
Springer Proceedings in Mathematics & Statistics

Sergei Silvestrov
Anatoliy Malyarenko   Editors

Non-commutative 
and 
Non-associative 
Algebra and 
Analysis Structures
SPAS 2019, Västerås, Sweden, 
September 30–October 2



Springer Proceedings in Mathematics &
Statistics

Volume 426



This book series features volumes composed of selected contributions from
workshops and conferences in all areas of current research in mathematics and
statistics, including data science, operations research and optimization. In addition
to an overall evaluation of the interest, scientific quality, and timeliness of each
proposal at the hands of the publisher, individual contributions are all refereed to the
high quality standards of leading journals in the field. Thus, this series provides the
research community with well-edited, authoritative reports on developments in the
most exciting areas of mathematical and statistical research today.



Sergei Silvestrov · Anatoliy Malyarenko
Editors

Non-commutative
and Non-associative Algebra
and Analysis Structures
SPAS 2019, Västerås, Sweden,
September 30–October 2



Editors
Sergei Silvestrov
Division of Mathematics and Physics
Mälardalen University
Västerås, Sweden

Anatoliy Malyarenko
Division of Mathematics and Physics
Mälardalen University
Västerås, Sweden

ISSN 2194-1009 ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics & Statistics
ISBN 978-3-031-32008-8 ISBN 978-3-031-32009-5 (eBook)
https://doi.org/10.1007/978-3-031-32009-5

Mathematics Subject Classification: 08-06, 16-06, 17-06, 47-06, 43-06, 60-06

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4554-6528
https://orcid.org/0000-0002-0139-0747
https://doi.org/10.1007/978-3-031-32009-5


Preface

This volume is one of the long-term outcomes of the International Conference
“Stochastic Processes and Algebraic Structures—From Theory Towards Applica-
tions” (SPAS 2019), which has been organized by the Division of Mathematics and
Physics at the Mälardalen University in Västerås, Sweden on September 30–October
2, 2019, and of the follow-up research efforts, seminars, and activities on alge-
braic structures and applications developed following the ideas, research, and coop-
eration initiated at SPAS 2019. This top-quality focused international conference
brought together a selected group of mathematicians and researchers from related
subjects who actively contribute to the theory and applications of non-commutative
and non-associative algebraic structures, methods, and models.

The scope of the volume is non-commutative and non-associative algebraic struc-
tures and their applications. The accompanying volume contains contributions to
Stochastic Processes, Statistical Methods, and Engineering Mathematics.

The purpose of the book is to highlight the latest advances in non-commutative
and non-associative algebra and non-commutative analysis structures with a focus
on important mathematical notions, methods, structures, concepts, problems, and
algorithms important in many other areas of mathematics, natural sciences, and
engineering. The volume features mathematical methods and models from many
important noncommutative and non-associative algebras and rings including various
Hom-algebra structures such as Hom–Lie algebras, Hom–Lie superalgebras, color
Hom–Lie algebras, Hom-bialgebra structures, and n-aryHom-algebra structures, and
related Hom-algebra structures, as well as other related non-commutative and non-
associative algebra structures important in discrete and twisted generalizations of
differential calculus, twisted derivations, quantum deformations of algebras, gener-
alizations of Lie algebras, Lie superalgebras and color Lie algebras, semi-groups
and group algebras, crossed product-type algebras, representations and applications
of non-commutative and non-associative algebras, representations of commutation
relations by special classes of operators on infinite-dimensional function spaces and
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Banach spaces, computational algebra methods and their applications in the inves-
tigation of q-special functions and q-analysis, topology, dynamical systems, repre-
sentation theory, operator theory and functional analysis, geometry, coding theory,
information theory, and information analysis.

In Chap. 1, the index theory, important in representation theory and invariant
theory, is extended to Hom–Lie algebras, for coadjoint and arbitrary representations,
and index of multiplicative simple Hom–Lie algebras and semidirect products of
Hom–Lie algebras is discussed.

Chapter 2 provides a construction procedure and examples of ternary Nambu–
Poisson algebras and ternary Hom–Nambu–Poisson algebras from Poisson alge-
bras and Hom–Poisson algebras equipped with a trace function satisfying some
conditions.

In Chap. 3, several recent results concerning Hom–Leibniz algebra are reviewed,
symmetric Hom–Leibniz superalgebra are introduced and some properties are
obtained, classification of two-dimensional Hom–Leibniz algebras is provided,
Centroids and derivations of multiplicative Hom–Leibniz algebras are considered
including the detailed study of two-dimensional Hom–Leibniz algebras.

In Chap. 4, the representations of color Hom–Lie algebras are reviewed, the exis-
tence of a series of coboundary operators is demonstrated, the notion of a color omni-
Hom–Lie algebra associated with a linear space and an even invertible linear map
is introduced, characterization method for regular color Hom–Lie algebra structures
on a linear space is examined and it is shown that the underlying algebraic structure
of the color omni-Hom–Lie algebra is a color Hom–Leibniz algebra.

In Chap. 5, the decomposition theorem for the space of (σ, τ )-derivations of the
group algebraC[G] of a discrete countable group G, generalizing the corresponding
theorem on ordinary derivations on group algebras, is established in an algebraic
context using groupoids and characters, several corollaries, and examples describing
when all (σ, τ )-derivations are inner are obtained, and the cases of (σ, τ )-nilpotent
groups and (σ, τ )−FC groups are considered in detail.

In Chap. 6, conditions for a color Hom–Lie algebra to be a complete color Hom–
Lie algebra are obtained, the relationship between decomposition and complete-
ness for a color Hom–Lie algebra is discussed, some conditions that the set of
αs-derivations of a color Hom–Lie algebra to be complete and simply complete
are obtained, and conditions are derived for the decomposition into Hom-ideals of
the complete multiplicative color Hom–Lie algebras to be unique up to order of
Hom-ideals.

In Chap. 7, Hom-prealternative superalgebras and their bimodules are introduced,
some constructions of Hom-prealternative superalgebras and Hom-alternative super-
algebras and connections with Hom-alternative superalgebras are presented, bimod-
ules overHom-prealternative superalgebras are introduced, relations between bimod-
ules over Hom-prealternative superalgebras and the bimodules of the corresponding
Hom-alternative superalgebras are considered, and construction of bimodules over
Hom-prealternative superalgebras by twisting is described.
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Chapter 8 is devoted to the solution of certain equations on the set H of all
quaternions.Using spectral analytic representations onH,monomial equations, some
quadratic equations, and linear equations onH are considered.

Chapter 9 is devoted to representations of polynomial covariant-type commutation
relations by pairs of linear integral operators and multiplication operators on Banach
spaces L p.

Chapter 10 is concerned with representations of polynomial covariant-type
commutation relations on Banach spaces L p and C[α, β] α, β ∈ R by opera-
tors of multiplication with piecewise functions, multiplication operators, and inner
superposition operators.

In Chap. 11, nearly associative algebras are considered and are proved to be
Lie-admissible algebras, two-dimensional nearly associative algebras are classified,
and main classes are derived, The bimodules, matched pairs, and Manin triple of
nearly associative algebras are studied and their equivalence with nearly associative
bialgebras is proved. Furthermore, basic definitions and properties of nearly Hom-
associative algebras are described.

Chapter 13 pertains to a study of the influence of Hom-associativity, involving
a linear map twisting the associativity axiom, on (σ, τ )-derivations satisfying a
(σ, τ )-twisted Leibniz product rule, factorization properties of elements in Hom-
associative algebras, and zero divisors. Furthermore, new more general axioms of
Hom-associativity,Hom-alternativity, andHom-flexibilitymodulo kernel of a deriva-
tion are introduced leading to new classes of Hom-algebras motivated by (σ, τ )-
Leibniz rule over multiplicative maps σ and τ and study of twisted derivations in
arbitrary algebras and their connections to Hom-algebras structures.

Chapter 14 examines interactions between (σ, τ )-derivations via commutator and
consider new n-ary structures based on twisted derivation operators. In particular, it is
shown that the sums of linear spaces of

(
σ k, τ l

)
-derivations and also of some of their

subspaces, consisting of twisted derivations with some commutation relations with
σ and τ , form Lie algebras, and with the semigroup- or group-graded commutator
product, yield-graded Lie algebras when the sum of the subspaces is direct. These
constructions of such Lie subalgebras spanned by twisted derivations of algebras are
extended to twisted derivations ofn-ary algebras. Furthermore,n-ary products defined
by generalized Jacobian determinants based on (σ, τ )-derivations are defined, and
n-Hom–Lie algebras associated with the generalized Jacobian determinants based
on twisted derivations extending some results of Filippov to (σ, τ )-derivations are
obtained. Moreover, commutation relations conditions are established for twisting
maps and twisted derivations such that the generalized Jacobian determinant products
yield (σ, τ, n)-Hom–Lie algebras, a new type of n-ary Hom-algebras different from
n-Hom–Lie algebras in that the positions of twisting maps σ and τ are not fixed to
positions of variables in n-ary products terms of the sum of defining identity as they
were in Hom–Nambu–Filippov identity of n-Hom–Lie algebras.

Chapter 12 is devoted to q-analogues of some interesting formulas such as the
Zn components of the q-exponential function, factor-circulant matrices by the q-
exponential of a permutation matrix, which has generalized q-hyperbolic functions
as matrix elements, decomposition of functions with respect to the cyclic group of
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order n, q-analogues of inverse decomposition hypergeometric formulas by Osler
and Srivastava, the q-Leibniz functional matrix, the q-difference operator, and q-
analogues of hypergeometric series product formulas connected to the cyclic group
decomposition.

Chapter 17, describes a computer program for doing network rewriting calcu-
lations, in its capacity as a tool used for scientific exploration—more precisely to
systematically discover non-obvious consequences of the axioms for various alge-
braic structures. In particular, this program can cope with algebraic structures, such
as bi- and Hopf algebras, that mix classical operations with co-operations.

Chapter 18 addresses a Hom-associative algebra built as a direct sum of a given
Hom-associative algebra endowedwith a non-degenerate symmetric bilinear formB,
double constructions, Hom–Frobenius algebras, and infinitesimal Hom-bialgebras,
anddouble constructionofHom-dendriformalgebras, also calleddouble construction
of Connes cocycle or symplectic Hom-associative algebra. The concept of biHom-
dendriform algebras is introduced and discussed and their bimodules and matched
pairs are also constructed, and related relevant properties are given.

Chapter 19 is devoted to properties of n-Hom–Lie algebras in dimension n + 1
allowing to explicitly find them and differentiate them, to classify them eventually.
Some specific properties of (n + 1)-dimensional n-Hom–Lie algebra such as nilpo-
tence, solvability, center, ideals, derived series, and central descending series are
studied, the Hom–Nambu–Filippov identity for various classes of twisting maps in
dimension n+ 1 is considered, and systems of equations corresponding to each case
are described. All four-dimensional 3-Hom–Lie algebras with some of the classes of
twisting maps are computed in terms of structure constants as parameters and listed
in a way that emphasizes the number of free parameters in each class, and also some
detailed properties of the Hom-algebras are obtained.

InChap. 20, the n-Hom–Lie algebras in dimension n+1 for n= 4,5,6 and nilpotent
α with two-dimensional kernel are computed and some detailed properties of these
algebras are obtained.

Chapter 22, introduces and gives some constructions of admissible Hom–
Novikov–Poisson color Hom-algebras and Hom-Gelfand-Dorfman color Hom-
algebras. Their bimodules and matched pairs are defined and the relevant properties
and theorems are given. Also, the connections between the Hom–Novikov–Poisson
color Hom-algebras and Hom–Gelfand–Dorfman color Hom-algebras are obtained.
Furthermore, it is shown that the class of admissible Hom–Novikov–Poisson color
Hom-algebras is closed under the tensor product.

Chapter 21 introduces a framework to study the deformation of algebras with
anti-involution. Starting with the observation that twisting the multiplication of such
an algebra by its anti-involution generates a Hom-associative algebra of type II, it
formulates the adequate modules theory over these algebras and shows that there is
a faithful functor from the category of finite-dimensional left modules of algebras
with involution to finite-dimensional right modules of Hom-associative algebras of
type II.

In Chap. 16, constructions of n-ary bialgebras and n-ary infinitesimal bialge-
bras of associative type and their Hom-analogs, generalizing the Hom-bialgebras
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and infinitesimal Hom-bialgebras are investigated. The main algebraic characteris-
tics of n-ary totally, n-ary weak totally, n-ary partially, and n-ary alternate partially
associative algebras and bialgebras, and their Hom-counterparts are described.

Chapter 23provides the extensionof theWishart probability distributions in higher
dimension based on the boundary points of the symmetric cones in Jordan algebras.
The symmetric cones form a basis for the construction of the degenerate and non-
degenerate Wishart distributions in the field of Herm (m,C), Herm (m,H), Herm
(3,O) denoting, respectively, the Jordan algebra of all Hermitian matrices of size
m × m with complex entries, the skew field H of quaternions, and the algebra O of
octonions. This density is characterized by the Vandermonde determinant structure
and the exponential weight that is dependent on the trace of the given matrix.

Chapter 24 is concerned with induced ternary Hom-Nambu Lie algebras from
Hom–Lie algebras and their classification. The induced algebras are constructed
from a class of Hom–Lie algebra with a nilpotent linear map. The families of ternary
Hom–Nambu–Lie arising in this way of construction are classified for a given class
of nilpotent linear maps. In addition, some conditions on when morphisms of Hom–
Lie algebras can remain as morphisms for the induced ternary Hom–Nambu–Lie
algebras are given.

Chapter 25 is devoted to crossed product algebras of piecewise constant function
algebras on the real line forming an increasing sequence of algebras of functions on
the real line, which in case of invariance under bijection leading to an increasing
sequence of crossed product algebras. A comparison of commutants (centralizers)
in several cases is given.

Chapter 15 introduces a group keymanagement protocol for secure group commu-
nications in a non-commutative setting using a group ring over the dihedral group
with a twisted multiplication using a cocycle.

Chapter 26 studies the λ-constacyclic and skew λ-constacyclic codes of arbitrary
length over a finite commutative non-chain ring.

Chapter 27 is devoted to a geometrical interpretation of the q-Wallis formula, and
related estimates and conclusions about the number πq .

Chapter 28 generalizes the results about generalized derivations of Lie algebras
to the case of BiHom–Lie algebras. In particular, the classification of the gener-
alized derivation of Heisenberg BiHom–Lie algebras is given. Classifications of
two-dimensional BiHom–Lie algebra, centroids, and derivations of two-dimensional
BiHom–Lie algebras are presented.

In Chap. 29, the construction of HNN-extensions of involutive Hom-associative
algebras and involutive Hom–Lie algebras is described, and by using the validity
of Poincaré-Birkhoff-Witt theorem for involutive Hom–Lie algebras, an embedding
theorem is provided.

Chapter 30 is devoted to a path algebra of a quiver, left-sided (respective
right-sided) ideals, and their Gröbner bases, two-sided ideals, a two-sided division
algorithm and the two-sided Gröbner bases, and two-sided Buchberger’s algorithm.

The volume is intended for researchers, graduate and Ph.D. students in the areas
of Mathematics, Mathematical Physics, Information theory, Computer Science and
Engineering, who are interested in a source of inspiration, cutting-edge research on
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algebraic structures, algebraic methods, and their applications. The book comprises
selected refereed contributions from several research communities working in non-
commutative and non-associative algebra and non-commutative analysis structures
and their applications. The chapters cover both theory and applications and present a
wealth of ideas, theorems, notions, proofs, examples, open problems, and findings on
the interplay of algebraic structures with other parts of Mathematics and with appli-
cations. Presenting new methods and results, reviews of cutting-edge research, and
open problems and directions for future research, the contributed chapters and the
book as a whole will serve as a source of inspiration for a broad range of researchers
and research students in algebra, noncommutative geometry, noncommutative anal-
ysis, non-commutative and non-associative algebraic structures and applied algebraic
structuresmethods in computational and engineeringmathematics, and relevant areas
of mathematical and theoretical physics, information and computer science, natural
science, and engineering.

This collective book project has been realized thanks to the strategic support
offered by Mälardalen University for the research and research education in Math-
ematics which is conducted by the research environment Mathematics and Applied
Mathematics (MAM) in the established research specialization of Educational
Sciences and Mathematics at the School of Education, Culture and Communica-
tion at Mälardalen University. We also wish to extend our thanks to the Swedish
International Development Cooperation Agency (Sida) and International Science
Programme in Mathematical Sciences (ISP), the Nordplus program of the Nordic
Council of Ministers, the Swedish research council, the Royal Swedish Academy of
Sciences as well as many other national and international funding organizations and
the research and education environments and institutions of the individual researchers
and research teams who contributed to the success of SPAS 2019 and this collec-
tive book. Finally, we especially thank all the authors for their excellent research
contributions to this book and the reviewers for their work. We also thank the staff
of publisher Springer for their excellent efforts and cooperation in the publication of
this collective book.

Västerås, Sweden
March 2022

Sergei Silvestrov
Anatoliy Malyarenko
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Chapter 1
Index of Hom-Lie Algebras

Hadjer Adimi and Abdenacer Makhlouf

Abstract The index is an important concept in representation theory and invariant
theory. In this paper we extend the index theory to Hom-Lie algebras, we introduce
the index theory in both cases, coadjoint and arbitrary representation. Moreover, we
discuss Index of Multiplicative Simple Hom-Lie algebras and semidirect products
of Hom-Lie algebras.

Keywords Hom-Lie algebra · Index · Representation
2020 Mathematics Subject Classification 17D30 · 17B61

1.1 Introduction

The notion of Hom-Lie algebra was introduced by Hartwig, Larsson, and Silvestrov
in [13]. A Hom-Lie algebra is a triple (g, [−,−], α), where α is a linear self-map,
in which the skewsymmetric bracket satisfies an α−twisted variant of the Jacobi
identity, called the Hom-Jacobi identity. When α is the identity map, the Hom-Jacobi
identity reduces to the usual Jacobi identity, and g is a Lie algebra. In [18] Makhlouf
and Silvestrov introduced the notion of Hom-associative algebra defined by a triple
(A, μ, α) in which α is a linear self-map of the vector space A and the bilinearity
operation μ satisfies an α-twisted version of associativity. Associative algebras are
a special case of Hom-associative algebras in which α is the identity map. The dual
notion Hom-coalgebra was considered in [17].
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We start by considering representations of Hom-Lie algebras. The representation
theory of an algebraic object reveals some of its profound structures hidden under-
neath. In [27] Y. Sheng defined representations of Hom-Lie algebras and correspond-
ing Hom-cochain complexes. In particular, he obtains the adjoint representation and
the trivial representation of Hom-Lie algebras. The definition was independently
introduced in [4]. The index of a Lie algebra is an important concept in the rep-
resentation theory and invariant theory. It was introduced by Dixmier in [8]. This
theory has applications in invariant theory of invariants, deformations and quantum
groups. A Lie algebra is called Frobenius if its index is 0, which is equivalent to
say that there is functional in the dual such that the bilinear form BF defined by
BF (x, y) = F([x, y]), is non-degenerate. Some results of the index are given in [1,
2]. The Frobenius algebras were studied by Ooms in [19]. Most index studies con-
cern simple Lie algebras or their subalgebras. Theywere considered bymany authors
(see [7, 9–12, 19]). Note that a simple Lie algebra can never be Frobenius, but many
subalgebras are. The index of a semisimple Lie algebra g is equal to the rank of g.

The first main purpose of this paper is to introduce the index of Hom-Lie algebras.
In the second Section we summarize the definitions and basics of Hom-Lie algebras
from [13, 18, 32]. In the third Section, we study the index of Hom-Lie algebras. We
introduce the notion of the index of Hom-Lie algebras in the case of coadjoint and
an arbitrary representation. Moreover, we compare the index of Lie algebras with
the index of Hom-Lie algebras obtained by twisting, and we discuss the index of
Multiplicative Simple Hom-Lie algebras. In the last section we explore the coadjoint
representations of semidirect products of Hom-Lie algebras and we give the index
of semidirect products of Hom-Lie algebras.

1.2 Preliminary

We work in this chapter over an algebraically closed fields K of characteristic 0.

1.2.1 Hom-Lie Algebras

The notion ofHom-Lie algebrawas introduced byHartwig, Larsson and Silvestrov in
[13] motivated initially by examples of deformed Lie algebras coming from twisted
discretizations.

Definition 1.1 ([13]) A Hom-Lie algebra is a triple (g, [−,−], α) consisting of a
vector space g, a skew-symmetric bilinear map [−,−] : g × g → g and a linear map
α : g → g satisfying the following Hom-Jacobi identity:

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0. (1.1)
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Let (g1, [−,−]1, α1), (g2, [−,−]2, α2) be two Hom-Lie algebras.
A linear map β : g1 → g2 is a Hom-Lie algebra morphism if it satisfies

{
β [x, y]1 = [β(x), β(y)]2 , ∀x, y ∈ g1

β ◦ α1 = α2 ◦ β.

The map β is said to be a weak Hom-Lie algebras morphism if it satisfies only the
first condition.

Remark 1.1 We recover classical Lie algebra when α = idg and the identity (1.1)
is the Jacobi identity

Definition 1.2 ([13]) AHom-Lie algebra is called a multiplicative Hom-Lie algebra
if is an algebra morphism, i.e. for any x, y ∈ g we have α([x, y]) = [α(x), α(y)].
Definition 1.3 ([13]) A vector subspace H ⊂ g is called a Hom-Lie sub-algebra of
(g, [−,−], α) if α(H) ⊂ H and H is closed under the bracket operation, i.e.,

[h, h′]∈ H,∀h, h′∈ H.

Consider the direct sum of two Hom-Lie algebras.

Proposition 1.1 ([13])Given two Hom-Lie algebras (g, [−,−], α) and (H, [−,−],
β), there is a Hom-Lie algebra (g ⊕ H, [−,−], α + β), where the skew-symmetric
bilinear map [−,−] : g ⊕ H × g ⊕ H → g ⊕ H is given by

[(x1, y1), (x2, y2)] = ([x1, x2], [y1, y2]), ∀x1, x2∈ g, y1, y2∈ H,

and the linear map (α + β) : g ⊕ H → g ⊕ H is given by

(α + β)(x, y) = (α(x), β(y)), ∀x∈ g, y∈ H.

Amorphism of Hom-Lie algebras : (g, [−,−], α) and (H, [−,−], β) is a linear map
φ : g → H, such that

φ[x, y] = [φ(x), φ(y)],∀x, y ∈ g (1.2)

φ ◦ α = β ◦ φ (1.3)

Denote by gφ ⊂ g ⊕ H the graph of a linear map φ : g → H.

Theorem 1.1 Let g = (g, [−,−], α) be a Hom-Lie algebra and β : g → g be a
weak Hom-Lie algebra morphism, then (g, β[−,−], βα) is a Hom-Lie algebra.

Corollary 1.1 ([32]) Let (g, [−,−]) be a Lie algebra and α : g→g be a Lie algebra
endomorphism. Then gα = (g, [−,−]α, α) is a Hom-Lie algebra, where [−,−]α =
α ◦ [−,−]. Moreover, suppose that g′ is another Lie algebra and that α

′ : g′→g
′
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is a Lie algebra endomorphism. If f : g→g
′
is a Lie algebras endomorphism that

satisfies
f ◦ α = α

′ ◦ f

then f : (g, [−,−]α, α) → (g
′
, [−,−]α′ , α

′
) is a morphism of multiplicative Hom-

Lie algebras.

The following example is obtained by using σ−derivation and it is not of the
above type.

Example 1.1 (Jackson sl2). The Jackson q − sl2 is a q−deformation of the clas-
sical sl2. This family of Hom-Lie algebras was constructed in [28] using a quasi-
deformation scheme based on discretizing by means of Jackson q−derivations, a
representation of sl2(K) by one-dimensional vector fields (first order ordinary differ-
ential operators) and using the twisted commutator bracket defined in [13]. It carries
a Hom-Lie algebra structure but not a Lie algebra structure. It is defined with respect
to a basis {x1, x2, x3} by the brackets and a linear map α such that

[x1, x2] = −2qx2 α(x1) = qx1
[x1, x3] = 2x3 α(x2) = q2x2
[x2, x3] = − 1

2 (1 + q)x1, α(x3) = qx3
where q is a parameter in K. If q = 1 we recover the classical Sl2.

Proposition 1.2 Let (g, [−,−], α) be a multiplicative Hom-Lie algebra with α

bijective, then (g, α−1[−,−]) is a Lie algebra.
Proof We set in Theorem 1.1, β = α−1. It shows that multiplicative Hom-Lie alge-
bras with bijective twisting map correspond to a Lie algebras. The Lie algebra
(g, α−1[−,−]) is called the induced Lie algebra.

1.2.2 Representations of Hom-Lie Algebras

Definition 1.4 ([4]) Let (g, [−,−], α) be a Hom-Lie algebra. A representation of g
is a triple (V, ρ, β), where V is a K−vector space, β ∈ End(V) and ρ : g → gl(V)

is a linear map satisfying

ρ([x, y]) ◦ β = ρ(α(x)) ◦ ρ(y) − ρ(α(y)) ◦ ρ(x),∀x, y ∈ g.

In particular, a representation of a multiplicative Hom-Lie algebra (g, [−,−]α, α)

on a vector space V is a representation of the Hom-Lie algebra satisfying in addition

α (ρ(x)(v)) = ρ(α(x))(β(v)), ∀v ∈ V, ∀x ∈ g.

In the following,we explore the dual representations and coadjoint representations
of Hom-Lie algebras.
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Let (g, [−,−], α) be a Hom-Lie algebra and (V, ρ, β) be a representation of g.
Let V∗ be the dual vector space of V. We define a linear map ρ∗ : g → End(V∗) by
ρ∗(x) = −tρ(x).

Proposition 1.3 ([4]) Let (g, [−,−], α) be a Hom-Lie algebra and ad : g → gl(g)
be an operator defined for x ∈ g by ad(x)(y) = [x, y]. Then (g, ad, α) is a repre-
sentation of g.

Indeed, the condition on the operator ad is equivalent to Hom-Jacobi condition.
We call the representation defined in the previous proposition adjoint representation
of the Hom-Lie algebra.

Proposition 1.4 ([4]) Let (g, [−,−], α) be a Hom-Lie algebra and (g, ad, α) be
the adjoint representation of g, where ad : g → gl(g). We set ad∗ : g → gl(g∗) and
ad∗(x)( f ) = − f ◦ ad(x). Then (g∗, ad∗, α∗) is a representation of g if and only if

α([[x, y], z]) = [x, [α(y), z]] − [y, [α(x), z]] ∀x, y, z ∈ g (1.4)

Proposition 1.5 Let (g, [−,−], α) be a Hom-Lie algebra and (V, ρ, β) be a repre-
sentation of g. The triple (V∗, ρ∗, β∗), where ρ∗ : g →gl(V∗) is given by ρ∗(x) =
−tρ∗(x), defines a representation of the Hom-Lie algebra (g, [−,−], α) if and only
if

β ◦ ρ([x, y]) = ρ(x)ρ(α(y)) − ρ(y)ρ(α(x)).

1.3 Index of Hom-Lie Algebras

1.3.1 For a Coadjoint Representation

Let (g, [−,−], α) be a Hom-Lie algebra. We assume that a coadjoint representation
exists, that is Condition 1.4 in Proposition 1.4 is satisfied. Let f be a bilinear form
on g then set

g f = {
x ∈ g : ad∗ (x) ( f ) = 0

} = {x ∈ g : f ([x, y]) = 0,∀y ∈ g} .

Then we have the following definition.

Definition 1.5 The index of g, is defined by χ (g) = min
f ∈g∗ dim g f .

Example 1.2 (Jackson Sl2) The index is given by χ (g =qSl2) = min
f ∈g∗ dim g f = 1.

Indeed the associated matrix is of the form

⎛
⎝ 0 −2qx2 2x3

2qx2 0 − 1
2 (1 + q) x1

−2x3 1
2 (1 + q) x1 0

⎞
⎠ .

It is of rank 2 hence the index equals 1.
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1.3.2 For an Arbitrary Representation

Let (g, [−,−], α) be aHom-Lie algebra, and (V, ρ, β) be a representation of gwhere

ρ : g → gl(V), x 
→ ρ (x) =ρ (x) (v) =x · v.

We set gv = {x ∈ g : x · v = 0, v ∈ V} and g · v = {x · v : x ∈ g, v ∈ V} .

The set gv is the stabiliser of v. We say that v ∈ V is regular if gv has a minimum
dimension, dim gv = min {dim gw,w ∈ V} . Since dim gv + dim g · v = dim g, v ∈
V is regular if dim g · v = max

w∈V
{dim g · w} .

So if we consider the dual representation of V on V∗ when it exists, we have the
following lemma.

Lemma 1.1 max
f ∈V∗ dim g · f = dim g−min

{
dim g f , f ∈ V∗} .

Therefore, we define the index of a Hom-Lie algebra with respect to a given
representation as:

Definition 1.6 The integer

χ (g, ρ) = dim V−max
f ∈V∗

{dim g. f } = dim V− dim g + min
{
dim g f , f ∈ V∗}

is called the indexof a representation (V, ρ, β)of theHom-Lie algebra (g, [−,−], α).

Proposition 1.6 Let (g, [−,−], α) be a Hom-Lie algebra, the index of g, χ (g, ρ),
can be written

χ (g, ρ) = dim V − max
f ∈V∗

{
dim g f

} = min
{
dim g f ; f ∈ g∗} ,

= dim V − rankk(V)

(
xi · v j

)
i j , (see Proposition 2.3, [19], p1),

where K(V) is the quotient fields of the symmetric algebras S(V).

Proof Consider the bilinear form B with values in V

B = B(g,V) : g × V → V, (x, v) 
→ x · v.

Evaluating this form for an arbitrary element f ∈ V∗ gives a form with values in K.

It follows B f : g × V → V
f→K and B f (x, v) = f (x · v). The kernel (resp. image)

of B f is g f (resp. g · f ). We have

ker(B f ) = g f = {x ∈ g ; f (x · v) = 0} and

Im(B f ) = g · f = { f (x · v) ; x ∈ g, v ∈ V} .
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Hence, χ (g, ρ) = dim V − max
f ∈V∗(rankB f ). Let n = dim g and m = dim V. Having

chosen bases for g and V, we may regard B as n × m-matrix with integer in V, taking
{x1, . . . , xn} a basis for g and {v1, . . . , vm} a basis for V,

B = (
xi · v j

)
i j , i = 1, . . . , n, j = 1, . . . ,m and

B f = (
f
(
xi · v j

))
i j i = 1, . . . , n, j = 1, . . . ,m

Therefore,

χ (g, ρ) = dim V − max
f ∈V∗

(
rank

(
f
(
xi · v j

))
i j

)
, i = 1, . . . , n, j = 1, . . . ,m,

= dim V − rankk(V)

(
xi · v j

)
i j , i = 1, . . . , n, j = 1, . . . ,m.

Hence, χ (g, ρ) = dim V − rank
(
xi · v j

)
i j , i = 1, . . . , n, j = 1, . . . ,m.

1.3.3 Index of Twisted Lie Algebras

Let (g, [−,−]) be aLie algebra andα : g → g be aLie algebramorphism.According
to Corollary 1.1, the twist gα = (g, [−,−]α, α), where [x, y]α = α[x, y], is a Hom-
Lie algebra. We aim to compare the index of a Lie algebra with the index of the
Hom-Lie algebra obtained by twisting.

Proposition 1.7 Let gα = (g, [−,−]α, α) be a Hom-Lie algebra, and ad be the
adjoint representation. Then

χ (gα) = n − rankk(V)

(
α

([
ei , e j

]))
i j .

Proof For all x ∈ g, adx is a K−linear map and g operate on g∗as

g×g∗ → g∗, (x, f ) 
→ x · f.

∀y ∈ g : (x · f ) (y) = f
(
[x, y]α

)
,

φ f : g×g→K, (x, y) 
→ φ f (x, y) = f
(
[x, y]α

)
,

g f = {
x ∈ g, f

(
[x, y]α

) = 0,∀y ∈ g
}
,

or
Ker f = {

x ∈ g, f
(
[x, y]α

) = 0,∀y ∈ g
}
. (1.5)

Particular cases: if the algebra is multiplicative then
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f
(
[x, y]α

) = f (α [x, y]) = ( f ◦ α) ([x, y]) .

We denote the kernel of the map ( f ◦ α) by g( f ◦α),

g( f ◦α) = Ker ( f ◦ α) = {x ∈ g, ( f ◦ α) ([x, y]) = 0,∀y ∈ g} , (1.6)

and Im ( f ◦ α) = {( f ◦ α) ([x, y]) ,∀x, y ∈ g} . Applying the rank theorem we
obtain

dim g= dim ker ( f ◦ α) + dim Im ( f ◦ α) ,

dim ker ( f ◦ α) = dim g− dim Im ( f ◦ α) = n − dim Im ( f ◦ α) .

Moreover, we have min
( f ◦α)∈g∗

{dim ker ( f ◦ α)} = n − max
( f ◦α)∈g∗

{dim Im ( f ◦ α)} . We

know that χ (gα) = min {dim ker ( f ◦ α) , ( f ◦ α) ∈ g∗} . Then

χ (gα) = n − max
{
dim Im ( f ◦ α) , ( f ◦ α) ∈ g∗} .

Let B = {e1, . . . , en} be a basis of g. For all x, y ∈ g we have x = ∑
i
xi ei , y =∑

j
y j e j . Then

( f ◦ α) ([x, y]) = ( f ◦ α)

⎛
⎝

⎡
⎣∑

i

xi ei ,
∑
j

y j e j

⎤
⎦

⎞
⎠

= (x1, . . . , xn) ( f ◦ α)
([
ei , e j

])
⎛
⎜⎝

y1
...

yn

⎞
⎟⎠

= Xt AY ; and A = (
( f ◦ α)

([
ei , e j

]))
i j .

Therefore

χ (gα) = n − max rank
(
( f ◦ α)

([
ei , e j

]))
i j ,

= n − rank
(
f
(
α

([
ei , e j

])))
i j

,

= n − rank
(
f
([
ei , e j

]
α

))
i j

,

= n − rankk(V)

([
ei , e j

]
α

)
i j

,

= n − rankk(V)

(
α

([
ei , e j

]))
i j .

Then, χ (gα) = n − rankk(V)

(
α

([
ei , e j

]))
i j .

Theorem 1.2 Let (g, [−,−])beaLie algebra,α : g → gbeaLie algebramorphism
andgα = (g, [−,−]α, α)be theHom-Lie algebrawhere [−,−]α = α ◦ [−,−]. Then
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we have χ (gα) ≥ χ (g) . Moreover if f is a regular vector of g then it is a regular
vector of gα.

Proof Since rank(( f ◦ α)) ≤ min (rank f, rankα) ,

rank(( f ◦ α)) ≤ rank f, χ (gα) ≥ χ (g) .

Remark 1.2 (Case where α is bijective) Let (gα, [−,−]α, α) be a Hom-Lie algebra.
If α is bijective then χ (gα) = χ (g) . Indeed rank(( f ◦ α)) = rank f . (α bijective,
Im(α) = g, so Im ( f ◦ α) = f (g) = Im f, then rank(( f ◦ α)) = rank f ).

Example 1.3 (Morphism of Lie algebra and index). Let (g, [−,−]) be a Lie algebra,
and (g, [−,−]α, α) be a Hom-Lie algebra and {x1, x2, ..., xn} be a fixed basis of g.
We search morphisms corresponding to this algebra and calculate the index of gα in
this case. The twisting principle leads for the dimensional affine Lie algebra defined
as g12 : [x1, x2] = x2 to two Hom-Lie algebras : the first one is the abelian Hom-Lie
algebra g12,α,1 : [x1, x2]α = 0, and it is given by the homomorphism α defined, with

respect to the previous basis by the following matrix

(
a 0
0 d

)
. The second are g22,α,2

defined as g22,α,2 : [x1, x2]α =dx2, The homomorphism α is given by the following

matrix

(
0 b
0 d

)
. Hence, α is of the form α (x1) = ax1 + bx2, α (x2) = cx1 + dx2.

The 3−dimensional Lie algebra defined by g13 : [x1, x2] = x3 leads to the Hom-
Lie algebras: g13,α,3 : [x1, x2]α = (a1b2 − b1b2)x3, and it is given by the homo-
morphism α defined, with respect to the previous basis by the following matrix⎛
⎝a1 b1 c1
a2 b2 c2
0 0 a1b2 − b1a2

⎞
⎠ .

The Lie algebra g23 : [x1, x2] = x2, [x1, x3] = βx3, β = 0 leads to four Hom-Lie
algebras:

(i) g23,α,1 : [x1, x2]α = 0, [x1, x3]α = 0, this is an abelian Hom-Lie algebra, the

homomorphism α is given by the following matrix

⎛
⎝a1 b1 c1

0 0 0
0 0 0

⎞
⎠ .

(ii) g23,α,2 : [x1, x2]α = b2x3, [x1, x3]α = 0, the homomorphism α is given by

the following matrix

⎛
⎝

1
β
b1 c1

0 0 c2
0 0 0

⎞
⎠ .

(iii) g23,α,3 : [x1, x2]α = 0, [x1, x3]α = βb3x2, the homomorphism α is given by

the following matrix

⎛
⎝ β b1 c1

0 0 0
a3 b3 0

⎞
⎠ .
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(iv) g23,α,4 : [x1, x2]α = b2x2, [x1, x3]α = βc3x3, the homomorphism α is given

by the following matrix

⎛
⎝ 1 b1 c1
0 b2 0
0 0 c3

⎞
⎠ .

The Lie algebra g33 : [x1, x2] = x2 + x3, [x1, x3] = x3 leads to two Hom-Lie
algebras defined as

(i) g33,α,1 : [x1, x2]α = 0, [x1, x3]α = 0, this is an abelian Hom-Lie algebra, the

homomorphism α is given by the following matrix

⎛
⎝a1 b1 c1

0 0 0
0 0 0

⎞
⎠ .

(ii) g33,α,2 : [x1, x2]α = b2x2 + (b2 + c2)x3, [x1, x3]α = b2x2, the homomorphism

α is given by the following matrix

⎛
⎝ 1 b1 c1
0 b2 c2
0 0 b2

⎞
⎠ .

The Lie algebra g34 : [x1, x2] = 2x2, [x1, x3] = −2x3, [x1, x3] = x1 leads to
two Hom-Lie algebras defined as :

(i) g34,α,1 : [x1, x2]α = 2
b3
x2, [x1, x3]α = −2b3x3, [x2, x3]α = −x1, the homo-

morphism α is given by the following matrix

⎛
⎝−1 0 0

0 0 1
b3

0 b3 0

⎞
⎠ .

(ii) g34,α,2 : [x1, x2]α = 2
C3
x2, [x1, x3]α = −2c3x3, [x2, x3]α = x1, the homo-

morphism α is given by the following matrix

⎛
⎝ 1 0 0
0 1

c3
0

0 0 c3

⎞
⎠ .

Hence α is of the form

α (x1) = a1x1 + b1x2 + c1x3,

α (x2) = a2x1 + b2x2 + c2x3,

α (x3) = a3x1 + b3x2 + c3x3.

Evaluation of the index

In dimension 2, we have

χ
(
g12,α,1

) = 2,
χ

(
g12,α,2

) = 0.

In dimension 3, we have

(i) χ
(
g13,α,1

) =
{
1 if a1b2 − b1a2 = 0,

3 else.
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(ii) χ
(
g23,α,1

) = 0.

χ
(
g23,α,2

) =
{
1 if c2 = 0,

3 else.

χ
(
g23,α,3

) =
{
1 if b3 = 0,

3 else.

χ
(
g23,α,4

) =
{
1 if b2, c3 = 0,

3 else.

(iii) χ
(
g33,α,1

) = 0.

χ
(
g33,α,2

) =
{
1 if b2, c2 = 0,

3 else.

(iv) χ
(
g43,α,1

) = 1 with b3 = 0,

χ
(
g43,α,2

) = 1 with c3 = 0.

1.3.4 Index of Multiplicative Simple Hom-Lie Algebras

Multiplicative simple Hom-Lie algebras were recently characterized in [6] and their
representations studied in [3].

Definition 1.7 Let (g, [−,−], α) be a Hom-Lie algebra. A subspace h of g is called
a Hom-Lie subalgebra of (g, [−,−], α) if α (h) ⊆ h and [h, h] ⊆ h. In particular, a
Hom-Lie subalgebrah is said to be an ideal of (g, [−,−], α) if [h, g] ⊆ h.AHom-Lie
algebra g is called an abelian Hom-Lie algebra if [x, y] = 0 for any x, y ∈ g.

Definition 1.8 The set

C (g) = {x ∈ g | [x, y] = 0, [α (x) , y] = 0,∀y ∈ g}

is called the center of (g, [−,−], α).

Proposition 1.8 Let (g, [−,−], α) be a multiplicative Hom-Lie algebra.
Then (ker (α) , [−,−], α) is an ideal.

Proof Obviously α (x) = 0 ∈ ker (α) for any x ∈ ker (α) . Since α ([x, y]) =
[α (x) , α (y)] = [0, y] = 0 for any x ∈ ker (α) and y ∈ g, we get [x, y] ∈ ker (α) .

Therefore (ker (α) , [−,−], α) is an ideal of (g, [−,−], α).

Definition 1.9 Let (g, [−,−], α) (α = 0) be a Hom-Lie algebra. A Hom-Lie alge-
bra (g, [−,−], α) is called simple Hom-Lie algebra if (g, [−,−], α) has no proper
ideals and is not abelian. A Hom-Lie algebra (g, [−,−], α) is called semisimple
Hom-Lie algebra if g is a direct sum of certain ideals.
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Let (g, [−,−], α) be a multiplicative Hom-Lie algebra. By Proposition 1.8, α

must be a monomorphism, thus α is an automorphism of (g, [−,−], α).

Definition 1.10 Let (g, [−,−], α)be aHom-Lie algebra.TheLie algebra (g, [−,−]′)
is called the induced Lie algebra of (g, [−,−], α) if

[x, y] = α
(
[x, y]′

) = [α (x) , α (y)]′ ,∀x, y ∈ g.

Proposition 1.9 Let (g, [−,−], α) be a multiplicative simple Hom-Lie algebra.
Define [x, y]′ = α−1 ([x, y])∀x, y ∈ g. Then

(
g, [−,−]′)is a Lie algebra and α is

also a Lie algebra automorphism.

Theorem 1.3 The induced Lie algebra of a multiplicative simple Hom-Lie algebra
(g, [−,−], α) is semisimple and can be decomposed into direct sum of isomorphic
simple ideals. In addition α acts simply transitively on simple ideals of the induced
Lie algebra.

Theorem 1.4 The index of a multiplicative simple Hom-Lie algebra (g, [−,−], α)

is the same as the index of the induced Lie algebra of the multiplicative simple
Hom-Lie algebra

(
g, α−1[−,−]).

Proof By Remark 1.2.

Hence, we have the following Proposition :

Proposition 1.10 The index of a multiplicative simple Hom-Lie algebra
(g, [−,−], α) is larger than 0.

Proof Since a Simple Lie algebras is never Frobenius, then the index is larger
than 0.

1.4 Index of Semidirect Products of Hom-Lie Algebras

In this section we introduce the adjoint and coadjoint representation of a semi-direct
product of a Hom-Lie algebra g �ρ V.

Proposition 1.11 ([4]) Let (g, [−,−]g, α) be a Hom-Lie algebra and (V, ρ, β) be
a representation of g. The direct sum g ⊕ V with a bracket defined by

[(x + u) , (y + v)] = ([x, y]g, ρ(x)(v) − ρ(y)(u)) ∀x, y ∈ g, ∀u,w ∈ V,

and the twisted map γ : g ⊕ V → g ⊕ V defined by

γ (x + w) = α(x) + β(u), ∀x ∈ g, ∀u ∈ V

is a Hom-Lie algebra.
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We call the direct sum g ⊕ V semi-direct product of g and V, it is denoted by
g �ρ V. We identify the dual space (g �ρ V)∗ with g∗ ⊕ V∗.

Since g �ρ V is a Hom-Lie algebra, the Hom-Jacobi condition on x, y, z ∈ g and
u, v,w ∈ V is

�(x,u),(y,v),(z,w) [γ (x + u), [y + v, z + w]],
=�(x,u),(y,v),(z,w) [α(x) + β(u), [y, z]g + ρ(y)(w) − ρ(z)(v)] = 0.

We can determine a representation of a semi-direct product of a Hom-Lie algebra
g �ρ V. We call this representation the adjoint representation of semi-direct product
of a Hom-Lie algebra g �ρ V, and it satisfies the condition

ad ([x + u, y + v]) ◦ γ = ad (γ (x + u)) ◦ ad (y + v) − ad (γ (y + v)) ◦ ad (x + u) . (1.7)

In the following, we explore coadjoint representations of the semi-direct product
of a Hom-Lie algebra g �ρ V.

1.4.1 Coadjoint Representations

Let q = g �ρ V. We consider q∗ = g∗ ⊕ V∗, the dual space of q. An element of
q∗ is denoted by η = (g, f ); ∀ (x, v) ∈ g �ρ V. We set ad∗ : q → gl(q∗) defined
by ad∗ (x + u) (η) = −η ◦ ad(x + u) and γ ∗ : q∗ → q∗ an even homomorphism
defined by γ ∗ (η) = η ◦ γ. We compute the right hand side of (1.7):
(ad∗(γ (x + u)) ◦ ad∗(y + v) − ad∗(γ (y + v)) ◦ ad∗(y + v)) (η) (z + w)

= (ad∗(γ (x + u)) (ad∗(y + v) (η)) − ad∗(γ (y + v))(ad∗(y + v) (η))) (z + w)

= −ad∗(y + v) (η) (ad(γ (x + u)) (z + w)) + ad∗(x + u)ad (η) (γ (x + u)) (z + w))

= η(ad(y + v)ad(γ (x + u)) (z + w)) − η(ad(x + u)ad(γ (x + u)) (z + w))

= η(ad(y + v)ad(γ (x + u)) − ad(x + u)ad(γ (x + u)) (z + w)).

On the other hand,

((
ad∗([x + u, y + v]

)
γ ∗) (η)) (z + w) = (

ad∗([x + u, y + v]
)
(η ◦ γ ) (z + w)

= −η ◦ γ (ad([x + u, y + v]) (z + w)) .

Thus condition (1.7) is satisfied. We call the representation ad∗ the coadjoint
representation.

We obtain the following corollary.

Corollary 1.2 Let (q, [−,−], γ ) be aHom-Lie algebra and (q, ad, γ ) be the adjoint
representation of q. The triple (q, ad∗, γ ∗) defines a representation of (q, [−,−]γ )

if and only if

γ ◦ ad ([x + u, y + v]) = ad (x + u) ◦ ad (γ (y + v)) − ad (y + v) ◦ ad (γ (x + u)) .
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We call the representation ad∗ the coadjoint representation and it is given by

(
ad∗

q(x, v)
)
(g, f ) = (

ad∗
g (x) (g) − v ∗ f, x · f

)
,

g × V∗ → V∗, (x, f ) 
→ x · f,

V × V∗ → g∗, (v, f ) 
→ v ∗ f, ∀x ∈ g : (v ∗ f ) x = f (xv) .

1.4.2 The Stabilizer of an Arbitrary Point of q∗

Let Kg denote the Kirillov form on g, i.e. ∀ (x1, x2) ∈ g: Kg (x1, x2) = g [x1, x2].
Then ker(Kg) = gg , the stabiliser of g. If h is a subalgebra of g, then Kg|h can also
be regarded as the Kirillov form associated with g|h ∈ h∗.

Proposition 1.12 For any η = (g, f ) ∈ q, we have

qη = {
(x, v) ∈ g �ρ V, ad∗

g(x, v)(g, f ) = 0
}

= {
(x, v) ∈ g �ρ V,

(
ad∗

g (x) (g) − v ∗ f, x · f
) = 0

}
= {

(x, v) ∈ g �ρ V, ad∗
g (x) (g) = v ∗ f et x · f = 0

}
,

where ad∗
g (x) (g) = g [x, y] = v ∗ f, y ∈ g and x · f = 0 ⇒ x ∈ ker

(Kg|g f
)
,

with Kg(x, f ) = x · f . Then

qη = {
(x, v) ∈ g �ρ V, ad∗

g (x) (g) = v ∗ f, x ∈ ker
(Kg|g f

)}
.

We denote by g f the kernel of f ([x, y]), so
(
g f

)⊥ = g· f such that the space

{v ∈ V, v ∗ f = 0} = {v ∈ V, f (xv) = 0,∀x ∈ g} = (g· f )⊥ = ker B f .

It follows that qη is the direct sum of the space (g· f )⊥ and the space ker
(Kg|g f

)
,

so qη = ker
(Kg|g f

)
� ker B f .

Proposition 1.13 Let (q, [−,−], γ ) be the Hom-Lie algebra defined above, then

χq = χg + χ(g,ρ).

Remark 1.3 Let (g, [−,−], α) be a Hom-Lie Algebra and ad : g → g
(g) be the
adjoint representation. We mean by g �ad g the Hom-Lie algebra of semi-direct
product associated to the adjoint representation. then

χ (q) = 2χ (g) .
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Chapter 2
On Ternary (Hom-)Nambu-Poisson
Algebras

Hanene Amri and Abdenacer Makhlouf

Abstract In this paper we provide a procedure to construct ternary Nambu-Poisson
algebras (resp. ternary Hom-Nambu-Poisson algebras) from Poisson algebras (resp.
Hom-Poisson algebras) equipped with a trace function satisfying some conditions.
Therefore, we give various examples of ternary Nambu-Poisson algebras (resp.
ternary Hom-Nambu-Poisson algebras) using this construction.

Keywords Hom-Nambu-Poisson algebra
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2.1 Introduction

Poisson structures appear in various areas of different contexts, ranging from string
theory, classical/quantum mechanics, differential geometry, abstract algebra, alge-
braic geometry and representation theory. In each one of these contexts, it turns
out that the Poisson structure is not a theoretical artifact, but a key element which,
unsolicited, comes along with the problem which is investigated and its delicate
properties are in basically all cases decisive for the solution to the problem. Siméon
Denis Poisson announced in 1809 that he had found an improvement in the theory of
Lagrangian mechanics, which was being developed by Joseph-Louis Lagrange and
Pierre-Simon Laplace. In that pioneering paper, Poisson introduced the notation
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(a, b) =
n∑

i=1

(
∂a

∂qi

∂b

∂pi
− ∂a

∂pi

∂b

∂qi
) (2.1)

where a and b are two functions of the coordinates qi and the conjugate quantities
pi = ∂R

∂q̇i
for a mechanical system with Lagrangian function R. He proved that, if a

and b are first integrals of the system, then (a, b) also is. This (a, b) is nowadays
denoted by {a, b} and called the Poisson bracket of a and b. Mathematicians of the
19th century already recognized the importance of this bracket. In particular,William
Hamilton used it extensively to express his equations in an essay in 1835 on what
we now call Hamiltonian dynamics. Carl Jacobi in his “Vorlesungen über Dynamik”
around 1842 showed that the Poisson bracket satisfies the famous Jacobi identity:

{{a, b}, c} + {{b, c}, a} + {{c, a}, b} = 0. (2.2)

This important identity leads to the definition of a Poisson algebra as an algebra A
equipped with a skew-symmetric binary bracket {·, ·} : A × A → A, satisfying (2.2)
for all a, b, c in A. In other words, a Poisson algebra is a Lie algebra (A, {·, ·}),
where {·, ·}, with a bilinear associative commutative map μ : A × A → A, satisfy
the Leibniz rule {μ(a, b), c} = μ(a, {b, c}) + μ({a, c}, b) for all a, b, c in A.

n−ary generalizations of Poisson structures go under the name of Nambu struc-
tures. Indeed the first instances appeared in the work of the physicists Nambu [23],
which was considered from the algebraic point of view by Takhtajan in [27]. Nambu
proposed a generalized Hamiltonian system based on a ternary product, the Nambu-
Poisson bracket, which allows to use more that one hamiltonian. Quantization of
Nambu-Poisson brackets were investigated in [16], it was presented in a novel
approach of Zariski, this quantization is based on the factorization on R of poly-
nomials of several variables.

A twisted generalization, calledHom-Nambu algebras,was introduced in [7]. This
kind of algebras called Hom-algebras appeared as deformations of algebras of vector
fields using σ -derivations. The first examples dealt with q-deformations of Witt
and Virasoro algebras. Then Hartwig, Larsson and Silvestrov introduced a general
framework and studied Hom-Lie algebras [19], in which Jacobi identity is twisted by
a homomorphism. The corresponding associative algebras, called Hom-associative
algebras were introduced in [21]. Non-commutative Hom-Poisson algebras were
discussed in [30]. Ternary Hom-Nambu-Poisson algebras (non-commutative) were
studied in [3]. Likewise, n-ary algebras of Hom-type were introduced in [7], see also
[1, 2, 4, 28, 29]. The theory of induced ternary (Hom)-Nambu algebras by Hom-Lie
algebras and more generally induced (n + 1)-ary algebra by n-ary Nambu algebras
was developed in [4, 5, 20].

The aim of this paper is to construct ternary structures from binary structures,
more precisely we will give a construction procedure of ternary Nambu-Poisson
algebras from Poisson algebras. We explored examples in dimension 3, but it turns
out there is no ternaryNambu-Poisson algebrawhich canbe constructed fromPoisson
algebras. In dimension 4, we obtain several examples using Solvable Lie algebras
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classification [15]. The same procedure of construction is applied to construct ternary
Hom-Nambu-Poisson algebras from Hom-Poisson algebras.

2.2 Ternary Nambu-Poisson Algebras Induced by Poisson
Algebras

In this section we provide a way of constructing ternary Nambu-Poisson algebras
from Poisson algebras. We recall some basic definitions.

Definition 2.1 A Poisson algebra is a triple (A, μ, {·, ·}) consisting of a K-vector
space A, a bilinear maps μ : A × A → A and a binary bracket {·, ·} : A × A → A,
such that

(i) (A, μ) is a commutative binary associative algebra,
(ii) (A, {·, ·}) is a Lie algebra,
(iii) for all x, y, z ∈ A,

{μ(x, y), z} = μ(x, {y, z}) + μ({x, z}, y). (2.3)

Condition (2.3) is called the Leibniz identity.

A non-commutative Poisson algebras is defined by the same axioms except the
fact that the product is not assumed to be commutative.

Definition 2.2 A ternary Nambu algebra is a pair (A, {·, ·, ·}) consisting of a K-
vector space A, and a trilinear map {·, ·, ·} : A ⊗ A ⊗ A → A such that the following
Nambu identity and skew-symmetry

{x1, x2, {x3, x4, x5}} = {{x1, x2, x3}, x4, x5} + {x3, {x1, x2, x4}, x5}
+{x3, x4, {x1, x2, x5}},

{x1, x2, x3} = sgn(σ ){xσ(1), xσ(2), xσ(3)}, for all σ ∈ S3

holds for all x1, x2, x3, x4 ∈ A.

Definition 2.3 A ternary Nambu-Poisson algebra is a triple (A, μ, {·, ·, ·}) con-
sisting of a K-vector space A, a bilinear map μ : A × A → A and a trilinear map
{·, ·, ·} : A ⊗ A ⊗ A → A such that

(i) (A, μ) is a commutative binary associative algebra,
(ii) (A, {·, ·, ·}) is a ternary Nambu-Lie algebra,
(iii) the following Leibniz rule

{x1, x2, μ(x3, x4)} = μ(x3, {x1, x2, x4}) + μ({x1, x2, x3}, x4),

holds for all x1, x2, x3, x4 ∈ A.
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A non-commutative ternary Nambu-Poisson algebras is defined by the same axioms
except the fact that the product is not assumed to be commutative.

For simplicity, we choose the following notation for multiplication x · y instead
of μ(x, y).

Definition 2.4 Let ϕ : An → A be an n-linear map and let τ : A → K be a linear
map. We consider the map ϕτ : An+1 → A defined by

ϕτ (x1, ..., xn+1) =
n+1∑

k=1

(−1)kτ(xk)ϕ(x1, ..., x̂k, ..., xn+1),

where x̂k means that xk is excluded.

In particular

{x, y, z}τ = τ(x){y, z} + τ(y){z, x} + τ(z){x, y}.

We consider linear maps τ which have a generalized trace property.

Definition 2.5 We call a linear map τ : A → K a ϕ-trace (or trace function) if

τ(ϕ(x1, ..., xn)) = 0,

for all x1, ..., xn ∈ A.

Lemma 2.1 Let ϕ : An → A be a skew-symmetric n-linear map and τ : A → K a
linear map. Then ϕτ is an (n + 1)-linear totally skew-symmetric map. Furthermore,
if τ is a ϕ-trace map then τ is a ϕτ -trace map.

Wehave the following construction procedure that allow to obtain ternaryNambu-
Poisson algebras from binary brackets of Poisson algebras and trace functions.

Theorem 2.1 Let (A, ·, {·, ·}) be a unital Poisson algebra (resp. non-commutative
unital Poisson algebra), assume that τ is a {·, ·}-trace map on A, i.e. τ({x, y}) = 0
for all x, y ∈ A. Then (A, ·, {·, ·, ·}τ ) is a ternary Nambu-Poisson algebra if and
only if

(τ (x · y)1 − τ(y)x − τ(x)y) · ({z, u}) = 0. (2.4)

We say that the ternary Nambu-Poisson algebra (A, ·, {·, ·, ·}τ ) is induced by the
Poisson algebra (A, ·, {·, ·}).
Proof ([4, 20]) The ternary brackets {·, ·, ·}τ is skew-symmetric from Lemma 2.1,
then we only have to prove that the Nambu identity and Leibniz identity are satisfied.
First developing Nambu identity
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{x, y, {z, u, v}τ }τ − {{x, y, z}τ , u, v}τ − {z, {x, y, u}τ , v}τ − {z, u, {x, y, v}τ }τ = 0,

gives 36 terms, 12 of these vanishes because τ is a trace function, τ({x, y}) = 0 for
all x, y ∈ A. The remaining following 18 terms

τ(x)τ (z)({y, {u, v}} − {{y, u}, v} − {u, {y, v}}) +
τ(y)τ (z)({{u, v}, x} − {{u, x}, v} − {u, {v, x}}) +
τ(x)τ (u)({y, {v, z}} − {v, {y, z}} − {{y, v}, z}) +
τ(y)τ (u)({{v, z}, x} − {v, {z, x}} − {{v, x}, z}) +
τ(x)τ (v)({y, {z, u}} − {{y, z}, u} − {z, {y, u}}) +

τ(y)τ (v)({{z, u}, x} − {{z, x}, u} − {z, {u, x}})

vanish by using Jacobi identity. The remaining 6 terms which can be written as

τ(u)τ (z)({v, {x, y}} − {{x, y}, v}) +
τ(u)τ (v)({{x, y}, z} − {z, {x, y}}) +

τ(v)τ (z)({{x, y}, u} − {u, {x, y}})

vanish using the skew-symmetry of the brackets {·, ·}. Hence the Nambu identity is
satisfied.

Secondly we shall prove the Leibniz identity which is written as

{x · y, z, u}τ = x · {y, z, u}τ + {x, z, u}τ · y.

By expanding, the left hand side is

LHS = τ(x · y){z, u} + τ(z){u, x · y} + τ(u){x · y, z}
= τ(x · y){z, u} + τ(z)(x · {u, y} + {u, x} · y)
+ τ(u)(x · {y, z} + {x, z} · y))
= τ(x · y){z, u} + τ(z)x · {u, y} + τ(z){u, x} · y
+ τ(u)x · {y, z} + τ(u){x, z} · y,

and the right hand side is

RHS = x · τ(y){z, u} + x · τ(z){u, y} + x · τ(u){y, z}
+ τ(x){z, u} · y + τ(z){u, x} · y + τ(u){x, z} · y.

Hence, Leibniz identity with respect to ternary bracket is satisfied if and only if
condition (2.4) holds.
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Remark 2.1 If the algebra (A, ·) is noncommutative, then Condition (2.4) should
write

τ(x · y){z, u} = τ(y)x · {z, u} + τ(x){z, u} · y, (2.5)

for all x, y, z, u ∈ A.

Corollary 2.1 If (A, ·) is unital and there exist z ∈ {A, A} such that x · z �= 0 for
all x ∈ A, then

τ(x · y)1 − τ(y)x − τ(x)y = 0. (2.6)

Proposition 2.1 Let (A, ·, {·, ·}) be a Poisson algebra and τ be a {·, ·}-trace map.
If there exists z ∈ {A, A} such that x · z �= 0 for all x ∈ A, and if in addition (A, ·)
is unital, then τ(x) = 0 for all x ∈ A.

Proof Since (A, ·) is a unital commutative algebra and there exists z ∈ {A, A} such
that x · z �= 0 for all x ∈ A, then

(2.4) ⇔ τ(x · y)1 − τ(y)x − τ(x)y = 0.

Let x �= 1 and set y = x , then

τ(x · x)1 − 2τ(x)x = 0.

Since x and 1 are linearly independent, it follows τ(x · x) = 0 and τ(x) = 0 for all
x in A.

Proposition 2.2 Let (A, ·, {·, ·}) be a Poisson algebra which is unital, τ be a {·, ·}-
trace map and there exists z ∈ {A, A} such that x · z �= 0 for all x ∈ A. If e is an
idempotent non proportional to 1, then τ(e) = 0.

Proof Let (A, ·, {·, ·}) be a Poisson algebra, τ be a {·, ·}-trace map and there exists
z ∈ {A, A} such that x · z �= 0 for all x ∈ A. Then from (2.1) and Corollary 2.1

τ(x · y)1 − τ(y)x − τ(x)y = 0. (2.7)

If e is an idempotent i.e. e2 = e, then (2.7) may be written as

τ(e · e)1 − τ(e)e − τ(e)e = 0,

Since
τ(e)1 − 2τ(e)e = 0,

we get
τ(e)(1 − 2e) = 0,

which imply τ(e) = 0.
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Remark 2.2 In dimension 3, τ(x) = 0 for all x ∈ A, that is all induced ternary
Nambu-Poisson algebras from 3-dimensional Poisson algebras are trivial.

2.2.1 Examples

In this section we provide two examples of ternary Nambu-Poisson algebras induced
by Poisson algebras using Theorem 2.1. These examples are 5-dimensional and 6-
dimensional respectively. The construction of binary Poisson algebras were based
on the classification of nilpotent Lie algebras in dimension five and six [14].

Example 2.1 Let (A, ·, {·, ·}) be a Poisson algebra defined over a 5-dimensional
vector space A spanned by {e1, e2, e3, e4, e5}. The binary bracket which is skew-
symmetric is defined by

{e1, e2} = e3, {e1, e3} = e5, {e2, e4} = e5,

and the commutative multiplication is defined by

e1 · e1 = ae5, e1 · e2 = be5, e1 · e4 = ce5,

e2 · e2 = de5, e2 · e4 = f e5, e4 · e4 = ge5,

where a, b, c, d, f, g are parameters in K. The other products (resp. brackets) are
obtained by commutativity (resp. skew-symmetry) or are equal to zero. Defining

τ(e1) = γ1, τ (e2) = γ2, τ (e2) = γ3, τ (e3) = τ(e5) = 0,

for any γ1, γ2, γ3 ∈ K, condition (2.4) is satisfied. Thus according toTheorem2.1,we
obtain a ternary Nambu-Poisson algebra defined by the following ternary brackets

{e2, e1, e3}τ = γ2e5,

{e1, e2, e4}τ = γ1e5 + γ3e3,

{e1, e3, e4}τ = γ3e5.

Other brackets are obtained by skew-symmetry or are zero. Then (A, ·, {·, ·, ·}τ ) is
the induced ternary Nambu-Poisson algebra.

Example 2.2 Let (A, ·, {·, ·}) be a Poisson algebra defined over a 6-dimensional
vector space A spanned by {e1, e2, e3, e4, e5, e6}. The binary bracket which is skew-
symmetric is defined by

{e1, e2} = e3, {e1, e3} = e4,

{e1, e4} = e6, {e2, e3} = e6,

{e2, e5} = e6,
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and the commutative multiplication is defined by

e1 · e1 = ae6, e1 · e2 = be6, e1 · e5 = ce6,

e2 · e2 = de6, e2 · e5 = f e6, e5 · e5 = ge6,

where a, b, c, d, f, g are parameters in K. The other products (resp. brackets) are
obtained by commutativity (resp. skew-symmetry) or are equal to zero.

Defining τ(e1) = γ1, τ (e2) = γ2, τ (e5) = γ3, τ (e3) = τ(e4) = τ(e6) = 0, for
any γ1, γ2, γ3 ∈ K, the condition (2.4) is satisfied. Thus, according to Theorem 2.1
we obtain a ternaryNambu-Poisson algebra defined by the following ternary brackets

{e1, e2, e3}τ = γ1e6 − γ2e4,

{e1, e2, e4}τ = −γ2e6,

{e1, e2, e5}τ = γ1e6 + γ3e3,

{e1, e3, e5}τ = γ3e4,

{e1, e4, e5}τ = γ3e6,

{e2, e3, e5}τ = γ3e6.

The other brackets are obtained by skew-symmetry or are equal to zero.
Then (A, ·, {·, ·, ·}τ ) is the induced ternary Nambu-Poisson algebra.

We have also found an example of a non-commutative ternary Nambu-Poisson alge-
bra induced by a non-commutative Poisson algebra .

Example 2.3 Let (A, ·, {·, ·}) be a non-commutative Poisson algebra, defined over
a 3-dimensional vector space A spanned by {e1, e2, e3}. The binary bracket which is
skew-symmetric is defined by

{e3, e4} = e1, {e1, e3} = e2,

and the non-commutative multiplication is defined by

e4 · e3 = ae2, e4 · e4 = be2,

where a, b are parameters in K. The other brackets are obtained by skew-symmetry
or are equal to zero. The other product are equal to zero. Defining

τ(e1) = τ(e2) = 0, τ (e3) = γ1, τ (e4) = γ2,

for all γ1, γ2 ∈ K the condition (2.4) is satisfied. Thus, according to Theorem 2.1, we
obtain a ternary Nambu-Poisson algebra defined by the following ternary brackets

{e1, e3, e4}τ = γ2e2.



2 On Ternary (Hom-)Nambu-Poisson Algebras 25

The other brackets are obtained by skew-symmetry or are equal to zero. Then
(A, ·, {·, ·, ·}τ ) is the induced ternary Nambu-Poisson algebra.

2.2.2 Constructing Poisson and Ternary Nambu-Poisson
Algebras from Solvable Lie Algebras

We consider the 4-dimensional Lie algebra with basis {e1, e2, e3, e4} brackets given
by

{e1, e4} = ae3, {e3, e4} = e1, {e1, e3} = e2,

where a is a parameter inK, with all the other brackets obtained by skew-symmetry
or are equal to zero. The products given a structure of Poisson algebra are of the form

with a = 0 with a �= 0
e3 · e3 = αe2 e4 · e4 = αe2
e3 · e4 = βe2
e4 · e4 = γ e2

where α, β, γ are parameters in K.

The other products are obtained by commutativity or are equal to zero. We set

τ(e1) = τ(e2) = τ(e3) = 0, τ (e4) = γ4,

for all γ4 ∈ K. Using Theorem 2.1, we obtain the ternary Nambu-Poisson algebra
defined by the following ternary bracket

{e1, e3, e4}τ = γ4e2.

The other brackets are obtained by skew-symmetry or are equal to zero.

2.3 Ternary Hom-Nambu-Poisson Algebras Induced
by Hom-Poisson Algebras

In this section we consider the Hom-case of Poisson algebras. We provide a result
which allows to construct ternary Hom-Nambu-Poisson algebras induced by Hom-
Poisson algebras.

Definition 2.6 A Hom-associative algebra is a triple (A, μ, α), where A is a vector
space, μ : A × A → A and α : A → A are maps satisfying the Hom-associativity
condition, that is
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μ(α(x), μ(y, z)) = μ(μ(x, y), α(z)) for all x, y, z ∈ A.

Definition 2.7 AHom-Lie algebra is a triple (A, [·, ·], α), where A is a vector space,
[·, ·] : A × A → A andα : A → A aremaps such that the bracket is skew-symmetric
and satisfying the Hom-Jacobi condition, that is

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0 for all x, y, z ∈ A.

Remark 2.3 When α is the identity map, we recover the classical associativity and
Jacobi conditions, then usual associative and Lie algebras.

Definition 2.8 A Hom-Poisson algebra is a quadruple (A, μ, {·, ·}, α) consisting
of a vector space A, bilinear maps μ : A × A → A and {·, ·} : A × A → A, and a
linear map α : A → A such that:

(i) (A, μ, α) is a commutative binary Hom-associative algebra,
(ii) (A, {·, ·}, α) is a Hom-Lie algebra,
(iii) and for all x, y, z ∈ A,

{μ(x, y), α(z)} = μ(α(x){y, z}) + μ({x, z}α(y)). (2.8)

The third condition is called Hom-Leibniz identity.

A non-commutative Hom-Poisson algebra is given by the same definition except the
fact that the product is not assumed to be commutative.

A Hom-Poisson algebra (A, μ, {·, ·}, α) is said multiplicative if

α({x, y}) = {α(x), α(y)} and α ◦ μ = μ ◦ α⊗2.

Remark 2.4 When the Hom-algebra is multiplicative, we also say that α is multi-
plicative with respect to μ or an algebra morphism.

Remark 2.5 We recover the classical Poisson algebras when α = I d.

The following construction, called Yau Twist, provides a way to construct a Hom-
Poisson algebra using a Poisson algebra and a Poisson algebra morphism.

Theorem 2.2 Let A = (A, μ, {·, ·})be aPoisson algebra andα : A → A bea linear
map which is a Poisson algebra morphism. Then

Aα = (A, μα = α ◦ μ, {·, ·}α = α ◦ {·, ·}, α)

is a Hom-Poisson algebra.

Definition 2.9 ([7]) A ternary Hom-Nambu algebra is a triple (A, {·, ·, ·}, α̃) con-
sisting of aK-vector space A, a ternary map {·, ·, ·} : A × A × A → A and a pair of
linear maps α̃ = (α1, α2) where α1, α2 : A → A, satisfying
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{α1(x1), α2(x2), {x3, x4, x5}} = {{x1, x2, x3}, α1(x4), α2(x5)}+
{α1(x3), {x1, x2, x4}, α2(x5)} + {α1(x3), α2(x4), {x1, x2, x5}}. (2.9)

We call the above condition the ternary Hom-Nambu identity.

Definition 2.10 A ternary Hom-Nambu-Poisson algebra (A, μ, β, {·, ·, ·}, α̃) is a
tuple consisting of a vector space A, a ternary operation {·, ·, ·} : A × A × A → A,
a binary operationμ : A × A → A, a pair of linearmaps α̃ = (α1, α2)where α1, α2 :
A → A, and a linear map β : A → A such that:

(i) (A, μ, β) is a binary commutative Hom-associative algebra,
(ii) (A, {·, ·, ·}, α̃) is a ternary Hom-Nambu-Lie algebra,
(iii) {μ(x1, x2), α1(x3), α2(x4)} = μ(β(x1), {x2, x3, x4}) + μ({x1, x3, x4}, β(x2)).

A non-commutative Hom-Nambu-Poisson algebras is defined with same axioms
except the fact that the product is non-commutative.

Remark 2.6 We recover the classical ternary Nambu-Poisson algebra when α1 =
α2 = β = I d.

In the sequel we will mainly be interested in the class of ternary Hom-Nambu-
Poisson algebras where α = α1 = α2 = β, for which we refer by a quadruple
(A, μ, {·, ·, ·}, α).

Definition 2.11 Let (A, μ, {·, ·, ·}, α) be a ternary Hom-Nambu-Poisson algebra. It
is said to be multiplicative if

α({x1, x2, x3}) = {α(x1), α(x2), α(x3)},
α ◦ μ = μ ◦ α⊗2.

If in addition α is bijective then it is called regular.

Definition 2.12 Let (A, μ, {·, ·, ·}, α) and (A′, μ′, {·, ·, ·}′, α′) be two ternary Hom-
Nambu-Poisson algebras. A linear map f : A → A′ is a morphism of ternary Hom-
Nambu-Poisson algebras if it satisfies for all x1, x2, x3 in A :

f ({x1, x2, x3}) = { f (x1), f (x2), f (x3)}′, (2.10)

f ◦ μ = μ′ ◦ f ⊗2, (2.11)

f ◦ α = α′ ◦ f. (2.12)

It said to be a weak morphism if hold only the two first conditions.

We derive a construction procedure of ternary Hom-Nambu-Poisson algebra from
binary brackets of a Hom-Poisson algebras and a trace function satisfying some
compatibility conditions.

Theorem 2.3 Let (A, ·, {·, ·}, α) be a Hom-Poisson algebra. Assume that τ is a
{·, ·}-trace on A satisfying
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τ(α(x))τ (y) = τ(x)τ (α(y)), (2.13)

τ(x · y)α({z, u}) = α(x) · τ(y){z, u} + τ(x){z, u} · α(y), (2.14)

τ(α(z)) = τ(z), (2.15)

for all x, y, z, u ∈ A.. Then (A, ·, {·, ·, ·}τ , α) is a ternaryHom-Nambu-Poisson alge-
bra, and we say that it is induced by the Hom-Poisson algebra.

Proof From Lemma 2.1, {·, ·, ·}τ is skew-symmetric and the Hom-Nambu identity
is proved using condition 2.13, see [4] for the details. One only has to prove that the
Hom-Leibniz identity is satisfied. The Hom-Leibniz identity is:

{x · y, α(z), α(u)}τ = α(x) · {y, z, u}τ + {x, z, u}τ · α(y).

By developing the left hand side, we obtain

LHS = τ(x · y){α(z), α(u)} + τ(α(z)){α(u), x · y} + τ(α(u)){x · y, α(z)}
= τ(x · y){α(z), α(u)} + τ(α(z))(α(x) · {u, y} + {u, x} · α(y))

+ τ(α(u))(α(x) · {y, z} + {x, z} · α(y))

= τ(x · y)α({z, u}) + τ(α(z))α(x) · {u, y} + τ(α(z)){u, x} · α(y)

+ τ(α(u))α(x) · {y, z} + τ(α(u)){x, z} · α(y),

and the right hand side is

RHS = α(x) · τ(y){z, u} + α(x) · τ(z){u, y} + α(x) · τ(u){y, z}
+ τ(x){z, u} · α(y) + τ(z){u, x} · α(y) + τ(u){x, z} · α(y).

Using (2.14) and (2.15), the terms on the RHS cancel with those of the LHS. Hence,
the Hom-Leibniz identity for the ternary bracket is satisfied, if and only if conditions
(2.14) and (2.15) holds.

2.3.1 Examples

Using solvable 4-dimensional Lie algebras [5, 15] and the twisting principal, wewere
able to construct 4-dimensional Hom-Poisson algebras. Therefore, using the method
described in Theorem 2.3, we provide examples of ternary Hom-Nambu-Poisson
algebras induced by Hom-Poisson algebras.
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Example 2.4 Let (A, ·, {·, ·}, α) be a Hom-Poisson algebra defined over a 4-
dimensional vector space A spanned by {e1, e2, e3, e4}. The binary bracket which
is skew-symmetric is defined by

{e2, e4} = f 22 e3,

and the commutative multiplication is defined by

e2 · e2 = a f 22 e3, e2 · e4 = b f 22 e3, e4 · e4 = c f 22 e3,

where a, b, c, fi ∈ K are parameters. The other products (resp. brackets) are obtained
by commutativity (resp. skew-symmetry) or are equal to zero. The linear map is
defined by

α(e1) = e1 + f1e3, α(e2) = f2e2 + f3e3,

α(e3) = f 22 e3, α(e4) = f4e3 + f2e4,

where f1, f2, f3, f4 are parameters in K, with f2 �= 0.
Defining

τ(e1) = γ, τ (e2) = τ(e3) = τ(e4) = 0,

for any γ ∈ K, the conditions (2.13), (2.14) and (2.15) are satisfied. Thus according
to Theorem 2.3, we obtain a ternary Hom-Nambu-Poisson algebra defined by the
following ternary bracket

{e1, e2, e4}τ = γ f 22 e3.

The other brackets are obtained by skew-symmetric or are equal to zero.
We say that (A, ·, {·, ·, ·}τ , α) is the ternaryHom-Nambu-Poisson algebra induced

by the Hom-Poisson algebra.

Example 2.5 Let (A, ·, {·, ·}, α) be a Hom-Poisson algebra defined over a 4-dimen-
sional vector space A spanned by {e1, e2, e3, e4}. The binary bracket which is skew-
symmetric is defined by

{e3, e4} = λe1 + βe2, {e1, e3} = e2,

for all λ, β ∈ K, and the commutative multiplication is defined by

e3 · e3 = ae2, e4 · e4 = be2,

for all a, b ∈ K. The other products (resp. brackets) are obtained by commutativity
(resp. skew-symmetric) or are equal to zero. We set also

α(e1) = λe1 + βe2, α(e2) = e2,

α(e3) = αe1 + δe2 + λe3, α(e4) = −ρλe1 + ωe2 + e4,
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where λ, β, δ, ρ, ω are parameters in K. Defining

τ(e1) = τ(e2) = τ(e3) = 0, τ (e4) = γ,

for any γ ∈ K, conditions (2.13), (2.14) and (2.15) are satisfied. Thus according
to Theorem 2.3, we obtain a ternary Hom-Nambu-Poisson algebra defined by the
following ternary brackets

{e1, e3, e4}τ = γ e2.

The other brackets are obtained by skew-symmetric or are equal to zero.

Now we consider the 3-dimensional Lie algebra twisting sl(2) using Jackson
derivation.

Example 2.6 (Jackson sl(2)) The Jackson sl(2) is a q-deformation of the classical
algebra sl(2). It carries a Hom-Lie algebra structure but not a Lie algebra structure.
It is defined with respect to a basis {x1, x2, x3} by the bracket and a linear map α

such that

[x1, x2] = −2qx2, [x1, x3] = 2x3, [x2, x3] = −1 + q

2
x1,

α(x1) = x1, α(x2) = q + 1

2
x2, α(x3) = q−1 + 1

2
x3,

where q is a parameter in K. If q = 1 we recover the classical sl(2). This algebra is
equipped with a non-commutative Hom-Poisson structure if q = −1 and it is given
by the following non-commutative multiplication

x1 · x2 = ax1, x2 · x1 = −ax2, x1 · x3 = ax3,

where a is a parameter in K. If q �= −1 the multiplication is null. From this non-
commutative Hom-Poisson algebra, we cannot construct a ternary bracket because
the condition of Theorem 2.3 is not satisfied for q = −1.

Theorem 2.4 Let (A, ·, {·, ·, ·}τ ) be a ternary Nambu-Poisson algebra induced by
a Poisson algebra (A, ·, {·, ·}), and α a Poisson algebra endomorphism α : A →
A i.e. α(x · y) = α(x) · α(y) and α ◦ {x, y, z}τ = {α(x), α(y), α(z)}τ . Then (A, ·α,

{·, ·, ·}τ,α, α) is a Hom-Nambu-Poisson algebra.

Proof See [3].

Example 2.7 Let (A, ·, {·, ·}) be aPoisson algebra defined over a 4-dimensional vec-
tor space A spanned by {e1, e2, e3, e4}. The binary bracket which is skew-symmetric
is defined by

{e3, e4} = e1, {e1, e3} = e2,
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and the commutative multiplication by

e3 · e3 = ae2, e3 · e4 = be2, e4 · e4 = ce2,

for all a, b, c ∈ K. The other products (resp. brackets) are obtained by commutativity
(resp. skew-symmetry) or are equal to zero. The endomorphism α is defined by

α(e1) = e1 + a1e2, α(e2) = e2,

α(e3) = a2e1 + a3e2 + e3, α(e4) = −a1e1 + a4e2 + e4,

where a1, a2, a3, a4 are parameters in K. Hence, (A, ·, {·, ·}, α) is a Hom-Poisson
algebra. We set

τ(e1) = τ(e2) = τ(e3) = γ1, τ (e4) = γ2,

for any γ1, γ2 ∈ K. Using Theorems2.1 and 2.3, we obtain a ternary Nambu-Poisson
algebra (A, ·, {·, ·, ·}τ ) and a ternary Hom-Nambu-Poisson algebra (A, ·, {·, ·, ·}τ , α)

respectively defined by the following ternary brackets

{e1, e3, e4}τ = γ2e2.

The other brackets are obtained by skew-symmetry or are equal to zero.
The following diagram expresses the relationships between Twisting principle

and the construction of induced ternary Hom-Nambu-Poisson algebras:

(A, ·, {·, ·}) α

τ

(A, ·, {·, ·}, α)

τ

(A, ·, {·, ·, ·}τ ) α
(A, ·, {·, ·, ·}τ , α)
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Hom-Lie algebras and quasi-Hom-Lie algebras were introduced first in 2003 in
[45] where a general method for construction of deformations and discretizations of
Lie algebras of vector fields based on twisted derivations obeying twisted Leibniz
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q-deformations of Witt and Visaroro and in related q-deformed algebras discovered
in 1990’th in string theory, vertex models of conformal field theory, quantum field
theory and quantum mechanics, and also in development of q-deformed differential
calculi and q-deformed homological algebra [4, 38–42, 46, 48, 59–61]. The central
extensions and cocycle conditions for general quasi-Hom-Lie algebras and Hom-
Lie algebras, generalizing in particular q-deformedWitt and Virasoro algebras, have
been first considered in [45, 55] and for graded color quasi-Hom-Lie algebras in [74].
General quasi-Lie and quasi-Leibniz algebras introduced in [56] and color quasi-Lie
and color quasi-Leibniz algebras introduced in [57] in 2005, include the Hom-Lie
algebras, the quasi-Hom-Lie algebras as well as the color Hom-Lie algebras, quasi-
Hom-Lie color algebras, quasi-Hom-Lie superalgebras and Hom-Lie superalgebras,
and color quasi-Leibniz algebras, quasi-Leibniz superalgebras, quasi-Hom-Leibniz
superalgebras and Hom-Leibniz algebras. Hom-Lie algebras and Hom-Lie super-
algebras and more general color quasi-Lie algebras interpolate on the fundamental
level of defining identities between Lie algebras, Lie superalgebras, color Lie alge-
bras and related non-associative structures and their deformations, quantumdeforma-
tions and discretizations, and thus might be useful tool for unification of methods and
models of classical and quantum physics, symmetry analysis and non-commutative
geometry and computational methods and algorithms based on general non-uniform
discretizations of differential and integral calculi. BinaryHom-algebra structures typ-
ically involve a bilinear binary operation and one or several linear unary operations
twisting the defining identities of the structure in some special nontrivial ways, so
that the original untwisted algebraic structures are recovered for the specific twisting
linear maps. In quasi-Lie algebras and quasi-Hom-Lie algebras, the Jacobi identity
contains in general six triple bracket terms twisted in special ways by families of
linear maps, and the skew-symmetry is also in general twisted by a family of linear
maps. Hom-Lie algebras is a subclass of quasi-Lie algebras with the bilinear product
satisfying the Jacobi identity containing only three triple bracket terms twisted by a
single linear map and the usual non-twisted skew-symmetry identity. Hom-Leibniz
algebras arise when skew-symmetry is not required, while the Hom-Jacobi identity is
written as Hom-Leibniz identity. Lie algebras and Leibniz algebras as a special case
of Hom-Leibniz algebras are obtained for the trivial choice of the twisting linear map
as the identity map on the underlying linear space. The Hom-Lie algebras, Hom-Lie
superalgebras, Hom-Leibniz algebras and Hom-Leibniz superalgebras with twist-
ing linear map different from the identity map, are rich and complicated algebraic
structureswith classifications, deformations, representations,morphisms, derivations
and homological structures being fundamentally dependent on joint properties of the
twisting maps as a unary operations and bilinear binary product intrinsically linked
by Hom-Jacobi or Hom-Leibniz identities.

Hom-Lie admissible algebras have been considered first in [66], where the Hom-
associative algebras and more general G-Hom-associative algebras including the
Hom-Vinberg algebras (Hom-left symmetric algebras),Hom-pre-Lie algebras (Hom-
right symmetric algebras), and some other new Hom-algebra structures have been
introduced and shown to be Hom-Lie admissible, in the sense that the operation
of commutator as new product in these Hom-algebras structures yields Hom-Lie
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algebras. Furthermore, in [66], flexible Hom-algebras and Hom-algebra general-
izations of derivations and of adjoint derivations maps have been introduced, and
the Hom-Leibniz algebras appeared for the first time, as an important special sub-
class of quasi-Leibniz algebras introduced in [56] in connection to general quasi-Lie
algebras following the standard Loday’s conventions for Leibniz algebras (i.e. right
Loday algebras) [63]. In [66], moreover the investigation of classification of finite-
dimensional Hom-Lie algebras have been initiated with construction of families of
the low-dimensional Hom-Lie algebras. Since [45, 55–58, 66], Hom-algebra struc-
tures expanded into a popular area providing a new broad framework for establishing
fundamental links between deformations and quantum deformations of associative
algebras, various classes of non-associative algebras, super-algebras, color algebras,
n-ary algebraic structures, non-commutative differential calculus and homological
algebra constructions for associative and non-associative structures. Quadratic Hom-
Lie algebras have been considered in [35] and representation theory, cohomology
and homology theory of Hom-Lie algebras have been considered in [7, 8, 72, 78].
Investigation of color Hom-Lie algebras and Hom-Lie superalgebras and n-ary gen-
eralizations expanded [1–3, 5, 6, 9–27, 36, 44, 51–53, 62, 64, 65, 67, 68, 73–77,
80].

At the same time, in recent years, the theory and classification of Leibniz algebras,
and also Leibniz superalgebras extending Leibniz algebras in a similar way as Lie
superalgebras generalize Lie algebras, continued being actively investigated moti-
vated in part by applications in Physics and by graded homological algebra structures
of non-commutative differential calculi and non-commutative geometry [37, 47]. In
[34], the description of centroid and derivations of low-dimensional Leibniz algebras
using classification results is introduced. Note that a classification of 2-dimensional
Leibniz algebras have been given by Loday in [63]. In dimension three there are four-
teen isomorphism classes, and the list can be found in [31, 32, 71]. Furthermore, a
classification of low-dimensional complex solvable Leibniz algebras can be found in
[30, 31, 33, 49, 50, 50], and of two and three-dimensional complex Leibniz algebra
is given in [29, 63].

The purpose of the present work is to study the classification of multiplicative
2-dimensional Hom-Leibniz algebras and to investigate centroids and derivations of
Hom-Leibniz algebras and superalgebras and the concepts of left, right and symmet-
ric (two-sided)Hom-Leibniz superalgebras. In Sect. 3.2, the left, right and symmetric
(two-sided) Hom-Leibniz algebras and superalgebras generalizing the well known
left, right and symmetric (two-sided) Leibniz algebras are defined and some of their
properties are reviewed. In Section 3.5, we provide classification of multiplicative 2-
dimensional Hom-Leibniz algebras. In Sect. 3.4, we review centroids and derivations
of Hom-Leibniz superalgebras and some of their properties. In Sect. 3.6, we describe
the algorithm to find centroids and derivations of Hom-Leibniz algebras, apply it to
the classification of 2-dimensional Hom-Leibniz algebras from the previous section
and use properties of the centroids of Hom-Leibniz algebras to categorize the algebra
into having small and not small centroids.
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3.2 Hom-Leibniz Algebras and Superalgebras

For exposition clarity, we assume throughout this article that all linear spaces are
over a fieldK of characteristic different from 2, and just note that many of the results
in this article hold as formulated or just with minor modifications for any field.
Multilinear maps f : V1 × · · · × Vn → W on finite direct products and linear maps
F : V1 ⊗ · · · ⊗ Vn → W , on finite tensor products of linear spaces are identified via
F(v1 ⊗ · · · ⊗ vn) = f (v1, . . . , vn). A linear space V is said to be a G-graded by an
abelian group G if V = ⊕

g∈G
Vg for a family {Vg}g∈G of linear subspaces of V . For

each g ∈ G, the elements of Vg are said to be homogeneous of degree g ∈ G, and
the set of homogeneous elements is the union H(V ) = ⋃

g∈G
Vg all the spaces Vg of

homogenous elements of degree g for all g ∈ G. For two G-graded linear spaces
V = ⊕

g∈G
Vg and V ′ = ⊕

g∈G
V ′
g , a linear mapping f : V → V ′ is called homogeneous

of degree d if f (Vg) ⊆ V ′
g+d , for all g ∈ G. The homogeneous linear maps of degree

zero (even maps) are those homogeneous linear maps satisfying f (Vg) ⊆ V ′
g for

any g ∈ G. In the Z2-graded linear spaces V = V0 ⊕ V1, also called superspaces,
the elements of V| j |, | j | ∈ Z2, are said to be homogenous of parity | j |. The space
End(V ) isZ2-gradedwith a direct sum End(V ) = (End(V ))0 ⊕ (End(V ))1 where
(End(V ))| j | = { f ∈ End(V ) | f (Vi ) ⊂ Vi+ j }. The elements of (End(V )) are said
to be homogenous of parity | j |.

An algebra (A, ·) is called G-graded if its linear space is G-graded A = ⊕

g∈G
Ag ,

and Ag · Ah ⊆ Ag+h for all g, h ∈ G. Homomorphisms of G-graded algebras A
and A′ are homogeneous algebra morphisms of degree 0G (even maps). Hom-
superalgebras are triples (A, μ, α) consisting of a Z2-graded linear space (super-
space) A = A0 ⊕ A1, an even bilinear map μ : A × A → A, and an even linear map
α : A → A. An even linear map f : A → A′ is said to be a weak morphism of hom-
superalgebras if it is algebra structures homomorphism ( f ◦ μ = μ′ ◦ ( f ⊗ f )), and
a morphism of hom-superalgebras if moreover f ◦ α = α′ ◦ f . The important point
for understanding of difference between algebras and Hom-algebras is that the prop-
erties preserved by the morphisms of specific Hom-algebras do not need to be pre-
served by all weak morphisms between these Hom-algebras, and the classifications
of Hom-algebras up to weak isomorphisms (all algebra isomorphisms) and of Hom-
algebras up to isomorphisms of Hom-algebras differ substantially in that the set of
isomorphisms intertwining the twisting maps α and α′ often is a proper subset of all
isomorphisms, and thus classification of Hom-algebras up to isomorphism of Hom-
algebras of different types typically contains much more isomorphism classes than
weak isomorphism classes.

In any Hom-superalgebra (A = A0 ⊕ A1, μ, α),

μ(A0, A0) ⊆ A0, μ(A1, A0) ⊆ A1, μ(A0, A1) ⊆ A1, μ(A1, A1) ⊆ A0.
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Hom-subalgebras (graded Hom-subalgebras) of Hom-superalgebra (A, μ, α) are
Z2-graded linear subspaces I = (I ∩ A0) ⊕ (I ∩ A1) of A obeying α(I ) ⊆ I and
μ(I, I ) ⊆ I . Hom-associator on Hom-superalgebra (A = A0 ⊕ A1, μ, α) is the
even trilinear map asα,μ = μ ◦ (μ ⊗ α − α ⊗ μ) : A × A × A → A, acting on ele-
ments by asα,μ(x, y, z) = μ(μ(x, y), α(z)) − μ(α(x), μ(y, z)), or asα,μ(x, y, z) =
(xy)α(z) − α(x)(yz) in juxtaposition notation xy = μ(x, y). Since

|asα,μ(x, y, z))| = |x | + |y| + |z|

for x, y, z ∈ H(A) = A0 ∪ A1, in any Hom-superalgebra (A = A0 ⊕ A1, μ, α) the
following inclusions hold:

asα,μ(A0, A0, A0) ⊆ A0, asα,μ(A1, A1, A0) ⊆ A0,

asα,μ(A1, A0, A1) ⊆ A0, asα,μ(A0, A1, A1) ⊆ A0,

asα,μ(A1, A0, A0) ⊆ A1, asα,μ(A0, A1, A0) ⊆ A1,

asα,μ(A0, A0, A1) ⊆ A1, asα,μ(A1, A1, A1) ⊆ A1.

Definition 3.1 ([45, 66]) Hom-Lie algebras are triples (G, [·, ·], α) consisting of a
linear space G over a field K, a bilinear map [·, ·] : G × G → G and a K-linear map
α : G → G satisfying for all x, y, z ∈ G,

[x, y] = −[y, x], Skew-symmetry (3.1)

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0. Hom-Jacobi identity (3.2)

Hom-Lie algebra is called a multiplicative Hom-Lie algebra if α is an algebra
morphism, α([·, ·]) = ([α(.), α(.)]), meaning that α([x, y]) = [α(x), α(y)] for any
x, y ∈ G. Lie algebras are a very special subclass of multiplicative Hom-Lie algebras
obtained for α = id in Definition 3.1.

Definition 3.2 ([5, 57]) Hom-Lie superalgebras are triples (G, [·, ·], α) which con-
sist of Z2-graded linear space G = G0 ⊕ G1, an even bilinear map [·, ·] : G × G → G
and an even linearmap α : G → G satisfying the super skew-symmetry andHom-Lie
super Jacobi identities for homogeneous elements x, y, z ∈ H(G),

[x, y] = −(−1)|x ||y|[y, x], Super skew-symmetry (3.3)

(−1)|x ||z|[α(x), [y, z]] + (−1)|y||x |[α(y), [z, x]]
+ (−1)|z||y|[α(z), [x, y]] = 0. Super Hom-Jacobi identity (3.4)

Hom-Lie superalgebra is called multiplicative Hom-Lie superalgebra, if α is an
algebra morphism, α([x, y]) = [α(x), α(y)] for any x, y ∈ G.
Remark 3.1 In anyHom-Lie superalgebra, (G0, [·, ·], α) is a Hom-Lie algebra since
[G0,G0] ∈ G0 and α(G0) ∈ G0 and (−1)|a||b| = (−1)0 = 1 for a, b ∈ G0. Thus, Hom-
Lie algebras can be also seen as special class of Hom-Lie superalgebras when
G1 = {0}.
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Remark 3.2 From the point of view of Hom-superalgebras, Lie superalgebras is
a special subclass of multiplicative Hom-Lie superalgebras obtained when α = id
in Definition 3.2 which becomes the definition of Lie superalgebras as Z2-graded
linear spaces G = G0 ⊕ G1, with a graded Lie bracket [·, ·] : G × G → G of degree
zero, that is [·, ·] is a bilinear map obeying [Gi ,G j ] ⊂ Gi+ j(mod2), and for x, y, z ∈
H(G) = G0 ∪ G1,

[x, y] = −(−1)|x ||y|[y, x], Super skew-symmetry

(−1)|x ||z|[x, [y, z]] + (−1)|y||x |[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0.

Super Jacobi identity

In super skew-symmetric superalgebras, the super Hom-Jacobi identity can be pre-
sented in the form of super Leibniz rule for the maps adx = [x, ·] : G → G,

[x, [y, z]] = [[x, y], z] + (−1)|x ||y|[y, [x, z]].

Remark 3.3 Hom-Lie superalgebras are substantially different from Lie superalge-
bras, as all algebraic structure properties, morphisms, classifications and deforma-
tions become fundamentally dependent on the joint structure and properties of unary
operation given by the linear map α and the bilinear product [·, ·] intricately linked
via the α-twisted super-Jacobi identity (3.4).

In super skew-symmetric Hom-superalgebras, the super Hom-Jacobi identity can
be presented in the form of super Hom-Leibniz rule for adx = [x, ·] : G → G,

[α(x), [y, z]] = [[x, y], α(z)] + (−1)|x ||y|[α(y), [x, z]] (3.5)

since, by super skew-symmetry (3.3), the following equalities are equivalent:

[α(x), [y, z]] = [[x, y], α(z)] + (−1)|x ||y|[α(y), [x, z]],
[α(x), [y, z]] − [[x, y], α(z)] − (−1)|x ||y|[α(y), [x, z]] = 0,

[α(x), [y, z]] + (−1)|z|(|x |+|y|)[α(z), [x, y]] − (−1)|x ||y|[α(y), [x, z]] = 0,

[α(x), [y, z]] + (−1)|z|(|x |+|y|)[α(z), [x, y]] − (−1)|x ||y|[α(y), [x, z]] = 0,

[α(x), [y, z]] + (−1)|z|(|x |+|y|)[α(z), [x, y]]
+ (−1)|x ||y|(−1)|z||x |[α(y), [z, x]] = 0,

(−1)|z||x |[α(x), [y, z]] + (−1)|z||x |(−1)|z|(|x |+|y|)[α(z), [x, y]]
+ (−1)|x ||y|[α(y), [z, x]] = 0,

(−1)|x ||z|[α(x), [y, z]] + (−1)|z||y|[α(z), [x, y]] + (−1)|y||x |[α(y), [z, x]] = 0,

(−1)|x ||z|[α(x), [y, z]] + (−1)|z||y|[α(z), [x, y]] + (−1)|y||x |[α(y), [z, x]] = 0.
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Remark 3.4 If skew-symmetry (3.1) does not hold, then (3.4) and (3.5) are not
necessarily equivalent, defining different Hom-superalgebra structures. The Hom-
superalgebras defined by just super algebras identity (3.5) without requiring super
skew-symmetry on homogeneous elements are LeibnizHom-superalgebras, a special
class of general Γ -graded quasi-Leibniz algebras (color quasi-Leibniz algebras) first
introduced in [56, 57].

3.3 Symmetric (Two-Sided) Hom-Leibniz Superalgebras

In this section, we define the left, right and symmetric (two-sided) Hom-Leibniz
algebras Hom-Leibniz superalgebras and give examples of the symmetric Hom-
Leibniz algebras and superalgebras. We also study some properties of centroids of
Hom-Leibniz superalgebras.

With the skew-symmetry (3.1) satisfied, the Hom-Jacobi identity (3.2) can be
presented in two equivalent ways, for all x, y, z ∈ G,

[α(x), [y, z]] = [[x, y], α(z)] + [α(y), [x, z]] , (Left Hom-Leibniz) (3.6)

[α(x), [y, z]] = [[x, y], α(z)] − [[x, z], α(y)] . (Right Hom-Leibniz) (3.7)

Without skew-symmetry however, these identities lead to different types of Hom-
algebra structures both containing Hom-Lie algebras as subclass obeying the skew-
symmetry (3.1).

Definition 3.3 ([56, 66]) Left Hom-Leibniz algebras are triples (L , [·, ·], α) consist-
ing of a linear space L over a fieldK, a bilinear map [·, ·] : L × L → L and a linear
map α : L → L satisfying (3.6) for all x, y, z ∈ L . Right Hom-Leibniz algebras are
triples (L , [·, ·], α) consisting of a linear space L and over a field K, a bilinear map
[·, ·] : L × L → L and a linear map α : L → L satisfying (3.7) for all x, y, z ∈ L .

Remark 3.5 If α = idL , then a left (right) Hom-Leibniz algebra is just a left (right)
Leibniz algebra [28, 69]. Any Hom-Lie algebra is both a left Hom-Leibniz algebras
and a right Hom-Leibniz algebra. A left Hom-Leibniz algebra or a right Hom-Leibniz
algebra is a Hom-Lie algebra if [x, x] = 0 for all x ∈ L . For the field K of charac-
teristic different from 2, left Hom-Leibniz algebras and right Hom-Leibniz algebras
are Hom-Lie algebras are Hom-Lie algebras if and only if [x, x] = 0 for all x ∈ L .

Definition 3.4 A triple (L , [·, ·], α) is called a symmetric (or two-sided) Hom-
Leibniz algebra if it is both a left Hom-Leibniz algebra and a right Hom-Leibniz
algebra, that is if both (3.6) and (3.7) are satisfied for all x, y, z ∈ L .

Remark 3.6 A left Hom-Leibniz algebra (L , [·, ·], α, β) is a symmetric Hom-
Leibniz algebra if and only if, for all x, y, z ∈ L ,

[α(y), [x, z]] = −[[x, z], α(y)].
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Example 3.1 Let (x1, x2, x3) be a basis of 3-dimensional space G over K. Define a
bilinear bracket operation on G ⊗ G by

[x1 ⊗ x3, x1 ⊗ x3] = x1 ⊗ x1,

[x2 ⊗ x3, x1 ⊗ x3] = x2 ⊗ x1,

[x2 ⊗ x3, x2 ⊗ x3] = x2 ⊗ x2,

with the other necessary brackets being equal to 0. For any linear map α on G, the
triple (G ⊗ G, [·, ·], α ⊗ α) is not a Hom-Lie algebra but it is a symmetric Hom-
Leibniz algebra.

In the following examples, we construct Hom-Leibniz algebras on a linear space
L ⊗ L starting from a Lie or a Hom-Lie algebra L .

Proposition 3.1 ([54]) For any Lie algebra (G, [·, ·]), the bracket

[x ⊗ y, a ⊗ b] = [x, [a, b]] ⊗ y + x ⊗ [y, [a, b]]

defines a Leibniz algebra structure on the linear space G ⊗ G.
Proposition 3.2 ([79]) Let (L , [·, ·]) be a Leibniz algebra and α : L → L be a
Leibniz algebra endomorphism. Then (L , [·, ·]α, α) is a Hom-Leibniz algebra, where
[x, y]α = [α(x), α(y)].
Using Propositions 3.1 and 3.2, we obtain the following result.

Proposition 3.3 Let (G, [·, ·]′) be a Lie algebra and α : G → G be a Lie algebra
endomorphism. We define on G ⊗ G the following bracket on G ⊗ G,

[x ⊗ y, a ⊗ b] = [
α(x), [α(a), α(b)]′]′ ⊗ α(y) + α(x) ⊗ [α(y), [α(a), α(b)]′]′

.

Then (G ⊗ G, [·, ·], α ⊗ α) is a right Hom-Leibniz algebra.

Example 3.2 Let us consider the Lie algebra (A, [·, ·]) defined with respect to the
basis (ei )1≤i≤3 by [e1, e3] = e1, [e2, e3] = e1. Let α be the Lie algebra morphism
that is α([ei , e j ] = [α(ei ), α(e j )]. The morphism is completely determined by a set

of structure constants λi, j , that is α(e j ) =
n∑

i=1
λi, j ei . It turns out that it is defined by

α(e1) = λ11e1, α(e2) = λ12e1 + (λ11 − λ12)e2, α(e3) = λ13e1 + λ23e2 − e3.

Take λ11 = λ13 = λ23 = 1, λ12 = c, where c is a parameter.
Now let us define the new multiplication of the Hom-Leibniz algebra as in the

previous proposition. With the skew symmetry condition satisfied, it is defined as
follows:

[e3 ⊗ e3, e1 ⊗ e3] = −2e1 ⊗ e1 − e1 ⊗ e2 + e1 ⊗ e3 − e2 ⊗ e1 + e3 ⊗ e1
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[e3 ⊗ e3, e2 ⊗ e3] = −e1 ⊗ e1 − e1 ⊗ e2 + e1 ⊗ e3 − e1 ⊗ e1
− e2 ⊗ e1 + e3 ⊗ e1

[e1 ⊗ e3, e1 ⊗ e3] = [e3 ⊗ e1, e1 ⊗ e3] = −e1 ⊗ e1
[e2 ⊗ e3, e1 ⊗ e3] = [e3 ⊗ e2, e1 ⊗ e3] = −ce1 ⊗ e1 + (1 − c)e2 ⊗ e1

[e2 ⊗ e3, e2 ⊗ e3] = [e3 ⊗ e2, e2 ⊗ e3] = (−2c2 + 1)e1 ⊗ e1

− c(1 − c)e2 ⊗ e1 + (1 − c)2e2 ⊗ e1
[e3 ⊗ e3, e1 ⊗ e3] = −2e1 ⊗ e1 − e1 ⊗ e2 − e2 ⊗ e1 + e1 ⊗ e3 + e3 ⊗ e1
[e3 ⊗ e3, e2 ⊗ e3] = −2e1 ⊗ e1 − e1 ⊗ e2 + (1 − 2c)e1 ⊗ e3

− e2 ⊗ e1 + e3 ⊗ e1.

The other brackets are null.

Proposition 3.4 If (L , [·, ·]) is a symmetric Leibniz algebra, α : L → L a mor-
phism of Leibniz algebra, and the map {·, ·} : L × L → L is defined by {x, y} =
[α(x), α(y)], for all x, y ∈ L , then (L , {·, ·}, α) is a symmetric Hom-Leibniz alge-
bra, called α-twist (or Yau twist) of L, and denoted by Lα .

Proposition 3.5 If (A, [·, ·], α) be a multiplicative Hom-Leibniz algebra where α is
invertible, then (A, [·, ·]′ = α−1[·, ·]) is a Leibniz algebra and α is an automorphism
with respect to [·, ·]′. Hence, (A, [·, ·], α) is of Leibniz type and (A, [·, ·]′ = α−1[·, ·])
is its compatible Leibniz algebra.

Proof The pair (A, α−1[·, ·]) is a Leibniz algebra, since for all x, y, z ∈ A,

[x, [y, z]′]′ = α−1[x, α−1([y, z])]] = α−1[α−1 ◦ x, α−1 ◦ [y, z]]
= α−2[α ◦ x, [y, z]] = α−2([[x, y], α(z)]] + [α(y), [x, z]])
= α−1([α−1[x, y], z] + [y, α−1[x, z]]) = [[x, y]′, z]′ + [y, [x, z]′]′.

Moreover, α is an automorphism with respect to [·, ·]′. Indeed

[α(x), α(y)]′ = α−1[α(x), α(y)]) = α−1 ◦ α[x, y] = α(α−1[x, y]) = α[x, y]′.

�

Remark 3.7 If α is multiplicative with respect to [·, ·]′ but not invertible, and if
(A, [·, ·]) is left Hom-Leibniz algebra, then for [·, ·] = α[·, ·]′, and x, y, z ∈ A,

[α(x), [y, z]] = [[x, y], α(z)] + [α(y), [x, z]],
α[α(x), α[y, z]′]′ = α[α[x, y]′, α(z)]′ + α[α(y), α[x, z]′]′, (3.8)

α2([x, [y, z]′]′) = α2([[x, y]′, z]′ + [y, [x, z]′]′), (3.9)

α2([x, [y, z]′]′ − [[x, y]′, z]′ + [y, [x, z]′]′) = 0. (3.10)
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The identities (3.9) and (3.10) mean that the [·, ·]′ does not necessarily define the
left Leibniz algebra structure on A, but defines a slight generalisation of left Leibniz
algebra structure on A, up to action of α2, or equivalently, up to kernel of α2. If α

is a linear map that is not multiplicative with respect to [·, ·]′, then (3.8) might not
imply (3.9) and (3.10), which indicates in particular that multiplicativity is a highly
restrictive extra condition leading to a very special subclass of Hom-algebras.

Proposition 3.6 Let (A, [·, ·], α) be a left Hom-Leibniz algebra and φ : A → A
be an invertible linear map. Then (A, [·, ·]′ = φ ◦ [φ−1(·), φ−1(·)], φαφ−1) is a left
Hom-Leibniz algebra isomorphic to the left Hom-Leibniz algebra (A, [·, ·], α).

Proof (A, [·, ·]′ = φ ◦ [φ−1(·), φ−1(·)], φαφ−1) is a leftHom-Leibniz algebra, since
for any x, y, z ∈ A,

[[x, y]′, φαφ−1(z)]′ = φ[φ−1[x, y]′, φ−1 ◦ φ ◦ α ◦ φ−1(z)]
= φ[φ−1 ◦ φ[φ−1(x), φ−1(y)], φ−1 ◦ φ ◦ α ◦ φ−1(z)]
= φ[[φ−1(x), φ−1(y)], α ◦ φ−1(z)]
= φ([α ◦ φ−1(x), [φ−1(y), φ−1(z)]] − [α ◦ φ−1(y), [φ−1(x), φ−1(z)]])
= φ([φ−1(φαφ−1(x)), [φ−1(y), φ−1(z)]] − [φ−1(φαφ−1(y)), [φ−1(x), φ−1(z)]])
= φ([φ−1(φαφ−1(x)), φ−1 ◦ φ[φ−1(y), φ−1(z)]]

− [φ−1(φαφ−1(y)), φ−1 ◦ φ[φ−1(x), φ−1(z)]])
= φ([φ−1(φαφ−1(x)), φ−1 ◦ φ[φ−1(y), φ−1(z)]])

− φ([φ−1(φαφ−1(y)), φ−1 ◦ φ[φ−1(x), φ−1(z)]])
= [φαφ−1(x), [y, z]′]′ − [φαφ−1(y), [x, z]′]′.

The invertible linear map φ : A → A is Hom-algebras morphism and thus isomor-
phism since

φ[x, y] = φ[φ−1 ◦ φ(x), φ−1 ◦ φ(y)] = [φ(x), φ(y)]′,
φ ◦ α = (φ ◦ α ◦ φ−1) ◦ φ.

Hence, (A, [·, ·], α) and (A, [·, ·]′ = φ ◦ [φ−1(·), φ−1(·)], φαφ−1) are isomor-
phic. �

Lemma 3.1 For any bilinear map [·, ·] : A × A → A and linear map α : A → A
on a linear space A, if an linear map φ : A → A is invertible, φ[·, ·] = [φ(·), φ(·)]′,
and α is multiplicative with respect to [·, ·], that is α[·, ·] = [α(·), α(·)] then φαφ−1 :
A → A is multiplicative with respect to bilinear map [·, ·]′ = φ[φ−1(·), φ−1(·)] :
A × A → A.

Proof For any x, y ∈ A,
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φαφ−1[x, y]′ = φαφ−1φ[φ−1(x), φ−1(y)] = φα[φ−1(x), φ−1(y)]
= [φαφ−1(x), φαφ−1(y)] = φ−1[φφαφ−1(x), φφαφ−1(y)]′
= φ−1φ[φαφ−1(x), φφαφ−1(y)]′ = [φαφ−1(x), φαφ−1(y)]′,

and thus φαφ−1 : A → A is multiplicative with respect to bilinear map [·, ·]′ =
φ[φ−1(·), φ−1(·)] : A × A → A. �

Proposition 3.6 and Lemma 3.1 imply the following corollary about multiplica-
tivity of Hom-Leibniz algebras.

Corollary 3.1 If the left Hom-Leibniz algebra (A, [·, ·], α) is multiplicative, φ :
A → A is invertible linear map, and φ is a week morphism of Hom-algebras (alge-
bras morphism), that is φ[·, ·] = [φ(·), φ(·)]′, then the left Hom-Leibniz algebra
(A, [·, ·]′ = φ ◦ [φ−1(·), φ−1(·)], φαφ−1) is also multiplicative.

Proposition 3.7 Let (A, [·, ·], α) be a left Hom-Leibniz algebra and let ψ be an
automorphism of (A, [·, ·], α). Then φψφ−1 is an automorphism of isomorphic left
Hom-Leibniz algebra (A, [·, ·], φαφ−1) described in Proposition 3.6.

Proof Let γ = φαφ−1, ψ commute with α. We have,

φψφ−1γ = φψφ−1φαφ−1 = φψαφ−1 = φαψφ−1 = φαφ−1φψφ−1 = γφψφ−1.

For any x, y ∈ A,

φψφ−1[φ(x), φ(y)]′ = φψφ−1φ[x, y] = φψ[x, y] = φ[ψ(x), ψ(y)]
= φ([φ−1φψ(x), φ−1φψ(y)]) = [φψ(x), φψ(y)]′
= [φψφ−1(φ(x)), φψφ−1(φ(y))]′.

Hence γ = φψφ−1 is an automorphism of Hom-Leibniz algebras. �

Remark 3.8 Similar results to Propositions 3.1, 3.6 and 3.7 with similar proofs
holds for the right Hom-Leibniz algebras and thus also for (two-sided) Hom-Leibniz
algebras.

Next, we consider the notions of right, left symmetric and symmetric (two-sided)
Hom-Leibniz superalgebras.

Definition 3.5 A triple (L , [·, ·], α) consisting of a superspace L , an even bilinear
map [·, ·] : L × L → L and an even superspace homomorphism α : L → L (linear
map of parity degree 0 ∈ Z2) is called

(i) left Hom-Leibniz superalgebra if it satisfies for all x, y, z ∈ L0 ∪ L1,

[α(x), [y, z]] = [[x, y], α(z)] + (−1)|x ||y| [α(y), [x, z]] ,
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(ii) right Hom-Leibniz superalgebra if it satisfies

[α(x), [y, z]] = [[x, y], α(z)] − (−1)|y||z| [[x, z], α(y)] ,

(iii) symmetric Hom-Leibniz superalgebra if it is a left and a right Hom-Leibniz
superalgebra.

Proposition 3.8 A triple (L , [·, ·], α) is a symmetric Hom-Leibniz superalgebra if
and only if for all x, y, z ∈ L0 ∪ L1,

[α(x), [y, z]] = [[x, y], α(z)] + (−1)|x ||y| [α(y), [x, z]] ,
[α(y), [x, z]] = −(−1)(|x |+|z|)|y| [[x, z], α(y)] .

Example 3.3 Let L = L0 ⊕ L1 be a 3-dimensional superspace, where L0 is gener-
ated by e1, e2 and L1 is generated by e3. The product is given by

[e1, e1] = ae1 + xe2, [e1, e2] = [e2, e1] = −a

x
[e1, e1], [e2, e2] =

(a

x

)2 [e1, e1],

[e3, e3] = d

x
[e1, e1], [e1, e3] = [e3, e1] = [e3, e2] = [e2, e3] = 0.

Consider the homomorphism α : L → L with the matrix

⎛

⎝
−1 0 0
0 1 0
0 0 μ

⎞

⎠ in the basis

(e1, e2, e3). Then (L , [·, ·], α) is a symmetric Hom-Leibniz superalgebra.

3.4 Centroids and Derivations of Hom-Leibniz
Superalgebras

In this section we consider centroids and twisted derivations of Hom-Leibniz super-
algebras. The concept of centroids and derivation of Leibniz algebras is introduced
in [34]. Left Leibniz superalgebras, originally were introduced in [43], can be seen
as a direct generalization of Leibniz algebras. The left Hom-Leibniz superalgebras
were recently considered in [70].

Recall that a linear superspace L over a field K is a Z2-graded linear space with
a direct sum L = L0 ⊕ L1. The elements of L j , j ∈ Z2, are said to be homoge-
nous of parity j. The parity of a homogeneous element x is denoted by |x |.
For k homogeneous elements x1, . . . , xk of L , |(x1, . . . , xk)| = |x1| + · · · + |xk |
is the parity of an element (x1, . . . , xk) in Lk . The space End(L) is Z2-graded
with a direct sum End(L) = (End(L))0 ⊕ (End(L))1, where (End(L)) j = { f ∈
End(L) | f (Li ) ⊂ Li+ j }. The elements of (End(L)) j are said to be homogenous
of parity j . Let L be a superspace and α an even linear map on L . Let Ω = Ω0 ⊕
Ω1 where Ω0 = {u ∈ (End(L))0 | u ◦ α = α ◦ u} and Ω1 = {u ∈ (End(L))1 | u ◦



3 Classification, Centroids and Derivations … 45

α = α ◦ u}. As defined above, Ω is a graded linear subspace of End(L). The
homogenous elements of Ω are the elements of Ω0 ∪ Ω1. If the map α̃ : Ω → Ω

is defined by α̃(u) = α ◦ u, then the map α̃ is an even linear map (that is of degree
zero), and hence belongs to (End(L))0. Furthermore, (Ω, [·, ·]′) is a Lie superalge-
bra, and (Ω, [·, ·]′, α̃) is a Hom-Lie superalgebra with the bilinear super commutator
bracket product defined by [u, v]′ = uv − (−1)|u||v|vu for all homogeneous elements
u, v ∈ Ω. The super skew-symmetry holds as for homogeneous elements u, v inΩ ,

[u, v]′ = uv − (−1)|u||v|vu = −(−1)|u||v|(vu − (−1)|u||v|uv) = −(−1)|u||v|[v, u]′.

The super Jacobi identity for (Ω, [·, ·]′) holds, since for homogeneous elements
u, v, w in Ω ,

[u, [v,w]′]′ = [u, vw] − (−1)|v||w|[u,wv]
= (

u(vw) − (−1)|u|(|v|+|w|)(vw)u
)

− (−1)|v||w| (u(wv) − (−1)|u|(|v|+|w|)(wv)u
)

= u(vw) − (−1)|u|(|v|+|w|)(vw)u − (−1)|v||w|u(wv)

+ (−1)|v||w|+|u||v|+|u||w|(wv)u,

and hence the first component of the graded Jacobi identity can be written as

(−1)|u||w|[u, [v,w]′]′ = (−1)|u||w|u(vw) − (−1)|u||v|(vw)u

− (−1)|v||w|+|u||w|u(wv) + (−1)|v||w|+|u||v|(wv)u,

and cyclic summation yields

∑

�(u,v,w)

(−1)|u||w|[u, [v,w]′]′

= (−1)|u||w|[u, [v,w]′]′ + (−1)|w||v|[w, [u, v]′]′ + (−1)|v||u|[v, [w, u]′]′
= (−1)|u||w|u(vw) − (−1)|u||v|(vw)u − (−1)|v||w|+|u||w|u(wv)

+ (−1)|v||w|+|u||v|(wv)u

+ (−1)|w||v|w(uv) − (−1)|w||u|(uv)w − (−1)|u||v|+|w||v|w(vu)

+ (−1)|u||v|+|w||u|(vu)w

+ (−1)|v||u|v(wu) − (−1)|v||w|(wu)v − (−1)|w||u|+|v||u|v(uw)

+ (−1)|w||u|+|v||w|(uw)v = 0.

It remains to show that (Ω, [·, ·]′, α̃) satisfies the graded Hom-Jacobi identity. For
all homogeneous elements u, v,w ∈ Ω and for α̃ ∈ (End(L))0, similarly,
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[α̃(u), [v,w]′]′ = [αu, vw] − (−1)|v||w|[αu,wv]
= (

αu(vw) − (−1)|u|(|v|+|w|)(vw)αu
)

− (−1)|v||w| (αu(wv) − (−1)|u|(|v|+|w|)(wv)αu
)

= αu(vw) − (−1)|u|(|v|+|w|)(vw)αu

− (−1)|v||w|αu(wv) + (−1)|v||w|+|u||v|+|u||w|(wv)αu.

The first component of the super Hom Jacobi identity can be written as follows

(−1)|u||w|[α̃(u), [v,w]′]′ = (−1)|u||w|αu(vw) − (−1)|u||v|(vw)αu

− (−1)|w|(|u|+|v|)αu(wv) + (−1)|v||w|+|u||v|(wv)αu.

Since u commutes with all elements of Ω , we get

∑

�(u,v,w)

(−1)|u||w|[α̃, [v,w]′]′ =

= (−1)|u||w|αu(vw) − (−1)|u||v|(vw)αu − (−1)|v||w|+|u||w|αu(wv)

+ (−1)|v||w|+|u||v|(wv)αu

+ (−1)|w||v|αw(uv) − (−1)|w||u|(uv)αw − (−1)|u||v|+|w||v|αw(vu)

+ (−1)|u||v|+|w||u|(vu)αw

+ (−1)|v||u|αv(wu) − (−1)|v||w|(wu)αv − (−1)|w||u|+|v||u|αv(uw)

+ (−1)|w||u|+|v||w|(uw)αv = 0.

Remark 3.9 Since, α̃([u, v]′) = α ◦ (uv − (−1)|u||v|(vu)), and since

[α̃(u), α̃(v)]′ = αuαv − (−1)|αu||αv|αvαu =
α2 ◦ (uv − (−1)|u||v|(vu)) = α2 ◦ [u, v]′

holds because α is even and commutes with all elements of Ω , the multiplicativity
of Hom-Lie superalgebras (Ω, [·, ·]′, α̃) is equivalent to [u, v]′ = uv − (−1)|u||v|vu
annihilating (α2 − α) in End(L) for all homogeneous u, v ∈ Ω . Thus, in particu-
lar, (Ω, [·, ·]′, α̃) is not necessarily multiplicative. However, if α is an idempotent
(projection), α2 = α, then (Ω, [·, ·]′, α̃) is multiplicative.
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Definition 3.6 For any non-negative integer k ≥ 0, an αk-derivation of a Hom-
Leibniz superalgebra (L , [·, ·], α) is a homogeneous linear map D ∈ Ω satisfying,
for all x, y, z ∈ L0 ∪ L1,

D([x, y]) = [D(x), αk(y)] + (−1)|D||x |[αk(x), D(y)]. (3.11)

The set of all αk-derivations of aHom-Leibniz superalgebra L for all non-negative
integers k ≥ 0 is denoted by Der(L) =

⊕

k≥0

Derαk (L).

Wewill refer sometimes to the elements of Der(L) as derivations of Hom-Leibniz
superalgebra L slightly abusing terminology for the convenience of the exposition.

Proposition 3.9 If (L , [·, ·], α) is a Hom-Leibniz superalgebra, then Der(L) is Lie
(resp. Hom-Lie) subsuperalgebra of (Ω, [·, ·]′) (resp. (Ω, [·, ·]′, α̃))

Proof Let d ∈ Derαk (L) and d ′ ∈ Derαl (L). We have

d ◦ d ′([x, y]) = d
([d ′(x), αl(y)]) + (−1)|d

′ ||x |d
([αl(x), d ′(y)])

= [dd ′(x), αk+l(y)] + (−1)|d||d ′(x)|[αkd ′(x), dαl(y)]
+ (−1)|d

′||x |[dαl(x), αkd ′(y)] + (−1)|d
′ ||x |(−1)|d||x |[αk+l(x), dd ′(y)]

= [dd ′(x), αk+l(y)] + (−1)(|d|+|d ′ |)|x |[αk+l(x), dd ′(y)]
+ (−1)|d|(|d ′|+|x |)[αkd ′(x), dαl(y)] + (−1)|d

′ ||x |[dαl(x), αkd ′(y)],
d ′ ◦ d([x, y]) = [d ′d(x), αk+l(y)] + (−1)(|d

′|+|d|)|x |[αk+l(x), d ′d(y)]
+ (−1)|d

′|(|d|+|x |)[αld(x), d ′αk(y)] + (−1)|d||x |[d ′αk(x), αld(y)].
[d, d ′]([x, y]) =

(
d ◦ d ′ − (−1)|d||d ′|d ′ ◦ d

)
([x, y])

= [[d, d ′](x), αk+l(y)
] + (−1)(|d

′ |+|d|)|x | [αk+l(x), [d, d ′](y)]

+ (−1)|d|(|d ′|+|x |)[αkd ′(x), dαl(y)] + (−1)|d
′ ||x |[dαl(x), αkd ′(y)]

− (−1)|d||d ′|(−1)|d
′ |(|d|+|x |)[αld(x), d ′αk(y)]

− (−1)|d||d ′|(−1)|d||x |[d ′αk(x), αld(y)]
= [[d, d ′](x), αk+l(y)

] + (−1)(|d
′ |+|d|)|x | [αk+l(x), [d, d ′](y)] .

So, [d, d ′] is an αk+l-derivation of L . Clearly [d, d ′] ∈ Ω . Therefore, Der(L) is Lie
(resp. Hom-Lie) subsuperalgebras of (Ω, [·, ·]′) (resp. (Ω, [·, ·]′, α̃)). �
Proposition 3.10 Let (L , [·, ·], α) be a left (resp. right) Hom-Leibniz superalgebra.
For any a ∈ L satisfying α(a) = a, define adk(a) ∈ End(L) and Adk(a) ∈ End(L)

for all x ∈ L by

adk(a)(x) = [a, αk(x)], Adk(a)(x) = (−1)|a||x |[αk(x), a].

Then adk(a) (resp. Adk(a)) is an αk+1-derivation.
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Proof Let (L , [·, ·], α) be a left Hom-Leibniz superalgebra and a ∈ L0 ∪ L1 satis-
fying α(a) = a. We have

adk(a)([x, y]) = [a, αk([x, y])] = [αk+1(a), [αk(x), αk(y)]].

If (L , [·, ·], α) is a left Hom-Leibniz superalgebra, then

[αk+1(a), [αk(x), αk(y)]] = [[αk(a), αk(x)], αk+1(y)]
+(−1)|a||x |[αk+1(x), [αk(a), αk(y)]].

Thus, adk(a)([x, y]) = [adk(a)(x), αk+1(y)] + (−1)|a||x |[αk+1(x), adk(a)(y)].
Hence, adk(a) is an αk+1-derivation of the left Hom-Leibniz superalgebra L . If
(L , [·, ·], α) is a rightHom-Leibniz superalgebra, similarly, one can show that Adk(a)

is an αk+1-derivation of the right Hom-Leibniz superalgebra L . �

Remark 3.10 If L is a symmetric Hom-Leibniz superalgebra, Then, adk(a) and
Adk(a) are αk+1-derivations.

Definition 3.7 The linear map adk(a) (resp. Adk(a) ) is called an inner left (resp.
right) αk+1-derivation of the left (resp. right) Hom-Leibniz superalgebra L , and
ad(L) = ⊕

k≥0 adk(L) (resp. Ad(L) = ⊕
k≥0 Adk(L) ) denotes the subsuperalgebra

of inner derivations of L .

Proposition 3.11 If (L , [·, ·], α) is a Hom-Leibniz superalgebra, then ad(L) is a
Lie (resp. Hom-Lie) subsuperalgebra of (Ω, [·, ·]′) (resp. (Ω, [·, ·]′, α̃))

Definition 3.8 The αk-centroid of a Hom-Leibniz superalgebra (L , [·, ·], α) is

Γαk (L) =
{
d ∈ Ω | d([x, y]) = [d(x), αk(y)] = (−1)|d||x |[αk(x), d(y)]

∀x, y ∈ L0 ∪ L1

}

.

Denote by Γ (L) =
⊕

k≥0

Γαk (L) the centroid of L.

Definition 3.9 Let (L , [·, ·], α) be a Hom-Leibniz superalgebra. Then the αk-
centroid of L denoted by Cαk (L) is defined by

Cαk (L) =
{
d ∈ Ω | d([x, y]) = [d(x), αk(y)] = (−1)|d||x |[αk(x), d(y)],

∀ x, y ∈ L0 ∪ L1

}

.

(3.12)
Denote by C(L) =

⊕

k≥0

Cαk (L) the centroid of L .

Proposition 3.12 If (L , [·, ·], α) is a Hom-Leibniz superalgebra, then C(L) is a Lie
(resp. Hom-Lie) subsuperalgebras of (Ω, [·, ·]′) (resp. (Ω, [·, ·]′, α̃)).
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Definition 3.10 Let (L , [·, ·], α) be a Hom-Leibniz superalgebra and d ∈ End(L).
Then d is called a αk-central derivation, if d ∈ Ω and

d([x, y]) = [d(x), αk(y)] = (−1)|d||x |[αk(x), d(y)] = 0.

The set of all central derivations is denoted by ZDer(L) =
⊕

k≥0

ZDerαk (L).

Lemma 3.2 If L is a Hom-Leibniz superalgebra, d ∈ Derαk (L), d ∈ Derαl (L) and
Φ ∈ Cαl (L), then

(i) Φ ◦ d is an αk+l -derivation of L.
(ii) [Φ, d] is an αk+l -centroid of L.
(iii) d ◦ Φ is an αk+l -centroid if and only if Φ ◦ d is a αk+l -central derivation.
(iv) d ◦ Φ is an αk+l -derivation only if only [d, Φ] is a αk+l -central derivation.

Proof Let d ∈ Derαk (L) and Φ ∈ Cαl (L). Then

Φ ◦ d([x, y]) = Φ
([d(x), αk(y)]) + (−1)|d||x |Φ

([αk(x), d(y)]) .

Since Φ ∈ Cαl (L), we have

Φ ◦ d([x, y]) = [Φ(d(x)), αk+l(y)] + (−1)|d||x |(−1)|Φ||x |[αk+l(x),Φ(d(y))]
= [Φ ◦ d(x)), αk+l(y)] + (−1)|Φ◦d||x |[αk+l(x),Φ ◦ d(y))].

Hence Φ ◦ d is an αk+l-derivation of L . The proof of the rest of the parts of lemma
is similar to that of the first one. �

Theorem 3.1 If L is a Hom-Leibniz superalgebra, then

ZDerαk (L) = Derαk (L) ∩ Cαk (L).

Proof Let Φ ∈ Derαk (L) ∩ Cαk (L). Then, for all x, y ∈ L ,

Φ([x, y]) = [Φ(x), αk(y)] + (−1)|Φ||x |[αk(x),Φ(y)], Φ([x, y]) = [Φ(x), αk(y)].

Therefore, [αk(x),Φ(y)] = 0. Hence, Φ([x, y]) = 0 and Φ ∈ ZDerαk (L). Con-
versely, let Φ ∈ ZDerαk (L). Then,

Φ([x, y]) = [Φ(x), αk(y)] = (−1)|Φ||x |[αk(x),Φ(y)] = 0.

Hence, Φ satisfies (3.11) and (3.12). So the result holds. �
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3.5 Classification of Multiplicative 2-Dimensional
Hom-Leibniz Algebras

First of all, note that the classifications of two and three-dimensional complex Leib-
niz algebras were studied in [29, 63]. In this section, the classification of the 2-
dimensional left Hom-Leibniz algebras is obtained, and for each isomorphism class
it is indicated whether the Hom-Leibniz algebras from this class are symmetric Hom-
Leibniz algebras or not.

Proposition 3.13 Every 2-dimensional left Hom-Leibniz algebra is isomorphic
to one of the following nonisomorphic Hom-Leibniz algebras, with each algebra
denoted by Li

j where i is related to the linear map α and j being the number in the
list.

3.6 Centroids and Derivations of 2-Dimensional
Multiplicative Hom-Leibniz Algebras

In this section we focus on the study of centroids and derivation of multiplicative
Hom-Leibniz algebras of dimension 2 over C. Note that if the odd component of
Hom-Leibniz superalgebra is zero, it can be considered as Hom-Leibniz algebra.

Next, we introduce a parametric extension of the notion of αk-derivations of Hom-
Leibniz algebras and study it in more details with help of the computer computations.

Definition 3.11 Let (L , [·, ·], α) be a Hom–Leibniz algebra and λ,μ, γ elements
ofC. A linear map d ∈ Ω is a generalized αk-derivation or a (λ, μ, γ )-αk-derivation
of L if for all x, y ∈ L we have

λ d([x, y]) = μ [d(x), αk(y)] + γ [αk(x), d(y)].

We denote the set of all (λ, μ, γ )-αk-derivations by Der (λ,μ,γ )

αk (L).

Remark 3.11 Clearly Der (1,1,1)
αk (L) = Derαk (L) and Der (1,1,0)

αk (L) = Γαk (L).

Let (L , [·, ·], α) be a n-dimensional multiplicative left Hom-Leibniz algebra. Let

αr (e j ) =
n∑

k=1

mkjek .
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L11 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1 , [e2, e2] = e1,
α(e1) = e1, α(e2) = e2.

L11 is not symmetric
1
2 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0 , [e2, e2] = e1,

α(e1) = e1, α(e2) = e2.
L12 is symmetric

L13 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1 , [e2, e2] = 0,
α(e1) = e1, α(e2) = e2.

L13 is symmetric

L14 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = −e1, [e2, e2] = 0,
α(e1) = e1, α(e2) = e2.

L14 is symmetric

L21 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,
α(e1) = 0, α(e2) = e2.

L21 is not symmetric

L22 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,
α(e1) = 0, α(e2) = e2.

L22 is symmetric

L23 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = −e1, [e2, e2] = 0,
α(e1) = 0, α(e2) = e1.

L23 is symmetric

L31 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,
α(e1) = 0, α(e2) = be2.

L31 is symmetric

L32 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,
α(e1) = 0, α(e2) = be2.

L32 is not symmetric

L33 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = −e1, [e2, e2] = 0,
α(e1) = 0, α(e2) = be2.

L33 is symmetric

L41 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,
α(e1) = ae1(a /∈ {0, 1}) , α(e2) = e2.

L41 is not symmetric

L42 : [e1, e1] = 0, [e1, e2] = −e1, [e2, e1] = e1, [e2, e2] = 0,
α(e1) = ae1(a /∈ {0, 1}) , α(e2) = e2.

L42 is not symmetric

L51 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,
α(e1) = a2e1(a /∈ {0, 1}) , α(e2) = ae2.

L51 is symmetric

L61 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = y1e1, [e2, e2] = z1e1,
α(e1) = 0 , α(e2) = e1.

L61 is symmetric

L62 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = z1e1,
α(e1) = 0 , α(e2) = e1.

L62 is symmetric

L63 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,
α(e1) = 0 , α(e2) = e1.

L63 is symmetric

L71 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,
α(e1) = e1 , α(e2) = e1 + e2 .

L71 is symmetric
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An element d of Der (δ,μ,γ )
αr (L), being a linear transformation of the linear space

L , is represented in a matrix form (di j )1≤i, j≤n , that is d(e j ) =
n∑

k=1

dkj ek , for j =
1, . . . , n. According to the definition of the (δ, μ, γ )-αr -derivation the entries di j of
the matrix (di j )1≤i, j≤n must satisfy the following systems of equations:

n∑

k=1

dikak j =
n∑

k=1

aikdk j ,

δ

n∑

k=1

cki j dsk − μ

n∑

k=1

n∑

l=1

dkiml j c
s
kl − γ

n∑

k=1

n∑

l=1

dl jmki c
s
kl = 0,

where (ai j )1≤i, j≤n is the matrix of α and (cki j ) are the structure constants of L . First,
let us give the following definitions.

Definition 3.12 A left Hom-Leibniz algebra is called characteristically nilpotent if
the Lie algebra Derα0(L) is nilpotent.

Henceforth, the property of being characteristically nilpotent is abbreviated by CN.

Definition 3.13 Let L be an indecomposable left Hom-Leibniz algebra. We say that
L is small ifΓα0(L) is generated by central derivation and the scalars. The centroid of
a decomposable BiHom-Lie algebra is small if the centroids of each indecomposable
factor is small.

Now we apply the algorithms mentioned in the previous paragraph to find centroid
and derivations of 2-dimensional complex left Hom-Leibniz algebras. In this study
we make use of the classification results from the previous section. The results are
given in the following theorem. Moreover, we provide the type of Γα0(L j

i ) and
Derαr (L j

i ).

L1
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = e1,

α(e1) = 0, α(e2) = e2

αr Γαr (L1
1) Type of Γα0 (L1

1) Derαr (L1
1) –

r ∈ N

(
0 c1
0 c2

)

–

(
0 0
0 d1

)

–

L1
2 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = 0, α(e2) = e2
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αr Γαr (L1
1) Type of Γα0 (L1

2) Derαr (L1
1) –

r ∈ N

(
0 c1
0 c2

)

–

(
0 d1
0 d2

)

–

L1
3 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = −e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = e2

αr Γαr (L1
3) Type of Γα0 (L1

3) Derαr (L1
3) –

r ∈ N

(
0 0
0 c1

)

–

(
0 0
0 d1

)

–

L2
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = e2

αr Γαr (L2
1) Type of Γα0 (L2

1) Derαr (L2
1) CN

r ∈ N

(
0 0
0 c2

)

Not small

(
d1 0
0 d2

)

Yes

L2
2 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = 0, α(e2) = e2

αr Γαr (L2
2) Type of Γα0 (L2

2) Derαr (L2
2) CN

r ∈ N

(
0 0
0 c2

)

Small

(
0 0
0 d2

)

Yes

L2
3 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = 0, α(e2) = e2

αr Γαr (L2
3) Type of Γα0 (L2

3) Derαr (L2
3) CN

r ∈ N

(
0 0
0 c2

)

Not small

(
d1 0
0 d2

)

Yes
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L3
1 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2

αr Γαr (L3
1) Type of Γα0 (L3

1) Derαr (L3
1) CN

r ∈ N

(
0 0
0 c2

)

Small

(
0 0
0 d2

)

Yes

L3
2 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2 (b �= 1)

αr Γαr (L3
2) Type of Γα0 (L3

2) Derαr (L3
2) CN

r ∈ N

(
0 0
0 c2

)

Not small

(
0 0
0 d2

)

Yes

L3
3 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = −e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2 (b �= 1)

αr Γαr (L3
3) Type of Γα0 (L3

3) Derαr (L3
3) CN

r ∈ N

(
0 0
0 c2

)

Not small

(
0 0
0 d2

)

Yes

L4
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = ae1, α(e2) = e2

αr Γαr (L4
1) Type of Γα0 (L4

1) Derαr (L4
1) CN

r ∈ N

(
c1 0
0 c1

ar

)

Small

(
0 0
0 d2

)

Yes

L4
2 : [e1, e1] = 0, [e1, e2] = −e1, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = ae1, α(e2) = e2

αr Γαr (L4
2) Type of Γα0 (L4

2) Derαr (L4
2) CN

r ∈ N

(
c1 0
0 c1

ar

)

Small

(
d1 0
0 0

)

Yes
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L5
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0 = e1,

α(e1) = b2e1, α(e2) = be2

αr Γαr (L5
1) Type of Γα0 (L5

1) Derαr (L5
1) CN

r ∈ N

(
c1 0
0 c1

br

)

Small

(
0 0
0 0

)

Yes

L6
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = z1e1, [e2, e2] = t1e1,

α(e1) = 0, α(e2) = e2

αr Γαr (L6
1) Type of Γα0 (L6

1) Derαr (L6
1) CN

r = 0 z1 = −1

(
c1 0
0 c1

)

Small

(
0 d2
0 0

)

Yes

r = 0 z1 �= −1

(
c1 0
0 c1

)

Small

(
0 0
0 0

)

Yes

r = 1

(
0 c2
0 0

) (
0 d2
0 0

)

r > 1

(
0 c2
0 0

) (
0 d2
0 0

)

L6
2 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = t1e1,

α(e1) = 0, α(e2) = e1

αr Γαr (L5
1) Type of Γα0 (L5

1) Derαr (L5
1) CN

r = 0

(
c1 c2
0 c1

)

Not small

(
0 0
0 0

)

Yes

r ≥ 1

(
0 c2
0 0

) (
0 d2
0 0

)

L6
3 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = e1,

α(e1) = 0, α(e2) = e1
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αr Γαr (L6
3) Type of Γα0 (L6

3) Derαr (L6
3) CN

r = 0

(
c1 c2
0 c1

)

Small

(
0 d2
0 0

)

Yes

r ≥ 1

(
0 c2
0 0

) (
0 d2
0 0

)

L7
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,

α(e1) = e1, α(e2) = e1 + e2

αr Γαr (L7
1) Type of Γα0 (L7

1) Derαr (L7
1) CN

r = 0

(
c1 c2
0 c1

)

Small

(
0 d2
0 0

)

Yes

r ≥ 1

(
c1 c2
0 c1

) (
0 d2
0 0

)

Summarizing the obtained results, the dimensions of the spaces of αr -derivations
of Hom-Leibniz algebras in dimension 2 vary between 0, 1 and 2.

We have dim(Derαr (L j
i )) = 2 in the following cases:

1) Derαr (L2
1) = Derαr (L2

3) =<

(
1 0
0 0

)

,

(
0 0
0 1

)

>, with α =
(
0 0
0 1

)

,

2) Derαr (L1
2) =<

(
2 0
0 1

)

,

(
0 1
0 0

)

>, with α = id,

3) Derαr (L1
4) =<

(
1 0
0 0

)

,

(
0 1
0 0

)

>, with α = id.

For dim(Derαr (L j
i )) = 0, we distinguish two cases:

1) Derαr (L5
1), r = 0, z1 �= −1, with α =

(
b2 0
0 b

)

,

2) Derαr (L6
2), r = 0 with α =

(
0 1
0 0

)

.

For the other cases of Derαr (L j
i ), the dimension is equal to 1.

Moreover, dim(Γαr (L j
i )) vary between one and two.

We have dim(Γαr (L j
i )) = 2 for the following cases:

1) Γαr (L1
1) = Γαr (L1

2) = Γαr (L1
3) =< id,

(
0 1
0 0

)

>, α = id,

2) Γαr (L6
2) = Γαr (L6

3) =< id,

(
0 1
0 0

)

>, α =
(
0 1
0 0

)

,

3) Γαr (L7
1) =< id,

(
0 1
0 0

)

>, α =
(
1 1
0 1

)

.
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For the other cases of dim(Γαr (L j
i )) the dimension is equal to 1.
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Chapter 4
Color Hom-Lie Algebras, Color
Hom-Leibniz Algebras and Color
Omni-Hom-Lie Algebras

Abdoreza Armakan and Sergei Silvestrov

Abstract In this paper, the representations of color hom-Lie algebras have been
reviewed and the existence of a series of coboundary operators is demonstrated.
Moreover, the notion of a color omni-hom-Lie algebra associated to a linear space
and an even invertible linear map have been introduced. In addition, characterization
method for regular color hom-Lie algebra structures on a linear space is examined
and it is shown that the underlying algebraic structure of the color omni-hom-Lie
algebra is a color hom-Leibniz a algebra.

Keywords Color Hom-Lie algebras · Color Omni-Hom-Lie algebra · Color
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4.1 Introduction

The investigations of various quantum deformations or q-deformations of Lie alge-
bras began a period of rapid expansion in 1980s stimulated by introduction of quan-
tum groups motivated by applications to the quantum Yang-Baxter equation, quan-
tum inverse scattering methods and constructions of the quantum deformations of
universal enveloping algebras of semi-simple Lie algebras. Various q-deformed Lie
algebras have appeared in physical contexts such as string theory, vertex models in
conformal field theory, quantum mechanics and quantum field theory in the context
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of deformations of infinite-dimensional algebras, primarily the Heisenberg algebras,
oscillator algebras and Witt and Virasoro algebras. In [3, 25–28, 31–33, 37, 38,
47–49], it was in particular discovered that in these q-deformations of Witt and Vis-
aroro algebras and some related algebras, some interesting q-deformations of Jacobi
identities, extending Jacobi identity for Lie algebras, are satisfied. This has been one
of the initial motivations for the development of general quasi-deformations and dis-
cretizations of Lie algebras of vector fields usingmore general σ -derivations (twisted
derivations) in [36].

Hom-Lie algebras andmore general quasi-hom-Lie algebras were introduced first
by Larsson, Hartwig and Silvestrov [36], where the general quasi-deformations and
discretizations of Lie algebras of vector fields using more general σ -derivations
(twisted derivations) and a general method for construction of deformations of Witt
and Virasoro type algebras based on twisted derivations have been developed, ini-
tially motivated by the q-deformed Jacobi identities observed for the q-deformed
algebras in physics, along with q-deformed versions of homological algebra and
discrete modifications of differential calculi. Hom-Lie algebras, hom-Lie superalge-
bras, hom-Lie color algebras andmore general quasi-Lie algebras and color quasi-Lie
algebras where introduced first in [43, 44, 70]. Quasi-Lie algebras and color quasi-
Lie algebras encompasswithin the same algebraic framework the quasi-deformations
and discretizations of Lie algebras of vector fields by σ -derivations obeying twisted
Leibniz rule, and the well-known generalizations of Lie algebras such as color Lie
algebras, the natural generalizations of Lie algebras and Lie superalgebras. In quasi-
Lie algebras, the skew-symmetry and the Jacobi identity are twisted by deforming
twisting linear maps, with the Jacobi identity in quasi-Lie and quasi-hom-Lie alge-
bras in general containing six twisted triple bracket terms. In hom-Lie algebras, the
bilinear product satisfies the non-twisted skew-symmetry property as in Lie algebras,
and the hom-Lie algebras Jacobi identity has three terms twisted by a single linear
map, reducing to the Lie algebras Jacobi identity when the twisting linear map is
the identity map. Hom-Lie admissible algebras have been considered first in [52],
where in particular the hom-associative algebras have been introduced and shown to
be hom-Lie admissible, that is leading to hom-Lie algebras using commutator map
as new product, and in this sense constituting a natural generalization of associative
algebras as Lie admissible algebras. Since the pioneering works [36, 42–45, 52],
hom-algebra structures expanded into a popular area with increasing number of pub-
lications in various directions. Hom-algebra structures of a given type include their
classical counterparts and open broad possibilities for deformations, hom-algebra
extensions of cohomological structures and representations, formal deformations of
hom-associative and hom-Lie algebras, hom-Lie admissible hom-coalgebras, hom-
coalgebras, hom-Hopf algebras [4, 22, 34, 42, 46, 53–55, 67, 73, 75]. Hom-Lie
algebras, hom-Lie superalgebras and color hom-Lie algebras and their n-ary gener-
alizations have been further investigated in various aspects for example in [2, 4, 5,
7–15, 17–22, 24, 35, 39–41, 50–56, 58–60, 67–78].

In Sect. 4.2, we review basic concepts of hom-associative algebras, hom-modules
and color hom-Lie algebras. InSect. 4.3, (σ, τ )-differential graded commutative color
algebras are defined and the classical result about the relation between Lie algebra



4 Color Hom-Lie Algebras, Color Hom-Leibniz Algebras … 63

structures and differential graded commutative color algebras structures is general-
ized to relation between color hom-Lie-algebras and (σ, τ )-differential graded com-
mutative color algebras. In Sect. 4.4, representations of color hom-Lie algebras are
considered, adjoint representation and its morphism interpretations are investigated,
and hom-cochains, coboundary operators and cohomological complex are described,
generalizing some results in [6, 67]. Moreover, the notion of a color omni-hom-Lie
algebra associated to a linear space and an even invertible linear map is introduced,
and it is shown that the color hom-Leibniz algebras appear as underlying algebraic
structure of the color omni-hom-Lie algebras.

4.2 Hom-Associative Algebras, Hom-Modules and Color
Hom-Lie Algebras

We start by recalling some basic concepts from [52, 55] where also various examples
and properties of hom-associative algebras can be found. Throughout this paper, we
use k to denote a commutative unital ring, for example a field.

Definition 4.1 The following notions will be used through the rest of the paper.

(i) A hom-module is a pair (M, α) consisting of an k-module M and a linear
operator α : M → M .

(ii) A hom-associative algebra is a triple (A, ·, α) consisting of an k-module A,
a bilinear map · : A × A → A called the multiplication and a linear operator
α : A → A which satisfies the hom-associativity condition

α(x) · (y · z) = (x · y) · α(z),

for x, y, z ∈ A.
(iii) A hom-associative algebra is called multiplicative if the linear map α is also

an algebra morphism of (A, ·), that is, α(x · y) = α(x) · α(y) for all x, y ∈ A.
(iv) A hom-associative algebra or a hom-module is called involutive if α2 = id.
(v) Let (M, α) and (N , β) be two hom-modules. A k-linear map f : M → N is

called a morphism of hom-modules if f (α(x)) = β( f (x)) for all x ∈ M .
(vi) Let (A, ·, α) and (B, •, β) be two hom-associative algebras. A k-linear map

f : A → B is called a morphism of hom-associative algebras if

1) f (x · y) = f (x) • f (y),
2) f (α(x)) = β( f (x)), for all x, y ∈ A.

(vii) If (A, ·, α) is a hom-associative algebra, then B ⊆ A is called a hom-associative
subalgebra of A if it is closed under the multiplication · and α(B) ⊆ B. A
submodule I is called a (two-sided) hom-ideal of A if x · y ∈ I and y · x ∈ I
for all x ∈ I and y ∈ A, and also α(I ) ⊆ I .
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Definition 4.2 A hom-Lie algebra is a triple (g, [·, ·], α), where g is a vector space
equipped with a skew-symmetric bilinear map [·, ·] : g × g → g and a linear map
α : g → g, such that for all x, y, z ∈ g, the hom-Jacobi identity holds,

∑

�{x,y,z}
[α(x), [y, z]] = [α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0.

hom-Jacobi
identity

A hom-Lie algebra is called a multiplicative hom-Lie algebra if α is an algebra
morphism, that is, α([x, y]) = [α(x), α(y)] for any x, y ∈ g. We call a hom-Lie
algebra regular if α is an automorphism. Moreover, it is called involutive if α2 = id.
A linear subspace h ⊆ g is a hom-Lie sub-algebra of (g, [·, ·], α) if α(h) ⊆ h and
h is closed under the bracket operation, that is, [x1, x2]g ∈ h, for all x1, x2 ∈ h. Let
(g, [·, ·], α) be a multiplicative hom-Lie algebra. Let αk = α ◦ · · · ◦ α︸ ︷︷ ︸

k−times

denote the k-

times composition of α by itself, for any nonnegative integer k, where α0 = I d and
α1 = α. For a regular hom-Lie algebra g, let α−k = α−1 ◦ · · · ◦ α−1

︸ ︷︷ ︸
k−times

.

Since color hom-Lie algebras generalize Lie color algebras, we recall first defini-
tion of Lie color algebras. For a �-graded linear space, X = ⊕

γ∈� Xγ , the elements
of H(X) = ⋃

�

Xγ are called homogenous of degree γ , for all γ ∈ �. Given a com-

mutative group � (referred to as the grading group), a commutation factor on � with
values in the multiplicative group K \ {0} of a field K of characteristic 0 is a map
ε : � × � → K \ {0}, satisfying for all j, k, l ∈ �,

1) ε( j + k, l) = ε( j, l)ε(k, l),
2) ε( j, l + k) = ε( j, l)ε( j, k),
3) ε( j, k)ε(k, j) = 1.

Definition 4.3 ([16, 29, 30, 57, 61–66]) A �-graded ε-Lie algebra (or a Lie
color algebra) is a �-graded linear space X = ⊕

γ∈� Xγ , with a bilinear mul-
tiplication (bracket) [·, ·] : X × X → X satisfying for all homogeneous elements
x, y, z ∈ ⋃

γ∈�

Xγ ,

1) Grading axiom: [X j , Xk] ⊆ X j+k, ∀ j, k ∈ �;
2) Graded skew-symmetry: [x, y] = −ε(x, y)[y, x];
3) Generalized Jacobi identity:

∑

�{x,y,z}
ε(z, x)[x, [y, z]] = ε(z, x)[x, [y, z]] + ε(y, z)[z, [x, y]] + ε(x, y)[y, [z, x]] = 0.

where ε(x, y) = ε( j, k) for all j, k ∈ �, x ∈ � j , y ∈ �k .

Color hom-Lie algebras are a special class of general color quasi-Lie algebras
(�-graded quasi-Lie algebras) defined first in [43, 44, 70].
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Definition 4.4 ([1, 23, 24, 43, 44, 70, 77]) A color hom-Lie algebra is a quadruple
(g, [·, ·], ε, α) consisting of a �-graded linear space g, a bi-character ε, an even
bilinear mapping

[·, ·] : g × g → g,

(that is, [g j , gk] ⊆ g j+k , for all j, k ∈ �) and an even homomorphism α : g → g
such that for all homogeneous elements x, y, z ∈ ⋃

γ∈�

g� ,

1) ε-skew symmetry: [x, y] = −ε(x, y)[y, x],
2) ε-hom-Jacobi identity:

∑
�{x,y,z}

ε(z, x)[α(x), [y, z]] = 0.

where ε(x, y) = ε( j, k) for all j, k ∈ �, x ∈ � j , y ∈ �k .

We call a color hom-Lie algebra regular if α is an automorphism. Let g =⊕
γ∈� gγ and h = ⊕

γ∈� hγ be two �-graded color Lie algebras. A linear map-
ping f : g → h is said to be homogenous of the degree μ ∈ � if f (gγ ) ⊆ hγ+μ, for
all γ ∈ �. If in addition, f is homogenous of degree zero, that is, f (gγ ) ⊆ hγ holds
for any γ ∈ �, then f is said to be even. Let (g, [·, ·], ε, α) and (g′, [·, ·]′, ε′, α′) be
two color hom-Lie algebras. A linear mapping of degree zero f : g → g′ is called a
morphism of color hom-Lie algebras if

1) [ f (x), f (y)]′ = f ([x, y]), for all x, y ∈ g,
2) f ◦ α = α′ ◦ f.

In particular, if α is a morphism of color Lie algebra to itself, then (g, [·, ·], ε, α)

is called a multiplicative color hom-Lie algebra. It will be useful to mention that if
a hom-associative color algebra is defined as a triple (V, μ, α) consisting of a color
space V = ⊕

γ∈� Vγ , an even bilinear map μ : V × V → V and an even homomor-
phism α : V → V satisfying μ(α(x), μ(y, z)) = μ(μ(x, y), α(z)), for all homoge-
neous elements x, y, z ∈ H(V ) = ⊕

γ∈� Vγ , then the hom-associativity holds actu-
ally for all x, y, z ∈ V , since Hom-associativity is multi-linear in its three arguments.

Example 4.1 ([1]) As in case of hom-associative and hom-Lie algebras, examples
of multiplicative color hom-Lie algebras can be constructed by the standard method
of composing multiplication with algebra morphism. Let (g, [·, ·], ε) be a color Lie
algebra and α be a color Lie algebra morphism. Then (g, [·, ·]α := α ◦ [·, ·], ε, α) is
a multiplicative color hom-Lie algebra.

As for an associative algebra and a Lie algebra, a hom-associative color algebra
(V, μ, α) gives a color hom-Lie algebra by antisymmetrization.We denote this color
hom-Lie algebra by (A, [·, ·]A, βA), where βA = α and [x, y]A = xy − yx , for all
x, y ∈ A.
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4.3 (σ, τ)-Differential Graded Commutative Color Algebra

Definition 4.5 Let A be an associative algebra, and let σ , τ denote two algebra
endomorphisms on A. A (σ, τ )-derivation on A is a linear map D : A → A such
that D(ab) = D(a)τ (b) + σ(a)D(b), for all a, b ∈ A. A σ -derivation on A is a
(σ, id)-derivation.

In [36], hom-Lie algebra or more general quasi hom-Lie structures have been
shown to arise in fundamental ways for σ -derivations on associative algebras. We
define (σ, τ )-differential graded commutative color algebras as follows.

Definition 4.6 A (σ, τ )-differential graded commutative color algebra is a quadruple
(A, σ, τ, dA) consisting of a �-graded commutative algebra A, two algebra endo-
morphisms σ and τ of degree zero and an operator dA of degree p such that

1) d2
A = 0;

2) dA commutes with σ and τ ;
3) dA(ab) = dA(a)τ (b) + ε(a, b)σ (a)dA(b), for homogeneous a, b ∈ A.

For a �-graded linear space g, denote by
∧

g∗ = ∑
k

∧k g∗, k ∈ � the exte-

rior algebra of g∗. Now let g be a color hom-Lie algebra, for an endomorphism
β on g, its dual map β∗ : g∗ → g∗ naturally extends to an algebra morphism,
(β∗ξ)(x1, . . . , xk) = ξ(β(x1), . . . , β(xk)), for all ξ ∈ ∧

g∗ and all homogenous ele-
ments x1, . . . , xk ∈ g. Now, recall from [1, 12] that

dξ(x0, . . . , xp) =
∑

i< j

(−1)i+ jθi j (x)ξ(α(x0), . . . , α(xi−1), (4.1)

[xi , x j ], α(xi−1), . . . , x̂ j , . . . , α(xp)), (4.2)

for all ξ ∈ ∧
g∗ and all homogenous elements x1, . . . , xk ∈ g, where

θi j (x) = ε(|xi+1| + · · · + |x j−1|, |x j |).

Proposition 4.1 The following properties hold:

(i) d2 = 0,
(ii) α∗ ◦ d = d ◦ α∗,
(iii) d(ξ ∧ η) = dξ ∧ α∗η + ε(k, l)α∗ξ ∧ dη, for all ξ ∈ ∧kg∗ and η ∈ ∧lg∗.

Proof (i) The proof for (i) can be found in [1, 4].
(ii) Let ξ ∈ ∧kg∗. We have
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α∗ ◦ dξ(x1, . . . , xk+1) = dξ(α(x1), . . . , α(xk+1))

=
∑

i< j

ε(i, j)ε(|x1| + · · · + |xi−1|, |xi |)ε(|x1| + · · · + |x j−1|, |x j |)ε(|xi |, |x j |)

ξ([α(xi ), α(x j )], α2(x1), . . . , x̂i , . . . , x̂ j , . . . , α
2(xk+1))

=
∑

i< j

ε(i, j)ε(|x1| + · · · + |xi−1|, |xi |)ε(|x1| + · · · + |x j−1|, |x j |)ε(|xi |, |x j |)

α∗ξ([xi , x j ], α(x1), . . . , x̂i , . . . , x̂ j , . . . , α(xk+1))

=d(α∗ξ)(x1, . . . , xk+1).

(iii) We use induction on k. If k = 1, then ξ ∧ η ∈ ∧1+lg∗ and

d(ξ ∧ η)(x1, . . . , xl+2)

=
∑

i< j

ε(i, j)ε(|x1| + · · · + |xi−1|, |xi |)ε(|x1| + · · · + |x j−1|, |x j |)ε(|xi |, |x j |)

ξ ∧ η([xi , x j ], α(x1), . . . , x̂i , . . . , x̂ j , . . . , α(xl+2))

=
∑

i< j

ε(i, j)ε(|x1| + · · · + |xi−1|, |xi |)ε(|x1| + · · · + |x j−1|, |x j |)ε(|xi |, |x j |)

{ξ([xi , x j ])η(α(x1), . . . , x̂i , . . . , x̂ j , . . . , α(xl+2))

+
∑

p<i

(−1)pε(|xi | + |x j | + |x1| + · · · + |xp−1|, |xp|)

ξ(α(xp))η([xi , x j ], α(x1), . . . , x̂ p, . . . , x̂i , . . . , x̂ j , . . . , α(xl+2))

+
∑

i<p< j

(−1)p−1ε(|x j | + |x1| + · · · + |xp−1|, |xp|)

ξ(α(xp))η([xi , x j ], α(x1), . . . , x̂ p, . . . , x̂i , . . . , x̂ j , . . . , α(xl+2))

+
∑

j<p

(−1)p−2ε(|x1| + · · · + |xp−1|, |xp|)

ξ(α(xp))η([xi , x j ], α(x1), . . . , x̂ p, . . . , x̂i , . . . , x̂ j , . . . , α(xl+2))}
=dξ ∧ α∗η(x1, . . . , xl+2) − α∗ξ ∧ dη(x1, . . . , xl+2).

Thus, d(ξ ∧ η) = dξ ∧ α∗η + ε(1, l)α∗ξ ∧ dηwhen k = 1.Now, suppose that
for k = n,

d(ξ ∧ η) = dξ ∧ α∗η + ε(n, l)α∗ξ ∧ dη.

Let ω ∈ g∗. We have ξ ∧ ω ∈ ∧n+lg∗ and
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d(ξ ∧ ω ∧ η) =dξ ∧ α∗(ω ∧ η) + ε(n, l)α∗ξ ∧ d(ω ∧ η)

=dξ ∧ (α∗ω ∧ α∗η) + ε(n, l)α∗ξ ∧ (dω ∧ α∗η + ε(1, l)α∗ω ∧ dη)

=(dξ ∧ α∗ω + ε(n, l)α∗ξ ∧ dω) ∧ α∗η + ε(n + 1, l)(α∗ξ ∧ α∗ω)dη

=d(ξ ∧ ω) ∧ α∗η + ε(n + 1, l)α∗ξ ∧ ω) ∧ dη),

which completes the proof. �

Part (iii) of the above proposition says that (∧g∗, α∗, α∗, d) is an (α∗, α∗)-
differential graded commutative algebra. The converse of the above conclusion is
also true. Thus, we have the following theorem, which generalizes the classical
result about the relation between Lie algebra structures and DGCA structures.

Theorem 4.1 The triple (g, [·, ·], α) is a color hom-Lie algebra if and only if the
quadruple (∧g∗, α∗, α∗, d) is an (α∗, α∗)-differential graded commutative color
algebra, where d is defined in (4.1) and the skewsupersymmetric bracket

[·, ·] : ∧2g → g

is defined by
[[x1, x2]η] = −dη(x1, x2),

for all η ∈ g∗, x1, x2 ∈ g.

Proof According to Definition4.6 and Proposition4.1, we only need to prove the
converse. Suppose that (∧g∗, α∗, α∗, d) is an (α∗, α∗)-differential graded commuta-
tive color algebra. We have

d(α∗η)(x1, x2) = −[α∗η, [x1, x2]] = −[η, α([x1, x2])],
α∗dη(x1, x2) = −[η, [α(x1), α(x2)]].

Moreover, α([x1, x2]) = [α(x1), α(x2)],which implies that α is an algebra endomor-
phism. On the other hand, for homogenous elements x1, x2, x3 ∈ g and ξ, η ∈ g∗, we
have

d(ξ ∧ η)(x1, x2, x3) = dξ ∧ (α∗η) − (α∗ξ) ∧ dη(x1, x2, x3)

= ε(1, 2)dξ(x1, x2)η(α(x3)) − ε(1, 3)dξ(x1, x3)η(α(x2))

+ ε(2, 3)dξ(x2, x3)η(α(x1)) − ε(1, 2)ξ(α(x1))dη(x2, x3)

+ ε(2, 1)ξ(α(x2))dη(x1, x3) − ε(3, 1)ξ(α(x3))dη(x1, x2)

= − ε(1, 2)ξ(x1, x2)η(α(x3)) + ε(1, 3)ε(|x1| + |x2|, |x3|)ξ(x1, x3)η(α(x2))

− ε(2, 3)ε(|x1| + |x2|, |x3|)ξ(x2, x3)η(α(x1))

+ ε(1, 2)ξ(α(x1))dη([x2, x3])
− ε(2, 1)ε(|x1|, |x3|)ξ(α(x2))dη([x1, x3])
+ ε(|x1| + |x2|, |x3|)ε(|x2|, |x3|)ξ(α(x3))dη([x1, x2])
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= ε(1, 2)ξ ∧ η([x1, x2], α(x3))

+ ε(1, 3)ε(|x1| + |x2|, |x3|)ε(|x1|, |x3|)ξ ∧ η([x1, x3], α(x2))

+ ε(2, 3)ε(|x1|, |x2|)ε(|x1| + |x2|, |x3|)ε(|x2|, |x3|)ξ ∧ η([x2, x3], α(x1)).

Therefore, we have

0 = d(dξ)(x1, x2, x3) = ε(1, 2)dξ([x1, x2], α(x3))

+ ε(1, 3)ε(|x1| + |x2|, |x3|)ε(|x1|, |x3|)dξ([x1, x3], α(x2))

+ ε(2, 3)ε(|x1|, |x2|)ε(|x1| + |x2|, |x3|)ε(|x2|, |x3|)dξ([x2, x3], α(x1))

= ε(1, 2)dξ([x1, x2], α(x3)) + ε(|x2|, |x3|)dξ([x1, x3], α(x2))

+ ε(|x2| + |x3|, |x1|)dξ([x2, x3], α(x1))

= ξ(ε(1, 2)[[x1, x2], α(x3)] + ε(1, 3)[[x1, x3], α(x2)] + ε(2, 3)[[x2, x3], α(x1)]).

Thus,

ε(1, 2)[[x1, x2], α(x3)] + ε(1, 3)[[x1, x3], α(x2)] + ε(2, 3)[[x2, x3], α(x1)] = 0,

which completes the proof. �

4.4 Representations of Color Hom-Lie Algebras

I this section, we are going to generalize some results from [6, 67]. We start by the
definition of a representation of a color hom-Lie algebra.

Definition 4.7 Let (g, [·, ·], ε, α) be a color hom-Lie algebra. A representation of
g is a triplet (M, ρ, β), where M is a �-graded linear space, β ∈ End(M)0 and
ρ : g → End(M) is an even linear map satisfying

ρ([x, y]) ◦ β = ρ(α(x)) ◦ ρ(y) − ε(x, y)ρ(α(y)) ◦ ρ(x) (4.3)

for all homogeneous elements x, y ∈ g.

Let g be a �-graded linear space and let β ∈ gl(g)0̄. For any homogenous elements
x, y ∈ gl(g), define [·, ·]β : gl(g) × gl(g) → gl(g), by

[x, y]β = βxβ−1yβ−1 − ε(x, y)βyβ−1xβ−1

Recall from [1], the adjoint action on gl(g):

Adβ(x) = βxβ−1

for an element x which satisfies α(x) = x .
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It is shown in [1, 4] that (g, adk, α) is a representation of g which is called the
adjoint representation of the color hom-Lie algebra g.

Proposition 4.2 Let g and [·, ·]β be as described above. Then (gl(g), [·, ·]β, Adβ)

is a regular color hom Lie algebra.

Proof One can easily see that Adβ is invertible, since Adβ ◦ Adβ−1 = id. Moreover,

[Adβ(x)Adβ(y)]β = [βxβ−1, βyβ−1]β
=β2xβ−1yβ−1β−1 − ε(x, y)β2yβ−1xβ−1β−1 = Adβ([x, y]β)

for all x, y ∈ gl(g). Furthermore,

∑

�{x,y,z}
ε(x, z)[[x, y]β, Adβ(z)]β

=
∑

�{x,y,z}
(ε(x, z)([βxβ−1, βyβ−1zβ−1]β) − [βxβ−1, ε(z, y)βzβ−1yβ−1]β)

=
∑

�{x,y,z}
(ε(x, z)β2xβ−1yβ−1zβ−1β−1 − ε(z, y + x)β2xβ−1zβ−1yβ−1β−1

− ε(x, y)β2yβ−1zβ−1xβ−1β−1 + ε(y, x + y)β2zβ−1yβ−1xβ−1β−1) = 0.

This completes the proof. �

Theorem 4.2 Let (g, [·, ·], α) be a color hom-Lie algebra, V a �-graded linear
space and β ∈ gl(V )0̄. Then ρ : g → gl(V ) is a representation of (g, [·, ·], α) on V
with respect to β if and only if ρ : (g, [·, ·], α) → (gl(V ), [·, ·]β, Adβ) is a morphism
of color hom-Lie algebras.

Proof Let ρ : g → gl(V ) be a representation of (g, [·, ·], α) on V with respect to β.
One can see that

ρ(α(x)) ◦ β = β ◦ ρ(x), (4.4)

ρ([x, y]) ◦ β = ρ(α(x))ρ(y) − ε(x, y)ρ(α(y))ρ(x). (4.5)

Using (4.4), we get that ρ ◦ α = Adβ ◦ ρ. Moreover, due to (4.4) and (4.5),

ρ([x, y]) =ρ(α(x))β ◦ β−1ρ(y)β−1 − ε(x, y)ρ(α(y))β ◦ β−1ρ(x)β−1

=βρ(x)β−1ρ(y)β−1 − ε(x, y)βρ(y)β−1ρ(x)β−1

=[ρ(x), ρ(y)]β.

Hence, ρ is a morphism of color hom-Lie algebras. The converse is shown easily in
a similar way. �

Corollary 4.1 Let (g, [·, ·], α) be a regular color hom-Lie algebra. Then the adjoint
representationad : g → gl(g) is amorphism from (g, [·, ·], α) to (gl(g), [·, ·]α, Adα).
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Let ρ : g → gl(V ) be a representation of (g, [·, ·], α) on V with respect to β ∈
gl(V )0̄. Denote by Ck(g; V ), the set of all k-cochains on g, that is, all k-linear
homogeneous maps ϕ : ∧n

(g) → V, satisfying

ϕ(x1, . . . , xi , xi+1, . . . , xk) = −ε(xi , xi+1)ϕ(x1, . . . , xi+1, xi , . . . , xk).

Define for all θ ∈ �,

Cn(g; V )θ = {ϕ ∈ Cn(g; V ) : |ϕ(x1, . . . , xn)| = |x1| + . . . + |xn| + θ}.

If β ∈ gl(V )0̄, we define β̄ from Ck(g; V ) to itself using the k-cochains

β̄(ϕ)(x1, . . . , xk) = β ◦ ϕ(x1, . . . , xk)

for all ϕ ∈ Cn(g; V ). Moreover, using α, one can define

ᾱ : Ck(g; V ) → Ck(g; V )

ᾱ(ϕ)(x1, . . . , xk) = ϕ(α(x1), . . . , α(xk))

for all ϕ ∈ Cn(g; V ).

Definition 4.8 A k-hom-cochain on gwith values in V is a k-cochain ϕ ∈ Ck(g; V )

such that ᾱ(ϕ) = β̄(ϕ).

The set of all k-hom-cochains on g with values in V is denoted by Ck
α,β(g; V ). The

action • : Cl
α(g; V ) × Ck

α,β(g; V ) → Ck+l
α,β (g; V ) is defined as follows. For l = 1,

η • ϕ(x1, . . . , xk+1) =
∑

i

sgn(i)η(xi1)ϕ(xil+1 , . . . , xik+1).

For l � 2,

η • ϕ(x1, . . . , xk+1) =
∑

i

sgn(i)κ j (x)η(xi1 , . . . , xil )ϕ(xil+1 , . . . , xik+1)

for all η ∈ Cl
α(g; V ), ϕ ∈ Ck

α,β(g; V ), where

λ j (x) = ε((

l∑

j=1

|x1| + . . . + |xk+1|), |x j |)(−1)

∑
1≤p �=q≤l

|xp ||xq |

and the summation is taken over (l, k)-shuffles.
The linear map ds : Ck

α,β(g; V ) → Ck+1(g; V ) is defined as follows
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dsϕ(x1, . . . , xk+1) =
k+1∑

i=1

κ j (x)ρ(αs+k(xi ))ϕ(x1, . . . , x̂i , . . . , xk+1)

+
∑

i< j

(−1)iκ j i (x)ϕ([xi , x j ], α(x1), . . . , x̂i , . . . , x̂ j , . . . , α(xk+1)),

κ j (x) = ε(x1 + · · · + x j−1, x j ), κ j i (x) = ε(x j+1 + · · · + xi−1, xi ).

It is shown in [1, 4, 12] that ds is a well-defined coboundry operator. Moreover, it can
be easily checked that β ◦ ds = ds+1 ◦ β̄. It is also shown that ds is an αl derivation
in the sense that ds(η • ϕ) = dη • ᾱ(ϕ) + ε(s, l)η • ds+lϕ.

Let (g, [·, ·], α) be a color hom-Lie algebra. Denote by Ck
α(g) the set of all ξ ∈∧k g∗ for which α∗ξ = ξ . Then the complex (

⊕
k C

k
α(g), d) is a subcomplex of

(
∧

g∗, d), where (
∧

g∗,∧) is the exterior hom-algebra. This complex is considered
to be the cohomological complex of g in[1, 12].

Let ρ : g → gl(V ) be a representation of the color hom-Lie algebra (g, [·, ·], α)

on the �-graded linear space V with respect to β ∈ gl(V )0̄. Denote by Ck(g, V ),
The set of k-cochains on g with values in V . Therefore, Ck(g, V ) is spanned by all
k-linear homogenous maps ϕ : �kg → V for which one has

ϕ(x1, . . . , xi , xi+1, . . . , xk) = ε(xi+1, xi )ϕ(x1, . . . , xi+1, xi , . . . , xk).

The following definition, will identify the notion of a color omni-hom-Lie algebra
which will be used through the rest of the paper.

Definition 4.9 Let g be a �-graded linear space and β ∈ gl(g)0̄. A color omni-hom-
Lie algebra is a quadruple (gl(g) ⊗ g, δβ, {·, ·}β, 〈·, ·〉), where

δβ : gl(g) ⊗ g → gl(g) ⊗ g

is an even linear map satisfying

δβ(A + x) = Adβ(A) + β(x)

for all A + x ∈ gl(g) ⊗ g,

{·, ·}β : gl(g) ⊗ g × gl(g) ⊗ g → gl(g) ⊗ g

is a bilinear map satisfying

{A + x, B + y}β = [x, y]β + A(y)

for all A + x, B + y ∈ gl(g) ⊗ g, and

〈·, ·〉 : gl(g) ⊗ g × gl(g) ⊗ g → g
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is a supersymmetric bilinear V -valued pairing given by

〈A + x, B + y〉 = 1

2
(A(y) − ε(x, y)B(x)).

Note that the 1
2 factor in the above definition, forces the bracket not to satisfy the

ε-hom-Jacobi identity. Without it, we would obtain a color hom-Lie algebra.
Recall that a color hom-Leibniz algebra is a �-graded linear space V together

with a morphism ◦ : L ⊗ L → L satisfying Lα ◦ Lβ ⊆ Lα+β , for all α, β ∈ �, and
the color Leibniz rule:

x ◦ (y ◦ z) = (x ◦ y) ◦ z + ε(x, y)y ◦ (x ◦ z)

for all homogeneous elements x, y, z ∈ L .
One can easily check that a color hom-Leibniz algebra is simply a hom-Lie color

algebrawhen themap “◦” is ε-skew-symmetricwhere the color Leibniz rule becomes
the ε-hom-Jacobi identity.

Proposition 4.3 Let V be a �-graded linear space. Then,

(i) δβ is an algebra automorphism.
(ii) (gl(V ) ⊕ V, {·, ·}β, δβ) is a color hom-Leibniz algebra. Moreover, we have

β〈A + u, B + v〉 = 〈δβ(A + u), δβ(B + v)〈.
Proof Since Adβ is an algebra automorphism,

δβ({A + u, B + v}β) =δβ([A, B]β + A(v)) = Adβ([A, B]β) + βA(v)

=[Adβ(A),β (B)]β + βA(v).

On the other hand,

{δβ(A + u), δβ (B + v)}β = {Adβ(A) + β(u), Adβ(B) + β(v)}β
= [Adβ(A), Adβ(B)]β + Adβ(A)β(v) = [Adβ(A), Adβ(B)]β + βA(v).

Therefore, δβ is an algebra automorphism. Moreover,

{δβ(A + u), {B + v,C + w}β }β = {Adβ(A) + β(u), [B,C]β + B(w)}β
= [Adβ(A), [B,C]β ]β + Adβ(A)B(w) = [Adβ(A), [B,C]β ]β + βAβ−1B(w),

{{A + u, B + v}β, δβ(C + w)}β = {[A, B]β + A(v), Adβ(C) + β(w)}β
= [[A, B]β, Adβ(C)]β + [A, B]ββ(w)

= [[A, B]β, Adβ(C)]β + βAβ−1B(w) − ε(A, B)βBβ−1A(w),
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{δβ(B + v), {A + u,C + w}β }β = {Adβ(B) + β(v), [A,C]β + A(w)}β
= [Adβ(B), [A,C]β ]β + Adβ(B)A(w)

= [Adβ(B), [A,C]β ]β + βBβ−1A(w),

Since (gl(V ), [·, ·]β, Adβ) is a color hom-Leibniz algebra, (ii) is proved. Furthermore,

〈δβ(A + u), δβ(B + v)〉 = 〈Adβ(A) + β(u), Adβ(B) + β(v)〉
= 1

2
(Adβ(A)β(v) − ε(A, B)Adβ(B)β(u)) = 1

2
β(A(v) − ε(A, B)B(u))

= β〈A + u, B + v〉.

This completes the proof. �

Proposition 4.4 Let e1 = A + x, e2 = B + y, e3 = C + z, for A, B,C ∈ gl(V )

and x, y, z ∈ V . Define

T (e1, e2, e3) :=1

3
(ε(z, x)〈{e1, e2}β, e3〉 + ε(x, y)〈{e2, e3}β, e1〉

+ ε(y, z)〈{e3, e1}β, e2〉).

Then T coincides with the left hand side of the ε-hom-Jacobi identity.

Proof First note that

T (e1, e2, e3) =1

3
ε(z, x)〈{A + x, B + y}β,C + z〉 + c.p.

=1

3
ε(z, x)〈[A, B]β + 1

2
(Ay − ε(x, y)Bx),C + z〉 + c.p.

=1

6
ε(z, x)([A, B]β z + 1

2
ε(x + y, z)C(Ay − ε(x, y)Bx)) + c.p.

=1

6
ε(z, x)ABz − 1

6
ε(z, x)ε(x, y)BAz + 1

12
ε(y, z)CAy

− 1

12
ε(y, z)ε(x, y)CBx + 1

6
ε(x, y)BCx − 1

6
ε(x, y)ε(y, z)CBx

+ 1

12
ε(z, x)ABz − 1

12
ε(z, x)ε(y, z)ACy + 1

6
ε(y, z)CAy

− 1

6
ε(y, z)ε(z, x)ACy + 1

12
ε(x, y)BCx − 1

12
ε(x, y)ε(z, x)BAz

=1

4
ε(z, x)ABz − 1

4
ε(z, x)ε(x, y)BAz + 1

4
ε(y, z)CAy

− 1

4
ε(y, z)ε(x, y)CBx + 1

4
ε(x, y)BCx − 1

4
ε(z, x)ε(y, z)ACy.
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On the other hand,

ε(z, x){{A + x, B + y}β,C + x}β + c.p.

={1
6
ε(z, x)[A, B]β + 1

2
ε(z, x)(Ay − ε(x, y)Bx),C + z}β + c.p.

=ε(z, x)[[A, B]β,C]β + c.p.

+ 1

2
(ε(z, x)[A, B]β z − 1

2
ε(z, x)ε(x + y, z)C(Ay − ε(x, y)Bx))

+ 1

2
(ε(x, y)[B,C]βx − 1

2
ε(x, y)ε(y + z, x)A(Bz − ε(y, z)Cy))

+ 1

2
(ε(y, z)[C, A]β y − 1

2
ε(y, z)ε(x + z, y)B(Cx − ε(z, x)Az))

=1

4
ε(z, x)ABz − 1

4
ε(z, x)ε(x, y)BAz + 1

4
ε(y, z)CAy

− 1

4
ε(y, z)ε(x, y)CBx + 1

4
ε(x, y)BCx − 1

4
ε(z, x)ε(y, z)ACy.

This completes the proof. �
Finally, let V be an ε-graded linear space and recall that the graph of the adjoint
operator is defined as the following

Fβ = {adβ(x) + x,∀x ∈ g} ⊂ gl(V ) ⊗ V,

which is an ε-graded subspace of gl(V ) ⊗ V . Let F⊥
β denote the orthogonal com-

plement of Fβ with respect to 〈., .〉.
Proposition 4.5 The triple (V, {., .}β, β) form a hom-Lie color algebra if and only
if the graph of the adjoint representation on V is maximal isotopic, that is,Fβ = F⊥

β ,
and is closed with respect to the bracket {., .}β .
Proof First, note that from the definition of the adjoint map we get

〈adβ(x) + x, adβ(y) + y〉 =1

2
(adβ(x)y + ε(x, y)adβ(y)x)

=1

2
([x, y]β + ε(x, y)[y, x]β).

which indicated that Fβ ⊆ F⊥
β .

Now we will rewrite the ε-graded Jacobi identity on V .

{adβ(x) + x, adβ(y) + y} =[adβ(x), adβ(y)]β + 1

2
(adβ(x)y − ε(x, y)adβ(y)x)

=[adβ(x), adβ(y)]β + 1

2
([x, y]β − ε(x, y)[y, x]β)

=[adβ(x), adβ(y)]β + [x, y]β .
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Therefore, this bracket is closed if and only if [adβ(x), adβ(y)]β = adβ([x, y]β) in
which case for all homogenous elements z ∈ V we have

[adβ(x), adβ(y)]β(β(z)) − adβ([x, y]β)(β(z))

= adβ(x)adβ(y)(β(z)) − ε(x, y)adβ(y)adβ(x)(β(z)) − adβ([x, y]β)(β(z))

= adβ(β(x))[y, z]β − ε(x, y)adβ(β(y))[x, z]β − [[x, y]β, β(z)]β
= [β(x), [y, z]β ]β − ε(x, y)[β(y), [x, z]β ]β − [[x, y]β, β(z)]β = 0.

This completes the proof. �

Note that the last proof can be rewritten by α instead of β which shows that the result
is independent of the representation.
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Chapter 5
On (σ, τ)-Derivations of Group Algebra
as Category Characters

Aleksandr Alekseev, Andronick Arutyunov, and Sergei Silvestrov

Abstract For the space of (σ, τ )-derivations of the group algebraC[G] of a discrete
countable group G, the decomposition theorem for the space of (σ, τ )-derivations,
generalising the corresponding theorem on ordinary derivations on group algebras,
is established in an algebraic context using groupoids and characters. Several corol-
laries and examples describing when all (σ, τ )-derivations are inner are obtained.
Considered in details are cases of (σ, τ )-nilpotent groups and (σ, τ )-FC groups.

Keywords Group algebra · Derivation · (σ, τ )-derivation · Groupoid · Character
MSC2020 Classification 16W25 · 13N15 · 16S34

5.1 Introduction

The general theory of derivations for C∗-algebras, W ∗-algebras, Banach, normed
and topological algebras, motivated bymany parts ofMathematics andMathematical
Physics, has developed since 1950’th. Fundamental derivation theorems describing
conditions for all or almost all derivations being inner, constructions of outer deriva-
tions and related cohomology methods and generalizations have been developed for
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C∗-algebras,W ∗-algebras and some related classes of Banach, normed and topolog-
ical algebras and their representations [1, 2, 8, 11, 15, 16, 22, 24–27, 30–34, 46,
47, 52–56].

For group algebras, the derivation problem is formulated as follows: "Under what
conditions all derivations in a group algebra are inner?". There are many kinds of
group algebras based on algebraic structure, topological structure, measure struc-
tures and choices of function spaces for the group algebra elements. For the group
algebra L1(G), the derivation problem is important for investigations in measure
theory and harmonic analysis, operator theory, operator algebras and cohomological
constructions [15, Question 5.6.B, p. 746]. The derivation problem for L1(G) of a
locally compact group G was considered in [40], where it was mentioned that all
derivations of L1(G) are inner.

It is important to note that in the cited publications derivations are considered in
topological context of the classes of algebras and modules equipped with normed or
more general topological structures. If we consider the problem in algebraic way it is
easy to find examples of non-inner derivations [4–6].Algebraic viewon the derivation
problem is also presented in [3] together with more complete bibliography.

We consider in this article (σ, τ )-derivations, the linear operators on an associa-
tive algebra satisfying a generalized Leibniz rule D(xy) = D(x)τ (y) + σ(x)D(y)
twisted by two linear maps σ and τ . The (σ, τ )-derivation operators include, for
example, the ordinary derivations on commutative and non-commutative algebras,
the q-difference and (p, q)-difference operators on algebras of functions, the super-
derivations, graded colored derivations and q-derivation on graded associative alge-
bras. Since 1930s, (σ, τ )-derivations and subclass of σ -derivations have been shown
to play a fundamental role in the theory of Ore extensions and iterated Ore exten-
sion rings and algebras, skew polynomial algebras and skew fields, Noetherian rings
and algebras, differential and difference algebra, homological algebra, Lie algebras
and Lie groups, Lie superalgebras and colored Lie algebras, operator algebras, non-
commutative geometry, quantum groups and quantum algebras, differential geome-
try, symbolic algebra computations and algorithmsq-analysis andq-special functions
and numerical analysis [9, 10, 13, 14, 18, 28, 29, 35–37, 41–43, 45, 51]. The space
of (σ, τ )-derivations and subspace of σ -derivations have been recently used in [12,
17, 21, 38, 39, 48, 49, 57, 58] in general constructions of quasi-Hom-Lie algebras
and their central extensions, extending Witt and Virasoro Lie algebras to context of
(σ, τ )-derivations, with special emphasize on (σ, τ )-derivations and σ -derivations
on commutative algebras such as unique factorization domains, algebras of polyno-
mials, Laurent polynomials and truncated algebras of polynomials in one or several
variables.

In this paper,we consider (σ, τ )-derivations andσ -derivations of the group algebra
C[G] of a discrete countable group G. We apply the approach proposed in [4–7, 44]
for the description of derivations in group algebras to study the space of (σ, τ )-
derivations of the group algebras.

Section 5.2 contains general definitions and preliminaries on (σ, τ )-derivations
and group algebras considered in the article. In Sect. 5.3, we construct a groupoid Γ

associated with the group algebra and the pair of maps (σ, τ ) in the (σ, τ )-twisted
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Leibniz rule for (σ, τ )-derivations, (σ, τ )-conjugacy classes and characters on this
groupoid. We also construct an isomorphism between the space of (σ, τ )-derivations
on a group algebra of countable group and the space of locally finite characters on
the associated groupoid (Theorem 5.1). In Sect. 5.4, we define and describe quasi-
inner (σ, τ )-derivations, as well as a class of not quasi-inner derivations. We prove
Theorem 5.2 which describes the view of quasi-inner (σ, τ )-derivations. In Sect.
5.5 we consider the case of (σ, τ )-nilpotent groups and obtain a description of the
(σ, τ )-derivation algebra (see Theorem 5.3). For the case of inner endomorphisms
and a Heisenberg group, we calculate the (σ, τ )-derivations in the group algebra (see
results in Sect. 5.5.3). The Sect. 5.6 is dedicated to the case of (σ, τ )-FC groups
which are natural generalization of usual FC-groups on our ”twisted” case of (σ, τ )-
derivations. For this class of groups we show some simple properties (see Proposition
5.9) and construct a description of (σ, τ )-derivations (Theorem 5.4).

5.2 General Definitions and Preliminaries

In this section, we recall some basic definitions and properties ofmain objects studied
in the rest of the article.

Definition 5.1 Let A be an associative algebra over a field K and (σ, τ ) is a pair of
K-linear endomorphisms of A. A (σ, τ )-derivation D : A → A is an K-linear map
such that the following twisted by (σ, τ ) generalized Leibniz identity

D(ab) = D(a)τ (b) + σ(a)D(b) (5.1)

is satisfied for all a, b ∈ A. If τ = idA, the generalized Leibniz identity is twisted
by one map σ as follows

D(ab) = D(a)b + σ(a)D(b), (5.2)

and the (σ, idA)-derivation D is called σ -derivation. If τ = σ = idA, then the usual
Leibniz identity

D(ab) = D(a)b + aD(b) (5.3)

holds, and D is called a derivation on A.
The set of all (σ, τ )-derivations on A is denoted by D(σ,τ )(A). The set of all

σ -derivations is denoted byDσ (A), and the set of all derivations is denoted byD(A)

The set D(σ,τ )(A) of (σ, τ )-derivations on A is a linear subspace of the space of
linear operators on A as a K-linear space.
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For any (σ, τ )-derivation on A,

D(a(bc) − (ab)c) = D(a(bc)) − D((ab)c) =
= D(a)τ (bc) + σ(a)D(bc) − (

D(ab)τ (c) + σ(ab)D(c)
) =

= D(a)τ (bc) + σ(a)
(
D(b)τ (c) + σ(b)D(c)

)

−(
D(a)τ (b) + σ(a)D(b)

)
τ(c) − σ(ab)D(c) =

= D(a)
(
τ(bc) − τ(b)τ (c)

) + (
σ(a)σ (b) − σ(ab)

)
D(c).

Since A is associative, a(bc) − (ab)c = 0, and since D is linear, D(a(bc) −
(ab)c) = 0, and hence

D(a)
(
τ(bc) − τ(b)τ (c)

) + (
σ(a)σ (b) − σ(ab)

)
D(c) = 0. (5.4)

Note that for the identity element e, in general, D(e) = D(e · e) = D(e)τ (e) +
σ(e)D(e), or equivalently, D(e)(e − τ(e)) = σ(e)D(e), implying that if τ(e) =
σ(e) = e (as for example for group endomorphisms), then D(e) = 0.

In this article we will be interested only in (σ, τ )-derivations D with σ, τ ∈
End(G) and D(e) = 0.

If A is an associative algebra over a field K, and σ and τ are algebra endomor-
phisms on A, then for any p ∈ A the map δp : A → A given by the (σ, τ )-twisted
generalised commutator δp(x) = pτ(x) − σ(x)p, is a (σ, τ )-derivation onA, since
for each x, y ∈ A, we have

δp(xy) = pτ(xy) −σ(xy)p = pτ(x)τ (y) − σ(x)σ (y)p =
= pτ(x)τ (y) − σ(x)pτ(y) + σ(x)pτ(y) − σ(x)σ (y)p =

= δp(x)τ (y) + σ(x)δp(y).

Definition 5.2 (Inner (σ, τ )-derivation) If A is an associative algebra, and σ and τ

are algebra endomorphisms on A, then (σ, τ )-derivations δp for p ∈ A are called
the inner (σ, τ )-derivations of A.

Throughout this article, the group algebraK[G] of a group (G, ·) over the fieldK
means the linear space of mappings f : G → K of finite support with the pointwise
operations of multiplication by scalars and addition, and the algebra product defined
as convolution

( f ∗ g)(x) =
∑

u·v=x

f (u)g(v) =
∑

u∈G
f (u)g(u−1x). (5.5)

where all sums are finite because f and g are of finite support. With these operations,
the group algebra is an unital associative algebra with the algebra unity coinciding
with the indicator function Ie of the group unity e ∈ G, that is I (e) = 1K and I (e) =
0K otherwise. The elements f ∈ K[G] often are conveniently presented as the formal
linear combinations of elements of G with coefficients inK written as

∑
g∈G f (g)g

or
∑

g∈G fgg similar to usual way of writing polynomials and Laurent polynomials.
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5.3 Groupoid and Characters

For any mapping D : C[G] → C[G] and any g ∈ G, the element D(g) ∈ C[G] can
be written as

D(g) =
∑

h∈G
λh
gh, λh

g ∈ C.

When D : C[G] → C[G] is (σ, τ )-derivation, the (σ, τ )-twisted Leibniz rule (5.1)
for g1, g2 ∈ G ↪→ C[G] becomes

D(g2g1) = D(g2)τ (g1) + σ(g2)D(g1),

λh
g2g1 = λ

hτ(g−1
1 )

g2 + λ
σ(g−1

2 )h
g1 . (5.6)

Here we apply an approach developed in [4, 6, 7, 44] to describe derivation in
terms of groupoid geometrical properties. We construct a groupoid Γ associated
with the group algebra in the following way:

• Obj(Γ ) = G
• For all a and b ∈ Obj(Γ ) a set of maps is Hom(a, b) = {(u, v) ∈ G ×
G | σ(v−1)u = a, uτ(v−1) = b}

• A composition of maps ϕ = (u1, v1) ∈ Hom(a, b), ψ = (u2, v2) ∈ Hom(b, c) is
a map ϕ ◦ ψ ∈ Hom(a, c), such that

ϕ ◦ ψ = (u2τ(v1), v2v1). (5.7)

Remark 5.1 We do not have in formula (5.7) the map σ explicitly. But if the com-
position ϕ ◦ ψ exists, then t (ψ) = s(ϕ). This means that

σ(v−1
1 )u1 = u2τ(v−1

2 ).

The last formula gives us a connection to map σ in (5.7).

We will be interested in some internal structure issues of the groupoid Γ . If
morphism (u, v) ∈ Hom(a, b), then u = σ(v)a and uτ(v−1) = b. Thereforewe have

b = σ(v)aτ(v−1).

It gives the following description of subgroupoid Γ[a]

Obj(Γ[a]) = {σ(v)aτ(v−1)|v ∈ G}. (5.8)
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Definition 5.3 A subset [a]σ,τ = {σ(g−1)aτ(g) | g ∈ G} is called a (σ, τ )-con-
jugation class of the u.

The set of (σ, τ )-conjugation classes is denoted G(σ,τ ). If two (σ, τ )-conjugacy
classes intersect, then they coincide. So the set of group elements is represented as
a disjoint union of (σ, τ )-conjugacy classes

{G} =
⊔

[u]σ,τ ∈G(σ,τ )

[u]σ,τ .

The set [a](σ,τ ) := {σ(v)aτ(v−1) | v ∈ G} can be understood as (σ, τ ) analogue
of conjugacy class. If the (σ, τ )-class [a] contains just one element, then we will say
that a is a (σ, τ )-central element of G.

It is easy to represent Γ as disjoint union of the groupoids Γ[u]σ,τ
(see [4, 5]):

Γ =
⊔

[u]σ,τ ∈G(σ,τ )

Γ[u]σ,τ
(5.9)

Definition 5.4 A linear map χ : Hom(Γ ) → C, such that

χ(ϕ ◦ ψ) = χ(ϕ) + χ(ψ), (5.10)

is called a character on the groupoid Γ .

Characters with natural sum operations and multiplication by scalar form a vector
space. It is natural to define the support of character χ in following way

suppχ = {ϕ ∈ Hom(Γ )|χ(ϕ) �= 0}. (5.11)

Further we will be interested just in those characters which are connected with
derivations.

Definition 5.5 The character χ such that, for fixed v ∈ Obj(C) , χ(u, v) = 0 for
almost all u ∈ Obj(C) is called a locally finite character.

Let X (Γ ) be a space of the all locally finite characters on Γ . From formula (5.9)
we get the decomposition of the space X (Γ ) in following way

X (Γ ) =
⊕

[u]σ,τ ∈G(σ,τ )

X (Γ[u]σ,τ
), (5.12)

where X (Γ[u]σ,τ
) denotes the locally finite characters supported in Γ[u]σ,τ

.
Consider a map � : D(σ,τ )(C[G]) → X (Γ ), such that if D(g) = ∑

h∈G
λh
gh, then

�(D)(h, g) = λh
g . The map �−1 is constructed in the same way,
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�−1(χ)(g) =
∑

h∈G
χ(h, g)h.

Theorem 5.1 Consider the discrete countable group G with σ, τ ∈ End(G). Then,
the map � : D(σ,τ )(C[G]) → X (Γ ) is an isomorphism.

Proof On the one hand, we show that �(D) ∈ X (Γ ). Due to the definition of the
groupoid Γ , there exists a following composition of maps:

(hτ(g−1
1 ), g2) ◦ (σ (g−1

2 )h, g1) = (h, g2g1).

Using (5.6) one obtains

�(D)(h, g2g1) = λhg2g1 =
= λ

hτ(g−1
1 )

g2 + λ
σ(g−1

2 )h
g1 = �(D)(hτ(g−1

1 ), g2) + �(D)(σ (g−1
2 )h, g1).

The latter equation means that �(D) satisfies the property (5.10). Thus, �(D) ∈
X (Γ ).

On the other hand, due to the property of locally finiteness,

�−1(χ)(g) =
∑

h∈G
χ(h, g)h ∈ C[G],

and ��−1 = IdX (Γ ), �−1� = IdD(σ,τ )(C[G]). �

5.4 Quasi-inner (σ, τ )-Derivations

Recall that inner (σ, τ )-derivation δp is given by formula

δp : x �→ pτ(x) − σ(x)p.

By Theorem 5.1 the corresponding character is trivial on loops.

Proposition 5.1 For the given inner (σ, τ )-derivation δp the corresponding charac-
ter �(δp) is trivial on loops, in the other words ∀a ∈ Obj(C) and ∀ϕ ∈ Hom(a, a)

the value �(δp)(ϕ) = 0.

Proof If pτ(g) = σ(g)p, then �(δp)(pg, g) = λ
pτ(g)
g − λ

σ(g)p
g = 1 − 1 = 0. Oth-

erwise, if ϕ ∈ Hom(p, p) then ϕ = (pτ(g), p) = (σ (g)p, p). �

Not all locally finite characters which are trivial on loops are given by an inner
derivation even for ordinary derivations (see [4, page 76 (example)]).

Definition 5.6 A (σ, τ )-derivation D is said to be a quasi-inner if the corresponding
character �(D) is trivial on loops.
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When mapping σ and τ are identity mappings (σ, τ )-derivations are equal to
usual derivations on group algebra C[G]. In this case quasi-inner derivations form
an idealwhich contains ordinary inner derivations ([7, Theorem4.1]), and quasi-inner
derivations can be easily calculated (see Theorem 5.2).

Definition 5.7 An element a ∈ G is said to be (σ, τ )-central if aτ(v) = σ(v)a ∀v ∈
G.

Proposition 5.2 For the given group G, maps σ, τ ∈ End(G), (σ, τ )-central ele-
ment a and a homomorphism ϕ : G → C, the map D(g) = ϕ(g)σ (g)a is a (σ, τ )-
derivation.

Proof Using first the definition of D, then (σ, τ )-centrality of the element a and
then homomorphism property of ϕ and σ and finally again the definition of D one
obtains:

D(g1)τ (g2) + σ(g1)D(g2) = ϕ(g1)σ (g1)aτ(g2) + σ(g1)ϕ(g2)σ (g2)a =
ϕ(g1)σ (g1)σ (g2)a + ϕ(g2)σ (g1)σ (g2)a =

(ϕ(g1) + ϕ(g2))σ (g1)σ (g2)a = ϕ(g1g2)σ (g1g2)a = D(g1g2).

which means that D is a (σ, τ )-derivation. �

Definition 5.8 The (σ, τ )-derivation D is called (σ, τ )-central.

The (σ, τ )-central derivations give us an example of noninner (σ, τ )-derivations.
For the case of general group algebra they were studied in [5].

Proposition 5.3 The nonzero (σ, τ )-central (σ, τ )-derivation D is not quasi-inner.

Proof The character’s value �(D)(σ (g)a, g) = ϕ(g), and since (σ (g)a, g) is a
loop, the (σ, τ )-derivation D is not quasi-inner. �

Quasi-inner (σ, τ )-derivations can be calculated in the following way. Consider a
map (u, v) ∈ Hom(Γ ). Let t, s : Hom(Γ ) → Obj(Γ ) be a target and source maps,
such that φ = (u, v) : s(φ) → t (φ). If the character χ is trivial on loops then exists
function Pχ : Obj(Γ ) → C such that

χ(φ) = Pχ (t (φ)) − Pχ (s(φ)).

That means that if χ is locally finite character, then the following formula is valid
for a quasi-inner (σ, τ )-derivation DP :

DP (g) =
∑

h∈G
(Pχ (t (h, g)) − Pχ (s(h, g)))h =

∑

h∈G
(Pχ (hτ(g−1)) − Pχ (σ (g−1)h))h.

In other words we get the following statement.
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Theorem 5.2 If D ∈ QInn(Γ ), then there exists a finitely supported function
P : Obj(Γ ) → C such that for generators g ∈ C[G],

D(g) =
∑

h∈G
(P(hτ(g−1)) − P(σ (g−1)h))h.

Remark 5.2 The function P from the theorem is not unique. It is determined up to
the addition of a constant on each subgroupoid.

5.5 (σ, τ)-Nilpotent Groups

5.5.1 General Case of (σ, τ)-Nilpotent Groups

The following concepts are similar to the terms fromclassic group theory.Derivations
in classic rank 2 nilpotent groups were studied in [5].

Definition 5.9 A subgroup Zσ,τ = {z ∈ G | σ(z)p = pτ(z)∀p ∈ G} is called a
(σ, τ )-center of the group G.

Of course z ∈ Zσ,τ is equivalent to the fact that there is single object in subgroupoid
Γ[z].

It is worth mentioning that the (σ, τ )-center is not a subgroup of (σ, τ )-central
elements, which were introduced in Definition 5.7.

Definition 5.10 A subgroup Zσ,τ (u) = {z ∈ G | σ(z)u = uτ(z)}, u ∈ G is called a
(σ, τ )-centraliser of the element u.

Proposition 5.4 A subgroup Zσ,τ ⊆ G is a normal subgroup.

Proof Let us show that for z ∈ Zσ,τ and g ∈ G, the element gzg−1 ∈ Zσ,τ or in the
other words pτ(gzg−1) = σ(gzg−1)p ∀p ∈ G. Indeed,

pτ(gzg−1) = pσ(z) = σ(σ−1(p)z) =
σ(τ−1(τ (σ−1(p))τ (z))) = σ(τ−1(σ (z)τ (σ−1(p)))) = σ(τ−1(σ (z)))p,

σ (gzg−1)p = σ(τ−1(σ (z)))σ (gg−1)p = σ(τ−1(σ (z)))p.

�

In accordance with the definition of Γ the source of the map (σ (g)p, g) is
the object p, the target is σ(g)pτ(g−1) and the inverse map (σ (g)p, g)−1 =
(pτ(g−1), g−1). That means that g−1Zσ,τ (p)g = Zσ,τ (σ (g)pτ(g−1)).

Definition 5.11 A group G such that G/Zσ,τ is abelian is called a (σ, τ )-nilpotent
group with rank 2.
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Proposition 5.5 Consider the (σ, τ )-nilpotent group G with rank 2. Then all ele-
ments in Obj(Γ[u]σ,τ

) have the same (σ, τ )-centralizer group or, in the other words,
Zσ,τ (σ (g)pτ(g−1)) = gZσ,τ (p)g−1 = Zσ,τ (p).

Proof Consider an element z p ∈ Zσ,τ (p). Let [z p] be a class in quotient group
G/Zσ,τ . Due to the fact, that G/Zσ,τ is abelian, one obtain, that [gz pg−1] = [z p].
Thus, there exists an element z ∈ Zσ,τ , such that z pz = gz pg−1. That means, that
gz pg−1 ∈ Zσ,τ (p). �

Corollary 5.1 If there is a subgroupoid Γ[u]σ,τ
with the infinite number of objects,

then each character χ ∈ X (Γ[u]σ,τ
) is trivial on loops.

Proof The proof immediately follows from the statement that for the given (σ, τ )-
derivation D the corresponding character �(D) has to be locally-finite. Consider an
object a ∈ Obj(Γ[u]σ,τ

). Then, since

Zσ,τ (σ (g)aτ(g−1)) = Zσ,τ (a),

if there is a loop
(aτ(g), g) ∈ Hom(a, a),

then every set Hom(b, b) ∀b ∈ Obj(Γ[u]σ,τ
) has a map

(bτ(g), g) ∈ Hom(b, b).

Due to the fact that
χ(aτ(g), g) = χ(bτ(g), g),

one obtains that if χ(aτ(g), g) �= 0, then a character χ does not satisfy the property
of locally-finiteness. �

We are going now to generalize the result of the corollary in a following theorem.

Theorem 5.3 If G is rank 2 (σ, τ )-nilpotent group, then

D(σ,τ )
∼=

⊕

|[a](σ,τ )|<∞
Z∗

(σ,τ )(a)
⊕

QInn(Γ ), (5.13)

where Z∗
(σ,τ ) is the space of group characters of the centralizer Z(σ,τ )(a), i.e. Z∗

(σ,τ ) =
Hom(Z(σ,τ ),C), and QInn(Γ ) is a space of the all quasi-inner derivations on Γ .

Proof As we noted above
Γ =

⊔
Γ[u]σ,τ

.

This implies the following decomposition
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X (Γ ) =
⊕

X (Γ[u]σ,τ
),

where X (Γ[u]σ,τ
) is the notation of locally finite characters supported in a subgroupoid

Γ[u]σ,τ
. If the class [a](σ,τ ) is infinite, then by Corollary 5.1 characters from the sub-

space X (Γ[u]σ,τ
) are quasi-inner.

Now consider finite class [u](σ,τ ). In Γ[u]σ,τ
each set of maps {(aσ(g), g) | a ∈

Obj(Γ[u]σ,τ
)} is finite because the set of objects is finite. Thatmeans that each character

on this subgroupoid is locally finite. Each equivalence class of the characters which
have equals values on loops, i.e. χ1 − χ2 ∈ QInn, is defined by an element of the
group Z∗

(σ,τ )(u).
Hence, we get that

D(σ,τ )(Γ[u]σ,τ
) ∼= Z∗

(σ,τ )(u)
⊕

QInn(Γ[u]σ,τ
).

From the above the statement of the theorem follows. �

Remark 5.3 Remind that if u ∈ Zσ,τ then the space QInn(Γ[u]σ,τ
) is trivial.

Group (σ, τ )-nilpotency is necessary for triviality of characters on loops on infinite
subgroupoids. If our group G is not nilpotent then the right side of (5.13) is just a
subspace in the space of all (σ, τ )-derivations.

Following to the papers cited in introduction of this article we will describe con-
ditions of quasi-innerness of (σ, τ )-derivations.

Corollary 5.2 For groups satisfying the conditions of the Theorem 5.3, all (σ, τ )-
derivations are quasi-inner if and only if the following condition is satisfied: all
(σ, τ )-centralizers are such that factor-group Z(σ,τ )(a)/Z ′

(σ,τ )(a) is a periodic group.

Here Z ′
(σ,τ )(a) is a derived subgroup of Z(σ,τ )(a). Recall that a periodic group is

a group such that all elements have finite order.

Proof The group Z(σ,τ )(a)/Z ′
(σ,τ )(a) is naturally abelian. The periodicity of a group

is equivalent to triviality of the space of group characters Z(σ,τ )(a)/Z ′
(σ,τ )(a). Triv-

iality for each a ∈ G of spaces Z∗
(σ,τ )(a) is equivalent to triviality of first term in

(5.20). So from the Theorem 5.3 we get that all (σ, τ )-derivations are quasi-inner. �

5.5.2 The Case of Inner Endomorphisms

Let G be a discrete rank 2 nilpotent group and σ, τ ∈ Aut(G) act for fixed elements
σ̃ , τ̃ ∈ G as follows

σ(u) = σ̃uσ̃−1, τ(u) = τ̃uτ̃−1.

Let Z(G) be the usual center of G.
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Remark 5.4 We remind, that the group G is said to be rank 2 nilpotent group, if
and only if the quotient group G/Z(G) is abelian. In our notation nilpotent rank 2
group is a rank 2 (id, id)-nilpotent group.

Proposition 5.6 The usual center of G is equal to Zσ,τ .

Proof Consider z ∈ Z(G). Then

σ(z)a = σ̃ zσ̃−1a = za = az = aτ̃ zτ̃−1 = aτ(z).

Thus, Z(G) ⊆ Zσ,τ . Now consider z ∈ Zσ,τ . Then

σ(z)a = aτ(z) → z = σ̃−1aτ̃ zτ̃−1a−1σ̃

Since σ̃Gτ̃−1 = G as sets, the latter equation holds for every g ∈ G. Thus, Z(G) =
Zσ,τ . �

Corollary 5.3 The discrete rank 2 nilpotent group G coupled with (σ, τ ) pair is a
rank 2 (σ, τ )-nilpotent group.

Proof As we mentioned before, a quotient group G/Z(G) is abelian and Z(G) =
Zσ,τ . Thus, the given group is a rank 2 (σ, τ )-nilpotent group. �

5.5.3 Heisenberg Group

Our results and observations allow us to calculate all (σ, τ )-derivations inHeisenberg
group. In the calculationwewill use results in [5, Sect. 3.3].Recall that theHeisenberg
group H is a group of unitriangular integer matrices. We denote the group algebra
as H.

Classes [u]σ,τ in Heisenberg group either consist of one element or infinite. That
means that by Theorem 5.3

Dσ,τ (H) = ZDerσ,τ

⊕
QInn,

where ZDerσ,τ denotes (σ, τ )-central (σ, τ )-derivations from Definition 5.8.
Description of (σ, τ )-central derivations is quite simple.
The homomorphisms ϕμ,ν to additive group of complex numbers look alike

ϕμ,ν :
⎛

⎝
1 a c
0 1 b
0 0 1

⎞

⎠ �→ (μa + νb). (5.14)
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The center of group H (both (σ, τ ) andusual byProposition 5.6) contains elements

zr =
⎛

⎝
1 0 r
0 1 0
0 0 1

⎞

⎠ .

Consider

σ̃ =
⎛

⎝
1 σa σc

0 1 σb

0 0 1

⎞

⎠ , τ̃ =
⎛

⎝
1 σa τc
0 1 σb

0 0 1

⎞

⎠ . (5.15)

Proposition 5.7 For each centralizer element u = σ(g)uτ(g−1)∀g ∈ G there exists
r ∈ R, such that u = zr . In the other words, (σ, τ )-centralzers and elements from
Z(σ,τ ) = Z(G) become equal.

Proof

u =
⎛

⎝
1 ua uc
0 1 ub
0 0 1

⎞

⎠ , g =
⎛

⎝
1 ga gc
0 1 gb
0 0 1

⎞

⎠ ,

σ (g)uτ(g−1) =
⎛

⎝
1 ua uc + gaub − ubga
0 1 ub
0 0 1

⎞

⎠ .

Thus, from the equation u = σ(g)uτ(g−1), one gets ua = 0, ub = 0, uc = r . �

The latter equation means that (σ, τ )-derivations given by (5.15) become equal
to the usual derivations considered in [5].

So, we can calculate the (σ, τ )-central derivation drϕμ,ν
on the generator of algebra

H:

drϕμ,ν

⎛

⎝
1 a c
0 1 b
0 0 1

⎞

⎠ = (μa + νb)

⎛

⎝
1 a c + σab − σba + r
0 1 b
0 0 1

⎞

⎠ . (5.16)

5.6 (σ, τ)-FC Groups

The class of FC-groups is an interesting class of groups for which conditions are
similar to condition of finite groups. More detailed study of FC-groups can be found
in [19, 20, 50].

In classical group theory, FC-group is a group in which all conjugacy classes are
finite. In this terms abelian group is a group where all conjugacy classes contain one
element. These concepts are naturally carried to the case of (σ, τ )-groups.
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Definition 5.12 1. Group G is a (σ, τ )-FC group if each (σ, τ )-conjugacy class
[u]σ,τ ∈ G(σ,τ ) is finite.

2. Group G is a (σ, τ )-abelian (or (σ, τ )-commutative) if each class [u]σ,τ contains
single element.

For (σ, τ )-commutative group, the following identity holds

σ(v)u = uτ(v), ∀ u, v ∈ G. (5.17)

Apparently the definition of (σ, τ )-FC group is introduced in this paper for the
first time, and sowewill show some properties of such groups. Let us give an example
of a source of such groups.

Proposition 5.8 Let endomorphisms σ, τ acting on a group G have a finite image.
Then G is a (σ, τ )-FC group.

Proof If images of endomorphisms σ, τ are finite, then each (σ, τ )-conjugacy class
is finite by Definition 5.3. �

Standard FC-group may not be an (σ, τ )-FC group for arbitrary endomorphisms
(σ, τ ) even ifσ and τ are inner. Let for fixed elements x, y ∈ G,σx : g → xgx−1, τy :
g → ygy−1. Then for a ∈ G the corresponding (σ, τ )-conjugacy class looks like

[a]σx ,τy = {xvx−1ayv−1y−1|v ∈ G}. (5.18)

So if G is an infinite FC-group, then we have infinite number of conjugacy
classes, so typically there is an infinite number of elements in (σ, τ )-conjugacy
class. However the following proposition holds.

Proposition 5.9 A group G is a (σx , σx )-FC group if and only if G is a FC-group.

Proof For the proof it is enough to see that for x = y formula (5.18) can be rewritten
in the following way

[a]σx ,σx = {xvx−1axv−1x−1|v ∈ G}, (5.19)

and on the right side we get

xvx−1axv−1x−1 = xvx−1a(xvx−1)−1,

so elements of [a]σx ,σx are contained in the usual conjugacy class of the
element a. �

The following statements follow easily from Proposition 5.9.



5 On (σ, τ )-Derivations of Group Algebra … 95

Corollary 5.4 For each x ∈ G,

1. For each group G holds that [a]σx ,σx = [a], where [a] is the usual conjugacy class.
2. If G is an abelian group then it is (σx , σx )-abelian.

Remark 5.5 If group G is (σ, τ )-abelian it may not be abelian in the usual sense.
An example of this is the case when σ = τ and an image of map σ subsets in the
usual centre of the group G.

Now we will prove an analogue of Theorem 5.3 for (σ, τ )-FC groups.

Theorem 5.4 If G is a finitely generated (σ, τ )-FC group, and σ, τ are endomor-
phisms of group G, then

D(σ,τ )
∼=

⊕

[a](σ,τ )

Z∗
(σ,τ )(a)

⊕
I nn(Γ ). (5.20)

Here Z∗
(σ,τ )(a) is the space of group characters of the (σ, τ )-centralizer Z(σ,τ )(a) as

in our Theorem 5.3.

Proof The proof of (5.20) in our theorem is similar to the proof of Theorem 5.3.
Except for one moment: we have to proof that all quasi-inner (σ, τ )-derivations for
the case of (σ, τ )-FC group are inner.

For quasi-inner (σ, τ )-derivations, the Theorem 5.2 is applicable. The set of
objects in each subgroupoid Γ[u]σ,τ

is finite. So the following formula holds:

d(g) =
∑

h∈G
(P(hτ(g−1)) − P(σ (g−1)h))h. (5.21)

From formula (5.12) we have the following decomposition for derivation d:

d =
∑

[u]σ,τ ∈G(σ,τ )

d[u]σ,τ
, (5.22)

where derivation d[u]σ,τ
is supported in groupoid Γ[u]σ,τ

. First we will prove that each
term is inner and then check that sum (5.22) is finite.

Consider the fixed term d[u]σ,τ
. The set of objects in Γ[u]σ,τ

is finite so the right side
in formula (5.21) is nonzero just for h ∈ [u]σ,τ . That implies that derivation d[u]σ,τ

is
inner and holds the formula

d[u]σ,τ
(g) = [

∑

h∈[u]σ,τ

P(h)h, g]. (5.23)

If G is a finite or abelian group proof of innerness of derivation d is trivial. So let
G be an infinite group.

By assumption G =< g1, . . . , gn > is a finitely generated group. If the support
of character χ contains infinite number of subgroupoids, then for some i ∈ 1, . . . , n
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character is not trivial on infinite number of morphisms of the form (∗, gi ), which
contradicts with locally finiteness condition which is necessary for χ to yield the
derivation. �

Corollary 5.5 If G is a finite group then all (σ, τ )-derivations are inner.

Proof If G is a finite group, then the set morphisms in our groupoid Γ is finite
because the set Hom(Γ ) is a Cartesian product G × G. So the set of loops around
each object is finite. But if ζ ∈ Hom(a, a) and χ(ζ ) �= 0 then χ(ζ n) �= 0, so the set
of loops {ζ n|n ∈ N} is infinite which is impossible.

That gives us triviality of the character χ on all loops and it remains to apply the
Theorem 5.4. �

The general case when maps σ, τ are endomorphisms of group algebra was
reviewed in [12]. In the cited paper, the following theorem (see Theorem 1.1) was
proved.

Theorem 5.5 (Chaudhuri 2019) Let G be a finite group and R be an integral domain
with 1 with characteristic p ≥ 0 such that p does not divide the order of G.

1. If R is a field and σ , τ are algebra endomorphisms of the group ring RG such
that they fix the center Z(RG) elementwise, then every (σ, τ )-derivation of RG
is (σ, τ )-inner.

2. If R is an integral domain that is not a field and σ, τ are R-linear extensions of
group homomorphisms of G such that they fix Z(RG) elementwise, then every
(σ, τ )-derivation of RG is (σ, τ )-inner.

Note that if σ and τ are identical isomorphisms, thenwe get awell-known theorem
that in group algebras for finite groups all derivations are inner.

Another natural application of Theorem 5.4 is a case of (σ, τ )-abelian group. It
is easy to see that in (σ, τ )-abelian groups the (σ, τ )-commutator is trivial, so there
are no inner (σ, τ )-derivations.

Corollary 5.6 The σ, τ -derivation algebra D(σ,τ ) of (σ, τ )-abelian group coincides
with (σ, τ )-central derivations.

Proof It is easy to see that derivation is (σ, τ )-central if and only if its support
contains single element. �

Considering Remark 5.5 we note that the case when G is abelian group is signif-
icantly different to the case of (σ, τ )-abelian group. The case of σ -derivations for
abelian groups was studied in [57].

Now we can find criterion of innerness of (σ, τ )-derivations in (σ, τ )-FC group
which is similar to Corollary 5.2.

Corollary 5.7 For groups satisfying to conditions of the Theorem 5.4, all (σ, τ )-
derivations are inner if and only if the following condition is satisfied: all (σ, τ )-
centralizers are such that ∀a ∈ G, the abealianization Z(σ,τ )(a)/Z ′

(σ,τ )(a) is a peri-
odic group.
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Here Z ′
(σ,τ )(a) is a derived subgroup of Z(σ,τ )(a).

Proof The prove is similar to prove of Corollary 5.2. The group Z(σ,τ )(a)/Z ′
(σ,τ )(a)

is naturally abelian. So locally finiteness is equivalent to triviality for each a ∈ G of
the space of group characters Z(σ,τ )(a)/Z ′

(σ,τ )(a). So from the Theorem 5.4 we get
that all (σ, τ )-derivations are quasi-inner. �
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Decomposition of Complete Color
Hom-Lie Algebras
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Abstract In this paper, we study some equivalent conditions for a color hom-Lie
algebra to be a complete color hom-Lie algebra. In particular, we discuss the relation-
ship between decomposition and completness for a color hom-Lie algebra.Moreover,
we check some conditions that the set of αs-derivations of a color hom-Lie algebra
to be complete and simply complete. Finally, we find some conditions in which the
decomposition into hom-ideals of the complete multiplicative color hom-Lie alge-
bras is unique up to order of hom-algebra.

Keywords Color hom-Lie algebra · Complete color hom-Lie algebra · Simple
color hom-Lie algebra

MSC2020 Classification: 17B61 · 17D30 · 17B75 · 17B40 · 17B70
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Hom-Lie algebras and quasi-hom-Lie algebras were introduced first by Hartwig,
Larsson, and Silvestrov in 2003 in [30] devoted to a general method for construction
of deformations and discretizations of Lie algebras of vector fields and deformations
of Witt and Virasoro type algebras based on general twisted derivations obeying
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tities in q-deformations of Witt and Visaroro algebras and in related q-deformed
algebras discovered in 1990’th in string theory, vertex models of conformal field
theory, quantum field theory and quantum mechanics, and q-deformed differential
calculi and q-deformed homological algebra. Subsequently, in 2005, Larsson and Sil-
vestrov introduced quasi-Lie and quasi-Leibniz algebras in [35] and color (graded)
quasi-Lie and color (graded) quasi-Leibniz algebras in [36] which include as special
subclasses the color hom-Lie algebras and hom-Lie superalgebras as well as quasi-
hom-Lie color algebras, quasi-hom-Lie superalgebras allowing to treat within the
same natural algebraic structure framework the hom-Lie algebras and quasi-hom-
Lie algebras defined in [30] and Lie color and super algebras, color (graded) Leibniz
algebras and superalgebras and their hom-algebra deformations. The central exten-
sions and cocycle conditions have been first considered for quasi-hom-Lie algebras
and hom-Lie algebras in [30, 34] and for graded color quasi-hom-Lie algebras in [49].
Hom-Lie admissible algebras have been considered first byMakhlouf and Silvestrov
in [41], where the hom-associative algebras and more general G-hom-associative
algebras including the Hom-Vinberg algebras (hom-left symmetric algebras), hom-
pre-Lie algebras (hom-right symmetric algebras), and some other new Hom-algebra
structures have been introduced and shown to be Hom-Lie admissible, in the sense
that the operation of commutator as new product in these hom-algebras structures
yields hom-Lie algebras. Furthermore, in [41], flexible hom-algebras have been intro-
duced and connections to hom-algebra generalizations of derivations and of adjoint
derivations maps have been considered, investigations of the classification problems
for hom-Lie algebras have been initiated with constriction of families of the low-
dimensional hom-Lie algebras. Following [30, 34–37, 41]. The extensions of repre-
sentations theory, cohomology and homology theory of hom-Lie algebras have been
considered in [6, 7, 42, 46, 53], and quadratic hom-Lie algebras have been consid-
ered in [27]. The area of hom-algebra structures expanded unifying and extending in
non-trivial ways known and new classes of deformed associative and non-associative
algebras, super-algebras and color (graded) algebras, n-ary algebraic structures and
non-commutative and non-associative extensions and deformations of differential
calculi and homological algebra constructions. Development of the theory of color
hom-Lie algebras, hom-Lie superalgebras and their n-ary generalizations recently
intensified in [1–5, 8–26, 28, 29, 31–33, 38–40, 43, 44, 48–52, 54]. In color quasi-
Lie algebras, color quasi-hom-Lie algebras and color hom-Lie algebras in addition
to graded (color) algebra structure with grading by an abelian group and bicharacter
commutation factor modifying the skew-symmetry and Jacobi identities algebra, the
skew-symmetry and the Jacobi identities are actually partial identities satisfied on
homogeneous subspaces of the algebra grading and are furthermore twisted by the
bicharacter commutation factor and by actions ofmore general families of deforming
twisting linearmaps, andwith the twisted Jacobi identity in quasi-Lie and quasi-hom-
Lie algebras containing six twisted triple bracket terms. Hom-Lie color algebras are
special case of quasi-Lie color algebras where the graded bilinear product satisfies
the colored (twisted) by bicharacter commutation factor skew-symmetry property
as in Lie color algebras, but the hom-Lie color algebras Jacobi identity has only
three terms twisted by a single linear map. Lie color algebras are a special case of
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hom-Lie color algebras when there is no linear twisting in Jacobi identity, meaning
that the twisting linear map in the Jacobi identity is the identity map. For general
twisting linear maps, the quasi hom-Lie color algebras are substantially different
much richer families of more complicated varieties of in general non-associative
algebraic structures with binary algebra operation and unary operations defined by
twisting linear maps intricately interlinked via twisted skew-symmetry and twisted
hom-Jacobi identities, and thus morphisms, classifications, deformations, represen-
tations, derivations and homological structures of quasi hom-Lie color algebras in
the fundamental ways depend simultaneously on twisting maps unary operations
and bilinear algebra structure operations. For instance, typically there are much
more classes of non-isomorphic quasi hom-Lie color algebras, then non-isomorphic
classes of Lie color algebras since in general only morphisms of the binary alge-
bra structure which intertwine also twisting unary operations are morphisms of full
quasi hom-Lie color algebra as hom-algebra structure with both binary and unary
operations. The mathematical theory of hom-algebraic structures is interesting and
important to develop in its own right as it provides unified approaches and new links
between seemingly unrelated classes of associative and non-associative structures
arising in different parts of mathematics. Moreover, Lie, super Lie and color Lie
structures, their q-deformations and formal deformation theory and related general-
izations of homological and geometric structures are important in development of
fundamentals of quantum mechanics, quantum field theory, particle physics as well
as symmetry analysis in classical and quantum physics models. Color hom-Lie alge-
bras and more general color quasi-Lie algebras provide a unified framework for new
families of non-associative structures, which interpolate on the fundamental level of
defining identities between Lie algebras, Lie superalgebras, color Lie algebras and
related non-associative structures and their deformations, quantum deformations and
discritizations, and thus should be useful for development of unified approaches to
algebraic models of classical and quantum physics, non-commutative geometry and
symmetry analysis and computational methods and algorithms based on general
non-uniform discretizations of differential and integral calculi.

In this article, we expand investigation of the interesting general classes of color
hom-Lie algebras and their decompositions with respect to their hom-algebra sub-
structures. Complete color hom-Lie algebras are considered and several equivalent
conditions for a color hom-Lie algebra to be a complete color hom-Lie algebra
are established. In particular, the relation between decomposition and completness
for a color hom-Lie algebra is described. Moreover, some conditions for the set
of αs-derivations of a color hom-Lie algebra to be complete and simply complete
are obtained. Furthermore, we find some conditions in which the decomposition
into hom-ideals of the complete multiplicative color hom-Lie algebras is unique
up to order of hom-ideals. Section 6.2 is devoted to relevant preliminaries on hom-
associative algebras, hom-modules, colorHom-Lie algebras and their representations
and derivations. In Sect. 6.3, the notion of a complete color hom-Lie algebra is pre-
sented, and the equivalent conditions for the completeness of gγ and g are studied.
Then conditions for a color hom-Lie algebra to be complete are considered by using
the notion of holomorph color hom-Lie algebras and hom-ideals. After that a simply
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complete color hom-Lie algebras are defined and equivalence of a color hom-Lie
algebra being simply complete or indecomposable is investigated. Then, we discuss
the conditions for the Derαs+1(g) to be complete and simply complete. Finally we
find some conditions in which the decomposition into hom-ideals of the complete
multiplicative color hom-Lie algebras is unique up to order of hom-ideals.

6.2 Preliminaries on Color Hom-Lie Algebras and Their
Representation and Derivations

In the following we summarize some basic concept from [30, 34–36, 41] where
also various examples and properties of color Hom-Lie and color Hom-associative
algebraic structures can be found.

Throughout this article, all linear spaces are assumed to be over a field K of
characteristic different from 2. A linear space V is said to be a Γ -graded by an
abelian group Γ if there exists a family {Vj } j∈Γ of linear subspaces of V such that
V = ⊕

j∈Γ

Vj . The elements of Vj are said to be homogeneous of degree j ∈ Γ . The

set of all homogeneous elements of V is denotedH(V ) = ⋃

j∈Γ

Vj . A linear mapping

f : V → V ′ of two Γ -graded linear spaces V = ⊕

j∈Γ

Vj and V ′ = ⊕

j∈Γ

V ′
j is called

homogeneous of degree d if f (Vj ) ⊆ V ′
j+d , for all j ∈ Γ.Homogeneous linear maps

of degree zero, f (Vj ) ⊆ V ′
j for any j ∈ Γ , are also called even. An algebra (A, ·)

is said to be Γ -graded if its underlying linear space is Γ -graded, A = ⊕

j∈Γ

A j , and

moreover A j · Ak ⊆ A j+k , for all j, k ∈ Γ. A homomorphism f : A → A′ of Γ -
graded algebras A and A′ is an algebra morphism homogeneous of degree 0Γ (even)
as a linear map.

Hom-modules are pairs (M, α) where M is an K-module and α : M → M is
a linear operator. Hom-associative algebras are triples (A, ·, α) consisting of an
K-module A, a bilinear map · : A × A → A called multiplication and an even
linear operator α : A → A which satisfies the hom-associativity condition for all
x, y, z ∈ A,

α(x) · (y · z) = (x · y) · α(z). (hom-associativity)

Hom-associative algebras or hom-modules with α2 = id are called involutive. AK-
linear map f : A → B is called a morphism of hom-associative algebras (A, ·, α)

and (B,×, β) if for all x, y ∈ A, f (x · y) = f (x) × f (y) and f (α(x)) = β( f (x)).
If (A, ·, α) is a hom-associative algebra, then a linear subspace B ⊆ A is called a
hom-associative subalgebra of A if it is closed under both the multiplication · and the
twisting map α, that is B · B ⊆ B and α(B) ⊆ B. A hom-associative subalgebra I
is called a hom-ideal of A if x · y ∈ I, y · x ∈ I for all x ∈ I, y ∈ A, and α(I ) ⊆ I .
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Definition 6.1 ([30, 34, 35, 41]) Hom-Lie algebras are triples (g, [., .], α), where
g is a linear space, [., .] : g × g → g is a bilinear map and α : g → g is a linear map
satisfying for all x, y, z ∈ g,

[x, y] = −[y, x] (Skew-symmetry)

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0, (Hom-Lie Jacobi identity)

Hom-Lie algebra is called a multiplicative hom-Lie algebra if α is an algebra mor-
phism, meaning that α([x, y]) = [α(x), α(y)] for any x, y ∈ g. Multiplicative hom-
Lie algebra is called regular, if α is an automorphism.

Lie algebras form a special subclass of regular Hom-Lie algebras obtained when
α = id in Definition 6.1 since α = id is clearly an algebra automorphism.

Now, we recall the notion of a color hom-Lie algebra as a generalization of Lie
color algebras.

Definition 6.2 ([45, 47]) Given a commutative groupΓ (grading group), a commu-
tation factor (bi-character) on Γ with values in the multiplicative group K \ {0} of a
fieldK of characteristic 0 is amap ε : Γ × Γ → K \ {0} satisfying for all j, k, l ∈ Γ

and x ∈ X j , y ∈ Xk , z ∈ Xl the following (bi-character) properties:

ε( j + k, l) = ε( j, l)ε(k, l), ε( j, k + l) = ε( j, l)ε( j, k),

ε( j, k)ε(k, j) = 1

Γ -Graded ε-Lie algebra (Lie color algebra) is a Γ -graded linear space X =
⊕

j∈Γ

Xγ ,

with a bilinearmultiplication [., .] : X × X → X obeying for j, k, l ∈ Γ and x ∈ X j ,
y ∈ Xk , z ∈ Xl :

Grading axiom: [X j , Xk] ⊆ X j+k, (6.1)

Color skew-symmetry: [x, y] = −ε( j, k)[y, x], (6.2)

Color Jacobi identity:
∑

cyclic{x, y, z}
ε(z, x)[α(x), [y, z]] =

ε(l, j)[x, [y, z]] + ε(k, l)[z, [x, y]] + ε( j, k)[y, [z, x]] = 0.
(6.3)

The elements of X j are called homogenous of degree j ∈ Γ . Since the commutation
factor ε yields a map from (

⋃

j∈Γ

X j ) × (
⋃

j∈Γ

X j ) → K \ {0} taking the value ε(l, j)

on all elements of Xl × X j , the notation convention ε(z, x) = ε(l, j) is used for
z ∈ Xl and x ∈ X j where (l, j) ∈ Γ × Γ .
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Now, we recall the notion of a color hom-Lie algebra which is a special class of
general color quasi-Lie algebras (Γ -graded quasi-Lie algebras) that where defined
first in [36, 48, 49].

Definition 6.3 ([9, 14, 36, 48, 49]) Color hom-Lie algebras are defined as quadru-
ples (g, [., .], ε, α) consisting of a Γ -grade linear space g, an even (degree zero)
bilinear mapping [., .] : g × g, meaning that [ga, gb] ⊆ ga+b for a, b ∈ Γ , a commu-
tation factor (bi-character) ε and an even homomorphism α : g → g such that for
homogeneous elements x, y, z ∈ g,

[x, y] = −ε(x, y)[y, x], (ε − skew symmetry) (6.4)
∑

cyclic

{x, y, z}ε(z, x)[α(x), [y, z]] = 0. (ε − hom-Jacobi identity) (6.5)

Definition 6.4 A color hom-Lie algebra (g, [., .], ε, α) is called

(i) multiplicative color hom-Lie algebra, ifα is amorphismof the color Lie algebra,
that is α ◦ [., .] = [., .] ◦ α⊗2 for any x, y ∈ g;

(ii) regular color Hom-Lie algebra if α is an Hom-algebra automorphism of the
color Hom-Lie algebra.

(iii) involutive color Hom-Lie algebra if α is an involution, that is α2 = I d.

Example 6.1 A multiplicative color hom-Lie algebra can be constructed for exam-
ple by the standard method of composing multiplication with algebra morphism as
in case of hom-Lie algebras. Let (g, [., .], ε) be a color Lie algebra and α be a Lie
color algebra morphism. Then (g, [., .]α := α ◦ [., .], ε, α) is a multiplicative hom-
Lie color algebra.

An even linear map f : g → g′, where (g, [., .], ε, α) and (g′, [., .]′, ε′, α′) are
two color hom-Lie algebras is said to be a morphism of color hom-Lie algebras, if

(i) f ([x, y]) = [ f (x), f (y)]′, for all x, y ∈ g,
(ii) f ◦ α = α′ ◦ f .

Hom-subalgebras of color hom-Lie algebra (g, [., .], ε, α) are defined asΓ -graded
linear subspaces closed under both α and [., .], that is α(I ) ⊆ I and [I, I ] ⊆ I . Hom-
subalgebra I is called a hom-ideal of the color hom-Lie algebra g, if [I, g] ⊆ I , and
notation I � g is used in this case. In color hom-Lie algebras, by ε-skew symmetry
(6.4), [I, g] ⊆ I is equivalent to [g, I ] ⊆ I , since



6 Decomposition of Complete Color Hom-Lie Algebras 107

∀ y =
∑

k∈Γ

yk ∈ I =
∑

k∈Γ

Ik, x =
∑

j∈Γ

x j ∈ g = ⊕ j∈Γ g j , yk ∈ Ik, x j ∈ g j :

[x, y] =
∑

j,k∈Γ

[x j , yk] (6.4)=
∑

j,k∈Γ

(−ε( j, k)[yk, x j ]

∈
∑

k∈Γ

[I, g] ⊆
∑

k∈Γ

I = I, when [I, g] ⊆ I,

[x, y] =
∑

j,k∈Γ

[x j , yk] (6.4)=
∑

j,k∈Γ

(−ε( j, k)[yk, x j ]

∈
∑

k∈Γ

[g, I ] ⊆
∑

k∈Γ

I = I, when [g, I ] ⊆ I.

Thus, in color hom-Lie algebras, all right or left hom-ideals are two-sided hom-ideals.
Color hom-Lie subalgebra I of a color hom-Lie algebra is called commutative if

[I, I ] = 0. If I is not Abelian, then [x, y] �= 0 for some non-zero elements x, y ∈ I .

Definition 6.5 ([13]) The center of a color hom-Lie algebra g is defined as

C(g) = {x ∈ g : [x, g] = 0}.

The centralizer of a hom-ideal I in a color hom-Lie algebra g is defined as

Cg(I ) = {x ∈ g : [x, I ] = 0}.

In any color hom-Lie algebra (g = ⊕

γ∈Γ

gγ , [., .], ε, α), the center is the centraliser

of hom-ideal g in (g, [., .], ε, α), that is C(g) = Cg(g). For any hom-ideal I the
centralizer Cg(I ) is a Γ -graded subspace Cg(I ) = ⊕

γ∈Γ

(Cg(I ) ∩ gγ ), since

∀ y ∈ I, x =
∑

j∈Γ

x j ∈ g = ⊕ j∈Γ g j , x j ∈ g j :

[x, y] = [
∑

j∈Γ

x j , y] =
∑

j∈Γ

[x j , y] = 0 ⇔

∀ γ ∈ Γ, [xγ , y] = −
∑

j∈Γ/{γ }
[x j , y] =

∑

j∈Γ/{γ }
[−x j , y] ∈ gγ ∩

∑

j∈Γ/{γ }
g j ∩ I = {0} ⇔

[xγ , y] = 0 ∀ γ ∈ Γ ⇔ xγ ∈ Cg(I ) ∩ gγ , γ ∈ Γ.

In general, [Cg(I ),Cg(I )] ⊆ Cg(I ) andα(Cg(I )) ⊆ Cg(I ) are not assured, since the
equality [[x1, x2], y] = 0 is not necessarily implied by [x1, y] = 0 and [x2, y] = 0,
and [x, y] = 0 does not necessarily imply [α(x), y] = 0 for x1, x2, x ∈ g and y ∈ I .

Lemma 6.1 Let (g, [., .], ε, α) be a color hom-Lie algebra. If (g, [., .], ε, α) is a
multiplicative color hom-Lie algebra with surjective α, that is α([., .]) = [α(.), α(.)]
and α(g) = g, then the center C(g) is a commutative hom-ideal in (g, [., .], ε, α).
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Proof The Γ -graded hom-subspace C(g) = ⊕

γ∈Γ

(C(g) ∩ gγ ) of the color hom-Lie

algebra (g, [., .], ε, α) is closed under [., .] and α. Indeed, α(C(g)) ⊆ C(g), since the
preimage set α−1(y) �= ∅ of any y ∈ g is non-empty by surjectivity of α, and

∀ x ∈ C(g), y ∈ g :
[α(x), y] = [α(x), α(α−1(y))] = α([x, α−1(y)]) = α({0}) = {0}.

Moreover, [C(g),C(g)] = [C(g), g] = {0} ⊆ C(g) by definition of the center.
Hence, C(g) is commutative hom-ideal. ��
Lemma 6.2 If (g, [., .], ε, α) is a multiplicative color hom-Lie algebra with α sur-
jective on I , that is α([., .]) = [α(.), α(.)] and α(I ) = I , then for any hom-ideal I
in color hom-Lie algebra (g, [., .], ε, α),

(i) Cg(I ) is a hom-ideal in color hom-Lie algebra (g, [., .], ε, α).
(ii) C(I ) = CI (I ) is an commutative hom-ideal in the color hom-Lie algebra

(I, [., .]I , ε, αI ), where [., .]I and αI are restrictions of [., .] and α to I .
(iii) If (g, [., .], ε, α) is amultiplicative color hom-Lie algebrawith surjectiveα, that

is α([., .]) = [α(.), α(.)] and α(g) = g, then the center C(g) is an commutative
hom-ideal in (g, [., .], ε, α).

Proof For a hom-ideal I , the Γ -graded hom-subspace Cg(I ) = ⊕

γ∈Γ

(Cg(I )) ∩ gγ )

of the color hom-Lie algebra (g, [., .], ε, α) is closed under [., .] if α(I ) = I , since
by super hom-Jacobi identity (6.5), definition of the centralizer, and the condition
I = α(I ) of surjectivity of the restriction of α on I ,

∀ x ∈ I ∩ H(g), y, z ∈ Cg(I ) ∩ H(g) :
[x, y] = 0, [α(y), [x, z]] = [α(y), 0] = 0,⇒
[α(x), [y, z]] = −ε(z, x)[[x, y], α(z)] − ε(z, y)[α(y), [x, z]] = 0,⇒
[I, [Cg(I ),Cg(I )]] α(I )=I= [α(I ), [Cg(I ),Cg(I )]] = {0} ⇒
[Cg(I ),Cg(I )] ⊆ Cg(I ).

The Γ -graded hom-subspace Cg(I ) = ⊕

γ∈Γ

(Cg(I )) ∩ gγ ) is closed under α, since

definition of the centraliser, surjectivity α(I ) = I of α on I and multiplicativity of
α yield

[α(Cg(I )), I ] = [α(Cg(I )), α(I )] = α([Cg(I ), I ]) ∈ α({0}) = {0} ⇒
α(Cg(I )) ⊆ Cg(I ).

So,Cg(I ) is aΓ -graded hom-subalgebra in the color hom-Lie algebra (g, [., .], ε, α).
Moreover,
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∀ x ∈ I ∩ H(g), y ∈ g ∩ H(g), z ∈ Cg(I ) ∩ H(g) :
[x, y] ∈ I, [α(y), [x, z]] = [α(y), 0] = 0,⇒
[α(x), [y, z]] = −ε(z, x)[[x, y], α(z)] − ε(z, y)[α(y), [x, z]] ∈ I,⇒
[I, [g,Cg(I )]] α(I )=I= [α(I ), [g,Cg(I )]] ∈ I ⇒ [g,Cg(I )] ⊆ Cg(I ).

Hence, Cg(I ) is a hom-ideal. ��
We are going to need the following definition throughout the rest of the article.

Definition 6.6 ([13, 15])A representationof the color hom-Lie algebra (g, [., .], ε, α)

on a Γ -graded linear space V with respect to β : V → V , is an even linear map
ρ : g → End(V ) such that for all homogeneous x, y ∈ H(g),

ρ(α(x)) ◦ β = β ◦ ρ(x),

ρ([x, y]) ◦ β = ρ(α(x)) ◦ ρ(y) − ε(x, y)ρ(α(y)) ◦ ρ(x).

A representation V of g is called irreducible or simple, if it has no nontrivial subrep-
resentations. Otherwise V is called reducible.

For any linear transformation T : X �→ X of a set X , and any nonnegative integer
s, the s-times composition is T s = T ◦ · · · ◦ T (s−t imes), T 0 = I d, T 1 = T, and
if T is invertible with inverse map T−1g → g, then T−s = T−1 ◦ · · · ◦ T−1 (s −
times).

Let (g, [., .]g, ε, α) be a color hom-Lie algebra and g =
⊕

γ∈Γ

gγ . Then End(g) is

equipped with the induced Γ -grading End(g) =
⊕

γ∈Γ

(End(g))γ where

(End(g))γ = { f ∈ End(g)| f (gk) ⊆ gk+γ }.

Next, we recall the notion of αs-derivations.

Definition 6.7 ([15]) Let (g, [., .]g, ε, α) be a color hom-Lie algebra. For any non-
negative integer s, a linear map D : g → g, of degree d is called a homogeneous
αs-derivation of the multiplicative color hom-Lie algebra (g, [., .]g, ε, α), if for all
homogeneous x, y ∈ H(g),

D(gγ ) ⊆ gγ+d ,

D ◦ α = α ◦ D,

D([x, y]g) = [D(x), αs(y)]g + ε(d, x)[αs(x), D(y)]g.

Denote by Derαs (g) the set of all αs-derivations of the color hom-Lie algebra
(g, [., .], ε, α), and

Der(g) =
⊕

s≥−1

Derαs (g).



110 A. R. Attari Polsangi et al.

For any x ∈ g satisfying α(x) = x , the map ads(x) : g → g, for all y ∈ g is defined
by

ads(x)(y) = [x, αs(y)]g.

Lemma 6.3 Let (g, [., .]g, ε, α) be a multiplicative color hom-Lie algebra. Then
ads(a) is an αs+1-derivation, which we call inner αs+1-derivation.

Proof We have, using multiplicativity at the steps marked by
∗=,

ads(a) ◦ α(x) = [a, αs+1(x)]g = [α(a), αs(x)]g ∗= α([a, αs(x)]g) = α ◦ ads(a)(x),

and

ads(a)([x, y]g) = [a, αs[x, y]]g ∗= [a, [αs(x), αs(y)]]g
= −ε(a, y)(ε(x, a)[αs+1(x), [αs(y), a]g]g + ε(y, x)[αs+1(y), [a, αs(x)]g]g
= −ε(a, y)(ε(x, a)ε(y, a)[αs+1(x), [a, αs(y)]g]g
+ ε(y, x)ε(y, [a, y])[[a, αs(x)]g, αs+1(y)]g
= [[a, αs(x)]g, αs+1(y)]g + ε(x, a)[αs+1(x), [a, αs(y)]g]g
= [ads(a)(x), αs+1(y)]g + ε(x, a)[αs+1(x), ads(a)(y)]g.

Therefore, ads(a) is an αs+1-derivation. ��
The set I nnαs+1(g) = {[x, αs(.)]g| x ∈ g, α(x) = x} is a linear space in

Derαs+1(g). For T ∈ End(g) and T ′ ∈ End(g), define the color commutator (ε-
commutator) as

[T, T ′]End(g) = T ◦ T ′ − ε(T, T ′)T ′ ◦ T .

For D ∈ Der(g) and D′ ∈ Der(g), denote the color commutator (ε-commutator) as

[D, D′]D = D ◦ D′ − ε(D, D′)D′ ◦ D. (6.6)

With the above notation, (Der(g), [., .]D, ε) is a color Lie algebra, in which the
bracket is given by (6.6).

Proposition 6.1 ([49]) Let (g, [., .]g, ε, α) be a multiplicative color hom-Lie alge-
bra and consider on Der(g) the endomorphism α̃ defined by α̃(D) = α ◦ D, then
(Der(g), [., .]D, ε, α̃) is a color hom-Lie algebra where [., .]D is given by (6.6).

Proof By above notation, we know (Der(g), [., .]D, ε) is a color Lie algebra. Then
by using the method of Example 6.1, (Der(g), [., .]D, ε, α̃) will be a color hom-Lie
algebra. ��
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6.3 Decomposition of Complete Hom-Lie Superalgebras

In this section, we recall the notion of a complete hom-Lie superalgebra and state
some results about it.

Definition 6.8 Color hom-Lie algebra (g, [., .], ε, α) is called a complete color hom-
Lie algebra if g satisfies the following two conditions:

C(g) = 0,

Derαs+1(g) = ads(g).

Remark 6.1 If gγ is a complete Lie algebra, then it is not necessary that
(g, [., .], ε, α), where g = ⊕

γ∈Γ

gγ , be a complete color hom-Lie algebra.

Let (gγ ,< ., . >, α) be a semisimple hom-Lie algebra, h = ∑
j∈Γ/{γ } g j be a

finite-dimensional linear space and in α̃ : g = gγ ⊕ h → g = gγ ⊕ h be an even
endomorphism such that α̃|g0 = α. Then by [4], (g, [., .], ε, α) is a color hom-Lie
algebra such that [x, y] = 0 for all x ∈ h, y ∈ g and [x, y] =< x, y > for all x, y ∈
gγ where < ., . > is bracket operation of the hom-Lie algebra gγ . Since C(g) �= 0,
g is not complete color hom-Lie algebra but gγ is complete, i.e. C(gγ ) = 0 and
Derαs+1(gγ ) = ads(gγ ).

Definition 6.9 A color hom-Lie algebra (g, [., .], ε, α) is called solvable if gn = 0
for some n ∈ N, where gn , the members of the derived series of g, are defined
inductively: g1 = g, and gn = [gn−1, gn−1] for n > 1.

Note that any commutative color hom-Lie algebra is solvable and for a multi-
plicative color hom-Lie algebra g, we have α(gn) ⊆ gn for any n.

The color hom-Lie algebra (g, [., .], ε, α) is called semisimple if it does not contain
any non-trivial solvable hom-ideal.

Let g be a color hom-Lie algebra and let 	 be a bilinear form on g. Recall that
	 is called invariant if 	([x, y], z) = 	(x, [y, z]) for all x, y, z ∈ g. The invariant
bilinear form associated to the adjoint representation of g is called the Killing form
on g.

Now, we check the condition in which the completeness of gγ , where γ ∈ Γ and
g are equivalent.

Theorem 6.1 Let g = ⊕

γ∈Γ

gγ be amultiplicative color hom-Lie algebra and gβ, β ∈
Γ , is a direct summand of gwith surjective α on g and gβ . If g has the non-degenerate
Killing form, then gβ is a complete hom-Lie algebra and g is a complete color hom-
Lie algebra.

Proof Weknow g has non-degenerateKilling form, thus Derαs+1(g) = ads(g). Since
α is surjective, C(g) is commutative hom-ideal, and so C(g) is solvable. Hence
C(g) = 0. Thus g is complete. Let 	 be a non-degenerate Killing form of g. Then
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the restriction of 	 to gβ is the non-degenerate Killing form of gβ . Hence gβ

is semisimple hom-Lie algebra and Derαs+1(gβ) = ads(gβ). Since α is surjective,
C(gβ) is commutative and solvable, SoC(gβ) = 0.Thereforegβ is complete hom-Lie
algebra. ��
Proposition 6.2 Let g be amultiplicative color hom-Lie algebra and I be a complete
hom-ideal of g with surjective α on both g and I. There exists a hom-ideal J such that
g = I ⊕ J .

Proof Let J = Cg(I ). Then Cg(I ) is a hom-ideal of g by Lemma 6.2. Since I is
hom-ideal, ads(x) ∈ Derαs+1(I ), for all x ∈ g, γ ∈ Γ .

Since I is complete, Derαs+1(I ) = ads(I ), so there exists a αs+1-derivation D in
Derαs+1(I ) such that ads(x) = D. Hence there exists r ∈ I such that

D(t) = ads(x)(t) = [x, αs(t)] = [r, αs(t)],

for any t ∈ I . Then [x − r, αs(t)] = 0 and x − r ∈ Cg(I ) = J . Thus x = r + l, for
some l ∈ J . On the other hand, since I is complete I ∩ J = I ∩ Cg(I ) = C(I ) = 0.
Therefore g = I ⊕ J . ��
Definition 6.10 Let (g, [., .], ε, α) be a color hom-Lie algebra and h(g) = g ⊕
Der(g). The even bilinear map (bracket) [., .]h : h(g) × h(g) → h(g) and a linear
map αh : h(g) → h(g) are defined in h(g) by

[x + D, y + E]h = [x, y]g + D(y) − ε(x, E)E(x) + [D, E]D,

αh(x + D) = α(x) + α ◦ D,

where x, y ∈ g, D, E ∈ Der(g) and [., .]D is bracket in Der(g) given by (6.6). With
the above notation, h(g) is a color hom-Lie algebra. We call h(g) a holomorph color
hom-Lie algebra.

We know that (Der(g), [., .]D, ε, α̃) is color hom-Lie algebra by Lemma 6.1.
Therefore we have the following results.

Lemma 6.4 Let g be amultiplicative color hom-Lie algebra and (h(g), [., .]h, ε, αh)

be holomorph color hom-Lie algebra.

(i) If C(g) = 0, then C(Der(g)) = {D ∈ Der(g)|[D, Der(g)]D = 0} = 0.
(ii) g is hom-ideal of h(g) and h(g)/g � Der(g).
(iii) g ∩ Ch(g)(g) = C(g).

Proof Let D ∈ (Derαs (g))i , i ∈ Γ and D ∈ C(Der(g)). Then [D, Der(g)]D = 0.
So [D, ads(x)]D = 0, hence [D, ads(x)]D(y) = 0, for all x, y ∈ g. Thus
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D(ads(x)(y)) − ε(D, x)ads(x)(D(y)) = 0,⇒
D([x, αs(y)]) − ε(D, x)[x, αs(D(y))] = 0,⇒
D([x, αs(y)]) = ε(D, x)[x, αs(D(y))],⇒
[D(x), α2s(y)] + ε(D, x)[x, αs(D(y))] = ε(D, x)[x, αs(D(y))],⇒
[D(x), α2s(y)] = 0

C(g)=0⇒ D(x) = 0 ⇒ D = 0.

ThusC(Der(g)) = 0.Next, g � g, so g is a hom-ideal of h(g) and h(g)/g � Der(g).
Now, let x ∈ g. Then

x ∈ C(g) ⇐⇒ [x, g]g = 0 ⇐⇒ [x, g]h = 0 ⇐⇒ x ∈ g ∩ Ch(g)(g).

Hence g ∩ Ch(g)(g) = C(g). ��
Now, by using the notion of holomorph color hom-Lie algebras, we prove some

equivalence conditions for a color hom-Lie algebra to be complete.

Definition 6.11 Let g, h be two color hom-Lie algebras. We call e an extension of
the color hom-Lie algebra g by h, if there exists a short exact sequence

0 → h → e → g → 0

of color hom-Lie algebras and their morphisms.

(i) An extension 0 → h
i→ e

p→ g → 0 is called trivial extension if there exists
an hom-ideal I ⊂ e such that e = Ker(p) ⊕ I.

(ii) An extension 0 → h
i→ e

p→ g → 0 is called splitting extension if there exists
an hom-supersubspace S ⊂ e such that e = Ker(p) ⊕ S.

Theorem 6.2 For a multiplicative color hom-Lie algebra (g, [., .], ε, α) with sur-
jective α, the following conditions are equivalent:

(i) g is a complete color hom-Lie algebra;
(ii) any splitting extension e by g is a trivial extension and e = g ⊕ Ce(g);
(iii) h(g) = g ⊕ Ch(g)(g).

Proof Let e be a splitting extension by g and assume (i) holds. Hence g � e and
Ce(g) � e. By (i), C(g) = 0, so g ∩ Ce(g) = 0. Since g � e, ads(e)(g) ⊂ g, for any
e ∈ e. Then the restriction ads(e)|g is a derivation of g. Since g is complete, thus
ads(e)|g is a αs+1-derivation of g. We set π(e) = ads(e)|g, for all e ∈ e. Since
Derαs+1(g) = ads(g) � g, the map π is a homomorphism from e onto Derαs+1(g)
and Ker(π) = Ce(g). Thus e = g ⊕ Ker(π). Therefore e = g ⊕ Ce(g). Suppose
(ii) holds, then (iii) is obvious by setting e = h(g). Next, suppose (iii) holds.
C(g) = g ∩ Ch(g)(g) by Lemma 6.4. From (iii), Ch(g)(g) � h(g)/g. By Lemma
6.4 h(g)/g � Derαs+1(g) � Ch(g)(g) � g. Since C(g) = 0, then g � ads(g). Thus
Derαs+1(g) = ads(g). Therefore g is a complete color hom-Lie algebra. ��
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In the next theorem, we check the condition in which the completeness of g and
its ideals are equivalent.

Theorem 6.3 Let (g, [., .], ε, α) be a multiplicative color hom-Lie algebra and g =
I ⊕ J , where I and J are hom-ideals and α is surjective on g, I and J . Then

(i) C(g) = C(I ) ⊕ C(J );
(ii) if C(g) = 0, then

ads(g) = ads(I ) ⊕ ads(J ),

Derαs+1(g) = Derαs+1(I ) ⊕ Derαs+1(J );

(iii) g is complete if and only if I and J are complete.

Proof (i) C(I ) and C(J ) are hom-ideals of g, by Lemma 6.2. I ∩ J = 0, so C(I ) ∩
C(J ) = 0. Let a + b ∈ C(I ) ⊕ C(J ), where a ∈ C(I ) and b ∈ C(J ). Thus [a, I ] =
0 and [b, J ] = 0. Let m + n ∈ I ⊕ J = g, where m ∈ I and n ∈ J . Then

[a + b,m + n] = [a + b,m] + [a + b, n] = [a,m] + [b,m] + [a, n] + [b, n] = 0,

since a,m ∈ I , b, n ∈ J and [b,m], [a, n] ∈ I ∩ J = 0. Therefore a + b ∈ C(g)
and C(I ) ⊕ C(J ) ⊆ C(g). Let x = m + n ∈ C(g), where m ∈ I and n ∈ J . Then
[x, g] = [m + n, g] = [m + n, I + J ] = 0. Since x ∈ C(g) and [n, I ] ⊆ [J, I ] = 0,
then

[m, I ] = [x − n, I ] = [x, I ] − [n, I ] = 0.

Hence m ∈ C(I ). By the same way, n ∈ C(J ). Thus C(g) ⊆ C(I ) ⊕ C(J ).
(ii) For D ∈ Derαs+1(I ), we define an extended linear transformation on g by set-
ting D(m + n) = D(m), for m ∈ I and n ∈ J . So D ∈ Derαs+1(g), Derαs+1(I ) ⊆
Derαs+1(g) and Derαs+1(J ) ⊆ Derαs+1(g). Letm ∈ Ii , n ∈ J and D ∈ (Derαs+1(g)) j ,
where i, j ∈ Γ . Since I, J are hom-ideals, then

[D(m), n] = D([m, n]) = [D(m), αs+1(n)] + ε(i, j)[αs+1(m), D(n)] ∈ I ∩ J.

Since I ∩ J = 0, then [D(m), αs+1(n)] = [αs+1(m), D(n)] = 0. Let D(m) = m ′ +
n′, where m ′ ∈ I and n′ ∈ C(J ). Then

[D(m), αs+1(n)] = [m ′ + n′, αs+1(n)] = [m ′, αs+1(n)] + [n′, αs+1(n)] = 0.

By (i), n′ = 0.Hence D(m) = m ′ ∈ I . Thus D(I ) ⊆ I . By the sameway, D(J ) ⊆ J .
Let D ∈ Derαs+1(g) and m + n ∈ I + J , where m ∈ I and n ∈ J . We define αs+1-
derivations E and F by setting

E(m + n) = D(m), F(m + n) = D(n).

Obviously, E ∈ Derαs+1(I ) and F ∈ Derαs+1(J ). Then D = E + F ∈ Derαs+1(I ) +
Derαs+1(J ). Therefore Derαs+1(g) = Derαs+1(I ) ⊕ Derαs+1(J ) as a linear space,
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since Derαs+1(I ) ∩ Derαs+1(J ) = 0. Now we prove that Derαs+1(I ) and Derαs+1(J )

are hom-ideals of color hom-Lie algebra Derαs+1(g). Let E ∈ (Derαs+1(I ))i , F ∈
(Derαs+1(g)) j and n ∈ J . By using the commutator of αs+1-derivations, we have

[F, E](n) = (F ◦ E)(n) − ε(i, j)(E ◦ F)(n) = 0.

Thus Derαs+1(I ) is hom-ideal of Derαs+1(g). Similarly Derαs+1(J ) is hom-ideal of
Derαs+1(g).
(iii) Let g be complete. Then C(g) = 0 and C(I ) = C(J ) = 0 by (i). By using
ads(g) = Derαs+1(g) and statements (i) and (ii), we have

ads(I ) ⊕ ads(J ) = Derαs+1(I ) ⊕ Derαs+1(J ).

Sinceads(I ) ⊆ Derαs+1(I ) andads(J ) ⊆ Derαs+1(J ), thusads(I ) = Derαs+1(I ) and
ads(J ) = Derαs+1(J ). Therefore I and J are complete color hom-Lie algebras.
Conversely, let I and J are complete, then C(g) = C(I ) ⊕ C(J ) = 0, by (i); and
Derαs+1(g) = Derαs+1(I ) ⊕ Derαs+1(J ) = ads(I ) ⊕ ads(J ) = ads(g), by (ii). ��
Definition 6.12 Let g be a complete color hom-Lie algebra. If any non-trivial hom-
ideal of g is not complete, then g is called a simply complete color hom-Lie algebra.

A simple and complete color hom-Lie algebra is a simply complete color hom-Lie
algebra. In the next theorem, we want to state the relation between simply complete
color hom-Lie algebras and indecomposable complete color hom-Lie algebras.

Theorem 6.4 Let (g, [., .], ε, α) be a complete multiplicative color hom-Lie algebra
with surjective α on g.

(i) g can be decomposed into the direct sum of simply complete hom-ideals.
(ii) g is simply complete if and only if it is indecomposable.

Proof (i) If g is simply complete, then (i) holds. If g is not simply complete, then by
Proposition 6.2, there exists a nonzero minimal complete hom-ideal I of g such that
g = I ⊕ Cg(I ). Since a hom-ideal of Cg(I ) is also a hom-ideal of g, by continuing
this method for Cg(I ), we reach to the decomposition of g into the simply complete
hom-ideals.
(ii) If g is simply complete, then it is indecomposable by (i). Conversely, if g is inde-
composable, then it has not any non-trivial hom-ideal. Hence g is simply complete
by Definition 6.12. ��
Definition 6.13 A subspace I of a color hom-Lie algebra g is called a characteristic
hom-ideal of g, if D(I ) ⊂ I for all D ⊆ Der(g).
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Lemma 6.5 Let (g, [., .], ε, α) be a multiplicative color hom-Lie algebra, I be a
characteristic hom-ideal of g and α is surjective on g and I . Then I is hom-ideal
of g.

Proof Let x, y ∈ I , since α is surjective on I and ads(g) is a αs+1-derivation, then

[x, y] α(I )=I= [x, αs(t)] = ads(x)(t) ∈ I,

where t ∈ I and αs(t) = y. Thus [I, I ] ⊆ I.
Next, α(I ) ⊆ I , since α is surjective on I . Let y ∈ I and a ∈ g. Then

[a, y] α(I )=I= [a, αs(t)] = ads(a)(t) ∈ I,

where t ∈ I and αs(t) = y. Thus [g, I ] ⊆ I. Therefore I is a hom-ideal of g. ��
Theorem 6.5 Let (g, [., .], ε, α) be a multiplicative color hom-Lie algebra with sur-
jectiveα, C(g) = 0andads(g)bea characteristic hom-ideal of Der(g). Then Der(g)
is complete. Furthermore, if g is indecomposable and [g, g] = g, then Der(g) is sim-
ply complete.

Proof g has trivial center, so g � ads(g). Let p = Der(g), then g � p. Let q be a split-
ting extension by p, i.e. p � q. Hence for all q ∈ q, we have ads(q) ∈ Derαs+1(p). g is
a characteristic hom-ideal of p, so there exists p ∈ p such that ads(p)|g = ads(q)|g.
Then ads(p − q)|g = 0 and p − q ∈ Cq(g). Hence we have q = p + Cq(g). On
the other hand, p ∩ Cq(g) = Cp(g) = 0 and p � q, thus q = p ⊕ Cq(g). Hence
Cq(g) ⊆ Cq(p) andwe have q = p ⊕ Cq(p). Therefore by Theorem 6.2, p = Der(g)
is a complete color hom-Lie algebra. Now, assume that Der(g) is not simply
complete. So there exists a simply complete hom-ideal I . By Proposition 6.2,
there exists a hom-ideal J such that p = I ⊕ J . For any x, y ∈ g, there exists
x1, y1 ∈ I and x2, y2 ∈ J such that x = x1 + x2 and y = y1 + y2. Thus [x, y] =
[x1 + x2, y] = [x1, y] + [x2, y] such that [x1, y] ∈ I ∩ g and [x2, y] ∈ J ∩ g. Hence
g = [g, g] = (I ∩ g) ⊕ (J ∩ g). g is indecomposable, then I ∩ g = 0 or J ∩ g = 0.
Hence g ⊆ J and I ⊆ Cp(g) = 0. Therefore by Theorem 6.4, p = Der(g) is simply
complete. ��
Definition 6.14 Let ψ be an endomorphism of a multiplicative color hom-Lie alge-
bra (g, [., .], ε, α). If for all x ∈ g and anynonnegative integer t,ψads(x) = ads(x)ψ ,
then ψ is called an g-endomorphism of g.

With Definition 6.14, we get the following proposition.

Proposition 6.3 Let (g, [., .], ε, α) be a multiplicative color hom-Lie algebra and
I, J be hom-ideals such that g = I ⊕ J . If π is the projection into I with respect to
this decomposition, then π is a g-endomorphism of g.
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Proof Let g1 = a1 + b1 and g2 = a2 + b2 such that, a1, a2 ∈ I and b1, b2 ∈ J , then

πads(l1)(l2) = π [g1, αs(g2)] = π [a1 + b1, α
s(a2 + b2)]

= π [a1 + b1, α
s(a2) + αs(b2)]

= [π(a1 + b2), π(αs(a2) + αs(b2))]
= [a1, αs(a2)] = ads(g1)π(g2).

Therefore πads(g) = ads(g)π , for all g ∈ g. ��
Remark 6.2 Let ψ be an g-endomorphism of a finite-dimensional multiplicative
color hom-Lie algebra g. Then there exists k ∈ N, such that g = Kerψk ⊕ Imψk .

Definition 6.15 A color hom-Lie algebra (g, [., .], ε, α) is called indecomposable if
it can not be written as direct sum of two nonzero hom-ideals.

Proposition 6.4 Let g be a finite-dimensional indecomposable multiplicative color

hom-Lie algebra and ψ1, . . . , ψn and
j∑

i=1
ψi ( j = 1, . . . , n) be

g-endomorphisms of g such that ψ1 + · · · + ψn = id. Then there exists an index
k, such that ψk ∈ Aut (g).

Proof The result is obtained by induction on n and using Remark 6.2. ��
Theorem 6.6 Let (g, [., .], ε, α) be a finite-dimensional multiplicative color hom-
Lie algebra with trivial center and assume that g has decomposition of direct sum of
hom-ideals, such that g = I1 ⊕ I2 ⊕ · · · ⊕ Im and L = J1 ⊕ J2 ⊕ · · · ⊕ Jn, where
I1, I2, . . . , Im and J1, J2, . . . , Jn are indecomposable. Then m = n and if necessary,
by permutation Ii = Ji for i = 1, . . . ,m.

Proof Weprove by induction on n. If n = 1, then g is indecomposable, som = n = 1
and I1 = J1 = g. Suppose n > 1 and m > 1. Denote the projection of g onto I1 by
π , the embedding of I1 into g by σ , the projection of g onto Ji by ρi and the
embedding of Ji into g by τi . We know that ads(a)(b) = [a, αs(b)]. By using the

Definition 6.14, π, ρ1, ρ2, . . . , ρn and
j∑

i=1
ρi ( j = 1, 2, . . . , n) are g-endomorphisms

of color hom-Lie algebra g and ρ1 + ρ2 + · · · + ρn = idg. Let π̄i = πτi = π |Bi and

ρ̄i = ρiσ = ρi |I1 for any i = 1, 2, . . . , n. Then π̄i ρ̄i and
j∑

i=1
π̄i ρ̄i ( j = 1, 2, . . . , n)

are I1-endomorphisms of I1. For any a ∈ I1, we have
n∑

i=1
π̄i ρ̄i (a) = a, so

n∑

i=1
π̄i ρ̄i =

id|I1 . Therefore, by Remark 6.2, there exists an index i such that π̄i ρ̄i ∈ Aut (I1).
By permutation we can assume that i = 1. Hence ρ̄1 is injective. Let I = I2 ⊕ I3 ⊕
· · · ⊕ Im and J = J2 ⊕ J3 ⊕ · · · ⊕ Jn . Then I1 ∩ J = 0, since ρ̄1 is injective. So
I1 ⊆ Cg(J ). Therefore I1 = J1, since J1 is indecomposable.Hence I = J . The result
follows by inductive assumption. ��
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Corollary 6.1 Let (g, [., .], ε, α)beamultiplicative complete color hom-Lie algebra
and g = I1 ⊕ · · · ⊕ Im, where each Ii is a simple hom-ideal. Then this decomposition
is unique up to the order of the hom-ideals.

Proof Since g is complete, C(g) = 0. Then the proof is straightforward from
Theorem 6.6. ��
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Chapter 7
Hom-Prealternative Superalgebras

Ibrahima Bakayoko and Sergei Silvestrov

Abstract The purpose of this paper is to introduce Hom-prealternative superal-
gebras and their bimodules. Some constructions of Hom-prealternative superal-
gebras and Hom-alternative superalgebras are given, and their connection with
Hom-alternative superalgebras are studied. Bimodules over Hom-prealternative
superalgebras are introduced, relations between bimodules over Hom-prealternative
superalgebras and the bimodules of the correspondingHom-alternative superalgebras
are considered, and construction of bimodules over Hom-prealternative superalge-
bras by twisting is described.

Keywords Hom-prealternative superalgebra · Hom-alternative algebra ·
Bimodule

MSC 2020 Classification 17D30 · 17B61 · 17B60 · 17B62

7.1 Introduction

Hom-Lie algebras and more general quasi-Hom-Lie algebras were introduced first
by Hartwig, Larsson and Silvestrov in [53] where a general approach to discretiza-
tion of Lie algebras of vector fields using general twisted derivations (σ -deriva-
tions) and a general method for construction of deformations of Witt and Vira-
soro type algebras based on twisted derivations have been developed. The gen-
eral quasi-Lie algebras, containing the quasi-Hom-Lie algebras and Hom-Lie alge-
bras as subclasses, as well their graded color generalization, the color quasi-Lie
algebras including color quasi-hom-Lie algebras, color hom-Lie algebras and their
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special subclasses the quasi-Hom-Lie superalgebras and hom-Lie superalgebras,
have been first introduced in [53, 67–70, 98]. Subsequently, various classes of Hom-
Lie admissible algebras have been considered in [78]. In particular, in [78], the
Hom-associative algebras have been introduced and shown to be Hom-Lie admis-
sible, that is leading to Hom-Lie algebras using commutator map as new product,
and in this sense constituting a natural generalization of associative algebras as Lie
admissible algebras leading to Lie algebras using commutator map. Furthermore,
in [78], more general G-Hom-associative algebras including Hom-associative alge-
bras, Hom-Vinberg algebras (Hom-left symmetric algebras), Hom-pre-Lie algebras
(Hom-right symmetric algebras), and some other Hom-algebra structures, general-
izing G-associative algebras, Vinberg and pre-Lie algebras respectively, have been
introduced and shown to be Hom-Lie admissible, meaning that for these classes
of Hom-algebras, the operation of taking commutator leads to Hom-Lie algebras as
well. Also, flexibleHom-algebras have been introduced, connections toHom-algebra
generalizations of derivations and of adjoint maps have been noticed, and some low-
dimensional Hom-Lie algebras have been described. Since the pioneering works
[53, 67–70, 78], Hom-algebra structures have developed in a popular broad area
with increasing number of publications in various directions. Hom-algebra structures
are very useful since Hom-algebra structures of a given type include their classical
counterparts and open broad possibilities for deformations, Hom-algebra extensions
of homology and cohomology structures and representations, formal deformations
of Hom-associative and Hom-Lie algebras, Hom-Lie admissible Hom-coalgebras,
Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras, [6, 33, 45, 67, 72, 79–
81, 94, 104, 106]. Hom-Lie algebras, Hom-Lie superalgebras, color Hom-Lie alge-
bras, Hom-associative color algebras, Enveloping algebras of color Hom-Lie alge-
bras, color Hom-Leibniz algebras, omni-Hom-Lie algebras, color omni-Hom-Lie
algebras, biHom-Lie algebras, biHomassociative algebras, biHom-Frobenius alge-
bras, Hom-Ore extensions Hom-algebras, Hom-alternative algebras, Hom-center-
symmetric algebras, Hom-left-symmetric color dialgebras, Hom-dendriform alge-
bras, Rota–Baxter Hom-algebras, Hom-tridendriform color algebras, Hom-Malcev
algebras, Hom-Jordan algebras, Hom-Poisson algebras, Color Hom-Poisson alge-
bras, Hom-Akivis algebras, Hom-Lie-Yamaguti algebras, nearly Hom-associative
algebras, Hom-Gerstenhaber algebras and Hom-Lie algebroids, n-Lie algebras and
Hom-Nambu-Lie algebras and other n-ary Hom-algebra structures have been fur-
ther investigated in various aspects for example in [1–30, 32–37, 37–44, 46–52,
54–59, 61–67, 71, 73–75, 77–79, 79–84, 86–101, 103–113]. In particular, Color
Hom-Poisson algebras [24] and modules over some color Hom-algebras [27], under
the name of generalized Hom-algebras, have been considered. When the grading
abelian group is Z2, the corresponding Z2-graded Hom-algebras are called Hom-
superalgebras. Hom-Lie superalgebra structures such as Hom-Lie superalgebras and
Hom-Lie admissible superalgebras [46], Rota-Baxter operator on pre-Lie superalge-
bras [2], Hom-Novikov superalgebras [102] have been considered in more details.
Hom-alternative superalgebras have been considered in [1] as a Z2-graded version
of Hom-alternative algebras [76] and their relationships with Hom-Malcev superal-
gebras and Hom-Jordan superalgebras are established [1].



7 Hom-Prealternative Superalgebras 123

The aim of this paper is to study the Z2-graded version of Hom-prealternative
algebras and their bimodules. In Sect. 7.2, we recall some basic notions on Hom-
alternative superalgebras and their bimodules. We prove that bimodules over Hom-
alternative superalgebras are closed under twisting and direct product. We show
that the tensor product of super-commutative Hom-associative superalgebras and
Hom-alternative superalgebras is also a Hom-alternative superalgebra. Then we
recall the definition of Hom-Jordan superalgebra. Section 7.3 is devoted to Hom-
prealternative superalgebras and Hom-alternative superalgebras and their connec-
tions. We point out that to any Hom-prealternative superalgebra one may associate
a Hom-alternative superalgebra, and conversely to any Hom-alternative superal-
gebra it corresponds a Hom-prealternative superalgebra via an O-operator. Con-
struction of Hom-prealternative superalgebras by composition is given. Bimodules
over Hom-prealternative superalgebras are introduced, relations between bimodules
over Hom-prealternative superalgebras and bimodules of the corresponding Hom-
alternative superalgebras are considered, and a construction of bimodules over Hom-
prealternative superalgebras by twisting is described.

7.2 Hom-Prealternative Algebras and Bimodules

In this section, we present important basic notions and provide some construction
results for Hom-alternative superalgebras.

Firstly, let us recall necessary important basic notions and notations on graded
spaces and algebras. Throughout this paper, all linear spaces are assumed to be over
a field K of characteristic different from 2.

Definition 7.1 Let G be an abelian group. A linear space V is called G-graded if
V = ⊕

a∈G
Va for some family (Va)a∈G of linear subspaces of V .

(i) An element x ∈ V is said to be homogeneous of degree a ∈ G if x ∈ Va , and
H(V ) = ⋃

a∈G
Va denotes the set of all homogeneous elements in V .

(ii) Let V = ⊕

a∈G
Va and V ′ = ⊕

a∈G
V ′
a be two G-graded linear spaces. A linear

mapping f : V → V ′ is said to be homogeneous of degree b if f (Va) ⊆ V ′
a+b

for a ∈ G. If f is homogeneous of degree zero i.e. f (Va) ⊆ V ′
a holds for any

a ∈ G, then f is said to be even.
(iii) An algebra (A, ·) is said to be G-graded if its underlying linear space is G-

graded i.e. A = ⊕

a∈G
Aa , and if furthermore Aa · Ab ⊆ Aa+b for a, b ∈ G.

(iv) A morphism f : A → A′ of G-graded algebras A and A′ is by definition an
algebra morphism from A to A′, which is moreover an even mapping.

Let A be aZ2-graded linear space with direct sum A = A0 ⊕ A1. The elements of
A j , are said to be homogeneous of degree (parity) j ∈ Z2. The set of all homogeneous
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elements of A is H(A) = A0 ∪ A1. Usually |x | denotes parity of a homogeneous
element x ∈ H(A).

Definition 7.2 Hom-superalgebras are triples (A, μ, α) in which A = A0 ⊕ A1 is
a Z2-graded linear space (K-superspace), μ : A × A → A is an even bilinear map,
and α : A → A is an even linear map.

(i) Let (A, μ, α) be a Hom-superalgebra. Hom-associator of A is the even trilin-
ear map asα,μ : A × A × A → A given by asα,μ = μ ◦ (μ ⊗ α − α ⊗ μ). In
terms of elements, in usual juxtaposition notation xy = μ(x, y), the map asα,μ

is given by

asα,μ(x, y, z) = μ(μ(x, y), α(z)) − μ(α(x), μ(y, z)) = (xy)α(z) − α(x)(yz).

(ii) An even linear map f : (A, μ, α) → (A′, μ′, α′) is said to be a weak mor-
phism of Hom-superalgebras if f ◦ μ = μ ◦ ( f ⊗ f ), and a morphism of
Hom-superalgebras if moreover f ◦ α = α′ ◦ f .

(iii) Hom-superalgebra (A, μ, α) in which α : A → A is moreover an endomor-
phism of the algebra structure μ is said to be multiplicative, and the algebra
endomorphism condition

α ◦ μ = μ ◦ (α ⊗ α) (7.1)

is called the multiplicativity of α with respect to μ.

Since the grading degree of Hom-associator |asα,μ(x, y, z))| = |x | + |y| + |z| for
x, y, z ∈ H(A) = A0 ∪ A1 in any Hom-superalgebra (A = A0 ⊕ A1, μ, α),

asα,μ(A0, A0, A0) ⊆ A0, (7.2)

asα,μ(A1, A0, A0) ⊆ A1, (7.3)

asα,μ(A0, A1, A0) ⊆ A1, (7.4)

asα,μ(A0, A0, A1) ⊆ A1, (7.5)

asα,μ(A1, A1, A0) ⊆ A0, (7.6)

asα,μ(A1, A0, A1) ⊆ A0, (7.7)

asα,μ(A0, A1, A1) ⊆ A0, (7.8)

asα,μ(A1, A1, A1) ⊆ A1. (7.9)

Definition 7.3 Hom-associative superalgebras are those Hom-superalgebras (A =
A0 ⊕ A1, •, α) obeying super (Z2-graded) Hom-associativity super identity for
x, y, z ∈ H(A) = A0 ∪ A1 :

asα,•(x, y, z) = 0 (super Hom-associativity) (7.10)
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equivalent in juxtaposition notation x • y = •(x, y) to

(x • y) • α(z) = α(x) • (y • z).

Hom-associativity super identity for Hom-superalgebras is equivalent to

asα,•(Ai , A j , Ak) = {0A}, i, j, k ∈ Z2. (7.11)

Definition 7.4 Left Hom-alternative superalgebras are Hom-superalgebras
(A = A0 ⊕ A1, •, α) obeying the left Hom-alternative super identity for x, y, z ∈
H(A) = A0 ∪ A1 :

asα,•(x, y, z) + (−1)|x ||y|asα,•(y, x, z) = 0 (7.12)

equivalent in juxtaposition notation x • y = •(x, y) to

(x • y) • α(z) − α(x) • (y • z) = −(−1)|x ||y|((y • x) • α(z) − α(y) • (x • z)).

For (x, y, z) ∈ A|x | × A|y| × A|z|, |x |, |y|, |z| ∈ Z2, the left super Hom-alternativity
for |x ||y| = 0 or |x ||y| = 1 respectively is

|x ||y| = 0 : (x, y, z) ∈ ((A0 × A0) ∪ (A1 × A0) ∪ (A0 × A1)) × Ak, k ∈ Z2 :
(x • y) • α(z) − α(x) • (y • z) = −((y • x) • α(z) − α(y) • (x • z)), (7.13)

|x ||y| = 1 : (x, y, z) ∈ A1 × A1 × Ak, k ∈ Z2 :
(x • y) • α(z) − α(x) • (y • z) = (y • x) • α(z) − α(y) • (x • z). (7.14)

Definition 7.5 Right Hom-alternative superalgebra is a Hom-superalgebra (A =
A0 ⊕ A1, •, α)obeying the rightHom-alternative super identity for x, y, z ∈ H(A) =
A0 ∪ A1 :

asα,•(x, y, z) + (−1)|y||z|asα,•(x, z, y) = 0, (7.15)

which, in juxtaposition notation x • y = •(x, y), is

(x • y) • α(z) − α(x) • (y • z) = −(−1)|y||z|((x • z) • α(y) − α(x) • (z • y)).

For (x, y, z) ∈ A|x | × A|y| × A|z|, |x |, |y|, |z| ∈ Z2, the left super Hom-alternativity
for |y||z| = 0 or |y||z| = 1 respectively is

|y||z| = 0 : (x, y, z) ∈ Ak × ((A0 × A0) ∪ (A1 × A0) ∪ (A0 × A1)) , k ∈ Z2,

(x • y) • α(z) − α(x) • (y • z) = −((x • z) • α(y) − α(x) • (z • y)), (7.16)

|y||z| = 1 : (x, y, z) ∈ Ak × A1 × A1, k ∈ Z2,

(x • y) • α(z) − α(x) • (y • z) = ((x • z) • α(y) − α(x) • (z • y)). (7.17)
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Definition 7.6 Hom-alternative superalgebras are defined as both left and right
Hom-alternative superalgebras.

Definition 7.7 Hom-flexible superalgebra is aHom-superalgebra (A, μ, α) obeying
the Hom-flexible super-identity for x, y, z ∈ H(A) = A0 ∪ A1 :

asα,•(x, y, z) + (−1)|x ||y|+|x ||z|+|y||z|asα,•(z, y, x) = 0, (7.18)

which, in juxtaposition notation x • y = •(x, y), is

(x • y) • α(z) − α(x) • (y • z) = −(−1)|x ||y|+|x ||z|+|y||z|((z • y) • α(x) − α(z) • (y • x)).

For (x, y, z) ∈ A|x | × A|y| × A|z|, |x |, |y|, |z| ∈ Z2, the left super Hom-alternativity
for |x ||y| + |x ||z| + |y||z| = 0 or 1 respectively is

|x ||y| + |x ||z| + |y||z| = 0 : (x, y, z) ∈ (A1 × A0 × A0) ∪ (A0 × A1 × A0)

∪(A0 × A0 × A1) ∪ (A0 × A0 × A0),

(x • y) • α(z) − α(x) • (y • z) = −((z • y) • α(x) − α(z) • (y • x)), (7.19)

|x ||y| + |x ||z| + |y||z| = 1 : (x, y, z) ∈ (A1 × A1 × A0) ∪ (A1 × A0 × A1)

∪(A0 × A1 × A1) ∪ (A1 × A1 × A1),

(x • y) • α(z) − α(x) • (y • z) = (z • y) • α(x) − α(z) • (y • x). (7.20)

Definition 7.8 A bimodule over a Hom-alternative superalgebra (A, •, α) consists
of a Z2-graded linear space V with an even linear map β : V → V and two even
bilinear maps


 : A ⊗ V → V ≺ : V ⊗ A → V

x ⊗ v �→ x 
 v v ⊗ x �→ v ≺ x

such that, for any homogeneous elements x, y ∈ A and v ∈ V ,

(v ≺ x) ≺ α(y) + (−1)|x ||v|(x 
 v) ≺ α(y)−
(−1)|x ||v|α(x) 
 (v ≺ y) − β(v) ≺ (x • y) = 0,

(7.21)

α(y) 
 (v ≺ x) − (y 
 v) ≺ α(x)−
(−1)|x ||v|(y • x) 
 β(v) + (−1)|x ||v|α(y) 
 (x 
 v) = 0,

(7.22)

(x • y) 
 β(v) + (−1)|x ||y|(y • x) 
 β(v)−
α(x) 
 (y 
 v) − (−1)|x ||y|α(y) 
 (x 
 v) = 0,

(7.23)

β(v) ≺ (x • y) + (−1)|x ||y|β(v) ≺ (y • x)−
(v ≺ x) ≺ α(y) − (−1)|x ||y|(v ≺ y) ≺ α(x) = 0.

(7.24)

Remark 7.1 The notation x 
 v means the left action of x on v and v ≺ x means
the right action of x on v given by the linear operators on V defined by
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L
(x)v = x 
 v, R≺(x)v = v ≺ x .

Bimodules over Hom-alternative superalgebras are closed under twisting in the
sense of Theorem 7.1.

Theorem 7.1 Let (V, L
, R≺, β) be a bimodule over the multiplicative
Hom-alternative superalgebra (A, •, α). Then, (V, Lα
, Rα≺, β) is a bimodule over
A, where Lα
 = L
 ◦ (α2 ⊗ I d) and Rα≺ = R≺ ◦ (α2 ⊗ I d).

Proof We only prove (7.21), as (7.22), (7.23), (7.24) are proved similarly. With

x  v = Lα

(x)v = L
 ◦ (α2 ⊗ I d)(x ⊗ v) = α2(x) 
 v,

v � x = Rα
≺(x)v = R≺ ◦ (id ⊗ α2)(v ⊗ x) = v ≺ α2(x),

for any x, y ∈ A and any v ∈ V ,

(v � x) � α(y) + (−1)|x ||v|(x  v) � α(y)

− (−1)|x ||v|α(x)  (v � y) − β(v) � (x • y) =
(v ≺ α2(x)) ≺ α3(y) + (−1)|x ||v|(α2(x) 
 v) ≺ α3(y)

− (−1)|x ||v|α3(x) 
 (v ≺ α2(y)) − β(v) ≺ α2(x • y) =
(v ≺ α2(x)) ≺ α3(y) + (−1)|x ||v|(α2(x) 
 v) ≺ α3(y)

− (−1)|x ||v|α3(x) 
 (v ≺ α2(y)) − β(v) ≺ (α2(x) • α2(y)) = 0,

by using the multiplicativity of α in the last term, and then (7.21) for α2(x) and α2(y)
in (V, L
, R≺, β).

For two Z2-graded linear spaces V = ⊕a∈Z2Va and V ′ = ⊕a∈Z2V
′
a , the tensor

product V ⊗ V ′ is also a Z2-graded linear space such that for j ∈ Z2,

(V ⊗ V ′) j =
∑

j=a+a′
Va ⊗ Va′ .

Theorem 7.2 Let (A, •, α) be a super-commutative Hom-associative superalgebra
and (A′, •′, α′) be a Hom-alternative superalgebra. Then the tensor product (A ⊗
A′, ∗, α ⊗ α′), where for x, y ∈ H(A), a, b ∈ H(A′),

(α ⊗ α′)(x ⊗ a) = α(x) ⊗ α′(a),

(x ⊗ a) ∗ (y ⊗ b) = (−1)|a||y|(x • y) ⊗ (a •′ b),

is a Hom-alternative superalgebra.
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Proof Let us set X = x ⊗ a, Y = y ⊗ b, Z = z ⊗ c ∈ H(A) ⊗ H(A′). Then,

asα⊗α′,∗(X,Y, Z) = asα⊗α′,∗(x ⊗ a, y ⊗ b, z ⊗ c)

= ((x ⊗ a) ∗ (y ⊗ b)) ∗ (α ⊗ α′)(z ⊗ c) − (α ⊗ α′)(x ⊗ a) ∗ ((y ⊗ b) ∗ (z ⊗ c))

=
(
(x ⊗ a) ∗ (y ⊗ b)) ∗ (α(z) ⊗ α′(c)) − (α(x) ⊗ α′(a)) ∗ ((y ⊗ b) ∗ (z ⊗ c)

)

= (−1)|a||y|
(
(x • y) ⊗ (a •′ b)) ∗ (α(z) ⊗ α′(c))

− (−1)|b||z|(α(x) ⊗ α′(a)) ∗ ((y • z) ⊗ (b •′ c)
)

= (−1)|a||y|+(|a|+|b|)|z|((x • y) • α(z)) ⊗ ((a •′ b) •′ α′(c))

− (−1)|b||z|+|a|(|y|+|z|)(α(x) • (y • z)) ⊗ (α′(a) •′ (b •′ c)).

asα⊗α′,∗(X,Y, Z) + (−1)|XY |asα⊗α′,∗(Y, X, Z)

= asα⊗α′,∗(x ⊗ a, y ⊗ b, z ⊗ c) + (−1)|(x⊗a)∗(y⊗b)|asα⊗α′,∗(x ⊗ a, y ⊗ b, z ⊗ c)

= (−1)|a||y|+(|a|+|b|)|z|((x • y) • α(z)) ⊗ ((a •′ b) •′ α′(c))

− (−1)|b||z|+|a|(|y|+|z|)(α(x) • (y • z)) ⊗ (α′(a) •′ (b •′ c))

+ (−1)(|x |+|a|)(|y|+|b|)+|b||x |+(|a|+|b|)|z|((y • x) • α(z)) ⊗ ((b •′ a) •′ α′(c))

− (−1)(|x |+|a|)(|y|+|b|)+|a||z|+|b|(|x |+|z|)(α(y) • (x • z)) ⊗ (α′(b) •′ (a •′ c)).

By super-commutativity, x • y = (−1)|x ||y|y • x , and Hom-associativity (7.10),

asα⊗α′,∗(X, Y, Z) + (−1)|XY |asα⊗α′,∗(Y, X, Z) = (−1)|a||y|+|a||z|+|b||z|
(
(x • y) • α(z) − α(x) • (y • z) + (−1)|x ||y|(y • x) • α(z) − (−1)|x ||y|α(y) • (x • z)

)

⊗ (a •′ b) •′ α′(c).

The left hand side vanishes by the left Hom-alternativity of A′. The right Hom-
alternativity is proved similarly. �

Definition 7.9 ([31]) Left averaging operator over a Hom-alternative superalgebra
(A, ·, α) is an even linear map β : A → A such that α ◦ β = β ◦ α and for x, y ∈
H(A),

β(x) · β(y) = β(β(x) · y).

Right averaging operator over a Hom-alternative superalgebra (A, ·, α) is an even
linear map β : A → A such that α ◦ β = β ◦ α and for x, y ∈ H(A),

β(x) · β(y) = β(x · β(y)).

Averaging operator over a Hom-alternative superalgebra (A, ·, α) is both left aver-
aging operator and right averaging operator, meaning an even linear map β : A → A
such that α ◦ β = β ◦ α and for x, y ∈ H(A),
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β(β(x) · y) = β(x) · β(y) = β(x · β(y)).

Proposition 7.1 Let (A, ·, α) be a Hom-alternative algebra. Let β : A → A be an
element of the centroid, an even linear map such that for x, y ∈ H(A),

β ◦ α = α ◦ β, (7.25)

β(x · y) = β(x) · y = x · β(y). (7.26)

Then (A, ·β = β ◦ ·, α) is a Hom-alternative superalgebra.

Proof Hom-alternativity means both left and right Hom-alternativity. The left and
right Hom-alternativity of (A, ·β = β ◦ ·, α) are proved as follows. For x, y, z ∈
H(A),

asα,·β (x, y, z) = (x ·β y) ·β α(z) − α(x) ·β (y ·β z)

= β(β(x · y) · α(z)) − β(α(x) · β(y · z))
(7.26)= β((β(x) · y)) · α(z) − β(α(x)) · (β(y) · z)
(7.26)= (β(x) · β(y)) · α(z) − β(α(x)) · (β(y) · z)
(7.25)= (β(x) · β(y)) · α(z) − α(β(x)) · (β(y) · z)
= asα,·(β(x), β(y), z) (7.27)

(using left Hom-alternativity of (A, ·, α))

(7.12)= −(−1)|x ||y|asα,·(β(y), β(x), z)

(using proved in (7.27) for (y, x, z))

= −(−1)|x ||y|asα,·β (y, x, z),
asα,·β (x, y, z) = (x ·β y) ·β α(z) − α(x) ·β (y ·β z)

= β(β(x · y) · α(z)) − β(α(x) · β(y · z))
(7.26)= (β(x) · y) · β(α(z)) − β(α(x)) · (y · β(z))
(7.25)= (β(x) · y) · α(β(z)) − α(β(x)) · (y · β(z))

= asα,·(β(x), y, β(z))

(using right Hom-alternativity of (A, ·, α))
(7.15)= −(−1)|y||z|asα,·(β(x), β(z), y)

(using proved in (7.27) for (x, z, y))

= −(−1)|y||z|asα,·β (x, z, y).

�
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Proposition 7.2 Any Hom-alternative superalgebra (A, ·, α) with an averaging
operator ∂ is a Hom-alternative superalgebra with respect to multiplication ∗ :
A × A → A defined by x ∗ y := x · ∂(y) and the same twisting map α.

Proof For any x, y, z ∈ H(A),

(x ∗ y) ∗ α(z) − α(x) ∗ (y ∗ z) = α(x) · (∂(y) · ∂(z)) − α(x) · ∂(y · ∂(z))

= α(x) · (∂(y) · ∂(z)) − α(x) · (∂(y) · ∂(z)) = 0.

On the one hand, exchanging the role of x and y, yields

(x ∗ y) ∗ α(z) − α(x) ∗ (y ∗ z) + (−1)|x ||y|
(
(y ∗ x) ∗ α(z) − α(y) ∗ (x ∗ z)

)
= 0.

On the other hand, exchanging the role of y and z, yields

(x ∗ y) ∗ α(z) − α(x) ∗ (y ∗ z) + (−1)|y||z|
(
(x ∗ z) ∗ α(y) − α(x) ∗ (z ∗ y)

)
= 0.

This completes the proof. �
Definition 7.10 ([1]) AHom-Jordan superalgebra is a Hom-superalgebra (A, •, α)

satisfying super-commutativity andHom-Jordan super identity for x, y, z, t ∈ H(A),

x • y = (−1)|x ||y|y • x, super-commutativity (7.28)
∑

�(x,y,t)

(−1)|t |(|x |+|z|)as•,α(xy, α(z), α(t)) = 0, Hom-Jordan
super identity

(7.29)

where
∑

�(a,b,c)

is the summation over cyclically permutated (a, b, c). Hom-Jordan

super identity (7.29) in juxtaposition notation x • y = •(x, y) is, for x, y, z, t ∈
H(A),

∑

�(x,y,t)

(−1)|t |(|x |+|z|)((x • y) • α(z)) • α2(t) =
∑

�(x,y,t)

(−1)|t |(|x |+|z|)α(x • y) • (α(z) • α(t)).

Remark 7.2 If (x, y, z, t) ∈ (A0 × A0 × A0 × A0) ∪ (A1 × A1 × A1 × A1), then

(−1)|t |(|x |+|z|) = (−1)|x |(|y|+|z|) = (−1)|y|(|t |+|z|) = 1,

and Hom-Jordan super identity is

∑

�(x,y,t)

((x • y) • α(z)) • α2(t) =
∑

�(x,y,t)

α(x • y) • (α(z) • α(t)). (7.30)
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Theorem 7.3 ([1]) Any multiplicative Hom-alternative superalgebra is Hom-
Jordan admissible, that is, for any multiplicative Hom-alternative superalgebra
(A, •, α), the Hom-superalgebra A+ = (A, ∗, α) is a multiplicative Hom-Jordan
superalgebra, where x ∗ y = xy + (−1)|x ||y|yx.

7.3 Hom-Prealternative and Hom-Alternative
Superalgebras

In this section, we introduce Hom-prealternative superalgebras, give some construc-
tion theorems and study their connection with Hom-alternative superalgebras. The
associated bimodules are also discussed.

7.3.1 Prealternative Superalgebras

Definition 7.11 A Hom-prealternative superalgebra is a quadruple (A,≺,
, α)

where A is a super vector space, ≺,
: A ⊗ A → A are even bilinear maps and
α : A → A an even linear map such that, for any x, y, z ∈ H(A) and x • y = x 

y + x ≺ y,

(x • x) 
 α(y) − α(x) 
 (x 
 y) = 0, (7.31)

(x ≺ y) ≺ α(y) − α(x) ≺ (y • y) = 0, (7.32)

(x 
 y) ≺ α(z) − α(x) 
 (y ≺ z)+
(−1)|x ||y|(y ≺ x) ≺ α(z) − (−1)|x ||y|α(y) ≺ (x • z) = 0,

(7.33)

(x 
 y) ≺ α(z) − α(x) 
 (y ≺ z)+
(−1)|y||z|(x • z) 
 α(y) − (−1)|y||z|α(x) 
 (z 
 y) = 0.

(7.34)

Definition 7.12 Let (A,≺,
, α) and (A′,≺′,
′, α′) be two Hom-prealternative
superalgebras. An even linear map f : A → A′ is said to be a morphism of Hom-
prealternative superalgebras if, for x, y ∈ H(A),

α′ ◦ f = f ◦ α, f (x ≺ y) = f (x) ≺′ f (y) and f (x 
 y) = f (x) 
′ f (y).

AHom-prealternative superalgebra (A,≺,
, α) in which α : A → A is a morphism
is called a multiplicative Hom-alternative superalgebra.
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Remark 7.3 Axioms (7.31) and (7.32) can be rewritten respectively as

(x • y) 
 α(z) − α(x) 
 (y 
 z)+
(−1)|x ||y|(y • x) 
 α(z) − (−1)|x ||y|α(y) 
 (x 
 z) = 0,

(7.35)

(x ≺ y) ≺ α(z) − α(x) ≺ (y • z)+
(−1)|y||z|(x ≺ z) ≺ α(y) − (−1)|y||z|α(x) ≺ (z • y) = 0.

(7.36)

Remark 7.4 If (A,≺,
, α) is a Hom-prealternative superalgebra, then (A,≺λ=
λ· ≺,
λ= λ· 
, α) is also a Hom-prealternative superalgebra.

Using the following notations [60, 85]:

(x, y, z)1 = (x • y) 
 α(z) − α(x) 
 (y 
 z), (7.37)

(x, y, z)2 = (x 
 y) ≺ α(z) − α(x) 
 (y ≺ z), (7.38)

(x, y, z)3 = (x ≺ y) ≺ α(z) − α(x) ≺ (y • z), (7.39)

the axioms in Definition 7.11 of Hom-prealternative superalgebras can be rewritten
for x, y, z ∈ H(A) as

(x, x, z)1 = (y, x, x)3 = 0 (7.40)

(x, y, z)2 + (−1)|x ||y|(y, x, z)3 = 0, (7.41)

(x, y, z)2 + (−1)|y||z|(x, z, y)1 = 0. (7.42)

The following definition is motivated by [60, Definitions 17, 18].

Definition 7.13 A Hom-prealternative superalgebra (A,≺,
, α) is said to be left
Hom-alternative if

(x, y, z)i + (−1)|x ||y|(y, x, z)i = 0, i = 1, 2, 3. (7.43)

and right Hom-alternative if

(x, y, z)i + (−1)|y||z|(x, z, y)i = 0, i = 1, 2, 3. (7.44)

Definition 7.14 A Hom-prealternative superalgebra algebra (A,≺,
, α) is said to
be flexible if

(x, y, x)i = 0, i = 1, 2, 3. (7.45)

Theorem 7.4 If (A,≺,
, α) is a left Hom-prealternative superalgebra, then
Alt (A) = (A, •, α) is a left Hom-alternative superalgebra. If (A,≺,
, α) is a
right Hom-prealternative superalgebra, then Alt (A) = (A, •, α) is a right Hom-
alternative superalgebra.
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Proof For any x, y, z ∈ H(A),

as•(z, x, y) = (z • x) • α(y) − α(z) • (x • y)

= (z • x) ≺ α(y) + (z • x) 
 α(y) − α(z) ≺ (x • y) − α(z) 
 (x • y)

= (z ≺ x + z 
 x) ≺ α(y) + (z • x) 
 α(y)−
α(z) ≺ (x • y) − α(z) 
 (x ≺ y + x 
 y)

= ((z ≺ x) ≺ α(y) − α(z) ≺ (x • y)) + ((z 
 x) ≺ α(y) − α(z) 
 (x ≺ y))+
((z • x) 
 α(y) − α(z) 
 (x 
 y))

= (z, x, y)3 + (z, x, y)2 + (z, x, y)1 = −(−1)|x ||y|((z, y, x)3 + (z, y, x)2 + (z, y, x)1)

= −(−1)|x ||y|as•(z, y, x).

The left alternatively is proved analogously. �

Note that the left and right Hom-alternativity for dialgebras is not defined in the same
way that the one of algebras with one operation; so the two terminologies must not
be confused.

Proposition 7.3 Let (A,≺,
, α) be a flexible Hom-prealternative superalgebra.
Then (A, •, α) is a flexible Hom-alternative superalgebra.

Theorem 7.5 Let (A,≺,
, α) be a Hom-prealternative superalgebra. Then A′ =
(A,≺′,
′, α) is also a Hom-prealternative superalgebra with

x ≺′ y = (−1)|x ||y|y 
 x, x 
′ y = (−1)|x ||y|y ≺ x .

Proof We prove only (7.33), as (7.31), (7.32) and (7.34) are proved similarly. For
x, y, z ∈ H(A),

(x 
′ y) ≺′ α(z) − α(x) 
′ (y ≺ z)+
(−1)|x ||y|(y ≺′ x) ≺′ α(z) − (−1)|x ||y|α(y) ≺′ (x •′ z)

= (−1)|x ||y|(y ≺ x) ≺′ α(z) − (−1)|y||z|α(z) 
′ (z 
 y)+
(x 
 y) ≺′ α(z) − (−1)|x ||y|+|x ||z|α(y) ≺′ (z • x)

= (−1)|x ||y|+(|x |+|y|)|z|α(z) 
 (y ≺ x) − (−1)|y||z|+|x |(|y|+|z|)(z 
 y) ≺ α(x)+
(−1)(|x |+|y|)|z|α(z) 
 (x 
 y) − (−1)|x ||y|+|x ||z|+|y|(|x |+|z|)(z • x) 
 α(y)

= (−1)|x ||y|+|x ||z|+|y||z|[α(z) 
 (y ≺ x) − (z 
 y) ≺ α(x)+
(−1)|x ||y|α(z) 
 (x 
 y) − (−1)|x ||y|(z • x) 
 α(y)] = 0

by axiom (7.34) for (A,≺,
, α). �

Note that Alt (A′) = Alt (A)op, that is, x •′ y = (−1)|x ||y|y • x , for x, y ∈ H(A).
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Theorem 7.6 Let (A,≺,
, α) be a Hom-prealternative superalgebra. Let us define
the operation x • y = x ≺ y + x 
 y for any homogeneous elements x, y in A. Then
Alt (A) = (A, •, α) is a Hom-alternative superalgebra.

Proof Let us prove the left alternativity. For any homogeneous x, y, z ∈ A,

as•(x, y, z) + (−1)|x ||y|as•(y, x, z) =
(x ≺ y) ≺ α(z) + (x 
 y) ≺ α(z) + (x • y) 
 α(z) − α(x) ≺ (y • z)

− α(x) 
 (y 
 z) − α(x) 
 (y ≺ z) + (−1)|x ||y|(y ≺ x) ≺ α(z)

+ (−1)|x ||y|(y 
 x) ≺ α(z) + (−1)|x ||y|(y • x) 
 α(z) − (−1)|x ||y|α(y) ≺ (x • z)

− (−1)|x ||y|α(y) 
 (x ≺ z) − (−1)|x ||y|α(y) 
 (x 
)z.

The left hand side vanishes by using one axiom (7.33) and twice axiom (7.36). �

The Hom-alternative superalgebra Alt (A) = (A, •, α) in Theorem 7.6 is called
the associated Hom-alternative superalgebra of (A,≺,
, α). We call (A,≺,
, α) a
compatible Hom-prealternative superalgebra structure on the Hom-alternative super-
algebra Alt (A).

Theorems 7.3, 7.5 and 7.6 yield the following corollary.

Corollary 7.1 Let (A,≺,
, α) be a multiplicative Hom-prealternative superalge-
bra. Then (A, ∗, α) is a multiplicative Hom-Jordan superalgebra with

x ∗ y = x ≺ y + x 
 y + (−1)|x ||y|y ≺ x + (−1)|x ||y|y 
 x .

Let us define the notion of O-operator for Hom-alternative superalgebras.

Definition 7.15 Let (V, L , R, β) be a bimodule of theHom-alternative superalgebra
(A, •, α). An even linear map T : V → A is called an O-operator associated to
(V, L , R, β) if for u, v ∈ V ,

T (u) • T (v) = T (L(T (u))v + R(T (v))u), (7.46)

T ◦ β = α ◦ T . (7.47)

Theorem 7.7 Let T : V → A be an O-operator of the Hom-alternative superal-
gebra (A, •, α) associated to the bimodule (V, L , R, β). Then (V,≺,
, β) is a
Hom-prealternative superalgebra structure, where for u, v ∈ V ,

u ≺ v = R(T (v))u and u 
 v = L(T (u))v.

Therefore, (V, • =≺ + 
, β) is the associated Hom-alternative superalgebra of this
Hom-prealternative superalgebra, and T is a homomorphism of Hom-alternative
superalgebras. Furthermore, T (V ) = {T (v), v ∈ V } ⊆ A is a Hom-alternative sub-
algebra of (A, •, α), and (T (V ),≺,
, α) is a Hom-prealternative superalgebra,
where
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T (u) ≺ T (v) = T (u ≺ v) and T (u) 
 T (v) = T (u 
 v) for u, v ∈ V

The associated Hom-alternative superalgebra (T (V ), • =≺ + 
, α) is just the
Hom-alternative subalgebra structure of (A, •, α), and T is a homomorphism of
Hom-prealternative superalgebras.

Proof For any homogeneous elements u,w,w ∈ V ,

(u 
 v) ≺ β(w) − β(u) 
 (v ≺ w) + (−1)|u||v|(v ≺ u) ≺ β(w)

− (−1)|u||v|β(v) ≺ (u • w)

= (T (u)v)Tβ(w) − Tβ(u)(vT (w)) + (−1)|u||v|(vT (u))Tβ(w)

− (−1)|u||v|β(v)T (uT (w) + T (u)w)

= (T (u)v)α(T (w)) − α(T (u))(vT (w)) + (−1)|u||v|(vT (u))α(T (w))

− (−1)|u||v|β(v)(T (u)T (w)) = 0.

The other identities are checked similarly, and the rest of the proof is easy. �

Definition 7.16 AHom-alternative Rota-Baxter superalgebra of weight λ is a Hom-
alternative superalgebra (A, ·, α) together with an even linear self-map R : A → A
such that R ◦ α = α ◦ R and

R(x) · R(y) = R
(
R(x) · y + x · R(y) + λx · y

)
.

Corollary 7.2 Let (A, ·, α) be a Hom-alternative superalgebra and R : A → A a
Rota-Baxter operator of weight 0 on A. Then

(i) AR = (A,≺,
, α) is a Hom-prealternative superalgebra, where

x ≺ y = x · R(y), x 
 y = R(x) · y, for x, y ∈ H(A).

(ii) (A, •, α) is aHom-alternative superalgebra with x • y = R(x) · y + x · R(y).

Proposition 7.4 Let (V,≺,
, β) be a bimodule over the Hom-alternative superal-
gebra (A, ·, α) and R : A → A be a Rota-Baxter operator of weight 0 on A. Then,
(V, �, �, β), with v � x = v ≺ R(x) and x � y = R(x) 
 v, is a bimodule over
(A, •, α).

Proof For any homogeneous elements x, y ∈ A and v ∈ V ,

(v � x) � α(y) − β(v) � (x • y)

= (v ≺ R(x)) ≺ R(α(y)) − β(v) ≺ R(R(x) · y + x · R(y))

= (v ≺ R(x)) ≺ α(R(y)) − β(v) ≺ (R(x) · R(y))

= (−1)|x ||y|
(
(R(x) 
 v) ≺ α(y) − α(x) 
 (v ≺ y)

)

= (−1)|x ||y|
(
(x � v) � α(y) − α(x) � (v � y)

)
.

The other identities are proved similarly. �
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Theorem 7.8 Suppose that (A,≺,
, α) is a Hom-prealternative superalgebra, and
let β : A → A be an even Hom-prealternative superalgebra endomorphism. Then
Aβ = (A,≺β= β◦ ≺,
β= β◦ 
, βα) is a Hom-prealternative superalgebra. Let
(A′,≺′,
′) be another prealternative superalgebra and α′ : A → A′ be a prealter-
native superalgebra endomorphism. If f : A → A′ is a prealternative superalgebra
morphism satisfying f ◦ β = α′ ◦ f , then

f : (A,≺β= β◦ ≺,
β= β◦ 
, βα) → (A′,≺′
α′= α′◦ ≺′,
′

α′= α′◦ 
′, α′)

is a morphism of Hom-prealternative superalgebras.

Proof For x, y, z ∈ H(A),

(x 
β y) ≺β βα(z) − βα(x) 
β (y ≺β z)

= β((β(x) 
 β(y))) ≺ β(α(z)) − β(α(x)) 
 β[(β(y) ≺ β(z))

= β2
(
(x 
 y) ≺ α(z) − α(x) 
 (y ≺ z)

)

= (−1)|x ||y|β2
(
α(y) ≺ (x • z) − (−1)|x ||y|(y ≺ x) ≺ α(z)

)

= (−1)|x ||y|β
(
βα(y) ≺ β(x • z) − (−1)|x ||y|β(y ≺ x) ≺ βα(z)

)

= (−1)|x ||y|β
(
βα(y) ≺ (x •β z) − (−1)|x ||y|(y ≺β x) ≺ βα(z)

)

= (−1)|x ||y|
(
β2α(y) ≺ β(x •β z) − (−1)|x ||y|β(y ≺β x) ≺ β2α(z)

)

= (−1)|x ||y|βα(y) ≺β (x •β z) − (−1)|x ||y|(y ≺β x) ≺β βα(z).

The other axioms are proved similarly. For the second part,

f ◦ ≺α=f ◦ α◦ ≺= α′ ◦ f ◦ ≺= α′◦ ≺′ ◦( f ⊗ f ) =≺′
α′ ◦( f ⊗ f ).

Analogues equalities hold for 
α and 
′
α′ . �

Taking β = α2n−1 yields the following result.

Corollary 7.3 Let (A,≺,
, α) be a multiplicative Hom-prealternative superalge-
bra. Then,

(i) For n ≥ 0, An = (A,≺(n)= α2n−1◦ ≺,
(n)= α2n−1◦ 
, α2n ) is a multiplicative
Hom-prealternative superalgebra, called the nth derived multiplicative Hom-
prealternative superalgebra.

(ii) For n ≥ 0, An = (A,≺(n)= α2n−1 ◦ (≺ + 
), α2n ) is a multiplicative Hom-
alternative superalgebra, called the nth derived multiplicative Hom-alternative
superalgebra.
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7.3.2 Bimodules of Hom-Prealternative Superalgebras

Definition 7.17 Let (A,≺,
, α) be a Hom-prealternative superalgebra. An
A-bimodule is a super vector space V with an even linear map β : V → V and
four even linear maps from A to the space gl(V ) of all even linear maps on V ,

L
 : A → gl(V ) L≺ : A → gl(V )

x �→ L
(x)(v) = x 
 v, x �→ L≺(x)(v) = x ≺ v,

R
 : A → gl(V ) R≺ : A → gl(V )

x �→ R
(x)(v) = v 
 x, x �→ R≺(x)(v) = v ≺ x,

satisfying the following relations:

L
(x • y + (−1)|x ||y|y • x)β(v) =
L
(α(x))L
(y) + (−1)|x ||y|L
(α(y))L
(x),

(7.48)

R
(α(y))(L•(x) + (−1)|x ||v|R•(x))v =
L
(α(x))R
(y)v + (−1)|x ||v|R
(x 
 y)β(v),

(7.49)

R≺(α(y))L
(x) + (−1)|x ||v|R≺(α(y))R≺(x) =
L
(α(x))R≺(y) + (−1)|x ||v|R≺(x ◦ y)β(v),

(7.50)

R≺(α(y))R
(x)v + (−1)|x ||v|R
(α(y))L≺(x)v =
L≺(α(x))R•(y)v + (−1)|x ||v|R
(x • y)β(v),

(7.51)

L≺(y ≺ x)β(v) + (−1)|x ||y|L≺(x 
 y)β(v) =
L≺(α(y))L•(x)v + (−1)|x ||y|L
(α(y))L
(x)v,

(7.52)

R≺(α(x))L
(y) + (−1)|x ||v|L
(y 
 x)β(v) =
L
(y)R≺(x)v + (−1)|x ||v|L
(α(y))L
(x)v,

(7.53)

R≺(α(x))R
(y)v + (−1)|x ||y|R
(α(y))R•(x)v =
R
(y ≺ x)β(v) + (−1)|x ||y|R
(x 
 y)β(v),

(7.54)

L≺(y 
 x)β(v) + (−1)|x ||v|R
(α(x))L•(y)v =
L
(α(y))L≺(x)v + (−1)|x ||v|L
(α(y))R
(y)v,

(7.55)

R≺(α(x))R≺(y)v + (−1)|x ||y|R≺(α(y))R≺(x)v =
R≺(x • y + (−1)|x ||y|y • x)β(v),

(7.56)

R≺(α(y))L≺(x) + (−1)|y||v|L≺(x ≺ y)β(v) =
L≺(α(x))(R•(y) + (−1)|y||v|L•(y))v,

(7.57)

where • =≺ + 
 and, for homogeneous x, y ∈ A, v ∈ V ,

x • y = x ≺ y + x 
 y, L• = L
 + L≺, R• = R
 + R≺.
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Remark 7.5 Axioms (7.48)–(7.57) are respectively equivalent to

(x • y + (−1)|x ||y|y • x) 
 β(v) =
α(x) 
 (y 
 v) + (−1)|x ||y|α(y) 
 (x 
 v),

(7.58)

(x • v + (−1)|x ||v|v • x) 
 α(y) =
α(x) 
 (v 
 y) − (−1)|x ||v|β(v) 
 (x 
 y),

(7.59)

(v ≺ x) ≺ α(y) + (−1)|x ||v|(x 
 v) ≺ α(y) =
β(v) ≺ (x • y) + (−1)|x ||v|α(x) 
 (v ≺ y),

(7.60)

(x ≺ v) ≺ α(y) + (−1)|x ||v|(v 
 x) ≺ α(y) =
α(x) ≺ (v • y) + (−1)|x ||v|β(v) 
 (x • y),

(7.61)

(y ≺ x) ≺ β(v) + (−1)|x ||y|(x 
 y) ≺ β(v) =
α(y) ≺ (x • v) + (−1)|x ||y|α(x) 
 (y ≺ v),

(7.62)

(y 
 v) ≺ α(x) + (−1)|x ||v|(y • x) 
 β(v) =
α(y) 
 (v ≺ x) + (−1)|x ||v|α(y) 
 (x 
 v),

(7.63)

(v 
) ≺ α(x) + (−1)|x ||y|(v • x) 
 α(y) =
β(v) 
 (y ≺ x) + (−1)|x ||y|β(v) 
 (x 
 y),

(7.64)

(y 
 x) ≺ β(v) + (−1)|x ||v|(y • v) 
 α(x) =
α(y) 
 (x ≺ v) + (−1)|x ||v|α(y) 
 (v 
 x),

(7.65)

(v ≺ x) ≺ α(y) + (−1)|x ||y|(v ≺ y) ≺ α(x) =
β(v) ≺ (x • y + (−1)|x ||y|y • x),

(7.66)

(x ≺ v) ≺ α(y) + (−1)|y||v|(x ≺ y) ≺ β(v) =
α(x) ≺ (v • y + (−1)|y||v|y • v).

(7.67)

Proposition 7.5 Suppose that (A,≺,
, α) is a Hom-prealternative superalgebra.
Then (A, l
, r≺, α) is a bimodule of the associated Hom-alternative superalgebra
Alt (A) = (A, •, α).

Proposition 7.6 Let (V,≺,
, β) be a bimodule over the Hom-alternative super-
algebra (A, •, α) and R : A → A be a Rota-Baxter operator on A. Then (V, 0, �, 0,
�, β), with x � v = R(x) 
 v and v � x = v ≺ R(x), is a bimodule over the
Hom-prealternative superalgebra AR = (A,≺,
, α).

Proof For any homogeneous elements x, y ∈ A and v ∈ V ,

(v � x) � α(y) + (x � v) � α(y)

= (v ≺ R(x)) ≺ R(α(y)) + (R(x) 
 v) ≺ R(α(y))

= (v ≺ R(x)) ≺ α(R(y)) + (R(x) 
 v) ≺ α(R(y))

= β(v) ≺ (R(x) · R(y)) + α(R(x)) 
 (v ≺ R(y))

= β(v) ≺ R(R(x) · y + x · R(y)) + R(α(x)) 
 (v ≺ R(y))

= β(v) � (R(x) · y + x · R(y)) + α(x) � (v � y)

= β(v) � (x 
 y + x ≺ y) + α(x) � (v � y)

= β(v) � (x · y) + α(x) � (v � y).

The other axioms are proved in the same way. �
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Theorem 7.9 Suppose that (V, L≺, R≺, L
, R
, β) be a bimodule over the Hom-
prealternative superalgebra (A,≺,
, α), and let Alt (A) = (A, •, α) be the asso-
ciated Hom-alternative superalgebra. Then

(i) (V, L
, R≺, β) is a bimodule over Alt (A).
(ii) (V, L• = L≺ + L
, R• = R≺ + R
, β) is a bimodule over Alt (A).
(iii) If (V, L , R, β) is a bimodule of Alt (A), then (V, 0, R, L , 0, β) is a bimodule

over (A,≺,
, α).

Proof For any homogeneous elements x, y ∈ A and v ∈ V ,
i The statement i follows from axioms (7.58), (7.60), (7.63) and (7.66). ii For ii, the
axiom (7.23) is verified as follows,

(x • y) • β(v) + (−1)|x ||y|(y • x) • β(v) − α(x) • (y • v) − (−1)|x ||y|α(y) • (x • v)

= (x ≺ y) ≺ β(v) + (x 
 y) ≺ β(v) + (x • y) 
 β(v)

+ (−1)|x ||y|(y ≺ x) ≺ β(v) + (−1)|x ||y|(y 
 x) ≺ β(v) + (−1)|x ||y|(x • y) 
 β(v)

− α(x) ≺ (y • v) − α(x) 
 (y ≺ v) − α(x) 
 (y 
 v)

− (−1)|x ||y|α(y) ≺ (x • v) − (−1)|x ||y|α(y) 
 (x ≺ v) − (−1)|x ||y|α(y) 
 (x 
 v).

The left hand side vanishes by axioms (7.58) and (7.62). The other axioms are verified
analogously: axiom (7.24) comes from axioms (7.64) and (7.66); axiom (7.22) comes
fromaxioms (7.63), (7.65) and (7.67); axiom (7.21) comes fromaxioms (7.59), (7.60)
and (7.61). iii It suffices to take R
 = 0 and L≺ = 0. �

Theorem 7.10 Let (V, L≺, R≺, L
, R
, β) be a bimodule over the multiplicative
Hom-prealternative superalgebra (A,≺,
, α), and let Alt (A) = (A, •, α) be the
associated Hom-alternative superalgebra. For

Lα
≺ = L≺ ◦ (α2 ⊗ I d), Lα


 = L
 ◦ (α2 ⊗ I d),

Rα
≺ = R≺ ◦ (α2 ⊗ I d), Rα


 = R
 ◦ (α2 ⊗ I d),

(V, Lα
, Rα≺, β) and (V, Lα• = Lα≺ + Lα
, Rα• = Rα≺ + Rα
, β) are bimodules over
Alt (A).

Proof We only prove (7.23) in detail, as the other axioms are verified similarly.
Putting 
α= Lα
, for any homogeneous elements x, y ∈ A and v ∈ V ,

(x • y + (−1)|x ||y|y • x) 
α β(v) = α2(x • y + (−1)|x ||y|y • x) 
 β(v)
(7.1)= (α2(x) • α2(y) + (−1)|x ||y|α2(y) • α2(x)) 
 β(v)
(7.58)= α3(x) 
 (α2(y) 
 v) + (−1)|x ||y|α3(y) 
 (α2(x) 
 v)

= α(x) 
α (y 
α v) + (−1)|x ||y|α(y) 
α (x 
α v).

�
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In: Silvestrov, S., Malyarenko, A., Rančić, M. (eds.), Algebraic Structures and Applications,
Springer Proceedings inMathematics and Statistics, vol. 317, Chap. 10, pp. 257–284. Springer
(2020)

15. Armakan, A., Silvestrov, S., Farhangdoost, M.R.: Enveloping algebras of color Hom-Lie
algebras. Turk. J. Math. 43(1), 316–339 (2019). (arXiv:1709.06164 [math.QA] (2017))

16. Armakan, A., Silvestrov, S., Farhangdoost, M.R.: Extensions of Hom-Lie color algebras.
Georgian Math. J. 28(1), 15–27 (2021). (arXiv:1709.08620 [math.QA] (2017))

17. Armakan, A., Silvestrov, S.: Color Hom-Lie algebras, color Hom-Leibniz algebras and color
omni-Hom-Lie algebras. arXiv:2010.06160 [math.RA] (2020)

http://arxiv.org/abs/1304.1579v1
http://arxiv.org/abs/1512.08043
http://arxiv.org/abs/1709.06164
http://arxiv.org/abs/1709.08620
http://arxiv.org/abs/2010.06160


7 Hom-Prealternative Superalgebras 141

18. Arnlind, J., Kitouni, A., Makhlouf, A., Silvestrov, S.: Structure and cohomology of 3-Lie
algebras induced by Lie algebras. In: Makhlouf, A., Paal, E., Silvestrov, S.D., Stolin, A.,
Algebra, Geometry and Mathematical Physics, Springer Proceedings in Mathematics and
Statistics, vol. 85, pp. 123–144. Springer (2014)

19. Arnlind, J., Makhlouf, A., Silvestrov, S.: Ternary Hom-Nambu-Lie algebras induced by Hom-
Lie algebras. J. Math. Phys. 51(4), 043515, 11 (2010)

20. Arnlind, J., Makhlouf, A. Silvestrov, S.: Construction of n-Lie algebras and n-ary Hom-
Nambu-Lie algebras. J. Math. Phys. 52(12), 123502, 13 (2011)

21. Ataguema, H., Makhlouf, A., Silvestrov, S.: Generalization of n-ary Nambu algebras and
beyond. J. Math. Phys. 50, 083501 (2009)

22. Bakayoko, I.: Laplacian of Hom-Lie quasi-bialgebras. Int. J. Algebra 8(15), 713–727 (2014)
23. Bakayoko, I.: L-modules, L-comodules and Hom-Lie quasi-bialgebras. African Diaspora. J.

Math. 17, 49–64 (2014)
24. Bakayoko, I.: Modules over color Hom-Poisson algebras, J. Gen. Lie Theory Appl. 8(1),

1000212, 1–6 (2014)
25. Bakayoko, I.: Hom-post-Lie modules, O-operator and some functors. arXiv:1610.02845

[math.RA] (2016)
26. Bakayoko, I., Bangoura, M.: Left-Hom-symmetric and Hom-Poisson algebras. Konuralp J.

Math. 3(2), 42–53 (2015)
27. Bakayoko, I., Diallo, O. W.: Some generalized Hom-algebra structures. J. Gen. Lie Theory

Appl. 9(1) 1000226, 1–7, (2015)
28. Bakayoko, I., Silvestrov, S.: Hom-left-symmetric color dialgebras, Hom-tridendriform color

algebras and Yau’s twisting generalizations. Afr. Mat. 32, 941–958 (2021). arXiv:1912.01441
[math.RA]

29. Bakayoko, I., Silvestrov, S.: Multiplicative n-Hom-Lie color algebras. In: Silvestrov, S.,
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Chapter 8
Spectral Analysis of Equations over
Quaternions

Ilwoo Cho and Palle E. T. Jorgensen

Abstract In this paper, we study how to solve certain equations on the setH of all
quaternions. By using spectral analytic representations on H, monomial equations,
some quadratic equations, and linear equations onH are considered.
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8.1 Introduction

In this paper, we study how to solve certain equations on the set of quaternions. In
particular, we are interested in monomial equations, quadratic equations with real
coefficients, and linear equations. Let

C =
{
x + yi : x, y ∈ R, i = √−1

}

be the set of all complex numbers, where R is the set of all real numbers.
The main purposes of this paper are (i) to study a representation of the set

H =
⎧
⎨
⎩x + yi + u j + vk

∣∣∣∣∣∣
x, y, u, v ∈ R

i2 = j2 = k2 = −1,
i jk = −1
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of all quaternions (or quaternion numbers) realized on the 2-dimensional com-
plex space C × C (ii) to consider spectral properties of realizations [q] ∈ M2(C) of
quaternions q ∈ C, (iii) to investigate how to solve some equations by using spectral
properties (ii) on C.

While quaternions are part of algebra, their applications are diverse, covering
a number of neighboring areas, usually not considered as a part of algebra; e.g.,
analysis, spectral theory, geometry, and quantum physics. Our present focus has this
in mind: (I) The use od quaternions in geometry and robotics (e.g., algorithms for
iteration of systems of rotations, see Sect. 8.3); (II) their use in quantum systems
of spin observables (see Sect. 8.4); and (III) how to solve some algebraic problems
(see Sects. 8.5, 8.6 and 8.7). Our present purpose is to investigate a new spectral
transform which will serve to link the algebra of quaternions to these applications.
We shall also make use of certain compact Lie groups and their algebras, as tools in
this endeavor.

8.1.1 Motivation

The study of the quaternionsH is important not only in pure mathematics (e.g., [1, 2,
13, 14, 20]), but also in applied mathematics (e.g., [7, 23]). In particular, algebra on
H is considered in e.g., [24]; analysis on H is studied in e.g., [15, 21]; and physics
on H is observed in e.g., [5, 10]. Also, the matrices over the quaternions H have
been studied (e.g., [8, 9, 18, 21]); and the eigenvalue problems on such matrices
form an interesting branch of linear, or multilinear algebra (e.g., [1, 2, 16, 17, 19]).

Motivated by a representation ofH, introduced in [24], we studied eigenvalues of
quaternions by regarding each quaternion as a (2 × 2)-matrix over C and classifiedH
by such eigenvalues in [6]. And such classifications are characterized algebraically
there. By applying the main results of [6], we here consider how to solve certain
equations on H.

8.1.2 Overview

In Sects. 8.2, 8.3 and 8.4, an algebraic representation
(
C2, π

)
of the quaternions

H is introduced, and the spectral analysis of the realizations of quaternions is re-
considered (Also, see [6]), for the self-containedness of the paper.

In Sect. 8.5, by applying the main results of previous sections, we studymonomial
equations on H. The solutions of those equations are characterized.

The solutions of certain quadratic equations onH are characterized in Sect. 8.6.
In particular, we are interested in the cases where given quadratic functions have
R-coefficients.

Finally, in Sect. 8.6, the solutions of linear equations onH are formulated in terms
of the representation of H.
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8.2 Preliminaries

In this section, we study a representation of the quaternions H. In particular, we
view each quaternion q ∈ H as a (2 × 2)-matrix [q] ∈ M2(C) acting on the usual
2-dimensional space C2 (e.g., see [6, 24]).

8.2.1 The QuaternionsH

Let a and b be complex numbers,

a = x + yi and b = u + vi ∈ C,

where x, y, u, v ∈ R, and i = √−1 in C.
From the complex numbers a, b ∈ C, the corresponding quaternion q ∈ H is

canonically constructed by

q = a + bj = (x + yi) + (u + vi) j
= x + yi + u j + vi j
= x + yi + u j + vk,

inH, where
i2 = j2 = k2 = i jk = −1, (8.1)

satisfying
i j = k in H.

This set H has a well-defined addition (+), and multiplication (·); for any

ql = al + bl j ∈ H,with al , bl ∈ C,

(in the sense of (8.1)) for l = 1, 2, one has

q1 + q2 = (a1 + a2) + (b1 + b2) j,

and
q1q2 = (a1a2 − b1b2) + (a1b2 + a2b1) j (8.2)

inH, where z are the conjugates of z ∈ C.
Remark that, different from C, the multiplication (·) is noncommutative on H,

since
q1q2 = (a1a2 − b1b2) + (a1b2 + a2b1) j



150 I. Cho and P. E. T. Jorgensen

and
q2q1 = (a2a1 − b2b1) + (a2b1 + a1b2) j,

by (8.2), and hence,
q1q2 �= q2q1 (8.3)

inH, in general.

Remark 1 The quaternionsH is a “noncommutative” field algebraically by (8.3). A
noncommutative field (F, +, ·) is an algebraic structure satisfying that: the algebraic
pair (F, +) forms an abelian group; and the pair (F×, ·) forms a “non-abelian,” or
“noncommutative” group, where F× = F \ {0F }, where 0F is the (+)-identity of
(F, +); and (+) and (·) are left-and-right distributed.
If q ∈ H is a quaternion (8.1), then one can define the quaternion-conjugate q ∈ H

by

q = a − bj = (x − yi) − (u + vi) j
= x − yi − ui − vi.

(8.4)

So, one has that
qq = (|a|2 + |b|2) + (−ab + ab

)
j

= |a|2 + |b|2 ,

= |x |2 + |y|2 + ∣∣u2∣∣ + |v|2 ,

and
qq = (|a|2 + |b|2) + (

ab − ab
)
j

= |a|2 + |b|2
= |x |2 + |y|2 + |u|2 + |v|2 ,

(8.5)

by (8.2) and (8.4), where |.| in the second equalities of (8.5) is themodulus on C, and
|.| in the third equalities of (8.5) is the absolute value on R. i.e.,

qq = |a|2 + |b|2 = qq (8.6)

inH, ∀q ∈ H.
By (8.6), one can define the quaternion-modulus ‖.‖ on H by

‖q‖ = √
qq, (8.7)

for all q ∈ H.
The quaternion-modulus ‖.‖ of (8.7) is a well-defined norm onH by (8.6).

If a quaternionq of (8.1) is nonzero, i.e.,q �= 0 inH, then the quaternion-reciprocal
q−1 of q
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q−1 = 1
q = q

qq = a−bj
|a|2+|b|2

=
(

a
|a|2+|b|2

)
+

(
−b

|a|2+|b|2
)
j

(8.8)

is well-defined inH, by (8.6) and (8.7).
By (8.2) and (8.8), one can define the quaternion fractions

q1
q2

= q1

(
1

q2

)
= q1q

−1
2 inH,

whenever q2 �= 0 inH.

8.2.2 A Representation
(
C2, π

)
of H

In this section, we consider a representation of the quaternionsH, introduced in [24],
realized on the 2-dimensional space C2 over C. As in (8.1), let’s view each quaternion
q ∈ H as

q = a + bj inH with a, b ∈ C.

Define a morphism
π : H → M2 (C)

by

π(q) = π (a + bj =)

(
a −b
b a

)
, (8.9)

where a = x − yi and b = u − vi are the complex-conjugates of a and b in C,
respectively, and M2(C) is the matricial ring of all (2 × 2)-matrices over C.

This morphism π of (8.9) satisfies that

π (q1 + q2) = π(q1) + π(q2),

and
π (q1q2) = π(q1)π(q2), (8.10)

for all q1, q2 ∈ H, by (8.2). This relation (8.10) shows that the morphism π of
(8.9) is a well-defined ring-homomorphism. i.e., a noncommutative field H is ring-
homomorphic to the matricial ring M2(C).

It is easy to check that the quaternion-conjugate q of q ∈ H satisfies that
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π (q) = π (a − bj) =
(

a b
−b a

)

=
(
a −b
b a

)∗
= π(q)∗,

(8.11)

in M2(C), by (8.4), where A∗ are the adjoints (or the conjugate-transposes) of A ∈
M2(C). It shows that the morphism π of (8.9) covers the quaternion-conjugacy (8.4)
by (8.11). Furthermore, one can get that

det (π(q)) = det

(
a −b
b a

)
= |a|2 + |b|2 ,

and hence, one can have
‖q‖ = √

det (π(q)), (8.12)

for all q ∈H, by (8.6) and (8.7). The relation (8.12) says that the quaternion-modulus
‖.‖ of (8.7) is characterized by the determinant on M2(C).

Note that, by the very definition (8.9), π is injective. Indeed,

π(q1) = π(q2) ⇐⇒ π(q1) − π(q2) = O2,

⇐⇒
π(q1 − q2) = O2, by (8.10),

⇐⇒

q1 − q2 = 0, (8.13)

where O2 is the zero matrix of M2(C).

Proposition 1 The pair
(
C2, π

)
is a representation ofH.

Proof It is sufficient to prove that themorphismπ of (8.9) is awell-definedoperation-
preserving homomorphism fromH into M2(C). But it is shown by (8.10) and (8.11).
Moreover, by (8.12), it preserves the norm property ofHwith respect to the determi-
nant onM2(C), too. In other words,π is a bounded (or continuous) action ofH acting
on C2. Therefore, the morphism π is a well-defined noncommutative-field-action of
H acting on C2, equivalently, the pair (C2, π) is a representation of H.

From below, for convenience, we denote the realization π(q) of a quaternion
q ∈ H by [q]. Let’s define a subset H2 of M2(C) by the set of all realizations ofH.
i.e.,

H2
de f= {[q] ∈ M2 (C) : q ∈ H} = π (H) (8.14)

By (8.9), (8.10) and (8.11), one can realize that π is a ring-homomorphism from
H toH2. Moreover, they are isomorphic as noncommutative fields by (8.13).
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Theorem 1 The quaternions H and the subset H2 of (8.14) are isomorphic non-
commutative fields. i.e.,

H
NF= H2. (8.15)

where “
NF=” means “being noncommutative-field-isomorphic.”

Proof Take the action π of (8.9) acting on C2. By the injectivity (8.13), two sets
H and H2 are bijective (or equipotent), by (8.14). i.e., π : H → H2 is a bijection.
Moreover, π is a well-defined ring-homomorphism fromH ontoH2, by (8.10). i.e.,
π is a noncommutative-field-isomorphism from H onto H2.

The above isomorphism theorem (8.15) illustrates that the quaternions H is
regarded as a noncommutative field H2, embedded in M2(C). Remark that if [q]
∈ H2, for q ∈ H, and if q �= 0, then

det ([q]) = |a|2 + |b|2 �= 0,

if and only if [q] is invertible in M2(C), implying that all nonzero realizations ofH2

are automatically invertible. It is easily checked that

[q]−1 = [q−1], (8.16)

inH2, by (8.8).

8.3 Quaternion-Spectral Forms

LetH2 be the noncommutative field (8.14), isomorphic to the quaternionsH, in the
matricial ring M2(C). In this section, we regard each quaternion q ∈ H as a (2 × 2)-
matrix [q] ∈ H2 by (8.15), and study spectral analysis on H2 (and hence, that on
H).

8.3.1 Quaternion-Spectral Forms ofH

In this section, by regarding the realizations [q] ∈ H2 of quaternions q ∈ H as
(2 × 2)-matrices in M2(C), the spectra spec ([q]) of [q] are studied canonically. In
the long run, the Jordan canonical forms of [q] are formulated.

First, suppose that
a = x + 0i, and b = 0 in C,
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i.e., the corresponding quaternion q = a + bj ∈ H is identified with the real number
q = x in R. Then, by the noncommutative-field-action π of (8.9), one has that

π(q) = [q] =
(
x 0
0 x

)
= x I2 (8.17)

where I2 is the identity matrix of M2(C).

Lemma 1 Let a = x + 0i, and b = 0 in C, and q = a + bj = x in H. Then the
spectrum spec ([q]) of the realization [q] ∈ H2 is the set

spec ([q]) = {x} = {q} (8.18)

Proof By (8.17), the realization [q] ∈ H2 of q ∈ H is the diagonal matrix x I2 in
M2(C). Therefore,

spec ([q]) = {x} in C.

So, the relation (8.18) holds.

Now, assume that

a = x + yi with y �= 0, and b = 0 in C,

and q = a + bj = a + 0 j ∈ H is the corresponding quaternion. Then the realization
[q] ∈ H2 is determined to be

[q] =
(
a 0
0 a

)
=

(
x + yi 0
0 x − yi

)
, (8.19)

inH2.

Lemma 2 Let a = x + yi , with y �= 0, and b = 0 in C and q = a + bj ∈ H. If [q]
∈ H2 is the realization of q, then its spectrum satisfies

spec ([q]) = {a, a} = {x + yi, x − yi} (8.20)

Proof By (8.19), the realization [q] is a diagonal matrix in M2(C), and hence, a and
a are the distinct eigenvalues of [q] in C. Thus, the spectrum (8.20) is obtained.

Now, suppose q = a + bj ∈ H is a quaternion (8.17), with

b �= 0 ⇐⇒ b ∈ C× = C \ {0}, (8.21)

and let

[q] =
(
a −b
b a

)
=

(
x + yi −u − vi
u − vi x − yi

)
∈ H2
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be the realization of q. Observe that: for z ∈ C,

det ([q] − z I2) = det

((
a −b
b a

)
−

(
z 0
0 z

))

= det

((
a − z −b
b a − z

))
= (a − z)(a − z) − (−bb

)

= z2 − (a + a) z + (|a|2 + |b|2), i.e.,

det ([q] − z I2) = z2 − 2xz + (
x2 + y2 + u2 + v2

)
. (8.22)

Consider the equation,
det ([q] − z I2) = 0,

⇐⇒
z2 − 2xz + (

x2 + y2 + u2 + v2
) = 0, (8.23)

by (8.22). Then (8.23) has its solutions

z =
2x ±

√
(−2x)2 − 4

(
x2 + y2 + u2 + v2

)

2
,

⇐⇒
z = 2x ± √

4x2 − 4x2 − 4y2 − 4u2 − 4v2

2
,

⇐⇒
z = x ± i

√
y2 + u2 + v2. (8.24)

Lemma 3 Let q = a + bj ∈ H be a quaternion (8.17) with b ∈ C×, realized to be
[q] ∈ H2. Then the spectrum spec ([q]) of [q] is the subset,

spec ([q]) = {λ, λ} of C,

where
λ = x + i

√
y2 + u2 + v2. (8.25)

Proof Under hypothesis, the characteristic polynomial of the realization [q] is iden-
tical to the quadratic function (8.22), providing (8.23). Thus one can get the eigen-
values

λ = x + i
√
y2 + u2 + v2,

and
λ = x − i

√
y2 + u2 + v2,

in C, by (8.24). So, the set-equality (8.25) holds.
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By (8.25), we obtain the following result.

Corollary 1 Let [q]∈H2 be the realizationof a quaternionq ∈H of (8.17) satisfying
the condition (8.21). Then it has its Jordan canonical form,

J ([q]) =
(

λ 0
0 λ

)
“in H2,”

with
λ = x + i

√
y2 + u2 + v2. (8.26)

Proof By the condition (8.21) that b ∈ C× the quantity

λ = x + i
√
y2 + u2 + v2 ∈ C

satisfies
y2 + u2 + v2 �= 0 in R ⇐⇒ Im (λ) �= 0 in C,

where Im(t) are the imaginary parts of t ∈ C.
So, λ �= λ in C. Thus, the Jordan canonical form

J ([q]) =
(

λ 0
0 λ

)
=

⎛
⎝
x + i

√
y2 + u2 + v2 0

0 x − i
√
y2 + u2 + v2

⎞
⎠

of [q] is obtained “in M2(C),” by (8.25).
It implies that

J ([q]) =
(

λ 0
0 λ

)
“in H2,”

by (8.14).

By the above results, the following theorem is obtained.

Theorem 2 Let q = x + yi + u j + vk ∈ H be a quaternion with x, y, u, v ∈ R,
with its realization [q] ∈H2. If either u �= 0, or v �= 0 inR, then the Jordan canonical
form J ([q]) is

J ([q]) =
(

λ 0
0 λ

)
“in H2,”

with
λ = x + i

√
y2 + u2 + v2. (8.27)

Proof The formula (8.27) for J ([q]) is obtained in M2(C) by (8.25) and (8.26). And
this resulted matrix J ([q]) is contained inH2 by (8.14).
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Motivated by (8.27), one can define Jordan-canonical-form-like matrices of H2,

by (8.18), (8.20) and (8.25),

Definition 1 Let q = x + yi + u j + vk ∈ H be a quaternion with x, y, u, v ∈ R,
realized to be [q] ∈ H2. Then the quaternion-spectral form (in short, the q-spectral
form) of q is defined to be a matrix q of H2,

q
de f=

⎧⎨
⎩

[q] if u = 0 = v in R

J ([q]) if either u �= 0, or v �= 0 in R,

(8.28)

where J ([q]) is the Jordan canonical form (8.27).

For example, if −3, 1 + i ∈ H, then the q-spectral forms of −3 and 1 + i are

−3 = [−3] =
(−3 0

0 −3

)
,

respectively

1 + i = [1 + i] =
(
1 + i 0
0 1 − i

)
,

inH2, by (8.20) and (8.28); while, if 1 − 2 j ∈ H,

1 − 2j =
(
1 + 2i 0
0 1 − 2i

)
,

inH2, by (8.27) and (8.28).

8.3.2 Similarity on q-Spectral Forms in H2

In this section, we consider the similarity on q-spectral forms “in H2.” Throughout
this section, let

a = x + yi, b = u + vi ∈ C, with x, y, u, v ∈ R,

and
q = a + bj = x + yi + u j + vk. (8.29)

In Sect. 8.3.1, we showed that every quaternion q ∈ H of (8.29), realized to be
[q] ∈ H2, has its q-spectral form,
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q =
⎧⎨
⎩

[q] if b = 0

J ([q]) if b �= 0,
(8.30)

of (8.28) inH2, where J ([q]) is the Jordan canonical form (8.27).
Suppose b ∈ C× in (8.29). For t ∈ C×, define a (2 × 2)-matrix Qt (q) by

Qt (q) =
⎛
⎝ t − t

(
a−λ
b

)

t
(
a−λ
b

)
t

⎞
⎠ , (8.31)

in M2(C).
By the assumption that t, b ∈ C×, the nonzero matrix Qt (q) of (8.31) is well-

defined in M2(C). Note that this matrix Qt (q) is invertible, since

det (Qt (q)) = |t |2
(
1 +

∣∣∣∣
a − λ

b

∣∣∣∣
2
)

�= 0 (8.32)

by the condition that t, b ∈ C×. Observe now that
(
a −b
b a

)⎛
⎝ t −(

a−λ
b

)
t

(
a−λ
b

)
t t

⎞
⎠

=

⎛
⎜⎜⎝
at − (a − λ)t −a

(
a−λ

b

)
t − bt

a
(
a−λ

b

)
t + bt at − (a − λ)t

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

λt
(

λa−|a|2
b

)
t − bt

(
λa−|a|2

b

)
t − bt λt

⎞
⎟⎟⎠ , (8.33)

and ⎛
⎝ t −(

a−λ
b

)
t

(
a−λ
b

)
t t

⎞
⎠

(
λ 0
0 λ

)

=

⎛
⎜⎜⎝

λt −
(
aλ−λ2

b

)
t

(
aλ−λ2

b

)
t λt

⎞
⎟⎟⎠ . (8.34)

In the computations (8.33) and (8.34), let’s compare their (2, 1)-entries:
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(
λa−|a|2

b

)
t − bt = t

(
(x+yi)

(
x−i

√
y2+u2+v2

)
−(x2+y2)

u−vi − (u + vi)

)

= t

(
−i x

√
y2+u2+v2+xyi+y

√
y2+u2+v2−y2

u−vi − u2+v2

u−vi

)

= t

⎛
⎝
(
y
√
y2 + u2 + v2 − y2 − u2 − v2

)
+ i

(
xy − x

√
y2 + u2 + v2 + xy

)

u − vi

⎞
⎠ ,

(8.35)
respectively

−
(
aλ−λ2

b

)
t = t

(
−aλ+λ2

b

)

= t

((
x−i

√
y2+u2+v2

)2−(x−yi)
(
x−i

√
y2+u2+v2

)

u−vi

)

= t

(
x2−2xi

√
y2+u2+v2−(y2+u2+v2)−

(
x2−i x

√
y2+u2+v2−xyi−y

√
y2+u2+v2

)

u−vi

)

= t

⎛
⎝
(
y
√
y2 + u2 + v2 − y2 − u2 − v2

)
+ i

(
xy − x

√
y2 + u2 + v2 + xy

)

u − vi

⎞
⎠ .

(8.36)
By (8.35) and (8.36), the (2,1)-entry of [q]Qt (q), and that of Qt (q)q are identical,

and hence,

[q]Qt (q) = Qt (q)q, (8.37)

in M2(C) by (8.33) and (8.34). Note that the (2 × 2)-matrix Qt (q) of (8.31) is con-
tained in the noncommutative field H2 by (8.14) (which implies the invertibility
(8.32) in M2(C) automatically), whenever t, b ∈ C×.

Theorem 3 Let q = a + bj ∈ H be a quaternion (8.29) with its realization [q] ∈
H2, and let q ∈ H2 be the q-spectral form of q. If b �= 0 in C, then

q = Qt (q)−1[q]Qt (q) ⇐⇒ [q] = Qt (q)qQt (q)−1

inH2, where

Qt (q) =
⎛
⎝ t −(

a−λ
b

)
t

(
a−λ
b

)
t t

⎞
⎠ ∈ H2, (8.38)

for all t ∈ C×. Meanwhile, if b = 0 in C, then

q = [w]−1[q][w], (8.39)
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where

w = w + 0 j ∈ H, (8.40)

Proof First, suppose that b = 0 in C, and hence, q = a + 0 j inH. Then, by (8.30),
the quaternion q has its q-spectral form,

q =
(
a 0
0 a

)
= [q] inH2.

Suppose w ∈ C× and w = w + 0 j ∈ H, realized to be [w] ∈ H2. Then

q = [q] =
(
a 0
0 a

)
=

( wa
w 0

0
(
wa
w

)
)

=
(
w 0
0 w

)(
a 0
0 a

)(
w−1 0
0 w−1

)

= [w][q][w]−1 = [w] q [w]−1,

inH2. Therefore, the relation (8.39) holds true, whenever w ∈ H are in the sense of
(8.39)′.

Assume now that b �= 0 in C. Then, for any t ∈ C×, the corresponding matrices
Qt (q) of (8.31) satisfy

Qt (q)q = [q]Qt (q),

by (8.37). Thus, by the invertibility (8.32) of Qt (q),

Qt (q)−1 (Qt (q)q) = Qt (q)−1[q]Qt (q) inH2,

if and only if
q = Qt (q)−1[q]Qt (q). (8.41)

Therefore, the relation (8.38) holds by (8.41), whenever b �= 0 in C.

Remark 2 Let z, a ∈ C and b ∈ C×, and let q = a + bj ∈ H. Observe that if we
regard z ∈ C as a quaternion z + 0 j ∈ H, then

[z][q] =
(
z 0
0 z

)(
a −b
b a

)
=

(
az −bz
bz az

)
,

and

[q][z] =
(
a −b
b a

)(
z 0
0 z

)
=

(
az −bz
bz az

)
,

inH2. i.e.,
[z][q] �= [q][z] ⇐⇒ [z] �= [q][z][q]−1 inH2,
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in general. However, if z ∈ R× = R \ {0} inH, then

[z] = [q][z][q]−1 inH2,

because all diagonal matrices with “real” entries are commuting with all matrices of
M2(C). This consideration explains not only that the relations (8.38) and (8.39) are
meaningful.

The above theorem shows that, for a quaternion q ∈ H with its q-spectral form q ∈
H2, there exists at least one nonzero matrix A ∈ H2, such that

q = A−1[q]A, or, [q] = AqA−1, (8.42)

inH2.

Corollary 2 Let q = a + bj ∈ H be a quaternion (8.29) with b �= 0 in C, and let

λ = x + i
√
y2 + u2 + v2 ∈ C inH.

Then there exist

yt = t +
(

− t

(
a − λ

b

))
j ∈ H,

for any t ∈ C×, such that
q = ytλy

−1
t . (8.43)

Proof Recall first that the noncommutative field H2 and the quaternions H are
isomorphic by (8.15). So, amatrix Qt (q)∈H2 of (8.32) is assigned to be a quaternion

yt = t +
(

− t

(
a − λ

b

))
j ∈ H,

equivalently,
[yt ] = Qt (q) inH2, for all t ∈ C×.

In a similar manner, the q-spectral form q is assigned to be a quaternion

λ = λ + 0 j ∈ H ⇐⇒ [λ] = q inH2.

So, the formula (8.38) satisfies that

[q] = [yt ][λ][yt ]−1 inH2, by (8.16),

if and only if
[q] = [ytλy−1

t ] inH2 by (8.10),
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if and only if
q = ytλy

−1
t inH by (8.15).

Therefore, the relation (8.43) holds true.

The above corollary shows that the relation (8.38) on the noncommutative field
H2 is equivalent to the relation (8.43) on the quaternionsH. It also shows the relation
between a quaternion q ∈ H of (8.29) and an eigenvalue λ ∈ C of the realization
[q] of q. i.e., for any q ∈ H with its realization [q] ∈ H2, there exists at least one
nonzero q0 ∈ H, such that

q = q0 λ q−1
0 inH,

where spec ([q]) = {λ, λ} in C, as in (8.42).

Definition 2 Let q ∈ H be a quaternion with its realization [q] ∈ H2, and let q =
[λ] ∈ H2 be the q-spectral form in H2. From below, the eigenvalue λ ∈ C of [q] is
called the quaternion-spectral value (in short, q-spectral value) of q.

The following example summarizes the above results.

Example 1 Let q1 = 2x + i − j + 3k ∈ H. Then the realization [q1] ∈ H2 of q1
has its spectrum

spec ([q1]) = {λ, λ},

where
λ = 2 + i

√
12 + (−1)2 + 32 = 2 + √

11i ∈ C

is the q-spectral value of q1, providing the q-spectral form,

q1 =
(
2 + √

11i 0
0 2 − √

11i

)
∈ H2.

So, if we take 1 ∈ C× and the corresponding matrix Q1(q),

Q1(q1) =

⎛
⎜⎜⎝

1 −
(

(2+i)−(2+√
11 i)

−1+3i

)

(
(2+i)−(2+√

11 i)
−1+3i

)
1

⎞
⎟⎟⎠ ∈ H2,

then
[q1] = Q1(q1)q1Q1(q1)

−1 inH2,

implying that
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q1 =
⎛
⎝1 +

(
(1 − √

11)i

−1 + 3i

)
j

⎞
⎠

(
2 + i

√
11

)⎛
⎝1 +

(
(1 − √

11)i

−1 + 3i

)
j

⎞
⎠

−1

,

inH.
Meanwhile, if q2 = 1 − 3i + 0 j + 0k ∈ H, then

spec ([q2]) = {1 − 3i, 1 + 3i},

satisfying

[q2] =
(
1 − 3i 0

0 1 + 3i

)
= q2,

where q2 is the q-spectral form of q2, inH2.

So, for any nonzero diagonal matrix D ∈ H2

[q2] = [q2]
(
DD−1

) = ([q2]D) D−1

= (D[q2]) D−1 = D[q2]D−1 = Dq2D−1,

implying that
q2 = z(1 − 3i)z−1 inH,

for all nonzero complex numbers z ∈ C× ⊂ H.

8.3.3 Quaternion-Spectral Equivalence

In this section, based on themain results of Sects. 8.3.1 and 8.3.2, we study q-spectral
values from the quaternions H. As before, we let an arbitrary fixed quaternion q ∈
H be in the sense of (8.29).

Let
q1 = −2 + i − j + 3k �= −2 − i + j − 3k = q2,

inH. Then these quaternions have their q-spectral values,

λ1 = −2 + i
√
12 + (−1)2 + 32 = −2 + √

11i,

and
λ2 = −2 + i

√
(−1)2 + 12 + (−3)2 = −2 + √

11i,

inC, respectively. So, these distinct quaternionsq1 andq2 have the identicalq-spectral
values,

λ1 = −2 + √
11i = λ2 in C.
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Motivated by this, let’s consider an equivalence relation on the quaternions H.
Define a relationR on H by

q1Rq2
de f⇐⇒ λ1 = λ2, (8.44)

where λl are the q-spectral values of ql , for l = 1, 2.
It is not difficult to check the relationR of (8.44) is indeed an equivalence relation

onH, because
qRq, for all q ∈ H;

and
q1Rq2 ⇐⇒ λ1 = λ2 ⇐⇒ λ2 = λ1 ⇐⇒ q2Rq1,

for all q1, q2 ∈ H; and

q1Rq2, and q2Rq3 ⇐⇒ λ1 = λ2 = λ3

⇐⇒
λ1 = λ3 ⇐⇒ q1Rq3,

for all q1, q2, q3 ∈ H, where λl are the q-spectral values of ql , for all l = 1, 2, 3.

Definition 3 The equivalence relation R of (8.44) is called the quaternion-spectral
equivalence relation (in short, the q-spectral relation) on H. And two q-spectral
equivalent quaternions q1 and q2 are said to be q-spectral related in H.

Let ql = al + bl j be q-spectral related quaternions in H with bl �= 0 in C, and let
λ ∈ C be the identical q-spectral value of ql , for l = 1, 2. For any t ∈ C×, there exists
yt,l ∈ H such that

ql = yt,lλy
−1
t,l , (8.45)

for all l = 1, 2, by (8.43). In particular,

yt,l = t +
(

− t

(
al − λ

bl

))
j ∈ H, (8.46)

for all l = 1, 2, by (8.38). So, one can have that
q2 = yt,2λy

−1
t,2 = yt,2

(
y−1
t,1 yt,1

)
λ
(
y−1
t,1 yt,1

)
y−1
t,2

by (8.45)
= (

yt,2y
−1
t,1

) (
yt,1λy

−1
t,1

) (
yt,1y

−1
t,2

)
by (8.15), i.e.,

q2 = (
yt,2y

−1
t,1

)
q1

(
yt,2y

−1
t,1

)−1
, (8.47)

inH. Equivalent to (8.47), one obtains that
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[q2] = (
Qt (q2)Qt (q1)

−1
) [q1]

(
Qt (q2)Qt (q1)

−1
)−1

,

inH2, where Qt (ql) are in the sense of (8.31), for l = 1, 2.
Now, assume that either b1 = 0, or b2 = 0 in C. Say b1 = 0, and b2 �= 0 in C.

Then, since q1 ∈ C inH, the q-spectral value λ = q1. So,

q2 = yt,2λy
−1
t,2 = yt,2q1yt,2.

If b1 = 0 = b2 in C, then

q1 = b1 = λ = b2 = q2 in C ⊂ H,

under hypothesis, generalized to be

q2 = yq1y
−1, for all nonzero y ∈ C×.

Recall that two matrices A1 and A2 are similar in a matricial ring Mn(C), for
n ∈ N, where N is the set of all natural numbers, if there exists an invertible matrix
U ∈ Mn(C), such that

A2 = U A1U
−1 in Mn(C).

Definition 4 Let ql ∈ H be quaternions realized to be [ql] ∈ H2, for l = 1, 2. The
realizations [q1] and [q2] are said to be similar “in H2,” if there exists a nonzero
matrix U ∈ H2, such that

[q2] = U [q1]U−1 (8.48)

“inH2.” By abusing notation, two quaternions q1 and q2 are said to be similar in
H, if their realizations [q1] and [q2] are similar in the sense of (8.48).

Remark that, sinceH2 is a noncommutative field (in M2(C)), ifU ∈ H2 is a nonzero
matrix, then it is automatically invertible by (8.32). So, the similarity on H2 (and
hence, the similarity onH) is determined by the similarity on M2(C) under restricted
conditions. In this sense, since the similarity on M2(C) is an equivalence relation,
the similarity on H2 (and hence, that on H) is an equivalence relation.

Theorem 4 Two quaternions q1 and q2 are q-spectral related, if and only if they are
similar in the sense of (8.48) inH. i.e., as equivalence relations,

R = similari t y. (8.49)

Proof (⇒) Suppose q1 and q2 are q-spectral related inH. Then, by (8.47), they are
similar inH.

(⇐) Supposeq1 andq2 are similar inH, equivalently, assume that their realizations
[q1] and [q2] are similar inH2. If λl are the q-spectral values of ql , then [ql] and [λl]
are similar in the sense of (8.48) in H2, too, for all l = 1, 2. So, since the similarity
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on H2 is an equivalence relation, the q-spectral forms [λ1] and [λ2] are similar in
H2. Since

[λl] =
(

λl 0
0 λl

)
∈ H2, for l = 1, 2,

the similarity of them guarantees that

[λ1] =
(

λ1 0
0 λ1

)
=

(
λ2 0
0 λ2

)
= [λ2],

by (8.48), and hence,
λ1 = λ = λ2 in C.

It means that λ ∈ C is the q-spectral value of both q1 and q2 in H. Therefore, if q1
and q2 are similar inH, then they are q-spectral related in H.

By (8.49), we will use the q-spectral relationR of (8.44) onH and the similarity
(8.48) on H, alternatively.

8.3.4 Quaternion-Spectral Mapping Theorem

In this section, we consider q-spectral values more in detail. Throughout this section,
we let

q = a + bj = x + yi + u j + vk ∈ H

be a quaternion (8.29), with its q-spectral value,

λ = x + i
√
y2 + u2 + v2, (if b �= 0),

or, λ = a (if b = 0) in C.
Now, let C[z] be the polynomial ring over C, i.e.,

C[z] = { f (z) : f is a polynomial in z over C}.

It is well-known that if A is a matrix in Mn(C), for n ∈ N, and if f ∈ C[z], then

spec ( f (A)) = f (spec(A)) , (8.50)

by the spectral mapping theorem, where the right-hand side of (8.50) means that

f (spec(A)) = { f (t) : t ∈ spec(A)}.

In the left-hand side of (8.50), a new matrix f (A) ∈ Mn(C) is
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ak A
k + ak−1A

k−1 + ... + a2A
2 + a1A + a0 In,

where In is the identity (n × n)-matrix of Mn(C), whenever

f (z) = akz
k + ak−1z

k−1 + ... + a2z
2 + a1z + a0 ∈ C[z].

More general to (8.50), if g is a continuous on C, then

spec (g(A)) = g (spec(A)) (8.51)

(e.g., [11, 12]). By (8.50) and (8.51), one can get that

spec ( f ([q])) = f (spec ([q])) , (8.52)

for all f ∈ C[z], for all q ∈ H, realized to be [q] ∈ H2, “in M2(C).”

Lemma 4 Let g be a continuous function on C, and let q ∈ H. Then, by regarding
the realization [q] ∈ H2 as a matrix of M2(C),

spec (g ([q])) = g (spec ([q])) . (8.53)

Proof The relation (8.53) is proven by (8.51) and (8.52).

Before proceeding, let’s define the subset Cr [z] of C[z] by

Cr [z] = ∞∪
N=0

{
N∑

n=0

anz
n ∈ C[z] : a0, a1, ..., aN ∈ R}. (8.54)

Theorem 5 Let q ∈ H be a quaternion (8.29) with its q-spectral value λ ∈ C. For
all f ∈ Cr [z], the quantity f (λ) is the q-spectral value of f (q), where Cr [z] is the
subset (8.54) of C[z], and

f (q) =
N∑

n=0

anq
n ∈ H,whenever f (z) =

N∑
n=0

anz
n ∈ C[z].

Proof Let b �= 0 in C, and let q = a + bj ∈ H be a quaternion (8.29) with its q-
spectral value λ ∈ C and let h(z) ∈ C[z]. If [q] ∈ H2 is the realization of q, then

spec (h ([q])) = {h(λ), h
(
λ
)} in C,

by (8.53). Note however that, for h(z) ∈ C[z],

h
(
λ
) �= h(λ) in C, in general.

(For instance, if h(z) = i z in C[z], then h(1 + i) = −1 − i �= 1 + i = h
(
1 + i

)
.)
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However, if f (z) = ∑N
n=0 anz

n ∈ Cr [z] with a0, a1, ..., aN ∈ R, then

f
(
λ
) = ∑N

n=0 an
(
λ
)n = ∑N

n=0 an
(
λn

)

= ∑N
n=0 (anλn) = ∑N

n=0 anλ
n = f (λ),

in C. It shows that, if f (z) ∈ Cr [z], then

spec ( f ([q])) = { f (λ), f
(
λ
)} = { f (λ), f (λ)},

in C, satisfying that
J ( f ([q])) = f (q) (8.55)

inH2, if and only if

the q-spectral value of f (q) = f (λ) in C ⊂ H,

where q is the q-spectral form of [q] inH2, in general.
It is easy to verify that if q = a + 0 j = a ∈ C in H, with its q-spectral value

λ = a in C, then

f (λ) = f (a) = f (a) = f (λ) in C,∀ f (z) ∈ Cr [z].

i.e., f (λ) is a q-spectral value of f (q), too.
Therefore, the statement (8.55) holds.

Remark that the statement (8.55) holds for the polynomials of Cr [z], not those of
C[z] (in general). Now, let R[x] be the polynomial ring over R, i.e.,

R[x] = ∞∪
N=0

{
N∑

n=0

anx
n : a0, a1, ..., aN ∈ R}. (8.56)

For any f (x) = ∑N
n=0 anx

n ∈ R[x], let’s understand f (z), or f (q) as

f (z) =
N∑

n=0

anz
n ∈ C,

respectively,

f (q) =
N∑

n=0

anq
n ∈ H,

for all z ∈ C, q ∈ H. Then, the above theorem can be re-stated as follows.
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Corollary 3 Let f (x) ∈ R[x], where R[x] is the polynomial ring (8.56). If q ∈ H

is a quaternion with its q-spectral value λ ∈ C, realized to be [q] ∈ H2, then

spec ( f ([q])) = { f (λ), f (λ)}. (8.57)

Proof Under hypothesis, the quantity f (λ) ∈ C is the q-spectral value of f (q) ∈ H,
by (8.55). Therefore, the set-equality (8.57) holds.

One may call the relation (8.57), the quaternion-spectral mapping theorem.

Theorem 6 Let q1 and q2 be q-spectral related in H with their q-spectral value
λ ∈ C. If f (x) ∈ R[x], then f (q1) and f (q2) are q-spectral related inH, with their
identical q-spectral value f (λ) ∈ C. Equivalently, if q1 and q2 are similar inH, then
f (q1) and f (q2) are similar in H, for all f (x) ∈ R[x].
Proof Let q1 and q2 be q-spectral related quaternions inH. Assume that λ ∈ C is the
q-spectral value of both q1 and q2.Then, for any f (x) ∈ R[x], the quantity f (λ) ∈ C

is the q-spectral value of both f (q1) and f (q2) by (8.57). Therefore, two quaternions
f (q1) and f (q2) are q-spectral related in H. By (8.49), the q-spectral relation and
the similarity are equivalent onH. So, if q1 and q2 are similar, then f (q1) and f (q2)
are similar inH, for all f (x) ∈ R[x].

8.3.5 The Quaternion-Spectralization σ

Motivated by the main results of Sects. 8.3.3 and 8.3.4, a certain function fromH to
C is considered here. Define a function,

σ : H → C (8.58)

by the map, assigning each quaternion to its q-spectral value.
For example,

σ (1 + 0i + 2 j − 3k) = 1 + √
02 + 22 + (−3)2 i

= 1 + √
13 i,

and
σ (−2 − i + 0 j + 0k) = −2 − i,

etc..

Definition 5 We call the function σ of (8.58), the quaternion-spectralization (in
short, the q-spectralization).

Let’s consider the range of the q-spectralization σ.
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Proposition 2 The q-spectralization σ is surjective fromH onto C. i.e.,

σ(H) = C. (8.59)

Proof Let σ be the q-spectralization (8.58), and let q = a + bj ∈ H be a quaternion
(8.29) with its q-spectral value λ ∈ C. First, assume that b = 0 in C, and hence,
q = a + 0 j ∈ C inH. Then the realization [q] ∈ H2 satisfies

[q] =
(
a 0
0 a

)
=

(
λ 0
0 λ

)
= q inH2,

where q is the q-spectral form of q. So, by (8.58),

σ(q) = σ(a + 0 j) = a = q. (8.60)

Now, let b �= 0 in C and q = a + bj ∈ H, where

a = x + yi, b = u + vi ∈ C.

Then
σ(q) = x + i

√
y2 + u2 + v2, (8.61)

in H+, by (8.27) and (8.58), where

H+ = {z ∈ C : Im(z) > 0} in C.

Thus, by (8.60) and (8.61), we have

σ(H) ⊆ (C ∪ H+) = C.

It is easy to check that, for any z ∈ C, there exists z + 0 j ∈ H, such that σ(z) = z,
as in (8.60). Therefore,

C ⊆ σ(H).

Therefore, σ(H) = C, implying the surjectivity (8.59).

8.4 Some Algebraic Structures onH

In this section, we consider structure theorem of a quotient structure of H under an
equivalence relationR induced by our q-spectralization.
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8.4.1 Classification ofH

Let R be the q-spectral relation (8.44) (which is the similarity (8.48)) on H. Since
R is an equivalence relation on H, for a quaternion q ∈ H, one can determine the
corresponding equivalence class,

qo denote= q/R de f= {w ∈ H : wRq}, (8.62)

by collecting all q-spectral related quaternions of q. Then one can define the quotient
set,

Ho denote= H/R de f= {qo : q ∈ H}, (8.63)

where qo ∈ Ho are the equivalence classes (8.62).
Remark that if σ : H → C is the q-spectralization (8.58), then the equivalence

class qo ∈ Ho of (8.62) satisfies that

qo = σ(q)o, (8.64)

inHo, since σ(q) = σ(q) + 0 j + 0k inH, and

σ (σ(q) + 0 j + 0k) = σ(q) (8.65)

in C, for all q ∈ H.

Theorem 7 Let Ho be the quotient set (8.63). Then Ho = C, set-theoretically.

Proof Let Ho be the quotient set (8.63). Then, by (8.59), (8.62), (8.64) and (8.65),
this set can be re-expressed by

Ho = {σ(q)o : q ∈ H} = {σ(q)o : σ(q) ∈ C},

i.e.,
Ho = {λo : λ ∈ C}, (8.66)

because qo
1 = qo

2 , if and only if σ(q1) = σ(q2), for q1, q2 ∈ H.
Define now a function F : Ho → C by

F(λo) = λ, for all λo ∈ Ho,

where λo are in the sense of (8.66).
It is not hard to check that this function is a bijection by (8.59) and (8.66). i.e., two

sets Ho and C are equipotent (or bijective). Thus, all equivalence classes λo ∈ Ho

are understood to be λ ∈ C, and vice versa. So, the set-equality,
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Ho = C

holds.

The above theorem shows that each C-number λ becomes a representative of all
quaternions q ∈ H satisfying σ(q) = λ. i.e., the quaternions H is classified by the
complex numbers C.

8.4.2 The QuaternionsH and the Lie Group SU2(C)

Independent from the set-theoretical classification considered in Sect. 8.4.1, we here
focus on the quaternion-multiplication (·) of (8.2), and an algebraic structure of H
up to (·). In particular, we are interested in the connections between H and the Lie
group SU2(C).

Define a subset SU2(C) of the matricial algebra M2(C) by

SU2(C)
de f= {g ∈ M2(C) : det(g) = 1, g∗ = g−1}, (8.67)

where g∗ are the matricial adjoints of g, where g−1 mean the matricial-inverses of
g. i.e., this subset SU2(C) of (8.67) consists of all unitary matrices g satisfying

g∗g = I2 =
(
1 0
0 1

)
= gg∗, and det(g) = 1.

Now, let g =
(
a b
c d

)
∈ SU2(C). Then, by definition, it satisfies that

det(g) = ad − bc = 1, (8.68)

and

g∗g =
(
a c
b d

)(
a b
c d

)

=
⎛
⎝

|a|2 + |c|2 ab + cd

ab + cd |b|2 + |d|2

⎞
⎠

=
(
1 0
0 1

)
=

⎛
⎝

|a|2 + |b|2 ac + bd

ac + bd |c|2 + |d|2

⎞
⎠

=
(
a b
c d

)(
a c
b d

)
= gg∗.
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So, for any g =
(
a b
c d

)
∈ SU2(C),

ad − bc = 1,

and
|a|2 + |c|2 = 1 = |b|2 + |d|2 ,

and
ac + bd = 0 = ac + bd = ac + bd, (8.69)

in C, by (8.68), if and only if

ad − bc = 1 = |a|2 + |c|2 = |b|2 + |d|2 ,

and
ac + bd = 0, (8.70)

by (8.69).

Suppose A =
(
x −y
y x

)
∈ M2(C), with

det (A) = |x |2 + |y|2 = 1. (8.71)

Then it automatically satisfies the conditions in (8.70), by letting

a = x, b = −y, c = y, and d = x in C.

i.e., such a matrix A ∈ M2(C) satisfying (8.71) is contained in SU2(C), satisfying
the conditions (8.70).

Assume now that A =
(
a b
c d

)
∈ M2(C) \ {O2} satisfies

det(A) = ad − bc = 1. (8.72)

Under (8.72), suppose either

c �= −b, or d �= a in C.

Then, one can get that

A∗A =
⎛
⎝

|a|2 + |c|2 ab + cd

ab + cd |b|2 + |d|2

⎞
⎠ �= I2,

since
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|a|2 + |c|2 �= |b|2 + |d|2 in C,

respectively,
ab + cd �= 0, or ab + cd �= 0.

Similarly, under (8.72),
AA∗ �= I2 in M2(C),

whenever either c �= −b, or d �= a in C.

Proposition 3 The subset SU2(C) of M2(C), in the sense of (8.67), is identical to
the subset,

{(
a −b
b a

)
: a, b ∈ C, |a|2 + |b|2 = 1

}
, (8.73)

set-theoretically.

Proof By the discussions in the very above paragraphs, the subset SU2(C) of (8.67)
is identical to the subset (8.73) of M2(C). Indeed, as we have seen, if we denote the
set (8.73) by S, then the following set-inclusion,

S ⊆ SU2(C),

holds automatically.
Meanwhile, if g ∈ SU2(C) is not of the form as an element of S, then it is not

contained in SU2(C),which contradicts the assumption g is taken from SU2(C). i.e.,

SU2(C) ⊆ S.

Therefore, set-theoretically, two subsets SU2(C) and S are identical in M2(C).

By the above proposition, without loss of generality, one can let

SU2(C) =
{(

a −b
b a

)
: a, b ∈ C, |a|2 + |b|2 = 1

}
,

by (8.73).
It motivates our structure-characterization of the quaternionsH. It is not difficult

to check that the subset SU2(C) forms a group under the matricial multiplication.
Indeed, for all g1, g2 ∈ SU2(C),

g1g2 ∈ SU2(C),

since
det (g1g2) = det (g1) det (g2) = 1,
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and
(g1g2)

∗ (g1g2) = g∗
2g

∗
1g1g2 = g∗

2 I2g2 = I2,

and similarly,
(g1g2) (g1g2)

∗ = I2 in SU2(C);

and the inherited matricial multiplication on SU2(C) is associative; and it has its
identity I2 ∈ SU2(C); finally, since all elements of SU2(C) are unitary in the sense
that:

g∗g = I2 = gg∗ ⇐⇒ g∗ = g−1,

in SU2(C), the multiplication satisfies the inverse-property, implying that SU2(C),

equipped with multiplication, forms a group. Actually, it is a typical example of Lie
groups (e.g., [3, 4]).

Define now a new group S2 by

S2
de f= SU2(C) · R×

+ = {√
γ · g : γ ∈ R×

+, g ∈ SU2(C)
}
, (8.74)

where
R×

+ = {r ∈ R : γ > 0} .

If A ∈ S2, then there exist γ ∈ R×
+, and

g =
(
a −b
b a

)
∈ SU2(C), with |a|2 + |b|2 = 1,

such that

A =
(√

γ a −√
γ b√

γ b
√

γ a

)
denote=

(
z −w
w z

)
in S2,

satisfying
det (A) = |z|2 + |w|2 = γ · 1 > 0.

Now, let’s understand the quaternionsH as its isomorphic noncommutative field,

H2 =
{
[q] =

(
a −b
b a

)
: q = a + bj ∈ H

}

of (8.14), and consider the corresponding noncommutative multiplicative group,

H×
2

denote= (H×
2 , ·) ,

where
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H×
2 = {[q] ∈ H2 : q �= 0 ∈ H}, (8.75)

and (·) is the multiplication (8.10) on H2.

Theorem 8 Let S2 be the group (8.74), and let H×
2 be the group (8.75) induced by

the quaternions H. Then

S2
Group= H×

2 , (8.76)

where “
Group= ” means “being group-isomorphic to.”

Proof Let H×
2 be the group (8.75), and

[q] =
(
a −b
b a

)
∈ H×

2

be a realization of an arbitrary quaternion,

q = a + bj ∈ H.

Take a quantity,
γq = det ([q]) = |a|2 + |b|2 = ‖q‖ in R×

+.

Since [q] �= O2 inH2, indeed, the above quantity is contained inR
×
+. So, the element

[q] ∈ H×
2 is regarded as a matrix,

[q] =

⎛
⎜⎜⎝

γq

(
a
γq

)
γq

(
−b
γq

)

γq

(
b
γq

)
γq

(
a
γq

)

⎞
⎟⎟⎠

= γq

⎛
⎜⎜⎝

(
a
γq

) (
−b
γq

)

(
b
γq

) (
a
γq

)

⎞
⎟⎟⎠ = γq

[(
a
γq

)
+

(
b
γq

)
j
]
,

where
q

γq
=

(
a

γq

)
+

(
b

γq

)
j = 1

γq
(a + bj) = 1

γq
· q ∈ H. (8.77)

Observe that

det

([
q

γq

])
= 1

γq
det ([q]) = γq

γq
= 1,

and hence, [
q

γq

]
∈ SU2(C). (8.78)
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By (8.77) and (8.78), one can conclude that, for any [q] ∈ H×
2 , there exists a unique

[
q

det(q)

]
∈ SU2(C),

such the

[q] = det(q)

[
q

det(q)

]
. (8.79)

By (8.79), we define a morphism,

� : H×
2 → S2 = SU2(C) · R×

+,

by

�([q]) = (det(q))

[
q

det(q)

]
(8.80)

in S2, for all [q] ∈ H×
2 (or, for all q ∈ H× = H\ {0}).

Then, by (8.73) and (8.74), this morphism � of (8.80) is bijective. Moreover, it
satisfies that

�([q1][q2]) = �([q1q2])
= (det ([q1q2]))

[
q1q2

det([q1q2])
]

= (det ([q1][q2]))
[

q1q2
det([q1][q2])

]

= (det ([q1]) det ([q2]))
[

q1q2
det([q1]) det([q2])

]

=
(
det([q1])
det([q1])

) (
det([q2])
det([q2])

)
[q1q2]

=
(
det([q1])
det([q1]) [q1]

) (
det([q2])
det([q2]) [q2]

)
,

since π is a well-defined noncommutative-field-isomorphism fromH ontoH2, i.e.,

�([q1][q2]) = (� ([q1])) (� ([q2])) , (8.81)

in S2, for all [q1], [q2] ∈ H×
2 .

Therefore, the bijection � of (8.80) is a group-homomorphism by (8.81), and
hence, it is a group-isomorphism from H×

2 onto S2. i.e., the relation (8.76) holds
true.

By the above theorem, the following corollary is immediately obtained.

Corollary 4 Let H× = (
H×, ·) be a noncommutative multiplicative group of non-

zero quaternions. Then it is group-isomorphic to the group S2 of (8.74).

Proof Since the multiplicative group H× is isomorphic to H×
2 , it is isomorphic to

the group S2 by (8.76).
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The above theorem and corollary provide a connection between the quaternionic
group H× and the Lie group SU2(C) of (8.67).

Corollary 5 Let S2 = SU2(C) · R×
+ be the group (8.74). Define a relation C on S2

by
g1Cg2 ⇐⇒ ∃ g ∈ S2, such that g2 = g−1g1g.

Then C is an equivalence relation on S2. And the corresponding quotient group,

So
2

de f= S2/C,

is group-isomorphic to the usual multiplicative “abelian” group
(
C×, ·) , where (·)

is the usual multiplication.

Proof Recall that the group S2 and the multiplicative groupH× = H×
2 are isomor-

phic by (8.76). Note now that, under this isomorphic relation, the relation C on S2 is
equivalent to the similarity on H2, which is equivalent to the q-spectral relation R
of (8.44). Therefore, the quotient group So

2 of S2 under C is isomorphic to the usual
multiplicative abelian group

(
C×, ·).

By the above corollary, one obtains the following result.

Corollary 6 The following diagram commutes;

S2

↓π ↖ β

So
2 �

�
C×,

where π is the usual quotient map, and � is the group-isomorphism (8.80), and

β : C× → S2

is a group-homomorphism, defined by

β (γ ) =
(

γ 0
0 γ

)
∈ S2,∀γ ∈ C×.

Proof The proof is done by the very above corollary.

Now, define a set S0
2 by

S0
2 = SU2(C) · R+, (8.82)

where
R+ = {r ∈ R : r ≥ 0}.



8 Spectral Analysis of Equations over Quaternions 179

Then, similar to the proof of (8.76), one can verify that

S0
2

N.F= H2
N.F= H,

by defining the extension �0 of the group-isomorphism � of (8.80),

�0 ([q]) =

⎧⎪⎨
⎪⎩
det ([q])

[
q

det(q)

]
if q �= 0 inH

O2 if q = 0 inH,

(8.83)

for all q ∈ H, where O2 = [0] is the zero matrix of H2.

Theorem 9 Let S0
2 = SU2(C) · R+ be the set (8.82). Then

S0
2

N.F= H2
N.F= H. (8.84)

Proof Like the proof of (8.76), it is not hard to show that the morphism �0 of (8.83)
is a noncommutative-field isomorphism fromH2 onto S0

2 , satisfying

(S0
2 ,+

) Group= (H2,+) ,

and
(S2, ·) Group= (H×

2 , ·) (by (8.76)).

Therefore, the first isomorphic relation of (8.84) holds. The second noncommutative-
field isomorphic relation of (8.84) is shown by (8.15).

The above theorem also provides a connection between the quaternions H and
the Lie group SU2(C). And it provides the following decomposition property onH.

Theorem 10 Let q ∈ H be a non-zero quaternion. Then there exists g ∈ SU2(C),

such that
q = ‖q‖ π−1 (�−1(g)

)
(8.85)

in H, where π is the q-spectral representation, and � is in the sense of (8.80), or
(8.83).

Proof By (8.84), the quaternions H and the noncommutative field S0
2 of (8.82) are

isomorphic, and hence, all nonzero quaternions H× and nonzero elements S2 are
group-isomorphic by (8.76). So, by (8.80), the relation (8.85) holds.
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8.5 Monomial Equations onH

In this section, by applying the main results of Sects. 8.3 and 8.4, we consider
certain equations on the quaternionsH. In particular, we are interested in monomial
equations,

hn = q, (8.86)

for all n ∈ H, where h is a variable on H, and

q = a + bj ∈ H,

with
a = t + si, b = u + vi ∈ C,

is an arbitrarily fixed quaternion.
If n = 1 in (8.86), then the corresponding monomial equation h = q is trivial. So,

we are not interested in the case where n = 1.
Assumption. From below, for any given monomial equations hn = q of (8.86), it is
automatically assumed that n ∈ N>1 where

n ∈ N>1
de f= {k ∈ N : k > 1}.

�
A H-variable h is understood to be its realization [h] inH2,

[h] =
(
z1 −z2
z2 z1

)
∈ H2,

as an operator-variable on H2, where (z1, z2) is a 2-dimensional vector-variable on
C2, equivalently,

z1 = x1 + y1i, and z2 = x2 + y2i

are two distinct variables on C, where (x1, y1, x2, y2) is a vector-variable on R4. So,
(8.86) is equivalent to an equation,

[hn] = [q] ⇐⇒ [h]n = [q] on H2,

if and only if (
z1 −z2
z2 z1

)n

=
(
a −b
b a

)
(8.87)

by (8.15), where [q] ∈ H2 is the realization of a fixed quaternion q ∈ H of (8.86).
Suppose a quaternion h0 ∈ H is a solution of (8.86), i.e., assume
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hn0 = q,⇐⇒ [h0]n = [q], (8.88)

by (8.87). If the equality (8.88) holds for h0, then

σ
(
hn0

) = σ(q),⇐⇒ σ(h0)
n = σ(q), (8.89)

inH, where σ : H → C is the q-spectralization (8.58).
Now, let h = x1 + y1i + x2 j + y2k be aH-variable with its q-spectral value,

σ(h) = x1 + i
√
y21 + x22 + x23 ,

as an unknown in C, and let σ(q) ∈ C be the q-spectral value of a fixed quaternion
q ∈ H of (8.86). Then (8.86) satisfies (as an equality)

[σ(h)]n = [σ(q)] (8.90)

in H2. And, by (8.89), (8.90) has two cases: (i) where q ∈ C in H, and (ii) q /∈ C in
H.

Assume first that q = a + bi ∈ C inH. Then (8.90) is equivalent to⎛
⎜⎜⎝

(
x1 + i

√
y21 + x22 + y22

)n

0

0

(
x1 − i

√
y21 + x22 + y22

)n

⎞
⎟⎟⎠

=
(
q 0
0 q

)
=

(
a + bi 0
0 a − bi

)
, (8.91)

since q = σ(q) ∈ C inH.
Assume now that q = a + bi + u j + vk ∈ H, where either u or v is nonzero in

R. Then (8.90) goes to⎛
⎜⎜⎝

(
x1 + i

√
y21 + x22 + y22

)n

0

0

(
x1 − i

√
y21 + x22 + y22

)n

⎞
⎟⎟⎠

=
(
a + i

√
b2 + u2 + v2 0

0 a − i
√
b2 + u2 + v2

)
, (8.92)

since σ(q) = a + i
√
b2 + u2 + v2 in C

Lemma 5 Let hn = q be a monomial equation (8.86) for n ∈ N>1.
If q = a + bi + 0 j + 0k ∈ C inH, then solving (8.86) is to solve

(
x1 + i

√
y21 + x22 + y22

)n

= a + bi. (8.93)
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Meanwhile, if q = a + bi + u j + vk ∈ H, where either u or v is nonzero in R, then
solving (8.86) is to solve

(
x1 + i

√
y21 + x22 + y22

)n

= a + i
√
b2 + u2 + v2. (8.94)

Proof Solving an equation hn = q of (8.86) is to solve the equation

[σ(h)]n = [σ(q)] on H2of (8.90),

by (8.88) and (8.89).
Suppose q = a + bi + 0 j + 0k ∈ H, equivalently, σ(q) = q = a + bi ∈ C in

H. So, (8.90) becomes (
σ(h) 0
0 σ(h)

)n

=
(
q 0
0 q

)

⇐⇒ (
σ(h)n 0
0 σ(h)

n

)
=

(
q 0
0 q

)

⇐⇒ (
σ(hn) 0
0 σ(hn)

)
=

(
q 0
0 q

)

onH2, and hence,
σ(hn) = q = σ(q)

⇐⇒ (
x1 + i

√
y21 + x22 + y22

)n

= a + bi.

Therefore, the statement (8.93) holds.
Meanwhile, if q = a + bi + u j + vk ∈ H, where either u or v is nonzero in R.

Then
σ(q) = a + i

√
b2 + u2 + v2 in C,

and hence, (8.90) is equivalent to

σ(h)n = σ(q),

if and only if

(
x1 + i

√
y21 + x22 + y2

)
= a + i

√
b2 + u2 + v2.

Thus, the statement (8.94) holds.



8 Spectral Analysis of Equations over Quaternions 183

Let h = x1 + y1i + x2 j + y2k be a variable on H, and q = a + bi + u j + vk ∈
H, an arbitrarily fixed quaternion. By (8.93) and (8.94), solving an equation hn = q
of (8.86) is to solve an equation

σ(hn) = σ(q) on C,

⇐⇒ (
x1 + i

√
y21 + x22 + y22

)n

= a + i
√
b2 + u2 + v2. (8.95)

i.e., (8.95) covers both (8.93) and (8.94).
Consider now the polar decomposition reiθ ∈ C of

σ(h) = x1 + i
√
y21 + x22 + y22 in C,

where r ∈ R+ and θ = arg(σ (h)), the argument of σ(h), as a R-variable acting on
R+ and as a R-variable acting on the closed interval [0, 2π ] of R, respectively. One
can have that

r =
√
x21 + y21 + x22 + y22 ,

and

θ = cos−1

⎛
⎝ x1√

x21 + y21 + x22 + y22

⎞
⎠ = sin−1

⎛
⎝

√
y21 + x22 + y22√

x21 + y21 + x22 + y22

⎞
⎠ . (8.96)

Also, the C-quantity σ(q) = a + i
√
b2 + u2 + v2 has its polar decomposition

rqeiθq ∈ C with

rq =
√
a2 + b2 + u2 + v2,

and

θq = cos−1

(
a√

a2 + b2 + u2 + v2

)
= sin−1

( √
b2 + u2 + v2√

a2 + b2 + u2 + v2

)
, (8.97)

where rq ∈ R+ and θq ∈ [0, 2π ] are fixed quantities for σ(q) ∈ C.
By (8.96) and (8.97), (8.95) is equivalent to

(
reiθ

)n = rqe
iθq ⇐⇒ rneinθ = rqe

iθq

if and only if
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rn =
(√

x21 + y21 + x22 + y22

)n

= √
a2 + b2 + u2 + v2 = rq ,

and

nθ = n cos−1

(
x1√

x21+y21+x22+y22

)
= n sin−1

( √
y21+x22+y22√

x21+y21+x22+y22

)

= cos−1
(

a√
a2+b2+u2+v2

)
= sin−1

( √
b2+u2+v2√

a2+b2+u2+v2

)
= θq .

(8.98)

By (8.93), (8.94) and (8.98), we obtain the following proposition.

Proposition 4 Let hn = q be (8.86) on the quaternions H, where

h = x1 + y1i + x2 j + y2k

is aH-variable, and
q = a + bi + u j + vk ∈ H.

Then solving this equation is to solve the system,

⎧⎪⎪⎨
⎪⎪⎩

(
x21 + y21 + x22 + y22

)2n = a2 + b2 + u2 + v2,

n cos−1

(
x1√

x21+y21+x22+y22

)
= cos−1

(
a√

a2+b2+u2+v2

) (8.99)

Proof Solving (8.86) is to solve the system (8.99), by (8.95), (8.96), (8.97) and
(8.98).

The above proposition shows that solving a monomial equation hn = q onH, for
n ∈ N, is to solve the system,

⎧
⎪⎨
⎪⎩

‖h‖2n = ‖q‖2 ,

n cos−1
(

Re(h)

‖h‖
)

= cos−1
(

Re(q)

‖q‖
)

,

(8.100)

by (8.99), where ‖.‖ is the quaternion-modulus (8.7), and where

Re(w) ∈ R and Im(w) ∈ H \ R

mean the real parts, respectively, the imaginary parts of quaternions w ∈ H in the
sense that:

Re(w) = t1 and Im(w) = t2i + t3 j + t4k,
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whenever
w = t1 + t2i + t3 j + t4k ∈ H,

for t1, t2, t3, t4 ∈ R.

Corollary 7 Solving a monomial equation hn = q of (8.86) is to solve a system,

⎧
⎪⎨
⎪⎩

‖h‖2n = ‖q‖2 ,

n cos−1
(

Re(h)

‖h‖
)

= cos−1
(

Re(q)

‖q‖
)

,

(8.101)

Proof Solving (8.86) is to solve the system (8.101), by (8.99) and (8.100).

Consider a system (8.101) under the same hypothesis. To satisfy hn = q inH,

‖h‖n = ‖q‖ ,

and hence,

n cos−1

(
Re(h)

‖h‖
)

= cos−1

(
Re(q)

‖q‖
)

,

⇐⇒
cos−1

(
Re(h)

‖h‖
)

= 1

n
cos−1

(
Re(q)

‖q‖
)

,

⇐⇒
Re(h)

‖h‖ = cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

,

⇐⇒
Re(h)

‖q‖ 1
n

= cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

,

⇐⇒
Re(h) = ‖q‖ 1

n cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

. (8.102)

So, if h0 = t1 + t2i + t3 j + t4k is a solution of hn = q, then

t1 = ‖q‖ 1
n cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

, (8.103)

in R, by (8.102), since t1 = Re(h0) in R.
By (8.101) and (8.103),

t21 + t22 + t23 + t24 = (
a2 + b2 + u2 + v2

) n
2 ,
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where t1 is in the sense of (8.103), if and only if

t22 + t23 + t24 = (
a2 + b2 + u2 + v2

) n
2 − t21 . (8.104)

Thus, by (8.103) and (8.103), we obtain the following refined result of (8.99).

Theorem 11 Let hn = q beamonomial equation (8.86) for n ∈N>1. Thena solution

h0 = t1 + t2i + t3 j + t4k ∈ H of hn = q

satisfy

t1 = ‖q‖ 1
n cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

,

and
t22 + t23 + t24 = ‖q‖ n

2 − t21 . (8.105)

Proof The implicit relation (8.105) of the solutions h0 of hn = q is obtained by
(8.103) and (8.104). Indeed, by applying (8.99) and (8.101), if h0 ∈ H is a solution
of the equation, then

hn0 = q inH,

if and only if

t1 = ‖q‖ 1
n cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

in R,

by (8.103), and
t22 + t23 + t24 = ‖q‖ n

2 − t21 , in R,

by (8.104).

The above theorem illustrates that amonomial equation hn = q can have infinitely
many solutions inH satisfying (8.105), for n ∈ N>1.

Let hn = q be (8.86) onH, and assume that

q = a + bi + u j + vk ∈ H, ‖q‖ = 1. (8.106)

Under the condition (8.106), if h0 = t1 + t2i + t3 j + t4k ∈ H is a solution of
hn = q, then

t1 = cos

(
1

n
cos−1(a)

)
,

and
t22 + t23 + t24 = 1 − cos2

(
1
n cos

−1(a)
)

(8.107)

in R, by (8.105).
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Corollary 8 Let hn = q be a monomial equation (8.86). If q ∈ H is a quaternion
satisfying the condition (8.106), and if

h0 = t1 + t2i + t3 j + t4k ∈ H

is a solution of hn = q, then

t1 = cos

(
1

n
cos−1 (Re(q))

)
,

and

t22 + t23 + t24 = sin2
(
1

n
cos−1 (Re(q))

)
, (8.108)

in R.

Proof Under the condition (8.106), the proof of (8.108) is done by (8.105) and
(8.107). Indeed, by the well-known trigonometric identity,

cos2
(
1

n
cos−1 (Re(q))

)
+ sin2

(
1

n
cos−1 (Re(q))

)
= 1,

⇐⇒
sin2

(
1

n
cos−1 (Re(q))

)
= 1 − cos2

(
1

n
cos−1 (Re(q))

)
.

Therefore, the relation (8.108) holds by (8.107).

Let R3 be the 3-dimensional vector space over R, and let (x, y, z) ∈ R3 be a
vector-variable. Consider the sphere formula,

x2 + y2 + z2 = r2,

with its center (0, 0, 0), and its radius r > 0 in R. Let

Sr,0
de f= {(x, y, z) ∈ R3 : x2 + y2 + z2 = r2} (8.109)

be such a sphere in R3.
The formula (8.108) means that, under (8.106), a solution h0 ∈ H of the equation

hn = q satisfies that

t1 = cos

(
1

n
cos−1 (Re(q))

)
,

and

(t2, t3, t4) ∈ Sr,0, r =
√
1 − t21 . (8.110)
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Corollary 9 Let h0 = t1 + t2i + t3 j + t4k ∈ H be a solution of a monomial equa-
tion hn = q of (8.86). If q ∈ H satisfies the condition (8.106), then

t1 = cos

(
1

n
cos−1 (Re(q))

)
in R,

and

(t2, t3, t4) ∈ Sr,0,withr =
√
1 − t21 , (8.111)

where Sr,0 is a sphere (8.109).

Proof The geometric characterization (8.111) of (8.108) is obtained by (8.110).

Example 2 (1) Let q = 1
2 + 0i + 0 j +

√
3
2 k ∈ H. Consider a monomial equation

h2 = q onH.

It is not hard to check that

‖q‖ =
√√√√

(
1

2

)2

+ 02 + 02 +
(√

3

2

)2

= 1.

Thus, by (8.105) and (8.108), if

h0 = t1 + t2i + t3 j + t4k ∈ H

is a solution of h2 = q, then

t1 = cos
(
1
2 cos

−1
(
1
2

))

= cos
(
1
2 · π

3

) = cos
(

π
6

) =
√
3
2 ,

and

t22 + t23 + t24 = 1 −
(√

3

2

)2

= 1

4
.

So, a solution h0 is a quaternion

h0 =
√
3

2
+ t2i + t3 j + t4k ∈ H,

satisfying

t22 + t23 + t24 = 1

4
⇐⇒ (t2, t3, t4) ∈ S 1

2 ,0.
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(2) Consider a monomial equation h3 = q onH where q is as in (1). If

h0 = s1 + s2i + s3 j + s4k ∈ H

is a solution of h3 = q, then

s1 = cos

(
1

3
cos−1

(
1

2

))
= cos

(π

9

)
,

and
s22 + s23 + s24 = sin2

(π

9

)
.

So, a solution h0 is a quaternion,

h0 = cos
(π

9

)
+ s2i + s3 j + s4k ∈ H,

satisfying

s22 + s23 + s24 = sin2
(π

9

)
.

(3) Consider now a monomial equation h2 = 1 on H. If

h0 = t1 + t2i + t3 j + t4k ∈ H

is a solution of h2 = 1, then

t1 = cos

(
1

2
cos−1(1)

)
=

⎧⎨
⎩
cos

(
0
2

) = 1 or

cos
(
2π
2

) = −1.

and

t22 + t23 + t24 =
⎧
⎨
⎩
sin2(0) = 0 respectively

sin2(π) = 0.

Therefore, the equation h2 = 1 has its solutions

h = 1, or − 1.

(4) Consider a monomial equation h2 = −1 on H. If

h0 = s1 + s2i + s3 j + s4k ∈ H

is a solution of h2 = −1, then
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s1 = cos

(
1

2
cos−1 (−1)

)
= cos

(π

2

)
= 0,

and
s22 + s23 + s24 = sin2

(π

2

)
= 1.

Thus, all quaternions

0 + s2i + s3 j + s4k ∈ H, with s22 + s23 + s24 = 1

are the solutions of h2 = −1.

Let’s now consider the solvability of monomial equation.

Corollary 10 A monomial equation hn = q is solvable onH, if and only if

‖q‖ n
2 ≥ ‖q‖ 2

n cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

, (8.112)

for n ∈ N>1.

Proof By (8.105), if h0 = t1 + t2i + t3 j + t4k ∈ H is a solution of the monomial
equation hn = q, for n ∈ N>1, then

t1 = ‖q‖ 1
n cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

,

and
t22 + t23 + t24 = ‖q‖ n

2 − t21 . (8.113)

Thus, if
‖q‖ n

2 − t21 < 0 ⇐⇒ ‖q‖ n
2 < t21 in R,

then the second equality of (8.113) is undefined since the left-hand side is non-
negative, but the right-hand side becomes negative in R. i.e., the quaternion h0 is
undefined inH. It implies that the equation hn = q has no solutions onH, whenever
‖q‖ n

2 < t21 in R.
Conversely, assume that

‖q‖ n
2 − t21 ≥ 0 ⇐⇒ ‖q‖ n

2 ≥ t21 in R.

Then the second equality of (8.113) is well-determined on R. i.e., a quaternion h0
satisfying hn0 = q does exist in H.

Therefore, a equation hn = q has its solutions in H, if and only if the condition
(8.112) holds in R.
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Example 3 The above solvability condition (8.112) shows that every quadratic
monomial equation h2 = q is solvable on H. Indeed, by the boundedness of the
cosine function on R,

−1 ≤ cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

≤ 1 in R,

we have

0 ≤ t0
denote= cos2

(
1

n
cos−1

(
Re(q)

‖q‖
))

≤ 1 in R.

It satisfies the condition (8.112) for n = 2, since

‖q‖ 2
2 ≥ ‖q‖ 2

2 t0 ⇐⇒ ‖q‖ ≥ ‖q‖ t0 in R.

Since q ∈ H is arbitrary, every equation h2 = q is solvable on H by (8.112).

Also, one can get the following corollary of (8.112).

Corollary 11 Let hn = q be a monomial equation onH. If ‖q‖ = 1, then this equa-
tion is solvable on H.

Proof Let hn = q be a monomial equation onH, where ‖q‖ = 1. If h0 = t1 + t2i +
t3 j + t4k ∈ H is a solution, then

t1 = cos

(
1

n
cos−1 (Re(q))

)
,

and
t22 + t23 + t24 = 1 − t21 .

by (8.108) and (8.111). One can verify that

1 − t21 ≥ 0 in R,

by the boundedness of the cosine function on R. i.e., such an equation automatically
satisfies the condition (8.112). Therefore, every equation hn = q with ‖q‖ = 1 is
solvable on H.

Under our q-spectral relation on H, the following theorem is obtained.

Theorem 12 Let hn = q be a monomial equation (8.86) for n ∈ N>1, and suppose
h0 ∈ H is a solution of hn = q. If h1 is similar to h0 in the sense of (8.48), then h1
is a solution of hn = q, i.e., it also satisfies hn1 = q inH.
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Proof Recall that the similarity (8.48) on H, and the q-spectral relation (8.44) are
same as equivalence relations. So, if

h1 = s1 + s2i + s3 j + s4k

is similar to
h0 = t1 + t2i + t3 j + t4k

inH, then they are q-spectral related, i.e.,

σ(h0) = σ(h1) in C,

⇐⇒
t1 + i

√
t22 + t23 + t24 = s1 + i

√
s22 + s23 + s24 . (8.114)

The equality (8.114) implies that

s1 = t1 in R,

and
s22 + s23 + s24 = t22 + t23 + t24 . (8.115)

Also, recall that solving a given equation hn = q is to solve

σ(h)n = σ(q). (8.116)

By (8.115), one has that

σ(h0)
n = σ(q) = σ(h1)

n,

implying that h1 is again a solution of hn = q, by (8.116).

8.6 Certain Quadratic Equations onH

In Sect. 8.5, we considered monomial equations hn = q, for n ∈ N>1, where h is a
H-variable, and q ∈ H is fixed. By using the q-spectralization σ , we showed that if

h0 = t1 + t2i + t3 j + t4k ∈ H

is a solution of hn = q, then

t1 = ‖q‖ 1
n cos

(
1

n
cos−1

(
Re(q)

‖q‖
))

,
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and
t22 + t23 + t24 = ‖q‖ n

2 − t21 , (8.117)

by (8.105), up to (8.112). In this section, we consider quadratic equations onH,

h2 + th + s = 0, (8.118)

for fixed t, s ∈ R.

Remark 3 (1) One may / can consider quadratic equation,

ah2 + bh + c = 0 (8.119)

onH, for a H-variable h, and a ∈ R× and b, c ∈ R. But, (8.119) is equivalent to

h2 + b

a
h + c

a
= 0 onH.

Thus, in the long run, studying the equations of (8.119) is to consider the quadratic
equations (8.118) on H.
(2) We now justify why we have restricted to the special cases where t, s ∈ R in
(8.118). Here, our quaternion-spectral mapping theorem (8.57) would be applied. To
do that, the coefficients of the left-hand side of (8.118) should be real numbers by
(8.55).

As in Sect. 8.5, let’s consider q-spectralizations. i.e., if

h0 = t1 + t2i + t3 j + t4k ∈ H, (8.120)

is a solution of (8.118), then

h20 + th0 + s = 0 inH,

⇐⇒ [
h20 + th0 + s

] = [0] inH2,

⇐⇒ [
σ(h20 + th0 + s)

] = [0] = [σ(0)] inH2,

⇐⇒ [
σ(h0)

2 + tσ(h0) + s
] = [0] inH2,

⇐⇒
σ(h0)

2 + tσ(h0) + s = 0 in C,
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by (8.55) and (8.57), where

σ(h0) = t1 + i
√
t22 + t23 + t24 ∈ C (8.121)

is the q-spectral value of h0.

Lemma 6 Let h = x1 + y1i + x2 j + y2k be aH-variable, and let

σ(h) = x1 + i
√
y21 + x22 + y22

be the q-spectral value of h, as an unknown in C. Then solving a quadratic equation
(8.118) is to solve

σ(h)2 + tσ(h) + s = 0 on C.

Proof The proof is done by (8.57) and (8.121).

Now, let h0 be a solution (8.122) of (8.118). Then

σ(h0)
2 + tσ(h0) + s = 0, (8.122)

by the above lemma. Consider (8.122) in detail:

σ(h0)
2 + tσ(h0) + s = 0,

⇐⇒
(
t1 + i

√
t22 + t23 + t24

)2

+ t

(
t1 + i

√
t22 + t23 + t24

)
+ s = 0,

⇐⇒
(
t21 − t22 − t23 − t24 + t t1 + s

) + i(2t1 + t)
√
t22 + t23 + t24 = 0. (8.123)

Theorem 13 Let h0 = t1 + t2i + t3 j + t4k ∈ H be a solution (8.122) of a quadratic
equation (8.118). Then either

t1 = − t

2
, and t22 + t23 + t24 = s − t2

4
,

or

t1 = −t ± √
t2 − 4s

2
, t22 + t23 + t24 = 0. (8.124)

Proof By (8.121) and (8.122), if h0 is a solution of h2 + th + s = 0, then

σ(h0)
2 + tσ(h0) + s = 0 in C,
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where

σ(h0) = t1 + i
√
t22 + t23 + t24

is the q-spectral value of h0. And, this equality is equivalent to the equality (8.123),
implying the system ⎧⎪⎨

⎪⎩

t21 − t22 − t23 − t24 + t t1 + s = 0

(2t1 + t)
√
t22 + t23 + t24 = 0.

The second equality of the above system shows that

t1 = − t

2
, or t22 + t23 + t24 = 0.

If t1 = − t
2 , then the first equality of the system can be re-written by

t2

4
− t22 − t23 − t24 − t2

2
+ s = 0,

⇐⇒
t22 + t23 + t24 = s − t2

4
in R.

Meanwhile, if t22 + t23 + t24 = 0, then the first equality becomes that

t21 − (t22 + t23 + t24 ) + t t1 + s = 0,

⇐⇒
t21 + t t1 + s = 0 in R,

⇐⇒
t1 = −t ± √

t2 − 4s

2
in R.

Therefore, if h0 ∈ H is a solution, then either

t1 = − t

2
, and t22 + t23 + t24 = s − t2

4
,

or

t1 = −t ± √
t2 − 4s

2
, and t22 + t23 + t24 = 0.

So, the relation (8.124) holds.
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Example 4 (1) Consider a quadratic equation

h2 + 3h − 2 = 0 on H.

By (8.124), if h0 = t1 + t2i + t3 j + t4k ∈ H is a solution, then either

t1 = −3

2
, and t22 + t23 + t24 = −2 − 9

4
= −17

4
,

or

t1 = −3 ± √
17

2
, and t22 + t23 + t24 = 0.

Suppose t1 = − 3
2 . Then, since t2, t3, t4 ∈ R, there does not exist (t2, t3, t4) ∈ R3,

such that

t22 + t23 + t24 = −17

4
in R,

because the left-hand side is nonnegative inR. It shows that t1 cannot be − 3
2 . There-

fore, the solutions of this equation are

(
−3 ± √

17

2

)
+ 0i + 0 j + 0k inH.

(2) Consider a quadratic equation

h2 + h + 1 = 0 onH.

By (8.124), if h0 = t1 + t2i + t3 j + t4k ∈ H is a solution, then either

t1 = −1

2
, and t22 + t23 + t24 = 1 − 1

4
= 3

4
.

or

t1 = −1 ± √−3

2
, and t22 + t23 + t24 = 0 in R.

Note that if t1 = 2−1
(−1 ± √−3

)
, then it is undefined in R. So, it implies that all

quaternions
1

2
+ α2i + α3 j + α4k, with α2

2 + α2
3 + α2

4 = 3

4

are the solutions.

Motivated by the above example, the following result is obtained.
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Corollary 12 Let h0 = t1 + t2i + t3 j + t4k ∈ H be a solution of (8.118).
If t2 ≥ 4s, then

h0 = −t ± √
t2 − 4s

2
+ 0i + 0 j + 0k. (8.125)

Meanwhile, If t2 < 4s, then

t1 = − t

2
, t22 + t23 + t24 = s − t2

4
. (8.126)

Proof If h0 ∈ H is a solution of (8.118), then either

t1 = − t

2
, and t22 + t23 + t24 = s − t2

4
,

or

t1 = −t ± √
t2 − 4s

2
, and t22 + t23 + t24 = 0,

by (8.124).
Assume first that

t2 ≥ 4s ⇐⇒ s ≤ t2

4
⇐⇒ s − t2

4
≤ 0 in R.

If s − t2

4 < 0, then there does not exist (t2, t3, t4) ∈ R3, such that

t22 + t23 + t24 = s − t2

4
.

Thus, in such a case, a solution h0 ∈ H needs to satisfy

t1 = −t ± √
t2 − 4s

2
, and t22 + t23 + t24 = 0.

If s − t2

4 = 0, then

t1 = −t ± √
0

2
= − t

2
, and t22 + t23 + t24 = 0.

i.e., if t2 ≥ 4s, then a solution h0 satisfies that

t1 = −t ± √
t2 − 4s

2
, and t2 = t3 = t4 = 0 in R.

Thus, the statement (8.125) holds.
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Suppose now that

t2 < 4s ⇐⇒ s >
t2

4
⇐⇒ s − t2

4
> 0 in R.

Then one can take infinitely many (t2, t3, t4) ∈ R3 satisfying

t22 + t23 + t24 = s − t2

4
in R.

Remark that since t2 − 4s < 0, the real number t1 cannot be identical to

−t ± √
t2 − 4s

2
in R,

since it is undefined in R. So, in this case, h0 satisfies

t1 = −t

2
, and t22 + t23 + t24 = s − t2

4
,

by (8.124). Therefore, the statement (8.126) holds.

The above corollary refines (8.124) by (8.125) and (8.126).

Theorem 14 Every quadratic equation,

ah2 + bh + c = 0, with a ∈ R×b, c ∈ R,

is solvable on H.

Proof Let ah2 + bh + c = 0 be a quadratic equation onH, where h is aH-variable,
and a ∈ R× and b, c ∈ R. Then it is equivalent to an equation,

h2 +
(
b

a

)
h +

( c
a

)
= 0.

So, the solvability of such a quadratic equation is that of an equation

h2 + th + s = 0, with t, s ∈ R.

For a given two real numbers t and s, they satisfy either

t2 ≥ 4s, or t2 < 4s, in R,

by the axiom of choice.
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However, if t2 ≥ 4s in R, then the equation has its solution

(
−t ± √

t2 − 4s

2

)
+ 0i + 0 j + 0k inH,

by (8.125); and if t2 < 4s in R, then this equation has its solutions

− t

2
+ t2i + t3 j + t4k ∈ H,

with

t22 + t23 + t24 = s − t2

4
,

by (8.126). Therefore, such an equation always has its solutions inH, by (8.124).

The above theorem shows that all quadratic equations with real coefficients are
solvable on the quaternions H.

Consider following observations from (8.105) and (8.124).

Remark 4 Let −s ∈ R. Consider a monomial equation

h2 = −s on H.

By (8.105), if h0 = t1 + t2i + t3 j + t4k ∈ H is a solution, then

t1 = ‖−s‖ 1
2 cos

(
1

2
cos−1

( −s

‖−s‖
))

,

and
t22 + t23 + t24 = ‖−s‖ 2

2 − t21 .

Since −s ∈ R, ‖−s‖ = |−s| in R+, where |.| is the absolute value on R. So, either

t1 = √|−s| cos ( 12 cos−1(−1)
)

= √|−s| cos (π
2

) = 0,

or
t1 = √|−s| cos ( 12 cos−1(1)

)

=
⎧⎨
⎩

√|−s| cos (0) = √|−s|, or

√|−s| cos (π
2

) = −√|−s|,

and
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t22 + t23 + t24 = |−s| (if t1 = 0),

respectively

t22 + t23 + t24 = 0 (if t1 = either
√|−s|, or − √|−s|).

Therefore, the quaternions

±√|−s| + 0i + 0 j + 0k ∈ H,

or
0 + t2i + t3 j + t4k ∈ H, t22 + t23 + t24 = |−s| (8.127)

are the solutions of the equation h2 = −s.
Now, let’s understand the above monomial equation h2 = −s as a quadratic equa-

tion,
h2 + 0h + s = 0 on H.

If h0 = t1 + t2i + t3 j + t4k ∈ H is a solution, then either

t1 = −0

2
, and t22 + t23 + t24 = s,

or

t1 = −0 ± √
0 − 4s

2
= √−s, t22 + t23 + t24 = 0. (8.128)

by (8.124).
If one compares (8.127) with (8.128), then he can realize that two relations are

identical on H.

8.7 Linear Equations on H

In this section, we consider linear equations

q1h + q2 = q3 onH,

where h is aH-variable, and

q1 ∈ H× = H \ {0}, q2, q3 ∈ H. (8.129)

Clearly, if q1 = 1, and q2 = 0 inH, then (8.129) becomes the trivial equation h = q3.
So, we are not interested in such a case.
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In a similar manner of Sects. 8.5 and 8.6, solving (8.129) is to solve

[q1h + q2] = [q3] ⇐⇒ [q1][h] + [q2] = [q3]. (8.130)

From below, let

h = z1 + z2 j, with two C-variables z1, z2,

and
ql = al + bl j ∈ H, al , bl ∈ C, (8.131)

for all l = 1, 2, 3.
By (8.130) and (8.131), solving (8.129) is to solve the matricial equation,

[q1][h] + [q2] = [q3] inH2,

⇐⇒ (
a1 −b1
b1 a1

)(
z1 −z2
z2 z1

)
+

(
a2 −b2
b2 a2

)
=

(
a3 −b3
b3 a3

)
,

⇐⇒
⎛
⎝
a1z1 − b1z2 + a2 −a1z2 − b1z1 − b2

b1z1 + a1z2 + b2 −b1z2 + a1z1 + a2

⎞
⎠ =

(
a3 −b3
b3 a3

)
, (8.132)

inH2.

Lemma 7 Under (8.131), solving a linear equation q1h + q2 = q3 of (8.129) is to
solve a system, ⎧⎨

⎩
a1z1 − b1z2 + a2 = a3

a1z2 + b1z1 + b2 = b3.
(8.133)

Proof The system (8.133) is obtained by (8.132).

By the system (8.133), one can get the following equivalent systems

⎧⎨
⎩
a1z1 − b1z2 + a2 = a3

b1z1 + a1z2 + b2 = b3,

⇐⇒ ⎧⎨
⎩

|a1|2 z1 − a1b1z2 + a1a2 = a1a3

|b1|2 z1 + a1b1z2 + b1b2 = b1b3,
(8.134)
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where |.| is the modulus on C. Then

(|a1|2 + |b1|2
)
z1 + (

a1a2 + b1b2
) = a1a3 + b1b3,

⇐⇒
z1 =

(
a1a3 + b1b3

) − (
a1a2 + b1b2

)

|a1|2 + |b1|2
, (8.135)

in C, by (8.134). So, one has that

a1z1 − b1z2 + a2 = a3,

⇐⇒
a1

((
a1a3 + b1b3

) − (
a1a2 + b1b2

)

|a1|2 + |b1|2
)

− b1z2 + a2 = a3,

⇐⇒
b1z2 = a1

((
a1a3 + b1b3

) − (
a1a2 + b1b2

)

|a1|2 + |b1|2
)

+ a2 − a3,

⇐⇒

z2 = b−1
1

(
a1

((
a1a3 + b1b3

) − (
a1a2 + b1b2

)

|a1|2 + |b1|2
)

+ a2 − a3

)
, (8.136)

in C, by (8.135).

Theorem 15 Let q1h + q2 = q3 be a linear equation (8.129), where q1, q2, q3 are
fixed quaternions (8.131). Then the solution h0 of this equation is a quaternion

h0 = w1 + w2 j ∈ H, with w1,w2 ∈ C,

with

w1 =
(
a1a3 + b1b3

) − (
a1a2 + b1b2

)

|a1|2 + |b1|2
,

and

w2 = b−1
1

(
a1

((
a1a3 + b1b3

) − (
a1a2 + b1b2

)

|a1|2 + |b1|2
)

+ a2 − a3

)
. (8.137)

Proof The straightforward computations proves (8.137) by (8.133), (8.134), (8.135)
and (8.136).
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The above theorem is easy to be proven, but the solutions of arbitrary linear
equations are formulated by (8.137).
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Abstract Representations of polynomial covariant type commutation relations by
pairs of linear integral operators and multiplication operators on Banach spaces L p

are constructed.
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where A, B are elements of an associative algebra and F is a function of the ele-
ments of the algebra, are important in many areas of Mathematics and applications.
Such commutation relations are usually called covariance relations, crossed product
relations or semi-direct product relations. Elements of an algebra that satisfy (9.1)
are called a representation of this relation in that algebra. Representations of covari-
ance commutation relations (9.1) by linear operators are important for the study
of actions and induced representations of groups and semigroups, crossed product
operator algebras, dynamical systems, harmonic analysis, wavelets and fractals anal-
ysis and have applications in physics and engineering [4, 5, 20–22, 26–28, 34, 36,
45]. A description of the structure of representations for the relation (9.1) and more
general families of self-adjoint operators satisfying such relations by bounded and
unbounded self-adjoint linear operators on aHilbert space use reordering formulas for
functions of the algebra elements and operators satisfying covariance commutation
relation, functional calculus and spectral representation of operators and interplay
with dynamical systems generated by iteration of involved in the commutation rela-
tions [3, 6–8, 10, 11, 13–17, 29–34, 37–41, 45–58]. Algebraic properties of the
commutation relation (9.1) are important in description of properties of its represen-
tations. For instance, there is a well-known link between linear operators satisfying
the commutation relation (9.1) and spectral theory [44]. A description of the structure
of representations for the relation (9.1) by bounded and unbounded self-adjoint linear
operators on a Hilbert space, using spectral representation [2] of such operators, is
given in [44] devoted to more general cases of families of commuting self-adjoint
operators satisfying relations of the form (9.1).

In this paper we construct representations of (9.1) by pairs of linear integral and
multiplication operators on Banach spaces L p. Such representations can also be
viewed as solutions for operator equations AX = XF(A), when A is specified or
XB = BF(X)when B is specified. In contrast to [34, 45, 46, 58] devoted to involu-
tive representations of covariance type relations by operators on Hilbert spaces using
spectral theory of operators onHilbert spaces,we aim at direct construction of various
classes of representations of covariance type relations in specific important classes
of operators on Banach spaces more general than Hilbert spaces without imposing
any involution conditions and not using classical spectral theory of operators. This
paper is organized in three sections. After the introduction, we present in Sect. 9.2
preliminaries, notations and basic definitions. In Sect. 9.3 we present the main results
about construction of specific representations on Banach function spaces L p.

9.2 Preliminaries and Notations

In this section we present some preliminaries, basic definitions and notations. For
more details please read [1, 12, 18, 23, 24, 42, 43].

Let S ⊆ R, (R is the set of real numbers), be a Lebesgue measurable set and
let (S, �, m̃) be a σ -finite measure space, that is, S is a nonempty set, � is a σ -
algebra with subsets of S, where S can be covered with at most countably many
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disjoint sets E1, E2, E3, . . . such that Ei ∈ �, m̃(Ei ) < ∞, i = 1, 2, . . . and m̃ is
the Lebesgue measure. For 1 � p < ∞, we denote by L p(S), the set of all classes
of equivalent measurable functions f : S → R such that

∫

S
| f (t)|pdt < ∞. This is a

Banach space (Hilbert space when p = 2) with norm ‖ f ‖p =
(

∫

S
| f (t)|pdt

) 1
p

. We

denote by L∞(S) the set of all classes of equivalent measurable functions f : S → R
such that there is a constant λ > 0, | f (t)| ≤ λ almost everywhere. This is a Banach
space with norm ‖ f ‖∞ = ess supt∈S | f (t)|.

9.3 Operator Representations of Covariance Commutation
Relations

Before we proceed with constructions of more complicated operator representations
of commutation relations (9.1) on more complicated Banach spaces, we wish to
mention the following two observations that, while being elementary, nevertheless
explicitly indicate differences in how the different operator representations of com-
mutation relations (9.1) interact with the function F .

Proposition 9.3.1 Let A : E → E and B : E → E, B �= 0, be linear operators on
a linear space E, such that any composition among them is well defined and consider
F : R → R a polynomial. If A = α I , then AB = BF(A) if and only if F(α) = α.

Proof If A = α I , then

AB = α I B = αB,

BF(A) = BF(α I ) = BF(α)I = F(α)B.

We have then AB = BF(A), B �= 0 if and only if F(α) = α. �

Proposition 9.3.2 Let A : E → E and B : E → E be linear operators such that
any composition among them is well defined and consider a polynomial F : R → R.
If B = α I , where α �= 0, then AB = BF(A) if and only if F is a function such that
F(A) = A.

Proof If B = α I then

AB = A(α I ) = αA,

BF(A) = α I F(A) = αF(A).

We have then AB = BF(A) if and only if F(A) = A. �
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9.3.1 Representations of Covariance Commutation Relations
by Integral and Multiplication Operators on L p Spaces

We consider first a useful lemma for integral operators.

Lemma 9.3.1 Let f : [α1, β1] → R, g : [α2, β2] → R be two measurable functions
such that for all x ∈ L p(R), 1 ≤ p ≤ ∞,

β1∫

α1

f (t)x(t)dt < ∞,

β2∫

α2

g(t)x(t)dt < ∞,

where α1, β1, α2, β2 ∈ R, α1 < β1 and α2 < β2. Set G = [α1, β1] ∩ [α2, β2]. Then
the following statements are equivalent:

(i) For all x ∈ L p(R), where 1 ≤ p ≤ ∞, the following holds

β1∫

α1

f (t)x(t)dt =
β2∫

α2

g(t)x(t)dt.

(ii) The following conditions hold:

a) for almost every t ∈ G, f (t) = g(t);
b) for almost every t ∈ [α1, β1] \ G, f (t) = 0;
c) for almost every t ∈ [α2, β2] \ G, g(t) = 0.

Proof (i i) ⇒ (i) follows from direct computation.
Suppose that (i) is true. Take x(t) = IG1(t) the indicator function of the set G1 =

[α1, β1] ∪ [α2, β2]. For this function we have,

β1∫

α1

f (t)x(t)dt =
β2∫

α2

g(t)x(t)dt =
β1∫

α1

f (t)dt =
β2∫

α2

g(t)dt = η,

η is a constant. Now by taking x(t) = I[α1,β1]\G(t) we get

β1∫

α1

f (t)x(t)dt =
β2∫

α2

g(t)x(t)dt =
∫

[α1,β1]\G
f (t)dt =

β2∫

α2

g(t) · 0dt = 0.

Then
∫

[α1,β1]\G
f (t)dt = 0. If instead x(t) = I[α2,β2]\G(t), then

∫

[α2,β2]\G
g(t)dt = 0.

We claim that f (t) = 0 for almost every t ∈ [α1, β1] \ G and g(t) = 0 for almost
every t ∈ [α2, β2] \ G. We take a partition S1, . . . , Sn, . . . of the set [α1, β1] \ G
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such that each set Si , i = 1, 2, 3, . . . has positive measure. For each xi (t) = ISi (t),
i = 1, 2, 3, . . . we have

β1∫

α1

f (t)x(t)dt =
β2∫

α2

g(t)x(t)dt =
∫

Si

f (t)dt =
β2∫

α2

g(t) · 0dt = 0.

Thus,
∫

Si

f (t)dt = 0, i = 1, 2, 3, . . . . Since we can choose arbitrary partition with

positive measure on each of its elements we have

f (t) = 0 for almost every t ∈ [α1, β1] \ G.

Analogously, g(t) = 0 for almost every t ∈ [α2, β2] \ G. Then,

η =
β1∫

α1

f (t)dt =
β2∫

α2

g(t)dt =
∫

G

f (t)dt =
∫

G

g(t)dt.

Then, for all function x ∈ L p(R) we have

∫

G

f (t)x(t)dt =
∫

G

g(t)x(t)dt ⇐⇒
∫

G

[ f (t) − g(t)]x(t)dt = 0.

By taking x(t) =
{

1, if f (t) − g(t) > 0,
−1, if f (t) − g(t) < 0,

for almost every t ∈ G and x(t) = 0

for almost every t ∈ R \ G, we get
∫
G | f (t) − g(t)|dt = 0. This implies that f (t) =

g(t) for almost every t ∈ G. �

Remark 9.3.1 When operators are given in abstract form, we use the notation A :
L p(R) → L p(R) meaning that operator A is well defined from L p(R) to L p(R)

without discussing sufficient conditions for it to be satisfied. For instance, for the
following integral operator

(Ax)(t) =
∫

R

k(t, s)x(s)ds

there are sufficient conditions on kernels k(·, ·) such that operator A is well defined
from L p(R) to L p(R) and bounded [9, 18]. For instance, [18, Theorem6.18] states the
following: if 1 < p < ∞ and k : R × [α, β] → R is ameasurable function,α, β ∈ R,
α < β, and there is a constant λ > 0 such that
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ess sups∈[α,β]
∫

R

|k(t, s)|dt ≤ λ, ess supt∈R

β∫

α

|k(t, s)|ds ≤ λ,

then A is well defined from L p(R) to L p(R), 1 ≤ p ≤ ∞ and bounded.

9.3.1.1 Representations When A is Integral Operator and B
is Multiplication Operator

Proposition 9.3.3 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 ≤ p ≤ ∞, be
defined as follows, for almost all t ∈ R,

(Ax)(t) =
β∫

α

k(t, s)x(s)ds, (Bx)(t) = b(t)x(t), α, β ∈ R, α < β,

where k : R × [α, β] → R is a measurable function, and b : R → R is a measurable
function. Consider a polynomial defined by F(z) = δ0 + δ1z + · · · + δnzn, where
δ0, δ1, . . . , δn are real numbers. We set

k0(t, s) = k(t, s), km(t, s) =
β∫

α

k(t, τ )km−1(τ, s)dτ, m ∈{1, . . . , n}

Fn(k(t, s)) =
n∑

j=1

δ j k j−1(t, s), n ∈ {1, 2, 3, . . .}. (9.2)

Then AB = BF(A) if and only if

∀ x ∈ L p(R) : b(t)δ0x(t) + b(t)

β∫

α

Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds.

(9.3)
If δ0 = 0, that is, F(z) = δ1z + · · · + δnzn, then the condition (9.3) reduces to the
following: for almost every (t, s) in R × [α, β],

b(t)Fn(k(t, s)) = k(t, s)b(s). (9.4)

Proof By applying Fubini Theorem from [1] and iterative kernels from [25], We
have
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(A2x)(t) =
β∫

α

k(t, s)(Ax)(s)ds =
β∫

α

k(t, s)

⎛

⎝

β∫

α

k(s, τ )x(τ )dτ

⎞

⎠ ds

=
β∫

α

⎛

⎝

β∫

α

k(t, s)k(s, τ )ds

⎞

⎠ x(τ )dτ =
β∫

α

k1(t, τ )x(τ )dτ,

where k1(t, s) =
β∫

α

k(t, τ )k(τ, s)dτ. In the same way,

(A3x)(t) =
β∫

α

k(t, s)(A2x)(s)ds =
β∫

α

k(t, s)

⎛

⎝

β∫

α

k1(s, τ )x(τ )dτ

⎞

⎠ ds

=
β∫

α

k2(t, s)x(s)ds,

where k2(t, s) =
β∫

α

k(t, τ )k1(τ, s)dτ. For every n ≥ 1,

(Anx)(t) =
β∫

α

kn−1(t, s)x(s)ds,

where km(t, s) =
β∫

α

k(t, τ )km−1(τ, s)dτ, m = 1, . . . , n, k0(t, s) = k(t, s).

Thus,

(F(A)x)(t) = δ0x(t) +
n∑

j=1

δ j (A
j x)(t) = δ0x(t) +

n∑

j=1

δ j

β∫

α

k j−1(t, s)x(s)ds

= δ0x(t) +
β∫

α

Fn(k(t, s))x(s)ds,

where Fn(k(t, s)) =
n∑

j=1
δ j k j−1(t, s), for n = 1, 2, 3, . . .. So, we can compute

BF(A)x and (AB)x as follows:
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(BF(A)x)(t) = b(t)(F(A)x)(t) = b(t)δ0x(t) + b(t)

β∫

α

Fn(k(t, s))x(s)ds,

(ABx)(t) = A(Bx)(t) =
β∫

α

k(t, s)b(s)x(s)ds.

It follows that ABx = BF(A)x if and only if condition (9.3) holds.
If δ0 = 0 then condition (9.3) reduces to the following:

∀ x ∈ L p(R) :
β∫

α

b(t)Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds.

Let f (t, s) = b(t)Fn(k(t, s)) − k(t, s)b(s). By applying Lemma9.3.1 we have for
almost every t ∈ R that f (t, ·) = 0 almost everywhere. Since the set N = {(t, s) ∈
R × [α, β] : f (t, s) �= 0} ⊂ R2 is measurable and almost all sections Nt = {s ∈
[α, β] : (t, s) ∈ N } of the plane has Lebesguemeasure zero, by the reciprocal Fubini
Theorem [35], the set N has Lebesgue measure zero on the plane R2. �

Corollary 9.3.4 For M1, M2 ∈ R, M1 < M2 and 1 ≤ p ≤ ∞, let A : L p([M1, M2])
→ L p([M1, M2]) and B : L p([M1, M2]) → L p([M1, M2]) be nonzero operators
defined, for almost all t , by

(Ax)(t) =
β∫

α

k(t, s)x(s)ds, (Bx)(t) = b(t)x(t), α, β ∈ R, α < β,

where [M1, M2] ⊇ [α, β], and k(·, ·) : [M1, M2] × [α, β] → R, b : [M1, M2] → R
are given by

k(t, s) = a0 + a1t + c1s, b(t) =
n∑

j=0

b j t
j ,

where n is non-negative integer, a0, a1, c1, b j are real numbers for j = 0, . . . , n.
Consider a polynomial defined by F(z) = δ0 + δ1z + δ2z2, where δ0, δ1, δ2 ∈ R.

Then, AB = BF(A) if and only if

∀ x ∈ L p([M1, M2]) : b(t)δ0x(t) + b(t)

β∫

α

Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds,

where Fn(k(t, s)) is given by (9.2).
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If δ0 = 0, that is, F(z) = δ1z + δ2z2 then the last condition reduces to the condi-
tion that for almost every (t, s) in [M1, M2] × [α, β]

b(t)F2(k(t, s)) = k(t, s)b(s). (9.5)

Condition (9.5) is equivalent to that b(·) ≡ b0 �= 0 is a nonzero constant (b j = 0,
j = 1, . . . , n) and one of the following cases holds:

(i) if δ2 = 0, δ1 = 1, then a0, a1, c1 ∈ R can be arbitrary;
(ii) if δ2 �= 0, δ1 = 1, a1 �= 0, c1 = 0, then

a0 = −β + α

2
a1;

(iii) if δ2 �= 0, δ1 = 1, a1 = 0, c1 �= 0, then

a0 = −β + α

2
c1;

(iv) if δ2 �= 0, δ1 �= 1, a1 �= 0, c1 = 0, then

a0 = 2 − 2δ1 − δ2(β
2 − α2)a1

2δ2(β − α)
;

(v) if δ2 �= 0, δ1 �= 1, c1 �= 0, a1 = 0, then

a0 = 2 − 2δ1 − δ2(β
2 − α2)c1

2δ2(β − α)
;

(vi) if δ2 �= 0, δ1 �= 1, a1 = 0 and c1 = 0, then

a0 = 1 − δ1

δ2(β − α)
.

Proof Operator A is defined on L p[M1, M2], 1 ≤ p ≤ ∞. Therefore, by applying
[19, Theorem 3.4.10], we conclude that A is well defined. Moreover, kernel k(·, ·) is
continuous on a closed and bounded set [−M, M] × [α, β] and b(·) is continuous in
[M1, M2], so these functions are measurable. By applying Proposition9.3.3 we just
need to check when the condition (9.4) is satisfied for k(·, ·) and b(·). We compute

k1(t, s) =
β∫

α

k(t, τ )k(τ, s)dτ =
β∫

α

(a0 + a1t + c1τ)(a0 + a1τ + c1s)dτ

=
β∫

α

[(a20 + a0a1t + a0c1s + a1c1ts)
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+ (a0a1 + a0c1 + a21 t + c21s)τ + a1c1τ
2]dτ

=(β − α)(a20 + a0a1t + a0c1s + a1c1ts)

+ β2 − α2

2
· (a0a1 + a0c1 + a21 t + c21s)

+ β3 − α3

3
a1c1 = ν0 + ν1t + ν2s + ν3ts, (9.6)

where

ν0 = a20(β − α) + β2−α2

2 a0(a1 + c1) + a1c1
β3−α3

3 , ν2 = a0c1(β − α) + c21
β2−α2

2 ,

ν1 = a21
β2−α2

2 + a1a0(β − α), ν3 = a1c1(β − α).

Then, we have

b(t)F2(k(t, s)) = b(t)[δ1k(t, s) + δ2k1(t, s)] = (a0δ1 + δ2ν0)

n∑

j=0

b j t
j

+ (a1δ1 + δ2ν1)

n∑

j=0

b j t
j+1 + (c1δ1 + δ2ν2)

n∑

j=0

b j t
j s + ν3δ2

n∑

j=0

b j t
j+1s

= (δ1a0 + δ2ν0)b0 + (c1δ1 + ν2δ2)b0s +
n∑

j=1

[(δ1a0 + δ2ν0)b j + (δ1a1 + δ2ν1)b j−1]t j

+
n∑

j=1

[(c1δ1 + ν2δ2)b j + ν3δ2b j−1]t j s + (δ1a1 + δ2ν1)bnt
n+1 + ν3δ2bnt

n+1s

k(t, s)b(s) = a0

n∑

j=0

b j s
j + a1

n∑

j=0

b j s
j t + c1

n∑

j=0

b j s
j+1 = a0b0 + a1b0t

+
n∑

j=1

(a0b j + c1b j−1)s
j +

n∑

j=1

a1b j s
j t + c1bns

n+1.

Thus we have k(t, s)b(s) = b(t)F2(k(t, s)) for all (t, s) ∈ [M1, M2] × [α, β] if and
only if

a0b0 = (a0δ1 + δ2ν0)b0
a1b0 = (a0δ1 + δ2ν0)b1 + (a1δ1 + δ2ν1)b0

a0b1 + c1b0 = (c1δ1 + δ2ν2)b0 (9.7)

a1b1 = (c1δ1 + δ2ν2)b1 + δ2ν3b0 (9.8)

0 = a0b j + c1b j−1, 2 ≤ j ≤ n (9.9)

0 = (a0δ1 + δ2ν0)b j + (a1δ1 + δ2ν1)b j−1, 2 ≤ j ≤ n

a1b j = 0, 2 ≤ j ≤ n (9.10)
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0 = c1δ1b j + δ2ν3b j−1 + δ2ν2b j 2 ≤ j ≤ n

0 = a1δ1bn + δ2ν1bn, if n ≥ 1

c1bn = 0, if n ≥ 1 (9.11)

0 = δ2ν3bn, if n ≥ 1.

Suppose that n ≥ 1. We proceed by induction to prove that b j = 0, for all j =
1, 2, . . . , n. For i = 0, we suppose that bn = bn−i �= 0. Then from (9.10) we have
a1bn = 0 and thus a1 = 0. From Eq. (9.11) we have c1bn = 0 and thus c1 = 0. From
(9.9) we have 0 = a0bn + c1bn−1 = a0bn and thus a0 = 0. This implies that k(t, s) ≡
0, that is, A = 0. So for i = 0, bn = bn−i �= 0 implies A = 0. Hence, bn = 0. Let
1 < m ≤ n − 2 and suppose that bn−i = 0 for all i = 1, 2, . . . ,m − 1. Let us show
that thenbn−m = 0. Ifbn−m �= 0, then from (9.10)wehavea1bn−m = 0which implies
a1 = 0. From (9.9) and for j = n − m + 1 by induction assumption a0bn−m+1 +
c1bn−m = c1bn−m = 0 which implies c1 = 0. Therefore from (9.9) and for j = n −
m we have a0bn−m = 0 which implies a0 = 0. Then k(t, s) ≡ 0, that is A = 0. So we
must have bn−m = 0. Ifm = n − 1, then let us show that bn−m = b1 = 0. If bn−m �= 0
then (9.9) gives c1bn−m = c1b1 = 0 when j = n − m + 1 = 2. Then c1 = 0 and by
(9.8), since ν2 = ν3 = 0 we get a1b1 = 0 which yields a1 = 0. Therefore, (9.7) gives
a0b1 = 0 which yields a0 = 0. Thus A = 0. Since A �= 0, b1 = 0 is proved. Thus
b(·) = b0 is proved.

Since B �= 0 and B = b0 I (multiple of identity operator), b0 �= 0 and the com-
mutation relation is equivalent to F(A) = A. By (9.4) we have F2(k(t, s)) = k(t, s)
which can be written as follows

δ1k(t, s) + δ2k1(t, s) = k(t, s), (9.12)

where k(t, s) = a0 + a1t + c1s and k1(t, s) = ν0 + ν1t + ν2s + ν3ts,

ν0 = a20(β − α) + β2−α2

2 a0(a1 + c1) + a1c1
β3−α3

3 , ν2 = a0c1(β − α) + c21
β2−α2

2 ,

ν1 = a21
β2−α2

2 + a1a0(β − α), ν3 = a1c1(β − α).

If δ2 = 0, then (9.12) becomes (δ1 − 1)k(·, ·) = 0 and A �= 0 yields δ1 = 1. Thus,
if δ2 = 0 and δ1 = 1, then (9.12) is satisfied for any a0, a1, c1 ∈ R.

If δ2 �= 0 and δ1 = 1 then (9.12) becomes k1(·, ·) = 0, that is, ν0 = ν1 = ν2 =
ν3 = 0, where

ν0 = a20(β − α) + β2−α2

2 a0(a1 + c1) + a1c1
β3−α3

3 , ν2 = a0c1(β − α) + c21
β2−α2

2 ,

ν1 = a21
β2−α2

2 + a1a0(β − α), ν3 = a1c1(β − α).

Since α < β, a1c1(β − α) = 0 is equivalent to either a1 = 0 or c1 = 0. If a1 �= 0,
c1 = 0, then



216 D. Djinja et al.

⎧
⎪⎪⎨

⎪⎪⎩

ν0 = 0
ν1 = 0
ν2 = 0
ν3 = 0

⇔
{

(β − α)a20 + β2−α2

2 a0a1 = 0

(β − α)a1a0 + β2−α2

2 a21 = 0
⇔ a0 + β + α

2
a1 = 0,

which is equivalent to a0 = − β+α

2 a1. If a1 = 0, c1 �= 0, then

⎧
⎪⎪⎨

⎪⎪⎩

ν0 = 0
ν1 = 0
ν2 = 0
ν3 = 0

⇔
{

(β − α)a20 + β2−α2

2 a0c1 = 0

(β − α)c1a0 + β2−α2

2 c21 = 0
⇔ a0 + β + α

2
c1 = 0,

which is equivalent to a0 = − β+α

2 c1. If a1 = 0, c1 = 0, then ν0 = ν1 = ν2 = ν3 = 0
is equivalent to a20(β − α) = 0, that is, a0 = 0. This implies A = 0. Therefore, δ2 �=
0, δ1 = 1, a1 = c1 = 0 yields A = 0.

Consider δ2 �= 0 and δ1 �= 1, and note that (9.12) is equivalent to:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0 = δ1a0 + δ2a20(β − α) + δ2
β2−α2

2 a0(a1 + c1) + δ2a1c1
β3−α3

3

a1 = δ1a1 + δ2a21
β2−α2

2 + δ2a1a0(β − α)

c1 = δ1c1 + δ2a0c1(β − α) + δ2c21
β2−α2

2
0 = δ2a1c1(β − α).

(9.13)

Since α < β and δ2 �= 0, equation δ2a1c1(β − α) = 0 implies that either a1 = 0 or
c1 = 0. If δ2 �= 0, δ1 �= 1, a1 �= 0 and c1 = 0, then (9.13) becomes

a0 = δ1a0 + δ2a
2
0(β − α) + δ2

β2 − α2

2
a0a1

a1 = δ1a1 + δ2a
2
1
β2 − α2

2
+ δ2a1a0(β − α)

which is equivalent to 1 = δ1 + δ2(β − α)a0 + δ2
β2−α2

2 a1. Then,

a0 = 2 − 2δ1 − δ2(β
2 − α2)a1

2δ2(β − α)
.

If δ2 �= 0, δ1 �= 1, a1 = 0 and c1 �= 0, then (9.13) becomes

a0 = δ1a0 + δ2a
2
0(β − α) + δ2

β2 − α2

2
a0c1

c1 = δ1c1 + δ2c
2
1
β2 − α2

2
+ δ2c1a0(β − α)

which is equivalent to 1 = δ1 + δ2(β − α)a0 + δ2
β2−α2

2 c1. Then,
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a0 = 2 − 2δ1 − δ2(β
2 − α2)c1

2δ2(β − α)
.

If δ2 �= 0, δ1 �= 1, a1 = 0 and c1 = 0, then A �= 0 yields a0 �= 0 and (9.13)
becomes

a0 = δ1a0 + δ2a
2
0(β − α)

which is equivalent to a0 = 1−δ1
δ2(β−α)

. �

Remark 9.3.2 The integral operator given by (Ax)(t) =
β1∫

α1

k(t, s)x(s)ds for almost

all t , where k : [α1, β1] × [α1, β1] → R is a measurable function that satisfies

β1∫

α1

⎛

⎝

β1∫

α1

|k(t, s)|qds
⎞

⎠

p
q

dt < ∞,

by [19, Theorem 3.4.10] is well defined from L p[α1, β1] to L p[α1, β1], 1 < p < ∞
and bounded.

Remark 9.3.3 If in the Corollary9.3.4 when 0 /∈ [M1, M2], one takes b(t) to be
a Laurent polynomial with only negative powers of t then there is no non-zero
kernel k(t, s) = a0 + a1t + c1s (there is no A �= 0with such kernels) such that AB =
BF(A). In fact, let n be a positive integer and consider b(t) =

n∑

j=1
b j t− j , where

t ∈ [M1, M2], b j ∈ R for j = 1, . . . , n and bn �= 0. We set k1(t, s) as defined by
(9.6). Then we have

b(t)F2(k(t, s)) = b(t)[δ1k(t, s) + δ2k1(t, s)] = (a0δ1 + δ2ν0)

n∑

j=1

b j t
− j

+ (a1δ1 + δ2ν1)

n∑

j=1

b j t
− j+1 + (c1δ1 + δ2ν2)

n∑

j=1

b j t
− j s + ν3δ2

n∑

j=1

b j t
− j+1s

= (a1δ1 + δ2ν1)b1 + ν3δ2b1s +
n−1∑

j=1

[(a0δ1 + δ2ν0)b j + (a1δ1 + δ2ν1)b j+1]t− j

+(a0δ1 + δ2ν0)bnt
−n +

n−1∑

j=1

[(c1δ1 + δ2ν2)b j + ν3δ2b j+1]t− j s + (c1δ1 + δ2ν2)bnt
−ns

k(t, s)b(s) = a0

n∑

j=1

b j s
− j + a1

n∑

j=1

b j s
− j t + c1

n∑

j=1

b j s
− j+1
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= c1b1 +
n−1∑

j=1

(a0b j + c1b j+1)s
− j +

n∑

j=1

a1b j s
− j t + a0bns

−n.

Thus we have k(t, s)b(s) = b(t)F2(k(t, s)) for almost every (t, s) ∈ [M1, M2] ×
[α, β] if and only if

c1b1 = a1δ1b1 + δ2ν1b1,

0 = δ2ν3b1,

0 = (a0δ1 + δ2ν0)b j + (δ1a1 + δ2ν1)b j+1, 1 ≤ j ≤ n − 1,

a0b j + c1b j+1 = 0, 1 ≤ j ≤ n − 1, (9.14)

0 = c1δ1b j + δ2ν2b j + δ2ν3b j+1, 1 ≤ j ≤ n − 1,

a1b j = 0, 1 ≤ j ≤ n, (9.15)

0 = a0δ1bn + δ2ν0bn,

0 = a0bn, (9.16)

0 = c1δ1bn + δ2ν3bn.

Since bn �= 0 then from (9.16) we have a0bn = 0 and thus a0 = 0. From (9.14) for
j = n − 1 we get c1bn = 0 and thus c1 = 0. Finally from (9.15) we have 0 = a1b j

for j = n and thus a1 = 0. This implies that k(t, s) ≡ 0, that is, A = 0. So bn �= 0
implies A = 0.

Corollary 9.3.5 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞, be
defined as follows, for almost all t ,

(Ax)(t) =
β∫

α

k(t, s)x(s)ds, (Bx)(t) = b(t)x(t), α, β ∈ R, α < β,

where k(t, s) : R × [α, β] → R is a measurable function, and b ∈ L∞(R) is a
nonzero function such that the set supp b(t) ∩ [α, β] has measure zero.

Consider apolynomial definedby F(z) = δ0 + δ1z + · · · + δnzn,where δ0, . . . , δn
are real numbers. We set

k0(t, s) = k(t, s), km(t, s) =
β∫

α

k(t, τ )km−1(τ, s)dτ, m = 1, . . . , n,

Fn(k(t, s)) =
n∑

j=1

δ j k j−1(t, s), n = 1, 2, 3, . . .
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Then AB = BF(A) if and only if δ0 = 0 and the set

supp b(t) ∩ supp Fn(k(t, s))

has measure zero in R × [α, β].
Proof Suppose that the set supp b ∩ [α, β] has measure zero. By Proposition9.3.3
we have AB = BF(A) if and only if condition (9.3) holds, that is,

∀ x ∈ L p(R) : b(t)δ0x(t) + b(t)

β∫

α

Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds,

almost everywhere. By taking x(·) = I[M1,M2](·)b(·), where M1, M2 ∈ R, M1 < M2,
[M1, M2] ⊃ [α, β], μ([M1, M2] \ [α, β]) > 0, IE (·) is the indicator function of the
set E , the condition (9.3) reduces to

I[M1,M2](·)b2(·)δ0 = 0.

Since b has support with positive measure (otherwise B ≡ 0), then δ0 = 0. By using
this, condition (9.3) reduces to the following

∀ x ∈ L p(R) : b(t)

β∫

α

Fn(k(t, s))x(s)ds =
β∫

α

k(t, s)b(s)x(s)ds.

By hypothesis the right hand side is equal zero. Then condition (9.3) reduces to

∀ x ∈ L p(R) : b(t)

β∫

α

Fn(k(t, s))x(s)ds = 0.

This is equivalent to

b(t)Fn(k(t, s)) = 0 for almost every s ∈ [α, β]. (9.17)

By applying a similar argument as in the proof of Proposition9.3.3 we conclude that
condition (9.17) is equivalent to that the set

supp b(t) ∩ supp Fn(k(t, s))

has measure zero in R × [α, β]. �

Corollary 9.3.6 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 ≤ p ≤ ∞, be
defined as follows, for almost all t ,



220 D. Djinja et al.

(Ax)(t) =
β∫

α

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t), α, β ∈ R, α < β,

where a : R → R, c : [α, β] → R, b : R → R are measurable functions. Consider
a polynomial defined by F(z) = δ1z + δ2z2 + · · · + δnzn, where δ1, . . . , δn are real

constants. We set μ =
β∫

α

a(s)c(s)ds. Then, we have AB = BF(A) if and only if the

set

supp [a(t)c(s)] ∩ supp

⎡

⎣b(t)
n∑

j=1

δ jμ
j−1 − b(s)

⎤

⎦ ,

has measure zero in R × [α, β].
Proof We set k(t, s) = a(t)c(s), so we have

k0(t, s) = k(t, s) = a(t)c(s),

km(t, s) =
β∫

α

k(t, τ )km−1(τ, s)dτ = a(t)c(s)

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

m

, m = 1, . . . , n

Fn(k(t, s)) =
n∑

j=1

δ j k j−1(t, s) =
n∑

j=1

δ j a(t)c(s)

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

n = 1, 2, 3, . . .

By applying Proposition9.3.3 we have AB = BF(A) if and only if

b(t)
n∑

j=1

δ j a(t)c(s)

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

= a(t)c(s)b(s) ⇐⇒

a(t)c(s)

⎡

⎢
⎣b(t)

n∑

j=1

δ j

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

− b(s)

⎤

⎥
⎦ = 0

for almost every (t, s) in R × [α, β]. The last condition is equivalent to the set

supp [a(t)c(s)] ∩ supp

⎡

⎢
⎣b(t)

n∑

j=1

δ j

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

− b(s)

⎤

⎥
⎦

has measure zero in R × [α, β]. We complete the proof by noticing that the corre-
sponding set can be written as
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supp [a(t)c(s)] ∩ supp

⎡

⎣b(t)
n∑

j=1

δ jμ
j−1 − b(s)

⎤

⎦ ,

where μ =
β∫

α

a(s)c(s)ds. �

Example 9.3.7 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) =
2∫

0

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t),

where a(t) = I[0,1](t)(1 + t2), c(s) = 1, b(t) = I[1,2](t)t2. Since kernel has compact
support, we can apply [19, Theorem 3.4.10] and we conclude that operators A is
well defined and bounded. Since function b has 4 as an upper bound then ‖B‖L p ≤
4. Hence operator B is well defined and bounded. Consider a polynomial defined
by F(z) = δ1z + · · · + δnzn , where δ1, . . . , δn are real constants. Then, the above
operators does not satisfy the relation AB = BF(A). In fact for λ �= 0, by applying

Corollary9.3.6 and setting λ =
n∑

j=1
δ j (β − α) j−1, we have

supp {b(t)λ − b(s)} = (R × [1, 2] ∪ [1, 2] × [0, 1]) \ W,

where W = {(t, s) ∈ [1, 2] × [1, 2] : b(t)λ − b(s) = 0} is a set of measure zero in
the plane. Moreover, supp a(t)c(s) = [0, 1] × [0, 2]. The set

supp [a(t)c(s)] ∩ supp [b(t)λ − b(s)] ,

has positive measure in R × [0, 2].
Example 9.3.8 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) =
2∫

0

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t),

wherea(t) = 2t I[0,2](t), c(s) = I[0,1](s),b(t) = I[1,2](t)t2. Since kernel has compact
support, we can apply [19, Theorem 3.4.10] and, we conclude that operators A is
well defined and bounded. Since function b has 4 as an upper bound then ‖B‖L p ≤
4. Hence operator B is well defined and bounded. Consider a polynomial defined
by F(z) = δ1z + · · · + δnzn , where δ1, . . . , δn are real constants. Then, the above
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operators satisfy the relation AB = BF(A) if and only if
n∑

j=1
δ j = 0. In fact, by

applying Corollary9.3.6 we have

μ =
2∫

0

a(s)c(s)ds = 1.

Hence, supp {b(t) · 0 − b(s)} = R × [1, 2]. Moreover, supp a(t)c(s) = [0, 2] ×
[0, 1]. The set supp [a(t)c(s)] ∩ supp [−b(s)] , has measure zero in R × [0, 2].
Example 9.3.9 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) =
2∫

0

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t),

where a(t) = I[0,2](t) sin(π t), c(s) = I[0,1](s), b(t) = I[1,2](t)t2. Since a ∈ L p(R)

and c ∈ Lq [0, 2], 1 < q < ∞, 1
p + 1

q = 1, by applying Hölder inequality we have
that operator A is well defined and bounded. The function b ∈ L∞, so B is well
defined and bounded because ‖B‖L p ≤ ‖b‖L∞ we conclude that operator B is
well defined and bounded. Consider a polynomial defined by F(z) = δzd , where
δ �= 0 is a real constant and d is a positive integer d ≥ 2. Then, the above oper-
ators satisfy the relation AB = δBAd . In fact, by applying Corollary9.3.6 we

have μ =
2∫

0
a(s)c(s)ds = 0. Hence, supp {b(t) · 0 − b(s)} = R × [1, 2]. Moreover,

supp a(t)c(s) = [0, 2] × [0, 1]. The set supp [a(t)c(s)] ∩ supp [−b(s)] , has mea-
sure zero in R × [0, 2].
Example 9.3.10 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞, be
defined as follows, for almost all t ,

(Ax)(t) =
β∫

α

I[α,β](t)x(s)ds, (Bx)(t) = I[α,β](t)x(t), α, β ∈ R, α < β.

Since kernel has compact support, we can apply [19, Theorem 3.4.10] and, we con-
clude that operator A is well defined and bounded. Since ‖B‖L p ≤ 1 then oper-
ator B is well defined and bounded. Consider a polynomial defined by F(z) =
δ1z + · · · + δnzn , where δ1, . . . , δn are constants. Then, the above operators sat-

isfy the relation AB = BF(A) if and only if
n∑

j=1
δ j (β − α) j−1 = 1. Indeed, if

a(t) = b(t) = I[α,β](t), c(s) = 1 and
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λ =
n∑

j=1

δ j

⎛

⎝

β∫

α

a(s)c(s)ds

⎞

⎠

j−1

=
n∑

j=1

δ j (β − α) j−1,

then from Corollary9.3.6 we have the following:

• If λ �= 0, λ �= 1,

supp [b(t)λ − b(s))] = {
(t, s) ∈ R × [α, β] : λI[α,β](t) �= 1

} = R × [α, β],

supp a(t)c(s) = {(t, s) ∈ R × [α, β] : I[α,β](t) �= 0} = [α, β] × [α, β].

The set supp [λb(t) − b(s)] ∩ supp [a(t)c(s)] = [α, β] × [α, β] has positivemea-
sure.

• If λ = 1,

supp [b(t) − b(s)] = {
(t, s) ∈ R × [α, β] : I[α,β](t) �= 1

}

= (R \ [α, β]) × [α, β].

The set supp [b(t) − b(s)] ∩ supp [a(t)c(s)] has measure zero in R × [α, β].
• If λ = 0,

supp [λb(t) − b(s)] = supp b(s) = {
(t, s) ∈ R2 : I[α,β](s) �= 0

}

= {
(t, s) ∈ R2 : α ≤ s ≤ β

}
.

The set supp b(s) ∩ supp [a(t)c(s)] = [α, β] × [α, β] has measure (β − α)2.

The conditions in the Corollary9.3.6 are fulfilled only in the second case, that is,
when λ = 1.

9.3.1.2 Representations When A is Multiplication Operator and B
is Integral Operator

Proposition 9.3.11 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) = a(t)x(t), (Bx)(t) =
β∫

α

k(t, s)x(s)ds, α, β ∈ R, α < β,

where a : R → R, k : R × [α, β] → R are measurable functions. Consider a poly-
nomial defined by F(z) = δ0 + δ1z + · · · + δnzn, where δ0, δ1, . . . , δn are constants.
Then
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AB = BF(A)

if and only if the set

supp [a(t) − F(a(s))] ∩ supp k(t, s)

has measure zero in R × [α, β].
Proof We have for almost every t ∈ R

(ABx)(t) =
β∫

α

a(t)k(t, s)x(s)ds

(Anx)(t) = [a(t)]nx(t)

(F(A)x)(t) =
n∑

i=0

δi (A
i x)(t) =

(
n∑

i=0

δi [a(t)]i
)

x(t) = F(a(t))x(t)

(BF(A)x)(t) =
β∫

α

k(t, s))F(a(s))x(s)ds.

Then we have ABx = BF(A)x if and only if

β∫

α

a(t)k(t, s)x(s)ds =
β∫

α

k(t, s)F(a(s))x(s)ds. (9.18)

almost everywhere. By using Lemma9.3.1 and by applying the same argument as in
the final steps on the proof of Proposition9.3.3, the condition (9.18) is equivalent to

a(t)k(t, s) = k(t, s)F[a(s)] ⇐⇒ k(t, s)[a(t) − F(a(s))] = 0

for almost every (t, s) in R × [α, β].
Since the variables t and s are independent, this is true if and only if the set

supp [a(t) − F(a(s))] ∩ supp k(t, s)

has measure zero in R × [α, β]. �
Example 9.3.12 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) = I[α,β](t)x(t), (Bx)(t) =
β∫

α

I[α,β]2(t, s)x(s)ds, α, β ∈ R, α < β
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By using properties of norm and [19, Theorem 3.4.10], respectively, for operators
A and B, we conclude that operators A and B are well defined and bounded. For
a monomial defined by F(z) = zn , n = 1, 2, . . ., the above operators satisfy the
relation AB = BF(A). In fact, by setting a(t) = I[α,β](t), k(t, s) = I[α,β]2(t, s) we
have

supp [a(t) − F(a(s))] = {
(t, s) ∈ R × [α, β] : I[α,β](t) �= 1

} = (R \ [α, β]) × [α, β],

supp k(t, s) = [α, β] × [α, β].

The set supp [a(t) − F(a(s))] ∩ supp [k(t, s)] has measure zero in R × [α, β]. So
the result follows from Proposition9.3.11.

Example 9.3.13 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞
defined as follows, for almost all t ,

(Ax)(t) = [γ1 I[0,1/2)(t) − γ2 I[1/2,1](t)]x(t), (Bx)(t) =
1∫

0

k(t, s)x(s)ds

k : R × [0, 1] → R is a Lebesgue measurable function such that B is well defined.
The operator A is well defined and bounded. Consider a polynomial defined by
F(z) = δ0 + δ1z, where δ0, δ1, γ1, γ2 are constants such that

|δ0| + |δ1| + |γ1| + |γ2| �= 0.

If k(·, ·) is a measurable function such that one of the following is fulfilled:

(i) δ0 = −δ1γ1 and supp k(t, s) ⊆ (R \ [0, 1]) × [0, 1/2];
(ii) δ0 = δ1γ2 and supp k(t, s) ⊆ (R \ [0, 1]) × [1/2, 1];
(iii) δ0 + δ1γ1 − γ1 = 0 and supp k(t, s) ⊆ [0, 1/2] × [0, 1/2];
(iv) δ0 + δ1γ1 + γ2 = 0 and supp k(t, s) ⊆ [1/2, 1] × [0, 1/2];
(v) δ0 − δ1γ2 − γ1 = 0 and supp k(t, s) ⊆ [0, 1/2] × [1/2, 1];
(vi) δ0 − δ1γ2 + γ2 = 0 and supp k(t, s) ⊆ [1/2, 1] × [1/2, 1],
then the above operators satisfy the relation AB = BF(A).

In fact, putting a(t) = γ1 I[0,1/2)(t) − γ2 I[1/2,1](t) we have

[a(t) − F(a(s))] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if δ0 = −δ1γ1, t /∈ [0, 1], s ∈ [0, 1/2)
0, if δ0 = δ1γ2, t /∈ [0, 1], s ∈ [1/2, 1]
0, if δ0 + δ1γ1 − γ1 = 0, t ∈ [0, 1/2), s ∈ [0, 1/2)
0, if δ0 + δ1γ1 + γ2 = 0, t ∈ [1/2, 1), s ∈ [0, 1/2]
0, if δ0 − δ1γ2 − γ1 = 0, t ∈ [0, 1/2], s ∈ [1/2, 1]
0, if δ0 − δ1γ2 + γ2 = 0, t ∈ [1/2, 1], s ∈ [1/2, 1]
γ3, otherwise
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where γ3 can be different from zero depending on the constants involved. Thus,
in each condition we can choose k(t, s) = IS(t, s), where S = {(t, s) ∈ R × [0, 1] :
a(t) − F(a(s)) = 0} and with a positive measure. Or for instance we can take:

(i) k(t, s) = I[2,3]×[0,1/2](t, s) if δ0 = −δ1γ1;
(ii) k(t, s) = I[2,3]×[1/2,1](t, s) if δ0 = δ1γ2;
(iii) k(t, s) = I[0,1/3]×[1/3,1/2](t, s) if δ0 + δ1γ1 − γ1 = 0;
(iv) k(t, s) = I[2/3,1/2]×[0,1/2](t, s) if δ0 + δ1γ1 + γ2 = 0;
(v) k(t, s) = I[0,1/3]×[2/3,1](t, s) if δ0 − δ1γ2 − γ1 = 0;
(vi) k(t, s) = I[2/3,1]×[2/3,1](t, s) if δ0 − δ1γ2 + γ2.

According to the definition, in all above cases the set

supp [a(t) − F(a(s))] ∩ supp [k(t, s)]

has measure zero in R × [0, 1]. So the result follows from Proposition9.3.11.

Corollary 9.3.14 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞
defined as follows, for almost all t ,

(Ax)(t) = a(t)x(t), (Bx)(t) =
β∫

α

b(t)c(s)x(s)ds, α, β ∈ R, α < β,

where a : R → R, b : R → R, c : [α, β] → R are measurable functions. For a poly-
nomial defined by F(z) = δ0 + δ1z + · · · + δnzn, where δ0, δ1, . . . , δn are real con-
stants, we have

AB = BF(A)

if and only if the set

supp [a(t) − F(a(s))] ∩ supp [b(t)c(s)]

has measure zero in R × [α, β].
Proof This follows by Proposition9.3.11. �

Example 9.3.15 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) = a(t)x(t), (Bx)(t) =
β∫

α

b(t)c(s)x(s)ds, α, β ∈ R, α < β,

wherea(t) = −1 + I[α,β](t),b(t) = I[α−2,α−1](t), c(s) = 1.Wehave thata ∈ L∞(R)

and so ‖A‖L p ≤ ‖a‖L∞ . Therefore, A is well defined and bounded. Since kernel has
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compact support in R × [α, β], we can apply [19, Theorem 3.4.10] and we conclude
that operators B is well defined and bounded. Consider a polynomial defined by
F(z) = −1 + δ1z, where δ1 is a real constant. Then the above operators satisfy the
relation AB = BF(A). In fact, for (t, s) ∈ R × [α, β] we have

F(a(s)) − a(t) = −δ1 + δ1 I[α,β](s) − I[α,β](t) = −I[α,β](t).

Therefore, we have

supp [a(t) − F(a(s))] = [α, β] × [α, β],
supp b(t)c(s) = supp I[α−2,α−1](t)I[α,β](s) = [α − 2, α − 1] × [α, β].

The set supp [a(t) − F(a(s))] ∩ supp [I[α−2,α−1](t)I[α,β](s)] has measure zero. So
the result follows from Corollary9.3.14.

Example 9.3.16 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 < p < ∞ be
defined as follows, for almost all t ,

(Ax)(t) = a(t)x(t), (Bx)(t) =
β∫

α

b(t)c(s)x(s)ds, α, β ∈ R, α < β,

where a(t) = γ0 + I[
α,

α+β

2

](t)t2, γ0 is a real number, b(t) = (1 + t2)I[β+1,β+2](t),

c(s) = I[ α+β

2 ,β
](s)(1 + s4). Consider a polynomial defined by F(z) = δ0 + δ1z,

where δ0, δ1 are real constants and δ1 �= 0. If δ0 = γ0 − δ1γ0 then the above operators
satisfy the relation

AB − δ1BA = δ0B.

In fact, A is well defined, bounded since a ∈ L∞ and this implies ‖A‖L p ≤ ‖a‖L∞ .
Operator B is well defined, bounded since k(t, s) = b(t)c(s), (t, s) ∈ R × [α, β] has
compact support and satisfies conditions of [19, Theorem 3.4.10]. If δ0 = γ0 − δ1γ0
then we have

F(a(s)) − a(t) = δ0 + γ0δ1 + δ1 I[α,
α+β

2

](s)s2 − γ0 − I[
α,

α+β

2

](t)t2

= δ1 I[α,
α+β

2

](s)s2 − I[
α,

α+β

2

](t)t2.

Then we have

supp [a(t) − F(a(s))] =
(

R ×
[

α,
α + β

2

]

∪
[

α,
α + β

2

]

×
[
α + β

2
, β

])

\ W,

where W ⊆ R × [α, β] is a set with Lebesgue measure zero, and
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supp b(t)c(s) = supp (1 + t2)I[β+1,β+2](t)I[ α+β

2 ,β
](s)(1 + s4)

= [β + 1, β + 2] ×
[
α + β

2
, β

]

.

The set supp [a(t) − F(a(s))] ∩ supp [b(t)c(s)] has measure zero. So the result
follows from Corollary9.3.14.

Acknowledgements This work was supported by the Swedish International Development Coop-
eration Agency (Sida) bilateral program with Mozambique. Domingos Djinja is grateful to the
research environment Mathematics and Applied Mathematics (MAM), Division of Mathematics
and Physics, School of Education, Culture and Communication, Mälardalen University for excel-
lent environment for research in Mathematics. Partial support from Swedish Royal Academy of
Sciences is also gratefully acknowledged.

References

1. Adams, M., Gullemin, V.: Measure Theory and Probability. Birkhäuser (1996)
2. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Spaces, vol. I. Pitman

Advanced Publishing (1981)
3. Bratteli, O., Evans, D.E., Jorgensen, P.E.T.: Compactly supported wavelets and representations

of the Cuntz relations. Appl. Comput. Harmon. Anal. 8(2), 166–196 (2000)
4. Bratteli, O., Jorgensen, P.E.T.: Iterated function systems and permutation representations of

the Cuntz algebra. Mem. Amer. Math. Soc. 139(663), x+89 (1999)
5. Bratteli, O., Jorgensen, P.E.T.: Wavelets through a looking glass. The world of the spectrum.

Applied and Numerical Harmonic Analysis, , p. xxii+398. Birkhauser Boston, Inc., Boston,
MA (2002)

6. Carlsen, T.M., Silvestrov, S.:C∗-crossed products and shift spaces. Expo.Math. 25(4), 275–307
(2007)

7. Carlsen, T.M., Silvestrov, S.: On the Exel crossed product of topological covering maps. Acta
Appl. Math. 108(3), 573–583 (2009)

8. Carlsen, T.M., Silvestrov, S.: On the K -theory of the C∗-algebra associated with a one-sided
shift space. Proc. Est. Acad. Sci. 59(4), 272–279 (2010)

9. Conway, J.B.: A Course in Functional Analysis, 2nd ed. Graduate Texts in Mathematics, vol.
96. Springer (1990)

10. de Jeu, M., Svensson, C., Tomiyama, J.: On the Banach ∗-algebra crossed product associated
with a topological dynamical system. J. Funct. Anal. 262(11), 4746–4765 (2012)

11. de Jeu,M., Tomiyama, J.:Maximal abelian subalgebras and projections in twoBanach algebras
associated with a topological dynamical system. Studia Math. 208(1), 47–75 (2012)

12. Duddley, R.M.: Real Analysis and Probability. Cambridge University Press (2004)
13. Dutkay, D.E., Jorgensen, P.E.T.: Martingales, endomorphisms, and covariant systems of oper-

ators in Hilbert space. J. Operator Theory 58(2), 269–310 (2007)
14. Dutkay, D.E., Jorgensen, P.E.T., Silvestrov, S.: Decomposition of wavelet representations and

Martin boundaries. J. Funct. Anal. 262(3), 1043–1061 (2012). arXiv:1105.3442 [math.FA]
(2011)

15. Dutkay, D.E., Larson, D.R., Silvestrov, S: Irreducible wavelet representations and ergodic auto-
morphisms on solenoids. Oper. Matrices 5(2), 201–219 (2011). arXiv:0910.0870 [math.FA]
(2009)

16. Dutkay, D.E., Silvestrov, S.: Reducibility of the wavelet representation associated to the Cantor
set. Proc. Amer. Math. Soc. 139(10), 3657–3664 (2011). arXiv:1008.4349 [math.FA] (2010)

http://arxiv.org/abs/1105.3442
http://arxiv.org/abs/0910.0870
http://arxiv.org/abs/1008.4349


9 Multiplication and Linear Integral Operators on Lp Spaces … 229

17. Dutkay, D.E., Silvestrov, S.: Wavelet representations and their commutant. In: Åström, K.,
Persson, L.-E., Silvestrov, S.D. (eds.) Analysis for Science, Engineering and Beyond. Springer
Proceedings in Mathematics, vol. 6, Chap. 9, pp. 253–265. Springer, Berlin, Heidelberg (2012)

18. Folland, G.: Real Analysis: Modern Techniques and Their Applications, 2nd edn.Wiley (1999)
19. Hutson, V., Pym, J.S., Cloud, M.J.: Applications of Functional Analysis and Operator Theory,

2nd edn. Elsevier (2005)
20. Jorgensen, P.E.T.: Analysis and Probability: Wavelets, Signals, Fractals. Graduate Texts in

Mathematics, vol. 234, p. xlviii+276. Springer, New York (2006)
21. Jorgensen, P.E.T.: Operators and Representation Theory. Canonical Models for Algebras of

Operators Arising in Quantum Mechanics. North-Holand Mathematical Studies, vol. 147
(Notas de Matemática 120), p. viii+337. Elsevier Science Publishers (1988)

22. Jorgensen, P.E.T., Moore, R.T.: Operator Commutation Relations. Commutation Relations
for Operators, Semigroups, and Resolvents with Applications to Mathematical Physics and
Representations of Lie Groups, p. xviii+493. Springer Netherlands (1984)

23. Kantorovitch, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergramond Press Ltd, England
(1982)

24. Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis,
vol. 1. Graylock Press (1957)

25. Krasnosel’skii, M.A., Zabreyko, P.P., Pustylnik, E.I., Sobolevski, P.E.: Integral Operators on
the Space of Summable Functions. Noordhoff International Publishing. Springer Netherlands
(1976)

26. Mackey, G.W.: Induced Representations of Groups and QuantumMechanics. W. A. Benjamin,
New York; Editore Boringhieri, Torino (1968)

27. Mackey, G.W.: The Theory of Unitary Group Representations. University of Chicago Press
(1976)

28. Mackey, G.W.: Unitary Group Representations in Physics, Probability, and Number Theory.
Addison-Wesley (1989)

29. Mansour, T., Schork, M.: Commutation Relations, Normal Ordering, and Stirling Numbers.
CRC Press (2016)

30. Musonda, J.: Reordering in Noncommutative Algebras, Orthogonal Polynomials and Opera-
tors. Ph.D. Thesis, Mälardalen University (2018)

31. Musonda, J., Richter, J., Silvestrov, S.: Reordering in a multi-parametric family of algebras. J.
Phys.: Conf. Ser. 1194, 012078 (2019)

32. Musonda, J., Richter, J., Silvestrov, S.: Reordering in noncommutative algebras associated
with iterated function systems. In: Silvestrov, S., Malyarenko, A., Ranc̆ić, M. (eds.) Algebraic
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Covariance Type Commutation Relations
by Piecewise Function Multiplication
and Composition Operators
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Abstract Representations of polynomial covariance type commutation relations
are constructed on Banach spaces L p andC[α, β] α, β ∈ R. Representations involve
operators of multiplication with piecewise functions, multiplication operators and
inner superposition operators.
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10.1 Introduction

In many areas of applications there can be found relations of the form

ST = F(T S) (10.1)

where S, T are elements of an associative algebra and F : R → R is a function
satisfying certain conditions. For example, if F(z) = z, then S and T commute. If
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F(z) = −z, then S and T anti-commute. If F(z) = δ0 + δ1z, then S and T satisfy
the relation

ST − δ1T S = δ0 I, (10.2)

where δ0, δ1 are constants and I is the identity element. This relation is known as
the deformed Heisenberg commutation relation [21]. If δ0 = δ1 = 1, then (10.2)
reduces to the canonical Heisenberg commutation relation ST − T S = I which is
important in differential and integral calculus and quantum physics. If δ0 = 0 then
(10.2) reduces to the quantum plane relation ST = δ1T S.Elements of an algebra that
satisfy (10.1) are called a representation of this relation in that algebra. Representa-
tions of covariance commutation relations (10.1) by linear operators are important
for study of actions and induced representations of groups and semigroups, crossed
product operator algebras, dynamical systems, harmonic analysis, wavelets and frac-
tals analysis and have applications in physics and engineering [4, 5, 11, 22–24,
27–29, 35, 36, 43]. A description of the structure of representations for the relation
(10.1) andmore general families of self-adjoint operators satisfying such relations by
bounded and unbounded self-adjoint linear operators on a Hilbert space use reorder-
ing formulas for functions of the algebra elements and operators satisfying covariance
commutation relation, functional calculus and spectral representation of operators
and interplay with dynamical systems generated by iteration of maps involved in the
commutation relations [3, 7–9, 12, 13, 15–19, 30–35, 37–41, 43–56]. Algebraic
properties of the commutation relation (10.1) are important in description of prop-
erties of its representations. For instance, there is a well-known link between linear
operators satisfying the commutation relation (10.1) and spectral theory [43]. In case
of ∗-algebras, when S = X and T = X∗ where X is an element in the algebra, the
relation (10.1) reduces to XX∗ = F(X∗X). This relation often can be transformed
to relations of the form

AB = BF(A), (10.3)

BA = F(A)B (10.4)

for some other elements A, B of the ∗-algebra obtained from X and X∗ using some
transformations or factorizations in an appropriate functional calculus (see for exam-
ple [35, 39, 43, 44, 55, 56] and references cited their). A description of the structure
of representations of relation (10.3) by bounded and unbounded self-adjoint linear
operators on Hilbert space by using spectral representation [2] of such operators is
given in [43], where also more general families of commuting self-adjoint operators
satisfying relation (10.3) with other operators on Hilbert spaces are considered using
spectral theory and non-commutative analysis for bounded and unbounded operators
on Hilbert spaces.
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In this paper we construct representations of relation (10.3) and (10.4) by linear
operators acting on Banach spaces L p and C[α, β] for α, β ∈ R, and F is a poly-
nomial. When B = 0, the relation (10.3) is trivially satisfied for any A. If A = 0
then the relation (10.3) reduces to F(0)B = 0. This implies either (F(0) = 0 and
B can be any well defined operator) or B = 0. Thus, we focus on construction and
properties of non-zero representations of (10.3). Such representations can also be
viewed as solutions for operator equations AX = XF(A), when A is specified or
XB = BF(X) when B is specified. We consider representations of (10.3) involv-
ing linear operators with piecewise function multiplication operators, multiplication
operators and inner superposition operators. We derive conditions on the parameters
or functional coefficients of operators so that they satisfy (10.3) for a polynomial F .
In contrast to [35, 43, 44, 56] devoted to involutive representations of covariance
type relations by operators on Hilbert spaces using spectral theory of operators on
Hilbert spaces, we aim at direct construction of various classes of representations of
covariance type relations in specific important classes of operators on Banach spaces
more general than Hilbert spaces without imposing any involution conditions and
not using classical spectral theory of operators.

This paper is organized in five sections, after the introduction, we present in
Sect. 10.2 preliminaries, notations and basic definitions. In Sect. 10.3, we present
representations involving piecewise function multiplication operators acting on L p

for 1 < p < ∞. In Sect. 10.4, we construct representations involving inner superpo-
sition operators. These operators are important in wavelets analysis for instance. In
Sect. 10.5 we construct representations by multiplication operators acting on L p for
1 < p < ∞ and the space of continuous functions.

10.2 Preliminaries and Notations

We use the following basic standard definitions and notations (see for example
[1, 6, 10, 14, 20, 25, 26, 42]). Let S ⊆ R, (R is the set of real numbers), be a
Lebesgue measurable set and let (S,Σ, m̃) be a σ -finite measure space, that is, S is
a nonempty set, Σ is a σ−algebra with subsets of S, where S can be covered with at
most countably many disjoint sets E1, E2, E3, . . . such that Ei ∈ Σ, m̃(Ei ) < ∞,
i = 1, 2, . . . and m̃ is the Lebesgue measure. For 1 � p < ∞, we denote by L p(S),
the set of all classes of equivalent measurable functions f : S → R such that
∫

S
| f (t)|pdt < ∞. This is a Banach space with norm ‖ f ‖p =

(
∫

S
| f (t)|pdt

) 1
p

. We

denote by L∞(S) the set of all classes of equivalent measurable functions f : S → R
such that there exists a constant λ > 0 for which | f (t)| ≤ λ for almost every t . This
is a Banach space with norm ‖ f ‖∞ = ess supt∈S | f (t)|. We denote by C[α, β] the
set of all continuous functions f : [α, β] → R. This is a Banach space with norm
‖ f ‖ = maxt∈[α,β] | f (t)|.
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10.3 Representations by Operators Involving Piecewise
Functions

Remark 10.3.1 When operators are given in abstract form, we use the notation
A : L p(R) → L p(R) meaning that operator A is well defined from L p(R) to L p(R)

without discussing sufficient conditions for that to be satisfied.

Proposition 10.3.1 Let (R,Σ, m̃) be the standard Lebesgue measure space on the
real line. Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 ≤ p ≤ ∞ be defined as
follows

(Ax)(t) =
l∑

i=1

αi a(t)IGi x(t), (Bx)(t) =
m∑

i=1

βi b(t)IHi x(t), (10.5)

where Gi ∈ Σ for each i = 1, . . . , l, m̃(Gi ∩ G j ) = 0 if i 
= j , Hi ∈ Σ for each
i = 1, . . . ,m, m̃(Hi ∩ Hj ) = 0 if i 
= j , IGk is the indicator function of the set Gk,
a, b : R → R are measurable functions. Then, for a polynomial F1(z) = δ0 + F(z)
with real coefficients δi ∈ R, i = 0, . . . , n, where F(z) = δ1z + · · · + δnzn, we have
AB = BF1(A) if and only if for almost every t ,

l∑

i=1

m∑

j=1

αiβ j a(t)b(t)IGi∩Hj (t) =
m∑

j=1

δ0β j b(t)IHj (t) +
l∑

i=1

m∑

j=1

β j b(t)IGi∩Hj (t)F(a(t)αi ).

Proof Consider a monomial M(z) = δzn , where n is a positive integer, and δ ∈ R.
We compute AB, δAn and BδAn as follows:

(ABx)(t) =
l∑

i=1

αi a(t)IGi (t)

⎛

⎝
m∑

j=1

β j b(t)IHj (t)x(t)

⎞

⎠

=
l∑

i=1

m∑

j=1

αiβ j a(t)b(t)IGi∩Hj (t)x(t),

(A2x)(t) =
l∑

i=1

m∑

j=1

αi a(t)α j a(t)IGi∩G j (t)x(t) =
l∑

i=1

α2
i a

2(t)IGi (t)x(t)

for almost all t . Therefore, for almost all t ∈ R,
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(δAnx)(t) =
l∑

i=1

δαn
i a

n(t)IGi (t)x(t),

(BδAnx)(t) =
m∑

j=1

l∑

i=1

β j b(t)δα
n
i a

n(t)I nGi
(t)IHj (t)x(t)

=
m∑

j=1

l∑

i=1

β j b(t)δα
n
i a

n(t)IGi∩Hj (t)x(t).

Thus AB = BM(A) if and only if for almost every t ∈ R,

l∑

i=1

m∑

j=1

αi a(t)β j b(t)IGi∩Hj (t) =
m∑

j=1

l∑

i=1

δαn
i a

n(t)β j b(t)I
n
Gi

(t)IHj (t)

=
l∑

i=1

m∑

j=1

M(αi a(t))β j b(t)IGi∩Hj (t).

Suppose now that F1(z) = δ0 + F(z), where F(z) = δ1z + · · · + δnzn , where δi ,

i = 0, . . . , n are constants. Then, for almost every t ∈ R we have

F1(A)x(t) = δ0x(t) + F(A)x(t) = δ0x(t) +
l∑

i=1

F(αi a(t)IGi (t))x(t)

BF1(A)x(t) = δ0(Bx)(t) + BF(A)x(t)

=
m∑

j=1

δ0β j b(t)IHj (t)x(t) +
l∑

i=1

m∑

j=1

b(t)F(αi a(t))β j IGi∩Hj (t)x(t).

Then AB = BF1(A) if and only if for almost every t ∈ R,

l∑

i=1

m∑

j=1

αi a(t)b(t)β j IGi∩Hj (t)

=
m∑

j=1

δ0b(t)β j IHj (t) +
l∑

i=1

m∑

j=1

F(αi a(t))b(t)β j IGi∩Hj (t). �

Example 10.3.2 Let A : L p([1, 3]) → L p([1, 3]), B : L p([1, 3]) → L p([1, 3]),
1 ≤ p ≤ ∞ be operators defined as follows, for almost every t ,

(Ax)(t) =
3∑

i=1

αi IGi x(t), (Ax)(t) =
3∑

i=1

βi IHi x(t),
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where

G1 = [1, 3/2), G2 = [3/2, 2], G3 = (2, 3], H1 = [1, 2],
H2 = (2, 5/2], H3 = (5/2, 3], (10.6)

αi , βi ∈ R, i = 1, 2, 3. Let F(z) = δ0 + δ3z3, where δ0, δ3 ∈ R. By applying
Proposition10.5.1 we have AB = Bδ0 + δ3BA3 if and only if

3∑

i=1

3∑

j=1

αiβ j IGi∩Hj (t) = δ0

3∑

j=1

β j IHj (t) +
3∑

i=1

3∑

j=1

δ3α
3
i β j IGi∩Hj (t).

By simplifying this we have

β1

2∑

i=1

αi IGi (t) + α3

3∑

i=2

βi IHi (t)

=
2∑

i=1

δ0β j IHj (t) + β1

2∑

i=1

δ3α
3
i IGi (t) + α3

3δ3

3∑

i=2

βi IHi (t).

This is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

β1α1 = δ0β1 + β1δ3α
3
1

β1α2 = δ0β1 + β1δ3α
3
2

β2α3 = δ0β2 + β2δ3α
3
3

β3α3 = δ0β3 + β3δ3α
3
3

⇔
{
F(αi )β1 = αiβ1, i = 1, 2,
F(α3)βi = α3βi , i = 2, 3.

This is equivalent to the following:

β1 = 0, or F(αi ) = αi , i = 1, 2,

F(α3) = α3, or β j = 0, j = 2, 3.

In particular, this holds if βi 
= 0, for i = 1, 2, 3 and F(αi ) = αi for i = 1, 2, 3.
Therefore, the operators

(Ax)(t) =
3∑

i=1

αi IGi x(t), (Bx)(t) =
3∑

i=1

βi IHi x(t),

where βi 
= 0, i = 1, 2, 3, each αi obeys F(αi ) = αi , i = 1, 2, 3, and the sets Gi ,
Hi , i = 1, 2, 3 are given by (10.6), satisfy AB = δ0B + δ3BA3 for real constants δ0
and δ3.
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In the following corollary we consider a case where both operators A and B are
considered on the same partition.

Corollary 10.3.3 Let (R,Σ, m̃) be the standard Lebesgue measure space on the
real line. Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 ≤ p ≤ ∞ be defined as
follows

(Ax)(t) =
l∑

i=1

αi a(t)IGi x(t), (Bx)(t) =
l∑

i=1

βi b(t)IGi x(t),

where Gi ∈ Σ for i = 1, 2, . . . , l, m̃(Gi ∩ G j ) = 0 for i 
= j , IGk is the indicator
function of the set Gk, and a, b : R → R are measurable functions. Then, for a poly-
nomial F1(z) = δ0 + F(z), where F(z) = δ1z + · · · + δnzn, δi ∈ R, i = 0, . . . , n,
the commutation relation AB = BF1(A) is satisfied if and only if

l∑

i=1

αiβi a(t)b(t)IGi (t) =
l∑

i=1

b(t)F1(a(t)αi )βi IGi (t) for almost every t .

Proof By applying Proposition10.3.1 we have AB = BF1(A) if and only if

l∑

i, j=1

αi a(t)b(t)β j IGi∩G j (t) =
l∑

j=1

b(t)δ0β j IG j (t) +
l∑

j,i=1

b(t)F(αi a(t))β j IGi∩G j (t)

for almost every t . Since Gi ∩ G j = ∅ when i 
= j , the last condition becomes

l∑

i=1

αi a(t)b(t)βi IGi (t) =
l∑

i=1

b(t)δ0βi IGi (t) +
l∑

i=1

b(t)F(αi a(t))βi IGi (t)

=
l∑

i=1

b(t)βi IGi (t)[δ0 + F(αi a(t))] =
l∑

i=1

b(t)βi IGi (t)F1(αi a(t)). �

Corollary 10.3.4 Let (R,Σ, m̃) be the standard Lebesgue measure space on the
real line. Consider the operators A and B defined in (10.5) where β j 
= 0 for all
j ∈ {1, . . . ,m}. Then, for a constant monomial F1(z) = δ0, we have AB = BF1(A)

if and only if for all i ∈ {1, . . . , l}, j ∈ {1, . . . ,m}, the set

supp (αi a(t) − δ0) ∩ supp b(t) ∩ (Gi ∩ Hj )

has measure zero.
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Proof We have F1(A)x(t) = δ0x(t), for almost all t . Moreover, for almost every t

(ABx)(t) =
l∑

i=1

αi a(t)IGi (t)

⎛

⎝
m∑

j=1

β j b(t)IHj (t)x(t)

⎞

⎠ =
l∑

i=1

m∑

j=1

αiβ j a(t)b(t)IGi∩Hj x(t)

(BF1(A)x)(t) =
m∑

j=1

δ0β j b(t)IHj (t)x(t),

Then, for almost every t ∈ R we have AB = BF1(A) if and only if

l∑

i=1

m∑

j=1

αi a(t)β j b(t)IGi∩Hj (t) =
m∑

j=1

δ0β j b(t)IHj (t),

which is equivalent to

l∑

i=1

αi a(t)β j b(t)IGi∩Hj (t) = δ0β j b(t)IHj (t), for almost every t ∈ R, j ∈ {1, . . . ,m}.

Since β j 
= 0 for all j , the last condition is equivalent to the following: for
t ∈ Gi ∩ Hj , 1 ≤ i ≤ l, 1 ≤ j ≤ m, (αi a(t) − δ0)b(t) = 0, which is equivalent to
that the set supp (αi a(t) − δ0) ∩ supp b(t) ∩ (Gi ∩ Hj ) has measure zero, for all
i ∈ {1, . . . , l}, j ∈ {1, . . . ,m}. �

Corollary 10.3.5 Let (R,Σ, m̃) the standard Lebesgue measure space on the real
line. Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 ≤ p ≤ ∞ be defined as fol-
lows, for almost every t ,

Ax(t) =
l∑

i=1

αi a(t)IGi (t)x(t), (Bx)(t) = IGk (t)b(t)x(t), 1 ≤ k ≤ l

where Gi ∈ Σ for each i = 1, . . . , l, m̃(Gi ∩ G j ) = 0 for i 
= j , IGk (t) is the indica-
tor function for the set Gk, a, b : R → R are measurable functions. For a polynomial
F(z) = δ1z + · · · + δnzn, δ j ∈ R, j = 1, . . . , n, we have AB = BF(A) if and only
if

supp b ∩ supp [αka − F(αka)] ∩ Gk

has measure zero.

Proof We write the operator B as follows

(Bx)(t) = IGk (t)b(t)x(t) =
l∑

j=1

β j b(t)IG j (t)x(t),
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almost everywhere, where β j =
{
1, j = k
0, otherwise

. By using Corollary10.3.3 we

have AB = BF(A) if and only if for almost very t

l∑

i=1

αiβi a(t)b(t)IGi (t) =
l∑

i=1

b(t)F(a(t)αi )βi IGi (t).

We can simplify the last relation as follows

αka(t)b(t)IGk (t) = b(t)F(a(t)αk)IGk (t) ⇔ b(t)(a(t)αk − F(a(t)αk)) = 0,

for almost every t ∈ Gk , which is equivalent to the set

supp b ∩ supp (αka − F(αka)) ∩ Gk

has measure zero. �

Example 10.3.6 Let A : L p[0, 1] → L p[0, 1], B : L p[0, 1] → L p[0, 1], 1 ≤ p ≤
∞ be defined as follows

(Ax)(t) = α I[0,1/3](t)x(t) + β I(1/3,1/2](t)x(t) + γ I(1/2,1](t)x(t)
(Bx)(t) = I(1/3,1/2)(t)x(t),

whereα, β are constants and IE is the indicator function of the set E . For amonomial
F(z) = zn , where n is a positive integer, we have

AB = BF(A) (that is AB = BAn)

if and only if F(β) = β. In fact, taking a partition G1 ∪ G2 ∪ G3 where

G1 = [0, 1/3], G2 = (1/3, 1/2), G3 = [1/2, 1],

we have Ax(t) = (α IG1(t) + β IG2(t) + γ IG3(t))x(t) and Bx(t) = IG2(t)x(t). By
applying Corollary10.3.5 we have AB = BF(A) if and only if F(β) = β.

In this case, we can also get the same result by the following direct computation.
For almost every t ∈ [0, 1],
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(ABx)(t) = A(Bx)(t) = (α I[0,1/3](t) + β I(1/3,1/2)(t) + γ I(1/2,1](t))(Bx)(t)
= (α I[0,1/3](t) + β I1/3,1/2(t) + γ I(1/2,1](t))I(1/3,1/2)(t)x(t)
= β I(1/3,1/2)(t)x(t)

(A2x)(t) = A(Ax)(t) = (α I[0,1/3](t) + β I(1/3,1/2)(t) + γ I(1/2,1](t))(Ax)(t)
= (α I[0,1/3](t) + β I(1/3,1/2)(t) + γ I(1/2,1](t))((α I[0,1/3](t) + β I(1/3,1/2)(t)

+ γ I(1/2,1](t))x(t))
= (α2 I[0,1/3](t) + β2 I(1/3,1/2)(t) + γ 2 I(1/2,1](t))x(t).

In general, for almost every t ,

(Anx)(t) = (αn I[0,1/3](t) + βn I(1/3,1/2)(t))x(t) + γ n I[1/2,1](t)x(t).

Thus, for almost every t ,

(BF(A)x)(t) = (BAnx)(t) = B(Anx)(t) = I(1/3,1/2)(A
nx)(t)

= βn I(1/3,1/2)(t)x(t) = F(β)I(1/3,1/2)(t)x(t).

10.4 Representations Involving Inner Superposition
Operators

In this section we will look at the relation BA = F(A)B which has important appli-
cations in wavelets analysis for instance.

Proposition 10.4.1 Let (R,Σ, m̃) the standard Lebesgue measure space on the real
line. Let A : L p(R) → L p(R), B : L p(R) → L p(R), p ≥ 1 be defined as follows,
for almost every t ∈ R,

(Ax)(t) =
∞∑

i=−∞
αi IGi (t)x(t − 1), (Bx)(t) = βx(γ t),

where Gi ∈ Σ for each i ∈ Z, m̃(Gi ∩ G j ) = 0 for i 
= j , IGk (t) is the indi-
cator function for the set Gk, β, γ ∈ R \ {0} and γ > 0, αi ∈ R, for all i ∈ Z.
For a monomial F(z) = δzm, where δ ∈ R \ {0}, m is a positive integer, we have
(BAx)(t) = (F(A)Bx)(t) for almost every t if and only if

∞∑

i=−∞
αi IGi (γ t)x(γ t − 1) = δ

∞∑

i=−∞
αm
i IGi (t)x(γ t − γm). (10.7)
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Proof For almost every t ∈ R we have

(A2x)(t) = A

( ∞∑

i=−∞
αi IGi (t)x(t − 1)

)

=
∞∑

i=−∞
αi IGi (t)(Ax)(t − 1)

=
∞∑

i=−∞
αi IGi (t)

∞∑

j=−∞
α j IG j (t)x(t − 2) =

∞∑

i=−∞
α2
i IGi (t)x(t − 2).

We suppose that for almost every t ∈ R,

(Amx)(t) =
∞∑

i=−∞
αm
i IGi (t)x(t − m).

for m = 1, 2, . . . . Then we have, for almost every t ,

(Am+1x)(t) = A(Amx)(t) = A

( ∞∑

i=−∞
αm
i IGi (t)x(t − m)

)

=
∞∑

i=−∞
αi IGi (t)

∞∑

j=−∞
αm
j IG j (t)x(t − m − 1)

=
∞∑

i=−∞
αm+1
i IGi (t)x(t − (m + 1)).

Moreover, we have for almost every t ∈ R,

(BAx)(t) = β

∞∑

i=−∞
αi IGi (γ t)x(γ t − 1)

δ(AmBx)(t) = δβ

∞∑

i=−∞
αm
i IGi (t)x(γ t − γm).

Therefore, (BAx)(t) = (F(A)Bx)(t) for almost every t if and only if

∞∑

i=−∞
αi IGi (γ t)x(γ t − 1) = δ

∞∑

i=−∞
αm
i IGi (t)x(γ t − γm), for almost every t.

(10.8)

�
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Proposition 10.4.2 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 ≤ p ≤ ∞
defined as follows

(Ax)(·) = αx(a(·)), (Bx)(·) = βx(b(·)),

where α, β are non zero real numbers, a, b : R → R are continuous functions. For
a monomial F(z) = δzm where δ ∈ R \ {0}, m ∈ Z>0 = {1, 2, . . .}, we have for x ∈
L p(R) and for almost every t ,

(BAx)(t) = (F(A)Bx)(t)

if and only if
x(a(b(t))) = δ · αm−1 · x(b(a◦(m)(t)).

Proof We have for almost every t

(BAx)(t) = αβx(a(b(t))),

(A2x)(t) = α2x(a(a(t))).

In the same way we have for almost every t

(Amx)(t) = αmx(a◦(m)(t)),

δ(AmBx)(t) = δαmβx(b(a◦(m)(t))).

Then, for all L p(R), 1 ≤ p ≤ ∞, ABx = BF(A)x if and only if for almost every t ,

x(a(b(t))) = δ · αm−1x(b(a◦(m)(t))). (10.9)

�

Example 10.4.3 Consider operators A : L2(R) → L2(R), B : L2(R) → L2(R) be
defined as follows, for almost every t ,

(Ax)(t) = x(t − 1), (Bx)(t) = γ 1/2x(γ t), γ > 0.

These operators are particular case of the corresponding ones of Proposition10.4.2
when a(t) = t − 1, b(t) = γ t , α = 1, β = γ

1
2 . We get

b(a(t)) = γ t − 1, a◦(m)(b(t)) = γ t − γm, m = 1, 2, 3, . . . .

If γ = 1
m and δ = 1, then we get on both sides x( t

m − 1) and thus BA = AmB on
L p(R). For example, when γ = 1/2 and m = 2, we have operators
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(Ax)(t) = x(t − 1), (Bx)(t) = 1

21/2
x

(
1

2
t

)

,

which satisfy BA = A2B.

10.5 Representations Involving Weighted Composition
Operators

In this section we consider pairs of operators (A, B)which involve weighted compo-
sition operators, and the multiplication operator composed with the point evaluation
functional υγ : x(t) �→ x(γ ) (“boundary value” operator, “one-dimensional range”
operator). These operators act on some spaces of real-valued functions x(t) of one
real variable by the formulas

(Tw,σ x)(t) = w(t)x(σ (t)), Tw,υγ
x(t) = w(t)x(γ ), t, γ ∈ R.

Note that the multiplication operator composed with the point evaluation functional
is a special case of weighted composition operator in these notations since

Tw,υγ
= Tw,σ , for σ = υγ .

Proposition 10.5.1 Let A : L p(R) → L p(R), B : L p(R) → L p(R), 1 ≤ p ≤ ∞ be
defined for measurable functions a, b : R → R by

(Ax)(·) = a(·)x(·), (Bx)(·) = b(·)x(·).

For a polynomial F(z) = δ0 + δ1z + · · · + δnzn with coefficients δ0, δ1, . . . , δn ∈ R,

AB = BF(A),

if and only if, supp b ∩ supp [a − F(a)] has measure zero.
Proof For almost every t ∈ R,

(ABx)(t) = A(Bx)(t) = a(t)b(t)x(t),

(A2x)(t) = A(Ax)(t) = a(t)(Ax)(t) = [a(t)]2x(t) = [a(t)]2x(t),
(A3x)(t) = A(A2x)(t) = [a(t)]3x(t).

Therefore, for n ≥ 1 and for almost every t ,

(Anx)(t) = [a(t)]nx(t), (BAnx)(t) = B(Anx)(t) = b(t)(Anx)(t) = b(t)[a(t)]nx(t).
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Thus, we have for almost every t ,

(BF(A)x)(t) =
n∑

k=0

δk(B(Akx))(t) =
n∑

k=0

δkb(t)[a(t)]k x(t) = b(t)F(a(t))x(t).

Then AB = BF(A) if and only if for almost every t ,

b(t)F(a(t)) = a(t)b(t).

This is equivalent to the set supp b ∩ supp [a − F(a)] having measure zero. �

10.5.1 Representations by Operators on C[α, β]

In this subsection we consider pairs of operators (A, B) which involve weighted
composition operators, and themultiplication operator composedwith the point eval-
uation functional υγ : x(t) �→ x(γ ) (“boundary value” operator, “one-dimensional
range” operator). These operators act on some spaces of continuous real-valued
functions of one real variable x(t) by the formulas:

(Tw,σ x)(t) = w(t)x(σ (t)), Tw,υγ
x(t) = w(t)x(γ ), t, γ ∈ R.

Proposition 10.5.2 Let A : C[α, β] → C[α, β], B : C[α, β] → C[α, β], 1 ≤ p ≤
∞ defined as follows

(Ax)(t) = a(t)x(υ(t)), (Bx)(t) = b(t)x(σ (t)),

where α, β are real numbers, α < β, a, b, υ, σ : [α, β] → [α, β] are continuous
functions. For a monomial F(z) = δzm where δ ∈ R \ {0}, m = 1, 2, . . ., and for
x ∈ C[α, β],

(ABx)(t) = (BF(A)x)(t)

for each t ∈ [α, β], if and only if

a(t)b(υ(t))x(σ (υ(t))) = δb(t)a(σ (t)) · a(υ(σ (t))) · . . . · a(υ◦(m−1)(σ (t)))x(σ (υ◦(m)(t))).

Proof For each t ∈ [α, β]

(ABx)(t) = a(t)b(υ(t))x(σ (υ(t))),

(A2x)(t) = a(t)a(υ(t))x(υ(υ(t)))).

In the same way we have for n ≥ 1 and for each t ∈ [α, β],
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(Anx)(t) = a(t)a(υ(t))a(υ◦(2)(t)) . . . a(υ◦(n−1)(t))x(υ◦(n)(t)),

δ(BAmx)(t) = δb(t)a(σ (t))a(υ(σ (t))) · . . . · a(υ◦(m−1)(σ (t)))x(υ◦(m)(σ (t))).

Then ABx = BF(A)x for all x ∈ C[α, β] if and only if for all t ∈ [α, β],

a(t)b(υ(t))x(σ (υ(t)))

= δb(t)a(σ (t)) · a(υ(σ (t))) · . . . · a(υ◦(m−1)(σ (t)))x(υ◦(m)(σ (t))).

�

10.5.1.1 Representations when B is the Multiplication Operator

In this case σB(t) = t, t ∈ R is the identity map.

Lemma 10.5.1 Let a, b ∈ C[α, β], α, β ∈ R, α < β. If the set Ω = supp a ∩
supp b has measure zero, then it is empty.

Proof Without loss of generality we suppose that there exists α0 ∈]α, β[ such that
α0 ∈ Ω , that is, Ω is not empty. Then, a(α0) 
= 0 and b(α0) 
= 0. Since a, b are
continuous functions, there is an open interval Vα0 =]α0 − ε, α0 + ε[⊆]α, β[, ε > 0
such that a(t) 
= 0 and b(t) 
= 0 for all t ∈ Vα0 . Then the Lebesgue measure of Ω is
positive. But this contradicts the hypothesis. Then the set Ω must be empty. �

Proposition 10.5.3 Let A : C[α, β] → C[α, β], B : C[α, β] → C[α, β] defined by

(Ax)(t) = a(t)x(γ ), (Bx)(t) = b(t)x(t),

where α, β are real numbers, α < β, γ ∈ [α, β] and a, b : [α, β] → R are con-
tinuous functions. Let F(z) = δ0 + δ1z + · · · + δnzn, δi ∈ R, i = 0, 1, . . . , n. For
x ∈ C[α, β] and t ∈ [α, β],

(ABx)(t) = (BF(A)x)(t)

if and only if,

a(t)b(γ )x(γ ) = δ0b(t)x(t) + δ1b(t)a(t)x(γ ) + b(t)a(t)x(γ )

n∑

j=2

δ j [a(γ )] j−1.

(10.10)

Proof We have
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(ABx)(t) = A(Bx)(t) = a(t)(Bx)(γ ) = a(t)b(γ )x(γ )

(Amx)(t) = a(t)x(γ ) + a(t)[a(γ )]m−1x(γ ), m = 2, 3, . . .

((BAm)x)(t) = (BAmx)(t) =
{

b(t)a(t)x(γ ), m = 1
b(t)a(t)[a(γ )]m−1x(γ ), m = 2, 3, . . .

(BF(A)x)(t) = δ0b(t)x(t) + δ1b(t)a(t)x(γ ) +
n∑

j=2

δ j b(t)a(t)[a(γ )] j−1x(γ ).

Then (ABx)(t) = (BF(A)x)(t) if and only if

a(t)b(γ )x(γ ) = δ0b(t)x(t) + δ1b(t)a(t)x(γ ) +
n∑

j=2

δ j b(t)a(t)[a(γ )] j−1x(γ ). �

Corollary 10.5.4 Let A : C[α, β] → C[α, β], B : C[α, β] → C[α, β] be defined
by

(Ax)(t) = a(t)x(γ ), (Bx)(t) = b(t)x(t),

where α, β are real numbers, α < β, γ ∈ [α, β] and a, b : [α, β] → R are contin-
uous functions such that a(γ ) 
= 0, b(γ ) 
= 0. Let F(z) = δ1z + · · · + δnzn, where
δi ∈ R, i = 1, . . . , n. The following statements hold.

(i) If b(·) is not constant in any open interval included in [α, β], then

AB 
= BF(A).

(ii) If b(·) is constant in some open interval included in [α, β], then

AB = BF(A)

if and only if supp a ∩ supp
[
b(γ ) − b · k1

] = ∅, where k1 =
n∑

j=1
δ j [a(γ )] j−1.

In particular, if b(·) is identically non-zero constant in [α, β] then AB = BF(A)

if and only if k1 = 1.

Proof Suppose that there exist two continuous functions a, b : [α, β] → R, a(γ ) 
=
0, b(γ ) 
= 0 and a polynomial F(z) = δ1z + · · · + δnzn such that ABx = BF(A)x
for all x ∈ C[α, β]. By applying Proposition10.5.3, (ABx)(t) = (BF(A)x)(t) if
and only if for all x ∈ C[α, β],

a(t)b(γ )x(γ ) =
n∑

j=1

δ j b(t)a(t)[a(γ )] j−1x(γ ).

This is equivalent to
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a(t)b(γ ) =
n∑

j=1

δ j b(t)a(t)[a(γ )] j−1 ⇔ a(t)

⎡

⎣b(γ ) − b(t)
n∑

j=1

δ j [a(γ )] j−1

⎤

⎦ = 0,

which is equivalent to the set

Ω = supp a ∩ supp

⎡

⎣b(γ ) − b ·
n∑

j=1

δ j [a(γ )] j−1

⎤

⎦

has measure zero. Since a, b are continuous functions, by applying Lemma10.5.1
we conclude that the set Ω is empty. We consider the following cases.

Case 1: If b(·) is not constant in any open interval included in [α, β] and

k1 =
n∑

j=1

δ j [a(γ )] j−1 
= 1,

then γ ∈ Ω . This contradicts the fact that Ω is empty.
Case 2: Suppose k1 = 1 and b(·) is not constant in any open interval included in
[α, β] and without loss of generality suppose that γ ∈]α, β[. Since the functions
a and b(γ ) − k1b(t) are continuous, then for some positive ε, we can find an open
interval ]γ − ε, γ + ε[⊆]α, β[ such that the set

supp a ∩ supp
[
b(γ ) − b · k1

] ∩ ]γ − ε, γ + ε[
= ∅,

which is a contradiction.
Case3: Ifb(·) is constant in anopen interval contained in [α, β] then AB = BF(A)

if and only if

Ω = supp a ∩ supp

⎡

⎣b(γ ) − b ·
n∑

j=1

δ j [a(γ )] j−1

⎤

⎦ = ∅.

Case 4: If b(·) is identically constant in [α, β] and k1 = 1 then Ω is empty. If
k1 
= 1 then Ω = supp a must be empty. This implies a(·) ≡ 0, but, a(γ ) 
= 0.
That is a contradiction. Therefore, the condition of Proposition10.5.3 is fulfilled.
�

Example 10.5.5 Let A : C[0, 3] → C[0, 3], B : C[0, 3] → C[0, 3] be defined as
follows

(Ax)(t) = a(t)x(1), (Bx)(t) = b(t)x(t),
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wherea(t) =
{
t (2 − t), if 0 ≤ t ≤ 2

0, otherwise,
and b(t) =

{
1, if 0 ≤ t ≤ 2

(t − 1)3, if 2 < t ≤ 3
. Con-

sider a polynomial F(z) = δ1z + · · · + δnzn , δi ∈ R, i = 1, . . . , n. If k1 =
n∑

j=1
δ j =

1, then these operators satisfy AB = BF(A). Indeed, by Corollary10.5.4 we have

Ω = supp a ∩ [b(1) − b] = ∅.

Corollary 10.5.6 Let A : C[α, β] → C[α, β], B : C[α, β] → C[α, β] be defined
by

(Ax)(t) = a(t)x(γ ), (Bx)(t) = b(t)x(t),

where α, β are real numbers, α < β, γ ∈ [α, β] and a, b : [α, β] → R are continu-
ous functions such that b(γ ) 
= 0. Consider a polynomial F(z) = δ0 + δ1z + · · · +
δnzn, δi ∈ R, i = 0, . . . , n. If a(γ ) = 0, then AB = BF(A) if and only if δ0 = 0 and

Ω = supp a ∩ supp [b(γ ) − δ1b] = ∅.

Proof By applying Proposition10.5.3 we have (ABx)(t) = (BF(A)x)(t) if and
only if, for all x ∈ C[α, β],

a(t)b(γ )x(γ ) = δ0b(t)x(t) + δ1b(t)a(t)x(γ ) +
n∑

j=2

δ j b(t)a(t)[a(γ )] j−1x(γ ).

By taking t = γ and if a(γ ) = 0 we get δ0b(γ )x(γ ) = 0 for all x ∈ C[α, β]. Since
b(γ ) 
= 0 then δ0 must be zero. By using this, we remain with the equation

a(·)b(γ )x(γ ) = δ1a(·)b(·)x(γ )

for all x ∈ C[α, β]. This is equivalent to a(·)[b(γ ) − δ1b(·)] = 0, which itself is
equivalent to the set Ω = supp a ∩ supp [b(γ ) − δ1b] having measure zero. Since
the functions involved are continuous then the set Ω is empty. �

Remark 1 According to Corollary10.5.6, if a(γ ) = 0 the role of the polynomial
F(·) is only played by the coefficient δ1. In particular, Corollary10.5.6 establishes
conditions for representations of the quantum plane relation AB = δ1BA, for a real
constant δ1.

Corollary 10.5.7 Let A : C[α, β] → C[α, β], B : C[α, β] → C[α, β] be defined
by

(Ax)(t) = a(t)x(γ ), (Bx)(t) = b(t)x(t),

where α, β are real numbers, α < β, γ ∈ [α, β] and a, b : [α, β] → R are continu-
ous functions such that a(γ ) 
= 0. Consider a polynomial F(z) = δ1z + · · · + δnzn,
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δi ∈ R, i = 1, . . . , n. Let k1 =
n∑

j=1
δ j [a(γ )] j−1. If b(γ ) = 0, then AB = BF(A) if

and only if k1 = 0 or supp a ∩ supp b = ∅.

Proof By applying Proposition10.5.3 we have (ABx)(t) = (BF(A)x)(t) if and
only if for all x ∈ C[α, β] and for all t ∈ [α, β],

a(t)b(γ )x(γ ) =
n∑

j=1

δ j b(t)a(t)[a(γ )] j−1x(γ ).

By hypothesis this reduces to the following:

∀ x ∈ C[α, β] : k1a(t)b(t)x(γ ) = 0.

This is equivalent to k1a(·)b(·) = 0 which is equivalent to k1 = 0 or to the set

Ω1 = supp a ∩ supp b

having measure zero. Since a, b are continuous functions, the set Ω1 is empty. �

Example 10.5.8 Let A : C[0, 2] → C[0, 2], B : C[0, 2] → C[0, 2] be defined as
follows

(Ax)(t) = a(t)x(1/2), (Bx)(t) = b(t)x(t),

wherea(t) =
{
t (1 − t), if 0 ≤ t ≤ 1

0, otherwise,
andb(t) =

{
0, if 0 ≤ t ≤ 1

(1 − t)(t − 2), if 1 < t ≤ 2
.

These operators satisfy AB = BF(A) for any polynomial F(z) = δ1z + · · · + δnzn ,
δi ∈ R, i = 1, . . . , n. Indeed this follows by Corollary10.5.7.

Example 10.5.9 Let A : C[−1, 1] → C[−1, 1], B : C[−1, 1] → C[−1, 1] be
defined by

(Ax)(t) = a(t)x(0), (Bx)(t) = b(t)x(t),

where a(t) = 1 + t2, b(t) = t . Consider a polynomial F(z) = δ1z + · · · + δnzn ,
δi ∈ R, i = 1, . . . , n. If k1 = δ1 + · · · + δn = 0, then these operators satisfy AB =
BF(A). Indeed this follows by Corollary10.5.7.

Corollary 10.5.10 Let A : C[α, β] → C[α, β], B : C[α, β] → C[α, β] be defined
by

(Ax)(t) = a(t)x(γ ), (Bx)(t) = b(t)x(t),

where α, β are real numbers, α < β, γ ∈ [α, β] and a, b : [α, β] → R are non-zero
continuous functions. Consider a polynomial F(z) = δ0 + δ1z + · · · + δnzn, δi ∈ R,
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i = 0, . . . , n. If a(γ ) = b(γ ) = 0 then AB = BF(A) if and only if δ0 = 0 and either
δ1 = 0 or the set Ω = supp a ∩ supp b = ∅.

Proof By applying Proposition10.5.3 we have (ABx)(t) = (BF(A)x)(t) if and
only if for all x ∈ C[α, β] and for all t ∈ [α, β],

a(t)b(γ )x(γ ) = δ0b(t)x(t) + δ1b(t)a(t)x(γ ) +
n∑

j=2

δ j b(t)a(t)[a(γ )] j−1x(γ ).

By hypothesis, this reduces to the condition

∀ x ∈ C[α, β] : δ0b(·)x(·) + δ1a(·)b(·)x(γ ) = 0. (10.11)

If δ0 
= 0 and t0 ∈ supp b, then in an open interval ]t0 − ε, t0 + ε[⊂ [α, β] we have
x(t) = − δ1

δ0
a(t)ζ, t ∈]t0 − ε, t0 + ε[,where ζ is a constant. Since x(·) is continuous

in ]t0 − ε, t0 + ε[, thus 1 + x2(·) is also continuous in ]t0 − ε, t0 + ε[, but the identity
(10.11) is not valid for this function. This contradicts the condition (10.11). Since b(·)
is not identically zero, this implies that δ0 = 0. By using this, the condition (10.11)
reduces to the following condition: ∀ x ∈ C[α, β] : δ1a(t)b(t)x(γ ) = 0, which is
equivalent to δ1 = 0 or to Ω = supp a ∩ supp b = ∅. �

Example 10.5.11 Let A : C[0, 2] → C[0, 2], B : C[0, 2] → C[0, 2] be defined by

(Ax)(t) = a(t)x(1), (Bx)(t) = b(t)x(t),

where a(t) = sin(π t), b(t) = t2 − 1. These operators satisfy AB = BF(A) for
any polynomial F(z) = δ2z2 + · · · + δnzn , δi ∈ R, i = 2, . . . , n are real constants.
Indeed this follows by Corollary10.5.10.

10.5.1.2 Representations when A is Multiplication Operator

Proposition 10.5.12 Let A : C[α, β] → C[α, β], B : C[α, β] → C[α, β] be
defined by

(Ax)(t) = a(t)x(t), (Bx)(t) = b(t)x(γ ),

where α, β ∈ R, α < β, γ ∈ [α, β] and a, b : [α, β] → R are continuous functions.
Consider a polynomial F(z) = δ0 + δ1z + · · · + δnzn, δi ∈ R, i = 0, 1, . . . , n. Then,
AB = BF(A) if and only if supp [a − F(a(γ ))] ∩ supp b = ∅.
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Proof We have

(ABx)(t) = A(Bx)(t) = a(t)(Bx)(t) = a(t)b(t)x(γ )

(Amx)(t) = [a(t)]mx(t), m = 0, . . . , n

(BAm)x)(t) = (BAmx)(t) = B(Amx)(t) =
{

b(t)x(γ ), m = 0
b(t)[a(γ )]mx(γ ), m = 1, . . . , n

(BF(A)x)(t) = δ0b(t)x(γ ) +
n∑

j=1

δ j b(t)[a(γ )] j x(γ ) = b(t)F(a(γ ))x(γ ).

Then (ABx)(t) = (BF(A)x)(t) if and only if for all x ∈ C[α, β] and for all t ∈
[α, β],

a(t)b(t)x(γ ) = b(t)F(a(γ ))x(γ ).

This is equivalent to the equation a(·)b(·) = b(·)F(a(γ )), which is equivalent to

supp [a − F(a(γ ))] ∩ supp b = ∅,

by Lemma10.5.1. �

Example 10.5.13 Let A : C[α, β] → C[α, β], B : C[α, β] → C[α, β] be defined
by

(Ax)(t) = a(t)x(t), (Bx)(t) = b(t)x(γ ),

where α, β ∈ R, α < β, γ ∈ [α, β] and a, b : [α, β] → R are continuous functions.
Then, for a real constant ζ and a positive integer d,

AB = ζ BAd

if and only if supp [a − ζa(γ )d ] ∩ supp b = ∅.This follows by Proposition10.5.12.

Example 10.5.14 Let A = Aν : C[0, 2] → C[0, 2], B : C[0, 2] → C[0, 2] be
defined by

(Ax)(t) = Aνx(t) = a(t)x(t), (Bx)(t) = b(t)x(1/2),

where a(t) = I[0,1](t) sin(π t) + ν, b(t) = I[1,2](t) sin(π t), ν ∈ R, and I[α1,β1](t) is
the indicator function of the interval [α1, β1]. Consider a polynomial F(z) =
δ0 + δ1z + · · · + δnzn , δi ∈ R, i = 0, . . . , n. If ν = F(1 + ν), then, by Proposi-
tion10.5.12, these operators satisfy AB = BF(A). Note that the condition ν =
F(1 + ν) is equivalent to F̃(1 + ν) = 1 + ν,where F̃(z) = F(z) + 1, that is to 1 + ν

being a fixed point of F̃(z), or equivalently to 1 + ν being the root of F̃(z) − z = 0,
which in terms of F is the same as 1 + ν being a root of F(z) − z + 1 = 0. If this
equation has roots in R, then for such roots the corresponding operators A and B
satisfy AB = BF(A). If F(z) = z − 1, then 1 + ν is a root of F(z) − z + 1 = 0
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for any real number ν, since the equation becomes the equality 0 = 0. Thus,
for any ν ∈ R, the operators A and B satisfy AB = B(A − I ) which is equiva-
lent to AB − BA = −B and to BA − AB = B, where I is the identity operator.
This can be also checked by direct computation. In fact, the operator Aν corre-
sponding to the parameter ν can be expressed as Aν = A0 + ν I . For ν = 0, a
and b have non-overlapping supports and hence (A0Bx)(t) = x( 12 )a(t)b(t) = 0,
and (BA0x)(t) = b(t)(A0x)(

1
2 ) = b(t)a( 12 )x(

1
2 ) = b(t)x( 12 ) = B, and thus BA −

AB = B, and hence, for any ν ∈ R, BAν − AνB = B(A0 + ν I ) − (A0 + ν I )B =
BA0 + νB − A0B − νB = BA0 − A0B = B.

Corollary 10.5.15 Let A : C[α, β] → C[α, β], B : C[α, β] → C[α, β] be defined
by

(Ax)(t) = a(t)x(t), (Bx)(t) = b(t)x(γ ),

where α, β ∈ R, α < β, γ ∈ [α, β] and a, b : [α, β] → R are continuous func-
tions. Consider a polynomial F(z) = δ0 + δ1z + · · · + δnzn, δi ∈ R, i = 0, . . . , n.
If a(γ ) = 0 then AB = BF(A) if and only if supp [a − δ0] ∩ supp b = ∅. Further-
more, if δ0 
= 0 then AB = BF(A) yields b(γ ) = 0.

Proof This follows by Proposition10.5.12. �
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Nearly Associative and Nearly
Hom-Associative Algebras and
Bialgebras
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Abstract Basic definitions and properties of nearly associative algebras are
described.Nearly associative algebras are proved to beLie-admissible algebras. Two-
dimensional nearly associative algebras are classified, and main classes are derived.
The bimodules, matched pairs and Manin triple of a nearly associative algebras are
derived and their equivalence with nearly associative bialgebras is proved. Basic
definitions and properties of nearly Hom-associative algebras are described. Related
bimodules and matched pairs are given, and associated identities are established.
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11.1 Introduction

An algebra A with a bilinear product · : A × A → A is not necessarily associa-
tive (possibly non-associative) if possibly there are x, y, z ∈ A obeying (x · y) · z −
x · (y · z) �= 0. If such x, y, z ∈ A exist, then algebra is not associative. The term
non-associative algebras is used often to mean all possibly non-associative algebras,
including also the associative algebras. Associative algebras, Lie algebras, and Jor-
dan algebras are well-known sub-classes of non-associative algebras in the sense of
possibly not associative algebras [60].
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Hom-algebraic structures originated from quasi-deformations of Lie algebras of
vector fields which gave rise to quasi-Lie algebras, defined as generalized Lie struc-
tures in which the skew-symmetry and Jacobi conditions are twisted. Hom-Lie alge-
bras and more general quasi-Hom-Lie algebras where introduced first by Silvestrov
and his students Hartwig and Larsson in [27], where the general quasi-deformations
and discretizations of Lie algebras of vector fields using general twisted deriva-
tions, σ -derivations, and a general method for construction of deformations of Witt
and Virasoro type algebras based on twisted derivations have been developed. The
initial motivation came from examples of q-deformed Jacobi identities discovered
in q-deformed versions and other discrete modifications of differential calculi and
homological algebra, q-deformed Lie algebras and other algebras important in string
theory, vertex models in conformal field theory, quantum mechanics and quantum
field theory, such as the q-deformedHeisenberg algebras, q-deformed oscillator alge-
bras, q-deformed Witt, q-deformed Virasoro algebras and related q-deformations of
infinite-dimensional algebras [1, 16–22, 33, 34, 41–43].

Possibility of studying, within the same framework, q-deformations of Lie alge-
bras and such well-known generalizations of Lie algebras as the color and super
Lie algebras provided further general motivation for development of quasi-Lie alge-
bras and subclasses of quasi-Hom-Lie algebras and Hom-Lie algebras. The general
abstract quasi-Lie algebras and the subclasses of quasi-Hom-Lie algebras and Hom-
Lie algebras, as well as their color (graded) counterparts, color (graded) quasi-Lie
algebras, color (graded) quasi-Hom-Lie algebras and color (graded) Hom-Lie alge-
bras, including in particular the super quasi-Lie algebras, super quasi-Hom-Lie alge-
bras, and super Hom-Lie algebras, have been introduced in [27, 37–39, 63, 64]. In
[48], Hom-associative algebras were introduced, generalizing associative algebras
by twisting the associativity law by a linear map. Hom-associative algebra is a triple
(A, ·, α) consisting of a linear space A, a bilinear product · : A × A → A and a lin-
earmapα : A → A, satisfying aα,·(x, y, z) = (x · y) · α(z) − α(x) · (y · z) = 0, for
any x, y, z ∈ A. In [48], alongside Hom-associative algebras, the Hom-Lie admissi-
ble algebras generalizing Lie-admissible algebras, were introduced as Hom-algebras
such that the commutator product, defined using themultiplication in aHom-algebra,
yields a Hom-Lie algebra, and also Hom-associative algebras were shown to be
Hom-Lie admissible. Moreover, in [48], more general G-Hom-associative algebras
including Hom-associative algebras, Hom-Vinberg algebras (Hom-left symmetric
algebras), Hom-pre-Lie algebras (Hom-right symmetric algebras), and some other
Hom-algebra structures, generalizing G-associative algebras, Vinberg and pre-Lie
algebras respectively, have been introduced and shown to be Hom-Lie admissible,
meaning that for these classes of Hom-algebras, the operation of taking commutator
leads to Hom-Lie algebras as well. Also, flexible Hom-algebras have been intro-
duced, connections to Hom-algebra generalizations of derivations and of adjoint
maps have been noticed, and some low-dimensional Hom-Lie algebras have been
described. The enveloping algebras of Hom-Lie algebras were considered in [67]
using combinatorial objects of weighted binary trees. In [29], for Hom-associative
algebras and Hom-Lie algebras, the envelopment problem, operads, and the Dia-
mond Lemma and Hilbert series for the Hom-associative operad and free algebra
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have been studied. Strong Hom-associativity yielding a confluent rewrite system and
a basis for the free strongly hom-associative algebra has been considered in [28].
An explicit constructive way, based on free Hom-associative algebras with involu-
tive twisting, was developed in [25] to obtain the universal enveloping algebras and
Poincaré-Birkhoff-Witt type theorem for Hom-Lie algebras with involutive twisting
map. Free Hom-associative color algebra on a Hom-module and enveloping algebra
of color Hom-Lie algebras with involutive twisting and also with more general con-
ditions on the powers of twisting map was constructed, and Poincaré-Birkhoff-Witt
type theorem was obtained in [4, 5]. It is worth noticing here that, in the subclass of
Hom-Lie algebras, the skew-symmetry is untwisted, whereas the Jacobi identity is
twisted by a single linear map and contains three terms as in Lie algebras, reducing
to ordinary Lie algebras when the twisting linear map is the identity map.

Hom-algebra structures include their classical counterparts and open new broad
possibilities for deformations, extensions to Hom-algebra structures of representa-
tions, homology, cohomology and formal deformations, Hom-modules and hom-
bimodules, Hom-Lie admissible Hom-coalgebras, Hom-coalgebras, Hom-bialge-
bras, Hom-Hopf algebras, L-modules, L-comodules and Hom-Lie quasi-bialgebras,
n-ary generalizations of biHom-Lie algebras and biHom-associative algebras and
generalized derivations, Rota–Baxter operators, Hom-dendriform color algebras,
Rota–Baxter bisystems and covariant bialgebras, Rota–Baxter cosystems, coquasi-
triangular mixed bialgebras, coassociative Yang–Baxter pairs, coassociative Yang–
Baxter equation and generalizations of Rota–Baxter systems and algebras, curved
O-operator systems and their connections with tridendriform systems and pre-Lie
algebras, BiHom-algebras, BiHom-Frobenius algebras and double constructions,
infinitesimal biHom-bialgebras and Hom-dendriform D-bialgebras, Hom-algebras
has been considered from a category theory point of view [3, 8–15, 24, 26, 30, 31,
35–37, 40, 44–46, 49–52, 56, 57, 61, 62, 65–70].

This paper is organized as follows. In Sect. 11.2, basic definitions and fundamental
identities and some elementary examples of nearly associative algebras are given.
In Sect. 11.3, we derive the classification of the two-dimensional nearly associative
algebras and main classes are provided. In Sect. 11.4, bimodules, duals bimodules
and matched pair of nearly associative algebras are established and related identities
are derived and proved. In Sect. 11.5, Manin triple of nearly associative algebras is
given and its equivalence to the nearly associative bialgebras is derived. In Sect. 11.6,
Hom-Lie-admissible, G-Hom-associative, flexible Hom-algebras, the result on Lie-
admissibility of G-Hom-admissible algebras and subclasses of G-Hom-admissible
algebras are reviewed. In Sect. 11.7, main definitions and fundamental identities of
Hom-nearly associative algebras are given. Furthermore, the bimodules, andmatched
pair of the Hom-nearly associative algebras are derived and related properties are
obtained.
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11.2 Nearly Associative Algebras: Basic Definitions
and Properties

Throughout this paper, for simplicity of exposition, all linear spaces are assumed to
be over field K of characteristic is 0, even though many results hold in general for
other fields as well unchanged or with minor modifications. An algebra is a couple
(A, μ) consisting of a linear space A and a bilinear product μ : A × A → A.

Definition 11.1 An algebra (A, ·) is called nearly associative if, for x, y, z ∈ A,

x · (y · z) = (z · x) · y.

Example 11.1 Consider a two-dimensional linear space A with basis {e1, e2}.
1) Then, (A, ·) is a nearly associative algebra, where e1 · e1 = e1 + e2 and for all

(i, j) �= (1, 1) with i, j ∈ {1, 2}, ei · e j = 0.
2) The linear product defined on A by:

e1 · e1 = e2, e1 · e2 = e1 = e2 · e1, e2 · e2 = e2,

is such that (A, ·) is a nearly associative algebra.

Example 11.2 Let A be a three-dimensional linear space with basis {e1, e2, e3}.
1) The linear space A equipped with the linear product defined on A by:

e1 · e1 = e2 + e3, e2 · e2 = e1 + e2 − e3, e3 · e3 = −e1 + e2

and for all i �= j , ei · e j = 0, where i, j ∈ {1, 2, 3}, is a nearly associative
algebra.

2) The linear space A equipped with the linear product defined by

e1 · e1 = e2 − e3, e2 · e2 = e2 + e3, e3 · e3 = e1 − e2 + e3

and ei · e j = 0, for all i �= j, i, j ∈ {1, 2, 3}, is a nearly associative algebra.
3) The linear space A with the linear product defined by

e1 · e1 = e1 + e2 + e3, e2 · e2 = e1 + e3, e3 · e3 = e1 + e2

and ei · e j = 0 for all i �= j, i, j ∈ {1, 2, 3}, is a nearly associative algebra.

Definition 11.2 ([2, 23, 53–55, 58, 59]) An algebra (A, ·) is called Lie admissible
if (A, [. , . ]) is a Lie algebra, where [x, y] = x · y − y · x for all x, y ∈ A.

For a Lie admissible algebra (A, ·), the Lie algebra G(A) = (A, [. , . ]) is called an
underlying Lie algebra of (A, ·).
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It is known that associative algebras, left-symmetric algebras and anti-flexible
algebras (center-symmetric algebras) are Lie-admissible [6, 7, 30].

Proposition 11.1 Any nearly associative algebra is Lie-admissible.

Proof The commutator [. , . ] : (v,w) �→ v · w − w · v is skew-symmetric on any
algebra (A, ·), and in a nearly associative algebra (A, ·), for any x, y, z ∈ A,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]]
= [x, y · z − z · y] + [y, z · x − x · z] + [z, x · y − y · x]
= x · (y · z) − x · (z · y) − (y · z) · x + (z · y) · x

+y · (z · x) − y · (x · z) − (z · x) · y + (x · z) · y
+z · (x · y) − z · (y · x) − (x · y) · z + (y · x) · z

= {x · (y · z) − (z · x) · y} + {(y · x) · z − x · (z · y)}
+{y · (z · x) − (x · y) · z} + {z ∗ (x · y) − (y · z) · x}
+{(z · y) · x − y · (x · z)} + {(x · z) · y − z · (y · x)} = 0.

Therefore, (A, [. , . ]) is a Lie algebra. �
Remark 11.1 In a nearly associative algebra (A, ·), for x, y ∈ A,

L(x)L(y) = R(y)R(x),

L(x)R(y) = L(y · x),
R(x)L(y) = R(x · y),

where L , R : A → End(A) are the operators of left and right multiplications.

Definition 11.3 An anti-flexible algebra is a couple (A, ·)where A is a linear space,
and · : A × A → A is a bilinear product such that for all x, y, z ∈ A,

(x · y) · z − (z · y) · x = x · (y · z) − z · (y · x). (11.1)

Using associator a(x, y, z) = (x · y) · z − x · (y · z), (11.1) is equivalent to

a(x, y, z) = a(z, y, x). (11.2)

In view of (11.2), anti-flexible algebras were called center-symmetric algebras in
[30].

Proposition 11.2 Any commutative nearly associative algebra is anti-flexible.

Proof For all x, y, z ∈ A in a commutative nearly associative algebra (A, ·), by using
nearly associativity, commutativity and again nearly associativity,

a(x, y, z) = (x · y) · z − x · (y · z) = y · (z · x) − (z · x) · y = [y, z · x]
= [y, x · z] = y · (x · z) − (x · z) · y = (z · y) · x − z · (y · x) = a(z, y, x)

proves (11.2) meaning that (A, ·) is anti-flexible. �
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11.3 Classification of the Two-Dimensional Nearly
Associative Algebras

In this section we compute some low-dimensional examples of near associative
algebras contributing at the same time also towards investigation of classification of
low-dimensional nearly associative algebras.

Theorem 11.1 A two-dimensional algebra (A, ·) with a basis {e1, e2} ∈ A is nearly
associative if and only if

e1 · (e1 · e1) = (e1 · e1) · e1, e1 · (e1 · e2) = (e2 · e1) · e1,
e1 · (e2 · e1) = (e1 · e1) · e2, e2 · (e1 · e1) = (e1 · e2) · e1,
e1 · (e2 · e2) = (e2 · e1) · e2, e2 · (e1 · e2) = (e2 · e2) · e1,
e2 · (e2 · e1) = (e1 · e2) · e2, e2 · (e2 · e2) = (e2 · e2) · e2.

Theorem 11.2 Any two-dimensional nearly associative algebra over the fieldK = C
is isomorphic to one of the following nearly associative algebras:

(i) for all (α, β) ∈ K2\{(0, 0)},

e1 · e1 = αe2, e1 · e2 = βe1 = e2 · e1, e2 · e2 = βe2,

(ii) for all (α, β) ∈ K2\{(0, 0)},

e1 · e1 = αe1 + βe2, e1 · e2 = βe1 + αe2 = e2 · e1, e2 · e2 = αe1 + βe2,

(iii) for all (α, β, γ ) ∈ K3, such that γ 2 + 4αβ ≥ 0,

e1 · e1 = αe1, e2 · e2 = βe1 + γ e2,

e1 · e2 = 1

2

(
γ +

√
γ 2 + 4αβ

)
e1 = e2 · e1.

Proof Equip the linear space A with the basis {e1, e2}, and for all i, j ∈
{1, 2}, set ei · e j = ai j e1 + bi j e2, where ai j ∈ K and bi j ∈ K. In addition, for
all i, j, k ∈ {1, 2}, a jkai1 + b jkai2 = akia1 j + bkia2 j , a jkbi1 + b jkbi2 = akib1 j +
bkib2 j . By Theorem11.1,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 · (e1 · e1) = (e1 · e1) · e1
e1 · (e1 · e2) = (e2 · e1) · e1
e1 · (e2 · e1) = (e1 · e1) · e2
e2 · (e1 · e1) = (e1 · e2) · e1
e1 · (e2 · e2) = (e2 · e1) · e2
e2 · (e1 · e2) = (e2 · e2) · e1
e2 · (e2 · e1) = (e1 · e2) · e2
e2 · (e2 · e2) = (e2 · e2) · e2

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11a11 + b11a12 = a11a11 + b11a21,
a11b11 + b11b12 = a11b11 + b11b21,
a12a11 + b12a12 = a21a11 + b21a21,
a12b11 + b12b12 = a21b11 + b21b21,
a21a11 + b21a12 = a11a12 + b11a22,
a21b11 + b21b12 = a11b12 + b11b22,
a11a21 + b11a22 = a12a11 + b12a21,
a11b21 + b11b22 = a12b11 + b12b21,
a22a11 + b22a12 = a21a12 + b21a22,
a22b11 + b22b12 = a21b12 + b21b22,
a12a21 + b12a22 = a22a11 + b22a21,
a12b21 + b12b22 = a22b11 + b22b21,
a21a21 + b21a22 = a12a12 + b12a22,
a21b21 + b21b22 = a12b12 + b12b22,
a22a21 + b22a22 = a22a12 + b22a22,
a22b21 + b22b22 = a22b12 + b22b22

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(b − c) = 0, e( f − g) = 0,
h(b − c) = 0, d(b − c) = 0,
d( f − g) = 0, a( f − g) = 0
(b − c)(b + c) = 0,
( f − g)( f + g) = 0
e(b − c) + f (g − a) = 0
d(a − g) + b(h − c) = 0
a(b − c) = 0, h( f − g) = 0
(b f − cg) = 0, bg = de = f c

⇐⇒

{
a = r1, b = r2, c = r2, d = r1,
e = r2, f = r1, g = r1, h = r2

or

{
a = r1, b = r2, c = r2, d = r2,
e = r1, f = r1, g = r1, h = r2

or{
a = r5, b = 0, c = 0, d = 0,
e = r6, f = r5, g = r5, h = r8

or

{
a = r5, b = 0, c = 0, d = r6,
e = 0, f = r5, g = r5, h = r8

or
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

a = r9, b = |r12| + r12
2

,

c = |r12| + r12
2

, d = 0,

e = r11, f = 0, g = 0, h = r12

or

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a = r9, b =
√
4r10 r9 + r122 + r12

2
,

c =
√
4r10 r9 + r122 + r12

2
, d = r10,

e = 0, f = 0, g = 0, h = r12
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or⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a = r13, b = r16 − √
r162

2
,

c = r16 − √
r162

2
, d = 0,

e = r14, f = 0,
g = 0, h = r16

or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a = r13, b = r16 − √
r162 + 4r13 r14

2
,

c = r16 − √
r162 + 4r13 r14

2
, d = r14,

e = 0, f = 0, g = 0, h = r16

or{
a = r17, b = 0, c = 0, d = 0,
e = r18, f = 0, g = 0, h = 0

or

{
a = r17, b = √

r17 r18, c = √
r17 r18,

d = r18, e = 0, f = 0, g = 0, h = 0

or

{
a = r20, b = 0, c = 0, d = 0,
e = r21, f = 0, g = 0, h = 0

or

⎧⎨
⎩
a = r20, b = −√

r20 r21,
c = −√

r20 r21, d = r21,
e = 0, f = 0, g = 0, h = 0

or{
a = 0, b = 0, c = 0, d = 0,
e = r24, f = 0, g = 0, h = r25

or

{
a = 0, b = 0, c = 0, d = r23,
e = 0, f = 0, g = 0, h = r25

or{
a = 0, b = r26, c = r26, d = 0,
e = r28, f = 0, g = 0, h = r26

or

{
a = 0, b = r26, c = r26, d = r27,
e = 0, f = 0, g = 0, h = r26

or{
a = r29, b = 0, c = 0, d = 0,
e = 0, f = 0, g = 0, h = 0

with a11 = a, a12 = b, a21 = c, a22 = d, b11 = e, b12 = f, b21 = g, b22 = h.

This yields the statement of the theorem. �

11.4 Bimodules and Matched Pairs Nearly Associative
Algebras

Definition 11.4 Let (A, ·) be a nearly associative algebra. Consider the linear maps
l; r : A → End(V ), where V is a linear space. A triple (l, r, V ) is a bimodule of
(A, ·) if for all x, y ∈ A,
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l(x)l(y) = r(y)r(x), (11.3)

l(x)r(y) = l(y · x), (11.4)

r(x)l(y) = r(x · y). (11.5)

Example 11.3 Let (A, ·) be a nearly associative algebra. The triple (L , R, A) is a
bimodule of (A, ·), where for any x, y ∈ A, L(x)y = x · y = R(y)x .

Proposition 11.3 Let (l, r, V ) be a bimodule of a nearly associative algebra (A, ·),
where l; r : A → End(V ) are two linear maps and V a linear space. There is a
nearly associative algebra defined on A ⊕ V by, for any x, y ∈ A and any u, v ∈ V,

(x + u) ∗ (y + v) = x · y + l(x)v + r(y)u. (11.6)

Proof Consider the bimodule (l, r, V ) of the nearly associative algebra (A, ·). For
all x, y, z ∈ A and u, v,w ∈ V ,

(x + u) ∗ ((y + v) ∗ (z + w)) = x · (y · z) + l(x)l(y)w
+l(x)r(z)v + r(y · z)u (11.7a)

((z + w) ∗ (x + u)) ∗ (y + v) = (z · x) · y + l(z · x)v
+r(y)l(z)u + r(y)r(x)w

(11.7b)

Using (11.3), (11.4) and (11.5) in (11.7a) and (11.7b) yields that (A ⊕ V, ∗) is a
nearly associative algebra. �

Corollary 11.1 Let (l, r, V ) be a bimodule of a nearly associative algebra (A, ·),
where l, r : A → End(V ) are two linear maps and V a linear space. Then there is
a Lie algebra product on A ⊕ V given for x, y ∈ A and u, v ∈ V by

[x + u, y + v] = [x, y]· + (l(x) − r(x))v − (l(y) − r(y))u. (11.8)

Proof It is simple to remark that the commutator of the product defined in (11.6)
is the product defined in (11.8). By taking into account Proposition11.1, the Jacobi
identity of the product given in (11.8) is satisfied. �

Definition 11.5 Let (G, [. , . ]G ) be a Lie algebra. A representation of (G, [. , . ]G )

over the linear space V is a linear map ρ : G → End(V ) satisfying for x, y ∈ G,

ρ([x, y]G ) = ρ(x) ◦ ρ(y) − ρ(y) ◦ ρ(x). (11.9)

Proposition 11.4 Let (A, ·) be a nearly associative algebra and let V be a finite-
dimensional linear space over the field K such that (l, r, V ) is a bimodule of (A, ·),
where l, r : A → End(V ) are two linear maps. Then, the linear map l − r : A →
End(V ), x �→ l(x) − r(x) is a representation of the underlying Lie algebra G(A)

of (A, ·).
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Proof Let (l, r, V ) be a bimodule of the nearly associative algebra (A, ·). Then, for
any x, y ∈ A,

(l(x) − r(x))(l(y) − r(y)) − (l(y) − r(y))(l(x) − r(x))

= l(x)l(y) − l(x)r(y) − r(x)l(y) + r(x)r(y)

− l(y)l(x) + l(y)r(x) + r(y)l(x) − r(y)r(x)

= −l(x)r(y) − r(x)l(y) + l(y)r(x) + r(y)l(x)

= −l(y · x) − r(x · y) + l(x · x) + r(y · x)
= (l − r)(x · y − y · x) = (l − r)([x, y]).

Therefore, (11.9) is satisfied for l − r = ρ. �

Definition 11.6 If (A, ·) is a nearly associative algebra and (l, r, V ) its associ-
ated bimodule, with a finite-dimensional linear space V , then the dual maps l∗, r∗ :
A → End(V ∗) of linear maps l, r, are defined so that, for x ∈ A, u∗ ∈ V ∗, v ∈ V,

〈l∗(x)u∗, v〉 = 〈u∗, l(x)v〉 , 〈r∗(x)u∗, v〉 = 〈u∗, r(x)v〉 .

Proposition 11.5 Let (A, ·) be a nearly associative algebra and (l, r, V ) be its
bimodule. The following properties are equivalent.

(i) (r∗, l∗, V ∗) is a bimodule of (A, ·),
(ii) l(x)r(y) = r(y)l(x), for all x, y ∈ A,
(iii) (l∗, r∗, V ∗) is a bimodule of (A, ·).
Proof Let (A, ·) be a nearly associative algebra and (l, r, V ) be its associated bimod-
ule consisting of a finite-dimensional linear space V and linear maps l, r : A →
End(V ) obeying (11.3), (11.4) and (11.5).

If (r∗, l∗, V ∗) is a bimodule of (A, ·), with correspondences l → r∗ and r → l∗
obeying (11.3), (11.4) and (11.5), then for x, y ∈ A, v ∈ V , u∗ ∈ V ∗:

〈l(x)r(y)v, u∗〉 = 〈v, r∗(y)l∗(x)u∗〉 = 〈v, r∗(y · x)u∗〉
= 〈r(y · x)v, u∗〉 = 〈r(y)l(x)v, u∗〉.

Therefore, the relation l(x)r(y) = r(y)l(x) is satisfied.
Suppose l(x)r(y) = r(y)l(x) for any x, y ∈ A. For x, y ∈ A, v ∈ V , u∗ ∈ V ∗:

〈
l∗(x)l∗(y)u∗, v

〉 = 〈
u∗, l(y)l(x)v

〉 = 〈
u∗, r(x)r(y)v

〉 = 〈
r∗(y)r∗(x)u∗, v

〉

yields l∗(x)l∗(y) = r∗(y)r∗(x);
〈
l∗(x)r∗(y)u∗, v

〉 = 〈
u∗, r(y)l(x)v

〉 = 〈
u∗, l(x)r(y)v

〉 = 〈
u∗, l(y · x)v〉 = 〈

l∗(y · x)u∗, v
〉

yields l∗(x)r∗(y) = l∗(y · x);
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〈
r∗(y)l∗(x)u∗, v

〉 = 〈
u∗, l(x)r(y)v

〉 = 〈
u∗, r(y)l(x)v

〉 = 〈
u∗, r(y · x)v〉 = 〈

r∗(y · x)u∗, v
〉

yields r∗(y)l∗(x) = r∗(y · x). Thus, with correspondences r∗ → l and l∗ → r ,
(11.3), (11.4) and (11.5) are satisfied.

Similarly, one obtains the equivalence between l(x)r(y) = r(y)l(x), for any
x, y ∈ A, and (l∗, r∗, V ∗) being a bimodule of (A, ·). �

Remark 11.2 It is clear that (L∗· , R∗· , A∗) and (R∗· , L∗· , A∗) are bimodules of the
nearly associative algebra (A, ·) if and only if L and R commute.

Theorem 11.3 Let (A, ·) and (B, ◦) be two nearly associative algebras. Suppose
that (lA, rA, B)and (lB, rB, A)are bimodules of (A, ·)and (B, ◦), respectively,where
lA, rA : A → End(B), lB, rB : B → End(A) are four linear maps satisfying for all
x, y ∈ A, a, b ∈ B,

rB(lA(x)a)y + y · (rB(a)x) − (lB(a)y) · x − lB(rA(y)a)x = 0, (11.10a)

rB(a)(x · y) − y · (lB(a)x) − rB(rA(x)a)y = 0, (11.10b)

lB(a)(x · y) − (rB(a)y) · x − lB(lA(y)a)x = 0, (11.10c)

rA(lB(a)x)b + b ◦ (rA(x)a) − (lA(x)b) ◦ a − lA(rB(b)x)a = 0, (11.10d)

rA(x)(a ◦ b) − b ◦ (lA(x)a) − rA(rB(a)x)b = 0, (11.10e)

lA(x)(a ◦ b) − (rA(x)b) ◦ a − lA(lB(b)x)a = 0. (11.10f)

Then, (A ⊕ B, ∗) is a nearly associative algebra, where for x, y ∈ A, a, b ∈ B,

(x + a) ∗ (y + b) = (x · y + lB(a)y + rB(b)x) + (a ◦ b + lA(x)b + rA(y)a).

Proof For x, y, z ∈ A and a, b, c ∈ B,

(x + a) ∗ ((y + b) ∗ (z + c)) = x · (y · z) + {x · (lB(b)z) + rB(rA(z)b)x} + lB(a)(y · z)
+{x · (rB(c)y) + rB(lA(y)c)x} + lB(a)(lB(b)z) + rB(b ◦ c)x

+lB(a)(rB(c)y) + a ◦ (b ◦ c) + {a ◦ (lA(y)c) + rB(rB(c)y)a}
+{a ◦ (rA(z)b) + rB(lB(b)z)a} + lA(x)(lA(y)c)

+lA(x)(b ◦ c) + lA(x)(rA(z)b) + rA(y · z)a,

((z + c) ∗ (x + a)) ∗ (y + b) = (z · x) · y + {(lB(c)x) · y + lB(rA(x)c)y} + rB(x)(z · x)
+{(rA(a)z) · y + lB(lA(z)a)y} + lB(c ◦ a)y + rB(b)(lB(c)x)
+rB(b)(rB(a)z)(c ◦ a) ◦ y + {(lA(z)a) ◦ b + lA(rB(a)z)b}

+{(rA(x)c) ◦ b + lA(lB(c)x)b} + rA(y)(rA(x)c)
+rA(y)(c ◦ a) + rA(y)(lA(z)a) + lA(z · x)b.

With (11.10a)–(11.10f), and (lA, rA, B) and (lB, rB, A) being respectively bimodules
of (A, ·) and (B, ◦), (A ⊕ B, ∗) is a nearly associative algebra. �

Definition 11.7 ([47]) Let (G, [. , . ]G ) and (H, [. , . ]H) be twoLie algebras such that
ρ : G → End(H) andμ : H → End(G) are representations ofG andH, respectively.
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A matched pair of Lie algebras G and H is (G,H, ρ, μ) such that ρ and μ obey for
x, y ∈ G, a, b ∈ H,

ρ(x)[a, b]G − [ρ(x)a, b]H − [a, ρ(x)b]H
+ρ(μ(a)x)b − ρ(μ(b)x)a = 0,

(11.11a)

μ(a)[x, y]G − [μ(a)x, y]G − [x, μ(a)y]G
+μ(ρ(x)a)y − μ(ρ(y)a)x = 0.

(11.11b)

Corollary 11.2 Let (A, B, lA, rA, lB, rB) be amatched pair of the nearly associative
algebras (A, ·) and (B, ◦). Then (G(A),G(B), lA − rA, lB − rB) is a matched pair
of Lie algebras G(A) and G(B).

Proof Let (A, B, lA, rA, lB, rB) be a matched pair of the nearly associative alge-
bras (A, ·) and (B, ◦). In view of Proposition11.4, the linear maps lA − rA : A −→
End(B) and lB − rB : B −→ End(A) are representations of the underlying Lie alge-
bras G(A) and G(B), respectively. Therefore, by direct calculation we have (11.11a)
is equivalent to (11.10a)–(11.10c) and similarly, (11.11b) is equivalent to (11.10d)–
(11.10f). �
Proposition 11.6 For a nearly associative algebra (A, ·), if there is a nearly asso-
ciative algebra structure ◦ on its dual space A∗, and if the linear maps L and R
commute, then (A, A∗, R∗· , L∗· , R∗◦ , L∗◦) is a matched pair of the nearly associative
algebras (A, ·) and (A∗, ◦) if and only if, for x, y ∈ A, a ∈ A∗,

L∗◦(R∗· (x)a)y − y · (L∗◦(a)x) − (R∗◦ (a)y) · x − R∗◦ (L∗· (y)a)x = 0, (11.12a)
L∗◦(a)(x · y) − y · (R∗◦ (a)x) − L∗◦(L∗· (x)a)y = 0, (11.12b)
R∗◦ (a)(x · y) − (L∗◦(a)y) · x − R∗◦ (R∗· (y)a)x = 0. (11.12c)

Proof Since L and R commute, according to Remark11.2 and Proposition11.5,
both (R∗· , L∗· , A∗) and (L∗· , R∗· , A∗) are bimodules of (A, ·). Setting lA = R∗· ,
rA = L∗· , lB = R∗◦ and rB = L∗◦ in Theorem11.3 the equivalences among (11.10a)
and (11.12a), (11.10b) and (11.12b), and finally (11.10c) and (11.12c) are straight-
forward. Besides, for any x, y ∈ A and any a, b ∈ A∗, we have

〈L∗
◦(R

∗
· (x)a)y, b〉 = 〈y, L◦(R∗

· (x)a)b〉 = 〈y, (R∗
· (x)a) ◦ b〉,

〈y · (L∗
◦(a)x), b〉 = 〈R·(L∗

◦(a)x)y, b〉 = 〈y, R∗
· (L

∗
◦(a)x)b〉,

〈(R∗
◦(a)y) · x, b〉 = 〈R∗

◦(a)y, R∗
· (x)b〉 = 〈y, (R∗

· (x)b) ◦ a〉,
〈R∗

◦(L
∗
· (y)a)x, b〉 = 〈L∗

◦(b)x, L
∗
· (y)a〉 = 〈y · (L∗

◦(b)x), a〉 = 〈y, R∗
· (L

∗
◦(b)x)a〉,

〈L∗
◦(a)(x · y), b〉 = 〈R·(y)x, a ◦ b〉 = 〈x, R∗

· (y)(a ◦ b)〉,
〈y · (R∗

◦(a)x), b〉 = 〈R∗
◦(a)x, L∗

· (y)b〉 = 〈x, (L∗
· (y)b) ◦ a〉,

〈L∗
◦(L

∗
· (x)a)y, b〉 = 〈R∗

◦(b)y, L
∗
◦(x)a〉 = 〈x · (R∗

◦(b)y), a〉 = 〈x, R∗
· (R

∗
◦(b)y)a〉,

〈R∗
◦(a)(x · y), b〉 = 〈L ·(x)y, b ◦ a〉 = 〈y, L ·(x)∗(b ◦ a)〉,

〈(L∗
◦(a)y) · x, b〉 = 〈L∗

◦(a)y, R∗
· (b)〉 = 〈y, a ◦ (R∗

· (x)b)〉,
〈R∗

◦(R
∗
· (y)a)x, b〉 = 〈L∗

◦(b)x, R
∗
· (y)a〉 = 〈(L∗

◦(b)x) · y, a〉 = 〈y, L∗
· (L

∗
◦(b)x)a〉.

Then, (11.10a) holds if and only if (11.10d) holds, (11.10b) holds if and only if
(11.10e) holds, and finally (11.10c) holds if and only if (11.10f) holds. �
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11.5 Manin Triple and Bialgebra of Nearly Associative
Algebras

Definition 11.8 A bilinear form B on a nearly associative algebra (A, ·) is called
left-invariant if B(x · y, z) = B(x, y · z), for all x, y, z ∈ A.

Proposition 11.7 Let (A, ·) be a nearly associative algebra. If there is a nondegener-
ate symmetric invariant bilinear formB defined on A, then as bimodules of the nearly
associative algebra (A, ·), (L , R, A) and (R∗, L∗, A∗) are equivalent. Conversely, if
(L , R, A) and (R∗, L∗, A∗) are equivalent bimodules of a nearly associative algebra
(A, ·), then there exists a nondegenerate invariant bilinear form B on A.

Definition 11.9 A Manin triple of nearly associative algebras is a triple of nearly
associative algebras (A, A1, A2) together with a nondegenerate symmetric invariant
bilinear form B on A such that:

(i) A1 and A2 nearly associative subalgebras of A;
(ii) as linear spaces, A = A1 ⊕ A2;
(iii) A1 and A2 are isotropic with respect to B, i.e. for any x1, y1 ∈ A1 and any

x2, y2 ∈ A2, B(x1, y1) = 0 = B(x2, y2) = 0.

Definition 11.10 Let (A, ·) be a nearly associative algebra. Suppose that ◦ is a nearly
associative algebra structure on the dual space A∗ of A and there is a nearly associative
algebra structure on the direct sum A ⊕ A∗ of the underlying linear spaces of A and
A∗ such that (A, ·) and (A∗, ◦) are subalgebras and the natural symmetric bilinear
form on A ⊕ A∗ given by ∀x, y ∈ A; ∀a∗, b∗ ∈ A∗,

Bd(x + a∗, y + b∗) := 〈a∗, y〉 + 〈x, b∗〉, (11.13)

is left-invariant, then (A ⊕ A∗, A, A∗) is called a standard Manin triple of nearly
associative algebras associated toBd .

Obviously, a standard Manin triple of nearly associative algebras is a Manin triple
of nearly associative algebras. By symmetric role of A and A∗, we have

Proposition 11.8 Every Manin triple of nearly associative algebras is isomorphic
to a standard one.

Proposition 11.9 Let (A, ·) be a nearly associative algebra. Suppose that there is
a nearly associative algebra structure ◦ on the dual space A∗. There exists a nearly
associative algebra structure on the linear space A ⊕ A∗ such that (A ⊕ A∗, A, A∗)
is a standardManin triple of nearly associative algebras associated toBd defined by
(11.13) if and only if (A, A∗, R∗· , L∗· , R∗◦ , L∗◦) is a matched pair of nearly associative
algebras.

Theorem 11.4 Let (A, ·) be a nearly associative algebra such that the left and
right multiplication operators commute. Suppose that there is a nearly associative
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algebra structure ◦ on its the dual space A∗ given by �∗ : A∗ ⊗ A∗ → A∗. Then,
(A, A∗, R∗· , L∗· , R∗◦ , L∗◦) is a matched pair of the nearly associative algebras (A, ·)
and (A∗, ◦) if and only if � : A → A ⊗ A satisfies

(R·(x) ⊗ id − σ(R·(x) ⊗ id))�(y)
+(id ⊗ L ·(y) − σ(id ⊗ L ·(y)))�(x) = 0,

(11.14a)

(L ·(x) ⊗ id)�(y) + σ(L ·(y) ⊗ id)�(x) = �(x · y)
= σ(id ⊗ R·(x))�(y) + (id ⊗ R·(y))�(x).

(11.14b)

Proof For any a, b ∈ A∗ and any x, y ∈ A,

〈(R·(x) ⊗ id)�(y), a ⊗ b〉 = 〈y, (R∗
· (x)a) ◦ b〉 = 〈L∗

◦(R
∗
· (x)a)y, b〉,

〈σ(R·(x) ⊗ id)�(y), a ⊗ b〉 = 〈y, (R∗
· (x)b) ◦ a〉

= 〈R∗
◦(a)y, R∗

· (x)b〉 = 〈(R∗
◦(a)y) · x, b〉,

〈(id ⊗ L ·(y))�(x), a ⊗ b〉 = 〈x, a ◦ (L∗
· (y)b)〉 = 〈y · (L∗

◦(a)x), b〉,
〈σ(id ⊗ L ·(y))�(x), a ⊗ b〉 = 〈x, b ◦ (L∗

· (y)a)〉 = 〈R∗
◦(L

∗
· (y)a)x, b〉.

Hence (11.12a) is equivalent to (11.14a).
Similarly, for any x, y ∈ A, a, b ∈ A∗,

〈�(x · y), a ⊗ b〉 = 〈x · y, a ◦ b〉 = 〈L∗
◦(a)(x · y), b〉 = 〈R∗

◦(b)(x · y), a〉,
〈(L ·(x) ⊗ id)�(y), a ⊗ b〉 = 〈y, (L∗

· (x)a) ◦ b〉 = 〈L∗
◦(L

∗
· (x)a)y, b〉,

〈σ(L ·(y) ⊗ id)�(x), a ⊗ b〉 = 〈x, (L∗
· (y)b) ◦ a〉 = 〈y · (R∗

◦(a)x), b〉,
〈σ(id ⊗ R·(x))�(y), a ⊗ b〉 = 〈y, b ◦ (R∗

· (x)a)〉 = 〈R∗
◦(R

∗
· (x)a)y, b〉,

〈(id ⊗ R·(y))�(x), a ⊗ b〉 = 〈x, a ◦ (R∗
· (y)b)〉 = 〈(L∗

◦(a)x) · y, b〉.

Therefore, (11.12b) and (11.12c) and is equivalent to (11.14b). �

Remark 11.3 Obviously, if L and R commute, then L∗ and R∗ commute too and if
in addition γ : A∗ → A∗ ⊗ A∗ is a linear maps such that its dual γ ∗ : A ⊗ A → A
defines a nearly associative algebra structure · on A, then � satisfies (11.14a) and
(11.14b) if and only if γ satisfies for all a, b ∈ A∗,

(R◦(a) ⊗ id − σ(R◦(a) ⊗ id))γ (b) + (id ⊗ L◦(b) − σ(id ⊗ L◦(b)))γ (a) = 0,

(L◦(x) ⊗ id)γ (b) + σ(L◦(b) ⊗ id)γ (a) =
γ (a ◦ b) = σ(id ⊗ R◦(a))γ (b) + (id ⊗ R◦(b))γ (a).

Definition 11.11 Let (A, ·) be a nearly associative algebra in which the left and
right multiplication operators L and R commute. A nearly anti-flexible bialgebra
structure is a linear map � : A → A ⊗ A such that

1) �∗ : A∗ ⊗ A∗ → A∗ defines a nearly associative algebra structure on A,

2) � satisfies (11.14a) and (11.14b).
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Theorem 11.5 Let (A, ·) be a nearly associative algebra in which the left and right
multiplication operators commute. Suppose that there is a nearly associative algebra
structure on A∗ denoted by ◦ which defined a linear map � : A → A ⊗ A. Then the
following conditions are equivalent:

(i) (A ⊕ A∗, A, A∗) is a standardManin triple of nearly associative algebras (A, ·)
and (A∗, ◦) such that its associated symmetric bilinear form Bd is defined by
(11.13).

(ii) (A, A∗, R∗· , L∗· , R∗◦ , L∗◦) is a matched pair of nearly associative algebras (A, ·)
and (A∗, ◦).

(iii) (A, A∗) is a nearly associative bialgebra.

11.6 Hom-Lie Admissible, G-Hom-Associative, Flexible
and Anti-flexible Hom-Algebras

Hom-Lie admissible algebras alongwith Hom-associative algebras andmore general
G-Hom-associative algebras were introduced, and Hom-associative algebras and G-
Hom-associative algebras were shown to be Hom-Lie admissible in [48].

Hom-algebra is a triple (A, μ, α) consisting of a linear space A over a field K, a
bilinear product μ : A × A → A and a linear map α : A → A.

Definition 11.12 ([48]) Hom-Lie, Hom-Lie admissible, Hom-associative and G-
Hom-associative Hom-algebras (over a field K) are defined as follows:

1) Hom-Lie algebras are triples (A, [. , . ], α), consisting of a linear space A over
a field K, bilinear map (bilinear product) [. , . ] : A × A → A and a linear map
α : A → A satisfying, for all x, y, z ∈ A,

[x, y] = −[y, x], (Skew-symmetry)

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0. (Hom-Jacobi identity)

2) Hom-Lie admissible algebras are Hom-algebras (A, μ, α) consisting of pos-
sibly non-associative algebra (A, μ) and a linear map α : A → A, such that
(A, [. , . ], α) is a Hom-Lie algebra, where [x, y] = μ(x, y) − μ(y, x) for all
x, y ∈ A.

3) Hom-associative algebras are triples (A, ·, α) consisting of a linear space A over
a field K, a bilinear product μ : A × A → A and a linear map α : A → A, satis-
fying for all x, y, z ∈ A,

μ(μ(x, y), α(z)) = μ(α(x), μ(y, z)). (Hom-associativity) (11.15)

4) Let G be a subgroup of the permutations group S3. Hom-algebra (A, μ, α) is
said to be G-Hom-associative if for xi ∈ A, i = 1, 2, 3,
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∑
σ∈G

(−1)ε(σ )(μ(μ(xσ(1), xσ(2)), α(xσ(3))) − μ(α(xσ(1)), μ(xσ(2), xσ(3))) = 0,

(11.16)
where (−1)ε(σ ) is the signature of the permutation σ .

For any Hom-algebra (A, μ, α), the Hom-associator, called also α-associator of μ,
is a trilinear map (ternary product) aα,μ : A × A × A → A defined by

aα,μ(x1, x2, x3) = μ(μ(x1, x2), α(x3)) − μ(α(x1), μ(x2, x3))

for all x1, x2, x3 ∈ A. The ordinary associator

aμ(x1, x2, x3) = aid,μ(x1, x2, x3) = μ((x1, x2), (x3)) − μ((x1), μ(x2, x3))

on an algebra (A, μ) is α-associator for the Hom-algebra (A, μ, α) = (A, μ, id)
with α = id : A → A, the identity map on A.

Using Hom-associator aα,μ, Hom-associativity (11.15) is

aα,μ(x, y, z) = μ(μ(x, y), α(z)) − μ(α(x), μ(y, z)) = 0, (Hom-associativity)

that is, aα,μ = 0, and G-Hom-associativity (11.16) is
∑
σ∈G

(−1)ε(σ )aα,μ ◦ σ = 0,

where σ(x1, x2, x3) = (xσ(1), xσ(2), xσ(3)). If μ is the multiplication of a Hom-Lie
admissible Lie algebra, then (11.16) is equivalent to [x, y] = μ(x, y) − μ(y, x) sat-
isfying the Hom-Jacobi identity, or equivalently,

∑
σ∈S3

(−1)ε(σ )(μ(μ(xσ(1), xσ(2)), α(xσ(3))) − μ(α(xσ(1)), μ(xσ(2), xσ(3)))) = 0,

which may be written as
∑

σ∈S3

(−1)ε(σ )aα,μ ◦ σ = 0. Thus, Hom-Lie admissible

Hom-algebras are S3-associative Hom-algebras. In general, for all subgroups G
of the permutations group S3, all G-Hom-associative Hom-algebras are Hom-Lie
admissible, or in other words, all Hom-algebras from the six classes of G-Hom-
associative Hom-algebras, corresponding to the six subgroups of the symmetric
group S3, are Hom-Lie admissible [48, Proposition 3.4]. All six subgroups of S3

are G1 = S3(id) = {id},G2 = S3(τ12) = {id, τ12},G3 = S3(τ23) = {id, τ23},G4 =
S3(τ13) = {id, τ13},G5 = A3,G6 = S3 where A3 is the alternating group and τi j is
the transposition of i and j . Table11.1 summarises the defining identities and names
for the classes G-Hom-associative algebras.

The skew-symmetric G5-Hom-associative Hom-algebras and Hom-Lie algebras
form the same class of Hom-algebras for linear spaces over fields of characteristic
different from 2, since then the defining identity of G5-Hom-associative algebras
is equivalent to the Hom-Jacobi identity of Hom-Lie algebras when the product μ

is skew-symmetric. A Hom-right symmetric (Hom-pre-Lie) algebra is the opposite
algebra of a Hom-left-symmetric algebra. Hom-flexible algebras introduced in [48]
is a generalization to Hom-algebra context of flexible algebras [2, 53, 55].
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Table 11.1 G-Hom-associative algebras

Subgroup
of S3

Hom-algebras
class names

Defining Identity
(notation: μ(a, b) = ab)

G1 = S3(id) Hom-associative α(x)(yz) = (xy)α(z)

G2 = S3(τ12) Hom-left symmetric,
Hom-Vinberg

α(x)(yz) − α(y)(xz) =
(xy)α(z) − (yx)α(z)

G3 = S3(τ23) S3(τ23)-Hom-associative,
Hom-right symmetric,
Hom-pre-Lie

α(x)(yz) − α(x)(zy) =
(xy)α(z) − (xz)α(y)

G4 = S3(τ13) S3(τ13)-Hom-associative,
Hom-anti-flexible,
Hom-center symmetric

α(x)(yz) − α(z)(yx) =
(xy)α(z) − (zy)α(x)

G5 = A3 A3-Hom-associative
α(x)(yz) + α(y)(zx) + α(z)(xy) =
(xy)α(z) + (yz)α(x) + (zx)α(y)

G6 = S3 Hom-Lie admissible

∑
σ∈S3

(−1)ε(σ )
(
(xσ(1)xσ(2))α(xσ(3))

−α(xσ(1))(xσ(2)xσ(3))
) = 0

Definition 11.13 ([48]) Hom-algebra (A, μ, α) is called flexible if for x, y ∈ A,

μ(μ(x, y), α(x)) = μ(α(x), μ(y, x))). (11.17)

Using the α-associator aα,μ(x, y, z) = μ(μ(x, y), α(z)) − μ(α(x), μ(y, z)), the
condition (11.17) may be written as

aα,μ(x, y, x) = 0. (11.18)

Since Hom-associator map aα,μ is a trilinear map,

aα,μ(z − x, y, z − x) = aα,μ(z, y, z) + aα,μ(x, y, x) − aα,μ(x, y, z) − aα,μ(z, y, x),

and hence (11.18) yields

aα,μ(x, y, z) = −aα,μ(z, y, x) (11.19)

in linear spaces over any field. Setting x = z in (11.19) gives 2aα,μ(x, y, x) = 0,
implying that (11.18) and (11.19) are equivalent in linear spaces over fields of
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characteristic different from 2. The equality (11.19) in terms of the Hom-algebra
product μ is

μ(μ(x, y), α(z)) − μ(α(x), μ(y, z)) = μ(α(z), μ(y, x)) − μ(μ(z, y), α(x)).

Definition 11.14 Hom-algebra (A, μ, α) is called anti-flexible if for x, y, z ∈ A.

μ(μ(x, y), α(z)) − μ(μ(z, y), α(x))
= μ(μ(α(x), μ(y, z)) − μ(μ(α(z), μ(y, x)).

(11.20)

In terms of the Hom-associator aα,μ(x, y, z), (11.20) can be written as

aα,μ(x, y, z) = aα,μ(z, y, x). (11.21)

Hom-anti-flexible algebras were first introduced in [48] as S3(τ13)-Hom-associa-
tive algebras, the subclass of G-Hom-associative algebras corresponding to the sub-
group G = S3(τ13) ⊂ S3 (see Table11.1). In view of (11.21), anti-flexible algebras
have been called Hom-center symmetric in [32].

Note that (11.21) differs from (11.19) by absence of the minus sign on the right
hand side, meaning that for any y, the bilinear map aα,μ(., y, .) is symmetric on
Hom-anti-flexible algebras and skew-symmetric on Hom-flexible algebras. Unlike
(11.17) and (11.19) in Hom-flexible algebras, in Hom-anti-flexible algebras, (11.21)
is generally not equivalent to the restriction of (11.21) to z = x trivially identically
satisfied for any x and y. In view of (11.21), Hom-anti-flexible algebras are called
Hom-center-symmetric algebras in [32].

11.7 Nearly Hom-Associative Algebras, Bimodules
and Matched Pairs

Definition 11.15 A nearly Hom-associative algebra is a triple (A, ∗, α), where A is
a linear space endowed to the bilinear product ∗ : A × A → A and α : A → A is a
linear map such that for all x, y, z ∈ A,

α(x) ∗ (y ∗ z) = (z ∗ x) ∗ α(y).

Nearly Hom-associative algebras are Hom-Lie admissible.

Proposition 11.10 Any nearly Hom-associative algebra (A, ∗, α) is Hom-Lie
admissible, that is (A, [. , . ], α) is a Hom-Lie algebra with [x, y] = x ∗ y − y ∗ x
for x, y ∈ A.
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Proof The commutator is skew-symmetric in any algebra, [x, y] = x ∗ y − y ∗ x =
−(y ∗ x − x ∗ y) = −[y, x]. For x, y, z ∈ A in a nearly Hom-associative algebra
(A, ∗, α),

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]]
= [α(x), y ∗ z − z ∗ y] + [α(y), z ∗ x − x ∗ z] + [α(z), x ∗ y − y ∗ x]
= α(x) ∗ (y ∗ z) − α(x) ∗ (z ∗ y) − (y ∗ z) ∗ α(x)

+ (z ∗ y) ∗ α(x) + α(y) ∗ (z ∗ x) − α(y) ∗ (x ∗ z)

− (z ∗ x) ∗ α(y) + (x ∗ z) ∗ α(y) + α(z) ∗ (x ∗ y)

− α(z) ∗ (y ∗ x) − (x ∗ y) ∗ α(z) + (y ∗ x) ∗ α(z)

= {α(x) ∗ (y ∗ z) − (z ∗ x) ∗ α(y)} + {(y ∗ x) ∗ α(z) − α(x) ∗ (z ∗ y)}
+ {α(y) ∗ (z ∗ x) − (x ∗ y) ∗ α(z)} + {α(z) ∗ (x ∗ y) − (y ∗ z) ∗ α(x)}
+ {(z ∗ y) ∗ α(x) − α(y) ∗ (x ∗ z)} + {(x ∗ z) ∗ α(y) − α(z) ∗ (y ∗ x)} = 0.

Therefore, (A, [. , . ], α) is a Hom-Lie algebra. �

Commutative nearly Hom-associative algebras are Hom-anti-flexible.

Proposition 11.11 If (A, ∗, α) is a commutative nearly Hom-associative algebra,
then (A, ∗, α) is a Hom-anti-flexible algebra.

Proof In a commutative nearly Hom-associative algebra (A, ∗, α).

aα,∗(x, y, z) = (x ∗ y) ∗ α(z) − α(x) ∗ (y ∗ z)

= α(y) ∗ (z ∗ x) − (z ∗ x) ∗ α(y) (nearly Hom-associativity)

= α(y) ∗ (x ∗ z) − (x ∗ z) ∗ α(y) (commutativity)

= (z ∗ y) ∗ α(x) − α(z) ∗ (y ∗ x) (nearly Hom-associativity)

= aα,∗(z, y, x).

So any commutative nearly Hom-associative algebra is Hom-anti-flexible. �

Definition 11.16 A bimodule of a nearly Hom-associative algebra (A, ∗, α) is a
quadruple (l, r, V, ϕ), where V is a linear space, l, r : A → End(V ) are two linear
maps and ϕ ∈ End(V ) satisfying the relations, for all x, y ∈ A,

ϕ ◦ l(x) = l(α(x)) ◦ ϕ, ϕ ◦ r(x) = r(α(x)) ◦ ϕ,

l(α(x)) ◦ l(y) = r(α(y)) ◦ r(x),
l(α(x)) ◦ r(y) = l(y ∗ x) ◦ ϕ,

r(α(x)) ◦ l(y) = r(x ∗ y) ◦ ϕ.

Proposition 11.12 Consider a nearly Hom-associative (A, ∗, α). Let l, r : A →
End(V ) be two linear maps such that V is a linear space and ϕ ∈ End(V ). The
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quadruple (l, r, V, ϕ) is a bimodule of (A, ∗, α) if and only if there is a structure
of a nearly Hom-associative algebra � on A ⊕ V given by, for all x, y ∈ A and all
u, v ∈ V ,

(α ⊕ ϕ)(x + u) = α(x) + ϕ(u),

(x + u) � (y + v) = (x ∗ y) + (l(x)v + r(y)u).

Definition 11.17 A representation of a Hom-Lie algebra (G, [. , . ]G , αG ) on a linear
space V with respect to ψ ∈ End(V ) is a linear map ρG : G → End(V ) obeying for
all x, y ∈ G,

ρG (αG (x)) ◦ ψ = ψ ◦ ρG (x), (11.23)

ρG ([x, y]G ) ◦ ψ = ρG (αG (x)) ◦ ρG (y) − ρG (αG (y)) ◦ ρG (x). (11.24)

Proposition 11.13 Let (A, ·, α) be a nearly Hom-associative algebra and V be a
finite-dimensional linear space over the field K such that (l, r, ϕ, V ) is a bimodule
of (A, ·, α), where l, r : A → End(V ) are two linear maps and ϕ ∈ End(V ). Then
the linear map l − r : A → End(V ), x �→ l(x) − r(x) is a representation of the
underlying Hom-Lie algebra (G(A), α) associated to the nearly Hom-associative
algebra (A, ·, α).

Proof Let (A, ·, α) be a nearly Hom-associative algebra and V a finite-dimensional
linear space over the field K such that (l, r, ϕ, V ) is a bimodule of (A, ·, α), where
l, r : A → End(V ) are two linear maps and ϕ ∈ End(V ). For all x, y ∈ A,

(l − r)(α(x)) ◦ ϕ = l(α(x)) ◦ ϕ − r(α(x)) ◦ ϕ

= ϕ ◦ l(x) − ϕ ◦ r(x) = ϕ ◦ (l − r)(x),

(l − r)((α(x))) ◦ (l − r)(y) − (l − r)((α(y))) ◦ (l − r)(x)

= l(α(x)) ◦ l(y) − l(α(x)) ◦ r(y) − r(α(x)) ◦ l(y) + r(α(x)) ◦ r(y)
− l(α(y)) ◦ l(x) + l(α(y)) ◦ r(x) + r(α(y)) ◦ l(x) − r(α(y)) ◦ r(x)

= {l(α(x)) ◦ l(y) − r(α(y)) ◦ r(x)} − l(α(x)) ◦ r(y) − r(α(x)) ◦ l(y)
+ {r(α(x)) ◦ r(y) − l(α(y)) ◦ l(x)} + r(α(y)) ◦ l(x) + l(α(y)) ◦ r(x)

= r(α(y)) ◦ l(x) − l(α(x)) ◦ r(y) + l(α(y)) ◦ r(x) − r(α(x)) ◦ l(y)
= r(y · x) ◦ ϕ − l(y · x) ◦ ϕ + l(x · y) ◦ ϕ − r(x · y) ◦ ϕ = (l − r)([x, y]) ◦ ϕ.

Therefore, (11.23) and (11.24) are satisfied. �

Definition 11.18 Let (G, [. , . ]G , αG ) and (H, [. , . ]H , αH) be two Hom-Lie alge-
bras. Let ρH : H → End(G) and μG : G → End(H) be Hom-Lie algebra repre-
sentations, and αG : G → G and αH : H → H linear maps such that for all x, y ∈
G, a, b ∈ H,
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μG (αG (x)) [a, b]H = [
μG (x)a, αH(b)

]
H

+ [
αH(a), μG (x)b

]
H−μG (ρH(a)x)(αH(b)) + μG (ρH(b)x)(αH(a)),

(11.25a)

ρH(αH(a)) [x, y]G = [
ρH(a)x, αG (y)

]
G

+ [
αG (x), ρH(a)y

]
G−ρH(μG (x)a)(αG (y)) + ρH(μG (y)a)(αG (x)).

(11.25b)

Then, (G,H, μ, ρ, αG , αH) is called a matched pair of the Hom-Lie algebras G and
H, and denoted by H ��ρH

μG G. In this case, (G ⊕ H, [. , . ]G⊕H , αG ⊕ αH) defines a
Hom-Lie algebra, where

[(x + a), (y + b)]G⊕H = [x, y]G + ρH (a)y − ρH(b)x + [a, b]H + μG (x)b − μG (y)a.

Theorem 11.6 Let (A, ·, αA) and (B, ◦, αB) be two nearly Hom-associative alge-
bras. Suppose there are linearmaps lA, rA : A → End(B) and lB, rB : B → End(A)

such that (lA, rA, B, αB) and (lB, rB, A, αA) are bimodules of the nearly Hom-
associative algebras (A, ·, αA) and (B, ◦, αB), respectively, satisfying the following
conditions for x, y ∈ A, a, b ∈ B :

αA(x) · (rB(a)y) + (rB(lA(y)a)αA(x)
−(lB(a)x) · αA(y) − lB(rA(x)a)αA(y) = 0,

(11.26a)

αA(x) · (lB(a)y) + rB(rA(y)a)αA(x) − rB(αB(a))(y · x) = 0, (11.26b)

lB(αB(a))(x · y) − (rB(a)y) · αA(x) − lB(lA(y)a)αA(x) = 0, (11.26c)

αB(a) ◦ (rA(x)b) + rA(lB(b)x)αB(a)

−(lA(x)a) ◦ αB(b) − lA(rB(a)x)αB(b) = 0,
(11.26d)

αB(a) ◦ (lA(x)b) + rA(rB(b)x)αB(a) − rA(αA(x))(b ◦ a) = 0, (11.26e)

lA(αA(x))(b ◦ a) − (rA(x)a) ◦ αB(b) − lA(lB(a)x)αB(b) = 0. (11.26f)

Then, there is a bilinear product defined on A ⊕ B for x, y ∈ A, a, b ∈ B, by

(x + a) ∗ (y + b) = (x · y + lB(a)y + rB(b)x) + (a ◦ b + lA(x)b + rA(y)a)

such that (A ⊕ B, ∗, αA ⊕ αB) is a nearly Hom-associative algebra.

Proof Let (A, ·, αA), (B, ◦, αB) be nearly Hom-associative algebras, (lA, rA, B, αB)

a bimodule of (A, ·, αA) and (lB, rB, A, αA) a bimodule of (B, ◦, αB). For all x, y ∈
A and all a, b ∈ B,

(αA(x) + αB(a)) ∗ ((y + b) ∗ (z + c))

= {(αA(x)) · (lB(b)z) + rB(rA(z)b) · (αA(x))}
+ {(αA(x)) · (rB(c)y) + rB(lA(y)c)αA(x)}
+ (αA(x)) · (y · z) + lB(αB(a))(y · z) + lB(αB(a))(lB(b)z)

+ lB(αB(a))(rB(c)y) + rB(b ◦ c)(αA(x))

+ {(αB(a)) ◦ (lA(y)c) + rA(rB(c)y)αB(a)}
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+ {(αB(a)) ◦ (rA(z)b) + rA(lB(b)z)αB(a)}
+ (αB(a)) ◦ (b ◦ c) + rA(y · z)αB(a) + lA(αA(x))(b ◦ c)

+ lA(αA(x))(lA(y)c) + lA(αA(x))(rA(z)b),

((z + c) ∗ (x + a)) ∗ (αA(y) + αB(b))

= {(lB(c)x) · (αA(y)) + lB(rA(x)c)αA(y)}
+ {lB(lA(z)a)αA(y) + (lB(c)x) · αA(y)}
+ (z · x) · (αA(y)) + lB(c ◦ a)(αA(y)) + rB(αB(b)(z · x)
+ rB(αB(b)(lB(c)x) + rB(αB(b)(rB(a)z)

+ {(lA(z)a) ◦ (αB(b)) + lA(rB(a)z)αB}
+ {(rA(x)c) ◦ (αB(b)) + lA(lB(c)x)αB(b)}
+ (c ◦ a) ◦ (αB(b)) + lA(z · x)(αB(b)) + rA(αA(y))(c ◦ a)

+ rA(αA(y))(lA(z)a) + rA(αA(y))(rA(x)c).

Using (11.26a)–(11.26f) and that (lA, rA, B, αB) and (lB, rB, A, αA) are bimodules
of the nearly Hom-associative algebras (A, ·, αA) and (B, ◦, αB), respectively, we
obtain that (A ⊕ B, ∗, αA ⊕ αB) is a nearly associative algebra. �

Definition 11.19 A matched pair of nearly Hom-associative algebras (A, ·, αA)

and (B, ◦, αB) is the octuple (A, B, lA, rA, αB, lB, rB, αA), where lA, rA : A →
End(B) and lB, rB : B → End(A) are linear maps such that (lA, rA, B, αB) and
(lB, rB, A, αA) are bimodules of the nearly Hom-associative algebras (A, ·, αA) and
(B, ◦, αB), respectively, and satisfying (11.26a)–(11.26f).

Corollary 11.3 Let (A, B, lA, rA, αB, lB, rB, αA) be a matched pair of nearly Hom-
associative algebras (A, ·, αA) and (B, ◦, αB). Then, (G(A),G(B), lA − rA, lB −
rB, αA, αB) is a matched pair of the underlying Hom-Lie algebras G(A) and G(B)

of the nearly Hom-associative algebras (A, ·, αA) and (B, ◦, αB).

Proof Let (A, B, lA, rA, αB, lB, rB, αA)be amatchedpair of nearlyHom-associative
algebras (A, ·, αA) and (B, ◦, αB). By Proposition11.13, the linear maps lA − rA :
A → End(B) and lB − rB : B → End(A) are representations of the underlying
Hom-Lie algebras (G(A), αA) and (G(B), αB), respectively. Therefore, (11.25a) is
equivalent to (11.26a), (11.26b) and (11.26c), and similarly, (11.25b) is equivalent
to (11.26d), (11.26e) and (11.26f). �
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Chapter 12
On Generalized q-Hyperbolic Functions
in the Spirit of Kapteyn, with
Corresponding q-Lie Group

Thomas Ernst

Abstract There are many possible generalizations of hyperbolic functions in the
literature, in recent years all these generalizations have been collected into a single
definition. The purpose of this article is to find q-analogues of the most interesting
formulas of this type, i.e. the Zn components of the q-exponential function. There is
a close connection to factor-circulant matrices by the q-exponential of a permutation
matrix, which has generalized q-hyperbolic functions as matrix elements; this leads
to the decomposition of functions with respect to the cyclic group of order n by Ben
Cheikh and Kwasniewski. The latter formula is used to find q-analogues of inverse
decomposition hypergeometric formulas by Osler and Srivastava. Furthermore, the
q-Leibniz functional matrix from a previous paper of the author is equal to the
q-exponential of the transpose of the permutation matrix times the q-difference
operator. Finally, some q-analogues in general form of Bailey hypergeometric series
product formulas connected to cyclic group decomposition are presented.

Keywords q-hyperbolic function · q-exponential · q-difference operator · q-Lie
group

MSC2000 Classification Primary 33D15 · Secondary 15A15 · 15B99

12.1 Introduction

In the nineteenth century, a large number of generalizations of hyperbolic functions
were considered, until Jacobus Cornelius Kapteyn (1851–1922) together with his
fellow astronomer W. Kapteyn published a long paper [13] on the higher sine func-
tions written in German. The formulas in [13] apply to the special case α = 1 in
our paper. We have written a q-analogue of [13] anyway, since the formulas are
quite similar. More than hundred years later, Muldoon and Ungar [17] generalized
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Kapteyn’s definitions and introduced the corresponding matrix approach. Several of
Kapteyn’s formulas are unique, and we have found similar q-analogues of some of
them. Already Kapteyn was aware of the connection between cyclic decomposition
of functions and generalized hyperbolic functions as well as the de Moivre theorem.
Amazingly, these formulas look the same with the q-exponential function and the
Ward numbers. Similar to the q-exponential function, there will be two q-hyperbolic
functions as well as two q-Taylor formulas.

Remark 12.1 Kwasniewski [15, (23), (32), (46)] has found formulas equivalent to
(12.14), (12.27), (12.44) in his own quantum plane notation.

This paper is organized as follows: In Sect. 12.1 we give a general introduction
and the first definitions. In Sect. 12.2 we prove the most important formulas in the
paper and introduce the decomposition with respect to the cyclic group.

In Sect. 12.3 we show that some of the previous formulas can also be expressed
in matrix language. In Sect. 12.4 we relate to some inverse series relations by Osler
and Srivastava, which imply some results of Bailey expressed in hypergeometric
form. Finally, in Appendix12.5 we give the historical background of the generalized
hyperbolic functions.

We start with some of the definitions from our book.

Definition 12.1 ([3]) The q-exponential functions are defined by

Eq(z) ≡
∞∑

k=0

1

{k}q ! zk; E 1
q
(z) ≡

∞∑

k=0

q(k
2)

{k}q ! zk . (12.1)

The q-trigonometric functions are defined by

Cosq(x) ≡ 1

2
(Eq(i x) + Eq(−i x)). (12.2)

Sinq(x) ≡ 1

2i
(Eq(i x) − Eq(−i x)). (12.3)

The q-hyperbolic functions are defined by

Sinhq(x) ≡ 1

2
(Eq(x) − Eq(−x)) =

∞∑

n=0

x2n+1

{2n + 1}q ! . (12.4)

Coshq(x) ≡ 1

2
(Eq(x) + Eq(−x)) =

∞∑

n=0

x2n

{2n}q ! . (12.5)
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Definition 12.2 ([3]) Let a and b belong to a commutative ring. The Nalli–Ward–
AlSalam q-addition (NWA) is given by

(a ⊕q b)n ≡
n∑

k=0

(
n

k

)

q

akbn−k, (a �q b)n ≡
n∑

k=0

(
n

k

)

q

ak(−b)n−k (12.6)

The Jackson–Hahn–Cigler q-addition (JHC) is given by

(a �q b)n ≡
n∑

k=0

(
n

k

)

q

q(k
2) an−kbk, (a �q b)n ≡

n∑

k=0

(
n

k

)

q

q(k
2) an−k(−b)k .

(12.7)

Definition 12.3 ([15, (43)], a q-analogue of [17, p. 4]) Let α ∈ C�. The α, q-
hyperbolic function of order n and r th kind is defined by

Fα
n,r,q(x) ≡

∞∑

k=0

αk

{nk + r}q ! xnk+r , r = 0, 1, . . . , n − 1, Fα
n,0,q(0) ≡ 1. (12.8)

Definition 12.4 Another q-analogue of [17, p. 4]. Let α ∈ C�. The complementary
α, q-hyperbolic function of order n and r th kind is defined by

Fα

n,r,
1
q

(x) ≡
∞∑

k=0

αk

{nk + r}q ! xnk+rQE

((
nk + r

2

))
, r = 0, 1, . . . , n − 1,

Fα

n,0,
1
q

(0) ≡ 1.
(12.9)

Weobserve that Fα
n,r,q(0) = Fα

n,r,
1
q

(0) = 0, r = 1, 2, . . . , n − 1.The functions (12.8)

and (12.9) are generalizations of Eq(x) and E 1
q
(x), respectively.

Definition 12.5 The q-Mittag-Leffler function Eγ,q(z) is defined by

Eγ,q(z) ≡
∞∑

k=0

zk

�q(γ k + 1)
. (12.10)

For γ real and positive, the series (12.10) is an entire function of the complex
variable z.

The relation between the α, q-hyperbolic function of order n and first kind and
the q-Mittag-Leffler function, a q-analogue of [17, p. 9], is F1n,0,q(x) = En,q(xn).
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Proof

En,q(xn) =
∞∑

k=0

xkn

�q(nk + 1)
=

∞∑

k=0

xkn

{nk}q ! . (12.11)

This completes the proof.

12.2 q-Analogues of the Results by Muldoon, Ungar and
Kapteyn

The following simple formula forms the basis of many results in this article. In the
rest of the paper, we put ωn ≡ Exp( 2π i

n ). The reader should pay attention to the two
inverse formulas (12.19) and (12.54).

Theorem 12.2.1 ([2, 1.4, 1.5]) The decomposition with respect to the cyclic group
of order n of an arbitrary complex function f (z) admitting a Laurent expansion in
an annulus I with center at the origin.

f (z) =
n−1∑

k=0

f[n,k](z), (12.12)

and

f[n,k](z) = 1

n

n−1∑

m=0

ω−km
n f (zωm

n ), 0 < k < n. (12.13)

Remark 12.2 An equivalent theorem was given in [20, p. 889].

Theorem 12.2.2 (A q-analogue of [17, (5) p. 5], [21, p. 302].) The α, q-hyperbolic
function of order n and rth kind form a set of n linearly independent solutions to the
q-difference equation

Dn
q f (x) = α f (x), (12.14)

with initial conditions

Dk
q f (0) =

{
0, k �= r, 0 ≤ k ≤ n − 1,

1, k = r.
(12.15)

Weobserve that the theory of differential (q-difference) equations gives the exponents

α
1
n as solutions of (12.14); the initial conditions (12.15) are the best possible ones.

Theorem 12.2.3 (A q-analogue of [17, p. 5], [21, (6) p. 302]) Furthermore, a cyclic
permutation results from q-differentiation, apart from a factor α for r = 0 :
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DqF
α
n,r,q(x) =

{
Fα

n,r−1,q(x), 0 < r ≤ n − 1,

αFα
n,n−1,q(x), r = 0.

(12.16)

We observe that formula (12.16) implies (12.14). The following formula relates some
of the α, q-hyperbolic functions with α = ±1.

Theorem 12.2.4 A q-analogue of [17, (17), (18) p. 10]

F12m,r,q(x) = 1

2

[
F1m,r,q(x) + F−1

m,r,q(x)
]
, r = 0, 1, . . . , m − 1, (12.17)

F12m,r+m,q(x) = 1

2

[
F1m,r,q(x) − F−1

m,r,q(x)
]
, r = 0, 1, . . . , m − 1. (12.18)

Theorem 12.2.5 (Aq-analogueof [17, (6) p. 5], [13, (14) p. 809].Aq-generalization

of Eulers’ formula) Let α
1
n denote the unique root given by the principal branch of

the logarithm. Then

Eq

(
α

1
n ωk

n x

)
=

n−1∑

r=0

α
r
n ωkr

n Fα
n,r,q(x), k = 0, 1, . . . , n − 1. (12.19)

Eulers’ formula results from n = 2, α = −1, q = 1. Formula (12.19) is n linear
equations, because there are n nth roots of α.

Proof Use formula (12.12).

Our next aim is to q-deform some basic formulas by Kapteyn (and Nikodemo [18]).

Theorem 12.2.6 (Almost [15, (18)], a q-analogue of [13, (14) p. 809], [18, p.198].)

Eq
(
ωk

n x
) =

n−1∑

r=0

ωrk
n F1n,r,q(x), k = 1, 2, . . . , n. (12.20)

Corollary 12.2.7 (A de Moivre type theorem. A q-analogue of [13, p. 814].)

Eq
(
ωk

n xmq
) =

[
n−1∑

r=0

ωrk
n F1n,r,q(x)

]m

, k = 1, 2, . . . , n. (12.21)

Proof Use the formula (12.20) with x 	→ xmq .

Corollary 12.2.8 (A q-analogue of [13, (32) p. 814].)

n−1∑

r=0

ωrk
n F1n,r,q(xmq) =

[
n−1∑

r=0

ωrk
n F1n,r,q(x)

]m

, k = 1, 2, . . . , n. (12.22)
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Proof Use the formula (12.20) with x 	→ xmq , together with (12.21).

Theorem 12.2.9 (A q-analogue of [13, (7), (8) p. 808].)

Fα
n,r,q(ω

m
n x) = ωmr

n Fα
n,r,q(x), (12.23)

Fα
n,r,q

(
ω

2m−1
2

n x

)
= ω

r(2m−1)
2

n F−α
n,r,q(x), (12.24)

Proof We prove the first formula.

LHS=
∞∑

k=0

xkn+r

{kn + r}q !ω
m(kn+r)
n = RHS. (12.25)

Theorem 12.2.10 (A q-analogue of [13, (9), (10) p. 808].)

Fα
n,r,q(−x) = (−1)r

{
Fα

n,r,q(x), n even

F−α
n,r,q(x), n odd.

(12.26)

The following simple formulas are all kind of convolutions in the second
index r .

Theorem 12.2.11 (A q-Taylor expansion, a q-analogue of [13, (22) p. 811].)

Fα
n,r,q(x ⊕q y) =

n−1∑

λ=0

Fα
n,r−λ,q(x)Fα

n,λ,q(y). (12.27)

Proof

LHS=
∞∑

k=0

yk

{k}q !D
k
qF

α
n,r,q(x)

=
∞∑

m=0

n−1∑

λ=0

ymn+λ

{mn + λ}q !α
mFα

n,r−λ,q(x) = RHS.

(12.28)

Corollary 12.2.12

Fα
n,r,q(x ⊕q ωk

n y) =
n−1∑

λ=0

ωλk
n Fα

n,r−λ,q(x)Fα
n,λ,q(y). (12.29)

Proof Use the formula (12.23) together with (12.27).

Corollary 12.2.13 (A q-Taylor expansion, a q-analogue of [13, (23), (24) p. 811],
[18, (6), p. 199].)
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Fα
n,r,q(x �q y) =

n−1∑

λ=0

(−1)λFα
n,r−λ,q(x)

{
Fα

n,λ,q(y), n even.

F−α
n,λ,q(y), n odd.

(12.30)

Proof See the next proof.

Corollary 12.2.14 (Another q-analogue of [13, (23), (24) p. 811].)

Fα
n,r,q(x �q y) =

n−1∑

λ=0

(−1)λFα
n,r−λ,q(x)

⎧
⎪⎨

⎪⎩

Fα

n,λ,
1
q

(y), n even.

F−α

n,λ,
1
q

(y), n odd.
(12.31)

Proof

LHS=
∞∑

k=0

(−y)k

{k}q ! D
k
qF

α
n,r,q(x)q(k

2)

=
∞∑

m=0

n−1∑

λ=0

(−y)mn+λ

{mn + λ}q !α
mFα

n,r−λ,q(x)QE

((
mn + λ

2

))
= RHS.

(12.32)

We are finished with the convolutions and find some corollaries.

Corollary 12.2.15 (A q-analogue of [13, (25) p. 812].)

Fα
n,r,q(x ⊕q y) ± Fα

n,r,q(x �q y)

=
n−1∑

λ=0

Fα
n,r−λ,q(x)

[
Fα

n,λ,q(y) ± (−1)λFα
n,λ,q(y)

]
, n even.

(12.33)

A q-analogue of [13, (26) p. 812], [18, p. 205]

Fα
n,r,q(x ⊕q y) ± Fα

n,r,q(x �q y)

=
n−1∑

λ=0

Fα
n,r−λ,q(x)

[
Fα

n,λ,q(y) ± (−1)λF−α
n,λ,q(y)

]
, n odd.

(12.34)

Remark 12.3 As Nicodemo points out, formulas (12.33) and (12.34) correspond to
the multiplication formulas for trigonometric and hyperbolic functions.

Corollary 12.2.16 (A q-analogue of [13, (28) p. 812], [18, p. 203].)

Fα
n,r,q(x2q) =

n−1∑

λ=0

Fα
n,r−λ,q(x)Fα

n,λ,q(x). (12.35)

Proof Put x = y in formula (12.27).
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Corollary 12.2.17 (A q-analogue of [13, (29), (30) p. 812].)

Fα
n,r,q(0) =

n−1∑

λ=0

(−1)λFα
n,r−λ,q(x)

⎧
⎪⎨

⎪⎩

Fα

n,λ,
1
q

(x), n even.

F−α

n,λ,
1
q

(x), n odd.
(12.36)

Proof Put x = y in formula (12.31).

12.3 The Corresponding Matrix Formulas

In this paper we will use a few matrices, which are now defined.

Definition 12.6 ([17, p. 8]) The permutation matrix An(α) is defined by

An(α) ≡

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
α 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
. (12.37)

Definition 12.7 (A q-analogue of [17, p. 6].) The α, q hyperbolic matrix is defined
by

Hα
n,q(x) ≡ Eq(xAn(α)). (12.38)

We have the following two special cases.

Definition 12.8 (A q-analogue of [14, p. 253].) The H and F hyperbolic matrices
are defined by

Hn,q(x) ≡ Eq(xAn(1)), (12.39)

Fn,q(x) ≡ Eq(xAn(−1)). (12.40)

The inverses of these hyperbolic matrices are found in formula (12.49).

Theorem 12.3.1 An explicit formula for the factor-circulant matrix.

Hα
n,q(x) =
⎛

⎜⎜⎜⎜⎜⎝

Fα
n,0,q(x) Fα

n,1,q(x) Fα
n,2,q(x) · · · Fα

n,n−1,q(x)

αFα
n,n−1,q(x) Fα

n,0,q(x) Fα
n,1,q(x) · · · Fα

n,n−2,q(x)

αFα
n,n−2,q(x) αFα

n,n−1,q(x) Fα
n,0,q(x) · · · Fα

n,n−3,q(x)
...

...
...

. . .
...

αFα
n,1,q(x) αFα

n,2,q(x) αFα
n,3,q(x) · · · Fα

n,0,q(x)

⎞

⎟⎟⎟⎟⎟⎠
.

(12.41)
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Proof Let 0 < k < n. Use the formula

An(α)k =

⎛

⎜⎜⎝
0

... In−k

· · · + · · ·
αIk

... 0

⎞

⎟⎟⎠ , (12.42)

where
1

α
An(α)n = In, the unit matrix. (12.43)

Theorem 12.3.2 (A q-analogue of [17, (11) p. 7], [14, p. 254].)

Hα
n,q(x)Hα

n,q(y) = Hα
n,q(x ⊕q y), n ≥ 1. (12.44)

Proof Use the properties of the q-exponential function. Observe that the matrices
xAn(α) and yAn(α) commute [9, p. 108].

Theorem 12.3.3 (A second q-analogue of [17, (11) p. 7], [14, p. 254].)

Hα
n,q(x)Hα

n,
1
q

(y) = Hα
n,q(x �q y), n ≥ 1. (12.45)

Corollary 12.3.4
(Hα

n,q(x))−1 = Hα

n,
1
q

(−x). (12.46)

Proof Use the formula Hα
n,q(0) = In together with (12.45).

Theorem 12.3.5 The α, q hyperbolic matrices Hα
n,q(x) form a q-Lie group [6] with

multiplications ordinary matrix multiplication · given by (12.44) and twisted matrix
multiplication ·q given by (12.45).

Proof The associativity follows by the associativity of the two q-additions. The
inverse matrix is given by (12.46). The unit is the unit matrix In by (12.46).

Theorem 12.3.6 The α, q hyperbolic matrix Hα
n,q(x) is the unique solution of the

q-difference system

Dn
q M = αM, Dk

q M(0) = (An(α))k , k = 0, 1, . . . , n − 1. (12.47)

Remark 12.4 We call the equations (12.44) and (12.45) the matrix q-binomial the-
orem. We call matrices which satisfy (12.44) and (12.45) q-binomial matrices.

We can also express the relation between Hα
n,q(x) and An(α) in the form

Hα
n,q(x) =

n−1∑

k=0

Fα
n,k,q(x) (An(α))k . (12.48)
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Corollary 12.3.7 (A q-analogue of [14, (14) p. 254].)

Hn,q(x)−1 = H
n,

1
q
(−x) and Fn,q(x)−1 = F

n,
1
q
(−x). (12.49)

In a previous paper [4], we introduced a special q-deformed ε matrixmultiplication in
connection with the q-Leibniz rule. Referring to the paper by Kalman and Ungar [12,
p. 29], we can show that the q-Leibniz functional matrix is equal to the q-exponential
of the transpose of the permutation matrix times the q-difference operator. First we
repeat the definition:

Definition 12.9 ([4]) The q-deformed Leibniz functional matrix is given by

(Ln,q)[ f (t, q)](i, j) ≡
{

Di− j
q,t f (t,q)

{i− j}q ! ifi ≥ j;
0, otherwise

i, j = 0, 1, . . . , n − 1. (12.50)

Then we have by the q-Leibniz formula

(Ln,q)[ f (t, q)g(t, q)] = (Ln,q)[ f (t, q)] ·ε (Ln,q)[g(t, q)], (12.51)

where in the matrix multiplication for every term which includes Dk
q f , we operate

with εk on g. We denote this by ·ε . We infer the lower triangular matrix equation

Theorem 12.3.8
Ln,q = Eq(Dq · (An(0))

T ), (12.52)

where powers of the ’scalar’ Dq are interpreted as the operator Dk
q (which is always

divided by the corresponding q-factorial).

The analogues to the formulas in [12, pp. 29–30] exist, by formula (12.51).
We now introduce the Fourier matrix to be able to decompose functions with

respect to the cyclic group of order n.

Definition 12.10 ([17, p. 9]) The Fourier matrix Fn is defined by

Fn ≡

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

1 ω2
n ω4

n · · · ω2(n−1)
n

...
...

...
. . .

...

1 ωn−1
n ω2(n−1)

n · · · ω(n−1)2
n

⎞

⎟⎟⎟⎟⎟⎠
. (12.53)

Theorem 12.3.9 ([17, p. 10]) The inverse of the Fourier matrix is F−1
n = n−1F̄n.

Theorem 12.3.10 (A generalization of [15, (17) and p. 58], a q-analogue of [17, (7)
p. 5], [13, (15) p. 809], [18, p. 198].)
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Fα
n,r,q(x) = 1

n
α

− r
n

n−1∑

k=0

ω−rk
n Eq

(
ωk

nα
1
n x

)
. (12.54)

Proof The system of n Eq. (12.19) can be written in matrix form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eq

(
α

1
n x

)

Eq

(
ωnα

1
n x

)

...

Eq

(
ωn−1

n α
1
n x

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Fn

⎛

⎜⎜⎜⎜⎜⎝

Fα
n,0,q(x)

α
1
n Fα

n,1,q(x)
...

α
n−1

n Fα
n,n−1,q(x)

⎞

⎟⎟⎟⎟⎟⎠
. (12.55)

The proof is concluded by using the formula for the inverse of Fn .

12.4 Connections with the Triangle Operator

We start with the Osler–Srivastava transformation formulas for q-hypergeometric
functions. Osler [20, p. 890] proved the precursor of the following theorem in a
slightly different notation.

Theorem 12.4.1 (Two inverse q-hypergeometric formulas with the� operator.) Let
(a) and (b) be two vectors of length P. Then

x K 〈(a); q〉K

〈(b); q〉K

∞∑

m=0

〈�(q; n; (a + K ); q〉m

〈�(q; n; (b + K ); q〉m
xnm

= 1

n

n−1∑

j=0

ω−K j
n P+1φP((a), 1; (b)|q; xω j

n), 0 ≤ K < n.

(12.56)

P+1φP((a), 1; (b)|q; x)

=
n−1∑

k=0

xk〈(a); q〉k

〈(b); q〉k
2n P+1φ2n P

[�(q; n; (a + k)), 1
�(q; n; (b + k))

∣∣∣∣q; xn

]
.

(12.57)

Proof Toprove (12.56), use formula (12.13) togetherwith [3, 6.80].Toprove (12.57),
sum (12.56) for K from 0 to N − 1 and use the orthogonality property.

Example 12.1 Put K = 0, n = 2, a 	→ 2a, b = 1, P = 1 in (12.56) to get

4φ3

[�(q; 2; 2a)
1
2 ,

1̃
2 , 1̃

∣∣∣∣q; x2

]
= 1

2

(
1

(x; q)2a
+ 1

(−x; q)2a

)
. (12.58)
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Put K = 1, n = 2, a 	→ 2a, b = 1, P = 1 to get

x{2a}q

{1}q
4φ3

[�(q; 2; 2a + 1)
3
2 ,

3̃
2 , 1̃

∣∣∣∣q; x2

]
= 1

2

(
1

(x; q)2a
− 1

(−x; q)2a

)
. (12.59)

Put K = 0, n = 2, a1 	→ 2a, a2 	→ 2b, b1 	→ 2c, b2 = 1, P = 2 to get

8φ7

[ �(q; 2; 2a, 2b)

�(q; 2; 2c), 1
2 ,

1̃
2 , 1̃

∣∣∣∣q; x2

]

= 1

2
(2φ1(2a, 2b; 2c|q; x) + 2φ1 (2a, 2b; 2c|q;−x)) .

(12.60)

Formula (12.57) can be expressed in another form.

Theorem 12.4.2 (A q-analogue of Srivastava [22, p. 194, (12)].) Let ��(q; N ; j +
1) denote the factor with the parameter N

N omitted. Then

pφp−1

[
α1;α2; . . . ;αp

β1;β2; . . . ;βp−1

∣∣∣∣q; z

]
=

N−1∑

j=0

〈(α); q〉 j z j

〈(β), 1; q〉 j

2N pφ2N (p−1)+N−1

[ �(q; N ; (α + j))
�(q; N ; (β + j)),��(q; N ; j + 1)

∣∣∣∣q; zN

]
.

(12.61)

Proof The left member is equal to

N−1∑

j=0

∞∑

n=0

〈(α); q〉nN+ j znN+ j

〈(β), 1; q〉nN+ j

=
N−1∑

j=0

〈(α); q〉 j z j

〈(β), 1; q〉 j

∞∑

n=0

〈�(q; N ;α + j); q〉nznN

〈1; q〉n〈�(q; N ;β + j); q〉n〈��(q; N ; j + 1)〉n
.

(12.62)

Theorem 12.4.3 (Almost a q-analogue of Tremblay, Fugère [23, pp. 846–847].
Decomposition of a product of two restricted q-hypergeometric functions into even
an odd parts.) The vectors (a), (b), (c) and (d) have lengths p, t, r, s respectively.
Furthermore, assume that λ is a constant independent of x and

pφt

[
(a)

(b)

∣∣∣∣q; x

]
rφs

[
(c)
(d)

∣∣∣∣q; λx

]
=

∞∑

n=0

cn xn . (12.63)
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Then we obtain two new formulas (12.64) and (12.65) for each (12.63) identity.

∞∑

n=0

c2n xn

=
∞∑

m=0

〈�(q; 2; (a)); q〉m

〈�(q; 2; 1, (b)); q〉m
xm
(

q(2m
2 )
)t−p+1

∞∑

k=0

〈�(q; 2; (c)); q〉kλ
2k

〈�(q; 2; 1, (d)); q〉k
xk
(

q(2k
2 )
)s−r+1

+x
〈(a); q〉1

〈1, (b); q〉1
∞∑

m=0

xm 〈�(q; 2; (a + 1)); q〉m

〈�(q; 2; 2, (b + 1)); q〉m

(
−q(2m+1

2 )
)t−p+1

〈(c); q〉1
〈1, (d); q〉1

∞∑

k=0

〈�(q; 2; (c + 1)); q〉kλ
2k+1

〈�(q; 2; 2, (d + 1)); q〉k
xk
(
−q(2k+1

2 )
)s−r+1

,

(12.64)

∞∑

n=0

c2n+1xn

=
∞∑

m=0

〈�(q; 2; (a)); q〉m

〈�(q; 2; 1, (b)); q〉m
xm
(

q(2m
2 )
)t−p+1

〈(c); q〉1
〈1, (d); q〉1

∞∑

k=0

〈�(q; 2; (c + 1)); q〉kλ
2k+1

〈�(q; 2; 2, (d + 1)); q〉k
xk
(
−q(2k+1

2 )
)s−r+1

+x
〈(a); q〉1

〈1, (b); q〉1
∞∑

m=0

xm 〈�(q; 2; (a + 1)); q〉m

〈�(q; 2; 2, (b + 1)); q〉m

(
−q(2m+1

2 )
)t−p+1

∞∑

k=0

〈�(q; 2; (c)); q〉k

〈�(q; 2; 1, (d)); q〉k
λ2k xk

(
q(2k

2 )
)s−r+1

.

(12.65)

Example 12.2 (A q-analogue of [23, (11) p. 849].) We use formula [3, 10.120]

2φ1(∞,∞; ν|q; x) 0φ1(−; σ |q; xqσ )

= 4φ3

[�(q; 2; ν + σ − 1)
ν, σ, ν + σ − 1

∣∣∣∣q; x

]
.

(12.66)

Put (a) = 2∞, (b) = ν, (c) = ·, (d) = σ, λ = qσ in (12.4.3) to get



298 T. Ernst

16φ15

[ �(q; 4; ν + σ − 1), 8∞
1
2 ,

1̃
2 , 1̃,�(q; 2; ν, σ, ν + σ − 1)

∣∣∣∣q; x

]

= 8φ7

[
8∞

1
2 ,

1̃
2 , 1̃,�(q; 2; ν)

∣∣∣∣q; x

]

∞∑

k=0

xk

〈�(q; 2; 1, σ ); q〉k
QE

(
2kσ + 2

(
2k

2

))

+ x

(1 − q)2(1 − qν)(1 − qσ )
8φ7

[
8∞

3
2 ,

3̃
2 , 1̃,�(q; 2; ν + 1)

∣∣∣∣q; x

]

∞∑

k=0

xk

〈�(q; 2; 2, σ + 1); q〉k
QE

(
(2k + 1)σ + 2

(
2k + 1

2

))
.

(12.67)

A q-analogue of [23, (12) p. 849].
Put (a) = 2∞, (b) = ν, (c) = ·, (d) = σ, λ = qσ in (12.65) to get

16φ15

[ �(q; 4; ν + σ), 8∞
3
2 ,

3̃
2 , 1̃,�(q; 2; ν + 1, σ + 1, ν + σ)

∣∣∣∣q; x

]
= 1

〈1, σ, ν; q〉1
× 8φ7

[
8∞

1
2 ,

1̃
2 , 1̃,�(q; 2; ν)

∣∣∣∣q; x

] ∞∑

k=0

xk

〈�(q; 2; 2, σ + 1); q〉k

QE

(
(2k + 1)σ + 2

(
2k + 1

2

))

+ x

(1 − q)(1 − qν)
8φ7

[
8∞

3
2 ,

3̃
2 , 1̃,�(q; 2; ν + 1)

∣∣∣∣q; x

]

∞∑

k=0

xk

〈�(q; 2; 1, σ ); q〉k
QE

(
(2k)σ + 2

(
2k

2

))
.

(12.68)

We now switch to Bailey. Themotivation for formulas (12.77) and (12.78) is that they
are q-analogues of Bailey’s product expansions with generalized hyperbolic func-
tions. First we q-deform some of Bailey’s products of generalized hypergeometric
series [1, p. 244].

Theorem 12.4.4 In the product

pφu((α); (ρ)|q; x) rφs((β); (σ )|q; cx), (12.69)
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the coefficient of xn is

(−1)n(p+u+1)〈(α); q〉n

〈1, (ρ); q〉n

n∑

m=0

(−1)m(1+r+s)〈−n, 1 − (ρ) − n, (β); q〉mcm

〈1 − (α) − n, 1, (σ ); q〉m

QE

(
(s − r + p − u)

(
m

2

)
+ m(p − u + n(u + 1 − p) − (α) + (ρ))

)

QE

(
(−p + u + 1)

(
n − m

2

))
.

(12.70)

Proof The above expression is equal to

n∑

m=0

〈(α); q〉n−m〈(β); q〉mcm
[
(−1)n−mq(n−m

2 )
]−p+u+1

〈1, (ρ); q〉n−m〈1, (σ ); q〉m

[
(−1)mq(m

2)
]r−s−1 , (12.71)

which can easily be shown to be equivalent to this.

In the case p = u + 1, r = s + 1 this specializes to the following. In the product

pφp−1((α); (ρ)|q; x) rφr−1((β); (σ )|q; cx), (12.72)

the coefficient of xn is

〈(α); q〉n

〈1, (ρ); q〉n
p+rφp+r−1

⎡

⎣−n, 1 − (ρ) − n, (β)

1 − (α) − n, (σ )

∣∣∣∣∣∣
q; c

⎤

⎦ . (12.73)

Theorem 12.4.5 (A q-analogue of [1, p. 246].) In the product

pφu((α); (ρ)|q; x) rφs((β); (σ )|q; cx j ), (12.74)

the coefficient of xn is

(−1)n(p+u+1)〈(α); q〉n

〈1, (ρ); q〉n

[ n
j ]
∑

m=0

(−1)m(1+r+s)〈−n, 1 − (ρ) − n); q〉 jm〈(β); q〉mcm

〈1 − (α) − n; q〉 jm〈1, (σ ); q〉m

QE

(
(1 + s − r)

(
m

2

)
+ jm(1 − (α) + (ρ))

)

QE

(
(−p + u + 1)

((
n − jm

2

)
−
(

jm

2

)))
.

(12.75)
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This can also be written in a form without q-factors.

(−1)n(p+u+1)〈(α); q〉n

〈1, (ρ); q〉n
φ

[�(q; j;−n, 1 − (ρ) − n), (β)

�(q; j; 1 − (α) − n), (σ )

∣∣∣∣q;±c

]
. (12.76)

We now list five special implications of formula (12.75), which are q-analogues of
Bailey’s formulas [1, (3.2)–(3.6) p. 247]

Eq(x)5φ4

[
1, 4∞

�(q; 2; k)

∣∣∣∣q;−x2

]

=
∞∑

n=0

[ n
2 ]∑

m=0

xn(1 − q)n−2m〈−n; q〉2m(−1)m

〈1; q〉n〈k; q〉2m
QE

(
−
(
2m

2

)
+ 2mn

)
,

where k ∈ {1, 2}.

(12.77)

Eq(x)7φ6

[
1, 6∞

�(q; 3; k)

∣∣∣∣q;−x3

]

=
∞∑

n=0

[ n
3 ]∑

m=0

xn(1 − q)n−3m〈−n; q〉3m(−1)m

〈1; q〉n〈k; q〉3m
QE

(
−
(
3m

2

)
+ 3mn

)
,

where k ∈ {1, 2, 3}.

(12.78)

12.5 Appendix: Discussion

This was the fourth example of a q-Lie group. Previous examples were q-Pascal
matrices [5], q-Bernoulli and q-Euler matrices [7] and q-Appell polynomial matrices
[8]. Twisted matrix Lie groups are very useful in physics. By the way, the Osler
lemma is used by Masjed-Jamei and Koepf [16] to obtain explicit forms of two
bivariate power-trigonometric series. The history of generalized hyperbolic functions
started with Count Vincenzo Riccati in 1757 [11, p. 394], who in connection with the
rectificationof a hyperbola briefly considered these functions. Thenvarious authors in
Germany, independently of each other [11, p. 395], studied solutions of special cases
of the generalized hypergeometric differential equation, often in connection with
geometric applications. Olivier, [19] 1827, followed by Glaisher 1872 [10] found
special cases of formulas (12.19) and (12.54) for n = 3. Olivier studied formula
(12.27) and Glaisher studied formulas like (12.15). We summarize the conclusions
of Appell, Glaisher 1879 and Nicodemi [11, p. 412]:

Theorem 12.5.1 There exist extensions of the trigonometric functions, one category
each of arbitrary many related functions, which satisfy an addition theorem.
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13.1 Introduction, Definitions and Notations

In the past 20 years, the area of Hom-algebra structures initiated in 2003 in [4]
become popular expanding research direction with Hom-algebra structures increas-
ingly interlacing many areas of mathematics and mathematical physics. Hom-Lie
algebras and more general quasi-Hom-Lie algebras were introduced first in 2003 in
[4] in the course of construction of a general method for construction of deforma-
tions and discretizations of Lie algebras of vector fields based on twisted derivations
satisfying twisted Leibniz rule, initially motivated by the examples of q-deformed
Jacobi identities satisfied in q-deformations of Witt and Visaroro and in related q-
deformed algebras discovered in 1990’th in string theory, vertexmodels of conformal
field theory, quantum field theory and quantum mechanics, quantum calculus and q-
analysis and q-deformed differential calculi and q-deformed homological algebra.
In the course of this investigation, also the central extensions and cocycle condi-
tions for general quasi-Hom-Lie algebras and Hom-Lie algebras, generalizing in
particular q-deformed Witt and Virasoro algebras, have been first considered in [4,
6] and for graded color quasi-Hom-Lie algebras in [15]. At the same time, in 2004-
2005, general quasi-Lie and quasi-Leibniz algebras where introduced in [7] and color
quasi-Lie and color quasi-Leibniz algebras where introduced in [8] encompassing
within the same algebraic structure along with the Hom-Lie algebras and the quasi-
Hom-Lie algebras, also the color Hom-Lie algebras, quasi-Hom-Lie color algebras,
quasi-Hom-Lie superalgebras and Hom-Lie superalgebras, and color quasi-Leibniz
algebras, quasi-Leibniz superalgebras, quasi-Hom-Leibniz superalgebras and Hom-
Leibniz algebras. Also, graded color quasi-Lie algebras of Witt type have been first
considered in [14]. Hom-Lie admissible algebras, that is Hom-algebras consisting
of an algebra and a linear map (homomorphism of linear space) such that the com-
mutator bilinear product yields Hom-Lie algebra, have been considered first in 2006
in [12], where the Hom-associative algebras and more general G-Hom-associative
algebras including the Hom-Vinberg algebras (Hom-left symmetric algebras), Hom-
pre-Lie algebras (Hom-right symmetric algebras), and some other new Hom-algebra
structures have been introduced and shown to be Hom-Lie admissible, in the sense
that the operation of commutator as new product in these Hom-algebras structures
yields Hom-Lie algebras. Furthermore, in [12], flexible Hom-algebras and Hom-
algebra generalizations of derivations and of adjoint derivations maps have been
introduced, and the Hom-Leibniz algebras appeared for the first time, as an impor-
tant special subclass of quasi-Leibniz algebras introduced in [7] in connection to
general quasi-Lie algebras following the standard Loday’s conventions for Leibniz
algebras (i.e. right Loday algebras) [11]. In [12], moreover the investigation of classi-
fication of finite-dimensionalHom-Lie algebras have been initiatedwith construction
of families of the low-dimensional Hom-Lie algebras.

Binary Hom-algebra structures typically involve a bilinear binary operation and
one or several linear unary operations twisting the defining identities of the structure
in some special nontrivial ways, so that the original untwisted algebraic structures
are recovered for the specific twisting linear maps. The Hom-Lie algebras, Hom-Lie
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superalgebras, Hom-Leibniz algebras and Hom-Leibniz superalgebras with twist-
ing linear map different from the identity map, are rich and complicated algebraic
structureswith classifications, deformations, representations,morphisms, derivations
and homological structures being fundamentally dependent on joint properties of the
twisting maps as a unary operations and bilinear binary product intrinsically linked
by Hom-Jacobi or Hom-Leibniz identities.

The fundamental basic properties, when extended to Hom-algebras, are modified
in interesting ways as the defining identities are twisted by linear maps in Hom-
algebras in special ways. The purpose of this work is to compare and examine the
influence of associativity andmore general Hom-associativity, involving a linearmap
twisting the associativity axiom, on different aspects of Hom-algebras and twisted
derivations satisfying a twistedLeibniz product rule.Divisibilitymaybenot transitive
in general algebras lacking associativity. Thus, we explore factorization properties of
elements in Hom-associative algebras, specially related to zero divisors, and develop
an α-deformed divisibility sequence, formulated in terms of linear operators. Dis-
cretizations of derivatives often are (σ, τ )-derivations as the Leibniz product rule
is typically twisted by two linear maps σ and τ . Invertibility of map τ in [2] was
used as the cornerstone for construction of Hom-Lie algebras from (σ, τ )-derivations
with two twisting maps. In this work, we expand on the effects of maps σ and τ on
the space of twisted derivatives in general with or without invertibility assumptions
about σ and τ . As several structural results on the space of (σ, τ )-derivations rely on
associativity in the algebra, we unfold some partial results on the structure of (σ, τ )-
derivations on arbitrary algebras based on a pivot element related to σ and τ . We
take a reverse approach with respect to [2, 4], and examine how general an algebra
A can be while preserving certain well-known relations between (σ, τ )-derivations.
We generalize some results from the article by Larsson, Hartwig and Silvestrov [4]
in search for general algebraic requirements.

For associative algebras, the associativity is deeply engrained in the algebraic
structure implying in particular many important properties of divisibility relation.
One of these properties is transitiveness of divisibility, which for any associative
algebra A can be formulated as p|q, q|s ⇒ p|s for all p, q, s ∈ A. We will con-
sider what happens with this and some other basic important properties of the divis-
ibility relation for elements in Hom-algebras, and in particular in Hom-associative
algebras where associativity is twisted to Hom-associativity by a linear map.We also
study the relation between associativity and twisted derivation operators defined via
(σ, τ )-twisted Leibniz product rule D( f g) = D( f )τ (g) + σ( f )D(g). Application
of twisted derivations on algebras involves determining submodules of the space
of (σ, τ )-derivations over the algebra and hopefully then use them to describe all
(σ, τ )-derivations. This problem has intimate relations to existence and structure
of divisors, greatest common divisors and related properties of the elements of the
algebra. Assuming (τ − σ)(A) ⊆ A to have at least one invertible element or divi-
sion by elements in that set to be possible, one can consider submodules of the

form k
τ − σ

r
. This idea can be developed into the systematic method for discover-

ing quasi Hom-Lie algebras structure replacing Lie algebras of vector fields when
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derivations are discretized by twisted derivations satisfying twisted Liebniz rules.
For example this leads to systematic construction of twisted generalizations of Witt
and Virasoro algebras arising when discretising derivations of Laurent polynomials
and considering quasi Hom-Lie algebras central extensions [2, 4, 9, 10, 13]. One of
the interesting relations between D, σ and τ for commutative A, that gives Dστ (A)

its module structure is D( f )(τ − σ)(g) = D(g)(τ − σ)( f ). We establish associa-
tion and commutation conditions for elements in an algebra so that this relation is
preserved around a pivot element g0 ∈ A. Authors in [2, 4] use a greatest common
divisor (GCD) element of (τ − σ)(A) as pivot. This grants the existence of certain
quotient that is in some sense invariant under change of arguments, facilitating the
structure of single generated (1-dimensional) module onA · D on unique factoriza-
tion domains (UFD). Multiplicativity on σ and τ is intuitive (see, for example, the
constructions made in [2]) as it minimizes interaction between σ and τ , but a similar,
more general, quadratic relation c(σ ( f g) − σ( f )σ (g)) = c(τ ( f g) − τ( f )τ (g)) for
some element c in the center of A acting as a defect of homomorphism, will help
expand this concept. This naive approach will later allow to define a wider, more
finely threaded class of twisted derivations.

Throughout this work, F is a field of characteristic different from 2, and all linear
spaces are over a field of characteristic other than 2. An algebra over a field F is a
pair (A, ∗) consisting of a vector space A over F with a bilinear binary operation
μ : A × A → A,μ(x, y) �→ x ∗ y. Juxtaposition xy is often used for multiplication
for convenience of notations, when it is clear which multiplication it stands for. For
any algebra, the left multiplication operator Lx : A → A, Lx (y) = xy and the right
multiplication operator Ry : A → A, Ry(x) = xy are linear operators.

An algebra A is left unital if there is an element 1L ∈ A (left unity) such that
a = 1L · a for all a ∈ A. An algebra is right unital if there is an element 1R ∈ A
(right unity) such that a = a · 1R for all a ∈ A, and unital if it is both left and right
unital. An algebra A is called associative if x(yz) = (xy)z (associativity) holds
for all x, y, z ∈ A. An algebra is called non-associative if x(yz) �= (xy)z for some
elements in the algebra. If xy = yx (commutativity) for all x, y ∈ A, the algebra is
called commutative, and it is called non-commutative if for some elements xy �= yx .
If xy = −yx (skew-symmetry or anti-commutativity) for all x, y ∈ A, the algebra
is called skew-symmetric (or anti-commutative).

Lie algebras are pairs (A, 〈·, ·〉) consisting of a linear space A and a bilinear
mapping 〈·, ·〉 : A × A → A, satisfying for all x, y, z ∈ A,

〈x, y〉 = −〈y, x〉 Skew-symmetry
∑

�(x,y,z)

〈x, 〈y, z〉〉 = 〈x, 〈y, z〉〉 + 〈y, 〈z, x〉〉 + 〈z, 〈x, y〉〉 = 0. Jacobi identity

where
∑

�(x,y,z)
denotes the summation over cyclic permutations of (x, y, z).
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In any algebra (A, ∗), the commutator defined by [x, y] = [x, y]− = xy − yx
for any two elements x, y ∈ A, is a bilinear map [·, ·] : A × A → A defining a new
algebra (A, [·, ·]) on the same vector space.

Elements of an algebra commute, xy = yx , if and only if their commutator is
zero, [x, y] = [x, y]− = xy − yx = 0. The center of an algebra Z(A) = Z(A, ∗) =
{x ∈ A | ∀y ∈ A : xy = yx}, consisting of all those elements that commutewith any
element of an algebra A, is a linear subspace of A.

For any algebra, the commutator is skew-symmetric bilinear map, since [x, y] =
xy − yx = −(yx − xy) = −[y, x], and thus the new algebra (A, [·, ·]) is always a
skew-symmetric algebra. If the algebra (A, ∗) is associative, then the new algebra
(A, [·, ·]), with commutator bracket as multiplication, is a Lie algebra, that is the
commutator on associative algebras satisfies not only skew-symmetry, but also the
Jacobi identity of Lie algebras. Lie admissible algebras are those algebras for which
the new algebra with commutator as product is a Lie algebra. So, in particular, all
associative algebras are Lie admissible. There are many other classes of algebras
which are Lie admissible.

If [x, [y, z]] �= [[x, y], z] for some elements in an algebra, then the commutator
defines a non-associative product. For any elements,

[x, [y, z]] = x[y, z] − [y, z]x = x(yz − zy) − (yz − zy)x = x(yz) − x(zy) − (yz)x + (zy)x,

[[x, y], z] = [x, y]z − z[x, y] = (xy − yx)z − z(xy − yx) = (xy)z − (yx)z − z(xy) + z(yx),

[x, [y, z]] − [[x, y], z] = x(yz) − x(zy) − (yz)x + (zy)x − (xy)z + (yx)z + z(xy) − z(yx)

= x(yz) − (xy)z + (zy)x − z(yx) − x(zy) − (yz)x + (yx)z + z(xy)

(if the product is associative)

= y(xz) − y(zx) + (zx)y − (xz)y = y[x, z] − [x, z]y = [y, [x, z]].

Thus, in associative algebras, the commutator is associative if and only if [A,A] ⊆
Z(A)where Z(A) = Z(A, ∗) is center of (A, ∗). This is the case in nilpotent algebras
of degree 3, where [A,A] ⊆ Z(A) ⇒ [[A,A],A] = 0, [A, [A,A]] = 0.

The associator [·, ·, ·]as : A × A × A → A, defined by [x, y, z]as = x(yz) −
(xy)z, is a trilinear mapping, thus also defining a ternary algebra structure on A.
The associator can be expressed using the commutator of the left and right multipli-
cation operators Lx and Rz ,

[x, y, z]as = x(yz) − (xy)z = Lx (yz) − Rz(xy) = Lx (Rz(y)) − Rz(Lx (y)) = [Lx , Rz](y).

Elements associate if their associator is 0. The associative algebras are those algebras
in which associator is identically 0 on all elements, or equivalently in which all left
and right multiplication operators commute. In an algebra, the nucleus, that is the
set of elements that associate with all other elements,

N (A) = {a ∈ A | [a, p, q]as = 0,∀ p ∈ A, q ∈ A}
= {a ∈ A | [a, A, A]as = [A, a, A]as = [A, A, a]as = 0},
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is an associative subalgebra, and moreover is a maximal associative subalgebra as
outside it there are no elements not associating with some elements of the algebra
A. In non-associative algebras, the associator map is not identically 0, which makes
association relations between elements of A troublesome to keep track of, specially
those elements that do not necessarily associate with the wholeA. We introduce thus
a weaker, partial nucleus notation to pinpoint those relations.

Definition 13.1 (Relative nucleus) For any subsets P, Q of an algebra A, relative
nucleus of A with respect to P and Q is defined as the following set,

N (A)|P,Q := {a ∈ A| [a, p, q]as = 0,∀ p ∈ P, q ∈ Q}.

If P = Q, then wewrite N (A)|P = N (A)|P,Q , and if P or Q only have one element,
then we identify the set with the element to ease the notation. Association between
three elements a, p, q ∈ A can be expressed as a ∈ N (A)|p,q . The relative nucleus
contains the associative nucleus N (A), since an element associating with all A
naturally associates with any subset of it. The converse is not true in general.

Definition 13.2 ([4], Definition 14; [12], Definition 1.3) A Hom-Lie algebra is a
triple (A, μ, α) consisting of a linear space A together with a bilinear mapping
〈·, ·〉A : A × A → A, called product (and commonly referred as bracket) and a linear
map α : A → A such that for all x, y, z ∈ A,

Skew-symmetry 〈x, y〉A = −〈y, x〉A,

Hom-Jacobi identity
∑

�(x,y,z)
〈α(x), 〈y, z〉A〉A
= 〈α(x), 〈y, z〉〉 + 〈α(y), 〈z, x〉〉 + 〈α(z), 〈x, y〉〉 = 0,

where
∑

�(x,y,z)
denotes the summation over cyclic permutations of (x, y, z).

Definition 13.3 ([12],Definition1.1)Hom-associative algebras are defined as triples
(A, μ, α), whereA is a linear space, μ : A × A → A is bilinear and α : A → A is
a linear map, such that for all x, y, z ∈ A,

α(x)(yz) = (xy)α(z). Hom-associativity

If no confusion arises, we identify this triple with the associated vector space A.
Hom-algebras with twisting map α are called multiplicative if α is an algebra

homomorphism, that is,α(xy) = α(x)α(y) for all elements in the algebra. The action
of linear map α twists fundamental identities of algebras into Hom-algebras. Simi-
larly to the associative case, a twisted version of associator, the Hom-associator
(α-Hom-associator, α-associator), is defined as [x, y, z]αas(x, y, z) = α(x)(yz) −
(xy)α(z). In the special case, when α = Id, the Hom-associator becomes the ordi-
nary associator [x, y, z]Idas(x, y, z) = [x, y, z]as = x(yz) − (xy)z, Hom-associative
algebras are associative algebras, and Hom-Lie algebras are Lie algebras.
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Leibniz product rule for derivative on an algebra of polynomials, or on the algebra
of Laurent polynomials C[t, t−1], or algebras of differentiable functions is used to
define derivation operators on arbitrary algebras.

Definition 13.4 ([1]) A derivation on an algebra is an F-linear operator D : A → A
such that for every f, g ∈ A, the Leibniz product rule holds

D( f g) = D( f )g + f D(g). Leibniz product rule

Discretization of derivative typically satisfy twisted Leibniz product rule instead
of the Leibniz rule for ordinary derivations. For example, the Jackson q-derivative
(Jackson q-difference operator) underlying the foundations of q-analysis,

Dq( f )(t) =
⎧
⎨

⎩

f (qt) − f (t)

qt − t
and Mt Dq( f )(t) = f (qt) − f (t)

q − 1
, q �= 1

Df (t) = f ′(t) q = 1
,

acting on the algebra of polynomials F[t] or Laurent F[t, t−1] or on some suitable
function spaces, satisfies the twisted Leibniz rule,

D( f g) = D( f )g + σq( f )D(g), for σq( f )(t) = f (qt).

which can be interpreted as a q-deformation of the Leibniz rule recovered for q = 1.

Definition 13.5 ([2], Definition 1.1) Let σ, τ : A → A be two linearmaps. A (σ, τ )-
derivation is a F-linear operator D : A → A satisfying a (σ, τ )-twisted generalized
Leibniz product rule

D( f g) = D( f )τ (g) + σ( f )D(g). σ, τ -twisted Leibniz product rule

If τ = Id, D is referred to as σ -derivation.

Jackson q-derivative operator is one of the important examples of the σ -deriva-
tions. For more examples of σ -derivations and (σ, τ )-derivations we refer to
[2, 4, 9].

Definition 13.6 Let (A1, ∗1) and (A2, ∗2) be algebras over field F and σ, τ : A1 →
A2 be linear maps. A (σ, τ )-derivation fromA1 toA2 is a linear operator D : A1 →
A2 satisfying a (σ, τ )-twisted generalized Leibniz product rule

D( f ∗1 g) = D( f ) ∗2 τ(g) + σ( f ) ∗2 D(g).

Definition 13.7 Let (A, ∗) be an algebra over a field F and S be a linear subspace
of A, σ, τ : S → A be linear maps. A (σ, τ )-derivation from S to A is a linear
operator D : S → A satisfying a (σ, τ )-twisted generalized Leibniz product rule for
all f, g ∈ S :

D( f ∗ g) = D( f ) ∗ τ(g) + σ( f ) ∗ D(g).
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Definition 13.8 Alinearmapα : A → A is left-invertible if there existsβ : A → A
such that β ◦ α = idA. Then β is called left inverse of α and denoted α−1

L .
A linear map α : A → A is right-invertible if there exists β : A → A such that

α ◦ β = idA. Then β is called right inverse of α and denoted α−1
R .

If α−1
L = α−1

R , α is said to be invertible and α−1 := α−1
L = α−1

R is called inverse
of α.

Product relations within non-commutative algebras require some finesse dealing
with. Up next we introduce notation for one-sided factors.

Definition 13.9 Let p, q ∈ A. If there is a nonzero kr ∈ A such that p · kr = q, then

p is a left divisor of q, denoted p
L|q. If there is a nonzero kl ∈ A such that kl · p = q,

then p is a right divisor of q, denoted p
R|q. If p is both left and right divisor of q, it

is a two-sided divisor of q, denoted p|q.
In commutative algebras, all divisors are two-sided.

Remark 13.1 In non-associative algebras, divisibility is not transitive in general.

Considering left divisors, if p
L|q and q

L|s, then s = q · ks, q = p · kq ⇒ s = (p ·
kq) · ks . This is not necessarily a multiple of p, so p is not necessarily a left divisor of

s. If [p, kq , ks]as = 0, then s = p · (kq · ks), and thus p
L|s. If s �= 0, then kq · ks �= 0.

But, if s = 0, then kq · ks �= 0 cannot be guaranteed even in associative algebras,

and hence it is not given that p
L|0. Considering right divisors, if p

R|q and q
R| s, then

s = ks · q, q = kq · p ⇒ s = ks · (kq · p), so p is not necessarily a right divisor of

s. If [ks, kq , p]as = 0, then s = (ks · kq) · p and thus pR| s. If s �= 0, then ks · kq �= 0.
But, if s = 0, then ks · kq �= 0 cannot be guaranteed even in associative algebras,

and hence it is not given that p
R|0. This behaviour is particularly interesting in Hom-

associative algebras (see Lemmas13.2 and 13.3).

An element p ∈ A is a left zero divisor inA if there is a nonzero element k0 ∈ A
such that p · k0 = 0, it is a right zero divisor in A if there is a nonzero element
k0 ∈ A such that k0 · p = 0 and it is a zero divisor in A if it is either a left or right
zero divisor or both. A zero divisor in a (Hom-)algebra A is nullified by a subspace
S of A. We can see p as zero divisor of S, or as zero divisor of each element of S.
Additionally, zero division is a relation between two elements: every left (resp.right)
zero divisor p is nullified by an element q which is a right (resp.left) zero divisor
nullified by p. The equality p · q = 0 can be read as: p is a left zero divisor of q and q
is a right zero divisor of p. In order to express these relations we group zero divisors
into two different categories, attending to whether they divide single elements of A
or an entire subspace.

Definition 13.10 For a subset S of A, let
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AnnLA(S) = {p ∈ A | ∀ k0 ∈ S : k0 �= 0, p · k0 = 0} Left annihilator
AnnR

A(S) = {p ∈ A | ∀ k0 ∈ S : k0 �= 0, k0 · p = 0} Right annihilator
L0(S) = {p ∈ A | ∃ k0 ∈ S : k0 �= 0, p · k0 = 0} Set of left zero divisors
R0(S) = {p ∈ A | ∃ k0 ∈ S : k0 �= 0, k0 · p = 0} Set of right zero divisors
L0(S) ∪ R0(S) Set of zero divisors
L0(S) ∩ R0(S) Set of two-sided

zero divisors.

If AnnL
A(S) = AnnR

A(S), we denote it AnnA(S).

Remark 13.2 The annihilators of subsets are linear spaces in any algebra. The sets of
zero divisors, however, in general are not linear spaces. The sets of left and right zero
divisors coincide for subsets in commutative algebras, while in non-commutative
algebras they might differ.

Definition 13.11 An element p ∈ A of an algebra A is left-regular if it is not in
L0(A), it is right-regular if it is not in R0(A) and it is regular if it is either left or
right-regular or both.

Definition 13.12 (GCD and one-sided GCD in algebras) An element r ∈ A of an
algebra A is a left greatest common divisor of a subset S, if

r
L|s for s ∈ S,

q
L|s for s ∈ S ⇒ q

L|r.

An element r ∈ A is a right greatest common divisor of a subset S, if

r
R| s for s ∈ S,

q
R| s for s ∈ S ⇒ q

R|r.

The set of all left greatest common divisors of a subset S is denoted by gcdL(S), and
the set of all right greatest common divisors of a subset S is denoted by gcdR(S).
Those elements that are both right and left greatest common divisors of a subset S
are called two-sided greatest common divisors, and gcd(S) = gcdL(S)

⋂
gcdR(S)

is the set of all greatest common divisors of a subset S.

Definition 13.13 An algebra A over a field that is non-associative and has no zero
divisors is known as non-associative domain.

Domains are usually defined as commutative associative rings, because that allows
intuitive definitions of factorization and ideals. Non-commutative rings can be con-
cretized into one-sided division rings (see for example [5]) using the proper con-
struction of ideals.

Remark 13.3 Note that domain is used indistinctly for both rings and algebras. In
both cases, domain property is a property of the ring of vectors.
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Definition 13.14 A GCD domain is an associative ring without zero divisors
(domain) such that every two elements admit a two-sided greatest common divi-
sor.

13.2 Twisted Derivations. Review of Some Well-Known
Results

Proposition 13.1 ([2], Lemma 1.4) LetA be a UFD, c an element in the center ofA
and σ, τ two linearmaps onA. Then, D : A −→ A, f �→ D( f ) = c(τ ( f ) − σ( f ))
is a (σ, τ )-derivation.

Proposition 13.2 LetA be an algebra, σ, τ : A → A be linear maps, D : A → A
be a (σ, τ )-derivation and α : A → A be a homomorphism. Then,

(i) α ◦ D is a (α ◦ σ, α ◦ τ)-derivation.
(ii) D ◦ α is a (σ ◦ α, τ ◦ α)-derivation.
(iii) If σ is left-invertible, then σ−1

L ◦ D is a (id, σ−1
L ◦ τ)-derivation. If A is com-

mutative, it is also a (σ−1
L ◦ τ)-derivation.

(iv) If τ is left-invertible, then τ−1
L ◦ D is a (τ−1

L ◦ σ)-derivation.
(v) If σ is a right-invertible homomorphism, then D ◦ σ−1

R is a (id, τ ◦ σ−1
R )-

derivation. If A is commutative, then D ◦ σ−1
R is a (τ ◦ σ−1

R )-derivation.
(vi) If τ is a right-invertible homomorphism, then D ◦ τ−1

R is a (σ ◦ τ−1
R )-derivation.

When σ(x)a = aσ(x) for all x, a ∈ A (The same applies to τ , andA being com-
mutative is a particular case), Dσ,τ (A) carries a natural A-module structure defined
by (A, D) �→ a · D, x �→ aD(x) This allows to give a very concrete structure to
the space of derivations. In the more general case,Dσ,τ (A) is considered as a vector
space instead.

Lemma 13.1 LetA be a commutative algebra. If linear maps σ, τ : A → A satisfy

c(σ ( f g) − σ( f )σ (g)) = c(τ ( f g) − τ( f )τ (g))

for some c ∈ Z(A), and D : A → A is a (σ, τ )-derivation on A, then, the equality
D(x)(τ (y) − σ(y)) = 0 holds for all x ∈ ker(τ − σ), y ∈ A. Moreover, if A has
no zero divisors and σ �= τ , then ker(τ − σ) ⊆ ker(D).

The following proposition is a generalization of [2, Proposition 2.8].

Proposition 13.3 Let A be a GCD domain. Let σ, τ : A → A be two different lin-
ear maps such that σ ◦ τ = τ ◦ σ . Also, let r ∈ gcd((τ − σ)(A)) such that, for all

f ∈ A, σ (r f ) = σ(r)σ ( f ), τ(r f ) = τ(r)τ ( f ) and D = τ − σ

r
. Then D(σ ( f )) =

Sσ(D( f )) and D(τ ( f )) = T τ(D( f )) hold for S = σ(r)

r
, T = τ(r)

r
and all f ∈ A.
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Proof Let y ∈ A. Since τ and σ commute,

σ(r
τ(y) − σ(y)

r
) = σ(τ(y) − σ(y)) = σ(τ(y)) − σ 2(y) = (τ − σ)(σ (y)),

τ (r
τ(y) − σ(y)

r
) = τ(τ (y) − σ(y)) = τ 2(y) − τ(σ (y)) = (τ − σ)(τ (y))

Since r |(τ (r) − σ(r)), if it divides τ(r) then it divides σ(r) and viceversa. Assume
that r divides τ(r) and divide both expressions above by r :

σ(r)

r
σ(

τ − σ

r
(y)) = τ − σ

r
(σ (y)) ⇐⇒ σ(r)

r
σ(D(y)) = D(σ (y))

τ (r)

r
τ(

τ − σ

r
(y)) = τ − σ

r
(τ (y)) ⇐⇒ τ(r)

r
τ(D(y)) = D(τ (y)).

�

Theorem 13.1 ([2], Theorem 2.6) Let A be a commutative associative unital alge-
bra and let D be a (σ, τ )-derivation of A with algebra morphisms σ, τ : A → A,
satisfying, for all f ∈ A :

(σ ◦ τ)( f ) = (τ ◦ σ)( f ),

(D ◦ σ)( f ) = δ(σ ◦ D)( f ),

(D ◦ τ)( f ) = δ(τ ◦ D)( f ),

with δ ∈ A. The bracket 〈·, ·〉σ,τ : A · D × A · D → A · D defined by

〈 f · D, g · D〉σ,τ = (σ ( f )D(g) − σ(g)D( f )) · D

endows the linear space (A · D, 〈·, ·〉σ,τ , σ + τ)with a structure ofHom-Lie algebra.

The following is a generalization of [4, Theorem 4].

Proposition 13.4 LetA be a commutative associative UFD, σ, τ : A → A different
linear maps on A satisfying

c(σ ( f g) − σ( f )σ (g)) = c(τ ( f g) − τ( f )τ (g)) (13.1)

for some c in the center of A. Then Dσ,τ (A) is free of rank 1 as an A-module, and
is generated by the following operator:

Δ := c
(τ − σ)

r
: x �−→ c

(τ − σ)(x)

r
,

where r = gcd((τ − σ)(A)).
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Proof Firstly, we check that cD = c
τ − σ

r
is a (σ, τ )-derivation by property (13.1):

cD( f g) = c(τ − σ)( f g)

r
= c(τ ( f g) − σ( f g))

r
(13.1)= c(τ ( f )τ (g) − σ( f )σ (g))

r
=

= c((τ ( f ) − σ( f ))τ (g) − σ( f )(τ (g) − σ(g)))

r
= c

(τ − σ)( f )

r
σ(g)+

+ cτ( f )
(τ − σ)( f )

r
= (cD( f )τ (g) + σ( f )cD(g)).

If cD is a (σ, τ )-derivation over a commutative, associative and algebra A with
unit then D is as well as long as c is invertible.

Secondly, assume x · c τ − σ

r
= 0. If σ �= τ, there is y ∈ A such that

σ(y) �= τ(y) → x · c (τ − σ)(y)

r
= 0 ⇒ x = 0 ⇒ A · cD

is a free A-module. Since cD is the only generator, it has rank 1.
Lastly, onemust show that Dσ,τ (A) ⊆ A · cD. Indeed, letΔ be a (σ, τ )-derivation

in A, and let aΔ ∈ A such that Δ( f ) = aΔc
(τ − σ)( f )

r
, f ∈ A. Two conditions

must be satisfied:

(i) (τ − σ)( f ) divides cD( f )r .

(ii)
cD( f )r

c(τ − σ)( f )
= cD(g)r

c(τ − σ)(g)
for (τ − σ)( f ) �= 0 �= (τ − σ)(g).

For the first part, let f, g ∈ A with (τ − σ)( f ) �= 0 �= (τ − σ)(g). We know the
following:

0 = Δ( f g − g f ) = Δ( f )τ (g) + σ( f )Δ(g) − Δ(g)τ ( f ) − σ(g)Δ( f ) =
= Δ( f )(τ (g) − σ(g)) − Δ(g)(τ ( f ) − σ( f )) ⇒ Δ( f )(τ (g) − σ(g)) =
= Δ(g)(τ ( f ) − σ( f ))

Now we define the following function:

h :A × A → A, (z,w) �−→ gcd(τ (z) − σ(z), τ (w) − σ(w))

By election of f and g, h( f, g) �= 0, so we can divide by h( f, g) in the equation
above:

Δ( f )
τ (g) − σ(g)

h( f, g)
= Δ(g)

τ ( f ) − σ( f )

h( f, g)
⇒
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Now, it gcd

(
τ(g) − σ(g)

h( f, g)
,
τ ( f ) − σ( f )

h( f, g)

)
= 1, and so

τ( f ) − σ( f )

h( f, g)
divides

Δ( f ) ⇒ (τ − σ)( f )|cD( f ) · h( f, g).
Finally, let S = A\ker(τ − σ). Then (τ − σ)( f )|cD( f ) · h( f, S). But

gcd(h( f, S)) = gcd({gcd((τ − σ)( f ), (τ − σ)(s)|s ∈ S}) =
= gcd((τ − σ)(S) ∪ {(τ − σ)( f ))}) =
= gcd((τ − σ)(A) ∪ {(τ − σ)( f )}) = r ⇒ (τ − σ)( f )|cD( f )r.

In order to prove the second point we recall

0 = Δ( f g − g f ) = Δ( f )(τ (g) − σ(g)) − Δ(g)(τ ( f ) − σ( f )).

From which it is immediate that

Δ( f )
c(τ (g) − σ(g))

r
= Δ(g)

c(τ ( f ) − σ( f ))

r
⇒ cD( f )r

c(τ ( f ) − σ( f ))
= cD(g)r

c(τ (g) − σ(g))
,

as sought. Note that A being a UFD allows to drop the c if it is invertible, and
therefore the result holds for D as well. �

13.3 Divisibility in Hom-Associative Algebras

Divisibility between three nonzero elements p, q, s of an arbitrary algebra A is, in
general, not transitive. In particular, it only seems to be the case in general, when
p ∈ Z(A) - that is, divisibility in non-associative algebras requires considering to a
certain extent associating elements in this regard.

The Hom-associative case is slightly more complex due to the action of the linear
map α involved in the Hom-associativity axiom. For non-injective twisting maps α,

some p, p′ ∈ A satisfy α(p) = α(p′), in which case α(p)(qr) = (pq)α(r), but also
α(p)(qr) = (p′q)α(r)—this indicates a degree of non-uniqueness between triple
products. Hom-associativity brings some interesting identities, the first of which is
deeply linked to ker α.

Proposition 13.5 Let (A, μ, α) be a Hom-associative algebra. Let p, p′ ∈ A such
that α(p) = α(p′). Then, for all q, r ∈ A :

((p − p′)q)α(r) = 0, (13.2)

α(r)(q(p − p′)) = 0. (13.3)

Proof From α(p) = α(p′), we apply Hom-associativity and obtain
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0 = α(p − p′) · (q · r) = ((p − p′) · q) · α(r),

0 = (r · q) · α(p − p′) = α(r) · (q · (p − p′)).
�

IfA is left-unital, replacing q with a left unity 1L in (13.3) yields α(r)(p − p′) =
0 ⇒ p − p′ ∈ AnnR

A(α(A)). If A is right-unital, replacing q with a right unity 1R
in (13.2) yields (p − p′)α(r) = 0 ⇒ p − p′ ∈ AnnL

A(α(A)). If A is commutative,
left and right annihilators coincide, which yields p − p′ ∈ AnnA(α(A)).

Proposition 13.6 Let (A, μ, α) be a Hom-associative algebra. Then for all p ∈
ker α and q, r ∈ A,

(pq)α(r) = 0, α(r)(qp) = 0.

Proof By Hom-associativity,

(pq)α(r) = α(p)(qr) = 0, α(r)(qp) = (rq)α(p) = 0.

�

We present both left and right formulations for all results to account for non-
commutative Hom-algebras properly. We examine Hom-association relations
between elements of A to establish divisibility, and in particular, describe families
of factors for certain elements or subspaces of A.

Lemma 13.2 Let (A, μ, α) be a Hom-associative algebra, 0 �= p, q, s ∈ A such

that p
L|q and q

L|s, that is, q = p · kq and s = q · ks for some nonzero kq , ks ∈ A. If

ks ∈ Im(α), then α(p)
L|s.

Proof From the divisibility properties, we have s = (p · kq) · ks . If ks ∈ Im(α), that
is, there is r ∈ A\ ker α such that ks = α(r), then s = (p · kq) · α(r) = α(p) · (kq ·
r) ⇒ α(p)

L|s. �

Lemma 13.3 Let (A, μ, α) be a Hom-associative algebra, 0 �= p, q, s ∈ A such

that p
R|q and q

R|s, that is, q = kq · p and s = ks · q for some nonzero kq , ks ∈ A. If

ks ∈ Im(α), then α(p)
R|s.

Proof From the divisibility properties, we have s = ks · (kq · p). If ks ∈ Im(α), that
is, there is r ∈ A\ ker α such that ks = α(r), then s = α(r) · (kq · p) = (r · kq) ·
α(p) ⇒ α(p)

R|s. �

The identity s = α(p) · (kq · r) is heavily dependent on s. Particularly, if s is nonzero
that forces α(p) �= 0 and kq · r �= 0.

The first condition is equivalent to p /∈ ker α. For the second, we consider the fact
that kq is not necessarily known. This is not a problem given that it is in the center
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of the Hom-associator, that is, it doesn’t change after Hom-associativity. Hence, we
impose the non-zero-product condition on r as follows: r cannot be a zero divisor of
any nonzero kq ∈ A.

Proposition 13.7 Let (A, μ, α) be a Hom-associative algebra. For all q ∈ A, p ∈
A\ ker α, the following statements hold.

For all right-regular r ∈ A, if p
L|q, then α(p)

L|qα(r). (13.4)

For all left-regular r ∈ A, if p
R|q, then α(p)

R|α(r)q. (13.5)

Proof From p
L|q wehaveq = p · kq ⇒ q · α(r) = (p · kq) · α(r) = α(p) · (kq · r).

From p
R|q we have q = kq · p ⇒ α(r) · q = α(r) · (kq · p) = (r · kq) · α(p). �

Theorem 13.2 Let (A, μ, α) be a Hom-associative algebra. The following state-
ments hold for all nonzero q ∈ A.

For all p ∈ L0(A), if q ∈ AnnR
A(p) then qA ⊆ AnnR

A(α(p)),

For all p ∈ R0(A), if q ∈ AnnL
A(p) then Aq ⊆ AnnL

A(α(p)).

Proof Let q ∈ A be an element nullified by p.
If p ∈ AnnL

A(q), then p · q = 0. By Hom-associativity, α(p) · (q · r) = 0 for all
r ∈ A ⇒ q · r ∈ AnnR

A(α(p)) for all r ∈ A ⇒ q · A ⊆ AnnR
A(α(p)).

If p ∈ AnnR
A(q), then q · p = 0. By Hom-associativity, (r · q) · α(p) = 0 for all

r ∈ A ⇒ r · q ∈ AnnL
A(α(p)) for all r ∈ A ⇒ A · q ⊆ AnnL

A(α(p)). �

Remark 13.4 Regularity on r is not required here, as α(p) · (q · r) = 0. The zero
on the right-hand side allows q · r to be zero in exchange of not being able to establish
divisibility. IfAhas no zerodivisors, then all elements are regular, that is, AnnA(p) =
{0} for all p ∈ A and Theorem13.3 holds trivially.

Theorem 13.3 Let (A, μ, α) be aHom-associative algebra. IfA has a right-regular
element, then the setL0(A) is invariant under α, that is α(L0(A)) ⊆ L0(A). IfA has
a left-regular element, then the setR0(A) is invariant under α, that is α(R0(A)) ⊆
R0(A). If L0(A) = R0(A) (for example ifA is commutative) then L0(A) = R0(A)

is invariant under α, that is p|0 ⇒ α(p)|0.
Proof Let p be a zero divisor onA, that is, there is q ∈ A such that either p · q = 0

(left zero divisor) or q · p = 0 (right zero divisor). If p ∈ L0(A), that is, p
L|0, then

p · q = 0. By Proposition13.7, for right-regular r ∈ A,

α(p) · (q · r) = (p · q) · α(r) = 0 ⇒ α(p)
L|0.
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If p ∈ R0(A), that is, p
R|0, then q · p = 0. By Proposition13.7, for left-regular

r ∈ A,

(r · q) · α(p) = α(r) · (q · p) = 0 ⇒ α(p)
R|0.

IfA is commutative, then these two conclusions are equivalent, and hence L0(A) =
R0(A) is invariant under α, that is, p|0 ⇒ α(p)|0. �

The reciprocal of this statement is naturally interesting. It takes, however, much
stronger hypotheses to realize.

Proposition 13.8 If (A, μ, α) is a Hom-associative algebra with α bijective and
multiplicative, then the following statements hold:

(i) If A has a right-regular element, then p
L|0 ⇔ α(p)

L|0 for all p ∈ L0(A).

(ii) If A has a left-regular element, then p
R|0 ⇔ α(p)

R|0 for all p ∈ R0(A).

Proof (i) Right implication is immediate by Theorem13.3: if α(L0(A)) ⊆ L0(A),

then for all p ∈ L0(A) it holds that α(p) ∈ L0(A), that is p
L|0 ⇒ α(p)

L|0. In order
to prove the left implication, we use the properties of α in sequence:

0 = α(p) · k0 sur j= α(p) · α(α−1(k0))
mult= α(p · α−1(k0))

in j⇒ p · α−1(k0) = 0.

It follows α(p)
L|0 ⇒ p

L|0.
(ii) The right implication is immediate by Theorem13.3: if α(R0(A)) ⊆ R0(A),

then for all p ∈ R0(A) it holds that α(p) ∈ R0(A), that is p
R|0 ⇒ α(p)

R|0. In order
to prove the left implication, we use the properties of α in sequence:

0 = k0 · α(p)
sur j= α(α−1(k0)) · α(p)

mult= α(α−1(k0) · p) in j⇒ α−1(k0) · p = 0.

It follows α(p)
R|0 ⇒ p

R|0. This completes the proof. �

Remark 13.5 If α is surjective and multiplicative but not injective, then p · α−1(k0)
under conditions of (i) (resp. α−1(k0) · p under conditions of (ii)) is in ker α for all
elements in the preimage α−1(k0).

Divisibility by elements in α(A) is naturally essential in Hom-associative alge-
bras, as they are involved in the fundamental identity. We introduce the following
divisibility sequence that extends the traditional idea of mutliplying elements con-
secutively to obtain the next term of the sequence involving elements in α(A).



13 Divisibility in Hom-Algebras, Single-Element Properties … 319

Proposition 13.9 Let (A, μ, α) be a Hom-associative algebra. If 0 �= p1, . . . , pn ∈
A are such that

α(pi−1)
L| pi , that is, pi = α(pi−1) · ki−1 for all i = 2, . . . , n and ki ∈ A,

then, the elements pi can be expressed as

pi = (Rki−1 ◦ α ◦ · · · ◦ Rk1 ◦ α)(p1).

Moreover, if α is multiplicative they can be expressed as

pi = (Rki−1 ◦ · · · ◦ Rαi− j−1(k j ) ◦ · · · ◦ Rαi−2(k1))(α
i−1(p1)),

where Ra : p �→ p · a is the right multiplication map.

Proof We proceed by induction on n. On the trivial sequence, when n = 2, we have
p2 = α(p1) · k1 = Rk1(α

1(p1)).
For the induction step, we use index m. In the non-multiplicative case,

pm+1 = α(pm) · km = (Rkm · α)(pm) = (Rkm ◦ α)(Rkm−1 ◦ α ◦ · · · ◦ Rk1 · α)(p1)

= (Rkm ◦ α ◦ · · · ◦ Rk1 ◦ α)(p1).

In the multiplicative case,

pm+1 = α(pm) · km = α((Rkm−1 ◦ · · · ◦ Rαm− j−1(k j ) ◦ · · · ◦ Rαm−2(k1))(α
m−1(p1)) · km

= Rkm (α((Rkm−1 ◦ · · · ◦ Rαm− j−1(k j ) ◦ · · · ◦ Rαm−2(k1))(α
m−1(p1))))

(using multiplicativity ofα)

= Rkm ((Rα(km−1) ◦ · · · ◦ Rαm+1− j−1(k j ) ◦ · · · ◦ Rαm+1−2(k1))(α
m+1−1(p1)))

= (Rkm+1−1 ◦ Rα(km+1−2) ◦ · · · ◦ Rαm+1− j−1(k j ) ◦ · · · ◦ Rαm+1−2(k1))(α
m+1−1(p1)).

�

Proposition 13.10 Let (A, μ, α) be a Hom-associative algebra with α multiplica-
tive. Also, let 0 �= p1, . . . , pn ∈ A be such that

α(pi−1)
R| pi , that is, pi = ki−1 · α(pi−1) for all i = 2, . . . , n and ki ∈ A.

Then, the elements pi can be expressed as

pi = (Lki−1 ◦ α ◦ · · · ◦ Lk1 ◦ α)(p1). (13.6)

Moreover, if α is multiplicative they can be expressed as
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pi = (Lki−1 ◦ · · · ◦ Lαi− j−1(k j ) ◦ · · · ◦ Lαi−2(k1))(α
i−1(p1)), (13.7)

where La : p �→ a · p is the right multiplication map.

Proof We proceed by induction on n. If n = 2, then p2 = k1 · α(p1) = Lk1(α
1(p1))

in both cases.
For the induction step, we use index m. In the non-multiplicative case,

pm+1 = km · α(pm) = (Lkm · α)(pm) = (Lkm ◦ α)(Lkm−1 ◦ α ◦ · · · ◦ Lk1 · α)(p1)

= (Lkm ◦ α ◦ · · · ◦ Lk1 ◦ α)(p1).

In the multiplicative case,

pm+1 = km · α(pm) = km · α((Lkm−1 ◦ · · · ◦ Lαm− j−1(k j ) ◦ · · · ◦ Lαm−2(k1))(α
m−1(p1))

= Lkm (α((Lkm−1 ◦ · · · ◦ Lαm− j−1(k j ) ◦ · · · ◦ Lαm−2(k1))(α
m−1(p1))))

(by multiplicativity ofα)

= Lkm ((Lα(km−1) ◦ · · · ◦ Lαm+1− j−1(k j ) ◦ · · · ◦ Lαm+1−2(k1))(α
m+1−1(p1)))

= (Lkm+1−1 ◦ Lα(km+1−2) ◦ · · · ◦ Lαm+1− j−1(k j ) ◦ · · · ◦ Lαm+1−2(k1))(α
m+1−1(p1)).

�

13.3.1 Divisibility in Unital Hom-Associative Algebras

Consider now (A, μ, α) to be Hom-associative and one-sided unital, with the usual
unitality conditions q = 1L · q or q = q · 1R for all q ∈ A. These hard units offer a
certain array of limitations in the Hom-associative setting, but they offset that with
strong divisibility relations.

Corollary 13.1 Let (A, μ, α) be a Hom-associative left-unital algebra with unity
1L . For all q ∈ A\ ker α and all right-regular r ∈ A the following statements hold:

(i) α(1L)
L|qα(r) ,

(ii) α(1L)
L|α(r),

(iii) q
L|1L ⇒ α(q)

L|α(r).

If α is multiplicative then, for all p ∈ A\ ker α, it holds that pL|q ⇒ α(p)
L|α(q).

Proof This corollary comes from applying Proposition13.7, replacing (p, q, r) in
(13.4) by different triples of elements:

(i) Replace (p, q, r) by (1L , q, r).

(ii) Replace (p, q, r) by (1L , 1L , r). Here α(1L)
L|(1L · α(r)) = α(r).



13 Divisibility in Hom-Algebras, Single-Element Properties … 321

(iii) Replace (p, q, r) by (q, 1L , r). It follows that α(q)
L|(1L · α(r)) = α(r).

The last property is an immediate consequence of multiplicativity of α:

p
L|q ⇒ q = p · kq ⇒ α(q) = α(p · kq) = α(p) · α(kq) ⇒ α(p)

L|α(q).

�
Corollary 13.2 Let (A, μ, α) be a Hom-associative right-unital algebra with unity
1R. For all q ∈ A\ ker α and all left-regular r ∈ A the following statements hold:

(i) α(1R)
R|α(r)q,

(ii) α(1R)
R|α(r),

(iii) q
R|1R ⇒ α(q)

R|α(r).

If α is multiplicative then, for all p ∈ A\ ker α, it holds that pR|q ⇒ α(p)
R|α(q).

Proof This corollary comes from applying Proposition13.7, replacing (p, q, r) in
(13.5) by different triples of elements:

(i) Replace (p, q, r) by (1R, q, r).

(ii) Replace (p, q, r) by (1R, 1R, r). Here α(1R)
R| (α(r) · 1R) = α(r).

(iii) Replace (p, q, r) by (q, 1R, r). It follows that α(q)
R| (α(r) · 1R) = α(r).

The last property is an immediate consequence of multiplicativity of α:

p
r|q ⇒ q = kq · p ⇒ α(q) = α(kq · p) = α(kq) · α(p) ⇒ α(p)

R|α(q).

�
Remark 13.6 These results appear to mark a steep increase in zero divisors of α(1).
Applying Hom-associativity to the triple (1L , 1L , q) we obtain

(1L · 1L) · α(q) = α(1L) · (1L · q) ⇒ α(q) = α(1L) · q. (13.8)

If ker α is non-trivial, then all elements of it satisfy α(1L) · q = 0, hence α(1L)
L|0.

13.3.2 Divisibility in Hom-Unital Hom-Associative Algebras

A unital Hom-associative algebra (A, μ, α, 1) with α injective is associative as an
algebra (A, μ, 1) [3]. Under the action of α, hard unities verify the twisted unitality
condition (13.8). We observe that α(1L) acts as a Hom-unity of (A, μ, α). A Hom-
algebra with such an element is (one-sided) Hom-unital.

Corollary 13.3 Let (A, μ, α) be a Hom-associative left-Hom-unital algebra with
Hom-unity 1L ∈ A\ ker α. For all q ∈ A\ ker α and all right-regular r ∈ A,
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(i) 1L
L|q ⇒ α(1L)

L|qα(r).

(ii) q
L|1L ⇒ α(q)

L|1Lα(r).

(iii) q
L|1L ⇒ α(q)

L|α2(r).

If α is multiplicative, then

(iv) q
L|1L ⇒ α(q)

L|α(1L)α(r),

(v) 1L
L|q ⇒ α(1L)

L|α(kr),

where k ∈ A such that q = 1Lk = α(k).

Proof This corollary comes from applying Proposition13.7, replacing (p, q, r) in
(13.4) by different triples of elements:

(i) Replace (p, q, r) by (1L , q, r).

(ii) Replace (p, q, r) by (q, 1L , r). Here α(q)
L|1L · α(r).

(iii) Property (iii) follows from (ii) since1L · α(r) = α(r).
(iv) Property (iv) follows from (iii). Using multiplicativity of α it follows that

α2(r) = α(1L)α(r) ⇒ α(q)
L|α(1L) · α(r).

(v) Property (v) follows from 1L
L|q ⇒ q = α(k) for some k. Applying (i) we

obtain α(1L)
L|(α(k) · α(r)) = α(k · r). �

Corollary 13.4 Let (A, μ, α) be a Hom-associative right-Hom-unital algebra with
right Hom-unity 1R. For all q ∈ A\ ker α and all left-regular r ∈ A,

(i) 1R
R|q ⇒ α(1R)

L|α(r)q.

(ii) q
R|1R ⇒ α(q)

R|α(r)1R .

(iii) q
R|1R ⇒ α(q)

R|α2(r).

If α is multiplicative, then

(iv) q
R|1R ⇒ α(q)

R|α(r)α(1R),

(v) 1R
R|q ⇒ α(1R)

R|α(rk),

where k ∈ A such that q = k1R = α(k).

Proof This corollary comes from applying Proposition13.7, replacing (p, q, r) in
(13.5) by different triples of elements:

(i) Replace (p, q, r) by (1R, q, r).

(ii) Replace (p, q, r) by (q, 1R, r). Here α(q)
R|α(r) · 1R .

(iii) Property (iii) follows from (ii) since α(r) · 1R = α2(r).
(iv) Property (iv) follows from (iii). Using multiplicativity of α it follows that

α2(r) = α(r)α(1R) ⇒ α(q)
R|α(r) · α(1R).
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(v) Property (v) follows from 1R
R|q ⇒ q = α(k) for some k. Applying (i) we

obtain α(1R)
R| (α(r) · α(k)) = α(r · k). �

13.4 Sandwich Twisted Derivations and Pivot
Commutation

Across this sectionwe explore (σ, τ )-derivations composedwith pairs of linearmaps.
Composition with two linear maps can be concretized into multiplication by two ele-
ments of the algebra in more forgiving (particularly, commutative associative unital)
algebras. In [2], Theorem 1.7, the authors establish that on the proper circumstances,
every (σ, τ )-derivation is τ − σ multiplied with two elements of the algebra.

We explore relations (element-wise) between two maps σ, τ and a correspond-
ing twisted derivation D. Some common results can be generalized under partial
commutation with a single element. We call that element pivot and denote it g0.

13.4.1 Approach to Relations

Building (σ, τ )-derivations based on algebra homomorphisms is the first strong prop-
erty that onemay consider. Lemma 1.4 of [4] establishes a strong connection between
all three maps, in exchange of strong association and commutation. These conditions
can be relaxed considering a softer quadratic relation between σ and τ up to an ele-
ment c ∈ A.

The following proposition is an extension of Proposition13.1. It expands on prop-
erties of element c, replacing it by a more general element of A.

Proposition 13.11 Let A be an algebra, σ, τ : A → A be two linear maps and
c ∈ A or c ∈ F. Consider the following properties for some f, g ∈ A:

1) c((τ − σ)( f )τ (g)) − (c(τ − σ)( f ))τ (g)
= σ( f )(c(τ − σ)(g)) − c(σ ( f )(τ − σ)(g))

2) c(σ ( f g) − σ( f )σ (g)) = c(τ ( f g) − τ( f )τ (g)).
3) D : A → A, f �→ D( f ) = c(τ − σ)( f ) is a (σ, τ )-derivation in the sense of

Definition13.7.

If any of these properties hold, the other two are equivalent.

Proof We show 1 ∧ 2 ⇒ 3, 1 ∧ 3 ⇒ 1 and 2 ∧ 3 ⇒ 1.The equivalences come from
commutativity on ∧ and the logical axiom P ∧ Q → R ⇔ P → (Q → R).

Firstly, let D( f · g) = c · (τ − σ)( f g). By definition, (τ − σ)( f · g) = τ( f ·
g) − σ( f · g), and thus
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D( f · g) = c · (τ ( f · g) − σ( f · g)) 2= c · (τ ( f ) · τ(g) − σ( f ) · σ(g))

= c · (τ ( f ) · τ(g) − σ( f ) · τ(g) + σ( f ) · τ(g) − σ( f ) · σ(g))

= c · ((τ − σ)( f ) · τ(g)) + c · (σ ( f ) · (τ − σ)(g))
1= (c · (τ − σ)( f )) · τ(g) + σ( f ) · (c · (τ − σ)(g)).

This proves 1 ∧ 2 ⇒ 3.
In order to prove 1 ∧ 3 ⇒ 2, we expand 3:

c · (τ − σ)( f · g) = (c · (τ − σ)( f )) · τ(g) + σ( f ) · (c · (τ − σ)(g))
1= c · ((τ − σ)( f ) · τ(g)) + c · (σ ( f ) · (τ − σ)(g))

= c · (τ ( f ) · τ(g) − σ( f ) · τ(g) + σ( f ) · τ(g) − σ( f ) · σ(g))

= c · (τ ( f ) · τ(g) − σ( f ) · σ(g)).

Finally, we prove 2 ∧ 3 ⇒ 1 by expanding the twisted Leibniz rule in 3:

(c · (τ − σ)( f )) · τ(g) + σ( f ) · (c · (τ − σ)(g)) = c · (τ − σ)( f g)

2= c · (τ ( f ) · τ(g) − σ( f ) · σ(g))

= c · (τ ( f ) · τ(g) − σ( f ) · τ(g) + σ( f ) · τ(g) − σ( f ) · σ(g))

= c · ((τ − σ)( f ) · τ(g)) + c · (σ ( f ) · (τ − σ)(g)),

and by rearranging terms, 1 is reached.
Finally, from1 ∧ 2 ⇒ 3 and 1 ∧ 3 ⇒ 2weobtain 1 ⇒ (2 ⇔ 3) and ifwe add 2 ∧

3 ⇒ 1 both 2 ⇒ (1 ⇔ 3) and 3 ⇒ (1 ⇔ 2) hold true as potentiallymore convenient
reformulations.

If c ∈ F (i.e. it is a scalar), c · (σ ( f ) · (τ − σ)(g)) = σ( f ) · (c · (τ − σ)(g))
comes by definition and thus this Proposition reduces to 2 ⇔ 3. �

Proposition13.11 has several immediate ramifications in different algebras.
If A is associative, any element c commuting with elements of the form σ( f )

satisfies statement 1 immediately.

Corollary 13.5 Let A be an associative algebra, c ∈ A such that cσ( f ) = σ( f )c
for all f ∈ A. Then, D : f → c(τ − σ)( f ) is a (σ, τ )-derivation overA if and only
if, for all f, g ∈ A, c(τ ( f g) − σ( f g)) = c(τ ( f )τ (g) − σ( f )σ (g)).

If A is left-unital, statement 1 is immediately fulfilled by choosing c = 1L .

Corollary 13.6 LetA be a left-unital algebra, σ, τ : A → A two linear maps. Then
D : f → (τ − σ)( f ) is a (σ, τ )-derivation over A if and only if, for all f, g ∈ A,
τ( f g) − σ( f g) = τ( f )τ (g) − σ( f )σ (g).

This statement can be extended to arbitrary algebras by using a scalar c. Then,
2 ⇔ 3 in Proposition13.11 becomes another generalization of [4, Lemma 1.4].
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Corollary 13.7 Let A be an algebra and σ, τ : A → A be two linear maps. The
linear map D : f �−→ (τ − σ)( f ) is a (σ, τ )-derivation of A iff, for all f, g ∈ A,

σ ( f g) − σ( f )σ (g) = τ( f g) − τ( f )τ (g)

Remark 13.7 The reasoning used in unital algebras, using a unity to grant Property
1 in Proposition13.11, does not yield the same results in Hom-unital algebras. Let
1L be a left Hom-unity, that is, α( f ) = 1L f for all f ∈ A. Let σ, τ be such linear
maps that Property 1 holds, that is,

1L · ((τ − σ)( f ) · τ(g)) − (1L · (τ − σ)( f )) · τ(g)

= σ( f ) · (1L · (τ − σ)(g)) − 1L · (σ ( f ) · (τ − σ)(g)).

Using Hom-unitality we can express this condition as

α((τ − σ)( f ) · τ(g)) − α((τ − σ)( f )) · τ(g)

= σ( f ) · α((τ − σ)(g)) − α(σ( f ) · (τ − σ)(g)),

or in terms of operators,

(α ◦ Rτ(g) ◦ (τ − σ))( f ) − (Rτ(g) ◦ α◦(τ − σ))( f )

= (Lσ( f ) ◦ α ◦ (τ − σ))(g) − (α ◦ Lσ( f ) ◦ (τ − σ))(g).

For such α and such elements, α ◦ (τ − σ) is a (σ, τ )-derivation in the sense of
Definition13.7 if and only if α(σ( f g) − σ( f )σ (g)) = α(τ( f g) − τ( f )τ (g)) by
Proposition13.11. In particular, this holds for those f, g ∈ A such that Lσ( f ) and
Rτ(g) commute with α. This set of elements is interesting to consider in different
algebras - it is a linear subspace, since Property 1 is linear in f and g. We study this
phenomenon in Proposition13.12.

These relations bound algebras and some subalgebras of more general algebras
in which τ − σ plays an important role, up to an element c ∈ A. Traditional papers
relate derivations in the form k(τ − σ),where k ∈ A has certain formwhich is related
to division and other factorization properties - and in certain settings it can be tracked
to a product involving images by D and τ − σ of an element g0. Said g0 is chosen
by the authors in [2] to be a GCD of (τ − σ)(A) in order to ensure that the quotient
(τ−σ)( f )

g0
exists for all f ∈ A. We follow that line, singling out minimal properties of

g0 in order to establish how deeply we can relate (σ, τ )-derivation operators based
on the relations between them, σ, τ and g0.

Lemma 13.4 Let A be an algebra. Let σ, τ : A → A be two different linear maps,
D : A → A be a (σ, τ )-derivation and g0 ∈ A. For all f ∈ A satisfying

D([ f, g0]) = D( f g0 − g0 f ) = 0, (13.9)

[σ(g0), D( f )] = 0, (13.10)



326 G. G. Butenegro et al.

it holds that
D( f )(τ − σ)(g0) = D(g0)τ ( f ) − σ( f )D(g0). (13.11)

For those f that, in addition (13.9) and (13.10), verify

[σ( f ), D(g0)] = 0, (13.12)

it holds that
D( f )(τ − σ)(g0) = D(g0)(τ − σ)( f ). (13.13)

For those f that, in addition to (13.9) and (13.10), verify

[τ( f ), D(g0)] = 0, (13.14)

it holds that
D( f )(τ − σ)(g0) = (τ − σ)( f )D(g0). (13.15)

Proof By applying (σ, τ )-Leibniz rule to the elements D( f g0) and D(g0 f ) and
subtracting the results we obtain:

D( f · g0) = D( f ) · τ(g0) + σ( f ) · D(g0),

D(g0 · f ) = D(g0) · τ( f ) + σ(g0) · D( f ),

D( f · g0) − D(g0 · f ) = D( f ) · τ(g0) − σ(g0) · D( f ) + σ( f ) · D(g0) − D(g0) · τ( f )

which is (13.11) since D( f · g0) − D(g0 · f ) = 0. Applying (13.12) to this equality
yields

0 = D( f · g0) − D(g0 · f )
(13.12)=
(13.10)

D( f ) · (τ − σ)(g0) − D(g0) · (τ − σ)( f ).

Similarly, applying (13.14) instead, yields (13.15) as follows

0 = D( f · g0) − D(g0 · f )
(13.14)=
(13.10)

D( f ) · (τ − σ)(g0) − (τ − σ)( f ) · D(g0).

�

Lemma 13.5 Let A be an algebra. Let σ, τ : A → A be two different linear maps,
D : A → A be a (σ, τ )-derivation and g0 ∈ A. For all f ∈ A satisfying

D([ f, g0]) = D( f g0 − g0 f ) = 0, (13.16)

[τ(g0), D( f )] = 0, (13.17)

it holds that
(τ − σ)(g0)D( f ) = D(g0)τ ( f ) − σ( f )D(g0). (13.18)
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If, in addition to (13.16) and (13.17),

[τ( f ), D(g0)] = 0, (13.19)

then
(τ − σ)(g0)D( f ) = (τ − σ)( f )D(g0). (13.20)

Proof By applying (σ, τ )-Leibniz rule to the elements D( f g0) and D(g0 f ) and
subtracting the results we obtain:

D( f · g0) = D( f ) · τ(g0) + σ( f ) · D(g0),

D(g0 · f ) = D(g0) · τ( f ) + σ(g0) · D( f ),

D( f · g0) − D(g0 · f ) = D( f ) · τ(g0) − σ(g0) · D( f ) + σ( f ) · D(g0) − D(g0) · τ( f ),

which is (13.18) since D( f · g0) − D(g0 · f ) = 0. Applying (13.19) to this equality
gives

0 = D( f · g0) − D(g0 · f )
(13.19)=
(13.17)

(τ − σ)(g0) · D( f ) − (τ − σ)( f ) · D(g0).

�

Remark 13.8 Note that in commutative rings (thus, algebras) (13.13) and (13.20)
are immediate, as all commutation conditions are trivially satisfied.

This lemma suggests relations between the images of σ and τ have more impor-
tance than they are usually given credit for. Existence of such a pivot element g0 is
without a doubt an important question - commutative algebras always have one (in
fact, every element doubles as g0), while in the non-commutative case we are tied to
the two relations (13.10) and (13.12) that link the images of D and σ together with
[A, g0] ∈ ker D.

13.4.2 Sandwich Twisted Derivatives in Unital Algebras

One-sided unital algebras satisfy certain relations on (σ, τ )-derivation operators
immediately. Existence of unities allows to define the corresponding one-sided
inverse of elements in the algebra, and give these operators much more structure
in exchange for tighter association relations involving a pivot element g0 with invert-
ible image by τ − σ .
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Lemma 13.6 Let A be a right-unital algebra. Let σ, τ : A → A be two different
linear maps, and D : A → A be a (σ, τ )-derivation. Let g0 ∈ A be such that (τ −
σ)(g0) is right-invertible, with right-inverse (τ − σ)(g0)

−1
R . For all f ∈ A such that

[D( f ), (τ − σ)(g0), (τ − σ)(g0)
−1
R ]as = 0, (13.21)

the action of D can be expressed as

D( f ) = (D(g0)τ ( f ) − σ( f )D(g0))(τ − σ)(g0)
−1
R .

For all f ∈ A that also satisfy (13.12), that is [σ( f ), D(g0)] = 0, the action of D
can be expressed as

D( f ) = (D(g0)(τ − σ)( f ))(τ − σ)(g0)
−1
R .

For all f ∈ A that also satisfy (13.19), that is [τ( f ), D(g0)] = 0, the action of D
can be expressed as

D( f ) = ((τ − σ)( f )D(g0))(τ − σ)(g0)
−1
R .

Proof If (τ − σ)(g0) is right-invertible, then multiplying both sides of (13.11) with
(τ − σ)(g0)

−1
R yields

D( f ) · (τ − σ)(g0) = D(g0) · τ( f ) − σ( f ) · D(g0)

⇒ (D( f ) · (τ − σ)(g0)) · (τ − σ)(g0)
−1
R

= (D(g0) · τ( f ) − σ( f ) · D(g0)) · (τ − σ)(g0)
−1
R

13.21⇒ D( f ) · ((τ − σ)(g0) · (τ − σ)(g0)
−1
R )

= (D(g0) · τ( f ) − σ( f ) · D(g0)) · (τ − σ)(g0)
−1
R

⇒ D( f ) = D( f ) · 1R = (D(g0) · τ( f ) − σ( f ) · D(g0)) · (τ − σ)(g0)
−1
R ,

where 1R is a right-unity of A. If (13.12) holds, then

D(g0) · τ( f ) − σ( f ) · D(g0) = D(g0) · (τ − σ)( f )

⇒ D( f ) = (D(g0) · (τ − σ)( f )) · (τ − σ)(g0)
−1
R

and result follows. Similarly, if (13.19) holds, then

D(g0) · τ( f ) − σ( f ) · D(g0) = (τ − σ)( f ) · D(g0)

⇒ D( f ) = ((τ − σ)( f ) · D(g0)) · (τ − σ)(g0)
−1
R .

�
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Corollary 13.8 Let A be a right-unital associative algebra. Let σ, τ : A → A be
two different linear maps, and D : A → A be a (σ, τ )-derivation. Let g0 ∈ A be
such that (τ − σ)(g0) is right-invertible, with right-inverse (τ − σ)(g0)

−1
R . Then, for

all f ∈ A,

D( f ) = (D(g0)τ ( f ) − σ( f )D(g0))(τ − σ)(g0)
−1
R .

The action of D can also be expressed as

1) D( f ) = D(g0)(τ − σ)( f )(τ − σ)(g0)
−1
R for such f ∈ A that [σ( f ),

D(g0)] = 0,
2) D( f ) = (τ − σ)( f )D(g0)(τ − σ)(g0)

−1
R for such f ∈ A that [τ( f ),

D(g0)] = 0.

In Lemma13.7, (13.23) and (13.24) are generalized commutation relations of the
form p( f g) = q(g f ) for certain elements of A using two weights p, q ∈ A. For
central elements p and q in the nucleus of A, conditions (13.25), (13.26), (13.27)
and (13.28) are trivially satisfied.

Partial associativity is often overlooked,whichmotivates several traditional results
that only work on associative algebras. We use relative nucleus notation (see Defini-
tion13.1) formore precisionwhen discussing commutation and association relations.

Lemma 13.7 LetA be an algebra, σ, τ : A → A be two linear maps, D : A → A
be (σ, τ )-derivation and g0, p, q ∈ A. Then, for all f ∈ A such that

D commutes with operators L p and Lq , (13.22)

q(σ (g0)D( f )) = p(D( f )σ (g0)), (13.23)

p(σ ( f )D(g0)) = q(D(g0)σ ( f )), (13.24)

[p, D( f )] = 0, (13.25)

p ∈ N (A)|D( f ),τ (g0) ∩ N (A)|D( f ),σ (g0), (13.26)

[q, D( f )] = 0, (13.27)

q ∈ N (A)|σ( f ),D(g0) ∩ N (A)|τ( f ),D(g0), (13.28)

D(p( f g0) − q(g0 f )) = 0, (13.29)

it holds that D( f )(p(τ − σ)(g0)) = D(g0)(q(τ − σ)( f )). If, moreover, p(τ −
σ)(g0) is right-invertible and

[D( f ), p(τ − σ)(g0), (p(τ − σ)(g0))
−1
R ]as = 0, (13.30)

then D( f ) = (D(g0)(q(τ − σ)( f )))(p(τ − σ)(g0))
−1
R .

Proof Let g0 ∈ A. By conditions (13.22) and (13.29), for f ∈ A,

D(p( f · g0)) = p · D( f g0) = p · (D( f ) · τ(g0)) + p · (σ ( f ) · D(g0)),

D(q(g0 · f )) = q · D(g0 f ) = q · (D(g0) · τ( f )) + q · (σ (g0) · D( f )),

0 = p · (D( f ) · τ(g0)) − q · (σ (g0) · D( f )) + p · (σ ( f ) · D(g0)) − q · (D(g0) · τ( f )).
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We use commutation relations (13.23) and (13.24) to set the terms in D as far left as
possible,

0 = p · (D( f ) · τ(g0)) − p · (D( f ) · σ(g0)) + q · (D(g0) · σ( f )) − q · (D(g0) · τ( f )).

Now, apply commutation relations (13.25), (13.27) and association relations (13.26)
and (13.28):

0
(13.28)=
(13.26)

(p · D( f )) · τ(g0) − (p · D( f )) · σ(g0) + (q · D(g0)) · σ( f ) − (q · D(g0)) · τ( f ),

0 = (p · D( f )) · (τ − σ)(g0) + (q · D(g0)) · (σ − τ)( f )

⇒ (p · D( f )) · (τ − σ)(g0) = (q · D(g0)) · (τ − σ)( f )

(13.25);(13.27)⇒
(13.26);(13.28)

D( f ) · (p · (τ − σ)(g0)) = D(g0) · (q · (τ − σ)( f )).

Finally, if p(τ − σ)(g0) is right-invertible and condition (13.30) holds, then

D( f ) = (D(g0) · (q(τ − σ)( f ))) · (p(τ − σ)(g0))
−1
R .

�

Remark 13.9 If p(τ − σ)(g0) is not right-invertible or (13.30) does not hold, the
last step of the proof is not granted.

Corollary 13.9 LetA be an associative algebra, σ, τ : A → A be two linear maps,
D : A → A be (σ, τ )-derivation and g0, p, q ∈ A. Then, for all f ∈ A such that

D commutes with operators L p and Lq ,

q(σ (g0)D( f )) = p(D( f )σ (g0)),

p(σ ( f )D(g0)) = q(D(g0)σ ( f )),

[p, D( f )] = 0,

[q, D( f )] = 0,

D(p( f g0) − q(g0 f )) = 0,

it holds that D( f )(p(τ − σ)(g0)) = D(g0)(q(τ − σ)( f )). If, moreover, p(τ −
σ)(g0) is right-invertible with right-inverse (τ − σ)(g0)

−1
R p−1

R , then the action of
D can be expressed as D( f ) = D(g0)q(τ − σ)( f )(τ − σ)(g0)

−1
R p−1

R .

Lemma 13.8 LetA be a right-unital non-associative domain. Let σ, τ : A → A be
two different linear maps, D : A → A be a (σ, τ )-derivation and q, p ∈ A. Also,
let g0, g1 ∈ A be two elements such that p(τ − σ)(g0) and p(τ − σ)(g1) are right-
invertible. Then, for all f ∈ A such that the following relations hold:
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D( f )(p(τ − σ)(g0)) = D(g0)(q(τ − σ)( f )), (13.31)

[D(g0), q(τ − σ)( f ), (p(τ − σ)(g0))
−1
R ]as = 0, (13.32)

[D(g0), q(τ − σ)( f )(p(τ − σ)(g0))
−1
R , (τ − σ)(g1)]as = 0, (13.33)

[(p(τ − σ)(g0))
−1
R , q(τ − σ)( f ), p(τ − σ)(g1)]as = 0, (13.34)

[(p(τ − σ)(g0))
−1
R , q(τ − σ)(g1), q(τ − σ)( f )]as = 0, (13.35)

[D(g0), q(τ − σ)(g1)(p(τ − σ)(g0))
−1
R , q(τ − σ)( f )]as = 0, (13.36)

[D(g0), q(τ − σ)(g1), (p(τ − σ)(g0))
−1
R ]as = 0, (13.37)

[q(τ − σ)( f ), (p(τ − σ)(g0))
−1
R ] = 0, (13.38)

(q(τ − σ)( f ))(p(τ − σ)(g1)) = (q(τ − σ)(g1))(q(τ − σ)( f )), (13.39)

it holds that D( f )(p(τ − σ)(g1)) = D(g1)(q(τ − σ)( f )).

Proof The proof is as follows:

D( f ) · (p · (τ − σ)(g1))
(13.32)=
(13.31)

((D(g0) · (q · (τ − σ)( f ))) · ((p · (τ − σ)(g0))
−1
R ) · (p · (τ − σ)(g1))

(13.32)= (D(g0) · ((q · (τ − σ)( f )) · ((p · (τ − σ)(g0))
−1
R ))) · (p · (τ − σ)(g1))

(13.33)= D(g0) · (((q · (τ − σ)( f )) · (p · (τ − σ)(g0))
−1
R )) · (p · (τ − σ)(g1)))

(13.38)= D(g0) · (((p · (τ − σ)(g0))
−1
R · (q · (τ − σ)( f ))) · (p · (τ − σ)(g1)))

(13.34)= D(g0) · ((p · (τ − σ)(g0))
−1
R · ((q · (τ − σ)( f )) · (p · (τ − σ)(g1))))

(13.39)= D(g0) · ((p · (τ − σ)(g0))
−1
R · ((q · (τ − σ)(g1)) · (q · (τ − σ)( f ))))

(13.35)= D(g0) · (((p · (τ − σ)(g0))
−1
R · (q · (τ − σ)(g1))) · (q · (τ − σ)( f )))

(13.38)= D(g0) · (((q · (τ − σ)(g1)) · (p · (τ − σ)(g0))
−1
R ) · (q · (τ − σ)( f )))

(13.36)= (D(g0) · ((q · (τ − σ)(g1)) · (p · (τ − σ)(g0))
−1
R )) · (q · (τ − σ)( f ))

(13.37)= ((D(g0) · (q · (τ − σ)(g1))) · (p · (τ − σ)(g0))
−1
R ) · (q · (τ − σ)( f ))

= D(g1) · (q · (τ − σ)( f )).

�

Let p, q ∈ A, D : A → A be a linear operator and σ, τ : A → A two linear maps.
Consider for x, y ∈ A the following conditions:
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[p, (τ − σ)(x), τ (y)]as = 0, (13.40)

((p · (τ − σ)(x)) · τ(y)) · q = ((p · (τ − σ)(x)) · q) · τ(y), (13.41)

p · (σ (x) · (τ − σ)(x)) = σ(x) · (p · (τ − σ)(x)), (13.42)

[σ(x), (p · (τ − σ)(y)), q]as = 0, (13.43)

(τ − σ)([A,A]) = 0, (13.44)

[D(x), σ (y)] = 0, (13.45)

[D(x), τ (y)] = 0, (13.46)

p (D(x) · (τ − σ)(y)) = D(x) (p · (τ − σ)(y)) , (13.47)

[p, (τ − σ)(x), D(y)]as = 0. (13.48)

Theorem 13.4 LetA be an algebra, p, q be elements ofA, σ, τ : A → A two linear
maps such that, for all f, g ∈ A,

p(σ ( f g) − σ( f )σ (g)) = p(τ ( f g) − τ( f )τ (g)) (13.49)

If Dpq : A → A is the linear operator defined by Dpq : f �→ (p · (τ − σ)( f )) · q,

then:

(i) Under (13.44), Dpq([A,A]) = 0.
(ii) Under (13.40), (13.41), (13.42) and (13.43), Dpq is a (σ, τ )-derivation.
(iii) Under (ii), (13.44) and (13.45), Dpq( f )(τ − σ)(g) = Dpq(g)(τ − σ)( f ).
(iv) Under (ii), (13.44) and (13.46), (τ − σ)( f )Dpq(g) = (τ − σ)(g)Dpq( f ).
(v) Under (iii) and (13.47), Dpq( f )(p(τ − σ)(g)) = Dpq(g)(p(τ − σ)( f )).
(vi) Under (iv) and (13.48), (p(τ − σ)( f ))Dpq(g) = (p(τ − σ)(g))Dpq( f ).

Proof (i) If (τ − σ)([ f, g]) = 0, f, g ∈ A, then

Dpq([ f, g]) = (p · (τ − σ)([ f, g])) · q = (p · 0) · q = 0 ⇒ Dpq([A,A]) = 0.

(ii) We The linear operator Dpq is (σ, τ )-derivation, that is the twisted Leibniz rule
holds, since

Dpq( f · g) = (p · (τ − σ)( f · g)) · q = (p · (τ ( f · g) − σ( f · g))) · q
(13.49)= (p · (τ ( f ) · τ(g) − σ( f ) · σ(g))) · q
= (p · (τ ( f ) · τ(g) − σ( f ) · τ(g) + σ( f ) · τ(g) − σ( f ) · σ(g))) · q
= (p · ((τ − σ)( f ) · τ(g))) · q + (p · (σ ( f ) · (τ − σ)(g))) · q
(13.40)= ((p · (τ − σ)( f )) · τ(g)) · q + (p · (σ ( f ) · (τ − σ)(g))) · q
(13.41)= ((p · (τ − σ)( f )) · q) · τ(g) + (p · (σ ( f ) · (τ − σ)(g))) · q
(13.42)= ((p · (τ − σ)( f )) · q) · τ(g) + (σ ( f ) · (p · (τ − σ)(g))) · q
(13.43)= Dpq( f ) · τ(g) + σ( f ) · Dpq(g).
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(iii) Statement (iii) follows from Lemma13.4 because conditions (ii), (13.44) and
(13.45) are a special case of the conditions of the Lemma.
(iv) Statement (iv) follows from Lemma13.5 because conditions (ii), (13.44) and
(13.46) are a special case of the conditions of the Lemma.
(v) We use (ii) and expand Dpq( f · g − g · f ) using linearity:

Dpq( f · g) (i i)= Dpq( f ) · τ(g) + σ( f ) · Dpq(g),

Dpq(g · f )
(i i)= Dpq(g) · τ( f ) + σ(g) · Dpq( f ),

0
(i)= Dpq( f · g − g · f ) = Dpq( f · g) − Dpq(g · f )

(13.45)= Dpq( f ) · (τ − σ)(g) + Dpq(g) · (σ − τ)( f ),

Dpq(g) · (τ − σ)( f ) = Dpq( f ) · (τ − σ)(g),

p · (Dpq(g) · (τ − σ)( f )) = p · (Dpq( f ) · (τ − σ)(g)),

(apply (13.47)to both sides)

Dpq(g) · (p · (τ − σ)( f )) = Dpq( f ) · (p · (τ − σ)(g)).

(vi) Condition (13.48) is used in a similar way to prove (vi).

0
(i)= Dpq( f · g − g · f ) = Dpq( f · g) − Dpq(g · f )

(13.46)= (τ − σ)(g) · Dpq( f ) + (σ − τ)( f ) · Dpq(g),

(τ − σ)( f ) · Dpq(g) = (τ − σ)(g) · Dpq( f ),

p · ((τ − σ)( f ) · Dpq(g)) = p · ((τ − σ)(g) · Dpq( f )),

(apply (13.48)to both sides)

(p · (τ − σ)( f )) · Dpq(g) = (p · (τ − σ)(g)) · Dpq( f ).

�

Proposition 13.12 Let D : A → A be (σ, τ )-derivation and W : A → A be a lin-
ear operator. The mapping DW : f �→ (W ◦ D)( f ) is a linear operator onA as the
composition of the linear operators. Let P ⊆ A be the subset of all elements f ∈ A
satisfying

((W ◦ Lσ( f ) − Lσ( f ) ◦ W ) ◦ D)(A) = {0}, (13.50)

((W ◦ Rτ( f ) − Rτ( f ) ◦ W ) ◦ D)(A) = {0}. (13.51)

Then P is a linear subspace of A, and the restriction DW : P → A is a (σ, τ )-
derivation from P to A in the sense of Definition13.7.

Proof The subset P is a linear subspace of A since using that the multiplication
operators are linear in the factor and the linearity of W , (13.50), (13.51) yield that
f, g ∈ P ⇒ a f + bg ∈ P for a, b ∈ F, and thus that P is a linear subspace of A.
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If f, g ∈ P satisfy (13.50) and (13.51) respectively, then

(13.51) ⇔ W ◦ Rτ(g) ◦ D( f ) = Rτ(g) ◦ W ◦ D( f ),

(13.50) ⇔ W ◦ Lσ( f ) ◦ D(g) = Lσ( f ) ◦ W ◦ D(g).

This equalities can be rewritten as

W (D( f ) · τ(g)) = W (D( f )) · τ(g),

W (σ ( f ) · D(g)) = σ( f ) · W (D(g)).

The sum of these two equations is

W (D( f ) · τ(g)) + W (σ ( f ) · D(g)) = (W (D( f ))) · τ(g) + σ( f ) · W (D(g)).

Using linearity on the left hand side yields

W (D( f g)) = W (D( f )) · τ(g) + σ( f ) · W (D(g))

⇒ DW ( f g) = DW ( f ) · τ(g) + σ( f ) · DW (g).

�

Remark 13.10 If one would require W ◦ D to be only an additive map, this propo-
sition would still hold for additive maps W .

Proposition 13.13 Let D : A → A be a (σ, τ )-derivation, and S, T : A → A be
linear operators onA. Themapping DT S : f �→ (T ◦ S ◦ D)( f ) is a linear operator
on A as the composition of the linear operators. Let P ⊆ A be the subset of all
elements f ∈ A satisfying

(((T ◦ S) ◦ Lσ( f ) − Lσ( f ) ◦ (T ◦ S)) ◦ D)(A) = {0}, (13.52)

(((T ◦ S) ◦ Rτ( f ) − Rτ( f ) ◦ (T ◦ S)) ◦ D)(A) = {0}. (13.53)

Then, P is a linear subspace of A and the restriction DT S : P → A is a (σ, τ )-
derivation from P to A in the sense of Definition13.7.

Proof The subset P is a linear subspace of A since using that the multiplication
operators are linear in the factor and the linearity of S and T , (13.52), (13.53) yield
that f, g ∈ P ⇒ a f + bg ∈ P for a, b ∈ F, and thus that P is a linear subspace of
A.

If f, g ∈ P are the elements satisfying (13.52) and (13.53) respectively. Then,

(13.53) ⇔ T ◦ S ◦ Rτ(g) ◦ D( f ) = Rτ(g) ◦ T ◦ S ◦ D( f ),

(13.52) ⇔ T ◦ S ◦ Lσ( f ) ◦ D(g) = Lσ( f ) ◦ T ◦ S ◦ D(g).

This equalities can be rewritten in the following way:
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T (S(D( f ) · τ(g))) = (T (S(D( f )))) · τ(g),

T (S(σ ( f ) · D(g))) = σ( f ) · T (S(D(g))).

The sum of these two equalities is

T (S(D( f ) · τ(g))) + T (S(σ ( f ) · D(g))) = (T (S(D( f )))) · τ(g) + σ( f ) · T (S(D(g))).

Using linearity and twisted Leibniz rule for D on the left hand side of this equality
yields

T (S(D( f g)) = (T (S(D( f )))) · τ(g) + σ( f ) · T (S(D(g)))

⇒ DT S( f g) = DT S( f ) · τ(g) + σ( f ) · DT S(g).

�

Corollary 13.10 Let P ⊆ A be the subset of all f ∈ A such that T ◦ S commutes
with Lσ( f ) and Rτ( f ). Then P is a linear subspace of A, and the restriction DT S =
T ◦ S ◦ D : P → A is a (σ, τ )-derivation from P toA in the sense ofDefinition13.7.

Remark 13.11 Across this section it is essential that P ⊆ A is a linear subspace,
because without associativity it cannot be granted that P is a subalgebra. This moti-
vates the introduction of (σ, τ )-derivations from linear subspace into algebra, as
we cannot grant that P is closed under product, but twisted Leibniz rule holds all
across P.

Larson, Hartwig, Silvestrov [4] introduce a 1-dimensional A-module of deriva-

tions on commutative associative UFDs, generated by the operator
k(τ − σ)

r
. Pro-

vided τ − σ is a (σ, τ )-derivation, this can be expressed as Lk ◦ Sr ◦ (τ − σ), where
Lk denotes left multiplication by k, and Sr denotes division by r or product by
r−1. Although a priori we do not have either unities or association as to grant that
Sr is well-defined on any algebra, composition with two linear maps is interesting,
especially in algebras with partial association relations.

We denote by L p left multiplication by p and by Rq right multiplication by q.
Consider the linear operators

DL
pq : f �→ (Rq ◦ L p ◦ D)( f ) = (p · D( f )) · q,

DR
pq : f �→ (L p ◦ Rq ◦ D)( f ) = p · (D( f ) · q).

Lemma 13.9 If operators L p and Rq commute, then DL
pq = DR

pq , that is, for all
f ∈ A,

p · (D( f ) · q) = (p · D( f )) · q.

In terms of association relations, this can be written [p, D(A), q]as = 0.
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Indeed, if L p and Rq commute then L p ◦ Rq ◦ D = Rq ◦ L p ◦ D ⇒ p · (D( f ) ·
q) = (p · D( f )) · q for all f ∈ A. It is still interesting to study each of them sepa-
rately.

Corollary 13.11 (Left formulation) Let D : A → A be a (σ, τ )-derivation. Define
operator DL

pq as the map that sends f to (p · D( f )) · q. Let P ⊆ A be the subspace
of all f ∈ A such that:

(((Rq ◦ L p) ◦ Lσ( f ) − Lσ( f ) ◦ (Rq ◦ L p)) ◦ D)(A) = {0},
(((Rq ◦ L p) ◦ Rτ( f ) − Rτ( f ) ◦ (Rq ◦ L p)) ◦ D)(A) = {0}.

Then, DL
pq is a (σ, τ )-derivation from P to A in the sense of Definition13.7.

Corollary 13.12 (Right formulation)Let D : A → A be a (σ, τ )-derivation. Define
operator DR

pq as the map that sends f to p · (D( f ) · q). Let P ⊆ A be the subspace
of all f ∈ A such that:

(((L p ◦ Rq) ◦ Lσ( f ) − Lσ( f ) ◦ (L p ◦ Rq)) ◦ D)(A) = {0},
(((L p ◦ Rq) ◦ Rτ( f ) − Rτ( f ) ◦ (L p ◦ Rq)) ◦ D)(A) = {0}.

Then, DR
pq is a (σ, τ )-derivation from P to A in the sense of Definition13.7.

Corollary 13.13 Let D : A → A be a (σ, τ )-derivation. If Rτ(g) and Lσ( f ) commute
with Rq ◦ L p (resp. L p ◦ Rq) for all f, g ∈ A, then DL

pq (resp. DR
pq) is a (σ, τ )-

derivation on A.

Corollary 13.14 Let D : A → A be a (σ, τ )-derivation. Define operator DLp as
the map that sends f to (L p ◦ D)( f ). Let P ⊆ A be the subspace of all elements
f ∈ A such that

((L p ◦ Lσ( f ) − Lσ( f ) ◦ L p) ◦ D)(A) = {0},
((L p ◦ Rτ( f ) − Rτ( f ) ◦ L p) ◦ D)(A) = {0}.

Then DLp is a (σ, τ )-derivation from P to A in the sense of Definition13.7.

Corollary 13.15 Let D : A → A be a (σ, τ )-derivation. Define operator DRq as
the map that sends f to (Rq ◦ D)( f ). Let P ⊆ A be the subspace of all elements
f ∈ A such that

((Rq ◦ Lσ( f ) − Lσ( f ) ◦ Rq) ◦ D)(A) = {0},
((Rq ◦ Rτ( f ) − Rτ( f ) ◦ Rq) ◦ D)(A) = {0}.

Then DRq is a (σ, τ )-derivation from P to A in the sense of Definition13.7.

Corollary 13.16 Let D : A → A be a (σ, τ )-derivation. If Rτ( f ) and Lσ( f ) com-
mute with Rq (resp. L p) for all f ∈ A, then Rq ◦ D (resp. L p ◦ D) is a (σ, τ )-
derivation on A.
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Chapter 14
On Lie-Type Constructions over Twisted
Derivations

Germán García Butenegro, Abdennour Kitouni, and Sergei Silvestrov

Abstract In this paper we examine interactions between (σ, τ )-derivations via com-
mutator and consider new n-ary structures based on twisted derivation operators. We
show that the sums of linear spaces of (σ k, τ l)-derivations and also of some of their
subspaces, consisting of twisted derivations with some commutation relations with
σ and τ , form Lie algebras, and moreover with the semigroup or group graded com-
mutator product, yielding graded Lie algebras when the sum of the subspaces is
direct. Furthermore, we extend these constructions of such Lie subalgebras spanned
by twisted derivations of algebras to twisted derivations of n-ary algebras. Finally,
we consider n-ary products defined by generalized Jacobian determinants based on
(σ, τ )-derivations, and construct n-Hom-Lie algebras associated to the generalized
Jacobian determinants based on twisted derivations extending some results of Fil-
ippov to (σ, τ )-derivations. We also establish commutation relations conditions for
twisting maps and twisted derivations such that the generalised Jacobian determi-
nant products yield (σ, τ, n)-Hom-Lie algebras, a new type of n-ary Hom-algebras
different from n-Hom-Lie algebras in that the positions of twisting maps σ and τ

are not fixed to positions of variables in n-ary products terms of the sum of defining
identity as they were in Hom-Nambu-Filippov identity of n-Hom-Lie algebras.
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14.1 Introduction

The area of Hom-algebra structures initiated in 2003 in [17] extends and connects
many algebraic structures in mathematics and mathematical physics. Hom-Lie alge-
bras and more general quasi-Hom-Lie algebras were introduced first in 2003 in
[17] in connection to the general method for construction of deformations and dis-
cretizations of Lie algebras of vector fields based on twisted derivations satisfying
twisted Leibniz rule. Central extensions and cocycle conditions for general quasi-
Hom-Lie algebras andHom-Lie algebras, generalizing in particular q-deformedWitt
and Virasoro algebras, have been first considered in [17, 26] and for graded color
quasi-Hom-Lie algebras in [38]. In [25, 29, 30, 35, 36] Quasi-Lie structure of σ -
derivations has been further investigated. At the same time, in 2004–2005, general
quasi-Lie and quasi-Leibniz algebras where introduced in [27] and color quasi-Lie
and color quasi-Leibniz algebras where introduced in [28] generalizing and uniting
in the same algebraic structure the Hom-Lie algebras and the quasi-Hom-Lie alge-
bras, the color Hom-Lie algebras, quasi-Hom-Lie color algebras, quasi-Hom-Lie
superalgebras and Hom-Lie superalgebras, as well as color quasi-Leibniz algebras,
quasi-Leibniz superalgebras, quasi-Hom-Leibniz superalgebras and Hom-Leibniz
algebras. Graded color quasi-Lie algebras of Witt type have been first considered in
[37]. Hom-Lie admissible algebras, that is Hom-algebras consisting of an algebra
and a linear map (homomorphism of linear space) such that the commutator bilinear
product yields Hom-Lie algebra, have been considered first in 2006 in [33], where the
Hom-associative algebras and more general G-Hom-associative algebras including
the Hom-Vinberg algebras (Hom-left symmetric algebras), Hom-pre-Lie algebras
(Hom-right symmetric algebras), and some other new Hom-algebra structures have
been introduced and shown to be Hom-Lie admissible, in the sense that the opera-
tion of commutator as new product in these Hom-algebras structures yields Hom-Lie
algebras. Furthermore, in [33], flexible Hom-algebras and Hom-algebra generaliza-
tions of derivations and of adjoint derivations maps have been introduced, and the
Hom-Leibniz algebras appeared for the first time, as an important special subclass of
quasi-Leibniz algebras introduced in more genera context of general quasi-Lie alge-
bras in [27] following the standard Loday’s conventions for Leibniz algebras (right
Loday algebras) [12, 13, 31]. In [33], moreover the investigation of classification of
finite-dimensional Hom-Lie algebras has been initiated with construction of families
of the low-dimensional Hom-Lie algebras.

Ternary Lie algebras appeared in generalization of Hamiltonian mechanics by
Nambu [34], the mathematical algebraic foundations of Nambu mechanics have
been developed by Takhtajan in [39], Filippov, in [15] independently introduced and
studied structure of n-Lie algebras and Kasymov [18] investigated their properties.
Since these pioneering works the n-Lie algebras and their generalizations their con-
structions, properties, classifications, interplay with other algebraic structures and
applications in geometry, analysis and mathematica physics. Hom-type generaliza-
tion of n-ary algebras, such as n-Hom-Lie algebras and other n-ary Hom algebras
of Lie type and associative type, were introduced in [7], by twisting the defining
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identities by a set of linear maps. The particular case, where all these maps are equal
and are algebra morphisms has been considered and a way to generate examples
of n-ary Hom-algebras from n-ary algebras of the same type have been described.
Further properties, construction methods, examples, classification, representations,
cohomology and central extensions of n-ary Hom-algebras have been considered in
[4–6, 19–21, 23, 24, 40]. These generalizations include n-ary Hom-algebra struc-
tures generalizing the n-ary algebras of Lie type including n-ary Nambu algebras,
n-ary Nambu-Lie algebras and n-ary Lie algebras, and n-ary algebras of associa-
tive type including n-ary totally associative and n-ary partially associative algebras.
In [22], constructions of n-ary generalizations of BiHom-Lie algebras and BiHom-
associative algebras have been considered. Generalized derivations of n-BiHom-Lie
algebras have been studied in [9]. Generalized derivations of multiplicative n-ary
Hom-� color algebras have been studied in [10]. Cohomology of Hom-Leibniz
and n-ary Hom-Nambu-Lie superalgebras has been considered in [1] Generalized
derivations andRota-Baxter operators of n-aryHom-Nambu superalgebras have been
considered in [32]. A construction of 3-Hom-Lie algebras based on σ -derivation and
involution has been studied in [2]. Multiplicative n-Hom-Lie color algebras have
been considered in [8].

In this paper we examine interactions between (σ, τ )-derivations via commutator
and consider new n-ary structures based on twisted derivation operators. Discretiza-
tions of derivatives dependingon linearmapsσ and τ often satisfy generalized twisted
Leibniz rule, resulting in the linear space of (σ, τ )-derivations typically being not
closed under commutator since the commutator of (σ, τ )-derivations is a (σ, τ )-
derivations only under some special conditions on σ , τ and the (σ, τ )-derivations
in the commutator. Thus, usually, the linear spaces of (σ, τ )-derivations are not Lie
subalgebras of the Lie algebra of all linear maps with commutator product. We show
however that the sums of linear spaces of (σ k, τ l)-derivations and also of some of
their subspaces, consisting of twisted derivations with some commutation relations
with σ and τ , form Lie algebras, and moreover with the semigroup or group graded
commutator product, yielding graded Lie algebras when the sum of the subspaces is
direct. Furthermore, we extend these constructions of such Lie subalgebras spanned
by twisted derivations of algebras to twisted derivations of n-ary algebras. Finally,
we consider n-ary products defined by generalized Jacobian determinants based on
(σ, τ )-derivations, and construct n-Hom-Lie algebras associated to the generalized
Jacobian determinants based on twisted derivations extending some results of Filip-
pov in [16] to (σ, τ )-derivations. We also establish commutation relations conditions
on twisting maps and twisted derivations such that the generalised Jacobian determi-
nant products yield (σ, τ, n)-Hom-Lie algebras, a new type of n-ary Hom-algebras
different from n-Hom-Lie algebras in that the positions of twisting maps σ and τ

are not fixed to positions of variables in n-ary products terms of the sum of defining
identity as they were in Hom-Nambu-Filippov identity of n-Hom-Lie algebras.
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14.2 Definitions and Notations

An algebra over a field F is a pair (A, ∗) consisting of a vector space A over F
with a bilinear binary operation μ : A × A → A, μ(x, y) �→ x ∗ y. Juxtaposition
xy is often used formultiplication for convenience of notations, when it is clearwhich
multiplication it stands for. For any algebra, the leftmultiplication operator Lx : A →
A, Lx (y) = xy and the right multiplication operator Ry : A → A, Ry(x) = xy are
linear operators.

An algebra A is left unital if there is an element 1L ∈ A (left unity) such that
a = 1L · a for all a ∈ A. An algebra is right unital if there is an element 1R ∈ A
(right unity) such that a = a · 1R for all a ∈ A, and unital if it is both left and right
unital. An algebra A is called associative if x(yz) = (xy)z (associativity) holds
for all x, y, z ∈ A. An algebra is called non-associative if x(yz) �= (xy)z for some
elements in the algebra. If xy = yx (commutativity) for all x, y ∈ A, the algebra is
called commutative, and it is called non-commutative if for some elements xy �= yx .
If xy = −yx (skew-symmetry or anti-commutativity) for all x, y ∈ A, the algebra
is called skew-symmetric (or anti-commutative). Lie algebras are pairs (A, 〈·, ·〉)
consisting of a linear space A and a bilinear mapping (product,commonly referred
as bracket) 〈·, ·〉 : A × A → A, satisfying for all x, y, z ∈ A,

〈x, y〉 = −〈y, x〉 Skew-symmetry
∑

�(x,y,z)

〈x, 〈y, z〉〉 = 〈x, 〈y, z〉〉 + 〈y, 〈z, x〉〉 + 〈z, 〈x, y〉〉 = 0. Jacobi identity

where
∑

�(x,y,z)
denotes the summation over cyclic permutations of (x, y, z).

In any algebra (A, ∗), the commutator defined by [x, y] = [x, y]− = xy − yx
for any two elements x, y ∈ A, is a bilinear map [·, ·] : A × A → A defining a new
algebra (A, [·, ·]) on the same vector space.

Algebra elements commute, xy = yx , if and only if commutator is zero, [x, y] =
[x, y]− = xy − yx = 0. The center Z(A) = Z(A, ∗) = {x ∈ A | ∀y ∈ A : xy =
yx}, consisting of all those elements that commute with any element of an alge-
bra A, is a linear subspace of A.

For any algebra, the commutator is skew-symmetric bilinear map, since [x, y] =
xy − yx = −(yx − xy) = −[y, x], and thus the new algebra (A, [·, ·]) is always a
skew-symmetric algebra. If the algebra (A, ∗) is associative, then the new algebra
(A, [·, ·]), with commutator bracket as multiplication, is a Lie algebra, that is the
commutator on associative algebras satisfies not only skew-symmetry, but also the
Jacobi identity of Lie algebras. Lie admissible algebras are those algebras for which
the new algebra with commutator as product is a Lie algebra. So, in particular, all
associative algebras are Lie admissible. There are many other classes of algebras
which are Lie admissible.

If [x, [y, z]] �= [[x, y], z] for some elements in an algebra, then the commutator
defines a non-associative product. For any elements,



14 On Lie-Type Constructions over Twisted Derivations 343

[x, [y, z]] = x[y, z] − [y, z]x = x(yz − zy) − (yz − zy)x = x(yz) − x(zy) − (yz)x + (zy)x,

[[x, y], z] = [x, y]z − z[x, y] = (xy − yx)z − z(xy − yx) = (xy)z − (yx)z − z(xy) + z(yx),

[x, [y, z]] − [[x, y], z] = x(yz) − x(zy) − (yz)x + (zy)x − (xy)z + (yx)z + z(xy) − z(yx)

= x(yz) − (xy)z + (zy)x − z(yx) − x(zy) − (yz)x + (yx)z + z(xy)

(if the product is associative)

= y(xz) − y(zx) + (zx)y − (xz)y = y[x, z] − [x, z]y = [y, [x, z]].

Thus, in associative algebras, the commutator is associative if and only if [A,A] ⊆
Z(A)where Z(A) = Z(A, ∗) is center of (A, ∗). This is the case in nilpotent algebras
of degree 3, where [A,A] ⊆ Z(A) ⇒ [[A,A],A] = 0, [A, [A,A]] = 0.

The associator [·, ·, ·]as : A × A × A → A, defined by [x, y, z]as = x(yz) −
(xy)z, is a trilinear mapping, thus also defining a ternary algebra structure on A.
The associator can be expressed using the commutator of the left and right multipli-
cation operators Lx and Rz ,

[x, y, z]as = x(yz) − (xy)z = Lx (yz) − Rz(xy) = Lx (Rz(y)) − Rz(Lx (y)) = [Lx , Rz](y).

Elements associate if their associator is 0. The associative algebras are those algebras
in which associator is identically 0 on all elements, or equivalently in which all left
and right multiplication operators commute.

Definition 14.1 ([17, Definition 14]) A hom-Lie algebra (A, α) is an algebra
A together with a bilinear product 〈·, ·〉A : A × A → A (commonly referred as
bracket) and a linear map α : A −→ A, such that for all x, y, z ∈ A,

〈x, y〉A = −〈y, x〉A, Skew-symmetry (14.1)
∑

�(x,y,z)

〈α(x), 〈y, z〉A〉A = 0. Hom-Jacobi identity (14.2)

A natural n-ary generalization of Hom-Lie algebras is n-ary Hom-Lie algebras
introduced first in [7]. The n-Hom-Lie algebras are an n-ary generalization of Hom-
Lie algebras to n-ary algebras satisfying a generalisation of the Hom-algebra identity
(14.2) involving n-ary product and n − 1 twisting linear maps. We will consider in
this paper the special case of the n-ary Hom-Lie algebras with single twisting map
(when all the n − 1 twisting linear maps are the same).

Definition 14.2 n-Ary Hom-Lie algebras or n-Hom-Lie algebras with one twisting
map are triples (A, μ, α) consisting of an algebra A with a n-ary skew-symmetric
bilinear product μ : An → A and a linear map α : A → A satisfying the fol-
lowing n-ary generalization of the Hom-Lie algebras Hom-Jacobi identity, for all
x1, . . . , xn, y2, . . . , yn ∈ A :
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Hom-Nambu-Filippov identity
μ(μ(x1, . . . , xn), α(y2), . . . , α(yn)) =
=

n∑

i=1

μ(α(x1), . . . , α(xi−1), μ(xi , y2, . . . , yn), α(xi+1), . . . , α(xn)).

(14.3)

We also introduce more general class of n-ary algebras with two twisting maps.
An interesting concrete class of such n-ary algebras will be constructed further on.

Definition 14.3 ((α, β, n)-Hom-Lie algebra) (α, β, n)-Hom-Lie algebras are
quadruples (A, μ, α, β) consisting of an algebra A with a n-ary skew-symmetric
bilinear product μ : An → A and two linear maps α, β : A → A such that, for all
x1, . . . , xn, y2, . . . , yn ∈ A :

μ(μ(x1, . . . , xn), β(y2), . . . , β(yn)) =
=

n∑

i=1

μ(α(x1), . . . , α(xi−1), μ(xi , y2, . . . , yn), β(xi+1), . . . , β(xn)).
(14.4)

Note that the defining identity of n-Hom-Lie algebras (14.3) is different from (14.4)
in that in (14.3) the twisting maps are attached to the position of the elements in the
product.

Definition 14.4 (Leibniz’s product rule, [11]) A derivation is an F-linear operator
D : A → A such that D( f g) = D( f )g + f D(g), for every f, g ∈ A.

Definition 14.5 ((σ, τ )-derivations, [14], Definition 1.1) Let σ, τ : A → A be two
linearmaps.TheF-linear operator D : A → A is called (σ, τ )-derivation if it satisfies
a generalized Leibniz’s product rule ((σ, τ )-twisted Leibniz’s product rule), for every
f, g ∈ A,

D( f g) = D( f )τ (g) + σ( f )D(g).

If τ = id, then D is referred to as σ -derivation.

Example 14.1 Derivations in the sense ofDefinition 14.4 are (σ, τ )-derivationswith
σ = τ = id. Another relevant example of these twisted derivation operators under-

lying the foundations of q-analysis, are Dq( f )(t) = f (qt) − f (t)

qt − t
(the Jackson

q-derivative) and the operator Mt Dq( f )(t) = f (qt) − f (t)

q − 1
which act on C[t, t−1]

or some other suitable function spaces, and satisfy the twisted Leibniz product rule

D( f g) = D( f )g + σq( f )D(g), σq( f )(t) = f (qt).

A linear map α : A → A is left-invertible if there exists β : A → A such that
β ◦ α = idA. Then β is called left inverse of α and denoted α−1

L . A linear map
α : A → A is right-invertible if there exists β : A → A such that α ◦ β = idA.
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Then β is called right inverse of α and denoted α−1
R . If α−1

L = α−1
R , α is said to be

invertible and α−1 = α−1
L = α−1

R is called inverse of α.
An element p ∈ A in an algebraA is a left zero divisor inA if there is a nonzero

element k0 ∈ A such that p · k0 = 0, it is a right zero divisor inA if there is a nonzero
element k0 ∈ A such that k0 · p = 0 and it is a zero divisor in A if it is either a left
or right zero divisor or both.

Throughout this article, the following notations are used unless specified
otherwise.

• [·, ·, ·]as : Associator.
• [·, ·, ·]αas : Hom-associator.
• [·, ·] : Commutator.
• ∑

�
: Cyclic sum (over cyclic permuta-

tion of variables of summation)
• L(A) :Space of linearmaps on a linear
space A.

• Dσ,τ (A) : Space of (σ, τ )-derivations
on A.

• D(k)
σ,τ (A) : Space of (σ k, τ k)-

derivations on A.

• D(k,l)
σ,τ (A) : Space of (σ k, τ l)-

derivations on A.

• Δσ,τ (A) : Space of (σ, τ )-derivations
on A commuting with σ and τ.

• Δ(k)
σ,τ (A) : Space of (σ k, τ k)-

derivations on A commuting with σ

and τ.

• Δ(k,l)
σ,τ (A) : Space of (σ k, τ l)-

derivations on A commuting with σ

and τ.

• ∇(k,l)
k0l0

(A) : Space of (σ k, τ l)-
derivations on A commuting with σ k0

and τ l0 .
• λk, γ jk, Γ jk : Commutation factors.
• gcd : Greatest common divisor
• U F D :Unique Factorization Domain.

In the last part, we follow Filippov’s notation, where operators act from the right.
The image of element x by operator D will be denoted by x D. Sometimes for clarity
of exposition, if no confusion arises, the product between elements of an algebra will
be denoted by the dot “·”.

14.3 Some Results on Twisted Derivations

The following proposition extends [14, Lemma 1.4] to arbitrary algebras.

Proposition 14.1 If σ, τ are algebra endomorphisms of an algebra A, and c ∈ A
satisfies

[c, σ (A)] = 0, (14.5)

[c, σ (A), σ (A)]as = 0, (14.6)

[σ(A), c, σ (A)]as = 0, (14.7)

[c, τ (A), τ (A)]as = 0, (14.8)

[σ(A), c, τ (A)]as = 0, (14.9)

then D : A → A, f �→ D( f ) = c(τ ( f ) − σ( f )) is a (σ, τ )-derivation on A.
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Proof For any f, g ∈ A,

D( f g) = c(τ ( f g) − σ( f g)) = c(τ ( f )τ (g) − σ( f )σ (g))

= c(τ ( f )τ (g)) − c(σ ( f )σ (g))
14.6= c(τ ( f )τ (g)) − (cσ( f ))σ (g)

14.5= c(τ ( f )τ (g)) − (σ ( f )c)σ (g)
14.7= c(τ ( f )τ (g)) − σ( f )(cσ(g))

14.8= (cτ( f ))τ (g) − σ( f )(cσ(g))

= (cτ( f ))τ (g) − (cσ( f ))τ (g) + (cσ( f ))τ (g) − σ( f )(cσ(g))

14.5= (cτ( f ))τ (g) − (cσ( f ))τ (g) + (σ ( f )c)τ (g) − σ( f )(cσ(g))

14.9= (cτ( f ))τ (g) − (cσ( f ))τ (g) + σ( f )(cτ(g)) − σ( f )(cσ(g))

= (c(τ ( f ) − σ( f )))τ (g) + σ( f )(c(τ (g) − σ(g))) = D( f )τ (g) + σ( f )D(g),

which completes the proof. �
The following proposition is straightforward extension of [14, Proposition 1.5,

Corollary 1.6] to arbitrary algebras.

Proposition 14.2 Let A be an algebra, and σ, τ : A → A be two linear maps on
A. Also, let D be a (σ, τ )-derivation and α : A → A a homomorphism. Then,

(i) α ◦ D is a (α ◦ σ, α ◦ τ)-derivation.
(ii) D ◦ α is a (σ ◦ α, τ ◦ α)-derivation.
(iii) If σ is left-invertible, then σ−1

L ◦ D is a (id, σ−1
L ◦ τ)-derivation. If A is

commutative, it is also a (σ−1
L ◦ τ)-derivation.

(iv) If τ is left-invertible, then τ−1
L ◦ D is a (τ−1

L ◦ σ)-derivation.
(v) If σ is a right-invertible homomorphism, then D ◦ σ−1

R is a (id, τ ◦ σ−1
R )-

derivation. If A is commutative, then D ◦ σ−1
R is a (τ ◦ σ−1

R )-derivation.
(vi) If τ is a right-invertible homomorphism, then D ◦ τ−1

R is a (σ ◦ τ−1
R )-derivation.

Lemma 14.1 Let A be a commutative algebra, σ, τ : A → A be two linear maps
and D be a (σ, τ )-derivation on A. Then, for all x ∈ ker(τ − σ) and y ∈ A,

D(x)(τ (y) − σ(y)) = 0.

Moreover, if A has no non-null zero divisors and σ �= τ , then

ker(τ − σ) ⊆ ker(D).

Proof By commutativity of A, as D(0) = 0 by linearity of D, for all x, y ∈ A,

0 = D(0) = D(xy − yx) = D(xy) − D(yx)

= D(x)τ (y) + σ(x)D(y) − D(y)τ (x) − σ(y)D(x)

= D(x)(τ − σ)(y) − D(y)(τ − σ)(x),

⇒ D(x)(τ − σ)(y) = D(y)(τ − σ)(x).
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Hence, if x ∈ ker(τ − σ), then D(y)(τ − σ)(x) = 0 ⇒ D(x)(τ − σ)(y) = 0 for
all y ∈ A. If σ �= τ , then D(x)(τ − σ)(y) = 0 for y ∈ A such that (τ − σ)(y) �= 0.
SinceA has no non-null zero divisors, D(x) = 0 which means that x ∈ ker(D), that
is ker(τ − σ) ⊆ ker(D). �

Theorem 14.1 ([14, Theorem2.6])LetAbe a commutative associative algebra with
unity, and D be a (σ, τ )-derivation of A with linear maps σ, τ : A → A satisfying:

σ ◦ τ = τ ◦ σ, D ◦ σ = δ(σ ◦ D), D ◦ τ = δ(τ ◦ D),

for some δ ∈ A. The bracket 〈·, ·〉σ,τ defined by

〈 f · D, g · D〉σ,τ = (σ ( f )D(g) − σ(g)D( f )) · D

is a well-defined product in A. It satisfies skew-symmetry and a twisted Jacobi-like
identity: ∑

�(n,m,l)

〈(σ + τ)(dn), 〈dm, dl〉σ,τ 〉σ,τ = 0.

This bracket endows linear space A · D with a Hom-Lie algebra structure
(A · D, 〈·, ·〉, σ + τ) where σ + τ(a · D) = (σ + τ)(a) · D.

Using σ + τ instead of σ + τ is an abuse of notation that is often overlooked. It is
convenient to keep in mind that the latter is a natural extension of the former, but not
the same map.

The following generalization of [17, Theorem 4] weakens requirement of twisting
maps being algebra endomorphisms.

Proposition 14.3 LetA be a commutative associative UFD, σ, τ : A → A different
algebra morphisms on A satisfying, for some c in the center of A,

c(σ ( f g) − σ( f )σ (g)) = c(τ ( f g) − τ( f )τ (g)).

Then Dσ,τ (A) is free of rank 1 as an A-module, and is generated by the following
operator:

cΔ = c
(τ − σ)

r
: x �−→ c

(τ − σ)(x)

r
,

where r = gcd((τ − σ)(A)).
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14.4 Composition of (σ, τ)-Derivations

Across this section,Z≥0 denotes the nonnegative integers. For a linearmapα,α0 = Id
is the identity map over algebra A.

14.4.1 Z-Grading Property of Commutator
on (σ, τ)-Derivations

It is already well-known that the composition of (σ, τ )-derivations is a linear map
on A but not necessarily another twisted derivation operator. Across this section we
study the behaviour of the commutator over a wider space of twisted derivatives.

Definition 14.6 Let (α1, α2, α3) and (β1, β2, β3) be two triples of linear maps over
an algebra A. These triples cross-commute if the following properties hold:

α1 ◦ β2 = β2 ◦ α1, β1 ◦ α2 = α2 ◦ β1,

α1 ◦ β3 = β3 ◦ α1, β1 ◦ α3 = α3 ◦ β1.

That is, α1 commutes with β2, β3 and β1 commutes with α2, α3.

Cross-commutation lies behind relevant symmetry properties when α1 and β1 are
twisted derivations. The following proposition is direct extension of [14, Remark
1.3], stated there for associative algebras, to arbitrary not necessarily associative
algebras.

Proposition 14.4 Let A be an algebra. Also, let D be a (σ, τ )-derivation and D′
be a (σ ′, τ ′)-derivation. If σ and σ ′ commute, and τ and τ ′ commute, then the
commutator [D, D′] = D ◦ D′ − D′ ◦ D is a (σ ◦ σ ′, τ ◦ τ ′)-derivation if and only
if T1( f, g) − T2( f, g) + S1( f, g) − S2( f, g) = 0 for all f, g ∈ A, where

S1( f, g) = (D ◦ σ ′)( f )(τ ◦ D′)(g), T1( f, g) = (σ ◦ D′)( f )(D ◦ τ ′)(g),

S2( f, g) = (σ ′ ◦ D)( f )(D′ ◦ τ)(g), T2( f, g) = (D′ ◦ σ)( f )(τ ′ ◦ D)(g).

In particular, if σ and σ ′ commute, τ and τ ′ commute, and (D, σ, τ ) and (D′, σ ′, τ ′)
cross-commute, then [D, D′] is a (σ ◦ σ ′, τ ◦ τ ′)-derivation.

Proof Compute the commutator of D and D′ on an element f g ∈ A according to
the twisted Leibniz rule:
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(D ◦ D′)( f g) = D(D′( f )τ ′(g) + σ ′( f )D′(g))

= D(D′( f ))τ (τ ′(g)) + σ(D′( f ))D(τ ′(g))

+ D(σ ′( f ))τ (D′(g)) + σ(σ ′( f ))D(D′(g))

= (D ◦ D′)( f )(τ ◦ τ ′)(g) + (σ ◦ σ ′)( f )(D ◦ D′)(g) + (σ ◦ D′)( f )(D ◦ τ ′)(g)

+ (D ◦ σ ′)( f )(τ ◦ D′)(g),

(D′ ◦ D)( f g) = D′(D( f )τ (g) + σ( f )D(g))

= D′(D( f ))τ ′(τ (g)) + σ ′(D( f ))D′(τ (g))

+ D′(σ ( f ))τ ′(D(g)) + σ ′(σ ( f ))D′(D(g))

= (D′ ◦ D)( f )(τ ′ ◦ τ)(g) + (σ ′ ◦ σ)( f )(D′ ◦ D)(g) + (σ ′ ◦ D)( f )(D′ ◦ τ)(g)

+ (D′ ◦ σ)( f )(τ ′ ◦ D)(g),

that is the operators D ◦ D′ and D′ ◦ D can be rewritten as follows:

(D ◦ D′)( f g) = (D ◦ D′)( f )(τ ◦ τ ′)(g) + (σ ◦ σ ′)( f )(D ◦ D′)(g)

+T1( f, g) + S1( f, g),

(D′ ◦ D)( f g) = (D′ ◦ D)( f )(τ ′ ◦ τ)(g) + (σ ′ ◦ σ)( f )(D′ ◦ D)(g)

+S2( f, g) + T2( f, g).

Since σ commutes with σ ′ and τ commutes with τ ′,

[D, D′]( f g) = (D ◦ D′ − D′ ◦ D)( f g)

= [D, D′]( f )(τ ◦ τ ′)(g)+(σ ◦ σ ′)( f )[D, D′](g)

+ T1( f, g) − T2( f, g) + S1( f, g) − S2( f, g).

So, as the commutator [D, D′] of linear maps is a linear map, it is a (σ ◦ σ ′, τ ◦
τ ′)-derivation if and only if T1( f, g) − T2( f, g) + S1( f, g) − S2( f, g) = 0 for all
f, g ∈ A. In particular, if (D, σ, τ ) and (D′, σ ′, τ ′) cross commute, then T1( f, g) −
T2( f, g) = 0, S1( f, g) − S2( f, g) = 0, and so, T1( f, g) − T2( f, g) + S1( f, g) −
S2( f, g) = 0, and for all f, g ∈ A, [D, D′]( f g) = [D, D′]( f )(τ ◦ τ ′)(g) + (σ ◦
σ ′)( f )[D, D′](g), which means that [D, D′] is a (σ ◦ σ ′, τ ◦ τ ′)-derivation. �

Corollary 14.1 Let A be an algebra, and D, D′ ∈ Dσ,τ (A). If D and D′ com-
mute with σ and τ , then the commutator [D, D′] = D ◦ D′ − D′ ◦ D is a (σ 2, τ 2)-
derivation.

This simplified version of cross-commutation is illustrative of the general behaviour
of two twisted derivatives in relation to the twisting maps attached to each other.

As a first approach to this problem, consider that powers of σ and τ always
commute as linearmaps onA. This limitation on the twistingmaps taken into consid-
eration introduces certain regularity in the commutator as will be seen, which opens
the possibility of finding a linear subspace of pairwise cross-commuting (σ k, τ l)-
derivations.
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Definition 14.7 Let A be an algebra and k ∈ Z≥0. The linear space of (σ k, τ k)-
derivations of A is denoted D(k)

σ,τ (A). If σ and τ are invertible, then the linear space
of (σ−k, τ−k)-derivations of A will be denoted D(−k)

σ,τ (A).

In the upcoming results, any (σ k, τ k)-derivation will be denoted D(k). Let k, l ∈ Z≥0

and consider two twisted derivations D(k) and D(l).

(D(k) ◦ D(l))( f g) = D(k)(D(l)( f )τ l (g) + σ l ( f )D(l)(g)) = D(k)(D(l)( f ))τ k(τ l (g))

+ σ k(D(l)( f ))D(k)(τ l (g)) + D(k)(σ l ( f ))τ k(D(l)(g)) + σ k(σ l ( f ))D(k)(D(l)(g))

= (D(k) ◦ D(l))( f )τ k+l (g) + σ k+l ( f )(D(k) ◦ D(l))(g) + (σ k ◦ D(l))( f )(D(k) ◦ τ l )(g)

+ (D(k) ◦ σ l )( f )(τ k ◦ D(l))(g)

(D(l) ◦ D(k))( f g) = D(l)(D(k)( f )τ k(g) + σ k( f )D(k)(g)) = D(l)(D(k)( f ))τ l (τ k(g))

+ σ l (D(k)( f ))D(l)(τ k(g)) + D(l)(σ k( f ))τ l (D(k)(g)) + σ l (σ k( f ))D(l)(D(k)(g))

= (D(l) ◦ D(k))( f )τ l+k(g) + σ l+k( f )(D(l) ◦ D(k))(g) + (σ l ◦ D(k))( f )(D(l) ◦ τ k)(g)

+ (D(l) ◦ σ k)( f )(τ l ◦ D(k))(g)

Then, D(k) ◦ D(l), D(l) ◦ D(k) and [D(k), D(l)] can be rewritten as follows:

(D(k) ◦ D(l))( f g) = (D(k) ◦ D(l))( f )τ k+l(g) + σ k+l( f )(D(k) ◦ D(l))(g)

+ S1,l,k f, g) + S1,k,l( f, g),

(D(l) ◦ D(k))( f g) = (D(l) ◦ D(k))( f )τ k+l(g) + σ k+l( f )(D(l) ◦ D(k))(g)

+ S2,k,l( f, g) + S2,l,k( f, g),

[D(k), D(l)]( f g) = (D(k) ◦ D(l) − D(l) ◦ D(k))( f g)

= [D(k), D(l)]( f )τ k+l(g) + σ k+l( f )[D(k), D(l)](g)

+ S1,l,k( f, g) − S2,l,k( f, g) + S1,k,l( f, g) − S2,k,l( f, g),

where
S1,k,l( f g) = (D(k) ◦ σ l)( f )(τ k ◦ D(l))(g),

S2,k,l( f g) = (σ l ◦ D(k))( f )(D(l) ◦ τ k)(g).

We observe a similar phenomenon here: the two first terms of [D(k), D(l)]( f g)

look exactly like a (σ k+l , τ k+l)-Leibniz rule, while the rest terms separate it from
D(k+l)

σ,τ (A). If D(k) commutes with σ l , τ l and D(l) commutes with σ k and τ k , that is if
(D(k), σ k, τ k) and (D(l), σ l , τ l) cross-commute, then S1,l,k( f, g) = S2,l,k( f, g) and
S1,k,l( f, g) = S2,k,l( f, g), the tail vanishes and the twisted Leibniz rule remains. We
get thus the following statement on action of commutator on spaces D( j)

σ,τ (A).

Proposition 14.5 Let A be an algebra. Let D( j) ∈ D( j)
σ,τ (A), j ∈ Z≥0. Then, for any

k, l ∈ Z≥0, the commutator [D(k), D(l)] : (D(k) ◦ D(l)−D(l) ◦ D(k)) is a (σ k+l, τ k+l)-
derivation if and only if, for all f, g ∈ A,
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S1,l,k( f, g) − S2,l,k( f, g) + S1,k,l( f, g) − S2,k,l( f, g) = 0,

where
S1,k,l( f, g) = (D(k) ◦ σ l)( f )(τ k ◦ D(l))(g),

S2,k,l( f, g) = (σ l ◦ D(k))( f )(D(l) ◦ τ k)(g).

In particular, if the triples (D(k), σ k, τ k) and (D(l), σ l , τ l) cross-commute, then
[D(k), D(l)] is a (σ k+l, τ k+l)-derivation.

Composition of maps in L(A) is associative. This has important effects on com-
mutation between maps.

Remark 14.1 If a linear map α is invertible and commutes with a linear map β on a
linear space A, then α−1 ◦ β = α−1 ◦ β ◦ α ◦ α−1 = α−1 ◦ α ◦ β ◦ α−1 = β ◦ α−1,

and thus, if α is invertible and β commutes with α, then it automatically commutes
with α−1 and viceversa.

Lemma 14.2 Let α, β : A → A be commuting linear maps on a linear space A.
Then α commutes with βk for all k ∈ Z≥0, and if moreover β is invertible, then α

commutes also with β−k for all k ∈ Z≥0. Also , if α is invertible, then α−1 commutes
with βk for all k ∈ Z≥0, and if both α and β are invertible, then α−l commutes with
β−k for all k, l ∈ Z≥0.

Proof We proceed by induction on k ∈ Z≥0. For k = 0 and k = 1, trivially α ◦ β0 =
α ◦ Id = Id ◦α = β0 ◦ α and α ◦ β = β ◦ α hold. By associativity of composition
and commutativity of α and β, it holds that

α ◦ βk+1 = α ◦ (βk ◦ β)
assoc.= (α ◦ βk) ◦ β

commut.= (βk ◦ α) ◦ β

assoc.= βk ◦ (α ◦ β)
commut.= βk ◦ (β ◦ α)

assoc.= (βk ◦ β) ◦ α = βk+1 ◦ α.

Combining this with Remark 14.1 completes the proof. �

The immediate consequence in terms of (σ, τ )-derivations is as follows.

Corollary 14.2 A linear map D (and in particular, a (σ, τ )-derivation) on an alge-
bra A that commutes with invertible maps σ and τ , commutes with all σ k and τ k ,
k ∈ Z.

This apparently naive observation has relevant consequences.

Corollary 14.3 LetA be an algebra, k ∈ Z≥0, D(k) ∈ D(k)
σ,τ (A) and D(l) ∈ D(l)

σ,τ (A).
If D(k) and D(l) commute with σ and τ , then D(k) and D(l) commute with σ j and τ j

for all j ∈ Z≥0. Furthermore, (D(k), σ k, τ k) and (D(l), σ l , τ l) cross-commute. Their
commutator [D(k), D(l)] is a (σ k+l, τ k+l)-derivation.

Proof If D(k)(resp. D(l)) commutes with σ and τ , it forcefully commutes with σ l and
τ l (resp. σ k and τ k) (Lemma 14.2). Cross-commutation is automatic, and conclusion
follows from Proposition14.5. �
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Commutation with σ and τ is a baseline property behind this whole process. We
introduce a new notation to indicate when a twisted derivative verifies these basic
commutation relations.

Definition 14.8 Wedenote byΔ(k)
σ,τ (A) theF-linear subspace of (σ k, τ k)-derivations

that commute with σ and τ . Any operator in Δ(k)
σ,τ (A) will be denoted Δ(k).

Proposition 14.6 The space AΔ = ∑
k,l∈Z≥0

Δ(k)
σ,τ (A) is F-linear and closed under the

commutator.

Proof F-linearity is granted byAΔ being a sumofF-linear spaces.ByCorollary 14.3,
for k, l ∈ Z≥0, we have [Δ(k), Δ(l)] ∈ D(k+l)

σ,τ (A). Commutation with σ and τ is
proven using associativity of composition of maps in L(A) :

[Δ(k), Δ(l)] ◦ σ

= (Δ(k) ◦ Δ(l)) ◦ σ − (Δ(l) ◦ Δ(k)) ◦ σ = Δ(k) ◦ (Δ(l) ◦ σ) − Δ(l) ◦ (Δ(k) ◦ σ)

= Δ(k) ◦ (σ ◦ Δ(l)) − Δ(l) ◦ (σ ◦ Δ(k)) = (Δ(k) ◦ σ) ◦ Δ(l) − (Δ(l) ◦ σ) ◦ Δ(k)

= (σ ◦ Δ(k)) ◦ Δ(l) − (σ ◦ Δ(l)) ◦ Δ(k) = σ ◦ (Δ(k) ◦ Δ(l)) − σ ◦ (Δ(l) ◦ Δ(k))

= σ ◦ (Δ(k) ◦ Δ(l) − Δ(l) ◦ Δ(k)) = σ ◦ [Δ(k), Δ(l)],
[Δ(k), Δ(l)] ◦ τ

= (Δ(k) ◦ Δ(l)) ◦ τ − (Δ(l) ◦ Δ(k)) ◦ τ = Δ(k) ◦ (Δ(l) ◦ τ) − Δ(l) ◦ (Δ(k) ◦ τ)

= Δ(k) ◦ (τ ◦ Δ(l)) − Δ(l) ◦ (τ ◦ Δ(k)) = (Δ(k) ◦ τ) ◦ Δ(l) − (Δ(l) ◦ τ) ◦ Δ(k)

= (τ ◦ Δ(k)) ◦ Δ(l) − (τ ◦ Δ(l)) ◦ Δ(k) = τ ◦ (Δ(k) ◦ Δ(l)) − τ ◦ (Δ(l) ◦ Δ(k))

= τ ◦ (Δ(k) ◦ Δ(l) − Δ(l) ◦ Δ(k)) = τ ◦ [Δ(k), Δ(l)],

so indeed [Δ(k), Δ(l)] ∈ Δ(k+l)
σ,τ (A). Finally, let ai ∈ F, ki ∈ Z≥0,Δ

(ki ) ∈ Δ(ki )
σ,τ (A),

and define Δ =
n∑

i=1
aiΔ

(ki ). Then, for all l ∈ Z≥0,

[Δ,Δ(l)] = [
n∑

i=1

aiΔ
(ki ), Δ(l)] =

n∑

i=1

[aiΔ
(ki ), Δ(l)] =

n∑

i=1

ai [Δ(ki ), Δ(l)] ∈ AΔ,

where bilinearity of the commutator is used to swap the sum out. �

The commutator is skew-symmetric by definition. If we consider (AΔ,+, [·, ·]) as
a subalgebra of L(A), composition is associative and thus the commutator satisfies
the Jacobi identity. We apply these properties together with Proposition 14.6 toAΔ.

Theorem 14.2 (Z≥0-graded Lie algebra of (σ, τ )-derivations) Let A be an algebra,
and σ, τ : A → A be two linear maps. Then,

(i) with the bilinear product [·, ·] defined by commutator
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[Δ(k), Δ(l)] = Δ(k) ◦ Δ(l) − Δ(l) ◦ Δ(k), k, l ∈ Z≥0,

(AΔ = ∑
k,l∈Z≥0

Δ(k)
σ,τ (A), [·, ·]) is a Lie algebra,

(ii) whenever the sum is direct, (AΔ = ⊕
k,l∈Z≥0

Δ(k)
σ,τ (A), [·, ·]) isZ≥0-graded Lie sub-

algebra of L(A) with grading g : Z≥0 −→ AΔ, k �−→ Δ(k)
σ,τ (A).

If σ and τ are invertible, it makes sense to speak of (σ−1, τ−1)-derivations as well. In
this case, the inductive result (14.2) appears naturally by consideringα ∈ {σ−1, τ−1},
and Corollary 14.3 follows and we obtain a similar Lie subalgebra of L(A) by
considering the F-linear subspace D(−k)

σ,τ (A) of (σ−k, τ−k)-derivations of A, with
Δ(−k)

σ,τ (A) denoting the subspace of those commuting with σ−1 and τ−1.

Theorem 14.3 (Z≥0-graded Lie algebra of (σ−1, τ−1)-derivations) Let A be an
algebra, and σ, τ : A → A be invertible linear maps. Then,

(i) with the commutator bracket [·, ·] defined by

[Δ(−k), Δ(−l)] = Δ(−k) ◦ Δ(−l) − Δ(−l) ◦ Δ(−k), k, l ∈ Z≥0,

(A−Δ = ∑
k,l∈Z≥0

Δ(−k)
σ,τ (A), [·, ·]) is a Lie algebra,

(ii) whenever the sum is direct, (A−Δ = ⊕
k,l∈Z≥0

Δ(−k)
σ,τ (A), [·, ·]) is Z≥0-graded Lie

subalgebra of L(A) with grading g : Z≥0 −→ AΔ, k �−→ Δ(−k)
σ,τ (A).

Remark 14.1 hints about a similar interaction between (σ k, τ k)- and (σ−l , τ−l)-deri-
vations. Regular derivations correspond to the 0 case, and invertibility on both σ and
τ allows to consider a wider AΔ, which is graded by the whole group Z instead of
the semigroup Z≥0 on each twisting map.

Theorem 14.4 (Z-graded Lie algebra of (σ, τ )-derivations) Let A be an algebra,
and σ, τ : A → A be invertible linear maps. Then,

(i) with the bilinear product [·, ·] defined by commutator

[Δ(k), Δ(l)] = Δ(k) ◦ Δ(l) − Δ(l) ◦ Δ(k), k ∈ Z,

(AΔ = ∑
k∈Z

Δ(k)
σ,τ (A), [·, ·]) is a Lie algebra,

(ii) whenever the sum is direct, (AΔ = ⊕
k∈Z

Δ(k)
σ,τ (A), [·, ·]) is Z-graded Lie algebra

with grading g : Z −→ AΔ, k �−→ Δ(k)
σ,τ (A).

Proof Firstly, we need to prove thatAΔ is closed under the commutator. Interaction
between derivations twisted by positive powers of σ and τ are described in Propo-
sition 14.6, and those twisted by negative powers are given in Theorem 14.3. So, let
k, l ∈ Z≥0, Δ(k) ∈ Δ(k)

σ,τ (A),Δ(−l) ∈ Δ(−l)
σ,τ (A) . Then,
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(Δ(k) ◦ Δ(−l))( f g) = Δ(k)(Δ(−l)( f )τ−l(g) + σ−l( f )Δ(−l)(g))

= Δ(k)(Δ(−l)( f ))τ k(τ−l(g)) + σ k(Δ(−l)( f ))Δ(k)(τ−l(g))

+ Δ(k)(σ−l( f ))τ k(Δ(−l)(g)) + σ k(σ−l( f ))Δ(k)(Δ(−l)(g))

= (Δ(k) ◦ Δ(−l))( f )τ k−l(g) + σ k−l( f )(Δ(k) ◦ Δ(−l))(g)

+ (σ k ◦ Δ(−l))( f )(Δ(k) ◦ τ−l)(g) + (Δ(k) ◦ σ−l)( f )(τ k ◦ Δ(−l))(g),

(Δ(−l) ◦ Δ(k))( f g) = Δ(−l)(Δ(k)( f )τ k(g) + σ k( f )Δ(k)(g))

= Δ(−l)(Δ(k)( f ))τ−l(τ k(g)) + σ−l(Δ(k)( f ))Δ(−l)(τ k(g))

+ Δ(−l)(σ k( f ))τ−l(Δ(k)(g)) + σ−l(σ k( f ))Δ(−l)(Δ(k)(g))

= (Δ(−l) ◦ Δ(k))( f )τ−l+k(g) + σ−l+k( f )(Δ(−l) ◦ Δ(k))(g)

+ (σ−l ◦ Δ(k))( f )(Δ(−l) ◦ τ k)(g) + (Δ(−l) ◦ σ k)( f )(τ−l ◦ Δ(k))(g).

Then, D(k) ◦ D(−l) and D(−l) ◦ D(k) and [Δ(k), Δ(−l)] can be rewritten as follows:

(Δ(k) ◦ Δ(−l))( f g) = (Δ(k) ◦ Δ(−l))( f )τ k−l(g) + σ k−l( f )(Δ(k) ◦ Δ(−l))(g)

+ S2,k,−l + S1,k,−l ,

(Δ(−l) ◦ Δ(k))( f g) = (Δ(−l) ◦ Δ(k))( f )τ k−l(g) + σ k−l( f )(Δ(−l) ◦ Δ(k))(g)

+ S2,l,−k + S1,−l,k,

[Δ(k), Δ(−l)]( f g) = (Δ(k) ◦ Δ(−l) − Δ(−l) ◦ Δ(k))( f g)

= [Δ(k), Δ(−l)]( f )τ k−l(g) + σ k−l( f )[Δ(k), Δ(−l)](g)

+ S2,k,−l − S1,−l,k + S1,k,−l − S2,−l,k,

where
S1,k,−l( f, g) = (Δ(k) ◦ σ−l)( f )(τ k ◦ Δ(−l))(g),

S2,−l,k( f, g) = (σ k ◦ Δ(−l))( f )(Δ(k) ◦ τ−l)(g).

Now, if Δ(k), Δ(−l) commute with σ and τ , then they commute with all powers of
σ and τ by Corollary 14.2, and then T1( f, g) − S1,−l,k( f, g) = 0 = S1,k,−l( f, g) −
S2( f, g), which implies that

[Δ(k), Δ(−l)] ∈ D(k−l)
σ,τ (A).

Replicating the last part of the proof of Proposition 14.6 yields [Δ(k), Δ(−l)] ∈
Δ(k−l)

σ,τ (A). Also, [Δ,Δ(−l)] ∈ AΔ, where Δ =
∑

i

aiΔ
(ki ) is a finite linear com-

bination of the operators Δ(ki ). This completes the proof. �
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14.4.2 Z2-Grading on (σ, τ)-Derivations

The way the commutator interacts with powers of σ and τ to give place to new
twisted derivation rules suggests that said powers are not necessarily related.

For k, l ∈ Z≥0, denote by D(k,l)
σ,τ (A) the F-linear space of all (σ k, τ l)-derivations

on A. Let k, l, m, r ∈ Z≥0, and D(k,l) ∈ D(k,l)
σ,τ (A) and D(m,r) ∈ D(m,r)

σ,τ (A). Then,

(D(k,l) ◦ D(m,r))( f g) = D(k,l)(D(m,r)( f )τ r (g) + σ m( f )D(m,r)(g))

= D(k,l)(D(m,r)( f ))τ l(τ r (g)) + σ k(D(m,r)( f ))D(k,l)(τ r (g))

+ D(k,l)(σ m( f ))τ l(D(m,r)(g)) + σ k(σ m( f ))D(k,l)(D(m,r)(g))

= (D(k,l) ◦ D(m,r))( f )τ l+r (g) + σ k+m( f )(D(k,l) ◦ D(m,r))(g)

+ (D(k,l) ◦ σ m)( f )(τ l ◦ D(m,r))(g) + (σ k ◦ D(m,r))( f )(D(k,l) ◦ τ r )(g),

(D(m,r) ◦ D(k,l))( f g) = (D(m,r) ◦ D(k,l))( f )τ l+r (g) + σ k+m( f )(D(m,r) ◦ D(k,l))(g)

+ (D(m,r) ◦ σ k)( f )(τ r ◦ D(k,l))(g) + (σ m ◦ D(k,l))( f )(D(m,r) ◦ τ l)(g).

Then, D(k,l) ◦ D(m,r), D(k,l) ◦ D(m,r) and [D(k,l), D(m,r)] are rewritten as

(D(k,l) ◦ D(m,r))( f g) = (D(k,l) ◦ D(m,r))( f )τ l+r (g) + σ k+m( f )(D(k,l) ◦ D(m,r))(g)

+ S1,k,l,m,r + S2,k,l,m,r ,

(D(m,r) ◦ D(k,l))( f g) = (D(m,r) ◦ D(k,l))( f )τ l+r (g) + σ k+m( f )(D(m,r) ◦ D(k,l))(g)

+ S1,m,r,k,l + S2,m,r,k,l ,

[D(k,l), D(m,r)]( f g) = (D(k,l) ◦ D(m,r) − D(m,r) ◦ D(k,l))( f g)

= [D(k,l), D(m,r)]( f )τ l+r (g) + σ k+m( f )[D(k,l), D(m,r)](g)

+ S2,k,l,m,r − S2,m,r,k,l + S1,k,l,m,r − S1,m,r,k,l ,

where
S1,k,l,m,r = S1,k,l,m,r ( f, g) = (D(k,l) ◦ σ m)( f )(τ l ◦ D(m,r))(g),

S2,k,l,m,r = S2,k,l,m,r ( f, g) = (σ k ◦ D(m,r))( f )(D(k,l) ◦ τ r )(g).

Hence, [D(k,l), D(m,r)] is a (σ k+m, τ l+r )-derivation if and only if the tail vanishes,
S2,k,l,m,r − S2,m,r,k,l + S1,k,l,m,r − S1,m,r,k,l = 0. In particular,

D(m,r) ◦ σ k = σ k ◦ D(m,r) and D(k,l) ◦ τ r=τ r ◦ D(k,l) ⇒ S2,k,l,m,r − S2,m,r,k,l = 0,

D(k,l) ◦ σ m = σ m ◦ D(k,l) and D(m,r) ◦ τ l=τ l ◦ D(m,r) ⇒ S1,k,l,m,r − S1,m,r,k,l = 0.

In otherwords, if the triples {D(k,l), σ k, τ l} and {D(m,r), σ m, τ r } cross-commute, both
commutation relations hold and thus the commutator is another twisted derivation.
We get thus the following statement on action of commutator on spaces of type
D(k,l)

σ,τ (A).
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Proposition 14.7 Let k, l, m, r ∈ Z≥0, and D(k,l) ∈ D(k,l)
σ,τ (A), D(m,r) ∈ D(m,r)

σ,τ (A).
Then, [D(k,l), D(m,r)] is a (σ k+m, τ l+r )-derivation if and only if, for all f, g ∈ A,

S2,k,l,m,r − S2,m,r,k,l + S1,k,l,m,r − S1,m,r,k,l = 0,

where
S1,k,l,m,r = S1,k,l,m,r ( f, g) = (D(k,l) ◦ σ m)( f )(τ l ◦ D(m,r))(g),

S2,k,l,m,r = S2,k,l,m,r ( f, g) = (σ k ◦ D(m,r))( f )(D(k,l) ◦ τ r )(g).

In particular, if the triples {D(k,l), σ k, τ l} and {D(m,r), σ m, τ r } cross-commute, then
[D(k,l), D(m,r)] is a (σ k+m, τ l+r )-derivation.

According to Lemma 14.2, any linear map (and particularly, twisted derivations)
that commutes with σ and τ automatically commutes with all their powers. This
allows to introduce another Lie structure within L(A). Denote by Δ(k,l)

σ,τ (A) the F-
linear subspace of the (σ k, τ l)-derivations commuting with σ and τ . Any operator
in Δ(k,l)

σ,τ (A) will be denoted Δ(k,l).

Theorem 14.5 (Z2≥0-graded Lie algebra of (σ, τ )-derivations) Let A be an algebra,
and σ, τ : A → A be linear maps. Then,

(i) with the bilinear product [·, ·] defined for Δ(k,l) ∈ Δ(k,l)
σ,τ (A), Δ(m,r) ∈ Δ(m,r)

σ,τ (A)

by commutator

[Δ(k,l), Δ(m,r)] = Δ(k,l) ◦ Δ(m,r) − Δ(k,l) ◦ Δ(m,r), k, l, m, r ∈ Z≥0,

(AΔ = ∑
k,l∈Z≥0

Δ(k,l)
σ,τ (A), [·, ·]) is a Lie algebra;

(ii) when the sum is direct, (AΔ = ⊕
k,l∈Z≥0

Δ(k,l)
σ,τ (A), [·, ·]) is Z2≥0-graded Lie subal-

gebra of L(A) with grading g : Z2≥0 → AΔ, (k, l) �→ Δ(k,l)
σ,τ (A).

According to the commutation relations in Lemma 14.2, this theorem can naturally
be extended to all integer powers of σ and τ if σ and τ are both invertible.

Theorem 14.6 (Z2-graded Lie algebra of (σ, τ )-derivations) Let A be an algebra,
σ, τ : A → A invertible linear maps. Then,

(i) with the bilinear product [·, ·] defined for Δ(k,l) ∈ Δ(k,l)
σ,τ (A) and Δ(m,r) ∈

Δ(m,r)
σ,τ (A) by commutator

[Δ(k,l), Δ(m,r)] = Δ(k,l) ◦ Δ(m,r) − Δ(k,l) ◦ Δ(m,r), k, l, m, r ∈ Z≥0,

(AΔ = ∑
(k,l)∈Z2

Δ(k,l)
σ,τ (A), [·, ·]) is a Lie algebra,

(ii) whenever the sum is direct, (AΔ = ⊕
(k,l)∈Z2

Δ(k,l)
σ,τ (A), [·, ·]) is a Z2-graded Lie

subalgebra of L(A), with grading g : Z2 −→ AΔ, (k, l) �→ Δ(k,l)
σ,τ (A).
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Commutation with σ and τ is not the only relation that provides this type of construc-
tion ofAΔ. Let k0, l0 > 0, also let∇(k,l)

k0,l0
(A) denote the space all (σ k, τ l)-derivations

that commute with σ k0 and τ l0 . We denote by ∇(k,l)
k0,l0

elements of ∇(k,l)
k0,l0

(A).

Corollary 14.4 Let k0, l0 ∈ Z≥0 be fixed, also let k, l, m, r ∈ Z≥0 such that k, m are
multiples of k0 and l, r are multiples of l0. Let A be an algebra, and σ, τ : A → A be
linear maps. Let ∇(k,l)

k0,l0
(A) be the space all (σ k, τ l)-derivations that commute with

σ k0 and τ l0 . Then,

(i) with the bilinear product [·, ·], for ∇(k,l)
k0,l0

∈ ∇(k,l)
k0,l0

(A), ∇(m,r)
k0,l0

∈ ∇(m,r)
k0,l0

(A) defined
by commutator

[∇(k,l)
k0,l0

,∇(m,r)
k0,l0

] = ∇(k,l)
k0,l0

◦ ∇(m,r)
k0,l0

− ∇(k,l)
k0,l0

◦ ∇(m,r)
k0,l0

,

(A∇ = ∑
k∈k0Z≥0
l∈l0Z≥0

∇(k,l)
k0,l0

(A), [·, ·]) is a Lie algebra,

(ii) whenever the sum is direct, (A∇ = ⊕
k∈k0Z≥0
l∈l0Z≥0

∇(k,l)
k0,l0

(A), [·, ·]) is a Z2≥0-graded Lie

subalgebra of L(A) with grading g : Z2≥0 → A∇, (k, l) �→ ∇(k,l)
k0,l0

(A).

Proof Let σ̂ = σ k0 and τ̂ = τ l0 . Then,∇(kk0,ll0)
k0,l0

(A) = Δ
(k,l)
σ̂ τ̂

(A).Construct the space

A∇ =
∑

(k,l)∈Z≥0

Δ
(k,l)
σ̂ ,τ̂

(A). Apply Theorem 14.5 to spaceA∇ and linear maps σ̂ and τ̂ .

It follows that the commutator in A∇ is Z2≥0-graded and, if the sum is direct, then
(A∇, [·, ·]) is a graded Lie subalgebra of L(A). �

Corollary 14.5 Let k0, l0 ∈ Z≥0 be fixed, also let k, l, m, r ∈ Z such that k, m are
multiples of k0 and l, r are multiples of l0. Let A be an algebra, and σ, τ : A → A be
linear maps. Let ∇(k,l)

k0,l0
(A) be the space all (σ k, τ l)-derivations that commute with

σ k0 and τ l0 . Then,

(i) with the bilinear product [·, ·], for ∇(k,l)
k0,l0

∈ ∇(k,l)
k0,l0

(A), ∇(m,r)
k0,l0

∈ ∇(m,r)
k0,l0

(A), defined
by commutator

[∇(k,l)
k0,l0

,∇(m,r)
k0,l0

] = ∇(k,l)
k0,l0

◦ ∇(m,r)
k0,l0

− ∇(k,l)
k0,l0

◦ ∇(m,r)
k0,l0

,

(A∇ = ∑
k∈k0Z
l∈l0Z

∇(k,l)
k0,l0

(A), [·, ·]) is a Lie algebra,

(ii) whenever the sum is direct, (A∇ = ⊕
k∈k0Z
l∈l0Z

∇(k,l)
k0,l0

(A), [·, ·]) is a Z2-graded Lie

subalgebra of L(A) with grading g : Z2 → A∇, (k, l) �→ ∇(k,l)
k0,l0

(A).

When k, l, m, r are not multiples of k0 and l0 respectively, cross-commutation is lost
and thus A∇ is no longer closed.
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Proposition 14.8 Let A be an algebra, σ, τ : A → A two linear maps, k0, l0 ∈ Z≥0

and fix k, l ∈ Z≥0. Then,

⋂

k0,l0∈Z≥0

∇(k,l)
k0,l0

(A) = Δ(k,l)
σ,τ (A).

Proof Observe that, for k0 = l0 = 1,∇(k,l)
k0,l0

(A) = Δ(k,l)
σ,τ (A). If Δ(k,l)

σ,τ (A) � ∩
k0,l0∈Z≥0

∇(k,l)
k0,l0

(A) (strict inclusion), then the intersection contains an element not com-

muting with σ 1, τ 1. The element is not in Δ(k,l)
σ,τ (A) = ∇(k,l)

k0,l0
(A), so it is not in

∩
k0,l0∈Z≥0

∇(k,l)
k0,l0

(A). This completes the proof. �

If σ and τ are invertible, define σ 0 = σ ◦ σ−1 = idA, τ 0 = τ ◦ τ−1 = idA. The
space of non-twisted derivatives can then be expressed as D(0,0)

σ,τ (A). For the sake of
consistency, we adopt the same convention Δ(0,0)

σ,τ (A) for those that commute with σ

and τ .
This construction accepts other gradings over commutative monoids, which vary

with the properties of σ and τ .

Example 14.2 Let σ, τ be idempotent linear maps, that is, σ 2 = σ, τ 2 = τ . Then

AΔ = Δ(0,0)
σ,τ (A) + Δ(1,0)

σ,τ (A) + Δ(0,1)
σ,τ (A) + Δ(1,1)

σ,τ (A).

This is graded by G × G, where G is the commutative semigroup (0, 1) with

the following Cayley table:
+ 0 1
0 0 1
1 1 1

. This grading brings an additional property:

[Δ(1,1)
σ,τ (A),Δ(1,1)

σ,τ (A)] ⊆ Δ(1,1)
σ,τ (A), that is, Δ(1,1)

σ,τ (A) itself is closed under the com-
mutator, and so is a Lie subalgebra of AΔ. Moreover, for i, j ∈ {0, 1},

[Δ(i, j)
σ,τ (A),Δ(1,1)

σ,τ (A)] ⊆ Δ(1,1)
σ,τ (A) ⇒ [AΔ,Δ(1,1)

σ,τ (A)] ⊆ Δ(1,1)
σ,τ (A),

that is, Δ(1,1)
σ,τ (A) is a left ideal of AΔ. This property is two-sided: given the addi-

tion rule in G, it is immediate that, for any i, j ∈ {0, 1}, [Δ(1,1)
σ,τ (A),Δ

(i, j)
σ,τ (A)] ⊆

Δ(1,1)
σ,τ (A) ⇒ [Δ(1,1)

σ,τ (A),AΔ] ⊆ Δ(1,1)
σ,τ (A), thus Δ(1,1)

σ,τ (A) is a right ideal of AΔ.

Example 14.3 Let m, n ∈ Z≥0, σ be nilpotent of order n and τ be nilpotent of order
m. ThenAΔ = ∑

k,l∈Z≥0

Δ(k,l)
σ,τ (A)|σ n=0,τm=0 =

∑

0≤k<n
0≤l<m

Δ(k,l)
σ,τ (A).The commutator inAΔ

is graded by Zn × Zm = (Z/nZ,Z/mZ).
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14.4.3 Z2-Grading on (σ, τ)-Derivations over n-Ary Algebras

Definition 14.9 Let A = (A, μ) be an n-ary algebra and σ, τ two linear maps. A
linearmap D : A → A is said to be a (σ, τ )-derivation ofA if, for all x1, . . . , xn ∈ A,

D(μ(x1, . . . , xn)) =
n∑

k=1

μ(σ(x1), . . . , σ (xk−1), D(xk), τ (xk+1), . . . , τ (xn)).

For k, l ∈ Z≥0, let D(k,l)
σ,τ (A) be the F-linear space of all (σ k, τ l)-derivations on A.

Proposition 14.9 Let A = (A, μ) be an n-ary algebra. Let k, l, m, r ∈ Z≥0. Let
σ, τ be linear maps on A such that σ r ◦ τ k = τ k ◦ σ r and σ m ◦ τ l = τ l ◦ σ m.

The commutator [D(k,l), D(m,r)] = D(k,l) ◦ D(m,r) − D(m,r) ◦ D(k,l) is (σ k+m,

τ l+r )-derivation of A if and only if for all x1, . . . , xn ∈ A,

S1(x1, . . . , xn) + T1(x1, . . . , xn) − S2(x1, . . . , xn) − T2(x1, . . . , xn) = 0,

where

S1(x1, . . . , xn) =
n∑

i=1

i−1∑

j=1

μ
(
σ k+m(x1), . . . , σ

k+m(x j−1), D(k,l) ◦ σ m(xl),

τ l ◦ σ m(x j+1), . . . , τ
l ◦ σ m(xi−1), τ

l ◦ D(m,r)(xi ), τ
l+r (xi+1), . . . , τ

l+r (xn)
)
,

T1(x1, . . . , xn) =
n∑

i=1

n∑

j=i+1

μ
(
σ k+m(x1), . . . , σ

k+m(xi−1), σ
k ◦ D(m,r)(xi ),

σ k ◦ τ r (xi+1), . . . , σ
k ◦ τ r (x j−1), D(k,l) ◦ τ r (x j ), τ

l+r (x j+1), . . . , τ
l+r (xn)

)
,

S2(x1, . . . , xn) =
n∑

i=1

n∑

j=i+1

μ
(
σ k+m(x1), . . . , σ

k+m(xi−1), σ
m ◦ D(k,l)(xi ),

σ m ◦ τ l(xi+1), . . . , σ
m ◦ τ l(xi−1), D(m,r) ◦ τ l(x j ), τ

l+r (x j+1), . . . , τ
l+r (xn)

)
,

T2(x1, . . . , xn) =
n∑

i=1

i−1∑

j=1

μ
(
σ k+m(x1), . . . , σ

k+m(x j−1), D(m,r) ◦ σ k(x j ),

τ r ◦ σ k(x j+1), . . . , τ
r ◦ σ k(xi−1), τ

r ◦ D(k,l)(xi ), τ
l+r (xi+1), . . . , τ

l+r (xn)
)
.

In particular, if D(k,l) ∈ D(k,l)
σ,τ (A), D(m,r) ∈ D(m,r)

σ,τ (A) is such that {D(k,l), σ k, τ l}
and {D(m,r), σ m, τ r } cross-commute, that is, D(k,l) commutes with σ m and τ r , and
D(m,r) commutes with σ k and τ l , then [D(k,l), D(m,r)] = D(k,l) ◦ D(m,r) − D(m,r) ◦
D(k,l) is (σ k+m, τ l+r )-derivation of A.

Proof For x1, . . . , xn ∈ A,

D(k,l) ◦ D(m,r)(μ(x1, . . . , xn))
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= D(k,l)

(
n∑

i=1

μ(σm(x1), . . . , σ
m(xi−1), D(m,r)(xi ), τ

r (xi+1), . . . , τ
r (xn))

)

=
n∑

i=1

D(k,l)
(
μ(σm(x1), . . . , σ

m(xi−1), D(m,r)(xi ), τ
r (xi+1), . . . , τ

r (xn))
)

=
n∑

i=1

i−1∑

j=1

μ
(
σ k+m(x1), . . . , σ

k+m(x j−1), D(k,l) ◦ σm(x j ), τ
l ◦ σm(x j+1),

. . . , τ l ◦ σm(xi−1), τ
l ◦ D(m,r)(xi ), τ

l+r (xi+1), . . . , τ
l+r (xn)

)

+
n∑

i=1

μ(σ k+m(x1), . . . , σ
k+m(xi−1), D(k,l) ◦ D(m,r)(xk), τ

l+r (xi+1), . . . , τ
l+r (xn))

+
n∑

i=1

n∑

j=i+1

μ
(
σ k+m(x1), . . . , σ

k+m(xi−1), σ
k ◦ D(m,r)(xi ), σ

k ◦ τ r (xi+1),

. . . , σ k ◦ τ r (x j−1), D(k,l) ◦ τ r (x j ), τ
l+r (x j+1), . . . , τ

l+r (xn)
)
,

D(m,r) ◦ D(k,l)(μ(x1, . . . , xn))

= D(m,r)

(
n∑

i=1

μ(σ k(x1), . . . , σ
k(xi−1), D(k,l)(xi ), τ

l(xi+1), . . . , τ
l(xn))

)

=
n∑

i=1

D(m,r)
(
μ(σ k(x1), . . . , σ

k(xi−1), D(k,l)(xi ), τ
l(xi+1), . . . , τ

l(xn))
)

=
n∑

i=1

i−1∑

j=1

μ
(
σ k+m(x1), . . . , σ

k+m(x j−1), D(m,r) ◦ σ k(x j ), τ
r ◦ σ k(x j+1),

. . . , τ r ◦ σ k(xi−1), τ
r ◦ D(k,l)(xi ), τ

l+r (xi+1), . . . , τ
l+r (xn)

)

+
n∑

i=1

μ(σ k+m(x1), . . . , σ
k+m(xi−1), D(m,r) ◦ D(k,l)(xi ), τ

l+r (xi+1), . . . , τ
l+r (xn))

+
n∑

i=1

n∑

j=i+1

μ
(
σ k+m(x1), . . . , σ

k+m(xi−1), σ
m ◦ D(k,l)(xi ), σ

m ◦ τ l(xi+1),

. . . , σm ◦ τ l(x j−1), D(m,r) ◦ τ l(x j ), τ
l+r (x j+1), . . . , τ

l+r (xn)
)
.

Then, D(k,l) ◦ D(m,r), D(m,r) ◦ D(k,l) and [D(k,l), D(m,r)] can be written as follows:

D(k,l) ◦ D(m,r)(μ(x1, . . . , xn)) =

=
n∑

i=1

μ(σ k+m(x1), . . . , σ
k+m(xi−1), D(m,r) ◦ D(k,l)(xi ), τ

l+r (xi+1), . . . , τ
l+r (xn))

+ S1(x1, . . . , xn) + T1(x1, . . . , xn),

D(m,r) ◦ D(k,l)(μ(x1, . . . , xn)) =

=
n∑

i=1

μ(σ k+m(x1), . . . , σ
k+m(xk−1), D(m,r) ◦ D(k,l)(xi ), τ

l+r (xi+1), . . . , τ
l+r (xn))
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+ S2(x1, . . . , xn) + T2(x1, . . . , xn),

[D(k,l), D(m,r)](μ(x1, . . . , xn))

= D(k,l) ◦ D(m,r)(μ(x1, . . . , xn)) − D(m,r) ◦ D(k,l)(μ(x1, . . . , xn))

=
n∑

i=1

μ(σ k+m(x1), . . . , σ
k+m(xi−1), D(k,l) ◦ D(m,r)(xi ), τ

l+r (xi+1), . . . , τ
l+r (xn))

−
n∑

i=1

μ(σ k+m(x1), . . . , σ
k+m(xi−1), D(m,r) ◦ D(k,l)(xi ), τ

l+r (xi+1), . . . , τ
l+r (xn))

+ S1(x1, . . . , xn) + T1(x1, . . . , xn) − S2(x1, . . . , xn) − T2(x1, . . . , xn)

=
n∑

i=1

μ(σ k+m(x1), . . . , σ
k+m(xi−1), [D(k,l), D(m,r)](xi ), τ

l+r (xi+1), . . . , τ
l+r (xn))

+ (S1(x1, . . . , xn) − S2(x1, . . . , xn)) + (T1(x1, . . . , xn) − T2(x1, . . . , xn)).

Thus, [D(k,l), D(m,r)] is (σ k+m, τ l+r )-derivation of A if and only if the tail vanishes

S1(x1, . . . , xn) − S2(x1, . . . , xn) + T1(x1, . . . , xn) − T2(x1, . . . , xn) = 0.

In particular, the cross-commutation condition yields

T1(x1, . . . , xn) =
n∑

i=1

n∑

j=i+1

μ
(
σ k+m(x1), . . . , σ

k+m(xk−1), σ
k ◦ D(m,r)(xi ),

σ k ◦ τ r (xi+1), . . . , σ
k ◦ τ r (x j−1), D(k,l) ◦ τ r (x j ), τ

l+r (x j+1), . . . , τ
l+r (xn)

)

=
n∑

j=1

j−1∑

i=1

μ
(
σ k+m(x1), . . . , σ

k+m(xi−1), D(m,r) ◦ σ k(xi ),

τ r ◦ σ k(xi+1), . . . , τ
r ◦ σ k(x j−1), D(k,l) ◦ τ r (x j ), τ

l+r (x j+1), . . . , τ
l+r (xn)

)

= T2(x1, . . . , xn),

and in the similar way, S1(x1, . . . , xn) = S2(x1, . . . , xn), for all x1, . . . , xn ∈ A,
which implies that

(S1(x1, . . . , xn) − S2(x1, . . . , xn)) + (T1(x1, . . . , xn) − T2(x1, . . . , xn)) = 0,

and thus that [D(k,l), D(m,r)] is a (σ k+m, τ l+r )-derivation of A. �

Similarly to the binary case, letΔ(k,l)
σ,τ (A) denote the space of (σ k, τ l)-derivations that

commute with σ and τ . The corresponding twisted derivations will be written Δ(k,l).

If σ and τ commute, then we have commutation between their powers, which makes
the commutator [D(k,l), D(m,r)] belong to D(k+m,l+r)

σ,τ (A) as seen in the calculations.
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Proposition 14.10 Let A = (A, μ) be an n-ary algebra, σ, τ : A → A be two lin-
ear maps such that σ ◦ τ = τ ◦ σ. The linear space AΔ = ∑

k,l∈Z≥0

Δ(k,l)
σ,τ (A) is closed

under the commutator.

Proof Fromσ ◦ τ = τ ◦ σ , andσ 0 = Id, τ 0 = Id it is immediate thatσ i ◦ τ j = τ j ◦
σ i for all i, j ≥ 0.Two twisted derivationsΔ(k,l), Δ(m,r) commutingwith σ and τ, by
Corollary 14.2, commutewith all their powers. ByProposition 14.9, [Δ(k,l), Δ(m,r)] ∈
D(k+m,l+r)

σ,τ (A). To prove commutation with σ and τ , we use the second argument in
the proof of Proposition 14.6, and conclude [Δ(k,l), Δ(m,r)] ∈ Δ(k+m,l+r)

σ,τ (A). Finally,

for ai ∈ F, ki , li ∈ Z≥0,Δ
(ki ,li ) ∈ Δ(ki li )

σ,τ (A), Δ =
n∑

i=1

aiΔ
(ki ,li ) and m, r ∈ Z≥0,

[Δ,Δ(m,r)] = [
n∑

i=1

aiΔ
(ki ,li ), Δ(m,r)] =

n∑

i=1

[aiΔ
(ki ,li ), Δ(m,r)]

=
n∑

i=1

ai [Δ(ki ,li ), Δ(m,r)] ∈ AΔ,

which completes the proof. �

Theorem 14.7 (Z2≥0-graded Lie algebra of (σ, τ )-derivations) Let A = (A, μ) be
an n-ary algebra, and σ, τ : A → A two commuting linear maps. Then,

(i) with the bilinear product [·, ·], defined by commutator

[Δ(k,l), Δ(m,r)] = Δ(k,l) ◦ Δ(m,r) − Δ(m,r) ◦ Δ(k,l), k, l, m, r ∈ Z≥0,

(AΔ = ∑
k,l∈Z≥0

Δ(k,l)
σ,τ (A), [·, ·]), is a Lie subalgebra of L(A).

(ii) when the sum is direct, (AΔ = ⊕
k,l∈Z≥0

Δ(k,l)
σ,τ (A), [·, ·]) is a Z2≥0-graded Lie sub-

algebra of L(A) with grading g : Z2≥0 → AΔ, (k, l) �→ Δ(k,l)
σ,τ (A).

If σ and τ are invertible, for (σ k, τ l)-derivations with k, l ∈ Z, then

[Δ(k,l)
σ,τ (A),Δ(m,r)

σ,τ (A)] ⊆ Δ(k+m,l+r)
σ,τ (A), k, l, m, r ∈ Z.

Proposition 14.11 LetA = (A, μ) be an n-ary algebra, σ, τ : A → A be two com-
muting and invertible linear maps. The linear space AΔ =

∑

k,l∈Z
Δ(k,l)

σ,τ (A) is closed

under commutator.

Theorem 14.8 (Z2-graded Lie algebra of (σ, τ )-derivations) Let A = (A, μ) be an
n-ary algebra, and σ, τ : A → A two commuting linear maps. Then,
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(i) with the bilinear product [·, ·], defined by commutator

[Δ(k,l), Δ(m,r)] = Δ(k,l) ◦ Δ(m,r) − Δ(m,r) ◦ Δ(k,l), k, l, m, r ∈ Z,

(AΔ = ∑
k,l∈Z

Δ(k,l)
σ,τ (A), [·, ·]), is a Lie subalgebra of L(A).

(ii) when the sum is direct, (AΔ = ⊕
k,l∈Z

Δ(k,l)
σ,τ (A), [·, ·]) is a Z2-graded Lie subal-

gebra of L(A) with grading g : Z2 → AΔ, (k, l) �→ Δ(k,l)
σ,τ (A).

14.5 Hom-Algebras of Generalized Jacobians
for (σ, τ)-Derivations

Throughout this section, D and Di represent (σ, τ )-derivations commuting with
linear maps σ and τ on a commutative associative algebraA. The product is denoted
by the dot “·”, or by juxtapositionwhenno confusion is possible.We followFilippov’s
notation [16], with operators acting from the right, x D represents the image of
element x by map D. With these notations, (σ, τ )-Leibniz rule is expressed as

(x · y)D = x D · yτ + xσ · y D.

When we refer to D as a (σ, τ )-derivation of A, we refer to this Leibniz rule with
respect to the usual product in A. We assume A to be commutative associative to
ensure that it is possible to compute the Jacobian determinant in usual commutative
way. Unless specified otherwise, we assume σ �= τ , and the Ds are different pairwise.

Definition 14.10 The Jacobian of n elements x1, . . . , xn ∈ A is the determinant

|xi D j | =

∣∣∣∣∣∣∣

x1D1 . . . x1Dn
...

. . .
...

xn D1 . . . xn Dn

∣∣∣∣∣∣∣
.

The Jacobian is skew-symmetric with respect to xi , 1 ≤ i ≤ n
Define a skew-symmetric n-ary bracket bracket on A by [x1, . . . , xn] = |xi D j |.

Lemma 14.3 Let y2, . . . , yn ∈ A. The linear operator D : x �→ [x, y2, . . . , yn]
is a (σ, τ )-derivation on A.

Proof For any x1, x2, y2, . . . , yn ∈ A,
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[x1x2, y2, . . . , yn] =

∣∣∣∣∣∣∣∣∣

(x1 · x2)D1 . . . (x1 · x2)Dn

y2D1 . . . y2Dn
...

...

yn D1 . . . yn Dn

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

x1D1 · x2τ + x1σ · x2D1 . . . x1Dn · x2τ + x1σ · x2Dn

y2D1 . . . y2Dn
...

...

yn D1 . . . yn Dn

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

x1D1 · x2τ . . . x1Dn · x2τ
y2D1 . . . y2Dn

...
...

yn D1 . . . yn Dn

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

x1σ · x2D1 . . . x1σ · x2Dn

y2D1 . . . y2Dn
...

...

yn D1 . . . yn Dn

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

x1D1 . . . x1Dn

y2D1 . . . y2Dn
...

...

yn D1 . . . yn Dn

∣∣∣∣∣∣∣∣∣

· x2τ + x1σ

∣∣∣∣∣∣∣∣∣

x2D1 . . . x2Dn

y2D1 . . . y2Dn
...

...

yn D1 . . . yn Dn

∣∣∣∣∣∣∣∣∣

= [x1, y2, . . . , yn] · x2τ + x1σ · [x1, y2, . . . , yn]
�

Lemma 14.4 (Leibniz rule on the Jacobian) Let D ∈ Dσ,τ (A). Then,

∣∣∣∣∣∣∣

x11 . . . x1n
...

. . .
...

xn1 . . . xnn

∣∣∣∣∣∣∣
D =

n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x11σ . . . x1nσ
...

...

xi−11σ . . . xi−1nσ

xi1D . . . xin D
xi+11τ . . . xi+1nτ

...
...

xn1τ . . . xnnτ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (14.10)

This lemma is a straightforward calculation from (σ, τ )-Leibniz rule of D. By con-
sidering xi j = xi D j , and D commuting with all D j , we obtain
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[x1, . . . , xn]D =
n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1D1σ . . . x1Dnσ
...

...

xi−1D1σ . . . xi−1Dnσ

xi D1D . . . xi Dn D
xi+1D1τ . . . xi+1Dnτ

...
...

xn D1τ . . . xn Dnτ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn
...

...

xi−1σ D1 . . . xi−1σ Dn

xi DD1 . . . xi DDn

xi+1τ D1 . . . xi+1τ Dn
...

...

xnτ D1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=
n∑

i=1

[x1σ, . . . , xi−1σ, xi D, xi+1τ, . . . , xnτ ]

Proposition 14.12 If D ∈ Dσ,τ (A) commutes with all D j , then D is a (σ, τ )-
derivation with respect to the Jacobian. The n-ary twisted Leibniz rule is given
by

[x1, . . . , xn]D =
n∑

i=1

[x1σ, . . . , xi−1σ, xi D, xi+1τ, . . . , xnτ ].

Provided that the Ds commute, it is immediate that any D j satisfies

[xi D j , y2τ, . . . , ynτ ]
= [xi , y2, . . . , yn]D j −

n∑

s=2

[xiσ, y2σ, . . . , ys−1σ, ys D j , ys+1τ, . . . , ynτ ].

Filippov [16] uses the non-twisted version of these two properties together to prove
that the Jacobian as an n-ary product induces a n-Lie algebra structure on A. We
generalize his procedure to try and find an n-ary Hom-Lie or quasi-Hom-Lie identity
involving a n-tuple {D1, . . . , Dn} of (σ, τ )-derivations.
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We apply Lemma 14.3 to the operator D : x → [x, y2τ, . . . , ynτ ],

[[x1, . . . , xn], y2τ, . . . , ynτ ] (14.4)=
n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn
.
.
.

.

.

.

xi−1σ D1 . . . xi−1σ Dn

[xi D1, y2τ, . . . , ynτ ] . . . [xi Dn, y2τ, . . . , ynτ ]
xi+1τ D1 . . . xi+1τ Dn

.

.

.
.
.
.

xnτ D1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn
.
.
.

.

.

.

xi−1σ D1 . . . xi−1σ Dn

[xi , y2, . . . , yn]D1 − Ai1 . . . [xi , y2, . . . , yn]Dn − Ain

xi+1τ D1 . . . xi+1τ Dn
.
.
.

.

.

.

xnτ D1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn
.
.
.

.

.

.

xi−1σ D1 . . . xi−1σ Dn

[xi , y2, . . . , yn]D1 . . . [xi , y2, . . . , yn]Dn

xi+1τ D1 . . . xi+1τ Dn
.
.
.

.

.

.

xnτ D1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn
.
.
.

.

.

.

xi−1σ D1 . . . xi−1σ Dn

Ai1 . . . Ain

xi+1τ D1 . . . xi+1τ Dn
.
.
.

.

.

.

xnτ D1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

n∑

i=1

[x1σ, . . . , xi−1σ, [xi , y2, . . . , yn], xi+1τ, . . . , ynτ ] −
n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn
.
.
.

.

.

.

xi−1σ D1 . . . xi−1σ Dn

Ai1 . . . Ain

xi+1τ D1 . . . xi+1τ Dn
.
.
.

.

.

.

xnτ D1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where Ai j =
n∑

s=2

[xiσ, y2σ, . . . , ys−1σ, ys D j , ys+1τ, . . . , ynτ ].
The first term looks like the RHS of a (σ, τ )-twisted Jacobi-type identity, and in

the non-twisted case it is exactly a n-ary Filippov identity.
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Proposition 14.13 The following two identities are equivalent:

[[x1, . . . , xn], y2τ, . . . , ynτ ]
=

n∑

i=1

[x1σ, . . . , xi−1σ, [xi , y2, . . . , yn], xi+1τ, . . . , ynτ ], (14.11)

n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn
...

...

xi−1σ D1 . . . xi−1σ Dn

Ai1 . . . Ain

xi+1τ D1 . . . xi+1τ Dn
...

...

xnτ D1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (14.12)

where Ai j =
n∑

s=2

[xiσ, y2σ, . . . , ys−1σ, ys D j , ys+1τ, . . . , ynτ ].

The asymmetry between instances of σ and τ will appear at different points of the
argument on the sequel. Filippov’s argument is based on the following theorem,
featuring row-column substitutions on two given matrices.

Theorem 14.9 ([16], p. 576) Let A = (ai j ) and B = (bi j ) be two n × n matrices
with coefficients in A. Then

n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1n
...

...

ai−11 . . . ai−1n

bi1 . . . bin

ai+11 . . . ai+1n
...

...

an1 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

j=1

∣∣∣∣∣∣∣

a11 . . . a1 j−1 b1 j a1 j+1 . . . a1n
...

...
...

...
...

an1 . . . anj−1 bnj anj+1 . . . ann

∣∣∣∣∣∣∣
.

The proof to this result is a straightforward calculation: by taking minors on the i th
rows on the LHS and on the j th columns on the RHS, each bi j appears exactly once
accompanied by the same minor of matrix A on both sides.

This result is fundamental to Filippov’s proof. This translates into our work as
two separate study cases depending on whether or not it can be used.
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14.5.1 Concerning (σ, σ )-Derivations

First and foremost, consider the determinant (14.12). We transform it using elemen-
tary row properties of determinants to take the inner sum outside and obtain:

n∑

s=2
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn

.

.

.
.
.
.

xi−1σ D1 . . . xi−1σ Dn

[xi σ, y2σ, . . . , ys−1σ, ys D1, ys+1σ, . . . , ynσ ] . . . [xi σ, y2σ, . . . , ys−1σ, ys Dn, ys+1σ, . . . , ynσ ]
xi+1σ D1 . . . xi+1σ Dn

.

.

.
.
.
.

xnσ D1 . . . xnσ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

s=2
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn

.

.

.
.
.
.

xi−1σ D1 . . . xi−1σ Dn

Δi1 . . . Δin

xi+1σ D1 . . . xi+1σ Dn

.

.

.
.
.
.

xnσ D1 . . . xnσ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

s=2

Δs , where Δi j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi σ D1 . . . xi σ Dn

y2σ D1 . . . y2σ Dn

.

.

.
.
.
.

ys−1σ D1 . . . ys−1σ Dn

ys D1D j . . . ys Dn D j

ys+1σ D1 . . . ys+1σ Dn

.

.

.
.
.
.

ynσ D1 . . . ynσ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We expand the Δi j as n × n determinants for a better visualization of further steps.
Consider matrices A = (xiσ D j ) and B = (Δi j ). We apply Theorem 14.9 to A and
B:

Δs =
n∑

j=1

∣∣∣∣∣∣∣

x1σ D1 . . . x1σ D j−1 Δ1 j x1σ D j+1 . . . x1σ Dn
...

...
...

...
...

xnσ D1 . . . xnσ D j−1 Δnj xnσ D j+1 . . . xnσ Dn

∣∣∣∣∣∣∣
.

Expand now Δi j by minors using the row with ys ,

Δi j =
n∑

k=1

(−1)s+k ys Dk D j Mik,

where Mik is the following subdeterminant

Mik =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xiσ D1 . . . xiσ Dk−1 xiσ Dk+1 . . . xiσ Dn

y2σ D1 . . . y2σ Dk−1 y2σ Dk+1 . . . y2σ Dn
...

...
...

...

ys−1σ D1 . . . ys−1σ Dk−1 ys−1σ Dk+1 . . . ys−1σ Dn

ys+1σ D1 . . . ys+1σ Dk−1 ys+1σ Dk+1 . . . ys+1σ Dn
...

...
...

...

ynσ D1 . . . ynσ Dk−1 ynσ Dk+1 . . . ynσ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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The Δs can thus be expressed as

Δs =
n∑

j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ D j−1

n∑

k=1

(−1)s+k ys Dk D j M1k x1σ D j+1 . . . x1σ Dn

...
...

...
...

...

xnσ D1 . . . xnσ D j−1

n∑

k=1

(−1)s+k ys Dk D j Mnk xnσ D j+1 . . . xnσ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

j,k=1

(−1)s+k ys Dk D j

∣∣∣∣∣∣∣

x1σ D1 . . . x1σ D j−1 M1k x1σ D j+1 . . . x1σ Dn
...

...
...

...
...

xnσ D1 . . . xnσ D j−1 Mnk xnσ D j+1 . . . xnσ Dn

∣∣∣∣∣∣∣
.

Now we look again at the Mik : each of them has xiσ D j , j �= k in the first row. We
expand by minors using that row,

Mik = xiσ D1N1k − xiσ D2N2k + · · · + (−1)k−2xiσ Dk−1Nk−1k+
+(−1)k−1xiσ Dkk+1Nkk+1 + · · · + (−1)n−2xiσ Dn Nkn.

Here the Nk j , k �= j , represent the minor obtained after removing columns indexed
k and j from Δi j (or column j from Mik). Naturally, Nk j = N jk and thus we name
these coefficients with increasing subindices.

Remark 14.2 The Nk j do not depend on the xi .

Denote x (i) =
⎛

⎜⎝
xiσ D1

...

xiσ Dn

⎞

⎟⎠ and Mk =
⎛

⎜⎝
M1k
...

Mnk

⎞

⎟⎠. We can then express Mk as follows:

Mk = N1k x (1) + · · · + (−1)k−2Nk−1k x (k−1)

+(−1)k−1Nkk+1x (k+1) + · · · + (−1)n−2Nkn x (n).

It is a linear combination of the columns of Δs .

Δs =
n∑

j,k=1

ys Dk D j · (−1)s+k
∣∣x (1) . . . x ( j−1) Mk x ( j+1) . . . x (n)

∣∣ =

=
n∑

j,k=1

ys Dk D j · (−1)s+k
∣∣x (1) . . . x ( j−1)

(
N1k x (1) + · · · + (−1)k−2Nk−1k x (k−1)+

+ (−1)k−1Nkk+1x (k+1) + · · · + (−1)n−2Nkn x (n)
)
x ( j+1) . . . x (n)

∣∣

By elementary properties of determinants, the coefficient of ys D j D j , whichwe name
Δ′

j j , is 0.
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If j < k, we can rewrite the coefficient Δ′
k j of ys Dk D j using elementary column

manipulations to look like

(−1)s+k
∣∣x (1) . . . x ( j−1)

(
(−1) j−1N jk x ( j)

)
x ( j+1) . . . x (n)

∣∣

= (−1)s+k+ j+1N jk

∣∣x (1) . . . x (n)
∣∣

Conversely,

Δ′
jk = (−1)s+ j

∣∣x (1) . . . x (k−1)
(
(−1)k N jk x (k)

)
x (k+1) . . . x (n)

∣∣

= (−1)s+ j+k N jk

∣∣x (1) . . . x (n)
∣∣ .

Finally, since Dk D j = D j Dk , we have

ys Dk D j · Δ′
k j + ys D j Dk · Δ′

jk = ys Dk D j · (Δ′
k j + Δ′

jk) = 0

for all k �= j , and thus Δs = 0.

Theorem 14.10 Let A be a commutative associative algebra, D1, . . . , Dn pairwise
commuting (σ, σ )-derivations. The skew-symmetric product [x1, . . . , xn] = |xi D j |
endows the spaceAwith a n-Hom-Lie structure with twisting mapσ and the following
n-Hom-Jacobi identity:

[[x1, . . . , xn], y2σ, . . . , ynσ ] =
n∑

i=1

[x1σ, . . . , xi−1σ, [xi , y2, . . . , yn], xi+1σ, . . . , xnσ ].

14.5.2 When σ �= τ

We consider now the widest range of twisted derivation operators possible based on
arbitrary linear maps σ and τ . We examine commutation relations between them,
in the search to describe necessary conditions for certain regularity that generalizes
what we have seen in both Filippov’s proof and the previous case twisted by σ only.

Let each Di be a (σi , τi )-derivation of A. If we consider the adjoint action x �→
[x, y2, . . . , yn] once more we get

[x0x1, y2, . . . , yn] de f=
∣∣∣∣
(x0x1)D1 . . . (x0x1)Dn

yi D j

∣∣∣∣ =
∣∣∣∣
x0D1 · x1τ1 + x0σ1 · x1D1 . . . x0Dn · x1τn + x0σn · x1Dn

yi D j

∣∣∣∣ =
∣∣∣∣
x0D1 · x1τ1 . . . x0Dn · x1τn

yi D j

∣∣∣∣ +
∣∣∣∣
x0σ1 · x1D1 . . . x0σn · x1Dn

yi D j

∣∣∣∣ .
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This can split on a Leibniz-type rule if x1τi = x1τ j and x0σi = x0σ j for all i, j . This
limits the scope of our research significantly.

Proposition 14.14 The adjoint action x �→ [x, y2, . . . , yn] is a (σ, τ )-derivation on
A if all Di have the same twisting maps.

14.5.3 With Equal Commutation Relations

On this section all Di are considered to be (σ, τ )-derivations verifying the following
commutation relations:

Diσ = σ Di · λi , Diτ = τ Di · λi , Di Dk = Dk Di · λk if i < k

for some invertible elements λi ∈ A. Observe that Dk Di = Di Dk · λ−1
k for i > k.

We use these commutation relations to rewrite the n-ary generalized Leibniz rule for
[x1, . . . , xn]D j in the following way:

[x1, . . . , xn]D j =

n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 · λ1 . . . x1σ D j−1 · λ j−1 x1σ D j · λ j x1σ D j+1 · λ j+1 . . . x1σ Dn · λn
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xi−1σ D1 · λ1 . . . xi−1σ D j−1 · λ j−1 xi−1σ D j · λ j xi−1σ D j+1 · λ j+1 . . . xi−1σ Dn · λn

xi D j D1 · λ1 . . . xi D j D j−1 · λ j−1 xi D j D j xi D j D j+1 · λ−1
j+1 . . . xi D j Dn · λ−1

n

xi+1τ D1 · λ1 . . . xi+1τ D j−1 · λ j−1 xi+1τ D j · λ j xi+1τ D j+1 · λ j+1 . . . xi+1τ Dn · λn
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xnτ D1 · λ1 . . . xnτ D j−1 · λ j−1 xnτ D j · λ j xnτ D j+1 · λ j+1 . . . xnτ Dn · λn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(14.13)
Note that the elements xi D j Dk are multiplied by λ−1

k when j < k.

Definition 14.11 Consider I and J to be partitions of {1, . . . , n}, |I | = u, |I | +
|J | = n. We call by u-Jacobian the following operator

| · |(J ) : Au → A, xI1 , . . . , xIu �→ |xi D j | j /∈J
i∈I .

We refer to each determinant in the sum (14.13) as Δi j . Using u−Jacobian notation,
we can open them as follows:

Δi j =
j−1∑

k=1

xi D j Dkλk(−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)
∏

s �=k

λs

+ xi D j D j (−1)i+ j · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ]( j)
∏

s �= j

λs

+
n∑

k= j+1

xi D j Dkλ
−1
k (−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)

∏

s �=k

λs .
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Note that
∏

λs is in all cases a single element of A and thus included within each
term of the corresponding sum. We can pile up the λs together with λk on the first
j − 1 terms, thus obtaining

Δi j =
j−1∑

k=1

xi D j Dk(−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)

n∏

s=1

λs

+ xi D j D j (−1)i+ j · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ]( j)
∏

s �= j

λs

+
n∑

k= j+1

xi D j Dk · λ−1
k (−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)

∏

s �=k

λs .

This is, in general, pretty far away from a proper n-ary twisted Leibniz rule. If all λs

are invertible, we can rewrite each Δi j a bit further.

Δi j =
j−1∑

k=1

xi D j Dk(−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)
n∏

s=1

λs

+ xi D j D j (−1)i+ j · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ]( j)

⎛

⎝
∏

s �= j

λs −
n∏

s=1

λs +
n∏

s=1

λs

⎞

⎠

+
n∑

k= j+1

xi D j Dk(−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)(λ−1
k − λk + λk)

∏

s �=k

λs

=
n∑

k=1

xi D j Dk(−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)
n∏

s=1

λs

+ xi D j D j (−1)i+ j · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ]( j)

⎛

⎝
∏

s �= j

λs −
n∏

s=1

λs

⎞

⎠

+
n∑

k= j+1

xi D j Dk(−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)

⎛

⎝(λ−1
k − λk)

∏

s �=k

λs

⎞

⎠

= [x1σ, . . . , xi−1σ, xi D j , xi+1τ, . . . , xnτ ]
n∏

s=1

λs

+ xi D j D j (−1)i+ j · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ]( j)

⎛

⎝
∏

s �= j

λs −
n∏

s=1

λs

⎞

⎠

+
n∑

k= j+1

xi D j Dk(−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)

⎛

⎝(λ−1
k − λk)

∏

s �=k

λs

⎞

⎠

= [x1σ, . . . , xi−1σ, xi D j , xi+1τ, . . . , xnτ ]
n∏

s=1

λs + Ri j1 + Rik2,
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where Ri j1 and Rik2 represents the second and third sums in this expansion.

If λs = 1 for all s, then Ri j1 = 0, Rik2 = 0 and
n∏

s=1

λs = 1. Hence,

[x1, . . . , xn]D j =
n∑

i=1

Δi j =
n∑

i=1

[x1σ, . . . , xi−1σ, xi D j , xi+1τ, . . . , xnτ ].

Theorem 14.11 Let A be a commutative associative algebra, σ, τ two linear maps,
Ds, s ∈ {1, . . . , n} pairwise commuting (σ, τ )-derivations that commute with σ and
τ . Then each Ds is a (σ, τ )-derivation with respect to the Jacobian product, with the
following Leibniz-type rule

[x1, . . . , xn]D j =
n∑

i=1

Δi j =
n∑

i=1

[x1σ, . . . , xi−1σ, xi D j , xi+1τ, . . . , xnτ ].

Under softer commutation rules, we obtain Leibniz-type rules weighted by a product
of commutation factors and deformed by an extra term that is quadratic in D j :

(i) If λk = −1 for all k �= j , then Rik2 = 0. Also,
∏

s �= j

λs −
n∏

s=1

λs = 2(−1)n−1 and

then

[x1, . . . , xn]D j =
n∑

i=1

[x1σ, . . . , xi−1σ, xi D j , xi+1τ, . . . , xnτ ] · (−1)n−1

+ xi D j D j [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ]( j) · 2(−1)i+ j+n−1.

(ii) More generally, if λk = −1 for all k > j we have

[x1, . . . , xn]D j =
n∑

i=1

[x1σ, . . . , xi−1σ, xi D j , xi+1τ, . . . , xnτ ] · (−1)n− j
j−1∏

s=1

λs

+ xi D j D j [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ]( j) · 2(−1)i+ j+n−1.

Note that these apply for each D j . This naive approach is very limited in terms of
the commutation relations considered.

14.5.4 More General Commutation Relations

The commutation factor between the Ds may (and in general, is expected to) be
different from the λs . We call γ jk to such elements of A verifying Dk D j = D j Dk ·
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γ jk , no restrictions on j, k. Each [x1, . . . , xn]D j expands into the sumof determinants
below:

[x1, . . . , xn]D j =

n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1λ1 . . . x1σ D j−1λ j−1 x1σ D jλ j x1σ D j+1λ j+1 . . . x1σ Dnλn
...

...
...

...
...

xi−1σ D1λ1 . . . xi−1σ D j−1λ j−1 xi−1σ D jλ j xi−1σ D j+1λ j+1 . . . xi−1σ Dnλn

xi D j D1γ j1 . . . xi D j D j−1γ j j−1 xi D j D j xi D j D jγ j j+1 . . . xi D j Dnγ jn

xi+1τ D1λ1 . . . xi+1τ D j−1λ j−1 xi+1τ D jλ j xi+1τ D j+1λ j+1 . . . xi+1τ Dnλn
...

...
...

...
...

xnτ D1λ1 . . . xnτ D j−1λ j−1 xnτ D jλ j xnτ D j+1λ j+1 . . . xnτ Dnλn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that position j j of thismatrix is the only elementwithout amultiplying constant.
This is due to D j commuting with itself, that is, γ j j = 1.

The Leibniz-type rule of the Ds is affected in the following way:

Δi j =
n∑

k=1

xi D j Dk(−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)

⎛

⎝γ jk

∏

s �=k

λs

⎞

⎠

where the term in D j D j is absorbed into the sum since γ j j = 1.
The first term now cannot be expressed as an n-Jacobian because the constants

Γ jk = γ jk

∏

s �=k

λs vary with k. If all n of them are the same constant, which we name

Γ j , then this can be expressed in the form of an n-Jacobian.

For each γ jk that is invertible, we can rewrite this restraint as
∏

s �=k

λs = Γ jkγ
−1
jk .

Lemma 14.5 (Particular n-ary Leibniz-type rule for D j ) If Γ j is independent of k,
then

[x1, . . . , xn]D j =
n∑

i=1

Δi j = Γ j ·
n∑

i=1

[x1σ, . . . , xi−1σ, xi D j , xi+1τ, . . . , xnτ ].

Remark 14.3 If Γ jk are not independent of k, then

[x1, . . . , xn]D j

=
n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ D j−1 x1σ D j x1σ D j+1 . . . x1σ Dn
...

...
...

...
...

xi−1σ D1 . . . xi−1σ D j−1 xi−1σ D j xi−1σ D j+1 . . . xi−1σ Dn
xi D j D1Γ j1 . . . xi D j D j−1Γ j j−1 xi D j D j Γ j j xi D j D j Γ j j+1 . . . xi D j DnΓ jn

xi+1τ D1 . . . xi+1τ D j−1 xi+1τ D j xi+1τ D j+1 . . . xi+1τ Dn
...

...
...

...
...

xnτ D1 . . . xnτ D j−1 xnτ D j xnτ D j+1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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or expressed in the form of a sum of (n − 1)-Jacobians,

[x1, . . . , xn]D j =
n∑

i,k=1

xi D j Dk(−1)i+k · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ](k)Γ jk .

The condition that Γ j is independent of k relates the λs and the γ jk very tightly. If
we look at Γ j , we have

γ jk

∏

s �=k

λs
de f=

∏

s �= j

λs,

since γ j j = 1. This has the following important implication:

γ jkλ j

∏

s �=k, j

λs = λk

∏

s �=k, j

λs ⇒ (γ jkλ j − λk)
∏

s �=k, j

λs = 0.

Provided that A is a domain and λ j is invertible, we have γ jkλ j = λk ⇒ γ jk =
λkλ

−1
j .

If we consider l �= j, k, then

γ jk

∏

s �=k

λs = Γ j = γ jl

∏

s �=l

λs,

γ jkλl

∏

s �=k,l

λs = γ jlλk

∏

s �=k,l

λs ⇒ (γ jkλl − γ jlλk)
∏

s �=k,l

λs = 0.

If A is a domain, γ jkλl = γ jlλk . If γ jl and λl are invertible, γ jkγ
−1
jl = λkλ

−1
l .

This is a very strong connection between σ , τ and the Ds in terms of commutation
relations.

Proposition 14.15 LetAbe a commutative associative algebra,λi ∈ A,σ and τ two
linear maps, D1, . . . , Dn pairwise different (σ, τ )-derivations of A such that Diσ =
σ Di · λi and Diτ = τ Di · λi for all i and Dk D j = D j Dk · γ jk , where γ jkλ j = λk

for k �= j .
Each D j is a generalized (σ, τ )-derivation with respect to the Jacobian, with the

following Leibniz-type rule:

[x1, . . . , xn]D j = Γ j ·
n∑

i=1

[x1σ, . . . , xi−1σ, xi D j , xi+1τ, . . . , xnτ ],

where Γ j =
∏

s �= j

λs .

The possibility can be considered where all Ds have the same Leibniz-type rule with
the same weight Γ j . Say Γ j = Γ for some constant Γ . In this case:
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(i)
∏

s �= j

λs =
∏

s �=k

λs for all k �= j,

(ii) γ jk

∏

s �=k

λs = γlk

∏

s �=k

λs for all l �= j.

The first condition implies (λk − λ j )
∏

s �= j,k

λs = 0, and if A is a domain, λk = λ j .

The second condition implies (γ jk − γlk)
∏

s �=k

λs = 0, and ifA is a domain, γ jk = γlk .

Immediately,γ jk = γkk = 1, k �= j.That is, all the Ds commutewith D j . This applies
for all j , thus all the Ds commute. Denote by λ the commutation factor between σ

and any Di . We have Γ = λn−1. Consider now the first case where Γ j does not
depend on k and is invertible. Then, we can take one term out from the Leibniz-type
rule sum and obtain the following expansions:

[x1D j , x2τ, . . . , xnτ ]
= Γ −1

j [x1, . . . , xn]D j −
n∑

i=2

[x1σ, . . . , xi−1σ, xi D j , xi+1τ, . . . , xnτ ],

[xi D j , y2τ, . . . , ynτ ]
= Γ −1

j [xi , y2 . . . , yn]D j −
n∑

s=2

[xiσ, y2σ . . . , ys−1σ, ys D j , ys+1τ, . . . , ynτ ].

We search for Jacobi-like identities and conditions for those to hold on as general a
setting as possible:

[[x1, . . . , xn], y2τ, . . . , ynτ ] = [|xi D j |, y2τ, . . . , ynτ ]

=
n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣

x1D1σ . . . x1Dnσ
...

...

[xi D1, y2τ, . . . , ynτ ] . . . [xi Dn, y2τ, . . . , ynτ ]
...

...

xn D1τ . . . xn Dnτ

∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1λ1 . . . x1σ Dnλn
...

...

[xi D1, y2τ, . . . , ynτ ] . . . [xi Dn, y2τ, . . . , ynτ ]
...

...

xnτ D1λ1 . . . xnτ Dnλn

∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

i=1

n∑

j=1

[xi D j , y2τ, . . . , ynτ ](−1)i+ j · [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ]( j)Γ j .

With notation, extending Filippov’s notation,
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Mi j = [x1σ, . . . , xi−1σ, xi+1τ, . . . , xnτ ]( j) · Γ j ,

this equality becomes

[[x1, . . . , xn], y2τ, . . . , ynτ ] =
n∑

i, j=1

[xi D j , y2τ, . . . , ynτ ](−1)i+ j · Mi j .

Applying the previous expansion of [xi D j , y2τ, . . . , ynτ ] yields

[[x1, . . . , xn], y2τ, . . . , ynτ ] =
n∑

i, j=1

[xi , y2 . . . , yn]D j · (−1)i+ j Mi jΓ
−1
j

−
n∑

i, j=1

n∑

s=2

[xiσ, y2σ, . . . , ys−1σ, ys D j , ys+1τ . . . , ynτ ] · (−1)i+ j Mi j .

We name the expressions in the RHS as R1 and R2 respectively. Firstly, observe that
Γ −1

j cancels with the Γ j within each Mi j . Then R1 expands as

n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn

.

.

.
.
.
.

[xi , y2, . . . , yn]D1 . . . [xi , y2, . . . , yn]Dn

.

.

.
.
.
.

xnτ D1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

i=1

[x1σ, . . . , xi−1σ, [xi , y2, . . . , yn], xi+1τ, . . . , xnτ ].

Proposition 14.16 Let R2 be defined as above. If R2 = 0, then

[[x1, . . . , xn], y2τ, . . . , ynτ ] =
n∑

i=1

[x1σ, . . . , xi−1σ, [xi , y2, . . . , yn], xi+1τ, . . . , xnτ ].

Theorem 14.12 Let A be a commutative associative algebra, λi ∈ A, σ and τ two
linear maps, D1, . . . , Dn pairwise different (σ, τ )-derivations of A such that

Diσ = σ Di · λi , Diτ = τ Di · λi , where 1 ≤ i ≤ n,

Dk D j = D j Dkγ jk, where γ jkλ j = λk, k �= j.

Define the Jacobian | · | of n elements as [x1, . . . , xn] = |xi D j |. Also, let Γi =
∏

s �=i

λs

and R2 be the following sum of determinants:
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n∑

s=2
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1σ D1 . . . x1σ Dn

.

.

.
.
.
.

[xi σ, y2σ, ys−1σ, . . . , ys D1, ys+1τ, . . . , ynτ ] . . . [xi σ, y2σ, ys−1σ, . . . , ys Dn, ys+1τ . . . , ynτ ]
.
.
.

.

.

.

xnτ D1 . . . xnτ Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣

Γi .

If R2 = 0, then (A, | · |) has a structure of (σ, τ, n)-Hom-Lie algebra. The twisted
Jacobi identity is given for all x1, . . . , xn, y2, . . . , yn ∈ A by

[[x1, . . . , xn], y2τ, . . . , ynτ ] =
n∑

i=1

[x1σ, . . . , xi−1σ, [xi , y2, . . . , yn], xi+1τ, . . . , xnτ ].
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Chapter 15
An Application of Twisted Group Rings
in Secure Group Communications

Maria Dolores Gómez Olvera, Juan Antonio López-Ramos,
and Blas Torrecillas

Abstract In this paper we introduce a group key management protocol for secure
group communications in a non-commutative setting. To do so, we consider a group
ring over the dihedral group with a twisted multiplication using a cocycle. The
protocol is appropriate for the so-called post-quantum era and it is shown that
the security of the initial key agreement is equivalent to the protocol given for just
two communication parties, i.e., there is no information leakage as the number of
users grows. Moreover we show that further rekeying messages provide forward and
backward security, that means that no former or future user in a communication
group can get information on previous or new future keys.

Keywords Secure communications · Group key management · Twisted group ring
MSC 2020 94A60 · 68P25

15.1 Introduction

In recent years, new hard problems have been proposed in public key cryptography,
since those that we are using might be not secure soon. When two parties want to
communicate through an insecure channel, they need to do a key agreement, which
consist on agreeing on a secret shared key by exchanging information that does not
compromise the common key.

The first widely used protocol that allows this to happen was proposed in 1976
by Diffie and Hellman [2], and works as follows:
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Let two users, Alice and Bob, who want to agree on a common key through an insecure
channel. Let p a prime number, Z

∗
p the multiplicative group of integers modulo p, and g a

primitive root modulo p public.

(i) Alice chooses a secret integer a, and sends Bob pA = ga(mod p).

(ii) Bob chooses a secret integer b, and sends Alice pB = gb(mod p).

(iii) Alice computes paB(mod p), and Bob computes pbA(mod p), so both obtain the same
value, which is the secret shared key K = gab(mod p).

Information shared does not compromise the shared key since the underlying
problem an attacker would need to solve, the so-called Discrete Logarithm Problem
(DLP) is believed to be hard. This key agreement can be seen as an example of this
generalization by Maze et al. [9]:

Let S be a finite set, G an abelian semigroup, φ a G−action on S, and a public element
s ∈ S.

(i) Alice chooses a ∈ G, and sends Bob pA = φ(a, s).

(ii) Bob chooses b ∈ G, and sends Alice pB = φ(b, s).

(iii) Alice computes φ(a, pB), and Bob computes φ(b, pA), so both obtain the secret shared
key K = φ(a, φ(b, s)) = φ(b, φ(a, s)).

whose underlying problem is called the Semigroup Action Problem (SAP).

Semigroup Action Problem. Given a semigroup action φ of the group G on a set S and
elements x ∈ S and y ∈ G, find g ∈ G such that φ(g, x) = y.

In the context of SAP, we proposed in [4] a new setting, and some protocols. In
our case, the platform is a twisted group ring, a new proposal in the context of group
rings, that have also been recently used in cryptography in works like [3, 5–7]. And
the action proposed is the two-sided multiplication in a twisted group ring, so the
problem is a variation in the twisted case of the so-called Decomposition Problem
(DP), which is a generalization of the Conjugate Search Problem (CSP).

Decomposition Problem. Given a group G, (x, y) ∈ G × G and S ⊂ G, the problem is to
find z1, z2 ∈ S such that y = z1xz2.

A natural extension is how to extend this kind of schemes to more than two users.
In the classic Diffie-Hellman protocol, a solution is proposed in [10]. And in the
more case of SAP, this solution can be found in [8]. In both cases, it is shown that
the extra information shared in the case of a n users key exchange does not imply
information leakage for an attacker compared to the 2-users case.

Our aim in this work is to show that in our setting, that differs from those above
given the non-commutativity of twisted group rings, and which could work better
against problems that threat current communications, this is also true: the extra
information shared between n users does not imply information leakage, so if the
2-users key exchange is computationally secure, then the extension to n users is also
secure.
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15.2 Algebraic Setting

In this section, twisted group rings are defined, and we also show some properties
that make the key exchange possible.

Definition 15.1 Let K be a ring, G be a multiplicative group, and α be a cocycle in
U (K ), the units of K . The group ring K αG is defined to be the set of all finite sums
of the form ∑

gi∈G
ri gi ,

where ri ∈ K and all but a finite number of ri are zero.

The sum of two elements in K αG is given by

⎛

⎝
∑

gi∈G
ri gi

⎞

⎠ +
⎛

⎝
∑

gi∈G
si gi

⎞

⎠ =
∑

gi∈G
(ri + si )gi .

The multiplication, which is twisted by a cocycle, is given by

⎛

⎝
∑

gi∈G
ri gi

⎞

⎠ ·
⎛

⎝
∑

gi∈G
si gi

⎞

⎠ =
∑

gi∈G

⎛

⎝
∑

g j gk=gi

r j sk α(g j , gk)

⎞

⎠ gi .

As an example, consider the finite field K , a primitive element t , and the dihedral
group of 2m elements, D2m =< x, y : xm = y2 = 1, yxa = xm−a y >. The group
ring R = K αD2m , where α is

α : D2m × D2m → K ∗

with α(xi , x j yk) = 1 and α(xi y, x j yk) = t j i, j = 1, . . . , 2m − 1, is a twisted
group ring.

Now we establish some useful properties that will allow us to make our key
exchange possible.

Definition 15.2 Let R = K αD2m , where t is the primitive root of unity that generates
K and α is the cocycle defined above. Given h ∈ R,

h =
∑

0≤i≤m−1
k=0,1

ri x
i yk,



384 M. D. Gómez Olvera et al.

where ri ∈ K and x, y ∈ D2m . We define h∗ ∈ K αD2m :

h∗ =
∑

0≤i≤m−1
k=0,1

ri t
−i x i yk,

where ri ∈ K and x, y ∈ Dm .

Note that R = K αD2m can be written as vector space as

R = R1 ⊕ R2,

where R1 = KCm and R2 = K αCm y, and Cm is a cyclic group of order m. In this
context, we can define A j ≤ R j as

A j =
{ m−1∑

i=0

ri x
i yk ∈ R j : ri = rm−i

}
.

where j = 1, 2.

Proposition 15.1 Given h1, h2 ∈ R,

• If h1, h2 ∈ R1, then h1h2 = h2h1;
• If h1, h2 ∈ A2, then h1h∗

2 = h2h∗
1, and h∗

1h2 = h∗
2h1;• If h1 ∈ A1, h2 ∈ A2, then h1h2 = h2h∗

1.

A proof of this proposition can be found in [4].

15.3 Key Management over Twisted Group Rings

In this section, we explain the protocols proposed in [4], over the twisted group ring
R = K αD2m defined above.

Let h ∈ R be a random public element. The key exchange between two users,
Alice and Bob, is as follows:

(i) Alice selects a secret pair sA = (g1, k1), where g1 ∈ R1, k1 ∈ A2 ≤ R2.
(iii) Bob selects a secret pair sB = (g2, k2), where g2 ∈ R1, k2 ∈ A2 ≤ R2.
(iii) Alice sends Bob pA = g1hk1, and Bob sends Alice pB = g2hk2.
(iv) Alice computes KA = g1 pBk∗

1 , and Bob computes KB = g2 pAk∗
2 , and they get

the same secret shared key.

This protocol works, it was shown in [4]. Let the underlying decisional problem
be the following:

Let R = K αD2m = R1 ⊕ R2, A2 ≤ R2, given (h, g1hk1, g2hk2, r1hr2), decide whether
(r1, r2) = (g2g1, k1k∗

2 ) or not, where h ∈ R, gi , r1 ∈ R1, ki ∈ A2, r2 ∈ A1.
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It means that if someone breaks this problem, then the key exchange above can
also be broken.

To define the general protocol for n users, let us define the action φ : (R1 × A2) ×
R −→ R,

φ(si , h) = gihki

where si = (gi , ki ). Note that

φ(siφ(s j , h)) = φ(si s j , h)

We will sometimes write φ(si s j , h) to refer to φ(si , φ(s j , h)), to make some defini-
tions more readable.

Let h ∈ R be a random public element, and h ∈ R = R1 ⊕ R2, described before.
For i = 1, . . . , n, userUi has a secret pair si = (gi , ki ), where gi ∈ R1 and ki ∈ A2 ≤
R2. Let φ(si , h) = gihki , 2-sided multiplication. We will denote s∗

i = (gi , k∗
i ). The

key establishment for n is as follows:

(i) For i = 1, . . . , n, user Ui sends to user Ui+1 the message

{C1
i ,C

2
i , . . . ,C

i+1
i },

where C1
1 = h, C2

1 = g1hk1 and

• for i > 1 even,C j
i =φ(si ,C

j
i−1), when j < i ,Ci

i = Ci
i−1,C

i+1
i = φ(s∗

i ,C
i
i−1),

• for i > 1 odd,C j
i =φ(s∗

i ,C
j
i−1), when j < i ,Ci

i = Ci
i−1,C

i+1
i = φ(si ,Ci

i−1).

(ii) User Un computes φ(sn,Cn
n−1) if n is odd and φ(s∗

n ,C
n
n−1) if n is even.

(iii) User Un broadcasts

{C1
n ,C

2
n , . . . ,C

n
n }.

(iv) User Ui computes φ(si ,Ci
n) if n is odd or φ(s∗

i ,C
i
n) if n is even, and gets the

shared key.

This protocol allows all users to obtain a common shared key, as shown in Propo-
sition 3 of [4]. In this case, the underlying decisional problem is the following:

• (n even) Let R = K αD2m = R1 ⊕ R2, A2 ≤ R2, given r1hr2, and

{
φ(si1s

∗
i2si3 . . . s∗

im−2
sim−1s

∗
im , h) : {i1, . . . , im} � {1, . . . , n},m ∈ {1, . . . , n − 1}}

decidewhether (r1, r2) = (g1g2g3 . . . gn−1gn, k1k∗
2k3 . . . kn−1k∗

n)or not,where h ∈
R, gi , r1 ∈ R1, ki ∈ A2, r2 ∈ A1.

• (n odd) Let R = K αD2m = R1 ⊕ R2, A2 ≤ R2, given r1hr2, and

{
φ(si1s

∗
i2si3 . . . sim−2s

∗
im−1

sim , h) : {i1, . . . , im} � {1, . . . , n},m ∈ {1, . . . , n − 1}}
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decidewhether (r1, r2) = (g1g2g3 . . . gn−1gn, k1k∗
2k3 . . . k∗

n−1kn)or not, where h ∈
R, gi , r1 ∈ R1, ki , r2 ∈ A2.

We have described the so-called Initial Key Agreement (IKA), but another impor-
tant process in group communication is key refreshment through the Auxiliary Key
Agreement (AKA), which takes advantage of the information that was sent before to
create a new key in a group when necessary, and is more computationally efficient
than IKA. There exist three situations: the members of the group stay the same, a
member leaves the group, or someone new joins it.

In the first situation, very user Ui has the information Ci
n received from the user

Un . The rekeying process can be carried out by any of them. We call this user Uc.
He chooses a new element s̃c = (g̃c, k̃c), where g̃c ∈ R1 and k̃c ∈ A2. If n is odd, he
changes his private key to s̃c∗sc and broadcasts the message

{φ(s̃c
∗,C1

n), φ(s̃c
∗,C2

n ), . . . , φ(s̃c
∗,Cc−1

n ),Cc
n, φ(s̃c

∗,Cc+1
n ), . . . , φ(s̃c

∗,Cn
n )}.

If n is even, he changes his private key to s̃cs∗
c and broadcasts the message

{φ(s̃c,C
1
n), φ(s̃c,C

2
n ), . . . , φ(s̃c,C

c−1
n ),Cc

n, φ(s̃c,C
c+1
n ), . . . , φ(s̃c,C

n
n )}.

Then every user recovers the common key using the private key si if n is even, and
s∗
i if n is odd. A proof can be found in [4].
In the second case, when some user leaves the group, the corresponding position

in the rekeying message is omitted.
In the last case, when a new user Un+1 joins the group, if n is odd, then Uc adds

the element φ(s̃c,Cn
n ) and sends the following to the new user:

{φ(s̃c,C
1
n ), φ(s̃c,C

2
n ), . . . , φ(s̃c,C

c−1
n ),Cc

n, φ(s̃c,C
c+1
n ), . . . , φ(s̃c,C

n−1
n ), φ(s̃c,C

n
n )}.

If n is even, Uc adds the element φ(s̃c∗,Cn
n ) and sends to Un+1 the following:

{φ(s̃c∗,C1
n ), φ(s̃c∗,C2

n ), . . . , φ(s̃c∗,Cc−1
n ),Cc

n, φ(s̃c∗,Cc+1
n ), . . . , φ(s̃c∗,Cn−1

n ), φ(s̃c∗,Cn
n )}.

Finally, userUn+1 proceeds to step 3 of the group key protocol and sends the other
users the information to obtain the shared key using their private keys.

15.4 Secure Group Key Management

In this section, we show that the extra information sent in the protocol of n users does
not implies additional information leakage for an attacker respect to the 2-users case.
For this purpose, we define the following random variables, choosing X randomly
from (R1 × A2)

n:

An =
(
view(n, X), y

)
, for y ∈ R randomly chosen.
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Dn =
⎧
⎨

⎩

(
view(n, X), φ(s∗

n sn−1s∗
n−2 . . . s3s∗

2 s1, h), h)
)
, if n is even.(

view(n, X), φ(sns∗
n−1sn−2 . . . s3s∗

2 s1, h)
)
, if n is odd.

where

• view(n, X) := the ordered set of all φ(si1s
∗
i2
si3 . . . s∗

m−2sm−1s∗
m, h), for all proper

subsets {i1, . . . , im} of {1, . . . , n}; m ∈ {1, . . . , n − 1}.
when n is even, and

• view(n, X) := the ordered set of all φ(si1s
∗
i2
si3 . . . sm−2s∗

m−1sm, h), for all proper
subsets {i1, . . . , im} of {1, . . . , n}; m ∈ {1, . . . , n − 1}.

when n is odd.
Also note that φ(s∗

n sn−1s∗
n−2 . . . s3s∗

2 s1, h), h), or φ(sns∗
n−1sn−2 . . . s3s∗

2 s1, h), is
the common secret key, is case n is even or odd respectively.

Let the relation ∼ be polynomial indistinguishability, as defined in [10]. In this
context, it means that no polynomial-time algorithm can distinguish between a key
and a random value with probability significantly greater than 1

2 .

Proposition 15.2 The relation ∼ is an equivalence relation.

A proof of this proposition can be found in [1]. Before we prove the main result,
let us show that.

Lemma 15.1 We can write view(n, {s1, s2} ∪ X), with X = {s3, . . . , sn} as a per-
mutation of

V =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {s∗
2 s1} ∪ X)

)

when n is even, and as a permutation of

V =
(
view(n − 1, {s1} ∪ X), φ(s∗

n sn−1s∗
n−2 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(s∗
n sn−1 . . . s∗

3 s1, h), view(n − 1, {s1s∗
2 } ∪ X)

)

when n is odd.

Proof Now we show that both sets are equal. First, we prove that view(n, {s1, s2} ∪
X) ⊂ V : Let an element a ∈ view(n, {s1, s2} ∪ X):

• If n is even:

(i) If a contains s∗
2 s1(= s∗

1 s2), then it belongs to view(n − 1, {s∗
2 s1} ∪ X) ⊂ V .

(ii) If a does not contain s1 (or s∗
1 ),

– but it contains all the remaining elements, s(∗)
2 , . . . , s(∗)

n , then it belongs to
φ(sns∗

n−1 . . . s∗
3 s2, h) ⊂ V .

– and if it does not contain all the remaining elements, then it belongs to
view(n − 1, {s2} ∪ X) ⊂ V .
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(iii) If a does not contain s2 (or s∗
2 ),

– but it contains all the remaining elements, s(∗)
1 , s(∗)

3 , . . . , s(∗)
n , then it belongs

to φ(sns∗
n−1 . . . s∗

3 s1, h) ⊂ V .
– and if it does not contain all the remaining elements, then it belongs to

view(n − 1, {s1} ∪ X) ⊂ V .

(iv) Finally, if a does not contain s1 neither s2, it belongs to any of the following
view(n − 1, {s1} ∪ X), view(n − 1, {s2} ∪ X), view(n − 1, {s1s∗

2 } ⊂ V .

• If n is odd:

(i) If a contains s∗
2 s1(= s∗

1 s2), then it belongs to view(n − 1, {s∗
2 s1} ∪ X) ⊂ V .

(ii) If a does not contain s1 (or s∗
1 ),

– but it contains all the remaining elements, s(∗)
2 , . . . , s(∗)

n , then it belongs to
φ(s∗

n sn−1 . . . s∗
3 s2, h) ⊂ V .

– and if it does not contain all the remaining elements, then it belongs to
view(n − 1, {s2} ∪ X) ⊂ V .

(iii) If a does not contain s2 (or s∗
2 ),

– but it contains all the remaining elements, s(∗)
1 , s(∗)

3 , . . . , s(∗)
n , then it belongs

to φ(s∗
n sn−1 . . . s∗

3 s1, h) ⊂ V .
– and if it does not contain all the remaining elements, then it belongs to

view(n − 1, {s1} ∪ X) ⊂ V .

(iv) Finally, if a does not contain s1 neither s2, it belongs to any of the following
view(n − 1, {s1} ∪ X), view(n − 1, {s2} ∪ X), view(n − 1, {s1s∗

2 } ⊂ V .

The reverse inclusion, V ⊂ view(n, {s1, s2}) is true since all the elements in V belong
to

view(n, {s1, s2} ∪ X)

by definition.

Let us finally prove, following the idea of [10], that if the 2-users underlying
decisional problem is hard, then the n-users is hard as well, or equivalently:

Theorem 15.1 For any n > 2, A2 ∼ D2 implies that An ∼ Dn.

Proof We show this is true by induction on n. Assume that A2 ∼ D2 and Ai ∼ Di ,
i ∈ {3, . . . , n − 1}. Thus, we have to show that An ∼ Dn . We define the random
variables Bn,Cn , and show that An ∼ Bn ∼ Cn ∼ Dn , and since ∼ is a equivalence
relation, by transitivity, this implies that An ∼ Dn .

We split the proof in two cases:

(a) Assume n is even:
We redefine An, Dn using Lemma 15.1, and define Bn,Cn as follows:
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• An =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {s∗
2 s1} ∪ X), y

)

• Bn =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), y
)

• Cn =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), φ(s∗
n sn−1 . . . s∗

4 s3c, h)
)

• Dn =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗n−1sn−2 . . . s∗3 s1, h), view(n − 1, {s∗2 s1} ∪ X), φ(s∗n sn−1 . . . s∗4 s3s∗2 s1, h)
)

choosing s1, s2 ∈ R1 × A2, c ∈ R1 × A1; and X ∈ (R1 × A2)
n−2, y ∈ R1hA1

randomly. Note that only the last two components vary.

A2 ∼ D2 =⇒ An ∼ Bn

Suppose, for the sake of contradiction, that an adversary Eve distinguishes An

and Bn . We produce an instance of An � Bn for Eve

An =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {s∗
2 s1} ∪ X), y

)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n

, gngn−1 . . . g3g1hk1k∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k∗

3 . . . k∗
n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . k∗

n−1kn,

g2g1hk1k∗
2 , . . . , gn−1gn−2 . . . g3(g2g1)h(k1k∗

2)k3 . . . k∗
n−2kn−1, y

)

Bn =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), y
)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n ,

gngn−1 . . . g3g1hk1k∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k∗

3 . . . k∗
n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . k∗

n−1kn,

c1hc2, . . . , gn−1gn−2 . . . g3(c1)h(c2)k3 . . . k∗
n−2kn−1, y

)
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if Eve distinguishes An and Bn , then in particular, she distinguishes g2g1hk1k∗
2

from c1hc2 (given g1hk1 and g2hk2), which means that she distinguishes

A2 =
(
view(2, {s1, s2}), y

)

=
(
g1hk1, g2hk2, y

)

D2 =
(
view(2, {s1, s2}), φ(s∗

2 s1, h)
)

=
(
g1hk1, g2hk2, g2g1hk1k∗

2

)

which contradicts our hypothesis.

An−2 ∼ Dn−2 =⇒ Bn ∼ Cn

Suppose towards the sake of contradiction that an adversary Eve distinguishes
Bn and Cn . We produce and instance of Bn � Cn for Eve

Bn =
(
view(n − 1, {s1} ∪ X), φ(s∗

n sn−1 . . . s∗
3 s2, h), view(n − 1, {s2} ∪ X),

φ(s∗
n sn−1 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), y
)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n ,

gngn−1 . . . g3g1hk1k∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k∗

3 . . . k∗
n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . k∗

n−1kn,

c1hc2, . . . , gn−1 . . . g5g4(g3c1)h(c2k3)k∗
4 k5 . . . kn−2k∗

n−1, y
)

Cn =
(
view(n − 1, {s1} ∪ X), φ(s∗

n sn−1 . . . s∗
3 s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), φ(sns∗
n−1 . . . s5s∗

4 s3c, h)
)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n ,

gngn−1 . . . g3g1hk1k∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k∗

3 . . . k∗
n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . k∗

n−1kn,
c1hc2, . . . , gn−1 . . . g5g4(g3c1)h(c2k3)k∗

4 k5 . . . kn−2k∗
n−1,

gn . . . g4(g3c1)h(c2k3)k∗
4 k5 . . . kn

)

if Eve distinguishes Bn andCn in polynomial time, in particular, she distinguishes
y and φ(s∗

n sn−1 . . . s∗
4 (s3c), h) (given view(n − 1, {c} ∪ X)). Let

(
(view(n − 2, {cs3, s4, s5, . . . , sn−1, sn}), y

)

be an instance of An−2, Dn−2:
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An−2 =
(
(view(n − 2, {s3c, s4, s5, . . . , sn−1, sn}), y

)

=
(
(g3c1)h(c2k3), g4hk4, . . . , gnhkn, g4(g3c1)h(c2k3)k∗

4 . . . ,

gn(g3c1)h(c2k3)k∗
n , g5g4(g3c1)h(c2k3)k∗

4k5, . . . ,

gngn−1 . . . g4g3hk3k∗
4 . . . kn−1kn, y

)

Dn−2 =
(
view(n − 2, {s3c, s4, s5, . . . , sn−1, sn}), φ(s∗

n sn−1 . . . s∗
4 (s3c), h)

)

=
(
(g3c1)h(c2k3), g4hk4, . . . , gnhkn, g4(g3c1)h(c2k3)k∗

4 . . . ,

gn(g3c1)h(c2k3)k∗
n , g5g4(g3c1)h(c2k3)k∗

4k5, . . . ,

gngn−1 . . . g5g4hk4k∗
5 . . . kn−1kn, gngn−1 . . . g4(g3c1)h(c2k3)k∗

4 . . . kn−1kn
)

since Eve can distinguish y and φ(s∗
n sn−1 . . . s∗

4 (s3c), h) given view(n − 1, {c} ∪
X), then in particular she distinguishes y and φ(s∗

n sn−1 . . . s∗
4 (s3c), h) given

view(n − 2, {s3c, s4, s5, . . . , sn−1, sn}) ⊂ view(n − 1, {c} ∪ X),

and this means An−2 � Dn−2, but this contradicts our hypothesis.

A2 ∼ D2 =⇒ Cn ∼ Dn

Suppose, for the sake of contradiction, that an adversary Eve distinguishes Cn

and Dn . We produce and instance of Cn � Dn for Eve

Cn =
(
view(n − 1, {s1} ∪ X), φ(sns∗n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗n−1sn−2 . . . s∗3 s1, h), view(n − 1, {c} ∪ X), φ(s∗n sn−1 . . . s∗4 s3c, h)
)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k

∗
4 . . . kn−1k

∗
n ,

gngn−1 . . . g3g1hk1k
∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k

∗
3 . . . k∗

n−2kn−1,

gngn−1 . . . g3g2hk1k
∗
2k4 . . . k∗

n−1kn,
c1hc2, . . . , gn−1gn−2 . . . g3c1hc2k3 . . . k∗

n−2kn−1,

gngn−1 . . . g4g3c1hc2k3k
∗
4 . . . kn−1kn

)

Dn =
(
view(n − 1, {s1} ∪ X), K (n − 1, {s1} ∪ X), view(n − 1, {s2} ∪ X),

K (n − 1, {s2} ∪ X), view(n − 1, {s∗2 s1} ∪ X), φ(s∗n sn−1 . . . s∗4 s3s∗2 s1, h)
)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k

∗
4 . . . kn−1k

∗
n ,

gngn−1 . . . g3g1hk1k
∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k

∗
3 . . . k∗

n−2kn−1,

gngn−1 . . . g3g2hk1k
∗
2k4 . . . k∗

n−1kn,
g2g1hk1k

∗
2 , . . . , gn−1gn−2 . . . g3(g2g1)h(k1k

∗
2 )k3 . . . k∗

n−2kn−1,

gngn−1 . . . g3(g2g1)h(k1k
∗
2 )k3 . . . kn−1k

∗
n

)
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as in the first case, if Eve distinguishes An and Bn , then in particular, she distin-
guishes g2g1hk1k∗

2 from c1hc2 (given g1hk1 and g2hk2), which means that she
distinguishes

A2 =
(
view(2, {s1, s2}), y

)

=
(
g1hk1, g2hk2, y

)

D2 =
(
view(2, {s1, s2}), φ(s∗

2 s1, h)
)

=
(
g1hk1, g2hk2, g2g1hk1k∗

2

)

which contradicts our hypothesis.
(b) Similarly, if n is odd:

We redefine An, Dn using Lemma 15.1, and define Bn,Cn as follows:

• An =
(
view(n − 1, {s1} ∪ X), φ(s∗

n sn−1 . . . s∗
3 s2, h), view(n − 1, {s2} ∪ X),

φ(s∗
n sn−1 . . . s∗

3 s1, h), view(n − 1, {s∗
2 s1} ∪ X), y

)

• Bn =
(
view(n − 1, {s1} ∪ X), φ(s∗

n sn−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(s∗
n sn−1 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), y
)

• Cn =
(
view(n − 1, {s1} ∪ X), φ(s∗

n sn−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(s∗
n sn−1 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), φ(sns∗
n−1 . . . s5s∗

4 s3c, h)
)

• Dn =
(
view(n − 1, {s1} ∪ X), φ(s∗

n sn−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(s∗
n sn−1 . . . s∗

3 s1, h), view(n − 1, {s∗
2 s1} ∪ X), φ(sns∗

n−1 . . . s5s∗
4 s3s

∗
2 s1, h)

)

choosing s1, s2 ∈ R1 × A2, c ∈ R1 × A1; and X ∈ (R1 × A2)
n−2, y ∈ R1hA2

randomly.

A2 ∼ D2 =⇒ An ∼ Bn .

Suppose towards the sake of contradiction that an adversary Eve distinguishes
An and Bn . We produce an instance of An � Bn for Eve
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An =
(
view(n − 1, {s1} ∪ X), φ(s∗

n sn−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(s∗
n sn−1 . . . s∗

3 s1, h), view(n − 1, {s∗
2 s1} ∪ X), y

)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n ,

gngn−1 . . . g3g1hk1k∗
3k4 . . . kn−1k∗

n ,

g2hk2, . . . , gn−1 . . . g3g2hk2k∗
3 . . . k∗

n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . kn−1k∗

n ,

g2g1hk1k∗
2 , . . . , gn−1gn−2 . . . g3(g2g1)h(k1k∗

2)k3 . . . kn−2k∗
n−1, y

)

Bn =
(
view(n − 1, {s1} ∪ X), φ(s∗

n sn−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(s∗
n sn−1 . . . s∗

3 s1, h), , view(n − 1, {c} ∪ X), y
)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n ,

gngn−1 . . . g3g1hk1k∗
3k4 . . . kn−1k∗

n ,

g2hk2, . . . , gn−1 . . . g3g2hk2k∗
3 . . . k∗

n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . kn−1k∗

n ,

c1hc2, . . . , gn−1gn−2 . . . g3(c1)h(c2)k3 . . . kn−2k∗
n−1, y

)

if Eve distinguishes An and Bn , then in particular, she distinguishes g2g1hk1k∗
2

from c1hc2 (given g1hk1 and g2hk2), which means that she distinguishes

A2 =
(
view(2, {s1, s2}), y

)

=
(
g1hk1, g2hk2, y

)

D2 =
(
view(2, {s1, s2}), φ(s∗

2 s1, h)
)

=
(
g1hk1, g2hk2, g2g1hk1k∗

2

)

which contradicts our hypothesis.

An−2 ∼ Dn−2 =⇒ Bn ∼ Cn .

Suppose, for the sake of contradiction, that an adversary Eve distinguishes Bn

and Cn . We produce and instance of Bn � Cn for Eve
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Bn =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), y
)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n ,

gngn−1 . . . g3g1hk1k∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k∗

3 . . . k∗
n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . k∗

n−1kn,

c1hc2, . . . , gn−1 . . . g5g4(g3c1)h(c2k3)k∗
4 k5 . . . k∗

n−2kn−1, y
)

Cn =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), φ(sns∗
n−1 . . . s∗

4 s3c, h)
)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n ,

gngn−1 . . . g3g1hk1k∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k∗

3 . . . k∗
n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . k∗

n−1kn,
c1hc2, . . . , gn−1 . . . g5g4(g3c1)h(c2k3)k∗

4 k5 . . . k∗
n−2kn−1,

gn . . . g4(g3c1)h(c2k3)k∗
4 k5 . . . k∗

n

)

if Eve distinguishes Bn andCn in polynomial time, in particular, she distinguishes
y and φ(sns∗

n−1 . . . s5s∗
4 (s3c), h) (given view(n − 1, {c} ∪ X)). Let

(
(view(n − 2, {cs3, s4, s5, . . . , sn−1, sn}), y

)

be an instance of An−2, Dn−2:

An−2 =
(
(view(n − 2, {s3c, s4, s5, . . . , sn−1, sn}), y

)

=
(
(g3c1)h(c2k3), g4hk4, . . . , gnhkn,

g4(g3c1)h(c2k3)k∗
4 . . . , gn(g3c1)h(c2k3)k∗

n ,

g5g4(g3c1)h(c2k3)k∗
4k5, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . k∗
n−1kn, y

)

Dn−2 =
(
view(n − 2, {s3c, s4, s5, . . . , sn−1, sn}), φ(sns∗

n−1 . . . s5s∗
4 (s3c), h)

)

=
(
(g3c1)h(c2k3), g4hk4, . . . , gnhkn,

g4(g3c1)h(c2k3)k∗
4 . . . , gn(g3c1)h(c2k3)k∗

n ,

g5g4(g3c1)h(c2k3)k∗
4k5, . . . , gngn−1 . . . g5g4hk4k∗

5 . . . k∗
n−1kn,

gngn−1 . . . g4(g3c1)h(c2k3)k∗
4 . . . k∗

n−1kn
)

since Eve can distinguish y and φ(sns∗
n−1 . . . s5s∗

4 (s3c), h) given view(n −
1, {c} ∪ X), then in particular she distinguishes y and φ(s∗

n sn−1 . . . s∗
4 (s3c), h)

given

view(n − 2, {s3c, s4, s5, . . . , sn−1, sn}) ⊂ view(n − 1, {c} ∪ X),
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and this means An−2 � Dn−2, but this contradicts our hypothesis.

A2 ∼ D2 =⇒ Cn ∼ Dn .

Suppose towards the sake of contradiction that an adversary Eve distinguishes
Cn and Dn . We produce and instance of Cn � Dn for Eve

Cn =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {c} ∪ X), φ(sns∗
n−1 . . . s∗

4 s3c, h)
)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n ,

gngn−1 . . . g3g1hk1k∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k∗

3 . . . k∗
n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . k∗

n−1kn,
c1hc2, . . . , gn−1gn−2 . . . g3c1hc2k3 . . . k∗

n−2kn−1,

gngn−1 . . . g4g3c1hc2k3k∗
4 . . . kn−1kn

)

Dn =
(
view(n − 1, {s1} ∪ X), φ(sns∗

n−1 . . . s2, h), view(n − 1, {s2} ∪ X),

φ(sns∗
n−1sn−2 . . . s∗

3 s1, h), view(n − 1, {s∗
2 s1} ∪ X),

φ(sns∗
n−1 . . . s∗

4 s3s
∗
2 s1, h)

)

=
(
g1hk1, . . . , gngn−1 . . . g4g3hk3k∗

4 . . . kn−1k∗
n ,

gngn−1 . . . g3g1hk1k∗
3k4 . . . k∗

n−1kn,
g2hk2, . . . , gn−1 . . . g3g2hk2k∗

3 . . . k∗
n−2kn−1,

gngn−1 . . . g3g2hk1k∗
2k4 . . . k∗

n−1kn,
g2g1hk1k∗

2 , . . . , gn−1gn−2 . . . g3(g2g1)h(k1k∗
2 )k3 . . . k∗

n−2kn−1,

gngn−1 . . . g3(g2g1)h(k1k∗
2 )k3 . . . kn−1k∗

n

)

as in the first case, if Eve distinguishes An and Bn , then in particular, she distin-
guishes g2g1hk1k∗

2 from c1hc2 (given g1hk1 and g2hk2), which means that she
distinguishes

A2 =
(
view(2, {s1, s2}), y

)

=
(
g1hk1, g2hk2, y

)

D2 =
(
view(2, {s1, s2}), φ(s∗

2 s1, h)
)

=
(
g1hk1, g2hk2, g2g1hk1k∗

2

)

which contradicts our hypothesis.

So in the Initial Key Agreement the n-users underlying decisional problem is
as hard as the 2-users decisional problem. This is also true in the Auxiliary Key
Agreement. We can say the protocol provides on forward and backward security, i.e.
any former or future users cannot distinguish future or past distributed keys, as it is
shown in the following result.

Corollary 15.1 The AKA provides on forward and backward security.
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Proof Let Eve be a powerful adversary, that knows all the information of a past user
or a future user. She would know a subset of view(k, ε), where k is the number of
current users, and ε the secret keys.

In the first case, when the members of the group stay the same, note that the
key update adds a new secret key (and we consider it as a new user). Then we
substitute n with k = n + 1, φ(s∗

n sn−1 . . . s∗
4 s3s

∗
2 s1, h) (or φ(sns∗

n−1 . . . s3s∗
2 s1, h))

with φ(s̃cs∗
n sn−1 . . . s3s∗

2 s1, h) (resp. φ(s̃c∗sns∗
n−1 . . . s3s∗

2 s1, h)) if n is even (if n is
odd), and X with

ε = {s1, s2, . . . , sc−1, sc, sc+1, . . . , sn−1, sn, s
′
c}

in Theorem 15.1. It follows that

Ak =
(
view(k, ε), y

)
, for y ∈ R randomly chosen.

Dk =
⎧
⎨

⎩

(
view(k, ε), φ(s̃cs∗

n sn−1 . . . s3s∗
2 s1, h)

)
, if k is odd.(

view(k, ε), φ(s̃c∗sns∗
n−1 . . . s3s∗

2 s1, h))
)
, if k is even.

and it still verifies that if A2 ∼ D2, then Ak ∼ Dk .
When a user leaves, the key update also adds a new secret key, sowe replace nwith

k = n + 1 (the user left, but we suppose that Eve had access to the communications
before that happened, and that private key is still part of the common secret key).
The rest is the same, so we get again the first case, and the AKA benefits form the
same security benefits in this case.

When a new users joins the group, we need to replace k = n + 2 (the new secret
key and the key update), φ(s∗

n sn−1 . . . s∗
4 s3s

∗
2 s1, h) (or φ(sns∗

n−1 . . . s3s∗
2 s1, h)) with

φ(s∗
n+1s̃cs

∗
n sn−1 . . . s3s∗

2 s1, h) (resp. φ(sn+1s̃c∗sns∗
n−1 . . . s3s∗

2 s1, h)) if n is even (if n
is odd), and X with ε = {s1, s2, . . . , sn−1, sn, sn+1, s ′

c} in Theorem 15.1. It follows
that

Ak =
(
view(k, ε), y

)
, for y ∈ R randomly chosen.

Dk =
⎧
⎨

⎩

(
view(k, ε), φ(s∗

n+1s̃cs
∗
n sn−1 . . . s3s∗

2 s1, h)
)
, if k is even.(

view(k, ε), φ(sn+1s̃c∗sns∗
n−1 . . . s3s∗

2 s1, h))
)
, if k is odd.

and it still verifies that if A2 ∼ D2, then Ak ∼ Dk , so the Auxiliary Key Agreement
benefits from the same security properties.

Note that we could also consider Dk as

Dk =
⎧
⎨

⎩

(
view(k, ε), φ(s̃c, Kp))

)
, if k is odd.(

view(k, ε), φ(s̃c∗, Kp))
)
, if k is even.
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where Kp would be the previous key, when the number of users stay the same or
someone left, and

Dk =
⎧
⎨

⎩

(
view(k, ε), φ(s∗

n+1s̃c, Kp))
)
, if k is even.(

view(k, ε), φ(sn+1s̃c∗, Kp))
)
, if k is odd.

when a new user joins the group.
Also note that in the key refresh, we consider k = n + 1 in the first two cases, but

the set of secret keys are {s1, s2, . . . , sc−1, s̃c∗sc, sc+1, . . . , sn−1, sn} when n is odd,
and

{s1, s2, . . . , sc−1, s̃cs
∗
c , sc+1, . . . , sn}

when n is even, i.e. the number of stored keys stay the same, and the private key of
the userUc is s̃∗

c sc or s̃cs
∗
c depending on whether the number of users is even or odd.

Finally when k = n + 2, the set of secret keys has just one new key, from the new
user Un+1, so it is {s1, s2, . . . , sc−1, s̃c∗sc, sc+1, . . . , sn−1, sn, sn+1} when n is odd,
and

{s1, s2, . . . , sc−1, s̃cs
∗
c , sc+1, . . . , sn, sn+1}

when n is even.
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Chapter 16
Construction and Characterization
of n-Ary Hom-Bialgebras and n-Ary
Infinitesimal Hom-Bialgebras

Fattoum Harrathi, Mahouton Norbert Hounkonnou, Sami Mabrouk,
and Sergei Silvestrov

Abstract Constructions of n-ary bialgebras and n-ary infinitesimal bialgebras
of associative type and their hom-analogs, generalizing the hom-bialgebras and
infinitesimal hom-bialgebras are investigated. Main algebraic characteristics of
n-ary totally, n-ary weak totally, n-ary partially and n-ary alternate partially asso-
ciative algebras and bialgebras, and their hom-counterparts are described. Particular
cases of ternary algebras are given as illustration.

Keywords Hom-associative algebras · Infinitesimal Hom-bialgebras · n-ary
Hom-bialgebras of associative type · n-ary infinitesimal Hom-bialgebras of
associative type

2020 Mathematics Subject Classification 17B61 · 17D30 · 17A42

16.1 Introduction

The n-ary algebraic structures and in particular ternary algebraic structures appeared
more or less naturally in various domains of theoretical andmathematical physics and
data processing. Theoretical physics progress involving n-ary algebraic structures in
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quantum mechanics including the Nambu mechanics and quantization in 1970th
[44, 50], and in connection to Yang-Baxter equations [45, 46] gave an impulse
to a significant development of investigations of n-ary algebras [16, 18, 35, 50,
51]. Further motivation from theoretical physics side come for the study of n-ary
operations in string theory and M-branes [9], qauge theories, particle physics and
supersymmetry [1, 23–27, 52]. The n-ary operations appeared first through cubic
matrices which were introduced in the nineteenth century by Cayley, and again
considered and generalized in [22, 47].

The n-ary algebras of associative type were studied by Lister, Loos, Myung and
Carlsson (see [11, 36, 37, 43]). The n-ary operations of associative type lead to two
principal classes of “associative” n-ary algebras, totally associative n-ary algebras
and partially associative n-ary algebras. Also they admit some variants. The totally
associative ternary algebras are also sometimes called associative triple systems.

The area of Hom-algebras was initiated in the work of Hartwig, Larsson and Sil-
vestrov in [19], where the general quasi-deformations and discretizations of Lie alge-
bras of vector fields using more general σ -derivations (twisted derivations) in place
of ordinary derivations along with a general method for construction of deforma-
tions of Witt and Virasoro type algebras have been developed, motivated initially by
specific examples of q-deformed Jacobi identities in the q-deformed (quantum) alge-
bras in mathematical physics associated to q-difference operators and corresponding
q-deformations of differential calculi [5, 12–15, 20, 31–34]. These q-deformed
algebras, with q-deformed Jacobi identities associated to q-difference operators and
corresponding q-deformations of differential calculi, serve as initial examples of
more general quantum deformations of differential calculus and corresponding alge-
bras obtained by replacing the usual derivation by general (σ, τ )-derivations, which
satisfy modified Jacobi identities deformed by some linear maps in some special
ways as was shown in [19, 28], where also general algebras satisfying such iden-
tities where introduced and called hom-Lie algebras and quasi-Hom-Lie algebras
[19, 28]. Furthermore, the general quasi-Lie algebras, containing as subclasses the
quasi-Hom-Lie algebras and Hom-Lie algebras, as well as general color quasi-Lie
algebras, including also hom-Lie superalgebras and hom-Lie color algebras as sub-
classes, were introduced first in [19, 28–30, 48, 49]. With these works the area of
Hom-algebras has started.

The hom-associative algebras play the role of associative algebras in the hom-Lie
setting. They were introduced first in [39], where it is shown that the commutator
bracket defined by the multiplication in a hom-associative algebra leads naturally
to a hom-Lie algebra, that is that Hom-associative algebras are hom-Lie admissi-
ble. Also, in [39] hom-Lie-admissible algebras and more general G-hom-associative
algebras with subclasses of hom-Vinberg and pre-hom-Lie algebras, generalizing to
the twisted situation Lie-admissible algebras, G-associative algebras, Vinberg and
pre-Lie algebras respectively, and shown that for these classes of algebras the oper-
ation of taking commutator leads to hom-Lie algebras as well. The adjoint functor
from the category of hom-Lie algebras to the category of hom-associative algebras
and the enveloping algebra were constructed in [59]. The fundamentals of the for-
mal deformation theory and associated cohomology structures for hom-Lie algebras
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have been considered recently by the second and the third authors in [42]. Simultane-
ously, D. Yau has developed elements of homology for Hom-Lie algebras in [55]. In
[40, 41], the theory of hom-coalgebras and related structures are developed. Further
development could be found in [6–8, 10, 17, 38].

Infinitesimal bialgebras were introduced by Joni and Rota in [21] (under the
name infinitesimal coalgebra). The current name is due to Aguiar, who developed a
theory for them in a series of papers [2–4]. It turns out that infinitesimal bialgebras
have connections with some other concepts such as Rota-Baxter operators, pre-
Lie algebras, Lie bialgebras etc. Aguiar discovered a large class of examples of
infinitesimal bialgebras, namely he showed that the path algebra of an arbitrary
quiver carries a natural structure of infinitesimal bialgebra. In an analytical context,
infinitesimal bialgebras have been used in [53] by Voiculescu in free probability
theory.

Thehom-analogueof infinitesimal bialgebras, called infinitesimal hom-bialgebras,
was introduced and studied by Yau in [57]. He extended to the hom-context some of
Aguiar’s results.

In this paper, we will be concerned with n-ary totally and partially coalgebras,
n-ary totally and partially bialgebras and infinitesimal n-ary totally and partially
bialgebras of associative and hom-associative type.

This paper is organized as follows. In Sect. 16.2, we recall some basic defini-
tions and make summary of the fundamental properties concerning hom-structures.
In Sects. 16.3 and 16.4, we introduce and develop the notion of n-ary bialgebras of
(hom)-associative type. First we construct partially and totally (hom)-coassociative
n-ary coalgebras and discuss their main properties. Next, we describe a twist con-
struction and discuss their dualization. In Sect. 16.5, we show that given a multiplica-
tive infinitesimal (hom)-bialgebra, we can construct a multiplicative infinitesimal
ternary (hom)-bialgebra) satisfying certain compatibility condition.

16.2 Basics and Notations

In thework, all vector spaces, tensor products, and linearity are considered over a field
of characteristic zero k, even if the general theory may hold for fields of other char-
acteristics. For a vector space V , V ∗ denotes the dual space of V . For all ξ1, . . . , ξn ∈
V ∗ and v1, . . . , vn ∈ V , 〈ξ1 ⊗ · · · ⊗ ξn, v1 ⊗ · · · ⊗ vn〉 = 〈ξ1, v1〉 · · · 〈ξn, vn〉, where
〈ξi , vi 〉 = ξi (vi ), 1 ≤ i ≤ n. Throughout this paper we refer to the standard one-to-
one correspondence between linear maps F : V1 ⊗ · · · ⊗ Vn → W and multilinear
maps F : V1 × · · · × Vn → W given by F(v1, . . . , vn) = F(v1 ⊗ · · · ⊗ vn), when-
ever the same notation is used for these maps. The map τi j : V⊗p → V⊗p

is defined
by

τi j (x1 ⊗ . . . ⊗ xi ⊗ . . . ⊗ x j . . . ⊗ xp) = x1 ⊗ . . . ⊗ x j ⊗ . . . ⊗ xi . . . ⊗ xp.



402 F. Harrathi et al.

Sweedler’s notation for the comultiplication, Δ(x) = ∑
(x) x(1) ⊗ x(2) is used, and

sometimes the multiplication is denoted by a dot for simplicity, when there is no
confusion.

16.2.1 Hom-Associative Algebras

Definition 16.1 An associative algebra is a pair (A, μ) consisting of a k-vector
space A and a linear map μ : A ⊗ A → A (multiplication) satisfying

μ ◦ (I d ⊗ μ) = μ ◦ (μ ⊗ I d) . (16.1)

The condition (16.1) is called associativity condition.
An associative algebra A is called unital if there exists a linear map η : k → A

such that
μ ◦ (η ⊗ idA) = μ ◦ (idA ⊗ η) = idA. (16.2)

The unit element is 1A = η (1k) . The associativity and unitality conditions (16.1)
and (16.2) may be expressed by the following commutative diagrams:

A ⊗ A ⊗ A
μ⊗ I d−→ A ⊗ A

Id ⊗ μ ↓ ↓ μ

A ⊗ A
μ−→ A

k ⊗ A
η⊗idA−→ A ⊗ A

idA⊗η←− A ⊗ k

∼= ↓ μ ∼=
A

idA−→ A
idA←− A

Let (A, μ) and (A′, μ′) be two associative algebras. A linear map f : A → A′ is
said to be a hom-associative algebras morphism if μ′ ◦ f ⊗2 = f ◦ μ.

Definition 16.2 ([39]) A hom-associative algebra is a triple (A, μ, α) consisting
of a k-vector space A, a linear map μ : A ⊗ A → A (multiplication) and a linear
space homomorphism (a linear map) α : A → A satisfying the hom-associativity
condition

μ ◦ (α ⊗ μ) = μ ◦ (μ ⊗ α) . (16.3)

If the mutliplicativity condition α ◦ μ = μ ◦ α⊗2 holds, then the hom-associative
algebra is called multiplicative. We assume in this paper, when not stated otherwise,
that α ◦ μ = μ ◦ α⊗2 holds.

A hom-associative algebra A is called unital if there exists a linear map η : k → A
such that α ◦ η = η and

μ ◦ (η ⊗ idA) = μ ◦ (idA ⊗ η) = α. (16.4)

The unit element is 1A = η (1k) .

The hom-associativity and unitality conditions (16.3) and (16.4) can be expressed
by the following commutative diagrams:
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A ⊗ A ⊗ A
μ⊗ α−→ A ⊗ A

α ⊗ μ ↓ ↓ μ

A ⊗ A
μ−→ A

k ⊗ A
η⊗idA−→ A ⊗ A

idA⊗η←− A ⊗ k

∼= ↓ μ ∼=
A

α−→ A
α←− A

Remark 16.1 1) We recover the classical associative algebra when the twisting
map α is the identity map.

2) We have α ◦ η = η then α (1A) = 1A and μ (1A ⊗ 1A) = 1A.

For hom-associative algebras (A, μ, α) and (A′, μ′, α′), a linear map f : A → A′
is called a hom-associative algebra morphism ifμ′ ◦ f ⊗2 = f ◦ μ, f ◦ α = α′ ◦ f.
It is said to be a weak morphism if only the first condition holds. If, further, the
hom-associative algebras are unital with respect to η and η′, then, f ◦ η = η′.

If A = A′, then the hom-associative algebras (resp. unital hom-associative alge-
bras) are isomorphic if there exists a bijective linear map f : A → A such that

μ = f −1 ◦ μ′ ◦ f ⊗2, α = f −1 ◦ α′ ◦ f,
(resp. μ = f −1 ◦ μ′ ◦ f ⊗2, α = f −1 ◦ α′ ◦ f and η = f −1 ◦ η′).

Theorem 16.1 ([60]) Every 2-dimensional multiplicative hom-associative algebra
is isomorphic to one of the following pairwise non-isomorphic hom-associative alge-
bras (A, ∗, α), where ∗ is the multiplication, α is the structure map, and {e1, e2} is
a basis of A:

A2
1: e1 ∗ e1 = −e1, e1 ∗ e2 = e2, e2 ∗ e1 = e2, e2 ∗ e2 = e1,

α(e1) = e1, α(e2) = −e2;
A2
2: e1 ∗ e1 = e1, e1 ∗ e2 = 0, e2 ∗ e1 = 0, e2 ∗ e2 = e2,

α(e1) = e1, α(e2) = 0;
A2
3: e1 ∗ e1 = e1, e1 ∗ e2 = 0, e2 ∗ e1 = 0, e2 ∗ e2 = 0,

α(e1) = e1, α(e2) = 0;
A2
4: e1 ∗ e1 = e1, e1 ∗ e2 = e2, e2 ∗ e1 = e2, e2 ∗ e2 = 0,

α(e1) = e1, α(e2) = e2;
A2
5: e1 ∗ e1 = e1, e1 ∗ e2 = 0, e2 ∗ e1 = 0, e2 ∗ e2 = 0,

α(e1) = 0, α(e2) = ke2;
A2
6: e1 ∗ e1 = e2, e1 ∗ e2 = 0, e2 ∗ e1 = 0, e2 ∗ e2 = 0,

α(e1) = e1, α(e2) = e2;
A2
7: e1 ∗ e1 = 0, e1 ∗ e2 = ae1, e2 ∗ e1 = be1, e2 ∗ e2 = ce1,

α(e1) = 0, α(e2) = e1, where a, b, c, k ∈ C;
A2
8: e1 ∗ e1 = 0, e1 ∗ e2 = e1, e2 ∗ e1 = 0, e2 ∗ e2 = e1 + e2,

α(e1) = e1, α(e2) = e1 + e2;
A2
9: e1 ∗ e1 = 0, e1 ∗ e2 = 0, e2 ∗ e1 = e1, e2 ∗ e2 = e1 + e2,

α(e1) = e1, α(e2) = e1 + e2.

Proposition 16.1 ([56]) Let (A, μ, η) be a unital associative algebra and α :
A → A be a morphism of associative algebra, i.e. α ◦ μ = μ ◦ α⊗2, and β ◦ η = η.

Then, (A, μα = α ◦ μ, ηα = α ◦ η, α) is a unital hom-associative algebra. Hence,
denoting by αn the n-fold composition of n copies of α, with α0 = idA, αn ◦ μ =
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μ ◦ (
α⊗2

)n
, then, (A, μαn = αn ◦ μ, ηαn = αn ◦ η, αn) is a unital hom-associative

algebra.

Remark 16.2 More generally, we can construct a hom-associative algebra starting
from a hom-associative algebra and a weak endomorphism.

16.2.2 Hom-Associative Coalgebras

In the following, we recall the fundamental notion of coalgebras and hom-coalgebra,
which is dual to that of a associative algebra and associative coalgebras, respectively.

Definition 16.3 A pair (A,Δ) is called associative coalgebra, where A is a k-vector
space, andΔ : A −→ A ⊗ A is a linearmap, satisfying the coassociativity condition,

(Δ ⊗ idA) ◦ Δ = (idA ⊗ Δ) ◦ Δ. (16.5)

An associative coalgebra is said to be counital if there exists a linearmap ε : A −→ k

such that
(ε ⊗ idA) ◦ Δ = (idA ⊗ ε) ◦ Δ = idA. (16.6)

Conditions (16.5) and (16.6) are respectively equivalent to the following commutative
diagrams:

A
Δ−→ A ⊗ A

Δ ↓ ↓ idA ⊗ Δ

A ⊗ A
Δ⊗idA−→ A ⊗ A

k ⊗ A
ε⊗idA←− A ⊗ A

idA⊗ε−→ A ⊗ k

∼= ↑ Δ ∼=
A

idA←− A
idA−→ A

Let (A,Δ)) and (A′,Δ′) be two associative coalgebras. A linear map f : A → A′
is an associative coalgebra morphism if f ⊗2 ◦ Δ = Δ′ ◦ f .

Definition 16.4 A hom-associative coalgebra is a triple (A,Δ, β) , where A is a
k-vector space, Δ : A −→ A ⊗ A is a linear map, and β : A −→ A is a homomor-
phism, satisfying the hom-associativity condition

(Δ ⊗ β) ◦ Δ = (β ⊗ Δ) ◦ Δ. (16.7)

We assume, moreover, that Δ ◦ β = β⊗2 ◦ Δ.

A hom-associative coalgebra is said to be counital if there exists a linear map ε :
A −→ k such that ε ◦ β = β and

(ε ⊗ idA) ◦ Δ = (idA ⊗ ε) ◦ Δ = β. (16.8)
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Conditions (16.7) and (16.8) are, respectively, equivalent to the following commu-
tative diagrams:

A
Δ−→ A ⊗ A

Δ ↓ ↓ β ⊗ Δ

A ⊗ A
Δ⊗β−→ A ⊗ A

k ⊗ A
ε⊗idA←− A ⊗ A

idA⊗ε−→ A ⊗ k

∼= ↑ Δ ∼=
A

β←− A
β−→ A

Remark 16.3 1) We recover the classical associative coalgebra when the twisting
map β is the identity map.

2) Given a hom-associative coalgebra A := (A,Δ, β) , we define the coopposite
hom-associative coalgebra Acop := (A,Δcop, β) to be the hom-associative coal-
gebra with the same underlying vector space as A and with comultiplication
defined by Δcop = τA⊗A ◦ Δ.

3) A hom-associative coalgebra (A,Δ, β) is cocommutative if and only if
Δcop = Δ.

Proposition 16.2 Let (A,Δ, ε) be an unital associative coalgebra andα : A −→ A
be a morphism of associative coalgebra, i.e. Δ ◦ α = α⊗2 ◦ Δ and ε ◦ α = ε. Then
(A,Δα = Δ ◦ α, ε, α) is an unital hom-associative coalgebra. Denoting by αn the
n-fold composition of n copies of β, with α0 = idA, Δ ◦ αn = (

α⊗2
)n ◦ Δ, then,

(A,Δαn = Δ ◦ αn, ε, αn) is an unital hom-associative coalgebra.

Let (A,Δ, β)) and (A′,Δ′, β ′) be two hom-associative coalgebras. A linear map
f : A → A′ is a hom-associative coalgebra morphism if

f ⊗2 ◦ Δ = Δ′ ◦ f and f ◦ β = β ′ ◦ f.

It is said to be a weak morphism if only the first condition holds. If, furthermore, the
hom-associative coalgebras admit counits ε and ε′, we have, in addition, ε = ε′ ◦ f .

We say that a hom-associative coalgebra (A,Δ, β) is isomorphic to a hom-
associative coalgebra (A′,Δ′, β ′), if there exists a bijective hom-coalgebramorphism
f : A −→ A′. We denote this by A ∼= A′ when the context is clear, such that

Δ′ = f ⊗2 ◦ Δ ◦ f −1, ε′ = ε ◦ f −1 and β ′ = β ◦ f −1.

Theorem 16.2 ([41, Corollary 4.12]) Let (A, μ, η, α) be a finite-dimensional unital
hom-associative algebra, and A∗ be the linear dual of A. We define the comultipli-
cation by the composition

Δ : A∗ μ∗−→ (A ⊗ A)∗
ρ−1−→ A∗ ⊗ A∗ , Δ = ρ−1μ∗,

and
ε : A∗ η∗−→ k

∗ ψ−→ k, ε = ψη∗,
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where ψ is the canonical isomorphism, ε ( f ) = f (1A) for f ∈ A∗ where 1A =
η (1k), and the homomorphism β : A∗ −→ A∗, β (h) = h ◦ α. Then, (A∗,Δ, ε, β)

is a unital hom-coassociative coalgebra.

16.2.3 Hom-Bialgebras and Infinitesimal Hom-Bialgebras

The notion of hom-bialgebra was introduced in [40, 41], see also [58].

Definition 16.5 A bialgebra is a tuple (A, μ, η,Δ, ε) in which (A, μ, η) is a unital
associative algebra, (A,Δ, ε) is a unital associative coalgebra, and the linear map Δ

is a morphism of associative algebras, that is

Δ ◦ μ = μ⊗2 ◦ τ2,3 ◦ Δ⊗2. (16.9)

Definition 16.6 A hom-bialgebra is a tuple (A, μ, η,Δ, ε, α) in which (A, μ, η, α)

is a unital hom-associative algebra, (A,Δ, ε, α) is a unital hom-associative coalgebra
satisfying the condition (16.9).

Remark 16.4 1) ([40]) In terms of elements, condition (16.9) could be expressed
by the following identities:

Δ(μ (x ⊗ y)) = Δ(x) · Δ(y) =
∑

(x)(y)

μ (x1 ⊗ y1) ⊗ μ (x2 ⊗ y2) ,

where the dot “·” denotes the multiplication on tensor product.
2) Observe that a hom-bialgebra is neither associative algebra, nor associative coal-

gebra, unless α = idA, in which case we have a bialgebra.

A morphism of hom-bialgebras (resp. weak morphism of hom-bialgebras) is a
morphism (resp. weak morphism) of hom-associative algebras and hom-associative
coalgebras.

Definition 16.7 An infinitesimal bialgebra is a tuple (A, μ, η,Δ, ε) in which
(A, μ, η) is a unital associative algebra, (A,Δ, ε) is a unital associative coalgebra
satisfying the following compatibility

Δ ◦ μ(x, y) = (adL
μ(x) ⊗ idA) ◦ Δ(y) + (idA ⊗ adR

μ (y)) ◦ Δ(x), (16.10)

where x, y ∈ A, and themapsadL
μ , adR

μ : A → End(A) are definedbyadL
μ (x)(y) =

μ(x, y) and adR
μ (x)(y) = μ(y, x).

Definition 16.8 An infinitesimal hom-bialgebra is a tuple (A, μ, η, ,Δ, ε, α) in
which (A, μ, η, α) is a unital hom-associative algebra, (A,Δ, ε, α) is an unital hom-
associative coalgebra satisfying the following compatibility
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Δ ◦ μ(x, y) = (adL
μ (α(x)) ⊗ α) ◦ Δ(y) + (α ⊗ adR

μ (α(y))) ◦ Δ(x), ∀ x, y ∈ A.

(16.11)

The compatibility condition (16.11) can be written as

Δμ = (μ ⊗ α)(α ⊗ Δ) + (α ⊗ μ)(Δ ⊗ α).

A morphism of hom-bialgebras (resp. weak morphism of hom-bialgebras) is a mor-
phism (resp. weakmorphism) of hom-associative algebras and hom-associative coal-
gebras.

Combining Propositions 16.1 and 16.2, we obtain the following:

Proposition 16.3 Let A = (A, μ, η,Δ, ε) be a bialgebra ( resp. infinitesimal bial-
gebra )andα : A −→ Abeabialgebramorphism, then Aα = (A, μα, η,Δα, ε, α) is
a hom-bialgebra. Hence, (A, μαn , η,Δαn , ε, αn) is a hom-bialgebra (resp. infinites-
imal hom-bialgebra).

Proposition 16.4 Let A = (A, μ, η,Δ, ε, α)beafinite-dimensional hom-bialgebra,
(resp. infinitesimal hom-bialgebra). Then A∗ = (A∗,Δ∗, ε∗, μ∗, η∗, α∗) which is a
hom-bialgebra, (resp. infinitesimal hom-bialgebra), together with the hom-
associative algebra structure, which is dual to the hom-coassociative coalgebra
structure of A, and with the Hom-coassociative coalgebra structure which is dual
to the hom-associative algebra structure of A, is a hom-bialgebra, (resp. infinitesi-
mal hom-bialgebra), called dual hom-bialgebra of A, (resp. dual infinitesimal hom-
bialgebra).

16.3 n-Ary Bialgebras of Associative Type

In this section, we introduce the notion of n-ary bialgebras of associative and hom-
associative type generalizing the associative and hom-associative bialgebras, and
discuss their properties.

Definition 16.9 An n-ary totally associative algebra is a pair (A, μ) consisting of a
vector space A and a linear map μ : A⊗n → A satisfying

μ ◦ (μ ⊗ idA ⊗ · · · ⊗ idA) = μ ◦ (idA ⊗ μ ⊗ · · · ⊗ idA)

= · · · = μ ◦ (idA ⊗ · · · ⊗ idA ⊗ μ).
(16.12)

In terms of elements, condition (16.12) could be re-expressed by the following iden-
tities, for all x1, . . . , x2n−1 ∈ A:

μ(μ(x1, . . . , xn), xn+1, . . . , x2n−1) = μ(x1, μ(x2, . . . , xn+1), xn+2, . . . , x2n−1)

. . . = μ(x1, . . . , xi , μ(xi+1, . . . , xi+n), xi+1+n, . . . , x2n−1)

. . . = μ(x1, . . . , xn−1, μ(xn, . . . , x2n−1)) (16.13)
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For n = 3 the condition (16.13) can be written

μ(μ(x1, x2, x3), x4, x5) = μ(x1, μ(x2, x3, x4), x5) = μ(x1, x2, μ(x3, x4, x5)).

Remark 16.5 An n-ary weak totally associative algebra is given by the identity

μ(x1, . . . , xn−1, μ(xn, . . . , x2n−1)) = μ(μ(x1, . . . , xn), xn+1, . . . , x2n−1). (16.14)

The proof of the following statement is straightforward.

Theorem 16.3 Let (A, μ) be an associative algebra, then (A, μ̃ = μ ◦ (μ ⊗ idA))

is a ternary totally associative algebra.

Definition 16.10 An n-ary partially associative algebra is a pair (A, μ) consisting
of a vector space A and a linear map μ : A⊗n → A satisfying

μ ◦ (μ ⊗ idA ⊗ · · · ⊗ idA)+ μ ◦ (idA ⊗ μ ⊗ · · · ⊗ idA)

+ · · · + μ ◦ (idA ⊗ · · · ⊗ idA ⊗ μ) = 0.
(16.15)

In terms of elements, condition (16.15) could be reformulated as

n−1∑

i=0

μ(x1, . . . , xi , μ(xi+1, . . . , xi+n), xi+1+n, . . . , x2n−1) = 0, (16.16)

where x1, . . . , x2n−1 ∈ A.

For the particular case n = 3, the condition (16.16) can be written as:

μ(μ(x1, x2, x3), x4, x5) + μ(x1, μ(x2, x3, x4), x5) + μ(x1, x2, μ(x3, x4, x5)) = 0.

Definition 16.11 An n-ary alternate partially associative algebra is a pair (A, μ)

consisting of a vector space A and a linear map μ : A⊗n → A satisfying

μ ◦ (μ ⊗ idA ⊗ · · · ⊗ idA)− μ ◦ (idA ⊗ μ ⊗ · · · ⊗ idA)

+ · · · (−1)n−1μ ◦ (idA ⊗ · · · ⊗ idA ⊗ μ) = 0.
(16.17)

In terms of elements, condition (16.17) could be translated into the identity

n−1∑

i=0

(−1)iμ(x1, . . . , xi , μ(xi+1, . . . , xi+n), xi+1+n, . . . , x2n−1) = 0,

where x1, . . . , x2n−1 ∈ A.
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For n = 3, it takes the form:

μ(μ(x1, x2, x3), x4, x5) − μ(x1, μ(x2, x3, x4), x5) + μ(x1, x2, μ(x3, x4, x5)) = 0.

Remark 16.6 An n-ary totally associative algebra A, (resp. n-ary partially associa-
tive algebra, or n-ary alternate partially associative algebra) is called unital if there
exists a linear map η : k → A such that

μ ◦ (idA ⊗ η · · · ⊗ η) = μ ◦ (η ⊗ idA ⊗ η · · · ⊗ η)

= · · · = μ ◦ (η ⊗ · · · ⊗ η ⊗ idA) = idA.
(16.18)

The unit element is 1A = η (1k) .

The morphisms of n-ary algebras of associative type are defined as follows.

Definition 16.12 Let (A, μ) and (A′, μ′) be two n-ary totally associative algebras,
(resp. n-ary partially associative algebras, or n-ary alternate partially associative
algebras). A linear map f : A → A′ is an n-ary totally associative algebra, (resp.
n-ary partially associative algebra or n-ary alternate partially associative algebra),
morphism if it satisfies

f (μ(x1, . . . , xn)) = μ′( f (x1), . . . , f (xn)), ∀ x1, . . . , xn ∈ A.

Definition 16.13 An n-ary totally associative coalgebra is a pair (A,Δ) consisting
of a vector space A and a linear map Δ : A → A⊗n satisfying

(Δ ⊗ idA ⊗ · · · ⊗ idA) ◦ Δ = (idA ⊗ Δ ⊗ · · · ⊗ idA) ◦ Δ

= · · · = (idA ⊗ · · · ⊗ idA ⊗ Δ) ◦ Δ.
(16.19)

For n = 3 the condition (16.19) yields

(Δ ⊗ idA ⊗ idA) ◦ Δ = (idA ⊗ Δ ⊗ idA) ◦ Δ = (idA ⊗ idA ⊗ Δ) ◦ Δ.

Remark 16.7 An n-ary weak totally associative coalgebra is given by the identity

(Δ ⊗ idA ⊗ · · · ⊗ idA) ◦ Δ = (idA ⊗ · · · ⊗ idA ⊗ Δ) ◦ Δ.

Theorem 16.4 If (A,Δ) is an associative coalgebra, then (A, Δ̃ = (Δ ⊗ idA) ◦ Δ)

is a ternary totally associative coalgebra.
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Proof Since (A,Δ) is an associative coalgebra, we have

(
Δ̃ ⊗ idA ⊗ idA

) ◦ Δ̃ = (
(Δ ⊗ idA) ◦ Δ ⊗ idA ⊗ idA

) ◦ (Δ ⊗ idA) ◦ Δ

= (
(idA ⊗ Δ) ◦ Δ ⊗ idA ⊗ idA

) ◦ (Δ ⊗ idA) ◦ Δ

= (
(idA ⊗ Δ ⊗ idA) ◦ (Δ ⊗ idA) ◦ Δ ⊗ idA

) ◦ Δ

= (
(idA ⊗ Δ ⊗ idA) ◦ (idA ⊗ Δ) ◦ Δ ⊗ idA

) ◦ Δ

= (
idA ⊗ (Δ ⊗ idA) ◦ Δ ⊗ idA

) ◦ (Δ ⊗ idA) ◦ Δ

= (
idA ⊗ Δ̃ ⊗ idA

) ◦ Δ̃.

Similarly, we can prove that
(
Δ̃ ⊗ idA ⊗ idA

) ◦ Δ̃ = (
idA ⊗ idA ⊗ Δ̃

) ◦ Δ̃. �

Definition 16.14 An n-ary partially associative coalgebra is a pair (A,Δ) consisting
of a vector space A and a linear map Δ : A → A⊗n satisfying

(Δ ⊗ idA ⊗ · · · ⊗ idA + idA ⊗ Δ ⊗ · · · ⊗ idA + · · · + idA ⊗ · · · ⊗ idA ⊗ Δ) ◦ Δ = 0.

For n = 3, it reads as

(Δ ⊗ idA ⊗ idA) ◦ Δ + (idA ⊗ Δ ⊗ idA) ◦ Δ + (idA ⊗ idA ⊗ Δ) ◦ Δ = 0.

Definition 16.15 An n-ary alternate partially associative coalgebra is a pair (A,Δ)

consisting of a vector space A and a linear map Δ : A → A⊗n satisfying

(Δ ⊗ idA ⊗ · · · ⊗ idA− idA ⊗ Δ ⊗ · · · ⊗ idA

+ · · · + (−1)n−1idA ⊗ · · · ⊗ idA ⊗ Δ) ◦ Δ = 0.

For n = 3, it takes a simpler form:

(Δ ⊗ idA ⊗ idA) ◦ Δ − (idA ⊗ Δ ⊗ idA) ◦ Δ + (idA ⊗ idA ⊗ Δ) ◦ Δ = 0.

Remark 16.8 An n-ary totally associative coalgebra A, (resp. n-ary partially asso-
ciative coalgebra, or n-ary alternate partially coassociative algebra) is called unital
if there exists a linear map ε : A → k such that

(idA ⊗ ε ⊗ · · · ⊗ ε) ◦ Δ = (ε ⊗ idA ⊗ ε ⊗ · · · ⊗ ε) ◦ Δ

= · · · = (ε ⊗ · · · ⊗ ε ⊗ idA) ◦ Δ = idA.
(16.20)

The unit element is 1k = ε (1A) .

The morphisms of n-ary coalgebras of associative type are defined as follows.
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Definition 16.16 Let (A,Δ) and (A′,Δ′) be two n-ary totally coassociative alge-
bras, (resp.n-ary partially associative coalgebras andn-ary alternate partially associa-
tive coalgebras). A linear map f : A → A′ is an n-ary totally associative coalgebra,
(resp. n-ary partially associative coalgebra, or n-ary alternate partially associative
coalgebra) morphism if it satisfies

f ⊗n ◦ Δ = Δ′ ◦ f.

Definition 16.17 An n-ary totally bialgebra (resp. n-ary weak totally bialgebra,
or n-ary partially bialgebra, or n-ary alternate partially bialgebra) is a quintuple
(A, μ, η,Δ, ε) in which (A, μ, η) is a unital n-ary totally associative algebra, (resp.
n-ary weak totally algebra, or n-ary partially algebra, or n-ary alternate partially
algebra), (A,Δ, ε) is a unital n-ary totally associative coalgebra, (resp. n-ary weak
totally coalgebra, or n-ary partially coalgebra, or n-ary alternate partially coalgebra),
satisfying the following compatibility condition for x1, . . . , xn ∈ A:

Δ ◦ μ(x1, . . . , xn) = ∑
(x1)···(xn) μ(x (1)

1 , . . . , x (1)
n ) ⊗μ(x (2)

1 , . . . , x (2)
n )

⊗ · · · ⊗ μ(x (n)
1 , . . . , x (n)

n ),

(16.21)
where Δ(xi ) =

∑

(xi )

x (1)
i ⊗ · · · ⊗ x (n)

i .

The condition (16.21) can be written as

Δμ = μ⊗nωnΔ
⊗n, (16.22)

where ω : A⊗n2 → A⊗n2 is given by the relation

ω(x (1)
1 ⊗ · · · ⊗ x (n)

1 ⊗ x (1)
2 ⊗ x (2)

2 ⊗ · · · ⊗ x (n−1)
n ⊗ x (n)

n )

= x (1)
1 ⊗ x (1)

2 ⊗ · · · ⊗ x (1)
n ⊗ x (2)

1 ⊗ · · · ⊗ x (n)
n−1 ⊗ x (n)

n .

The proof of the following statement is straightforward.

Theorem 16.5 Let (A, μ, η,Δ, ε) be a finite-dimensional unital n-ary bialgebra of
associative type. Then (A∗,Δ∗, ε∗, μ∗, η∗) is a unital n-ary bialgebra of associative
type.

Theorem 16.6 Let (A, μ,Δ) be a bialgebra, then (A, μ̃, Δ̃) is a ternary totally
associative bialgebra.

Proof The compatibility condition (16.21) for a ternary case can be reduced to

Δμ = μ⊗3τ37τ68τ24Δ
⊗3,
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where τi j is defined by

τi j (x1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ x j ⊗ · · · ⊗ · · · ) = x1 ⊗ · · · ⊗ x j ⊗ · · · ⊗ xi ⊗ · · · ⊗ · · · ,

and τi jτkl = τklτi j , τi j = τ j i , τi jτi j = idA for i, j �= k, l. Then,

Δ̃μ̃ = (Δ ⊗ idA)Δμ(μ ⊗ idA) = (Δ ⊗ idA)μ⊗2τ23Δ
⊗2(μ ⊗ idA)

= (Δμ ⊗ μ)τ23(Δμ ⊗ Δ) = μ⊗3τ23(Δ
⊗2 ⊗ id⊗2

A )τ23(μ
⊗2 ⊗ id⊗2

A )τ23Δ
⊗3

= μ⊗3τ23τ45τ34(Δ ⊗ idA ⊗ Δ ⊗ idA)(μ⊗2 ⊗ id⊗2
A )τ23Δ

⊗3

= μ⊗3τ23τ45τ34(Δμ ⊗ μ ⊗ Δ ⊗ idA)τ23Δ
⊗3

= μ⊗3τ23τ45τ34(μ
⊗3 ⊗ id⊗3

A )τ23(Δ
⊗2 ⊗ id⊗2

A ⊗ Δ ⊗ idA)τ23Δ
⊗3

= μ⊗3τ23τ45τ34(μ
⊗3 ⊗ id⊗3

A )τ23τ45τ34(Δ ⊗ idA ⊗ Δ ⊗ idA ⊗ Δ ⊗ idA)Δ⊗3

= μ⊗3(μ ⊗ idA ⊗ μ ⊗ idA ⊗ μ ⊗ idA)τ37τ68τ24(Δ ⊗ idA ⊗ Δ ⊗ idA ⊗ Δ ⊗ idA)Δ⊗3

= μ̃⊗3τ37τ68τ24Δ̃
⊗3.

�

16.4 n-Ary Bialgebras of Hom-Associative Type

In this section, we recall the definitions of n-ary totally hom-associative algebras
and n-ary partially hom-associative algebras introduced in [8] (see also [54]) and
introduce n-ary alternate partially hom-associative algebras. Then we generalize
hom-associative coalgebras and hom-associative bialgebras to n-ary case.

Definition 16.18 An n-ary totally hom-associative algebra is a triple (A, μ, α) con-
sisting of a vector space A, a linearmapμ : A⊗n → A and a familyα = (αi )i=1,...,n−1

of linear maps αi : A → A satisfying

μ ◦ (μ ⊗ α1 ⊗ · · · ⊗ αn−1) = μ ◦ (α1 ⊗ μ ⊗ α2 ⊗ · · · ⊗ αn−1)

= · · · = μ ◦ (α1 ⊗ · · · ⊗ αn−1 ⊗ μ).
(16.23)

In terms of elements, condition (16.23) can be re-expressed by the following identi-
ties:

μ(μ(x1, . . . , xn), α1(xn+1), . . . , αn−1(x2n−1))

= μ(α1(x1), μ(x2, . . . , xn+1), α2(xn+2), . . . , αn−1(x2n−1))

· · · = μ(α1(x1), . . . , αi (xi ), μ(xi+1, . . . , xi+n), αi+1(xi+1+n), . . . , αn−1(x2n−1))

· · · = μ(α1(x1), . . . , αn−1(xn−1), μ(xn, . . . , x2n−1)), (16.24)

where x1, . . . , x2n−1 ∈ A.
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For n = 3, the condition (16.24) can be transformed to a simpler expression as:

μ(μ(x1, x2, x3), α1(x4), α2(x5)) = μ(α1(x1), μ(x2, x3, x4), α2(x5))

= μ(α1(x1), α2(x2), μ(x3, x4, x5)).

Definition 16.19 An n-ary weak totally hom-associative algebra is given by the
identity

μ(μ(x1, . . . , xn), α1(xn+1), . . . , αn−1(x2n−1))

= μ(α1(x1), . . . , αn−1(xn−1), μ(xn, . . . , x2n−1)).

Remark 16.9 An n-ary (weak) totally hom-associative algebra is called multiplica-
tive if α1 = α2 = · · · = αn−1 = α and α ◦ μ = μ ◦ α⊗n .

Theorem 16.7 Let (A, μ, α) be a multiplicative hom-associative algebra, then the
triple (A, μ̃ = μ ◦ (μ ⊗ α), α2) is a ternary totally hom-associative algebra.

Proof Since (A, μ, α) is a multiplicative hom-associative algebra,

μ̃(μ̃(x1, x2, x3), α
2(x4), α

2(x5)) = μ(μ(μ(μ(x1, x2), α(x3)), α
2(x4)), α

3(x5))

= μ(μ(μ(α(x1), μ(x2, x3)), α
2(x4)), α

3(x5))

= μ(μ(α2(x1), μ(μ(x2, x3), α(x4))), α
3(x5))

= μ(μ(α2(x1), μ̃(x2, x3, x4)), α
3(x5))

= μ̃(α2(x1), μ̃(x2, x3, x4), α
2(x5)).

Similarly, we can prove that

μ̃(μ̃(x1, x2, x3), α
2(x4), α

2(x5)) = μ̃(α2(x1), α
2(x2), μ̃(x3, x4, x5)). �

Definition 16.20 An n-ary partially hom-associative algebra is a triple (A, μ, α)

consisting of a vector space A, a linear map μ : A⊗n → A and a family α =
(αi )i=1,...,n−1 of linear maps αi : A → A satisfying

μ ◦ (μ ⊗ α1 ⊗ · · · ⊗ αn−1)+ μ ◦ (α1 ⊗ μ ⊗ α2 ⊗ · · · ⊗ αn−1)

+ · · · + μ ◦ (α1 ⊗ · · · ⊗ αn−1 ⊗ μ) = 0.
(16.25)

In terms of elements, the condition (16.25) becomes:

n−1∑

i=0
μ(α1(x1), . . . , αi (xi ), μ(xi+1, . . . , xi+n),

αi+1(xi+1+n), . . . , αn−1(x2n−1)) = 0,

where x1, . . . , x2n−1 ∈ A.
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For n = 3, it simply reads:

μ(μ(x1, x2, x3), α1(x4), α2(x5))+μ(α1(x1), μ(x2, x3, x4), α2(x5))

+μ(α1(x1), α2(x2), μ(x3, x4, x5)) = 0.

Definition 16.21 An n-ary alternate partially hom-associative algebra (A, μ, α) is
a triple consisting of a vector space A, a linear map μ : A⊗n → A and a family
α = (αi )i=1,...,n−1 of linear maps αi : A → A satisfying

μ ◦ (μ ⊗ α1 ⊗ · · · ⊗ αn−1) − μ ◦ (α1 ⊗ μ ⊗ α2 ⊗ · · · ⊗ αn−1)

+ · · · + (−1)n−1μ ◦ (α1 ⊗ · · · ⊗ αn−1 ⊗ μ) = 0.
(16.26)

In terms of elements, condition (16.26) can be expressed by the following identities:

n−1∑

i=0
(−1)iμ(α1(x1), . . . , αi (xi ), μ(xi+1, . . . , xi+n), αi+1(xi+1+n),

. . . , αn−1(x2n−1)) = 0,

where x1, . . . , x2n−1 ∈ A.

For n = 3, we obtain the formula:

μ(μ(x1, x2, x3), α1(x4), α2(x5))−μ(α1(x1), μ(x2, x3, x4), α2(x5))

+μ(α1(x1), α2(x2), μ(x3, x4, x5)) = 0.

Remark 16.10 An n-ary (alternate) partially hom-associative algebra is called mul-
tiplicative if α1 = α2 = · · · = αn−1 = α and α ◦ μ = μ ◦ α⊗n .

Remark 16.11 An n-ary totally hom-associative algebra A, (resp. n-ary partially
hom-associative algebra, or n-ary alternate partially hom-associative algebra), is
called unital if there exists a linear map η : k → A satisfying the condition (16.18)
and ηαi = η for i = 1, . . . , n − 1. The unit element is 1A = η (1k) .

The morphisms of n-ary algebras of hom-associative type are defined as follows.

Definition 16.22 Let (A, μ, α) and (A′, μ′, α′) be two n-ary totally hom-associative
algebras, (resp. n-ary partially hom-associative algebras, or n-ary alternate par-
tially hom-associative algebras). A linear map f : A → A′ is an n-ary totally hom-
associative algebra, (resp. n-ary partially hom-associative algebra, or n-ary alternate
partially hom-associative algebra), morphism, if it satisfies

f (μ(x1, . . . , xn)) = μ′( f (x1), . . . , f (xn)) and f ◦ αi = α′
i ◦ f,
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for all x1, . . . , xn ∈ A and i = 1, · · · , n − 1. It is said to be aweak morphism, if only
the first condition holds.

Definition 16.23 An n-ary totally hom-associative coalgebra is a triple (A,Δ, α)

consisting of a vector space A, a linear map Δ : A → A⊗n and a family α =
(αi )i=1,...,n−1 of linear maps αi : A → A satisfying

(Δ ⊗ α1 ⊗ · · · ⊗ αn−1) ◦ Δ = (α1 ⊗ Δ ⊗ α2 ⊗ · · · ⊗ αn−1) ◦ Δ

= · · · = (α1 ⊗ · · · ⊗ αn−1 ⊗ Δ) ◦ Δ.
(16.27)

For n = 3, the condition (16.27) gives

(Δ ⊗ α1 ⊗ α2) ◦ Δ = (α1 ⊗ Δ ⊗ α2) ◦ Δ = (α1 ⊗ α2 ⊗ Δ) ◦ Δ.

Definition 16.24 An n-ary weak totally hom-associative coalgebra is given by the
identity

(Δ ⊗ α1 ⊗ · · · ⊗ αn−1) ◦ Δ = (α1 ⊗ · · · ⊗ αn−1 ⊗ Δ) ◦ Δ. (16.28)

Remark 16.12 An n-ary (weak) totally hom-associative coalgebra is called multi-
plicative if α1 = α2 = · · · = αn−1 = α and α⊗n ◦ Δ = Δ ◦ α.

Theorem 16.8 Let (A,Δ, α) be a multiplicative hom-associative coalgebra, then
the triple (A, Δ̃ = (Δ ⊗ α) ◦ Δ,α2) is a ternary totally hom-associative coalgebra.

Proof Since (A,Δ, α) is a hom-associative coalgebra, we have

(
Δ̃ ⊗ α2 ⊗ α2) ◦ Δ̃ = (

(Δ ⊗ α) ◦ Δ ⊗ α2 ⊗ α2) ◦ (Δ ⊗ α) ◦ Δ

= (
(α ⊗ Δ) ◦ Δ ⊗ α2 ⊗ α2) ◦ (Δ ⊗ α) ◦ Δ

= (
(α ⊗ Δ ⊗ α) ◦ (Δ ⊗ α) ◦ Δ ⊗ α3) ◦ Δ

= (
(α ⊗ Δ ⊗ α) ◦ (α ⊗ Δ) ◦ Δ ⊗ α3) ◦ Δ

= (
α2 ⊗ (Δ ⊗ α) ◦ Δ ⊗ α2) ◦ (Δ ⊗ α) ◦ Δ = (

α2 ⊗ Δ̃ ⊗ α2) ◦ Δ̃.

Similarly, we can prove that
(
Δ̃ ⊗ α2 ⊗ α2

) ◦ Δ̃ = (
α2 ⊗ α2 ⊗ Δ̃

) ◦ Δ̃. �

Definition 16.25 An n-ary partially hom-associative coalgebra is a triple (A,Δ, α)

consisting of a vector space A, a linear map Δ : A → A⊗n, and a family α =
(αi )i=1,...,n−1 of linear maps αi : A → A satisfying

(Δ ⊗ α1 ⊗ · · · ⊗ αn−1+ α1 ⊗ Δ ⊗ α2 ⊗ · · · ⊗ αn−1

+ · · · + α1 ⊗ · · · ⊗ αn−1 ⊗ Δ) ◦ Δ = 0.
(16.29)
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For the particular n = 3, the condition (16.29) is reduced to

(Δ ⊗ α1 ⊗ α2) ◦ Δ + (α1 ⊗ Δ ⊗ α2) ◦ Δ + (α1 ⊗ α2 ⊗ Δ) ◦ Δ = 0.

Definition 16.26 An n-ary alternate partially hom-associative coalgebra is a triple
(A,Δ, α) consisting of a vector space A, a linear map Δ : A → A⊗n, and a family
α = (αi )i=1,...,n−1 of linear maps αi : A → A satisfying

(Δ ⊗ α1 ⊗ · · · ⊗ αn−1− α1 ⊗ Δ ⊗ α2 ⊗ · · · ⊗ αn−1

+ · · · + (−1)n−1α1 ⊗ · · · ⊗ αn−1 ⊗ Δ) ◦ Δ = 0.

For n = 3, we get a simpler expression:

(Δ ⊗ α1 ⊗ α2) ◦ Δ − (α1 ⊗ Δ ⊗ α2) ◦ Δ + (α1 ⊗ α2 ⊗ Δ) ◦ Δ = 0.

Remark 16.13 An n-ary (alternate) partially hom-associative coalgebra is called
multiplicative if α1 = α2 = · · · = αn−1 = α and α⊗n ◦ Δ = α ◦ Δ.

Remark 16.14 An n-ary totally hom-associative coalgebra A, (resp. n-ary partially
hom-associative coalgebra, or n-ary alternate partially hom-associative coalgebra),
is called unital if there exists a linear map ε : A → k satisfying the condition (16.20)
and αiε = ε for i = 1, . . . , n − 1. The unit element is 1k = ε (1A) .

The morphisms of n-ary coalgebras of hom-associative type are defined as follows.

Definition 16.27 Let (A,Δ, α) and (A′,Δ′, α′)be twon-ary totally hom-associative
coalgebras (resp. n-ary partially hom-associative coalgebras, or n-ary alternate par-
tially hom-associative coalgebras). A linear map f : A → A′ is an n-ary totally
hom-associative coalgebra morphism (resp. n-ary partially hom-associative coal-
gebra, or n-ary alternate partially hom-associative coalgebra morphism) if for
i = 1, · · · , n − 1,

f ⊗n ◦ Δ = Δ′ ◦ f, f ◦ αi = α′
i ◦ f.

It is said to be a weak morphism, if only the first condition holds.

Theorem 16.9 The triplet (A,Δ, α) defines a multiplicative n-ary totally
hom-associative coalgebras (resp. n-ary partially hom-associative coalgebras, or
n-ary alternate partially hom-associative coalgebras) if and only if (A∗,Δ∗, α∗) is
a multiplicative n-ary totally hom-associative algebras (resp. n-ary partially hom-
associative algebras, or n-ary alternate partially hom-associative algebras), where

〈Δ∗(ξ1 ⊗ · · · ⊗ ξn), x〉 = 〈ξ1 ⊗ · · · ⊗ ξn,Δ(x)〉 and 〈α∗(ξ1), x〉 = 〈ξ, α(x)〉,

for all ξ1, . . . , ξn ∈ A∗ and x ∈ A.

Proof Let ξ1, . . . , ξ2n−1 ∈ A∗ and x ∈ A. Then,
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〈Δ∗ ◦ (Δ∗ ⊗ α∗ ⊗ · · · ⊗ α∗)(ξ1 ⊗ · · · ⊗ ξ2n−1), x〉
= 〈ξ1 ⊗ · · · ⊗ ξ2n−1, (Δ ⊗ α ⊗ · · · ⊗ α) ◦ Δ(x)〉
= 〈ξ1 ⊗ · · · ⊗ ξ2n−1, (α ⊗ Δ ⊗ · · · ⊗ α) ◦ Δ(x)〉
= 〈Δ∗ ◦ (α∗ ⊗ Δ ∗ ⊗ · · · ⊗ α∗)(ξ1 ⊗ · · · ⊗ ξ2n−1), x〉. �

Definition 16.28 An n-ary totally hom-bialgebra, (resp. n-ary weak totally hom-
bialgebra, or n-ary partially hom-bialgebra, or n-ary alternate partially hom-
bialgebra), is a tuple (A, μ, η,Δ, ε, α) in which (A, μ, η, α) is a multiplicative uni-
tal n-ary totally hom-associative algebra, (resp. n-ary weak totally hom-associative
algebra, or n-ary partially hom-associative algebra, or n-ary alternate partially
hom-associative algebra), (A,Δ, ε, α) is a multiplicative unital n-ary totally hom-
associative coalgebra, (resp. n-ary weak totally hom-associative coalgebra, or n-
ary partially hom-associative coalgebra, or n-ary alternate partially hom-associative
coalgebra), satisfying the following compatibility condition

Δ ◦ μ(x1, . . . , xn) =
∑

(x1)···(xn)
μ(x(1)

1 , . . . , x(1)
n ) ⊗ μ(x(2)

1 , . . . , x(2)
n )

⊗ · · · ⊗μ(x(n)
1 , . . . , x(n)

n ),

(16.30)

where x1, . . . , xn ∈ A and Δ(xi ) =
∑

(xi )

x (1)
i ⊗ · · · ⊗ x (n)

i .

Theorem 16.10 Let (A, μ, η,Δ, ε, α) be a multiplicative unital hom-associative
bialgebra, then (A, μ̃, η, Δ̃, ε, α2) is a multiplicative unital ternary totally hom-
associative bialgebras.

Proof According to Propositions16.7 and 16.8, one needs only to show the compat-
ibility condition (16.30) holds. Indeed, using the multiplicativity of α,

Δ̃μ̃ = (Δ ⊗ α)Δμ(μ ⊗ α)

= (Δ ⊗ α)μ⊗2τ23Δ
⊗2(μ ⊗ α)

= (Δμ ⊗ μα⊗2)τ23(Δμ ⊗ α⊗2Δ)

=μ⊗3τ23(Δ
⊗2 ⊗ α⊗2)τ23(μ

⊗2 ⊗ α⊗2)τ23Δ
⊗3

=μ⊗3τ23τ45τ34(Δ ⊗ α ⊗ Δ ⊗ α)(μ⊗2 ⊗ α⊗2)τ23Δ
⊗3

=μ⊗3τ23τ45τ34(Δμ ⊗ μα⊗2 ⊗ α⊗2Δ ⊗ α2)τ23Δ
⊗3

=μ⊗3τ23τ45τ34(μ
⊗3 ⊗ α⊗3)τ23(Δ

⊗2 ⊗ α⊗2 ⊗ Δ ⊗ α)τ23Δ
⊗3

=μ⊗3τ23τ45τ34(μ
⊗3 ⊗ α⊗3)τ23τ45τ34(Δ ⊗ α ⊗ Δ ⊗ α ⊗ Δ ⊗ α)Δ⊗3

=μ⊗3(μ ⊗ α ⊗ μ ⊗ α ⊗ μ ⊗ α)τ37τ68τ24(Δ ⊗ α ⊗ Δ ⊗ α ⊗ Δ ⊗ α)Δ⊗3

= μ̃⊗3τ37τ68τ24Δ̃
⊗3.

�
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Proposition 16.5 Let A = (A, μ, η,Δ, ε) be an n-ary bialgebra of associative type,
and α : A −→ A be an n-ary bialgebra morphism, then Aα = (A, μα, η,Δα, ε, α)

is an n-ary hom-bialgebra of associative type. Hence (A, μαn , η,Δαn , ε, αn) is an
n-ary hom-bialgebra of associative type.

Proof First, we prove that (A, μα, α) is an n-ary hom-associative algebra. For all
x1, . . . , x2n−1 ∈ A,

μα(μα(x1, . . . , xn), α(xn+1), . . . , α(x2n−1))

= μα(α(μ(x1, . . . , xn)), α(xn+1), . . . , α(x2n−1))

= α(μ(α(μ(x1, . . . , xn)), α(xn+1), . . . , α(x2n−1)))

= α(μ(μ(α(x1), . . . , α(xn)), α(xn+1), . . . , α(x2n−1)))

= α(μ(α(x1), μ(α(x2), . . . , α(xn+1)), α(xn+2), . . . , α(x2n−1)))

= α(μ(α(x1), α(μ(x2, . . . , xn+1)), α(xn+2), . . . , α(x2n−1)))

= μα(α(x1), μα(x2, . . . , xn+1), α(xn+2), . . . , α(x2n−1)).

Similarly, we can prove that

μα(μα(x1, . . . , xn), α(xn+1), . . . , α(x2n−1))

· · · = μα(α(x1), . . . , α(xi ), μα(xi+1, . . . , xi+n), α(xi+1+n), . . . , α(x2n−1))

· · · = μα(α(x1), . . . , α(xn−1), μα(xn, . . . , x2n−1)).

Next, we show that (A,Δα, α) satisfies (16.27). Indeed, using the fact thatα⊗n ◦ Δ =
Δ ◦ α, we have

(Δα ⊗ α ⊗ · · · ⊗ α) ◦ Δα = ((Δ ◦ α) ⊗ α ⊗ · · · ⊗ α) ◦ Δ ◦ α

= ((α⊗n ◦ Δ) ⊗ α ⊗ · · · ⊗ α) ◦ Δ ◦ α

= ((α⊗2n−1 ◦ Δ) ⊗ idA ⊗ · · · ⊗ idA) ◦ Δ ◦ α

= α⊗2n−1(idA ⊗ Δ ⊗ idA ⊗ · · · ⊗ idA) ◦ Δ ◦ α

= (α ⊗ (α⊗n ◦ Δ) ⊗ α ⊗ · · · ⊗ α) ◦ Δ ◦ α

= (α ⊗ Δα ⊗ α ⊗ · · · ⊗ α) ◦ Δα.

Similarly, we can show that

(Δα ⊗ α ⊗ · · · ⊗ α) ◦ Δα = · · · = (α ⊗ · · · ⊗ α ⊗ Δα) ◦ Δα.

Now, it remains to prove the compatibility condition (16.21). From (16.22), the
condition may be written as Δαμα = μ⊗n

α ωnΔ
⊗n
α . This holds since

Δαμα = Δ ◦ α ◦ α ◦ μ = α⊗n ◦ Δμ ◦ α⊗n

= α⊗n ◦ (μ⊗nωnΔ
⊗n) ◦ α⊗n = (α ◦ μ)⊗nωn(Δ ◦ α)⊗n = μ⊗n

α ωnΔ
⊗n
α .

�
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16.5 From Infinitesimal (Hom)-Bialgebras to Ternary
Infinitesimal (Hom)-Bialgebras

In this section, we construct a ternary infinitesimal (hom)-bialgebra starting from an
infinitesimal (hom)-bialgebra with a necessary and sufficient condition.

16.5.1 From Infinitesimal Bialgebras to Ternary
Infinitesimal Bialgebras

Definition 16.29 An infinitesimal n-ary totally bialgebra, (resp. infinitesimal n-ary
weak totally bialgebra, or infinitesimal n-ary partially bialgebra, or infinitesimal
n-aryalternate partially bialgebra), is a quintuple (A, μ, η,Δ, ε) inwhich (A, μ, η)

is a unital n-ary totally associative algebra, (resp. n-ary weak totally algebra, or
n-ary partially algebra, or n-ary alternate partially algebra), (A,Δ, ε) is a unital
n-ary totally associative coalgebra, (resp. n-ary weak totally coalgebra, or n-ary
partially coalgebra, or n-ary alternate partially coalgebra), satisfying the following
compatibility condition:

Δ ◦ μ(x1, . . . , xn) = (idA ⊗ · · · ⊗ idA ⊗ ad(1)
μ (x2, . . . , xn))Δ(x1)

+ (idA ⊗ · · · ⊗ ad(2)
μ (x1, x3, . . . , xn) ⊗ idA)Δ(x2)

· · · + (idA ⊗ · · · ⊗ ad(i)
μ (x1, . . . , x̂i , . . . , xn) ⊗ · · · ⊗ idA)Δ(xi )

· · · + (ad(n)
μ (x1, . . . , xn−1) ⊗ idA ⊗ · · · ⊗ idA)Δ(xn),

where x1, . . . , xn ∈ A and

ad(i)
μ (x1, . . . , xn−1)(y) = μ(x1, . . . , xi−1, y, xi , . . . , xn−1).

Theorem 16.11 Let (A, μ, η,Δ, ε) be a finite-dimensional unital infinitisimal
n-ary bialgebra of associative type. Then (A∗,Δ∗, ε∗, μ∗, η∗) is a unital infinitesimal
n-ary bialgebra of associative type.

Proof Let x1, . . . , xn ∈ A and ξ1, . . . , ξn ∈ A∗, then we have

〈ξ1 ⊗ · · · ⊗ ξn,Δμ(x1, . . . , xn)〉 = 〈Δ∗(ξ1, . . . , ξn), μ(x1, . . . , xn)〉
= 〈μ∗Δ∗(ξ1, . . . , ξn), x1 ⊗ · · · ⊗ xn〉.

Similarly, we have

〈ξ1 ⊗ · · · ⊗ ξn, (idA ⊗ · · · ⊗ ad(i)
μ (x1, . . . , x̂i , . . . , xn) ⊗ · · · ⊗ idA)Δ(xi )〉

= 〈(idA∗ ⊗ · · · ⊗ ad(n−i)
μ∗ (ξ1, . . . , ξ̂n−i , . . . , ξn) ⊗ · · · ⊗ idA∗ )Δ∗(ξn−i ), x1 ⊗ · · · ⊗ xn〉. �
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Theorem 16.12 Let (A, μ,Δ) be an infinitesimal bialgebra, then (A, μ̃, Δ̃) is an
infinitesimal ternary totally hom-bialgebra if and only if

(idA ⊗ μ̃ ⊗ idA)τ12τ45(idA ⊗ Δ̃ ⊗ idA)

=(μ ⊗ μ ⊗ idA)(idA ⊗ Δ ⊗ Δ) + (idA ⊗ μ̃ ⊗ idA)(Δ ⊗ idA ⊗ Δ)

+(μ ⊗ idA ⊗ μ)(idA ⊗ Δ̃ ⊗ idA) + (idA ⊗ μ ⊗ μ)(Δ ⊗ Δ ⊗ idA). (16.31)

Proof Let (A, μ,Δ) be an infinitesimal bialgebra. Then, the compatibility condition
(16.10) can be written as Δμ = (μ ⊗ idA)(idA ⊗ Δ) + (idA ⊗ μ)(Δ ⊗ idA). The
compatibility condition for an infinitesimal ternary totally hom-bialgebra (A, μ,Δ)

can be written as

Δμ = (μ ⊗ id⊗2
A )(id⊗2

A ⊗ Δ)+ (idA ⊗ μ ⊗ idA)τ12τ45(idA ⊗ Δ ⊗ idA)

+ (id⊗2
A ⊗ μ)(Δ ⊗ id⊗2

A ).

Thus,

Δ̃μ̃ = (Δ ⊗ idA)Δμ(μ ⊗ idA)

= (Δ ⊗ idA)(μ ⊗ idA)(idA ⊗ Δ)(μ ⊗ idA)

+ (Δ ⊗ idA)(idA ⊗ μ)(Δ ⊗ idA)(μ ⊗ idA)

= (Δμ ⊗ idA)(μ ⊗ id⊗2
A )(id⊗2

A ⊗ Δ) + (id⊗2
A ⊗ μ)(Δ ⊗ id⊗2

A )(Δμ ⊗ idA)

= (μ ⊗ id⊗2
A )(idA ⊗ Δ ⊗ idA)(μ ⊗ id⊗2

A )(id⊗2
A ⊗ Δ)

+ (idA ⊗ μ ⊗ idA)(Δ ⊗ id⊗2
A )(μ ⊗ id⊗2

A )(id⊗2
A ⊗ Δ)

+ (id⊗2
A ⊗ μ)(Δ ⊗ id⊗2

A )(μ ⊗ id⊗2
A )(idA ⊗ Δ ⊗ idA)

+ (id⊗2
A ⊗ μ)(Δ ⊗ id⊗2

A )(idA ⊗ μ ⊗ idA)(Δ ⊗ id⊗2
A )

= (μ ⊗ id⊗2
A )(μ ⊗ id⊗3

A )(id⊗2
A ⊗ Δ ⊗ idA)(id

⊗2
A ⊗ Δ)

+ (idA ⊗ μ ⊗ idA)(Δμ ⊗ id⊗2
A )(id⊗2

A ⊗ Δ)

+ (id⊗2
A ⊗ μ)(Δμ ⊗ id⊗2

A )(idA ⊗ Δ ⊗ idA)

+ (id⊗2
A ⊗ μ)(id⊗2

A ⊗ μ ⊗ idA)(Δ ⊗ id⊗3
A )(Δ ⊗ id⊗2

A )

= (μ̃ ⊗ id⊗2
A )(id⊗2

A ⊗ Δ̃)

+ (idA ⊗ μ ⊗ idA)(Δμ ⊗ id⊗2
A )(id⊗2

A ⊗ Δ)

+ (id⊗2
A ⊗ μ)(Δμ ⊗ id⊗2

A )(idA ⊗ Δ ⊗ idA)

+ (id⊗2
A ⊗ μ̃)(Δ̃ ⊗ id⊗2

A )

= (μ̃ ⊗ id⊗2
A )(id⊗2

A ⊗ Δ̃) + (id⊗2
A ⊗ μ̃)(Δ̃ ⊗ id⊗2

A )

+ (idA ⊗ μ ⊗ idA)(μ ⊗ id⊗3
A )(idA ⊗ Δ ⊗ id⊗2

A )(id⊗2
A ⊗ Δ)

+ (idA ⊗ μ ⊗ idA)(idA ⊗ μ ⊗ id⊗2
A )(Δ ⊗ id⊗3

A )(id⊗2
A ⊗ Δ)

+ (id⊗2
A ⊗ μ)(μ ⊗ id⊗3

A )(idA ⊗ Δ ⊗ id⊗2
A )(idA ⊗ Δ ⊗ idA)
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+ (id⊗2
A ⊗ μ)(idA ⊗ μ ⊗ id⊗2

A )(Δ ⊗ id⊗3
A )(idA ⊗ Δ ⊗ idA)

= (μ̃ ⊗ id⊗2
A )(id⊗2

A ⊗ Δ̃) + (id⊗2
A ⊗ μ̃)(Δ̃ ⊗ id⊗2

A )

+ (μ ⊗ μ ⊗ idA)(idA ⊗ Δ ⊗ Δ) + (idA ⊗ μ̃ ⊗ idA)(Δ ⊗ idA ⊗ Δ)

+ (μ ⊗ idA ⊗ μ)(idA ⊗ Δ̃ ⊗ idA) + (idA ⊗ μ ⊗ μ)(Δ ⊗ Δ ⊗ idA)

= (μ̃ ⊗ id⊗2
A )(id⊗2

A ⊗ Δ̃) + (id⊗2
A ⊗ μ̃)(Δ̃ ⊗ id⊗2

A )

+ (idA ⊗ μ̃ ⊗ idA)τ12τ45(idA ⊗ Δ̃ ⊗ idA).

�

Example 16.1 Let (A, μ,Δ) be an infinitesimal bialgebra with a basis {e1, e2},
given in [60], where μ : A ⊗ A → A and Δ : A → A ⊗ A are defined by

μ(e1 ⊗ e1) = e1, μ(ei ⊗ e j ) = 0, i, j = 1, 2, (i, j) �= (1, 1),

Δ(e1) = 0, Δ(e2) = b22e2 ⊗ e2,

where b22 is a parameter in K.
Using Theorem 16.12, we can construct an infinitesimal ternary totally associative
bialgebra on A given by

μ̃ : A ⊗ A ⊗ A → A, μ̃(e1 ⊗ e1 ⊗ e1) = e1,

μ̃(ei ⊗ e j ⊗ ek) = 0, i, j, k = 1, 2, (i, j, k) �= (1, 1, 1),

Δ̃ : A → A ⊗ A ⊗ A, Δ̃(e1) = 0, Δ̃(e2) = b222e2 ⊗ e2 ⊗ e2,

if and only if (16.31) holds.

Example 16.2 We consider the 3-dimensional infinitisimal bialgebra given in [60]
defined with respect to a basis {e1, e2, e3} by

μ(e1 ⊗ e1) = e1, μ(e2 ⊗ e2) = μ(e2 ⊗ e3) = μ(e3 ⊗ e2) = μ(e3 ⊗ e3) = e2 + e3,

Δ(e1) = 0, Δ(e2) = −c22e2 ⊗ e2 − c23e2 ⊗ e3 − c32e3 ⊗ e2 − c33e3 ⊗ e3,

Δ(e3) = c22e2 ⊗ e2 + c23e2 ⊗ e3 + c32e3 ⊗ e2 + c33e3 ⊗ e3,

where c22, c23, c32, c33 are parameters in K.
Then, according to Theorem 16.12, we obtain an infinitesimal ternary totally

associative bialgebra defined by

μ̃ : A ⊗ A ⊗ A → A, μ̃(e1 ⊗ e1 ⊗ e1) = e1,

μ̃(e2 ⊗ e2 ⊗ e2) = μ̃(e2 ⊗ e2 ⊗ e3) = μ̃(e2 ⊗ e3 ⊗ e2)

= μ̃(e2 ⊗ e3 ⊗ e3) = μ̃(e3 ⊗ e2 ⊗ e2)

= μ̃(e3 ⊗ e2 ⊗ e3) = μ̃(e3 ⊗ e3 ⊗ e2) = μ̃(e3 ⊗ e3 ⊗ e3) = 2(e2 + e3),

Δ̃ : A → A ⊗ A ⊗ A, Δ̃(e1) = 0,
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Δ̃(e2) = (c22 − c32)(c22e2 ⊗ e2 ⊗ e2 + c23e2 ⊗ e3 ⊗ e2
+ c32e3 ⊗ e2 ⊗ e2 + c33e3 ⊗ e3 ⊗ e2) + (c23 − c33)(c22e2 ⊗ e2 ⊗ e3
+ c23e2 ⊗ e3 ⊗ e3 + c32e3 ⊗ e2 ⊗ e3 + c33e3 ⊗ e3 ⊗ e3),

Δ̃(e3) = (c22 − c32)(−c22e2 ⊗ e2 ⊗ e2 − c23e2 ⊗ e3 ⊗ e2 − c32e3 ⊗ e2 ⊗ e2
− c33e3 ⊗ e3 ⊗ e2) + (c23 − c33)(−c22e2 ⊗ e2 ⊗ e3 − c23e2 ⊗ e3 ⊗ e3
− c32e3 ⊗ e2 ⊗ e3 − c33e3 ⊗ e3 ⊗ e3),

if and only if (16.31) holds.

16.5.2 From Infinitesimal Hom-Bialgebras to Ternary
Infinitesimal Hom-Bialgebras

Definition 16.30 An infinitesimal n-ary totally hom-bialgebra, (resp. infinitesimal
n-ary weak totally hom-bialgebra, or infinitesimal n-ary partially hom-bialgebra, or
infinitesimal n-aryalternate partially hom-bialgebra), is a sextuple (A, μ, η,Δ, ε, α)

in which (A, μ, η, α) is a unital n-ary totally hom-associative algebra, (resp. n-ary
weak totally hom-associative algebra, or n-ary partially hom-associative algebra,
or n-ary alternate partially hom-associative algebra), (A,Δ, ε, α) is a unital n-ary
totally hom-associative coalgebra, (resp. n-ary weak totally hom-associative coalge-
bra, or n-ary partially hom-associative coalgebra, or n-ary alternate partially hom-
associative coalgebra), satisfying the following compatibility condition:

Δ ◦ μ(x1, . . . , xn) = (α1 ⊗ · · · ⊗ αn−1 ⊗ ad(1)
μ (α1(x2), . . . , αn−1(xn)))Δ(x1)

+ (α1 ⊗ · · · ⊗ ad(2)
μ (α1(x1), α2(x3), . . . , αn−1(xn)) ⊗ · · · ⊗ αn−1)Δ(x2)

· · · + (ad(n)
μ (α1(x1), . . . , αn−1(xn−1)) ⊗ α1 ⊗ · · · ⊗ αn−1)Δ(xn), (16.32)

where x1, . . . , xn ∈ A, and

ad(i)
μ (x1, . . . , xn−1)(y) = μ(x1, . . . , xi−1, y, xi , . . . , xn−1).

Amorphism of infinitesimal n-ary hom-bialgebra is a linear map that commutes with
the twisting maps, the multiplications, and the comultiplications.

Definition 16.31 An infinitesimal n-ary totally hom-bialgebra, (resp. infinitesimal
n-ary weak totally hom-bialgebra, or infinitesimal n-ary partially hom-bialgebra, or
infinitesimal n-ary alternate partially hom-bialgebra) (A, μ,Δ, α) is multiplicative
if (αi )1≤i≤n−1 with α1 = α2 = · · · = αn−1 = α and satisfying
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α ◦ μ = μ ◦ α⊗n,Δ ◦ α = α⊗n ◦ Δ,

Δ ◦ μ(x1, . . . , xn) = (α ⊗ · · · ⊗ α ⊗ ad(1)
μ (α(x2), . . . , α(xn)))Δ(x1)

+ (α ⊗ · · · ⊗ ad(2)
μ (α(x1), α(x3) ⊗ α(xn)) ⊗ · · · ⊗ α)Δ(x2)

· · · + (ad(n)
μ (α(x1), . . . , α(xn−1)) ⊗ α ⊗ · · · ⊗ α)Δ(xn),

for any x1, . . . , xn ∈ A.
Furthermore, if α is bijective then the infinitesimal n-ary totally hom-bialgebra,

(resp. infinitesimal n-ary weak totally hom-bialgebra, or infinitesimal n-ary partially
hom-bialgebra, or infinitesimal n-ary alternate partially hom-bialgebra) (A, μ,Δ, α)

is called a regular infinitesimal n-ary totally hom-bialgebra, (resp. infinitesimal
n-ary weak totally hom-bialgebra, or infinitesimal n-ary partially hom-bialgebra,
or infinitesimal n-ary alternate partially hom-bialgebra).

In the case of multiplicative infinitesimal ternary totally associative hom-bialgebra
(A, μ,Δ, α) can be written as:

Δμ = (μ ⊗ α⊗2)(α⊗2 ⊗ Δ) + (α ⊗ μ ⊗ α)τ12τ45(α ⊗ Δ ⊗ α) + (α⊗2 ⊗ μ)(Δ ⊗ α⊗2).

Example 16.3 1) Infinitesimal n-ary bialgebra is recovered if α1 = · · · = αn−1 =
id.

2) Ann-ary hom-associative algebra (A, μ, α)becomes an infinitesimaln-ary hom-
bialgebra when equipped with the trivial comultiplication Δ = 0. Likewise, an
n-ary hom-coassociative coalgebra (A,Δ, α) becomes an infinitesimal n-ary
hom-bialgebra when equipped with the trivial multiplication μ = 0.

Proposition 16.6 Let (A, μ,Δ, α) be a multiplicative infinitesimal n-ary hom-
bialgebra, (resp. infinitesimal n-ary weak totally hom-bialgebra, or infinitesimal n-
ary partially hom-bialgebra, or infinitesimal n-ary alternate partially
hom-bialgebra). Then so are (A,−μ,Δ, α), (A, μ,−Δ,α).

Proof By a direct computation, we obtain the results. �

Theorem 16.13 Let (A, μ,Δ, α) be a multiplicative finite-dimensional infinitesi-
mal n-ary hom-bialgebra, (resp. infinitesimal n-ary weak totally hom-bialgebra, or
infinitesimal n-ary partially hom-bi-algebra, or infinitesimal n-ary alternate par-
tially hom-bialgebra). Then so is (A∗,Δ∗, μ∗, α∗).

Proof The same approach approved in the proof of Theorem 16.11. �

The following result shows that an infinitesimal n-ary hom-bialgebra deforms into
an another infinitesimal n-ary hom-bialgebra along any self-morphism. It gives an
efficient method for constructing Hom-Lie bialgebras.

Proposition 16.7 Let (A, μ,Δ, α) be an infinitesimal n-ary hom-bialgebra and
β : A → A be a morphism. Then Aβ = (

A, μβ,Δβ, α ◦ β
)
is an infinitesimal n-ary

hom-bialgebra, where μβ = β ◦ μ and Δβ = Δ ◦ β.
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Proof One needs only to show that the compatibility condition (16.32) holds. Indeed,

Δβ ◦ μβ(x1, . . . , xn) = Δ ◦ β ◦ β ◦ μ = (β2)⊗n ◦ Δ ◦ μ(x1, . . . , xn)

On the other hand, using the fact that Δ(xi ) = ∑
(xi )

x (1)
i ⊗ · · · ⊗ x (n)

i , for x1, . . . ,
xn ∈ A

(β ◦ α1 ⊗ · · · ⊗ β ◦ αn−1 ⊗ ad(1)
μβ

(β ◦ α1(x2), . . . , β ◦ αn−1(xn)))Δβ(x1)

= (β ◦ α1 ◦ β(x (1)
1 ) ⊗ · · · ⊗ β ◦ αn−1 ◦ β(x (n−1)

1 ) ⊗ μβ(β(x (n)
1 ),

β ◦ α1(x2), . . . , β ◦ αn−1(xn)))

= (β2 ◦ α1(x
(1)
1 ) ⊗ · · · ⊗ β2 ◦ αn−1(x

(n−1)
1 ) ⊗ μ(β2(x (n)

1 ),

β2 ◦ α1(x2), . . . , β
2 ◦ αn−1(xn)))

= (β2)⊗n(α1(x
(1)
1 ) ⊗ · · · ⊗ αn−1(x

(n−1)
1 ) ⊗ μ(x (n)

1 , α1(x2), . . . , αn−1(xn)))

= (β2)⊗n ◦ (α1 ⊗ · · · ⊗ αn−1 ⊗ ad(1)
μ (α1(x2), . . . , αn−1(xn)))Δ(x1),

(β ◦ α1 ⊗ · · · ⊗ ad(2)
μβ

(β ◦ α1(x1), β ◦ α2(x3), . . . , β ◦ αn−1(xn))

⊗ · · · ⊗ β ◦ αn−1)Δ(x2)

= (β ◦ α1 ◦ β(x (1)
2 ) ⊗ · · · ⊗ μβ(β ◦ α1(x1), β(x (2)

2 ), β ◦ α2(x3), . . . , β ◦ αn−1(xn))

⊗ · · · ⊗ β ◦ αn−1 ◦ β(x (n)
2 ))

= (β2 ◦ α1(x
(1)
2 ) ⊗ · · · ⊗ μ(β2 ◦ α1(x1), β

2(x (2)
2 ), β2 ◦ α2(x3), . . . , β

2 ◦ αn−1(xn))

⊗ · · · ⊗ β2 ◦ αn−1(x
(n)
2 ))

= (β2)⊗n(α1(x
(1)
2 ) ⊗ · · · ⊗ μ(α1(x1), x

(2)
2 , α2(x3), . . . , αn−1(xn)) ⊗ · · · ⊗ αn−1(x

(n)
2 ))

= (β2)⊗n ◦ (α1 ⊗ · · · ⊗ ad(2)
μ (α1(x1), α2(x3), . . . , αn−1(xn)) ⊗ · · · ⊗ αn−1)Δ(x2),

(ad(n)
μβ

(β ◦ α1(x1), . . . , β ◦ αn−1(xn−1)) ⊗ β ◦ α1 ⊗ · · · ⊗ β ◦ αn−1)Δβ(xn)

= (μβ(β ◦ α1(x1), . . . , β ◦ αn−1(xn−1), β(x1n )) ⊗ β ◦ α1 ◦ β(x (2)
n )

⊗ · · · ⊗ β ◦ αn−1 ◦ β(x (n)
n ))

= (μ(β2 ◦ α1(x1), . . . , β
2 ◦ αn−1(xn−1), β

2(x1n )) ⊗ β2 ◦ α1(x
2
n )

⊗ · · · ⊗ β2 ◦ αn−1(x
n
n ))

= (β2)⊗n(μ(α1(x1), . . . , αn−1(xn−1), x
1
n ) ⊗ α1(x

2
n ) ⊗ · · · ⊗ αn−1(x

n
n ))

= (β2)⊗n ◦ (ad(n)
μ (α1(x1), . . . , αn−1(xn−1)) ⊗ α1 ⊗ · · · ⊗ αn−1)Δ(xn).

�

Remark 16.15 Let (A, μ,Δ, α) be a regularmultiplicative infinitesimal n-ary hom-
bialgebra. Then Aα−1 = (A, μα−1 ,Δα−1) is an infinitesimal n-ary bialgebra, where
μα−1 = α−1 ◦ μ and Δα−1 = Δ ◦ α−1.

Theorem 16.14 Let (A, μ,Δ, α) be an infinitesimal hom-bialgebra, then
(A, μ̃, Δ̃, α2) is an infinitesimal ternary totally associative hom- bialgebra if and
only if
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(α2 ⊗ μ̃ ⊗ α2)τ12τ45(α
2 ⊗ Δ̃ ⊗ α2)

= (αμ ⊗ αμ ⊗ α2)(α2 ⊗ Δα ⊗ Δα) + (α2 ⊗ μ̃ ⊗ α2)(Δα ⊗ α2 ⊗ Δα)

+ (αμ ⊗ α2 ⊗ αμ)(α2 ⊗ Δ̃ ⊗ α2) + (α2 ⊗ αμ ⊗ αμ)(Δα ⊗ Δα ⊗ α2).

Proof Let (A, μ,Δ, α) be an infinitesimal hom-bialgebra. Then

Δ̃μ̃ = (Δ ⊗ α)Δμ(μ ⊗ α)

= (Δ ⊗ α)(μ ⊗ α)(α ⊗ Δ)(μ ⊗ α) + (Δ ⊗ α)(α ⊗ μ)(Δ ⊗ α)(μ ⊗ α)

= (μ̃ ⊗ (α⊗2)2)((α⊗2)2 ⊗ Δ̃)

+ (α ⊗ μ ⊗ α)(Δμ ⊗ (α⊗2)2)(α⊗2 ⊗ Δ)

+ (α⊗2 ⊗ μ)(Δμ ⊗ (α⊗2)2)(α ⊗ Δ ⊗ α)

+ ((α⊗2)2 ⊗ μ̃)(Δ̃ ⊗ (α⊗2)2)

= (μ̃ ⊗ (α⊗2)2)((α⊗2)2 ⊗ Δ̃) + ((α⊗2)2 ⊗ μ̃)(Δ̃ ⊗ (α⊗2)2)

+ (αμ ⊗ αμ ⊗ α2)(α2 ⊗ Δα ⊗ Δα) + (α2 ⊗ μ̃ ⊗ α2)(Δα ⊗ α2 ⊗ Δα)

+ (αμ ⊗ α2 ⊗ αμ)(α2 ⊗ Δ̃ ⊗ α2) + (α2 ⊗ αμ ⊗ αμ)(Δα ⊗ Δα ⊗ α2)

= (μ̃ ⊗ (α⊗2)2)((α⊗2)2 ⊗ Δ̃) + ((α⊗2)2 ⊗ μ̃)(Δ̃ ⊗ (α⊗2)2)

+ (α2 ⊗ μ̃ ⊗ α2)τ12τ45(α
2 ⊗ Δ̃ ⊗ α2).

�
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Chapter 17
Network Rewriting Utility Description

Lars Hellström

Abstract This chapter describes the author’s computer program for doing network
rewriting calculations, in its capacity as a tool used for scientific exploration—more
precisely to systematically discover non-obvious consequences of the axioms for
various algebraic structures. In particular this program can cope with algebraic struc-
tures, such as bi- and Hopf algebras, that mix classical operations with co-operations.

Keywords Network rewriting · Hopf algebras · Type II hom-associativity

MSC2020 Classification 68W30 · 68V05 · 18M30 · 18-04

17.1 Introduction

Due to the asynchronous publication schedule, the results presented in my formal
talk at the SPAS 2019 conference did some months later appear in my chapter [7] of
the SPAS 2017 proceedings, so then what more was there on which I could report
for 2019? Well, conferences consist not only of scheduled talks, but also of informal
discussions between and after talks, that in some cases led to me promptly producing
several dozen PDF pages of diagrammatic calculations based on axiom sets raised
by other participants. Where did this come from? Obviously I must have a program
which produces such calculations, and since said utility has not previously been
described in the scientific literature, this might be as good a place as any to do so.

In spirit, the program in question is quite similar to the seminal Knuth–Bendix
completion utility [13], but with the important difference that it works with networks
(a kind of Directed Acyclic Graph) rather than treelike terms as the objects of rewrit-
ing. This permits exploring many novel algebraic theories, for example that of bi-
and Hopf algebras, that defy even being formulated within the language of classical
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term rewriting due to the presence of co-operations such as � and ε. On the one
hand this transition from trees to DAGs is a radical proposal that requires rebuilding
from scratch most of the mathematical formula language, but on the other hand the
overall structure of the computation is the familiar completion of a rewrite system,
and the abstract theory of that remains applicable.

Without already getting into the technicalities, the purpose of the program can be
characterised as theory exploration. It starts from three pieces of information:

(i) a signature listing the operations (and co-operations) in the theory—for exam-
ple a hom-algebra has one binary operation called ‘multiplication’ and one
unary operation known as the ‘hom’—which determines the language of
expressions in the theory to explore,

(ii) the axioms of the theory, in the form of a set of given equalities l = r between
expressions in the theory,

(iii) an ordering of the expressions in the theory, which is used to orient equalities
into rewrite rules—the smaller side in an equality is considered to be “simpler”
as in ‘more simplified’.

One intermediate operation the program can use this information for is to reduce
arbitrary expressions in the theory by rewriting them to a “maximally simplified”
normal form, by applying known equalities of expressions. A higher level operation
is to seek new nontrivial equalities by constructing expressions that can be simplified
in several different ways (ambiguities), and then checking whether both lead to the
same normal form; if not, the program has discovered a lemma which it adds to its
database of known equalities in the theory under consideration. New equalities give
rise to new reductions and potentially new ambiguities, which in turn may produce
new lemmas; this completion process need not terminate. Therefore the user would
typically start the program, let it run for a while, and then inspect what lemmas have
been discovered; there are several interfaces for this (Sect. 17.5.3). The results can
be exported, likewise in several forms. The completion process can be stopped and
resumed at a later time, should the user so desire.

As a concrete example, if one wishes to explore the theory of hom-associative
algebras using this program then one would feed it

the signature Ω =
{

,

}
with axiom

⎡
⎣

⎤
⎦ ≡

⎡
⎣

⎤
⎦

where however it should be observed that the exact representation of these things is
a nontrivial matter (which we shall return to in Sects. 17.4.1 and 17.5.2). The first
lemma proved is ⎡

⎢⎣
⎤
⎥⎦ ≡

⎡
⎢⎣

⎤
⎥⎦ ,
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and the proof is merely

⎡
⎢⎣

⎤
⎥⎦ ≡

⎡
⎢⎣

⎤
⎥⎦ ≡

⎡
⎢⎣

⎤
⎥⎦ ≡

⎡
⎢⎣

⎤
⎥⎦ .

The program discovers this by first constructing the second of these steps as the site
of an ambiguity—an expression which can be rewritten in two different ways—and
then reducing either to a normal form:

⎡
⎢⎣

⎤
⎥⎦ ←

⎡
⎢⎣

⎤
⎥⎦ →

⎡
⎢⎣

⎤
⎥⎦ →

⎡
⎢⎣

⎤
⎥⎦ .

The two outermost steps here are not equal, but they are equivalent modulo the given

axiom despite both being normal forms with respect to the rewrite rule

[ ]
→

[ ]
, so apparently their equivalence is a nontrivial consequence of the axiom,

and thus worth turning into a lemma, which in turn gives rise to a new rewrite rule,
that on the one hand changes which expressions are normal forms and on the other
hand gets involved in additional ambiguities. Thus the cycle goes on.

Mathematically, the hardness of the results produced by the program varies
depending on what kind of results these are. The individual lemmas are quite solid,
as the program records all steps taken in deriving them and can convert these into
an explicit proof. Results on the quotient by the given axioms typically require more
manual work to be rigorously established; basic rewriting theory conditions such
conclusions upon having a confluent rewrite system, which one would only know
after running the completion procedure to termination, however for fundamental log-
ical reasons (it would decide the Halting Problem) that is not always possible, and
in practice it also can be infeasible (finishing may take way more time than we are
prepared to wait, memory requirements may exceed what is available). None the less
it can be possible to draw conclusions from incomplete calculations, for example if
they suggest a verifiable conjecture about what the completed rewrite system would
look like [6], or if it can be shown that sufficiently small normal forms will remain
so forever since any lemmas which still remain to be discovered are all too large to
have an effect on them [9].

Since this is a tool description rather than a traditional mathematics paper, its
contribution to science lies not in theorems proved or results formally stated—there
are technically some in the next section, although only as part of a greater example—
but in discussingmethods, approaches, and trade-offs. The primary audience for these
discussions is expected to be another researcher seeking to reproduce this work—in
whole or in part, for the same underlyingmodel or for a different one, to the same end
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or to a different one—because reproducibility is a scientific virtue and supporting it
is every researcher’s responsibility. Concretely Sects. 17.4 and 17.5 contain a number
of paragraphs labelled ‘Topic’ that each discusses one specific issue, aspect, or idea
that went into the implementation of the completion utility. Having them discussed
explicitly and separately provides for accurate citing and facilitates reviewing the
greater body of work on network rewriting to which this chapter belongs.

This chapter is not a user’s manual for the rewriting utility, even if it at times
mentions details on how a usermight accomplish various operations. The utility is not
yet in such a polished form that one could hope to make use of it without knowledge
of its internal composition. This chapter may however suffice for the more restricted
purpose of decoding the records of computation created by the utility, which would
be relevant if one wishes to archive such records, for example to satisfy requirements
from funding agencies on Open Science Data.

Section17.2 shows in more detail the SPAS conference problem alluded to above.
Section17.3 provides a brief characterisation of the completion utility as a software
artefact. Section17.4 discusses generic operations on networks whereas Sect. 17.5
deals specifically with combining those operations into a completion utility. Finally
Sect. 17.6 explains where the completion utility source code can be found.

17.2 Example: The Conference Problem

The Type II hom-associativity identity can be written

μ
(
x, α

(
μ(y, z)

)) = μ
(
α
(
μ(x, y)

)
, z

)
(17.1)

where μ denotes the multiplication operation and α denotes the hom (also known as
twisting) map. Alexis Langlois-Rémillard was interested in combining this with two
further axioms: that α is an involution

α
(
α(x)

) = x (17.2)

and that α is an antihomomorphism of the algebra

α
(
μ(x, y)

) = μ
(
α(y), α(x)

)
. (17.3)

When presented with such an unfamiliar set of axioms, it is quite a tough problem to
imagine what an algebra satisfying themwill be like; analogies sometimes work, and
sometimes fail spectacularly. Examples are useful (and did often inspire the choice
of axioms in the first place), but there is no guarantee that one’s initial examples will
be typical for the class of algebras satisfying a particular axiom system. A common
research strategy is to just attempt to prove any property one can think of; along the
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way one usually encounters of something that holds, which may give insights into
the general situation, but it is quite labour intensive.

In my case I happened to have another method that I could try, namely to explore
this theory using my completion utility; arguably network rewriting is overkill here
as there are no co-operations in sight, but computers are fast so the extra generality
in the model does not hurt. What follows is (an excerpt from) a dump of the database
of rules that the utility produced in exploring the theory implied by axioms (17.1),
(17.2), and (17.3). The lemmas, proofs, and axioms below are all typeset completely
fromLATEXcode that the programgenerated, but comments have been added between
them.

Axiom 17.1 (Involutive) ⎡
⎣

⎤
⎦ → [ ]

i.e., α(α(x)) = x.

By the processing order heuristic applied (see Topic 16), the simplest axiom is
(17.2) about α being an involution, so that becomes the first one processed and the
first one to give rise to a rewrite rule: double α elimination.

Axiom 17.2 (Anti-homomorphism)

⎡
⎣

⎤
⎦ →

⎡
⎣

⎤
⎦

i.e., μ(α(x), α(y)) = α(μ(y, x)).

Likewise (17.3) is regarded as slightly smaller than (17.1), by virtue of its right
hand side having one operation less, so that is what gets turned into a rule next.

Lemma 17.1 ⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ →

⎡
⎣

⎤
⎦

i.e., α(μ(α(y), x)) = μ(α(x), y).

Proof

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

A17.2≡

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

A17.1≡
⎡
⎣

⎤
⎦
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This is our first result: α both outside and inside aμ can be combined into a single
α inside, if one also switches left and right factor. No great surprise, once one has
seen the proof, but a consequence the program discovers on its own.

What are all these diagrams, though, from a formal mathematical perspective?
Technically they are elements in the free PROP P generated by the hom-algebra
signature

{
,

}
. We are interested in discovering which elements of this PROP are

congruent (≡) modulo the given axioms. To that end, we are deriving rewrite rules
a → bwherea andb are congruent elements of the free PROP—this congruencebeing
what needs proving—and direct the rewrite arrow towards the side that compares as
the simpler of the two.

Because the signature only contains ordinary operations (having coarity 1), this
free PROPP is the same thing as the free operadgenerated by those operation symbols.
Moreover thismakes it straightforward to additionally present the stated congruences
as traditional algebraic identities, which is what the ‘i.e.’ clauses in the axioms and
lemmas are doing. Technically, the formulae in these clauses are identities in algebras
of the operad P/≡; including these formulae here is purely a matter of presentation,
as a service to readers who are more accustomed to reasoning at the algebra level.

Lemma 17.2 ⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ →

⎡
⎣

⎤
⎦

i.e., α(μ(y, α(x))) = μ(x, α(y)).

Proof

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

A17.2≡

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

A17.1≡
⎡
⎣

⎤
⎦

Considering what Lemma 17.1 looks like, it is only to be expected that it has this
sibling where α instead is applied to the right factor. Only after proving this does the
program move on to (17.1), which a human mathematician probably would regard
as the main identity in the system.

Axiom 17.3 (Type II hom-associative)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

i.e., μ(x, α(μ(y, z))) = μ(α(μ(x, y)), z).
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The third lemma proved does however not make use of that axiom; it is merely
another consequence of just Axioms 17.1 and 17.2 that happened to be more com-
plicated than the hom-associativity axiom.

Lemma 17.3 ⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

i.e., μ(α(x), μ(α(z), y)) = α(μ(μ(α(y), z), x)).

Proof

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

L17.1≡

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

A17.2≡

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

We see from the labels ‘L17.1’ and ‘A17.2’ that this uses Lemma 17.1 and
Axiom 17.2, and Lemma 17.1 is in turn proved by combining Axioms 17.2 and 17.1.

Lemma 17.4 ⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

≡

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

i.e., α(μ(μ(α(y), z), x)) = μ(α(x), μ(α(z), y)).

Proof

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

A17.2≡

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

L17.1≡

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

The astute reader notices that Lemma 17.4 is just Lemma 17.3 with left and right
hand sides exchanged. The reason for that is that this list really is just a straight
dump of what is in the database of rules computed by the program. As discussed in
Sect. 17.5.1, if the user-suppliedmonomial order fails to orient a congruence—which
we here can tell from Lemma 17.4 using ≡ rather than the directed → between the
sides—then that congruence is given multiple entries in the database: one for each
possible orientation, so that proofs may still make use of it in either direction. The
raw dump contains both, but this excerpt rather constitutes a manual selection from
the dump.



436 L. Hellström

Lemma 17.5 ⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

i.e., μ(μ(α(y), x), α(z)) = α(μ(z, μ(α(x), y))).

Proof

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

L17.1≡

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

A17.2≡

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

Lemma 17.5 resembles Lemma 17.3, particularly in view of what the proof
employs, but it is not the same since the α’s are in different positions in the expres-
sion. That is probably easier to see in the network than in the traditional formula,
however.

The dump then continues to prove another couple of siblings of these lemmas,
but we shall skip ahead to the first that relies upon Axiom 17.3.

Lemma 17.6 ⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

i.e., μ(x, μ(α(y), z)) = μ(μ(z, α(x)), y).

Proof

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

A17.1≡

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

L17.3≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L17.2≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A17.3≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L17.2≡

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

At first glance that congruence looks similar toAxiom17.3, but here theα is inside
bothμ, and there is a cyclic permutation of the factors.Definitely an interesting result,
and with a less trivial proof than the previous lemmas!

Lemma 17.7 ⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ →

⎡
⎣

⎤
⎦
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i.e., μ(μ(z, α(x)), α(y)) = μ(x, μ(y, z)).

Proof

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

L17.6≡

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

A17.1≡
⎡
⎣

⎤
⎦

Our final lemma is almost the ordinary Type I hom-associativity, but again with
this cyclic permutation of the factors.

Lemma 17.8 ⎡
⎣

⎤
⎦ ≡

⎡
⎣

⎤
⎦

i.e., μ(μ(x, y), α(z)) = μ(α(y), μ(z, x)).

Proof

⎡
⎣

⎤
⎦ A17.1≡

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

L17.7≡
⎡
⎣

⎤
⎦

One may of course continue further, and indeed this exploration did; the records
show only four seconds elapsed between adding Axiom 17.1 and deriving
Lemma 17.8, so stopping at this particular point requires rather fast reflexes. Though
the dump is not material for publication, one may certainly read on in it, looking
for other interesting identities to shine a light on this class of algebras. But there is
also reason for slightly adjusting the parameters of this exploration, and then having
another go from scratch.

The fact that several interesting congruences, in particular Lemmas 17.6 and 17.8,
end up unorientable suggest that we should come up with a better criterion for
orienting them, as that will increase efficiency of the exploration and reduce the
clutter produced. Mathematically defining appropriate orders is however not a trivial
problem, and in this case one that seems to be compounded by the tendency of these
congruences to permute the factors. We shall not delve into that issue here, but close
this little theory exploration with the advice that the ordering of one’s expressions is
a matter that deserves our attention.

17.3 Program Composition

By the trivial lines-of-code metric, the completion utility in 2015 consisted of 11931
lines of Tcl code, but that is perhaps most useful as a datapoint if comparing several
different pieces of software. For a party actually interested in reading the program,
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The k3y must be unique within the table.
12 lappend DB_column(le9end) k3y {UNIQUE} va1ue {}

The code_variants entry in the legend stores the value of the code_variantscode_variants (legend
key) variable for the version of the utility that created the database. If the two are

different then there may be problems with trying to opening.
The signature entry in the legend is the signature of the free PROP in whichsignature (legend key)

the calculations are carried out, in the form of a dictionary mapping each anno-
tation x to the pair ‘α(x) ω(x)’ of arity and coarity. In other words, it has the
structure of the {type-dict} argument of the network::pure::construct proce-
dure. The order of the keys in this dictionary is significant since the
interpretation of the profile columns depend on it. The existence of this entry
in a database signals that the signature may no longer the modified; there may
be data stored elsewhere that would be extremely difficult to adjust according to
changes in the signature.

The coeff_setup entry is a script that sets up anything needed for thecoeff_setup (legend key)
coeff_cmd (requires packages, creates aliases, etc.). The coeff_cmd entry in thecoeff_cmd (legend key)
legend is the command prefix of the ring of coefficients.

Discussion. It might be better to store a make-command for the coeffi-
cient ring prefix than to store the actual prefix, on the grounds that this
is more likely to survive updates in the package. On the other hand,
neither approach would survive an update in the package that changes
the data representation, so persistence here is an interesting problem
on the level of principles.

Other le9end entries are described where the corresponding runtime variables
are introduced.

1.2 Network profiles

When reducing a network, the most time-consuming task is that of finding
a rule whose lhs occurs in it or deciding that no such rule exists, since
network::wfb::instances is rather complicated. Profiles provide a shortcut,
by counting the number of occurencies of certain features within a network, and
thus a way of eliminating rules from the search before even looking at the lhs,
since there can be no instances of H in G if there are more occurencies of some
feature in H than there is in G.

The features being counted are simply the vertices (separate count for each
annotation) and the edges, where the endpoints are used to refine the count,
paying attention to both vertex annotation and the index of the edge. For a
signature (Ω, α, ω) there are thus

∑
x∈Ω ω(x) different things that can be at the

tail end of an edge, and
∑

x∈Ω α(x) different things that can be at the head end
of it, so the number of different edge features is the product of these. There is no
point in counting boundary edges since their numbers are already determined by
the counts of internal edges and vertices; also these counts are more troublesome
to compare, as a boundary edge in H can be internal in G. Counting edges this

8

way is only slightly weaker than counting connected 2-vertex subsemigraphs; it
does not notice when such a subsemigraph is more than simply connected, but
that will on the other hand probably be very rare and would not warrant the
increased complexity.

network_profile (proc) This procedure computes the profile (a dictionary mapping column names to
counts). The call syntax is

network_profile {signature} {network}?

When called without a {network} argument, the command returns an “all zeroes”
profile (technically it computes the profile of the empty network) that can be used
for example to get the list of profile columns for this {signature}.

The column names are of the form v〈num〉 for vertex counts and e〈num〉v〈num〉 (column)
e〈num〉 (column) for edge counts. The names can be opaque because they are not meant to be

interpreted; only this procedure converts data from the network realm to the
profile realm, so it only needs to do so consistently.

The implementation relies heavily on incr’s new auto-initialise behaviour. The
VC array is for vertex counts and is indexed by vertex annotations. The EC array
is for edge counts and is indexed by lists on the form

{head-annotation} {head-index} {tail-annotation} {tail-index}
13 proc network_profile {signature {NW {{{"" {} {}} {"" {} {}}} {}}}} {
14 foreach v [lindex $NW 0] {incr VC([lindex $v 0])}
15 foreach e [lindex $NW 1] {
16 lset e 0 [lindex $NW 0 [lindex $e 0] 0]
17 lset e 2 [lindex $NW 0 [lindex $e 2] 0]
18 incr EC($e)
19 }
20 set inL {}
21 set outL {}
22 set res {}
23 set n 0
24 foreach {x p} $signature {
25 lappend res v$n [incr VC($x) 0]
26 for {set i 0} {$i < [lindex $p 0]} {incr i} {
27 lappend inL [list $x $i]
28 }
29 for {set i 0} {$i < [lindex $p 1]} {incr i} {
30 lappend outL [list $x $i]
31 }
32 incr n
33 }
34 set n 0
35 foreach o $outL {
36 foreach i $inL {
37 lappend res e$n [incr EC([concat $o $i]) 0]
38 incr n
39 }

9

Fig. 17.1 Pages 8–9 of cmplutil2.dtx

it is more relevant to know that it is a Literate [12] program written in the doc/
docstrip tradition [15] (like the LATEX kernel and most LATEX packages), and that
the sources therefore can be typeset straight off by LATEX. At the time of writing,
doing that to the two main source files produces documents of 212 and 149 pages,
respectively; an excerpt is shown in Fig. 17.1. The above 11931 lines of code figure
also includes code from various supporting packages of more generic utility. The
typeset literate sources here could add another 154 + 36 + 83 + 41 = 314 or so
pages to the total (and there are additional bodies of code under development that
could eventually become additional supporting packages), but understanding the
workings of the completion utility would for the most part not require understanding
the workings of those supporting packages. Conversely, rigorously understanding
the operation of the utility as a whole probably does require familiarity with the
underlying mathematical theory of network rewriting, which as presented in [3]
adds another 188 pages to the reading list; that paper began as the opening section
of the completion utility literate sources, but was split off since it grew a bit beyond
the initial expectations.

17.3.1 Development History

The completion utility originated in work carried out during my postdoc year at
the Mittag-Leffler institute (2003–04, Noncommutative Geometry), specifically the
realisation that the Network Algebra of Ştefănescu [19] could be used as a for-
malism for expressions in Hopf algebras. While in hindsight not that spectacular
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as a find—shorthand diagrams had been known for decades to specialists in the
field, even if often downplayed as “not really formulae”—the high degree of for-
mality of Ştefănescu’s networks made it clear that these could serve as building
blocks for a universal-algebraic study of Hopf algebras (and other algebraic struc-
tures with co-operations). Would it for example be possible to start with just the
axioms and by pure calculations (as opposed to by peeking at the group theory proof
that (ab)−1 = b−1a−1) discover the fact that the antipode is an antihomomorphism?
Initial attempts were hindered by the detail that networks, although excellent for
showing the structure of expressions, are not as compact as traditional formulae;
sometimes a mere four steps would fill up an entire sheet of paper! What to do if one
does not want to be on a constant hunt for more area to write on? Erasable media?
Well, the screen of a computer can be redrawn several times a second, so that’s a
neat way forward.

Version 0 of the programwas written over the summer of 2004, and had at best an
ambiguous aim. On the one hand it did perform completion of e.g. the Hopf algebra
axioms, but on the other hand it is perhapsmore fair to describe the rewrite operations
on networks as its primary accomplishment, and the completion merely as a way of
generating a stream of tasks on which to test these more basic operations. Notably
the program ran at the speed of one rewrite step per second and would display each
intermediate result as it did so, to give the user a chance to supervise what was being
done and verify its correctness.

Operations that were implemented included searching for instances of one net-
work as a subnetwork of another, replacing such an instance by a different net-
work, testing whether two networks are equal/isomorphic, construction of ambigui-
ties (enumerating all ways in which two networks can overlap), and dropping rules
that become the larger part of an inclusion ambiguity. An operation not implemented
in any rigorous way was that of comparing two networks to decide the orientation
of a new rule—this decision was typically left to the user, making the completion
semi-automated at best. As a curiosity, it can also be mentioned that the completion
process was run through the windowing system event loop: each ambiguity would
get its own toplevel window, calculations were carried out in the window that cur-
rently had focus, and once an ambiguity had been resolved the correspondingwindow
would be closed (thus yielding focus to the next window).

About half of the program, and even more of the development effort, was spent
on the graphical rendering of networks; graph drawing in general is a nontrivial
problem, and networks have special requirements in that it is preferred that vertices
connected to each other in a particular way also are positioned correspondingly.
General graph drawing heuristics were tried but found to be mostly unsuitable, and
in the end positions were found by running a sort of simulation where “tensions” in
the edges would cause vertices to move to more appropriate positions. Since such
vertex and edge positions were expensive to compute, they were being stored as part
of the network data structure.

An outright mathematical flaw of Version 0 was that it for certain inputs would
produce non-acyclic networks. This prompted the introduction of “feedbacks” in the
formalism, but can also be viewed as the first sign of wrap ambiguities [4].
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Version 1 was a thorough rewrite begun in 2006. It split the utility into one library
(network2) of operations specifically on networks and a program (cmplutil1)
whose aim was clearly that of completion. Work was still dispatched via the win-
dowing system event loop as each step continued to be shown graphically as it was
performed, but now the program actually could order networks according to a math-
ematically rigorous criterion.

In the libraryportion, the networkdatatypewas split into several. The core datatype
is that of a pure network which implements the formal mathematical concept [3,
Definition 5.1] of a network, whereas the graphical information is moved to to a
datatype of rich networks wrapped around the pure ones. In addition there is a new
concept of network with feedback which combines a pure network with a nominal
transferrence [3, Definition 6.14]; the latter is needed to ensure that rewrite operations
preserve acyclicity.

Most of the old code for assigning positions to vertices and edges was scrapped,
and a variety of new heuristics based on generating a layout were implemented;
sensible (even if not always optimal) layouts could be generated as needed, so there
was no longer any need for long-term storage of the graphical information with the
networks. Old code for exporting presentations could instead be migrated to the new
datatypes, thereby preserving all existing features.

Over time the library also grew to include rigorous operations for ordering net-
works, as appropriate mathematics was being developed; late in the development
cycle it was discovered that much of this could be greatly simplified.

Version 2 became operational in 2009 and is a rewrite of the completion utility
employing the same network operations library as version 1.Major novelties include:

• using an SQLite3 database for storing all rules and other aspects of the state of the
completion,

• capable of running without a GUI,
• web server interface for viewing state of computations, and
• expressions can be formal linear combinations of networks.

It is primarily this version that is described in Sect. 17.5 below.

17.3.2 Implementation Language

Tcl [17] is a quite simple language, with several traits that are attractive from a
mathematical rigour point of view, but since it is not one of the major languages for
scientific computing or in computer science, it warrants being elaborated upon.

First and foremost, Tcl requires that every value has a well-defined serialisation—
the so-called string representation—and that the semantics of a value are determined
entirely by its string representation; this is a principle known as everything is a
string (EIAS). This does not require that all values are stored as strings; ever since
Tcl 8.0 (1997) values can also have an internal representation native to the com-
puting hardware, and many values in a running Tcl program are born (created),
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live (accessed), and die (deallocated) without the string representation ever being
realised, since it is sufficient that the potential to realise it always exists. EIAS does
however imply that values are immutable—once created, guaranteed to permanently
have the same string representation—since the outcome of a test whether a value is
equal to a specific literal string constant must depend only on the string representa-
tion of the value, not on details of how it is represented in memory or what might
have previously been done to it. This is an excellent match for the Platonic ideal of
mathematical objects existing (at least in potentia) unchangeable and forever, beyond
the material realm.

The above does not mean Tcl only has constants. A variable is a location where a
value canbe stored, and it is perfectlyfine to changewhichvalue is stored in a variable.
There are even primitive operations whichmodify the contents of a variable precisely
in that they change a specific part (e.g. one element of a list) of the value this variable
holds, and if the variable does not share the data structure storing that value with
anything else (which it would do if that value is assigned also to a second variable)
then this data structure can be modified in place; otherwise the modifying operation
makes a shallow copy of the original value and modifies this copy before assigning
it to the variable. These semantics of immutable values—that seemingly mutating
operations reallymake shallow copies—are important for correctly interpreting some
of the more intricate operations in the completion utility (in particular those that
perform combinatorial searches); a naive port of these algorithms to languages with
mutable value semantics is likely to malfunction.

Second, Tcl has a very simple syntax. A Tcl program, or script, consists of a
sequence of sentences.1 Sentences usually appear one per line (newline is a sentence
separator), although one may put several on a single line by separating them with
semicolons. A sentence is in turn a sequence of words, separated by whitespace. The
first word of a sentence is the name of the command performed by that sentence, and
the remainingwords constitute theargumentsof that command.What allows this to be
a structured programming language is that words in turn may be anything, including
entire scripts, if appropriately delimited; a control structure (e.g. for loop) is simply a
commandwhich expects some of its arguments to be entire scripts themselves.Words
that begin with a left brace ‘{’ and end with the matching right brace ‘}’ denote
the exact sequence of characters between (but not including) these two delimiters,
regardless of whether these characters would include newlines, other whitespace,
or semicolons; this makes it trivial to nest “blocks” of Tcl code as single words
of sentences, to an arbitrary depth. A word without delimiters (a bareword) can
contain whitespace and semicolons, but only if each special character is individually
escaped by a backslash character ‘\’; this is unusual. Finally, a word beginningwith a
quote character ‘"’ ends with the next (unescaped) quote character, and can likewise

1 The official documentation uses the term ‘command’ for this, but also for the first word of a
sentence; I’m using ‘sentence’ to avoid this ambiguity. Likewise what I call a sentence prefix later—
a list of values meant to become the initial words of a sentence—is normally called a ‘command
prefix’.
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contain whitespace (even newlines) and semicolons without individual escaping, but
here nesting is impractical, so quote-delimited words are mostly used for text strings.

What gets passed to a command for processing is always the runtime value of
a word. Brace-delimited words have their explicit constant values, but other words
undergo substitution before they become a command argument; most commonly the
entire value of a word comes from a single substitution, though in quote-delimited
words it is not uncommon that constant and variable pieces are combined when
forming the runtime value, e.g.

log message "Element $i is: [lindex $L $i]"

The first substitution form is variable substitution: a dollar sign $ followed by the
name of a variable is replaced by the current value of that variable. The second
substitution form is command substitution: everything from a left bracket [ up to
the matching right bracket ] is interpreted as a (sequence of) Tcl sentence(s), that
gets evaluated, and the value returned by the command of the (final) sentence upon
invocation is what becomes the runtime value of this bracket construction. As a
somewhat silly example, the sentence

list 1 [set i 2] $i i [incr i] $i [incr i]

will have the argument list ‘1 2 2 i 3 3 4’ (seven arguments) passed to the
list command. The first word has 1 as explicit constant value. The second word is
a command substitution, and the set command there primarily sets the variable i to
2 (a side-effect), but set also returns the newvariable value, so thisword has runtime
value 2. The third word $i is a straight variable substitution, and since we know i
is now 2, that will again be the runtime value also of this word. The fourth word i
has nothing to trigger substitution, so its runtime value is just i (name of a variable,
rather than its value). The fifth word [incr i] triggers a command substitution
(uncharacteristically, again with a command incr whose primary purpose is to
achieve a side-effect, namely to increment the value of the variable i), so the value
of i steps up to 3 and this is also the runtime value of this word. The sixth word $i
likewise reports this new i value of 3, before another command substitution in the
last word increments i again, to the final value of 4.

Thus briefed on the language syntax, we are ready to analyse an example illus-
trating the first point about immutable values and shallow copying of internal repre-
sentations. The script

set row [list]
for {set k 0} {$k<$n} {incr k} {

lappend row 0
}
set Z [list]
for {set k 0} {$k<$n} {incr k} {

lappend Z $row
}
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Fig. 17.2 Sharing of internal representations

sets variable Z to the n × n zero matrix (not in the easiest way possible, but in a
way that follows common imperative style)—the first four lines make row a list of
n zeroes by appending one 0 to this list at each iteration of the loop, and then the last
four lines make Z a list of n such rows of zeroes by appending the value of row to
Z at each iteration of the second loop. The generated data structure only has one 0
value (referenced n times), one row-of-n-zeroes value (referencing the zero n times,
and referenced n times from the matrix value), and one matrix (list-of-lists) value
(Fig. 17.2). However, if we were to make an identity matrix I from Z by changing
the diagonal elements to 1s through the commands

set I $Z
for {set k 0} {$k<$n} {incr k} {

lset I $k $k 1
}

(that lset does Ik,k := 1) then at each iteration of the loop the targeted row of I
will be copied before its kth element is changed to 1, so the data structure storing
the value of I ends up with n separate rows (as they need to be, since their values
are distinct). There is still only one 0 value, but now it is referenced n2 times (n − 1
times by each of the n rows in I, and another n times by the only row in Z, which
of course remains unchanged), and the 1 value is referenced n times (once by each
row of I).

17.3.2.1 Syntax and Invariant Descriptions

Much of the practical syntax of Tcl ends up being syntaxes of individual commands,
and accordingly the official language documentation [20] is organised as one man-
page per command. Some of these (e.g. if, try) have rather complex clause-based
syntaxeswhereas others aremore function-and-its-arguments (or verb-object-object-
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object-… if you want to go natural-language grammatical), but common to all is that
the division into words is given. Accordingly, it seems appropriate to stress when
some unit constitutes a word, so in what follows the familiar 〈bar〉 notation for a
metasyntactic variable is refined to {bar} when this unit is additionally to be exactly
one word in a Tcl sentence; the more generic 〈bar〉 would still be used for part of a
word or a sequence of (zero or more) words.

Pragmatically, it is also convenient to make use of certain notations from regular
expressions—such as the ?, ∗, and + quantifiers—to express repetition variation in
command syntaxes. For example

list {element}∗
incr {variable} {amount}?

means the list command takes zero or more {element}s, whereas the incr com-
mand takes a {variable} name and optionally also an {amount} bywhich to increment
it. With parentheses to group pieces in such syntax expressions, the syntax of if
may be stated as

if {condition} then? {script} (
elseif {condition} then?

{script})∗ (
else? {script})?

showing not only that the final else clause is optional, but also that it may be
preceded by zero or more elseif clauses, and that the keywords then and else
are optional.

These syntax conventions are in the completion utility sources applied not only to
document individual commands, but also to document data structures, since the string
representations of Tcl lists are parsed into elements according to the same rules as Tcl
sentences are parsed into words; the main difference is that variable and command
substitutions do not occur when parsing a list. Below it is the application of these
conventions to lists and other data structures that is of more scientific interest, as
data formats should be documented for posterity even if the programs that generated
them may become obsolete.

To give an example, the string representation of a dictionary is({key} {value})∗

so the same as a list with an even number of elements, alternatingly having the roles
of key and value. As a matter of general computer science, a dictionary (associative
array) is a sparse mapping of {key}s to {value}s. Tcl implements dictionaries with a
hash table internal representation to achieve average O(1) complexity for accessing
individual elements; key equality is string equality.

Documentation may also need to state invariants and other properties of the data
structures considered, and for this it rather becomes appropriate to mix Tcl code
with ordinary mathematical formulae, when notation for some necessary operation
exists only in one but not in the other. To signal what is what, Tcl elements of such
mixed formulae will appear in typewriter font and typically be delimited by
command substitution brackets [], whereas standard mathematical elements use
normal formula fonts (e.g. math italic). A trivial example is
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[lindex [list a b c] 1] = b

where three values a, b, and c are given to the list command to build a list with
those three as elements. Then this list is passed to the lindex command that goes
on to extract the element in position 1 from this list; since Tcl indexing is 0-based,
that will be the second element b. Finally at the top level of this mixed formula
we assert mathematical equality = of the value returned by that lindex and b.
The standard mathematical formula language lacks good notation for this kind of
construction and indexing operations—we rather prefer to give names to all elements
we need to access—and programming languages conversely have little notation for
stating claims, as programs are mainly about giving orders.

17.4 The Network Datatype Library

The informal specification for a network is that is should be like a term (in the
logic sense, i.e., a formalised expression), except that the underlying combinatorial
structure should be that of a directed acyclic graph (DAG) rather than a tree, because
it needs to accommodate co-operations as well as ordinary operations. Formalising
that does however require sorting out exactly what sense of ‘tree’ we will generalise.

The tree structure of a term can be defined as the tree which as vertices has the
subterms of the term and links two vertices with an edge if one is a maximal proper
subterm of the other, but for our purposes it is more convenient to take as vertices the
operations (function symbols, including as nullary operations any named constants);
this turns the tree into a kind of data-flowdiagram (Fig. 17.3,middle). The reason this
structure for an ordinary termwill be a rooted tree is that each operation syntactically
produces exactly one result, but that is not the case with co-operations; paths taken
by data within the expression may branch as well as join, creating a general DAG
rather than a tree. The problem of how to even interpret such combinatorial objects
as expressions is nontrivial, but turns out to have a natural solution [3, Sect. 5].

Fig. 17.3 Term trees and a network
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It is important to note that already an operations tree needs more structure than
just the tree graph to encode a term. For one thing, there are the operation symbols
decorating the vertices, but more importantly the children of an operation are not
interchangeable (unless that operation is commutative, but this is not a property that
would be encoded into the syntax of a formula)—instead each incoming edge is
attached to a separate port of the vertex, and the set of available ports depend on
the operation symbol; for example a binary operation has one ‘left operand’ port
and a separate ‘right operand’ port. In a network the set of outgoing ports similarly
depends on the operation symbol, so that for example a vertex for the coproduct �

has one incoming port but two outgoing ports. Finally networks are open graphs
in that they can have external edges signifying output (results) from a network and
input (arguments) to it. In comparison to traditional terms the incoming external
edges assume the role of free variables, which has interesting consequences for the
rewrite theory: rewrite linearity becomes a syntactic requirement (although having
co-operations allows for effectively reintroducing nonlinearity via explicit rules) and
unification is no longer a primitive operation.

17.4.1 Pure Networks

Mathematically, [3] defines a network as a tuple

G = (V, E, h, g, t, s, D)

whereN ⊃ V ⊇ {0, 1} and E ⊂ N are the sets of vertices and edges of the underlying
directed acyclic graph (V, E, h, t) inwhichh, t : E −→ V are the functionsmapping
every edge e to its head h(e) and tail t (e) respectively. To turn this into an open graph,
the two mandatory vertices 0 and 1 are fixed as representing the output and input
respectively sides of a network; an edge e is outgoing external if it has h(e) = 0 and
incoming external if it has t (e) = 1. Requiring that vertices and edges (or technically:
the labels of vertices and edges) are all natural numbers have certain set-theoretic
advantages for defining isomorphism classes of networks, which are technically the
objects that are being rewritten. The two functions g, s : E −→ Z>0 map an edge
(label) to the head and tail respectively index, which identify the ports to which the
edge is attached. Finally D with a domain of V \ {0, 1} is the function mapping inner
vertices to the operation symbols by which these are decorated. Such a symbol x is
given with an arity α(x) and a coarity ω(x) that are equal to the in-degree and out-
degree respectively of any vertex decorated with x . One also speaks about arity α(G)

and coarity ω(G) of an entire network; these are the numbers of inputs and outputs
to the network G as a whole (thus technically the out-degree of 1 and in-degree of
0, respectively).

Thismathematical concept is implemented in the network library as the datatypeof
pure networks. For ease of access, pure networks are implemented as heterogeneous
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nested lists, where some nesting levels act as records whereas others act as arrays.
At the top level there is simply a pair

{vertices} {edges}
where {vertices} and {edges} are both lists indexed by vertex or edge respectively
label; the sets V and E are implicit in the lengths n and m of these lists, since the
vertex and edge labels are the indices of elements therein: V = {0, . . . , n − 1} and
E = {0, . . . ,m − 1}. The element at any index e in {edges} is a record-like list of
the following four integers

{h(e)} {g(e) − 1} {t (e)} {s(e) − 1}

i.e., it specifies the head vertex label, head index, tail vertex label, and tail index; the
only variation from the mathematical definition is that the indices are 0-based.

This leaves only the decorationmap D to encode, but the {vertices} also duplicates
the incidence information from (h, g, t, s), to make traversing the network efficient.
To that end, an element of {vertices} is a record-like list

{decoration} {out-edges} {in-edges}
where {decoration} is the value of D at that vertex (or an empty string for the external
vertices 0 and 1), {out-edges} is the list of labels of the outgoing edges in the order
given by their tail-indices, and {in-edges} similarly is the list of labels of the incoming
edges in the order given by their head-indices. For every network G and every edge
label e of that network, it is an invariant that

[lindex G 0 [lindex G 1 e 0] 2 [lindex G 1 e 1]] =
e = [lindex G 0 [lindex G 1 e 2] 1 [lindex G 1 e 3]].

A network where the only operation vertex has a decoration ‘m’ (formultiplication)

can thus be encoded as the 69 characters string

{{{} {} 2} {{} {0 1} {}} {m 2 {1 0}}}
{{2 1 1 0} {2 0 1 1} {0 0 2 0}}

Though in some ways “wasteful” (for example using decimal digits to express num-
bers), this is actually quite compact in comparison to what it would take to realise
the same graph structure with pointers on a contemporary architecture: a 64-bit
pointer is 8 bytes, and with 3 edges each containing 2 pointers to vertices, times
another 2 because the vertices have to point back, that would be a minimum of
8 · 3 · 2 · 2 = 96 bytes for just tying the DAG together. Section17.5.2 explains how
outright compression is used to achieve further savings for long-term storage of
networks.

Topic 1 (Expressing networks) One practical problem that faces a user of the
network library is how to construct any networks for it to operate on in the first
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place, as writing down by hand a string representation such as the above is not
very convenient. Thenetwork::pure::construct procedure provides amore
practical interface where the user provides a textual “scan-list” of the items in the
network—lines in order top (input side) to bottom (output side), and within each
line going left to right—that is easy to write down when looking at a drawing of the
network, and with some practice possible to compose even without a drawn original.
Inner vertex items are in the scan-list expressed as their decorations; one needs to first
declare how many incoming and outgoing edges each vertex type has. Furthermore
one may write ‘.’ for an edge merely passing through a scan line, ‘X’ for two edges
crossing (or more generally 〈k〉X〈l〉 for a crossing of k edges going down right and
l edges going down left), and a newline (\n or \r) to mark the end of a scan line.

This way, the above network can be written as ‘X \n m’ and the network on the

right in Fig. 17.3 can be written ‘g g Delta \n . X . \n f f’.

An alternative interface for entering networks into the program, which would
probably be more appealing to the beginner, could be a graphical point-and-click
approach; the actual programming is not very difficult. However even in a mainly
graphical interface the scan lines seem to be a valuable abstraction to maintain, as
they lessen the amount of graphical details that the user would have to provide.

Topic 2 (Network isomorphism) Since the objects of algebraic interest are isomor-
phism classes of networks, the library must provide for deciding network isomor-
phism. It does so via the network::pure::canonise command, which given
any network returns a canonical representative from the same isomorphism class;
two networks are isomorphic if and only if their respective canonical representatives
are equal as strings. Moreover the only way in which isomorphic networks may dif-
fer is in how the individual vertices and edges are labelled, so what the canonise
operation concretely does is that it generates a canonical labelling of the network.

Canonical labelling of simple graphs is quite complicated due to their flexible
nature where vertices and edges have no identity except as in relation to each other,
but networks are far more rigid: since edges attach to separate ports of a vertex,
the identities of all vertices in a component become fixed as soon as one fixes the
identity of one vertex. In addition the 0 and 1 vertices of a network are already fixed,
so in most networks that are encountered there is already some way of identifying
everything; what remains is to turn that into a deterministic (not depending on labels
in the input) labelling scheme. The scheme that is used is to do a breadth-first search
through a graph containing both vertices and edges of the network, each vertex
looking at incident edges in a deterministic order and likewise each edge looking at
its endpoints in a deterministic order. The canonical labels are assigned sequentially
in the order vertices and edges are encountered by this search, and the search starts
with vertices 0 and 1 already enqueued.

Things get trickier for networks with components that are isolated from both the
output and the input; rewrite systems often have rules that make these disappear, but
during the intermediate steps they must still be canonically labelled. This is done by
first computing a separate “simplified” canonical representation for each component,
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sorting the components by the string representation of this simplified representation,
and finally assigning canonical labels component by component; the exact ordering
of the components is irrelevant as long as it is deterministic, and equal components
simply appear in sequence.

The simplified canonical representations are in turn obtained from breadth-first
searches of the individual components. Here we have no canonical starting point for
the search, so instead the search is donemultiple times with different vertices as start-
ing point, and whatever simplified representation happens to have the lexicographi-
cally smallest string representation is picked as the canonical one; since alternatives
are considered only for the starting point, the algorithm as a whole remains com-
fortably polynomial. The network::pure::canonise command has a slight
optimisation in that only vertices decorated by the lexicographically smallest symbol
found in a component are considered as roots for the search in that component, but
this can at best improve the constant factor of the asymptotic complexity.

Overall, canonical representations should probably not be expected to remain the
same between different codebases; a programmer would be wise to treat any network
as not canonical in the current process until it has been explicitly canonised. In
particular, most library subroutines that produce networks will not bother to canonise
them.

Case in point, the library provides a number of operations on networks that cor-
respond to basic operations in the free PROP—the elements of the free PROP being
isomorphism classes of networks, these network operations produce one representa-
tive from the equivalence class that is the result of applying the corresponding PROP

operation to the equivalence class(es) of the argument(s). In the network::pure
namespace we find

composition Serial composition ◦ of one or more networks.
tensorprod Parallel composition (tensor product)⊗ of zero or more networks.
permutation Construct a permutation network, where all inputs are also out-

puts.
left_action Permute outputs of a network.
right_action Permute inputs of a network.
substitute Replace individual vertices of a network by other networks, gadget

style; this corresponds to applying a PROP homomorphism that one gets from the
universal property of a free PROP.

These are however only in rare cases immediately useful for rewriting. Instead rewrit-
ing is more easily expressed in terms of surgery on networks, where some edges are
cut, the detached pieces removed, and other pieces spliced into their place.

Topic 3 (Regions in networks) A useful concept for describing surgical operations
is that of a region in a network. This is by the library encoded as a list

{vertices} {outputs} {inputs}
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(a):

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

(b):

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

(c):

⎡
⎢⎣

⎤
⎥⎦

Subfigure (b) is the selected subnetwork uncovered, showing also the relative order between its
inputs and outputs; 9 denoting the second (index 1) part of edge 0, that is mostly parallel to the
first part of the same edge. Subfigure (c) is instead what remains of G when the selected region has
been detached; inner inputs and outputs (those that connected to the detached region) appear to the
right of the original inputs and outputs from (a).

Fig. 17.4 a Region in a network. b subnetwork inside region. c remainder when region is detached

where {vertices} is a list of vertex labels and the other two lists of (primarily) edge
labels. Regions defining the ambiguity processed are recorded in the database by the
completion utility, which is why their encoding should be documented. The concept
in [3] that corresponds to regions is that of strong embedding of a network into
another.

If for intuition viewing a network as a topological space, then a region is a (finitely
presented) open subset thereof; in particular, if a vertex is in the region then also (at
least parts of) the edges incidentwith that vertexmust be included.Outputs and inputs
of the network must however be listed explicitly, since the subnetwork selected by
the region always has its outputs and inputs in some specific order. An edge not
occurring in the {outputs} or {inputs} must either be wholly in the region and thus
have both its endpoints in the {vertices}, or wholly outside the region and thus have
neither of its endpoints in the {vertices}.

A complication that arises is that edges sometimes are decomposed intomore than
two pieces by the region boundary—a single edge may appear arbitrarily many times
in the {outputs} and {inputs}, if the intermediate pieces in the selected subnetwork
count as edges going directly from input side to output side. To keep track of which
part connects to what, the elements of {outputs} and {inputs} are in fact integers
e + mi where e ∈ E is the edge label proper, m = |E | is the total number of edges,
and i ∈ N is an index to distinguish the separate pieces the region has of edge e;
lower index values are closer to the tail of the edge. Figure17.4 shows an example
of a network with a region, that also exhibits a multipart edge.

The outright replacement of a region in one network G by a different network
H is both in the library and in [3] decomposed into separate operations of first
detaching the part of G which was inside the region and then joining the part K
which remains up with the new piece H using an annexation operation � to form
a new network K � H where all inputs of H are joined to the last few outputs of
K and all outputs of H are joined to the last few inputs of K ; in the “�H” part,
edges are going ↖↗↓. This last step in principle carries the risk of creating directed
cycles in the result, but this risk is carefully managed; [3, Sec. 7.1] uses boolean
matrices to keep track of exactly when such join operations are well-defined, and in
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the network library the concept of network with feedback (next subsection) serves
the same purpose. In particular, the operations that compute regions typically take
networks with feedback as operands.

It should be observed that replacement of regions within a network is a more
general operation than rewriting by means of double pushouts. The reason for this
is that the double pushout formalism produces left and right hand sides of a rewrite
step as images of a common pattern network where a single vertex is mapped to the
left and right hand sides of a rewrite rule, but regions are more general than what can
be the image of a single vertex; an output of a region can connect back to an input of
that region, whereas an output of a single vertex connecting back to an input of that
vertex is immediately an acyclicity violation. Regions are said to be convex if there
is no directed path which leaves the region and then returns to it; any region obtained
as the image of a single vertex will be convex, and double pushout rewriting is thus
restricted to making convex replacements. It turns out completion frequently derives
nonconvex rewrite rules, even if starting from a purely convex set of axioms.

Topic 4 (Structural decomposition of networks) When networks are constructed
through a sequence of replacements, there is an obvious risk that any governing
principle for their structure—such as being produced through a sequence of serial
and parallel compositions—is destroyed; therefore it becomes interesting to take
a general network and seek a comprehensible decomposition of it. Unfortunately
this seems to be a difficult problem, with no obvious solution. The network library
contains a number of procedures attacking this decomposition problem, but most are
dead code used for nothing. What exceptions there are (Topics 6 and 7) participate
in the generation of graphical layouts for networks (Topic 12), and that is a major
topic of its own.

Topic 5 (Monomial ordering of networks) Completion requires that the objects
being rewritten can be compared, so that derived equalities can be oriented into
rewrite rules. Similarly to Topic 4, the network library contains a body of procedures
written as experiments in developing a useful ordering, but here the story has a
happier ending in that a good solution was eventually discovered, even if it ended up
not actually needing any of the code here.

The theory for ordering networks is explained in [3, Sect. 3]: first construct any
sufficiently fine ordered PROP P—a good choice is the biaffine PROP over any par-
tially ordered cancellative semiring—then use the universal property of the free PROP
to pull this order back to the networks. Practically one evaluates the networks one
wishes to compare in the PROP P , with some choice of value for each element in
one’s signature, and then compares the values of the networks as a whole. A sug-
gested interface for implementations of PROPs [8] contains a fuse operation that is
straightforward to use to that end.

As a matter of development history, this conceptually neat construction evolved
from the idea of making lexicographic comparisons along all possible paths through
the networks being compared. An ordering that worked for orienting the axioms of
a bialgebra could be defined in that way, but for compatibility with composition one
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needed to first make sure that the networks being compared had the same number of
paths for each combination of input andoutput; this is similar to how inword rewriting
one needs to first compare by word length before one can make a lexicographic
comparison. However in the bialgebra case it was then realised that already the path-
counting stage (if slightly tweaked) would suffice for oriented all rules as desired [5,
6]; the biaffine PROP can be interpreted as precisely counting paths.

Topic 6 (Level decomposition of networks) Amore modest goal compared to that
of Topic 4 is to make a serial decomposition of a network b as b1 ◦ · · · ◦ bl where
each bi only employs⊗ and permutations. In [3, Sec. 4–5] this was done to the end of
proving that networks indeed may be interpreted as expressions for arbitrary PROPs,
by putting every vertex in a level of its own, but that is often too drawn out to be
comprehensible. Instead it is useful to have a decomposition into a minimal number
of levels.

The vertical/serial aspect of a level decomposition boils down to what levels
the vertices should be placed in, for which problem there again exists a number
of implementations in the library. The current production procedure network:
:pure::vertex_levels4 conceptually treats the whole situation as a linear
programmewith the vertical vertex positions as the variables, inequalities expressing
that every edge has to have length at least 1, and an objective of minimising the
sum of all edge lengths. In principle this linear programme is then solved using the
simplex algorithm (with infinitesimal perturbations to avoid degenerate corners of
the polytope), but in practice the state of the algorithm boils down to keeping track
of the edges for a spanning tree in the network, since every edge corresponds to an
inequality and the set of tight inequalities are what determines the current feasible
point. In particular there is never a need to solve a general linear equation system.

The effect is similar to decomposing a network into scan lines as per Topic 1,
but different in that it allows for arbitrary permutations between levels whereas the
scan lines presentation only does permutations within levels. Doing permutations
between levels can sometimes lead to messy situations: the network in Fig. 17.4c
needed considerable tweaking of the layout (in particular the insertion of an extra
level without vertices) to prevent certain edges from touching (to such an extent that
it became unclear what connected to what).

Topic 7 (Order within network levels) Having assigned every vertex to a specific
level, what remains for producing a full layout is to somehow order the items within
each level. This is again a difficult problem with no obvious solution, and naive
algorithms such as trying all possibilities end up with superexponential complexity.
Moreover even the choice of an appropriate objective function for comparing dif-
ferent orders is not entirely trivial; several seemingly good ideas have turned out to
produce aesthetically unpleasing results. Thus the library again contains a number
of procedures to this end that have been found wanting and are not used.

The procedure network::pure::ordered_graded_components cur-
rently used in production works by having each level suggest hints on how items
should be ordered in adjacent levels, compiling the hints received into a partial
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order, and then suggest new hints based on relations exhibited by that partial order;
repeat until propagation dies down, make an arbitrary choice and repeat again until
all level orders are total. The initial suggestions come primarily from the orders of
incident edges at each vertex, e.g. a vertex with two inputs would suggest to the
level above that the item connected to the first input is placed to the left of the item
connected to the second input. Conflicts between suggestions are resolved simply
by arbitrarily picking one of them, and never backtracking once a choice has been
made. This works fairly well when there indeed is close to a consensus on what
should go left and what should go right—with a slight reservation for the fact that it
has a tendency to make large jumps in order at the boundary between two “zones of
influence” rather thanmany small jumps to gradually switch between two conflicting
opinions—but appears to produce less aesthetically pleasing results when there is
much conflict; however it has not been systematically examined to what extent there
even exists more pleasing layouts in those cases.

Aesthetically superior heuristics for network layoutswould be a valuable addition,
but the current ones do have the virtue of being quick enough to execute and good
enough so far.

17.4.2 Networks with Feedback

A network with feedback is defined as a pair

{network} {feedback-list}
where in turn a {feedback-list} is a list (order irrelevant, so effectively a set) of pairs
(i, j) encoding the sentiment that the output with index i of the {network} may be
fed back into the input with index j of that same network. When looking for redexes
at which to apply a rewrite rule to a network, one must take into account not only
the {network} that constitutes the left hand side of the rule, but also whether the
region into which this network gets embedded satisfies the dependency constraints
under which that rule was derived, i.e., would it be possible to replace this single rule
step by a sequence of more elementary rewrite steps while still preserving acyclicity
of all intermediate networks? Those are exactly the constraints expressed by the
{feedback-list}: one may not have a directed path from output i returning back to
input j unless the pair (i, j) is in the {feedback-list}.

A related concept is that of the transferrence of a networkG, which is the boolean
ω(G) × α(G) matrix Trf(G) that has a 1 in position (i, j) if and only if there is a
directed path in G from input j to output i . In [3, Sects. 7–8] it is proved that Trf
may also be interpreted as a PROP homomorphism from the free PROP to the PROP

B
•×• of boolean matrices. Taking into account that the standard order of boolean

matrices (the partial order doing elementwise comparisons) is compatible with this
PROP structure, we even get that the free PROP is equipped with a B

•×•-filtration
{Fq}q∈B•×• called the dependency filtration, defined by the condition that [G] ∈ Fq

iff Trf(G) � q. The formal feedback structure [3, Sect. 9] on the free PROP is that
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a variety of connect-output-back-to-input operations (�, ��, and ↑) can be defined
as total (not just partial) operations on appropriate components in this dependency
filtration, and also that their codomains are again found in this filtration.

Topic 8 (Mathematical interpretation of feedbacks) Within the completion util-
ity, the feedbacks primarily matter for operations that are looking for matches of
(part of) one network with feedback to (part of) another network with feedback, by
going through a search tree of ways to match the underlying pure networks. If during
this search a path arises from an output to an input which is not listed among the
feedbacks of this network, then the feedback constraints have been violated and the
search backtracks. While the completion utility was being developed, this was pretty
much the extent to which the feedbacks had any interpretation.

The theoretical foundations in [3, Sect. 10] are that the networks being rewritten
live in a particular component of the dependencyfiltration {Fq }q∈B•×• , and that rewrite
rules do the same. Since the operation of feeding output i back to input j is well-
defined for μ ∈ Fq if and only if qi, j = 0, the interpretation of the {feedback-list}
became that this is a sparse encoding of this transferrence type matrix q: all elements
are 1 except those whose positions (i, j) are given. Some later additions to the com-
pletion utility explicitly make this interpretation when exporting/displaying rewrite
rules. It was however already in [3] observed that this model had certain problems,
and in [4] it was suggested that some further refinement might be needed.

The present (2021) understanding is rather that the {feedback-list}s have the right
amount of detail, but that the original theoretical understanding of them is slightly off.
Rather than a pair ( j, i) signalling that element (i, j) of an ω(G) × α(G) boolean
matrix q is 0, they signal that element ( j, i) of an α(G) × ω(G) boolean matrix p is
1, where p keeps track of how the context is allowed to connect things; rather than
the constraint on Trf(G) being Trf(G) � q, it should be that p Trf(G) (a product
of two boolean matrices) is nilpotent. For {feedback-list}s with only one element
these two interpretations are equivalent, but when there are more feedbacks the p
interpretation becomes more flexible.

Topic 9 (Finding subnetwork instances) In order to do rewriting, it is neces-
sary to check if one network (the rewrite rule left hand side) appears as a sub-
network of another network (that being rewritten), and if so in what region. The
network library provides this functionality through the instances procedure in
the network::wfb (With FeedBack) namespace. It works by searching through
a tree of candidate ways of identifying vertices and edges of the subnetwork H with
the supernetwork G, offering to halt the search when a certain number of matches
(typically 1 or ∞) has been found.

The search tree is typically quite shallow, since identifying one vertex v of H
with a vertex of G will determine how the entire component of v is embedded into G
(or reveal that v would have to be embedded somewhere else). Subnetworks H with
multiple components may however require several choices before an embedding is
fixed, and H edges from input to output do in this case count as separate components,
which contributes to the code complexity: there are two kinds of components to
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⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

H1 H2 G1 G2 G3

Looking for ways of overlapping H1 and H2, all of G1, G2, and G3 are valid possibilities; there are
separate choices of whether to overlap the top vertices and whether to overlap the bottom vertices.
The G2 overlap does however require that H1 and H2 allow for feedbacks.

Fig. 17.5 Networks and overlaps

embed. Immutable value semantics do however make it trivial to cache a copy of any
pre-choice state as something to return to after backtracking.

Topic 10 (Enumerating ambiguities) In order to do completion, it is necessary to
enumerate all (critical) ambiguities—minimal networks that can be reduced in two
different ways—and traditionally this is done by picking two rewrite rules and listing
all the ways in which their left hand sides may be overlapped. The ambiguities
procedure in the network::wfb namespace does precisely this: given two net-
works with feedback H1 and H2 it returns a list of networks with feedback G such
that both H1 and H2 appear as subnetworks of G, and also the regions where they
do this. In the terminology of [3], the list returned covers all decisive ambiguities,
which are exactly the ones that it by the diamond lemma [3, Theorem 10.24] suffices
to check.

The algorithm used in the ambiguities procedure resembles that of the
instances procedure in that it explores a search tree of all possibilities for how
to identify vertices and edges of the two networks, but here there is always also the
possibility that something in one network is not identified with anything in the other,
which increases the tree valency a bit. It is also not the case that components get
fixed by only one choice each, because there is with networks no requirement that
the intersection of H1 and H2 (as embedded into G) is connected; whenever there is
a way of overlapping them in two places, there will also be two more ambiguities in
which H1 and H2 overlap in just one of these places (see Fig. 17.5). This is different
from the situation for trees/terms, which have the property that the common part in
an overlap of two trees is itself a tree and thus connected.

Concretely the procedure begins with H1 as G, then working its way through the
vertices of H2 while choosing which if any G vertex with which to identify it. If
an edge incident with an identified vertex is inner in both H1 and H2 then the other
endpoint of this edge is also enqueued for identification, whereas if the edge is inner
in H2 but not so in H1 then proceeding requiresmaking a choice: is the other endpoint
a vertex in H1 (and if so which one) or not? The general story is that edges that are
inner in H1 or H2 will be mapped to inner edges of G, but inputs and outputs of
H1 or H2 may also be mapped to inner edges of G, if feedbacks permit this and the
other Hi has an inner edge there. The search tree for ambiguities is therefore
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not so shallow as the instances one, even if many side branches can quickly be
disposed of as barren.

One further complication that is useful to observe is that the plain ambigu-
ities procedure often returns networks G with inputs and outputs in an order
that is awkward for graphical renderings. Therefore there is wrapper procedure
groomed_ambiguities which additionally permutes the inputs and outputs of
the produced network G, to reduce the number of crossings. Finally, it should be
mentioned that both instances and ambiguities come with a suite of test
cases, as getting these operations right indeed is somewhat nontrivial.

17.4.3 Rich Networks

The third “network” datatype employed in the library is the rich network, which
is a dictionary of many different pieces of information about a network, primarily
towards the end of drawing that network. Different operations on rich networks make
use of different entries, and several operations are about computing suitable values
for additional entries, given the data already present. The underlying pure network
is kept in the pure entry, and its vertex and edge labels are abundant also in other
entries—sometimes as elements, sometimes as indices.

The output/export formats presently supported are:

• As graphics on a Tk canvas [21], for interactive use in a graphical user interface.
Version 1 of the completion utility also used this for dumping to PDF.

• As SVG [14], for use in webpages.
• As LATEX code, using the PGF [22] package.

Exact capabilities varies between the formats, for example whether there is support
for drawing feedbacks, for showing regions (and if so: how), and which appearance
primitives are supported. The coordinate system used in rich network entries follow
the conventions of the Tk canvas, i.e., the positive y axis points down and the length
unit is “screen pixels” (although there is no requirement that coordinates are inte-
gers). The development over time has been towards preferring the SVG and LATEX
renderings, but primarily because those formats provide other mechanisms for mak-
ing networks part of larger structures: terms in sums, steps in proofs; if drawing that
much on a canvas, positioning several networks relative to each other (while not
making lines overly long) is also quite a lot of work.

Topic 11 (Signature with appearances) For drawing networks, it is not sufficient
that one knows what abstract symbol decorates a vertex; one must also associate this
symbol with an appearance. In the library, these are encoded as lists

{vertex-items} {output-offsets} {input-offsets} {size}?
where the {size} part is a late addition, only looked at by some layout operations.
The {output-offsets} and {input-offsets} are lists indexed by tail and head index,
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respectively, and specifywhere and howedges should attach to the vertex.An element
of these lists is itself a list with the structure

{x-ofs} {y-ofs} ({dir-x} {dir-y})?
where {x-ofs} and {y-ofs} are the offsets from the reference coordinates of the vertex
to the graphical endpoint of the edge. The optional {dir-x} and {dir-y} are the com-
ponents of a tangent vector for the edge pointing away from the vertex; the length is
irrelevant. The default for direction is (0, 1) (straight down) for outputs and (0,−1)
(straight up) for inputs.

The {vertex-items} is a list specifying one or more Tk canvas items that together
make up the graphical representation of the vertex. It has the general structure

({item-type} {coordinates-command} {options})+

i.e., three list elements per graphical item. The {item-type} is straight off the
type of the item; common values include rectangle, oval, line, text, and
polygon. The {options} is a dictionary of options for this item; in for example
a text item this is where the actual text string to display is encoded. Finally the
{coordinates-command} is a sentence prefix that given the reference coordinates of
the vertex calculates the coordinates expected by this item. A common but somewhat
unintuitive choice for {vertex-items} list is
oval {square 8} {}

which makes a radius 8 circle with the reference point as midpoint; the coordinates
specifying an oval (ellipse) are the coordinates for its bounding box, and ‘square
r ’ computes the coordinates for a square with side 2r . Full generality is provided by
using

offsets {pair}∗

as {coordinates-command}, in which case each {pair} gives the offsets from the
reference point of one point of the canvas item coordinates.

A point-and-click interface for designing signatures would be an obvious feature
from a usability perspective, but so far the purely scientific aspects have been given
higher priority.

Topic 12 (Network layout generation) As mentioned, the problem of how to gen-
erate a graphical layout for networks has been an important one throughout the devel-
opment of the program. The present production method goes through the following
stages:

(i) Every vertex is assigned an integer level, as explained in Topic 6. Thus the
network can be presented as being built up from discrete levels, where the items
in a level are either vertices at that level or edges passing through that level.
The extreme levels (abstractly home solely to vertices 0 and 1) are regarded as
having only edges as items.
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(ii) The network is also split into components (counting vertices 0 and 1 as included
and implicitly connected). Within each component and level, the horizontal
order of items is determined as explained in Topic 7.

(iii) Items are assigned reference positions, based on their nominal sizes and options
for separation between items. All items in a level have the same y-coordinate,
but differ in x-coordinate. Relative x-positions within a level and component
are first frozen, then adjacent levels have their relative x-coordinates adjusted
taking edges connecting them into account. Finally different components are
placed side by side.

The result of that is stored as the level-layout-Tk entry in a rich network.
Edges are straight vertical when passing through a level, but in general curves where
they go between levels.

The drawing routines rather work with the pure coordinate data found in the
vpos-Tk and ecurve-Tk-tt or ecurve-Tk-raw entries, allowing for sep-
arate development of layout generation data export. The two entries for edge
curve coordinates have to do with which kind of curves is being used: piecewise
quadratic (tt) or cubic (raw) polynomial parametrised curves. The latter are native
in both SVG and PS/PDF, whereas the former have their most famous application in
the TrueType font format.

Graphical networks exported as SVG are XML (sub)documents and as such not
much for human eyes before rendering, but targeting LATEX is another matter.

Topic 13 (Graphical data in LATEX manuscripts) The traditional view in printing
has been that anything which cannot be produced solely using type is some sort of
imagewhichhas to be supplied separately from themanuscript, but in a paper showing
calculations using networks that quickly becomes a version control nightmare—
keeping networks in the samemanuscript as the text and all itsmathematical formulae
is the way to go. TikZ [22] and other LATEX packages have long since demonstrated
that it is feasible to code vector graphics directly within a LATEX manuscript, but
generating TikZ code is not so practical: much of TikZ’s power lies in figuring out
coordinates so that the user does not have to, but in this case that work was already
done.

Feature-wise, the underlying PGF package is much closer to what we want, but
plain PGF code is quite voluminous—in part because the command names are
long, but primarily because the arguments are long; for example, the command
\pgfpathqcurveto takes six arguments, each of which is a length (so including
a TEX unit) denoting an x- or y-coordinate. One such command easily fills a .tex-
file line, meaning each network would be several screenfuls of code. That is too long
if one wishes to keep track of a narrative where this network is merely a monomial.
TikZ code can be more compact—units are not mandatory, the command names are
shorter, and a single command often suffices for drawing one item—but it is designed
to be written by humans rather than generated by a program, so converting low-level
graphics to TikZ code is not as straightforward as it might seem.
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Instead the network library includes a LATEX package sdpgf which offers an
even more compact representation of graphical networks, as a thin wrapper around
PGF. The most radical innovation is that the new commands added use single spaces
as argument delimiters; not only does this save one character per argument, but it
also allows standard line breaking in text editors to act sensibly on these commands,
filling a line with arguments as far as it goes and then wrapping any that exceed
the desired right margin to the next line. Coordinates are all implicitly in a unit
length specified at the top of the network (thus making it easy to tweak the scale of
networks throughout the authoring process), and by choosing this wisely it is possible
tomake all coordinates integers (thus saving a character for the decimal point). Finally
coordinates are typically expressed relative to the previous point (counting control
points as points), again reducing the typical number of digits per coordinate from
three to two or one. This allows

\begin{sdpgf}{0}{0}{60}{-124}{0.15pt}
\m 41 -51 \C 20 20 -46 10 0 16 \S \m 19 -51 \C -20 20 46 10
0 16 \S \m 30 -119 \L 0 41 \S \ov 14 -78 32 32 \S

\end{sdpgf}

to suffice as code for drawing the network . Fitting several times that on a screen

page is quite trivial.

The utility procedure network_as_LaTeX included in the network library
sources is also worth mentioning: it takes a pure network as argument and generates
LATEX code to draw it. All networks in this paper were drawn by code generated that
way.

17.5 The Completion Utility

The normal way of applying the completion utility is to use the standard LATEXDoc-
Strip [16] utility to create an “amalgamation” script with all required packages, the
main program, and finally set-up of a specific completion problem; this is convenient
if one wishes to make long runs of the completion utility, perhaps on a remote com-
puter, as there is then only a single file to install and starting it from the command
line is trivial. It is however also possible to generate a blank amalgamation without
a problem set-up; the lines-of-code figure in Sect. 17.3 report on that arrangement.
Accordingly, there is in the completion utility at present no graphical user interface
for setting up a completion problem, only for monitoring its progress, inspecting
results, and starting/stopping processing.

The state of the completion is for most part being kept in a database, primarily
to ensure persistence—if we’re willing to keep it running for a day or more, then
we don’t want to lose our work due to a power outage or system crash—but also to
not have it severely limited by available RAM; those who have tried running a large
Gröbner basis calculation within a standard computer algebra system often discover
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Fig. 17.6 Control panel
window

thatmemory is the limiting factormuchmore than rawprocessing power.Having data
written to disk could potentially be a bottleneck, but in practice databases are quite
good at caching frequently needed data in memory, and definitely more sophisticated
in their allocation of resources than any ad hoc solution we could hope to implement
ourselves. The problem set-up part of an amalgamation script is typically written so
that it either continues processing of the problem in an existing database, or creates
a new database and enters the given completion problem into it.

The objects that undergo rewriting are formal linear combinations of networks
(with a common set of feedbacks),wherein twonetworks count as the samemonomial
if they are isomorphic. The coefficients can be taken from any field (of which an
implementation is available); it is a requirement in the algorithm that any nonzero
coefficient has a multiplicative inverse. Congruences are stored as rewrite rules with
just the leading monomial on the left hand side, whereas the right hand side is a
general linear combination. A rewrite step a → b that manages to apply a rule μ →∑n

i=1 riμi consists of finding the left hand sideμ appearing as a subnetwork of some
term sν of a, then constructing networks ν1, . . . , νn by replacing this μ part of ν by
each of μ1, . . . , μn , and finally producing b = a + s

(−ν + ∑n
i=1 riνi

)
. Technically

these νi = λ � μi , where λ is the network that remains when one detaches (Fig. 17.4)
the μ region from ν; in particular λ � μ = ν.

When run with a GUI, the completion utility has a control panel (Fig. 17.6) with
three push-buttons ‘Halt’, ‘Pause’, and ‘Run’; when halted, then entire state of the
computation performed so far is stored on file in the database and nothing is lost by
quitting the utility, whereas when paused it may hold some intermediate results in
RAM. Either way, computations may be resumed by pressing run. All other interface
elements are for inspecting the current state of the completion; normally those are
sufficiently responsive even if the completion is running, but the option of pausing
exists to provide a way of ensuring that the user interface gets full attention.
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17.5.1 Algorithms

Before getting into the detail choices made when implementing completion in this
utility, it seems appropriate to recall how a basic completion algorithm works. There
are two main tables: that of rewrite rules (the rewrite system) and that of ambiguities
(also known as critical pairs, overlaps, etc.). The rewrite rules table constitutes the
current approximation of the sought result, whereas the table of ambiguities consti-
tutes a list of cases that must be checked before this current rewrite system can be
declared complete; the ambiguities table is also a record of the outcomes of all these
checks. Sometimes a check fails, and then this is overcome by adding a new rule
to the rewrite system, but that also contributes new ambiguities to that table, so it
may go “one step forward, two steps back.” In the case of completion in commu-
tative polynomial rings (classical Gröbner bases theory), it is well-known that this
procedure must eventually terminate by Dickson’s Lemma, but from noncommuta-
tive polynomial rings and up the completion of a rewrite system may indeed turn
out to be infinite, in which case the procedure never terminates. It can however be
proved that if every ambiguity is guaranteed to be processed within finite time and
a finite completion exists then this completion procedure will eventually find it and
thereafter terminate.

To allow for interaction with the completion utility, the completion procedure is
run through the event loop,with new tasks scheduling themselves to run as soon as the
process goes idle. Some tasks may potentially take a long time to complete, and are
therefore split up over several subroutines which each return to the event loop upon
completion; likewise high level loops are unrolled to only perform a limited number
of iterations before returning to the event loop. The completion_main_loop
maintains a stack of tasks to process, specifying both a subroutine to call and the
data to pass to it, and the difference between a halt and a pause is that halts allow
the main loop stack to become empty before stopping, whereas a pause may happen
with data still on the main loop stack.

Topic 14 (Monomial order) An ordering of networks (monomials) is needed to
identify the leading term in a linear combination, so that it can be taken as the left
hand side of a rewrite rule. Suchorderings are typically constructed byfirst comparing
one parameter, then if that comes up equal comparing a second parameter, if both
come up equal comparing a third parameter, and so on; in commutative Gröbner
basis theory these “parameters” can all be taken to be different weightings of degree.
To simplify defining such lexicographic orderings, the ordering is implemented by
means of comparison key—effectively the list of values of these parameters, in the
order that they are considered—that is computed for each network that needs to be
compared: to compare two networks, the utility looks at their comparison keys.

A complication is that comparisons which take into account the graph structure of
networks need to involve quantities that are more sophisticated than mere weighted
vertex counts (which is what polynomial degree would correspond to); the simplest
choice of quantity that does the trick may instead turn out to be a matrix. A related
complication is that orderings of general networks typically have to be partial—allow
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for two networks to be incomparable—since total orderings that are compatible with
the PROP operations are insensitive to the graph structure [3, pp. 31–32]. These
matters are dealt with by two refinements of the comparison key mechanism.

First, each element of the comparison key has its own comparison command; this
allows for using arbitrary data as comparison key elements. Second, the comparison
key is logically divided into blocks for the lexicographic aspect: comparisons only
advance to the next block if all elements in the current block compare equal, there
is a strict inequality if at least one comparison in the current block comes up strict
and the rest agree or say equal, and two networks come out incomparable if there are
comparisons in the same block that come out strict in opposite directions. In the case
of matrices, it is easier to dump all their elements as one block in the comparison
key than it is to set up a custom command for comparing matrices. A consequence
of this is however that the comparison keys tend to be quite long; having over 100
elements is not unusual.

The main subalgorithm in the completion procedure is that of reducing a general
element (formal linear combination of networks) to what with respect to the current
set of rewrite rules is a normal form. In principle that amounts to testing every network
that appears against every rule in the system, for whether this rule can be applied to
rewrite that network and if so do that, but in practice there are ways of lessening this
workload. Those that have to do with selection of rules are treated in Sect. 17.5.2, but
a more elementary matter is the order in which the networks are considered. Since
the left hand side of a rewrite rule is always strictly larger in the monomial order than
anything on the right hand side, it is a standard strategy to work in descending order
of monomials; at the very least this avoids having to process the same monomial
twice, and quite often it means some monomials disappear before we even get to
them.

Topic 15 (Representation of linear combinations) The basic way to represent
a formal linear combination of networks in Tcl is as a dictionary (hashmap), with
canonised networks as keys and coefficients as values; in the typical case this allows
for O(1) access to individual terms. However, in the case that one wishes to represent
a list of such formal linear combinations (for example the steps of a proof) and the
same network is likely to appear in several list elements then it can be more compact
to have one joint table associating each network with an index, and then represent
the formal linear combinations as dictionaries with these indices as keys and again
coefficients as values.

A downside of using a hashmap is that it places the terms in a completely arbitrary
order, which means applying the standard rewriting strategy would require that we at
each step look at all terms to determine which one is the largest; complexity-wise this
nullifies any advantage we could have of O(1) access to individual terms. Therefore
one would for formal linear combinations of networks undergoing rewriting like
to employ a different data structure, which keeps the terms sorted and preferably
provides fast access to the largest term. The computer science literature knows at
least two data structures that provide O(log n) access to arbitrary terms and O(1)
access to the leading term: threaded self-balancing trees and skip lists.
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Self-balancing trees (of which there are amyriad of variants) are standardmaterial
in the computer science curriculum, but skip lists [18] tend to receive less attention;
perhaps in part because they are probabilistic and thus attain their complexity bound
on average rather than in worst case, but for us average complexity and implemen-
tation simplicity are what matters. The main reason for choosing skip lists in the
completion utility is however that their search model is one of shrinking a closed
interval rather than bisecting an open interval; one keeps track of both endpoints
of the interval where a sought node is to be found. This is relevant because in the
traditional analysis of these data structures it is typically assumed that comparing
two keys is an atomic operation, but the comparison keys of networks are anything
but atomic. When searching for a node in one of these skip lists, one can advance
either to the next level in the data structure or to the next element of the comparison
keys, meaning the length of the comparison keym and length of skip list n contribute
roughly as O(m + log n) to the complexity, provided one keeps track of how many
key elements are in fact equal throughout the current interval. If instead starting every
comparison from the start of the key, the complexity would be more like O(m log n).

At each rewrite step, the monomial at the head of the skip list is popped off and
processed. If no rewrite rule applies to it, then that term is added to a companion
hashmap dictionary, whereas if a rule is found that applies then terms corresponding
to the right hand side of this rule are added to the skip list formal linear combination.
When the skip list is empty, the normal form can be found in the hashmap dictionary.

For each ambiguity, there is a formal linear combination of networks (corre-
sponding to the S-polynomial of Gröbner basis theory) that should reduce to 0 for
this ambiguity to be resolvable. If it does not, then the normal form is a new nontrivial
congruence, which extends the table of rules. Left hand sides of new rules are tested
against the left hand sides of existing rules, and if an old rule turns out to have a new
one as subnetwork, then the status of that old rule is changed from active to dropped:
it will no longer participate in neither reductions nor generation of new ambiguities,
because anything that the old rule could reduce can equally well be reduced by the
new rule. There will however be one final inclusion ambiguity between the old and
the new rule, since the right hand side of the old need not correspond to the right
hand side of the new.

Topic 16 (Ambiguity processing order) The basic strategy for processing ambi-
guities is to simply pick them in the order they are generated, since this ensures that
every ambiguity is processed eventually, but it is well known in Gröbner basis theory
that focusing on “small” ambiguities can drastically speed up overall runtime by
letting important small rules be discovered faster. Therefore the ambiguities carry a
heuristic “size” attribute, which determines the priority of an ambiguity in the queue
of these. As long as the number of ambiguities below any particular size is bounded,
eventual processing is still guaranteed.

One axis of available algorithm variants concern what to use as this size heuristic.
The choice which has seen most use is the sum, over all terms in the ambiguity, of
the squares of the orders (number of inner vertices) of the networks; for example the
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number 34 in Fig. 17.6 arises as 52 + 32 for one term with an order 5 network and
one term with an order 3 network.

The utility does not go through the right hand sides of old rules to check if a new
rule could reduce these further—what in the Gröbner basis tradition would be known
asmaintaining a reducedbasis. The reasoninghere is primarily that such effortswould
be spent on tinkering with congruences already discovered rather than seeking new
ones, at best in the hope of speeding up future reductions, but in practice with a rather
low yield in that regard. Moreover there is a definite risk that rules being examined
for further reductions will later be dropped due to the discovery of a better rule;
then any effort spent on additional reduction on their right hand sides is completely
wasted.

Besides the active/dropped distinction, the utility alsomakes a distinction between
equalities and proper rules, even though both have the same format and are stored in
the same table. A proper rule is made from a congruence which has a uniquemaximal
monomial, whereas discovered congruences with multiple maximal monomials (due
to these being incomparable) give rise to one equality for each maximal monomial,
where this monomial has been singled out as the left hand side. Equalities do not
participate in reduction, but they participate in ambiguity generation just like proper
rules; the purpose of this is to ensure that no information is lost, in the sense that all
ways of combining known congruences to yield new ones will be explored, even if
some of those known congruences are not orientable. Sideways deduction steps by
wayof an equalitymay be less efficient than the reduction steps performed by a proper
rule—search-wise the sideways steps just try every direction possible, whereas the
reduction steps follow a plan (only go down in the order)—but both are equally valid
as steps in a mathematical deduction.

Equalities, like proper rules, will be dropped if their left hand sides become
reducible by a new rule. As long as there are active equalities, the completion proce-
dure will not have produced a confluent rewrite system, but if a complete system of
proper rules exists then the completion procedure should eventually find it, possibly
by using equalities as intermediate steps in the deduction of these rules. The task
of designing an ordering which under which a confluent system of orientable rules
exists is hard, and conveniently left to the user.

Topic 17 (Lazy ambiguity generation) Given the tables mentioned so far—that of
rules and that of ambiguities—the obvious way of structuring the code is to generate
all ambiguities involving a rule or equality as soon as that is added to the database;
the sources describe this as the eager algorithm variant. Empirically this variant
would even for rather small rule databases spend over 90% of its time generating
ambiguities (effectively making lists of cases to explore later) and thus less than
10% of its time resolving ambiguities (actually proving stuff and discovering new
lemmas). Besides the slow progress, this also carries a considerable risk of outright
wasting effort, since if a rule or equality is dropped then the only additional ambiguity
of it that we need to resolve is the inclusion with the new rule prompting the drop;
the others become irrelevant. In theories where important identities exist which are
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not given as explicit axioms—for example (ab)−1 = b−1a−1 in group theory—the
normal pattern for completion is that a large number of special cases are discovered
before discovery of the simpler general case causes them to be dropped. For each of
those special case rules not immediately involved in proving the general case rule,
the effort spent on generating ambiguities will have been completely useless! Better
then to no be so eager.

The lazier algorithm variant makes use of a third table of pairs of rules, which
lists those unordered pairs of rules that have not yet been considered for ambiguity
generation. Adding rows to this table is quick, and it is equally quick to drop all
pairs containing a rule that is dropped. Delaying ambiguity generation pretty much
reversed the percentages for how timewas spent, so thatwith this non-eager algorithm
variant reducing far outweighed ambiguity generation.

Being lazy does however complicate the matter of ambiguity processing order,
since even a heuristic size cannot be known until the ambiguity is actually generated.
The implementation is that also each pair comes with a value for the size heuristic,
which is set at pair creation time based on statistics for ambiguities of the rules
in question; at each processing step, the algorithm either picks an ambiguity and
processes that, or picks a pair and generates any corresponding ambiguities, based
on which table currently shows the lowest value for the size heuristic. In Fig. 17.6,
the 33.6 for pairs versus 34 for ambiguities means the next thing picked will be a
pair. That the ambiguities table has 229 active plus 460 fully processed ambiguities
also means that the majority of the 1498 pairs so far fully processed did not give rise
to any ambiguity; searching for a way of forming one still takes time, though.

For the sum of orders squared heuristic for ambiguity size, the unknown quantity
that must be estimated is the cardinality of the overlap, i.e., the number of vertices
which are common to the left hand sides of the two generating rules; in Fig. 17.5,
G1 and G3 are cardinality 1 overlaps, whereas G2 is a cardinality 2 overlap. The
estimate used for overlap cardinality is simply the average, over all ambiguities so
far generated that involve one of the rules, of that overlap cardinality. It may be argued
that since the size heuristic (for two given rules) is a second degree polynomial of
the overlap cardinality, an unbiased estimate of the sum of orders square heuristic
should take into account also the secondmoment of the overlap cardinality stochastic
variable; this would be quite easy, but at the time of writing the completion utility
does not record enough information.

A more interesting possibility is to go beyond uniform averages, and instead base
these size estimates on similarity with pairs already checked. In large rule tables,
it turns out the left hand sides of rules have certain “active regions” often being
involved in overlaps, and other regions which are not; for an ambiguity to arise, the
active regions of two rules need to match (cf. active sites of molecules in biology).
There is no a priori way of knowing what will constitute an active region, since this
is an emergent property that depends on the population of rule left hand sides as a
whole, but if networks G1,G2, . . . ,Gm have the same overlap with network H1, and
in additionG1 has such an overlap with networks H2, . . . , Hn , then one would expect
that Gi for i = 2, . . . ,m also has such an overlap with Hj for j = 2, . . . , n. As the
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numbers of m and n of active rules with the same kind of active region increases,
the number of overlaps that can be predicted from comparison with the response to
a few test rules grows as mn; this holds promise of more accurate predictions than
one can get from mere averages.

17.5.2 The Database

The completion utility stores its data in a standard relational database, accessed
via the TDBC [11] interface. To date the only database engine employed has been
SQLite [10], since the same-process architecture of SQLite simplifies deployment;
otherwise it is traditional for database systems to follow a server–client architecture,
where the server need not even run on the same hardware as the client.

Topic 18 (Parallelisation of completion procedure) Keeping most of the state for
the completion procedure in a database suggests an easy route to parallelising the
whole computation, namely to have several completion utility processes (workers)
connect as clients to the same database server; the number of ambiguities or pairs
processed perminute then scales linearlywith the number of clients running, whereas
scaling the database server is mostly a matter of choosing an appropriate engine. The
completion utility has to date not been deployed in such a parallel manner—the most
obvious piece of functionality missing is for clients to mark an ambiguity or pair as
“checked out” before they start working on it, so that they don’t merely duplicate the
work of each other—but the fact that it all works through a database server means all
low-level concurrency problems are automatically taken care of. (An example of a
high-level concurrency problems would be what to do if two workers simultaneously
derive the same rule, even though they worked on different ambiguities.)

The completion utility has been written to abstract the actual commands (state-
ments) given to the database, so adapting it to a different database engine (potentially
speaking a different dialect of SQL) should be straightforward. Based on advice to
avoid English words as identifiers in the database, since any such word might poten-
tially be claimed as a reserved word by some obscure SQL dialect, it has furthermore
been a (possibly misguided) design decision to use l33t (leet) orthography for
identifiers not otherwise containing a digit; thus the tables of rules and ambiguities
are named ru1es and am6iguities, respectively. Both tables have one column
num6er which constitutes the primary key and one column st4te which declares
the current status (e.g. active/inactive, rule/equality) of the table row.

Content-wise the main columns of the rules table are lhs (left hand side of rule,
a single network), rhs (right hand side of rule, a dictionary mapping networks to
their coefficients in the linear combination), and feed6acks (the feedbacks, as
explained in Sect. 17.4.2). For auditing there are columns pr00f (the number of the
ambiguity providing the derivation of this rule), wh3n1 (point in time at which this
rule was derived), and wh3n2 (point in time at which it was dropped, if no longer
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active). Statistics pertaining to a particular rule that are used for estimating ambiguity
size are also kept in this table.

Topic 19 (Network profiles)Themajority of columns in the rules table are however
part of something called the profile, which is used to help with another problem: how
does onefind appropriate rules for reducing a network? It is highly desirable that a first
screening is done already in the database, since the less the volume of data that needs
to be transferred from database (potentially in slow storage, such as a disk) to the
completion utility, the better. The profile contains detailed counts of various features
that occur in the network, and any rule with a higher count of some feature than
the network we seek to reduce can immediately be eliminated from consideration.
While elementary, this form of condition is simple enough to be tested directly in
SQL, and has empirically made it feasible to keep making progress even when the
table of rules is quite large.

The first part of the profile is the vertex counts (columns v〈k〉), which for each
vertex type in the signature counts how many vertices with that decoration there are
in the network; this is analogous to keeping track of the multidegree of monomials in
commutative Gröbner basis theory. The second part of the profile is the edge counts
(columns e〈k〉), which similarly keep track of how many instances of each type of
edge there are in the network; in this context, the type of an edge expresses not only
the types of the vertices at the head and at the tail of the edge, but also to which
ports of those vertices the edge connects. This is weaker than keeping track of the
counts of all connected 2-vertex subnetworks (since sometimes a pair of vertices may
be connected by more than one edge), but only marginally so. External edges of a
network do not count in the profile, since the vertex at one end in that case is missing;
whatever information could be had from adding up the possibilities for what it could
be is already implicit in the vertex and edge counts already provided.

The column names deliberately do not attempt to encode the full data defining
a vertex or edge type; instead their meaning depends on the signature, down to the
order in which it lists the vertex types. It is not expected that network profiles can be
decoded, only that they can be consistently computed.

There is an old algorithm variant providing profile columns also in the ambiguities
table, to support using a kind of “Buchberger’s Second Criterion” to avoid reducing
some ambiguities; the gist of this criterion is that if the site of an ambiguity of rules s1
and s2 is acted upon also by a third rule s3, then anything that can be derived from the
(s1, s2) ambiguity also follows from combining the (s1, s3) and (s2, s3) ambiguities
that would exist here, so reducing the (s1, s2) ambiguity is redundant. The eager
aprofile variant of the algorithm would use this profile to screen for ambiguities that
a newly added rule or equality would render redundant. The lazy algorithm variant
instead performs this check when an ambiguity has been picked for reduction, which
meanswe take (s1, s2) as given and search the rules table for s3 rather than taking s3 as
given and search the larger ambiguities table for (s1, s2). Apart from making do with
less stored data, this also seemed to progress faster, presumably for reasons similar to
those discussed in Topic 17. Contrary to what the literature on commutative Gröbner



468 L. Hellström

bases suggest however, this Buchberger’s Second Criterion only rarely seems to
apply—possibly because matches essentially happen by chance, and the far more
structured nature of networks compared to commutative power produces make such
matches unlikely—so nowadays the normal configuration is to not even test it.

One group of columns in the ambiguities table characterise an ambiguity and
remain fixed in each row after it is created; this includes si7e (the network
that can be reduced in two different ways), feed6acks (its feedback patterns),
the numbers p1us and m1nus of the two rules from which it was formed,
and the respective regions p1us2eg and m1nus2eg that these rules would
replace. The two rule numbers effectively determine what data was passed to
network::wfb::groomed_ambiguities, and the rest are one match which
that subroutine returned. A second group of columns is used to record the resolution
of this ambiguity. The re5olution is the list of rewrite steps, starting with the
difference between the result of applying the p1us rule to the si7e and the result
of applying the m1nus rule to the si7e; this is the counterpart of the S-polynomial
in Gröbner basis theory. The networks are stored in the separate m0n0mials list,
whereas each element of the re5solution is a dictionary mapping the index of
a network to its corresponding coefficient in this step, as mentioned in Topic 15.
The wh1ch column is the list of rules (one per step of the re5olution) which
have been applied, and the wh3r3 column is a list stating to which monomial and
to which region in that monomial the rule was applied. The reason the rule numbers
are kept in a separate column is to facilitate a database query finding all ambiguities
where a particular rule was used.

The by far largest of all columns tends to be the m0m0mials, which frequently
holds several thousand characters per database row. There is an algorithm variant
where there instead is a column deflated_m0n0mials that holds the Deflate [2]
compression (a binary object) of the m0n0mials data; this provides a consider-
able reduction in the overall database size. It has not been examined how much
the two steps of that compression—LZ77 sliding window dictionary and Huffman
encoding—each contribute to this, but both have low hanging fruit to pick: there is
definitely substring repetition (such as vertex types and list markup), and the set of
characters used is for most part quite small (space, digits 0–9, braces {}, and the
letters found in vertex type names).

Topic 20 (Dense encoding of pairs) Even if pairs contain much less data than
ambiguities, the fact that the number of pairs grows quadratically with the number of
rules means the total pa1rs table after a while becomes a major factor in the overall
database size. Asymptotically that is unavoidable, but within the bounds of realistic
computational efforts substantial improvements are attainable through attention to
how pairs are encoded. The pa1rs table is essentially a sparse encoding of a rather
dense set of pairs of integers (even if there is also for each pair the estimated value
of the selection heuristic), which means the overhead is considerable. The pairmap
algorithm variant instead keeps most pairs in a pa1rMap table, where each pair is
allocated just one bit in a binary object.
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The idea is that pairs with a small value for the selection heuristic go into the
sparse pa1rs table where this heuristic is explicit, whereas pairs with a large value
for it go into the dense pa1rMap table which only records whether the pair is in
there or not. The boundary between small and large is determined by a variable
pairs_top which is raised whenever the pa1rs table is depleted; when that
happens, the pa1rMap table is scanned, selection heuristics are recalculated from
current overlap statistics, and anything falling below the new boundary is moved to
the pa1rs table instead. This way the pa1rs table operates as a dynamic priority
queue of pairs to process soon, whereas the bulk of pairs to process later are kept in
compact storage.

Topic 21 (The use of SQL indices) A feature in SQL is that databases can have
indices—essentially shadow tableswhich duplicate only some columns fromaproper
table, and are automatically updatedwhenever the proper table is updated—that facil-
itate fast access to particular data; database engines can sometimes answer queries
using only the data in some index, rather than having to consult the table proper. As
long as the indices can fit in RAM, it need not matter much that the table as a whole
is large and has to be stored on disk. All of these observations are trivialities in the
field of databases, but possibly unfamiliar to people coming from computer algebra,
and thus worth mentioning as it really can make a huge difference. The completion
utility has indices on the selection heuristics and state columns of ambiguities and
pairs tables, and on the state and profile columns of the rules table, both of which
need to be searched frequently. For inspecting the database, there are also indices on
the columns saying when something (e.g. rule added, rule dropped) happened.

One final table in the database is le9end, which is essentially a dictionary (with
one row per entry) of miscellaneous information describing the problem set-up. Data
thatmaybe recorded here include thesignature and the coefficient ring that define
the free PROP in which the calculations are carried out.

17.5.3 Inspecting Database Contents

When the aim is to discover new identities, it is essential that one can inspect and
export the contents of the database, in some form that is comprehensible to a human
reader (possibly after rendering by standard software). The completion utility offers
a number of routes for this, even if the variety more reflects the development history
and ideas about howmaterial could be presented, than any coherent plan for covering
all reasonable needs.

17.5.3.1 Interactive Introspection

The interactive methods of inspection look at one rule at a time, always presenting
the current state of the database. They are suitable for monitoring the progress of the
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Fig. 17.7 The rule browser window

completion process, providing information on what kind of rules are being derived,
which allows the user to make an informed decision on whether to stop the process
or let it continue.

When running the completion utilitywith GUI, there is apart from the control panel
window also a rule browser window, as shown in Fig. 17.7. This window has three
resizable panes, each a separate canvas [21] widget. The top left pane shows the
left hand side and feedbacks of a rule or equality, the top right pane shows the right
hand side, and the bottom pane shows the derivation of this rule, or the word ‘Axiom’
if it one of the starting congruences for the completion. The material presented in a
pane may be geometrically larger than what fits in that pane; in that case the user
may grab the contents by holding down the mouse button and then drag them around.
There is also a top line specifying the state of the item: proper rule or equality, active
or dropped, and in the latter case when time it was dropped.

Topic 22 (Rule space navigation)Elementary controls provided formoving around
in the rule space include jumping to a specific rule by number, aswell as incrementing
or decrementing the number of the current rule by one; more interesting is the feature
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of jumping to the rule used in a specific step of a proof. In the proof pane, each
rewrite step carries an annotation giving the number of the rule (or equality) applied,
together with an indication of in which direction it was applied, and this annotation
text constitutes a link which when clicked takes the browser to that rule—this is
extremely convenient when the rule applied is not a familiar one. Also convenient is
that the rule browser remembers the path you have followed in your browsing, and
has buttons also for going back and forward along that path, just like a web browser.

A significant limitation of the rule browser is however that it cannot show rules
with more than one term on the right hand side, nor can it display coefficients that
are �= 1; if either would be at hand in a pane, then that pane will show no content.
The reason for this limitation is the complexity of implementation: a coefficient can
potentially be an element of an arbitrary field, which makes the problem of rendering
it on a Tk canvas equivalent to the problem of rendering an arbitrary mathematical
formula—certainly a worthy task, but not the one we primarily set out to address. In
addition we encounter nontrivial layout problems even for coefficient fields where
every element can be rendered as an integer, since having several terms per proof step
makes it more interesting to line break the proofs for easy viewing, but according
to which principles? Again, this is not our primary task, and for many interesting
completion problems not even one that needs addressing, since all rules in fact have
right hand sides with only one term and its coefficient is 1.

Still, these limitations are lifted in the alternative web interface for rule browsing.
When this is active, the completion utility runs a tiny web server with a status page
(Fig. 17.8a) and one page per rule in the database (Fig. 17.8b). These pages are
XHTML with embedded SVG for the networks and (where necessary) MathML for
coefficients, which is a classical combination of technologies; the formula rendering
and layout problems are thus handed over to the user’s web browser. Rather than
drawing feedbacks, the web interface presents the transferrence type of a rule, as one
of ‘All’ (all 1s matrix), ‘None’ (all 0s matrix), or an HTML table.

Unlike the GUI control panel, the web interface does not provide any controls for
starting and stopping the completion process. This is for security reasons; whereas
it would be possible to provide also that in a web interface, the overhead for autho-
risation of such remote commands is quite considerable. (Even a simple password
mechanism for authentication would necessitate encrypting the connection, and the
deployment complications this brings up are nontrivial.) Instead the standard set-up
for a GUI-less version of the completion utility is that it quits in an orderly fashion
when a specific child process terminates, which (since that child process just waits
forever) happens when the user forcibly terminates it. Effectively this hands the
authorisation problem over to the operating system, where it should anyway already
have been resolved.

Even without control functionality, running a web server could be considered a
security issue. The minimal embedded web server does not at present restrict access
to being local, although operating system firewall settings may (and increasingly
do) impose such restrictions. The embedded web server does have some resilience
against denial-of-service attacks, but it would not stop an attacker from viewing each
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Fig. 17.8 Web interface

and every rule in the database. On the other hand science should be open, so for most
probable users this might not be that big a deal.

17.5.3.2 Data Export

Compiling a database of rules implied by a given axiom system is of limited use if
one cannot export its contents, to make use of them elsewhere, and realistically the
main consumer within the foreseeable future will be a math paper. That means we
need to export to LATEX.

There is no graphical interface for exporting data; rather one should start the
completion utility within an interactive shell and then type explicit commands to
order the export. The rule_as_LaTeX command takes one rule number as argu-
ment and returns LATEX code for that rule, whereas database_as_LaTeX takes
the name of a file to create, which will be a LATEX document with all the rules.
ambiguities_as_LaTeX rather take a list of ambiguity numbers as first argu-
ment, and returns LATEX code for their resolutions, regardless of whether those ended
up prompting the creation of a new rule or not; this latter thing is what one would
need for a proof of the completeness of a rewrite system.
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All of these commands also take options to further configure the output. Most are
simply passed on to the library routines for generating the graphical representation of
the networks (Sect. 17.4.3), such as -unit and -division which determine the
geometric size of the networks generated, but some control higher level aspects of the
output generation. In particular rule_as_LaTeX and database_as_LaTeX
have an option -stylewith supported values equation (default) and theorem.
In the equation style, the export of a rule consists of one equation environment
with the derivation of that rule; examples of this appear in Sect. 17.1. In the theorem
style, the export of a rule is rather an entire lemma, where first equivalence of the
left and right hand sides is asserted, and then the derivation is provided as its proof;
examples of this appear in Sect. 17.2.Other options provide for configuring\labels
assigned and environments used.

Topic 23 (Machine-readable export) Whereas an export to LATEXmay meet one’s
short-term needs, the long-term rather requires that data be exportable as machine-
readable mathematical objects with full semantics preserved. Concretely that means
having OpenMath [1] as an export format. Unfortunately that was not trivial, as
much of the required vocabulary did not yet have a machine-readable formalisation;
the tensor2 content dictionary that provides for network notation encoding of
expressions was only presented at the 2017 OpenMath workshop, long after main
development of the completion utility version 2 was finished. A proper OpenMath
export would in addition need symbols to express concepts coming from universal
algebra and rewriting, that still awaits formalisation.

Yet the reader who examines the export-to-LATEX mechanisms will discover that
there is a noticeable amount of OpenMath in there; this is due tome already having an
OM-to-LATEXconversion codebasewritten, that could be leveraged by the completion
utility. The intermediate OpenMath encodings of linear combinations of networks
that are being generated in this export route will however express the networks as
foreign objects with a pregenerated LATEX encoding, and do not sensibly meet the
requirement of encoding their data with semantics.

17.5.4 Included Completion Problems

The source for the completion utility also contains a number of “examples” of com-
pletion problems, which it would perhaps be more fair to describe as: the collection
of completion problems that the author has coded but not gotten around to find a
separate home for yet. They may certainly be read as examples of how one might
code a problem of one’s own, but several have accumulated a lot of DocStripmodule
guards which can make them hard to read; in that case it may help to also look at the
stripped sources produced by TEXing cmplutil2.ins.

As mentioned in Sect. 17.1, these examples need to do three things: set the signa-
ture, enter the axioms, and define the ordering. A full explanation of how one does
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that would carry this text over into user’s manual territory, but some of the key points
are still worth stating.

First, there are two sides to specifying the signature: the appearance and the formal
mathematical signature. By setting the vertex_appearances variable to a dic-
tionary mapping the symbols to their appearances (as per Topic 11) one takes care of
the former. This provide sufficient information also to compute the formal signature,
but is not used to that end; it maywell happen that examples specify an appearance for
symbols not in the signature. Instead the formal signature is specified in the call that
initialises the database file, since it determines how many columns there are in the
profile. The command for this is sqlite3_init, and the signature is specified as
a dictionary mapping each symbol x to the pair {α(x) ω(x)} of its arity and coarity;
the same kind of dictionary is used in calls to network::pure::construct.

On the same level as the signature is also the matter of what field the coefficients
live in. This is specified by setting the variable coefficient to a sentence prefix
implementing that field, but the included problems are typically fine with the default
choice of integers modulo 32003 and therefore do nothing in this area. Changing the
coefficient field might mean the introspection mechanisms need help generating a
presentation of this data; the relevant commands have options related to this.

The second thing the included problems tend to do is to define the ordering,
which is by far the most complicated of the three steps. Concretely, a completion
problem set-up needs to define a command set_cmpcmds which gets called once
for every ambiguity that gets picked. The function this command needs to perform
is to set three entries of the RS (resolution state) array: cmpkeycmd, cmpcmds,
and cmpblocks. The cmpkeycmd entry is a sentence prefix that takes a pure
network as additional argument and returns the comparison key for this network.
The cmpcmds entry is a list of sentence prefixes that compare individual elements
of a comparison key, and the cmpblocks is a list of booleans that encode the block
structure of the comparison keys. The exact structure of the comparison keys varies
with the arity and coarity of the networks being treated, which is why these entries
need to be reinitialised for every new ambiguity. Note that the problem set-ups often
define not only set_cmpcmds but also one or several helper procedures for use in
the cmpkeycmd.

The third thing done is to enter the axioms. This is most conveniently done using
the enter_congruence procedure which takes as arguments the coefficients and
networks of a formal linear combination that is to be held equivalent to 0; the networks
are specified as scan-lists (Topic 1). Each congruence also has a list of feedbacks,
but most axiom systems encountered in the literature have those lists all empty. An
example of how such a block of commands to enter the congruences can look may
be seen in Fig. 17.9.

Because opening an existing database file simply lets you resume processing from
the state recorded in that database, many of these included problems have code that
skip the axioms if there already are ambiguities in the database.
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enter_congruence -short "Unit&counit" {} 1 {unit \n epsilon} -1 {}
enter_congruence -short "Left unit" {} 1 {unit . \n m} -1 {.}
enter_congruence -short "Right unit" {} 1 {. unit \n m} -1 {.}
enter_congruence -short "Associative" {} 1 {m . \n m} -1 {. m \n m}
enter_congruence -short "Left counit" {} 1 {Delta \n epsilon .} -1 {.}
enter_congruence -short "Right counit" {} 1 {Delta \n . epsilon} -1 {.}
enter_congruence -short "Coassociative" {}\

1 {Delta \n . Delta} -1 {Delta \n Delta .}
enter_congruence -short "Unit&coproduct" {}\

1 {unit \n Delta} -1 {unit unit}
enter_congruence -short "Product&counit" {}\

1 {m \n epsilon} -1 {epsilon epsilon}
enter_congruence -short "Product&coproduct" {}\

1 {m \n Delta} -1 {Delta Delta \n . X . \n m m}
enter_congruence -short "Left formal inverse" {}\

1 {Delta \n S . \n m} -1 {epsilon \n unit}
enter_congruence -short "Right formal inverse" {}\

1 {Delta \n . S \n m} -1 {epsilon \n unit}

Fig. 17.9 Entering the axioms of a Hopf algebra

17.6 Availability

All the source code can be found in the git repository at https://github.com/lars-
hellstrom/algebra.
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of a given Hom-associative algebra (A, ·, α) and its dual (A∗, ◦, α∗), endowed
with a non-degenerate symmetric bilinear form B, where · and ◦ are the products
defined onA andA∗, respectively, and α and α∗ stand for the corresponding algebra
homomorphisms. Such a double construction, also called Hom-Frobenius algebra,
is interpreted in terms of an infinitesimal Hom-bialgebra. The same procedure is
applied to characterize the double construction of biHom-associative algebras, also
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18.1 Introduction

The Hom-algebraic structures originated from quasi-deformations of Lie algebras
of vector fields which gave rise to quasi-Lie algebras, defined as generalized Lie
structures in which the skew-symmetry and Jacobi conditions are twisted. Hom-
Lie algebras and more general quasi-Hom-Lie algebras where introduced first by
Silvestrov and his students Hartwig and Larsson in [25], where the general quasi-
deformations and discretizations of Lie algebras of vector fields using general twisted
derivations, σ -derivations, and a general method for construction of deformations of
Witt andVirasoro type algebras based on twisted derivations has been developed. The
initial motivation came from examples of q-deformed Jacobi identities discovered
in q-deformed versions and other discrete modifications of differential calculi and
homological algebra, q-deformed Lie algebras and other algebras important in string
theory, vertex models in conformal field theory, quantum mechanics and quantum
field theory, such as the q-deformed Heisenberg algebras, q-deformed oscillator
algebras,q-deformedWitt,q-deformedVirasoro algebras and relatedq-deformations
of infinite-dimensional algebras [1, 15–21, 28, 29, 36–38].

Possibility of studying, within the same framework, q-deformations of Lie alge-
bras and such well-known generalizations of Lie algebras as the color and super
Lie algebras provided further general motivation for development of quasi-Lie alge-
bras and subclasses of quasi-Hom-Lie algebras and Hom-Lie algebras. The general
abstract quasi-Lie algebras and the subclasses of quasi-Hom-Lie algebras and Hom-
Lie algebras, as well as their color (graded) counterparts, color (graded) quasi-Lie
algebras, color (graded) quasi-Hom-Lie algebras and color (graded) Hom-Lie alge-
bras, including in particular the super quasi-Lie algebras, super quasi-Hom-Lie alge-
bras, and super Hom-Lie algebras, have been introduced in [25, 33–35, 49, 50]. In
[42], Hom-associative algebras have been introduced. Hom-associative algebras is a
generalization of the associative algebras with the associativity law twisted by a lin-
ear map. In [42], Hom-Lie admissible algebras generalizing Lie-admissible algebras,
were introduced as Hom-algebras such that the commutator product, defined using
the multiplication in a Hom-algebra, yields a Hom-Lie algebra, and Hom-associative
algebras were shown to be Hom-Lie admissible. Moreover, in [42], more general G-
Hom-associative algebras including Hom-associative algebras, Hom-Vinberg alge-
bras (Hom-left symmetric algebras), Hom-pre-Lie algebras (Hom-right symmetric
algebras), and some other Hom-algebra structures, generalizing G-associative alge-
bras, Vinberg and pre-Lie algebras respectively, have been introduced and shown
to be Hom-Lie admissible, meaning that for these classes of Hom-algebras, the
operation of taking commutator leads to Hom-Lie algebras as well. Also, flexible
Hom-algebras have been introduced, connections to Hom-algebra generalizations of
derivations and of adjoint maps have been noticed, and some low-dimensional Hom-
Lie algebras have been described. The enveloping algebras ofHom-Lie algebraswere
considered in [53] using combinatorial objects of weighted binary trees. In [27], for
Hom-associative algebras andHom-Lie algebras, the envelopment problem, operads,
and the Diamond Lemma and Hilbert series for the Hom-associative operad and free
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algebra have been studied. StrongHom-associativity yielding a confluent rewrite sys-
tem and a basis for the free strongly hom-associative algebra has been considered in
[26]. An explicit constructiveway, based on freeHom-associative algebraswith invo-
lutive twisting, was developed in [23] to obtain the universal enveloping algebras and
Poincaré-Birkhoff-Witt type theorem for Hom-Lie algebras with involutive twisting
map. Free Hom-associative color algebra on a Hom-module and enveloping algebra
of color Hom-Lie algebras with involutive twisting and also with more general con-
ditions on the powers of twisting map was constructed, and Poincaré-Birkhoff-Witt
type theorem was obtained in [3, 4]. It is worth noticing here that, in the subclass of
Hom-Lie algebras, the skew-symmetry is untwisted, whereas the Jacobi identity is
twisted by a single linear map and contains three terms as in Lie algebras, reducing
to ordinary Lie algebras when the twisting linear map is the identity map.

Hom-algebra structures include their classical counterparts and open new broad
possibilities for deformations, extensions to Hom-algebra structures of represen-
tations, homology, cohomology and formal deformations, Hom-modules and hom-
bimodules,Hom-Lie admissibleHom-coalgebras,Hom-coalgebras,Hom-Hopf alge-
bras, Hom-bialgebras, L-modules, L-comodules and Hom-Lie quasi-bialgebras, n-
ary generalizations of biHom-Lie algebras and biHom-associative algebras and gen-
eralized derivations, Rota-Baxter operators, Hom-dendriform color algebras, Rota-
Baxter bisystems and covariant bialgebras,Rota-Baxter cosystems, coquasitriangular
mixed bialgebras, coassociative Yang-Baxter pairs, coassociative Yang-Baxter equa-
tion and generalizations of Rota-Baxter systems and algebras, curved O-operator
systems and their connections with tridendriform systems and pre-Lie algebras [2,
6–12, 14, 24, 30, 32, 33, 39–41, 43–48, 51–55].

Thenotionof biHom-associative algebraswas introduced in [22]. In fact, a biHom-
associative algebra is a (nonassociative) algebra A endowed with two commuting
multiplicative linear maps α, β : A → A such that α(a)(bc) = (ab)β(c), for all
a, b, c ∈ A. This concept arose in the study of algebras in so-called group Hom-
categories. In [22], the authors introduced biHom-Lie algebras (also by using the
categorical approach) and biHom-bialgebras. They discussed these new structures by
presenting some basic properties and constructions (representations, twisted tensor
products, smash products, etc.).

A Frobenius algebra is an associative algebra equipped with a non-degenerate
invariant bilinear form. This type of algebras also plays an important role in different
areas of mathematics and physics, such as statistical models over two-dimensional
graphs [13] and topological quantum field theory [31]. In [5], Bai described asso-
ciative analogs of Drinfeld’s double constructions for Frobenius algebras and for
associative algebras equipped with non-degenerate Connes cocycles. We note that
two different types of constructions are involved:

(i) the Drinfeld’s double type constructions, from a Frobenius algebra or from an
associative algebra equipped with a Connes cocyle; and

(ii) the Frobenius algebra obtained from anti-symmetric solution of associative
Yang-Baxter equation and non-degenerate Connes cocycle obtained from a sym-
metric solution of a D-equation.
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The aim of the present work is to establish the double constructions of biHom-
Frobenius algebras and Hom-associative algebra equipped with a Connes cocyle,
generalizing the double constructions of Frobenius algebras and Connes cocycle
described in [5] by twisting the defining axioms by a certain twisting map. When
the twisting map happens to be the identity map, one gets the ordinary algebraic
structures. Furthermore, the bialgebras of related double constructions are built. We
define the antisymmetric infinitesimal biHom-bialgebras and Hom-dendriform D-
bialgebras.

The paper is organized as follows. In Sect. 18.2, we introduce the concepts of
matched pairs of Hom-associative algebras and establish some relevant properties.
In Sect. 18.3, we perform the double constructions of multiplicative Hom-Frobenius
algebras and antisymmetric infinitesimal Hom-bialgebras. In Sect. 18.4, we define
the bimodule of biHom-associative algebras, and achieve the double constructions
ofmultiplicative biHom-Frobenius algebras and antisymmetric infinitesimal biHom-
bialgebras. Section18.5 deals with the double constructions of involutive symplectic
Hom-associative algebras. Section18.6 is devoted to the matched pairs of biHom-
associative algebras and related important characteristics. In Sect. 18.7, we end with
some concluding remarks.

18.2 Bimodules and Matched Pairs of Hom-associative
Algebras

18.2.1 Bimodules of Hom-associative Algebras

Henceforth, when relevant, the multilinear maps f : V1 × · · · × Vn → W and linear
maps F : V1 ⊗ · · · ⊗ Vn → W , onfinite tensor products of linear spaces are identified
standardly via F(v1 ⊗ · · · ⊗ vn) = f (v1, . . . , vn).

Definition 18.1 ([42]) A Hom-associative algebra is a triple (A, ·, α) consisting of
a linear space A over a field K, K-bilinear map ·: A ⊗ A → A and a linear space
map α : A → A satisfying the Hom-associativity property:

α(x) · (y · z) = (x · y) · α(z).

If, in addition, α satisfies the multiplicativity property

α(x · y) = α(x) · α(y),

then (A, ·, α) is said to be multiplicative.

Remark 18.1 If α = IdA, (A, ·, IdA), simply denoted (A, ·), is an associative alge-
bra.
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Example 18.1 Let {e1, e2, e3} be a basis of a 3-dimensional vector spaceA overK.
The following multiplication · and map α on A define a Hom-associative algebra:

e1 · e1 = e1, e1 · e2 = e2 · e1 = e3,
α(e1) = a1e2 + a2e3, α(e2) = b1e2 + b2e3, α(e3) = c1e2 + c2e3,

where a1, a2, b1, b2, c1, c2 ∈ K.

Definition 18.2 A Hom-module is a pair (V, β), where V is a K-vector space, and
β : V → V is a linear map.

We will use in this article a definition of bimodule of a Hom-associative algebras
including Hom-modules maps conditions (18.4), (18.5), while we note that there
are also other definitions of Hom-modules and Hom-bimodules of Hom-associative
algebras, for example the more general notions requiring only (18.1), (18.2) and
(18.3), [7, 8, 24, 43–45, 52, 55].

In order to avoid, when necessary, the ambiguity of the general category endo-
morphisms notation End(L) for endomorphisms of L as linear space, algebra or
other structure, throughout this paper, we will use the notation gl(L) for the set of
all linear transformations on a linear space L , and viewing it context-dependent, as a
linear space, as a associative algebra with usual associative composition product, as
a Lie algebra of all linear transformations on L with the usual commutator product
of the associative composition product (usual notation for Lie algebras), or as other
structure type on the set gl(L).

Definition 18.3 Let (A, ·, α) be aHom-associative algebra and let (V, β) be aHom-
module. Let l, r : A → gl(V ) be two linearmaps. The quadruple (l, r, β, V ) is called
a bimodule of A if for all x, y ∈ A, v ∈ V :

l(x · y)β(v) = l(α(x))l(y)v, (18.1)

r(x · y)β(v) = r(α(y))r(x)v, (18.2)

l(α(x))r(y)v = r(α(y))l(x)v, (18.3)

β(l(x)v) = l(α(x))β(v), (18.4)

β(r(x)v) = r(α(x))β(v). (18.5)

Proposition 18.1 Let (A, ·, α) be a Hom-associative algebra and let (V, β) be a
Hom-module. Let l, r : A → gl(V ) be two linear maps. The quadruple (l, r, β, V )

satisfies a Hom-bimodule properties (18.1)–(18.3) of a Hom-associative algebra
(A, ·, α) if and only if the direct sum of vector spaces A ⊕ V is a Hom-associative
algebra with multiplication in A ⊕ V , defined for all x1, x2 ∈ A, v1, v2 ∈ V , by

(x1 + v1) ∗ (x2 + v2) = x1 · x2 + (l(x1)v2 + r(x2)v1),
(α ⊕ β)(x1 + v1) = α(x1) + β(v1). (18.6)
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Proof Let v1, v2, v3 ∈ V and x1, x2, x3 ∈ A. The left-hand side and right-hand side
of Hom-associativity of (A ⊕ V, ∗, α ⊕ β) are expended as follows:

((x1 + v1) ∗ (x2 + v2)) ∗ (α ⊕ β)(x3 + v3)

= ((x1 + v1) ∗ (x2 + v2)) ∗ (α(x3) + β(v3))

= (x1 · x2 + (l(x1)v2 + r(x2)v1)) ∗ (α(x3) + β(v3))

= (x1 · x2) · α(x3) + (l(x1 · x2)β(v3) + r(α(x3))(l(x1)v2 + r(x2)v1)))

= (x1 · x2) · α(x3) + (l(x1 · x2)β(v3) + r(α(x3))l(x1)v2 + r(α(x3))r(x2)v1)

(α ⊕ β)(x1 + v1) ∗ ((x2 + v2) ∗ (x3 + v3))

= (α(x1) + β(v1)) ∗ ((x2 + v2) ∗ (x3 + v3))

= (α(x1) + β(v1)) ∗ (x2 · x3 + (l(x2)v3 + r(x3)v2))

= α(x1) · (x2 · x3) + l(α(x1))(l(x2)v3 + r(x3)v2)) + r(x2 · x3)β(v1)

= α(x1) · (x2 · x3) + (l(α(x1))l(x2)v3 + l(α(x1))r(x3)v2 + r(x2 · x3)β(v1))

These elements of A ⊕ V are equal if and only if for all x1, x2, x3 ∈ A, v1, v2, v3 ∈
V ,

α(x1) · (x2 · x3) = (x1 · x2) · α(x3),

l(x1 · x2)β(v3) + r(α(x3))l(x1)v2 + r(α(x3))r(x2)v1
= l(α(x1))l(x2)v3 + l(α(x1))r(x3)v2 + r(x2 · x3)β(v1).

This holds if and only if the hom-associativity holds, and for each j = 1, 2, 3 the
respective V terms involving v j ∈ V are equal. If the terms are equal, then the sums
are equal. If the summs are equal, then the terms should be equal if one specifies all
or two of v1, v2, v3 to zero element of V and using that linear transformations map
zero to zero. Since, for all x1, x2, x3 ∈ A,

Hom-associativity ⇔ α(x1) · (x2 · x3) = (x1 · x2) · α(x3),

(18.1) ⇔ l(x1 · x2)β(v3) = l(α(x1))l(x2)v3,

(18.2) ⇔ l(α(x1))r(x3)v2 = r(α(x3))l(x1)v2,

(18.3) ⇔ r(α(x3))r(x2)v1 = r(x2 · x3)β(v1),

the proof is complete. �

We denote such a Hom-associative algebra (A ⊕ V, ∗, α + β), or A ×l,r,α,β V .

Example 18.2 Let (A, ·, α)be amultiplicativeHom-associative algebra.Let L ·x and
R·x denote the left and right multiplication operators, respectively, that is, L ·x (y) =
x · y, R·x (y) = y · x for any x, y ∈ A. Let L · : A → gl(A) with x 	→ L ·x and R· :
A → gl(A) with x 	→ R·x for every x ∈ A, be two linear maps. Then, the triples
(L ·, 0, α), (0, R·, α) and (L ·, R·, α) are bimodules of (A, ·, α).
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Proposition 18.2 Let (l, r, β, V ) be bimodule of a multiplicative Hom-associative
algebra (A, ·, α). Then, (l ◦ αn, r ◦ αn, β, V ) is a bimodule of A for any integer n.

Proof We have

l ◦ αn(x · y)β(v) = l(αn(x) · αn(y))β(v) = l(α(αn(x)))l(αn(y))v

= l(αn+1(x))l(αn(y))v = l ◦ αn(α(x))l ◦ αn(y)v.

The other relations are established similarly. �

Example 18.3 Let (A, ·, α) be a multiplicative Hom-associative algebra. Then, the
quadruple (L · ◦ αn, R· ◦ αn, α,A) is a bimodule of A for any integer n.

Example 18.4 Let (A, ·, α) be a multiplicative associative algebra, and β : A → A
be a morphism. Then, Aβ = (A, ·β = β ◦ ·, αβ = β ◦ α) is a multiplicative Hom-
associative algebra. Hence (L ·β ◦ αn

β, R·β ◦ αn
β, αβ,A) is a bimodule of A for any

integer n.

18.2.2 Matched Pairs of Hom-associative Algebras

Theorem 18.1 Let (A, ·, α) and (B, ◦, β) be two Hom-associative algebras. Sup-
pose there are linear maps lA, rA : A → gl(B) and lB, rB : B → gl(A) such that
the quadruple (lA, rA, β,B) is a bimodule ofA, and (lB, rB, α,A) is a bimodule of
B, satisfying, for any x, y ∈ A, a, b ∈ B, the following conditions:

lA(α(x))(a ◦ b) = lA(rB(a)x)β(b) + (lA(x)a) ◦ β(b), (18.7)

rA(α(x))(a ◦ b) = rA(lB(b)x)β(a) + β(a) ◦ (rA(x)b), (18.8)

lB(β(a))(x · y) = lB(rA(x)a)α(y) + (lB(a)x) · α(y), (18.9)

rB(β(a))(x · y) = rB(lA(y)a)α(x) + α(x) · (rB(a)y), (18.10)

lA(lB(a)x)β(b) + (rA(x)a) ◦ β(b) − rA(rB(b)x)β(a)

−β(a) ◦ (lA(x)b) = 0,
(18.11)

lB(lA(x)a)α(y) + (rB(a)x) · α(y) − rB(rA(y)a)α(x)
−α(x) · (lB(a)y) = 0.

(18.12)

Then, there is a Hom-associative algebra structure on the direct sum A ⊕ B of
the underlying vector spaces of A and B given for all x, y ∈ A, a, b ∈ B by

(x + a) ∗ (y + b) = (x · y + lB(a)y + rB(b)x) + (a ◦ b + lA(x)b + rA(y)a),

(α ⊕ β)(x + a) = α(x) + β(a).

(18.13)

Proof Let v1, v2, v3 ∈ V and x1, x2, x3 ∈ A. Set
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[(x1 + v1) ∗ (x2 + v2)] ∗ (α(x3) + β(v3))

= (α(x1) + β(v1)) ∗ [(x2 + v2) ∗ (x3 + v3)],

which is developed to obtain (18.7)-(18.12). Then, using the relations

β(lA(x)a) = lA(α(x))β(a), β(rA(x)a) = rA(α(x))β(a),

α(lB(a)x) = lB(β(a))α(x), α(rB(a)x) = rB(β(a))α(x),

we show that ∗ is a Hom-associative algebra. �

We denote this Hom-associative algebra by (A 
� B, ∗, α + β) or A 
�lA,rA,β

lB,rB,α B.

Definition 18.4 Let (A, ·, α) and (B, ◦, β) be two Hom-associative algebras. Sup-
pose that there are linearmaps lA, rA : A → gl(B) and lB, rB : B → gl(A) such that
(lA, rA, β) is a bimodule of A and (lB, rB, α) is a bimodule of B. If the conditions
(18.7)–(18.12) are satisfied, then, (A,B, lA, rA, β, lB, rB, α) is called a matched
pair of Hom-associative algebras.

18.3 Double Constructions of Involutive Hom-Frobenius
Algebras and Antisymmetric Infinitesimal
Hom-bialgebras

In this section, we consider themultiplicative Hom-associative algebra (A, ·, α) such
that α is involutive, i.e., α2 = IdA.

18.3.1 Double Constructions of Involutive Hom-Frobenius
Algebras

Definition 18.5 Let V1, V2 be two vector spaces. For a linear map φ : V1 → V2, we
denote the dual (linear) map by φ∗ : V ∗

2 → V ∗
1 given, for all v ∈ V1, u∗ ∈ V ∗

2 , by

〈v, φ∗(u∗)〉 = 〈φ(v), u∗〉.

Lemma 18.1 Let (l, r, β, V ) be a bimodule of a multiplicative Hom-associative
algebra (A, ·, α), and let l∗, r∗ : A → gl(V ∗) be the linear maps given, for all
x ∈ A, u∗ ∈ V ∗, v ∈ V , by

〈l∗(x)u∗, v〉 := 〈l(x)v, u∗〉, 〈r∗(x)u∗, v〉 := 〈r(x)v, u∗〉.

Then
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(i) (r∗, l∗, β∗, V ∗) is a bimodule of (A, ·, α);
(ii) (r∗, 0, β∗, V ∗) and (0, l∗, β∗, V ∗) are also bimodules of A.

Proof (i) Let (l, r, β, V ) be a bimodule of a multiplicative Hom-associative algebra
(A, ·, α). We show that (r∗, l∗, β∗, V ∗) is a bimodule of A. For all x, y ∈ A and
u∗ ∈ V ∗, v ∈ V ,
(i-1) the computation

〈r∗(x · y)β∗(u∗), v〉 = 〈β(r(x · y)v), u∗〉 = 〈r(α(x · y))β(v), u∗〉
= 〈r(α(x) · α(y))β(v), u∗〉 = 〈r(α2(y))r(α(x))v, u∗〉
= 〈(r(y)r(α(x)))∗u∗, v〉 = 〈r∗(α(x))r∗(y)u∗, v〉

leads to r∗(x · y)β∗(u∗) = r∗(α(x))r∗(y)u∗;
(i-2) the computation

〈l∗(x · y)β∗(u∗), v〉 = 〈β(l(x · y)(v)), u∗〉 = 〈l(α(x · y))β(v), u∗〉
= 〈l(α(x) · α(y))β(v), u∗〉 = 〈l(α2(x))l(α(y))β(v), u∗〉
= 〈(l(x)l(α(y)))∗u∗, v〉 = 〈l∗(α(y))l∗(x)u∗, v〉

gives l∗(x · y)β∗(u∗) = l∗(α(y))l∗(x)u∗;
(i-3) the computation

〈r∗(α(x))l∗(y)u∗, v〉 = 〈l(y)r(α(x))v, u∗〉
= 〈l(α2(y))r(α(x))v, u∗〉 = 〈(l ◦ α)(α(y))(r ◦ α)(x))v, u∗〉
= 〈r(α2(x))l(α(y))v, u∗〉 = 〈r(x)l(α(y))v, u∗〉
= 〈l∗(α(y))r∗(x)u∗, v〉

yields r∗(α(x))l∗(y)u∗ = l∗(α(y))r∗(x)u∗.

〈β∗(r∗(x))u∗, v〉 = 〈r(x)(β(v)), u∗〉 = 〈r(α2(x))(β(v)), u∗〉
= 〈(r ◦ α)(α(x))(β(v)), u∗〉 = 〈β(r(α(x)))v, u∗〉
= 〈r∗(α(x))β∗(u∗), v〉.

Then β∗(r∗(x))u∗ = r∗(α(x))β∗(u∗). The equality β∗(l∗(x))u∗ = l∗(α(x))β∗(u∗)
can be shown in a similar way. Thus, (r∗, l∗, β∗, V ∗) is a bimodule of A.

(ii) Analogously, (r∗, 0, β∗, V ∗) and (0, l∗, β∗, V ∗) are bimodules of A. �

Definition 18.6 Let (A, ·, α) be a Hom-associative algebra, and B : A × A → K
be a bilinear form on A. Then,

(i) B is said to be nondegenerate if

A⊥ = {x ∈ A | B(y, x) = 0,∀y ∈ A} = 0;

(ii) B is said to be symmetric if
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B(x, y) = B(y, x);

(iii) B is said to be α-invariant if

B(α(x) · α(y), α(z)) = B(α(x), α(y) · α(z)).

Definition 18.7 AHom-Frobenius algebra is a Hom-associative algebra with a non-
degenerate invariant bilinear form.

Definition 18.8 We call (A, α, B) a double construction of an involutive Hom-
Frobenius algebra associated to (A1, α1) and (A∗

1, α
∗
1) if it satisfies the following

conditions:

(i) A = A1 ⊕ A∗
1 as the direct sum of vector spaces;

(ii) (A1, α1) and (A∗
1, α

∗
1) are Hom-associative subalgebras of (A, α) with α =

α1 ⊕ α∗
1 ;

(iii) B is the natural non-degerenate (α1 ⊕ α∗
1)-invariant symmetric bilinear form

on A1 ⊕ A∗
1 given, for all x, y ∈ A1, a∗, b∗ ∈ A∗

1, by

B(x + a∗, y + b∗) = 〈x, b∗〉 + 〈a∗, y〉,
B((α + α∗)(x + a∗), y + b∗) = B(x + a∗, (α + α∗)(y + b∗)), (18.14)

where 〈, 〉 is the natural pairing between the vector spaceA1 and the dual vector
space A∗

1.

Let (A, ·, α) be an involutive Hom-associative algebra. Suppose that there is an
involutive Hom-associative algebra structure “◦” on its dual space A∗. We con-
struct an involutive Hom-associative algebra structure on the direct sum A ⊕ A∗
of the underlying vector spaces of A and A∗ such that (A, ·, α) and (A∗, ◦, α∗) are
Hom-subalgebras, equipped with the non-degenerate (α1 ⊕ α∗

1)-invariant symmetric
bilinear form on A ⊕ A∗ given by (18.14). In other words, (A ⊕ A∗, α ⊕ α∗, B) is
an involutive symmetric Hom-associative algebra. Such a construction is called a
double construction of an involutive Hom-Frobenius algebra associated to (A, ·, α)

and (A∗, ◦, α∗).
Theorem 18.2 Let (A, ·, α) be an involutiveHom-associative algebra. Suppose that
there is an involutive Hom-associative algebra structure “◦” on its dual space A∗.
Then, there is a double construction of an involutive Hom-Frobenius algebra asso-
ciated to (A, ·, α) and (A∗, ◦, α∗) if and only if (A,A∗, R∗· , L∗· , α∗, R∗◦ , L∗◦, α) is a
matched pair of involutive Hom-associative algebras.

Proof Let us consider the four maps defined, for x, v, u ∈ A, x∗, v∗ and u∗ ∈ A∗
by

L∗
· : A → gl(A∗), 〈L∗

· (x)u
∗, v〉 = 〈L ·(x)v, u∗〉 = 〈x · v, u∗〉,

R∗
· : A → gl(A∗), 〈R∗

· (x)u
∗, v〉 = 〈R·(x)v, u∗〉 = 〈v · x, u∗〉,

R∗
◦ : A∗ → gl(A), 〈R∗

◦(x
∗)u, v∗〉 = 〈R◦(x∗)v∗, u〉 = 〈v∗ ◦ x∗, u〉,

L∗
◦ : A∗ → gl(A), 〈L∗

◦(x
∗)u, v∗〉 = 〈L◦(x∗)v∗, u〉 = 〈x∗ ◦ v∗, u〉.
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If (A,A∗, R∗· , L∗· , α∗, R∗◦ , L∗◦, α) is amatchedpair ofmultiplicativeHom-associative
algebras, then (A 
� A∗, ∗, α + α∗) is amultiplicativeHom-associative algebrawith
the product ∗ given by (18.13), and the bilinear form B(·, ·) defined by (18.14) is
(α ⊕ α∗)-invariant, that is, for all x, y ∈ A∗, a∗, b∗ ∈ A∗, and

(x + a∗) ∗ (y + b∗) = (x · y + lB(a)y + rB(b)x) + (a ◦ b + lA(x)b + rA(y)a),

where lA = R∗· , rA = L∗· , lB = R∗◦ , rB = L∗◦:

B[(α(x) + α∗(a∗)) ∗ (α(y) + α∗(b∗)), (α(z) + α∗(c∗))]
= B[α(x) + α∗(a∗), (α(y) + α∗(b∗)) ∗ (α(z) + α∗(c∗))].

Indeed,

B[(α(x) + α∗(a∗)) ∗ (α(y) + α∗(b∗)), (α(z) + α∗(c∗))]
= B[(α(x) · α(y) + lA∗(α∗(a∗))α(y) + rA∗(α∗(b∗))α(x)) + (α∗(a∗) ◦ α∗(b∗)

+lA(α(x))α∗(b∗) + rA(α(y))α∗(a∗)), α(z) + α∗(c∗)]
= 〈α(x) · α(y), α∗(c∗)〉 + 〈α∗(c∗) ◦ α∗(a∗), α(y)〉 + 〈α∗(b∗) ◦ α∗(c∗), α(x)〉

+〈α∗(a∗) ◦ α∗(b∗), α(z)〉 + 〈α(z) · α(x), α∗(b∗)〉 + 〈α(y) · α(z), α∗(a∗)〉
B[α(x) + α∗(a∗), (α(y) + α∗(b∗)) ∗ (α(z) + α∗(c∗))]

= B[α(x) + α∗(a∗), (α(y) · α(z) + lA∗(α∗(b∗))α(z) + rA∗(α∗(c∗))α(y))
+(α∗(b∗) ◦ α∗(c∗) + lA(α(y))α∗(c∗) + rA(α(z))α∗(b∗))]

= 〈α(x), α∗(b∗) ◦ α∗(c∗)〉 + 〈α∗(c∗), α(x) · α(y)〉 + 〈α∗(b∗), α(z) · α(x)〉
+〈α(y) · α(z), α∗(a∗)〉 + 〈α∗(a∗) ◦ α∗(b∗), α(z)〉 + 〈α(c∗) ◦ α∗(a∗), α(y)〉.

Thus, B is well (α ⊕ α∗)-invariant. Conversely, set for x ∈ A, a∗ ∈ A∗,

x ∗ a∗ = lA(x)a∗ + rA∗(a∗)x, a∗ ∗ x = lA∗(a∗)x + rA(x)a�.

Then, (A,A∗, R∗· , L∗· , α∗, R∗◦ , L∗◦, α) is a matched pair of multiplicative Hom-
associative algebras, since the double construction of the involutive Hom-Frobenius
algebra associated to (A, ·, α) and (A∗, ◦, α∗) produces (18.7)–(18.12). �

Theorem 18.3 Let (A, ·, α) be an involutive Hom-associative algebra. Suppose
that there is an involutive Hom-associative algebra structure “◦′′ on its dual space
(A∗, α∗). Then,

(A,A∗, R∗
· , L

∗
· , α

∗, R∗
◦ , L

∗
◦, α)

is a matched pair of involutive Hom-associative algebras if and only if, for any x ∈ A
and a∗, b∗ ∈ A∗,

R∗
· (α(x))(a∗ ◦ b∗) = R∗

· (L
∗
◦(a

∗)x)α∗(b∗) + (R∗
· (x)a

∗) ◦ α∗(b∗), (18.15)

R∗· (R∗◦(a∗)x)α∗(b∗) + L∗· (x)a∗ ◦ α∗(b∗)
= L∗· (L∗◦(b∗)x)α∗(a∗) + α∗(a∗) ◦ (R∗· (x)b∗). (18.16)
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Proof Obviously, (18.15) gives (18.7), and (18.16) reduces to (18.11)when lA = R∗· ,
rA = L∗· , lB = lA∗ = R∗◦ and rB = rA∗ = L∗◦. Now, we show that

(18.7) ⇐⇒ (18.8) ⇐⇒ (18.9) ⇐⇒ (18.10),
and (18.11) ⇐⇒ (18.12).

Suppose (18.15) and (18.16) are satisfied, and show that

L∗
· (α(x))(a∗ ◦ b∗) = L∗

· (R
∗
◦(b

∗)x)α∗(a∗) + α∗(a∗) ◦ (L∗
· (x)b

∗),
R∗

◦(α
∗(a∗))(x · y) = R∗

◦(L
∗
· (x)a

∗)α(y) + (R∗
◦(a)x) · α(y),

L∗
◦(α

∗(a∗))(x · y) = L∗
◦(R

∗
· (y)a

∗)α(x) + α(x) · (L∗
◦(a

∗)y),
R∗

◦(R
∗
· (x)a

∗)α(y) + (L∗
◦(a

∗)x) · α(y) − L∗
◦(L ·(y)a∗)α(x) − α(x) · (R∗

◦(a)y) = 0.

We have, for all x, y ∈ A, a∗, b∗ ∈ A∗,

〈R∗
· (x)a

∗, y〉 = 〈L∗
· (y)a

∗, x〉 = 〈y · x, a∗〉,
〈R∗

◦(b
∗)x, a∗〉 = 〈L∗

◦(a
∗)x, b∗〉 = 〈a∗ ◦ b∗, x〉,

α∗(R∗
· (x)a

∗) = R∗
· (α(x))α∗(a∗), α∗(L∗

· (x)a
∗) = L∗

· (α(x))α∗(a∗),
α(R∗

◦(a
∗)x) = R∗

◦(α
∗(a∗))α(x), α(L∗

◦(a
∗)x) = L∗

◦(α
∗(a∗))α(x),

Set α(x) = z, α(y) = t, α∗(a∗) = c∗ and α∗(b∗) = d∗. Then,

(i) the statement (18.7) ⇐⇒ (18.8) follows from

〈R∗
· (α(x))(a∗ ◦ b∗), y〉 = 〈y · α(x), a∗ ◦ b∗〉

= 〈(L ·(y) ◦ α)x, a∗ ◦ b∗〉
= 〈x, α∗(L∗

· (y)(a
∗ ◦ b∗))〉

= 〈L∗
· (α(y))α∗(a∗ ◦ b∗), x〉

= 〈L∗
· (α(y))(α∗(a∗) ◦ α∗(b∗)), x〉

= 〈L∗
· (α(y))(c∗ ◦ d∗), x〉;

〈R∗
· (L

∗
◦(a

∗)x)α(b∗), y〉 = 〈y · L∗
◦(a

∗)x, α∗(b∗)〉
= 〈L∗

· (y)(α
∗(b∗)), L∗

◦(a
∗)x〉

= 〈L∗
◦(a

∗)x, L∗
· (y)(α

∗(b∗))〉
= 〈a∗ ◦ (L∗

· (y)(α
∗(b∗))), x〉

= 〈α∗(c∗) ◦ (L∗
· (y)(d

∗)), x〉;
〈(R∗

· (x)a
∗) ◦ α∗(b∗), y〉 = 〈R∗

◦(α
∗(b∗))y, R∗

· (x)a
∗〉

= 〈a∗, (R∗
◦(α

∗(b∗))y) · x〉
= 〈L∗

· [R∗
◦(α

∗(b∗))y]a∗, x〉
= 〈L∗

· (R
∗
◦(d

∗)y)α∗(c∗), x〉;

(ii) the statement (18.8) ⇐⇒ (18.9) follows from

〈L∗(α(x))(a∗ ◦ b∗), y〉 = 〈a∗ ◦ b∗, α(x) · y〉
= 〈R∗

◦(b
∗)(α(x) · y), a∗〉

= 〈R∗
◦(α

∗(d∗))(z · y), a∗〉;
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〈α∗(a∗) ◦ (L∗
· (x)b

∗), y〉 = 〈α∗(a∗), R∗
◦(L

∗
· (x)b

∗)y〉
= 〈a∗, α[R∗

◦(L
∗
· (x)b

∗)y]〉
= 〈a∗, R∗

◦ [α∗(L∗
· (x)b

∗)]α(y)〉
= 〈a∗, R∗

◦ [L∗
· (α(x))α∗(b∗)]α(y)〉

= 〈a∗, R∗
◦(L

∗
· (z)d

∗)α(y)〉;
〈L∗

· (R
∗
◦(b

∗)x)α∗(a∗), y〉 = 〈(R∗
◦(b

∗)x) ◦ y, α∗(a∗)〉
= 〈α[(R∗

◦(b
∗)x) ◦ y], a∗〉

= 〈(R∗
◦(α

∗(b∗))α(x)) ◦ α(y), a∗〉
= 〈R∗

◦(d
∗)z · α(y), a∗〉;

(iii) the statement (18.7) ⇐⇒ (18.10) follows from

〈R∗(α(x))(a∗ ◦ b∗), y〉 = 〈a∗ ◦ b∗, y · α(x)〉 = 〈L ·(a∗)b∗, y · z〉
= 〈L∗◦(a∗)(y · z)〉 = 〈L∗◦(α∗(c∗))(y · z)〉;

〈(R∗· (x)a∗) ◦ α∗(b∗), y〉 = 〈α∗(b∗), L∗· (R∗· (x)a∗)y〉 = 〈b∗, α∗[L∗· (R∗· (x)a∗)y]〉
= 〈b∗, L∗· (R∗· (α(x))α∗(a∗))α(y)〉
= 〈b∗, L∗· (R∗· (z)c∗)α(y)〉;

〈R∗· (L∗◦(a∗)x)α∗(b∗), y〉 = 〈y · L∗◦(a∗)x, α∗(b∗)〉 = 〈α(y) · α(L∗◦(a∗)x), b∗〉
= 〈α(y) · L∗◦(α∗(a∗))α(x), b∗〉 = 〈α(y) · L∗◦(c∗)z, b∗〉;

(iv) the statement (18.11) ⇐⇒ (18.12) follows from

〈L∗
· (L

∗
◦(b

∗)x)α∗(a∗), y〉 = 〈(L∗
◦(b

∗)x) · y, α∗(a∗)〉
= 〈a∗, α(L∗

◦(b
∗)x) · α(y)〉

= 〈a∗, L∗
◦(α

∗(b∗))α(x) · α(y)〉
= 〈a∗, L∗

◦(d
∗)z · α(y)〉;

〈α∗(a∗) ◦ (R∗
· (x)b

∗), y〉 = 〈R∗
◦(R

∗
◦(x)b

∗)y, α∗(a∗)〉
= 〈α∗(a∗) ◦ (R∗

· (x)b
∗), y〉

= 〈α[R∗
◦(R

∗
◦(x)b

∗)y], a∗〉
= 〈R∗

◦ [R∗
◦(α(x))α∗(b∗)]α(y), a∗〉

= 〈R∗
◦(R

∗
· (z)d

∗)α(y), a∗〉;
〈(L∗

· (x)a
∗) ◦ α∗(b∗), y〉 = 〈R∗

◦(α
∗(b∗))y, L∗

· (x)a
∗〉

= 〈x · (R∗
◦(d

∗)y), a∗〉
= 〈α(z) · (R∗

◦(d
∗)y), a∗〉;

〈R∗
· (R

∗
◦(a

∗)x)α∗(b∗), y〉 = 〈y · R∗
◦(a

∗)x, α∗(b∗)〉
= 〈α∗(b∗), L ·(y)(R∗

◦(a
∗)x)〉

= 〈(L∗
· (y)(d

∗), R∗
◦(a

∗)x〉 = 〈L∗
· (y)d

∗ ◦ a∗, x〉
= 〈L∗

◦(L
∗
· (y)d

∗)x, a∗〉
= 〈L∗

◦(L
∗
· (y)d

∗)α(z), a∗〉

which completes the proof. �
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18.3.2 Antisymmetric Infinitesimal Hom-bialgebras

LetA be a multiplicative Hom-associative algebra. Let σ : A ⊗ A → A ⊗ A be the
exchange operator, that is σ(x ⊗ y) = y ⊗ x for all x, y ∈ A.

Proposition 18.3 Let (A, ·, α) be a multiplicative Hom-associative algebra. Then,
(α ⊗ L ·, R· ⊗ α, α ⊗ α,A ⊗ A) given, for any x, a, b ∈ A, by

(α ⊗ L)(x)(a ⊗ b) = (α ⊗ L(x))(a ⊗ b) = α(a) ⊗ x · b,
(R· ⊗ α)(x)(a ⊗ b) = (R(x) ⊗ α)(a ⊗ b) = a · x ⊗ α(b),

is a bimodule of A.

Proof Let x, y, v1, v2 ∈ A.

(i) By formulas for the maps and hom-associativity,

(α ⊗ L ·)(x · y)(α ⊗ α)(v1 ⊗ v2) = [α ⊗ L ·(x · y)](α(v1) ⊗ α(v2))

= v1 ⊗ (x · y) · α(v2);
(α ⊗ L ·(α(x)))(α ⊗ L ·(y))(v1 ⊗ v2) = (α ⊗ L ·(α(x)))(α(v1)) ⊗ (y · v2)

= v1 ⊗ α(x) · (y · v2)

give (α ⊗ L ·)(x · y)(α ⊗ α)(v1 ⊗ v2) = (α ⊗ L(α(x)))(α ⊗ L(y))(v1 ⊗ v2).

(ii) By formulas for the maps and hom-associativity,

(R· ⊗ α)(x · y)(α ⊗ α)(v1 ⊗ v2) = (R·(x · y) ⊗ α)(α(v1) ⊗ α(v2))

= α(v1) · (x · y) ⊗ v2
(R·(α(y)) ⊗ α)(R·(x) ⊗ α)(v1 ⊗ v2) = (R·(α(y))((v1 · x) ⊗ α(v2))

= (v1 · x) · α(y) ⊗ v2

yield (R· ⊗ α)(x · y)(α ⊗ α)(v1 ⊗ v2) = (R·(α(y)) ⊗ α)(R·(x) ⊗ α)(v1 ⊗ v2).

(iii) By formulas for the maps,

(α ⊗ L ·(α(x)))(R·(y) ⊗ α)(v1 ⊗ v2) = (α ⊗ L ·(α(x)))(v1 · y ⊗ α(v2))

= α(v1) · α(y) ⊗ α(x) · α(v2);
(R·(α(y)) ⊗ α)(α ⊗ L ·(x))(v1 ⊗ v2) = (R·(α(y)) ⊗ α)(α(v1) ⊗ x · v2)

= α(v1) · α(y) ⊗ α(x) · α(v2)

give

(α ⊗ L ·(α(x)))(R·(y) ⊗ α)(v1 ⊗ v2) = (R·(α(y)) ⊗ α)(α ⊗ L ·(x))(v1 ⊗ v2).

(iv) By formulas for the maps,

(α ⊗ α)(α ⊗ L ·)(v1 ⊗ v2) = (α ⊗ α)(α(v1) ⊗ x · v2) = v1 ⊗ α(x) · α(v2);
(α ⊗ L ·(α(x)))(v1 ⊗ v2) = (α ⊗ L ·α(x))(α(v1) ⊗ α(v2)) = v1 ⊗ α(x) · α(v2)
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imply (α ⊗ α)(α ⊗ L ·)(v1 ⊗ v2) = α ⊗ L ·(α(x)))(v1 ⊗ v2).

(v) By formulas for the maps,

(α ⊗ α)(R·α(x))(v1 ⊗ v2) = (α ⊗ α)(v1 · x ⊗ α(v2))

= α(v1) · α(x) ⊗ v2;
(R·(α(x)) ⊗ α)(α ⊗ α)(v1 ⊗ v2) = (R·(α(x)) ⊗ α)(α(v1) ⊗ α(v2))

= α(v1) · α(x) ⊗ v2

yield (α ⊗ α)(R·α(x))(v1 ⊗ v2) = (R·(α(x)) ⊗ α)(α ⊗ α)(v1 ⊗ v2).

Hence, the proof is achieved. �

Remark 18.2 The quadruple (L · ⊗ α, α ⊗ R·, α ⊗ α,A ⊗ A) is also a bimodule
of A.

Theorem 18.4 Let (A, ·, α) be an involutive Hom-associative algebra. Suppose
there is an involutive Hom-associative algebra structure “◦′′ on its dual space A∗
given by a linear map�∗ : A∗ ⊗ A∗ → A∗. Then, (A,A∗, R∗· , L∗· , α∗, R∗◦ , L∗◦, α) is
amatchedpair of involutiveHom-associative algebras if andonly if� : A → A ⊗ A
satisfies the following conditions for all x, y ∈ A :

� ◦ α(x · y) = (α ⊗ L ·(x)) � (y) + (R·(y) ⊗ α) � (x), (18.17)
(L ·(y) ⊗ α − α ⊗ R·(y))�(x) + σ [(L ·(x) ⊗ α − α ⊗ R·(x))�(y)] = 0. (18.18)

Proof Let {e1, . . . , en} be a basis of A, and {e∗
1, . . . , e

∗
n} be its dual basis. Then, set

ei · e j = ∑n
k=1 c

k
i j ek and e∗

i ◦ e∗
j = ∑n

k=1 f ki j e
∗
k . Hence, �(ek) = ∑n

i, j=1 f ki j ei ⊗ e j ,
and

R∗
· (ei )e

∗
j =

n∑

k=1

c j
ki e

∗
k , L∗

· (ei )e
∗
j =

n∑

k=1

c j
ike

∗
k , α(ei ) =

n∑

q=1

biqeq ,

R∗
◦(e

∗
i )e j =

n∑

k=1

f j
ki ek, L∗

◦(e
∗
i )e j =

n∑

k=1

f j
ikek, α∗(e∗

i ) =
n∑

q=1

b∗i
q e

∗
q .

We have 〈α∗(e∗
i ), e j 〉 = b∗ j

i = 〈e∗
i , α(e j )〉 = bij which implies b∗ j

i = bij . From the
identity α2 = Id and α(ei ) = ∑n

k=1 b
i
kek, we get

∑n
k=1

∑n
l=1 b

i
kb

k
l el = ∑n

l=1 δil el =
ei , with bikb

k
l = δil . Hence, collecting the coefficient of eu ⊗ ev (for any i, j, k, m)

yields

�(α(em) · α(ei )) = (α ⊗ L ·(em))�(ei ) + (R·(ei ) ⊗ α)�(em)

= (α ⊗ L(em))(

n∑

u,v=1

f iuveu ⊗ ev) + (R(ei ) ⊗ α)(

n∑

u,v=1

f muveu ⊗ ev)

=
n∑

u,v=1

f iuvα(eu) ⊗ em · ev +
n∑

u,v=1

f muveu · ei ⊗ α(ev)

=
n∑

u,v=1

f iuv(

n∑

j=1

buj e j ) ⊗
(

n∑

k=1

ckmvek

)

+
n∑

u,v=1

f muv(

n∑

j=1

c jui eu) ⊗
(

n∑

k=1

bv
k ek

)
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=
n∑

j,k,u,v=1

( f iuvb
u
j c

k
mv + f muvc

j
ui b

v
k )e j ⊗ ek;

� ◦ α(em · ei ) = � ◦ α

(
n∑

l=1

clmi el

)

=
n∑

l=1

clmi�(α(el ))

=
n∑

l=1

clmi�

⎛

⎝
n∑

q=1

blqeq

⎞

⎠ =
n∑

l,q, j,k=1

clmi b
l
q f

q
jke j ⊗ ek ,

since � ◦ α(em · ei ) = (α ⊗ α) ◦ �(em · ei ). Then,
n∑

l,u,v, j,k=1

clmi f
l
uvb

u
j b

v
k e j ⊗ ek =

n∑

l,q, j,k=1

clmib
l
q f

q
jke j ⊗ ek .

We obtain the relation

n∑

q=1

clmib
l
q f

q
jk =

n∑

u,v=1

( f iuvb
u
j c

k
mv + f muvc

j
ui b

v
k )

�
n∑

u,v=1

clmi f
l
uvb

u
j b

v
k =

n∑

u,v=1

( f iuvb
u
j c

k
mv + f muvc

j
ui b

v
k ),

and the identity given by the coefficient of e∗
m in

R∗
· (α(ei ))(e

∗
j ◦ e∗

k ) = R∗
· (L

∗
◦(e

∗
j )ei )α

∗(e∗
k ) + (R∗

· (ei )e
∗
j ) ◦ α∗(e∗

k ).

= R∗
·

(
n∑

u=1

f ijueu)α
∗(e∗

v

)

+
(

n∑

u=1

c j
ui e

∗
u

)

◦ α∗(e∗
k )

=
n∑

u=1

f iju R
∗
· (eu)

(
n∑

v=1

bv
k e

∗
v

)

+
u∑

u=1

c j
ui (e

∗
u ◦

(
n∑

v=1

bv
k e

∗
v)

)

=
n∑

u,v=1

f ijub
v
k R

∗
· (eu)e

∗
v +

n∑

u,v=1

c j
ui b

v
k (e

∗
u ◦ e∗

v)

=
n∑

u,v=1

f ijub
v
k

(
n∑

m=1

cv
mue

∗
m

)

+
n∑

u,v,m=1

c j
ui b

v
k f

m
uvpe

∗
m

=
n∑

u,v,m=1

( f ijub
v
k c

v
mu + c j

ui b
v
k f

m
uv)e

∗
m;

R∗
· (α(ei ))(e

∗
j ◦ e∗

k ) = R∗
· (α(ei ))(

n∑

l=1

f ljke
∗
l ) =

n∑

l=1

f ljk R
∗
·

⎛

⎝
n∑

q=1

biqeq

⎞

⎠ (e∗
l ) =

n∑

l,q=1

f ljvb
u
q R

∗
· (eq)e

∗
l =

n∑

l,q=1

f ljkb
i
q

(
n∑

m=1

clmqe
∗
m

)

=
n∑

l,q,m=1

f ljkb
i
qc

l
mqe

∗
m .
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Then, we arrive at

n∑

q=1

f ljkb
i
qc

l
mq =

n∑

u,v=1

( f ijub
v
k c

v
mu + c j

ui b
v
k f

m
uv)

�
n∑

u,v=1

f luvb
u
j b

v
k c

l
mq =

n∑

u,v=1

( f ijub
v
k c

v
mu + c j

ui b
v
k f

m
uv).

Thus, taking clmi = biqc
l
mq , blq f

q
jk = f ljk, f iuvb

u
j c

k
mv = f ijuc

v
mub

v
k , we obtain that

(18.17) corresponds to (18.15). Similarly,

(L ·(ei ) ⊗ α − α ⊗ R·(ei ))�(em ) + σ [(L ·(em ) ⊗ α − α ⊗ R·(em ))�(ei )] = 0 ⇔
(L ·(ei ) ⊗ α − α ⊗ R·(ei ))(

∑n
k,l=1 f mlk el ⊗ ek )

+σ [(L ·(em ) ⊗ α − α ⊗ R·(em ))(
∑n

k,l=1 f ilk el ⊗ ek )] = 0
⇔

∑n
k,l=1 f mlk (ei · el ⊗ α(ek ) − α(el ) ⊗ ek · ei )
+σ [∑n

k,l=1 f ikl (em · el ⊗ α(ek ) − α(el ) ⊗ ek · em )] = 0
⇔

∑n
k,l=1 f mlk ((

∑n
j=1 c

j
il e j ) ⊗ (

∑n
p=1 b

k
pep) − (

∑n
p=1 b

l
pep) ⊗ (

∑n
j=1 c

j
ki e j ))

+σ [∑n
j,l=1 f ikl ((

∑n
j=1 c

j
ml e j ) ⊗ (

∑n
p=1 b

k
pep) − (

∑n
p=1 b

l
pep) ⊗ (

∑n
j=1 c

j
kme j ))] = 0

⇔
∑n

k,l, j,p=1( f
m
lk c

j
il d

k
pe j ⊗ ep − f mlk c

j
ki b

l
pep ⊗ e j )

+σ [∑n
k,l, j,p=1( f

i
kl c

j
mlb

k
pe j ⊗ ep − f ikl c

j
kmb

l
pep ⊗ e j )] = 0;

R∗· (R∗◦ (e∗j )ei )α∗(e∗k ) + (L∗· (ei )e
∗
j ) ◦ α∗(e∗k )

= L∗· (L∗◦(e∗k )ei )α
∗(e∗j ) + α∗(e∗j ) ◦ (R∗· (ei )e

∗
k )

⇔

R∗· (
∑n

l=1 f il j el )(
∑n

p=1 d
k
pe

∗
p) + (

∑n
l=1 c

j
il e

∗
l ) ◦ (

∑n
p=1 d

k
pe

∗
p)

= L∗· (
∑n

l=1 f ikl el )(
∑n

q=1 d
j
q e

∗
q ) + (

∑n
q=1 d

j
q e

∗
q ) ◦ (

∑n
l=1 c

k
li e

∗
l )

⇔

n∑

l,p=1

f il j d
k
p R

∗· (el )e
∗
p +

n∑

l,p=1

c jil d
k
pe

∗
l ◦ e∗p =

n∑

l,q=1

f ikl d
j
q L

∗· (el )e
∗
q +

n∑

q,l=1

d j
q c

k
li e

∗
q ◦ e∗l ⇔

n∑

l,p=1

f il j d
k
p(

n∑

m=1

cpmle
∗
m ) +

n∑

l,p,m=1

c jil d
k
p f mlp e

∗
m =

n∑

l,q,m=1

f ikl d
j
q c

q
lme

∗
m +

n∑

q,l,m=1

d j
q c

k
li f

m
ql e

∗
m

⇔
n∑

l,m,p=1

( f il j d
k
pc

p
ml + f mlp d

k
pc

j
il )e

∗
m =

n∑

l,m,q=1

( f ikl d
j
q c

q
lm + f mql d

j
q c

k
li )e

∗
m .

Thus, we conclude that (18.18) corresponds to (18.16). �

Definition 18.9 Let (A, ·, α) be an involutive Hom-associative algebra. An anti-
symmetric infinitesimal Hom-bialgebra structure on A is a linear map � : A →
A ⊗ A such that

(i) �∗ : A∗ ⊗ A∗ → A∗ defines an involutive Hom-associative algebra structure
on A∗;

(ii) � satisfies (18.17) and (18.18).
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We denote such an antisymmetric infinitesimal Hom-bialgebra by (A,�, α) or
(A,A∗, α, α∗).

Corollary 18.1 Let (A, ·, α) and (A∗, ◦, α∗) be two involutive associative algebras.
Then, the following conditions are equivalent:

(i) There is a double construction of an involutive Hom-Frobenius algebra associ-
ated to (A, ·, α) and (A∗, ◦, α∗);

(ii) (A,A∗, R∗· , L∗· , α∗R∗◦ , L∗◦, α) is a matched pair of involutive associative alge-
bras;

(iii) (A,A∗, α, α∗) is an antisymmetric infinitesimal Hom-bialgebra.

Proof From Theorems 18.2 and 18.4, we have the equivalences. �

18.4 Double Constructions of Involutive BiHom-Frobenius
Algebras

18.4.1 Bimodule and Matched Pair of BiHom-Associative
Algebras

Definition 18.10 ([22]) A biHom-associative algebra is a quadruple (A, ·, α, β)

consisting of a linear space A, K-bilinear map ·: A ⊗ A → A, linear maps α, β :
A → A satisfying, for all x, y, z ∈ A, the following conditions:

α ◦ β = β ◦ α, (commutativity);
α(x · y) = α(x) · α(y), β(x · y) = β(x) · β(y), (multiplicativity);

α(x) · (y · z) = (x · y) · β(z), (biHom-associativity).

Remark 18.3 If α = β, then (A, ·, α, α) is a Hom-associative algebra.

Definition 18.11 A biHom-module is a triple (M, α, β), where M is a K-vector
space, and α, β : M → M are two linear maps.

Definition 18.12 ([22]) Let (A, μA, αA, βA)be a biHom-associative algebra.A left
A-module is a triple (M, αM , βM), where M is a linear space, αM , βM : M → M are
linear maps, with, in addition, another linear map: A ⊗ M → M, a ⊗ m 	→ a · m,

such that, for all a, a′ ∈ A,m ∈ M :

αM ◦ βM = βM ◦ αM , αM(a · m) = αA(a) · αM(m),

βM(a · m) = βA(a) · βM(m), αA(a) · (a′ · m) = (aa′) · βM(m).

Let us give now the definition of bimodule of a biHom-associative algebra.
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Definition 18.13 Let (A, ·, α1, α2) be a biHom-associative algebra, and let
(V, β1, β2) be a biHom-module. Let l, r : A → gl(V ) be two linear maps. The quin-
tuple (l, r, β1, β2, V ) is called a bimodule of A if, for all x, y ∈ A, v ∈ V ,

l(x · y)β1(v) = l(α2(x))l(y)v, r(x · y)β2(v) = r(α1(y))r(x)v,

l(α2(x))r(y)v = r(α1(y))l(x)v,

β1(l(x)v) = l(α1(x))β1(v), β1(r(x)v) = r(α1(x))β1(v),

β2(l(x)v) = l(α2(x))β2(v), β2(r(x)v) = r(α2(x))β2(v).

Proposition 18.4 Let (l, r, β1, β2, V ) be a bimodule of a biHom-associative algebra
(A, ·, α1, α2). Then, the direct sum A ⊕ V of vector spaces is a biHom-associative
algebra with multiplication in A ⊕ V defined, for all x1, x2 ∈ A, v1, v2 ∈ V , by

(x1 + v1) ∗ (x2 + v2) = x1 · x2 + (l(x1)v2 + r(x2)v1),
(α1 ⊕ β1)(x1 + v1) = α1(x1) + β1(v1), (α2 ⊕ β2)(x1 + v1) = α2(x1) + β2(v1).

Proof Let v1, v2, v3 ∈ V and x1, x2, x3 ∈ A. Setting and computing

[(x1 + v1) ∗ (x2 + v2)] ∗ (α1(x3) + β1(v3)) =
(α2(x1) + β2(v1)) ∗ [(x2 + v2) ∗ (x3 + v3)],

and similarly for the other relations, give the required conditions. �

We denote such a biHom-associative algebra by (A ⊕ V, ∗, α1 + β1, α2 + β2), or
A ×l,r,α1,α2,β1,β2 V .

Example 18.5 Let (A, ·, α, β) be amultiplicative biHom-associative algebra. Then,
(L ·, 0, α, β), (0, R·, α, β) and (L ·, R·, α, β) are bimodules of (A, ·, α, β).

Proposition 18.5 Let (l, r, β1, β2, V ) be bimodule of a multiplicative
biHom-associative algebra (A, ·, α1, α2). Then, (l ◦ αn

1 , r ◦ αn
2 , β1, β2, V ) is a bimod-

ule of A for any integer n.

Proof We have

(l ◦ αn
1 )(x · y)β1(v) = l(αn

1 (x) · αn
1 (y))β1(v) = l(α2(α

n
1 (x)))l(α

n
1 (y))v

= l(αn
1 (α2(x)))l(α

n
1 (y))v = (l ◦ αn

1 )(α2(x))(l ◦ αn
1 )(y)v.

Similarly, the other relations are established. �

Example 18.6 Let (A, ·, α1, α2) be a multiplicative biHom-associative algebra.
Then, (L · ◦ αn

1 , R· ◦ αn
2 , α1, α2,A) is a bimodule of A for any integer n.

Theorem 18.5 Let (A, ·, α1, α2) and (B, ◦, β1, β2) be two biHom-associative alge-
bras. Suppose there exist linear maps lA, rA : A → gl(B), and lB, rB : B → gl(A)
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such that (lA, rA, β1, β2,B) is a bimodule ofA, and (lB, rB, α1, α2,A) is a bimodule
of B, satisfying for any x, y ∈ A and a, b ∈ B,

lA(α2(x))(a ◦ b) = lA(rB(a)x)β1(b) + (lA(x)a) ◦ β1(b), (18.19)

rA(α1(x))(a ◦ b) = rA(lB(b)x)β2(a) + β2(a) ◦ (rA(x)b), (18.20)

lB(β2(a))(x · y) = lB(rA(x)a)α1(y) + (lB(a)x) · α1(y), (18.21)

rB(β1(a))(x · y) = rB(lA(y)a)α2(x) + α2(x) · (rB(a)y), (18.22)

lA(lB(a)x)β1(b) + (rA(x)a) ◦ β1(b)
−rA(rB(b)x)β2(a) − β2(a) ◦ (lA(x)b) = 0,

(18.23)

lB(lA(x)a)α1(y) + (rB(a)x) · α1(y)
−rB(rA(y)a)α2(x) − α2(x) · (lB(a)y) = 0.

(18.24)

Then, there is a biHom-associative algebra structure on the direct sumA ⊕ B of the
underlying vector spaces of A and B given, for all x, y ∈ A, a, b ∈ B, by

(x + a) ∗ (y + b) = (x · y + lB(a)y + rB(b)x) + (a ◦ b + lA(x)b + rA(y)a),

(α1 ⊕ β1)(x + a) = α1(x) + β1(a), (α2 ⊕ β2)(x + a) = α2(x) + β2(a).

Proof Let v1, v2, v3 ∈ V and x1, x2, x3 ∈ A. Setting and computing

[(x1 + v1) ∗ (x2 + v2)] ∗ (α1(x3) + β1(v3)) =
(α2(x1) + β2(v1)) ∗ [(x2 + v2) ∗ (x3 + v3)],

we obtain (18.19)–(18.24). Then, using the relations

β1(lA(x)a) = lA(α1(x))β1(a), β1(rA(x)a) = rA(α1(x))β1(a),

β2(lA(x)a) = lA(α2(x))β2(a), β2(rA(x)a) = rA(α2(x))β2(a),

α1(lB(a)x) = lB(β1(a))α1(x), α1(rB(a)x) = rB(β1(a))α1(x),

α2(lB(a)x) = lB(β2(a))α2(x), α2(rB(a)x) = rB(β2(a))α2(x),

yields that ∗ is a biHom-associative algebra structure. �

We use (A 
� B, ∗, α1 + β1, α2 + β2) or A 
�lA,rA,β1,β2
lB,rB,α1,α2

B to denote this biHom-
associative algebra.

Definition 18.14 Let (A, ·, α1, α2) and (B, ◦, β1, β2) be two biHom-associative
algebras. Suppose there exist linear maps lA, rA : A → gl(B), and lB, rB : B →
gl(A) such that (lA, rA, β1, β2) is a bimodule ofA, and (lB, rB, α1, α2) is a bimod-
ule of B. Then, (A,B, lA, rA, β1, β2, lB, rB, α1, α2) is called a matched pair of
biHom-associative algebras, if the conditions (18.19)–(18.24) are satisfied.
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18.4.2 Double Constructions of Involutive BiHom-Frobenius
Algebras

Now, we consider the multiplicative biHom-associative algebra (A, ·, α1, α2) such
that α1 ◦ α2 = α2 ◦ α1 = IdA, that is, α−1

1 = α2, and α2
1 = α2

2 = IdA.

Lemma 18.2 Let (l, r, β1, β2, V ) be a bimodule of (A, ·, α1, α2). Then

(i) (r∗, l∗, β∗
2 , β

∗
1 , V

∗) is a bimodule of (A, ·, α1, α2);
(ii) (r∗, 0, β∗

2 , β
∗
1 , V

∗) and (0, l∗, β∗
2 , β

∗
1 , V

∗) are also bimodules of A.

Proof (i) Let (l, r, β1, β2, V ) be a bimodule of an involutive biHom-associative
algebra (A, ·, α1, α2). Show that (r∗, l∗, β∗

2 , β
∗
1 , V

∗) is a bimodule of A. Let x, y ∈
A, u∗ ∈ V ∗, v ∈ V . Then,
(i-1) the following computation

〈r∗(x · y)β∗
2 (u

∗), v〉 = 〈β2(r(x · y)v), u∗〉 = 〈r(α2(x · y))β2(v), u∗〉
= 〈r(α2(x) · α2(y))β2(v), u∗〉 = 〈r [α1(α2(y))]r(α2(x))v, u∗〉
= 〈(r(y)r(α2(x)))

∗u∗, v〉 = 〈r∗(α2(x))r
∗(y)u∗, v〉,

leads to r∗(x · y)β∗
2 (u

∗) = r∗(α2(x))r∗(y)u∗;
(i-2) the following computation

〈l∗(x · y)β∗
1 (u

∗), v〉 = 〈β1(l(x · y)(v)), u∗〉 = 〈l(α1(x · y))β1(v), u∗〉
= 〈l(α1(x) · α1(y))β1(v), u∗〉
= 〈l[α2(α1(x))]l(α1(y))β(v), u∗〉
= 〈(l(x)l(α1(y)))

∗u∗, v〉 = 〈l∗(α1(y))l
∗(x)u∗, v〉

gives l∗(x · y)β∗
1 (u

∗) = l∗(α1(y))l∗(x)u∗;
(i-3) the following computation

〈r∗(α2(x))l
∗(y)u∗, v〉 = 〈l(y)r(α2(x))v, u∗〉 = 〈(l ◦ α1)(α2(y))(r ◦ α2)(x))v, u∗〉

= 〈(r ◦ α2)(α1(x))(l ◦ α1)(y)v, u∗〉 = 〈r(x)l(α1(y))v, u∗〉
= 〈l∗(α1(y))r

∗(x)u∗, v〉

yields r∗(α2(x))l∗(y)u∗ = l∗(α1(y))r∗(x)u∗.
Furthermore,

〈β∗
2 (r

∗(x))u∗, v〉 = 〈r(x)(β2(v)), u∗〉 = 〈(r ◦ α1)(α2(x))(β2(v)), u∗〉
= 〈β2(r(α1(x)))v, u∗〉 = 〈r∗(α1(x))β

∗
2 (u

∗), v〉.

Hence, β∗
2 (r

∗(x))u∗ = r∗(α1(x))β∗
2 (u

∗). By analogy, we establish the other condi-
tions. Hence, (r∗, l∗, β∗

2 , β
∗
1 , V

∗) is a bimodule of A.
(ii) Similarly, one can show that (r∗, 0, β∗

2 , β
∗
1 , V

∗) and (0, l∗, β∗
2 , β

∗
1 , V

∗) are bimod-
ules of A as well. �
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Definition 18.15 Let (A, ·, α, β) be a biHom-associative algebra, and B : A ×
A → K be a bilinear form on A. B is said αβ-invariant if

B(β(x) · α(y), α(z)) = B(α(x), β(y) · α(z)). (18.25)

Definition 18.16 A biHom-Frobenius algebra is a biHom-associative algebra with
a non-degenerate invariant bilinear form.

Definition 18.17 We call (A, α, β, B) a double construction of an involutive
biHom-Frobenius algebra associated to (A1, α1) and (A∗

1, α
∗
1) if it satisfies the

conditions:

1) A = A1 ⊕ A∗
1 as the direct sum of vector spaces;

2) (A1, α1, α2) and (A∗
1, α

∗
1 , α

∗
2) are biHom-associative subalgebras of (A, α) with

α = α1 ⊕ α∗
1 and β = α2 ⊕ α∗

2 ;
3) B is the natural non-degerenate (α1 ⊕ α∗

1)(α2 ⊕ α∗
2)-invariant symmetric bilinear

form on A1 ⊕ A∗
1 given by

B(x + a∗, y + b∗) = 〈x, b∗〉 + 〈a∗, y〉,
B((α1 + α∗

1)(x + a∗), y + b∗) = B(x + a∗, (α1 + α∗
1)(y + b∗)),

B((α2 + α∗
2)(x + a∗), y + b∗) = B(x + a∗, (α2 + α∗

2)(y + b∗))
(18.26)

for all x, y ∈ A1, a∗, b∗ ∈ A∗
1,where 〈, 〉 is the natural pairing between the vector

space A1 and its dual space A∗
1.

Let (A, ·, α1, α2) be an involutive biHom-associative algebra. Suppose there also
exists an involutive biHom-associative algebra structure " ◦ " on its dual space A∗.
We construct an involutive biHom-associative algebra structure on the direct sum
A ⊕ A∗ of the underlying vector spaces of A and A∗ such that (A, ·, α1, α2) and
(A∗, ◦, α∗

1 , α
∗
1) are biHom-subalgebras, and the non-degenerate invariant symmetric

bilinear form onA ⊕ A∗ is given by (18.26). Hence, (A ⊕ A∗, α1 ⊕ α∗
1 , α2 ⊕ α∗

2 , B)

is a symmetric multiplicative biHom-associative algebra. Such a construction is
called a double construction of an involutive biHom-Frobenius algebra associated to
(A, ·, α1, α2) and (A∗, ◦, α∗

1 , α
∗
2).

Theorem 18.6 Let (A, ·, α1, α2) be an involutive biHom-associative algebra. Sup-
pose there is an involutive biHom-associative algebra structure " ◦ " on its dual
space A∗. Then, there is a double construction of an involutive symmetric biHom-
associative algebra associated to (A, ·, α1, α2) and (A∗, ◦, α∗

1 , α
∗
2) if and only

if (A,A∗, R∗· , L∗· , α∗
2 , α

∗
1 , R

∗◦ , L∗◦, α2, α1) is a matched pair of involutive biHom-
associative algebras.

Proof By a similar proof as for Theorem 18.2, we obtain the results. Let us show
that B is well (α1 ⊕ α∗

1)(α2 ⊕ α∗
2)-invariant. Let x, y, z ∈ A and a∗, b∗, c∗ ∈ A∗.

We have
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B[(α2(x) + α∗
2 (a

∗)) ∗ (α1(y) + α∗
1 (b

∗)), (α1(z) + α∗
1 (c

∗))]
= 〈α2(x) · α1(y), α

∗
1 (c

∗)〉 + 〈α∗
1(c

∗) ◦ α∗
2 (a

∗), α1(y)〉 + 〈α∗
1 (b

∗) ◦ α∗
1 (c

∗), α2(x)〉
+〈α∗

2 (a
∗) ◦ α∗

1 (b
∗), α1(z)〉 + 〈α1(z) · α2(x), α

∗
1 (b

∗)〉 + 〈α1(y) · α1(z), α
∗
2 (a

∗)〉;
B[α1(x) + α∗

1 (a
∗), (α2(y) + α∗

2 (b
∗)) ∗ (α1(z) + α∗

1 (c
∗))]

= 〈α1(x), α
∗
2 (b

∗) ◦ α∗
1 (c

∗)〉 + 〈α∗
1 (c

∗), α1(x) · α2(y)〉 + 〈α∗
2(b

∗), α1(z) · α1(x)〉
+〈α2(y) · α1(z), α

∗
1 (a

∗)〉 + 〈α∗
1(a

∗) ◦ α∗
2 (b

∗), α1(z)〉 + 〈α1(c
∗) ◦ α∗

1 (a
∗), α2(y)〉.

Using α2
1 = α2

2 = IdA, α∗2
1 = α∗2

2 = IdA∗ , α1 = α−1
2 and α∗

1 = α∗−1
2 , we obtain

B[(α2(x) + α∗
2 (a

∗)) ∗ (α1(y) + α∗
1 (b

∗)), (α1(z) + α∗
1 (c

∗))]
= B[α1(x) + α∗

1 (a
∗), (α2(y) + α∗

2 (b
∗)) ∗ (α1(z) + α∗

1 (c
∗))]

= 〈x, b∗ ◦ c∗〉 + 〈c∗, x · y〉 + 〈b∗, z · x〉 + 〈y · z, a∗〉 + 〈a∗ ◦ b∗, z〉 + 〈c∗ ◦ a∗, y〉.

This completes the proof. �

Theorem 18.7 Let (A, ·, α1, α2) be an involutive biHom-associative algebra. Sup-
pose there exists an involutive biHom-associative algebra structure “◦′′ on its
dual space (A∗, α∗

1 , α
∗
2). Then, (A,A∗, R∗· , L∗· , α∗

2 , α
∗
1 , R

∗◦ , L∗◦, α2, α1) is a matched
pair of involutive biHom-associative algebras if and only if, for any x ∈ A and
a∗, b∗ ∈ A∗,

R∗
· (α2(x))(a

∗ ◦ b∗) = R∗
· (L

∗
◦(a

∗)x)α∗
2(b

∗) + (R∗
· (x)a

∗) ◦ α∗
2(b

∗),
R∗· (R∗◦(a∗)x)α∗

2(b
∗) +L∗· (x)a∗ ◦ α∗

2(b
∗) =

L∗· (L∗◦(b∗)x)α∗
1(a

∗) + α∗
1(a

∗) ◦ (R∗· (x)b∗).

Proof By a similar proof as for Theorem 18.3, and using the following valid relations

α∗
2(R

∗
· (x)a

∗) = R∗
· (α1(x))α

∗
2(a

∗), α∗
2(L

∗
· (x)a

∗) = L∗
· (α1(x))α

∗
2(a

∗)
α∗
1(R

∗
· (x)a

∗) = R∗
· (α2(x))α

∗
1(a

∗), α∗
1(L

∗
· (x)a

∗) = L∗
· (α2(x))α

∗
1(a

∗)
α2(R

∗
◦(a

∗)x) = R∗
◦(α

∗
1(a

∗))α2(x), α2(L
∗
◦(a

∗)x) = L∗
◦(α

∗
1(a

∗))α2(x)

α1(R
∗
◦(a

∗)x) = R∗
◦(α

∗
2(a

∗))α1(x), α1(L
∗
◦(a

∗)x) = L∗
◦(α

∗
2(a

∗))α1(x),

the equivalences

(18.19) ⇐⇒ (18.20) ⇐⇒ (18.21) ⇐⇒ (18.22), and (18.23) ⇐⇒ (18.24)

are obtained. �

Theorem 18.8 Let (A, ·, α1, α2) be an involutive biHom-associative algebra. Sup-
pose there is an involutive biHom-associative algebra structure " ◦ " on its dual space
A∗ given by a linear map �∗ : A∗ ⊗ A∗ → A∗. Then,

(A,A∗, R∗
· , L

∗
· , α

∗
2 , α

∗
1 , R

∗
◦ , L

∗
◦, α2, α1)
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is a matched pair of involutive biHom-associative algebras if and only if � : A →
A ⊗ A satisfies the following two conditions for all x, y ∈ A :

� ◦ α2(x · y) = (α2 ⊗ L ·(x)) � (y) + (R·(y) ⊗ α2) � (x), (18.27)

(L ·(y) ⊗ α2 − α1 ⊗ R·(y))�(x) + σ [(L ·(x) ⊗ α2 − α1 ⊗ R·(x))�(y)] = 0.
(18.28)

Proof This proof is simillar to that of Theorem 18.4. �

Definition 18.18 Let (A, ·, α1, α2) be an involutive biHom-associative algebra. An
antisymmetric infinitesimal biHom-bialgebra structure on A is a linear map � :
A → A ⊗ A such that

(a) �∗ : A∗ ⊗ A∗ → A∗ defines an involutive biHom-associative algebra structure
on A∗;

(b) � satisfies (18.27) and (18.28).

We denote it by (A,�, α1, α2) or (A,A∗, α1, α2, α
∗
1 , α2, α

∗
1).

Corollary 18.2 Let (A, ·, α1, α2) and (A∗, ◦, α∗
1 , α

∗
2) be two biHom-associative

algebras. Then, the following conditions are equivalent:

1) There is a double construction of an involutive biHom-Frobenius algebra asso-
ciated to (A, ·, α1, α2) and (A∗, ◦, α∗

1 , α
∗
2);

2) (A,A∗, R∗· , L∗· , α∗
2 , α

∗
1 , R

∗◦ , L∗◦, α2, α1) is a matched pair of multiplicative
biHom-associative algebras;

3) (A,A∗, α1, α2, α
∗
1 , α

∗
2) is an antisymmetric infinitesimal biHom-bialgebra.

Proof From Theorems 18.6 and 18.8, we have the equivalences. �

18.5 Double Constructions of Involutive Symplectic
Hom-associative Algebras

18.5.1 Hom-dendriform Algebras

Definition 18.19 AHom-dendriform algebra is a quadruple (A,≺,�, α) consisting
of a vector space A on which the operations ≺,�: A ⊗ A → A, and α : A → A
are linear maps satisfying

(x ≺ y) ≺ α(z) = α(x) ≺ (y ∗ z),
(x � y) ≺ α(z) = α(x) � (y ≺ z),
α(x) � (y � z) = (x ∗ y) � α(z),

where
x ∗ y = x ≺ y + x � y. (18.29)
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Definition 18.20 Let (A,≺,�, α) and (A′,≺′,�′, α′) be two Hom-dendriform
algebras. A linear map f : A → A′ is a Hom-dendriform algebra morphism if

≺′ ◦( f ⊗ f ) = f ◦ ≺, �′ ◦( f ⊗ f ) = f ◦ �, f ◦ α = α′ ◦ f.

Proposition 18.6 Let (A,≺,�, α) be a Hom-dendriform algebra. Then, (A, ∗, α)

is a Hom-associative algebra.

Proof For all x, y, z ∈ A,

(x ∗ y) ∗ α(z) = (x ≺ y) ≺ α(z) + (x ≺ y) � α(z) + (x � y) ≺ α(z) + (x � y) � α(z)

= (x ≺ y) ≺ α(z) + (x � y) ≺ α(z) + (x ∗ y) � α(z)

= α(x) ≺ (y ∗ z) + α(x) � (y ≺ z) + α(x) � (y � z)

= α(x) ≺ (y ∗ z) + α(x) � (y ∗ z) = α(x) ∗ (y ∗ z).

which completes the proof. �

We call (A, ∗, α) the associated Hom-associative algebra of (A,≺,�, α), and
(A,�,≺, α) is called a compatible Hom-dendriform algebra structure on the Hom-
associative algebra (A, ∗, α).

Let (A,≺,�, α) be a Hom-dendriform algebra. For any x ∈ A, let L�(x), R�(x)
and L≺(x), R≺(x) denote the left and right multiplication operators of (A,≺) and
(A,�), respectively, that is, for all x, y ∈ A,

L�(x)y = x � y, R�(x)y = y � x, L≺(x)y = x ≺ y, L≺(x)y = y ≺ x .

Moreover, let L�, R�, L≺, R≺ : A → gl(A) be respectively, the four linear maps
x 	→ L�(x), x 	→ R�(x), x 	→ L≺(x), and x 	→ R≺(x).

Proposition 18.7 The quadruple (L�, R≺, α,A) is a bimodule of the associated
Hom-associative algebra (A, ∗, α).

Proof For all x, y, v ∈ A,

L�(x ∗ y)α(v) = (x ∗ y) � α(v) = α(x) � (y � v) = L�(α(x))L�(y)v,

R≺(x ∗ y)α(v) = α(v) ≺ (x ∗ y) = (v ≺ x) ≺ α(y) = R≺(α(y))R≺(x)v,

L�(α(x))R≺(y)v = α(x) � (v ≺ y) = (x � v) ≺ α(y) = R≺(α(y))L�(x)v,

α(L�(x)v) = α(x � v) = α(x) � α(v) = L�(α(x))α(v),

α(R≺(x)v) = α(v ≺ x) = α(v) ≺ α(x) = R≺(α(x))α(v),

which completes the proof. �
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18.5.2 O-operators and Hom-dendriform Algebras

Definition 18.21 Let (A, ·, α) be a Hom-associative algebra, and (l, r, β, V ) be a
bimodule. Then, a linear map T : V → A is called an O-operator associated to
(l, r, β, V ), if T satisfies,

αT = Tβ

T (u) · T (v) = T (l(T (u))v + r(T (v))u) for all u, v ∈ V

Example 18.7 Let (A, ·, α) be a multiplicative Hom-associative algebra. Then, the
identity map Id is an O-operator associated to the bimodule (L , 0, α) or (0, R, α).

Example 18.8 Let (A, ·, α) be a multiplicative Hom-associative algebra. A linear
map f : A → A is called a Rota-Baxter operator onA of weight zero if f satisfies

f (x) · f (y) = f ( f (x) · y + x · f (y)) for all x, y ∈ A.

In fact, a Rota-Baxter operator onA is just anO-operator associated to the bimodule
(L , R, α).

Theorem 18.9 Let (A, ·, α) be a Hom-associative algebra, and (l, r, β, V ) be a
bimodule. Let T : V → A be an O-operator associated to (l, r, β, V ). Then, there
exists a Hom-dendriform algebra structure on V given, for all u, v ∈ V , by

u � v = l(T (u))v, u ≺ v = r(T (v))u.

So, there is an associated Hom-associative algebra structure on V given by the
(18.29), and T is a homomorphism of Hom-associative algebras. Moreover, T (V ) =
{T (v) \ v ∈ V } ⊆ A is a Hom-associative subalgebra ofA, and there is an induced
Hom-dendriform algebra structure on T (V ) given, for all u, v ∈ V , by

T (u) � T (v) = T (u � v), T (u) ≺ T (v) = T (u ≺ v).

Its corresponding associated Hom-associative algebra structure on T (V ) given by
the (18.29) is just the Hom-associative subalgebra structure ofA, and T is a homo-
morphism of Hom-dendriform algebras.

Proof For any x, y, z ∈ V, we have

(x � y) ≺ β(z) − β(x) � (y ≺ z) = l(T (x)y) ≺ β(z) − β(x) � r(T (z)y)
= r(Tβ(z))l(T (x))y − l(Tβ(x)y)r(T (z)y)
= r(α(T (z)))l(T (x))y − l(α(T (x)))r(T (z))y = 0.

The two other axioms are similarly checked. �
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Corollary 18.3 Let (A, ∗, α) be a multiplicative Hom-associative algebra. Then,
there is a compatible multiplicative Hom-dendriform algebra structure on A if and
only if there exists an invertible O-operator of (A, ∗, α).

Proof If T is an invertible O−operator associated to a bimodule (l, r, β, V ), then,
the compatible multiplicative Hom-dendriform algebra structure on A is given by

x � y = T (l(x)T−1(y)), x ≺ y = T (r(y)T−1(x)) for all x, y ∈ A.

Conversely, let (A,�,≺, α) be a Hom-dendriform algebra, and (A, ∗, α) be the
associated multiplicative Hom-associative algebra. Then, the identity map Id is an
O−operator associated to the bimodule (L�, R≺, α) of (A, ∗, α). �

18.5.3 Bimodules and Matched Pairs of Hom-dendriform
Algebras

Definition 18.22 Let (A,�,≺, α) be a Hom-dendriform algebra, and V be a vector
space. Let l�, r�, l≺, r≺ : A → gl(V ) and β : V → V be linear maps. Then, the
sextuple (l�, r�, l≺, r≺, β, V ) is called a bimodule of A if the following equations
hold, for any x, y ∈ A and v ∈ V :

l≺(x ≺ y)β(v) = l≺(α(x))l∗(y)v, r≺(α(x))l≺(y)v = l≺(α(y))r∗(x)v,

r≺(α(y))r≺(y)v = r≺(x ∗ y)β(v), l≺(x � y)β(v) = l�(α(x))l≺(y)v,

r≺(α(x))l�(y)v = l�(α(y))r≺(x)v, r≺(α(x))r�(y)v = r�(y ≺ x)β(v),

l�(x ∗ y)β(v) = l�(α(x))l�(y)v, r�(α(x))l∗(y)v = l�(α(y))r�(x)v,

r�(α(x))r∗(y)v = r�(y � x)β(v),

β(l�(x)v) = l�(α(x))β(v), β(l≺(x)v) = l≺(α(x))β(v),

β(r�(x)v) = r�(α(x))β(v), β(r≺(x)v) = r≺(α(x))β(v),

where x ∗ y = x � y + x ≺ y, l∗ = l� + l≺, r∗ = r� + r≺.

By a straightforward calculation, we obtain the following result.

Proposition 18.8 Let (l�, r�, l≺, r≺, β, V ) be a bimodule of a Hom-dendriform
algebra (A,�,≺, α). Then, there is a Hom-dendriform algebra structure on the
direct sum A ⊕ V of the underlying vector spaces of A and V given, for x, y ∈ A,
u, v ∈ V , by

(x + u) � (y + v) = x � y + l�(x)v + r�(y)u,

(x + u) ≺ (y + v) = x ≺ y + l≺(x)v + r≺(y)u,

(α ⊕ β)(x + u) = α(x) + β(u).

We denote this algebra by A ×l�,r�,l≺,r≺,α,β V .
The following result is proved by a direct computation.
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Proposition 18.9 Let(l�, r�, l≺, r≺, β, V ) be a bimodule of a Hom-dendriform
algebra (A,�,≺, α). Let (A, ∗, α) be the associated Hom-associative algebra.
Then, results:

1) Both (l�, r≺, β, V ) and (l� + l≺, r� + r≺, β, V ) are bimodules of (A, ∗, β);
2) For any bimodule (l, r, β, V ) of (A, ∗, α), (l, 0, 0, r, β, V ) is a bimodule of

(A,�,≺, α);
3) Both (l� + l≺, 0, 0, r� + r≺, β, V ) and (l�, 0, 0, r≺, β, V ) are bimodules of

(A,�,≺, α);
4) The dendriform algebras A ×l�,r�,l≺,r≺,α,β V and A ×l�+l≺,0,0,r�+r≺,α,β V have

the same associated Hom-associative algebra A ×l�+l≺,r�+r≺,α,β V .

The proof of the following theorem is obtained similarly as for Theorem 18.1.

Theorem 18.10 Let (A,�A,≺A, α) and (B,�B,≺B, β) be two Hom-dendriform
algebras. Suppose there are linear maps

l�A , r�A , l≺A , r≺A : A → gl(B), l�B , r�B , l≺B , r≺B : B → gl(A) such that

(l�A , r�A , l≺A , r≺A , β,B) is a bimodule of A and (l�B , r�B , l≺B , r≺B , α,A) is a
bimodule of B, satisfying for

lA = l�A + l≺A , rA = r�A + r≺A , lB = l�B + l≺B , rB = r�B + r≺B

and any x, y ∈ A, a, b ∈ B, the following relations:

r≺A(α(x))(a ≺B b) = β(a) ≺B (rA(x)b) + r≺A(lB(x)β(a)), (18.30)

l≺A(l≺B(x))β(b) +(r≺A(x)a) ≺B β(b) =
β(a) ≺B (l≺A(x)b) + r≺A(r≺B(b)x)β(a),

(18.31)

l≺A(α(x))(a ∗B b) = (l≺A(x)a) ∗B β(b) + l≺A(r≺A(a)x)β(b), (18.32)

r≺A(α(x))(a �B b) = r�A(l≺B(b)x)β(a) + β(a) �B (r≺A(x)b), (18.33)

l≺A(l�B(a)x)β(b) +(r�A(x)a) ≺B β(b) =
β(a) �B (l≺A(x)b) + r�A(r≺B(b)x)β(a)

(18.34)

l�A(α(x))(a ≺B b) = (l�A(x)a) ≺B β(b) + l≺A(r�B(a)x)β(b), (18.35)

r�A(α(x))(a ∗B b) = β(a) �B (r�A(x)b) + r�A(l�B(b)x)β(a), (18.36)

β(a) �B (l�A(x)b) +r�A(r�B(b)x)β(a) =
l�A(lB(a)x)β(b) + (rA(x)a) �B β(b),

(18.37)

l�A(α(x))(a �B b) = (lA(x)a) �B β(b) + l�A(rB(a)x)β(b), (18.38)

r≺B(β(a))(x ≺A y) = α(x) ≺A (rB(a)y) + r≺B(lA(y)a)α(x), (18.39)

l≺B (l≺A(x)a)α(y) +(r≺B(a)x) ≺A α(y) =
α(x) ≺A (lB(a)y) + r≺B(rA(y)a)α(x),

(18.40)

l≺B(β(a))(x ∗A y) = (l≺B(a)x) ≺A α(y) + l≺B(r≺A(x)a)α(y), (18.41)

r≺B(β(a))(x �A y) = r�B(l≺B(y)a)α(x) + α(x) �A (r≺B(a)y), (18.42)
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l≺B(l�A(x)a)α(y) +(r�B(a)x) ≺A α(y) =
α(x) �A (l≺B(a)y) + r�B(r≺A(y)a)α(x),

(18.43)

l�B(β(a))(x ≺A y) = (l�B(a)x) ≺A α(y) + l≺B(r�A(x)a)α(y), (18.44)

r�B(β(a))(x ∗A y) = α(x) �A (r�B(a)y) + r�B(l�A(y)a)α(x), (18.45)

α(x) �A (l�B(a)y) +r�B(r�A(y)a)α(x) =
l�B(lA(x)a)α(y) + (rB(a)x) �A α(y),

(18.46)

l�B(β(a))(x �A y) = (lB(a)x) �A α(y) + l�B(rA(x)a)α(y). (18.47)

Then, there is a Hom-dendriform algebra structure on the direct sum A ⊕ B of the
underlying vector spaces of A and B given, for any x, y ∈ A, a, b ∈ B, by

(x + a) � (y + b) = (x �A y + r�B(b)x + l�B(a)y)+
(l�A(x)b + r�A(y)a + a �B b),

(x + a) ≺ (y + b) = (x ≺A y + r≺B(b)x + l≺B(a)y)+
(l≺A(x)b + r≺A(y)a + a ≺B b),

(α ⊕ β)(x + a) = α(x) + β(a).

LetA 
�l�A ,r�A ,l≺A ,r≺A ,β

l�B ,r�B ,l≺B ,r≺B ,α B or simplyA 
� B denote this Hom-dendriform alge-
bra.

Definition 18.23 Let (A,�A,≺A, α) and (B,�B,≺B, β) be Hom-dendriform
algebras. Suppose there are linear maps

l�A , r�A , l≺A , r≺A : A → gl(B), l�B , r�B , l≺B , r≺B : B → gl(A)

such that (l�A , r�A , l≺A , r≺A , β) is a bimodule of A, and (l�B , r�B , l≺B , r≺B , α) is
a bimodule of B. If (18.30)–(18.47) are satisfied, then

(A,B, l�A , r�A , l≺A , r≺A , β, l�B , r�B , l≺B , r≺B , α).

is called a matched pair of Hom-dendriform algebras.

Corollary 18.4 If the tuple (A,B, l�A , r�A , l≺A , r≺A , β, l�B , r�B , l≺B , r≺B , α) is
a matched pair of Hom-dendriform algebras, then

(A,B, l�A + l≺A , r�A + r≺A , l�B + l≺B , r�B + r≺B , α + β)

is a matched pair of the associated Hom-associative algebras (A, ∗A, α) and
(B, ∗B, β).

Proof The associated Hom-associative algebra (A 
� B, ∗, α + β) is exactly the
Hom-associative algebra obtained from thematched pair (A,B, lA, rA, β, lB, rB, α)

of Hom-associative algebras, with
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(x + a) ∗ (y + b) = x ∗A y + lB(a)y + rB(b)x + a ∗B b + lA(x)b + rA(y)a,

(α ⊕ β)(x + a) = α(x) + β(a)

for x, y ∈ A, a, b ∈ B, and lA = l�A + l≺A , rA = r�A + r≺A , lB = l�B + l≺B ,

rB = r�B + r≺B . �

18.5.4 Double Constructions of Involutive Symplectic
Hom-associative Algebras

In this sequel, we suppose that α is involutive.

Proposition 18.10 Suppose that (l�, r�, l≺, r≺, β, V ) is a bimodule of a Hom-
dendriform algebra (A,�,≺, α), and let (A, ∗, α) be the associated involutive
Hom-associative algebra.

1) Let l∗�, r∗�, l∗≺, r∗≺ : A → gl(V ∗) be the linear maps given by

〈l∗�(x)a∗, y〉 = 〈l�(x)y, a∗〉, 〈r∗
�(x)a∗, y〉 = 〈r�(x)y, a∗〉,

〈l∗≺(x)a∗, y〉 = 〈l≺(x)y, a∗〉, 〈r∗
≺(x)a∗, y〉 = 〈r≺(x)y, a∗〉.

Then, (r∗� + r∗≺,−l∗≺,−r∗�, l∗� + l∗≺, β∗, V ∗) is a bimodule of (A,�,≺, α);
2) Both (r∗� + r∗≺, 0, 0, l∗� + l∗≺, β∗, V ∗) and (r∗≺, 0, 0, l∗�, β∗, V ∗) are bimodules of

(A, ∗, α);
3) Both (r∗� + r∗≺, l∗� + l∗≺, β∗, V ∗) and (r∗≺, l∗�, β∗, V ∗) are bimodules of (A, ∗, α);
4) The Hom-dendriform algebras A ×r∗�+r∗≺,−l∗≺,−r∗�,l∗�+l∗≺,α,β∗ V ∗ and

A ×r∗≺,0,0,l∗�,α,β∗ V ∗ have the same Hom-associative algebra A ×r∗≺,l∗�,α,β∗ V ∗.

Example 18.9 Let (A,≺,�, α) be an involutive Hom-dendriform algebra. Then,

(L�, R�, L≺, R≺, α,A), (L�, 0, 0, R≺, α,A), (L� + L≺, 0, 0, R� + R≺, α,A)

are bimodules of (A,≺,�, α). On the other hand,

(R∗
� + R∗

≺,−L∗
≺,−R∗

�, L∗
� + L∗

≺, α∗,A∗), (R∗
≺, 0, 0, L∗

�, α∗,A∗),
(R∗

� + R∗
≺, 0, 0, L∗

� + L∗
≺, α∗,A∗)

are bimodules of (A,�,≺, α) too. There are two compatible Hom-dendriform alge-
bra structures,

A ×R∗�+R∗≺,−L∗≺,−R∗�,L∗�+L∗≺,α,α∗ A∗ and A ×R∗�+R∗≺,0,0,L∗�+L∗≺,α,α∗ A∗,

on the same Hom-associative algebra A ×R∗≺,L∗�,α,α∗ A∗.
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Definition 18.24 Let (A, α) be a Hom-associative algebra. We say that (A, α, ω)

is a symplectic Hom-associative algebra if ω is a non-degenerate skew-symmetric
bilinear form onA such that the following identity (invariance condition) is satisfied
for all x, y, z ∈ A:

ω(α(x)α(y), α(z)) + ω(α(y)α(z), α(x)) + ω(α(z)α(x), α(y)) = 0.

Theorem 18.11 Let (A, ∗, α) be an involutive Hom-associative algebra, and let ω
be an α-invariant non-degenerate skew-symmetric bilinear form on A. Then, there
exists a compatible Hom-dendriform algebra structure �,≺ on (A, α) given by

ω(x � y, z) = ω(y, z ∗ x), ω(x � y, z) = ω(x, y ∗ z)
for all x, y ∈ A.

(18.48)

Proof Define a linear map T : A → A∗ by 〈T (x), y〉 = ω(x, y) for all x, y ∈ A.
Then, T is invertible and T−1 is an O−operator of the involutive Hom-associative
algebra (A, ∗, α) associated to the bimodule (R∗∗, L∗∗, α∗). By Corollary 18.3, there
is a compatible Hom-dendriform algebra structure �,≺ on (A, ∗) given by

x � y = T−1R∗
∗(x)T (y), x ≺ y = T−1L∗

∗(y)T (x)

for all x, y ∈ A, which gives exactly (18.48). �

Definition 18.25 We call (A, α,B) a double construction of involutive symplec-
tic Hom-associative algebra associated to (A1, α1) and (A∗

1, α
∗
1) if it satisfies the

conditions:

1) A = A1 ⊕ A∗
1 as the direct sum of vector spaces;

2) (A1, α1) and (A∗
1, α

∗
1) are Hom-associative subalgebras of (A, α)with α = α1 ⊕

α∗
1 ;

3) ω is the natural non-degenerate antisymmetric (α1 ⊕ α∗
1)-invariant bilinear form

on A1 ⊕ A∗
1 given, for all x, y ∈ A1, a∗, b∗ ∈ A∗

1, by

ω(x + a∗, y + b∗) = −〈x, b∗〉 + 〈a∗, y〉,
ω((α + α∗)(x + a∗), y + b∗) = ω(x + a∗, (α + α∗)(y + b∗)) (18.49)

where 〈, 〉 is the natural pairing between the vector space A1 and its dual space
A∗

1.

Let (A, ∗A, α) be an involutive Hom-associative algebra, and suppose that
there is an involutive Hom-associative algebra structure ∗A∗ on its dual space
A∗. We construct an involutive symplectic Hom-associative algebra structure on
the direct sum A ⊕ A∗ of the underlying vector spaces of A and A∗ such that
both A and A∗ are Hom-subalgebras, equipped with the natural non-degenerate
antisymmetric (α1 ⊕ α∗

1)-invariant bilinear form on A ⊕ A∗ given by (18.49).
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Such a construction, called double construction of involutive symplectic Hom-
associative algebras associated to (A, ∗A, α) and (A∗, ∗A∗ , α∗), is denoted by
(T (A) = A 
�α∗

α A∗, ω).

Corollary 18.5 Let (T (A) = A 
�α∗
α A∗, ω) be a double construction of involu-

tive symplectic Hom-associative algebras. Then, there exists a compatible involu-
tive Hom-dendriform algebra structure �,≺ on (T (A), α ⊕ α∗) defined by (18.49).
Moreover,A andA∗, endowed with this product, are Hom-dendriform subalgebras.

Proof Thefirst part follows fromTheorem18.11. Let x, y ∈ A. Set x � y = a + b∗,
for a ∈ A, b∗ ∈ A∗. Since A is a Hom-associative subalgebra of (T (A), α ⊕ α∗),
and ω(A,A) = ω(A∗,A∗) = 0, we have

ω(b∗,A∗) = ω(b∗,A) = ω(x � y,A) = ω(y,A ∗ x) = 0.

Therefore, b∗ = 0 due to the independence of ω. Hence, x � y = a ∈ A. Similarly,
x ≺ y ∈ A. Thus, A is a Hom-dendriform subalgebra of T (A) with ≺,�. By sym-
metry of A, A∗ is also a Hom-dendriform subalgebra. �

Theorem 18.12 Let (A,�A,≺A, α) be an involutive Hom-dendriform algebra,
and (A, ∗A, α) be the associated involutive Hom-associative algebra. Suppose
there is an involutive Hom-dendriform algebra structure " �A∗ ,≺A∗ , α∗" on its
dual space A∗, and (A∗, ∗A∗ , α∗) is the associated involutive Hom-associative
algebra. Then, there exists a double construction of involutive symplectic Hom-
associative algebras associated to (A, ∗A, α) and (A, ∗A∗ , α∗) if and only if the octu-
ple (A,A∗, R∗≺A , L∗�A , α∗, R∗≺A∗ , L

∗�A∗ , α) is a matched pair of Hom-associative
algebras.

Proof The conclusion can be obtained by a similar proof as in Theorem 18.2. Then,
if

(A,A∗, R∗
≺A , L∗

�A , α∗, R∗
≺A∗ , L

∗
�A∗ , α)

is a matched pair of the involutive Hom-associative algebras (A, ∗A, α) and
(A, ∗A∗ , α∗), it is straightforward to show that the bilinear form (18.49) is an

(α1 ⊕ α∗
1)-invariant on the Hom-associative algebra A 
�R∗≺A ,L∗�A ,α∗

R∗≺A∗ ,L∗�A∗ ,α A∗ given by

(x + a∗) ∗A⊕A∗ (y + b∗) = (x ∗A y + R∗
≺A∗ (a

∗)y + L∗
�A∗ (b

∗)x)
+(a∗ ∗A∗ b∗ + R∗

≺A(x)b∗ + L∗
�A(y)a∗).

In fact, we have
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ω[(α(x) + α∗(a∗)) ∗A⊕A∗ (α(y) + α∗(b∗)), α(z) + α∗(c∗)]
+ω[(α(y) + α∗(b∗)) ∗A⊕A∗ (α(z) + α∗(c∗)), α(x) + α∗(a∗)]
+ω[(α(z) + α∗(c∗)) ∗A⊕A∗ (α(x) + α∗(a∗)), α(y) + α∗(b∗)]

= −〈α(x) ∗A α(y) + R∗
≺A∗ (α

∗(a∗))α(y) + L∗
�A∗ (α

∗(b∗))α(x), α∗(c∗)〉
+〈α∗(a∗) ∗A∗ α∗(b∗) + R∗

≺A(α(x))α∗(b∗) + L∗
�A(α(y))α∗(a∗), α(z)〉

−〈α(y) ∗A α(z) + R∗
≺A∗ (α

∗(b∗))α(z) + L∗
�A∗ (α

∗(c∗))α(y), α∗(a∗)〉
+〈α∗(b∗) ∗A∗ α∗(c∗) + R∗

≺A(α∗(y))α∗(c∗) + L∗
�A(α(z))α∗(b∗), α(x)〉

−〈α(z) ∗A α(x) + R∗
≺A∗ (α

∗(c∗))α(x) + L∗
�A∗ (α

∗(a∗))α(z), α∗(b∗)〉
+〈α∗(c∗) ∗A∗ α(a∗) + R∗

≺A(α(z))α∗(a∗) + L∗
≺A(α(x))α∗(c∗), α(y)〉

= −〈α(x) ≺A α(y), α∗(c∗)〉 − 〈α(x) �A α(y), α∗(c∗)〉
−〈α∗(c∗) ≺A∗ α∗(a∗), α(y)〉
−〈α∗(b∗) �A∗ α∗(c∗), α(x)〉 + 〈α∗(a∗) ≺A∗ α∗(b∗), α(z)〉
+〈α∗(a∗) �A∗ α∗(b∗), α(z)〉 + 〈α(z) ≺A α(x), α∗(b∗)〉
+〈α(y) �A α(z), α∗(a∗)〉
−〈α(y) �A α(z), α∗(a∗)〉 − 〈α(y) ≺A α(z), α∗(a∗)〉
−〈α∗(a∗) ≺A∗ α∗(b∗), α(z)〉 − 〈α∗(a∗) �A∗ α∗(c∗), α(y)〉
+〈α∗(b∗) ≺A∗ α∗(c∗), α(x)〉
+〈α∗(b∗) �A∗ α∗(c∗), α(x)〉 + 〈α(x) ≺A α(y), α(c∗)〉
+〈α(z) �A α(x), α∗(b∗)〉
−〈α(z) ≺A α(x), α∗(b∗)〉 − 〈α(z) �A α(x), α∗(b∗)〉
−〈α∗(b∗) ≺A∗ α∗(c∗), α(x)〉 − 〈α∗(a∗) �A∗ α∗(b∗), α(z)〉
+〈α∗(c∗) ≺A∗ α∗(a∗), α(y)〉
+〈α∗(a∗) �A∗ α∗(c∗), α(y)〉 + 〈α(y) ≺A α(z), α∗(a∗〉
+〈α(x) �A α(y), α∗(c∗)〉 = 0.

Conversely, if there exists a double construction of involutive symplectic Hom-
associative algebras associated to (A, ∗A, α) and (A, ∗A∗ , α∗), then (A,A∗, R∗≺A ,

L∗�A , α∗, R∗≺A∗ , L
∗�A∗ , α) is a matched pair of the involutive Hom-associative alge-

bras given by the following equations:

R∗
≺A(α(x))(a∗ ∗A∗ b∗) = R∗

≺A(L≺A∗ (a∗)x)α∗(b∗) + (R∗
≺A(x)a∗) ∗A∗ α∗(b∗),

L∗
�A(α(x))(a∗ ∗A∗ b∗) = L∗

�A(R≺A(b∗)x)α∗(a∗) + α∗(a∗) ∗A∗ (L∗
�A(x)b∗),

R∗
≺A∗ (α

∗(a∗))(x ∗A y) = R∗
≺A∗ (L�A(x)a∗)α(y) + (R∗

≺A∗ (a
∗)x) ∗A α(y),

L∗
�A∗ (α

∗(a∗))(x ∗A y) = L∗
�A∗ (R≺A(y)a∗)α(x) + α(x) ∗A (L∗

�A∗ (a
∗)y),

R∗≺A(R∗≺A∗ (a
∗)x)α∗(b∗) +(L∗≺A(x)a∗) ∗A∗ α∗(b∗)−

L∗�A
(L∗�A∗ (b

∗)x)α∗(a∗) − α∗(a∗) ∗A∗ (R∗≺A(x)b∗) = 0,

R∗≺A(R∗≺A∗ (x)a
∗)α(y) +(L∗�A∗ (a

∗)x) ∗A α(y)−
L∗�A∗ (L

∗�A
(y)a∗)α(x) − α(x) ∗A (R∗≺A∗ (a

∗)y) = 0,

since the operation ∗A⊕A∗ is Hom-associative. �

Corollary 18.6 Let (A,�,≺, α) be an involutive Hom-dendriform algebra, and
(R∗≺, L∗�, α∗) be the bimodule of the associated involutive Hom-associative alge-
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bra (A, ∗, α). Then, (T (A) = A ×R∗≺,L∗�,α,α∗ A∗, ω) is a double construction of the
involutive symplectic Hom-associative algebras.

Theorem 18.13 Let (A,�A,≺A, α) be an involutive Hom-dendriform algebra,
and (A, ∗A, α) be the associated involutive Hom-associative algebra. Suppose that
there is an involutive Hom-dendriform algebra structure �A∗ ,≺A∗ , α∗ on its dual
space A∗, and (A∗, ∗A∗ , α∗) is its associated involutive Hom-associative algebra.
Then, (A,A∗, R∗≺A , L∗�A , α∗, R∗

≺A∗ , L∗�A∗ , α) is a matched pair of involutive Hom-
associative algebras if and only if

(A,A∗, R∗�A + R∗≺A , −L∗≺A , −R∗�A , L∗�A + L∗≺A , α∗, R∗�A∗ + R∗≺A∗ ,

− L∗≺A∗ , −R∗�A∗ , L∗�A∗ + L∗≺A∗ , α)

is a matched pair of involutive Hom-dendriform algebras.

Proof The necessary condition follows from Corollary 18.4. We need to prove the
sufficient condition only. If (A,A∗, R∗≺A , L∗�A , α∗, R∗

≺A∗ , L∗�A∗ , α) is a matched

pair of involutive Hom-associative algebras, then (A 
�R∗≺A ,L∗�A ,α∗

R∗≺A∗ ,L∗�A∗ ,α A∗, ω) is a dou-

ble construction of involutive symplectic Hom-associative algebras. Hence, there

exists a compatible involutiveHom-dendriform algebra structure onA 
�R∗≺A ,L∗�A ,α∗

R∗≺A∗ ,L∗�A∗ ,α

A∗ given by (18.48). By a simple and direct computation, we show that A and A∗
are its subalgebras, and the other products are given, for any x ∈ A, a∗ ∈ A∗, by

x � a∗ = (R∗
�A + R∗

≺A)(x)a∗ − L∗
≺A∗ x,

x ≺ a∗ = −R∗
�A(x)a∗ + (L∗

�A∗ + L∗
≺A∗ )(a

∗)x,
a∗ � x = (R∗

�A∗ + R∗
≺A∗ )(a

∗)x − L∗
≺A(x)a∗,

a∗ ≺ x = −R∗
�A∗ (a

∗)x + (L∗
�A + L∗

≺A)(x)a∗.

Hence,

(A,A∗, R∗
�A + R∗

≺A ,−L∗
≺A ,−R∗

�A , L∗
�A + L∗

≺A , α∗, R∗
�A∗ + R∗

≺A∗ ,

−L∗
≺A∗ ,−R∗

�A∗ , L
∗
�A∗ + L∗

≺A∗ , α)

is a matched pair of involutive Hom-dendriform algebras. �

18.5.5 Hom-dendriform D-bialgebras

Theorem 18.14 Let (A,�A,≺A, α) be an involutive Hom-dendriform algebra
whose products are given by two linear maps β∗�, β∗≺ : A ⊗ A → A. Further, sup-
pose that there is an involutive Hom-dendriform algebra structure �A∗ ,≺A∗ , α∗
on its dual space A∗ given by two linear maps �∗�,�∗≺ : A∗ ⊗ A∗ → A∗. Then,
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(A,A∗, R∗≺A , L∗�A , α∗, R∗≺A∗ , L
∗�A∗ , α) is a matched pair of involutive Hom-associ-

ative algebras if and only if

�≺ ◦ α(x ∗A y) = (α ⊗ L≺A(x))�≺(y) + (RA(y) ⊗ α)�≺(y), (18.50)

�� ◦ α(x ∗A y) = (α ⊗ L≺A(x))��(y) + (R≺A(y) ⊗ α)��(y), (18.51)

β≺ ◦ α∗(a∗ ∗A∗ b∗) = (α∗ ⊗ L≺A∗ (a∗))β≺(b∗) + (RA∗(b∗) ⊗ α∗)β≺(a∗) (18.52)

β� ◦ α∗(a∗ ∗A∗ b∗) = (α∗ ⊗ LA∗(a∗))β�(b∗) + (R≺A∗ (b∗) ⊗ α∗)β�(a∗),
(18.53)

(LA(x) ⊗ α −α ⊗ R≺A(x))�≺(y)
+σ [(L�A(y) ⊗ (−α) ⊗ RA(y))�≺(y)] = 0,

(18.54)

(LA∗(a∗) ⊗ α∗ −α∗ ⊗ R≺A∗ (a∗))β≺(b∗)
+σ [(L�A∗ (b∗) ⊗ (−α∗) ⊗ RA∗(b∗))β�(a∗)] = 0

(18.55)

hold for any x, y ∈ A and a∗, b∗ ∈ A∗, where

LA = L�A + L≺A , RA = R�A + R≺A ,

LA∗ = L�A∗ + L≺A∗ , RA∗ = R�A∗ + R≺A∗ .

Proof Let {e1, . . . , en} be a basis of A, and {e∗
1, . . . , e

∗
n} be its dual basis. Set

ei �A e j =
n∑

k=1

aki j ek, ei ≺A e j =
n∑

k=1

bki j ek, α(ei ) =
n∑

q=1

f iq eq ,

e∗
i �A∗ e∗

j =
n∑

k=1

cki j e
∗
k , e∗

i ≺A∗ e∗
j =

n∑

k=1

dk
i j e

∗
k , α∗(e∗

i ) =
n∑

q=1

f ∗i
q e∗

q .

We have 〈α∗(e∗
i ), e j 〉 = f ∗ j

i = 〈e∗, α(e j )〉 = f ij ⇒ f ∗ j
i = f ij ,

β�(e∗
k ) =

n∑

i, j=1

aki j e
∗
i ⊗ e∗

j , β≺(e∗
k ) =

n∑

i, j=1

bki j e
∗
i ⊗ e∗

j ,

��(ek) =
n∑

i, j=1

cki j ei ⊗ e j , �≺(ek) =
n∑

i, j

dk
i j ei ⊗ e j ,

R∗
�A(ei )e

∗
j =

n∑

k=1

a j
ki e

∗
k , R∗

≺A(ei )e
∗
j =

n∑

k=1

b j
ki e

∗
k ,

R∗
�A∗ (e

∗
i )e j =

n∑

k=1

c j
ki ek, R∗

≺A∗ (e
∗
i )e j =

n∑

k=1

d j
ki ek,
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L∗
�A(ei )e

∗
j =

n∑

k=1

a j
ike

∗
k , L∗

≺A(ei )e
∗
j =

n∑

k=1

b j
ike

∗
k ,

L∗
�A∗ (e

∗
i )e j =

n∑

k=1

c j
ikek, L∗

≺A∗ (e
∗
i )e j =

n∑

k=1

d j
ikek .

Therefore, the coefficient of e∗
l in

R∗
≺A(α(ei ))(e

∗
j ∗A∗ e∗

k ) = R∗
≺A(L≺A∗ (e∗

j )ei )α
∗(e∗

k ) + (R∗
≺A(ei )e

∗
j ) ∗A∗ α∗(e∗

k )

gives the following relation for any i, j, l, k, q :
n∑

m=1

f iq b
m
lq(c

m
jk + dm

jk) =
n∑

m=1

f kq [cijmbqlm + b j
mi (c

l
mq + dlmq)]. (18.56)

In fact, we have

R∗≺A(α(ei ))(e
∗
j ∗A∗ e∗k ) = R∗≺A

(α(ei ))(e
∗
j �A∗ e∗k + e∗j ≺A∗ e∗k )

= R∗≺A

⎛

⎝
n∑

q=1

f iq eq

⎞

⎠
n∑

m=1

(cmjk + dmjk)e
∗
m =

n∑

m,q=1

f iq (cmjk + dmjk)R
∗≺A(eq )e∗m

=
n∑

m,q=1

f iq (cmjk + dmjk)

⎛

⎝
n∑

l=1

bmlq

⎞

⎠ e∗l =
n∑

l=1

⎡

⎣
n∑

m,q=1

f iqb
m
lq (cmjk + dmjk)

⎤

⎦ e∗l ,

R∗≺A
(L≺A∗ (e∗j )ei )α∗(e∗k ) = R∗≺A

( n∑

m=1

cijmem

) ⎛

⎝
n∑

q=1

f kq e
∗
q

⎞

⎠

=
n∑

m,q=1

cijm f kq R∗≺A(em)e∗q =
n∑

m,q=1

cijm f kq

⎛

⎝
n∑

l=1

bqlme
∗
l

⎞

⎠ =
n∑

l=1

(

n∑

m,q=1

cijm f kq b
q
lm)e∗l ,

(R∗≺A(ei )e
∗
j ) ∗A∗ α(e∗k ) =

( n∑

m=1

b j
mi e

∗
m

)

∗A∗

⎛

⎝
n∑

q=1

f kq e
∗
q

⎞

⎠

=
n∑

m,q=1

f kq b
j
mi (e

∗
m �A∗ e∗q + e∗m ≺A∗ e∗q ) =

n∑

m,q=1

f kq b
j
mi

⎡

⎣
n∑

l=1

(clmq + dlmq )

⎤

⎦ e∗l

=
n∑

l=1

⎡

⎣
n∑

m,q=1

f kq b
j
mi (c

l
mq + dlmq )

⎤

⎦ e∗l ,

giving (18.56). Also, the coefficient of e∗
l ⊗ e∗

i in

β≺ ◦ α∗(e∗j ∗A∗ e∗k ) = (α∗ ⊗ L≺A∗ (e∗j ))β≺(e∗k ) + (RA∗(e∗k ) ⊗ α∗)β≺(e∗j ),
β≺ ◦ α∗(e∗j ∗A∗ e∗k ) = β≺ ◦ α∗(e∗j �A∗ e∗k + e∗j ≺A∗ e∗k )
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= β≺ ◦ α∗[
n∑

m=1

(cmjk + dmjk)e
∗
m ] =

n∑

m=1

(cmjk + dmjk)β≺ ◦ α∗(e∗m)

=
n∑

m=1

(cmjk + dmjk)(
n∑

l,i,q=1

f mq bqli e
∗
l ⊗ e∗i ) =

n∑

l,i,q=1

[
n∑

m=1

f mq bqli (c
m
jk + dmjk)]e∗l ⊗ e∗i ,

(α∗ ⊗ L≺A∗ (e∗j ))β≺(e∗k ) = (α∗ ⊗ L≺A∗ (e∗j ))(
n∑

l,m=1

bklme
∗
l ⊗ e∗m)

=
n∑

l,m=1

bklmα∗(e∗l ) ⊗ (e∗j ≺A∗ e∗m) =
n∑

l,m,q=1

bklm f lqe
∗
q ⊗ (

n∑

i=1

cijme
∗
i )

=
n∑

l,i,q=1

(

n∑

m=1

f lqb
k
lmc

i
jm)e∗q ⊗ e∗i ,

(RA∗(e∗k ) ⊗ α∗)β≺(e∗j ) = (RA∗(e∗k ) ⊗ α∗)(

n∑

m,i=1

b j
mi e

∗
m ⊗ e∗i )

=
n∑

m,i,q=1

f iqb
j
mi (e

∗
m ∗A∗ e∗k ) ⊗ e∗q =

n∑

m,i,q=1

f iqb
j
mi [(e∗m �A∗ e∗k + e∗m ≺A∗ e∗k ) ⊗ e∗q ]

=
n∑

m,i,q=1

f iqb
j
mi [(e∗m �A∗ e∗k ) ⊗ e∗q + (e∗m ≺A∗ e∗k ) ⊗ e∗q ]

=
n∑

m,i,q=1

f iqb
j
mi [

n∑

l=1

clmke
∗
l ⊗ e∗q +

n∑

l1

dlmke
∗
l ⊗ e∗q ]

=
n∑

l,i,q=1

[
n∑

m=1

f iqb
j
mi (c

l
mk + dlmk)]e∗l ⊗ e∗q

gives the relation

n∑

m=1

[ f mq bqli (c
m
jk + dm

jk) + f lqb
k
lmc

i
jm] =

n∑

m=1

[ f iq b j
mi (c

l
mk + dlmk)]. (18.57)

Thus, (18.56) corresponds to (18.57). Therefore, (18.50) ⇔ (18.52).
So, in the case lA = R∗≺A , rA = L∗�A , lB = lA∗ = R∗≺A∗ , rB = rA∗ = L∗�A∗ , we

have (18.7) ⇔ (18.50) ⇔ (18.52). Similarly, in this situation,

(18.8) ⇔ (18.50) ⇔ (18.53), (18.9) ⇔ (18.50) ⇔ (18.50),
(18.10) ⇔ (18.50) ⇔ (18.51),
(18.11) ⇔ (18.50) ⇔ (18.55),
(18.12) ⇔ (18.50) ⇔ (18.54).

Therefore, the conclusion holds due to Theorem 18.1. �
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Definition 18.26 LetA be a vector space. A Hom-dendriform D-bialgebra struc-
ture on A is a set of linear maps (�≺,��, α, β≺, β�, α∗), �≺,�� : A → A ⊗ A,
β≺, β� : A∗ → A∗ ⊗ A∗, α : A → A, α∗ : A∗ → A∗, such that

(a) (�∗≺,�∗�, α∗) : A∗ ⊗ A∗ → A∗ defines a Hom-dendriform algebra structure
(�A∗,≺A∗ , α∗) on A∗;

(b) (β∗≺, β∗�, α) : A ⊗ A → A defines a Hom-dendriform algebra structure
(�A,≺A, α) on A;

(c) Equations (18.50)–(18.55) are satisfied.

We denote it by (A,A∗,��,�≺, α, β�, β≺, α∗) or simply (A,A∗, α, α∗).

Theorem 18.15 Let (A,≺A,�A, α), (A∗,≺A∗ ,�A∗ , α∗) be involutive
Hom-dendriform algebras. Let (A, ∗A, α) and (A∗, ∗A∗ , α∗) be the correspond-
ing associated involutive Hom-associative algebras. Then, the following conditions
are equivalent:

(i) There is a double construction of involutive symplecticHom-associative algebras
associated to (A, ∗A, α) and (A∗, ∗A∗ , α∗);

(ii) (A,A∗, R∗≺A , L∗�A , α∗, R∗≺A∗ , L
∗�A∗ , α) is a matched pair of involutive Hom-

associative algebras;
(iii) (A,A∗, R∗�A + R∗≺A ,−L∗≺A ,−R∗�A , L∗�A + L∗≺A , α∗, R∗�A∗ + R∗≺A∗ ,

−L∗≺A∗ ,−R∗�A∗ , L
∗�A∗ + L∗≺A∗ , α) is a matched pair of involutive Hom-

dendriform algebras;
(iv) (A,A∗, α, α∗) is an involutive Hom-dendriform D−bialgebra.

18.6 Matched Pairs of BiHom-Associative Algebras

18.6.1 Bihom-dendriform Algebras

Definition 18.27 A biHom-dendriform algebra is a quintuple (A,≺,�, α, β) con-
sisting of a vector space A on which the operations ≺,�: A ⊗ A → A and α, β :
A → A are linear maps satisfying, for all x, y, z ∈ A and x ∗ y = x ≺ y + x � y,

α ◦ β = β ◦ α,

α(x ≺ y) = α(x) ≺ α(y), α(x � y) = α(x) � α(y),
β(x ≺ y) = β(x) ≺ β(y), β(x � y) = β(x) � β(y),
(x ≺ y) ≺ β(z) = α(x) ≺ (y ∗ z),
(x � y) ≺ β(z) = α(x) � (y ≺ z),
α(x) � (y � z) = (x ∗ y) � β(z).

Definition 18.28 Let (A,≺,�, α, β) and (A′,≺′,�′, α′, β ′) be biHom-dendriform
algebras. A linear map f : A → A′ is a biHom-dendriform algebra morphism if
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≺′ ◦( f ⊗ f ) = f ◦ ≺, �′ ◦( f ⊗ f ) = f ◦ �, f ◦ α = α′ ◦ f and f ◦ β = β ′ ◦ f.

Proposition 18.11 Let (A,≺,�, α, β) be a biHom-dendriform algebra.
Then, (A, ∗, α, β) is a biHom-associative algebra.

Proof We have, for all x, y, z ∈ A,

(x ∗ y) ∗ β(z) = (x ≺ y) ≺ β(z) + (x ≺ y) � β(z) + (x � y) ≺ β(z) + (x � y) � β(z)
= (x ≺ y) ≺ β(z) + (x � y) ≺ β(z) + (x ≺ y) � β(z) + (x � y) � β(z)
= (x ≺ y) ≺ β(z) + (x � y) ≺ β(z) + (x ∗ y) � β(z)
= α(x) ≺ (y ∗ z) + α(x) � (y ≺ z) + α(x) � (y � z)
= α(x) ≺ (y ∗ z) + α(x) � (y ∗ z) = α(x) ∗ (y ∗ z),

α(x ∗ y) = α(x � y) + α(x ≺ y) = α(x) � α(y) + α(x) ≺ α(y) = α(x) ∗ α(y)

which completes the proof. �
We call (A, ∗, α, β) the biHom-associative algebra of (A,≺,�, α, β), and
(A,�,≺, α, β) is called a compatible biHom-dendriform algebra structure on the
biHom-associative algebra (A, ∗, α, β).

Proposition 18.12 Let (A,≺,�, α, β) be a biHom-dendriform algebra. Suppose
that (A, ∗, β, α) is a biHom-associative algebra. Then, (L�, R≺, β, α,A) is a bimod-
ule of (A, ∗, β, α).

Proof For x, y, v ∈ A, we have

L�(x ∗ y)β(v) = (x ∗ y) � β(v) = α(x) � (y � v) = L�(α(x))L�(y)v,

R≺(x ∗ y)α(v) = α(v) ≺ (x ∗ y) = (v ≺ x) ≺ β(y) = R≺(β(y))R≺(x)v,

L�(α(x))R≺(y)v = α(x) � (v ≺ y) = (x � v) ≺ β(y) = R≺(β(y))L�(x)v,

which completes the proof. �
Remark 18.4 If (A,≺,�, α, β) is a biHom-dendriform algebra, (L�, R≺, α, β,A)

is not a bimodule of associated biHom-associative algebra (A, ∗, α, β) .

Proposition 18.13 Let (A,≺,�, α, β) be a biHom-dendriform algebra. If

α2 = β2 = α ◦ β = β ◦ α = Id,

then (A,≺,�, α, β) ∼= (A,≺,�, β, α).

Proof Let x, y, z ∈ A. We have

α(x)(yz) = (xy)β(z) ⇔
α((α ◦ β)(x))(yz) = (xy)β((β ◦ α)(z)) ⇔

α2(β(x))(yz) = (xy)β2(α(z)) ⇔
β(x)(yz) = (xy)α(z).

Then (A,≺,�, α, β) ∼= (A,≺,�, β, α). �
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18.6.2 O-operators and BiHom-Dendriform Algebras

Definition 18.29 Let (A, ·, α1, α2) be a biHom-associative algebra, and
(l, r, β1, β2, V ) be a bimodule. A linear map T : V → A is called an O-operator
associated to (l, r, β1, β2, V ), if T satisfies

α1T = Tβ2, α2T = Tβ1,

T (u) · T (v) = T (l(T (u))v + r(T (v))u) for all u, v ∈ V .

Example 18.10 Let (A, ·, α1, α2) be a multiplicative biHom-associative algebra.
Then, the identity map Id is anO-operator associated to the bimodule (L , 0, α1, α2)

or (0, R, α1, α2).

Example 18.11 Let (A, ·, α, β) be a multiplicative biHom-associative algebra. A
linear map f : A → A is called a Rota-Baxter operator on A of weight zero if f
satisfies, for all x, y ∈ A,

f ◦ α = α ◦ f, f ◦ β = β ◦ f and f (x) · f (y) = f ( f (x) · y + x · f (y)).

A Rota-Baxter operator on A is just an O-operator associated to the bimodule
(L , R, α, β).

Theorem 18.16 Let (A, ·, α1, α2) be a biHom-associative algebra, and
(l, r, β1, β2, V ) be a bimodule. Let T : V → A be an O-operator associated to
(l, r, β1, β2, V ). Then, there exists a biHom-dendriformalgebra structure on V given,
for all u, v ∈ V , by

u � v = l(T (u))v, u ≺ v = r(T (v))u.

Hence, there is an associated biHom-associative algebra structure on V given by
(18.29) structure, and T is a homomorphism of biHom-associative algebras. More-
over, T (V ) = {T (v) | v ∈ V } ⊆ A is a biHom-associative subalgebra of A, and
there is an inducedbiHom-dendriformalgebra structure on T (V )given, for u, v ∈ V ,
by

T (u) � T (v) = T (u � v), T (u) ≺ T (v) = T (u ≺ v).

Its corresponding associated biHom-associative algebra structure on T (V ) given by
(18.29) structure is just the biHom-associative subalgebra structure of A, and T is
a homomorphism of biHom-dendriform algebras.

Proof For any x, y, z ∈ V, we have

(x � y) ≺ β2(z) − β1(x) � (y ≺ z) = l(T (x)y) ≺ β2(z) − β1(x) � r(T (z)y)
= r(Tβ2(z))l(T (x))y − l(Tβ1(x)y)r(T (z)y)
= r(α1(T (z)))l(T (x))y − l(α2(T (x)))r(T (z))y = 0.
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The other two axioms are checked in a similar way. �

Corollary 18.7 Let (A, ∗, α, β) be a multiplicative biHom-associative algebra.
There is a compatible multiplicative biHom-dendriform algebra structure on A if
and only if there exists an invertible O-operator of (A, ∗, α, β).

Proof In fact, if the homomorphism T is an invertible O−operator associated to a
bimodule (l, r, α, β, V ), then the compatible multiplicative biHom-dendriform alge-
bra structure on A is given, for all x, y ∈ A, by

x � y = T (l(x)T−1(y)), x ≺ y = T (r(y)T−1(x)).

Conversely, let (A,�,≺, α, β) be a multiplicative biHom-dendriform algebra, and
(A, ∗, α, β) be its associated biHom-associative algebra. Then, the identity map Id
is an O−operator associated to the bimodule (L�, R≺, α, β) of (A, ∗, α, β). �

18.6.3 Bimodules and Matched Pairs of BiHom-Dendriform
Algebras

Definition 18.30 Let (A,�,≺, α1, α2) be a biHom-dendriform algebra, and V be
a vector space. Let l�, r�, l≺, r≺ : A → gl(V ), and β1, β2 : V → V be six linear
maps. Then, (l�, r�, l≺, r≺, β1, β2, V ) is called a bimodule of A if the following
equations hold for any x, y ∈ A and v ∈ V , with x ∗ y = x � y + x ≺ y, l∗ = l� +
l≺, r∗ = r� + r≺:

l≺(x ≺ y)β2(v) = l≺(α1(x))l∗(y)v, r≺(α2(x))l≺(y)v = l≺(α1(y))r∗(x)v,

r≺(α2(y))r≺(y)v = r≺(x ∗ y)β1(v), l≺(x � y)β2(v) = l�(α1(x))l≺(y)v,

r≺(α2(x))l�(y)v = l�(α1(y))r≺(x)v, r≺(α2(x))r�(y)v = r�(y ≺ x)β1(v),

l�(x ∗ y)β2(v) = l�(α1(x))l�(y)v, r�(α2(x))l∗(y)v = l�(α1(y))r�(x)v,

r�(α2(x))r∗(y)v = r�(y � x)β1(v).

Proposition 18.14 Let (l�, r�, l≺, r≺, β1, β2, V ) be a bimodule of a
biHom-dendriformalgebra (A,�,≺, α1, α2).Then, there exists a biHom-dendriform
algebra structure on the direct sumA ⊕ V of the underlying vector spaces ofA and
V given, for all x, y ∈ A and u, v ∈ V , by

(x + u) � (y + v) = x � y + l�(x)v + r�(y)u,

(x + u) ≺ (y + v) = x ≺ y + l≺(x)v + r≺(y)u.

We denote it by A ×l�,r�,l≺,r≺,α1,α2,β1,β2 V .
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Proof Let v1, v2, v3 ∈ V and x1, x2, x3 ∈ A. Setting and computing

[(x1 + v1) ≺ (x2 + v2)] ≺ (α2(x3) + β2(v3)) =
(α1(x1) + β1(v1)) ≺ [(x2 + v2) ∗ (x3 + v3)],

[(x1 + v1) � (x2 + v2)] ≺ (α2(x3) + β2(v3)) =
(α1(x1) + β1(v1)) � [(x2 + v2) ≺ (x3 + v3)],

[α1(x1) + β1(v1)] � [(x2) + v2) � (x3 + v3)] =
[(x1 + v1) ∗ (x2 + v2)] � (α2(x3) + β2(v3)),

one obtains the conditions of the bimodule of a biHom-dendriform algebra, which
completes the proof. �

Proposition 18.15 Suppose that (l�, r�, l≺, r≺, β1, β2, V ) is a bimodule of abiHom-
dendriform algebra (A,�,≺, α1, α2). Then

1) (l�, r≺, β2, β1, V ) and (l� + l≺, r� + r≺, β1, β2, V ) are bimodules of
(A, ∗, α2, α1);

2) for any bimodule (l, r, β1, β2, V ) of (A, ∗, α1, α2),

(l, 0, 0, r, β2, β1, V ) is a bimodule of (A,�,≺, α2, α1);

3) (l� + l≺, 0, 0, r� + r≺, β1, β2, V ) and (l�, 0, 0, r≺, β1, β2, V ) are bimodules of
(A,�,≺, α1, α2);

4) the biHom-dendriform algebras

A ×l�,r�,l≺,r≺,α1,α2,β1,β2 V and A ×l�+l≺,0,0,r�+r≺,α1,α2,β1,β2 V

have the same associated biHom-associative algebra

A ×l�+l≺,r�+r≺,α1,α2,β1,β2 V .

The following theorem is proved in a similar way as for Theorem 18.1.

Theorem 18.17 Let (A,�A,≺A, α1, α2) and (B,�B,≺B, β1, β2) be
biHom-dendriformalgebras. Suppose that there are linearmaps l�A , r�A , l≺A , r≺A :
A → gl(B), and l�B , r�B , l≺B , r≺B : B → gl(A) such that (l�A , r�A , l≺A , r≺A ,

β1, β2,B) is a bimodule ofA, and (l�B , r�B , l≺B , r≺B , α1, α2,A) is a bimodule ofB,

satisfying for lA = l�A + l≺A , rA = r�A + r≺A , lB = l�B + l≺B , rB = r�B + r≺B
and all x, y ∈ A, a, b ∈ B :
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r≺A(α2(x))(a ≺B b) = β1(a) ≺B (rA(x)b) + r≺A(lB(x)β1(a)), (18.58)

l≺A(l≺B(x))β2(b) + (r≺A(x)a) ≺B β2(b) =
β1(a) ≺B (l≺A(x)b) + r≺A(r≺B(b)x)β1(a),

(18.59)

l≺A(α1(x))(a ∗B b) = (l≺A(x)a) ∗B β2(b) + l≺A(r≺A(a)x)β2(b), (18.60)

r≺A(α2(x))(a �B b) = r�A(l≺B(b)x)β1(a) + β1(a) �B (r≺A(x)b), (18.61)

l≺A(l�B(a)x)β2(b) +(r�A(x)a) ≺B β2(b) =
β1(a) �B (l≺A(x)b) + r�A(r≺B(b)x)β1(a)

(18.62)

l�A(α1(x))(a ≺B b) = (l�A(x)a) ≺B β2(b) + l≺A(r�B(a)x)β2(b), (18.63)

r�A(α2(x))(a ∗B b) = β1(a) �B (r�A(x)b) + r�A(l�B(b)x)β1(a), (18.64)

β1(a) �B (l�A(x)b) +r�A(r�B(b)x)β1(a) =
l�A(lB(a)x)β2(b) + (rA(x)a) �B β2(b),

(18.65)

l�A(α1(x))(a �B b) = (lA(x)a) �B β2(b) + l�A(rB(a)x)β2(b), (18.66)

r≺B(β2(a))(x ≺A y) = α1(x) ≺A (rB(a)y) + r≺B(lA(y)a)α1(x), (18.67)

l≺B (l≺A(x)a)α2(y) +(r≺B(a)x) ≺A α2(y) =
α1(x) ≺A (lB(a)y) + r≺B(rA(y)a)α1(x),

(18.68)

l≺B(β1(a))(x ∗A y) = (l≺B(a)x) ≺A α2(y) + l≺B(r≺A(x)a)α2(y), (18.69)

r≺B(β2(a))(x �A y) = r�B(l≺B(y)a)α1(x) + α1(x) �A (r≺B(a)y), (18.70)

l≺B(l�A(x)a)α2(y) +(r�B(a)x) ≺A α2(y) =
α1(x) �A (l≺B(a)y) + r�B(r≺A(y)a)α1(x),

(18.71)

l�B(β1(a))(x ≺A y) = (l�B(a)x) ≺A α2(y) + l≺B(r�A(x)a)α2(y), (18.72)

r�B(β2(a))(x ∗A y) = α1(x) �A (r�B(a)y) + r�B(l�A(y)a)α1(x), (18.73)

α1(x) �A (l�B(a)y) +r�B(r�A(y)a)α1(x) =
l�B(lA(x)a)α2(y) + (rB(a)x) �A α2(y),

(18.74)

l�B(β1(a))(x �A y) = (lB(a)x) �A α2(y) + l�B(rA(x)a)α2(y). (18.75)

Then, there is a biHom-dendriform algebra structure on the direct sumA ⊕ B of the
underlying vector spaces of A and B given, for any x, y ∈ A and a, b ∈ B, by

(x + a) � (y + b) = (x �A y + r�B(b)x + l�B(a)y)
+ (l�A(x)b + r�A(y)a + a �B b),

(x + a) ≺ (y + b) = (x ≺A y + r≺B(b)x + l≺B(a)y)
+ (l≺A(x)b + r≺A(y)a + a ≺B b).

Let A 
�l�A ,r�A ,l≺A ,r≺A ,β1,β1

l�B ,r�B ,l≺B ,r≺B ,α1,α2
B denote this biHom-dendriform algebra.

Definition 18.31 Let (A,�A,≺A, α1, α2) and (B,�B,≺B, β1, β2) be biHom-
dendriform algebras. Suppose that there are linear maps l�A , r�A , l≺A , r≺A : A →
gl(B), and l�B , r�B , l≺B , r≺B : B → gl(A) such that (l�A , r�A , l≺A , r≺A , β1, β2) is
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a bimodule of A, and (l�B , r�B , l≺B , r≺B , α1, α2) is a bimodule of B. If (18.58)–
(18.75) hold, then

(A,B, l�A , r�A , l≺A , r≺A , β1, β2, l�B , r�B , l≺B , r≺B , α1, α2)

is called a matched pair of biHom-dendriform algebras.

Corollary 18.8 Let (A,B, l�A , r�A , l≺A , r≺A , β1, β2, l�B , r�B , l≺B , r≺B , α1, α2)

be a matched pair of biHom-dendriform algebras. Then,

(A,B, l�A + l≺A , r�A + r≺A , l�B + l≺B , r�B + r≺B , α1 + β1, α2 + β2)

is a matched pair of the associated biHom-associative algebras (A, ∗A, α1, α2) and
(B, ∗B, β1, β2).

Proof The associated biHom-associative algebra (A 
� B, ∗, α1 + β1, α2 + β2) is
exactly the biHom-associative algebra obtained from the matched pair of biHom-
associative algebras,

(A,B, lA, rA, β1, β2, lB, rB, α1, α2),

with (x + a) ∗ (y + b) = x ∗A y + lB(a)y + rB(b)x + a ∗B b + lA(x)b + rA(y)a
for x, y ∈ A, a, b ∈ B, where lA = l�A + l≺A , rA = r�A + r≺A , lB = l�B + l≺B
and rB = r�B + r≺B . �

18.7 Concluding Remarks

In this work, we have constructed a biHom-associative algebra with a decomposition
into direct sum of the underlying vector spaces of a biHom-associative algebra and its
dual such that both of them are biHom-subalgebras, with either the natural symmet-
ric bilinear form being invariant, or the natural antisymmetric bilinear form being
a Connes cocycle. Then, we have performed the double constructions of biHom-
Frobenius algebras and Connes cocycle, and provided the bialgebra structures.
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Chapter 19
On Classification of (n+1)-Dimensional
n-Hom-Lie Algebras with Nilpotent
Twisting Maps

Abdennour Kitouni and Sergei Silvestrov

Abstract The aim of this work is to study properties of n-Hom-Lie algebras in
dimension n + 1 allowing to explicitly find them and differentiate them, to eventually
classify them. Some specific properties of (n + 1)-dimensional n-Hom-Lie algebra
such as nilpotence, solvability, center, ideals, derived series and central descending
series are studied, the Hom-Nambu-Filippov identity for various classes of twisting
maps in dimension n + 1 is considered, and systems of equations corresponding to
each case are described. All 4-dimensional 3-Hom-Lie algebras with some of the
classes of twisting maps are computed in terms of structure constants as parameters
and listed in the way emphasising the number of free parameters in each class, and
also some detailed properties of the Hom-algebras are obtained.

Keywords Hom-algebra · n-Hom-Lie algebra
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19.1 Introduction

Hom-Lie algebras and more general quasi-Hom-Lie algebras where introduced first
by Hartwig, Larsson and Silvestrov in [49], where the general quasi-deformations
and discretizations of Lie algebras of vector fields using more general σ -derivations
(twisted derivations) and a general method for construction of deformations of Witt
and Virasoro type algebras based on twisted derivations have been developed, ini-
tially motivated by the q-deformed Jacobi identities observed for the q-deformed
algebras in physics, along with q-deformed versions of homological algebra and
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discrete modifications of differential calculi [7, 33–37, 39, 42, 51, 53, 66–68]. The
general abstract quasi-Lie algebras and the subclasses of quasi-Hom-Lie algebras and
Hom-Lie algebras as well as their general colored (graded) counterparts have been
introduced in [49, 60–62, 80]. Subsequently, various classes of Hom-Lie admissible
algebras have been considered in [70]. In particular, in [70], the Hom-associative
algebras have been introduced and shown to be Hom-Lie admissible, that is lead-
ing to Hom-Lie algebras using commutator map as new product, and in this sense
constituting a natural generalization of associative algebras, as Lie admissible alge-
bras leading to Lie algebras via commutator map as new product. In [70], moreover
several other interesting classes of Hom-Lie admissible algebras generalizing some
classes of non-associative algebras, as well as examples of finite-dimensional Hom-
Lie algebras have been described. Since these pioneering works [49, 60–63, 70],
Hom-algebra structures are very useful since Hom-algebra structures of a given type
include their classical counterparts and open more possibilities for deformations,
extensions of cohomological structures and representations. Hom-algebra structures
have developed in a popular broad area with increasing number of publications in
various directions (see for example [8, 29, 44, 59, 60, 64, 71–73, 76, 78, 79, 84,
85] and references therein).

Ternary Lie algebras appeared in generalization of Hamiltonian mechanics by
Nambu [74]. Besides Nambumechanics, n-Lie algebras revealed to havemany appli-
cations in physics. The mathematical algebraic foundations of Nambu mechanics
have been developed by Takhtajan in [81]. Filippov, in [47] independently intro-
duced and studied structure of n-Lie algebras and Kasymov [54] investigated their
properties. Properties of n-ary algebras, including solvability and nilpotency, were
studied in [16, 21, 54]. Kasymov [54] pointed out that n-ary multiplication allows
for several different definitions of solvability and nilpotency in n-Lie algebras, and
studied their properties. Further properties, classification, and connections of n-ary
algebras to other structures such as bialgebras, Yang-Baxter equation and Manin
triples for 3-Lie algebras were studied in [15–22, 24, 25, 54]. The structure of 3-Lie
superalgebras induced by Lie superalgebras, classification of 3-Lie superalgebras
and application to constructions of B.R.S. algebras have been considered in [2–4].
Interesting constructions of ternary Lie superalgebras in connection to superspace
extension of Nambu-Hamilton equation is considered in [5]. In [32], Leibniz n-
algebras have been studied. The general cohomology theory for n-Lie algebras and
Leibniz n-algebras was established in [38, 77, 82]. For more details of the theory
and applications of n-Lie algebras, see [43] and references therein.

Classifications of n-ary or Hom generalizations of Lie algebras have been con-
sidered, either in very special cases or in low dimensions. The classification of n-Lie
algebras of dimension up to n + 1 over a field of characteristic p �= 2 has been com-
pleted by Filippov [47] using the specific properties of (n + 1)-dimensional n-Lie
algebras that make it possible to represent their n-ary products by a square matrix
in a similar way as bilinear forms, the number of cases obtained depends on the
properties of the base field, the list is ordered by ascending dimension of the derived
ideal, and among them, one nilpotent algebra, and a class of simple algebras which
are all isomorphic in the case of an algebraically closed field, the remaining algebras
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are k-solvable for some 2 ≤ k ≤ n depending on the algebra. These simple algebras
are proven to be the only simple finite-dimensional n-Lie algebras in [65]. The clas-
sification of (n + 1)-dimensional n-Lie algebras over a field of characteristic 2 has
been done by Bai, Wang, Xiao, and An [22] by finding and using a similar result in
characteristic 2. Bai, Song and Zhang [21] classify the (n + 2)-dimensional n-Lie
algebras over an algebraically closed field of characteristic 0 using the fact that an
(n + 2)-dimensional n-Lie algebra has a subalgebra of codimension 1 if the dimen-
sion of its derived ideal is not 3, thus constructing most of the cases as extensions
of the (n + 1)-dimensional n-Lie algebras listed by Filippov. In [31], Cantarini and
Kac classified all simple linearly compact n-Lie superalgebras, which turned out to
be n-Lie algebras, by finding a bijective correspondence between said algebras and a
special class of transitive Z-graded Lie superalgebras, the list they obtained consists
of four representatives, one of them is the (n + 1)-dimensional vector product n-Lie
algebra, and the remaining three are infinite-dimensional n-Lie algebras.

Classifications of n-Lie algebras in higher dimensions have only been studied
in particular cases. Metric n-Lie algebras, that is n-Lie algebras equipped with a
non-degenerate compatible bilinear form, have been considered and classified, first
in dimension n + 2 by Ren, Chen and Liang [75] and dimension n + 3 by Geng,
Ren and Chen [48], and then in dimensions n + k for 2 ≤ k ≤ n + 1 by Bai, Wu
and Chen [23]. The classification is based on the study of the Levi decomposition,
the center and the isotropic ideals and properties around them. Another case that has
been studied is the case of nilpotent n-Lie algebras, more specifically nilpotent n-Lie
algebras of class 2. Eshrati, Saeedi and Darabi [45] classify (n + 3)-dimensional
nilpotent n-Lie algebras and (n + 4)-dimensional nilpotent n-Lie algebras of class 2
using properties introduced in [40, 46]. Similarly, Hoseini, Saeedi and Darabi [50]
classify (n + 5)-dimensional nilpotent n-Lie algebras of class 2. In [52], Jamshidi,
Saeedi and Darabi classify (n + 6)-dimensional nilpotent n-Lie algebras of class
2 using the fact that such algebras factored by the span of a central element give
(n + 5)-dimensional nilpotent n-Lie algebras of class 2,whichwere classified before.
Classification of other classes of nilpotent n-Lie algebras depending on dimension
of multiplier has been considered in [41]. There has been a study of the classification
of 3-dimensional 3-Hom-Lie algebras with diagonal twisting maps by Ataguema,
Makhlouf and Silvestrov in [13].

Hom-type generalization of n-ary algebras, such as n-Hom-Lie algebras and other
n-ary Hom algebras of Lie type and associative type, were introduced in [13], by
twisting the defining identities by a set of linear maps. The particular case, where all
these maps are equal and are algebra morphisms has been considered and a way to
generate examples of n-ary Hom-algebras from n-ary algebras of the same type have
been described. Further properties, constructionmethods, examples, representations,
cohomology and central extensions of n-ary Hom-algebras have been considered in
[9–12, 55, 56, 83, 86]. These generalizations include n-ary Hom-algebra structures
generalizing the n-ary algebras of Lie type including n-ary Nambu algebras, n-
ary Nambu-Lie algebras and n-ary Lie algebras, and n-ary algebras of associative
type including n-ary totally associative and n-ary partially associative algebras. In
[57], constructions of n-ary generalizations of BiHom-Lie algebras and BiHom-
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associative algebras have been considered. Generalized Derivations of n-BiHom-Lie
algebras have been studied in [28]. Generalized derivations of multiplicative n-ary
Hom-� color algebras have been studied in [30]. Cohomology of Hom-Leibniz
and n-ary Hom-Nambu-Lie superalgebras has been considered in [1]. Generalized
Derivations and Rota-Baxter Operators of n-ary Hom-Nambu Superalgebras have
been considered in [69]. A construction of 3-Hom-Lie algebras based onσ -derivation
and involution has been studied in [6]. Multiplicative n-Hom-Lie color algebras have
been considered in [26].

In [11, 12], the construction of (n + 1)-Lie algebras induced by n-Lie algebras
using combination of n-ary multiplication with a trace, motivated by the work of
Awata, Li, Minic and Yoneya [14] on the quantization of the Nambu brackets, was
generalized using the brackets of general Hom-Lie or n-Hom-Lie algebras and trace-
like linear forms satisfying conditions depending on the twisting linearmaps defining
the Hom-Lie or n-Hom-Lie algebras. In [27], a method was demonstrated of how to
construct n-ary multiplications from the binary multiplication of a Hom-Lie algebra
and a (n − 2)-linear function satisfying certain compatibility conditions. Solvability
and nilpotency for n-Hom-Lie algebras and (n + 1)-Hom-Lie algebras induced by
n-Hom-Lie algebras have been considered in [58].

n-Hom-Lie algebras are fundamentally different from n-Lie algebras especially
when the twisting maps are not invertible or not diagonalizable. When the twisting
maps are not invertible, the Hom-Nambu-Filippov identity becomes less restrictive
since when elements of the kernel of the twisting maps are used, several terms
or even the whole identity might vanish. Isomorphisms of Hom-algebras are also
different from isomorphisms of algebras since they need to intertwine not only the
multiplications but also the twistingmaps. All of this make the classification problem
different, interesting, rich and not simply following from the case of n-Lie algebras.
In this work, we consider n-Hom-Lie algebras with a nilpotent twistingmap α, which
means in particular that α is not invertible.

The aim of this work is to study properties of n-Hom-Lie algebras in dimension
n + 1 allowing to explicitly find them and differentiate them, to eventually classify
them. We also present lists of 4-dimensional 3-Hom-Lie algebras in various special
cases of the twisting map and study their properties. In Sect. 19.2, the definition and
basic properties of n-Hom-Lie algebras are presented. In Sect. 19.3, some specific
properties of (n + 1)-dimensional n-Hom-Lie algebra are studied. In Sect. 19.4, the
Hom-Nambu-Filippov identity for various classes of twistingmaps in dimension n +
1 is considered, and systems of equations corresponding to each case are described.
In Sect. 19.5, all 4-dimensional 3-Hom-Lie algebras with some of the classes of
twisting maps are computed in terms of structure constants as parameters and listed
in classes in the way emphasizing the number of free parameters in each class. Some
detailed properties of the Hom-algebras are obtained.
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19.2 Preliminaries

In this section, we present the basic definitions and properties of n-Hom-Lie algebras
that we need for our study. Throughout this article, it is assumed that all vector spaces
are over a field K of characteristic 0, and for any subset S of a vector space, 〈S〉
denotes the linear span of S. Hom-Lie algebras are a generalization of Lie algebras
introduced in [49] while studying σ -derivations. The n-ary case was introduced in
[13].

Definition 19.1 ([49, 70]) A Hom-Lie algebra (A, [·, ·], α) is a vector space A
together with a bilinear map [·, ·] : A × A → A and a linear map α : A → A satis-
fying, for all x, y, z ∈ A,

[x, y] = −[y, x] Skew-symmetry

[α(x), [y, z]] = [[x, y], α(z)] + [α(y), [x, z]] Hom-Jacobi identity

In Hom-Lie algebras, by skew-symmetry, the Hom-Jacobi identity is equivalent to

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0. Hom-Jacobi identity
in cyclic form

Definition 19.2 ([49, 60]) Hom-Lie algebramorphisms fromHom-Lie algebraA =
(A, [·, ·]A, α) to Hom-Lie algebra B = (B, [·, ·]B, β) are linear maps f : A → B
satisfying, for all x, y ∈ A,

f ([x, y]A) = [ f (x), f (y)]B, (19.1)

f ◦ α = β ◦ f. (19.2)

Linear maps f : A → B satisfying only condition (19.1) are called weakmorphisms
of Hom-Lie algebras.

Definition 19.3 ([29, 70]) A Hom-Lie algebra (A, [·, ·], α) is said to be multiplica-
tive if α is an algebra morphism, and it is said to be regular if α is an isomorphism.

Definition 19.4 ([13]) An n-Hom-Lie algebra (A, [·, . . . , ·], {αi }1≤i≤n−1) is a vector
space A together with a n-linear map [·, . . . , ·] : An → A and (n − 1) linear maps
αi : A → A, 1 ≤ i ≤ n − 1 satisfying, for all x1, . . . , xn−1, y1, . . . , yn ∈ A,
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Skew-symmetry

[xσ(1), . . . , xσ(n)] = sgn(σ )[x1, . . . , xn], (19.3)

Hom-Nambu-Filippov identity[
α1(x1), . . . , αn−1(xn−1), [y1, . . . , yn]

]
=

n∑
i=1

[
α1(y1), . . . , αi−1(yi−1), [x1, . . . , xn−1, yi ], αi (yi+1), . . . , αn−1(yn)

]
.

(19.4)

Remark 19.1 If αi = IdA for all 1 ≤ i ≤ n − 1, then one gets an n-Lie algebra [47].
Therefore, the class of n-Lie algebras is included in the class of n-Hom-Lie algebras.
For any vector space A, if [x1, . . . , xn]0 = 0 for all x1, . . . , xn ∈ A and any linear
maps α1, . . . , αn−1, then (A, [·, . . . , ·]0 , α1, . . . , αn−1) is an n-Hom-Lie algebra.

Lemma 19.1 Let A be a vector space, let [·, . . . , ·] be an n-linear skew-symmetric
map and let α1, . . . , αn−1 be linear maps on A. If the (n − 1)-linear map

(x1, . . . , xn−1) 	→ [
α1(x1), . . . , αn−1(xn−1), d

]

is skew-symmetric for all d ∈ [A, . . . , A], then the (2n − 1)-linear map H, defined
for all x1, . . . , xn−1, y1, . . . , yn ∈ A by

H(x1, . . . , xn−1, y1, . . . , yn) =
[
α1(x1), . . . , αn−1(xn−1), [y1, . . . , yn]

]

−
n∑

k=1

[
α1(y1), . . . , αk−1(yk−1), [x1, . . . , xn−1, yk], αk(yk+1), . . . , αn−1(yn)

]
,

is skew-symmetric in its first n − 1 arguments and in its last n arguments.

Proof Let x1, . . . , xn−1, y1, . . . , yn ∈ A. If xi = xi+1 = x , then

H(x1, . . . , xi−1, x, x, xi+2, . . . , xn−1, y1, . . . , yn) =[
α1(x1), . . . , αi−1(xi−1), αi (x), αi+1(x), αi+2(xi+2), . . . , αn−1(xn−1), [y1, . . . , yn]

]

−
n∑

k=1

[
α1(y1), . . . , αk−1(yk−1), [x1, . . . , xi−1, x, x, xi+2, . . . , xn−1, yk],

αk(yk+1), . . . , αn−1(yn)
]

=
[
α1(x1), . . . , αi−1(xi−1), αi (x), αi+1(x), αi+2(xi+2), . . . , αn−1(xn−1),

[y1, . . . , yn]
]

= 0.

Now, if yi = yi+1 = y, then
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H(x1, . . . , xn−1, y1, . . . , yi−1, y, y, yi+2, . . . , yn)

=
[
α1(x1), . . . , αn−1(xn−1), [y1, . . . , yi−1, y, y, yi+2, . . . , yn]

]

−
i−1∑
k=1

[
α1(y1), . . . , αk−1(yk−1), [x1, . . . , xn−1, yk],

αk(yk+1), . . . , αi−1(y), αi (y), . . . , αn−1(yn)
]

−
[
α1(y1), . . . , αi−1(yi−1), [x1, . . . , xn−1, y], αi (y), . . . , αn−1(yn)

]

−
[
α1(y1), . . . , αi (y), [x1, . . . , xn−1, y], αi+1(yi+2), . . . , αn−1(yn)

]

−
n∑

k=i+2

[
α1(y1), . . . , αi (y), αi+1(y), . . . , αk−1(yk−1), [x1, . . . , xn−1, yk],

αk(yk+1), . . . , αn−1(yn)
]

= −
i−1∑
k=1

[
α1(y1), . . . , αk−1(yk−1), [x1, . . . , xn−1, yk],

αk(yk+1), . . . , αi−1(y), αi (y), . . . , αn−1(yn)
]

−
[
α1(y1), . . . , αi−1(yi−1), [x1, . . . , xn−1, y], αi (y), . . . , αn−1(yn)

]

+
[
α1(y1), . . . , [x1, . . . , xn−1, y], αi (y), αi+1(yi+2), . . . , αn−1(yn)

]

−
n∑

k=i+2

[
α1(y1), . . . , αi (y), αi+1(y), . . . , αk−1(yk−1), [x1, . . . , xn−1, yk],

αk(yk+1), . . . , αn−1(yn)
]

= 0. (applying the hypothesis)

Therefore, the map H defined above is skew-symmetric in its first (n − 1) arguments
and in its last n arguments. �

Proposition 19.1 Let A be an n-dimensional vector space, and let (ei )1≤i≤n be a
basis of A. Any skew-symmetric n-linear map [·, . . . , ·] on A is fully defined by

[e1, . . . , en] = d ∈ A.

Let α1, . . . , αn−1 be linear maps on A. If the (n − 1)-linear map

(x1, . . . , xn−1) 	→ [
α1(x1), . . . , αn−1(xn−1), d

]

is skew-symmetric, then (A, [·, . . . , ·] , α1, . . . , αn−1) is an n-Hom-Lie algebra.
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Proof By Lemma 19.1, it is sufficient to prove the Hom-Nambu-Filippov identity
for n − 1 pairwise different basis elements in place of the xi and n pairwise different
basis elements in place of the y j in identity (19.4). Since dim A = n, we get

[
α1(e1), . . . , αi−1(ei−1), αi (ei+1), . . . , αn−1(en), [e1, . . . , en]

]

−
n∑
j=1

[
α1(e1), . . . , α j−1(e j−1), [e1, . . . , ei−1, ei+1, . . . , en, e j ],

α j (e j+1), . . . , αn−1(en)
]

=
[
α1(e1), . . . , αi−1(ei−1), αi (ei+1), . . . , αn−1(en), [e1, . . . , en]

]

−
n∑

j=1, j �=i

[
α1(e1), . . . , α j−1(e j−1), [e1, . . . , ei−1, ei+1, . . . , en, e j ],

α j (e j+1), . . . , αn−1(en)
]

−
[
α1(e1), . . . , αi−1(ei−1), [e1, . . . , ei−1, ei+1, . . . , en, ei ],

αi (ei+1), . . . , αn−1(en)
]

=
[
α1(e1), . . . , αi−1(ei−1), αi (ei+1), . . . , αn−1(en), [e1, . . . , en]

]

− (−1)n−i
[
α1(e1), . . . , αi−1(ei−1), αi (ei+1), . . . , αn−1(en),

(−1)n−i [e1, . . . , en]
]

= 0.

Thus, (A, [·, . . . , ·] , α1, . . . , αn−1) is an n-Hom-Lie algebra. �

Corollary 19.1 Let A be an n-dimensional vector space, and (ei )1≤i≤n a basis of
A. Any skew-symmetric n-linear map [·, . . . , ·] on A is fully defined by giving

[e1, . . . , en] = d ∈ A.

For any linear map α on A, (A, [·, . . . , ·] , α) is an n-Hom-Lie algebra.

Hom-algebras morphisms are linear maps preserving both the multiplication and
the structure maps.

Definition 19.5 ([13, 86]) n-Hom-Lie algebra morphisms of n-Hom-Lie algebras

A = (A, [·, . . . , ·]A, {αi }1≤i≤n−1) and B = (B, [·, . . . , ·]B, {βi }1≤i≤n−1)

are linear maps f : A → B satisfying, for all x1, . . . , xn ∈ A,
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f ([x1, . . . , xn]A) = [ f (x1), . . . , f (xn)]B, (19.5)

f ◦ αi = βi ◦ f, for all 1 ≤ i ≤ n − 1. (19.6)

Linear maps satisfying only condition (19.5) are called weak morphisms of n-Hom-
Lie algebras.

The n-Hom-Lie algebras (A, [·, . . . , ·], {αi }1≤i≤n−1) with α1 = · · · = αn−1 = α

will be denoted by (A, [·, . . . , ·] , α).

Definition 19.6 ([86]) An n-Hom-Lie algebra (A, [·, . . . , ·] , α) is calledmultiplica-
tive if α is an algebra morphism, and regular if α is an algebra isomorphism.

The following proposition, providing a way to construct an n-Hom-Lie algebra
from an n-Lie algebra and an algebra morphism, was first introduced in the case of
Lie algebras and then generalized to the n-ary case in [13]. Amore general version of
this theorem, given in [86], states that the category of n-Hom-Lie algebras is closed
under twisting by weak morphisms.

Proposition 19.2 ([13, 86]) Let β : A → A be a weak morphism of n-Hom-Lie
algebra A = (A, [·, . . . , ·] , {αi }1≤i≤n−1

)
, and multiplication [·, . . . , ·]β is given by

[x1, . . . , xn]β = β ([x1, . . . , xn]) . Then,
(
A, [·, . . . , ·]β , {β ◦ αi }1≤i≤n−1

)
is an n-

Hom-Lie algebra.Moreover, if (A, [·, . . . , ·] , α) is multiplicative and β ◦ α = α ◦ β,
then

(
A, [·, . . . , ·]β , β ◦ α

)
is multiplicative.

The following particular case of Proposition19.2 is obtained if α = IdA.

Corollary 19.2 Let (A, [·, . . . , ·]) be an n-Lie algebra, β : A → A an algebra
morphism, and [·, . . . , ·]β is defined by [x1, . . . , xn]β = β ([x1, . . . , xn]) . Then,(
A, [·, . . . , ·]β , β

)
is a multiplicative n-Hom-Lie algebra.

Fundamental objects and basic algebra were first introduced for n-Lie algebras in
[38] and generalized to n-Hom-Lie algebras in [9]. They allow to define actions and
representations of these n-ary algebras.

Definition 19.7 ([9]) Let (A, [·, . . . , ·] , α) be a multiplicative n-Hom-Lie algebra
and let L(A) = ∧n−1A be the (n − 1)th exterior power of A. The elements of L(A)

are called fundamental objects.
For X = x1 ∧ · · · ∧ xn−1,Y = y1 ∧ · · · ∧ yn−1 ∈ L(A), we define:

• The map ᾱ : ∧n−1A → ∧n−1A by ᾱ(X) = α(x1) ∧ · · · ∧ α(xn−1).

• The action of fundamental objects on A by:

∀ z ∈ A, X · z = adX (z) = [x1, . . . , xn−1, z
]
.

• The multiplication (composition) of two fundamental objects by:

[X,Y ]α = X ·α Y =
n−1∑
i=1

α(y1) ∧ · · · ∧ X · yi ∧ · · · ∧ α(yn−1).
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We extend the preceding definitions to the entire space L(A) by linearity.

Proposition 19.3 ([9]) The space L(A) equipped with the product [·, ·]α defined
above is a Hom-Leibniz algebra. That is the product [·, ·]α satisfies the following
identity:

[ᾱ(X), [Y, Z ]α]α = [[X,Y ]α, ᾱ(Z)]α + [ᾱ(Y ), [X, Z ]α]α.

Definition 19.8 ([29, 70, 86]) An n-Hom-Lie subalgebra B = (B, [·, . . . , ·]B,

{βi }1≤i≤n−1) of an n-Hom-Lie algebra A = (A, [·, . . . , ·]A, {αi }1≤i≤n−1) consists
of a subspace B of A satisfying, for all x1, . . . , xn ∈ B,

1) αi (B) ⊆ B for all 1 ≤ i ≤ n − 1,
2) [x1, . . . , xn]A ∈ B,

with the restricted from A multiplication [·, . . . , ·]B = [·, . . . , ·]A and the twisting
maps βi = αi , 1 ≤ i ≤ n − 1 on B.

Definition 19.9 ([29, 70, 86]) Let A = (A, [·, . . . , ·], {αi }1≤i≤n−1) be any n-Hom-
Lie algebra. An ideal ofA is a subspace I of A obeying for all x1, . . . , xn−1 ∈ A, y ∈
I ,

1) αi (I ) ⊆ I for all 1 ≤ i ≤ n − 1;
2) [x1, . . . , xn−1, y] ∈ I .

Definition 19.10 ([58]) Let (A, [·, . . . , ·] , {αi }1≤i≤n−1) be an n-Hom-Lie algebra,
and let I be an ideal of A. For 2 ≤ k ≤ n, the k-derived series of the ideal I is defined
by

D0
k (I ) = I and Dp+1

k =
⎡
⎢⎣Dp

k (I ), . . . , Dp
k (I )︸ ︷︷ ︸

k

, A, . . . , A︸ ︷︷ ︸
n−k

⎤
⎥⎦ ,

and the k-central descending series of I by

C0
k (I ) = I and C p+1

k (I ) =
⎡
⎣C p

k (I ), I, . . . , I︸ ︷︷ ︸
k−1

, A, . . . , A︸ ︷︷ ︸
n−k

⎤
⎦ .

Definition 19.11 ([58]) LetA = (A, [·, . . . , ·] , {αi }1≤i≤n−1) be an n-Hom-Lie alge-
bra, and let I be an ideal of A. For 2 ≤ k ≤ n, the ideal I is said to be k-solvable
(resp. k-nilpotent) if there exists r ∈ N such that Dr

k(I ) = {0} (resp.Cr
k (I ) = {0}). In

this case, the smallest r ∈ N obeying this condition is called the class of k-solvability
(resp. the class of k-nilpotency) of I .

Lemma 19.2 ([58]) For n-Hom-Lie algebras

A = (A, [·, . . . , ·]A , {αi }1≤i≤n−1) and B = (B, [·, . . . , ·]B , {βi }1≤i≤n−1),
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let f : A → B be a surjective n-Hom-Lie algebras morphism and I an ideal of A.
Then for all r ∈ N and 2 ≤ k ≤ n:

f
(
Dr

k(I )
) = Dr

k ( f (I )) and f
(
Cr
k (I )

) = Cr
k ( f (I )) .

This lemma also implies that if two n-Hom-Lie algebras are isomorphic, then they
would also have isomorphic members of the derived series and central descending
series, which also means that if two algebras have a significant difference in the
derived series or the central descending series, for example different dimensions of
given corresponding members, then these algebras cannot be isomorphic.

19.3 Properties of (n+1)-Dimensional N-Hom-Lie Algebras

All n-ary skew-symmetric algebras of dimension less than n are abelian and thus
satisfy the Hom-Nambu-Filippov identity for any set of twisting maps. Also, there
is only one non-abelian n-dimensional n-ary skew-symmetric algebra, up to isomor-
phism, and it satisfies the Hom-Nambu-Filippov identity for any twisting map (See
[47] and Corollary 19.1).

In all the following, we use the principle that an n-linear skew-symmetric multi-
plication satisfies the Hom-Nambu-Filippov identity if and only if the multiplication
satisfies it on any given basis of the underlying vector space. Moreover, as the mul-
tiplication is skew-symmetric, it is sufficient to check it for n − 1 pairwise different
basis elements in place of x1, . . . , xn−1 and n pairwise different basis elements in
place of the y1, . . . , yn in identity (19.4), where the order has no importance, that
is, sequences of the form e1, . . . , e j−1, e j+1, . . . , ek−1, ek+1, . . . , en+1 in place of
x1, . . . , xn−1 and e1, . . . , ei−1, ei+1, . . . , en+1 in place of y1, . . . , yn . We shall denote
by Hi, j,k the left-hand side minus the right-hand side of the Hom-Nambu-Filippov
identity for this sequence of vectors of the considered basis.

Proposition 19.4 The Hom-Nambu-Filippov identity (19.4) is satisfied if and only
if it is satisfied on sequences of the form

e1, . . . , e j−1, e j+1, . . . , ek−1, ek+1, . . . , en+1, e1, . . . , ei−1, ei+1, . . . , en+1, (i < j < k).

Proof When i = j or i = k, the Hom-Nambu-Filippov identity is satisfied (the
calculations are analogous to the case of n-dimensional n-Hom-Lie algebras, see
Corollary 19.1), and if i, j, k are in a different order, we get the same identity as for
i < j < k up to a potential −1 factor.

If i = j , we get
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Hj, j,k =
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , ê j , . . . , en+1

]]

−
n+1∑

p=1;p �= j

[α(e1), . . . , α̂(ei ), . . . ,
[
e1, . . . , ê j , . . . , êk , . . . , en+1, ep

]
, . . . , α(en+1)]

= [α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),
[
e1, . . . , ê j , . . . , en+1

]]
−
[
α(e1), . . . , α̂(e j ), . . . , α(ek−1), [e1, . . . , ê j , . . . , êk , . . . , en+1, ek ],

α(ek+1), . . . , α(en+1)
]

= [α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),
[
e1, . . . , ê j , . . . , en+1

]]
−
[
α(e1), . . . , α̂(e j ), . . . , α(ek−1), (−1)n−k+1[e1, . . . , ê j , . . . , en+1],

α(ek+1), . . . , α(en+1)
]

= [α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),
[
e1, . . . , ê j , . . . , en+1

]]
− (−1)k−1−n

[
α(e1), . . . , α̂(e j ), . . . , α(ek−1), α(ek+1), . . . , α(en+1),

(−1)n−k+1[e1, . . . , ê j , . . . , en+1]
]

= α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),
[
e1, . . . , ê j , . . . , en+1

]

−
[
α(e1), . . . , α̂(e j ), . . . , α(ek−1), α(ek+1), . . . , α(en+1),

[
e1, . . . , ê j , . . . , en+1

]] = 0.

If i = k, we have

Hk, j,k =
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êk , . . . , en+1

]]

−
n+1∑

p=1;p �=k

[
α(e1), . . . , α̂(ek), . . . ,

[
e1, . . . , ê j , . . . , êk , . . . , en+1, ep

]
, . . . , α(en+1)

]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êk , . . . , en+1

]]

−
[
α(e1), . . . , α(e j−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, e j

]
,

α(e j+1), . . . , α̂(ek), . . . , α(en+1)
]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êk , . . . , en+1

]]

−
[
α(e1), . . . , α(e j−1), (−1)n− j [e1, . . . , êk , . . . , en+1

]
,

α(e j+1), . . . , α̂(ek), . . . , α(en+1)
]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êk , . . . , en+1

]]

− (−1) j−n
[
α(e1), . . . , α(e j−1), α(e j+1), . . . , α̂(ek), . . . , α(en+1),

(−1)n− j [e1, . . . , êk , . . . , en+1
] ] = 0,

If i, j, k are in a different order, then



19 On Classification of (n+1)-Dimensional n-Hom-Lie Algebras … 537

Hj,i,k =
[
α(e1), . . . , ̂α(ei ), . . . , ̂α(ek), . . . , α(en+1),

[
e1, . . . , ê j , . . . , en+1

]]

−
n+1∑

p=1;p �= j

[
α(e1), . . . , ̂α(e j ), . . . ,

[
e1, . . . , êi , . . . , êk , . . . , en+1, ep

]
, . . . , α(en+1)

]

=
[
α(e1), . . . , ̂α(ei ), . . . , ̂α(ek), . . . , α(en+1),

[
e1, . . . , ê j , . . . , en+1

]]

−
[
α(e1), . . . , α(ei−1),

[
e1, . . . , êi , . . . , êk , . . . , en+1, ei

]
,

α(ei+1), . . . , ̂α(e j ), . . . , α(en+1)
]

−
[
α(e1), . . . , ̂α(e j ), . . . , α(ek−1),

[
e1, . . . , êi , . . . , êk , . . . , en+1, ek

]
,

α(ek+1), . . . , α(en+1)
]

= (−1)n−k+1
[
α(e1), . . . , ̂α(ei ), . . . , α(ek−1),

[
e1, . . . , ê j , . . . , en+1

]
,

α(ek+1), . . . , α(en+1)
]

− (−1) j−1−i
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1), (−1)n−i [e1, . . . , êk , . . . , en+1

]
,

α(e j+1), . . . , α(en+1)
]

− (−1)k−1−n
[
α(e1), . . . , ̂α(e j ), . . . , α(ek−1), α(ek+1), . . . , α(en+1),

(−1)n−k+1 [e1, . . . , êi , . . . , en+1
] ]

= (−1)n−k+1
[
α(e1), . . . , ̂α(ei ), . . . , α(ek−1),

(−1)k−1−n [e1, . . . , ê j , . . . , êk , . . . , en+1, ek
]
, α(ek+1), . . . , α(en+1)

]

− (−1) j−1−i
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1),

(−1)n−i (−1)n− j [e1, . . . , ê j , . . . , êk , . . . , en+1, e j
]
,

α(e j+1), . . . , α(en+1)
]

− (−1)k−1−n
[
α(e1), . . . , ̂α(e j ), . . . , ̂α(ek), . . . , α(en+1),

(−1)n−k+1 [e1, . . . , êi , . . . , en+1
] ]

= −
[
α(e1), . . . , ̂α(e j ), . . . , ̂α(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

+
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]

+
[
α(e1), . . . , ̂α(ei ), . . . , α(ek−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, ek

]
,

α(ek+1), . . . , α(en+1)
]

= −
( [

α(e1), . . . , ̂α(e j ), . . . , ̂α(ek), . . . , α(en+1),
[
e1, . . . , êi , . . . , en+1

]]

−
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]

−
[
α(e1), . . . , ̂α(ei ), . . . , α(ek−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, ek

]
,

α(ek+1), . . . , α(en+1)
])

= −Hi, j,k .
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Therefore, Hj,i,k = 0 if and only if Hi, j,k = 0. Similarly,

Hk,i, j =
[
α(e1), . . . , ̂α(ei ), . . . , ̂α(e j ), . . . , α(en+1),

[
e1, . . . , êk , . . . , en+1

]]

−
n+1∑

p=1;p �=k

[
α(e1), . . . , ̂α(ek), . . . ,

[
e1, . . . , êi , . . . , ê j , . . . , en+1, ep

]
, . . . , α(en+1)

]

=
[
α(e1), . . . , ̂α(ei ), . . . , ̂α(e j ), . . . , α(en+1),

[
e1, . . . , êk , . . . , en+1

]]

−
[
α(e1), . . . , α(ei−1),

[
e1, . . . , êi , . . . , ê j , . . . , en+1, ei

]
,

α(ei+1), . . . , ̂α(ek), . . . , α(en+1)
]

−
[
α(e1), . . . , α(e j−1),

[
e1, . . . , êi , . . . , ê j , . . . , en+1, e j

]
,

α(e j+1), . . . , ̂α(ek), . . . , α(en+1)
]

= (−1)n− j+1
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1),

[
e1, . . . , êk , . . . , en+1

]
,

α(e j+1), . . . , α(en+1)
]

−
[
α(e1), . . . , α(ei−1), (−1)n−i [e1, . . . , ê j , . . . , en+1

]
,

α(ei+1), . . . , ̂α(ek), . . . , α(en+1)
]

−
[
α(e1), . . . , α(e j−1), (−1)n− j+1 [e1, . . . , êi , . . . , en+1

]
,

α(e j+1), . . . , ̂α(ek), . . . , α(en+1)
]

= (−1)n− j+1
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1),

(−1) j−n [e1, . . . , ê j , . . . , êk , . . . , en+1, e j
]
, α(e j+1), . . . , α(en+1)

]

− (−1)k−1−i
[
α(e1), . . . , ̂α(ei ), . . . , α(ek−1), (−1)n−i [e1, . . . , ê j , . . . , en+1

]
,

α(ek+1), . . . , α(en+1)
]

− (−1) j−1−n
[
α(e1), . . . , ̂α(e j ), . . . , ̂α(ek), . . . , α(en+1),

(−1)n− j [e1, . . . , êi , . . . , en+1
] ]

= (−1)
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]

− (−1)n+k−1
[
α(e1), . . . , ̂α(ei ), . . . , α(ek−1),

[
e1, . . . , ê j , . . . , en+1

]
,

α(ek+1), . . . , α(en+1)
]

− (−1)
[
α(e1), . . . , ̂α(e j ), . . . , ̂α(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

= (−1)
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]

− (−1)n+k−1
[
α(e1), . . . , ̂α(ei ), . . . , α(ek−1),

(−1)k−1−n [e1, . . . , ê j , . . . , êk , . . . , en+1
]
, α(ek+1), . . . , α(en+1)

]
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− (−1)
[
α(e1), . . . , ̂α(e j ), . . . , ̂α(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

= −
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]

−
[
α(e1), . . . , ̂α(ei ), . . . , α(ek−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1

]
,

α(ek+1), . . . , α(en+1)
]

+
[
α(e1), . . . , ̂α(e j ), . . . , ̂α(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

=
[
α(e1), . . . , ̂α(e j ), . . . , ̂α(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

−
[
α(e1), . . . , ̂α(ei ), . . . , α(ek−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1

]
,

α(ek+1), . . . , α(en+1)
]

−
[
α(e1), . . . , ̂α(ei ), . . . , α(e j−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]

= Hi, j,k .

Therefore, Hk,i, j = 0 if and only if Hi, j,k = 0. �

Let (A, [·, . . . , ·] , α) be an n-ary skew-symmetric algebra of dimension n + 1
with a linear map α. Given a linear basis (ei )1≤i≤n+1 of A, linear map α is fully deter-
mined by its matrix determined by action of α on the basis, and a skew-symmetric
n-ary multi-linear multiplication is fully determined by

[
e1, . . . , êi , . . . , en+1

]
for all

1 ≤ i ≤ n + 1 represented by a matrix B as follows:

[
e1, . . . , êi , . . . , en+1

] = (−1)n+1+iwi ,

wi =
n+1∑
p=1

b(p, i)ep,

(w1, . . . ,wn+1) = (e1, . . . , en+1)B, for B = (b(i, j))1≤i, j≤n+1.

The following result gives a characterization of isomorphisms of (n + 1)-
dimensional n-ary skew-symmetric Hom-algebras of the considered form, it is a
generalization of [47, Theorem 2]. The cited result corresponds to the case α = IdA.

Proposition 19.5 Let A1 = (A, [·, . . . , ·]1 , α1) and A2 = (A, [·, . . . , ·]2 , α2) be
(n + 1)-dimensional n-ary skew-symmetric Hom-algebras represented by matrices
[α1], B1 and [α2], B2 respectively. The Hom-algebras A1 and A2 are isomorphic if
and only if there exists an invertible matrix T satisfying the following conditions:

B2 = det(T )−1T B1T
T ,

[α2] = T [α1]T−1.
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Proof The first condition is the characterization of the isomorphism of two (n + 1)-
dimensional n-ary skew-symmetric algebras proved by Filippov in [47]. The second
condition expresses the compatibility with the twisting maps. �

Proposition 19.6 Let (ei )1≤i≤n+1 be a basis of A, let σ be an n + 1 permutation,
and let B = (bi, j )1≤i, j≤n+1 be a matrix representing a skew-symmetric n-ary mul-
tiplication in this basis, then the matrix representing the same multiplication in the
basis (eσ(i))1≤i≤n+1 is given by sgn(σ )(bσ−1(i),σ−1( j))1≤i, j≤n+1.

Proof Let Tσ be the basis change matrix from the basis (ei )1≤i≤n+1 to the basis
(e′

i )1≤i≤n+1 = (eσ(i))1≤i≤n+1, that is e′
i = eσ(i). Then, Tσ = (ti, j )1≤i, j≤n+1 with ti, j =

1 if i = σ( j) and ti, j = 0 otherwise. Let Tσ BT T
σ = C = (ci, j ). Then

ci, j =
n+1∑
p=1

⎛
⎝

n+1∑
q=1

ti,qbq,p

⎞
⎠ t j,p, (the second sum is the (i, p) entry of Tσ B,

and t j,p is the (p, j) entry of T T
σ )

=
n+1∑
p=1

(
ti,σ−1(i)bσ−1(i),p

)
t j,p (ti, j = 0 ⇐⇒ i �= σ( j) ⇐⇒ j �= σ−1(i).)

= (ti,σ−1(i)bσ−1(i),σ−1( j)

)
t j,σ−1( j) = bσ−1(i),σ−1( j). (ti,σ−1(i) = t j,σ−1( j) = 1)

We also have, by the skew-symmetry of the determinant, that

det(Tσ ) = sgn(σ ) det(In+1) = sgn(σ ).

Hence, B ′ = det(Tσ )−1Tσ BT T
σ = sgn(σ )C = sgn(σ )

(
bσ−1(i),σ−1( j)

)
1≤i, j≤n+1 . �

Proposition 19.7 If dim ker α ≥ 3 then the Hom-Nambu-Filippov identity is always
satisfied.

Proof Let (ei )1≤i≤n+1 be a basis of ker α completed to be a basis of A. Then, for all
1 ≤ i < j < k ≤ n + 1,

Hi, j,k =
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

−
n+1∑

p=1;p �=i

[
α(e1), . . . , α̂(ei ), . . . ,

[
e1, . . . , ê j , . . . , êk , . . . , en+1, ep

]
, . . . , α(en+1)

]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

−
[
α(e1), . . . , α̂(ei ), . . . , α(e j−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]

−
[
α(e1), . . . , α̂(ei ), . . . , α(ek−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, ek

]
,

α(ek+1), . . . , α(en+1)
]

= 0.
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Since at least three of the elements α(e1), . . . , α(en+1) are zero, and in each of the
brackets in the sum above, we remove only two, which means that there is always a
zero in one of the entries of the bracket multiplication. �

Remark 19.2 From this proof, one can see that if dim ker α = 1, and we consider
a basis (ei ) of A where ker α = 〈e1〉 then Hi, j,k = 0 when none of i, j, k is equal to
1. Also, if dim ker α = 2, and we consider a basis (ei ) of A where ker α = 〈e1, e j0〉,
then Hi, j,k = 0 when none of i, j, k is equal to 1 or none of them is equal to j0.

Proposition 19.8 Let (A, [·, . . . , ·] , α) be an (n + 1)-dimensional n-Hom-Lie alge-
bra and let B be the matrix representing its multiplication, if det(B) = 0 then A is
n-solvable.

Proof Let (A, [·, . . . , ·] , α) be an (n + 1)-dimensional n-Hom-Lie algebra and let
B be the matrix representing its multiplication. The space D1

n(A) = [A, . . . , A] is
generated by {w1, . . . ,wn+1}, which means that Rank(B) = dim D1

n(A).
If Rank(B) ≤ n or equivalently det(B) = 0 then D1

n(A) has dimension at most
n, then by skew-symmetry we get that D2

n(A) has dimension at most 1 and then
D3

n(A) = 0. �

Remark 19.3 For the whole algebra A, all the k-central descending series, for all
2 ≤ k ≤ n, are equal, therefore all the notions of k-nilpotency, for 2 ≤ k ≤ n, are
equivalent.

Lemma 19.3 Let (A, [·, . . . , ·] , α) be an n-Hom-Lie algebra. If A is k-nilpotent,
for any 2 ≤ k ≤ n, then the center Z(A) of A is not trivial.

Proof Suppose that A is k-nilpotent and let p ∈ N such that C p
k (A) = 0 and

C p−1
k (A) �= 0. Then C p

k (A) =
[
C p−1
k (A), A, . . . ., A

]
= 0, that is

∀ x1, . . . , xn−1 ∈ A,∀c ∈ C p−1
k (A) : [c, x1, . . . , xn−1

] = 0.

Thus, C p−1
k ⊆ Z(A), and Z(A) �= 0 since C p−1

k (A) �= 0. �

Proposition 19.9 Let (A, [·, . . . , ·] , α) be an (n + 1)-dimensional n-Hom-Lie alge-
bra. The algebra A is nilpotent and non abelian if and only if dim Z(A) = 1 and
[A, . . . , A] = Z(A).

Proof Suppose that A is nilpotent, we know, by Lemma 19.3, that Z(A) �= {0} since
A is nilpotent. If dim Z(A) > 1 then A is abelian (take a basis of Z(A) and complete
it to be a basis of A, then for all i ,

[
e1, . . . , êi , . . . , en+1

] = 0 because at least one of
the basis elements in the bracket multiplication is in Z(A)). If dim Z(A) = 1 then
dim [A, . . . , A] = 1 (take a basis such that en+1 ∈ Z(A), then only [e1, . . . , en] �= 0).
LetC p−1

k (A)be the last non-zero termof the k-central descending series of A,wehave
C p−1
k (A) ⊆ [A, . . . , A] and dimC p−1

k (A) ≥ 1 = dim [A, . . . , A], whichmeans that
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C p−1
k (A) = [A, . . . , A]. We also have that C p−1

k (A) ⊆ Z(A) and dimC p−1
k (A) ≥

1 = dim Z(A), we conclude then that Z(A) = C p−1
k (A) = [A, . . . , A].

Conversely, if dim Z(A) = 1 and [A, . . . , A] = Z(A), then

C1(A) = [A, . . . , A] = Z(A),

C2(A) = [Z(A), A, . . . , A] = 0.

Thus, A is nilpotent. �
Proposition 19.10 Foran (n + 1)–dimensional n-ary skew-symmetricHom-algebra
(A, [·, . . . , ·] , α), and a basis {ei } of A,

Hi, j,k = (−1)n+i+1
n+1∑
p=1

det
(
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),wi

)
p
wp

− (−1)n+ j (−1)n+k+1
n+1∑
p=1

det
(
α(e1), . . . , α̂(ei ), . . . , α(e j−1),wk,

α(e j+1), . . . , α(en+1)
)
p
wp

− (−1)n+k+1(−1)n+ j+1
n+1∑
p=1

det
(
α(e1), . . . , α̂(ei ), . . . , α(ek−1),wj ,

α(ek+1), . . . , α(en+1)
)
p
wp,

where, in the determinant, the vectors are taken as columns in the considered basis,
and the subscript p means that we remove the pth row.

Proof By Proposition 19.4, it is enough to consider of Hi, j,k for 1 ≤ i < j < k ≤
n + 1:

Hi, j,k =
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1), [e1, . . . , êi , . . . , en+1]

]

−
n+1∑

p=1;p �=i

[
α(e1), . . . , α̂(ei ), . . . , [e1, . . . , ê j , . . . , êk , . . . , en+1, ep], . . . , α(en+1)

]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1), [e1, . . . , êi , . . . , en+1]

]

−
[
α(e1), . . . , α̂(ei ), . . . , α(e j−1), [e1, . . . , ê j , . . . , êk , . . . , en+1, e j ],

α(e j+1), . . . , α(en+1)
]

−
[
α(e1), . . . , α̂(ei ), . . . , α(ek−1), [e1, . . . , ê j , . . . , êk , . . . , en+1, ek ],

α(ek+1), . . . , α(en+1)
]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1), [e1, . . . , êi , . . . , en+1]

]
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−
[
α(e1), . . . , α̂(ei ), . . . , α(e j−1), (−1)n+ j [e1, . . . , êk , . . . , en+1],

α(e j+1), . . . , α(en+1)
]

−
[
α(e1), . . . , α̂(ei ), . . . , α(ek−1), (−1)n+k+1[e1, . . . , ê j , . . . , en+1],

α(ek+1), . . . , α(en+1)
]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1), (−1)n+i+1wi

]

−
[
α(e1), . . . , α̂(ei ), . . . , α(e j−1), (−1)n+ j (−1)n+k+1wk ,

α(e j+1), . . . , α(en+1)
]

−
[
α(e1), . . . , α̂(ei ), . . . , α(ek−1), (−1)n+k+1(−1)n+ j+1wj ,

α(ek+1), . . . , α(en+1)
]

= (−1)n+i+1
n+1∑
p=1

det
(
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),wi

)
p
wp

− (−1)n+ j (−1)n+k+1
n+1∑
p=1

det
(
α(e1), . . . , α̂(ei ), . . . , α(e j−1),wk ,

α(e j+1), . . . , α(en+1)
)
p
wp

− (−1)n+k+1(−1)n+ j+1
n+1∑
p=1

det
(
α(e1), . . . , α̂(ei ), . . . , α(ek−1),wj ,

α(ek+1), . . . , α(en+1)
)
p
wp.

�
Corollary 19.3 Let (A, [·, . . . , ·] , α)bean (n + 1)–dimensional n-ary skew-symmetric
Hom-algebra. If there is a basis (ei ) such that, in this basis, the matrices [α](ei ) and
B(ei ) representingα and [·, . . . , ·] respectively areproportional, then (A, [·, . . . , ·] , α)

is an n-Hom-Lie algebra.

Proof If in a given basis we have [α](ei ) = λB(ei ) for some λ ∈ K, then in this basis,
all the determinants in the formula given in Proposition 19.10 are zero, thus the
Hom-Nambu-Filippov identity is satisfied. �

19.4 The Hom-Nambu-Filippov Identity

In this section, we study the Hom-Nambu-Filippov identity for (n + 1)-dimensional
skew-symmetric algebras for various cases of the twistingmapα. In all the following,
let A be an (n + 1)-dimensional vector space, let [·, . . . , ·] be an n-linear skew-
symmetric map on A and let α be a linear map on A. We consider a basis (ei )1≤i≤n+1
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of A where α is in its Jordan form. The order of the various Jordan blocks can be
chosen, the difference that arises from changing the order of Jordan blocks of α is
given by Proposition 19.6. We consider the matrix B defining [·, . . . , ·] in this basis
as in (19.7). Proposition 19.11 generalizes [47, Equation17] obtained for α = IdA.

We suppose that the matrix of α is diagonal in the basis (ei )1≤i≤n+1 with eigen-
values λi , 1 ≤ i ≤ n + 1.

Proposition 19.11 If α is invertible and diagonalizable, and λi , 1 ≤ i ≤ n + 1 are
its eigenvalues, then [·, . . . , ·] satisfies the Hom-Nambu-Filippov identity if and only
if

∀ 1 ≤ i < j < k ≤ n + 1 :
(λi b j,i − λ j bi, j )wk + (λkbi,k − λi bk,i )wj + (λ j bk, j − λkb j,k)wi = 0,(19.7)

that is
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(λ1b2,1 − λ2b1,2)w3 + (λ3b1,3 − λ1b3,1)w2 + (λ2b3,2 − λ3b2,3)w1 = 0
(λ1b2,1 − λ2b1,2)w4 + (λ4b1,4 − λ1b4,1)w2 + (λ2b4,2 − λ4b2,4)w1 = 0
(λ1b3,1 − λ3b1,3)w4 + (λ4b1,4 − λ1b4,1)w3 + (λ3b4,3 − λ4b3,4)w1 = 0
(λ2b3,4 − λ3b2,3)w4 + (λ4b2,4 − λ2b4,2)w3 + (λ3b4,3 − λ4b3,4)w2 = 0

...

(λi b j,i − λ j bi, j )wk + (λkbi,k − λi bk,i )wj + (λ j bk, j − λkb j,k)wi = 0

which is also equivalent to the following system, obtained by using the coordinates
in the basis (ei )1≤i≤n+1,

∀ 1 ≤ i, j, k, p ≤ n + 1, i < j < k :
(λi b j,i − λ j bi, j )bp,k + (λkbi,k − λi bk,i )bp, j + (λ j bk, j − λkb j,k)bp,i = 0. (19.8)

Proof Let (ei )1≤i≤n+1 be a basis of A such that α(ei ) = λi ei for all 1 ≤ i ≤ n + 1.
By Proposition 19.4, the Hom-Nambu-Filippov identity is satisfied if and only if

Hi, j,k = 0, ∀ 1 ≤ i < j < k ≤ n + 1.

Computation of Hi, j,k gives

Hi, j,k =
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

−
n+1∑

p=1;p �=i

[
α(e1), . . . , α̂(ei ), . . . ,

[
e1, . . . , ê j , . . . , êk , . . . , en+1, ep

]
, . . . , α(en+1)

]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

−
[
α(e1), . . . , α̂(ei ), . . . , α(e j−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]
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−
[
α(e1), . . . , α̂(ei ), . . . , α(ek−1),

[
e1, . . . , ê j , . . . , êk , . . . , en+1, ek

]
,

α(ek+1), . . . , α(en+1)
]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

−
[
α(e1), . . . , α̂(ei ), . . . , α(e j−1), (−1)n− j [e1, . . . , êk , . . . , en+1

]
,

α(e j+1), . . . , α(en+1)
]

−
[
α(e1), . . . , α̂(ei ), . . . , α(ek−1), (−1)n−k+1 [e1, . . . , ê j , . . . , en+1

]
,

α(ek+1), . . . , α(en+1)
]

=
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1), (−1)n+i+1wi

]

−
[
α(e1), . . . , α̂(ei ), . . . , α(e j−1), (−1)n− j (−1)n+k+1wk ,

α(e j+1), . . . , α(en+1)
]

−
[
α(e1), . . . , α̂(ei ), . . . , α(ek−1), (−1)n−k+1(−1)n+ j+1wj ,

α(ek+1), . . . , α(en+1)
]

= (−1)n+i+1
( [

λ1e1, . . . , α̂(e j ), . . . , α̂(ek), . . . , λn+1en+1, b j,i e j
]

+
[
α(e1), . . . , α̂(e j ), . . . , α̂(ek), . . . , α(en+1), bk,i ek

] )

− (−1)− j+k+1
( [

λ1e1, . . . , α̂(ei ), . . . , λ j−1e j−1, bi,kei , λ j+1e j+1, . . . , λn+1en+1

]

+
[
λ1e1, . . . , α̂(ei ), . . . , λ j−1e j−1, b j,ke j , λ j+1e j+1, . . . , λn+1en+1

] )

− (−1) j−k
( [

λ1e1, . . . , α̂(ei ), . . . , λk−1ek−1, bi, j ei , λk+1ek+1, . . . , λn+1en+1

]

+
[
λ1e1, . . . , α̂(ei ), . . . , λk−1ek−1, bk, j ek , λk+1ek+1, . . . , λn+1en+1

] )

= (−1)n+i+1
( [

λ1e1, . . . , α̂(e j ), . . . , α̂(ek), . . . , λn+1en+1, b j,i e j
]

+
[
λ1e1, . . . , α̂(e j ), . . . , α̂(ek), . . . , λn+1en+1, bk,i ek

] )

− (−1)− j+k+1
( [

λ1e1, . . . , α̂(ei ), . . . , λ j−1e j−1, bi,kei , λ j+1e j+1, . . . , λn+1en+1

]

+
[
λ1e1, . . . , α̂(ei ), . . . , λ j−1e j−1, b j,ke j , λ j+1e j+1, . . . , λn+1en+1

] )

− (−1) j−k
( [

λ1e1, . . . , α̂(ei ), . . . , λk−1ek−1, bi, j ei , λk+1ek+1, . . . , λn+1en+1

]

+
[
λ1e1, . . . , α̂(ei ), . . . , λk−1ek−1, bk, j ek , λk+1ek+1, . . . , λn+1en+1

] )

= (−1)n+i+1
n+1∏

r=1;r �= j,k

λr

( [
e1, . . . , ê j , . . . , êk , . . . , en+1, b j,i e j

]+ [e1, . . . , ê j , . . . , êk , . . . , en+1, bk,i ek
] )
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− (−1)− j+k+1
n+1∏

r=1;r �=i, j

λr

( [
e1, . . . , êi , . . . , e j−1, bi,kei , e j+1, . . . , en+1

]

+ [e1, . . . , êi , . . . , e j−1, b j,ke j , e j+1, . . . , en+1
] )

− (−1) j−k
n+1∏

r=1;r �=i,k

λr

( [
e1, . . . , êi , . . . , ek−1, bi, j ei , ek+1, . . . , en+1

]

+ [e1, . . . , êi , . . . , ek−1, bk, j ek , ek+1, . . . , en+1
] )

= (−1)n+i+1
n+1∏

r=1;r �= j,k

λr

(
b j,i (−1)n− j (−1)n+k+1wk + bk,i (−1)n−k+1(−1)n+ j+1wj

)

− (−1)− j+k+1
n+1∏

r=1;r �=i, j

λr

(
bi,k(−1) j−1−i (−1)n+ j+1wj + b j,k(−1)n+i+1wi

)

− (−1) j−k
n+1∏

r=1;r �=i,k

λr

(
bi, j (−1)k−1−i (−1)n+k+1wk + bk, j (−1)n+i+1wi

)

=
n+1∏

r=1;r �=i, j,k

λr

(
(−1)n+i+ j+kλi b j,iwk + (−1)n+i+ j+k+1λi bk,iw j

− (−1)n+ j+k+i+1λkbi,kw j − (−1)n+i+ j+kλkb j,kwi

− (−1)n+i+ j+kλ j bi, j wk − (−1)n+i+ j+k+1λ j bk, j wi

)

= (−1)n+i+ j+k
n+1∏

r=1;r �=i, j,k

λr

(
λi b j,iwk − λi bk,iw j + λkbi,kw j − λkb j,kwi − λ j bi, jwk + λ j bk, j wi

)

= (−1)n+i+ j+k
n+1∏

r=1;r �=i, j,k

λr

(
(λi b j,i − λ j bi, j )wk + (λkbi,k − λi bk,i )wj + (λ j bk, j − λkb j,k)wi

)
,

and since (−1)n+i+ j+k
n+1∏

r=1;r �=i, j,k

λr �= 0, the equality Hi, j,k = 0 holds if and only if

(λi b j,i − λ j bi, j )wk + (λkbi,k − λi bk,i )wj + (λ j bk, j − λkb j,k)wi = 0.

�

Moreover, the following particular case holds. It is a generalization of [47, The-
orem 3], the mentioned result corresponds to α = IdA.
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Proposition 19.12 If α is diagonalizable and invertible, and if Rank(B) ≥ 3, then
theHom-Nambu-Filippov identity holds if andonly if B[α]T = [α]BT or equivalently
that B[α]T is symmetric. If λi , 1 ≤ i ≤ n + 1 are the eigenvalues of α, then in any
basis where α is diagonal, this is equivalent to λi b j,i − λ j bi, j = 0,∀1 ≤ i, j ≤ n +
1, that is the matrix B takes the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,1 b1,2 b1,3 . . . . . . b1,n+1
λ2b1,2

λ1
b2,2 b2,3 . . . . . . b2,n+1

λ3b1,3
λ1

λ3b2,3
λ2

b3,3 . . . . . . b3,n+1

...
...

...
. . . . . .

...
...

...
... . . .

. . .
...

λn+1b1,n+1

λ1

λn+1b2,n+1

λ2

λn+1b3,n+1

λ3
. . .

λn+1bn,n+1

λn
bn+1,n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof If the Rank(B) ≥ 3 then we get the following: For all i, j , there exists k such
that wk is not a linear combination of wi and wj , then we have two cases:
1) dim〈wi ,wj 〉 = 2: In this case,

(λi b j,i − λ j bi, j )wk + (λkbi,k − λi bk,i )wj + (λ j bk, j − λkb j,k)wi = 0

=⇒ (λi b j,i − λ j bi, j ) = 0, (λkbi,k − λi bk,i ) = 0, (λ j bk, j − λkb j,k) = 0.

2) dim〈wi ,wj 〉 < 2: In this case,

(λi b j,i − λ j bi, j )wk + (λkbi,k − λi bk,i )wj + (λ j bk, j − λkb j,k)wi = 0

=⇒ (λi b j,i − λ j bi, j )wk + (μ(λkbi,k − λi bk,i ) + (λ j bk, j − λkb j,k))wi = 0,

(whereμ ∈ K)

=⇒ λi b j,i − λ j bi, j = 0.

That is, both cases lead to λi b j,i − λ j bi, j = 0, for all 1 ≤ i, j ≤ n + 1. This can also

be expressed as B[α]T = [α]BT , or B[α]T = (B[α]T )T , that is B[α]T is symmetric.
This last formula holds for any basis of A, given that α is diagonalizable. Let

(e′
i )1≤i≤n+1 be another basis of A, in which [·, . . . , ·] and α would be represented by

the matrix B ′ and [α](e′
i )
. Let P be the basis change matrix. Then,

B ′[α]T(e′
i )

= (det(P)−1PBPT
) (

P[α]P−1)T = det(P)−1PBPT (P−1)T [α]T PT

= det(P)−1PB[α]T PT = det(P)−1P[α]BT PT

= det(P)−1P[α](P−1P)BT PT = det(P)−1P[α]P−1
(
PBT PT

)

= (P[α]P−1
) (
det(P)−1PBPT

)T = [α](e′
i )
B ′T .
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We conclude that, under the conditions mentioned above, the Hom-Nambu-Filippov
identity is satisfied if and only if the matrices [α] and B representing α and [·, . . . , ·]
in any basis satisfy B[α]T = [α]BT . �

The case where all the eigenvalues of α are equal and non-zero is equivalent to
the case where α = IdA.

Proposition 19.13 Forα = λIdA, λ �= 0, n-Hom-Lie algebras (A, [·, . . . , ·] , α) are
n-Lie algebras.

Proof For all x1, . . . , xn−1, y1, . . . , yn ∈ A,

[
α(x1), . . . , α(xn−1), [y1, . . . , yn]

]
−

n∑
k=1

[
α(y1), . . . , α(yk−1),

[
x1, . . . , xn−1, yk

]
,

α(yk+1), . . . , α(yn)
]

=
[
λx1, . . . , λxn−1, [y1, . . . , yn]

]
−

n∑
k=1

[
λy1, . . . , λyk−1,

[
x1, . . . , xn−1, yk

]
,

λyk+1, . . . , λyn
]

= λn−1
([

x1, . . . , xn−1, [y1, . . . , yn]
]

−
n∑

k=1

[
y1, . . . , yk−1,

[
x1, . . . , xn−1, yk

]
,

yk+1, . . . , yn
])

.

Thus, since λ �= 0, theHom-Nambu-Filippov identity holds if and only if theNambu-
Filippov identity holds. �

Suppose now that α is diagonalizable and non invertible. We shall study the
cases where dim ker α = 1 and dim ker α = 2, as Proposition 19.7 treats the case
of higher dimensions of ker α. Propositions 19.14 and 19.15 are the counterparts of
[47, Equation17] in the cases of diagonalizable non-invertible α with a kernel of
dimension 1 and 2 respectively. As mentioned above, [47, Equation17] is a special
case of Proposition 19.11 which is separate from the following results which concern
with non-invertible α.

Proposition 19.14 If dim ker α = 1, let λ1 = 0. Then, [·, . . . , ·] obeys the Hom-
Nambu-Filippov identity if and only if

λkb1,kw j − λkb j,kw1 − λ j b1, jwk + λ j bk, jw1 = 0, ∀1 < j < k ≤ n + 1.

Proof If dim ker α = 1, we choose a basis such that λ1 = 0 and all other eigenvalues
are non-zero. Then, Hi, j,k = 0 for i, j, k �= 1 (Remark 19.2). In the remaining cases,
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H1, j,k = (−1)n+1+ j+k
n+1∏

r=2;r �= j,k

λr

(
(λ1b j,1 − λ j b1, j )wk + (λkb1,k − λ1bk,1)wj

+ (λ j bk, j − λkb j,k)w1

)

= (−1)n+1+ j+k
n+1∏

r=2;r �= j,k

λr

(
− λ j b1, jwk + λkb1,kw j + (λ j bk, j − λkb j,k)w1

)
.

Since (−1)n+1+ j+k
n+1∏

r=2;r �= j,k

λr �= 0, we get that H1, j,k = 0 if and only if

(
− λ j b1, jwk + λkb1,kw j + (λ j bk, j − λkb j,k)w1

)
= 0.

�
Proposition 19.15 If dim ker α = 2, let λ1 = λ2 = 0. The multiplication [·, . . . , ·]
satisfies the Hom-Nambu-Filippov identity if and only if b1,kw2 − b2,kw1 = 0 for all
3 ≤ k ≤ n + 1.

Proof If dim ker α = 2, suppose that λ1 = λ2 = 0 and λk �= 0 for k �= 1, 2. Then,
similarly, if (i, j) �= (1, 2)where i < j < k, then Hi, j,k = 0. In the remaining cases,

H1,2,k = (−1)n+1+2+k
n+1∏

r=3;r �=k

λr

(
(λ1b2,1 − λ2b1,2)wk + (λkb1,k − λ1bk,1)w2

+ (λ2bk,2 − λkb2,k)w1

)

= (−1)n+1+2+k
n+1∏

r=3;r �=k

λr

(
λk(b1,kw2 − b2,kw1)

)
.

Since (−1)n+1+2+k
n+1∏

r=3;r �=k

λr �= 0, the equality H1,2,k = 0 holds if and only if

λk(b1,kw2 − b2,kw1) = 0.

�
Remark 19.4 A particularity of this case is that the non-zero eigenvalues do not
appear in the equations, which means that if a given skew-symmetric multiplication
satisfies the Hom-Nambu-Filippov identity for a diagonalizable α with kernel of
dimension 2, it would satisfy it for any such a linear map.

Let us consider now the case where α is nilpotent. By Proposition 19.7, we only
need to investigate the cases where dim ker α = 1 and dim ker α = 2. Propositions
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19.16 and 19.17 are the counterparts of [47, Equation17] in the cases of nilpotent
α with a kernel of dimension 2 and 1 respectively. As mentioned above, [47, Equa-
tion17] is a special case of Proposition 19.7 which is separate from the following
cases. If dim ker α = 2, then for a basis inwhichα is in Jordan form, ker f = 〈e1, ei0〉.
For j > i0 we get the following statement.

Proposition 19.16 (Case: dim ker α = 2) The multiplication [·, . . . , ·] obeys the
Hom-Nambu-Filippov identity if and only if

bi0−1, j bp,n+1 − bn+1, j bp,i0−1 = 0, ∀1 ≤ j, p ≤ n + 1, j �= 1, j �= i0.

Proof In this case, by Remark 19.2 and Proposition 19.4, Hom-Nambu-Filippov
identity holds if and only if H1,i0, j = 0 for all i0 < j < n + 1:

H1,i0, j =
[
α(e1), . . . , α̂(ei0), . . . , α̂(e j ), . . . , α(en+1),

[
e2, . . . , en+1

]]

−
[
α(e2), . . . , α(ei0−1),

[
e1, . . . , êi0 , . . . , ê j , . . . , en+1, ei0

]
,

α(ei0+1), . . . , α(en+1)
]

−
[
α(e2), . . . , α(ei0), . . . , α(e j−1)

[
e1, . . . , êi0 , . . . , ê j , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]

=
[
0, . . . , α̂(ei0), . . . , α̂(e j ), . . . , en,

[
e2, . . . , en+1

]]

−
[
e1, . . . , ei0−2,

[
e1, . . . , êi0 , . . . , ê j , . . . , en+1, ei0

]
, ei0 , . . . , en

]

−
[
α(e2), . . . , 0, . . . , α(e j−1)

[
e1, . . . , êi0 , . . . , ê j , . . . , en+1, e j

]
,

α(e j+1), . . . , α(en+1)
]

= −
[
e1, . . . , ei0−2,

[
e1, . . . , êi0 , . . . , ê j , . . . , en+1, ei0

]
, ei0 , . . . , en

]

= −(−1)n−i0
[
e1, . . . , ei0−2

[
e1, . . . , ê j , . . . , en+1

]
, ei0 , . . . , en

]

= −(−1)n−i0(−1)n+ j+1[e1, . . . , ei0−2,wj , ei0 , . . . , en]
= −(−1)n−i0(−1)n+ j+1bi0−1, j [e1, . . . , ei0−2, ei0−1, ei0 , . . . , en]

− (−1)n−i0(−1)n+ j+1bn+1, j [e1, . . . , ei0−2, en+1, ei0 , . . . , en]
= −(−1)n−i0(−1)n+ j+1bi0−1, j [e1, . . . , en]

− (−1)n−i0(−1)n+ j+1(−1)i0−1−nbn+1, j
[
e1, . . . , ei0−2, ei0 , . . . , en, en+1

]

= −(−1)n−i0(−1)n+ j+1(−1)n+n+1+1bi0−1, jwn+1
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− (−1)n−i0(−1)n+ j+1(−1)i0−1−n(−1)n+i0−1+1bn+1, jwi0−1

= −(−1)n−i0(−1)n+ j+1
(
bi0−1, jwn+1 − bn+1, jwi0−1

)
.

For j < i0, we get the same result, up to a (−1) factor. This means that Hi, j,k = 0
if and only if bi0−1, jwn+1 − bn+1, jwi0−1 = 0 for all 1 ≤ j ≤ n + 1, j �= 1, j �= i0,
that is, ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi0−1,2wn+1 − bn+1,2wi0−1 = 0
bi0−1,3wn+1 − bn+1,3wi0−1 = 0

...

bi0−1,i0−1wn+1 − bn+1,i0−1wi0−1 = 0
bi0−1,i0+1wn+1 − bn+1,i0+1wi0−1 = 0

...

bi0−1,n+1wn+1 − bn+1,n+1wi0−1 = 0.

Rewriting the above equations, using the coordinates in the basis (ei )1≤i≤n+1, yields
the following system:

bi0−1, j bp,n+1 − bn+1, j bp,i0−1 = 0, ∀1 ≤ j, p ≤ n + 1, j �= 1, j �= i0.

�

We suppose now that α is nilpotent and dim ker α = 1. For a basis in which α is in
Jordan normal form, this yields ker α = 〈e1〉, and we have the following statement.

Proposition 19.17 (Case: dim ker α = 1) The multiplication [·, . . . , ·] obeys the
Hom-Nambu-Filippov identity if and only if

∀ 1 ≤ i, k, p ≤ n + 1, i < k :
(bk−1,i − bi−1,k)bp,n+1 − bn+1,i bp,k−1 + bn+1,kbp,i−1 = 0.

Proof In this case, by Remark 19.2 and Proposition 19.4, Hom-Nambu-Filippov
identity holds if and only if Hi,1,k = 0 for all 1 < i < k ≤ n + 1. Thus,

Hi,1,k =
[
α(e2), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

−
[[
e2, . . . , êk , . . . , en+1, e1

]
, α(e2), α(e3), . . . , α̂(ei ), . . . , α(en+1)

]

−
[
α(e1), . . . , α(ek−1),

[
e2, . . . , êk , . . . , en+1, ek

]
,

α(ek+1), . . . , α̂(ei ), . . . , α(en+1)
]

=
[
α(e2), . . . , α̂(ek), . . . , α(en+1),

[
e1, . . . , êi , . . . , en+1

]]

−
[[
e2, . . . , êk , . . . , en+1, e1

]
, α(e2), α(e3), . . . , α̂(ei ), . . . , α(en+1)

]

−
[
0, . . . , α(ek−1),

[
e2, . . . , êk , . . . , en+1, ek

]
,
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α(ek+1), . . . , α̂(ei ), . . . , α(en+1)
]

=
[
e1, . . . , êk−1, . . . , en,

[
e1, . . . , êi , . . . , en+1

] ]

−
[ [

e2, . . . , êk , . . . , en+1, e1
]
, e1, e2, . . . , êi−1, . . . , en

]

= [e1, . . . , êk−1, . . . , en, (−1)n+1+iwi ]
−
[
(−1)n−1 [e1, e2, . . . , êk , . . . , en+1

]
, e1, e2, . . . , êi−1, . . . , en

]

= [e1, . . . , êk−1, . . . , en, (−1)n+1+iwi ]
− [(−1)n−1(−1)n+1+kwk , e1, e2, . . . , êi−1, . . . , en]

= [e1, . . . , êk−1, . . . , en, (−1)n+1+i bk−1,i ek−1]
+ [e1, . . . , êk−1, . . . , en, (−1)n+1+i bn+1,i en+1]
− [(−1)n−1(−1)n+1+kbi−1,kei−1, e1, e2, . . . , êi−1, . . . , en]
− [(−1)n−1(−1)n+1+kbn+1,ken+1, e1, e2, . . . , êi−1, . . . , en]

= (−1)n+1+i bk−1,i (−1)n−k+1 [e1, . . . , en]

+ (−1)n+1+i bn+1,i
[
e1, . . . , êk−1, . . . , en+1

]

− (−1)n−1(−1)n+1+k(−1)1−i+1bi−1,k [e1, . . . , en]

− (−1)n−1(−1)n+1+k(−1)1−nbn+1,k
[
e1, . . . , êi−1, . . . , en+1

]

= (−1)n+1+i bk−1,i (−1)n−k+1(−1)n+n+1+1wn+1

+ (−1)n+1+i bn+1,i (−1)n+k−1+1wk−1

− (−1)n−1(−1)n+1+k(−1)−i bi−1,k(−1)n+n+1+1wn+1

− (−1)n−1(−1)n+1+k(−1)1−nbn+1,k(−1)n+i−1+1wi−1

= (−1)i−kbk−1,iwn+1 + (−1)1+i+kbn+1,iwk−1

− (−1)k−i bi−1,kwn+1 − (−1)k+1+i bn+1,kwi−1

=
(
(−1)i−kbk−1,i − (−1)k−i bi−1,k

)
wn+1

+ (−1)1+i+kbn+1,iwk−1 − (−1)k+1+i bn+1,kwi−1

yields that the Hom-Nambu-Filippov identity is satisfied if and only if

∀ 1 ≤ i < k ≤ n + 1 :
(bk−1,i − bi−1,k)wn+1 − bn+1,iwk−1 + bn+1,kwi−1 = 0,

which, using the coordinates in the basis (ei )1≤i≤n+1, gives the following system:

∀ 1 ≤ i, k, p ≤ n + 1, i < k :
(bk−1,i − bi−1,k)bp,n+1 − bn+1,i bp,k−1 + bn+1,kbp,i−1 = 0.

�
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Remark 19.5 Let us compare the polynomial equations obtained from the Nambu-
Filippov identity and the Hom-Nambu-Filippov identity in dimension n + 1 with
various types of twisting maps:

Diagonalizable and invertible with eigenvalues {λi }1≤i≤n+1:

∀ 1 ≤ i, j, k, p ≤ n + 1; i < j < k :
(λi b j,i − λ j bi, j )bp,k + (λkbi,k − λi bk,i )bp, j + (λ j bk, j − λkb j,k)bp,i = 0; (19.9)

Diagonalizable with dim ker α = 1 with eigenvalues {λi }1≤i≤n+1:

∀ 1 < j < k ≤ n + 1 :
λkb1,kw j − λkb j,kw1 − λ j b1, jwk + λ j bk, jw1 = 0; (19.10)

Diagonalizable with dim ker α = 2 with eigenvalues {λi }1≤i≤n+1:

∀ 3 ≤ k ≤ n + 1 : b1,kw2 − b2,kw1 = 0; (19.11)

Nilpotent with dim ker α = 1:

∀ 1 ≤ i, k, p ≤ n + 1, i < k :
(bk−1,i − bi−1,k)bp,n+1 − bn+1,i bp,k−1 + bn+1,kbp,i−1 = 0; (19.12)

Nilpotent with dim ker α = 2:

∀ 1 ≤ j, p ≤ n + 1, j �= 1, j �= i0 : bi0−1, j bp,n+1 − bn+1, j bp,i0−1 = 0. (19.13)

These different cases are separate from each other, and the case of n-Lie algebras
is the special case of (19.9) where all the λi are equal. Notice that the higher the
dimension of ker α the less equation we have and the less terms we have in each
equation, that is, in these cases, the Hom-Nambu-Filippov identity is considerably
less restrictive. Another difference from the case of n-Lie algebra are the isomor-
phisms, in Hom-algebras, an isomorphism intertwines the multiplications and the
twisting maps, which leads to different, more restrictive isomorphism conditions.

19.5 Lists of 4-Dimensional 3-Hom-Lie Algebras

In this section, we present lists of 3-Hom-Lie algebras of dimension 4 obtained using
the computer algebra software Mathematica for special cases of the twisting map α.
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Let (A, [·, ·, ·] , α) be a 4-dimensional ternary Hom-algebra. The multiplication
is fully defined by its structure constants (c(i, j, k, l))1≤i, j,k,l≤4 in a basis (ei )1≤i≤4

as
[
ei , e j , ek

] =
4∑

l=1

c(i, j, k, l)el ,

and α is defined by its matrix in the same basis, [α] = (ai, j
)
1≤i, j≤4. The equations

for the skew-symmetry are

∀ 1 ≤ i, j, k, l ≤ 4 :
c(i, j, k, l) = −c( j, i, k, l); c(i, j, k, l) = −c(i, k, j, l).

After the equations for skew-symmetry are solved, one can use them to simplify the
equations for theHom-Nambu-Filippov identity and finally solve the latter simplified
system.

Each algebra shall be represented by a square matrix B such that

(w1, . . . ,wn+1) = (e1, . . . , en+1)B,

where wj = (−1)n+ j+1
[
e1, . . . , ê j , . . . , en+1

]
.

In the tables given below, the listed algebras shall be denoted following this
pattern: dn,[α],i , where d is the dimension, n the arity, [α] the matrix representing the
twisting maps, by the name given right above each table, where in those names, N
stands for nilpotent and D for diagonal. Finally, i is the number of the algebra in
each table.

19.5.1 Nilpotent α with Kernel of Dimension 1

Every nilpotent linear map α with kernel of dimension 1 can be represented, in

some basis, by the matrix N (1) =
⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ . With this matrix and basis we get the

following list of algebras.
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43,N (1),1

⎛
⎜⎜⎝

−c(2, 3, 4, 1) c(1, 3, 4, 1) −c(1, 2, 4, 1) 0
−c(2, 3, 4, 2) c(1, 3, 4, 2) −c(1, 2, 4, 2) 0
−c(2, 3, 4, 3) c(1, 3, 4, 3) −c(1, 2, 4, 3) 0
−c(2, 3, 4, 4) 0 0 0

⎞
⎟⎟⎠

43,N (1),2

⎛
⎜⎜⎝

−c(2, 3, 4, 1) c(1, 3, 4, 1) −c(1, 2, 4, 1) c(1, 2, 3, 1)
−c(2, 3, 4, 2) −c(1, 2, 4, 1) −c(1, 2, 4, 2) c(1, 2, 3, 2)
−c(2, 3, 4, 3) c(1, 2, 3, 1) c(1, 2, 3, 2) c(1, 2, 3, 3)
−c(2, 3, 4, 4) 0 0 0

⎞
⎟⎟⎠

43,N (1),3

⎛
⎜⎜⎝

s1 s5 −c(1, 2, 4, 1) c(1, 2, 3, 1)
s2 s6 s10 c(1, 2, 3, 2)

s3 s7
c(1,2,4,4)2

c(1,2,3,4) + c(1, 2, 3, 2) − c(1, 3, 4, 4) c(1, 2, 3, 3)
s4 c(1, 3, 4, 4) −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎠

s1 = c(1,2,3,1)c(1,2,4,4)3

c(1,2,3,4)3
+ c(1,2,3,1)c(1,2,3,3)c(1,2,4,4)2

c(1,2,3,4)3

− c(1,2,3,1)c(1,3,4,4)c(1,2,4,4)
c(1,2,3,4)2

+ c(1,2,3,1)c(1,2,3,2)c(1,2,4,4)
c(1,2,3,4)2

− c(1,2,4,1)c(1,3,4,4)
c(1,2,3,4) − c(1,2,3,1)c(1,2,3,3)c(1,3,4,4)

c(1,2,3,4)2
+ c(1,2,3,1)2

c(1,2,3,4)

s2 = − c(1,3,4,4)c(1,2,4,4)3

c(1,2,3,4)3
+ c(1,2,3,2)c(1,2,4,4)3

c(1,2,3,4)3

− c(1,2,3,3)c(1,3,4,4)c(1,2,4,4)2

c(1,2,3,4)3
+ c(1,2,3,2)c(1,2,3,3)c(1,2,4,4)2

c(1,2,3,4)3

+ 2c(1,3,4,4)2c(1,2,4,4)
c(1,2,3,4)2

− 3c(1,2,3,2)c(1,3,4,4)c(1,2,4,4)
c(1,2,3,4)2

+ c(1,2,3,2)2c(1,2,4,4)
c(1,2,3,4)2

+ c(1,2,3,3)c(1,3,4,4)2

c(1,2,3,4)2
− c(1,2,3,1)c(1,3,4,4)

c(1,2,3,4)

= − c(1,2,3,2)c(1,2,3,3)c(1,3,4,4)
c(1,2,3,4)2

+ c(1,2,3,1)c(1,2,3,2)
c(1,2,3,4)

− c(1,3,4,4)3
c(1,2,3,4)c(1,2,4,4) + c(1,2,3,2)c(1,3,4,4)2

c(1,2,3,4)c(1,2,4,4) + c(1,2,4,1)c(1,3,4,4)
c(1,2,4,4)

s3 = c(1,2,3,3)c(1,2,4,4)3

c(1,2,3,4)3
+ c(1,3,4,4)c(1,2,4,4)2

c(1,2,3,4)2
+ c(1,2,3,3)2c(1,2,4,4)2

c(1,2,3,4)3

− c(1,2,3,3)c(1,3,4,4)c(1,2,4,4)
c(1,2,3,4)2

+ c(1,2,3,2)c(1,2,3,3)c(1,2,4,4)
c(1,2,3,4)2

− c(1,3,4,4)2
c(1,2,3,4) + c(1,2,3,2)c(1,3,4,4)

c(1,2,3,4) − c(1,2,3,3)2c(1,3,4,4)
c(1,2,3,4)2

+ c(1,2,3,1)c(1,2,3,3)
c(1,2,3,4)

s4 = c(1,2,4,4)3

c(1,2,3,4)2
+ c(1,2,3,3)c(1,2,4,4)2

c(1,2,3,4)2
− 2c(1,3,4,4)c(1,2,4,4)

c(1,2,3,4)

+ c(1,2,3,2)c(1,2,4,4)
c(1,2,3,4) + c(1, 2, 3, 1) − c(1,2,3,3)c(1,3,4,4)

c(1,2,3,4)

s5 = − c(1,2,3,1)c(1,2,4,4)2

c(1,2,3,4)2
+ c(1,2,4,1)c(1,2,4,4)

c(1,2,3,4) + c(1,2,3,1)c(1,3,4,4)
c(1,2,3,4)

s6 = c(1,2,4,4)4

c(1,2,3,4)3
+ c(1,2,3,3)c(1,2,4,4)3

c(1,2,3,4)3

− 2c(1,3,4,4)c(1,2,4,4)2

c(1,2,3,4)2
+ c(1,2,3,2)c(1,2,4,4)2

c(1,2,3,4)2

− c(1,2,3,3)c(1,3,4,4)c(1,2,4,4)
c(1,2,3,4)2

+ c(1,2,3,1)c(1,2,4,4)
c(1,2,3,4)

+ c(1,3,4,4)2
c(1,2,3,4) − c(1, 2, 4, 1)

s7 = − c(1,2,4,4)3

c(1,2,3,4)2
− c(1,2,3,3)c(1,2,4,4)2

c(1,2,3,4)2
+ c(1,3,4,4)c(1,2,4,4)

c(1,2,3,4)

− c(1,2,3,2)c(1,2,4,4)
c(1,2,3,4) + c(1,2,3,3)c(1,3,4,4)

c(1,2,3,4)

s10 = − c(1,2,4,4)3

c(1,2,3,4)2
− c(1,2,3,3)c(1,2,4,4)2

c(1,2,3,4)2
+ 2c(1,3,4,4)c(1,2,4,4)

c(1,2,3,4)

− 2c(1,2,3,2)c(1,2,4,4)
c(1,2,3,4) − c(1, 2, 3, 1) + c(1,2,3,3)c(1,3,4,4)

c(1,2,3,4)

− c(1,3,4,4)2
c(1,2,4,4) + c(1,2,3,4)c(1,2,4,1)

c(1,2,4,4) + c(1,2,3,2)c(1,3,4,4)
c(1,2,4,4)
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43,N (1),4

⎛
⎜⎜⎜⎝

t1
c(1,2,3,1)c(1,3,4,4)

c(1,2,3,4)
c(1,2,3,2)c(1,3,4,4)

c(1,2,3,4) − c(1,3,4,4)2

c(1,2,3,4) c(1, 2, 3, 1)

t2
c(1,2,3,2)c(1,3,4,4)

c(1,2,3,4) −c(1, 2, 4, 2) c(1, 2, 3, 2)

t3
c(1,2,3,3)c(1,3,4,4)

c(1,2,3,4) c(1, 2, 3, 2) − c(1, 3, 4, 4) c(1, 2, 3, 3)
t4 c(1, 3, 4, 4) 0 c(1, 2, 3, 4)

⎞
⎟⎟⎟⎠

t1 = − c(1,3,4,4)3

c(1,2,3,4)2
+ c(1,2,3,2)c(1,3,4,4)2

c(1,2,3,4)2
− c(1,2,3,1)c(1,2,3,3)c(1,3,4,4)

c(1,2,3,4)2

+ c(1,2,3,1)2
c(1,2,3,4)

t2 = − c(1,2,3,3)c(1,3,4,4)c(1,2,3,2)
c(1,2,3,4)2

+ c(1,2,3,1)c(1,2,3,2)
c(1,2,3,4)

− c(1,2,4,2)c(1,3,4,4)
c(1,2,3,4)

t3 = − c(1,3,4,4)c(1,2,3,3)2

c(1,2,3,4)2
+ c(1,2,3,1)c(1,2,3,3)

c(1,2,3,4)

− c(1,3,4,4)2
c(1,2,3,4) + c(1,2,3,2)c(1,3,4,4)

c(1,2,3,4)

t4 = c(1, 2, 3, 1) − c(1,2,3,3)c(1,3,4,4)
c(1,2,3,4)

19.5.2 Nilpotent α with Kernel of Dimension 2

For nilpotent α with kernel of dimension 2, two possibilities arise, depending on the
dimension of the generalized eigenspaces of α and thus the size of Jordan blocks.

The first case is when we have one eigenspace of dimension 1 and one gener-
alized eigenspace of dimension 3. The Jordan form of α in this case is given by

N (2) =
⎛
⎜⎜⎝
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ . We get the following list of algebras.

43,N (2),1

⎛
⎜⎜⎝

−c(2, 3, 4, 1) c(1, 3, 4, 1) 0 0
−c(2, 3, 4, 2) c(1, 3, 4, 2) −c(1, 2, 4, 2) c(1, 2, 3, 2)
−c(2, 3, 4, 3) c(1, 3, 4, 3) −c(1, 2, 4, 3) c(1, 2, 3, 3)
−c(2, 3, 4, 4) c(1, 3, 4, 4) 0 0

⎞
⎟⎟⎠

43,N (2),2

⎛
⎜⎜⎝

−c(2, 3, 4, 1) c(1, 3, 4, 1) −c(1, 2, 4, 1) 0
−c(2, 3, 4, 2) c(1, 3, 4, 2) −c(1, 2, 4, 2) 0
−c(2, 3, 4, 3) c(1, 3, 4, 3) −c(1, 2, 4, 3) 0
−c(2, 3, 4, 4) c(1, 3, 4, 4) 0 0

⎞
⎟⎟⎠

43,N (2),3

⎛
⎜⎜⎜⎝

c(1,2,3,1)2

c(1,2,3,4) c(1, 3, 4, 1) − c(1,2,3,1)c(1,2,4,4)
c(1,2,3,4) c(1, 2, 3, 1)

c(1,2,3,1)c(1,2,3,2)
c(1,2,3,4) c(1, 3, 4, 2) −c(1, 2, 4, 2) c(1, 2, 3, 2)

c(1,2,3,1)c(1,2,3,3)
c(1,2,3,4) c(1, 3, 4, 3) −c(1, 2, 4, 3) c(1, 2, 3, 3)

c(1, 2, 3, 1) c(1, 3, 4, 4) −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎟⎠
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43,N (2),4

⎛
⎜⎜⎜⎝

0 c(1, 3, 4, 1) −c(1, 2, 4, 1) 0
c(1,2,3,2)c(1,2,4,1)

c(1,2,4,4) c(1, 3, 4, 2) −c(1, 2, 4, 2) c(1, 2, 3, 2)
c(1,2,3,3)c(1,2,4,1)

c(1,2,4,4) c(1, 3, 4, 3) −c(1, 2, 4, 3) c(1, 2, 3, 3)

0 c(1, 3, 4, 4) −c(1, 2, 4, 4) 0

⎞
⎟⎟⎟⎠

43,N (2),5

⎛
⎜⎜⎝

0 c(1, 3, 4, 1) 0 0
0 c(1, 3, 4, 2) −c(1, 2, 4, 2) c(1, 2, 3, 2)
0 c(1, 3, 4, 3) −c(1, 2, 4, 3) c(1, 2, 3, 3)
0 c(1, 3, 4, 4) −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎠

43,N (2),6

⎛
⎜⎜⎝

0 c(1, 3, 4, 1) −c(1, 2, 4, 1) 0
0 c(1, 3, 4, 2) −c(1, 2, 4, 2) 0
0 c(1, 3, 4, 3) −c(1, 2, 4, 3) 0
0 c(1, 3, 4, 4) −c(1, 2, 4, 4) 0

⎞
⎟⎟⎠

Remark 19.6 Note that if onewould like to consider the basiswhereα is represented

by

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, moving from this basis to the one considered above is made simply by

changing the order of the basis elements following the permutation σ =
(
1 2 3 4
2 3 4 1

)
.

To each algebra listed above corresponds an isomorphic algebra that can be obtained
by applying Proposition 19.6.

The other case is when α has two generalized eigenspaces of dimension 2, in this

case its Jordan form is given by the matrix N ′(2) =
⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ .We get the following

list of algebras.

43,N ′(2),1

⎛
⎜⎜⎜⎝

−c(2, 3, 4, 1) c(1,2,3,1)c(1,3,4,4)
c(1,2,3,4) −c(1, 2, 4, 1) c(1, 2, 3, 1)

−c(2, 3, 4, 2) c(1,3,4,4)2

c(1,2,3,4) −c(1, 2, 4, 2) c(1, 3, 4, 4)

−c(2, 3, 4, 3) c(1,2,3,3)c(1,3,4,4)
c(1,2,3,4) −c(1, 2, 4, 3) c(1, 2, 3, 3)

−c(2, 3, 4, 4) c(1, 3, 4, 4) −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎟⎠

43,N ′(2),2

⎛
⎜⎜⎝

−c(2, 3, 4, 1) c(1, 3, 4, 1) −c(1, 2, 4, 1) c(1, 2, 3, 1)
−c(2, 3, 4, 2) 0 −c(1, 2, 4, 2) 0
−c(2, 3, 4, 3) c(1, 3, 4, 3) −c(1, 2, 4, 3) c(1, 2, 3, 3)
−c(2, 3, 4, 4) 0 −c(1, 2, 4, 4) 0

⎞
⎟⎟⎠

43,N ′(2),3

⎛
⎜⎜⎝

−c(2, 3, 4, 1) c(1, 3, 4, 1) −c(1, 2, 4, 1) 0
−c(2, 3, 4, 2) c(1, 3, 4, 2) −c(1, 2, 4, 2) 0
−c(2, 3, 4, 3) c(1, 3, 4, 3) −c(1, 2, 4, 3) 0
−c(2, 3, 4, 4) 0 −c(1, 2, 4, 4) 0

⎞
⎟⎟⎠

43,N ′(2),4

⎛
⎜⎜⎝

−c(2, 3, 4, 1) 0 −c(1, 2, 4, 1) c(1, 2, 3, 1)
−c(2, 3, 4, 2) 0 −c(1, 2, 4, 2) 0
−c(2, 3, 4, 3) 0 −c(1, 2, 4, 3) c(1, 2, 3, 3)
−c(2, 3, 4, 4) 0 −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎠
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19.5.3 Diagonalisable α with Kernel of Dimension 2

Any diagonalisable linear map α with kernel of dimension 2 can be represented, in

some basis, by the matrix D(2) =
⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 λ3 0
0 0 0 λ4

⎞
⎟⎟⎠, λ3, λ4 �= 0. In such basis, we get

the following list of algebras.

43,D(2),1

⎛
⎜⎜⎝

−c(2, 3, 4, 1) c(1, 3, 4, 1) 0 0
−c(2, 3, 4, 2) c(1, 3, 4, 2) 0 0
−c(2, 3, 4, 3) c(1, 3, 4, 3) −c(1, 2, 4, 3) c(1, 2, 3, 3)
−c(2, 3, 4, 4) c(1, 3, 4, 4) −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎠

43,D(2),2

⎛
⎜⎜⎜⎝

c(1,2,3,1)c(1,3,4,1)
c(1,2,3,2) c(1, 3, 4, 1) − c(1,2,3,1)c(1,2,4,2)

c(1,2,3,2) c(1, 2, 3, 1)
c(1,2,3,1)c(1,3,4,2)

c(1,2,3,2) c(1, 3, 4, 2) −c(1, 2, 4, 2) c(1, 2, 3, 2)
c(1,2,3,1)c(1,3,4,3)

c(1,2,3,2) c(1, 3, 4, 3) −c(1, 2, 4, 3) c(1, 2, 3, 3)
c(1,2,3,1)c(1,3,4,4)

c(1,2,3,2) c(1, 3, 4, 4) −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎟⎠

43,D(2),3

⎛
⎜⎜⎜⎝

c(1,2,4,1)c(1,3,4,1)
c(1,2,4,2) c(1, 3, 4, 1) −c(1, 2, 4, 1) 0

c(1,2,4,1)c(1,3,4,2)
c(1,2,4,2) c(1, 3, 4, 2) −c(1, 2, 4, 2) 0

c(1,2,4,1)c(1,3,4,3)
c(1,2,4,2) c(1, 3, 4, 3) −c(1, 2, 4, 3) c(1, 2, 3, 3)

c(1,2,4,1)c(1,3,4,4)
c(1,2,4,2) c(1, 3, 4, 4) −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎟⎠

43,D(2),4

⎛
⎜⎜⎝

−c(2, 3, 4, 1) 0 −c(1, 2, 4, 1) c(1, 2, 3, 1)
−c(2, 3, 4, 2) 0 0 0
−c(2, 3, 4, 3) 0 −c(1, 2, 4, 3) c(1, 2, 3, 3)
−c(2, 3, 4, 4) 0 −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎠

43,D(2),5

⎛
⎜⎜⎝
0 0 −c(1, 2, 4, 1) c(1, 2, 3, 1)
0 0 −c(1, 2, 4, 2) c(1, 2, 3, 2)
0 0 −c(1, 2, 4, 3) c(1, 2, 3, 3)
0 0 −c(1, 2, 4, 4) c(1, 2, 3, 4)

⎞
⎟⎟⎠
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Chapter 20
On Classification of (n+1)-Dimensional
n-Hom-Lie Algebras for n = 4, 5, 6 and
Nilpotent Twisting Map with
2-Dimensional Kernel

Abdennour Kitouni and Sergei Silvestrov

Abstract The aim of this work is to study properties of n-Hom-Lie algebras in
dimension n + 1 allowing to explicitely find them and differentiate them, to even-
tually classify them. Specifically, the n-Hom-Lie algebras in dimension n + 1 for
n = 4, 5, 6 and nilpotent α with 2-dimensional kernel are computed and some
detailed properties of these algebras are obtained.
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20.1 Introduction

Hom-Lie algebras and more general quasi-Hom-Lie algebras where introduced first
by Hartwig, Larsson and Silvestrov in [49], where the general quasi-deformations
and discretizations of Lie algebras of vector fields using more general σ -derivations
(twisted derivations) and a general method for construction of deformations of Witt
and Virasoro type algebras based on twisted derivations have been developed, ini-
tially motivated by the q-deformed Jacobi identities observed for the q-deformed
algebras in physics, along with q-deformed versions of homological algebra and
discrete modifications of differential calculi [7, 33–38, 41, 51, 53, 67–69]. The gen-
eral abstract quasi-Lie algebras and the subclasses of quasi-Hom-Lie algebras and
Hom-Lie algebras as well as their general colored (graded) counterparts have been
introduced in [49, 61–63, 81]. Subsequently, various classes of Hom-Lie admissible
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algebras have been considered in [71]. In particular, in [71], the Hom-associative
algebras have been introduced and shown to be Hom-Lie admissible, that is lead-
ing to Hom-Lie algebras using commutator map as new product, and in this sense
constituting a natural generalization of associative algebras, as Lie admissible alge-
bras leading to Lie algebras via commutator map as new product. In [71], moreover
several other interesting classes of Hom-Lie admissible algebras generalizing some
classes of non-associative algebras, as well as examples of finite-dimensional Hom-
Lie algebras have been described. Since these pioneering works [49, 61–64, 71],
Hom-algebras turned out to be very useful since Hom-algebra structures of a given
type include their classical counterparts and openmore possibilities for deformations,
extensions of cohomological structures and representations. Hom-algebra structures
have developed in a popular broad area with increasing number of publications in
various directions (see for example [8, 29, 44, 60, 61, 65, 72–74, 77, 79, 80, 85,
86] and references therein).

Ternary Lie algebras appeared in generalization of Hamiltonian mechanics by
Nambu [75]. Besides Nambumechanics, n-Lie algebras revealed to havemany appli-
cations in physics. The mathematical algebraic foundations of Nambu mechanics
have been developed by Takhtajan in [82]. Filippov, in [47] independently intro-
duced and studied structure of n-Lie algebras and Kasymov [54] investigated their
properties. Properties of n-ary algebras, including solvability and nilpotency, were
studied in [16, 21, 54]. Kasymov [54] pointed out that n-ary multiplication allows
for several different definitions of solvability and nilpotency in n-Lie algebras, and
studied their properties. Further properties, classification, and connections of n-ary
algebras to other structures such as bialgebras, Yang-Baxter equation and Manin
triples for 3-Lie algebras were studied in [15–22, 24, 25, 54]. The structure of 3-Lie
superalgebras induced by Lie superalgebras, classification of 3-Lie superalgebras
and application to constructions of B.R.S. algebras have been considered in [2–4].
Interesting constructions of ternary Lie superalgebras in connection to superspace
extension of Nambu-Hamilton equation is considered in [5]. In [32], Leibniz n-
algebras have been studied. The general cohomology theory for n-Lie algebras and
Leibniz n-algebras was established in [42, 78, 83]. For more details of the theory
and applications of n-Lie algebras, see [43] and references therein.

Classifications of n-ary or Hom generalizations of Lie algebras have been con-
sidered, either in very special cases or in low dimensions. The classification of n-Lie
algebras of dimension up to n + 1 over a field of characteristic p �= 2 has been com-
pleted by Filippov [47] using the specific properties of (n + 1)-dimensional n-Lie
algebras that make it possible to represent their bracket by a squarematrix in a similar
way as bilinear forms, the number of cases obtained depends on the properties of the
base field, the list is ordered by ascending dimension of the derived ideal, and among
them, one nilpotent algebra, and a class of simple algebras which are all isomorphic
in the case of an algebraically closed field, the remaining algebras are k-solvable
for some 2 ≤ k ≤ n depending on the algebra. These simple algebras are proven to
be the only simple finite-dimensional n-Lie algebras in [66]. The classification of
(n + 1)-dimensional n-Lie algebras over a field of characteristic 2 has been done by
Bai et al. [22] by finding and using a similar result in characteristic 2. Bai et al. [21]
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classify the (n + 2)-dimensional n-Lie algebras over an algebraically closed field
of characteristic 0 using the fact that an (n + 2)-dimensional n-Lie algebra has a
subalgebra of codimension 1 if the dimension of its derived ideal is not 3, thus con-
structing most of the cases as extensions of the (n + 1)-dimensional n-Lie algebras
listed by Filippov. In [31], Cantarini and Kac classified all simple linearly compact
n-Lie superalgebras, which turned out to be n-Lie algebras, by finding a bijective
correspondence between said algebras and a special class of transitive Z-graded Lie
superalgebras, the list they obtained consists of four representatives, one of them is
the (n + 1)-dimensional vector product n-Lie algebra, and the remaining three are
infinite-dimensional n-Lie algebras.

Classifications of n-Lie algebras in higher dimensions have only been studied
in particular cases. Metric n-Lie algebras, that is n-Lie algebras equipped with a
non-degenerate compatible bilinear form, have been considered and classified, first
in dimension n + 2 by Ren et al. [76] and dimension n + 3 by Geng et al. [48], and
then in dimensions n + k for 2 ≤ k ≤ n + 1 by Bai et al. [23]. The classification is
based on the study of the Levi decomposition, the center and the isotropic ideals and
properties around them. Another case that has been studied is the case of nilpotent
n-Lie algebras, more specifically nilpotent n-Lie algebras of class 2. Eshrati et al.
[45] classify (n + 3)-dimensional nilpotent n-Lie algebras and (n + 4)-dimensional
nilpotent n-Lie algebras of class 2 using properties introduced in [39, 46]. Similarly
Hoseini et al. [50] classify (n + 5)-dimensional nilpotent n-Lie algebras of class 2.
In [52], Jamshidi, Saeedi and Darabi classify (n + 6)-dimensional nilpotent n-Lie
algebras of class 2 using the fact that such algebras factored by the span of a central
element give (n + 5)-dimensional nilpotent n-Lie algebras of class 2, which were
classified before. Classification of other classes of nilpotent n-Lie algebras depending
on dimension of multiplier has been considered in [40]. There has been a study of
the classification of 3-dimensional 3-Hom-Lie algebras with diagonal twisting maps
by Ataguema, Makhlouf and Silvestrov in [13].

Hom-type generalization of n-ary algebras, such as n-Hom-Lie algebras and other
n-ary Hom algebras of Lie type and associative type, were introduced in [13], by
twisting the defining identities by a set of linear maps. The particular case, where all
these maps are equal and are algebra morphisms has been considered and a way to
generate examples of n-ary Hom-algebras from n-ary algebras of the same type have
been described. Further properties, constructionmethods, examples, representations,
cohomology and central extensions of n-ary Hom-algebras have been considered in
[9–12, 55, 56, 84, 87]. These generalizations include n-ary Hom-algebra struc-
tures generalizing the n-ary algebras of Lie type including n-ary Nambu algebras,
n-ary Nambu-Lie algebras and n-ary Lie algebras, and n-ary algebras of associa-
tive type including n-ary totally associative and n-ary partially associative algebras.
In [58], constructions of n-ary generalizations of BiHom-Lie algebras and BiHom-
associative algebras have been considered. Generalized Derivations of n-BiHom-Lie
algebras have been studied in [28]. Generalized derivations of multiplicative n-ary
Hom-� color algebras have been studied in [30]. Cohomology of Hom-Leibniz
and n-ary Hom-Nambu-Lie superalgebras has been considered in [1] Generalized
Derivations and Rota-Baxter Operators of n-ary Hom-Nambu Superalgebras have
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been considered in [70]. A construction of 3-Hom-Lie algebras based onσ -derivation
and involution has been studied in [6]. Multiplicative n-Hom-Lie color algebras have
been considered in [26].

In [11, 12], the construction of (n + 1)-Lie algebras induced by n-Lie algebras
using combination of bracket multiplication with a trace, motivated by the work
of Awata et al. [14] on the quantization of the Nambu brackets, was generalized
using the brackets of general Hom-Lie algebras or n-Hom-Lie algebras and trace-
like linear forms satisfying conditions depending on the twisting linearmaps defining
the Hom-Lie or n-Hom-Lie algebras. In [27], a method was demonstrated of how to
construct n-ary multiplications from the binary multiplication of a Hom-Lie algebra
and a (n − 2)-linear function satisfying certain compatibility conditions. Solvability
and nilpotency for n-Hom-Lie algebras and (n + 1)-Hom-Lie algebras induced by
n-Hom-Lie algebras have been considered in [57].

n-Hom-Lie algebras are fundamentally different from n-Lie algebras especially
when the twisting maps are not invertible or not diagonalizable. When the twisting
maps are not invertible, the Hom-Nambu-Filippov identity becomes less restrictive
since when elements of the kernel of the twisting maps are used, several terms
or even the whole identity might vanish. Isomorphisms of Hom-algebras are also
different from isomorphisms of algebras since they need to intertwine not only the
multiplications but also the twistingmaps. All of this make the classification problem
different, interesting, rich and not simply following from the case of n-Lie algebras.
In this work, we consider n-Hom-Lie algebras with a nilpotent twistingmap α, which
means in particular that α is not invertible.

In [59], properties and classification of n-Hom-Lie algebras in dimension
n + 1 were considered, 4-dimensional 3-Hom-Lie algebras for various special cases
of the twistingmap have been computed in terms of structure constants as parameters
and listed in classes in the way emphasising the number of free parameters in each
class.

The aim of this article is to study n-Hom-Lie algebras in dimension n + 1 for
4 ≤ n ≤ 6 and nilpotent α with 2-dimensional kernel, give a list of algebras, study
their properties and compare different dimensions. Section 20.2 contains basic def-
initions and some general properties of n-Hom-Lie algebras as well some specific
properties of (n + 1)-dimensional n-Hom-Lie algebras and the systems of equations
corresponding to Hom-Nambu-Filippov identity. In Sect. 20.3, the n-Hom-Lie alge-
bras in dimension n + 1 for n = 4, 5, 6 and nilpotent α with 2-dimensional kernel
are computed and some detailed properties of these algebras are obtained.
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20.2 Definitions and Properties of n-Hom-Lie Algebras

In this section, we present the basic definitions and properties of n-Hom-Lie algebras
needed for our study. Throughout this article, it is assumed that all vector spaces are
over a fieldK of characteristic 0, and for any subset S of a vector space, 〈S〉 denotes
the linear span of S. Hom-Lie algebras are a generalization of Lie algebras introduced
in [49] while studying σ -derivations. The n-ary case was introduced in [13].

Definition 20.1 ([49, 71]) A Hom-Lie algebra (A, [·, ·], α) is a vector space A
together with a bilinear map [·, ·] : A × A → A and a linear map α : A → A satis-
fying, for all x, y, z ∈ A,

[x, y] = −[y, x] Skew-symmetry

[α(x), [y, z]] = [[x, y], α(z)] + [α(y), [x, z]] Hom-Jacobi identity

In Hom-Lie algebras, by skew-symmetry, the Hom-Jacobi identity is equivalent to

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0. Hom-Jacobi identity
in cyclic form

Definition 20.2 ([49, 61]) Hom-Lie algebramorphisms fromHom-Lie algebraA =
(A, [·, ·]A, α) to Hom-Lie algebra B = (B, [·, ·]B, β) are linear maps f : A → B
satisfying, for all x, y ∈ A,

f ([x, y]A) = [ f (x), f (y)]B, (20.1)

f ◦ α = β ◦ f. (20.2)

Linear maps f : A → B satisfying only condition (20.1) are called weakmorphisms
of Hom-Lie algebras.

Definition 20.3 ([29, 71]) A Hom-Lie algebra (A, [·, ·], α) is said to be multiplica-
tive if α is an algebra morphism, and it is said to be regular if α is an isomorphism.

Definition 20.4 ([13]) Ann-Hom-Lie algebra (A, [·, . . . , ·], {αi }1≤i≤n−1) is a vector
space A together with a n-linear map [·, . . . , ·] : An → A and (n − 1) linear maps
αi : A → A, 1 ≤ i ≤ n − 1 satisfying, for all x1, . . . , xn−1, y1, . . . , yn ∈ A,

Skew-symmetry

[xσ(1), . . . , xσ(n)] = sgn(σ )[x1, . . . , xn], (20.3)

Hom-Nambu-Filippov identity

[α1(x1), . . . , αn−1(xn−1), [y1, . . . , yn]] =
n∑

i=1

[α1(y1), . . . , αi−1(yi−1), [x1, . . . , xn−1, yi ], αi (yi+1), . . . , αn−1(yn)].

(20.4)
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Remark 20.1 Ifαi = I dA for all 1 ≤ i ≤ n − 1, then one gets an n-Lie algebra [47].
Therefore, the class of n-Lie algebras is included in the class of n-Hom-Lie algebras.
For any vector space A, if [x1, . . . , xn]0 = 0 for all x1, .., xn ∈ A and any linear maps
α1, . . . , αn−1, then (A, [·, . . . , ·]0 , α1, . . . , αn−1) is an n-Hom-Lie algebra.

Definition 20.5 ([13, 87]) n-Hom-Lie algebra morphisms of n-Hom-Lie algebras

A = (A, [·, . . . , ·]A, {αi }1≤i≤n−1) and B = (B, [·, . . . , ·]B, {βi }1≤i≤n−1)

are linear maps f : A → B satisfying, for all x1, . . . , xn ∈ A,

f ([x1, . . . , xn]A) = [ f (x1), . . . , f (xn)]B, (20.5)

f ◦ αi = βi ◦ f, for all 1 ≤ i ≤ n − 1. (20.6)

Linear maps satisfying only condition (20.5) are called weak morphisms of n-Hom-
Lie algebras.

The n-Hom-Lie algebras (A, [·, . . . , ·], {αi }1≤i≤n−1) with α1 = · · · = αn−1 = α

will be denoted by (A, [·, . . . , ·] , α).

Definition 20.6 ([87]) An n-Hom-Lie algebra (A, [·, . . . , ·] , α) is calledmultiplica-
tive if α is an algebra morphism, and regular if α is an algebra isomorphism.

The following proposition, providing a way to construct an n-Hom-Lie algebra
from an n-Lie algebra and an algebra morphism, was first introduced in the case of
Lie algebras and then generalized to the n-ary case in [13]. Amore general version of
this theorem, given in [87], states that the category of n-Hom-Lie algebras is closed
under twisting by weak morphisms.

Proposition 20.1 ([13, 87]) Let β : A → A be a weak morphism of n-Hom-Lie
algebra A = (

A, [·, . . . , ·] , {αi }1≤i≤n−1
)
, and multiplication [·, . . . , ·]β is defined

by [x1, . . . , xn]β = β ([x1, . . . , xn]) . Then,
(
A, [·, . . . , ·]β , {β ◦ αi }1≤i≤n−1

)
is an n-

Hom-Lie algebra.Moreover, if (A, [·, . . . , ·] , α) is multiplicative and β ◦ α = α ◦ β,
then

(
A, [·, . . . , ·]β , β ◦ α

)
is multiplicative.

The following particular case of Proposition 20.1 is obtained if α = I dA.

Corollary 20.1 Let (A, [·, . . . , ·]) be an n-Lie algebra, β : A → A an algebra
morphism, and [·, . . . , ·]β is defined by [x1, . . . , xn]β = β ([x1, . . . , xn]) . Then,(
A, [·, . . . , ·]β , β

)
is a multiplicative n-Hom-Lie algebra.

Fundamental objects and basic algebra were first introduced for n-Lie algebras in
[42] and generalized to n-Hom-Lie algebras in [9].They allow to define actions and
representations of these n-ary algebras.

Definition 20.7 ([9]) Let (A, [·, . . . , ·] , α) be a multiplicative n-Hom-Lie algebra
and let L(A) = ∧n−1A be the (n − 1)th exterior power of A. The elements of L(A)

are called fundamental objects.
For X = x1 ∧ · · · ∧ xn−1,Y = y1 ∧ · · · ∧ yn−1 ∈ L(A), we define:
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• The map ᾱ : ∧n−1A → ∧n−1A by ᾱ(X) = α(x1) ∧ · · · ∧ α(xn−1).

• The action of fundamental objects on A by

∀z ∈ A, X · z = adX (z) = [
x1, . . . , xn−1, z

]
.

• The multiplication (composition) of two fundamental objects by

[X,Y ]α = X ·α Y =
n−1∑

i=1

α(y1) ∧ · · · ∧ X · yi ∧ · · · ∧ α(yn−1).

We extend the preceding definitions to the entire space L(A) by linearity.

Proposition 20.2 ([9]) The space L(A) equipped with the bracket [·, ·]α defined
above is a Hom-Leibniz algebra, that is the bracket [·, ·]α satisfies the following
identity

[ᾱ(X), [Y, Z ]α]α = [[X,Y ]α, ᾱ(Z)]α + [ᾱ(Y ), [X, Z ]α]α.

Definition 20.8 ([29, 71, 87]) An n-Hom-Lie subalgebra B = (B, [·, . . . , ·]B,

β1, . . . , βn−1) of an n-Hom-Lie algebraA = (A, [·, . . . , ·]A, α1, . . . , αn−1) consists
of a subspace B of A satisfying, for all x1, . . . , xn ∈ B,

(1) αi (B) ⊆ B for all 1 ≤ i ≤ n − 1,
(2) [x1, . . . , xn]A ∈ B,

with the restricted from A multiplication [·, . . . , ·]B = [·, . . . , ·]A and linear maps
βi = αi , 1 ≤ i ≤ n − 1 on B.

Definition 20.9 ([29, 71, 87]) For any n-Hom-Lie algebra (A, [·, . . . , ·], α1, . . . ,

αn−1), an ideal is a subspace I of A satisfying, for all x1, . . . , xn−1 ∈ A and y ∈ I ,

(1) αi (I ) ⊆ I for all 1 ≤ i ≤ n − 1;
(2) [x1, . . . , xn−1, y] ∈ I .

Definition 20.10 ([57]) Let (A, [·, . . . , ·] , α1, . . . , αn−1) be an n-Hom-Lie algebra,
and let I be an ideal of A. For 2 ≤ k ≤ n, we define the k-derived series of the ideal
I by

D0
k (I ) = I and Dr+1

k =
⎡

⎢⎣Dp
k (I ), . . . , Dp

k (I )︸ ︷︷ ︸
k

, A, . . . , A︸ ︷︷ ︸
n−k

⎤

⎥⎦ .

We define the k-central descending series of I by

C0
k (I ) = I and C p+1

k (I ) =
⎡

⎣C p
k (I ), I, . . . , I︸ ︷︷ ︸

k−1

, A, . . . , A︸ ︷︷ ︸
n−k

⎤

⎦ .
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Definition 20.11 ([57]) Let (A, [·, . . . , ·] , α1, . . . , αn−1) be an n-Hom-Lie algebra,
and let I be an ideal of A. For 2 ≤ k ≤ n, the ideal I is said to be k-solvable (resp.
k-nilpotent) if there exists r ∈ N such that Dr

k(I ) = {0} (resp. Cr
k (I ) = {0}). in this

case, the smallest r ∈ N satisfying this condition is called the class of k-solvability
(resp. the class of k-nilpotence) of I .

Lemma 20.1 ([57]) For any two n-Hom-Lie algebrasA = (A, [·, . . . , ·]A , α1, . . . ,

αn−1)andB = (B, [·, . . . , ·]B , β1, . . . , βn−1), let f : A → B bea surjective n-Hom-
Lie algebras morphism and I an ideal of A. Then for all r ∈ N and 2 ≤ k ≤ n,

f
(
Dr

k(I )
) = Dr

k ( f (I )) and f
(
Cr
k (I )

) = Cr
k ( f (I )) .

This lemma also implies that if two n-Hom-Lie algebras are isomorphic, they
would also have isomorphic members of the derived series and central descending
series, which also means that if two algebras have a significant difference in the
derived series or the central descending series, for example different dimensions of
given corresponding members, then these algebras cannot be isomorphic.

Lemma 20.2 ([59]) Let A be a vector space, let [·, . . . , ·] be an n-linear skew-
symmetric map and let α1, . . . , αn−1 be linear maps on A. If the (n − 1)-linear map

(x1, . . . , xn−1) �→ [
α1(x1), . . . , αn−1(xn−1), d

]

is skew-symmetric for all d ∈ [A, . . . , A], then the (2n − 1)-linear map H, defined
by

H(x1, . . . , xn−1, y1, . . . , yn) = [α1(x1), . . . , αn−1(xn−1), [y1, . . . , yn]]

−
n∑

k=1

[α1(y1), . . . , αk−1(yk−1), [x1, . . . , xn−1, yk], αk(yk+1), . . . , αn−1(yn)],

for all x1, . . . , xn−1, y1, . . . , yn ∈ A, is skew-symmetric in its first n − 1 arguments
and in its last n arguments.

Proposition 20.3 ([59]) Let A be an n-dimensional vector space, and (ei )1≤i≤n a
basis of A. Any skew-symmetric n-linear map [·, . . . , ·] on A is fully defined by giving
[e1, . . . , en] = d ∈ A. Let α1, . . . , αn−1 be linear maps on A. If the (n − 1)-linear
map

(x1, . . . , xn−1) �→ [
α1(x1), . . . , αn−1(xn−1), d

]

is skew-symmetric, then (A, [·, . . . , ·] , α1, . . . , αn−1) is an n-Hom-Lie algebra.

Corollary 20.2 ([59]) Let A be an n-dimensional vector space, and (ei )1≤i≤n a
basis of A. Any skew-symmetric n-linear map [·, . . . , ·] on A is fully defined by
giving [e1, . . . , en] = d ∈ A. For any linear map α on A, (A, [·, . . . , ·] , α) is an
n-Hom-Lie algebra.
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Let (A, [·, . . . , ·] , α) be an n-ary skew-symmetric algebra of dimension n + 1
with a linear map α. Given a linear basis (ei )1≤i≤n+1 of A, linear map α is fully
determined by its matrix determined by action of α on the basis, and a skew-
symmetric n-ary multi-linear bracket is fully determined by

[
e1, . . . , êi , . . . , en+1

]

for all 1 ≤ i ≤ n + 1 represented by a matrix B as follows:

[
e1, . . . , êi , . . . , en+1

] = (−1)n+1+iwi ,

wi =
n+1∑

p=1

b(p, i)ep,

(w1, . . . ,wn+1) = (e1, . . . , en+1)B, for B = (b(i, j))1≤i, j≤n+1. (20.7)

Proposition 20.4 ([59])LetA1 = (A, [·, . . . , ·]1 , α1)andA2 = (A, [·, . . . , ·]2 , α2)

be two (n + 1)-dimensional n-ary skew-symmetric Hom-algebras represented by
matrices [α1], B1 and [α2], B2 respectively. The Hom-algebras A1 and A2 are iso-
morphic if and only if there exists an invertible matrix T satisfying the following
conditions:

B2 = det(T )−1T B1T
T ,

[α2] = T [α1]T−1.

Proposition 20.5 ([59]) Let (ei )1≤i≤n+1 be a basis of A, let σ be an n + 1 permu-
tation, and let B = (bi, j )1≤i, j≤n+1 be a matrix representing a skew-symmetric n-ary
bracket in this basis, then the matrix representing the same bracket in the basis
(eσ(i))1≤i≤n+1 is sgn(σ )(bσ−1(i),σ−1( j))1≤i, j≤n+1.

Remark 20.2 ([59]) Let (A, [·, . . . , ·] , α) be an (n + 1)-dimensional n-Hom-Lie
algebra and let B be the matrix representing its bracket. D1

n(A) = [A, . . . , A] is
generated by {w1, . . . ,wn+1}. Which means that Rank(B) = dim D1

n(A).
If Rank(B) ≤ n or equivalently det(B) = 0 then D1

n(A) has dimension at most
n, which means that D2

n(A) has dimension at most 1 and then D3
n(A) = 0.

Remark 20.3 ([59]) For the whole algebra A, all the k-central descending series, for
all 2 ≤ k ≤ n, are equal, therefore all the notions of k-nilpotency, for all 2 ≤ k ≤ n,
are equivalent.

Proposition 20.6 ([59]) Let (A, [·, . . . , ·] , α) be an n-ary Hom-algebra, dim A =
n + 1, [·, . . . , ·] skew-symmetric, α nilpotent, dim ker α = 2 and the bracket is rep-
resented by the matrix B = (bi, j ) in a basis where α is in Jordan normal form, as
detailed above. The bracket [·, . . . , ·] satisfies the Hom-Nambu-Filippov identity if
and only if

∀ 1 ≤ j, p ≤ n + 1, j �= 1, j �= i0 :
bi0−1, j bp,n+1 − bn+1, j bp,i0−1 = 0,

where i0 is such that ker α = 〈e1, ei0〉.
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Remark 20.4 Let us compare the polynomial equations obtained from the Nambu-
Filippov identity and the Hom-Nambu-Filippov identity in dimension n + 1 with
various types of twisting maps:
Diagonalizable and invertible with eigenvalues {λi }1≤i≤n+1:

∀ 1 ≤ i, j, k, p ≤ n + 1, i < j < k :
(λi b j,i − λ j bi, j )bp,k + (λkbi,k − λi bk,i )bp, j + (λ j bk, j − λkb j,k)bp,i = 0; (20.8)

Diagonalizable with dim ker α = 1 with eigenvalues {λi }1≤i≤n+1:

∀ 1 < j < k ≤ n + 1

λkb1,kw j − λkb j,kw1 − λ j b1, jwk + λ j bk, jw1 = 0; (20.9)

Diagonalizable with dim ker α = 2 with eigenvalues {λi }1≤i≤n+1:

∀ 3 ≤ k ≤ n + 1 : b1,kw2 − b2,kw1 = 0; (20.10)

Nilpotent with dim ker α = 1:

∀ 1 ≤ i, k, p ≤ n + 1, i < k :
(bk−1,i − bi−1,k)bp,n+1 − bn+1,i bp,k−1 + bn+1,kbp,i−1 = 0; (20.11)

Nilpotent with dim ker α = 2:

∀ 1 ≤ j, p ≤ n + 1, j �= 1, j �= i0 : bi0−1, j bp,n+1 − bn+1, j bp,i0−1 = 0.
(20.12)

These different cases are separate from each other, and the case of n-Lie algebras
is the special case of (20.8) where all the λi are equal. Notice that the higher the
dimension of ker α the less equation we have and the less terms we have in each
equation, that is, in these cases, the Hom-Nambu-Filippov identity is considerably
less restrictive. Another difference from the case of n-Lie algebra are the isomor-
phisms, in Hom-algebras, an isomorphism intertwines the multiplications and the
twisting maps, which leads to different, more restrictive isomorphism conditions.

20.3 Lists of (n+1)-Dimensional n-Hom-Lie Algebras
in Various Arities

Now, we present lists of (n + 1)-dimensional n-Hom-Lie algebras with nilpotent
structure map α with ker α = 2, for 4 ≤ n ≤ 6. For an (n + 1)-dimensional vector
space with a basis (ei ), we represent a linear map α by its matrix in this bases, and
a skew-symmetric n-ary multi-linear bracket by a matrix B defined by
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[
e1, . . . , êi , . . . , en+1

] = (−1)n+1+iwi ,

wi =
n+1∑

p=1

b(p, i)ep

(w1, . . . ,wn+1) = (e1, . . . , en+1)B, for B = (b(i, j))1≤i, j≤n+1.

Remark 20.5 In the usual way, when one would work with structure constants of
an n-Hom-Lie algebra (or any n-ary algebra), we would have

[
ei1 , . . . , ein

] =
d∑

p=1

cpi1,...,in ep,

which can be simplified, in the case of (n + 1)-dimensional n-Hom-Lie algebras by
skew-symmetry to

[
e1, . . . , ei−1, ei+1, . . . , en+1

] =
n+1∑

p=1

cp1,...,i−1,i+1,...,n+1ep.

In computations, this notation becomes unpractical with increasing arity. In our
notation,

b(i, p) = (−1)n+i+1cp1,...,i−1,i+1,...,n+1.

If α is nilpotent with dim ker α = 2, then it would have two Jordan blocks of size
p and q such that p + q = n + 1. If (ei ) is a basis where α is in Jordan normal form,
then ker α = 〈e1, ei0〉. The Hom-Nambu-Filippov identity is equivalent, in this case,
to the following system of equations:

∀ 1 ≤ j, p ≤ n + 1, j �= 1, j �= i0 :
b(i0 − 1, j)b(p, n + 1) − b(n + 1, j)b(p, i0 − 1) = 0.

We solve this system using the computer algebra system Mathematica for n =
4, 5, 6, and for each n, we take all the values of i0 so that we get all the possible
cases for the sizes of the Jordan blocks, that is 2 ≤ i0 ≤ n

2 + 1. We get the following
brackets, represented by matrices as previously explained (Tables 20.1, 20.2, 20.3,
20.4, 20.5, 20.6, 20.7 and 20.8).

Remark 20.6 For each n, the algebras in the same position in different tables are iso-
morphic as n-ary skew-symmetric algebras. One can show this using
Proposition 20.5 for the transposition exchanging the values of i0 − 1 for the corre-
sponding tables. However, they cannot be isomorphic as n-Hom-Lie algebras since
the matrices representing the twisting maps for each table are not similar.
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Table 20.1 n = 6, dim = 7, ker α = 〈e1, e2〉, [α] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,2,1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) b(7, 1)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) b(2,1)b(7,1)
b(1,1)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(3,1)b(7,1)
b(1,1)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4,1)b(7,1)
b(1,1)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5,1)b(7,1)
b(1,1)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6,1)b(7,1)
b(1,1)

b(7, 1) b(1,2)b(7,1)
b(1,1)

b(1,3)b(7,1)
b(1,1)

b(1,4)b(7,1)
b(1,1)

b(1,5)b(7,1)
b(1,1)

b(1,6)b(7,1)
b(1,1)

b(7,1)2
b(1,1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,2,2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) b(2, 7)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(2,7)b(3,1)
b(2,1)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(2,7)b(4,1)
b(2,1)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(2,7)b(5,1)
b(2,1)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(2,7)b(6,1)
b(2,1)

0 b(1,2)b(2,7)
b(2,1)

b(1,3)b(2,7)
b(2,1)

b(1,4)b(2,7)
b(2,1)

b(1,5)b(2,7)
b(2,1)

b(1,6)b(2,7)
b(2,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,2,3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) b(2, 7)

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(3, 7)

0 b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4, 7)

0 b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5, 7)

0 b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6, 7)

0 b(7, 2) b(7, 3) b(7, 4) b(7, 5) b(7, 6) b(7, 7)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,2,4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

0 b(2, 2) b(...2, 3) b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(3, 7)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(3,7)b(4,1)
b(3,1)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(3,7)b(5,1)
b(3,1)

b(6, 1) b(6, 2.) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(3,7)b(6,1)
b(3,1)

0 b(1,2)b(3,7)
b(3,1)

b(1,3)b(3,7)
b(3,1)

b(1,4)b(3,7)
b(3,1)

b(1,5)b(3,7)
b(3,1)

b(1,6)b(3,7)
b(3,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,2,5

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) b(2, 7)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(3, 7)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4, 7)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5, 7)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6, 7)

0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(continued)



20 On Classification of (n+1)-Dimensional n-Hom-Lie Algebras … 575

Table 20.1 (continued)

76,N ,2,2,6

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) 0

0 b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) 0

0 b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) 0

0 b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) 0

0 b(7, 2) b(7, 3) b(7, 4) b(7, 5) b(7, 6) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,2,7

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4, 7)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(4,7)b(5,1)
b(4,1)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(4,7)b(6,1)
b(4,1)

0 b(1,2)b(4,7)
b(4,1)

b(1,3)b(4,7)
b(4,1)

b(1,4)b(4,7)
b(4,1)

b(1,5)b(4,7)
b(4,1)

b(1,6)b(4,7)
b(4,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,2,8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) 0

0 b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) 0

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5, 7)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(5,7)b(6,1)
b(5,1)

0 b(1,2)b(5,7)
b(5,1)

b(1,3)b(5,7)
b(5,1)

b(1,4)b(5,7)
b(5,1)

b(1,5)b(5,7)
b(5,1)

b(1,6)b(5,7)
b(5,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,2,9

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) 0

0 b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) 0

0 b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) 0

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6, 7)

0 b(1,2)b(6,7)
b(6,1)

b(1,3)b(6,7)
b(6,1)

b(1,4)b(6,7)
b(6,1)

b(1,5)b(6,7)
b(6,1)

b(1,6)b(6,7)
b(6,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 20.2 n = 6, dim = 7, ker α = 〈e1, e3〉, [α] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,3,1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) b(1,2)b(7,2)
b(2,2)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) b(7, 2)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(3,2)b(7,2)
b(2,2)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4,2)b(7,2)
b(2,2)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5,2)b(7,2)
b(2,2)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6,2)b(7,2)
b(2,2)

b(2,1)b(7,2)
b(2,2) b(7, 2) b(2,3)b(7,2)

b(2,2)
b(2,4)b(7,2)

b(2,2)
b(2,5)b(7,2)

b(2,2)
b(2,6)b(7,2)

b(2,2)
b(7,2)2
b(2,2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,3,2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) b(1, 7)

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(1,7)b(3,2)
b(1,2)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(1,7)b(4,2)
b(1,2)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(1,7)b(5,2)
b(1,2)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(1,7)b(6,2)
b(1,2)

b(1,7)b(2,1)
b(1,2) 0 b(1,7)b(2,3)

b(1,2)
b(1,7)b(2,4)

b(1,2)
b(1,7)b(2,5)

b(1,2)
b(1,7)b(2,6)

b(1,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,3,3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) b(1, 6) b(1, 7)

0 0 0 0 0 0 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(3, 7)

b(4, 1) 0 b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4, 7)

b(5, 1) 0 b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5, 7)

b(6, 1) 0 b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6, 7)

b(7, 1) 0 b(7, 3) b(7, 4) b(7, 5) b(7, 6) b(7, 7)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,3,4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(3, 7)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(3,7)b(4,2)
b(3,2)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(3,7)b(5,2)
b(3,2)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(3,7)b(6,2)
b(3,2)

b(2,1)b(3,7)
b(3,2) 0 b(2,3)b(3,7)

b(3,2)
b(2,4)b(3,7)

b(3,2)
b(2,5)b(3,7)

b(3,2)
b(2,6)b(3,7)

b(3,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,3,5

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) 0 b(4, 3) b(4, 4) b(4, 5) b(4, 6) 0

b(5, 1) 0 b(5, 3) b(5, 4) b(5, 5) b(5, 6) 0

b(6, 1) 0 b(6, 3) b(6, 4) b(6, 5) b(6, 6) 0

b(7, 1) 0 b(7, 3) b(7, 4) b(7, 5) b(7, 6) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(continued)
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Table 20.2 (continued)

76,N ,2,3,6

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) b(1, 7)

0 0 0 0 0 0 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(3, 7)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4, 7)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5, 7)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6, 7)

0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,3,7

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4, 7)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(4,7)b(5,2)
b(4,2)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(4,7)b(6,2)
b(4,2)

b(2,1)b(4,7)
b(4,2) 0 b(2,3)b(4,7)

b(4,2)
b(2,4)b(4,7)

b(4,2)
b(2,5)b(4,7)

b(4,2)
b(2,6)b(4,7)

b(4,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,3,8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) 0 b(4, 3) b(4, 4) b(4, 5) b(4, 6) 0

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5, 7)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(5,7)b(6,2)
b(5,2)

b(2,1)b(5,7)
b(5,2) 0 b(2,3)b(5,7)

b(5,2)
b(2,4)b(5,7)

b(5,2)
b(2,5)b(5,7)

b(5,2)
b(2,6)b(5,7)

b(5,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,3,9

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) 0 b(4, 3) b(4, 4) b(4, 5) b(4, 6) 0

b(5, 1) 0 b(5, 3) b(5, 4) b(5, 5) b(5, 6) 0

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6, 7)
b(2,1)b(6,7)

b(6,2) 0 b(2,3)b(6,7)
b(6,2)

b(2,4)b(6,7)
b(6,2)

b(2,5)b(6,7)
b(6,2)

b(2,6)b(6,7)
b(6,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



578 A. Kitouni and S. Silvestrov

Table 20.3 n = 6, dim = 7, ker α = 〈e1, e4〉, [α] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,4,1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) b(1,3)b(7,3)
b(3,3)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) b(2,3)b(7,3)
b(3,3)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6) b(7, 3)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4,3)b(7,3)
b(3,3)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5,3)b(7,3)
b(3,3)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6,3)b(7,3)
b(3,3)

b(3,1)b(7,3)
b(3,3)

b(3,2)b(7,3)
b(3,3) b(7, 3) b(3,4)b(7,3)

b(3,3)
b(3,5)b(7,3)

b(3,3)
b(3,6)b(7,3)

b(3,3)
b(7,3)2
b(3,3)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,4,2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) b(1, 7)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) b(1,7)b(2,3)
b(1,3)

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(1,7)b(4,3)
b(1,3)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(1,7)b(5,3)
b(1,3)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(1,7)b(6,3)
b(1,3)

b(1,7)b(3,1)
b(1,3)

b(1,7)b(3,2)
b(1,3) 0 b(1,7)b(3,4)

b(1,3)
b(1,7)b(3,5)

b(1,3)
b(1,7)b(3,6)

b(1,3) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,4,3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) b(1, 6) b(1, 7)

b(2, 1) b(2, 2) 0 b(2, 4) b(2, 5) b(2, 6) b(2, 7)

0 0 0 0 0 0 0

b(4, 1) b(4, 2) 0 b(4, 4) b(4, 5) b(4, 6) b(4, 7)

b(5, 1) b(5, 2) 0 b(5, 4) b(5, 5) b(5, 6) b(5, 7)

b(6, 1) b(6, 2) 0 b(6, 4) b(6, 5) b(6, 6) b(6, 7)

b(7, 1) b(7, 2) 0 b(7, 4) b(7, 5) b(7, 6) b(7, 7)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,4,4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) b(2, 7)

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(2,7)b(4,3)
b(2,3)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(2,7)b(5,3)
b(2,3)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(2,7)b(6,3)
b(2,3)

b(2,7)b(3,1)
b(2,3)

b(2,7)b(3,2)
b(2,3) 0 b(2,7)b(3,4)

b(2,3)
b(2,7)b(3,5)

b(2,3)
b(2,7)b(3,6)

b(2,3) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,4,5

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) b(2, 2) 0 b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) b(4, 2) 0 b(4, 4) b(4, 5) b(4, 6) 0

b(5, 1) b(5, 2) 0 b(5, 4) b(5, 5) b(5, 6) 0

b(6, 1) b(6, 2) 0 b(6, 4) b(6, 5) b(6, 6) 0

b(7, 1) b(7, 2) 0 b(7, 4) b(7, 5) b(7, 6) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(continued)
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Table 20.3 (continued)

76,N ,2,4,6

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6) b(1, 7)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6) b(2, 7)

0 0 0 0 0 0 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4, 7)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5, 7)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6, 7)

0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,4,7

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) b(2, 2) 0 b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6) b(4, 7)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(4,7)b(5,3)
b(4,3)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(4,7)b(6,3)
b(4,3)

b(3,1)b(4,7)
b(4,3)

b(3,2)b(4,7)
b(4,3) 0 b(3,4)b(4,7)

b(4,3)
b(3,5)b(4,7)

b(4,3)
b(3,6)b(4,7)

b(4,3) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,4,8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) b(2, 2) 0 b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) b(4, 2) 0 b(4, 4) b(4, 5) b(4, 6) 0

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6) b(5, 7)

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(5,7)b(6,3)
b(5,3)

b(3,1)b(5,7)
b(5,3)

b(3,2)b(5,7)
b(5,3) 0 b(3,4)b(5,7)

b(5,3)
b(3,5)b(5,7)

b(5,3)
b(3,6)b(5,7)

b(5,3) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76,N ,2,4,9

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) b(1, 6) 0

b(2, 1) b(2, 2) 0 b(2, 4) b(2, 5) b(2, 6) 0

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) b(3, 6) 0

b(4, 1) b(4, 2) 0 b(4, 4) b(4, 5) b(4, 6) 0

b(5, 1) b(5, 2) 0 b(5, 4) b(5, 5) b(5, 6) 0

b(6, 1) b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6) b(6, 7)
b(3,1)b(6,7)

b(6,3)
b(3,2)b(6,7)

b(6,3) 0 b(3,4)b(6,7)
b(6,3)

b(3,5)b(6,7)
b(6,3)

b(3,6)b(6,7)
b(6,3) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 20.4 n = 5, dim = 6, ker α = 〈e1, e2〉, [α] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

65,N ,2,2,1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(6, 1)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2,1)b(6,1)
b(1,1)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3,1)b(6,1)
b(1,1)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4,1)b(6,1)
b(1,1)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5,1)b(6,1)
b(1,1)

b(6, 1) b(1,2)b(6,1)
b(1,1)

b(1,3)b(6,1)
b(1,1)

b(1,4)b(6,1)
b(1,1)

b(1,5)b(6,1)
b(1,1)

b(6,1)2
b(1,1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(continued)
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Table 20.4 (continued)

65,N ,2,2,2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) 0

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(2,6)b(3,1)
b(2,1)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(2,6)b(4,1)
b(2,1)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(2,6)b(5,1)
b(2,1)

0 b(1,2)b(2,6)
b(2,1)

b(1,3)b(2,6)
b(2,1)

b(1,4)b(2,6)
b(2,1)

b(1,5)b(2,6)
b(2,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,2,3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6)

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6)

0 b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6)

0 b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6)

0 b(6, 2) b(6, 3) b(6, 4) b(6, 5) b(6, 6)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,2,4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(3,6)b(4,1)
b(3,1)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(3,6)b(5,1)
b(3,1)

0 b(1,2)b(3,6)
b(3,1)

b(1,3)b(3,6)
b(3,1)

b(1,4)b(3,6)
b(3,1)

b(1,5)b(3,6)
b(3,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,2,5

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6)

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,2,6

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) 0

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5) 0

0 b(4, 2) b(4, 3) b(4, 4) b(4, 5) 0

0 b(5, 2) b(5, 3) b(5, 4) b(5, 5) 0

0 b(6, 2) b(6, 3) b(6, 4) b(6, 5) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,2,7

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) 0

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(4,6)b(5,1)
b(4,1)

0 b(1,2)b(4,6)
b(4,1)

b(1,3)b(4,6)
b(4,1)

b(1,4)b(4,6)
b(4,1)

b(1,5)b(4,6)
b(4,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,2,8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) b(1, 5) 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5) 0

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5) 0

0 b(4, 2) b(4, 3) b(4, 4) b(4, 5) 0

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6)

0 b(1,2)b(5,6)
b(5,1)

b(1,3)b(5,6)
b(5,1)

b(1,4)b(5,6)
b(5,1)

b(1,5)b(5,6)
b(5,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 20.5 n = 5, dim = 6, ker α = 〈e1, e3〉, [α] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

65,N ,2,3,1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1,2)b(6,2)
b(2,2)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(6, 2)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3,2)b(6,2)
b(2,2)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4,2)b(6,2)
b(2,2)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5,2)b(6,2)
b(2,2)

b(2,1)b(6,2)
b(2,2) b(6, 2) b(2,3)b(6,2)

b(2,2)
b(2,4)b(6,2)

b(2,2)
b(2,5)b(6,2)

b(2,2)
b(6,2)2
b(2,2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,3,2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6)

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(1,6)b(3,2)
b(1,2)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(1,6)b(4,2)
b(1,2)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(1,6)b(5,2)
b(1,2)

b(1,6)b(2,1)
b(1,2) 0 b(1,6)b(2,3)

b(1,2)
b(1,6)b(2,4)

b(1,2)
b(1,6)b(2,5)

b(1,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,3,3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) b(1, 6)

0 0 0 0 0 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5) b(3, 6)

b(4, 1) 0 b(4, 3) b(4, 4) b(4, 5) b(4, 6)

b(5, 1) 0 b(5, 3) b(5, 4) b(5, 5) b(5, 6)

b(6, 1) 0 b(6, 3) b(6, 4) b(6, 5) b(6, 6)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,3,4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) 0

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(3,6)b(4,2)
b(3,2)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(3,6)b(5,2)
b(3,2)

b(2,1)b(3,6)
b(3,2) 0 b(2,3)b(3,6)

b(3,2)
b(2,4)b(3,6)

b(3,2)
b(2,5)b(3,6)

b(3,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,3,5

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) 0

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5) 0

b(4, 1) 0 b(4, 3) b(4, 4) b(4, 5) 0

b(5, 1) 0 b(5, 3) b(5, 4) b(5, 5) 0

b(6, 1) 0 b(6, 3) b(6, 4) b(6, 5) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(continued)
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Table 20.5 (continued)

65,N ,2,3,6

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6)

0 0 0 0 0 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(3, 6)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6)

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,3,7

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) 0

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(4,6)b(5,2)
b(4,2)

b(2,1)b(4,6)
b(4,2) 0 b(2,3)b(4,6)

b(4,2)
b(2,4)b(4,6)

b(4,2)
b(2,5)b(4,6)

b(4,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,3,8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5) 0

b(2, 1) 0 b(2, 3) b(2, 4) b(2, 5) 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5) 0

b(4, 1) 0 b(4, 3) b(4, 4) b(4, 5) 0

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6)
b(2,1)b(5,6)

b(5,2) 0 b(2,3)b(5,6)
b(5,2)

b(2,4)b(5,6)
b(5,2)

b(2,5)b(5,6)
b(5,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 20.6 n = 5, dim = 6, ker α = 〈e1, e4〉, [α] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

65,N ,2,4,1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1,3)b(6,3)
b(3,3)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2,3)b(6,3)
b(3,3)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5) b(6, 3)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4,3)b(6,3)
b(3,3)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5,3)b(6,3)
b(3,3)

b(3,1)b(6,3)
b(3,3)

b(3,2)b(6,3)
b(3,3) b(6, 3) b(3,4)b(6,3)

b(3,3)
b(3,5)b(6,3)

b(3,3)
b(6,3)2
b(3,3)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,4,2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(1,6)b(2,3)
b(1,3)

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(1,6)b(4,3)
b(1,3)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(1,6)b(5,3)
b(1,3)

b(1,6)b(3,1)
b(1,3)

b(1,6)b(3,2)
b(1,3) 0 b(1,6)b(3,4)

b(1,3)
b(1,6)b(3,5)

b(1,3) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(continued)
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Table 20.6 (continued)

65,N ,2,4,3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) b(1, 6)

b(2, 1) b(2, 2) 0 b(2, 4) b(2, 5) b(2, 6)

0 0 0 0 0 0

b(4, 1) b(4, 2) 0 b(4, 4) b(4, 5) b(4, 6)

b(5, 1) b(5, 2) 0 b(5, 4) b(5, 5) b(5, 6)

b(6, 1) b(6, 2) 0 b(6, 4) b(6, 5) b(6, 6)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,4,4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) 0

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6)

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(2,6)b(4,3)
b(2,3)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(2,6)b(5,3)
b(2,3)

b(2,6)b(3,1)
b(2,3)

b(2,6)b(3,2)
b(2,3) 0 b(2,6)b(3,4)

b(2,3)
b(2,6)b(3,5)

b(2,3) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,4,5

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) 0

b(2, 1) b(2, 2) 0 b(2, 4) b(2, 5) 0

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) 0

b(4, 1) b(4, 2) 0 b(4, 4) b(4, 5) 0

b(5, 1) b(5, 2) 0 b(5, 4) b(5, 5) 0

b(6, 1) b(6, 2) 0 b(6, 4) b(6, 5) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,4,6

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5) b(2, 6)

0 0 0 0 0 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6)

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,4,7

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) 0

b(2, 1) b(2, 2) 0 b(2, 4) b(2, 5) 0

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5) b(4, 6)

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(4,6)b(5,3)
b(4,3)

b(3,1)b(4,6)
b(4,3)

b(3,2)b(4,6)
b(4,3) 0 b(3,4)b(4,6)

b(4,3)
b(3,5)b(4,6)

b(4,3) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

65,N ,2,4,8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) 0 b(1, 4) b(1, 5) 0

b(2, 1) b(2, 2) 0 b(2, 4) b(2, 5) 0

b(3, 1) b(3, 2) 0 b(3, 4) b(3, 5) 0

b(4, 1) b(4, 2) 0 b(4, 4) b(4, 5) 0

b(5, 1) b(5, 2) b(5, 3) b(5, 4) b(5, 5) b(5, 6)
b(3,1)b(5,6)

b(5,3)
b(3,2)b(5,6)

b(5,3) 0 b(3,4)b(5,6)
b(5,3)

b(3,5)b(5,6)
b(5,3) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 20.7 n = 4, dim = 5, ker α = 〈e1, e2〉, [α] =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

54,N ,2,2,1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(5, 1)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2,1)b(5,1)
b(1,1)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3,1)b(5,1)
b(1,1)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4,1)b(5,1)
b(1,1)

b(5, 1) b(1,2)b(5,1)
b(1,1)

b(1,3)b(5,1)
b(1,1)

b(1,4)b(5,1)
b(1,1)

b(5,1)2
b(1,1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,2,2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) 0

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(2,5)b(3,1)
b(2,1)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(2,5)b(4,1)
b(2,1)

0 b(1,2)b(2,5)
b(2,1)

b(1,3)b(2,5)
b(2,1)

b(1,4)b(2,5)
b(2,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,2,3

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 b(2, 2) b(2, 3) b(2, 4) b(2, 5)

0 b(3, 2) b(3, 3) b(3, 4) b(3, 5)

0 b(4, 2) b(4, 3) b(4, 4) b(4, 5)

0 b(5, 2) b(5, 3) b(5, 4) b(5, 5)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,2,4

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) 0

0 b(2, 2) b(2, 3) b(2, 4) 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(3,5)b(4,1)
b(3,1)

0 b(1,2)b(3,5)
b(3,1)

b(1,3)b(3,5)
b(3,1)

b(1,4)b(3,5)
b(3,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,2,5

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(2, 5)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5)

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,2,6

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) 0

0 b(2, 2) b(2, 3) b(2, 4) 0

0 b(3, 2) b(3, 3) b(3, 4) 0

0 b(4, 2) b(4, 3) b(4, 4) 0

0 b(5, 2) b(5, 3) b(5, 4) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,2,7

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 b(1, 2) b(1, 3) b(1, 4) 0

0 b(2, 2) b(2, 3) b(2, 4) 0

0 b(3, 2) b(3, 3) b(3, 4) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5)

0 b(1,2)b(4,5)
b(4,1)

b(1,3)b(4,5)
b(4,1)

b(1,4)b(4,5)
b(4,1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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Table 20.8 n = 4, dim = 5, ker α = 〈e1, e3〉, [α] =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

54,N ,2,3,1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1,2)b(5,2)
b(2,2)

b(2, 1) b(2, 2) b(2, 3) b(2, 4) b(5, 2)

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3,2)b(5,2)
b(2,2)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4,2)b(5,2)
b(2,2)

b(2,1)b(5,2)
b(2,2) b(5, 2) b(2,3)b(5,2)

b(2,2)
b(2,4)b(5,2)

b(2,2)
b(5,2)2
b(2,2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,3,2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5)

b(2, 1) 0 b(2, 3) b(2, 4) 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(1,5)b(3,2)
b(1,2)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(1,5)b(4,2)
b(1,2)

b(1,5)b(2,1)
b(1,2) 0 b(1,5)b(2,3)

b(1,2)
b(1,5)b(2,4)

b(1,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,3,3

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) b(1, 5)

0 0 0 0 0

b(3, 1) 0 b(3, 3) b(3, 4) b(3, 5)

b(4, 1) 0 b(4, 3) b(4, 4) b(4, 5)

b(5, 1) 0 b(5, 3) b(5, 4) b(5, 5)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,3,4

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) 0

b(2, 1) 0 b(2, 3) b(2, 4) 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(3,5)b(4,2)
b(3,2)

b(2,1)b(3,5)
b(3,2) 0 b(2,3)b(3,5)

b(3,2)
b(2,4)b(3,5)

b(3,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,3,5

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) 0

b(2, 1) 0 b(2, 3) b(2, 4) 0

b(3, 1) 0 b(3, 3) b(3, 4) 0

b(4, 1) 0 b(4, 3) b(4, 4) 0

b(5, 1) 0 b(5, 3) b(5, 4) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,3,6

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) b(1, 2) b(1, 3) b(1, 4) b(1, 5)

0 0 0 0 0

b(3, 1) b(3, 2) b(3, 3) b(3, 4) b(3, 5)

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5)

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

54,N ,2,3,7

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b(1, 1) 0 b(1, 3) b(1, 4) 0

b(2, 1) 0 b(2, 3) b(2, 4) 0

b(3, 1) 0 b(3, 3) b(3, 4) 0

b(4, 1) b(4, 2) b(4, 3) b(4, 4) b(4, 5)
b(2,1)b(4,5)

b(4,2) 0 b(2,3)b(4,5)
b(4,2)

b(2,4)b(4,5)
b(4,2) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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Chapter 21
Deforming Algebras with Anti-involution
via Twisted Associativity

Alexis Langlois-Rémillard

Abstract This contribution introduces a framework to study a deformation of alge-
bras with anti-involution. Starting with the observation that twisting the multiplica-
tion of such an algebra by its anti-involution generates a Hom-associative algebra of
type II, it formulates the adequate modules theory over these algebras, and shows
that there is a faithful functor from the category of finite-dimensional left modules
of algebras with involution to finite-dimensional right modules of Hom-associative
algebras of type II.
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21.1 Introduction

An associative algebra A over a commutative, associative and unital ring R is called
an algebra with anti-involution if it admits an anti-automorphism ι that is its own
inverse; it is then called an ι-algebra. One of the most common examples of such
algebras is the algebra of complex square matrices with the conjugate-transpose as
anti-involution; for analysts, C∗-algebras constitute the backbone of many inves-
tigations in functional analysis and operator theory [6]. We will be interested in
finite-dimensional algebras with an anti-involution and consider them purely from
the algebraic point of view. The presence of an anti-involution, not a guaranteed fact
if the algebra is not commutative, leads to many interesting properties. For example,
ideals of identities of a finitely generated algebra with involution coincide with ideals
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of identities for a finite dimensional algebra [24], and if an associative algebra with
involution satisfies some polynomial identities, then the Grassmann envelope of the
related superalgebra with superinvolution satisfies the same polynomial properties
[1, 23].

The approach considered in this note concentrates on twisting the multiplication
of the algebra and emphasise the rôle of the anti-involution. It goes along the spirit
of Hom-structures, an interesting program of deformations of algebraic structures
sparked by the introduction of Hom-Lie algebras by Hartwig, Larsson and Silve-
strov [13]. In the following fifteen years, the notion has been extended to many other
algebraic objects: Hom-associative algebras [20], Hom-Poisson algebras [19], Hom-
Novikov algebras [31], Hom-Hopf algebras [18], Hom-Weyl algebras [3], Hom-
quantum groups [28, 29, 32], etc. Many of the Hom-structures keep the properties
their classical counterparts have; for example Hom-associative algebras are the uni-
versal enveloping algebras of the corresponding Hom-Lie algebras [26]. General
programs for investigating Hom-structures via higher algebraic tools have also been
proposed via PROPs [30], or via universal algebras and operads [14].

We will be interested in (a type of) Hom-associative algebras: an R-module with
an R-linear map α that has a binary operation for which associativity is “twisted”
by the map α. A simple construction by Yau [27] allows to deform any associative
algebrawith an endomorphism into aHom-associative algebra. As in an ι-algebra, ι is
an anti-endomorphism, this construction does not give a “classical” Hom-associative
algebra but instead what Frégier and Gohr call a Hom-associative algebra of type II
in their hierarchy [8].

The main results and highlights of this contribution are reviewed here. We give a
functor from the category of ι-algebras to the category ofHom-associative algebras of
type II (Proposition 21.4), construct a theory of (finite-dimensional) Hom-modules of
Hom-associative algebras of type II, effectively proving that their category is abelian
(Propositions 21.5–21.9); and give a faithful functor between the category of finite-
dimensional left modules of a ι-algebra to the category of finite-dimensional right
modules of the associated Hom-associative algebra of type II (Proposition 21.10).

The contribution is organised as follows. Section 21.2 presents basic definitions for
ι-algebras and then quickly surveys cellular algebras. Section 21.3 first introduces the
vocabulary ofHom-structures for comparison purposes and then proceed to construct
aHom-modules theory forHom-associative algebras of type II and to give an example
on a family of diagrammatic ι-algebras: the Temperley-Lieb algebras [15] viewed
by their cellular basis [10]. Finally, Sect. 21.4 informally discusses an idea for the
study of this type of structure in more generality via diagrammatic formalism, and
gives an example of application by illustrating alternate proofs of some equivalences
from Frégier’s and Gohr’s hierarchy [8].
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21.2 Algebras with Involution

In this section, we present some vocabularies regarding ι-algebra and briefly intro-
duce cellular algebras. For the remaining of the note, let R be an associative, unital
and commutative ring.

Definition 21.1 Let A be an associative and unital R-algebra. Let ι : A → A be an
anti-morphism of algebras such that ι2 = 1. The pair (A, ι) is called an algebra with
anti-involution1 or an ι-algebra.

A short note is in order here. Usually the involution is a conjugate-linear map
(ι(r · a) = r · ι(a)) to mimic the conjugate-transpose operator of complex matrices.
Of course, this only makes sense if R has a conjugation, for example if one works
on C, as for C∗ algebras. For R-algebras, the custom is to only ask for a R-linear
map (for example as in [24]).

To make it explicit, the anti-involution ι now satisfies, for any elements a, b ∈ A
and r, s ∈ R,

ι(ab) = ι(b)ι(a); ι(ι(a)) = a; ι(r · a + s · b) = r · ι(a) + s · ι(b). (21.1)

Morphisms of ι-algebras are algebras morphisms commuting with the two anti-
involutions.

Definition 21.2 For two ι-algebras (A1, ι1) and (A2, ι2), a morphism of algebras φ :
A1 → A2 is called amorphism of ι-algebras if it commuteswith the anti-involutions:

φ ◦ ι1 = ι2 ◦ φ. (21.2)

Ideals of ι-algebras have the additional restriction of being fixed by the anti-
involution.

Definition 21.3 An algebraic ideal J of A is an ι-ideal of the ι-algebra (A, ι) if
ι( j) ∈ J for all j ∈ J .

For an ι-ideal J , the quotient algebra A/J is also an ι-algebra. Note that any
ι-algebra A decomposes into symmetric (ι(s) = s) and skew-symmetric (ι(t) = −t)
parts by taking A+ to be the set of all elements a + ι(a), a ∈ A and A−, the set of all
elements a − ι(a), a ∈ A. Furthermore, A+ is a Jordan algebra when endowed with
the anti-commutator {a, b} = ab + ba, and A− is a Lie algebra with the commutator
[a, b] = ab − ba.

We close the section by presenting a motivating example that will be used in the
end of Sect. 21.3: cellular algebras. The notion of cellular algebras was introduced by
GrahamandLehrer in their seminal paper [10]. In a rough statement, a cellular algebra
is an associative finite-dimensional unital algebra that admits an anti-involution and

1 It is common to call them algebra with involution [6, 25]. We added the prefix “anti” to avoid the
confusion and emphasise the fact that the map ι is an anti-automorphism.
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a basis stratifying the algebra according to a certain poset while behaving correctly
under the anti-involution. Many important families of algebras admit an interesting
cellular basis: Temperley-Lieb algebras, Brauer algebras, most Hecke algebras, etc.
Once a cellular basis is exhibited for an algebra, the hard problems of exhibiting
a complete family of simple modules and giving the composition multiplicities of
the indecomposable projective reduce to linear algebra problems. We also present
a basis-free definition based on a ring-theoretical framework given by König and
Xi [16] that emphasises the importance of the anti-involution. A good review on the
subject is the second chapter of Mathas’s book on Iwahori-Hecke algebras [21].

Definition 21.4 (GrahamandLehrer [10]) Let R be a commutative associative unital
ring. An associative R-algebra A is called cellular if it admits a cellular datum
(�, M,C, ι) consisting of the following:

(i) a partially ordered set � and, for each d ∈ �, a finite set M(d);
(ii) an injective map C : ⊔

d∈� M(d) × M(d) → A whose image is an R-basis of
A;

(iii) an anti-involution ι : A → A such that

ι(C(s, t)) = C(t, s), for all s, t ∈ M(d); (21.3)

(iv) if d ∈ � and s, t ∈ M(d), then for any a ∈ A,

aC(s, t) ≡
∑

s ′∈M(d)

ra(s
′, s)C(s ′, t) mod A>d , (21.4)

where A>d = 〈Ce(p, q) | e > d | p, q ∈ M(e)〉R and ra(s ′, s) ∈ R.

The anti-involution ι, together with (21.4), yields the equation:

C(t, s)a∗ ≡
∑

s ′∈M(d)

ra(s
′, s)C(t, s ′) mod A>d , (21.5)

for all s, t ∈ M(d) and a ∈ A.
To be completely transparent, there are two small differences that became cus-

tomary (for example [5, 21]) between this definition and the one of Graham and
Lehrer: first the partial order is reversed, as to better compare with quasi-hereditary
algebras [4] and second, the poset � is not finite (but all of the sets M(d) are finite).
Notable generalizations and deformations of the notion of cellularity include: rela-
tive cellularity, where multiple partial orders grade the algebra [7]; affine cellularity,
where the notion is extended to infinite dimensional algebras [11, 17], and almost
cellular algebra, where the anti-involution is replaced by a special filtration of the
algebra [12].

As a simple example, consider the polynomial algebra C[x]. Let � = N =
{0, 1, . . . }, for n ∈ N let M(n) := {n} and define C : M × M → C[x] by n × n 
→
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xn . The algebra is commutative so take the (anti-)involution simply to be the iden-
tity. The image of C is obviously a basis of C[x]. Axiom (21.3) is trivially satisfied
because all the sets M(n) are singletons. Axiom (21.4) simply states that multiplying
two non-trivial polynomials will yield a polynomial of higher degree. It is one of the
simplest examples of cellular structure.

The previous example downplays the importance of the anti-involution in the
structure of cellular algebras. The equivalent basis-free definition of König and Xi
highlights its key importance.

Definition 21.5 (König and Xi [16]) Let A be an R-algebra where R is a com-
mutative Noetherian integral domain. Assume there is an anti-involution ι on A. A
two-sided ideal J of A is called a cell ideal if:

(i) it is an ι-ideal (ι(J ) = J );
(ii) there exists a left ideal � ⊂ J such that � is finitely generated and free over

R;
(iii) there is an isomorphism of A-bimodules ψ : J ∼−→ � ⊗R ι(�) making the fol-

lowing diagram commutative:

J � ⊗R ι(�)

� ⊗R ι(�)

ι

ψ

x⊗y 
→ι(y)⊗ι(x)

ψ

. (21.6)

The algebra A together with the anti-involution ι is called cellular if there is an
R-module decomposition A = J ′

1 ⊕ J ′
2 ⊕ · · · ⊕ J ′

n with ι(J ′
j ) = J ′

j for each j and

such that setting Jj = ⊕ j
k=1 J

′
k gives a chain of two-sided ideals of A

0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A (21.7)

in which each quotient J ′
j = Jj/Jj−1 is a cell ideal of the quotient A/Jj−1 with

respect to the restriction of ι on the quotient.

Proposition 21.1 (König and Xi [16]) The two definitions of cellular algebra are
equivalent.

From the cellular basis, it is possible to construct a family of cell modules.2 Each
cell module Cd admits a symmetric and invariant bilinear form φd(−,−).

Define, for any cellular algebra,�0 to be the subset of� in which the bilinear form
just defined is not identically zero. The radical of the bilinear form φd is denoted
Rd . As the form is invariant, it is a submodule of Cd . However, there is even more
to it.

2 Also often called standard modules to emphasise the links with Hecke algebras and quasi-
hereditary algebras.
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Proposition 21.2 (Graham and Lehrer, Proposition 3.2 and Theorem 3.4 [10]) Let A
be a cellular algebra over a field and d ∈ �0. The radicalRd of the bilinear form φd

is the Jacobson radical ofCd ; the quotient Id := Cd/Rd is absolutely irreducible and
{Id | d ∈ �0} is a complete set of non-isomorphic (absolutely) irreducible modules.

The main theorem links the decomposition factors of the indecomposable pro-
jective modules and the irreducible ones. Recall that [M : I ] is the composition
multiplicity of the simple module I in the module M , that is the number of simple
quotients isomorphic to I in the composition series of M . Denote by Pd the projec-
tive cover of Id and let D = ([Cd : Ie])d∈�,e∈�0 be the decomposition matrix of A and
C = ([Pd : Ie])d,e∈�0 , its Cartan matrix.

Theorem 21.1 (Graham and Lehrer, Theorem 3.7 [10]) The matrices C and D are
related by C = DtD.

Therefore, one can characterise the composition series of the indecomposable
projective modules of a cellular algebra by simpler linear algebraic tools. A simple
criterion for semisimplicity follows: should the radical of the bilinear form of each
cell module be trivial, then the algebra is semisimple.

21.3 Hom-Structures

The notion of Hom-associative algebras comes from Makhlouf and Silvestrov [20]
and the ten complete cases of possible Hom-associativity appearing from possible
choices of parentheses and twisting map placement on the associativity equation
(ab)c = a(bc) were given later by Frégier and Gohr [8].

Two types ofHom-associativity are considered here. The first one is the “classical”
Hom-associativity that is the parallel of universal enveloping algebras for Hom-Lie
algebras. It is characterised by (21.8). In the language of Frégier and Gohr, it is called
of type I1. The content presented in this section is mostly standard and can be found
in many references, see for example [3, 18, 20]. Only the part on representation
theory is slightly less common and we defer to Bäck and Richter [2] for a careful
overview of module theory in general.

The second section is devoted to Hom-associativity of type II and some construc-
tions around them. The associativity deformation is given by (21.12). This subject
wasmainly studied (e.g. in [9]) in the context of unitalmultiplicativeHom-associative
algebras. The setup employed here will be of weakly unital Hom-associative alge-
bras with the twisting map an anti-involution, thus enabling a functorial construction
(Proposition 21.4) akin to Yau’s twisting principle (Proposition 21.3) for ι-algebras
that also extends to a functor on modules (Proposition 21.10).

The last section studies a concrete example: Temperley-Lieb algebras. Employing
its diagrammatic formulation gives a very natural example of the module theory
employed here andwe shall see that some of the structures coming from its cellularity
are preserved by the functor in the semisimple case at least.
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21.3.1 Review of Hom-Associative Results

Definition 21.6 A Hom-associative algebra over an associative, commutative and
unital ring R is a triple (A, ·, α) consisting of an R-module A, an R-bilinear binary
operation · : A × A → A and an R-linear map α : A → A satisfying

α(a) · (b · c) = (a · b) · α(c) (21.8)

for all a, b, c ∈ A.

The map α is referred to as the twisting map. When it is a homomorphism, the
Hom-algebra is said to be multiplicative.

A Hom-associative R-algebra A is said to be weakly left unital if there exists
e� ∈ A such that e� · a = α(a) for all a ∈ A; it is said to be weakly right unital if
there exists er ∈ A such that a · er = α(a) for all a ∈ A, and it is deemed weakly
unital if there exists e ∈ A that is both a weak left unit and a weak right unit. Beware,
the word unital is reserved for an algebra with a unit id, that is x · id = id · x = x ,
for any x ∈ A.

There is a canonical way, known as Yau’s twisting, of defining a weakly unital
Hom-associative algebra from a unital associative algebra.

Proposition 21.3 (Yau [27]) Let A be an associative algebra with unit 1A and α :
A → A be a endomorphism. Defining the operation 	 : A × A → A by a 	 b =
α(a · b) gives a Hom-associative algebra (A, 	, α) with weak unit 1A.

Definition 21.7 Hom-algebras morphism between two Hom-associative algebras
(A1, ·1, α1) and (A2, ·2, α2) is an R-modules morphism f : A1 → A2 satisfying

f ◦ α1(x) = α2 ◦ f (x); f (x) ·2 f (y) = f (x ·1 y) (21.9)

for all x, y ∈ A1.

With this definition, Yau’s twisting extends to a functor from the category of
associative algebras to the one of Hom-associative algebras [27].

Ideals of Hom-associative algebras must behave well under the twisting map.

Definition 21.8 A Hom-ideal is an algebraic ideal fixed by α. So for any element
a ∈ A and j ∈ J , the multiplication a · j ∈ J and α( j) ∈ J .

We call a Hom-algebra Hom-simple if it has no non-trivial Hom-ideal.

If the algebra is simple, then it is Hom-simple, but the converse is not true as
Hom-ideal are a stronger notion, which in turn makes the notion of Hom-simplicity
weaker.

Now, we turn to some vocabulary of module theory for comparison purpose with
the type II case (see [2] for more details).
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Definition 21.9 Let (A, ·, α) be a Hom-associative R-algebra. A triple (V, ·V , αV )

is said to be a (left) Hom-module if V is an R-module; the operation ·V : A × V → V
is R-linear, and αV : V → V is an R-linear map such that

(a · b) ·V αV (v) = α(a) ·V (b ·V v), (21.10)

for all a, b ∈ A and v ∈ V .

Definition 21.10 Let (V, αV ) and (U, αU ) be twoHom-A-modules. Letφ : U → V
be a linear map. It is a morphism of Hom-A-modules if it also respects

φ(au) = aφ(u), αV (φ(u)) = φ(αU (u)). (21.11)

A submodule N of M is a Hom-submodule if it is invariant under the map αM .
Many usual properties of modules hold: intersection, union, image and preimage
under morphism, quotient, and the first, second and third isomorphism theorems, as
shown in [2].

From this, we can define a Hom-simple module as a module with no non-trivial
Hom-submodule and aHom-semisimple algebra as a Hom-algebra that decomposes
into a sum of Hom-simple modules when viewed as a Hom-module over itself.

In conclusion, remark that the (left) Hom-modules along with their morphisms
form an abelian category [33].

21.3.2 Hom-Associativity of Type II

Hom-associativity of type II introduces a slight change in the order of deformations by
the twisting map. Hygienic procedures are required to ensure the correct definitions
for equivalent objects of the preceding section.

Definition 21.11 AHom-associative algebra of type II over an associative, commu-
tative and unital ring R is a triple (A, ·, α) consisting of an R-module A, an R-bilinear
binary operation · : A × A → A and an R-linear map α : A → A satisfying

x · α(y · z) = α(x · y) · z, (21.12)

for all x, y, z ∈ A.

The map α is still referred to as the twisting map; the notion of weakly unitality
stays the same, and when α is an anti-endomorphism, the Hom-algebra is said to be
anti-multiplicative.

That Hom-associative algebras of type II are an interesting avenue to deform
ι-algebras is illustrated by the following proposition.
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Proposition 21.4 Let A be a unital associative R-algebra and ι : A → A be an anti-
involution. Consider the binary operation � : A × A → A defined by the mapping
(x, y) 
→ ι(x · y) = ι(y) · ι(x). If e ∈ A is the unit of A, then the triple (A,�, ι) is
an anti-multiplicative Hom-associative algebra of type II with weak unit e.

Proof First, A is an R-module as it is an R-algebra and ι is an R-linear map. That
(21.12) holds follows from simple algebraic manipulations. Let x, y, z ∈ A.

x � ι(y � z) = x � ι(ι(y · z)) definition of �
= x � (y · z) ι is involutive

= ι(x · (y · z)) definition of �
= ι((x · y) · z) associativity in A

= (x · y) � z definition of �
= ι2(x · y) � z ι is involutive

= ι(x � y) � z definition of � .

It is thus a Hom-associative algebra of type II. It is weakly unital, for e being an unit
in A implies

e � x = ι(e · x) = ι(x) = ι(x · e) = x � e. �

Before continuing, it is worth noting that Yau’s construction (Proposition 21.3)
does not work on anti-multiplicative Hom-associative algebra of type I1. Indeed, if
one deforms multiplication in an associative algebra A with anti-endomorphism α,
one gets for a, b, c ∈ A

α(a) 	 (b 	 c) = α(a) 	 α(b · c)
= α(α(a) · α(c) · α(b))

on one hand, and

(a 	 b) 	 α(c) = α(a · b) 	 α(c)

= α(α(b) · α(a) · α(c))

on the other. When α is an anti-involution for example, this amounts to b · c · a =
c · a · b, which does not hold generally if A is not commutative.

The notions of morphisms between Hom-associative algebras and of Hom-ideal
have a direct equivalent for type II.

Definition 21.12 Let (A1, ·1, α1) and (A2, ·2, α2) be two Hom-associative algebras
of type II. We call an R-linear map φ : A1 → A2 a Hom-associative algebras mor-
phism if

φ ◦ α1(x) = α2 ◦ φ(x) (21.13)
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and
φ(x) ·2 φ(y) = φ(x ·1 y). (21.14)

It is a Hom-associative algebras anti-morphism if instead of the last equation, it
respects

φ(x ·1 y) = φ(y) ·2 φ(x). (21.15)

Definition 21.13 An algebraic ideal J of a Hom-associative algebra (A, ·, α) is
called a left Hom-ideal if it is fixed by α. So for any j ∈ J and a ∈ A it must be that
a · j ∈ J and α( j) ∈ J . A right Hom-ideal is an α-invariant right algebraic ideal
and a two-sided Hom-ideal is both a left and a right Hom-ideal.

As in the type I1 case, Proposition 21.4 extends to a functor F between the ι-
algebras and Hom-associative algebras of type II. Indeed for two ι-algebras (A, ιA)

and (B, ιB) a morphism φ : A → B of ι-algebras becomes a morphism of Hom-
associative algebras under F by making

F(φ) : (A,�A, ιA) −→ (B,�B, ιB)

a 
−→ φ(a),
(21.16)

because then as a morphism of ι-algebras, φ commutes with the anti-involutions
and thus (21.13) amounts to (21.2). Finally, working out the operations shows that
(21.14) is respected. Let x, y ∈ A

F(φ)(x �A y) = φ(x �A y)

= φ(ιA(y))φ(ιA(x))

= ιB(φ(y))ιB(φ(x))

= φ(x) �B φ(y) = F(φ)(x) �B F(φ)(y).

One must express cautions while defining modules for type II Hom-algebras.
Indeed, the interaction between (21.10) and (21.12) constrains a lot the possible
modules: in particular, a Hom-algebra of type II would not be a module on itself if
one would use Definition 21.9 because then it would be required that

(a · b) · α(c) = α(a) · (b · c),

so type I1 Hom-associativity, which is not in general a consequence of type II Hom-
associativity. As Frégier and Gohr remarked, this would hold if α was an abelian
group morphism and the algebra unital [8] (we show this diagrammatically at the
end of Sect. 21.4). We do not impose such restrictions and the two concepts are
different in general.

Therefore it seems more appropriate to use a slightly different definition. The
switch to right modules is to stay coherent with Proposition 21.10, obviously such
results will also hold for left modules.
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Definition 21.14 Let (A, ·, α) be a Hom-associative algebra of type II. The triple
(V, ·V , αV ) is said to be a (right) Hom-module if V is a R-module, there is an action
·V : A × V → V and an R-linear map αV : V → V that respect

αV (v ·V b) ·V a = v ·V α(a · b). (21.17)

In this way, anyHom-associative algebra of type II (A, ·, α) is also a Hom-module
(A, ·, α) on itself. The associated concepts of submodule and morphism are defined
below.

Definition 21.15 Consider aHom-module (V, ·V , αV ) of aHom-associative algebra
of type II (A, ·, α). An additive subgroup U of V is called a Hom-submodule if it is
closed under the scalar multiplication of V and αV (U ) ⊂ U .

Definition 21.16 Let (V, ·V , αV ) and (W, ·W , αW ) be two Hom-modules. Then an
R-linear map φ : V → W is called a morphism of Hom-modules if it also respects

φ(v ·V a) = φ(v) ·W a, αW (φ(v)) = φ(αV (v)). (21.18)

The following propositions prove that the category of (finite dimensional) Hom-
modules is abelian, enabling the general results that go with it: isomorphism the-
orems, exact sequences, diagram-chasing, etc. There should be no surprise here as
Hom-modules are at their core modules over a ring. We will not delve too deeply in
these considerations, they are to be seen mostly as a safeguard to prevent abuse. Not
a lot of changes appear in the proofs from type I1 as can be seen by comparing what
follows with the survey of Hom-modules theory in Bäck and Richter [2].

For the following, let (V, ·V , αV ) and (W, ·W , αW ) be two (right) Hom-modules
of an Hom-associative algebra of type II (A, ·, α). They will be denoted respectively
by the slight abuses of notation V , W , and A.

Proposition 21.5 Let φ : V → W be a morphism of Hom-modules, and let V ′ ⊂ V
and W ′ ⊂ W be respectively a Hom-submodule of V and a Hom-submodule of W.
The image φ(V ′) is a Hom-submodule of W and the preimage φ−1(W ′) is a Hom-
submodule of V .

Proof That φ(V ′) and φ−1(W ′) are subgroups of their respective space comes from
the fact thatφ is an R-linearmap. Let a ∈ A andw ∈ φ(V ′). Consider a preimage v ∈
V ′ ofw. Then,w ·W a = φ(v) ·W a = φ(v ·V a) ∈ φ(V ′) andαW (w) = αW (φ(v)) =
φ(αV (v)) ∈ φ(V ′) because φ is a morphism and V ′ is a Hom-submodule of V , and
thus fixed by αV .

For u ∈ φ−1(W ′), there is an element x ∈ W ′ such that φ(u) = x . Acting by
a ∈ A on u stays in φ−1(W ′) for φ(u ·V a) = φ(u) ·W a = x ·W a ∈ W ′ as W ′ is a
Hom-submodule ofW . Furthermore αV (u) is in φ−1(W ′) for φ(αV (u)) = αW (φ(u))

⊂ W ′. �

Proposition 21.6 Any intersection of Hom-submodules is a Hom-submodule.
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Proof Let {Ui }i∈I be a set of Hom-submodules of V . NoteU = ⋂
i∈I Ui . IfU = ∅,

then it is trivially a Hom-submodule. Assume it is non-empty. It is an additive group.
Let a ∈ A and u ∈ U . Fix i ∈ I . Then u · a ∈ Ui and αV (u) ∈ Ui because Ui is a
submodule. As i ∈ I is arbitrary, then a · u ∈ U and αV (u) ∈ U . �

Proposition 21.7 A finite sum of Hom-submodules is a Hom-submodule.

Proof Let U1, . . . ,Uk be Hom-submodules of V . Let U = ∑k
i=1Ui . Point-wise

sum and A-action turn it in a Hom-submodule. Indeed αV (
∑k

i=1 ui ) = ∑k
i=1 αV (ui )

∈ U . �

Proposition 21.8 Consider finitely many Hom-modules U1, . . . ,Uk of A. The set
U = ⊕k

i=1Ui is aHom-submodulewith the action · : U × A → U given by (u1, . . . ,
uk) · a = (u1 ·U1 a, . . . , uk ·Uk a)and theactionofαU : U → U givenbyαU (u1, . . . ,
uk) = (αU1(u1), . . . , αU1(uk)).

Proof The only point that requires proving is the good interaction of ·U and αU . Let
a, b ∈ A and u = (u1, . . . , uk) ∈ U .

u ·U α(a · b) = (u1 ·U1 α(a · b), . . . , uk ·Uk α(a · b))
= (αU1(u1 ·U1 b) ·U1 a, . . . , αUk (uk ·Uk b) ·Uk a)

= (αU1(u1 ·U1 b), . . . , αUk (uk ·Uk b)) ·U a

= αU (u ·U b) ·U a.

And thus (21.17) holds. The definition indicates clearly thatU will be invariant under
αV as each Ui is a Hom-submodule. �

Proposition 21.9 Let U be a Hom-submodule of V . The quotient V/U is a well-
defined Hom-module under the action and the map given by

·V/U : V/U × A → V/U αV/U : V/U → V/U

(v +U, a) 
→ v ·V/U a +U, v +U 
→ αV (v) +U.
(21.19)

Proof To show that it is well-defined is the core of the proof, and the only one that
shall be verified.

Take v1 +U and v2 +U to be any two elements in V/U of the same equivalence
class, thus v1 − v2 ∈ U . Now for any a ∈ A, the elements (v1 +U ) ·V/U a and (v2 +
U ) ·V/U a are of the sameequivalence class, because v1 ·V a − v2 ·V a = (v1 − v2) ·V
a ∈ U as v1 − v2 ∈ U . Likewise, αV/U is a well-defined morphism, for αV (v1) −
αV (v2) = αV (v1 − v2) ∈ U .

The rest follows simply. �

Therefore, there is a well defined modules theory for type II Hom-associative
algebras. This gives some hopes that it would be possible to have similar results to
Bäck and Richter [2, 3] up to some technicalities, and to the non-trivial verification
that there exist Ore-extensions for type II algebras.
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The point of the preceding results is the following proposition. It links the cate-
gories of modules of algebras with involution and Hom-associative algebras of type
II using Proposition 21.4.

Proposition 21.10 Let (A, ι) be an ι-algebra. There is a faithful functor F going
from the category of left modules of (A, ι) to the category of rightmodules of (A,�, ι)

given on objects by
F : A,ιMod −→ ModA,�,ι

M 
−→ (M, ·M , id),
(21.20)

with the action ·M : M × A → M given by m ·M a = ι(a)m, and on morphisms by

F : Hom(A,ι)(M, N ) −→ Hom(A,�,ι)(F(M), F(N ))

φ : M → N 
−→ F(φ) : F(M) → F(N ),
(21.21)

with F(φ)(m) = φ(m).

Proof The functoriality of the proposed F must be verified. Let M be a left module
of (A, ι). That F(M) is a right module of the Hom-associative algebra (A,�, ι),
with the operation � : A → A of Proposition 21.4, necessitates the respect of con-
dition (21.17). Let m ∈ M and a, b ∈ A. Taking αA = ι and αV = id results on one
hand in

m ·M ι(a � b) = m ·M ι2(ab) = ι3(ab) · m = ι(b) · (ι(a) · m)

and on the other hand in

id(m ·M a) ·M b = (m ·M a) ·M b = (ι(a) · m) ·M b = ι(b) · (ι(a) · m).

Thus (M, ·M , id) is a right Hom-module.
Let φ : M → N be a morphism of left (A, ι)-modules. Then F(φ) is a morphism

of Hom-modules because it respects (21.18). Let a ∈ A and m ∈ M . Then

F(φ)(m ·M a) = φ(ι(a) · m) = ι(a) · φ(m) = φ(m) ·N a,

F(φ)(idM(m)) = F(φ)(m) = idN (F(φ)(m)).

The functor respects the composition of morphisms directly from its definition.
There is thus a well-defined functor F . It remains to prove that it is faithful. Let

φ,ψ : M → N be two morphisms of left (A, ι)-modules. If F(φ) = F(ψ), then for
m ∈ M

F(φ)(m) − F(ψ)(m) = φ(m) − ψ(m) = 0.

Hence φ = ψ and the application φ 
→ F(φ) is injective, proving the faithfulness
of F . �
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From this proof, we have that the representation theory of Hom-associative alge-
bras of type II contains a copy of the representation theory of ι-algebras.

21.3.3 Example: Temperley-Lieb Algebras

As an example of the past subsections, we will apply the functor of Proposition 21.4
on the Temperley-Lieb algebraTL4(q + q−1) and studywhat happens to its represen-
tation theory. Temperley-Lieb algebras are well studied algebras (see the survey [22]
for details and reference) that are useful in describing scaling limit for conformal
field theories and in knot theory. There are two main ways to define them. First, they
can be seen as a quotient of a Hecke algebra of type A: the Temperley-Lieb algebra of
rank n and of parameter q ∈ C\{0} is the associative C-algebra generated by n − 1
elements e1, . . . , en−1, a unit id and the relations:

idei = ei id = ei ; e2i = (q + q−1)ei ; ei e j = e j ei , (|i − j | > 1); (21.22)

ei ei+1ei = ei , (1 ≤ i ≤ n − 1); ei ei−1ei = ei , (2 ≤ i ≤ n − 1). (21.23)

Its dimension is given by the Catalan number

dim TLn(q + q−1) = Cn = 1

n + 1

(
2n

n

)

. (21.24)

The C4 = 14 elements of TL4(q + q−1) are given by:

id,
e1, e1e2, e1e2e3,
e2, e2e1, e2e3,
e3, e3e2, e3e2e1,

e1e3, e1e3e2, e2e1e3, e2e1e3e2.

(21.25)

The other way to define the Temperley-Lieb algebra of rank n is via diagrammatic
interpretation. A n-diagram is a diagram drawn in a rectangle with n points in its
left side and n points in its right side all of the 2n linked together without crossing.
Two diagrams are identified if they differ only by an isotopy. In this interpretation
the elements of the algebra are formal C-linear combinations of n-diagrams, and the
multiplication is given by concatenation and replacing each of the created closed
loops by a factor q + q−1 = [2]q . It is an associative unital algebra.

The 14 diagrams giving a vector space basis of TL4(q + q−1) are given below,
ordered by the number of arcs on the same side (the order is the same as (21.25)):
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,

, , ,

, , , (21.26)

, , ,

, , , .

The identification between the two definitions follows from the morphism defined
by

id 
−→
...

...
, ei 
−→

...

...
i

i + 1
. (21.27)

It is easy to see that the diagrammatic algebra respects the relations. For example,
here is the verification of e21 = (q + q−1)e1, e1e3 = e3e1 and e2e3e2 = e2 inTL4(q +
q−1):

e1e1 
−→ = (q + q−1) , e1e3 
−→ = ,

e2e3e2 
−→ = .

The advantage of this presentation is readily shown when exhibiting a cellular
basis. For TL4(q + q−1) take � := {0, 1, 2}, the number of arcs on the same side.
For d ∈ �, let M(d) be the set of left half-diagram with d arcs on the same side; the
map C simply combines two half-diagrams with the same amount of arcs in the only
way possible after flipping the second one. For example,
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, 
−→ . . . = .

The anti-involution ι is simply the reflection of diagrams. It can also be defined as
the only anti-endomorphism that leaves invariant the generators of the algebra. For
example,

ι

⎛

⎝

⎞

⎠ = .

Constructing the diagrams from half-diagrams is an injective process and all pos-
sible cases are covered as � contains all the possible number of arcs, thus the image
ofC is a basis ofTL4(q + q−1). Axiom (21.3) is satisfied as flipping one diagramwill
indeed simply switch the place of the two half-diagrams, and axiom (21.4) amounts
to the statement: “arcs can only be created, never destroyed.”

There are three cell modules for TL4(q + q−1): C0, C1 and C2 with respective
basis given by:

B0 =
⎧
⎨

⎩

⎫
⎬

⎭
, B1 =

⎧
⎨

⎩
, ,

⎫
⎬

⎭
, B2 =

⎧
⎨

⎩
,

⎫
⎬

⎭
.

The action is also given by concatenation with the extra rules that whenever a new
arc is created, the result is zero. For example,

= 0, = (q + q−1) . (21.28)

When q is not a root of unity, the Temperley-Lieb algebra is semisimple and
decomposes as a module on itself, by the Wedderburn theorem, in the direct sum:

TL4(q + q−1) =
⊕

d∈�

dim(Cd)Cd . (21.29)

After applying Proposition 21.4, the new multiplication of the Hom-associative
algebra of type II (TL4(q + q−1),�, ι) simply flips the result of the old. For example

� = ι

⎛

⎝

⎞

⎠ = .
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Interestingly, the action on module changes in a very natural way in this diagram-
matic setting. Sending the left moduleC to a right Hom-module bym · a := ι(a)m is
portrayed in diagrammatic form simply byflipping the orientation of the half-diagram
and keeping the natural action by concatenation.

The new bases of the right cell modules C0, C1 and C2 (with αC = idC) of the
Hom-associative algebra of type II (TL4(q + q−1),�, ι) are given by

B′
0 =

⎧
⎨

⎩

⎫
⎬

⎭
, B′

1 =
⎧
⎨

⎩
, ,

⎫
⎬

⎭
, B′

2 =
⎧
⎨

⎩
,

⎫
⎬

⎭
.

The action is given simply by concatenation diagrammatically, which amounts
formally to the functor F of Proposition 21.10. For example,

=

and formally by,

· := ι

⎛

⎝

⎞

⎠ = = .

Equation 21.17 is also respected in this setting. For example, the right-hand
side is

· ι

⎛

⎝ �

⎞

⎠ = · ι2

⎛

⎝

⎞

⎠ = = (q + q−1) ,

and the left-hand side is given by

idC1

⎛

⎝

⎞

⎠ · = (q + q−1) = (q + q−1) .

The algebra B = (TL4(q + q−1),�, ι) keeps its cell filtration (21.3.3):

B =
〈 〉

⊃
〈

, ,

〉

⊃
〈

,

〉

⊃ 0. (21.30)
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If q is not a root of unity, the algebra is Hom-semisimple. Indeed, variations on
the arguments of [22] let one easily show that each cell module is cyclic and q not
being a root of unity implies that each element of a cell module is a generator, the
filtration (21.30) finishes the proof.

It is not surprising as for the Temperley-Lieb algebra, the process of going toHom-
associativity of type II is very similar on the representation theory level to considering
the left cell modules as right modules: only one application of ι separates the two
concepts.

Furthermore, for any cellular algebra, the cellular filtration is kept. Applying the
faithful functor F toKönig’s andXi’s definition of cellularity (Definition 21.5) results
in the following definition.

Definition 21.17 Let (A, ·, α) be a Hom-associative algebra over an associative,
commutative Noetherian integral domain R. Assume that there is an anti-involution
ι in A. A two-sided Hom-ideal J of A is called a Hom-cell ideal if

(i) it is fixed by the anti-involution: ι(J ) = J ;
(ii) there exists a Hom-module � ⊂ J such that � is finitely generated and free

over R;
(iii) there is an isomorphism of Hom-bimodules ψ : J ∼−→ � ⊗R ι(�).

J � ⊗R ι(�)

� ⊗R ι(�)

ι

ψ

x⊗y 
→ι(y)⊗ι(x)

ψ

. (21.31)

The algebra with the anti-involution ι is called Hom-cellular if there is a Hom-R-
modules decomposition

A = J ′
1 ⊕ J ′

2 ⊕ · · · ⊕ J ′
n

with ι(J ′
k) = J ′

k for each k such that setting Jk = ⊕k
l=1 J

′
l gives a chain of Hom-A-

ideals of A

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jn = A, (21.32)

in which J ′
k is a Hom-cell ideal for A/Jk−1.

Therefore we see that the functor F preserves the structure for some subfam-
ilies of algebras with anti-involution. Of course, this short inquiry only presents
arguments for the admittedly trivial case of semisimple cellular in which semisim-
plicity will be preserved by the faithfulness of the functor and the weaker notion
of Hom-semisimplicity, but it hints that further investigation with weaker structures
on algebra with anti-involution could preserve a sufficient amount of structure to be
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studied in the Hom-associativity of type II framework; that it could deform “enough”
to open new applications is left for further studies.

21.4 Discussion

In this independent short section, we will consider an avenue to systematise the
study started here. It contains some ideas borrowed from Hellström, Makhlouf and
Silvestrov [14] about universal algebras and from Yau [26]. Our main interest is the
diagrammatic operadic approach that seems fruitful in considering the slight changes
in the axiomatic rule that was exemplified here.

That type II associativity arose when one tried to deform a ι-algebra was an unex-
pected discovery. It justifies the construction of a module theory and consideration
of this peculiar type of deformation. It is probably possible to do the same study
for other types of Hom-associativity. The goal of this section is to hint at a more
systematic way to do so.

We do not claim to offer the correct way of generalising these notions. We merely
aim to present an interesting piece of material and show an application to Frégier
and Gohr hierarchy [8] where this material proved useful to schematise the proofs.

Take a monoid M . Represent its identity map id : M → M and its multiplication
μ : M × M → M by the following diagrams:

id −→ , μ −→ . (21.33)

They are read from bottom to top. The diagram ofμ takes two elements and gives
back one. The identity condition is implicit here for one can deform the diagram as
wanted as long as the topology is left unchanged. To add associativity, there must be
a relation equivalent to (μ(μ(a, b), c) = μ(a, μ(b, c)). This is done by:

= . (21.34)

The system is simple for now. To consider Hom-associativity

μ(μ(a, b), α(c)) = μ(α(a), μ(b, c)),

one must add a diagram for the twisting map α and then use it to obtain a new
condition to replace the associativity. It looks like
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α −→ , (21.35)

= . (21.36)

Hom-associativity of type II (μ(α(μ(a, b)), c) = μ(a, α(μ(b, c))) is given by
the following diagrams:

= . (21.37)

If now the map α is taken to be some anti-involution ι, one will need another
application σ : M × M → M × M that switches two elements (σ((a, b)) = (b, a)):

σ −→ (21.38)

and add two rules (ι ◦ ι = id and ι(μ(a, b)) = μ(ι(b), ι(a))):

= , = . (21.39)

Multiple consequences can be derived from those last equations.3 For example,
proving the hierarchy of Frégier and Gohr amounts to diagrammatic consideration.
As an example, the following prove that type I1 and type II are equivalent only for
unital Hom-associative algebras.

Indeed, unitality amounts in adding one distinguished element ◦ such that the
following condition is present for the multiplication μ:

3 Lars Hellström let a program he wrote for such investigation run for some hours and sent us back
around one hundred lemmas. Unfortunately, the number of such lemmas is infinite and only when
a previously known set of axiom is reached can a conclusion be drawn.
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= = . (21.40)

With this, one gets from (21.36) (or from (21.37)) by placing the element ◦ in
the second place

= . (21.41)

It remains only to apply this new rule to (21.37) to obtain type I1 Hom-
associativity (or on (21.36) to obtain type II Hom-associativity).

It is possible to retrieve all their hierarchy in a similar fashion.
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Chapter 22
Admissible Hom-Novikov-Poisson
and Hom-Gelfand-Dorfman Color
Hom-Algebras

Ismail Laraiedh and Sergei Silvestrov

Abstract The main feature of color Hom-algebras is that the identities defining the
structures are twisted by even linear maps. The purpose of this paper is to intro-
duce and give some constructions of admissible Hom-Novikov-Poisson color Hom-
algebras and Hom-Gelfand-Dorfman color Hom-algebras. Their bimodules and
matchedpairs are defined and the relevant properties and theorems are given.Also, the
connections betweenHom-Novikov-Poisson colorHom-algebras andHom-Gelfand-
Dorfman color Hom-algebras are proved. Furthermore, we show that the class of
admissible Hom-Novikov-Poisson color Hom-algebras is closed under tensor prod-
uct.

Keywords Hom-Novikov-Poisson color Hom-algebra · Hom-Gelfand-Dorfman
color Hom-algebras

MSC 2020 Classification 17B61 · 17D30 · 17B63 · 16D20 · 17D25

22.1 Introduction

A Novikov algebra has a binary operation such that the associator is left-symmetric
and that the right multiplication operators commute. Novikov algebras play a major
role in the studies of Hamiltonian operators and Poisson brackets of hydrodynamic
type [15, 28, 29, 32–34]. The left-symmetry of the associator implies that every
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Novikov algebra is Lie admissible, i.e., the commutator bracket [x, y] = xy − yx
gives it a Lie algebra structure.

Poisson algebras are used in many fields in mathematics and physics. In mathe-
matics, Poisson algebras play a fundamental role in Poisson geometry [76], quan-
tum groups [21, 27], and deformation of commutative associative algebras [35]. In
physics, Poisson algebras are a major part of deformation quantization [43], Hamil-
tonian mechanics [4], and topological field theories [63]. Poisson-like structures are
also used in the study of vertex operator algebras [31].

The theory of Hom-algebras has been initiated in [37, 54, 55] motivated by quasi-
deformations of Lie algebras of vector fields, in particular q-deformations of Witt
and Virasoro algebras. Hom-Lie algebras and more general quasi-Hom-Lie algebras
were introduced first by Hartwig, Larsson and Silvestrov in [37] where a general
approach to discretization of Lie algebras of vector fields using general twisted
derivations (σ -derivations) and a general method for construction of deformations
of Witt and Virasoro type algebras based on twisted derivations have been devel-
oped. The general quasi-Lie algebras, containing the quasi-Hom-Lie algebras and
Hom-Lie algebras as subclasses, as well their graded color generalization, the color
quasi-Lie algebras including color quasi-Hom-Lie algebras, color Hom-Lie algebras
and their special subclasses the quasi-Hom-Lie superalgebras and Hom-Lie superal-
gebras, have been first introduced in [37, 53–56, 69]. Subsequently, various classes
of Hom-Lie admissible algebras have been considered in [45]. In particular, in [45],
the Hom-associative algebras have been introduced and shown to beHom-Lie admis-
sible, that is leading to Hom-Lie algebras using commutator map as new product,
and in this sense constituting a natural generalization of associative algebras as Lie
admissible algebras leading to Lie algebras using commutator map. Furthermore,
in [45], more general G-Hom-associative algebras including Hom-associative alge-
bras, Hom-Vinberg algebras (Hom-left symmetric algebras), Hom-pre-Lie algebras
(Hom-right symmetric algebras), and some other Hom-algebra structures, general-
izing G-associative algebras, Vinberg and pre-Lie algebras respectively, have been
introduced and shown to be Hom-Lie admissible, meaning that for these classes
of Hom-algebras, the operation of taking commutator leads to Hom-Lie algebras as
well. Also, flexibleHom-algebras have been introduced, connections toHom-algebra
generalizations of derivations and of adjoint maps have been noticed, and some
low-dimensional Hom-Lie algebras have been described. In Hom-algebra structures,
defining algebra identities are twisted by linear maps. Since the pioneering works
[37, 45, 53–56], Hom-algebra structures have developed in a popular broad area
with increasing number of publications in various directions. Hom-algebra structures
include their classical counterparts andopennewbroadpossibilities for deformations,
extensions toHom-algebra structures of representations, homology, cohomology and
formal deformations, Hom-modules and Hom-bimodules, Hom-Lie admissible
Hom-coalgebras, Hom-coalgebras, Hom-bialgebras, Hom-Hopf algebras,
L-modules, L-comodules and Hom-Lie quasi-bialgebras, n-ary generalizations of
BiHom-Lie algebras and BiHom-associative algebras and generalized derivations,
Rota-Baxter operators, Hom-dendriform color Hom-algebras, Rota-Baxter bisys-
tems and covariant bialgebras, Rota-Baxter cosystems, coquasitriangular mixed bial-
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gebras, coassociative Yang-Baxter pairs, coassociative Yang-Baxter equation and
generalizations of Rota-Baxter systems and algebras, curved O-operator systems
and their connections with tridendriform systems and pre-Lie algebras, BiHom-
algebras, BiHom-Frobenius algebras and double constructions, infinitesimalBiHom-
bialgebras and Hom-dendriform D-bialgebras, Hom-algebras have been considered
[2, 3, 6, 9, 10, 12–14, 16–18, 20, 25, 26, 30, 36, 38–42, 44, 46–49, 51–54, 57, 58,
60–62, 67, 68, 70, 72–75, 81–83, 86, 87].

In [84] the author initiated the study of a twisted generalization of Novikov alge-
bras, called Hom-Novikov algebras. A Hom-Novikov algebra A has a binary opera-
tion · and a linear self-map α, and it satisfies some α-twisted versions of the defining
identities of a Novikov algebra. In [84] several constructions of Hom-Novikov alge-
bras were given and some low dimensional Hom-Novikov algebras were classified.
Further, Hom-Poisson algebras were defined in [46] by Makhlouf and Silvestrov. It
is shown in [46] that Hom-Poisson algebras play the same role in the deformation of
commutative Hom-associative algebras as Poisson algebras do in the deformation of
commutative associative algebras.

In this paper, we introduce and obtain some results on construction of admis-
sible Hom-Novikov-Poisson color Hom-algebras and Hom-Gelfand-Dorfman color
Hom-algebras. Their bimodules and matched pairs are defined and the relevant prop-
erties and theorems are obtained. We also show that the class of admissible Hom-
Novikov-Poisson color Hom-algebras are closed under tensor product. In Sect. 22.2,
we introduce the notions of bimodules and matched pairs of Hom-associative color
Hom-algebras,Hom-Novikov colorHom-algebras andHom-Lie colorHom-algebras
in which we give some results and some examples. In Sect. 22.3, we establish the
notions of admissible Hom-Novikov-Poisson color Hom-algebras and we give some
explicit constructions. Their bimodule and matched pair are defined and their related
relevant properties are also given. Finally, we show that the much larger class of
admissible Hom-Novikov-Poisson color Hom-algebras is also closed under tensor
products. In Sect. 22.4, we introduce the notions of Hom-Gelfand-Dorfman color
Hom-algebras and we discuss some basic properties and examples of these objects.
Moreover, we characterize the representations and matched pairs of Hom-Gelfand-
Dorfman color Hom-algebras and provide some key constructions.

22.2 Preliminaries and Some Results

Throughout the article, we assume that all linear spaces are over an algebraically
closed field K of characteristic 0, and denote by K

∗ = K\{0} the group of invertible
elements of K with respect to the multiplication in K, and by N

∗ = {1, 2, 3, . . . } the
set of non-zero natural numbers.

In this section, we introduce the notions of bimodules and matched pairs of Hom-
associative color Hom-algebras, Hom-Novikov color Hom-algebras and Hom-Lie
color Hom-algebras in which we give some results and examples.
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Let � be an abelian group. A linear space V is said to be �-graded, if there is a
family (Vγ )γ∈� of vector subspace of V such that V = ⊕

γ∈� Vγ .An element x ∈ V
is said to be homogeneous of degree γ ∈ � if x ∈ Vγ . In the sequel, we will denote
the set of all the homogeneous elements of V by H(V ), that is H(V ) = ⋃

γ∈�

Vγ As

usual, we denote by x the degree of an element x ∈ V . Thus each homogeneous
element x ∈ V determines a unique group element x ∈ � by x ∈ Vx . Thus, when no
confusion occur,we can drop “−” in notation of degree for convenience of exposition.

Let V = ⊕
γ∈� Vγ and V

′ = ⊕
γ∈� V

′
γ be two �-graded linear spaces. A linear

mapping f : V −→ V
′
is said to be homogeneous of degree υ ∈ � if f (Vγ ) ⊆ V

′
γ+υ

for all γ ∈ �. If in addition f is homogeneous of degree zero, i.e. f (Vγ ) ⊆ V
′
γ holds

for any γ ∈ �, then f is said to be even.
An algebraA is said to be�-graded if its underlying linear space is�-graded,A =⊕
γ∈� Aγ , and if, furthermoreAγAγ ′ ⊆ Aγ+γ ′ , for all γ, γ ′ ∈ �. It is easy to see that

ifA has a unit element e, then e ∈ A0. A subalgebra ofA is said to be�-graded if it is
�-graded as a subspace ofA. LetA′

be another �-graded algebra. A homomorphism
f : A −→ A′

of �-graded algebras is by definition a homomorphism of the algebra
A into the algebra A′

, which is, in addition an even mapping.

Definition 22.1 ([7, 22, 23, 50, 59, 64–66, 71]) LetK be a field andΓ be an abelian
group. A map ε : Γ × Γ → K

∗ is called a commutation factor on Γ if the following
identities hold, for all a, b, c ∈ Γ :

(i) ε(a, b) ε(b, a) = 1,
(ii) ε(a, b + c) = ε(a, b) ε(a, c),
(iii) ε(a + b, c) = ε(a, c) ε(b, c).

The definition above implies, in particular, the following relations

ε(a, 0) = ε(0, a) = 1, ε(a, a) = ±1, for all a ∈ Γ.

If x and x ′ are two homogeneous elements of degree Γ and Γ ′ respectively and
ε is a skewsymmetric bicharacter, then we shorten the notation by writing ε(x, x ′)
instead of ε(Γ, Γ ′) since the degree of every homogeneous element is unique.

Remark 22.1 Let A and V be two �-graded linear spaces such that

A ⊕ V =
⊕

γ∈�

(A ⊕ V )γ =
⊕

γ∈�

(Aγ ⊕ Vγ ),

then, for all X1 = x1 + v1 ∈ Aγ1 ⊕ Vγ1 , X2 = x2 + v2 ∈ Aγ2 ⊕ Vγ2 we have

ε(x1, x2) = ε(x1, v2) = ε(v1, x2) = ε(v1, v2) = ε(X1, X2).
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Example 22.1 Some standard examples of skew-symmetric bicharacters are:

1) Γ = Z2, ε(i, j) = (−1)i j ,
2) Γ = Z

n
2, ε((α1, . . . , αn), (β1, . . . , βn)) = (−1)α1β1+···+αnβn .

3) Γ = Z2 × Z2, ε((i1, i2), ( j1, j2)) = (−1)i1 j2−i2 j1 ,
4) Γ = Z × Z, ε((i1, i2), ( j1, j2)) = (−1)(i1+i2)( j1+ j2).

Definition 22.2 A color Hom-algebra or a Hom-color algebra, (A, ·, ε, α) is a Γ -
graded linear space A equipped with even bilinear multiplication ·, even twisting
map α and commutation factor ε.

Definition 22.3 A derivation of degree d ∈ Γ on a color Hom-algebra (A, ·, ε, α)

is a linear map D : A → A such that for any x, y ∈ H(A),

D(x · y) = D(x) · y + ε(d, x)x · D(y).

In particular, an even derivation D : A → A is a derivation of degree zero, that is,
D(x · y) = D(x) · y + x · D(y) for all x, y ∈ H(A).

22.2.1 ε-Commutative Hom-associative color Hom-algebras

Definition 22.4 ([80]) A Hom-associative color Hom-algebra is a color Hom-
algebra (A, ·, ε, α) satisfying for x, y, z ∈ H(A),

asA(x, y, z) = α(x) · (y · z) − (x · y) · α(z) = 0. (Hom-associativity) (22.1)

If in addition, for any x, y ∈ H(A),

x · y = ε(x, y)y · x, (22.2)

then (A, ·, ε, α) is said to be a ε-commutative Hom-associative color Hom-algebra.

Example 22.2 Let A = A0 ⊕ A1 =< e1 > ⊕ < e2, e3 >be a 3-dimensional super-
space. Then A is a ε-commutative Hom-associative color Hom-algebra with

bicharacter: ε(i, j) = (−1)i j ,

multiplication: e1 · e2 = e2 · e1 = −2e3,

even linear mapα : A → A : α(e1) = √
2e1, α(e2) = e3 − e2, α(e3) = e3.

In the following, we introduce the notion of bimodule of ε-commutative Hom-
associative color Hom-algebra.

Definition 22.5 Let (A, ·, ε, α) be an ε-commutative Hom-associative color Hom-
algebra, (V, β) be a pair consisting of Γ -graded linear space V and an even linear
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map β : V → V , and s : A → End(V ) be an even linear map. The triple (s, β, V )

is called a bimodule of (A, ·, ε, α) if for all x, y ∈ H(A), v ∈ H(V ),

s(x · y)β(v) = s(α(x))s(y)v. (22.3)

Proposition 22.1 If (s, β, V ) is a bimodule of a ε-commutative Hom-associative
color Hom-algebra (A, ·, ε, α), then the direct sum of �-graded linear spaces, A ⊕
V = ⊕

γ∈�(A ⊕ V )γ = ⊕
γ∈�(Aγ ⊕ Vγ ), is a ε-commutativeHom-associative color

Hom-algebra with multiplication and twisting map in A ⊕ V given for all X1 =
x1 + v1 ∈ Aγ1 ⊕ Vγ1 , X2 = x2 + v2 ∈ Aγ2 ⊕ Vγ2 by

(x1 + v1) ∗ (x2 + v2) = x1 · x2 + (
s(x1)v2 + ε(v1, x2)s(x2)v1

)
,

(α ⊕ β)(x1 + v1) = α(x1) + β(v1).

Proof We prove the commutativity and Hom-associativity in A ⊕ V . For all ele-
ments Xi = xi + vi ∈ Aγi ⊕ Vγi , i = 1, 2, 3,

X1 ∗ X2 = (x1 + v1) ∗ (x2 + v2) = x1 · x2 + (
s(x1)v2 + ε(v1, x2)s(x2)v1

)

= ε(x1, x2)x2 · x1 + (
ε(v1, x2)s(x2)v1 + s(x1)v2

)

= ε(X1, X2)x2 · x1 + (
ε(X1, X2)s(x2)v1 + s(x1)v2

)

= ε(X1, X2)
(
x2 · x1 + s(x2)v1 + ε(X2, X1)s(x1)v2

)

= ε(X1, X2)
(
x2 · x1 + s(x2)v1 + ε(v2, x1)s(x1)v2

)

= ε(X1, X2)(x2 + v2) ∗ (x1 + v1) = ε(X1, X2)X2 ∗ X1,

(X1 ∗ X2) ∗ (α + β)X3 − (α + β)X1 ∗ (X2 ∗ X3)

= (
(x1 + v1) ∗ (x2 + v2)

) ∗ (α + β)(x3 + v3)

− (α + β)(x1 + v1) ∗ (
(x2 + v2) ∗ (x3 + v3)

)

= (
x1 · x2 + s(x1)v2 + ε(v1, x2)s(x2)v1

) ∗ (α(x3) + β(v3))

− (α(x1) + β(v1)) ∗ (
x2 · x3 + s(x2)v3 + ε(v2, x3)s(x3)v2

)

= (x1 · x2) · α(x3) + s(x1 · x2)β(v3) + ε(x1 + x2, x3)s(α(x3))s(x1)v2
+ ε(x1 + x2, x3)ε(x1, x2)s(α(x3))s(x2)v1 − α(x1) · (x2 · x3)
− s(α(x1))s(x2)v3 − ε(x2, x3)s(α(x1))s(x3)v2
− ε(v1, x2 + x3)s(x2 · x3)β(v1)

=
(
(x1 · x2) · α(x3) − α(x1) · (x2 · x3)

)

︸ ︷︷ ︸
=0 by (22.1)

+
(
s(x1 · x2)β(v3) − s(α(x1))s(x2)v3

)

︸ ︷︷ ︸
=0 by (22.3)
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+ ε(x2, x3)
(
ε(x1, x3)s(α(x3))s(x1)v2 − s(α(x1))s(x3)v2

)

︸ ︷︷ ︸
=0 by (22.2) and (22.3)

+ ε(x1, x2 + x3)
(
ε(x2, x3)s(α(x3))s(x2)v1 − s(x2 · x3)β(v1)

)

︸ ︷︷ ︸
=0 by (22.2) and (22.3)

= 0,

which completes the proof. �

The ε-commutative Hom-associative color Hom-algebra constructed in Proposition
22.1 is denoted by (A ⊕ V, ∗, ε, α + β) or A �s,α,β V .

Example 22.3 If (A, ·, ε, α) is a ε-commutative Hom-associative color Hom-
algebra, then (S, α, A) with S(x)y = x · y for all x, y ∈ H(A), is a bimodule of
(A, ·, ε, α) called the regular bimodule of (A, ·, ε, α).

In the following, we introduce the notion of matched pair of ε-commutative Hom-
associative color Hom-algebras.

Proposition 22.2 Let (A, ·A, ε, α) and (B, ·B, ε, β) be ε-commutative Hom-
associative color Hom-algebras. Suppose that there are even linear maps sA :
A → End(B) and sB : B → End(A) such that (sA, β, B) is a bimodule of A, and
(sB, α, A) is a bimodule of B, satisfying, for any x, y ∈ H(A), a, b ∈ H(B), the
following conditions:

ε(b, x)β(a) ·B (sA(x)b) + ε(a, b + x)sA(sB(b)x)β(a)

= ε(a + b, x)sA(α(x))(a ·B b), (22.4)

β(a) ·B (sA(x)b) + ε(a, x + b)ε(x, b)sA(sB(b)x)β(a)

= ε(a, x)sA(x)a ·B β(b) + sA(sB(a)x)β(b), (22.5)

ε(y, a)α(x) ·A (sB(a)y) + ε(x, y + a)sB(sA(y)a)α(x)

= ε(x + y, a)sB(β(a))(x ·A y), (22.6)

α(x) ·A (sB(a)y) + ε(x, a + y)ε(a, y)sB(sA(y)a)α(x)

= ε(x, a)sB(a)x ·A α(y) + sB(sA(x)a)α(y). (22.7)

Then, (A, B, lA, rA, β, lB, rB, α) is called a matched pair of ε-commutative
Hom-associative color Hom-algebras. In this case, there is a ε-commutative
Hom-associative color Hom-algebra structure on the direct sum of the underlying
�-graded linear spaces of A and B,

A ⊕ B =
⊕

γ∈�

(A ⊕ B)γ =
⊕

γ∈�

(Aγ ⊕ Bγ ),

given for all x + a ∈ Aγ1 ⊕ Bγ1 , y + b ∈ Aγ2 ⊕ Bγ2 by
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(x + a) · (y + b) = (
x ·A y + sB(a)y + ε(x, b)sB(b)x

)

+ (
a ·B b + sA(x)b + ε(a, y)sA(y)a

)
,

(α ⊕ β)(x + a) = α(x) + β(a).

Proof Let X = x + a ∈ Aγ1 ⊕ Bγ1 ,Y = y + b ∈ Aγ2 ⊕ Bγ2 , Z = z + c ∈
Aγ3 ⊕ Bγ3 . First, we prove the commutativity condition:

X · Y − ε(X, Y )Y · X = (x + a) · (y + b) − ε(X, Y )(y + b) · (x + a)

= x ·A y + sB(a)y + ε(x, b)sB(b)x + a ·B b + sA(x)b + ε(a, y)sA(y)a

− ε(X, Y )
(
y ·A x + sB(b)x + ε(y, a)sB(a)y + b ·B a + sA(y)a + ε(b, x)sA(x)b

)

= (
x ·A y − ε(X, Y )y ·A x

) + (
a ·B b − ε(X, Y )b ·B a

)

+ (
sB(a)y − ε(X, Y )ε(y, a)sB(a)y

) + (
ε(x, b)sB(b)x − ε(X, Y )sB(b)x

)

+ (
sA(x)b − ε(X, Y )ε(b, x)sA(x)b

) + (
ε(a, y)sA(y)a − ε(X, Y )sA(y)a

) = 0.

(using Remark 1 and (22.2))

Next, we prove the Hom-associativity condition:

(X · Y ) · (α + β)Z = (
(x + a) · (y + b)

) · (α + β)(z + c)

(using Remark 1)

=
((
x ·A y + sB(a)y + ε(x, y)sB(b)x

)

+ (
a ·B b + sA(x)b + ε(x, y)sA(y)a

)) · (α(z) + β(c))

= (x ·A y) ·A α(z) + sB(a)y ·A α(z) + ε(x, y)sB(b)x ·A α(z)

+ sB(a ·B b)α(z) + sB(sA(x)b)α(z) + ε(x, y)sB(sA(y)a)α(z)

+ ε(x + y, z)
(
sB(β(c))(x ·A y) + sB(β(c))sB(a)y

+ ε(x, y)sB(β(c))sB(b)x
)

+ (a ·B b) ·B β(c) + sA(x)b ·B β(c) + ε(x, y)sA(y)a ·B β(c)

+ sA(x ·A y)β(c) + sA(sB(a)y)β(c) + ε(x, y)sA(sB(b)x)β(c)

+ ε(x + y, z)
(
sA(α(z))(a ·B b) + sA(α(z))sA(x)b

+ ε(x, y)sA(α(z))sA(y)a
)

(using Remark 1)

=
(
(x ·A y) ·A α(z) + sB(a)y ·A α(z) + ε(x, y)sB(b)x ·A α(z)

+ sB(a ·B b)α(z) + sB(sA(x)b)α(z) + ε(x, y)sB(sA(y)a)α(z)

+ (a ·B b) ·B β(c) + sA(x)b ·B β(c) + ε(x, y)sA(y)a ·B β(c)

+ sA(x ·A y)β(c) + sA(sB(a)y)β(c) + ε(x, y)sA(sB(b)x)β(c)
)
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+ ε(x + y, z)
(
sB(β(c))(x ·A y) + sB(β(c))sB(a)y

+ ε(x, y)sB(β(c))sB(b)x + sA(α(z))(a ·B b) + sA(α(z))sA(x)b

+ ε(x, y)sA(α(z))sA(y)a
)
,

(α + β)X · (Y · Z)

= (α + β)(x + a) · (
(y + b) · (z + c)

)

= (α(x) + β(a)) ·
((

y ·A z + sB(b)z + ε(y, c)sB(c)y
)

+ (
b ·B c + sB(y)c + ε(b, z)sA(z)b

))

(using Remark 1)

= α(x) ·A (y ·A z) + α(x) ·A sB(b)z + ε(y, z)α(x) ·A sB(c)y

+ sB(β(a))(y ·A z) + sB(β(a))sB(b)z + ε(y, c)sB(β(a))sB(c)y

+ ε(x, y + z)
(
sB(b ·B c)α(x) + sB(sA(y)c)α(x)

+ ε(b, z)sB(sA(z)b)α(x)
)

+ β(a) ·B (b ·B c) + β(a) ·B sA(y)c

+ ε(b, z)β(a) ·B sA(z)b + sA(α(x))(b ·B c) + sA(α(x))sA(y)c

+ ε(y, z)sA(α(x))sA(z)b + ε(x, y + z)
(
sA(y ·A z)β(a)

+ sA(sB(b)z)β(a) + ε(y, z)sA(sB(c)y)β(a)
)
.

Using (22.4), (22.5), (22.6), (22.7) and that (sA, β, B) and (sB, α, A) are bimodules
of (A, ·A, ε, α) and (B, ·B, ε, β), respectively, we derive that (A ⊕ B, ·, ε, α + β)

is ε-commutative Hom-associative color Hom-algebra. This completes the proof. �

This ε-commutative Hom-associative color Hom-algebra, constructed in Proposition
22.2, is denoted by (A 	
 B, ·, ε, α + β) or A 	
sA,β

sB ,α B.

22.2.2 On Hom-Novikov Color Hom-algebras

Definition 22.6 ([8]) A color Hom-algebra (A, ·, ε, α) is called a Hom-Novikov
color Hom-algebra if the following identities are satisfied for all x, y, z ∈ H(A):

(x · y) · α(z) − α(x) · (y · z) = ε(x, y)
(
(y · x) · α(z) − α(y) · (x · z)), (22.8)

(x · y) · α(z) = ε(y, z)(x · z) · α(y). (22.9)

Remark 22.2 If α = idA in Definition 22.6, we recover a Novikov color Hom-
algebra. So, Novikov color Hom-algebras are a special case of Hom-Novikov color
Hom-algebras when the twisting linear map is the identity map.
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Example 22.4 (Hom-Novikov color Hom-algebras) Here are some examples of
Hom-Novikov color Hom-algebras.

(1) Any ε-commutative Hom-associative color Hom-algebra is a Hom-Novikov
color Hom-algebra.

(2) Let A = A0 ⊕ A1 =< e1, e2 > ⊕ < e3, e4 > be a 4-dimensional superspace.
Then A is a Hom-Novikov color Hom-algebra with

bicharacter ε(i, j) = (−1)i j ,

multiplication: e1 · e1 = λ1e2, e1 · e3 = λ2e4,
e3 · e3 = λ3e2, e3 · e1 = λ4e4, λi ∈ K

even linear mapα : A → A :
α(e1) = −e1, α(e2) = e1 − e2, α(e3) = e4, α(e4) = e3 + 2e4.

Proposition 22.3 ([8]) Let A = (A, ·, ε) be a Novikov color Hom-algebra and α :
A → A be a Novikov color Hom-algebras morphism. Define ·α : A × A → A for
all x, y ∈ H(A), by x ·α y = α(x · y). Then, Aα = (A, ·α, ε, α) is a Hom-Novikov
color Hom-algebra called the α-twist or Yau twist of (A, ·, ε).
In the following we introduce the notions of bimodule and matched pair of Novikov
color Hom-algebras.

Definition 22.7 Let (A, ·, ε, α) be a Hom-Novikov color Hom-algebra, (V, β) is a
pair of Γ -graded linear space V and an even linear map β : V → V . Let l, r : A →
End(V ) be two even linear maps. The quadruple (l, r, β, V ) is called a bimodule of
(A, ·, ε, α) if for all x, y ∈ H(A), v ∈ H(V ),

l(x · y)β(v) − l(α(x))l(y)v = ε(x, y)
(
l(y · x)β(v) − l(α(y))l(x)v

)
, (22.10)

r(α(y))l(x)v − l(α(x))r(y)v = ε(x, v)
(
r(α(y))r(x)v − r(x · y)β(v)

)
, (22.11)

r(α(y))r(x)v − r(x · y)β(v) = ε(v, x)
(
r(α(y))l(x)v − l(α(x))r(y)v

)
, (22.12)

l(x · y)β(v) = ε(y, v)r(α(y))l(x)v, (22.13)

r(α(y))l(x)v = ε(v, y)l(x · y)β(v), (22.14)

r(α(y))r(x)v = ε(x, y)r(α(x))r(y)v. (22.15)

Proposition 22.4 Let (l, r, β, V ) is a bimodule of a Hom-Novikov color Hom-
algebra (A, ·, ε, α). Then the direct sum of �-graded linear spaces,

A ⊕ V =
⊕

γ∈�

(A ⊕ V )γ =
⊕

γ∈�

(Aγ ⊕ Vγ ),

is a Hom-Novikov color Hom-algebra with multiplication in A ⊕ V such that, for
all X1 = x1 + v1 ∈ Aγ1 ⊕ Vγ1 , X2 = x2 + v2 ∈ Aγ2 ⊕ Vγ2 ,
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(x1 + v1) ∗ (x2 + v2) = x1 · x2 + (l(x1)v2 + r(x2)v1),

(α ⊕ β)(x1 + v1) = α(x1) + β(v1).

Proof We prove the axioms (22.8) and (22.9) in A ⊕ V .
For all Xi = xi + vi ∈ AΓi ⊕ VΓi , i ∈ {1; 2; 3},

(X1 ∗ X2) ∗ (α + β)X3 − (α + β)X1 ∗ (X2 ∗ X3)

− ε(X1, X2)
(
(X2 ∗ X1) ∗ (α + β)X3 − (α + β)X2 ∗ (X1 ∗ X3)

)

= (
(x1 + v1) ∗ (x2 + v2)

) ∗ (α + β)(x3 + v3)

− (α + β)(x1 + v1) ∗ ((x2 + v2) ∗ (x3 + v3))

− ε(X1, X2)
((

(x2 + v2) ∗ (x1 + v1)
) ∗ (α + β)(x3 + v3)

− (α + β)(x2 + v2) ∗ (
(x1 + v1) ∗ (x3 + v3)

))

= (
x1 · x2 + l(x1)v2 + r(x2)v1

) ∗ (α(x2) + β(v3))

− (α(x1) + β(v1))
(
x2 · x3 + l(x2)v3 + r(x3)v2

)

− ε(x1, x2)
((
x2 · x1 + l(x2)v1 + r(x1)v2

) ∗ (α(x3) + β(v3))

− (α(x2) + β(v2)) ∗ (
x1 · x3 + l(x1)v3 + r(x3)v1

))

= (x1 · x2) · α(x3) + l(x1 · x2)β(v3) + r(α(x3))l(x1)v2 + r(α(x3))r(x2)v1
− α(x1)(x2 · x3) − l(α(x1))l(x2)v3 − l(α(x1))r(x3)v2 − r(x2 · x3)β(v1)

− ε(x1, x2)
(
(x2 · x1) · α(x3) + l(x2 · x1)β(v3) + r(α(x3))l(x2)v1

+ r(α(x3))r(x1)v2 − α(x2)(x1 · x3) − l(α(x2))l(x1)v3 − l(α(x2))r(x3)v1

− r(x1 · x3)β(v2)
)

=
(
(x1 · x2) · α(x3) − α(x1)(x2 · x3) − ε(x1, x2)((x2 · x1) · α(x3)

−α(x2) · (x1 · x3))
)

︸ ︷︷ ︸
=0 by (22.8) inA

+
(
l(x1 · x2)β(v3) − l(α(x1))l(x2)v3 − ε(x1, x2)(l(x2 · x1)β(v3)

−l(α(x2))l(x1)v3)
)

︸ ︷︷ ︸
=0 by (22.10)

+
(
r(α(x3))l(x1)v2 − l(α(x1))r(x3)v2 − ε(x1, v2)(r(α(x3))r(x1)v2

−r(x1 · x3)β(v2))
)

︸ ︷︷ ︸
=0 by (22.11)
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+
(
r(α(x3))r(x2)v1 − r(x2 · x3)β(v1) − ε(v1, x2)(r(α(x3))l(x2)v1

−l(α(x2))r(x3)v1)
)

︸ ︷︷ ︸
=0 by (22.12)

= 0,

(X1 ∗ X2) ∗ (α + β)X3 − ε(X2, X3)(X1 ∗ X3) ∗ (α + β)X2

= (
(x1 + v1) ∗ (x2 + v2)

) ∗ (α + β)(x3 + v3)

− ε(X2, X3)
(
(x1 + v1) ∗ (x3 + v3)

) ∗ (α + β)(x2 + v2)

= (
x1 · x2 + l(x1)v2 + r(x2)v1

) ∗ (α(x3) + β(v3))

− ε(x2, x3)
(
x1 · x3 + l(x1)v3 + r(x3)v1

) ∗ (α(x2) + β(v2))

= (x1 · x2) · α(x3) + l(x1 · x2)β(v3) + r(α(x3))l(x1)v2 + r(α(x3))r(x2)v1
− ε(x2, x3)((x1 · x3) · α(x2) + l(x1 · x3)β(v2)

+ r(α(x2))l(x1)v3 + r(α(x2))r(x3)v1)

=
(
(x1 · x2) · α(x3) − (x1 · x3) · α(x2)

)

︸ ︷︷ ︸
=0 by (22.9) inA

+
(
l(x1 · x2)β(v3) − ε(x2, x3)r(α(x2))l(x1)v3

)

︸ ︷︷ ︸
=0 by (22.13)

+
(
r(α(x2))l(x1)v3 − ε(v2, x3)l(x1 · x3)β(v2)

)

︸ ︷︷ ︸
=0 by (22.14)

+
(
r(α(x3))r(x2)v1 − ε(x2, x3)r(α(x2))r(x3)v1

)

︸ ︷︷ ︸
=0 by (22.15)

= 0,

which completes the proof.

The Hom-Novikov color Hom-algebra constructed in Proposition 22.4 is denoted by
(A ⊕ V, ∗, ε, α + β) or A ×l,r,α,β V .

Example 22.5 If (A, ·, ε, α) be a Hom-Novikov color Hom-algebra, then (L , R,

α, A) is a bimodule of (A, ·, ε, α), with L(x)y = x · y and R(x)y = y · x for all
x, y ∈ H(A). It is called the regular bimodule of (A, ·, ε, α).

Proposition 22.5 Let (A, ·A, ε, α) and (B, ·B, ε, β) be two Hom-Novikov color
Hom-algebras. Suppose there are even linear maps lA, rA : A → End(B) and
lB, rB : B → End(A) such that the quadruple (lA, rA, β, B) is a bimodule of A,

and (lB, rB, α, A) is a bimodule of B, satisfying, for any x, y ∈ H(A), a, b ∈ H(B),
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rA(α(x))(a ·B b) − β(a) ·B (rA(x)b) − rA(lB(b)x)β(a)

= ε(a, b)
(
rA(α(x))(b ·B a) − β(b) ·B (rA(x)a) − rA(lB(a)x)β(b)

)
,

(rA(x)a) ·B β(b) + lA(lB(a)x)β(b) − β(a) ·B (lA(x)b) − rA(rB(b)x)β(a)

= ε(a, x)
(
(lA(x)a) ·B β(b) + lA(rB(a)x)β(b) − lA(α(x))(a ·B b)

)
,

(lA(x)a) ·B β(b) − lA(rB(a)x)β(b) − lA(α(x))(a ·B b)
= ε(x, a)

(
(rA(x)a) ·B β(b) + lA(lB(a)x)β(b) − β(a) ·B (lA(x)b)

− rA(rB(b)x)β(a)
)
,

rB(β(a))(x ·A y) − α(x) ·A (rB(a)y) − rB(lA(y)a)α(x)
= ε(x, y)

(
rB(β(a))(y ·A x) − α(y) ·A (rB(a)x) − rB(lA(x)a)α(y)

)
,

(rB(a)x) ·A α(y) + lB(lA(x)a)α(y) − α(x) ·A (lB(a)y) − rB(rA(y)a)α(x)
= ε(x, a)

(
(lB(a)x) ·A α(y) + lB(rA(x)a)α(y) − lB(β(a))(x ·A y)

)
,

(lB(a)x) ·A α(y) − lB(rA(x)a)α(y) − lB(β(a))(x ·A y)
= ε(a, x)

(
(rB(a)x) ·A α(y) + lB(lA(x)a)α(y) − α(x) ·A (lB(a)y)

− rB(rA(y)a)α(x)
)
.

Then, (A, B, lA, rA, β, lB, rB, α) is called a matched pair of Hom-Novikov color
Hom-algebras. In this case, there is a Hom-Novikov color Hom-algebra structure on
the direct sum A ⊕ B = ⊕

Γ ∈Γ (A ⊕ B)Γ = ⊕
Γ ∈Γ (AΓ ⊕ BΓ ), of the underlying

Γ -graded linear spaces of A and B given for all x + a ∈ AΓ1 ⊕ BΓ1 , y + b ∈ AΓ2 ⊕
BΓ2 by

(x + a) · (y + b) = (
x ·A y + lB(a)y + rB(b)x

) + (
a ·B b + lA(x)b + rA(y)a

)
,

(α ⊕ β)(x + a) = α(x) + β(a).

We denote this Hom-Novikov color Hom-algebra either by (A 	
 B, ·, ε, α + β) or
A 	
lA,rA,β

lB ,rB ,α B.

22.2.3 On Hom-Lie color Hom-algebras

Definition 22.8 ([1, 19, 24, 55, 56, 69, 80]) A Hom-Lie color Hom-algebra is a
quadruple (A, [·, ·], ε, α) consisting of a Γ -graded vector space A, a bi-character ε,
an even bilinear mapping [·, ·] : A × A → A, (i.e. [Aa, Ab] ⊆ Aa+b, for all a, b ∈
Γ ) and an even homomorphism α : A → A such that for homogeneous elements
x, y, z ∈ A,

[x, y] = −ε(x, y)[y, x], ε − skew symmetry,

�x,y,z ε(z, x)[α(x), [y, z]] = 0, ε − Hom-Jacobi identity
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where �x,y,z denotes the cyclic sum over (x, y, z).

Remark 22.3 Hom-Lie color Hom-algebras contain ordinary Lie color algebras,
Lie superalgebras and Lie algebras, as well as Hom-Lie superalgebras and Hom-Lie
algebras for specific choices of the twisting map, grading group and commutation
factor.

(i) When α = idA, one recovers Lie color algebras, and in particular if the grading
group is Z2 and the commutation factor is defined as ε(i, j) = (−1)i j for all
i, j ∈ Z, then one gets Lie superalgebras [7, 22, 23, 50, 59, 64–66].

(ii) When α = idA and A is trivially graded, by the group with one element, we
recover Lie algebras.

(iii) When A is trivially graded, while α is an arbitrary linear map, we recover
Hom-Lie algebras [37, 45, 54–56], and if A is graded by the group of two
elements Z2, while α is an arbitrary even linear map, and the commutation
factor is defined as ε(i, j) = (−1)i j for all i, j ∈ Z2, then we get Hom-Lie
superalgebras.

Proposition 22.6 ([8]) Let (A, ·, ε, α) be aHom-Novikov color Hom-algebra. Then,
there exists a Hom-Lie color algebra structure on A given for all x, y ∈ H(A) by

[x, y] = x · y − ε(x, y)y · x . (22.16)

Example 22.6 Let A = A0 ⊕ A1 =< e1 > ⊕ < e2, e3 >be a 3-dimensional super-
space. The quintuple (A, ·, ε, α) is a Hom-Novikov color Hom-algebra with

multiplication: e1 · e2 = e3, e2 · e1 = −e3,

bicharacter: ε(i, j) = (−1)i j ,

even linear mapα : A → A : α(e1) = −2e1, α(e2) = e3, α(e3) = e2 − e3.

Therefore, by Proposition 22.6, (A, [·, ·], ε, α) is a Hom-Lie color Hom-algebra
with

[e1, e2] = −[e2, e1] = 2e3.

Proposition 22.7 ([1]) LetA = (A, [·, ·], ε) be a Hom-Lie color Hom-algebra and
α : A → A be a Hom-Lie color Hom-algebras morphism. Define [·, ·]α : A × A →
A for all x, y ∈ A, by [x, y]α = α([x, y]). Then,Aα = (A, [·, ·]α, ε, α) is a Hom-Lie
color Hom-algebra called the α-twist or Yau twist of (A, [·, ·], ε).
Definition 22.9 Let (A, [·, ·], ε, α) be a Hom-Lie color Hom-algebra, (V, β) is
a pair of Γ -graded linear space V and an even linear map β : V → V . Let
ρ : A → End(V ) an even linear map. The triple (ρ, β, V ) is called a representation
of (A, [·, ·], ε, α) if for all x, y ∈ H(A), v ∈ H(V ),

ρ([x, y])β(v) = ρ(α(x))ρ(y)v − ε(x, y)ρ(α(y))ρ(x)v.
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Proposition 22.8 Let (ρ, β, V ) is a representation of aHom-Lie colorHom-algebra
(A, [·, ·], ε, α). Then the direct sum of �-graded linear spaces,

A ⊕ V =
⊕

γ∈�

(A ⊕ V )γ =
⊕

γ∈�

(Aγ ⊕ Vγ ),

is turned into a Hom-Lie color Hom-algebra by defining multiplication in A ⊕ V
for all X1 = x1 + v1 ∈ Aγ1 ⊕ Vγ1 , X2 = x2 + v2 ∈ Aγ2 ⊕ Vγ2 by

[x1 + v1, x2 + v2]′ = [x1, x2] + ρ(x1)v2 − ε(v1, x2)ρ(x2)v1,

(α ⊕ β)(x1 + v1) = α(x1) + β(v1).

The Hom-Lie color Hom-algebra constructed in previous Proposition is denoted
by (A ⊕ V, [·, ·]′, ε, α + β) or A �ρ,α,β V .

Example 22.7 Let (A, [·, ·], ε, α) be a Hom-Lie algebra. Then (ad, α, A) is a rep-
resentation of (A, [·, ·], ε, α), where ad(x)y = [x, y] for all x, y ∈ H(A), called the
adjoint representation of (A, [·, ·], ε, α).

Now, we introduce the notion of matched pair of Hom-Lie color Hom-algebra

Proposition 22.9 Suppose that (A, [·, ·]A, ε, α) and (B, [·, ·]B, ε, β) are Hom-Lie
color Hom-algebras, and there are even linear maps ρA : A → End(B) and ρB :
B → End(A) such that (ρA, β, B) is a representation of A and (ρB, α, A) is a
representation of B satisfying for any x, y ∈ H(A), a, b ∈ H(B),

ε(x, a)
(
ρA(ρB(a)x)β(b) − [β(a), ρA(x)b]B

) + ε(a + x, b)
([β(b), ρA(x)a]B

−ρA(ρB(b)x)β(a)
) + ρA(α(x))([a, b]B) = 0,

ε(a, x)
(
ρB(ρA(x)a)α(y) − [α(x), ρB(a)y]A

) + ε(x + a, y)
([α(y), ρB(a)x]A

−ρB(ρA(y)a)α(x)
) + ρB(β(a))([x, y]A) = 0.

Then, (A, B, ρA, β, ρB, α) is called a matched pair of Hom-Lie color Hom-
algebras. In this case, there is a Hom-Lie color Hom-algebra structure on the linear
space of the underlying �-graded linear spaces of A and B,

A ⊕ B =
⊕

γ∈�

(A ⊕ B)γ =
⊕

γ∈�

(Aγ ⊕ Bγ ),

given for all x + a ∈ Aγ1 ⊕ Bγ1 , y + b ∈ Aγ2 ⊕ Bγ2 by

[x + a, y + b] = [x, y]A + ρA(x)b − ε(a, y)ρA(y)a
+[a, b]B + ρB(a)y − ε(x, b)ρB(b)x,

(α ⊕ β)(x + a) = α(x) + β(a).
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22.3 Admissible Hom-Novikov-Poisson Color
Hom-algebras

In this section, we recall the main result of Hom-Novikov-Poisson color Hom-
algebras in [5] and we introduce their notions of bimodules and matched pairs.
Next, we introduce the definition of admissible Hom-Novikov-Poisson color Hom-
algebras and we give some explicit constructions. Finally, we show that the much
larger class of admissible Hom-Novikov-Poisson color Hom-algebras is also closed
under tensor products.

22.3.1 Constructions and Bimodules of (Admissible)
Hom-Novikov-Poisson Color Hom-Algebras

Definition 22.10 ([5]) Hom-Novikov-Poisson color Hom-algebras are quintuples
(A, ·,�, ε, α) consisting of an ε-commutative Hom-associative color Hom-algebra
(A, ·, ε, α) and a Hom-Novikov color Hom-algebra (A,�, ε, α) such that, for all
x, y, z ∈ H(A),

(x · y) � α(z) = ε(y, z)(x � z) · α(y), (22.17)

(x � y) · α(z) − α(x) � (y · z) = ε(x, y)
(
(y � x) · α(z) − α(y) � (x · z)). (22.18)

A Hom-Novikov-Poisson color Hom-algebra is called multiplicative if the linear
map α : A → A is multiplicative with respect to · and �, that is, for all x, y ∈ H(A),

α(x · y) = α(x) · α(y), α(x � y) = α(x) � α(y).

Remark 22.4 Hom-Novikov-Poisson colorHom-algebras containNovikov-Poisson
color Hom-algebras, Hom-Novikov-Poisson algebras andNovikov-Poisson algebras
for special choices of the twising map and grading group.

(i) When α = id, we get Novikov-Poisson color Hom-algebra.
(ii) When Γ = {e} and α �= id, we get Hom-Novikov-Poisson algebra [85].
(iii) When Γ = {e} and α = id, we get Novikov-Poisson algebra [77, 78].

Example 22.8 Let A = A0 ⊕ A1 =< e1, e2 > ⊕ < e3, e4 > be a 4-dimensional
superspace. Then (A, ·,�, ε, α) is a Hom-Novikov-Poisson color Hom-algebra with

the bicharacter ε(i, j) = (−1)i j ,

the multiplications: e2 · e2 = λ1e1, e2 · e4 = e4 · e2 = λ2e3, λi ∈ K,

e2 � e4 = μ2e3, e4 � e2 = μ3e3, e4 � e4 = μ4e1, μi ∈ K,

even linear mapα : A → A : α(e1) = 2e1, α(e2) = e2 − e1,
α(e3) = −e4, α(e4) = e3.
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Definition 22.11 Let (A, ·,�, α) and (A′, ·′,�′, α′) be Hom-Novikov-Poisson color
Hom-algebras. A linear map of degree zero f : A → A′ is a Hom-Novikov-Poisson
color Hom-algebra morphism if

·′ ◦ ( f ⊗ f ) = f ◦ ·, �′ ◦ ( f ⊗ f ) = f ◦ � and f ◦ α = α′ ◦ f.

Theorem 22.1 ([5]) Let A = (A, ·,�, ε) be a Hom-Novikov-Poisson color Hom-
algebra and α : A → A be a Hom-Novikov-Poisson color Hom-algebras morphism.
Define ·α, �α : A × A → A for all x, y ∈ H(A), by x ·α y = α(x · y) and x �α y =
α(x � y). Then,Aα = (Aα = A, ·α,�α, ε, α) is a Hom-Novikov-Poisson color Hom-
algebra called the α-twist or Yau twist of (A, ·,�, ε).

Definition 22.12 Let (A, ·,�, ε, α) be aHom-Novikov-Poisson color Hom-algebra.
A bimodule of (A, ·,�, ε, α) is a quintuple (s, l, r, β, V ) such that (s, β, V ) is a
bimodule of the ε-commutative Hom-associative color Hom-algebra (A, ·, ε, α) and
(l, r, β, V ) is a bimodule of the Hom-Novikov color Hom-algebra (A,�, ε, α) sat-
isfying, for all x, y ∈ H(A), v ∈ H(V ),

l(x · y)β(v) = ε(x, y)s(α(y))l(x)v, (22.19)

r(α(y))s(x)v = ε(v, y)s(x � y)β(v), (22.20)

r(α(y))s(x)v = s(α(x))r(y)v, (22.21)

s(x � y)β(v) − l(α(x))s(y)v = ε(x, y)
(
s(y � x)β(v) − l(α(y))s(x)v

)
, (22.22)

ε(x + v, y)
(
s(α(y))l(x)v − ε(x, v)s(α(y))r(x)v

) = ε(v, y)l(α(x))s(y)v
−ε(x, v)r(x · y)β(v).

(22.23)

Proposition 22.10 If A ⊕ V = ⊕
γ∈�(A ⊕ V )γ = ⊕

γ∈�(Aγ ⊕ Vγ ) is the direct
sum of �-graded linear spaces, then (A ⊕ V, ·′,�′, ε, α + β) is a Hom-Novikov-
Poisson colorHom-algebra, where (A ⊕ V, ·′, ε, α + β) is the semi-direct product ε-
commutativeHom-associative colorHom-algebra A �s,α,β V and (A ⊕ V,�′, ε, α +
β) is the semi-direct product Hom-Novikov color Hom-algebra A �l,r,α,β V .

Proof Let (A, ·,�, ε, α) be a Hom-Novikov-Poisson color Hom-algebra, and let
(s, l, r, β, V ) be a bimodule. By Propositions 22.1 and 22.4, (A ⊕ V, ·′, ε, α + β) is
a ε-commutative Hom-associative color Hom-algebra, and (A ⊕ V,�′, ε, α + β) is
a Hom-Novikov color Hom-algebra. Now, we show that the compatibility conditions
(22.17)–(22.18) are satisfied. For all Xi = xi + vi ∈ Aγi ⊕ Vγi , i = 1, 2, 3 we have

(X1 ·′ X2
) �′ (α + β)X3 − ε(X2, X3)(X1 �′ X3) ·′ (α + β)X2

= (
(x1 + v1) ·′ (x2 + v2)

) �′ (α + β)(x3 + v3)

− ε(X2, X3)
(
(x1 + v1) �′ (x3 + v3)

) ·′ (α + β)(x2 + v2)

= (
x1 · x2 + s(x1)v2 + ε(v1, x2)s(x2)v1

) �′ (α(x3) + β(v3))

− ε(x2, x3)
(
(x1 � x3 + l(x1)v3 + r(x3)v1

) ·′ (α(x2) + β(v2))
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= (x1 · x3) � α(x3) + l(x1 · x2)β(v3) + r(α(x3))s(x1)v2

+ ε(v1, x2)r(α(x3))s(x2)v1 − ε(x2, x3)
(
x1 � x3) · α(x2) + s(x1 � x2)β(v2)

)

− ε(x1, x2)
(
s(α(x2))l(x1)v3 + s(α(x2))r(x3)v1

)

=
(
(x1 · x2) � α(x3) − ε(x2, x3)(x1 � x3) · α(x2)

)

︸ ︷︷ ︸
=0 by (22.17)

+
(
l(x1 · x2)β(v3) − ε(x1, x2)s(α(x2))l(x1)v3

)

︸ ︷︷ ︸
=0 by (22.19)

+
(
r(α(x3))s(x1)v2 − ε(x2, x3)s(x1 � x3)β(v2)

)

︸ ︷︷ ︸
=0 by (22.20) and Remark 1

+ ε(x1, x2)
(
r(α(x3))s(x2)v1 − s(α(x2))r(x3)v1

)

︸ ︷︷ ︸
=0 by (22.21)

= 0,

(X1 �′ X2) ·′ (α + β)X3 − (α + β)X1 �′ (X2 ·′ X3)

− ε(X1, X2)
(
(X2 �′ X1) ·′ (α + β)X3 − (α + β)X2 �′ (X1 ·′ X3)

)

= (
(x1 + v1) �′ (x2 + v2)

) ·′ (α + β)(x3 + v3)

− (α + β)(x1 + v1) �′ ((x2 + v2) ·′ (x3 + v3)
)

− ε(X1, X2)
(
(x2 + v2) �′ (x1 + v1)

) ·′ (α + β)(x3 + v3)

− (α + β)(x2 + v2) �′ ((x1 + v1) ·′ (x3 + v3)
)

= (x1 � x2)α(x3) + s(x1 � x2)β(v3) + ε(x1 + x2, v3)s(α(x3))l(x1)v2
+ ε(x1 + x2, v3)s(α(x3))r(x2)v1 − α(x1) � (x2 · x3)
− l(α(x1))s(x2)v3 + ε(v2, x3)l(α(x1))s(x3)v2 + r(x2 · x3)β(v1)

− ε(x1, x2)
(
x2 � x1) · α(x3) + s(x2 � x1)β(v3) + ε(x1 + x2, v3)s(α(x3))l(x2)v1

+ ε(x1 + x2, v3)s(α(x3))r(x1)v2 − α(x2) � (x1 · x3) − l(α(x2))s(x1)v3

+ ε(v1, x3)l(α(x2))s(x3)v1 + r(x1 · x3)β(v2)
)

=
(
(x1 � x2) · α(x3) − α(x2) � (x2 · x3)

︸ ︷︷ ︸

− ε(x1, x2)
(
(x2 � x1) · α(x3) − α(x2) � (x1 · x3))

))

︸ ︷︷ ︸
=0 by (22.18)

+
(
s(x1 � x2)β(v3) − l(α(x1))s(x2)v3

︸ ︷︷ ︸
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− ε(x1, x2)(s(x2 � x1)β(v3) − l(α(x2))s(x1)v3
)

︸ ︷︷ ︸
=0 by (22.22)

+
(
ε(x1 + x2, v3)

(
s(α(x3))l(x1)v2 − ε(x1, x2)s(α(x3))r(x1)v2

)

︸ ︷︷ ︸

− ε(x1, x2)r(x1 · x3)β(v2) + ε(x2, v3)l(α(x1))s(x3)v2
)

︸ ︷︷ ︸
=0 by (22.23) and Remark 1

− ε(x1, x2)
(
ε(x1 + x2, v3)

(
s(α(x3))l(α(x2))v1 − ε(x2, x1)s(α(x3))r(x2)v1

)

︸ ︷︷ ︸

− ε(x1, x3)l(α(x2))s(x3)v1 + ε(x2, x1)r(x2 · x3)β(v1)
)

︸ ︷︷ ︸
=0 by (22.23) and Remark 1

= 0.

Hence, (A ⊕ V, ·′, [·, ·]′, ε, α + β) is a Hom-Novikov-Poisson color Hom-algebra.
�

The Hom-Novikov-Poisson color Hom-algebra constructed in previous Proposition
is denoted by A �s,l,r,α,β V .

Example 22.9 Here are some important examples important bimodules of Hom-
Novikov-PoissoncolorHom-algebras.

(1) Let (A, ·,�, ε, α) be a Hom-Novikov-Poisson color Hom-algebra, and let for
all x, y ∈ H(A), S(x)y = x · y = ε(x, y)y · x , L(x)y = x � y and R(x, y) =
y � x . Then (S, L , R, α, A) is a bimodule of (A, ·,�, ε, α), called the regular
bimodule of (A, ·,�, ε, α).

(2) If f : A=(A, ·1,�1, ε, α) −→ (A′, ·2,�2, ε, β) is amorphismofHom-Novikov-
Poisson color Hom-algebras, then (s, l, r, β, A′) is bimodule of A via f , that
is, s(x)y = f (x) ·2 y, l(x)y = f (x) �2 y, r(x)y = y �2 f (x), for (x, y) ∈
H(A) × H(A′).

Theorem 22.2 Suppose that A = (A, ·A,�A, ε, α) and B = (B, ·B,�B, ε, β) are
two Hom-Novikov-Poisson color Hom-algebras, and there are such even linear
maps sA, lA, rA : A → End(B) and sB, lB, rB : B → End(A) that A 	
sA,β

sB ,α B is a
matched pair of ε-commutative Hom-associative color Hom-algebras, A 	
lA,rA,β

lB ,rB ,α

B is a matched pair of Hom-Novikov color Hom-algebras, and for all x, y ∈
H(A), a, b ∈ H(B),
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rA(α(x))(a ·B b) = ε(b, x)
(
rA(x)a ·B β(b) + sA(lB(a)x)β(b),

lA(sB(a)x)β(b) + ε(a, x)s(x)a �B β(b)
= ε(x, b)

(
ε(a + b, x)s(α(x))(a �B b)

)
,

ε(a, x)lA(sB(a)x)β(b) + sA(x)a �B β(b)
= ε(a, b)

(
lA(x)b ·B β(a) + sA(rB(b)x)β(a)

)
,

ε(a + b, x)s(α(x))(a �B b) − ε(b, x)β(a) �B sA(x)b − rA(sB(b)x)β(a)

= ε(a, b)
(
ε(a + b, x)s(α(x))(b �B a) − ε(a, x)β(b) �B (sA(x)a)

− rA(sB(a)x)β(b)
)
,

rA(x)b ·B β(b) + sA(lB(a)x)β(b)
−β(a) �B (sA(x)b) − ε(x, b)rA(sB(b)x)β(a)

= ε(a, x)
(
lA(x)b ·B β(b) − sA(rB(a)x)β(b) − lA(α(x))(a ·B b)

)
,

lA(x)a ·B β(b) + sA(rB(a)x)β(b) − lA(α(x))(a ·B b)
= ε(x, a)

(
rA(x)a ·B β(b) + sA(lB(a)x)β(b)

− β(a) �B (sA(x)b) − ε(x, b)rA(sB(b)x)β(a)
)
,

rB(β(a))(x ·A y) = ε(y, a)
(
rB(a)x ·A α(y) + sB(lA(x)a)α(y),

lB(sA(x)a)α(y) + ε(x, a)s(a)x �A α(y)
= ε(a, y)

(
ε(x + y, a)s(β(a))(x �A y)

)
,

ε(x, a)lB(sA(x)a)α(y) + sB(a)x �A α(y)
= ε(x, y)

(
lB(a)y ·A α(x) + sB(rA(y)a)α(x)

)
,

ε(x + y, a)s(β(a))(x �A y) − ε(y, a)α(x) �A sB(a)y − rB(sA(y)a)α(x)
= ε(x, y)

(
ε(x + y, a)s(β(a))(y �A x) − ε(x, a)α(y) �A (sB(a)x)

− rB(sA(x)a)α(y)
)
,

rB(a)y ·A α(y) + sB(lA(x)a)α(y) − α(x) �A (sB(a)y) − ε(a, y)rB(sA(y)a)α(x)
= ε(x, a)

(
lB(a)y ·A α(y) − sB(rA(x)a)α(y) − lB(β(a))(x ·A y)

)
,

lB(a)x ·A α(y) + sB(rA(x)a)α(y) − lB(β(a))(x ·A y)
= ε(a, x)

(
rB(a)x ·A α(y) + sB(lA(x)a)α(y)

− α(x) �A (sB(a)y) − ε(a, y)rB(sA(y)a)α(x)
)
.

Then, (A, B, sA, lA, rA, β, sB, lB, rB, α) is called a matched pair of the Hom-
Novikov-Poisson color Hom-algebras. In this case, on the direct sum A ⊕ B of the
underlying linear spaces of A and B, there is a Hom-Novikov-Poisson color Hom-
algebra structure which is given for any x + a ∈ AΓ1 ⊕ BΓ1 , y + b ∈ AΓ2 ⊕ BΓ2 by

(x + a) · (y + b) = x ·A y + (sA(x)b + ε(a, y)sA(y)a)

+a ·B b + (sB(a)y + ε(x, b)sB(b)x),

(x + a) � (y + b) = x �A y + (lA(x)b + rA(y)a)

+a �B b + (lB(a)y + rB(b)x).

Proof By Propositions22.2 and 22.5, we deduce that (A ⊕ B, ·, ε, α + β) is a ε-
commutative Hom-associative color Hom-algebra and (A ⊕ B,�, α + β) is a Hom-



22 Admissible Hom-Novikov-Poisson and Hom-Gelfand-Dorfman … 633

Novikov color Hom-algebra. Now, the rest, it is easy (in a similar way as for Propo-
sition 22.2) to verify the compatibility conditions are satisfied. �
Definition 22.13 A transposed Hom-Poisson color Hom-algebra is defined as a
quintuple (A, ·, [·, ·], ε, α), where (A, ·, ε, α) is a ε-commutative Hom-associative
color Hom-algebra and (A, [·, ·], ε, α) is a Hom-Lie color Hom-algebra, satisfying
the transposed Hom-ε-Leibniz identity for x, y, z ∈ H(A),

2α(z) · [x, y] = [z · x, α(y)] + ε(z, x)[α(x), z · y]. (22.24)

Proposition 22.11 Let (A, ·, [·, ·], ε, α)beamultiplicative transposedHom-Poisson
color Hom-algebra. Then the following identities hold for all h, x, y, z ∈ H(A),

�x,y,z ε(z, x)α(x) · [y, z] = 0, (22.25)

�x,y,z ε(z, x)[α(h) · [x, y], α2(z)] = 0, (22.26)

�x,y,z ε(z, x)[α(h) · α(x), [α(y), α(z)]] = 0, (22.27)

�x,y,z ε(z, x)[α(h), α(x)] · [α(y), α(z)] = 0. (22.28)

Proof Proof of (22.25):Let x, y, z ∈ H(A). By the transposedHom-ε-Leibniz iden-
tity,

�x,y,z ε(z, x)
(
2α(x) · [y, z]

)
=�x,y,z ε(z, x)

(
[x · y, α(z)] + ε(x, y)[α(y), x · z]

)

=�x,y,z ε(z, x)
(
[x · y, α(z)] + ε(x + y, z)[z · x, α(y)]

)

=�x,y,z

(
ε(z, x)[x · y, α(z)] − ε(y, z)[z · x, α(y)]

)
= 0,

which yields (22.25).
Proof of (22.26): Let x, y, z, h ∈ H(A). First, by (22.24), we have

�x,y,z ε(z, x)
(
2α2(h)[[x, y], α(z)]

)
=�x,y,z ε(z, x)

(
[α(h), [x, y], α2(z)]

+ ε(h, x + y)[α([x, y]), α(h · z)]
)
.

Applying the Hom-Jacobi identity of the above equality, we obtain

�x,y,z ε(z, x)
(
[α(h), [x, y], α2(z)]

)

+ �x,y,z ε(z, x)
(
ε(h, x + y)[α([x, y]), α(h · z)]

)
= 0.

(22.29)

Next, by the Hom-Jacobi identity, we have

ε(h, x + y)[[α(x), α(y)], α(h · z)] + ε(x + y, z)[[h · z, α(x)], α2(y)]
+ ε(h, y)ε(x, y + z)[[α(y), h · z], α2(x)] = 0,
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and by (22.24) we have

ε(h, y)ε(x, y + z)[[α(y), h · z], α2(x)] = 2ε(x, y + z)[α(h) · [y, z], α2(x)]
− ε(x, y + z)[[h · y, α(z)], α2(x)] = 0.

Thus we obtain

ε(h, x + y)[[α(x), α(y)], α(h · z)] + ε(x + y, z)[[h · z, α(x)], α2(y)]
+ ε(x, y + z)

(
2[α(h) · [y, z], α2(x)] − ε(x, y + z)[[h · y, α(z)], α2(x)]) = 0.

Similarly, we have

�x,y,z ε(z, x)
(
ε(h, x + y)[[α(x), α(y)], α(h · z)] + ε(x + y, z)[[h · z, α(x)], α2(y)]

+ ε(x, y + z)
(
2[α(h) · [y, z], α2(x)] − ε(x, y + z)[[h · y, α(z)], α2(x)])

)
= 0.

Taking the above sum, we obtain

�x,y,z ε(z, x)
(
ε(h, x + y)[[α(x), α(y)], α(h · z)]

)

+ �x,y,z ε(z, x)
(
2[α(h) · [x, y], α2(x)]

)
= 0.

(22.30)

Finally, taking the difference between the two equations (22.29) and (22.30) we
obtain (22.26).

Proof of (22.27): Taking the difference between the two equations (22.26) and
(22.29) we obtain (22.27)

Proof of (22.28): Let x, y, z, h ∈ H(A). By (22.24) we have

�x,y,z ε(z, x)
(
2ε(h, x + y)[α(x), α(y)] · [α(h), α(z)]

)

=�x,y,z ε(z, x)
(
[α(h) · [x, y], α2(z)] + ε(x + y, z)[α2(h), α(z) · [x, y].]

)
.

Applying equations (22.25) and (22.26) to above equality, we obtain (22.28). �

Proposition 22.12 Let (A, ·,�, ε, α) be a Hom-Novikov-Poisson color Hom-
algebra. With the bilinear multiplication [·, ·] : A × A → A such that for all x, y ∈
H(A),

[x, y] = x � y − ε(x, y)y � x,

(A, ·, [·, ·], ε, α) is a Hom-transposed-Poisson color Hom-algebra.

Proof By definition, we have (A, ·, ε, α) is a ε-commutative Hom-associative color
Hom-algebra and by Proposition22.6, (A, [·, ·], ε, α) is a Hom-Lie color Hom-
algebra. Now, we show that the ε-transposed Hom-Leibniz identity is satisfied. For
any x, y, z ∈ H(A) we have
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ε(z, x)[x · z, α(y)] + ε(z, x + y)[α(x), y · z] − 2α(z) · [x, y]
= ε(z, x)

(
(x · z) � α(y) − ε(x + z, y)α(y) � (x · z)

)

+ ε(z, x + y)
(
α(x) � (y · z) − ε(x, y + z)(y · z) � α(x)

)
− 2α(z) ·

(
x · y − ε(x, y)y · x

)

(by (22.17) and (22.18))

= ε(z, x)(x · z) � α(y) − α(z)(x � y) + ε(x, y)α(z) · (y � x)

− ε(x + z, y)(y · z) � α(x) −
(
ε(z, x + y)(x � y) · α(z)

− ε(x, y)(y � x) · α(z) − ε(z, x + y)α(x) � (y · z) + ε(x, y)α(y) � (x · z)
)

= 0.

Hence the conclusion holds. �
Example 22.10 Let A = A0 ⊕ A1 =< e1, e2 > ⊕ < e3, e4 > be a 4-dimensional
superspace. Then (A, ·,�, ε, α) is a Hom-Novikov-Poisson color Hom-algebra with

bicharacter: ε(i, j) = (−1)i j ,

the multiplications: e2 · e2 = e1, e2 · e4 = e4 · e2 = e3
e2 � e4 = −e3, e4 � e2 = e3, e4 � e4 = 2e1,

even linear mapα : A → A : α(e1) = 2e1, α(e2) = −e2,
α(e3) = −e4, α(e4) = e3.

Therefore, using the Proposition 22.12, (A, ·, [·, ·], ε, α) is a transposed Hom-
Poisson color Hom-algebra with

[e2, e4] = [e4, e2] = −2e3, [e4, e4] = 4e1.

Definition 22.14 ([11])AHom-Poisson colorHom-algebra is defined as a quintuple
(A, ·, [·, ·], ε, α) such that (A, ·, ε, α) is a ε-commutative Hom-associative color
Hom-algebra, and (A, [·, ·], ε, α) is a Hom-Lie color Hom-algebra, satisfying for all
x, y, z ∈ H(A), the Hom-ε-Leibniz identity,

[α(x), y · z] = ε(x, y)α(y) · [x, z] + ε(x + y, z)α(z) · [x, y]. (22.31)

Condition (22.31), expressing the compatibility between the multiplication and the
Poisson bracket, can be reformulated equivalently as

[x · y, α(z)] = ε(y, z)[x, z] · α(y) + α(x) · [y, z]. (22.32)

Definition 22.15 A Hom-Novikov-Poisson color Hom-algebra (A, ·,�, ε, α) is
called admissible if (A, ·, [·, ·], ε, α) is a Hom-Poisson color Hom-algebra, with
the bilinear multiplication [·, ·] : A × A → A such that for all x, y ∈ H(A),

[x, y] = x � y − ε(x, y)y � x . (22.33)
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Lemma 22.1 Let (A, ·,�, ε, α) be a Hom-Novikov-Poisson color Hom-algebra.
Then for any x, y, z ∈ H(A),

(x · y) � α(z) = α(x) � (y · z). (22.34)

Proof For all x, y, z ∈ H(A),

((A, ·, ε, α) is ε − commutative)

(x · y) ◦ α(z) = ε(x, y)(y · x) ◦ α(z)

(by (22.17))

= ε(x, y + z)(y ◦ z) · α(x)

((A, ·, ε, α) is ε − commutative)

= α(x) · (y ◦ z).

which completes the proof. �

The following result gives a necessary and sufficient condition under which a Hom-
Novikov-Poisson color algebra is admissible.

Theorem 22.3 Let (A, ·,�, ε, α) be Hom-Novikov-Poisson color Hom-algebra.
Then A is an admissible if and only if

aslA(x, y, z) = (x · y) � α(z) − α(x) � (y · z) = 0. (22.35)

Proof By definition, (A, ·, ε, α) is a ε-commutative Hom-associative color Hom-
algebra and by Proposition 22.6, (A, [·, ·], ε, α) is a Hom-Lie color Hom-algebra.
Therefore,

(using 22.16)

[α(x), y · z] = α(x) � (y · z) − ε(x + y, z)(y · z) � α(x)

(by (22.18) and Lemma 1)

= (x � y) · α(z) − ε(x, y)(y � x) · α(z) + ε(x, y)α(y) � (x · z) − ε(x, y + z)α(y) · (z � x),

[x, y] · α(x) + ε(x, y)α(y)[x, z]
(using 22.16)

= (x � y) · α(z) − ε(x, y)(y � x) · α(z) + ε(x, y)α(y) · (x � z) − ε(x, y + z)α(y) · (z � x)

(by Lemma 1)

= (x � y) · α(z) − ε(x, y)(y � x) · α(z) + ε(x, y)(y · x) � α(z) − ε(x, y + z)α(y) · (z � x).

Then A obeys the Hom-ε-Leibniz-identity if and only if α(y) � (x · z) = (y · x) �
α(z). �

Example 22.11 If A = A0 ⊕ A1 =< e1, e2 > ⊕ < e3, e4 > is a 4-dimensional
superspace, then (A, ·,�, ε, α) is a Hom-Novikov-Poisson color Hom-algebra with
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bicharacter: ε(i, j) = (−1)i j ,

multiplications: e2 · e2 = λ1e1, e2 · e4 = e4 · e2 = λ2e3, λi ∈ K

e2 � e2 = μ1e1, e4 � e2 = μ2e3,
e4 � e4 = μ3e1, μi ∈ K

even linear mapα : A → A : α(e1) = 2e1 − e2, α(e2) = e1,
α(e3) = −e4, α(e4) = e3 − e4.

Then byTheorem22.3, theHom-Novikov-Poisson colorHom-algebra (A, ·,�, ε, α)

is admissible.

Theorem 22.4 Let A = (A, ·,�, ε) be an admissible Novikov-Poisson color Hom-
algebra and α : A → A be an admissible Novikov-Poisson color Hom-algebras
morphism. Define ·α, �α : A × A → A by x ·α y = α(x · y) and x �α y = α(x � y)
for all x, y ∈ H(A). Then, Aα = (A, ·α,�α, ε, α) is an admissible Hom-Novikov-
Poisson color Hom-algebra called the α-twist or Yau twist of (A, ·,�, ε).

Proof ByTheorem22.11,Aα is aHom-Novikov-Poisson colorHom-algebra.More-
over, the left Hom-associators in A and Aα are related for all x, y, z ∈ H(A) by

aslAα
(x, y, z) = α2aslA(x, y, z).

SinceA is left Hom-associative by Theorem 22.3, it follows that so isAα . Therefore,
by Theorem 22.3 again Aα is admissible. �

Corollary 22.1 IfA = (A, ·,�, ε, α) is amultiplicative admissibleNovikov-Poisson
color algebra, then for any n ∈ N

∗,

(i) The nth derived admissible Hom-Novikov-Poisson color Hom-algebra of type 1
of A is defined by

An
1 = (A, ·(n) = αn ◦ ·,�(n) = αn ◦ �, ε, αn+1).

(ii) The nth derived admissible Hom-Novikov-Poisson color Hom-algebra of type 2
of A is defined by

An
2 = (A, ·(2n−1) = α2n−1 ◦ ·,�(2n−1) = α2n−1 ◦ �, ε, α2n ).

Example 22.12 Let A = A0 ⊕ A1 =< e1, e2 > ⊕ < e3, e4 > be a 4-dimensional
superspace. There is a multiplicative admissible Hom-Novikov-Poisson color Hom-
algebra (A, ·,�, ε, α) with the bicharacter, ε(i, j) = (−1)i j , and the multiplications
tables for a basis {e1, e2, e3, e4}:

· e1 e2 e3 e4
e1 0 0 0 0
e2 0 e1 0 4e3
e3 0 0 0 0
e4 0 4e3 0 0

� e1 e2 e3 e4
e1 0 0 0 0
e2 0 4e3 0 4e3
e3 0 0 0 0
e4 0 0 0 e1
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α(e1) = 4e1, α(e2) = −2e2,
α(e3) = e3, α(e4) = −2e4.

Then there are admissible Hom-Novikov-Poisson color Hom-algebras An
1 and An

2
with multiplications tables respectively:

·(n) e1 e2 e3 e4
e1 0 0 0 0
e2 0 22ne1 0 4e3
e3 0 0 0 0
e4 0 4e3 0 0

�(n) e1 e2 e3 e4
e1 0 0 0 0
e2 0 4e3 0 4e3
e3 0 0 0 0
e4 0 0 0 22ne1

αn+1(e1) = 4n+1e1, αn+1(e2) = (−2)n+1e2,
αn+1(e3) = e3, αn+1(e4) = (−2)n+1e4,

·(2n−1) e1 e2 e3 e4
e1 0 0 0 0
e2 0 22(2

n−1)e1 0 4e3
e3 0 0 0 0
e4 0 4e3 0 0

�(2n−1) e1 e2 e3 e4
e1 0 0 0 0
e2 0 4e3 0 4e3
e3 0 0 0 0
e4 0 0 0 22(2

n−1)e1

α2n (e1) = 42
n
e1, α2n (e2) = 22

n
e2,

α2n (e3) = e3, α2n (e4) = 22
n
e4.

22.3.2 Tensor Products of Admissible Hom-Novikov-Poisson
Color Hom-Algebras

Now, we show that the much larger class of admissible Hom-Novikov-Poisson color
Hom-algebras is also closed under tensor products.

Theorem 22.5 Let (A1, ·1,�1, ε, α1) and (A2, ·2,�2, ε, α2) be arbitrary admissible
Hom-Novikov-Poisson color Hom-algebras, A = A1 ⊗ A2, and operations α : A →
A and ·,� : A ⊗ A → A are defined, for all xi , yi ∈ H(Ai ), i ∈ {1; 2}, by

α = α1 ⊗ α2,

(x1 ⊗ x2) · (y1 ⊗ y2) = ε(x2, y1)(x1 ·1 y1) ⊗ (x2 ·2 y2),
(x1 ⊗ x2) � (y1 ⊗ y2) = ε(x2, y1)

(
(x1 �1 y1) ⊗ (x2 ·2 y2) + (x1 ·1 y1) ⊗ (x2 �2 y2)

)
,

then (A, ·,�, ε, α) is an admissible Hom-Novikov-Poisson color Hom-algebra.

Proof Pick x = x1 ⊗ x2, y = y1 ⊗ y2 and z = z1 ⊗ z2 homogeneous elements in A.
Step 1:We show that (A, ·, ε, α) is ε-commutative Hom-associative-color Hom-

algebra:
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x · y = (x1 ⊗ x2) · (y1 ⊗ y2)

= ε(x2, y1)(x1 ·1 y1) ⊗ (x2 ·2 y2)
= ε(x2, y1)ε(x1, y1)ε(x2, y2)(y1 ·1 x1) ⊗ (y2 ·2 x2)
= ε(x1 + x2, y1 + y2)

(
ε(y2, x1)(y1 ·1 x1) ⊗ (y2 ·2 x2)

)

= ε(x1 + x2, y1 + y2)(y1 ⊗ y2) · (x1 ⊗ x2) = ε(x, y)y · x,
(x · y) · α(z) = ((x1 ⊗ x2) · (y1 ⊗ y2)) · (α1 ⊗ α2)(z1 ⊗ z2)

=
(
ε(x2, y1) · (x1 ·1 y1) ⊗ (x2 ⊗2 y2)

)
· (α1 ⊗ α2)(z1 ⊗ z2)

= ε(x2 + y2, z1)ε(x2, y1)
(
(x1 ·1 y1) ·1 α1(z1) ⊗ (x2 ·2 y2) ·2 α2(z2)

)

= ε(x2, y1 + z1)ε(y2, z1)
(
α1(x1) ·1 (y1 ·1 z1) ⊗ α2(x2) ·2 (y2 ·2 z2)

)

= (α1 ⊗ α2)(x1 ⊗ x2) · ((y1 ⊗ y2) · (z1 ⊗ z2)) = α(x) · (y · z).

Hence, (A1 ⊗ A2, ·, ε, α) is a ε-commutative Hom-associative color Hom-algebra.
Step 2: We show that (A,�, ε, α) is Hom-Novikov-color Hom-algebra.

(x � y) � α(z) − α(x) � (y � z) − ε(x, y)
(
(y � x) � α(z) − α(y) � (x � z))

= (
(x1 ⊗ x2) � (y1 ⊗ y2)

) � α(z1 ⊗ z2) − (α1 ⊗ α2)(x1 ⊗ x2) � (
(y1 ⊗ y2) � (z1 ⊗ z2)

)

− ε(x1 + x2, y1 + y2)
((

(y1 ⊗ y2) � (x1 ⊗ x2)
) � (α1 ⊗ α2)(z1 ⊗ z2)

− (α1 ⊗ α2)(y1 ⊗ y2) � (
(x1 ⊗ x2) � (z1 ⊗ z2)

))

= ε(x2, y1)
(
(x1 �1 y1) ⊗ (x2 ·2 y2) + (x1 ·1 y1) ⊗ (x2 �2 y2)

) � (α1 ⊗ α2)(z1 ⊗ z2)

− ε(y2, z1)(α1 ⊗ α2)(x1 ⊗ x2) � (
(y1 �1 z1) ⊗ (y2 ·2 z2) + (y1 ·1 z1) ⊗ (y2 �2 z2)

)

− ε(x1 + x2, y1 + y2)
(
ε(y2, x1)

(
(y1 �1 x1) ⊗ (y2 ·2 x2) + (y1 ·1 x1) ⊗ (y2 �2 x2)

)�
(α1 ⊗ α2)(z1 ⊗ z2) − ε(x2, z1)(α1 ⊗ α2)(y1 ⊗ y2) � (

(x1 �1 z1) ⊗ (x2 ·2 z2)

+ (x1 ·1 z1) ⊗ (x2 �2 z2)
))

= ε(x1 + x2, y1 + y2)×
[
(x1 �1 y1) �1 α1(z1) ⊗ (x2 ·2 y2) ·2 α2(z2)︸ ︷︷ ︸

A1

+(x1 �1 y1) ·1 α1(z1) ⊗ (x2 ·2 y2) �2 α2(z2)︸ ︷︷ ︸
A2

+(x1 ·1 y1) �1 α1(z1) ⊗ (x2 �2 y2) ·2 α2(z2)︸ ︷︷ ︸
A3

+(x1 ·1 y1) ·1 α1(z1) ⊗ (x2 �2 y2) �2 α2(z2)︸ ︷︷ ︸
A4

−α1(x1) �1 (y1 �1 z1) ⊗ α2(x2) ·2 (y2 ·2 z2)︸ ︷︷ ︸
A5

−α1(x1) ·1 (y1 �1 z1) ⊗ α2(x2) �2 (y2 ·2 z2)︸ ︷︷ ︸
A6

−α1(x1) �1 (y1 ·1 z1) ⊗ α2(x2) ·2 (y2 �2 z2)︸ ︷︷ ︸
A7

−α1(x1) ·1 (y1 ·1 z1) ⊗ α2(x2) �2 (y2 �2 z2)︸ ︷︷ ︸
A8

− ε(x1, y1)ε(x2, y2)×
(

(y1 �1 x1) �1 α1(z1) ⊗ (x2 ·2 x2) ·2 α2(z2)︸ ︷︷ ︸
B1

+(x1 �1 x1) ·1 α1(z1) ⊗ (x2 ·2 x2) �2 α2(z2)︸ ︷︷ ︸
B2
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+(x1 ·1 x1) �1 α1(z1) ⊗ (x2 �2 x2) ·2 α2(z2)︸ ︷︷ ︸
B3

+(x1 ·1 x1) ·1 α1(z1) ⊗ (x2 �2 x2) �2 α2(z2)︸ ︷︷ ︸
B4

−α1(x1) �1 (x1 �1 z1) ⊗ α2(x2) ·2 (x2 ·2 z2)︸ ︷︷ ︸
B5

−α1(x1) ·1 (x1 �1 z1) ⊗ α2(x2) �2 (x2 ·2 z2)︸ ︷︷ ︸
B6

−α1(x1) �1 (x1 ·1 z1) ⊗ α2(x2) ·2 (x2 �2 z2)︸ ︷︷ ︸
B7

− α1(x1) ·1 (x1 ·1 z1) ⊗ β(x2) �2 (x2 �2 z2)
)]

︸ ︷︷ ︸
B8

.

Furthermore, we have

(A1 + A5) − ε(x1, y1)ε(x2, y2)(B1 + B5)

(by (22.1) and (22.2))

=
[(

(x1 �1 y1) �1 α1(z1) − α1(x1) �1 (y1 �1 z1)
)

− ε(x1, y1)
(
(y1 �1 x1) �1 α1(z1) − α1(y1) �1 (x1 �1 z1)

)] ⊗ (x2 ·2 y2) ·2 α2(z2)

(by (22.8)) = 0,

(A4 + A8) − ε(x1, y1)ε(x2, y2)(B4 + B8)

(by (22.1) and (22.2))

= (x1 ·1 y1) ·1 α1(z1) ⊗
[(

(x2 �2 y2) �2 α2(z2)

− α2(x2) �2 (y2 �2 z2)
) − ε(x2, y2)

(
(y2 �2 x2) �2 α2(z2) − α2(y2) �2 (x2 �2 z2)

)]

(by (22.8)) = 0,

(A2 + A7) − ε(x1, y1)ε(x2, y2)(B2 + B7)

(by (22.1), (22.17) and (22.2))

=
[(

(x1 �1 y1) ·1 α1(z1) − α1(x1) �1 (y1 ·1 z1)
)

− ε(x1, y1)
(
(y1 �1 x1) ·1 α1(z1) − α1(y1) �1 (x1 ·1 z1)

)] ⊗ (x2 ·2 y2) �2 α2(z2)

(by (22.18)) = 0,

(A3 + A6) − ε(x1, y1)ε(x2, y2)(B3 + B6)

(by (22.1), (22.17) and (22.2))

= (x1 ·1 y1) �1 α1(z1) ⊗
[(

(x2 �2 y2) ·2 α2(z2)

− α2(x2) �2 (y2 �2 z2)
) − ε(x2, y2)

(
(y2 �2 x2) ·2 α2(z2) − α2(y2) �2 (x2 ·2 z2)

)]

(by (22.18)) = 0.

Then, we obtain
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(x � y) � α(z) − α(x) � (y � z) − ε(x, y)
(
(y � x) � α(z) − α(y) � (x � z)

) = 0.

(x � y) � α(z) − ε(y, z)
(
(x � z) � α(y)

= (
(x1 ⊗ x2) � (y1 ⊗ y2)

) � α(z1 ⊗ z2)

− ε(y1 + y2, z1 + z2)
((

(x1 ⊗ x2) � (z1 ⊗ z2)
) � (α1 ⊗ α2)(y1 ⊗ y2)

)

= ε(x2, y1)
(
(x1 �1 y1) ⊗ (x2 ·2 y2) + (x1 ·1 y1) ⊗ (x2 �2 y2)

)
� (α1 ⊗ α2)(z1 ⊗ z2)

− ε(y1 + y2, z1 + z2)
(
ε(x2, z1)

(
(x1 �1 z1) ⊗ (x2 ·2 z2) + (x1 ·1 z1) ⊗ (x2 �2 z2)

)�
(α1 ⊗ α2)(y1 ⊗ y2)

)

= ε(x2, y1)ε(x2 + y2, z1)×
[
(x1 �1 y1) �1 α1(z1) ⊗ (x2 ·2 y2) ·2 α2(z2)
︸ ︷︷ ︸

C1

+(x1 �1 y1) ·1 α1(z1) ⊗ (x2 ·2 y2) �2 α2(z2)
︸ ︷︷ ︸

C2

+(x1 ·1 y1) �1 α1(z1) ⊗ (x2 �2 y2) ·2 α2(z2)
︸ ︷︷ ︸

C3

+(x1 ·1 y1) ·1 α1(z1) ⊗ (x2 �2 y2) �2 α2(z2)
︸ ︷︷ ︸

C4

]

− ε(y1 + y2, z1 + z2)ε(x2, z1)ε(x2 + z2, y1)×
[
(x1 �1 z1) �1 α1(y1) ⊗ (x2 ·2 z2) ·2 α2(y2)
︸ ︷︷ ︸

D1

+(x1 �1 z1) ·1 α1(y1) ⊗ (x2 ·2 z2) �2 α2(y2)
︸ ︷︷ ︸

D2

+(x1 ·1 z1) �1 α1(y1) ⊗ (x2 �2 z2) ·2 α2(y2)
︸ ︷︷ ︸

D3

+(x1 ·1 z1) ·1 α1(y1) ⊗ (x2 �2 z2) �2 α2(y2)
︸ ︷︷ ︸

D4

]
.

Furthermore, we have

ε(x2, y1)ε(x2 + y2, z1)C1 − ε(y1 + y2, z1 + z2)ε(x2, z1)ε(x2 + z2, y1)D1

(by (22.2))

= ε(x2, y1 + y2)ε(x2 + y2, z1)×
(
(x1 �1 y1) �1 α1(z1)

) ⊗ (y2 ·2 x2) ·2 α2(z2)

− ε(y1 + y2, z1 + z2)ε(x2 + z2, y1 + y2)ε(x2, z1)×
(
(x1 �1 z1) �1 α1(y1)

) ⊗ α2(y2) ·2 (x2 ·2 z2)
(by (22.1))

= ε(x2, y1 + y2)ε(x2 + y2, z1)×
[
(x1 �1 y1) �1 α1(z1) − ε(y1, z1)(x1 � z1) �1 α1(y1)

]
⊗ α2(y2) ·2 (x2 ·2 z2)

(by (22.9)) = 0.
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ε(x2, y1)ε(x2 + y2, z1)C4 − ε(y1 + y2, z1 + z2)ε(x2, z1)ε(x2 + z2, y1)D4

(by (22.2))

= ε(x1 + x2, y1)ε(x2 + y2, z1)×
(y1 ·1 x1) ·1 α1(z1) ⊗ (

(x2 �2 y1) �1 α1(z2)
)

− ε(y1 + y2, z1 + z2)ε(x2 + z2, y1)ε(x1 + y1, z1)×
α1(y1) ·1 (x1 ·2 12) ⊗ (

(x2 �2 z2) �2 α2(y2)
)

(by (22.1))

= ε(x1 + x2, y1)ε(x2 + y2, z1)×
(y1 ·1 x1) ·1 α1(z1)

[
(x2 �2 y2) �2 α2(z2) − ε(y2, z2)(x2 �2 z2) �2 α2(y2)

]

(by (22.9)) = 0.

ε(x2, y1)ε(x2 + y2, z1)C2 − ε(y1 + y2, z1 + z2)ε(x2, z1)ε(x2 + z2, y1)D3

(by (22.17))

= ε(x2, y1)ε(x2 + y2, z1)
[
x1 �1 y1) ·1 α1(z1) ⊗ (x2 ·2 y2) �2 α2(z2)

− (x1 �1 y1) ·1 α1(z1) ⊗ (x2 ·2 y2) �2 α2(z2)
]

= 0,

ε(x2, y1)ε(x2 + y2, z1)C3 − ε(y1 + y2, z1 + z2)ε(x2, z1)ε(x2 + z2, y1)D2

(by (22.17))

= ε(x2, y1)ε(x2 + y2, z1)
[
x1 ·1 y1) �1 α1(z1) ⊗ (x2 �2 y2) ·2 α2(z2)

− (x1 ·1 y1) �1 α1(z1) ⊗ (x2 �2 y2) ·2 α2(z2)
]

= 0.

Then, we obtain (x � y) � α(z) − ε(y, z)
(
(x � z) � α(y) = 0. Hence, (A1 ⊗

A2,�, ε, α) is a Hom-Novikov color Hom-algebra.
Step 3:Weshow that the compatibility conditions ofHom-Novikov-Poisson color

Hom-algebras are satisfied

(x · y) � α(z) − ε(y, z)(x � z) · α(y)

= (
(x1 ⊗ x2) · (y1 ⊗ y2)

) � (α1 ⊗ α2)(z1 ⊗ z2)

− ε(y1 + y2, z1 + z2)
(
(x1 ⊗ x2) � (z1 ⊗ z2)

) · (α1 ⊗ α2)(y1 ⊗ y2)

= ε(x2, y1)
(
(x1 ·1 y1) ⊗ (x2 ·2 y2)

) � (α1(z1) ⊗ α2(z2))

− ε(y1 + y2, z1 + z2)ε(x2, z1
(
(x1 �1 z1) ⊗ (x2 �2 z2)

+ (x1 ·1 z1) ⊗ (x2 ·2 z2)
)

· (α1 ⊗ α2)(y1 ⊗ y2)

= ε(x2, y1)ε(x2 + y2, z1)×
( (

(x1 ·1 y1) �1 α1(z1)
) ⊗ (

(x2 ·2 y2) ·2 α2(z2)
)

︸ ︷︷ ︸
E1
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(
(x1 ·1 y1) ·1 α1(z1)

) ⊗ (
(x2 ·2 y2) �2 α2(z2)

)

︸ ︷︷ ︸
E2

)

− ε(y1 + y2, z1 + z2)ε(x2, z1ε(x2 + z2, y1)×
( (

x1 �1 z1) ·1 α1(y1)
) ⊗ (

(x2 ·2 z2) ·2 α2(y2)
)

︸ ︷︷ ︸
F1

+ (
(x1 ·1 z1) ·1 α1(y1)

) ⊗ (
(x2 �2 z2) ·2 α2(y2)

)

︸ ︷︷ ︸
F2

)
.

Furthermore, we have

ε(x2, y1)ε(x2 + y2, z1)E1 − ε(y1 + y2, z1 + z2)ε(x2, z1)ε(x2 + z2, y1)F1

(by (22.2))

= ε(x2, y1)ε(x2 + y2, z1)ε(x2, y2)
(
(x1 ·1 y1) �1 α1(z1)

) ⊗ (y2 ·2 x2) ·2 α2(z2)

− ε(y1 + y2, z1 + z2)ε(x2, z1)ε(x2 + z2, y1 + y2)×
(
(x1 ·1 z1) · α1(y1)

) ⊗ (
α2(y2) ·2 (x2 ·2 z2)

)

(by (22.1))

= ε(x2, y1 + y2)ε(x2 + y2, z1)×
(
(x1 ·1 y1) �1 α1(z1) − ε(y1, z1)(x1 � z1) ·1 α1(y1)

)
⊗ α2(y2) ·2 (x2 ·2 z2)

(by (22.17)) = 0,

ε(x2, y1)ε(x2 + y2, z1)E2 − ε(y1 + y2, z1 + z2)ε(x2, z1)ε(x2 + z2, y1)F2

(by (22.2))

= ε(x2, y1)ε(x2 + y2, z1)ε(x1 + y1, z1)×
(
α1(z1) · (x1 · y1)

) ⊗ (
(x2 ·2 y2) �2 α2(z2)

)

− ε(y1 + y2, z1 + z2)ε(x1 + x2, z1)ε(x2 + z2, y1)×
(
(z1 ·1 x1) ·1 α1(y1)

) ⊗ (
(x2 �2 z2) �2 α2(y2)

)

(by (22.1))

= ε(x2, y1)ε(x1 + x2 + y1 + y2, z1)×
α1(z1) ·1 (x1 ·1 y1) ⊗

(
(x2 ·2 y2) �2 α2(z2) − ε(y2, z2)(x2 �2 z2) ·2 α2(y2)

)

(by (22.17)) = 0.

Then, (x · y) � α(z) − ε(y, z)(x � z) · α(y) = 0. Similarly,

(x � y) · α(z) − α(x) � (y · z) = ε(x, y)
(
(y � x) · α(z) − α(y) � (x · z)).

Hence, (A1 ⊗ A2, ·,�, ε, α) is a Hom-Novikov-Poisson color Hom-algebra.
Step 4: We show that the Equation (22.35) is satisfied:
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α(x) · (y � z) = α(x1 ⊗ x2) · ε(y2, z1)
(
(y1 �1 z1) ⊗ (y2 ·2 z2) + (y1 ·1 z1) ⊗ (y2 �2 z2)

)

= ε(y2, z1)ε(x2, y1 + z1)
((

α(x1) ·1 (y1 �1 z1)
) ⊗ (

α2(x2) ·2 (y2 ·2 z2)
)

+ (
α(x1) ·1 (y1 ·1 z1)

) ⊗ (
α2(x2) ·2 (y2 � z2)

))
,

α(x) � (y · z) = (α(x1) ⊗ α2(x2)) � (
(y1 ⊗ y2) · (z1 ⊗ z2)

)

= (α1(x1) ⊗ α2(x2)) �
(
ε(y2, z1)(y1 �1 z1) ⊗ (y2 ·2 z2)

)

= ε(y2, z1)ε(x2, y1 + z1)
((

α(x1) �1 (y1 ·1 z1)
) ⊗ (

α2(x2) ·2 (y2 ·2 z2)
)

+ (
α(x1) ·1 (y1 ·1 z1)

) ⊗ (
α2(x2) �2 (y2 ·2 z2)

))
.

Now, using the Theorem 22.3 we conclude that α(x) · (y � z) = α(x) � (y · z).
Therefore aslA(x, y, z) = 0 and hence, (A = A1 ⊗ A2, ·,�, ε, α) is an admissible
Hom-Novikov-Poisson color Hom-algebra. �
By taking in Theorem 22.5, α1 = idA1 and α2 = idA2 , we have the following result.

Corollary 22.2 Let (A1, ·1,�1, ε)and (A2, ·2,�2, ε)be admissibleNovikov-Poisson
color Hom-algebras and let A = A1 ⊗ A2. Define the operations ·,� : A ⊗ A → A
by the following formulae for xi , yi ∈ H(Ai ), i ∈ {1; 2},

(x1 ⊗ x2) · (y1 ⊗ y2) = ε(x2, y1)(x1 ·1 y1) ⊗ (x2 ·2 y2),
(x1 ⊗ x2) � (y1 ⊗ y2) = ε(x2, y1)

(
(x1 �1 y1) ⊗ (x2 ·2 y2) + (x1 ·1 y1) ⊗ (x2 �2 y2)

)
.

Then (A, ·,�, ε) is an admissible Novikov-Poisson color Hom-algebra.

By taking in Theorem 22.5, Γ = {e}, we recover the following result

Corollary 22.3 ([85]) Let (A1, ·1,�1, α1) and (A2, ·2,�2, α2) be admissible Hom-
Novikov-Poisson algebras and let A = A1 ⊗ A2. Define the operations α : A → A
and ·,� : A ⊗ A → A by the following formulae for xi , yi ∈ Ai , i ∈ {1; 2},

α = α1 ⊗ α2,

(x1 ⊗ x2) · (y1 ⊗ y2) = (x1 ·1 y1) ⊗ (x2 ·2 y2),
(x1 ⊗ x2) � (y1 ⊗ y2) = (

(x1 �1 y1) ⊗ (x2 ·2 y2) + (x1 ·1 y1) ⊗ (x2 �2 y2)
)
.

Then (A, ·,�, α) is an admissible Hom-Novikov-Poisson algebra.

By taking in Theorem 22.5, α1 = idA1 , α2 = idA2 and Γ = {e}, we have the fol-
lowing result.

Corollary 22.4 ([77]) Let (A1, ·1,�1) and (A2, ·2,�2) be admissible Novikov-
Poisson algebras and let A = A1 ⊗ A2. Define the operations ·,� : A ⊗ A → A
by the following formulae for xi , yi ∈ Ai , i ∈ {1; 2},

(x1 ⊗ x2) · (y1 ⊗ y2) = (x1 ·1 y1) ⊗ (x2 ·2 y2),
(x1 ⊗ x2) � (y1 ⊗ y2) = (

(x1 �1 y1) ⊗ (x2 ·2 y2) + (x1 ·1 y1) ⊗ (x2 �2 y2)
)
.
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Then (A, ·,�) is an admissible Novikov-Poisson algebra.

22.4 Hom-Gelfand-Dorfman Color Hom-algebras

In this section, our goals are to introduceHom-Gelfand-Dorfman colorHom-algebras
and to discuss some basic properties and examples of these objects. Moreover we
characterize the representation of Hom-Gelfand-Dorfman color Hom-algebras and
provide some key constructions.

Definition 22.16 A Gelfand-Dorfman color Hom-algebra is a quadruple
(A, ·, [·, ·], ε) such that (A, ·, ε) is a Novikov color Hom-algebra and (A, [·, ·], ε) is a
Lie color Hom-algebra satisfying for all x, y, z ∈ H(A), the following compatibility
condition:

y · [x, z] = ε(y, x)[x, y · z] − ε(x + y, z)[z, y · x] + [y, x] · z − ε(x, z)[y, z] · x .

Definition 22.17 AHom-Gelfand-Dorfman color Hom-algebra is defined as a quin-
tuple (A, ·, [·, ·], ε, α) such that (A, ·, ε, α) is a Hom-Novikov color Hom-algebra
and (A, [·, ·], ε, α) is aHom-Lie colorHom-algebra satisfying for all x, y, z ∈ H(A),
the following compatibility condition:

α(y) · [x, z] = ε(y, x)[α(x), y · z] − ε(x + y, z)[α(z), y · x] + [y, x] · α(z)
−ε(x, z)[y, z] · α(x).

(22.36)
A Hom-Gelfand-Dorfman color Hom-algebra is called multiplicative if the even
linear map α : A → A is multiplicative with respect to · and [·, ·], that is, for all
x, y ∈ H(A), α(x · y) = α(x) · α(y) and α([x, y]) = [α(x), α(y)].
Remark 22.5 Hom-Gelfand-Dorfman color Hom-algebras contain both the
Gelfand-Dorfman algebras and theHom-Gelfand-DorfmanHom-algebras for special
choices of grading group and the twisting map.

(i) When Γ = {e} and α = id, we get Gelfand-Dorfman algebra [34, 79].
(ii) When Γ = {e} and α �= id, we get Hom-Gelfand-Dorfman Hom-algebra [88].

Example 22.13 Let Γ = Z2 × Z2 be an abelian group and A be a 4-dimensional
Γ -graded linear space with one-dimensional homogeneous subspaces

A(0,0) =< e1 >, A(0,1) =< e2 >, A(1,0) =< e3 >, A(1,1) =< e4 > .

Then (A, ·, [·, ·], ε, α) is a Hom-Gelfand-Dorfman color Hom-algebra with



646 I. Laraiedh and S. Silvestrov

bicharacter: ε
(
(i1, i2), ( j1, j2)

) = (−1)i1 j1+i2 j2 ,

multiplication: e2 · e3 = λ1e4, e3 · e2 = λ2e4, e3 · e3 = λ3e1, λi ∈ K,

bracket: [e2, e2] = μ1e1, [e3, e2] = μ2e4, μi ∈ K,

even linear mapα:A → A given by α(e1) = −e1, α(e2) = 2e2,
α(e3) = −2e3, α(e4) = e4.

Definition 22.18 For Hom-Gelfand-Dorfman color Hom-algebras (A, ·, [·, ·], ε, α)

and (A′, ·′, [·, ·]′, ε′, α′), a linear map of degree zero f : A → A′ is a Hom-Gelfand-
Dorfman color Hom-algebra morphism if

·′ ◦ ( f ⊗ f ) = f ◦ ·, [·, ·]′ ◦ ( f ⊗ f ) = f ◦ [·, ·], f ◦ α = α′ ◦ f.

Proposition 22.13 Let (A, ·, ε, α) be a Hom-Novikov color Hom-algebra. For all
x, y ∈ H(A), let [x, y] = x · y − ε(x, y)y · x . Then (A, ·, [·, ·], ε, α) is a Hom-
Gelfand-Dorfman color Hom-algebra.

Proof Let (A, ·, ε, α) be a Hom-Novikov color Hom-algebra. By Proposition 22.6
(A, [·, ·], ε, α) is aHom-Lie colorHom-algebra.Now,we show that the compatibility
condition (22.36) is satisfied. For any x, y, z ∈ H(A) we have

α(y) · [x, z] − ε(y, x)[α(x), y · z] + ε(x + y, z)[α(z), y · x] − [y, x] · α(z)

+ ε(x, z)[y, z] · α(x)

= α(y)
(
x · z − ε(x, y + z)(y · z) · α(x)

) + ε(x + y, z)
(
α(z) · (y · x)

− ε(z, y + x)(y · x) · α(z)
) − (

y · x − ε(y, x)x · y)) · α(z) + ε(x, z)
(
y · z

− ε(y, z)z · y) · α(x)

= α(y) · (x · z) − ε(x, z)α(y) · (z · x) − ε(y, x)α(x) · (y · z) + ε(x, z)(y · z) · α(x)

+ ε(x + y, z)α(z) · (y · x) − (y · x) · α(z) − (y · x) · α(z) + ε(y, x)(x · y) · α(z)

+ ε(x, z)(y · z) · α(x) − ε(x + y, z)(x · y) · α(x) + ε(y, x)(x · y) · α(z)

=
(
α(y) · (x · z) − (y · x) · α(z) − ε(y, x)

(
α(x) · (y · z) − (x · y) · α(z)

))

︸ ︷︷ ︸
=0 by (22.8)

+ ε(x, z)
(
(y · z) · α(x) − α(y) · (z · x) − ε(y, z)

(
α(z) · (y · x) − (z · y) · α(x)

)

︸ ︷︷ ︸
=0 by (22.8)

−
(
(y · x) · α(z) − ε(x, z)(y · z) · α(x)

)

︸ ︷︷ ︸
=0 by (22.9)

= 0.

Hence, (A, ·, [·, ·], ε, α) is a Hom-Gelfand-Dorfman color Hom-algebra. �

Definition 22.19 If (A, ·, [·, ·], ε, α) is a Hom-Gelfand-Dorfman color Hom-
algebra, then a Γ -graded subspace H of A is called

(i) color Hom-subalgebra of (A, ·, [·, ·], ε, α) if
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α(H) ⊆ H, H · H ⊆ H, [H, H ] ⊆ H,

(ii) color Hom-ideal of (A, ·, [·, ·], ε, α) if

α(H) ⊆ H, A · H ⊆ H, H · A ⊆ H, [A, H ] ⊆ H.

The following statement follows from straightforward computation.

Proposition 22.14 Let (A, ·, [·, ·], ε, α) a Hom-Gelfand-Dorfman color Hom-
algebra and I a color Hom-ideal of (A, ·, [·, ·], ε, α). Then (A/I, ·, {·, ·}, ε, α)

is a Hom-Gelfand-Dorfman color Hom-algebra where x · y = x · y, {x, y} =
[x, y], α(x) = α(x) and ε(x, y) = ε(x, y), for all x, y ∈ H(A/I ).

Proposition 22.15 Any transposedHom-Poisson color Hom-algebra is also aHom-
Gelfand-Dorfman color Hom-algebra.

Proof Let (A, ·, [·, ·], ε, α) be a transposed Hom-Poisson color Hom-algebra. By
definition if (A, ·, ε, α) is a ε-commutative Hom-associative color Hom-algebra,
then (A, ·, ε, α) is a Hom-Novikov color Hom-algebra and (A, [·, ·], ε, α) is a Hom-
Lie color Hom-algebra. Now, we show that the compatibility condition (22.36) is
satisfied. For any x, y, z ∈ H(A),

α(y) · [x, z] − ε(y, x)[α(x), y · z] + ε(x + y, z)[α(z), y · x]
− [y, x] · α(z) + ε(x, z)[y, z] · α(x)

= α(y) · (x · z − ε(x, z)z · x) − ε(y, x)
(
α(x) · (y · z) − ε(x, y + z)(y · z) · α(x)

)

− ε(x + y, z)
(
α(z) · (y · x) − ε(z, y + x)(y · x) · α(z)

)

+ (
y · x − ε(y, x)x · y) · α(z) − ε(x, z)

(
y · z − ε(y, z)z · y) · α(x)

= α(y) · (x · z) − ε(x, z)α(y) · (z · x) − ε(y, x)α(x) · (y · z) + ε(x, z)(y · z) · α(x)

+ ε(x + y, z)α(z) · (y · x) − (y · x) · α(z) − (y · x) · α(z) + ε(y, x)(x · y) · α(z)

+ ε(x, z)(y · z) · α(x) − ε(x + y, z)(z · y) · α(x)

= (
α(y) · (x · z) − (y · x) · α(z)

)

︸ ︷︷ ︸
=0 by (22.1)

−ε(x, z)
(
α(y) · (z · x) − (y · z) · α(x)

)

︸ ︷︷ ︸
=0 by )22.1)

− ε(y, x)
(
α(x) · (y · z) − (x · y) · α(z)

)

︸ ︷︷ ︸
=0 by (22.1)

+ε(x + y, z)
(
α(z) · (y · x) − (z · y) · α(x)

)

︸ ︷︷ ︸
=0 by (22.1)

+ (
ε(x, z)(y · z) · α(x) − (y · x) · α(z)

)

︸ ︷︷ ︸
=0 by (22.1) and (22.2)

= 0,

which completes the proof. �
Lemma 22.2 ([8]) Let (A, ·, ε, α) be a ε-commutativeHom-associative colorHom-
algebra with an even derivation D such that α ◦ D = D ◦ α. Define

x � y = x · D(y), (22.37)

for all x, y ∈ H(A). Then (A,�, ε, α) is a Hom-Novikov color Hom-algebra.
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Theorem 22.6 Let (A, ·, [·, ·], ε, α) be a Hom-Poisson color Hom-algebra with an
even derivation D relative to the both products. Define a new operation � on A by

x � y = x · D(y). (22.38)

Then (A,�, [·, ·], ε, α) is a Hom-Gelfand-Dorfman color Hom-algebra.

Proof By Lemma 22.2, (A,�, ε, α) is a Hom-Novikov color Hom-algebra and by
definition of Hom-Poisson color Hom-algebra, (A, [·, ·], ε, α) is a Hom-Lie color
Hom-algebra. Now, we show that the compatibility condition (22.36) is satisfied.
For any x, y, z ∈ H(A),

α(y) � [x, z] − ε(y, x)[α(x), y � z] + ε(x + y, z)[α(z), y � x]
− [y, x] � α(z) + ε(x, z)[y, z] � α(x)

(using (22.37))

= α(y) · D([x, z]) − ε(y, x)[α(x), y · D(z))] + ε(x + y, z)[α(z), y · D(x)]
− [y, x] · D(α(z)) + ε(x, z)[y, z] · D(α(x))

(D is derivation)

= α(y) · [D(x), z] + α(y) · [x, D(z)] − ε(y, x)[α(x), y · D(z)]
+ ε(x + y, z)[α(z), y · D(x)] − [y, x] · α(D(x))

+ ε(x, z)[y, z] · α(D(x))

= −ε(y, x)
(
[α(x), y · D(z)] − ε(x, y)α(y) · [x, D(z)] − ε(y + x, z)α(D(x)) · [x, y]

)

︸ ︷︷ ︸
=0 by (22.32)

+ ε(x + y, z)
(
[α(z), y · D(x)] − ε(z, y)α(y) · [z, D(x)] − α(D(x)) · [z, y]

)

︸ ︷︷ ︸
=0 by (22.32)

= 0,

which completes the proof. �

Let us call a Hom-Gelfand-Dorfman color Hom-algebra (A, ·, [·, ·], ε, α) is spe-
cial if it can be embedded into a differential Hom-Poisson color Hom-algebra with
operations [·, ·] and � given by (22.38).

Definition 22.20 A representation of a Hom-Gelfand-Dorfman color Hom-algebra
(A, ·, [·, ·], ε, α) is a quintuple (l, r, ρ, β, V ) such that (l, r, β, V ) is a bimodule of the
Hom-Novikov color Hom-algebra (A, ·, ε, α) and (ρ, β, V ) is a representation of the
Hom-Lie color Hom-algebra (A, [·, ·], ε, α) obeying, for x, y ∈ H(A), v ∈ H(V ),

l(α(y))ρ(x)v = ρ(y · x)β(v) + ε(y, x)ρ(α(x))l(y)v

− ε(x, v)r(α(x))ρ(y)v + l([y, x])β(v),

r([x, y])β(v) = ε(v, x)(ρ(α(x))r(y)v − r(α(y))ρ(x)v)

+ ε(x + v, y)(r(α(x))ρ(y)v − ρ(α(y))r(x)v).
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Proposition 22.16 If (l, r, ρ, β, V ) is a representation of a Hom-Gelfand-Dorfman
color Hom-algebra (A, ·, [·, ·], ε, α), then (A ⊕ V, ·′, [·, ·]′, ε, α + β) is a Hom-
Gelfand-Dorfman color Hom-algebra, where (A ⊕ V, ·′, ε, α + β) is the semi-direct
product Hom-Novikov color Hom-algebra A �l,r,α,β V , and (A ⊕ V, [·, ·]′, ε, α +
β) is the semi-direct product Hom-Lie color Hom-algebra A �ρ,α,β V .

Proof Let (l, r, ρ, β, V ) be a representation of aHom-Gelfand-Dorfman colorHom-
algebra (A, ·, [·, ·], ε, α). By Propositions 22.4 and 22.8, (A ⊕ V, ·′, ε, α + β) is a
Hom-Novikov color Hom-algebra, and (A ⊕ V, [·, ·]′, ε, α + β) is a Hom-Lie color
Hom-algebra respectively. Now, we show that the compatibility condition (22.36) is
satisfied. For all Xi = xi + vi ∈ Aγi ⊕ Vγi , i = 1, 2, 3,

(α + β)(x2 + v2) ∗ [x1 + v1, x3 + v3]′
− ε(x2 + v2, x1 + v1)[(α + β)(x1 + v1), (x2 + v2) ·′ (x3 + v3)]′
+ ε(x1 + x2, x3)[(α + β)(x3 + v3), (x2 + v2) ·′ (x1 + v1)]′
− [(x2 + v2), (x1 + v1)]′ ·′ (α + β)(x3 + v3)

+ ε(x1, x3)[(x2 + v2), (x3 + v3)]′ ·′ (α + β)(x1 + v1)

= (α(x2) + β(v2)) ·′ ([x1, x3] + ρ(x1)v3 − ε(x1, x3)ρ(x3)v1)

− ε(x2, x1)[α(x1) + β(v1), x2 · x3 + l(x2)v3 + r(x3)v2]′
+ ε(x1 + x2, x3)[α(x3) + β(v3), x2 · x1 + l(x2)v1 + r(x1)v2]′
− ([x2, x1] + ρ(x2)v1 − ε(x2, x1)ρ(x1)v2) ·′ (α(x3) + β(v3))

+ ε(x1, x3)([x2, x3] + ρ(x2)v3 − ε(v2, x3)ρ(x3)v2
= α(x2) · [x1, x3] + l(α(x2))ρ(x1)v3

− ε(x1, x3)l(α(x2))ρ(x3)v1 + r([x1, x3])β(v2)

− ε(x2, x1)
(
[α(x1), x2 · x3] + ρ(α(x1))l(x2)v3

+ ρ(α(x1))r(x3)v2 − ε(x1, x2 + x3)ρ(x2 · x3)β(v1)
)

+ ε(x1 + x2, x3)
(
[α(x3), x2 · x1] + ρ(α(x3))l(x2)v1

+ ρ(α(x3))r(x1)v2 − ε(v3, x1 + x2)ρ(x2 · x1)β(v3)
)

−
(
[x2, x1] · α(x3) + l([x2, x1])β(v3)

+ r(α(x3))ρ(x2)v1 − ε(x2, x1)r(α(x3))ρ(x1)v2

+ ε(x1, x3)
(
[x2, x3] · α(x1) + l([x2, x3])β(v1)

+ r(α(x1))ρ(x2)v3 − ε(x2, x3)r(α(x1))ρ(x3)v2
= α(x2) · [x1, x3] + l(α(x2))ρ(x1)v3

− ε(x1, x3)l(α(x2))ρ(x3)v1 + r([x1, x3])β(v2)

− ε(x2, x1)[α(x1), x2 · x3] − ε(x2, x1)ρ(α(x1))l(x2)v3
− [x2, x1] · α(x3) − l([x2, x1])β(v3)
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− r(α(x3))ρ(x2)v1 + ε(x2, x1)r(α(x3))ρ(x1)v2
+ ε(x1, x3)[x2, x3] · α(x1) + ε(x1, x3)l([x2, x3])β(v1)

ε(x1, x3)r(α(x1))ρ(x2)v3 − ε(x1 + x2, x3)r(α(x1))ρ(x3)v2

=
(
α(x2) · [x1, x3] − ε(x2, x1)[α(x1), x2 · x3]

+ ε(x1 + x2, x3)[α(x3), x2 · x1] − [x2, x1] · α(x3)

+ ε(x1, x3)[x2, x3] · α(x1)
)

+
(
l(α(x2))ρ(x1)v3 − ρ(x2 · x1)β(v3) − ε(x2, x1)ρ(α(x1))l(x2)v3

+ ε(x1, x3)r(α(x1))ρ(x2)v3 − l([x2, x1]β(v3)
)

− ε(x1, x3)
(
l(α(x2))ρ(x3)v1 − ρ(x2 · x3)β(v1)

− ε(x2, x3)ρ(α(x3))l(x2)v1 + ε(x3, x1)r(α(x3))ρ(x2)v1 − l([x2, x3])β(v1)
)

+
(
r([x1, x3])β(v2) − ε(x2, x1)(ρ(α(x1))r(x3)v2 − r(α(x3))ρ(x1)v2)

− ε(x1 + x2, x3)(r(α(x1))ρ(x3)v − ρ(α(x3))r(x1)v2)
)

= 0.

Thus, (A ⊕ V, ·′, [·, ·]′, ε, α + β) is a Hom-Gelfand-Dorfman color Hom-algebra.
�

Example 22.14 Important examples of representations of Hom-Gelfand-Dorfman
color Hom-algebras can be constructed as follows.

1) Let (A, ·, [·, ·], ε, α) be a Hom-Gelfand-Dorfman color Hom-algebra. If

L(a)b = a · b, R(a)b = b · a, ad(a)b = [a, b] = −ε(a, b)[b, a],

for all a, b ∈ H(A), then (L , R, ad, α, A) is a representation of (A, ·, [·, ·], ε, α).
2) If f : A = (A, ·1, [·, ·]1, ε, α) → (A′, ·2, [·, ·]2, ε, β) is a morphism of Hom-

Gelfand-Dorfman color Hom-algebras, then (l, r, ρ, β, A′) becomes a represen-
tation of A via f , that is, for all (x, y) ∈ H(A) × H(A′),

l(x)y = f (x) ·2 y, r(x)y = y ·2 f (x), ρ(x)y = [ f (x), y]2.

Theorem 22.7 Let A = (A, ·A, [·, ·]A, ε, α) and B = (B, ·B, [·, ·]B, ε, β) be Hom-
Gelfand-Dorfman color Hom-algebras. Suppose that there are such even linear
maps lA, rA, ρA : A → End(B) and lB, rB, ρB : B → End(A) that A 	
ρA,β

ρB ,α B is a

matched pair of Hom-Lie color Hom-algebras, and A 	
lA,rA,β

lB ,rB ,α B is a matched pair
of Hom-Novikov color Hom-algebras, and for all x, y ∈ H(A), a, b ∈ H(B),
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rA(ρB(a)x)β(b) − rA(α(x))([b, a])
= ε(a, x)

(
β(b) ·B ρA(x)a − ρA(lB(b)x)β(a)

−rA(ρB(b)x)β(a)
) − ε(a + b, x)

(
ρA(α(x))(b ·B a)

−ρA(x)b ·B β(a) + ε(b, a)[β(a), rA(x)b]B,

lA(α(x))([a, b]B) − ρA(x)a ·B β(b) − ρA(rB(a)x)β(b)
= ε(x, a)

([β(a), lA(x)b]B − rA(ρB(a)x)β(b)
)

+ε(a, b)
(
ρA(rB(b)x)β(a) − ρA(x)b ·B β(a)

)

+ε(a + x, b)
(
lA(ρB(b)x)β(a) − [β(b), lA(x)a]B

)
,

rB(ρA(x)a)α(y) − rB(β(a))([y, x])
= ε(x, a)

(
α(y) ·A ρB(a)x − ρB(lA(y)a)α(x)

−rB(ρA(y)a)α(x)
) − ε(x + y, a)

(
ρB(β(a))(y ·A x)

−ρB(a)y ·A α(x) + ε(y, x)[α(x), rB(a)y]A,
lB(β(a))([x, y]A) − ρB(a)x ·A α(y) − ρB(rA(x)a)α(y)
= ε(a, x)

([α(x), lB(a)y]A − rB(ρA(x)a)β(y)
)

+ε(x, y)
(
ρB(rA(y)a)α(x) − ρB(a)y ·A α(x)

)

+ε(a + x, y)
(
lB(ρA(y)a)α(x) − [α(y), lB(a)x]A

)
.

Then, (A, B, lA, rA, ρA, β, lB, rB, ρB, α) is called a matched pair of the Hom-
Gelfand-Dorfman color Hom-algebras. In this case, on the direct sum A ⊕ B of the
underlying linear spaces ofA and B, there is a Hom-Gelfand-Dorfman color Hom-
algebra structure which is given for any x + a ∈ AΓ1 ⊕ BΓ1 , y + b ∈ AΓ2 ⊕ BΓ2 by

(x + a) · (y + b) = x ·A y + (sA(x)b + ε(a, y)sA(y)a)

+ a ·B b + (sB(a)y + ε(x, b)sB(b)x),

[x + a, y + b] = [x, y]A + (ρA(x)b − ρA(y)a)

+ [a, b]B + (ρB(a)y − ρB(b)x).

Proof By Proposition 22.5 and Proposition 22.9, (A ⊕ B, ·, ε, α + β) is a Hom-
Novikov color Hom-algebra and (A ⊕ B, [·, ·], α + β) is a Hom-Lie color Hom-
algebra. It is easy to verify, in a similar way as for Proposition 22.2, that the com-
patibility condition is satisfied. �

Taking the color ε-commutator in a Hom-Novikov-Poisson color Hom-algebra, we
obtain the following result.

Theorem 22.8 If (A, ·,�, ε, α) is a Hom-Novikov-Poisson color Hom-algebra, and
for all x, y ∈ H(A),

[x, y] = x � y − ε(x, y)y � x, (22.39)

then (A, ·, [·, ·], ε, α) is a Hom-Gelfand-Dorfman color Hom-algebra.

Proof By definition (A, ·, ε, α) is a ε-commutative Hom-associative color Hom-
algebra. Then (A, ·, ε, α) is a Hom-Novikov color Hom-algebra. Moreover, by
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Proposition 22.6, (A, [·, ·], ε, α) is a Hom-Lie color Hom-algebra. Now, we show
that the compatibility condition (22.36) is satisfied. For any x, y, z ∈ H(A),

α(y) · [x, z] − ε(y, x)[α(x), y · z] + ε(x + y, z)[α(z), y · x]
− [y, x] · α(z) + ε(x, z)[y, z] · α(x)

(using (22.39))

= α(y) · (
x � z − ε(x, z)z � x

) − ε(y, x)
(
α(x) � (y · z)

− ε(x, y + z)(y · z) � α(x)
) + ε(x + y, z)

(
α(z) � (y · x)

− ε(z, y + x)(y · x ) � α(z)
) − (

y � x − ε(y, x)x � y
) · α(z)

+ ε(x, z)
(
(y � z − ε(y, z)z � y) · α(x)

)

= α(y) · (x � z) − ε(x, z)α(y) · (z � x) − ε(y, x)α(x) � (y · z)
+ ε(x, z)(y · z) � α(x) + ε(x + y, z)α(z) � (y · x)
− (y · x) � α(z) − (y � x) · α(z) + ε(y, x)(x � y) · α(z)

+ ε(x, z)(y � z) · α(x) − ε(x + y, z)(z ◦ y) · α(x)

= ε(y, x)
(
(x � y) · α(z) − α(x) � (y · z) − ε(x, y)

(
(y � x) · α(z) − α(y) · (x � z)

))

︸ ︷︷ ︸
=0 by (22.18)

− ε(x + y, z)
(
(z � y) · α(x) − α(z) � (y · x) − ε(z, y)

(
(y � z) · α(x) − α(y) � (z · x))

)

︸ ︷︷ ︸
=0 by (22.18)

−
(
(y · x) � α(z) − ε(x, z)(y � z) · α(x)

)

︸ ︷︷ ︸
=0 by (22.17)

= 0,

which completes the proof. �

Example 22.15 LetΓ = Z2 × Z2 be an abelian group and A be a 4-dimensionalΓ -
graded linear space defined by A(0,0) =< e1 >, A(0,1) =< e2 >, A(1,0) =< e3 >

and A(1,1) =< e4 > . The quintuple (A, ·,�, ε, α) is a Hom-Novikov-Poisson color
Hom-algebra with

bicharacter: ε
(
(i1, i2), ( j1, j2)

) = (−1)i1 j1+i2 j2 ,

multiplication “ · ” : e2 · e3 = e3 · e2 = μe4, μ ∈ K,

multiplication “ � ” : e2 � e3 = λ1e4, e3 � e2 = λ2e4, e3 � e3 = λ3e1, λi ∈ K,

even linear mapα : A → A : α(e1) = 2e1, α(e2) = −e2,
α(e3) = −e3, α(e4) = −2e4.

Therefore, (A, ·, [·, ·], ε, α) is a Hom-Gelfand-Dorfman color Hom-algebra with

[e2, e3] = −[e3, e2] = (λ1 − λ2)e4, [e3, e3] = 2λ3e3.

Lemma 22.3 ([5]) Let (A, ·, ε, α) be a ε-commutativeHom-associative colorHom-
algebra and D be an even derivation. With the bilinear operation � : A × A → A,
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such that x � y = x · D(y), for all x, y ∈ H(A), (A, ·,�, ε, α) is a Hom-Novikov-
Poisson color Hom-algebra.

Combining Theorem 22.8 and Lemma 22.3 leads to the following corollary.

Corollary 22.5 If (A, ·, ε, α) is ε-commutativeHom-associative colorHom-algebra
and D is an even derivation, then (A, ·, [·, ·], ε, α) is a Hom-Gelfand-Dorfman color
Hom-algebra with [x, y] = x · D(y) − ε(x, y)y · D(x) for x, y ∈ H(A).

Next theorem provides a construction of the Hom-Gelfand-Dorfman color Hom-
algebras from Gelfand-Dorfman color Hom-algebras and their morphisms.

Theorem 22.9 Let A = (A, ·, [·, ·], ε) be a Gelfand-Dorfman color Hom-algebra
and α : A → A be a Gelfand-Dorfman color Hom-algebras morphism. With the
bilinear operations ·α, [·, ·]α : A × A → A such that for all x, y ∈ H(A), x ·α
y = α(x · y) and [x, y]α = α([x, y]), Aα = (Aα = A, ·α, [x, y]α, ε, α) is a Hom-
Gelfand-DorfmancolorHom-algebra called theα-twist orYau twist of (A, ·, [·, ·], ε).
Moreover, assume that A′ = (A′, ·′, [·, ·]′, ε) is another Gelfand-Dorfman color
Hom-algebra and α′ : A′ → A′ is a Gelfand-Dorfman color Hom-algebras mor-
phism. Let f : A → A′ be a Hom-Gelfand-Dorfman color Hom-algebras morphism
satisfying f ◦ α = α′ ◦ f . Then, f : Aα → A′

α is a Hom-Gelfand-Dorfman color
Hom-algebras morphism.

Proof Being a Gelfand-Dorfman color Hom-algebras morphism, α : A → A is an
even linearmapwhich ismultiplicativewith respect to · and [·, ·], that is, for all x, y ∈
H(A), α(x · y) = α(x) · α(y), α([x, y]) = [α(x), α(y)]. The equality (22.36) in
Aα is proved as follows:

α(y) ·α [x, z]α = α(y) ·α α([x, z]) = α(α(y) · α([x, z]))
(α morphism)

= α2(y) · α2([x, z]) = α2(y) · [α2(x), α2(z)]
(A is a Hom-G. D. color alg)

= ε(y, x)[α2(x), α2(y) · α2(z)] − ε(x + y, z)[α2(z), α2(y) · α2(x)]
+ [α2(y), α2(x)] · α2(z) − ε(x, z)[α2(y), α2(z)] · α2(x)

(α morphism)

= ε(y, x)[α2(x), α(α(y) · α(z))] − ε(x + y, z)[α2(z), α(α(y), α(x))]
+ α([α(y), α(x)]) · α2(z) − ε(x, z)α([α(y), α(z)] · α2(x)

= ε(y, x)[α2(x), α(y ·α z)] − ε(x + y, z)[α2(z), α(y ·α x)]
+ α([y, x]α · α2(z) − ε(x, z)α([y, z]α) · α2(x)

= ε(y, x)[α(x), y ·α z]α − ε(x + y, z)[α(z), y ·α x]α
+ [y, x]α ·α α(z) − ε(x, z)[y, z]α ·α α(x).
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The second assertion follows from

f (x ·α y) = f (α(x · y)) = α′( f (x · y)) = α′( f (x) ·′ f (y)) = f (x) ·′α′ f (y),

f ([x, y]α) = f (α([x, y])) = α′( f ([x, y])) = α′([ f (x), f (y)]′) = [ f (x), f (y)]′α,

which completes the proof. �

Corollary 22.6 IfA = (A, ·, [·, ·], ε, α) is a multiplicative Hom-Gelfand-Dorfman
color algebra, then for any n ∈ N

∗,

(i) The nth derived Hom-Gelfand-Dorfman color Hom-algebra of type 1 of A is
defined by

An
1 = (A, ·(n) = αn ◦ ·, ∗(n) = αn ◦ [·, ·], ε, αn+1).

(ii) The nth derived Hom-Gelfand-Dorfman color Hom-algebra of type 2 of A is
defined by

An
2 = (A, ·(2n−1) = α2n−1 ◦ ·, [·, ·](2n−1) = α2n−1 ◦ [·, ·], ε, α2n ).

Proof Apply Theorem 22.9 with α′ = αn and α′ = α2n−1 respectively. �

Example 22.16 Let Γ = Z2 × Z2 and A be a 4-dimensional Γ -graded linear space
with A(0,0) =< e1 >, A(0,1) =< e2 >, A(1,0) =< e3 >, A(1,1) =< e4 > . Then, the
quintuple (A, ·, [·, ·], ε, α) is a multiplicative admissible Hom-Gelfand-Dorfman
color Hom-algebra with the bicharacter ε

(
(i1, i2), ( j1, j2)

) = (−1)i1 j1+i2 j2 , and the
multiplications tables for a basis {e1, e2, e3, e4}:

· e1 e2 e3 e4
e1 0 0 0 0
e2 0 0 2e4 0
e3 0 2e4 e1 0
e4 0 0 0 0

[·, ·] e1 e2 e3 e4
e1 0 0 0 0
e2 0 0 −2e4 0
e3 0 2e4 0 0
e4 0 0 0 0

α(e1) = e1, α(e2) = −2e2,
α(e3) = −e3, α(e4) = 2e4,

Then there are Hom-Gelfand-Dorfman color Hom-algebras An
1 and An

2 with multi-
plications tables respectively:

·(n) e1 e2 e3 e4
e1 0 0 0 0
e2 0 0 2ne4 0
e3 0 2ne4 e1 0
e4 0 0 0 0

[·, ·](n) e1 e2 e3 e4
e1 0 0 0 0
e2 0 0 (−2)ne4 0
e3 0 2ne4 0 0
e4 0 0 0 0

αn+1(e1) = e1, αn+1(e2) = (−2)n+1e2,
αn+1(e3) = (−1)n+1e3, αn+1(e4) = 2n+1e4,



22 Admissible Hom-Novikov-Poisson and Hom-Gelfand-Dorfman … 655

·(2n−1) e1 e2 e3 e4
e1 0 0 0 0
e2 0 0 22

n−1e4 0
e3 0 22

n−1e4 e1 0
e4 0 0 0 0

[·, ·](2n−1) e1 e2 e3 e4
e1 0 0 0 0
e2 0 0 −22

n−1e4 0
e3 0 22

n−1e4 0 0
e4 0 0 0 0

α2n (e1) = e1, α2n (e2) = 22
n
e2,

α2n (e3) = e3, α2n (e4) = 22
n
e4.
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Chapter 23
The Wishart Distribution on Symmetric
Cones

Asaph Keikara Muhumuza, Karl Lundengård, Anatoliy Malyarenko,
Sergei Silvestrov, John Magero Mango, and Godwin Kakuba

Abstract In this paper we discuss the extension of the Wishart probability distri-
butions in higher dimension based on the boundary points of the symmetric cones
in Jordan algebras. The symmetric cones form a basis for the construction of the
degenerate and non-degenerate Wishart distributions in the field of Herm(m,C),
Herm(m,H), Herm(3,O) that denotes respectively the Jordan algebra of all Hermi-
tian matrices of size m × m with complex entries, the skew field H of quaternions,
and the algebra O of octonions. This density is characterised by the Vandermonde
determinant structure and the exponential weight that is dependent on the trace of
the given matrix.

Keywords Vandermonde determinant · Jordan algebra · Symmetric cone ·
Wishart distribution

MSC 2020 Classification 32M15 · 15A15 · 15B48 · 15B52 · 60E05

A. K. Muhumuza
Department of Mathematics, Busitema University, Box 236, Tororo, Uganda

K. Lundengård · A. Malyarenko · S. Silvestrov (B)
Division of Mathematics and Physics, School of Education, Culture and Communication,
Mälardalen University, Box 883, 72123 Västerås, Sweden
e-mail: sergei.silvestrov@mdu.se

A. Malyarenko
e-mail: anatoliy.malyarenko@mdu.se

J. M. Mango · G. Kakuba
Department of Mathematics, Makerere University, Box 7062, Kampala, Uganda
e-mail: mango.john@mak.ac.ug

G. Kakuba
e-mail: kakuba@cns.mak.ac.ug

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Silvestrov and A. Malyarenko (eds.), Non-commutative and Non-associative Algebra
and Analysis Structures, Springer Proceedings in Mathematics & Statistics 426,
https://doi.org/10.1007/978-3-031-32009-5_23

661

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32009-5_23&domain=pdf
mailto:sergei.silvestrov@mdu.se
mailto:anatoliy.malyarenko@mdu.se
mailto:mango.john@mak.ac.ug
mailto:kakuba@cns.mak.ac.ug
https://doi.org/10.1007/978-3-031-32009-5_23


662 A.K. Muhumuza et al.

23.1 Introduction

The maximal invariants that generally arise in statistical hypothesis testing as dis-
cussed in [20] are actually functions of eigenvalues of sample covariance matrices,
see [1, 3, 14] and [25], among others. The normalised maximum likelihood estimate
of the covariance matrix of a normal random vector has the classical Wishart distri-
bution. From the algebraic point of view, the support of the Wishart distribution is
the interior of the symmetric irreducible cone of nonnegative-definite matrices with
real entries. There exist also degenerate Wishart distributions supported by subsets
of the boundary of the above cone. This motivates us to study the problem of defining
the Wishart distribution in other symmetric irreducible cones.

In a companion paper, we study the distributions of ordered eigenvalues of random
matrices with values defined in the domain of classical symmetric cones coincides
with the similar studies of randommatrix theory which is fully discussed in [5, 6] and
[23]. Thus, the applications of the joint eigenvalue distributions are not only limited
to the hypothesis testing but also to many other problems for instance in quantum
mechanics, principle component analysis, signal processing and many others, for
details see [1, 15, 25–28] and [23].

23.1.1 Symmetric Cones and Jordan Algebra

Let E be a m-dimensional Euclidean space and let � be the set of all symmetric
positive-definite m × m matrices. The set � has several interesting properties. To
describe them, let GL(E) be the group of all invertible linear operators in E (GL
stands for General Linear). Let � be a subset of E.

Definition 23.1 ([7]) The automorphism group G(�) of the set � is defined by

G(�) = { g ∈ GL(E) : g� = � }.

Let� be again the set of allm × m positive-definitematrices. Let g be an invertible
m × m matrix with positive determinant. The linear operator ρ(g) acting in the linear
space Sym(m,R) by

ρ(g)x = gxg�, x ∈ Sym(m,R),

leaves� invariant. We proved that the group G = GL+(m,R) is a subgroup of G(�)

(the upper index, +, stands for the positive determinant).
We write down a list of properties of the set �.

Theorem 23.1 The set � as the following properties:

(i) � is a cone: x ∈ � and λ > 0 imply that λx ∈ �.
(ii) � is convex: x, y ∈ � and λ ∈ [0, 1] imply that λx + (1 − λ)y ∈ �.
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(iii) The open convex cone � is self-dual: we have �∗ = �, where

�∗ = { y ∈ E : (x |y) > 0 for all x ∈ � \ {0} }

is the open dual cone of �.
(iv) The open cone � is homogeneous: for all x, y ∈ � there exists g ∈ G(�) such

that gx = y.
(v) Finally, the symmetric (self-dual and homogeneous) cone� is irreducible: there

do not exist nontrivial subspaces E1, E2 and symmetric cones�1 ⊂ E1,�2 ⊂ E2

such that E = E1 ⊕ E2 and � = �1 × �2.

Do there exists symmetric irreducible cones besides the cone� = Πm(R) of m ×
m positive-definitematriceswith real entries?Canwedefine theWishart distributions
on all symmetric irreducible cones?

To answer these questions, turn the linear space E = Sym(m,R) into an algebra.

Definition 23.2 ([7]) A real linear space E is called an algebra if a bilinear mapping
(x, y) �→ x ◦ y from E × E to E is defined. The above mapping is called a product.

Example 23.1 Let E = Sym(m,R). Define the product by

x ◦ y = 1

2
(xy + yx).

One can easily see that this product is indeed bilinear. Moreover, one can check the
following properties of the introduced product.

x ◦ y = y ◦ x, (23.1a)

x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), (23.1b)

(x ◦ u|v) = (u|x ◦ v) (23.1c)

for all x , y, u, and v in E.

Definition 23.3 An algebra (E, ◦) is called a Jordan algebra if it satisfies (23.1a)
and (23.1b).

Definition 23.4 A Jordan algebra defined on a linear space E with an inner product
is called Euclidean if it satisfies (23.1c).

Jordan algebras were introduced by P. Jordan, J. von Neumann, and E. Wigner in
[16].

The Euclidean Jordan algebra Sym(m,R) has one more important property.

Definition 23.5 An nonempty subset I of a commutative (i.e., satisfying (23.1a))
algebra is called an ideal if x ◦ y ∈ I as long as x ∈ E and y ∈ I.

It is obvious that any algebra E contains at least two ideals: {0} and E. The above
ideals are called trivial.
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Table 23.1 Classification of simple Euclidean Jordan algebras

E � n r d

R
1 (0,∞) 1 1 0

R
1 × R

m−1 Λm m 2 m − 2

Sym(m,R) Πm(R) m(m + 1)/2 m 1

Herm(m,C) Πm(C) m2 m 2

Herm(m,H) Πm(H) m(2m − 1) m 4

Herm(3,O) Π3(O) 27 3 8

Definition 23.6 An algebra E is called simple if it does not contain nontrivial ideals.

The Euclidean Jordan algebra Sym(m,R) is simple, see [7, Theorem V.3.7].
The following result explains why we introduced Jordan algebras. It describes

a one-to-one correspondence between irreducible symmetric cones and simple
Euclidean Jordan algebras.

Theorem 23.2 In a simple Euclidean Jordan algebra, the set � of squares of all
invertible elements is an irreducible symmetric cone. Conversely, any irreducible
symmetric cone is a set of squares of invertible elements of a certain simple Euclidean
Jordan algebra.

In Table 23.1 we introduce simple Euclidean Jordan algebras. This table is com-
piled by combining information from [7] and [21]. Simple Euclidean Jordan algebras
have been classified by [16]. We explain the content of Table 23.1.

In Table 23.1, the symbol m runs over the set of all positive integers ≥ 3. In the
first column, the algebra R

1 × R
m−1 is called the Lorentz algebra. The product in

this algebra has the form

(λ, u) ◦ (μ, v) = (λμ + (u|v), λv + μu), λ, μ ∈ R
1, u, v ∈ R

m−1.

The corresponding cone, Λm , is called the Lorentz cone. It has the form

Λm = { (λ, u) ∈ R
1 × R

m−1 : λ2 − (u|u) > 0, λ > 0 }.

The symbol Herm(m,C) (resp. Herm(m,H), resp. Herm(3,O)) denotes the Jor-
dan algebra of all Hermitian matrices of size m × m with complex entries (resp.
with entries in the skew fieldH of quaternions, resp. with entries in the algebraO of
octonions). The scalar product in all of the above algebras has the form

(x |y) = Re tr(xy),

while the Jordanproduct is standard: x ◦ y = 1
2 (xy + yx).All the cones� are the sets

of positive-definite matrices in the corresponding algebras. All algebras in Table 23.1
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are pairwise non-isomorphic. In small dimensions, we have the following isomor-
phisms:

Sym(1,R) ∼ Herm(1,C) ∼ Herm(1,H) ∼ Herm(1,O) ∼ R
1,

Sym(2,R) ∼ R
1 ⊕ R

2,

Herm(2,C) ∼ R
1 ⊕ R

3,

Herm(2,H) ∼ R
1 ⊕ R

5,

Herm(2,O) ∼ R
1 ⊕ R

9.

(23.2)

In what follows, the symbol n always denotes the dimension of the real linear
space E. All simple Euclidean Jordan algebras, except the Lorentz ones, will be
called matrix algebras.

To explain the fourth column of Table 23.1, denote by e the identity element of
the algebra E. For any x ∈ E, put

m(x) = min{ k > 0 : (e, x, x2, . . . , xk) are linearly dependent }. (23.3)

The number m(x) is bounded from above by n, the dimension of E .

Definition 23.7 The rank of a Jordan algebra E is given by

r = max{m(x) : x ∈ E }.

To explain the meaning of the last column of Table 23.1, we start from the fol-
lowing result, see [7].

Theorem 23.3 Any simple Jordan algebra contains a Jordan frame, that is, the set
{c1, . . . , cr } such that

(i) its elements are orthogonal: ci ◦ c j = 0 if i = j ;
(ii) its elements are idempotents: c2i = ci ;
(iii) its elements constitute a resolution of identity: c1 + · · · + cr = e.

Denote by L(ci ) the linear operator in E acting by

L(ci )x = ci ◦ x, x ∈ E.

By [7, Lemma IV.1.3], the linear operators L(ci ) and L(c j ) commute. Therefore,
the admit a simultaneous diagonalisation. Let Ei i = E(ci , 1) be the one-dimensional
eigenspace of the linear operator L(ci ) that corresponds to the eigenvalue 1. Let
E(ci , 1/2) be the eigenspace that corresponds to the eigenvalue 1/2, and let

Ei j = E(ci , 1/2) ∩ E(c j , 1/2).
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Theorem 23.4 ([7]) The space E decomposes into the orthogonal direct sum

E =
⊕

1≤i≤ j≤r

Ei j . (23.4)

The subspaces Ei j with i = j have the same dimension.

Denote the above dimension by d. It follows that

n = r + d
r(r − 1)

2
. (23.5)

The number d is given in the last column of Table 23.1.
How to define aWishart distribution on an irreducible symmetric cone�?First,we

define the determinant and the trace of an element x of the corresponding Euclidean
Jordan algebra E.

23.1.2 Trace, Determinant and Minimal Polynomials

Let R[X] be the algebra of polynomials in one variable with real coefficients. It is
well-known that any ideal in R[X] is generated by a unique monic polynomial. In
particular, for any x ∈ E, the ideal

J (x) = { p ∈ R[X] : p(x) = 0 }

is generated by a polynomial called the minimal polynomial of x . Its degree, m(x),
is determined by (23.3). An element x is called regular if m(x) = r . By [7, Propo-
sition II.2.1], the set of regular elements is open and dense in E . There exist unique
polynomials a1, a2,…, ar such that the minimal polynomial of every regular element
x is given by

fx (λ) = λr − a1(x)λ
r−1 + a2(x)λ

r−2 + · · · + (−1)r ar (x). (23.6)

Moreover, the polynomial a j is homogeneous of degree j .

Definition 23.8 The trace of x is tr(x) = a1(x). The determinant of x is
det(x) = ar (x).

By definition, the Laplace transform of the �-valued Wishart random variable Y
is defined on the set

ΣΣΣ − � = {ΣΣΣ − x : x ∈ � }
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and is given by
LY(x) = (det(e − ΣΣΣ−1x))−λ. (23.7)

The result by [10] takes the form

Theorem 23.5 The right hand side of (23.7) defines the Laplace transform of a
random variable if and only if

λ ∈ Λ =
{
0,

d

2
, d, . . . ,

(r − 1)d

2

}
∪

(
(r − 1)d

2
,∞

)
. (23.8)

To write down the probability density of the Wishart distribution, we need to
define the gamma function.

23.1.3 The Gamma Function of a Cone

Definition 23.9 The gamma function determined by the cone � is

Γ�(s) =
∫

�

exp(− tr(x))(det(x))s−n/r dx, Re s > n/r − 1.

By [7, Corollary VII.1.3, part (i)], we have

Γ�(s) = (2π)(n−r)/2
r−1∏

i=0

Γ (s − id/2). (23.9)

Note that when � = Πm(R), we have

Γ�(s) = 2(n−r)/2Γm(s) (23.10)

because of different parametrisations.
When λ ∈ ((r − 1)d/2,∞), the Wishart distribution is supported by � and has

probability density

fY(x) = (det(ΣΣΣ))λ

Γ�(λ)
exp(− tr(ΣΣΣ ◦ x))(det(x))λ−n/r1ΣΣΣ(x). (23.11)

For the case of � = Πm(C), the Wishart distribution was studied by [11] and
[17], for the case of � = Πm(H) by [2], for the case of � = Π3(O) by [8].

Recall that an ensemble is a joint distributions of finitely many real objects, see
[18]. For example, when � = Πm(R), the classical Wishart ensemble is the distri-
bution of the ordered eigenvalues of the random Wishart matrix. How to define the
Wishart ensemble in the general case? We need a theorem.
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23.2 The Wishart Ensembles on Symmetric Cones

Theorem 23.6 ([7, Theorem III.1.2]) For any x ∈ E there exist a Jordan frame
{c1, . . . , cr } such that

x =
r∑

i=1

λi ci .

The numbers λi are uniquely determined by x. The polynomials ak(x) of (23.6) have
the form

ak(x) =
∑

1≤i1<···<ik≤r

λi1 · · · λik , 1 ≤ k ≤ r.

In particular,

tr(x) =
r∑

i=1

λi , det(x) =
r∏

i=1

λi .

The numbers λi are called the spectral eigenvalues of x . When E consists of
matrices with real or complex entries, they coincide with ordinary eigenvalues. For
the case of E = Herm(m,H) they coincide with right eigenvalues. For the case
of E = Herm(3,O) they do not coincide with ordinary eigenvalues. Indeed, [8]
discovered matrices in Herm(3,O) whose eigenvalues are not real.

The distribution of the spectral eigenvalues of the Wishart matrix has been cal-
culated by [22]. For the general case of an arbitrary shape parameter ΣΣΣ the result
includes a complicated integral.

Theorem 23.7 When ΣΣΣ = I, the probability density of the distribution of ordered
spectral eigenvalues of x, 0 < λ1 ≤ λ2 ≤ · · · ≤ λr is

fY(λ1, . . . , λm) = c

(
r∏

i=1

λi

)λ−n/r ∏

1≤i< j≤r

(λ j − λi )
d exp

(
−

r∑

i=1

λi

)
. (23.12)

where c is the normalizing constant.

Lemma 23.1 The constant c in (23.12) is given by

c = r ![Γ (d/2)]r (2π)n−r

Γ�(λ)Γ�(rd/2)
. (23.13)

Proof To calculate the constant c, we use a version of the classical Selberg integral.
The original integral is as follows, see [29]:

∫

[0,1]r
∏

1≤i< j≤r

|x j − xi |2γ
r∏

i=1

xα−1
i (1 − xi )

β−1 =
r−1∏

i=0

Γ (1 + (i + 1)γ )Γ (α + iγ )Γ (β + iγ )

Γ (1 + γ )Γ (α + β + (r + i − 1)γ )
.
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Following [9], order the integration variables, put x j = λ j/L , β = L , and take the
limit as L → ∞ in the Selberg integral. We obtain

∫

λ1≥λ2≥···≥λr>0

(
r∏

i=1

λi

)α−1 ∏

1≤i< j≤r

(λi − λ j )
2γ exp

(
−

r∑

i=1

λi

)
dλ1 · · · dλr

= 1

r !
r−1∏

i=0

Γ (α + iγ )Γ ((i + 1)γ )

Γ (γ )
.

The coefficient c becomes

c = r ![Γ (γ )]r
∏r−1

i=0 [Γ (α + iγ )Γ ((i + 1)γ )] .

To transform the denominator, put j = r − 1 − i . We obtain

r−1∏

i=0

[Γ (α + iγ )Γ ((i + 1)γ )] =
r−1∏

j=0

[Γ (α + (r − 1)γ − jγ )Γ (rγ − jγ )]

Substitute the value of γ = d/2. Then, by (23.9)

r−1∏

i=0

[Γ (α + iγ )Γ ((i + 1)γ )] =
r−1∏

j=0

[Γ (α + (r − 1)d/2 − jd/2)Γ (rd/2 − jd/2)]

= Γ�(α + (r − 1)d/2)Γ�(rd/2)

(2π)n−r
.

Using the value of

α = λ − n/r + 1 = λ − 1 − d
r − 1

2
+ 1 = λ − d

r − 1

2
,

where we applied (23.5), we have

r−1∏

i=0

[Γ (α + iγ )Γ ((i + 1)γ )] = Γ�(λ)Γ�(rd/2)

(2π)n−r
.

Finally,

c = r ![Γ (d/2)]r (2π)n−r

Γ�(λ)Γ�(rd/2)
.

In particular, when � = Πm(R), we have r = m, d = 1, n − r = m(m − 1)/2,
and we have
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c = m!πm/2(2π)m(m−1)/2

2m(m−1)/2Γm(λ)Γm(m/2)
= m!πm2/2

Γm(λ)Γm(m/2)
,

where we used (23.10).

Theorem 23.8 Let λ be a real number that belongs to the interior of the Gindikin
set (23.8). The probability density of the distribution of the ordered spectral eigen-
values of the Wishart random variable with Laplace transform (23.7) is given by

f (λ1, . . . , λr ) = r ![Γ (d/2)]r (2π)n−r

Γ�(λ)Γ�(rd/2)

r∏

i=1

λ
λ−n/r
i

∏

1≤i< j≤r

(λi − λ j )
d exp

⎛

⎝−
r∑

i=1

λi

⎞

⎠ .

Example 23.2 For the Lorentz cone Λm , we have r = 2, d = m − 2, n = m, and

Γ�(s) = (2π)(m−2)/2Γ (s)Γ (s − 1/2).

The distribution of the spectral eigenvalues has the density

f (λ1, λ2) = 2
√

π

Γ (λ)Γ (λ − 1/2)
(λ1λ2)

λ−m/2(λ2 − λ1)
m−2 exp(−λ1 − λ2). (23.14)

where m ∈ {3, 4, 6, 8, 10} and λ = {2, 3, 4, 6, 8}.
For the cone Herm(3,C) we have r = 3, d = 2, n = 9, and

Γ�(s) = (2π)3Γ (s)Γ (s − 1)Γ (s − 2).

The distribution of the spectral eigenvalues has the density

f (λ1, λ2, λ3) = 3(λ1λ2λ3)λ−3

Γ (λ)Γ (λ − 1)Γ (λ − 2)

∏

1≤i< j≤3

(λ j − λi )
2 exp(−λ1 − λ2 − λ3). (23.15)

where λ ≥ 4 since λ = 3 gives a special case.
For the cone Herm(3,H) we have r = 3, d = 4, n = 15, and

Γ�(s) = (2π)6Γ (s)Γ (s − 2)Γ (s − 4).

The distribution of the spectral eigenvalues has the density

f (λ1, λ2, λ3) = (λ1λ2λ3)
λ−5

120Γ (λ)Γ (λ − 2)Γ (λ − 4)

∏

1≤i< j≤3

(λ j − λi )
4 exp(−λ1 − λ2 − λ3).

(23.16)
where λ ≥ 6 since λ = 5 gives a special case.
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For the cone Herm(3,O) we have r = 3, d = 8, n = 27, and

Γ�(s) = (2π)12Γ (s)Γ (s − 4)Γ (s − 8).

The distribution of the spectral eigenvalues has the density

f (λ1, λ2, λ3) = 63(λ1λ2λ3)λ−9

11!7!Γ (λ)Γ (λ − 4)Γ (λ − 8)

∏

1≤i< j≤3

(λ j − λi )
8 exp(−λ1 − λ2 − λ3).

(23.17)
where λ ≥ 10 since λ = 9 gives a special case.

More detailed discussions and demonstrations on the same cab be obtained in
[24].

Next, we would like to prove a version of Theorem 23.8 for the case when λ

belongs to the boundary of the Gindikin set. To do this, we first summarise the steps
in proof of Theorem 23.8.

(i) Let μλ be the measure

dμλ(x) = 1

Γ�(λ)
(det(x))λ−n/r1�(x) dx,

where λ belongs to the interior of the Gindikin set. Its Laplace transform is

Lμλ
(y) = (det(−y))−λ, y ∈ −�. (23.18)

(ii) The Wishart distribution is a member PΣ,μλ
of the natural exponential family

of the measure μλ given by

dPΣΣΣ,μλ
(x) = (det(ΣΣΣ))λ

Γm(λ)
exp(− tr(ΣΣΣx))(det x)λ−(m+1)/21�(x) dx . (23.19)

(iii) We apply the results of [22] and calculate the constant c.

23.2.1 Lassalle Measure on Symmetric Cones
and Probability Distribution

Let λ belongs to the boundary of the Gindikin set, that is, λ = d/2, 0 ≤  ≤ r − 1.
Themeasureμλ with Laplace transform (23.18) was constructed by [19] and is called
the Lassale measure. We describe a simplified construction of that measure due
to [4].
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First, the measure μd/2 is supported by the set

∂� = { x ∈ ∂� : rank(x) =  }.

We have ∂0� = {0}, and μ0 is the probabilistic measure on E with μ0({0}) = 1.
Let G be the connected component of identity of G(�), the automorphism group

of the cone�. LetK be the subgroup ofG that fixes the identity e of the corresponding
simple Euclidean Jordan algebra E:

K = { g ∈ G : ge = e }.

Denote
u = c1 + · · · + c ∈ Π

and
Eu

= { x ∈ E : u ◦ x = x }.

By [7, Proposition IV.3.1], x ∈ ∂� if and only if there is k ∈ K such that x ∈ k�,
where � is the symmetric cone of the simple Jordan algebra Eu

. Let M be the
stationary subgroup of the point u, that is,

M = { k ∈ K : ku = u }.

Let kM = { km : m ∈ M } be the left coset of M in K with respect to k. Let
Π be the set of all rank  idempotents in E, 1 ≤  ≤ r − 1. Let c be a point in
Π. There is at least one k ∈ K with ku = c. For any element km of the coset
kM we have kmu = k(mu) = ku = c. Conversely, if k1u = c for some k1 ∈ K,
then k−1k1u = k−1(k1u) = k−1c = u, that is, k−1k1 = m ∈ K, or k1 = kmwhich
means that k1 ∈ kM. We established a one-to-one correspondence between Π and
the set K/M of left cosets of M in K.

Moreover, put
Ec = { x ∈ E : c ◦ x = x }, c ∈ Π.

The symmetric cone of the simple Jordan algebra Ec is given by

�c = k�,

where k is an arbitrary element of the left coset of M in K that corresponds to c.
Then ∂� is the union of nonintersecting sets �c over all c ∈ Π. In other words,
the set ∂� is stratified into strata. Each stratum is a rotated symmetric cone of a
certain Euclidean Jordan algebra, and the strata are enumerated by the elements of
the set Π.

All the above mentioned groups are collected in Table 23.2. Notation for the
groups in the last three columns is standard, see [12]. The content of the third and
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Table 23.2 The groups associated to simple Euclidean Jordan algebras

E � G K M

R
1 (0,∞) R

+ {1} {1}
R
1 × R

m−1 Λm SO0(1,m − 1) × R
+ SO(m − 1) SO(m − 2)

Sym(m,R) Πm(R) SL(m,R) × R
+ SO(m) SO() × SO(m − )

Herm(m,C) Πm(C) SL(m,C) × R
+ SU(m) S(U() × U(m − ))

Herm(m,H) Πm(H) SU∗(2m) × R
+ Sp(m) Sp() × Sp(m − )

Herm(3,O) Π3(O) E6(−26) × R
+ F4(−52) Spin(9)

fourth column is adapted from [7], the content of the last column is based on the
result by [13].

Example 23.3 Let � = Λm . We have r = 2, and the only possible value for  is
 = 1. The set Π1 is the sphere Sm−2 = SO(m − 1)/SO(m − 2). The strata Ec are
rank 1 simple Euclidean Jordan algebras, that is, the intervals (0,∞). The dimension
of the set ∂1� is m − 1 + 1 = m − 1, as it should be for the boundary of the m-
dimensional manifold Λm .

Example 23.4 Let � be a matrix cone, and let F be the corresponding division
algebra. The set Π is the Grassmannian

Gr(,Fm) = { x ∈ � : x2 = x, tr(x) =  }.

Note that theGrassmanniansGr(,Fm) andGr(m − ,Fm) are homeomorphic under
the map that maps an idempotent c ∈ Gr(,Fm) to the idempotent e − c ∈ Gr(r −
,Fm).

If F = O, the set Π can be described more classically as the set of all -
dimensional linear subspaces of the (right) vector space Fm . The above mentioned
homeomorphism maps an -dimensional subspace G ∈ Gr(,Fm) to its orthog-
onal complement G⊥ ∈ Gr(m − ,Fm). The strata Ec are either Sym(,R), or
Herm(,C), or Herm(,H), or Herm(,O).

When � = Sym(m,R), we have dim Sym(,R) = ( + 1)/2 and
dimGr(,Rm) = (m − ). Then

dim ∂ Sym(m,R) = ( + 1)

2
+ (m − ) = (2m −  + 1)

2
.

When � = Herm(m,C), we have dimHerm(,C) = 2 and dimGr(,Cm) =
2(m − ). Then

dim ∂ Herm(m,C) = 2 + 2(m − ) = (2m − ).

When � = Herm(m,H), we have dimHerm(,H) = (2 − 1) and
dimGr(,Hm) = 4(m − ). Then
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dim ∂ Herm(m,H) = (2 − 1) + 4(m − ) = (4m − 2 − 1).

Finally, when � = Herm(3,O), we have dimHerm(2,O) = 10 and
dimGr(2,O3) = 16. Then

dim ∂2 Herm(3,O) = 26.

We also have dimHerm(1,O) = 1 and dimGr(1,O3) = 16. Then

dim ∂1 Herm(3,O) = 17.

A general result of measure theory (see, e.g., [4, Sect. 7]), says that there exists
a unique probabilistic K -invariant measure on Π, call it dc. Fix a Jordan frame
{c1, . . . , cr }. In the case of a matrix algebra, it is natural to choose c as a r × r
matrix whose matrix entries are all equal to 0 except the entry on the intersection of
the th row and the th column, which is equal to 1. In the case of a Lorentz algebra,
we choose

c1 = (
1

2
,
1

2
, 0, . . . , 0)�, c1 = (

1

2
,−1

2
, 0, . . . , 0)�. (23.20)

Definition 23.10 The Lassalle measure μ0 is the probabilistic measure supported
by the singleton {0} ⊂ E . The Lassalle measure μd/2, 1 ≤  ≤ r − 1, is given by

dμd/2(ξ, c) = 1

Γ�u
(rd/2)

(det(ξ + e − c))(r+1−)d/2−1 dξ dc, c ∈ Π, ξ ∈ �c.

We need to prove that the Laplace transform of the introduced measure satisfies
(23.18), that is,

∫

∂�

exp((x |y)) dμd/2(x) = (det(−y))−d/2, x = (ξ, c) ∈ ∂�, y ∈ −�.

First, we calculate the value of theLaplace transform at the point y = −e. ByFubini’s
theorem, we may integrate first with respect to dξ , then with respect to dc. We have

Lμd/2(−e) = 1

Γ�u
(rd/2)

∫

Π

∫

�c

exp(−(ξ |e))(det(ξ + e − c))(r+1−)d/2−1 dξ dc.

Observe that for all c ∈ Π and for all ξ ∈ Ec we have (ξ |e − c) = 0. The integral
becomes

Lμd/2(−e) = 1

Γ�u
(rd/2)

∫

Π

∫

�c

exp(−(ξ |c))(det(ξ + e − c))(r+1−)d/2−1 dξ dc.
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To calculate the inner integral, we use [7, Corollary VII.1.3, part (ii)], that is,

∫

�

exp(−(x |y))dμλ(x) = Γ�(λ)(det(y))−λ,

and obtain

∫

�c

exp(−(ξ |c))(det(ξ + e − c))(r+1−)d/2−1 dξ = Γ�u
(rd/2)(det(c + e − c))−rd/2

= Γ�u
(rd/2).

Let g be an arbitrary element of the group G with g(−e) = y. We have

Lμd/2(y) = 1

Γ�u
(rd/2)

∫

Π

∫

�c

exp((ξ |ge))(det(ξ + e − c))(r+1−)d/2−1 dξ dc

= 1

Γ�u
(rd/2)

∫

Π

∫

�c

exp((g�ξ |e))(det(ξ + e − c))(r+1−)d/2−1 dξ dc.

According to [4], the Lassalle measure μd/2 has the following semi-invariance
property:

dμd/2(gx) = (det(x))rd/(2n)dμd/2(x), g ∈ G.

Using this property, we obtain

Lμd/2(y) = 1

Γ�u
(rd/2)

Γ�u
(rd/2)(det(−y))−d/2 = (det(−y))−d/2,

as desired.
At the second step, we write down the natural exponential family of the Lassalle

measure, using (23.19):

dPΣ,μd/2 (x) = 1

Γ�u
(rd/2)

(det(−Σ))d/2 exp((x |Σ))(det(ξ + e − c))(r+1−)d/2−1 dξ dc,

where x = (ξ, c) ∈ ∂�, c ∈ K/M, ξ ∈ �c, Σ ∈ −�u
. Again, we would like to

run Σ over �u
, and we have

dPΣ,μd/2 (ξ, c) = 1

Γ�u
(rd/2)

(det(Σ))d/2 exp(−(ξ |Σ))(det(ξ + e − c))(r+1−)d/2−1 dξ dc.

Example 23.5 Consider the Lassalle distributions on rank 2 cones. Put

� = Λm = { x ∈ R
m : x1 > 0, x21 − x22 − · · · − x2m > 0 }.
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The set Π1 is the sphere

Π1 = { x ∈ R
m : x1 = 1/2, x22 + · · · + x2m = 1/4 },

and the determinant is
det(x) = x21 − x22 − · · · − x2m .

With our choice (23.20) we have u1 = ( 12 ,
1
2 , 0, . . . , 0)

� and

�u1 = { σu1 : σ > 0 }.

The measure dPσ,μ1/2(ξ, c) is the product of the exponential distribution and the
uniform distribution on the sphere Π1:

dPσ,μ1/2(ξ, c) = σ exp(−σξ) dξ dc, σ > 0.

Example 23.6 Consider the Lassalle distributions on rank 3 cones Π3(F). When
F = R, the sets Π1 = Π2 = SO(3)/O(2) are real projective planes P2(R):

Π = { C = gug
−1 : g ∈ SO(3) },  = 1, 2.

The cone�u1 is the set of 3 × 3 matricesΞΞΞ with ξ11 = ξ > 0 and all other entries
equal to 0. The Wishart distribution has the form

dPσ,μ1/2(ΞΞΞ, C) = 2
√

σ√
π

exp(−σξ)
√
det(ΞΞΞ + I − C) dξ dC.

The cone �u2 is the cone of the matrices of the form

ΞΞΞ =
⎛

⎝
ξ11 ξ12 0
ξ12 ξ22 0
0 0 0

⎞

⎠

with ξ11 > 0 and ξ11ξ22 − ξ 2
12 > 0. By (23.9), the gamma function of this cone has

the form
Γ�u2

(s) = (2π)1/2Γ (s)Γ (s − 1/2).

In particular,

Γ�u2
(3/2) = (2π)1/2

1

2

√
π = π√

2
.



23 The Wishart Distribution on Symmetric Cones 677

The Lassale distribution takes the form

dPΣΣΣ,μ1(ΞΞΞ, C) =
√
2 det(ΣΣΣ)

π
exp(− tr(ΣΣΣΞΞΞ)) dΞΞΞ dC,

whereΣΣΣ is a 2 × 2 symmetric positive-definite matrix.
When F = C, the sets Π1 = Π2 = SU(3)/S(U(2) × U(1)) are complex projec-

tive planes P2(C):

Π = { C = gug
−1 : g ∈ SU(3) },  = 1, 2.

The cone �u1 is the same as before. The Lassalle distribution has the form

dPσ,μ1(ΞΞΞ, C) = σ

2
exp(−σξ)(det(ΞΞΞ + I − C))2 dξ dC.

The cone �u2 is the cone of Hermitian matrices of the form

ΞΞΞ =
⎛

⎝
ξ11 ξ12 0
ξ12 ξ22 0
0 0 0

⎞

⎠ (23.21)

with ξ11 > 0 and ξ11ξ22 − |ξ12|2 > 0. By (23.9), the gamma function of this cone has
the form

Γ�u2
(s) = 2πΓ (s)Γ (s − 1).

In particular,
Γ�u2

(3) = 2π · 2 = 4π.

The Lassalle distribution takes the form

dPΣΣΣ,μ2(ΞΞΞ, C) = (det(ΣΣΣ))2

4π
exp(− tr(ΣΣΣΞΞΞ)) det(ΞΞΞ + I − C) dΞΞΞ dC.

When F = H, the sets Π1 = Π2 = Sp(3)/Sp(2) × Sp(1) are quaternionic pro-
jective planes P2(H):

Π = { C = gug
−1 : g ∈ Sp(3) },  = 1, 2.

The cone �u1 is the same as before. The Lassalle distribution has the form

dPσ,μ2(ΞΞΞ, C) = σ 2

120
exp(−σξ)(det(ΞΞΞ + I − C))5 dξ dC.
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The cone �u2 has the form (23.21), but this time ξ12 ∈ H. By (23.9), the gamma
function of this cone has the form

Γ�u2
(s) = (2π)2Γ (s)Γ (s − 2).

In particular,
Γ�u2

(6) = (2π)2 · 5! · 3! = 2880π2.

The Lassalle distribution takes the form

dPΣΣΣ,μ4(ΞΞΞ, C) = (det(ΣΣΣ))4

2880π2
exp(− tr(ΣΣΣΞΞΞ))(det(ΞΞΞ + I − C))3 dΞΞΞ dC.

Finally, when F = O, the setsΠ1 = Π2 = F4(−52)/Spin(9) are octonionic projec-
tive planes P2(O):

Π = { C = gug
−1 : g ∈ F4(−52) },  = 1, 2.

The cone �u1 is the same as before. The Lassalle distribution has the form

dPσ,μ4(ΞΞΞ, C) = σ 4

11! exp(−σξ)(det(ΞΞΞ + I − C))11 dξ dC.

The cone �u2 has the form (23.21), but this time ξ12 ∈ O. By (23.9), the gamma
function of this cone has the form

Γ�u2
(s) = (2π)4Γ (s)Γ (s − 4).

In particular,
Γ�u2

(12) = (2π)4 · 11! · 7!.

The Lassalle distribution takes the form

dPΣΣΣ,μ8(ΞΞΞ, C) = (det(ΣΣΣ))8

16 · 7! · 11!π4
exp(− tr(ΣΣΣΞΞΞ))(det(ΞΞΞ + I − C))7 dΞΞΞ dC.

At the third step, we have to prove a theorem similar to [22, Theorem 9]. Denote
by n the dimension of the algebra Eu

, and by d the dimension of the subspaces Ei j

in its decomposition (23.4). For example, when E = Herm(3,O), we have n3 = 27,
n2 = 10, n1 = 1, d3 = 8, d1 = d2 = 1. Let Ku be the subgroup of the connected
component of identity G of the group G(�u

) that fixes c:

Ku = { g ∈ G : gu = u }.
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23.2.2 Degenerate Wishart Ensembles on Symmetric Cones

Let 0 < ν1 ≤ ν2 ≤ · · · ≤ ν be the spectral eigenvalues ofΣΣΣ .

Theorem 23.9 The probability density of the nonzero ordered spectral eigenvalues
of the degenerate Wishart distribution is given by

fΣΣΣ(λr−+1, . . . , λ) = ![Γ (d/2)](2π)n−(det(Σ))d/2

Γ�u
(d/2)Γ�u

(rd/2)

×
r∏

i=r−+1

λ
(r+1−)d/2−1
i

∏

r−+1≤i< j≤r

(λ j − λi )
d

×
r∏

i=r−+1

∏

j=1

∫

Ku

exp(−λiν j (mci | c j )) dm.

In particular, whenΣΣΣ = e, the above density is

f (λr−+1, . . . , λ) = ![Γ (d/2)](2π)n−

Γ�u
(d/2)Γ�u

(rd/2)

×
r∏

i=r−+1

λ
(r+1−)d/2−1
i

∏

r−+1≤i< j≤r

(λ j − λi )
d exp

(
−

∑

i=1

λi

)
.

(23.22)

Proof By [4, Theorem 2.7], if a function F : ∂� → R is integrable with respect to
the Lassalle measure μd/2, then we have

∫

∂�
F(ξ, c) dμd/2(ξ, c) = 1

Γ�u
(rd/2)

∫

Π

∫

�c
F(ξ, c)(det(ξ + e − c))(r+1−)d/2−1 dξ dc.

(23.23)

Choose a Jordan frame in Ec as follows:

c̃i = kci , r −  + 1 ≤ i ≤ r,

where k is an arbitrary element of K with ke = c. Let Kc be the subgroup of the
connected component of identity G of the group G(�c) that fixes c:

Kc = { g ∈ G : gc = c }.

For any x ∈ Ec there is m ∈ Kc such that

x = m
r∑

i=r−+1

λi (c̃i ),
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where λr−+1 ≤ · · · ≤ λr are the ordered spectral eigenvalues of x . Denote

Rc
+ = { λ = λr−+1c̃r−+1 + · · · + λr c̃r : λr−+1 < · · · < λr }.

By [7, Theorem VI.2.3], if a function hc : Ec → R is integrable, then

∫

Ec

hc(ξ) dξ = c0

∫

Kc×Rc+
hc(mλ)

∏

r−+1≤i< j≤

(λ j − λi )
d dm dλr−+1 · · · dλr ,

(23.24)
where dm is the probabilistic invariant measure on Kc and where c0 is a positive
constant. To determine the value of this constant, we use [22]. It is proved there that
for any simple Euclidean Jordan algebra E, the number c0

Γ�(λ)
is equal to the constant

(23.13). We apply this result to the algebra Ec with λ = d/2 and obtain

c0 = ![Γ (d/2)](2π)n−

Γ�u
(d/2)

.

Equation (23.24) takes the form

∫

Ec
hc(ξ) dξ = ![Γ (d/2)](2π)n−

Γ�u
(d/2)

∫

Kc×Rc+
hc(mλ)

∏

r−+1≤i< j≤

(λ j − λi )
d dm dλr−+1 · · · dλr .

Apply this formula to the function

hc(ξ) = F(ξ, c)(det(ξ + e − c))(r+1−)d/2−11�c(ξ),

and substitute the result into (23.23). We obtain

∫

∂�
F(ξ, c) dμd/2(ξ, c) = ![Γ (d/2)](2π)n−

Γ�u
(d/2)Γ�u

(rd/2)

∫

Π

∫

Kc×Rc+
F(mλ, c)

× (det(mλ + e − c))(r+1−)d/2−11�c (mλ)
∏

r−+1≤i< j≤

(λ j − λi )
d

× dm dλr−+1 · · · dλr dc.

We have
det(mλ + e − c) = λr−+1 · · · λr .

Therefore,

∫

∂�

F(ξ, c) dμd/2(ξ, c) = ![Γ (d/2)](2π)n−

Γ�u
(d/2)Γ�u

(rd/2)

∫

Π

∫

Kc×Rc+
F(mλ, c)

×
r∏

i=r−+1

λ
(r+1−)d/2−1
i 1�c(mλ)

∏

r−+1≤i< j≤r

(λ j − λi )
d

× dm dλr−+1 · · · dλr dc.
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The above formula can be understood as follows. Let F(ξ, c) be the probability
density of a ∂�-valued random variable X with respect to the Lassalle measure
μd/2(ξ, c). Then, the probability density of the ordered spectral eigenvalues of the
random variable X is

fΣΣΣ(λ1, . . . , λ) = ![Γ (d/2)](2π)n−

Γ�u
(d/2)Γ�u

(rd/2)

∫

Π

∫

Kc

F(mλ, c)

×
r∏

i=r−+1

λ
(r+1−)d/2−1
i

∏

r−+1≤i< j≤r

(λ j − λi )
d dm dc.

In particular, for the Wishart density we have

F(ξ, c) = (det(ΣΣΣ))d/2 exp(−(ξ |ΣΣΣ)),

and the probability density of the ordered spectral eigenvalues of the Wishart distri-
bution becomes

fΣΣΣ(λ1, . . . , λ) = ![Γ (d/2)](2π)n−(det(Σ))d/2

Γ�u
(d/2)Γ�u

(rd/2)

r∏

i=r−+1

λ
(r+1−)d/2−1
i

×
∏

r−+1≤i< j≤r

(λ j − λi )
d

∫

Π

∫

Kc

exp(−(mλ|ΣΣΣ)) dm dc.

For the integral part, we have

∫

Π

∫

Kc

exp(−(mλ|ΣΣΣ)) dm dc =
∫

Ku

exp(−(mλ|ΣΣΣ)) dm,

because the groups Kc and Ku are isomorphic. Then we have

∫

Ku

exp(−(mλ|ΣΣΣ)) dm =
∫

Ku

exp

(
−m

r∑

i=r−+1

λi ci

∣∣∣∣∣ m
′

∑

j=1

ν j (c j )

⎞

⎠ dm

=
r∏

i=r−+1

∏

j=1

∫

Ku

exp(−λiν j (mci | c j )) dm.

In particular, whenΣΣΣ = e, we obtain

∫

Ku

exp(−(mλ|Σ)) dm =
∫

Ku

exp

(
−m

r∑

i=r−+1

λi ci

∣∣∣∣e
)

dm

=
∫

Ku

exp

(
−

r∑

i=r−+1

λi

)
dm = exp

(
−

r∑

i=r−+1

λi

)
.
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Example 23.7 Assume  = 2 and E is a matrix algebra of rank r = 3.WhenF = R,
we have d2 = 1, n2 = 3, d = 1, and

Γ�u2
(s) = √

2πΓ (s)Γ (s − 1/2).

The probability density of the distribution of the nonzero spectral eigenvalues of the
degenerate Wishart matrix is

f (λ2, λ3) = 4√
π

(λ3 − λ2) exp(−λ2 − λ3). (23.25)

When F = C, we have d2 = 2, n2 = 4, d = 2, and

Γ�u2
(s) = 2πΓ (s)Γ (s − 1/2).

The probability density of the distribution of the nonzero spectral eigenvalues of the
degenerate Wishart matrix is

f (λ2, λ3) = √
πλ2λ3(λ3 − λ2)

2 exp(−λ2 − λ3). (23.26)

When F = H, we have d2 = 4, n2 = 6, d = 4, and

Γ�u2
(s) = (2π)2Γ (s)Γ (s − 1/2).

The probability density of the distribution of the nonzero spectral eigenvalues of the
degenerate Wishart matrix is

f (λ2, λ3) = 208

15!! (λ2λ3)
3(λ3 − λ2)

4 exp(−λ2 − λ3). (23.27)

Finally, when F = O, we have d2 = 8, n2 = 10, d = 8, and

Γ�u2
(s) = (2π)4Γ (s)Γ (s − 1/2).

The probability density of the distribution of the nonzero spectral eigenvalues of the
degenerate Wishart matrix is

f (λ2, λ3) = 211

11!21!! (λ2λ3)
7(λ3 − λ2)

8 exp(−λ2 − λ3). (23.28)
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23.3 Conclusion

The Wishart probability distributions can be generalized in higher dimension based
on the boundary points of the symmetric cones in Jordan algebras. This density
is mainly characterised by the structure of the Vandermonde determinant and the
exponential weight that is dependent on the trace of the given matrix. The symmetric
cones especially the Gidinkin set form a suitable basis for the construction of the
degenerate and non-degenerate Wishart distributions in the field of Herm(m,C),
Herm(m,H), Herm(3,O) denotes respectively the Jordan algebra of all Hermitian
matrices of size m × m with complex entries, the skew field H of quaternions, and
the algebra O of octonions.
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Chapter 24
Induced Ternary Hom-Nambu-Lie
Algebras

Elvice Ongong’a, Abdennour Kitouni, Jared Ongaro, and Sergei Silvestrov

Abstract This study is concerned with induced ternary Hom-Nambu-Lie algebras
fromHom-Lie algebras and their classification. The induced algebras are constructed
from a class of Hom-Lie algebra with nilpotent linear map. The families of ternary
Hom-Nambu-Lie algebras arising in this way of construction are classified for a
given class of nilpotent linear maps. In addition, some results giving conditions on
when morphisms of Hom-Lie algebras can still remain morphisms for the induced
ternary Hom-Nambu-Lie algebras are given.

Keywords Hom-Nambu-Lie algebra · Hom-Lie algebra

MSC 2020 Classification 17B61 · 17D30 · 17A40 · 17A42

24.1 Introduction

Ternary Hom-Nambu-Lie algebras can be constructed from binary multiplications of
a Hom-Lie algebra by introducing a trace function and an additional linear map sat-
isfying certain compatibility conditions. Hom-Lie algebras were first introduced by
Hartwig, Larsson and Silvestrov in [13] by studying some examples of deformed Lie
algebras which arise from twisted discretizations of vector fields. Hom-Lie algebras
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are therefore generalisations of Lie algebras by having an additional twist α, a linear
map. Therefore, in such a case we end up with a generalised Jacobi identity known
as Hom-Jacobi identity for Hom-Lie algebras. If the linear map α is the identity map
we end up with a Lie algebra. Other Hom-algebra structures are studied in [17].

The n-ary generalisation ofLie algebras, called n-Lie algebras orNambu-Lie alge-
bras, first appeared in relation of Nambu’s generalization of Hamiltonian mechanics
[18, 22], and independantly, as a purely algebraic generalisation of Lie algebra [11].
The generalisation was made regarding the Jacobi identity as the fact that the adjoint
map is a derivation of the Lie bracket. They were afterwards widely studied and used
in various applications (See for example [8, 10, 12, 14, 23]). Their Hom generalisa-
tion, called n-Hom-Lie algebras or n-ary Hom-Nambu-Lie algebras, was introduced
in [5], together with other n-ary Hom-algebras. In the most general case, the defining
identities of n-ary Hom-algebras are twisted by a set of n − 1 linear maps. Properties
of n-ary Hom-Nambu-Lie algebras were investigated in [1, 15, 16, 24]. In the same
way as for binary algebras, an n-ary Hom-Nambu-Lie algebra becomes an n-ary
Nambu-Lie algebra if all the twisting maps are the identity map.

The first occurence of ternary Nambu-Lie algebras induced by Lie algebras was
in [6] while studying the quantisation of Nambu mechanics. Construction and stud-
ies on induced ternary Hom-Nambu Lie algebras from Hom-Lie algebras and even
more generally from n-ary Hom-Nambu-Lie algebras to (n + 1)-ary Hom-Nambu-
Lie have been done in [2–5, 15, 24]. In the n-ary cases, the induction involves a
generalised trace function. Some properties of the (n + 1)-ary Nambu-Lie algebras
induced by n-ary Nambu-Lie algebras were studied independantly in [7, 9].

In [19] and [20] classification of 3-dimensional Hom-Lie algebras with nilpotent
linear map is presented. Moreover, Hom-Lie structures, that is, the space of possible
endomorphisms that turn skew-symmetric algebras into a Hom-Lie algebra, have
also been studied in [21]. A partial classification of 3-dimensional ternary Hom-
Nambu-Lie algebras has also been provided in [5] where diagonal linear maps are
considered.

In this paper,wewill be concernedwith induced ternaryHom-Nambu-Lie algebras
from Hom-Lie algebras and their classification. In Sect. 24.2, we recall some needed
definitions and results on Hom-Lie algebras and ternary Hom-Nambu-Lie algebras
induced by Hom-Lie algebras. The induced algebras are constructed from a class of
Hom-Lie algebras with nilpotent linear map α in Sect. 24.3. The families of ternary
Hom-Nambu-Lie algebras arising in this construction are classified for a given class
of nilpotent linear maps as the additional twisting map β, and conditions on when
morphisms of Hom-Lie algebras can still remain morphisms for the induced ternary
Hom-Nambu-Lie algebras are studied in Sect. 24.4.
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24.2 Preliminaries

In this section we give definitions and some results that are used in this study. The
vector spaces are defined over an algebraically closed field K of characteristic 0, and
the notation K

∗ = K \ {0} is used.
Definition 24.1 A Hom-Lie algebra (V, [·, ·], α) consists of a linear space V, a
bilinear map [·, ·] : V × V → V and a linear map α : V → V satisfying, for all
x, y, z ∈ V ,

[x, y] = −[y, x] Skew-symmetry (24.1)
∑

�(x,y,z)

[α(x), [y, z]] = 0 Hom-Jacobi identity (24.2)

where
∑

�(x,y,z)

[α(x), [y, z]] = [α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]].

Definition 24.2 A ternary Hom-Nambu-Lie algebra is a triple (V, [·, ·, ·], α̃) con-
sisting of a linear space V, trilinear map [·, ·, ·] : V × V × V −→ V and a pair of
linear maps α̃ = (α1, α2) satisfying, for all x1, x2, x3, x4, x5 ∈ V , σ ∈ S3,

Skew-symmetry: [xσ(1), xσ(2), xσ(3)] = Sgn(σ )[x1, x2, x3], (24.3)

Hom-Nambu
Identity:

[α1(x1), α2(x2), [x3, x4, x5]] = [[x1, x2, x3], α1(x4), α2(x5)]
+[α1(x3), [x1, x2, x4], α2(x5)]
+[α1(x3), α2(x4), [x1, x2, x5]]

(24.4)

A procedure for constructing ternary Hom-Nambu-Lie algebras fromHom-Lie alge-
bras is given in [2]. This involves a trace function satisfying certain compatibility
conditions. We define trace functions and give the compatibility conditions that must
be fulfilled when inducing Hom-Nambu Lie algebras from Hom-Lie algebras.

Definition 24.3 A linear map τ : V → K is called a trace function on (V, [·, ·]) if
τ([x, y]) = 0 for all x, y ∈ V .

The induced ternary Hom-Nambu-Lie algebra is defined as follows:

Definition 24.4 Let (V, [·, ·]) be a binary algebra and let τ : V → K be a linear
map. The trilinear map [·, ·, ·]τ : V × V × V → V is defined as

[x1, x2, x3]τ = τ(x1)[x2, x3] + τ(x2)[x3, x1] + τ(x3)[x1, x2]. (24.5)

It is proven in [2] that if the bilinear multiplication [·, ·] is skew-symmetric then
the trilinear map [·, ·, ·] is skew-symmetric. Hence, this gives a way of constructing
ternary Hom-Nambu-Lie algebras from Hom-Lie algebras.
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Theorem 24.1 Let (V, [·, ·], α) be a Hom-Lie algebra and β : V → V be a linear
map. Furthermore, assume that τ is a trace function on V satisfying, for all x, y ∈ V ,

τ(α(x))τ (y) = τ(x)τ (α(y)) (24.6)

τ(β(x))τ (y) = τ(x)τ (β(y)) (24.7)

τ(α(x))β(y) = τ(β(x))α(y). (24.8)

Then (V, [·, ·, ·]τ , (α, β)) is a Hom-Nambu-Lie algebra, induced by (V, [·, ·], α).

If α and β are identity maps, Theorem 24.1 gives the result for induced ternary
Nambu-Lie algebra (See [2, 6]).

Corollary 24.1 Let (V, [·, ·]) be a Lie algebra and τ : V → K a trace function on
V . Then (V, [·, ·, ·]τ ) is a Nambu-Lie algebra.
Definition 24.5 Let (V, [·, ·, ·], (α, β)) and (V ′, [·, ·, ·]′, (α′, β ′)) be Hom-Nambu-
Lie algebras. A linear mapΦ : V → V ′ is a ternary Hom-Nambu-Lie algebra homo-
morphism if it satisfies, for all x, y, z ∈ V ,

Φ([x, y, z]) = [Φ(x),Φ(y),Φ(z)]′ (24.9)

Φ ◦ α = α′ ◦ Φ, Φ ◦ β = β ′ ◦ Φ. (24.10)

If Φ is bijective then it is a Hom-Nambu-Lie algebra isomorphism.

The following observation means that for the induced Hom-Nambu-Lie algebra
induced from a Hom-Lie algebra to be non-abelian, τ needs to have a nontrivial
ker τ .

Proposition 24.1 ([2]) Let T = (V, [·, ·, ·]τ , (α, β)) be a Hom-Nambu-Lie algebra
induced from a Hom-Lie algebra (V, [·, ·], α). If ker τ = {0} or ker τ = V then T is
abelian.

Let V be a 3-dimensional space overKwith basis elements {e1, e2, e3}. In this paper,
all linear maps α, β : V → V are defined using the following convention:

α(ei ) =
3∑

k=1

aikek and β(ei ) =
3∑

k=1

βikek, i = 1, 2, 3 and aik, βik ∈ K.
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24.3 Induced Ternary Hom-Nambu Lie Algebras from
Hom-Lie Algebras with Nilpotent Linear
Endomorphism

In [19] families of 3-dimensional Hom-Lie algebras with nilpotent linear map α are
given. In this section, we provide 3-dimensional Hom-Nambu-Lie algebras induced
by Hom-Lie algebras with nilpotent α as given in [19]. The Hom-Lie algebras are
defined with respect to a basis {e1, e2, e3}.

We have the following equations from (24.6)–(24.8) together with the trace con-
dition τ [ei , e j ] = 0:

3∑

k=1

(
τ(ek)(aikτ(e j ) − a jkτ(ei ))

)
= 0, i, j = 1, 2, 3 (24.11)

3∑

k=1

(
τ(ek)(βikτ(e j ) − β jkτ(ei ))

)
= 0, i, j = 1, 2, 3 (24.12)

3∑

k=1

(
aikτ(ek)β jl − βikτ(ek)a jl

)
= 0, i, j, l = 1, 2, 3 (24.13)

3∑

k=1

Ck
i jτ(ek) = 0, i, j = 1, 2, 3 and Ck

i j = −Ck
ji . (24.14)

By solving (24.11)–(24.14) for the Hom-Lie algebras with known Jordan forms of
nilpotent linear map α and structure constants {Ck

i j }i< j ,we get the possible solutions
for linear map β and trace function τ. From these solutions, we give all subfamilies
of Hom-Lie algebras that can induce ternary Hom-Nambu-Lie algebras. Hom-Lie
algebras which do not belong to such sub-families induce abelian ternary Hom-
Nambu-Lie algebras with trivial trace functions as the only possible solutions. That
is, τ(e1) = τ(e2) = τ(e3) = 0.

(H3
i , α1)

In this case, α1(e1) = e2, α1(e2) = 0, α1(e3) = 0, that is, [α1] =
⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠.

(H3
1, α1)

[e1, e2] = C1
12 e1 + C2

12 e2 + C3
12 e3[e1, e3] = C1

13 e1 + C2
13 e2 + C3

13 e3[e2, e3] = C2
23 e2
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The following subfamilies of (H3
1, α1) with Ck

i j ∈ K induce a non-abelian ternary
Hom-Nambu-Lie algebra with the indicated β and τ :

(i) For b1 �= 0 and (C1
12,C

2
12) �= (0, 0),

[e1, e2] = C1
12 e1 + C2

12 e2

[e1, e3] = C1
13 e1 + C2

13 e2

[e2, e3] = C2
23 e2

and the ternary bracket is defined as

T 1
α1

: [e1, e2, e3] = b1(C
1
12 e1 + C2

12 e2), (24.15)

[β] =
⎛

⎝
β11 β12 0
β21 β22 0
β31 β32 0

⎞

⎠ and τ(e1) = 0, τ (e2) = 0, τ (e3) = b1, b1 ∈ K
∗.

(ii) For b2 �= 0 and C2
23 �= 0,

[e1, e2] = C2
12 e2 + C3

12 e3

[e1, e3] = C2
13 e2 + C3

13 e3

[e2, e3] = C2
23 e2

and the ternary bracket is defined as

T 2
α1

: [e1, e2, e3] = b2C
2
23 e2, (24.16)

[β] =
⎛

⎝
0 β12 β13

0 β22 β23

0 β32 β33

⎞

⎠ and τ(e1) = b2, τ (e2) = 0, τ (e3) = 0, b2 ∈ K
∗.

(iii) For b3 �= 0, b4 �= 0 and (b4C1
12, (b3C

2
23 + b4C2

12), b3C
1
12) �= (0, 0, 0), that is

either C1
12 �= 0, or C1

12 = 0 and C2
12 �= γC2

23:

[e1, e2] = C1
12 e1 + C2

12 e2 + γ C1
12 e3

[e1, e3] = C1
13 e1 + C2

13 e2 + γ C1
13 e3

[e2, e3] = C2
23 e2

and the ternary bracket is defined as

T 3
α1

: [e1, e2, e3] = b4C
1
12 e1 + (b3C

2
23 + b4C

2
12) e2 − b3C

1
12 e3 (24.17)
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[β] =
⎛

⎝
β11 β12 γβ11

β21 β22 γβ21

β31 β32 γβ31

⎞

⎠,
τ(e1) = b3, τ (e2) = 0, τ (e3) = b4,

b3, b4 ∈ K
∗, γ = −b3

b4
.

(H3
2, α1)

[e1, e2] = C3
23 e1 + C2

23 C
3
23

C1
23

e2 + (C3
23)

2

C1
23

e3

[e1, e3] = C1
13 e1 + C2

13 e2 + C3
13 e3

[e2, e3] = C1
23 e1 + C2

23 e2 + C3
23 e3 with C1

23 �= 0.

The following subfamily of (H3
2, α1) with Ck

i j ∈ K induce an abelian ternary Hom-
Nambu-Lie algebra with the indicated β and τ :

[e1, e2] = γ C1
23 e1 + γ C2

23 e2 + (γ )2 C1
23 e3

[e1, e3] = C1
13 e1 + C2

13 e2 + γ C1
13 e3

[e2, e3] = C1
23 e1 + C2

23 e2 + γ C1
23 e3

and the ternary bracket is defined as

T 4
α1

: [e1, e2, e3] = 0,

[β] =
⎛

⎝
β11 β12 γβ11

β21 β22 γβ21

β31 β32 γβ31

⎞

⎠,
τ(e1) = b5, τ (e2) = 0, τ (e3) = b6,

b5 ∈ K, b6 ∈ K
∗, γ = −b5

b6

.

(H3
i , α3)

In this case, α3(e1) = e2, α3(e2) = e3, α3(e3) = 0. The matrix form of α3 is given

by [α3] =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠.

(H3
5, α3)

[e1, e2] = C1
12 e1 + C2

12 e2 + C3
12 e3[e1, e3] = −C3

23 e2 + C3
13 e3[e2, e3] = C2

23 e2 + C3
23 e3

The following subfamily of (H3
5, α3) with Ck

i j ∈ K induces a non-abelian ternary
Hom-Nambu-Lie algebrawith the indicatedβ and τ , for b7 �= 0, (C2

23,C
3
23) �= (0, 0):

[e1, e2] = C2
12 e2 + C3

12 e3

[e1, e3] = −C3
23 e2 + C3

13 e3

[e2, e3] = C2
23 e2 + C3

23 e3

and the ternary bracket is defined as



692 E. Ongong’a et al.

T 5
α3

: [e1, e2, e3] = b7(C
2
23 e2 + C3

23 e3) (24.18)

[β] =
⎛

⎝
0 β12 β13

0 β22 β23

0 β32 β33

⎞

⎠, τ(e1) = b7, τ (e2) = 0, τ (e3) = 0, b7 ∈ K
∗.

(H3
6, α3)

[e1, e2] = C1
12 e1 + C2

12 e2 + C3
12 e3

[e1, e3] = C2
13 e2 + C3

13 e3
[e2, e3] = 0, with C2

13 �= 0.

The following subfamily of (H3
6, α3) with Ck

i j ∈ K induces an abelian ternary Hom-
Nambu-Lie algebra with the indicated β and τ :

[e1, e2] = C2
12 e2 + C3

12 e3

[e1, e3] = C2
13 e2 + C3

13 e3
[e2, e3] = 0

and the ternary bracket is defined as

T 6
α3

: [e1, e2, e3] = 0,

[β] =
⎛

⎝
0 β12 β13

0 β22 β23

0 β32 β33

⎞

⎠, τ(e1) = b8, τ (e2) = 0, τ (e3) = 0, b8 ∈ K.

(H3
7, α3)

[e1, e2] = (C1
13)

2 + C2
13 C

1
23 + C1

23 C
3
23

C1
23

e1 + C1
13 C

2
13 + C2

13 C
2
23 + C2

23 C
3
23

C1
23

e2

+C1
13 C

3
13 + C2

13 C
3
23 + (C2

23)
2

C1
23

e3

[e1, e3] = C1
13 e1 + C2

13 e2 + C3
13 e3

[e2, e3] = C1
23 e1 + C2

23 e2 + C3
23 e3 with C1

23 �= 0.

The Hom-Lie algebras (H3
7, α3) with Ck

i j ∈ K induce an abelian ternary-Hom-
Nambu-Lie algebra

T 7
α3

: [e1, e2, e3] = 0,

[β] =
⎛

⎝
β11 β12 β13

β21 β22 β23

β31 β32 β33

⎞

⎠, τ(e1) = 0, τ (e2) = 0, τ (e3) = 0.

Referring to Proposition 24.1, as an example, the induced ternary Hom-Nambu-Lie
algebra T 7

α3
is abelian. We see that ker(τ ) = Span{e1, e2, e3} = V .
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24.4 Canonical Forms of Induced Ternary
Hom-Nambu-Lie Algebras

In our classification problem, we consider a class of nilpotent non-zero β given as

β(e1) = β12 e2 + β13 e3, β(e2) = β23 e3, β(e3) = 0,

where β12, β23, β23 ∈ K, not simultaneously zero. That is, [β] =
⎛

⎝
0 β12 β13

0 0 β23

0 0 0

⎞

⎠ .

Weconstruct all canonical representatives ofHom-NambuLie algebras induced from
Hom-Lie algebras with the given class of nilpotent linear endomorphisms.

Theorem 24.2 Every three-dimensional ternary Hom-Nambu Lie algebra
(V, [·, ·, ·]τ , (α1, β)) induced by a Hom-Lie algebra with linear endomorphism α1

is either abelian or isomorphic to one of the following ternary Hom-Nambu-Lie
algebras:

(i) (N1, (α1, β1))

(ii) (N2, (α1, βi )), i = 1, 2, 3, 4
(iii) (N3, (α1, β1))

defined with respect to a basis {e1, e2, e3} as follows

N1 : [e1, e2, e3] = e1, N2 : [e1, e2, e3] = e2, N3 : [e1, e2, e3] = e1 + e3

[β1] =
⎛

⎝
0 β12 0
0 0 0
0 0 0

⎞

⎠ , [β2] =
⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ ,

[β3] =
⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ , [β4] =
⎛

⎝
0 β12 0
0 0 1
0 0 0

⎞

⎠ , with β12 �= 0.

Proof Let (T, [·, ·, ·]τ , (αi , β)) and (T ′, [·, ·, ·]′τ ′ , (α j , β
′)) be ternary Hom-Nambu-

Lie algebras induced by two Hom-Lie algebras with the structure constants denoted
by Ck

i j and Dk
i j respectively. We define Φ as an isomorphism of any two ternary

Hom-Nambu-Lie algebras with basis {e1, e2, e3} and { f1, f2, f3} respectively, as

Φ(ei ) =
3∑

k=1

ϕik fk, i = 1, 2, 3 and ϕik ∈ K.

For each of the induced algebras we investigate the existence of isomorphismΦ such
that conditions (24.9) and (24.10) hold and find all the isomorphism classes.
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From (24.10), we first findΦ such thatΦ ◦ α1 = α1 ◦ Φ.Sinceα1 is in Jordan normal

form, then [Φ] =
⎛

⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0
0 ϕ32 ϕ33

⎞

⎠ . From Φ ◦ β = β ′ ◦ Φ with [β] =
⎛

⎝
0 β12 β13

0 0 β23

0 0 0

⎞

⎠

and [β ′] =
⎛

⎝
0 β ′

12 β ′
13

0 0 β ′
23

0 0 0

⎞

⎠ , we get the following equations:

β ′
13ϕ11 + β ′

23ϕ12 = β13ϕ33 (24.19)

β12ϕ11 + β13ϕ32 = β ′
12ϕ11 (24.20)

β23ϕ33 = β ′
23ϕ11 (24.21)

β23ϕ32 = 0 (24.22)

β ′
23ϕ32 = 0. (24.23)

Now [β] can be partitioned to the following sub-classes with β12, β13, β23 �= 0 :

[β1]=
⎛

⎝
0 β12 0
0 0 0
0 0 0

⎞

⎠ , [β2]=
⎛

⎝
0 0 β13

0 0 0
0 0 0

⎞

⎠ , [β3] =
⎛

⎝
0 0 0
0 0 β23

0 0 0

⎞

⎠ , [β4] =
⎛

⎝
0 β12 β13

0 0 0
0 0 0

⎞

⎠ ,

[β5] =
⎛

⎝
0 β12 0
0 0 β23

0 0 0

⎞

⎠ , [β6] =
⎛

⎝
0 0 β13

0 0 β23

0 0 0

⎞

⎠ , [β7] =
⎛

⎝
0 β12 β13

0 0 β23

0 0 0

⎞

⎠ .

We now proceed to give the non-isomorphic classes of β. From equations (24.19) to
(24.23) we have the following canonical representatives of β with β12 �= 0 :

[β1] =
⎛

⎝
0 β12 0
0 0 0
0 0 0

⎞

⎠ , [β2] =
⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ , [β3] =
⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ , [β4] =
⎛

⎝
0 β12 0
0 0 1
0 0 0

⎞

⎠ .

The isomorphisms of β are shown in Table 24.1.
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Table 24.1 Isomorphisms of β for ternary Hom-Nambu-Lie algebras with α1

[β2]
Φ2,4∼= [β4]

Φ4,2∼= [β2]
[Φ2,4] =

⎛

⎜⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0

0 ϕ32 ϕ33

⎞

⎟⎠ ,

ϕ11 = β13
β ′
13

ϕ33,

ϕ32 = β ′
12

β13
ϕ11,

ϕ11, ϕ33 �= 0,

ϕ12, ϕ13 ∈ K

[Φ4,2] =

⎛

⎜⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0

0 ϕ32 ϕ33

⎞

⎟⎠ ,

ϕ11 = β13ϕ33,

ϕ32 = − β12
β13

ϕ11ϕ11,

ϕ33 �= 0,

ϕ12, ϕ13 ∈ K

[β3]
Φ3,6∼= [β6]

Φ6,3∼= [β3]
[Φ3,6] =

⎛

⎜⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0

0 0 ϕ33

⎞

⎟⎠ ,

ϕ11 = β23
β ′
23

ϕ33,

ϕ12 = − β ′
13

β ′
23

ϕ11,

ϕ11, ϕ33 �= 0,

ϕ13 ∈ K

[Φ6,3] =⎛

⎜⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0

0 0 ϕ33

⎞

⎟⎠ ,

ϕ11 = β23ϕ33,

ϕ12 = β13ϕ33

ϕ11, ϕ33 �= 0, ϕ13 ∈ K

[β5]
Φ5,7∼= [β7]

Φ7,4∼= [β4]
[Φ5,7] =

⎛

⎜⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0

0 0 ϕ33

⎞

⎟⎠ ,

ϕ11 = β23
β ′
23

ϕ33,

ϕ12 = − β ′
13

β ′
23

ϕ11,

β12 = β ′
12,

ϕ11, ϕ33 �= 0,

ϕ13 ∈ K

[Φ7,4] =
⎛

⎜⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0

0 0 ϕ33

⎞

⎟⎠ ,

ϕ11 = β23ϕ33,

ϕ12 = β13ϕ33,

β12 = β ′
12ϕ11,

ϕ33 �= 0, ϕ13 ∈ K
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The next part of the proof gives the canonical representatives of the ternary brack-
ets of the induced algebras for each of the canonical representatives βi , 1 ≤ i ≤ 4.

(T 1
α1

, (α1, β1)) (See (24.15))

The ternary bracket is T 1
α1

: [e1, e2, e3] = b1(C1
12 e1 + C2

12 e2) with C1
12 �= 0. From

(24.10) and (24.9) for this case, we have the following equations:

b1ϕ11C
1
12 = b′

1(ϕ11)
2ϕ33D

1
12 (24.24)

b1(ϕ12C
1
12 + ϕ11C

2
12) = b′

1(ϕ11)
2ϕ33D

2
12 (24.25)

b1ϕ13C
1
12 = 0. (24.26)

We have (T 1
α1

, (α1, β1))
Φ∼= (N1, (α1, β1)) where N1 : [e1, e2, e3] = e1 and

[Φ] =
⎛

⎝
ϕ11 ϕ12 0
0 ϕ11 0
0 ϕ32 ϕ33

⎞

⎠ ,
ϕ11, ϕ33 �= 0, ϕ12, ϕ32 ∈ K,

ϕ33 = b1C1
12

ϕ11
, ϕ12 = −C2

12ϕ11

C1
12

, b1 �= 0.

(T 2
α1

, (α1, β1)) (See (24.16))

Here, the ternary bracket is given by [e1, e2, e3] = b2C2
23 e2. Expanding (24.9) and

(24.10) for this case, we end up with the following equation:

b2ϕ11C
2
23 = b′

2(ϕ11)
2ϕ33D

2
23. (24.27)

We have (T 2
α1

, (α1, β1))
Φ∼= (N2, (α1, β1)), where

N2 : [e1, e2, e3] = e2.

[Φ] =
⎛

⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0
0 ϕ32 ϕ33

⎞

⎠ , ϕ11 �= 0, ϕ12, ϕ32, ϕ13 ∈ K, ϕ33 = b2C2
23

ϕ11
, b2,C

2
23 ∈ K

∗,

(T 2
α1

, (α1, β j )), j = 2, 3, 4

Expanding (24.9) and (24.10) for this case, we end up with the following equation:

b2ϕ11C
2
23 = b′

2(ϕ11)
3D2

23. (24.28)

We have (T 2
α1

, (α1, β2))
Φ∼= (N2, (α1, β2)) and
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[Φ] =
⎛

⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0
0 0 ϕ11

⎞

⎠ , ϕ11 �= 0, ϕ12, ϕ13 ∈ K, (ϕ11)
2 = b2C

2
23, b2,C

2
23 ∈ K

∗.

Similarly, we have (T 2
α1

, (α1, β3))
Φ∼= (N2, (α1, β3)) with [Φ] as above.

Also, (T 2
α1

, (α1, β4))
Φ∼= (N2, (α1, β4)) with [Φ] as above, except that ϕ12 = 0.

(T 3
α1

, (α1, β1)) (See (24.17))

Expanding (24.9) and (24.10) for this case, we end up with the following equations:

ω1ϕ11 = ω′
1(ϕ11)

2ϕ33 (24.29)

ω1ϕ12 + ω2ϕ11 + ω3ϕ32 = ω′
2(ϕ11)

2ϕ33 (24.30)

ω1ϕ13 + ω3ϕ33 = ω′
3(ϕ11)

2ϕ33 (24.31)

where
ω1 = b4C

2
12, ω2 = b3C

2
23 + b4C

2
12, ω3 = −b3C

1
12

ω′
1 = b′

4D
2
12, ω′

2 = b′
3D

2
23 + b′

4D
2
12, ω′

3 = −b′
3D

1
12

We have the following canonical classes of (T 3
α1

, (α1, β1)):

(N2, (α1, β1)), (N3, (α1, β1))

N2 : [e1, e2, e3] = e2, N3 : [e1, e2, e3] = e1 + e3

and the isomorphism given by a matrix of the form

[Φ] =
⎛

⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0
0 ϕ32 ϕ33

⎞

⎠ , ϕ11, ϕ33 �= 0, ϕ12, ϕ13, ϕ32 ∈ K.

(T 3
α1

, (α1, β1))
Φ∼= (N2, (α1, β1))

Taking D1
12 = 0, D2

12 = 1, D2
23 = 0, b′

4 = 1, corresponding to (N2, (α1, β1)), yields
ω′
1 = 1, ω′

2 = 1, ω′
3 = 0, and

ω1ϕ11 = (ϕ11)
2ϕ33 (24.32)

ω1ϕ12 + ω2ϕ11 + ω3ϕ32 = (ϕ11)
2ϕ33 (24.33)

ω1ϕ13 + ω3ϕ33 = 0. (24.34)

Since ϕ11 �= 0 and ϕ33 �= 0, it follows from (24.32) that ω1 = b4C2
12 �= 0, and
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ϕ33 = ω1
ϕ11

ω1ϕ12 + ω2ϕ11 + ω3ϕ32 = ϕ11ω1

ω1(ϕ13 + ω3
ϕ11

) = 0
=⇒

ϕ13 = − ω3
ϕ11

= b3C1
12

ϕ11

ϕ12 = ϕ11(ω1−ω2)−ω3ϕ32

ω1

= b3
b4

ϕ11C2
23+ϕ32C1

12

C2
12

.

Therefore the isomorphism Φ is given by

[Φ] =
⎛

⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0
0 ϕ32 ϕ33

⎞

⎠ ,
ϕ11 �= 0, ϕ33 = ω1

ϕ11
, ϕ12 = b3

b4

ϕ11C2
23+ϕ32C1

12

C2
12

,

ϕ13 = b3C1
12

ϕ11
, ϕ32 ∈ K,C2

12 �= 0, b3 �= 0, b4 �= 0.

(T 3
α1

, (α1, β1))
Φ∼= (N3, (α1, β1))

Taking D1
12=1, D2

12=0, D2
23 = 0, b′

3 = −1 b′
4 = 1, corresponding to (N3, (α1, β1)),

yields ω′
1 = 0, ω′

2 = 0, ω′
3 = 1, and

ω1ϕ11 = 0 (24.35)

ω1ϕ12 + ω2ϕ11 + ω3ϕ32 = 0 (24.36)

ω1ϕ13 + ω3ϕ33 = (ϕ11)
2ϕ33. (24.37)

Since ϕ11 �= 0 and ϕ33 �= 0, we get that ω1 = b4C2
12 = 0 which means C2

12 = 0, and
that ω3 = −b3C1

12 �= 0. Also

ω2ϕ11 + ω3ϕ32 = 0
ω3ϕ33 = (ϕ11)

2ϕ33
=⇒ ϕ32 = −ω2ϕ11

ω3
= ϕ11C2

23

C1
12

,

(ϕ11)
2 = ω3 = −b3C1

12.

Therefore the isomorphism Φ is given by

[Φ] =
⎛

⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 0
0 ϕ32 ϕ33

⎞

⎠ ,
(ϕ11)

2 = −b3C1
12, ϕ32 = ϕ11C2

23

C1
12

,

ϕ12, ϕ13 ∈ K, ϕ33 �= 0,C1
12 �= 0, b3 �= 0.

In addition, the induced ternary Hom-Nambu-Lie algebras with β commuting
with β2, β3 and β4 as given earlier are isomorphic to the corresponding canonical
representatives of the Hom-Nambu Lie algebras with β2, β3 and β4. �

Theorem 24.3 Every three-dimensional ternary Hom-Nambu Lie algebra
(V, [·, ·, ·]τ , (α3, β)) induced by a Hom-Lie algebra with linear endomorphism α3

is either abelian or isomorphic to one of the following ternary Hom-Nambu-Lie
algebras with respect to a basis {e1, e2, e3}:
(i) (N2, (α3, βi )), i = 1, 2, 3
(ii) (N4,λ, (α3, βi )), i = 1, 2, 3
(iii) (N4,1, (α3, βk)), k = 4, 5, 6
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(iv) (N5, (α3, β j )), j = 1, . . . , 6

where

N2 : [e1, e2, e3] = e2, N4,λ : [e1, e2, e3] = e2 + λ e3, λ ∈ K
∗, N5 : [e1, e2, e3] = e3

[β1] =
⎛

⎝
0 β12 0
0 0 0
0 0 0

⎞

⎠ , [β2] =
⎛

⎝
0 0 0
0 0 β23

0 0 0

⎞

⎠ , [β3] =
⎛

⎝
0 β12 0
0 0 β23

0 0 0

⎞

⎠ , β12 �= β23,

[β4] =
⎛

⎝
0 β12 0
0 0 β12

0 0 0

⎞

⎠ , [β5] =
⎛

⎝
0 0 β13

0 0 0
0 0 0

⎞

⎠ , [β6] =
⎛

⎝
0 β12 β13

0 0 β12

0 0 0

⎞

⎠ ,

β12, β13, β23 �= 0.

Proof We use the same notations as used in the previous proof of Theorem 24.2.
From (24.10), we first find Φ such that Φ ◦ α3 = α3 ◦ Φ. Since α3 is also in Jordan

normal form, then [Φ] =
⎛

⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 ϕ12

0 0 ϕ11

⎞

⎠ . The condition Φ ◦ β = β ′ ◦ Φ gives the

following equations:

β13ϕ11 + β12ϕ12 = β ′
13ϕ11 + β ′

23ϕ12 (24.38)

β12ϕ11 = β ′
12ϕ11 (24.39)

β23ϕ11 = β ′
23ϕ11 (24.40)

Now [β] can be partitioned to the following sub-classes with β12, β13, β23 �= 0.

[β1] =
⎛

⎝
0 β12 0
0 0 0
0 0 0

⎞

⎠ , [β2] =
⎛

⎝
0 0 β13

0 0 0
0 0 0

⎞

⎠ , [β3] =
⎛

⎝
0 0 0
0 0 β23

0 0 0

⎞

⎠ , [β4] =
⎛

⎝
0 β12 β13

0 0 0
0 0 0

⎞

⎠ ,

[β5] =
⎛

⎝
0 β12 0
0 0 β23

0 0 0

⎞

⎠ , [β6] =
⎛

⎝
0 0 β13

0 0 β23

0 0 0

⎞

⎠ , [β7] =
⎛

⎝
0 β12 β13

0 0 β23

0 0 0

⎞

⎠ .

We now proceed to find the non-isomorphic classes of β. From equations (24.38) to
(24.40) we get the following canonical representatives of β with β12, β13, β23 �= 0.

[β1] =
⎛

⎝
0 β12 0
0 0 0
0 0 0

⎞

⎠ ; [β2] =
⎛

⎝
0 0 0
0 0 β23

0 0 0

⎞

⎠ ; [β3] =
⎛

⎝
0 β12 0
0 0 β23

0 0 0

⎞

⎠ , β12 �= β23;
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[β4] =
⎛

⎝
0 β12 0
0 0 β12

0 0 0

⎞

⎠ ; [β5] =
⎛

⎝
0 0 β13

0 0 0
0 0 0

⎞

⎠ ; [β6] =
⎛

⎝
0 β12 β13

0 0 β12

0 0 0

⎞

⎠ .

The isomorphisms of β are given in Table 24.2.

Table 24.2 Isomorphisms of β for ternary Hom-Nambu-Lie algebras with α3

[β4]
Φ4,1∼= [β1] [Φ4,1] =

⎛

⎜⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 ϕ12

0 0 ϕ11

⎞

⎟⎠ ,

ϕ12 = − β13
β12

ϕ11, β12 = β ′
12,

ϕ11 �= 0, ϕ13 ∈ K

[β6]
Φ6,3∼= [β3] [Φ6,3] =

⎛

⎜⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 ϕ12

0 0 ϕ11

⎞

⎟⎠ ,

ϕ12 = β13
β ′
23

ϕ11, β23 = β ′
23

ϕ11 �= 0, ϕ13 ∈ K

[β5]
Φ5,7∼= [β7] [Φ5,7] =

⎛

⎜⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 ϕ12

0 0 ϕ11

⎞

⎟⎠ ,

ϕ12 = β ′
13

(β12−β23)
ϕ11, β12 �= β23,

β12 = β ′
12, β23 = β ′

23,

ϕ11 �= 0, ϕ13 ∈ K

iff β12 �= β23

In the next part of the proof we give the canonical representatives of the non-
abelian ternary bracket T 5

α3
of the induced algebra for each of the β already obtained.

We recall T 5
α3

: [e1, e2, e3] = b7(C2
23 e2 + C3

23 e3). Expanding (24.9) and (24.10) for
this case, we end up with the following equations:

b7ϕ11C
2
23 = b′

7(ϕ11)
3D2

23 (24.41)

b7ϕ12C
2
23 + b7ϕ11C

3
23 = b′

7(ϕ11)
3D3

23 (24.42)

Forβi , i = 1, 2, 3,wehave the following canonical representatives of (T 5
α3

, (α3, βi )):

(N2, (α3, βi )), (N4,λ, (α3, βi )), (N5, (α3, βi ))

N2 : [e1, e2, e3] = e2, N4,λ : [e1, e2, e3] = e2 + λ e3, λ ∈ K
∗, N5 : [e1, e2, e3] = e3

and since the matrix [Φ] =
⎛

⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 ϕ12

0 0 ϕ11

⎞

⎠ must satisfy Φ ◦ βi = βi ◦ Φ, i =
1, 2, 3, we get that ϕ12 = 0, and the isomorphisms are given by
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[Φ] =
⎛

⎝
ϕ11 0 ϕ13

0 ϕ11 0
0 0 ϕ11

⎞

⎠ ,

N2 : (ϕ11)
2 = b7C2

23,C
2
23 �= 0,C3

23 = 0
N4,λ : (ϕ11)

2 = b7C2
23, λC

2
23 = C3

23 �= 0
N5 : (ϕ11)

2 = b7C3
23,C

2
23 = 0,C3

23 �= 0
, ϕ13 ∈ K.

For βi , i = 4, 5, 6 we have the following canonical representatives of (T 5
α3

, (α3, βi )):

(N4,1, (α3, βi )), (N5, (α3, βi ))

N4,1 : [e1, e2, e3] = e2 + e3, N5 : [e1, e2, e3] = e3

and the isomorphism given by

[Φ] =
⎛

⎝
ϕ11 ϕ12 ϕ13

0 ϕ11 ϕ12

0 0 ϕ11

⎞

⎠ ,

N4,1 : (ϕ11)
2 = b7C2

23, ϕ12 = ϕ11(C2
23−C3

23)

C2
23

,

C2
23 �= 0, ϕ13 ∈ K

N5 : (ϕ11)
2 = b7C3

23,C
2
23 = 0,C3

23 �= 0, ϕ12, ϕ13 ∈ K

.

In addition, ternary Hom-Nambu-Lie algebras with β commuting with β1, β2 and β3

are isomorphic to the corresponding canonical representatives of the Hom-Nambu
Lie algebras with β1, β2 and β3 respectively. �

Remark 24.1 The parametric families of canonical representatives in Theorems
24.2 and 24.3 are isomorphic if and only if all the involved parameters are equal.
This includes the parameters of β as well.

It is possible to have a Hom-Lie algebra morphism still be a morphism of the induced
ternary Hom-Nambu-Lie algebras. More generally, there are morphisms of n-Hom-
Lie algebras that still remain morphisms of induced (n + 1)-Hom-Lie algebras. We
first give the definition of an n-ary Hom-Nambu-Lie algebra.

Definition 24.6 An n-ary Hom-Nambu-Lie algebra is a vector space V together
with an n-linear map [·, . . . , ·] : V n → V and (n − 1) linear maps αi : A → A, 1 ≤
i ≤ n − 1 satisfying, for all x1, . . . , xn , y1, . . . , yn ∈ V , σ ∈ Sn ,

Skew-symmetry: [xσ(1), . . . , xσ(n)] = Sgn(σ )[x1, . . . , xn]
Hom-Nambu Identity:

[α1(x1), αn−1(xn−1), [y1, . . . , yn]]

=
n∑

i=1

[α1(y1), . . . , αi−1(yi−1), [x1, . . . , xn−1, yi ], αi (yi+1), . . . , αn−1(yn)].

The following result is proved in [15].

Proposition 24.2 Let (A, μ, (α1, . . . , αn−1)) and (A′, μ′, (β1, . . . , βn−1)) be n-
Hom-Lie algebras. Let τ (resp. τ ′) be a μ-trace (resp. μ′- trace) and αn : A → A
(resp. βn : A′ → A′) be linear maps. Set (A, μτ , (α1, . . . , αn)) and (A′, μ′

τ ′ , (β1,
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. . . , βn)) to be the induced (n + 1)-Hom-Lie algebras. Let Φ : A → A′ be an n-
Hom-Lie algebra morphism satisfying τ ′ ◦ Φ = τ and Φ ◦ αn = βn ◦ Φ, then Φ is
an (n + 1)-Hom-Lie algebra morphism of the induced algebras.

In the next results in Propositions 24.3 and 24.4, we see that it is possible to have
the Hom-Lie algebra morphism still be a morphism of the induced ternary Hom-
Nambu-Lie algebras with τ ′ ◦ Φ = τ not satisfied. However, this is possible having
extra conditions added to conditions provided in Proposition 24.2.

Proposition 24.3 Let (A, μ, (α1, . . . , αn−1))and (A′, μ′, (β1, . . . , βn−1))ben-Hom-
Lie algebras. Let τ (resp. τ ′) be a μ-trace (resp. μ′-trace) and αn : A → A
(resp. βn : A′ → A′) be linear maps. Let (A, μτ , (α1, . . . , αn)) and (A′, μ′

τ ′ , (β1,

. . . , βn)) be the induced (n + 1)-Hom-Lie algebras, and Φ : A → A′ be an n-Hom-
Lie algebra morphism. Let (ei )1≤i≤dim A be a basis of A. If for all i such that
τ ′(Φ(ei )) �= τ(ei ) we have μ(e j1 , . . . , e jn ) ∈ ker(Φ) for all jt �= i, t = 1, . . . , n,

and Φ ◦ αn = βn ◦ Φ, then Φ is an (n + 1)-Hom-Lie algebra morphism of the
induced algebras. In particular, if μ(e j1 , . . . , e jn ) = 0 or {e j1 , . . . , e jn } ∩ ker(Φ) �=
0 then the result will hold.

Proof Let ei1 , . . . , eip be the basis elementswith τ ′(Φ(eik )) �= τ(eik ), for 1 ≤ k ≤ p,
and let e j1 , . . . , e jq be the basis elements such that τ ′(Φ(e jk )) = τ(e jk ), for 1 ≤ k ≤
q, with p + q = n + 1. Then,

Φ(μτ (ei1 , . . . , ei p , e j1 , . . . , e jq ))

=
p∑

k=1

(−1)k−1τ(eik )Φ(μ(ei1 , . . . , êik , . . . , ei p , e j1 , . . . , e jq ))

+
q∑

k=1

(−1)p+k−1τ(e jk )Φ(μ(ei1 , . . . , ei p , e j1 , . . . , ê jk , . . . , e jq ))

=
p∑

k=1

(−1)k−1τ(eik ) 0

+
q∑

k=1

(−1)p+k−1τ ′(Φ(e jk ))μ
′(Φ(ei1 ), . . . , Φ(ei p ),Φ(e j1 ), . . . , Φ̂(e jk ), . . . , Φ(e jq ))

=
p∑

k=1

(−1)k−1τ ′(Φ(eik )) 0

+
q∑

k=1

(−1)p+k−1τ ′(Φ(e jk ))μ
′(Φ(ei1 ), . . . , Φ(ei p ),Φ(e j1 ), . . . , Φ̂(e jk ), . . . , Φ(e jq ))

=
p∑

k=1

(−1)k−1τ ′(Φ(eik ))Φ(μ(ei1 , . . . , êik , . . . , ei p , e j1 , . . . , e jq ))

+
q∑

k=1

(−1)p+k−1τ ′(Φ(e jk ))μ
′(Φ(ei1 ), . . . , Φ(ei p ),Φ(e j1 ), . . . , Φ̂(e jk ), . . . , Φ(e jq ))

= μ′
τ ′ (Φ(ei1 ), . . . , Φ(ei p ),Φ(e j1 ), . . . , Φ(e jq )),
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where êik means that eik is omitted. �

Corollary 24.2 Let (A, μ, α) and (A′, μ′, β) be Hom-Lie algebras. Let τ (resp. τ ′)
be a μ-trace (resp. μ′-trace) and α′ : A → A (resp. β ′ : A′ → A′) a linear map.
Set (A, μτ , (α, α′)) and (A′, μ′

τ ′ , (β, β ′)) to be induced ternary Hom-Nambu-Lie
algebras. Let Φ : A → A′ be a Hom-Lie algebra morphism. If for all i such that
τ(ei ) �= τ ′(Φ(ei )) we have μ(e j , ek) ∈ ker(Φ), for all j, k �= i, with τ ′(Φ(e j )) =
τ(e j ), τ ′(Φ(ek)) = τ(ek) and Φ ◦ α′ = β ′ ◦ Φ, then Φ is an algebra morphism of
the induced algebras. In particular, if μ(e j , ek) = 0 or {e j , ek} ∩ ker(Φ) �= 0 then
the result still holds.

Let us denote by C the matrix of structure constants of the bilinear map of a
3-dimensional Hom-Lie algebras with basis {e1, e2, e3} and structure constants
{Ck

i j }i< j , i, j, k = 1, 2, 3:

C =
⎛

⎝
C1
12 C

2
12 C

3
12

C1
13 C

2
13 C

3
13

C1
23 C

2
23 C

3
23

⎞

⎠ .

Proposition 24.4 Let (A, μ, α) and (A′, μ′, β) be 3-dimensional Hom-Lie algebras
and let C and D be the respective matrices of structure constants of μ and μ′. Let
τ (resp. τ ′) be a μ-trace (resp. μ′-trace) and α′ (resp. β ′) a linear map α′ : A → A
(resp. β ′ : A′ → A′). Set (A, μτ , (α, α′)) and (A′, μ′

τ ′ , (β, β ′)) to be induced ternary
Hom-Nambu-Lie algebras. Let Φ : A → A′ be a Hom-Lie algebra morphism which
does not satisfy τ ′ ◦ Φ = τ .

(i) If Φ is a ternary Hom-Nambu-Lie algebra morphism of the induced algebras
then detC = 0.

(ii) If moreover Φ is a Hom-Lie algebra isomorphism then, if Φ is a ternary Hom-
Nambu-Lie algebra isomorphism of the induced algebras then detC = 0 and
det D = 0.

Proof For the basis {e1, e2, e3} we have

Φ(μτ (e1, e2, e3)) = τ(e1)Φ(μ(e2, e3)) − τ(e2)Φ(μ(e1, e3)) + τ(e3)Φ(μ(e1, e2))

= Φ
(
τ(e1)μ(e2, e3) − τ(e2)μ(e1, e3) + τ(e3)μ(e1, e2)

)
,

(Since τ(Φ(ei )) ∈ K and Φ is linear)

μ′
τ ′(Φ(e1),Φ(e2),Φ(e3)) = τ ′(Φ(e1))μ

′(Φ(e2),Φ(e3))

− τ ′(Φ(e2))μ
′(Φ(e1),Φ(e3)) + τ ′(Φ(e3))μ

′(Φ(e1),Φ(e2))

= τ ′(Φ(e1))Φ(μ(e2, e3)) − τ ′(Φ(e2))Φ(μ(e1, e3)) + τ ′(Φ(e3))Φ(μ(e1, e2))

= Φ
(
τ ′(Φ(e1))μ(e2, e3) − τ ′(Φ(e2))μ(e1, e3) + τ ′(Φ(e3))μ(e1, e2)

)
.

(Since τ ′(Φ(ei )) ∈ K and Φ is linear)

If Φ(μτ (e1, e2, e3)) = μ′
τ ′(Φ(e1),Φ(e2),Φ(e3)), then
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Φ(μτ (e1, e2, e3)) − μ′
τ ′(Φ(e1),Φ(e2),Φ(e3)) = 0

=⇒ Φ[(τ (e1)μ(e2, e3) − τ(e2)μ(e1, e3) + τ((e3))μ(e1, e2))−
(τ ′(Φ(e1))μ(e2, e3) − τ ′(Φ(e2))μ(e1, e3) + τ ′(Φ(e3))μ(e1, e2))] = 0

=⇒ (τ (e1) − τ ′(Φ(e1)))μ(e2, e3) − (τ (e2) − τ ′(Φ(e2)))μ(e1, e3)

+ (τ ((e3)) − τ ′(Φ(e3)))μ(e1, e2)) = 0.

Let
∑

�(i, j,k)

denote the summation over the cyclic permutations on {i, j, k}.

Replacing μ(e j , ek) =
3∑

l=1

Cl
jkel , we get the following equations:

∑

�(i, j,k)

(τ (ei ) − τ ′(Φ(ei )))C
l
jk = 0 for l = 1, 2, 3

and {i, j, k} ordered as {1, 2, 3}. Writing up the equations in matrix form:

CT

⎡

⎣
(τ (e3) − τ ′(Φ(e3)))
(τ ′(Φ(e2)) − τ(e2))
(τ (e1) − τ ′(Φ(e1)))

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

Hence, τ �= τ ′ ◦ Φ =⇒ detC = 0.
Suppose now that, on top of the previous hypotheses, Φ is invertible, we show

that the same holds for μ′ with structure constants Dk
i j . Denote the matrix of such

structure constants by

D =
⎛

⎝
D1

12 D2
12 D3

12
D1

13 D2
13 D3

13
D1

23 D2
23 D3

23

⎞

⎠ .

Then by substitutions in order to eliminate μ instead, we get

Φ(μτ (e1, e2, e3)) = τ(e1)Φ(μ(e2, e3)) − τ(e2)Φ(μ(e1, e3)) + τ(e3)Φ(μ(e1, e2))

= τ(e1)μ
′(Φ(e2),Φ(e3)) − τ(e2)μ

′(Φ(e1),Φ(e3)) + τ(e3)μ
′(Φ(e1),Φ(e2)),

μ′
τ ′(Φ(e1),Φ(e2),Φ(e3)) = τ ′(Φ(e1))μ

′(Φ(e2),Φ(e3))

− τ ′(Φ(e2))μ
′(Φ(e1),Φ(e3)) + τ ′(Φ(e3))μ

′(Φ(e1),Φ(e2)).

If Φ(μτ (e1, e2, e3)) = μ′
τ ′(Φ(e1),Φ(e2),Φ(e3)), then by similar computations as

for C ,

DT P

⎡

⎣
(τ (e3) − τ ′(Φ(e3)))
(τ ′(Φ(e2)) − τ(e2))
(τ (e1) − τ ′(Φ(e1)))

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦
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P =
⎛

⎝
ϕ21ϕ32 − ϕ22ϕ31 ϕ11ϕ32 − ϕ12ϕ31 ϕ11ϕ22 − ϕ12ϕ21

ϕ21ϕ33 − ϕ23ϕ31 ϕ11ϕ33 − ϕ13ϕ31 ϕ11ϕ23 − ϕ13ϕ21

ϕ22ϕ33 − ϕ23ϕ32 ϕ12ϕ33 − ϕ13ϕ32 ϕ12ϕ23 − ϕ13ϕ22

⎞

⎠ .

We have det P = (det[Φ])2 �= 0. Hence τ �= τ ′ ◦ Φ =⇒ det D = 0. �

24.5 Some examples

Example 24.1 We give an example of Proposition 24.4. We take two Hom-Lie
algebras that are isomorphic and show that their induced ternary Hom-Nambu-Lie
algebras can be isomorphic with the condition τ = τ ′ ◦ Φ not satisfied. Let the two
Hom-Lie algebras be given as (H, [·, ·], α1) and (H ′, [·, ·]′, α2), where

[α1] =
⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠ , [α2] =
⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠, with the binary brackets given respectively as

[e1, e2] = C1
12 e1 + C2

12 e2
[e1, e3] = C1

13 e1 + C2
13 e2

[e2, e3] = C2
23 e2

[ f1, f2]′ = D2
12 f2 + D3

12 f3
[ f1, f3]′ = D3

13 f3
[ f2, f3]′ = D2

23 f2 + D3
23 f3

.

The Hom-Lie algebra isomorphism given by Φ(e1) = f2, Φ(e2) = f3, Φ(e3) = f1,

satisfies Φ ◦ α1 = α2 ◦ Φ. That is, [Φ] =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠, with the following conditions

on the structure constants of H and H ′:

C1
12 = D2

23, C2
12 = D3

23, C1
13 = −D2

12, C2
13 = −D3

12, C2
23 = −D3

13.

Let (H, [·, ·, ·]τ , (α1, β1)) and (H ′, [·, ·, ·]′τ , (α2, β2)) be the induced ternary Hom-
Nambu Lie algebras. In general, the ternary brackets are given by

[e1, e2, e3]τ = b1(C
1
12 e1 + C2

12 e2)

with [β1] =
⎛

⎝
β11 β12 0
β21 β22 0
β31 β32 0

⎞

⎠ and τ(e1) = 0, τ (e2) = 0, τ (e3) = b1, for all b1 ∈ K
∗

and
[ f1, f2, f3]′τ ′ = b′

1(D
2
23 f2 + D3

23 f3)

with [β2] =
⎛

⎝
0 β12 β13

0 β22 β23

0 β32 β33

⎞

⎠ and τ ′( f1) = b′
1, τ ′( f2) = 0, τ ′( f3) = 0, for all b′

1 ∈ K
∗.
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Takeβ1 = α1 andβ2 = α2.The inducedHom-NambuLie algebras can be isomorphic
under this Φ with τ(e1) = τ ′(Φ(e1)), τ (e2) = τ ′(Φ(e2)) but τ(e3) �= τ ′(Φ(e3)),
when b1 �= b′

1. Moreover, if we define C and D as given before, we see that
detC = det D = 0.

Example 24.2 We give examples of the two particular cases of Corollary 24.2.
Let the two Hom-Lie algebras be given as (H, [·, ·], α1) and (H ′, [·, ·]′, α2), where

[α1] =
⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠ , [α2] =
⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ , with the binary brackets given respectively as

[e1, e2] = C2
12 e2

[e1, e3] = C2
13 e2

[e2, e3] = C2
23 e2

[ f1, f2]′ = D3
12 f3

[ f1, f3]′ = D3
13 f3

[ f2, f3]′ = D3
23 f3

.

The Hom-Lie algebra isomorphism given by Φ(e1) = f2, Φ(e2) = f3, Φ(e3) = f1,
satisfies Φ ◦ α1 = α2 ◦ Φ, with the following conditions on the structure constants
of H and H ′:

C2
12 = D3

23, C2
13 = −D3

12, C2
23 = −D3

13

Let (H, [·, ·, ·]τ , (α1, β1)) and (H ′, [·, ·, ·]′τ , (α2, β2)) be the induced ternary Hom-
Nambu Lie algebras. In general, the ternary brackets are given by

[e1, e2, e3]τ = (b3C
2
23 + b4C

2
12) e2

with [β1] =
⎛

⎝
β11 β12 λβ11

0 β22 0
β31 β32 λβ31

⎞

⎠ and τ(e1) = b3, τ (e2) = 0, τ (e3) = b4, λ = −b3
b4

for

all b3, b4 ∈ K
∗, and

[ f1, f2, f3]′τ ′ = (b′
3D

3
13 + b′

4D
3
23) f3

with [β2] =
⎛

⎝
β11 γβ11 β13

β21 γβ21 β23

0 0 β31

⎞

⎠, and τ ′( f1) = b′
4, τ ′( f2) = b′

3, τ ′( f3) = 0, γ = −b′
4

b′
3

for all b′
3, b

′
4 ∈ K

∗.

Take β1 = α1 and β2 = α2, b3 = b′
3 and b4 �= b′

4. Suppose that [e1, e2] = 0. This
means C2

12 = 0, which leads to D3
23 = 0. Then the induced Hom-Nambu Lie alge-

bras can be isomorphic under thisΦ with τ(e1) = τ ′(Φ(e1)), τ (e2) = τ ′(Φ(e2)) but
τ(e3) �= τ ′(Φ(e3)).

Now using this example, but with a different morphism defined by Φ(e1) = f3,
Φ(e2) = 0, Φ(e3) = f1, that is, e2 ∈ kerΦ. If we again take β1 = α1, β2 = α2 and
let b4 = b′

4, we haveΦ a morphism of the induced ternary Hom-Nambu-Lie algebras
with τ(e1) �= τ ′(Φ(e1)), τ (e2) = τ ′(Φ(e2)) and τ(e3) = τ ′(Φ(e3)).
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Chapter 25
Commutants in Crossed Products for
Piecewise Constant Function Algebras
Related to Multiresolution Analysis

Sergei Silvestrov and Alex Behakanira Tumwesigye

Abstract In this paper we consider crossed product algebras of piecewise constant
function algebras on the real line that arise in multiresolution analysis. Such algebras
form an increasing sequence of algebras of functions on the real line. We derive
conditions under which these algebras are invariant under a bijection on the real line,
in which case we get an increasing sequence of crossed product algebras. We then
give a comparison of commutants (centralizers) in a number of cases.

Keywords Crossed product algebra · Multiresolution analysis · Commutant
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25.1 Introduction

An important direction of investigation for any class of non-commutative algebras
and rings, is the description of commutative subalgebras and commutative subrings.
This is because such a description allows one to relate representation theory, non-
commutative properties, graded structures, ideals and subalgebras, homological and
other properties of non-commutative algebras to spectral theory, duality, algebraic
geometry and topology naturally associated with commutative algebras. In represen-
tation theory, for example, semi-direct products or crossed products play a central
role in the construction and classification of representations using the method of
induced representations. When a non-commutative algebra is given, one looks for
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a subalgebra such that its representations can be studied and classified more easily
and such that the whole algebra can be decomposed as a crossed product of this
subalgebra by a suitable action.

When one has found a way to present a non-commutative algebra as a crossed
product of a commutative subalgebra by some action on it, then it is important to
know whether the subalgebra is maximal commutative, or if not, to find a maximal
commutative subalgebra containing the given subalgebra. This maximality of a com-
mutative subalgebra and related properties of the action are intimately related to the
description and classification of representations of the non-commutative algebra.

Somework has been done in this direction [5, 10, 11] where the interplay between
topological dynamics of the action on one hand and the algebraic property of the com-
mutative subalgebra in the C∗−crossed product algebra C(X) � Z being maximal
commutative on the other hand are considered. In [10], an explicit description of
the (unique) maximal commutative subalgebra containing a subalgebra A of C

X is
given. In [13], properties of commutative subrings and ideals in non-commutative
algebraic crossed products by arbitrary groups are investigated and a description of
the commutant of the base coefficient subring in the crossed product ring is given.
More results on commutants in crossed products and dynamical systems can be found
in [2, 7, 9] and the references therein.

In this article, we consider crossed product algebras for piecewise constant func-
tion algebras that form a multiresolution analysis in L2(R). Such multiresolution
analysis is a basis for wavelet analysis and signal processing. Work in this direction
can be found, for example, in [1, 3, 4, 6]. Commutants for the coefficient algebra in
crossed products for piecewise constant function algebras have been studied in [7,
8], but in a different setting to the one here.

The paper is arranged as follows: After the introduction in Sect. 25.1, we give gen-
eral definitions and preliminary notions about crossed product algebras in Sect. 25.2.
In Sect. 25.3, we give an explicit description of the commutantC(A0), of the algebra
A j of functions which are constant on intervals of the form It = [

2− j t, 2− j (t + 1)
)

for every t ∈ Z, in the crossed product algebra A j �σ̃ Z. In Sect. 25.4, we give a
comparison of commutants C(A j ), j ∈ Z for the algebras A j which arise in mul-
tiresolution in L2(R), in a number of cases.

25.2 Definitions and Preliminary Results

In this section we give general notions about algebraic crossed products. This section
is based on [7, 10].
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25.2.1 Algebraic Crossed Products

LetA be any commutative algebra. Using the notation in [10], we let φ : A → A be
any algebra automorphism on A and define

A �φ Z := { f : Z → A : f (n) = 0 except for a finite number of n}.

It has been proven in [10] that A �φ Z is an associative C− algebra with respect
to point-wise addition, scalar multiplication and multiplication defined by twisted
convolution, ∗ as follows:

( f ∗ g)(n) =
∑

k∈Z

f (k).φk(g(n − k)),

where φk denotes the k−fold composition of φ with itself for positive k and we use
the obvious definition for k ≤ 0.

Definition 25.1 The algebra A �φ Z defined above is called the crossed product
algebra of A and Z under φ.

A useful and convenient way of working with A �φ Z, is to write elements f, g ∈
A �φ Z in the form f = ∑

n∈Z

fnδn and g = ∑

n∈Z

gmδm where fn = f (n), gm = g(m)

and

δn(k) =
{
1, if k = n

0, if k �= n.

Then addition and scalar multiplication are canonically defined and multiplication
is determined by the relation

( fnδ
n) ∗ (gmδm) = fnφ

n(gm)δn+m

where m, n ∈ Z and fn, gm ∈ A.

Definition 25.2 By the commutant (centralizer) C(A) of A in A �φ Z we mean

C(A) := { f ∈ A �φ Z : f g = g f for every g ∈ A}.

It has been proven [10] that the commutantA′ is commutative and thus, is the unique
maximal commutative subalgebra containing A.

25.2.2 Automorphisms Induced by Bijections

Now let X be any set and A an algebra of complex valued functions on X . Let
σ : X → X be any bijection such that A is invariant under σ and σ−1, that is for



712 S. Silvestrov and A. B. Tumwesigye

every h ∈ A, h ◦ σ ∈ A and h ◦ σ−1 ∈ A. Then (X, σ ) is a discrete dynamical
system and σ induces an automorphism σ̃ : A → A defined by,

σ̃ ( f ) = f ◦ σ−1. (25.1)

Therefore we can consider the crossed product algebra A �σ̃ Z. Studies have been
done on this algebraic crossed product and crossed product algebras in general,
about maximal commutativity of A and other properties of the commutant of A in
the crossed product algebra A �σ̃ Z [7, 8, 10, 11, 13]. The following definition,
which first appeared in [10], gives a description of sets which are crucial in the study
of commutatnts this algebraic crossed product.

Definition 25.3 For any nonzero n ∈ Z, we set

SepnA(X) := {
x ∈ X | ∃ h ∈ A : h(x) �= σ̃ n(h)(x)

}
.

The following theorem has been proven in [10].

Theorem 25.1 The unique maximal commutative subalgebra of A �σ̃ Z that con-
tains A is precisely the set of elements

C(A) =
{

∑

n∈Z

fnδ
n : (for all n ∈ Z), fn|SepnA(X) ≡ 0

}

.

25.3 Crossed Products for Piecewise Constant Function
Algebras and Multiresolution Analysis

25.3.1 Crossed Products for Piecewise Constant Function
Algebras

Let X be any set, J a countable set and P = {X j : j ∈ J } be a partition of X , that
is X = ⋃

r∈J Xr where Xr �= ∅ ∀ r ∈ J and Xr ∩ Xr ′ = ∅ if r �= r ′.
LetA be the algebra of piecewise constant, complex-valued functions on X, that

is
A = {h ∈ C

X : for every j ∈ J : h(X j ) = {c j }}, (25.2)

for some c j ∈ C and let σ : X → X be a bijection on X. The lemma below [7,
Lemma 3.1] gives the necessary and sufficient conditions under whichA is invariant
under σ .

Lemma 25.1 Let σ : X → X be a bijection. Then the following are equivalent.

(i) The algebra A is invariant under σ and σ−1.

(ii) For every i ∈ J there exists j ∈ J such that σ(Xi ) = X j .
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Proof We recall that the algebra A is invariant under σ if and only if for every
h ∈ A, h ◦ σ ∈ A.

Obviously, if for every i ∈ J there exists a unique j ∈ J such that σ(Xi ) = X j ,

then
(h ◦ σ)(Xi ) = h(σ (Xi )) = h(X j ) = {c j },

for some c j ∈ C. Therefore, h ◦ σ ∈ A.
Conversely, suppose A is invariant under σ but 2. does not hold. Let x1, x2 ∈

X j and Xr , Xr ′ ∈ P such that σ(x1) ∈ Xr and σ(x2) ∈ Xr ′ . Let h : X → C be the
function defined by

h(x) =
{
1 if x ∈ Xr

0 otherwise

Then h ∈ A. But h ◦ σ(x1) = 1 and h ◦ σ(x2) = 0. Thus h ◦ σ /∈ A which contra-
dicts the assumption. A similar proof can be done to show that A is invariant under
σ−1 if and only if condition 2. holds.

We let σ̃ : A → A be the automorphism induced by σ, as defined by (25.1), and
consider the crossed product algebraA �σ̃ Z.Some studies have been done regarding
properties ofmaximal commutative subalgebras containingA, in this crossed algebra
[7, 8, 12]. In the next section we focus on particular piecewise constant algebra
functions on the real line.

25.3.2 Piecewise Constant Function Algebras Generated by
the Haar Scaling Function

In this section we let X = R and we consider special piecewise constant function
algebras defined from the Haar scaling function. To this end we have the following.

Let φ : R → R be the function defined by

φ(x) :=
{
1, if 0 � x < 1

0 otherwise
,

and for every j ∈ Z, let

A j :=
{

h ∈ L2(R) such that h(x) =
∑

t∈Z

atφ(2 j x − t), at ∈ R

}

. (25.3)

ThenA j consists of functions (step functions) which are constant on intervals of the
form It = [

2− j t, 2− j (t + 1)
)
for every t ∈ Z. Note that for j < 0, the intervals It

have length greater than 1. Clearly, A j is an algebra of functions with respect to the
pointwise operations of addition, scalar multiplication and multiplication.
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Let σ : R → R be a bijection such that A j is invariant under σ and σ−1. It
follows from Lemma 25.1 that such a σ is a permutation of the intervals It . Let
σ̃ : A j → A j be the automorphism induced by σ , as given by (25.1), and consider
the crossed product algebra A j �σ̃ Z.

We write an element f ∈ A j �σ̃ Z as

f =
∑

n∈Z

fnδ
n,

where fn = f (n) ∈ A j for each n ∈ Z and fn = 0 except for finitely many n ∈ Z.

Therefore, using the definition of f ∈ A j as given by (25.3), we see that f ∈ A j �σ̃

Z can be written in the form

f (x, δ) =
∑

n∈Z

⎛

⎝
∑

tn∈Z

atnφ
(
2 j x − tn

)
⎞

⎠ δn.

We would like to give an explicit description of the commutant (centralizer) A′
j

of A j in the crossed product algebra A j �σ̃ Z.

From Theorem 25.1, this commutant (centralizer),A′
j inA �σ̃ Z is precisely the

set of elements

A′
j =

{
∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA j

(R) ≡ 0

}

where for each n ∈ Z, SepnA j
(R) follows from Definition 25.3.

In the following Theorem, we give the description of SepnA j
(R) for each n ∈ Z,

where A j is the algebra of functions defined by (25.3).

Theorem 25.2 Let A j the algebra piecewise constant functions on R as defined by
(25.3). Suppose σ : R → R is a bijection such that A j is invariant under σ (and
σ−1) and σ̃ : A j → A j is the automorphism on A j induced by σ . Then for every
n ∈ Z,

SepnA j
(R) =

⎛

⎝
⋃

k�n

Ck

⎞

⎠ ∪ C∞,

where For each k ∈ Z>0, Ck is given by

Ck := {x ∈ R : k is the smallest positive integer such that

x, σ k(x) ∈ It for some t ∈ Z

}
(25.4)

and
C∞ = {x ∈ R : (� t ∈ Z), : x, σ k(x) /∈ It , ∀ k ≥ 1}. (25.5)
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Proof If k | n then we can write n = mk for some m ∈ Z. If x ∈ Ck, then by defi-
nition of Ck, x, σ k(x) ∈ It for some t ∈ Z. It follows that x, σ−k(x) ∈ Iu where, by
invariance of A j , σ (It ) = Iu . Therefore for every h ∈ A j ,

σ̃ n(h)(x) = σ̃mk(h)(x) = (h ◦ σ−mk)(x) = h(σ−mk(x)) = h(x),

since h is constant on Iu . It follows that, if x ∈ Ck, then x /∈ SepnA j
(R) for all k | n,

and hence

SepnA j
(R) ⊆

⎛

⎝
⋃

k�n

Ck

⎞

⎠ ∪ C∞.

On the other hand, if k � n, then we can write n = mk + q where m, q ∈ Z with
1 ≤ q < k. If x ∈ Ck, then

σ̃ n(h)(x) = σ̃mk+q(h)(x)

= (h ◦ σ−(mk+q))(x)

= h(σ−mk−q(x))

= σ̃−q(h)(x)

�= h(x),

since k is the smallest integer such that x, σ−k(x) ∈ Iu and q < k.Clearly, if x ∈ C∞,

then x ∈ SepnA j
(R) for any n ∈ Z. Therefore

SepnA j
(R) ⊇

⎛

⎝
⋃

k�n

Ck

⎞

⎠ ∪ C∞.

From the above theorem, the description of the maximal commutative subalgebra in
A j �σ̃ Z containing A j can be done as follows.

Theorem 25.3 The centralizer of A j in the crossed product algebra A j �σ̃ Z is
given by

A′
j =

⎧
⎨

⎩
f ∈ A j �σ̃ Z : f (x, δ) =

∑

n∈Z

⎛

⎝
∑

tn∈Z

atnφ(2 j x − tn)

⎞

⎠ δn,

such that (∀ n such that k � n), atn = 0
}
,

where the second sum is taken over all x ∈ Ck, and Ck is given by (25.4).

Proof Let f = ∑

n∈Z

fnδn ∈ A j �σ̃ Z be an element inA′
j .Then, fromTheorem 25.1,

we have that for every n ∈ Z, fn(x) = 0 for every x ∈ SepnA j
(R). Now, from The-

orem 25.2, we have that for every n ∈ Z,
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SepnA j
(R) =

⎛

⎝
⋃

k�n

Ck

⎞

⎠ ∪ C∞, (25.6)

where Ck and C∞ are given by (25.4) and (25.5) respectively. Therefore, if f =∑

n∈Z

fnδn ∈ A′
j then fn = 0 for all k � n ∈ Z. Therefore,

A′
j =

{
∑

n∈Z

fnδ
n : (∀ x ∈ Ck, where k � n), fn(x) = 0

}

,

And using the definition of fn ∈ A j as

fn(x) =
∑

tn∈Z

atnφ(2 j x − tn)

with atn ∈ R, we have:

A′
j =

⎧
⎨

⎩
f ∈ A j �σ̃ Z : f (x, δ) =

∑

n∈Z

⎛

⎝
∑

tn∈Z

atnφ(2 j x − tn)

⎞

⎠ δn,

such that (∀ n such that k � n), atn = 0
}
,

where the second sum is taken over all x ∈ Ck .

25.4 A Comparison of Commutants in Nested Spaces

In the following section we give a comparison of commutants of the nested sequence
of algebras · · ·A−2 ⊂ A−1 ⊂ A0 ⊂ A1 ⊂ · · · , where for each j ∈ Z, A j is the
collection of all square integrable functions which are constant on all 2− j length
intervals, as described by (25.3).We first derive conditions under which, startingwith
an algebra A j j ∈ Z, which is invariant under a bijection σ : R → R, the algebras
Ai are invariant under the same bijection σ : R → R for all i � j. This ensures that
we have an increasing sequence of crossed products A j �σ̃ Z ⊂ A j+1 �σ̃ Z ⊂ · · ·
for all j ∈ Z, in which case the commutants form a decreasing sequenceA′

j ⊃ A′
j+1

for all j ∈ Z, [8]. We give the conditions in the following Lemma.

Lemma 25.2 Let σ : R → R be a bijection such that A j is invariant under σ for
some j ∈ Z. Then Ai is invariant under σ for all integers i � j.

Proof Since · · ·A−2 ⊂ A−1 ⊂ A0 ⊂ A1 ⊂ · · · , it is enough to prove that invari-
ance ofA j under a bijection σ : R → R implies invariance ofA j+1 under σ. To this
end, we have the following.
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Suppose A j is invariant under a bijection σ : R → R. Then by Lemma 3.1, σ is
a permutation of intervals of the form It = [

2− j t, 2− j (t + 1)
)
for some t ∈ Z. Note

that inA j+1, each of the intervals It is divided into two half-intervals each of length
2−( j+1). From [3], we also know thatA j+1 = A j ⊕ Wj , whereWj is the subalgebra
of A j+1 consisting of functions in A j+1 which take equal and opposite values on
each half of every interval It , that is, f ∈ Wj if and only if

f (x) =

⎧
⎪⎨

⎪⎩

at 2− j t � x < 2− j (t + 1
2 )

−at 2− j (t + 1
2 ) � x < 2− j (t + 1)

0 otherwise

for some at ∈ R.

Now let x ∈ It ⊂ R for some t ∈ Z suppose σ(It ) is some interval, say, Is =[
2− j s, 2− j (s + 1)

)
for some s ∈ Z. Let g ∈ Wj such that

g(y) =

⎧
⎪⎨

⎪⎩

as 2− j s � y < 2− j (s + 1
2 )

−as 2− j (s + 1
2 ) � y < 2− j (s + 1)

0 otherwise

.

Then

g ◦ σ(x) = g(σ (x)) =

⎧
⎪⎨

⎪⎩

as 2− j s � σ(x) < 2− j (s + 1
2 )

−as 2− j (s + 1
2 ) � σ(x) < 2− j (s + 1)

0 otherwise

.

Therefore g ◦ σ ∈ Wj , and hence Wj is invariant under σ.

Now let h ∈ A j+1. Then h = f + g for unique f ∈ A j and g ∈ Wj . Therefore

h ◦ σ = ( f + g) ◦ σ = ( f ◦ σ) + (g ◦ σ) ∈ A j+1,

since f ◦ σ ∈ A j and g ∈ Wj . Therefore A j+1 is invariant under σ.

Note that the conditions in Lemma 25.2 are sufficient but not necessary as illustrated
in the following example.

Example 25.1 Let σ : R → R be the function defined as follows

σ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x + 1
2 0 � x < 1

2

x + 1
2

1
2 � x < 1

x + 1
2 1 � x < 3

2

x − 3
2

3
2 � x < 2

x otherwise.
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Then σ is a bijection such that A1 is invariant under σ but A0 is not invariant
under σ.

Proof Let f0 ∈ A0 be the function defined as

f0(x) =
{
1 1 � x < 2

0 otherwise
.

Then for all x ∈ [0, 1) we have

( f0 ◦ σ)(x) = f (σ (x))

=
{
1 1 � σ(x) < 2

0 otherwise

=
{
1 1

2 � x < 1

0 otherwise

Therefore f0 ◦ σ /∈ A0.

We would like to give a comparison of the commutants A′
j and A′

j+1 of A j and
A j+1 respectively in the crossed product algebra A j+1 �σ̃ Z, where σ : R → R is
a bijection such that A j and A j+1 are both invariant under σ and σ−1. Observe that
if σ satisfies the conditions of Lemma 25.2, then the crossed product A j �σ̃ Z is
contained in A j+1 �σ̃ Z, and so we can compare the commutants.

By Theorem 25.1, the commutant A′
j is given by

A′
j =

{
∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA j

(R) ≡ 0

}

,

and A′
j+1 is given by

A′
j+1 =

{
∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA′

j+1
(R) ≡ 0

}

.

From the description ofA′
j in Theorem 25.3 above, we see that only elements outside

SepnA j
(R) contribute something to the commutant. From (25.6), we observe that an

element belongs to SepnA j
(R) if and only if it belongs to Ck for all k � n where Ck is

given by (25.4). Such Ck consists of intervals, say, It1 , · · · , Itk (of length 2− j each)
which, by invariance of A j under σ, are mapped cyclically onto each other by σ. In
A j+1 each of these interval is divided into two subintervals each of length 2−( j+1) say,
I 1tl = [

2− j tl , 2− j (tl + 1
2 )

)
and I 2tl = [

2− j (tl + 1
2 ), 2

− j (tl + 1)
)
for l = 1, 2, · · · , k.

For the intervals It1 , · · · , Itk ⊂ Ck and for any positive integer n, we let
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C̃k := {
x ∈ Itl : k is the smallest positive integer such that

x, σ k(x) ∈ I ptl for some p ∈ {1, 2}} . (25.7)

Using this, we give a comparison of the commutants in the following Theorem.

Theorem 25.4 Let σ : R → R be a bijection such thatA j andA j+1 are both invari-
ant under σ and σ−1. Then,

A′
j \ A′

j+1 =
{

∑

n∈Z

fnδ
n : (∀ n, k such that 2k � n), fn = 0 on C̃2k

}

,

where C̃k is given by (25.7).

Proof From Theorem 25.3, we have that

A′
j =

{

f ∈ A j �σ̃ Z : f (x) =
∑

n∈Z

fnδ
n, : (∀ k � n), fn = 0 on Ck

}

,

where Ck is given by (25.4). As observed earlier, each such Ck consists of k−integer
intervals, say, It1 , · · · , Itk which are mapped cyclically onto each other by σ and each
of which is divided into two subintervals of the form I 1tl =[
2− j tl, 2− j (tl + 1

2 )
)
and I 2tl = [

2− j (tl + 1
2 ), 2

− j (tl + 1)
)
for l = 1, 2, · · · , k inA j+1.

Invariance of A j+1 under σ (Lemma 25.1) implies that σ permutes these 2k subin-
tervals. Therefore, each subinterval I (p)

tl , l = 1, · · · , k, p = 1, 2 either belongs to
C̃k or C̃2k . It follows that, for every n ∈ Z,

SepnA j+1
(R) =

⎧
⎨

⎩

SepnA j
(R) if k � n

SepnA j
(R)

⋃

n:2k�n
C̃k if k | n .

Hence, the commutants A′
j and A′

j+1 satisfy

A′
j \ A′

j+1 =
{

∑

n∈Z

fnδ
n : (∀ n, k such that 2k � n), fn = 0 on C̃2k

}

,

25.4.1 Comparison of C(A0) and C(A j ) for Some j ∈ Z>0

For each j = 0, 1, · · · , let A j be the collection of all square integrable functions
which are constant on all intervals of length 2− j , that is, g(x) ∈ A j if and only if



720 S. Silvestrov and A. B. Tumwesigye

g(x) =
∑

k

akφ(2 j x − k) =
{
ak if k

2 j � x � k+1
2 j

0 otherwise
.

By Lemma 25.2, if σ : R → R is a bijection such that A0 is invariant under σ and
σ−1, then A j is also invariant under σ for every positive j ∈ Z. Since A0 ⊂ A1 ⊂
A2 ⊂ · · · , if A0 is invariant under a bijection σ : R → R (and σ−1) and σ̃ is the
automorphism induced by σ, then

A0 �σ̃ Z ⊂ A1 �σ̃ Z ⊂ · · ·

and hence we can compare the commutants A′
0 and A′

j for some j ∈ Z>0. By The-
orem 25.1, the commutants A′

0 and A′
j are given, respectively, by

A′
0 =

{
∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA0

(R) ≡ 0

}

and

A′
j =

{
∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA j

(R) ≡ 0

}

As observed before, only the elements outside SepnA0
(R) contribute something to the

commutant and from(25.6), it follows that an element belongs to SepnA0
(R) if and

only if it belongs toCk for all k � n or toC∞, whereCk andC∞ are given by (25.4) and
(25.5), respectively. Such Ck consists of k−integer intervals, say, It1 , · · · , Itk which,
by invariance ofA0 under σ, are mapped cyclically onto each other by σ. InA j each
of the intervals Itl = [tl, tl + 1) , l = 1, 2, · · · , k is divided into 2 j subintervals of
length 2− j . That is,

Itl = [tl, tl + 1) =
2 j⋃

p=1

[
tl + p − 1

2 j
, tl + p

2 j

)
.

Therefore, for each l = 1, 2, · · · , k, we can write Itl as Itl =
2 j⋃

p=1
I ptl , where for each

p = 1, 2, · · · , 2 j , I ptl =
[
tl + p−1

2 j , tl + p
2 j

)
. For the intervals Itl ⊂ Ck, let

C̃k := {
x ∈ Itl : k is the smallest positive integer such that

x, σ k(x) ∈ I ptl for some p ∈ {1, · · · , 2 j }} . (25.8)

We have the following theorem.



25 Commutants in Crossed Products for Piecewise Constant Function … 721

Theorem 25.5 Let σ : R → R be a bijection such thatA0 andA j are both invariant
under σ and σ−1. Then,

A′
0 \ A′

j =
⎧
⎨

⎩

∑

n∈Z

fnδ
n : (∀ n, k such that 2qk � n, q = 1, · · · , j), fn = 0 on C̃2qk

⎫
⎬

⎭
,

where C̃k is given by (25.8).

Proof We have seen from Theorem 25.3, that C(A0) is given by

A′
0 =

{

f ∈ A0 �σ̃ Z : f (x) =
∑

n∈Z

fnδ
n, : (∀ k � n), fn = 0 on Ck

}

,

whereCk is given by (25.4).Also, as has been observed, suchCk consists of k−integer
intervals, Itl = [tl, tl + 1), l = 1, 2, · · · , k and tl ∈ Z, which are mapped cyclically
onto each other byσ and each ofwhich, inA j , is divided into 2 j subintervals of length

2 j .That is, Itl =
2 j⋃

p=1
I ptl ,where for each p = 1, 2, · · · , 2 j , I ptl =

[
tl + p−1

2 j , tl + p
2 j

)
.

Since A0 is invariant under σ, then by Lemma 25.2, A1, · · · ,A j are all invariant
under σ. Therefore, by Lemma 25.1, σ permutes these 2 j subintervals. Since the
intervals Itl , l = 1, · · · , k belong to Ck , then we have the following.

• In A1, the subintervals I
p
tl =

[
tl + p−1

2 , tl + p
2

)
either belong to C̃k or to C̃2k .

• In A2, the subintervals I ptl =
[
tl + p−1

4 , tl + p
4

)
either belong to C̃k, C̃2k or to

C̃4k .

• In the same way, we observe that inA j , the subintervals I
p
tl =

[
tl + p−1

2 j , tl + p
2 j

)

either belong to one of C̃k, C̃2k, · · · , C̃2 j k .

From the fact that if 2 j k | n, then 2qk | n for all q = 1, 2, · · · , j, it follows that, for
every n ∈ Z,

SepnA j
(R) =

⎧
⎪⎨

⎪⎩

SepnA0
(R) if k � n

SepnA0
(R) ∪

(
j⋃

q=1:2q k�n
C̃2q k

)

if k | n .

Hence, the commutants A′
0 and A′

j satisfy

A′
0 \ A′

j =
⎧
⎨

⎩

∑

n∈Z

fnδ
n : (∀ n, k such that 2qk � n, q = 1, · · · , j), fn = 0 on C̃2q k

⎫
⎬

⎭
.
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In the next examplewe give a comparison of commutantsA′
0 andA′

1 in the crossed
product A1 �σ̃ Z for a specific bijection σ : R → R under which both A0 and A1

are invariant.

Example 25.2 Let σ : R → R be the bijection defined by

σ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 1 0 � x < 1

x − 1
2 1 � x < 3

2

x − 3
2

3
2 � x < 2

x + 1 2 � x < 3

x − 1 3 � x < 4

x otherwise

and consider the crossed product algebra A0 �σ̃ Z, where f ∈ A0 �σ̃ Z is written
in the form

f (x, δ) =
∑

n∈Z

⎛

⎝
∑

tn∈Z

atnφ(x − tn)

⎞

⎠ δn.

Then we have the following.

1. The commutant A′
0 of A0 is given by

A′
0 =

⎧
⎨

⎩

∑

n∈Z

⎛

⎝
∑

tn∈Z

atnφ(x − tn)

⎞

⎠ δn , (∀ t ∈ {0, 1, 2, 3}), atn = 0 for all odd n

⎫
⎬

⎭
.

2. The comparison of the commutants A′
0 and A′

1 in the crossed product A1 �σ̃ Z

is given by

A′
0 \ A′

1 =
⎧
⎨

⎩

∑

n∈Z

fnδ
n : (∀ n such that 4 � n), fn = 0 on

2⋃

p=1

(
1⋃

l=0

I pt

)⎫
⎬

⎭
,

where for each t ∈ {0, 1, 2, 3} and p ∈ {1, 2} , I pt =
[
t + p−1

2 , t + p
2

)
.

Proof 1. If we denote integer intervals by It = [t, t + 1),we observe that σ 2(It ) =
It for t = 0, 1, 2, 3 and σ(It ) = It for all other t ∈ Z. Therefore, it follows
from(25.4) that, for every k ∈ Z>0,

Ck =

⎧
⎪⎪⎨

⎪⎪⎩

R \
(⋃3

t=0 It
)

, k = 1
⋃3

t=0 It , k = 2

∅, k > 2

.
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Therefore,

SepnA0
(R) =

⎧
⎨

⎩

⋃

k�n

Ck ∪ C∞

⎫
⎬

⎭
=

{⋃3
t=0 It if n is odd

∅, if n is even
.

From Theorem 25.1, we have

A′
0 =

{
∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA0

(R) ≡ 0

}

=
{

∑

n∈Z

fnδ
n , (∀ n such that 2 � n), fn = 0 on

3⋃

t=0

It

}

.

Using the definition of fn ∈ A0 as given by (25.2), we have

A′
0 =

⎧
⎨

⎩

∑

n∈Z

⎛

⎝
∑

tn∈Z

atnφ(x − tn)

⎞

⎠ δn , (∀ t ∈ {0, 1, 2, 3}) , atn = 0 for all odd n

⎫
⎬

⎭
.

2. Now consider the crossed product A1 �σ̃ Z. We would like to explicitly
determine the difference of the commutants A0 \ A1. Note that each of the
intervals It = [t, t + 1), t ∈ {0, 1, 2, 3} is divided into two subintervals I pt =[
t + p−1

2 , t + p
2

)
p ∈ {1, 2} . Using (25.7) and the definition of σ, we see that,

for every n ∈ Z,

SepnA1
(R) =

{⋃2
p=1

⋃3
t=0 I

p
t if 2 � n(⋃2

p=1

⋃1
t=0 I

p
t

)
if 4 � n

=
{
SepnA0

(R) if 2 � n(⋃2
p=1

⋃1
t=0 I

p
t

)
if 4 � n

.

Therefore the comparison of the commutants is given by

A′
0 \ A′

1 =
⎧
⎨

⎩

∑

n∈Z

fnδ
n : (∀ n such that 4 � n), fn = 0 on

2⋃

p=1

(
1⋃

l=0

I pt

)⎫
⎬

⎭
.
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Chapter 26
Constacyclic and Skew Constacyclic
Codes Over a Finite Commutative
Non-chain Ring

Om Prakash, Habibul Islam, and Ram Krishna Verma

Abstract For an odd prime p, this article studies the λ-constacyclic and skew
λ-constacyclic codes of arbitrary length over the finite commutative non-chain ring
R = Fpm [u, v,w]/〈u2 − 1, v2 − 1,w2 − 1, uv − vu, vw − wv,wu − uw〉, where λ

is a unit in R. By using the decomposition method, we determine the structure of
λ-constacyclic and skew λ-constacyclic codes. Also, the necessary and sufficient
conditions of these codes to be self-dual are obtained. Further, it is shown that the
Gray images of λ-constacyclic and skew λ-constacyclic codes of length n over R are
quasi-twisted and skew quasi-twisted codes, respectively of length 8n and index 8
over Fpm . Finally, two non-trivial examples are given to validate the obtained results.

Keywords Constacyclic code · Skew constacyclic code · Gray map · Self-dual
code

MSC2020 94B05 · 94B15 · 94B35 · 94B60

26.1 Introduction

The class of constacyclic codes is an important generalization of cyclic codes due to
its efficient implementation using the shift register in engineering and technology.
Also, it is a rich resource to produce better error-correcting codes. Researchers have
inclined towards the study of cyclic and constacyclic codes over finite rings after
the seminal work presented by Hammons et al. [13] in 1994. In 2006, Qian et al.
[22] studied (1 + u)-constacyclic codes over F2 + uF2. Further, in 2009, cyclic and
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constacyclic codes of an arbitrary length over F2 + uF2 were considered in [1]. They
proved that the Gray image of (1 + u)-constacyclic code is a distance-preserving
binary linear code. Later, some new optimal p-ary and binary linear codes have been
introduced in [20, 21, 25].

On the other hand, in 2007, Boucher et al. [5] shown that better error-correcting
codes can be found over non-commutative rings too. In fact, they introduced skew
cyclic codeswhich are indeed a generalization of cyclic codes. They have constructed
many newcodeswhoseminimumdistances are larger than the distances of previously
known best codes [6, 7]. Thereafter, the study of linear codes in non-commutative set
up has got huge attention among researchers. In 2011, Abualrub et al. [2] investigated
structure of skew cyclic codes overF2 + vF2 while Siap et al. [23] studied skew cyclic
codes of an arbitrary length over the finite fields. Further, in 2015, Gao [10] discussed
linear codes (cyclic codes) over Fp + uFp + u2Fp by decomposition method. Later,
some new studies based on decomposition come into the literature, we refer [3, 8,
9, 11, 12, 15–17, 19, 23, 24, 26].

Above all studies motivate to consider constacyclic and skew constacyclic codes
over different finite non-chain rings. Thus, for any odd prime p, we study here
constacyclic and skew constacyclic codes over finite non-chain ring

R = Fpm [u, v,w]/〈u2 − 1, v2 − 1,w2 − 1, uv − vu, vw − wv,wu − uw〉.

This paper completely determines the structure of these codes by the decomposition
method. It isworthmentioning that form = 1, recently authors [18] constructed some
new quantum codes from cyclic codes over R. The presentation of the manuscript
is organized as follows: In Sect. 26.2, we discuss basic setup and results for linear
codes. Section26.3 gives structure of constacyclic codes while Sect. 26.4 devotes to
study of skew constacyclic codes. Section26.5 includes Gray images of these codes
and Sect. 26.6 concludes the article.

26.2 Basic Concepts and Results

For any odd prime p, let Fpm be a finite field of order pm with characteristic p and

R = Fpm [u, v,w]/〈u2 − 1, v2 − 1,w2 − 1, uv − vu, vw − wv,wu − uw〉.

Clearly, R is a finite commutative semi-local ring (with unity) of order p8m and
characteristic p. Recall that a linear code of length n over R is an R-submodule
of Rn and its members are called codewords. Let C be a linear code of length n
over R. For any z1 = (r0, r1, . . . , rn−1), z2 = (r ′

0, r
′
1, . . . , r

′
n−1) ∈ Rn , the Euclidean

inner product is defined as z1 · z2 = ∑n−1
i=1 rir

′
i . The dual code of C is define as

C⊥ = {z1 ∈ Rn | z1 · z2 = 0, ∀ z2 ∈ C}. The code C is said to be self-orthogonal if
C ⊆ C⊥ and self-dual if C⊥ = C. Let γ ∈ Fpm such that 8γ ≡ 1 (mod p). Let
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ξ1 = γ [1 + u + v + w + uv + vw + uw + uvw],
ξ2 = γ [1 + u + v − w + uv − vw − uw − uvw],
ξ3 = γ [1 + u − v + w − uv − vw + uw − uvw],
ξ4 = γ [1 − u + v + w − uv + vw − uw − uvw],
ξ5 = γ [1 + u − v − w − uv + vw − uw + uvw],
ξ6 = γ [1 − u − v + w + uv − vw − uw + uvw],
ξ7 = γ [1 − u + v − w − uv − vw + uw + uvw],
ξ8 = γ [1 − u − v − w + uv + vw + uw − uvw].

Now, it is observed that
∑8

i=1 ξi = 1 and ξiξ j =
{

ξi , if i = j

0, if i 
= j
.Thus, by theChinese

Remainder Theorem,

R = ξ1R ⊕ ξ2R ⊕ · · · ⊕ ξ8R ∼= ξ1Fpm ⊕ ξ2Fpm ⊕ · · · ⊕ ξ8Fpm .

Hence, any element r ∈ R can be uniquely expressed as

r = a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 =
8∑

i=1

ξi ki ,

where ki ∈ Fpm for i = 1, 2, . . . , 8. In the rest discussion, ξi (i = 1, 2, . . . , 8) will
represent the above mentioned primitive orthogonal idempotent elements of the
ring R.

In the present section, we discuss results on linear codes over R which are useful
to determine the structure of λ-constacyclic and skew λ-constacyclic codes in the
subsequent sections. In this connection, first we define a Gray map φ : R −→ F8

pm

by

φ(a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8) = (α1, α2, . . . , α8),

(26.1)
where

α1 = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8,
α2 = a1 + a2 + a3 − a4 + a5 − a6 − a7 − a8,
α3 = a1 + a2 − a3 + a4 − a5 − a6 + a7 − a8,
α4 = a1 − a2 + a3 + a4 − a5 + a6 − a7 − a8,
α5 = a1 + a2 − a3 − a4 − a5 + a6 − a7 + a8,
α6 = a1 − a2 − a3 + a4 + a5 − a6 − a7 + a8,
α7 = a1 − a2 + a3 − a4 − a5 − a6 + a7 + a8,
α8 = a1 − a2 − a3 − a4 + a5 + a6 + a7 − a8.

(26.2)

The map φ can be extended to Rn in the natural way. Throughout the arti-
cle, αi represents the value given by (26.2), for i = 1, 2, 3, . . . , 8. The Hamming
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weight wH (c) is defined as the number of non-zero components of the code-
word c = (c0, c1, . . . , cn−1) ∈ C and the distance between two codewords is given
by dH (c1, c2) = wH (c1 − c2). The Hamming distance for a code C is defined by
dH (C) = min{dH (c1, c2) | c1 
= c2,∀ c1, c2 ∈ C}. Also, the Gray weight of any ele-
ment r = a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ R is define as
wG(r) = wH (φ(r)) = wH (α1, α2, α3, α4, α5, α6, α7, α8) and Gray weight for r ′ =
(r0, r1, . . . , rn−1) ∈ Rn iswG(r ′) = ∑n−1

i=0 wG(ri ). Again, the Gray distance between
any two codewords c1, c2 is define by dG(c1, c2) = wG(c1 − c2) and Gray distance
for the code C is dG(C) = min{dG(c1, c2) | c1 
= c2, c1, c2 ∈ C}.
Proposition 26.1 Themap φ defined in (26.1) is linear and distance preserving map
from (Rn, dG) to (F8n

pm , dH ).

Proof Let r1, r2 ∈ Rn and β ∈ Fpm . Then it is easy to see that φ(r1 + r2) =
φ(r1) + φ(r2) and φ(βr1) = βφ(r1). Therefore, φ is an Fpm -linear map.
Moreover, dG(r1, r2) = wG(r1 − r2) = wH (φ(r1 − r2)) = wH (φ(r1) − φ(r2)) =
dH (φ(r1), φ(r2)). Hence, φ is a distance preserving map.

Proposition 26.2 Let C be an [n, k, dG] linear code. Then φ(C) is an [8n, k, dH ]
linear code where dG = dH .

Proof By Proposition 26.1, φ(C) is a linear code of length 8n. Also, φ is bijective
and isometric. Therefore, φ(C) has the parameters [8n, k, dH ] with dG = dH .

Proposition 26.3 Let C be a linear code of length n over R. Then φ(C⊥) = (φ(C))⊥.
Moreover, C is self-dual if and only if φ(C) is self-dual.

Proof Let r = (r0, r1, . . . , rn−1) ∈ C, t = (t0, t1, . . . , tn−1) ∈ C⊥, where

ri = ai + ubi + vci + wdi + uvei + vw fi + uwgi + uvwhi ,

ti = a′
i + ub′

i + vc′
i + wd ′

i + uve′
i + vw f ′

i + uwg′
i + uvwh′

i ,

ai , bi , ci , di , ei , fi , gi , hi , a
′
i , b

′
i , c

′
i , d

′
i , e

′
i , f ′

i , g
′
i , h

′
i ∈ Fpm .

for 0 ≤ i ≤ n − 1. Now, r · t = 0 implies

n−1∑

i=0

(aia
′
i + bib

′
i + ci c

′
i + did

′
i + ei e

′
i + fi f

′
i + gi g

′
i + hih

′
i ) = 0;

n−1∑

i=0

(aib
′
i + a′

i bi + ci e
′
i + c′

i ei + di g
′
i + d ′

i gi + fi h
′
i + f ′

i hi ) = 0;
n−1∑

i=0

(aic
′
i + a′

i ci + bie
′
i + b′

i ei + di f
′
i + d ′

i fi + gih
′
i + g′

i hi ) = 0;
n−1∑

i=0

(aid
′
i + a′

i di + bi g
′
i + b′

i gi + ci f
′
i + c′

i fi + ei h
′
i + e′

i hi ) = 0;



26 Constacyclic and Skew Constacyclic Codes Over … 729

n−1∑

i=0

(aie
′
i + a′

i ei + bic
′
i + b′

i ci + dih
′
i + d ′

i hi + fi g
′
i + f ′

i gi ) = 0;
n−1∑

i=0

(ai f
′
i + a′

i fi + bih
′
i + b′

i hi + cid
′
i + c′

i di + ei g
′
i + e′

i ei ) = 0;
n−1∑

i=0

(ai g
′
i + a′

i gi + bid
′
i + b′

i di + ci h
′
i + c′

i hi + ei f
′
i + e′

i fi ) = 0;
n−1∑

i=0

(aih
′
i + a′

i hi + bi f
′
i + b′

i fi + ci g
′
i + c′

i gi + die
′
i + d ′

i ei ) = 0.

Also, φ(r) · φ(t) = 8
∑n−1

i=0 (aia′
i + bib′

i + ci c′
i + did ′

i + ei e′
i + fi f ′

i + gi g′
i +

hih′
i ) = 0. Therefore, φ(C⊥) ⊆ (φ(C))⊥. Since φ is bijection, | φ(C⊥) |=|

(φ(C))⊥ |. Hence, φ(C⊥) = (φ(C))⊥. Further, let C be self-dual. Then C⊥ = C,

implies φ(C⊥) = φ(C), and this implies (φ(C))⊥ = φ(C). Hence, φ(C) is self-dual.
Converse follows similarly.

Let C be a linear code of length n over R, andαi for i = 1, 2, . . . , 8 given in (26.2).
We denote

C1 = {α1 ∈ Fn
pm | a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ C};

C2 = {α2 ∈ Fn
pm | a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ C};

C3 = {α3 ∈ Fn
pm | a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ C};

C4 = {α4 ∈ Fn
pm | a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ C};

C5 = {α5 ∈ Fn
pm | a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ C};

C6 = {α6 ∈ Fn
pm | a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ C};

C7 = {α7 ∈ Fn
pm | a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ C};

C8 = {α8 ∈ Fn
pm | a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ C}.

Then Ci is a linear code of length n over Fpm , for i = 1, 2, . . . , 8. Let Ai be a linear
code over R for i = 1, 2, . . . , 8. Consider A1 ⊕ A2 ⊕ · · · ⊕ A8 = {a1 + a2 + · · · +
a8 | ai ∈ Ai ∀ i} and A1 ⊗ A2 ⊗ · · · ⊗ A8 = {(a1, a2, . . . , a8) | ai ∈ Ai ∀ i}.
Theorem 26.1 Let C be a linear code of length n over R. Then,

φ(C) = C1 ⊗ C2 ⊗ · · · ⊗ C8, and | C |=| C1 || C2 | · · · | C8 | .

Proof Let z = (a10 , a11 , . . . , a1n−1, a
2
0 , a21 , . . . , a2n−1, . . . , a

8
0 , a81 , . . . , a8n−1) ∈ φ(C), and
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ri = γ [(a1i + a2i + a3i + a4i + a5i + a6i + a7i + a8i )+
u(a1i + a2i + a3i − a4i + a5i − a6i − a7i − a8i )+
v(a1i + a2i − a3i + a4i − a5i − a6i + a7i − a8i )+
w(a1i − a2i + a3i + a4i − a5i + a6i − a7i − a8i )+
uv(a1i + a2i − a3i − a4i − a5i + a6i − a7i + a8i )+
vw(a1i − a2i − a3i + a4i + a5i − a6i − a7i + a8i )+
uw(a1i − a2i + a3i − a4i − a5i − a6i + a7i + a8i )+
uvw(a1i − a2i − a3i − a4i + a5i + a6i + a7i − a8i )]

(26.3)

for i = 1, 2, . . . , n − 1. Since φ is bijective, r = (r0, r1, . . . , rn−1) ∈ C. From the
definition of Ci , we have (ai0, a

i
1, . . . , a

i
n−1) ∈ Ci for i = 1, 2, . . . , 8 and this implies

z ∈ C1 ⊗ C2 ⊗ · · · ⊗ C8. Hence, φ(C) ⊆ C1 ⊗ C2 ⊗ · · · ⊗ C8. Conversely, let

z = (a10 , a11 , . . . , a1n−1, a
2
0 , a21 , . . . , a2n−1, . . . , a

8
0 , a81 , . . . , a8n−1) ∈ C1 ⊗ C2 ⊗ · · · ⊗ C8.

Then ai = (ai0, a
i
1, . . . , a

i
n−1) ∈ Ci for i = 1, 2, . . . , 8. In order to show z ∈ φ(C),

we have to find z′ = ∑8
i=1 siξi ∈ C such that φ(z′) = z. Take si = ∑8

j=1 ξ j ti j where

tii = ai , 1 ≤ i ≤ 8 and ti j ∈ Fpm for all i, j . Then z′ = ∑8
i=1 ξi ti i = ∑8

i=1 ξi ai and
φ(z′) = z. Therefore,C1 ⊗ C2 ⊗ · · · ⊗ C8 ⊆ φ(C).Hence,C1 ⊗ C2 ⊗ · · · ⊗ C8 = φ(C).
Moreover, φ being bijection, | C |=| φ(C) |. Thus, | C |=| C1 || C2 | · · · | C8 |.
Corollary 26.1 Let Mi be a generator matrix of Ci for i = 1, 2, . . . , 8. Then the

generator matrix for the code C is M =

⎛

⎜
⎜
⎜
⎝

ξ1M1

ξ2M2
...

ξ8M8

⎞

⎟
⎟
⎟
⎠

.

Corollary 26.2 If φ(C) = C1 ⊗ C2 ⊗ · · · ⊗ C8, then C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8.
Corollary 26.3 Suppose C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 is a linear code of length
n over R where Ci is an [n, ki , dH (Ci )] linear code over Fpm , then φ(C) is an
[8n,

∑8
i=1 ki ,min{dH (Ci ) | i = 1, 2, . . . , 8}] linear code.

Theorem 26.2 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a linear code of length n over
R. Then C⊥ = ξ1C⊥

1 ⊕ ξ2C⊥
2 ⊕ · · · ⊕ ξ8C⊥

8 . Moreover, C is self-dual if and only if Ci
is self-dual for i = 1, 2, . . . , 8.

Proof Let us consider αi , i = 1, 2, . . . , 8, of (26.2). Let Di = {αi ∈ Fn
pm | a1 +

ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8 ∈ C⊥
i }. Then C⊥ is uniquely

expressed asC⊥ = ξ1D1 ⊕ ξ2D2 ⊕ · · · ⊕ ξ8D8. It is easy to see thatD1 ⊆ C⊥
1 . Let s ∈

C⊥
1 . Then s · a1 = 0 for all a1 ∈ C1. Let z = ∑8

i=1 ξi ai ∈ C. Then ξ1sz = ξ1a1s = 0
and this implies ξ1s ∈ C⊥. By the unique representation of C⊥, we have s ∈ D1. Then
C⊥
1 ⊆ D1.Hence,D1 = C⊥

1 . Similarly,we can show thatC⊥
i = Di for i = 2, 3, . . . , 8.

Thus, C⊥ = ξ1C⊥
1 ⊕ ξ2C⊥

2 ⊕ · · · ⊕ ξ8C⊥
8 .
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Moreover, C is self-dual, then C⊥ = C implies

ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 = ξ1C⊥
1 ⊕ ξ2C⊥

2 ⊕ · · · ⊕ ξ8C⊥
8 ,

that is C⊥
i = Ci for i = 1, 2, . . . , 8. Converse follows similarly.

26.3 Constacyclic Codes Over R

In the present section, for a unit λ ∈ R, we determine the structure of λ-constacyclic
codes by decomposing into constacyclic codes over Fpm (Theorem 26.4). In this way,
we prove that these codes and their dual are principally generated (Corollary 26.6
and Corollary 26.7, respectively).

Definition 26.1 Let λ be a unit in R. A linear code C of length n over R is said
to be a λ-constacyclic code if for any c = (c0, c1, . . . , cn−1) ∈ C, we have τλ(c) =
(λcn−1, c0, . . . , cn−2) ∈ C. The operator τλ is known as the λ-constacyclic shift. Note
that a constacyclic code is cyclic if λ = 1 and negacyclic if λ = −1.

Lemma 26.1 Let λ = λ1 + uλ2 + vλ3 + wλ4 + uvλ5 + vwλ6 + uwλ7 + uvwλ8 ∈
R. Then λ is a unit in R if and only if

δ1 = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8,

δ2 = λ1 + λ2 + λ3 − λ4 + λ5 − λ6 − λ7 − λ8,

δ3 = λ1 + λ2 − λ3 + λ4 − λ5 − λ6 + λ7 − λ8,

δ4 = λ1 − λ2 + λ3 + λ4 − λ5 + λ6 − λ7 − λ8,

δ5 = λ1 + λ2 − λ3 − λ4 − λ5 + λ6 − λ7 + λ8,

δ6 = λ1 − λ2 − λ3 + λ4 + λ5 − λ6 − λ7 + λ8,

δ7 = λ1 − λ2 + λ3 − λ4 − λ5 − λ6 + λ7 + λ8,

δ8 = λ1 − λ2 − λ3 − λ4 + λ5 + λ6 + λ7 − λ8

are units in Fpm .

Proof Let δi be unit in Fpm for i = 1, 2, . . . , 8. Now, the representation of λ is
λ = ∑8

i=1 ξiδi . Let γ = ∑8
i=1 ξiδ

−1
i . Then λγ = ∑8

i=1 μi = 1. Hence, λ is a unit
in R.

Conversely, let λ = λ1 + uλ2 + vλ3 + wλ4 + uvλ5 + vwλ6 + uwλ7 + uvwλ8 =∑8
i=1 ξiδi be a unit in R. Then there exists γ = ∑8

i=1 ξiγi ∈ R such that λγ = 1
where γi ∈ F∗

pm for i = 1, 2, . . . , 8. Also, λγ = 1 gives us
∑8

i=1 ξiγiδi = 1 which
implies ξiγiδi = ξi and hence γiδi = 1 for i = 1, 2, 3, . . . , 8. Thus, δi is a unit in
Fpm for i = 1, 2, 3, . . . , 8.

In the present section, we discuss λ-constacyclic codes over R for the unit λ = λ1 +
uλ2 + vλ3 + wλ4 + uvλ5 + vwλ6 + uwλ7 + uvwλ8 ∈ R. Let C be a λ-constacyclic
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code of length n over R.We identify each codeword c = (c0, c1, . . . , cn−1) ∈ Cwith a
polynomial c(x) ∈ R[x]/〈xn − λ〉under the correspondence c = (c0, c1, . . . , cn−1) �→
c(x) = (c0 + c1x + · · · + cn−1xn−1) mod (xn − λ). By this polynomial representa-
tion of C, one can easily verify the next result.

Theorem 26.3 Let C be a linear code of length n over R. Then C is a λ-constacyclic
code if and only if it is an ideal of the ring R[x]/〈xn − λ〉.
Theorem 26.4 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a linear code of length n over
R. Then C is a λ-constacyclic code if and only if Ci is a δi -constacyclic code over
Fpm , for i = 1, 2, . . . , 8 where δ′

i s are defined in Lemma 26.1.

Proof Let C be a λ-constacyclic code of length n over R. Let

ai = (ai0, a
i
1, . . . , a

i
n−1) ∈ Ci for i = 1, 2, . . . , 8,

and for j = 1, 2, . . . , n − 1,

r j = γ [(a1j + a2j + a3j + a4j + a5j + a6j + a7j + a8j )+
u(a1j + a2j + a3j − a4j + a5j − a6j − a7j − a8j )+
v(a1j + a2j − a3j + a4j − a5j − a6j + a7j − a8j )+
w(a1j − a2j + a3j + a4j − a5j + a6j − a7j − a8j )+
uv(a1j + a2j − a3j − a4j − a5j + a6j − a7j + a8j )+
vw(a1j − a2j − a3j + a4j + a5j − a6j − a7j + a8j )+
uw(a1j − a2j + a3j − a4j − a5j − a6j + a7j + a8j )+
uvw(a1j − a2j − a3j − a4j + a5j + a6j + a7j − a8j )].

(26.4)

Then r = (r0, r1, . . . , rn−1) ∈ C. Also, τλ(r) = (λrn−1, r0, . . . , rn−2) ∈ C where

τλ(r) =
8∑

i=1

ξiτδi (a
i ) ∈ C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8.

Therefore, τδi (a
i ) ∈ Ci for i = 1, 2 . . . , 8. Hence, Ci is a δi -constacyclic code over

Fpm , for i = 1, 2, . . . , 8.
Conversely, let Ci be a δi -constacyclic code over Fpm , for i = 1, 2, . . . , 8. Let
r = (r0, r1, . . . , rn−1) ∈ C where r j is given in (26.4) for j = 0, 1, . . . , n − 1.
Then ai = (ai0, a

i
1, . . . , a

i
n−1) ∈ Ci for i = 1, 2, . . . , 8 and hence τδi (a

i ) ∈ Ci for i =
1, 2 . . . , 8. Now, τλ(r) = ∑8

i=1 ξiτδi (a
i ) ∈ ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 = C. Thus, C

is a λ-constacyclic code of length n over R.

Corollary 26.4 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a linear code of length n over
R. ThenC is a cyclic code if andonly ifCi is a cyclic code overFpm , for i = 1, 2, . . . , 8.

Theorem 26.5 LetC = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be aλ-constacyclic code of length
n over R. Then there exists a polynomial f (x) ∈ R[x] such that C = 〈 f (x)〉 and
f (x) | (xn − λ).
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Proof Since C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 is a λ-constacyclic code of length n, by
Theorem 26.4, Ci is a δi -constacyclic code of length n over Fpm . Let Ci = 〈 fi (x)〉
where fi (x) | (xn − δi ) for i = 1, 2, . . . , 8. Then ξ1 f1(x), ξ2 f2(x), · · · ξ8 f8(x) are
generators of C. Let f (x) = ∑8

i=1 ξi fi (x). Then 〈 f (x)〉 ⊆ C. Also, fi (x)ξi =
f (x)ξi ∈ 〈 f (x)〉 for i = 1, 2, . . . , 8, therefore, C ⊆ 〈 f (x)〉. Hence, C = 〈 f (x)〉.
Since fi (x) | (xn − δi ), so there exists hi (x) ∈ Fpm [x] such that (xn − δi ) =
fi (x)hi (x) for i = 1, 2, . . . , 8. Now, [∑8

i=1 ξi hi (x)] f (x) = ∑8
i=1 ξi fi (x)hi (x) =

∑8
i=1 ξi (xn − δi ) = (xn − λ). This shows that f (x) is a factor of (xn − λ).

Corollary 26.5 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a cyclic code of length n over
R. Then there exists a polynomial f (x) ∈ R[x] such that C = 〈 f (x)〉 and f (x) |
(xn − 1).

Corollary 26.6 Every ideal of R[x]/〈xn − λ〉 is principally generated.
Corollary 26.7 LetC = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 beaλ-constacyclic codeof length
n over R and fi (x) be a generator of Ci such that xn − δi = hi (x) fi (x) for
i = 1, 2, . . . , 8. Then

(i) the dual C⊥ = ξ1C⊥
1 ⊕ ξ2C⊥

2 ⊕ · · · ⊕ ξ8C⊥
8 is a λ−1-constacyclic code over R.

(ii) C⊥ = 〈∑8
i=1 ξi h∗

i (x)〉 where h∗
i (x) is the reciprocal polynomial of hi (x), that

is, h∗
i (x) = xdeg(hi (x))hi (1/x) for i = 1, 2, . . . , 8.

(iii) | C⊥ |= pm
∑8

i=1 deg( fi (x)).
(iv) C is a self-dualλ-constacyclic code if and only ifCi is a self-dual δi -constacyclic

code over Fpm for i = 1, 2, . . . , 8.

Proof (i) Since C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 is a λ-constacyclic code of length
n over R, so by Theorem 26.4, Ci is a δi -constacyclic code of length n over Fpm

for i = 1, 2, . . . , 8. Therefore, C⊥
i is a δ−1

i -constacyclic code over Fpm . Hence,
by Theorem 26.4, C⊥ = ξ1C⊥

1 ⊕ ξ2C⊥
2 ⊕ · · · ⊕ ξ8C⊥

8 is a λ−1-constacyclic code
over R.

(ii) Let C⊥
i = 〈h∗

i (x)〉 where h∗
i (x) = xdeg(hi (x))hi (1/x) for i = 1, 2, . . . , 8. Then,

by Theorem 26.5, C⊥ = 〈∑8
i=1 ξi h∗

i (x)〉 where h∗
i (x) = xdeg(hi (x))hi (1/x) for

i = 1, 2, . . . , 8.
(iii) | C⊥ |=| C⊥

1 || C⊥
2 | · · · | C⊥

8 |
= (pm)deg( f1(x)) · (pm)deg( f2(x)) · · · (pm)deg( f8(x)) = pm

∑8
i=1 deg( fi (x)).

(iv) It is obvious.

26.4 Skew Constacyclic Codes Over R

Analogous to constacyclic codes, here we discuss skew λ-constacyclic codes and
prove these codes and their dual are principally generated ideals (Corollary 26.11
and Corollary 26.12, respectively). In this direction, first we define an automorphism
θ : R → R by
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θ(a1 + ua2 + va3 + wa4 + uva5 + vwa6 + uwa7 + uvwa8)

= a ps

1 + ua ps

2 + va ps

3 + waps

4 + uva ps

5 + vwaps

6 + uwaps

7 + uvwaps

8 ,

where ai ∈ Fpm for i = 1, 2, . . . , 8. The automorphism θ is known as Frobineous
automorphism. Let η = m

s be the order of the automorphism θ . Clearly, the sub-
ringFps [u, v,w]/〈u2 − 1, v2 − 1,w2 − 1, uv − uv, vw − wv,wu − uw〉 is invariant
under the automorphism θ . Then the set of polynomials R[x; θ ] = {a0 + a1x + · · · +
anxn | ai ∈ R, for 0 ≤ i ≤ n} is a non-commutative ring under the usual addition of
polynomials andmultiplication of polynomials defined by (axi )(bx j ) = aθ(b)i x i+ j ,
known as a skew polynomial ring. It is clear that the set Rn,λ,θ = R[x; θ ]/〈xn − λ〉
is no more ring unless 〈xn − λ〉 is a two sided ideal of R[x; θ ]. However, we
can consider it as a left R[x; θ ]-module under the left multiplication defined by
r(x)(g(x) + 〈xn − λ〉) = r(x)g(x) + 〈xn − λ〉 where r(x), g(x) ∈ R[x; θ ].
Definition 26.2 Let λ = λ1 + uλ2 + vλ3 + wλ4 + uvλ5 + vwλ6 + uwλ7 + uvwλ8

be a unit in R where λi ∈ F∗
ps . Then a linear code C of length n over R is said to be a

skew λ-constacyclic code if and only if τλ,θ (c) := (θ(λcn−1), θ(c0), . . . , θ(cn−2)) ∈
C whenever c = (c0, c1, . . . , cn−1) ∈ C. The operator τλ,θ is known as the skew λ-
constacyclic shift.

Let C be a skew λ-constacyclic code of length n over R. We identify each codeword
c = (c0, c1, . . . , cn−1) ∈ C with a polynomial c(x) = c0 + c1x + · · · + cn−1xn−1 ∈
Rn,λ,θ under the correspondence c = (c0, c1, . . . , cn−1) �→ c(x) = (c0 + c1x + · · · +
cn−1xn−1)mod (xn − λ). Therefore, under the above identification, we can consider
a skew λ-constacyclic code C as a subset of both Rn and Rn,λ,θ . Further, we have the
following theorem.

Theorem 26.6 Let C be a linear code of length n over R. Then C is a skew λ-
constacyclic code if and only if it is a left R[x; θ ]-submodule of Rn,λ,θ .

Proof Straightforward.

Theorem 26.7 Let β be a unit in Fpm and C be a skew β-constacyclic code of length
n over Fpm . Then C is a left Fpm [x; θ ]-submodule of Fpm [x; θ ]/〈xn − β〉 given by
C = 〈 f (x)〉 where f (x) is a right divisor of (xn − β) in Fpm [x; θ ].
Proof Combination of Lemma 2, Lemma 3 and Theorem 1 of [9].

Theorem 26.8 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a linear code of length n over
R. Then C is a skew λ-constacyclic code if and only if Ci is a skew δi -constacyclic
code of length n over Fpm , for i = 1, 2, . . . , 8.

Proof Let C be a skew λ-constacyclic code of length n over R. Let

ai = (ai0, a
i
1, . . . , a

i
n−1) ∈ Ci for i = 1, 2, . . . , 8,

and for j = 1, 2, . . . , n − 1,
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r j = γ [(a1j + a2j + a3j + a4j + a5j + a6j + a7j + a8j )+
u(a1j + a2j + a3j − a4j + a5j − a6j − a7j − a8j )+
v(a1j + a2j − a3j + a4j − a5j − a6j + a7j − a8j )+
w(a1j − a2j + a3j + a4j − a5j + a6j − a7j − a8j )+
uv(a1j + a2j − a3j − a4j − a5j + a6j − a7j + a8j )+
vw(a1j − a2j − a3j + a4j + a5j − a6j − a7j + a8j )+
uw(a1j − a2j + a3j − a4j − a5j − a6j + a7j + a8j )+
uvw(a1j − a2j − a3j − a4j + a5j + a6j + a7j − a8j )].

(26.5)

Then r = (r0, r1, . . . , rn−1) ∈ C. Thus, τλ,θ (r) = (θ(λrn−1), θ(r0), . . . , θ(rn−2)) ∈
C where τλ,θ (r) = ∑8

i=1 ξiτδi ,θ (a
i ) ∈ C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8. Hence,

τδi ,θ (a
i ) ∈ Ci for i = 1, 2, . . . , 8. Thus, Ci is a skew δi -constacyclic code over Fpm ,

for i = 1, 2, . . . , 8.
Conversely, let Ci be a skew δi -constacyclic code overFpm , for i = 1, 2, . . . , 8 and

r = (r0, r1, . . . , rn−1) ∈ C where r j is given by (26.5) for j = 0, 1, . . . , n − 1. Then
ai = (ai0, a

i
1, . . . , a

i
n−1) ∈ Ci for i = 1, 2, . . . , 8 and hence τδi ,θ (a

i ) ∈ Ci for i =
1, 2 . . . , 8. Now, τλ,θ (r) = ∑8

i=1 ξiτδi ,θ (a
i ) ∈ ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 = C. Thus,

C is a skew λ-constacyclic code of length n over R.

Corollary 26.8 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a linear code of length n over
R. Then C is a skew cyclic code if and only if Ci is a skew cyclic code of length n
over Fpm , for i = 1, 2, . . . , 8.

Theorem 26.9 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a skew λ-constacyclic code of
length n over R. Then there exists a polynomial f (x) ∈ R[x; θ ] such that C = 〈 f (x)〉
and f (x) is a right divisor of (xn − λ) in R[x; θ ].
Proof Since C is a skew λ-constacyclic code of length n over R, by Theorem
26.8, Ci is a skew δi -constacyclic code of length n over Fpm for i = 1, 2, . . . , 8.
Also, by Theorem 26.7, we have Ci = 〈 fi (x)〉 where fi (x) is a right divisor of
(xn − δi ) in Fpm [x; θ ] for i = 1, 2, . . . , 8. Then ξi fi (x) is a generator of C for
i = 1, 2, . . . , 8. Let f (x) = ∑8

i=1 ξi fi (x). Then 〈 f (x)〉 ⊆ C. On the other side, we
have ξi fi (x) = ξi f (x) ∈ 〈 f (x)〉 for i = 1, 2, . . . , 8. Hence, C ⊆ 〈 f (x)〉. Conse-
quently, C = 〈 f (x)〉.
Since fi (x) is a right divisor of (xn − δi ) in Fpm [x; θ ], so there exists
hi (x) ∈ Fpm [x; θ ] such that (xn − δi ) = hi (x) fi (x) for i = 1, 2, . . . , 8.
Now, [∑8

i=1 ξi hi (x)] f (x) = ∑8
i=1 ξi hi (x) fi (x) = ∑8

i=1 ξi (xn − δi ) = (xn − λ).
This proves that f (x) is a right divisor of (xn − λ) in R[x; θ ].
Corollary 26.9 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a skew cyclic code of length
n over R. Then there exists a polynomial f (x) ∈ R[x; θ ] such that C = 〈 f (x)〉 and
f (x) is a right divisor of (xn − 1) in R[x; θ ].
Corollary 26.10 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a skew cyclic code of length
n over R. Then there exists a polynomial f (x) ∈ R[x; θ ] such that C = 〈 f (x)〉 and
f (x) is a right divisor of (xn − 1) in R[x; θ ].
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Corollary 26.11 Every left submodule of R[x; θ ]/〈xn − λ〉 is principally generated.
Corollary 26.12 Let C = ξ1C1 ⊕ ξ2C2 ⊕ · · · ⊕ ξ8C8 be a skew λ-constacyclic code
of length n = ηl (where l is some positive integer and η is the order of the automor-
phism θ ) over R. Let fi (x) be a generator of Ci such that xn − δi = hi (x) fi (x) in
Fpm [x; θ ] for i = 1, 2, . . . , 8. Then

(i) the dual C⊥ = ξ1C⊥
1 ⊕ ξ2C⊥

2 ⊕ · · · ⊕ ξ8C⊥
8 is a skew λ−1-constacyclic code

where C⊥
i is the skew δ−1

i -constacyclic code over Fpm for i = 1, 2, . . . , 8.
(ii) C⊥ = 〈∑8

i=1 μi h̃i (x)〉 where (xn − δi ) = hi (x) fi (x), with

fi (x) = f i0 + f i1 x + · · · + f ir x
r , hi (x) = hi0 + hi1x + · · · + hin−r x

n−r ,

h̃i (x) = hin−r + θ(hin−r−1)x + · · · + θ(hi0)x
n−r for i = 1, 2, . . . , 8.

(iii) | C⊥ |= pm
∑4

i=1 deg( fi (x)).

Proof (i) Since λ is fixed by the automorphism θ , so by [19, Lemma 3.1], we
have C⊥ is a skew λ−1-constacyclic code. Also, we have λ−1 = ∑8

i=1 μiδ
−1
i .

Therefore, by Theorem 26.8, Ci is a skew δ−1
i -constacyclic code over Fpm for

i = 1, 2, . . . , 8.
(ii) From part (1), we have C⊥ = ξ1C⊥

1 ⊕ ξ2C⊥
2 ⊕ · · · ⊕ ξ8C⊥

8 is a skew λ−1-
constacyclic code where C⊥

i is a skew δ−1
i -constacyclic code over Fpm for

i = 1, 2, . . . , 8. Therefore, by [6, Theorem 4.4], we have C⊥
i = 〈h̃i (x)〉 where

(xn − δi ) = hi (x) fi (x), with fi (x) = f i0 + f i1 x + · · · + f ir x
r , hi (x) = hi0 +

hi1x + · · · + hin−r x
n−r and h̃i (x) = hin−r + θ(hin−r−1)x + · · · + θ(hi0)x

n−r for
i = 1, 2, . . . , 8. Hence, by Theorem 26.9, C⊥ = 〈∑8

i=1 μi h̃i (x)〉.
(iii) It is obvious.

26.5 Gray Images of Constacyclic Codes Over R

In this section we aim to discuss the Fpm -images of both λ-constacyclic and skew
λ-constacyclic codes under the Gray map defined in (26.1). Theorem 26.10 and
Theorem 26.11 are two main results which obtain quasi-twisted codes as the Gray
images of these codes.

Definition 26.3 For some positive integers k and l, let C be a linear code of length
n = kl over R. The skew quasi-twisted shift operator πθ,l : Rn → Rn is define as

πθ,l(r) = (r1 | r2 | · · · | rl) = (τδ1,θ (r
1) | τδ2,θ (r

2) | · · · | τδ8,θ (r
l)),

where r i ∈ Rk for i = 1, 2, . . . , l and τδi ,θ is the skew δi -constacyclic shift. Then

(i) C is said to be a skew quasi-twisted code of length n and index l if πθ,l(C) = C.
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(ii) C is said to be a quasi-twisted code of length n and index l if πl(C) = C, or in
other words, skew quasi-twisted is quasi-twisted if θ is the identity automor-
phism on R.

Consider αi given by (26.2). Also, we use the notations αi
1 = ai1 + ai2 + ai3 + ai4 +

ai5 + ai6 + ai7 + ai8, α
i
2 = ai1 + ai2 + ai3 − ai4 + ai5 − ai6 − ai7 − ai8 (0 ≤ i ≤

n − 1) and so on.

Lemma 26.2 Let τλ,θ be skew λ-constacyclic shift, πθ,8 be the skew quasi-twisted
shift and φ be the Gray map defined in (26.1). Then φτλ,θ = πθ,8φ.

Proof Let ri = ai1 + uai2 + vai3 + wai4 + uvai5 + vwai6 + uwai7 + uvwai8 ∈ R for i =
0, 1, . . . , n − 1. Then r = (r0, r1, . . . , rn−1) ∈ Rn . Now

φτλ,θ (r) = φ(θ(λrn−1), θ(r0), . . . , θ(rn−2))

= (δ1θ(αn−1
1 ), θ(α0

1), . . . , θ(αn−2
1 ), δ2θ(αn−1

2 ), θ(α0
2), . . . , θ(αn−2

2 ),

δ3θ(αn−1
3 ), θ(α0

3), . . . , θ(αn−2
3 ), δ4θ(αn−1

4 ), θ(α0
4), . . . , θ(αn−2

4 ),

δ5θ(αn−1
5 ), θ(α0

5), . . . , θ(αn−2
5 ), δ6θ(αn−1

6 ), θ(α0
6), . . . , θ(αn−2

6 ),

δ7θ(αn−1
7 ), θ(α0

7), . . . , θ(αn−2
7 ), δ8θ(αn−1

8 ), θ(α0
8), . . . , θ(αn−2

8 )).

On the other side,

πθ,8φ(r) = πθ,8(α
0
1, α

1
1, . . . , α

n−1
1 , α0

2, α
1
2, . . . , α

n−1
2 , α0

3, α
1
3, . . . , α

n−1
3 ,

α0
4, α

1
4, . . . , α

n−1
4 , α0

5, α
1
5, . . . , α

n−1
5 , α0

6, α
1
6, . . . , α

n−1
6 ,

α0
7, α

1
7, . . . , α

n−1
7 , α0

8, α
1
8, . . . , α

n−1
8 )

= (δ1θ(αn−1
1 ), θ(α0

1), . . . , θ(αn−2
1 ), δ2θ(αn−1

2 ), θ(α0
2), . . . , θ(αn−2

2 ),

δ3θ(αn−1
3 ), θ(α0

3), . . . , θ(αn−2
3 ), δ4θ(αn−1

4 ), θ(α0
4), . . . , θ(αn−2

4 ),

δ5θ(αn−1
5 ), θ(α0

5), . . . , θ(αn−2
5 ), δ6θ(αn−1

6 ), θ(α0
6), . . . , θ(αn−2

6 ),

δ7θ(αn−1
7 ), θ(α0

7), . . . , θ(αn−2
7 ), δ8θ(αn−1

8 ), θ(α0
8), . . . , θ(αn−2

8 )).

Thus, φτλ,θ = πθ,8φ.

Theorem 26.10 Let C be a linear code of length n over R. Then C is a skew λ-
constacyclic code if and only if its Gray image φ(C) is a skew quasi-twisted code of
length 8n and index 8 over Fpm .

Proof Let C be a skew λ-constacyclic code of length n over R. Then τλ,θ (C) = C.
By Lemma 26.2, φ(τλ,θ (C)) = φ(C) = πθ,8(φ(C)). Therefore, φ(C) is a skew quasi-
twisted code of length 8n and index 8 over Fpm .
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Conversely, let φ(C) be a skew quasi-twisted code of length 8n and index 8 over
Fpm . Then πθ,8(φ(C)) = φ(C). By Lemma 26.2, φ(τλ,θ (C)) = πθ,8(φ(C)) = φ(C).
Since φ is injective, so τλ,θ (C) = C. Hence, C is a skew λ-constacyclic code of length
n over R.

Lemma 26.3 Let τλ be the λ-constacyclic shift, π8 be the quasi-twisted shift and φ

be the Gray map defined in (26.1). Then φτλ = π8φ.

Proof Same as the proof of Lemma 26.2.

Theorem 26.11 Let C be a linear code of length n over R. Then C is a λ-constacyclic
code if and only if its Gray image φ(C) is a quasi-twisted code of length 8n and index
8 over Fpm .

Proof Using Lemma 26.3, it can be easily verified.

Now, to validate our obtained results we present two examples below.

Example 26.1 Let λ = (1 + u + v + w + uv + vw + uw) be a unit in

R = F3[u, v,w]/〈u2 − 1, v2 − 1,w2 − 1, uv − vu, vw − wv,wu − uw〉.

Then δ1 = δ2 = δ3 = δ4 = δ8 = 1 and δ5 = δ6 = δ7 = −1. Now, in F3[x], we have

x8 − 1 = (x + 1)(x + 2)(x2 + 1)(x2 + x + 2)(x2 + 2x + 2) = g1g2g3g4g5;
x8 + 1 = (x4 + x2 + 2)(x4 + 2x2 + 2) = l1l2.

Then C1 = C2 = C3 = C4 = C8 = 〈g3g4〉 = 〈x4 + x3 + x + 2〉 is cyclic and C5 =
C6 = C7 = 〈l2〉 = 〈x4 + 2x2 + 2〉 is a negacyclic code of length 8 over F3.
Therefore, C = 〈(ξ1 + ξ2 + ξ3 + ξ4 + ξ8)g3g4 + (ξ5 + ξ6 + ξ7)l2〉 = 〈x4 + 2(u +
v + w + uv + vw + uw)(x3 + x2 + x) + x3 + x + 2〉 is a λ-constacyclic code of
length 8 over R. Further, by Corollary 26.3, φ(C) is a [64, 32, 3] linear code over F3.

Example 26.2 Let λ = (1 + u + v) be a unit in

R = F5[u, v,w]/〈u2 − 1, v2 − 1,w2 − 1, uv − vu, vw − wv,wu − uw〉.
Now,

(x11 − 1) = (x + 4)(x5 + 2x4 + 4x3 + x2 + x + 4)(x5 + 4x4 + 4x3 + x2 + 3x + 4)

= g1g2g3 ∈ F5[x],
(x11 + 1) = (x + 1)(x5 + x4 + 4x3 + 4x2 + 3x + 1)(x5 + 3x4 + 4x3 + 4x2 + x + 1)

= g′
1g

′
2g

′
3 ∈ F5[x],

(x11 − 3) = (x + 3)(x5 + 3x4 + x3 + 3x2 + 3x + 3)(x5 + 4x4 + x3 + 3x2 + x + 3)

= g′′
1 g

′′
2 g

′′
3 ∈ F5[x].
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Then C1 = C2 = 〈g′′
2 〉 = 〈x5 + 3x4 + x3 + 3x2 + 3x + 3〉 is a 3-constacyclic code,

C6 = C8 = 〈g′
2〉 = 〈x5 + x4 + 4x3 + 4x2 + 3x + 1〉 is a negacyclic code and C3 =

C4 = C5 = C7 = 〈g2〉 = 〈x5 + 2x4 + 4x3 + x2 + x + 4〉 is a cyclic code of length
11 over F5. Therefore, C = 〈(ξ1 + ξ2)g′′

2 + (ξ3 + ξ4 + ξ5 + ξ7)g2 + (ξ6 + ξ8)g′
2〉 =

〈x5 + (2 + 3u + 3v)x4 + (2 + 3u + 3v + 3uv)x3 + (1 + u + v)x2 + (2 + uv)x +
3 + 3u + 3v + 4uv〉 is a (1 + u + v)-constacyclic code of length 11 over R. Hence,
by Corollary 26.3, φ(C) is a [88, 48, 5] linear code over F5.

26.6 Conclusion

In this article, we investigate the structure of constacyclic and skew constacyclic
codes over R. We obtain the necessary and sufficient conditions for self-dual λ-
constacyclic codes over R. Along with other results, it is shown that constacyclic and
skew constacyclic codes of an arbitrary length over R are principally generated. This
work provides the open problem to obtain the quantum codes using λ-constacyclic
codes over R in the future.
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Chapter 27
Wallis Type Formula and a Few Versions
of the Number π in q-Calculus

Sladjana D. Marinković, Predrag M. Rajković, and Sergei Silvestrov

Abstract In this paper, we expose a geometrical interpretation of the q-Wallis for-
mula. We construct plane regions which consist of rectangles whose edges’ lengths
are directly connected with factors in this formula. These regions are bounded by
quarters of inside and outside circles from which we get estimates and conclusions
about the number πq .

Keywords q-Wallis formula · q-number · q-gamma function.

MSC 2020 Classification 33D05

27.1 Introduction

John Wallis [17] discovered the famous formula

π

2
=

∞∏

k=1

(2k)2

(2k − 1)(2k + 1)
, (27.1)

in 1655 by the relation between the integral
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∫ 1

0

√
1 − x2 dx,

and the area of the quarter of the unit circle 0 ≤ x ≤ 1, 0 ≤ y ≤ √
1 − x2. Here, he

applied an original method of interpolation. This formula is directly connected with
Brouncker’s continued fraction (see [12]):

4

π
= 1 + 12

2 + 32

2 + 52

2 + . . .

= 1 + K∞
n=1

(2n − 1)2

2
.

Later, Euler has discovered another proof of Wallis formula (27.1) based on the
product development

sin x

x
=

∞∏

k=1

(
1 − x2

k2π2

)
, (27.2)

for x = π/2. Also, Wallis formula is often connected with the evaluation of the
definite integrals ∫ π/2

0
sinn x dx (n ∈ N).

Based on simple formula which L. Euler wrote in 1738:

π

4
= arctan

1

2
+ arctan

1

3
,

and the property of the Fibonacci numbers

Fn−1Fn+1 − F2
n = (−1)n ⇔ arctan F−1

2n+1 = arctan F−1
2n − arctan F−1

2n+2,

D.H. Lehmer [14] has constructed the infinite expression for π in terms of the
Fibonacci numbers:

π = 4
∞∑

k=1

arctan

(
1

F2k+1

)
.

K. Hayashi [9] gave one obvious geometrical proof in 1989. J. Sondow and H. Yi
[15] used this idea to construct new infinite products of Wallis and Catalan type for
π and e.

Wallis formula inspired a few mathematicians to avoid integration and prove it
by the trigonometric identities as in [20], or by the special geometrical figures as in
[18].

Here, we will use the previous idea to justify an approach to the number π in
q-calculus.
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27.2 On q-numbers

Throughout the whole paper, it will be assumed that q ∈ (0, 1). The q-number [a]q
defined in [7] is

[a]q := 1 − qa

1 − q
, a ∈ R. (27.3)

The factorial of a positive integer number [n]q is given by

[0]q ! := 1, [n]q ! := [n]q [n − 1]q · · · [1]q , (n ∈ N). (27.4)

In particular,
lim

q→1−[a]q = a, lim
q→1−[n]q ! = n!.

Let us recall that, for a ∈ R, �a	 denotes the largest integer number less or equal to
a and 
a� is the smallest integer number greater or equal to a.

Lemma 27.1 For any n ∈ N and 0 < q < 1, the following minimal and maximal
relations hold:

min
i∈{0,1,...,n}

([i]q + [n − i]q
) = [n]q , (27.5)

max
i∈{0,1,...,n}

([i]q + [n − i]q
) = [�n/2	]q + [
n/2�]q . (27.6)

Proof Notice that

[i]q + [n − i]q = 1 − qi

1 − q
+ 1 − qn−i

1 − q
= 2 − qi − qn−i

1 − q
.

Let us consider the function

f (x) = 2 − qx − qn−x , x ∈ [0, n].

Hence f (x) ≥ 0 on [0, n], and f (0) = f (n) = 1 − qn . Its derivatives are

f ′(x) = (qn−x − qx ) log q, f ′′(x) = −(qx + qn−x )(log q)2.

Since f ′′(x) < 0, the function f (x) is the concave on R. Hence

min
0≤x≤n

f (x) = f (0) = f (n),

wherefrom the relation (27.5) follows.
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Notice that the equation f ′(x) = 0 has the unique solution x = n/2. Since f (x)
is a concave function on [0, n] then we can conclude that

max
0≤x≤n

f (x) = f (n/2).

If n is an even number, then n/2 ∈ N and it confirms (27.6). But, if n is an odd number,
then n/2 /∈ N, the closest integer numbers are �n/2	 and 
n/2�. Since f (n − x) =
f (x) for all x ∈ (0, n), taking the discrete values x = i ∈ {0, 1, . . . , n}, we get the
conclusion (27.6). �

Lemma 27.2 The following estimates are true:

0 <
[n − 1]q [n + 1]q

[n]2q
< 1, 1 <

[n + 1]q
[n]q (0 < q < 1; n ∈ N). (27.7)

Proof Since 0 ≤ (1 − q)2 = 1 + q2 − 2q, i.e., −(1 + q2) ≤ −2q, we have

[n − 1]q [n + 1]q
[n]2q

= (1 − qn−1)(1 − qn+1)

(1 − qn)2
= 1 + q2n − qn−1(1 + q2)

1 + q2n − 2qn
,

wherefrom the first statement follows. The second relation follows immediately from
0 < qn+1 < qn , i.e., 0 < 1 − qn < 1 − qn+1.

27.3 On the q-Wallis Formula

Here, we will consider a q-analog of the number π defined by

π(q) = (1 + q)

∞∏

k=1

[2k]2q
[2k − 1]q [2k + 1]q . (27.8)

Let us denote by

πn(q) = (1 + q)Wn(q), where Wn(q) =
n∏

k=1

[2k]2q
[2k − 1]q [2k + 1]q . (27.9)

Lemma 27.3 The sequence {Wn(q)} is monotonically increasing, i.e.,

Wn(q) ≤ Wn+1(q) (n ∈ N). (27.10)

Proof According to definition (27.9), obviouslyWn(q) > 0 for every q ∈ (0, 1) and
n ∈ N, and
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Wn(q) = [2n]2q
[2n − 1]q [2n + 1]q Wn−1(q) ⇔ 0 <

Wn−1(q)

Wn(q)
= [2n − 1]q [2n + 1]q

[2n]2q
< 1.

The last inequalities follow from the Lemma 2 and relation (27.7). �

The definition (27.8) is slightly different from the Gosper’s q-version of the num-
ber π , here denoted with π(G)(q), given by (see [8] or [16])

π(G)(q) = lim
n↑∞ π(G)

n (q), where π(G)
n (q) = 4

1 − q1/2

q1/4
· (q2; q2)2n

(q; q2)2n
. (27.11)

These definitions are related by

π(G)
n (q) = 4(1 − q2n+1)

q1/4(1 + q1/2)(1 + q)
πn(q).

They both converge to the number π :

lim
q→1

lim
n→∞ π(G)

n (q) = lim
q→1

lim
n→∞ πn(q) = π.

Remark 27.1 Although the values of {πn(q)} and {π(G)
n (q)} are very close asymp-

totically, their expressions have influence in their numerical computing. Their values,
computed in high precision for n = 10000 by Wolfram Mathematica, are shown in
the Table27.1.

Table 27.1 Values for {πn(q)} and {π(G)
n (q)}

q π10000(q) π
(G)
10000(q)

0.1 1.20008 5.89586

0.5 2.02122 3.75473

0.9 2.90827 3.22582

0.99 3.11805 3.1495

0.999 3.13924 3.14238

Let us introduce the additional sequence {Sn(q)} by

S0(q) = 0, S1(q) = 1, Sn(q) = [2n − 1]q
[2n − 2]q Sn−1(q) (n ≥ 2), (27.12)

which is a monotonically increasing sequence. Also, consider the sequences {Fn(q)}
given by
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F1(q) = [2]q , Fn(q) = [2n + 1]q
[2n]q Wn(q) (n ≥ 2). (27.13)

Lemma 27.4 The sequences Wn(q) and Fn(q) can be expressed via {Sn(q)} as

Wn(q) = [2n + 1]q
S2n+1(q)

, Fn(q) = [2n]q
S2n (q)

. (27.14)

Lemma 27.5 The sequence {Fn(q)} is monotonically decreasing, and related with
{Wn(q)} by

Wn(q) ≤ Wn+1(q) ≤ Fn+1(q) ≤ Fn(q) (n ∈ N). (27.15)

Proof According to definition (27.13), we can derive the recurrence relation

Fn(q) = [2n]q [2n − 2]q
[2n − 1]2q

Fn−1(q).

The decreasing property follows from the Lemma 27.2 and relation (27.7). The last
inequalities follow from the obvious relation [2n + 1]q > [2n]q . �
Lemma 27.6 The sequence Si (q) has the following bounds:

[2i − 1]q
Wn−1(q)

≤ S2i (q) ≤ [2i]q
Fn(q)

(1 ≤ i ≤ n). (27.16)

Proof Since i ≤ n − 1, then Wi (q) ≤ Wn−1(q), wherefrom

[2i − 1]q
S2i (q)

= Wi (q) < Wn−1(q) ⇒ S2i (q) >
[2i − 1]q
Wn−1(q)

.

Similarly, for i ≤ n, then Fi (q) > Fn(q), wherefrom

Fi (q) = [2i]q
S2i (q)

> Fn(q) ⇒ S2i (q) <
[2i]q
Fn(q)

.

�
Let the sequence {an(q)} be defined by

an(q) = Sn+1(q) − Sn(q) =
( [2n + 1]q

[2n]q − 1

)
Sn(q) (n ∈ N). (27.17)

Lemma 27.7 The sequence {an(q)} has the properties:

an+1(q) = q2 [2n + 1]q
[2n + 2]2q

an(q),
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and

[2i + 2]qai+1(q)a j (q) + [2 j + 2]qai (q)a j+1(q)

= q2
([2i + 1]q + [2 j + 1]q

)
ai (q)a j (q).

27.4 The Geometrical Interpretation

We will consider the rectangles with horizontal and vertical sides (i.e., parallel to
the x-axis and y-axis) whose diagonal endpoints are Ti, j (q) and Ti+1, j+1(q), where
Ti, j (q) = (Si (q), Sj (q)):

Ri, j (q) = Rectangle
[
Ti, j (q), Ti+1, j+1(q)

]
.

Since they have the length ai (q) and width a j (q), they cover the area

�Ri, j (q) = ai (q) · a j (q).

Now, in the nth step, we consider the closed convex polygonal figure

Pn(q) =
⋃

i+ j≤n

Ri, j (q).

Example 27.1 According to definition, the rectangle R0,0 is the unit square. Also
Ri,i are the squares with edge lengths equal to ai (q):

a0(q) = 1, a1(q) = q2

1 + q
, a2(q) = q4(1 + q + q2)

(1 + q)2(1 + q2)
, . . .

But, when i �= j , we have rectangles of different lengths and widths. For example,
R0,1 has the length 1 andwidth a1(q). The plane surfaces P1(q), P2(q) and P9(q) and
quarter circles for the same q = 0.8 can be seen on Fig. 27.1a–c. Furthermore, the
plane surfaces P3(q) and quarter circles for different q are shown on the Fig. 27.2a–c.

Remark 27.2 The quarter-circle of radius r = Sn+1(q) does not give a lower bound
for q ∈ (q∗, 1], where q∗ ≈ 0.9. For n = 2, this can be seen on Fig. 27.3.

Remark 27.3 When q → 0, the region Pn(q) almost stays the square R0,0. But,
when q → 1, the region Pn(q) approaches to the quarter circle. It can be seen on
Fig. 27.4.

The boundary rectangles of the region Pn(q) are the rectangles which form the
nth layer Ln = {Rn,0, Rn−1,1, . . . , R0,n}. The outer corners of Pn(q) are vertices on
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Fig. 27.1 The plane surfaces P1(q), P2(q) and P9(q) and quarter circles for q = 0.8
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Fig. 27.2 The plane surfaces P3(q) and quarter circles for q = 0.5(0.2)0.9

Fig. 27.3 The plane surface
P2(q) and quarter circle for
q = 1
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(a) (b)

Fig. 27.4 The plane surface P5(q) for (a): q = 0.1 and for (b): q = 0.999

upper horizontal sides of the rectangles in Ln . The others are the inner corners. The
radius of the inner quarter disc is

rn(q) = min
0≤i, j≤n
i+ j=n

OT i, j = min
0≤i, j≤n
i+ j=n

√
S2i (q) + S2j (q).

Obviously,
OT n,0 = OT 0,n = Sn(q).

Since the inner corners of Pn(q) satisfy (see Lemma 27.6)

S2i (q) + S2n−i (q) ≥ [2i − 1]q + [2(n − i) − 1]q
Wn−1

(i = 1, 2, . . . , n − 1).

Hence we have that

S2i (q) + S2n−i (q) ≥ min
1≤ j≤n−1

[ j]q + [(2n − 2) − j]q
Wn−1

= [2n − 2]q
Wn−1

.

Finally, by the relation (27.14), we find

r0(q) = 1, r1(q) = √
2, rn(q) =

√
[2n − 2]q
[2n − 1]q Sn(q) (n = 2, 3, . . .).

The radius of the disc centered at the origin which covers the region Pn(q) is
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ρn(q) = max
0≤i, j≤n+1
i+ j=n+1

OT i, j .

The distance of a point Ti, j to the origin has the following upper bound

OT i, j =
√
S2i (q) + S2j (q) ≤

√
[2i]q
Fn(q)

+ [2 j]q
Fn(q)

≤
√

[2i]q + [2 j]q
Fn(q)

.

Since 2i + 2 j = 2(n + 1), according to Lemma 27.1, we have

ρn(q) = max
0≤i, j≤n+1
i+ j=n+1

OT i, j =
√
2[n + 1]q
Fn(q)

.

Using the connection between Fn(q) and Sn(q) given in Lemma 27.3, we can write

ρn(q) =
√
2[n + 1]q

[2n]q Sn(q).

Therefore Pn(q) contains a quarter circle of radius rn(q) and is contained in a quarter
circle of radius ρn(q):

π

4
r2n (q) ≤ �Pn(q) ≤ π

4
ρ2
n (q).

Theorem 27.1 The following estimate is true for any q ∈ (0, 1):

π

4

[2n − 2]q
[2n − 1]q ≤ �Pn(q)

S2n (q)
≤ π

2

[n + 1]q
[2n]q . (27.18)

Reminding on the formulas (27.9) and (27.14), we conclude that the following the-
orem is proven.

Theorem 27.2 The following estimate is true for any q ∈ (0, 1):

[2n − 2]q [2n + 1]q
2[2n − 1]q π ≤ �Pn(q)πn−1(q) ≤ [n + 1]q [2n + 1]q

[2n]q π. (27.19)

We can write (27.19) in the form

[2n − 2]q [2n + 1]q
2[2n − 1]q �Pn(q)

π ≤ πn−1(q) ≤ [n + 1]q [2n + 1]q
[2n]q �Pn(q)

π. (27.20)
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Since lim
q→1−

�Pn(q) = n, we have

(n − 1)(2n + 1)

n(2n − 1)
π ≤ πn−1(1) ≤ (n + 1)(2n + 1)

2n2
π, (27.21)

wherefrom
lim
n→∞ lim

q→1
πn(q) = π. (27.22)

Vice versa, from (27.19), we can get

π

2(1 − q)
≤ lim

n→∞ �Pn(q)πn−1(q) ≤ π

(1 − q)
.

Hence
π

2
≤ lim

q→1
(1 − q)π(q) lim

n→∞ �Pn(q) ≤ π. (27.23)

Remark 27.4 Notice that the formulas (27.22) and (27.23) do not lead to the same
conclusion. This is due to the fact that the order of limits is crucially important. For
example,

lim
n→∞ lim

q→1

[n]q
[2n]q = 1

2
, lim

q→1
lim
n→∞

[n]q
[2n]q = 1 (0 < q < 1, n ∈ N).

27.5 The Number πq from the q-gamma Function

The important role in q-calculus has q-Pochhammer symbol defined by

(a; q)0 = 1, (a; q)n =
n−1∏

i=0

(1 − aqi )
(
n ∈ N ∪ {+∞}). (27.24)

(a; q)−n =
n∏

i=1

1

1 − aq−i
(a �= q, q2, . . . qn; n ∈ N ∪ {+∞}). (27.25)

(a; q)λ = (a; q)∞
(aqλ; q)∞

(|q| < 1, λ ∈ C) . (27.26)

J. Thomae 1869. and F. H. Jackson 1904 defined q-gamma function as

�q(z) = (q; q)z−1 (1 − q)1−z = (q; q)∞
(qz; q)∞

(1 − q)1−z (0 < q < 1, z /∈ Z
−).

(27.27)
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The q-gamma function holds on the following properties:

�q(z + 1) = [z]q �q(z) (z ∈ C \ Z−), �q(n + 1) = [n]q ! (n ∈ N0).

(27.28)
In special,

lim
q→1− �q(z) = �(z).

The exact q-Gauss multiplication formula can be find in [7] or [5]:

�q(nx)
n−1∏

k=1

�qn

(
k

n

)
= [n]nx−1

q

n−1∏

k=0

�qn

(
x + k

n

)
(x > 0; n ∈ N). (27.29)

Equivalently, putting z = nx , it can be written in the form

�q(z)
n−1∏

k=1

�qn

(
k

n

)
= [n]z−1

q

n−1∏

k=0

�qn

(
z + k

n

)
(z > 0; n ∈ N). (27.30)

The following theorem is formulated by W.S. Chung, T. Kim and T. Mansour in
the paper [2] and proven, but only for x = N , where N is an integer number. Here
are two versions of the complete proof.

Theorem 27.3 For 0 < |q| < 1 and x ∈ R the following is valid:

�q(x) = lim
n→+∞

[n]q ![n]xq
[x]q [x + 1]q · · · [x + n]q (x /∈ Z

−).

Proof According to the definitions (27.3) and (27.4), we have

lim
n→+∞

[n]q ![n]xq
[x]q [x + 1]q · · · [x + n]q = lim

n→+∞

(
1 − qn

1 − q

)x n∏
j=1

1 − q j

1 − q

n∏
j=0

1 − qx+ j

1 − q

= lim
n→+∞

(1 − qn)x

(1 − q)x

1 − q

1 − qn+1

n∏
j=0

1 − q1+ j

1 − q

n∏
j=0

1 − qx+ j

1 − q

= 1

(1 − q)x−1 lim
n→+∞

⎛

⎝(1 − qn)x
1

1 − qn+1

n∏

j=0

1 − q1+ j

1 − qx+ j

⎞

⎠ .

Since |q| < 1, then

lim
n→+∞(1 − qn)x = lim

n→+∞(1 − qn+1) = 1,
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and

lim
n→+∞

n∏

j=0

1 − q1+ j

1 − qx+ j
=

∞∏

j=0

1 − q1+ j

1 − qx+ j
= (q; q)∞

(qx ; q)∞
= (q; q)x−1.

Therefore, the limiting value becomes

lim
n→+∞

[n]q ![n]xq
[x]q [x + 1]q · · · [x + n]q = (1 − q)1−x (q; q)x−1 = �q(x).

Proof (The second proof). Another proof is based on estimation [13]:

�q(x) = a(q)(1 − q)1/2−x eθ(x,q)
qx

(1−q)(1−qx )

where
a(q) = (q; q)∞(1 − q)1/2; 0 < θ(x, q) < 1.

Hence

�q(n + 1)

�q(x + n + 1)
= a(q)(1 − q)1/2−(n+1)e

θ(n+1,q)
qn+1

(1−q)(1−qn+1)

a(q)(1 − q)1/2−(x+n+1)e
θ(x+n+1,q)

qx+n+1

(1−q)(1−qx+n+1)

,

i.e.,

�q(n + 1)

�q(x + n + 1)
= (1 − q)xe

θ(n+1,q)
qn+1

(1−q)(1−qn+1)
−θ(x+n+1,q)

qx+n+1

(1−q)(1−qx+n+1) ,

wherefrom

lim
n→+∞

�q(n + 1)

�q(x + n + 1)
= (1 − q)x .

�

The exact q-Gauss multiplication formula can be found in [7] or [5]:

�q(nx)
n−1∏

k=1

�qn

(
k

n

)
= [n]nx−1

q

n−1∏

k=0

�qn

(
x + k

n

)
(x > 0; n ∈ N). (27.31)

Substituting z = nx , it can be written in the form

�q(z)
n−1∏

k=1

�qn

(
k

n

)
= [n]z−1

q

n−1∏

k=0

�qn

(
z + k

n

)
(z > 0; n ∈ N). (27.32)
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Especially, for n = 2, it is

�q(z)�q2

(
1

2

)
= [2]z−1

q �q2

( z
2

)
�q2

(
z + 1

2

)
. (27.33)

Equivalently,

�√
q(2x)�q

(
1

2

)
= [2]2x−1√

q �q (x) �q

(
x + 1

2

)
. (27.34)

Let

eq(z) =
∞∑

n=0

zn

(q; q)n
= 1

(z; q)∞
(|z| < 1), (27.35)

and

Eq(z) =
∞∑

n=0

q(n2)

(q; q)n
zn = (−z; q)∞ (z ∈ R). (27.36)

It is known that �q(z) can be expressed by q-integral [11]

∫ b

0
f (x) dq x = (1 − q)

∞∑

n=0

f (bqn)qn, (27.37)

in the next manner:

�q(z) =
∫ 1

1−q

0
xz−1Eq

(−q(1 − q)x
)
dq x . (27.38)

The following theorem is inspired with the theorem [2] which has an error in formu-
lation and proof. That is why we will repeat in the correct manner.

Theorem 27.4 It is valid

�q(1/2) = √
1 − q eq

(√
q
)
Eq(−q). (27.39)

Proof From the definition (27.27) of the q-Gamma function, for z = 1/2, we have

�q(1/2) = (q; q)∞
(q1/2; q)∞

(1 − q)1/2 = √
1 − q

1

(
√
q; q)∞

(q; q)∞.

Here we recognize the functions eq end Eq from (27.35) and (27.36).

Remark 27.5 Some authors use notation

êq(z) = eq
(
(1 − q)z

)
, Êq(z) = Eq

(
(1 − q)z

)
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The previous theorem gets the form

�q(1/2) = √
1 − q êq

( √
q

1 − q

)
Êq

( −q

1 − q

)
.

The authors have proved in [2] that

�q(x) = 1

[x]q
∞∏

k=1

[
1 + 1

k

]x

qk

[
1 + x

k

]−1

qk
.

It was used to define q-version of the number π :

π̃q = �2
q(1/2) = [2]√q ·

∞∏

k=1

[2k]2√q

[2k − 1]√q [2k + 1]√q
. (27.40)

This version of q-number π is directly connected with the Gosper’s version by

π̃q = q1/8 (1 + q1/2)(1 + q1/4)

4
π

(G)

q1/2 . (27.41)

Remark 27.6 At the beginning of page 1158 in [2], there is wrong connection
between q-sine function and infinite product. Namely, Euler’s infinite product func-
tion for the sine function (27.2) which can be rewritten in the form

sin(π z) = π z
∞∏

k=1

(
1 + z

k

) (
1 − z

k

)
, (27.42)

was directly rewritten to q-function as

s̃inq(π̃q x) = π̃q [x]q
∞∏

k=1

[
1 + x

k

]

qk

[
1 − x

k

]

qk
(27.43)

Really, s̃inq(π̃q/2) = 1 and s̃inq(nπ̃q) = 0 since the second factor becomes the zero
when x = k = n. Of course, it is valid

�q(z)�q(1 − z) = π̃q

s̃inq(π̃q z)
, (27.44)

But, the function ŝinq(π̃q x) is a new version of q-sine function and it is not the same
as

ŝinq(x) = êi x − ê−i x

2i
(i2 = −1).
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Equivalent definition of the gamma function introduced by Weierstrass is valid
for all complex numbers z except the non-positive integers:

�(x) = 1

x eγ x

∞∏

k=1

ex/k

1 + x
k

,

where

γ = lim
n→∞

(
n∑

k=1

1

k
− ln n

)
≈ 0.577216.

Hence we can introduce

γq = lim
n→∞

(
n∑

k=1

1

[k]q − Fq(n)

)
,

with

Fq(n) = ϕ

(
n

n − 1
; q

)
, where ϕ(z; q) = −

∞∑

k=1

qk(1 − q)

1 − qk
(z; q)−k .

Here, (z; q)−k should be computed by the definition (27.25). In the limit case, we
get

lim
q�1

(z; q)−k = (1 − z)−k, lim
q�1

ϕ(z; q) = ln
z

z − 1
(z > 1),

and, finally,
lim
q�1

Fq(n) = ln n.

Remark 27.7 The authors of the paper [2], suggest a new version of the q-Gamma
function

�̂q(x) = 1

[x]qeγq x

∞∏

k=1

ex/[k]q[
1 + x

k

]
qk

,

where

γ̃q = lim
n→∞

(
n∑

k=1

1

[k]q − ln[n]q
)

.

It is really
lim
q�1

�̂q(x) = �(x), lim
q�1

γ̃q = γ.
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But, it should be considered is it justified and useful, especially since the other
conclusions on this page about �̂q(x + 1) and γ̃q are wrong. Namely, the logarithm
of the should be

ln �̂q(x + 1) = lim
n→+∞

(
ln[n]q ! + x ln[n]q −

n∑

k=1

ln[x + k]q
)

.

Also, they use the series
∞∑

k=1

1 − q + qk ln q

1 − qk
,

as a convergent series. But, it is a divergent series since its general member is tending
to 1 − q for q ∈ (0, 1).

27.6 Other Versions of πq

In the previous sections we deal with the Gosper’s analog of π in the q-calculus,
denoted by π(G)(q).

The second consideration which was implicitly leading to definition q-analogy of
number π we noticed in the paper of R. Diaz and E. Pariguan [3]. Starting from the
well known integral ∫ ∞

−∞
e−x2/2 dx = √

2π,

they have considered

∫ ν

−ν

Eq2

(−(qx)2/[2]q
)
dq x = c(q)

(
ν = 1√

1 − q

)
,

where

Eq2

(−(qx)2/[2]q
) =

∞∑

n=0

q(n2)
xn

[n]q ! .

Really, they found that

lim
q→1− c(q) = √

2π ⇔ 1

2

(
lim

q→1− c(q)

)2

= π.

wherefrom it is reasonable to take

π(D)
q = 1

2
c2(q).
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Fig. 27.5 The q-sine functions: full blue curve s̃inq (x) and dashed red curve ŝinq (x) for q = 0.9

as q-analog of π . Hence

π(D)
q = 2(1 − q)

( ∞∑

m=0

(−1)mqm(m+1)

(1 − q2m+1)(1 − q2)m[m]q2 !

)2

. (27.45)

This analog of π holds on the property of cognizable values of the moments

1

2
√

π
(D)
q

∫ ν

−ν

xmEq2

(−(qx)2

[2]q
)
dq x =

{ [2n − 1]q !!, m = 2n,

0, m = 2n − 1,
(n ∈ N).

(27.46)
which are q-analogs of those in the standard calculus.

27.7 Conclusion

In this paper, we presented an analog of π via the q-Wallis formula. Also, we gave a
geometrical interpretation of it. Consideration of the areas of the introduced surfaces
gave a few estimates and the number π in the limit case (Fig. 27.5).
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13. Koepf, W., Rajković, P.M., Marinković, S.D.: On a connection between formulas about q-

gamma functions. J. Nonlinear Math. Phys. 23(3), 343–350 (2016)
14. Lehmer, D.H.: Problem 3801. Am. Math. Mon. 43(9), 580–581 (1936)
15. Sondow, J., Yi, H.: New Wallis- and Catalan-Type Infinite Products for π , e, and

√
2 + √

2.
Am. Math. Mon. 117(10), 912–917 (2010)

16. Suslov, S.K.: Asymptotics of zeros of basic sine and cosine functions. J. Approx. Theory. 121,
292–335 (2003)

17. Wallis, J.: Computation of by successive interpolations. In: Struik, D.J. (ed.) Arithmetica Infin-
itorum, Oxford, 1655; reprinted in A Source Book in Mathematics, 1200–1800, Princeton
University Press, Princeton 244–253 (1986)

18. Wastlund, J.: An elementary proof of the Wallis product formula for π . Am. Math. Mon.
114(10), 914–917 (2007)

19. Weisstein, E.W.: "q-Pi", from MathWorld-A Wolfram Web Resource. https://mathworld.
wolfram.com/q-Pi.html

20. Yaglom, A.M., Yaglom, I.M.: An elementary derivation of the formulas of Wallis, Leibniz and
Euler for the number π (in Russian), Uspechi matematiceskich nauk (N.S.) 57, 181–187 (1953)

https://mathworld.wolfram.com/q-Pi.html
https://mathworld.wolfram.com/q-Pi.html


Chapter 28
On (λ, μ, γ )-Derivations of BiHom-Lie
Algebras

Nejib Saadaoui and Sergei Silvestrov

Abstract In this paper, we generalize the results about generalized derivations of Lie
algebras to the case of BiHom-Lie algebras. In particular we give the classification
of generalized derivations of Heisenberg BiHom-Lie algebras. The definition of the
generalized derivation depends on some parameters (λ, μ, γ ) ∈ C

3. In particular for
(λ, μ, γ ) = (1, 1, 1), we obtain classical concept of derivation ofBiHom-Lie algebra
and for (λ, μ, γ ) = (1, 1, 0) we obtain the centroid of BiHom-Lie algebra. We give
classifications of 2-dimensional BiHom-Lie algebra, centroids and derivations of
2-dimensional BiHom-Lie algebras.

Keywords BiHom-Lie algebra · BiHom-Lie derivation · Derivation · Centroid
MSC2020 Classification 17D30 · 17B61

28.1 Introduction

The investigations of various quantum deformations or q-deformations of Lie alge-
bras began a period of rapid expansion in 1980’s stimulated by introduction of
quantum groups motivated by applications to the quantum Yang-Baxter equation,
quantum inverse scattering methods and constructions of the quantum deformations
of universal enveloping algebras of semi-simple Lie algebras. Various q-deformed
Lie algebras have appeared in physical contexts such as string theory, vertex mod-
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context of deformations of infinite-dimensional algebras, primarily the Heisenberg
algebras, oscillator algebras andWitt andVirasoro algebras. In [8, 37–40, 43, 44, 46,
58, 59, 75–77], it was in particular discovered that in these q-deformations of Witt
and Visaroro algebras and some related algebras, some interesting q-deformations
of Jacobi identities, extending Jacobi identity for Lie algebras, are satisfied. This has
been one of the initial motivations for the development of general quasi-deformations
and discretizations of Lie algebras of vector fields using more general σ -derivations
(twisted derivations) in [56].

Hom-Lie algebras and more general quasi-Hom-Lie algebras were introduced
first by Hartwig, Larsson and Silvestrov [56], where the general quasi-deformations
and discretizations of Lie algebras of vector fields using more general σ -derivations
(twisted derivations) and a general method for construction of deformations of Witt
and Virasoro type algebras based on twisted derivations have been developed, ini-
tially motivated by the q-deformed Jacobi identities observed for the q-deformed
algebras in physics, along with q-deformed versions of homological algebra and
discrete modifications of differential calculi. Hom-Lie algebras, Hom-Lie super-
algebras, Hom-Lie color algebras and more general quasi-Lie algebras and color
quasi-Lie algebras where introduced first in [70, 71, 98]. Quasi-Lie algebras and
color quasi-Lie algebras encompass within the same algebraic framework the quasi-
deformations and discretizations of Lie algebras of vector fields by σ -derivations
obeying twisted Leibniz rule, and the well-known generalizations of Lie algebras
such as color Lie algebras, the natural generalizations of Lie algebras and Lie super-
algebras. In quasi-Lie algebras, the skew-symmetry and the Jacobi identity are twisted
by deforming twisting linear maps, with the Jacobi identity in quasi-Lie and quasi-
Hom-Lie algebras in general containing six twisted triple bracket terms. In Hom-Lie
algebras, the bilinear product satisfies the non-twisted skew-symmetry property as
in Lie algebras, and the Hom-Lie algebras Jacobi identity has three terms twisted by
a single linear map, reducing to the Lie algebras Jacobi identity when the twisting
linear map is the identity map. Hom-Lie admissible algebras have been considered
first in [83], where in particular the Hom-associative algebras have been introduced
and shown to be Hom-Lie admissible, that is leading to Hom-Lie algebras using
commutator map as new product, and in this sense constituting a natural gener-
alization of associative algebras as Lie admissible algebras. Since the pioneering
works [56, 69–72, 83], Hom-algebra structures expanded into a popular area with
increasing number of publications in various directions. Hom-algebra structures of
a given type include their classical counterparts and open broad possibilities for
deformations, Hom-algebra extensions of cohomological structures and represen-
tations, formal deformations of Hom-associative and Hom-Lie algebras, Hom-Lie
admissible Hom-coalgebras, Hom-coalgebras, Hom-Hopf algebras [10, 34, 48, 69,
73, 84–86, 94, 95, 102, 104]. Hom-Lie algebras, Hom-Lie superalgebras and color
Hom-Lie algebras and their n-ary generalizations have been further investigated in
various aspects for example in [1, 7, 10–23, 26–29, 32–34, 36, 55, 65, 67, 68,
81–88, 91, 92, 94–100, 102–106, 108]. In [35], Hom-algebras has been considered
from a category theory point of view, constructing a category on which algebras
would be Hom-algebras. A generalization of this approach led to the discovery of
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BiHom-algebras in [54], called BiHom-algebras because the defining identities are
twisted by two morphisms instead of only one for Hom-algebras. BiHom-Frobenius
algebras and double constructions have been investigated in [57].

Derivations and generalized derivations of different algebraic structures are an
important subject of study in algebra and diverse areas. They appear in many fields
of Mathematics and Physics. In particular, they appear in representation theory
and cohomology theory among other areas. They have various applications relat-
ing algebra to geometry and allow the construction of new algebraic structures.
There are many generalizations of derivations, for example, Leibniz derivations and
δ-derivations of prime Lie and Malcev algebras and related n-ary algebras structures
[45, 49–52, 63]. The properties and structure of generalized derivations algebras
of a Lie algebra and their subalgebras and quasi-derivation algebras were system-
atically studied in [74], where it was proved for example that the quasi-derivation
algebra of a Lie algebra can be embedded into the derivation algebra of a larger
Lie algebra. Derivations and generalized derivations of n-ary algebras were con-
sidered in [90, 101] and it was demonstrated substantial differences in structures
and properties of derivations on Lie algebras and on n-ary Lie algebras for n > 2.
Generalized derivations of Lie superalgebras and Hom-Leibniz algebras have been
considered in [107, 111]. Generalized derivations of Lie color algebras and n-ary
(color) algebras have been studied in [41, 60–62, 64]. Generalized derivations of
Lie triple systems have been considered in [109]. Generalized derivations of various
kinds can be viewed as a generalization of δ-derivation. Quasi-Hom-Lie and Hom-
Lie structures for σ -derivations and (σ, τ )-derivations have been considered in [48,
56, 72, 91, 92]. Graded q-differential algebras and applications to semi-commutative
Galois extensions and reduced quantum plane and q-connection were studied in [4–
6]. Generalized N -complexes coming from twisted derivations where considered in
[73].

Generalizations of derivations in connection with extensions and enveloping alge-
bras of Hom-Lie color algebras and Hom-Lie superalgebras have been considered in
[18, 19, 28, 55]. Generalized derivations of multiplicative n-ary Hom-� color alge-
bras have been studied in [31]. Derivations, L-modules, L-comodules and Hom-Lie
quasi-bialgebras have been considered in [24, 25]. In [66], constructions ofn-ary gen-
eralizations ofBiHom-Lie algebras andBiHom-associative algebras have been inves-
tigated. Generalized derivations of n-BiHom-Lie algebras have been studied in [30].
Color Hom-algebra structures associated to Rota-Baxter operators have been consid-
ered in context of Hom-dendriform color algebras in [27]. Rota-Baxter bisystems and
covariant bialgebras, Rota-Baxter cosystems, coquasitriangular mixed bialgebras,
coassociative Yang-Baxter pairs, coassociative Yang-Baxter equation and general-
izations of Rota-Baxter systems and algebras, curved O-operator systems and their
connections with (tri)dendriform systems and pre-Lie algebras have been consid-
ered in [78–80]. Generalisations of derivations are important for Hom-Gerstenhaber
algebras, Hom-Lie algebroids and Hom-Lie-Rinehart algebras and Hom-Poisson
homology [88]. It is well known that a derivation d of Lie algebra L is just a linear
mapping on L such that

d ([x, y]) = [d(x), y] + [x, d(y)] (28.1)
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for all x, y ∈ L .Therewere several non-equivalentways generalizing this definition,
for example:

1) The mapping d ∈ End(L) is called a generalized derivation of L if there exist
elements d ′, d ′′ ∈ End(L) such that,

[d(x), y] + [
x, d ′(y)

] = d ′′ ([x, y])

for all x, y ∈ L , and we call d ∈ End(L) a quasiderivation of L if there exists
d ′ ∈ End(L) such that

[d(x), y] + [x, d(y)] = d ′ ([x, y]) . (28.2)

The centroid of L denoted as �(L) is defined by

�(L) = {d ∈ End(L) | d ([x, y]) = [d(x), y] = [x, d(y)] , ∀x, y ∈ L}.

(see for example [53]).
2) Given an arbitrary δ ∈ K, a δ-derivation of a Lie algebra L is defined to be a

K-linear mapping d : L → L satisfying the identity

d ([x, y]) = δ [d(x), y] + δ [x, d(y)]

(see for example [50]). Observe that, any linear mapping in the centroid �(L) is
1
2 -derivation of L .

3) We call a linear operator d ∈ End(L) an (λ, μ, γ )-derivation of L if there exist
λ,μ, γ ∈ K such that for all x, y ∈ L

λ d ([x, y]) = μ [d(x), y] + γ [x, d(y)] .

(See for example [89]). Observe that, any linear mapping in the centroid �(L) is
a (1, 1, 0)-derivation of L .

In [94], the notion ofαk-derivation ofHom-Lie algebra, a generalization of derivation
of Lie algebras (28.1), is considered. In [110] the authors extend the definition of
type (28.1) of a generalized derivation of Lie algebras to Hom-Lie algebras. The
definition of type (28.1) is extended to the BiHom-Lie case in [2]. In this article, we
aim to discuss the version (28.2) of generalized derivations of BiHom-Lie algebras.

The paper is organized as follows. In Sect. 28.2, we recall some basic definitions
and facts needed later for considerations and results in this article. In Sect. 28.3, we
introduce (λ, μ, γ )-αkβl -derivations and show their pertinent properties. Also, we
classify the possible values of λ,μ, γ ∈ C for a space Derλ,μ,γ

αkβl (G) of (λ, μ, γ )-

αkβl -derivations of regular BiHom-Lie algebra G. The previous classification is
applied to Heisenberg BiHom-Lie algebra case. Next, we analyze each one of the fol-
lowing cases: Der δ,0,0

αkβl (G)with δ ∈ {0, 1}, Der δ,1,0
αkβl (G), Der δ,1,1

αkβl (G), Der1,1,−1
αkβl (G),
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Der0,1,−1
αkβl (G). In Sect. 28.4, we give a method to determine whether two different

2-dimensional multiplicative BiHom-Lie algebras are isomorphic or not, and then
we obtain a complete classification of 2-dimensional multiplicative BiHom-Lie alge-
bras up to isomorphism. In Sect. 28.5, we deal with the problem of description of
centroids and derivations of 2-dimensional BiHom Lie algebras. Here we provide
algorithms to find centroids and derivations by using an algebra software.

28.2 Definitions and Preliminary Results

Definition 28.1 ([42, 54]) A BiHom-Lie algebra over a field K is a 4-tuple
(L , [·, ·], α, β), where L is aK-linear space, α : L → L , β : L → L and [·, ·] : L ×
L → L are linear maps, satisfying the following conditions, for all x, y, z ∈ L:

α ◦ β = β ◦ α, (28.3)

[β(x), α(y)] = − [β(y), α(x)] (skew-symmetry) (28.4)
[
β2(x), [β(y), α(z)]] + [

β2(y), [β(z), α(x)]]

+ [
β2(z), [β(x), α(y)]] = 0 (BiHom-Jacobi identity). (28.5)

ABihom-Lie algebra is called amultiplicativeBihom-Lie algebra if for any x, y ∈ L ,

α ([x, y]) = [α(x), α(y)] and β ([x, y]) = [β(x), β(y)]. (28.6)

A BiHom-Lie algebra is called a regular BiHom-Lie algebra if α, β are bijective
maps.

In general for n-dimensional case in terms of structure constants we have:

[ei , e j ] =
n∑

s=1

Cs
i j es,

α(e j ) =
n∑

s=1

asj es and β(e j ) =
n∑

s=1

bsj es .

(28.7)

Substituting (28.7) in the skew-symmetry identity (28.4) yields

∑

1≤p,q≤n

(
bpiaq j + bpjaqi

)
Cs

pq = 0. (28.8)

Substituting (28.7) in the BiHom-Jacobi identity (28.5) yields

∑

1≤p,q,s,l,s ′≤n

(
bs ′i bq j ask + bs ′ j bqkasi + bs ′kbqias j

)
bps ′Cl

qsC
r
pl = 0. (28.9)
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Substituting (28.7) in the multiplicativity conditions (28.6) yields

∑

1≤k≤n

Ck
i j ask =

∑

1≤p,q≤n

apiaq jC
s
pq

∑

1≤k≤n

Ck
i j bsk =

∑

1≤p,q≤n

bpi bq jC
s
pq

(28.10)

for all i, j, k ∈ {1, . . . , n}.
Definition 28.2 A morphism f : (L , [·, ·], α, β) → (

L ′, [·, ·]′, α′, β ′) of BiHom-
Lie algebras is a linear map f : L → L ′ such that α′ ◦ f = f ◦ α, β ′ ◦ f = f ◦ β

and
f ([x, y]) = [ f (x), f (y)]′ , ∀x, y ∈ L . (28.11)

In particular, BiHom-Lie algebras (L , [·, ·], α, β) and
(
L ′, [·, ·]′, α′, β ′) are isomor-

phic if f is an isomorphism map.

Let (L , [·, ·], α, β) be n-dimensional BiHom-Lie algebra with ordered basis
(e1, . . . , en) and L ′ be n-dimensional vector spaces with ordered basis (e′

1, . . . , e
′
n).

Let f : L → L ′ be an isomorphism map. Let α′ = f α f −1 and β ′ = fβ f −1. We set
with respect to a basis (e′

1, . . . , e
′
n):

f (e j ) =
n∑

i=1

fi j e
′
i ,

[e′
i , e

′
j ]′ =

n∑

k=1

C
′k
i j e

′
k, i, j ∈ {1, . . . , n}.

Condition (28.11) translates to the following equation

n∑

k=1

Ck
i j fsk =

∑

1≤p,q≤n

f pi fq jC
′s
pq , i, j, s ∈ {1, . . . , n}. (28.12)

Then, if the previous condition satisfied, L ′ is a BiHom-Lie algebra isomorphic
to L .

Definition 28.3 ([2, 42]) Let (L , [·, ·], α, β) be a BiHom-Lie algebra. A subspace
h of L is called a BiHom-Lie subalgebra of (L , [·, ·], α, β) if α(h) ⊆ h, β(h) ⊆ h
and [h, h] ⊆ h. In particular, a BiHom-Lie subalgebra h is said to be an ideal of
(L , [·, ·], α, β) if [h, L] ⊆ h and [L , h] ⊆ h.

If I is an ideal of (L , [·, ·], α, β), then
(
L/I, [·, ·], α, β

)
, where [x, y] = [x, y],

for all x, y ∈ L/I and α, β : L/I → L/I naturally induced by α and β, inherits a
BiHom-Lie algebra structure, which is named quotient BiHom-Lie algebra.

In the following, we give some examples and applications of ideals of BiHom-Lie
algebras.
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Proposition 28.1 If (L , [·, ·], α, β) is a BiHom-Lie algebra, then I = ker α + ker β
is an ideal of L.

Proof By (28.3) we get α(I ) ⊆ I and β(I ) ⊆ I . By (28.6) we obtain [I, L] ⊆ I . �

Remark 28.1 If L is finite-dimensional and α (or β) is diagonalizable, then there
exist a subspaceG such that L = I ⊕ G and

(
G, [·, ·], α/G, β/G

)
is a regular BiHom-

Lie algebra.

Definition 28.4 Given a complex BiHom-Lie multiplicative algebra L , the center of
L is given by C(L) = {x ∈ L | [x, y] = 0 ∀y ∈ L}. The descending central series
of a BiHom-Lie algebra L is given by the ideals

L0 = L; Lk = [L , Lk−1], k ≥ 1.

L is called nilpotent if Ln = {0} for some n ∈ N. If Ln−1 �= {0}, then L is said to be
n-step nilpotent BiHom-Lie algebra. The derived series of a BiHom-Lie algebra L
is given by the ideals L(0) = L , L(k) = [L(k−1), L(k−1)], k ≥ 1. L is called solvable
if L(n) = {0} for some n ∈ N. If L(n−1) �= {0}, then L is said to be n-step solvable
BiHom-Lie algebra.

Remark 28.2 The center C(L) of L is not necessarily an ideal of L . If α and β are
surjective then C(L) is an ideal of L .

Definition 28.5 Let (L , [·, ·], α, β)be aBiHom-Lie algebra. (L , [·, ·], α, β) is called
a simple BiHom-Lie algebra if (L , [·, ·], α, β) has no proper ideals and is not abelian.
(L , [·, ·], α, β) is called a semisimple BiHom-Lie algebra if L is a direct sum of
certain ideals.

Proposition 28.2 ([54]) Let (L , [·, ·]′) be an ordinary Lie algebra over a fieldK and
let α, β : L → L two commuting linear maps such that α

([a, b]′) = [α(a), α(b)]′
and β

([a, b]′) = [β(a), β(b)]′, for all a, b ∈ L. Define the linear map [·, ·] : L ×
L → L, [a, b] = [α(a), β(b)]′, for all a, b ∈ L. Then L(α,β) := (L , [·, ·], α, β) is a
BiHom-Lie algebra, called the Yau twist of (L , [·, ·]′).
Example 28.1 (HeisengbergBiHom-Lie algebras) Let (X,Y, Z) abasis of aHeisen-
berg Lie algebra (h1, [·, ·]′) such that

[X,Y ]′ = Z , [X, Z ]′ = [Y, Z ]′ = 0.

Let

⎛

⎝
b 0 0
0 a

b 0
0 0 a

⎞

⎠ be the matrix of a linerar map α : h1 → h1 and let

⎛

⎝
y 0 0
0 x

y 0
0 0 x

⎞

⎠ be the

matrix of a linerar map β : h1 → h1 relative to a basis (X,Y, Z) of h1. The Yau twist
H(α,β) of h1 is called Heisengberg BiHom-Lie algebra. The bracket of Heisengberg
BiHom-Lie algebra (h1, [·, ·], α, β) is gives by [X,Y ] = b x

y Z , [Y, X ] = −y a
b Z and
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the other brother bracket are 0. Form > 1,wedefineHeisengbergBiHom-Lie algebra
(hm, [·, ·], α, β) by

[Xi ,Yi ] = bi
x

yi
Z , [Yi , Xi ] = −yi

a

bi
Z ∀i ∈ {1, . . . ,m}

and the other brackets are 0;
α = diag(b1, . . . , bm,

a

b1
, . . . ,

a

bm
, a),

β = diag(y1, . . . , ym,
x

y1
, . . . ,

x

ym
, x).

Proposition 28.3 ([93]) Let (G, [·, ·], α, β) be a regular BiHom-Lie algebra.Define
the bilinear map [·, ·]′ : G × G → G by

[x, y]′ = [α−1(x), β−1(y)],

for all x, y ∈ G. Then
(
L , [·, ·]′) is a Lie algebra, which we call it the induced Lie

algebra of (L , [·, ·], α, β).

Proposition 28.4 ([93]) The induced Lie algebra of the multiplicative simple
BiHom-Lie algebra is semisimple. There exist simple ideal L1 and an integer m �= 2
such that

L = L1 ⊕ α(L1) ⊕ · · · ⊕ αm−1(L1) = L1 ⊕ β(L1) ⊕ · · · ⊕ βm−1(L1).

Proposition 28.5 Any finite-dimensional multiplicative simple BiHom-Lie algebra
is regular.

Proof The statement holds since ker α and ker β are ideals of the simple BiHom-Lie
algebra (L , [·, ·], α, β). �

Proposition 28.6 A regular multiplicative BiHom-Lie algebra (G, [·, ·], α, β) is
nilpotent if and only if the induced Lie algebra

(
G, [·, ·]′) is nilpotent.

Proposition 28.7 A regular multiplicative BiHom-Lie algebra (G, [·, ·], α, β) is
solvable if and only if the induced Lie algebra

(
G, [·, ·]′) is solvable.

Definition 28.6 A BiHom-Lie algebra L is said to be decomposable if it can be
decomposed into the direct sum of two or more nonzero ideals. We say L is inde-
compasable if it is not decomposable.

Proposition 28.8 Every decomposable 2-dimensional multiplicative BiHom-Lie
algebra L is nonregular and it satisfies L = [L , L] ⊕ C(L).

Throughout this work, (L , [·, ·], α, β) denotes a multiplicative BiHom–Lie alge-
bra overC, I = ker α + ker β,G aBiHom-Lie subalgebra of L satisfying L = I ⊕ G
(if it exists), and � = { f ∈ End(L) | f ◦ α = α ◦ f, f ◦ β = β ◦ f }.
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28.3 Generalized Derivations of BiHom-Lie Algebras

Definition 28.7 ([42]) For any integer k, l, a linear map D : L → L is called an
αkβl -derivation of the BiHom-Lie algebra (L , [·, ·], α, β), if D ∈ � and

D([x, y]) = [D(x), αkβl(y)] + [αkβl(x), D(y)],

for all x, y ∈ L . The set of all αkβl-derivations of a BiHom-Lie algebra
(L , [·, ·], α, β) is denoted by Derαkβl (L), and we denote by Der(L) the vector space
spanned by the set {d ∈ Derαkβl (L) | k, l ∈ N}.
Definition 28.8 Let (L , [·, ·], α, β) be a BiHom–Lie algebra and λ,μ, γ elements
of C. A linear map d ∈ � is a generalized αkβl -derivation or a (λ, μ, γ )-αkβl -
derivation of L if for all x, y ∈ L we have

λ d([x, y]) = μ [d(x), αkβl(y)] + γ [αkβl(x), d(y)].

We denote the set of all (λ, μ, γ )-αkβl -derivations by Der (λ,μ,γ )

αkβl (L) and

Der (λ,μ,γ )(L) the vector space spanned by {d ∈ Der (λ,μ,γ )

αkβl (L) | k, l ∈ N}.

Lemma 28.1 For any D ∈ Der (λ,μ,γ )

αkβl (L) and D′ ∈ Der (λ′,μ′,γ ′)
αsβ t (L), their usual

commutator defined by
[D, D′]′ = D ◦ D′ − D′ ◦ D, (28.13)

satisfies [D, D′]′ ∈ Der (λλ′,μμ′,γ γ ′)
αk+sβl+t (L).

Proof The proof is similar to the one of Der(L) in [42, Lemma 3.2]. �

Let us now classify the possible values of λ,μ, γ ∈ C for a linearmap d : G → G
to be a (λ, μ, γ )-αkβl -derivation of G

Lemma 28.2 Let (G, [·, ·], α, β) be a BiHom–Lie algebra such that the maps α and
β are surjective. Let λ,μ, γ be elements of C.

1) If λ �= 0 and μ2 �= γ 2. Then Der (λ,μ,γ )

αkβl (G) = Der
( λ

μ+γ
,1,0)

αkβl (G).
2) If λ �= 0, μ �= 0 and γ = −μ. Then

Der (λ,μ,γ )

αkβl (G) = Der (1,0,0)
αkβl (G) ∩ Der (0,1,−1)

αkβl (G) = Der (1,1,−1)
αkβl (G).

3) If λ �= 0, μ = γ and μ �= 0. Then Der (λ,μ,γ )

αkβl (G) = Der
( λ

μ
,1,1)

αkβl (G).

4) If λ �= 0, μ = γ = 0. Then Der (λ,μ,γ )

αkβl (G) = Der (1,0,0)
αkβl (G).

5) If λ = 0 and μ2 �= γ 2. Then Der (λ,μ,γ )

αkβl (G) = Der (0,1,0)
αkβl (G).

6) If λ = 0, μ �= 0 and μ = γ . Then Der (λ,μ,γ )

αkβl (G) = Der (0,1,1)
αkβl (G).

7) If λ = 0 and μ = −γ . Then Der (λ,μ,γ )

αkβl (G) = Der (0,1,−1)
αkβl (G).
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Proof Let x, y ∈ G.Sinceα andβ are surjective, there existsa, b ∈ G such that x =
β(a), y = α(b). Suppose anyλ,μ, γ ∈ C are given. Then for d ∈ Der (λ,μ,γ )

αkβl (G) and
arbitrary a, b ∈ G we have

λ d([β(a), α(b)]) = μ [d(β(a)), αkβl(α(b))] + γ [αkβl(β(a)), d(α(b))]
λ d([β(b), α(a)]) = μ [d(β(b)), αkβl(α(a))] + γ [αkβl(β(b)), d(α(a))]

Thus, using d ◦ α = α ◦ d, d ◦ β = β ◦ d, α ◦ β = β ◦ α and (28.4), we have

λ d([β(a), α(b)]) = μ [β(d(a)), αk+1βl(b))] + γ [αkβl+1(a), α(d(b))]
λ d([β(b), α(a)]) = −μ [αkβl+1(a), α(d(b))] − γ [β(d(a)), αk+1βl(b)]

By summing the two previous equalities we obtain

0 = (μ − γ )
([β(d(a)), αk+1βl(b)] − [αkβl+1(a), α(d(b))]) .

So, (μ − γ )
([d(x), αkβl(y)] − [αkβl(x), d(y)]) = 0. Therefore, for μ �= γ ,

[d(x), αkβl(y)] = [αkβl(x), d(y)]. Hence, applying d ∈ Der (λ,μ,γ )

αkβl (G) yields

λd([x, y]) = (μ + γ )[d(x), αkβl(y)].

The rest of the proof is easily deduced. �

Theorem 28.1 Let (G, [·, ·], α, β) be a BiHom–Lie algebra such that the maps α

and β are surjective. For any λ,μ, γ ∈ C there exists δ ∈ C such that the subspace
Der (δ,μ,γ )

αkβl (G) is equal to one of the four following subspaces:

1) Der (0,0,0)
αkβl (G),

2) Der (1,0,0)
αkβl (G),

3) Der (δ,1,0)
αkβl (G),

4) Der (δ,1,1)
αkβl (G),

5) Der (1,1,−1)
αkβl (G),

6) Der (0,1,−1)
αkβl (G).

Example 28.2 Let H be a 3-dimensional Heisenberg BiHom-Lie algebra (Exam-
ple28.1).

Der (1,0,0)
αkβl (H) =

⎧
⎨

⎩

⎛

⎝
d1 0 0
0 d2 0
0 0 0

⎞

⎠ | d1, d2 ∈ C

⎫
⎬

⎭
;

Der (δ,1,0)
αkβl (H) =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

d1 0 0
0 d1

ar xl

b2r y2l 0

0 0 d1
ar xl

δbr yl

⎞

⎟
⎠ | d1 ∈ C

⎫
⎪⎬

⎪⎭
;
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Der (δ,1,1)
αkβl (H) =

⎧
⎨

⎩

⎛

⎝
d1 0 0
0 d2 0

0 0 d2b2r y2l+d1ar xl

δbr yl

⎞

⎠ | d1, d2 ∈ C

⎫
⎬

⎭
;

Der (0,1,1)
αkβl (H) =

⎧
⎨

⎩

⎛

⎝
d1 0 0
0 −d1

ar xl

b2r y2l 0
0 0 d3

⎞

⎠ | d1, d3 ∈ C

⎫
⎬

⎭
;

Der (1,1,−1)
αkβl (H) =

⎧
⎨

⎩

⎛

⎝
d1 0 0
0 d1

ar xl

b2r y2l 0
0 0 0

⎞

⎠ | d1 ∈ C

⎫
⎬

⎭
;

Der (0,1,−1)
αkβl (H) =

⎧
⎨

⎩

⎛

⎝
d1 0 0
0 d1

ar xl

b2r y2l 0
0 0 d3

⎞

⎠ | d1, d3 ∈ C

⎫
⎬

⎭
.

Next proposition allows to extend some results from [47] to BiHom-Lie case.

Proposition 28.9 If (G, [·, ·], α, β) is a regular multiplicative BiHom-Lie algebra,
then any (λ, μ, γ )-α0β0-derivation of (G, [·, ·], α, β) is a (λ, μ, γ )-derivation of
induced Lie algebra

(
G, [·, ·]′).

Now we will discuss in detail the possible Theorem28.1 for a finite-dimensional
BiHom-Lie algebra L , andwe give the connection between the generalized derivation
of the type studied in [2] and the generalized derivations of the type studied in this
work.

1. Der (0,0,0)
αkβl (L) = �. We have � is a Lie algebra, in which the Lie bracket is given

by (28.13).
2. Der (1,0,0)

αkβl (L) = {
d ∈ � | d(L2) = 0

}
and therefore its dimension is

dimDer (1,0,0)
αkβl (L) = codimL2 dimL .

If the BiHom-Lie algebra L is simple, then Der (1,0,0)
α0β0 (L) = {0}.

3. Der (δ,1,0)
αkβl (L):

(a) If δ = 0, then Der (0,1,0)
αkβl (L) = {

d ∈ � | d(L) ⊆ C(αkβl(L))
}

where

C(αkβl(L)) is the centralizer of αkβl(L) given by

C(αkβl(L)) = {
x ∈ L | [x, y] = 0; ∀y ∈ αkβl(L)

}
.

Therefore, dim Der (0,1,0)
αkβl (L) = dim L dimC(αkβl(L)).

If the BiHom-Lie algebra L is simple, then Der (0,1,0)
α0β0 (L) = {0}.

(b) If δ = 1, then Der (1,1,0)
αkβl (L) is the αkβl -centroid of L denoted �αkβl (L). We

denote by�(L) the vector space spanned by the set {d ∈ �αkβl (L) | k, l ∈ N}.
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(i) If φ ∈ �αkβl (G) and d ∈ Derαsβr (G), then φ ◦ d is a αk+sβr+l -
derivation of G.

(ii) �αkβl (L) ∩ Derαkβl (L) = CDerαkβl (G), where CDerαkβl (G) is the set
of αkβl -central derivations defined by

CDerαkβl (G) = Der (1,0,0)
αkβl (G)

⋂
Der (0,1,0)

αkβl (G).

(iii) For any d ∈ Derαkβl (G) and φ ∈ �αtβs (G) one has
• The composition d ◦ φ is in �αk+tβl+s (G) if and only if φ ◦ d is a

central derivation of L;
• The composition d ◦ φ is a αk+tβl+s-derivation of G if and only if

[d, φ]′ is aαk+tβl+s-central derivation ofG. (See [9] for the Leibniz
case and [3] for the associative algebras case).

Suppose that L admits a generalized derivation D ∈ Der (1,1,0)
α0β0 (L). If λ ∈

σ(D) is an eigenvalue of D, then the corresponding generalized eigenspace
Lλ is an ideal of L . Moreover, the generalized eigenspace decomposition
L = ⊕λ∈σ(D)Lλ is given in terms of ideals of L . Suppose that the BiHom-Lie
algebra L is simple, then Der (1,1,0)

α0β0 (L) is the one–dimensional BiHom-Lie
algebra containing multiples of the identity operator.

(c) For δ /∈ {0, 1}. Suppose that G is non-abelian. Then, by Propositions28.6,
28.9 and [47, Proposition 2.19], the following statements are equivalent:
(i) G admits an invertible generalized derivation D ∈ Der (δ,1,0)

α0β0 (G).
(ii) G is at most a 2-step nilpotent BiHom-Lie algebra.
(iii) G admits an invertible semisimple generalized derivation D ∈

Der (δ,1,0)
α0β0 (G) with minimal polynomial q(x) = (x − δ−1)(x − 1).

4. Der (δ,1,1)
αkβl (L):

(a) For δ = 0.
We have a Lie algebra

Der (0,1,1)(L) = {d ∈ � | ∃k, l ∈ N :
[d(x), αkβl(y)] = −[αkβl(x), d(y)],∀x, y ∈ L}.

If the BiHom-Lie algebra L is simple, then by Propositions 28.4, 28.9 and [47,
Corollaries2.10 and2.11],wehave Der (0,1,1)

α0β0 (L) = {0}. If the simpleBiHom-

Lie algebra L admits an invertible generalized derivation D ∈ Der (0,1,1)
α0β0 (L),

then L is solvable.
(b) For δ = 1.

We get the Lie algebra of derivations of L: Der (1,1,1)
αkβk (L) = Derαkβk (L) and

(
Der(L), [·, ·]′) is a Lie algebra (Der(L) the vector space spanned by {d ∈
Derαkβl (L) | k, l ∈ N}).
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(c) For δ /∈ {−1, 0, 1, 2}.
When G admits an invertible semisimple generalized D ∈ Der (δ,1,1)

α0β0 (G) by
Propositions 28.7, 28.9 and [47, Proposition 2.8], G is at most a 3-step solv-
able BiHom-Lie algebra. When the invertible semisimple generalized D has
only two different eigenvalues, by Propositions 28.6, 28.9 and [47, Lemma
2.2], G is at most a 2-step nilpotent BiHom-Lie algebra.

5. Der (1,1,−1)
αkβl (G) : We have

Der (1,1,−1)
αkβl (G) = Der (0,1,−1)

αkβl (G) ∩ Der (1,0,0)
αkβl (G)

=
{
d ∈ � | d([x, y]) = 0 = [d(x), αkβl (y)] = [αkβl (x), d(y)]

}
.

Then Der (1,1,−1)
αkβl (G) is the set ofαkβl-central derivations ofG. Define the bilinear

map

μ : � × � → �, μ( f, g) = 1

2
( f ◦ g + g ◦ f ) . (28.14)

Then (CDer(G), μ) is a Jordan algebra.
6. Der (0,1,−1)

αkβl (L) : We have

Der (0,1,−1)
αkβl (G) = {

d ∈ � | [d(x), αkβl(y)] = [αkβl(x), d(y)]} .

Then Der (0,1,−1)
αkβl (L) is called αkβl -quasi-centroid of L and denoted QCαkβl (L).

With the bilinear map μ defined in (28.14), we have that
(
QCαkβl (G), μ

)
is a

Jordan algebra.

We end this section with a construction of a BiHom-Lie algebra from an extension
of a Lie algebra L by a (b, a, a)-derivation of L .

Proposition 28.10 Let (L , [·, ·]′) be a Lie algebra and D ∈ End(L) be a non-zero
(b, a, a)-derivation and let α : L ⊕ CD → L ⊕ CD and β : L ⊕ CD → L ⊕ CD
defined respectively by α(x + λD) = x + λaD and β(x + λD) = x + λb; x ∈
L , λ ∈ C. Let Define the bilinear map [·, ·] : L ⊕ CD × L ⊕ CD → L ⊕ CD,
[x + λd, y + μd] = [x, y]′ − μbd(x) + λad(y). Then (L ⊕ CD, [·, ·], α, β) is a
BiHom-Lie algebra.

28.4 Classification of Multiplicative 2-Dimensional
BiHom-Lie Algebras

In this section, we aim to classify 2-dimensional non-trivial BiHom-Lie algebras.
An n-dimensional multiplicative BiHom-Lie algebra is identified to its structure
constants with respect to a fixed basis. It turns out that the axioms of multiplicative
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BiHom-Lie algebra structure translate to a systemof polynomial equations that define
the algebraic variety of n-dimensional multiplicative BiHom-Lie algebra which is
embedded into K

n3+2n2 . The classification requires to solve this algebraic system.
The calculations are handled using a computer algebra system. For n = 2, we include
in the following an outline of the computation.

1. Solving (28.3), we obtain the following solutions:

1.1 α =
(
a 0
0 b

)
, β =

(
x 0
0 y

)
;

1.2 α =
(
a 0
0 a

)
, β =

(
x 1
0 x

)
;

1.3 α =
(
a 1
0 a

)
, β =

(
x z
0 x

)
.

2. For each solution in 1,we provide a list of non-trivial 2-dimensionalmultiplicative
BiHom-Lie algebras. We solve the system of (28.8), (28.9) and (28.10) such that

(i) a12 = a21 = 0, b12 = b21 = 0, for 1.1
(ii) a12 = a21 = 0, a22 = a11, b21 = 0, b12 = 1, b22 = b11, for 1.2
(iii) a21 = 0, a12 = 1, a22 = a11, b21 = 0, b22 = b11, for 1.3.

3. Fix a BiHom-Lie algebra L in 2 and solve (28.12) such that Ck
i j are the struc-

ture constants corresponding to L and f12 = f21 = 0 (resp. f11 = f22 = 0) if
[L , L] �=< e2 > (resp. [L , L] =< e2 >).

Therefore, we get the following result.

Proposition 28.11 Every 2-dimensional multiplicative BiHom-Lie algebra is iso-
morphic to one of the following non-isomorphic BiHom-Lie algebras: each algebra
is denoted by Li

j where i is related to the couple (α, β), j is the number.

L1
1 : [e1, e1] = e1, [e1, e2] = e1, [e2, e1] = z1e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

L1
2 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

L1
3 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

L1
4 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = z1e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

L1
5 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

L2
1 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = e1, α(e2) = be2, β(e1) = 0, β(e2) = ye2.
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L3
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = ae1, α(e2) = e2, β(e1) = 0, β(e2) = ye2.

L4
1 : [e1, e1] = e1, [e1, e2] = e1, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = e1, α(e2) = e2, β(e1) = 0, β(e2) = ye2.

L5
1 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = e1, β(e2) = ye2.

L6
1 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = e1, β(e2) = e2.

L7
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = xe1, β(e2) = e2.

L8
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = − x

a e1, [e2, e2] = 0,
α(e1) = ae1, α(e2) = e2, β(e1) = xe1, β(e2) = e2.

L9
1 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e2,

α(e1) = e1, α(e2) = 0, β(e1) = 0, β(e2) = e2.

L10
1 : [e1, e1] = 0, [e1, e2] = e1 + e2, [e2, e1] = −e1 − e2, [e2, e2] = 0,

α(e1) = e1, α(e2) = e2, β(e1) = e1, β(e2) = e2.

L11
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = e1.

α(e1) = e1, α(e2) = e2, β(e1) = 0, β(e2) = ze1.

L11
2 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0.

α(e1) = e1, α(e2) = e2, β(e1) = 0, β(e2) = e1.

L11
3 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1.

α34(e1) = e1, α(e2) = e2, β(e1) = 0, β(e2) = e1.

L12
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = −e1, [e2, e2] = −e1.

α(e1) = e1, α(e2) = e2, β(e1) = e1, β(e2) = e1 + e2.

L13
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = z1e1, [e2, e2] = t1e1,

α(e1) = 0, α(e2) = e1, β(e1) = 0, β(e2) = e1.

L13
2 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = t1e1,

α(e1) = 0, α(e2) = e1, β(e1) = 0, β(e2) = ze1.

L13
3 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,

α(e1) = 0, α(e2) = e1, β(e1) = 0, β(e2) = ze1.

L14
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,

α(e1) = e1, α(e2) = e1 + e2, β(e1) = 0, β(e2) = ze1.

L15
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = 0, [e2, e2] = t1e1,

α(e1) = 0, α(e2) = e1, β(e1) = e1, β(e2) = e2.

L16
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,

α(e1) = 0, α(e2) = e1, β(e1) = e1, β(e2) = ze1 + e2.

L17
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = −e1, [e2, e2] = (1 − z)e1,

α(e1) = e1, α(e2) = e1 + e2, β(e1) = e1, β(e2) = ze1 + e2.
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Corollary 28.1 Every decomposable 2-dimensionalmultiplicative BiHom-Lie alge-
bra L is isomorphic to one of these 4 algebras: L1

3, L
2
1, L

5
1, L

9
1.

Remark 28.3 < e1 + e2 > is an ideal of BiHom-Lie algebra L10
1 . For the others

BiHom-Lie algebras < e1 > is an ideal of L j
i . Hence, every 2-dimensional multi-

plicative BiHom-Lie algebra is not simple.

28.5 Centroids and Derivations of 2-Dimensional
Multiplicative BiHom-Lie Algebras

Let (L , [·, ·], α, β) be a n-dimensional multiplicative BiHom-Lie algebra. Let

αrβl(e j ) =
n∑

k=1

mkjek . An element d of Der (δ,μ,γ )

αrβl (L), being a linear transforma-

tion of the vector space L , is represented in a matrix form (di j )1≤i, j≤n corresponding

to d(e j ) =
n∑

k=1

dkj ek , for j = 1, . . . , n. According to the definition of the (δ, μ, γ )-

αrβl -derivation the entries di j of the matrix (di j )1≤i, j≤n must satisfy the following
systems S of equations:

n∑

k=1

dikak j =
n∑

k=1

aikdk j ;
n∑

k=1

dikbk j =
n∑

k=1

bikdk j ;

δ

n∑

k=1

cki j dsk − μ

n∑

k=1

n∑

l=1

dkiml j c
s
kl − γ

n∑

k=1

n∑

l=1

dl jmki c
s
kl = 0,

where (ai j )1≤i, j≤n is the matrix of α, (bi j )1≤i, j≤n is the matrix of β and (cki j ) are the
structure constants of L . First, let us give the following definitions:

Definition 28.9 ABiHom-Lie algebra is called characteristically nilpotent (denoted
by CN) if the Lie algebra Derα0β0(L) is nilpotent.

Definition 28.10 Let L be an indecomposable BiHom-Lie algebra. We say L is
small if �α0β0(L) is generated by central derivation and the scalars. The centroid of a
decomposable BiHom-Lie algebra is small if the centroids of each indecomposable
factor are small.

Now we apply the algorithms mention in the previous paragraph to centroid and
derivation of 2-dimensional complex BiHom-Lie algebras. To find the centroids and
derivations of 2-dimensional complex BiHom-Lie algebras we use the classification
results from the previous section. The results are given in the following theorem.
Moreover, we give the type of �αrβl (L j

i ) and Derαrβl (L j
i ) if (r, l) = (0, 0).
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Theorem 28.2

L1
1 : [e1, e1] = e1, [e1, e2] = e1, [e2, e1] = z1e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

αrβl �αrβl (L1
1) Type of �α0β0 (L1

1) Derαrβl (L1
1) CN

(r, l) = (0, 0) z1 = 0

(
c1 0
0 c2

)
Not small

(
0 0
0 0

)
Yes

(r, l) = (0, 0) z1 �= 0

(
c1 0
0 c1

)
Small

(
0 0
0 0

)
Yes

(r, l) �= (0, 0)

(
0 0
0 c2

) (
0 0
0 d2

)

L1
2 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

αrβl �αrβl (L1
2) Type of �α0β0 (L1

1) Derαrβl (L1
2) CN

(r, l) = (0, 0)

(
c1 0
0 c1

)
Small

(
0 0
0 0

)
Yes

(r, l) �= (0, 0)

(
0 0
0 c2

) (
0 0
0 d2

)

L1
3 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

αrβl �αrβl (L1
3) Type of �α0β0 (L1

3) Derαrβl (L1
3) CN

(r, l) = (0, 0)

(
c1 0
0 c1

)
Not small

(
0 0
0 d2

)
Yes

(r, l) �= (0, 0)

(
0 0
0 c2

) (
0 0
0 d2

)

L1
4 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = z1e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.
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�αrβl (L1
4) Type of �α0β0 (L1

4) Derαrβl (L1
4) CN

(r, l) = (0, 0) z1 = 0

(
c1 0
0 c2

)
Not small

(
d1 0
0 0

)
Yes

(r, l) = (0, 0) z1 �= 0

(
c1 0
0 c1

)
Small

(
d1 0
0 0

)
Yes

(r, l) �= (0, 0)
z1 = 0;
br yl = 1

(
c1 0
0 c2

) (
d1 0
0 d2

)

(r, l) �= (0, 0) br yl �= 1

(
0 0
0 c2

) (
0 0
0 d2

)

(r, l) �= (0, 0)
z1 �= 0;
br yl = 1

(
0 0
0 c2

) (
d1 0
0 d2

)

L1
5 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

�αrβl (L1
5) Type of �α0β0 (L1

5) Derαrβl (L1
5) CN

(r, l) = (0, 0)

(
c1 0
0 c1

)
Small

(
d1 0
0 0

)
Yes

(r, l) �= (0, 0) br yl = 1

(
0 0
0 c2

) (
d1 0
0 d2

)

(r, l) �= (0, 0) br yl �= 1

(
0 0
0 c2

) (
0 0
0 d2

)

L2
1 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = e1, α(e2) = be2, β(e1) = 0, β(e2) = ye2.

�αrβl (L2
1) Type of �α0β0 (L2

1) Derαrβl (L2
1) CN

l = 0

(
c1 0
0 c2

)
Not small

(
0 0
0 d2

)
Yes

l �= 0

(
0 0
0 c2

) (
0 0
0 d2

)

L3
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = ae1, α(e2) = e2, β(e1) = 0, β(e2) = ye2.
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�αrβl (L3
1) Type of �α0β0 (L3

1) Derαrβl (L3
1) CN

l = 0

(
c1 0
0 c2

)
Not small

(
d1 0
0 0

)
Yes

l �= 0 yl = 1

(
c1 0
0 c2

) (
d1 0
0 d2

)

l �= 0 yl �= 1

(
0 0
0 c2

) (
0 0
0 d2

)

L4
1 : [e1, e1] = e1, [e1, e2] = e1, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = e1, α(e2) = e2, β(e1) = 0, β(e2) = ye2.

�αrβl (L4
1) Type of �α0β0 (L4

1) Derαrβl (L4
1) CN

l = 0

(
c1 0
0 c2

)
Not small

(
0 0
0 0

)
Yes

l �= 0

(
0 0
0 c2

) (
0 0
0 d2

)

L5
1 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = e1, β(e2) = ye2.

�αrβl (L5
1) Type of �α0β0 (L5

1) Derαrβl (L5
1) CN

r = 0

(
c1 0
0 c2

)
Not small

(
0 0
0 d2

)

r �= 0

(
0 0
0 c2

) (
0 0
0 d2

)

L6
1 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = e1, β(e2) = e2.

�αrβl (L6
1) Type of �α0β0 (L6

1) Derαrβl (L6
1) Yes

r = 0

(
c1 0
0 c1

)
Small

(
0 0
0 d2

)
Yes

r �= 0

(
0 0
0 c2

) (
0 0
0 0

)

L7
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0,

α(e1) = 0, α(e2) = be2, β(e1) = xe1, x �= 0 β(e2) = e2.
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�αrβl (L7
1) Type of �α0β0 (L7

1) Derαrβl (L7
1) CN

r = 0

(
c1 0
0 c1

xl

)
Small

(
d1 0
0 0

)
Yes

r �= 0 x = 1

(
0 0
0 c2

) (
d1 0
0 d2

)

r �= 0 x �= 1

(
0 0
0 c2

) (
0 0
0 d2

)

L8
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = − x

a
e1, [e2, e2] = 0,

α(e1) = ae1, α(e2) = e2, β(e1) = xe1, β(e2) = e2.

�αrβl (L8
1) Type of �α0β0 (L8

1) Derαrβl (L8
1) CN(

c1 0

0
c1
ar xl

)

Small

(
d1 0
0 0

)
Yes

L9
1 : [e1, e1] = e1, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e2,

α(e1) = e1, α(e2) = 0, β(e1) = 0, β(e2) = e2.

�αrβl (L9
1) Type of �α0β0 (L9

1) Derαrβl (L9
1)

r = 0, l = 0

(
c1 0
0 c1

)
Not small

(
0 0
0 0

)
Yes

r = 0, l �= 0

(
0 0
0 0

) (
0 0
0 0

)

r �= 0

(
0 0
0 c2

) (
0 0
0 d2

)

L10
1 : [e1, e1] = 0, [e1, e2] = e1 + e2, [e2, e1] = −e1 − e2, [e2, e2] = 0,

α(e1) = e1, α(e2) = e2, β(e1) = e1, β(e2) = e2.

�αrβl (L10
1 ) Type of �α0β0 (L10

1 ) Derαrβl (L10
1 ) CN(

c1 0
0 c1

)
Small

(
d1 d2
d1 d2

)
No

L11
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = e1.

α(e1) = e1, α(e2) = e2, β(e1) = 0, β(e2) = ze1.
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�αrβl (L11
1 ) Type of �α0β0 (L11

1 ) Derαrβl (L11
1 ) CN

l = 0

(
c1 c2
0 c1

)
Not small

(
0 0
0 0

)
Yes

l ≥ 1

(
0 c2
0 0

) (
0 d2
0 0

)

L11
2 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = 0.

α34(e1) = e1, α(e2) = e2, β(e1) = 0, β(e2) = e1.

�αrβl (L11
2 ) Type of �α0β0 (L11

2 ) Derαrβl (L11
2 ) CN

l = 0

(
c1 c2
0 c1

)
Not small

(
0 0
0 0

)
Yes

l ≥ 1

(
0 c2
0 0

) (
0 d2
0 0

)

L11
3 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1.

α34(e1) = e1, α(e2) = e2, β(e1) = 0, β(e2) = e1.

�αrβl (L11
3 ) Type of �α0β0 (L11

3 ) Derαrβl (L11
3 ) CN

l = 0

(
c1 c2
0 c1

)
Small

(
0 d2
0 0

)
Yes

l ≥ 1

(
0 c2
0 0

) (
0 d2
0 0

)

L12
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = −e1, [e2, e2] = −e1.

α(e1) = e1, α(e2) = e2, β(e1) = e1, β(e2) = e1 + e2.

�αrβl (L12
1 ) Type of �α0β0 (L12

1 ) Derαrβl (L12
1 ) CN

l = 0

(
c1 0
0 c1

)
Small

(
0 d2
0 0

)
Yes

l ≥ 1

(
c1 lc1
0 c1

) (
0 d2
0 0

)

L13
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = z1e1, [e2, e2] = t1e1,

α(e1) = 0, α(e2) = e1, β(e1) = 0, β(e2) = ze1.
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�
αr βl (L

13
1 ) Type of �

α0β0 (L131 ) Der
αr βl (L

13
1 ) CN

r = l = 0 z1 = −1

(
c1 0
0 c1

)
Small

(
0 d2
0 0

)
Yes

r = l = 0 z1 = 0

(
c1 0
0 c1

)
Small

(
0 0
0 0

)
Yes

r = l = 0 z1 �= −1

(
c1 0
0 c1

)
Small

(
0 0
0 0

)
Yes

(r, l) ∈ {(0, 1), (1, 0)}
(
0 c2
0 0

) (
0 d2
0 0

)

r > 1, l > 1

(
0 c2
0 0

) (
0 d2
0 0

)

L13
2 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = e1, [e2, e2] = t1e1,

α(e1) = 0, α(e2) = e1, β(e1) = 0, β(e2) = ze1.

�αrβl (L13
2 ) Type of �α0β0 (L13

2 ) Derαrβl (L13
2 ) CN

r = l = 0

(
c1 c2
0 c1

)
Not small

(
0 0
0 0

)
Yes

(r, l) ∈ {(0, 1), (1, 0)}
(
0 c2
0 0

) (
0 d2
0 0

)

r > 1, l > 1

(
0 c2
0 0

) (
0 d2
0 0

)

L13
3 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,

α(e1) = 0, α(e2) = e1, β(e1) = 0, β(e2) = ze1.

�αrβl (L13
3 ) Type of �α0β0 (L13

3 ) Derαrβl (L13
3 ) CN

r = l = 0

(
c1 c2
0 c1

)
Small

(
0 d2
0 0

)
Yes

(r, l) �= (0, 0)

(
0 c2
0 0

) (
0 d2
0 0

)

L14
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,

α(e1) = e1, α(e2) = e1 + e2, β(e1) = 0, β(e2) = ze1.
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�αrβl (L14
1 ) Type of �α0β0 (L14

1 ) Derαrβl (L14
1 ) CN

r = l = 0

(
c1 c2
0 c1

)
Not small

(
0 d2
0 0

)
Yes

l ≥ 1

(
0 c2
0 0

) (
0 d2
0 0

)

L15
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = 0, [e2, e2] = t1e1,

α(e1) = 0, α(e2) = e1, β(e1) = e1, β(e2) = e2.

�αrβl (L15
1 ) Type of �α0β0 (L15

1 ) Derαrβl (L15
1 ) CN

r = 0, l ≥ 0

(
c1 0
0 c1

)
Small

(
0 0
0 0

)
Yes

r ≥ 1

(
0 c2
0 0

) (
0 d2
0 0

)

L16
1 : [e1, e1] = 0, [e1, e2] = 0, [e2, e1] = 0, [e2, e2] = e1,

α(e1) = 0, α(e2) = e1, β(e1) = e1, β(e2) = ze1 + e2.

�αrβl (L16
1 ) Type of �α0β0 (L16

1 ) Derαrβl (L16
1 ) CN

r = 0, l ≥ 0

(
c1 c2
0 c1

)
Small

(
0 c2
0 0

)
Yes

r ≥ 1

(
0 c2
0 0

) (
0 d2
0 0

)

L17
1 : [e1, e1] = 0, [e1, e2] = e1, [e2, e1] = −e1, [e2, e2] = (1 − z)e1,

α(e1) = e1, α(e2) = e1 + e2, β(e1) = e1, β(e2) = ze1 + e2.

�αrβl (L17
1 ) Type of �α0β0 (L17

1 ) Derαrβl (L17
1 ) CN(

c1 (lz + r)c1
0 c1

)
Small

(
0 c2
0 0

)
Yes

Corollary 28.2 The following statements hold.

i) The dimensions of the centroids of 2-dimensional BiHom-Lie Algebras vary
between one and two.

ii) Every 2-dimensional multiplicative BiHom-Lie algebra have a small centroid if
and only if it isomorphic to one of the following BiHom-Lie algebras:
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L1
1(z1)(z1 �= 0), L1

2, L1
4(z1)(z1 �= 0), L1

5,

L8
1, L10

1 , L11
3 , L12

1 , L13
1 , L15

1 , L16
1 , L17

1 .

iii) The dimensions of the derivations of 2-dimensional BiHom-Lie algebras vary
between zero and two.

iv) Every 2-dimensional multiplicative BiHom-Lie algebra is characteristically
nilpotent if and only if it is not isomorphic to L10

1 .

Acknowledgements Sergei Silvestrov is grateful to the Royal Swedish Academy of Sciences for
partial support.

References

1. Abdaoui, K., Ammar, F., Makhlouf, A.: Constructions and cohomology of Hom-Lie color
algebras. Commun. Algebra 43, 4581–4612 (2015)

2. Abdelkader, B.H.: Generalized derivations of BiHom-Lie algebras. J. Gen. Lie Theory Appl.
11(1), 1–7 (2017)

3. Abdulkareem, A.O., Fiidow, M.A., Rakhimov, I.S.: Derivations and centroids of four-
dimensional associative algebras. Int. J. Pure Appl. Math. 112(4), 655–671 (2017)

4. Abramov, V.: On a graded q-differential algebra. J. Nonlinear Math. Phys. 13(sup 1), 1–8
(2006)

5. Abramov, V.: Graded q-differential algebra approach to q-connection, In: Silvestrov, S., Paal,
E., Abramov, V., Stolin, A. (eds.), Generalized Lie Theory in Mathematics, Physics and
Beyond. Springer, Berlin, Heidelberg, Ch. 6, pp. 71–79 (2009)

6. Abramov,V., Raknuzzaman,Md.: Semi-commutativeGalois extensions and reduced quantum
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Chapter 29
HNN-Extension of Involutive
Multiplicative Hom-Lie Algebras

Sergei Silvestrov and Chia Zargeh

Abstract The construction of HNN-extensions of involutive Hom-associative alge-
bras and involutive Hom-Lie algebras is described. Then, as an application of HNN-
extension, by using the validity of Poincaré-Birkhoff-Witt theorem for involutive
Hom-Lie algebras, we provide an embedding theorem.
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29.1 Introduction

One of the most important constructions in combinatorial group theory is Higman-
Neumann-Neumann extension (or HNN-extension, for short), which states that if A1

and A2 are isomorphic subgroups of a group G, then it is possible to find a group H
containing G such that A1 and A2 are conjugate to each other in H and G is embed-
dable in H (see [45]). The HNN-extension of a group has a topological interpretation
described in [28, 59], which is used as a motivation for its study. Spreading classical
techniques in combinatorial group theory to other algebraic structures has shown
outstanding capacities for solving problems in affine algebraic geometry, the theory
of Lie algebras andmathematical physics. In this regard, HNN-extension of Lie alge-
bras was constructed by Lichtman and Shirvani [58] and Wasserman [79] through
different approaches. They used HNN-extension in order to give a new proof for
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Shirshov’s theorem [75], namely, a Lie algebra of finite or countable dimension can
be embedded into a 2-generator Lie algebra. Moreover, the idea of HNN-extension
has been recently spread to Leibniz algebras in [51] and Lie superalgebras in [50],
which are respectively, non-antisymmetric and natural generalization of Lie algebras.

In this paper we intend to introduce HNN-extension for the Hom-generalization
of Lie algebras. Hom-Lie algebras and more general quasi-Hom-Lie algebras were
introduced first by Hartwig, Larsson and Silvestrov in [43], where the general quasi-
deformations and discretizations of Lie algebras of vector fields using more general
σ -derivations (twisted derivations) and a general method for construction of defor-
mations of Witt and Virasoro type algebras based on twisted derivations have been
developed, initially motivated by the q-deformed Jacobi identities observed for the
q-deformed algebras in physics, q-deformed versions of homological algebra and
discrete modifications of differential calculi. Hom-Lie superalgebras, Hom-Lie color
algebras and more general quasi-Lie algebras and color quasi-Lie algebras where
introduced first in [54, 55, 76]. Quasi-Lie algebras and color quasi-Lie algebras
encompass within the same algebraic framework the quasi-deformations and dis-
cretizations of Lie algebras of vector fields by σ -derivations obeying twisted Leibniz
rule, and color Lie algebras, the well-known natural generalizations of Lie algebras
and Lie superalgebras. In quasi-Lie algebras, the skew-symmetry and the Jacobi
identity are twisted by deforming twisting linear maps, with the Jacobi identity in
quasi-Lie and quasi-Hom-Lie algebras in general containing six twisted triple bracket
terms. In Hom-Lie algebras, the bilinear product satisfies the non-twisted skew-
symmetry property as in Lie algebras, and the Hom-Lie algebras Jacobi identity has
three terms twisted by a single linear map, reducing to the Lie algebras Jacobi iden-
tity when the twisting linear map is the identity map. Hom-Lie admissible algebras
have been considered first in [62], where in particular the Hom-associative algebras
have been introduced and shown to be Hom-Lie admissible, leading to Hom-Lie
algebras using commutator map as new product, and thus constituting a natural gen-
eralization of associative algebras as Lie admissible algebras. Since the pioneering
works [43, 53–56, 62], Hom-algebra structures expanded into a popular area with
increasing number of publications in various directions. Hom-algebra structures of
a given type include their classical counterparts and open broad possibilities for
deformations, Hom-algebra extensions of cohomological structures and represen-
tations, formal deformations of Hom-associative algebras and Hom-Lie algebras,
Hom-Lie admissible Hom-coalgebras, Hom-coalgebras, Hom-Hopf algebras, Hom-
Lie algebras, Hom-Lie superalgebras, color Hom-Lie algebras, BiHom-Lie algebras,
BiHom-associative algebras, BiHom-Frobenius algebras and n-ary generalizations
ofHom-algebra structures have been further investigated in various aspects for exam-
ple in [1–27, 35, 36, 38–41, 44, 46–49, 52, 57, 60–74, 76–78, 80–84, 86–88].

Our approach for construction of the HNN-extension of Hom-generalization of
Lie algebras is based on the corresponding construction for its envelope. Therefore,
we concentrate on the study of HNN-extensions for involutive Hom-Lie algebras
in which their universal enveloping algebras have been explicitly obtained in [42].
It is worth noting that there exists another approach provided in [80] for obtain-
ing the universal enveloping algebra of a Hom-Lie algebra as a suitable quotient
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of the free Hom-nonassociative algebra through weighted trees, but the point of
difficulty in the approach in [80] is the size of the weighted trees. Involutive Hom-
Lie algebras have been constructed in [85], and the classical theory of enveloping
algebras of Lie algebras was extended to an explicit construction of the free invo-
lutive Hom-associative algebra on a Hom-module in order to obtain the universal
enveloping algebra [42]. This construction leads to a Poincare-Birkhoff-Witt theo-
rem for the enveloping associative algebra of an involutive Hom-Lie algebra. This
approach has been extended to the enveloping algebras for color Hom-Lie algebras
in [11, 12]. Extensions of Hom-Lie superalgebras and Hom-Lie color algebras have
been considered in [9, 13]. Hom-associative Ore extensions have been considered in
[29–34]

The paper is organized as follows. In Sect. 29.2, we recall the preliminary concepts
related to involutive Hom-associative algebras and involutive Hom-Lie algebras. In
Sect. 29.3, we introduce theHNN-extension for involutiveHom-associative algebras.
In Sect. 29.4, we construct the HNN-extension for involutive Hom-Lie algebras and
provide an embedding theorem.

29.2 Involutive Hom-Algebras

In this section we recall necessary concepts related to involutive Hom-associative
and involutive Hom-Lie algebras.

Definition 29.1 Let K be a field.

(a) Hom-module is a pair (V, αV ) consisting of a K -module V and a linear operator
αV : V → V .

(b) Hom-associative algebra is a triple (A, ∗A, αA) consisting of a K -module A,
a linear map ∗A : A ⊗ A → A, called the multiplication, and a linear operator
αA : A → A satisfying the Hom-associativity

αA(x) ∗A (y ∗A z) = (x ∗A y) ∗A αA(z),

for all x, y, z ∈ A.

(c) Hom-associative algebra is said to be multiplicative if the linear map α is
multiplicative in the sense of satisfying αA(x ∗A y) = αA(x) ∗A αA(y) for all
x, y ∈ A.

(d) Hom-associative algebra (A, ∗A, αA) (resp. Hom-module (V, αV )) is said to be
involutive if α2

A = id (resp. α2
V = id).

(e) Let (V, αV ) and (W, αW ) be Hom-modules. A K -linear map f : V → W is
called a morphism of Hom-modules if f (αV (x)) = αW ( f (x)) for all x ∈ V .
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(f) Let (A, ∗A, αA) and (B, ∗B, αB) be two Hom-associative algebras. A K -linear
map f : A → B is a morphism of Hom-associative algebras if

f (x ∗A y) = f (x) ∗B f (y), and f (αA(x)) = αB( f (x)),

for all x, y ∈ A.

(g) Let (A, ∗A, αA) be a Hom-associative algebra. A submodule B ⊆ A is called a
Hom-associative subalgebra of A if B is closed under the multiplication ∗A and
αA(B) ⊆ B.

(h) Let (A, ∗A, αA) be a Hom-associative algebra. A submodule I ⊆ A is called a
Hom-ideal of A if x ∗A y ∈ I , y ∗A x ∈ I for all x ∈ I, y ∈ A, and αA(I ) ⊆ I .

Definition 29.2 For any non-negative integer k, a linear map D : A → A is called
an αk

A-derivation of involutive Hom-associative algebra (A, ∗A, αA), if

D ◦ αk
A = αk

A ◦ D,

D ◦ (x ∗A y) = D(x) ∗A αk
A(y) + αk

A(x) ∗A D(y).

Definition 29.3 Let (V, αV ) be an involutive Hom-module. A free involutive Hom-
associative algebra onV is an involutiveHom-associative algebra (FI H A(V ), ∗F , αF )

together with a morphism of Hom-modules jV : (V, αV ) → (FI H A(V ), αF ) such
that, for any involutive Hom-associative algebra (A, ∗A, αA) together with a mor-
phismofHom-modules f : (V, αV ) → (A, αA), there is a uniquemorphismofHom-
associative algebras

f : (FI H A(V ), ∗F , αF ) → (A, ∗A, αA)

such that f = f ◦ jV .

Definition 29.4 A Hom-Lie algebra is a triple (g, [·, ·]g, β) consisting of a vector
space g, a skew-symmetric bilinear map (bracket) [·, ·]g : g × g → g and a linear
map β : g → g satisfying the following Hom-Jacobi identity:

[β(u), [v,w]g]g + [β(v), [w, u]g]g + [β(w), [u, v]g]g = 0. (29.1)

Hom-Lie algebra is called a multiplicative Hom-Lie algebra if β satisfies

β([u, v]g) = [β(u), β(v)]g. (29.2)

A Hom-Lie algebra (g, [·, ·]g, β) is called involutive if β2 = idg. Note that the clas-
sical Lie algebra can be recovered when β = idg, with the identity (29.1) becoming
the Jacobi identity for Lie algebras.

Definition 29.5 A morphism of Hom-Lie algebras

f : (g, [·, ·]g, βg) → (h, [·, ·]h, βh)
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is a k-linear map f : g → h such that

f ([x, y]g) = [ f (x), f (y)]h and f (βg(x)) = βh( f (x)) for all x ∈ g.

Hom-associative algebras were introduced in [62], and shown to be Hom-Lie
admissible, i.e. any Hom-associative algebra (A, ∗A, αA) yields a Hom-Lie algebra
(A, [·, ·]A, βA) with βA = αA and [x, y]A = x ∗A y − y ∗A x for x, y ∈ A.

For simplicity, we will restrict our considerations to multiplicative Hom-Lie alge-
bras and multiplicative Hom-associative algebras, meaning that the twisting map is
not only linear, but also an endomorphismof theHom-Lie algebra orHom-associative
algebra respectively. An interesting important problem is to understand completely
the role of the multiplicatives restriction and extend the results and constructions
from multiplicative to general, not necessarily multiplicative, Hom-Lie algebras and
Hom-associative algebras.

Definition 29.6 ([42]) Let (g, [·, ·]g, β) be a Hom-Lie algebra. A universal envelop-
ing Hom-associative algebra of g is a Hom-associative algebra Ug = (Ug, ∗g, αU),
together with a morphism φg : (g, [·, ·]g, β) → (Ug, [·, ·]Ug

, βUg) of Hom-Lie alge-
bras, that satisfies the universal property.

The following lemma describes the universal property in the involutive case.

Lemma 29.1 ([42]) Let (g, [·, ·]g, βg) be an involutive multiplicative Hom-Lie alge-
bra.

(a) Let (A, ∗A, αA) be a multiplicative Hom-associative algebra,

f : (g, [·, ·]g, βg) → (A, [·, ·]A, βA)

beamorphismofHom-Lie algebras, and B be themultiplicativeHom-associative
subalgbera of A generated by f (g). Then B is involutive.

(b) The universal enveloping multiplicative Hom-associative algebra (Ug, φg) of
(g, [·, ·]g, βg) is involutive.

(c) In order to verify the universal property of (Ug, φg), we only need to consider
involutive multiplicative Hom-associative algebras A := (A, ∗A, αA).

Definition 29.7 A linear subspace s ⊆ g is called a Hom-Lie subalgebra of a Hom-
Lie algebras (g, [·, ·]g, β) if β(s) ⊆ s and s is closed under the bracket operation
[·, ·]g:

∀s1, s2 ∈ s : [s1, s2]g ∈ s.

Let (g, [·, ·]g, β) be amultiplicativeHom-Lie algebra. For any nonnegative integer
k,denote by βk the k-times composition of β, i.e.

βk = β . . . β (k-times).

In particular, β0 = I d and β1 = β.
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Definition 29.8 For any nonnegative integer k, a linear map d : g → g is called a
βk-derivation of the involutive Hom-Lie algebra (g, [·, ·]g, β), if

[d, β] = 0, that is, d ◦ βk = βk ◦ d, (29.3)

∀u, v ∈ g : d[u, v]g = [d(u), βk(v)]g + [βk(u), d(v)]g. (29.4)

Example 29.1 Let (g, [·, ·]g, α) be an involutive multiplicative Hom-Lie algebra.
For x ∈ g, let consider α(x) = x , then adx : g → g defined by adx (y) = [x, y]g for
all y ∈ g is an α-derivation of (g, [·, ·]g, α).

29.3 HNN-Extension of Involutive Hom-Associative
Algebras

Let (A, ∗A, αA) be an involutive Hom-associative algebra over ring of integers. Let
(Bi , ∗A, αA|Bi ) (i ∈ I ) be a family of Hom-associative subalgebras of A as defined
in Definition29.1 (g), with injective morphisms θi : Bi → A, and for each i ∈ I , a
θi -derivation δi : Bi → A such that αA commutes with θi and δi . The associated
HNN-extension is presented as

H = 〈A, Bi , ti , δi , θi : i ∈ I 〉,

which is an involutive Hom-associative algebra H := (A ∪ {ti }, ∗H , αH ) in such a
way that x ∗H y = αH (x ∗A y), where αH (ti ) = ti and αH (a) = αA(a) along with a
homomorphism φ : (A, ∗A, αA) → (H, ∗H , αH ) with the following conditions:

1. ti ∗H (φ(b)) − φ(θi (b)) ∗H ti = φ(δi (b)) for all b ∈ Bi and all i ∈ I .
2. Given any involutive Hom-associative algebra (S, ∗S, αS) with elements σi ∈

S satisfying αS(σi ) = σi , a morphism f : (A, αA) → (S, αS) such that σi ∗S

αS( f (b)) − αS( f (b)) ∗S σi = f (δi (b)) for all b ∈ Bi and i ∈ I , there exists
a unique morphism θ : (H, ∗H , αH ) → (S, ∗A, αA) such that θ(ti ) = σi and
θ(φ(a)) = f (a) for all a ∈ A.

Assume a single letter t in the condition (i) of construction of HNN-extension of
involutive multiplicatve Hom-associative algebra. Since δ is an αA-derivation,

δ(αA(b)) = t ∗H αA(b) − αA(b) ∗H t

= αH (t ∗A αA(b)) − αH (αA(b) ∗A t) (by definition of ∗H )

= αH (t) ∗A α2
A(b) − α2

A(b) ∗A αH (t) (by Def. 1 (c), (d))

= t ∗A b − b ∗A t = αA(δ(b)),

which implies that in the construction of HNN-extension for the case of involutive
Hom-associative algebras, it is essential to consider the multiplicative property. It
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is worth pointing out that the second property of α-derivations in Definition29.2 is
straightforward by Hom-associativity.

A leftHom-Bi -module A/Bi is aHom-module (A/Bi , αA/Bi ) that comes equipped
with a left Bi -action, Bi ⊗ A/Bi → A/Bi , with b ∗A/Bi (a + Bi ) = (b ∗A a) + Bi

and αA/Bi : A/Bi → A/Bi with αA/Bi (a + Bi ) = αA(a) + Bi , for all b ∈ Bi . Let Xi

be a free basis of free left Hom-Bi -module A/Bi . We define a normal sequence as

(ti1 ∗A αA(x1)) ∗A (ti2 ∗A αA(x2)) ∗A · · · ∗A (tir ∗A αA(xr )),

with i j ∈ I and xα ∈ Xi j for 1 ≤ α ≤ r . The set of all normal sequences is denoted
by V .

Theorem 29.1 concerns the embeddability of involutive Hom-associative algebra
into its HNN-extension. We follow the Lichtman and Shirvani’s approach [58] in
order to prove that.

Theorem 29.1 Let (A, ∗A, αA) be an involutive Hom-associative algebra over ring
of integers, Bi a family of Hom-associative subalgberas, with injective homomor-
phisms θi : Bi → A, a θi -derivations δi : Bi → A. Assume that A/Bi is a free left
Hom-Bi -module for all i , and let (H, φ) be the corresponding HNN-extension as
above. Then the map φ is an embedding of A into H.

Proof Let us consider the free left Hom-A-module on the set of normal sequences,
V , and denote it by

Q = (⊕u∈V Au, αQ), αQ(u1, . . . , ur ) = (αH (u1), . . . , αH (ur )).

Consider the morphism of (A, αA) into S = (EndZ(Q), αS) mapping a ∈ A to left
multiplication by a on every factor denoted by a �→ ā and αS = αA. In the sequel,
we need to define suitable σi ∈ S for all i ∈ I . If q ∈ Q is written as

q =
∑

u∈V

∑

x∈Xi

(bx,u ∗A/B x) ∗A u =
∑

u∈V

∑

x∈Xi

(bx,u ∗A αA(x)) ∗A u

=
∑

u∈V

∑

x∈Xi

bx,u ∗A (αA(x) ∗A u)

for bx,u ∈ Bi , define

σi (q) =
∑

u∈V

∑

x∈Xi

(θi (bx,u) ∗A ((ti ∗A αA(x)) ∗A u) + δi (bx,u) ∗A (αA(x) ∗A u)).

We have
∑

x∈Xi
(δi (bx,u) ∗A αA(x)) ∈ A and every ((ti ∗A αA(x)) ∗A u) ∈ V . For

any element b ∈ Bi (i ∈ I ), we recall that the left multiplication by b is denoted by
b̄, so we have
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σi (b̄(q)) = σi (
∑

u∈V

∑

x∈Xi

((b ∗B bx,u) ∗A (αA(x) ∗A u)))

=
∑

u,x

(θi (b ∗B bx,u) ∗A ((ti ∗A αA(x)) ∗A u))

+
∑

u,x

(δi (b ∗B bx,u) ∗A (αA(x) ∗A u)),

and

θi (b)(σi (q)) =
∑

i

(θi (b)) ∗A (
∑

u∈V

∑

x∈Xi

(θi (bx,u) ∗A ((ti ∗A αA(x)) ∗A u)))

+
∑

i

(θi (b)) ∗A (
∑

u∈V

∑

x∈Xi

(δi (bx,u) ∗A (αA(x) ∗A u))).

Hence,

σi (b̄(q)) − θi (b)(σi (q)) =
∑

u,x

((δi (b) ∗A bx,u) ∗A (αA(x) ∗A u)) = δi (b)(q).

Therefore, the property (2) implies that there exists θ : (H, ∗H , αH ) → (S, ∗S, αS)

such that θ(ti ) = σi and θ(φ(a)) = ā for all a ∈ A.

29.4 HNN-Extension of Involutive Hom-Lie Algebras

Let (A, ∗A, αA) be an arbitrary Hom-associative algebra, and let (A, [·, ·]A, βA) be
the Hom-Lie algebra defined by

[x, y]A = x∗Ay − y∗Ax,

and βA = αA, for x, y ∈ A. If (g, [·, ·]g, βg) is an involutive Hom-Lie algebra, then
(Ug, φg) is called a universal enveloping Hom-associative algebra of g, if

φg : (g, [·, ·]g, βg) → (Ug, [·, ·]Ug
, βUg

)

is a homomorphism of Hom-Lie algebras,

φg([x, y]g) = [φg(x), φg(y)]Ug
, φg(βg(x)) = βUg

(φg(x)),

satisfying the following universal property: for any involutive Hom-associative alge-
bra A = (A, ∗A, αA) and any Hom-Lie algebra morphism

ε : (g, [·, ·]g, βg) → (A, [·, ·]A, βA),
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there exists a unique morphism of Hom-associative algebras η : Ug → A such that
ηφg = ε. For any involutive Hom-Lie algebra there exists a universal enveloping
Hom-associative algebra, which is involutive and Poincare-Birkhoff-Witt theorem is
valid for it. This shows that the map φg is injective, and we can say that every βg-
derivation of involutive Hom-Lie algebra (g, [·, ·]g, βg) extends to βUg

-derivation of
Ug.

Definition 29.9 Let (g, [·, ·]g, βg) be an involutive Hom-Lie algebra and s be a
subalgebra.Assume thatd : s → g is aβg-derivation.The associatedHNN-extension
is given by the following presentation

h := 〈g, t : d(s) = [t, s]h, s ∈ s〉,

which is an involutive Hom-Lie algebra (h, [·, ·]h, βh) with βh(t) = t , βh(g) =
βg(g) for g ∈ g. This means that the presentation of g is augmented by adding a
new generating symbol t , and for each s ∈ s, the relation [t, s]h = d(s) is added. We
note that [g1, g2]h = [g1, g2]g, for all g1, g2 ∈ g.

Let assume that in the Definition 29.9, s = g, therefore, d is a βg-derivation of g
and h is then the semi-direct product of g with a one-dimensional involutive Hom-
Lie algebra which acts on g via d. In order to make this special case more clear, we
recall the concepts of Hom-action and semidirect product of Hom-Lie algebras in
the sequel in accordance with [37].

Definition 29.10 Let (l, αl) and (m, αm) be Hom-Lie algebras. A Hom-action from
(l, αl) on (m, αm) is expressed by a bilinear map

σ : l ⊗ m → m, σ (x ⊗ m) = x m

such that

(a) [x, y] αm(m) = αl(x) (y m) − αl(y) (x m),
(b) αl(x) [m,m ′] = [x m, αm(m ′)] + [αm(m), x m ′],
(c) αm(x m) = αl(x) αm(m),

for all x, y ∈ l and m,m ′ ∈ m.

Definition 29.11 ([37]) Let (l, αl) and (m, αm) be Hom-Lie algebras with an action
from (l, αl) on (m, αm). The semidirect product (m � l, α̃) is the Hom-Lie algebra
with underlying K -vector space m ⊕ l, with bracket

[(m1, x1), (m2, x2)] = ([m1,m2] + x1 m2 − x2 m1, [x1, x2])

and endomorphism

α̃ : m ⊕ l → m ⊕ l, α̃(m, x) = (αm(m), αl(x))

for all x, x1, x2 ∈ l and m,m1,m2 ∈ m.
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If in the Definition 29.9 of HNN-extension of involutive Hom-Lie algebras, βg-
derivation map is defined on the whole involutive Hom-Lie algebra (g, [·, ·]g, βg),
then a semidirect product of one-dimensional involutive Hom-Lie algebra with g
with respect to βg-derivation map will be obtained.

Theorem 29.2 Any involutive Hom-Lie algebra embeds into its HNN-extension.

Proof Let (Ug, φg) and (Us, φs) be the universal enveloping Hom-associative alge-
bras corresponding to, respectively, the involutive Hom-Lie algebra g and its sub-
algebra s, which are involutive with respect to Lemma 29.1. Let h = 〈g, t : d(s) =
[t, s]h, s ∈ s〉 be the HNN-extension of involutive Hom-Lie algebra (g, [·, ·]g, βg)

as above. By extending d to a βUg
-derivation of Ug defined on Us we form the

HNN-extension of involutive Hom-associative algebra Ug which is denoted by
M = 〈Ug,Us, t, δ〉. Let (R, ∗R, αR) be an arbitrary involutive Hom-associative alge-
bra with a homomorphism of Hom-Lie algebras (h, [·, ·]h, βh) → (R, [·, ·]R, βR).
The restriction to g extends to a homomorphism Ug → R, which extends to a homo-
morphism M → R, so we have Uh � M . As Ug/Us is a free left Hom-Us-module,
Theorem 29.1 implies that Ug is embedded into M , and so g embeds into its HNN-
extension.
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Chapter 30
Two-Sided Noncommutative Gröbner
Basis on Quiver Algebras

Daniel K. Waweru and Damian M. Maingi

Abstract For a quiver Q, we define a path algebra K Q as a span of all the paths of
positive length. We study left-sided (respective right-sided) ideals and their Gröbner
bases.We introduce the two-sided ideals, a two-sided division algorithm for elements
of K Q and study the two-sided Gröbner bases. We show that with the defined two-
sided division algorithm and two-sided Buchberger’s algorithm, we can find a finite
or an infinite Gröbner basis for a two-sided ideal I ⊆ K Q given a fixed admissible
ordering.
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30.1 Introduction

In 1986, Teo Mora published a paper [15] giving an algorithm for constructing a
noncommutative Gröbner Basis. This work built upon the work of George Bergman
in particular his diamond lemma for ring theory [4]. Mora’s algorithm and the theory
behind it, in many ways, give a noncommutative version of the Gröbner Basis theory
as seen in the commutative case which states: given an initial set F generating an
ideal I in a polynomial ring A, Gröbner basis theory uses F to find a basis G for I
with the property that for any f ∈ A, division of f by G has a unique remainder.
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How we obtain that Gröbner Basis remains the same as in the commutative case
where we add nonzero S-polynomials to an initial basis. The difference comes in the
definition of an S-polynomial. The purpose of S-polynomial S( f, g) for each pair
of nonzero polynomials f, g ∈ A is to ensure that any polynomial h ∈ A reducible
by both f and g has a unique remainder when divided by a set of polynomials
containing both f and g. In the commutative case, there is only one way to divide
h by f and g giving the reduction (h − x1 f ) or (h − x2g) respectively, where x1
and x2 are terms. Thus, there is only one S-polynomial for each pair of polynomials.
However, in a noncommutative polynomial ring, a polynomial may divide another
in many different ways. We do not have a fixed number of S-polynomials for each
pair of polynomials in A. The number of S-polynomials depend on the number of
overlaps between the leading monomials of f and g. One can therefore strengthen
the division algorithm axiomatically to eliminate much ambiguity.

Section 30.2 will serve as an overview of Gröbner basis theory in a general poly-
nomial ring theory, in preparation for Sects. 30.3 and 30.4 which introduce a path
algebra and considers a one-sided noncommutative Gröbner basis in a path alge-
bra respectively. Having established the foundations, Section 30.5 will present the
concept of a two-sided noncommutative Gröbner basis for ideals in a path algebra,
which is the main objective of the present work.

30.2 Noncommutative Gröbner Basis in Polynomial Ring

We start off bymentioning some of the rudiments to the concept of a noncommutative
Gröbner basis over a noncommutative polynomial ring. Most of these deliberations
may be found in [1, 7, 8, 15]. In this section A = K [x1, . . . , xn] is a noncommutative
polynomial ring. Monomials of A are generated by alphabetical words of A over K.
We denote the set of all monomials of A byM .We thusmake the following important
definitions.

Definition 30.1 A relation ≺ is said to be a noncommutative monomial ordering on
set M if it satisfies

(i) ≺ is a total order on M .
(ii) x � 1,∀x ∈ M .
(iii) x � y ⇒ wxz � wyz, ∀x, y,w, z ∈ M.

Definition 30.2 For w, x, y, z ∈ M , we say a monomial ordering ≺ is admissible
when

(i) x ≺ y ⇒ xz ≺ yz.
(ii) x ≺ y ⇒ wx ≺ wy.
(iii) x = yz ⇒ x � y and x � z.

Definition 30.3 Let x, y ∈ M . An x − y overlap occurs when one can find factors
x = x1z, y = zy1 where x 	= x1 and/ or y 	= y1.
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Different factorization in M gives different overlaps.

Definition 30.4 Every element f ∈ A has a unique form f =
n∑

i=1
aiwi , ai ∈

K , wi ∈ M. We will denote all such monomials wi appearing in f by Mon( f ).
Furthermore, w is called the leading monomial of f ∈ A, denoted by w = LM( f )
if w occurs in f and w � m for all monomials m ∈ Mon( f ). The coefficient of
LM( f ) in f is called the leading coefficient and is denoted by LC( f ). The lead-
ing term of f is denoted as LT ( f ) = LC( f )LM( f ). If J ⊂ A, then we define
LT (J ) = {LT (g) : g ∈ J }.
By convention, a polynomial will be written in descending order, with respect to a
givenmonomial ordering, so that the leading term of the polynomial, (with associated
leading coefficient and leading monomial), always comes first.

For nonzero polynomials f, g ∈ A, we say that f divides g if the leading term of
f divides some term h in g, where h = xl LM( f )xr and xl and xr aremonomials. For
noncommutative cases, the division algorithm is adapted to calculate s-polynomial
as shown in Definition30.6. Division removes an appropriate multiple of f from g
in order to cancel off LT ( f ) with the term involving h in g. We perform division as
follows, g − λ

LC( f ) xl f xr = r , where λ ∈ K is to be chosen from {LC(xl), LC(xr )}.

Definition 30.5 For a set F = { f1, . . . , fs}, any f ∈ A can be written in a form f =
ul1 f1vr1 + · · · + uls fsvrs + r , called the standard representation of f with respect
to the set F , where uli , vri , r, fi ∈ A and either r = 0 or r is a linear combination
with coefficients in K of monomials which are not divisible by LT ( fi ) for all i . r is
the remainder of f after dividing by F .

We denote by r = RedF ( f ) and call it a reduction of f with respect to the set F .
Moreover, if uli fi vri 	= 0 then LM( f ) � LM(uli fi vri ) for all i .

Definition 30.6 Let f, g ∈ A and the leading monomials of f and g overlap such
that x1LM( f )y1 = x2LM(g)y2, where x1, x2, y1, y2 ∈ M are chosen so that at least
one of x1 and x2 and at least one of y1 and y2 is equal to unit monomial. Then the
S-polynomial associated with this overlap is given by

S( f, g) = λ1x1 · f · y1 − λ2x2 · g · y2

where λ1 = LC(x1)
LC( f ) when x1 	= 1 or λ1 = LC(y1)

LC( f ) when y1 	= 1 and λ2 = LC(x2)
LC(g) when

x2 	= 1 or λ2 = LC(y2)
LC(g) when y2 	= 1.

Definition 30.7 Let I be an ideal of A and ≺ an admissible order on M . A subset
G of I is called a Gröbner basis for I , if for every nonzero polynomial f ∈ I there
exist g ∈ G such that LM(g) divides LM( f ).
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30.2.1 Mora’s Algorithm

In commutativeGröbner basis theory, Buchberger’s Algorithm [5] is used to compute
theGröbner basis. Dickson’s Lemma andHilbert’s Basis Theorem assure termination
of the algorithm for all possible inputs. Our next result is Mora’s Algorithm which
mimics Buchberger’s Algorithm for noncommutative polynomial rings. However,
there is no analogousDickson’sLemma for noncommutativemonomial ideals, hence,
Mora’s Algorithm does not terminates for all possible inputs.

Algorithm 30.1: Noncommutative Mora’s Algorithm [15]
Input : A basis F = { f1, . . . , fn} for ideal I over a noncommutative

polynomial ring A = K [x1, . . . , xn] and an admissible order ≺.
Output : A Gröbner basis G = {g1, . . . , gt } for I (In the case of termina-

tion).
Let G = F and let B = ∅. For each pair (gi , g j ) ∈ G, i ≤ j, add an S-
polynomial S(gi , g j ) to B for each overlap x1LM(gi )y1 = x2LM(g j )y2
between the leading monomials LM(gi ) and LM(g j );
while B 	= ∅ do

Remove the first entry s1 from B. Set s ′
1 = RedG(s1);

if s ′
1 	= 0 then
Add s ′

1 to G and then for all gi ∈ G add all S(gi , g j ) to B;
end

end
Return G.

It is indeed possible to have infinite Gröbner basis for some finitely generated
ideal of A = K [x1, . . . , xn].
Proposition 30.1 Not all noncommutative monomial ideals are finitely generated.
Proof Assume to the contrary that all noncommutative monomial ideals are finitely
generated, and consider an ascending chain of such ideals J1 ⊂ J2 ⊂· · · . Then
J = ∪Ji is finitely generated and there is some d ≥ 1 such that Jd = Jd+1 =· · · .
For a counterexample, let A = K [x, y] be a noncommutative polynomial ring,
and define Ji for (i > 1) to be the ideal in A generated by the set of mono-
mials {xyx, xy2x, . . . , xyi x}. Thus, we have an ascending chain of such ideals
J1 ⊂ J2 ⊂· · · . However, because no member of this set is a multiple of any other
member of the set, it is clear that there cannot be a d ≥ 1 such that Jd = Jd+1 =· · ·,
because xyd+1x ∈ Jd+1 and xyd+1x /∈ Jd for all d > 1.
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30.3 Path Algebra

Now we are ready to study the core object of this paper, a noncommutative free
associative algebras called path algebras. We begin by defining a path algebra.

Definition 30.8 A quiver is a quadruple Q = (Q0, Q1, s, t) consisting of two sets
and two maps. The sets Q0, whose elements are called points or vertices, say
{1, 2, 3, . . . , n, . . . }, and Q1 whose elements are called arrows, say {α1, α2, α3, . . . ,

αn, . . .}. The two maps s, t : Q1 �−→ Q0 associates to each arrow α ∈ Q1 its source
s(α) ∈ Q0 and its target t (α) ∈ Q0 respectively.

An arrow α ∈ Q1 with a source s(α) = 1 and target t (α) = 2 is usually denoted
by α : 1 �−→ 2. A path x , of length l > 1, with a source a and target b, is a sequence
of arrows α1, α2, α3, . . . , αn such that a = s(α1) and b = t (αn) where αk ∈ Q1 for
all 1 ≤ k ≤ n, and t (αk) = s(αk+1) for 1 ≤ k < n. Such a path x is denoted by
x = α1α2α3 . . . αn and visualized as:

a = 1
α1−→ 2

α2−→ 3
α3−→ . . .

αn−1−−→ n
αn−→ n + 1 = b.

The length of a path x , denoted by l = l(x) is the number of arrows in it. An arrow
α : 1 �−→ 2 is a path of length 1. A tr ivial path denoted by vi is a path of length zero
associated with each vertex i . A path of length l ≥ 1 is called a cycle whenever its
source and target coincide. A loop is a cycle of l = 1. A quiver is said to be acyclic
if it has no cycles. A quiver is said to be f ini te if Q0 and Q1 are both finite sets.

Definition 30.9 Let Q be a quiver and K an arbitrary field. The path algebra K Q
of Q is the K -algebra whose underlying K -vector space has as its basis the set of
all paths of length l ≥ 0 in Q, and such that the product of two basis vectors namely
x = α1α2α3 . . . αn and y = β1β2β3 . . . βk is defined by

xy =
{

α1α2α3 . . . αnβ1β2β3 . . . βk, if s(y) = t (x)

0, otherwise

i.e the product xy is a concatenation or zero otherwise, so that Q
⋃{0} is closed

under multiplication. Multiplication as defined above is also distributive K -linearly
in Q

⋃{0}. Addition in K Q is the usual K -vector space addition where Q is a
K -basis for K Q.

The following two results, Remark30.1 and Lemma30.1, shows that K Q as defined
in Definition30.9 is indeed an associative algebra.

Remark 30.1 (Properties) [1]

(i) Let Q be finite. The set {v1, v2, v3, . . . , vn} of the trivial paths corresponding to
the vertices {1, 2, . . . , n} is a complete set of primitive orthogonal idempotents.

Thus 1 = v1 + v2 + v3 + · · · + vn =
n∑

i=1
vi is the called the identity element of

K Q.
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(ii) For each arrow α : 1 �−→ 2 we have the following defining relations:

• v2i = vi vi = vi for i = 1, 2.
• v1α = α and v2α = 0
• αv2 = α and αv1 = 0
• v1v2 = 0.

(iii) Let Q denote the set of all paths of length l ≥ 0, then the above product extend
to all elements of K Q and there is a direct sum

K Q = K Q1 ⊕ K Q2 ⊕ · · · ⊕ K Qi ⊕ . . .

Where K Qi is subspace of K Q generated by the set Qi , where Qi is the set
of all paths of length i , over K . Since the product of path of length n with path
of length m is zero or a path of length n + m then the above decomposition
defines a grading on K Q. Hence, K Q is a graded K -algebra.

Lemma 30.1 [1] Let Q be a quiver and K Q be its path algebra. Then

(i) K Q is an associative algebra.
(ii) K Q has an identity element if and only if Q is finite.
(iii) K Q is finite dimensional if and only if Q is finite and acyclic.

Definition 30.10 Anelement f ∈ K Q : ( f = ∑
λi xi , λi ∈ K ), is a linear com-

bination of paths xi ∈ Q over K . Elements of K Q will be called polynomials. The
paths xi ∈ Q appearing in each polynomials will be called monomials. We shall
denote by Mon( f ) the set of all monomials xi appearing in the polynomial f .

Example 30.1 If Q consist of one vertex and n loops, α1, α2 . . . αn, then K Q ∼=
K [X1, X2, . . . , Xn].

Q = 1
α1

α2

···
αn

The isomorphism is induced by the K -linear maps

v1 �−→ 1, α1 �−→ X1, α2 �−→ X2, . . . αn �−→ Xn.

30.3.1 Basics to Noncommutative Gröbner Basis in a Path
Algebra

For the rest of the paper, Q is taken to be finite. By convection we write a path
α1α2α3 . . . αn from left to right such that t (αi ) = s(αi+1). For path x = α1α2α3 . . . αn

we denote its length l(x) = n. Ideals of K Q are the following:
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(i) A subset L of K Q is called a left ideal if

a. 0 ∈ L
b. x + y ∈ L for all x, y ∈ L
c. xy ∈ L for all x ∈ K Q and all y ∈ L .

(ii) A subset R of K Q is called a right ideal if

(a) 0 ∈ R
(b) x + y ∈ R for all x, y ∈ R
(c) xy ∈ R for all x ∈ R and all y ∈ K Q.

(iii) A subset I of K Q is called a two-sided ideal or simply an ideal, if it is both a
left and a right ideal.

In general an ideal I in the path algebra K Q has a Gröbner basis depending on the
ordering of the paths in Q.

Proposition 30.2 An ideal I in K Q with some path ordering has a Gröbner basis
whenever the path ordering is admissible.

Definition 30.11 (Path Ordering) By a path ordering we first arbitrary order the
vertices v1 ≺ v2 ≺ v3 ≺ · · · ≺ vk and arbitrary order the arrows all larger than a given
vertex say vk as vk ≺ α1 ≺ α2 ≺ α3 ≺ · · · ≺ αr . Then refer to the noncommutative
ordering as defined in Definition30.1.

Definition 30.12 A path order ≺ is said to be admissible order if

(i) Whenever x 	= y either x ≺ y or x � y.
(ii) Every nonempty set of paths has a least element.
(iii) x ≺ y ⇒ xz ≺ yz, whenever xz 	= 0 and yz 	= 0.
(iv) Also x ≺ y ⇒ wx ≺ wy, whenever wx 	= 0 and wy 	= 0.
(v) x = yz implies x � y and x � z.

Remark 30.2 Conditions 1 through 3 makes ≺ a right admissible order. Condition
1, 2 and 4 make ≺ left admissible ordering whilst condition 2 say that an admissible
ordering is a well ordering.

30.3.1.1 Constructing Admissible Path Ordering

In the following, we use appropriate monomial (path) ordering to construct admis-
sible ordering for paths in K Q.

(i) Left Lexicographic order: Let x = α1 . . . αn and y = β1 . . . βm be paths.We say
that x is less than y with respect to left lexicographic order and denote x ≺llex y
if there exist a path z (otherwise we set z = 1), such that x = zαk . . . αn, y =



812 D. K. Waweru and D. M. Maingi

zβs . . . βm andαk ≺ βs . Left lexicographic order is not a left admissible ordering
since it is not a well ordering. For example let

Q = 1 2

α

β

with α ≺ β. We have (αβ �llex α2β �llex α3β . . . ). Then the subset {αnβ :
n ∈ N − {0}} ⊂ Q does not have a least element.

(ii) Length left lexicographic order: Let x = α1 . . . αn and y = β1 . . . βm be paths.
We say that x is less than y with respect to length left lexicographic order
and denote x ≺Lex y if l(x) < l(y) or l(x) = l(y) and x ≺llex y. Length Left
lexicographic order is a left admissible order.

(iii) Right lexicographic order: Let x = α1 . . . αn and y = β1 . . . βm be two paths
in Q. We say that x is less than y with respect to right lexicographic order
and denote x ≺rlex y if there exist a path z (otherwise we set z = 1), such
that x = α1 . . . αk z, y = β1 . . . βs z and αk ≺ βs . This ordering is not a well
ordering and hence not admissible.

(iv) Length right lexicographic order: Let x = α1 . . . αn and y = β1 . . . βm be paths.
We say that x is less than y with respect to length right lexicographic order
and denote x ≺r Lex y if l(x) < l(y) or l(x) = l(y) and x ≺rlex y. Length right
lexicographic order is a right admissible order.

(v) Lexicographic Order: Order the arrows arbitrarily α1 ≺ ... ≺ αm and also order
the vertices. The vertices will be less than all paths of positive length. Let
x = α1 . . . αn and y = β1 . . . βm be paths. We say that x is less than y with
respect to lexicographic order and denote x ≺lex y if working left-to-right, the
first (say i − th) arrow on which x and y differ is such that the αi ≺ βi in the
arrow ordering. This ordering is not admissible.

(vi) The total lexicographic order: Order the arrows arbitrarily α1 ≺ ... ≺ αm and
also order the vertices. The vertices will be less than all paths of positive length.
Let x, y ∈ Q. We say that x is less than y with respect to total lexicographic
order and denote x ≺T lex y, if there exists i such that ∀ j < i α j ’s occurs in x
and y the same number of times, and αi occurs in x less than it occurs in y. If
x and y have the same number of each arrow then x ≺lex y ⇒ x ≺T lex y. This
ordering is admissible.

With an admissible ordering, we can calculate the Gröbner basis for ideals in a
path algebras. Calculating this basis consists of a series of division and reduction
algorithms as summarized below.

Definition 30.13 Let ≺ be an admissible ordering and A = K Q. Then Defini-
tion30.4 hold true for all f ∈ A. Moreover, if x, y ∈ Q, x left divide y if y = wx ,
and x right divide y if y = xz. So we shall say x divides y if y = wxz for some paths
w, z ∈ Q.
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Definition 30.14 Let x and y be paths. An element f ∈ K Q \ {0} is said to be
uniform if there exist vertices u and v such that f = u f = f v = u f v.

Proposition 30.3 ([10]) All elements of K Q are uniform.

Proof f =
n∑

i=1
λi xi is uniform since for each monomial xi , which is a sequence of

arrows, has a source vertex say ui and a target vertex say vi and hence xi = ui xi vi .

Therefore, f is sum if uniform elements f =
n∑

i, j=1
ui f v j .

Let H be a subset of K Q and g ∈ K Q. We say that g can be reduced by H if for
some x ∈ Mon(g) there exist h ∈ H such that LM(h) divides x , i.e x = pLM(h)q
for some monomials p, q ∈ K Q. The reduction of g by H is given by g − λphq
where h ∈ H , p, q ∈ Q and λ ∈ K \ {0} such that λpLM(h)q is a term in g, λ is
uniquely determined by λ = LC(g)

LC(h)
. Moreover,

(i) A total reduction of g by H is an element resulting froma sequence of reductions
that cannot be further reduced by H .

(ii) We say that an element g ∈ K Q reduces to 0 by H if there is a total reduction
of g by H which is 0. In general two total reductions need not be the same.

(iii) A set H ⊂ K Q is said to be a reduced set if for all g ∈ H , g cannot be reduced
by H − {g}.

30.4 One-Side Gröbner Bases in Path Algebra

Next,we introduce left and right division algorithms for polynomials in path algebras.
These algorithms will be indirect entries in the respective left and right Buchberger’s
Algorithm which in turn produces respective left and right Gröbner basis. One-sided
Gröbner basis and all corresponding one-sided division algorithms are given in this
section.

30.4.1 Left Gröbner Bases in Path Algebra

Let L be a left ideal of K Q and ≺ a left admissible order. We say that a set GL ⊂ L
is a left Gröbner basis for L with respect to≺, if for all f ∈ L \{0} there exist g ∈ GL

such that LM(g) left divides LM( f ). Equivalently, we say that a set GL ⊂ L is a
left Gröbner basis for L with respect to a left admissible order ≺ if 〈LM(GL)〉 =
〈LM(L)〉.
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Theorem 30.1 ([2]) Let ≺ be a left admissible ordering and S = { f1, . . . , fn} be a
set of nonzero polynomials in K Q. For g ∈ K Q \ {0} there exist a unique determined
expression g =

n∑

i=1
gi fi + h where h, g1, . . . , gn ∈ K Q satisfying:

A. For any path p occurring in each gi , t (p) = s(LM( fi )).
B. For i > j , no term gi LT ( fi ) is left divisible by LT ( f j ).
C. No path in h is left divisible by LM( fi ) for all 1 ≤ i ≤ n.

Remark 30.3 The expression g =
n∑

i=1
gi fi + h in Theorem30.1 is called the left

standard representation of g ∈ K Q with respect to the set S. Algorithm30.2 gives as
an output h, a remainder of g after left division by S. We denote by LRedS(g) = h
the particular remainder of g produced by the division algorithm with respect to a
fixed admissible ordering.

Algorithm 30.2: Left Division Algorithm
Input : g, S = { f1, . . . , fn}, fi ∈ K Q \ {0} and left admissible order ≺

on K Q.

Output : gi , . . . , gn, h ∈ K Q such that g =
n∑

i=1
gi fi + h.

a. For anymultiple v1i of LT ( f1) occurring in g with (1 ≤ i ≤ r1),
find for each i a term h1i such that v1i = h1i LT ( f1). Afterwards
do the same for any multiple v2i of LT ( f2) occurring in g such
that v2i = h2i LT ( f2) with 1 ≤ i ≤ r2. Continue in this way
for any multiple vki of LT ( fk) such that vki = hki LT ( fk) with
1 ≤ i ≤ rk and k ∈ 3, . . . , n;

b. Write g =
n∑

j=1
(
r j∑

i=1
h ji )LT ( f j ) + h1 and set g1 = g −

(
n∑

j=1
(
r j∑

i=1
h ji ) f j + h1);

c. If g1 = 0 then we are done and g =
n∑

j=1
g j LT ( f j ) + h1 where

g j =
r j∑

i=1
h ji and h1 = h;

d. If g1 	= 0, go back to a and continue the process with g = g1.

Example 30.2 Let Q be the quiver with one vertex and three loops over the field of
rationals.

Q = 1
x

y

z
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With a left length lexicographic ordering z ≺ y ≺ x . We find the standard rep-
resentation of g = zxxyz + xyxxy − xyz with respect to the set { f1 = xyz −
zy, f2 = xxy − yx}. We first note that LM( f1) = xyz and LM( f2) = xxy. Initial-
izing we get g = zxLM( f1) + xyLM( f2) − LM( f1). We replace g by g1 = g −
(zx f1 + xy f2 − f1) = zxzy + xyyx + zy. Neither LM( f1) and Lm( f2) left divides
zxzy + xyyx + zy, so we set h = zxzy + xyyx + zy and zxzy + xyyx + zy is
replaced by 0 and the algorithm stops. Thus, the standard representation of g is
g = zx f1 + xy f2 − f1 + h.

Proof of Theorem 30.1

(i) Existence: First the algorithm removes anymultiple of f1 from g. Then removes
any multiple of f2 and continue in this way until any multiple of any of fk

has been removed. In this case if g =
n∑

j=1

r j∑

i=1
h ji LT ( fi ) + h1 is the resulting

standard representation of g, we have either g1 = g − (
n∑

j=1

r j∑

i=1
h ji ( fi ) + h1) =

0 or LM(g1) ≺ LM(g). Since the path ordering≺ iswell ordering, by recursion

the algorithm produces a standard representation for g1, g1 =
n∑

j=1

r j∑

i=1
h1j i ( fi ) +

h1, satisfying conditions A, B andC . Thus g =
n∑

j=1

r j∑

i=1
(h ji + h1j i )( fi ) + (h1 +

h1) is a representation for g satisfying the conditions A, B and C .
(ii) Uniqueness: For g ∈ L \ {0}, let g = g1 f1 + · · · + gn fn + h. Then the three

conditions A, B and C implies that the terms LT (gi fi ) = LT (gi )LT ( fi ) and
LT (h) do not divide each other to the left. Otherwise these terms cancels with

each other into zero polynomial. Therefore, the representation g =
n∑

i=1
gi fi + h

is unique.
(iii) Termination: The algorithm produces elements g, g1, g2, . . . , gk so that at each

kth iteration LM(gk+1) ≺ LM(gk). Since ≺ is a well ordering, the algorithm
terminates at some gk = 0 satisfying the conditions of the theorem.

Given a finite generating set S = { f1, . . . , fn}. For a left admissible order ≺, the
following algorithm gives as an output RL = RL(S), a left reduction of S.
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Algorithm 30.3: Set Left Reduction Algorithm
Input : S = { f1, . . . , fn}, fi 	= 0, and a left admissible ordering ≺.
Output : RL a left reduction of the set S.

a. RL = ∅;

b. Find the maximal element fk of S with respect to ≺, for 1 ≤ k ≤ n;

c. Write S = S − { fk};

d. Do f ′
k = LRedS∪RL ( fk);

e. If f ′
k 	= 0 then RL = RL ∪ { f ′

k
LM( f ′

k )
};

f. If f ′
k = 0, Go back to a and continue with the process.

g. If fk 	= f ′
k then S = S ∪ RL ; Go back to a and continuewith the process.

Proposition 30.4 ([2]) Let G = { f1, . . . , fn} ⊂ K Q be a left Gröbner basis for the
ideal

L = 〈 f1, . . . , fn〉 ⊂ K Q.

If g =
n∑

i=1
gi fi + h is a left standard expression of g ∈ K Q \ {0} then g ∈ L if and

only if h = 0.

Proof If h = 0 clearly g ∈ L . Conversely if g ∈ L then h ∈ L imply LM(h) ∈
〈LM( f1), . . . , LM( fn)〉 which is impossible by the Theorem30.1.

Definition 30.15 (Left S-Polynomial) Let f, g ∈ K Q \ {0} and ≺ be a left admissi-
ble ordering. Let p, q be paths such that pLM( f ) = qLM(g), the left S-polynomial
SL( f, g) is defined as

SL( f, g) = p

LC( f )
· f − q

LC(g)
· g.

Theorem 30.2 (Left Buchberger’s Criterion) [2] Let f1, . . . , fn ∈ K Q \ {0} and ≺
be a left admissible ordering. Let SL( fi , f j ) =

n∑

k=1
gk fk + hi j be a left a standard

expression of SL( fi , f j ) for each pair (i, j). Then { f1, . . . , fn} form a left Gröbner
basis for L = 〈 f1, . . . , fn〉 if and only if all the remainders hi j are zero.



30 Two-Sided Noncommutative Gröbner Basis on Quiver Algebras 817

Algorithm 30.4: Left Buchberger’s Algorithm
Input : L = 〈 f1, . . . , fn〉 ⊂ K Q and a left admissible order ≺.
Output : A reduced left Gröbner basis Gm for L .
a. m = 0; G0 = ∅; G1 = RL({ f1, . . . , fn});

b. While Gm 	= Gm+1, m = m + 1;

c. For all g, h ∈ Gm find all SL(g, h) 	= 0;

d. Write G ′
m = G ′

m ∪ {SL(g, h)};

e. Gm+1 = RL(G ′
m).

30.4.2 Right Gröbner Basis in a Path Algebra

The right-sided division and reduction algorithms, in many ways, give a “right”
version of the Gröbner basis theory as discussed in Sect. 30.4.1. This means that
concepts from the previous section will have to be duplicated with a slight variant in
the division as right-sided operation. Hence, it is omitted here, and we instead illus-
trate right Gröbner basis for an ideal in a path algebra using the following example.

Example 30.3 Let Q be the quiver
1 2

3

z

y
t x

Let F = { f1 = zt x3, f2 = zt + y} be a subset of K Q with respect to the right length
lexicographic ordering v1 ≺ v2 ≺ v3 ≺ t ≺ z ≺ y ≺ x .Wenote that LM( f1) = zt x3

and LM( f2) = zt and they only factor each other to the right in one way namely
LM( f1)v3 = LM( f2)x3. Thus,wehaveone right S-polynomial SR( f1, f2) = f1v3 −
f2x3 = −yx3. Neither LM( f1) nor LM( f2) right divide−yx3 sowe add f3 = −yx3

to F. Now every right S-polynomial reduces to zero by F. Thus F = { f1, f2, f3} is a
right Gröbner basis for the ideal R = 〈 f1, f2〉.

30.5 Two-Sided Gröbner Bases

We say that a set G ⊂ I is a Gröbner basis for I with respect to an admissible order
≺ if 〈LM(G)〉 = 〈LM(I )〉.
Proposition 30.5 If G is a Gröbner basis for the ideal I , then G is a generating set
for the elements of I and also G reduces elements of I to 0.
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Proof Let K Q be a path algebra with an admissible ordering≺. Let I be an ideal and
letG be aGröbner basis for I . Let fi ∈ I , i = 1, . . . , n, . . ., for every fn ∈ I such that
fn 	= 0 ∃ g ∈ G such that LM(g) divides LM( fn). Let fn+1 = fn − LC( fn)

LC(g) xgy be
a reduction of fn by g. Then LM( fn+1) ≺ LM( fn). But g, fn ∈ I =⇒ fn+1 ∈ I .
Repeating this reduction on fi to produce fi+1 yields a decreasing sequence
LM( f1) � LM( f2) � . . . . . . ,which terminates only if fn = 0. Since≺ is an admis-
sible order, every set of paths has a least element hence the sequence must terminate
at some fn = 0.

30.5.1 Division Algorithms

Theorem 30.3 Let ≺ be an admissible ordering and S = { f1, . . . , fn} be a set of
non zero polynomials in K Q. For g ∈ K Q \ {0} there exist a unique determined

expression g =
n∑

i=1
wi fi zi + h where h,w1, . . . ,wn, z1 . . . , zn ∈ K Q satisfying:

A3. For any path p occurring in each wi , t (p) = s(LM( fi )) and for any path q
occurring in zi , t (LT ( fi )) = s(q).

B3. For i > j no term wi LT ( fi )zi is divisible by LT ( f j ).
C3. No path in h is divisible by LM( fi ) for all 1 ≤ i ≤ n.

Algorithm 30.5: Two-sided Division Algorithm
Input : g, S = { f1, . . . , fn} and an admissible order ≺ on elements of

K Q.

Output : w1, . . . ,wn, z1, . . . , zn, h ∈ K Q such that g =
n∑

i=1
wi fi zi + h.

a. For any multiple O1i of LT ( fi ) occurring in g with
1 ≤ i ≤ r1, find for each i the terms u1i and v1i such that
O1i = u1i LT ( f1)v1i . Following this do the same for any multi-
ple O2i of LT ( f2) occurring in g such that O2i = u2i LT ( f2)v2i
with 1 ≤ i ≤ r2. Continue in this way for any multiple Oki

of fk such that Oki = uki LT ( fk)vki with 1 ≤ i ≤ rk and
k ∈ {3, . . . , n};

b. Write g =
n∑

j=1

r j∑

i=1
u ji LT ( f j )v ji + h1 and set g1 =

g − (
n∑

j=1

r j∑

i=1
u ji f j v ji + h1);

c. If g1 = 0 then we are done and g =
n∑

j=1
wj f j z j + h1 where

wj =
r j∑

i=1
u ji , z j =

r j∑

i=1
v ji and h = h1;

d. If g1 	= 0, go back to a and proceed with g = g1.
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Let RedS(g) = h denote the particular total reduction of an element g by a set S
produced by the Algorithm30.5 with respect to a fixed admissible ordering.

Proof (i) Existence : This algorithm finds a standard representation of g as fol-
lows. First it removes anymultiple of f1 in g. Afterwards removes anymultiples
of f2. Continue in this way until any multiple of any fk, k ∈ {3, 4, . . . , n} has
been removed. Hence, if g =

n∑

j=1

r j∑

i=1
u ji LT ( fi )v ji + h1 is the resulting repre-

sentation of g then either g1 = g − (
n∑

j=1

r j∑

i=1
u ji ( fi )v ji + h1) equal to zero and

we are done, or LM(g) � LM(g1). Since ≺ is a well ordering then the algo-

rithm finds a representation g1 =
n∑

j=1

r j∑

i=1
u1j i fi v

1
j i + h1 satisfying conditions

A3, B3 and C3 so that g =
n∑

j=1

r j∑

i=1
(u1j i + u ji ) fi (v1j i + v ji ) + (h1 + h1) is the

standard representation of g satisfying conditions A3, B3 and C3.
(ii) Uniqueness : Given g and conditions A3, B3 and C3, no term LT (wi fi zi )

for all 1 ≤ i ≤ n divides LT (h). Therefore, the algorithm produces a unique

standard representation g =
n∑

i=1
wi fi zi + h where wi or zi may be unit mono-

mials.
(iii) T ermination : Note that the algorithm produces elements g, g1, g2, . . . , gk

such that at each kth iteration LM(gk) � LM(gk+1) and the algorithm must
terminate at some k where

gk =
n∑

j=1

r j∑

i=1

u ji ( fi )v ji + hk = 0

and every monomial occurring in the final hk is not divisible by LM( fi ), 1 ≤
i ≤ n.

Example 30.4 Consider the quiver Q = 1

xy

z

Let ≺ be the total lexicographic order with x � y � z. Let’s divide f = zxxyx
by { f1 = xy − x, f2 = xx − xz}. Note that the LM( f1) = xy and LM( f2) = xx .
Beginning the Algorithm30.5, we see that zxxyx = (zx)LM( f1)(x). Thus, p1 =
zx, q1 = x and we replace zxxyx by zxxyx − zx( f1)x = zxxx . Now LM( f1) does
not divide zxxx . Continuing, LM( f2) does. There are twoways to divide zxxx by xx
and for the algorithm to be precisewemust choose one. Saywe choose the "left most"
division, as based on our ordering going from left to right. Then zxxx = z(LM( f2))x
and we let p2 = z, q2 = x and replace zxxx by zxxx − z( f2)x = zxzx . Neither
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LM( f1) nor LM( f2) divide zxzx so we let r = zxzx and zxzx is replaced by
0 and the algorithm stops. We have zxxyx = (zx) f1(x) + (z) f2(x) + zxzx . The
remainder is zxzx .

Given a finite generating set S = { f1, . . . , fn}, an ideal I ⊂ K Q, and an admissible
order ≺ the following algorithm gives as an output R(S) a finite monic reduced
generating set for I .

Algorithm 30.6: Set Reduction Algorithm
Input : S = { f1, . . . , fn}, fi 	= 0, and an admissible ordering ≺.
Output : R = R(S) a reduction of elements of S.

a. R = ∅;

b. Find the maximal element fk of S with respect to ≺;

c. Write S = S − { fk};

d. Do f ′
k = RedS∪R( fk);

e. If f ′
k 	= 0 then R = R

⋃{ f ′
k

LM( f ′
k )

};

f. If f ′
k = 0, Go back to a and continue with the process.

g. If fk 	= f ′
k then S = S ∪ R; Go back to a and continue with the

process.

Proposition 30.6 Given an ideal I in K Q and an admissible order ≺, there is a
unique Gröbner basis G such that G is a reduced set and the coefficient of the leading
monomials of the polynomials in G are all 1.

Proof Let K Q be a path algebra, I an ideal and ≺ an admissible order. Let G and
G ′ be Gröbner bases for I . Suppose G and G ′ are both reduced monic sets. Since
G ⊂ I , for every g1 ∈ G there exist g′ ∈ G ′ such that LM(g′) divides LM(g1).
Also since G ′ ⊂ I there exist g2 ∈ G such that LM(g2) divides LM(g′). Thus,
LM(g2) divides LM(g1). But G is a reduced set hence we must have that g2 = g1 so
that LM(g1) = LM(g′) = LM(g2). So there is a bijection correspondence between
elements of G and the elements of G ′ with the same leading monomials. Thus,
g′ cannot be reduced by G − {g1}. Hence g′ − g1 cannot be reduced by G, since
g′ − g1 ∈ I . Thus g′ − g1 = 0 =⇒ g′ = g1 hence G ′ = G.

We call the unique reducedmonicGröbner basis the reducedGröbner basis for I . The
reduced Gröbner basis G is minimal in the sense that for any other reduced Gröbner
basis G ′ for the same ideal with the same admissible order, we have LM(G ′) ⊂
LM(G).
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30.5.2 Two-Sided S-Polynomial

While noncommutative S-polynomials for each pair of polynomials f, g ∈ K Q may
be different due to different factorizations in the set of monomials in K Q, for one-
sided case these S-polynomials are finitely many. However, we may have ambiguity
while dealing with two-sided S-polynomials due to possible different choices of right
and left factors of each overlap of LM( f ) and LM(g). Therefore, a condition, namely
l(p) ≤ l(LM(g)) whenever LM( f ) · p = q · LM(g), is added to the definition of
two-sided S-polynomial to eliminate such ambiguity.

Definition 30.16 Let f, g ∈ K Q with an admissible order ≺ on elements of K Q.
An ( f − g) overlap is said to occur if there are paths p and q of positive length such
that LM( f )p = qLM(g)where l(p) ≤ l(LM(g)). Thus an f and g are said to have
an overlap relation or a two-sided S-polynomial denoted by S( f, g) and defined as

S( f, g, p, q) = 1

LC( f )
f · p − 1

LC(g)
q · g.

Remark 30.4 Given elements f, g ∈ K Q such that LM( f )p = qLM(g) where
l(p) ≤ l(LM(g)), monomials p and q will not necessarily be unique. Consequently,
the same two elements f and g may still have multiple S-polynomials. In addition
an element may have an S-polynomial with itself, i.e S( f, f ) will be a possible.

Example 30.5 Let Q be 1

x

y

and x ≺ y with respect to the total

lexicographic order. Let f = 5yyxyx − 2xx and g = xyxy − 7y. We see that
LM( f ) = yyxyx and LM(g) = xyxy. The following are the S-polynomials among
f and g are:

S( f, g, y, yy) = 1
5 f y − yyg = − 2

5 xxy + 7yyy
S( f, g, yxy, yyxy) = 1

5 f y − yyg = − 2
5 xxyxy + 7yyxyy

S(g, g, xy, xy) = gxy − xyg = −7yxy + 7xyy

Lemma 30.2 (Bergman’sDiamond, [4])LetG bea set of uniformelements that form
a generating set for the ideal I ⊂ K Q, such that for all g, g1 ∈ G, LM(g) 	 |LM(g1).
If for each f ∈ I and g ∈ G every S-polynomial S( f, g, p, q) is reduced to 0 by G,
then G is a Gröbner basis for I .
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30.5.3 The Main Theorem

The beauty ofAlgorithm30.5 inTheorem30.3 is that its outputs are uniform elements
of K Q. In this section we shall use Lemma30.2 to greatly reduces calculations and
ascertain finite Gröbner basis whenever Algorithm30.7 terminates.

Theorem 30.4 Given a path algebra K Q, an admissible order ≺ and a finite gen-
erating set

{ f1, f2, . . . , fm}

for an ideal I the following algorithm gives a reduced Gröbner basis for I in the
limit.

Algorithm 30.7: Two-sided Buchberger’s Algorithm
Input : I = 〈 f1, . . . , fn〉, fi 	= 0 and an admissible order ≺.
Output : A reduced Gröbner basis Gm for I .

a. m = 0;G0 = ∅;G1 = R({ f1, f2, . . . , fn});

b. For Gm 	= Gm+1;m = m + 1;

c. For all pairs (gi , g j ) ∈ Gm and all 1 ≤ i ≤ j ≤ n, find
S(gi , g j , p, q) 	= 0;

d. Do G ′
m = Gm

⋃{S(gi , g j , p, q)};

e. Gm+1 = R(G ′
m).

Let Gm be the output of the Algorithm30.7. Thus, if this algorithm terminates on
a given mth iteration. The set Gm is a reduced Gröbner basis.

Proof (i) We first show by induction on m that at each mth iteration, every S-

polynomial has a standard representation S(gi , g j , p, q) =
n∑

k=1
wk fkzk + hi j .

Consider m = 1 : G1 = R({ f1, f2, . . . , fn}). The algorithm produces f =
S(gi , g j , p, q) =

n∑

k=1
wk fkzk + hi j as a reduced of S(gi , g j , p, q) with respect

to S ∪ R. If hi j 	= 0, then hi j ∈ G2 and again f has a standard representation
with respect to G2. Suppose that the hypothesis hold true for m. We now prove
for m + 1. If the algorithm terminates at m + 1 then Gm+2 = Gm+1 = Gm

and hence f = S(gi , g j , p, q) has a standard representation with respect
to Gm+2 = Gm+1. If the algorithm does not terminate at m + 1, Gm+1 =
R(Gm ∪ {S(gi , g j , p, q)}) so that the algorithm reduces f = S(gi , g j , p, q)

to hi j . This ensures that f has a standard representation with respect to Gm+2.
Hence, the hypothesis hold true for m + 1. By induction the statement hold
true for all m.
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(ii) We now show that the algorithm terminates at m + 1 if and only if Gm is a
finite Gröbner basis of I : If the algorithm terminates at some m + 1 then all
S(gi , g j , p, q) = 0 andGm+1 = R(Gm) = Gm , forGm is a reduced set at every
step. Since 〈Gm〉 = I then we conclude that Gm is a finite reduced Gröbner
basis for I . Conversely if Gm is a finite reduced Gröbner basis of I , then
R(Gm) = Gm and for each pair (gi , g j ) ∈ Gm , f = S(gi , g j , p, q) is reduced
to zero by Gm . Therefore, the algorithm terminates at Gm+1.

(iii) If the algorithm never terminates, Let G = ∪∞
m=1Gm , then for m sufficiently

large every S-polynomial S(gi , g j , p, q) has a standard representation with
respect to Gm+1 ⊂ G. Obviously 〈G〉 = I and hence G is an infinite Gröbner
basis of I .

Example 30.6

Q =

2

4 1

3

β

ε

α

γδ

with the total lexicographic ordering

v1 ≺ · · · ≺ v4 ≺ ε ≺ β ≺ δ ≺ α ≺ γ.

Let f = αβ − γ δ, g = βε and h = ε3. We see that LM( f ) = γ δ, LM(g) = βε

and LM(h) = ε3. LM( f ) 	 |LM(h) and LM( f ) 	 |LM(h). The only possible S-
polynomial is S(g, h, ε2, β) = 0. Thus, the set G={ f, g, h} is the Gröbner basis
since all the S-polynomial reduces to 0. On the other hand if we consider another
admissible order v1 ≺ · · · ≺ v4 ≺ ε ≺ β ≺ δ ≺ γ ≺ α. We now see that LM( f ) =
αβ, LM(g) = βε and LM(h) = ε3. In this case, the only S-polynomial possi-
ble is S( f, g, ε, α) = (αβ − γ δ)ε − α(βε) = −γ δε. LM(S( f, g, ε, α)) = γ δε /∈
〈LM(F), LM(g), LM(h)〉, Thus, G = { f, g, h} is not a Gröbner basis for I = 〈G〉.
We add r = γ δε to G, and we set G = { f, g, h, r}. Therefore, S( f, g, ε, α) = r and
there are no further possible S-polynomial relations. Thus R(G) = G = { f, g, h, r}
is a Gröbner basis for I .

In the work of [10], the author characterizes quivers whose path algebra has finite
Gröbner basis. It follows that we can use the above procedures to exhaustively study
finite Gröbner path algebras.

TheRefs. [3, 6, 9, 11–14, 16] are recommended to the reader for further interesting
relevant references on the topics considered in this work.
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