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Abstract. In order to evaluate the capacity of a camera to render tex-
tures properly, the standard practice, used by classical scoring protocols,
is to compute the frequential response to a dead leaves image target,
from which is built a texture acutance metric. In this work, we propose a
mixed training procedure for image restoration neural networks, relying
on both natural and synthetic images, that yields a strong improvement
of this acutance metric without impairing fidelity terms. The feasibility of
the approach is demonstrated both on the denoising of RGB images and
the full development of RAW images, opening the path to a systematic
improvement of the texture acutance of real imaging devices.

Keywords: Image denoising · Deep learning · Image quality
assessment

1 Introduction

In order to correctly visualize a photograph, its corresponding RAW image
undergoes a complex sequence of development operations including white bal-
ancing, demosaicking, tone mapping, and image restoration operations such as
deblurring and denoising. Camera manufacturers implement proprietary algo-
rithms fine-tuned for each setting of each camera. As a result, the overall image
quality is a combination of hardware characteristics (quality of the lens, size of
the sensor) and software performances. In order to fairly assess the quality of
an imaging device, independent agencies have defined standard tests and ISO
protocols. Each of these tests focus on a specific characteristic such as chromatic
aberrations, noise reduction, or texture rendering.

Recently, with the increase in computational power and the advent of deep
learning for image processing, more and more digital image processing stages
can be replaced by learned neural networks [17]. Recent works already aim at
completely replacing the full image development pipeline with a single neural
network, producing impressive results in standard conditions [20] or extremely
low-light conditions [13]. Moreover, light neural network architectures can now
be integrated in embedded systems, e.g. on smartphone devices. Neural methods
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present another key advantage: one can easily optimize their response to specific
test images, by including them in training databases.

For the specific task of texture rendering evaluation, Cao et al. [10] first pre-
sented a protocol quantifying the ability of an imaging pipeline to preserve texture
information. This is obtained through the frequential response of the system to
dead leaves images with a specific perceptual metric called texture acutance. These
images are known for their invariance properties, as well as statistical properties
making them close to natural images (non Gaussianity, scaling property, distribu-
tion of the spectrum and gradient), as studied in [4,18,23]. This quality evaluation
protocol later became an ISO standard to measure the preservation of textures
[21] and is now used by classical camera scoring protocols. In a different direction,
Achddou et al. [3] showed that image restoration networks could be trained from
synthetic images only, using databases of dead leaves images.

Inspired by these results, we propose, in this paper, to train a denoising neu-
ral network on natural and dead leaves images, to jointly optimize a new metric
derived from the texture acutance and the classic data fidelity metrics on natural
images. After presenting some related works on image restoration in Sect. 2, we
first introduce in Sect. 3 the texture acutance metric and the corresponding per-
ceptual loss for image restoration networks. We then show in Sect. 4 that we can
strongly improve the texture acutance metric without impairing performances
on natural images, first for the task of Additive White Gaussian Noise removal
(AWGN) and then for the development of RAW images. These results open the
path to an automatic improvement of standard quality evaluation tests.

2 Related Works

The goal of image restoration is to retrieve a clean image from distorted
observations. In many cases, the distortion process can be modeled as follows:
y = Ax + n, where x is the theoretically perfect image, y the distorted observa-
tion, A is a linear operator and n is some noise.

In order to solve this problem, a first class of methods are based on prior
hypotheses on the distribution of natural images. These methods try to impose
regularity properties on the restored solutions. For instance, wavelet shrinkage
methods [15,16] or DCT-filtering methods [31] reconstruct an image assuming
that the targeted images can be well approximated by a sparse decomposition.
In turn, variational methods based on the total variation [12,29] assume that
the image gradient follows a Laplacian distribution. Based on the assumption of
self-similarity, non-local methods leverage the redundancy in the image content.
This is either done by weighted averaging (Non Local Means [9] Non Local Bayes
[22]) or by collaborative filtering (BM3D [14]).

Over the past decade, learning-based approaches for image restoration have
developed drastically. After the success of neural networks for high-level com-
puter vision tasks [19], these methods have been adapted to image restoration
through the use of generative models [32,33]. Rather than using prior hypothe-
ses, the parameters of the neural networks are tuned in a long optimization
process to directly minimize the reconstruction error in a black box manner. For
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the training to succeed, these methods require large databases of pairs of dis-
torted and clean images. Even though they are hard to interpret, they surpassed
prior-based methods on most image restoration benchmarks by a large margin
for a wide variety of tasks such as image denoising [33], demosaicking [17] etc.

Following these initial works, recent papers extended the use of deep learn-
ing methods to real-world problems of image restoration such as RAW image
denoising [5,24]. Ignatov et al. [20] and Chen et al. [13] also propose to fully
replace the image development pipeline by a learned neural network, producing
surprisingly good results. However, acquiring datasets of real-world pairs of dis-
torted and clean RAW images is a cumbersome task [1,13], which often requires
complex post-processing algorithms. In order to ease the training process, a more
restrained approach consists in modeling the distortion process accurately, and
to synthesize them accordingly [30].

Going further, Achddou et al. [2,3] proposed to train image restoration neural
networks on generated dead leaves images in order to completely circumvent the
data acquisition process, reaching performances close to the networks trained
on real images, for various image restoration tasks. These images indeed exhibit
statistical properties close to those of natural images [4,18,23] even though they
depend from few parameters. Following [3], similar synthetic databases were also
used to pre-train image classification networks [7] and disparity map estimators
[25]. Prior to these works, dead leaves images were used to assess the capacity
of cameras to render textures properly. This idea was first presented in 2009 by
Cao et al. [10], which was later improved in the following references [6,11]. We
will present in detail these works in the following section.

3 Texture Acutance: A Frequential Loss Assessing
Texture Preservation

3.1 Dead Leaves Images

Fig. 1. Grey level dead leaves image and its associated digital spectrum in logarthmic
scales. The theoretical value is a straight line. (Color figure online)

Dead leaves images were first introduced by Matheron in 1975 [26], with the aim
of modeling porous media. It was later shown that if object sizes fulfill some
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scaling property, this model accounts for many statistics of natural images [4,
23]. To generate such images, shapes of random size, color and position are
superimposed on top of each other until the whole image plan is covered. In the
simplest set-up, these shapes are disks of random radius. An example of a dead
leaves image is given in Fig. 1, along with its spectrum. A precise mathematical
formulation of dead leaves images is given in [8].

Dead leaves images were first used for camera evaluation in 2009 by Cao et
al. [10]. The proposed idea is to measure the response of a camera to a specific
image target. Because of their invariances and statistical properties, the dead
leaves model was chosen by the authors as the generation algorithm for the tar-
get. Among the desired properties, scale invariance is achieved when the disks
radii follows a power law with α = 3. The dead leaves target is therefore gener-
ated with this parameter. Note that to ensure the convergence of the algorithm,
bounding parameters rmin, rmax are required [18].

3.2 Texture Acutance

Fig. 2. Diagram explaining the computation of the acutance metric

In [10], the authors evaluate the response of a camera to the dead leaves target
by computing the ratio of the power spectra, resulting in a Modulation Transfer
Function (MTF). At each position (m,n) for an (N,N) image:

MTF2D(m,n) =
|Ŷ (m,n)|
|X̂(m,n)| ,

where Ŷ is the spectrum of the obtained image and X̂ is the ground truth
spectrum. In all that follows, we compute the image spectra on a greyscale
version of the color image, obtained by the standard linear combination
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Grey = 0.2126R + 0.7152G + 0.0722B. The classical idea behind the MTF is
that the ratio of the power spectra corresponds to the Fourier coefficients of
the blur kernel induced by the camera, excluding non linear transforms often
involved in the image development, as well as the impact of noise (Fig. 2).

In order to account for the impact of noise in the estimation of the MTF, Art-
mann first proposed a corrected version of the MTF, by subtracting an estimate of
the noise spectrum. However, the latter was computed by taking a photograph of
a uniform grey surface, assuming an additive and signal independent noise model,
which is far from reality. Moreover, some image development pipelines include a
nonlinear noise reduction operation, which affect the estimation of the real MTF.

In the same paper [6], Artmann proposes a new computation trying to correct
these issues. Here, we consider the complex spectrum of a reference digital dead
leaves target X̂, rather than the estimate of the power spectrum |X̂| in the
spatial domain. In the previous version, the phase information was lost. This is
necessary in the context of camera calibration since phase information is reliable
only if a registration algorithm is applied. In the context of training a denoising
algorithm registration between noisy and restored image is supposed perfect
and dealt with by the MSE-loss. Relying only on the amplitude of the spectrum
meant that we could not differentiate frequencies which were already in the
target and information that was added by the imaging device. Therefore noise
and non linear functions had an impact in previous computations.

The proposed method, which we call MTFcross uses the cross power density
between the target and the obtained image φXY (m,n), and the auto power
density φXX(m,n). More precisely,

φXY (m,n) = Ŷ (m,n)X̂∗(m,n) and φXX(m,n) = X̂(m,n)X̂∗(m,n).

Given these quantities, the MTF becomes :

MTFcross(m,n) =
∣
∣
∣
∣

φXY (m,n)
φXX(m,n)

∣
∣
∣
∣
. (1)

Since the dead leaves target is rotationally invariant, so is its spectrum. We
therefore express the MTF as a 1D function by averaging it on concentric rings
of width 1. The MTF becomes :

MTF1D(k) =
1Ck

#Ck
× MTFcross,

where Ck =
{

(i, j) ∈ [−N/2, N/2]2|(k − 1)2 ≤ |i2 + j2| < k2
}

corresponds to a
ring of radius k and #Ck is its cardinal.

Though the full MTF1D is a good indicator of the camera’s capacity to render
textures, it is more helpful to compute a single score. To that end, the texture
acutance [10] is defined as a weighted sum of the MTF1D, with weights defined
by a contrast sensitivity function (CSF), inspired by the slanted edge Spatial
Frequency Response (SFR), used to evaluate the sharpness of a camera. Our
visual system is indeed more sensitive to some frequencies than others. In that
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regard, the CSF models the sensitivity of the visual system to spatial frequencies
expressed in cycle/degree.

Based on the physiological analysis of the contrast sensitivity of infants and
monkeys led by Movshon and Kiorpes [27], the chosen formula to model the
CSF is :

CSF(ν) = a.νc.e−bν , where ν is a spatial frequency expressed in cyl-
ces/degree, parameters are fixed as b = 0.2, c = 0.8, and a is a normalizing
parameter so that

∫ Nyquist
0

CSF(ν)dν = 1. Given this formula, the texture acu-
tance score can be written as :

A =
∫ Nyquist

0

CSF(ν).MTF1D(ν)dν.

Note that we need to convert spatial frequencies in cycles/degree to a digital
frequency in cycles/pixel for homogeneity. To do so we use the following formula:
fspatial = 1

αfdigital, where α is the viewing angle. The latter depends on viewing
conditions with the equality α = 180

π arctan(P
D ), where P is the pixel size and

D is the viewing distance, assumed to be equal to 0.2mm and 1m respectively.
This corresponds to a maximal spatial frequency of 40 cycles/degree which is
approximately the limit of the human visual system.

The perfect MTF corresponds to a constant function equal to 1, meaning
that the frequential content has been perfectly restored by the camera for every
frequency. This leads to an acutance A = 1. An acutance greater than 1 indicates
that some frequential content was added to the image, probably because of noise
or sharpening. An acutance lower than 1 indicates that some frequencies have
been lost.

3.3 Acutance Loss for Image Restoration CNNs

In [3], the authors showed that models trained on mixed databases (natural and
synthetic images) perform on par with models trained on natural images only,
while improving results on dead leaves image targets. We believe we can improve
the frequential response of models trained on mixed sets, by using the acutance
score in a loss function.

In the context of AWGN removal for color RGB images, the noisy image
corresponds to Y = X + n where X is a ground truth dead leaves image of size
(N,N, 3). The denoising network fθ produces an estimate of the clean image
Z = fθ(Y ). For our restoration problem, we can consider that the denoising
network is analogous to the camera which acquires the dead leaves target. We
can compute MTFcross for the denoising network using Formula (1), based on
the computation of the digital spectrum of both X and Z.

The obtained MTFcross is turned into a 1D signal as described above. For
faster computation, concentric ring masks are stored in GPU so that the com-
putation of MTF1D can be accelerated with parallel computing. Since the best
possible acutance is 1, we define the acutance loss function as :

Lacutance(Y,X) = |1 − A(fθ(Y ),X)|,
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which penalizes both adding or removing frequential information. In order to get
a complete loss function, we add to it the L2 loss, the initial fidelity term of the
network. Indeed, the acutance loss Lacut is computed solely on an aggregation
of the Fourier spectrum and is therefore blind to the spatial organisation of the
image and can not replace an MSE-loss. When training on dead leaves images
the loss is therefore

L = L2 + λ.Lacut,

where λ is a weighting parameter.
Since we train the image denoiser on both natural images and dead leaves

images, we compute the acutance loss only on the dead leaves images in a mini-
batch D of size K and the L2 loss for all images. The formation of minibatches
during training indeed randomly samples images from the mixed set. Thus, the
loss in a batch becomes:

Lbatch =
1
K

K∑

i=0

||xi − fθ(xi + ni)||22 +
λ

mT1

K∑

i=0

mi.Lacut(fθ(xi + ni), xi), (2)

where m is a masking vector of size K such that mi = 1 if xi is a dead leaves
image, or mi = 0 otherwise. In order to count the number of dead leaves images
we sum this masking vector which is given by mT1.

4 Image Denoising Results with FFDNet

We choose to train the FFDNet network [33] to illustrate the impact of the
perceptual loss we presented in the previous section. We adapt the training
scheme of the network to the present problem as follows. First, we increase the
size of the training patches from (50, 50, 3) to (100, 100, 3). The reason for this is
that the estimation of the 1D-MTF on a small patch is not sufficiently accurate.
Keeping the same rings’ width would result in fewer estimates for the 1D-MTF.
On the other hand, decreasing the rings’ width would lead to noisier estimates.
Therefore, we perform the training with larger patches. Second, we reduce the
batch size from 64 to 32 during training to decrease the memory footprint. We use
150000 samples, made of 100000 natural image patches and 50000 synthesized
dead leaves patches. The other training hyper-parameters remain unchanged,
such as the number of epochs or the learning rate decaying schedule.

4.1 Quantitative Evaluation

In order to show that the proposed scheme indeed has the potential to improve
the texture acutance without impairing the usual PSNR evaluation of the
performances on natural images, we compute both these metrics for vari-
ous values of λ, the weighting parameter in Eq. (2). We consider values of
λ ∈ [0, 2, 5, 10, 20, 50, 100, 200, 500]. Moreover, we also compute the classical
SSIM metric and the perceptual metric PieAPP recently introduced in [28].
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The models are evaluated numerically on two datasets. First, we evaluate the
data fidelity by computing the PSNR, SSIM and PieAPP metrics on the Kodak24
dataset, a benchmark test set of 24 natural images. Second, we evaluated the
acutance metric on a test set of synthesized dead leaves images.

We report, in Table 1, the numerical evaluation of the trained models. We
observe a similar behaviour for the tested noise levels σ = 25 and σ = 50. In both
cases, we notice that the standard evaluation metrics, i.e., the PSNR and SSIM,
are not affected by the increase of the weighting parameter λ until λ = 20. For
values greater than λ = 100 these metrics decrease rapidly. On the other hand,
the acutance metric keeps improving until λ = 100 and then reaches a plateau.
This table shows that we can optimize the texture acutance without impairing
classic denoising evaluation. The perceptual evaluation with the PieAPP metric
suggests that, for high noise values, the perceptual image quality is slightly
enhanced by the addition of the acutance loss. Some results can be visualized
in Fig. 3 (please zoom in the electronic version of this document). The result
with and without using the acutance loss appear quite close, despite the strong
improvement of the texture acutance measurement. Nonetheless, we can notice
some improvements in the preservation of low-contrast details in the first row.
Moreover, the contrast is also rendered better when training with the acutance
loss. Finally, on the third row, details on the dead leaves images are better
preserved using the acutance loss. On the second and third row, we see that the
network trained with natural images sometimes hallucinates details, which are
removed when training with dead leaves images.

Table 1. Denoising results of FFDNet trained with different weighting coefficients of
the acutance loss for two noise levels. Each cell contains the PSNR, SSIM, PieAPP
evaluated on Kodak 24 , and the Acutance metric evaluated on a test set of dead
leaves images. Best results in blue, second results in red.

λ 0 2 5 10 20 50 100 200 500

σ = 25 PSNR ↑ 31.88 31.87 31.88 31.87 31.88 31.85 31.77 31.65 31.56
Acutance ↓ 0.034 0.029 0.023 0.020 0.015 0.013 0.012 0.012 0.012
SSIM ↑ 0.877 0.876 0.875 0.875 0.877 0.876 0.873 0.872 0.869
PieAPP ↓ 0.568 0.596 0.598 0.602 0.586 0.587 0.591 0.62 0.612

σ = 50 PSNR ↑ 28.81 28.79 28.80 28.80 28.80 28.76 28.66 28.58 28.42
Acutance ↓ 0.084 0.078 0.073 0.053 0.035 0.026 0.022 0.022 0.022
SSIM ↑ 0.791 0.788 0.789 0.789 0.790 0.789 0.786 0.783 0.779
PieAPP ↓ 0.932 0.956 0.952 0.948 0.912 0.925 0.934 0.940 0.953

4.2 Spectral Preservation

For mixed trainings of FFDNet, the texture acutance score is greatly improved
when using the corresponding loss, which is expected. However, the acutance
score only gives a partial information about the MTF of the trained network.
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Fig. 3. Comparison of FFDNet results on two natural images and on a dead leaves
image. From left to right: original image, noisy image, image denoised with standard
FFDNet, image denoised with FFDNet trained on a mixed database without the acu-
tance loss, and finally with the acutance loss.

In order to further understand the impact of the acutance loss on the spectral
preservation ability of the network, we compute its MTF as described next. We
compute the 1D-MTF from the denoised image and the original image for each
dead leaves image of the synthetic test set.

Fig. 4. Comparison of the MTF evaluated
with FFDNet trained on a mixed database
with or without the acutance loss, on the
whole dead leaves image test set.

Since the 1D-MTF depends on
the image’s content, which differs
from image to image, we average
the obtained MTF over the whole
dataset. In Fig. 4, we report the MTF
of FFDNet trained with and with-
out the acutance loss (with λ = 50)
for a noise level σ = 25. Recall that
a perfect MTF should be equal to
one. We can observe that for low
to medium frequency, the MTF of
the model trained with the accutance
loss is much closer to one. Actually,
the values for low frequency exceed one which is one way the system can improve
the acutance and which indeed is a limitation of the approach. For high fre-
quency, the gap between the two MTF is smaller, probably as a result of the
profile of the CSF function, which quickly decreases for high frequency, see Fig. 1.
This behavior, as well as the addition of low frequency, could be modified by con-
sidering alternative CSF functions and can be easily integrated into our frame-
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work. This could also further improve the preservation of details on examples
such as those of Fig. 3. In this paper, we have decided to keep the original defini-
tion of the acutance, since our main goal is to show that this standard measure
of the ability to preserve texture can be greatly improved without impairing the
other aspects of image quality.

4.3 RAW Image Denoising

As a proof of concept, we extended our experiments to real-world image denoising
on the SIDD benchmark [1] for cameraphones denoising. To that end, we trained
the same denoising network with a U-Net architecture to denoise real RAW
images and synthesized RAW dead leaves images. This network produces a RAW
denoised image from a RAW input noisy image. To simulate RAW noise for dead
leaves images, we used a Poisson-Gaussian model with realistic noise parameters.
Unlike Gaussian noise removal, the loss is here a combination of the L1 loss and
the acutance loss : L = L1+λLacut. For RAW images, the acutance computation
differs slightly. In order to convert a RAW image to a grey-scale image, we first
pack the (H,W ) image in a (H/2,W/2, 4) RGGB tensor, then we average them in
a single (H/2,W/2) grey array, by weighting each channel with the white balance
parameters. We ran the training for λ ∈ [0, 10, 100]. We report the numerical
results obtained in Table 2. In comparison with λ = 0, the PSNR is still good
for λ = 10, while the RAW acutance is largely improved. This improvement
also translates in a better acutance in the RGB domain, which was not seen
during training. This metric is computed on the denoised images developed with
a standard ISP. This experiment shows that we can improve camera evaluation
without impairing the image quality in the case of a full camera development
pipeline. For λ = 100, the PSNR noticeably decreases while the RAW acutance
reaches a plateau.

Table 2. Denoising results obtained by training a denoising Unet for real RAW images
evaluated on the SIDD test set of cameraphone images [1]. We report the PSNR,
Acutance RAW and acutance RGB metrics. Best results in bold.

λ 0 10 100

PSNR RAW 51.31 51.24 50.61
Acutance RAW 0.018 0.011 0.012
Acutance RGB 0.086 0.061 0.049

5 Conclusion

In this work, we have shown that a specific training of image restoration neu-
ral networks can greatly improve a standard evaluation metric quantifying the
preservation of textures, without impairing classical performance evaluation cri-
teria. As a proof of concept, we extended the use of the acutance loss for
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real-world image denoising networks, showing that the proposed framework can
improve a complete RAW images development pipeline. Considering that the
texture acutance metric is routinely used to evaluate digital camera, this found-
ing has potential important practical applications.
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