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Abstract This paper is an introduction to the space of arcs and the space of jets 
of an algebraic variety. We also introduce the Nash problem on arc families, which 
makes a bridge between the theory of the space of arcs and the theory of birational 
geometry. We then focus on applications of the space of arcs to the theory of 
birational geometry and show the recent results. 
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3.1 Introduction 

3.1.1 Overview 

Roughly speaking, an arc is a very small portion of a curve on a scheme and an 
m-jet is the approximation up to degree m of an arc. The space of arcs is the set of 
all arcs on a scheme and the space of m-jets is the  set of all  m-jets on a scheme. 
These spaces have the natural scheme structures and reflect the properties of the 
base scheme. The space of arcs plays the following roles: 

1. a role to describe singularities of a variety (local problem); 
2. a role to describe the global structure of a variety (global problem) and 
3. the role as a differential algebra (algebraic problem). 

These roles are based on understandings of the structure of the arc space, which 
is simultaneously developing with the study on 1–3. We should mention that these 
roles mutually interact and the works corresponding to them are not exclusively 
classified into one of the roles 1–3. We should also mention that the theory of the 
space of arcs/jets is still developing, so in the future, more roles will potentially 
appear. 

The following is a brief history of the development of the space of arcs/jets whilst 
mentioning the roles 1–3 in each step. 

3.1.2 Brief History 

The space of arcs and the space of m-jets appeared for the first time in the short 
preprint in 1968 by John Forbes Nash. But according to an expert, Monique 
Lejeune-Jalabert, of Nash problem, the concepts, arcs and jets were already studied 
by Isaac Newton in seventeenth century. In his book “ La Méthode des Fluxions et 
des Suites Infinies” Newton shows the method to express the .x, y-coordinates of a 
plane curve by one parameter series which is the origin of an arc. Actually it is a 
natural question how to describe a curve by one parameter and it is not so mysterious 
to find this question in old literature. But we should have waited till the twentieth 
century for the concept “moduli space” consisting of all such parametrization. 

In 1968, John Forbes Nash wrote a short preprint “Arc structures of singularities” 
in which he introduced the space of arcs. The preprint was not published at the 
beginning, but circulated in the world and was read by many people. 

In 1995, the paper was eventually published as [81] in the issue of celebration 
of Nobel laureate Nash in Duke Mathematical Journal. Twenty seven years have 
passed since the paper was written. In those years Nash had suffered from mental 
disease, but later recovered miraculously, about which the reader can see in the book 
“A Beautiful Mind” [80].
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Coming back to mathematics, the paper by Nash also posed a problem, so called 
“the Nash Problem”. After the preprint was circulated around the world in 1968, 
the space of arcs in relation with the Nash problem is studied by many people, 
Bouvier, Gonzalez-Sprinberg, Hickel, Lejeune-Jalabert, Nobile, Reguera-Lopez and 
others (see, [12, 39, 44, 68–70, 82, 89]). The first direct answer to the Nash Problem 
is obtained by Ana Reguera ([89]) in 1995. This is an affirmative answer to the 
problem in the case of simple singularities on a surface. Then, by the contributions 
of many people, the problem was completely solved in 2013. It took 45 years after 
the problem was posed. [1, 10–13, 19, 20, 38, 39, 46, 54, 63, 70, 71, 74, 84–90, 92] 
The reader can see a more detailed history about the Nash Problem in Section 
4. As a matter of fact, the problem is affirmatively solved for two-dimensional 
singularities by J.F.de Bobadilla and M.P.Pereira [11] and toric singularities of 
arbitrary dimension as well by S. Ishii and J. Kollár [46]. But otherwise, it was 
negatively solved by S. Ishii and Kollár for dimension greater than 3 and by T. De 
Fernex [19], J. Johnson and J. Kollár [63] for dimension 3. In spite of the fact that the 
answer is negative for many cases, the Nash Problem still holds great significance. 
The problem bridges the theory of arc space and the theory of birational geometry. 
So the Nash Problem plays an important role on (1) in a viewpoint of birational 
geometry. 

A surprising step in this direction is made by M. Mustaţǎ in [77] at the beginning 
of the twenty-first century. He characterizes a locally complete intersection canoni-
cal singularity (a kind of singularity in birational geometry) by irreducibility of all 
the spaces of jets. After that there appear similar characterizations of singularities in 
birational geometry in terms of the space of arcs/jets (see Corollary 3.5.38). Some 
birational invariants (“mld” and “lct”) of singularities are also interpreted in terms 
of the arc space. By making use of the interpretations some important results in 
birational geometry are obtained. One important point about these invariant is that 
the interpretations by the space of arcs/jets also work for the base field of positive 
characteristic. Comparing with the case of characteristic 0, algebraic geometry of 
positive characteristic is difficult to study, because some convenient properties do 
not hold in positive characteristic [60]. In such a situation, the interpretations by the 
space of arcs are expected to play significant roles. These things will be explained 
in Section 5. 

Aside from the Nash Problem, a remarkable idea “motivic integration” on the 
space of arcs is introduced by Kontsevich [67] in 1995. He proved that birationally 
equivalent Calabi-Yau manifolds have the same Hodge numbers by making use 
of motivic integration. This is considered as the role (2) of the space of arcs. 
Unfortunately there is no written version of [67], however we can read the papers 
by J. Denef and F. Loeser [23–27] which describe their own developments of 
the theory of motivic integration including Kontsevich’s original idea. Motivic 
integration leads the people to “motivic zeta function” on the arc space [23, 24] 
and also Batyrev’s “stringy function” [7, 8]. These functions describe global and 
local structures of the variety, therefore these are considered as the roles (2) and 
also (1) of the space of arcs. Local theory of singularities in terms of zeta function 
is developed by Veys [93–95] and Veys and Zuniga-Galindo[96]. In this paper we
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do not step into motivic integration, since there are many good expository papers by 
A. Craw [17], W. Veys [97], F. Loeser [72]. 

The space of arcs/jets on an affine variety becomes an affine scheme and the 
coordinate ring of the space of arcs/jets has a canonical structure of differential 
algebra. From this viewpoint, the space of arcs/jets is studied by Arakawa and 
Moreau [4], Buium [15], and Kolchin [64]. These are the role (3) of the space of 
arcs. 

Because of the limitation of the pages, the proofs are given only when the proof 
helps the understanding of new concepts. For statements for which we omit the 
proofs, we show the citations so that the reader can find the proofs. 

3.1.3 The Goal of this Chapter 

In this expository paper, we introduce the space of arcs/jets and show basic 
properties of the space of arcs/jets with a focus on (1) in a viewpoint of birational 
geometry. 

For the reader not so familiar to birational geometry, we introduce basic notions 
in birational geometry in the fifth section. 

The reader interested in the other roles is encouraged to see the references cited 
above. 

Throughout this paper k is an algebraically closed field of arbitrary characteristic 
unless otherwise stated and a variety is an irreducile reduced separated scheme of 
finite type over k. The basic knowledge of algebraic geometry is based on [43] by  
Hartshorne. 

3.2 Construction of the Space of Jets and the Space of Arcs 

3.2.1 Construction of the Space of Jets 

Definition 3.2.1 Let X be a scheme of finite type over k and K ⊃ k a field 
extension. For m ∈ N, a  k-morphism Spec K[t]/(tm+1) → X is called an m-jet 
of X and a k-morphism SpecK[[t]] → X is called an arc of X. We denote the 
unique point of SpecK[t]/(tm+1) by 0, while the closed point of Spec K[[t]] by 0 
and the generic point by η. 

Theorem 3.2.2 Let X be a scheme of finite type over k. Let 𝒮ch/k be the category 
of k-schemes and 𝒮et the category of sets. Define a contravariant functor FX 

m : 
𝒮ch/k → 𝒮et by 

.FX
m (Z) = Homk(Z ×Spec k Spec k[t]/(tm+1),X)
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for an object Z of 𝒮ch/k. And for a morphism f : Z → Z′ in 𝒮ch/k, define 
FX 

m (f ) : 

. Homk(Z
′ ×Spec k Spec k[t]/(tm+1),X) → Homk(Z ×Spec k Spec k[t]/(tm+1),X)

by α′ �→ α′ ◦ (f × 1). 
Then, FX 

m is representable by a scheme Xm of finite type over k. This Xm is called 
the space of m-jets of X or the m-jet scheme of X. 

Here, “FX 
m is representable by Xm” means that the functor FX 

m is naturally 
isomorphic (i.e., there exists an invertible natural transformation) to the functor 
Homk(Z, Xm). In particular, for an object Z ∈ 𝒮ch/k the following bijection holds: 

.Homk(Z,Xm) � Homk(Z ×Spec k Spec k[t]/(tm+1),X). (3.1) 

The above theorem is proved in [14, p. 276]. In this paper, we prove this by 
a concrete construction of Xm for affine X and then patching them together for a 
general X. For our proof, we need some preparatory discussions. 

Note 3.2.3 Let X be a k-scheme. Assume that FX 
m is representable by Xm for every 

m ∈ N. Then, for m < m′, the canonical surjection k[t]/(tm′+1) → k[t]/(tm+1) 
induces a morphism 

. ψm′,m : Xm′ → Xm.

Indeed, the canonical surjection k[t]/(tm′+1) → k[t]/(tm+1) induces a morphism 

. Z ×Spec k Spec k[t]/(tm′+1) ← Z ×Spec k Spec k[t]/(tm+1),

for an arbitrary k-scheme Z. Therefore we have a map 

. Homk(Z ×Spec k Spec k[t]/(tm′+1),X) → Homk(Z ×Spec k Spec k[t]/(tm+1),X)

which gives the map by the bijection (3.1) 

. Homk(Z,Xm′) → Homk(Z,Xm).

Take, in particular, Xm′ as Z, 

. Homk(Xm′ , Xm′) → Homk(Xm′ , Xm)

then the image of idXm′ ∈ Hom(Xm′ , Xm′) by this map gives the required 
morphism.
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This morphism ψm′,m is called a truncation morphism. In particular for m = 0, 
ψm′,0 : Xm′ → X is denoted by πm. When we need to specify the scheme X, we  
denote it by πX 

m . 
Actually ψm′,m “truncates” a power series in the following sense: A point α of 

Xm′ gives an m′-jet α : Spec K[t]/(tm′+1) → X, which corresponds to a ring 
homomorphism α∗ : A → K[t]/(tm′+1), where A is the affine coordinate ring of 
an affine neighborhood of the image of α. For every f ∈ A, let  

. α∗(f ) = a0 + a1t + a2t
2 + · · · + amtm + · · · + am′ tm

′
,

then 

. (ψm′,m(α))∗(f ) = a0 + a1t + a2t
2 + · · · + amtm.

This fact can be seen by letting Z = {α} in the above discussion. 
As we did already in the above argument, we denote the point of Xm correspond-

ing to α : Spec K[t]/(tm+1) → X by the same symbol α. Then, we should note that 
πm(α) = α(0), where in the left hand side we regard α as a point of Xm, while in 
the right hand side we regard it as a morphism Spec K[t]/(tm+1) → X. 

3.2.2 Morphisms of the Spaces of Jets 

Proposition 3.2.4 Let f : X → Y be a morphism of k-schemes of finite type. 
Assume that the functors FX 

m and F
Y 
m are representable by Xm and Ym, respectively. 

Then for every m ∈ N there is a canonical morphism fm : Xm → Ym such that the 
following diagram is commutative: 

. 

Xm
fm−→ Ym

πX
m ↓ ↓ πY

m

X
f−→ Y

.

Proof Let Xm × Spec k[t]/(tm+1) → X be the “universal family” of m-jets of X, 
i.e., it corresponds to the identity map in Homk(Xm,Xm). By compositing this map 
and f : X → Y , we obtain a morphism 

. Xm × Spec k[t]/(tm+1) → Y,

which gives a morphism Xm → Ym. Pointwise, this morphism maps an m-jet α ∈ 
Xm of X to the composite f ◦ α which is an m-jet of Y . To see this, just take a point 
α ∈ Xm and see the image of {α} ×  Spec k[t]/(tm+1) → Y . The commutativity of 
the diagram follows from this description. �
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Proposition 3.2.5 For k-schemes X and Y , assume that the functor FX 
m and F

Y 
m are 

representable by Xm and Ym, respectively. If f : X → Y is an étale morphism, then 
Xm � Ym ×Y X, for every m ∈ N. 

Proof By the above proposition we have a commutative diagram: 

. 

Xm
fm−→ Ym

↓ ↓
X

f−→ Y

.

It is sufficient to prove that for every commutative diagram: 

. 

Z −→ Ym

↓ ↓
X

f−→ Y

,

there is a unique morphism Z → Xm which is compatible with the projections to X 
and Ym. By definition of Ym, we are given the following commutative diagram: 

. 

Z −→ Z ×Spec k Spec k[t]/(tm+1)

↓ ↓
X

f−→ Y.

As f is étale, there is a unique morphism Z ×Spec k Spec k[t]/(tm+1) → X which 
makes the two triangles commutative. This gives the required morphism: 

. Z → Xm.

�
As a corollary of this proposition, we obtain the following lemma: 

Lemma 3.2.6 Let U ⊂ X be an open subset of a k-scheme X. Assume the 
functors FX 

m and F
U 
m are representable by Xm and Um, respectively. Then, Um = 

(πX 
m )

−1(U). 

Proof of Theorem 3.2.2 Since a k-scheme X is separated, the intersection of two 
affine open subsets is again affine. Therefore, for an affine covering {Ui}i of a k-
scheme X, if the functor F Ui 

m is representable by (Ui)m for every i, then we can 
patch (Ui)m’s together to obtain Xm by Lemma 3.2.6. Now, it is sufficient to prove 
the representability of FX 

m for affine X. Let  X be Spec R, where we denote R = 
k[x1, . . . , xn]/(f1, .., fr). It is sufficient to prove the representability for an affine 
variety Z = Spec A. Then, we obtain that 

. (3.2.2.1) Hom(Z × Spec k[t]/(tm+1), X) � Hom(R, A[t]/(tm+1)) 

. �
{
ϕ ∈ Hom

(
k[x1, ., xn], A[t]/(tm+1)

)∣∣∣ ϕ(fi) = 0 for i = 1, .., r
}

.
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If we write ϕ(xj ) = a (0) j + a (1) j t + a (2) j t2 + .. + a (m) 
j tm for a (l) j ∈ A, it follows that 

. ϕ(fi) = F
(0)
i (a

(l)
j ) + F

(1)
i (a

(l)
j )t + .. + F

(m)
i (a

(l)
j )tm

for polynomials F (s) i in a (l) j ’s (1 ≤ j ≤ n, 0 ≤ l ≤ s). Then the above set (3.2.2.1) 
is described as follows: 

. =
{
ϕ ∈ Hom

(
k
[
xj , x

(1)
j , ., x

(m)
j | j = 1, ., n

]
, A

)∣∣∣ϕ(x
(l)
j ) = a

(l)
j , F

(s)
i (a

(l)
j ) = 0

}

. = Hom
(
k

[
xj , x

(1)
j , ., x

(m)
j

]
/(F

(s)
i (x

(l)
j )), A

)
.

If we define Xm = Spec k[xj , x  (1) j , ., x  (m) 
j ]/(F (s) i (x (l) j )), the last set is bijective to 

. Hom(Z,Xm).

This completes the proof of Theorem 3.2.2. �
Remark 3.2.7 The functor FX 

m is also representable even for k-scheme of non-finite 
type over k. The existence of the space of jets for wider class of schemes is presented 
in [98]. 

3.2.3 The Space of Arcs 

Definition 3.2.8 The system {ψm′,m : Xm′ → Xm}m<m′ is a projective system. Let 
X∞ = lim←−m Xm and call it the space of arcs of X or arc space of X. Note that 
X∞ is not of finite type over k if dim X >  0. 

Remark 3.2.9 The reader may be afraid that the projective limit of the schemes 
lim←−m Xm may not exist. But in our case we need not to worry, since for an affine 
scheme X = Spec R, the  m-jet scheme Xm = Spec Rm is affine for every m ∈ N. 
Here, the morphisms ψ∗ 

m′,m : Rm → Rm′ corresponding to ψm′,m are direct system. 
It is well known that there is a direct limit R∞ = lim−→m Rm in the category of k-
algebras. The affine scheme Spec R∞ is our projective limit of Xm. For a general 
k-scheme X, we have only to patch affine pieces Spec R∞. 

Using the representability of FX 
m we obtain the following universal property of 

X∞: 

Proposition 3.2.10 Let X be a scheme of finite type over k. Then for a k-algebra A 
we obtain: 

.Homk(SpecA,X∞) � Homk(SpecA[[t]], X).
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Proof In case X is affine k-scheme X = SpecR. Then by the representability of 
FX 

m we obtain an isomorphism of projective systems: 

. 

↓ ↓ ↓
Homk(SpecA,Xm) � Homk(SpecA[t]/(tm+1),X) � Homk(R,A[t]/(tm+1))

↓ ↓ ↓
Homk(SpecA,Xm−1) � Homk(SpecA[t]/(tm),X) � Homk(R,A[t]/(tm))

.

Then, we obtain an isomorphism of the projective limits: 

. Homk(SpecA, lim←−
m

Xm) � Homk(R,A[[t]]),

which gives the required isomorphism for affine scheme X. 
For a general X, see  [9]. When we study singularities locally, we need only the 

affine case. �
Remark 3.2.11 Note that in general 

. A ⊗k k[[t]] �� A[[t]] = lim−→
m

A[t]/(tm+1).

Indeed, for example, for A = k[x], the ring A[[t]] contains ∑∞ 
i=0 fi(x)t i such that 

deg fi are unbounded, while A ⊗k k[[t]] does not contain such an element. 
Now, consider the case A = K for an extension field K ⊃ k, the bijection 

. Homk(SpecK,X∞) � Homk(SpecK[[t]], X)

shows that a K-valued point of X∞ is an arc SpecK[[t]] → X. 
In [51, Proposition 2.13] the author sloppily stated Proposition 3.2.10 for every 

k-scheme Z instead of Spec A. But actually the correct statement proved at this 
moment is in the form as Proposition 3.2.10. 

Definition 3.2.12 Denote the canonical projection X∞ → Xm induced from the 
surjection k[[t]] → k[t]/(tm+1) by ψm and the composite πm ◦ ψm by π . When we 
need to specify the base space X, we write it by πX. 

A point x ∈ X∞ gives an arc αx : Spec K[[t]] → X and π(x) = αx(0), where 
K is the residue field at x. In the same way as in the case of m-jets, we denote both 
x ∈ X∞ and αx by the same symbol α. 

For every m ∈ N, ψm(X∞) is a constructible set, since ψm(X∞) = ψm′,m(Xm′) 
for sufficiently big m′ ([41]). We know that the image of a morphism of finite type 
is a constructible set. 

Definition 3.2.13 Denote the canonical morphism X → Xm induced from the 
inclusion k ↪→ k[t]/(tm+1) (m  ∈ N ∪ {∞}) by σm. Here, we define k[t]/(tm+1) =
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k[[t]] for m = ∞. As  k ↪→ k[t]/(tm+1) is a section of the projection k[t]/(tm+1) → 
k, our morphism σm : X → Xm is a section of πm : Xm → X. 

Let x ∈ X be a point and m ∈ N∪{∞}. Then the fiber scheme π−1 
m (x) is denoted 

by Xm(x). 

For a point x ∈ X, let  K be the residue field at x, then define 

. σm(x) : SpecK[t]/(tm+1) → X

as the m-jet that factors through SpecK → X whose image is x. Therefore, σm(x) 
is the constant m-jet at x, this is denoted my xm. 

Example 3.2.14 Under the notation in the proof of Theorem 3.2.2, for  X = An 
k , 

we have (f1, . . . , fr ) = 0. Therefore, it follows Xm = An(m+1) 
k and the truncation 

morphism ψm′,m : Xm′ → Xm is the projection A
n(m′+1) 
k = An(m+1) 

k ×An(m′−m) 
k → 

An(m+1) 
k . 

Example 3.2.15 Let X be a non-singular variety of dimension n. Then for every 
m ∈ N, the space of m-jets Xm is a non-singular variety of dimension n(m + 1) 
and the truncation morphism ψm′,m : Xm′ → Xm is a locally trivial fiber space 

with the fiber A(m′−m)n 
k . Indeed, if X is non-singular, then at each point x ∈ X there 

is an open neighborhood Ux such that we have an étale morphism Ux → An 
k . By  

Proposition 3.2.5, it follows that (Ux)m � Ux ×An 
k 
An(m+1) 

k � Ux ×Spec k Amn 
k . This  

shows that πm : Xm → X is a locally trivial fiber space with the fiber Amn 
k . For  

m < m′, we have(Ux)m′ = (Ux)m ×Spec k A
(m′−m)n 
k by the discussion above. Hence, 

ψm′,m : Xm′ → Xm is a locally trivial fiber space with the fiber A
(m′−m)n 
k . 

Example 3.2.16 Let X be the hypersurface in A3 
k defined by the equation f = xy + 

z2 = 0. We leave the calculation of X1 to the reader and here we calculate X2. The  
space of 2-jets X2 is defined in A9 

k by the equations xy + z2 = x(1) y + xy(1) + 
2zz(1) = x(2) y + x(1) y(1) + xy(2) + z(1) z(1) + 2zz(2) = 0. We can prove that X2 is 
irreducible and non-normal as follows: As an open subset X \ {0} is non-singular, 
π−1 
2 (X \ {0}) is 6-dimensional non-singular variety. On the other hand π−1 

2 (0) is 
a hypersurface in A6 

k defined by the equation x
(1) y(1) + z(1) z(1) = 0, therefore its 

dimension is 5. As X2 is defined by three equations, every irreducible component 
of X2 has dimension greater than or equal to 9 − 3 = 6. By this π−1 

2 (0) does not 
produce an irreducible component of X2. Hence, X2 is irreducible. On the other 
hand, by the Jacobian matrix, we can see that the singular locus of X2 is π

−1 
2 (0). 

This locus is of codimension 1 in X2, which yields that X2 is not normal. The origin 
is the unique singular point of X and is called an “A1-singularity”. Later on, in 
Corollary 3.5.38, we will have that Xm (m ∈ N) are all irreducible. 

Example 3.2.17 Let X be the plane curve defined by x2 − y2 − x3 = 0 Then 
π−1 
1 (X \ {0}) → X \ {0} is a locally trivial fiber space over X \ {0} with the fiber 

A1 
k , which shows that π

−1 
1 (X \ {0}) is of dimension 2. On the other hand, we have
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π−1 
1 (0) � A2 

k . Therefore X1 consists of two irreducible components π−1 
1 (X \ {0}) 

and π−1 
1 (0). 

Example 3.2.18 Consider the space of 1-jets for an arbitrary scheme X of finite 
type over k. For every closed point x ∈ X, the set of closed points of π−1 

1 (x) is the 
set of morphisms Spec k[t]/(t2) → X with the image x. This set is nothing but the 
Zariski tangent space of X at x. Therefore, π1 : X1 → X is regarded as the “tangent 
bunlde” of X. 

Example 3.2.19 If X = An 
k , then X∞ = Spec k[xj , x  (1) j , x  (2) j . . .  | j = 1, . . . , n] 

which is isomorphic to A∞
k = Spec k[x1, x2, . . . , xi , . . .]. Here, we note that the set 

of closed points of A∞
k does not necessarily coincide with the set 

. k∞ := {(a1, a2, . . .) | ai ∈ k}

(see the following theorem). 

Theorem 3.2.20 ([48], Proposition 2.10, 2.11) Every closed point of A∞
k is a k-

valued point if and only if k is an uncountable field. 

3.2.4 Thin and Fat Arcs 

The concept “thin” in the following is first introduced in [33]. 

Definition 3.2.21 Let . X be a variety over . k. We say that an arc . α : SpecK[[t]] →
X is thin if . α factors through a proper closed subvariety of . X. An arc  which is not  
thin is called a fat arc. 

An irreducible subset . C in .X∞ is called a thin set if . C is contained in .Z∞ for a 
proper closed subvariety .Z ⊂ X. An irreducible subset in .X∞ which is not thin is 
called a fat set. 

In case an irreducible subset . C has the generic point .γ ∈ C (i.e., the closure . {γ }
contains . C), . C is a fat set if and only if . γ is a fat arc. 

The following holds by the definition and the valuative criterion of properness: 

Proposition 3.2.22 ([49] Proposition 2.5) Let . X be a variety over . k and . α :
SpecK[[t]] → X an arc. Then, the following hold: 

(i) . α is a fat arc if and only if the ring homomorphism . α∗ : 𝒪X,α(0) → K[[t]]
induced from . α is injective; 

(ii) Assume that . α is fat. For an arbitrary proper birational morphism .ϕ : Y → X, 
the arc . α is lifted to . Y . 

Remark 3.2.23 A fat  set in  .X∞ for a variety . X introduces a discrete valuation on 
the rational function field .K(X) of . X (see Definition 3.5.22).
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A Nash component (see section 4) is a fat set and the Nash map (see section 4) 
is just the correspondence to associate a fat set to the valuation induced from the fat 
set ([49]). 

Example 3.2.24 One of typical examples of fat sets is an irreducible cylinder 
(i.e., the pull back .ψ−1

m (S) of a constructible set .S ⊂ Xm) for a non-singular 
. X. Actually, let C be an irreducible closed subset of .Xm and take an .m-jet . αm :
Spec k[t]/(tm+1) → X in . C, then, at a neighborhood of .x = αm(0) = πm(αm), . X
is étale over . An

k . Therefore, we may assume that .X = An
k and .x = 0. Assume that 

.ψ−1
m (αm) is thin, then it is contained in .Z∞ for some proper closed subset .Z ⊂ X. 

The .m-jet . αm corresponds to a ring homomorphism 

. α∗
m : k[x1, . . . , xn] → k[t]/(tm+1), α∗

m(xi) =
m∑

j=1

a
(j)
i tj .

Let .x(j)
i be an indeterminate for every .i = 1, . . . , n and .j ≥ m + 1. Let  

. α∗ : k[x1, . . . , xn] → k(x
(j)
i | i = 1, .., n, j ≥ m + 1)[[t]]

be an arc defined by 

. α∗(xi) =
m∑

j=1

a
(j)
i tj +

∞∑
j=m+1

x
(j)
i tj .

Let .α∗(f ) = F0(a
(j)
i , x

(j)
i ) + F1(a

(j)
i , x

(j)
i )t + · · · + F
(a

(j)
i , x

(j)
i )t
 + · · · for 

.f ∈ IZ . Then, as . x
(j)
i ’s are indeterminates there is . 
 such that .F
 �= 0. Hence, we 

obtain .α ∈ ψ−1
m (C) such that .α �∈ Z∞. 

Example 3.2.25 ([21]) For a singular variety . X, an irreducible cylinder is not 
necessarily fat. Indeed, let . X be the Whitney Umbrella that is a hypersurface defined 
by .xy2 − z2 = 0 in . A3

k . For .m ≥ 1, let  

. α∗
m : k[x, y, z]/(xy2 − z2) → k[t]/(tm+1)

be the .m-jet defined by .αm(x) = t, αm(y) = 0, αm(z) = 0. Then, the cylinder 
.ψ−1

m (αm) is contained in .Sing(X)∞, where .Sing(X) = (y = z = 0). This is proved 
as follows: Let an arbitrary .α ∈ ψ−1

m (αm) be induced from 

. α∗ : k[x, y, z] → k[[t]]
with 

.α∗(x) =
∞∑

j=1

aj t
j , α∗(y) =

∞∑
j=1

bj t
j , α∗(z) =

∞∑
j=1

cj t
j ,
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where we note that .a1 = 1. Then, the condition .α∗(xy2 − z2) = 0 implies that the 
initial term of .α∗(xy2) and that of .α∗(z2) cancel each other. If .α∗(y) �= 0, then the 
order of .α∗(xy2) is odd. On the other hand, if .α∗(z) �= 0, the order of .α∗(z2) is 
even. Hence if .α∗(y) �= 0 or .α∗(z) �= 0, then the initial term of .α∗(xy2) and that of 
.α∗(z2) do not cancel each other. Therefore, .α∗(y) = α∗(z) = 0, which shows that 
.ψ−1

m (αm) ⊂ Sing(X)∞. 

3.3 Properties of the Space of Arcs and the Space of Jets 

3.3.1 Group Actions on the Space of Jets/Arcs 

Note 3.3.1 Consider G = A1 
k \ {0} =  Spec k[s, s−1] as a multiplicative group 

scheme. Usually this group scheme is denoted byGm, but this symbol would conflict 
with the space of m-jets. Therefore we do not use the usual symbol in this paper. 
For m ∈ N ∪ {∞}, the morphism k[t]/(tm+1) → k[s, s−1, t]/(tm+1) defined by 
t �→ s · t gives an action 

. μm : G ×Spec k Spec k[t]/(tm+1) → Spec k[t]/(tm+1)

of G on Spec k[t]/(tm+1). Therefore, it gives an action 

. μXm : G ×Spec k Xm → Xm

of G on Xm. As  μm is extended to a morphism: 

. μm : A1
k ×Spec k Spec k[t]/(tm+1) → Spec k[t]/(tm+1),

we obtain the extension 

. μXm : A1
k ×Spec k Xm → Xm

of μXm. 
Note that μXm({0} ×  α) = xm, where xm is the trivial m-jet on x = α(0) ∈ X. 

Therefore, every orbit μXm(G×{α}) contains the trivial m-jet on α(0) in its closure. 

Proposition 3.3.2 For m ∈ N ∪ {∞}, let  Z ⊂ Xm be a G-invariant closed 
subset. Then the image πm(Z) is closed in X. In particular the image πm(Z) of 
an irreducible component of Z ⊂ Xm is closed in X. 

Proof Let Z ⊂ Xm be a G-invariant closed subset. Then, we obtain: 

.μXm(A1
k × Z) = Z.
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On the other hand, μXm({0} ×  Z) = σm ◦ πm(Z) by Note 3.3.1. Therefore, as Z is 
closed, it follows that 

. Z ⊃ σm ◦ πm(Z) ⊃ σm(πm(Z)),

which yields πm(Z) ⊃ πm(Z). �
Note 3.3.3 Let G := A1 \ {0} = Spec k[s, s−1] be as above. As we have an action 

. μXm : G ×Spec k Xm → Xm

of G on Xm, we have the  𝒪X-graded algebra ⊕i≥0ℛi with ℛ0 = 𝒪X such that 

. Xm = Spec⊕i≥0ℛi .

Indeed, we can define 

. ℛi := {f ∈ 𝒪Xm | μ∗
Xm(f ) = si · f }.

Lemma 3.3.4 ([56]) For every m ∈ N, the base scheme X is the categorical 
quotient of Xm by the action of G. 

Here, the definition of the categorical quotient is found in [76, Definition 0.5]. 

3.3.2 Morphisms of the Space of Jets/Arcs 

Proposition 3.3.5 Let f : X → Y be a morphism of k-schemes of finite type. Then 
there is a canonical morphism f∞ : X∞ → Y∞ such that the following diagram is 
commutative: 

. 

X∞
f∞−→ Y∞

πX
m ↓ ↓ πY

m

X
f−→ Y

.

Proof The morphism f∞ is induced as the projective limit of fm (m ∈ N) (see 
Proposition 3.2.4). �
Proposition 3.3.6 Let f : X → Y be a proper birational morphism of k-schemes 
of finite type such that f |X\W : X \ W � Y \ V , where W ⊂ X and V ⊂ Y are 
closed. Then f∞ gives a bijection 

.X∞ \ W∞ → Y∞ \ V∞.
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Proof Let α ∈ Y∞ \ V∞, then α(η) ∈ X \ V . As  X \ W � Y \ V . We obtain the 
following commutative diagram: 

. 

SpecK((t)) → Y

↓ ↓
SpecK[[t]] α−→ X

.

Then, as f is a proper morphism, by the valuative criteria of properness, there is 
a unique morphism α̃ : Spec K[[t]] → Y such that f ◦ α̃ = α. This shows the 
bijectivity as required. �
Remark 3.3.7 The bijection above is not isomorphic in general. Actually the 
following is an example that X∞ \ W∞ → Y∞ \ V∞ is not isomorphic. 

Let (Y, y) be a germ of isolated singularity and f : X → Y be a resolution of 
the singularity (Y, y). Let  W := f −1(y) and V := {y}. Take a  k-valued arc α ∈ 
(πY )−1(y)\V∞ and let α̃ ∈ X∞ be the corresponding arc to α by the above bijective 
map. Then, by Grinberg and Kazhdan [42], the formal neighborhoods (X∞)α̃ of X∞ 
at α̃ and (Y∞)α of Y∞ at α are described as follows: 

. (X∞)α̃ � D∞, and (Y∞)α � D∞ × Zz,

where D = Spfk[[x]] and Zz is the formal neighborhood of a scheme Z of finite 
type over k at a k-valued point z ∈ Z. In [28, Example], we can take Z singular at 
z, which implies that 

. (X∞)α̃ �� (Y∞)α.

The following is the version for m = ∞  of Proposition 3.2.5: 

Proposition 3.3.8 If f : X → Y is an étale morphism, then 

. X∞ � Y∞ ×Y X.

Proof As lim←−m (Ym ×Y X) = (lim←−m Ym) ×Y X, the case m = ∞  is reduced to the 
case m <  ∞ which is proved in Proposition 3.2.5. �
Proposition 3.3.9 There is a canonical isomorphism: 

. (X ×k Y )m � Xm ×k Ym,

for every m ∈ N ∪ {∞}. Here, ×k means ×Spec k for avoiding the bulky notation. 

Proof For an arbitrary k-scheme Z, 

.Homk(Z,Xm ×k Ym) � Homk(Z,Xm) × Homk(Z, Ym),



176 S. Ishii

and the right hand side is isomorphic to 

. Homk(Z ×k Spec k[t]/(tm+1),X) × Homk(Z ×k Spec k[t]/(tm+1), Y )

. � Homk(Z ×k Spec k[t]/(tm+1),X ×k Y ).

. � Homk(Z, (X ×k Y )m).

The case m = ∞  follows from this. �
Proposition 3.3.10 Let f : X → Y be an open immersion (resp. closed immersion) 
of k-schemes of finite type. Then the induced morphism fm : Xm → Ym is also an 
open immersion (resp. closed immersion) for every m ∈ N ∪ {∞}. 
Proof The open case follows from Lemma 3.2.5 and Proposition 3.3.8. For  the  
closed case, we may assume that Y is affine. If Y is defined by fi (i = 1, ., r)  in an 
affine space, then X is defined by fi (i = 1, ., r, ., u)  with r ≤ u in the same affine 
space. Then, Ym is defined by F (s) i (i = 1, ., r,  s  ≤ m) and Xm is defined by F (s) i 
(i = 1, ., r, ., u,  s  ≤ m) in the corresponding affine space. This shows that Xm is a 
closed subscheme of Ym. �
Remark 3.3.11 In the above proposition we see that the property open or closed 
immersion of the base spaces is inherited by the morphism of the space of jets and 
arcs. But some properties are not inherited. For example, surjectivity and closedness 
are not inherited. 

Example 3.3.12 There is an example that f : X → Y is surjective and closed 
but f∞ : X∞ → Y∞ is neither surjective nor closed. Let X = A2 

C and G =
〈
(

ε 0 
0 εn−1

)
〉 be a finite cyclic subgroup in GL(2, C) acting on X, where n ≥ 2 and

ε is a primitive n-th root of unity. Let Y = X/G be the quotient of X by the action 
of G. Then, it is well known that the singularity appeared in Y is An−1-singularity. 
Then the canonical projection f : X → Y is closed and surjective. We will see 
that these two properties are not inherited by f∞ : X∞ → Y∞. Let  p be the image 
f (0) ∈ Y . Then, by the commutativity 

. 

X∞
f∞−→ Y∞

↓ πX ↓ πY

X
f−→ Y,

we obtain (πX )−1(0) = f −1∞ ◦ (πY )−1(p). Here, (πX )−1(0) is irreducible, since X 
is non-singular. On the other hand (πY )−1(p) has (n−1) irreducible components by 
Petrov [81] and Ishii and Kollár [46]. Therefore the morphism f∞ is not surjective 
for n ≥ 3. As X \ {0} → Y \ {p} is étale, The morphism 

.(X \ {0})∞ → (Y \ {p})∞
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is also étale by Proposition 3.3.8. Since Y∞ is irreducible by Corollary 3.5.38, f∞ 
is dominant. Therefore, f∞ is not closed. 

Next we think of the irreducibility of the arc space or jet schemes. The following 
is proved in [64]. In [47] we gave another proof by using [46, Lemma 2.12] and a 
resolution of the singularities. Here we show a proof without a resolution. 

3.3.3 The Structure of the Space of Jets/Arcs 

Theorem 3.3.13 ([47, 64]) If characteristic of k is zero, then the space of arcs of a 
variety X is irreducible. 

Proof By Ishii and J. Kollár [46, Lemma 2.12] we obtain the following: 

(1) Given any arc φ : Spec k′[[s]] → X, we construct an arc Φ : Spec K[[s]] → X 
such that φ ∈ {Φ} and Φ(0̃) = Φ(η̃) = φ(η), where η and η̃ are the generic 
points of Spec k′[[s]] and Spec K[[s]], respectively, while 0̃ is the closed point 
of Spec K[[s]]. 

(2) We construct an arc Ψ such that Φ ∈ {Ψ } and Ψ (η̃) ∈ X \ Sing X. 

Now for this Ψ we apply the procedure (1) again, then we obtain a new arc 

. Ψ ′ : SpecK ′[[s]] → X

such that Ψ ∈ {Ψ ′} and Ψ ′(0̃′) = Ψ ′(η̃′) = Ψ (η̃) ∈ X \ Sing X, where 0̃′ (resp. η̃′) 
is the closed point (resp. the generic point) of Spec K ′[[s]]. If we denote π(Ψ ′) = 
Ψ ′(0̃′) = λ, then as λ ∈ X \ Sing X, it follows that 

. Ψ ′ ∈ π−1(X \ SingX),

where the set of the right hand side is irreducible. This yields 

. φ ∈ π−1(X \ SingX),

hence X∞ = φ ∈ π−1(X \ Sing X) which is irreducible. �
Example 3.3.14 ([46], Example 2.13) If the characteristic of k is p >  0, X∞ is not 
necessarily irreducible. For example, the hypersurface X defined by xp − yp z = 0 
has an irreducible component in (Sing X)∞ which is not in the closure of X∞ \ 
(Sing X)∞. 

Note that if the characteristic of k is 0, then every arc in (Sing X)∞ lies in the 
closure of X∞ \ (Sing X)∞. But in our case chark = p >  0, an arc (x(t), 0, 0) ∈ 
(Sing X)∞ ∩ π−1((0, 0, 0)) belongs to X∞ \ (SingX)∞ if and only if x(t) has the 
form x(t) = ∑∞ 

j=1 ajptjp>
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Example 3.3.15 ([48]) Let X be a toric variety over an algebraically closed field of 
arbitrary characteristic. Then, X∞ is irreducible. 

Next let us think of the space of m-jets. The space of m-jets of a variety is not 
necessarily irreducible even if the characteristic of k is zero (see Example 3.2.17). 

The geometric structures of X and the space of arcs/jets affect each other. 

Proposition 3.3.16 ([55]) If X is smooth, then Xm is also smooth for every m ∈ N. 
Conversely, if there is m ∈ N, such that Xm is smooth, then X is smooth. 

Generally speaking, if Xm has property (P) for some m ∈ N, then X has property 
(P) for many properties (P). 

As the k-scheme X is the categorical quotient of Xm for every m ∈ N by the 
action of G (Lemma 3.3.4), we obtain by Mumford et al. [76] the following: 

Proposition 3.3.17 ([56]) The following is a list of the statements of the form Xm 
has (P) for an m ∈ N, then X has (P). 

. 

(i) Xm reduced ⇒ X reduced
(ii) Xm connected ⇒ X connected
(iii) Xm irreducible ⇒ X irreducible
(iv) Xm locally integral ⇒ X locally integral
(v) Xm locally integral ⇒ X locally integral

and normal and normal

Example 3.3.18 The converse of (i) does not hold in general. We give here an 
example in [40]. Let X be defined by xy = 0 in  A2 

C. Then, X itself is reduced 
but Xm is not reduced for any m ∈ N. Indeed, let Im be the defining ideal of Xm in 
(A2 

C)m. Then Im is a homogeneous ideal of C[x(0) , y(0) , x(1) , y(1) , . . . , x(m) , y(m)]. 
The degree 0 part of Im is generated by 

. x(0)y(0)

and the part of degree 1 is generated by 

. x(0)y(1) + x(1)y(0)

as C[x(0) , y(0)]-modules. Then, f := x(0) y(1) �∈ Im, but  f 2 ∈ Im. 
The paper [40] shows more general statement. Let I be a reduced monomial ideal 

on ACn , then Im is not a monomial ideal in general but
√

Im is a monomial ideal for 
every m ∈ N 

Remark 3.3.19 About (ii), we have the converse statement: If X is connected, then 
Xm is connected for every m ∈ N. This can be seen as follows: Let P ∈ Xm 
be any point and let x = πm(P ). Then, the orbit OG(P ) of P by the action of 
G is irreducible and the closure OG(P ) contains σm(x). Thus, every point of Xm 
is connected to the section σm(X) by an irreducible curve. Since σm(X) � X is 
connected, Xm is connected.
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Example 3.3.20 The converse of (iii) or the converse of (iv) do not hold in general. 
For example, let X ⊂ A3 

C be a curve defined by x
3 − y2 = x2 − z3 = 0. Then, the 

main component π−1 
m (Xreg) of Xm has dimension m + 1. Here, Xreg is the open 

subset consisting of non-singular points of X. On the other hand, since π−1 
m (0) is 

defined in (πA3m)−1(0) = A3m 
C by 2m − 2 equations, it follows that dim π−1 

m (0) ≥ 
m + 2. This shows that Xm is not irreducible for any m ∈ N. As  Xm is connected, it 
also shows that Xm is not locally integral for m ∈ N. 

Example 3.3.21 The converse of (v) does not hold in general. For example, let X 
be a normal surface defined by x2 + y2 + z2 = 0 in  A3 

C. It has an A1-singularity at 
the origin. Then, Xm is irreducible by Mustaţǎ [77] but not normal for any m ∈ N. 
Indeed, it is known that Xm is of dimension 2(m+1) for every m ∈ N. On the other 
hand, we can see that dim Sing(Xm) = dim π−1 

m (0) = 2m + 1, which shows that 
Xm is not normal. 

Next we will think of further properties. 

Theorem 3.3.22 ([56]) If Xm is locally a complete intersection for an m ∈ N, then 
X is also locally a complete intersection. 

Example 3.3.23 If X is locally a complete intersection, then Xm is not necessarily 
locally a complete intersection. Example 3.3.20 shows such an example. 

Definition 3.3.24 Let X be a normal variety defined over k. 

(i) If for a Weil divisor D on X there exists r ∈ N such that rD is a Cartier divisor, 
we call D a Q-Cartier divisor on X. 

(ii) If every Weil divisor on X is Q-Cartier divisor, we say that X is Q-factorial. 
(iii) If for a canonical divisor KX of X there exists r ∈ N such that rKX is a Cartier 

divisor, then we call X a Q-Gorenstein variety and the minimal such r ∈ N 
the index of X. 

Remark 3.3.25 The property Q-Gorenstein plays an important role in birational 
geometry. Indeed, sometimes one needs to compare the canonical divisors KX and 
KY of the varietiesX and Y , respectively, in the situation that there exists a birational 
morphism ϕ : Y → X. But the problem is how to compare them, because KX and 
KY are on the different varieties and there is no canonical way to compare two 
divisors on different varieties. Here, if KX is a Cartier divisor, then one can pull it 
back directly to get a Cartier divisor ϕ∗KX on Y and compare KY and ϕ∗KX. A  
variety with Q-Cartier divisor KX is called a Q-Gorenstein variety and studied in 
the Section 3.5. 

Definition 3.3.26 Let D be a Q-Cartier Weil divisor on a normal variety X defined 
over k. Let  ϕ : Y → X be a birational morphism. Let r ∈ N be such that rD is a 
Cartier divisor. Define ϕ∗D ∈ Q ⊗Z Div(Y ) as follows: 

.ϕ∗D := 1

r
ϕ∗(rD),
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where note that ϕ∗(rD) is well defined, as rD is a Cartier divisor. The Q-Cartier 
divisor ϕ∗D is called the pull-back of D. 

Theorem 3.3.27 ([56]) If Xm is Q-factorial for an m ∈ N, then X is Q-factorial 

Theorem 3.3.28 ([56]) If Xm is Q-Gorenstein of index r for an m ∈ N, then X is 
Q-Gorenstein of index ≤ r(m + 1). 

In the following we show some results about singularities canonical, log-
canonical, terminal, and log-terminal on the jet schemes. These notions will be 
introduced in Definition 3.5.2. 

Theorem 3.3.29 ([56]) Assume chark = 0. If  Xm has at worst canonical (resp. 
terminal, log-terminal) singularities for an m ∈ N, then X has at worst canonical 
(resp. terminal, log-terminal) singularities. 

Theorem 3.3.30 ([56]) Assume chark = 0. If  Xm has at worst log-canonical 
singularities for an m ∈ N, then X has at worst log-terminal singularities. 

Theorem 3.3.31 ([56]) Let f : X → Y be a morphism of k-schemes. If the induced 
morphism fm : Xm → Ym is flat for some m ∈ N, then f is flat. 

Example 3.3.32 The converse of the theorem does not hold. Let X ⊂ A3 
C be defined 

by the equation td + xd + yd = 0, with d ≥ 3, then it is a normal surface with the 
singularity at the origin 0 = (0, 0, 0). Let  f : X → Y = A1 

C be the first projection 
(t, x, y) �→ t . Then, as f is a surjective morphism from a reduced scheme to a 
non-singular curve, it is flat. However, for every m ≥ 2 the induced morphism 
fm : Xm → Ym is non-flat. This is shown as follows: For every m ∈ N, consider the 
commutative diagram: 

. 

Xm
fm−→ Ym

πX
m ↓ ↓ πY

m

X
f−→ Y

As πY 
m is smooth, it is sufficient to prove that f ◦ πX 

m is not flat for m ≥ 2. Note that 
(πX 

m )
−1(X \ {0}) is irreducible and of dimension 2(m + 1). 

For m < d, (πX 
m )

−1(0) = (πA3 

m )
−1(0) = A3m. For  m ≥ d, as  (πX 

m )
−1(0) is 

defined by m + 1 − d equations in A3m, it follows  that  

. dim(πX
m )−1(0) ≥ 3m − (m + 1) + d ≥ 2(m + 1).

If we assume that m ≥ 2, in both cases above we have 

. dim(f ◦ πX
m )−1(0) ≥ dim(πX

m )−1(0) > 2m + 1 = dim(f ◦ πX
m )−1(t),

where 0 �= t ∈ Y . This yields that f ◦ πX 
m is not flat.
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The structures of the space of arcs and the space of jets are determined by the 
base scheme. So, it is natural to ask whether the converse holds, i.e., whether the 
space of arcs/jets determine the base scheme. This problem can be divided into the 
global case and the local case. First we discuss the global problem. This is again 
divided into two cases. The first one is posed under the additional assumption of 
existence of certain morphisms: 

Proposition 3.3.33 Let X and Y be two schemes over k and G as in Note 3.3.3. If  
there exists a G-equivariant isomorphism Xm 

∼−→ Ym of m-jet schemes for some 
m ∈ N ∪ {∞}, then there is an isomorphism X ∼−→ Y . 

Proof As X and Y are the categorical quotients of Xm and Ym, respectively by the 
action of G (Lemma 3.3.4), the G-equivariant isomorphism of Xm and Ym provides 
with the isomorphism of the categorical quotients. �

If there is a morphism f : X → Y , the induced morphism fm : Xm → Ym 
is G-equivariant. Therefore, by the previous proposition and the universality of the 
categorical quotient, we obtain the following: 

Corollary 3.3.34 Let f : X → Y be a morphism of schemes over k. If the induced 
morphism fm : Xm → Ym is an isomorphism for some m ∈ N ∪ {∞}, then the 
morphism f is an isomorphism. 

Remark 3.3.35 This corollary can be proved directly by using the fact that the 
morphism of the base spaces induces the morphism of the sections in the jet-
schemes. 

Now for the second case of global version, let us be just given an isomorphism 
of m-jet schemes and consider if it induces an isomorphism of base schemes. The 
following is a counterexample for this problem. We use the counterexample of the 
cancellation problem called Danielewski’s example. 

Theorem 3.3.36 ([53]) Let X and Y be hypersurfaces in A3 
C defined by xz − y2 + 

1 = 0 and x2z − y2 + 1 = 0, respectively. Then, X �� Y but Xm � Ym for every 
m ∈ N ∪ {∞}. 

Now let us turn to the local problem. The following is the affirmative answer 
to the local problem assuming the existence of a morphism between the base 
schemes. Here, we note that the notation Xm(x) in the following is defined in 
Definition 3.2.13. 

Theorem 3.3.37 ([73]) Let f : (X, x) → (Y, y) be a morphism of germs of a 
varieties. Assume that f induces isomorphisms fm : Xm(x) � Ym(y) for all m ∈ 
N ∪ {∞}, then f is an isomorphism. 

Remark 3.3.38 Unlike the global version, only one isomorphism fm : Xm � Ym 
does not guarantee that f is isomorphic. Actually, for example the isomorphism 
f1 : X1(x) � Y1(y) gives just that the Zariski tangent spaces of these singularities 
are isomorphic. One can see an example with isomorphic f1 but not isomorphic f 
in the following:
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Let X ⊂ A2 
C be the closed subvariety defined by x

2 − y2 + x3 = 0. Then, 
the inclusion morphism X ↪→ A2 

C =: Y is not an isomorphism. But the induced 
morphism of the Zariski tangent spaces is an isomorphism. 

The following is a modified version of local isomorphism problem. 

Theorem 3.3.39 ([22, Proposition 4.12]) Let f : (X, x) → (Y, y) be a morphism 
of germs of a varieties. Assume that f induces bijective morphisms fm : Xm(x) → 
Ym(y) for all m ∈ N∪ {∞}  (equivalently, fm induces bijection |Xm(x)| → |Ym(y)| 
of underlying spaces), then it follows that: 

(i) The morphism f is a closed immersion; 
(ii) Let X ↪→ A be a closed immersion to a smooth variety A and let IX and IY 

be the defining ideals of X and Y , respectively, in A. Then, IX ⊃ IY holds and 
IX is integral over IY . Here, we note that by the isomorphism f1 : X1(x) �
Y1(y), which is viewed as an isomorphism of the Zariski tangent spaces, we 
can identify the ambient spaces of X and of Y . 

Conversely, let X ⊂ Y ⊂ A be closed subschemes with smooth A and 0 ∈ X a 
point. Assume that the defining ideal IX of X is integral over the defining ideal IY of 
Y around 0. Then, we obtain the equalities |Xm(0)| = |Ym(0)| of underlying spaces 
for every m ∈ N ∪ {∞}. 

At the end of this section, we show a mysterious theorem by Grinberg and 
Kazhdan [42] about the formal neighborhood of a point of the arc space. This 
result is reproved in [28] in a simple way. This theorem is also used to construct 
the example in Remark 3.3.7 in this chapter. 

Theorem 3.3.40 ([28, 41]) Let X be a scheme of finite type over a filed k, and 
Sing X the singular locus. Let γ ∈ X∞ \(Sing X)∞ be a k-valued point and (X∞)γ 
the formal neighborhood of γ . Denote the formal disk Spf(k[[t]]) by D and the 
product of countably many copies of D by D∞. Then, there exists a scheme Y = 
Y (γ  )  of finite type over k and a k-valued point y ∈ Y , such that 

. (X∞)γ � D∞ × Yy,

where Yy is the formal neighborhood of y in Y . 

It is a very interesting problem to find the relationship between the singularity of 
(Y, y) and (X, γ (0)). Some people started to study this problem. 

3.4 Introduction to the Nash Problem 

In this section, we introduce the Nash problem. The author introduced the problem 
in the expository paper [51] in 2007. After that researches on this problem developed 
remarkably, so it seems a good timing to introduce the problem again and show
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the progress after 2007. In this section, we assume the existence of resolutions of 
singularities. It is sufficient to assume that the characteristic of . k is zero. 

3.4.1 Basics for the Statement for the Nash Problem 

One of the most mysterious and fascinating problem in arc spaces is the Nash 
problem which was posed by Nash in his preprint in 1968. It is a question about 
the Nash components and the essential divisors. First we introduce the concept of 
essential divisors. 

Definition 3.4.1 Let X be a variety, .g : X1 → X a proper birational morphism 
from a normal variety . X1 and .E ⊂ X1 an irreducible divisor. Let .f : X2 → X be 
another proper birational morphism from a normal variety . X2. The birational map 
.f −1 ◦ g : X1 ��� X2 is defined on a (nonempty) open subset . E0 of E because, 
by Zariski’s main theorem, the “fundamental locus” of a birational map between 
normal varieties is a closed subset of codimension . ≥ 2. The closure of . (f −1◦g)(E0)

is called the center of E on . X2. 
We say that . E appears in . f (or in . X2), if the center of E on . X2 is also a divisor. 

In this case the birational map .f −1 ◦ g : X1 ��� X2 is a local isomorphism at the 
generic point of . E and we denote the birational transform of . E on . X2 again by . E. 
For our purposes .E ⊂ X1 is identified with .E ⊂ X2. Such an equivalence class is 
called a prime divisor over X. 

Let a prime divisor E over X appear on .g : X1 → X. If  g is not an isomorphism 
at the generic point of E, then we call E an exceptional divisor over X. 

Definition 3.4.2 Let . X be a variety over . k and let .SingX be the singular locus 
of . X. In this paper, by a resolution of the singularities of . X we mean a proper, 
birational morphism .f : Y → X with . Y non-singular such that the restriction 
.Y \ f −1(SingX) → X \ SingX of . f is an isomorphism. 

A resolution .f : Y → X whose fiber .f −1(SingX) is of pure codimension one 
is called a divisorial resolution. 

Definition 3.4.3 An exceptional divisor . E over . X is called an essential divisor 
over . X if for every resolution .f : Y → X the center of . E on . Y is an irreducible 
component of .f −1(SingX). 

For a given resolution .f : Y → X, the center of an essential divisor is called an 
essential component on . Y . 

Proposition 3.4.4 Let .f : Y → X be a resolution of the singularities of a variety 
. X. The set 

. ℰ = ℰY/X =
{

irreducible components off −1(SingX)

which are centers of essential divisors over X

}

corresponds bijectively to the set of all essential divisors over . X.
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In particular, the set of essential divisors over . X is a finite set. 

Proof The map 

. {essential divisors over X} → ℰY/X, E �→ center of E on Y

is surjective by the definition of essential components. To prove the injectivity, take 
an essential component . C and the blow up .Y ′ → Y with the center . C. Then, there 
is a unique divisor .E ⊂ Y ′ dominating . C. Let  .Y ′′ → Y ′ be a resolution of the 
singularities of . Y ′. Then, . E is the unique exceptional divisor on . Y ′′ that dominates 
. C. Therefore, every exceptional divisor over . X with the center .C ⊂ Y has the 
center contained in . E on a resolution . Y ′′ of the singularities of . X. Therefore, by the 
definition of essential divisor, this . E is the unique essential divisor whose center on 
. Y is . C. �

C. Bouvier and G. Gonzalez-Sprinberg also introduce “essential divisors” and 
“essential components” in [12] and [13], but we should note that the definitions are 
different from ours. Nash problem is about our essential divisors and not about their 
“essential divisors”. In order to avoid a confusion, we give different names to their 
“essential divisors” and “essential components” and clarify different points among 
them. 

Definition 3.4.5 ([12, 13]) An exceptional divisor . E over . X is called a BGS-
essential divisor over . X if . E appears in every resolution. An exceptional divisor 
. E over . X is called a BGS-essential component over . X if the center of . E on every 
resolution . f of the singularity of . X is an irreducible component of .f −1(E′), where 
. E′ is the center of . E on . X. 

We will see how different they are from our essential divisors and essential 
components. First we see that they coincide for 2-dimensional case. To show this 
we need to introduce the concept minimal resolution. 

Definition 3.4.6 A resolution .f : Y → X of the singularities of . X is called the 
minimal resolution if for any resolution .g : Y ′ → X, there is a unique morphism 
.Y ′ → Y over X. 

It is known that for a surface . X the minimal resolution .f : Y → X exists. It is 
characterized by the fact that . Y has no exceptional curve of the first kind over . X. 

For higher dimensional variety . X, the minimal resolution does not necessarily 
exist. For example, .X = {xy − zw = 0} ⊂ A4 has two resolutions neither of 
which dominates the other. These two resolutions are obtained as follows: First take 
a blow-up .f : Ỹ → X at the origin of . X which has the unique singular point at the 
origin. Then, . f is a resolution of the singularity of . X and the exceptional divisor 
. E of . f is isomorphic to .P1 × P1. Here we have two contractions .g1 : Ỹ → Y1, 
.g2 : Ỹ → Y2 whose restrictions on E are the first projection . p1 : E = P1×P1 → P1

and the second projection .p2 : E = P1 ×P1 → P1, respectively. Then both . Yi’s are 
non-singular, therefore .fi : Yi → X .(i = 1, 2) are resolutions of the singularity of 
. X. It is clear that there is no morphism between . Y1 and . Y2 over . X.
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Proposition 3.4.7 If . X is a surface, then each of the set of “essential divisors”, 
“BGS-essential divisors” and “BGS-essential components” are bijective to the set 
of the components of the fiber .f −1(SingX), where .f : Y → X is the minimal 
resolution. These are also essential components on the minimal resolution. 

Remark 3.4.8 Four concepts “essential divisor”, “essential component”, “BGS-
essential divisor” and “BGS-essential component” are mutually different in general. 

First, our essential component is different from the others, because it is a 
closed subset on a specific resolution and the others are all equivalence classes of 
irreducible divisors. 

Next, a BGS-essential divisor is different from a BGS-essential component or an 
essential divisor. Indeed, for .X = (xy − zw = 0) ⊂ A4

k , the exceptional divisor 
obtained by a blow-up at the origin is the unique essential divisor and also the unique 
BGS-essential component, while there is no BGS-essential divisor, since . X has a 
resolution whose exceptional set is . P1

k , which is not a divisor. 
Finally a BGS-essential component and an essential component are different. 

Indeed, consider a cone generated by .(0, 0, 1), (2, 0, 1), (1, 1, 1), .(0, 1, 1) in . R3. 
It is well known that a cone generated by integer points in a real Euclidean space 
defines an affine toric variety (see [36, 83] for basic notion of toric varieties). Let 
. X be the affine toric variety defined by this cone. Then the canonical subdivision 
adding a one dimensional cone .R≥0(1, 0, 1) is a resolution of . X. As the singular 
locus of . X is of dimension one, there is no small resolution. Therefore, the divisor 
.D(1,0,1) is the unique essential divisor, while .D(1,1,2) and .D(2,1,2) are BGS-essential 
components by the criterion [12, Theorem 2.3]. 

Definition 3.4.9 Let . X be a variety and .π : X∞ → X the canonical projection. An 
irreducible component . C of .π−1(SingX) is called a Nash component if it contains 
an arc . α such that .α(η) �∈ SingX. This is equivalent to saying that .C �⊂ (SingX)∞. 

The following lemma is already quoted for the irreducibility of the space of arcs 
(Theorem 3.3.13). 

Lemma 3.4.10 ([46]) If the characteristic of the base field . k is zero, then every 
irreducible component of .π−1(SingX) is a Nash component. 

We note that for the positive characteristic case this lemma does not hold. Indeed, 
Example 3.3.14 is an example that .π−1(SingX) has an irreducible component 
which is not a Nash component. 

Let .f : Y → X be a resolution of the singularities of . X and .El .(l = 1, .., r) the 
irreducible components of .f −1(SingX). Now we are going to introduce a map . 𝒩
which is called the Nash map 

.

⎧⎨
⎩

Nash components
of the space of arcs

of X

⎫⎬
⎭

𝒩−→
⎧⎨
⎩

essential
components

on Y

⎫⎬
⎭ �

⎧⎨
⎩
essential
divisors
over X

⎫⎬
⎭ .
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Note 3.4.11 (Construction of the Nash Map) The resolution .f : Y → X induces 
a morphism .f∞ : Y∞ → X∞ of schemes. Let .πY : Y∞ → Y be the canonical 
projection. As . Y is non-singular, .(πY )−1(El) is irreducible for every . l. Denote by 
.(πY )−1(El)

o the open subset of .(πY )−1(El) consisting of the points corresponding 
to arcs .β : SpecK[[t]] → Y such that .β(η) �∈ f −1(SingX). Let  .Ci .(i ∈ I ) be the 
Nash components of . X. Denote by . Co

i the open subset of . Ci consisting of the points 
corresponding to arcs .α : SpecK[[t]] → X such that .α(η) �∈ SingX. As  . Ci is a 
Nash component, we have .Co

i �= ∅. The restriction of . f∞ gives 

. f ′∞ :
r⋃

l=1

(πY )−1(El)
o →

⋃
i∈I

Co
i .

By Proposition 3.3.6, .f ′∞ is surjective. Hence, for each .i ∈ I there is a unique . li
such that .1 ≤ li ≤ r and the generic point . βli of .(π

Y )−1(Eli )
o is mapped to the 

generic point . αi of . Co
i . By this correspondence .Ci �→ Eli we obtain a map 

. 𝒩:
⎧⎨
⎩

Nash components
of the space of arcs
through SingX

⎫⎬
⎭ −→

⎧⎨
⎩

irreducible
components

of f −1(SingX)

⎫⎬
⎭ .

Lemma 3.4.12 The map . 𝒩 is an injective map to the subset consisting of the 
essential components on . Y . 

Proof Let .𝒩(Ci) = Eli . Denote the generic point of . Ci by . αi and the generic point 
of .(πY )−1(El) by . βl . If  .Eli = Elj for .i �= j , then .αi = f ′∞(βli ) = f ′∞(βlj ) = αj , 
a contradiction. This gives the injectivity of . 𝒩

To prove that the .{Eli : i ∈ I } are essential components on . Y , let  .Y ′ → X be 
another resolution and .Ỹ → X a divisorial resolution which factors through both . Y

and . Y ′. Let .E′
li

⊂ Y ′ and .Ẽli ⊂ Ỹ be the irreducible components of the exceptional 

sets corresponding to . Ci . Then, we can see that . Eli and . E
′
li
are the image of . Ẽli . 

This shows that . Ẽli is an essential divisor over . X and therefore . Eli is an essential 
component on . Y . �
Problem 3.4.13 Is the Nash map 

. 

⎧⎨
⎩

Nash components
of the space of arcs
through SingX

⎫⎬
⎭

𝒩−→
⎧⎨
⎩

essential
components

on Y

⎫⎬
⎭ �

⎧⎨
⎩
essential
divisors
over X

⎫⎬
⎭ .

bijective?
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3.4.2 History of the Nash Problem 

Here we will see the results for this problem according to time line. The first 
affirmative result for the Nash problem was given by Nash himself. 

Theorem 3.4.14 ([81]) The Nash problem is affirmatively answered for an .An-
singularity .(n ∈ N), where an .An-singularity is the hypersurface singularity defined 
by .xy − zn+1 = 0 in . A3

k . 

It is difficult to realize the essential divisors for higher dimensional case, but for 
two-dimensional case the essential divisors are just the exceptional divisors on the 
minimal resolution. So, the people thought that surface case is the easiest for the 
problem and many people studied the problem for surface case. The first concrete 
result after Nash’s paper is the following: 

Theorem 3.4.15 ([89]) The Nash problem is affirmatively answered for a minimal 
surface singularity. Here, a minimal surface singularity means a rational surface 
singularity with the reduced fundamental cycle. (A rational singularity is defined 
in Definition 3.5.6 in the next section.) The fundamental cycle is introduced by M. 
Artin (see [5] for the definition). 

Theorem 3.4.16 ( [70, 88, 90]) The Nash problem is affirmatively answered for a 
sandwiched surface singularity and .Dn-singularity for .n > 4. Here, a sandwiched 
surface singularity means the formal neighborhood of a singular point on a surface 
obtained by blowing up a complete ideal in the local ring of a closed point on a non-
singular algebraic surface. A complete ideal is defined by O. Zariski and Samuel 
(see [99], Vol II, Appendix 4 ), but the idea of a sandwiched singularity is that it is 
a singularity which is birationally sandwiched by non-singular surfaces. 

These are results on rational surface singularities, the following gives affirmative 
answer for some non-rational surface singularities: 

Theorem 3.4.17 ([86]) The Nash problem is affirmatively answered for a normal 
surface singularities with the reduced fiber . E of the singular point on the minimal 
resolution such that .E · Ei < 0 for every irreducible component . Ei of . E. 

This result is generalized to a wider class of surface singularities in [74]. We omit 
the statement, since it is not simple. 

The following results are for arbitrary dimension. 

Theorem 3.4.18 ([46]) The Nash problem is affirmatively answered for a toric 
singularity of arbitrary dimension. 

When we say just“toric variety”, we always assume normality of the variety. 
There is a notion “not-necessarily normal toric variety” and an even wider class 
“pretoric variety” that now we define.
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Definition 3.4.19 A variety . X is called a pretoric variety if 

(1) there are a toric variety . Z with the torus . T ′ and a finite morphism . ρ : X → Z

étale on . T ′, 
(2) for the normalization .ν : X → X, . X is a toric variety with the torus . T and 

the composite .ρ ◦ ν : X → Z is the equivariant quotient morphism by the 
group .N ′/N , where . N and . N ′ are the lattice on which the fans of . X and . Z, 
respectively, are defined, and 

(3) the subset .ν−1(SingX) is an invariant closed set on . X. 

We will see two typical examples of a pretoric variety. 

Note 3.4.20 ([37]) Here, we introduce a not-necessarily normal affine toric variety. 
A not-necessarily normal affine toric variety is of the form .XΓ = SpecC[Γ ], where 
.Γ ⊂ M = Zn is a finitely generated semigroup with . 0 and . Γ generates the abelian 
group . M . Then, the torus .T = SpecC[M] acts on . XΓ . Denote by .K(Γ ) ⊂ MR, the  
convex cone which is the convex hull of . Γ and by . Γ the intersection .K(Γ ) ∩ M . 
Then, .XΓ is a normal toric variety and the inclusion .C[Γ ] ↪→ C[Γ ] induces the 
equivariant normalization .XΓ → XΓ . 

Example 3.4.21 A not-necessarily normal toric variety is a pretoric variety. This is 
proved as follows: Let .X = SpecC[Γ ] be a not-necessarily normal toric variety of 
dimension . n. Let  .σ ⊂ NR be the cone such that .σ∨ = K(Γ ) under the notation 
as above. Let .X = SpecC[σ∨ ∩ M] be the normalization of . X. Subdivide . σ∨ into 
simplicial cones without adding any 1-dimensional cones. Let .τ1, τ2, .., τs be the 
.n-dimensional simplicial cones which are obtained by this subdivision. We can take 
generators .e(i)

1 , .., e
(i)
n of . τi in . Γ . Define .Mi = ⊕n

j=1Ze
(i)
j , then . Mi is a subgroup 

of . M of finite index. Let . M ′ be the intersection .
⋂s

i=1 Mi . Then, . M ′ is a subgroup 
of . M of finite index. It follows that .σ∨ ∩ M ′ ⊂ Γ . Indeed, an arbitrary element 
.u ∈ σ∨ ∩ M ′ is contained in .τi ∩ Mi for some . i. Then, by the definition of . Mi , 
we have that .u = ∑n

j=1 aj e
(i)
j with .aj ∈ Z≥0. As  . e

(i)
j ’s are in . Γ , it follows  that  

.u ∈ Γ . By this inclusion .σ∨ ∩ M ′ ⊂ Γ we obtain a finite morphism . ρ : X → Z =
SpecC[σ∨ ∩ M ′]. The other conditions for a pretoric variety follow immediately. 

The following is an example of a pretoric variety without a toric action. 

Example 3.4.22 Let . X be .SpecC[x, y] and . X be .SpecC[x, y3, y4], then . X is a 
non-normal toric variety with the normalization .ν : X → X. Therefore we have 

a diagram .X
ν−→ X

ρ−→ Z as in Definition 3.4.19. Here, .Z = SpecC[x, y12] is 
constructed according to the previous example. Let . X0 be .SpecC[x, y+y2, y3, y4], 
then . X0 is a pretoric variety with the diagram: .X → X0 → Z. By the definition, 
. X0 does not admit a toric action. 

Theorem 3.4.23 ([49]) The Nash problem is affirmatively answered for a pretoric 
variety of arbitrary dimension. 

Theorem 3.4.24 ([1]) The Nash problem is affirmatively answered for non-rational 
quasi-rational hypersurface singularities of arbitrary dimension.
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We have a notion of the local Nash problem which is a slight modification of the 
Nash problem ([50]). 

Theorem 3.4.25 ([50]) The local Nash problem hold true for quasi-ordinary sin-
gularities. Here, a quasi-ordinary singularity is a hypersurface singularity which 
is a finite cover over a non-singular variety with the normal crossing branch 
locus. We note that a quasi-ordinary singularity is not necessarily normal and its 
normalization is toric. 

The paper [87] by Plénat and Popescu-Pampu gives the affirmative answer to the 
Nash problem for a certain class of higher dimensional non-toric singularities. 

So far we have seen the affirmative answers. But there are negative examples 
given in [46] by Ishii and Kollár . 

Example 3.4.26 ([46]) Let . X be a hypersurface defined by . x3
1+x3

2+x3
3+x3

4+x6
5 =

0 in . A5
C. Then the number of the Nash components is one, while the number of the 

essential divisors is two. Therefore the Nash map is not bijective. 

By the above example we can construct counter examples to the Nash problem 
for any dimension greater than 3 by making the product with . An

k for .n ≥ 1. 
Therefore at that moment of the paper, the unsolved case for Nash problem was 
only 2- and 3-dimensional cases. Then, J. F. Bobadilla and M.P.Pereira proved the 
affirmative answer for 2-dimensional case. 

Theorem 3.4.27 ([11]) The Nash problem is affirmatively answered for surfaces. 

This result is based on the topological observation by Bobadilla as follows: 

Proposition 3.4.28 ([10]) Nash problem for surface singularities depends only on 
the topological type. 

Later on, algebraic proof of the Nash problem for surface is given by De Fernex 
and Docampo as a corollary of their main theorem: 

Theorem 3.4.29 ([20]) Let .ϕ : Y → X is a terminal model which means 
proper birational morphism from Y with at worst terminal singularities and .ϕ-nef 
canonical divisor of Y . Then, the irreducible exceptional divisors on Y are in the  
images of the Nash map. In particular, irreducible exceptional curves on the minimal 
resolution of a surface are in the image of the Nash map. 

Here, we should note that the minimal resolution of a surface singularity is the 
terminal model. 

The first 3-dimensional negative example for the Nash problem is given by De 
Fernex. 

Example 3.4.30 ([19]) The singularity of 3-dimensional hypersurface in . A4
C

defined by 

.(x2
2 + x2

3)x4 + x3
1 + x3

2 + x3
3 + x5

4 + x6
4 = 0
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has one Nash component and has two essential divisors. Thus the Nash map is not 
bijective. 

The following is a bit more systematic example for the negative answer to the 
Nash problem for threefolds obtained by Johnson and Kollár: 

Example 3.4.31 ([63]) For the singularities on . X(m) := (xy−z2+um = 0) ⊂ A4
C

the Nash map is not surjective for odd .m ≥ 5 but surjective for even m and .m = 3. 
Thus the simplest example where the Nash map is not bijective is 

. (xy − z2 + u5 = 0) ⊂ A4
C.

Now we can formulate a new version of the Nash problem: 

Problem 3.4.32 

(i) Characterize the image of the Nash map. 
(ii) Characterize the singularities for which the Nash problem is affirmative. 

Related to these problems, we have one characterization of the image of the 
Nash map given by Reguera [91]. To formulate her result, we introduce the concept 
“wedge” which is also used in [11]. 

Definition 3.4.33 Let X be a k-scheme. Let .K ⊃ k be a field extension. A .K-
wedge of . X is a .k-morphism .γ : SpecK[[λ, t]] → X. A  .K-wedge . γ can be 
identified to a .K[[λ]]-point on . X∞. Denote by 0 and . η the closed point and the 
generic point of .SpecK[[λ]], respectively. We call the image .γ (0) ∈ X∞ the special 
arc of . γ and call the image.γ (η) ∈ X∞ the generic arc of . γ . 

Theorem 3.4.34 ([91]) Let . E be an essential divisor over . X and .f : Y → X a 
resolution of the singularities of . X on which . E appears. Let .α ∈ X∞ be the generic 
point of .f∞(πY )−1(E) and .k(α) the residue field of . α. Then the following conditions 
are equivalent: 

(i) . E belongs to the image of the Nash map; 
(ii) For any resolution of the singularities .g : Y ′ → X and for any field extension 

. K of .k(α), any .K-wedge . γ on . X whose special arc is . α and whose generic arc 
belongs to .(πX)−1(SingX), lifts to . Y ′; 

(iii) There exists a resolution of the singularities .g : Y ′ → X satisfying condition 
(ii). 

As an application of this theorem, we obtain Theorem 3.4.16. 
There are some notions “the Nash problem for a pair .(X,Z)” consisting of a 

variety . X and a closed subset . Z (see [38, 85]).
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3.5 Applications to Birational Geometry 

3.5.1 Overview of Birational Geometry in Connection with the 
Space of Arcs 

Birational geometry is the study properties of varieties which do not change under 
birational maps. In this viewpoint we identify varieties which are birationally 
equivalent each other. In each equivalence class, is there a “good” representative? 
We think that smaller variety is better, where we say X is smaller than Y if there is 
a proper birational morphism .Y → X. 

“Find a minimal variety (called a minimal model) in the equivalence class.” 
This is one of the most important problems in birational geometry so called 

“Minimal Model Problem”. In dimension one and two, it is classically well known 
that there are smooth minimal models in an equivalence class. But in higher 
dimensional case, it is known that we cannot have such a model by the example 
following Definition 3.4.6. So we need to reformulate the Minimal Model Problem 
allowing mild singularities. In this way, mild singularities (terminal, log terminal, 
canonical, log canonical, see Definition 3.5.2 below) allowable in minimal models 
appeared around 1980. Minimal Model Problem was solved in dimension three in 
the most basic form by S. Mori [75]. Then, the problem is generalized to several 
variants. By the work [6], a large part of the problems for arbitrary dimensional 
case in characteristic 0 is solved. However in its most general setting the problem 
is still open and the main point of the problem is reduced to certain behaviors of 
“the minimal log discrepancy”, an invariant of a singularity. The research of this 
direction is still going on and the author thinks that it is good for the reader to know 
what is known and what is not. 

In this section, we discuss about the expression of this invariant by the space 
of arcs and obtain one of the required behavior for Minimal Model Problem for 
a special case. We also obtain the characterization of the mild singularities by the 
space of jets. 

3.5.2 Basics in Birational Geometry 

Henceforth, we always assume that X is normal and .Q-Gorenstein variety (see 
Definition 3.3.24). The reader who would like to study this direction closely, please 
refer to [35] or [65]. A typical example of .Q-Gorenstein variety is a variety of 
locally a complete intersection. Here, the condition that X is “locally a complete 
intersection” means that at each point of X there is an affine open neighborhood 
embedded into a smooth affine variety with codimension c and defined by exactly 
c equations in the smooth variety. In particular, a hypersurface is an example of 
locally a complete intersection.
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First we define the log discrepancy for a pair .(X, ae) consisting of a normal .Q-
Gorenstein variety X and a coherent multi-ideal sheaf .a ⊂ 𝒪X with a real exponent 
e, which means 

. ae = a
e1
1 · · · aes

s , e = (e1, . . . , es) ∈ Rs
>0

where .ai ⊂ 𝒪X are non-zero coherent ideal sheaves. 
As we assume that X is .Q-Gorenstein, for a morphism 

. ϕ : Y → X

the pull-back .ϕ∗KX is always defined and becomes a .Q-Cartier divisor on Y again 
(see, Definition 3.3.26). 

Definition 3.5.1 Let E be a prime divisor over a normal .Q-Gorenstein variety X. 
Then we define log discrepancy .kE + 1 ∈ Z of X at E as follows: 

. kE + 1 := ordE(KY − ϕ∗KX) + 1,

where .ϕ : Y → X is a birational morphism such that Y is normal, E appears on Y 
and .ordE means the coefficient of the divisor at E. 

Log discrepancy of a pair .(X, ae) consisting of a normal .Q-Gorenstein variety 
X and multi-ideal sheaf . ae with a real exponent at E is defined as follows: 

. a(E;X, ae) := kE + 1 −
s∑

i=1

ei · vE(ai ),

where . vE is the valuation defined by E. 

Definition 3.5.2 We say that a pair .(X, ae) is terminal / canonical / log terminal / 
log canonical at a point .x ∈ X if 

. inf

{
a(E;X, ae)

∣∣∣∣
E : exceptional prime divisor over X

with center containing x

}
> 1/ ≥ 1/ > 0/ ≥ 0,

respectively. 
We say that X has terminal / canonical / log terminal / log canonical singularities, 

if .(X,𝒪X) is terminal / canonical / log terminal / log canonical, respectively, at every 
point of X. 

By the definition, the following implications are clear: 
terminal . ⇒ canonical . ⇒ log terminal . ⇒ log canonical. 
One can see that if X is smooth and .a = 𝒪X, then for every exceptional prime 

divisor E over X, we have .a(E;X,𝒪X) ≥ N := dimX. Therefore we also obtain 

.smooth ⇒] terminal
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According to the definition, in order to decide whether the pair is terminal or so 
one should check all prime divisors with the center containing x. However, if there 
is a “log resolution” for the pair, then we can decide by checking only finite number 
of exceptional prime divisors. 

Definition 3.5.3 Let .(X, ae) be as above. A morphism .ϕ : Y → X is called a log 
resolution of .(X, ae), if the following hold: 

(i) . ϕ is a proper birational morphism from a non-singular variety Y ; 
(ii) the ideals .ai · 𝒪Y are all locally principal on Y ; 
(iii) the union of all exceptional sets and the divisors defined by .ai · 𝒪Y is set 

theoretically a divisor with normal crossings. 

Proposition 3.5.4 ([32, Proposition 7.2]) Let X be a normal and locally a com-
plete intersection variety defined over an algebraically closed field k of arbitrary 
characteristic. Assume there exists a log resolution .ϕ : Y → X of a pair .(X, ae). 

If .a(Ei;X, ae) > 1 / ≥ 1 / > 0 / ≥ 0, for every exceptional divisor . Ei on 
Y with the center containing x, then .(X, ae) is terminal / canonical / log terminal / 
log canonical at x, respectively. 

Remark 3.5.5 At present, existence of log resolutions is known when the base field 
k is of characteristic 0 (by Hironaka [45], see also [66]) or .dimX ≤ 3 (by Abhyankar 
[2, 3] and Cossart-Piltant [16]). 

By using a resolution of the singularities .ϕ : Y → X we have another important 
and popular notion of a singularity. 

Definition 3.5.6 We say that a variety X has rational singularity at .x ∈ X if the 
following hold: 

(i) X is normal; 
(ii) X has a resolution of the singularities .ϕ : Y → X and the vanishing . Rjϕ∗𝒪Y =

0 holds for every .j ≥ 1 in a neighborhood of x. 

Rational singularities do not affect the cohomologies between X and the smooth 
variety Y . So, a rational singularity is considered as a singularity close to a smooth 
point. It is well known that the singularities appearing on a toric variety are rational. 
It is natural to ask the relation of a rational singularity and the other classes of 
singularities defined above. 

Proposition 3.5.7 ([34, 62]) Assume the base field k is of characteristic 0. If . (X, ae)

is log terminal at .x ∈ X, then the singularity .(X, x) is rational. 

Definition 3.5.8 The minimal log discrepancy for a pair .(X, ae) at a point . x ∈ X

and at a proper closed subset .W ⊂ X is defined as follows: 

(i) When .dimX ≥ 2, 

. mld(x;X, ae) = inf{a(E;X, ae) | E : prime divisor with the center at x},
.mld(W ;X, ae) = inf{a(E;X, ae) | E : prime divisor with the center in W }.
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(ii) When .dimX = 1, define .mld(x;X, ae) and .mld(W ;X, ae) by the same 
definitions as above if the right hand sides of the above definition are non-
negative and otherwise define .mld(W ;X, ae) = −∞. 

Here, we remark that either .mld(x;X, ae) ≥ 0 or .mld(x;X, ae) = −∞ holds in 
any dimension. 

Proposition 3.5.9 Let .(X, ae) be a pair as above and .x ∈ X a point. If the pair is 
terminal / canonical / log terminal / log canonical at x, then 

. mld(x;X, ae) > 1/ ≥ 1/ > 0/ ≥ 0.

Conversely, if .mld(x;X, ae) ≥ 0, then the pair is log canonical at x. But for the 
other cases the converse does not hold in general. 

Example 3.5.10 Let .X = A3
k , .{x, y, z} a coordinate system on . A3

k and .a := (x · y). 
Then, 

. mld(0;X, a) = 1 > 0,

but .(X, a) is not log terminal at the origin 0 because the exceptional divisor E 
obtained by the blow up by the prime ideal .(x, y) has the log discrepancy 

. a(E;X, a) = kE + 1 − vE(x · y) = 1 + 1 − 2 = 0.

A modified pair .(X, ae) .(1/2 < e < 1) from the above gives an example that has 

. mld(0;X, ae) > 1,

but .(X, ae) is not terminal because for a prime divisor E as above has the log 
discrepancy 

. a(E;X, ae) = kE + 1 − e · vE(x · y) = 1 + 1 − 2e < 1.

Definition 3.5.11 Let E be a prime divisor over X with the center at x. We say that 
E computes .mld(x;X, ae) if 

. a(E,X, ae) =
⎧
⎨
⎩
mld(x;X, ae)

or
negative

Remark 3.5.12 If there exists a log resolution factored through the blow up at x, 
then there exists a prime divisor computing .mld for the pair. Therefore, if . chark =
0, then such a prime divisor always exists.
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If all . ei are rational numbers, then the set of log discrepancies is discrete, which 
implies the infimum is minimum or .−∞ and therefore there exists a prime divisor 
computing mld. 

Definition 3.5.13 For a pair .(X, ae) we define the log canonical threshold at . x ∈
X as follows: 

. lctx(X, ae) = sup
{
c ∈ R>0 | (X, aec) is log canonical at x

}
,

where . aec = a
e1c
1 · · · aesc

s

Remark 3.5.14 For a pair .(X, ae) and a point .x ∈ X the .lctx(X, ae) is obtained as 
follows: 

(i) . lctx(X, ae) = inf

{
kE+1∑
ei ·vE(ai )

∣∣∣∣
E : prime divisor with
the center containing x

}
.

(ii) If .ϕ : Y → X is a log resolution of .(X, ae) and .Ej .(j = 1, . . . , m) are prime 
divisors on Y with the center containing x, which are either exceptional or in 
the support of .ai · 𝒪Y ’s. Then it follows that: 

. lctx(X, ae) = min
j=1,...,m

{
kEj

+ 1∑
ei · vEj

(ai )

}
.

Note 3.5.15 Roughly speaking, a generalized MMP is in the form as follows: 
“In the birational equivalence class of pairs .(X, ae) with singularities of type (P), 

does there exist a minimal model .(X0, a
e
0) with the singularities of the same type?” 

Here, (P) is the representative of “terminal”, “log terminal”, “canonical”, “log 
canonical”. Note that in MMP singularities are studied under a general setting but 
in this paper we restrict our attention to locally complete intersection case, 

In order to get a minimal model, one strategy, called Minimal Model Program, 
is established around 1990 and the successful cases of the problem so far all follow 
from this program. 

This program to get a minimal model, roughly speaking, goes as follows: 

(i) If a pair with the singularities of type (P) is a minimal model, then there is 
nothing to do anymore. 

(ii) If a pair is not a minimal model, then we do 

(C) contract of extremal ray, which is to construct a certain proper birational 
morphism .X → X′ to obtain a new pair .(X′, a′e). 

Assume the new pair has the singularities of the same type. If the new pair 
.(X′, a′e) is a minimal model, we stop. Otherwise continue the process;i.e., 
go to (1) above and follow the instruction. 

Assume the new pair .(X′, a′e) does not have singularities of the same 
type, then we do the following:



196 S. Ishii

(F) make a birational map called a flip .X ��� X′′ to get a new pair . (X′′, a′′e)
instead of the contraction. 

Assume the new pair .(X′′, a′′e) is a minimal model, then we stop. 

Otherwise continue the process: i.e., go to (1) above and follow the instruction. 
In this way we carry out: step (C) or step (F). If the procedure stops at some 
stage, then it means that we get a minimal model. It is known that the possible 
number of steps (C) is limited, but that of (F) is not obvious. V. Shokurov proved 
that if the following two conjectures (ACC Conjecture and LSC Conjecture) 
hold, then the possible number of steps (F) is finite. 

See [35] for more detailed information about Minimal Model Program. 

Conjecture 3.5.16 (ACC Conjecture) Let .J ⊂ R≥0 be a DCC set. (I.e., there is no 
infinite strictly decreasing sequence in J ). Then the following set satisfies ACC (i.e., 
there is no infinite strictly increasing sequence). 

. M(N, J ) := {mld(x;X, ae) | dimX = N, a : ideal, ei ∈ J }.

Conjecture 3.5.17 (LSC Conjecture) For a pair .(X, ae) the following map is lower 
semi continuous (LSC): 

. X → R ∪ {−∞}, x �→ mld(x;X, ae),

i.e., for every .r ∈ R≥0 the set .{x ∈ X | mld(x;X, ae) > r} is an open subset of X. 

Conjecture 3.5.18 (MN Conjecture) For N and e, there exists a number .
N,e which 
depends on N and e, such that for every pair .(X, ae) and a point .x ∈ X (.dimX = N) 
there exists a prime divisor E computing .mld(x;X, ae) and satisfying .kE ≤ 
N,e. 

MN Conjecture is Mustaţǎ-Nakamura’s conjecture posed by them in [79] and 
proved for special cases (surfaces and monomial ideals on arbitrary dimensional 
affine space). 

They prove the relation of the conjecture and ACC Conjecture as follows: 

Theorem 3.5.19 (Theorem 1.5, [79]) Fix a point .x ∈ X on a variety X with 
“mild” singularities such that the assertion in MN Conjecture holds for .(X, x). 
Then, for every fixed DCC set J , the following set satisfies ACC: 

. M(J ;X, x) := {mld(x;X, ae) | a : multi-ideal with exponents ei ∈ J }.

For the precise meaning of “mild singularities”, the reader can see in [79]. 

Remark 3.5.20 In ACC Conjecture and also in MN Conjecture, X and x may vary. 
But even for fixed .x ∈ X, the problem is not easy. These conjectures appeared 
motivated by MMP, but the problems themselves are interesting from the point of 
view of singularity theory. So these are studied under various conditions and in such
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a situation the space of arcs contributed quite a bit. We will see it in the following 
subsection. 

3.5.3 Log Discrepancies via the Spaces of Arcs 

Let E be a prime divisor over a normal locally complete intersection variety X. In  
this subsection we will express the log discrepancy .kE + 1 of X at E in terms of 
the space of arcs of X. We assume that X is just a variety over k unless otherwise 
stated. First we prepare the notion of the contact loci of an ideal in the space of arcs. 

Definition 3.5.21 ([33]) For an affine variety . X and an ideal .a ⊂ 𝒪X, we define 

. Contm(a) = {α ∈ X∞ | ordα(a) = m}
and 

. Cont≥m(a) = {α ∈ X∞ | ordα(a) ≥ m},
where the order .ordα is defined by .α ∈ X∞ as follows: 

. ordα(a) := ordt α∗(a) := min{ordt α∗(f ) | f ∈ a}.
Here, .α∗ : 𝒪X → k[[t]] is the ring homomorphism corresponding to α. 

These subsets are called contact loci of the ideal . a. The subset .Cont≥m(a) is 
closed and .Contm(a) is locally closed. Indeed, let .Z ⊂ X be the closed subscheme 
defined by the ideal .a ⊂ 𝒪X, then, by the definitions we have; 

. Cont≥m(a) = ψ−1
m−1(Zm−1),

. Contm(a) = Cont≥m(a) \ Cont≥m+1(a),

which implies that the former subset is closed and the latter subset is locally closed. 
One can also see that both are cylinders. 

In Definition 3.2.21, we introduced the concepts “thin” and “fat” for an arc and 
also for an irreducible subset on the space of arcs. 

Definition 3.5.22 Let .α : SpecK[[t]] → X be a fat arc of a variety . X and 
.α∗ : 𝒪X,α(0) → K[[t]] the local homomorphism induced from . α. Here, . α(0) ∈ X

is the image of the closed point .0 ∈ SpecK[[t]] by α. By the definition of a 
fat arc, . α∗ is injective, therefore it is extended to the homomorphism of fields 
.α∗ : K(X) → K((t)), where .K(X) is the rational function field of . X. Define a 
function .vα : K(X) \ {0} → Z by 

.vα(f ) = ordt α∗(f ).
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Then, . vα is a discrete valuation of .K(X). We call it the valuation corresponding 
to . α. 

Definition 3.5.23 A valuation . v on the rational function field .K(X) of a variety . X
is called a divisorial valuation over . X if .v = q · vE for some .q ∈ N and a divisor 
. E over . X. The center of a divisor . E is called the center of the valuation .v = q · vE . 
A fat arc . α of . X is called a divisorial arc if . vα is a divisorial valuation over . X. A  
fat set is called a divisorial set if the generic point is a divisorial arc. 

Proposition 3.5.24 ([21], [60, Corollary 3.26]) Let .α ∈ X∞ be the generic point 
of an irreducible fat component of a contact locus .Contm(a) or of a cylinder . ψ−1

m (S)

(.S ⊂ Xm locally closed). Then α is a divisorial arc. 

We will think of the converse implication. 

Definition 3.5.25 ([52]) For a divisorial valuation . v over a variety . X, define the 
maximal divisorial set corresponding to . v as follows: 

. CX(v) := {α ∈ X∞ | α : fat and, vα = v},

where . { } is the Zariski closure in . X∞. 

Proposition 3.5.26 Let E be a prime divisor over X and .ϕ : Y → X a birational 
morphism on which E appears. Let .η ∈ E be the generic point. Let .α̃ ∈ Y∞ be the 
generic point of .(πY )−1(η), where .πY : Y∞ → Y is the canonical projection. Then, 

. CX(vE) = ϕ∞(α̃).

More generally for .q ∈ N, let  .ηq−1 ∈ Eq−1 be the generic point of the space of 
.(q − 1)-jets of E. Let .α̃q−1 be the generic point of .(ψY

q−1)
−1(ηq−1) Then, 

. CX(q · vE) = ϕ∞(α̃q−1).

Proof The statements of the proposition follows from 

. CX(q · vE) = ϕ∞(Contq(E0))

where .E0 ⊂ E is the open dense subset consisting of points .p ∈ E such that E and 
Y are both smooth at p ([52, Proposition 3.4]). �

The following is a kind of converse of Proposition 3.5.24: 

Proposition 3.5.27 ([21, 60]) Let X be a variety over an algebraically closed field 
of arbitrary characteristic. For every divisorial valuation v over X the maximal 
divisorial set is an irreducible fat component of a contact locus and, in particular, 
of a cylinder.
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As the arc space .X∞ of a variety X of dimension .> 0 is a scheme of infinite 
dimension over k, codimension of a closed subscheme of .X∞ is not defined in 
general. But for subscheme of special type we can define the codimension whose 
important role is describing invariants of singularities on X. 

Let X be an arbitrary variety over an algebraically closed field k, and let . n =
dimX. Let  .𝒥X ⊂ 𝒪X be the Jacobian ideal sheaf of X. In a local affine chart this 
ideal is defined as follows: 

Restrict X to an affine chart, and embed it in some . Ad
k , so that it is defined by a 

set of equations 

. f1(u1, . . . , ud) = · · · = fr(u1, . . . , ud) = 0.

Then . 𝒥X is locally defined, in this chart, by the .d −n minors of the Jacobian matrix 
.(∂fj /∂ui). Let .S ⊂ X be subscheme defined by . 𝒥X. Note that S is supported exactly 
over the singular locus of X. 

We decompose 

. X∞ \ S∞ =
∞⊔

e=0

Xe∞, where Xe∞ := {γ ∈ X∞ | ordγ (𝒥X) = e},

and let .Xm,∞ := ψm(X∞) and .Xe
m,∞ := ψm(Xe∞), where .ψm : X∞ → Xm is the 

truncation map. Also, let 

. X≤e∞ := {γ ∈ X∞ | ordγ (𝒥X) ≤ e} and X≤e
m,∞ := ψm(X≤e∞ ).

We will need the following geometric lemma on the fibers of the truncation maps. 
A weaker version of this property was proven by Denef and Loeser in [24, Lemma 
4.1]; the sharper stated here is taken from [32, Proposition 4.1]. 

Lemma 3.5.28 ([24, 32, 60]) For .m ≥ e, the morphism .Xe
m+1,∞ → Xe

m,∞ is a 
piecewise trivial fibration with fibers isomorphic to . An. 

Proposition 3.5.29 ([21, 60]) For an irreducible component C of a cylinder in . X∞
such that .C �⊂ Sing(X)∞, then there exists e such that 

. C≤e
m := ψm(C) ∩ X≤e

m,∞

is a nonempty open subset of .ψm(C) and the codimension of .C≤e
m inside . X≤e

m,∞
stabilizes for .m � e. 

Then we define 

. codim(C,X∞) := codim(C≤e
m ,X≤e

m,∞) for m � e.

Remark 3.5.30 The codimension of defined above is not the codimension in the 
usual sense. Let C be as above and .s = codim(C,X∞) the codimension as defined
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above. Let r be the maximal length of a sequence . C = C0 ⊂ C1 ⊂ · · · ⊂ Cr = X∞
of strictly increasing irreducible closed subsets of . X∞, then we have the inequality 

. r ≤ s.

The inequality can be seen as follows: from the strictly increasing sequence, 

. C = C0 ⊂ C1 ⊂ · · · ⊂ Cr

of irreducible closed subsets of . X∞, we have the sequence 

. ψm(C) = ψm(C0) ⊂ ψm(C1) ⊂ · · · ⊂ ψm(Cr)

for .m � 0, since .Ci = lim←−ψm(Ci). 

The inequality .s ≤ r can be a strict inequality, see for instance [59, Example 2.8]. 
The published version of the paper [21] contains a wrong statement 

. “s = r”

in Remark 3.3. The corrected remark is contained in the uploaded version 
arXiv:math/0701867. 

Definition 3.5.31 Let E be a prime divisor over X, then the Mather discrepancy 
.k̂E ∈ Z≥0 and the Jacobian discrepancy .jE ∈ Z≥0 are defined as follows: 

Let .ϕ : Y → X be a proper birational morphism from a normal variety Y such 
that . E appears on Y . Then, there is a canonical .𝒪Y -homomorphism 

. ϕ∗(∧nΩX) → ∧nΩY = 𝒪Y (KY )

on the smooth locus of Y , where n is the dimension of X. Denote the image of the 
homomorphism above by .Im ⊂ 𝒪Y (KY ). Then 

. Im = ℐ𝒪Y (KY )

for an ideal sheaf . ℐ in a neighborhood of the generic point .η ∈ E, because .η ∈ Y is 
a smooth point and therefore .𝒪Y (KY ) is invertible. Define 

. ̂kE := vE(ℐ) and jE := vE(𝒥X).

We call .k̂E − jE the Mather-Jacobian discrepancy of X at the prime divisor E. 

If X is non-singular, then .∧nΩX = 𝒪X(KX), and .Im = ϕ∗𝒪X(KX). Therefore 
by Definition 3.5.1, we obtain 

. ̂kE = kE

for every prime divisor E over X.
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Proposition 3.5.32 Let E be a prime divisor over X. If  X is locally a complete 
intersection, then 

. kE = k̂E − jE.

In particular, if X is smooth, then .kE = k̂E . 

Proof As X is locally a complete intersection, we have 

. ∧n ΩX = 𝒥X · 𝒪X(KX).

(See for example, Proposition 9.1 in [32]). Therefore, by pulling back of this 
equality onto a normal Y by the birational morphism .ϕ : Y → X where the 
exceptional prime divisor E appears, we obtain 

. kE = k̂E − jE,

which yields the required equality. �
There are some researches studying singularities in terms of invariants, say 

Mather discrepancy or Mather-Jacobian discrepancy, which are involving . ̂kE or 
.k̂E − jE (see for example [18, 29, 53, 58]). The infimum of these is well described 
in terms of the space of arcs, and because of that we have “Inversion of Adjunction” 
for these invariants. However, there have some differences from . kE for general .Q-
Gorenstein variety which we do not step into in this paper. For a variety of locally 
a complete intersection, by virtue of Proposition 3.5.32, we have a description of 
infimum of log discrepancies in terms of the space of arcs (see Theorem 3.5.34). 

Proposition 3.5.33 ([21, 60]) Let E be a prime divisor over a variety X defined 
over an algebraically closed field k of arbitrary characteristic and .q ∈ N, then for 
the divisorial valuation .q · vE we have 

. codim(CX(q · vE),X∞) = q(k̂E + 1).

By making use of this description, we obtain the interpretation of mld and lct by 
the space of arcs. In following discussions we will denote the symbol 

. Contw1(a1) ∩ · · · ∩ Contws (as) by Contw(a).

Similarly, denote 

. Cont≥w1(a1) ∩ · · · ∩ Cont≥ws (as) by Cont≥w(a).

Here, .w = (w1, . . . , ws). 

Theorem 3.5.34 ([30, 32, 60]) Let k be an algebraically closed field of arbitrary 
characteristic. Let X be a normal and locally complete intersection variety defined



202 S. Ishii

over k and .ae = a
e1
1 · · · aes

s a multi-ideal with real exponents .e = (e1, . . . , es). For  
a pair .(X, ae) the .mld is described in terms of the arc space as follows: 

. 
mld(x;X, ae)

= infv,wi∈Z≥0

{
codim

(
Contw(a) ∩ Contv(𝒥X) ∩ π−1(x),X∞

) − v − ∑
i eiwi

}
.

. = inf
v,wi∈Z≥0

{
codim

(
Cont≥w(a) ∩ Cont≥v(𝒥X) ∩ π−1(x),X∞

)
− v −

∑
i

eiwi

}
.

In particular, if X is smooth, then we have the following: 

. mld(x;X, ae) = inf
v,wi∈Z≥0

{
codim

(
Contw(a) ∩ π−1(x),X∞

)
−

∑
i

eiwi

}

. = inf
v,wi∈Z≥0

{
codim

(
Cont≥w(a) ∩ π−1(x),X∞

)
−

∑
i

eiwi

}
.

We have the same expression of .mld(W ;X, ae) for a proper closed subset . W ⊂ X

with replacing .π−1(x) by .π−1(W) in the right hand sides of the equalities above. 

Theorem 3.5.35 ([78, 100]) Let X be a smooth variety defined over k and . ae a 
multi-ideal on X with real exponents e. For a point .x ∈ X and a cylinder .C ⊂ X∞, 
we define 

. codimx(C,X∞)

:= min{codim T | T : irreducible component of C with x ∈ π(T )}.

For a pair .(X, ae) the . lct is described in terms of the arc space as follows: 

. lctx(X, ae) = inf
w∈Zs≥0

{
codimx(Contw(a),X∞)∑

eiwi

}
.

. = inf
w∈Zs≥0

{
codimx(Cont≥w(a),X∞)∑

eiwi

}
.

Proof These formulae are essentially proved in [78] in characteristic 0 and in 
[100] in positive characteristic. However in these papers it is formulated under the 
condition that . a is a single ideal and .e = 1 and we do not find the proof for this 
general form in any references. So we write down the proof here. It will also suggest 
the proof of Theorem 3.5.34.
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For the first equality in the statement, it is sufficient to show the following 
equality: 

. inf

{
kE + 1∑

i ei · vE(ai )

∣∣∣∣
E : prime divisor
over Xwith center x

}
= inf

w∈Zs≥0

{
codimx(Contw(a),X∞)∑

eiwi

}

by Remark 3.5.14. First show . ≥ of the above equality. Take a prime divisor E over 
X with the center at x and define .wi := vE(ai ) for every i and .w := (w1, . . . , ws). 
Then, we have 

. CX(vE) ⊂ Contw(a).

As the center of E is x, we obtain .x ∈ π(CX(vE)). Therefore it follows that 

. kE + 1 = codim(CX(vE),X∞) ≥ codimx(Cont
w(a),X∞).

This gives the required inequality 

. 
kE + 1∑

i ei · vE(ai )
≥ codimx(Contw(a),X∞)∑

i eiwi

.

For the opposite inequality, take any .w = (w1, . . . , ws) and take an irre-
ducible component .T ⊂ Contw(a) such that .x ∈ π(T ) and . codim(T ,X∞) =
codimx(Contw(a),X∞). The generic point of the cylinder T gives a divisorial 
valuation .vT = q · vE for some .q ∈ N and a prime divisor E. Note that the center 
of E on X contains x. By the definition of the valuation, we have 

. CX(q · vE) ⊃ T , which yields

. codim(CX(q · vE),X∞) ≤ codimx(Cont
w(a),X∞).

As .q · vE(ai ) = wi , we have  

. 
kE + 1∑

i ei · vE(ai )
= q(kE + 1)∑

i eiwi

≤ codimx(Contw(a),X∞)∑
i eiwi

,

as required. 
About the second equality in the statement, the inequality . ≥ is obvious, since 

.Contw(a) ⊂ Cont≥w(a). For the opposite inequality, it is sufficient to show that for 
every .w = (w1, . . . , ws) ∈ Zs

≥0 there exists .w′ = (w′
1, . . . , w

′
s) ∈ Zs

≥0 such that 

.
codimx(Contw

′
(a),X∞)∑

i eiw
′
i

≤ codimx(Cont≥w(a),X∞)∑
eiwi

.
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To show this, take an irreducible component .T ⊂ Cont≥w(a) such that . x ∈ π(T )

and .codim(T ,X∞) = codimx(Cont≥w(a),X∞). Let  . vT be the divisorial valuation 
defined by the generic point of T . Then .w′

i := vT (ai ) ≥ wi and .T ⊂ Contw
′
(a). 

Hence, we obtain 

. codimx(Cont
w′

(a),X∞) ≤ codim(T ,X∞) = codimx(Cont
≥w(a),X∞)

and .
∑

i eiw
′
i ≥ ∑

i eiwi , which yield the required inequality. �
The following shows the relation of the mld between smooth variety A and a 

closed subscheme X on A. It is called “Inversion of Adjunction”. 

Theorem 3.5.36 ([30, 32, 60]) Let k be an algebraically closed field of arbitrary 
characteristic. Let A be a smooth variety over k and .X ⊂ A a closed subscheme of 
locally complete intersections with codimension c. Let .̃ae = ã

e1
1 · · · ães

s be a multi-
ideal on A with exponents in .R≥0 such that .ai := ãi𝒪X �= 0 for every i. Let . IX be 
the defining ideal of X in A. Then for a point .x ∈ X the following equality holds: 

. mld(x;X, ae) = mld(x;A, ãe · I c
X).

For a proper closed subset .W ⊂ X the following holds: 

. mld(W ;X, ae) = mld(W ;A, ãe · I c
X).

Corollary 3.5.37 Let k be an algebraically closed field of arbitrary characteristic. 
Let X be a normal variety of locally complete intersections with dimension d. Let 
.x ∈ X be a point and .W ⊂ X a proper closed subset. Then, we have the equalities: 

. mld(x;X,𝒪X) = inf
m

{(m + 1)d − dimπ−1
m (x)},

. mld(W ;X,𝒪X) = inf
m

{(m + 1)d − dimπ−1
m (W)},

The following corollaries are proved in [30, 77] for the base field of characteristic 
0 in different ways from the following proof. The proof below is based on 
the expression in Corollary 3.5.37 and it works for the base filed of arbitrary 
characteristic. In [61, Corollary 10.2.9] one can find more general statements and 
the proofs for them. 

Corollary 3.5.38 Let X be a normal local complete intersection variety defined 
over algebraically closed field k of arbitrary characteristic. Then the following 
hold: 

(i) X has log canonical singularities if and only if .Xm is locally a complete 
intersection for every .m ∈ N, 

(ii) X has canonical singularities if and only if . Xm is irreducible for every .m ∈ N, 
(iii) X has terminal singularities if and only if .Xm is normal for every .m ∈ N.
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Proof Let .d = dimX. As  X is locally a complete intersection, X is locally defined 
by .c := N − d equations in a non-singular variety A of dimension N . Then, . Xm

is locally defined by .(m + 1)c equations in a non-singular variety . Am of dimension 
.(m + 1)N (cf. the construction of . Xm). Therefore, we have 

. (3.5.38(i)) dim Xm ≥ (m + 1)N − (m + 1)c = (m + 1)d, 

where the equality holds if and only if . Xm is locally a complete intersection. 
First we show the equivalence in (i). We know that the restriction 

. πm
−1(Xreg) → Xreg

of . πm is a smooth morphism of relative dimension md. Therefore, by the formula in 
Corollary 3.5.37, X has log canonical singularities if and only if for every .m ∈ N, 
the following inequality holds: 

. (m + 1)d − dimXm(W) ≥ 0,

where W is the singular locus .Xsing of X. This is equivalent to the equality in (3.5.38 
(i)). 

For the both implications of (ii), we may assume that .Xm is locally a complete 
intersection of dimension .(m + 1)d by the result (i). Actually, if we assume that 
X has canonical singularities, then by (i) we obtain that .Xm is locally a complete 
intersection for every .m ∈ N. If we assume that .Xm is irreducible, then it has 
dimension .(m + 1)d, because it contains an open dense subset .π−1

m (Xreg) which 
has dimension .(m+1)d. As . Xm is locally defined by .(m+1)(N −d) equations in a 
smooth variety . Am of dimension .(m+1)N , the subscheme . Xm is locally a complete 
intersection. 

Now, again by the formula in Corollary 3.5.37, X has canonical singularities if 
and only if for every .m ∈ N and the singular locus .W ⊂ X, the following inequality 
holds: 

. (m + 1)d − dimXm(W) ≥ 1,

which yields .dimXm(W) < (m+ 1)d. This is equivalent to the fact that none of the 
irreducible components of .Xm(W) can be an irreducible component of . Xm, since 
.Xm is of pure dimension .(m + 1)d. This holds if and only if .Xm is irreducible for 
every .m ∈ N. 

For the proof of (iii), we may assume that .Xm is irreducible and locally a 
complete intersection of dimension .(m + 1)d by the same reason as in the proof of 
(ii). We know that a local complete intersection variety is Gorenstein, in particular, 
it satisfies Serre’s condition . S2. Thus . Xm has the property . S2. Now,  X has terminal
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singularities if and only if for every .m ∈ N and the singular locus .W ⊂ X, the  
following inequality holds: 

. (m + 1)d − dimXm(W) ≥ 2,

which yields .dimXm(W) ≤ (m + 1)d − 2. Here we note that the singular locus of 
.Xm is just .Xm(W). Indeed, it is obvious that the singular locus of .Xm is contained 
in .Xm(W), as the compliment .πm

−1(Xreg) of .Xm(W) is non-singular. To show the 
opposite inclusion, denote the local Jacobian matrix of the embedding .Xm ⊂ Am by 
J and the Jacobian matrix of the embedding .X ⊂ A by . J0. Then J has the following 
form: 

. J =
(

J0 O

∗ ∗
)

.

As we may assume that .Xm ⊂ Am is a complete intersection, . Xm is non-singular at 
a point p if and only if the Jacobian matrix J has full rank at p. Here, if .p ∈ Xm(W), 
then . J0 does not have full rank, therefore J cannot have full rank. 

Hence, the inequality .dimXm(W) ≤ (m + 1)d − 2 is equivalent to the fact that 
. Xm is normal by the Serre’s criteria for normality. �

The LSC Conjecture holds for a normal local complete intersection variety. It is 
proved in [31] for characteristic 0 by making use of Inversion of Adjunction (Theo-
rem 3.5.36) and the description of mld in terms of the arc space (Theorem 3.5.34). 

Theorem 3.5.39 ([31]) Let X is be a normal, local complete intersection variety 
over an algebraically closed field k of arbitrary characteristic. Let . ae be a multi  
ideal on X. Then the function .x �→ mld(x;X, ae), .x ∈ X, is lower semicontinuous. 

Remark 3.5.40 By these theorems we can see the equivalence of a geometric 
property of X and a somehow weaker geometric property of . Xm. So it is natural 
to ask for a condition on .Xm such that it forces X to be smooth. One candidate 
for such a mild condition is that .Xm has at worst rational singularities for every 
.m ∈ N∪ {∞} (By Proposition 3.3.16 we know that the existence of m such that . Xm

is smooth implies the smoothness of X, but we require a weaker condition for . Xm.) 

The following is a negative answer to the expectation: 

Example 3.5.41 ([57]) Let k be a field of characteristic 0. Let X be a hypersurface 
in .AN

k defined by the polynomial .f = xd
1 + xd

2 + · · · + xd
N . If  .d > 1, then it is 

clear that .(X, 0) is not smooth, and if .d2 < N , then the jet scheme . Xm has at worst 
rational singularities for every .m ∈ N. 

The study of singularities by making use of the space of arcs is still developing. 
The author hopes to write a paper including the new results in future.
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32. L. Ein and M. Mustaţǎ, Jet schemes and singularities, Proc. Symp. Pure Math. 80. 2, (2009) 

505–546. 
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