
Chapter 8 
Lipschitz Geometry of Real 
Semialgebraic Surfaces 

Lev Birbrair and Andrei Gabrielov 

Contents 

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  450 
8.2 Inner Lipschitz Equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  452 
8.3 Normal Embedding Theorem, Lipschitz Normally Embedded Sets . . . . . . . . . . . . . . . . . . . . . . .  454 
8.4 Pizza Decomposition of the Germ of a Semialgebraic Function . . . . . . . . . . . . . . . . . . . . . . . . . . .  456 
8.5 Outer Lipschitz Geometry, Snakes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  458 
8.6 Tangent Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  459 
8.7 Ambient Equivalence: Metric Knots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  460 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  461 

Abstract We present here basic results in Lipschitz Geometry of semialgebraic 
surface germs. Although bi-Lipschitz classification problem of surface germs with 
respect to the inner metric was solved long ago, classification with respect to the 
outer metric remains an open problem. We review recent results related to the outer 
and ambient bi-Lipschitz classification of surface germs. In particular, we explain 
why the outer bi-Lipschitz classification is much harder than the inner classification, 
and why the ambient Lipschitz Geometry of surface germs is very different from 
their outer Lipschitz Geometry. In particular, we show that the ambient Lipschitz 
Geometry of surface germs includes all of the Knot Theory. 
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8.1 Introduction 

Lipschitz classification of semialgebraic surfaces has become in recent years one of 
the central questions of the Metric Geometry of Singularities. It was stimulated by 
the finiteness theorems of Mostowski, Parusinski and Valette (see [15, 16, 20]). They 
proved that there are finitely many Lipschitz equivalence classes in any semialge-
braic family of semialgebraic sets. Lipschitz classification is intermediate between 
Smooth (too fine) and Topological (too coarse) classifications. For example, smooth 
classification of most singularities is not finite. It may be even infinite dimensional 
for non-isolated singularities. 

Here we review recent developments in Lipschitz Geometry of semialgebraic 
surfaces (two-dimensional real semialgebraic sets). Since we are mainly interested 
in singularities of semialgebraic surfaces, our main object is a semialgebraic surface 
germ .(X, 0) at the origin of . Rn. Note that most results presented in this paper remain 
true for subanalytic sets, and for the sets definable in a polynomially bounded o-
minimal structure. 

A connected semialgebraic set .X ⊂ R
n inherits from . Rn two metrics: the outer 

metric .dist (x, y) = |y − x| and the inner metric .idist (x, y) = length of the 
shortest path in X connecting x and y. Note that .dist (x, y) ≤ idist (x, y). A  
semialgebraic set is called Lipschitz Normally Embedded if these two metrics are 
equivalent (see Definition 8.2.3). 

For the surface germs, there are three natural equivalence relations: 

1. Inner Lipschitz equivalence: .(X, 0) ∼i (Y, 0) if there is a homeomorphism 
.h : (X, 0) → (Y, 0) bi-Lipschitz with respect to the inner metric. 

2. Outer Lipschitz equivalence: .(X, 0) ∼o (Y, 0) if there is a homeomorphism 
.h : (X, 0) → (Y, 0) bi-Lipschitz with respect to the outer metric. 

3. Ambient Lipschitz equivalence: 
.(X, 0) ∼a (Y, 0) if there is an orientation preserving bi-Lipschitz homeomor-
phism .H : (Rn, 0) → (Rn, 0) such that .H(X) = Y . 

Inner Lipschitz Geometry of surface germs is relatively simple. The building 
block of the inner Lipschitz classification of surface germs is a .β-Hölder triangle 
(see Definition 8.2.1). A surface germ .(X, 0) with an isolated singularity and 
connected link is inner Lipschitz equivalent to a .β-horn (see Definition 8.2.2). If the 
singularity is not isolated, classification is made by the theory of Hölder Complexes 
(see [1]). A Hölder Complex is a triangulation (decomposition into Hölder 
triangles) of a surface germ. Canonical Hölder Complex (see Definition 8.2.10) is a  
complete invariant of the inner Lipschitz equivalence of surface germs. 

Outer Lipschitz Geometry of surface germs is much more complicated. For 
example, the germs of all irreducible complex curves are inner Lipschitz equivalent 
to .(C, 0), while the outer Lipschitz classification of the germs of complex plane 
curves is described by their sets of essential Puiseux pairs (see [12, 17]). Even for 
the union of two normally embedded Hölder triangles, the outer Lipschitz Geometry 
is not simple (see [3]).
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A special case of a surface germ is the union of a Hölder triangle T and a graph of 
a Lipschitz semialgebraic function f defined on T . The outer Lipschitz equivalence 
of two such surface germs is equivalent to the Lipschitz contact equivalence of 
the two functions. This relates outer Lipschitz Geometry of surface germs with the 
Lipschitz Geometry of functions. A complete invariant of the contact equivalence 
class of a Lipschitz function f defined on a Hölder triangle T , called a “pizza,” is 
defined in [9]. Informally, a pizza is a decomposition of T into “slices,” Hölder sub-
triangles .{Ti} of T , such that the order of f on each arc .γ ⊂ Ti depends linearly on 
the order of contact of . γ with a boundary arc of . Ti . 

For the general surface germs, Lipschitz classification with respect to the outer 
metric is still an open problem. 

The study of Lipschitz Normally Embedded, or simply Normally Embedded, sets 
was initiated by Kurdyka and Orro [14]. Kurdyka proved that any semialgebraic 
set admits a “pancake decomposition,” a finite partition into normally embedded 
subsets. Using this partition, Kurdyka and Orro proved that any semialgebraic set 
admits a semialgebraic “pancake metric” equivalent to the inner metric. Normal 
Embedding theorem of Birbrair and Mostowski states that, for any semialgebraic 
set X, there is a semialgebraic and bi-Lipschitz with respect to the inner metric 
embedding .Ψ : X → R

m, where .m ≥ 2 dim(X) + 1 (see [10]). Lipschitz Normal 
Embedding of complex analytic sets is addressed in the paper by Anne Pichon in 
the present volume. 

The set of semialgebraic arcs in .(X, 0) parameterized by the distance to the 
origin is called the Valette link .V (X) of the germ .(X, 0) (see Definition 8.3.6). 
The tangency order of arcs (see Definition 8.3.9) defines a non-archimedean metric 
on .V (X). 

A pancake decomposition is called minimal if it is not a refinement of another 
pancake decomposition. A natural question related to Lipschitz Normal Embedding 
of surface germs is uniqueness of a minimal pancake decomposition. The answer 
is negative even for a Hölder triangle. Gabrielov and Sousa in [13] gave examples 
of Hölder triangles having several combinatorially non-equivalent minimal pancake 
decompositions. 

Relations between the ambient and outer equivalence of surface germs were 
studied in [2, 5, 6]. In the paper [2] the authors presented several outer Lipschitz 
and ambient topologically equivalent families of surface germs in . R3 and . R4, 
which are pairwise ambient Lipschitz non-equivalent. In [5, 6], several “Universality 
Theorems” were formulated. Informally, these theorems state that, even when the 
link of a surface germ is topologically a trivial knot, the classification problem of 
the ambient Lipschitz equivalence of such surface germs “contains all of the knot 
theory.”
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8.2 Inner Lipschitz Equivalence 

Definition 8.2.1 For 1 ≤ β ∈ Q, the standard β-Hölder triangle Tβ is the germ at 
the origin of R2 of the surface {x ≥ 0, 0 ≤ y ≤ xβ} (see Fig. 8.1a). A β-Hölder 
triangle is a surface germ inner Lipschitz equivalent to Tβ . 

Definition 8.2.2 For 1 ≤ β ∈ Q, the standard β-horn Cβ is the germ at the origin 
of R3 of the surface {z ≥ 0, x2 + y2 = z2β} (see Fig. 8.1b). A β-horn is a surface 
germ inner Lipschitz equivalent to Cβ . 

Definition 8.2.3 A semialgebraic set X is called Lipschitz Normally Embed-
ded (LNE) if the inner and outer metrics on X are equivalent: dist (x, y) ≤ 
idist (x, y) ≤ C dist (x, y) for some constant C >  0 and all x, y ∈ X. 

For example, the germ of an algebraic curve {x3 = y2} is not LNE, while the 
standard β-horn Cβ is LNE. 

Theorem 8.2.4 Given the germ (X, 0) of a semialgebraic surface with isolated 
singularity and connected link, there is a unique rational number β ≥ 1 such that 
(X, 0) is inner Lipschitz equivalent to the standard β-horn Cβ . 

Birbrair’s theory of Hölder Complexes (see [1]) is a generalization of Theorem 
8.2.4 for the surface germs with non-isolated singularities. 

Definition 8.2.5 A Formal Hölder Complex is a pair (G, β), where G is a graph 
and β : EG → Q≥1 is a function, where EG the set of edges of G. 

Definition 8.2.6 A Geometric Hölder Complex corresponding to a Formal Hölder 
Complex (G, β) is a surface germ (X, 0) such that 

1. For small ε >  0, the intersection of X with the ε-ball Bε is homeomorphic to the 
cone over G, and the intersection of X with the ε-sphere Sε is homeomorphic to 
G. 

2. For any edge g ∈ EG, the subgerm of (X, 0) corresponding to g is a β(g)-Hölder 
triangle. 

Fig. 8.1 A β-Hölder triangle and a β-horn
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Theorem 8.2.7 For any surface germ (X, 0) ⊂ Rn, there exists a Formal Hölder 
Complex (G, β) such that (X, 0) is a Geometric Hölder Complex corresponding to 
(G, β). 

Remark 8.2.8 For a given surface germ (X, 0), the Formal Hölder Complex (G, β) 
in Theorem 8.2.7 is not unique. The simplification procedure described below 
reduces it to the unique Canonical Hölder Complex corresponding to (X, 0). 

Definition 8.2.9 We say that a vertex v0 of the graph G is non-critical if it is 
adjacent to exactly two edges g1 and g2 of G, and these edges connect v0 with 
two different vertices of G. A vertex v0 of G is called a loop vertex if it is adjacent 
to exactly two different edges g1 and g2 of G, and these edges connect v0 with the 
same vertex v1 of G. The other vertices of G (neither non-critical nor loop vertices) 
are called critical. 

Definition 8.2.10 An Abstract Hölder Complex (G, β) is Canonical if 

1. All vertices of G are either critical or loop vertices; 
2. For any loop vertex v of G adjacent to the edges g1 and g2, one has β(g1) = 

β(g2). 

Now we define a simplification procedure, reducing an Abstract Hölder 
Complex (G, β) to a Canonical one. 

We start with eliminating non-critical vertices. Let v0 be a non-critical vertex of 
G, connected with the vertices v1 and v2 of G by the edges g1 and g2. Then we 
remove the vertex v0 from the set of vertices of G, and replace the edges g1 and g2 
of G with the single edge g0 connecting v1 with v2. Let  G′ be the graph obtained 
from G by this operation. We define an abstract Hölder complex (G′, β ′), setting 
β ′(g0) = min(β(g1), β(g2)) and β ′(g) = β(g) for all edges g of G′ other than g0 
(see Fig. 8.2a). 

We repeat this operation until there are no non-critical vertices. After that, we 
take care of the loop vertices of G. 

Let (G, β) be an Abstract Hölder Complex without non-critical vertices. If a 
loop vertex v0 of G is connected by the edges g1 and g2 with the same vertex v1, 
such that β(g1) 	= β(g2), we define an Abstract Hölder Complex (G, β ′), replacing 
β1 = β(g1) and β2 = β(g2) with β ′(g1) = β ′(g2) = min(β1, β2) (see Fig. 8.2b). 
We repeat this operation for all loop vertices of G. 

The main results of the paper [1] are the following: 

Theorem 8.2.11 (Inner Lipschitz Classification Theorem) The surface germs 
(X, 0) and (X′, 0) are Lipschitz equivalent with respect to the inner metric if, 
and only if, the corresponding Canonical Hölder Complexes are combinatorially 
equivalent. 

Theorem 8.2.12 (Realization Theorem) Let (G, β) be an Abstract Hölder Com-
plex. Then there exists a surface germ (X, 0) such that (X, 0) is a Geometric Hölder 
Complex corresponding to (G, β).
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Fig. 8.2 Simplification of Hölder complexes 

Remark 8.2.13 The theory of Hölder Complexes implies that a germ (X, 0) of an 
irreducible complex curve, considered as a real surface germ, is inner Lipschitz 
equivalent to the germ (C, 0). Otherwise (X, 0) is inner Lipschitz equivalent to the 
union of finitely many germs (C, 0) pinched at the origin. 

8.3 Normal Embedding Theorem, Lipschitz Normally 
Embedded Sets 

Examples of Lipschitz Normally Embedded (LNE) Surface Germs 
1. The standard β-horn Cβ is LNE. 
2. A germ of an irreducible complex curve is LNE if, and only if, it is smooth. 

There are many examples of not normally embedded surface germs. On the other 
hand, we have the following result: 

Theorem 8.3.1 (See [7, 10]) Let X ⊂ Rm be a connected semialgebraic set. Then 
there exist a normally embedded semialgebraic set X̃ ⊂ R

q , where q ≤ 2 dim  X+1, 
and an inner bi-Lipschitz homeomorphism p : X → X̃. This map is called a normal 
embedding of X. 

Definition 8.3.2 A subset X̃ ⊂ Rm is called Lipschitz Normally Embedded if there 
exists a bi-Lipschitz homeomorphism Ψ : X̃inner → X̃outer . 

Here X̃inner means the space X̃ equipped with the inner metric, and X̃outer means 
X̃ equipped with the outer metric. The difference with Definition 8.2.3 is that in 
Definition 8.3.2 we do not a priori suppose that Ψ is the identity map. 

Proposition 8.3.3 The two definitions of Lipschitz Normally Embedded sets are 
equivalent.
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Pancake decomposition of Kurdyka [14] implies that there exists a decomposi-
tion of any semialgebraic set X into LNE semialgebraic subsets. 

Theorem 8.3.4 There is a decomposition of any semialgebraic set X into subsets 
Xi such that 

1. ∪Xi = X. 
2. Xi are semialgebraic LNE sets. 
3. dim(Xi ∩ Xj) <  min(dim Xi, dim Xj) for i 	= j . 

Remark 8.3.5 Using pancake decomposition, Kurdyka and Orro defined the so-
called pancake metric (see [7, 14]). It is a semialgebraic metric equivalent to the 
inner metric. 

Definition 8.3.6 (See [19]) An arc in Rn is (a germ at the origin of) a mapping γ : 
[0, ε)  → Rn such that γ (0) = 0. Unless otherwise specified, arcs are parameterized 
by the distance to the origin, i.e., |γ (t)| =  t . We usually identify an arc γ with its 
image in Rn. The  Valette link of a germ (X, 0) is the set V (X)  of all arcs γ ⊂ X. 

Theorem 8.3.7 (See [19]) Let (X, 0) and (Y, 0) be germs of semialgebraic sets 
in Rn. If these germs are semialgebraically (inner, outer or ambient) Lipschitz 
equivalent, then there exists a bi-Lipschitz map h : X → Y (or h : Rn → Rn 

such that h(X) = Y in the case of ambient equivalence) preserving the distance to 
the origin, i.e., such that h(X ∩ Sε) = Y ∩ Sε for small ε >  0. 

Definition 8.3.8 Let f 	≡ 0 be (a germ at the origin of) a Lipschitz function defined 
on an arc γ . The  order ordγ f of f on γ is the exponent q ∈ Q such that f (γ  (t))  = 
ctq + o(tq ) as t → 0, where c 	= 0. If f ≡ 0 on  γ , we set  ordγ f = ∞. 

Definition 8.3.9 The tangency order of arcs γ and γ ′ is tord(γ,  γ ′) = ordγ |γ (t)− 
γ ′(t)|. The tangency order of an arc γ and a set of arcs Z ⊂ V (X)  is tord(γ,  Z)  = 
supλ∈Z tord(γ,  λ). The tangency order of two subsets Z and Z′ of V (X)  is 
tord(Z,  Z′) = supγ∈Z tord(γ,  Z′). Similarly, itord(γ, γ ′), itord(γ, Z) and 
itord(Z, Z′) are the tangency orders with respect to the inner metric. 

Remark 8.3.10 If (X, 0) is a germ of a semialgebraic curve, i.e., X = ∪γi is a 
finite family of semialgebraic arcs, then the outer Lipschitz Geometry of (X, 0) is 
completely determined by the tangency orders tord(γi, γj ) (see [4]). 

Proposition 8.3.11 A surface germ (X, 0) is LNE if, and only if, for any two arcs 
γ1 and γ2 in X one has tord(γ1, γ2) = itord(γ1, γ2). 

Proposition 8.3.12 Let (X, 0) ∈ Rn be a surface germ inner Lipschitz equivalent 
to a β-horn. The Grassmannian G(n, 2) can be considered as the space of 
all orthogonal projections ρ : R

n → R
2. Then there exists an open dense 

semialgebraic subset ˜G ⊂ G(n, 2) such that for all ρ ∈ ˜G one has β = 
min{γ1,γ2}⊂V (X)  tord(ρ(γ1), ρ(γ2)). 

The following proposition was proved first by Alexandre Fernandes [12]. A 
special case of this is the Arc Criterion of Normal Embedding [11].
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Proposition 8.3.13 Let (X, 0) and (Y, 0) be surface germs. A semialgebraic home-
omorphism Φ : (X, 0) → (Y, 0) preserving the distance to the origin is bi-Lipschitz 
if, and only if, for any two arcs γ1, γ2 ∈ V (X)  one has 

.tord(γ1, γ2) = tord(Φ(γ1),Φ(γ2)). (8.1) 

A special case of Pancake Decomposition for surface germs can be stated as 
follows: 

Theorem 8.3.14 Let (X, 0) be a semialgebraic surface germ. Then there exists a 
decomposition of (X, 0) into the germs (Xi, 0) such that 

1. ∪Xi = X. 
2. Each Xi is a LNE βi-Hölder triangle. 
3. For i 	= j , the intersection Xi ∩ Xj is either the origin or a common boundary 

arc of Xi and Xj . 

Definition 8.3.15 A pancake decomposition of a surface germ is minimal if the 
union of any two adjacent Hölder triangles Xi and Xj is not normally embedded. 
Two pancake decompositions are combinatorially equivalent if they are combinato-
rially equivalent as Hölder Complexes. 

The answer to a natural question “Are any two minimal pancake decompositions 
of the same surface germ combinatorially equivalent?” is negative (see Sect. 8.5). 

8.4 Pizza Decomposition of the Germ of a Semialgebraic 
Function 

This section is related to the outer Lipschitz Geometry of a special kind of a surface 
germ: The union of a Lipschitz Normally Embedded (LNE) Hölder triangle and the 
graph of a semialgebraic Lipschitz function defined on it. 

Definition 8.4.1 Given a semialgebraic Lipschitz function f defined on a .β-Hölder 
triangle T , let  

.Qf (T ) =
⋃

γ∈V (T )

ordγ f. (8.2) 

It was shown in [9] that .Qf (T ) is either a point or a closed interval in .Q ∪ {∞}. 
Definition 8.4.2 A Hölder triangle T is elementary with respect to a Lipschitz 
function f if, for any .q ∈ Qf (T ) and any two arcs . γ and . γ ′ in T such that 
.ordγ f = ordγ ′f = q, the order of f is q on any arc in the Hölder triangle 
.T (γ, γ ′) ⊆ T bounded by the arcs . γ and . γ ′.
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Definition 8.4.3 Let T be a Hölder triangle and f a semialgebraic Lipschitz 
function defined on T . For each arc .γ ⊂ T , the  width .μT (γ, f ) of the arc . γ with 
respect to f is the infimum of exponents of Hölder triangles .T ′ ⊂ T containing . γ
such that .Qf (T ′) is a point. For .q ∈ Qf (T ) let .μT,f (q) be the set of exponents 
.μT (γ, f ), where . γ is any arc in T such that .ordγ f = q. It was  shown in [9] that, 
for each .q ∈ Qf (T ), the  set  .μT,f (q) is finite. This defines a multivalued width 
function .μT,f : Qf (T ) → Q ∪ {∞}. If  T is elementary with respect to f , then the 
function .μT,f is single valued. When f is fixed, we write .μT (γ ) and . μT instead of 
.μT (γ, f ) and .μT,f . 

Definition 8.4.4 Let T be a Hölder triangle and f a semialgebraic Lipschitz 
function defined on T . We say that T is a pizza slice associated with f if it is 
elementary with respect to f and, unless .Qf (T ) is a point, .μT,f (q) = aq + b is 
an affine function on .Qf (T ). If  T is a pizza slice such that .Qf (T ) is not a point, 
then the supporting arc . γ̃ of T with respect to f is the boundary arc of T such that 
.μT (γ̃ , f ) = maxq∈Qf (T ) μT,f (q). In that case, .μT (γ, f ) = tord(γ, γ̃ ) for any arc 
.γ ⊂ T such that .tord(γ, γ̃ ) ≤ μT (γ̃ , f ). 

Definition 8.4.5 (See [9, Definition 2.13]) Let f be a non-negative semialgebraic 
Lipschitz function defined on a .β-Hölder triangle .T = T (γ1, γ2) oriented from . γ1
to . γ2. A  pizza on T associated with f is a decomposition .{T
}p
=1 of T into .β
-
Hölder triangles .T
 = T (λ
−1, λ
) ordered according to the orientation of T , such 
that .λ0 = γ1 and .λp = γ2 are the boundary arcs of T , .T
∩T
+1 = λ
 for .0 < 
 < p, 
and each triangle . T
 is a pizza slice associated with f . 

A pizza .{T
} on T is minimal if .T
−1 ∪ T
 is not a pizza slice for any .
 > 1. 

Definition 8.4.6 (See [9, Definition 2.12]) An abstract pizza is a finite ordered 
sequence .{q
}p
=0, where .q
 ∈ Q≥1 ∪ {∞}, and a finite collection .{β
,Q
, μ
}p
=1, 
where .β
 ∈ Q≥1 ∪ {∞}, .Q
 = [q
−1, q
] ⊂ Q≥1 ∪ {∞} is either a point or a closed 
interval, .μ
 : Q
 → Q ∪ {∞} is an affine function, non-constant when . Q
 is not a 
point, such that .μ
(q) ≤ q for all .q ∈ Q
 and .minq∈Q


μ
(q) = β
. 

Definition 8.4.7 Two pizzas are combinatorially equivalent if the corresponding 
abstract pizzas are the same. 

Theorem 8.4.8 (See [9, Theorem 4.9]) Two non-negative semialgebraic Lipschitz 
functions f and g defined on a Hölder triangle T are contact Lipschitz equivalent 
if, and only if, minimal pizzas on T associated with f and g are combinatorially 
equivalent. 

Let .T = T (γ1, γ2) and .T ′ = T (γ ′
1, γ

′
2) be two normally embedded .β-Hölder 

triangles. We say that .(T , T ′) is a normal pair if 

.
tord(γ1, T

′) = tord(γ1, γ
′
1) = tord(γ ′

1, T ),

tord(γ2, T
′) = tord(γ2, γ

′
2) = tord(γ ′

2, T ).
(8.3) 

For example, a pair .(T ,Graph(f )) considered in this section satisfies this 
condition. The following question is natural: Let .T = T (γ1, γ2) and .T ′ = T (γ ′

1, γ
′
2)
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be a normal pair of semialgebraic .β-Hölder triangles. Is it true that the union . T ∪T ′
is outer Lipschitz equivalent to the union .T ∪ Graph(f ), where f is the distance 
function .f (x) = dist (x, T ′) defined on T ? In the paper [3] the authors give 
examples when this is not true. This is true, however, when T is elementary with 
respect to f . 

8.5 Outer Lipschitz Geometry, Snakes 

Definition 8.5.1 Let (X, 0) be a surface germ. An arc γ of X is Lipschitz non-
singular if there exists a normally embedded Hölder triangle T ⊂ X such that γ is 
an interior arc of T and γ 	⊂ X \ T . Otherwise, γ is Lipschitz singular. It follows 
from the pancake decomposition that a surface germ X contains finitely many 
Lipschitz singular arcs. The union of all Lipschitz singular arcs in X is denoted 
by Lsing(X). A Hölder triangle T ⊂ X is non-singular if all interior arcs of T are 
Lipschitz non-singular. 

Definition 8.5.2 If T = T (γ1, γ2) is a non-singular β-Hölder triangle, an arc γ of 
T is generic if itord(γ1, γ  )  = itord(γ, γ2) = β. The set of generic arcs of T is 
denoted G(T ). 

Definition 8.5.3 An arc γ of a Lipschitz non-singular β-Hölder triangle T is 
abnormal if there are two normally embedded Hölder triangles T ′ ⊂ T and T ′′ ⊂ T 
such that T ′∩T ′′ = γ and T ∪T ′ is not normally embedded. Otherwise γ is normal. 
The set Abn(T ) of abnormal arcs of T is outer Lipschitz invariant. 

Definition 8.5.4 A non-singular β-Hölder triangle T is called a β-snake if 
Abn(T ) = G(T ). 

The following important property of snakes can be interpreted as “separation of 
scales” in outer Lipschitz Geometry. 

Lemma 8.5.5 Let T be a β-snake, and let {Tk}p 
k=1 be a minimal pancake decom-

position of T . Then each Tk is a β-Hölder triangle. 

Remark 8.5.6 Minimal pancake decompositions of a snake may be combinatorially 
non-equivalent, as shown in Fig. 8.3. We use a planar plot to represent the link of a 
snake. The points in Fig. 8.3 correspond to arcs of the snake. The points with smaller 
Euclidean distance inside the shaded disks correspond to arcs with the tangency 
order higher than their inner tangency order β. Black dots indicate the boundary 
arcs of pancakes. 

Definition 8.5.7 A β-Hölder triangle T is weakly normally embedded if, for 
any two arcs γ and γ ′ of T such that tord(γ,  γ ′) > itord(γ,  γ ′), we have  
itord(γ, γ ′) = β. 

Proposition 8.5.8 Let T be a β-snake. Then T is weakly normally embedded.
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Fig. 8.3 Two combinatorially non-equivalent minimal pancake decompositions of a snake. Black 
dots indicate the boundary arcs of pancakes 

8.6 Tangent Cones 

Definition 8.6.1 The tangent cone C0X of a semialgebraic set X at 0 is defined as 
follows: 

. C0X = Cone

(

lim
ε→0

1

ε

(

X ∩ {|x| = ε})
)

,

where the limit here means the Hausdorff limit. 

Remark 8.6.2 There are several equivalent definitions of the tangent cone of a 
semialgebraic set. In particular, the tangent cone C0X can be defined as the set 
of tangent vectors at the origin to all arcs in X. The tangent cone of a semialgebraic 
set is semialgebraic. 

The tangent cone is Lipschitz invariant: 

Theorem 8.6.3 (See [18]) If two germs (X, 0) and (Y, 0) are outer (resp. ambient) 
Lipschitz equivalent, then the corresponding tangent cones C0X and C0Y are outer 
(resp. ambient) Lipschitz equivalent. 

The result is important in Theory of Metric Knots (see [2, 5, 6]) for the proof of 
Universality Theorem below. This result was also used to prove that, if a complex 
analytic set is a Lipschitz nonsingular submanifold of Cn, then it is a smooth 
submanifold [8]. Moreover, the result was used in the recent study of the Zariski 
Multiplicity Conjecture (see the paper of Fernandes and Sampaio in the present 
volume).
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8.7 Ambient Equivalence: Metric Knots 

Definition 8.7.1 Two germs of semialgebraic sets (X, 0) and (Y, 0) in Rn are outer 
Lipschitz equivalent if there exists a homeomorphism h : (X, 0) → (Y, 0) bi-
Lipschitz with respect to the outer metric. The germs are semialgebraic outer 
Lipschitz equivalent if the map h can be chosen to be semialgebraic. The germs are 
ambient Lipschitz equivalent if there exists an orientation preserving bi-Lipschitz 
homeomorphism H : (Rn , 0) → (Rn , 0), such that H(X)  = Y . The germs are 
semialgebraic ambient Lipschitz equivalent if the map H can be chosen to be 
semialgebraic. 

Definition 8.7.2 The link at the origin LX of a germ (X, 0) in Rn is the equivalence 
class of the sets X ∩ Sn−1 

0,ε for small positive ε with respect to the ambient Lipschitz 
equivalence. The tangent link of X is the link at the origin of the tangent cone of X. 

Remark 8.7.3 By the finiteness theorems of Mostowski, Parusinski and Valette (see 
[15, 16, 20]) the link at the origin is well defined. We write “the link at the origin” 
speaking of this notion of the link from Singularity Theory, reserving the word 
“link” for the notion of the link in Knot Theory. If n = 4 and X has an isolated 
singularity at the origin, then each connected component of LX is a knot in S3. 

Definition 8.7.4 A metric knot is an ambient Lipschitz equivalence class of a 
surface germ (X, 0) in R4 with an isolated singularity and connected link. In 
particular, the link at the origin of the germ X is an isotopy class of an ordinary 
topological knot in S3. 

The following result (so called Universality Theorem for metric knots) shows 
the difference between outer and ambient Lipschitz Geometry of surface germs in 
R
4: 

Theorem 8.7.5 (Universality Theorem) One can associate to each knot K in S3 

a semialgebraic surface germ (XK, 0) in R4 so that: 

1. The link at the origin of each germ XK is a trivial knot; 
2. All germs XK are outer Lipschitz equivalent; 
3. Two germs XK1 and XK2 are ambient semialgebraic Lipschitz equivalent only if 

the knots K1 and K2 are isotopic. 

The idea of a proof is illustrated in Fig. 8.4, representing the link at the origin of 
a surface germ XK . A detailed explanation can be found in [6]. 

The following result is a more complicated version of Universality Theorem: 

Theorem 8.7.6 For any two knots K and L in S3, one can associate a semialge-
braic surface germ X̃KL so that: 

1. The link at the origin of X̃KL is isotopic to L. 
2. The tangent link of X̃KL is isotopic to K . 
3. All surface germs X̃KL are outer bi-Lipschitz equivalent.
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Fig. 8.4 The proof of 
Theorem 8.7.5 

The theorem implies, for example, that for a given tangent cone one can find 
infinitely many outer Lipschitz equivalent, but not ambient Lipschitz equivalent 
surface germs. 
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