF-846081), the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research, under awards DE-SC0022182 and
DE-SC0020286, and the National Science Foundation under award CCF-1750983.

References

1. IEEE standard for floating-point arithmetic: IEEE Std 754–2008, 1–70 (2008).
https://doi.org/10.1109/IEEESTD.2008.4610935

2. CUDA Llvm compiler (2018). https://developer.nvidia.com/cuda-llvm-compiler
3. Clang 14.0.0 documentation (2022). https://releases.llvm.org/14.0.0/tools/clang/

docs/ReleaseNotes.html
4. Compiling CUDA with Clang (2022). https://releases.llvm.org/14.0.0/docs/

CompileCudaWithLLVM.html
5. Ahn, D.H., et al.: Keeping science on keel when software moves. Commun. ACM

64(2), 66–74 (2021)

https://github.com/LLNL/Ciel/
https://doi.org/10.1109/IEEESTD.2008.4610935
https://developer.nvidia.com/cuda-llvm-compiler
https://releases.llvm.org/14.0.0/tools/clang/docs/ReleaseNotes.html
https://releases.llvm.org/14.0.0/tools/clang/docs/ReleaseNotes.html
https://releases.llvm.org/14.0.0/docs/CompileCudaWithLLVM.html
https://releases.llvm.org/14.0.0/docs/CompileCudaWithLLVM.html

400 D. Miao et al.

6. de Araujo, G.A., Griebler, D., Danelutto, M., Fernandes, L.G.: Efficient NAS par-
allel benchmark kernels with CUDA. In: PDP, pp. 9–16. IEEE (2020)

7. Benz, F., Hildebrandt, A., Hack, S.: A dynamic program analysis to find floating-
point accuracy problems. In: PLDI, pp. 453–462. ACM (2012)

8. Brodtkorb, A.R., Dyken, C., Hagen, T.R., Hjelmervik, J.M., Storaasli, O.O.: State-
of-the-art in heterogeneous computing. Sci. Program. 18(1), 1–33 (2010)

9. CEED: CEED/Laghos: high-order lagrangian hydrodynamics miniapp (2017).
https://github.com/CEED/Laghos

10. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In:
IISWC, pp. 44–54. IEEE Computer Society (2009)

11. Chen, Y., Su, T., Sun, C., Su, Z., Zhao, J.: Coverage-directed differential testing
of JVM implementations. In: PLDI, pp. 85–99. ACM (2016)

12. Chowdhary, S., Nagarakatte, S.: Parallel shadow execution to accelerate the debug-
ging of numerical errors. In: ESEC/SIGSOFT FSE, pp. 615–626. ACM (2021)

13. ECMWF: CLOUDSC-V3: re-create the single-exponent bug in the c variant (2019).
https://github.com/ecmwf-ifs/dwarf-p-cloudsc/commit/d88c0c8f8d1effd5bd395cb
71657629fb242f661

14. ECMWF: Standalone mini-app of the ECMWF cloud microphysics parameteriza-
tion (2022). https://github.com/ecmwf-ifs/dwarf-p-cloudsc

15. Franco, A.D., Guo, H., Rubio-González, C.: A comprehensive study of real-world
numerical bug characteristics. In: ASE, pp. 509–519. IEEE Computer Society
(2017)

16. Fu, Z., Bai, Z., Su, Z.: Automated backward error analysis for numerical code. In:
OOPSLA, pp. 639–654. ACM (2015)

17. Gopalakrishnan, G., Laguna, I., Li, A., Panchekha, P., Rubio-González, C., Tat-
lock, Z.: Guarding numerics amidst rising heterogeneity. In: Correctness@SC, pp.
9–15. IEEE (2021)

18. Guo, H., Laguna, I., Rubio-González, C.: pLiner: isolating lines of floating-point
code for compiler-induced variability. In: SC, p. 49. IEEE/ACM (2020)

19. Joldes, M., Muller, J.-M., Popescu, V., Tucker, W.: CAMPARY: cuda multiple
precision arithmetic library and applications. In: Greuel, G.-M., Koch, T., Paule,
P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 232–240. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-42432-3_29

20. Laguna, I.: FPChecker: detecting floating-point exceptions in GPU applications.
In: ASE, pp. 1126–1129. IEEE (2019)

21. Laguna, I.: Varity: quantifying floating-point variations in HPC systems through
randomized testing. In: IPDPS, pp. 622–633. IEEE (2020)

22. Laguna, I., Wood, P.C., Singh, R., Bagchi, S.: GPUMixer: performance-driven
floating-point tuning for GPU scientific applications. In: Weiland, M., Juckeland,
G., Trinitis, C., Sadayappan, P. (eds.) ISC High Performance 2019. LNCS, vol.
11501, pp. 227–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
20656-7_12

23. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
PLDI, pp. 216–226. ACM (2014)

24. Lu, M., He, B., Luo, Q.: Supporting extended precision on graphics processors. In:
DaMoN, pp. 19–26. ACM (2010)

25. Nakayama, T., Takahashi, D.: Implementation of multiple-precision floating-point
arithmetic library for GPU computing. In: PDCS, pp. 343–349 (2011)

26. Sanchez-Stern, A., Panchekha, P., Lerner, S., Tatlock, Z.: Finding root causes of
floating point error. In: PLDI, pp. 256–269. ACM (2018)

https://github.com/CEED/Laghos
https://github.com/ecmwf-ifs/dwarf-p-cloudsc/commit/d88c0c8f8d1effd5bd395cb71657629fb242f661
https://github.com/ecmwf-ifs/dwarf-p-cloudsc/commit/d88c0c8f8d1effd5bd395cb71657629fb242f661
https://github.com/ecmwf-ifs/dwarf-p-cloudsc
https://doi.org/10.1007/978-3-319-42432-3_29
https://doi.org/10.1007/978-3-030-20656-7_12
https://doi.org/10.1007/978-3-030-20656-7_12

Expression Isolation of Numerical Inconsistencies in Heterogeneous Code 401

27. Sato, K., Ahn, D.H., Laguna, I., Lee, G.L., Schulz, M.: Clock delta compression for
scalable order-replay of non-deterministic parallel applications. In: SC, pp. 62:1–
62:12. ACM (2015)

28. Sawaya, G., Bentley, M., Briggs, I., Gopalakrishnan, G., Ahn, D.H.: FLiT: cross-
platform floating-point result-consistency tester and workload. In: IISWC, pp. 229–
238. IEEE Computer Society (2017)

29. Vanover, J., Deng, X., Rubio-González, C.: Discovering discrepancies in numerical
libraries. In: ISSTA, pp. 488–501. ACM (2020)

30. Yi, X., Chen, L., Mao, X., Ji, T.: Efficient automated repair of high floating-point
errors in numerical libraries. In: POPL, pp. 56:1–56:29. ACM (2019)

31. Zeller, A.: Yesterday, my program worked. today, it does not. why? ACM SIGSOFT
software engineering notes 24(6), 253–267 (1999)

32. Zhang, Q., Wang, J., Kim, M.: HeteroFuzz: fuzz testing to detect platform depen-
dent divergence for heterogeneous applications. In: ESEC/SIGSOFT FSE, pp. 242–
254. ACM (2021)

33. Zhang, X., et al.: Predoo: precision testing of deep learning operators. In: ISSTA,
pp. 400–412. ACM (2021)

34. Zhu, Q., Zaidman, A.: Massively parallel, highly efficient, but what about the test
suite quality? Applying mutation testing to GPU programs. In: ICST, pp. 209–219.
IEEE (2020)

SAI: AI-Enabled Speech Assistant
Interface for Science Gateways in HPC

Pouya Kousha(B), Arpan Jain, Ayyappa Kolli, Matthew Lieber, Mingzhe Han,
Nicholas Contini, Hari Subramoni, and Dhableswar K. Panda

The Ohio State University, Columbus, OH 43210, USA
{kousha.2,jain.575,kolli.38,lieber.31,han.1453,contini.26}@osu.edu,

{subramon,panda}@cse.ohio-state.edu

Abstract. High-Performance Computing (HPC) is increasingly being
used in traditional scientific domains as well as emerging areas like Deep
Learning (DL). This has led to a diverse set of professionals who interact
with state-of-the-art HPC systems. The deployment of Science Gate-
ways for HPC systems like Open On-Demand has a significant posi-
tive impact on these users in migrating their workflows to HPC sys-
tems. Although computing capabilities are ubiquitously available (as on-
premises or in the cloud HPC infrastructure), significant effort and exper-
tise are required to use them effectively. This is particularly challenging
for domain scientists and other users whose primary expertise lies out-
side of computer science. In this paper, we seek to minimize the steep
learning curve and associated complexities of using state-of-the-art high-
performance systems by creating SAI: an AI-Enabled Speech Assistant
Interface for Science Gateways in High Performance Computing. We use
state-of-the-art AI models for speech and text and fine-tune them for the
HPC arena by retraining them on a new HPC dataset we create. We use
ontologies and knowledge graphs to capture the complex relationships
between various components of the HPC ecosystem. We finally show
how one can integrate and deploy SAI in Open OnDemand and evaluate
its functionality and performance on real HPC systems. To the best of
our knowledge, this is the first effort aimed at designing and developing
an AI-powered speech-assisted interface for science gateways in HPC.

Keywords: HPC · Open OnDemand · Conversational AI · Speech
recognition · Natural Language Processing · Knowledge Graphs

1 Introduction and Motivation

High-Performance Computing (HPC) is an integral part of various traditional
scientific domains like medical research, weather forecasting, and earthquake pre-
diction, as well as emerging areas powered by Deep Learning (DL) and Machine

This research is supported in part by NSF grants #1818253, #1854828, #1931537,
#2007991, #2018627, #2112606, and XRAC grant #NCR-130002.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 402–424, 2023.
https://doi.org/10.1007/978-3-031-32041-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_21&domain=pdf
https://doi.org/10.1007/978-3-031-32041-5_21

SAI: AI-Enabled Speech Assistant Interface for HPC 403

Learning (ML). The ability to process and analyze large sets of data on current
HPC systems has led to remarkable advances in science and engineering and has
become an indispensable tool for students, researchers, and industry profession-
als. Examples include social scientists reviewing massive datasets from sources
such as Twitter or Facebook, archaeologists experimenting with LiDAR [18] in
mapping subsurface artifacts, and painters harnessing computer-aided design to
use archives of ancient works as a style guide.

Unfortunately, HPC use and adoption by many is hindered by the complex
way in which these resources need to be used. Utilizing HPC services requires
familiarity with command-line interfaces and custom client software of HPC mid-
dleware, DL/ML frameworks, and performance analysis tools which creates an
accessibility gap that impedes further adoption. For instance, HPC middleware
like high-performance MPI libraries and DL frameworks have various advanced
features and complex user interfaces. While these interfaces are comprehensive
and extensive, they require a steep learning curve, even for expert users, making
them nearly impossible to use for novice users like medical doctors, domain sci-
entists, and other users whose primary expertise lies outside of computer science.

Recent surveys conducted by supercomputing centers [24] indicate that users
are more likely to adopt a GUI-based interface provided by science gateways
such as Open OnDemand [5]. Open OnDemand is one of only a few open-
source general web interfaces to support remote visualization. It is currently
the most well-known and adopted general web interface within the HPC com-
munity. Although, Open OnDemand reduces the initial accessibility hurdle to
the HPC ecosystem by providing job templates for a small subset of popular
HPC applications, there is still much to be desired in extending this support to
the other components of the HPC ecosystem such as middleware, frameworks,
and tools. While most users are intuitively able to express what they are looking
for in words or text (e.g., “train my model with 32 GPUs on TACC Frontera
with TensorFlow“), they find it hard to quickly adapt to, navigate, and use HPC
interfaces to obtain desired results. Furthermore, surveys of end users conducted
by prestigious firms like Deloitte [4] and PriceWaterhouseCooper [6] clearly indi-
cate that users are more likely to use a conversational AI interface as opposed
to using older keyboard/mouse-style inputs. To the best of our knowledge,
no interface exists that allows end-users to interact conversationally
with state-of-the-art science gateways.

404 P. Kousha et al.

1.1 Motivation

Fig. 1. Motivation behind creating
SAI to improve user productivity

This challenge leads us to the primary
motivation of the proposed work: can we
design an easy-to-use and productive
conversational interface, utilizing AI,
that enables end-to-end abstraction
and automation of the steps involved
in execution, monitoring, and evalua-
tion of HPC workloads? Fig. 1 depicts
our vision of how SAI enhances the pro-
ductivity of end-users. The left side depicts
the multiple steps that the end users must
traditionally perform to execute their HPC
applications. These steps typically include
selecting an HPC application; figuring out
dependencies and installing them and the
actual HPC application (either manually or
through package managers); consulting the
documentation for appropriate arguments
and parameters; and finally creating the job
launch scripts. All of these steps are complex and require expertise in interacting
with HPC middleware and tools using their traditional interfaces. The right side
depicts how these same users can extract better productivity by using SAI. The
manager of HPC at the U.S Department of Energy Idaho National Laboratory
had the following strong and enthusiastic statement for SAI work - “We have
seen early demonstrations of the conversational AI Engine on multiple occasions.
We see the proposed work as a paradigm shift that will directly benefit the over
1,200 users on our systems and lower the threshold for HPC usage. The incor-
poration of the AI Engine in a science gateway will serve to lower the time to
science for the vast majority of our HPC users.”

1.2 Challenges in Enabling Conversational Interface for HPC

Challenge #1: Creating Custom Datasets and Models for HPC: While
the latest Automatic Speech Recognition (ASR) [9,27] and Natural Language
Understanding (NLU) [10,23] models have achieved impressive accuracy rates,
such as 2% Word Error Rate (WER) [9] on Librispeech [21], these models
often struggle to accurately interpret and understand technical terms (e.g. Allre-
duce and MNIST) and abbreviations (e.g. CPU and HCA) specific to the HPC
domain. Furthermore, current language datasets do not include these technical
terms and abbreviations, making it difficult to create ASR and NLU models that
can accurately interpret and understand words and sentences commonly used in
HPC. Thus, the availability of datasets specifically tailored to HPC domain
is crucial and is key to creating new NLU/ASR models capable of accurately
interpreting HPC-specific words and sentences. To the best of our knowledge,
HPC-specific datasets and models do not exist for use today.

SAI: AI-Enabled Speech Assistant Interface for HPC 405

Challenge #2: Scalable Representations for Complex Relationships
between Components of the HPC Ecosystem: The relationship between
HPC applications, parallel hardware, deep learning (DL) models and problems,
and datasets/inputs is complex with respect to each other. Researchers cur-
rently spend significant time and energy manually understanding and mapping
these relationships through the use of documentation, tutorials, and other online
resources. However, the representation of these complex relationships can be
automated and made more accessible to end-users by leveraging Knowledge
Graphs (KGs). An essential aspect of creating such KGs is the use of a portable,
simple, yet thorough ontology. Recently, the HPC Ontology [17] has been pro-
posed as a way to formally define and represent HPC-related knowledge, includ-
ing vocabularies, semantics, and formal representations. However, it only cap-
tures limited aspects of the complex relationships we want to cover for HPC
workload execution. Thus, a significant expansion and enhancement is required
for the proposed workflow to be truly useful.

Challenge #3: Automating and Abstracting Installation of Packages:
Leveraging High-Performance Computing (HPC) systems requires the use of
various libraries, middleware, and applications. MPI implementations such as
MPICH, OpenMPI, and MVAPICH2 enable parallel computation at scale. Sys-
tem software like compilers and supporting libraries are vital for accelerating
applications. Frameworks like PyTorch and TensorFlow provide high-level APIs
for designing and training deep neural networks. However, installing these soft-
ware packages and their dependencies is a significant challenge, even for those
familiar with HPC systems. While package managers such as Spack simplify the
process, they can still pose a challenge for novice HPC users whose primary
expertise lies outside of computer science.

Challenge #4: Integration of Conversational AI to HPC as Gateway:
Developing a conversational interface framework is only the first step, the next
challenge is to integrate it into a state-of-the-art science gateway to provide end-
users access to it. To achieve this, we need to determine the interface between
the conversational AI interface and the science gateways. The conversational
interface component must also be modular to adapt to future advancements in
DL models and HPC applications without a major revamp. A challenge here is
to ascertain and minimize the changes needed to enable the end-to-end pipeline.

1.3 Contributions

In this paper, we take on the challenge of reducing the complexity of executing
traditional scientific and ML/DL-based HPC workloads through modern science
gateways by proposing, designing, and developing SAI. SAI is a novel conversa-
tional AI-based framework that automates and abstracts the cumbersome steps
involved in accelerating traditional scientific and ML/DL-based applications on
modern HPC systems. SAI simplifies the HPC process for non-experts, such as

406 P. Kousha et al.

domain scientists and AI researchers. It eliminates the need to learn about dif-
ferent job queues on a cluster, allowing them to focus on their research without
bogged down by technical issues, such as having to learn about the various job
queues on a cluster. With SAI, these researchers can easily submit their jobs and
get the results they need, without needing to become experts in the intricacies
of HPC systems.

To gain a deeper understanding, users can familiarize themselves with the
transition flow of SAI (Fig. 7). This will enable them to reproduce results on the
terminal using the SAI-generated command as discussed in Sect. 5. To summa-
rize, this paper makes the following contributions:

1. Proposes and develops a conversational AI interface (SAI) for running HPC
applications and installing required libraries, packages, and frameworks

2. Describes datasets for text and speech with HPC-specific and fine-tuned state-
of-the-art ASR models to recognize HPC terminologies and retrain an Entity-
detection NLU model to understand text command

3. Proposes a general ontology to scalably represent the complex relationships
between various components of the HPC ecosystem

4. Describes KGs to represent the relationship between different scientific/DL
benchmarks/applications, datasets/inputs, package managers, and tools.

5. Integrate and deploy SAI in Open OnDemand and evaluate its functionality
and performance on real HPC systems.

6. Provides a comprehensive explainable flow for SAI, including a detailed expla-
nation of the transition from user input to job output along with generated
job scripts and installed environments. This helps users to understand how
to generate commands and reuse them directly in a terminal in future.

2 Background

2.1 Conversational User Interface

Conversational User Interfaces (CUI) represent a new way for users to inter-
act with applications, moving beyond the traditional Graphical User Interfaces
(GUI). Popularized by voice assistants like Siri, Alexa, and Google Assistant,
CUIs have the ability to understand and respond to multiple variations of natural
language, enabling more intuitive and efficient communication. Studies [12,13]
have shown a strong preference for speech interfaces over traditional GUIs due
to the ease of use and minimal learning curve. The use of CUIs is becoming
increasingly popular in businesses [25] and Data shows that more than half of
US adult mobile phone users use virtual assistants such as Siri or Alexa. [3].

2.2 Open OnDemand

Open OnDemand is an open-source, widely-used, customizable web interface for
interacting with HPC systems. It allows integration with various HPC resources
and job schedulers to make HPC resources more accessible to users who may not

SAI: AI-Enabled Speech Assistant Interface for HPC 407

be familiar with command-line interfaces. It has features such as job submission,
file management, and remote visualization, providing a streamlined and user-
friendly experience for researchers, engineers, and scientists.

2.3 Ontology and Knowledge Graphs

Ontology formalizes knowledge of entities in a domain with limited relationships
and classes for constructing KGs by adding individuals and instantiating the
data and object properties. The data property applies to an individual to capture
features or data about the individual while the object property (relationship)
links individuals of the same or different classes to each other.

2.4 Spack

Spack is a package manager primarily designed for HPC systems, providing flex-
ibility in build configuration and high compatibility with different systems. It
builds packages and dependencies from source, allowing customization without
interacting with build systems or resolving dependencies. Users interact with
Spack through “specs” specifying package version, compiler, features, and depen-
dencies, which Spack verifies before proceeding with installation.

3 Terminologies

The various terminologies, terms and legends used in this paper are explained
below. A parameter is a value that is given by the user for an argument and
arguments can have multiple parameters.

– Entity: a single or a collection of words that refers to a same class always.
For examples, allreduce and ResNet are algorithms/model.

– HPC-ASR Dataset: an in-house ASR dataset created by us for HPC and
DL terminologies.

– HPC-NLU Dataset: an entity detection and classification dataset created
by us for training NLU models for HPC and DL terminologies.

– Speech and Text Query: Speech query is spoken audio passed to ASR and
NLU models, text query is typed text passed to NLU model.

– WER: WER is a performance metric for ASR models that works by com-
paring words in the predicted and the reference text.

4 Proposed SAI Framework

In this section, we elaborate our design and implementation to enable the Speech
Assistant Interface (SAI) for the HPC domain. Figure 2 depicts the overall flow
of execution and the steps involved in the operation of SAI. We will describe
each step in the following subsections.

408 P. Kousha et al.

4.1 Generating HPC Datasets for Speech and Text

To address Challenge-#1 (Sect. 1.2), we create an HPC-datasets for text (HPC-
NLU) and speech (HPC-ASR) containing HPC and DL terminologies (for
example NCCL, IntelMPI, ResNet, etc.). ❶ We generate basic text queries and
label each entity into five broad categories of model/algorithm, data, system,
software, and arguments.

Fig. 2. High-level design of SAI showing the flowchart
and SAI components - The blue rectangles are compo-
nents of SAI while the green boxes show the decision cri-
teria for the direction to proceed based on the process-
ing of user input to continue interacting with the user or
moving toward submitting the associated user job. (Color
figure online)

We create a list of
arguments that can be
given to the applica-
tion to generate differ-
ent types of queries on
the HPC text dataset.
❷ We generate all the
combinations of entities
with different arguments
for each basic sentence
structure. For example,
the number of combina-
tions of the commands
for running MPI bench-
marks amounts to 315K
queries. ❸ To handle
different ways of say-
ing the same phrase,
we develop synonyms for
HPC terminologies (like
CPU, processor, central-
processor, and host-processor for CPU) and use them to generate additional
queries. The mentioned MPI benchmarks query set extends to 19 million queries
by using the synonyms. These queries will cover most of the HPC lexicon and
for HPC-ASR we crowd-sourced to 20 different volunteer users—with 6 dialects
and speech patterns— recording portions of it to create the HPC-ASR dataset.
❹ We include permutations of phrases to restrict DNN from learning any order-
ing of arguments in the dataset. The resulting MPI benchmark dataset contains
7 million rows just by including the permutations. Through each step, the labels
and queries of both HPC-ASR and HPC-NLU are human supervised. For HPC-
ASR, the accents are covered by the TIMIT dataset for training. The recordings
are denoised and verified through human supervision. Using the five broad cat-
egories mentioned, the entities are classified to these 5 types and are passed
to the NLU component for processing and value extraction. Section 6 mentions
train-test data split details.

4.2 Fine-Tuning Speech Recognition Model for HPC Terminologies

As the first step of processing speech input shown in Fig. 2 and to address
challenge-#1 (Sect. 1.2), we need an ASR model capable of understanding

SAI: AI-Enabled Speech Assistant Interface for HPC 409

domain specific terminologies (e.g. PyTorch, Allreduce, and IntelMPI) in
HPC/DL applications. State-of-the-art ASR models are trained on large speech
datasets like LibriSpeech and TIMIT to recognize English’s large vocabulary
and support different accents. We selected Speech2Text [27] as the base model,
pre-trained on the LibriSpeech 1,000 h ASR corpus. To achieve our goal, we
combined the HPC-ASR dataset with TIMIT [1] and fine-tuned the model and
hyperparameters. TIMIT dataset helps supporting different English dialects and
accents. We convert the generated text from the ASR model to lowercase and
used SentencePiece [16] to tokenize the words to be passed to the NLU module.

4.3 Designing an Entity Detection and Classification Model for SAI

Fig. 3. Proposed BERT-
based entity recognition
model for SAI

The next step depicted in Fig. 2 is to apply natural lan-
guage understanding on user text input or transcribed
text from ASR to overcome the rest of challenge-
#1 (Sect. 1.2). Therefore, we designed a BERT-based
entity detection and classification model [11] to extract
entities and classify them into five broad categories:
model/algorithm, data, system name, software, and
arguments to understand and execute the given com-
mand. Figure 3 shows the architecture of the proposed
DL model used to detect and classify entities in a sen-
tence. To support multi-word terms, we label the first
word as B-Category-Name and consecutive words as I-
Category-Name. Since arguments can have a numerical value, we create key-value
pairs for the argument category by post-processing the NLU output. Arguments
could have floating point values; therefore, we support numbers in numerical
format only (for example we support “4.56” not “four point five six”). The
output of this module is a dictionary of entities with their assigned values like
(‘Model’:‘Inception3’). This list is used to query KGs in the next step.

4.4 Creating the HPC Ontology and Knowledge Graphs

The existing ontologies in Sect. 8 do not capture the relationships between HPC
components for executing workloads. Hence, to address challenge #2 in Sect. 1.2,
we need to create an ontology capable of capturing complex dependencies and
the workload relationships between HPC components like systems, software,
models/algorithms, data, and their related arguments to construct a complete
and useful Knowledge Graph(KG) for different HPC applications. We create a
new ontology–called SAI-O– with 5 major classes of system, software, model,
data, and argument to represent HPC components. Argument has 3 subclasses of
software arg, model arg, and system arg. Software has 3 subclass of framework,
compiler, and library. A subset of relationships are listed in Table 1.

410 P. Kousha et al.

Table 1. Major object properties in SAI-O ontology

Relation Property Domain Range Description

canBe any any Defines possible values (OR)

runs any
Software

or Model
Captures run capability

depends Software System Captures software dependency

needs any any Defines requirements (no default)

hasArgs any Argument Defines optional values (defaults)

hasSoftware any Software Captures software availability

SAI-O contains data properties like “version, hasDefault, default, name,
description” that are common between all the individuals in SAI-O. For exam-
ple, the data property “description” gives a description of the individual to
provide further information upon user requests. There are some data proper-
ties specific to a class of objects. For example, for a queue class that represents
system job queue, we have”size, timeLimit, maximumJobSize, and maxUsable-
Memory” data properties to describe a job partition information. Note that not
all the properties need to have a value. Due to the lack of space, only a subset of
relationships and data properties are shown in the paper. Through defining stan-
dard and generic”classes/relationships/data” properties in SAI-O, we can cap-
ture different asserted and inferred relationships among HPC system, software,
model/algorithm, data, and their arguments and query later. SAI-O ontology
could be used to add additional HPC applications in the future (Sect. 7.4.)

Using SAI-O, we created the KGs for 3 different HPC applications as a proof
of concept in RDF/XML format: OMB Benchmarks [19], Distributed DL train-
ing, and NAS parallel benchmarks. In our KGs, synonyms are connected using
the “Same individual as” relation to each other. An example of the constructed
KG for the Inception3 DL model is shown in Fig. 4 to show the requirements
and dependencies to run Inception3 model where green arrows show possible
arguments and grey shows “needs”.

4.5 Knowledge Graph Selection and Inference

SAI has one KG per application and can support multiple applications. To select
the appropriate query for the given query, We define SPARQL [2] queries to query
all the available KGs and see which one gives the max hits – which KG has the
maximum number of entities detected in the given query. We query and process
the selected KG to assemble a list of required arguments with their possible
values and optional arguments with their default values (Defaults are stored in
the KG). The assembled list is compared to the processed user input list if the
required parameters are not complete, SAI generates corresponding question-
s/feedback and interacts with the user back and forth to get the parameters. If
a necessary argument has a list of parameters (for example dataset values for
Inception3), SAI displays the list to the user to select from it. Otherwise, SAI

SAI: AI-Enabled Speech Assistant Interface for HPC 411

Fig. 4. Screenshot of visualizing Inception3 DL model relations in SAI in constructed
DL knowledge graph based on SAI-O ontology - This is only one of the models sup-
ported in SAI DL KG. The type of relations are shown at the top left. The yellow
rectangles represent classes and purple ones represents individuals in KG (Color figure
online)

asks the user to enter the value for a required argument. At the end, we query
the KG to get the software dependencies and libraries, which is used in Software
Installed module (Sect. 4.6).

4.6 Software Installer Check and Interfacing with Spack

After evaluating the completeness of the user’s input, SAI needs to check if the
necessary software and packages are in place through the Software Installer com-
ponent (shown in Fig. 2) to execute the query. For this objective (challenge #
3 described in Sect. 1.2), SAI takes advantage of Spack to resolve installation
dependencies, install the requirements, and provide the path of the executables
to the Job Script Generator. To enable efficient interaction with Spack, we devel-
oped the Spack Interfacing Layer (SIL) using Spack’s python APIs. To avoid the
conflicts with system/user-level Spack environments, SIL utilizes a user-specified
directory for software installations and its own configuration file that contains
all Spack environments, files, and software installations.

To maintain proper dependencies and correctly bundle software and packages
for installing, SIL creates a single Spack file by gathering dependency information
about each package and combining them into one spec. The installed Spack
environments through SAI can later be activated using Spack when the user
wishes to do testing outside of SAI. SAI also reuses these environments if they are
compatible with new user requests, in order to avoid redundant environments.
SAI uses separate, logical environments that can share installations, ensuring
that software is only installed if it does not already exist within SAI.

To increase efficiency and prevent system blockage during installations, SIL
implements a multi-threaded installation queue and asynchronous installation.

412 P. Kousha et al.

This allows users to request multiple jobs without SAI being blocked while wait-
ing for installations to complete, even for complex packages like Horovod which
may take an hour to install.

4.7 Integration with Open OnDemand

Fig. 5. Integrating SAI with OnDe-
mand

To address challenge #4 in Sect. 1.2, In
this section we describe the integration of
SAI with Open OnDemand Open OnDe-
mand supports two modes of deployment
for applications — “Passenger Apps” and
“Interactive Apps” as shown in Fig. 5. Pas-
senger applications run on login nodes and
resources are shared among multiple users
with a separate directory for each user.
Interactive applications, on the other hand,
run on top of a node allocation to ensure
exclusive resources. For the integration,
the authors create YAML files to capture
system-level information such as job sched-
uler, number of available nodes, and parti-
tion/queue list. For both deployments, we
developed SAI setup scripts and job scripts.
For Interactive deployment, we modified the
Open OnDemand interface for node alloca-
tion to include SAI as an application, configured the cluster to enable running
interactive SAI on compute nodes, passed user configuration to the job script,
and developed scripts for pre- and post-processing.

The Passenger SAI application generates scripts for installing dependencies
and executing tasks on the login node, while the Interactive SAI application
handles dependencies installation on the compute node and submits the task
for execution. We also utilize Open OnDemand’s job template method to enable
the creation of user-defined templates generated by SAI’s job script generator.
In the future, we plan to generate RPMs, Singularity images, and Kubernetes
containers for distributing SAI through Open OnDemand.

5 Insights into SAI Usage and Explainable Flow

Following the flow in Fig. 2, we describe SAI’s usage after the integration to
OnDemand (Sect. 4.7) to run applications and install dependencies on an HPC
system. We describe how SAI addresses the challenges in Sect. 1.2.

❶ Users can access SAI through OnDemand gateway that handles user authen-
tication and remote CLI/GUI connection to SAI. The user selects passenger or
interactive deployment of SAI to run. (Challenge #4 in Sect. 1.2)

SAI: AI-Enabled Speech Assistant Interface for HPC 413

❷ The user can give tasks using the chat box shown in Fig. 6. SAI converses
with the user in natural language to understand their requirements. SAI’s chat
interface provides a “Mic” button to record the speech command. SAI does not
force a user to use the speech interface every time, it also has a text-based chat
interface for users concerned about sending voice. SAI converts speech to text
using ASR model and interpreting the ASR output text or user’s text commands
with NLU model to prepare commands for HPC application execution, including
compilation, running and monitoring. (Challenge #1 in Sect. 1.2)

❸ SAI uses HPC specific ontologies and Knowledge Graphs (KGs) derived from
them to assess the user’s commands for completeness and correctness. Through
the use of these KGs, if SAI realizes that the information provided by the user
is not complete, SAI can either use default values for missing information or
interacts with the end-user again to get the needed information. (Challenge #2
in Sect. 1.2)

Fig. 6. Screenshot of an user inter-
action with SAI- the user is run-
ning Allreduce benchmark from
OMB and changing default values
before submitting the job.

❹ Once the user’s input has been obtained
and validated, SAI executes the end-user’s
HPC application on the available hardware
resources. Under the hood, SAI installs the
application and necessary dependencies, exe-
cutes the workload, monitors the progress,
and reports the results of the application’s
execution. Users can give the path to the
pre-installed software too. (Challenge #3 in
Sect. 1.2)

Figure 6 show an example interaction of a
user with implementation of SAI where the
user tells SAI all the essential parameters in
the initial input and changes a parameter. SAI
selects and incorporates OMB’s Knowledge
Graph–based on max hits among all KGs –
to validate input accuracy, checking for errors,
inconsistencies, or missing information result-
ing in reducing the risk of errors in the job exe-
cution. With all required parameters provided
by the user, SAI engages with the user for con-
firmation and prompts for potential modifica-
tions before submitting the job.

SAI Features: SAI’s main features include
job script generation, job execution, the abil-
ity to run jobs on multiple nodes with differ-
ent architectures including GPUs, and OnDe-
mand integration. SAI automatically finds
package dependencies based on HPC system
and architecture and supports package instal-

414 P. Kousha et al.

lation as well as verification. For applications and job variables, SAI provides the
default values, their descriptions, completeness check, and argument validity to
reduce the likelihood of errors. The frequency of using SAI chat/speech interface
depend on the user’s HPC needs. It can be used whenever they want to build or
run applications on an HPC system, as well as for tasks such as scaling and job
submission. The natural language interface is both user-friendly and accessible,
which may encourage more frequent interactions with HPC systems, ultimately
resulting in increased overall HPC usage.

Insights into SAI’s Flow: Transparency in the internal workflow and output
of each component in SAI, from input to output, is of utmost importance. This
transparency fosters user understanding and trust, ensuring that SAI is executing
tasks as intended. Moreover, it can familiarize new HPC users with the process
by showing them the steps taken to understand the flow and reproduce results.
To achieve this, we have developed an interface within SAI that offers insights
into the transition and output of each component, accessible with a simple click.
Additionally, the interface displays the total and component-specific latency for
SAI, providing further insight into its performance and enabling users to evaluate
its efficiency. Figure 7 illustrates the complete transformation of the user text
query initially mentioned in Fig. 6 to job output. In Fig. 7-①, the generated
entities from NLU are presented, which are then processed and forwarded to
the knowledge graph selection module. Figure 7-② displays the output obtained
after querying the KG, revealing a dictionary with required arguments labeled as
“need”, optional values identified as “defaults”, and the selected KG presented
to the user. Figure 7-③ showcases the listed –parameters following the processing
of the KG query–including required and optional values, along with details of
the Spack environment path and working directory path. These parameters are
transferred to the job composer by SAI for the creation of the job script. Then, as
depicted in Fig. 7-④, the software installer ensures the installation of necessary
packages, exhibits the executed commands, and provides users with an option
to verify the successful installation of all binaries.

Figure 7-⑤, demonstrates the generated job script by SAI to execute the users
job. SAI simplifies the process of submitting jobs to an HPC cluster by creating a
batch script and a Spack environment. Once familiar with the process, users can
submit jobs directly using the job script and Spack environment generated by
SAI. While SAI streamlines the process using SAI is optional, and users are free
to use the command line instead with SAI’s generated commands and scripts.
Figure 7-⑥ displays the final job output of the user’s request.

SAI: AI-Enabled Speech Assistant Interface for HPC 415

Fig. 7. Visual representation of SAI’s implemented pipeline for the user input from
Fig. 6: showing series of transformations of through various SAI components, with each
step generating an output. The screenshot provides a clear illustration of the flow of
data and the transition of input to output at each stage.

6 Experimental Evaluation

6.1 Evaluation Platform

We conduct our evaluation experiments on a 58-node Infiniband EDR cluster.
It has two sets of nodes: 1) Intel 28 cores Broadwell(BDW) CPU running at
2.40 GHz nodes with a single NVIDIA Volta V100-32 GB GPU, and 2) Intel
28 cores SkyLake(SKX) CPU running at 2.6 GHz node with two NVIDIA K80
GPUs.

DL Framework: PyTorch [22] defines and trains DNNs for ASR and NLU
DNNs: Speech2Text [27], BERT-based entity detection and classification [11]
Datasets: LibriSpeech [21], TIMIT [1], HPC-ASR, and HPC-NLU

416 P. Kousha et al.

6.2 Evaluation Methodology

In this section, we describe our evaluation methodology used to conduct exper-
iments. In Sect. 6.3, we compare the performance of the existing pre-trained
Speech2Text model and fine-tuned Speech2Text (Sect. 4.2) on the HPC test
dataset. Then, we test the NLU model trained from scratch – since there is
no pre-trained NLU available for HPC – in Sect. 6.4 to predict the entities for
the given text query or speech query transcript. The end-to-end performance of
the ASR and NLU model is evaluated in Sect. 6.5. Section 6.6 provides the over-
head of running the SAI pipeline from deep learning inferencing to determining
whether the requested software is installed or not. We evaluate the scaling of
SAI as an Open OnDemand Passenger App in Sect. 6.7 and the performance of
SAI as an Open OnDemand Interactive App in Sect. 6.8.

6.3 Evaluating ASR Model

Table 2. Evaluation of ASR model using
Word Error Rate (WER) - Lower is better

Train Dataset Test Dataset WER

Base (LibriSpeech) HPC-ASR 86.2

Base+TIMIT+HPC-ASR HPC-ASR 3.7

We evaluate the performance of pre-
trained ASR Speech2Text model on
our HPC-ASR dataset. Our HPC-
ASR dataset has HPC terminolo-
gies and TIMIT dataset has differ-
ent accents, which will make our
proposed design available to a wide
range of speakers. The final test
results for WER on TIMIT and

Fig. 8. SAI’s ASR Model evaluation for
Loss, WER and Latency

HPC test set is shown in Table 2.
We observed that the existing off-
the-shelf ASR model is not suitable
for SAI conversational needs as it
does not recognize HPC-related ter-
minologies in the test set resulting
in high WER. This motivated us to
fine-tune our ASR model. Using our
fine-tuned ASR model, we were able
to improve the performance on the
HPC-ASR test set and achieved a
better WER, closer to that of state-of-the-art models. Figure 8 shows the fine-
tuning of Speech2Text on HPC-ASR + TIMIT datasets. Eval WER is the WER
for the ASR model on the validation dataset and Eval Latency is the runtime of
one step in ASR model validation.

SAI: AI-Enabled Speech Assistant Interface for HPC 417

6.4 Evaluating NLU Model

Table 3. Evaluation of NLU model
for entity recognition - Higher is bet-
ter

Test Dataset F1-score Precision Recall

HPC-NLU (5M) 0.999 0.999 0.999

Since no pre-trained NLU model is available
for HPC terminologies, we trained BERT-
based entity detection and classification
model (Sect. 4.3) from scratch using HPC-
NLU dataset. We evaluate the performance
of predicting entities and extracting them
for our trained NLU model against human-
supervised and labeled HPC-NLU dataset.

Fig. 9. Validation loss for NLU model
of SAI

The training set consists of 60,000 ran-
domly selected queries for DL, OMB, and
NAS phrases from the HPC-NLU dataset
including the combinations, permutations,
and synonyms. Then, we used 5 million
randomly selected queries from the rest
of the dataset for testing. We calculated
the performance metrics by comparing the
NLU output versus the human-supervised
labeled HPC-NLU dataset.

Table 3 shows the final test F1-score,
precision, and recall on the HPC-NLU test set and achieving 99% accuracy for
entity detection and classification. Figure 9 shows the validation loss of the NLU
model on the HPC-NLU dataset.

6.5 Performance Evaluation of Combined ASR and NLU Models

In this experiment, ASR and NLU modules are evaluated together as a pipeline
to assess the success rate of SAI for converting speech query to the classified enti-
ties. We use our trained NLU and ASR models to calculate inference accuracy. A
speech test dataset of 100 queries from 4 individuals’ were chosen for end-to-end
inference with the following demographic: User 1 with Mandarin accents, User 2
with Middle East accents, and User 3 and 4 with American accents. The testing
queries did not exist in the training queries.

Table 4. Word Error Rate and inference accuracy
for ASR+NLU pipeline of SAI on 4 users where the
models were not trained on 2 users - Lower is better

Metric User 1 User 2 User 3 User 4 Average

WER 10.3 8.6 8.3 4.9 8.03

Accuracy M2 0.97 0.90 0.80 0.95 0.907

Accuracy M1 0.84 0.81 0.83 0.92 0.849

As the predicted sentences
of the ASR model can have
different generated lengths
based on the accent from the
original sentences, the NLU
model cannot compare enti-
ties pairwise. Thus, we desig-
nate two metrics for end-to-
end testing: Metric 1 (M1):
if a predicted sentence has more words than the original sentence, we drop the
last few words in prediction to make sure they have the same lengths and vice
versa. Metric 2 (M2): we first drop less important words like articles, preposi-
tions, and grammatically wrong words inside the ASR-generated query and then

418 P. Kousha et al.

repeat the process in metric 1. Table 4 shows the results of end-to-end inference.
This end-to-end result shows the practicability of our design because ASR and
NLU models have never trained with recordings from User 1 and 4 but still yield
96.8% and 90.7% test accuracy. This implies flexibility of the end-to-end model
for recognizing new users’ voices.

6.6 Overhead Analysis of SAI

In this experiment, we evaluate the overhead of our full pipeline deployed as
a passenger app: from user speech/text input to submitting a job based on the
user input. The interactive application performance would be the same or better.
Since different packages available through Spack have varying installation times,
we skip the overhead of package installation and job execution. In subsequent
requests involving the same sets of software, this overhead won’t be observed
since the software is already installed.

Fig. 10. End-to-end latency evaluation of
SAI for 13 different queries on passenger
app on speech and text queries consisting
of different numbers of words - each data
point is an average of 200 iterations

Figure 10 showcases the average
end-to-end duration to process speech
and text queries of varying lengths in
SAI end-to-end pipeline. In general,
it can be seen that the time taken
to process speech increases with an
increase in the number of words in the
query. This is expected as the ASR
model takes an input of the varying
size and hence bigger inputs take more
time. The time taken to process a text
query is more or less constant as the
input size of the NLU model is fixed.

6.7 Overhead Analysis of Scaling Passenger App Users

Fig. 11. Boxplot comparison of end-to-end
latency of SAI passenger deployment as a
varying number of concurrent users utiliz-
ing SAI for both speech and text - the host
node is equipped with BDW 28 cores CPU

As mentioned in Sect. 4.7, resources
are shared among users of SAI when
deployed as a passenger app. This
experiment evaluates the end-to-end
overhead of SAI when multiple users
interact with it at the same time.
To do this we use selenium with the
chrome web driver to simulate dif-
ferent amounts of users using the
SAI passenger app at once for text
and speech queries. We use a barrier
to ensure the concurrency of users’
requests for each iteration. The test
uses a text/speech query of 8 words

SAI: AI-Enabled Speech Assistant Interface for HPC 419

for 200/100 iterations per user. Figure 11 shows the box plot of scaling the users
from 1 to 32 concurrent users utilizing SAI as a passenger app. We observe that
as the number of users scales up both the average latency and the variance in
latency scale up for both speech and text with speech increasing at a greater
rate. Moreover, the performance of the login node hosting the passenger app
degrades significantly. The increased latency and significant jitters of multi-user
passenger apps motivate us to develop SAI as an interactive app to ensure a
smooth user experience with lower latency.

6.8 Analysis of SAI Interactive App on Different Architectures

The performance degradation of SAI during scaling up the number of concurrent
users motivated us to develop and evaluate SAI as an interactive application to
ensure exclusive resources. The user selects the partition/architecture to run
SAI. In this experiment, we evaluate the breakdown and the total latency of
SAI’s both deployment on different architectures for the same 8-word text and
speech query running 100 and 400 iterations for speech and text respectively.
The passenger test was conducted during the winter break and as many users
were not using the system hence, shows the best scenario of the passenger case.
The K80 GPU node did not support ASR inference. Table 5 summarizes the
median end-to-end latency of total time and breakdown of latency across SAI’s
sub-components. We observe the latency of ASR and NLU modules decreases
when inference happened on the V100 GPU node and overall the total latency
is lower than the passenger deployment.

Table 5. Total latency and its breakdown for the deployment of SAI on different 1-
node architectures as Interactive and Passenger app inside OnDemand - Numbers show
the median of running 8-word speech/text query for 100/400 iterations respectively.

Architecture

/Model

Deployment

type

Total

latency

ASR

module

NLU

module

KG

module

Interactive 0.4919 0.23865 0.02275 0.22655
BDW speech

Passenger 0.50245 0.2366 0.0217 0.2274

Interactive 0.2665 N/A 0.0227 0.24335
BDW text

Passenger 0.27125 N/A 0.0218 0.24795

SKX speech 0.44085 0.24105 0.0174 0.1754

SKX text 0.22095 N/A 0.0242 0.19585

V100 speech 0.40735 0.16585 0.0172 0.224

V100 text 0.2664 N/A 0.0225 0.2433

K80 text

Interactive

0.2676 N/A 0.0225 0.2448

420 P. Kousha et al.

7 Discussion

7.1 Security and Authentication

SAI leverages Open OnDemand’s user authentication and access privileges vali-
dation features and uses “spack verify” command, as shown in Fig. 7, to confirm
the integrity of all installed binaries at any time after installation, ensuring
that no files have been tampered with or modified. This added layer of security
enhances user trust and the reliability of the installed packages.

7.2 Handling Ambiguous Queries in SAI

We discuss the limitations of SAI and the level of ambiguity SAI handles. We
seek to see at what point SAI will not understand the user and how we han-
dle those cases. Our developed dataset is limited to popular HPC/DL phrases
hence, SAI does not understand all existing HPC synonyms or all available DL
models. The HPC-ASR and HPC-NLU dataset contains synonyms and different
combinations of the phrases but is limited. We have trained ASR model with
20 volunteer individuals targeting diverse dialect, but our HPC-ASR dataset is
still limited. This limitation may result in SAI predicting wrong text output. To
address this, SAI displays the transcript in the input text field and allows the
user to correct mistakes in speech recognition if there are any. The users can
switch between text and speech to resolve any discrepancies on speech recogni-
tion during conversation.

SAI shows the internal workflow (Sect. 5) enabling the user to see the param-
eters and packages and shows the default values. SAI always checks user argu-
ment versus the allowed range in the corresponding KG and confirms it with
the user. In case anything is missing, SAI provides feedback by asking ques-
tions. For example, user can say “train resnet” and as SAI checks the related
KG, it inquiries the user for an image dataset and number of nodes/processes
as requirements. Currently, SAI does not support directly querying the KG. For
example, users cannot ask “what are the datasets for DL image processing?”
Also, SAI does not give the option to users to update the KGs.

7.3 Trade-offs for Converting Speech to Entities

There are two ways to convert speech to entities: 1) ASR followed by entity
detection and classification, and 2) direct speech to entity detection and classi-
fication. Our design uses the first approach, which first converts audio to text
then uses NLU to detect and classify entities. We chose this approach for several
reasons: first, a speech to entity model requires a large corpus of labeled HPC
speech datasets for optimal accuracy; second, since SAI supports both speech
and text input, creating separate datasets would be necessary (one for NLU and
one for ASR); Third, pre-trained DL models for similar tasks are not available.
Fourth, this approach allows for easy integration of new software, only requiring
a few minutes of audio recordings containing its terminologies.

SAI: AI-Enabled Speech Assistant Interface for HPC 421

7.4 Portability for New Software and Systems

To extend SAI support to a new HPC software, SAI-O ontology can be used to
capture the relationships of a new application to be added to SAI. We repre-
sent these relationships by using KGs, which capture the connections between
software, data, models/algorithms, systems, and arguments.

Adding a new application to SAI requires two steps: (1) creating a KG for the
application using the SAI-O ontology and the supported relationships (Table 1),
and (2) adding application-specific terms to the HPC-ASR dataset. SAI will
provide easy-to-use scripts for fine-tuning the ASR model on new audio sam-
ples, enabling support for new terminologies in ASR model. The KG Inference
module selects the appropriate KG using “spack verify”, allowing us to reuse
the general query manager and simplify the addition of new applications. We
have trained the NLU module on a large dataset and therefore, it can detect
entities and classify them into broad categories based on the sentence struc-
ture. In rare cases, the performance of the NLU module may degrade due to
new terminologies, but SAI provides an easy-to-use dataset generator script to
generate new text commands based on models/algorithms, datasets, software,
arguments, and systems to fine-tune the DL model and improve performance for
the new application. Figure 7 shows a setting interface where users can upload
their customized trained DL models to be used for SAI.

The modularity of our design allows the KG to be ported to multiple systems
by updating a template (Sect. 9) with the new platform’s system information.
Integrating SAI with Open OnDemand makes it even easier to port to new
system architectures, as many XSEDE/ACCESS systems use OnDemand. The
KG’s system portion is the same for all applications on a system, simplifying the
deployment of SAI on a new HPC system.

8 Related Work

Our previous work [14] introduced a new conversational AI interface for HPC
profiling tools like OSU INAM [15], with a focus on extracting performance-
related terminologies, intents, and slots for HPC tools and scope of profiling
tools. In this paper, we expand upon our previous work by capturing a broader
range of HPC runtime terminologies, and by incorporating an NLU entity recog-
nition model to process user inputs. Additionally, we introduce new features
to enhance the interface’s usability and effectiveness, such as integration with
OnDemand, a software installer component, and job submission capabilities. Sev-
eral studies [20,26] exist in literature that uses an end-to-end based approach to
convert the voice to intent and slots, combining ASR and NLU into one model.
The trade-off is discussed in Sect. 7.3 and maintaining and updating a list intent
and slots causes the KG query module not to be portable. Another approach is to
combine ASR and NLU models to understand the context of speech samples. The
state-of-the-art ASR models [9,27] have been proposed in the literature that pro-
vides good performance for publicly available datasets and common words found
in day-to-day conversation. However, we need to fine-tune these ASR models to

422 P. Kousha et al.

recognize technical terms found in computer science and HPC. Similarly, NLU
models [7,8,10,23] are trained for publicly available datasets. Hence, to develop
a system for HPC software installation and usage tool, we need to generate our
own dataset and retrain models from scratch to get better accuracy. To the best
of our knowledge, this is the first work that develops a conversational AI-based
interface for HPC software installation and execution.

9 Future Work

As part of future work, we plan to simplify the process of creating KGs for HPC
software by providing easy-to-use templates to create a KG for a given appli-
cation and collaborating with multiple HPC centers to identify common appli-
cations and make corresponding templates available to users. We will provide
examples of existing applications to assist in filling the template. To create a new
application’s KG, users need to provide the model/application, data, arguments,
and dependencies to the KG template. As the repository of model commons for
the templates grows, users can update the templates with new features and sys-
tem information and contribute to the repository, ultimately saving time and
effort of generating KGs’s template for common applications. Furthermore, we
plan to expand the SAI-O ontology to capture a broader range of HPC applica-
tions and runtimes, including those with complex inter-dependencies and unique
configurations. Finally, we plan to release SAI and our solutions.

10 Conclusion

In this paper, we proposed - SAI, a Conversational AI-Enabled Interface for
science gateways in HPC. We created an HPC speech and text dataset to train
Automatic Speech Recognition and Entity detection and classification model
to understand the input. By defining a new ontology, called SAI-O, we pro-
vided a general approach for any HPC application by using knowledge graphs
to check and validate the task given by the user. This allowed us to get default
values for optional arguments and design a conversational interface to get the
required arguments for running the application. We demonstrated the capability
of the proposed design by supporting three different HPC applications: 1) OSU
Microbenchmarks, 2) Distributed DNN training, and 3) NAS parallel bench-
marks. Finally, we integrated SAI in Open OnDemand and deployed it on real
HPC systems. We also evaluated its performance and functionality. To the best
of our knowledge, this is the first attempt in the HPC field to enhance the user
experience by designing a AI-powered speech-assisted interface. Early users have
shown interest and found SAI features very useful to onboard domain scientists
to HPC.

SAI: AI-Enabled Speech Assistant Interface for HPC 423

References

1. TIMIT acoustic-phonetic continuous speech corpus. https://hdl.handle.net/11272.
1/AB2/SWVENO

2. SPARQL query language (2020). https://www.w3.org/TR/sparql11-query/.
Accessed 17 April 2023

3. Voicebot research (2020). https://tinyurl.com/4kw4bmz7
4. The future of conversational AI (2021). https://tinyurl.com/2dzxe2w8
5. Open onDemand (2022). https://osc.github.io/ood-documentation/latest/#
6. The impact of voice assistants (2022). https://tinyurl.com/mrx36afk
7. Hosseini-Asl, E., McCann, B., Wu, C.S., Yavuz, S., Socher, R.: A simple language

model for task-oriented dialogue (2020). CoRR abs/2005.00796. https://arxiv.org/
abs/2005.00796

8. Wen, T.H., Gasic, G., Mrksic, N.S., Vandyke, D., Young, S.J.: A network-based
end-to-end trainable task-oriented dialogue system (2016). CoRR abs/1604.04562,
http://arxiv.org/abs/1604.04562

9. Baevski, A., Zhou, H., Mohamed, A., Auli, M.: Wav2vec 2.0: a framework for self-
supervised learning of speech representations (2020). https://arxiv.org/abs/2006.
11477

10. Castellucci, G., Bellomaria, V., Favalli, A., Romagnoli, R.: Multi-lingual intent
detection and slot filling in a joint bert-based model (2019). https://arxiv.org/
abs/1907.02884

11. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding (2018). CoRR abs/1810.04805,
http://arxiv.org/abs/1810.04805

12. Goasduff, L.: Chatbots will appeal to modern workers (2019). https://www.
gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers

13. Hauptmann, A., Rudnicky, A.: A comparison of speech and typed input (1990).
https://doi.org/10.3115/116580.116652

14. Kousha, P., et al.: “Hey CAI” - conversational AI enabled user interface for
HPC tools. In: Varbanescu, A.L., Bhatele, A., Luszczek, P., Marc, B. (eds.) High
Perform. Comput., pp. 87–108. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-031-07312-0 5

15. Kousha, P., et al.: INAM: cross-stack profiling and analysis of communication in
MPI-based applications. In: Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3437359.3465582

16. Kudo, T., Richardson, J.: Sentencepiece: a simple and language independent sub-
word tokenizer and detokenizer for neural text processing (2018). arXiv preprint
arXiv:1808.06226

17. Liao, C., Lin, P.H., Verma G., Vanderbruggen, T., Emani, M.: Hpc ontology:
towards a unified ontology for managing training datasets and AI models for high-
performance computing. In: 2021 IEEE/ACM Workshop on MLHPC, pp. 69–80
(2021). https://doi.org/10.1109/MLHPC54614.2021.00012

18. National Geographic: LiDAR and Archaeology. https://education.
nationalgeographic.org/resource/lidar-and-archaeology

19. OSU Micro-benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/
20. Palogiannidi, E., Gkinis, I., Mastrapas, G., Mizera, P., Stafylakis, T.: End-to-

end architectures for ASR-free spoken language understanding. In: (ICASSP), pp.
7974–7978 (2020). https://doi.org/10.1109/ICASSP40776.2020.9054314

https://hdl.handle.net/11272.1/AB2/SWVENO
https://hdl.handle.net/11272.1/AB2/SWVENO
https://www.w3.org/TR/sparql11-query/
https://tinyurl.com/4kw4bmz7
https://tinyurl.com/2dzxe2w8
https://osc.github.io/ood-documentation/latest/#
https://tinyurl.com/mrx36afk
https://arxiv.org/abs/2005.00796
https://arxiv.org/abs/2005.00796
http://arxiv.org/abs/1604.04562
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/1907.02884
https://arxiv.org/abs/1907.02884
http://arxiv.org/abs/1810.04805
https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers
https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers
https://doi.org/10.3115/116580.116652
https://doi.org/10.1007/978-3-031-07312-0_5
https://doi.org/10.1145/3437359.3465582
http://arxiv.org/abs/1808.06226
https://doi.org/10.1109/MLHPC54614.2021.00012
https://education.nationalgeographic.org/resource/lidar-and-archaeology
https://education.nationalgeographic.org/resource/lidar-and-archaeology
http://mvapich.cse.ohio-state.edu/benchmarks/
https://doi.org/10.1109/ICASSP40776.2020.9054314

424 P. Kousha et al.

21. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an ASR corpus
based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210. IEEE (2015)

22. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library (2019)

23. Qin, L., Che, W., Li, Y., Wen, H., Liu, T.: A stack-propagation framework
with token-level intent detection for spoken language understanding (2019). arXiv
preprint arXiv:1909.02188

24. Rothwell, B., Sgambati, M., Evans, G. Biggs, B., Anderson, M.: Quantifying
the impact of advanced web platforms on high performance computing usage,
PEARC’22. ACM (2022). https://doi.org/10.1145/3491418.3530758

25. Schmidt, A.: The rise of conversational interfaces and their impact on business
(2019). https://tinyurl.com/45ppfz9t

26. Serdyuk, D., Wang, Y., Fuegen, C., Kumar, A., Liu, B., Bengio, Y.: Towards
end-to-end spoken language understanding (2018). CoRR abs/1802.08395, http://
arxiv.org/abs/1802.08395

27. Wang, C., Tang, Y., Ma, X., Wu, A., Okhonko, D., Pino, J.: Fairseq s2t: fast
speech-to-text modeling with fairseq (2020). https://arxiv.org/abs/2010.05171

http://arxiv.org/abs/1909.02188
https://doi.org/10.1145/3491418.3530758
https://tinyurl.com/45ppfz9t
http://arxiv.org/abs/1802.08395
http://arxiv.org/abs/1802.08395
https://arxiv.org/abs/2010.05171

Author Index

A
Abdulah, Sameh 125
Aizinger, Vadym 86
Akella, Venkatesh 42
Aktulga, Hasan Metin 202
Alomairy, Rabab 125
Alouini, Slim 144
Alt, Christoph 86
Anzt, Hartwig 164
Arumugam, Kamesh 339
Ather, Hammad 22

B
Bader, Michael 65
Bärtschi, Andreas 240
Berrill, Mark 182
Bez, Jean Luca 22
Boutsikas, Christos 164
Brank, Bine 3
Brito Gadeschi, Gonzalo 65
Bronson Messer, O. E. 182
Budiardja, Reuben D. 182
Byna, Suren 22

C
Chen, Yong 297
Contini, Nicholas 402
Cook, Brandon 297
Cooray, Dulanya 297
Coquelin, Daniel 106
Cubuk, Ekin D. 202

D
Dabah, Adel 125, 144
Debus, Charlotte 106
Drineas, Petros 164

E
Egawa, Ryusuke 359
Eidenbenz, Stephan 240
Eisenbach, Markus 182

F
Faghih-Naini, Sara 86
Faj, Jennifer 86
Farshian, Anis 106
Fujimoto, Soya 359

G
Georgiou, Vasileios 164
Gepner, Pawel 125
Goreczny, Chris 125
Götz, Markus 106
Gratadour, Damien 125

H
Han, Mingzhe 402
Harada, Kenji 259
Hattori, Shinnosuke 223
Hildebrand, Mark 42
Hong, Yuxi 125
Hönig, Jan 86

I
Ibayashi, Hikaru 223
Isobe, Yoko 359

J
Jain, Arpan 402
Jansen, Gustav R. 182
Jesus, Ricardo 279
Joubert, Wayne 182

K
Kalia, Rajiv K. 223
Karlstetter, Roman 317
Kaymak, Mehmet Cagri 202
Kenter, Tobias 86
Keyes, David 125, 144
Kolli, Ayyappa 402
Köstler, Harald 86
Kousha, Pouya 402

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 425–426, 2023.
https://doi.org/10.1007/978-3-031-32041-5

https://doi.org/10.1007/978-3-031-32041-5

426 Author Index

L
Laguna, Ignacio 381
Li, Jie 297
Lieber, Matthew 402
Linker, Thomas 223
Lowe-Power, Jason 42
Ltaief, Hatem 125, 144
Luo, Ye 223

M
Manabe, Hidetaka 259
Merz Jr., Kenneth M. 202
Miao, Dolores 381
Michelogiannakis, George 297

N
Nagase, Satoru 359
Nakano, Aiichiro 223
Nichols, Stephen 182
Nomura, Ken-ichi 223
Norris, Boyana 22

O
O’Hearn, Kurt A. 202
Olguin, Marco 223
Ootomo, Hiryuki 259
Opdenhövel, Jan-Oliver 86

P
Panda, Dhableswar K. 402
Paterno, Marc 339
Pelofske, Elijah 240
Pleiter, Dirk 3
Plessl, Christian 86

R
Ranjan, Desh 339
Raoofy, Amir 317
Ravasi, Matteo 125

Razakh, Taufeq Mohammed 223
Rezki, Zouheir 144
Rogers, David M. 182
Rubio-González, Cindy 381

S
Sakiotis, Ioannis 339
Schoenholz, Samuel S. 202
Schreiber, Martin 317
Schug, Alexander 106
Schulz, Martin 317
Shimomura, Yoichi 359
Streit, Achim 106
Subramoni, Hari 402

T
Takahashi, Keichi 359
Takizawa, Hiroyuki 359
Taubert, Oskar 106
Terzić, Balša 339
Tharrington, Arnold 182
Trinitis, Carsten 317

V
Vashishta, Priya 223

W
Weiel, Marie 106
Weiland, Michèle 279
Weinzierl, Tobias 65
Wille, Mario 65

Y
Yang, Liqiu 223
Yokota, Rio 259

Z
Zubair, Mohammad 339

	 Preface
	 Organization
	 Contents
	Architecture, Networks, and Storage
	CPU Architecture Modelling and Co-design
	1 Introduction
	2 Approach to Modelling
	3 Methodology
	4 Model Tuning and Validation
	5 Applications
	5.1 GROMACS
	5.2 GPAW

	6 Results
	6.1 GROMACS
	6.2 GPAW

	7 Related Work
	8 Summary and Conclusions
	References

	Illuminating the I/O Optimization Path of Scientific Applications
	1 Introduction
	2 Related Work
	3 Visualization, Diagnosis, and Recommendations
	3.1 Extracting I/O Behavior from Metrics
	3.2 Exploring I/O Behavior Interactively
	3.3 Automatic Detection of I/O Bottlenecks
	3.4 Exploring I/O Phases and Bottlenecks
	3.5 Towards Exploring File System Usage

	4 Results
	4.1 I/O Systems in NERSC and OLCF
	4.2 I/O Bottlenecks in OpenPMD
	4.3 Improving AMReX with Asynchronous I/O

	5 Conclusion
	References

	Efficient Large Scale DLRM Implementation on Heterogeneous Memory Systems
	1 Introduction
	2 Related Work
	3 Implementing Embedding Tables in Heterogeneous Memory Systems
	4 Cached Embeddings
	4.1 CachedEmbeddings Performance

	5 DLRM Implementation Methodology
	6 End-to-End DLRM Performance
	7 Conclusions and Future Work
	References

	HPC Algorithms and Applications
	Efficient GPU Offloading with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive Meshes
	1 Introduction
	2 Science Case and Code Architecture
	3 A Realisation of GPU Offloads with target map
	4 User-Managed Memory Management
	4.1 Data Pre-allocation on the GPU
	4.2 Pre-allocation on the CPU with Unified Memory

	5 Results
	6 Discussion and Conclusions
	7 Summary and Outlook
	References

	Shallow Water DG Simulations on FPGAs: Design and Comparison of a Novel Code Generation Pipeline
	1 Introduction
	2 Background
	2.1 Mathematical Model and Numerical Scheme
	2.2 Simulation Scenario: Radial Dam Break
	2.3 FPGAs

	3 Proposed Code Generation Pipeline (CGP)
	3.1 GHODDESS
	3.2 pystencils
	3.3 StencilStream
	3.4 Integration

	4 Existing Dataflow Design
	5 FPGA Designs, Experiments and Evaluation
	5.1 Performance of the CPU Reference and Validation

	6 Analysis
	7 Related Work
	8 Conclusion and Outlook
	References

	Massively Parallel Genetic Optimization Through Asynchronous Propagation of Populations
	1 Introduction
	2 Related Work
	3 Propulate Algorithm and Implementation
	4 Experimental Evaluation
	4.1 Experimental Environment
	4.2 Benchmark Functions
	4.3 Meta-optimizing the Optimizer
	4.4 Benchmark Function Optimization
	4.5 HP Optimization for Remote Sensing Classification
	4.6 Scaling

	5 Conclusion
	References

	Steering Customized AI Architectures for HPC Scientific Applications
	1 Introduction
	2 Related Work and Research Contributions
	3 Batching/Compression or Why Matricization Matters?
	4 The Graphcore IPU Hardware Technology
	4.1 Architecture Principles and Hardware Details
	4.2 Programming Model and Poplar Development Kit

	5 HPC Scientific Applications
	5.1 Adaptive Optics in Computational Astronomy
	5.2 Seismic Processing and Imaging
	5.3 Climate/Weather Prediction Applications
	5.4 Wireless Communications

	6 Implementation Details
	7 Performance Results
	8 Limitations and Perspectives
	9 Conclusion and Future Work
	References

	GPU-Based Low-Precision Detection Approach for Massive MIMO Systems
	1 Introduction
	2 Brief Background
	2.1 Modulation
	2.2 Signal to Noise Ratio (SNR)
	2.3 Error Rate and Time Complexity

	3 Related Work
	4 System Model
	4.1 Tree-Based Representation

	5 Multi-level Approach
	6 GPU-Based Multi-level Approaches
	6.1 GPU Multi-level
	6.2 Multi-GPU Version

	7 Results and Discussions
	8 Conclusion and Perspectives
	References

	A Mixed Precision Randomized Preconditioner for the LSQR Solver on GPUs
	1 Introduction
	2 Background
	2.1 Related Work

	3 Design and Implementation of the Mixed Precision Preconditioner
	4 Numerical Experiments
	4.1 Experiment Setup
	4.2 Discussion

	5 Conclusion
	References

	Ready for the Frontier: Preparing Applications for the World's First Exascale System
	1 Introduction and Background
	2 Systems Overview
	2.1 Summit
	2.2 Frontier

	3 Applications
	3.1 CoMet
	3.2 Cholla: Computational Hydrodynamics on Parallel Architecture
	3.3 GESTS: GPUs for Extreme-Scale Turbulence Simulations
	3.4 LBPM: Lattice Boltzmann Methods for Porous Media
	3.5 LSMS
	3.6 NUCCOR/NTCL
	3.7 NAMD
	3.8 PIConGPU

	4 Lessons Learned
	5 Conclusions
	References

	End-to-End Differentiable Reactive Molecular Dynamics Simulations Using JAX
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Background
	2.1 ReaxFF Overview
	2.2 JAX and JAX-MD Overview

	3 Design and Implementation
	3.1 Memory Management
	3.2 Generation of Interaction Lists
	3.3 Force Field Training

	4 Experimental Results
	4.1 Software and Hardware Setup
	4.2 Validation of MD Capabilities
	4.3 Performance and Scalability
	4.4 Training

	5 Conclusion
	References

	Machine Learning, AI, and Quantum Computing
	Allegro-Legato: Scalable, Fast, and Robust Neural-Network Quantum Molecular Dynamics via Sharpness-Aware Minimization
	1 Introduction
	2 Method Innovation
	2.1 Summary of Neural-Network Quantum Molecular Dynamics
	2.2 Summary of Sharpness-Aware Minimization
	2.3 Key Innovation: Allegro-Legato: SAM-Enhanced Allegro
	2.4 RXMD-NN: Scalable Parallel Implementation of Allegro-Legato NNQMD

	3 Results
	3.1 Experimental Platform
	3.2 Fidelity-Scaling Results
	3.3 Computational-Scaling Results

	4 Discussions
	4.1 Simulation Time
	4.2 Training Time
	4.3 Model Accuracy
	4.4 Implicit Sharpness Regularization in Allegro
	4.5 Training Details

	5 Applications
	6 Related Work
	7 Conclusion
	References

	Quantum Annealing vs. QAOA: 127 Qubit Higher-Order Ising Problems on NISQ Computers
	1 Introduction
	2 Methods
	2.1 Ising Model Problem Instances
	2.2 Quantum Alternating Operator Ansatz
	2.3 Quantum Annealing
	2.4 Simulated Annealing Implementation

	3 Results
	4 Discussion
	References

	Quantum Circuit Simulation by SGEMM Emulation on Tensor Cores and Automatic Precision Selection
	1 Introduction
	2 Background
	2.1 NVIDIA Tensor Core and SGEMM Emulation
	2.2 Quantum Circuit Simulation and Tensor Network Contraction

	3 SGEMM Emulation Library on Tensor Cores
	4 Automatic Precision Selection
	4.1 Exponent Statistics and Computing Mode Selection Rule
	4.2 Dynamic Kernel Selection
	4.3 The Overhead of the Exponent Statistics

	5 Experiment
	5.1 Preparation
	5.2 Exploratory Experiment
	5.3 Random Quantum Circuit Simulation

	6 Conclusion
	References

	Performance Modeling, Evaluation, and Analysis
	A Study on the Performance Implications of AArch64 Atomics
	1 Introduction
	2 The Problem
	2.1 RAJAPerf and the PI_ATOMIC kernel
	2.2 Performance Results
	2.3 A Closer Look at OpenMP Floating-Point Atomics

	3 Benchmarking CAS Operations
	3.1 Compare-and-Swap Operations
	3.2 Benchmark Description
	3.3 Assembly Kernels

	4 Experiments and Observations
	4.1 Evaluating the Performance of CAS
	4.2 A Closer Look at A64FX
	4.3 Testing LL-SC Implementations
	4.4 Summary and Recommendations

	5 Related Work
	6 Conclusions
	References

	Analyzing Resource Utilization in an HPC System: A Case Study of NERSC's Perlmutter
	1 Introduction
	2 Related Work
	3 Background
	3.1 System Overview
	3.2 Data Collection
	3.3 Analysis Methods

	4 Results
	4.1 Workloads Overview
	4.2 Resource Utilization
	4.3 Temporal Characteristics
	4.4 Spatial Characteristics
	4.5 Correlations

	5 Discussion and Conclusion
	References

	Overcoming Weak Scaling Challenges in Tree-Based Nearest Neighbor Time Series Mining
	1 Introduction
	2 Matrix Profile Background and Performance-Accuracy Trade-offs
	2.1 Related Work
	2.2 Potentials of Tree-based Methods

	3 Current Parallel Tree-Based Approach and Its Shortcomings
	4 Overcoming the Scalability Challenges
	4.1 Pipelining Mechanism
	4.2 Forest of Trees on Ensembles of Resources:

	5 Modeling the Impact of Optimizations on Complexity
	6 Experimental Setup
	7 Evaluations
	7.1 Region of Benefit
	7.2 Performance on Real-World Datasets
	7.3 Single-Node Performance
	7.4 Scaling Overheads
	7.5 Effects of Pipelining and Forest Mechanisms
	7.6 Scaling Results
	7.7 Billion Scale Experiment

	8 Conclusions
	References

	Porting Numerical Integration Codes from CUDA to oneAPI: A Case Study
	1 Introduction
	2 Background
	2.1 oneAPI and SYCL
	2.2 CUDA-Backend for SYCL
	2.3 Related Work

	3 Numerical Integration Use Case
	3.1 PAGANI
	3.2 m-Cubes

	4 Porting Process
	4.1 Challenges

	5 Experimental Results
	5.1 Offloading Mathematical Computations to Kernels
	5.2 Benchmark Integrands Performance Comparison
	5.3 Simple Integrands Performance Comparison
	5.4 Factors Limiting Performance

	6 Conclusion
	References

	Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Vector Supercomputer
	1 Introduction
	2 Overview of SX-Aurora TSUBASA VE30
	2.1 The SX-Aurora TSUBASA Product Family
	2.2 Basic Architecture of the VE30 Processor
	2.3 Architectural Improvements from the VE20 Processor

	3 Performance Evaluation
	3.1 Evaluation Environment
	3.2 Basic Benchmarks
	3.3 Evaluation of Architectural Improvements
	3.4 Real-World Workloads

	4 Performance Tuning for VE30
	4.1 Selective L3 Caching
	4.2 Partitioning Mode

	5 Conclusions
	References

	Programming Environments and Systems Software
	Expression Isolation of Compiler-Induced Numerical Inconsistencies in Heterogeneous Code
	1 Introduction
	2 Examples of Compiler-Induced Inconsistencies
	3 Technical Approach
	3.1 Hierarchy Extraction
	3.2 Hierarchical Code Isolation
	3.3 Source-to-Source Precision Enhancement

	4 Experimental Evaluation
	4.1 RQ1: Numerical Inconsistencies in Heterogeneous Programs
	4.2 RQ2: Comparison with the State of the Art
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	SAI: AI-Enabled Speech Assistant Interface for Science Gateways in HPC
	1 Introduction and Motivation
	1.1 Motivation
	1.2 Challenges in Enabling Conversational Interface for HPC
	1.3 Contributions

	2 Background
	2.1 Conversational User Interface
	2.2 Open OnDemand
	2.3 Ontology and Knowledge Graphs
	2.4 Spack

	3 Terminologies
	4 Proposed SAI Framework
	4.1 Generating HPC Datasets for Speech and Text
	4.2 Fine-Tuning Speech Recognition Model for HPC Terminologies
	4.3 Designing an Entity Detection and Classification Model for SAI
	4.4 Creating the HPC Ontology and Knowledge Graphs
	4.5 Knowledge Graph Selection and Inference
	4.6 Software Installer Check and Interfacing with Spack
	4.7 Integration with Open OnDemand

	5 Insights into SAI Usage and Explainable Flow
	6 Experimental Evaluation
	6.1 Evaluation Platform
	6.2 Evaluation Methodology
	6.3 Evaluating ASR Model
	6.4 Evaluating NLU Model
	6.5 Performance Evaluation of Combined ASR and NLU Models
	6.6 Overhead Analysis of SAI
	6.7 Overhead Analysis of Scaling Passenger App Users
	6.8 Analysis of SAI Interactive App on Different Architectures

	7 Discussion
	7.1 Security and Authentication
	7.2 Handling Ambiguous Queries in SAI
	7.3 Trade-offs for Converting Speech to Entities
	7.4 Portability for New Software and Systems

	8 Related Work
	9 Future Work
	10 Conclusion
	References

	Author Index

