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Abstract Let X denote a purely d-dimensional reduced complex analytic space. 
If it has singularities, it has no tangent bundle, which makes many classical and 
fundamental constructions impossible directly. However, there is a unique proper 
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map .νX : NX → X which has the property that it is an isomorphism over the non-
singular part . X0 of X and the tangent bundle .TX0 lifted to NX  by this isomorphism 
extends uniquely to a vector bundle on NX. For .x ∈ X, the set-theoretical fiber 
.|ν−1

X (x)| is the set of limit directions of tangent spaces to . X0 at points approaching 
x. The space NX  is reduced and equidimensional, but in general singular. If X 
is a closed analytic subspace of an open set U of . CN , the space NX  is a closed 
analytic subspace of .X × G(d,N), where .G(d,N) denotes the Grassmannian of 
d-dimensional vector subspaces of . CN . The rich geometry of the Grassmannian 
makes it complicated to study the geometry of the map . νX using intersection theory. 
There is an analogous construction where tangent spaces are replaced by tangent 
hyperplanes, and the map . νX is replaced by the conormal map .κX : C(X) → X, 
where .C(X) denotes the conormal space, which is a subspace of .X × P̌N−1, where 
.P̌N−1 is the space of hyperplanes of . PN , the dual projective space, so that the 
intersection theory is simpler. This paper is devoted to these two constructions, their 
applications to stratification theory in the sense of Whitney and to a general Plücker 
type formula for projective varieties. 

1.1 Introduction 

Let X denote a purely d-dimensional reduced subspace of an affine space . CN

defined in an open subset by algebraic or analytic equations with coefficients in 
. C. The singular locus of X is usually defined as a point where “there is no tangent 
space” in the sense that the linear equations derived from the original equations 
of X do not define a unique linear subspace of dimension d. The direction of 
the tangent space at a non-singular point .x ∈ X is represented by a point in the 
Grassmannian .G(d,N) of d-dimensional vector subspaces of . CN . Thus, there is 
a map .γ : X0 → G(d,N), where .X0 denotes the non-singular part of X, which 
is dense in X since X is reduced. This map is easily seen to be holomorphic, and 
algebraic if X is. It is called the Gauss map because a similar map was used by 
Gauss in his study of the curvature of differentiable surfaces, published in 1828. 

Around the same time as Gauss, Poncelet, Bobillier, Plücker and others were 
studying the duality of plane projective curves. Here the motivations did not come 
from geodesy but rather from the interest in understanding the duals of known 
theorems and the problem of determining how many tangents can be drawn to a 
curve C of degree d from a general point in the plane. The plane projective duality 
which transforms a point in the projective plane . P2 with homogeneous coordinates 
.(x : y : z) into a line in the dual plane simply by exchanging the roles of coefficients 
and variables in the equation .ax + by + cz = 0 of lines going through the point 
.(x : y : z) shows that the number of tangents to C from a general point is the degree 
of the dual curve .Č ⊂ P̌2 consisting of the points of . ̌P2 representing the lines 
tangent to C. This degree is .d(d − 1). Thus if . Č was non-singular its dual could not 
be C as the geometry insists it should be, since . d(d − 1)((d(d − 1)− 1) �= d(d − 1)

unless .d = 2. Thus . Č has singularities and some points of C must represent limits of
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tangents to . Č at non-singular points of . Č tending to a singular point. This is perhaps 
one of the first occurrences of limits of tangent spaces. 

Singular curves and surfaces were studied throughout the nineteenth century 
mostly1 with the goal of generalizing Riemann’s work, understanding “conditions 
of adjunction”. † and more generally the behavior of differential forms and their 
integrals. It is perhaps not so surprising that it is only in 1954 that Semple introduced 
in [50] the space of limit directions of tangent spaces to an algebraic variety, which 
he called the first derivate in [50, §8]. It is the closure NX  in .X × G(d,N) of the 
graph .NX0 ⊂ X0 ×G(d,N) of the Gauss map. As a subspace of .X ×G(d,N) it is 
endowed with a projection .ν : NX → X which is proper (since .G(d,N) is compact) 
and is an isomorphism over . X0. The set-theoretic fiber .|ν−1(x) ⊂ G(d,N) above 
a point .x ∈ X is the set of limit directions at x of tangent spaces at points of . X0

tending to x. 
Semple also asked, in the last paragraph of his paper, whether iterating this 

construction would eventually resolve the singularities of X. 
About 10 years after Semple, John Nash rediscovered the construction and the 

question and for a time the construction was called the Nash blowing-up, which 
explains the notation NX. Semple’s paper is difficult to read and it is only after 
Monique Lejeune-Jalabert discovered his contribution that the map . νX : NX → X

came to be called the Semple-Nash modification. 
Also about 10 years after Semple, and after important preliminary work in the 

differentiable case by Whitney himself in 1957 and Thom in 1960 (see [63]), 
in 1965, Hassler Whitney published a study of possible definitions of limits of 
secants and tangents at a singular point of a complex analytic space, in which 
he introduced the fundamental notion of regular stratification, nowadays called 
Whitney stratifications. It is a locally finite partition of a complex analytic space into 
locally closed non-singular “strata” where each stratum has a “regular” behavior 
along the strata of its boundary. The definition of “regular” involves both limits 
of secants and limits of tangents for points tending to the boundary stratum. The 
definitions extend readily beyond the complex analytic case and in the hands of 
Thom, Mather, and others it became a most important conceptual and technical tool 
in the study of singularities of differentiable mappings, in particular when applied 
to infinite dimensional spaces such as jet spaces and function spaces. 

Stratification theory in the large is the subject of David Trotman’s contribution 
(see [63]) to the first volume of this Handbook. In this text we shall concentrate 
on the complex analytic case for both limits of tangent spaces and stratifications. 
We consider reduced equidimensional complex spaces and whenever we take the 
intersection of such a space with a non-singular subspace of some ambiant non-
singular space, we endow it with its reduced structure.

1 There are exceptions, for example in work of Cayley, Halphen, M. Noether, Salmon, H.J.S. Smith, 
often connected with generalizations of the Plücker formulas for curves and the study of linear 
systems and projective embeddings. 
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Although it can be read independently, this paper is in some ways a continuation 
of the paper [33] of Lê and Snoussi in Volume II of this Handbook. Also, a version 
of the content of Sect. 1.2 appears in [56, §3.9] under the name of Nash blowing up 
(which is more traditional) and a version of the content of Sect. 1.5 appears in [56, 
§3.3] in Volume I of this Handbook. Some of the topics exposed here can be found 
exposed in greater detail in [16] from which, with the permission of its authors and 
of the editors, we have copied some parts of this text. 

1.2 Limits of Tangent Spaces: The Semple-Nash Modification 

Let X be a reduced and equidimensional closed subspace of an open set .U ⊂ CN . 
We denote by .X0 the set of non-singular points of X, which is open and dense in 
X, by  d the dimension of X, and by .G(d,N) the grassmannian of d-dimensional 
vector subspaces of . CN . The Gauss map 

. γX0 : X0 → G(d,N), x �→ [TX0,x] ∈ G(d,N)

associates to every point of . X0 the direction of the tangent space to X at this point. 
Let us consider the graph .NX0 ⊂ X0×G(d,N) of .γX0 . It is a purely d-dimensional 
analytic subset of .X0 × G(d,N) since it is isomorphic to . X0. The space of limits 
of (directions of) tangent spaces at points of . X0, the Semple-Nash modification of 
X, is the closure NX  in .X × G(d,N) of .NX0. So we have to prove that it is a 
closed analytic subspace of .X × G(d,N). The singular locus . SingX = X \ X0

is a closed complex subspace of X, of dimension .≤ d − 1. However, we cannot 
apply the Remmert-Stein theorem (see [38, Chap. IV, §6] or [1, Theorem 6]) to 
prove that NX  is analytic because we have to extend .NX0 ⊂ U ×G(d,N) through 
.SingX × G(d,N) which is of dimension .> d. The proofs in [65, Theorem 16.4] 
and [45, Theorem 1] build, using jacobian determinants, a system of equations for 
the closure .NX ⊂ U × G(d,N), thus proving its analyticity. 

One has then to verify that the map .NX → X is unique up to a unique X-
isomorphism, independent of the immersion of X in an open set of an affine space. 

Then for any reduced equidimensional complex space X the local Semple-Nash 
modifications will glue up into a unique proper map, the Semple-Nash modification 
.νX : NX → X (sometimes simplified to . ν). 

We note that since NX  is a reduced equidimensional analytic space it makes 
sense to iterate the Semple-Nash modification: .N2X = NNX,N3X = NN2X, 
and so on. 

We note that the pull-back by the second projection .γX : NX → G(d,N) of the 
tautological bundle on the grassmannian is a vector bundle on NX  which extends 
the tangent bundle of .NX0 � X0. 

There is another approach, based on Grothendieck’s Grassmannian of a coherent 
module (see [19]) which shows directly the canonicity of the Semple-Nash modifi-
cation.
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Let X be a reduced equidimensional complex space and .Ω1
X its coherent module 

of differentials, which is locally free on . X0. It comes with a morphism of .𝒪X-
modules .dX : 𝒪X → Ω1

X, the differential, which cannot be confused with the 
dimension. Since the .𝒪X-module .Ω1

X is coherent, the symmetric algebra . Sym𝒪X
Ω1

X

of the .𝒪X-module .Ω1
X is a graded .𝒪X-algebra locally of finite presentation and 

generated in degree one, and so corresponds to an analytic space . SpecanXSym𝒪X
Ω1

X

over X.The fibers of the natural map 

. t : SpecanXSym𝒪X
Ω1

X → X

are the Zariski tangent spaces .t−1(x) = SpecSymC(mX,x/m2
X,x)

∨, where . ∨ denotes 
the dual vector space over . C. 

Since .Ω1
X is a coherent sheaf of .𝒪X-modules, .SpecanXSym𝒪X

Ω1
X is a complex 

analytic space. The sections .∂ : X → SpecanXSym𝒪X
Ω1

X of the projection t 
correspond to elements of .Hom𝒪X

(Ω1
X,𝒪X), that is, derivations from .𝒪X to . 𝒪X. 

If X is non-singular .SpecanXSym𝒪X
Ω1

X is the tangent bundle to X and the sections 
. ∂ are holomorphic vector fields on X. 

Now Grothendieck has shown that for . Ω1
X, as indeed for any coherent .𝒪X-

module, just as .t : SpecanXSym𝒪X
Ω1

X → X is a relative vector space in the sense 
that its fibers are vector spaces, there is a relative grassmannian 

. g : Gd(Ω1
X) → X

whose fiber at .x ∈ X is the grassmannian of d-dimensional subspaces of the vector 
space .t−1(x). 

The defining property of the map g is that for any holomorphic map . h : W → X

it is equivalent to give, up to isomorphism, a locally free quotient of rank d of the 
.𝒪W -module .h∗Ω1

X and to give, up to isomorphism, a factorization of h through g. 
Now a rank d locally free quotient of .h∗Ω1

X corresponds to a vector bundle 
over W with d-dimensional fibers which is contained in .SpecanXSym𝒪T

h∗Ω1
X. That 

is exactly a family of analytically varying d-dimensional subspaces of the Zariski 
tangent spaces .t−1(h(w)) for .w ∈ W . 

In particular, the sheaf .g∗Ω1
X on .Gd(Ω1

X) has a locally free quotient of rank d, 
which corresponds to the pull back of the tautological bundle on the grassmannian. 

If one remembers that in analytic geometry limits can be obtained by moving 
along analytic arcs (curve selection lemma), we see that since any limit direction T 
of tangent spaces at a point .x ∈ X is a limit along germs of analytic arcs . h : (d, 0) →
(X, x), it is the fiber over 0 of a locally free quotient of .h∗Ω1

X and so the arc lifts 
as .h̃ : (d, 0) → (Gd(Ω1

X), T ), which (with a little work) defines a map . NX →
Gd(Ω1

X) which one shows (with a little more work) to be an X-isomorphism. 
The equivalence of this grassmannian construction with the Gauss map construc-

tion shows directly that the closure of the graph of the Gauss map is analytic, and 
that the result of the construction is unique up to a unique isomorphism.
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Since the grassmannians embed into projective spaces, the map .NX → X is 
locally projective and since it is locally bimeromorphic, it is locally on X the 
blowing-up (see Sect. 1.5 below for the definition) of a sheaf of ideals, a result 
proved explicitly by Nobile in [45, Theorem 1]. 

Examples 

(i) Let .X ⊂ C4 be the union of two planes meeting at the origin. Then 
.NX → X maps the disjoint union of two 2-planes to X, each plane mapping 
isomorphically onto its image. It is a finite bimeromorphic map, and thus a 
resolution of singularities. If one follows the classical resolution algorithm, one 
blows up the intersection point. This again separates the two planes, but now 
the projection restricted to each of the separated planes is the blowing-up of a 
point, and is not finite. 

(ii) Let .f (z1, . . . , zN) = 0 be an equation for a germ at the origin of a reduced 
hypersurface .(X, 0) ⊂ (CN, 0). The Semple-Nash modification is the blowing-
up in X of the ideal generated by the partial derivatives of f . More generally, 
if X is a reduced complete intersection of dimension d in affine space .AN(C), 
then the blowing-up in X of the ideal generated by the . (N − d) × (N − d)

minors of the jacobian matrix of the equations is isomorphic to NX. For the  
general case, see [45]. 

The Semple-Nash modification has been used in the definition of characteristic 
classes for singular spaces (see [39] and Chapters 5–7 of Volume III of this 
Handbook), but we shall not go into this here. Much work has been devoted to 
understanding how the singularities of NX  differ from those of X, and in particular 
to answer the question posed by Semple at the end of his paper and reiterated by 
Nash a decade later: 

Does iterating the Semple-Nash modification resolve the singularities of X in 
finitely many steps? 

In other words, given X as above, is there an integer . k0 such that .NkX is non-
singular for .k ≥ k0? 

It follows from the definition that if X is non-singular, we have .NX = X. Nobile 
proved the converse in [45, Theorem 2]: 

Theorem 1.2.1 (Nobile) The Semple-Nash modification .νX : NX → X is an 
isomorphism if and only if X is non-singular. 

Nobile’s original proof of this theorem is somewhat involved and relies on local 
parametric descriptions of a singular space and results of [65]. A different proof 
was proposed in [58, §2], based on the second construction of NX. 

By definition, if .NX = X, the module of differentials of X has a locally 
free quotient. The property of non-singularity being local we may assume after 
restricting to an open set .U∩X of X that we have a surjection .Ω1

U∩X → 𝒪d
U∩X → 0. 

Taking germs at .x ∈ U ∩ X, there is an element .h ∈ 𝒪X,x such that the differential 
.dXh ∈ Ω1

X,x maps to .(1, 0 . . . , 0) ∈ 𝒪d
X,x , and thus a derivation D of .𝒪X,x into 

itself such that .Dh = 1. Since D is zero on .C ⊂ 𝒪X,x , we may assume that
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.h ∈ mX,x . Geometrically, the derivation D corresponds to a holomorphic vector 
field on X not vanishing at x. Its integration (see [58, §2] for details) gives the germ 
.(X, x) a product structure .(X, x) � (X1 × C, x), where .X1 ⊂ X is the reduced 
equidimensional space defined by the ideal .h𝒪X,x and satisfies .NX1 = X1. The  
result follows by induction on the dimension. 

This theorem has the important consequence that in order to prove the Semple-
Nash conjecture, it suffices to prove that the sequence of the spaces .NkX eventually 
becomes stationary. 

As already noted by Nobile, it implies immediately that if X is of dimension one 
.NkX is non-singular for large k. Since a curve has finitely many limit tangent lines at 
any point, the Semple-Nash modification of a curve is a finite bimeromorphic map, 
and thus dominated by the normalization. Since the normalization .𝒪X,x , which is a 
resolution of singularities, is a finitely generated and thus a noetherian .𝒪X,x-module, 
there cannot be an infinite strictly increasing sequence of subalgebras finite over 
.𝒪X,x . 

Apart from some special cases, the Semple-Nash conjecture is still open in 
dimensions .≥ 2. The best result is due to Spivakosky in [55], where he proves 
that iterating the operation of Semple-Nash modification followed by normalization 
eventually resolves the singularities of a surface. Spivakovsky’s proof sheds light on 
the change of the dual graph of a minimal resolution when one passes from X to 
NX. 

There are a number of other significant results for surfaces. For example Snoussi 
in [54] relates the planar components of the tangent cone to a surface to the 
singularities of its Semple-Nash transform and D. Duarte in [9] shows that iterating 
the Semple-Nash modification for toric surfaces has to stop in some charts. 

In dimension .≥ 3 very little is known in general. The resolution problem is open 
even in the case of toric varieties, where in characteristic zero the Semple-Nash 
modification is the blowing up of a deceptively simple monomial ideal (see [17, 
§10]). 

Indeed, apart from results of Vaquié in [64] concerning numerical invariants, 
and precise results for quasi-ordinary singularities (see [4] and [2]), there is no 
satisfactory description in general of the relation between the geometry of NX  and 
that of X. 

However there is another aspect of limits of tangent spaces which is rather well 
understood: as we shall see below, given .(X, 0) ⊂ (CN, 0), a hyperplane in .CN is 
said to be tangent to . X0 at a point if it contains the tangent space to . X0 at that point 
and a hyperplane through 0 is a limit of tangent hyperplanes at points of .X0 if and 
only if it contains a limit of tangent spaces to . X0. 

When X is a hypersurface with isolated singularity it was shown in [57, Chap. 
II, §1, 1.6] that a hyperplane H through the singular point is not a limit of tangent 
hyperplanes if and only if the Milnor number .μ(X ∩ H) is minimal among the 
Milnor numbers of all intersections .X ∩ H ′. Then it was shown in [59, Appendice] 
that the family of all sections .X ∩ H where H is not a limit of tangent hyperplanes 
is equisingular in the sense of Whitney conditions (which we shall see below). 
These results were generalized, for normal surfaces by Snoussi in [52], for arbitrary
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reduced equidimensional germs by Gaffney in [13, Theorem 2.1, Corollary 2.4] and 
in a more topological framework by Tibăr in [62]; see also [53]. 

The result for isolated hypersurface singularities was used as part of a method to 
compute limits of tangent spaces in this case. See [44], and [46] for more methods 
of computation. 

In the case where our singular germ .(X, 0) is the cone over a projective variety, 
there is an algebraic approach to the study of the Gauss map in [51]. and a geometric 
one in [31]. We shall come back to this in the paragraph on projective duality. 

Given a flat map .π : X → S where X is again reduced and equidimensional 
and say S is non-singular and the open set .X0 of points of X where the map . π is 
smooth is dense in X, with .dim. X/S = d, one can define a relative Semple-Nash 
modification .νπ : NπX → X as .SpecanSymXΩ1

X/S where .Ω1
X/S is the sheaf of 

relative differentials. In a local presentation of . π as the map induced by the first 
projection in an embedding .X ⊂ S ×CN it is the closure of the graph of the relative 
Gauss map .γX0/S : X0 → G(d,N) sending a point .x ∈ X0 to the direction of the 
tangent space to the fiber of . π through x. 

Example 1.2.2 Let .f : (CN, 0) → (C, 0) be a germ of holomorphic map. The 
relative Semple-Nash modification of .CN is the blowing up (see Sect. 1.5 below) 
of the ideal generated by the partial derivatives of f . It is a closed subspace of 
.CN × P̌N−1, of dimension N . 

This construction is of course useful in the study of families of singularities but 
the geometry of grassmannians being much more complicated than the geometry of 
projective spaces, it is time to move to the study of tangent hyperplanes. 

1.3 Limits of Tangent Hyperplanes: The Conormal Space 

Whenever our reduced equidimensional singular space X is not locally a hyper-
surface in some . CN , the tangent spaces belong to grassmannians instead of 
projective spaces, and the description of the Semple-Nash modification becomes 
more complicated, according to the complexity of describing algebraic subvarieties 
of grassmannians. 

It is therefore natural to consider tangent hyperplanes instead of tangent spaces: a 
tangent hyperplane at a point of .X0 ⊂ CN is a (direction of) hyperplane containing 
the tangent space to .X0 at that point. This is also the approach which allows the 
connection with duality of projective varieties, in the case where our singular germ 
.(X, 0) is the cone over a projective variety. Most importantly the spaces of limits of 
tangent hyperplanes to a singular subspace of a non-singular complex variety can 
be characterized by Lagrangian (or Legendrian) type conditions, a fact which has 
no direct equivalent for NX.2 One must emphasize that, in contrast to the Semple-

2 See, however, [18, Theorem 3.14] and [31, Theorem 14]. 
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Nash modification, this constructions depends on a local or global embedding of our 
space X in a non-singular complex analytic variety M . 

Let us begin with the case of a local embedding .X ⊂ CN , where the directions of 
hyperplanes in .CN are parametrized by the projective space .P̌N−1. At a non-singular 
point .x ∈ X0, by definition a tangent hyperplane is a hyperplane in the tangent 
space to .CN at x which contains the tangent space .TX0,x . Tangent hyperplanes at a 
point .x ∈ X0 constitute a .PN−d−1 ⊂ PN−1. Thus we obtain a subspace . C(X0) ⊂
X × P̌N−1 whose points are pairs .(x,H) such that H is a tangent hyperplane at 
x. The  conormal space .C(X) of .X ⊂ CN is the closure of .C(X0) in .X × P̌N−1. 
By definition it is the set of pairs .(x,H) such that H is a limit at x of tangent 
hyperplanes at points of . X0. 

The natural map induced by the first projection is denoted by .κX : C(X) → X. 
Again we have to show that this closure is a closed analytic subspace of . X ×

P̌N−1. Following [16, Section 3.3], we use a diagram relating the conormal space of 
.(X, 0) ⊂ (CN, 0) and its Semple-Nash modification. 

It is convenient here to use the notation of projective duality of linear spaces. 
Given a vector subspace .T ⊂ CN we denote by .PT its projectivization, i.e., the  

image of .T \{0} by the projection .CN \{0} → PN−1 and by .Ť ⊂ P̌N−1 the projective 
dual of .PT ⊂ PN−1, which is a .PN−d−1 ⊂ P̌N−1, the set of all hyperplanes H of 
.PN−1 containing . PT . 

We denote by .Ξ̌ ⊂ G(d,N) × P̌N−1 the cotautological .PN−d−1-bundle over 
.G(d,N), that is .Ξ̌ = {(T ,H) | T ∈ G(d,N), H ∈ Ť ⊂ P̌N−1}, and consider the 
intersection 

and the morphism . p2 induced on E by the projection onto .X × P̌N−1. We then have 
the following: 

Proposition 1.3.1 The set-theoretical image .p2(E) of the morphism . p2 coincides 
with the conormal space of X in . CN

. p2(E) = C(X) ⊂ X × P̌N−1.

It is a closed analytic subspace of dimension .N − 1. 

Proof If we define .E0 = {(x, TX,x,H) ∈ E | x ∈ X0,H ∈ ŤX,x}, then by 
construction .E0 = p−1

1 (ν−1
X (X0)), and .p2(E

0) = C(X0). Since the morphism . p2
is proper it is closed, which finishes the proof since E is a closed analytic subspace 
of .X ×G(d,N) × P̌N−1 because . Ξ̌ is a closed analytic (in fact algebraic) subspace 
of .G(d,N) × P̌N−1 and NX  is a closed analytic subspace in .X × G(d,N). The
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dimension of .C(X) is that of its open dense subset .C(X0), which is .N − 1 because 
it maps to . X0 with fibers .PN−d−1. ��
Corollary 1.3.2 A hyperplane .H ∈ P̌N−1 is a limit of tangent hyperplanes to X at 
0, i.e., .H ∈ κ−1

X (0), if and only if there exists a d-plane .(0, T ) ∈ ν−1
X (0) such that 

.T ⊂ H . 

Proof Let .(0, T ) ∈ ν−1
X (0) be a limit of tangent spaces to X at 0. By construction 

of E and Proposition 1.3.1, every hyperplane H containing T is in the fiber .κ−1
X (0), 

and so is a limit at 0 of tangent hyperplanes to . X0. 
On the other hand, by construction, for any hyperplane .H ∈ κ−1

X (0) there is a 
sequence of points .{(xi,Hi)}i∈N in .κ−1

X (X0) converging to .p = (0,H). Since the 
map . p2 is surjective, by definition of E, we have a sequence .(xi, Ti,Hi) ∈ E0 with 
.Ti = Txi

X0 ⊂ Hi . By compactness of Grassmannians and projective spaces, this 
sequence has to converge, up to taking a subsequence, to .(x, T ,H) with T a limit at 
x of tangent spaces to X. Since inclusion is a closed condition, we have .T ⊂ H . ��
Corollary 1.3.3 The morphism .p1 : E → NX is a locally analytically trivial fiber 
bundle with fiber .PN−d−1. 

Proof By definition of E, the fiber of the projection .p1 over a point 
.(x, T ) ∈ NX is the set of all hyperplanes in .PN−1 containing . PT . In fact, the 
tangent bundle .TX0 , lifted to NX  by the isomorphism .NX0 � X0, extends to a fiber 
bundle over NX, called the Nash tangent bundle of X. It is the pull-back by . γX of 
the tautological bundle of .G(d,N), and E is the total space of the .PN−d−1-bundle 
of the projective duals of the projectivized fibers of the Nash bundle. ��
Consider the diagram extracted from the diagram we have seen above: 

Proposition 1.3.4 The map .p2 : E → C(X) is isomorphic to the blowing up in 
.C(X) of the lift .𝒥𝒪C(X) to .C(X) by . κX of an ideal . 𝒥 of .𝒪X whose blowing up 
coincides with the map . νX. 

Proof By construction, E is a closed subspace of .NX ×X C(X). By definition 
of E, the map . p2 is an isomorphism over .C(X0) since a tangent hyperplane at a 
nonsingular point contains only the tangent space at that point. Therefore the map 
.p2 : E → C(X) is locally bimeromorphic. The lift by .νX ◦ p1 of the ideal . 𝒥 is 
invertible on E. By the universal property of blowing up, any map .W → C(X) such 
that the lift to W from .C(X) of the ideal .𝒥𝒪C(X) is invertible on W has to factor 
uniquely through NX  and therefore through the fiber product .NX ×X C(X). In
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particular the blowing-up of .𝒥𝒪C(X) in .C(X) has to factor through a closed subspace 
of .NX ×X C(X) and has to coincide with E since they coincide over . X0.3 ��

In general the fiber of . p2 over a point .(x,H) ∈ C(X) is the set of limit directions 
at x of tangent spaces to X that are contained in H . If  X is a hypersurface, the 
conormal map coincides with the Semple-Nash modification. In general, the manner 
in which the geometric structure of the inclusion .κ−1

X (x) ⊂ P̌N−1 determines the 
set of limit positions of tangent spaces, i.e., the fiber .ν−1

X (x) of the Semple-Nash 
modification, is not so simple: by Proposition 1.3.1 and its corollary, the points of 
.ν−1

X (x) correspond to some of the projective subspaces .PN−d−1 of .P̌N−1 contained 
in .κ−1

X (x). 

A linear subspace .PN−d−1 ⊂ κ−1
X (x) ⊂ P̌N−1 is dual to a d-dimensional vector 

subspace .T ⊂ CN . If  T is not a limit at x of tangent spaces, then by Corollary 1.3.2 
any hyperplane in this .PN−d−1 must contain a limit at x of tangent spaces, but 
this limit cannot be constant. This provides a set-theoretic characterization of those 
.PN−d−1 ⊂ κ−1

X (x) which are dual to a limit at x of tangent spaces, in terms of the 
diagram we have seen above: they are those which are the image by . p2 of a fiber 
of . p1. In view of Proposition 1.3.4 this gives a geometric characterization, but we 
would prefer one solely in terms of the geometry of . C(X); see [16, Example 3.4]. 

Note also that given a limit of tangent spaces T at .x ∈ X and a general linear 
projection .p : CN → Cd+1, the hyperplane .p(T ) is a limit hyperplane at .p(x) for 
the hypersurface .p(X) ⊂ Cd+1. This follows from the fact that given . T ∈ ν−1

X (0)

we can find an analytic arc in NX  ending at T and whose image in X is outside of 
the inverse image by p of the singular locus of .p(X). 

Definition 1.3.5 The map .λX : C(X) → P̌N−1 induced by the second projection 
.X × P̌N−1 → P̌N−1 is called the tangent hyperplane map. It is the analogue of the 
Gauss map. When there is no ambiguity it will be denoted by . λ. 

1.4 Some Symplectic Geometry 

In order to describe this set of tangent hyperplanes, we are going to use the language 
of symplectic geometry and Lagrangian submanifolds. Let us start with a few 
definitions. This section is mostly taken from [16, Section 2.1]. 

Let M be any N -dimensional manifold, and let . ω be a de Rham 2-form on M, 
that is, for each . x ∈ M , the map  

.ωx : TM,x × TM,x → R

3 For the reader familiar with bimeromorphic geometry, as for example in [24], [3, Chap. 1, 1.5] 
and [25, §2], the map . p1 appears as the strict transform of the map . κ by the blowing-up . ν. Since . p1
is a .PN−d−1-bundle by Corollary 1.3.3, the map . ν is also the flattening map of . κ: every blowing-up 
.t : T → X of X such that the strict transform of . κ by t is flat must factor uniquely through . ν. In  
this sense . κ determines . ν. 
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is skew-symmetric bilinear on the tangent space to M at x, and . ωx varies smoothly 
with x. We say that . ω is symplectic if it is closed and . ωx is non-degenerate for 
all .x ∈ M . Non degeneracy means that the map which to .v ∈ TM,x associates the 
homomorphism .w �→ ω(v,w) ∈ R is an isomorphism from .TM,x to its dual. A 
symplectic manifold is a pair .(M,ω), where M is a manifold and . ω is a symplectic 
form. These definitions extend, replacing . R by . C, to the case of a complex analytic 
manifold i.e., nonsingular space. 

For any manifold M , its cotangent bundle .T ∗M has a canonical symplectic 
structure as follows. Let 

. π : T ∗M −→ M

p = (x, ξ) �−→ x,

where .ξ ∈ T ∗
M,x , be the natural projection. The Liouville 1-form α on .T ∗M may 

be defined pointwise by: 

. αp(v) = ξ
(
dπp(v)

)
, for v ∈ TT ∗M,p.

Note that .dπp maps .TT ∗M,p to .TM,x , so that α is well defined. The canonical 
symplectic 2-form . ω on .T ∗M is defined as 

. ω = −dα.

And it is not hard to see that if .(U, x1, . . . , xN) is a coordinate chart for M with 
associated cotangent coordinates .(T ∗U, x1, . . . , xN , ξ1, . . . , ξN ), then locally: 

. ω =
N∑

i=1

dxi ∧ dξi .

Definition 1.4.1 Let .(M,ω) be a 2n-dimensional symplectic manifold. A subman-
ifold Y of M is a Lagrangian submanifold if at each .y ∈ Y , .TY,y is a Lagrangian 
subspace of .TM,y , i.e., .ωy |TY,y

≡ 0 and .dim. TY,y = 1
2 dim. TM,y . Equivalently, if 

.i : Y ↪→ M is the inclusion map, then Y is Lagrangian if and only if .i∗ω = 0 and 

.dim. Y = 1
2 dim. M . 

Let M be a nonsingular complex analytic space of even dimension equipped 
with a closed non degenerate 2-form . ω. If .Y ⊂ M is a complex analytic subspace, 
which may have singularities, we say that it is a Lagrangian subspace of M if it 
is purely of dimension . 12 dim. M and there is a dense nonsingular open subset of the 
corresponding reduced subspace which is a Lagrangian submanifold in the sense 
that . ω vanishes on all pairs of vectors in the tangent space. 

Example 1.4.2 The zero section of . T ∗M

. X := {(x, ξ) ∈ T ∗M|ξ = 0 in T ∗
M,x}

is an n-dimensional Lagrangian submanifold of .T ∗M .
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Exercise 1.4.3 Let .f (z1, . . . , zN) be a holomorphic function on an open set . U ⊂
CN . Consider the differential df as a section .df : U → T ∗U of the cotangent 
bundle. Verify that the image of this section is a Lagrangian submanifold of .T ∗U . 
Explain what it means. What is the image in U by the natural projection . T ∗U → U

of the intersection of this image with the zero section? 

1.4.1 The Conormal Space in General 

Let now M be a complex analytic manifold of dimension N and .X ⊂ M be a 
possibly singular complex subspace of pure dimension d, and let as before . X0 =
X \ SingX be the nonsingular part of X, which is a submanifold of M . 

Definition 1.4.4 Set 

. N∗
X0,x

= {ξ ∈ T ∗
M,x |ξ(v) = 0, ∀v ∈ TX0,x};

this means that the hyperplane .{ξ = 0} contains the tangent space to . X0 at the point 
x. 

The conormal bundle of . X0 is 

. T ∗
X0M = {(x, ξ) ∈ T ∗M|x ∈ X0, ξ ∈ N∗

X0,x
}.

Definition 1.4.5 A closed subvariety L of the cotangent space .T ∗M of a manifold 
M is said to be conical if it is left globally invariant by the homotheties on the fibers 
of the map .T ∗M → M , described locally by .ρ.(x, ξ) = (x, ρξ), .ρ ∈ C. 

Proposition 1.4.6 Let .i : T ∗
X0M ↪→ T ∗M be the inclusion and let α be the 

Liouville 1-form in .T ∗M as before. Then .i∗α = 0. In particular the conormal 
bundle .T ∗

X0M is a conical Lagrangian submanifold of .T ∗M , and has dimension 
N . 

Proof See [8, Proposition 3.6]. ��
In the same context we can define the conormal space of X in M as the closure 
.T ∗

XM of .T ∗
X0M in .T ∗M , with the conormal map .κX : T ∗

XM → X, induced by 
the natural projection .π : T ∗M → M . The conormal space is of dimension N . It  
may be singular and by Proposition 1.4.6, α vanishes on every tangent vector at a 
nonsingular point, so it is by construction a Lagrangian subspace of .T ∗M . 

The fiber .κ−1
X (x) of the conormal map .κX : T ∗

XM → X above a point . x ∈ X

consists, if .x ∈ X0, of the vector space .CN−d of all the equations of hyperplanes 
tangent to X at x, in the sense that they contain the tangent space . TX0,x . If  x is a 
singular point, the fiber consists of all equations of limits of hyperplanes tangent at 
nonsingular points of X tending to x.
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Moreover, we can characterize those subvarieties of the cotangent space which 
are the conormal spaces of their images in M . 

Proposition 1.4.7 (See [49, Chap. II, §10]) Let M be a nonsingular analytic 
variety of dimension N and let L be a closed conical irreducible analytic subvariety 
of .T ∗M , also of dimension N . The following conditions are equivalent: 

1) The variety L is the conormal space of its image in M . 
2) The Liouville 1-form α vanishes on all tangent vectors to L at every nonsingular 

point of L. 
3) The symplectic 2-form .ω = −dα vanishes on every pair of tangent vectors to L 

at every nonsingular point of L. 

Since conormal varieties are conical we may as well projectivize with respect to 
vertical homotheties of .T ∗M and work in .PT ∗M . This means that we consider 
hyperplanes and identify all linear equations defining the same hyperplane. In 
.PT ∗M it still makes sense to be Lagrangian since α is homogeneous by definition.4 

Going back to our original problem we have .X ⊂ U where U is open in . CN , 
so .T ∗U = U × ČN and .PT ∗U = U × P̌N−1. So we have the (projective) 
conormal space .κX : C(X) → X with .C(X) ⊂ X × P̌N−1, where .C(X) denotes 
the projectivization of the conormal space .T ∗

XM . Note that we have not changed 
the name of the map . κX after projectivizing since there is no ambiguity, and that 
the dimension of .C(X) is .N − 1, which shows immediately that it depends on the 
embedding of X in an affine space. 

When there is no ambiguity we shall often omit the subscript in . κX. We have  
the following result showing that this projectivized conormal is the same as that of 
Sect. 1.3 : 

Proposition 1.4.8 Given a reduced closed complex analytic subspace X of an open 
set .U ⊂ CN , the (projective) conormal space .C(X) is a closed, reduced, complex 
analytic subspace of .X×P̌N−1 of dimension .N−1. For any .x ∈ X the fiber . |κ−1

X (x)|
is the set of limit positions at x of tangent hyperplanes at points of . X0. Its dimension 
is at most .N − 2. 

Proof These are classical facts. See [8, Chap. III] or [60, Chap. II, §4, Proposition 
4.1, p. 379]. ��

1.4.2 Conormal Spaces and Projective Duality 

Let us assume for a moment that .V ⊂ PN−1 is a projective algebraic variety. In 
the spirit of last section, let us take .M = PN−1 with homogeneous coordinates

4 In symplectic geometry it is called Legendrian with respect to the natural contact structure on 
.PT ∗M . 
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.(z1 : . . . : zN), and consider the dual projective space .P̌N−1 with coordinates . (ξ1 :

. . . : ξN); its points are the hyperplanes of .PN−1 with equations .
∑N

i=1 ziξi = 0. 

Definition 1.4.9 Define the incidence variety .I ⊂ PN−1 × P̌N−1 as the set of 
points satisfying: 

. 

N∑

i=1

ziξi = 0,

where . (z1 : . . . : zN ; ξ1 : . . . : ξN) ∈ PN−1 × P̌N−1

Lemma 1.4.10 (Kleiman; See [28, §4]) The projectivized cotangent bundle of 
.PN−1 is naturally isomorphic to the incidence variety .I ⊂ PN−1 × P̌N−1. 

Proof Let us first take a look at the cotangent bundle of .PN−1: 

. π : T ∗PN−1 −→ PN−1.

Remember that the fiber .π−1(x) over a point x in .PN−1 is by definition isomorphic 
to .ČN−1, the vector space of linear forms on .CN−1. Recall that projectivizing the 
cotangent bundle means projectivizing the fibers, and so we get a map: 

. Π : PT ∗PN−1 −→ PN−1

where the fiber is isomorphic to .P̌N−2. So we can see a point of .PT ∗PN−1 as a pair 
.(z, ξ) ∈ PN−1 × P̌N−2. On the other hand, if we fix a point .z ∈ PN−1, the equation 
defining the incidence variety I tells us that the set of points .(z, ξ) ∈ I is the set of 
hyperplanes of .PN−1 that go through the point . z, which we know is isomorphic to 
.P̌N−2. 

Now to explicitly define the map, take a chart .CN−1 ×
{
ČN−1 \ {0}

}
of the 

manifold .T ∗PN−1 \ {zero section}, where the .CN−1 corresponds to a usual chart 
of .PN−1 and .ČN−1 to its associated cotangent chart. Define the map: 

. φi : CN−1 ×
{
ČN−1 \ {0}

}
−→ PN−2 × P̌N−2

(z1, . . . , zN−1; ξ1, . . . , ξN−1) �−→
⎛

⎝ϕi(z), (ξ1 : . . . : ξi−1 : −
N−1∗i∑

j=1

zj ξj : ξi+1 : . . . : ξN−1)

⎞

⎠

where .ϕi(z) = (z1 : . . . : zi−1 : 1 : zi+1 : . . . : zN−1) and the star means that the 
index i is excluded from the sum. 

An easy calculation shows that . φi is injective, has its image in the incidence 
variety I and is well defined on the projectivization .CN−1 × P̌N−2. It is also clear, 
that varying i from 1 to .N − 1 we can reach any point in I . Thus, all we need to 
check now is that the . φj ’s paste together to define a map. For this, the important
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thing is to remember that if . ϕi and . ϕj are charts of a manifold, and . h := ϕ−1
j ϕi =

(h1, . . . , hN−1) then the change of coordinates in the associated cotangent charts . ϕ̃i

and . ϕ̃j is given by: 

This end the proof. ��
By Lemma 1.4.10 the incidence variety I inherits the Liouville 1-form α which 

is .
∑

ξidzi in local coordinates) from its isomorphism with .PT ∗PN−1. Exchanging 
.PN−1 and .P̌N−1, I is also isomorphic to .PT ∗P̌N−1 so it also inherits the 1-form 
.α̌ := ∑

zidξi locally). 

Lemma 1.4.11 (Kleiman; See [29, §4] and [30]) Let I be the incidence variety as 
above. Then .α + α̌ = 0 on I . 

Proof Note that if the polynomial .
∑N

i=1 ziξi defined a function on .PN−1 × P̌N−1, 
we would obtain the result by differentiating it. The idea of the proof is basically 
the same, it involves identifying the polynomial .

∑N
i=1 ziξi with a section of the line 

bundle .p∗OPN−1(1)⊗p̌∗OP̌N−1(1) over I , where p and . p̌ are the natural projections 

of I to .PN−1 and .P̌N−1 respectively and .OPN−1(1) denotes the canonical line bun-
dle, introducing the appropriate flat connection on this bundle, and differentiating. 

��
In particular, this lemma tells us that if at some point .z ∈ I we have that .α = 0, 

then .α̌ = 0 too. Thus, a closed conical irreducible analytic subvariety of .T ∗PN−1 as 
in Proposition 1.4.7 is the conormal space of its image in .PN−1 if and only if it is the 
conormal space of its image in . ̌PN−1. So we have . PT ∗

V P
N−1 ⊂ I ⊂ PN−1 × P̌N−1

and the restriction of the two canonical projections: 

Definition 1.4.12 The dual variety . V̌ of .V ⊂ PN−1 is the image by the map . p̌ of 
.PT ∗

V P
N−1 ⊂ I in .P̌N−1. So by construction . V̌ is the closure in .P̌N−1 of the set of 

hyperplanes tangent to . V 0.
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We immediately get by symmetry that . ˇ̌V = V . What is more, we see that 
establishing a projective duality is equivalent to finding a Lagrangian subvariety 
in I ; its images in .PN−1 and .P̌N−1 are necessarily dual. 

Lemma 1.4.13 Let us assume that .(X, 0) ⊂ (CN, 0) is the cone over a projective 
algebraic variety .V ⊂ PN−1. Let .x ∈ X0 be a nonsingular point of X. Then the 
tangent space .TX0,x , contains the line .� = 0x joining x to the origin. Moreover, 
the tangent map at x to the projection .π : X \ {0} → V induces an isomorphism 
.TX0,x/� � TV,π(x). 

Proof This is due to Euler’s identity for a homogeneous polynomial of degree m: 

. m.f =
N∑

i=1

zi

∂f

∂zi

and the fact that if .{f1, . . . , fr } is a set of homogeneous polynomials defining X, 
then .TX0,x is the kernel of the matrix: 

. 

⎛

⎜⎜
⎝

df1

·
·

dfr

⎞

⎟⎟
⎠

representing the differentials .dfi in the basis .dz1, . . . , dzN . ��
It is also important to note that the tangent space to .X0 is constant along all 

non-singular points x of X in the same generating line since the partial derivatives 
are homogeneous as well, and contains the generating line. By Lemma 1.4.13, the  
quotient of this tangent space by the generating line is the tangent space to V at the 
point corresponding to the generating line. 

So, .PT ∗
XC

N has an image in .P̌N−1 which is the projective dual of V. 

The fiber over 0 of .PT ∗
XC

N → X is equal to . V̌ as subvariety of . ̌PN−1: it is the  
set of limit positions at 0 of hyperplanes tangent to . X0. 

For more information on projective duality, in addition to Kleiman’s papers one 
can consult [61]. 

A relative version of the conormal space and of projective duality will play an 
important role in these notes. Useful references are [22, 29], [60, Chap. IV]. The 
relative conormal space is used in particular to define the relative polar varieties.
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1.4.3 Polar Varieties and the Control of the Dimension of the 
Fibers of κX : C(X) → X 

The simplest measure of the complexity of the space of limits of tangent hyperplanes 
at a point .x ∈ X is the dimension of the fiber .κ−1

X (x) ⊂ P̌N−1. This dimension is 
the difference between .N − 1 and the maximum codimension of a linear subspace 
of .P̌N−1 whose intersection with .κ−1(x) is not empty. We are thus led to consider 
the subspaces .C(X) ∩ (X × Ld−k) of .C(X), where .0 ≤ k ≤ d = dim. X and 
.Ld−k is a linear subspace of .P̌N−1 of dimension .d − k, dual to a vector subspace 
.Dd−k+1 ⊂ CN of codimension .d−k+1 in the sense that it is the space of directions 
of hyperplanes containing it. We remark that, with the notations introduced above, 
we have .C(X) ∩ (X × Ld−k) = λ−1(Ld−k). 

The next proposition provides the relation between the geometry of . κ−1
X (x) ⊂

P̌N−1 as read by linear subspaces and geometrically defined subspaces of X, the  
local polar varieties of .X ⊂ CN . These are defined as the closures in X of sets of 
critical points on .X0 of projections .X → Cd−k+1 induced by general linear maps 
.CN → Cd−k+1. They were originally defined in [34]. Recall the definition of the 
map . λ in Definition 1.3.5. 

Proposition 1.4.14 For a sufficiently general .Dd−k+1, the image .κ(λ−1(Ld−k)) is 
the closure in X of the set of points of . X0 which are critical for the projection . π |X0 :
X0 → Cd−k+1 induced by the projection .CN → Cd−k+1 with kernel . Dd−k+1 =
(Ld−k)̌. 

Proof Note that .x ∈ X0 is critical for . π if and only if the tangent map 
.dxπ : TX0,x −→ Cd−k+1 is not onto, which means .dim. ker dxπ ≥ k since 
.dim TX0,x = d, and .kerdxπ = Dd−k+1 ∩ TX0,x . 

Note that the conormal space .C(X0) of the nonsingular part of X is equal to 
.κ−1(X0) so by definition: 

. λ−1(Ld−k) ∩ C(X0) = {(x,H) ∈ C(X)|x ∈ X0, H ∈ Ld−k, TX0,x ⊂ H }

equivalently: 

. λ−1(Ld−k) ∩ C(X0) = {(x,H),∈ C(X)|x ∈ X0, H ∈ (Dd−k+1)̌, H ∈ (TX0,x )̌ }

thus .H ∈ (Dd−k+1)̌ ∩ (TX0,x )̌, and from the equality . (Dd−k+1)̌ ∩ (TX0,x )̌ =
(Dd−k+1 + TX0,x )̌ we deduce that the intersection is not empty if and only if 
.Dd−k+1 + TX0,x �= CN , which implies that .dim Dd−k+1 ∩ TX0,x ≥ k, and 
consequently .κ(H) = x is a critical point. 

According to [60, Chap. IV, 1.3], there exists an open dense set .Uk in the 
Grassmannian of .(N − d + k − 1)-planes of .CN such that if .Dd−k+1 ∈ Uk , the  
intersection .λ−1(Ld−k) ∩ C(X0) is dense in .λ−1(Ld−k). So, for any . Dd−k+1 ∈
Uk , since . κ is a proper map and thus closed, we have that .κ(λ−1(Ld−k)) =
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κ
(
λ−1(Ld−k) ∩ C(X0)

)
= κ(λ−1(Ld−k)), which finishes the proof. See [60, 

Chap. IV, 4.1.1] for a complete proof of a more general statement. ��
Remark 1.4.15 It is important to have in mind the following easily verifiable facts: 

a) As we have seen before, the fiber .κ−1(x) over a regular point .x ∈ X0 in the 
(projectivized) conormal space .C(X) is a .PN−d−1, so by semicontinuity of fiber 
dimension we have that .dim κ−1(0) ≥ N − d − 1. 

b) For a general .Ld−k , the intersection .C(X) ∩ (X × Ld−k) is of pure dimension 
.N − 1 − N + d − k + 1 = d − k if it is not empty. 

The proof of this is not immediate because we are working over an open 
neighborhood of a point .x ∈ X, so we cannot assume that .C(X) is compact. 
However (see [60, Chap. IV]) we can take a Whitney stratification of . C(X)

(these stratifications are explained below) such that the closed algebraic subset 
.κ−1(0) ⊂ P̌N−1, which is compact, is a union of strata. By general transversality 
theorems in algebraic geometry (see [28]) a sufficiently general .Ld−k will 
be transversal to all the strata of .κ−1(0) in .P̌N−1 and then because of the 
Whitney conditions (see [63, section 4.9]) .CN × Ld−k will be transversal in a 
neighborhood of .κ−1(0) to all the strata of .C(X), which will imply in particular 
the statement on the dimension. Since . κ is proper, the neighborhood of . κ−1(0)

can be taken to be the inverse image by . κ of a neighborhood of 0 in X. The  
meaning of “general” in Proposition 1.4.14 is that of Kleiman’s transversality 
theorem. Moreover, since .C(X) is a reduced equidimensional analytic space, 
for a general .Ld−k , the intersection of .C(X) and .CN × Ld−k in . CN × P̌N−1

is generically reduced and since according to our general rule we remove 
embedded components when intersecting with linear spaces, .λ−1(Ld−k) is a 
reduced equidimensional complex analytic space. 

Note that the existence of Whitney stratifications does not depend on the 
existence of polar varieties; see Theorem 1.8.3 below. 

c) The fact that .λ−1(Ld−k) ∩ C(X0) is dense in .λ−1(Ld−k) means that if a limit 
of tangent hyperplanes at points of .X0 contains .Dd−k+1, it is a limit of tangent 
hyperplanes which also contain .Dd−k+1. This equality holds because transversal 
intersections preserve the frontier condition; see [63, Theorem 4.2.15] or [7, 
Lemme 2.2.2], [60, Remarque 4.2.3]. 

d) Note that for a fixed .Ld−k , the germ .(Pk(X;Ld−k), 0) is empty if and only if the 
intersection .κ−1(0) ∩ λ−1(Ld−k) is empty. From a) we know that . dim κ−1(0) =
N − d − 1 + r with .r ≥ 0. Thus, by the same argument as in b), this implies 
that the polar variety .(Pk(X;Ld−k), 0) is not empty if and only if . dim(κ−1(0) ∩
λ−1(Ld−k)) ≥ 0 and if and only if .r ≥ k. 

Definition 1.4.16 With the notation and hypotheses of Proposition 1.4.14, for . 0 ≤
k ≤ d − 1 the local polar variety is defined as: 

.Pk(X;Ld−k) = κ(λ−1(Ld−k)).
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A priori, we have just defined local polar varieties set-theoretically, but since 
.λ−1(Ld−k) is empty or reduced and . κ is a projective fibration over the smooth part 
of X we have the following result, for which a proof can be found in [60, Chap. IV, 
1.3.2]. 

P1 

L 

0 

Proposition 1.4.17 For a general linear subspace .Ld−k ⊂ P̌N−1 and . 0 ≤ k ≤ d

the local polar variety .Pk(X;Ld−k) ⊂ X is a reduced closed analytic subspace of 
X, either of pure codimension k in X or empty. 

We have thus far defined a local polar variety that depends on both the choice of the 
embedding .(X, 0) ⊂ (CN, 0) and the choice of the general linear space .Dd−k+1. 
However, an important information we will extract from these polar varieties is their 
multiplicities at 0, and these numbers are analytic invariants provided the linear 
spaces used to define them are general enough. 

Proposition 1.4.18 (Teissier, See [60, Chap. IV, §3]) Let .(X, 0) ⊂ (CN, 0) be 
as before, then for every .0 ≤ k ≤ d − 1 and a sufficiently general linear space 
.Dd−k+1 ⊂ CN the multiplicity of the polar variety .Pk(X;Ld−k) at 0 depends only 
on the analytic type of .(X, 0). 

Exercise 1.4.19 Let .0 ∈ Y ⊂ X ⊂ CN where Y is one dimensional and 
non-singular and X is d-dimensional. Show that the following conditions are 
equivalent: 

(i) The germ of polar curve .(Pd−1(X;Ld−k), 0) is empty; 
(ii) .dim. κ−1(0) < N − 2. 

and imply:
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A Zariski open and dense subset of the .P̌N−2 ⊂ P̌N−1 consisting of hyperplanes 
containing .TY,0 is not contained in .κ−1(0): a general hyperplane containing .TY,0 is 
not a limit of tangent hyperplanes to . X0. Compare with Example 1.6.4 below. 

1.4.4 Limits of Tangent Spaces and Bertini’s Theorem 

A very special but historically important case of Bertini’s theorem states that given 
.(X, 0) ⊂ (CN, 0), for a sufficiently general hyperplane H through the origin, the 
singular locus of .H ∩ X near 0 is set-theoretically the intersection with H of the 
singular locus of X. This means that near 0, the hyperplane H is transversal to the 
tangent spaces to .X0 at points of .X0 ∩ H . However, a stronger result is true: the 
hyperplane H is transversal to the limits as .x → 0 of tangent spaces to X at points 
.x ∈ X0 ∩ H . This is not a consequence of the usual transversality theorems since 
the limits move with H . It is a consequence of the fact that in the conormal map 
.κ : C(X) → X, since .C(X) is of dimension .N − 1, the dimension of .κ−1(0) is at 
most .N − 2 so that a general hyperplane is not a limit of tangent hyperplanes to X 
and so cannot contain a limit of tangent spaces, according to Corollary 1.3.2. 

But much more is true: Suppose that .(X, 0) is a germ of hypersurface defined by 
a holomorphic map .f : (CN, 0) → (C, 0), and we consider the tangent hyperplanes 
to the fibers .f −1(t). Assume that f has an isolated critical point at the origin. Then, 
by Example 1.2.2, the set theoretical fiber of the relative Semple-Nash modification 
over 0 is the exceptional divisor: it is .P̌N−1 which means that every hyperplane 
through the origin is a limit of tangent hyperplanes to the fibers of f . However it 
is true, without assuming that f has an isolated critical point at the origin, that a 
general hyperplane H is transversal to the limits as .x → 0 of tangent hyperplanes 
to the fibers .f −1(f (x)) at points .x ∈ H . 

It is a consequence of the idealistic Bertini theorem of [57, Proposition 2.7] (for 
hypersurfaces) and [60, section 2.2] for the general case. The statement implies 
that for a general hyperplane H the restriction to H of the jacobian ideal of X and 
the jacobial ideal of .X ∩ H have the same integral closure as ideals in . 𝒪X∩H,0
while Bertini’s theorem states that the radicals of their restrictions to X are equal. 
This equality of integral closures means that the restrictions to H of some jacobian 
determinants of the equations of X tend to 0 at least as fast as some others. The full 
form is more precise. It can be used to give an alternative proof of the existence of 
Whitney stratifications which we shall see below, and also to prove the transversality 
of local polar varieties to the kernel of the projection which defines them, even in 
the relative case. It even has applications to the theory of the maximum likelihood 
degree in mathematical statistics; see [43, Corollary 2.6].
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1.5 Limits of Secants: The Blowing-Up 

In this section we present the blowing up of a coherent sheaf of ideals in a way 
which is adapted to the construction of the normal/conormal diagram which is used 
in the study of Whitney conditions. 

Let . ℐ be a coherent sheaf of ideals on X defining a closed analytic subspace 
. Y ⊂ X. Let .U ⊂ X be an open set on which we have a presentation 

. 𝒪q
U → 𝒪p

U → ℐ|U → 0.

We have thus a set of global generators .f1, . . . , fp for .ℐ|U . Consider the map 
.U \ Y → Pp−1 defined by .x �→ (f1(x) : . . . : fp(x)), and its graph . EY (U \ Y ) ⊂
(U \ Y ) × Pp−1. The closure .EY U of this graph in .U × Pp−1 is a closed analytic 
subspace which, up to a unique isomorphism, depends only on .ℐ|U . 

To see this, consider the graded .𝒪X algebra 

. P(ℐ) =
⊕

n∈N
ℐn,

which is locally finitely generated in degree one. 
Because . ℐ is locally finitely presented, this algebra has also locally a finite 

presentation by an exact sequence of finitely generated graded .𝒪U algebras and 
modules (see [3, Chap. 1, 1.3]). 

. 0 → 𝒦U → 𝒪U [T1, . . . , Tp] → P(ℐ)|U → 0,

where each . Tj is mapped to .fj ∈ ℐ|U . The ideal .𝒦U is generated by finitely 
many homogeneous polynomials in .T1, . . . , Tp which by definition generate all 
the algebraic homogeneous relations between .f1, . . . fp. The vanishing of these 
polynomials defines a closed subspace of .U × Pp−1 which, by construction, is 
the closure .EY U of the graph we have just seen. One verifies that this subspace 
is independent of the choice of the generators .f1, . . . , fp and so by uniqueness the 
local constructions glue up into a space .EY over X, say  

. eY : EY X → X

which is called the blowing-up of . ℐ(or Y ) in  X. 
The construction we have just described is, when we give the subspace of . U ×

Pp−1 its natural structure as a complex analytic space, the .ProjanP(ℐ) of the locally 
finitely presented graded .𝒪X-algebra .P(ℐ). 

The inverse image .e−1
Y (Y ) is the projan of the graded .𝒪Y -algebra 

.P(ℐ) ⊗𝒪X
𝒪X/ℐ=

⊕

n∈N
ℐn/ℐn+1 = 𝒪Y ⊕ ℐ/ℐ2 ⊕ ℐ2/ℐ3 ⊕ · · ·
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Besides the fact that the blowing-up is locally the closure of a graph, its essential 
feature is that .e−1

Y (Y ) ⊂ EY X is locally on .EY X defined by one equation which is 
not a zero divisor and is one of the generators of the pull-back .ℐ𝒪EY X of the ideal 
. ℐ. It is the  exceptional divisor of the blowing-up. Indeed, in each affine chart . Vj

defined by .Tj �= 0 of .Pp−1 the .Ti/Tj are coordinates, which implies that on the 
intersection of .EY X with .X × Vj the functions .fi/fj are regular and thus the ideal 
.(f1 ◦ eY , . . . , fp ◦ eY ), which is the restriction of .ℐ𝒪EY X to the intersection of . EY X

with .X × Vj , is principal and generated by .fj ◦ eY . 
The following universal property of blowing-up, which we state here in the 

complex analytic framework, is due to Hironaka (see [3, Lemma 1.3.1]): 

Theorem 1.5.1 A complex-analytic map .π : T → X such that .π−1(Y ) is locally 
on T defined by a single equation which is not a zero divisor in the local rings of T 
factors uniquely through . eY . This property characterizes the map . eY . 

In what follows we shall consider the case where .Y ⊂ X ⊂ CN , where .CN is 
endowed with coordinates .z1, . . . , zN and Y is non-singular of dimension t . We  
may assume that the coordinates are adapted to Y in the sense that it is defined 
by the vanishing of coordinates .zt+1, . . . , zN on . CN . The map . X \ Y → PN−t−1

defined by .(z1, . . . , zN) �→ (zt+1 : . . . : zN) ∈ PN−t−1 can be deemed to associate 
to a point of .X \ Y the direction of the secant line joining this point to the point in 
Y with coordinates .z1, . . . , zt . The closure in .X × PN−t−1 of the graph of this map 
is the blowing up in X of the subspace Y . Although the secant lines clearly depend 
on the choice of coordinates, the blowing up does not. 

A point of .EY X ⊂ X × PN−t−1 is therefore a pair .(x, [�]) where if .x ∈ X \ Y , 
. [�] is the direction of the secant line joining x to its linear projection on Y according 
to the coordinate system, and if .x ∈ Y , the direction . [�] is a limit direction of such 
secant lines along a sequence of points of .X \ Y tending to x. 

Denoting by .ℐY the coherent sheaf of ideals defining .Y ⊂ X, and by . grℐY
𝒪X

the graded .𝒪Y -algebra 

. grℐY
𝒪X =

⊕

n∈N
ℐn

Y /ℐn+1
Y ,

the space .Specan(grℐY
𝒪X) with its natural mapping . Specan(grℐY

𝒪X) → Y

corresponding to the inclusion .𝒪Y ⊂ grℐY
𝒪X is called the normal cone of Y in 

X and usually denoted by .CX,Y → Y . In the case where Y is a point, say .x ∈ X, 
it is for historical reasons the tangent cone of X at x. If X is non-singular these 
notions coincide with the normal bundle of Y in X and the tangent space of X at y. 

In the case where Y is a point .x ∈ X, .ℐ{x} corresponds to the maximal ideal 
.mx ⊂ 𝒪X,x which is generated by the local coordinates .z1, . . . , zN . The multiplicity 
of the tangent cone at its vertex is the multiplicity of X at the point x. It is also the  
degree of the projective variety .e−1

x (x) ⊂ PN−1 associated to the tangent cone.
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Remark 1.5.2 One may ask for the interpretation of the fiber of .eY : EY → X at a 
point . y ∈ Y . It is called the  analytic spread of the ideal . ℐat this point and plays an 
important role in detecting equimultiplicity of X along Y . 

1.6 The Normal/Conormal Diagram 

In this section we construct a space which, given a non-singular subspace . Y ⊂ X ⊂
CN and a local retraction .r : CN → Y does for limit positions of pairs .(�, T ) at a 
point .x ∈ X0 \ Y of the direction of secant line .xr(x) and a direction of tangent 
hyperplane .H ⊃ TX0.x what the conormal space and the blowing up of Y in X do 
separately. 

With the help of the normal/conormal diagram and the polar varieties we will be 
able to obtain information on the limits of tangent spaces to X at 0, assuming that 
.(X, 0) is reduced and purely d-dimensional. This method is based on Whitney’s 
lemma and the two results which follow it: 

Lemma 1.6.1 (Whitney’s Lemma for . X0) Let .(X, 0) be a pure-dimensional germ 
of analytic subspace of . CN , choose a representative X and let .{xn} ⊂ X0 be a 
sequence of points tending to 0, such that 

. lim
n→∞[0xn] = l and lim

n→∞ TxnX = T .

Then .l ⊂ T . 

A stronger form of this lemma originally appeared in [65, Theorem 22.1], and 
you can also find a proof due to Hironaka in [32] and yet another below in assertion 
a) of Theorem 1.6.2. 

Given .X ⊂ CN as above, consider the normal/conormal diagram 

where . e0 is the blowing up of the point .0 ∈ X, . ̂e0 is the blowing up of the 
subspace .κ−1(0) and . κ ′ is the map coming from the universal property of blowing 
ups applied to the map .ξ = κ ◦ ê0.
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Theorem 1.6.2 (Lê-Teissier, See [36, §2]) In the normal/conormal diagram, con-
sider the irreducible components . Dj of the exceptional divisor .D = |ξ−1(0)|. Then 
we have: 

I) The following hold 

(i) Each .Dj ⊂ PN−1×P̌N−1 is contained in the incidence variety . I ⊂ PN−1×
P̌N−1. 

(ii) Each . Dj is Lagrangian in I and therefore establishes a projective duality 
of its images: 

Note that, from commutativity of the diagram we obtain .κ−1(0) = ⋃
j Wj , 

and .e−1
0 (0) = ⋃

α Vj . It is important to notice that these expressions are not 

necessarily the irreducible decompositions of .κ−1(0) and .e−1
0 (0) respectively, 

since there may be repetitions; it is the case for the surface of Example 1.6.4 
below, where the dual of the tangent cone, a point in . ̌P2, is contained in the 
projective line dual to the exceptional tangent. However, it is true that they 
contain the respective irreducible decompositions. 

In particular, note that if dim. Vj0 = d − 1, then the cone .O(Vj0) ⊂ CN is an 
irreducible component of the tangent cone .CX,0 and its projective dual . Wj0 =
V̌j0 is contained in .κ−1(0). That is, any tangent hyperplane to the tangent cone 
is a limit of tangent hyperplanes to X at 0. The converse is very far from true 
and we shall see more about this below. 

II) For any integer k, .0 ≤ k ≤ d − 1, and sufficiently general .Ld−k ⊂ P̌N−1 the 
tangent cone .CPk(X,L),0 of a non empty polar variety .Pk(X,L) at the origin 
consists of: 

• The union of the cones .O(Vj )which are of dimension .d−k (= .dimPk(X,L)). 
• The polar varieties .P�(O(Vj ), L) of dimension .d − k, for the projection p 

associated to L, of the cones .O(Vj ), for  j such that . dimO(Vj ) = d − k + �

for some .1 ≤ � ≤ k. 

Note that .Pk(X,L) is not unique, since it varies with L, but we are saying that 
its tangent cone may have parts which do not vary with L. The . Vα’s are fixed, 
so the first part is the fixed part of .CPk(X,L),0 because it is independent of L, the  
second part is the mobile part, since we are talking of polar varieties of certain 
cones, which by definition move with L (see [10]).
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Proof The proof of I), which can be found in [36, §2], is essentially a strengthening 
of Whitney’s lemma (Lemma 1.6.1) using the normal/conormal diagram and the 
fact that the vanishing of a differential form (the symplectic form in our case) is a 
closed condition. 

The proof of II), a special case of [36, Proposition 2.2.1], is somewhat easier to 
explain geometrically: 

Using our normal/conormal diagram, remember that we can obtain the blowing 
up .E0(Pk(X,L)) of the polar variety .Pk(X,L) by taking its strict transform under 
the morphism . e0, and as such we will get the projectivized tangent cone . PCPk(X,L),0
as the fiber over the origin. 

The first step is to prove that set-theoretically the projectivized tangent cone can 
also be expressed as 

. |PCPk(X,L),0| =
⋃

j

κ ′(ê−1
0 (λ−1(L) ∩ Wj)) =

⋃

j

κ ′(Dj ∩ (PN−1 × L)).

Now recall that the intersection .Pk(X,L) ∩ X0 is dense in .Pk(X,L), so for any 
point .(0, [l]) ∈ PCPk(X,L),0 there exists a sequence of points .{xn} ⊂ X0 such that 
the directions of the secants .0xn converge to it. So, by definition of a polar variety, 
if .Dd−k+1 = Ľ and .Tn = TxnX

0 then by Proposition 1.4.14 we know that . dimTn ∩
Dd−k+1 ≥ k which is a closed condition. In particular if T is a limit of tangent 
spaces obtained from the sequence .{Tn}, then .T ∩ Dd−k+1 ≥ k also. But if this is 
the case, since the dimension of T is d, there exists a limit of tangent hyperplanes 
.H ∈ κ−1(0) such that .T + Dd−k+1 ⊂ H which is equivalent to . H ∈ κ−1(0) ∩
λ−1(L) �= ∅. Therefore the point .(0, [l],H) is in .

⋃
j ê−1

0 (λ−1(L) ∩ Wj), and so we 
have the inclusion: 

. |PCPk(X,L),0| ⊂
⋃

j

κ ′(ê−1
0 (λ−1(L) ∩ Wj)).

For the other inclusion, recall that .λ−1(L) \ κ−1(0) is dense in .λ−1(L) and so 
.ê−1

0 (λ−1(L)) is equal set theoretically to the closure in .E0C(X) of . ̂e−1
0 (λ−1(L) \

κ−1(0)). Then for any point .(0, [l],H) ∈ ê−1
0 (λ−1(L) ∩ κ−1(0)) there exists 

a sequence .{(xn, [xn],Hn)} in .ê−1
0 (λ−1(L) \ κ−1(0)) converging to it. Now by 

commutativity of the diagram, we get that the sequence .{(xn,Hn)} ⊂ λ−1(L) and 
as such the sequence of points .{xn} lies in the polar variety .Pk(X,L). This implies 
in particular, that the sequence .{(xn, [0xn])} is contained in .e−1

0 (Pk(X,L)\ {0}) and 
the point .(0, [l]) is in the projectivized tangent cone .|PCPk(X,L),0|. 

The second and final step of the proof is to use that from a) and b) it follows 
that each .Dj ⊂ I ⊂ PN−1 × P̌N−1 is the conormal space of . Vj in .PN−1, with the 
restriction of . κ ′ to .Dj being its conormal morphism. 

Note that .Dj is of dimension .N − 2, and since all the maps involved are just 
projections, we can take the cones over the . Vj ’s and proceed as in Sect. 1.4.2. In
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this setting we get that since L is sufficiently general, by Proposition 1.4.14 and 
Definition 1.4.16: 

• For the . Dj ’s corresponding to cones .O(Vj ) of dimension .d−k (= .dim Pk(X,L)), 
the intersection .Dj ∩ (PN−1 × L) is not empty and as such its image is a polar 
variety .P0(O(Vj ), L) = O(Vj ) which is independent of L. 

• For the . Dj ’s corresponding to cones .O(Vj ) of dimension .d − k + � for some 
.1 ≤ � ≤ k, the intersection .Dj ∩ (PN−1 × L) is either empty or of dimension 
.d − k and as such its image is a polar variety of dimension .d − k, which is 
.P�(O(Vj ), L) and varies with L if it is not empty. 

You can find a detailed proof of these results in [36, §2], [60, Chap. IV]. ��
So for any reduced and purely d-dimensional complex analytic germ . (X, 0), we  
have a method to “compute”, or rather describe, the set of limiting positions of 
tangent hyperplanes. Between parentheses are the types of computations involved: 

1. For all integers k, .0 ≤ k ≤ d − 1, compute the “general” polar varieties 
.Pk(X,L), leaving in the computation the coefficients of the equations of L as 
indeterminates. (Partial derivatives, Jacobian minors and residual ideals with 
respect to the Jacobian ideal); 

2. Compute the tangent cones .CPk(X,L),0 (computation of a standard basis with 
parameters); 

3. Sort out those irreducible components of the tangent cone of each . Pk(X,L)

which are independent of L (decomposition into irreducible components with 
parameters); 

4. Take the projective duals of the corresponding projective varieties (Elimination). 

We have noticed, that among the . Vj ’s, there are those which are irreducible 
components of .Proj CX,0 and those that are of lower dimension. 

Definition 1.6.3 The cones .O(Vj )’s such that 

. dim. Vj < dim. Proj CX,0

are called exceptional cones. 

Example 1.6.4 Let .X := y2 − x3 − t2x2 = 0 ⊂ C3, so .dim X = 2, and thus 
.k = 0, 1. An easy calculation shows that the singular locus of X is the t-axis, and 
.m0(X) = 2.
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Note that for .k = 0, . D3 is just the origin in . C3, so the projection 

. π : X0 → C3

with kernel .D3 is the restriction to .X0 of the identity map, which is of rank 2 and 
we get that the whole . X0 is the critical set of such a map. Thus, 

. P0(X,L2) = X.

For .k = 1, . D2 is of dimension 1. So let us take for instance .D2 = y-axis, so we 
get the projection 

.π : X0 → C2 (x, y, t) �→ (x, t),
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and we obtain that the set of critical points of the projection is given by 

. P1(X,L1) =
{

x = −t2

y = 0

If we had taken for .D2 the line .t = 0, αx + βy = 0, we would have found that 
the polar curve is a nonsingular component of the intersection of our surface with 
the surface .2αy = βx(3x + 2t2). For .α �= 0 all these polar curves are tangent to 
the t-axis. As we shall see in the next subsection, this means that the t-axis is an  
“exceptional cone” in the tangent cone .y2 = 0 of our surface at the origin, and 
therefore all the 2-planes containing it are limits at the origin of tangent planes at 
nonsingular points of our surface. 

1.6.1 Limits of Tangent Spaces of Quasi-Ordinary 
Hypersurfaces 

Let .(X, 0) be a irreducible germ of complex analytic space of dimension d for which 
there exists a germ of finite morphism .π : (X, 0) → (Cd , 0) whose ramification set 
(that we often call the discriminant) is a hypersurface with only normal crossings 
singularities in . Cd . This type of singularity is called a quasi-ordinary singularity. 
In [4], C. Ban considered such singularities in the case where they are irreducible 
hypersurfaces. He gave a complete description of the limits of tangent spaces of X 
at 0 as follows: 

A germ of an irreducible quasi-ordinary hypersurface in .CN can be parametrized 
in a Puiseux-like manner (see [14, 1.2.3]). If the quasi-ordinary projection is 
.(z1, . . . , zN−1, z) �→ (z1, . . . , zN−1), then the hypersurface can be defined by 
the vanishing of a Weierstrass polynomial of degree n in z with coefficients in 
the maximal ideal of .C{z1, . . . , zN−1}. The quasi-ordinary condition means that 
the discriminant of the Weierstrass polynomial with respect to z is, in suitable 
coordinates, the product of a unit and a monomial in .C{z1, . . . , zN−1}. By the  
Abhyankar-Jung theorem (see [48]), it is parametrized by a convergent power series 
with rational exponents: 

. z = ζ(z1, . . . , zN−1) =
∑

caz
a1
n

1 . . . z

aN−1
n

N−1 , with a = (a1, . . . , aN−1).

Just as in the plane branch case, some of the rational exponents appearing in the 
series . ζ , which are totally ordered for the product order, are closely related to 
the local topology of the hypersurface, and they are also called the characteristic 
exponents. 

Let .z
a1
n

1 . . . z
ae
n

e be the monomial corresponding to the smallest characteristic 
exponent. Then Ban describes the collection of the irreducible components of the
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tangent cone and all the exceptional cones defined in Definition 1.6.3, which we 
have in [36] called the auréole of the singularity, as follows: 

Theorem 1.6.5 (Ban) The auréole of the quasi-ordinary irreducible hypersurface 
singularity parametrized as above consists of : 

(i) If .n > a1 + · · · + ae, the following cones of . CN : 

. CI = {(z1, . . . , zN−1, z)|zi = 0 for i ∈ I ⊂ {1, . . . , e} and I �= ∅}
(ii) If .n < a1 + · · · + ae, the following cones of . CN : 

. CI = {(z1, . . . , zN−1, z)|z = 0, and zi = 0 for i ∈ I ⊂ {1, . . . , e} such that

. n >
∑

i∈I

ai , or I = ∅}

(iii) If .n = a1 + · · · + ae, the irreducible components of the tangent cone .CX,0 . 

Thus, the characteristic monomials of a quasi-ordinary irreducible hypersurface 
determine its auréole, and in particular its exceptional cones, in all dimensions. 

Remark 1.6.6 

1) We repeat the remark on p. 567 of [36] to the effect that when .(X, 0) is 
analytically isomorphic to the germ at the vertex of a cone the polar varieties 
are themselves isomorphic to cones so that the families of tangent cones of polar 
varieties have no fixed components except when .k = 0. Therefore in this case 
.(X, 0) has no exceptional cones. 

2) The fact that the cone X over a nonsingular projective variety has no exceptional 
cones is thus related to the fact that the critical locus .P1(X, 0) of the projection 
.π : X → Cd , which is purely of codimension one in X if it is not empty, 
actually moves with the projection . π ; in the language of algebraic geometry, 
the ramification divisor of the projection is ample (see [66, Chap. I, cor. 2.14]) 
and even very ample (see [10]). 

3) The dimension of .κ−1(0) can be large for a singularity .(X, 0) which has no 
exceptional cones. This is the case for example if X is the cone over a projective 
variety of dimension .d − 1 < N − 2 in .PN−1 whose dual is a hypersurface. 

1.7 The Relative Conormal 

Let .f : X → S be a morphism of reduced analytic spaces, with purely d-
dimensional fibers and such that there exists a closed nowhere dense analytic space 
such that the restriction to its complement . X0 in X : 

.f |X0 : X0 −→ S



1 Limits of Tangents, Whitney Stratifications and a Plücker Type Formula 31

has all its fibers smooth. They are manifolds of dimension .d = dim. X−dim. S. Let  
us assume furthermore that the map f is induced, via a closed embedding .X ⊂ Z by 
a smooth map .F : Z → S. This means that locally on Z the map F is analytically 
isomorphic to the first projection .S × CN → S. Locally on X, this is always the 
case because we can embed the graph of f , which lies in . X × S, into .CN × S. 

Let us denote by .πF : T ∗(Z/S) → Z the relative cotangent bundle of .Z/S, 
which is a fiber bundle whose fiber over a point .z ∈ Z is the dual .T ∗

Z/S,x of the 

tangent vector space at z to the fiber .F−1(F (z)). For .x ∈ X0, denote by . X0(x)

the submanifold .f −1(f (x)) ∩ X0 of . X0. Using this submanifold we will build the 
conormal space of X relative to f , denoted by .T ∗

X/S(Z/S), by setting 

. N∗
X0(x),x

= {ξ ∈ T ∗Z/S, x|ξ(v) = 0, ∀v ∈ TX0(x),x}

and 

. T ∗
X0/S

(Z/S) = {(x, ξ) ∈ T ∗(Z/S)| x ∈ X0, ξ ∈ N∗
X0(x),x

},

and finally taking the closure of .T ∗
X0/S

(Z/S) in .T ∗(Z/S), which is a complex 

analytic space .T ∗
X/S(Z/S) by an argument similar to the one we saw in Proposi-

tion 1.3.1. Since . X0 is dense in X, this closure maps onto X by the natural projection 
.πF : T ∗(Z/S) → Z. 

Now we can projectivize with respect to the homotheties on . ξ , as in the case 
where S is a point, which we have seen above. We obtain the (projectivized) relative 
conormal space .Cf (X) ⊂ PT ∗(Z/S) (also denoted by .C(X/S)), naturally endowed 
with a map  

. κf : Cf (X) −→ X.

We can assume that locally the map f is the restriction of the first projection to 
.X ⊂ S × U , where U is open in . Cn. Then we have . T ∗(S × U/S) = S × U × Čn

and .PT ∗(S × U/S) = S × U × P̌N−1. This gives an inclusion . Cf (X) ⊂ X × P̌N−1

such that . κf is the restriction of the first projection, and a point of .Cf (X) is a pair 
.(x,H), where x is a point of X and H is a limit direction at x of hyperplanes of 
.CN tangent to the fibers of the map f at points of . X0. By taking for S a point we 
recover the classical case studied above. 

Definition 1.7.1 Given a smooth morphism .F : Z → S as above, the projection 
to S of .Z = S × U , with U open in . Cn, we shall say that a reduced complex 
subspace .W ⊂ T ∗(Z/S) is F -Lagrangian (or S-Lagrangian if there is no 
ambiguity on F ) if the fibers of the composed map . q := (πF ◦ F)|W : W → S

are purely of dimension .n = dim. Z − dim. S and the differential .ωF of the relative 
Liouville differential form . αF on .CN × ČN vanishes on all pairs of tangent vectors 
at smooth points of the fibers of the map q.



32 L. Dũng Tráng and B. Teissier

With this definition it is not difficult to verify that .T ∗
X/S(Z/S) is F -Lagrangian, and 

by abuse of language we will say the same of .Cf (X). But we have more: 

Proposition 1.7.2 (Lê-Teissier, See [36], Proposition 1.2.6) Let .F : Z → S be a 
smooth complex analytic map with fibers of dimension n. Assume that S is reduced. 
Let .W ⊂ T ∗(Z/S) be a reduced closed complex subspace and set as above . q =
πF ◦ F |W : W → S. Assume that the dimension of the fibers of q over points of 
dense open analytic subsets . Ui of the irreducible components . Si of S is n. 

(i) If the Liouville form on .T ∗
F−1(s)

= (πF ◦F)−1(s) vanishes on the tangent vectors 

at smooth points of the fibers .q−1(s) for .s ∈ Ui and all the fibers of q are of 
dimension n, then the Liouville form vanishes on tangent vectors at smooth 
points of all fibers of q. 

(ii) The following conditions are equivalent: 

• The subspace .W ⊂ T ∗(Z/S) is F -Lagrangian; 
• The fibers of q, once reduced, are all purely of dimension n and there exists 

a dense open subset U of S such that for .s ∈ U the fiber .q−1(s) is reduced 
and is a Lagrangian subvariety of .(πF ◦ F)−1(s); 

If moreover W is homogeneous with respect to homotheties on .T ∗(Z/S), 
these conditions are equivalent to: 

• All fibers of q, once reduced, are purely of dimension n and each irreducible 
component . Wj of W is equal to .T ∗

Xj /S(Z/S), where .Xj = πF (Wj ). 

The essential content of this is that an equidimensional specialization of Lagrangian 
varieties is a union of irreducible Lagrangian varieties. For more details see [36] or  
[15, Chap. I]. 

1.8 Whitney Stratifications 

1.8.1 Introduction 

In this section we study Whitney stratifications of complex analytic spaces using the 
tools introduced in the preceding sections. For the history of the subject, including 
in real algebraic, real analytic, differentiable and definable geometry, we refer the 
reader to [63, §4.1] in Volume I of this Handbook. The complex analytic case 
has specific features which imply in particular that Whitney stratifications can 
be characterized by algebraic equimultiplicity conditions as well as topological 
equisingularity conditions, that they are also characterized by Lagrangian-type 
conditions for certain subspaces in auxiliary spaces, and finally that a complex 
analytic space has a canonical minimal Whitney stratification. 

In his paper [65], Whitney gave a definition of a complex analytic stratification 
of a reduced complex analytic space X (see §18 of loc.cit.). The idea is to produce a 
locally finite decomposition .X = ⊔

α∈A Sα of a reduced complex analytic space X
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into disjoint non-singular locally closed subspaces called strata such that the “local 
geometry” of X is the same at all points of the same stratum. To achieve this he 
proposed two types of conditions: 

• Topological/Analytic conditions: each stratum .Sα ⊂ X is a non-singular analytic 
space, its closure . Sβ is a closed analytic subspace of X and the frontier . Sβ \ Sβ

is a union of strata 
• Differential conditions: Consider a pair of strata .(Sα, Sβ) such that .Sα is 

contained in the closure of . Sβ : 

. Sα ⊂ Sβ

and consider a point .x ∈ Sα . We can assume that a neighborhood of x in X 
is a closed subset of an open subset U of an affine space . CN . Now, consider a 
sequence . xn of points of .Sβ ∩ U which tends to x and a sequence . yn of points 
of .Sα ∩ U which also tends to x. By choosing good subsequences of .(xn) and 
.(yn), we may suppose that the limit of secant lines .xnyn is . � and the limit of 
the tangents .TxnSβ is . T. Then one says that we have the Whitney condition for 
.(Sα, Sβ) at the point .x ∈ Sα , if for all sequences .(xn), . (yn), we have:  

. � ⊂ T.

This is the same as condition . b) of [63, Def. 4.2.1].  
Note that the first condition is equivalent to: .Sα ∩ Sβ �= ∅ implies .Sα ⊂ Sβ . 

This is known as the frontier condition. .  

Remark 1.8.1 Whitney’s original definition had a condition a) stating that for 
sequences . xn as above, the limit . T contains the tangent space .TY,x to Y at x. In  
fact condition . b) implies . a). See [63, 4.2, Exercise].  

Definition 1.8.2 One says that a locally finite partition .X = ⊔
α∈A Sα is a Whitney 

stratification if the topological/analytic conditions are satisfied by the collection of 
strata and the differential condition is satisfied for all pairs of strata .(Sα, Sβ) such 
that .Sα ⊂ Sβ and all points .x ∈ Sα . 

Theorem 1.8.3 (Whitney) Any reduced complex analytic space admits Whitney 
stratifications. 

Proof For the original proof see [65, Theorem 19.2]. For a different proof see [60, 
Chap. III, Proposition 2.2.2]. ��
Remark 1.8.4 As we mentioned in Lemma 1.6.1, Whitney discovered (see [65, 
Theorem 22.1]) that an analytic space is asymptotically conical near any of its 
points. This means that given .x ∈ X, a sequence of points .xn ∈ X tending to x, 
and a (limit of) tangent space(s) . Tn at each . xn (or a limit of limits at . xn of tangent 
spaces at points of . X0 if the . xn are singular points), up to taking a subsequence, the 
limit . � of secant lines .xxn is contained in the limit . T of the . Tn. Dealing with the case
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where the . xn are singular points necessitates the existence of Whitney stratifications 
of X; that is why the theorem appears at the very end of Whitney’s paper. 

A consequence of this is that if we take a sufficiently small sphere . Sε , boundary 
of a ball . Bε around x in . CN , since it is transversal to the secants .xxn it has to be 
transversal to . X0 and in fact to all the strata . Sα containing x in their closure. From 
this one deduces that .X ∩Bε is homeomorphic to the (real) cone with vertex x over 
.X ∩ Sε . This is the local conicity theorem. 

The differential part of the Whitney conditions extends this to the case where the 
point .x ∈ X is extended to be the stratum .Sα ⊂ Sβ , where, as we may, we assume 
. Sα to be a linear subspace of an ambient . CN , so that . Sβ is asymptotically like a cone 
with vertex . Sα . That is, the product of the (linear) . Sα by a cone. The intuition then is 
that if we take a sufficiently small closed tubular neighborhood . Tε of . Sα in . CN , then 
.Sβ ∩Tε should be homeomorphic to the cone with vertex . Sα over the intersection of 
. Sβ with the boundary of the tube. This ensures that at least topologically the local 
geometry of the . Sβ containing . Sα is constant along . Sα , and therefore also that of X. 

This intuition turned out to be correct, and in fact more is true (see [47]), but the 
precise proofs, due to Thom and Mather, are far from easy; see [63]. 

Remark 1.8.5 In addition to the applications to the study of the topology of singular 
complex spaces, one must mention that complex Whitney stratifications play a 
key role in the theory of .𝒟-modules (see [26, Chap. 6 and Appendix 2]) and 
constructible sheaves on complex spaces (see [42, Section 10.3.3]) and also in 
the theory of characteristic classes for singular complex varieties (see [5] and [6, 
Section 10]). They also play a key role in understanding the geometry of Plücker-
type formulas as the reader will see at the end of this section. 

1.8.2 Whitney Conditions and the Normal/Conormal Diagram 

In order to simplify notations we consider a pair of strata .Y ⊂ X ⊂ CN in the 
neighborhood of .0 ∈ CN , with Y linear of dimension t . They represent . Sα ⊂ Sβ ⊂
CN with .X0 = Sβ . Since we have to consider limits of secants starting in Y , we  
consider the following generalization of the normal/conormal diagram:
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where now . eY denotes the blowing-up of Y in X, which, as we remember from 
Sect. 1.5, builds limits of directions of secant lines .xρ(x) for .x ∈ X \ Y and some 
local retraction .ρ : CN → Y . Remember that .EY C(X) is the blowing up of the 
subspace .κ−1(Y ) in .C(X), and . κ ′ is obtained from the universal property of the 
blowing up, with respect to .EY X and the map . ξ . Just as in the case where .Y = {0}, 
it is worth mentioning that .EY C(X) lives inside the fiber product . C(X)×X EY X ⊂
X × PN−t−1 × P̌N−1 and can be described in the following way: take the inverse 
image of .EY X \ e−1

Y (Y ) in .C(X) ×X EY X and close it, thus obtaining . κ ′ as the 
restriction of the second projection to this space. 

Looking at the definitions, it is not difficult to prove that, if we consider the 
divisor: 

. D = |ξ−1(Y )| ⊂ EY C(X), D ⊂ Y × PN−t−1 × P̌N−1,

and denote by .P̌N−t−1 ⊂ P̌N−1 the space of hyperplanes containing .T0Y : 

. • The pair .(X0, Y ) satisfies Whitney’s condition a) along Y (see Remark 1.8.1) if  
and only if we have the set theoretical equality .|C(X) ∩ C(Y )| = |κ−1(Y )|. It  
satisfies Whitney’s condition a) at 0 if and only if .|ξ−1(0)| ⊂ PN−t−1 × P̌N−t−1. 

Note that we have the inclusion .C(X) ∩ C(Y ) ⊂ κ−1(Y ), so it all reduces to 
having the inclusion .|κ−1(Y )| ⊂ C(Y ), and since we have already seen that every 
limit of tangent hyperplanes H contains a limit of tangent spaces T , we are just 
saying that every limit of tangent hyperplanes to X at a point . y ∈ Y , must be a  
tangent hyperplane to Y at y. Following this line of thought, satisfying condition 
a) at 0 is then equivalent to the inclusion .|κ−1(0)| ⊂ {0} × P̌N−t−1 which implies 
.|ξ−1(0)| ⊂ PN−t−1 × P̌N−t−1. 

. • The pair .(X0, Y ) satisfies Whitney’s condition b) at 0 if and only if .|ξ−1(0)| is 
contained in the incidence variety .I ⊂ PN−t−1 × P̌N−t−1. 

This is immediate from the relation between limits of tangent hyperplanes and 
limits of tangent spaces and the interpretation of .EY C(X) as the closure of the 
inverse image of .EY X \ e−1

Y (Y ) in .C(X) ×X EY X since we are basically taking 
limits as .x → Y of couples .(l, H) where l is the direction in .PN−t−1 of a secant 
line . yx with .x ∈ X0 \ Y, y = ρ(x) ∈ Y , where . ρ is some local retraction of the 
ambient space to the nonsingular subspace Y , and H is a tangent hyperplane to X 
at x. So, in order to verify the Whitney conditions, it is important to control the 
geometry of the projection .D → Y of the divisor .D ⊂ EY C(X). 

Remark 1.8.6 Although it is beyond the scope of these notes, we point out to the 
interested reader that there is an algebraic definition of the Whitney conditions for 
.X0 along .Y ⊂ X solely in terms of the ideals defining .C(X) ∩ C(Y ) and . κ−1(Y )

in .C(X). Indeed, the inclusion .C(X) ∩ C(Y ) ⊂ κ−1(Y ) follows from the fact that 
the sheaf of ideals .𝒥C(X)∩C(Y ) defining .C(X) ∩ C(Y ) in .C(X) contains the sheaf 
of ideals .𝒥κ−1(Y ) defining .κ−1(Y ), which is generated by the pull-back by . κ of the
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equations of Y in X. What was said above means that condition a) is equivalent to 
the second inclusion in: 

. 𝒥κ−1(Y ) ⊆ 𝒥C(X)∩C(Y ) ⊆
√
𝒥κ−1(Y ).

It is proved in [36, Proposition 1.3.8] that having both Whitney conditions is 
equivalent to having the second inclusion in: 

. 𝒥κ−1(Y ) ⊆ 𝒥C(X)∩C(Y ) ⊆ 𝒥κ−1(Y ) ,

where the bar denotes the integral closure of the sheaf of ideals, which is contained 
in the radical and is in general much closer to the ideal than the radical. The 
second inclusion is an algebraic expression of the fact that locally near every 
point of the common zero set the modules of local generators of the ideal 
.𝒥C(X)∩C(Y ) are bounded, up to a multiplicative constant depending only on the 
chosen neighborhood of the common zero set, by the supremum of the modules 
of generators of .𝒥κ−1(Y ). 

This result is used in [20] to produce an algorithm computing the Whitney 
stratification of a projective variety. 

In the case where Y is a point x, the ideal defining .C(X) ∩ C({x}) in .C(X) is 
just the pull-back by . κ of the maximal ideal .mX,x , so it coincides with .𝒥κ−1(x) and 
Whitney’s lemma for the smooth part . X0 follows. 

Definition 1.8.7 Let .Y ⊂ X ⊂ CN as before. Then we say that the local polar 
variety .Pk(X;Ld−k) is equimultiple along Y at a point .x ∈ Y if the map . y �→
my(Pk(X;Ld−k)) is constant for .y ∈ Y in a neighborhood of x. 

Note that this implies that if .(Pk(X;Ld−k), x) �= ∅, then .Pk(X;Ld−k) ⊃ Y in a 
neighborhood of x since the emptiness of a germ is equivalent to multiplicity zero. 

We can now state the main theorem of this section, a complete proof of which can 
be found in [60, Chap. V, Thm. 1.2, p. 455]. 

Theorem 1.8.8 (Teissier; See Also [21] for Another Proof) Given .0 ∈ Y ⊂ X as 
before, the following conditions are equivalent, where . ξ is the diagonal map in the 
normal/conormal diagram above: 

1) The pair .(X0, Y ) satisfies Whitney’s conditions at 0. 
2) The local polar varieties .Pk(X,L), .0 ≤ k ≤ d − 1, are equimultiple along Y (at 

0), for general L. 
3) . dim. ξ−1(0) = N − t − 2.

Note that since .dim. D = N − 2, condition 3) is open and the theorem implies 
that .(X0, Y ) satisfies Whitney’s conditions at 0 if and only if it satisfies Whitney’s 
conditions in a neighborhood of 0. 

Note also that by analytic semicontinuity of fiber dimension (see [12, Chap. 3, 
3.6] or [27, §49]), condition 3) is satisfied outside of a closed analytic subspace of 
Y , which shows that Whitney’s conditions are a stratifying condition in the sense of 
[60, Chap. III, Definition 1.4].
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Moreover, since a blowing up does not lower dimension, the condition 
.dim. ξ−1(0) = N − t − 2 implies .dim. κ−1(0) ≤ N − t − 2. So that, in particular 
.κ−1(0) �⊃ P̌N−t−1, where .P̌N−t−1 denotes as before the space of hyperplanes 
containing .T0Y . This tells us that a general hyperplane containing .T0Y is not a 
limit of tangent hyperplanes to X. This fact is crucial in the proof that Whitney 
conditions are equivalent to the equimultiplicity of polar varieties since it allows 
the start of an inductive process. In the actual proof of [60], one reduces to the case 
where .dim. Y = 1 and shows by a geometric argument that the Whitney conditions 
imply that the polar curve has to be empty, which gives a bound on the dimension of 
.κ−1(0). Conversely, the equimultiplicity condition on polar varieties gives bounds 
on the dimension of .κ−1(0) by implying the emptiness of the polar curve and on 
the dimension of .e−1

Y (0) by Hironaka’s result, hence a bound on the dimension of 
.ξ−1(0). 

It should be noted that Hironaka had proved in [23, Corollary 6.2] that the 
Whitney conditions for . X0 along Y imply equimultiplicity of X along Y . 

Finally, a consequence of the theorem is that given a complex analytic space 
X, there is a unique minimal (coarsest) Whitney stratification; any other Whitney 
stratification of X is obtained by adding strata inside the strata of the minimal one. 
A detailed explanation of how to construct this “canonical” Whitney stratification 
using Theorem 1.8.8, and the proof that this is in fact the coarsest one appears in 
[60, Chap. VI, §3]. The connected components of the strata of the minimal Whitney 
stratification give a minimal “Whitney stratification with connected strata” 

1.8.3 The Whitney Conditions Are Lagrangian in Nature 

Consider the irreducible components .Dj ⊂ Y × PN−t−1 × P̌N−1 of the divisor 
.D = |ξ−1(Y )|, that is .D = ⋃

j Dj , and their images: 

. Vj = κ ′(Dj ) ⊂ Y × PN−t−1,

Wj = êY (Dj ) ⊂ Y × P̌N−1.

We have .κ−1
X (Y ) = ⋃

j Wj and e−1
Y (Y ) = ⋃

j Vj : 

Theorem 1.8.9 (Lê-Teissier, See [36, Thm. 2.1.1])  The equivalent statements of 
Theorem 1.8.8 are also equivalent to the following one. 

For each j , the irreducible divisor . Dj is the relative conormal space of its image 
.Vj ⊂ ProjY CX,Y ⊂ Y × PN−t−1 under the first projection . Y × PN−t−1 → Y

restricted to . Vj , and all the fibers of the restriction .ξ |Dj : Dj → Y have the same 
dimension near 0. 

In particular, Whitney’s conditions are equivalent to the equidimensionality for 
.y ∈ Y of the fibers .Dj(y) = Dj ∩ ξ−1(y) of the map .Dj → Y , plus the fact that 
each . Dj is contained in .Y × I ⊂ Y ×PN−t−1 × P̌N−t−1, where .P̌N−t−1 is the space 
of hyperplanes containing the tangent space .TY,0 and I is the incidence subvariety.
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The new fact is that the contact form on .I ⊂ PN−t−1 × P̌N−t−1 vanishes on the 
smooth points of .Dj(y) for .y ∈ Y . This means that each . Dj is Y -Lagrangian and is 
equivalent to a relative (or fiberwise) duality: 

. Dj
��

��

Wj = Y−dual of Vj ⊂ Y × P̌N−t−1

Y × PN−t−1 ⊃ Vj

The proof uses that the Whitney conditions are stratifying in the sense of [60, 
Chap. III, Definition 1.4 and Proposition 2.2.2], and that Theorem 1.8.8 and the 
result of Remark 1.8.6 imply5 that .Dj is the conormal of its image over a dense 
open set of Y . The condition .dim. ξ−1(0) = N − t − 2 then gives exactly what is 
needed, in view of Proposition 1.7.2, for .Dj to be Y -Lagrangian. 

Remark 1.8.10 As we have seen in Sect. 1.8.2, the original definition of the Whitney 
conditions, translates as the fact that .|ξ−1(Y )| is in .Y × PN−t−1 × P̌N−t−1 and not 
just .Y × PN−t−1 × P̌N−1 (condition a) and moreover lies in the product .Y × I of 
Y with the incidence variety .I ⊂ PN−t−1 × P̌N−t−1 (condition b)). Theorem 1.8.9 
shows that they are in fact of a Lagrangian, or Legendrian, nature. This explains their 
stability by general sections (by non singular subspaces containing Y ) as proved in 
[60, Chap. V] and linear projections, as proved in [36, Théorème 2.2.4]. 

The condition .dim. κ−1(y) ≤ N − t − 2 which follows from . dim. ξ−1(y) =
N − t −2 corresponds to the fact that a general hyperplane of .CN containing .TY,y is 
not a limit of tangent hyperplanes to . X0, which is an important consequence of the 
Whitney conditions as we have already noted. 

1.9 The Multiplicities of Local Polar Varieties and a Plücker 
Type Formula 

In this section we relate the multiplicities of the local polar varieties of the closures 
of strata, which are algebraic invariants of singularities which can be computed by 
intersection theory in the normal/conormal diagram at a point, with vanishing Euler 
characteristics associated to the strata of a Whitney stratification.

5 The proof of this in [36] uses a lemma, p. 559, whose proof is incorrect, but easy to correct. There 
is an unfortunate mixup in notation. One needs to prove that .

∑N
t+1 ξkdzk = 0 and use the fact that 

the same vector remains tangent after the homothety .ξk �→ λξk, t + 1 ≤ k ≤ N . Since we want to  
prove that . L1 is Y -Lagrangian, we must take .dyi = 0. 
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As we shall see, when applied to the cone over a projective variety . Z ⊂ PN−1

this formula yields a general Plücker type formula expressing the degree of the 
dual variety .Ž ⊂ P̌N−1 of Z in terms of the Euler characteristics of the strata 
of the minimal Whitney stratification .(Zα)α∈A of Z and their sections by general 
linear subspaces of all dimensions, and the vanishing Euler-Poincaré characteristics 
associated to pairs of strata .Zα ⊂ Zβ . 

Proposition 1.9.1 (Lê-Teissier, See [37, §3]) Let .X = ⊔
α Xα be a Whitney  

stratified complex analytic set of dimension d, with connected strata. Given .x ∈ Xα , 
choose a local embedding .(X, x) ⊂ (CN, 0). Set .dα = dim.Xα . For each integer 
.i ∈ [dα + 1, d] there exists a Zariski open dense subset .Wα,i in the Grassmannian 
.G(N −i, N) and for each .Li ∈ Wα,i a semi-analytic subset .ELi

of the first quadrant 
of . R2, of the  form  .{(ε, η)|0 < ε < ε0, 0 < η < φ(ε)} with .φ(ε) a certain Puiseux 
series in . ε, such that the homotopy type of the intersection . X ∩ (Li + t) ∩ B(0, ε)

for .t ∈ CN is independent of .Li ∈ Wα,i and .(ε, t) provided that .(ε, |t |) ∈ ELi
. 

Moreover, this homotopy type depends only on the stratified set X and not on 
the choice of .x ∈ Xα or the local embedding. In particular the Euler-Poincaré 
characteristics .χi(X,Xα) of these homotopy types are invariants of the stratified 
analytic set X. 

Definition 1.9.2 The Euler-Poincaré characteristics . χi(X,Xα), for  
. i ∈ [dα + 1, d] are called the local vanishing Euler-Poincaré characteristics of 
X along . Xα . 

The independence of the point .x ∈ Xα is a consequence of the local topological 
triviality of the closures of the Whitney strata along the strata of their boundaries 
(The Thom-Mather Theorem). We shall not go into this here. See [63, Theorem 
4.2.17]. The connection between the local vanishing Euler characteristics and the 
multiplicities of polar varieties is expressed as follows: 

Theorem 1.9.3 (Lê-Teissier, See [35, Théorème 6.1.9], [37, 4.11]) With the con-
ventions just stated, and for any Whitney stratified complex analytic set . X =⊔

α Xα ⊂ CN , we have for .x ∈ Xα the equality 

. χdα+1(X,Xα) − χdα+2(X,Xα) =
∑

dβ>dα

(−1)dβ−dα−1mx(Pdβ−dα−1(Xβ, x))(1 − χdβ+1(X,Xβ)),

where it is understood that .mx(Pdβ−dα−1(Xβ, x)) = 0 if .x /∈ Pdβ−dα−1(Xβ, x). 

It follows that given a Whitney stratified complex analytic set .X = ⊔
α Xα with 

connected strata, it is equivalent to give the collections of multiplicities of the local 
polar varieties of the closures .Xβ of strata at the points of the strata .Xα in their 
boundary and to give the collections of vanishing Euler-Poincaré characteristics 
.χi(Xβ,Xα). There is an invertible linear relation between the two sets.



40 L. Dũng Tráng and B. Teissier

Let us now consider the special case where X is the cone over a projective variety 
Z, which we assume not to be contained in a hyperplane. The dual variety . Ž of Z 
was defined in Sect. 1.4.2. Remember that every complex analytic space, and in 
particular Z, has a minimal Whitney stratification. We shall use the following facts, 
with the notation of Proposition 1.9.1 and those introduced after Proposition 1.4.8: 

Proposition 1.9.4 (See [16, Section 8]) Let .Z ⊂ PN−1 be a projective variety of 
dimension d. 

(i) If .Z = ⊔
α Zα is a Whitney stratification of Z, denoting by .Xα ⊂ CN the cone 

over . Zα , we have that .X = {0}∪ (
⊔

α X∗
α), where .X∗

α = Xα \ {0}, is a Whitney 
stratification of X. It may be that .(Zα) is the minimal Whitney stratification of 
V but .{0} ∪ (

⊔
α X∗

α) is not minimal, for example if Z is itself a cone. 
(ii) If .Li + t is an i-codimensional affine space in .CN it can be written as 

.Li−1 ∩ (L1 + t) with vector subspaces . Li and for general directions of . Li

we have, denoting by .B(0, ε) the closed ball with center 0 and radius . ε, for  
small . ε and .0 < |t | � ε : 

. χi(X, {0}) := χ(X ∩ (Li + t)∩B(0, ε)) = χ(Z ∩Hi−1)−χ(Z ∩Hi−1 ∩H1),

where .Hi = PLi ⊂ PN−1. 
(iii) For every stratum . X∗

α of X, we have the equalities .χi(X,X∗
α) = χi(Z,Zα). 

(iv) If the dual .Ž ⊂ P̌N−1 is a hypersurface, its degree is equal to .m0(Pd(X, 0)), 
which is the number of non singular critical points of the restriction to Z of a 
general linear projection .PN−1 \ L2 → P1. 

Note that we will apply statements 2) and 3) not only to the cone X over Z but also 
to the cones .Xβ over the closed strata . Zβ . 

If we now apply the Theorem 1.9.3, we see that, using Proposition 1.9.4, we can 
rewrite in this case the formula of Theorem 1.9.3 as a generalized Plücker formula 
for any d-dimensional projective variety .Z ⊂ PN−1 whose dual is a hypersurface: 

Proposition 1.9.5 (Teissier, See [60, §5]) Given the projective variety . Z ⊂ PN−1

equipped with a Whitney stratification .Z = ⊔
α∈A Zα , denote by . dα the dimension 

of . Zα . We have, if the projective dual . Ž is a hypersurface in .P̌N−1: 

. (−1)ddegŽ = χ(Z) − 2χ(Z ∩ H1) + χ(Z ∩ H2)

−
∑

dα<d

(−1)dα degN−2Pdα (Zα)(1 − χdα+1(Z,Zα)) ,

where .H1,H2 denote general linear subspaces of .PN−1 of codimension 1 and 
2 respectively, .degN−2Pdα (Zα) is the number of nonsingular critical points of a 

general linear projection .Zα → P1, which is the degree of . Žα if it is a hypersurface 
and is set equal to zero otherwise. It is equal to 1 if .dα = 0.
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Here we remark that if .(Zα)α∈A is the minimal Whitney stratification of the 
projective variety .Z ⊂ PN−1, and L is a general linear subspace in . PN−1, the . Zα∩L

that are not empty constitute the minimal Whitney stratification of .Z ∩ L. See [60, 
Chap. III, Lemma 4.2.2] and use the fact that the minimal Whitney stratification is 
defined by equimultiplicity of polar varieties (see [60, Chap. VI, §3]) and that the 
multiplicity of polar varieties of dimension .> 1 is preserved by general hyperplane 
sections as we saw before Theorem 1.9.3. 

It is explained in [16, Section 8] that if the dual of Z is not a hypersurface, the 
dual of the intersection of Z with a general linear space of .PN−1 of codimension 
.δ(Z) = codimP̌N−1Ž − 1 is a hypersurface of the same degree as . Ž. Using this and 
an induction on the dimension by applying Proposition 1.9.4, possibly after general 

linear sections, to compute the degrees of the . Žα , we see that we have proved the 
existence of a general formula to compute the degree of . Ž from the Euler-Poincaré 
characteristics of the closed strata .Zα and their general linear sections, and 
the vanishing Euler-Poincaré characteristics .χi(Zβ, Zα). We shall not write this 
formula explicitly, only remark that it is linear in the Euler-Poincaré characteristics 
of the strata and their general linear sections, and polynomial of degree bounded 
by the depth (the integer d in [63, Definition 4.1.1]) of the stratification in the 
local vanishing Euler-Poincaré characteristics. The degree of the variety . Ž of all 
limit tangent hyperplanes to a projective variety Z depends explicitly on basic 
topological characters of its minimal Whitney stratification. 

For another interpretation of the Plücker formula and the relation to this one, see 
[11, 40, 41] and [16, §8]. 

Remark 1.9.6 We note that as we compute the degree of the dual . Ž, we also  
compute the degrees of the duals of the closures of at least some of the strata of 
the canonical Whitney stratification .Z = ⊔

α Zα . This suggests the definition of the 
total dual of the projective variety Z: it is the union of the duals of the closures of 
the strata of its canonical Whitney stratification. For example if Z is the dual of a 
general non singular projective plane curve its total dual is the union of that curve, 
its bitangents and its tangents of inflexion, corresponding respectively to the nodes 
and cusps of Z. The total dual gives a tangentially exploded view of the singularities 
of Z. 

Acknowledgments The authors are grateful to Arturo Giles Flores for his useful remarks on a 
preliminary version of the text, and to the referee for his or her careful reading and subsequent 
suggestions. 

References 

1. C.M. Aguilar and A. Verjovsky, Errett Bishop Theorems on Complex Analytic Sets: 
Chow’s Theorem Revisited and Foliations with all leaves Compact on Kähler Manifolds 
arXiv:2111.04846 MathCV 2021.
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35. L. Dũng Tráng and B. Teissier, Sur la géométrie des surfaces complexes. I. Tangentes 
exceptionnelles, Amer. J. Math. 101 No. 2 (1979) 420–452. 
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III, José Luis Cisneros Molinas, Lê Dũng Tráng, José Seade, Editors, Springer 2022, 679–792. 
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