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Abstract After a brief introduction to jet schemes, this article surveys their 
applications in singularity theory (Nash problem, motivic integration, birational 
geometry, jet components graph, equisingularity, local algebras of arc spaces), in the 
search for toric resolution of singularities (Teissier’s conjecture) and in the theory 
of integer partitions. 
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4.1 Introduction 

There exist in the literature several surveys of various aspects of jet schemes and 
arc spaces. This paper is meant on one hand to show the diversity of these aspects 
and guide the reader through it and on the other hand to survey some other aspects 
which do not appear in the existing surveys. First, let us say what intuitively are the 
jet schemes and the arc space of a variety X defined over a field . K. The arc space 
of X is the scheme (or the infinite dimensional variety) .X∞ which parametrizes the 
germs of formal curves (arcs) traced on . X; i.e.,, a point on .X∞ corresponds to an 
arc traced on . X. The jet schemes are finite dimensional approximations of the arc 
space: If we consider X embedded in an affine space, .X ⊂ An, for .m ∈ N, the m-th 
jet scheme .Xm can be thought (modulo a trivial fibration) as the space of arcs in the 
ambient space . An which have “contact” with X larger than . m.

The arc space and the jet schemes of X are rather complicated compared 
to X : the arc space is in general infinite dimensional; the jet schemes have in 
general many irreducible components of different dimensions; they are in general 
not reduced . . . but  one  can  formulate  the  guiding  philosophy of this article as 
follows: arc spaces and jet schemes can transform a difficult problem concerning 
a relatively simple object into a relatively simple problem concerning a difficult 
object. 

Maybe one of the first uses of arc spaces in singularity theory goes back to Nash 
and is “subsequent” (1968) to the proof of existence of resolution of singularities 
by Hironaka. One can realize easily, that if there exists a resolution of singularities 
.μ : Z −→ X, then X admits infinitely many other resolutions, an infinite family 
of them is obtained by blowing up Z along regular loci. Nash wanted to codify 
the data which is common to all these resolutions of singularities. He suggested 
that this data is hidden in the arc space ; a precise form of this suggestion is what 
is nowadays known as the Nash problem, but also the generalized Nash problem, 
or the embedded Nash problem which are generalizations of the first problem. In 
Sect. 4.3, we will briefly discuss these problems which have made fantastic progress 
in the last decade. 

Another momentum was the introduction of the (geometric) motivic integration 
(Kontsevich, Denef-Loeser) in analogy with . p−adic integration. The arc space of 
a variety is the measured space in this theory; the name motivic is related to the 
value that takes a motivic integral, which is an element in the “Grothendieck ring” 
(i.e., a class of a geometric object) and not a real number. This theory led to the 
introduction, again sometimes in analogy with . p−adic integration but not only, of 
several new (motivic) invariants of singularities; this also led to another “stronger 
version” of the monodromy conjecture. This will be mentioned in Sect. 4.4. 

The development of the geometric tools needed for motivic integration (which 
in particular allowed to prove the change of variables formula) led to a very 
effective use of jet schemes and arc spaces in the minimal model program and in 
“hunting” invariants of singularities of pairs (Mustaţă, Ein, Yasuda,. . . ).  This  will  
be highlighted in Sect. 4.5.
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Section 4.6 is dedicated to a weighted graph (the jet components graph) which 
was introduced by the author and which encodes the geometry of the jet schemes of 
the singularity and their truncation maps (these maps will be introduced in Sect. 4.2). 
We will mention some results about the structure of this graph (and hence the 
structure of the jet schemes) for several classes of singularities. For instance the 
data of this graph for irreducible plane branches, for two dimensional quasi-ordinary 
hypersurfaces (with H. Cobo), or for normal toric singularities is equivalent to the 
data of the embedded topological type of these singularities. This graph is actually 
determined by the irreducible components of the jet schemes, their dimensions and 
embedding dimensions and their behaviour with respect to the truncation maps; in 
particular this graph is determined by basic invariants of the jet schemes, but we 
can extract from it a complete invariant of the embedded topological type for these 
classes of singularities; the topological type is a very fine invariant of singularities. 
This reflects the philosophy that we mentioned above. 

Section 4.7 describes how jet schemes intervene in an approach of the author to 
the problem of construction of embedded resolutions of singularities. This approach 
can be thought as a reverse Nash problem and is at the same time an approach to 
Teissier’s conjecture on resolution of singularities with toric morphisms. 

Section 4.8 concerns an equisingularity theory (Leyton-Alvarez) which is based 
on deformations of jet schemes, and comparisons with other equisingularity the-
ories. This problem generalizes the study of the jet schemes of irreducible plane 
curves in an equisingular family which was considered by the author. 

Section 4.9 describes a link (Bruschek, Mourtada, Schepers) between some 
aspects of classical number theory, namely the study of integer partitions and 
singularity theory via arc spaces. The main object of this link (the Arc Hilbert-
Poincaré series) makes use of the cone structure of the arc space. 

Section 4.10 concerns the structure of the localization of the algebra of arcs at two 
types of points (arcs): On one hand rational points (Drinfeld, Grinberg, Kazhdan) 
and the invariants of singularities which can be extracted of this structure (Bourqui, 
Sebag) and on the other hand stable points or points associated with divisorial 
valuations (Reguera, Mourtada-Reguera). 

4.2 The Construction of Jet Schemes 

Let . K be an algebraically closed field and X an algebraic variety defined over . K.

For .m ∈ N, the .m−jet scheme of X is the .K-scheme .Xm representing the functor 

. Fm : Schemes −→ Sets

which with an affine .K-scheme SpecA associates the set 

.HomK(SpecA[t]/(tm+1),X).
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For .m ≥ p, the natural projection .A[t]/(tm+1) −→ A[t]/(tp+1) induces the 
truncation affine morphism .πm,p : Xm −→ Xp. This gives a projective system 
.(Xm)m≥0 whose limit is by definition the space of arcs 

. X∞ := lim←− Xm.

It follows from corollary 2 in [17, 136] that .X∞ is the scheme which represents the 
functor .F∞ : Schemes −→ Sets which with an affine .K-scheme SpecA associates 
the set .HomK(SpecA[[t]], X). In the case of an affine variety 

.X = Spec
K[x1, . . . , xn]
(f1, . . . , fr )

, (4.1) 

the jet schemes .Xm and the arc space are affine varieties. Indeed, for A a .K-algebra, 
the data of an .A−point of .X∞ is equivalent to the data of a .K-algebra morphism 

. φ : K[x1, . . . , xn]
(f1, . . . , fr )

−→ A[[t]].

The morphism . φ is completely determined by the images of . xi, i = 1 . . . , n

.xi �−→ φ(xi) = x
(0)
i + x

(1)
i t + · · · ; (4.2) 

these images should satisfy .fl(φ(x1), . . . , φ(xn)) = 0, . l = 1, . . . , r.

If we write 

.fl(φ(x1), . . . , φ(xn)) =
∑

j≥0

F
(j)
l (x(0), . . . , x(j)) tj (4.3) 

where .x(j) = (x
(j)

1 , . . . , x
(j)
n ). Then the data of . φ is equivalent to giving 

values to .x
(j)
i in . A, for .i = 1, . . . , n; j ∈ N; these values should satisfy 

.F
(j)
l (x(0), . . . , x(j)) = 0. This is equivalent to the data of an .A−point in 

. X∞ = Spec
K[x(0), x(1), . . .]
(F

(j)
l )

j∈N
l=1,...,r

.

Similarly, we have 

. Xm = Spec
K[x(0), x(1), . . . , x(m)]

(F
(j)
l )

j=0,...,m

l=1,...,r

.

Notice that by definition .X0 = X. We denote by .πm the truncation morphism . πm,0
and by .Ψm the morphism from .X∞ to .Xm induced by the fact that the arc space
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is the projective limit of the jet schemes. When there is an ambiguity about the 
variety X whose jet schemes or arc space are considered, these maps are denoted by 
. πX

m,p, πX
m ,Ψ X

m .

In the case where .X = An is an affine space, .Xm is the affine space . Xm :=
SpecK[x(0), x(1), . . . , x(m)] = An(m+1). The truncation morphism .πm,p is the map 
which forgets the last .n(m − p) coordinates .x(p+1), . . . , x(m); it is then the trivial 
fibration whose fiber is . An(m−p).

The geometry of the jet schemes and the arc space of X when X is smooth is 
quite similar locally to the case of the affine space. This follows from the good 
behavior of jet schemes and arc spaces with respect to étale morphisms. One can 
also have a feeling of this on the level of the fibers of .Ψ0; indeed let .x ∈ X be a 
smooth point; let .𝒪X,x be the local ring of X at . x; a .K-arc .γ ∈ X∞ centered at 
. x, corresponds to a morphism of local rings .γ ∗ : 𝒪X,x −→ K[[t]]; since . K[[t]]
is complete (with respect to the . t−adic topology), by the universal property of 
completeness . γ ∗ factors through the completion .𝒪X,x −→ �̂�X,x (with respect to 
the maximal ideal of .𝒪X,x). Since x is a smooth point, by Cohen structure theorem, 
.�̂�X,x 
 K[[x1, . . . , xn]], n being the dimension of X at . x. So the data of . γ is 
equivalent to the data of a local morphism .K[[x1, . . . , xn]] −→ K[[t]]; we deduce 
that .(Ψ X

0 )−1(x) is isomorphic to .(Ψ An

0 )−1(O) where O is any closed point of . An.

The algebra of global functions on the arc space of an affine variety has a 
structure of a differential ring. We assume here for simplicity that the characteristic 
of the field . K is zero. The algebra of global functions on .Ad∞ is 

. ℛ∞ = K[x(0), x(1), . . .].

We have a derivation D on .ℛ∞ defined by .D(x
(j)
i ) = x

(j+1)
i , for . i =

1, . . . , n; j ∈ N. Assume that X is an affine variety (as in (4.1)); if we replace 
in the Eq. (4.2) the variables .x(j)

i by .x(j)
i /j ! (where . j ! is the factorial of . j), we find 

.fl(φ(x1), . . . , φ(xn)) =
∑

j≥0

ℱ(j)
l (x(0), . . . , x(j))

j ! tj , (4.4) 

where .ℱ(0)
l = fl and .ℱ(j)

l is recursively defined by the identity . D(ℱ(j)
l ) = ℱ(j+1)

l ;
Eq. (4.4) follows from the fact that both sides are additive and multiplicative in 
. fl and that this equality is obviously true for .xi. We obtain hence the desired 
differential structure which is induced by the derivation D on the algebra of global 
functions on . X∞

The differential structure is very useful to encode many geometric features of the 
space of arcs, for instance Kolchin’s theorem which states that if X is irreducible, 
then .X∞ is also irreducible ; see also [110, 120] for variants of this theorem. 

Building on the discussion above, we can give an explicit presentation of the 
arc space of the cusp singularity on the curve .X = {x2

1 − x3
0 = 0} ⊂ A2. The 

arc space .X∞ is isomorphic to the space (scheme) whose embedding in the infinite
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dimensional affine space .A2∞ = SpecK[x(0), x(1), . . .] is given by the ideal 

. (x
(0)
1

2 − x
(0)
0

3
, 2x

(0)
1 x

(1)
1 − 3x

(0)
0

2
x

(1)
0 , . . .).

4.3 The Nash Problem and Its Variants 

This subject has been the subject of several surveys [43, 54, 68, 84, 115]. As 
mentioned in the introduction, the Nash problem seeks to detect in the arc space 
information common to all resolution of of singularities of a given variety. For 
this section, we assume for simplicity that . K is an algebraically closed field of 
characteristic zero. Let X be a singular variety and let .μ : Y −→ X be a divisorial 
resolution of singularities of X (divisorial means that the exceptional locus of . μ is 
a divisor). Let  

. E := μ−1(Sing(X)) = ∪r
i=1Ei

be the decomposition of the exceptional locus of . μ into irreducible components. 
Every . Ei defines a divisorial valuation whose center .cX(Ei) on X is included in 
.Sing(X); the corresponding valuation .νEi

associates with a function . h ∈ 𝒪X,cX(Ei)

(the local ring of X at .cX(Ei)) the order of annihilation of .h ◦ μ along .Ei. Note 
that the center is characterized by the fact that the valuation of an element in the 
maximal ideal of .𝒪X,cX(Ei) is strictly positive and that the valuation of an element 
which is not in this maximal ideal is . 0. Note that the center .cY (Ei) of .νEi

on Y is . Ei.

Definition 4.3.1 The divisor . Ei is said to be an essential divisor if for any other 
resolution of singularities .μ′ : Y ′ −→ X (non-necessarily divisorial), we have that 
.cY (Ei) is an irreducible component of the exceptional locus of . μ′.

Note that .νEi
has a center on every . Y ′ as in the above definition because . μ′ is 

proper. In general, it is a difficult task to determine whether a divisor (or a divisorial 
valuation) is essential or not; for surface singularities, essential divisors are exactly 
those which are defined by the irreducible components of the exceptional locus of 
the minimal resolution of singularities. 

The morphism . μ induces a morphism .μ∞ : Y∞ −→ X∞; indeed seeing an arc 
.γ ∈ Y∞ as a morphism .γ : Specκγ [[t]] −→ Y (where . κγ is the residue field of 
.X∞ at . γ ), .μ∞(γ ) is the arc .μ ◦ γ : Specκγ [[t]] −→ X which belongs to .X∞. By 

the valuative criterion of properness we know that any arc . γ on . (Ψ X
0 )

−1
(Sing(X))\

Sing(X)∞ lifts to .Y∞, more precisely to .(Ψ Y
0 )

−1
(E). Using generic smoothness of 

. μ on the irreducible components of .Sing(X), we can show that by restricting . μ we 

have a dominant morphism .(Ψ Y
0 )

−1
(E) −→ (Ψ X

0 )
−1

(Sing(X)). We have that 

.(Ψ Y
0 )

−1
(E) = ∪r

i=1(Ψ
Y
0 )

−1
(Ei)



4 Jet Schemes and Their Applications in Singularities, Toric Resolutions and. . . 217

is the decomposition into irreducible components: indeed, .(Ψ Y
0 )

−1
(Ei) is irre-

ducible for every i (because Y is smooth and . Ei is irreducible) and there cannot be 
inclusions since the . Ei’s are distinct, in particular the sets of constant arcs on every 

. Ei are different. Now let .Ni = μ∞((Ψ Y
0 )

−1
(Ei)), where the overline indicates the 

Zariski closure. It follows from the discussion above that the we have the following 
decomposition into irreducible components 

. (Ψ X
0 )

−1
(Sing(X)) = ∪i∈J Ni,

where .J ⊂ {1, . . . , r}. Moreover, if . Ei is not essential, then .Ni cannot be an 
irreducible component; this can be seen by considering another resolution . μ′ :
Y −→ X such that the center of . Ei on . Y ′ is not an irreducible component of the 

exceptional locus of .μ′. We conclude that .(Ψ X
0 )

−1
(Sing(X)) has finite number of 

irreducible components and that we have an injection, the Nash map 

. {Irreducible components of (Ψ X
0 )

−1
(Sing(X))} −→ {Essential divisors of X}.

Nash asked (this is the Nash problem) whether the Nash map is bijective. It 
has been proved that this map is bijective for toric varities [73], quasi-ordinary 
singularities [59, 70], for surface singularities [56] and very recently for .T-varieties 
of complexity one whose rational quotient is a curve of positive genus [19]; see also 
([48, 87, 114] for other classes). An essential idea in attacking Nash problem is the 
wedge problem which was introduced by Lejeune-Jalabert [82]; an essential tool of 
this latter is the curve selection lemma proved by Reguera [119]. 

Example 4.3.2 Let .X = {x3
2 − x1x3 = 0} ⊂ A3 be the . A2 singularity. The singular 

locus of X is the origin .(0, 0, 0). We blow up the origin in .A3 and consider the 
chart where the blow up morphism is given by .x1 = uv, x2 = v, x3 = vw; all the 
information is seen in this chart. The total transform of X is then given in this chart 
(which is isomorphic to . A3 provided with the coordinates .(u, v,w)) by 

. x3
2 − x1x3 = v2(v − uw) = 0.

The restriction of the blowup to the strict transform .{v−uw = 0} gives the minimal 
resolution of . X; the exceptional locus of this minimal resolution has two irreducible 
components obtained by intersecting the exceptional divisor .{v = 0} with . {v−uw =
0} : these are the curves .E1 = {u = v = 0} and .E2 = {w = v = 0} and both 
are essential (being the divisor on the minimal resolution of singularities). A direct 
computation gives 

.N1 = {x(0)
1 = x

(1)
1 = x

(0)
2 = x

(0)
3 = 0} ⊂ X∞
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and 

. N2 = {x(0)
1 = x

(0)
2 = x

(0)
3 = x

(0)
3 = 0} ⊂ X∞.

Since we can see from their defining equations that there are no inclusions between 
. N1 and .N2, we have the decomposition into irreducible components: 

. Ψ −1(0) = N1 ∪ N2;

hence, the Nash map for this singularity is bijective. 

In general the Nash map is not bijective [42, 73, 75]. It remains a difficult problem 
to understand when this map is bijective or not and to understand its image in the 
non-surjective case: it follows for instance from [44] that terminal “divisors” belong 
to the image of the Nash map; Till recently, the only known Nash valuations (i.e., 
valuations belonging to the image of the Nash map) were either minimal (minimality 
with respect to the order where a valuation is smaller than another if its action on 
every function is smaller than the action of the other valuation) or terminal and 
questions were made if this is always the case. Recently, counter examples to this 
statement were given which implies that the determination of Nash valuations is still 
a wide open problem [19]. 

Another related problem, the generalized Nash problem extends the above 
problem [71]. Given a variety X (not necessarily singular), and two irreducible 
divisors .E1 ⊂ Y1 and .E2 ⊂ Y2 where for .i = 1, 2, we have a birational 
morphism .μi : Yi −→ X, and where . Y1 and . Y2 are smooth. The problem is 
to to determine when do we have an inclusion .N1 ⊂ N2 ? here, as above for 

.i = 1, 2, .Ni := μi∞((Ψ
Yi

0 )
−1

(Ei)). This problem is wide open even in the case 
where .X = A2, [55]. An equivariant version of this problem was solved for toric 
varieties [69] and more recently for .T-varieties of complexity one whose rational 
quotient is a curve of positive genus [19]. 

I should mention finally for this section, the embedded Nash problem which 
roughly speaking is about understanding the relation between the irreducible 
components of the jet schemes or contact loci and the divisors which are in some 
sense essential for every embedded resolution of singularities [34, 77, 99, 102]. 

4.4 Motivic Invariants of Singularities 

Again here . K is considered to be of characteristic zero and the varieties are 
defined over . K. Motivic integration started with the proof by Kontsevich that two 
birationally equivalent complex projective “Calabi-Yau” varieties have the same 
Hodge numbers. This extends a theorem by Batyrev stating that two such varieties 
have the same betti numbers. The proof of Batyrev uses . p−adic integration; by 
analogy with . p−adic integration, Kontsevich introduced motivic integration (for
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non-singular varieties) and used an approach similar to Batyrev’s proof to prove 
his more general result. Motivic integration was generalized to singular varieties 
by Denef and Loeser [24–26]. There are several excellent introductions to motivic 
integration [18, 26, 29, 36, 93, 135]. We mention below very little about this subject. 

The function that we will be integrating are defined on constructible subset of 
the arc space .X∞ of a variety X (their source domain). Before saying which kind of 
functions we will be measuring, let us mention the Grothendieck ring . ℳ (actually a 
completion of localization of this ring) where these functions and integers will take 
value. 

The Grothendieck ring . ℳ is defined by:

• The generators of . ℳ as a group are the classes of isomorphisms .[V ], V being a 
variety over .K.

• The relations are given by: for .Y ⊂ Z a closed subvariety, .[Z \ Y ] + [Y ] = [Z].
• The product is defined by: for two varieties .Y,Z, . [Y ].[Z] = [Y × Z].
The symbol . [·] is an additive invariant, and is actually a universal additive invariant 
in a sense that for any other additive invariant . χ (like the Euler characteristic or the 
Hodge polynomial) of varieties over . K and for any two varieties .Y,Z, . [Y ] = [Z]
implies .χ(Y ) = χ(Z). Recall here that an invariant .χ : V arC −→ A (where A is an 
abelian group and .V arC is the category of varieties over . C) is said to be additive if 
for .X, Y varieties over .C, .X 
 Y implies .χ(X) = χ(Y ); and for a closed subvariety 
.Z ⊂ X, . χ(X) = χ(X \ Z) + χ(Z).

We denote . L the class .[A1] of .A1. Hence we .[An] = Ln; by the definition of the 
product we know that the class of a point . [∗] is equal to . 1, the neutral element for 
the product. 

Example 4.4.1 

(i) We have that the class of the projective space of dimension 1 is 

. [P1] = [P1 \ ∗] + [∗] = L + 1.

(ii) Let .X = {y2 − x3 = 0} ⊂ A2. Since he morphism .ϕ : A1 −→ X, defined by 
.ϕ(t) = (t2, t3) induces an isomorphism .A1 \ {0} −→ X \ {(0, 0)} we have 

. [X] = [X \ {(0, 0)}] + [(0, 0)] = L − 1 + 1 = L.

(iii) For a Zariski locally trivial fibration .P : E −→ B of fiber . F, we have . [E] =
[B][F ].

Consider the localization .ℳloc := ℳ[L−1]. The values of motivic integrals 
belong to a completion . ℳ̂ of .ℳloc where .L−n tends to zero when n tends to 
infinity. 

A typical measurable set (i.e., its measure exists, see below the definition of . μ)

will be a cylinder (or disjoint union of cylinders), i.e., a subset .A ⊂ X∞ such that
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there exist .m ∈ N and a constructible subset .Cm ⊂ Xm verifying . A = Ψ −1(Cm),

The motivic measure for such A will be defined by 

. μ(A) = lim
n→∞[Ψn(A)]L−nd,

d being the dimension of . X. When X is smooth or when .A ∩ Sing(X)∞ = ∅, the 
value of .[Ψn(A)]L−nd stabilizes for n big enough. When X is smooth, this follows 
from the fact that for .n ≥ m, the truncation map .πn,m is a locally trivial fibration of 
fiber .Ad(n−m); hence 

. [Ψn(A)]L−nd = [C]Ld(n−m)L−nd = [C]L−md = [Ψm(A)]L−md.

The fact that the limit exists in general is a theorem of Denef and Loeser. In general, 
there are other types of measurable sets, of course disjoint (finite or infinite) union 
of cylinders as above, but also for instance for a closed subvariety .V ⊂ X, we have 
. μ(V∞) = 0.

We now can define the motivic integral: Let A be a measurable set and let . α :
A −→ Z∪ {+∞} be a function whose fibers .α−1(n) ⊂ A are measurable for every 
. n. We say that .L−α is integrable if the series 

. 

∫
L−αdμ :=

∑

n∈Z
μ(α−1(n))L−n

is convergent in . ℳ̂.

Example 4.4.2 Let X be a smooth variety of dimension d and let .D ⊂ X be a 
smooth divisor. Let us compute 

. 

∫

X∞
L−ordDdμ

where .ordD : X∞ −→ Z associates with an arc . γ its order of contact with . D. So 
for .n ∈ Z>0, .ord−1

D (n) = (Ψ X
n−1)

−1(Dn−1) \ (Ψ X
n )−1(Dn). Since D is smooth, the 

truncation morphism .πD
n : Dn −→ D is a locally trivial fibration of fiber . A(d−1)n,

hence .[Dn] = [D]L(d−1)n. We conclude that 

. μ(ord−1
D (n)) = Dn−1L−(n−1)d − DnL−nd = [D]L−n(L − 1).

Notice also that .μ(ord−1
D (0)) = [X] − [D]. Hence, 

. 

∫

X∞
L−ordDdμ = [X] − [D] +

∑

n≥1

[D]L−n(L − 1)L−n

. = [X] − [D] + [D] (L − 1)L−2

1 − L−2
.
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Note that in the last line of this example, we have used the computation of a 
geometric series which converges in the considered completion of Grothendieck 
ring. Similar computations can be done for a normal crossing divisor on a smooth 
variety; this, with resolution of singularities and the following change of variables 
formula (Kontsevich, Denef-Loeser [47]) gives a very efficient way to “compute” 
motivic integral. 

Theorem 4.4.3 Let X be a .K-variety and let .f : Z −→ X be a proper birational 
morphism such that Z is smooth. Let .A ⊂ X∞ be a cylinder and α be a function as 
above such that .L−α is integrable. We have 

. 

∫

A

L−αdμX =
∫

f −1∞ (A)

L−α◦f +ordt (Jac(f ))dμZ.

In the case where X is smooth, .Jac(f ) is simply the ordinary jacobian determinant 
of . f ; see for the general definition. In the theorem we used the notations .μX and 
.μZ to stress the spaces where these measures are defined. 

Let X be a smooth variety of dimension d (defined over the field of complex 
numbers) and let .f : X −→ C be a non-constant morphism; here we consider 
the field of complex number because we will talk below about Milnor fibers and 
monodromies. Let .D = {f = 0} be the divisor defined by f on . X. For . m,p ∈
N,m ≥ p, we set 

. Contp(D)m = {γ ∈ Xm; ordtf (γ ) = p}.

The motivic Igusa Zeta function [46] of  f is defined by 

. Z(T ) :=
∑

m≥0

[Contm(D)m]L−mdT m.

This series was introduced by Denef and Loeser in analogy with the . p−adic Igusa 
Zeta function. It is a simple exercise to see that if we define . J (T ) : ∑

m≥0[Dm]T m,

then we have the relation 

. J (T ) = Z(LmT ) − [X]
LmT − 1

.

Using the relation 

.

∫

X∞
L−ordDdμ = Z(L−1)
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which follows from the definitions of both sides of the equality, and the change of 
variables formula, Denef and Loeser proved that .Z(T ) is a “rational” function which 
has the following shape 

. Z(T ) = (L − 1)
∑

S⊂I

[E0
S]

∏

s∈S

L−νs T Ns

1 − L−νs T Ns
.

In this formula, the I is the index set of the irreducible components of the 
exceptional divisor .E = ∪s∈IEi of an embedded resolution of .D ⊂ X; for a subset 
.S ⊂ I, we define .E0

S := (∩s∈SEs) \ (∪i∈I\SEi). The integers . νi and . Ni are also 
part of the data of the embedded resolution that we have considered and they are 
associated with the irreducible components .Ei. In general, few of the .Lνi/Ni are 
actual poles of .Z(T ) as a rational function in . T .

The Igusa motivic monodromy conjecture [46] of Denef Loeser states that if 
.Lνi/Ni is a pole of .Z(T ) then there exists .x ∈ D such that .e2π iνi/Ni is an eigenvalue 
of the action of the local monodromy on the cohomology of the Milnor fiber of f at 
. x. It is analogous to the “. p−adic” Igusa’s monodromy conjecture. 

Another invariant which can be defined from a series similar to .Z(T ) is the 
motivic Milnor fiber [46]: For .m ∈ N and .x ∈ D, define 

. 𝒳m = {γ ∈ X∞ | γ (0) = x and f ◦ γ = γ ∗(f ) = tm + tm+1hγ }.

Let 

. Zf,x(T ) =
∑

m≥0

μX(𝒳m)T m.

As for the motivic Igusa zeta function, .Zf,x is rational and Denef and Loeser defined 
the motivic Milnor fiber at x by 

. Sf,x = − lim
T →∞ Zf,x(T ).

See also [118] for motivic Milnor fiber at . ∞.

The last motivic invariant that we consider in this section is the “geometric” 
motivic series which again was introduced by Denef and Loeser in analogy with 
comparable series in the p-adic settings. Let Y be an algebraic variety over . K, The 
geometric Poincaré series [47] is defined by 

. P(T ) =
∑

m≥0

[Ψm(Y∞)]T m.

It is a rational function which belongs to the subring of .ℳloc[[T ]] generated by 
.ℳloc[T ] and elements of the form .(1 − LaT b), a ∈ Z, b ∈ N \ {0}. This series is 
difficult to compute in general [61, 86, 109].
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Other invariants of “motivic” type were also considered in singularity theory, 
we mention here Batyrev’s stringy invariants [13, 81, 135]. There has been also 
an important use of ideas of motivic integration in the study of real singularities 
[28, 33, 117]. 

Finally, motivic integration has been generalized to more general settings using 
model theory [31, 67]. 

4.5 Jet Schemes and Singularities of Pairs 

The geometry of the arc space and the jet schemes which was needed for the proof 
of the change of variables formula in motivic integration allows to interpret some 
invariants of pairs in terms of dimensions of jet schemes. The first results in this 
direction are due to Mustaţă [106–108]. The first proofs of these results used motivic 
integration, but after [50], easier geometric proofs were found; The papers [51, 68] 
give a very good survey about this type of results; see also [45, 52, 53]. A key fact 
which intervene in many proofs of these results is the interpretation of a divisorial 
valuation on an variety X as the order of annihilation along arcs in an irreducible 
component of some contact locus. More precisely, let us consider an affine variety 
.X = Spec(𝒪X) (which is smooth for simplicity); For an ideal .I ⊂ 𝒪X, consider the 
subvariety .Y = V (I) ⊂ X; let .p ∈ N; the . p−contact locus with Y is by definition 

.Contp(Y ) := {γ ∈ X∞ | ordtγ
∗(I ) = p}, (4.5) 

where .γ ∗ : R −→ K[[t]] is the .K-algebra homomorphism associated with . γ and 

. ordtγ
∗(I ) = minh∈I

{
ordtγ

∗(h)
}
.

Let E be a divisor over  X centered at schematic point .x ∈ X and let . νE be the 
associated divisorial valuation. It follows from [50] that there exists a subvariety 
.Y ⊂ X, an integer number .p ∈ N and an irreducible component . W ⊂ Contp(Y )

such that, for every . h ∈ 𝒪X,x

. νE(h) = minγ∈Wordt (h ◦ γ ).

In the other (easier) direction, every fat irreducible component of .Contp(Y ) (for 
some .p ∈ N and .Y ⊂ X) defines a divisorial valuation . νE on . X. Moreover, E can 
be constructed by a weighted blowing up performed on a log-resolution of . Y ⊂ X;
recall here that a log-resolution of .Y ⊂ X is an embedded resolution which factors 
through the blowing up of Y in . X.

An important feature of the above interpretation of a divisorial valuation is that 
the invariants of a divisor E on X (like its discrepancy) are encoded in the geometry 
of . W. From this, one can deduce Mustaţă’s formula for the log canonical threshold 
of a pair .Y ⊂ X in terms of the dimensions of the jet schemes of Y which are
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embedded in the jet schemes of X [108]; this also leads to the characterization of 
rational complete intersection singularities in terms of jet schemes [106]. Note that 
most invariants of singularities of pairs are defined via divisors appearing on log 
resolutions [95]. The above results are in characteristic zero; similar results exist in 
positive characteristics [139]; See also [72] for recent results and questions in this 
direction. 

4.6 The Jet-Components Graph 

The study of the irreducible components of the jet schemes is significant for the 
search for and the understanding of the geometry of embedded resolutions of 
singularities. But apart from resolutions of singularities, this difficult problem has 
its own interest because the jet schemes contains a lot of information ([24, 25, 
34, 74, 97, 106–108]  etc. . . ).  But  this  information  comes  in  bulk.  One  features  of  
the difficulty of this problem is that while the motivic integration theory (or the 
geometry behind) can say something about the irreducible components of the jet 
schemes of maximal dimensions [108], it is much less powerful in understanding the 
other components which often contain the deep information about the singularities. 
Many questions arise in relation with these irreducible components: 

What is the “structure” of the irreducible components of the jet schemes of a 
singular variety X? 

While one can be interested in the irreducible components of the .m−th jet 
scheme of X for a given .m ∈ N, these components come naturally in projective 
systems and their study becomes more exciting when we consider the variation of 
their geometry in these projective systems. Below we will give a meaning of the 
word “structure” in the question; this structure is still mysterious and very little 
studied, and we understand it in very few cases [32, 97, 101]. 

What is the relation between the geometry of the jet schemes of X and the 
geometry of the singular variety X ? 

Finally, finding explicit relations between the local geometry of the singularities 
and some resolution of singularities remains a central problem in singularity theory. 
In this section, jet schemes stay somehow in the middle: an answer to the second 
question above allows to relate the geometry of the jet schemes to the geometry 
of singularities and the geometric approach to resolution of singularities (Sect. 4.7) 
links the valuations which arise from the irreducible components of the jet schemes 
to resolution of singularities. Apart from this approach, it is now well known that 
there are deep relations between resolution of singularities and jets schemes, e.g., 
[34, 45, 71, 85, 106, 108], but these relations are far from being completely explored; 
the Nash problem can be thought as one of these relations. We (partially) answer 
the first question and “completely” the second question for quasi-ordinary and toric 
surface singularities. Before saying a word about these answers, let us introduce the 
jet components graph which will encode the structure of the irreducible components 
of the jet schemes.
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Definition 4.6.1 ([32, 97, 101]) The jet-components graph of an algebraic variety 
S is the leveled weighted graph . Γ obtained by

• representing every irreducible components of .Sm,m ≥ 1, by a vertex .vi,m, where 
the sub-index m is the level of the vertex;

• joining the vertices .vi1,m+1 and .vi0,m if the morphism .πm+1,m induces a 
morphism between the corresponding irreducible components;

• weighting each vertex by the dimension of the corresponding irreducible compo-
nent. 

Recall that the morphism .πm+1,m : Sm+1 −→ Sm is the truncation morphism which 
is induced by the algebraic morphism . K[t]/(tm+1) −→ K[t]/(tm).

This graph was introduced in [97] and was refined in [32, 101]. Sometimes, we 
also weight the irreducible components by their embedding dimensions; this can be 
necessary to recover the geometry of the singularity. 

Let us present (very) briefly the singularities that we will introduce here: 
Quasi-ordinary singularities of dimension d are those singularities which 

(locally) can be projected to an affine space .(Ad , 0) such that the discriminant locus 
is a normal crossing divisor; they are particularly important in Jung’s point of view 
on resolution of singularities and in equisingularity theory [92]. More about this 
type of singularities is explained in [60, 62, 90, 91, 104]. We are concerned with 
quasi-ordinary hypersurface singularities (over a field of characteristic 0) which are 
defined (locally) by a polynomial in .K[[x1, . . . , xd ]][z] that we see as a polynomial 
in the variable . z. Thanks to the Abhyankar-Jung theorem[1, 76], we know many 
properties of the roots of such a polynomial (in particular they can be represented 
as Puiseux series) and one can use these properties to introduce invariants (charac-
teristic pairs, semigroup, Lattices) of the singularity [62, 79, 90, 91]; these are very 
powerful invariants that actually determine and are determined by the topological 
type of the singularity [57]. In [32], we determine in terms of these invariants 
the irreducible components of the jet schemes of a quasi-ordinary singularity of 
dimension . 2. We determined the geometries and the dimensions of open dense 
subset of these irreducible components, which happen to be isomorphic to affine 
spaces or to trivial fibrations over some (non-normal) toric varieties which encode 
deeply the geometry of quasi-ordinary singularities defined by the approximate roots 
of our singularity; in particular they encode the geometry of the singularity itself. 
Note that approximate roots are roughly speaking associated with truncation of a 
root of a polynomial defining a quasi-ordinary singularity. 

Theorem 4.6.2 ([32]) 
Let .(S, 0) be a a 2-dimensional quasi-ordinary hypersurface singularity. A 

canonical subgraph of the jet components graph of .(S, 0) determines the embedded 
topological type of .(S, 0), and the converse is true. 

We show in Fig. 4.1 a part of the subgraph that appears in the theorem for a 
singularity whose singular locus has two irreducible components, a curve and a 
line. We do not put the weights here in order not to encumber the picture. Here the 
arrows represent a projective system of components which goes till infinity.
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Fig. 4.1 The graph of the surface defined by . f = ((z2 − x3
1 )2 − x7

1x3
2 )2 − x11

1 x5
2 (z2 − x3

1 )

Here we would like to stress on the fact that only when studying how the 
geometry of the irreducible components varies in a projective system of irreducible 
components that we are able to determine the topological type of the singularity. 
Theorem 4.6.2 contains two very delicate results: the determination of the 
irreducible components and the subgraph of the jet components graph on one hand, 
and the fact the this subgraph determines the embedded topological type of the 
singularity; this is to compare with the motivic invariants which do not determine it 
[61]. 

The theorem, as we said before, partially answers the first question above and 
completely answer the second question. It only partially answers the first question 
because we don’t determine all the edges in the jet components graph. This is related 
with and give different and new insight on the generalized Nash problem [34, 71]. 

We also gave in [32] examples of quasi-ordinary surface singularities embedded 
in . A3 whose log canonical threshold (this is an important invariant of singularities 
of pairs which is computed by a divisorial valuation on a log resolution) is not
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obtained by a monomial valuation in any coordinates (For plane curves, the log 
canonical threshold is always computed by a monomial valuation, up to change of 
coordinates). 

An important observation that one can make about the geometry of the irre-
ducible components of the jet schemes of a quasi-ordinary surface is the following: 
For any such irreducible component the graded algebra of the associated valuation 
can be represented by the approximate roots of the singularity; this graded algebra 
reflects the geometry of the component and can be actually recovered from this 
geometry. 

Normal toric surface singularities are the simplest normal toric singularities. 
Such a singularity is simply given by the data of two coprime numbers, its 
embedding dimension can be as high as one wishes and hence can be defined by a 
very large number of equations; moreover, apart from the case of the . An singularities 
(which are hypersurfaces in . A3) they are never locally complete intersections: this 
latter hypothesis is essential for many theorems about or using jet schemes [53, 106]. 
The structure of the jet schemes of toric singularities or even their irreducible 
components are not known in general [107] and determining this structure seems 
to be a difficult problem. We have determined the irreducible components of the 
jet schemes of these singularities and as for quasi-ordinary surface singularities, we 
determined a subgraph of the jet components graph the encodes almost completely 
the singularity: 

Theorem 4.6.3 ([101]) The jet components graph determines the analytical type of 
a normal toric surface singularity in the following sense: two normal toric surface 
singularities are isomorphic if and only if they have the same jet components graph. 

It is worth noticing here that Motivic type invariants do not catch the analytic 
type ([86, 109]). 

The proof of theorem 4.6.3 uses heavily the description of the defining equations 
of the embedding .S ⊂ Ae ([121, 126]), and some syzygies of these equations that 
we describe and that are ad hoc to the problem. It also uses known results on the 
arc space of a toric variety [69, 73, 82]. The proof proceeds by induction on m 
(the level of the jet scheme) and on the embedding dimension . e. In particular it 
uses a kind of approximation of the toric surface S by toric surfaces with smaller 
embedding dimensions. The irreducible components of the jet schemes of toric 
surface singularities were discovered in [98] but the complete understanding of their 
structure and its presentation was only completed in 2017 [101]. 

We close the discussion of this section by mentioning a conjectural link between 
the irreducible components of jet schemes and Floer theory [27].
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4.7 A Geometric Approach to Resolution of Singularities via 
Arc Spaces 

A guiding problem in singularity theory and in algebraic geometry is the problem 
of proving the existence of a resolution of singularities and of understanding how to 
determine it: 

A (abstract) resolution of singularities of an algebraic variety X is a modification 
(a proper birational morphism: an isomorphism on a open subvariety of Y ) . μ :
Y −→ X such that Y is non-singular. 

Another more involved version of resolution of singularities is the embedded 
resolution of a singular variety . X ⊂ Z :

An embedded resolution of singularities of an algebraic variety .X ⊂ Z is a a 
proper birational morphism .μ : Y −→ Z such that Y is non singular and the strict 
transform of X by . μ is non-singular and transversal to the exceptional locus of . μ
(the locus where . μ is not an isomorphism). 

Resolution of singularities has applications that range from Algebraic Geometry 
to Analysis, Dynamical systems, Differential Geometry, Number theory. . . In Alge-
braic Geometry or real and complex analytic geometry, it is used to transform some 
problems concerning singular spaces to problems concerning non singular spaces; it 
allows to define invariants of singularities which help in problems of classification 
of singularities; it also serves as a change of variables when computing integrals. 
An embedded resolution gives an abstract resolution by looking at its restriction 
to the strict transform; it contains and gives (much) more information than the 
information encoded in an abstract resolution. A celebrated theorem proved by 
Hironaka gives the existence of embedded resolution of singularities of varieties 
defined over a field of characteristic zero [66]. In positive characteristics, the 
existence of embedded resolution of singularities is proved only for varieties in 
dimension 2; in dimension 3, there is a proof of the existence of abstract resolution 
of singularities in [34, 35]. This is (with local uniformization, which is a “super” 
local version of resolution of singularities) a very active research subject, see e.g. 
[2, 14, 15, 35, 38, 39, 64, 78, 111, 123, 130]. See [37, 80, 125] for an introduction 
to resolution of singularities. 

The traditional approach to resolve singularities is to iterate blowing ups at 
smooth centers in order to make an invariant drop. This invariant should take values 
in a discrete ordered set with a smallest element (which detects smoothness). It 
should not only detect smoothness, but also should be easy to compute so that its 
behavior can be followed when iterating the blowing ups. The big advantage of this 
approach is that it has worked in characteristic zero and that it gives an algorithm. 
But the construction of such a resolution is rarely linked to the deep geometry of 
the singularities: such a resolution is obtained as a composition of maybe 1 million 
blowups which are not related in general to the deep geometry of the singularities 
of the starting variety.



4 Jet Schemes and Their Applications in Singularities, Toric Resolutions and. . . 229

The theme of this section is a geometric approach to resolution of singularities; 
an approach which is based on a dialog between the following two themes: 

1. The reverse Nash problem. 
2. Teissier’s conjecture on embedded resolution of singularities with one toric 

morphism. 

The Reverse Nash Problem 
Recall from Sect. 4.3 that the Nash problem (and its variants) searched in the arc 
space and jet schemes for the common data to all resolutions of singularities. What 
we call the reverse Nash problem is the following question: 

Can we construct (or describe) a (abstract or embedded) resolution of singular-
ities of X from its arc space and jet schemes ? 

Teissier’s conjecture on embedded resolution of singularities with one toric 
morphism 

As we mentioned above, the traditional way to resolve singularities is to blowup 
a “permissible” center in order to make an adapted invariant drop and hence to 
define an algorithm which stops after finitely many steps. Such an algorithm exists in 
characteristic . 0, thanks to the existence of a hypersurface of maximal contact (which 
allows an induction on the dimension of the variety) which does not exist when 
working in positive characteristics. Teissier asked [127, 130, 131] the following 
question: 

Given a singular variety .X ⊂ An, does there exist an embedding . X ⊂ An ↪→
AN,N ≥ n, and a toric structure on .AN such that .X ⊂ AN has an embedded 
resolution by one toric morphism ? 

We will call such an embedding torific. This question has an immediate 
transposition to projective varieties .X ⊂ Pn ⊂ PN . When an embedded resolution 
of singularities exists, a torific embedding exists for projective varieties [132]. If 
the reader is not familiar with the theory of toric varieties, he can think of a toric 
morphism as a morphism which is locally defined by monomials: a monomial 
morphism. In general, it is an open conjecture that the answer is yes. If true, this 
conjecture would imply the existence of resolution of singularities. Teissier made 
deep advances in the super local version of this conjecture [131]: the embedded 
local uniformization problem. 

Let us explain in more details what we called a geometric approach to resolution 
of singularities: we would like to use the reverse Nash problem to construct a torific 
embedding; the word geometry is used since this approach is based on the geometry 
of the arc space and jet schemes (and sometimes of the space of valuations which 
does not appear here). Let us consider .X ⊂ An; we are interested in finding a torific 
embedding of . X. We divide the problem into two questions [100]: 

1. Given a divisorial valuation v centered at .0 ∈ An, determine whether there exist 
an embedding .e : An ↪→ AN, (where N depends on v) and a toric proper 
birational morphism .μ : XΣ −→ AN such that:
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• .XΣ is a smooth toric variety (i.e., . Σ is a fan which is obtained by a regular 
subdivision of the positive quadrant .RN+ , this quadrant is the cone defining 
.AN as a toric variety),

• the strict transform . ̃An of . An by . μ is smooth,
• there exists a toric divisor .E′ ⊂ XΣ which intersects . ̃An transversally along 

a divisor .E,

• the valuation defined by the divisor E is . v.

Note that a toric divisor . E′ centered at the origin 0 of . AN = SpecK[x1, . . . , xN ]
corresponds to a divisorial valuation . v′ which is monomial, i.e., there exists a 
vector .α ∈ NN such that .v′ = vα where 

. vα : K[x1, . . . , xN ] −→ N

is defined by: for . h ∈ K[x1, . . . , xN ],

.h =
∑

m=(m1,...,mN )

amx
m1
1 · · · xmN

N , vα(h) = min{m|am �=0} < α,m >; (4.6) 

where .< α,m > is the usual scalar product on . RN.

Then one can formulate the conditions above by saying that there exists an 
embedding .An ↪→ AN such that v is the trace of a monomial valuation defined 
on . AN.

2. Determine a finite number of significant divisorial valuations .v1, . . . , vr on 
.An from the geometry of the jet schemes and the arc space of X (this 
step is to compare with the Nash problem that we mentioned above: very 
roughly speaking, as the Nash problem search for divisorial valuations that will 
“appear” on every resolution of singularities, here we are searching for divisorial 
valuations whose torifications in the sense of question (1) is essential to obtain a 
global torification), then embed as above . An in a larger affine space .AN in such 
a way that all the valuations .v1, . . . , vr can be seen as the traces of monomial 
valuations on . AN.

If .v1, . . . , vr , are well chosen, this should guarantee that the embedding . X ⊂
AN is torific. Let us discuss this last sentence which probably for now looks 
a bit prophetic. Let .v = vα be the monomial valuation defined on . An =
SpecK[x1, . . . , xn] by a vector .α = (α1, . . . , αn), where . αi ∈ N, i = 1, . . . , n.

Let .I ⊂ K[x1, . . . , xn] be an ideal such that the origin 0 belongs to the variety 
.V (I) ⊂ An = SpecK[x1, . . . , xn] defined by it. We will say that I or .V (I) is non-
degenerate with respect to v at 0 if the singular locus of the variety defined by the
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initial ideal .inv(I ) of I does not intersect the torus .(K∗)n. Note that in this context, 
the initial ideal of I relative to v is defined by 

. inv(I ) = {inv(f ), f ∈ I },

where for . f = ∑
ai1,...,inx

i1
1 · · · xin

n ∈ K[x1, . . . , xn],

. inv(f ) =
∑

ai1,...,in �=0,i1α1+···+inαn=v(f )

ai1,...,inx
i1
1 · · · xin

n .

It follows from [10, 11, 112, 130] (see also [134] for the hypersurface case) that 
if for every .α = (α1, . . . , αn), αi ∈ N, i = 1, . . . , n, I is Newton non-degenerate 
with respect to . vα at . 0, then we can construct a proper toric birational morphism 
.Z −→ An that resolves the singularities of .V (I) in a neighborhood of . 0. Notice 
that I can be degenerate with respect to a valuation defined by a vector α if there 
exists an irreducible family of jets (having a large contact with . V (I)) or arcs on  
.V (I) such that for a generic .γ = (γ1(t), . . . , γn(t)) in this family, its order vector 
.(ordtγ1(t), . . . , ordtγn(t)) = α : indeed, by a Newton-Puiseux type theorem (or 
the fundamental theorem of tropical geometry [94]), if this is not satisfied, i.e., if 
there is no arc, .invα (f ) will contain monomials, hence by definition I will be non-
degenerate with respect to .vα. This suggests that arcs detect Newton degeneration, 
and wherever there is a Newton degeneration, there is a degenerate arc passing there 
in the following sense: An arc defines a germ of a curve; we call an arc degenerate 
whenever the associated curve germ cannot be resolved with one toric morphism 
(this can also be detected from the properties of the arc, for instance using the notion 
of Nash multiplicity [83]). There are degenerate arcs that can be traced on a smooth 
variety: think of a (relatively) nasty plane curve like the germ of curve which is 
defined by . ({(y2 − x3)2 − 4x5y − x7 = 0}, 0) ⊂ (A2, 0) = {z = y} ⊂ (A3, 0);
it is associated with the arc .(t4, t6 + t7, t6 + t7) which is traced on .A2. The arc is 
degenerate but .A2 ⊂ A3 is Newton non-degenerate. The moral of this part of the 
story is first that Newton degeneration is detected by degenerate arcs, and second 
that not all degenerate arcs cause Newton degeneration. Moreover, the notion of 
degeneration along an arc can be quantified by an invariant that one can call depth 
and which in the case of a plane curve is the number of Puiseux pairs minus one. 
Question (1) above takes care of this notion of depth and it allows by embedding 
in higher dimension the elimination of degeneration along a family of arcs (or jets) 
that defines a divisorial valuation. Question (2) concerns the determination of those 
families of arcs that cause Newton degeneration. 

We will now give a presentation of results concerning these two questions, with 
some digressions in order to give applications, links between the two questions 
and expand a bit some problems that appear inside these questions and which are 
interesting for their own sakes. 

Let us begin by discussing one aspect of question (1). While this question was 
exposed as a geometric problem, it is related to an “algebraic” problem which makes
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sense for any valuations: determining a generating sequence of a valuation. Let us 
for a moment stick to the case of a divisorial valuation centered at the origin . X =
Ad = SpecR, where .R = K[x1, . . . , xn] is a polynomial ring over an algebraically 
closed field . K. A valuation v is then given by a mapping .v : R −→ N which is 
the order of vanishing along a divisor .E ⊂ Z which satisfies .μ(E) is the origin of 
.An, . μ being a birational map .μ : Z −→ An. Let us explain what is a generating 
sequence of . v.

For . α ∈ N, let  

. 𝒫α = {h ∈ R | v(h) ≥ α}.

We define the .K-graded algebra 

. grvR =
⊕

α∈N

𝒫α

𝒫α+1
.

We call .inv the natural map 

. inv : R −→ grvR, h �→ h mod 𝒫v(h)+1.

Definition 4.7.1 ([124]) A generating sequence of v is a set of elements of R such 
that their image by .inv generates .grvR as a .K-algebra. 

This notion (for any valuation) is central in an earlier version of Spivakovsky’s 
approach [124] to local uniformization and in the present approach of Teissier to 
the same problem [130], with the difference that Teissier restricts his analysis to 
minimal generating sequences for rational valuations. In general, it is very difficult 
to determine a generating sequence of a given valuation, apart in dimensions 1 
and . 2; an abstract approach follows from the valuative Cohen theorem [130]. A 
remarkable advance in this direction was done for (rational) valuations in [40], as 
discussed below. We will show below, at least on an example, the relation between 
this notion and question (1). We will discuss first our new approach from [100] 
for the study of generating sequences of divisorial valuations defined as above. For 
that, we will use the representation of a divisorial valuation as the order of vanishing 
along a family of arcs. 

Let .X = An = Spec R, as above. We have a natural truncation morphism 
.X∞ −→ X, that we denote by .Ψ0; for a n-tuple of series, this simply gives the n-
tuple of constant terms of these series. For .p ∈ N and .Y = V (I) ⊂ X a subscheme 
defined by an ideal .I ⊂ R, we consider the contact locus .Contp(Y ) (see Eq. (4.5)). 

With a fat irreducible component . W of .Contp(Y ), which is included in the fibre 
.Ψ −1

0 (0) above the origin, we associate a valuation .vW : R −→ N as follows: 

.vW(h) = minγ∈W{ordtγ
∗(h)},
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for .h ∈ R. It follows from [50] (see also [45, 120], prop. 3.7 (vii)), that .vW is a 
divisorial valuation centered at the origin .0 ∈ X, and that all divisorial valuations 
centered at .0 ∈ X, can be obtained in this way (see Sect. 4.5) for varying ideals . I.
We are interested in determining a generating sequence of a valuation of the form 
.vW with an irreducible component . W of .Contp(Y ). Recall from 4.2 or [17] the  
functorial definition of the arc space .X∞ : for any algebraic variety . X, the arc space 
.X∞ represents the functor that to a .K-algebra A associates the set of .A−valued arcs 

. X(A[[t]]) := HomK(Spec(A[[t]]),X).

Hence, for a .K-algebra A we have a bijection 

. HomK(Spec(A),X∞) 
 HomK(Spec(A[[t]]),X).

In particular, in our case .X = An = SpecR, we have .X∞ = Spec(R∞), and to 
the identity in .HomK(Spec(R∞),X∞) corresponds the universal family . Λ : R −→
R∞[[t]].

Let us consider the case .n = 2, R = K[x0, x1]. We have 

. R∞ = K[x(j)
i ; i = 0, 1; j ≥ 0],

and . Λ is given by 

. Λ(xi) = x
(0)
i + x

(1)
i t + x

(2)
i t2 + · · · , i = 0, 1.

The procedure that we give can be thought as an elimination algorithm with respect 
to . Λ in the sense that from the equations (that we can see in .R∞) of the irreducible 
component of .Contp(Y ) defining our valuation we will obtain elements in R that 
constitute the generating sequence. Let us show this on an example: Assume that the 
characteristic is not equal to . 2. Let us consider the divisorial valuation associated 
with one irreducible component of .Cont27(Y ), where Y is the curve defined by the 
equation .(x2

1 − x3
0)2 − x5

0x1 = 0. The contact locus .Cont27(Y ) has two irreducible 
components which are sent to the origin 0 by the truncation morphism .π27, the 
interesting one (the other one gives a monomial valuation), that we call . W is defined 
in .A2∞ by the ideal generated by 

. x
(0)
0 , . . . , x

(3)
0 , x

(0)
1 , . . . , x

(5)
1 , x

(6)
1

2 − x
(4)
0

3
,

. (2x
(6)
1 x

(7)
1 − 3x

(4)
0

2
x

(5)
0 )2 − x

(4)
0

5
x

(6)
1

and two inequalities, the most important one of them is .x(4)
0 �= 0. Noticing that the 

first equation which is not that of a coordinate hyperplane being not linear, this gives 
us the first three elements of a generating sequence 

.x0, x1, x2 = x2
1 − x3

0 .
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The last element was obtained by what we called an elimination process which 

corresponds here to dropping the indices in the parentheses from .x
(6)
1

2 −x
(4)
0

3
. Note 

that modulo .x(0)
0 = · · · = x

(3)
0 = x

(0)
1 = . . . = x

(5)
1 = 0, . Λ(x2) = (x

(6)
1

2 −
x

(4)
0

3
)t12 + t13φ, with φ ∈ R∞[[t]]. The remaining equation, modulo the other 

equations, can then be rewritten 

. (2x
(6)
1 x

(7)
1 − 3x

(4)
0

2
x

(5)
0 )2 − x

(4)
0

5
x

(6)
1 = x

(13)
2

2 − x
(4)
0

5
x

(6)
1 .

Again, the elimination process with respect to . Λ corresponds to dropping the indices 
in the parentheses. The 4th and last element of the generating sequence of .vW which 
is then: 

. x3 = x2
2 − x5

0x1.

The valuation .vW is completely determined by its generating sequence . x0, x1, x2, x3
and the values .vW(x0) = 4, vW(x1) = 6, vW(x2) = 13, vW(x3) = 27. By 
construction, for .i = 2, 3 we have polynomials . fi such that 

. xi = fi(x0, . . . , xi−1).

The functions . fi’s provide an embedding .A2 ↪→ A4, which is the geometric 
counterpart of the following morphism 

. K[x0, x1, x2, x3] −→ K[x0, x1, x2, x3]
(x2 − f2(x0, x1), x3 − f3(x0, x1, x2))


 K[x0, x1].

This embedding solves question (1) for the valuation .vW and realizes this latter 
as the trace of the monomial valuation centered at .(A4, 0) and associated with the 
vector .α = (4, 6, 13, 27). Here we only gave the feeling of this, but the reason why 
the second and the third points of question (1) are satisfied follows from the fact that 
if .ν = να then the initial ideal of .(x2 − f2(x0, x1), x3 − f3(x0, x1, x2)) with respect 
to . ν is given by 

. (x2
1 − x3

0 , x2
2 − x5

0x1),

which is a toric (prime) ideal and its singular locus is a point. More generally we 
have 

Theorem 4.7.2 ([100]) For .n = 2, there is a constructive solution of question (1). 

It is important to mention here that determining a generating sequence is not 
necessary to solve question (1) for a given valuation. 

We can give now an example of our geometric approach to the resolution of 
singularities. Let .Y ⊂ A2 be again the curve defined by .(x2

1 −x3
0)2 −x5

0x1 = 0. The
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interesting divisorial valuation is the one associated with the irreducible component 
of .Y25 (or equivalently of .Cont26(Y )) which is defined by the ideal 

. 

(
x

(0)
0 , . . . , x

(3)
0 , x

(0)
1 , . . . , x

(5)
1 , x

(6)
1

2 − x
(4)
0

3)
.

We do not explain here in detail why we choose this divisor but we can say that this 
is the most natural choice which arises from the geometry of the jet schemes, which 
will be discussed below. But we can say that the space of arcs (on Y ) centered at 
the singular point of Y has one irreducible component whose geometry is reflected 
by the geometry of this irreducible component of .Y25. Applying the procedure that 
we explained above, we find an embedding .A2 ↪→ A3, which is the geometric 
counterpart of the following morphism 

. K[x0, x1, x2] −→ K[x0, x1, x2]
(x2 − (x1

2 − x0
3))


 K[x0, x1].

Our curve Y seen in . A3 is then defined by the ideal 

. I = (x2 − (x1
2 − x0

3), x2
2 − x5

0x1).

Its (local) tropical variety (with respect to the embedding in .A3) is the half line 
along the vector .(4, 6, 13) (see [116] for the notion of local tropical variety). The 
initial ideal of I with respect to the monomial valuation associated with the vector 
.(4, 6, 13) is given by the ideal 

. J = (x2
1 − x3

0 , x2
2 − x5

0x1).

The singular locus of the variety defined by this latter ideal (which actually defines 
a monomial curve) is just a point so that this ideal is non-degenerate and can be 
resolved with one toric morphism. Hence, this embedding is torific; more generally, 
this gives another proof of torification for analytically irreducible plane curves [58]. 
Now applying our geometric approach to resolution of singularities to a reducible 
plane curve we were able with de Felipe and González-Pérez to prove in the 
following: 

Theorem 4.7.3 ([41]) For a reducible plane curve singularity, the geometric 
approach to resolution of singularities yields a torific embedding. 

We can actually construct a torification for curves of any embedding dimension. 
What makes things more complicated in higher dimensions, is that the initial ideal 
which is the counter part of the initial ideal that we called J above, is not toric, but it 
still corresponds to a .T − variety (i.e.,) a variety which is equiped with an action of 
a torus of smaller dimension. Some work in this direction is in the ongoing project 
[19].
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4.8 Deformations of Jet Schemes 

In this section, we work over the field of complex number . C. Equisingularity 
theories were introduced by Whitney, Zariski, Teissier, Lê and others [113, 128, 129, 
133, 137] to compare singularities in a family with respect to algebraic, topological, 
geometric or differential invariants. The theory of jet schemes allow to consider two 
new equisingularity conditions; let . X be a (flat) family of singularities defined over 
a base variety . B. One may wonder when .X −→ B induces a (flat) deformation 
.Xm −→ B (or a deformation .(Xm)red −→ B for every .m ∈ N. In general, this is 
not the case; for instance for the embedded family .X −→ (C, 0) which is defined 
by 

. X = {y2 − ux2 − x3 = 0} ⊂ (C3, 0),

where u is the parameter of the deformation, .(Xm)red −→ B is not flat; this follows 
for instance from the fact that dimension of .(Xu)5 (where .Xu is the fiber over u) 
depends on whether .u �= 0 or .u = 0 : it is 6 for .u �= 0 and 7 if .u = 0. For plane 
irreducible curves, it follows from [97] that: 

Theorem 4.8.1 ([97]) Let .X −→ B be a (flat) family of irreducible plane curve 
singularities over a smooth variety . B. The induced family .(Xm)red −→ B is flat for 
every .m ∈ N if and only if the fibers of . X have the same semigroup. 

In the theorem, the notion of semigroup is attached to a plane curve and is defined 
via the local intersection multiplicity of the curve at the origin; this latter defines a 
valuation whose semigroup is by definition the semigroup of the curve [138]. 

Note that, all the known equisingularity theories for families of plane curves are 
equivalent: such a family is equisingular if every fiber has the same semigroup (or 
equivalently the same Puiseux pairs). It follows from [105] that this theorem is no 
longer true if we allow fibers which are not necessarily plane curves. 

Leyton-Alvarez [87, 88] gave a sufficient condition for an embedded one param-
eter family of hypersurfaces .X ⊂ (Cd+1, 0) × (C, 0) to induce a flat deformation: 

Theorem 4.8.2 (Leyton-Alvarez) Let .X ⊂ (Cd+1, 0) × (C, 0) be a flat family 
of hypersurfaces. If the family .X ⊂ (Cd+1, 0) × (C, 0) admits a simultaneous 
embedded resolution then it induces a flat family .(Xm)red −→ (C, 0) for every 
. m ∈ N.

We refer to [89] for a precise definition of a simultaneous embedded resolution. 
The following theorem of Leyton-Alvarez, Mourtada and Spivakovsky is proved in 
[89]. 

Theorem 4.8.3 ([89]) Let .X ⊂ (Cd+1, 0)×(C, 0) be a flat Newton non-degenerate 
family of isolated hypersurface singularities. If . X is .μ-constant then it induces a flat 
family .(Xm)red −→ (C, 0) for every .m ∈ N.
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Let us say that a family .X −→ B is jet schemes equisingular if it induces a flat 
family .(Xm)red −→ B for every .m ∈ N. It is a very interesting line of research to 
compare this notion of equisingularity with the other existing notions. 

4.9 Arc Spaces and Integer Partitions 

This line of research again finds its origin in the study of singularities as we will 
show later but is now making its way into the world of combinatorics and classical 
number theory, so let us begin there. The following identity 

.1 + e−2π

1 + e−4π

1+ e−6π

...

=
⎛

⎝

√
5 + √

5

2
− 1 + √

5

2

⎞

⎠ e
2π
5 (4.7) 

was imagined by Ramanujan and sent to Hardy who says in the article “The Indian
Mathematician Ramanujan” (Amer. Math. Monthly 44 (1937), p. 144), see also [8]: 

[These formulas] defeated me completely. I had never seen anything in the least like them 
before. A single look at them is enough to show that they could only be written down by a 
mathematician of the highest class. They must be true because, if they were not true, no one 
would have had the imagination to invent them. 

Some years later, Ramanujan gave a proof of this formula by considering the 
following . q−difference equation 

.F(x) = F(xq) + xqF(xq2), (4.8) 

where .q ∈ C∗, and .F(x) = ∑
an(q)xn is an analytic function satisfying . F(0) = 1.

If we define .c(x, q) := F(x)
F (xq)

, notice that we have 

. c(x, q) = 1 + xq

c(xq, q)
= 1 + xq

1 + xq2

c(xq2,q)

.

Iterating this last identity we obtain that the left member of the identity (4.7) is equal 
to .c(1, e−2π ). Now if we plug .F(x) = ∑

an(q)xn in the Eq. (4.8), by comparing 
the coefficients of . xn we get 

.an(q) = qn2

(q)n
= qn2

(1 − q)(1 − q2) · · · (1 − qn)
.
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The miracle arrives in the following identity 

.1 +
∑

n≥1

qn2

(q)n
=

∏

i≡ 1,4 (mod 5)

1

1 − qi
. (4.9) 

The left hand side in the identity (4.9) is .F(1). There is another miracle which is 
that .F(q) is also an infinite product and hence .c(1, q) is. And we may then deduce 
Ramanujan’s continued fraction (4.7) by an appeal to the theory of elliptic theta
functions.

The “miracles” above are called the Rogers-Ramanujan identities; they have
appeared “in many different situations”: in statistical mechanics, number theory,
representation theory . . . and we came to them first with Clemens Bruschek and Jan
Schepers via Arc spaces. Before telling the story, let us state another version of the
first Rogers-Ramanujan identity (4.9). 

Definition 4.9.1 A partition of a positive integer n is a decreasing sequence . Λ =
(λ1 ≥ λ2 ≥ · · · ≥ λr) such that .λ1 + · · · + λr = n. The . λi’s are called the parts of 
this partition and r is its size. 

The identity (4.9) can be stated as follows: 

Theorem 4.9.2 (Rogers, Ramanujan) The number of partitions of n with neither 
consecutive parts nor equal parts (of first type) is equal to the number of partitions 
of n whose parts are congruent to 1 or 4 modulo 5 (of second type). 

The generating series of the cardinality of the partitions of the first type is the left 
hand member in the identity (4.9) and the generating series of the cardinals of the
partitions of the second type is the right hand member in (4.9) , i.e., the infinite
product. Now we go back to algebraic geometry and to arc spaces. Let . (X, 0)

be a singularity defined over a field . K which is assumed for simplicity to be of 
characteristic 0 for (0 being a closed point that after a change of coordinates may be 
chosen to be the origin of an affine space containing .(X, 0)). Let .X0∞ = SpecA0∞ be 
the space of arcs centered at the point . 0. It has a natural cone structure which induces 
a grading on .A0∞ (i.e., .A0∞ = ⊕h∈NA0∞,h) and one can consider its Hilbert-Poincaré 
series that we call the Arc-Hilbert-Poincaré series of the singularity: 

. AHPX,0 =
∑

h∈N
dimK A0∞,h qh.

It is not difficult to see that this is an invariant of singularities (it detects 
regularity) and it contains different ingredients which motivate its study from the 
viewpoint of singularity theory: First, if .X ⊂ Ae and considering the jet schemes 
.Xm ⊂ Ae

m = Ae(m+1) and . X0
m ⊂ (Ae)0

m = Aem;
(i) one notices on examples that the defining ideal of .X0

m in .Aem is independent of 
some of the variables of the polynomial ring which is the ring of global sections
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of .Aem and that the number of variables needed to define this ideal (modulo a 
linear change of variables) depends on how singular X is at . 0. The more X is 
singular, the less variables we need for a given . m; such an invariant was actually 
defined by Hironaka as a resolution invariant, see for instance [16] but this is 
another story. 

(ii) The data of an .m−jet determines its coordinates in .Aem and as mentioned in 
the item (1), there are no constraints on some of these coordinates; but there 
are constraints on these “free coordinates” for the jet to be liftable to an arc 
and these constraints come from the equations defining . Xl for .l ≥ m; the 
smallest l such that the equations defining . Xl catch all the constraints on all the 
.m−jets for them to be liftable is related to the Artin-Greenberg function which 
is another invariant of singularities [65, 122]: roughly speaking, Greenberg’s 
theorem states that if a tuple .γ (t) of power series in .K[[t]] is very close in the 
t-adic topology to being an arc on X (which means that . γ coincides with an 
. r−jet on X for some large r) then there is an actual arc . γ ′ on X which is close 
to . γ in the sense that . γ coincides to . t−adic order m with the .m−jet of . γ ′; the  
Artin-Greenberg function .β(m) measures how close you need to be to an arc 
on X to have the same m-jet as an arc on X; again, roughly speaking, the larger 
the function is, the nastier the singularity .(X, 0) is. 

The Arc Hilbert Poincaré series is related in spirit to these two types of invariants: 
Heuristically, the more we have free variables at the level . m, the larger will be the 
dimension of the homogeneous components of .A0∞ of weight less than or equal to 
m will be (note that the homogeneous components of weight less than or equal to m 
are the same as those of the ring of global sections of . X0

m) but also the larger is the 
Artin-Greenberg function. But this invariant is very difficult to compute, because of 
the complicated homological properties of .A0∞ in general, even though sometimes 
for mild singularities this is possible, [26]: 

Theorem 4.9.3 ([26]) Let X be a normal hypersurface in . An with a canonical 
singularity of multiplicity .n − 1 at the origin. Then 

. AHPX,0(q) =
(

n−2∏

i=1

1

1 − qi

)n
⎛

⎝
∏

i≥n−1

1

1 − qi

⎞

⎠
n−1

.

This generalizes a theorem that was obtained in [99] for rational double point 
surface singularities. Some research is still ongoing to reveal the secrets of this 
invariant of singularities but let us go back now to partitions and to a beautiful link 
with the Arc-Hilbert-Poincaré series [25]: 

Theorem 4.9.4 ([25]) 

.For X = Spec
K[x]
(x2)

, AHPX,0(q) =
∏

i≡ 1,4 (mod 5)

1

1 − qi
.
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Notice that the power series in the theorem is the right hand side of the first Rogers 
Ramanujan identity. The proof uses the differential structure of .A0∞ which for . X =
SpecK[x]

(x2)
is given by 

. A0∞ = K[xi, i ∈ N>0]
[x2

1 ] ,

where .[x2
1 ] is the differential ideal generated by . x2

1 and its iterated derivatives with 
respect to the derivation D which is determined by .D(xi) = xi+1. So 

.[x2
1 ] = (x2

1 , 2x1x2, 2x1x3 + 2x2
2 , . . .) (4.10) 

The grading of .A0∞ is induced from the weights given to the variables, . xi being 
of weight . i. We order the monomials using an “adapted” monomial ordering, the 
weighted reverse lexicographical ordering; Now, it is well known that the Hilbert 
Poincaré series of the quotient ring by an ideal I is equal to the Hilbert Poincaré 
series of the quotient ring by the leading ideal (relative to a monomial ordering 
which respects the weight) of . I. This latter is generated by the leading monomials 
of the elements of a Groebner basis of . I. In general, it is very complicated to find a 
Groebner basis theoretically, even when we consider, let us say, the ideal generated 
by the first 5 generators of .I := [x2

1 ], we should add many polynomials to obtain 
a Groebner basis [12]; the miracle is that the generators in (4.10) give a Groebner 
basis with respect to the weighted reverse lexicographical ordering. The proof shows 
actually that any S-polynomial (this is a notion used in Buchberger algorithm for 
computing a Groebner basis) is not relevant and it comes out, after determining its 
weight . w, from the .(w − 4)−th derivative (by D) of the equation 

. 2x2(x
2
1) − x1(2x1x2) = 0.

We deduce that 

. AHPX,0(q) = HP(
K[xi, i ∈ N](

x2
i , xixi+1; i ∈ N>0

) ),

where HP stands for the Hilbert-Poincaré series and where the ideal 

. (x2
i , xixi+1; i ∈ N>0)

is the leading ideal of .[x2
1 ]. Now after a short reasoning, one sees that 

.HP(
K[xi ,i∈N]

(x2
i ,xixi+1;i∈N>0)

) is exactly the generating series of the number of partitions 

of n with neither consecutive nor equal parts. Using the first Rogers-Ramanujan 
identity we get the formula in the theorem.



4 Jet Schemes and Their Applications in Singularities, Toric Resolutions and. . . 241

Moreover, with very simple commutative algebra applied to 

. HP(
K[xi, i ∈ N]

(x2
i , xixi+1; i ∈ N>0)

)

we find that there is a sequence of power series in the variable q which converges 
in the . q−adic topology to both sides of the Rogers-Ramanujan identities giving a 
commutative algebra approach to these identities; this sequence was stated in an 
empirical way in [9]. 

This theorem was greatly generalized in [26]: 

Theorem 4.9.5 ([26]) For . X = SpecK[x]
(xn)

,

. AHPX,0(q) =
∏

i �≡ 0,n,n+1 mod(2n+1)

1

1 − qi
.

The proof uses similar ideas but the differential calculus is much more involved. 
This latter theorem is related to Gordon’s identities which are partition identities 
generalizing the Rogers-Ramanujan identities. A commutative algebra proof of 
Gordon’s identities was found in the PhD thesis of Pooneh Afsharijoo [4]. 

Now recall that in the proof of Theorem 4.9.3, we considered the Groebner basis 
of the ideal .[x2

1 ] with respect to the weighted reverse lexicographical ordering; the 
heuristic reason of the choice of this ordering is that this allows to see first (i.e., as 
leading monomials) the monomials which concern the larger neighborhoods from 
the point of view of Taylor series: for instance for the polynomial . x2

2 + x1x3,

the leading term with respect to the reverse lexicographical ordering is . x2
2 which 

concerns an approximation of order 2 while .x1x3 concerns an approximation of 
order . 3. But as mentioned before, the Hilbert series of the quotient by the ideal 
.[x2

1 ] is equal to the Hilbert series of the quotient by its leading monomial ideal with 
respect to any monomial ordering respecting the weight. With Pooneh Afsharijoo, 
we considered the weighted lexicographical ordering and we knew that if we catch 
the leading monomial ideal of .[x2

1 ] with respect to this ordering, its Hilbert series 
will be equal to the generating series of the number of partitions appearing in 
the Rogers-Ramanujan identities, but potentially it counts partitions with different 
properties. The problem is that while the Groebner basis of .[x2

1 ] with respect to the 
weighted reverse lexicographical ordering is differentially finite (i.e., it is obtained 
from a finite number of polynomials -here only one polynomial- and all their 
derivatives), we were able to prove that with respect to the weighted lexicographical 
ordering, there is no Groebner basis of .[x2

1 ] which is differentially finite [7]; A 
Groebner basis is then very difficult to determine; but using Groebner basis theory 
computations, we were able to conjecture what is the leading monomial ideal of 
.[x2

1 ]; this remains a conjecture but we were able to prove that the Hilbert series of 
the quotient by this monomial ideal is equal to the series appearing in the Rogers-
Ramanujan identities. By taking a variation of the ideal .[x2

1 ], we have been led to
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the following partition identities [7] where for a partition . λ we denote by .s(λ) its 
smallest part. 

Theorem 4.9.6 ([7]) Let .n ≥ k be positive integers. The number of partitions . λ
of n whose parts are larger or equal to k and whose size is less than or equal to 
.s(λ) − (k − 1) is equal to the number of partitions of n with parts larger or equal 
to k and without neither consecutive nor equal parts. 

For .k = 1, this gives another member of Rogers-Ramanujan identities: Let . n ≥ 1
be a positive integer. The number of partitions of n with size less than or equal to 
the smallest part is equal to the number of partitions of n without consecutive nor 
equal parts. 

It is playful to see this last identity on the partitions of 4 but let us first call 
the partitions of n with size less than or equal to the smallest part, partitions of 
third type; partitions of first and second type were defined in Theorem 4.9.2. The  
partitions of 4 are 

. 4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

The partitions of 4 which are of the first type are the first and the second partitions. 
The partitions of 4 which are of the second type are the first and the fifth 

partitions. 
The partitions of 4 which are of the third type are the first and the third partitions. 

And as the theorem predicts, the number of these partitions, two, is the same for the 
three types. 

Using an idea similar to the one used to guess Theorem 4.9.6, Pooneh Afsharijoo 
has conjectured in her thesis new identities which add new members to Gordon’s 
identities [4, 6]; she proved this conjecture in a particular case and very recently 
with Pooneh Afsharijoo, Jehanne Dousse and Frédéric Jouhet, we proved these very 
exciting identities in general, this is the content of [5] (see also [3]). 

These theorems are small steps (walking steps towards another planet) in study-
ing what we would like to call Ramanujan Hilbert scheme, which parametrizes 
the schemes with a cone structure and whose Hilbert series is equal to . F(1).

There are various generalizations of these theorems or these line of thoughts. I 
can mention for instance [96] or a theorem on partitions of two colours in [7].
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4.10 Completions of Localizations of the Algebra of Arcs 

We assume for simplicity that we are working over an algebraically closed field . K
of characteristic zero. Most of the invariants that we have considered in the previous 
section (apart form Sect. 4.9) made use of the reduced structure of the jet schemes 
or the space of arcs. This latter, being often of infinite dimension, its study requires 
commutative algebra in infinite dimension, which till now seems to be a difficult 
issue. Let X be a .K-algebraic variety; the local algebras of the arc space .X∞ were 
studied for two types of points or arcs (for different reasons or motivations):

• The study of the local algebra of .X∞ at a .K-rational arc . γ was motivated by some 
problems related to the Langlands program [24]. The first interesting theorem in 
this direction is the Drinfeld-Grinberg-Kazhdan theorem[20, 49, 63] which states 
that whenever .γ �∈ (Sing(X))∞, there exists a finite dimensional .K-scheme . Y,

a .K- point .y ∈ Y and an isomorphism 

. �̂�X∞,γ ≡ �̂�Y,y⊗̂K[[Ti, i ∈ N]]. (�)

The hat denotes the completion with respect to the maximal ideal. Bourqui and 
Sebag considered a minimal .�̂�Y,y in .(�), in the sense that .�̂�Y,y is not isomorphic 
to .B[[T ]] (B being a local complete noetherian .K-algebra); this formal spectrum 
of .�̂�Y,y is then uniquely determined up to isomorphism and called the formal 
minimal model of X at . γ. For an irreducible plane curve singularity, the formal 
minimal model is independent of the choice the (primitive) arc . γ and thus defines 
an invariant of the singularity. For more about minimal formal models see [21– 
23, 30].

• The study of the local algebra of the arc space at a point associated with divisorial 
valuations (see the Sect. 4.3, see also [71, 119]); this was motivated by the Nash 
problem [119, 120]. It was proved by Reguera that for a divisorial valuation 
.ν = νE (E being the divisor) having a center on . X, denoting by . Pν the point 
in the arc space associated with . ν, the ring .�̂�X∞,Pν is noetherian. Mourtada and 
Reguera found a formula relating the embedding dimension of .�̂�X∞,Pν to the 
Mather discrepency . ̂kE of E and found an upper bound of its dimension in terms 
of the Mather-Jacobian discrepancy [103]. 

Recently, there is a lot of interest on one hand (in the work of Bourqui, 
Sebag and others) in comparing the structure of .�̂�X∞,PνE

with the structure of the 
minimal formal model at a generic .K- arc in the family of arcs associated with 
E (see Sect. 4.3); and on the other hand in understanding the relation between the 
singularities of X and the structure of .�̂�X∞,Pν in the continuity of [103] (see also  
[30]). 
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133. Lê Dũng Tráng and C. P. Ramanujam. The invariance of Milnor’s number implies the 

invariance of the topological type. Amer. J. Math., 98(1):67–78, 1976. 
134. A. N. Varchenko. Zeta-function of monodromy and Newton’s diagram. Invent. Math., 

37(3):253–262, 1976. 
135. Willem Veys. Arc spaces, motivic integration and stringy invariants. In Singularity theory 

and its applications, volume 43 of Adv. Stud. Pure Math., pages 529–572. Math. Soc. Japan, 
Tokyo, 2006. 

136. Paul Vojta. Jets via Hasse-Schmidt derivations. In Diophantine geometry, volume 4 of CRM 
Series, pages 335–361. Ed. Norm., Pisa, 2007. 

137. Oscar Zariski. Studies in equisingularity. III. Saturation of local rings and equisingularity. 
Amer. J. Math., 90:961–1023, 1968. 

138. Oscar Zariski. The moduli problem for plane branches, volume 39 of University Lecture 
Series. American Mathematical Society, Providence, RI, 2006. With an appendix by Bernard 
Teissier, Translated from the 1973 French original by Ben Lichtin. 

139. Zhixian Zhu. Log canonical thresholds in positive characteristic. Math. Z., 287(3–4):1235– 
1253, 2017.


	4 Jet Schemes and Their Applications in Singularities, Toric Resolutions and Integer Partitions
	Contents
	4.1 Introduction
	4.2 The Construction of Jet Schemes
	4.3 The Nash Problem and Its Variants
	4.4 Motivic Invariants of Singularities
	4.5 Jet Schemes and Singularities of Pairs
	4.6 The Jet-Components Graph
	4.7 A Geometric Approach to Resolution of Singularities via Arc Spaces
	4.8 Deformations of Jet Schemes
	4.9 Arc Spaces and Integer Partitions
	4.10 Completions of Localizations of the Algebra of Arcs
	References


