
Chapter 2 
Using Meta-Learning in Automatic 
Demand Forecast with a Large Number 
of Products 

Luis Gutiérrez and Marcel Goic 

Abstract Demand analysis is one of the cornerstones of any supply chain manage-
ment system, and most of the critical operational decisions in the supply chain rely on 
accurate demand predictions. Although a large body of academic literature proposes 
various forecasting methods, there are still important challenges when using them 
in practice. The common problem is that firms need to decide about thousands of 
products, and the demand patterns could be very different between them. In this 
setting, frequently, there is no single forecasting method that works well for all prod-
ucts. While some autoregressive models might work well in some cases, the demand 
for other products might require an ad-hoc identification of trend and seasonality 
components. In this chapter, we present a methodology based on meta-learning that 
automatically analyzes several features of the demand to identify the most suitable 
method to forecast the demand for each product. We apply the methodology to a 
large retailer in Latin America and show how the methodology can be successfully 
applied to thousands of products. Our analysis indicates that this approach signifi-
cantly improves the firm’s previous practices, leading to important efficiency gains 
in the supply chain. 

Keywords Forecasting · Meta-learning · Time series · Retailing 

2.1 Introduction 

The retail industry faces a dynamic and competitive landscape that has been 
confronted with the irruption of digital channels, the emergence of new formats,
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and the increasing use of technology in the value chain. Among the long-term trends 
consolidated in recent years is the automation of various processes, ranging from 
inventory management to self-checkout terminals. In this research, we propose a 
methodology to automate demand forecast at the product-store level, which is an 
important input for several key processes such as assortment planning or inventory 
management. For instance, to automate the replenishment of stores from the distribu-
tion centers, we need to project how much product will be sold shortly in each store. 
Accurate forecasting has important consequences for operation performance. If the 
forecast underestimates the demand, the products will be out of stock, harming sales. 
If the forecast overestimates the demand, the inventory cost would be unnecessarily 
high, and it might even force the implementation of aggressive price reductions to 
reduce stocks. 

The academic literature provides numerous methodologies to forecast demand 
in the retail industry (Ma et al. 2016; Huber and Stuckenschmidt 2020). However, 
practical implementations of automatic forecasting systems imply important method-
ological challenges. First, most retailers consider a large assortment of thousands of 
SKUs in several dozen stores, which require the completion of several thousands of 
forecasting tasks. Although computational power is not an important barrier to esti-
mating a large number of statistical models, there is a more fundamental difficulty 
in automating demand forecasting. The underlying time series of sales of different 
products can be radically different, and there is no universal model to provide the 
best solution for all cases. While a simple autoregressive model can provide satis-
factory solutions in some cases, other cases might require a more comprehensive 
identification of seasonal components. A common practice to deal with this problem 
is to either commit to a forecasting model that works well on average or assign 
human analysts to inspect the series and decide case by case. In this research, we 
propose a methodology to automatically select the best estimation method for each 
series, facilitating the automation of critical processes without sacrificing forecasting 
accuracy. 

The need to use different forecasting models comes from the existence of distinct 
components in different demand series. To illustrate the point, in Fig. 2.1, we display 
the time series of sales of four different products in our dataset. For product A, 
we observe very pronounced spikes in demand. As this product belongs to the toy 
category, those spikes are associated with seasonal events such as Christmas or Chil-
dren’s Day, which are strongly associated with larger purchases in the toy category. 
For product B, demand is higher in the second part of every year, but that is mainly 
associated with year seasonality and not with a single event. This pattern is rela-
tively common to items in the clothing category, where the demand tends to be very 
cyclical. In this set, we also have products with no evident seasonal patterns, such 
as products C and D. Product C presents large variations in sales. However, those 
occur at different times of the year, possibly associated with promotions or other 
unobservable factors. On the other hand, product D presents less variation over time, 
with almost no acute spikes in the observational period.

Overall, we observe series with very different components requiring different 
modeling approaches. To automate the forecast, we need to estimate every case
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Fig. 2.1 Illustration of several time series with different seasonality and trend components

adequately. However, some models provide better results in some cases, and others 
perform better in others. Our solution is based on a technique called meta-learning, 
in which a machine learning model decides the best model to use in each case based 
on observable characteristics of the series, such as the trend and seasonality strength, 
as well as the size of the autoregressive components. To calibrate this model, we 
need to produce many forecasts using different models to identify which performs 
best under different conditions. 

In addition to proposing a methodology to automatically select the best forecasting 
model for each series, using historical data, we evaluate the impact of utilizing this 
approach on the accuracy of the forecast, and we demonstrate that it could lead to 
better results. Furthermore, we conducted a business evaluation using a controlled 
experiment to compare product sales and inventory levels for products. We used the 
methodology to decide product replenishment against a control where orders were 
decided using standard business practices. Here we found that the model can indeed 
improve operational efficiency in practice. In this project, we developed a predictive 
model to generate an accurate automatic forecast for various products, thus reducing 
logistics and inventory management costs in the supermarket industry. 

The rest of the article is organized as follows. In Sect. 2, we review the relevant 
literature. Section 3 introduces the methodology we use to build forecasts for many 
products. Then, in Sect. 4, we describe the empirical setting and provide descriptive 
statistics of the thousands of products we consider in the empirical evaluation. In 
Sect. 5, we present the result, and we conclude in Sect. 6 with the main takeaways 
of our research and a discussion with some avenues for future research.



44 L. Gutiérrez and M. Goic

2.2 Literature Review 

This research is associated with three streams of research. First, from a substantive 
perspective, we relate to a vast literature exploring efficient demand estimation in the 
retail industry. Second, from a methodological perspective, our research is connected 
to recent advances in meta-learning. Lastly, from an operational perspective, we aim 
to produce forecasts with minimal human intervention and therefore, our research 
also relates to the literature on retail automation. Next, we discuss these three streams 
sequentially. 

Regarding demand estimation, previous literature has recognized that the fore-
casting approach depends on the nature of the decisions they support. For instance, 
Fildes et al. (2022) pose that strategic, tactical, and operational decisions require 
different methods and data aggregation levels. In this work, we provide product 
and store-level forecasting to support operational decisions such as order sizes and 
inventory volumes. Since the introduction of retail scanner data, various methods 
have been proposed to forecast sales. While a common practice in the industry is 
using regressions (e.g., Macé and Neslin 2004) or autoregressive time series models 
(e.g., Srinivasan et al. 2008), recent methodological advances have motivated a large 
number of investigations using more sophisticated forecasting models. For instance, 
Ali et al. (2009) compare a variety of autoregressive, stepwise, and support vector 
regression models to forecast demand in the presence of promotion and found that, 
with more detailed input data, machine learning models can significantly improve 
the forecasts. More recently, Spiliotis et al. (2020) compare statistical and machine 
learning methods to forecast daily demand and conclude that the latter reduces the 
bias and leads to more accurate predictions. Unlike these systematic evaluations that 
evaluate the aggregated performance of different forecasting models, our research 
aims to identify the best model for each case. In addition, while most of these studies 
consider a few dozen scenarios, our model is devoted to providing adequate demand 
forecasting for thousands of product-store combinations. 

The desire to have estimation methods that can be generalized to multiple predic-
tion instances has a long tradition in the forecasting literature. More than 30 years 
ago, Mahmoud et al. (1988) already posed that no one sales forecasting method is 
appropriate for every situation (p. 54). While the problem was identified a long time 
ago, it was not until the last decade that the literature has provided more systematic 
approaches to address it. Early approaches to finding general forecasting models 
within a given domain rely on aggregation methods (for example, Horváth and 
Wieringa 2008). However, we believe these approaches are better suited for cases 
with a relatively short number of temporal observations for each unit, which is less 
of a concern in our empirical application. Another approach to aim for generaliz-
ability is using forecasting ensembles, where multiple models and data sources of 
different types are combined to produce a unified forecast (Wu and Levinson 2021). 
Our empirical analysis considers ensembles as potential candidates to generate the 
best predictions. However, we consider the possibility that one model by itself could 
be the most suitable for specific instances.
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The methodology we used to forecast the demand at the product-store level 
is based on meta-learning. The basic idea behind meta-learning is using a classi-
fying method to select the most suitable model for a given time series (for a similar 
methodology, see Prudêncio and Ludermir 2004). Unlike ensemble learning, which 
combines multiple forecasts, we aim to select the best model for each case in meta-
learning. With the proliferation of a wide gamut of time-series models, the need for 
some guidelines to decide on the best modeling approach has become more pressing. 
Early guidelines mostly relied on visual examination of the series (Pegels 1969) 
or qualitative rules (Collopy and Armstrong 1992). More recently, meta-learning 
methods have taken advantage of the important advances in machine learning to 
use a classification model to decide the most promising approach as a function of 
a large number of features characterizing a given time series (Talagala et al. 2018). 
Using a wide range of univariate time series from different domains, Wang et al. 
(2009) identify six clusters of series that might require different forecasting tech-
niques. Similarly, Lemke and Gabrys (2010) identify an extensive set of features 
describing the time series and another set of features to characterize the forecasting 
methods. More recently, Ma and Fildes (2021) applied meta-learning methods in 
retail and demonstrated that they could significantly improve forecasting efficacy. 
Although they evaluate meta-learning using a publicly available dataset, we effec-
tively use this approach to support decision-making in the retail industry. In terms of 
the methodology, we find that the addition of a final step, in which we discard those 
models with worse performance, could play a critical role in facilitating the classifier 
to select the best model for each forecasting task. 

To conclude this review, our research is also related to previous work on retail 
automation. Considering the massive nature of retail operations and the high compe-
tition in the retail markets, there is constant pressure to systematize and automate 
processes (Begley et al. 2019). The number of applications that automatize key retail 
decisions is vast. These include the evaluation of promotional effectiveness with a 
minimum of analyst intervention (Abraham and Lodish 1987), the dynamic adjust-
ment of store item-level prices (Zhou et al. 2009), and the delivery of automatic 
responses triggered by consumer actions (Goic et al. 2021) to name a few. The main 
goal of this research is to provide an automatic demand forecast at the product-store 
level. Although we expect that automation can lead to better forecasting in the long 
term, we aim to provide predictions that are, at least, as good as the current business 
practices that require manual examination of thousands of series. 

2.3 Methodology 

As illustrated in Fig. 2.2, the proposed methodology consists of four main steps. First, 
we produce forecasts for many cases using various models and compute error metrics 
for each model and case (1). Second, we generate several features to characterize each 
case (2). Third, we use those features to train a meta-learning model that indicates
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Fig. 2.2 Schematic representation of the proposed methodology 

which model leads to smaller errors for given values of features (3). We conclude by 
applying the results of the meta-learning and evaluating its performance (4). 

In the following subsections, we discuss each of these components in more detail: 
Step (1) is described next in the sub-section “Forecasting with alternative models”. 
Step (2) is described later in the sub-section “Extraction of time series features”. 
Step (3) is presented in the sub-section “Model selection through meta-learning”. 
The evaluation of the whole methodology using the best method is presented in the 
section “Results”. 

2.3.1 Forecasting with Alternative Models 

We start the methodology by estimating a variety of forecasting models for a large 
number of products. The objective of this task is twofold. First, it allows us to 
verify that no single model generates the most accurate prediction for most cases, 
which provides empirical justification for including a meta-learning process to assign 
product demand patterns to models. Second, the results of these models work as an 
input for the calibration of the meta-learning algorithm. In fact, the assessment of 
the forecasting errors gives us the basis for the construction of classification labels 
that will be used in the training of the meta-learning step. 

The models that we consider in the evaluation are: 

• Moving Average (MA): This is the model used by the firm before the implemen-
tation of the meta-learning, and it generates the forecast for the next period as a 
weighted mean of the observed sales in the last two periods (Johnston et al. 1999).
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• Autoregressive Integrated Moving Average (ARIMA): On a given period, the 
values of the time series depend on their lagged values and lagged errors. The series 
is further differentiated to estimate the model to allow nonstationary processes 
(Newbold 1983). 

• Holt-Winters (HW): This model expands the simple exponential smoothing 
approach by allowing trends in the forecasting. Thus, the method comprises 
three smoothing equations for the level, the trend, and the seasonal components 
(Chatfield 1978). 

• Exponential smoothing state space model with Box-Cox transformation, 
ARMA errors, Trend, and Seasonal components (TBATS): This model uses a 
combination of exponential smoothing and Box-Cox transformations to accom-
modate multiple seasonal components automatically. Each seasonal component 
is modeled by a trigonometric representation based on a Fourier series (De Livera 
et al. 2011). 

• Time-dertificial neural networks (TDANN): This model uses a flexible neural 
network architecture to model the time series. In this structure, we use lagged 
values as inputs to the network (Clouse et al. 1997). 

• Seasonal-Trend decomposition using LOESS (STL): This model allows the 
time series’s decomposition into three components: seasonality, trend, and resid-
uals. To combine these components, this model uses a robust local regression 
approach to outliers (Cleveland et al. 1990). 

• Ensemble (EN): In this approach, the forecast corresponds to the combina-
tion of multiple models. While the literature suggests alternative approaches to 
combining models, in our case, we simply consider a simple average that often 
outperforms more complex combination schemes (Bates and Granger 1969). 

2.3.2 Model Selection Through Meta-Learning 

To select the best model for each time series, we use meta-learning. To perform meta-
learning, we need to generate a dataset with all the available time series. For each 
series, we need (i) a label indicating which model had the most accurate prediction 
for this series and (ii) several features to characterize them a priori. With these 
components, the problem translates into a standard classification model. The labels 
with the best model are obtained from the extensive forecasting with alternative 
models we explained in the previous subsection. The process of extracting time-series 
features is explained in depth in the following subsection. 

We split the database into training and testing subsets using standard supervised 
learning approaches. The model is calibrated using the training data and then evalu-
ated in the testing data. In our case, we use a random sample of 80% of the product-
store series for training and the remaining 20% for testing. Although there are many 
alternative methods to perform the classification task, following previous work on 
meta-learning, we use a random forest model (Talagala et al. 2018). In our case, the 
random forest is produced, averaging 1,000 trees. We tried alternative specifications
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with a larger number of trees without observing a meaningful improvement in the 
classifier’s performance. 

The labels indicating which candidate is the best model are based on the Mean 
Absolute Error (MAE). Since the label is used to guide which model performs better 
for each time series shape, to feed the random forest classifier, we only consider the 
case in which there is a clear winner among the competing model. Of the 5,000 time 
series analyzed, there are 1,103 series where there is no meaningful difference in 
the prediction errors of at least two models, which we discarded from the analysis. 
Thus, the classification is trained with 3,897 series. It is possible that other methods 
could perform better without removing those cases from the training set, but this 
filter proved to lead to better forecasting results for our application. 

Another variation in the classifier proved to enhance the meta-learning signifi-
cantly. Instead of calibrating the classifier to select the best model among all possible 
methods, we calibrate it to choose between the two models with the best overall 
performance. Restricting the classification to only those models with the smallest 
forecasting errors reduces the potential gain of the automation of model selection. 
In fact, as we will see in the result section, every model provides the best forecast 
for at least a few cases. Therefore, removing models will lead to a worse possible 
solution for those series. Notice, however, that the gain in the forecasting capabilities 
only materializes if the classifier effectively identifies the best model for each series. 
However, with more labels, the classification task becomes more difficult. Thus, the 
key tradeoff is between reducing the potential forecasting gains and augmenting the 
classification errors. As we will see in the result section, in our empirical application, 
the reduction in the classification error more than compensates for the selection of 
suboptimal methods, and meta-learning with the best models leads to better results 
overall. 

2.3.3 Extraction of Time Series Features 

To calibrate a meta-learning step, we need to connect the performance of all fore-
casting methods to a series of observable features of the forecasting task. In this 
project, these observable features correspond to characteristics of the shape of the 
underlying time series. For instance, we consider the strength of the seasonal and 
trend components. The basic idea is that some methods might be more suitable to 
capture those components than others and that the meta-learning step can identify 
those patterns by observing the performance of several methods in thousands of 
cases. 

We closely follow previous literature on time-series meta-learning to define the 
list of time-series features to use in the empirical analysis. For each demand series of 
product-store combination, we compute 15 features such as trend, seasonal strength, 
and autocorrelation coefficients, as well as metrics of the internal variability such as 
entropy, spikiness, and maximum level shifts (Talagala et al. 2018; Ma and Fildes 
2021). To illustrate how different time series differ depending on the values of these
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Fig. 2.3 Visual representation of two series of sales with different Seasonal Strengths 

features, in Fig. 2.3, we display two series of demand with fairly different values for 
Seasonal Strength (by construction, the Seasonal Strength takes values in the range 
[0, 1]). In the bottom panel, we display a series with high Seasonal Strength. In this 
case, sales during the summer times (November–March, in the southern hemisphere) 
are much higher than in the rest of the year. In the top panel, we display a series with 
low Seasonal Strength, and, in this case, it is much more difficult to anticipate what 
would be the weeks with higher sales. In terms of the forecast, the need for a model 
that properly controls for seasonality appears to be more critical in the second series. 

2.3.4 Execution and Evaluation of Meta-Models 

To complete the methodology, we apply the classifier for many products, then eval-
uate to what extent the resulting predictions improve concerning standard forecasting 
tools. Considering that we apply the proposed methodology to many products, we 
need an aggregated performance metric. In our case, we use a weighted Mean Abso-
lute Percentage Error (wMAPE) in which we give larger weight to products with 
larger sales levels. Our choice is justified because of its scale independence and 
consistency with the business objective of having more accurate predictions for those 
products with a larger impact on revenues (Narayanan et al. 2019).



50 L. Gutiérrez and M. Goic

Table 2.1 Descriptive statistics of the demand series for different product-stores combinations 

Weekly sales [units] Price [CL$] 

Product family N° Products Mean Max Mean Max 

15 297 24.9 903 5,186 172,914 

27 4,703 40.5 4,355 3,221 170,540 

2.4 Empirical Setting 

From a practical point of view, we are interested in automatizing demand forecasting 
to use those estimates to feed different operational processes. The focal decision in 
this research is the daily number of units to distribute from the central warehouses to 
all stores scattered throughout the territory. On the one hand, considering the limited 
storage space in the store, demand overestimation could lead to high operational 
costs. On the other hand, demand underestimation could lead to lost sales due to an 
out-of-stock. While we formally analyze the inventory reorder process, the forecast 
could also be used to support other decisions, such as assortment or promotional 
planning. 

We consider 5,000 demand series of different product-store combinations in the 
empirical evaluation. The time series correspond to 143 weeks of sales from January 
2017 to September 2019 for the clothing and toys categories. These series span 200 
families of products and 130 stores in Chile. It is worth noting that not all product 
families are sold in all stores. Due to the constant product introduction, these two 
product categories are precisely among those the company has faced more difficulties 
in generating forecasting at the product-store level. The constant variation in the 
product offering motivates us to forecast at the product family and not at the SKU 
level. In Table 2.1, we display descriptive statistics of the demand for both product 
categories. 

Statistics from Table 2.2 indicate that most of the series we consider in this numer-
ical analysis correspond to clothing, which tends to have larger sales than the toys 
category, which also tends to have larger prices. For our analysis, the key insight from 
these statistics is that the demand series might be fairly different between products, 
providing further qualitative support to the need for a meta-learning classifier that 
guides the best model to forecast each series.

2.5 Results 

According to the methodology presented in Sect. 3, several components are worth 
reporting. We first describe the results of the forecasting of all independent standard 
models. Then we describe the implementation of the time-series feature extractions. 
These two components are the primary inputs for the meta-learning stage that we
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Table 2.2 Forecasting Error 
across models for the first 
week 

Model MAE Sd wMape (%) 

HW 13.7 20.5 33.2 

TBATS 15.9 29.3 38.6 

NNAR 17.9 25.0 43.5 

STL 18.4 27.3 44.5 

ARIMA 19.1 35.4 46.4 

MA 19.2 25.5 46.5 

EN 13.6 21.2 33.0 

Mean 16.8 26 40.8

present next. We conclude this section using the forecasting models to evaluate the 
business impact. 

2.5.1 Forecasting Through Standard Models 

We first estimate each of the seven forecasting models for each 5,000-time series to 
complete 35,000 forecasting tasks. The majority of these models require the calibra-
tion of hyper-parameters. For TBATS, we need to determine if Box-Cox transfor-
mation is required or for the ARIMA models, and we need to decide the number of 
lags to use. We tune all these hyperparameters using cross-validation. 

In this exercise, the forecasts correspond to the daily sales of the last four weeks 
of the time series. This forecasting window is chosen to match the typical target for 
inventory reorders. Figure 2.4 illustrates the forecasts of all individual methods for a 
selected time series. Although the series largely differ in features (trend, seasonality, 
spikiness, etc.), this example represents a common pattern we find in most series: the 
predictions are not radically different between models. While this indicates that any 
model could provide a reasonable approximation, it also suggests that it might be 
difficult to classify the best model for a given series. Beyond the illustration of a given 
series, Table 2.2 reports the forecasting errors for the first week of forecasting for all 
models across the 5,000 series. In this table, we include the MAE we use to compare 
predictions between models for a given series and the wMAPE we use later to evaluate 
the performance across series. Consistent with the previous example, these results 
indicate that all proposed models are competitive, with relatively small differences 
in the aggregated performance metrics between the best and worst models.

While this indicates that any model could provide a reasonable approximation, it 
also suggests that it might be difficult to classify the best model for a given series. 
Beyond the Illustration of a given series, Table 2.2 reports the forecasting errors for 
the first week of forecasting for all models across the 5,000 series. In this Table 2.2, 
we include the MAE we use to compare predictions between models for a given 
series and the wMAPE that we use later to evaluate the performance across series.
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Fig. 2.4 Illustration of alternative forecasting results for a selected series

Consistent with the previous example, these results indicate that all proposed models 
are competitive, with relatively small differences in the aggregated performance 
metrics between the best and worst models. 

To complement previous results, in Table 2.3, we display the forecasting errors 
for all four weeks we used in these numerical exercises. As expected, the further 
the forecasting window is in the future, the lower the accuracy of the prediction. 
However, the notion that the differences between models are small remains. 

Recall that our methodology uses the forecasting results from individual models 
to calibrate a classification model that determines the best model to predict each 
series. In this regard, the forecasting of individual models is the primary source to 
build the labels of the classification model. We use the smallest forecasting error 
for each case to produce these labels. The frequencies of these labels are displayed 
in Fig. 2.5, where we further decompose them by week. For instance, the ARIMA 
model has the smallest forecasting errors in 17.9% of the series in week 1. Similarly, 
the ensemble produces the best results in 13.7% of the series for the same week.

Considering that we had previously found that the forecast errors were not dramat-
ically different between models, it may not be surprising that we now find that no

Table 2.3 Forecasting errors by week 

Model S1 S2 S3 S4 Mean 

HW 13.7 15.7 16.4 19.2 16.3 

TBATS 15.9 16.2 16.8 18.2 16.8 

NNAR 17.9 18.9 21.7 19.9 19.6 

STL 18.4 18.8 21.0 20.8 19.8 

ARIMA 19.1 17.5 18.8 19.8 18.8 

MA 19.2 18.5 20.4 19.9 19.5 

EN 13.6 14.4 15.2 17.0 15.1 

Weekly mean 16.8 17.1 18.6 19.3 18.0 
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Fig. 2.5 Fraction at which each model provides the minimum forecasting error

model is the best alternative for most cases. It is possible, however, that a particular 
model could be consistently better, but only by a small margin. The results in Fig. 2.5 
indicate that this is not the case and that some models work well for some series, 
and others predict better in other cases. This is precisely the pattern that justifies the 
need for a classifier to guide the decision of which model should be used for each 
specific prediction task. 

The comparison across models reveals that the ensemble is the preferred model in 
the least number of cases. This is somewhat surprising considering that overall is the 
method with the smallest mean error. To conciliate these two empirical findings, it is 
worth emphasizing that the ensemble derives from averaging multiple models. Thus, 
while this approach generates consistently good solutions, it is often the case that 
there is one specific model that works better for that particular case. While taking
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averages warrants the production of good models, at the same time, it is influenced 
by relatively bad models, making it difficult to produce the best solution. 

2.5.2 Generation of Features 

As the methodology section explains, we compute features closely following what 
previous literature has used to characterize time series. This extraction considers 
trends, seasonality, and autoregressive factors, among others. In Table 2.4, we display 
the list of the time-series features we use for meta-learning, along with their corre-
sponding descriptive statistics. For a complete study of feature extraction, see Wang 
et al. (2006). 

According to the descriptive statistics presented in Table 2.4, except for the spike, 
the features extracted from the different time series present significant dispersion. 
Consequently, the observed time series differ in their shapes, providing enough 
variation to learn about their incidence in the performance of each model.

Table 2.4 List of time-series features for meta-learning with the corresponding descriptive statistics 
for the case of study 

Variable Description Min Mean Max Sd 

Trend Strength of trend 0,000 0,131 0,815 0,111 

Spike Spikiness 0,000 0,000 0,001 0,000 

Linearity Linearity −5,934 0,371 9,025 1,914 

Curvature Curvature −5,087 −0,381 4,696 1,420 

Seasonal Seasonal strength 0,228 0,600 0,970 0,156 

Entropy Shannon entropy 0,598 0,890 1,000 0,065 

Xacf1 First ACF of the series 0,017 0,572 0,938 0,150 

Xacf10 SS of the first ACF of the series 0,006 0,924 5,646 0,753 

Diff1acf1 First AF of the series differences −0,651 −0,271 0,348 0,118 

Diff1acf10 SS of the first 10 ACF of the first differences 0,039 0,179 0,949 0,080 

Diff2acf1 First ACF of the first differences −0,804 −0,561 −0,031 0,082 

Diff2acf10 SS of the first 10 ACF of the second 
differences 

0,159 0,435 1,774 0,135 

Eacf1 First ACF of the remainder series −0,387 0,370 0,842 0,172 

Eacf10 Sum of squares of first 10 ACF of remainder 
series 

0,005 0,352 2,150 0,257 

Seasacf1 Autocorrelation coefficient at the first 
seasonal lag 

−0,292 0,191 0,589 0,155 

SS = Sum of the squares 
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2.5.3 Meta-Learning 

Considering this is one of the most critical steps in the methodology, we describe 
two variants to learn from the best modeling approach to conduct the forecast for 
each series. Although both versions use a Random Forest to classify, we consider 
two different sets of models in which the Random Forest must classify. First, we feed 
the meta-learner with all forecasting models, and then we restrict the classification 
to the two models with the best overall performance. A perfect classifier would 
benefit from selecting from a larger set of models. However, more candidates make 
the classification task more complex, and therefore, which approach would lead to 
better results is an open empirical question. 

Before presenting the results of using a meta-learner to select the best model, in 
Fig. 2.6, we display the mean value for all time-series features depending on the 
model with the best performance. 

Fig. 2.6 Mean attribute value depending on which is the preferred model
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According to these results, we corroborate that some models tend to perform better 
for specific profiles of attributes. For instance, when STFL is preferred, the underlying 
time series tend to have large values for curvature, eafc1, and eafc10. Similarly, a 
moving average is preferred for series with large values for trend, linearity, and 
spike. These results prove that meta-learning can effectively identify the underlying 
patterns connecting time-series features and model performance. 

2.5.3.1 Classification with all Models 

In this first exercise, the meta-learning step must decide the best model among seven 
competing alternatives. Table 2.5 reports the error of the Meta-Forecast against all 
other contenders and the fraction at which each model ended up being the best 
forecast (Win Rate). 

Results from Table 2.5 indicate that the meta-forecast, along with the Holt-Winters 
model has the highest win rate among all. This provides preliminary evidence 
that using a model classifier can positively impact the system’s overall perfor-
mance. Notice, however, that in terms of the forecasting error, the meta-forecast 
does not provide the best results and simpler approaches, such as the ensemble or 
Holt-Winters, perform better on average. This indicates that while meta-forecast is

Table 2.5 Performance of 
meta-Forecast against 
individual models (first 
exercise) 

Model MAE WMAPE (%) Win rate (%) 

HOLT 12.9 31.8 19.3 

TBATS 14.8 36.5 12.8 

STLF 17.0 41.9 14.0 

NNAR 17.2 42.4 16.5 

MM 18.3 45.1 14.2 

ARIMA 18.5 45.6 14.1 

ENSAMBLE 12.7 31.3 9.2 

Meta-forecast 14.9 36.7 19.3 

Table 2.6 Performance of 
meta-forecast against 
individual models (second 
exercise) 

Model MAE WMAPE (%) Win rate (%) 

HOLT 12.9 31.8 19.3 

TBATS 14.8 36.5 12.8 

STLF 17.0 41.9 14.0 

NNAR 17.2 42.4 16.5 

MM 18.3 45.1 14.2 

ARIMA 18.5 45.6 14.1 

ENSEMBLE 12.7 31.3 9.2 

Meta-forecast 11.0 27.1 24.9 
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frequently the best solution, the classifier could make serious classification mistakes 
and some series were probably forecasted with models with large errors. These results 
motivate an alternative and more conservative approach in which the classifier only 
selects among those models that perform well on average, as we explore next. 

2.5.3.2 Classification with the Best Two Models on Average 

In this second exercise, the classifier only considers two labels associated with the 
Holt-Winters and the ensemble model that performed better on average. Table 2.6 
reports the errors of this new meta-forecast against all other contenders and the 
fraction at which each model leads the smallest forecasting error (Win Rate). 

Compared to the previous case, this new meta-forecaster leads to much better 
results and overperforms all other models in all relevant metrics. The meta-forecast 
model not only provides a significant reduction in average error metrics with 
a wMAPE of 27.1%, which is 4.2% points better than the closest competitor 
(Ensemble) and more than 18% points better than a simple ARIMA model. These 
numbers lead the meta-forecast to provide the very best solution in 24.9% of the 
cases, which is almost 10% more than the closest competitor. 

Overall, these results indicate that meta-learning can significantly boost accuracy 
to make better predictions regarding detailed retail demand sales. However, this gain 
is not automatic, and it might be necessary to learn the best configuration for the 
classifier to achieve the best performance. 

2.5.4 Business Evaluation 

In previous sections, we have shown that the use of meta-learning helps to automate 
the forecasting process, allowing an algorithm to decide the most suitable model 
to estimate each combination of products and stores. Furthermore, the resulting 
forecasts could even lead to more accurate predictions. In this section, we empirically 
test whether these improvements can be effectively applied in a real setting and 
evaluate their impact on relevant business metrics. 

To measure the impact of the forecasting automation, we evaluate their impact 
on the process of product replenishment that requires estimating the future demand 
at the product-store level. Our evaluation is based on a controlled experiment in the 
clothing department, where a selected group of products and stores operated their 
replenishment process using the automatic forecasting methodology proposed in this 
chapter, and a comparable group of products continued their replenishment processes 
using standard business practices. While in the treatment, we forecast the demand 
using the automatic meta-learner; in control, the forecast was performed by analysts 
who calibrate simple autoregressive models, and they can make a judgment call to 
overwrite the forecast if they consider it necessary. The treatment and control groups
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Table 2.7 The daily mean of 
sales inventory between 
treatment and control 
conditions 

Treatment Control 

Sales 277.1 250.5 

Inventory 18,644.4 19,096.6 

were selected to have similar demand levels pre-treatment, and the experiment lasted 
two weeks. 

Indeed, the automation of the forecasting process brings several benefits that can 
only be observed in the mid-term. These include more consistent decision-making, 
the fastest processing, and cost savings associated with the process. For this evalu-
ation, we will focus on the impact that can be measurable in the short term. More 
precisely, we look at the inventory levels and total sales. We expect that if the fore-
casting is successful, it should lead to lower inventory levels and more sales. Although 
we do not expect the forecasting to increase the demand, a more precise forecast 
should be associated with a smaller number of out-of-stocks and positively affect 
sales. Table 2.7 reports the daily mean for sales and inventory for this experiment. 

The treatment and control groups were selected to be balanced. Therefore, the 
treatment’s larger sales and smaller inventory provide preliminary evidence that 
the forecast can positively affect both metrics. However, a formal analysis requires 
detailed control for sales levels and temporal variations. To do so, we exploit the panel 
data structure of the experimental setting and estimate the following two regression 
models: 

salesist = α1 
i + β1 

s + γ 1 t + δ1·Treatist + ε2 ist (2.1) 

inventoryist = α2 
i + β2 

s + γ 2 t + δ2·Treatist + ε2 ist (2.2) 

The key variable in this regression is Treatist that takes the value 1 if the product 
i in store s, in day t was replenished using the automatic forecasting methodology. 
The dummy variables (αk 

i , β
k 
s , γ  k t ) control for product, store, and day-fixed effects 

(k ∈ {1, 2}). According to our previous discussion, we expect that δ1 > 0 meaning 
that the automatic forecasting model increased the sales volume on average, and 
δ2 < 0, meaning that the automatic forecasting model decreased the inventory levels. 
The results of the regression models are displayed in Table 2.8. In the table, we include 
two versions of the Eq. (2.1) and (2.2) that differ in whether we control for stores 
or not. In all cases, we reported clustered standard errors by product and day. In the 
analysis, we observe the sales of all products for all days in the experiment (N = 
9,705), but there is an imperfect inventory collection. Therefore we only observe a 
fraction of them (N = 5,470).

Results from Table 2.8 confirm our hypothesis about the direction of the impact 
of a successful implementation of automatic forecasting. In fact, we find evidence 
of a positive effect on sales and a negative effect on inventory levels.



2 Using Meta-Learning in Automatic Demand Forecast with a Large … 59

Table 2.8 Regression results for the evaluation of the implementation of automatic forecasting 
using meta-learning 

Dependent Var Sales Inventory 

Model (1a) (1b) (2a) (2b) 

Treat 0.573* (0.249) 0.531* (0.235) −4.87* (2.21) −5.47* (2.36) 

Fixed effect 

Product Yes Yes Yes Yes 

Day Yes Yes Yes Yes 

Store No Yes No Yes 

Observations 9,705 9,705 5,470 5,470

2.6 Discussion and Future Research 

Modern retailing faces important challenges. The constant increase in product variety 
and the growing pressure to increase supply chain processes’ efficiency have pushed 
for demand forecasting automation. Recent advances in data analytics offer a wide 
range of models that can be applied to improve forecasting. However, the suitability 
of the models depends on the case, and there is no universal best model. With retailers 
having to plan inventories of thousands of products in hundreds of stores, manually 
choosing the best forecasting model is costly and can often be inaccurate. 

In our research, we present a methodology that takes advantage of recent advances 
in meta-learning to select the best model for each forecasting task automatically. In 
this chapter, we describe the methodology and then numerically demonstrate that 
meta-learning can significantly improve forecasting accuracy. Furthermore, we apply 
our approach in a controlled experiment and show that replenishment can benefit by 
reducing inventory levels and increasing sales. From a methodological point of view, 
it is important to notice that there is a tradeoff between the use of multiple forecasting 
models and the difficulty in classifying models in the meta-learning phase. In our 
case, we found that restricting the set of eligible models to only those that perform 
well on average leads to better overall performance. 

To the best of our knowledge, this is one of the first studies showing that meta-
learning can provide value in the retail industry. However, we identify several limita-
tions and avenues for future research. First, we concentrate the analysis on only two 
product categories (clothing and toys) in a single retail chain. Despite expecting that 
the main findings generalize to other scenarios, more research is needed to under-
stand the boundaries of the application of this technology. Second, in the empirical 
analysis, we focused on a limited number of forecasting models. Although our list is 
representative of the most common forecasting approaches, the list can be enhanced 
with other models, such as gradient boost (Chen and Guestrin 2016) or Prophet 
(Taylor and Letham 2018). Third, our application only considers Random Forest as 
a classification technique.
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Further analysis could consider the exploration of alternative classifiers such as 
Naïve Bayes classifiers (Rish 2001) or Support Vector Machines (Pisner and Schnyer 
2020). A final idea for future research is to use meta-learning insights to create 
customized ensembles. Although we considered a statistic ensemble in our work, 
creating different ensembles depending on the time series features might lead to 
further improvements in the forecast. 

This research illustrates how recent data analytics and automation advances can 
impact a regional retailer. While the technology is mature enough to impact today, we 
expect that this type of initiative will continue playing an important role in improving 
the operational efficiency in the industry and will become part of the standard way 
of operating shortly. 
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