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Abstract. Estimating the similarity of non-rigid shapes and parts
thereof plays an important role in numerous geometry analysis applica-
tions. We propose a method for evaluating the similarity and matching
of shapes describing articulated objects that gracefully handles partial-
ity. The correspondence between a part and a whole is formulated as
the alignment of spectra of operators closely related to the Laplace-
Beltrami operator (LBO). The proposed approach considers multiple
metrics defined on the same surface, which provide a compact descrip-
tion of the underlying geometric structure from different perspectives.
Specifically, we study the scale-invariant metric and the corresponding
scale-invariant Laplace-Beltrami operator (SI-LBO) together with the
regular metric and the regular LBO. We demonstrate that, unlike the
regular LBO, the low pass part of the SI-LBO eigen-structure is sensitive
to regions with high Gaussian curvature which are of semantic impor-
tance in articulated objects. Thus, the low part of the SI-LBO’s spectrum
better captures curved regions and complements the information encap-
sulated in the lower part of the regular LBO’s spectrum. A two spectra
matching loss lends itself to a method that outperforms state of the art
axiomatic and learning based techniques when evaluated on the task of
partial matching on well established benchmarks (Code and results are
available at: https://github.com/davidgip74/DualSpectraAlignmnent).

Keywords: Laplace-Beltrami operator · Gaussian curvature · metric
tensor · shape analysis · partial shape matching

1 Introduction

Non-rigid shape matching is a fundamental task in many computer vision appli-
cations such as augmented reality, medical image analysis, and face recognition.
Aligning shapes captured in real-world scenarios, where occlusions and partial
views are common, is particularly difficult when considering the missing informa-
tion. Some recent papers [3,15,16,18,21,23] address this challenge by introducing
methods for partial shape matching.
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In 2019, Rampini et al. [21] addressed the problem by matching a part of
a given shape to the whole. The matching region in the full shape is found
by aligning the eigenvalues of differential operators closely related to the LBO.
Unlike methods that rely on local descriptors that produce dense point-to-point
correspondences, the region matching formulation adopts a global perspective
that makes it inherently resilient to local discrepancies [14]. Such spectral-based
region matching can be adapted to challenging settings such as matching approx-
imately isometric shapes or shapes with missing parts. In this paper we continue
the shape-DNA [22] line of thought, and the more recent efforts [8,17,20], that
argue that the eigenvalues of the Laplace-Beltrami operator (LBO), known as
spectrum, could be used as shape descriptors. Exploiting this idea, we adopt and
adapt the potential alignment method proposed in [21] and define a combina-
tion of two Hamiltonian operators [7] by which the shape matching by spectrum
alignment is performed.

Roughly speaking, the LBO spectrum captures the surface structure as a
whole. It therefore has a global flavor that limits its ability to describe fine details
[19,21] that are associated with local geometric structures of regions with high
Gaussian curvature. We demonstrate that the spectrum of the scale-invariant
LBO [2] depends mainly on curved regions which usually contain meaningful
details, like joints and fingertips, that are essential when considering articulated
objects. The complementary structures captured by each of the two spectra,
that share the same support, motivates the proposed multi-metric approach. To
demonstrate the advantage of this approach, we first show that comparing the
dual spectra of full shapes results in improved separation of closely related classes
of shapes, such as dogs and wolves. We then study the problem of matching a
part of a shape to its whole. We demonstrate that matching two spectra allows
to lock onto fine details that are missed when aligning a single spectrum.
The main contributions of this paper include,

– Matching part of a shape to its whole using more than a single metric defined
on the same surface.

– A theoretical interpretation of the scale-invariant LBO spectrum as an indica-
tor of regions with high Gaussian curvature that are semantically important
when describing articulated objects.

– Outperforming state of the art learning and axiomatic methods for partial
shape matching tested on challenging benchmarks like SHREC’16 CUTS [9]
and PFARM [3,13].

2 Background

Shapes as Riemannian Manifolds. We model a shape as a Riemannian manifold
M = (S, g), where S is a smooth two-dimensional surface embedded in R

3 and
g a metric tensor, also referred to as first fundamental form. The metric tensor
defines geometric quantities on the surface, such as lengths of curves and angles
between vectors. Note, that the same surface S with a different metric g̃ can be
used to define a different manifold M̃ = (S, g̃).
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2.1 The Laplace-Beltrami Operator

The Laplace-Beltrami operator (LBO) Δg is an ubiquitous operator in shape
analysis. It generalizes the Laplacian operator to Riemannian manifolds,

Δgf � 1
√|g|div(

√
|g|g−1∇f) , f ∈ L2(M) , (1)

where |g| is the determinant of g, and L2(M) stands for the Hilbert space of
square-integrable scalar functions defined on M.

The LBO admits a spectral decomposition under homogeneous Dirichlet
boundary conditions,

−Δgφi(x) = λiφi(x) , x ∈ M \ ∂M
φi(x) = 0 , x ∈ ∂M (2)

where ∂M stands for the boundary of manifold M. The set {φi}i≥0 constitutes a
basis invariant to isometric deformations. It can be regarded as a generalization
of the Fourier basis [26].

2.2 The Hamiltonian Operator in Shape Analysis

In 2018, Choukroun et al. [7] adapted the well-known Hamiltonian operator Hg

from quantum mechanics to shape analysis,

Hg � −Δg + v, (3)

with v : S → R
+. Hg is a semi-positive definite operator that admits a spectral

decomposition under homogeneous Dirichlet boundary conditions.
The Hamiltonian operator was first introduced to shape analysis in [7] where

a comprehensive survey in this context could be found, see also [12]. For our
discussion, the most important property of the Hamiltonian is,

Property 1 Let M = (S, g) be a Riemmanian manifold and v : S → R
+ a

potential function. The absolute value of eigenfunctions φi of the Hamiltonian
exponentially decay in every ŝ ∈ S for which v(ŝ) > λi.1

Figure 1 illustrates that the potential can be considered as a mask determining
the domain at which the LBO embedded in the Hamiltonian is effective. A second
key property of the Hamiltonian is the differentiability of its eigenvalues with
respect to its potential function [1].

Property 2 The eigenvalues {λi}i≥0 of the discretized Hamiltonian operator H
are differentiable with respect to the potential v.

1 See [4] page 403 for a sketch of proof.
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Fig. 1. Top: First eigenvectors of the LBO of the partial shape N . Bottom: First eigen-
vectors of the Hamiltonian of the full shape M. The Hamiltonian is defined with a step
potential v (in black) corresponding to the effective support of N . With the potential v,
the eigenfunctions of the LBO and the Hamiltonian are similar up to a sign.

3 A Single Surface Treated as Two Manifolds

Shape properties, including the notion of similarity itself, are affected by the
choice of a metric. Two surfaces can be isometric w.r.t. one metric and non-
isometric w.r.t. another, see examples in [11]. Considering multiple metrics for
the same surface can therefore be viewed as considering alternative perspectives
of the same shape, each being sensitive to different types of deformations. Specif-
ically, we use the regular and the scale-invariant metrics. The leading eigenvalues
in the spectrum of the SI-LBO are influenced by regions with high Gaussian cur-
vature like joints and fingertips which are essential in representing articulated
shapes. The LBO leading eigenvalues, at the other end, treat all surface points
alike, and are thus less sensitive to these geometric structures.

3.1 Scale Invariance as a Measure of Choice

Scale Invariant Metric. One version of a scale-invariant metric for surfaces uti-
lizes the Gaussian curvature K [10] as local scaling of the regular metric elements.
A scale invariant pseudo-metric g̃ can be defined by its elements as,

g̃ij � |K| gij , (4)

where gij are the elements of the regular metric tensor. Adding a small pos-
itive constant ε ∈ R

+ to the Gaussian curvature, so that, g̃ij =
√

ε + K2 gij ,
defines a metric. The modulation by a Gaussian curvature conformally shrinks
intrinsically flat regions into points. The LBO of a Riemmanian manifold M̃,
defined by the surface S equipped with the scale-invariant metric g̃ is called the
scale-invariant Laplace-Beltrami Operator (SI-LBO) [2],

Δg̃ = |K|−1Δg. (5)
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Fig. 2. Absolute value of the Gaussian curvature texture mapped to shapes from
TOSCA [6]. Regions with large curvature magnitudes are darker, and have a larger
influence on the spectrum of the SI-LBO, according to Theorem 1. These regions con-
tain important details that can be used to classify an object.

Scale-Invariant Metric and Articulated Objects. The scale-invariant metric
inflates semantically important regions in articulated objects. Figure 2 shows
the curvature magnitude for some shapes from SHREC’16 [9]. In the human
case, for instance, the scale invariant metric accentuates the head, the hands
and the feet, at the expense of flat regions such as the back and the legs. Intu-
itively, the scale-invariant metric shrinks intrinsically flat regions into points and
inflates intrinsically curved regions. We formalize this intuition in the spectral
domain with a direct generalization of the Weyl law for the SI-LBO.

Lemma 1 Let M̃ = (S : Ω ⊆ R
2 → R

3, g̃) be a Riemmanian manifold defined
with the scale-invariant metric tensor g̃ and {λ̃i}i≥1 the spectrum of the scale-
invariant LBO of M̃. It holds, λ̃i ∼ 2πi∫

ω∈Ω
|K(ω)|da(ω)

, where ∼ stands for asymp-
totic equality.

Using Lemma 1, a simple perturbation analysis expresses the influence of the
curvature on the spectrum of the SI-LBO.

Theorem 1. Consider a perturbation ε δp of the curvature at p ∈ M̃ where ε > 0

and δ is a Dirac delta function on M̃. Denote by δK �
∫

Ω
ε δp(ω)da(ω)∫

Ω
|K(ω)|da(ω)

the relative

perturbation of the curvature and by δλ̃i � λ̃i−μ̃i

λ̃i
the relative perturbation of λ̃i,

where μ̃i is the ith eigenvalue of the perturbed manifold. δλ̃i respects δλ̃i ∼ δK .

Theorem 12 implies that the SI-LBO spectrum is mostly determined by regions
with effective Gaussian curvature. To illustrate the benefits of the proposed
multi-metric approach and the scale-invariant metric for matching articulated
shapes, we apply the ShapeDNA representation by using the spectra of both

2 Sketch of proof: δλ̃i � λ̃i−μ̃i

λ̃i
∼ 1

λ̃i

2πiε
(
∫

Ω |K|da)(
∫
Ω |K|da+ε)

∼ 1

λ̃i

2πiε
(
∫

Ω |K|da)2
∼ δK .
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the LBO {λi}k
i=1 and the SI-LBO {λ̃i}k

i=1, defined for each shape. We normalize
each spectrum to balance the two. As shown in Fig. 3, the incorporation of the
SI-LBO results in a clear separation of shape classes such as quadrupeds like
horses, cats, dogs, wolves, and humans, that can not be separated when only the
LBO spectrum is considered.

Fig. 3. Multidimensional scaling mapping to the plane applied to the distances between
truncated spectra of the LBO (left) and that of the LBO together with the SI-LBO
(right) for shapes from TOSCA [6]. Points that share the same color represent shapes
of the same object in different poses. (Color figure online)

4 Dual Spectra Alignment for Region Localization

Overview. In this section we introduce a framework that finds the effective
support of a given part of a shape in a shape given as a whole. Following [21], we
use Property 1 to reduce the localization of a partial shape within a full shape
to a search for a Hamiltonian’s potential v that represents the effective support
of the partial shape. The search for the proper potential function is formulated
by an alignment cost of the spectra of Hamiltonian operators defined on the full
shape with the spectra of the Laplace-Beltrami operators defined on the partial
shape. Finally, Property 2 allows the minimization of the cost function with a
first-order optimization algorithm.

Notations. The full shape equipped with the regular metric is denoted by
M = (Sf , g) and the spectrum of the Hamiltonian defined over M by {λi}k

i=1

with λ1 ≤ ... ≤ λk. M̃ = (Sf , g̃) stands for the full shape defined with the
scale-invariant metric and {λ̃i}k

i=1, with λ̃1 ≤ ... ≤ λ̃k, for the spectrum of
the scale-invariant Hamiltonian. We denote by Φ ∈ R

n×k and Φ̃ ∈ R
n×k the

k first eigenfunctions of the discrete versions of the Hamiltonian and of the
scale-invariant Hamiltonian, respectively. In the same way, the partial shape
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equipped with the regular and the scale-invariant metrics are referred to as
N = (Sp, g), Ñ = (Sp, g̃). The spectra of the discrete versions of the LBO
and of the SI-LBO are respectively denoted by {μi}k

i=1 and by {μ̃i}k
i=1, with

μ1 ≤ ... ≤ μk and μ̃1 ≤ ... ≤ μ̃k.

Cost Function. We consider a cost function that measures the alignment of the
LBO spectrum of N and the SI-LBO of Ñ with the spectra of the regular and
the scale-invariant Hamiltonians of M and M̃. Namely,

f(v) = ‖λ(v) − μ‖2w + ‖λ̃(v) − μ̃‖2w . (6)

Following [21], the weighted L2 norm ‖.‖w is defined as,

‖a − b‖2w =
k∑

i=1

1
b2i

(ai − bi)2 , (7)

to mitigate the weight given to high frequencies.

Optimization. The cost function Eq. (6) induces a constrained optimization
problem,

arg min
v≥0

f(v) . (8)

According to Property 2 and [1], the gradient of the last equation with respect
to v is,

∇vf = 2A (Φ ⊗ Φ)((λ − μ) � μ2) + 2A—K—(Φ̃ ⊗ Φ̃)((λ̃ − μ̃) � μ̃2) . (9)

where � stands for point-wise division, ⊗ for the point-wise multiplication and
A for the mass matrix of the discretization of M. To simplify the optimization
process, we minimize an unconstrained relaxation of Eq. (8) instead,

arg min
v

f(q(v)) , (10)

with q : R → R
+ a smooth function operating element-wisely. We consider the

saturation function q(x) = c(tanh(x) + 1) with c � μk. By promoting high step
potentials, q limits the eigenfunctions that can be considered within the region
where v ≈ 0. Equation (10) is finally minimized with a trust-region procedure
[28], a first order optimization algorithm.

Initialization Strategy for the Dual Spectra Alignment. We follow the initializa-
tion procedure described in [21], where the proposed method is performed over
multiple initial potentials. The final solution is selected by comparing the pro-
jections of the SHOT descriptors [24] onto the first eigenfunctions of the regular
and the scale-invariant Hamiltonian of the full shape, with the projection of
SHOT descriptors [24] onto the first eigenfunctions of the LBO and the SI-LBO
of the partial shape.
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Gaussian Curvature Estimation. The Gaussian curvature K is approximated
with the Gauss-Bonnet formula. We smooth the result to overcome discretization
artifacts. For each vertex, we take the average of the approximated Gaussian
curvatures obtained at the first ring neighbors. Moreover, following [2,5,11], we
use the metric,

g̃ij = (
√

ε + K2)αgij , (11)

with α ∈ [0, 1], which interpolates between the regular, for α = 0, and the scale-
invariant metric, for α = 1. Interestingly, the introduction of the parameter α is
meaningful in light of the interpretation of the scale-invariant metric proposed in
Sect. 3.1. α regulates the influence of the shape prior and quantifies the impor-
tance given to features found in curved regions. In all our experiments we used
α = 0.33 and ε = 10−8.

Table 1. Quantitative analysis of the proposed method compared to state-of-the-art
techniques applied to SHREC’16 CUTS [9] and PFARM [3,13]. The proposed frame-
work achieved state-of-the-art results compared to both learning and axiomatic com-
peting methods.

SHREC’16 [9] PFARM [13]

Method Precision Recall IoU Precision Recall IoU

Bag-of-words of SHOT descriptors [24] 0.653 0.589 0.430 0.475 0.454 0.310

PFC [23] 0.938 0.573 0.564 0.333 0.067 0.060

Single spectra alignment (Rampini et al.) [21] 0.775 0.738 0.668 0.850 0.763 0.701

DPFM [3] 0.975 0.576 0.569 0.642 0.275 0.248

Proposed dual spectra alignment 0.859 0.838 0.751 0.846 0.787 0.710

5 Experiments

5.1 Datasets

We evaluate the dual spectra alignment method on two databases. The first is
SHREC’16 Partial Matching Benchmark (CUTS) [9], the standard benchmark
to train and assess partial non-rigid shape matching frameworks. It contains 120
partial shapes from 8 classes: dog, horse, wolf, cat, centaur, and 3 human sub-
jects. The partial shapes are obtained by cutting full shapes that have undergone
various non-rigid transformations with random planes. The second is PFARM
[3,13], an extension of the FARM test set [13] proposed in [3]. PFARM contains
27 test pairs of humans with significantly different connectivity and vertex den-
sity. Shapes that make up a test pair are taken from different human individuals
and are therefore only approximately isometric, see Fig. 6. PFARM allows to
evaluate the generalization ability of the models in challenging setups which are
closer to real-life applications.
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Fig. 4. Region localization. Comparison of the proposed approach for partial shape
similarity with competing state of the art methods applied to SHREC’16. Red regions
correspond to parts on the full shapes that should match the query parts (left column).
IoU is indicated below each mask.

Fig. 5. Quantitative analysis. Cumulative IoU of each method on SHREC’16 CUTS.
Areas under the curves are the mean IoUs reported in Table 1.
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5.2 Competing Methods

The proposed method is compared to state of the art methods for partial shape
matching. The axiomatic methods we compare to are the spectrum alignment
procedure proposed by Rampini et al. [21], Partial Functional Correspondences
(PFC) [23], and a bag-of-words aggregation [27] of SHOT descriptors [24]. We
also consider DPFM [3], the state of the art learning based method for par-
tial shape matching. It has been shown to be superior to competing learning
approaches such as [25]. Please refer to [3] for further comparisons with learning
based methods. We use the original codes published by the authors. For DPFM
[3], SHREC’16 [9] was split into three folds. Training was performed on two folds,
keeping each time a third fold apart for evaluation.

5.3 Results

Comparison to State of the Art Methods. We compare the performance of the
proposed dual spectra alignment procedure to existing methods using intersec-
tion over union (IoU) as the standard measure of quality. As shown in Fig. 5,
our method achieves better results than competing approaches and improves
upon the current state of the art in the SHREC’16 CUTS dataset by 12.4%,
as demonstrated in Table 1. Table 1 also shows the precision and recall of the
different methods. Notably, DPFM [3] and PFC [23] achieve high precision but
low recall, due to many-to-one mappings that occasionally result when deriving
a point-to-point map from a predicted functional map and lead to fragmented
masks. In contrast, our method, which does not rely on local descriptors, avoids
such discrepancies. Qualitative comparisons of the proposed method with alter-
natives on shapes from the SHREC’16 dataset are shown in Fig. 4. This figure
illustrates the benefits of the multi-metric approach in detecting important parts
such as the head of the third object or the tail of the centaur, which are missed
by the single metric approach [21].

Fig. 6. The proposed region localization procedure applied to approximately isometric,
low resolution shapes from PFARM [3,13].
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Generalization Tested on Challenging Datasets. When comparing to the state
of the art learning methods, generalization could become an issue. To that end,
we trained DPFM on SHREC’16 and evaluated on PFARM. Table 1 shows that
the proposed method significantly outperforms DPFM [3] and has an advantage
when processing new databases with unknown shapes and challenging setups
such as approximate isometries and inconsistent discretizations.

5.4 Ablation Study

Multi-metric vs Single Metric. To demonstrate the benefits of the multi-metric
approach for region localization, we compare the alignment of single and mul-
tiple spectra considering the same number of eigenvalues. Figure 7 shows the
cumulative IoU of the proposed framework applied to SHREC’16 [9] while using
20 eigenvalues of the LBO and 20 eigenvalues of the SI-LBO. It is compared to
one setup with 40 eigenvalues of the LBO (without SI-LBO) and to a second
setup with 40 eigenvalues of the SI-LBO (without LBO). The region alignment
problems are thereby solved with the same number of constraints for each prob-
lem. Figure 7 shows that the multi-metric approach clearly outperforms single
metric approaches.

6 Future Research Directions

We proposed a novel approach for shape similarity that leverages the com-
plementary perspectives offered by the regular and scale-invariant metrics to

Fig. 7. Ablation study. Comparison of the proposed multi-metric approach, which
includes the spectra of both the LBO and SI-LBO, with a method based only on
the spectrum of the LBO and the SI-LBO spectrum. The plot shows the cumulative
score of each setup tested on SHREC’16 [9]. The multi-metric approach reaches a mean
IoU of 0.75. The single metric approach, involving only the LBO, mean IoU is 0.71.
While using only the SI-LBO the mean IoU is 0.7.
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achieve performance improvements compared to state of the art methods. In
future research, we plan to extend the proposed spectra alignment procedure to
more challenging datasets such as SHREC’16 Partial Matching (HOLES) [9]. It
could be done by exploring new metric spaces and differentiable shape represen-
tations that also adopt a multi-metric perspective, such as self-functional maps
[11]. Finally, the proposed method is fully differentiable and can potentially serve
as an unsupervised loss to train a learning framework for partial shape matching.
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