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Abstract. We propose a two-stage variational model for the additive
decomposition of images into piecewise constant, smooth, textured and
white noise components. The challenging separation of noise from texture
is successfully achieved by including a normalized whiteness constraint
in the model, and the selection of the regularization parameters is per-
formed based on a novel multi-parameter cross-correlation principle. The
two resulting minimization problems are efficiently solved by means of
the alternating directions method of multipliers. Numerical results show
the potentiality of the proposed model for the decomposition of textured
images corrupted by several kinds of additive white noises.

Keywords: Variational image decomposition · Whiteness · Auto- and
cross-correlation · Automatic parameter selection

1 Introduction

An important problem in image analysis is to separate different features in
images. However, when the image is noisy, the decomposition process becomes
challenging, especially in the separation of the textural component.

In the last two decades many papers were published on image decomposition,
addressing modelling and algorithmic aspects and presenting the use of image
decomposition in cartooning, texture separation, denoising, soft shadow/spot
light removal and structure retrieval - see, e.g., the recent works [7–9] and the
references therein. Given the desired properties of the image components all
the valuable contributions to this problem rely on a variational-based formula-
tion which minimizes the sum of different energy norms: total variation (TV)
semi-norm, [14], L1-norm, G-norm [1,12], approximation of the G-norm by the
div(Lp)-norm [15] and by the H−1-norm [13], homogeneous Besov spaces [5],
to model the oscillatory component of an image. A balanced combination of
TV semi-norm and L2-norm for separating the piecewise constant and smooth
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components is proposed in [6]. The intrinsic difficulty with these minimization
problems comes from the numerical intractability of the considered norms [3,16],
from the tuning of the numerous model parameters, and, overall, from the com-
plexity of extracting noise from a textured image, given the strong similarity
between these two components. This paper aims to give robust and efficient
answers to these problems by exploiting statistical image characterizations and
advanced numerical optimization algorithms.

We present a two-stage variational approach for the decomposition of a given
(vectorized) image f ∈ R

N into the sum of four characteristic components:

f = c + s + t + n , with: o := t + n, u := c + s + t , (1)

where c, s, t and n represent the cartoon or geometric (piecewise constant),
the smooth, the texture and the noise components, respectively, whereas the
introduced composite components o and u indicate the oscillatory and noise-free
parts of f , respectively. The cartoon, smooth, and oscillatory components c, s,
o are separated in the proposed first stage, with the three parts well-captured
by using a non-convex TV-like term for c, a quadratic Tikhonov term for s and
Meyer’s G-norm for o. The estimated oscillatory component is then separated
into texture and white noise parts t, n in the second stage by exploiting the noise
whiteness property. This allows to deal effectively with a large class of important
noises such as, e.g., those characterized by Gaussian, Laplacian and uniform
distributions, which can be found in many applications. In the first stage, the
two free regularization parameters are selected based on a novel multi-parameter
cross-correlation principle which extends the single-parameter criterion recently
proposed in [7]. The first and second stage optimization problems are efficiently
solved by means of the alternating directions method of multipliers (ADMM).

In Sect. 2, we begin by recalling some preliminary definitions. The proposed
quaternary two-stage variational decomposition model is introduced and moti-
vated in Sect. 3. The cartoon-smooth-oscillating components separation app-
roach (Stage I) is analysed in Sect. 4.1 - modelling insights - and in Sect. 4.2
- resolvability conditions. The multi-parameter selection is discussed in Sect. 5,
while in Sect. 6 the computational ADMM framework is detailed. In Sect. 7 we
demonstrate the ability of the proposed decomposition model to separate the
desired image features and conclusions are drawn in Sect. 8.

2 Preliminaries and Notations

We recall some notions and definitions which will be useful in the rest of the
paper. Let us consider two non-zero images in matrix form x, y ∈ R

h×w,

x = {xi,j}(i,j)∈Ω , y = {yi,j}(i,j)∈Ω , Ω := {0, . . . , h−1}×{0, . . . , w−1} . (2)

Upon the assumption of suitable boundary conditions for x, y, the sample
normalized cross-correlation of the two images x and y and the sample nor-
malized auto-correlation of image x are the two matrix-valued functions ρ :
R

h×w × R
h×w → R

h×w and ϕ : Rh×w → R
h×w defined by
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ρ(x, y) = {ρl,m(x, y)}(l,m)∈Ω , ϕ(x) = {ϕl,m(x)}(l,m)∈Ω , (3)

with scalar components ρl,m(x, y) and ϕl,m(x) given by

ρl,m(x, y) =
1

‖x‖2‖y‖2

∑

(i,j)∈ Ω

xi,j yi+l,j+m , (l,m) ∈ Ω , (4)

ϕl,m(x) = ρl,m(x, x) =
1

‖x‖2
2

∑

(i,j)∈ Ω

xi,j xi+l,j+m , (l,m) ∈ Ω , (5)

respectively, where ‖·‖2 in (4)–(5) denotes the Frobenius matrix norm and index
pairs (l,m) are commonly called lags. It is well known that the sample normalized
cross- and auto-correlations satisfy ρl,m(x, y), ϕl,m(x, y) ∈ [−1, 1] ∀ (l,m) ∈ Θ.

We introduce the following non-negative scale-independent scalar measure of
correlation C : Rh×w × R

h×w → R+ between the images x and y:

C(x, y) :=
1
N

‖ρ(x, y)‖2
2 . (6)

Finally, we recall the Meyer’s characterization of highly oscillating images -
the component o in (1) - in the G-space, dual of BV-space [12], endowed with
the G-norm defined in the discrete setting by

‖o‖G = inf
{

‖g‖∞
∣∣ o = div(g), g = (g(1), g(2)) ∈ R

h×w × R
h×w

}
, (7)

where ‖g‖∞ := maxi,j |gi,j |, with |gi,j | =
√

(g(1)
i,j )2 + (g(2)

i,j )2. The G-space is very
good to model oscillating patterns such as texture and noise, characterized by
zero-mean functions of small G-norm [2].

3 Proposed Two-Stage Variational Decomposition Model

An observed image f , composed as in (1), is separated into cartoon, smooth,
texture and noise components by solving the following two-stage model:

• Stage I: Given the observation f , compute estimates ĉ, ŝ, ô of the cartoon,
smooth and oscillatory components c, s, o in (1) by solving

{ĉ, ŝ, ô} ∈ arg min
c, s, o ∈ R

N

c + s + o = f

J1(c, s, o; γ1, γ2, a1), (8)

J1(c, s, o; γ1, γ2, a1) = γ1

N∑

i=1

φ (‖(Dc)i‖2 ; a1) +
γ2

2
‖Hs‖2

2 + ‖o‖G, (9)

with penalty function φ defined in (13) and G-norm defined in (7).
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• Stage II: Given the estimate ô from Stage I, compute estimates t̂, n̂ of the
texture and white noise components t, n in (1) by solving

{t̂, n̂} ∈ arg min
t, n ∈ R

N

t + n = ô

{
J2(t, n; a2, α) =

N∑

i=1

φ (‖(Dt)i‖2 ; a2) + ıWα
(n)

}
, (10)

where γ1, γ2 in (8) are positive parameters, D := (Dh; Dv) ∈ R
2N×N , with

Dh,Dv ∈ R
N×N finite difference operators discretizing the first-order horizontal

and vertical partial derivatives of an image, respectively, and where the discrete
gradient of image x at pixel i is denoted by (Dx)i := ((Dh x)i ; (Dv x)i) ∈
R

2. The matrix H discretizes the second-order horizontal, vertical and mixed
partial derivatives, with (Hx)i := ((Hhh x)i ; (Hhv x)i ; (Hvh x)i ; (Hvv x)i) ∈ R

4

denoting the vectorized Hessian at pixel i. The function ıWα
: R

N → R :=
R∪{+∞} in (10) is the indicator function of the set Wα ⊂ R

N , namely ıWα
= 0

for x ∈ Wα, ıWα
= +∞ for x /∈ Wα. Therefore, the target white noise component

n or, equivalently, the residue image ô− t of Stage II model (10), must belong to
the parametric set Wα, referred to as the normalized whiteness set with α ∈ R++

called the whiteness parameter, and defined as follows:

Wα :=
{

n ∈ R
h×w : −wα ≤ ϕl,m(n) ≤ wα ∀ (l,m) ∈ Θ0 := Θ \ {(0, 0)}}

=
{

n ∈ R
h×w : −wα nT n ≤ (

n � n
)
(l,m) ≤ wα nT n ∀ (l,m) ∈ Θ0

}
. (11)

Motivated by the asymptotic distribution of the sample normalised auto- corre-
lation ϕ(n) (see [7]), a natural choice for the non-negative scalar wα is

wα =
α√
N

, (12)

where the whiteness parameter α allows to directly set the probability that the
sample normalized auto-correlation of a white noise realization at any given
non-zero lag falls inside the whiteness set.

The parametric function φ( · ; a) : R+ → R+ in (8) is a re-parameterized
and re-scaled version of the minimax concave (MC) penalty, namely a simple
piecewise quadratic function defined by:

φ(t; a) =

{
−a

2
t2 +

√
2a t for t ∈ [

0,
√

2/a
)
,

1 for t ∈ [ √
2/a,+∞ )

,
(13)

with a ∈ R+ called the concavity parameter of penalty φ. In fact, since a =
−mint�=0 φ′′(t; a), it represents a measure of the degree of non-convexity of φ.

4 On the Decomposition Stage I

4.1 Insights on the Effect of Different Norms

Given the desired properties of components c, s, t and n, an ideal decomposition
model is characterized by the minimization of energies expressed in terms of
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norms:
∑

i φ(‖(Du1)i‖; a) = is minimal for x = c, ‖Hx‖2 is minimal for x = s,
‖x‖G is minimal for x = t, ‖ϕ(x)‖∞ := max(l,m) �=(0,0) |ϕ(l,m)(x)| is minimal for
x = n.

In Table 1, we provide an insight on this conjecture, for synthetic images with
different features illustrated in Fig. 1: piecewise constant scalar fields with sharp
edges (u1); smooth-gradient scalar fields with varying frequency of oscillations
according to parameter z, (u2); realization of Gaussian noise with increasing
standard deviations σ, (u3).

The noise component n is perfectly captured by ‖ϕ(u3)‖∞ making it minimal
and constant for any values of standard deviation σ, while H−1-norm and G-
norm values increase as the noise level increases. If the term ‖ϕ(u3)‖∞ is not
present in the model, then the noise component n is absorbed by the G-norm.

The cartoon component c is well detected by minimal values of∑
i φ(‖(Du1)i‖; a) = in the first block of Table 1 for all z values but the last

column where the image no longer looks like a piecewise constant image, but it
looks more like a texture.

Similarly the smooth component s is separated by a minimal ‖Hs‖2 in the
second block of Table 1, for all z but the last column where the image has a
pronounced textural component.

For what concern the texture component t, both the H−1-norm and G-
norm capture oscillations and they decrease for increasing frequency z, which
is good, they both increase for increasing oscillation amplitude, which is not so
good. However, G-norm is independent from image dimension, while H−1-norm
increases proportionally with dimension. Moreover, H−1-norm recognizes as tex-
ture only the fine oscillatory patterns (see last column), while G-norm remains
limited and small for different scale repeated patterns.

z = 2π 8π 16π 32π 64π

σ = 5 10 20 40 60

Fig. 1. Sample images used to evaluate model norms.
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Table 1. Model norms evaluated for images u1, u2 and u3 in Fig. 1

Chessboard z = 2π 8π 16π 32π 64π
∑

i φ(‖(Du1)i‖; a) = 793 3124 6120 11728 21408

‖Hu1‖2 = 7526 16307 24100 36516 57708

‖u1‖H−1 = 472098 100009 49882 27215 17810

‖u1‖G = 4520 1102 583 365 226

‖ϕ(u1)‖∞ = 0.98 0.98 0.96 0.92 0.92

Diagonal Stripes z = 2π 8π 16π 32π 64π
∑

i φ(‖(Du2)i‖; a) = 39999 39999 39999 39999 39999

‖Hu2‖2 = 28.05 448 1786 7031 26367

‖u2‖H−1 = 364147 82381 40500 20218 10392

‖u2‖G = 2753 715 373 199 106

‖ϕ(u2)‖∞ = 1.00 1.00 1.00 1.00 1.00

Noise Image σ = 5 10 20 40 60
∑

i φ(‖(Du3)i‖; a) = 39999 39999 39999 39999 39999

‖Hu3‖2 = 4454 8884 17906 35574 53572

‖u3‖H−1 = 945 1989 4029 7649 12289

‖u3‖G = 16.67 33.42 72.16 134 197

‖ϕ(u3)‖∞ = 2.06e-2 2.20e-2 1.99e-2 2.42e-2 2.02e-2

4.2 Analysis of the Model

The goal of this section is to shortly analyze the Stage I optimization problem
(8)–(9). To facilitate the analysis, first we note that, after replacing in (8)–(9)
the explicit definition of the G-norm of the oscillating component o = DT g, and
exploiting the additive image formation model (1) (from which s = f − c − o),
problem (8)–(9) is equivalent to the following one:

{ĉ, ĝ} ∈ arg min
c ∈RN, g ∈R2N

J̃1(c, g; γ1, γ2, a1) , (14)

J̃1(c, g; γ1, γ2, a1) = γ1

N∑

i=1

φ (‖(Dc)i‖2 ; a1) +
γ2

2

∥∥H(f − c − DT g)
∥∥2

2
+ ‖g‖∞(15)

ô = DT ĝ , ŝ = f − ĉ − ô . (16)

In the following Propositions 1, 2 (see proofs in the Supplementary Material)
we analyze the optimization problem (14)–(15), with focus on convexity and
coerciveness of the cost function Ĵ1, and afterward, on existence of solutions to
the problem. To simplify notations, we introduce the total optimization variable
x :=

(
c; g

) ∈ R
3N .

Proposition 1. For any f ∈ R
N and any γ1, γ2, a1 ∈ R++, the function J̃1 in

(15) is proper, continuous, bounded from below by zero, convex and coercive in g,
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non-convex and non-coercive in c, hence non-convex and non-coercive in x. How-
ever, the function J̃1 admits global minimizers.

Proposition 2. For any f ∈ R
N and any γ1, γ2, a1 ∈ R++, the function J̃1 in

(15) is constant along straight lines in its domain R
3N of direction defined by

the vector d :=
(
1N ; 02N

)
. Hence, any constrained model of the form

{ĉ, ĝ} ∈ arg min
(c;g) ∈ Aq1,q2

J̃1(c, g; γ1, γ2, a1) , (17)

with Aq1,q2 ⊂ R
3N one among the infinity of (3N − 1)-d affine feasible sets

Aq1,q2 =
{
x ∈ R

3N : qT
1 x = q2 with qT

1 d �= 0
}

, q1 ∈ R
3N , q2 ∈ R , (18)

admits solutions and the solutions are equivalent to those of the unconstrained
model (14)–(15) in terms of (minimum) cost function value.

5 Multi-parameter Selection via Cross-Correlation

Selecting the regularization parameter of a two-terms (two-components) vari-
ational decomposition model based on the cross-correlation between the two
estimated components has been proposed in the recent work [7], and referred
to as the Cross-Correlation Principle (CCP). However, in the proposed Stage
I decomposition model (8) we have three terms/components and two free reg-
ularization parameters. Hence, we propose an extension of the CCP in [7] to
this more complicated case and refer the extended principle as Multi-Parameter
CCP (MPCCP). The MPCCP for Stage I model is formulated as follows:

Select (γ1, γ2) = (γ̂1, γ̂2) such that {γ̂1, γ̂2} ∈ arg min
γ1,γ2 ∈R++

C(γ1, γ2) , (19)

where the multi-parameter cross-correlation scalar measure C : R
2
++ → R+

reads

C(γ1, γ2) = αc,o C (ĉ(γ1, γ2), ô(γ1, γ2)) + αs,o C (ŝ(γ1, γ2), ô(γ1, γ2))
+ αc,s C (ĉ(γ1, γ2), ŝ(γ1, γ2)) ,

(20)

with ĉ(γ1, γ2), ŝ(γ1, γ2) and ô(γ1, γ2) the (γ1, γ2)-dependent solution components
of Stage I model (8), with the cross-correlation scalar measure C(·, ·) defined in
(6) and with the cross-correlation weights αc,o, αs,o, αc,s ∈ [0, 1] allowing to tune
the contributions of the three cross-correlations between c and o, s and o, c
and s, respectively, to the introduced ternary cross-correlation among c, s, o. In
particular, in the first example of the numerical section we will provide evidence
that a good choice for the weights is αc,o = αs,o = 0.5, αc,s = 0. The idea encoded
by the MPCCP in (19)–(20) is to select the pair (γ1, γ2) in Stage I model (8)
which leads to ”as separate as possible” solution components ĉ(γ1, γ2), ŝ(γ1, γ2),
ô(γ1, γ2), with separability measured by cross-correlation.
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The cost function C(γ1, γ2) we aim to minimize in the MPCCP in (19)–
(20) can be evaluated for any given pair (γ1, γ2) (by first solving numerically the
associated Stage I model and then directly applying the function C by computing
the three cross-correlations) but does not have an explicit form and, hence, the
derivatives can not be calculated. A theoretical analysis of the properties of
function C is therefore a very hard task and is out of the scope of this paper.
However, the numerical tests that we will present seem to indicate that C is
continuous (if not differentiable) and unimodal with a unique global minimizer.
Hence, by applying some convergent zero-order minimization algorithm - i.e.,
relying on evaluations of the cost function C but not of its derivatives - for
unimodal functions of two variables, MPCCP could be made fully automatic.

6 An ADMM-Based Numerical Solution for Stage I

In this section we consider the solution of the minimization problem (14)–(15)
by using ADMM. We introduce two auxiliary variables h ∈ R

2N , z ∈ R
2N and

solve the following equivalent constrained problem:

{ĉ, ĝ, ĥ, ẑ}∈ arg min
c∈R

N ,

g,h,z∈R
2N ,

{
γ1

N∑

i=1

φ (‖hi‖2 ; a1) +
γ2

2

∥∥H(f − c − DT g)
∥∥2

2
+ ‖z‖∞

}

s. t. h = Dc, z = g.
(21)

To solve (21), we define the augmented Lagrangian function

L(c, g, h, z, λ1, λ2; γ1, γ2) = γ1

N∑

i=1

φ (‖hi‖2; a1) +
γ2

2
‖H(f − c − DT g)‖2

2 + ‖z‖∞

−〈λ1, h − Dc〉 +
β1

2
‖h − Dc‖2

2 − 〈λ2, z − g〉 +
β2

2
‖z − g‖2

2, (22)

where λ1 ∈ R
2N is the vector of Lagrange multipliers associated with the linear

constraints h = Dc, λ2 ∈ R
2N is the vector of Lagrange multipliers associated

with the linear constraints z = g, and β1, β2 ∈ R++ are the ADMM penalty
parameters. Given the previously computed (or initialized for k = 0) vectors c(k),
g(k), h(k), z(k), λ

(k)
1 , λ

(k)
2 and the regularization parameters, the k-th iteration

of the proposed ADMM-based iterative scheme reads as follows:
(
c(k+1), g(k+1)

)
∈ arg min

c∈RN ,g∈R2N

{γ2

2
‖H(f − c − DT g)‖2

2 −
〈
λ

(k)
1 , h(k) − Dc

〉

+
β1

2
‖h(k) − Dc‖2

2 −
〈
λ

(k)
2 , z(k) − g

〉
+

β2

2
‖z(k) − g‖2

2

}
, (23)

h(k+1) ∈ arg min
h∈R2N

N∑

i=1

φ (‖hi‖2; a1) +
β1

2γ1

∥∥∥∥h −
(

Dc(k+1) +
1
β1

λ
(k)
1

)∥∥∥∥
2

2

, (24)
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z(k+1) ∈ arg min
z∈R2N

1
β2

‖z‖∞ +
1
2

∥∥∥∥z −
(

g(k+1) +
1
β2

λ
(k)
2

)∥∥∥∥
2

2

, (25)
(

λ
(k+1)
1

λ
(k+1)
2

)
=

(
λ

(k)
1 − β1

(
h(k+1) − Dc(k+1)

)

λ
(k)
2 − β2

(
z(k+1) − g(k+1)

)
)

. (26)

To solve (23), we apply the first-order optimality conditions which lead to
solve the following linear system:

A
(

c
g

)
=

(
γ2HT Hf + β1DT

(
h(k) − 1

β1
λ

(k)
1

)

γ2DHT Hf + β2z
(k) − λ

(k)
2

)
, (27)

where

A =
[

γ2HT H + β1DT D γ2HT HDT

γ2DHT H γ2DHT HDT + β2I

]
, (28)

which can be solved via a sparse Cholesky solver. Problem (24) is equivalent to
N two-dimensional problems which can be efficiently solved in closed form [8].
In particular, rewriting (24) for each hi ∈ R

2, i = 1, . . . , N

h
(k+1)
i ∈ arg min

h∈R2
φ (‖h‖2; a1) +

β1

2γ1

∥∥∥∥h −
((

Dc(k+1)
)

i
+

1
β1

λ
(k)
1,i

)∥∥∥∥
2

2

, (29)

and satisfying the convexity condition β1 > aγ1 (see, e.g., [11]), the closed form
in [8] can be applied directly. Problem (25) is not separable but it is equivalent
to the proximity operator of the mixed �∞,2 norm, which also admits a closed
form efficient solution [4]. Finally, the ADMM solution of Stage II in (10) is
similar to that in [10] and is described in the Supplementary Material.

7 Numerical Examples

In this section we present some preliminary results on the performance of the
proposed two-stage decomposition model when applied to images synthetically
corrupted by additive white noise of different types among uniform (AWUN),
Gaussian (AWGN) and Laplacian (AWLN). We consider three test images of
size 200 × 200 and 256 × 256 pixels - geometric, coast and skyscrapers - which
contain flat regions, neat edges and textures.

Example 1. In this example, we evaluate the performance of Stage I of our
decomposition framework on the geometric image to showcase the decomposition
performance together with the cross-correlation parameter selection. The param-
eter a1 (and similarly a2 for Stage II) can be estimated by directly imposing the
abscissa of the transient point ā1 =

√
2/a1 in (13) as a1 = 2/ā2

1. The rationale is to
penalize equally every salient discontinuity in c, therefore the value ā should aim to
estimate the minimal nonzero salient gradient of c. According to this strategy, for
this example we used ā1 = 0.4. Moreover, the ADMM algorithm was initialized by
h(0) = Df , z(0) = λ

(0)
1 = λ

(0)
2 = 0. The first row of Fig. 2 reports the input image
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f , and the resulting components ĉ, ŝ, ô, respectively. Each component is visual-
ized in range [0.05,0.95] to demonstrate better both the characteristics as well as
reconstruction for each component. In the second row of Fig. 2 we report the cross-
correlation surfaces, namely C(γ1, γ2) in (20) with weights αc,o = αs,o = 0.5,
αc,s = 0 - used to select γ̂1, γ̂2, C(ĉ(·), ŝ(·)), C(ŝ(·), ô(·)) and C(ĉ(·), ô(·)) for varying
γ1 and γ2. In the latter three surfaces the minimum cross-correlation is represented
by a solid dot, while the minimum min(C(γ1, γ2)) = C(γ̂1, γ̂2) = 5.31×10−8 by a
diamond marker. In the third row of Fig. 2, from second to last column, we report
the associated Signal-to-Noise Ratio (SNR) surfaces for each component for vary-
ing γ1, γ2 and the mean SNR surface

SNRmean = (SNR(ĉ(γ1, γ2)) + SNR(ŝ(γ1, γ2)) + SNR(ô(γ1, γ2)))/3.

Black dot indicates the maximum SNR attained, while the asterisk marks the
maximum max(SNRmean). It can be noticed that the parameter pair (γ̂1, γ̂2)
selected by the proposed MPCCP is close to the pair (γ1, γ2) yielding a SNR
equal to the maximum max(SNRmean). This indicates that our MPCCP works
well for this example. In particular, the SNR values attained by each recon-
structed component ĉ, ŝ, ô are SNR(ĉ(γ̂1, γ̂2)) = 47.16, SNR(ŝ(γ̂1, γ̂2)) = 52.44
and SNR(ô(γ̂1, γ̂2)) = 36.26.

f = c + s + o ĉ(γ̂1, γ̂2) ŝ(γ̂1, γ̂2) ô(γ̂1, γ̂2)

C(γ1, γ2) C(ĉ(·), ŝ(·)) C(ŝ(·), ô(·)) C(ĉ(·), ô(·))

SNRmean SNR(ĉ(γ1, γ2)) SNR(ŝ(γ1, γ2)) SNR(ô(γ1, γ2))

Fig. 2. Decomposition results of geometric image based on cross-correlation parameter
selection for Stage I.
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f :

ĉ:

ŝ:

̂t:

n̂:

û:

Fig. 3. Decomposition results of test images corrupted by AWLN, σ = 6, AWUN,
σ = 10, and AWGN, σ = 25, from left to right respectively.
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Example 2. In this example we present the results of applying Stage I + Stage
II to geometric - where we changed the smooth component to a spotlight effect
- coast and skyscraper images, corrupted with a realization of AWLN with stan-
dard deviation σ = 6, AWUN with σ = 10, AWGN with σ = 25, respectively.
Stage I used ā1 = 0.4 with h(0) = Df , z(0) = λ

(0)
1 = λ

(0)
2 = 0 initialization for

geometric image, while ā1 = 0.1 with zero initialization of the above variables
for the two photographic images. For Stage II, we used ā2 = 20, for geometric,
ā2 = 0.3 for coast and ā2 = 0.7 for skyscraper. In the first row of Fig. 3 we report
the observed images f used as input for Stage I. The oscillatory component ô was
then used as input for Stage II. From second to fifth row of Fig. 3 we report the
resulting components ĉ, ŝ, t̂ and n̂, where ŝ, t̂ and n̂ have been set its mean to 0.5
for visualization purposes. In the last row of Fig. 3 we report images û = ĉ+ ŝ+ t̂
which represents the denoised version of the degraded image f .

Remark 1. Due to the nature of G-space, it may seem more natural to model the
texture component t by the G-norm, i.e. to use the following model for Stage II:

{t̂2, n̂2} ∈ arg min
t,n ∈RN

{‖t‖G + ıWα
(n)} s.t.: t + n = ô . (30)

In Fig. 4, the decomposition results t̂2, n̂2, obtained by solving problem (30)
for ô of geometric test image, are reported. In the second column of Fig. 4, the
horizontal cross-sections are shown: the ground truth (dashed black), and the
solutions of Stage II models (10) and (30) (solid red and blue, respectively). From
these results, it is clear that the G-norm is not suitable to separate texture from
noise. In particular, for localized textures, like the one in Fig. 4, some noise can
be included in the texture component without changing its G-norm value.

̂t2 n̂2 ̂t with ̂t2 n̂ with n̂2

Fig. 4. Stage II model (30): decomposition results (left) and central horizontal cross-
sections (right) of texture and noise with t̂ and n̂ from the first column of Fig. 3.

8 Conclusions

In this paper we presented a two-stage variational model for the additive decom-
position of images corrupted by additive white noise into cartoon, smooth, tex-
ture and noise components. We also proposed a novel multi-parameter selection
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criterion based on cross-correlation which, together with the usage of a whiteness
constraint for the noise component, makes the model context- and noise-unaware.
Some numerical examples are presented which indicate the good quality decom-
position results achievable by the proposed approach.
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