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9.1 Introduction

Commutation relations of the form

AB = BF(A) (9.1)
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where A, B are elements of an associative algebra and F is a function of the ele-
ments of the algebra, are important in many areas of Mathematics and applications.
Such commutation relations are usually called covariance relations, crossed product
relations or semi-direct product relations. Elements of an algebra that satisfy (9.1)
are called a representation of this relation in that algebra. Representations of covari-
ance commutation relations (9.1) by linear operators are important for the study
of actions and induced representations of groups and semigroups, crossed product
operator algebras, dynamical systems, harmonic analysis, wavelets and fractals anal-
ysis and have applications in physics and engineering [4, 5, 20–22, 26–28, 34, 36,
45]. A description of the structure of representations for the relation (9.1) and more
general families of self-adjoint operators satisfying such relations by bounded and
unbounded self-adjoint linear operators on aHilbert space use reordering formulas for
functions of the algebra elements and operators satisfying covariance commutation
relation, functional calculus and spectral representation of operators and interplay
with dynamical systems generated by iteration of involved in the commutation rela-
tions [3, 6–8, 10, 11, 13–17, 29–34, 37–41, 45–58]. Algebraic properties of the
commutation relation (9.1) are important in description of properties of its represen-
tations. For instance, there is a well-known link between linear operators satisfying
the commutation relation (9.1) and spectral theory [44]. A description of the structure
of representations for the relation (9.1) by bounded and unbounded self-adjoint linear
operators on a Hilbert space, using spectral representation [2] of such operators, is
given in [44] devoted to more general cases of families of commuting self-adjoint
operators satisfying relations of the form (9.1).

In this paper we construct representations of (9.1) by pairs of linear integral and
multiplication operators on Banach spaces L p. Such representations can also be
viewed as solutions for operator equations AX = XF(A), when A is specified or
XB = BF(X)when B is specified. In contrast to [34, 45, 46, 58] devoted to involu-
tive representations of covariance type relations by operators on Hilbert spaces using
spectral theory of operators onHilbert spaces,we aim at direct construction of various
classes of representations of covariance type relations in specific important classes
of operators on Banach spaces more general than Hilbert spaces without imposing
any involution conditions and not using classical spectral theory of operators. This
paper is organized in three sections. After the introduction, we present in Sect. 9.2
preliminaries, notations and basic definitions. In Sect. 9.3 we present the main results
about construction of specific representations on Banach function spaces L p.

9.2 Preliminaries and Notations

In this section we present some preliminaries, basic definitions and notations. For
more details please read [1, 12, 18, 23, 24, 42, 43].

Let S ⊆ R, (R is the set of real numbers), be a Lebesgue measurable set and
let (S, �, m̃) be a σ -finite measure space, that is, S is a nonempty set, � is a σ -
algebra with subsets of S, where S can be covered with at most countably many
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disjoint sets E1, E2, E3, . . . such that Ei ∈ �, m̃(Ei ) < ∞, i = 1, 2, . . . and m̃ is
the Lebesgue measure. For 1 � p < ∞, we denote by L p(S), the set of all classes
of equivalent measurable functions f : S → R such that

∫

S
| f (t)|pdt < ∞. This is a

Banach space (Hilbert space when p = 2) with norm ‖ f ‖p =
(

∫

S
| f (t)|pdt

) 1
p

. We

denote by L∞(S) the set of all classes of equivalent measurable functions f : S → R
such that there is a constant λ > 0, | f (t)| ≤ λ almost everywhere. This is a Banach
space with norm ‖ f ‖∞ = ess supt∈S | f (t)|.

9.3 Operator Representations of Covariance Commutation
Relations

Before we proceed with constructions of more complicated operator representations
of commutation relations (9.1) on more complicated Banach spaces, we wish to
mention the following two observations that, while being elementary, nevertheless
explicitly indicate differences in how the different operator representations of com-
mutation relations (9.1) interact with the function F .

Proposition 9.3.1 Let A : E → E and B : E → E, B �= 0, be linear operators on
a linear space E, such that any composition among them is well defined and consider
F : R → R a polynomial. If A = α I , then AB = BF(A) if and only if F(α) = α.

Proof If A = α I , then

AB = α I B = αB,

BF(A) = BF(α I ) = BF(α)I = F(α)B.

We have then AB = BF(A), B �= 0 if and only if F(α) = α. �

Proposition 9.3.2 Let A : E → E and B : E → E be linear operators such that
any composition among them is well defined and consider a polynomial F : R → R.
If B = α I , where α �= 0, then AB = BF(A) if and only if F is a function such that
F(A) = A.

Proof If B = α I then

AB = A(α I ) = αA,

BF(A) = α I F(A) = αF(A).

We have then AB = BF(A) if and only if F(A) = A. �
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9.3.1 Representations of Covariance Commutation Relations
by Integral and Multiplication Operators on L p Spaces

We consider first a useful lemma for integral operators.

Lemma 9.3.1 Let f : [α1, β1] → R, g : [α2, β2] → R be two measurable functions
such that for all x ∈ L p(R), 1 ≤ p ≤ ∞,

β1∫

α1

f (t)x(t)dt < ∞,

β2∫

α2

g(t)x(t)dt < ∞,

where α1, β1, α2, β2 ∈ R, α1 < β1 and α2 < β2. Set G = [α1, β1] ∩ [α2, β2]. Then
the following statements are equivalent:

(i) For all x ∈ L p(R), where 1 ≤ p ≤ ∞, the following holds

β1∫

α1

f (t)x(t)dt =
β2∫

α2

g(t)x(t)dt.

(ii) The following conditions hold:

a) for almost every t ∈ G, f (t) = g(t);
b) for almost every t ∈ [α1, β1] \ G, f (t) = 0;
c) for almost every t ∈ [α2, β2] \ G, g(t) = 0.

Proof (i i) ⇒ (i) follows from direct computation.
Suppose that (i) is true. Take x(t) = IG1(t) the indicator function of the set G1 =

[α1, β1] ∪ [α2, β2]. For this function we have,

β1∫

α1

f (t)x(t)dt =
β2∫

α2

g(t)x(t)dt =
β1∫

α1

f (t)dt =
β2∫

α2

g(t)dt = η,

η is a constant. Now by taking x(t) = I[α1,β1]\G(t) we get

β1∫

α1

f (t)x(t)dt =
β2∫

α2

g(t)x(t)dt =
∫

[α1,β1]\G
f (t)dt =

β2∫

α2

g(t) · 0dt = 0.

Then
∫

[α1,β1]\G
f (t)dt = 0. If instead x(t) = I[α2,β2]\G(t), then

∫

[α2,β2]\G
g(t)dt = 0.

We claim that f (t) = 0 for almost every t ∈ [α1, β1] \ G and g(t) = 0 for almost
every t ∈ [α2, β2] \ G. We take a partition S1, . . . , Sn, . . . of the set [α1, β1] \ G
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such that each set Si , i = 1, 2, 3, . . . has positive measure. For each xi (t) = ISi (t),
i = 1, 2, 3, . . . we have

β1∫

α1

f (t)x(t)dt =
β2∫

α2

g(t)x(t)dt =
∫

Si

f (t)dt =
β2∫

α2

g(t) · 0dt = 0.

Thus,
∫

Si

f (t)dt = 0, i = 1, 2, 3, . . . . Since we can choose arbitrary partition with

positive measure on each of its elements we have

f (t) = 0 for almost every t ∈ [α1, β1] \ G.

Analogously, g(t) = 0 for almost every t ∈ [α2, β2] \ G. Then,

η =
β1∫

α1

f (t)dt =
β2∫

α2

g(t)dt =
∫

G

f (t)dt =
∫

G

g(t)dt.

Then, for all function x ∈ L p(R) we have

∫

G

f (t)x(t)dt =
∫

G

g(t)x(t)dt ⇐⇒
∫

G

[ f (t) − g(t)]x(t)dt = 0.

By taking x(t) =
{

1, if f (t) − g(t) > 0,
−1, if f (t) − g(t) < 0,

for almost every t ∈ G and x(t) = 0

for almost every t ∈ R \ G, we get
∫
G | f (t) − g(t)|dt = 0. This implies that f (t) =

g(t) for almost every t ∈ G. �

Remark 9.3.1 When operators are given in abstract form, we use the notation A :
L p(R) → L p(R) meaning that operator A is well defined from L p(R) to L p(R)

without discussing sufficient conditions for it to be satisfied. For instance, for the
following integral operator

(Ax)(t) =
∫

R

k(t, s)x(s)ds

there are sufficient conditions on kernels k(·, ·) such that operator A is well defined
from L p(R) to L p(R) and bounded [9, 18]. For instance, [18, Theorem6.18] states the
following: if 1 < p < ∞ and k : R × [α, β] → R is ameasurable function,α, β ∈ R,
α < β, and there is a constant λ > 0 such that
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ess sups∈[α,β]
∫

R

|k(t, s)|dt ≤ λ, ess supt∈R

β∫

α

|k(t, s)|ds ≤ λ,

then A is well defined from L p(R) to L p(R), 1 ≤ p ≤ ∞ and bounded.

9.3.1.1 Representations When A is Integral Operator and B
is Multiplication Operator

Proposition 9.3.3 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 ≤ p ≤ ∞, be
defined as follows, for almost all t ∈ R,

(Ax)(t) =
β∫

α

k(t, s)x(s)ds, (Bx)(t) = b(t)x(t), α, β ∈ R, α < β,

where k : R × [α, β] → R is a measurable function, and b : R → R is a measurable
function. Consider a polynomial defined by F(z) = δ0 + δ1z + · · · + δnzn, where
δ0, δ1, . . . , δn are real numbers. We set

k0(t, s) = k(t, s), km(t, s) =
β∫

α

k(t, τ )km−1(τ, s)dτ, m ∈{1, . . . , n}

Fn(k(t, s)) =
n∑

j=1

δ j k j−1(t, s), n ∈ {1, 2, 3, . . .}. (9.2)

Then AB = BF(A) if and only if

∀ x ∈ L p(R) : b(t)δ0x(t) + b(t)

β∫

α

Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds.

(9.3)
If δ0 = 0, that is, F(z) = δ1z + · · · + δnzn, then the condition (9.3) reduces to the
following: for almost every (t, s) in R × [α, β],

b(t)Fn(k(t, s)) = k(t, s)b(s). (9.4)

Proof By applying Fubini Theorem from [1] and iterative kernels from [25], We
have
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(A2x)(t) =
β∫

α

k(t, s)(Ax)(s)ds =
β∫

α

k(t, s)

⎛

⎝

β∫

α

k(s, τ )x(τ )dτ

⎞

⎠ ds

=
β∫

α

⎛

⎝

β∫

α

k(t, s)k(s, τ )ds

⎞

⎠ x(τ )dτ =
β∫

α

k1(t, τ )x(τ )dτ,

where k1(t, s) =
β∫

α

k(t, τ )k(τ, s)dτ. In the same way,

(A3x)(t) =
β∫

α

k(t, s)(A2x)(s)ds =
β∫

α

k(t, s)

⎛

⎝

β∫

α

k1(s, τ )x(τ )dτ

⎞

⎠ ds

=
β∫

α

k2(t, s)x(s)ds,

where k2(t, s) =
β∫

α

k(t, τ )k1(τ, s)dτ. For every n ≥ 1,

(Anx)(t) =
β∫

α

kn−1(t, s)x(s)ds,

where km(t, s) =
β∫

α

k(t, τ )km−1(τ, s)dτ, m = 1, . . . , n, k0(t, s) = k(t, s).

Thus,

(F(A)x)(t) = δ0x(t) +
n∑

j=1

δ j (A
j x)(t) = δ0x(t) +

n∑

j=1

δ j

β∫

α

k j−1(t, s)x(s)ds

= δ0x(t) +
β∫

α

Fn(k(t, s))x(s)ds,

where Fn(k(t, s)) =
n∑

j=1
δ j k j−1(t, s), for n = 1, 2, 3, . . .. So, we can compute

BF(A)x and (AB)x as follows:
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(BF(A)x)(t) = b(t)(F(A)x)(t) = b(t)δ0x(t) + b(t)

β∫

α

Fn(k(t, s))x(s)ds,

(ABx)(t) = A(Bx)(t) =
β∫

α

k(t, s)b(s)x(s)ds.

It follows that ABx = BF(A)x if and only if condition (9.3) holds.
If δ0 = 0 then condition (9.3) reduces to the following:

∀ x ∈ L p(R) :
β∫

α

b(t)Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds.

Let f (t, s) = b(t)Fn(k(t, s)) − k(t, s)b(s). By applying Lemma9.3.1 we have for
almost every t ∈ R that f (t, ·) = 0 almost everywhere. Since the set N = {(t, s) ∈
R × [α, β] : f (t, s) �= 0} ⊂ R2 is measurable and almost all sections Nt = {s ∈
[α, β] : (t, s) ∈ N } of the plane has Lebesguemeasure zero, by the reciprocal Fubini
Theorem [35], the set N has Lebesgue measure zero on the plane R2. �

Corollary 9.3.4 For M1, M2 ∈ R, M1 < M2 and 1 ≤ p ≤ ∞, let A : L p([M1, M2])
→ L p([M1, M2]) and B : L p([M1, M2]) → L p([M1, M2]) be nonzero operators
defined, for almost all t , by

(Ax)(t) =
β∫

α

k(t, s)x(s)ds, (Bx)(t) = b(t)x(t), α, β ∈ R, α < β,

where [M1, M2] ⊇ [α, β], and k(·, ·) : [M1, M2] × [α, β] → R, b : [M1, M2] → R
are given by

k(t, s) = a0 + a1t + c1s, b(t) =
n∑

j=0

b j t
j ,

where n is non-negative integer, a0, a1, c1, b j are real numbers for j = 0, . . . , n.
Consider a polynomial defined by F(z) = δ0 + δ1z + δ2z2, where δ0, δ1, δ2 ∈ R.

Then, AB = BF(A) if and only if

∀ x ∈ L p([M1, M2]) : b(t)δ0x(t) + b(t)

β∫

α

Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds,

where Fn(k(t, s)) is given by (9.2).
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If δ0 = 0, that is, F(z) = δ1z + δ2z2 then the last condition reduces to the condi-
tion that for almost every (t, s) in [M1, M2] × [α, β]

b(t)F2(k(t, s)) = k(t, s)b(s). (9.5)

Condition (9.5) is equivalent to that b(·) ≡ b0 �= 0 is a nonzero constant (b j = 0,
j = 1, . . . , n) and one of the following cases holds:

(i) if δ2 = 0, δ1 = 1, then a0, a1, c1 ∈ R can be arbitrary;
(ii) if δ2 �= 0, δ1 = 1, a1 �= 0, c1 = 0, then

a0 = −β + α

2
a1;

(iii) if δ2 �= 0, δ1 = 1, a1 = 0, c1 �= 0, then

a0 = −β + α

2
c1;

(iv) if δ2 �= 0, δ1 �= 1, a1 �= 0, c1 = 0, then

a0 = 2 − 2δ1 − δ2(β
2 − α2)a1

2δ2(β − α)
;

(v) if δ2 �= 0, δ1 �= 1, c1 �= 0, a1 = 0, then

a0 = 2 − 2δ1 − δ2(β
2 − α2)c1

2δ2(β − α)
;

(vi) if δ2 �= 0, δ1 �= 1, a1 = 0 and c1 = 0, then

a0 = 1 − δ1

δ2(β − α)
.

Proof Operator A is defined on L p[M1, M2], 1 ≤ p ≤ ∞. Therefore, by applying
[19, Theorem 3.4.10], we conclude that A is well defined. Moreover, kernel k(·, ·) is
continuous on a closed and bounded set [−M, M] × [α, β] and b(·) is continuous in
[M1, M2], so these functions are measurable. By applying Proposition9.3.3 we just
need to check when the condition (9.4) is satisfied for k(·, ·) and b(·). We compute

k1(t, s) =
β∫

α

k(t, τ )k(τ, s)dτ =
β∫

α

(a0 + a1t + c1τ)(a0 + a1τ + c1s)dτ

=
β∫

α

[(a20 + a0a1t + a0c1s + a1c1ts)
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+ (a0a1 + a0c1 + a21 t + c21s)τ + a1c1τ
2]dτ

=(β − α)(a20 + a0a1t + a0c1s + a1c1ts)

+ β2 − α2

2
· (a0a1 + a0c1 + a21 t + c21s)

+ β3 − α3

3
a1c1 = ν0 + ν1t + ν2s + ν3ts, (9.6)

where

ν0 = a20(β − α) + β2−α2

2 a0(a1 + c1) + a1c1
β3−α3

3 , ν2 = a0c1(β − α) + c21
β2−α2

2 ,

ν1 = a21
β2−α2

2 + a1a0(β − α), ν3 = a1c1(β − α).

Then, we have

b(t)F2(k(t, s)) = b(t)[δ1k(t, s) + δ2k1(t, s)] = (a0δ1 + δ2ν0)

n∑

j=0

b j t
j

+ (a1δ1 + δ2ν1)

n∑

j=0

b j t
j+1 + (c1δ1 + δ2ν2)

n∑

j=0

b j t
j s + ν3δ2

n∑

j=0

b j t
j+1s

= (δ1a0 + δ2ν0)b0 + (c1δ1 + ν2δ2)b0s +
n∑

j=1

[(δ1a0 + δ2ν0)b j + (δ1a1 + δ2ν1)b j−1]t j

+
n∑

j=1

[(c1δ1 + ν2δ2)b j + ν3δ2b j−1]t j s + (δ1a1 + δ2ν1)bnt
n+1 + ν3δ2bnt

n+1s

k(t, s)b(s) = a0

n∑

j=0

b j s
j + a1

n∑

j=0

b j s
j t + c1

n∑

j=0

b j s
j+1 = a0b0 + a1b0t

+
n∑

j=1

(a0b j + c1b j−1)s
j +

n∑

j=1

a1b j s
j t + c1bns

n+1.

Thus we have k(t, s)b(s) = b(t)F2(k(t, s)) for all (t, s) ∈ [M1, M2] × [α, β] if and
only if

a0b0 = (a0δ1 + δ2ν0)b0
a1b0 = (a0δ1 + δ2ν0)b1 + (a1δ1 + δ2ν1)b0

a0b1 + c1b0 = (c1δ1 + δ2ν2)b0 (9.7)

a1b1 = (c1δ1 + δ2ν2)b1 + δ2ν3b0 (9.8)

0 = a0b j + c1b j−1, 2 ≤ j ≤ n (9.9)

0 = (a0δ1 + δ2ν0)b j + (a1δ1 + δ2ν1)b j−1, 2 ≤ j ≤ n

a1b j = 0, 2 ≤ j ≤ n (9.10)
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0 = c1δ1b j + δ2ν3b j−1 + δ2ν2b j 2 ≤ j ≤ n

0 = a1δ1bn + δ2ν1bn, if n ≥ 1

c1bn = 0, if n ≥ 1 (9.11)

0 = δ2ν3bn, if n ≥ 1.

Suppose that n ≥ 1. We proceed by induction to prove that b j = 0, for all j =
1, 2, . . . , n. For i = 0, we suppose that bn = bn−i �= 0. Then from (9.10) we have
a1bn = 0 and thus a1 = 0. From Eq. (9.11) we have c1bn = 0 and thus c1 = 0. From
(9.9) we have 0 = a0bn + c1bn−1 = a0bn and thus a0 = 0. This implies that k(t, s) ≡
0, that is, A = 0. So for i = 0, bn = bn−i �= 0 implies A = 0. Hence, bn = 0. Let
1 < m ≤ n − 2 and suppose that bn−i = 0 for all i = 1, 2, . . . ,m − 1. Let us show
that thenbn−m = 0. Ifbn−m �= 0, then from (9.10)wehavea1bn−m = 0which implies
a1 = 0. From (9.9) and for j = n − m + 1 by induction assumption a0bn−m+1 +
c1bn−m = c1bn−m = 0 which implies c1 = 0. Therefore from (9.9) and for j = n −
m we have a0bn−m = 0 which implies a0 = 0. Then k(t, s) ≡ 0, that is A = 0. So we
must have bn−m = 0. Ifm = n − 1, then let us show that bn−m = b1 = 0. If bn−m �= 0
then (9.9) gives c1bn−m = c1b1 = 0 when j = n − m + 1 = 2. Then c1 = 0 and by
(9.8), since ν2 = ν3 = 0 we get a1b1 = 0 which yields a1 = 0. Therefore, (9.7) gives
a0b1 = 0 which yields a0 = 0. Thus A = 0. Since A �= 0, b1 = 0 is proved. Thus
b(·) = b0 is proved.

Since B �= 0 and B = b0 I (multiple of identity operator), b0 �= 0 and the com-
mutation relation is equivalent to F(A) = A. By (9.4) we have F2(k(t, s)) = k(t, s)
which can be written as follows

δ1k(t, s) + δ2k1(t, s) = k(t, s), (9.12)

where k(t, s) = a0 + a1t + c1s and k1(t, s) = ν0 + ν1t + ν2s + ν3ts,

ν0 = a20(β − α) + β2−α2

2 a0(a1 + c1) + a1c1
β3−α3

3 , ν2 = a0c1(β − α) + c21
β2−α2

2 ,

ν1 = a21
β2−α2

2 + a1a0(β − α), ν3 = a1c1(β − α).

If δ2 = 0, then (9.12) becomes (δ1 − 1)k(·, ·) = 0 and A �= 0 yields δ1 = 1. Thus,
if δ2 = 0 and δ1 = 1, then (9.12) is satisfied for any a0, a1, c1 ∈ R.

If δ2 �= 0 and δ1 = 1 then (9.12) becomes k1(·, ·) = 0, that is, ν0 = ν1 = ν2 =
ν3 = 0, where

ν0 = a20(β − α) + β2−α2

2 a0(a1 + c1) + a1c1
β3−α3

3 , ν2 = a0c1(β − α) + c21
β2−α2

2 ,

ν1 = a21
β2−α2

2 + a1a0(β − α), ν3 = a1c1(β − α).

Since α < β, a1c1(β − α) = 0 is equivalent to either a1 = 0 or c1 = 0. If a1 �= 0,
c1 = 0, then
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⎧
⎪⎪⎨

⎪⎪⎩

ν0 = 0
ν1 = 0
ν2 = 0
ν3 = 0

⇔
{

(β − α)a20 + β2−α2

2 a0a1 = 0

(β − α)a1a0 + β2−α2

2 a21 = 0
⇔ a0 + β + α

2
a1 = 0,

which is equivalent to a0 = − β+α

2 a1. If a1 = 0, c1 �= 0, then

⎧
⎪⎪⎨

⎪⎪⎩

ν0 = 0
ν1 = 0
ν2 = 0
ν3 = 0

⇔
{

(β − α)a20 + β2−α2

2 a0c1 = 0

(β − α)c1a0 + β2−α2

2 c21 = 0
⇔ a0 + β + α

2
c1 = 0,

which is equivalent to a0 = − β+α

2 c1. If a1 = 0, c1 = 0, then ν0 = ν1 = ν2 = ν3 = 0
is equivalent to a20(β − α) = 0, that is, a0 = 0. This implies A = 0. Therefore, δ2 �=
0, δ1 = 1, a1 = c1 = 0 yields A = 0.

Consider δ2 �= 0 and δ1 �= 1, and note that (9.12) is equivalent to:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0 = δ1a0 + δ2a20(β − α) + δ2
β2−α2

2 a0(a1 + c1) + δ2a1c1
β3−α3

3

a1 = δ1a1 + δ2a21
β2−α2

2 + δ2a1a0(β − α)

c1 = δ1c1 + δ2a0c1(β − α) + δ2c21
β2−α2

2
0 = δ2a1c1(β − α).

(9.13)

Since α < β and δ2 �= 0, equation δ2a1c1(β − α) = 0 implies that either a1 = 0 or
c1 = 0. If δ2 �= 0, δ1 �= 1, a1 �= 0 and c1 = 0, then (9.13) becomes

a0 = δ1a0 + δ2a
2
0(β − α) + δ2

β2 − α2

2
a0a1

a1 = δ1a1 + δ2a
2
1
β2 − α2

2
+ δ2a1a0(β − α)

which is equivalent to 1 = δ1 + δ2(β − α)a0 + δ2
β2−α2

2 a1. Then,

a0 = 2 − 2δ1 − δ2(β
2 − α2)a1

2δ2(β − α)
.

If δ2 �= 0, δ1 �= 1, a1 = 0 and c1 �= 0, then (9.13) becomes

a0 = δ1a0 + δ2a
2
0(β − α) + δ2

β2 − α2

2
a0c1

c1 = δ1c1 + δ2c
2
1
β2 − α2

2
+ δ2c1a0(β − α)

which is equivalent to 1 = δ1 + δ2(β − α)a0 + δ2
β2−α2

2 c1. Then,
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a0 = 2 − 2δ1 − δ2(β
2 − α2)c1

2δ2(β − α)
.

If δ2 �= 0, δ1 �= 1, a1 = 0 and c1 = 0, then A �= 0 yields a0 �= 0 and (9.13)
becomes

a0 = δ1a0 + δ2a
2
0(β − α)

which is equivalent to a0 = 1−δ1
δ2(β−α)

. �

Remark 9.3.2 The integral operator given by (Ax)(t) =
β1∫

α1

k(t, s)x(s)ds for almost

all t , where k : [α1, β1] × [α1, β1] → R is a measurable function that satisfies

β1∫

α1

⎛

⎝

β1∫

α1

|k(t, s)|qds
⎞

⎠

p
q

dt < ∞,

by [19, Theorem 3.4.10] is well defined from L p[α1, β1] to L p[α1, β1], 1 < p < ∞
and bounded.

Remark 9.3.3 If in the Corollary9.3.4 when 0 /∈ [M1, M2], one takes b(t) to be
a Laurent polynomial with only negative powers of t then there is no non-zero
kernel k(t, s) = a0 + a1t + c1s (there is no A �= 0with such kernels) such that AB =
BF(A). In fact, let n be a positive integer and consider b(t) =

n∑

j=1
b j t− j , where

t ∈ [M1, M2], b j ∈ R for j = 1, . . . , n and bn �= 0. We set k1(t, s) as defined by
(9.6). Then we have

b(t)F2(k(t, s)) = b(t)[δ1k(t, s) + δ2k1(t, s)] = (a0δ1 + δ2ν0)

n∑

j=1

b j t
− j

+ (a1δ1 + δ2ν1)

n∑

j=1

b j t
− j+1 + (c1δ1 + δ2ν2)

n∑

j=1

b j t
− j s + ν3δ2

n∑

j=1

b j t
− j+1s

= (a1δ1 + δ2ν1)b1 + ν3δ2b1s +
n−1∑

j=1

[(a0δ1 + δ2ν0)b j + (a1δ1 + δ2ν1)b j+1]t− j

+(a0δ1 + δ2ν0)bnt
−n +

n−1∑

j=1

[(c1δ1 + δ2ν2)b j + ν3δ2b j+1]t− j s + (c1δ1 + δ2ν2)bnt
−ns

k(t, s)b(s) = a0

n∑

j=1

b j s
− j + a1

n∑

j=1

b j s
− j t + c1

n∑

j=1

b j s
− j+1
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= c1b1 +
n−1∑

j=1

(a0b j + c1b j+1)s
− j +

n∑

j=1

a1b j s
− j t + a0bns

−n.

Thus we have k(t, s)b(s) = b(t)F2(k(t, s)) for almost every (t, s) ∈ [M1, M2] ×
[α, β] if and only if

c1b1 = a1δ1b1 + δ2ν1b1,

0 = δ2ν3b1,

0 = (a0δ1 + δ2ν0)b j + (δ1a1 + δ2ν1)b j+1, 1 ≤ j ≤ n − 1,

a0b j + c1b j+1 = 0, 1 ≤ j ≤ n − 1, (9.14)

0 = c1δ1b j + δ2ν2b j + δ2ν3b j+1, 1 ≤ j ≤ n − 1,

a1b j = 0, 1 ≤ j ≤ n, (9.15)

0 = a0δ1bn + δ2ν0bn,

0 = a0bn, (9.16)

0 = c1δ1bn + δ2ν3bn.

Since bn �= 0 then from (9.16) we have a0bn = 0 and thus a0 = 0. From (9.14) for
j = n − 1 we get c1bn = 0 and thus c1 = 0. Finally from (9.15) we have 0 = a1b j

for j = n and thus a1 = 0. This implies that k(t, s) ≡ 0, that is, A = 0. So bn �= 0
implies A = 0.

Corollary 9.3.5 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞, be
defined as follows, for almost all t ,

(Ax)(t) =
β∫

α

k(t, s)x(s)ds, (Bx)(t) = b(t)x(t), α, β ∈ R, α < β,

where k(t, s) : R × [α, β] → R is a measurable function, and b ∈ L∞(R) is a
nonzero function such that the set supp b(t) ∩ [α, β] has measure zero.

Consider apolynomial definedby F(z) = δ0 + δ1z + · · · + δnzn,where δ0, . . . , δn
are real numbers. We set

k0(t, s) = k(t, s), km(t, s) =
β∫

α

k(t, τ )km−1(τ, s)dτ, m = 1, . . . , n,

Fn(k(t, s)) =
n∑

j=1

δ j k j−1(t, s), n = 1, 2, 3, . . .
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Then AB = BF(A) if and only if δ0 = 0 and the set

supp b(t) ∩ supp Fn(k(t, s))

has measure zero in R × [α, β].
Proof Suppose that the set supp b ∩ [α, β] has measure zero. By Proposition9.3.3
we have AB = BF(A) if and only if condition (9.3) holds, that is,

∀ x ∈ L p(R) : b(t)δ0x(t) + b(t)

β∫

α

Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds,

almost everywhere. By taking x(·) = I[M1,M2](·)b(·), where M1, M2 ∈ R, M1 < M2,
[M1, M2] ⊃ [α, β], μ([M1, M2] \ [α, β]) > 0, IE (·) is the indicator function of the
set E , the condition (9.3) reduces to

I[M1,M2](·)b2(·)δ0 = 0.

Since b has support with positive measure (otherwise B ≡ 0), then δ0 = 0. By using
this, condition (9.3) reduces to the following

∀ x ∈ L p(R) : b(t)

β∫

α

Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds.

By hypothesis the right hand side is equal zero. Then condition (9.3) reduces to

∀ x ∈ L p(R) : b(t)

β∫

α

Fn(k(t, s))x(s)ds = 0.

This is equivalent to

b(t)Fn(k(t, s)) = 0 for almost every s ∈ [α, β]. (9.17)

By applying a similar argument as in the proof of Proposition9.3.3 we conclude that
condition (9.17) is equivalent to that the set

supp b(t) ∩ supp Fn(k(t, s))

has measure zero in R × [α, β]. �

Corollary 9.3.6 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 ≤ p ≤ ∞, be
defined as follows, for almost all t ,
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(Ax)(t) =
β∫

α

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t), α, β ∈ R, α < β,

where a : R → R, c : [α, β] → R, b : R → R are measurable functions. Consider
a polynomial defined by F(z) = δ1z + δ2z2 + · · · + δnzn, where δ1, . . . , δn are real

constants. We set μ =
β∫

α

a(s)c(s)ds. Then, we have AB = BF(A) if and only if the

set

supp [a(t)c(s)] ∩ supp

⎡

⎣b(t)
n∑

j=1

δ jμ
j−1 − b(s)

⎤

⎦ ,

has measure zero in R × [α, β].
Proof We set k(t, s) = a(t)c(s), so we have

k0(t, s) = k(t, s) = a(t)c(s),

km(t, s) =
β∫

α

k(t, τ )km−1(τ, s)dτ = a(t)c(s)

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

m

, m = 1, . . . , n

Fn(k(t, s)) =
n∑

j=1

δ j k j−1(t, s) =
n∑

j=1

δ j a(t)c(s)

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

n = 1, 2, 3, . . .

By applying Proposition9.3.3 we have AB = BF(A) if and only if

b(t)
n∑

j=1

δ j a(t)c(s)

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

= a(t)c(s)b(s) ⇐⇒

a(t)c(s)

⎡

⎢
⎣b(t)

n∑

j=1

δ j

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

− b(s)

⎤

⎥
⎦ = 0

for almost every (t, s) in R × [α, β]. The last condition is equivalent to the set

supp [a(t)c(s)] ∩ supp

⎡

⎢
⎣b(t)

n∑

j=1

δ j

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

− b(s)

⎤

⎥
⎦

has measure zero in R × [α, β]. We complete the proof by noticing that the corre-
sponding set can be written as
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supp [a(t)c(s)] ∩ supp

⎡

⎣b(t)
n∑

j=1

δ jμ
j−1 − b(s)

⎤

⎦ ,

where μ =
β∫

α

a(s)c(s)ds. �

Example 9.3.7 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) =
2∫

0

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t),

where a(t) = I[0,1](t)(1 + t2), c(s) = 1, b(t) = I[1,2](t)t2. Since kernel has compact
support, we can apply [19, Theorem 3.4.10] and we conclude that operators A is
well defined and bounded. Since function b has 4 as an upper bound then ‖B‖L p ≤
4. Hence operator B is well defined and bounded. Consider a polynomial defined
by F(z) = δ1z + · · · + δnzn , where δ1, . . . , δn are real constants. Then, the above
operators does not satisfy the relation AB = BF(A). In fact for λ �= 0, by applying

Corollary9.3.6 and setting λ =
n∑

j=1
δ j (β − α) j−1, we have

supp {b(t)λ − b(s)} = (R × [1, 2] ∪ [1, 2] × [0, 1]) \ W,

where W = {(t, s) ∈ [1, 2] × [1, 2] : b(t)λ − b(s) = 0} is a set of measure zero in
the plane. Moreover, supp a(t)c(s) = [0, 1] × [0, 2]. The set

supp [a(t)c(s)] ∩ supp [b(t)λ − b(s)] ,

has positive measure in R × [0, 2].
Example 9.3.8 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) =
2∫

0

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t),

wherea(t) = 2t I[0,2](t), c(s) = I[0,1](s),b(t) = I[1,2](t)t2. Since kernel has compact
support, we can apply [19, Theorem 3.4.10] and, we conclude that operators A is
well defined and bounded. Since function b has 4 as an upper bound then ‖B‖L p ≤
4. Hence operator B is well defined and bounded. Consider a polynomial defined
by F(z) = δ1z + · · · + δnzn , where δ1, . . . , δn are real constants. Then, the above
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operators satisfy the relation AB = BF(A) if and only if
n∑

j=1
δ j = 0. In fact, by

applying Corollary9.3.6 we have

μ =
2∫

0

a(s)c(s)ds = 1.

Hence, supp {b(t) · 0 − b(s)} = R × [1, 2]. Moreover, supp a(t)c(s) = [0, 2] ×
[0, 1]. The set supp [a(t)c(s)] ∩ supp [−b(s)] , has measure zero in R × [0, 2].
Example 9.3.9 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) =
2∫

0

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t),

where a(t) = I[0,2](t) sin(π t), c(s) = I[0,1](s), b(t) = I[1,2](t)t2. Since a ∈ L p(R)

and c ∈ Lq [0, 2], 1 < q < ∞, 1
p + 1

q = 1, by applying Hölder inequality we have
that operator A is well defined and bounded. The function b ∈ L∞, so B is well
defined and bounded because ‖B‖L p ≤ ‖b‖L∞ we conclude that operator B is
well defined and bounded. Consider a polynomial defined by F(z) = δzd , where
δ �= 0 is a real constant and d is a positive integer d ≥ 2. Then, the above oper-
ators satisfy the relation AB = δBAd . In fact, by applying Corollary9.3.6 we

have μ =
2∫

0
a(s)c(s)ds = 0. Hence, supp {b(t) · 0 − b(s)} = R × [1, 2]. Moreover,

supp a(t)c(s) = [0, 2] × [0, 1]. The set supp [a(t)c(s)] ∩ supp [−b(s)] , has mea-
sure zero in R × [0, 2].
Example 9.3.10 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞, be
defined as follows, for almost all t ,

(Ax)(t) =
β∫

α

I[α,β](t)x(s)ds, (Bx)(t) = I[α,β](t)x(t), α, β ∈ R, α < β.

Since kernel has compact support, we can apply [19, Theorem 3.4.10] and, we con-
clude that operator A is well defined and bounded. Since ‖B‖L p ≤ 1 then oper-
ator B is well defined and bounded. Consider a polynomial defined by F(z) =
δ1z + · · · + δnzn , where δ1, . . . , δn are constants. Then, the above operators sat-

isfy the relation AB = BF(A) if and only if
n∑

j=1
δ j (β − α) j−1 = 1. Indeed, if

a(t) = b(t) = I[α,β](t), c(s) = 1 and
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λ =
n∑

j=1

δ j

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

=
n∑

j=1

δ j (β − α) j−1,

then from Corollary9.3.6 we have the following:

• If λ �= 0, λ �= 1,

supp [b(t)λ − b(s))] = {
(t, s) ∈ R × [α, β] : λI[α,β](t) �= 1

} = R × [α, β],

supp a(t)c(s) = {(t, s) ∈ R × [α, β] : I[α,β](t) �= 0} = [α, β] × [α, β].

The set supp [λb(t) − b(s)] ∩ supp [a(t)c(s)] = [α, β] × [α, β] has positivemea-
sure.

• If λ = 1,

supp [b(t) − b(s)] = {
(t, s) ∈ R × [α, β] : I[α,β](t) �= 1

}

= (R \ [α, β]) × [α, β].

The set supp [b(t) − b(s)] ∩ supp [a(t)c(s)] has measure zero in R × [α, β].
• If λ = 0,

supp [λb(t) − b(s)] = supp b(s) = {
(t, s) ∈ R2 : I[α,β](s) �= 0

}

= {
(t, s) ∈ R2 : α ≤ s ≤ β

}
.

The set supp b(s) ∩ supp [a(t)c(s)] = [α, β] × [α, β] has measure (β − α)2.

The conditions in the Corollary9.3.6 are fulfilled only in the second case, that is,
when λ = 1.

9.3.1.2 Representations When A is Multiplication Operator and B
is Integral Operator

Proposition 9.3.11 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) = a(t)x(t), (Bx)(t) =
β∫

α

k(t, s)x(s)ds, α, β ∈ R, α < β,

where a : R → R, k : R × [α, β] → R are measurable functions. Consider a poly-
nomial defined by F(z) = δ0 + δ1z + · · · + δnzn, where δ0, δ1, . . . , δn are constants.
Then
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AB = BF(A)

if and only if the set

supp [a(t) − F(a(s))] ∩ supp k(t, s)

has measure zero in R × [α, β].
Proof We have for almost every t ∈ R

(ABx)(t) =
β∫

α

a(t)k(t, s)x(s)ds

(Anx)(t) = [a(t)]nx(t)

(F(A)x)(t) =
n∑

i=0

δi (A
i x)(t) =

(
n∑

i=0

δi [a(t)]i
)

x(t) = F(a(t))x(t)

(BF(A)x)(t) =
β∫

α

k(t, s))F(a(s))x(s)ds.

Then we have ABx = BF(A)x if and only if

β∫

α

a(t)k(t, s)x(s)ds =
β∫

α

k(t, s)F(a(s))x(s)ds. (9.18)

almost everywhere. By using Lemma9.3.1 and by applying the same argument as in
the final steps on the proof of Proposition9.3.3, the condition (9.18) is equivalent to

a(t)k(t, s) = k(t, s)F[a(s)] ⇐⇒ k(t, s)[a(t) − F(a(s))] = 0

for almost every (t, s) in R × [α, β].
Since the variables t and s are independent, this is true if and only if the set

supp [a(t) − F(a(s))] ∩ supp k(t, s)

has measure zero in R × [α, β]. �
Example 9.3.12 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) = I[α,β](t)x(t), (Bx)(t) =
β∫

α

I[α,β]2(t, s)x(s)ds, α, β ∈ R, α < β
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By using properties of norm and [19, Theorem 3.4.10], respectively, for operators
A and B, we conclude that operators A and B are well defined and bounded. For
a monomial defined by F(z) = zn , n = 1, 2, . . ., the above operators satisfy the
relation AB = BF(A). In fact, by setting a(t) = I[α,β](t), k(t, s) = I[α,β]2(t, s) we
have

supp [a(t) − F(a(s))] = {
(t, s) ∈ R × [α, β] : I[α,β](t) �= 1

} = (R \ [α, β]) × [α, β],

supp k(t, s) = [α, β] × [α, β].

The set supp [a(t) − F(a(s))] ∩ supp [k(t, s)] has measure zero in R × [α, β]. So
the result follows from Proposition9.3.11.

Example 9.3.13 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞
defined as follows, for almost all t ,

(Ax)(t) = [γ1 I[0,1/2)(t) − γ2 I[1/2,1](t)]x(t), (Bx)(t) =
1∫

0

k(t, s)x(s)ds

k : R × [0, 1] → R is a Lebesgue measurable function such that B is well defined.
The operator A is well defined and bounded. Consider a polynomial defined by
F(z) = δ0 + δ1z, where δ0, δ1, γ1, γ2 are constants such that

|δ0| + |δ1| + |γ1| + |γ2| �= 0.

If k(·, ·) is a measurable function such that one of the following is fulfilled:

(i) δ0 = −δ1γ1 and supp k(t, s) ⊆ (R \ [0, 1]) × [0, 1/2];
(ii) δ0 = δ1γ2 and supp k(t, s) ⊆ (R \ [0, 1]) × [1/2, 1];
(iii) δ0 + δ1γ1 − γ1 = 0 and supp k(t, s) ⊆ [0, 1/2] × [0, 1/2];
(iv) δ0 + δ1γ1 + γ2 = 0 and supp k(t, s) ⊆ [1/2, 1] × [0, 1/2];
(v) δ0 − δ1γ2 − γ1 = 0 and supp k(t, s) ⊆ [0, 1/2] × [1/2, 1];
(vi) δ0 − δ1γ2 + γ2 = 0 and supp k(t, s) ⊆ [1/2, 1] × [1/2, 1],
then the above operators satisfy the relation AB = BF(A).

In fact, putting a(t) = γ1 I[0,1/2)(t) − γ2 I[1/2,1](t) we have

[a(t) − F(a(s))] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if δ0 = −δ1γ1, t /∈ [0, 1], s ∈ [0, 1/2)
0, if δ0 = δ1γ2, t /∈ [0, 1], s ∈ [1/2, 1]
0, if δ0 + δ1γ1 − γ1 = 0, t ∈ [0, 1/2), s ∈ [0, 1/2)
0, if δ0 + δ1γ1 + γ2 = 0, t ∈ [1/2, 1), s ∈ [0, 1/2]
0, if δ0 − δ1γ2 − γ1 = 0, t ∈ [0, 1/2], s ∈ [1/2, 1]
0, if δ0 − δ1γ2 + γ2 = 0, t ∈ [1/2, 1], s ∈ [1/2, 1]
γ3, otherwise
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where γ3 can be different from zero depending on the constants involved. Thus,
in each condition we can choose k(t, s) = IS(t, s), where S = {(t, s) ∈ R × [0, 1] :
a(t) − F(a(s)) = 0} and with a positive measure. Or for instance we can take:

(i) k(t, s) = I[2,3]×[0,1/2](t, s) if δ0 = −δ1γ1;
(ii) k(t, s) = I[2,3]×[1/2,1](t, s) if δ0 = δ1γ2;
(iii) k(t, s) = I[0,1/3]×[1/3,1/2](t, s) if δ0 + δ1γ1 − γ1 = 0;
(iv) k(t, s) = I[2/3,1/2]×[0,1/2](t, s) if δ0 + δ1γ1 + γ2 = 0;
(v) k(t, s) = I[0,1/3]×[2/3,1](t, s) if δ0 − δ1γ2 − γ1 = 0;
(vi) k(t, s) = I[2/3,1]×[2/3,1](t, s) if δ0 − δ1γ2 + γ2.

According to the definition, in all above cases the set

supp [a(t) − F(a(s))] ∩ supp [k(t, s)]

has measure zero in R × [0, 1]. So the result follows from Proposition9.3.11.

Corollary 9.3.14 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞
defined as follows, for almost all t ,

(Ax)(t) = a(t)x(t), (Bx)(t) =
β∫

α

b(t)c(s)x(s)ds, α, β ∈ R, α < β,

where a : R → R, b : R → R, c : [α, β] → R are measurable functions. For a poly-
nomial defined by F(z) = δ0 + δ1z + · · · + δnzn, where δ0, δ1, . . . , δn are real con-
stants, we have

AB = BF(A)

if and only if the set

supp [a(t) − F(a(s))] ∩ supp [b(t)c(s)]

has measure zero in R × [α, β].
Proof This follows by Proposition9.3.11. �

Example 9.3.15 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) = a(t)x(t), (Bx)(t) =
β∫

α

b(t)c(s)x(s)ds, α, β ∈ R, α < β,

wherea(t) = −1 + I[α,β](t),b(t) = I[α−2,α−1](t), c(s) = 1.Wehave thata ∈ L∞(R)

and so ‖A‖L p ≤ ‖a‖L∞ . Therefore, A is well defined and bounded. Since kernel has
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compact support in R × [α, β], we can apply [19, Theorem 3.4.10] and we conclude
that operators B is well defined and bounded. Consider a polynomial defined by
F(z) = −1 + δ1z, where δ1 is a real constant. Then the above operators satisfy the
relation AB = BF(A). In fact, for (t, s) ∈ R × [α, β] we have

F(a(s)) − a(t) = −δ1 + δ1 I[α,β](s) − I[α,β](t) = −I[α,β](t).

Therefore, we have

supp [a(t) − F(a(s))] = [α, β] × [α, β],
supp b(t)c(s) = supp I[α−2,α−1](t)I[α,β](s) = [α − 2, α − 1] × [α, β].

The set supp [a(t) − F(a(s))] ∩ supp [I[α−2,α−1](t)I[α,β](s)] has measure zero. So
the result follows from Corollary9.3.14.

Example 9.3.16 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) = a(t)x(t), (Bx)(t) =
β∫

α

b(t)c(s)x(s)ds, α, β ∈ R, α < β,

where a(t) = γ0 + I[
α,

α+β

2

](t)t2, γ0 is a real number, b(t) = (1 + t2)I[β+1,β+2](t),

c(s) = I[ α+β

2 ,β
](s)(1 + s4). Consider a polynomial defined by F(z) = δ0 + δ1z,

where δ0, δ1 are real constants and δ1 �= 0. If δ0 = γ0 − δ1γ0 then the above operators
satisfy the relation

AB − δ1BA = δ0B.

In fact, A is well defined, bounded since a ∈ L∞ and this implies ‖A‖L p ≤ ‖a‖L∞ .
Operator B is well defined, bounded since k(t, s) = b(t)c(s), (t, s) ∈ R × [α, β] has
compact support and satisfies conditions of [19, Theorem 3.4.10]. If δ0 = γ0 − δ1γ0
then we have

F(a(s)) − a(t) = δ0 + γ0δ1 + δ1 I[α,
α+β

2

](s)s2 − γ0 − I[
α,

α+β

2

](t)t2

= δ1 I[α,
α+β

2

](s)s2 − I[
α,

α+β

2

](t)t2.

Then we have

supp [a(t) − F(a(s))] =
(

R ×
[

α,
α + β

2

]

∪
[

α,
α + β

2

]

×
[
α + β

2
, β

])

\ W,

where W ⊆ R × [α, β] is a set with Lebesgue measure zero, and
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supp b(t)c(s) = supp (1 + t2)I[β+1,β+2](t)I[ α+β

2 ,β
](s)(1 + s4)

= [β + 1, β + 2] ×
[
α + β

2
, β

]

.

The set supp [a(t) − F(a(s))] ∩ supp [b(t)c(s)] has measure zero. So the result
follows from Corollary9.3.14.
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