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Abstract In this (mainly) expository notes, we study the multiplicity of a local 
Noetherian ring .(B,m) at an .m-primary ideal I , paying special attention to the 
geometrical aspects of this notion. To this end, we will be considering suitably 
defined finite extensions .S ⊂ B, with S regular. We will explore some applications 
like the explicit description of the equimultiple locus of an equidimensional variety, 
or the computation of the asymptotic Samuel function. 

11.1 Introduction 

When it comes to measure how bad a singularity is, the case of a hypersurface in 
the affine space can provide some intuition. Let us assume that k is a field, let . A =
k[X1, . . . , Xn] and let .f ∈ A be a non-zero polynomial defining a hypersurface 
.H ⊂ A

n
k . For a given point .ζ ∈ H , denote by .p ⊂ A the corresponding prime ideal. 

We can consider the order of f at . p, 

. νζ (f ) := max{n : f ∈ pnAp} � 1.

The hypersurface H is regular at . ζ if .νζ (f ) = 1, otherwise H is singular at . ζ . In  
such case, .νζ (f ) � 2, and we can think that the larger .νζ (f ) be, the more singular 
the point will be. It is quite natural to ask whether this measurement can be made 
directly at the local ring of the hypersurface at . ζ . To address this question, let us first 
fix some notation. We will use .k(p) to denote the residue field at . p and . ̄pi to refer to 
.(pi +〈f 〉/〈f 〉). Let .B = A/〈f 〉, and set .Bp̄ = (A/〈f 〉)p̄. Then the value .νζ (f ) has 
an impact on the dimensions of the .k(p)-vector spaces: 

. Bp̄/p̄Bp̄, Bp̄/p̄
2Bp̄, Bp̄/p̄

3Bp̄, . . . , Bp̄/p̄
�Bp̄, . . . ,

or equivalently, on the dimension of the .k(p)-vector spaces 

. Bp̄/p̄Bp̄, p̄Bp̄/p̄
2Bp̄, p̄2Bp̄/p̄

3Bp̄, . . . , p̄
�−1Bp̄/p̄

�Bp̄, . . .

Notice that the quotients of the later sequence correspond to the j -th degree pieces 
of the graded ring .Grp̄Bp̄

(Bp̄) = ⊕
i p

i
Bp̄/p

i+1
Bp̄ of the local ring .Bp̄ = OH,ζ . 

Actually, the previous approach can be applied in a more general setting. We can 
assume, for instance, that B is the coordinate ring of an arbitrary algebraic variety 
defined over a field k, or even, just any local Noetherian ring. Then, for a prime 
.p ⊂ B, the multiplicity B at . p comes in naturally as an invariant when trying to 
measure the growth of dimension of the graded pieces of the graded ring 

.GrpBp
(Bp) =

⊕

i�0

piBp/p
i+1Bp
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as .k(p)-vector spaces, or equivalently, the growth of the lengths of the .Bp-modules, 
.Bp/p

i+1Bp, for .i = 0, 1, . . .. 
To be more precise, this growth is encoded asymptotically by the so called 

Hilbert-Samuel polynomial of . Bp at . p. This is a polynomial of degree . d = dim(Bp)

and the multiplicity at . p, . eBp
, is (up to some suitable factor) the leading coefficient 

of that polynomial. 
But, what does the multiplicity tell us about the singularity at a given point? If 

. p is a regular point in .Spec(B) then .GrpBp
(Bp) is isomorphic to a polynomial ring 

in d-variables with coefficients in .k(p). In such case the Hilbert-Samuel polynomial 
can be easily computed and it can be checked that the multiplicity at . p equals one. 
Moreover, under some conditions, multiplicity one implies regularity. As another 
example, if .B = R/〈f 〉, where R is a regular ring, then the multiplicity can 
be computed in terms of a local writing of the equation f at each point. More 
precisely, if the order of f at a prime .p ∈ Spec(R) is m, then the multiplicity at 
the corresponding prime, . p/〈f 〉, in  B equals m. In general, however, there is no 
apparent algebraic method that brings clear geometric insight on the meaning of the 
multiplicity. 

The purpose of these notes is to focus on the geometric aspects of the multiplicity. 
To fix ideas, assume that B is an equidimensional ring of finite type over a field k. 
Now suppose that we want to present B as a finite extension of a regular ring. To 
do so, we could start, for instance, by considering Noether’s Normalization Lemma. 
This tells us that if the Krull dimension of B is d, then B is a finite extension of a 
polynomial ring in d variables with coefficients in k, .S = k[X1, . . . , Xd ]. Let . K(S)

be the fraction field of S. Then it can be shown that the multiplicity of B at any 
prime . p, .eBp

(pBp), is bounded above by the generic rank of the extension .S ↪→ B, 
i.e., 

. eBp
(pBp) � [K(S) ⊗S B : K(S)].

Actually, the multiplicity can be defined at any .p-primary ideal I , .eBp
(IBp), and 

it can be equally shown that, for a finite extension with S regular the same inequality 
holds in this more general setting, if .I ∩ S is a prime, i.e., 

.eBp
(IBp) � [K(S) ⊗S B : K(S)]. (11.1) 

Here, we will be interested in the study of finite extensions .S ⊂ B with S regular 
for which the equality in (11.1) holds, and then we will say that .S ⊂ B is finite-
transversal with respect to I . 

Finite-transversal extensions do not always exists, see Sect. 11.3.3. However 
they can be constructed at the completion of the local ring .(Bp, pBp), maybe after 
enlarging the residue field, see Sect. 11.3.4. 

In [30] Villamayor pointed out that finite-transversal extensions with respect to 
a prime . p can always be constructed in a local étale neighborhood of .(Bp, pBp), 
when .Bp is essentially of finite type over a perfect field k. In [7, Appendix A] 
such construction is described in full detail. Here we will reproduce some of the
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arguments in [7] with a twofold purpose. On the one hand, to show that the same 
procedure can be used to construct finite-transversal morphisms with respect to any 
.p-primary ideal I . On the other, we will follow the different parts of the proof to 
illustrate distinct aspects of this construction with a list of examples. 

As it turns out, finite-transversal morphisms play a role in describing the top 
multiplicity locus of B, via the so called presentations of the multiplicity. Such 
description, given by Villamayor in [30], was presented to show a stronger result, 
namely, that it is possible to resolve the singularities of an algebraic variety using the 
multiplicity as the main invariant (this was a question posed by Hironaka in [16]). 
This approach to resolution will be discussed in Sect. 11.5. 

In addition, finite-transversal morphisms appear as well as a tool for the 
computation of the asymptotic Samuel function. In [15], Hickel gives a procedure 
for the computation of the asymptotic Samuel function respect to an .m-primary 
ideal I in an equicharacteristic local ring .(R,m). To this end, he considers the 
completion . R̂, where he constructs a finite-transversal extension with respect to 
. I R̂. Here we will see that his arguments are equally valid if we can find a finite 
transversal projection in a suitably defined étale neighborhood of .(R,m). 

This manuscript is mostly expository and some of the statements presented here 
are slight variations of results in [30] and also in [15]. Precise references to these 
articles will be given along the paper. 

These notes are organized as follows. The multiplicity at an ideal of a local 
Noetherian ring is treated in Sect. 11.2, and some known properties are described. 
Finite-transversal morphisms are defined and constructed in Sect. 11.3. Finally, 
applications are addressed in Sects. 11.4, 11.5 and 11.6. 

Notation For a quotient of a polynomial ring with coefficients in a ring A, . B =
A[X1, . . . , Xn]/J , we will use lowercase, . xi , to denote the class of the variable . Xi

in B, for .i = 1, . . . , n. This notation will be used in the examples along the paper. 

11.2 The Multiplity Function 

Let .(R,m, k) be a Noetherian local ring, and consider the function: 

. 
HSR,m : N → N

� 	→ dimk(R/m�+1).

This is referred to as the Hilbert-Samuel function of R at . m. 

Theorem 11.2.1 Let .(R,m, k) be a Noetherian local ring. Then the Hilbert-Samuel 
function .HSR,m is of polynomial type, i.e., there exists a polynomial . pR,m(X) ∈
Q[X] such that for .� 
 0, 

.HSR,m(�) = pR,m(�).
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In addition, the degree of .pR,m(X) equals .d = dim(R), the Krull dimension of the 
ring R. Moreover, 

. pR,m(X) = eR(m)
Xd

d! + . . . ,

where .eR(m) ∈ N. 

For a proof see for instance [29, Theorem 11.1.3], where the theorem is stated in a 
much more general setting. We refer to .pR,m(X) as the Hilbert-Samuel polynomial 
of R with respect to . m, and we say that .eR(m) ∈ N is the multiplicity of the local 
ring R at . m or simply the multiplicity of R. Sometimes we write . eR to refer to 
.eR(m). 

Example 11.2.2 If .(R,m, k) is a d dimensional regular local ring, then 

. dimk R/m�+1 =
(

d + �

d

)

,

and 

. pR,m(X) = Xd

d! + . . . .

Therefore, for a regular local ring, .eR = 1. The converse holds if we require R to 
be unmixed (i.e., formally equidimensional, that is, the .m-adic completion of R is 
equidimensional). 

Theorem 11.2.3 [18, Theorem 40.6] A Noetherian local ring .(R,m) is regular if 
and only if it is unmixed and .eR = 1. 

Remark 11.2.4 If .(R,m, k) is a regular local ring, .f ∈ R is a non-zero element, 
and .B = R/〈f 〉, then 

. νm(f ) = eB(m/〈f 〉),
see [29, Example 11.2.8]. Hence, in the hypersurface case the order of the defining 
equation at a given point equals the multiplicity at the point. 

11.2.1 Multiplicity at m-Primary Ideals 

Let .(R,m, k) be a Noetherian local ring of dimension d. As we will see in  
forthcoming sections, sometimes it is convenient to work with arbitrary .m-primary 
ideals. If . a is an .m-primary ideal, then, in the same way as we did before, the 
following Hilbert-Samuel function can be defined: 

.
HSR,a : N → N

� 	→ λR(R/a�+1),
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where . λR denotes the length as R-module. An analogous of Theorem 11.2.1 holds, 
and there is a polynomial, the Hilbert-Samuel polynomial of R at . a, .PR,a(X), so  
that for .� 
 0, 

. HSR,a(�) = Pa(�),

and moreover, 

. Pa(X) = eR(a)
Xd

d! + . . . ,

with .eR(a) ∈ N (see [29, Theorem 11.1.3]). The positive integer .eR(a) is the 
multiplicity of R at the .m-primary ideal . a. From the definition it follows that 

.eR(a) � eR = eR(m). (11.2) 

It is quite natural to ask under which conditions the previous inequality is an 
equality. First, recall that an element .r ∈ R belongs to the integral closure, . a, of . a if 

. r� + a1r
�−1 + . . . a�−1r + a� = 0

for some .� ∈ N>0 and some .ai ∈ ai , .i = 1, . . . , � (see [29, Section 1.1] for 
more details and properties). If . a and . b are two .m-primary ideals with .a = b, then 
.eR(a) = eR(b) (see [29, Proposition 11.2.1]). What can be said if .eR(a) = eR(b)? 
The following theorem of Rees settles this question. 

Theorem 11.2.5 [24], [29, Theorem 11.3.1] Let .(R,m) be a formally equidimen-
sional Noetherian local ring and let .a ⊂ b be two .m-primary ideals. Then .b ⊂ a if 
and only if .eR(a) = eR(b). 

In a Noetherian ring, if .a ⊂ b and .b ⊂ a then . a is a reduction of . b. See [29, 
Chapter 8] for further details. 

There is a similar statement as that of Theorem 11.2.5 for ideals that are not 
primary to the maximal ideal of the local ring .(R,m). But before stating that 
theorem we need another definition. 

Definition 11.2.6 Let .(R,m) be a local Notherian ring and let .I ⊂ R be an 
ideal. The analytic spread of I , .�(I ), is defined as the Krull dimension of the ring 
.R[I t]/mR[I t], where t is an indeterminate. This is the same as the Krull dimension 
of the ring 

. GrI (R) ⊗ k(m) =
∞⊕

i=0

I i/(I im).

Observe that the analytic spread of I is the dimension of the fiber over . m of the blow 
up of R at I .
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See [9] for the generalization of the notion of analytic spread to arbitrary 
filtrations of ideals and some advances about this invariant. 

The following theorem of Böger generalizes Rees’s Theorem. 

Theorem 11.2.7 [6], [29, Corollary 11.3.2] Let .(R,m) be a Noetherian formally 
equidimensional local ring, and let .I ⊆ J be two ideals with .�(I ) = ht(I ). Then 
.J ⊂ I if and only if .eRp

(Ip) = eRp
(Jp) for every prime ideal . p minimal over I . 

In the following lines we mention a couple of properties of the multiplicity: The 
additivity (Theorem 11.2.8) and the behavior under flat extensions Sect. 11.2.2. 

Theorem 11.2.8 [29, Theorem 11.2.4] Let .(R,m) be a local Noetherian ring, let 
. a be an .m-primary ideal, and let . P be the set of minimal prime ideals . p of R such 
that .dim(R/p) = dim R. Then 

. eR(a) =
∑

p∈P
eR/p(a).

Geometrically, Theorem 11.2.8 says that the multiplicity at a point of an equidi-
mensional algebraic variety is the sum of the multiplicities at each of the irreducible 
components containing the point. If the variety is not equidimensional, then the only 
additions to the multiplicity at a given point come from the irreducible components 
of maximum dimension that contain the point. 

11.2.2 The Multiplicity and Flat Extensions 

Let .(R,m, k) be a Noetherian local ring, let . a be an .m-primary ideal and suppose 
that .(R,m, k) → (R′,m′, k′) is a flat extension of local Noetherian rings. Then it 
can be checked that 

.eR′(aR′) = eR(aR) · λR′(R′/mR′). (11.3) 

See [14, Chapter I, Proposition 5.1]. 
From there it follows that if .(R′,m′, k′) is an étale extension of .(R,m, k) then 

.eR(m) = eR′(m′). And the same equality holds if . R′ is the .m-adic completion of R, 
i.e., .eR(m) = e

R̂
(m̂). 

11.2.3 Shortcuts for the Computation of the Multiplicity 

We already saw how the multiplicity at a point of a hypersurface in a regular 
ring is related to the order of the ideal of definition. In general, there is no such 
straightforward procedure to compute this invariant. However, there are some cases 
in which the calculation becomes easier.



528 A. Bravo and S. Encinas

Suppose that .(R,m, k) is a Noetherian local ring of Krull dimension d, and let . a
be an ideal of definition of R, that is, an .m-primary ideal generated by d elements, 
.a = 〈a1, . . . , ad〉. Then: 

.eR(a) � λR(R/a), (11.4) 

and the equality holds if and only if R is Cohen-Macaulay. This follows from 
considering the morphism of .R/a-graded rings: 

. 
ϕ : (R/a)[X1, . . . , Xd ] → Gra(R) = R/a ⊕ a/a2 ⊕ . . . ⊕ an/an+1 ⊕ . . .

Xi 	→ āi ∈ a/a2.

Since . ϕ is surjective, 

. λR(aj /aj+1) � λR

(
(R/a)[X1, . . . , Xd ]j

)
,

where .(R/a)[X1, . . . , Xd ]j denotes the j -th degree piece of the graded .R/a-algebra 
.(R/a)[X1, . . . , Xd ]. Therefore, 

. λR(R/aj+1) � λR(R/a)

(
j + d

d

)

.

Notice that if R is Cohen-Macaulay then . ϕ is an isomorphism and the equality 
in (11.4) holds. For a complete proof of this fact see [27, Theorem 19.3.11]. See 
also [29, Proposition 11.1.10]. 

The following statement gives a criterion for algorithmic computation of the 
multiplicity in the case of k-algebras of finite type, with k a field. For a given 
monomial order . > in a polynomial ring .k[X1, . . . , Xr ] and for an ideal . I ⊂
k[X1, . . . , Xr ], we use .L(I) to refer to the ideal generated by the leading monomials 
of the non-zero elements in I with respect to . >. 

Proposition 11.2.9 [13, Proposition 5.5.7] Let . > be a local degree ordering on 
.k[X] = k[X1, . . . , Xr ] (that is, .deg(Xα) > deg(Xβ) implies .Xα < Xβ ). Let . I ⊂
〈X〉 = 〈X1, . . . , Xr 〉 be an ideal and let .B = k[X]〈X〉/I . Let .m = 〈X〉/I . Then 

. HSB,m = HS(k[X]〈X〉/L(I )),〈X〉.

In particular, .k[X]/I and .k[X]〈X〉/L(I) have the same multiplicity with respect to 
. 〈X〉. 

11.2.4 Geometric Interpretation of the Multiplicity [14, 
Chapter I, pg. 15] 

By examining the hypersurface case we can get some insight on the geometric 
meaning of the multiplicity. So let us consider a hypersurface .H ⊂ A

n
k with defining 

ideal .〈f 〉 ⊂ k[X1, . . . , Xn] and suppose that .ζ ∈ H is the closed point with 
maximal ideal .m = 〈X1, . . . , Xn〉. Assume that f is regular with respect to . Xn, (i.e.,
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.f (0, . . . , 0, Xn) �= 0; this can always be assumed after a linear change of variables 
and a suitable finite extension of k). Then we can apply Weierstrass Preparation 
Theorem [13, Corollary 6.2.8] at the .m-adic completion of .k[X1, . . . , Xn], and 
assume that, up to multiplication by a unit, f can be written as a polynomial in 
the variable . Xn with coefficients in the ring .k[[X1, . . . , Xn−1]], i.e., 

.f = Xr
n + a1X

r−1
n + . . . + ar (11.5) 

with .ai ∈ k[[X1, . . . , Xn−1]]. Actually, Weierstrass Preparation Theorem holds 
at étale neighborhood of the local ring at . ζ (see [25, Theorem 6.7]), thus the 
expression (11.5) can also be seen as a polynomial in .Xn with coefficients in 
some regular local ring S of dimension .n − 1, with .S[Xn] an étale extension of 
.k[X1, . . . , Xn]. 

Hence, after a convenient étale neighborhood of . ζ is selected, we can assume 
that the coordinate ring of H is isomorphic to 

. B = S[Xn]/〈Xr
n + a1X

r−1
n + . . . + ar 〉.

Observe that B is a finite extension of S and if .K(S) is fraction field of S then the 
generic rank of the extension .S ⊂ B is given by .[B ⊗S K(S) : K(S)] = r . 

Letting .mB = m/〈f 〉 we have that 

.eB(mB) = νm(f ) � r = [B ⊗S K(S) : K(S)]. (11.6) 

From here it follows that, in a neighborhood of . ζ , H cannot be finitely projected 
to a regular variety .Z = Spec(S) with generic rank lower than .eB(mB). 

Notice that, in the previous discussion, the maximal ideal .mB ⊂ B dominates a 
maximal ideal .mS ⊂ S and therefore .mSB generates an .mB -primary ideal .I ⊂ B. 
As we will see in the next section, the following inequality holds: 

.eB(I ) � [B ⊗S K(S) : K(S)]. (11.7) 

In fact, we will see that the previous inequalities hold for the localization at a 
point of the affine coordinate ring B of an arbitrary variety over a field k. Recall that 
by Noether’s Normalization Lemma the k-algebra B can be expressed as a finite 
extension of a polynomial ring over k. 

However:

• it is not obvious that the generic rank of such an extension be bounded below by 
the maximum multiplicity of B, and

• it is not immediate either that one can find suitable finite projections to regular 
rings where the equality in (11.7) holds. 

All these questions will be properly addressed in the next section.
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11.3 Zariski’s Multiplicity Formula 

The starting point of this section is precisely the last discussion from the previous 
one. There, we were trying to understand the geometric meaning of the multiplicity 
of a local Noetherian ring .(R,m) at an .m-primary ideal .I ⊂ R. To this end we 
want to consider finite extensions .S ⊂ R where S is a local regular ring. With this 
objective in mind, the goal of this section is twofold. On the one hand, we will see 
that under mild assumptions the inequality (11.7) holds. This will be a consequence 
of Zariski’s multiplicity formula stated in Theorem 11.3.1 below. On the other hand, 
we will discuss the problem of finding a suitable finite extension .S ⊂ R so that 
the equality in (11.7) holds. This will lead us to the notion of finite-transversal 
morphisms which will be discussed in the second part of the section. 

11.3.1 Zariski’s Multiplicity Formula for Finite Projections 

Our purpose is to study Zariski’s multiplicity formula, which relates multiplicities 
in a finite extension of rings. 

Let .A ⊂ B be a finite extension of rings. If A is local with maximal ideal . M then 
B is semi-local (see for instance [31, Th. 15, page 276]). Denote by .Q1, . . . ,Qr the 
maximal ideals of B. Note that the set .{Q1, . . . ,Qr } corresponds to the fiber over 
. M of the finite morphism, 

. Spec(B) → Spec(A).

As we will see, Zariski’s formula relates the multiplicity of A at . M to the 
multiplicities of the local rings .BQi

, .i = 1, . . . , r , at the extension of the ideal 
.MBQi

. 

Theorem 11.3.1 [31, Theorem 24, page 297 and Corollary 1, page 299] With 
the previous assumptions and notation, suppose furthermore that .(A,M) is a 
Noetherian local domain, that B is equidimensional, and that no non-zero element 
of A is a zero divisor in B. Denote by .K = K(A) the quotient field of A, and let 
.L = K ⊗A B. Let . k0 be the residue field of A, and let . ki be the residue field of . BQi

, 
.i = 1, . . . , r . Then: 

. [L : K]eA(M) =
r∑

i=1

[ki : k0]eBQi
(MBQi

).

Note that from our assumptions .dim(BQi
) = dim(A) = d for all .i = 1, . . . , r , and 

hence all the Hilbert polynomials that are involved in the formula have degree d.
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Example 11.3.2 Let .A = k[Y ]〈Y 〉 be the localization of the polynomial ring in one 
variable at the maximal ideal . 〈Y 〉. Here .M = 〈Y 〉A. Let .B = A[X]/〈f 〉 where 
.f = Xa(X2 + 1)b + Y c and .c > max{a, b}. 

The extension .A ⊂ B is finite, and the generic rank is . [K(A) ⊗A B : K(A)] =
a + 2b = degX(f ). Since A is regular, we have that .eA(M) = 1. 

Assume that .k = R. Then there are two maximal ideal ideals in B, .Q1 and . Q2, 
corresponding to .〈x, y〉 and .〈x2 + 1, y〉, respectively. The residue field of .BQ1 is 
again . R and the residue field of .BQ2 is . C. Hence Zariski’s multiplicity formula is 
expanded as follows: 

. (a + 2b) · 1 = [L : K]eA(M) =

. = [k1 : k0]eBQ1
(MBQ1) + [k2 : k0]eBQ2

(MBQ2) = 1 · a + 2 · b.

Note that .MBQi
is a reduction of . QiBQi

, for .i = 1, 2, therefore . eBQi
(MBQi

) =
eBQi

(QiBQi
), and by Remark 11.2.4 .eBQi

(QiBQi
) == νk[X,Y ]qi

(f ), where 
.qi/〈f 〉 = Qi . 

If the ground field is .k = C then B has three maximal ideals, . Q1, .Q′
2 and . Q′′

2, all  
whose residue fields are isomorphic to . C. In this case Zariski’s multiplicity formula 
splits to 

. (a + 2b) · 1 = [L : K]eA(M) =
= [k1 : k0]eBQ1

(MBQ1) + [k′
2 : k0]eBQ′

2
(MBQ′

2
) + [k′′

2 : k0]eBQ′′
2
(MBQ′′

2
) =

= 1 · a + 1 · b + 1 · b.

The multiplicities involved can be computed with the same argument as above. 

11.3.2 Finite-Transversal Projections 

A first consequence of Zariski’s multiplicity formula (Theorem 11.3.1) is that we 
can generalize inequality (11.6) to the non hypersurface case, and even for a wider 
class of rings (not only those of finite type over a field k): 

Assume that S is a regular local ring and that .S ⊂ B is a finite extension under 
the assumptions of Theorem 11.3.1. Then, for any prime ideal . P ∈ Spec(B)

. eBP
(PBP ) � [L : K],

where .K = K(S) and .L = K ⊗S B. 
Finite extensions .S ⊂ B where the equality holds will be said to be transversal 

with respect to P . In fact we state the following more general definition: 

Definition 11.3.3 Let .S ⊂ B be a finite extension of excellent Noetherian rings 
with S regular and B equidimensional. Suppose that no non-zero element of S is a
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zero divisor in B. We say that the projection .Spec(B) → Spec(S) (or the extension 
. S ⊂ B) is  finite-transversal with respect to .P ∈ Spec(B) if 

. eBP
(PBP ) = [L : K].

Let .I ⊂ B be a P -primary ideal. We say that the projection . Spec(B) → Spec(S)

(or the extension . S ⊂ B) is finite-transversal with respect to the ideal I if 

. eBP
(IBP ) = [L : K],

and .I ∩ S is a prime ideal of S. 

Note that the conditions in Definition 11.3.3 imply that the associated primes of 
B are exactly the minimal primes of B, .Ass(B) = Min(B). 

A second consequence of Theorem 11.3.1 is the following equivalence, which 
gives a characterization of finite-transverval projections: 

Proposition 11.3.4 [30, Corollary 4.9] Let S be regular ring and let .S ⊂ B be a 
finite extension. Suppose that B is Noetherian, excellent and equidimensional and 
that the non-zero elements of S are non-zero divisors in B. 

Let .P ∈ Spec(B) be a prime ideal of B and .I ⊂ B be a P -primary ideal. Set 
.p = P ∩ S. The following are equivalent: 

(i) .eBP
(IBP ) = [L : K] and .I ∩ S = p is a prime ideal in S, i.e., the extension 

.S ⊂ B is finite-transversal w.r.t. I . 
(ii) The following three conditions hold: 

(i) P is the only prime of B dominating . p, 
(ii) .k(P ) = BP /PBP = Sp/pSp = k(p), 
(iii) .pBP is a reduction of the ideal .IBP . 

We will refer to (i)–(iii) as Zariski’s conditions of the finite extension .S ⊂ B with 
respect to the P -primary ideal I . 

Note that Proposition 11.3.4 is stated in [30, Corollary 4.9] for . I = P a prime  
ideal, but the generalization to primary ideals is straightforward. 

Example 11.3.5 Let .B = k[X, Y ]/〈X2 − Y 3〉. We can consider two finite projec-
tions .Spec(B) → Spec(Si), .i = 1, 2: 

(a) .S1 = k[Y ] ⊂ B, and 
(b) .S2 = k[X] ⊂ B. 

Let .P = 〈x, y〉 ⊂ B and note that .eBP
(PBP ) = 2. 

The finite extension in (a) is finite-transversal with respect to P , while the finite 
extension in (b) is not because the generic rank of .S2 ⊂ B is 3. However, extension 
(b) is finite-transversal with respect to the P -primary ideal .〈x〉B. 

On the other hand, note that almost any linear projection from .Spec(B) to a one 
dimensional regular linear subvariety of . A2

k is finite-transversal with respect to P .
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11.3.3 Do Finite-Transversal Projections Exist in General? 

Given a Noetherian, excellent and equidimensional ring B, a point .P ∈ Spec(B) and 
a P -primary ideal I , we wonder if there exist a regular ring S and a finite-transversal 
projection w.r.t. I , .Spec(B) → Spec(S). 

The answer, in general, is negative, even for k-algebras of finite type over a field 
k. Note that if such projection exists then the ideal I has a reduction with . d =
dim(B) elements. 

This last observation gives a necessary condition not always satisfied as the 
following example illustrates. 

Example 11.3.6 Let .k = F2 and let 

. B = k[X, Y ]/〈XY(X + Y )〉.

Then the ideal .〈x, y〉 ⊂ B has no reductions generated by one element, see [29, 
Example 8.3.2]. This means that for B and the maximal ideal .I = 〈x, y〉, there does 
not exist a finite-transversal projection w.r.t. I . 

11.3.4 Construction of Finite-Transversal Projections 

If .(B,m) is a local complete Noetherian, equidimensional ring containing an infinite 
coeficient field, such that .Ass(B) = Min(B), then the answer to (Sect. 11.3.3) is  
positive. Let .I ⊂ B be a .m-primary ideal. Since the residue field is infinite, by 
Swanson and Huneke [29, Proposition 8.3.7] there exists a reduction of I generated 
by .d = dim(B) elements, .x1, . . . , xd . Choose a coefficient field .k′ ⊂ B and set 
.S = k′[[x1, . . . , xd ]] ⊂ B. Note that since .x1, . . . , xd are analytically independent, 
S is a ring of power series in d variables. The extension .S ⊂ B is finite by Cohen 
[8, Theorem 8, page 68] and we conclude that the projection . Spec(B) → Spec(S)

is finite-transversal with respect to . m. See also [15, Proof of Theorem 1.1]. 
If B is a k-algebra of finite type, then Noether’s normalization Lemma seems to 

provide a possible approach to address Sect. 11.3.3. We could find a regular ring S 
and a finite extension .S ⊂ B, but Noether’s normalization is not enough to guarantee 
Zariski’s conditions (i)–(iii) in Proposition 11.3.4. 

However, (not necessarily finite) morphisms for which conditions (ii) and (iii) 
hold are not hard to construct. As we will see, this will be a consequence of applying 
Noether’s normalization to the graded ring .GrIBP

(BP ). This motivates the following 
definition, which is a weaker version of the notion of finite-transversal projection. 

Definition 11.3.7 Let .S ⊂ B be a (possibly non-finite) extension of Noetherian 
rings, with S regular and B equidimensional. Let .P ∈ Spec(B) be a prime ideal and 
let .I ⊂ B be a .PBP -primary ideal.
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We say that the projection .Spec(B) → Spec(S) is local-transversal with respect 
to the ideal I if 

(i) .p = I ∩ S is a prime ideal and P is an isolated point in the fiber over . p, 
(ii) .k(P ) = BP /PBP = Sp/pSp = k(p), 

(iii) .pBP is a reduction of the ideal .IBP . 

Given a k-algebra B of finite type and a P -primary ideal I , we want to show that, 
locally for the étale topology, there exists a projection to a regular ring S which is 
local-transversal w.r.t. to I . This is achieved by applying the following result. 

Theorem 11.3.8 [14, Th. 10.14, page 60] Let .(B,m) be a Noetherian local ring 
and let . a be an ideal of B. If  .a1, . . . , as ∈ a, then the following conditions are 
equivalent: 

(i) .a1, . . . , as ∈ a generate a reduction of . a. 
(ii) The quotient ring 

. (Gra(B) ⊗B B/m)
/ 〈ã1, . . . , ãs〉

has Krull dimension zero, where . ̃a is the class of a in .a/(am). 

Proposition 11.3.9 [7, Proposition 34.1] Let B an equidimensional k-algebra of 
finite type, where k is a perfect field, let .m ⊂ B be a maximal ideal, and let I be a 
.m-primary ideal. Then there exists an étale extension .λ : B → B ′, a maximal ideal 
.m′ ∈ Spec(B ′) dominating . m, and a local-transversal projection w.r.t. .IB ′

m′ ∩ B ′, 
.β : S → B ′, 

. 

Proposition 11.3.9 can be read as saying that, after an étale extension .B → B ′, 
there exist a local-transversal projection w.r.t. .IB ′, .S ⊂ B ′. 

Proof First, we can assume that . m is a rational closed point in .Spec(B). To do so,  
let .k1 = B/m be the residue field of B at set .B1 = B ⊗k k1. Now choose a maximal 
ideal .m1 ∈ Spec(B1) mapping to . m, and replace B and . m by . B1 and . m1. 

Next, we want to construct a reduction of .IBm1 generated by . d = dim((B1)m1)

elements .y1, . . . yd ∈ m1. Such a reduction exists, in the local ring, if the residue 
field is infinite, see [29, Proposition 8.3.7], but we can avoid this hypothesis 
enlarging . k1 if necessary. Set .R1 = (B1)m1 . Then the graded ring . GrIR1(R1)

is a .k1-algebra of finite type of dimension d (see [29, Proposition 5.1.6]). After 
considering a finite extension of the base field .k1 ⊂ k2 (if needed) we can apply 
the graded version of Noether’s normalization Lemma ([29, Theorem 4.2.3]): Set 
.B2 = B1 ⊗k1 k2 and let .m2 ∈ Spec(B2) be a maximal ideal mapping to . m1. If
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.R2 = (B2)m2 , then there are degree one elements .ȳ1, . . . , ȳd ∈ GrIR2(R2) such that 

.k2[ȳ1, . . . , ȳd ] is isomorphic to the polynomial ring of d variables and 

. k2[ȳ1, . . . , ȳd ] ⊂ GrIR2(R2) = GrI (B2)m2

(
(B2)m2

)

is finite. 
Choose representatives .y1, . . . , yd ∈ I (B2)m2

of .ȳ1, . . . , ȳd . By Theorem 11.3.8 
we conclude that .y1, . . . , yd generate a reduction of .I (B2)m2

. Select some . f ∈ B2
so that .y1, . . . , yd ∈ (B2)f . Finally .B ′ = (B2)f , .m′ = m2, and . S2 = k2[y1, . . . , yd ]
give the required extension, local-transversal w.r.t. .IB ′

m′ ∩ B ′. See [7, 34.3] for 
complete details. ��
Remark 11.3.10 Note that after following the proof, the statement of Proposi-
tion 11.3.9 can reformulated as follows. There exists a finite extension .k ⊂ k′, 
an element .f ∈ B ⊗k k′, and a maximal ideal .m′ ⊂ B ′ = (B ⊗k k′)f , together with 
a smooth .k′-algebra of finite type S and morphisms of finite type . λ and . β

. 

such that the projection . β is local-transversal w.r.t. .IB ′
m′ . Moreover S can be chosen 

to be a polynomial ring with d variables over . k′. 

Example 11.3.11 Let .B = k[X, Y ]/〈h〉, where .h = X2(X2 + 1) + Y 5. Let . I =
m = 〈x, y〉 ⊂ B. 

Note that the graded ring of .Bm at .IBm is .GrIBm
(Bm) = k[X, Y ]/〈X2〉, and the 

ideal .〈y〉Bm is a reduction of .IBm by Theorem 11.3.8. If .S = k[Y ], then .S ⊂ B is 
local-transversal w.r.t. I . 

The extension .S ⊂ B is finite but the generic rank is 4 and multiplicity of .Bm is 
2. This implies that .S ⊂ B is not finite-transversal w.r.t. I . 

One could consider the localization at .f = X2 + 1 in order to have condition 
(i) in Proposition 11.3.4, but then .S ⊂ Bf is not a finite extension. However, as we 
will see in Example 11.3.15, if we consider a convenient étale extension of S then a 
finite-transversal projection can be constructed. 

The next lemma guarantees that the local-transversal condition is stable under 
étale base changes. 

Lemma 11.3.12 [7, Corollary 34.6, Example 34.8] Assume that .S ⊂ B is local-
transversal w.r.t. an .m-primary ideal I . If  .S → C is an étale extension and . m′ ⊂
B ⊗S C dominates . m, then 

. C → B ⊗S C

is again local-transversal w.r.t. .I ′ = I (B ⊗S C)m′ ∩ (B ⊗S C).
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Theorem 11.3.13 [7, Proposition 31.1] Let k be a perfect field and let B be an 
equidimensional k-algebra of finite type with .Ass(B) = Min(B). Let . m ∈ Spec(B)

be a maximal ideal and let I be an .m-primary ideal. Then there exist k-algebras . B ′
and S, morphisms of finite type . λ and . β, 

. 

and a maximal ideal .m′ ∈ Spec(B ′), such that 

(i) . λ is an étale morphism, and .m = m′ ∩ B, 
(ii) . S′ is a regular ring, 
(iii) . β is finite-transversal w.r.t. .IB ′

m′ . 

Moreover, if .S ⊂ B is a local-transversal projection w.r.t. I , then the extension 
.S′ ⊂ B ′ can be obtained by pull-back of a suitable étale map .S → S′ and a 
localization at some .f ∈ B ⊗S S′, 

. 

Theorem 11.3.13 is sketched in [30, 6.11] when I is a maximal ideal and full 
details of the proof are given in [7, Appendix A]. We reproduce here that proof 
to check that it also holds for an arbitrary .m-primary ideal and to illustrate such a 
construction with an example, see Example 11.3.15. One of the main ingredients of 
the proof is Zariski’s Main Theorem: 

Theorem 11.3.14 [19, Theorem 1, page 41] Let .S ⊂ B be a ring extension, and 
assume that B is an S-algebra of finite type. Let .A ⊂ B be the integral closure of S 
in B. Let .P ∈ Spec(B) be a prime ideal and set .n = P ∩S. If  P is an isolated point 
of the fiber over . n then there exists .f ∈ A, .f �∈ P such that .Af = Bf . 

In other words, if S is essentially of finite type over a field k, Theorem 11.3.14 is 
saying that the (non necessarily finite) S-algebra B is, locally at P , isomorphic to a 
localization of an algebra which is finite over S. 

Proof of Theorem 11.3.13 By Theorem 11.3.9 we can assume that there exists a 
local-transversal projection .S ⊂ B w.r.t. I . In fact, it comes from the proof of 
Theorem 11.3.13 that S can be assumed to be a polynomial ring. 

First, by Zariski’s Main Theorem 11.3.14, there exists .f ∈ A, such that . Af =
Bf , where A is the integral closure of S in B. Set .n = I ∩ S ∈ Spec(S) and let
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.p1, . . . , ps ∈ Spec(A) be all the maximal ideals dominating . n. We may assume that 

.m ∩ A = p1. 
Moreover, choosing .g ∈ (p2 ∩ · · · ∩ ps) \ p1, we have that .mBfg is the only 

maximal ideal in .Bfg dominating . n. 
This means that the extension .S ⊂ Bfg fulfills properties (i), (ii) and (iii) 

in Proposition 11.3.4, but the ring extension might not be finite. We will use 
Lemma 11.3.12 in order to prove that the Theorem 11.3.13 holds after an étale base 
change extension. 

Consider the henselization . S̃ of .(S)n (see [25, Appendix C]), where .n = I ∩ S, 
and the diagram: 

. 

where . n′ is the maximal ideal of the local ring . S̃; note that . A′ (resp. . B ′) is a semi-
local ring and we are denoting by .p′

1, . . . , p
′
s′ (resp. .m′

1, . . . ,m
′
t ′ ) the maximal ideals 

dominating . n′. Assume that . p′ dominates . p and that . m′ dominates . m. Since . S̃ is 
henselian we have that 

. A′ = A′
p′

1
⊕ . . . ⊕ A′

p′
s′
,

and each direct summand is finite over . S̃. In particular .S̃ → A′
p′ is finite. 

By the choice of .g ∈ A it follows that . p is the only point in the fiber over . n of 
.S → Ag . Therefore by Bravo and Villamayor [7, Lemma 34.5] . p′ is the only point 
over . p of .Ag → A′

g , 

. 

Since fg  is invertible in .A′
p′ then there exists an integral equation 

. ((fg)−1)n + d1((fg)−1)n−1 + . . . + dn−1(fg)−1 + dn = 0,

di ∈ S̃, ∀i = 1, . . . , n. (11.8)
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Now consider a local étale neighborhood . Ẽ of . Sn containing the elements . di , for  
.i = 1, . . . , n. 

Observe that .Ẽ ⊂ Ẽ ⊗ Afg is a finite extension and there is a unique maximal 
ideal .P ⊂ Ẽ ⊗ Afg dominating . p. Therefore, .Ẽ ⊗ Afg = (Ẽ ⊗ A)P. And since 
.Ẽ⊗Afg ⊂ A′

p′ is flat, the relation (11.8) also holds at .Ẽ⊗Afg , and hence . Ẽ⊗Afg

is finite over . Ẽ. 
Now note that, 

. Ẽ ⊗ Afg = Ẽ ⊗ Bfg = Ẽ ⊗ Bm,

and therefore the extension .Ẽ ⊂ Ẽ⊗Bm is finite-transversal w.r.t. .I ′ = I (Ẽ⊗Bm). 
Finally observe that since .Sn → Ẽ is local étale, then there exists an S-algebra of 

finite type E such that .S → E is étale and such that . Ẽ is a localization of E (see [7, 
§32.4]). As consequence the finite extension is .E → E ⊗S Bfg is finite-transversal 
w.r.t. .I (E ⊗S Bfg). The following diagram summarizes the different extensions: 

. 

��
Example 11.3.15 Let us go back to Example 11.3.11 and let us assume now that 
the characteristic of k is different from 2. Let .S̃ = k{{Y }} be the henselization of 
.k[Y ]〈Y 〉. By Hensel’s Lemma, the degree 4 polynomial .h = X2(X2+1)+Y 5 factors 
as 

.h = h1 · h2 = (X2 + a1X + a2)(X
2 + b1X + b2) (11.9) 

where .a1, a2, b1, b2 ∈ S̃ and such that .a1, a2, b1, b2−1 ∈ 〈Y 〉. A direct computation 
gives that 

. a1 = 0, b1 = 0, b2 = 1 − a2, a2
2 − a2 + Y 5 = 0

Let .α ∈ S̃ be an element so that .α2 = 1

4
− Y 5, for instance the power series 

.α = 1

2

√
1 − 4Y 5 = 1

2

∞∑

i=0

(
1/2

i

)

(−1)i4iY 5i .
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Then .a2 = 1

2
− α and .b2 = 1

2
+ α are solutions for the factorization (11.9). 

Let .E = S[a2, (2a2 − 1)−1] and note that .S ⊂ E is an étale extension. The 
extension 

. B → B ′ = B ⊗S E = E[X]/〈X2(X2 + 1) + Y 5〉
is also étale. 

Let x be the class of X in . B ′ and set .e = 1+ 1

1 − 2a2
(x2 +a2). Note that .e2 = e, 

that the extension .E ⊂ B ′
e is finite. Finally, we have that .E ⊂ B ′

e is finite-transversal 
w.r.t. .〈x, y〉B ′

e. 
Another possibility is to consider an étale extension of B that contains a square 

root of . x2 + 1, see [7, §36] for further details. 

11.4 Finite-Transversal Morphisms and Multiplicity 

In this section we will focus on one of the main results of [30], stated below as 
Theorem 11.4.3. This theorem gives a procedure to describing the top multiplicity 
locus of a variety using finite-transversal projections. In this context, the notion 
of algebraic presentations of a finite extension plays a role (see Sect. 11.4.1). We 
discuss several applications and consequences of Theorem 11.4.3 in Sects. 11.4.2, 
11.4.3 and 11.4.4. In addition, we present some results refining the number of 
generators needed for algebraic presentations in the context of finite-transversal 
morphisms (see Proposition 11.4.6). Finally, several examples are given in the hope 
that they help clarify some of the key ideas in the exposition. 

We start with a generalization of a well known property of minimal polynomials 
for field extensions of the quotient field of an integrally closed domain. This result is 
essential in the exposition given in Sect. 11.4.1 which is a key step for understanding 
the statement of Theorem 11.4.3. 

Proposition 11.4.1 [30, Lemma 5.2] Let .S ⊂ B be a finite extension such that the 
non-zero elements of S are non-zero divisors in B. Assume that S is a regular ring 
and let .K = K(S) be the quotient field of S. Let .θ ∈ B and let .f (Z) ∈ K[Z] be 
the monic polynomial of minimal degree such that .f (θ) = 0. If  .S[θ ] denotes the 
S-subalgebra of B generated by . θ , then 

(i) the coefficients of f are in S, .f (Z) ∈ S[Z], and 
(ii) .S[θ ] ∼= S[Z]/〈f (Z)〉. 
Proof (Comments on the Proof) Let .q1, . . . , qm be the minimal primes of B. From  
the hypotheses we have that .Ass(B) = Min(B) and that .L = K ⊗S B is the total 
ring of fractions of B. Then 

.L = L1 ⊕ · · · ⊕ Lm,
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where . Li is a local Artinian ring for .i = 1, . . . , m. Note that the minimal primes 
of L, .Q1, . . . ,Qm, are in one-to-one correspondence with .q1, . . . , qm. Consider the 
following diagram, 

. 

where .θ̄i ∈ K(B/qi ) is the class of .α(θ)i ∈ Li . 
Observe that .f (Z) has been chosen such that .f (α(θ)) = 0 ∈ L. Let .gi(Z) be 

the minimal polynomial of . θ̄i over K , for .i = 1, . . . , m, and note that since S is 
normal, .gi(Z) ∈ S[Z]. Now we have that the irreducible factors of .f (Z) in . K[Z]
are the .gi(Z), 

. f (Z) = (g1(Z))r1 · · · (gm(Z))rm.

Hence .f (Z) ∈ S[Z]. 
Finally, since . α is injective .f (θ) = 0 ∈ B. This gives a well defined morphism 

.S[Z]/〈f (Z)〉 → S[θ ], which can be shown to be an isomorphism, see [30, page 
342]. ��

The following example illustrates the necessity of the hypothesis on the non-zero 
elements of S mapping to non-zero divisors in B. 

Example 11.4.2 Let .S = k[X, Y ] and let . B = k[X, Y,Z]/〈(Z2 + X5)(Z +
X3), Y (Z2 + X5)〉. The minimal primes of B are .q1 = 〈z2 + x5〉 and . q2 = 〈y, z2 +
x3〉. We have that .K = K(S) = k(X, Y ) and that .L = K ⊗S B = K[Z]/〈Z2 +X5〉. 
The minimal polynomial of z over K is .f (Z) = Z2 +X5. However .f (z) is not zero 
in B. In particular, .S[z] = B is not isomorphic to .S[Z]/〈f (Z)〉. 

11.4.1 Algebraic Presentations of Finite Extensions 

Let .S ⊂ B be a finite extension such that every non-zero element of S is not a 
zero-zivisor in B. Since the extension .S ⊂ B is finite, in particular of finite type, 
there are elements .θ1, . . . , θe ∈ B such that .B = S[θ1, . . . , θe]. We will say that  
.S[θ1, . . . , θe] is an algebraic presentation of the extension .S ⊂ B. 

Let .fi(Zi) ∈ K[Zi] be the polynomial of minimal degree such that .fi(θi)) = 0, 
.i = 1, . . . , e. By Proposition 11.4.1, .fi(Zi) ∈ S[Zi]. Let .di = deg(fi(Zi)) be the 
degree of the polynomial .fi(Zi) for .i = 1, . . . , e. We may assume that all .di � 2, 
since otherwise . θi ∈ S. We have a diagram
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. (11.10) 

We want to study such diagrams when .S ⊂ B is finite-transversal with respect to 
some prime P in B. This is the purpose of the next theorem. 

Theorem 11.4.3 [30, Proposition 5.7] Let B be an excellent and equidimensional 
ring, and let .S ⊂ B a finite extension such that every non-zero element of S is 
not a zero-zivisor in B. Fix an algebraic presentation .S[θ1, . . . , θe] of .S ⊂ B. Let 
.β : Spec(B) → Spec(S) and let .βi : Spec (S[Zi]/〈fi(Zi)〉) → Spec(S), for  . i =
1, . . . , e. Suppose that the generic rank .n = [L : K] � 2 and let .p ∈ Spec(S). Then 
the following conditions are equivalent:

• The point . p is the image by . β of a point of multiplicity n of .Spec(B).
• For every .i = 1, . . . , e, the point . p is the image by . βi of a point of multiplicity . di

of .Spec (S[Z]/〈fi(Z)〉). 
Theorem 11.4.3 has several interpretations and consequences, that we will 

describe in the next paragraphs. 

11.4.2 Theorem 11.4.3 and Finite-Transversal Morphisms 

With the notation and the hypotheses of the theorem, let . Bi = S[θi] =
S[Zi]/〈fi(Zi)〉, for .i = 1, . . . , e. Then diagram (11.10) can be rewritten as 

. 

(11.11) 

Now observe that the theorem says that the projection . β : Spec(B) → Spec(S)

is finite-transversal w.r.t. .P ∈ Spec(B) if and only if all the projections . βi :
Spec(Bi) → Spec(S) are finite-transversal w.r.t. .Pi = αi(P ).
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11.4.3 Theorem 11.4.3 and an Explicit Description of the Top 
Multiplicity Locus of Spec(B) 

Let .Fn ⊂ Spec(B) be the set of points of multiplicity .n = [L : K], and assume that 
. Fn is not empty. Then Theorem 11.4.3 gives us a procedure to describe . Fn explicitly. 
To see this consider the following diagram 

. 

(11.12) 

Observe that there is a closed embedding of .Spec(B) in the regular scheme 
.Spec(S[Z1, . . . , Ze]). Note that .dim(B) = dim(C) and that .Spec(B) corresponds 
to the union of some irreducible components of .Spec(C). 

Let .Edi
be the set of points of multiplicity . di of the hypersurface .{fi(Zi) = 0} in 

.Spec(S[Z1, . . . , Ze]), for .i = 1, . . . , e. The theorem says that 

. Fn = Ed1 ∩ · · · ∩ Ede .

In other words, the top multiplicity locus of .Spec(B) can be described as the top 
multiplicity locus of the complete intersection .Spec(C). Note that the generic rank 
of .β ′ : Spec(C) → Spec(S) is .d1 · · · de = dimK(C⊗S K) and that . n = dimK(B⊗S

K) is the generic rank of .S ⊂ B. Theorem 11.4.3 says that if .p ∈ Spec(S) then the 
following assertions are equivalent

• The point . p is the image by . β of a point of multiplicity n of .Spec(B).
• The point . p is the image by . β ′ of a point of multiplicity .d1 · · · de of .Spec(C). 

If S is a k-algebra of finite type, with k a perfect field, then . S[Z1, . . . , Ze]
is smooth over k, and the module of differential operators of order .� j , 
.Diffjk (S[Z1, . . . , Ze]), is free. Then we have that the closed set .Edi

is defined 
by the ideal 

.

〈
Δ(fi(Zi)) | Δ ∈ Diffdi−1

k (S[Z1, . . . , Ze])
〉
. (11.13) 

Actually, a similar description can also be given in a more general setting without
assuming k to be perfect, see [2, Section 7] for details. 

Finally, suppose we are give any equidimensional k-algebra of finite type B and 
let .P ∈ Spec(B) be a maximal ideal with multiplicity greater than one. Then, by 
Theorem 11.3.13, and after an étale extension of B, we always may assume that 
we have a finite-transversal projection .S ⊂ B w.r.t. P , with S smooth over k. As a
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consequence, we can explicitly describe the top multiplicity locus of any B as above 
in a conveniently chosen étale extension. 

Example 11.4.4 Let .V ⊂ A
3
k = Spec(k[X, Y,Z]) be the monomial curve defined 

by 

. X = t3, Y = t4, Z = t5.

Then .V = Spec(B), where .B = k[X, Y,Z]/J and . J = 〈X3−YZ, X2Y −Z2, Y 2−
XZ〉. Let .S = k[X]. Then the extension .S ⊂ B is finite since .Y 3−X4, Z3−X5 ∈ J . 
Note that these integral relations can be obtained using standard bases, see [13, 
Proposition 3.1.5]. 

The generic rank of the extension is .3 = dimk(X)(B⊗k[X]k(X)) and we have also 
that .em(B) = 3, where .m = 〈x, y, z〉 ⊂ B. In this case, .S ⊂ B is a finite-transversal 
extension w.r.t. . m, and .S[y, z] is an algebraic presentation of B. 

The minimal polynomials (in the variable W ) of  y and z are, respectively . W 3 −
x4 and .W 3 − x5. Set .C = k[X, Y,Z]/〈Y 3 − X4, Z3 − X5〉. Note that . Spec(C)

has two irreducible components of dimension one. The curve .Spec(B) is one of 
the irreducible components of .Spec(C). By Theorem 11.4.3, the locus of points of 
multiplicity 3 of .Spec(B) (only the origin) coincides with the locus of points of 
multiplicity 9 of .Spec(C). 

In Example 11.4.4 the dimension of the ring .Bm is one and the embedding 
dimension is three. The algebraic presentation is generated by two elements, y and 
z, over S and any other algebraic presentation over a regular ring is generated by 
two elements at least. 

In general, the difference of the embedding dimension and the dimension of the 
local ring, the so called excess of embedding dimension, is a lower bound for the 
number of generators of an algebraic presentation. However, this lower bound can 
always be achieved after localization, a fact that is proved in Proposition 11.4.6 
below. First we need a technical result for finite extensions of local rings. 

Lemma 11.4.5 Let .(S, n) and .(B,m) be Noetherian local rings and suppose that 
.S ⊂ B is a finite extension, with S is regular. Assume that the residue fields are 
equal, .S/n ∼= B/m = k. If .t = dimk(m)(m/m2)−dim(B) is the excess of embedding 
dimension of B, then there are elements .θ1, . . . , θt ∈ m such that 

. B = S[θ1, . . . , θt ].

Proof Write .B = S[θ1 . . . , θe]. Since .S/n ∼= B/m we can assume that .θi ∈ m (here 
a translation by elements of S may be needed). We have that .nB+〈θ1, . . . , θe〉 = m, 
hence .e � t . After reordering the . θi’s, we may assume that .m = nB + 〈θ1, . . . , θt 〉. 

Consider the S-module .N = S[θ1, . . . , θt ] ⊂ B. We claim that 

.N/nN = B/nB.
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If the claim holds then by Nakayama’s Lemma we have that .N = B as required. 
To prove the claim, let . θ̄i be the class of . θi in .B̄ = B/nB, for .i = 1, . . . , e, and 

denote by .m = mB̄ the maximal ideal of the local ring . B̄. We have that . θ̄1, . . . θ̄t

generate . m in . B̄. 
Note that . B̄ is an Artinian local ring, hence complete. Since .dimk(m/m2) = t , 

by Cohen’s structure Theorem, .B̄ ∼= k[[Z1, . . . , Zt ]]/J for some ideal J , where the 
classes of . Zi correspond to . θ̄i , .i = 1, . . . , t . Now note that every . θ̄i is nilpotent, 
hence for some integers . αi we have .Zαi

i ∈ J and then 

. B̄ ∼= k[Z1, . . . , Zt ]/I

for some ideal .I ⊂ k[Z1, . . . , Zt ]. ��
Proposition 11.4.6 Let .S ⊂ B be a finite-transversal extension w.r.t. an .m-primary 
ideal .I ⊂ B, with . m a maximal ideal in B. Let .t = dimk(m)(m/m2) − dim(Bm) be 
the excess of embedding dimension of B at . m. Then there are elements . θ1, . . . , θt ∈
B and .g ∈ S such that 

. Bg = Sg[θ1, . . . , θt ].

Proof As in Lemma 11.4.5, write .B = S[θ1 . . . , θe], with .θi ∈ m for .i = 1 . . . , e. 
Let .n = m ∩ S. Then the extension .Sn ⊂ B ⊗S Sn is finite. By condition (i) 
in Proposition 11.3.4 .Bm = B ⊗S Sn. Therefore .Sn ⊂ Bm is finite, and by 
Lemma 11.4.5, after reordering the . θi , we have that 

. Bm = Sn[θ1, . . . , θt ].

Note that, for .j = t + 1, . . . , e, . θj is a polynomial in .θ1, . . . , θt with coefficients in 
. Sn. Hence there exists some .g ∈ S such that .θj ∈ Sg[θ1, . . . , θt ], .j = t + 1, . . . , e, 
and it follows that 

. Bg = Sg[θ1, . . . , θt ].

��
Example 11.4.7 Let .S = k[Y ]. In the polynomial ring .S[X1, X2] consider the ideal 

. J = 〈X2
1 − Y 5, X1 − X2 − X1X2(1 + X1)〉,

and let .B = S[X1, X2]/J . Note that .X2
2(1 + Y 5 + Y 10) + 2Y 5X2 − Y 5 ∈ J which 

gives an integral relation of . X2 with coefficients in . Sf , with .f = 1+Y 5 +Y 10. The  
extension .Sf ⊂ Bf is finite, and .Sf [x1, x2] is an algebraic presentation of .Sf ⊂ Bf . 
We have that .Sf ⊂ Bf is finite-transversal w.r.t. .m = 〈y, x1, x2〉Bf . 

Note that the surface with affine ring .R = S[X1, X2]/〈X1 − X2 − X1X2〉 is 
regular and .Spec(B) is a curve in .Spec(R). In this case the dimension of .Bm is one
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with embedding dimension two, since 

. mBm = 〈y, x1〉Bm = 〈y, x2〉Bm.

Proposition 11.4.6 says that for some localization of . Sf we have to be able to find 
an algebraic presentation of .Sf ⊂ Bf with only one generator, either . x1 or . x2. 

Some Groebner basis computations show that 

. X1(1 + Y 5) − X2(1 + Y 5 + Y 10) − Y 5 ∈ J,

an then .Bf = Sf [x1]. On the other hand, if .g = (1 + Y 5) then .Sfg ⊂ Bfg is 
finite-transversal w.r.t. .mBfg and .x1 ∈ Sfg[x2]. Thus .Bfg = Sfg[x2]. 

11.4.4 Theorem 11.4.3 and Homeomorphic Copies of the Top 
Multiplicity Locus of Spec(B) 

Finally, there is a third main consequence of Theorem 11.4.3, whose meaning will 
be clarified in the Sect. 11.5, see Theorem 11.5.5 (iii) and part (iv), which is stated 
in Sect. 11.5.2. 

Corollary 11.4.8 [30, Corollary 5.9] Let .S ⊂ B be a finite extension of generic 
rank n, and suppose it is under the assumptions of Theorem 11.4.3. Assume that the 
set of points of multiplicity n of B, .Fn ⊂ Spec(B), is not empty. Then 

(i) Zariski’s conditions hold for any .P ∈ Fn: 

(i) . β is a set theoretical bijection between . Fn and .β(Fn), 
(ii) if .P ∈ Fn and .p = β(P ) then .k(P ) = BP /PBP = Sp/pSp = k(p), and 
(iii) .pBP is a reduction of .PBP . 

(ii) . Fn is closed in .Spec(B), and . Fn is homeomorphic to .β(Fn). 
(iii) .β(Fn) = Spec(S) if and only if .S = Bred. 

In other words, Corollary 11.4.8 says that when .S ⊂ B is finite transversal of generic 
rank n then we can see a homeomorphic image of . Fn in .Spec(S). 

11.5 Finite-Transversal Morphisms and Resolution of 
Singularities 

In the present section we discuss the central result in [30], stated as Theorem 11.5.5 
below, and its applications to resolution of singularities. The key idea here is that 
the description of the top multiplicity locus of a variety given in Theorem 11.4.3 is
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stable after blowing up a regular equimultiple center, see Theorem 11.5.5. We will 
make these ideas more precise along the following paragraphs. 

Resolution of Singularities 
Now we go back to our discussion in the Introduction. There, we mentioned the 
role of the order function when measuring how singular a hypersurface .H ⊂ A

n
k is. 

When the characteristic is zero, proving the existence of a resolution of singularities 
is a complex task, and yet, it somehow reduces to considering the order of ideals. 
In other words and very roughly speaking, to resolve singularities Hironaka faced 
two main problems:

• Problem 1. Given a sheaf of ideals J on a smooth scheme V and a positive 
integer b, prove that there exists a finite sequence of blow ups so that a suitable 
transform of J has maximum order below b (see Theorem 11.5.2 below).

• Problem 2. Prove that improving the singularities of an algebraic variety X by 
blow ups is equivalent to solving problem 1 (see Theorem 11.5.3 below and the 
discussion that follows). 

Our purpose is to give a few hints on these ideas. In order to do so, we start with 
some definitions. 

Pairs and Their Role in Resolution of Singularities 

Definition 11.5.1 Let V be smooth scheme of finite type over a field k, let J be a 
sheaf of ideals on V and let .b ∈ Z a positive integer. 

– We refer to .(J, b) as a pair over V . 
– The singular locus of .(J, b) is the closed subset of V , 

. Sing (J, b) := {ζ ∈ V : νζ (J ) � b}.

– A permissible center Y for .(J, b) is a closed regular subset .Y ⊂ V such that 
.Y ⊂ Sing (J, b). 

– A permissible blow up of V is the blow up of V at a permissible center Y , . V ←
V1. 

– For a permissible blow up, .V ← V1, with exceptional divisor . E1, the transform 
of the pair .(J, b) is the pair, .(J1, b), where 

.JOV1 = I(E1)
b · J1.
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With the previous notation, a resolution of a pair is a sequence of permissible 
blow ups, 

. 
V = V0 ← V1 ← . . . ← V�

(J, b) = (J0, b) (J1, b) . . . (J�, b),

so that .Sing (J�, b) = ∅. 
To be precise, an additional condition on the permissible centers needs to 

be asked: they need to have normal crossings with the exceptional divisors that 
successively appear in the sequence. 

Theorem 11.5.2 [16] If the characteristic of k is zero, a resolution of .(J, b) exists. 

Why Pairs? 
The previous statement might lead to more questions than answers: 

(i) How is the theorem proven and why the hypothesis on the characteristic? 
(ii) Is it really necessary and statement about general pairs? Is it not enough to 

resolve pairs .(J, b) with b equal to the maximum order of J at V ? 
(iii) While it is clear what the pair for a hypersurface could be, it is not obvious 

how to proceed in the general case. 

Regarding to question (1): Maximal contact 
Theorem 11.5.2 is proven by induction on the dimension of V : the existence 

of a resolution of .(J, b) follows from another theorem that basically says that a 
resolution of .(J, b) can be achieved if we know how to resolve pairs in smooth .(n−
1)-dimensional schemes. And this does not hold in general over fields of positive 
characteristic. For those interested in a deeper understanding on the topic we refer 
to the so called theory of maximal contact (see [12], also [4]). 

Regarding to question (2): An example 
Let .H : {z2 + (y3 − x5) = 0} ⊂ A

3
k , where k is a field of characteristic different 

from 2. If we want to find a resolution of singularities of H we can start by resolving 
the pair .(〈z2 +(y3 −x5)〉, 2) in . A3

k . The theory of maximal contact would tell us that 
a finding a resolution of .(〈z2 + (y3 − x5)〉, 2) is equivalent to finding a resolution 
of the pair .(〈(y3 − x5)〉, 2) in . A2

k . Observe that the number .b = 2 in the second 
pair is not the maximum order of the ideal .〈(y3 − x5)〉 in . A2

k . Hence, a theorem of 
resolution of general pairs as Theorem 11.5.2 is needed. 

Regarding to question (3): Presentations for the Hilbert-Samuel function 
If .H ⊂ V is a hypersurface of maximum order m, then it is clear that a resolution 

of the pair .(I(H),m) leads to a sequence of blow ups over H so that the strict 
transform of H has maximum order below m. And resolution follows by induction 
on the order. 

For arbitrary varieties, Hironaka used presentations of the Hilbert-Samuel 
function. For a variety X we will use .HSX to refer to its Hilbert-Samuel function. 
This function satisfies a series of properties that make it suitable as an invariant to 
approach resolution (see [5]):
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(A) .HSX is an upper semi-continuous function on X; we will denote by . max HSX

its maximum value on X, and by .Max HSX the closed set of X where this 
maximum is achieved; 

(B) .HSX is constant on X if and only if X is regular; 
(C) If .Y ⊂ Max HSX is a closed regular center and if .X ← X1 is the blow up at Y , 

then 

. max HSX � max HSX1 .

The key point here is that the closed set .Max HSX can be expressed as the 
singular locus of a pair. But not any pair will work. Actually we need a suitably 
defined pair whose resolution induces a sequence of blow ups over X that forces the 
maximum value of .HSX to go down. This is done via the so called standard basis 
(see [3]): 

Theorem 11.5.3 (Presentations for the Hilbert-Samuel function) At an étale neigh-
borhood of each closed point .ξ ∈ MaxHSX, we can assume X to be locally 
embedded in a smooth scheme V where we can find elements . f1, . . . , fr ∈ OV,ξ

such that: 

(i) .I(X)ξ = 〈f1, . . . , fr 〉; 
(ii) Denoting by . mi the maximum order of the hypersuface .Hi = {fi = 0}, we  

have that 

. MaxHSX =
r⋂

i=1

MaxHSHi
=

r⋂

i=1

{ζ : νζ (fi) = mi};

(iii) If .Y ⊂ MaxHSX is a closed regular center, if .V ← V1 is the blow up at Y , and 

. maxHSX = maxHSX1 ,

then 

. MaxHSX1 =
r⋂

i=1

MaxHSHi,1

where .Hi,1 is the strict transform of . Hi , .i = 1, . . . , r . 

A consequence of the theorem is that a pair .(J, b) can be naturally attached to 
the previous data: 

Set .M := ∏r
i=1 mi and .Mi = M/mi . Let .J := 〈f M/m1

1 , . . . , f
M/mr
r 〉. Then 

resolving the pair .(J,M) leads to a sequences of blow ups, 

.X ← X1 ← . . . ← X�
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so that 

. max HSX = max HSX1 = . . . > max HSX�
.

Remark 11.5.4 It is worthwhile to make two observations to regarding Hironaka’s 
approach to resolution: 

(a) Hironaka uses the Hilbert-Samuel function, which takes values in . NN. The  
multiplicity function also satisfies properties (A), (B) and (C) from above (see 
[11]), takes values on . N and has a natural geometric interpretation. Hence, it 
is quite natural to ask whether it can replace the role of the Hilbert-Samuel 
function in the resolution process. This is a question posed by Hironaka in 
[16] and answered affirmatively by Villamayor in [30] (this follows from 
Theorem 11.5.5 below). 

(b) The use of the Hilbert-Samuel function requires working with an embedding of 
X in some smooth scheme of dimension .n � d + 1. This leads to the definition 
of convenient pairs some smooth n-dimensional scheme and then induction 
on resolution of pairs is applied in .n − 1, n − 2, . . . ,-dimensions. As we will 
see, Villamayor’s approach using the multiplicity simplifies this last step. More 
precisely, the problem of lowering the multiplicity of a d-dimensional variety is 
shown to be equivalent to the resolution of a pair in some smooth scheme of the 
same dimension d (at least when the characteristic is zero). 

11.5.1 Regarding to Remark 11.5.4 (a): Presentations for the 
Multiplicity Function 

We dedicate the following lines to Villamayor’s approach to resolution using the 
multiplicity function as the main invariant. We start by fixing some notation. We will 
use .MultX to refer to the multiplicity function on X, .max MultX for its maximum 
value on X and .Max MultX for the closed set of points of X where this value is 
achieved. 

Let X be an equidimensional variety with .max MultX > 1. A  simplification of 
the multiplicity of X is a finite sequence of blow ups 

. X = X0 ← X1 ← . . . ← Xn

so that 

. max MultX0 = max MultX1 = . . . = max MultXn−1 > max MultXn.

As a corollary of Theorem 11.5.5 below, we get that it is possible to resolve 
singularities in characteristic zero via simplifications of the multiplicity. As Hiron-
aka’s Theorem 11.5.3, Villamayor’s statement is also of local nature. Hence, we will



550 A. Bravo and S. Encinas

assume that X is an affine variety. Note that the parts (i) and (ii) of the next theorem 
have been already stated and discussed in Theorem 11.4.3 and Sect. 11.4.3. 

Theorem 11.5.5 [30, §6, Theorem 6.8] (Presentations for the Multiplicity function) 
Let .X = Spec(B) be an affine equidimensional algebraic variety of dimension d 
defined over a perfect field k, and let .ξ ∈ MaxMultX be a closed point. Then, there 
is an étale neighborhood . B ′ of B, mapping .ξ ′ ∈ Spec(B ′) to . ξ , a smooth k-algebra 
S together with a finite-transversal morphism at . ξ ′, .β : Spec(B ′) → Spec(S) so 
that if .B ′ = S[θ1, . . . , θe] and .fi(Zi) ∈ K(S)[Zi] denote the minimum polynomial 
of . θi over .K(S) for .i = 1, . . . , e, then .fi(Zi) ∈ S[Zi] and there is a diagram: 

. 

for which the following hold: 

(i) Let .V = Spec(S[Z1, . . . , Ze]), and let .I(X) be the defining ideal of X at V . 
Then 

. 〈f1, . . . , fe〉 ⊂ I(X);

(ii) Denoting by . mi the maximum order of the hypersuface .Hi = {fi = 0} ⊂ V , 
we have that 

. MaxMultX =
e⋂

i=1

MaxMultHi
=

e⋂

i=1

{ζ : νζ (fi) = mi};

(iii) Let .Y ⊂ MaxMultX be a closed regular center. Then .β(Y ) is regular in 
.Spec(S). Now, if  .X ← X1 is the blow up at Y , and .Spec(S) ← T1 is the 
blow up at .β(Y ) then there is a commutative diagram 

. (11.14) 

where the horizontal maps are blow ups and the vertical are finite morphisms.
Moreover, if

.maxMultX = maxMultX1 ,
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then .β1 : X1 → T1 is finite-transversal w.r.t. any point in .MaxMultX1 and if 
.V ← V1 is the blow up at Y , then 

. MaxMultX1 =
e⋂

i=1

MaxMultHi,1

where .Hi,1 is the strict transform of . Hi in . V1, for .i = 1, . . . , e. 

A consequence of the theorem is that a pair .(J, b) can be naturally attached to 
the previous data: 

Set .M := ∏e
i=1 mi and .Mi = M/mi . Let .J := 〈f M/m1

1 , . . . , f
M/me
e 〉. Then 

resolving the pair .(J,M) leads to a sequences of blow ups, 

. X ← X1 ← . . . ← X�

so that 

. max MultX = max MultX1 = . . . > max MultX�
,

i.e., to a simplification of the multiplicity of X. 

11.5.2 Regarding to Remark 11.5.4 (b): Resolution of Pairs in 
Dimension d = dimX 

Notice that Villamayor’s Presentations of the Multiplicity come equipped with a 
finite projection to dome d-dimensional smooth scheme. This finite-transversal 
projection has one additional property: 

(iv) If .T ⊂ β(MaxMultX) ⊂ Spec(S) is a regular closed subscheme, then 
.β−1(T )red is also regular and the simultaneous blow ups at T and . β−1(T )red
lead to a commutative diagram as (11.14) with the same properties as in 
Theorem 11.5.5 (iii). 

When the characteristic of the base field is zero, there is a pair on .Spec(S) (which 
is a d-dimensional scheme) whose resolution induces a resolution of the pair .(J,M). 
Thus, a simplification of the multiplicity of X is directly achieved via the resolution 
of a d-dimensional pair, where .d = dim X, see [1, Chapter 7] for more details. 

11.6 Finite-Transversal Morphisms and the Asymptotic 
Samuel Function 

The asymptotic Samuel function was introduced by Samuel in [26] and afterwards 
studied by D. Rees [20–23]. Here we review the definition and some properties. For 
further details we refer the reader to [17] and [29]. Our purpose here is to prove
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Theorem 11.6.8 which is a slightly modified version of a theorem of Hickel on the 
computation of the asymptotic Samuel function (see Theorem 11.6.7 for Hickel’s 
statement). 

Suppose A is a commutative ring with unit 1, and let .I ⊂ A be a proper ideal. For 
each .f ∈ A consider the value .νI (f ) = sup{� ∈ N ∪ {∞} | f ∈ I �}. Observe that 
for .f, g ∈ A we have .νI (f +g) � min{νI (f ), νI (g)} and .νI (f ·g) � νI (f )+νI (g). 
In particular, for .m ∈ N, .νI (f

m) � mνI (f ) and the inequality could be strict. The 
asymptotic Samuel function is a normalized version of the ordinary function, which, 
as we will see, has a nicer behavior. 

Definition 11.6.1 The asymptotic Samuel function at I , .ν̄I : A → R ∪ {∞}, is  
defined as: 

.ν̄I (f ) = lim
n→∞

νI (f
n)

n
, f ∈ A. (11.15) 

The limit (11.15) exists in .R�0 ∪ {∞} (see [17, Lemma 0.2.1]. When .(A,m) is 
a local regular ring, .νm = νm. The next proposition summarizes some of the main 
properties of the asymptotic Samuel function. 

Proposition 11.6.2 [17, Corollary 0.2.6, Proposition 0.2.9] The function . ̄νI is an 
order function, i.e., it satisfies the following properties: 

(i) .ν̄I (f + g) � min{ν̄I (f ) + ν̄I (g)}, for all .f, g ∈ A, 
(ii) .ν̄I (f · g) � ν̄I (f ) + ν̄I (g), for all .f, g ∈ A, 
(iii) .ν̄I (0) = ∞ and .ν̄I (1) = 0. 

Furthermore, for each .f ∈ A and each .r ∈ N: 

(iv) .ν̄I (f
r ) = rν̄I (f ); 

(v) .ν̄I r (f ) = 1

r
ν̄I (f ). 

Note that if .f ∈ A is nilpotent then .ν̄I (f ) = ∞. 

Example 11.6.3 If .A = k[X, Y ]/〈X2 + Y 3〉 and if .m = 〈x, y〉 ⊂ A, then it can be 
checked that .νm(y) = 1, while .νm(x) = 3/2. However, if . A = k[X, Y,Z]/〈X2 +
Y 2 + Z3〉, .m = 〈x, y, z〉 and the characteristic is different from 2, then . νm(x) =
νm(y) = νm(z) = 1. 

The Asymptotic Samuel Function on Noetherian Rings 

When A is Noetherian, the number .νI (f ) measures how deep the element f lies in 
the integral closure of powers of I : 

Proposition 11.6.4 [29, Corollary 6.9.1] Suppose A is Noetherian. Then for a 
proper ideal .I ⊂ A and every .a ∈ N, 

.I a = {f ∈ R | ν̄I (f ) � a}.
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Corollary 11.6.5 Let A be a Noetherian ring and .I ⊂ A a proper ideal. If . f ∈ A

then 

. ̄νI (f ) � a

b
⇐⇒ f b ∈ I a.

See also [10] for a generalization of the asymptotic Samuel function to arbitrary 
filtrations of ideals and properties. 

The previous characterization of . νI leads to the following result that gives a 
valuative version of the function. 

Theorem 11.6.6 Let A be a Noetherian ring, and let .I ⊂ A be a proper ideal not 
contained in a minimal prime of A. Let .v1, . . . , vs be a set of Rees valuations of the 
ideal I . If .f ∈ A then 

. ̄νI (f ) = min

{
vi(f )

vi(I )
| i = 1, . . . , s

}

.

Proof See [29, Lemma 10.1.5, Theorem 10.2.2] and [28, Proposition 2.2]. ��
In particular, it follows from here that when A is a Noetherian ring, .νI (f ) always 

takes values in .Q ∪ {∞}. 
On a Explicit Formula for the Computation of the Asymptotic Samuel Function 

In [15] M. Hickel presented a series of nice results regarding the asymptotic Samuel 
function. In particular, he proved the following theorem with an explicit method for 
its calculation: 

Theorem 11.6.7 [15, Theorem 2.1] Let .(R,m, k) be a complete local Noetherian 
domain of equal characteristic and Krull dimension d. Let .I ⊂ R be an .m-
primary ideal and suppose that I has a reduction generated by d elements, . J =
〈x1, . . . , xd〉 ⊂ R. Let .r ∈ R. Let .A := k[[x1, . . . , xd ]] ∼= k[[X1, . . . , Xd ]], let  
.mA ⊂ A be the maximal ideal, and let 

. p(Z) = Z� +
�∑

i=1

aiZ
�−i

be the minimal polynomial of r over .K(A). Then: 

. νI (r) = min
1�i��

νmA
(ai)

i
.

The theorem gives a method for the explicit computation of the asymptotic 
Samuel function for a local Noetherian ring .(R,m, k) of equal characteristic, by 
passing to the completion and then reducing to the domain case. The existence of a 
reduction of the ideal I generated by d elements can be achieved by extending the 
residue field.
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Following the arguments in Sect. 11.3, the previous result can be shown to hold 
in a suitable étale neighborhood of R, when R is equidimensional and an algebra 
of finite type over a perfect field k. Thus, under these additional hypotheses, the 
completion is not needed and the reduction to the domain case is avoided. 

Theorem 11.6.8 Let .(B,m) be a Noetherian equicharacteristic, equidimensional 
local ring of Krull dimension d. Let .I ⊂ m be an .m-primary ideal. Assume that 
there exists a local étale neighborhood .(B ′,m′) of .(B,m) with a finite-transversal 
morphism w.r.t. I , .S ⊂ B ′. Let .b ∈ B. If  

. p(Z) = Z� + a1Z
�−1 + . . . + a�

is the minimal polynomial of .b ∈ B ′ over the fraction field of S, .K(S), then . p(Z) ∈
S[Z] and 

.νI (b) = min

{
νmS

(ai)

i
: i = 1, . . . , �

}

, (11.16) 

where .mS = m′ ∩ S. 

Proof We follow the ideas of Hickel in the proof of [15, Theorem 2.1] to check that 
the result also holds in this different setting. To ease the notation let us assume that 
.B = B ′, and let .mS = m ∩ S. Since the extension .S ⊂ B is assumed to be finite-
transversal w.r.t. I we have that .mSB is a reduction of I generated by d-elements. 
Let .b ∈ B. Then .L = B ⊗S K(S) is a finite extension of .K(S), although not 
necessarily a domain. Let 

. p(Z) = Z� + a1Z
�−1 + . . . + a� ∈ K(S)[Z]

be the minimal polynomial of b over .K(S). Observe that .p(Z) might not be 
irreducible over .K(S). By Proposition 11.4.1 .p(Z) ∈ S[Z] and the subring of 
.S[b] ⊂ B is isomorphic to .S[Z]/〈p(Z)〉. Thus .S[b] is free of rank . � over S. Taking 
the .mS-adic completion of S we have a commutative diagram, 

. 

where the vertical maps are finite while the horizontal maps are faithfully flat and 
. ̃k is the residue field of S (which is also the residue field of B). Since the rank of
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.S[b] ⊗S Ŝ over . ̂S is . �, .p(X) is also the minimal polynomial of .b ∈ S[b] ⊗S Ŝ over 

. ̂S. By Cohen [8, Theorem 8], .B ⊗S Ŝ is complete, and then the claim follows from 
[15, Theorem 2.1] if .B ⊗S Ŝ is a domain. 

Otherwise, we will see that the same argument given in [15, Theorem 2.1] can 
be used in this case to prove a similar result. Set .J = 〈X1, . . . , Xd〉 ⊂ Ŝ, let  
.J1 = 〈X1, . . . , Xd〉T and let .J2 = 〈X1, . . . , Xd〉R. Then . J2 is a reduction of IR. 
And we have that that 

. νI (b) = νIR(b) = νJ2(b) = νJ1(b),

where the last equality comes from the fact that .T ⊂ R is a finite extension and using 
Corollary 11.6.5. On the one hand, if .h(Z) = Zm + c1Z

m−1 + . . . + cm ∈ Ŝ[Z] is 
any monic polynomial with .q(b) = 0 then 

. νJ1(b) � min

{
νm

Ŝ
(ci)

i
: i = 1, . . . , s

}

,

(see [15, pg. 1374]). To verify the equality (11.16), we follow the argument in the 
proof of [15, Theorem 2.1] to check that the hypothesis on T being a domain is not 
needed. 

If b is a unit or nilpotent, then we are done. Suppose otherwise that . νI (b) =
r/s > 0, where .r, s ∈ N>0 and consider the diagram: 

. 

Notice that all the maps are finite, and that the first vertical is under the assumptions 
of Proposition 11.4.1. Hence if .q(Z) is the minimal polynomial of . bs over .K(S′), 
we have that .q(Z) ∈ S′[Z] and moreover, .S′[bs] ∼= S[Z]/〈q(Z)〉. 

In addition, the conditions in Proposition 11.3.4 hold for the first vertical finite 
map: 

(i) There is a unique maximal ideal . m′ in .S′[bs] dominating the maximal ideal 
.mS′ of . S′; 

(ii) The residue fields at . m′ and at .mS′ are the same, hence .m′ = mS′ + 〈bs〉; 
(iii) The expansion of the maximal ideal of . S′, .mS′ in .S′[bs], generates a reduction 

of . m′. 

Hence, by Zariski’s multiplicity formula for finite projections, the multiplicity of 
.S[bs] at . m′ is the same as the generic rank of the finite extension .S′ ⊂ S′[bs]. In  
other words, .S′ ⊂ S′[bs] is finite-transversal w.r.t. . m′. Therefore, the polynomial 
.q(Z) ∈ S′[Z] determines a hypersurface in .Spec(S′[Z]) whose multiplicity at
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.〈Xr
1, . . . , X

r
d, Z〉 is the same generic rank of the finite extension. Thus, if 

. q(Z) = Zm + c1Z
m−1 + . . . + cm

necessarily .ci ∈ 〈Xr
1, . . . , X

r
n〉iS′. 

Next, since .q(Zs) is a multiple of .p(Z), following word by word the proof of 
Hickel in [15, pgs. 1374-5], we get that 

. νJ (b) � min
i

{
νm

Ŝ
(ai)

i
: i = 1, . . . , �

}

.

��
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