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Abstract Any subanalytic germ .(X, 0) ⊂ (Rn, 0) is equipped with two natural 
metrics: its outer metric, induced by the standard Euclidean metric of the ambient 
space, and its inner metric, which is defined by measuring the shortest length of 
paths on the germ .(X, 0). The germs for which these two metrics are equivalent up 
to a bilipschitz homeomorphism, which are called Lipschitz Normally Embedded, 
have attracted a lot of interest in the last decade. In this survey we discuss many 
general facts about Lipschitz Normally Embedded singularities, before moving our 
focus to some recent developments on criteria, examples, and properties of Lipschitz 
Normally Embedded complex surfaces. We conclude the manuscript with a list of 
open questions which we believe to be worth of interest. 

10.1 Definition, First Examples, and Some General Results 

10.1.1 Definition 

Let .(X, dX) and .(Y, dY ) be two metric spaces. A homeomorphism .φ : X → Y is 
said to be a bilipschitz equivalence if there exist two positive real numbers . K1 and 
. K2 such that, given any two points x and . x′ in X, we have  

. K1 dX(x, x′) � dY

(
φ(x), φ(x′)

)
� K2 dX(x, x′).

Two metric spaces are said to be bilipschitz equivalent if there exists a bilipschitz 
equivalence from one to the other. 

A connected subanalytic subspace X of . Rn is naturally equipped with two 
metrics on .(X, 0): its outer metric . do, induced by the standard Euclidean metric 
of the ambient space, and its inner metric . di , which is the associated arc-length 
metric on the germ, defined as follows: 

. di(x, y) = inf
{
length(γ )

∣∣ γ is a rectifiable path in X from x to y
}
.

Note that for an arc to be rectifiable essentially means that its length can be 
computed and is finite, see [22] for details. Given any two points x and y in X, we  
have .do(x, y) � di(x, y). Moreover, the inner distance between two given points 
can be computed as a limit of sums of outer distances, so that two spaces which 
are bilipschitz equivalent for the outer metric are bilipschitz equivalent for the inner 
metric as well.1 In general, the converse does not hold, but there exists a special

1 Surprisingly, we do not know any reference for this simple fact, so here is a proof: if . f : X → Y

is a subanalytic map that is a K-Lipschitz for the outer metrics and .γ : [0, 1] → X is a rectifiable 
path between two points x and . x′ of X, then .f ◦γ is a rectifiable path between .f (x) and .f (x′) in Y 
and we have . di

(
f (x), f (x′)

)
� length(f ◦γ ) = supn

∑n−1
i=1 do

(
(f ◦γ )(i/n), (f ◦γ )(i + 1/n)

)
�

K supn

∑n−1
i=1 do

(
γ (i/n), γ (i + 1/n)

) = K length(γ ). By taking the infimum over all such paths 
. γ , we obtain .di

(
f (x), f (x′) � K di(x, x′), that is  f is K-Lipschitz for the inner metrics. 
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class of spaces, or of space germs, which have the remarkable property that their 
inner and outer bilipschitz classes coincide, in the following sense. 

Definition 10.1.1 A connected subanalytic subspace X of . Rn is Lipschitz Normally 
Embedded (or simply LNE) if there exists a subanalytic homeomorphism . f : X →
X which is a bilipschitz equivalence between the inner and outer metrics of X, that 
is such that there exists a real number .K � 1 satisfying, for all .x, y in X, 

. 
1

K
di

(
f (x), f (y)

)
� do(x, y) � Kdi

(
f (x), f (y)

)
.

If x is a point of X, the germ .(X, x) is LNE if there is a neighborhood U of x in . Rn

such that .X ∩ U is LNE. 

Since the inner and the outer geometries of .(X, x) are invariant under bilipschitz 
homeomorphisms (see [42, Proposition 7.2.13]), this property only depends on the 
subanalytic type .(X, x), and not on the choice of an embedding in some smooth 
ambient space .(Rn, 0).2 

This notion was first introduced by Birbrair and Mostowski in the seminal 
paper [9]. Their definition is slightly different because they require the identity 
map, and not just any subanalytic homeomorphism, to be bilipschitz between inner 
and outer metrics, but in fact the two definitions are equivalent. This is a piece 
of folklore knowledge which is a consequence of the main result of loc. cit. In  
Sect. 10.1.3 we recall that result and include a proof of the equivalence that was 
kindly communicated to us by the Lev Birbrair. Note that in loc. cit. LNE spaces 
are simply called normally embedded; in the subsequent literature on the subject the 
term Lipschitz was added to distinguish this notion from those of projective normal 
embedding (in algebraic geometry) and normality (in local geometry, commutative 
algebra and singularity theory). 

Notice that a compact space X is LNE if and only if the germs .(X, x) are LNE 
for all points x if X. Our aim is to present a state of the art on the LNE-ness of real 
and complex analytic germs. 

10.1.2 First Examples 

Example 10.1.2 A smooth germ (X, 0) is Lipschitz Normally Embedded, since it 
is analytically equivalent to (Rn , 0), where the inner metric and the outer metric 
coincide. 

Example 10.1.3 Let Y ⊂ Rn be a subanalytic subspace of the sphere Sn−1 of radius 
1 centered at the origin of Rn, and assume that Y is LNE. Then the cone C(Y, 0)

2 Note that while the result of loc. cit. is only stated in the semialgebraic setting, its proof carries 
through for arbitrary subanalytic germs. 
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Fig. 10.1 The real cusp 
y2 − x3 = 0 

over Y with apex 0, which consists of the union of the half-lines with origin 0 that 
intersect Y , is LNE as well. 

Example 10.1.4 The germ (C, 0) of the real cusp C with equation y2 − x3 = 0 in  
R
2 is not LNE. Indeed, given a real number t >  0, consider the two points p1(t) = 

(t, t3/2) and p2(t) = (t,−t3/2) on C (see Fig. 10.1). Then do

(
p1(t), p2(t)

) = 2t3/2, 
so that in the germ, as t goes two zero, the outer distance between p1(t) and p2(t) 
has order t3/2, which we write as do

(
p1(t), p2(t)

) = Θ(t3/2).3 On the other hand, 
the shortest path on C between the two points p1(t) and p2(t) is obtained by taking 
a path going through the origin, so that we have di

(
p1(t), p2(t)

) = Θ(t). Therefore, 
taking the limit of the quotient as t tends to 0, we obtain: 

. 
do

(
p1(t), p2(t)

)

di

(
p1(t), p2(t)

) = Θ(t1/2) −→ 0.

Note that the existence of two such arcs p1 and p2 is due to the fact that the tangent 
cone T0X of (X, 0) at 0 is not reduced (it has equation y2 = 0). This is an occurrence 
of a general result which will be stated as Theorem 10.1.29. 

Example 10.1.5 A complex curve germ (C, 0) ⊂ (CN , 0) is LNE if and only if it 
consists of smooth transversal curve germs. Indeed, if the latter is true then (C, 0) 
is analytically equivalent to the germ of a union of transversal lines, which being 
a cone is LNE. The converse is more delicate and can be obtained by combining 
several results. First, if (C, 0) ⊂ (CN , 0) is a complex curve germ, then any generic 
linear projection � : CN → C2 restricts to the germ of a bilipschitz homeomorphism
�|(C,0) : (C, 0) → (

�(C), 0
)
for the outer metric ([45, pp. 352–354]). Therefore, it 

suffices to prove the result for a plane curve (C, 0) ⊂ (C2, 0). The key argument,

3 More precisely, throughout this text, we use the big-Theta asymptotic notations of Bachmann– 
Landau in the following form: given two function germs f, g : ([0,∞), 0) → ([0,∞), 0), we say  
that f is big-Theta of g, and we write f (t)  = Θ(g(t)), if there  exist  η >  0 and  K >  0 such that  
K−1g(t) � f (t) � Kg(t) for all t satisfying f (t) � η. 
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which is close to the one presented in Example 10.1.4, is that a complex curve germ 
(C, 0) ⊂ (C2, 0) admitting a non essential Puiseux exponent q >  1 contains two 
arcs p1(t) and p2(t) such that di

(
p1(t), p2(t)

) = Θ(t) and do(p1(t), p2(t)) = 
Θ(tq ), and therefore (C, 0) cannot be LNE. For example, the complex cusp y2 − 
x3 = 0 in  C2, which has has Puiseux expansion y = x3/2, contains the two arcs 
p1(t) = (t, t3/2) and p2(t) = (t, −t3/2) whose inner distance is Θ(t) and whose 
outer distance is Θ(t3/2). 

Notice that, more generally, the inner and outer bilipschitz types of complex 
curve germs are completely understood. On the one hand, the inner bilipschitz 
geometry of a complex curve (C, 0) is trivial in the sense that for the inner metric 
(C, 0) is bilipschitz equivalent to a straight cone over its link, that is to a union of 
smooth transversal curve germs (see [42, Proposition 7.2.2]). On the other hand, 
the outer bilipschitz type of (C, 0) determines and is determined by its embedded 
topological type; for an algebraic proof of this result involving Lipschitz saturation 
of ideals, see the pioneering paper by Pham and Teissier [40] or its recent English 
translation [41]; for a more geometric approach, see [18] or [35]. 

Example 10.1.6 Starting from dimension 3 it is easy to find examples of non-
LNE complex analytic germs which have non-isolated singularities, for example 
by taking the product of a non-LNE germ with a line. For instance, the product 
of a real cusp with a real line, that is the complex hypersurface in C3 with equation 
y2−x3 = 0, is not LNE. One gets other examples by taking a homogeneous complex 
space with a non-LNE link; such an example is given by the hypersurface germ in 
(C3, 0) with equation x2z + y3 = 0 

Example 10.1.7 The first examples of non-LNE complex surface germs with an 
isolated singularity were obtained by Birbrair, Fernandes, and Neumann in 2010 
[6]. It is the family of Brieskorn surfaces xb + yb + za = 0 where b >  a  and a is 
not a divisor of b. In fact, what the authors of loc. cit. show is much stronger: with 
respect to the inner metric, those surface germ are not bi-Lipschitz equivalent to any 
LNE complex algebraic set. 

While few examples of families of LNE singularities are known, it is still 
unclear whether LNE-ness is common among complex singularities with isolated 
singularities, even in the case of surfaces. The second part of the present paper 
discusses several recent advances on this front. 

Example 10.1.8 The space of n × m real and complex matrices also contain 
remarkable families of LNE subspaces. For example, the Lie group GL+

n (R) 
consisting of n × n matrices with positive determinant is LNE, and so are the set of 
n × n matrices Xn−1 with rank n − 1 and its closure, which is the set of matrices of 
determinant zero [24]. These results are generalized in [25] to the  sets  Xt of m × n 
matrices of given rank t � min(m, n) and their closures Xt by using elementary 
arguments of linear algebra and trigonometry, and LNE-ness is also proved in loc. 
cit. for other families such as symmetric and skew-symmetric matrices of given 
rank t and their closures, upper triangular matrices with determinant zero, and the 
intersections of those spaces with some linear subspaces.
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10.1.3 The Pancake Decomposition, the Pancake Metric, and 
the Embedding Problem 

In this section, we present three important theorems which can be considered as the 
first historical results around Lipschitz Normal Embeddings. We will state them in 
the semialgebraic setting, but they remain true in the subanalytic and polynomially 
bounded o-minimal categories with the obvious adaptations. 

Since LNE spaces can be thought of as the simplest ones with respect to inner and 
outer Lipschitz geometries, it is natural to ask whether every semialgebraic subset 
of . Rn admits a finite decomposition as a union of LNE sets. The answer is positive, 
as was established by Parusinski and Kurdyka: 

Theorem 10.1.9 (Pancake Decomposition [27, 38, 39]) Let .X ⊂ R
n be a closed 

semialgebraic set. Then we can write 

. X =
r⋃

i=1

Xi

as a finite union of closed semialgebraic subsets of such that: 

(i) all . Xi are LNE; 
(ii) for every .i �= j we have .dim(Xi ∩ Xj) < min(dimXi, dimXj). 

This remarkable result has several important consequences. First, it enables 
to approach the following natural question: given a closed connected subset 
semialgebraic subset X in . Rn is the inner metric .di : X×X → R�0 a semialgebraic 
function? Note that this is clearly the case for the outer metric on X. 

The following theorem, proved by Kurdyka and Orro, states that . di is bilipschitz 
equivalent to a semialgebraic metric with a bilipschitz constant as close as we want 
from 1. To define such a semialgebraic metric, consider a pancake decomposition 
.P = {Xi}ri=1 of X. Given two points .x, y in X let .Zx,y be the set consisting of all the 
finite ordered sequences .z = (z1, . . . , zs) of points on X such that .z1 = x, .zs = y, 
and for every .k ∈ {1, . . . , s−1}, there is a pancake . Xik such that . Xik ∩{z1, . . . , zs} =
{zk, zk+1}. Finally, set 

. dP (x, y) = inf
(z1,...,zs )∈Zx,y

s−1∑

k=1

di(zk, zk+1).

Theorem 10.1.10 (Pancake Metric, [28]) The function .dp : X × X → R is 
semialgebraic and defines a metric on X (called the pancake metric) which is 
bilipschitz equivalent to . di . Moreover, for all .ε > 0, there exists a pancake 
decomposition (obtained by refinement), such that the underlying pancake metric 
satisfies 

.∀x, y ∈ X, di(x, y) � dP (x, y) � (1 + ε)di(x, y).
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An important application of the result above is the solution by Birbrair and 
Mostowski of the embedding problem, which asks whether every compact con-
nected semialgebraic set is inner bilipschitz equivalent to a LNE semialgebraic set: 

Theorem 10.1.11 ([9]) Let X be a compact connected semialgebraic subset of . Rn. 
Then, for every .ε > 0, there exists a semialgebraic set .Xε ⊂ R

m such that: 

(i) .Xε is semialgebraically bilipschitz equivalent to X with respect to the inner 
metric; 

(ii) . Xε is LNE; 
(iii) the Hausdorff distance between X and . Xε is less than . ε. 

Note that, when X is a complex analytic set, it is not always possible to choose 
. Xε to be complex algebraic. For instance, as already mentioned in Example 10.1.7, 
a surface germ defined by an equation of the form .xb + yb + za = 0, where . b > a

and a is not a divisor of b, does not admit a complex algebraic normal embedding, 
that is, it is not inner bi-Lipschitz equivalent to a LNE complex algebraic set. 

We can now explain the equivalence of Definition 10.1.1 with the definition of 
[9], as we promised in the first section. The proof of the following corollary was 
communicated to us by Lev Birbrair. 

Corollary 10.1.12 A connected subanalytic subspace X of . Rn is LNE (in the sense 
of Definition 10.1.1) if and only if the identity map of X is a bilipschitz equivalence 
between the inner and outer metrics of X. 

Proof Let .g : (X, di) → (Xε, di) a bilipschitz homeomorphism between X and a 
LNE subanalytic subset of . Rm as in Theorem 10.1.11 and let . f : (X, di) → (X, do)

be a subanalytic bilipschitz homeomorphism, which exists by Definition 10.1.1. 
We deduce that .g ◦ f −1 is bilipschitz with respect to the outer metrics (note 
that here we are using the fact that the identity of . Xε is bilipschitz between its 
inner and outer metrics, which is what was intended for LNE in [9]; this proof 
would still be valid with the other definition, by further composing g with the 
appropriate homeomorphism). Therefore .g ◦ f −1 is also bilipschitz with respect 
to the inner metrics (see Footnote 1 at p. 498). This implies that . IdX = f ◦ f −1 =
f ◦ g−1 ◦ g ◦ f −1 is bilipschitz from .(X, di) to .(X, do). ��

10.1.4 Characterization of LNE-Ness via Arcs 

In this subsection we recall a necessary and sufficient condition for the LNE-ness of 
a semialgebraic set which was proved by Birbrair and Mendes. As in the previous 
section, the results stay true in the subanalytic or more generally polynomially 
bounded o-minimal setting (see [7, Remark 2.3]). 

Definition 10.1.13 Let .(X, 0) ⊂ (Rn, 0) be a semialgebraic germ. A real arc on 
.(X, 0) is the germ of a semialgebraic map .δ : [0, η) → X for some .η > 0, such that 
.δ(0) = 0 and .‖δ(t)‖ = t (see also Remark 10.1.16).
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When no risk confusion may arise, we will use the same notation for a real arc . δ

and for the germ .
(
δ([0, η)), δ(0)

)
of its parametrized image. 

Definition 10.1.14 Let .(X, 0) ⊂ (Rn, 0) be a semialgebraic germ and let 
.δ1 : [0, η) → X and .δ2 : [0, η) → X be two real arcs on X. The  outer contact 
of . δ1 and . δ2 is defined to be infinity if .δ1 = δ2 and is otherwise the rational number 
.qo = qo(δ1, δ2) defined by 

. ‖δ1(t) − δ2(t)‖ = Θ(tqo).

The inner contact of . δ1 and . δ2 is the rational number .qi = qi(δ1, δ2) defined by 

. di

(
δ1(t), δ2(t)

) = Θ(tqi ).

Remark 10.1.15 The existence and rationality of the inner contacts . qi is a conse-
quence of the fact that the inner metric is bilipschitz equivalent to the pancake metric 
(Theorem 10.1.10), which is semialgebraic. 

Remark 10.1.16 The inner and outer contacts .qi(δ1, δ2) and .qo(δ1, δ2) can also be 
defined taking reparametrizations by real slices of . δ1 and . δ2 as follows. First note 
that if . δ1 and . δ2 have different tangent directions then .qi(δ1, δ2) = qo(δ1, δ2) = 1, 
so we may assume that they have the same tangent direction. We can then choose 
coordinates .(x1, . . . , xn) such that along the tangent half-line of . δ1 and . δ2 we have 
.x1 > 0 except at 0. For .j = 1, 2, consider the reparametrization . ̃δj : [0, η) → R

n

defined by .δ̃j (t) = δj ∩ {x1 = t}. Then we have .‖δ̃1(t) − δ̃2(t)‖ = Θ(tqo) and 
.di

(
δ̃1(t), δ̃2(t)

) = Θ(tqi ). Indeed, this is an easy consequence of the following 
standard lemma: 

Lemma 10.1.17 Let .B ⊂ R
n be any closed compact convex neighborhood of 0 in 

. Rn and denote by . B1 is the unit ball of . Rn. Let .φ : B → B1 be the homeomorphism 
which maps each ray from 0 to .∂B linearly to the ray with the same tangent, but of 
length 1. Then the map .φ : B → B1 is a bilipschitz homeomorphism. 

We can now state the main result of this subsection, which is a criterion to 
determine if a closed semialgebraic germ is LNE using arcs and their contact orders. 

Theorem 10.1.18 (Arc Criterion, [7]) Let .(X, 0) ⊂ (Rn, 0) be a closed 
semialgebraic germ. Then .(X, 0) is LNE if and only if all pairs of real arcs . δ1 and 
. δ2 in .(X, 0) satisfy .qi(δ1, δ2) = qo(δ1, δ2). 

The proof of this theorem is based on the Curve Selection Lemma. Since the 
latter only applies to semialgebraic metrics, the semialgebraicity of the pancake 
metric and Theorem 10.1.10 play again a fundamental role. 

Example 10.1.19 A straightforward application of the arc criterion shows that the 
real surface S in . R3 defined by the equation .x2 + y2 − z3 = 0 is LNE. See also 
Example 10.1.26.
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The criterion given in Theorem 10.1.18 is difficult to use effectively in practice 
since it requires to compute the inner and outer contact orders of an immense amount 
of pairs of arcs. In Sect. 10.2 we state an analogous criterion for complex surface 
germs where the number of pairs of arcs to be tested is reduced drastically to just 
finitely many pairs. This makes the criterion much more efficient to prove LNE-ness 
and enables one to obtain several infinite families of LNE complex surface germs 
with isolated singularities. 

10.1.5 Characterization of LNE-Ness via the Links 

Recall that the link of a d-dimensional subanalytic germ .(X, 0) ⊂ R
n, which is 

defined by embedding .(X, 0) in a suitable smooth germ .(CN, 0) and intersecting 
it with a small sphere, is, up to homeomorphism, a well defined real .(2d − 1)-
dimensional oriented pseudo-manifold (a smooth manifold if .(X, 0) has isolated 
singularities) which determines and is determined by the homeomorphism class of 
the germ .(X, 0). In this subsection we discuss the relation between a germ being 
LNE and its link being LNE. One implication is always satisfied: 

Lemma 10.1.20 Let .(X, 0) be a subanalytic germ in .Rn such that .(X \ {0}, 0) is 
connected. Then, if .(X, 0) is LNE, so is its link. 

This is a consequence of the fact that, whenever the link of .(X, 0) is connected, 
given two real arcs . δ1 and . δ2 as in Definition 10.1.14, their inner contact can be 
computed as the asymptotic of the inner distances between the points .δ1(t) and . δ2(t)

on the representative .X ∩ {||x|| = t} of the link of .(X, 0). The converse implication 
is only true in some special cases, such as for conical subset of . Rn, as treated by 
Kerner, Pedersen, and Ruas: 

Proposition 10.1.21 ([25, Proposition 2.8]) Let .Sn−1 be the unit sphere centered 
at the origin of . Rn, let  M be a compact subset of .Sn−1, and let . X = C(M) ⊂ R

n

be the cone over M , that is the union of the half-lines with origin 0 and passing 
through points of M . Then X is LNE if and only if M is LNE (as a subset of . Rn). 

The proof is obtained by performing direct computations of inner and outer 
distance between points inside .C(M). 

Remark 10.1.22 In the case where M does not intersect the meridian sphere . Sn−2 =
Sn−1 ∩R

n−1 × {0} ⊂ R
n, then .X = C(M) is also the cone .C(N) over the compact 

set .N = C(M) ∩ R
n−1 × {±1}, and the map .φ : M → N sending a point x of 

M to the point of the half-line through x which intersects .Rn−1 × {±1} realizes a 
bilipschitz homeomorphism for the outer metric. Therefore, the LNE-ness of M is 
equivalent to that of N in this case.
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Example 10.1.23 Consider the cone .C(N) in . R3 over the union of the two circles 

. N = {
(x, y, 1) ∈ R

3
∣∣ ((x − 1)2 + y2 − 1

)(
(x + 1)2 + y2 − 1

) = 0
}
.

Then .C(N) is not LNE since N is not LNE at the intersection point . q = (0, 0, 1)
of the two circles. Indeed, the two arcs .p1(t) = (−1 + √

1 − t2) and . p2(t) =
(1 − √

1 − t2) on .(N, q) satisfy .qo(p1, p2) = 3/2 �= qi(p1, p2) = 1. 

In [30], Mendes and Sampaio proved a broad generalization of Proposi-
tion 10.1.21 which provides a characterization of LNE subanalytic germs via 
their links. This result was further generalized by Nguyen in [36] to any definable 
set in a o-minimal structure (not necessarily polynomially bounded). We state here 
this most general version. 

Theorem 10.1.24 [30, 36] Let .(X, 0) be a definable germ in .(Rn, 0) and let 
.ρ : (X, 0) → (R, 0) be the germ of a continuous definable function such that 
.ρ(x) = Θ(‖x‖). Suppose that .(X \ {0}, 0) is connected. Then the following 
statements are equivalent: 

(i) .(X, 0) is LNE; 
(ii) There exist real numbers .r0 > 0 and .C > 0 such that, for every .r ∈ (0, r0], the  

set .Xr = ρ−1(r) ∩ X is LNE with Lipschitz constant bounded by C. 

Remark 10.1.25 Condition (ii) is stated in [30] in the case where the function . ρ
equals the distance to the origin. In that case, .Xr = Sn−1

r ∩ X is the link of . (X, 0)
at distance r and a germ .(X, 0) satisfying condition (ii) is said to be link-LNE (or 
simply LLNE). 

The proof of Theorem 10.1.24 in the case where .(X, 0) and . ρ are subanalytic 
is based on the Curve Selection Lemma, used in a similar way as in the proof of 
Theorem 10.1.18 given in [7], and on a result of Valette [46, Corollary 2.2] which 
states the existence of a bilipschitz homeomorphism .h : (X, 0) → (X, 0) such that 
for all x in a neighborhood of the origin we have .‖h(x)‖ = ρ(x). 

Example 10.1.26 As an application of Theorem 10.1.24, consider again the real 
hypersurface S defined in . R3 by the equation .x2 +y2 − z3 = 0 of Example 10.1.26, 
and fix .t > 0. Then the intersection .St = S ∩ {z = t} is a circle with radius . t3/2. 
Therefore, every . St is LNE with Lipschitz constant .C = 2π , so that S is link-LNE 
and hence LNE. 

Example 10.1.27 (36, Proposition 3.11) Consider the semialgebraic germ . (X, 0) ⊂
(R3, 0) defined by .X = {(t, x, z) ∈ R

3|0 � x � t, z2 = t2x2} and the 
semialgebraic function .ρ : (X, 0) → (R+, 0) define by .(t, x, z) �→ t . Then 
.ρ(w) = Θ(‖w‖) and .Xr = ρ−1(r)∩X is LNE but its Lipschitz constant is .Θ(1/r). 
Therefore, condition (ii) of Theorem 10.1.24 is not satisfied, which implies that 
.(X, 0) is not LNE.
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10.1.6 LNE-Ness and Moderately Discontinuous Homology 

In [13], Fernández de Bobadilla, Heinze, Pe Pereira, and Sampaio defined a 
homology theory called Moderately Discontinuous homology. It produces families 
of groups which are invariants of the bilipschitz homeomorphism classes of 
subanalytic germs with respect to either the inner or the outer metric. In particular, 
given a subanalytic germ .(X, 0) ⊂ (Rn, 0), the identity map on .(X, 0) induces 
homomorphisms between the corresponding Moderately Discontinuous homology 
groups of .(X, 0) with respect to these two metrics, and it is easy to check that 
if .(X, 0) is LNE then these homomorphisms are isomorphic. The authors asked 
whether the converse is true: 

Question 10.1.28 Let .(X, 0) ⊂ (Rn, 0) be a subanalytic germ and assume that 
the identity map induces isomorphisms at the level of Moderately Discontinuous 
homology with respect to the inner and the outer metric at every point of .(X, 0). Is  
.(X, 0) necessarily LNE? 

In general, the answer is no: Example 10.1.27 is a counter-example, as shown 
by Nguyen in [36, Proposition 3.11]. Notice that that example is semialgebraic and 
has a non-isolated singularity. The question is still open in the case of an isolated 
singularity or in the complex analytic setting. 

10.1.7 LNE-Ness and Tangent Cones 

In this subsection, we state and discuss two necessary conditions for the LNE-ness 
of a subanalytic germ .(X, 0) ⊂ (Rn, 0) in term of its tangent cone, proved by 
Fernandes and Sampaio. 

Theorem 10.1.29 ([19, Corollary 3.11]) Let .(X, 0) ⊂ (Rn, 0) be a subanalytic 
germ and let .T0X be its tangent cone at 0. If  X is LNE, then the two following 
conditions are satisfied: 

(i) .T0X is LNE; 
(ii) .T0X is reduced. 

Proof (Sketch) The proof of the first part uses the following notion of tangent cone 
of a subanalytic germ in .(X, 0) ⊂ (Rn, 0), introduced in [19, Section 2.2], which 
generalizes the classical definition in the real or complex analytic setting. Let . D0(X)

be the set of unitary vectors v in .Rn \ {0} such that there exist a sequence of points 
.(xj )j∈N in .X \ {0} converging to 0 such that .limj→+∞

xj

‖xj ‖ = v; the  tangent cone 

.T0X of .(X, 0) at 0 is defined by 

.T0X = {tv | v ∈ D0(X), t ∈ R
+}.
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Assume that .(X, 0) is LNE. Let .0 ∈ U ⊂ X be a small neighborhood of 0 in X 
and let .λ > 0 such that for all .x, y ∈ U, di(x, y) � λdo(x, y). The proof of the 
first part of the theorem presented in [19] considers two vectors .v,w in .T0X and 
constructs an arc α in .T0X between v and w with length at most .(1 + λ)‖x − y‖. 
The arc α is obtained by an elegant argument using the Arzelà–Ascoli Theorem, as 
the limit of arcs joining two sequences of points .(xj ) and .(yj ) in .(X, 0) such that 
.lim

xj

‖xj ‖ = v and .lim
yj

‖yj ‖ = w. The second part of the theorem requires a definition 
of reducedness for the tangent cone, introduced in [4] and based on an equivalent 
definition of the tangent cone .T0X using spherical blowups. We refer to [19, Section 
3] for details, and only remark that the definition coincides with the classical one in 
the case of an analytic germ. The proof consists then in the construction of a pair of 
arcs .(p1, p2) which does not satisfy the arc criterion in the neighborhood of a non 
reduced component of .T0X, in a similar way as in Example 10.1.4. ��

The converse of Theorem 10.1.29 is not true. It is easy to find counter-
examples among semialgebraic germs with non-isolated singularities, such as . X ={
(x, y, z) ∈ R

3
∣∣ (x2+y2−z2

)(
x2+(|y|−z−z3)2−z6

) = 0, z � 0
}
[19, Example 

3.12]. 
Note that in the example above the link of .(X, 0) is not LNE, hence . (X, 0)

cannot be LNE itself thanks to Lemma 10.1.20. Therefore, it becomes natural to 
ask the following question: given a subanalytic germ .(X, 0) ⊂ (Rn, 0) whose 
link is LNE and satisfying Conditions (i) and (ii) of Theorem 10.1.29, is  . (X, 0)
necessarily LNE? The answer is negative, even among complex germs with isolated 
singularities. A counter-example is given by Neumann and the second author in the 
appendix of [19]:4 

Proposition 10.1.30 The hypersurface germ in .(C3, 0) with equation 

. y4 + z4 + x2(y + 2z)(y + 3z)2 + (x + y + z)11 = 0

is not LNE , it has an isolated singularity at 0, and its tangent cone is reduced and 
LNE. 

To end this subsection, let us mention that Fernandes and Sampaio proved in [20] 
the following analogue of Theorem 10.1.29 about complex algebraic sets of any 
dimension which are LNE at infinity, recovering in particular the results of [16]. 

Theorem 10.1.31 Let X be complex analytic set in . Cn. Assume that: 

(i) X is Lipschitz Normally Embedded at infinity, that is there exists a compact 
subset K of .Cn such that each connected component of .X \ K is Lipschitz 
Normally Embedded; 

(ii) The tangent cone of X at infinity is a linear subspace of . Cn. 

Then X is an affine linear subspace of . Cn.

4 Note that the link of a subanalytic germ with isolated singularities is smooth, and therefore LNE. 
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We refer to [20] for details, and in particular to [20, Section 4] for the definition 
of the tangent cone at infinity. This result is remarkable since it shows that an a 
priori mild assumption at infinity forces the rigidity of the whole X. Note that if X 
is Lipschitz regular at infinity, that is if outside of a large compact set in . Rn it is 
bilipschitz homeomorphic to an open subset of . Rk for some k, then X is LNE at 
infinity (this is [20, Corollary 3.3]). 

10.1.8 LNE in Topology and Other Fields 

Lipschitz Normal Embeddings have also been useful to study problems in topology. 
For example, Birbrair et al. [8] prove that for a large class of real analytic 
parametrized surfaces in . R4 LNE-ness implies the triviality of the knot obtained 
as their link. 

More recently, Fernandes and Sampaio [21, Theorem 3.2] showed that two LNE 
compact subanalytic sets which are close enough with respect to the Hausdorff 
distance have isomorphic fundamental groups. This leads them to give topological 
conditions on the link of a LNE germ that ensure that the germ is smooth, (see 
Theorem 4.1 in loc. cit.), from which they derive the following remarkable result, 
which is a metric version, in arbitrary dimension, of Mumford’s link criterion for 
the smoothness of normal surface germs. 

Theorem 10.1.32 ([21, Theorem 4.2]) Let .(X, 0) be a complex analytic germ of 
dimension k with isolated singularities. Then .(X, 0) is smooth if and only if it is 
locally metrically conical and its link at 0 is .(2k − 2)-connected. 

The definition for X being locally metrically conical at 0 is given in [21, page 4]. 
We note that an earlier result towards a metric characterization of smoothness was 
obtained by Birbrair et al. [5], who proved that a germ which is outer bilipschitz 
equivalent to a smooth germ .(Cm, 0) is itself smooth. 

We also remark that a problem related to the embedding problem discussed in 
Sect. 10.1.3 is studied in functional analysis. Indeed, some people working in that 
field are interested in studying different classes of embeddings (some of which 
closely resemble those of the Theorem 10.1.11 of Birbrair and Mostowski) of 
discrete metric spaces into suitable Banach spaces. We refer the interested reader 
to the monograph [37] and to the many references found therein. 

10.2 LNE Among Complex Surface Germs 

The goal of this section is to overview some recent advances on the study of LNE 
singularities among complex surface germs.
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10.2.1 A Refinement of the Arc Criterion 

As was mentioned in Sect. 10.1.4, the arc-based criterion for LNE-ness of Birbrair 
and Mendes given in Theorem 10.1.18 is difficult to use effectively in practice, as it 
requires to compute inner and outer contact orders of infinitely many pairs of arcs. 
Whenever .(X, 0) is a normal surface germ, this situation has been improved upon by 
Neumann, Pedersen, and the second author of this survey (see [33]), and then further 
in an upcoming work by Pedersen, Schober, and the two authors (see [17]), leading 
to a drastic reduction of the amount of pairs of real arcs whose contact orders have 
to be compared, down to a finite (and in fact rather small) number. 

In order to state the improved criterion we need to introduce the notion of test 
curve. Given a sequence of point blowups .ρ : Yρ → C

2 of .(C2, 0) and an irreducible 
component E of the exceptional divisor .ρ−1(0) of . ρ, a  test curve at E is any 
plane curve germ .(γ, 0) ⊂ (C2, 0) whose strict transform via . ρ is a smooth curve 
transverse to E at a smooth point of .ρ−1(0). For the purpose of the criterion, it is 
sufficient to take for . ρ any sequence such that the strict transform . Δ∗ via . ρ of the 
discriminant curve . Δ of a generic plane projection .� : (X, 0) → (C2, 0) of . (X, 0)
is a disjoint union of irreducible curves cutting the exceptional divisor .ρ−1(0) of 
. ρ at smooth points (such as for example any good embedded resolution of . Δ), 
to consider a suitable subset .{E0, . . . , Es} of the set of irreducible components of 
.ρ−1(0), and to pick one test curve . γi at . Ei for each .i = 0, . . . , s; this gives rise to 
a set  .{γ0, . . . , γs} called a family of test curves for .(X, 0) with respect to . �. We can 
now state the criterion. 

Theorem 10.2.1 ([17, 33]) Let .(X, 0) be a normal surface singularity, let 
.� : (X, 0) → (C2, 0) be a generic plane projection of .(X, 0), and let . {γ0, . . . , γs}
be a family of test curves for .(X, 0) with respect to . �. Then the following conditions 
are equivalent: 

(i) .(X, 0) is LNE. 
(ii) For every .j = 0, . . . , s and for every pair of distinct irreducible components . ξ

and . ξ ′ of the principal part of .�−1(γj ), then . ξ and . ξ ′ have the same multiplicity 
as . γj and satisfy the equality . qi(ξ, ξ ′) = qo(ξ, ξ ′).

In the statement, the principal part of .�−1(γj ) is a curve obtained by deleting 
from .�−1(γj ) some irreducible components, namely those that do not pull back to 
curvettes on a suitable canonical subgraph of the minimal good resolution of .(X, 0). 
Contact orders between two complex curve germs . ξ and . ξ ′ are defined in a similar 
way as those between real arcs by looking at the shrinking rates as .ε > 0 goes to 0 
of the inner or outer distance between the sets .ξ ∩ {||x|| = ε} and .ξ ′ ∩ {||x|| = ε}. 
These are simple to compute in practice; for example this can be done by looking 
at the Puiseux expansions of the images of the irreducible curves . ξ and . ξ ′ through 
a second generic plane projection, which is easy to do with computer software such 
as Singular or Maple. 

The version of the criterion of [17] improves upon that of [33] because the latter 
requires the map . ρ used to construct a test family to be a good embedded resolution
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of the family of the projections via . � of the polar curves with respect to all generic 
plane projections of .(X, 0) (which in particular demands to determine the Nash 
transform of the latter) and not just to one of them, then to consider a greater number 
of irreducible components of .ρ−1(0), to take  all possible test curves at any such 
component, and finally to pull those curves back again with respect to all generic 
plane projections of .(X, 0). 

10.2.2 Examples 

The improvement of Birbrair and Mendes’s arc criterion discussed in the previous 
subsection lead to the discovery of several infinite families of LNE complex surface 
germs with isolated singularities, no examples of which were previously known. 

Theorem 10.2.2 ([34]) Let .(X, 0) be a normal complex surface germ assume that 
it is rational. Then .(X, 0) is LNE if and only if it is a minimal singularity. 

This result gives the first known infinite family of non-conical LNE normal 
complex surface singularities, and is in fact the main reason why the criterion of 
[33] was developed. For a thorough discussion of rational surface singularities we 
refer the reader to [29, 32], here we only recall that a surface singularity . (X, 0)
is rational if and only if the exceptional divisor E of its minimal good resolution 
consists of rational curves and its dual graph is a tree which satisfies a numerical 
condition (see [29, Theorem 4.2]). If moreover E is reduced, that is if the pullback 
of a general element of the maximal ideal of .(X, 0) vanishes with order one along 
each component of E, then .(X, 0) is said to be minimal. 

The fact that a rational singularity which is LNE is minimal based on Laufer’s 
algorithm [29, Proposition 4.1] to determine the fundamental cycle .Zmin (see the 
Footnote 5 on p. 515 for the definition of .Zmin). Conversely, in order to apply the 
criterion of Theorem 10.2.1 and show that a minimal surface singularity is LNE, the 
proof of Theorem 10.2.2 relies on a detailed study of the generic polar curves of 
minimal surface singularities performed in [43]. 

More generally, an equidimensional complex germ .(X, 0) of multiplicity m and 
embedding dimension e is said to be minimal if it is reduced, Cohen–Macaulay, with 
reduced tangent cone, and Abhyankar’s inequality .m � e−dim(X, 0)+1 is in fact an 
equality. The last condition means that minimal singularities generally live in high-
dimensional ambient spaces. At the other side of the spectrum, the first family of 
LNE normal hypersurface singularities in . C3 was discovered later by Misev and the 
first author of this survey, who studied LNE-ness among .superisolated singularities. 
In order to define those, consider a complex hypersurface germ .(X, 0) in .(C3, 0), 
defined by the equation .f (x, y, z) = 0, and write f as a sum of polynomials . f =
fd + fd+1 + . . ., with .fd �= 0 and each . fi homogeneous of degree i. Then .(X, 0) is 
said to be superisolated if the plane projective curve defined by .fd+1 = 0 does not 
intersect the singular locus of the projectivized tangent cone .C0X = {

(x : y : z) ∈
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P
2 
C

∣∣ fd(x : y : z) = 0
}
of .(X, 0). This implies that a single blowup of X along 0 is 

sufficient to resolve its singularities. 

Theorem 10.2.3 ([31]) Let .(X, 0) be a superisolated normal complex surface 
germ. Then .(X, 0) is LNE if and only if its tangent cone is reduced and LNE. 

Recall that the tangent cone of a LNE singularity has to be reduced and LNE 
thanks to Theorem 10.1.29. 

The further improvement obtained in [17] over the criterion of [33] allows to 
generalize the theorem above and obtain new families of LNE normal hypersurface 
singularities in . C3. In particular, the following result follows. 

Theorem 10.2.4 ([17]) Let n and k be two positive integers such that .n � k and let 
.(X, 0) be the hypersurface in .(C3, 0) defined by the equation 

. 

k∏

i=1

(aix + biy) − zn = 0,

where the .(ai, bi)’s are pairs of nonzero complex numbers such that the k points 
.(ai : bi) of . P1

C
are pairwise distinct. Then .(X, 0) is LNE. 

Observe that whenever .n < k then the tangent cone of .(X, 0) is defined by 
.zn = 0. As the latter is non reduced, then .(X, 0) cannot be LNE, or this would 
contradict Theorem 10.1.29. 

10.2.3 Properties of LNE Surfaces 

Lipschitz Normally Embedded complex surface singularities have many remarkable 
properties. For example, the authors of this survey, together with Belotto da Silva, 
proved the following: 

Proposition 10.2.5 ([3, Proposition 2.2]) Let .(X, 0) be a complex LNE normal 
surface germ. Then the minimal resolution of .(X, 0) factors through the blowup 
of X along 0, the exceptional components of this blowup are reduced, and the 
topological type of .(X, 0) determines its multiplicity (which a priori is a datum 
of analytic nature). 

The same paper also contains the following deeper result. 

Theorem 10.2.6 ([3, Theorems 1.1 and 1.2]) Let .(X, 0) be a complex LNE 
normal surface germ. Then the topological type of .(X, 0) determines the following 
data: 

(i) The dual graph of the minimal good resolution of .(X, 0) which factors through 
the blowup of the maximal ideal and through the Nash transform, decorated by 
two families of arrows corresponding respectively to the strict transform of a
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generic hyperplane section and to the strict transform of the polar curve of a 
generic plane projection. 

(ii) The (embedded) topological type of the discriminant curve of a generic 
projection. 

Moreover, this data can be computed explicitly from the dual graph of the minimal 
good resolution of .(X, 0). 

This theorem generalizes to all LNE normal surface germs results that were 
previously known only for minimal surface singularities. In that special case, the 
first property was established by Spivakovsky [43, III, Theorem 5.4], while the 
second one was later proven by Bondil [11, Theorem 4.1], [12, Proposition 5.4]. 

This result can be thought of as a unique solution, for the class of LNE normal 
surface singularities, to the so-called problem of polar exploration, which asks 
to determine the generic polar variety of a singular complex surface germ. This 
problem was studied for a general surface germ .(X, 0) by the same authors together 
with Némethi [1], relying on the study of the inner rates of .(X, 0). Those are 
an infinite family of metric invariants that appeared naturally in the study of 
the Lipschitz geometry of .(X, 0) in the foundational work [10], and were then 
systematically studied in [2]. From this point of view, it is worth noticing that in 
the paper [3] referred to above it is also shown that the topological type of a LNE 
normal surface germ .(X, 0) determines its inner rates (see Proposition 5.1 of loc. 
cit.), and this combined with the main result of [2] is what allows them to determine 
the combinatorics of the polar curve of a generic plane projection of .(X, 0). 

10.3 Open Questions 

We conclude this survey by putting forward some open questions about LNE 
singularities that we find worth of interest. 

10.3.1 Behavior Under Blowup and Nash Transform 

It was a long-held belief by several experts in the field that the point blowup of 
a LNE complex surface germ .(X, 0) with an isolated singularity would most likely 
have itself only LNE singularities. The following counterexample took therefore the 
authors by surprise. 

Example 10.3.1 The hypersurface .(X, 0) in .(C3, 0) defined by the equation 

.(x + y)(2x + y)(x + 2y) − z5 = 0
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is LNE (it is a special case of Theorem 10.2.4 from [17]). However, the blowup of X 
along 0 has a singularity whose local equation is . 2x3

1 +7x2
1y1+7x1y2

1 +2y3
1 −w2 =

0, whose tangent cone .w2 = 0 is non reduced. 

On the other hand, the following question is still open. 

Question 10.3.2 Let .(X, 0) be a LNE complex surface germ with an isolated 
singularity. Does the Nash transform of .(X, 0) have itself only LNE singularities? 

Observe that by da Silva et al. [3, Corollary 4.7], if .(X, 0) is LNE then its 
Nash transform has only sandwiched singularities. Since sandwiched singularities 
are rational, in order to give a positive answer to Question 10.3.2 thanks to 
Theorem 10.2.2 one would have to show that they are minimal. 

10.3.2 Topological Types of LNE Surface Singularities 

It is a very natural question to study the topological properties of LNE singularities. 
In order to start such an investigation, it seems wise to restrict oneself to the case of 
normal complex surfaces. In this context, it is well-known that, by a classical result 
of Neumann, the topological type of a normal surface singularity .(X, 0) is equivalent 
to the datum of the weighted dual graph . Γπ of the minimal good resolution . π
of .(X, 0), where each vertex is weighted by the genus and self-intersection of the 
corresponding exceptional component of . π . 

A first observation is then that being LNE is not a topological property, as shown 
by the following example, kindly provided to us by Jan Stevens. 

Example 10.3.3 Let . X1 be the hypersurface in . C3 defined by the equation . x4 +
y4 + z4 = 0 and let . X2 be the surface in . C4 defined by the equations .y2 = xz and 
.w2 = x4 + z4. The two surface germs .(X1, 0) and .(X2, 0) are normal and have the 
same topological type, since for both of them the exceptional divisor of the minimal 
resolution is a single curve of genus 3 and self-intersection . −4. However, .(X1, 0) is 
LNE, since it is the cone over the smooth projective curve .x4 + y4 + z4 = 0, while 
.(X2, 0) is not, since its tangent cone, which is defined by the equations .w2 = 0 and 
.y2 = xz, is non reduced. 

However, given a weighted graph . Γ one can say that . Γ is LNE if there exists a 
LNE normal surface singularity with resolution graph . Γ . The following question is 
therefore very natural. 

Question 10.3.4 Is there a combinatorial characterization of LNE weighted graphs? 

The first results of [3] provide some obstructions for a weighted graph . Γ to be 
LNE. Denote by .Zmin the fundamental cycle of . Γ . We then say that a vertex v of
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.Γ (V ) is a numerical .L-node of . Γ if .Ev · Zmin < 0.5 It  was then  shown in [3, 
Proposition 2.2.(ii)] that whenever .(X, 0) is a LNE singularity whose weighted dual 
graph is . Γ then .Zmin coincides with the maximal ideal cycle .Zmax of .(X, 0).6 In 
particular, the numerical .L-nodes of . Γ coincide with its usual .L-nodes, which are 
the vertices which correspond to the exceptional components of the blowup of X 
along 0. It then follows from Proposition 10.2.5 that the numerical .L-nodes of . Γ
are reduced, which means that whenever . Γ is the dual resolution graph of a LNE 
surface then it satisfies the following combinatorial condition: 

. writing Zmin = ∑
dvEv, we have dv = 1 for every v such that Zmin · Ev < 0.

A weighted graph satisfying the condition above is called a Kodaira graph. 
Kodaira graphs are precisely those which can be realized as dual resolution graphs of 
the so-called Kodaira singularities, a class of surface singularities defined in terms 
of a suitable family of curves and introduced by Karras [23] after work of Kulikov 
[26]. It seems worthwhile of interest to fully investigate the relations between 
Lipschitz Normal Embeddings and Kodaira singularities (or the subclass of Kodaira 
singularities consisting of the so-called Kulikov singularities introduced by Stevens 
[44]). As a first step towards this, we mention that among rational singularities 
the only ones that are Kodaira are precisely the minimal singularities (see [23, 
Example 2.8 plus Theorem 2.9]), that is the ones that are also LNE (and Kulikov). 
However, not all Kulikov singularities (and therefore not all Kodaira singularities) 
are LNE, since their projective tangent cone is not necessarily reduced (see [44, 
Example 2.4] for a Kulikov singularity with reducible tangent cone; moreover its 
minimal resolution does not factor through the blowup of its maximal ideal). 

10.3.3 Generalizations of the Arc Criterion 

We have mentioned in Sect. 10.2 how improving the arc criterion for LNE-ness of 
Theorem 10.1.18 proved to be extremely useful in the study of LNE complex surface

5 Let us briefly recall the precise definitions of the combinatorial notions we use here, in particular 
that of the fundamental cycle and how to make sense of the intersection number .Ev · Zmin. A  
weighed graph is a finite connected graph . Γ without loops and such that each vertex . v ∈ V (Γ )

of . Γ is weighted by two integers, its genus .g(v) ∈ Z�0 and its self-intersection .e(v) ∈ Z�0. 
Let .E = ⋃

v∈V (Γ ) Ev be a configuration of curves whose dual weighted graph is . Γ , so that in  

particular .g(v) = g(Ev) and .E 2
v = e(v), and  let  .IΓ = (Ev · Ev′ ) be the incidence matrix of . Γ . 

We assume that . IΓ is negative definite. A divisor on . Γ is a formal sum .D = ∑
v∈V (Γ ) mvEv over 

the set of the irreducible components of E with integral coefficients. The fundamental cycle . Zmin
of . Γ is then the unique nonzero divisor on . Γ which is minimal among those divisors D satisfying 
.D · Ev < 0 for all .v ∈ V (Γ ). Its existence was shown by Artin, and its coefficients are all strictly 
positive. 
6 The cycle .Zmax is the divisor on . Γ whose coefficient at a vertex v is the order of vanishing of a 
generic linear form of .(X, 0) along the exceptional component . Ev associated with v. 
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germs. It would therefore be very interesting to find similar improvements in a more 
general setting, and in particular for complex germs of higher dimensions. 

Question 10.3.5 Find an improvement of the arc criterion of Birbrair and Mendes 
(Theorem 10.1.18) that only requires to compare the inner and outer contact orders 
of a finite (and in fact as small as possible) family of pairs of real arcs, for complex 
germs of arbitrary dimension. 

Let now .(X, 0) be an algebraic complex germ. The arc space .L∞(X, 0) of . (X, 0)
is a scheme that parametrizes all complex arcs on X that are centered in 0, which are 
by definition the points of X with coordinates in .C[[t]] and such that setting . t = 0
we obtain the complex point .0 ∈ X. Its geometry, and the geometry of the jet spaces 
of .(X, 0) (the varieties parametrizing the jets of .(X, 0), which are its complex arcs 
truncated at a given order), reflect interesting properties of the singularity of .(X, 0). 
Their study plays an important role in many subareas of algebraic geometry, such 
as in the theory of motivic integration. This leads us to formulate the following 
problem. 

Question 10.3.6 Give a criterion for the LNE-ness of a germ .(X, 0) in terms of the 
geometries of the arc or jet spaces of .(X, 0). 

Such a criterion should involve testing the contact orders for generic arcs (or 
families of arcs, which are commonly called wedges) of some suitable irreducible 
subschemes of the arc space. In dimension 2, this could be related to the irreducible 
components of .L∞(X, 0), and hence to the essential valuations of .(X, 0), thus 
relating Lipschitz geometry to the notorious Nash problem solved by Fernández 
de Bobadilla and Pe Pereira in [14]. In arbitrary dimension, the LNE-ness of a germ 
.(X, 0) could possibly be read in terms of its terminal valuations, whose relation to 
the geometry of .L∞(X, 0) was detailed by de Fernex and Docampo [15]. 

More generally, the relations between the geometry of arc and jet spaces and 
Lipschitz geometry are completely unexplored. Some recent results, such as the 
appearance of Mather discrepancies in [1], suggest that this may be a matter worth 
exploring. 

10.3.4 Higher Dimensional LNE Complex Singularities 

As should now be clear to the reader, very little is known about complex LNE 
singularities starting from the dimension 3. Since the simplest family of LNE 
surface germs consists of minimal surface singularities, the following question is 
very natural. 

Question 10.3.7 Are minimal singularities in arbitrary dimension LNE? 

Recall that the definition of minimal singularities in arbitrary dimensions appears 
after Theorem 10.2.2.
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Minimal singularities form a building block in the Minimal Model Program. 
Therefore, more generally, can we hope to characterize LNE singularities, or at least 
provide new classes of higher-dimensional examples, using the invariants appearing 
in the Minimal Model Program? 
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