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Preface 

Singularity theory dates back to the work of Newton, Leibniz, Cauchy, Lagrange 
and many others, although it only emerged as a field of mathematics in itself in 
the early 1960s, thanks to pioneering work by Thom, Zariski, Whitney, Hironaka, 
Milnor, Pham, Arnold et al. 

Singularities are ubiquitous in mathematics, appearing naturally in a wide range 
of different areas of knowledge. Their scope is vast, their purpose is multifold. Its 
potential for applications in other areas of mathematics and of knowledge in general 
is unlimited, and so are its possible sources of inspiration. This theory is crucible 
where different types of mathematical problems interact and surprising connections 
are born. Just as mathematics interacts energetically with science in general, so does 
singularity theory with the rest of mathematics. 

The downside is that before a researcher, or a student, can successfully detect 
and try to answer some interesting problem, he or she must become familiar with 
different subjects and their techniques, and the learning process is long. In most 
cases, various areas are involved, as for instance topology, geometry, differential 
equations and algebra. That makes this a fascinating area of mathematics. And that 
is also a reason why a handbook which presents in-depth and reader-friendly surveys 
of topics of singularity theory is useful. 

This is the fourth volume of the Handbook of the Geometry and Topology of 
Singularities. By no means this collection pretends to be comprehensive, since the 
theory is vast. Yet, it has the intention of covering a wide scope of singularity theory, 
presenting in a clear and inspiring way, articles on various aspects of the theory and 
its interactions with other areas of mathematics. The authors are world experts; the 
various articles deal with both classical material and modern developments. 

The first three volumes of this collection gathered foundational aspects of the 
theory, as well as some other important aspects. Some topics are studied in various 
chapters, and in some cases, also in more than one volume. The topics studied so far 
include: 

– The combinatorics and topology of plane curves and surface singularities. 
– The analytic classification of plane curve singularities and the existence of 

complex and real algebraic curves in the plane with prescribed singularities. 

v 
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– Introductions to four of the classical methods for studying the topology and 
geometry of singular spaces, namely: resolution of singularities, deformation 
theory, stratifications and slicing the spaces à la  Lefschetz. 

– Milnor’s fibration theorem for real and complex singularities, the monodromy, 
vanishing cycles and Lê numbers. 

– Morse theory for stratified spaces and constructible sheaves. 
– Simple Lie algebras and simple singularities. 
– Limits of tangents to a complex analytic surface, a subject that originates in 

Whitney’s work. 
– Zariski’s equisingularity and intersection homology. 
– Mixed singularities, which are real analytic singularities with a rich structure that 

allows their study via complex geometry. 
– Intersections of quadrics in . Rn, and their relation with holomorphic vector fields, 

toric geometry and moment-angle manifolds. 
– Quasi-projective varieties, complements of plane curves and hypersurfaces in 

projective space. 
– Singularities of mappings. Thom-Mather theory. 
– The interplay between analytic and topological invariants of complex surface 

singularities and their relation with modern three-manifold invariants. 
– Indices of vector fields on singular varieties and their relation with other 

invariants. 
– Chern Class and Segre Class for singular varieties. 
– Baum-Bott residues and localization in singularity theory. 
– Mixed Hodge structures. 
– Constructible sheaf complexes. 

This Volume IV consists of 12 chapters. In Chap. 1, the authors look at limits 
of tangents spaces and Whitney stratifications. If X is a singular complex analytic 
space, then it has no tangent bundle and one cannot use in a direct way many 
classical and fundamental constructions. As explained in the introduction to that 
chapter, throughout the eighteenth century much work was done on singular 
curves and surfaces with the goal of generalizing Riemann’s work understanding 
“conditions of adjunction”. Then, John Semple [Proc. LMS 1954] introduced the 
space of limit directions of tangent spaces to an algebraic variety, which he called the 
first derivate. The construction can be naively explained by saying that one replaces 
the singular set by all limits of spaces tangent to the regular part. Semple’s work 
passed unnoticed for a long time, and about 10 years later, independently, John Nash 
rediscovered the construction and this became known as the Nash modification, or 
blow up. It is just recently that credit is being given to Semple as well. The use 
and study of this construction is vast, and it has already appeared in several works 
in this handbook, as for instance in Mark Spivakovski’s chapter in Volume 1, and 
in several works on characteristic classes in Volume III. It appears also in Chap. 6 
of this Volume IV. There is an analogous construction where tangent spaces are 
replaced by tangent hyperplanes. This viewpoint is more suitable for using other 
techniques of algebraic geometry, as for instance intersection theory. Chapter 1 is 
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devoted to these two constructions, their applications to stratification theory in the 
sense of Whitney and to a general Plücker type formula for projective varieties. 

Chapter 2 surveys determinantal singularities. These varieties are spaces of 
matrices with a given upper bound on their ranks. These generalize the much 
studied class of complete intersections in several different aspects, and they exhibit 
interesting new phenomena such as, for instance, non-isolated singularities which 
are finitely determined, or smoothings with low connectivity. The chapter starts with 
the necessary algebraic background, and then continues by discussing the subtle 
interplay of unfoldings and deformations in this setting. 

Chapters 3 and 4 concern the space of arcs in algebraic varieties. Roughly 
speaking, an arc is a very small portion of a curve on a scheme. The space of arcs 
and the space of m-jets have natural schemes structures with important properties. 
These spaces appeared in singularity theory for the first time in a short preprint in 
1968 by John Nash, although these concepts somehow already appear in the work of 
Isaac Newton in the seventeenth century. If X is a singular complex analytic space 
and .Z → X is a resolution, then one can construct infinitely many other resolutions 
of X by blowing up Z along regular loci. Nash wanted to codify the data which is 
common to all these resolutions, and he suggested that these data are hidden in the 
arc space. This led to what is nowadays known as the Nash problem. Chapter 3 is an 
introduction to the subject and it makes a remarkable bridge connecting this theory 
with birational geometry. Chapter 4 provides an overlook of the diverse aspects 
in the literature about the subject, complementing in several ways the existing 
literature. 

Vector fields on a smooth manifolds and their local Poincaré-Hopf indices at 
the singular points play an important role in many different areas of mathematics. 
For singular varieties, the study of indices of a particular class of vector fields 
started in the 1960s with work by M. H. Schwartz [CRAS 1965] aimed towards 
extending Chern classes to singular varieties. With that same goal but a different 
viewpoint, MacPherson [Ann. Maths. 1975] used an index (the Euler obstruction) 
for a particular class of 1-forms on singular spaces. Seade [AMS Contemp. Math. 
58, 1987] discovered an index of vector fields on smoothable normal complex 
Gorenstein surfaces germs and this gave rise to the so-called GSV-index of vector 
fields on complex ICIS germs. This was a markpoint in the study of indices of 
vector fields on singular varieties. In the 1990s, King and Trottman introduced 
another notion of index, much related to Schwartz’ index, but their work was not 
published until some 20 years later [Proc. LMS 2014; in the meantime, the same 
notion was rediscovered independently by W. Ebeling and S. Gusein-Zade, and 
by M. Aguilar et al.]. This is known as the radial (or Schwartz) index. Then, as 
hinted by Arnold, Ebeling and Gusein-Zade began the study of indices of 1-forms. 
In Chap. 5, the authors survey the theory of indices of vector fields and 1-forms on 
singular varieties, a subject previously discussed with different viewpoints in the 
chapters by Brasselet and by Callejas et al. in Volume III of this handbook. The 
authors discuss also indices for appropriate collections of 1-forms, an interesting 
concept. Just as the index of a 1-form is morally linked with the Chern number 
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defined by the top Chern class, so too the indices of collections of 1-forms are 
linked with other Chern numbers. 

Chapter 6 is about the motivic Hirzebruch class for singular varieties and it 
complements various articles that appeared in Volume III on the theory of Chern 
classes for singular varieties. We recall that Hirzebruch used the Todd class of 
complex manifolds to prove a deep theorem that has as special cases: 

(a) The theorem of Gauss–Bonnet 
(b) A generalization of Riemann-Roch’s theorem to higher dimensions and with 

cohomology in arbitrary holomorphic vector bundles 
(c) The Thom-Hirzebruch signature theorem 

These three theorems have been extended individually to singular varieties: via 
MacPherson’s Chern class (mentioned above) in the first case, with the Baum-Fulton 
MacPherson’s Todd class in the second case [Publ. Math. IHES 1975] and with 
Cappell-Shaneson’s L-class [J. AMS 1991] in the latter case. In this chapter, the 
author discusses the motivic Hirzebruch class, which unifies these three classes. 

Chapters 7–10 are about Lipschitz geometry in singularity theory, a subject 
that started with work by Pham and Teissier [CMI, Nice 1970]. Later, Mostowski 
[Rozprawy Mat. 1985] studied Lipschitz equisingularity and Lipschitz stratifica-
tions in analytic sets, a notion that grants the constancy of the Lipschitz type of 
the stratified set along each stratum. The existence of Lipschitz stratifications for 
analytic sets was established by Mostowski in 1989 in the complex case, and by 
Parusinsky in 1993 in the real setting. We refer to Parusinsky’s paper in Volume 
II for an account on this subject, and to Chap. 7 in this Volume IV. This chapter 
deals with semialgebraic and subanalytic subsets of . Rn, and more generally with 
all the sets that are definable in a polynomially bounded o-minimal structure 
expanding . R. The chapter begins with basic definitions about o-minimal structures 
and Lipschitz geometry, and it gives a short survey of some historical results, such 
as existence of Mostowski’s Lipschitz stratifications and the Preparation Theorem 
for definable functions. It then presents a stratification theorem and discusses 
related important results, including a bi-Lipschitz version of Hardt’s theorem on 
polynomially bounded o-minimal structures. 

Notice that given an analytic subset X of . Rn, we have two natural metrics on X: 
one is the metric induced from the ambient space; this is called the outer metric. 
The other is the inner, or length, metric, defined in the usual way in differential 
geometry, as the infimum of lengths of piecewise smooth curves connecting two 
given points. An embedding of X in . Rn is normal if the two metrics are equivalent 
up to a bilipschitz homeomorphism. Chapter 8 presents basic results on the Lipschitz 
Geometry of germs. It reviews recent results related to the outer metric and to the 
ambient bi-Lipschitz classification of surface germs, explaining why the outer bi-
Lipschitz classification is much harder than the inner classification. It also discusses 
relations with the theory of metric knots. Chapter 9 addresses the classical concept 
of multiplicity of singular points of complex algebraic sets (not necessarily complex 
curves). It approaches the nature of the multiplicity of singular points as a geometric 
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invariant from the perspective of Zariski’s Multiplicity Conjecture (1971). The 
chapter begins with a long introduction to the subject. 

The study of Lipschitz normally embedded germs has attracted a lot of interest 
in the last decade, and this is the subject of Chap. 10. Here the authors discuss many 
general facts about Lipschitz normally embedded singularities, before moving their 
focus to some recent developments on criteria, examples and properties of such 
germs. The chapter concludes with a list of interesting open questions. 

If X is a scheme of finite type over a perfect field k, as for instance . C, its 
multiplicity at each point x is the multiplicity of the local ring . OX,x . This is a  
measure of how “bad”, or perhaps “interesting”, the singularity is. For instance, 
resolution of singularities of varieties over . C, and more generally, over fields of 
characteristic zero, can be proved by using the multiplicity as main invariant, as 
proved by O. Villamayor [Adv. Math. 2014]. In order to study the multiplicity, one 
may look at the Hilbert-Samuel function, which is defined for any local Noetherian 
ring. More precisely, for a prime . p in a Noetherian ring . B, the multiplicity of B at 
. p springs when trying to measure the growth of dimension of the graded pieces of 
the graded ring 

. GrpBp
(Bp) =

⊕

i≥0 

pi Bp/p
i+1Bp 

as .k(p)-vector spaces. In fact this growth is encoded asymptotically by the so 
called Hilbert-Samuel polynomial of .Bp at . p, which is a polynomial of degree 
.d = dim(Bp) and the multiplicity at . p is (up to some suitable factor) the leading 
coefficient of that polynomial. Chapter 11 is mostly expository and the authors 
pay special attention to the geometrical aspects of these notions. To this end, finite 
projections from .Spec(B) to the spectrum of a regular ring S are studied. When 
the projections are “generic enough”, then some applications are discussed, like the 
determination of the top multiplicity locus of .Spec(B), or the computation of other 
invariants like the asymptotic Samuel function. 

We close this volume with a chapter about the logarithmic comparison theorem 
and several results known as comparison theorems, in the line of Grothendieck’s 
comparison theorem. We recall that if X is a complex analytic manifold, one has the 
classical de Rham complex of holomorphic forms on X. And if we have a divisor D 
in X, we have also the de Rham complex of meromorphic forms with logarithmic 
poles in D, a notion introduced by K. Saito and recalled in the text. In Chap. 12, 
the authors state and sketch the proof of the logarithmic comparison theorem (LCT) 
which says that for a locally quasihomogeneous free divisor .D ⊂ Cn, the complex 
of meromorphic differential forms with logarithmic poles along D can be used to 
calculate the cohomology of .Cn − D. It goes on to consider a range of related 
results in the theory of D-modules, including a characterization of the hypersurfaces 
for which the conclusion of LCT holds. The LCT owes its name to its analogy 
with Grothendieck’s comparison theorem, which is made clear in a brief historical 
introduction. The opening section gives the necessary background on free divisors 
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and logarithmic poles, and the background on D-module theory is given in Section 
2. Section 3 deals with a D-module characterization of LCT for free divisors. 

This handbook is addressed to graduate students and newcomers to the theory, 
as well as to specialists who can use it as a guidebook. It provides an accessible 
account of the state-of-the-art in several aspects of singularity theory, its frontiers 
and its interactions with other areas of research. This will continue with a Volume V 
that will focus on holomorphic foliations, an important subject on its own, with close 
connections with singularity theory and holomorphic vector fields, and a Volume VI 
with other important areas of singularity theory. 

Cuernavaca, Mexico José Luis Cisneros Molina 
Marseille, France Lê Dũng Tráng 
Cuernavaca, Mexico José Seade 
March 2023 
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map .νX : NX → X which has the property that it is an isomorphism over the non-
singular part . X0 of X and the tangent bundle .TX0 lifted to NX  by this isomorphism 
extends uniquely to a vector bundle on NX. For .x ∈ X, the set-theoretical fiber 
.|ν−1

X (x)| is the set of limit directions of tangent spaces to . X0 at points approaching 
x. The space NX  is reduced and equidimensional, but in general singular. If X 
is a closed analytic subspace of an open set U of . CN , the space NX  is a closed 
analytic subspace of .X × G(d,N), where .G(d,N) denotes the Grassmannian of 
d-dimensional vector subspaces of . CN . The rich geometry of the Grassmannian 
makes it complicated to study the geometry of the map . νX using intersection theory. 
There is an analogous construction where tangent spaces are replaced by tangent 
hyperplanes, and the map . νX is replaced by the conormal map .κX : C(X) → X, 
where .C(X) denotes the conormal space, which is a subspace of .X × P̌N−1, where 
.P̌N−1 is the space of hyperplanes of . PN , the dual projective space, so that the 
intersection theory is simpler. This paper is devoted to these two constructions, their 
applications to stratification theory in the sense of Whitney and to a general Plücker 
type formula for projective varieties. 

1.1 Introduction 

Let X denote a purely d-dimensional reduced subspace of an affine space . CN

defined in an open subset by algebraic or analytic equations with coefficients in 
. C. The singular locus of X is usually defined as a point where “there is no tangent 
space” in the sense that the linear equations derived from the original equations 
of X do not define a unique linear subspace of dimension d. The direction of 
the tangent space at a non-singular point .x ∈ X is represented by a point in the 
Grassmannian .G(d,N) of d-dimensional vector subspaces of . CN . Thus, there is 
a map .γ : X0 → G(d,N), where .X0 denotes the non-singular part of X, which 
is dense in X since X is reduced. This map is easily seen to be holomorphic, and 
algebraic if X is. It is called the Gauss map because a similar map was used by 
Gauss in his study of the curvature of differentiable surfaces, published in 1828. 

Around the same time as Gauss, Poncelet, Bobillier, Plücker and others were 
studying the duality of plane projective curves. Here the motivations did not come 
from geodesy but rather from the interest in understanding the duals of known 
theorems and the problem of determining how many tangents can be drawn to a 
curve C of degree d from a general point in the plane. The plane projective duality 
which transforms a point in the projective plane . P2 with homogeneous coordinates 
.(x : y : z) into a line in the dual plane simply by exchanging the roles of coefficients 
and variables in the equation .ax + by + cz = 0 of lines going through the point 
.(x : y : z) shows that the number of tangents to C from a general point is the degree 
of the dual curve .Č ⊂ P̌2 consisting of the points of . ̌P2 representing the lines 
tangent to C. This degree is .d(d − 1). Thus if . Č was non-singular its dual could not 
be C as the geometry insists it should be, since . d(d − 1)((d(d − 1)− 1) �= d(d − 1)

unless .d = 2. Thus . Č has singularities and some points of C must represent limits of
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tangents to . Č at non-singular points of . Č tending to a singular point. This is perhaps 
one of the first occurrences of limits of tangent spaces. 

Singular curves and surfaces were studied throughout the nineteenth century 
mostly1 with the goal of generalizing Riemann’s work, understanding “conditions 
of adjunction”. † and more generally the behavior of differential forms and their 
integrals. It is perhaps not so surprising that it is only in 1954 that Semple introduced 
in [50] the space of limit directions of tangent spaces to an algebraic variety, which 
he called the first derivate in [50, §8]. It is the closure NX  in .X × G(d,N) of the 
graph .NX0 ⊂ X0 ×G(d,N) of the Gauss map. As a subspace of .X ×G(d,N) it is 
endowed with a projection .ν : NX → X which is proper (since .G(d,N) is compact) 
and is an isomorphism over . X0. The set-theoretic fiber .|ν−1(x) ⊂ G(d,N) above 
a point .x ∈ X is the set of limit directions at x of tangent spaces at points of . X0

tending to x. 
Semple also asked, in the last paragraph of his paper, whether iterating this 

construction would eventually resolve the singularities of X. 
About 10 years after Semple, John Nash rediscovered the construction and the 

question and for a time the construction was called the Nash blowing-up, which 
explains the notation NX. Semple’s paper is difficult to read and it is only after 
Monique Lejeune-Jalabert discovered his contribution that the map . νX : NX → X

came to be called the Semple-Nash modification. 
Also about 10 years after Semple, and after important preliminary work in the 

differentiable case by Whitney himself in 1957 and Thom in 1960 (see [63]), 
in 1965, Hassler Whitney published a study of possible definitions of limits of 
secants and tangents at a singular point of a complex analytic space, in which 
he introduced the fundamental notion of regular stratification, nowadays called 
Whitney stratifications. It is a locally finite partition of a complex analytic space into 
locally closed non-singular “strata” where each stratum has a “regular” behavior 
along the strata of its boundary. The definition of “regular” involves both limits 
of secants and limits of tangents for points tending to the boundary stratum. The 
definitions extend readily beyond the complex analytic case and in the hands of 
Thom, Mather, and others it became a most important conceptual and technical tool 
in the study of singularities of differentiable mappings, in particular when applied 
to infinite dimensional spaces such as jet spaces and function spaces. 

Stratification theory in the large is the subject of David Trotman’s contribution 
(see [63]) to the first volume of this Handbook. In this text we shall concentrate 
on the complex analytic case for both limits of tangent spaces and stratifications. 
We consider reduced equidimensional complex spaces and whenever we take the 
intersection of such a space with a non-singular subspace of some ambiant non-
singular space, we endow it with its reduced structure.

1 There are exceptions, for example in work of Cayley, Halphen, M. Noether, Salmon, H.J.S. Smith, 
often connected with generalizations of the Plücker formulas for curves and the study of linear 
systems and projective embeddings. 
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Although it can be read independently, this paper is in some ways a continuation 
of the paper [33] of Lê and Snoussi in Volume II of this Handbook. Also, a version 
of the content of Sect. 1.2 appears in [56, §3.9] under the name of Nash blowing up 
(which is more traditional) and a version of the content of Sect. 1.5 appears in [56, 
§3.3] in Volume I of this Handbook. Some of the topics exposed here can be found 
exposed in greater detail in [16] from which, with the permission of its authors and 
of the editors, we have copied some parts of this text. 

1.2 Limits of Tangent Spaces: The Semple-Nash Modification 

Let X be a reduced and equidimensional closed subspace of an open set .U ⊂ CN . 
We denote by .X0 the set of non-singular points of X, which is open and dense in 
X, by  d the dimension of X, and by .G(d,N) the grassmannian of d-dimensional 
vector subspaces of . CN . The Gauss map 

. γX0 : X0 → G(d,N), x �→ [TX0,x] ∈ G(d,N)

associates to every point of . X0 the direction of the tangent space to X at this point. 
Let us consider the graph .NX0 ⊂ X0×G(d,N) of .γX0 . It is a purely d-dimensional 
analytic subset of .X0 × G(d,N) since it is isomorphic to . X0. The space of limits 
of (directions of) tangent spaces at points of . X0, the Semple-Nash modification of 
X, is the closure NX  in .X × G(d,N) of .NX0. So we have to prove that it is a 
closed analytic subspace of .X × G(d,N). The singular locus . SingX = X \ X0

is a closed complex subspace of X, of dimension .≤ d − 1. However, we cannot 
apply the Remmert-Stein theorem (see [38, Chap. IV, §6] or [1, Theorem 6]) to 
prove that NX  is analytic because we have to extend .NX0 ⊂ U ×G(d,N) through 
.SingX × G(d,N) which is of dimension .> d. The proofs in [65, Theorem 16.4] 
and [45, Theorem 1] build, using jacobian determinants, a system of equations for 
the closure .NX ⊂ U × G(d,N), thus proving its analyticity. 

One has then to verify that the map .NX → X is unique up to a unique X-
isomorphism, independent of the immersion of X in an open set of an affine space. 

Then for any reduced equidimensional complex space X the local Semple-Nash 
modifications will glue up into a unique proper map, the Semple-Nash modification 
.νX : NX → X (sometimes simplified to . ν). 

We note that since NX  is a reduced equidimensional analytic space it makes 
sense to iterate the Semple-Nash modification: .N2X = NNX,N3X = NN2X, 
and so on. 

We note that the pull-back by the second projection .γX : NX → G(d,N) of the 
tautological bundle on the grassmannian is a vector bundle on NX  which extends 
the tangent bundle of .NX0 � X0. 

There is another approach, based on Grothendieck’s Grassmannian of a coherent 
module (see [19]) which shows directly the canonicity of the Semple-Nash modifi-
cation.
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Let X be a reduced equidimensional complex space and .Ω1
X its coherent module 

of differentials, which is locally free on . X0. It comes with a morphism of .𝒪X-
modules .dX : 𝒪X → Ω1

X, the differential, which cannot be confused with the 
dimension. Since the .𝒪X-module .Ω1

X is coherent, the symmetric algebra . Sym𝒪X
Ω1

X

of the .𝒪X-module .Ω1
X is a graded .𝒪X-algebra locally of finite presentation and 

generated in degree one, and so corresponds to an analytic space . SpecanXSym𝒪X
Ω1

X

over X.The fibers of the natural map 

. t : SpecanXSym𝒪X
Ω1

X → X

are the Zariski tangent spaces .t−1(x) = SpecSymC(mX,x/m2
X,x)

∨, where . ∨ denotes 
the dual vector space over . C. 

Since .Ω1
X is a coherent sheaf of .𝒪X-modules, .SpecanXSym𝒪X

Ω1
X is a complex 

analytic space. The sections .∂ : X → SpecanXSym𝒪X
Ω1

X of the projection t 
correspond to elements of .Hom𝒪X

(Ω1
X,𝒪X), that is, derivations from .𝒪X to . 𝒪X. 

If X is non-singular .SpecanXSym𝒪X
Ω1

X is the tangent bundle to X and the sections 
. ∂ are holomorphic vector fields on X. 

Now Grothendieck has shown that for . Ω1
X, as indeed for any coherent .𝒪X-

module, just as .t : SpecanXSym𝒪X
Ω1

X → X is a relative vector space in the sense 
that its fibers are vector spaces, there is a relative grassmannian 

. g : Gd(Ω1
X) → X

whose fiber at .x ∈ X is the grassmannian of d-dimensional subspaces of the vector 
space .t−1(x). 

The defining property of the map g is that for any holomorphic map . h : W → X

it is equivalent to give, up to isomorphism, a locally free quotient of rank d of the 
.𝒪W -module .h∗Ω1

X and to give, up to isomorphism, a factorization of h through g. 
Now a rank d locally free quotient of .h∗Ω1

X corresponds to a vector bundle 
over W with d-dimensional fibers which is contained in .SpecanXSym𝒪T

h∗Ω1
X. That 

is exactly a family of analytically varying d-dimensional subspaces of the Zariski 
tangent spaces .t−1(h(w)) for .w ∈ W . 

In particular, the sheaf .g∗Ω1
X on .Gd(Ω1

X) has a locally free quotient of rank d, 
which corresponds to the pull back of the tautological bundle on the grassmannian. 

If one remembers that in analytic geometry limits can be obtained by moving 
along analytic arcs (curve selection lemma), we see that since any limit direction T 
of tangent spaces at a point .x ∈ X is a limit along germs of analytic arcs . h : (d, 0) →
(X, x), it is the fiber over 0 of a locally free quotient of .h∗Ω1

X and so the arc lifts 
as .h̃ : (d, 0) → (Gd(Ω1

X), T ), which (with a little work) defines a map . NX →
Gd(Ω1

X) which one shows (with a little more work) to be an X-isomorphism. 
The equivalence of this grassmannian construction with the Gauss map construc-

tion shows directly that the closure of the graph of the Gauss map is analytic, and 
that the result of the construction is unique up to a unique isomorphism.
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Since the grassmannians embed into projective spaces, the map .NX → X is 
locally projective and since it is locally bimeromorphic, it is locally on X the 
blowing-up (see Sect. 1.5 below for the definition) of a sheaf of ideals, a result 
proved explicitly by Nobile in [45, Theorem 1]. 

Examples 

(i) Let .X ⊂ C4 be the union of two planes meeting at the origin. Then 
.NX → X maps the disjoint union of two 2-planes to X, each plane mapping 
isomorphically onto its image. It is a finite bimeromorphic map, and thus a 
resolution of singularities. If one follows the classical resolution algorithm, one 
blows up the intersection point. This again separates the two planes, but now 
the projection restricted to each of the separated planes is the blowing-up of a 
point, and is not finite. 

(ii) Let .f (z1, . . . , zN) = 0 be an equation for a germ at the origin of a reduced 
hypersurface .(X, 0) ⊂ (CN, 0). The Semple-Nash modification is the blowing-
up in X of the ideal generated by the partial derivatives of f . More generally, 
if X is a reduced complete intersection of dimension d in affine space .AN(C), 
then the blowing-up in X of the ideal generated by the . (N − d) × (N − d)

minors of the jacobian matrix of the equations is isomorphic to NX. For the  
general case, see [45]. 

The Semple-Nash modification has been used in the definition of characteristic 
classes for singular spaces (see [39] and Chapters 5–7 of Volume III of this 
Handbook), but we shall not go into this here. Much work has been devoted to 
understanding how the singularities of NX  differ from those of X, and in particular 
to answer the question posed by Semple at the end of his paper and reiterated by 
Nash a decade later: 

Does iterating the Semple-Nash modification resolve the singularities of X in 
finitely many steps? 

In other words, given X as above, is there an integer . k0 such that .NkX is non-
singular for .k ≥ k0? 

It follows from the definition that if X is non-singular, we have .NX = X. Nobile 
proved the converse in [45, Theorem 2]: 

Theorem 1.2.1 (Nobile) The Semple-Nash modification .νX : NX → X is an 
isomorphism if and only if X is non-singular. 

Nobile’s original proof of this theorem is somewhat involved and relies on local 
parametric descriptions of a singular space and results of [65]. A different proof 
was proposed in [58, §2], based on the second construction of NX. 

By definition, if .NX = X, the module of differentials of X has a locally 
free quotient. The property of non-singularity being local we may assume after 
restricting to an open set .U∩X of X that we have a surjection .Ω1

U∩X → 𝒪d
U∩X → 0. 

Taking germs at .x ∈ U ∩ X, there is an element .h ∈ 𝒪X,x such that the differential 
.dXh ∈ Ω1

X,x maps to .(1, 0 . . . , 0) ∈ 𝒪d
X,x , and thus a derivation D of .𝒪X,x into 

itself such that .Dh = 1. Since D is zero on .C ⊂ 𝒪X,x , we may assume that
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.h ∈ mX,x . Geometrically, the derivation D corresponds to a holomorphic vector 
field on X not vanishing at x. Its integration (see [58, §2] for details) gives the germ 
.(X, x) a product structure .(X, x) � (X1 × C, x), where .X1 ⊂ X is the reduced 
equidimensional space defined by the ideal .h𝒪X,x and satisfies .NX1 = X1. The  
result follows by induction on the dimension. 

This theorem has the important consequence that in order to prove the Semple-
Nash conjecture, it suffices to prove that the sequence of the spaces .NkX eventually 
becomes stationary. 

As already noted by Nobile, it implies immediately that if X is of dimension one 
.NkX is non-singular for large k. Since a curve has finitely many limit tangent lines at 
any point, the Semple-Nash modification of a curve is a finite bimeromorphic map, 
and thus dominated by the normalization. Since the normalization .𝒪X,x , which is a 
resolution of singularities, is a finitely generated and thus a noetherian .𝒪X,x-module, 
there cannot be an infinite strictly increasing sequence of subalgebras finite over 
.𝒪X,x . 

Apart from some special cases, the Semple-Nash conjecture is still open in 
dimensions .≥ 2. The best result is due to Spivakosky in [55], where he proves 
that iterating the operation of Semple-Nash modification followed by normalization 
eventually resolves the singularities of a surface. Spivakovsky’s proof sheds light on 
the change of the dual graph of a minimal resolution when one passes from X to 
NX. 

There are a number of other significant results for surfaces. For example Snoussi 
in [54] relates the planar components of the tangent cone to a surface to the 
singularities of its Semple-Nash transform and D. Duarte in [9] shows that iterating 
the Semple-Nash modification for toric surfaces has to stop in some charts. 

In dimension .≥ 3 very little is known in general. The resolution problem is open 
even in the case of toric varieties, where in characteristic zero the Semple-Nash 
modification is the blowing up of a deceptively simple monomial ideal (see [17, 
§10]). 

Indeed, apart from results of Vaquié in [64] concerning numerical invariants, 
and precise results for quasi-ordinary singularities (see [4] and [2]), there is no 
satisfactory description in general of the relation between the geometry of NX  and 
that of X. 

However there is another aspect of limits of tangent spaces which is rather well 
understood: as we shall see below, given .(X, 0) ⊂ (CN, 0), a hyperplane in .CN is 
said to be tangent to . X0 at a point if it contains the tangent space to . X0 at that point 
and a hyperplane through 0 is a limit of tangent hyperplanes at points of .X0 if and 
only if it contains a limit of tangent spaces to . X0. 

When X is a hypersurface with isolated singularity it was shown in [57, Chap. 
II, §1, 1.6] that a hyperplane H through the singular point is not a limit of tangent 
hyperplanes if and only if the Milnor number .μ(X ∩ H) is minimal among the 
Milnor numbers of all intersections .X ∩ H ′. Then it was shown in [59, Appendice] 
that the family of all sections .X ∩ H where H is not a limit of tangent hyperplanes 
is equisingular in the sense of Whitney conditions (which we shall see below). 
These results were generalized, for normal surfaces by Snoussi in [52], for arbitrary
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reduced equidimensional germs by Gaffney in [13, Theorem 2.1, Corollary 2.4] and 
in a more topological framework by Tibăr in [62]; see also [53]. 

The result for isolated hypersurface singularities was used as part of a method to 
compute limits of tangent spaces in this case. See [44], and [46] for more methods 
of computation. 

In the case where our singular germ .(X, 0) is the cone over a projective variety, 
there is an algebraic approach to the study of the Gauss map in [51]. and a geometric 
one in [31]. We shall come back to this in the paragraph on projective duality. 

Given a flat map .π : X → S where X is again reduced and equidimensional 
and say S is non-singular and the open set .X0 of points of X where the map . π is 
smooth is dense in X, with .dim. X/S = d, one can define a relative Semple-Nash 
modification .νπ : NπX → X as .SpecanSymXΩ1

X/S where .Ω1
X/S is the sheaf of 

relative differentials. In a local presentation of . π as the map induced by the first 
projection in an embedding .X ⊂ S ×CN it is the closure of the graph of the relative 
Gauss map .γX0/S : X0 → G(d,N) sending a point .x ∈ X0 to the direction of the 
tangent space to the fiber of . π through x. 

Example 1.2.2 Let .f : (CN, 0) → (C, 0) be a germ of holomorphic map. The 
relative Semple-Nash modification of .CN is the blowing up (see Sect. 1.5 below) 
of the ideal generated by the partial derivatives of f . It is a closed subspace of 
.CN × P̌N−1, of dimension N . 

This construction is of course useful in the study of families of singularities but 
the geometry of grassmannians being much more complicated than the geometry of 
projective spaces, it is time to move to the study of tangent hyperplanes. 

1.3 Limits of Tangent Hyperplanes: The Conormal Space 

Whenever our reduced equidimensional singular space X is not locally a hyper-
surface in some . CN , the tangent spaces belong to grassmannians instead of 
projective spaces, and the description of the Semple-Nash modification becomes 
more complicated, according to the complexity of describing algebraic subvarieties 
of grassmannians. 

It is therefore natural to consider tangent hyperplanes instead of tangent spaces: a 
tangent hyperplane at a point of .X0 ⊂ CN is a (direction of) hyperplane containing 
the tangent space to .X0 at that point. This is also the approach which allows the 
connection with duality of projective varieties, in the case where our singular germ 
.(X, 0) is the cone over a projective variety. Most importantly the spaces of limits of 
tangent hyperplanes to a singular subspace of a non-singular complex variety can 
be characterized by Lagrangian (or Legendrian) type conditions, a fact which has 
no direct equivalent for NX.2 One must emphasize that, in contrast to the Semple-

2 See, however, [18, Theorem 3.14] and [31, Theorem 14]. 
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Nash modification, this constructions depends on a local or global embedding of our 
space X in a non-singular complex analytic variety M . 

Let us begin with the case of a local embedding .X ⊂ CN , where the directions of 
hyperplanes in .CN are parametrized by the projective space .P̌N−1. At a non-singular 
point .x ∈ X0, by definition a tangent hyperplane is a hyperplane in the tangent 
space to .CN at x which contains the tangent space .TX0,x . Tangent hyperplanes at a 
point .x ∈ X0 constitute a .PN−d−1 ⊂ PN−1. Thus we obtain a subspace . C(X0) ⊂
X × P̌N−1 whose points are pairs .(x,H) such that H is a tangent hyperplane at 
x. The  conormal space .C(X) of .X ⊂ CN is the closure of .C(X0) in .X × P̌N−1. 
By definition it is the set of pairs .(x,H) such that H is a limit at x of tangent 
hyperplanes at points of . X0. 

The natural map induced by the first projection is denoted by .κX : C(X) → X. 
Again we have to show that this closure is a closed analytic subspace of . X ×

P̌N−1. Following [16, Section 3.3], we use a diagram relating the conormal space of 
.(X, 0) ⊂ (CN, 0) and its Semple-Nash modification. 

It is convenient here to use the notation of projective duality of linear spaces. 
Given a vector subspace .T ⊂ CN we denote by .PT its projectivization, i.e., the  

image of .T \{0} by the projection .CN \{0} → PN−1 and by .Ť ⊂ P̌N−1 the projective 
dual of .PT ⊂ PN−1, which is a .PN−d−1 ⊂ P̌N−1, the set of all hyperplanes H of 
.PN−1 containing . PT . 

We denote by .Ξ̌ ⊂ G(d,N) × P̌N−1 the cotautological .PN−d−1-bundle over 
.G(d,N), that is .Ξ̌ = {(T ,H) | T ∈ G(d,N), H ∈ Ť ⊂ P̌N−1}, and consider the 
intersection 

and the morphism . p2 induced on E by the projection onto .X × P̌N−1. We then have 
the following: 

Proposition 1.3.1 The set-theoretical image .p2(E) of the morphism . p2 coincides 
with the conormal space of X in . CN

. p2(E) = C(X) ⊂ X × P̌N−1.

It is a closed analytic subspace of dimension .N − 1. 

Proof If we define .E0 = {(x, TX,x,H) ∈ E | x ∈ X0,H ∈ ŤX,x}, then by 
construction .E0 = p−1

1 (ν−1
X (X0)), and .p2(E

0) = C(X0). Since the morphism . p2
is proper it is closed, which finishes the proof since E is a closed analytic subspace 
of .X ×G(d,N) × P̌N−1 because . Ξ̌ is a closed analytic (in fact algebraic) subspace 
of .G(d,N) × P̌N−1 and NX  is a closed analytic subspace in .X × G(d,N). The
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dimension of .C(X) is that of its open dense subset .C(X0), which is .N − 1 because 
it maps to . X0 with fibers .PN−d−1. ��
Corollary 1.3.2 A hyperplane .H ∈ P̌N−1 is a limit of tangent hyperplanes to X at 
0, i.e., .H ∈ κ−1

X (0), if and only if there exists a d-plane .(0, T ) ∈ ν−1
X (0) such that 

.T ⊂ H . 

Proof Let .(0, T ) ∈ ν−1
X (0) be a limit of tangent spaces to X at 0. By construction 

of E and Proposition 1.3.1, every hyperplane H containing T is in the fiber .κ−1
X (0), 

and so is a limit at 0 of tangent hyperplanes to . X0. 
On the other hand, by construction, for any hyperplane .H ∈ κ−1

X (0) there is a 
sequence of points .{(xi,Hi)}i∈N in .κ−1

X (X0) converging to .p = (0,H). Since the 
map . p2 is surjective, by definition of E, we have a sequence .(xi, Ti,Hi) ∈ E0 with 
.Ti = Txi

X0 ⊂ Hi . By compactness of Grassmannians and projective spaces, this 
sequence has to converge, up to taking a subsequence, to .(x, T ,H) with T a limit at 
x of tangent spaces to X. Since inclusion is a closed condition, we have .T ⊂ H . ��
Corollary 1.3.3 The morphism .p1 : E → NX is a locally analytically trivial fiber 
bundle with fiber .PN−d−1. 

Proof By definition of E, the fiber of the projection .p1 over a point 
.(x, T ) ∈ NX is the set of all hyperplanes in .PN−1 containing . PT . In fact, the 
tangent bundle .TX0 , lifted to NX  by the isomorphism .NX0 � X0, extends to a fiber 
bundle over NX, called the Nash tangent bundle of X. It is the pull-back by . γX of 
the tautological bundle of .G(d,N), and E is the total space of the .PN−d−1-bundle 
of the projective duals of the projectivized fibers of the Nash bundle. ��
Consider the diagram extracted from the diagram we have seen above: 

Proposition 1.3.4 The map .p2 : E → C(X) is isomorphic to the blowing up in 
.C(X) of the lift .𝒥𝒪C(X) to .C(X) by . κX of an ideal . 𝒥 of .𝒪X whose blowing up 
coincides with the map . νX. 

Proof By construction, E is a closed subspace of .NX ×X C(X). By definition 
of E, the map . p2 is an isomorphism over .C(X0) since a tangent hyperplane at a 
nonsingular point contains only the tangent space at that point. Therefore the map 
.p2 : E → C(X) is locally bimeromorphic. The lift by .νX ◦ p1 of the ideal . 𝒥 is 
invertible on E. By the universal property of blowing up, any map .W → C(X) such 
that the lift to W from .C(X) of the ideal .𝒥𝒪C(X) is invertible on W has to factor 
uniquely through NX  and therefore through the fiber product .NX ×X C(X). In
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particular the blowing-up of .𝒥𝒪C(X) in .C(X) has to factor through a closed subspace 
of .NX ×X C(X) and has to coincide with E since they coincide over . X0.3 ��

In general the fiber of . p2 over a point .(x,H) ∈ C(X) is the set of limit directions 
at x of tangent spaces to X that are contained in H . If  X is a hypersurface, the 
conormal map coincides with the Semple-Nash modification. In general, the manner 
in which the geometric structure of the inclusion .κ−1

X (x) ⊂ P̌N−1 determines the 
set of limit positions of tangent spaces, i.e., the fiber .ν−1

X (x) of the Semple-Nash 
modification, is not so simple: by Proposition 1.3.1 and its corollary, the points of 
.ν−1

X (x) correspond to some of the projective subspaces .PN−d−1 of .P̌N−1 contained 
in .κ−1

X (x). 

A linear subspace .PN−d−1 ⊂ κ−1
X (x) ⊂ P̌N−1 is dual to a d-dimensional vector 

subspace .T ⊂ CN . If  T is not a limit at x of tangent spaces, then by Corollary 1.3.2 
any hyperplane in this .PN−d−1 must contain a limit at x of tangent spaces, but 
this limit cannot be constant. This provides a set-theoretic characterization of those 
.PN−d−1 ⊂ κ−1

X (x) which are dual to a limit at x of tangent spaces, in terms of the 
diagram we have seen above: they are those which are the image by . p2 of a fiber 
of . p1. In view of Proposition 1.3.4 this gives a geometric characterization, but we 
would prefer one solely in terms of the geometry of . C(X); see [16, Example 3.4]. 

Note also that given a limit of tangent spaces T at .x ∈ X and a general linear 
projection .p : CN → Cd+1, the hyperplane .p(T ) is a limit hyperplane at .p(x) for 
the hypersurface .p(X) ⊂ Cd+1. This follows from the fact that given . T ∈ ν−1

X (0)

we can find an analytic arc in NX  ending at T and whose image in X is outside of 
the inverse image by p of the singular locus of .p(X). 

Definition 1.3.5 The map .λX : C(X) → P̌N−1 induced by the second projection 
.X × P̌N−1 → P̌N−1 is called the tangent hyperplane map. It is the analogue of the 
Gauss map. When there is no ambiguity it will be denoted by . λ. 

1.4 Some Symplectic Geometry 

In order to describe this set of tangent hyperplanes, we are going to use the language 
of symplectic geometry and Lagrangian submanifolds. Let us start with a few 
definitions. This section is mostly taken from [16, Section 2.1]. 

Let M be any N -dimensional manifold, and let . ω be a de Rham 2-form on M, 
that is, for each . x ∈ M , the map  

.ωx : TM,x × TM,x → R

3 For the reader familiar with bimeromorphic geometry, as for example in [24], [3, Chap. 1, 1.5] 
and [25, §2], the map . p1 appears as the strict transform of the map . κ by the blowing-up . ν. Since . p1
is a .PN−d−1-bundle by Corollary 1.3.3, the map . ν is also the flattening map of . κ: every blowing-up 
.t : T → X of X such that the strict transform of . κ by t is flat must factor uniquely through . ν. In  
this sense . κ determines . ν. 
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is skew-symmetric bilinear on the tangent space to M at x, and . ωx varies smoothly 
with x. We say that . ω is symplectic if it is closed and . ωx is non-degenerate for 
all .x ∈ M . Non degeneracy means that the map which to .v ∈ TM,x associates the 
homomorphism .w �→ ω(v,w) ∈ R is an isomorphism from .TM,x to its dual. A 
symplectic manifold is a pair .(M,ω), where M is a manifold and . ω is a symplectic 
form. These definitions extend, replacing . R by . C, to the case of a complex analytic 
manifold i.e., nonsingular space. 

For any manifold M , its cotangent bundle .T ∗M has a canonical symplectic 
structure as follows. Let 

. π : T ∗M −→ M

p = (x, ξ) �−→ x,

where .ξ ∈ T ∗
M,x , be the natural projection. The Liouville 1-form α on .T ∗M may 

be defined pointwise by: 

. αp(v) = ξ
(
dπp(v)

)
, for v ∈ TT ∗M,p.

Note that .dπp maps .TT ∗M,p to .TM,x , so that α is well defined. The canonical 
symplectic 2-form . ω on .T ∗M is defined as 

. ω = −dα.

And it is not hard to see that if .(U, x1, . . . , xN) is a coordinate chart for M with 
associated cotangent coordinates .(T ∗U, x1, . . . , xN , ξ1, . . . , ξN ), then locally: 

. ω =
N∑

i=1

dxi ∧ dξi .

Definition 1.4.1 Let .(M,ω) be a 2n-dimensional symplectic manifold. A subman-
ifold Y of M is a Lagrangian submanifold if at each .y ∈ Y , .TY,y is a Lagrangian 
subspace of .TM,y , i.e., .ωy |TY,y

≡ 0 and .dim. TY,y = 1
2 dim. TM,y . Equivalently, if 

.i : Y ↪→ M is the inclusion map, then Y is Lagrangian if and only if .i∗ω = 0 and 

.dim. Y = 1
2 dim. M . 

Let M be a nonsingular complex analytic space of even dimension equipped 
with a closed non degenerate 2-form . ω. If .Y ⊂ M is a complex analytic subspace, 
which may have singularities, we say that it is a Lagrangian subspace of M if it 
is purely of dimension . 12 dim. M and there is a dense nonsingular open subset of the 
corresponding reduced subspace which is a Lagrangian submanifold in the sense 
that . ω vanishes on all pairs of vectors in the tangent space. 

Example 1.4.2 The zero section of . T ∗M

. X := {(x, ξ) ∈ T ∗M|ξ = 0 in T ∗
M,x}

is an n-dimensional Lagrangian submanifold of .T ∗M .
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Exercise 1.4.3 Let .f (z1, . . . , zN) be a holomorphic function on an open set . U ⊂
CN . Consider the differential df as a section .df : U → T ∗U of the cotangent 
bundle. Verify that the image of this section is a Lagrangian submanifold of .T ∗U . 
Explain what it means. What is the image in U by the natural projection . T ∗U → U

of the intersection of this image with the zero section? 

1.4.1 The Conormal Space in General 

Let now M be a complex analytic manifold of dimension N and .X ⊂ M be a 
possibly singular complex subspace of pure dimension d, and let as before . X0 =
X \ SingX be the nonsingular part of X, which is a submanifold of M . 

Definition 1.4.4 Set 

. N∗
X0,x

= {ξ ∈ T ∗
M,x |ξ(v) = 0, ∀v ∈ TX0,x};

this means that the hyperplane .{ξ = 0} contains the tangent space to . X0 at the point 
x. 

The conormal bundle of . X0 is 

. T ∗
X0M = {(x, ξ) ∈ T ∗M|x ∈ X0, ξ ∈ N∗

X0,x
}.

Definition 1.4.5 A closed subvariety L of the cotangent space .T ∗M of a manifold 
M is said to be conical if it is left globally invariant by the homotheties on the fibers 
of the map .T ∗M → M , described locally by .ρ.(x, ξ) = (x, ρξ), .ρ ∈ C. 

Proposition 1.4.6 Let .i : T ∗
X0M ↪→ T ∗M be the inclusion and let α be the 

Liouville 1-form in .T ∗M as before. Then .i∗α = 0. In particular the conormal 
bundle .T ∗

X0M is a conical Lagrangian submanifold of .T ∗M , and has dimension 
N . 

Proof See [8, Proposition 3.6]. ��
In the same context we can define the conormal space of X in M as the closure 
.T ∗

XM of .T ∗
X0M in .T ∗M , with the conormal map .κX : T ∗

XM → X, induced by 
the natural projection .π : T ∗M → M . The conormal space is of dimension N . It  
may be singular and by Proposition 1.4.6, α vanishes on every tangent vector at a 
nonsingular point, so it is by construction a Lagrangian subspace of .T ∗M . 

The fiber .κ−1
X (x) of the conormal map .κX : T ∗

XM → X above a point . x ∈ X

consists, if .x ∈ X0, of the vector space .CN−d of all the equations of hyperplanes 
tangent to X at x, in the sense that they contain the tangent space . TX0,x . If  x is a 
singular point, the fiber consists of all equations of limits of hyperplanes tangent at 
nonsingular points of X tending to x.
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Moreover, we can characterize those subvarieties of the cotangent space which 
are the conormal spaces of their images in M . 

Proposition 1.4.7 (See [49, Chap. II, §10]) Let M be a nonsingular analytic 
variety of dimension N and let L be a closed conical irreducible analytic subvariety 
of .T ∗M , also of dimension N . The following conditions are equivalent: 

1) The variety L is the conormal space of its image in M . 
2) The Liouville 1-form α vanishes on all tangent vectors to L at every nonsingular 

point of L. 
3) The symplectic 2-form .ω = −dα vanishes on every pair of tangent vectors to L 

at every nonsingular point of L. 

Since conormal varieties are conical we may as well projectivize with respect to 
vertical homotheties of .T ∗M and work in .PT ∗M . This means that we consider 
hyperplanes and identify all linear equations defining the same hyperplane. In 
.PT ∗M it still makes sense to be Lagrangian since α is homogeneous by definition.4 

Going back to our original problem we have .X ⊂ U where U is open in . CN , 
so .T ∗U = U × ČN and .PT ∗U = U × P̌N−1. So we have the (projective) 
conormal space .κX : C(X) → X with .C(X) ⊂ X × P̌N−1, where .C(X) denotes 
the projectivization of the conormal space .T ∗

XM . Note that we have not changed 
the name of the map . κX after projectivizing since there is no ambiguity, and that 
the dimension of .C(X) is .N − 1, which shows immediately that it depends on the 
embedding of X in an affine space. 

When there is no ambiguity we shall often omit the subscript in . κX. We have  
the following result showing that this projectivized conormal is the same as that of 
Sect. 1.3 : 

Proposition 1.4.8 Given a reduced closed complex analytic subspace X of an open 
set .U ⊂ CN , the (projective) conormal space .C(X) is a closed, reduced, complex 
analytic subspace of .X×P̌N−1 of dimension .N−1. For any .x ∈ X the fiber . |κ−1

X (x)|
is the set of limit positions at x of tangent hyperplanes at points of . X0. Its dimension 
is at most .N − 2. 

Proof These are classical facts. See [8, Chap. III] or [60, Chap. II, §4, Proposition 
4.1, p. 379]. ��

1.4.2 Conormal Spaces and Projective Duality 

Let us assume for a moment that .V ⊂ PN−1 is a projective algebraic variety. In 
the spirit of last section, let us take .M = PN−1 with homogeneous coordinates

4 In symplectic geometry it is called Legendrian with respect to the natural contact structure on 
.PT ∗M . 
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.(z1 : . . . : zN), and consider the dual projective space .P̌N−1 with coordinates . (ξ1 :

. . . : ξN); its points are the hyperplanes of .PN−1 with equations .
∑N

i=1 ziξi = 0. 

Definition 1.4.9 Define the incidence variety .I ⊂ PN−1 × P̌N−1 as the set of 
points satisfying: 

. 

N∑

i=1

ziξi = 0,

where . (z1 : . . . : zN ; ξ1 : . . . : ξN) ∈ PN−1 × P̌N−1

Lemma 1.4.10 (Kleiman; See [28, §4]) The projectivized cotangent bundle of 
.PN−1 is naturally isomorphic to the incidence variety .I ⊂ PN−1 × P̌N−1. 

Proof Let us first take a look at the cotangent bundle of .PN−1: 

. π : T ∗PN−1 −→ PN−1.

Remember that the fiber .π−1(x) over a point x in .PN−1 is by definition isomorphic 
to .ČN−1, the vector space of linear forms on .CN−1. Recall that projectivizing the 
cotangent bundle means projectivizing the fibers, and so we get a map: 

. Π : PT ∗PN−1 −→ PN−1

where the fiber is isomorphic to .P̌N−2. So we can see a point of .PT ∗PN−1 as a pair 
.(z, ξ) ∈ PN−1 × P̌N−2. On the other hand, if we fix a point .z ∈ PN−1, the equation 
defining the incidence variety I tells us that the set of points .(z, ξ) ∈ I is the set of 
hyperplanes of .PN−1 that go through the point . z, which we know is isomorphic to 
.P̌N−2. 

Now to explicitly define the map, take a chart .CN−1 ×
{
ČN−1 \ {0}

}
of the 

manifold .T ∗PN−1 \ {zero section}, where the .CN−1 corresponds to a usual chart 
of .PN−1 and .ČN−1 to its associated cotangent chart. Define the map: 

. φi : CN−1 ×
{
ČN−1 \ {0}

}
−→ PN−2 × P̌N−2

(z1, . . . , zN−1; ξ1, . . . , ξN−1) �−→
⎛

⎝ϕi(z), (ξ1 : . . . : ξi−1 : −
N−1∗i∑

j=1

zj ξj : ξi+1 : . . . : ξN−1)

⎞

⎠

where .ϕi(z) = (z1 : . . . : zi−1 : 1 : zi+1 : . . . : zN−1) and the star means that the 
index i is excluded from the sum. 

An easy calculation shows that . φi is injective, has its image in the incidence 
variety I and is well defined on the projectivization .CN−1 × P̌N−2. It is also clear, 
that varying i from 1 to .N − 1 we can reach any point in I . Thus, all we need to 
check now is that the . φj ’s paste together to define a map. For this, the important
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thing is to remember that if . ϕi and . ϕj are charts of a manifold, and . h := ϕ−1
j ϕi =

(h1, . . . , hN−1) then the change of coordinates in the associated cotangent charts . ϕ̃i

and . ϕ̃j is given by: 

This end the proof. ��
By Lemma 1.4.10 the incidence variety I inherits the Liouville 1-form α which 

is .
∑

ξidzi in local coordinates) from its isomorphism with .PT ∗PN−1. Exchanging 
.PN−1 and .P̌N−1, I is also isomorphic to .PT ∗P̌N−1 so it also inherits the 1-form 
.α̌ := ∑

zidξi locally). 

Lemma 1.4.11 (Kleiman; See [29, §4] and [30]) Let I be the incidence variety as 
above. Then .α + α̌ = 0 on I . 

Proof Note that if the polynomial .
∑N

i=1 ziξi defined a function on .PN−1 × P̌N−1, 
we would obtain the result by differentiating it. The idea of the proof is basically 
the same, it involves identifying the polynomial .

∑N
i=1 ziξi with a section of the line 

bundle .p∗OPN−1(1)⊗p̌∗OP̌N−1(1) over I , where p and . p̌ are the natural projections 

of I to .PN−1 and .P̌N−1 respectively and .OPN−1(1) denotes the canonical line bun-
dle, introducing the appropriate flat connection on this bundle, and differentiating. 

��
In particular, this lemma tells us that if at some point .z ∈ I we have that .α = 0, 

then .α̌ = 0 too. Thus, a closed conical irreducible analytic subvariety of .T ∗PN−1 as 
in Proposition 1.4.7 is the conormal space of its image in .PN−1 if and only if it is the 
conormal space of its image in . ̌PN−1. So we have . PT ∗

V P
N−1 ⊂ I ⊂ PN−1 × P̌N−1

and the restriction of the two canonical projections: 

Definition 1.4.12 The dual variety . V̌ of .V ⊂ PN−1 is the image by the map . p̌ of 
.PT ∗

V P
N−1 ⊂ I in .P̌N−1. So by construction . V̌ is the closure in .P̌N−1 of the set of 

hyperplanes tangent to . V 0.
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We immediately get by symmetry that . ˇ̌V = V . What is more, we see that 
establishing a projective duality is equivalent to finding a Lagrangian subvariety 
in I ; its images in .PN−1 and .P̌N−1 are necessarily dual. 

Lemma 1.4.13 Let us assume that .(X, 0) ⊂ (CN, 0) is the cone over a projective 
algebraic variety .V ⊂ PN−1. Let .x ∈ X0 be a nonsingular point of X. Then the 
tangent space .TX0,x , contains the line .� = 0x joining x to the origin. Moreover, 
the tangent map at x to the projection .π : X \ {0} → V induces an isomorphism 
.TX0,x/� � TV,π(x). 

Proof This is due to Euler’s identity for a homogeneous polynomial of degree m: 

. m.f =
N∑

i=1

zi

∂f

∂zi

and the fact that if .{f1, . . . , fr } is a set of homogeneous polynomials defining X, 
then .TX0,x is the kernel of the matrix: 

. 

⎛

⎜⎜
⎝

df1

·
·

dfr

⎞

⎟⎟
⎠

representing the differentials .dfi in the basis .dz1, . . . , dzN . ��
It is also important to note that the tangent space to .X0 is constant along all 

non-singular points x of X in the same generating line since the partial derivatives 
are homogeneous as well, and contains the generating line. By Lemma 1.4.13, the  
quotient of this tangent space by the generating line is the tangent space to V at the 
point corresponding to the generating line. 

So, .PT ∗
XC

N has an image in .P̌N−1 which is the projective dual of V. 

The fiber over 0 of .PT ∗
XC

N → X is equal to . V̌ as subvariety of . ̌PN−1: it is the  
set of limit positions at 0 of hyperplanes tangent to . X0. 

For more information on projective duality, in addition to Kleiman’s papers one 
can consult [61]. 

A relative version of the conormal space and of projective duality will play an 
important role in these notes. Useful references are [22, 29], [60, Chap. IV]. The 
relative conormal space is used in particular to define the relative polar varieties.
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1.4.3 Polar Varieties and the Control of the Dimension of the 
Fibers of κX : C(X) → X 

The simplest measure of the complexity of the space of limits of tangent hyperplanes 
at a point .x ∈ X is the dimension of the fiber .κ−1

X (x) ⊂ P̌N−1. This dimension is 
the difference between .N − 1 and the maximum codimension of a linear subspace 
of .P̌N−1 whose intersection with .κ−1(x) is not empty. We are thus led to consider 
the subspaces .C(X) ∩ (X × Ld−k) of .C(X), where .0 ≤ k ≤ d = dim. X and 
.Ld−k is a linear subspace of .P̌N−1 of dimension .d − k, dual to a vector subspace 
.Dd−k+1 ⊂ CN of codimension .d−k+1 in the sense that it is the space of directions 
of hyperplanes containing it. We remark that, with the notations introduced above, 
we have .C(X) ∩ (X × Ld−k) = λ−1(Ld−k). 

The next proposition provides the relation between the geometry of . κ−1
X (x) ⊂

P̌N−1 as read by linear subspaces and geometrically defined subspaces of X, the  
local polar varieties of .X ⊂ CN . These are defined as the closures in X of sets of 
critical points on .X0 of projections .X → Cd−k+1 induced by general linear maps 
.CN → Cd−k+1. They were originally defined in [34]. Recall the definition of the 
map . λ in Definition 1.3.5. 

Proposition 1.4.14 For a sufficiently general .Dd−k+1, the image .κ(λ−1(Ld−k)) is 
the closure in X of the set of points of . X0 which are critical for the projection . π |X0 :
X0 → Cd−k+1 induced by the projection .CN → Cd−k+1 with kernel . Dd−k+1 =
(Ld−k)̌. 

Proof Note that .x ∈ X0 is critical for . π if and only if the tangent map 
.dxπ : TX0,x −→ Cd−k+1 is not onto, which means .dim. ker dxπ ≥ k since 
.dim TX0,x = d, and .kerdxπ = Dd−k+1 ∩ TX0,x . 

Note that the conormal space .C(X0) of the nonsingular part of X is equal to 
.κ−1(X0) so by definition: 

. λ−1(Ld−k) ∩ C(X0) = {(x,H) ∈ C(X)|x ∈ X0, H ∈ Ld−k, TX0,x ⊂ H }

equivalently: 

. λ−1(Ld−k) ∩ C(X0) = {(x,H),∈ C(X)|x ∈ X0, H ∈ (Dd−k+1)̌, H ∈ (TX0,x )̌ }

thus .H ∈ (Dd−k+1)̌ ∩ (TX0,x )̌, and from the equality . (Dd−k+1)̌ ∩ (TX0,x )̌ =
(Dd−k+1 + TX0,x )̌ we deduce that the intersection is not empty if and only if 
.Dd−k+1 + TX0,x �= CN , which implies that .dim Dd−k+1 ∩ TX0,x ≥ k, and 
consequently .κ(H) = x is a critical point. 

According to [60, Chap. IV, 1.3], there exists an open dense set .Uk in the 
Grassmannian of .(N − d + k − 1)-planes of .CN such that if .Dd−k+1 ∈ Uk , the  
intersection .λ−1(Ld−k) ∩ C(X0) is dense in .λ−1(Ld−k). So, for any . Dd−k+1 ∈
Uk , since . κ is a proper map and thus closed, we have that .κ(λ−1(Ld−k)) =
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κ
(
λ−1(Ld−k) ∩ C(X0)

)
= κ(λ−1(Ld−k)), which finishes the proof. See [60, 

Chap. IV, 4.1.1] for a complete proof of a more general statement. ��
Remark 1.4.15 It is important to have in mind the following easily verifiable facts: 

a) As we have seen before, the fiber .κ−1(x) over a regular point .x ∈ X0 in the 
(projectivized) conormal space .C(X) is a .PN−d−1, so by semicontinuity of fiber 
dimension we have that .dim κ−1(0) ≥ N − d − 1. 

b) For a general .Ld−k , the intersection .C(X) ∩ (X × Ld−k) is of pure dimension 
.N − 1 − N + d − k + 1 = d − k if it is not empty. 

The proof of this is not immediate because we are working over an open 
neighborhood of a point .x ∈ X, so we cannot assume that .C(X) is compact. 
However (see [60, Chap. IV]) we can take a Whitney stratification of . C(X)

(these stratifications are explained below) such that the closed algebraic subset 
.κ−1(0) ⊂ P̌N−1, which is compact, is a union of strata. By general transversality 
theorems in algebraic geometry (see [28]) a sufficiently general .Ld−k will 
be transversal to all the strata of .κ−1(0) in .P̌N−1 and then because of the 
Whitney conditions (see [63, section 4.9]) .CN × Ld−k will be transversal in a 
neighborhood of .κ−1(0) to all the strata of .C(X), which will imply in particular 
the statement on the dimension. Since . κ is proper, the neighborhood of . κ−1(0)

can be taken to be the inverse image by . κ of a neighborhood of 0 in X. The  
meaning of “general” in Proposition 1.4.14 is that of Kleiman’s transversality 
theorem. Moreover, since .C(X) is a reduced equidimensional analytic space, 
for a general .Ld−k , the intersection of .C(X) and .CN × Ld−k in . CN × P̌N−1

is generically reduced and since according to our general rule we remove 
embedded components when intersecting with linear spaces, .λ−1(Ld−k) is a 
reduced equidimensional complex analytic space. 

Note that the existence of Whitney stratifications does not depend on the 
existence of polar varieties; see Theorem 1.8.3 below. 

c) The fact that .λ−1(Ld−k) ∩ C(X0) is dense in .λ−1(Ld−k) means that if a limit 
of tangent hyperplanes at points of .X0 contains .Dd−k+1, it is a limit of tangent 
hyperplanes which also contain .Dd−k+1. This equality holds because transversal 
intersections preserve the frontier condition; see [63, Theorem 4.2.15] or [7, 
Lemme 2.2.2], [60, Remarque 4.2.3]. 

d) Note that for a fixed .Ld−k , the germ .(Pk(X;Ld−k), 0) is empty if and only if the 
intersection .κ−1(0) ∩ λ−1(Ld−k) is empty. From a) we know that . dim κ−1(0) =
N − d − 1 + r with .r ≥ 0. Thus, by the same argument as in b), this implies 
that the polar variety .(Pk(X;Ld−k), 0) is not empty if and only if . dim(κ−1(0) ∩
λ−1(Ld−k)) ≥ 0 and if and only if .r ≥ k. 

Definition 1.4.16 With the notation and hypotheses of Proposition 1.4.14, for . 0 ≤
k ≤ d − 1 the local polar variety is defined as: 

.Pk(X;Ld−k) = κ(λ−1(Ld−k)).
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A priori, we have just defined local polar varieties set-theoretically, but since 
.λ−1(Ld−k) is empty or reduced and . κ is a projective fibration over the smooth part 
of X we have the following result, for which a proof can be found in [60, Chap. IV, 
1.3.2]. 

P1 

L 

0 

Proposition 1.4.17 For a general linear subspace .Ld−k ⊂ P̌N−1 and . 0 ≤ k ≤ d

the local polar variety .Pk(X;Ld−k) ⊂ X is a reduced closed analytic subspace of 
X, either of pure codimension k in X or empty. 

We have thus far defined a local polar variety that depends on both the choice of the 
embedding .(X, 0) ⊂ (CN, 0) and the choice of the general linear space .Dd−k+1. 
However, an important information we will extract from these polar varieties is their 
multiplicities at 0, and these numbers are analytic invariants provided the linear 
spaces used to define them are general enough. 

Proposition 1.4.18 (Teissier, See [60, Chap. IV, §3]) Let .(X, 0) ⊂ (CN, 0) be 
as before, then for every .0 ≤ k ≤ d − 1 and a sufficiently general linear space 
.Dd−k+1 ⊂ CN the multiplicity of the polar variety .Pk(X;Ld−k) at 0 depends only 
on the analytic type of .(X, 0). 

Exercise 1.4.19 Let .0 ∈ Y ⊂ X ⊂ CN where Y is one dimensional and 
non-singular and X is d-dimensional. Show that the following conditions are 
equivalent: 

(i) The germ of polar curve .(Pd−1(X;Ld−k), 0) is empty; 
(ii) .dim. κ−1(0) < N − 2. 

and imply:
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A Zariski open and dense subset of the .P̌N−2 ⊂ P̌N−1 consisting of hyperplanes 
containing .TY,0 is not contained in .κ−1(0): a general hyperplane containing .TY,0 is 
not a limit of tangent hyperplanes to . X0. Compare with Example 1.6.4 below. 

1.4.4 Limits of Tangent Spaces and Bertini’s Theorem 

A very special but historically important case of Bertini’s theorem states that given 
.(X, 0) ⊂ (CN, 0), for a sufficiently general hyperplane H through the origin, the 
singular locus of .H ∩ X near 0 is set-theoretically the intersection with H of the 
singular locus of X. This means that near 0, the hyperplane H is transversal to the 
tangent spaces to .X0 at points of .X0 ∩ H . However, a stronger result is true: the 
hyperplane H is transversal to the limits as .x → 0 of tangent spaces to X at points 
.x ∈ X0 ∩ H . This is not a consequence of the usual transversality theorems since 
the limits move with H . It is a consequence of the fact that in the conormal map 
.κ : C(X) → X, since .C(X) is of dimension .N − 1, the dimension of .κ−1(0) is at 
most .N − 2 so that a general hyperplane is not a limit of tangent hyperplanes to X 
and so cannot contain a limit of tangent spaces, according to Corollary 1.3.2. 

But much more is true: Suppose that .(X, 0) is a germ of hypersurface defined by 
a holomorphic map .f : (CN, 0) → (C, 0), and we consider the tangent hyperplanes 
to the fibers .f −1(t). Assume that f has an isolated critical point at the origin. Then, 
by Example 1.2.2, the set theoretical fiber of the relative Semple-Nash modification 
over 0 is the exceptional divisor: it is .P̌N−1 which means that every hyperplane 
through the origin is a limit of tangent hyperplanes to the fibers of f . However it 
is true, without assuming that f has an isolated critical point at the origin, that a 
general hyperplane H is transversal to the limits as .x → 0 of tangent hyperplanes 
to the fibers .f −1(f (x)) at points .x ∈ H . 

It is a consequence of the idealistic Bertini theorem of [57, Proposition 2.7] (for 
hypersurfaces) and [60, section 2.2] for the general case. The statement implies 
that for a general hyperplane H the restriction to H of the jacobian ideal of X and 
the jacobial ideal of .X ∩ H have the same integral closure as ideals in . 𝒪X∩H,0
while Bertini’s theorem states that the radicals of their restrictions to X are equal. 
This equality of integral closures means that the restrictions to H of some jacobian 
determinants of the equations of X tend to 0 at least as fast as some others. The full 
form is more precise. It can be used to give an alternative proof of the existence of 
Whitney stratifications which we shall see below, and also to prove the transversality 
of local polar varieties to the kernel of the projection which defines them, even in 
the relative case. It even has applications to the theory of the maximum likelihood 
degree in mathematical statistics; see [43, Corollary 2.6].
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1.5 Limits of Secants: The Blowing-Up 

In this section we present the blowing up of a coherent sheaf of ideals in a way 
which is adapted to the construction of the normal/conormal diagram which is used 
in the study of Whitney conditions. 

Let . ℐ be a coherent sheaf of ideals on X defining a closed analytic subspace 
. Y ⊂ X. Let .U ⊂ X be an open set on which we have a presentation 

. 𝒪q
U → 𝒪p

U → ℐ|U → 0.

We have thus a set of global generators .f1, . . . , fp for .ℐ|U . Consider the map 
.U \ Y → Pp−1 defined by .x �→ (f1(x) : . . . : fp(x)), and its graph . EY (U \ Y ) ⊂
(U \ Y ) × Pp−1. The closure .EY U of this graph in .U × Pp−1 is a closed analytic 
subspace which, up to a unique isomorphism, depends only on .ℐ|U . 

To see this, consider the graded .𝒪X algebra 

. P(ℐ) =
⊕

n∈N
ℐn,

which is locally finitely generated in degree one. 
Because . ℐ is locally finitely presented, this algebra has also locally a finite 

presentation by an exact sequence of finitely generated graded .𝒪U algebras and 
modules (see [3, Chap. 1, 1.3]). 

. 0 → 𝒦U → 𝒪U [T1, . . . , Tp] → P(ℐ)|U → 0,

where each . Tj is mapped to .fj ∈ ℐ|U . The ideal .𝒦U is generated by finitely 
many homogeneous polynomials in .T1, . . . , Tp which by definition generate all 
the algebraic homogeneous relations between .f1, . . . fp. The vanishing of these 
polynomials defines a closed subspace of .U × Pp−1 which, by construction, is 
the closure .EY U of the graph we have just seen. One verifies that this subspace 
is independent of the choice of the generators .f1, . . . , fp and so by uniqueness the 
local constructions glue up into a space .EY over X, say  

. eY : EY X → X

which is called the blowing-up of . ℐ(or Y ) in  X. 
The construction we have just described is, when we give the subspace of . U ×

Pp−1 its natural structure as a complex analytic space, the .ProjanP(ℐ) of the locally 
finitely presented graded .𝒪X-algebra .P(ℐ). 

The inverse image .e−1
Y (Y ) is the projan of the graded .𝒪Y -algebra 

.P(ℐ) ⊗𝒪X
𝒪X/ℐ=

⊕

n∈N
ℐn/ℐn+1 = 𝒪Y ⊕ ℐ/ℐ2 ⊕ ℐ2/ℐ3 ⊕ · · ·
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Besides the fact that the blowing-up is locally the closure of a graph, its essential 
feature is that .e−1

Y (Y ) ⊂ EY X is locally on .EY X defined by one equation which is 
not a zero divisor and is one of the generators of the pull-back .ℐ𝒪EY X of the ideal 
. ℐ. It is the  exceptional divisor of the blowing-up. Indeed, in each affine chart . Vj

defined by .Tj �= 0 of .Pp−1 the .Ti/Tj are coordinates, which implies that on the 
intersection of .EY X with .X × Vj the functions .fi/fj are regular and thus the ideal 
.(f1 ◦ eY , . . . , fp ◦ eY ), which is the restriction of .ℐ𝒪EY X to the intersection of . EY X

with .X × Vj , is principal and generated by .fj ◦ eY . 
The following universal property of blowing-up, which we state here in the 

complex analytic framework, is due to Hironaka (see [3, Lemma 1.3.1]): 

Theorem 1.5.1 A complex-analytic map .π : T → X such that .π−1(Y ) is locally 
on T defined by a single equation which is not a zero divisor in the local rings of T 
factors uniquely through . eY . This property characterizes the map . eY . 

In what follows we shall consider the case where .Y ⊂ X ⊂ CN , where .CN is 
endowed with coordinates .z1, . . . , zN and Y is non-singular of dimension t . We  
may assume that the coordinates are adapted to Y in the sense that it is defined 
by the vanishing of coordinates .zt+1, . . . , zN on . CN . The map . X \ Y → PN−t−1

defined by .(z1, . . . , zN) �→ (zt+1 : . . . : zN) ∈ PN−t−1 can be deemed to associate 
to a point of .X \ Y the direction of the secant line joining this point to the point in 
Y with coordinates .z1, . . . , zt . The closure in .X × PN−t−1 of the graph of this map 
is the blowing up in X of the subspace Y . Although the secant lines clearly depend 
on the choice of coordinates, the blowing up does not. 

A point of .EY X ⊂ X × PN−t−1 is therefore a pair .(x, [�]) where if .x ∈ X \ Y , 
. [�] is the direction of the secant line joining x to its linear projection on Y according 
to the coordinate system, and if .x ∈ Y , the direction . [�] is a limit direction of such 
secant lines along a sequence of points of .X \ Y tending to x. 

Denoting by .ℐY the coherent sheaf of ideals defining .Y ⊂ X, and by . grℐY
𝒪X

the graded .𝒪Y -algebra 

. grℐY
𝒪X =

⊕

n∈N
ℐn

Y /ℐn+1
Y ,

the space .Specan(grℐY
𝒪X) with its natural mapping . Specan(grℐY

𝒪X) → Y

corresponding to the inclusion .𝒪Y ⊂ grℐY
𝒪X is called the normal cone of Y in 

X and usually denoted by .CX,Y → Y . In the case where Y is a point, say .x ∈ X, 
it is for historical reasons the tangent cone of X at x. If X is non-singular these 
notions coincide with the normal bundle of Y in X and the tangent space of X at y. 

In the case where Y is a point .x ∈ X, .ℐ{x} corresponds to the maximal ideal 
.mx ⊂ 𝒪X,x which is generated by the local coordinates .z1, . . . , zN . The multiplicity 
of the tangent cone at its vertex is the multiplicity of X at the point x. It is also the  
degree of the projective variety .e−1

x (x) ⊂ PN−1 associated to the tangent cone.
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Remark 1.5.2 One may ask for the interpretation of the fiber of .eY : EY → X at a 
point . y ∈ Y . It is called the  analytic spread of the ideal . ℐat this point and plays an 
important role in detecting equimultiplicity of X along Y . 

1.6 The Normal/Conormal Diagram 

In this section we construct a space which, given a non-singular subspace . Y ⊂ X ⊂
CN and a local retraction .r : CN → Y does for limit positions of pairs .(�, T ) at a 
point .x ∈ X0 \ Y of the direction of secant line .xr(x) and a direction of tangent 
hyperplane .H ⊃ TX0.x what the conormal space and the blowing up of Y in X do 
separately. 

With the help of the normal/conormal diagram and the polar varieties we will be 
able to obtain information on the limits of tangent spaces to X at 0, assuming that 
.(X, 0) is reduced and purely d-dimensional. This method is based on Whitney’s 
lemma and the two results which follow it: 

Lemma 1.6.1 (Whitney’s Lemma for . X0) Let .(X, 0) be a pure-dimensional germ 
of analytic subspace of . CN , choose a representative X and let .{xn} ⊂ X0 be a 
sequence of points tending to 0, such that 

. lim
n→∞[0xn] = l and lim

n→∞ TxnX = T .

Then .l ⊂ T . 

A stronger form of this lemma originally appeared in [65, Theorem 22.1], and 
you can also find a proof due to Hironaka in [32] and yet another below in assertion 
a) of Theorem 1.6.2. 

Given .X ⊂ CN as above, consider the normal/conormal diagram 

where . e0 is the blowing up of the point .0 ∈ X, . ̂e0 is the blowing up of the 
subspace .κ−1(0) and . κ ′ is the map coming from the universal property of blowing 
ups applied to the map .ξ = κ ◦ ê0.
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Theorem 1.6.2 (Lê-Teissier, See [36, §2]) In the normal/conormal diagram, con-
sider the irreducible components . Dj of the exceptional divisor .D = |ξ−1(0)|. Then 
we have: 

I) The following hold 

(i) Each .Dj ⊂ PN−1×P̌N−1 is contained in the incidence variety . I ⊂ PN−1×
P̌N−1. 

(ii) Each . Dj is Lagrangian in I and therefore establishes a projective duality 
of its images: 

Note that, from commutativity of the diagram we obtain .κ−1(0) = ⋃
j Wj , 

and .e−1
0 (0) = ⋃

α Vj . It is important to notice that these expressions are not 

necessarily the irreducible decompositions of .κ−1(0) and .e−1
0 (0) respectively, 

since there may be repetitions; it is the case for the surface of Example 1.6.4 
below, where the dual of the tangent cone, a point in . ̌P2, is contained in the 
projective line dual to the exceptional tangent. However, it is true that they 
contain the respective irreducible decompositions. 

In particular, note that if dim. Vj0 = d − 1, then the cone .O(Vj0) ⊂ CN is an 
irreducible component of the tangent cone .CX,0 and its projective dual . Wj0 =
V̌j0 is contained in .κ−1(0). That is, any tangent hyperplane to the tangent cone 
is a limit of tangent hyperplanes to X at 0. The converse is very far from true 
and we shall see more about this below. 

II) For any integer k, .0 ≤ k ≤ d − 1, and sufficiently general .Ld−k ⊂ P̌N−1 the 
tangent cone .CPk(X,L),0 of a non empty polar variety .Pk(X,L) at the origin 
consists of: 

• The union of the cones .O(Vj )which are of dimension .d−k (= .dimPk(X,L)). 
• The polar varieties .P�(O(Vj ), L) of dimension .d − k, for the projection p 

associated to L, of the cones .O(Vj ), for  j such that . dimO(Vj ) = d − k + �

for some .1 ≤ � ≤ k. 

Note that .Pk(X,L) is not unique, since it varies with L, but we are saying that 
its tangent cone may have parts which do not vary with L. The . Vα’s are fixed, 
so the first part is the fixed part of .CPk(X,L),0 because it is independent of L, the  
second part is the mobile part, since we are talking of polar varieties of certain 
cones, which by definition move with L (see [10]).
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Proof The proof of I), which can be found in [36, §2], is essentially a strengthening 
of Whitney’s lemma (Lemma 1.6.1) using the normal/conormal diagram and the 
fact that the vanishing of a differential form (the symplectic form in our case) is a 
closed condition. 

The proof of II), a special case of [36, Proposition 2.2.1], is somewhat easier to 
explain geometrically: 

Using our normal/conormal diagram, remember that we can obtain the blowing 
up .E0(Pk(X,L)) of the polar variety .Pk(X,L) by taking its strict transform under 
the morphism . e0, and as such we will get the projectivized tangent cone . PCPk(X,L),0
as the fiber over the origin. 

The first step is to prove that set-theoretically the projectivized tangent cone can 
also be expressed as 

. |PCPk(X,L),0| =
⋃

j

κ ′(ê−1
0 (λ−1(L) ∩ Wj)) =

⋃

j

κ ′(Dj ∩ (PN−1 × L)).

Now recall that the intersection .Pk(X,L) ∩ X0 is dense in .Pk(X,L), so for any 
point .(0, [l]) ∈ PCPk(X,L),0 there exists a sequence of points .{xn} ⊂ X0 such that 
the directions of the secants .0xn converge to it. So, by definition of a polar variety, 
if .Dd−k+1 = Ľ and .Tn = TxnX

0 then by Proposition 1.4.14 we know that . dimTn ∩
Dd−k+1 ≥ k which is a closed condition. In particular if T is a limit of tangent 
spaces obtained from the sequence .{Tn}, then .T ∩ Dd−k+1 ≥ k also. But if this is 
the case, since the dimension of T is d, there exists a limit of tangent hyperplanes 
.H ∈ κ−1(0) such that .T + Dd−k+1 ⊂ H which is equivalent to . H ∈ κ−1(0) ∩
λ−1(L) �= ∅. Therefore the point .(0, [l],H) is in .

⋃
j ê−1

0 (λ−1(L) ∩ Wj), and so we 
have the inclusion: 

. |PCPk(X,L),0| ⊂
⋃

j

κ ′(ê−1
0 (λ−1(L) ∩ Wj)).

For the other inclusion, recall that .λ−1(L) \ κ−1(0) is dense in .λ−1(L) and so 
.ê−1

0 (λ−1(L)) is equal set theoretically to the closure in .E0C(X) of . ̂e−1
0 (λ−1(L) \

κ−1(0)). Then for any point .(0, [l],H) ∈ ê−1
0 (λ−1(L) ∩ κ−1(0)) there exists 

a sequence .{(xn, [xn],Hn)} in .ê−1
0 (λ−1(L) \ κ−1(0)) converging to it. Now by 

commutativity of the diagram, we get that the sequence .{(xn,Hn)} ⊂ λ−1(L) and 
as such the sequence of points .{xn} lies in the polar variety .Pk(X,L). This implies 
in particular, that the sequence .{(xn, [0xn])} is contained in .e−1

0 (Pk(X,L)\ {0}) and 
the point .(0, [l]) is in the projectivized tangent cone .|PCPk(X,L),0|. 

The second and final step of the proof is to use that from a) and b) it follows 
that each .Dj ⊂ I ⊂ PN−1 × P̌N−1 is the conormal space of . Vj in .PN−1, with the 
restriction of . κ ′ to .Dj being its conormal morphism. 

Note that .Dj is of dimension .N − 2, and since all the maps involved are just 
projections, we can take the cones over the . Vj ’s and proceed as in Sect. 1.4.2. In
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this setting we get that since L is sufficiently general, by Proposition 1.4.14 and 
Definition 1.4.16: 

• For the . Dj ’s corresponding to cones .O(Vj ) of dimension .d−k (= .dim Pk(X,L)), 
the intersection .Dj ∩ (PN−1 × L) is not empty and as such its image is a polar 
variety .P0(O(Vj ), L) = O(Vj ) which is independent of L. 

• For the . Dj ’s corresponding to cones .O(Vj ) of dimension .d − k + � for some 
.1 ≤ � ≤ k, the intersection .Dj ∩ (PN−1 × L) is either empty or of dimension 
.d − k and as such its image is a polar variety of dimension .d − k, which is 
.P�(O(Vj ), L) and varies with L if it is not empty. 

You can find a detailed proof of these results in [36, §2], [60, Chap. IV]. ��
So for any reduced and purely d-dimensional complex analytic germ . (X, 0), we  
have a method to “compute”, or rather describe, the set of limiting positions of 
tangent hyperplanes. Between parentheses are the types of computations involved: 

1. For all integers k, .0 ≤ k ≤ d − 1, compute the “general” polar varieties 
.Pk(X,L), leaving in the computation the coefficients of the equations of L as 
indeterminates. (Partial derivatives, Jacobian minors and residual ideals with 
respect to the Jacobian ideal); 

2. Compute the tangent cones .CPk(X,L),0 (computation of a standard basis with 
parameters); 

3. Sort out those irreducible components of the tangent cone of each . Pk(X,L)

which are independent of L (decomposition into irreducible components with 
parameters); 

4. Take the projective duals of the corresponding projective varieties (Elimination). 

We have noticed, that among the . Vj ’s, there are those which are irreducible 
components of .Proj CX,0 and those that are of lower dimension. 

Definition 1.6.3 The cones .O(Vj )’s such that 

. dim. Vj < dim. Proj CX,0

are called exceptional cones. 

Example 1.6.4 Let .X := y2 − x3 − t2x2 = 0 ⊂ C3, so .dim X = 2, and thus 
.k = 0, 1. An easy calculation shows that the singular locus of X is the t-axis, and 
.m0(X) = 2.
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0 

t 

y 

x 

Note that for .k = 0, . D3 is just the origin in . C3, so the projection 

. π : X0 → C3

with kernel .D3 is the restriction to .X0 of the identity map, which is of rank 2 and 
we get that the whole . X0 is the critical set of such a map. Thus, 

. P0(X,L2) = X.

For .k = 1, . D2 is of dimension 1. So let us take for instance .D2 = y-axis, so we 
get the projection 

.π : X0 → C2 (x, y, t) �→ (x, t),
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and we obtain that the set of critical points of the projection is given by 

. P1(X,L1) =
{

x = −t2

y = 0

If we had taken for .D2 the line .t = 0, αx + βy = 0, we would have found that 
the polar curve is a nonsingular component of the intersection of our surface with 
the surface .2αy = βx(3x + 2t2). For .α �= 0 all these polar curves are tangent to 
the t-axis. As we shall see in the next subsection, this means that the t-axis is an  
“exceptional cone” in the tangent cone .y2 = 0 of our surface at the origin, and 
therefore all the 2-planes containing it are limits at the origin of tangent planes at 
nonsingular points of our surface. 

1.6.1 Limits of Tangent Spaces of Quasi-Ordinary 
Hypersurfaces 

Let .(X, 0) be a irreducible germ of complex analytic space of dimension d for which 
there exists a germ of finite morphism .π : (X, 0) → (Cd , 0) whose ramification set 
(that we often call the discriminant) is a hypersurface with only normal crossings 
singularities in . Cd . This type of singularity is called a quasi-ordinary singularity. 
In [4], C. Ban considered such singularities in the case where they are irreducible 
hypersurfaces. He gave a complete description of the limits of tangent spaces of X 
at 0 as follows: 

A germ of an irreducible quasi-ordinary hypersurface in .CN can be parametrized 
in a Puiseux-like manner (see [14, 1.2.3]). If the quasi-ordinary projection is 
.(z1, . . . , zN−1, z) �→ (z1, . . . , zN−1), then the hypersurface can be defined by 
the vanishing of a Weierstrass polynomial of degree n in z with coefficients in 
the maximal ideal of .C{z1, . . . , zN−1}. The quasi-ordinary condition means that 
the discriminant of the Weierstrass polynomial with respect to z is, in suitable 
coordinates, the product of a unit and a monomial in .C{z1, . . . , zN−1}. By the  
Abhyankar-Jung theorem (see [48]), it is parametrized by a convergent power series 
with rational exponents: 

. z = ζ(z1, . . . , zN−1) =
∑

caz
a1
n

1 . . . z

aN−1
n

N−1 , with a = (a1, . . . , aN−1).

Just as in the plane branch case, some of the rational exponents appearing in the 
series . ζ , which are totally ordered for the product order, are closely related to 
the local topology of the hypersurface, and they are also called the characteristic 
exponents. 

Let .z
a1
n

1 . . . z
ae
n

e be the monomial corresponding to the smallest characteristic 
exponent. Then Ban describes the collection of the irreducible components of the
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tangent cone and all the exceptional cones defined in Definition 1.6.3, which we 
have in [36] called the auréole of the singularity, as follows: 

Theorem 1.6.5 (Ban) The auréole of the quasi-ordinary irreducible hypersurface 
singularity parametrized as above consists of : 

(i) If .n > a1 + · · · + ae, the following cones of . CN : 

. CI = {(z1, . . . , zN−1, z)|zi = 0 for i ∈ I ⊂ {1, . . . , e} and I �= ∅}
(ii) If .n < a1 + · · · + ae, the following cones of . CN : 

. CI = {(z1, . . . , zN−1, z)|z = 0, and zi = 0 for i ∈ I ⊂ {1, . . . , e} such that

. n >
∑

i∈I

ai , or I = ∅}

(iii) If .n = a1 + · · · + ae, the irreducible components of the tangent cone .CX,0 . 

Thus, the characteristic monomials of a quasi-ordinary irreducible hypersurface 
determine its auréole, and in particular its exceptional cones, in all dimensions. 

Remark 1.6.6 

1) We repeat the remark on p. 567 of [36] to the effect that when .(X, 0) is 
analytically isomorphic to the germ at the vertex of a cone the polar varieties 
are themselves isomorphic to cones so that the families of tangent cones of polar 
varieties have no fixed components except when .k = 0. Therefore in this case 
.(X, 0) has no exceptional cones. 

2) The fact that the cone X over a nonsingular projective variety has no exceptional 
cones is thus related to the fact that the critical locus .P1(X, 0) of the projection 
.π : X → Cd , which is purely of codimension one in X if it is not empty, 
actually moves with the projection . π ; in the language of algebraic geometry, 
the ramification divisor of the projection is ample (see [66, Chap. I, cor. 2.14]) 
and even very ample (see [10]). 

3) The dimension of .κ−1(0) can be large for a singularity .(X, 0) which has no 
exceptional cones. This is the case for example if X is the cone over a projective 
variety of dimension .d − 1 < N − 2 in .PN−1 whose dual is a hypersurface. 

1.7 The Relative Conormal 

Let .f : X → S be a morphism of reduced analytic spaces, with purely d-
dimensional fibers and such that there exists a closed nowhere dense analytic space 
such that the restriction to its complement . X0 in X : 

.f |X0 : X0 −→ S
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has all its fibers smooth. They are manifolds of dimension .d = dim. X−dim. S. Let  
us assume furthermore that the map f is induced, via a closed embedding .X ⊂ Z by 
a smooth map .F : Z → S. This means that locally on Z the map F is analytically 
isomorphic to the first projection .S × CN → S. Locally on X, this is always the 
case because we can embed the graph of f , which lies in . X × S, into .CN × S. 

Let us denote by .πF : T ∗(Z/S) → Z the relative cotangent bundle of .Z/S, 
which is a fiber bundle whose fiber over a point .z ∈ Z is the dual .T ∗

Z/S,x of the 

tangent vector space at z to the fiber .F−1(F (z)). For .x ∈ X0, denote by . X0(x)

the submanifold .f −1(f (x)) ∩ X0 of . X0. Using this submanifold we will build the 
conormal space of X relative to f , denoted by .T ∗

X/S(Z/S), by setting 

. N∗
X0(x),x

= {ξ ∈ T ∗Z/S, x|ξ(v) = 0, ∀v ∈ TX0(x),x}

and 

. T ∗
X0/S

(Z/S) = {(x, ξ) ∈ T ∗(Z/S)| x ∈ X0, ξ ∈ N∗
X0(x),x

},

and finally taking the closure of .T ∗
X0/S

(Z/S) in .T ∗(Z/S), which is a complex 

analytic space .T ∗
X/S(Z/S) by an argument similar to the one we saw in Proposi-

tion 1.3.1. Since . X0 is dense in X, this closure maps onto X by the natural projection 
.πF : T ∗(Z/S) → Z. 

Now we can projectivize with respect to the homotheties on . ξ , as in the case 
where S is a point, which we have seen above. We obtain the (projectivized) relative 
conormal space .Cf (X) ⊂ PT ∗(Z/S) (also denoted by .C(X/S)), naturally endowed 
with a map  

. κf : Cf (X) −→ X.

We can assume that locally the map f is the restriction of the first projection to 
.X ⊂ S × U , where U is open in . Cn. Then we have . T ∗(S × U/S) = S × U × Čn

and .PT ∗(S × U/S) = S × U × P̌N−1. This gives an inclusion . Cf (X) ⊂ X × P̌N−1

such that . κf is the restriction of the first projection, and a point of .Cf (X) is a pair 
.(x,H), where x is a point of X and H is a limit direction at x of hyperplanes of 
.CN tangent to the fibers of the map f at points of . X0. By taking for S a point we 
recover the classical case studied above. 

Definition 1.7.1 Given a smooth morphism .F : Z → S as above, the projection 
to S of .Z = S × U , with U open in . Cn, we shall say that a reduced complex 
subspace .W ⊂ T ∗(Z/S) is F -Lagrangian (or S-Lagrangian if there is no 
ambiguity on F ) if the fibers of the composed map . q := (πF ◦ F)|W : W → S

are purely of dimension .n = dim. Z − dim. S and the differential .ωF of the relative 
Liouville differential form . αF on .CN × ČN vanishes on all pairs of tangent vectors 
at smooth points of the fibers of the map q.
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With this definition it is not difficult to verify that .T ∗
X/S(Z/S) is F -Lagrangian, and 

by abuse of language we will say the same of .Cf (X). But we have more: 

Proposition 1.7.2 (Lê-Teissier, See [36], Proposition 1.2.6) Let .F : Z → S be a 
smooth complex analytic map with fibers of dimension n. Assume that S is reduced. 
Let .W ⊂ T ∗(Z/S) be a reduced closed complex subspace and set as above . q =
πF ◦ F |W : W → S. Assume that the dimension of the fibers of q over points of 
dense open analytic subsets . Ui of the irreducible components . Si of S is n. 

(i) If the Liouville form on .T ∗
F−1(s)

= (πF ◦F)−1(s) vanishes on the tangent vectors 

at smooth points of the fibers .q−1(s) for .s ∈ Ui and all the fibers of q are of 
dimension n, then the Liouville form vanishes on tangent vectors at smooth 
points of all fibers of q. 

(ii) The following conditions are equivalent: 

• The subspace .W ⊂ T ∗(Z/S) is F -Lagrangian; 
• The fibers of q, once reduced, are all purely of dimension n and there exists 

a dense open subset U of S such that for .s ∈ U the fiber .q−1(s) is reduced 
and is a Lagrangian subvariety of .(πF ◦ F)−1(s); 

If moreover W is homogeneous with respect to homotheties on .T ∗(Z/S), 
these conditions are equivalent to: 

• All fibers of q, once reduced, are purely of dimension n and each irreducible 
component . Wj of W is equal to .T ∗

Xj /S(Z/S), where .Xj = πF (Wj ). 

The essential content of this is that an equidimensional specialization of Lagrangian 
varieties is a union of irreducible Lagrangian varieties. For more details see [36] or  
[15, Chap. I]. 

1.8 Whitney Stratifications 

1.8.1 Introduction 

In this section we study Whitney stratifications of complex analytic spaces using the 
tools introduced in the preceding sections. For the history of the subject, including 
in real algebraic, real analytic, differentiable and definable geometry, we refer the 
reader to [63, §4.1] in Volume I of this Handbook. The complex analytic case 
has specific features which imply in particular that Whitney stratifications can 
be characterized by algebraic equimultiplicity conditions as well as topological 
equisingularity conditions, that they are also characterized by Lagrangian-type 
conditions for certain subspaces in auxiliary spaces, and finally that a complex 
analytic space has a canonical minimal Whitney stratification. 

In his paper [65], Whitney gave a definition of a complex analytic stratification 
of a reduced complex analytic space X (see §18 of loc.cit.). The idea is to produce a 
locally finite decomposition .X = ⊔

α∈A Sα of a reduced complex analytic space X
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into disjoint non-singular locally closed subspaces called strata such that the “local 
geometry” of X is the same at all points of the same stratum. To achieve this he 
proposed two types of conditions: 

• Topological/Analytic conditions: each stratum .Sα ⊂ X is a non-singular analytic 
space, its closure . Sβ is a closed analytic subspace of X and the frontier . Sβ \ Sβ

is a union of strata 
• Differential conditions: Consider a pair of strata .(Sα, Sβ) such that .Sα is 

contained in the closure of . Sβ : 

. Sα ⊂ Sβ

and consider a point .x ∈ Sα . We can assume that a neighborhood of x in X 
is a closed subset of an open subset U of an affine space . CN . Now, consider a 
sequence . xn of points of .Sβ ∩ U which tends to x and a sequence . yn of points 
of .Sα ∩ U which also tends to x. By choosing good subsequences of .(xn) and 
.(yn), we may suppose that the limit of secant lines .xnyn is . � and the limit of 
the tangents .TxnSβ is . T. Then one says that we have the Whitney condition for 
.(Sα, Sβ) at the point .x ∈ Sα , if for all sequences .(xn), . (yn), we have:  

. � ⊂ T.

This is the same as condition . b) of [63, Def. 4.2.1].  
Note that the first condition is equivalent to: .Sα ∩ Sβ �= ∅ implies .Sα ⊂ Sβ . 

This is known as the frontier condition. .  

Remark 1.8.1 Whitney’s original definition had a condition a) stating that for 
sequences . xn as above, the limit . T contains the tangent space .TY,x to Y at x. In  
fact condition . b) implies . a). See [63, 4.2, Exercise].  

Definition 1.8.2 One says that a locally finite partition .X = ⊔
α∈A Sα is a Whitney 

stratification if the topological/analytic conditions are satisfied by the collection of 
strata and the differential condition is satisfied for all pairs of strata .(Sα, Sβ) such 
that .Sα ⊂ Sβ and all points .x ∈ Sα . 

Theorem 1.8.3 (Whitney) Any reduced complex analytic space admits Whitney 
stratifications. 

Proof For the original proof see [65, Theorem 19.2]. For a different proof see [60, 
Chap. III, Proposition 2.2.2]. ��
Remark 1.8.4 As we mentioned in Lemma 1.6.1, Whitney discovered (see [65, 
Theorem 22.1]) that an analytic space is asymptotically conical near any of its 
points. This means that given .x ∈ X, a sequence of points .xn ∈ X tending to x, 
and a (limit of) tangent space(s) . Tn at each . xn (or a limit of limits at . xn of tangent 
spaces at points of . X0 if the . xn are singular points), up to taking a subsequence, the 
limit . � of secant lines .xxn is contained in the limit . T of the . Tn. Dealing with the case
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where the . xn are singular points necessitates the existence of Whitney stratifications 
of X; that is why the theorem appears at the very end of Whitney’s paper. 

A consequence of this is that if we take a sufficiently small sphere . Sε , boundary 
of a ball . Bε around x in . CN , since it is transversal to the secants .xxn it has to be 
transversal to . X0 and in fact to all the strata . Sα containing x in their closure. From 
this one deduces that .X ∩Bε is homeomorphic to the (real) cone with vertex x over 
.X ∩ Sε . This is the local conicity theorem. 

The differential part of the Whitney conditions extends this to the case where the 
point .x ∈ X is extended to be the stratum .Sα ⊂ Sβ , where, as we may, we assume 
. Sα to be a linear subspace of an ambient . CN , so that . Sβ is asymptotically like a cone 
with vertex . Sα . That is, the product of the (linear) . Sα by a cone. The intuition then is 
that if we take a sufficiently small closed tubular neighborhood . Tε of . Sα in . CN , then 
.Sβ ∩Tε should be homeomorphic to the cone with vertex . Sα over the intersection of 
. Sβ with the boundary of the tube. This ensures that at least topologically the local 
geometry of the . Sβ containing . Sα is constant along . Sα , and therefore also that of X. 

This intuition turned out to be correct, and in fact more is true (see [47]), but the 
precise proofs, due to Thom and Mather, are far from easy; see [63]. 

Remark 1.8.5 In addition to the applications to the study of the topology of singular 
complex spaces, one must mention that complex Whitney stratifications play a 
key role in the theory of .𝒟-modules (see [26, Chap. 6 and Appendix 2]) and 
constructible sheaves on complex spaces (see [42, Section 10.3.3]) and also in 
the theory of characteristic classes for singular complex varieties (see [5] and [6, 
Section 10]). They also play a key role in understanding the geometry of Plücker-
type formulas as the reader will see at the end of this section. 

1.8.2 Whitney Conditions and the Normal/Conormal Diagram 

In order to simplify notations we consider a pair of strata .Y ⊂ X ⊂ CN in the 
neighborhood of .0 ∈ CN , with Y linear of dimension t . They represent . Sα ⊂ Sβ ⊂
CN with .X0 = Sβ . Since we have to consider limits of secants starting in Y , we  
consider the following generalization of the normal/conormal diagram:
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where now . eY denotes the blowing-up of Y in X, which, as we remember from 
Sect. 1.5, builds limits of directions of secant lines .xρ(x) for .x ∈ X \ Y and some 
local retraction .ρ : CN → Y . Remember that .EY C(X) is the blowing up of the 
subspace .κ−1(Y ) in .C(X), and . κ ′ is obtained from the universal property of the 
blowing up, with respect to .EY X and the map . ξ . Just as in the case where .Y = {0}, 
it is worth mentioning that .EY C(X) lives inside the fiber product . C(X)×X EY X ⊂
X × PN−t−1 × P̌N−1 and can be described in the following way: take the inverse 
image of .EY X \ e−1

Y (Y ) in .C(X) ×X EY X and close it, thus obtaining . κ ′ as the 
restriction of the second projection to this space. 

Looking at the definitions, it is not difficult to prove that, if we consider the 
divisor: 

. D = |ξ−1(Y )| ⊂ EY C(X), D ⊂ Y × PN−t−1 × P̌N−1,

and denote by .P̌N−t−1 ⊂ P̌N−1 the space of hyperplanes containing .T0Y : 

. • The pair .(X0, Y ) satisfies Whitney’s condition a) along Y (see Remark 1.8.1) if  
and only if we have the set theoretical equality .|C(X) ∩ C(Y )| = |κ−1(Y )|. It  
satisfies Whitney’s condition a) at 0 if and only if .|ξ−1(0)| ⊂ PN−t−1 × P̌N−t−1. 

Note that we have the inclusion .C(X) ∩ C(Y ) ⊂ κ−1(Y ), so it all reduces to 
having the inclusion .|κ−1(Y )| ⊂ C(Y ), and since we have already seen that every 
limit of tangent hyperplanes H contains a limit of tangent spaces T , we are just 
saying that every limit of tangent hyperplanes to X at a point . y ∈ Y , must be a  
tangent hyperplane to Y at y. Following this line of thought, satisfying condition 
a) at 0 is then equivalent to the inclusion .|κ−1(0)| ⊂ {0} × P̌N−t−1 which implies 
.|ξ−1(0)| ⊂ PN−t−1 × P̌N−t−1. 

. • The pair .(X0, Y ) satisfies Whitney’s condition b) at 0 if and only if .|ξ−1(0)| is 
contained in the incidence variety .I ⊂ PN−t−1 × P̌N−t−1. 

This is immediate from the relation between limits of tangent hyperplanes and 
limits of tangent spaces and the interpretation of .EY C(X) as the closure of the 
inverse image of .EY X \ e−1

Y (Y ) in .C(X) ×X EY X since we are basically taking 
limits as .x → Y of couples .(l, H) where l is the direction in .PN−t−1 of a secant 
line . yx with .x ∈ X0 \ Y, y = ρ(x) ∈ Y , where . ρ is some local retraction of the 
ambient space to the nonsingular subspace Y , and H is a tangent hyperplane to X 
at x. So, in order to verify the Whitney conditions, it is important to control the 
geometry of the projection .D → Y of the divisor .D ⊂ EY C(X). 

Remark 1.8.6 Although it is beyond the scope of these notes, we point out to the 
interested reader that there is an algebraic definition of the Whitney conditions for 
.X0 along .Y ⊂ X solely in terms of the ideals defining .C(X) ∩ C(Y ) and . κ−1(Y )

in .C(X). Indeed, the inclusion .C(X) ∩ C(Y ) ⊂ κ−1(Y ) follows from the fact that 
the sheaf of ideals .𝒥C(X)∩C(Y ) defining .C(X) ∩ C(Y ) in .C(X) contains the sheaf 
of ideals .𝒥κ−1(Y ) defining .κ−1(Y ), which is generated by the pull-back by . κ of the
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equations of Y in X. What was said above means that condition a) is equivalent to 
the second inclusion in: 

. 𝒥κ−1(Y ) ⊆ 𝒥C(X)∩C(Y ) ⊆
√
𝒥κ−1(Y ).

It is proved in [36, Proposition 1.3.8] that having both Whitney conditions is 
equivalent to having the second inclusion in: 

. 𝒥κ−1(Y ) ⊆ 𝒥C(X)∩C(Y ) ⊆ 𝒥κ−1(Y ) ,

where the bar denotes the integral closure of the sheaf of ideals, which is contained 
in the radical and is in general much closer to the ideal than the radical. The 
second inclusion is an algebraic expression of the fact that locally near every 
point of the common zero set the modules of local generators of the ideal 
.𝒥C(X)∩C(Y ) are bounded, up to a multiplicative constant depending only on the 
chosen neighborhood of the common zero set, by the supremum of the modules 
of generators of .𝒥κ−1(Y ). 

This result is used in [20] to produce an algorithm computing the Whitney 
stratification of a projective variety. 

In the case where Y is a point x, the ideal defining .C(X) ∩ C({x}) in .C(X) is 
just the pull-back by . κ of the maximal ideal .mX,x , so it coincides with .𝒥κ−1(x) and 
Whitney’s lemma for the smooth part . X0 follows. 

Definition 1.8.7 Let .Y ⊂ X ⊂ CN as before. Then we say that the local polar 
variety .Pk(X;Ld−k) is equimultiple along Y at a point .x ∈ Y if the map . y �→
my(Pk(X;Ld−k)) is constant for .y ∈ Y in a neighborhood of x. 

Note that this implies that if .(Pk(X;Ld−k), x) �= ∅, then .Pk(X;Ld−k) ⊃ Y in a 
neighborhood of x since the emptiness of a germ is equivalent to multiplicity zero. 

We can now state the main theorem of this section, a complete proof of which can 
be found in [60, Chap. V, Thm. 1.2, p. 455]. 

Theorem 1.8.8 (Teissier; See Also [21] for Another Proof) Given .0 ∈ Y ⊂ X as 
before, the following conditions are equivalent, where . ξ is the diagonal map in the 
normal/conormal diagram above: 

1) The pair .(X0, Y ) satisfies Whitney’s conditions at 0. 
2) The local polar varieties .Pk(X,L), .0 ≤ k ≤ d − 1, are equimultiple along Y (at 

0), for general L. 
3) . dim. ξ−1(0) = N − t − 2.

Note that since .dim. D = N − 2, condition 3) is open and the theorem implies 
that .(X0, Y ) satisfies Whitney’s conditions at 0 if and only if it satisfies Whitney’s 
conditions in a neighborhood of 0. 

Note also that by analytic semicontinuity of fiber dimension (see [12, Chap. 3, 
3.6] or [27, §49]), condition 3) is satisfied outside of a closed analytic subspace of 
Y , which shows that Whitney’s conditions are a stratifying condition in the sense of 
[60, Chap. III, Definition 1.4].
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Moreover, since a blowing up does not lower dimension, the condition 
.dim. ξ−1(0) = N − t − 2 implies .dim. κ−1(0) ≤ N − t − 2. So that, in particular 
.κ−1(0) �⊃ P̌N−t−1, where .P̌N−t−1 denotes as before the space of hyperplanes 
containing .T0Y . This tells us that a general hyperplane containing .T0Y is not a 
limit of tangent hyperplanes to X. This fact is crucial in the proof that Whitney 
conditions are equivalent to the equimultiplicity of polar varieties since it allows 
the start of an inductive process. In the actual proof of [60], one reduces to the case 
where .dim. Y = 1 and shows by a geometric argument that the Whitney conditions 
imply that the polar curve has to be empty, which gives a bound on the dimension of 
.κ−1(0). Conversely, the equimultiplicity condition on polar varieties gives bounds 
on the dimension of .κ−1(0) by implying the emptiness of the polar curve and on 
the dimension of .e−1

Y (0) by Hironaka’s result, hence a bound on the dimension of 
.ξ−1(0). 

It should be noted that Hironaka had proved in [23, Corollary 6.2] that the 
Whitney conditions for . X0 along Y imply equimultiplicity of X along Y . 

Finally, a consequence of the theorem is that given a complex analytic space 
X, there is a unique minimal (coarsest) Whitney stratification; any other Whitney 
stratification of X is obtained by adding strata inside the strata of the minimal one. 
A detailed explanation of how to construct this “canonical” Whitney stratification 
using Theorem 1.8.8, and the proof that this is in fact the coarsest one appears in 
[60, Chap. VI, §3]. The connected components of the strata of the minimal Whitney 
stratification give a minimal “Whitney stratification with connected strata” 

1.8.3 The Whitney Conditions Are Lagrangian in Nature 

Consider the irreducible components .Dj ⊂ Y × PN−t−1 × P̌N−1 of the divisor 
.D = |ξ−1(Y )|, that is .D = ⋃

j Dj , and their images: 

. Vj = κ ′(Dj ) ⊂ Y × PN−t−1,

Wj = êY (Dj ) ⊂ Y × P̌N−1.

We have .κ−1
X (Y ) = ⋃

j Wj and e−1
Y (Y ) = ⋃

j Vj : 

Theorem 1.8.9 (Lê-Teissier, See [36, Thm. 2.1.1])  The equivalent statements of 
Theorem 1.8.8 are also equivalent to the following one. 

For each j , the irreducible divisor . Dj is the relative conormal space of its image 
.Vj ⊂ ProjY CX,Y ⊂ Y × PN−t−1 under the first projection . Y × PN−t−1 → Y

restricted to . Vj , and all the fibers of the restriction .ξ |Dj : Dj → Y have the same 
dimension near 0. 

In particular, Whitney’s conditions are equivalent to the equidimensionality for 
.y ∈ Y of the fibers .Dj(y) = Dj ∩ ξ−1(y) of the map .Dj → Y , plus the fact that 
each . Dj is contained in .Y × I ⊂ Y ×PN−t−1 × P̌N−t−1, where .P̌N−t−1 is the space 
of hyperplanes containing the tangent space .TY,0 and I is the incidence subvariety.
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The new fact is that the contact form on .I ⊂ PN−t−1 × P̌N−t−1 vanishes on the 
smooth points of .Dj(y) for .y ∈ Y . This means that each . Dj is Y -Lagrangian and is 
equivalent to a relative (or fiberwise) duality: 

. Dj
��

��

Wj = Y−dual of Vj ⊂ Y × P̌N−t−1

Y × PN−t−1 ⊃ Vj

The proof uses that the Whitney conditions are stratifying in the sense of [60, 
Chap. III, Definition 1.4 and Proposition 2.2.2], and that Theorem 1.8.8 and the 
result of Remark 1.8.6 imply5 that .Dj is the conormal of its image over a dense 
open set of Y . The condition .dim. ξ−1(0) = N − t − 2 then gives exactly what is 
needed, in view of Proposition 1.7.2, for .Dj to be Y -Lagrangian. 

Remark 1.8.10 As we have seen in Sect. 1.8.2, the original definition of the Whitney 
conditions, translates as the fact that .|ξ−1(Y )| is in .Y × PN−t−1 × P̌N−t−1 and not 
just .Y × PN−t−1 × P̌N−1 (condition a) and moreover lies in the product .Y × I of 
Y with the incidence variety .I ⊂ PN−t−1 × P̌N−t−1 (condition b)). Theorem 1.8.9 
shows that they are in fact of a Lagrangian, or Legendrian, nature. This explains their 
stability by general sections (by non singular subspaces containing Y ) as proved in 
[60, Chap. V] and linear projections, as proved in [36, Théorème 2.2.4]. 

The condition .dim. κ−1(y) ≤ N − t − 2 which follows from . dim. ξ−1(y) =
N − t −2 corresponds to the fact that a general hyperplane of .CN containing .TY,y is 
not a limit of tangent hyperplanes to . X0, which is an important consequence of the 
Whitney conditions as we have already noted. 

1.9 The Multiplicities of Local Polar Varieties and a Plücker 
Type Formula 

In this section we relate the multiplicities of the local polar varieties of the closures 
of strata, which are algebraic invariants of singularities which can be computed by 
intersection theory in the normal/conormal diagram at a point, with vanishing Euler 
characteristics associated to the strata of a Whitney stratification.

5 The proof of this in [36] uses a lemma, p. 559, whose proof is incorrect, but easy to correct. There 
is an unfortunate mixup in notation. One needs to prove that .

∑N
t+1 ξkdzk = 0 and use the fact that 

the same vector remains tangent after the homothety .ξk �→ λξk, t + 1 ≤ k ≤ N . Since we want to  
prove that . L1 is Y -Lagrangian, we must take .dyi = 0. 
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As we shall see, when applied to the cone over a projective variety . Z ⊂ PN−1

this formula yields a general Plücker type formula expressing the degree of the 
dual variety .Ž ⊂ P̌N−1 of Z in terms of the Euler characteristics of the strata 
of the minimal Whitney stratification .(Zα)α∈A of Z and their sections by general 
linear subspaces of all dimensions, and the vanishing Euler-Poincaré characteristics 
associated to pairs of strata .Zα ⊂ Zβ . 

Proposition 1.9.1 (Lê-Teissier, See [37, §3]) Let .X = ⊔
α Xα be a Whitney  

stratified complex analytic set of dimension d, with connected strata. Given .x ∈ Xα , 
choose a local embedding .(X, x) ⊂ (CN, 0). Set .dα = dim.Xα . For each integer 
.i ∈ [dα + 1, d] there exists a Zariski open dense subset .Wα,i in the Grassmannian 
.G(N −i, N) and for each .Li ∈ Wα,i a semi-analytic subset .ELi

of the first quadrant 
of . R2, of the  form  .{(ε, η)|0 < ε < ε0, 0 < η < φ(ε)} with .φ(ε) a certain Puiseux 
series in . ε, such that the homotopy type of the intersection . X ∩ (Li + t) ∩ B(0, ε)

for .t ∈ CN is independent of .Li ∈ Wα,i and .(ε, t) provided that .(ε, |t |) ∈ ELi
. 

Moreover, this homotopy type depends only on the stratified set X and not on 
the choice of .x ∈ Xα or the local embedding. In particular the Euler-Poincaré 
characteristics .χi(X,Xα) of these homotopy types are invariants of the stratified 
analytic set X. 

Definition 1.9.2 The Euler-Poincaré characteristics . χi(X,Xα), for  
. i ∈ [dα + 1, d] are called the local vanishing Euler-Poincaré characteristics of 
X along . Xα . 

The independence of the point .x ∈ Xα is a consequence of the local topological 
triviality of the closures of the Whitney strata along the strata of their boundaries 
(The Thom-Mather Theorem). We shall not go into this here. See [63, Theorem 
4.2.17]. The connection between the local vanishing Euler characteristics and the 
multiplicities of polar varieties is expressed as follows: 

Theorem 1.9.3 (Lê-Teissier, See [35, Théorème 6.1.9], [37, 4.11]) With the con-
ventions just stated, and for any Whitney stratified complex analytic set . X =⊔

α Xα ⊂ CN , we have for .x ∈ Xα the equality 

. χdα+1(X,Xα) − χdα+2(X,Xα) =
∑

dβ>dα

(−1)dβ−dα−1mx(Pdβ−dα−1(Xβ, x))(1 − χdβ+1(X,Xβ)),

where it is understood that .mx(Pdβ−dα−1(Xβ, x)) = 0 if .x /∈ Pdβ−dα−1(Xβ, x). 

It follows that given a Whitney stratified complex analytic set .X = ⊔
α Xα with 

connected strata, it is equivalent to give the collections of multiplicities of the local 
polar varieties of the closures .Xβ of strata at the points of the strata .Xα in their 
boundary and to give the collections of vanishing Euler-Poincaré characteristics 
.χi(Xβ,Xα). There is an invertible linear relation between the two sets.
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Let us now consider the special case where X is the cone over a projective variety 
Z, which we assume not to be contained in a hyperplane. The dual variety . Ž of Z 
was defined in Sect. 1.4.2. Remember that every complex analytic space, and in 
particular Z, has a minimal Whitney stratification. We shall use the following facts, 
with the notation of Proposition 1.9.1 and those introduced after Proposition 1.4.8: 

Proposition 1.9.4 (See [16, Section 8]) Let .Z ⊂ PN−1 be a projective variety of 
dimension d. 

(i) If .Z = ⊔
α Zα is a Whitney stratification of Z, denoting by .Xα ⊂ CN the cone 

over . Zα , we have that .X = {0}∪ (
⊔

α X∗
α), where .X∗

α = Xα \ {0}, is a Whitney 
stratification of X. It may be that .(Zα) is the minimal Whitney stratification of 
V but .{0} ∪ (

⊔
α X∗

α) is not minimal, for example if Z is itself a cone. 
(ii) If .Li + t is an i-codimensional affine space in .CN it can be written as 

.Li−1 ∩ (L1 + t) with vector subspaces . Li and for general directions of . Li

we have, denoting by .B(0, ε) the closed ball with center 0 and radius . ε, for  
small . ε and .0 < |t | � ε : 

. χi(X, {0}) := χ(X ∩ (Li + t)∩B(0, ε)) = χ(Z ∩Hi−1)−χ(Z ∩Hi−1 ∩H1),

where .Hi = PLi ⊂ PN−1. 
(iii) For every stratum . X∗

α of X, we have the equalities .χi(X,X∗
α) = χi(Z,Zα). 

(iv) If the dual .Ž ⊂ P̌N−1 is a hypersurface, its degree is equal to .m0(Pd(X, 0)), 
which is the number of non singular critical points of the restriction to Z of a 
general linear projection .PN−1 \ L2 → P1. 

Note that we will apply statements 2) and 3) not only to the cone X over Z but also 
to the cones .Xβ over the closed strata . Zβ . 

If we now apply the Theorem 1.9.3, we see that, using Proposition 1.9.4, we can 
rewrite in this case the formula of Theorem 1.9.3 as a generalized Plücker formula 
for any d-dimensional projective variety .Z ⊂ PN−1 whose dual is a hypersurface: 

Proposition 1.9.5 (Teissier, See [60, §5]) Given the projective variety . Z ⊂ PN−1

equipped with a Whitney stratification .Z = ⊔
α∈A Zα , denote by . dα the dimension 

of . Zα . We have, if the projective dual . Ž is a hypersurface in .P̌N−1: 

. (−1)ddegŽ = χ(Z) − 2χ(Z ∩ H1) + χ(Z ∩ H2)

−
∑

dα<d

(−1)dα degN−2Pdα (Zα)(1 − χdα+1(Z,Zα)) ,

where .H1,H2 denote general linear subspaces of .PN−1 of codimension 1 and 
2 respectively, .degN−2Pdα (Zα) is the number of nonsingular critical points of a 

general linear projection .Zα → P1, which is the degree of . Žα if it is a hypersurface 
and is set equal to zero otherwise. It is equal to 1 if .dα = 0.
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Here we remark that if .(Zα)α∈A is the minimal Whitney stratification of the 
projective variety .Z ⊂ PN−1, and L is a general linear subspace in . PN−1, the . Zα∩L

that are not empty constitute the minimal Whitney stratification of .Z ∩ L. See [60, 
Chap. III, Lemma 4.2.2] and use the fact that the minimal Whitney stratification is 
defined by equimultiplicity of polar varieties (see [60, Chap. VI, §3]) and that the 
multiplicity of polar varieties of dimension .> 1 is preserved by general hyperplane 
sections as we saw before Theorem 1.9.3. 

It is explained in [16, Section 8] that if the dual of Z is not a hypersurface, the 
dual of the intersection of Z with a general linear space of .PN−1 of codimension 
.δ(Z) = codimP̌N−1Ž − 1 is a hypersurface of the same degree as . Ž. Using this and 
an induction on the dimension by applying Proposition 1.9.4, possibly after general 

linear sections, to compute the degrees of the . Žα , we see that we have proved the 
existence of a general formula to compute the degree of . Ž from the Euler-Poincaré 
characteristics of the closed strata .Zα and their general linear sections, and 
the vanishing Euler-Poincaré characteristics .χi(Zβ, Zα). We shall not write this 
formula explicitly, only remark that it is linear in the Euler-Poincaré characteristics 
of the strata and their general linear sections, and polynomial of degree bounded 
by the depth (the integer d in [63, Definition 4.1.1]) of the stratification in the 
local vanishing Euler-Poincaré characteristics. The degree of the variety . Ž of all 
limit tangent hyperplanes to a projective variety Z depends explicitly on basic 
topological characters of its minimal Whitney stratification. 

For another interpretation of the Plücker formula and the relation to this one, see 
[11, 40, 41] and [16, §8]. 

Remark 1.9.6 We note that as we compute the degree of the dual . Ž, we also  
compute the degrees of the duals of the closures of at least some of the strata of 
the canonical Whitney stratification .Z = ⊔

α Zα . This suggests the definition of the 
total dual of the projective variety Z: it is the union of the duals of the closures of 
the strata of its canonical Whitney stratification. For example if Z is the dual of a 
general non singular projective plane curve its total dual is the union of that curve, 
its bitangents and its tangents of inflexion, corresponding respectively to the nodes 
and cusps of Z. The total dual gives a tangentially exploded view of the singularities 
of Z. 
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Abstract We survey determinantal singularities, their deformations, and their 
topology. This class of singularities generalizes the well studied case of complete 
intersections in several different aspects, but exhibits a plethora of new phenomena 
such as for instance non-isolated singularities which are finitely determined, or 
smoothings with low connectivity; already the union of the coordinate axes in 
.(C3, 0) is determinantal, but not a complete intersection. We start with the algebraic 
background and then continue by discussing the subtle interplay of unfoldings 
and deformations in this setting, including a survey of the case of determinantal 
hypersurfaces, Cohen-Macaulay codimension 2 and Gorenstein codimension 3 
singularities, and determinantal rational surface singularities. We conclude with 
a discussion of essential smoothings and provide an appendix listing known 
classifications of simple determinantal singularities. 

2.1 Singularities of Matrices and Determinantal Varieties 

Before this article can focus on geometric and topological properties of deter-
minantal singularities, the first section starts by presenting background material 
from commutative algebra. This material is indispensible for understanding some 
common structural properties of this class. Already in the study of the much smaller 
class of complete intersection singularities, singled out by the algebraic property 
that their ideal possesses a set of generators which form a regular sequence,1 a 
similar approach to the exposition of material has at times been used. 

2.1.1 Determinantal Ideals 

Let R be a commutative ring with unity. We write .Rm×n for the space of .m × n-
matrices with entries in R. 

Definition 2.1.1 Let .A ∈ Rm×n be a matrix and .I ⊂ R the ideal generated by the t-
minors of A. Then we say that I is determinantal of type .(m, n, t) or determinantal 
of type t with matrix A.

1 A sequence of elements .a1, . . . , an ∈ R is called weakly regular on a module M if multiplication 
by .ai+1 is injective on .M/〈a1, . . . , ai〉M for every .i < n. It is called regular if, moreover, 
.M/〈a1, . . . , an〉M �= 0, cf.  [13, Definition 1.1.1]. 
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Note that the same ideal can be determinantal in various different ways, that is for 
different matrices. 

Example 2.1.2 The principal ideal generated by .f = xw − yz ∈ C{x, y, z,w} is 
determinantal of type 1 with the .1 × 1-matrix .(f ) but also determinantal of type 2 
with matrix 

. 

(
x y

z w

)
.

Another famous example is due to Pinkham [84]. He observed that the ideal . I ⊆
C{x0, . . . , x4} given by the 2-minors of the matrix 

. 

(
x0 x1 x2 x3

x1 x2 x3 x4

)

can also be generated by the 2-minors of 

. 

⎛
⎝x0 x1 x2

x1 x2 x3

x2 x3 x4

⎞
⎠ .

Hence, I is determinantal of type .(2, 4, 2) or of type .(3, 3, 2), depending on the 
choice of the matrix. 

Later on, we will encounter cases of ideals which are determinantal in a unique way 
(cf. Theorem 2.3.16), but the examples given here show that in general, one really 
has to specify the matrix in order to describe the determinantal structure of a given 
ideal. 

We now introduce some notation to keep the presentation readable in what 
follows. For a matrix .A ∈ Rm×n, we denote by .〈A〉 the ideal generated by the 
entries .ai,j of A in R. Any such matrix A can be understood as a homomorphism of 
free modules .A : Rn → Rm taking . ej to .

∑m
i=1 ai,j ·fi , where .{ej }nj=1 is a free basis 

of . Rn and .{fi}mi=1 of . Rm. For any number t there is a natural induced morphism on 
the exterior powers2 which we denote by 

.A∧t :
t∧

Rn →
t∧

Rm. (2.1) 

With the same free bases for . Rm and . Rn as before, the products . ej1 ∧ ej2 ∧ · · · ∧ ejt

with .0 < j1 < j2 < · · · < jt ≤ n and .fi1 ∧ · · · ∧ fit with . 0 < i1 < · · · < it ≤ m

form free bases of the free modules .
∧t

Rn and .
∧t

Rm respectively. We will write

2 For a discussion of the exterior algebra of a module, see e.g. [35, Appendix 2.3]. 
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.j = (j1 < i2 < · · · < jt ) for the ordered multiindex of length .#j = t and . ej =
ej1 ∧ ej2 ∧ · · · ∧ ejt for corresponding generator. With this notation we find 

. 

t∧
Rn →

t∧
Rm, ej �→

∑
#i=t

A∧t
i,j · fi

where by .A∧t
i,j we denote the determinant of the .t × t-submatrix .Ai,j of A specified 

by the selection of rows in . i and columns in . j. Thus .(A∧t
i,j ) is the matrix for the 

induced homomorphism (2.1) on the exterior powers w.r.t. the chosen bases and the 
ideal of t-minors of A is nothing but .〈A∧t 〉. 
Lemma 2.1.3 Let R be a ring and .A ∈ Rm×n a matrix. For any pair of invertible 
matrices .P ∈ GL(m;R) and .Q ∈ GL(n;R) and every number t one has 

. 

〈(
P · A · Q−1

)∧t
〉
= 〈A∧t 〉.

Proof This is immediate for the case of 1-minors, i.e. the ideal of entries of A. For  
the general case note that 

. 

(
P · A · Q−1

)∧t = P∧t · A∧t ·
(
Q−1

)∧t

where .P∧t ∈ GL(M;R) and .(Q−1)∧t ∈ GL(N;R) for .N = (
n
t

)
and .M = (

m
t

)
. 

Since the t-minors of A are the entries of . A∧t , this reduces the problem to the case 
of 1-minors. �
Remark 2.1.4 As a consequence of Lemma 2.1.3 we note the following. Suppose 
one of the entries of the matrix A is a unit in R. Then there exist matrices P and Q 
as above such that 

. P · A · Q−1 =
(
1 0
0 Ã

)

with . Ã of size .(m − 1) × (n − 1). It is now easy to see that the ideal of t-minors 
of A coincides with the ideal of .(t − 1)-minors of . Ã. This allows  for a  reduction 
of the defining matrix A to . Ã for the determinantal ideals .〈A∧t 〉 = 〈Ã∧(t−1)〉. In  
the particular case where R is a local ring with maximal ideal . m this allows us to 
always reduce to the case of matrices .A ∈ mm×n and we will in the following always 
assume that the matrix A is of this form, unless specified otherwise.
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Remark 2.1.5 In the following we will also consider Pfaffian ideals for skew 
symmetric matrices .A ∈ Rm×m

sk . Any such matrix with entries .ai,j = −aj,i can 
naturally be interpreted as an element of the second exterior power of a free module 
. Rm in some generators .e1, . . . , em, i.e. 

. A =
∑

0<i<j≤m

ai,j · ei ∧ ej ∈
2∧

Rm.

In this setting, we can consider the exterior powers of A in the usual sense 

.A∧s
sk = A ∧ A ∧ · · · ∧ A︸ ︷︷ ︸

s times

=
∑
#i=2s

A∧s
i · ei1 ∧ ei2 ∧ · · · ∧ ei2s ∈

2s∧
Rm (2.2) 

and we write .〈A∧s
sk 〉 for the ideal generated by the coefficients .A∧s

i in the expansion 
above. Note that in case .A ∈ R2n×2n

sk is a skew symmetric matrix of even size, we 
indeed recover the Pfaffian of A as the coefficient in the top exterior power: 

. PfA = A∧n
(1,...,2n).

More generally, the coefficient .A∧s
i is nothing but the Pfaffian of the skew-

symmetric matrix obtained from A by selecting the even number of rows and 
columns specified by . i. The ideal .〈A∧s

sk 〉 thus coincides with the ideal of 2s-Pfaffians 
of A as for example in [66]. 

The natural .GL(m;R)-operation on skew-symmetric matrices is given by 

.GL(m;R) × Rm×m
sk → Rm×m

sk , (S,A) �→ A′ = S · A · ST . (2.3) 

Regarding .S = (sk,j )
m
k,j=1 as a change of basis in . Rm with .ej = ∑m

k=1 sk,j · fk it is 
easy to see that (2.3) is compatible with the interpretation of A as a bi-vector, given 
that 

. 
∑

0<i<j≤m

ai,j · ei ∧ ej =
∑

0<i<j≤m

ai,j ·
⎛
⎝ ∑

0<k<l≤m

(sk,isl,j − sl,isk,j ) · fk ∧ fl

⎞
⎠

=
∑

0<k<l≤m

a′k,l · fk ∧ fl.

with .a′k,l the entries of the matrix . A′ above. 
We will in the following deliberately subsume the Pfaffian case under determi-

nantal ideals in general, but indicate the differences whenever necessary.
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2.1.2 Free Resolutions and Generic Perfection 

One reason, why determinantal ideals received particular interest, is that in general 
they are not complete intersection ideals, but still provide sufficient additional 
structure for obtaining stronger results than in the general case, e.g. on the module 
of relations and on their free resolutions. For the remainder of this section, we will 
elaborate on the algebraic aspects in which determinantal ideals generalize complete 
intersections. 

Let R be a commutative Noetherian ring and .I = 〈a1, . . . , an〉 an ideal in I 
generated by n elements. By Krull’s principal ideal theorem, we know that the 
height3 of I can at most be n. This is the expected height or expected codimension 
for an ideal generated by n arbitrary elements. Observe that every such ideal is 
determinantal in a trivial way by setting .I = 〈A∧1〉 for the .1 × n-matrix . A =
(a1, . . . , an). For determinantal ideals in general, the following theorem establishes 
a similar bound. It is worth noting that this theorem has been proved for the special 
case of maximal minors by Macaulay [78] already in 1916, even before Krull 
established his principal ideal theorem in 1928. 

Theorem 2.1.6 ([32, Theorem 3], cf. also [14, Theorem 2.1]) Let R be a Noethe-
rian ring and .A ∈ Rm×n a matrix. If .〈A∧t 〉 �= R, then . height 〈A∧t 〉 ≤ (m − t +
1)(n − t + 1). 

In analogy to the complete intersection case, we will refer to this bound on the 
height of a determinantal ideal as the expected codimension of the determinantal 
ideal .〈A∧t 〉. Similar bounds have been established in for determinantal ideals of 
symmetric matrices, see [68], where the expected codimension for the ideal of s-
minors of an .n× n matrix is .

1
2 (n− s + 2)(n− s + 1). For skew-symmetric matrices 

.A ∈ Rm×m
sk the expected codimension of the the Pfaffian ideal .〈A∧s

sk 〉 is . 12 (m− 2s +
2)(m − 2s + 1), cf.  [66, Theorem 17]. 

In what follows, all varieties and singularities will usually be embedded in 
a sufficiently “nice” (e.g. smooth) ambient space. On the algebraic side this 
corresponds to R having certain favourable properties; for example it can be a 
polynomial ring over a field, or a regular local ring. A reasonable and strictly less 
demanding assumption on R is to be Cohen-Macaulay: 

Definition 2.1.7 (cf. [35, Section 18.2]) A Noetherian ring R is called a Cohen-
Macaulay ring, if for every maximal ideal . m of R one has .grade (m) = height (m). 

Recall that the grade of an ideal .I ⊂ R can be defined as the maximal length of a 
regular R-sequence in I . In particular, regular local rings are Cohen-Macaulay (see 
e.g. [35, Section 18.5]) and polynomial rings over Cohen-Macaulay rings are again 
Cohen-Macaulay (see e.g. [35, Proposition 18.9]). In a Noetherian ring, the grade

3 Depending on a textbook, .height I = inf{dimAp | p prime containing I } is also called the 
codimension of I , alluding to the fact that e.g. for .I ⊂ k[x1, . . . , xs ] it is indeed the codimension 
of the variety .V (I) ⊂ ks . 
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of an ideal is bounded from above by the height of this ideal,4 so the condition in 
the definition of a Cohen-Macaulay ring requires this estimate to be an equality for 
maximal ideals. It can be shown, that this already implies 

.height I = grade I (2.4) 

for every proper ideal .I ⊂ R, cf.  [35, Theorem 18.7]. If, additionally, the ring R 
is local, then the height of any proper ideal .I �= R can actually be understood as 
codimension in the sense that one has 

.height I + dimR/I = dimR, (2.5) 

see [13, Corollary 2.1.4]. 
In our context of a determinantal ideal I in a Cohen-Macaulay ring R, the grade 

(or height) is not the main focus of our interest, it is merely one ingredient to 
acquiring more information on free resolutions of .R/I which are known to provide 
a wealth of subtle algebraic and geometric information. For instance, flatness of 
families can be checked using the first syzygy module, which is just the beginning 
of a free resolution (see [53, I 1.91]) , and for a Gorenstein ring R free resolutions 
allow computation of the dualizing module .ωR/I of .R/I (cf.[13, Theorem 3.3.7 
(b)]). On the other hand, explicitly computing a free resolution for a given ideal 
I can be an expensive task relying on the standard basis algorithm; knowing the 
general structure of a free resolution in advance is hence a precious advantage. 
For determinantal ideals, this is the case. The following theorem is the key to 
understanding how this arises. 

Recall that a module M over a noetherian ring R is called perfect, if its projective 
dimension, i.e. the minimal length of a projective (or free) resolution of M , is equal 
to its grade. 

Theorem 2.1.8 ([14], Theorem 3.5) Let S be a Noetherian ring and M a perfect S-
module of grade . μ. Let R be a Noetherian S-algebra such that . gradeR(M⊗SR) ≥ μ

and .M ⊗S R �= 0. Then .M ⊗S R is perfect of grade . μ and furthermore .K• ⊗S R is 
a free resolution of .M ⊗S R for every free resolution . K• of M of length . μ. 

In a sufficiently nice setting, a known free resolution of an S-module M provides 
a free resolution of .M ⊗S R for an S-algebra R. In our context the ring S will be a 
polynomial ring over . Z or . Q and the class of modules consists of those of the form 
.S/〈Y∧s〉 for a matrix 

.Y =
⎛
⎜⎝

y1,1 . . . y1,n
...

...

ym,1 . . . ym,n

⎞
⎟⎠ ∈ S[yi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n].

4 See e.g. [13, Proposition 1.2.14]. 
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This is possible due to a result of Eagon and Hochster [58, Corollary 4] establishing 
the property of “generic perfection” for determinantal ideals: 

Definition 2.1.9 ([14, Section 3.A]) A finitely generated .Z[y]-module M is called 
generically perfect if it is perfect and faithfully flat as a .Z-module. An ideal I is 
called generically perfect, if .Z[y]/I is generically perfect. 

Various different characterizations have been given for generically perfect ideals 
and modules, see [33], or [14, Proposition 3.2]. We will treat the two smallest 
examples, which are relevant to our setting, as an illustration and for later reference: 

Example 2.1.10 (Complete Intersections and the Koszul Complex) Recall that the 
Koszul complex in n elements can be defined as follows. Let .y = y1, . . . , yn be a 
set of indeterminates over the ring . Z and F the free .Z[y]-module in n generators 
.e1, . . . , en. Then exterior multiplication with the element . θ = y1 · e1 + y2 · e2 +
· · · + yn · en ∈ F gives rise to an exact complex 

. 

(2.6) 

where . ε takes the generator .e1 ∧ e2 ∧ · · · ∧ en to .1 ∈ R. For an arbitrary unital 
commutative ring R and n elements .a1, . . . , an ∈ R, there is a unique structure of 
R as a .Z[y]-module substituting . ai for the variable . yi . Then the Koszul complex in 
the elements .a1, . . . , an can be written as 

.Kosz(a1, . . . , an;R) := Kosz⊗Z[y] R. (2.7) 

If .grade 〈a1, . . . , an〉 = n, which is, in particular, the case if the . ai form a regular 
sequence, the Koszul Complex provides a free resolution of the quotient ring 
.R/〈a1, . . . , an〉, seen as an R-module (for textbook references see [13, Theorem 
1.6.17] or [35, Corollary 17.5]. 

Example 2.1.11 (Perfect Ideals of Grade 2 and the Hilbert-Burch Theorem) 
Another famous and early example of generic perfection appears in the context 
of the Hilbert-Burch theorem, see [57] and [19], or [35] for a modern textbook 
account; the theorem is also stated explicitly as Theorem 2.3.16 in Sect. 2.3.4 
below. 

Consider the .(m+ 1) × m-matrix 

.Y =
⎛
⎜⎝

y1,1 . . . y1,m
...

...

ym+1,1 . . . ym+1,m

⎞
⎟⎠ .
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The homogeneous ideal .I = 〈Y∧m〉 is a perfect ideal of grade 2 and a resolution of 
.Z[y]/I is given by the complex 

. (2.8) 

where F is the .1×(m+1)-matrix with i-th entry equal to .(−1)i times the i-th minor 
of Y . This can be proved directly using the results by Hilbert and Burch above, but 
it can also be regarded as a particular case of the Eagon-Northcott complex [32]. 

Now suppose that R is an arbitrary Noetherian ring and 

. A =
⎛
⎜⎝

a1,1 . . . a1,m
...

...

am+1,1 . . . am+1,m

⎞
⎟⎠

a matrix with entries in R. Then the quotient ring with respect to the ideal . I =
〈A∧m〉 can be identified with 

. R/I ∼= Z[y]/〈Y∧m〉 ⊗Z[y] R

via the map .Z[y] → R, yi,j �→ ai,j . Whenever I has grade 2 in R, Theorem 2.1.8 
assures that, moreover, the complex obtained from (2.8) by applying .− ⊗Z[y] R is 
in fact a free resolution of .R/I . 

Remark 2.1.12 While generic perfection of determinantal ideals has been estab-
lished by Eagon and Hochster in [58, Corollary 4], explicit free resolutions of 
minimal length of .〈Y∧t 〉 have only been constructed in special cases over the ring 
.Z[y], but are known for all values of .m, n and t over the ring .Q[y]. Passing from 
.Z[y] to .Q[y] does not impose any severe restrictions in the setting of determinantal 
singularities, since the main focus is on complex algebraic and analytic spaces: All 
rings R in question will be of characteristic zero so that again any choice of elements 
.ai,j ∈ R turns the ring into a .Q[y]-algebra by substitution of .yi,j by . ai,j . 

To conclude this brief discussion of facts from commutative algebra, we give a 
short (non-exhaustive) overview on results concerning the construction of resolu-
tions of generic determinantal ideals .〈Y∧t 〉 over rings .k[y] for k being either . Z or 
. Q. For a survey on such resolutions we refer the interested reader to [85]. 

As already mentioned, in the case of maximal minors .t = m ≤ n, a resolution of 
for .k = Z is provided by the well known Eagon-Northcott-complex [32]. Another 
construction of this complex has been given by Buchsbaum in [15]. This complex 
is covered in various textbooks such as [35], or [14] and appears as a special case of 
the family of complexes described independently by Buchsbaum and Eisenbud [16] 
and Kirby [65]. The Hilbert-Burch theorem fits into this setting as the even more 
special case .n = m+ 1. 

For submaximal minors of square matrices, i.e. for .t = m−1,m = n a resolution 
of .Z[y]/〈Y∧t 〉 was found by Gulliksen and Negard [54]; the case of non-square
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matrices, i.e. .t = m−1,m ≤ n, has been treated a decade later by Akin, Buchsbaum, 
and Weyman in [1]. 

For the general case .t ≤ m ≤ n, Lascoux provided a free resolution in [70], 
but only over the rationals (or, more generally, a field of characteristic zero). This is 
due to the fact that representation theory and the use of Schur-functors in his article, 
which made the change of coefficients necessary. The methods by Lascoux also 
work for symmetric matrices and for skew symmetric matrices with ideals generated 
by Pfaffians. 

Resolutions of ideals of submaximal minors for symmetric matrices were also 
described by Józefiak in [60]. The interest in Gorenstein rings also led to the 
construction of free resolutions. While Gorenstein rings of codimension 1 and 2 
are known to be complete intersections, those of codimension 3 are submaximal 
Pfaffians of skew-symmetric matrices (see [17] and for a discussion of a generic free 
resolution [61], for a slightly different perspective see also [108]). The further study 
of Gorenstein rings of higher codimension led to partial results, including (non-
generic) resolutions, and is still a topic of active research in commutative algebra. 
A full description of the first syzygy module determinantal ideals for arbitrary 
.t ≤ m ≤ n over arbitrary unitary rings has been given by Kurano [67] and by 
Ma [77] solving a conjecture of Sharpe. 

In what follows, we will refer to any free resolution of the quotient rings 
.k[y]/〈Y∧t 〉, for .k = Z or . Q, as  

. (2.9) 

where c is the expected grade or codimension for the given values of m, n and t . 
In the case of symmetric or skew-symmetric matrices, we will occasionally write 
.Ksym(m, t) and .Ksk(m, t) for the resolutions of the quotients by the determinantal, 
respectively the Pfaffian ideals. 

2.1.3 Determinantal Singularities and Their Deformations 

Let again 

. Y =
⎛
⎜⎝

y1,1 . . . y1,n
...

...

ym,1 . . . ym,n

⎞
⎟⎠

denote the matrix of .m · n indeterminates but over a field k. The  generic determi-
nantal varieties .Ms

m,n(k) are defined as the vanishing loci of the ideals .〈Y∧s〉 of 
s-minors of Y . It is evident that 

.Ms
m,n(k) = {

ϕ ∈ km×n : rankϕ < s
}
.
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Now let R be a k-algebra and .A ∈ Rm×n a matrix with entries .ai,j in R. Then A 
gives rise to a homomorphism of rings .k[y] → R, yi,j �→ ai,j which corresponds 
to a map .SpecR → km×n on the geometric side. In accordance with Theorem 2.1.6 
this suggests: 

Definition 2.1.13 Let R be a Noetherian k-algebra and .A ∈ Rm×n a matrix. The 
variety defined by the ideal .I = 〈A∧s〉 is a determinantal variety of type s for the 
matrix A if .height I is equal to the expected codimension; that is . (m−s+1)(n−s+1)
in the general case, . 12 (n− s + 1)(n− s + 2) for the ideal of s-minors of symmetric 
matrices, and . 12 (m − 2s + 2)(m − 2s + 1) for 2s-Pfaffian ideals of .m × m-skew-
symmetric matrices. 

When R is Cohen-Macaulay and .I = 〈A∧s〉 defines a determinantal variety, 
then due to the equality of height and grade (2.4) Theorem 2.1.8 applies so that 
.K(m, n, s) ⊗k[y] R is a free resolution of the module .R/I . 

We will in the following mostly be concerned with the case .k = C and . R =
C{x} = C{x1, . . . , xp}, the ring of convergent power series at the origin in . Cp. A  
matrix .A ∈ C{x}m×n will then be interpreted as a holomorphic map germ 

. A : (Cp, 0) → (Cm×n, 0).

By abuse of notation, let A denote a representative of this germ defined on some 
open neighbourhood U of the origin. We write .Xs

A ⊂ U for the complex analytic 
space defined by the sheaf of ideals .〈A∧s〉 in . OU . Then by construction one has an 
equality of sets 

. Xs
A = A−1(Ms

m,n) ⊂ U

on the geometric side and an isomorphism 

. C{x}/〈A∧s〉 ∼= C[y]/〈Y∧s〉 ⊗C[y] C{x}

on the algebraic side, together with its sheafification on U . 

Remark 2.1.14 For A as above let .ΓA = {(x, ϕ) ∈ U × C
m×n : ϕ = A(x)} be 

the graph of A. This is a subvariety of the product .U × C
m×n defined by the . m · n

equations .hi,j = yi,j − ai,j (x) ∈ C{x}[y]. A close inspection of the arguments of 
Eagon and Northcott show that .〈A∧s〉 has expected codimension if and only if the 
equations .hi,j form a regular sequence on the coordinate ring .C{x}[y]/〈Y∧s〉 of the 
product variety .(Cp, 0) × (Ms

m,n, 0). 
It has been shown in [33, Proposition 2] that the homology of the complex 

.K(m, n, s) ⊗Z[y] C{x} is isomorphic to the Koszul homology 

.Hi

(
K(m, n, s) ⊗Z[y] C{x}

) ∼= Hi

(
Kosz(h,C{x}[y]/〈Y∧s〉))
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of the functions .hi,j on the .C{x}[y]/〈Y∧s〉. We saw earlier in Example 2.1.10 
that the Koszul homology vanishes when .h1,1, . . . , hm,n is a regular sequence on 
.C{x}[y]/〈Y∧s〉. Conversely, in a local ring, the Koszul homology can be used to 
measure the grade of an ideal: If the right hand side vanishes for all .i > 0 one 
has .grade 〈h〉 = m · n, cf.  [13, Theorem 1.6.17]. Since .C{x}[y] is a graded ring 
over a local ring, this implies that the .h1,1, . . . , hm,n have to be a regular sequence 
already, cf. [13, Corollary 1.6.19]. From this we see that .K(m, n, s)⊗Z[y] C{x} is a 
free resolution of .C{x}/〈A∧s〉 if and only if the equations .hi,j = yi,j − ai,j (x) for 
the graph . ΓA form a regular sequence on .C{x}[y]/〈Y∧s〉. This allows us to always 
consider .(Xs

A, 0) as a complete intersection singularity in the singular, but yet well 
known ambient space .(Cp, 0) × (Ms

m,n, 0). 

The interpretation of a matrix .A ∈ C{x}m×n as a map germ is of particular 
interest when it comes to deformations5 of the germ .(Xs

A, 0). Recall that for hyper-
surface and complete intersection singularities .(X, 0) ⊂ (Cp, 0) of codimension m 
and a map .f : (Cp, 0) → (Cm, 0) defining .(X, 0) = (f−1({0}), 0), an  unfolding 
of f gives rise to a deformation of .(X, 0), cf.  [20, Proposition 7.1.11]. The generic 
perfection of determinantal ideals is crucial for proving that, more generally, an 
unfolding of the matrix A gives rise to a deformation of the associated determinantal 
singularity, see Lemma 2.1.15. A schematic picture of such an induced deformation 
is given in Fig. 2.1. We briefly recall the notions involved; for a more thorough 
discussion of unfoldings and deformations, the reader is referred to [20, Sections 
7.1 and 7.2]. 

An unfolding on k parameters of a map germ .f : (Cp, 0) → (Cn, 0) is given by 
a map  

. F : (Cp, 0) × (Ck, 0) → (Cn, 0) × (Ck, 0), (x, t) �→ (F (x, t), t) = (ft (x), t)

such that for .t = 0 the germ . f0 coincides with f . In practice, an unfolding is nothing 
but a perturbation 

. F(x, t) = f (x) + t1 · g1(x, t) + t2 · g2(x, t) + . . .

of the original map germ f . 
An (embedded) deformation of a complex analytic germ .(X, 0) ⊂ (Cp, 0) over 

a germ .(T , 0) is given by a commutative diagram 

.

5 See [20, Definition 7.1.1] for a definition of deformations of complex analytic germs. 
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Fig. 2.1 A schematic picture of a matrix . A0, the intersection of its image with a singular variety 
.Ms

m,n in its codomain (pictured as a double cone) and the preimage of that variety .(Xs
A, 0). The  

second row shows a fiber .Xs
A(t) = A−1

t (Ms
m,n) in the deformation of that singularity which is 

induced from an unfolding .A(x, t) = At (x) of . A0

where .(X , 0) ⊂ (Cp, 0) × (T , 0) is another complex analytic germ such that the 
projection . π turns .OX ,0 into a flat .OS,0-module so that the above diagram becomes 
a flat family with special fiber .(X, 0). 

Flatness of a family is a technical algebraic criterion to assure that the fibers in 
a family vary nicely; for example, there can be no jumps in dimension of the fibers 
in a flat family, see [35]. When .f1, . . . , fn ∈ C{x} are equations defining .(X, 0) as 
above, then an arbitrary perturbation of these defining equations given by functions 

. Fi(x, t) = fi(x) +
∑
j=1

tj · gj (x, t) ∈ C{x, t}, i = 1, . . . , n,

in additional parameters .t = t1, . . . , tk , will in general not lead to a flat family 

. ({F1 = . . . Fn = 0}, 0) = (X , 0)
π−→ (Ck, 0)

unless the . fi form a regular sequence, cf. Example 2.1.17 below.
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A prominent characterization of flatness in the general case is the “Flatness by 
relations”, [20, Proposition 7.1.2]. Applied to the above situation it says that the 
family .π : (X , 0) → (Ck, 0) is flat if and only if for every relation . r ∈ C{x}n
among the . fi of the form 

. r1 · f1 + r2 · f2 + · · · + rn · fn = 0,

i.e. the first syzygies of the . fi , there exists a relation .R ∈ C{x, t}n of the . Fi

. R1 · F1 + R2 · F2 + · · · + Rn · Fn = 0

with . Ri congruent to . ri modulo . 〈t〉. In general, not every perturbation . Fi of the . fi

admits such a “lifting of relations”. For determinantal singularities, however, the 
inheritance of free resolutions granted by Theorem 2.1.8 assures that flatness by 
relations always applies: 

Lemma 2.1.15 Let .A ∈ C{x1, . . . , xp}m×n be a matrix defining a determinantal 
singularity .(Xs

A, 0) ⊂ (Cp, 0) of type s. Then any unfolding 

. (Cp, 0) × (Ck, 0) → (Cm×n, 0) × (Ck, 0), (x, t) �→ (A(x, t), t)

of A on k parameters induces a deformation 

. 

of the germ .(Xs
A, 0). 

Proof The crucial point is to verify flatness of the family .(Xs
A, 0)

π−→ (Ck, 0), 
where .(Xs

A, 0) ⊂ (Cp × C
k, 0) is the complex analytic germ defined by the ideal 

.I = 〈A∧s〉 in the ring .C{x1, . . . , xp, t1, . . . , tk}. Let .I = 〈A∧s〉 ⊂ C{x} be the ideal 
defining .Xs

A
∼= X s

A ∩ {t = 0}. We have an inequality of dimensions 

. dimC{x, t}/I ≤ dimC{t} + dimC{x}/I,

see [35, Theorem 10.10], where we identify .C{x, t}/I + 〈t〉 ∼= C{x}/I . Since 
.(Xs

A, 0) ⊂ (Cp, 0) has expected codimension .c = (m − s + 1)(n − s + 1), this  
inequality entails that also .(X s

A , 0) must have expected codimension c in . (Cp, 0)×
(Ck, 0). Due to the generic perfection of the determinantal ideals, a free resolution 
of .C{x, t}/I is given by .K•(m, n, s) ⊗A C{x, t} according to Theorem 2.1.8. This  
resolution specializes to one of .C{x}/I at .t = 0 by using the same theorem again. 
This implies in particular flatness of the family by evoking its characterization via
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the relation lifting property (see e.g. [20, Proposition 7.1.2]) in the following way: A 
relation among elements of I (and . I respectively) is an element of the corresponding 
first syzygy module, which can be read off as the image of the rightmost morphism 
in the given free resolution. As the resolution of .C{x, t}/I specializes to the one of 
.C{x}/I , clearly any element of the first syzygy module of I arises in this way, i.e. 
lifts to one of the first syzygy module of . I. �
Definition 2.1.16 Let .(Xs

A, 0) ⊂ (Cp, 0) be a determinantal singularity of type s 
defined by a matrix .A ∈ C{x}m×n. Any deformation induced from an unfolding of 
A as in Lemma 2.1.15 is called a determinantal deformation of .(Xs

A, 0). 

Conversely, we will say that a given deformation . (X, 0) ↪→ (X , 0)
π−→ (S, 0)

of an arbitrary singularity .(X, 0) ⊂ (Cp, 0) is determinantal for A, if there exists 
an integer s and a matrix .A ∈ C{x}m×n such that .(X, 0) ∼= (Xs

A, 0) is determinantal 
for A of type s and an unfolding .A : (Cp, 0) × (Ck, 0) → (Cm×n, 0) of A together 
with a commutative diagram 

. 

where .(X s
A , 0) → (Ck, 0) is the family induced from . A as in Lemma 2.1.15. 

Example 2.1.17 Consider the three coordinate axes in .(C3, 0), which form a 
determinantal singularity of type .s = 2 with matrix 

. A =
(

x 0 z

0 y z

)
.

The corresponding ideal is .〈A∧2〉 = 〈−yz,−xz, xy〉 =: 〈f1, f2, f3〉. If we think of 
these generators as a map 

. f = (f1, f2, f3) = A∧2 : C3 → C
3,

then according to Sard’s theorem [89], the set of points .v ∈ C
3 for which . f−1({v})

is regular of complex codimension 3, is dense. Hence a generic perturbation of the 
. fi will “deform” the curve .(X2

A, 0) to a collection of points. 
Consider now the 1-parameter unfolding of .Xs

A determined by the perturbed 
matrix 

.A =
(

x t z

0 y z

)
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and the corresponding ideal .〈A∧2〉 = 〈(t − y)z,−xz, xy〉 ⊂ C{x, y, z, t}. This is a  
very specific perturbation of the generators given by 

. F1 = f1 + t · z, F2 = f2 + t · 0, F3 = f3 + t · 0.

According to Lemma 2.1.15, the projection to the parameter t 

. (X s
A , 0) → (C, 0), (x, y, z, t) �→ t

is indeed a deformation of .(Xs
A, 0). This is because all relations among the . fi arise 

from the following two: 

. x · f1 + 0 · f2 + z · f3 = 0
0 · f1 + y · f2 + z · f3 = 0

and these lift to relations 

. x · F1 + t · F2 + z · F3 = 0
0 · F1 + y · F2 + z · F3 = 0

among the . Fi . 
Geometrically, this manifests itself in the fact that the fiber over .t �= 0 is indeed 

also of complex dimension 1 (Fig. 2.2). In this sense, Lemma 2.1.15 assures that of 
all possible perturbations of the generators . fi the very few ones which arise from 
perturbations of the matrix A are similarly well behaved. 

In general, not every deformation of a given determinantal singularity is determi-
nantal for the specific matrix and the interplay between unfoldings of matrices and 
the deformations of the associated singularities can be quite complicated. This is 

x 

y 

z 

t=0 t=1 

Fig. 2.2 A deformation of the three coordinate axis in .C3



2 Determinantal singularities 61

illustrated by several examples gathered in Sect. 2.3.2. For some particular classes of 
singularities such as complete intersections, Cohen-Macaulay singularities of codi-
mension 2, or Gorenstein singularities of codimension 3, there are canonical choices 
of determinantal structures and the theory of unfoldings for the defining matrices 
indeed agrees with the deformation theory of the germs. These particular cases 
will be discussed in detail in Sect. 2.3.2. Finally, as we will report in Sect. 2.3.7, 
results of Buchweitz [18] and Svanes [94] imply that for a given determinantal 
singularity .(Xs

A, 0) which is not a hypersurface and which is unobstructed,6 in fact 
every deformation of .(Xs

A, 0) is determinantal for the defining matrix A. 
However, before we can present all these discussions in their full detail, we first 

need to develop the underlying notions of equivalence for unfoldings of matrices 
and the associated concepts of finite determinacy and versal unfoldings in Sect. 2.2. 

2.1.4 Geometry of the Generic Determinantal Varieties 

The preceding sections made it clear that the generic determinantal varieties . Ms
m,n

play a fundamental role in the study of arbitrary determinantal varieties and 
singularities. As we shall see in what follows, this does not only apply to their 
algebraic, but also to their geometric and even their topological properties when 
working over the real, or the complex numbers. In this section we gather some 
auxiliary results on the geometry of the generic determinantal varieties . Ms

m,n(K) ⊂
K

m×n where .K = C or . R. For some of the results, the reader can also make the 
obvious translations to other fields, if needed. 

2.1.4.1 Resolution of Singularities for Ms 
m,n 

We start by observing that the generic determinantal varieties admit certain canoni-
cal resolutions of singularities 

. (2.10)

6 For the definition of obstructions in the context of deformation theory see e.g. [20, Section 7.1.5]. 
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where 

. M̂s
m,n = {

(ϕ, V ) ∈ K
m×n × Grass(n− s + 1, n) : V ⊂ kerϕ

}
∼=

{
(ϕ, V ⊥) ∈ K

m×n × Grass(s − 1, n) : imϕ∨ ⊂ V ⊥}

is the Tjurina transform with its projection .ν̂ : (ϕ,W) �→ ϕ, 

. M̌s
m,n = {

(ϕ,W) ∈ K
m×n × Grass(s − 1,m) : imϕ ⊂ W

}
∼=

{
(ϕ,W⊥) ∈ K

m×n × Grass(m − s + 1,m) : W⊥ ⊂ kerϕ∨}

the dual Tjurina transform with projection . ̌ν, and 

. 

M̃s
m,n = M̂s

m,n ×Ms
m,n

M̌s
m,n

= {(ϕ, V,W) ∈ K
m×n × Grass(n − s + 1, n) ×Grass(s − 1,m) :

V ⊂ kerϕ, imϕ ⊂ W }

the Nash transform of .Ms
m,n with projection . ̃ν. 

Here we used the canonical isomorphisms of dual Grassmannians . Grass(r, n) ∼=
Grass(n− r, n) induced by the correspondence 

. V �→ V ⊥ = {f ∈ (Kn)∨ : f |V = 0}

with .(Kn)∨ = HomK(Kn,K). The natural isomorphism 

. Hom(Kn,Km) → Hom
(
(Kn)∨, (Km)∨

)
, ϕ �→ ϕ∨,

which is given by transposition .Km×n
∼=−→ K

n×m, A �→ AT in terms of matrices, 
takes .Ms

m,n into .Ms
n,m. It is now easy to see that this identification extends to the 

Tjurina transforms and their duals so that .M̂s
m,n

∼= Ms
m,n ×Ms

n,m
M̌s

n,m and . M̌s
m,n

∼=
Ms

m,n ×Ms
n,m

M̂s
n,m. 

Either one of the varieties .M̂s
m,n, .M̌

s
m,n and .M̃s

m,n is the total space of an algebraic 
vector bundle over the respective Grassmannians. For instance, if we let . 0 → S →
On → Q → 0 be the tautological sequence over .Grass(n− s + 1, n), then 

. M̂s
m,n

∼= ∣∣Hom(Q,Om)
∣∣ ,

where we write  .|E| for taking the associated total space of a vector bundle E. 
Similar descriptions can be made for the dual Tjurina transform .M̌s

m,n and the Nash 

transform. In particular, all of the three spaces .M̂s
m,n, M̌

s
m,n, and .M̃s

m,n are smooth.
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Remark 2.1.18 That .ν̃ : M̃s
m,n → Ms

m,n is really the Nash modification in the sense 
of e.g. [20, Definition 3.9.2] was observed by Ebeling and Gusein-Zade in [34]. It 
is a well known fact that for any fixed rank r the tangent space to the stratum . V r

m,n

at a point . ϕ is given by 

. TϕV r
m,n = {ψ ∈ K

m×n : ψ(kerϕ) ⊂ imϕ}.

It follows that the Gauss map .γ : V r
m,n → Grass((m+ n)r − r2,mn) taking a point 

. ϕ to its tangent space .TϕV r
m,n ⊂ TϕK

m×n factors through the product 

. 

where .α : ϕ �→ (kerϕ, imϕ) and . β : (V ,W) �→ Hom(Kn/V,W) ⊂
Hom(Kn,Km), and consequently, the Nash blowup of .Mr+1

m,n can be performed 
using this product of Grassmannians. 

For any integer r we let 

. V r
m,n = {ϕ ∈ K

m×n : rankϕ = r}

be the set of matrices of fixed rank r . Whenever .ϕ ∈ Ms
m,n belongs to .V s−1

m,n , the  

spaces V and W in the definitions of .M̂s
m,n, .M̌

s
m,n and .M̃s

m,n above are uniquely 
determined by the kernel and the image of . ϕ and vary algebraically with . ϕ. Hence, 
either one of the three projections . ̂ν, . ̌ν, and . ̃ν is a local isomorphism over the 
dense, open subset .V s−1

m,n ⊂ Ms
m,n. It is easy to see that .M

s
m,n is singular along 

the complement .Ms−1
m,n of .V s−1

m,n in .Ms
m,n so that indeed either one of the three maps 

. ̂ν, . ̌ν, and . ̃ν provides a resolution of singularities.7 

2.1.4.2 The Rank Stratification 

The sets .V r
m,n of matrices of a fixed rank r form a complex algebraic stratification 

of .Km×n, that is a decomposition as a disjoint union of locally closed, complex 
algebraic submanifolds 

.K
m×n =

min{m,n}⋃
r=0

V r
m,n. (2.11)

7 See for instance [20, Chapter 3] for a definition of resolution of singularities. 
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In particular, every .Ms
m,n =

⋃
r<s V r

m,n is a union of strata. We will in the following 
refer to this particular stratification of the space of matrices as the rank stratification. 
For an account on stratification theory see, for instance, [20, Chapter 4], or [45]. 

Left- and right-multiplication by invertible matrices does not change the rank of 
a matrix, so the action of the group .G = GL(n;K) × GL(m;K) given by 

.G ×K
m×n → K

m×n, ((P,Q), ϕ) �→ (P,Q) ∗ ϕ = P · ϕ ·Q−1 (2.12) 

preserves the rank stratification. Using this action, one can even construct local 
analytic trivializations: Let .ϕ ∈ K

m×n be an arbitrary matrix and r its rank so that 
.ϕ ∈ V r

m,n. By virtue of the G-action, we may assume that . ϕ is of the block form 

. ϕ =
(

1r 0
0 0

)
∈ K

m×n

where by . 1r we denote the .r × r unit matrix. It is now easy to see that the map 

. Φ : (GL(r;K), 1r )× (K(m−r)×r , 0)× (Kr×(n−r), 0)× (K(m−r)×(n−r), 0) → K
m×n,

taking a tuple .(A, P,Q,N) to the block matrix 

. 

(
1r 0

P · A−1 1m−r

)
·
(

A 0
0 N

)
·
(

1r A−1 · Q
0 1n−r

)
=

(
A Q

P PA−1Q +N

)

yields a local isomorphism .(K(m+n)r−r2 , 0)
∼=−→ (V r

m,n, ϕ) by setting . N = 0
and restricting to the first three factors. The entries of .N ∈ K

(m−r)×(n−r) can be 
understood as normal coordinates to that stratum and using Lemma 2.1.3 we find 
that 

.Φ : (K(m+n)r−r2 , 0) × (Ms−r
m−r,n−r , 0)

∼=−→ (Ms
m,n, ϕ) (2.13) 

is a stratification preserving isomorphism for every .s > r . In particular, this local 
analytic triviality implies that the rank stratification satisfies Whitney’s conditions 
. (a) and . (b), cf.  [20, Chapter 4.2], so that it is in fact a Whitney stratification of the 
space of matrices. 

2.1.4.3 Logarithmic Vector Fields in Cm×n 

The G-action (2.12) on the space of matrices can also be exploited to construct so-
called logarithmic vector fields, see [23] and [88], which will be important for the 
theory of unfoldings later on.
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Let .U ⊂ C
n be an open domain and .V ↪→ U the closed embedding of a complex 

analytic subvariety. The module of logarithmic vector fields8 for V at a point . q ∈ U

is given by 

. Der(− log(V )) = {ξ ∈ TCn,q : ξ(I ) ⊂ I } ⊂ TCn,q

where .I = I (V ) denotes the ideal of functions vanishing on V . These form a 
coherent sheaf on U which coincides with the tangent sheaf . TU outside V . In the  
real case, a similar construction can be made whenever the ideal I is coherent, see 
[23]. We will restrict our exposition to the complex analytic setup. 

The logarithmic tangent space to V at a point .q ∈ V is defined as the subspace 

. T
log
q V = Der(− log(V ))/(Der(− log(V )) ∩mqTCn,q) ⊂ TCn,q/mqTCn,q = TqC

n

(2.14) 

of vectors .v ∈ TqC
n which extend locally to logarithmic vector fields for V in . Cn. It  

is easy to check that whenever q is a smooth point of V then one has .TqV = T
log
q V . 

At singular points very little is known about .T log
q V in general, but if we endow V 

with its canonical Whitney stratification as in [101], .V = ⋃m
i=0 V i , then Damon 

and Mond have shown in [28, Proposition 3.11] that the logarithmic tangent space 
to V at a point q 

.T
log
q V ⊂ TqV i (2.15) 

is contained in the tangent space of the stratum . V i containing q so that logarithmic 
vector fields are always tangent to the strata of the canonical Whitney stratification. 
However, one need not have equality in (2.15) and those strata . V i for which equality 
holds at all points are called holonomic strata. 

The purpose of this section is to show: 

Lemma 2.1.19 The strata .V r
m,n ⊂ Ms

m,n ⊂ C
m×n of the rank stratification of the 

generic determinantal varieties are holonomic for all values of .r < s ≤ min{m, n}. 
To this end, let .glm⊕gln

∼= C
m×m⊕C

n×n be the Lie-algebra of . G = GL(m,C)×
GL(n;C). For any vector .(L,R) ∈ glm ⊕ gln the exponential map gives rise to a 
holomorphic 1-parameter family .t �→ exp(t · (L,R)) in G. This induces a family of 
stratification preserving automorphisms 

. γ : (C, 0) × C
m×n → C

m×n, (t, ϕ) �→ γt (ϕ) = exp(t · (L,R)) ∗ ϕ.

via the G-action on .C
m×n and we denote by 

.ξ(L,R)(ϕ) = d

dt
|t=0 exp(t · (L,R)) ∗ ϕ = L · ϕ − ϕ · R (2.16)

8 We use the notation .Der(− log(V )) rather than .Der log(V ) following [46]. 
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the vector field on .Cm×n generated by that action. Here, we deliberately identified 
.TϕC

m×n ∼= C
m×n with the space of matrices again. 

Proof of Lemma 2.1.19 We first remark that the rank stratification . Ms
m,n =⋃

r<s V r
m,n always coincides with the canonical Whitney stratification constructed 

by Lê and Teissier. 
The vector fields .ξ = ξ(L,R) constructed above are logarithmic for .Ms

m,n: If  
we let .exp(t · (L,R)) = (Pt ,Qt ) be the associated 1-parameter family in G and 
.γ : (t, ϕ) �→ γt (ϕ) the induced family of automorphisms of .C

m×n, then 

. 
d

dt
(Y ◦ γt )

∧s = d

dt

(
Pt · Y · Q−1

t

)∧s

= d

dt

(
P∧s

t · Y∧s ·
(
Q−1

t

)∧s
)

=
(
d

dt
Pt

)∧s

· Y∧s · (Q−1
t )∧s + P∧s

t · Y∧s ·
(
d

dt
Q−1

t

)∧s

and therefore, setting .t = 0, clearly .ξ(Y∧s
i,j ) ∈ 〈Y∧s〉 for every entry .Y∧s

i,j of .〈Y∧s〉. 
The claim now follows from the observation that, since every stratum .V r

m,n is a 
G-orbit in .C

m×n, the linear map 

. glm ⊕ gln → TϕV r
m,n, (L,R) �→ ξ(L,R)(ϕ)

is surjective at every point .ϕ ∈ V r
m,n. �

Remark 2.1.20 Note that even though .T log
ϕ Ms

m,n = TϕV r
m,n for every . ϕ ∈ V r

m,n ⊂
Ms

m,n, the proof of Lemma 2.1.19 does not imply that the module . Der(− log(Ms
m,n))

is generated by the vector fields .ξ(L,R) in (2.16). This is true for the varieties . Mm
m,m

of degenerate square, symmetric, and skew-symmetric matrices, cf. [11, 12], and 
[47], but false for the generic determinantal varieties .Ms

m,n defined by non-maximal 
minors for .s < min{m, n}: Considering .V s−1

m,n as a stratum of .Ms
m,n only, we may 

extend any tangent vector field . ζ to .V s−1
m,n in an arbitrary way to a vector field on 

a neighborhood in .Cm×n while an extension as a linear combination of the .ξ(L,R)’s 
will necessarily be tangent to the orbits .V t

m,n for .t ≥ s, as well. Thus, in general, 
the vector fields .ξ(L,R) only generate a submodule of .Der(− log(Ms

m,n)) for non-
maximal s. 

2.2 Unfoldings and Equivalence of Matrices 

According to the previous section, the unfoldings of a matrix A determine the 
determinantal deformations of the associated singularities. In practice, unfoldings 
of map germs are far easier to handle and to classify than deformations; for instance
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there is no obstruction theory9 to be taken into account. The paradigm of the 
following sections is to consider determinantal singularities as hybrid objects living 
in both the world of unfoldings of map germs and the world of deformations of 
space germs at the same time, and to consider unfoldings of matrices as a handle for 
studying deformations of the associated determinantal singularities. The appropriate 
framework for this was developed by Damon in [22] where he defines the notion of 
a “geometric subgroup” of the contact group . K . The natural notion of equivalence 
for germs of matrices —the so-called .GL-equivalence defined below— leads to such 
a geometric subgroup as was observed in [56], [11, 12, 47] for square matrices 
and in [21] for the general case. In principal, all relevant theorems about finite 
determinacy, versality, etc. can be derived from that. For a general account on map 
germs, their unfoldings, finite determinacy and related techniques see for instance 
[109], or [82]. 

In this note we will give the specific statements for .GL-equivalence of matrices 
in the complex analytic category with a focus on the explicit description of the 
infinitesimal theory. Many constructions and results can be carried over to the real 
analytic or even the real differentiable setup. Moreover, in [7] Belitskii and Kerner 
develop an analogous theory of unfoldings, equivalences, and finite determinacy in a 
purely algebraic fashion; particular applications to families of matrices can be found 
in [8] and [64] and various further preprints are available. 

We start with the natural notion of equivalence of map germs in this context. 

Definition 2.2.1 Two matrices .A,B ∈ C{x1, . . . , xp}m×n are called .GL-
equivalent, if there exist matrices .P ∈ GL(m;C{x}) and .Q ∈ GL(n;C{x}) and a 
biholomorphism .Φ : (Cp, 0) → (Cp, 0) such that 

.P(x) ·
(
A ◦ Φ−1(x)

)
· (Q(x))−1 = B(x). (2.17) 

Note that in (2.17) we write .Φ−1(x) for the inverse of the map . Φ applied to x while 
.(Q(x))−1 denotes the inverse of the matrix .Q(x) at that point. 

Similarly, we say that A and B are .SL-equivalent if P and Q only take values 
in the special linear groups. In the following, we will deliberately identify the 
space of matrices .GL(m;C{x}) with the space of map germs . P : (Cp, 0) →
(GL(m;C), P (0)). Depending on the context, either one of the two notations has 
its advantages. 

Remark 2.2.2 Note that in the above definition, neither A nor B are required to 
define a determinantal singularity. If they do, however, then it follows directly 
from Lemma 2.1.3 that any two associated determinantal singularities .(Xs

A, 0) and 
.(Xs

B, 0) are isomorphic as germs.

9 cf. [20, Section 7.1.5]. 
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Definition 2.2.3 Let .A ∈ C{x1, . . . , xp}m×n be a matrix. Two unfoldings of A on 
k parameters .t = t1, . . . , tk given by .A(x, t), B(x, t) ∈ C{x, t}m×n are called .GL-
equivalent if there exist unfoldings 

. (Cp, 0) × (Ck, 0) → (GL(m,C), 1m), (x, t) �→ Pt (x)

(Cp, 0) × (Ck, 0) → (GL(n,C), 1n), (x, t) �→ Qt(x)

(Cp, 0) × (Ck, 0) → (Cp, 0), (x, t) �→ Φt(x)

of the identities .P0 = 1m ∈ GL(m;C{x}), .Q0 = 1n ∈ GL(n;C{x}) and . Φ0 =
IdCp,0 such that 

. B(x, t) = Pt(x) · A(Φ−1
t (x), t) · (Qt(x))−1

An unfolding given by .A(x, t) is .GL-trivial (or just “trivial”) if it is .GL-equivalent 
(as unfoldings) to the map .B(x, t) = (A(x), t). 

Again, we obtain the notion of .SL-equivalence of unfoldings by substituting . SL for 
. GL in the above definition. 

Remark 2.2.4 Note that whenever A defines a determinantal singularity . (Xs
A, 0) ⊂

(Cp, 0) of type s and . A and . B are two .GL-equivalent unfoldings of A, the resulting 
flat families are isomorphic in the sense that there is a commutative diagram 

. 

In particular, a .GL-trivial unfolding . A of A gives rise to a product . (X s
A , 0) ∼=

(Xs
A, 0) × (Ck, 0). 

We wish to classify all unfoldings of a given matrix .A ∈ C{x}m×n up to .GL-
equivalence, thereby also capturing all possible determinantal deformations of the 
associated singularities .(Xs

A, 0) ⊂ (Cp, 0). While in the context of deformations 
of complex analytic germs this leads to the investigation of deformation functors 
over Artin rings developed by Schlessinger [92] and in particular the first order 
deformations (cf. [20, Section 7.1.4]), the common viewpoint for unfoldings of map 
germs is to consider the action of an (infinite dimensional) algebraic group on them. 
The particular group in question for .GL-equivalence is the semi-direct product 

.G = (GL(m;C{x}) × GL(n;C{x})) � Diff(Cp, 0) (2.18)
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with composition defined by 

. (P,Q,Φ) ∗ (P ′,Q′, Ψ ) =
(
P(x) · P ′(Φ−1(x)),Q(x) · Q′(Φ−1(x)), Ψ (Φ(x))

)
,

so as to be compatible with the left action (2.17) on the space of matrices .C{x}m×n. 
As already mentioned in the introduction, the group . G is a so called “geometric 

subgroup”, a notion introduced by Damon in [22], of the contact group . K ; see e.g. 
[21, Proposition 2.5.1]. This allows us to pursue a common path in the theory for 
unfoldings of map germs. The key object for further studies is the space . T 1

GL(A)

capturing the nontrivial infinitesimal unfoldings of a given matrix A up to .GL-
equivalence. We shall introduce it now. 

For a given matrix .A ∈ C{x1, . . . , xp}m×n, the trivial unfoldings of A are 
those captured by the action of a 1-parameter family .(Pt ,Qt ,Φt ) in . G with 
.(P0,Q0, Φ0) = (1m, 1n, IdCp,0). Such unfoldings take the form 

. A(x, t) = Pt(x) · A(Φ−1
t (x)) · (Qt (x))−1.

Differentiating with respect to t at .t = 0 gives us the infinitesimally trivial 
unfoldings 

. 
dP

dt
(0) · A− A · dQ

dt
(0) −

p∑
i=1

∂A

∂xi

· dΦi

dt
(0).

These generate the so-called extended tangent space (to the orbit) of A: 

.TeG (A) = glm(C{x})·A−A·gln(C{x})+
〈
∂A

∂x1
, . . . ,

∂A

∂xp

〉
⊂ C{x}m×n, (2.19) 

cf. for instance [109, Part I, Section 1], or [21, Proposition 2.5.1]. We wrote 
.glm(C{x}) for the space .C{x}m×m in which .dP/dt (0) lays, and vice versa for 
.gln(C{x}). 

Geometrically, the extended tangent space .TeG (A) can be described as follows. 
Consider the pullback of the tangent bundle .A∗(TC

m×n) of .Cm×n along A. The  
sheaf of sections in this bundle is a free .C{x}-module with stalk . (A∗TCm×n)0

∼=
C{x}m×n at the origin. Then the extended tangent space is the submodule generated 
by the pullback of the specific logarithmic vector fields (2.16), 

. glm(C{x}) · A− A · gln(C{x}),

and the image of the differential .dA : TCp,0 → A∗TCm×n,0 of A, 

.

〈
∂A

∂x1
, . . . ,

∂A

∂xp

〉
.
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With .TeG (A) ⊂ C{x}m×n being the trivial unfoldinds, the quotient by this 
submodule 

.T 1
GL(A) := C{x}m×n/TeG (A) (2.20) 

captures the nontrivial infinitesimal unfoldings of A up to .GL-equivalence. We will 
in the following refer to the dimension of .T 1

GL(A) over . C as the .GL-codimension of 
A: 

.τGL(A) = dimC T 1
GL(A). (2.21) 

Remark 2.2.5 Besides .GL-equivalence some authors also consider other variants 
such as .SL-equivalence, see for example [47], or [46]. 

.SL-equivalence: For .SL-equivalence, the group . S is defined as in (2.18), only 
that the matrices P and Q are restricted to take values in the subgroup 
.SL(m;C{x}) and .SL(n;C{x}). Accordingly, for the extended tangent space of 
a matrix  A one finds 

. TeS(A) = slm(C{x}) · A+ A · sln(C{x}) +
〈
∂A

∂x1
, . . . ,

∂A

∂xp

〉
⊂ C{x}m×n

(2.22) 

with .slm(C{x}) the set of trace-free matrices in .C{x}m×m and vice versa for the 
other term. In this case, we speak of the .SL-codimension of a matrix 

. τSL(A) = dimC T 1
SL(A).

Symmetric matrices: Adaptations of .GL- and .SL-equivalence can also be made 
for symmetric matrices .A ∈ C{x1, . . . , xp}m×m

sym where one usually considers the 
group 

.Gsym = GL(m;C{x}) � Diff(Cp, 0) (2.23) 

with composition 

. (P,Φ) ∗ (P ′, Ψ ) = (P · (P ′ ◦Φ−1),Φ ◦ Ψ )

and action on .C{x}m×m
sym given by 

. ((P,Φ),A) �→ P · (A ◦Φ−1) · P T .

In this case, the extended tangent space of a matrix A is 

. TeGsym(A) =
〈
M · A+ A · MT : M ∈ glm(C{x})

〉
+

〈
∂A

∂x1
, . . . ,

∂A

∂xp

〉
.

(2.24)
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Skew symmetric matrices: For skew-symmetric matrices .A ∈ C{x}m×m
sk and 

their Pfaffian ideals it is customary to consider the same equivalences as for 
symmetric matrices. Then the extended tangent space for .SL-equivalence, for 
example, reads 

.TeSsk(A) =
〈
M · A+ A ·MT : M ∈ slm(C{x})

〉
+

〈
∂A

∂x1
, . . . ,

∂A

∂xp

〉
(2.25) 

where again .slm(C{x}) denotes the traceless matrices. 

2.2.1 Finite Determinacy 

A natural question for map germs is whether or not they are finitely determined for 
a given notion of equivalence. Analogous to the case of holomorphic functions we 
define the k-jet of a matrix .A ∈ C{x}m×n to be the Taylor expansion 

. jk(A) = A(0) +
∑
|α|=1

xα

α!
(

∂

∂x

)α

A|x=0 + · · · +
∑
|α|=k

xα

α!
(

∂

∂x

)α

A|x=0

of the entries of A up to order k modulo .mk+1
C{x}m×n. As usual, . α =

(α1, . . . , αp) ∈ N
p

0 denotes a multi-index with .α! = α1! · · ·αp!, . |α| = α1+· · ·+αp

and .(∂/∂x)α = (∂/∂x1)
α1 · · · (∂/∂xp)αp . 

Definition 2.2.6 A matrix  .A ∈ C{x1, . . . , xp}m×n is k-determined (for .GL-
equivalence) if for every other matrix B an equality of jets .jk(A) = jk(B) implies 
that B is .GL-equivalent to A. 

Straightforward adaptations can be given for the other groups discussed in 
Remark 2.2.5. We say that A is finitely .GL-determined, if it is k-determined 
for some .k > 0. In particular, any finitely .GL-determined matrix is .GL-equivalent 
to a matrix with polynomial entries. 

The following explicit infinitesimal criterion for finite .GL-determinacy of matri-
ces has been given by Pereira in [21, Theorem 2.3.1]: 

Theorem 2.2.7 Let .A ∈ C{x1, . . . , xp}m×n be a matrix and k an integer such that 

. mk+1
C{x}m×n ⊂ m2

〈
∂A

∂x1
, . . . ,

∂A

∂xp

〉
+m · (glm(C{x}) · A + A · gln(C{x})

)
.

Then A is k-determined for .GL-equivalence. 

It should be pointed out, that Pereira also covered the real analytic case and the 
above theorem is the adapted citation for holomorphic matrices. While this criterion 
is useful for explicit computations, there is also another, more geometric criterion
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Fig. 2.3 A transverse and a non-transverse intersection (red) of a torus (yellow) in . R3 with the 
immersion of a plane (blue) 

based on the transversality of maps. This was observed by Bruce [11, Proposition 
3.2] for the specific case of symmetric matrices and later carried out explicitly by 
Pereira [21, Theorem 2.4.1] for .GL-equivalence for matrices of arbitrary size. 

We briefly recall the classical notion of transversality10 for smooth maps of mani-
folds. Let M and U be smooth manifolds and .V ⊂ M a locally closed submanifold. 
We say that a map .f : U → M is transverse to V at a point .p ∈ U , if either 
.f (p) /∈ V , or .f (p) ∈ V and the tangent spaces .TpU and . Tf (p)V

.df (p)TpU + Tf (p)V = Tf (p)M (2.26) 

span the whole tangent space .Tf (p)M of the ambient manifold M; cf.  [20, Definition 
4.2.11]. We say that f is transverse to V on U if this holds at every point in U (see 
Fig. 2.3 for an illustration on transversality). 

When .
⋃

i V i = M is a stratification of M into smooth, locally closed 
submanifolds we say that a map f as above is transverse to the stratification, if 
it is transverse to every stratum . V i . An illustration of this is given in Fig. 2.4. 

With these notions at hand we now have [21, Theorem 2.4.1] (cf. also [11, 
Proposition 3.2] for the symmetric and [12, Proposition 3.2] for the arbitrary 
symmetric case): 

Theorem 2.2.8 Let .A : (Cp, 0) → (Cm×n, A(0)) be a holomorphic map germ. 
Then A is finitely .GL-determined if and only if it is transverse to the rank 
stratification on .Cm×n in a punctured neighborhood of the origin in . Cp.

10 Following Damon [25], we will also refer to this as geometric transversality in order to 
distinguish it from the algebraic transversality which will be introduced in the next section. 
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Fig. 2.4 The so-called “Whitney umbrella” .W ⊂ R
3 with its decomposition into three strata: 

The origin, the open half of a coordinate axis and the remainder. The other two pictures show 
the immersion of an affine plane D: In the middle picture, the intersection of D with W is not 
transverse at the origin. In the picture on the right hand side, D is transverse to W in a stratified 
sense, despite the fact that the intersection is not a smooth manifold 

2.2.2 Versal Unfoldings 

An unfolding F for a given map germ f is called versal , if every other unfolding . F ′
of f can be written as a pullback from F up to the underlying notion of equivalence 
of map germs. For an account on these notions, see e.g. [109] or [82]. In the explicit 
case of matrices and .GL-equivalence we can give the following 

Definition 2.2.9 Let .A ∈ C{x1, . . . , xp}m×n be a matrix. An unfolding 

. A : (Cp, 0) × (Ck, 0) → (Cm×n, 0)

of A on k parameters t is called .GL-versal, if for every other unfolding . B of A on l 
parameters s there exists a holomorphic map germ .h : (Cl , 0) → (Ck, 0) such that 
. B is .GL-equivalent as an unfolding (Definition 2.2.3) to the unfolding of A given by 

. A′(x, s) = A(x, h(s)).

An unfolding . A of A is called .GL-miniversal (or semi-universal), if it is versal and 
the number of parameters k is minimal among all versal unfoldings of A. 

Versal unfoldings of matrices on a finite set of parameters as above do not 
necessarily exist. We saw earlier that the quotient .T 1

GL(A) in (2.20) classifies all 
infinitesimal unfoldings up to .GL-equivalence. If this space is of finite dimension, it 
can be used to construct miniversal unfoldings.
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Theorem 2.2.10 Let .A ∈ C{x1, . . . , xp}m×n be a matrix such that .T 1
GL(A) has 

finite dimension . τ as a .C-vector space. For any set of elements . B1, . . . , Bτ ∈
C{x}m×n reducing to a basis of .T 1

GL(A), the unfolding on . τ parameters given by 

. A(x, t) = A(x) + t1 · B1(x) + · · · + tτ · Bτ (x)

is miniversal. 

In particular, we see that the minimal number of parameters of a miniversal 
unfolding is always equal to 

. τGL(A) := dimC T 1
GL(A).

We will in the following refer to this number as the .GL-Tjurina number of A. 
Analogously, we will speak of the .SL-Tjurina number in the context of .SL-
equivalence and likewise for the symmetric or skew-symmetric settings. 

Theorem 2.2.10 is a special instance of the Unfolding Theorem of Damon 
[22, Theorem 9.3] for geometric subgroups of . K . As already remarked earlier, 
the theory developed by Damon allows one to also consider differentiable or real 
analytic setups. For another, explicit proof of Theorem 2.2.10 which does not rely 
on Damon’s work, see [110, Theorem 1.4.10]. 

In parallel to the previous section, we also give a geometric criterion for the 
condition .dimC T 1

GL(A) < ∞ to be satisfied, analogous to Theorem 2.2.8. 

Definition 2.2.11 (Ebeling, Gusein-Zade [34]) Let .A : U → C
m×n be a holo-

morphic map on some open subset .U ⊂ C
p. A point .x ∈ U is called essentially 

nonsingular, if  A is transverse to the stratum .V r
m,n containing .A(x). 

Here .r = rankA(x) is the rank of the matrix A at x. Note that the transversality of 
A to the stratum .V r

m,n at an essentially non-singular point x and the Whitney-.(a)-
regularity of the rank stratification already imply that in a neighborhood of x the 
map A is stratified transversal to all strata .V s

m,n for every .s ≥ r . In particular, the 
singularities .(A−1(Ms

m,n), x) ⊂ (U, x) all have expected codimension. 

Proposition 2.2.12 Let .A : (Cp, x) → (Cm×n, A(x)) be a holomorphic map germ. 
Then .T 1

GL(A) = 0 if and only if x is an essentially nonsingular point of A. 

We include a brief proof of Proposition 2.2.12 based on the notion of algebraic 
transversality due to Damon in [24] (see also [25]). 

Suppose .f : U → M is a holomorphic map of complex manifolds and . V ⊂ M

is a subvariety of M with .I = I (V ) the sheaf of ideals of functions vanishing on V . 
Then f is said to be algebraically transverse to V at a point .p ∈ U , if  

.df (p)TpU + T
log
f (p)V = Tf (p)M (2.27) 

where .T
log
q V is the logarithmic tangent space to V at the point q, see Sect. 2.1.4.3.
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Proof of Proposition 2.2.12 In the setup of Proposition 2.2.12, and the generic 
determinantal varieties with .Ms

m,n ⊂ C
m×n in place of V and M we find 

. T
log
ϕ Ms

m,n = TϕV r
m,n

for every .ϕ ∈ V r
m,n ⊂ Ms

m,n according to the holonomicity of the rank stratification, 
Lemma 2.1.19. Consequently, a holomorphic map .A : U → C

m×n is algebraically 
transversal to .Ms

m,n at a point .x ∈ U if and only if it is geometrically transversal. 
Moreover, we saw in the proof of Lemma 2.1.19 that the logarithmic tangent space 
.T

log
ϕ Ms

m,n at the point .ϕ = A(x) is spanned by the specific vector fields . ξ = L ·
ϕ−ϕ ·R introduced in (2.16). Using Nakayama’s lemma, it is now easy to see from 
the geometric description of the extended tangent space .TeG (A) in (2.19) that the 
module .T 1

GL(A) = A∗TCm×n/TeG (A) is zero at x if and only if A is transverse to 
.Ms

m,n (in either sense); the assertion follows. �
Corollary 2.2.13 Let .A : (Cp, 0) → (Cm×n, A(0)) be a holomorphic map germ. 
Then a miniversal unfolding of A exists if and only if A is transverse to the rank 
stratification of .Cm×n in a punctured neighborhood of the origin. 

Proof This follows directly from sheafification of the module .T 1
GL(A), cf.  [82, 

Section 4.5.1]. It has finite length if and only if it is supported only at . 0 ∈ C
p

and according to Proposition 2.2.12 this is the case whenever A is transverse to the 
rank stratification off the origin. �
Example 2.2.14 Consider again the space curve singularity from Example 2.1.17 
given by the union of the three coordinate axis in .(C3, 0). The defining matrix was 

. A =
(

x 0 z

0 y z

)

and we will briefly indicate how to compute the space .T 1
GL(A). 

To shorten notation, let .R = C{x, y, z}. We consider the extended tangent space 
of A as a submodule .TeG (A) ⊂ R2×3 ∼= R6 and denote by .Ei,j the generator 
of .R2×3 with 1 at the  .(i, j)-th entry and zeroes elsewhere. Then the generators of 
.TeG (A) in the last summand of (2.19) are  

. 
∂A

∂x
=

(
1 0 0
0 0 0

)
,

∂A

∂y
=

(
0 0 0
0 1 0

)
,

∂A

∂z
=

(
0 0 1
0 0 1

)

which allows us to reduce all multiples of .E1,1 and .E2,2 to zero and write every 
multiple of .E1,3 as a multiple of .E2,3 modulo .TeG (A). We may then proceed to
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show that for every one of the remaining generators .Ei,j of .R2×3 we have . m ·Ei,j ⊂
TeG (A) where .m = 〈x, y, z〉. For instance for .E1,2 we find 

. x ·E1,2 = A·
⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠ , y ·E1,2 =

(−1 1
0 0

)
·A+x

∂A

∂x
, z·E1,2 = A·

⎛
⎝0 0 0
0 0 0
0 1 0

⎞
⎠−z

∂A

∂y

and similarly for . E2,1

. x·E2,1 =
(
0 0
1 −1

)
·A+y

∂A

∂y
, y·E2,1 = A·

⎛
⎝0 0 0
1 0 0
0 0 0

⎞
⎠ , z·E2,1 = A·

⎛
⎝0 0 0
0 0 0
1 0 0

⎞
⎠−z

∂A

∂x
.

The generators of .m · E2,3 are 

. x·E2,3 = x
∂A

∂z
−A·

⎛
⎝0 0 −1
0 0 0
0 0 0

⎞
⎠ , y·E2,3 = A·

⎛
⎝0 0 0
0 0 1
0 0 0

⎞
⎠ , z·E2,3 =

(
0 0
0 1

)
·A−y

∂A

∂y
.

Further calculations yield that a .C-basis for .T 1
GL(A) is indeed given by the matrices 

. 

(
0 1 0
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 0 1

)

so that we get a miniversal unfolding of A by setting 

.A(x, y, z; t1, t2, t3) =
(

x 0 z

0 y z

)
+

(
0 t1 0
t2 0 t3

)
(2.28) 

according to Theorem 2.2.10. 

2.2.3 Discriminants of Matrices 

Let .A : (Cp, 0) → (Cm×n, 0) be a matrix and .A : (Cp, 0)×(Ck, 0) → (Cm×n, 0) an 
unfolding of A on k parameters .t1, . . . , tk . For such an unfolding, one can define the 
relative11 space .T 1

GL(A) of infinitesimal unfoldings of the fibers . At as the quotient

11 cf. e.g. [82, Definition 3.9]. 
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of .C{x, t}m×n by the submodule 

. TeG (A) = C{x, t}m×m · A + A · C{x, t}n×n +
〈
∂A
∂x1

, . . . ,
∂A
∂xp

〉
⊂ C{x, t}m×n.

(2.29) 

It is immediate from the definition, that .T 1
GL(A) ∼= T 1

GL(A)/〈t1, . . . , tk〉T 1
GL(A). 

Using the Weierstrass finiteness theorem12 it is easy to see that .T 1
GL(A) is a finite 

.C{t}-module whenever .T 1
GL(A) has finite dimension over . C. 

Definition 2.2.15 Let .A ∈ C{x1, . . . , xt }m×n be a matrix with .dimC T 1
GL(A) < ∞. 

For an unfolding . A of A on k parameters .t = (t1, . . . , tk), the  matrix discriminant 
.(ΔA, 0) ⊂ (Ck, 0) is the support of the .C{t}-module .T 1

GL(A). If  . A is a miniversal 
unfolding, then we also speak of the matrix discriminant .(ΔA, 0) of A rather than 
the discriminant of the unfolding . A. 

Being the support of a finite analytic module, the matrix discriminant is a com-
plex analytic set. In general we can decompose the discriminant into components 

.ΔA =
⋃

0≤r<min{m,n}
Δr

A (2.30) 

as follows. Let .A : U × T → C
m×n be a representative of the unfolding and . t ∈

T ⊂ C
k a fixed parameter. Then .t ∈ ΔA if and only if there are points . x ∈ U

for which .At : (U, x) → (Cm×n, At (x)) is not transverse to the rank stratification. 
To any such point we can associate the rank r of the stratum containing the critical 
value .At(x). Now  .Δr

A is the component of .ΔA whose generic fiber . At has critical 
points of rank at most r . An example will be given below in Example 2.2.20. 

Remark 2.2.16 It is easy to see that for either two miniversal unfoldings of A, the  
pullback maps in the parameter spaces take one matrix discriminant into the other. 
However, since these pullbacks are not uniquely determined, the matrix discriminant 
.(ΔA, 0) of A exists and is unique, but in general only up to non-unique isomorphism. 

Sheafifying allows us to pass from .A = A0 to a nearby map . At : U → C
m×n

defined on some suitable open subset .U ⊂ C
p. Then .t ∈ ΔA lays in the matrix 

discriminant if and only if there are points .x ∈ U at which . At admits non-trivial 
unfoldings. Given Proposition 2.2.12, these are precisely the points at which . At

is not transversal to the rank stratification of the target space .Cm×n. The Thom 
transversality theorem13 assures that any differentiable map .f : X → Y can be 
deformed to a map . f̃ which is transversal to a given submanifold .Z ⊂ Y . In the  
holomorphic setting, this problem is more delicate due to the rigidity of holomorphic

12 See e.g. [53, Theorem 1.10]. 
13 See [96]. 
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mappings. It has been addressed by Trivedi in [102, Theorem 2.1] and [102, 
Theorem 3.1]. 

For complex analytic germs such as .A : (Cp, 0) → (Cm×n, 0) it also suffices 
to observe that the set of constant matrices .ϕ ∈ C

m×n for which the map . A + ϕ

is transverse to the rank stratification in a neighborhood of the origin, is dense in 
.C

m×n; cf.  [102, Lemma 2.2]. As an immediate consequence we find: 

Corollary 2.2.17 Let A be as in Definition 2.2.15 and . A a semi-universal unfolding 
of A (cf. Theorem 2.2.10) on .τ = dimC T 1

GL(A) parameters. Then the matrix 
discriminant .(ΔA, 0) ⊂ (Cτ , 0) is a proper analytic subset of .(Cτ , 0). 

For a more detailed discussion, the reader may also consult [110, Section 2.2.1]. 
In the following, we will refer to any map 

.At : U → C
m×n (2.31) 

which arises from an unfolding . A of a finitely determined matrix A and with . t /∈ ΔA
as a (topological) stabilization of A. 

Remark 2.2.18 Using the results by Trivedi [102, Lemma 2.2], it is easy to see 
that stabilizations also exist for matrices A which are not finitely determined. In 
that case, however, a stabilization is not uniquely determined by the original matrix 
A, similar to the case of smoothings of non-isolated hypersurface singularities, see 
Example 2.5.5 below. 

Example 2.2.19 Consider the miniversal unfolding (2.28) of the  matrix  A for 
the space curve singularity given by the three coordinate axis in .(C3, 0) from 
Examples 2.1.17 and 2.2.14: 

. A(x, y, z; t1, t2, t3) =
(

x 0 z

0 y z

)
+

(
0 t1 0
t2 0 t3

)

We claim that the .t1-axis in the parameter space .(C3, 0) is contained in the 
discriminant . ΔA. 

Fix .t2 = t3 = 0 and let .t1 �= 0 be arbitrarily small. Then the perturbed map 

. A(t1,0,0) : 0 �→ ϕ := A(t1,0,0)(0) =
(
0 t1, 0
0 0 0

)

takes the origin to a matrix . ϕ of rank 1. If we let . yi,j be the coordinates for the space 
of matrices .C2×3, then locally at the point . ϕ the minor of the matrix Y obtained by 
deletion of the second column is easily seen to be a superfluous generator of the 
ideal .〈Y∧2〉. The generic determinantal variety .M2

2,3 is a smooth local complete 
intersection at . ϕ with tangent space 

.TϕM2
2,3 = span

((
1 0 0
0 0 0

)
,

(
0 1 0
0 0 0

)
,

(
0 0 1
0 0 0

)
,

(
0 0 0
0 1 0

))
.
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But the image of the differential of .A(t1,0,0) at the origin is spanned by the matrices 

. dA(t1,0,0)(0) T0C
3 = span

(
∂A

∂x
,

∂A

∂y
,

∂A

∂z

)

which is clearly not transversal to .TϕM2
2,3, since for .λ �= 0 none of the matrices 

.λ · E2,1 is contained in the sum of the two subspaces. 
This particular unfolding was already considered in Example 2.1.17 and we 

saw that the fibers .X2
A(t1, 0, 0) were not smooth. From the viewpoint taken in this 

example, this is merely a consequence of the non-transversality of the map . A(t1,0,0)
at these points. This observation will be generalized in Lemma 2.3.4. 

With the help of a computer algebra system it is easy to see that the full 
discriminant .(ΔA, 0) ⊂ (C3, 0) in the parameter space .(C3, 0) consists of the union 
of the three coordinate hyperplanes given by .t1 · t2 · t3 = 0. Hence, a simultaneous 
perturbation by .t1 = t2 = t3 = t will lead to a smoothing of .(X2

A, 0) (Fig. 2.5). 

Example 2.2.20 The matrix discriminant is not always a hypersurface. For instance, 
the matrix 

. A =
(

x y z

y z w

)

Fig. 2.5 The discriminant of the space curve singularity in . C3 given by the union of the three 
coordinate axis
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has a miniversal unfolding given by 

. A(x, y, z,w; t0, t1) =
(

x y z

y z w

)
−

(
0 0 0
t0 t1 0

)
.

Contrary to the previous example, the matrix discriminant .ΔA consists only of the 
point .{0} ⊂ C

2 in the parameter space. 
This behaviour continues, as can be observed from the slightly more complicated 

matrix 

. B =
(

x y z

y2 z w

)
.

This is a member of the second series from the list of simple isolated Cohen-
Macaulay codimension 2 surface singularities in Table 2.16. The miniversal unfold-
ing can be realized on 3 parameters as 

. B(x, y, z,w; t0, t1, t2) =
(

x y z

y2 z w

)
+

(
0 0 0

t0 + t1y t2 0

)
.

The matrix discriminant decomposes as in (2.30) into components .ΔB = Δ0
B ∪Δ1

B . 
The first one 

. Δ0
B = {t2 = t0 = 0}

is of codimension 2. Geometrically it is characterized by the fact that for a generic 
point .0 �= t = (t1, 0, 0) ∈ Δ0

B the map .Bt : (C4, 0) → (C2×3, 0) .GL-equivalent to 
the matrix A above. In particular, it is not transverse to the stratum .{0} = V 0

2,3 of the 
rank stratification so that the origin is a critical point of rank .r = 0 for . Bt . 

The other component 

. Δ1
B =

{
t21 − 4t0

}

is a divisor. For generic .t = (
t21/4, t1, t2

) ∈ Δ1
B the map . Bt has a non-transverse 

point at .(x, y, z,w) = (0,−t1/2,−t2, 0) whose image 

. Bt(0,−t1/2, t2, 0) =
(
0 −t1/2 −t2

0 0 0

)

is of rank 1. Note that now the full discriminant .(ΔB, 0) is of codimension 1, but 
not a divisor.
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2.3 Essentially Isolated Determinantal Singularities 
and Their Deformations 

In the preceding section we have discussed the singularities of matrices regarded 
as map germs. The geometric criteria for finite determinacy, Theorem 2.2.8, and 
the existence of miniversal unfoldings, Proposition 2.2.12, motivated the definition 
of an essentially nonsingular point, Definition 2.2.11, in a natural way. For the 
determinantal singularities associated to a matrix this leads to the following: 

Definition 2.3.1 (Ebeling, Gusein-Zade [34]) A determinantal singularity 
.(Xs

A, 0) ⊂ (Cp, 0) is called an Essentially Isolated Determinantal Singularity 
(EIDS) of type .(m, n, s) if the defining matrix .A : (Cp, 0) → (Cm×n, 0) has only 
essentially non-singular points in a punctured neighborhood of the origin. 

Remark 2.3.2 It follows directly from Proposition 2.2.12 and Theorem 2.2.8 that 
the defining matrix of an EIDS is finitely .GL-determined. Note that in general any 
such matrix gives rise to several EIDS: one for every integer s satisfying . 0 ≤ (m −
s + 1)(n − s + 1) ≤ p so that the intersection of the image of A with the variety 
.Ms

m,n is generically nonempty. 

An EIDS is essentially isolated in the sense that, in general, the space .Xs
A has 

non-isolated singularities. However, due to the transversality condition in Defini-
tion 2.2.11 imposed on the map A, apart from the origin itself these singularities are 
locally products of the generic determinantal varieties with affine space: 

Lemma 2.3.3 Let .A ∈ C{x1, . . . , xp}m×n be a matrix defining an EIDS . (Xs
A, 0) ⊂

(Cp, 0). Then the preimages of the strata .V r
A = A−1(V r

m,n) with .r < s form a 
Whitney stratification of .Xs

A \ {0}. Moreover, at any point .x ∈ V r
A ⊂ Xs

A \ {0} one 
has an isomorphism 

. (Xs
A, x) ∼= (Ms−r

m−r,n−r , 0) × (Cp−(m−r)(n−r), 0).

In particular, .Xs
A has isolated singularity at the origin if and only if 

.p ≤ (m− s + 2)(n − s + 2) (2.32) 

and it is smoothable by a determinantal deformation if and only if this inequality is 
strict. 

Proof The first part of this lemma is a basic application of stratification theory, see 
e.g. [45]. For the question on smoothability observe that in case . p = (m−s+2)(n−
s + 2), the space .(Xs−1

A , 0) is also an EIDS, but of dimension zero. An unfolding of 
A on a set of parameters t gives rise to a (flat) deformation of this singularity and 
the principle of conservation of number asserts that the total multiplicity of these 
points is preserved within the family. It is now easy to see that for .t �= 0 any of
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Fig. 2.6 A schematic picture of an isolated determinantal singularity .(Xs
A, 0) given as the 

preimage along the map .A = A0 of the generic determinantal variety .Ms
m,n with non-isolated 

singularities (drawn as a Whitney umbrella). The second row shows an essential smoothing 
.Xs

A(t) = A−1
t (Ms

m,n) which is still singular due to the unavoidable intersection of the image of . At

with the singularities of . Ms
m,n

these points .x ∈ A−1
t (Ms−1

m,n ) ⊂ A−1
t (Ms

m,n) must be a singular point of the fiber 

.A−1
t (Ms

m,n). �
Along the same lines, it is easy to prove: 

Lemma 2.3.4 In the setup of Lemma 2.3.3 let .At : U → C
m×n be a stabilization of 

A defined on some open neighborhood .U ⊂ C
p of the origin. Then the preimages of 

the strata .V r
A = A−1

t (V r
m,n) form a Whitney stratification of the essential smoothing 

.Ms
A. 

An illustration of an essential smoothing as in Lemma 2.3.4 can be found in Fig. 2.6. 

Remark 2.3.5 In this note we confined ourselves mostly to the complex analytic 
setup. However, the idea of essential smoothings works equally well in the purely 
algebraic setting. This was discussed by Laksov in [69] where he develops the 
notions of transversality, and determinantal deformations for affine determinantal 
schemes.
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2.3.1 The Tjurina Transformation for EIDS 

We need to introduce one technical tool that has proved to be very useful in the study 
of determinantal singularities: The Tjurina transform and the Tjurina transform in 
family for arbitrary EIDS. For the generic determinantal varieties . Ms

m,n ⊂ C
m×n

the Tjurina transform has already been introduced in (2.10). For an arbitrary EIDS 
we give the following definition. 

Definition 2.3.6 Let .(Xs
A, 0) ⊂ (Cp, 0) be a determinantal singularity of type s 

given by a matrix .A ∈ C{x}m×n. We define the Tjurina transform .ν̂ : X̂s
A → Xs

A of 
. Xs

A to be the fiber product 

. (2.33) 

where .M̂s
m,n is the Tjurina transform of the generic determinantal variety (2.10). 

The strict Tjurina transform .X
s

A ⊂ X̂s
A is defined as the closure 

.X
s

A = (A ◦ ν̂)−1(V s−1
m,n ) ⊂ X̂s

A (2.34) 

of the open set over the matrices of rank .s − 1. 

Using the properties already described for .ν̂ : M̂s
m,n → Ms

m,n, it is easy to see that 

.ν̂ : X̂s
A → Xs

A is an isomorphism outside the singular locus .Xs−1
A . In many practical 

cases with matrices of small size compared to the dimension of .(Xs
A, 0), the Tjurina 

transform and the strict Tjurina transform coincide. For the general case, however, 
the Tjurina transform will have higher dimensional components in its exceptional 
set. While the strict Tjurina transform might be geometrically more intuitive, the 
definition in (2.33) has the advantage that it provides explicit equations to work 
with. 

Definition 2.3.7 Let .(Xs
A, 0) ↪→ (X s

A , 0)
π−→ (Ck, 0) be a determinantal 

deformation of an EIDS induced from an unfolding .A(x, t) of the defining matrix 
A. The  Tjurina transformation in family 

. (2.35)
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is obtained by applying the Tjurina transformation to the total space .(X s
A, 0) of the 

family. 

It is a priori not clear whether the family .π ◦ ν̂ : X̂ s
A → C

k is well behaved (e.g. 
flat). In particular, the fibers of the family can not be expected to specialize to the 
strict Tjurina transform of .(Xs

A, 0). However, using Lemma 2.3.4 it is not difficult 
to see the following: 

Proposition 2.3.8 If the family in Definition 2.3.7 arises from a stabilization of 
A, then for suitable representatives and .t /∈ ΔA outside the discriminant of the 
deformation the restriction to the fiber 

. ̂ν : X̂s
A(t) → Xs

A(t)

is a resolution of singularities of .Xs
A(t). In particular, this is an isomorphism 

whenever .Xs
A(t) is already smooth. 

Remark 2.3.9 The same procedures can in principal also be applied to the dual 
Tjurina transform and the Nash transform described in (2.10). This has, for instance, 
been done by Ebeling and Gusein-Zade in [34] in order to construct other resolutions 
of singularities for essential smoothings as in Proposition 2.3.8. 

Example 2.3.10 Let again .(X2
A, 0) ⊂ (C3, 0) be the union of the three coordinate 

axis and .π : (X 2
A , 0) → (C, 0) its smoothing induced from the unfolding 

. A(x, y, z; t) =
(

x 0 z

0 y z

)
+

(
0 t 0
t 0 t

)

as in the end of Example 2.2.19. The strict Tjurina transform . X
2
A = Lx∪̇Ly∪̇Lz

consists of the three separated coordinate axis only. The original Tjurina transform 
. X̂2

A, on the other hand, has as exceptional set .Ê
∼= P

1 a whole projective line as an 
additional component with the coordinate axis meeting . Ê at the points 0, . ∞, and 1, 
respectively (Fig. 2.7). 

For .t �= 0 the Tjurina transformation in family provides an identification 

.ν̂ : X̂2
A(t)

∼=−→ X2
A(t) of the smooth fibers. Observe that by construction, these fibers 

specialize to the central fiber .X̂2
A = X̂2

A(0) but not to the strict Tjurina transform of 
.(X2

A, 0). Moreover, one can easily verify from explicit calculations, that the given 
family induces local, simultaneous smoothings of the three .A1-singularities of . X̂2

A

at the intersection points of either . Lx , . Ly , and . Lz with . Ê. In particular, the family 
.(π ◦ ν̂) : (X̂ 2

A , 0) → (C, 0) turns out to be flat. 
For the dual Tjurina transform we find that 

.X̌2
A = P

2 ∪ Lx ∪ Ly ∪ Lz
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ν̂ 

X2 
A 

ν̌ 

Fig. 2.7 The singularity .(X2
A, 0) from Example 2.3.10 together with its Tjurina transform and its 

dual Tjurina transform 

consists of an exceptional plane .Ě ∼= P
2 with the components of the strict transform 

meeting . Ě at the points .(1 : 0 : 0), .(0 : 1 : 0), and .(0 : 0 : 1), respectively. Again, 
on the fibers over .t �= 0, the projection .ν̌ : X̌2

A(t) → X2
A(t) is an isomorphism of 

curves with the fibers specializing to .X̌2
A(0) = X̌2

A; only that this time the family 
can not be flat, given the jump in dimensions of the fibers at .t = 0. 

2.3.2 Comparison of Unfoldings and Semi-universal 
Deformations 

Given a finitely .GL-determined matrix .A ∈ C{x1, . . . , xp}m×n together with its 
miniversal unfolding . A on .k = dimC T 1

GL(A) parameters as, for instance, in 
Theorem 2.2.10, one can compare the unfoldings of A with the deformations of 
the associated EIDS .(Xs

A, 0) defined by A. To make this explicit, it is important 
that the germ .(X, 0) = (Xs

A, 0) given by the associated determinantal singularity 
has a semi-universal deformation. An excellent overview for this topic with further 
references for details can be found in [20, Chapter 7] and therefore we will restrict 
ourselves to briefly recalling the cornerstones of the theory.
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Similar to the definition of versal unfoldings, a versal deformation of a complex 
analytic germ .(X, 0) is given by a flat family 

. (2.36) 

such that any other deformation .(X, 0) ↪→ (X ′, 0) → (S′, 0) can be written as a 
pullback from .(X , 0) → (S, 0) via some comparison map .Φ : (S′, 0) → (S, 0). 
A versal deformation is called semi-universal, if the differential of the comparison 
map . Φ is uniquely determined by the particular family .(X ′, 0) → (S′, 0). For  a  
thourough discussion of these definitions we refer to [20, Definition 7.1.13]. 

This second condition on the differential of the comparison map is closely related 
to the space of first order deformations .T 1

X,0, see  [20, Section 7.1.4], which is central 
to the construction of semi-universal deformations. It can be defined as the set of 
isomorphism classes of deformations of .(X, 0) over the formal algebra .C[t]/〈t2〉, 
cf. [20, Definition 7.1.26] and it is the Zariski tangent space of the base .(S, 0) of a 
semi-universal deformation of .(X, 0)—provided such a semi-universal deformation 
exists. One can explicitly compute the space .T 1

X,0 from the ideal .I ∈ C{x} for any 
given embedding .(X, 0) ⊂ (Cp, 0), cf.  [20, Proposition 7.1.33]: It appears in an 
exact sequence 

. (2.37) 

where .TCp,0 is the module of germs of holomorphic vector fields on .(Cp, 0), 
.HomC{x}(I,C{x}/I) is the normal module for the embedding of .(X, 0), and . β is 
the map determined by 

. β : ∂

∂xi

�→
(

f �→ ∂f

∂xi

)

for .i = 1, . . . , p. This endows .T 1
X,0 with the structure of a .C{x}-module and in 

particular, it is a .C-vector space. 
The following theorem was proved by Grauert in [49], see also [20, Theorem 

7.1.14] and [20, Remark 7.1.28]. 

Theorem 2.3.11 Let .(X, 0) be a complex analytic singularity with .T 1
X,0 of finite 

dimension. Then a semi-universal deformation of .(X, 0) exists. 

The construction of such semi-universal deformations is quite technical and in 
general much more complicated than the construction of miniversal unfoldings for 
map germs as for instance in Theorem 2.2.10. The general framework for this was 
developed by Schlessinger in his thesis [92]. For details of the general case, we
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refer to [20, Chapter 7], “Deformation and Smoothing of Singularities” by Greuel. 
For the specific purposes here, we only note the following, [20, Definition 7.1.38]: 

Definition 2.3.12 A singularity .(X, 0) with finite dimensional .T 1
X,0 is called unob-

structed if it has a semi-universal deformation with a smooth base .(S, 0). 

A criterion for a singularity .(X, 0) to be unobstructed is that the module .T 2
X,0 is 

zero. This is another coherent analytic module associated to the singularity that can 
be computed explicitly from the ideal defining the singularity. Again, we refer to 
[20, Chapter 7] for details. 

Suppose that .(X, 0) = (Xs
A, 0) is an EIDS with isolated singularity (cf. 

Lemma 2.3.3). Since every unfolding of A gives rise to a deformation of .(Xs
A, 0) due 

to Lemma 2.1.15, we obtain a flat family over the parameter space of the unfolding 
and some comparison map .Φ : (Ck, 0) → (S, 0) to the base of the semi-universal 
deformation .π : (X , 0) → (S, 0) of .(Xs

A, 0) in the sense of Grauert’s theorem. 
Altogether this forms the commutative diagram 

. (2.38) 

Depending on the size of the matrix A and the size of the minors s, the  map  . Φ can 
take very different forms. We first give a list of particular examples and then discuss 
some cases where more structural results are known. 

Example 2.3.13 

(i) Let .(X2
A, 0) ⊂ (C3, 0) be the determinantal hypersurface singularity defined 

by the matrix 

. A =
(

x y

z x

)
.

The ideal I of .(X2
A, 0) is thus generated by the equation .f = x2 − yz and we 

recognize the well-known .A1-surface singularity. A basis of .T 1
GL(A) is given 

by 

. 

(
1 0
0 −1

)

and hence if we let t be the deformation parameter in the semi-universal 
unfolding of A, then the induced deformation of the space germ .(X2

A, 0) comes 
from a perturbation of f by . −t2. 

The semi-universal deformation of .(X2
A, 0) as a space germ on the other 

hand is given by the perturbation of f by a constant u. It follows that the
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comparison map (2.38) takes the form 

. Φ : (C, 0) → (C, 0), t �→ u = t2.

In other words: The base of the miniversal unfolding of A is a .2 : 1 cover of 
the base of the semi-universal deformation of .(X0, 0). 

(ii) (Pinkham, [84]) Recall from Example 2.1.2 that the ideal .I ⊂ C{x0, . . . , x4} in 
Pinkham’s example [84] was given as .I = 〈A∧2〉 = 〈B∧2〉 for the two matrices 

. A =
(

x0 x1 x2 x3

x1 x2 x3 x4

)
and B =

⎛
⎝x0 x1 x2

x1 x2 x3

x2 x3 x4

⎞
⎠ .

The germ .(X, 0) ⊂ (C5, 0) defined by I is the cone over the rational normal 
curve of degree 4 in . P4. A direct computation of .T 1

GL(A) and application of 
Theorem 2.2.10 yields that the unfolding of A given by 

.A(x, t) = A(x) −
(
0 0 0 0
t1 t2 t3 0

)
(2.39) 

on the parameters .t = (t1, t2, t3) is miniversal. Similarly, one has a miniversal 
unfolding on a single parameter u for the symmetric matrix B given by 

.B(x, u) = B(x) −
⎛
⎝0 0 u

0 0 0
u 0 0

⎞
⎠ . (2.40) 

In [84] Pinkham shows explicitly that the semi-universal deformation of . (X, 0)
as a complex analytic germ has a base .(S, 0) ⊂ (C4, 0) of the following 
form. Let .t1, t2, t3, u be the coordinates of . C4. Then .(S, 0) consists of two 
components: The plane .H = {u = 0} and the line .L = {t1 = t2 = t3 = 0}. An  
explicit computation of .(S, 0) can also be found in [20, Example 7.1.41]. 

Indeed, the comparison map for the miniversal unfolding of A identifies the 
parameter space 

. ΦA : (C3, 0)
∼=−→ (H, 0) ⊂ (S, 0), t �→ (t, 0)

of . A with the hyperplane .(H, 0) in .(S, 0) and similarly for B one has an 
isomorphism 

.ΦB : (C, 0)
∼=−→ (L, 0) ⊂ (S, 0), u �→ (0, u).
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(iii) Consider the . A1 threefold singularity in .(C4, 0) as a determinantal singularity 
of type .(2, 2, 2) via the matrix 

. A =
(

x y

z w

)
.

There are no nontrivial unfoldings of this matrix. For the space germ on the 
other hand we find that the perturbation of .f = detA by a constant is semi-
universal so that we have .T 1

X0,0
∼= C. Therefore, the comparison map takes the 

form 

. Φ : {pt} → (C, 0).

(iv) This example is taken from Schaps [91] and it also appears in [18]. Explicit 
computations can be found in [38]. 

Let .(X2
A, 0) ⊂ (C4, 0) be the union of the four coordinate axis. This is a 

determinantal singularity via any matrix 

. 

(
x1 α · x2 β · x3 γ · x4
0 x2 x3 x4

)

for general values .α, β, γ ∈ C. Using row and column operations and local 
coordinate changes, one can always bring this matrix to the form 

. A :=
(

x1 0 x3 γ ′ · x4
0 x2 x3 x4

)

with .γ ′ /∈ {0, 1}. One can show that the following matrices give a .C-basis of 
.T 1
GL(A): 

. 

(
0 0 0 0
1 0 0 0

)
,

(
0 1 0 0
0 0 0 0

)
,

(
0 0 1 0
0 0 0 0

)
,

(
0 0 0 1
0 0 0 0

)
,

(
0 0 0 x4

0 0 0 0

)
.

Hence, the base of the miniversal unfolding of A is .(C5, 0). Let  .t1, . . . , t5 be 
the parameters associated to these matrices as in Theorem 2.2.10. 

Computations of Rim14 and independently of Buchweitz [18] have shown  
that the base .(S, 0) of the semi-universal deformation of .(X2

A, 0) is isomorphic 
to the cone of the Segre embedding of .P1 × P

3 into . P7 and thus also of

14 The computations are attributed to Rim in [91] without further reference. 
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dimension 5. Consider the comparison map 

. Φ : (C5, 0) → (S, 0).

It is easy to see that the perturbation by . t5 alone does not change the ideal 
generated by the 2-minors of A in .C{x}: This is a non-trivial deformation of 
the map germ A which induces a trivial deformation of the underlying space 
germ! Accordingly, as the computations by first named author show, . Φ is a 
contraction of the .t5-axis but a local diffeomorphism away from it; just as if . Φ

was a local chart in a resolution of singularities for .(S, 0). 

2.3.3 Complete Intersections 

It has been pointed out earlier that any (isolated) complete intersection singularity 
.(X, 0) ⊂ (Cp, 0) of codimension c is determinantal of type 1 for some .1× c-matrix 
.F = (f1, . . . , fc). For this class of singularities, the deformations of .(X, 0) coincide 
with the unfoldings of F up to .GL-equivalence. 

This starts with an explicit identification of the space of first order deformations 
.T 1

X,0 of .(X, 0) as in (2.37) and the infinitesimal unfoldings .T 1
GL(F ) of F from (2.20). 

Lemma 2.3.14 Let .(X, 0) ⊂ (Cp, 0) be a complete intersection singularity defined 
by a regular sequence .F = (f1, . . . , fc) in .C{x}. Then there is an explicit 
isomorphism .T 1

GL(F ) ∼= T 1
X,0 of the infinitesimal unfoldings of F considered as 

a .1× c-matrix and the first order deformations of .(X, 0). 

The construction of this isomorphism builds on the description of .T 1
X,0 for 

complete intersections as in [20, Remark 7.1.35]. 

Proof For a complete intersection ideal .I = 〈f1, . . . , fc〉 in .C{x1, . . . , xp} the 
resolution of .C{x}/I by the Koszul complex (2.7) can be used to show that 
the normal module .HomC{x}(I,C{x}/I) is a free .C{x}/I -module in generators 
.e1, . . . , ec which are dual to the . fi’s. An element . g = g1 · e1 + · · · + gc · ec ∈
HomC{x}(I,C{x}/I) corresponds to a formal deformation of .(X, 0) over . C[t]/〈t2〉
given by the c equations 

. F(x, t) = F(x) + t · (g1(x) . . . gc(x)
) = 0

in the ring .C{x}[t]/〈t2〉. The obvious translation to unfoldings yields an isomor-
phism 

.HomC{x}(I,C{x}/I)
∼=−→ C{x}1×c/〈C{x}1×1 · F + F · C{x}c×c〉,

c∑
i=1

gi · ei �→ (
g1 . . . gc

)
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where the right hand side is a quotient of .C{x}1×c by a submodule of the extended 
tangent space (2.19) of  F up to .GL-equivalence. It is now easy to see that the 
remaining relations to be added, namely 

. 

〈
∂F

∂x1
, . . . ,

∂F

∂xp

〉

coincide with the image of the map . β in (2.37). �
Once the space of first order deformations has been computed, the construction 

of a semi-universal deformation of an isolated complete intersection singularity 
.(X, 0) ⊂ (Cp, 0) is straightforward, see [62, 99]; cf. also [20, Theorem 7.1.22]. 
First note that for a complete intersection singularity .T 1

X,0 is finite dimensional if and 
only if .(X, 0) has isolated singularity. Now according to the above cited theorems, 
any set of elements .G1, . . . , Gτ ∈ C{x}1×c reducing to a .C-basis of .T 1

X,0 in the 

above description gives rise to a semi-universal deformation . (X, 0) ↪→ (X , 0)
π−→

(Cτ , 0) where the germ .(X , 0) ⊂ (Cp, 0) × (Cτ , 0) is defined by the equations 

. F(x, t) = F + t1 ·G1 + · · · + tτ · Gτ = 0.

This turns out to be the same procedure as for the construction of the miniversal 
unfolding of .F ∈ C{x}1×c described in Theorem 2.2.10. 

Corollary 2.3.15 For an isolated complete intersection singularity . (X, 0) ⊂
(Cp, 0) defined by a regular sequence .F = (f1, . . . , fc) in .C{x} the flat family 
(2.38) induced from a miniversal unfolding of .F ∈ C{x}1×c is a semi-universal 
deformation of .(X, 0). 

In particular, the comparison map . Φ in (2.38) is an isomorphism. 

2.3.4 Cohen-Macaulay Codimension 2 Singularities 

The particular interest in Cohen-Macaulay singularities of codimension 2 stems 
from the celebrated Hilbert-Burch theorem, see [57] and [19], or [35] for a modern 
textbook account. We reproduce the version found in [13, Theorem 1.4.17]: 

Theorem 2.3.16 Let R be a Noetherian ring and .I ⊂ R an ideal with a free 
resolution 

. (2.41) 

Then there exists an R-regular element b such that .I = b · 〈A∧m〉. If  I is projective, 
then .I = 〈b〉, and if the projective dimension of I is 1, then .〈A∧m〉 is perfect of 
grade two.
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Conversely, if .A : Rm → Rm+1 is an R-linear map with .grade 〈A∧m〉 ≥ 2, then 
.I = 〈A∧m〉 has a free resolution as above. 

As was already discussed in Sect. 2.1, we may suppose that the underlying ring 
R is a regular local ring. This leads to the following 

Corollary 2.3.17 Suppose .I ⊂ C{x1, . . . , xp} is an ideal with .C{x}/I Cohen-
Macaulay of dimension .p − 2. Then I has a resolution of the form (2.41) for some  
matrix .A ∈ C{x}(m+1)×m and .I = 〈A∧m〉 is generated by the maximal minors of A. 

In other words: Any Cohen-Macaulay singularity .(X, 0) ⊂ (Cp, 0) of codimen-
sion 2 is determinantal for some .m × (m + 1)-matrix in a canonical way. This 
differs drastically from the general case where one needs to specify the matrix 
in order to turn .(X, 0) into a determinantal singularity; cf. Pinkham’s example in 
Example 2.3.13. 

Proof of Corollary 2.3.17 Since .C{x} is regular, the Auslander-Buchsbaum for-
mula15 implies that .C{x}/I has a free .C{x}-resolution of length 2, which must be 
of the form 

. 

for some matrices A and f . The functor .Quot(C{x}) ⊗ − is exact, taking . C{x}/I
to zero. Hence, applying it to the above sequence, we obtain a short exact sequence 
of .Quot(C{x})-vector spaces and we see that necessarily .n = m + 1. Thus, the 
Hilbert-Burch theorem applies and .I = b · 〈A∧m〉 for some non-zerodivisor b. 

This element b must in fact be a unit, for if it was not, there would necessarily 
be a primary component of I of height . ≤ 1, contradicting the equidimensionality 
of the Cohen-Macaulay scheme .C{x}/I . We may therefore deliberately assume that 
the ideal .I = 〈A∧m〉 was generated by the maximal minors of A already. �

Schaps has observed that the Hilbert-Burch theorem can also be very well 
applied in the context of deformations. In [90] and [91] she pursues Schlessinger’s 
approach to deformation theory [92] for affine algebraic determinantal schemes, 
in particular those which are Cohen-Macaulay of codimension 2. Her results can 
easily be adapted to the case of complex analytic singularities and, rephrasing them 
accordingly, she establishes the following, cf. [90, Corollary 1]: 

Proposition 2.3.18 Let .(X, 0) ⊂ (Cp, 0) be Cohen-Macaulay of codimension 
2, endowed with its canonical determinantal structure for some matrix . A ∈
C{x}m×(m+1). Then a family .(X, 0) ↪→ (X , 0)

π−→ (SpecB, 0) over some 
Artinian ring B with special fiber .(X, 0) is flat, if and only if there exists a matrix 
.A ∈ (C{x}⊗CB)m×(m+1) such that the germ .(X , 0) is determinantal with matrix . A.

15 See e.g. [13, Theorem 1.3.3]. 
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In other words: Any formal, infinitesimal deformation of a Cohen-Macaulay 
singularity of codimension 2 is determinantal for its canonical determinantal 
structure. In particular, this holds for the first order deformations which leads to 
an explicit description of the space .T 1

X,0 in (2.37) in its “matrix form”: 

Corollary 2.3.19 For .(X, 0) ⊂ (Cp, 0) as in Proposition 2.3.18 one has a 
canonical isomorphism 

. T 1
GL(A) ∼= T 1

X,0.

Proof This was explicitly carried out by the first named author in [37, Lemma 2.6] 
and [37, Lemma 2.7]. �

The deformation theory of Cohen-Macaulay codimension 2 singularities is 
unobstructed, cf. Definition 2.3.12, so there exists a semi-universal deformation 
for every such .(X, 0) ⊂ (Cp, 0) with .dim T 1

X,0 = τ < ∞ over a smooth base 
.(Cτ , 0), cf.  [20, Proposition 7.1.37]. Again, this semi-universal deformation can 
be derived from any .C-basis of .T 1

X,0 in the same way as for isolated complete 
intersection singularities in the previous section. Using the explicit identification 
from Corollary 2.3.19 we find: 

Corollary 2.3.20 Let .(X, 0) ⊂ (Cp, 0) be an isolated Cohen-Macaulay codimen-
sion 2 singularity with its canonical determinantal structure for a matrix . A ∈
C{x}m×(m+1). Then the flat family (2.38) induced from a miniversal unfolding of 
A is a semi-universal deformation of .(X, 0). 

Again, the comparison map . Φ in (2.38) can be chosen to be an isomorphism. 

2.3.5 Gorenstein Singularities in Codimension 3 

Similar to the case of Cohen-Macaulay codimension 2 singularities, Gorenstein 
singularities of codimension 3 are equipped with a canonical Pfaffian structure. This 
was established by Buchsbaum and Eisenbud in [17, Theorem 2.1]: 

Theorem 2.3.21 Let .(R,m) be a Noetherian local ring. Let .n > 0 be an integer 
and .A ∈ R(2n+1)×(2n+1) a matrix with entries in . m. Suppose that the ideal . I =
〈A∧n

sk 〉 has grade 3. Then .R/I is Gorenstein and I is minimally generated by . 2n+ 1
elements. 

Conversely, every ideal I of grade 3 with .R/I Gorenstein arises this way.
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They furthermore show that the free resolution of an ideal I as in Theorem 2.3.21 is 
given by the complex 

. (2.42) 

where .f = (f1, . . . , f2n+1) is the .1 × (2n + 1)-matrix with the generators of 
.〈A∧n

sk 〉 as entries. One may therefore follow the same arguments as in the Cohen-
Macaulay codimension 2 case (cf. also the proof of Lemma 2.1.15) to show that 
every deformation of a Gorenstein singularity of codimension 3 is determinantal. 

Waldi has used the results by Buchsbaum and Eisenbud to show that the 
deformation theory of Gorenstein ideals of codimension 3 is unobstructed, see [108, 
Satz 1]. Whenever such an ideal defines an isolated singularity, Waldi therefore finds 
[108, Satz 2]: 

Theorem 2.3.22 Let .(X, 0) ⊂ (kp, 0) be an isolated algebraic Gorenstein singu-
larity over an algebraically closed field k which is analytically irreducible and of 
codimension 3 with .p ≤ 9. Then the semi-universal deformation of .(X, 0) has a 
smooth base and the generic fiber of this deformation is also smooth. 

However, we should note that in this setting—at least to the author’s knowledge— 
the interplay of .T 1

GL(A) and .T 1
X,0 has not yet been investigated. In particular, no 

classification of simple Gorenstein singularities in codimension 3 has been done as 
of this writing. 

2.3.6 Rational Surface Singularities 

Determinantal deformations also appear in the study of rational surface singularities. 
Recall that a singularity .(X, 0) ⊂ (Cp, 0) of dimension .d ≥ 2 is called rational if 
there exists a resolution of singularities 

. ρ : (Z,E) → (X, 0)

such that one has 

.Riρ∗OZ =
{

OX if i = 0,

0 otherwise
(2.43) 

for the higher direct images of the structure sheaf . OZ . Here, Z is smooth, . E =
ρ−1(Xsing) is the preimage of the singular locus of X and . ρ is an isomorphism 
outside E. We refer to [20, Chapter 3] for a discussion of resolutions of singularities. 

For surface singularities, it is customary to require .ρ : (Z,E) → (X, 0) to be a 
good resolution. This means that the set .E = ⋃

i Ei is a simple normal crossing 
divisor with a decomposition into smooth, irreducible components . Ei . To each
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component, one can assign two integers, the genus of . Ei and its self intersection in 
Z. A good resolution is called minimal if there are no components .Ei

∼= P
1 with self 

intersection . −1 which meet only one or two other components of the exceptional 
set. Whenever such components occur in an arbitrary, good resolution, they can be 
blown down to a minimal good resolution. For a discussion of the existence and 
uniqueness of such minimal good resolutions for surfaces we refer to [20, Chapter 
2] “The topology of surface singularities” by Michel. 

The genera and intersection multiplicities of the components . Ei of a good 
resolution can be summarized in its dual graph. Surface singularities are often 
described in terms of this resolution graph rather than by explicit equations; for 
instance, such dual graphs have already appeared in [20, Chapter 10] on “Finite 
dimensional Lie algebras in singularities”. Note, however, that in general such a 
dual graph does not determine the singularity up to analytic isomorphism.16 

Let .(X, 0) be a rational surface singularity, .(X, 0) ↪→ (X , 0)
π−→ (S, 0) its 

semi-universal deformation, and suppose .ρ : Z → X is a minimal good resolution 
of singularities for .(X, 0) as above. Artin has shown in [6, Theorem 3] that there 
exists a smooth space .(R, 0) parametrizing those deformations of Z that blow down 
to deformations of .(X, 0), i.e. the resolution . ρ extends to a projection of the total 
space . Z of the deformation of Z giving rise to another total space .ρ(Z ) of a 
deformation of X. This provides a commutative diagram 

. (2.44) 

where .Φ : (R, 0) → (S, 0) is the comparison map to the base of the semi-
universal deformation. Artin has shown that . Φ is finite and maps surjectively onto 
an irreducible component .(S′, 0) of .(S, 0) which is now called the Artin component 
of the base .(S, 0). 

Since the central fiber Z in (2.44) is smooth and proper over X, the family . Z →
R is topologically trivial due to Ehresmann’s Lemma (cf. Lemma 2.5.17 below). 
In particular, this entails that .ρ : Zt → Xt is a resolution of singularities for every 
fiber over .t ∈ R in a neighborhood of 0. For this reason, a diagram like (2.44) is  
also called a resolution in family or a simultaneous resolution. 

Example 2.3.23 One instance of diagram (2.44) can be constructed for the .A1-
singularity .(X, 0) ⊂ (C3, 0) which has already appeared in Example 2.3.13, (i)  
(Fig. 2.8). It is defined by the equation .f = x2 − yz, but can also be regarded as a

16 Those normal surface singularities for which this is the case are called “taut”, see [72]. 
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Fig. 2.8 A resolution in family for the .A1-surface singularity (and some linear sections) in the 
positions of the upper left square in (2.44). The deformation of the Tjurina transform does not 
change the topology, but forgets about the zero section (red) of the disc bundle. The projection of 
the smooth fibers is an intrinsic isomorphism despite the different embeddings 

determinantal singularity of type 2 for the matrix 

. A =
(

x y

z x

)
.

One can check that a resolution of singularities for .(X, 0) = (X2
A, 0) is given by 

the Tjurina transform .X̂2
A ⊂ C

3 × P
1. Furthermore, the Tjurina transformation in 

family for the deformation induced by the unfolding 

. A(x, y, z; t) = A(x, y, z) − t ·
(
1 0
0 −1

)

on a parameter t blows down to the deformation of .(X, 0) given by the perturbation 
.f − t2. This furnishes the left hand side of (2.44). As predicted by Artin’s theorem, 
the comparison map .Φ : (C, 0) → (C, 0) taking t to . t2 is a .2 : 1-cover of the base 
of the semi-universal deformation of .(X, 0). 

The previous example is also an instance of a general result on simultaneous 
resolutions for rational double points due to Brieskorn [10], which was indepen-
dently proved by Tjurina [100]. We cite the summarized form from [104], cf. also 
[6, Theorem 2].
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Theorem 2.3.24 The versal deformation of a rational double point resolves simul-
taneously after a Galois base change. 

Note that Brieskorn’s and Tjurina’s constructions do not necessarily involve the 
choice of a matrix structure and Tjurina transformation in family as in Exam-
ple 2.3.23 above. However, a resolution of singularities can at times be constructed 
using only Tjurina modifications; see [81] for further examples. 

In [104] Wahl has addressed the question how to obtain equations and even free 
resolutions of the defining ideals for rational singularities, given their dual graphs. 
He shows in [104, Proposition 3.2]: 

Proposition 2.3.25 Suppose .(X, 0) ⊂ (Cp, 0) is a rational surface singularity of 
embedding dimension . p ≥ 4. If .(X, 0) is determinantal, then it is determinantal of 
type .(2, p − 2, 2). 

Using this result, he then obtains in [104, Theorem 3]: 

Theorem 2.3.26 Let .(X, 0) be a determinantal rational surface singularity of 
embedding dimension p. Then the dual graph of .(X, 0) consists of one . −(p − 1)
curve and (possibly) some .−2 curves. 

The converse of this theorem was later established by Röhr [86] and by de 
Jong [31] (who also produces explicit matrices) so that indeed every rational 
surface singularity with this particular configuration in its dual graph is in fact 
determinantal. 

Example 2.3.27 Consider the normal surface singularity .(X2
A, 0) ⊂ (C4, 0) given 

by the matrix 

. A =
(

x y z

y2 z w

)

from Example 2.2.20. Let .(u : v) be the homogeneous coordinates of . P1 and . X̂2
A ⊂

C
4 × P

1 the Tjurina transform of .(X2
A, 0) defined by the equations 

. 
(
u v

) ·
(

x y z

y2 z w

)
= (

0 0 0
)
.

Using the explicit equations it is easy to see that on the chart .{u �= 0} the variables 
.x, y and z can be eliminated so that .X̂2

A ∩ {u �= 0} is smooth. In the other chart 
.{v �= 0} we find a single .A1-hypersurface singularity at the origin, which is given 
by the equation 

. y2 + x · u

v
= 0

after elimination of z and w. This singularity can be resolved by a single classical 
blowup so that the overall exceptional set is a normal crossing divisor.
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In a subsequent article [105], Wahl then investigates the deformation theoretic 
behaviour of rational surface singularities and finds in [105, Theorem 3.2]: 

Theorem 2.3.28 For a determinantal rational surface singularity .(X, 0) of multi-
plicity .e ≥ 3 the Artin component .(S′, 0) of deformations of .(X, 0) that admit a 
resolution in family consists precisely of the determinantal deformations. 

Note that for any rational surface singularity, the multiplicity e is equal to . p − 1
where p is its embedding dimension, cf. [5, Corollary 6]. Wahl furthermore observes 
that for the determinantal deformations, the resolution in family always factors 
through the Tjurina transformation in family. In this context, the Tjurina transform 
.X̂2

A of .(X, 0) is obtained from the resolution .(Z,E) by blowing down all the . −2
configurations, cf. Theorem 2.3.26. 

Example 2.3.29 We continue with Example 2.3.27. Given  the  .A1-hypersurface 
singularity in the chart .{v �= 0} we already saw in Example 2.3.23 how to construct 
a resolution in family: Write the local equation for the singularity as the determinant 
of a .2× 2-matrix 

. y2 + u

v
· x = det

(
y x

− v
u

y

)

and resolve it by Tjurina modification rather than the standard blowup. One 
can check that the local resolution in family is compatible with the Tjurina 
transformation in family so that we indeed obtain a full resolution in family for 
any stabilization of the defining matrix A. 

2.3.7 Further References and Techniques 

2.3.7.1 Construction of “Versal Determinantal Deformations” 

In view of the three particular cases of complete intersection, Cohen-Macaulay 
codimension 2, and Gorenstein singularities of codimension 3 discussed above and 
given the fact that the theory of unfoldings of map germs is in many respects 
much simpler than the theory of deformations of germs .(X, 0) ⊂ (Cp, 0) in 
general, one might be tempted to develop a theory of “semi-universal determinantal 
deformations” for arbitrary determinantal singularities .(Xs

A, 0) ⊂ (Cp, 0) by fixing 
the defining matrix .A ∈ C{x}m×n and restricting to those deformations coming from 
unfoldings of A, i.e. the image of the comparison map . Φ in (2.38). We already saw 
in Pinkham’s example and, more generally, the discussion of the Artin component 
in Sect. 2.3.6 that . Φ is not surjective in general. But for determinantal singularities 
it is nevertheless a natural question, whether the image of . Φ can be reconstructed 
directly from the germ .(Xs

A, 0) and its fixed determinantal structure itself rather than 
from the unfoldings of the defining matrix A.
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An attempt along these lines has been made by Schaps in [91] where she follows 
the classical approach to deformation theory due to Schlessinger [92] in order to 
define a functor of “A-determinantal deformations” for determinantal schemes with 
a fixed matrix  A. The goal is then to prove that this functor has a pro-representable 
hull. However, one runs into technical difficulties caused by the fact in the general 
case, an infinitesimal determinantal deformation of .(Xs

A, 0) does not lift uniquely to 
an infinitesimal unfolding of A. One instance of this phenomenon can be found in 
Example 2.3.13, (iv) where we have a continuous modulus . γ ′ of the defining matrix, 
the variation of which results in a trivial deformation of the associated determinantal 
singularity. This observation leads Schaps to define a “unique lifiting proporty”: 

Definition 2.3.30 Let .B ′ → B be a surjection of Artin rings and .A ∈ B[x] a matrix  
with .x = x1, . . . , xp a fixed set of variables. Then A is said to satisfy the unique 
lifting property, if for any two liftings .A1, A2 ∈ B ′[x] of A, whose minors generate 
the same ideal, one has that . A1 is .GL-equivalent to . A2. 

Schaps then proceeds to show, [91, Proposition 1]: 

Proposition 2.3.31 Let .(X, 0) ⊂ (Cp, 0) be an isolated determinantal singularity 
with a defining matrix .A ∈ C{x}m×n satisfying the unique lifting property. Then the 
functor of A-determinantal deformations of .(X, 0) has a prorepresentable hull. 

2.3.7.2 Buchweitz’ Criterion for Deformations to be Determinantal 

The question as to when or under which conditions all deformations of a given 
singularity .(Xs

A, 0) are determinantal for the defining matrix A, has been addressed 
more generally by Buchweitz in his thesis in [18, Section 4.3] headed “Deformations 
d’un type donné et déploiements”. Determinantal singularities appear as a special 
case in [18, Exemples 4.3.2 b)]. Before we can state the main theorem [18, Theorem 
4.7.1] in its adapted version for determinantal singularities, we need to introduce 
some further mathematical notions. 

Recall, that given a morphism of analytic local k-algebras .ϕ : R −→ S and an 
R-module M of finite type, . ϕ is said to be transversal to M , if .TorRi (M, S) vanishes 
for all .i > 0. For an R-module of finite type, the Auslander module .D(M) of M is 
defined as the cokernel of the dual of a free presentation of M . More precisely, let 

. F1
ψ−→ F0 −→ M −→ 0

be a free presentation of M , then dualizing 

. 0 −→ M∨ −→ F∨
0

ψ∨
−→ F∨

1 −→ D(M) −→ 0

provides a presentation of .D(M). For an analytic space germ .(X, 0) ⊂ (Cp, 0) with 
ideal .IX,0 ⊆ C{x} the Auslander module of .(X, 0) is then the module .D(IX,0/I

2
X,0)



100 A. Frühbis-Krüger and M. Zach

whose homological properties are independent of the choice of embedding and free 
resolution, cf. [18, Section 4.5]. With this notation we have the following adaptation 
of [18, Theorem 4.7.1]: 

Theorem 2.3.32 Let .(X, 0) = (Xs
A, 0) ⊆ (Cp, 0) be a determinantal singularity 

of type s defined by a matrix .A ∈ C{x}m×n. Then the following properties are 
equivalent: 

(i) Each first order deformation of .(X, 0) is determinantal for A. 
(ii) Each analytic deformation of .(X, 0) is determinantal for A. 
(iii) The generic determinantal singularity .(Ms

m,n, 0) ⊂ (Cm×n, 0) is rigid and 
.(X, 0) is unobstructed. 

(iv) The Auslander module of the generic determinantal singularity .(Ms
m,n, 0) is 

transversal to the map .A : (X, 0) −→ (Ms
m,n, 0) and .(Ms

m,n, 0) is rigid. 

If additionally the vector space dimension of .T 1
X,0 is finite, then this is also 

equivalent to the property that there is an unfolding as in Lemma 2.1.15 with smooth 
analytic base which induces a versal deformation of .(X, 0). 

Remark 2.3.33 The generic determinantal singularities .(Ms
m,n, 0) ⊂ (Cm×n, 0) are 

all rigid except for the generic determinantal hypersurface singularities . (Mm
m,m, 0)

defined by .f = det = 0 (or .Pf = 0 for skew symmetric matrices). This was proved 
independently by Svanes [94] and Jähner [59]; see [14, Chapter 15.C] for a textbook 
account. Therefore, given characterization 3. in Theorem 2.3.32, the only condition 
on a given determinantal singularity .(Xs

A, 0) that really needs to be checked is the 
unobstructedness. 

Remark 2.3.34 Theorem 2.3.32 suggests to review Corollary 2.3.15 for complete 
intersections and Corollary 2.3.20 for isolated Cohen-Macaulay codimension 2 
singularities. Given the explicit identifications .T 1

GL(A) ∼= T 1
X,0 from Lemma 2.3.14 

and respectively Corollary 2.3.15, the coincidence of a semi-universal deformation 
of the determinantal singularity with the deformation induced from a miniversal 
unfolding of the defining matrix now follows directly from the implications . (i) ⇒
(iii) ⇒ (ii) in Theorem 2.3.32. 

It is expected that the construction of a “matrix-. T 1” as in Corollary 2.3.19 for 
ICMC2 singularities is possible in many more cases. For non-maximal minors, how-
ever, one can in general only expect surjective maps .T 1

GL(A) → T 1
Xs

A,0 which have a 

non-trivial kernel. This can, for instance, be observed from Table 2.18 for the simple 
ICMC2 fourfold singularities given by matrices .A : (C6, 0) → (C2×3, 0). In this  
case not only .(X2

A, 0), but also the zero-dimensional complete intersections . (X1
A, 0)

are determinantal singularities. The .GL-codimensions .τGL(A) = dimC T 1
GL(A) of 

the defining matrices and the Tjurina numbers .τ(X1
A, 0) = dimC T 1

X1
A,0

of the 

singularities .(X1
A, 0) are listed in the fourth and the fifth column, respectively. We 

find series for which these numbers coincide and others where . τ(X1
A, 0) ≤ τGL(A)

with a strict inequality in general.
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A geometric reason for this discrepancy for non-maximal minors is the following. 
The .GL-equivalence of matrices is sensitive to the position of the image of the 
defining matrix A relative to all strata .V r

m,n of the rank stratification. For non-
maximal minors of size .s < min{m, n} only the strata .V r

m,n of .Ms
m,n with .r < s are 

relevant for the deformations of .(Xs
A, 0). Those inifitesimal unfoldings varying only 

the position of the image of A relative to higher dimensional strata will therefore be 
discarded by the comparison map .Φ : T 1

GL(A) → T 1
Xs

A,0. 

2.4 Classification of Simple Singularities 

Recall that a singularity is called simple if only a finite number of non-equivalent 
singularities appear in its versal family. Arnold gives a complete list of simple 
isolated hypersurface singularities of arbitrary dimension in his article [2] from 
1972 and the classification of all simple isolated complete intersection singularities 
was completed by Giusti [44] in the mid 1980s. The question which singularities 
are simple is still not fully answered for determinantal singularities, but there 
exist classifications for symmetric square matrices by Bruce in [11], for square 
matrices by Bruce and Tari in [12], and for skew-symmetric ones by Haslinger 
in [56] (incomplete), as well as for isolated Cohen-Macaulay codimensions 2 
singularities by the first named author and Neumer in [37] and [39]. Note that, in 
contrast to simple hypersurfaces or complete intersections, a simple determinantal 
singularity does not need to be smoothable or isolated, as there are rigid non-isolated 
determinantal singularities and any rigid singularity is simple for trivial reasons. We 
give a brief overview on known classification results, leaving the explicit tables to 
the appendix of this article. 

2.4.1 Singularities of Square Matrices 

In [12] Bruce and Tari classify all simple singularities for square matrices 

. A : (Kp, 0) → (Km×m, 0)

up to .GL-equivalence, where either .K = R and A smooth, or .K = C and A 
holomorphic, the treatement of the real case made possible by Damon’s theory, [12, 
Remark 2.8]. In the Tables 2.7, 2.9, 2.10, and 2.11 the consideration of the real case 
occasionally leads to a .±-sign with different singularities over . R. Over . C these signs 
can be omitted.
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Associated to the matrices A as above, Bruce and Tari also consider determinan-
tal hypersurface singularities17 (abbreviated by DHS) in the following) 

. (Xm
A, 0) = ({detA = 0}, 0) ⊂ (Cp, 0)

which are defined by the equation .f = detA. Moreover, they also consider the 
Tjurina transformation18 and, as it turns out, the simple singularities of A are closely 
related to simple singularities of both, the determinantal hypersurface .(Xm

A, 0) and 
of its Tjurina transforms . X̂m

A . Besides the simple isolated hypersurface singularities, 
the well known A-D-E-singularities that were classified by Arnold up to right- or .R-
equivalence in [2], there also appear the simple singularities from the classification 
for functions on manifolds with boundary up to .Rδ-equivalence from [4]. 

As usual, Bruce and Tari assume all matrices A to have entries in the maximal 
ideal . m of .C{x1, . . . , xp} so that the corank of the matrix .A(0), i.e. the codimension 
of its image, is equal to the size of the matrix m. A key handle to the classification 
is to also consider the corank of the differential 

. dA(0) : T0K
p → T0K

m×m

of A at the origin. 
With all this notation at hand, we can now reproduce their main results: 

Theorem 2.4.1 

(i) When .p = 1, all finitely .GL-determined germs are simple and .GL-equivalent 
to a germ of the form .diag(xα1 , xα2 , . . . , xαm) where .α1 ≤ α2 ≤ · · · ≤ αm. 
This germ has .GL-codimension .

∑m
i=1(2(m−i)+1)αi−1. Its Tjurina transform 

is empty. 
(ii) When the corank of the differential .dA(0) is zero there is a normal form 

. A : (Km2
, 0) × (Kl , 0) → (Km×m, 0), (x, z) �→ A(x), ai,j = xi,j .

where the variables .z1, . . . , zl are redundant. 
(iii) When the corank of the differential is one, there are two cases. 

(a) A normal form .A : (Km2−1, 0) × (Kl , 0) → (Km×m, 0) given by 

.

(
m∑

i=2

xi,i + f (z)

)
· E1,1 +

∑
(i,j) �=(1,1)

xi,j · Ei,j

17 In [12] these are called the discriminants of the matrix. 
18 Tjurina transforms are called criminants in [12]. 
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where .Ei,j is the matrix with a 1 in the .(i, j)-th place and zeroes 

elsewhere, .{xi,j }(i,j) �=(1,1) are the coordinates of the first factor .Km2−1, 
and .f : (Kl , 0) → (K, 0) is one of Arnold’s .R-simple germs (see Table 2.3 
in the appendix). The .GL-codimension of A coincides with the Tjurina 
number of f . 

(b) A normal form A as above given by 

. 

(
m−1∑
i=2

xi,i + f (xm,m, z)

)
· E1,1 +

∑
(i,j) �=(1,1)

xi,j · Ei,j

where .f : (K, 0) × (Kl , 0) → (K, 0) is one of Arnold’s .Rδ-simple germs 
of singularities of functions on manifolds with boundary (see Table 2.4). 
The .GL-codimension of A coincides with the .Rδ-codimension of f . 

In both cases, the Tjurina transforms of the singularities are smooth. 
(iv) When the corank of the differential is two, then .m = 3 and .p = 7. The simple 

matrices in this class can be derived from the symmetric ones19 in Table 2.8 by 
addition of the matrix 

. U =
⎛
⎝ 0 u12 u13

−u12 0 u23

−u13 −u23 0

⎞
⎠ .

The Tjurina transforms are all smooth. 
(v) When .m = 2, the simple germs that are not covered by the preceding items are 

given in Tables 2.9 and 2.10. 
(vi) When .m = 3 the simple germs that are not covered by the preceding items are 

given in Table 2.7.20 

The following classification of simple symmetric matrices by Bruce [11, The-
orem 1.1] precedes the above classification by one year. The setting is slightly 
different, since only holomorphic matrices 

. A : (Cp, 0) → (Cm×m
sym , 0)

are considered up to symmetric .GL-equivalence, see Remark 2.2.5.

19 Goryunov has informed us that there were mistakes in this part of the original classification in 
[12, Paragraph C, p 757]. The corrected description given here is taken from [46, Theorem 3.7]. 
20 Again, the normal forms given in Table 2.7 are not the original ones found by Bruce and Tari. 
We were informed by Goryunov about a mistake in the original classification and the given table 
has the correct matrices up to .GL-equivalence. 
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Theorem 2.4.2 

(i) When .p = 1, all finitely .GL-determined germs are simple and .GL-equivalent 
to a germ of the form .diag(xα1 , xα2 , . . . , xαm) where .α1 ≤ α2 ≤ · · · ≤ αm. 
This germ has .GL-codimension .

∑m
i=1((m− i) + 1)αi − 1. 

(ii) When the corank of the differential .dA(0) is zero there is a normal form 

. A : (CN, 0) × (Cl , 0) → (Cm×m
sym , 0), (x, z) �→ A(x), ai,j = xi,j .

where .N = m(m+1)
2 and the variables .z1, . . . , zl are redundant. 

(iii) When the corank of the differential is one, there are two cases. 

(a) A normal form .A : (CN−1, 0) × (Cl , 0) → (Symm(C), 0) given by 

. 

(
m∑

i=2

xi,i + f (z)

)
· E1,1 +

∑
(i,j) �=(1,1)

xi,j · Ei,j

where .Ei,j is the matrix with a 1 in the .(i, j)-th place and zeroes 
elsewhere, .{xi,j }(i,j) �=(1,1) are the coordinates of the first factor .CN−1, 
and .f : (Cl , 0) → (C, 0) is one of Arnold’s .R-simple germs. The .GL-
codimension of A coincides with the Tjurina number of f . 

(b) A normal form A as above given by 

. 

(
m−1∑
i=2

xi,i + f (xm,m, z)

)
· E1,1 +

∑
(i,j) �=(1,1)

xi,j · Ei,j

where .f : (C, 0) × (Cl , 0) → (C, 0) is one of Arnold’s .Rδ-simple 
germs of singularities of functions on manifolds with boundary. The .GL-
codimension of A coincides with the .Rδ-codimension of f . 

(iv) When .m = p = 2 the .GL-simple germs are given in Table 2.12. 
(v) If .m = 3, .p = 2 the .GL-simple germs are listed in Table 2.7. 
(vi) If .m = 3, .p = 4 the .GL-simple germs are given in Table 2.8. 

For skew-symmetric square matrices, only a partial classification of simple 
singularities is known from the thesis of Haslinger [56]. 

Theorem 2.4.3 Let .A : (Cp, 0) → (Cm×m
sk , 0) be a germ of skew-symmetric 

matrices. 

1. ([56, Proposition 4.6.1]) When .p = 1, then A is .Gsk-equivalent to a matrix of 
the form 

.

m′⊕
j=1

xkj · I sksj
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for some .m′ ≤ m and integers .0 < k1 < k2 < · · · < km′ where . I sks =∑s
i=1

(
E2i−1,2i − E2i,2i−1

)
is the skew symmetric analogue of the .2s × 2s-

identity matrix and the direct sum stands for taking successive diagonal blocks. 
2. ([56, Lemma 4.6.2 (i)]) When .m = 2 any two matrices 

. A =
(

0 a

−a 0

)
, B =

(
0 b

−b 0

)

are .Gsk-equivalent if and only if a and b are .K -equivalent. In particular, the .Gsk-
simple matrices are given by the classification of .R-simple functions . (Cp, 0) →
(C, 0). 

3. ([56, Lemma 4.6.2 (ii)]) When .m = 3 then A is finitely .Gsk-determined if 
and only if the corresponding map germ .(Cp, 0) → (C3, 0) is finitely .K -
determined and two matrices are .Gsk-equivalent if and only if this holds for the 
corresponding map germ. In particular, the .Gsk-simple matrices are given by the 
.K -classification of simple germs .(Cp, 0) → (C3, 0). 

4. ([56, Theorem 6.1.1]) The .Gsk-simple germs for .p = 2 and .m = 4 are listed in 
Table 2.13. 

Arnold’s simple hypersurface singularities from the A-D-E-classification in 
Table 2.3 and the boundary singularities in Table 2.4 make numerous appearances 
among the simple matrices in Theorems 2.4.1, 2.4.2, and 2.4.3. While this is not 
really a surprise, the general theme of the interplay between the different lists is still 
far from being completely understood. 

Remark 2.4.4 In [48] Goryunov and Zakalyukin relate the simple symmetric matrix 
singularities in two variables from Theorem 2.4.2 (Tables 2.12 and 2.7) to Arnold’s 
simple hypersurfaces as follows. 

As their name suggests, the A-D-E-singularities correspond to Dynkin diagrams 
which have already appeared in [20, Chapter 10] and [20, Chapter 8]. These 
diagrams encode the dual resolution graphs of the simple hypersurface singularities 
in dimension 2, see [20, Section 10.2.1], and, as suggested by the resolution in 
family for these singularities, Theorem 2.3.24, they can also be used to describe the 
vanishing homology and monodromy operations, see e.g. [20, Chapter 8]. 

Originally, the Dynkin diagrams classify the Weyl groups of the semi-simple 
Lie algebras. These are subgroups of the linear automorphisms of Euclidean space 
generated by reflections on hyperplanes. In a case-by-case analysis, Goryunov 
and Zakalyukin found that the simple symmetric matrices from Theorem 2.4.2 
correspond uniquely to pairs .(X;Y ) of a Weyl group X and a subgroup Y obtained 
by omitting certain reflections. This can be stated more precisely in terms of Dynkin 
diagrams: One obtains the affine Dynkin diagram of Y by deletion of either two 
1-vertices for the corank 2 families (Table 2.12) or one 2-vertex for the corank 
3 families (Table 2.7 from the affine Dynkin diagram of X. These pairs of Weyl 
groups are listed in the last columns of Tables 2.12 and 2.7, respectively.
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Interestingly, the correspondence of simple symmetric matrices A with pairs of 
Weyl groups .(X;Y ) is established via a study of the miniversal unfoldings of the 
matrix A and the associated hypersurface .f = detA. It turns out that for all the 
singularities in question one has .μ = μf = τGL(A), cf. Theorem 2.5.8 below. The 
space . Cμ can be regarded as the configuration space for the reflections in X and 
Y and then the bases of the respective miniversal unfoldings can be identified with 
.C

τGL(A) ∼= C
μ/X and .Cμf ∼= C

μ/Y , respectively so that the comparison map . Φ
from (2.38) completes the quotient maps to a diagram 

. 

where .AX is the configuration of mirrors of X in . Cμ, .Σ ⊂ C
μ is the discriminant 

of f , and .Δ ⊂ C
μ the matrix discriminant of A, see  [48, Corollary 3.10]. Then . Φ is 

a finite covering of order .|X : Y |, branched over the discriminant . Δ of the function 
f . 

Remark 2.4.5 Recently in [46], the investigation of the discriminants, bifurcation 
diagrams, and the monodromy of simple matrix singularities has been pushed 
further by Goryunov to also comprise those matrices A for which the associated 
hypersurface .f = det(A) is not smoothable via determinantal deformations or 
has non-isolated singular locus (cf. Lemma 2.3.3). This has revealed a further 
correspondence of the simple symmetric/square matrices in Table 2.8 with .Rodd-
simple singularities of odd functions21 on .(C2, 0) and .Kodd-simple ICIS22 in 
.(C3, 0). These associated odd functions and symmetric ICIS are listed23 in the last 
two columns of Table 2.8. In this case, the correspondence is established by a natural 
identification of the bifurcation diagrams of the matrix with those of the respective 
odd functions and symmetric space curves, see [46, Proposition 6.7].

21 A function .f : (Cp, 0) → (C, 0) is odd if it changes sign under the central symmetry of .(Cp, 0). 
These are classified up to right equivalence by diffeomorphisms of .(Cp, 0) which preserve this 
symmetry. 
22 These are defined as centrally symmetric isolated complete intersection curves . (C, 0) ⊂ (C3, 0)
and classified by the subgroup of . K in which the group of diffeomorphisms . R in the source is 
replaced by those preserving the symmetry. 
23 The notation used extends Giusti’s list in Table 2.6 in a natural way (note that .U11 and .U13 are 
not simple if the symmetry condition is removed). 
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2.4.2 Cohen-Macaulay Codimension 2 Singularities 

In [37] the first named author classified the simple isolated space curve singularities 
up to isomorphism of space germs. Later she extended this together with Neumer to 
all isolated Cohen-Macaulay codimension 2 singularities in [39]. By the Hilbert-
Burch theorem (Theorem 2.3.16), this amounts to classifying singularities of 
matrices 

. A : (Cp, 0) −→ (Cm×(m+1), 0)

up to .GL-equivalence. 
Chronologically preceding the criteria for finite determinacy based on Damon’s 

work, these articles use a weighted determinacy criterion followed by a matrix 
variant of the Arnold’s rotating ruler method. 

The main results can be summarized as follows 

Theorem 2.4.6 Isolated Cohen-Macaulay codimension 2 singularities with defin-
ing matrix .A : (Cp, 0) → (Cm×(m+1), 0) exist only in the following cases: 

(i) Fat points in .(C2, 0): .p = 2, .m ∈ {1, 2}; Giusti’s list of complete intersections 
(.m = 1) is included in Table 2.5, the one for .m = 2 in Table 2.14. 

(ii) Space curves in .(C3, 0): .p = 3, .m ∈ {1, 2}; the complete list can be found in 
Tables 2.6 and 2.15. 

(iii) Normal surfaces in .(C4, 0): .p = 4, .m = 2; the list is in Table 2.16. 
(iv) three-folds in .(C5, 0): .p = 5, .m = 2; see Table 2.17. 
(v) four-folds in .(C6, 0): .p = 6, .m = 2; see Table 2.18. 

Concerning these lists, there are a few noteworthy observations. All singularities 
in the lists, except the four-folds, are smoothable, but only fat points and surfaces 
exhibit complete intersection singularities in their versal family, which are not of 
hypersurface type. For normal surfaces, the list reproduces the list of rational triple 
point singularities found by Tjurina in [98], where she proceeds by a completely 
different approach, cf. Sects. 2.3.6 and 2.5.3. For three-fold singularities there 
is one infinite series, which holds as one matrix entry precisely the equations 
of hypersurface singularities in 2 variables and also mimics their deformation 
behaviour (i.e. their adjacencies). For four-folds, we find the generic determinantal 
singularity of this type in the list and each of the other simple singularities is 
adjacent to it. 

2.5 Stabilizations and the Topology of Essential Smoothings 

In this section we will be concerned with essential smoothings of (essentially 
isolated) determinantal singularities. This is the generic object that a given EIDS can 
deform to using only determinantal deformations, see Definition 2.5.2 below. They
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can be regarded as a generalization of the Milnor fiber for isolated hypersurface 
and complete intersection singularities and they coincide with the latter whenever a 
complete intersection singularity defined by a regular sequence . F = (f1, . . . , fc)

is considered as a determinantal singularity for the matrix .F ∈ C{x}1×c. For  the  
construction and properties of Milnor fibers the reader may consult [20, Chapter 6]. 

Besides the topology of the essential smoothing itself, we will in the following 
also be interested in the interplay of topological invariants with analytic invariants 
arising from the deformation theory of the singularity. This is motivated from 
the classical results relating the Milnor with the Tjurina number for isolated 
hypersurface and complete intersection singularities. A treatment of this subject can 
be found in [20, Section 7.2.4]. 

To motivate this discussion, recall that the Milnor fiber 

. Mf := Bε ∩ f−1({δ}), 1 � ε � |δ| > 0,

of an isolated hypersurface singularity .f : (Cp, 0) → (C, 0) is homotopy-
equivalent to a bouquet of spheres 

.Mf
∼=ht

μ(f )∨
i=1

Sp−1 (2.45) 

of real dimension .p− 1. The number of these spheres is the Milnor number24 . μ(f )

of f . This was first described byMilnor in [80] where he also shows that this number 
can be computed as the length 

.μ = μ(f ) = dimC

(
C{x1, . . . , xp}/

〈
∂f

∂x1
, . . . ,

∂f

∂xp

〉)
(2.46) 

of the so-called Milnor algebra, i.e. the quotient of .C{x} by the Jacobian ideal 
.Jac(f ) = 〈∂f/∂x1, . . . , ∂f/∂xp〉, see  [80] or [20, Theorem 6.5.3]. The latter space 
naturally coincides with the space .T 1

R(f ) of non-trivial unfoldings of f up to 
right- or .R-equivalence, see for instance [82, Definition 3.3], and therefore, the 
Milnor number of f is equal to its .R-codimension. This fundamental result already 
suggests a close connection between topological invariants of the smoothing and 
analytic invariants related to unfoldings and deformations. 

If instead of the function f and its unfoldings, one considers the germ of the 
hypersurface .(X, 0) = (f−1({0}), 0) ⊂ (Cp, 0) and its deformations, one is 
naturally lead to the Tjurina module .T 1

X,0 which was already discussed earlier and 
which classifies the non-trivial first order deformations of the germ .(X, 0). For

24 See e.g. [20, Definition 6.5.2]. 
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isolated hypersurface singularities, this module becomes 

. T 1
X,0 = C{x1, . . . , xp}/

〈
∂f

∂x1
, . . . ,

∂f

∂xp

, f

〉
.

From this explicit form it is immediately clear that .T 1
X,0 has finite dimension over 

. C if the Milnor number .μ(f ) < ∞ is finite. The converse is also true but not so 
obvious, see for instance [53, Lemma 2.3]. The length of the Tjurina module is 
called the Tjurina number of .(X, 0): 

.τ = dimC T 1
X,0 (2.47) 

and one has the famous inequality 

.μ ≥ τ (2.48) 

for isolated hypersurface singularities. 
Suppose that f is weighted homogeneous of some degree .e = degw f for 

weights .wi = degw xi > 0, i.e. f is a polynomial that can be written as a linear 
combination of monomials .xα = x

α1
1 x

α2
2 · · · xαp

p which all satisfy 

. degw xα =
p∑

i=1

degw x
αi

i = w1 · α1 + w2 · α2 + · · · + wp · αp = e.

Using the so-called Euler vector field 

. θw =
p∑

i=1

wi · xi

∂

∂xi

on . Cp associated to these weights, it is easy to see that .e · f = θw(f ). So in this  
case, the function f is already contained in the Jacobian ideal of f , and the Milnor 
algebra and the Tjurina module are isomorphic. It follows that .μ = τ if f is quasi-
homogeneous. 

The converse implication was proven by Saito in [87] in ’71: Starting from f 
with .μ = τ he establishes the existence of a change of coordinates of .(Cp, 0) such 
that f is quasi-homogeneous for some weights in this new coordinate system. 

The colloquial form of this result 

.“μ ≥ τ with equality iff f is quasi-homogeneous” (2.49) 

has been abundant in complex analytic singularity theory ever since and much 
effort has been invested in order to generalize it to isolated complete intersection 
singularities defined by maps .f : (Cp, 0) → (Cc, 0).
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The generalization of the bouquet decomposition (2.45) for ICIS is due to Hamm 
[55], which settles the definition of a Milnor number in this context. The Tjurina 
number is given by the length of .T 1

X,0 as described in Sect. 2.3.3. With these 
definitions at hand, the journey went on for more than thirty years: 

• The equality .μ = τ has been established in ’80 for quasi-homogeneous ICIS of 
positive dimension25 by Greuel in [52]. 

• The general inequality .μ ≥ τ for ICIS of positive dimension was shown in ’85 
by Looijenga and Steenbrink in [76]. 

• In the same year, the full statement (2.49) has been proved for Gorenstein curve 
singularities by Greuel, Martin, and Pfister in [50], 

• while Wahl proved (2.49) for ICIS of codimension 2 in [106]. 
• Finally, the part “.μ = τ implies quasi-homogeneity” was established in ’02 by 

Vosegaard [103]. 

After the question as to whether or not (2.49) holds has been settled for isolated 
complete intersection singularities, it seems natural to ask to which extent this result 
can be generalized to arbitrary EIDS and we will report on what is known in this 
regard. For now, let us mention that in general, this question is wide open. For 
instance, one has the following conjecture by Wahl in [107]: 

Conjecture 2.5.1 Let .(X, 0) ⊂ (C4, 0) be a normal surface singularity which is 
not a complete intersection. Then .μ ≥ τ − 1 with equality if and only if .(X, 0) is 
quasi-homogeneous. 

These singularities fall into the category of isolated Cohen-Macaulay codimen-
sion 2 singularities discussed earlier and the precise definitions of the Milnor and 
Tjurina number will be given below. That quasi-homogeneity of .(X, 0) implies 
equality was already shown by Wahl in [107], but the converse implication is not 
settled as of this writing.26 

2.5.1 Construction of Essential Smoothings 

We briefly describe the construction of the essential smoothing of an EIDS, parallel 
to the well known Milnor-Lê-fibration for isolated hypersurface and complete 
intersection singularities, cf. [20]. Another description based on the transformation 
into a complete intersection on a singular ambient space, cf. Remark 2.1.14, will be 
given later in Corollary 2.5.24.

25 Note that .μ = τ does not hold for quasi-homogeneous ICIS of dimension zero, see for instance 
Table 2.5. 
26 A counterexample given by the first named author in [38] turned out to be wrong. 
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Let .(Xs
A, 0) ⊂ (Cp, 0) be an EIDS defined by a finitely .GL-determined matrix 

.A ∈ C{x}m×n. Choose a miniversal unfolding .A(x, t) on . τ = dimC T 1
GL(A)

parameters .t1, . . . , tτ and let 

. A : U × T → C
m×n

be a representative thereof defined on some product of open neighborhoods of the 
origin .U ⊂ C

p and .T ⊂ C
τ . As usual, let .X s

A = A−1(Ms
m,n) ⊂ U × T be 

the total space of the induced deformation .(Xs
A, 0) ↪→ (X s

A , 0)
π−→ (T , 0) of the 

determinantal singularity. 
Recall that, according to Lemma 2.3.3, any  EIDS  .(Xs

A, 0) has a canonical 
Whitney stratification by the strata .V r

A = A−1(V r
m,n). This allows us to choose 

a Milnor sphere: For  .ε0 > 0 sufficiently small, the intersection of the sphere 
.Sε = ∂Bε ⊂ U with the .Xs

A is transverse for every .ε0 ≥ ε > 0, see e.g. [20, 
Theorem 6.10.1]. The real link of .(Xs

A, 0) can then be defined as the transverse 
intersection 

.K s
A := Sε ∩Xs

A. (2.50) 

Note that, since .(Xs
A, 0) has non-isolated singularities in general, the real link will 

also be singular, but endowed with a canonical Whitney regular stratification. Using 
Thom’s first isotopy lemma27 it is easy to see that due to the various transversalities, 
small determinantal deformations of . Xs

A do not change the compact stratified space 
.K s

A up to homeomorphism. Hence, after shrinking T to some small disk . Dδ ⊂ C
τ

if necessary, the restriction of the projection 

.π : (Sε × T ) ∩ X s
A
∼=homeo K s

A × T → T (2.51) 

to the parameter space of the miniversal unfolding of A is a trivial topological fiber 
bundle. Here one makes essential use of the fact that .K s

A is compact. 
Due to the characterization of transversality given in Proposition 2.2.12, the  

matrix discriminant .ΔA ⊂ T (Definition 2.2.15) consists of those parameters t for 
which .At : U → C

m×n is not transversal to the rank stratification. It is easy to see 
that for .t /∈ ΔA, the projection 

.π : (Bε × (T \ ΔA)) ∩X s
A → T \ ΔA (2.52) 

is a stratified submersion along every fiber .π−1({t}) = A−1
t (Ms

m,n) ⊂ U . By choice 
of the ball . Bε, these fibers are again compact and canonically stratified, so that . π
is proper. Another application of Thom’s first isotopy lemma can now be made in

27 See for instance [45]. 
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order to show that (2.52) is a topological fiber bundle extending the fibration on the 
boundary (2.51) to the interior over .T \ ΔA. 

Definition 2.5.2 The essential smoothing of an EIDS .(Xs
A, 0) ⊂ (Cp, 0) defined 

by a matrix .A ∈ C{x1, . . . , xp}m×n is the generic fiber 

. Ms
A := A−1

t (Ms
m,n)

of (2.52) over the base of the miniversal unfolding of A for .t /∈ ΔA outside the 
matrix discriminant. 

Example 2.5.3 (Smoothing of a Space Curve) We return to the study of the semi-
universal deformation of the three coordinate axis in .(C3, 0) from Example 2.2.14: 

. A(x, y, z; t1, t2, t3) =
(

x 0 z

0 y z

)
+

(
0 t1 0
t2 0 t3

)
.

It had already been discussed in Example 2.2.19 that the simultaneous perturbation 
by .t1 = t2 = t3 = t leads to a smoothing .M2

A of .(X2
A, 0). Note that due to the 

homogeneity of the singularity, we may choose the Milnor ball . Bε arbitrarily large 
so that we can consider the whole affine varieties as suitable representatives of the 
singularity and its fibers in a deformation. 

In order to determine the topological type of .M2
A we can exploit the adjacencies 

of .(X2
A, 0): First we deform only along the .t1-axis as in Example 2.1.17 to obtain 

a configuration of lines consisting of . L′
x , . Ly , and . Lz, with . L′

x and . Lz meeting 
transversally in the point .(0, 0, t1) and . Ly and . Lz at the origin, respectively. Since 
all these fibers for arbitrary . t1 sit over the discriminant .ΔA in a semi-universal 
deformation of .(X2

A, 0), the (global) smoothing of this configuration must be 
diffeomorphic to .M2

A (Fig. 2.9). 
The topology of the local smoothings of the .A1-singularities at the intersection 

points is known: Over the complex numbers, a double cone is replaced by a tube 
bounding the two circles in its boundary. Now it is easy to see that in fact 

. M2
A
∼=ht S1 ∨ S1

is homotopy equivalent to a bouquet of two circles. In parallel to the definition 
of Milnor numbers for IHS and ICIS, one would say that the Milnor number for 
.(X2

A, 0) is two in this case (Fig. 2.10). 

Remark 2.5.4 Essential smoothings can also be defined for determinantal singu-
larities .(Xs

A, 0) ⊂ (Cp, 0) which are not EIDS; i.e. those for which the defining 
matrix .A ∈ C{x}m×n is not finitely .GL-determined. In the parallelism with 
hypersurface and complete intersection singularities, these correspond to non-
isolated singularities and, as in the classical case, the essential smoothings are not 
uniquely determined by the singularity .(Xs

A, 0) itself anymore, but they can differ 
depending on the underlying unfolding of A.
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t = (0, 0, 0) t = (1, 0, 0) 

t = (0.2, 0.2, 0.2) t = (1.2, 0.2, 0.2) 

x 

y 

z 

Fig. 2.9 Real picture of a deformation of the three coordinate axis in .(C3, 0) and its smoothing; 
the lower left picture shows a direct smoothing of the original singularity, while the lower right one 
arises from deforming the two adjacent .A1-hypersurface singularities from the upper right picture 

To give a definition, let .A : (Cp, 0) × (C, 0) → (Cm×n, 0) be a 1-parameter 
unfolding of A. We say that . A is a stabilization of A if for some representative 

. A : U × T → C
m×n

one has that .At : U → C
m×n is transversal to the rank stratification for every . t ∈

T \ {0}. The existence of such stabilizations can for example be derived from [102, 
Theorem 2.2 and Theorem 3.1]. In particular, the set of constant matrices . C ∈ C

m×n

for which .A(x, t) = A(x) + t · C is a stabilization of A, is dense in .C
m×n. 

Given any suitable representative of a stabilization . A of A as above, we can 
consider the total space of the induced deformation . X s

A = A−1(Ms
m,n) ⊂ U × T

together with its projection .π : X s
A → T to the parameter space. General fibration
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Fig. 2.10 The actual change in topology for the smoothings of the three coordinate axis in .(C3, 0), 
for a direct smoothing at the left hand side and passing through the adjacency with the two .A1-
singularities on the right hand side 

theorems28 can be used to show that for a sufficiently small ball .Bε ⊂ U of radius 
.ε > 0 around the origin .0 ∈ U and some subsequently chosen, sufficiently small 
disc .Dδ ⊂ T , the projection 

.π : Bε × (Dδ \ {0}) ∩X s
A → Dδ \ {0} (2.53) 

is a topological fiber bundle with fiber 

.Ms
A := Bε ∩ A−1

t (Ms
m,n). (2.54) 

This is the essential smoothing of .(Xs
A, 0) defined by the stabilization . A. 

It is easy to see using the properties of miniversal unfoldings that this notion of 
essential smoothing coincides with the previous one given for EIDS in case A is 
finitely .GL-determined.

28 See [74], cf. also [20, Theorem 6.10.3]. 
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Note that the fibration (2.53) always exists for 1-parameter unfoldings, regardless 
of whether or not . At is a stabilization for .t �= 0. However, we shall refer to the fiber 
of this fibration as an essential smoothing of .(Xs

A, 0) only if this is the case. 

Example 2.5.5 Consider the space curve .(X2
A, 0) ⊂ (C3, 0) given by the matrix 

. A =
(

x 0 z

0 y z2

)
.

Set theoretically this coincides with the union of the three coordinate axis discussed 
in several previous examples. But a primary decomposition of the ideal . I = 〈A∧2〉
reveals that 

. I = 〈y, z2〉 ∩ 〈x, z〉 ∩ 〈x, y〉
so that . X2

A consists of the double x-axis in the x-z-plane and the y- and the z-axis. 
Consequently, the module .T 1

GL(A) is indeed supported along the whole x-axis. 
We describe two distinct unfoldings leading to topologically different smooth-

ings of .(X2
A, 0). The first one, illustrated by Fig. 2.11, is given by 

. A(x, y, z; u) =
(

x 0 z

0 y z2 − u2

)
.

For .u �= 0 the variety defined by the ideal .〈A∧2
u 〉 in . C3 consists of four lines 

with two of them being the now split parallels to the x-axis passing through the 
points .(0, 0,±u). A global smoothing of the three singular points of this variety is 
homotopy equivalent to a bouquet of three real spheres: 

. M2
A
∼=ht S1 ∨ S1 ∨ S1.

x 

y 

z 

u=0 u=1 

Fig. 2.11 The first deformation of a non-reduced space curve singularity (purple and green) with 
non-isolated singular locus (purple)
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x 

y 

z 

v=0 v=1 

Fig. 2.12 The second deformation of a the same non-reduced space curve singularity 

The other deformation that we wish to consider (see Fig. 2.12) is induced by the 
unfolding 

. B(x, y, z; v) =
(

x 0 z

0 y z2 − v2(x − v)2

)
.

For this deformation, the variety defined by .〈B∧2
v 〉 for .v �= 0 consists again of four 

lines, only that this time the double x-axis does not split into parallels, but opens up 
like a scissor which is pulled backwards at the same time: 

. 〈B∧2
v 〉 = 〈y, z − v(x − v)〉 ∩ 〈y, z + v(x − v)〉 ∩ 〈x, z〉 ∩ 〈x, y〉.

Thus for .v �= 0 the four lines meet transversally in pairs at four points in total. 
The global smoothing of this variety is then homotopy equivalent to a bouquet of 
five real spheres: 

. M2
B
∼=ht S1 ∨ S1 ∨ S1 ∨ S1 ∨ S1.

Choosing appropriate combinations of either one of these two deformations with 
their respective global smoothings, it is easy to see that also the original singularity 
.(X2

A, 0) can be deformed directly into . M2
A, but also into . M2

B. Therefore, a smoothing 
is not unique for this non-essentially isolated determinantal singularity. 

2.5.2 Determinantal Hypersurfaces 

Determinantal hypersurfaces have already appeared in the context of the classifica-
tion of simple square matrices by Bruce and Tari in Sect. 2.4.1. For this section we 
will need this notion to also comprise the symmetric and the skew symmetric cases.
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Definition 2.5.6 Let .A ∈ C{x1, . . . , xp}m×m be a non-constant matrix, either 
arbitrary square, symmetric, or skew symmetric. Then the singularity . (Xm

A, 0) ⊂
(Cp, 0) defined by the equation .f = detA in the first two, or by . f = PfA
in the third case, is called a determinantal hypersurface singularity with defining 
equation f . 

Depending on the case, we will consider the matrix A up to either .G -, .Gsym-, or 
.Gsk-equivalence. Since the bound on the rank m is always equal to the size of the 
defining matrix A for determinantal hypersurface singularities, we will usually not 
mention m explicitly throughout this section and omit it from our notation. Note 
that, moreover, m is necessarily even in the skew-symmetric case since . Pf (A) = 0
for matrices of odd size. 

2.5.2.1 The Singular Milnor Fiber 

For determinantal hypersurfaces we always have two different deformation theories 
at hand: The deformations arising from unfoldings of f and the determinantal 
deformations induced from unfoldings of the matrix A. Correspondingly, there are 
two notions of “Milnor fiber” in this setup which differ in general. The first one is 
the classical Milnor fiber 

.Mf := Bε(0) ∩ f−1({δ}), (2.55) 

.1 � ε � |δ| > 0 (see [80], cf. also [20, Chapter 6]), of the hypersurface singularity 
determined by f . The other one is the essential smoothing of .(XA, 0) given by 

.MA := Bε(0) ∩ A−1
t (Mm

m,m) = Bε(0) ∩ {detAt = 0}, (2.56) 

.1 � ε � |t | > 0 with the appropriate substitution for the skew-symmetric case. 
Depending on how large the dimension p is compared to the codimension of the 
singular locus of the set of degenerate matrices, these spaces either coincide or 
differ: 

Lemma 2.5.7 Let .(XA, 0) ⊂ (Cp, 0) be a determinantal hypersurface defined by 
a finitely determined square matrix .A ∈ C{x1, . . . , xp}m×m which is either square, 
symmetric, or skew-symmetric. Depending on the case, let .c′ = 4, 3, or 6 be the 
codimension of the singular locus of the respective set of degenerate matrices. 

When .p < c′, the essential smoothing is in fact smooth and the manifolds 
.MA

∼=diff Mf are diffeomorphic. 
When .p ≥ c′, the essential smoothing .MA is singular with singular locus of 

dimension .m2 − 4 and .Mf is diffeomorphic to a global smoothing of .MA. 

Proof In the first case when .p < c′ this is clear since the smoothing .Mf is unique. 
The second case must be split into two further subcases, namely .p = c′ so that 
.f = detA has isolated singularity, and .p > c′ in which case f has non-isolated 
singularities.
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When .p = c′, there exists again a semi-universal deformation of the hypersurface 
germ .(XA, 0) = ({f = 0}, 0) over some base .(Cτ , 0) with .τ = τ(XA, 0) the 
Tjurina number of .(XA, 0), and a comparison map .Φ : (CτGL(A), 0) → (Cτ(f ), 0) as 
in the diagram (2.38) where .(CτGL(A), 0) is the parameter space of a .GL-miniversal 
unfolding . A of A. But the image of . Φ must be contained in the discriminant 
.(Δf , 0) ⊂ (Cτ(f ), 0) of f since .(XA, 0) does not admit any determinantal 
smoothing. Choosing an appropriate representative .A : U × T → C

m×m of the 
.GL-miniversal unfolding of A, it is easy to see that the generic fiber .MA ⊂ U has 
only isolated singularities and hence posesses a unique smoothing. Since we can 
think of the fiber .MA as a fiber in the semi-universal deformation of .(XA, 0) by 
virtue of Diagram (2.38), this smoothing of .MA must coincide with .Mf as this is 
the only smooth nearby fiber of .MA in the semi-universal deformation . π : X → T ′
of .(XA, 0). 

In the case .p > c′ there does not exist as semi-universal deformation of . (XA, 0)
anymore but one has the function .F = detA for a .GL-miniversal unfolding . A of A 
which assigns a canonical smoothing 

. Bε ∩ (detAt)
−1 ({δ}), ε � |t | � |δ| > 0

to every fiber .XA(t) = {detAt = 0} for .t ∈ C
τGL(A) sufficiently small. Details for 

the treatment of this setup can for example be found in [93], see also [28, Proposition 
4.5]. �

2.5.2.2 The Smoothable Case 

The first case .p < c′ has been studied by Goryunov and Mond in [47]. In this case 
the function .f : (Cp, 0) → (C, 0) defines an isolated hypersurface singularity in 
the classical sense. Hence, on the topological side, the theory is in principal covered 
by Milnor’s results [80]: The Milnor fiber 

. Mf
∼=ht

μ(f )∨
i=1

Sp−1

is homotopy equivalent to a bouquet of .μ(f ) spheres of real dimension .p−1 where 
.μ(f ) is the Milnor number of the singularity defined by f . 

For an arbitrary isolated hypersurface singularity, one would compare the Milnor 
with the Tjurina number of f . However, the classification of simple singularities 
of the square matrices in Table 2.10 and of the symmetric matrices in Table 2.7 
shows an equality .μ(f ) = τGL(A) (resp. .μ(f ) = τ

sym
GL (A)) of the Milnor numbers 

with the .GL-Tjurina numbers of the defining matrices. This peculiarity motivated 
Goryunov and Mond to closer inspections and they revealed in [47, Corollary 4.4] 
the following, more general phenomenon:
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Theorem 2.5.8 Let .(XA, 0) ⊂ (Cp, 0) be a smoothable determinantal hypersur-
face singularity for some matrix .A ∈ C{x}m×m, either symmetric, arbitray square, 
or skew symmetric with m even, with defining equation f . Then 

. τ
sym
SL (A) = μ(f ) if A is symmetric and p = 2;
τ
sq
SL(A) = μ(f ) if A is arbitrary square and p = 3;

τ skSL(A) = μ(f ) if A is skew-symmetric and p = 5.

For determinantal hypersurface singularities defined by quasi-homogeneous 
matrices (such as all the simple ones listed above), the .GL- and the .SL-Tjurina 
numbers coincide, see e.g. [46, Proposition 1.1]. In the general case, however, the 
.SL-Tjurina numbers seem to be the prefered choice for comparison with topological 
invariants. 

Remark 2.5.9 It is remarkable that the proof of Theorem 2.5.8 in [47] relies on an  
argument which is similar to the use of generic perfection introduced in Sect. 2.1.1, 
but where the bound on the grade in Theorem 2.1.8 is not attained. 

More precisely, Goryunov and Mond consider the complex . K(m,m,m − 1)
from (2.9), (respectively .Ksym(m,m−1), or .Ksk

(
m, m

2 − 1
)
) over the ring .C{y} of 

convergent power series at the origin .0 ∈ C
m×m in the target of A. These provide a 

resolution of the Jacobian ideal of the function . det (resp. . Pf ) which is generated by 

. 
∂ det

∂yi,j

= (−1)i+j Y∧m−1
î,ĵ

where . ̂i denotes the multiindex .(1, 2, . . . , î, . . . , m− 1,m) obtained by deleting the 
i-th entry. The pullback .A∗K(m,m,m − 1) of these complexes admit a morphism 

. Φ : Kosz
(

∂f

∂x1
, . . . ,

∂f

∂xp

;C{x}
)
→ A∗K(m,m,m − 1)

lifting the natural map on the generators 

. 
∂f

∂xk

= ∂ det ◦A
∂xk

�→
∑
(i,j)

∂ det

∂yi,j

∂Ai,j

∂xk

=
∑
(i,j)

(−1)i+j ∂Ai,j

∂xk

A∧m−1
î,ĵ

induced by the chain rule. Completing this to a short exact sequence of complexes 
via the mapping cone of . Φ, the associated long exact sequence reads 

. · · · → H1

(
Kosz

(
∂f

∂x
;C{x}

))
→ H1

(
A∗K(m,m,m − 1)

) → T 1
SL(A) →

→ C{x}/
〈
∂f

∂x

〉
→H0(A

∗K(m,m,m− 1))→ 0,
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cf. [47, Theorem 1.2] and [47, Corollary 1.3]. In case f has isolated singularity at 
the origin, the Koszul complex .Kosz

(
∂f
∂x
;C{x}

)
is exact in degrees .> 0 so that this 

restricts to an exact four-term complex. Writing . βi for the length of the module 

. Hi(A
∗K(m,m,m− 1)) = Tor C{y}i

(
C{x},C{y}/〈Y∧m−1〉

)

Goryunov and Mond obtain a more general formula 

.τSL(A) = μ(f ) − β0 + β1 (2.57) 

for arbitrary determinantal hypersurface singularities with isolated singularity. 
When the dimension of the source p is equal to the expected codimension 

.c′ = grade 〈Y∧m−1〉 of the singular locus of the set of degenerate matrices in 

.C
m×m, Theorem 2.1.8 applies: .β0 = dimCC{x}/〈A∧m−1〉 and .β1 = 0. This leads 

to Theorem 2.5.12 below. 
For Theorem 2.5.8 observe that for a 1-parameter stabilization .A(x, t) of A the 

complex .A∗K(m,m,m − 1) is exact. From the long exact sequence induced by 
multiplication with the unfolding parameter t on .A∗K(m,m,m − 1) one may then 
infer .β1 = β0 which yields the desired result. 

2.5.2.3 Isolated Hypersurface Singularities Without Determinantal 
Smoothing 

Most of the simple singularities of square matrices do not admit determinantal 
smoothings, i.e. they are subsumed under the second case of Lemma 2.5.7; the  
essential smoothing .MA will be singular along the subspace .Mm−1

A and in particular 
different from the Milnor fiber . Mf . This raises the question for the correct notion 
of Milnor number for the determinantal hypersurface singularity in this setting. The 
answer is given by the following proposition which is based on a modified version 
of a theorem by Lê [73]: 

Proposition 2.5.10 Let .(XA, 0) ⊂ (Cp, 0) be an essentially isolated determinantal 
hypersurface singularity defined by a matrix .A ∈ C{x1, . . . , xp}. Then the essential 
smoothing 

.MA
∼=ht

μ(A)∨
i=1

Sp−1 (2.58) 

of .(XA, 0) is homotopy equivalent to a bouquet of spheres of real dimension .p − 1.
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Proof We give a sketch of the proof; full details can be found in [73] and [93], cf. 
also [28]. For a suitable representative of a generic 1-parameter unfolding . A : U ×
T → C

m×m of A, the  polar locus 

. Γ = {(x, t) ∈ U × T : x is a critical point of detAt }

is a finite, branched covering over the parameter space T . Denote the fiber over 
.t ∈ T by . Γt . By genericity, we may assume that for .t �= 0, the function .detAt has 
a complex Morse singularity at every point .x ∈ Γt . Now we can use the real valued 
function .| detAt | as a (stratified) Morse function on the complement .Bε \ MA of 
.MA in a Milnor ball . Bε, to find that . Bε is obtained from the essential smoothing by 
attaching handles of Morse index p at the points of . Γt . Since . Bε itself is contractible, 
the claim follows. �
Definition 2.5.11 The singular Milnor number of .(XA, 0) is the number of spheres 
in the bouquet decomposition (2.58) of the essential smoothing. 

When the number of variables p is equal to the codimension . c′ of the singular 
locus of the respective set of degenerate matrices, the determinantal hypersurface 
singularity .(XA, 0) is still isolated, but its essential smoothing .MA will retain 
isolated singularities at some points .x1, . . . , xs ∈ MA. We are therefore in a 
boundary setting where we have two Milnor numbers at hand: The classical one, 
.μ(f ), for the isolated hypersurface singularity defined by .f = detA (resp. . f =
PfA), and the singular Milnor number .μ(A). In order to compare the two, let . A(x, t)

be an unfolding of the defining matrix A of .(XA, 0) over some parameter space 
.T ⊂ C

k . As was already pointed out in the proof of Lemma 2.3.3, the (relative) 
singular locus of the fibers .XA(t) is again determinantal for the .(m−1)-minors (resp. 
Pfaffians) of the defining matrices. The principle of conservation of number assures 
that the total multiplicity of the singular points of the fibers .XA(t) is preserved in 
any family and therefore equal to the multiplicity of the singular locus of the central 
fiber .e := dimCC{x}/〈A∧m−1〉. 

When the unfolding .A(x, t) is sufficiently generic so that . At is a stabilization for 
.t �= 0, we may assume that all these singular points .x1, . . . , xe ∈ MA = XA(t) are 
Morse critical points of f on . Cp. Given that, according to Lemma 2.5.7, .Mf is a 
global smoothing of . MA, it is then not difficult to see that on the topological side, 
.MA is homotopy equivalent to a suspension of exactly e spheres in the Milnor fiber 
. Mf . Therefore, the number e measures the difference 

.e = dimCC{x}/〈A∧m−1〉 = μ(f ) − μ(A) (2.59) 

of the classical and the singular Milnor number when .p = 3 in the symmetric, 
.p = 4 in the arbitrary square, or .p = 6 in the skew-symmetric case. 

In these terms, Goryunov and Mond found that the .SL-Tjurina number is equal 
to the singular Milnor number, cf. [47, Theorem 4.6] and [47, Corollary 4.2]:
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Theorem 2.5.12 In the same setting as Theorem 2.5.8 one has 

. τ
sym
SL (A) = μ(f ) − dimCC{x}/〈A∧m−1〉 for A symmetric and p = 3;
τ
sq
SL(A) = μ(f ) − dimCC{x}/〈A∧m−1〉 for A arbitrary square and p = 4;

τ skSL(A) = μ(f ) − dimC C{x}/〈A∧m
2 −1

sk 〉 for A skew-symmetric and p = 6.

Note that in the skew-symmetric case we assume m to be even. 

2.5.2.4 Determinantal Hypersurfaces with Non-isolated Singularities 

For values of .p > c′ in Lemma 2.5.7, the hypersurface singularities defined by f 
are non-isolated, so the classical Milnor number is no longer defined. In fact, Kato 
and Matsumoto have established a lower bound on the connectivity of the Milnor 
fiber in [63]: When s denotes the dimension of the critical locus of f , then .Mf is 
only .(p − s − 2)-connected and this bound is sharp in general. In this section we 
will survey recent results due to Goryunov [46] and Damon [26, 27], on both the 
singular Milnor fiber and its smoothing, respectively. 

Starting with the singular Milnor fiber of a square matrix . A ∈ C{x1, . . . , xp}m×m
(∗)

with . (∗) either . sym, . sq, or . sk, Proposition 2.5.10 assures that despite the presumably 
low connectivity of the classical Milnor fiber due to Kato and Matsumoto, the 
essential smoothing .MA of .(XA, 0) ⊂ (Cp, 0) is again homotopy equivalent to a 
bouquet of real spheres of equal dimension .p − 1. In particular, the singular Milnor 
fiber is defined. 

The equality 

.μ(A) = τSL(A) (2.60) 

(with .τSL(A) the appropriate Tjurina number in the symmetric, square, or skew-
symmetric case) was established by Goryunov in [46] for a wider class of 
singularities comprising all the known simple singularities of square matrices with 
non-isolated singularities, [46, Corollary 6.3], i.e. those listed in Theorem 2.4.1, (iii) 
and (iv) (Table 2.8), Theorem 2.4.2, (iii) and (vi) (also Tables 2.8). In particular, he 
considers singularities of square matrices A whose differential .dA(0) is of corank 
1. Such singularities have already appeared in the classification by Bruce and Tari, 
Theorem 2.4.1, (iii). The same reasons leading to the distinction of the two cases a 
and b listed there yield the classes of matrices of the form (2.61) and (2.62) below. 

Let .xi,j be independent variables for .0 < i, j ≤ m with .(i, j) �= (1, 1) and 
.z1, . . . , zq an additional set of variables. Then for .m× m-matrices of the form 

.A =
(

g(z)−
m∑

i=2

xi,i

)
· E1,1 +

∑
(i,j) �=(1,1)

xi,j · Ei,j (2.61)
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where .g ∈ C{z1, . . . , zq} defines an isolated hypersurface singularity, Goryunov 
establishes in [46, Theorem 3.5] that .μ(A) = τSL(A) = μ(g) whenever the .SL-
Tjurina number is finite. 

Similarly, for matrices of the form 

.A =
(

h(x2,2, z) −
m∑

i=3

xi,i

)
· E1,1 +

∑
(i,j) �=(1,1)

xi,j · Ei,j (2.62) 

where .h ∈ C{x2,2, z1, . . . , zq} defines a boundary singularity in the sense of Arnold 
[4], Goryunov establishes (2.60) in [46, Theorem 3.8], together with a further 
equality in the quasi-homogeneous case (cf. [46, Remark 3.9]) to the “boundary 
Milnor number” .μ∂(h) for the boundary singularities. The analogous results also 
hold, with the appropriate adaptations, for symmetric and skew-symmetric matrices. 

Given that no counterexamples to (2.60) have been encountered among the 
known simple singularities, Goryunov has conjectured: 

Conjecture 2.5.13 ([46]) Let .A : (Cp, 0) → (Cm×m
(∗) , 0) be a holomorphic map 

germ with . (∗) either . sq, . sym, or  . sk with finite .SL-codimension and the dimension 
p sufficiently large such that the associated hypersurface .(Xm

A, 0) has non-isolated 
singular locus. Then 

. μ(A) = τSL(A).

We now turn to the study of smoothings of essentially isolated determinantal 
hypersurface singularities with non-isolated singularities. These have occupied 
central stage in Damon’s study of prehomogeneous vector spaces and exceptional 
orbit varieties, [26] and [27]. 

First, he studies the Milnor fibration of the functions .f = det in the arbitrary 
square and symmetric, and .f = Pf in the skew-symmetric case on the space of 
matrices .Cm×m

sq , .Cm×m
sym , resp. .Cm×m

sk with .m = 2n even. We shall refer to these as 
the generic determinantal hypersurface singularities. The homogeneity of all these 
singularities allows one to identify the local Milnor fibration at the origin with a 
fibration of affine manifolds 

. (2.63) 

where .S1 ⊂ C
∗ is the unitary subgroup. Damon observed in [26, Theorem 3.1] 

that the total spaces . Em and the fibers . Fm are homotopy equivalent to “symmetric 
spaces” in the sense of Cartan. In particular, this allows for an explicit computation 
of their cohomology rings with coefficients in a field k of characteristic zero. The 
results are listed in Table 2.1.
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Table 2.1 Milnor fibers of the generic determinantal hypersurfaces, their associated symmetric 
spaces, and cohomology rings according to Damon [26, Table  1]  

Case .Fm Symmetric space Cohomology of . Fm

. sym, m odd .SL(m;C)/SO(m;C) .SU(m;C)/SO(m;C) . 
∧

k 〈e5, e9, . . . , e2m−1〉
. sym, m even .SL(m;C)/SO(m;C) .SU(m;C)/SO(m;C) . {1, em} ·∧ k 〈e5, e9, . . . , e2m−3〉
.sq .SL(m;C) .SU(m;C) . 

∧
k 〈e3, e5, . . . , e2m−1〉

. sk, .m = 2n even .SL(m;C)/Sp(n;C) .SU(m;C)/Sp(n;C) . 
∧

k 〈e5, e9, . . . , e2m−3〉

Following Damon, we denote by .k〈ei1 , ei2 , . . . 〉 the graded vector space gener-
ated by elements . eil which are homogeneous of degree . il , respectively. By .

∧
M we 

denote the full exterior algebra of M and .{1, em} · ∧M denotes the free module 
generated by the elements 1 and . em over .

∧
M . 

The results in Table 2.1 are also valid when replacing the coefficients k by . Z, 
except in the symmetric case where the cohomology has 2-torsion. In that case, the 
cohomology of . Fm with coefficients in .Z2 = Z/2Z is 

.H •(Fm;Z2) ∼= H •(SU(m;C)/SO(m;R);Z2) ∼=
∧

Z2 〈s2, s3, . . . , sm〉 (2.64) 

with . sj of degree j . 
A “Schubert decomposition” of the global Milnor fibers . Fm was presented by 

Damon in [27]. He shows that the associated Schubert cycles in the homology of 
. Fm are dual to the generators in cohomology from Table 2.1 in many cases and it is 
conjectured that this always holds. The decomposition itself is too complicated to 
be reproduced here and we refer to [27] for details. 

It is already clear from Table 2.1 that the smoothings of the generic determinantal 
hypersurface singularities are hardly ever homotopy equivalent to a bouquet of 
spheres of the same dimension. Damon also provides insight to the homotopy groups 
of the .Fm in certain ranges in [26, Theorem 3.5] by considering the associated 
symmetric spaces as subspaces of the respective infinite dimensional symmetric 
spaces 

. SU =
∞⋃

m=1

SU(m;C),

SU/SO =
∞⋃

m=1

SU(m;C)/SO(m;C),

SU/Sp =
∞⋃

n=1

SU(2n;C)/Sp(n;C).

The homotopy groups of the spaces on the left hand side are known, see Table 2.2, 
and there are certain stable ranges in which these homotopy groups coincide with 
those of their respective subspaces:
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Table 2.2 The stable homotopy groups of the infinite dimensional symmetric spaces. They are 
periodic of period 8 starting at . j = 2

.j = 0 1 2 3 4 5 6 7 8 9 

.πj (SU) 0 0 0 .Z 0 .Z 0 .Z 0 . Z

.πj (SU/SO) 0 0 .Z2 .Z2 0 .Z 0 0 0 . Z

.πj (SU/Sp) 0 0 0 0 0 .Z .Z2 .Z2 0 . Z

Theorem 2.5.14 ([26]) The homotopy groups of the Milnor fibers .Fm in the 
different cases are: 

square matrices of size .m × m: 

. πj (Fm) ∼= πj (SU(m;C)) ∼= πj (SU), j < 2m;

symmetric matrices of size .m× m: 

. πj (Fm) ∼= πj (SU(m;C)/SO(m;C)) ∼= πj (SU/SO), j < m − 1;

skew symmetric matrix of size .m× m for .m = 2n even: 

. πj (Fm) ∼= πj (SU(2n;C)/Sp(n;C)) ∼= πj (SU/Sp), j < 2m − 2.

After studying the smoothings of the generic determinantal hypersurface singu-
larities, Damon turns to the study of essentially isolated hypersurfaces given by map 
germs 

. A : (Cp, 0) → (Cm×m
(∗) , 0)

and their smoothings .Mf = Bε ∩ (det ◦A)−1({δ}), .1 � ε � |δ| > 0, where again 
. (∗) denotes either . sq, . sym, or . sk, and . det is replaced by . Pf in the latter case. 

Suppose .A : U → C
m×m is a suitable representative. Then by construction the 

map A restricts to 

. Mf
A−→ Fm

where . Fm is the Milnor fiber of the generic determinantal hypersurface singularity. 
In this setup, Damon gives the following definition: 

Definition 2.5.15 The image .AMs
m,n

(A) of the pullback in cohomology 
.A∗ : H •(Fm) → H •(Mf ) is the characteristic cohomology of . Mf .
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According to Damon, it is an open question to determine the structure of . H •(Mf )

as a module over .H •(Fm). He notes that in the two extremal cases where either (i) 
the singularity .(XA, 0) admits a determinantal smoothing, or (ii) when A is the germ 
of a submersion, one has 

.H •(Mf ) ∼= AMs
m,n

(A) ⊕ kμ[p − 1] (2.65) 

where k denotes the chosen ring of coefficients for cohomology (cf. Table 2.2 and 
(2.64)) and .[p − 1] the shift in cohomological degree by .p − 1. He remarks that 
in case i) the characteristic cohomology .AMs

m,n
(A) consists of the degree-zero-part 

only, so that . μ is in fact the classical Milnor number of the associated isolated 
hypersurface singularity and in case ii) the second summand is trivial. For all other 
cases he asks: 

“How generally valid is (2.65) for matrix singularities of the three types?” 
We will see in Theorem 2.5.23 below that similar decompositions for the 

cohomology can be observed for essential smoothings of EIDS defined by non-
square matrices. 

2.5.3 Isolated Cohen-Macaulay Codimension 2 Singularities 

As was already discussed earlier, isolated Cohen-Macaulay codimension 2 sin-
gularities, which are not complete intersections, arise in a range of dimensions 
from 0 up to dimension 4. In either case, the miniversal unfolding of the defining 
matrix29 .A ∈ C{x}m×(m+1) induces a semi-universal deformation of the singularity 
.(X, 0) = (A−1(Mm

m,m+1), 0) and there is a unique essential smoothing . M = Mm
A

which is in fact smooth in dimensions .d = dim(X, 0) ≤ 3. 
The zero-dimensional case is rather trivial: Since determinantal singularities are 

Cohen-Macaulay, the multiplicity of a fat point is preserved under deformations. 
A stabilization of the defining matrix will therefore split any zero-dimensional 
determinantal singularity into a collection of finitely many simple points, the 
number of which is equal to the multiplicity of the singularity. 

The 1-dimensional case is known as “space curve singularities”. For curves, a 
lot of theory has been developed beyond the complete intersection case already, 
in particular for the study of their topology. We refer to [20, Section 7.2.6] for an 
account on smoothings of curves and deliberately exclude them from our further 
discussion here.

29 Since the determinantal structure of a given ICMC2 singularity is unique, we will in what follows 
usually supress the matrix A from the notation and simply write .(X, 0) for the singularity, M for 
its (essential) smoothing, . X̂ for its Tjurina transform, etc. 
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2.5.3.1 From Simple ICMC2 Surfaces Towards Higher Dimensions 

In dimension two, the isolated Cohen-Macaulay codimension 2 singularities are the 
normal surface singularities in .(C4, 0). Just like the curve case, normal surface 
singularities have been extensively studied. But even in the particular case of 
codimension 2 it is, for example, still unknown whether or not a smoothing of the 
singularity is always simply connected. 

Similar to the case of determinantal hypersurfaces, the known results that we 
wish to present here for surfaces and threefolds are again mostly motivated by 
observations made for the lists of simple singularities in Tables 2.16 and 2.17. 
Starting with surfaces, we already noted that the list of simple isolated Cohen-
Macaulay codimension 2 singularities coincides with the list of rational triple points 
that have already appeared in Sect. 2.3.6. The rational triple points were classified 
by Artin [6] in terms of the dual graphs of their resolution and explicit equations for 
their embeddings in .(C4, 0) have been given by Tjurina [98]. 

A resolution of these singularities can be constructed as follows. Tjurina has 
shown in [98] that any rational triple point .(X, 0) is determinantal of type . (2, 3, 2)
in .(C4, 0) for some matrix .A ∈ C{x1, . . . , x4}2×3 (cf. Proposition 2.3.25 and 
Theorem 2.3.26) and the matrix A has rank 1 along the smooth locus .Xreg of .(X, 0). 
Blowing up the associated rational map 

. (X, 0) ��� P
1, x �→ spanA(x)

then provides her with the Tjurina transform .X̂
ν̂−→ X which has at most A-D-E-

singularities along its exceptional set .Ê = ν̂−1({0}). The A-D-E-singularities are 
known to be rational with explicitly given resolutions. It can then be shown that the 

resolution of singularities .Z
ρ−→ X obtained from resolving the singular points of 

. X̂ in fact satisfies the requirements (2.43) for rationality. 
This construction is of course not the original approach pursued by Tjurina, since 

she started with a configuration of exceptional divisors coming from a resolution of 
singularities in the first place. Just as in Theorem 2.3.28 by Wahl, she obtained the 
space . X̂ by blowing down the A-D-E configurations on .(Z,E). The reason for the 
presentation given here is that the above construction is what generalizes to simple 
ICMC2 threefold singularities, as was shown by the authors in [40]. Applying the 
Tjurina transformation to simple ICMC2 singularities of higher dimension they 
obtain: 

Theorem 2.5.16 ([40]) All simple ICMC2 singularities .(X, 0) of dimension . d ≥ 2
have at most A-D-E-singularities in their Tjurina transform .(X̂, Ê). Moreover, they 
admit a resolution of singularities .ρ : Z → X factoring through .ν̂ : X̂ → X such 
that 

. Rkρ∗OZ =
{

OX if k = 0,

0 otherwise,

i.e. they are rational.
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Note that the exceptional set .Ê = ν̂−1({0}) is a . P1 and therefore not a divisor in . X̂
in dimensions .d > 2. 

Interestingly, the proof of Theorem 2.5.16 in dimensions 3 and 4 is based on 
the compatibility of the Tjurina transformation with deformations for the simple 
singularities. For the rational triple points of surfaces this has already been noted (cf. 
Theorem 2.3.28) and exploited in order to construct a resolution in family factoring 
through the Tjurina transformation in family, i.e. a commutative diagram 

. (2.66) 

where, as in (2.44), .Z → X is a minimal good resolution of singularities, . Z → R

a flat family deforming Z, .X ′ = ρ(Z ) the blowdown of the deformation of Z, . X̂ ′
the Tjurina transformation in family for the induced deformation of X, and . X → S

a representative of the semi-universal deformation of .(X, 0). Given the results of 
Artin, Wahl, and de Jong summarized in Sect. 2.3.6, such resolutions in family can 
be constructed for all rational surface singularities which are determinantal and the 
family over the Artin component .Φ(R) = S′ ⊂ S is always a smoothing of .(X, 0). 

Lemma 2.5.17 Suppose .(X, 0) is a determinantal rational surface singularity and 
(2.66) a minimal good resolution in family. Then the generic fiber over the Artin 
component .Xs = π−1({s}) is diffeomorphic to the central fiber Z of the resolution. 

Proof We may assume X to be embedded in some open domain .U ⊂ C
p containing 

the origin. Let . Bε be a Milnor ball for the singularity of X at 0 and .ρ−1(Bε) its 
preimage in Z. Since .(R, 0) is smooth, we may replace R by a small disc . Dδ ⊂ C

k

for some k and assume .X ′ to be embedded in the product .U ×C
k . We then extend 

the Milnor ball to a tube .Bε ×Dδ and its preimage .ρ−1(Bε ×Dδ) in the total space 
. Z . 

Using Ehresmann’s lemma and the transversality of the intersection . ∂Bε ∩ X

we see that the deformation of X by .t ∈ Dδ does not alter its boundary up to 
diffeomorphism for .1 � δ > 0 sufficiently small. Since the projection . ρ : Z → X

is an isomorphism off 0, the same holds for Z and its boundary .ρ−1(∂Bε) ∩ Z in 
the family .Z → Dδ . But by construction, the space .Z = (π ′ ◦ ρ)−1({0}) is already 
smooth and hence .Z∩ρ−1(Bε) a smooth compact manifold with boundary. Another
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application of Ehresmann’s lemma shows that, again for .δ > 0 sufficiently small, 
the family .Z → Dδ is a trivial fiber bundle. 

Since the deformation of .(X, 0) over the Artin component .(S′, 0) is a smoothing 
and . Φ is finite and surjective onto .(S′, 0), the fiber .Xs

∼= π ′−1({t}) at a point . s =
Φ(t) is smooth for generic .t ∈ Dδ . But then the restriction of . ρ : Zt ∩ ρ−1(Bε) →
π ′−1({t}) ∩ Bε must be an isomorphism for . ρ was a resolution in family and the 
resolution in the central fiber was minimal. The assertion now follows from the 
identifications 

. Xs
∼=diff π ′−1({t}) ∼=diff (π ′ ◦ ρ)−1({t}) ∼=diff Z

up to diffeomorphism. �
Corollary 2.5.18 The smoothing of a determinantal rational surface singularity 
over the Artin component is homotopy equivalent to a bouquet of 2-dimensional 
spheres. 

Proof Due to Laufer’s criterion on rationality ([71, Theorem 4.2]), all components 
. Ei of the exceptional set .E ⊂ Z in a good resolution of singularities must be smooth 
rational curves .Ei

∼= P
1 ∼= S2 intersecting transversally. Since the dual graph of 

a rational singularity can have no cycles, the statement follows from the fact that 
.E ↪→ Z is a deformation retract of an appropriately chosen representative of Z, cf.  
[75]. �
Remark 2.5.19 For an arbitrary ICMC2 surface singularity .(X, 0) not everything is 
known about the homotopy type of its smoothing M or even the homology groups 
with integer coefficients. Due to a result by Greuel and Steenbrink ([51], cf. [20, 
Theorem 7.2.16]) the smoothing is connected and furthermore its first Betti number 
vanishes ([51], [20, Theorem 7.2.18]). But for instance it is not known whether or 
not .π1(M) = 0 in general. 

2.5.3.2 Vanishing Homology for ICMC2 Threefolds 

For simple ICMC2 threefold singularities there is no full resolution in family. 
However, the Tjurina transformation in family applied to a smoothing of . (X, 0)
provides us with a truncated version of the diagram (2.66): Just delete the top row 
.Z ↪→ Z and observe that due to the results by Schaps, Corollary 2.3.20, the  map  
. Φ and consequently also .X ′ → X are isomorphisms. 

Theorem 2.5.20 ([40]) Let M be the smoothing of an ICMC2 threefold singularity 
.(X, 0) ⊂ (C5, 0), which has only isolated singularities in the Tjurina transform . X̂. 
Then the singularities of . X̂ are isolated complete intersection singularities and the 
homology groups with integer coefficients of M are 

.H0(M) = Z, H1(M) = 0, H2(M) = Z, H3(M) = Z
r ,
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where .r ∈ N0 is the sum of the Milnor numbers .r = ∑
p∈Σ(X̂)

μ(X̂, p) of the 

singularities in . X̂ if the defining matrix is of size . 2×3, or . r = ∑
p∈Σ(X̂)

μ(X̂, p)−1
otherwise. 

Proof We sketch a proof for the case of simple singularities. The full proof can be 
found in [40]. 

According to Theorem 2.5.16 the singularities in the Tjurina transform . X̂ of 
.(X, 0) are at most A-D-E-singularities. Choose a Milnor tube .Bε×Dδ as in the proof 
of Corollary 2.5.18. One can show that a smoothing of .(X, 0) induces a smoothing 
of all singularities of . X̂ and that the projection .ρ : X̂(t) → X(t) is an isomorphism 
over smooth fibers .X(t) ∼=diff M . Now the central fiber .X̂ = X̂(0) of the Tjurina 
transform retracts onto its exceptional set .Ê ∼= P

1 ∼= S2 and the class of that sphere 
freely generates .H 2(X̂). Passing to the smooth fiber .X̂(t) ∼=diff M , one can show 
that this cycle survives while the vanishing cycles from the smoothings of the A-D-
E-singularities in . X̂ freely generate .H3(M). �
Remark 2.5.21 In [111] the second named author shows that the homology groups 
of the smoothing take the same form for all threefolds defined by matrices of size 
.2× 3, i.e. also those with non-isolated singularities in the Tjurina transform. In that 
case, however, there is no formula for the computation of the rank r of the middle 
homology group. 

Using the bouquet decomposition described in Theorem 2.5.23 below, it can even 
be shown that for matrices of size .2 × 3, the Milnor fibers of isolated threefold 
singularities are homotopy equivalent to a bouquet of one 2-sphere and a finite 
number of 3-spheres. 

For ICMC2 threefold singularities defined by matrices of arbitrary size . m ×
(m + 1), the second named author has recently announced in [113] that the second 
Betti number is always equal to 1, independent of the entries of the matrix. For 
the third Betti number, there is a lower bound depending only on m, cf. (2.75) and 
Theorem 2.5.23. 

Remark 2.5.22 What is interesting in Theorem 2.5.20 is the non-vanishing of the 
second Betti number. It had already been observed by Damon and Pike in [29] that 
for some simple ICMC2 threefolds the reduced Euler characteristic of the smoothing 
was strictly positive. Since the first Betti number of .Mm

A is known to be zero due 
to results by Greuel and Steenbrink,30 this implied that at least .H2(M

m
A ) had to 

be nontrivial. The fact that there is more than one degree with nontrivial vanishing 
homology raises the question as to what is the correct notion of Milnor number 
for ICMC2 threefolds. As of this writing, this question has not been settled in a 
satisfactory way. On the one hand, the independence of the second Betti number 
from the defining matrix A suggests that .b3 = rankH3(M

m
A ) is a good candidate. 

On the other hand, given the Bouquet decomposition for essential smoothings,

30 See [51], cf. also [20, Theorem 7.2.17]. 
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Theorem 2.5.23, the numbers .λ(m − 1, A) in (2.69) yield another candidate for 
a Milnor number, which does not necessarily agree with . b3, cf. Remark 2.5.25. 

2.5.3.3 Comparison of Milnor and Tjurina Numbers 

Coming back to the case of surface singularities again, there is Wahl’s conjec-
ture 2.5.1 which was already stated in the beginning of this section. For normal 
surface singularities, the first Betti number of any smoothing is zero due to the 
previously cited result of Greuel and Steenbrink, see [51], or also [20, Theorem 
2.7.18]. Consequently, the Milnor number . μ of the singularity is defined to be the 
second Betti number. 

Since the “if”-part of Wahl’s conjecture has been established already and all 
simple ICMC2 surface singularities are quasi-homogeneous, we see that in this case 

.μ = b2(M
2
A) = τ(X2

A, 0) − 1 = τGL(A) − 1 (2.67) 

where as usual .A ∈ C{x, y, z,w}2×3 is the defining matrix of the singularity. 
For the simple ICMC2 threefolds on the other hand, the authors observed a 

different behaviour in [40]: The Tjurina number seems to be rather unrelated to 
the topology of the smoothing. For instance, singularities defined by the matrices 

. 

(
w y x

z w y + vk

)
,

the so-called .Πk-family, have Tjurina number .τ = 2k − 1. Their smoothings, 
however, are all homotopy equivalent to the sphere . S2, independent of k. More  
generally, they establish an equality 

.τ(X, 0) = h1(X̂, T 0
X̂
) +

∑
p∈Σ(X̂)

τ (X̂, p) (2.68) 

for all ICMC2 threefolds defined by matrices of size .2 × 3 with only isolated 
singularities in the Tjurina transform. Here . T 0

X̂
denotes the tangent sheaf of . X̂

and .τ(X̂, p) the local Tjurina numbers at the singularities .p ∈ Σ(X̂). These local 
Tjurina numbers can then be related to the local Milnor numbers and the topology of 
the smoothing. But the example given by the .Πk-family shows that the “correction 
term” given by .h1(X̂, T 0

X̂
) can become arbitrary big.
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2.5.4 Arbitrary EIDS and Some Further, Particular Cases 

2.5.4.1 Bouquet Decomposition for Essential Smoothings 

For arbitrary EIDS, the second named author has established a bouquet decompo-
sition of the essential smoothing as an application of a result due to Tibăr [97] (see 
also [20, Theorem 6.10.6]) to determinantal singularities. Tibăr’s bouquet theorem 
itself is based on the carousel construction exhibited in [20, Chapter 6]. 

Theorem 2.5.23 ([112]) Let .(Xs
A, 0) ⊂ (Cp, 0) be an EIDS of positive dimension 

and of type .(m, n, s) defined by a matrix .A ∈ C{x1, . . . , xp}m×n. Then the essential 
smoothing .Ms

A of .(Xs
A, 0) is homotopy equivalent to 

.Ms
A
∼=ht L

s,p
m,n ∨

∨
0≤r<s

λ(r,A)∨
i=1

Sp−(m−r)(n−r)+1(L
s−r−1,(m−r)(n−r)−1
m−r,n−r ) (2.69) 

where .Ls,k
m,n is the intersection .Ls,k

m,n = Hk ∩ Ms
m,n of a k-dimensional hyperplane 

.Hk in general position off the origin with the generic determinantal variety. 

In this formula, .Sk(·) denotes the k-fold repeated suspension of a topological space 
with the convention that .S(∅) = S0 is the 0-dimensional sphere, .S0(X) = X for 
every X, and .Sk(X) = ∅ for negative k. Note that .Ls,mn−1

m,n is nothing but the complex 
link of the generic determinantal variety .Ms

m,n at the origin, see e.g. [20, Section 
5.9.3]. For more general values of p, the space .L

s,p
m,n is the essential smoothing of a 

linear EIDS determined by a generic linear map .C
p → C

m×n. 

Proof We give a rough outline of the proof in order to indicate its synopsis with 
the other methods. Recall from Remark 2.1.14 that .(Xs

A, 0) can be realized as 
a complete intersection on .(Cp, 0) × (Ms

m,n, 0) by considering the graph . ΓA =
{(x, ϕ) ∈ C

p × C
m×n : ϕ = A(x)} which is given by the .m · n equations 

.hi,j = yi,j − ai,j (x). Then 

. Xs
A
∼= ΓA ∩ C

p × Ms
m,n ⊂ C

p × C
m×n

and these equations form a regular sequence on the coordinate ring . C{x}[y]/〈Y∧s〉
of the variety .(Cp, 0) × Ms

m,n. Note that the latter variety is canonically Whitney 
stratified by the product of the rank stratification with . Cp. It is now not too difficult 
to see that the transversality conditions imposed on A off the origin translate to an 
appropriate notion of transversality of the functions .hi,j that allows one to say that 
these equations define an isolated complete intersection singularity on . (Cp, 0) ×
(Ms

m,n, 0) in the stratified sense.
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It is now easy to see that by construction the essential smoothing .Ms
A coincides 

with the Milnor fiber31 of this isolated complete intersection on .(Cp, 0)×(Ms
m,n, 0). 

The remainder of the proof now follows from Tibăr’s decomposition theorem [97, 
Bouquet Theorem] and a modification of [97, Corollary 4.2]. �
Corollary 2.5.24 The essential smoothing of an EIDS .(Xs

A, 0) ⊂ (Cp, 0) is 
homeomorphic to the Milnor fiber of the complete intersection defined by . yi,j − ai,j

for .0 < i ≤ m, .0 < j ≤ n on .(Cp, 0) × (Ms
m,n, 0). 

In certain particular cases (see below), Theorem 2.5.23 leads to a full understand-
ing of the essential smoothing .Ms

A up to homotopy: The numbers .λ(r,A) can, in 
principal, be computed from the so-called Cerf-diagrams involved in the carousel 
construction, see e.g. [20, Theorem 6.6.6] and [20, Section 6.7]. What is more 
difficult, is the investigation of the complex links and, more generally, the spaces 
.L

s,p
m,n for the various values of .m, n, s and p. These are the atomic building blocks 

for the topology of essential smoothings that can not be turned into singularities of 
complete intersections anymore. 

The Euler characteristic of the complex links of generic determinantal varieties 
has been computed by Ebeling and Gusein-Zade in [34]. Without loss of generality, 
one may assume that .m ≤ n. Then the reduced Euler characteristic of the complex 
link of .Ms

m,n at the origin is 

.χ(Ls,mn−1
m,n ) = (−1)s

(
m− 1

s − 1

)
. (2.70) 

This formula has been used by Gaffney, Grulha, and Ruas to compute the local Euler 
obstructions32 of the generic determinantal varieties in [42]. Again, for .m ≤ n they 
find 

.Eu(Ms
m,n, 0) =

(
m

s − 1

)
. (2.71) 

This formula has then been generalized for the generic determinantal varieties over 
arbitrary fields by Zhang [114]. 

Both these invariants are of fundamental importance in the study of stratified 
Morse theory on determinantal varieties, cf. [20, Chapter 5], and [45]. In particular, 
they allow for the computation of the Euler characteristic of the essential smoothing 
.Ms

A of an arbitrary EIDS .(Xs
A, 0) as in Theorem 2.5.23 (again assuming .m ≤ n) 

.χ(Ms
A) = χ(L

s,p
m,n)+

∑
0≤r<s

(−1)p+s−r−(m−r)(n−r)·
(

m − r − 1

s − r − 2

)
·λ(r,A) (2.72) 

up to the term .χ(L
s,p
m,n), which is constant and independent of the specific matrix A.

31 See e.g. [20, Theorem 6.10.3]. 
32 The local Euler obstruction was introduced by MacPherson in [79]. 
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Remark 2.5.25 In the spirit of Definition 2.5.15 for the “characteristic cohomology” 
for smoothings of determinantal hypersurface singularities due to Damon we can 
make the following definition for smoothings of EIDS defined by non-square 
matrices .A ∈ C{x1, . . . , xp}m×n. If  .(Xs

A, 0) ⊂ (Cp, 0) is smoothable, then a 
stabilization 

. At : Bε → C
m×n ⊃ Ms

m,n

will not meet the singular locus .Ms−1
m,n of the generic determinantal variety . Ms

m,n

so that the intersection .At(Bε) ∩ Ms
m,n will be completely contained in the stratum 

.V s−1
m,n . In analogy to Damon’s definition we may set 

. AMs
m,n

(A) = A∗
t (H

•(V s−1
m,n )) ⊂ H •(Ms

A)

to be the image of the pullback in cohomology of .At : Ms
A → V s−1

m,n to the essential 

smoothing .Ms
A = A−1

t (Ms
m,n). In the smoothable case the wedge sum in (2.69) 

simplifies to .r = s − 1 so that 

. Ms
A
∼=ht L

s,p
m,n ∨

λ∨
i=1

Sp−(m−s+1)(n−s+1).

It has been announced in [113] that .AMs
m,n

(A) is precisely the contribution of 

.H •(Ls,p
m,n) so that, given the analogy of the definitions, the number . λ plays the rôle 

of . μ in (2.65). 

2.5.4.2 IDS of Maximal Minors and Their Newton Polyhedra 

Extending the classical perspective of Newton polyhedra to IDS of maximal minors, 
Esterov obtains some results on isolated determinantal singularities and the topology 
of functions on it in terms of their Newton polyhedra in [36]. Recall that for a 
holomorphic germ .f = ∑

α∈Np
0
cα · xα ∈ C{x1, . . . , xp} the Newton polyhedron 

.Δ(f ) ⊂ R
p is defined as the convex hull of the set 

. Suppf := {α ∈ N
p

0 : cα �= 0} ⊂ R
p.

Conversely, for a given polyhedron .Δ ⊂ R
p we say that .f ∈ C{Δ} if .Supp(f ) ⊂ Δ. 

Then it is customary to compute invariants of such germs, such as for instance 
the topological Euler characteristic of their Milnor fibers, or the .ζ -function of 
their monodromy, in terms of their Newton polyhedra. As can be expected for 
techniques, which focus on the occurring monomials and not their coefficients, these 
considerations require a genericity assumption on the setting and in particular on
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the coefficients involved. Considering a germ of a holomorphic matrix . A = (aij ) ∈
C{x1, . . . , xp}m,n, .m ≤ n, these conditions read: 

(a) Unmixedness assumption: The Newton polyhedron of an entry .ai,j is indepen-
dent of the choice of the first index i. 

(b) General position condition: For every choice of positive weights . w =
(w1, . . . , wp) and any choice of a subset .I ⊂ {1, 2, . . . , m} of the rows of 
A, consider a new matrix .A′ = inw(AI,{1,...,n}) whose entries are the weighted 
initial forms 

. inw

⎛
⎜⎝ ∑

α∈Np
0

cαxα

⎞
⎟⎠ =

∑
〈w,α〉=d

cαxα, d = min{〈w, α〉 : cα �= 0}

of the entries of the chosen rows in I . Then the general position condition is 
satisfied, if for all such choices, the variety defined by the maximal minors of 
. A′ has expected codimension .(p − |I | + 1) at all points outside the coordinate 
hyperplanes. 

(c) Strong general position condition: For every choice of positive weights, the 
maximal minors of the matrix .inw(A), whose entries are the weighted initial 
forms of the entries of A, define a determinantal variety which is non-singular 
outside the coordinate hyperplanes. 

The unmixedness assumption can always be achieved by replacing the rows 
with sufficiently general .C-linear combinations of the rows. The conditions on 
(strong) general position, however, are indeed (open) conditions on the coefficients 
appearing in the entries of the matrix. 

A crucial tool in Esterov’s approach to computing algebraic and topological 
invariants of the singularities .(Xm

A, 0) defined by the maximal minors of A and the 
restrictions .f |(Xm

A, 0) to them via Newton polyhedra is the mixed volume, which is 
the unique symmetric function on p-tuples of bounded polyhedra 

. MV : (Δ1, . . . , Δp) �→ MV(Δ1, . . . , Δp) ∈ R

which is multilinear with respect to scaling and the Minkowski sum of polyhedra and 
which takes the tuple .(Δ, . . . , Δ) to .Volp(Δ) for any single bounded polyhedron 
.Δ ⊂ R

p. For a polyhedron .Δ ⊂ R
p

≥0, we denote the pair .(R
p

≥0,Δ) by . Δ̃. There is 
a definition for the mixed volume of bounded pairs of polyhedra which are parallel 
to a given cone, see [36, Definition 1.5]. We refer to [36] and the references there 
for the details of the above notions. Covering them here in all detail is beyond our 
scope.
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Theorem 2.5.26 ([36, Theorem 1.9 and Theorem 1.12]) Let . Δ0,Δ1, . . . , Δn ⊂
R

p

≥0 be polyhedra with .R
p

≥0\Δj bounded for every .j = 0, . . . , n. Then the following 
hold: 

(i) For all matrices .A ∈ C{x1, . . . , xp} satisfying the unmixedness and the general 
position condition the multiplicity of .(Xm

A, 0) is equal to 

. 
∑

0<j0<···<jn−m≤m

p! ·MV(Δ̃j0, . . . , Δ̃jn−m, L, . . . , L︸ ︷︷ ︸
p−n+m−1

)

where .L = (R
p

≥0,R
p

≥0 \ Sp) is the complement of the standard simplex . Sp =
{x ∈ R

p

≥0 :
∑p

i=1 xi ≤ 1}. 
(ii) Whenever .p ≤ 2(n − m + 2) and the complements of the polyhedra in . Rp

≥0
are bounded,then for all A in strong general position, the germ .(Xm

A, 0) is an 
isolated determinantal singularity. 

(iii) Furthermore, in the setting of 2. for almost all functions33 .f ∈ C{Δ0}, the  
Euler characteristic of the Milnor fiber of .f |(Xm

A, 0) equals 

. 
∑
a0∈N

∑
I⊂{1,...,p}

∑
{j1,...,jq }⊂{1,...,m}

(−1)|I |+m+n

(
m + q − n − 1

|I | + q − a0 − 2

)
×

×

⎛
⎜⎜⎜⎝

∑
(aj1 ,...,ajq )∈Nq ,

aj1+···+ajq=|I |−a0

|I |! ·MV(Δ̃I
0, . . . , Δ̃

I
0︸ ︷︷ ︸

a0

, Δ̃I
j1

, . . . , Δ̃I
j1︸ ︷︷ ︸

aj1

, . . . , Δ̃I
jq

, . . . , Δ̃I
jq︸ ︷︷ ︸

ajq

)

⎞
⎟⎟⎟⎠

The approach pursued by Esterov differs strongly from anything else presented 
here. His interest focusses on “resultantal sets” of which ideals of maximal minors 
are a special case. In addition to the formulae above, he also obtains a way to 
compute the topological .ζ -function of a function on a resultantal set. We refer 
readers interested in this approach to the original article [36]. 

2.5.4.3 Formulae for the Vanishing Euler Characteristic Using Polar 
Varieties 

Various other methods have been developed in order to compute the Euler character-
istics of essential smoothings, including the space .L

s,p
m,n itself. One of these methods 

is to study successive hyperplane sections of a given determinantal singularity

33 See [36] for the precise condition which is again of the flavor of the general position condition. 
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.(Xs
A, 0) and its deformation, together with the associated polar varieties34 and their 

multiplicities .mi(X
s
A, 0) for .0 ≤ i < dim(Xs

A, 0) = d. In addition to that, one 
needs the so-called .md -multiplicity .md(Xs

A, 0) introduced by Gaffney in [41] to  
also capture the behaviour of the singularity in families. For a given singularity, 
this multiplicity measures the number of critical points of a generic linear form 
on the smooth locus of the nearby stable object.35 To give a concise formula, we 
furthermore use the convention that .mi(X, 0) = 0 for negative i. 

Theorem 2.5.27 Let .Ms
A be the essential smoothing of an EIDS . (Xs

A, 0) ⊂ (Cp, 0)
defined by a matrix .A ∈ C{x1, . . . , xp}m×n with .m ≤ n. Then 

. χ(Ms
A) =

∑
0≤r<s

⎛
⎝d(r)∑

j=0

(−1)d(r)−jmd(r)−j (X
r+1
A , 0)

⎞
⎠ · (−1)s−r−1

(
m− r

s − r − 1

)

(2.73) 

where .d(r) = dim(Xr+1
A , 0) = p − (m− r)(n− r). 

This theorem and its variants have appeared in several places such as [9, 21, 34, 42, 
83], and [110]. 

Proof Again, we only sketch the proof to illustrate the related ideas. Details can be 
found in the various sources cited above. 

Let .A : U × T → C
m×n be a suitable representative of a 1-parameter unfolding 

of the defining matrix A on a parameter t such that . At is a stabilization for . t �= 0
and choose a sequence of linear forms .l1, . . . , ld(s) on the ambient space . Cp of the 
singularity. We denote by . Dj the hyperplane of codimension j defined by . l1 =
· · · = lj = 0. If the linear forms have been chosen sufficiently general, then either 
one of the singularities .(Xs

A∩Dj, 0) ⊂ (Dj , 0) is again an EIDS and the restriction 
of the unfolding . A to . Dj induces an essential smoothing thereof. Furthermore, for 
every .t �= 0 sufficiently small, every .r < s, and every .j > 0 the function .lj+1 has 
only complex Morse singularities on the interior of the fiber 

. Dj ∩ A−1
t (Mr+1

m,n ) ∼= D′
j ∩ A−1

t (Mr+1
m,n ) ∼= D′

j ∩ A−1
0 (Mr+1

m,n ).

where . D′
j denotes a hyperplane parallel to . Dj off the origin. The above isomor-

phisms come from wiggeling either . Dj or . At and parallel transport of the associated 
fibers by virtue of Thom’s isotopy lemma. The number of the Morse critical points 
is precisely .md(r)−j (X

r+1
A , 0), see  [101]. Finally, for .j = 0, the multiplicity

34 Polar varieties for complex analytic germs were introduced in [101]. See also [95]. 
35 Note that in order for .md(Xs

A, 0) to be an invariant of the singularity .(Xs
A, 0) itself rather 

than the given family, the nearby stable object needs to be uniquely determined by .(Xs
A, 0). This  

is guaranteed for EIDS by the existence of the miniversal unfolding and the uniqueness of the 
essential smoothing. 
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.md(r)(X
r+1
A , 0) counts the number of critical points of . l1 on the regular locus of 

the essential smoothing .Mr+1
A , see  [41]. 

By downwards induction on the codimension j of the hyperplanes one can now 
rebuild the original essential smoothing .Ms

A = A−1
t (Ms

m,n) from its hyperplane 
sections starting with .j = d(s − 1). The Morse critical points on the regular loci 
of the various hyperplane sections of .A−1

t (Mr+1
m,n ) above are then stratified Morse 

critical points of the fiber .Dj ∩ A−1
t (Ms

m,n) located on the respective strata . Dj ∩
A−1

t (V r
m,n). At any such point, the factor 

. (−1)s−r−1
(

m− r

s − r − 1

)
= 1− χ(L

s−r,(m−r)(n−r)−1
m−r,n−r )

accounts for the normal Morse datum36 associated to that point which is deter-
mined by the complex links of the generic determinantal varieties according to 
Lemma 2.3.3 and (2.13). �
Remark 2.5.28 The multiplicities .mi(X

r+1
A , 0) appearing in (2.73) can in principal 

be computed by various different methods. For .i < d = dim(Xr+1
A , 0) this is 

possible directly from their definitions in [101]. For the .md -multiplicity, Gaffney 
and Ruas have given a formula in [43, Proposition 4.6] as the sum of the multiplicity 
of the pair of modules given by the Jacobian module and the normal module of the 
singularity and the intersection number of the image of the defining matrix with a 
certain polar variety of the generic determinantal variety. 

Remark 2.5.29 In general, the hard task is to relate the multiplicities in (2.73) or  
the numbers .λ(r;A) in (2.69) to deformation theoretic invariants such as the .GL-
Tjurina number of the defining matrix. In the special cases described earlier, as 
for example in Theorem 2.5.20, one can, of course, also apply Theorem 2.5.23 or 
Theorem 2.5.27 and then compare .mi(X

s
A, 0) and .λ(r;A) to the Milnor and Tjurina 

numbers of the singularities. 
Yet another approach to the computation of the vanishing Euler characteristic has 

been pursued by Damon and Pike in [30] and [29]. For certain determinantal vari-
eties (including the determinantal hypersurfaces and type .(2, 3, 2)), they succeed 
to embed the associated generic determinantal variety in a special arrangement of 
so-called “H -holonomic divisors” . Wi : 

. Ms
m,n ⊂

⋃
i

Wi.

These free completions of .Ms
m,n are extracted from certain group representations on 

the space of matrices which are closely related to Cholesky decomposition.

36 For the discussion of normal Morse data in complex stratified Morse theory, see [45]. 
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A nonlinear section .A : (Cp, 0) → (Cm×n, 0) ⊃ W of an H -holonomic divisor 
W which is algebraically transverse to W off the origin, gives rise to an “almost free 
divisor” .(WA, 0) = (A−1(W), 0) ⊂ (Cp, 0). Similar to the case of determinantal 
varieties, one considers the deformations of .(WA, 0) induced from unfoldings of A. 
Stabilizations . At of A lead to the analogue of essential smoothings .A−1

t (W) for 
.(WA, 0) and these spaces are homotopy equivalent to a bouquet of spheres for the 
same reasons as outlined in Lemma 2.5.7 for determinantal hypersurfaces—only 
that in this case the number . μ of these spheres is equal to the .KH,e-codimension 
of A ([29, Theorem 3.1]). This .KH,e-equivalence for non-linear sections of H -
holonomic free divisors is similar to the .SL-equivalence of matrices discussed in 
Remark 2.2.5, see e.g. [47]. 

Using the additivity of the topological Euler characteristic on complex analytic 
sets, Damon and Pike can then infer the Euler characteristic of the essential smooth-
ing of the determinantal singularity from its relative position in the stabilizations 

. Ms
A = A−1

t (Ms
m,n) ⊂

⋃
i

A−1
t (Wi).

This machinery is constructed for the purpose of relating the vanishing Euler 
characteristic of essential smoothings to deformation theoretic invariants. For 
various specific configurations closed formulas are given for .χ(Ms

A) in terms of 
the various .KH,e-codimensions, cf. e.g. [29, Theorem 8.1]. However, it is not clear 
how to determine such formulae in general and how the various .KH,e-codimensions 
for the . Wi relate to the .GL- or .SL-Tjurina numbers of the original matrix singularity. 

2.5.4.4 Some Explicitly Known Complex Links 

To conclude this section, we will summarize a few special cases in which the 
topology of the essential smoothings of generic linear EIDS, i.e. the basic building 
blocks in (2.69), is known. 

The complex links of the degenerate square matrices have been described by 
Goryunov [46, Theorem 2.1]: 

Theorem 2.5.30 Let .L(∗) be the complex link of the generic determinantal hyper-
surface in .C

m×m
(∗) where .(∗) denotes either . sq, . sym, or . sk. Then in every case .L(∗) is 

homotopy equivalent to a single sphere .SN−2 where N equals either . m2, . 12m(m+1), 
or .

1
2m(m−1) with .m = 2n even, respectively. Depending on the case, these spheres 

can be chosen to be 

.sq : all degenerate Hermitian matrices in .Cm×m with trace 1 and all eigenvalues 
non-negative. 

.sym : all degenerate real matrices in .C
m×m
sym with trace 1 and all eigenvalues non-

negative. 
.sk : all degenerate quaternionic matrices in .C

m×m
sk with skew trace 1 and all skew 

eigenvalues non-negative.
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The homogeneity of these particular singularities allow for scaling of these spaces 
to arbitrarily small sizes close to the origin. For the skew-symmetric matrices A of 
even size .m = 2n Goryunov has set the skew trace to be .

∑n
i=1 a2i−1,2i and the skew 

eigenvalues . λi the solutions of the equation 

. Pf

(
A− λ ·

n∑
i=1

(
E2i−1,2i − E2i,2i−1

)) = 0.

For non-square matrices it is possible to determine the spaces .Ls,p
m,n up to 

homotopy for all values of n and p when .m = s = 2, see  [112, Section 4.1]: 

.L
2,p
2,n

∼=ht

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{pt.} if p ≥ 2n,

S2 if n < p < 2n,∨n−1
i=1 S1 if p = n,

{n points} if p = n− 1.

(2.74) 

Recently, the Betti numbers and even the full cohomology groups with integer 
coefficients below the middle degree of smooth complex links of the generic 
determinantal varieties .(Ms

m,n, 0) have been computed for all values of . (m, n, s)

in [113]: We may suppose that .m ≤ n. Then the condition on the complex link . L
s,k
m,n

to be smooth and non-empty restricts the admissible range for k to 

. (m − s + 1)(n− s + 1) ≤ k < (m − s + 2)(n− s + 2)

and we have an exact sequence of graded .Z-modules 

.0 → H≤d(Grass(m− s + 1,m)) → H •(Ls,k
m,n) → Q → 0 (2.75) 

where .d = dimL
s,k
m,n = k − (m − s + 1)(n − s + 1) and . H≤d(Grass(m −

s + 1,m)) = ⊕
i≤d H i(Grass(m − s + 1,m)) denotes the truncated cohomology 

of the Grassmannian. Moreover, the quotient Q is concentrated in cohomological 
degree d. 

Appendix: Lists of Simple Singularities 

Arnold’s Lists 

For reader’s convenience and to complement Theorems 2.4.1 and 2.4.2, we give the  
lists due to Arnold (see [3]) which are mentioned there. Note that the .R-simple 
germs in Table 2.3 are stated as plane curve singularities in cases . Dk and . Ek and as
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Table 2.3 The .R-simple 
germs from [2] 

Type Normal form .μ . τ

.Ak .xk+1 k k . k ≥ 1

.Dk .x2y + yk−1 k k . k ≥ 4

.E6 .x3 + y4 6 6 

.E7 .x3 + xy2 7 7 

.E8 .x3 + y5 8 8 

Table 2.4 The .Rδ-simple germs from [4]. The boundary is given by . x = 0

Name Normal form .μ(f ) .μ(f |{x = 0}) . μ∂(f )

.Bk .±xk ± y2 .k − 1 1 k . k ≥ 2

.Ck .xy ± yk 1 .k − 1 k . k ≥ 2

.F4 .±x2 + y3 2 2 4 

fat point singularities in the case . Ak . This is the smallest dimension in which they 
occur, but they also exist as simple singularities in any higher dimension by stable 
equivalence (i.e. using the generalized Morse lemma). 

A boundary singularity is given by a germ .f : (Cn, 0) → (C, 0) together with 
a “boundary” specified by first coordinate .(Cn−1, 0) = ({x1 = 0}, 0) ⊂ (Cn, 0). 
Associated to f we now have two Milnor fibers .Mf and .Mf |{x1=0} with a natural 
inclusion 

. Mf |{x1=0} ⊂ Mf .

When both f and .f |{x1 = 0} have isolated singularity, then the Milnor fibers 
are homotopy equivalent to bouquets of spheres of dimension .n − 1 and .n − 2, 
respectively. Arnold has shown in [4, Theorem 3] that also the factor space 
.Mf /Mf |{x1=0} has the homotopy type of a bouquet of .μ∂(f ) spheres of dimension 
.n − 1 where .μ∂(f ) is the boundary Milnor number 

. μ∂(f ) = dimCC{x1, . . . , xn}/
〈
x1 · ∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

〉
.

All these Milnor numbers satisfy .μ(f ) + μ(f |{x1 = 0}) = μ∂(f ) (Table 2.4). 

Complete Intersections 

Giusti proved in [44] that, apart from hypersurfaces, simple complete intersections 
can only occur in two settings: fat points in the plane and curves in 3-space. He gave 
exhaustive lists of the simple singularities in these cases. For completeness of the 
ICMC2 case below, we also include these tables here (Tables 2.5 and 2.6):
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Table 2.5 Simple ICIS fat 
point singularities 

Type Normal form .μ . τ

.Ak .
〈
y, xk+1

〉
k k . k ≥ 1

.F
q,r

q+r−1 .〈xy, xq + yr 〉 .q + r − 1 .q + r . q, r ≥ 2

.G5 .
〈
x2, y3

〉
5 7 

.G7 .
〈
x2, y4

〉
7 10 

.Hq+3 .
〈
x2 + yq, xy2

〉
.q + 3 .q + 5 . q ≥ 3

.I2q−1 .
〈
x2 + y3, yq

〉
.2q − 1 .2q + 1 . q ≥ 4

.I2r+2 .
〈
x2 + y3, xyr

〉
.2r + 2 .2r + 4 . r ≥ 3

Table 2.6 Simple ICIS space 
curve singularities 

Type Normal form .μ . τ

.Sn+3 .(x2 + y2 + zn, yz) .n + 3 .n + 3 . n ≥ 2

.T7 .(x2 + y3 + z3, yz) 7 7 

.T8 .(x2 + y3 + z4, yz) 8 8 

.T9 .(x2 + y3 + z5, yz) 9 9 

.U7 .(x2 + yz, xy + z3) 7 7 

.U8 .(x2 + yz + z3, xy) 8 8 

.U9 .(x2 + yz, xy + z4) 9 9 

.W8 .(x2 + z3, y2 + xz) 8 8 

.W9 .(x2 + yz2, y2 + xz) 9 9 

.Z9 .(x2 + z3, y2 + z3) 9 9 

.Z10 .(x2 + yz2, y2 + z3) 10 10 

Simple Square and Symmetric Matrices 

We list the tables mentioned in the results of Bruce in [11] and Bruce and Tari [12] 
on simple determinantal singularities defined by symmetric and arbitrary square 
matrices. The original tables have been extended by several auxiliary results of 
related publications such as [48] and [46]. Also, we were informed by V. Goryunov 
about certain mistakes in the original classifications and we adopt his unified and 
corrected exposition from [46]. The notations were at times streamlined with those 
from the tables in the other sections. 

All simple square matrices of size .m = 3 in two variables turn out to be 
symmetric, whence Table 2.7 simultaneously states both cases. Note that in [11] 
Bruce considers the strict Tjurina transform and refers to it as the criminant. The  
list of simple square matrices of size .m = 3 in seven variables is also very closely 
related to a list of simple symmetric matrices: It can be obtained from the simple 
symmetric matrices in four variables by adding the skew symmetric matrix U in 
three new variables as in Theorem 2.4.1 (iv). For square matrices the entries in 
Table 2.8 have to be understood in this sense.
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Table 2.8 Simple singularities of symmetric matrices of size .m = 3 in four variables (also 
providing simple singularities of square matrices of the same size in seven variables) 

.GL-codim. .GL-codim. of Odd Ass. symm. 

Name Normal form as symm. mat. ass. square mat. function ICIS 

. 
Ik+1, 
k ≥ 1 

. 

⎛
⎜⎝

x 0 z 
0 y + xk w 
z w y 

⎞ 

⎟⎠ .k + 1 .k + 1 . 
D2k+2/Z2 : 
ac2 + a2k+1 . 

S2k+3 : 
c2 + 2bc + a2k 

ab 

.II4 . 

⎛
⎜⎝

x w2 y 
w2 y z 
y z w 

⎞ 

⎟⎠ 4 4 . 
E8/Z2 : 
b3 + c5

. 

U9 : 
b2 − ac + c4 

ab − c4 

.II5 . 

⎛
⎜⎝

x 0 y + w2 

0 y z 
y + w2 z w 

⎞ 

⎟⎠ 5 5 . 
J10/Z2 : 
b3 − bc4

. 

U11 : 
b2 − ac + c4 

ab 

.II6 . 

⎛
⎜⎝

x w3 y 
w3 y z 
y z w 

⎞ 

⎟⎠ 6 6 . 
E12/Z2 : 
b3 + c7

. 

U13 : 
b2 − ac 
ab − c6 

Table 2.9 is dealing with curve singularities and hence the Tjurina transform 
needs to be considered with special care, as the (strict) Tjurina transform is of the 
same dimension as the exceptional locus (see Example 2.3.10). The strict Tjurina 
transforms are listed in the third column of this table. If the relative position of 
the exceptional locus w.r.t. the strict Tjurina transform is of interest, the singularity 
type of the reduced structure of the total Tjurina transform is stated in brackets. 
The naming of all singularities is according to the tables of simple plane curve and 
space curve singularities, i.e. Tables 2.3, 2.6, and 2.15. The only exception is the 
notation . A0 for a smooth branch meeting the exceptional locus transversally, which 
we adopted from the original table of Bruce and Tari (Tables 2.10, 2.11, and 2.12). 

For instance the entry “.A0, Ak−3” in the third column of the second row indicates 
that there is an .Ak−3 singularity in the strict Tjurina transform and additionally a 
smooth branch, both of which meet the exceptional locus, but not in the same point. 
The entry “.E6(1) (U7)” in the fifth row indicates that the strict Tjurina transform 
is a space curve of type .E6(1) from Table 2.15 (with parametrization .(t3, t4, t5)) 
and that it meets the exceptional locus to form an . U7 singularity from Giusti’s list in 
Table 2.6.



2 Determinantal singularities 145

Table 2.9 Simple singularities of square matrices in two variables of size .m = 2, [12, Table  2]  

Normal form Hypersurface Strict Tj. transf. .GL-codim. 

. 

(
x yk 

±yl x

)
, 1 ≤ k ≤ l .Ak+l−1 . 

Al−k−1 for k �= l 
2A0 for k = l, 

. 2k + l − 1

. 

(
x y 

x2 ± yk 0

)
, 2 ≤ k .Dk+2 .A0, Ak−3 . k + 3

. 

(
x x2 ± yk 

y 0

)
, 2 ≤ k .Dk+2 .Ak−1 ∨ L (Sk+3) . k + 3

. 

(
x y 
y3 x2

)
.E6 .A0 7 

. 

(
x y3 

y x2

)
.E6 .E6(1) (U7) 7 

. 

(
x y 

xy2 x2

)
.E7 .A1 8 

. 

(
x xy2 

y x2

)
.E7 .E7(1) (U8) 8 

. 

(
x y 
y4 x2

)
.E8 .A2 9 

. 

(
x y4 

y x2

)
.E8 .E8(1) (U9) 9 

. 

(
x 0 

0 y2 ± xk

)
, 2 ≤ k .Dk+2 .A0, Ak−1 . k + 4

. 

(
x 0 

0 xy + yk

)
, 3 ≤ k .D2k .A0, A1 3k 

. 

(
x yk 

±yl xy

)
, 3 ≤ k ≤ l .Dk+l+1 . 

A1 for k = l, 
3A0 for k + 1 = l 

A0 + Al−k−2 for k + 1 < l  
. 2k + l + 1

. 

(
x ±yl 

yk xy

)
, 3 ≤ k <  l .Dk+l+1 .Al−k ∨ L (Dl+k+3 ∨ L) . 2k + l + 1

. 

(
x y2 

y2 x2

)
.E6 .A2 8 

. 

(
x y2 

0 x2 + y3

)
.E7 2 .A0 9 

. 

(
x 0 

y2 x2 + y3

)
.E7 .A2 ∨ L (S6) 9 

. 

(
x 0 

0 x2 + y3

)
.E7 .A0, A2 10 

. 

(
x y2 

y3 x2

)
.E8 .A0 10 

. 

(
x y3 

y2 x2

)
.E8 .E6(1) (W9) 10
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Table 2.10 Simple singularities of square matrices in three variables of size .m = 2, [12, Table  
3] 

Normal form Hypersurface Tj. transf. .GL-codimension 

. 

(
x zk 

±zl y

)
, 1 ≤ k ≤ l .Ak+l−1 .Ak−1, Al−1 . k + l − 1

. 

(
x −y 

y + zk x

)
.A2k−1 .2Ak−1 . 2k − 1

. 

(
x y 

z2 ± yk x

)
, 2 ≤ k .Dk+2 .Dk+1 . k + 2

. 

(
x y 
y2 x + z2

)
.E6 .D5 6 

. 

(
x y 

y2 + z3 x

)
.E7 .E6 7 

. 

(
x y 
yz x + zk

)
, 2 ≤ k .D2k+1 .A2k . 2k + 1

. 

(
x y 

yz + zk x

)
, 3 ≤ k .D2k .A2k−1 2k 

Table 2.11 Simple singularities of square matrices in two variables of size .m = 3, [12, Table  4]  

Normal form Hypersurface Tj. transf. .GL-codimension 

. 

⎛
⎜⎝

x yk 0 

±yl x 0 
0 0 y 

⎞ 

⎟⎠ , 1 ≤ k ≤ l .Dk+l+2 . 
2A0 for l = k 

A0 + Al−k−1 for l �= k 
. 2k + l + 4

. 

⎛
⎜⎝

x y 0 
0 x y 
y2 0 x 

⎞ 

⎟⎠ .E6 .A0 9 

. 

⎛
⎜⎝

x y 0 
0 x y 
xy 0 x 

⎞ 

⎟⎠ .E7 .A1 10 

. 

⎛
⎜⎝

x y 0 
y2 x 0 
0 0 x 

⎞ 

⎟⎠ .E7 2 .A0 11 

. 

⎛
⎜⎝

x y 0 
0 x y2 

y2 0 x 

⎞ 

⎟⎠ .E8 .A0 12
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Table 2.12 Simple singularities of symmetric matrices of size .m = 2 in two variables, [11, 
Theorem 1.1], extended according to [48, Table  1]  

Associated Tjurina Pair of 

Normal form hypersurface transform .K -type .GL-codim. Weyl groups 

. 

(
yk x 
x yl

)
, k  ≥ 1, l  ≥ 2 .Ak+l−1 . 

A0 + A0 for k = l 
A|l−k|−1 for k �= l 

.Ap−1 .k + l − 1 . (Ak+l−1;
Ak−1 ⊕ Al−1)

. 

(
x 0 

0 y2 + xk

)
, k  ≥ 2 .Dk+2 .A0 + Ak−1 .A1 .k + 2 . (Dk−2;Dk−3)

. 

(
x 0 

0 xy + yk

)
, k  ≥ 2 .D2k .A0 + A1 .Ak−1 2k . (D2k;A2k−1)

. 

(
x yk 

yk xy

)
, k  ≥ 2 .D2k+1 .A1 .Ak−1 .2k + 1 . (D2k+1;A2k)

. 

(
x y2 

y2 x2

)
.E6 .A2 .A1 6 . (E6;D5)

. 

(
x 0 

0 x2 + y3

)
.E7 .A0 + A2 .A2 7 . (E7;E6)

2.5.5 Skew-Symmetric Matrices 

For Haslinger’s result [56], we only reproduce his table of simple singularities (see 
Table 2.13) given by skew-symmetric .4× 4 matrices in 2 variables. All matrices in 
the table are of the block form 

. A =
(

0 B

−BT 0

)

for some .2× 2-matrix B so that the associated hypersurface singularity is given by 
.f = PfA = detB. 

Note that the classification of determinantal singularities of skew-symmetric 
matrices is incomplete and hence the list is only exhaustive for the given case, but 
does not exclude the existence of simple singularities for other values of m and p. 

2.5.6 Cohen-Macaulay Codimension 2 Singularities 

In this case the lists reproduced here (see Tables 2.14, 2.15, 2.16, 2.17 and 2.18) 
are extracted from the articles of Frühbis-Krüger [37] and of Frühbis-Krüger and 
Neumer [39]. Together with Giusti’s lists of simple ICIS, these lists are complete 
for the simple isolated Cohen-Macaulay codimension 2 singularities:
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Table 2.13 Simple singularities, skew-symmetric matrices, case m=4 

Name Matrix B Hypersurface .Gsk-codimension 

.Bkl . 

(
x yk 

yl x

)
.1 ≤ k ≤ l .Ak+l−1 . 4k + l − 1

.Sk . 

(
x xy 
y xk

)
.k ≥ 2 .Dk+2 . k + 5

.M9 . 

(
x y3 

y x2

)
.E6 9 

.M10 . 

(
x xy2 

y x2

)
.E7 10 

.M11 . 

(
x y4 

y x2

)
.E8 11 

.Fk . 

(
x 0 

0 y2 + xk

)
.k ≥ 2 .Dk+2 . k + 8

.Gk . 

(
x 0 

0 xy + yk

)
.k ≥ 3 .D2k 5k 

.Hkl . 

(
x yk 

yl xy

)
.2 ≤ k ≤ l .Dk+l+1 . 4k + l + 1

.T12 . 

(
x y2 

y2 x2

)
.E6 12 

.T13 . 

(
x y2 

0 x2 + y3

)
.E8 14 

.T16 . 

(
x 0 

0 x2 + y3

)
.E7 16 

Table 2.14 Simple non-ICIS 
fat point singularities in the 
plane 

.Ξk . 

(
x y 0 
0 xk y

)
.k + 3 . k ≥ 1

The list of simple space curve singularities from [37] reads: 
The list of simple ICMC2 surface singularities from [39] is given in Table 2.16 

below. The Tjurina number . τ is equal to both the .GL-Tjurina number of the defining 
matrix .A ∈ C{x, y, z,w}2×3, as well as the Tjurina number of the associated germ 
.(X2

A, 0) ⊂ (C4, 0) according to Corollary 2.3.19. This list recovers the rational 
triple points from [98] and we give the corresponding name in the last column. The
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Table 2.15 Simple non-ICIS 
space curve singularities 

Type Normal form .μ . τ

. 
Ak−3 ∨ L 

k ≥ 4 
. 

(
z y xk−3 

0 x y

)
.k − 2 . k − 1

.E6(1) . 

(
z y x2 

x z y

)
4 5 

.E7(1) . 

(
z + x2 y x 

0 z y

)
5 6 

.E8(1) . 

(
z y x3 

x z y

)
6 7 

.J2,0(2) . 

(
z + x2 y x2 

0 z y

)
6 7 

.J2,1(2) . 

(
z + x2 y x3 

0 z y

)
7 8 

.E12(2) . 

(
z y x3 

x2 z y

)
8 9 

. 
Dk+4 ∨ L 

k ≥ 0 
. 

(
z 0 xk+2 − y2 

0 x y

)
.k + 5 . k + 6

.E6 ∨ L . 

(
z −y2 −x3 

0 x y

)
7 8 

.E7 ∨ L . 

(
z x3 − y2 0 

0 x y

)
8 9 

.E8 ∨ L . 

(
z −y2 −x4 

0 x y

)
9 10 

.S∗6 . 

(
z x y 
0 y x2 − z2

)
6 7 

.T ∗
7 . 

(
z x y 
0 y x2 − z3

)
7 8 

.U∗
7 . 

(
z xy x2 

x z y

)
7 8 

.W ∗
8 . 

(
z y2 x2 

x z y

)
8 9
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Table 2.16 Simple normal surface singularities in . (C4, 0)

Name of triple 

Type Normal form .τ point in [98] 

.Λ1,1 . 

(
w y x 
z w y

)
2 . A0,0,0

.Λk,1 . 

(
w y x 
z w yk

)
.k ≥ 2 .k + 1 . A0,0,k−1

.Λk,l . 

(
wl y x 
z w yk

)
.k ≥ l ≥ 2 .k + l . A0,l−1,k−1

. 

(
z y x 
x w y2 + zk

)
.k ≥ 2 .k + 3 . Ck+1,0

. 

(
z y x 
x w yz + yk w

)
.k ≥ 1 .2k + 4 . B2k+2,0

. 

(
z y x 
x w yz + yk

)
.k ≥ 3 .2k + 1 . B2k−1,0

. 

(
z y x 
x w z2 + yw

)
7 . D0

. 

(
z y x 
x w z2 + y3

)
8 . F0

. 

(
z y + wl wm 

wk y x

)
.k, l,m ≥ 2 .k + l +m − 1 . Ak−1,l−1,m−1

. 

(
z y xl + w2 

wk x y

)
.k, l ≥ 2 .k + l + 2 . Cl+1,k−1

. 

(
z y + wl xw 

wk x y

)
.k, l ≥ 2 .k + 2l + 1 . B2l,k−1

. 

(
z y xw + wl 

wk x y

)
.k ≥ 2, l ≥ 3 .k + 2l . B2l+1,k−1

. 

(
z y + w2 x2 

wk x y

)
.k ≥ 2 .k + 6 . Dk−1

. 

(
z y x2 + w3 

wk x y

)
.k ≥ 2 .k + 7 . Fk−1

. 

(
z y xw + wk 

y x z

)
.3k + 1 . H3k

. 

(
z y xw 
y x z + wk

)
.3k + 2 . H3k+1

. 

(
z y xw 

y + wk x z

)
.3k + 3 .H3k+2

(continued)
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Table 2.16 (continued) 

Name of triple 

Type Normal form .τ point in [98] 

. 

(
z y w2 

y x z + x2

)
8 

. 

(
z y x2 

y x z + w2

)
9 

. 

(
z y x3 + w2 

y x z

)
9 

last three entries of the list are the nameless sporadic members from [5] in the  same  
order as there and in [98]. The Milnor numbers of the smoothings (i.e. the second 
Betti number of . M2

A) can be computed as .μ = τ − 1 by virtue of the “if”-part of 
Wahl’s conjecture 2.5.1. 

For the simple ICMC2 threefold singularities we extend the list from [39] by  
the middle Betti number of the smoothing as in [40]. Recall that the second Betti 
number is always equal to 1, cf. Theorem 2.5.20.
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Table 2.17 Simple three-fold singularities in . (C5, 0)

Transpose of the Tjurina Singularities 

presentation matrix A number .τ in Tj.-transf. . b3(M
2
A)

. 

(
x y z 
v w x

)
1 - 0 

. 

(
x y z 
v w xk+1 + y2

)
.k + 2 .Ak k 

. 

(
x y z 
v w xy2 + xk−1

)
.k + 2 .Dk k 

. 

(
x y z 
v w x3 + y4

)
8 .E6 6 

. 

(
x y z 
v w x3 + xy3

)
9 .E7 7 

. 

(
x y z 
v w x3 + y5

)
10 .E8 8 

. 

(
w y x 
z w y + vk

)
.2k − 1 - 0 

. 

(
w y x 
z w yk + v2

)
.k + 2 .Ak−1 . k − 1

. 

(
w y x 
z w yv + vk

)
2k .A1 1 

. 

(
w + vk y x 

z w yv

)
.2k + 1 .A1 1 

. 

(
w + v2 y x 

z w y2 + vk

)
.k + 3 .Ak−1 . k − 1

. 

(
w y x 
z w y2 + v3

)
7 .A2 2 

. 

(
v2 + wk y x 

z w v2 + yl

)
.k + l + 1 .Ak−1, .Al−1 . k + l − 2

. 

(
v2 + wk y x 

z w yv

)
.k + 4 .Ak−1, .A1 k 

. 

(
v2 + wk y x 

z w y2 + vl

)
.k + l + 2 .Ak−1, .Al−1 . k + l − 2

. 

(
wv + vk y x 

z w yv + vk

)
.2k + 1 . A1, .A1 2 

. 

(
wv + vk y x 

z w yv

)
.2k + 2 . A1, .A1 2

(continued)
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Table 2.17 (continued) 

Transpose of the Tjurina Singularities 

presentation matrix A number .τ in Tj.-transf. . b3(M
2
A)

. 

(
wv + v3 y x 

z w y2 + v3

)
8 . A1, .A2 3 

. 

(
wv y x 
z w y2 + v3

)
9 . A1, .A2 3 

. 

(
w2 + v3 y x 

z w y2 + v3

)
9 . A2, .A2 4 

. 

(
z y x 
x w v2 + y2 + zk

)
.k + 4 .Dk+1 . k + 1

. 

(
z y x 
x w v2 + yz + yk w

)
.2k + 5 .A2k+2 . 2k + 2

. 

(
z y x 
x w v2 + yz + yk+1

)
.2k + 4 .A2k+1 . 2k + 1

. 

(
z y x 
x w v2 + yw + z2

)
8 .D5 5 

. 

(
z y x 
x w v2 + y3 + z2

)
9 .E6 6 

. 

(
z y x + v2 

x w vy + z2

)
7 .D3 3 

. 

(
z y x + v2 

x w vz + y2

)
8 .A4 4 

. 

(
z y x + v2 

x w z2 + y2

)
9 .D5 5
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Table 2.18 Simple four-fold singularities in . (C6, 0)

Type Normal form A .τGL(A) . τ(X1
A, 0)

.Ω1 . 

(
x y v 
z w u

)
0 0 

.Ωk . 

(
x y v 
z w x + uk

)
.k ≥ 2 .k − 1 . k − 1

.A
�
k . 

(
x y z 
w v u2 + xk+1 + y2

)
.k ≥ 1 .k + 2 1 

.D
�
k . 

(
x y z 
w v u2 + xy2 + xk−1

)
.k ≥ 4 .k + 2 1 

.E
�
6 . 

(
x y z 
w v u2 + x3 + y4

)
8 1 

.E
�
7 . 

(
x y z 
w v u2 + x3 + xy3

)
9 1 

.E
�
8 . 

(
x y z 
w v u2 + x3 + y5

)
10 1 

. 

(
x y z 
w v ux + yk + ul

)
.k ≥ 2, l ≥ 3 .k + l − 1 . l − 1

. 

(
x y z 
w v x2 + y2 + u3

)
6 2 

.F
�
q,r . 

(
w y x 
z w + vu y + vq + ur

)
.q, r ≥ 2 .q + r . q + r

.G
�
5 . 

(
w y x 
z w + v2 y + u3

)
7 7 

.G
�
7 . 

(
w y x 
z w + v2 y + u4

)
10 10 

.H
�
q+3 . 

(
w y x 
z w + v2 + uq y + vu2

)
.q ≥ 3 .q + 5 . q + 5

.I
�
2q−1 . 

(
w y x 
z w + v2 + u3 y + uq

)
.q ≥ 4 .2q + 1 .2q + 1
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Table 2.18 (continued) 

Type Normal form A .τGL(A) . τ(X1
A, 0)

.I
�
2r+2 . 

(
w y x 
z w + v2 + u3 y + vur

)
.r ≥ 3 .2r + 4 . 2r + 4

. 

(
w y x 
z w + vk1 + uk2 yl + uv

)
.k1, k2, l ≥ 2 .k1 + k2 + l − 1 . k1 + k2

. 

(
w y x 
z w + v2 u2 + yv

)
6 4 

. 

(
w y x 
z w + uv u2 + yv + vk

)
.k ≥ 3 .k + 4 . k + 2

. 

(
w y x 
z w + vk u2 + yv + v3

)
.k ≥ 3 .2k + 2 . 2k + 1

. 

(
w y x 
z w + uvk u2 + yv + v3

)
.k ≥ 2 .2k + 5 . 2k + 4

. 

(
w y x 
z w + v3 u2 + yv

)
9 7 

. 

(
w y x 
z w + vk u2 + y2 + v3

)
.k ≥ 3 .2k + 3 . 2k + 1

. 

(
w y x 
z w + uvk u2 + y2 + v3

)
.k ≥ 2 .2k + 6 . 2k + 4
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3.1 Introduction 

3.1.1 Overview 

Roughly speaking, an arc is a very small portion of a curve on a scheme and an 
m-jet is the approximation up to degree m of an arc. The space of arcs is the set of 
all arcs on a scheme and the space of m-jets is the  set of all  m-jets on a scheme. 
These spaces have the natural scheme structures and reflect the properties of the 
base scheme. The space of arcs plays the following roles: 

1. a role to describe singularities of a variety (local problem); 
2. a role to describe the global structure of a variety (global problem) and 
3. the role as a differential algebra (algebraic problem). 

These roles are based on understandings of the structure of the arc space, which 
is simultaneously developing with the study on 1–3. We should mention that these 
roles mutually interact and the works corresponding to them are not exclusively 
classified into one of the roles 1–3. We should also mention that the theory of the 
space of arcs/jets is still developing, so in the future, more roles will potentially 
appear. 

The following is a brief history of the development of the space of arcs/jets whilst 
mentioning the roles 1–3 in each step. 

3.1.2 Brief History 

The space of arcs and the space of m-jets appeared for the first time in the short 
preprint in 1968 by John Forbes Nash. But according to an expert, Monique 
Lejeune-Jalabert, of Nash problem, the concepts, arcs and jets were already studied 
by Isaac Newton in seventeenth century. In his book “ La Méthode des Fluxions et 
des Suites Infinies” Newton shows the method to express the .x, y-coordinates of a 
plane curve by one parameter series which is the origin of an arc. Actually it is a 
natural question how to describe a curve by one parameter and it is not so mysterious 
to find this question in old literature. But we should have waited till the twentieth 
century for the concept “moduli space” consisting of all such parametrization. 

In 1968, John Forbes Nash wrote a short preprint “Arc structures of singularities” 
in which he introduced the space of arcs. The preprint was not published at the 
beginning, but circulated in the world and was read by many people. 

In 1995, the paper was eventually published as [81] in the issue of celebration 
of Nobel laureate Nash in Duke Mathematical Journal. Twenty seven years have 
passed since the paper was written. In those years Nash had suffered from mental 
disease, but later recovered miraculously, about which the reader can see in the book 
“A Beautiful Mind” [80].



3 Singularities, the Space of Arcs and Applications to Birational Geometry 163

Coming back to mathematics, the paper by Nash also posed a problem, so called 
“the Nash Problem”. After the preprint was circulated around the world in 1968, 
the space of arcs in relation with the Nash problem is studied by many people, 
Bouvier, Gonzalez-Sprinberg, Hickel, Lejeune-Jalabert, Nobile, Reguera-Lopez and 
others (see, [12, 39, 44, 68–70, 82, 89]). The first direct answer to the Nash Problem 
is obtained by Ana Reguera ([89]) in 1995. This is an affirmative answer to the 
problem in the case of simple singularities on a surface. Then, by the contributions 
of many people, the problem was completely solved in 2013. It took 45 years after 
the problem was posed. [1, 10–13, 19, 20, 38, 39, 46, 54, 63, 70, 71, 74, 84–90, 92] 
The reader can see a more detailed history about the Nash Problem in Section 
4. As a matter of fact, the problem is affirmatively solved for two-dimensional 
singularities by J.F.de Bobadilla and M.P.Pereira [11] and toric singularities of 
arbitrary dimension as well by S. Ishii and J. Kollár [46]. But otherwise, it was 
negatively solved by S. Ishii and Kollár for dimension greater than 3 and by T. De 
Fernex [19], J. Johnson and J. Kollár [63] for dimension 3. In spite of the fact that the 
answer is negative for many cases, the Nash Problem still holds great significance. 
The problem bridges the theory of arc space and the theory of birational geometry. 
So the Nash Problem plays an important role on (1) in a viewpoint of birational 
geometry. 

A surprising step in this direction is made by M. Mustaţǎ in [77] at the beginning 
of the twenty-first century. He characterizes a locally complete intersection canoni-
cal singularity (a kind of singularity in birational geometry) by irreducibility of all 
the spaces of jets. After that there appear similar characterizations of singularities in 
birational geometry in terms of the space of arcs/jets (see Corollary 3.5.38). Some 
birational invariants (“mld” and “lct”) of singularities are also interpreted in terms 
of the arc space. By making use of the interpretations some important results in 
birational geometry are obtained. One important point about these invariant is that 
the interpretations by the space of arcs/jets also work for the base field of positive 
characteristic. Comparing with the case of characteristic 0, algebraic geometry of 
positive characteristic is difficult to study, because some convenient properties do 
not hold in positive characteristic [60]. In such a situation, the interpretations by the 
space of arcs are expected to play significant roles. These things will be explained 
in Section 5. 

Aside from the Nash Problem, a remarkable idea “motivic integration” on the 
space of arcs is introduced by Kontsevich [67] in 1995. He proved that birationally 
equivalent Calabi-Yau manifolds have the same Hodge numbers by making use 
of motivic integration. This is considered as the role (2) of the space of arcs. 
Unfortunately there is no written version of [67], however we can read the papers 
by J. Denef and F. Loeser [23–27] which describe their own developments of 
the theory of motivic integration including Kontsevich’s original idea. Motivic 
integration leads the people to “motivic zeta function” on the arc space [23, 24] 
and also Batyrev’s “stringy function” [7, 8]. These functions describe global and 
local structures of the variety, therefore these are considered as the roles (2) and 
also (1) of the space of arcs. Local theory of singularities in terms of zeta function 
is developed by Veys [93–95] and Veys and Zuniga-Galindo[96]. In this paper we
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do not step into motivic integration, since there are many good expository papers by 
A. Craw [17], W. Veys [97], F. Loeser [72]. 

The space of arcs/jets on an affine variety becomes an affine scheme and the 
coordinate ring of the space of arcs/jets has a canonical structure of differential 
algebra. From this viewpoint, the space of arcs/jets is studied by Arakawa and 
Moreau [4], Buium [15], and Kolchin [64]. These are the role (3) of the space of 
arcs. 

Because of the limitation of the pages, the proofs are given only when the proof 
helps the understanding of new concepts. For statements for which we omit the 
proofs, we show the citations so that the reader can find the proofs. 

3.1.3 The Goal of this Chapter 

In this expository paper, we introduce the space of arcs/jets and show basic 
properties of the space of arcs/jets with a focus on (1) in a viewpoint of birational 
geometry. 

For the reader not so familiar to birational geometry, we introduce basic notions 
in birational geometry in the fifth section. 

The reader interested in the other roles is encouraged to see the references cited 
above. 

Throughout this paper k is an algebraically closed field of arbitrary characteristic 
unless otherwise stated and a variety is an irreducile reduced separated scheme of 
finite type over k. The basic knowledge of algebraic geometry is based on [43] by  
Hartshorne. 

3.2 Construction of the Space of Jets and the Space of Arcs 

3.2.1 Construction of the Space of Jets 

Definition 3.2.1 Let X be a scheme of finite type over k and K ⊃ k a field 
extension. For m ∈ N, a  k-morphism Spec K[t]/(tm+1) → X is called an m-jet 
of X and a k-morphism SpecK[[t]] → X is called an arc of X. We denote the 
unique point of SpecK[t]/(tm+1) by 0, while the closed point of Spec K[[t]] by 0 
and the generic point by η. 

Theorem 3.2.2 Let X be a scheme of finite type over k. Let 𝒮ch/k be the category 
of k-schemes and 𝒮et the category of sets. Define a contravariant functor FX 

m : 
𝒮ch/k → 𝒮et by 

.FX
m (Z) = Homk(Z ×Spec k Spec k[t]/(tm+1),X)
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for an object Z of 𝒮ch/k. And for a morphism f : Z → Z′ in 𝒮ch/k, define 
FX 

m (f ) : 

. Homk(Z
′ ×Spec k Spec k[t]/(tm+1),X) → Homk(Z ×Spec k Spec k[t]/(tm+1),X)

by α′ �→ α′ ◦ (f × 1). 
Then, FX 

m is representable by a scheme Xm of finite type over k. This Xm is called 
the space of m-jets of X or the m-jet scheme of X. 

Here, “FX 
m is representable by Xm” means that the functor FX 

m is naturally 
isomorphic (i.e., there exists an invertible natural transformation) to the functor 
Homk(Z, Xm). In particular, for an object Z ∈ 𝒮ch/k the following bijection holds: 

.Homk(Z,Xm) � Homk(Z ×Spec k Spec k[t]/(tm+1),X). (3.1) 

The above theorem is proved in [14, p. 276]. In this paper, we prove this by 
a concrete construction of Xm for affine X and then patching them together for a 
general X. For our proof, we need some preparatory discussions. 

Note 3.2.3 Let X be a k-scheme. Assume that FX 
m is representable by Xm for every 

m ∈ N. Then, for m < m′, the canonical surjection k[t]/(tm′+1) → k[t]/(tm+1) 
induces a morphism 

. ψm′,m : Xm′ → Xm.

Indeed, the canonical surjection k[t]/(tm′+1) → k[t]/(tm+1) induces a morphism 

. Z ×Spec k Spec k[t]/(tm′+1) ← Z ×Spec k Spec k[t]/(tm+1),

for an arbitrary k-scheme Z. Therefore we have a map 

. Homk(Z ×Spec k Spec k[t]/(tm′+1),X) → Homk(Z ×Spec k Spec k[t]/(tm+1),X)

which gives the map by the bijection (3.1) 

. Homk(Z,Xm′) → Homk(Z,Xm).

Take, in particular, Xm′ as Z, 

. Homk(Xm′ , Xm′) → Homk(Xm′ , Xm)

then the image of idXm′ ∈ Hom(Xm′ , Xm′) by this map gives the required 
morphism.
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This morphism ψm′,m is called a truncation morphism. In particular for m = 0, 
ψm′,0 : Xm′ → X is denoted by πm. When we need to specify the scheme X, we  
denote it by πX 

m . 
Actually ψm′,m “truncates” a power series in the following sense: A point α of 

Xm′ gives an m′-jet α : Spec K[t]/(tm′+1) → X, which corresponds to a ring 
homomorphism α∗ : A → K[t]/(tm′+1), where A is the affine coordinate ring of 
an affine neighborhood of the image of α. For every f ∈ A, let  

. α∗(f ) = a0 + a1t + a2t
2 + · · · + amtm + · · · + am′ tm

′
,

then 

. (ψm′,m(α))∗(f ) = a0 + a1t + a2t
2 + · · · + amtm.

This fact can be seen by letting Z = {α} in the above discussion. 
As we did already in the above argument, we denote the point of Xm correspond-

ing to α : Spec K[t]/(tm+1) → X by the same symbol α. Then, we should note that 
πm(α) = α(0), where in the left hand side we regard α as a point of Xm, while in 
the right hand side we regard it as a morphism Spec K[t]/(tm+1) → X. 

3.2.2 Morphisms of the Spaces of Jets 

Proposition 3.2.4 Let f : X → Y be a morphism of k-schemes of finite type. 
Assume that the functors FX 

m and F
Y 
m are representable by Xm and Ym, respectively. 

Then for every m ∈ N there is a canonical morphism fm : Xm → Ym such that the 
following diagram is commutative: 

. 

Xm
fm−→ Ym

πX
m ↓ ↓ πY

m

X
f−→ Y

.

Proof Let Xm × Spec k[t]/(tm+1) → X be the “universal family” of m-jets of X, 
i.e., it corresponds to the identity map in Homk(Xm,Xm). By compositing this map 
and f : X → Y , we obtain a morphism 

. Xm × Spec k[t]/(tm+1) → Y,

which gives a morphism Xm → Ym. Pointwise, this morphism maps an m-jet α ∈ 
Xm of X to the composite f ◦ α which is an m-jet of Y . To see this, just take a point 
α ∈ Xm and see the image of {α} ×  Spec k[t]/(tm+1) → Y . The commutativity of 
the diagram follows from this description. �
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Proposition 3.2.5 For k-schemes X and Y , assume that the functor FX 
m and F

Y 
m are 

representable by Xm and Ym, respectively. If f : X → Y is an étale morphism, then 
Xm � Ym ×Y X, for every m ∈ N. 

Proof By the above proposition we have a commutative diagram: 

. 

Xm
fm−→ Ym

↓ ↓
X

f−→ Y

.

It is sufficient to prove that for every commutative diagram: 

. 

Z −→ Ym

↓ ↓
X

f−→ Y

,

there is a unique morphism Z → Xm which is compatible with the projections to X 
and Ym. By definition of Ym, we are given the following commutative diagram: 

. 

Z −→ Z ×Spec k Spec k[t]/(tm+1)

↓ ↓
X

f−→ Y.

As f is étale, there is a unique morphism Z ×Spec k Spec k[t]/(tm+1) → X which 
makes the two triangles commutative. This gives the required morphism: 

. Z → Xm.

�
As a corollary of this proposition, we obtain the following lemma: 

Lemma 3.2.6 Let U ⊂ X be an open subset of a k-scheme X. Assume the 
functors FX 

m and F
U 
m are representable by Xm and Um, respectively. Then, Um = 

(πX 
m )

−1(U). 

Proof of Theorem 3.2.2 Since a k-scheme X is separated, the intersection of two 
affine open subsets is again affine. Therefore, for an affine covering {Ui}i of a k-
scheme X, if the functor F Ui 

m is representable by (Ui)m for every i, then we can 
patch (Ui)m’s together to obtain Xm by Lemma 3.2.6. Now, it is sufficient to prove 
the representability of FX 

m for affine X. Let  X be Spec R, where we denote R = 
k[x1, . . . , xn]/(f1, .., fr). It is sufficient to prove the representability for an affine 
variety Z = Spec A. Then, we obtain that 

. (3.2.2.1) Hom(Z × Spec k[t]/(tm+1), X) � Hom(R, A[t]/(tm+1)) 

. �
{
ϕ ∈ Hom

(
k[x1, ., xn], A[t]/(tm+1)

)∣∣∣ ϕ(fi) = 0 for i = 1, .., r
}

.
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If we write ϕ(xj ) = a (0) j + a (1) j t + a (2) j t2 + .. + a (m) 
j tm for a (l) j ∈ A, it follows that 

. ϕ(fi) = F
(0)
i (a

(l)
j ) + F

(1)
i (a

(l)
j )t + .. + F

(m)
i (a

(l)
j )tm

for polynomials F (s) i in a (l) j ’s (1 ≤ j ≤ n, 0 ≤ l ≤ s). Then the above set (3.2.2.1) 
is described as follows: 

. =
{
ϕ ∈ Hom

(
k
[
xj , x

(1)
j , ., x

(m)
j | j = 1, ., n

]
, A

)∣∣∣ϕ(x
(l)
j ) = a

(l)
j , F

(s)
i (a

(l)
j ) = 0

}

. = Hom
(
k

[
xj , x

(1)
j , ., x

(m)
j

]
/(F

(s)
i (x

(l)
j )), A

)
.

If we define Xm = Spec k[xj , x  (1) j , ., x  (m) 
j ]/(F (s) i (x (l) j )), the last set is bijective to 

. Hom(Z,Xm).

This completes the proof of Theorem 3.2.2. �
Remark 3.2.7 The functor FX 

m is also representable even for k-scheme of non-finite 
type over k. The existence of the space of jets for wider class of schemes is presented 
in [98]. 

3.2.3 The Space of Arcs 

Definition 3.2.8 The system {ψm′,m : Xm′ → Xm}m<m′ is a projective system. Let 
X∞ = lim←−m Xm and call it the space of arcs of X or arc space of X. Note that 
X∞ is not of finite type over k if dim X >  0. 

Remark 3.2.9 The reader may be afraid that the projective limit of the schemes 
lim←−m Xm may not exist. But in our case we need not to worry, since for an affine 
scheme X = Spec R, the  m-jet scheme Xm = Spec Rm is affine for every m ∈ N. 
Here, the morphisms ψ∗ 

m′,m : Rm → Rm′ corresponding to ψm′,m are direct system. 
It is well known that there is a direct limit R∞ = lim−→m Rm in the category of k-
algebras. The affine scheme Spec R∞ is our projective limit of Xm. For a general 
k-scheme X, we have only to patch affine pieces Spec R∞. 

Using the representability of FX 
m we obtain the following universal property of 

X∞: 

Proposition 3.2.10 Let X be a scheme of finite type over k. Then for a k-algebra A 
we obtain: 

.Homk(SpecA,X∞) � Homk(SpecA[[t]], X).
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Proof In case X is affine k-scheme X = SpecR. Then by the representability of 
FX 

m we obtain an isomorphism of projective systems: 

. 

↓ ↓ ↓
Homk(SpecA,Xm) � Homk(SpecA[t]/(tm+1),X) � Homk(R,A[t]/(tm+1))

↓ ↓ ↓
Homk(SpecA,Xm−1) � Homk(SpecA[t]/(tm),X) � Homk(R,A[t]/(tm))

.

Then, we obtain an isomorphism of the projective limits: 

. Homk(SpecA, lim←−
m

Xm) � Homk(R,A[[t]]),

which gives the required isomorphism for affine scheme X. 
For a general X, see  [9]. When we study singularities locally, we need only the 

affine case. �
Remark 3.2.11 Note that in general 

. A ⊗k k[[t]] �� A[[t]] = lim−→
m

A[t]/(tm+1).

Indeed, for example, for A = k[x], the ring A[[t]] contains ∑∞ 
i=0 fi(x)t i such that 

deg fi are unbounded, while A ⊗k k[[t]] does not contain such an element. 
Now, consider the case A = K for an extension field K ⊃ k, the bijection 

. Homk(SpecK,X∞) � Homk(SpecK[[t]], X)

shows that a K-valued point of X∞ is an arc SpecK[[t]] → X. 
In [51, Proposition 2.13] the author sloppily stated Proposition 3.2.10 for every 

k-scheme Z instead of Spec A. But actually the correct statement proved at this 
moment is in the form as Proposition 3.2.10. 

Definition 3.2.12 Denote the canonical projection X∞ → Xm induced from the 
surjection k[[t]] → k[t]/(tm+1) by ψm and the composite πm ◦ ψm by π . When we 
need to specify the base space X, we write it by πX. 

A point x ∈ X∞ gives an arc αx : Spec K[[t]] → X and π(x) = αx(0), where 
K is the residue field at x. In the same way as in the case of m-jets, we denote both 
x ∈ X∞ and αx by the same symbol α. 

For every m ∈ N, ψm(X∞) is a constructible set, since ψm(X∞) = ψm′,m(Xm′) 
for sufficiently big m′ ([41]). We know that the image of a morphism of finite type 
is a constructible set. 

Definition 3.2.13 Denote the canonical morphism X → Xm induced from the 
inclusion k ↪→ k[t]/(tm+1) (m  ∈ N ∪ {∞}) by σm. Here, we define k[t]/(tm+1) =
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k[[t]] for m = ∞. As  k ↪→ k[t]/(tm+1) is a section of the projection k[t]/(tm+1) → 
k, our morphism σm : X → Xm is a section of πm : Xm → X. 

Let x ∈ X be a point and m ∈ N∪{∞}. Then the fiber scheme π−1 
m (x) is denoted 

by Xm(x). 

For a point x ∈ X, let  K be the residue field at x, then define 

. σm(x) : SpecK[t]/(tm+1) → X

as the m-jet that factors through SpecK → X whose image is x. Therefore, σm(x) 
is the constant m-jet at x, this is denoted my xm. 

Example 3.2.14 Under the notation in the proof of Theorem 3.2.2, for  X = An 
k , 

we have (f1, . . . , fr ) = 0. Therefore, it follows Xm = An(m+1) 
k and the truncation 

morphism ψm′,m : Xm′ → Xm is the projection A
n(m′+1) 
k = An(m+1) 

k ×An(m′−m) 
k → 

An(m+1) 
k . 

Example 3.2.15 Let X be a non-singular variety of dimension n. Then for every 
m ∈ N, the space of m-jets Xm is a non-singular variety of dimension n(m + 1) 
and the truncation morphism ψm′,m : Xm′ → Xm is a locally trivial fiber space 

with the fiber A(m′−m)n 
k . Indeed, if X is non-singular, then at each point x ∈ X there 

is an open neighborhood Ux such that we have an étale morphism Ux → An 
k . By  

Proposition 3.2.5, it follows that (Ux)m � Ux ×An 
k 
An(m+1) 

k � Ux ×Spec k Amn 
k . This  

shows that πm : Xm → X is a locally trivial fiber space with the fiber Amn 
k . For  

m < m′, we have(Ux)m′ = (Ux)m ×Spec k A
(m′−m)n 
k by the discussion above. Hence, 

ψm′,m : Xm′ → Xm is a locally trivial fiber space with the fiber A
(m′−m)n 
k . 

Example 3.2.16 Let X be the hypersurface in A3 
k defined by the equation f = xy + 

z2 = 0. We leave the calculation of X1 to the reader and here we calculate X2. The  
space of 2-jets X2 is defined in A9 

k by the equations xy + z2 = x(1) y + xy(1) + 
2zz(1) = x(2) y + x(1) y(1) + xy(2) + z(1) z(1) + 2zz(2) = 0. We can prove that X2 is 
irreducible and non-normal as follows: As an open subset X \ {0} is non-singular, 
π−1 
2 (X \ {0}) is 6-dimensional non-singular variety. On the other hand π−1 

2 (0) is 
a hypersurface in A6 

k defined by the equation x
(1) y(1) + z(1) z(1) = 0, therefore its 

dimension is 5. As X2 is defined by three equations, every irreducible component 
of X2 has dimension greater than or equal to 9 − 3 = 6. By this π−1 

2 (0) does not 
produce an irreducible component of X2. Hence, X2 is irreducible. On the other 
hand, by the Jacobian matrix, we can see that the singular locus of X2 is π

−1 
2 (0). 

This locus is of codimension 1 in X2, which yields that X2 is not normal. The origin 
is the unique singular point of X and is called an “A1-singularity”. Later on, in 
Corollary 3.5.38, we will have that Xm (m ∈ N) are all irreducible. 

Example 3.2.17 Let X be the plane curve defined by x2 − y2 − x3 = 0 Then 
π−1 
1 (X \ {0}) → X \ {0} is a locally trivial fiber space over X \ {0} with the fiber 

A1 
k , which shows that π

−1 
1 (X \ {0}) is of dimension 2. On the other hand, we have
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π−1 
1 (0) � A2 

k . Therefore X1 consists of two irreducible components π−1 
1 (X \ {0}) 

and π−1 
1 (0). 

Example 3.2.18 Consider the space of 1-jets for an arbitrary scheme X of finite 
type over k. For every closed point x ∈ X, the set of closed points of π−1 

1 (x) is the 
set of morphisms Spec k[t]/(t2) → X with the image x. This set is nothing but the 
Zariski tangent space of X at x. Therefore, π1 : X1 → X is regarded as the “tangent 
bunlde” of X. 

Example 3.2.19 If X = An 
k , then X∞ = Spec k[xj , x  (1) j , x  (2) j . . .  | j = 1, . . . , n] 

which is isomorphic to A∞
k = Spec k[x1, x2, . . . , xi , . . .]. Here, we note that the set 

of closed points of A∞
k does not necessarily coincide with the set 

. k∞ := {(a1, a2, . . .) | ai ∈ k}

(see the following theorem). 

Theorem 3.2.20 ([48], Proposition 2.10, 2.11) Every closed point of A∞
k is a k-

valued point if and only if k is an uncountable field. 

3.2.4 Thin and Fat Arcs 

The concept “thin” in the following is first introduced in [33]. 

Definition 3.2.21 Let . X be a variety over . k. We say that an arc . α : SpecK[[t]] →
X is thin if . α factors through a proper closed subvariety of . X. An arc  which is not  
thin is called a fat arc. 

An irreducible subset . C in .X∞ is called a thin set if . C is contained in .Z∞ for a 
proper closed subvariety .Z ⊂ X. An irreducible subset in .X∞ which is not thin is 
called a fat set. 

In case an irreducible subset . C has the generic point .γ ∈ C (i.e., the closure . {γ }
contains . C), . C is a fat set if and only if . γ is a fat arc. 

The following holds by the definition and the valuative criterion of properness: 

Proposition 3.2.22 ([49] Proposition 2.5) Let . X be a variety over . k and . α :
SpecK[[t]] → X an arc. Then, the following hold: 

(i) . α is a fat arc if and only if the ring homomorphism . α∗ : 𝒪X,α(0) → K[[t]]
induced from . α is injective; 

(ii) Assume that . α is fat. For an arbitrary proper birational morphism .ϕ : Y → X, 
the arc . α is lifted to . Y . 

Remark 3.2.23 A fat  set in  .X∞ for a variety . X introduces a discrete valuation on 
the rational function field .K(X) of . X (see Definition 3.5.22).
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A Nash component (see section 4) is a fat set and the Nash map (see section 4) 
is just the correspondence to associate a fat set to the valuation induced from the fat 
set ([49]). 

Example 3.2.24 One of typical examples of fat sets is an irreducible cylinder 
(i.e., the pull back .ψ−1

m (S) of a constructible set .S ⊂ Xm) for a non-singular 
. X. Actually, let C be an irreducible closed subset of .Xm and take an .m-jet . αm :
Spec k[t]/(tm+1) → X in . C, then, at a neighborhood of .x = αm(0) = πm(αm), . X
is étale over . An

k . Therefore, we may assume that .X = An
k and .x = 0. Assume that 

.ψ−1
m (αm) is thin, then it is contained in .Z∞ for some proper closed subset .Z ⊂ X. 

The .m-jet . αm corresponds to a ring homomorphism 

. α∗
m : k[x1, . . . , xn] → k[t]/(tm+1), α∗

m(xi) =
m∑

j=1

a
(j)
i tj .

Let .x(j)
i be an indeterminate for every .i = 1, . . . , n and .j ≥ m + 1. Let  

. α∗ : k[x1, . . . , xn] → k(x
(j)
i | i = 1, .., n, j ≥ m + 1)[[t]]

be an arc defined by 

. α∗(xi) =
m∑

j=1

a
(j)
i tj +

∞∑
j=m+1

x
(j)
i tj .

Let .α∗(f ) = F0(a
(j)
i , x

(j)
i ) + F1(a

(j)
i , x

(j)
i )t + · · · + F
(a

(j)
i , x

(j)
i )t
 + · · · for 

.f ∈ IZ . Then, as . x
(j)
i ’s are indeterminates there is . 
 such that .F
 �= 0. Hence, we 

obtain .α ∈ ψ−1
m (C) such that .α �∈ Z∞. 

Example 3.2.25 ([21]) For a singular variety . X, an irreducible cylinder is not 
necessarily fat. Indeed, let . X be the Whitney Umbrella that is a hypersurface defined 
by .xy2 − z2 = 0 in . A3

k . For .m ≥ 1, let  

. α∗
m : k[x, y, z]/(xy2 − z2) → k[t]/(tm+1)

be the .m-jet defined by .αm(x) = t, αm(y) = 0, αm(z) = 0. Then, the cylinder 
.ψ−1

m (αm) is contained in .Sing(X)∞, where .Sing(X) = (y = z = 0). This is proved 
as follows: Let an arbitrary .α ∈ ψ−1

m (αm) be induced from 

. α∗ : k[x, y, z] → k[[t]]
with 

.α∗(x) =
∞∑

j=1

aj t
j , α∗(y) =

∞∑
j=1

bj t
j , α∗(z) =

∞∑
j=1

cj t
j ,
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where we note that .a1 = 1. Then, the condition .α∗(xy2 − z2) = 0 implies that the 
initial term of .α∗(xy2) and that of .α∗(z2) cancel each other. If .α∗(y) �= 0, then the 
order of .α∗(xy2) is odd. On the other hand, if .α∗(z) �= 0, the order of .α∗(z2) is 
even. Hence if .α∗(y) �= 0 or .α∗(z) �= 0, then the initial term of .α∗(xy2) and that of 
.α∗(z2) do not cancel each other. Therefore, .α∗(y) = α∗(z) = 0, which shows that 
.ψ−1

m (αm) ⊂ Sing(X)∞. 

3.3 Properties of the Space of Arcs and the Space of Jets 

3.3.1 Group Actions on the Space of Jets/Arcs 

Note 3.3.1 Consider G = A1 
k \ {0} =  Spec k[s, s−1] as a multiplicative group 

scheme. Usually this group scheme is denoted byGm, but this symbol would conflict 
with the space of m-jets. Therefore we do not use the usual symbol in this paper. 
For m ∈ N ∪ {∞}, the morphism k[t]/(tm+1) → k[s, s−1, t]/(tm+1) defined by 
t �→ s · t gives an action 

. μm : G ×Spec k Spec k[t]/(tm+1) → Spec k[t]/(tm+1)

of G on Spec k[t]/(tm+1). Therefore, it gives an action 

. μXm : G ×Spec k Xm → Xm

of G on Xm. As  μm is extended to a morphism: 

. μm : A1
k ×Spec k Spec k[t]/(tm+1) → Spec k[t]/(tm+1),

we obtain the extension 

. μXm : A1
k ×Spec k Xm → Xm

of μXm. 
Note that μXm({0} ×  α) = xm, where xm is the trivial m-jet on x = α(0) ∈ X. 

Therefore, every orbit μXm(G×{α}) contains the trivial m-jet on α(0) in its closure. 

Proposition 3.3.2 For m ∈ N ∪ {∞}, let  Z ⊂ Xm be a G-invariant closed 
subset. Then the image πm(Z) is closed in X. In particular the image πm(Z) of 
an irreducible component of Z ⊂ Xm is closed in X. 

Proof Let Z ⊂ Xm be a G-invariant closed subset. Then, we obtain: 

.μXm(A1
k × Z) = Z.
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On the other hand, μXm({0} ×  Z) = σm ◦ πm(Z) by Note 3.3.1. Therefore, as Z is 
closed, it follows that 

. Z ⊃ σm ◦ πm(Z) ⊃ σm(πm(Z)),

which yields πm(Z) ⊃ πm(Z). �
Note 3.3.3 Let G := A1 \ {0} = Spec k[s, s−1] be as above. As we have an action 

. μXm : G ×Spec k Xm → Xm

of G on Xm, we have the  𝒪X-graded algebra ⊕i≥0ℛi with ℛ0 = 𝒪X such that 

. Xm = Spec⊕i≥0ℛi .

Indeed, we can define 

. ℛi := {f ∈ 𝒪Xm | μ∗
Xm(f ) = si · f }.

Lemma 3.3.4 ([56]) For every m ∈ N, the base scheme X is the categorical 
quotient of Xm by the action of G. 

Here, the definition of the categorical quotient is found in [76, Definition 0.5]. 

3.3.2 Morphisms of the Space of Jets/Arcs 

Proposition 3.3.5 Let f : X → Y be a morphism of k-schemes of finite type. Then 
there is a canonical morphism f∞ : X∞ → Y∞ such that the following diagram is 
commutative: 

. 

X∞
f∞−→ Y∞

πX
m ↓ ↓ πY

m

X
f−→ Y

.

Proof The morphism f∞ is induced as the projective limit of fm (m ∈ N) (see 
Proposition 3.2.4). �
Proposition 3.3.6 Let f : X → Y be a proper birational morphism of k-schemes 
of finite type such that f |X\W : X \ W � Y \ V , where W ⊂ X and V ⊂ Y are 
closed. Then f∞ gives a bijection 

.X∞ \ W∞ → Y∞ \ V∞.
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Proof Let α ∈ Y∞ \ V∞, then α(η) ∈ X \ V . As  X \ W � Y \ V . We obtain the 
following commutative diagram: 

. 

SpecK((t)) → Y

↓ ↓
SpecK[[t]] α−→ X

.

Then, as f is a proper morphism, by the valuative criteria of properness, there is 
a unique morphism α̃ : Spec K[[t]] → Y such that f ◦ α̃ = α. This shows the 
bijectivity as required. �
Remark 3.3.7 The bijection above is not isomorphic in general. Actually the 
following is an example that X∞ \ W∞ → Y∞ \ V∞ is not isomorphic. 

Let (Y, y) be a germ of isolated singularity and f : X → Y be a resolution of 
the singularity (Y, y). Let  W := f −1(y) and V := {y}. Take a  k-valued arc α ∈ 
(πY )−1(y)\V∞ and let α̃ ∈ X∞ be the corresponding arc to α by the above bijective 
map. Then, by Grinberg and Kazhdan [42], the formal neighborhoods (X∞)α̃ of X∞ 
at α̃ and (Y∞)α of Y∞ at α are described as follows: 

. (X∞)α̃ � D∞, and (Y∞)α � D∞ × Zz,

where D = Spfk[[x]] and Zz is the formal neighborhood of a scheme Z of finite 
type over k at a k-valued point z ∈ Z. In [28, Example], we can take Z singular at 
z, which implies that 

. (X∞)α̃ �� (Y∞)α.

The following is the version for m = ∞  of Proposition 3.2.5: 

Proposition 3.3.8 If f : X → Y is an étale morphism, then 

. X∞ � Y∞ ×Y X.

Proof As lim←−m (Ym ×Y X) = (lim←−m Ym) ×Y X, the case m = ∞  is reduced to the 
case m <  ∞ which is proved in Proposition 3.2.5. �
Proposition 3.3.9 There is a canonical isomorphism: 

. (X ×k Y )m � Xm ×k Ym,

for every m ∈ N ∪ {∞}. Here, ×k means ×Spec k for avoiding the bulky notation. 

Proof For an arbitrary k-scheme Z, 

.Homk(Z,Xm ×k Ym) � Homk(Z,Xm) × Homk(Z, Ym),
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and the right hand side is isomorphic to 

. Homk(Z ×k Spec k[t]/(tm+1),X) × Homk(Z ×k Spec k[t]/(tm+1), Y )

. � Homk(Z ×k Spec k[t]/(tm+1),X ×k Y ).

. � Homk(Z, (X ×k Y )m).

The case m = ∞  follows from this. �
Proposition 3.3.10 Let f : X → Y be an open immersion (resp. closed immersion) 
of k-schemes of finite type. Then the induced morphism fm : Xm → Ym is also an 
open immersion (resp. closed immersion) for every m ∈ N ∪ {∞}. 
Proof The open case follows from Lemma 3.2.5 and Proposition 3.3.8. For  the  
closed case, we may assume that Y is affine. If Y is defined by fi (i = 1, ., r)  in an 
affine space, then X is defined by fi (i = 1, ., r, ., u)  with r ≤ u in the same affine 
space. Then, Ym is defined by F (s) i (i = 1, ., r,  s  ≤ m) and Xm is defined by F (s) i 
(i = 1, ., r, ., u,  s  ≤ m) in the corresponding affine space. This shows that Xm is a 
closed subscheme of Ym. �
Remark 3.3.11 In the above proposition we see that the property open or closed 
immersion of the base spaces is inherited by the morphism of the space of jets and 
arcs. But some properties are not inherited. For example, surjectivity and closedness 
are not inherited. 

Example 3.3.12 There is an example that f : X → Y is surjective and closed 
but f∞ : X∞ → Y∞ is neither surjective nor closed. Let X = A2 

C and G =
〈
(

ε 0 
0 εn−1

)
〉 be a finite cyclic subgroup in GL(2, C) acting on X, where n ≥ 2 and

ε is a primitive n-th root of unity. Let Y = X/G be the quotient of X by the action 
of G. Then, it is well known that the singularity appeared in Y is An−1-singularity. 
Then the canonical projection f : X → Y is closed and surjective. We will see 
that these two properties are not inherited by f∞ : X∞ → Y∞. Let  p be the image 
f (0) ∈ Y . Then, by the commutativity 

. 

X∞
f∞−→ Y∞

↓ πX ↓ πY

X
f−→ Y,

we obtain (πX )−1(0) = f −1∞ ◦ (πY )−1(p). Here, (πX )−1(0) is irreducible, since X 
is non-singular. On the other hand (πY )−1(p) has (n−1) irreducible components by 
Petrov [81] and Ishii and Kollár [46]. Therefore the morphism f∞ is not surjective 
for n ≥ 3. As X \ {0} → Y \ {p} is étale, The morphism 

.(X \ {0})∞ → (Y \ {p})∞
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is also étale by Proposition 3.3.8. Since Y∞ is irreducible by Corollary 3.5.38, f∞ 
is dominant. Therefore, f∞ is not closed. 

Next we think of the irreducibility of the arc space or jet schemes. The following 
is proved in [64]. In [47] we gave another proof by using [46, Lemma 2.12] and a 
resolution of the singularities. Here we show a proof without a resolution. 

3.3.3 The Structure of the Space of Jets/Arcs 

Theorem 3.3.13 ([47, 64]) If characteristic of k is zero, then the space of arcs of a 
variety X is irreducible. 

Proof By Ishii and J. Kollár [46, Lemma 2.12] we obtain the following: 

(1) Given any arc φ : Spec k′[[s]] → X, we construct an arc Φ : Spec K[[s]] → X 
such that φ ∈ {Φ} and Φ(0̃) = Φ(η̃) = φ(η), where η and η̃ are the generic 
points of Spec k′[[s]] and Spec K[[s]], respectively, while 0̃ is the closed point 
of Spec K[[s]]. 

(2) We construct an arc Ψ such that Φ ∈ {Ψ } and Ψ (η̃) ∈ X \ Sing X. 

Now for this Ψ we apply the procedure (1) again, then we obtain a new arc 

. Ψ ′ : SpecK ′[[s]] → X

such that Ψ ∈ {Ψ ′} and Ψ ′(0̃′) = Ψ ′(η̃′) = Ψ (η̃) ∈ X \ Sing X, where 0̃′ (resp. η̃′) 
is the closed point (resp. the generic point) of Spec K ′[[s]]. If we denote π(Ψ ′) = 
Ψ ′(0̃′) = λ, then as λ ∈ X \ Sing X, it follows that 

. Ψ ′ ∈ π−1(X \ SingX),

where the set of the right hand side is irreducible. This yields 

. φ ∈ π−1(X \ SingX),

hence X∞ = φ ∈ π−1(X \ Sing X) which is irreducible. �
Example 3.3.14 ([46], Example 2.13) If the characteristic of k is p >  0, X∞ is not 
necessarily irreducible. For example, the hypersurface X defined by xp − yp z = 0 
has an irreducible component in (Sing X)∞ which is not in the closure of X∞ \ 
(Sing X)∞. 

Note that if the characteristic of k is 0, then every arc in (Sing X)∞ lies in the 
closure of X∞ \ (Sing X)∞. But in our case chark = p >  0, an arc (x(t), 0, 0) ∈ 
(Sing X)∞ ∩ π−1((0, 0, 0)) belongs to X∞ \ (SingX)∞ if and only if x(t) has the 
form x(t) = ∑∞ 

j=1 ajptjp>



178 S. Ishii

Example 3.3.15 ([48]) Let X be a toric variety over an algebraically closed field of 
arbitrary characteristic. Then, X∞ is irreducible. 

Next let us think of the space of m-jets. The space of m-jets of a variety is not 
necessarily irreducible even if the characteristic of k is zero (see Example 3.2.17). 

The geometric structures of X and the space of arcs/jets affect each other. 

Proposition 3.3.16 ([55]) If X is smooth, then Xm is also smooth for every m ∈ N. 
Conversely, if there is m ∈ N, such that Xm is smooth, then X is smooth. 

Generally speaking, if Xm has property (P) for some m ∈ N, then X has property 
(P) for many properties (P). 

As the k-scheme X is the categorical quotient of Xm for every m ∈ N by the 
action of G (Lemma 3.3.4), we obtain by Mumford et al. [76] the following: 

Proposition 3.3.17 ([56]) The following is a list of the statements of the form Xm 
has (P) for an m ∈ N, then X has (P). 

. 

(i) Xm reduced ⇒ X reduced
(ii) Xm connected ⇒ X connected
(iii) Xm irreducible ⇒ X irreducible
(iv) Xm locally integral ⇒ X locally integral
(v) Xm locally integral ⇒ X locally integral

and normal and normal

Example 3.3.18 The converse of (i) does not hold in general. We give here an 
example in [40]. Let X be defined by xy = 0 in  A2 

C. Then, X itself is reduced 
but Xm is not reduced for any m ∈ N. Indeed, let Im be the defining ideal of Xm in 
(A2 

C)m. Then Im is a homogeneous ideal of C[x(0) , y(0) , x(1) , y(1) , . . . , x(m) , y(m)]. 
The degree 0 part of Im is generated by 

. x(0)y(0)

and the part of degree 1 is generated by 

. x(0)y(1) + x(1)y(0)

as C[x(0) , y(0)]-modules. Then, f := x(0) y(1) �∈ Im, but  f 2 ∈ Im. 
The paper [40] shows more general statement. Let I be a reduced monomial ideal 

on ACn , then Im is not a monomial ideal in general but
√

Im is a monomial ideal for 
every m ∈ N 

Remark 3.3.19 About (ii), we have the converse statement: If X is connected, then 
Xm is connected for every m ∈ N. This can be seen as follows: Let P ∈ Xm 
be any point and let x = πm(P ). Then, the orbit OG(P ) of P by the action of 
G is irreducible and the closure OG(P ) contains σm(x). Thus, every point of Xm 
is connected to the section σm(X) by an irreducible curve. Since σm(X) � X is 
connected, Xm is connected.
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Example 3.3.20 The converse of (iii) or the converse of (iv) do not hold in general. 
For example, let X ⊂ A3 

C be a curve defined by x
3 − y2 = x2 − z3 = 0. Then, the 

main component π−1 
m (Xreg) of Xm has dimension m + 1. Here, Xreg is the open 

subset consisting of non-singular points of X. On the other hand, since π−1 
m (0) is 

defined in (πA3m)−1(0) = A3m 
C by 2m − 2 equations, it follows that dim π−1 

m (0) ≥ 
m + 2. This shows that Xm is not irreducible for any m ∈ N. As  Xm is connected, it 
also shows that Xm is not locally integral for m ∈ N. 

Example 3.3.21 The converse of (v) does not hold in general. For example, let X 
be a normal surface defined by x2 + y2 + z2 = 0 in  A3 

C. It has an A1-singularity at 
the origin. Then, Xm is irreducible by Mustaţǎ [77] but not normal for any m ∈ N. 
Indeed, it is known that Xm is of dimension 2(m+1) for every m ∈ N. On the other 
hand, we can see that dim Sing(Xm) = dim π−1 

m (0) = 2m + 1, which shows that 
Xm is not normal. 

Next we will think of further properties. 

Theorem 3.3.22 ([56]) If Xm is locally a complete intersection for an m ∈ N, then 
X is also locally a complete intersection. 

Example 3.3.23 If X is locally a complete intersection, then Xm is not necessarily 
locally a complete intersection. Example 3.3.20 shows such an example. 

Definition 3.3.24 Let X be a normal variety defined over k. 

(i) If for a Weil divisor D on X there exists r ∈ N such that rD is a Cartier divisor, 
we call D a Q-Cartier divisor on X. 

(ii) If every Weil divisor on X is Q-Cartier divisor, we say that X is Q-factorial. 
(iii) If for a canonical divisor KX of X there exists r ∈ N such that rKX is a Cartier 

divisor, then we call X a Q-Gorenstein variety and the minimal such r ∈ N 
the index of X. 

Remark 3.3.25 The property Q-Gorenstein plays an important role in birational 
geometry. Indeed, sometimes one needs to compare the canonical divisors KX and 
KY of the varietiesX and Y , respectively, in the situation that there exists a birational 
morphism ϕ : Y → X. But the problem is how to compare them, because KX and 
KY are on the different varieties and there is no canonical way to compare two 
divisors on different varieties. Here, if KX is a Cartier divisor, then one can pull it 
back directly to get a Cartier divisor ϕ∗KX on Y and compare KY and ϕ∗KX. A  
variety with Q-Cartier divisor KX is called a Q-Gorenstein variety and studied in 
the Section 3.5. 

Definition 3.3.26 Let D be a Q-Cartier Weil divisor on a normal variety X defined 
over k. Let  ϕ : Y → X be a birational morphism. Let r ∈ N be such that rD is a 
Cartier divisor. Define ϕ∗D ∈ Q ⊗Z Div(Y ) as follows: 

.ϕ∗D := 1

r
ϕ∗(rD),
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where note that ϕ∗(rD) is well defined, as rD is a Cartier divisor. The Q-Cartier 
divisor ϕ∗D is called the pull-back of D. 

Theorem 3.3.27 ([56]) If Xm is Q-factorial for an m ∈ N, then X is Q-factorial 

Theorem 3.3.28 ([56]) If Xm is Q-Gorenstein of index r for an m ∈ N, then X is 
Q-Gorenstein of index ≤ r(m + 1). 

In the following we show some results about singularities canonical, log-
canonical, terminal, and log-terminal on the jet schemes. These notions will be 
introduced in Definition 3.5.2. 

Theorem 3.3.29 ([56]) Assume chark = 0. If  Xm has at worst canonical (resp. 
terminal, log-terminal) singularities for an m ∈ N, then X has at worst canonical 
(resp. terminal, log-terminal) singularities. 

Theorem 3.3.30 ([56]) Assume chark = 0. If  Xm has at worst log-canonical 
singularities for an m ∈ N, then X has at worst log-terminal singularities. 

Theorem 3.3.31 ([56]) Let f : X → Y be a morphism of k-schemes. If the induced 
morphism fm : Xm → Ym is flat for some m ∈ N, then f is flat. 

Example 3.3.32 The converse of the theorem does not hold. Let X ⊂ A3 
C be defined 

by the equation td + xd + yd = 0, with d ≥ 3, then it is a normal surface with the 
singularity at the origin 0 = (0, 0, 0). Let  f : X → Y = A1 

C be the first projection 
(t, x, y) �→ t . Then, as f is a surjective morphism from a reduced scheme to a 
non-singular curve, it is flat. However, for every m ≥ 2 the induced morphism 
fm : Xm → Ym is non-flat. This is shown as follows: For every m ∈ N, consider the 
commutative diagram: 

. 

Xm
fm−→ Ym

πX
m ↓ ↓ πY

m

X
f−→ Y

As πY 
m is smooth, it is sufficient to prove that f ◦ πX 

m is not flat for m ≥ 2. Note that 
(πX 

m )
−1(X \ {0}) is irreducible and of dimension 2(m + 1). 

For m < d, (πX 
m )

−1(0) = (πA3 

m )
−1(0) = A3m. For  m ≥ d, as  (πX 

m )
−1(0) is 

defined by m + 1 − d equations in A3m, it follows  that  

. dim(πX
m )−1(0) ≥ 3m − (m + 1) + d ≥ 2(m + 1).

If we assume that m ≥ 2, in both cases above we have 

. dim(f ◦ πX
m )−1(0) ≥ dim(πX

m )−1(0) > 2m + 1 = dim(f ◦ πX
m )−1(t),

where 0 �= t ∈ Y . This yields that f ◦ πX 
m is not flat.



3 Singularities, the Space of Arcs and Applications to Birational Geometry 181

The structures of the space of arcs and the space of jets are determined by the 
base scheme. So, it is natural to ask whether the converse holds, i.e., whether the 
space of arcs/jets determine the base scheme. This problem can be divided into the 
global case and the local case. First we discuss the global problem. This is again 
divided into two cases. The first one is posed under the additional assumption of 
existence of certain morphisms: 

Proposition 3.3.33 Let X and Y be two schemes over k and G as in Note 3.3.3. If  
there exists a G-equivariant isomorphism Xm 

∼−→ Ym of m-jet schemes for some 
m ∈ N ∪ {∞}, then there is an isomorphism X ∼−→ Y . 

Proof As X and Y are the categorical quotients of Xm and Ym, respectively by the 
action of G (Lemma 3.3.4), the G-equivariant isomorphism of Xm and Ym provides 
with the isomorphism of the categorical quotients. �

If there is a morphism f : X → Y , the induced morphism fm : Xm → Ym 
is G-equivariant. Therefore, by the previous proposition and the universality of the 
categorical quotient, we obtain the following: 

Corollary 3.3.34 Let f : X → Y be a morphism of schemes over k. If the induced 
morphism fm : Xm → Ym is an isomorphism for some m ∈ N ∪ {∞}, then the 
morphism f is an isomorphism. 

Remark 3.3.35 This corollary can be proved directly by using the fact that the 
morphism of the base spaces induces the morphism of the sections in the jet-
schemes. 

Now for the second case of global version, let us be just given an isomorphism 
of m-jet schemes and consider if it induces an isomorphism of base schemes. The 
following is a counterexample for this problem. We use the counterexample of the 
cancellation problem called Danielewski’s example. 

Theorem 3.3.36 ([53]) Let X and Y be hypersurfaces in A3 
C defined by xz − y2 + 

1 = 0 and x2z − y2 + 1 = 0, respectively. Then, X �� Y but Xm � Ym for every 
m ∈ N ∪ {∞}. 

Now let us turn to the local problem. The following is the affirmative answer 
to the local problem assuming the existence of a morphism between the base 
schemes. Here, we note that the notation Xm(x) in the following is defined in 
Definition 3.2.13. 

Theorem 3.3.37 ([73]) Let f : (X, x) → (Y, y) be a morphism of germs of a 
varieties. Assume that f induces isomorphisms fm : Xm(x) � Ym(y) for all m ∈ 
N ∪ {∞}, then f is an isomorphism. 

Remark 3.3.38 Unlike the global version, only one isomorphism fm : Xm � Ym 
does not guarantee that f is isomorphic. Actually, for example the isomorphism 
f1 : X1(x) � Y1(y) gives just that the Zariski tangent spaces of these singularities 
are isomorphic. One can see an example with isomorphic f1 but not isomorphic f 
in the following:
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Let X ⊂ A2 
C be the closed subvariety defined by x

2 − y2 + x3 = 0. Then, 
the inclusion morphism X ↪→ A2 

C =: Y is not an isomorphism. But the induced 
morphism of the Zariski tangent spaces is an isomorphism. 

The following is a modified version of local isomorphism problem. 

Theorem 3.3.39 ([22, Proposition 4.12]) Let f : (X, x) → (Y, y) be a morphism 
of germs of a varieties. Assume that f induces bijective morphisms fm : Xm(x) → 
Ym(y) for all m ∈ N∪ {∞}  (equivalently, fm induces bijection |Xm(x)| → |Ym(y)| 
of underlying spaces), then it follows that: 

(i) The morphism f is a closed immersion; 
(ii) Let X ↪→ A be a closed immersion to a smooth variety A and let IX and IY 

be the defining ideals of X and Y , respectively, in A. Then, IX ⊃ IY holds and 
IX is integral over IY . Here, we note that by the isomorphism f1 : X1(x) �
Y1(y), which is viewed as an isomorphism of the Zariski tangent spaces, we 
can identify the ambient spaces of X and of Y . 

Conversely, let X ⊂ Y ⊂ A be closed subschemes with smooth A and 0 ∈ X a 
point. Assume that the defining ideal IX of X is integral over the defining ideal IY of 
Y around 0. Then, we obtain the equalities |Xm(0)| = |Ym(0)| of underlying spaces 
for every m ∈ N ∪ {∞}. 

At the end of this section, we show a mysterious theorem by Grinberg and 
Kazhdan [42] about the formal neighborhood of a point of the arc space. This 
result is reproved in [28] in a simple way. This theorem is also used to construct 
the example in Remark 3.3.7 in this chapter. 

Theorem 3.3.40 ([28, 41]) Let X be a scheme of finite type over a filed k, and 
Sing X the singular locus. Let γ ∈ X∞ \(Sing X)∞ be a k-valued point and (X∞)γ 
the formal neighborhood of γ . Denote the formal disk Spf(k[[t]]) by D and the 
product of countably many copies of D by D∞. Then, there exists a scheme Y = 
Y (γ  )  of finite type over k and a k-valued point y ∈ Y , such that 

. (X∞)γ � D∞ × Yy,

where Yy is the formal neighborhood of y in Y . 

It is a very interesting problem to find the relationship between the singularity of 
(Y, y) and (X, γ (0)). Some people started to study this problem. 

3.4 Introduction to the Nash Problem 

In this section, we introduce the Nash problem. The author introduced the problem 
in the expository paper [51] in 2007. After that researches on this problem developed 
remarkably, so it seems a good timing to introduce the problem again and show
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the progress after 2007. In this section, we assume the existence of resolutions of 
singularities. It is sufficient to assume that the characteristic of . k is zero. 

3.4.1 Basics for the Statement for the Nash Problem 

One of the most mysterious and fascinating problem in arc spaces is the Nash 
problem which was posed by Nash in his preprint in 1968. It is a question about 
the Nash components and the essential divisors. First we introduce the concept of 
essential divisors. 

Definition 3.4.1 Let X be a variety, .g : X1 → X a proper birational morphism 
from a normal variety . X1 and .E ⊂ X1 an irreducible divisor. Let .f : X2 → X be 
another proper birational morphism from a normal variety . X2. The birational map 
.f −1 ◦ g : X1 ��� X2 is defined on a (nonempty) open subset . E0 of E because, 
by Zariski’s main theorem, the “fundamental locus” of a birational map between 
normal varieties is a closed subset of codimension . ≥ 2. The closure of . (f −1◦g)(E0)

is called the center of E on . X2. 
We say that . E appears in . f (or in . X2), if the center of E on . X2 is also a divisor. 

In this case the birational map .f −1 ◦ g : X1 ��� X2 is a local isomorphism at the 
generic point of . E and we denote the birational transform of . E on . X2 again by . E. 
For our purposes .E ⊂ X1 is identified with .E ⊂ X2. Such an equivalence class is 
called a prime divisor over X. 

Let a prime divisor E over X appear on .g : X1 → X. If  g is not an isomorphism 
at the generic point of E, then we call E an exceptional divisor over X. 

Definition 3.4.2 Let . X be a variety over . k and let .SingX be the singular locus 
of . X. In this paper, by a resolution of the singularities of . X we mean a proper, 
birational morphism .f : Y → X with . Y non-singular such that the restriction 
.Y \ f −1(SingX) → X \ SingX of . f is an isomorphism. 

A resolution .f : Y → X whose fiber .f −1(SingX) is of pure codimension one 
is called a divisorial resolution. 

Definition 3.4.3 An exceptional divisor . E over . X is called an essential divisor 
over . X if for every resolution .f : Y → X the center of . E on . Y is an irreducible 
component of .f −1(SingX). 

For a given resolution .f : Y → X, the center of an essential divisor is called an 
essential component on . Y . 

Proposition 3.4.4 Let .f : Y → X be a resolution of the singularities of a variety 
. X. The set 

. ℰ = ℰY/X =
{

irreducible components off −1(SingX)

which are centers of essential divisors over X

}

corresponds bijectively to the set of all essential divisors over . X.
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In particular, the set of essential divisors over . X is a finite set. 

Proof The map 

. {essential divisors over X} → ℰY/X, E �→ center of E on Y

is surjective by the definition of essential components. To prove the injectivity, take 
an essential component . C and the blow up .Y ′ → Y with the center . C. Then, there 
is a unique divisor .E ⊂ Y ′ dominating . C. Let  .Y ′′ → Y ′ be a resolution of the 
singularities of . Y ′. Then, . E is the unique exceptional divisor on . Y ′′ that dominates 
. C. Therefore, every exceptional divisor over . X with the center .C ⊂ Y has the 
center contained in . E on a resolution . Y ′′ of the singularities of . X. Therefore, by the 
definition of essential divisor, this . E is the unique essential divisor whose center on 
. Y is . C. �

C. Bouvier and G. Gonzalez-Sprinberg also introduce “essential divisors” and 
“essential components” in [12] and [13], but we should note that the definitions are 
different from ours. Nash problem is about our essential divisors and not about their 
“essential divisors”. In order to avoid a confusion, we give different names to their 
“essential divisors” and “essential components” and clarify different points among 
them. 

Definition 3.4.5 ([12, 13]) An exceptional divisor . E over . X is called a BGS-
essential divisor over . X if . E appears in every resolution. An exceptional divisor 
. E over . X is called a BGS-essential component over . X if the center of . E on every 
resolution . f of the singularity of . X is an irreducible component of .f −1(E′), where 
. E′ is the center of . E on . X. 

We will see how different they are from our essential divisors and essential 
components. First we see that they coincide for 2-dimensional case. To show this 
we need to introduce the concept minimal resolution. 

Definition 3.4.6 A resolution .f : Y → X of the singularities of . X is called the 
minimal resolution if for any resolution .g : Y ′ → X, there is a unique morphism 
.Y ′ → Y over X. 

It is known that for a surface . X the minimal resolution .f : Y → X exists. It is 
characterized by the fact that . Y has no exceptional curve of the first kind over . X. 

For higher dimensional variety . X, the minimal resolution does not necessarily 
exist. For example, .X = {xy − zw = 0} ⊂ A4 has two resolutions neither of 
which dominates the other. These two resolutions are obtained as follows: First take 
a blow-up .f : Ỹ → X at the origin of . X which has the unique singular point at the 
origin. Then, . f is a resolution of the singularity of . X and the exceptional divisor 
. E of . f is isomorphic to .P1 × P1. Here we have two contractions .g1 : Ỹ → Y1, 
.g2 : Ỹ → Y2 whose restrictions on E are the first projection . p1 : E = P1×P1 → P1

and the second projection .p2 : E = P1 ×P1 → P1, respectively. Then both . Yi’s are 
non-singular, therefore .fi : Yi → X .(i = 1, 2) are resolutions of the singularity of 
. X. It is clear that there is no morphism between . Y1 and . Y2 over . X.
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Proposition 3.4.7 If . X is a surface, then each of the set of “essential divisors”, 
“BGS-essential divisors” and “BGS-essential components” are bijective to the set 
of the components of the fiber .f −1(SingX), where .f : Y → X is the minimal 
resolution. These are also essential components on the minimal resolution. 

Remark 3.4.8 Four concepts “essential divisor”, “essential component”, “BGS-
essential divisor” and “BGS-essential component” are mutually different in general. 

First, our essential component is different from the others, because it is a 
closed subset on a specific resolution and the others are all equivalence classes of 
irreducible divisors. 

Next, a BGS-essential divisor is different from a BGS-essential component or an 
essential divisor. Indeed, for .X = (xy − zw = 0) ⊂ A4

k , the exceptional divisor 
obtained by a blow-up at the origin is the unique essential divisor and also the unique 
BGS-essential component, while there is no BGS-essential divisor, since . X has a 
resolution whose exceptional set is . P1

k , which is not a divisor. 
Finally a BGS-essential component and an essential component are different. 

Indeed, consider a cone generated by .(0, 0, 1), (2, 0, 1), (1, 1, 1), .(0, 1, 1) in . R3. 
It is well known that a cone generated by integer points in a real Euclidean space 
defines an affine toric variety (see [36, 83] for basic notion of toric varieties). Let 
. X be the affine toric variety defined by this cone. Then the canonical subdivision 
adding a one dimensional cone .R≥0(1, 0, 1) is a resolution of . X. As the singular 
locus of . X is of dimension one, there is no small resolution. Therefore, the divisor 
.D(1,0,1) is the unique essential divisor, while .D(1,1,2) and .D(2,1,2) are BGS-essential 
components by the criterion [12, Theorem 2.3]. 

Definition 3.4.9 Let . X be a variety and .π : X∞ → X the canonical projection. An 
irreducible component . C of .π−1(SingX) is called a Nash component if it contains 
an arc . α such that .α(η) �∈ SingX. This is equivalent to saying that .C �⊂ (SingX)∞. 

The following lemma is already quoted for the irreducibility of the space of arcs 
(Theorem 3.3.13). 

Lemma 3.4.10 ([46]) If the characteristic of the base field . k is zero, then every 
irreducible component of .π−1(SingX) is a Nash component. 

We note that for the positive characteristic case this lemma does not hold. Indeed, 
Example 3.3.14 is an example that .π−1(SingX) has an irreducible component 
which is not a Nash component. 

Let .f : Y → X be a resolution of the singularities of . X and .El .(l = 1, .., r) the 
irreducible components of .f −1(SingX). Now we are going to introduce a map . 𝒩
which is called the Nash map 

.

⎧⎨
⎩

Nash components
of the space of arcs

of X

⎫⎬
⎭

𝒩−→
⎧⎨
⎩

essential
components

on Y

⎫⎬
⎭ �

⎧⎨
⎩
essential
divisors
over X

⎫⎬
⎭ .
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Note 3.4.11 (Construction of the Nash Map) The resolution .f : Y → X induces 
a morphism .f∞ : Y∞ → X∞ of schemes. Let .πY : Y∞ → Y be the canonical 
projection. As . Y is non-singular, .(πY )−1(El) is irreducible for every . l. Denote by 
.(πY )−1(El)

o the open subset of .(πY )−1(El) consisting of the points corresponding 
to arcs .β : SpecK[[t]] → Y such that .β(η) �∈ f −1(SingX). Let  .Ci .(i ∈ I ) be the 
Nash components of . X. Denote by . Co

i the open subset of . Ci consisting of the points 
corresponding to arcs .α : SpecK[[t]] → X such that .α(η) �∈ SingX. As  . Ci is a 
Nash component, we have .Co

i �= ∅. The restriction of . f∞ gives 

. f ′∞ :
r⋃

l=1

(πY )−1(El)
o →

⋃
i∈I

Co
i .

By Proposition 3.3.6, .f ′∞ is surjective. Hence, for each .i ∈ I there is a unique . li
such that .1 ≤ li ≤ r and the generic point . βli of .(π

Y )−1(Eli )
o is mapped to the 

generic point . αi of . Co
i . By this correspondence .Ci �→ Eli we obtain a map 

. 𝒩:
⎧⎨
⎩

Nash components
of the space of arcs
through SingX

⎫⎬
⎭ −→

⎧⎨
⎩

irreducible
components

of f −1(SingX)

⎫⎬
⎭ .

Lemma 3.4.12 The map . 𝒩 is an injective map to the subset consisting of the 
essential components on . Y . 

Proof Let .𝒩(Ci) = Eli . Denote the generic point of . Ci by . αi and the generic point 
of .(πY )−1(El) by . βl . If  .Eli = Elj for .i �= j , then .αi = f ′∞(βli ) = f ′∞(βlj ) = αj , 
a contradiction. This gives the injectivity of . 𝒩

To prove that the .{Eli : i ∈ I } are essential components on . Y , let  .Y ′ → X be 
another resolution and .Ỹ → X a divisorial resolution which factors through both . Y

and . Y ′. Let .E′
li

⊂ Y ′ and .Ẽli ⊂ Ỹ be the irreducible components of the exceptional 

sets corresponding to . Ci . Then, we can see that . Eli and . E
′
li
are the image of . Ẽli . 

This shows that . Ẽli is an essential divisor over . X and therefore . Eli is an essential 
component on . Y . �
Problem 3.4.13 Is the Nash map 

. 

⎧⎨
⎩

Nash components
of the space of arcs
through SingX

⎫⎬
⎭

𝒩−→
⎧⎨
⎩

essential
components

on Y

⎫⎬
⎭ �

⎧⎨
⎩
essential
divisors
over X

⎫⎬
⎭ .

bijective?
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3.4.2 History of the Nash Problem 

Here we will see the results for this problem according to time line. The first 
affirmative result for the Nash problem was given by Nash himself. 

Theorem 3.4.14 ([81]) The Nash problem is affirmatively answered for an .An-
singularity .(n ∈ N), where an .An-singularity is the hypersurface singularity defined 
by .xy − zn+1 = 0 in . A3

k . 

It is difficult to realize the essential divisors for higher dimensional case, but for 
two-dimensional case the essential divisors are just the exceptional divisors on the 
minimal resolution. So, the people thought that surface case is the easiest for the 
problem and many people studied the problem for surface case. The first concrete 
result after Nash’s paper is the following: 

Theorem 3.4.15 ([89]) The Nash problem is affirmatively answered for a minimal 
surface singularity. Here, a minimal surface singularity means a rational surface 
singularity with the reduced fundamental cycle. (A rational singularity is defined 
in Definition 3.5.6 in the next section.) The fundamental cycle is introduced by M. 
Artin (see [5] for the definition). 

Theorem 3.4.16 ( [70, 88, 90]) The Nash problem is affirmatively answered for a 
sandwiched surface singularity and .Dn-singularity for .n > 4. Here, a sandwiched 
surface singularity means the formal neighborhood of a singular point on a surface 
obtained by blowing up a complete ideal in the local ring of a closed point on a non-
singular algebraic surface. A complete ideal is defined by O. Zariski and Samuel 
(see [99], Vol II, Appendix 4 ), but the idea of a sandwiched singularity is that it is 
a singularity which is birationally sandwiched by non-singular surfaces. 

These are results on rational surface singularities, the following gives affirmative 
answer for some non-rational surface singularities: 

Theorem 3.4.17 ([86]) The Nash problem is affirmatively answered for a normal 
surface singularities with the reduced fiber . E of the singular point on the minimal 
resolution such that .E · Ei < 0 for every irreducible component . Ei of . E. 

This result is generalized to a wider class of surface singularities in [74]. We omit 
the statement, since it is not simple. 

The following results are for arbitrary dimension. 

Theorem 3.4.18 ([46]) The Nash problem is affirmatively answered for a toric 
singularity of arbitrary dimension. 

When we say just“toric variety”, we always assume normality of the variety. 
There is a notion “not-necessarily normal toric variety” and an even wider class 
“pretoric variety” that now we define.
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Definition 3.4.19 A variety . X is called a pretoric variety if 

(1) there are a toric variety . Z with the torus . T ′ and a finite morphism . ρ : X → Z

étale on . T ′, 
(2) for the normalization .ν : X → X, . X is a toric variety with the torus . T and 

the composite .ρ ◦ ν : X → Z is the equivariant quotient morphism by the 
group .N ′/N , where . N and . N ′ are the lattice on which the fans of . X and . Z, 
respectively, are defined, and 

(3) the subset .ν−1(SingX) is an invariant closed set on . X. 

We will see two typical examples of a pretoric variety. 

Note 3.4.20 ([37]) Here, we introduce a not-necessarily normal affine toric variety. 
A not-necessarily normal affine toric variety is of the form .XΓ = SpecC[Γ ], where 
.Γ ⊂ M = Zn is a finitely generated semigroup with . 0 and . Γ generates the abelian 
group . M . Then, the torus .T = SpecC[M] acts on . XΓ . Denote by .K(Γ ) ⊂ MR, the  
convex cone which is the convex hull of . Γ and by . Γ the intersection .K(Γ ) ∩ M . 
Then, .XΓ is a normal toric variety and the inclusion .C[Γ ] ↪→ C[Γ ] induces the 
equivariant normalization .XΓ → XΓ . 

Example 3.4.21 A not-necessarily normal toric variety is a pretoric variety. This is 
proved as follows: Let .X = SpecC[Γ ] be a not-necessarily normal toric variety of 
dimension . n. Let  .σ ⊂ NR be the cone such that .σ∨ = K(Γ ) under the notation 
as above. Let .X = SpecC[σ∨ ∩ M] be the normalization of . X. Subdivide . σ∨ into 
simplicial cones without adding any 1-dimensional cones. Let .τ1, τ2, .., τs be the 
.n-dimensional simplicial cones which are obtained by this subdivision. We can take 
generators .e(i)

1 , .., e
(i)
n of . τi in . Γ . Define .Mi = ⊕n

j=1Ze
(i)
j , then . Mi is a subgroup 

of . M of finite index. Let . M ′ be the intersection .
⋂s

i=1 Mi . Then, . M ′ is a subgroup 
of . M of finite index. It follows that .σ∨ ∩ M ′ ⊂ Γ . Indeed, an arbitrary element 
.u ∈ σ∨ ∩ M ′ is contained in .τi ∩ Mi for some . i. Then, by the definition of . Mi , 
we have that .u = ∑n

j=1 aj e
(i)
j with .aj ∈ Z≥0. As  . e

(i)
j ’s are in . Γ , it follows  that  

.u ∈ Γ . By this inclusion .σ∨ ∩ M ′ ⊂ Γ we obtain a finite morphism . ρ : X → Z =
SpecC[σ∨ ∩ M ′]. The other conditions for a pretoric variety follow immediately. 

The following is an example of a pretoric variety without a toric action. 

Example 3.4.22 Let . X be .SpecC[x, y] and . X be .SpecC[x, y3, y4], then . X is a 
non-normal toric variety with the normalization .ν : X → X. Therefore we have 

a diagram .X
ν−→ X

ρ−→ Z as in Definition 3.4.19. Here, .Z = SpecC[x, y12] is 
constructed according to the previous example. Let . X0 be .SpecC[x, y+y2, y3, y4], 
then . X0 is a pretoric variety with the diagram: .X → X0 → Z. By the definition, 
. X0 does not admit a toric action. 

Theorem 3.4.23 ([49]) The Nash problem is affirmatively answered for a pretoric 
variety of arbitrary dimension. 

Theorem 3.4.24 ([1]) The Nash problem is affirmatively answered for non-rational 
quasi-rational hypersurface singularities of arbitrary dimension.
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We have a notion of the local Nash problem which is a slight modification of the 
Nash problem ([50]). 

Theorem 3.4.25 ([50]) The local Nash problem hold true for quasi-ordinary sin-
gularities. Here, a quasi-ordinary singularity is a hypersurface singularity which 
is a finite cover over a non-singular variety with the normal crossing branch 
locus. We note that a quasi-ordinary singularity is not necessarily normal and its 
normalization is toric. 

The paper [87] by Plénat and Popescu-Pampu gives the affirmative answer to the 
Nash problem for a certain class of higher dimensional non-toric singularities. 

So far we have seen the affirmative answers. But there are negative examples 
given in [46] by Ishii and Kollár . 

Example 3.4.26 ([46]) Let . X be a hypersurface defined by . x3
1+x3

2+x3
3+x3

4+x6
5 =

0 in . A5
C. Then the number of the Nash components is one, while the number of the 

essential divisors is two. Therefore the Nash map is not bijective. 

By the above example we can construct counter examples to the Nash problem 
for any dimension greater than 3 by making the product with . An

k for .n ≥ 1. 
Therefore at that moment of the paper, the unsolved case for Nash problem was 
only 2- and 3-dimensional cases. Then, J. F. Bobadilla and M.P.Pereira proved the 
affirmative answer for 2-dimensional case. 

Theorem 3.4.27 ([11]) The Nash problem is affirmatively answered for surfaces. 

This result is based on the topological observation by Bobadilla as follows: 

Proposition 3.4.28 ([10]) Nash problem for surface singularities depends only on 
the topological type. 

Later on, algebraic proof of the Nash problem for surface is given by De Fernex 
and Docampo as a corollary of their main theorem: 

Theorem 3.4.29 ([20]) Let .ϕ : Y → X is a terminal model which means 
proper birational morphism from Y with at worst terminal singularities and .ϕ-nef 
canonical divisor of Y . Then, the irreducible exceptional divisors on Y are in the  
images of the Nash map. In particular, irreducible exceptional curves on the minimal 
resolution of a surface are in the image of the Nash map. 

Here, we should note that the minimal resolution of a surface singularity is the 
terminal model. 

The first 3-dimensional negative example for the Nash problem is given by De 
Fernex. 

Example 3.4.30 ([19]) The singularity of 3-dimensional hypersurface in . A4
C

defined by 

.(x2
2 + x2

3)x4 + x3
1 + x3

2 + x3
3 + x5

4 + x6
4 = 0
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has one Nash component and has two essential divisors. Thus the Nash map is not 
bijective. 

The following is a bit more systematic example for the negative answer to the 
Nash problem for threefolds obtained by Johnson and Kollár: 

Example 3.4.31 ([63]) For the singularities on . X(m) := (xy−z2+um = 0) ⊂ A4
C

the Nash map is not surjective for odd .m ≥ 5 but surjective for even m and .m = 3. 
Thus the simplest example where the Nash map is not bijective is 

. (xy − z2 + u5 = 0) ⊂ A4
C.

Now we can formulate a new version of the Nash problem: 

Problem 3.4.32 

(i) Characterize the image of the Nash map. 
(ii) Characterize the singularities for which the Nash problem is affirmative. 

Related to these problems, we have one characterization of the image of the 
Nash map given by Reguera [91]. To formulate her result, we introduce the concept 
“wedge” which is also used in [11]. 

Definition 3.4.33 Let X be a k-scheme. Let .K ⊃ k be a field extension. A .K-
wedge of . X is a .k-morphism .γ : SpecK[[λ, t]] → X. A  .K-wedge . γ can be 
identified to a .K[[λ]]-point on . X∞. Denote by 0 and . η the closed point and the 
generic point of .SpecK[[λ]], respectively. We call the image .γ (0) ∈ X∞ the special 
arc of . γ and call the image.γ (η) ∈ X∞ the generic arc of . γ . 

Theorem 3.4.34 ([91]) Let . E be an essential divisor over . X and .f : Y → X a 
resolution of the singularities of . X on which . E appears. Let .α ∈ X∞ be the generic 
point of .f∞(πY )−1(E) and .k(α) the residue field of . α. Then the following conditions 
are equivalent: 

(i) . E belongs to the image of the Nash map; 
(ii) For any resolution of the singularities .g : Y ′ → X and for any field extension 

. K of .k(α), any .K-wedge . γ on . X whose special arc is . α and whose generic arc 
belongs to .(πX)−1(SingX), lifts to . Y ′; 

(iii) There exists a resolution of the singularities .g : Y ′ → X satisfying condition 
(ii). 

As an application of this theorem, we obtain Theorem 3.4.16. 
There are some notions “the Nash problem for a pair .(X,Z)” consisting of a 

variety . X and a closed subset . Z (see [38, 85]).
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3.5 Applications to Birational Geometry 

3.5.1 Overview of Birational Geometry in Connection with the 
Space of Arcs 

Birational geometry is the study properties of varieties which do not change under 
birational maps. In this viewpoint we identify varieties which are birationally 
equivalent each other. In each equivalence class, is there a “good” representative? 
We think that smaller variety is better, where we say X is smaller than Y if there is 
a proper birational morphism .Y → X. 

“Find a minimal variety (called a minimal model) in the equivalence class.” 
This is one of the most important problems in birational geometry so called 

“Minimal Model Problem”. In dimension one and two, it is classically well known 
that there are smooth minimal models in an equivalence class. But in higher 
dimensional case, it is known that we cannot have such a model by the example 
following Definition 3.4.6. So we need to reformulate the Minimal Model Problem 
allowing mild singularities. In this way, mild singularities (terminal, log terminal, 
canonical, log canonical, see Definition 3.5.2 below) allowable in minimal models 
appeared around 1980. Minimal Model Problem was solved in dimension three in 
the most basic form by S. Mori [75]. Then, the problem is generalized to several 
variants. By the work [6], a large part of the problems for arbitrary dimensional 
case in characteristic 0 is solved. However in its most general setting the problem 
is still open and the main point of the problem is reduced to certain behaviors of 
“the minimal log discrepancy”, an invariant of a singularity. The research of this 
direction is still going on and the author thinks that it is good for the reader to know 
what is known and what is not. 

In this section, we discuss about the expression of this invariant by the space 
of arcs and obtain one of the required behavior for Minimal Model Problem for 
a special case. We also obtain the characterization of the mild singularities by the 
space of jets. 

3.5.2 Basics in Birational Geometry 

Henceforth, we always assume that X is normal and .Q-Gorenstein variety (see 
Definition 3.3.24). The reader who would like to study this direction closely, please 
refer to [35] or [65]. A typical example of .Q-Gorenstein variety is a variety of 
locally a complete intersection. Here, the condition that X is “locally a complete 
intersection” means that at each point of X there is an affine open neighborhood 
embedded into a smooth affine variety with codimension c and defined by exactly 
c equations in the smooth variety. In particular, a hypersurface is an example of 
locally a complete intersection.
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First we define the log discrepancy for a pair .(X, ae) consisting of a normal .Q-
Gorenstein variety X and a coherent multi-ideal sheaf .a ⊂ 𝒪X with a real exponent 
e, which means 

. ae = a
e1
1 · · · aes

s , e = (e1, . . . , es) ∈ Rs
>0

where .ai ⊂ 𝒪X are non-zero coherent ideal sheaves. 
As we assume that X is .Q-Gorenstein, for a morphism 

. ϕ : Y → X

the pull-back .ϕ∗KX is always defined and becomes a .Q-Cartier divisor on Y again 
(see, Definition 3.3.26). 

Definition 3.5.1 Let E be a prime divisor over a normal .Q-Gorenstein variety X. 
Then we define log discrepancy .kE + 1 ∈ Z of X at E as follows: 

. kE + 1 := ordE(KY − ϕ∗KX) + 1,

where .ϕ : Y → X is a birational morphism such that Y is normal, E appears on Y 
and .ordE means the coefficient of the divisor at E. 

Log discrepancy of a pair .(X, ae) consisting of a normal .Q-Gorenstein variety 
X and multi-ideal sheaf . ae with a real exponent at E is defined as follows: 

. a(E;X, ae) := kE + 1 −
s∑

i=1

ei · vE(ai ),

where . vE is the valuation defined by E. 

Definition 3.5.2 We say that a pair .(X, ae) is terminal / canonical / log terminal / 
log canonical at a point .x ∈ X if 

. inf

{
a(E;X, ae)

∣∣∣∣
E : exceptional prime divisor over X

with center containing x

}
> 1/ ≥ 1/ > 0/ ≥ 0,

respectively. 
We say that X has terminal / canonical / log terminal / log canonical singularities, 

if .(X,𝒪X) is terminal / canonical / log terminal / log canonical, respectively, at every 
point of X. 

By the definition, the following implications are clear: 
terminal . ⇒ canonical . ⇒ log terminal . ⇒ log canonical. 
One can see that if X is smooth and .a = 𝒪X, then for every exceptional prime 

divisor E over X, we have .a(E;X,𝒪X) ≥ N := dimX. Therefore we also obtain 

.smooth ⇒] terminal
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According to the definition, in order to decide whether the pair is terminal or so 
one should check all prime divisors with the center containing x. However, if there 
is a “log resolution” for the pair, then we can decide by checking only finite number 
of exceptional prime divisors. 

Definition 3.5.3 Let .(X, ae) be as above. A morphism .ϕ : Y → X is called a log 
resolution of .(X, ae), if the following hold: 

(i) . ϕ is a proper birational morphism from a non-singular variety Y ; 
(ii) the ideals .ai · 𝒪Y are all locally principal on Y ; 
(iii) the union of all exceptional sets and the divisors defined by .ai · 𝒪Y is set 

theoretically a divisor with normal crossings. 

Proposition 3.5.4 ([32, Proposition 7.2]) Let X be a normal and locally a com-
plete intersection variety defined over an algebraically closed field k of arbitrary 
characteristic. Assume there exists a log resolution .ϕ : Y → X of a pair .(X, ae). 

If .a(Ei;X, ae) > 1 / ≥ 1 / > 0 / ≥ 0, for every exceptional divisor . Ei on 
Y with the center containing x, then .(X, ae) is terminal / canonical / log terminal / 
log canonical at x, respectively. 

Remark 3.5.5 At present, existence of log resolutions is known when the base field 
k is of characteristic 0 (by Hironaka [45], see also [66]) or .dimX ≤ 3 (by Abhyankar 
[2, 3] and Cossart-Piltant [16]). 

By using a resolution of the singularities .ϕ : Y → X we have another important 
and popular notion of a singularity. 

Definition 3.5.6 We say that a variety X has rational singularity at .x ∈ X if the 
following hold: 

(i) X is normal; 
(ii) X has a resolution of the singularities .ϕ : Y → X and the vanishing . Rjϕ∗𝒪Y =

0 holds for every .j ≥ 1 in a neighborhood of x. 

Rational singularities do not affect the cohomologies between X and the smooth 
variety Y . So, a rational singularity is considered as a singularity close to a smooth 
point. It is well known that the singularities appearing on a toric variety are rational. 
It is natural to ask the relation of a rational singularity and the other classes of 
singularities defined above. 

Proposition 3.5.7 ([34, 62]) Assume the base field k is of characteristic 0. If . (X, ae)

is log terminal at .x ∈ X, then the singularity .(X, x) is rational. 

Definition 3.5.8 The minimal log discrepancy for a pair .(X, ae) at a point . x ∈ X

and at a proper closed subset .W ⊂ X is defined as follows: 

(i) When .dimX ≥ 2, 

. mld(x;X, ae) = inf{a(E;X, ae) | E : prime divisor with the center at x},
.mld(W ;X, ae) = inf{a(E;X, ae) | E : prime divisor with the center in W }.
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(ii) When .dimX = 1, define .mld(x;X, ae) and .mld(W ;X, ae) by the same 
definitions as above if the right hand sides of the above definition are non-
negative and otherwise define .mld(W ;X, ae) = −∞. 

Here, we remark that either .mld(x;X, ae) ≥ 0 or .mld(x;X, ae) = −∞ holds in 
any dimension. 

Proposition 3.5.9 Let .(X, ae) be a pair as above and .x ∈ X a point. If the pair is 
terminal / canonical / log terminal / log canonical at x, then 

. mld(x;X, ae) > 1/ ≥ 1/ > 0/ ≥ 0.

Conversely, if .mld(x;X, ae) ≥ 0, then the pair is log canonical at x. But for the 
other cases the converse does not hold in general. 

Example 3.5.10 Let .X = A3
k , .{x, y, z} a coordinate system on . A3

k and .a := (x · y). 
Then, 

. mld(0;X, a) = 1 > 0,

but .(X, a) is not log terminal at the origin 0 because the exceptional divisor E 
obtained by the blow up by the prime ideal .(x, y) has the log discrepancy 

. a(E;X, a) = kE + 1 − vE(x · y) = 1 + 1 − 2 = 0.

A modified pair .(X, ae) .(1/2 < e < 1) from the above gives an example that has 

. mld(0;X, ae) > 1,

but .(X, ae) is not terminal because for a prime divisor E as above has the log 
discrepancy 

. a(E;X, ae) = kE + 1 − e · vE(x · y) = 1 + 1 − 2e < 1.

Definition 3.5.11 Let E be a prime divisor over X with the center at x. We say that 
E computes .mld(x;X, ae) if 

. a(E,X, ae) =
⎧
⎨
⎩
mld(x;X, ae)

or
negative

Remark 3.5.12 If there exists a log resolution factored through the blow up at x, 
then there exists a prime divisor computing .mld for the pair. Therefore, if . chark =
0, then such a prime divisor always exists.
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If all . ei are rational numbers, then the set of log discrepancies is discrete, which 
implies the infimum is minimum or .−∞ and therefore there exists a prime divisor 
computing mld. 

Definition 3.5.13 For a pair .(X, ae) we define the log canonical threshold at . x ∈
X as follows: 

. lctx(X, ae) = sup
{
c ∈ R>0 | (X, aec) is log canonical at x

}
,

where . aec = a
e1c
1 · · · aesc

s

Remark 3.5.14 For a pair .(X, ae) and a point .x ∈ X the .lctx(X, ae) is obtained as 
follows: 

(i) . lctx(X, ae) = inf

{
kE+1∑
ei ·vE(ai )

∣∣∣∣
E : prime divisor with
the center containing x

}
.

(ii) If .ϕ : Y → X is a log resolution of .(X, ae) and .Ej .(j = 1, . . . , m) are prime 
divisors on Y with the center containing x, which are either exceptional or in 
the support of .ai · 𝒪Y ’s. Then it follows that: 

. lctx(X, ae) = min
j=1,...,m

{
kEj

+ 1∑
ei · vEj

(ai )

}
.

Note 3.5.15 Roughly speaking, a generalized MMP is in the form as follows: 
“In the birational equivalence class of pairs .(X, ae) with singularities of type (P), 

does there exist a minimal model .(X0, a
e
0) with the singularities of the same type?” 

Here, (P) is the representative of “terminal”, “log terminal”, “canonical”, “log 
canonical”. Note that in MMP singularities are studied under a general setting but 
in this paper we restrict our attention to locally complete intersection case, 

In order to get a minimal model, one strategy, called Minimal Model Program, 
is established around 1990 and the successful cases of the problem so far all follow 
from this program. 

This program to get a minimal model, roughly speaking, goes as follows: 

(i) If a pair with the singularities of type (P) is a minimal model, then there is 
nothing to do anymore. 

(ii) If a pair is not a minimal model, then we do 

(C) contract of extremal ray, which is to construct a certain proper birational 
morphism .X → X′ to obtain a new pair .(X′, a′e). 

Assume the new pair has the singularities of the same type. If the new pair 
.(X′, a′e) is a minimal model, we stop. Otherwise continue the process;i.e., 
go to (1) above and follow the instruction. 

Assume the new pair .(X′, a′e) does not have singularities of the same 
type, then we do the following:
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(F) make a birational map called a flip .X ��� X′′ to get a new pair . (X′′, a′′e)
instead of the contraction. 

Assume the new pair .(X′′, a′′e) is a minimal model, then we stop. 

Otherwise continue the process: i.e., go to (1) above and follow the instruction. 
In this way we carry out: step (C) or step (F). If the procedure stops at some 
stage, then it means that we get a minimal model. It is known that the possible 
number of steps (C) is limited, but that of (F) is not obvious. V. Shokurov proved 
that if the following two conjectures (ACC Conjecture and LSC Conjecture) 
hold, then the possible number of steps (F) is finite. 

See [35] for more detailed information about Minimal Model Program. 

Conjecture 3.5.16 (ACC Conjecture) Let .J ⊂ R≥0 be a DCC set. (I.e., there is no 
infinite strictly decreasing sequence in J ). Then the following set satisfies ACC (i.e., 
there is no infinite strictly increasing sequence). 

. M(N, J ) := {mld(x;X, ae) | dimX = N, a : ideal, ei ∈ J }.

Conjecture 3.5.17 (LSC Conjecture) For a pair .(X, ae) the following map is lower 
semi continuous (LSC): 

. X → R ∪ {−∞}, x �→ mld(x;X, ae),

i.e., for every .r ∈ R≥0 the set .{x ∈ X | mld(x;X, ae) > r} is an open subset of X. 

Conjecture 3.5.18 (MN Conjecture) For N and e, there exists a number .
N,e which 
depends on N and e, such that for every pair .(X, ae) and a point .x ∈ X (.dimX = N) 
there exists a prime divisor E computing .mld(x;X, ae) and satisfying .kE ≤ 
N,e. 

MN Conjecture is Mustaţǎ-Nakamura’s conjecture posed by them in [79] and 
proved for special cases (surfaces and monomial ideals on arbitrary dimensional 
affine space). 

They prove the relation of the conjecture and ACC Conjecture as follows: 

Theorem 3.5.19 (Theorem 1.5, [79]) Fix a point .x ∈ X on a variety X with 
“mild” singularities such that the assertion in MN Conjecture holds for .(X, x). 
Then, for every fixed DCC set J , the following set satisfies ACC: 

. M(J ;X, x) := {mld(x;X, ae) | a : multi-ideal with exponents ei ∈ J }.

For the precise meaning of “mild singularities”, the reader can see in [79]. 

Remark 3.5.20 In ACC Conjecture and also in MN Conjecture, X and x may vary. 
But even for fixed .x ∈ X, the problem is not easy. These conjectures appeared 
motivated by MMP, but the problems themselves are interesting from the point of 
view of singularity theory. So these are studied under various conditions and in such
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a situation the space of arcs contributed quite a bit. We will see it in the following 
subsection. 

3.5.3 Log Discrepancies via the Spaces of Arcs 

Let E be a prime divisor over a normal locally complete intersection variety X. In  
this subsection we will express the log discrepancy .kE + 1 of X at E in terms of 
the space of arcs of X. We assume that X is just a variety over k unless otherwise 
stated. First we prepare the notion of the contact loci of an ideal in the space of arcs. 

Definition 3.5.21 ([33]) For an affine variety . X and an ideal .a ⊂ 𝒪X, we define 

. Contm(a) = {α ∈ X∞ | ordα(a) = m}
and 

. Cont≥m(a) = {α ∈ X∞ | ordα(a) ≥ m},
where the order .ordα is defined by .α ∈ X∞ as follows: 

. ordα(a) := ordt α∗(a) := min{ordt α∗(f ) | f ∈ a}.
Here, .α∗ : 𝒪X → k[[t]] is the ring homomorphism corresponding to α. 

These subsets are called contact loci of the ideal . a. The subset .Cont≥m(a) is 
closed and .Contm(a) is locally closed. Indeed, let .Z ⊂ X be the closed subscheme 
defined by the ideal .a ⊂ 𝒪X, then, by the definitions we have; 

. Cont≥m(a) = ψ−1
m−1(Zm−1),

. Contm(a) = Cont≥m(a) \ Cont≥m+1(a),

which implies that the former subset is closed and the latter subset is locally closed. 
One can also see that both are cylinders. 

In Definition 3.2.21, we introduced the concepts “thin” and “fat” for an arc and 
also for an irreducible subset on the space of arcs. 

Definition 3.5.22 Let .α : SpecK[[t]] → X be a fat arc of a variety . X and 
.α∗ : 𝒪X,α(0) → K[[t]] the local homomorphism induced from . α. Here, . α(0) ∈ X

is the image of the closed point .0 ∈ SpecK[[t]] by α. By the definition of a 
fat arc, . α∗ is injective, therefore it is extended to the homomorphism of fields 
.α∗ : K(X) → K((t)), where .K(X) is the rational function field of . X. Define a 
function .vα : K(X) \ {0} → Z by 

.vα(f ) = ordt α∗(f ).
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Then, . vα is a discrete valuation of .K(X). We call it the valuation corresponding 
to . α. 

Definition 3.5.23 A valuation . v on the rational function field .K(X) of a variety . X
is called a divisorial valuation over . X if .v = q · vE for some .q ∈ N and a divisor 
. E over . X. The center of a divisor . E is called the center of the valuation .v = q · vE . 
A fat arc . α of . X is called a divisorial arc if . vα is a divisorial valuation over . X. A  
fat set is called a divisorial set if the generic point is a divisorial arc. 

Proposition 3.5.24 ([21], [60, Corollary 3.26]) Let .α ∈ X∞ be the generic point 
of an irreducible fat component of a contact locus .Contm(a) or of a cylinder . ψ−1

m (S)

(.S ⊂ Xm locally closed). Then α is a divisorial arc. 

We will think of the converse implication. 

Definition 3.5.25 ([52]) For a divisorial valuation . v over a variety . X, define the 
maximal divisorial set corresponding to . v as follows: 

. CX(v) := {α ∈ X∞ | α : fat and, vα = v},

where . { } is the Zariski closure in . X∞. 

Proposition 3.5.26 Let E be a prime divisor over X and .ϕ : Y → X a birational 
morphism on which E appears. Let .η ∈ E be the generic point. Let .α̃ ∈ Y∞ be the 
generic point of .(πY )−1(η), where .πY : Y∞ → Y is the canonical projection. Then, 

. CX(vE) = ϕ∞(α̃).

More generally for .q ∈ N, let  .ηq−1 ∈ Eq−1 be the generic point of the space of 
.(q − 1)-jets of E. Let .α̃q−1 be the generic point of .(ψY

q−1)
−1(ηq−1) Then, 

. CX(q · vE) = ϕ∞(α̃q−1).

Proof The statements of the proposition follows from 

. CX(q · vE) = ϕ∞(Contq(E0))

where .E0 ⊂ E is the open dense subset consisting of points .p ∈ E such that E and 
Y are both smooth at p ([52, Proposition 3.4]). �

The following is a kind of converse of Proposition 3.5.24: 

Proposition 3.5.27 ([21, 60]) Let X be a variety over an algebraically closed field 
of arbitrary characteristic. For every divisorial valuation v over X the maximal 
divisorial set is an irreducible fat component of a contact locus and, in particular, 
of a cylinder.
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As the arc space .X∞ of a variety X of dimension .> 0 is a scheme of infinite 
dimension over k, codimension of a closed subscheme of .X∞ is not defined in 
general. But for subscheme of special type we can define the codimension whose 
important role is describing invariants of singularities on X. 

Let X be an arbitrary variety over an algebraically closed field k, and let . n =
dimX. Let  .𝒥X ⊂ 𝒪X be the Jacobian ideal sheaf of X. In a local affine chart this 
ideal is defined as follows: 

Restrict X to an affine chart, and embed it in some . Ad
k , so that it is defined by a 

set of equations 

. f1(u1, . . . , ud) = · · · = fr(u1, . . . , ud) = 0.

Then . 𝒥X is locally defined, in this chart, by the .d −n minors of the Jacobian matrix 
.(∂fj /∂ui). Let .S ⊂ X be subscheme defined by . 𝒥X. Note that S is supported exactly 
over the singular locus of X. 

We decompose 

. X∞ \ S∞ =
∞⊔

e=0

Xe∞, where Xe∞ := {γ ∈ X∞ | ordγ (𝒥X) = e},

and let .Xm,∞ := ψm(X∞) and .Xe
m,∞ := ψm(Xe∞), where .ψm : X∞ → Xm is the 

truncation map. Also, let 

. X≤e∞ := {γ ∈ X∞ | ordγ (𝒥X) ≤ e} and X≤e
m,∞ := ψm(X≤e∞ ).

We will need the following geometric lemma on the fibers of the truncation maps. 
A weaker version of this property was proven by Denef and Loeser in [24, Lemma 
4.1]; the sharper stated here is taken from [32, Proposition 4.1]. 

Lemma 3.5.28 ([24, 32, 60]) For .m ≥ e, the morphism .Xe
m+1,∞ → Xe

m,∞ is a 
piecewise trivial fibration with fibers isomorphic to . An. 

Proposition 3.5.29 ([21, 60]) For an irreducible component C of a cylinder in . X∞
such that .C �⊂ Sing(X)∞, then there exists e such that 

. C≤e
m := ψm(C) ∩ X≤e

m,∞

is a nonempty open subset of .ψm(C) and the codimension of .C≤e
m inside . X≤e

m,∞
stabilizes for .m � e. 

Then we define 

. codim(C,X∞) := codim(C≤e
m ,X≤e

m,∞) for m � e.

Remark 3.5.30 The codimension of defined above is not the codimension in the 
usual sense. Let C be as above and .s = codim(C,X∞) the codimension as defined
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above. Let r be the maximal length of a sequence . C = C0 ⊂ C1 ⊂ · · · ⊂ Cr = X∞
of strictly increasing irreducible closed subsets of . X∞, then we have the inequality 

. r ≤ s.

The inequality can be seen as follows: from the strictly increasing sequence, 

. C = C0 ⊂ C1 ⊂ · · · ⊂ Cr

of irreducible closed subsets of . X∞, we have the sequence 

. ψm(C) = ψm(C0) ⊂ ψm(C1) ⊂ · · · ⊂ ψm(Cr)

for .m � 0, since .Ci = lim←−ψm(Ci). 

The inequality .s ≤ r can be a strict inequality, see for instance [59, Example 2.8]. 
The published version of the paper [21] contains a wrong statement 

. “s = r”

in Remark 3.3. The corrected remark is contained in the uploaded version 
arXiv:math/0701867. 

Definition 3.5.31 Let E be a prime divisor over X, then the Mather discrepancy 
.k̂E ∈ Z≥0 and the Jacobian discrepancy .jE ∈ Z≥0 are defined as follows: 

Let .ϕ : Y → X be a proper birational morphism from a normal variety Y such 
that . E appears on Y . Then, there is a canonical .𝒪Y -homomorphism 

. ϕ∗(∧nΩX) → ∧nΩY = 𝒪Y (KY )

on the smooth locus of Y , where n is the dimension of X. Denote the image of the 
homomorphism above by .Im ⊂ 𝒪Y (KY ). Then 

. Im = ℐ𝒪Y (KY )

for an ideal sheaf . ℐ in a neighborhood of the generic point .η ∈ E, because .η ∈ Y is 
a smooth point and therefore .𝒪Y (KY ) is invertible. Define 

. ̂kE := vE(ℐ) and jE := vE(𝒥X).

We call .k̂E − jE the Mather-Jacobian discrepancy of X at the prime divisor E. 

If X is non-singular, then .∧nΩX = 𝒪X(KX), and .Im = ϕ∗𝒪X(KX). Therefore 
by Definition 3.5.1, we obtain 

. ̂kE = kE

for every prime divisor E over X.
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Proposition 3.5.32 Let E be a prime divisor over X. If  X is locally a complete 
intersection, then 

. kE = k̂E − jE.

In particular, if X is smooth, then .kE = k̂E . 

Proof As X is locally a complete intersection, we have 

. ∧n ΩX = 𝒥X · 𝒪X(KX).

(See for example, Proposition 9.1 in [32]). Therefore, by pulling back of this 
equality onto a normal Y by the birational morphism .ϕ : Y → X where the 
exceptional prime divisor E appears, we obtain 

. kE = k̂E − jE,

which yields the required equality. �
There are some researches studying singularities in terms of invariants, say 

Mather discrepancy or Mather-Jacobian discrepancy, which are involving . ̂kE or 
.k̂E − jE (see for example [18, 29, 53, 58]). The infimum of these is well described 
in terms of the space of arcs, and because of that we have “Inversion of Adjunction” 
for these invariants. However, there have some differences from . kE for general .Q-
Gorenstein variety which we do not step into in this paper. For a variety of locally 
a complete intersection, by virtue of Proposition 3.5.32, we have a description of 
infimum of log discrepancies in terms of the space of arcs (see Theorem 3.5.34). 

Proposition 3.5.33 ([21, 60]) Let E be a prime divisor over a variety X defined 
over an algebraically closed field k of arbitrary characteristic and .q ∈ N, then for 
the divisorial valuation .q · vE we have 

. codim(CX(q · vE),X∞) = q(k̂E + 1).

By making use of this description, we obtain the interpretation of mld and lct by 
the space of arcs. In following discussions we will denote the symbol 

. Contw1(a1) ∩ · · · ∩ Contws (as) by Contw(a).

Similarly, denote 

. Cont≥w1(a1) ∩ · · · ∩ Cont≥ws (as) by Cont≥w(a).

Here, .w = (w1, . . . , ws). 

Theorem 3.5.34 ([30, 32, 60]) Let k be an algebraically closed field of arbitrary 
characteristic. Let X be a normal and locally complete intersection variety defined
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over k and .ae = a
e1
1 · · · aes

s a multi-ideal with real exponents .e = (e1, . . . , es). For  
a pair .(X, ae) the .mld is described in terms of the arc space as follows: 

. 
mld(x;X, ae)

= infv,wi∈Z≥0

{
codim

(
Contw(a) ∩ Contv(𝒥X) ∩ π−1(x),X∞

) − v − ∑
i eiwi

}
.

. = inf
v,wi∈Z≥0

{
codim

(
Cont≥w(a) ∩ Cont≥v(𝒥X) ∩ π−1(x),X∞

)
− v −

∑
i

eiwi

}
.

In particular, if X is smooth, then we have the following: 

. mld(x;X, ae) = inf
v,wi∈Z≥0

{
codim

(
Contw(a) ∩ π−1(x),X∞

)
−

∑
i

eiwi

}

. = inf
v,wi∈Z≥0

{
codim

(
Cont≥w(a) ∩ π−1(x),X∞

)
−

∑
i

eiwi

}
.

We have the same expression of .mld(W ;X, ae) for a proper closed subset . W ⊂ X

with replacing .π−1(x) by .π−1(W) in the right hand sides of the equalities above. 

Theorem 3.5.35 ([78, 100]) Let X be a smooth variety defined over k and . ae a 
multi-ideal on X with real exponents e. For a point .x ∈ X and a cylinder .C ⊂ X∞, 
we define 

. codimx(C,X∞)

:= min{codim T | T : irreducible component of C with x ∈ π(T )}.

For a pair .(X, ae) the . lct is described in terms of the arc space as follows: 

. lctx(X, ae) = inf
w∈Zs≥0

{
codimx(Contw(a),X∞)∑

eiwi

}
.

. = inf
w∈Zs≥0

{
codimx(Cont≥w(a),X∞)∑

eiwi

}
.

Proof These formulae are essentially proved in [78] in characteristic 0 and in 
[100] in positive characteristic. However in these papers it is formulated under the 
condition that . a is a single ideal and .e = 1 and we do not find the proof for this 
general form in any references. So we write down the proof here. It will also suggest 
the proof of Theorem 3.5.34.
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For the first equality in the statement, it is sufficient to show the following 
equality: 

. inf

{
kE + 1∑

i ei · vE(ai )

∣∣∣∣
E : prime divisor
over Xwith center x

}
= inf

w∈Zs≥0

{
codimx(Contw(a),X∞)∑

eiwi

}

by Remark 3.5.14. First show . ≥ of the above equality. Take a prime divisor E over 
X with the center at x and define .wi := vE(ai ) for every i and .w := (w1, . . . , ws). 
Then, we have 

. CX(vE) ⊂ Contw(a).

As the center of E is x, we obtain .x ∈ π(CX(vE)). Therefore it follows that 

. kE + 1 = codim(CX(vE),X∞) ≥ codimx(Cont
w(a),X∞).

This gives the required inequality 

. 
kE + 1∑

i ei · vE(ai )
≥ codimx(Contw(a),X∞)∑

i eiwi

.

For the opposite inequality, take any .w = (w1, . . . , ws) and take an irre-
ducible component .T ⊂ Contw(a) such that .x ∈ π(T ) and . codim(T ,X∞) =
codimx(Contw(a),X∞). The generic point of the cylinder T gives a divisorial 
valuation .vT = q · vE for some .q ∈ N and a prime divisor E. Note that the center 
of E on X contains x. By the definition of the valuation, we have 

. CX(q · vE) ⊃ T , which yields

. codim(CX(q · vE),X∞) ≤ codimx(Cont
w(a),X∞).

As .q · vE(ai ) = wi , we have  

. 
kE + 1∑

i ei · vE(ai )
= q(kE + 1)∑

i eiwi

≤ codimx(Contw(a),X∞)∑
i eiwi

,

as required. 
About the second equality in the statement, the inequality . ≥ is obvious, since 

.Contw(a) ⊂ Cont≥w(a). For the opposite inequality, it is sufficient to show that for 
every .w = (w1, . . . , ws) ∈ Zs

≥0 there exists .w′ = (w′
1, . . . , w

′
s) ∈ Zs

≥0 such that 

.
codimx(Contw

′
(a),X∞)∑

i eiw
′
i

≤ codimx(Cont≥w(a),X∞)∑
eiwi

.
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To show this, take an irreducible component .T ⊂ Cont≥w(a) such that . x ∈ π(T )

and .codim(T ,X∞) = codimx(Cont≥w(a),X∞). Let  . vT be the divisorial valuation 
defined by the generic point of T . Then .w′

i := vT (ai ) ≥ wi and .T ⊂ Contw
′
(a). 

Hence, we obtain 

. codimx(Cont
w′

(a),X∞) ≤ codim(T ,X∞) = codimx(Cont
≥w(a),X∞)

and .
∑

i eiw
′
i ≥ ∑

i eiwi , which yield the required inequality. �
The following shows the relation of the mld between smooth variety A and a 

closed subscheme X on A. It is called “Inversion of Adjunction”. 

Theorem 3.5.36 ([30, 32, 60]) Let k be an algebraically closed field of arbitrary 
characteristic. Let A be a smooth variety over k and .X ⊂ A a closed subscheme of 
locally complete intersections with codimension c. Let .̃ae = ã

e1
1 · · · ães

s be a multi-
ideal on A with exponents in .R≥0 such that .ai := ãi𝒪X �= 0 for every i. Let . IX be 
the defining ideal of X in A. Then for a point .x ∈ X the following equality holds: 

. mld(x;X, ae) = mld(x;A, ãe · I c
X).

For a proper closed subset .W ⊂ X the following holds: 

. mld(W ;X, ae) = mld(W ;A, ãe · I c
X).

Corollary 3.5.37 Let k be an algebraically closed field of arbitrary characteristic. 
Let X be a normal variety of locally complete intersections with dimension d. Let 
.x ∈ X be a point and .W ⊂ X a proper closed subset. Then, we have the equalities: 

. mld(x;X,𝒪X) = inf
m

{(m + 1)d − dimπ−1
m (x)},

. mld(W ;X,𝒪X) = inf
m

{(m + 1)d − dimπ−1
m (W)},

The following corollaries are proved in [30, 77] for the base field of characteristic 
0 in different ways from the following proof. The proof below is based on 
the expression in Corollary 3.5.37 and it works for the base filed of arbitrary 
characteristic. In [61, Corollary 10.2.9] one can find more general statements and 
the proofs for them. 

Corollary 3.5.38 Let X be a normal local complete intersection variety defined 
over algebraically closed field k of arbitrary characteristic. Then the following 
hold: 

(i) X has log canonical singularities if and only if .Xm is locally a complete 
intersection for every .m ∈ N, 

(ii) X has canonical singularities if and only if . Xm is irreducible for every .m ∈ N, 
(iii) X has terminal singularities if and only if .Xm is normal for every .m ∈ N.
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Proof Let .d = dimX. As  X is locally a complete intersection, X is locally defined 
by .c := N − d equations in a non-singular variety A of dimension N . Then, . Xm

is locally defined by .(m + 1)c equations in a non-singular variety . Am of dimension 
.(m + 1)N (cf. the construction of . Xm). Therefore, we have 

. (3.5.38(i)) dim Xm ≥ (m + 1)N − (m + 1)c = (m + 1)d, 

where the equality holds if and only if . Xm is locally a complete intersection. 
First we show the equivalence in (i). We know that the restriction 

. πm
−1(Xreg) → Xreg

of . πm is a smooth morphism of relative dimension md. Therefore, by the formula in 
Corollary 3.5.37, X has log canonical singularities if and only if for every .m ∈ N, 
the following inequality holds: 

. (m + 1)d − dimXm(W) ≥ 0,

where W is the singular locus .Xsing of X. This is equivalent to the equality in (3.5.38 
(i)). 

For the both implications of (ii), we may assume that .Xm is locally a complete 
intersection of dimension .(m + 1)d by the result (i). Actually, if we assume that 
X has canonical singularities, then by (i) we obtain that .Xm is locally a complete 
intersection for every .m ∈ N. If we assume that .Xm is irreducible, then it has 
dimension .(m + 1)d, because it contains an open dense subset .π−1

m (Xreg) which 
has dimension .(m+1)d. As . Xm is locally defined by .(m+1)(N −d) equations in a 
smooth variety . Am of dimension .(m+1)N , the subscheme . Xm is locally a complete 
intersection. 

Now, again by the formula in Corollary 3.5.37, X has canonical singularities if 
and only if for every .m ∈ N and the singular locus .W ⊂ X, the following inequality 
holds: 

. (m + 1)d − dimXm(W) ≥ 1,

which yields .dimXm(W) < (m+ 1)d. This is equivalent to the fact that none of the 
irreducible components of .Xm(W) can be an irreducible component of . Xm, since 
.Xm is of pure dimension .(m + 1)d. This holds if and only if .Xm is irreducible for 
every .m ∈ N. 

For the proof of (iii), we may assume that .Xm is irreducible and locally a 
complete intersection of dimension .(m + 1)d by the same reason as in the proof of 
(ii). We know that a local complete intersection variety is Gorenstein, in particular, 
it satisfies Serre’s condition . S2. Thus . Xm has the property . S2. Now,  X has terminal
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singularities if and only if for every .m ∈ N and the singular locus .W ⊂ X, the  
following inequality holds: 

. (m + 1)d − dimXm(W) ≥ 2,

which yields .dimXm(W) ≤ (m + 1)d − 2. Here we note that the singular locus of 
.Xm is just .Xm(W). Indeed, it is obvious that the singular locus of .Xm is contained 
in .Xm(W), as the compliment .πm

−1(Xreg) of .Xm(W) is non-singular. To show the 
opposite inclusion, denote the local Jacobian matrix of the embedding .Xm ⊂ Am by 
J and the Jacobian matrix of the embedding .X ⊂ A by . J0. Then J has the following 
form: 

. J =
(

J0 O

∗ ∗
)

.

As we may assume that .Xm ⊂ Am is a complete intersection, . Xm is non-singular at 
a point p if and only if the Jacobian matrix J has full rank at p. Here, if .p ∈ Xm(W), 
then . J0 does not have full rank, therefore J cannot have full rank. 

Hence, the inequality .dimXm(W) ≤ (m + 1)d − 2 is equivalent to the fact that 
. Xm is normal by the Serre’s criteria for normality. �

The LSC Conjecture holds for a normal local complete intersection variety. It is 
proved in [31] for characteristic 0 by making use of Inversion of Adjunction (Theo-
rem 3.5.36) and the description of mld in terms of the arc space (Theorem 3.5.34). 

Theorem 3.5.39 ([31]) Let X is be a normal, local complete intersection variety 
over an algebraically closed field k of arbitrary characteristic. Let . ae be a multi  
ideal on X. Then the function .x �→ mld(x;X, ae), .x ∈ X, is lower semicontinuous. 

Remark 3.5.40 By these theorems we can see the equivalence of a geometric 
property of X and a somehow weaker geometric property of . Xm. So it is natural 
to ask for a condition on .Xm such that it forces X to be smooth. One candidate 
for such a mild condition is that .Xm has at worst rational singularities for every 
.m ∈ N∪ {∞} (By Proposition 3.3.16 we know that the existence of m such that . Xm

is smooth implies the smoothness of X, but we require a weaker condition for . Xm.) 

The following is a negative answer to the expectation: 

Example 3.5.41 ([57]) Let k be a field of characteristic 0. Let X be a hypersurface 
in .AN

k defined by the polynomial .f = xd
1 + xd

2 + · · · + xd
N . If  .d > 1, then it is 

clear that .(X, 0) is not smooth, and if .d2 < N , then the jet scheme . Xm has at worst 
rational singularities for every .m ∈ N. 

The study of singularities by making use of the space of arcs is still developing. 
The author hopes to write a paper including the new results in future.
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4.1 Introduction 

There exist in the literature several surveys of various aspects of jet schemes and 
arc spaces. This paper is meant on one hand to show the diversity of these aspects 
and guide the reader through it and on the other hand to survey some other aspects 
which do not appear in the existing surveys. First, let us say what intuitively are the 
jet schemes and the arc space of a variety X defined over a field . K. The arc space 
of X is the scheme (or the infinite dimensional variety) .X∞ which parametrizes the 
germs of formal curves (arcs) traced on . X; i.e.,, a point on .X∞ corresponds to an 
arc traced on . X. The jet schemes are finite dimensional approximations of the arc 
space: If we consider X embedded in an affine space, .X ⊂ An, for .m ∈ N, the m-th 
jet scheme .Xm can be thought (modulo a trivial fibration) as the space of arcs in the 
ambient space . An which have “contact” with X larger than . m.

The arc space and the jet schemes of X are rather complicated compared 
to X : the arc space is in general infinite dimensional; the jet schemes have in 
general many irreducible components of different dimensions; they are in general 
not reduced . . . but  one  can  formulate  the  guiding  philosophy of this article as 
follows: arc spaces and jet schemes can transform a difficult problem concerning 
a relatively simple object into a relatively simple problem concerning a difficult 
object. 

Maybe one of the first uses of arc spaces in singularity theory goes back to Nash 
and is “subsequent” (1968) to the proof of existence of resolution of singularities 
by Hironaka. One can realize easily, that if there exists a resolution of singularities 
.μ : Z −→ X, then X admits infinitely many other resolutions, an infinite family 
of them is obtained by blowing up Z along regular loci. Nash wanted to codify 
the data which is common to all these resolutions of singularities. He suggested 
that this data is hidden in the arc space ; a precise form of this suggestion is what 
is nowadays known as the Nash problem, but also the generalized Nash problem, 
or the embedded Nash problem which are generalizations of the first problem. In 
Sect. 4.3, we will briefly discuss these problems which have made fantastic progress 
in the last decade. 

Another momentum was the introduction of the (geometric) motivic integration 
(Kontsevich, Denef-Loeser) in analogy with . p−adic integration. The arc space of 
a variety is the measured space in this theory; the name motivic is related to the 
value that takes a motivic integral, which is an element in the “Grothendieck ring” 
(i.e., a class of a geometric object) and not a real number. This theory led to the 
introduction, again sometimes in analogy with . p−adic integration but not only, of 
several new (motivic) invariants of singularities; this also led to another “stronger 
version” of the monodromy conjecture. This will be mentioned in Sect. 4.4. 

The development of the geometric tools needed for motivic integration (which 
in particular allowed to prove the change of variables formula) led to a very 
effective use of jet schemes and arc spaces in the minimal model program and in 
“hunting” invariants of singularities of pairs (Mustaţă, Ein, Yasuda,. . . ).  This  will  
be highlighted in Sect. 4.5.
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Section 4.6 is dedicated to a weighted graph (the jet components graph) which 
was introduced by the author and which encodes the geometry of the jet schemes of 
the singularity and their truncation maps (these maps will be introduced in Sect. 4.2). 
We will mention some results about the structure of this graph (and hence the 
structure of the jet schemes) for several classes of singularities. For instance the 
data of this graph for irreducible plane branches, for two dimensional quasi-ordinary 
hypersurfaces (with H. Cobo), or for normal toric singularities is equivalent to the 
data of the embedded topological type of these singularities. This graph is actually 
determined by the irreducible components of the jet schemes, their dimensions and 
embedding dimensions and their behaviour with respect to the truncation maps; in 
particular this graph is determined by basic invariants of the jet schemes, but we 
can extract from it a complete invariant of the embedded topological type for these 
classes of singularities; the topological type is a very fine invariant of singularities. 
This reflects the philosophy that we mentioned above. 

Section 4.7 describes how jet schemes intervene in an approach of the author to 
the problem of construction of embedded resolutions of singularities. This approach 
can be thought as a reverse Nash problem and is at the same time an approach to 
Teissier’s conjecture on resolution of singularities with toric morphisms. 

Section 4.8 concerns an equisingularity theory (Leyton-Alvarez) which is based 
on deformations of jet schemes, and comparisons with other equisingularity the-
ories. This problem generalizes the study of the jet schemes of irreducible plane 
curves in an equisingular family which was considered by the author. 

Section 4.9 describes a link (Bruschek, Mourtada, Schepers) between some 
aspects of classical number theory, namely the study of integer partitions and 
singularity theory via arc spaces. The main object of this link (the Arc Hilbert-
Poincaré series) makes use of the cone structure of the arc space. 

Section 4.10 concerns the structure of the localization of the algebra of arcs at two 
types of points (arcs): On one hand rational points (Drinfeld, Grinberg, Kazhdan) 
and the invariants of singularities which can be extracted of this structure (Bourqui, 
Sebag) and on the other hand stable points or points associated with divisorial 
valuations (Reguera, Mourtada-Reguera). 

4.2 The Construction of Jet Schemes 

Let . K be an algebraically closed field and X an algebraic variety defined over . K.

For .m ∈ N, the .m−jet scheme of X is the .K-scheme .Xm representing the functor 

. Fm : Schemes −→ Sets

which with an affine .K-scheme SpecA associates the set 

.HomK(SpecA[t]/(tm+1),X).



214 H. Mourtada

For .m ≥ p, the natural projection .A[t]/(tm+1) −→ A[t]/(tp+1) induces the 
truncation affine morphism .πm,p : Xm −→ Xp. This gives a projective system 
.(Xm)m≥0 whose limit is by definition the space of arcs 

. X∞ := lim←− Xm.

It follows from corollary 2 in [17, 136] that .X∞ is the scheme which represents the 
functor .F∞ : Schemes −→ Sets which with an affine .K-scheme SpecA associates 
the set .HomK(SpecA[[t]], X). In the case of an affine variety 

.X = Spec
K[x1, . . . , xn]
(f1, . . . , fr )

, (4.1) 

the jet schemes .Xm and the arc space are affine varieties. Indeed, for A a .K-algebra, 
the data of an .A−point of .X∞ is equivalent to the data of a .K-algebra morphism 

. φ : K[x1, . . . , xn]
(f1, . . . , fr )

−→ A[[t]].

The morphism . φ is completely determined by the images of . xi, i = 1 . . . , n

.xi �−→ φ(xi) = x
(0)
i + x

(1)
i t + · · · ; (4.2) 

these images should satisfy .fl(φ(x1), . . . , φ(xn)) = 0, . l = 1, . . . , r.

If we write 

.fl(φ(x1), . . . , φ(xn)) =
∑

j≥0

F
(j)
l (x(0), . . . , x(j)) tj (4.3) 

where .x(j) = (x
(j)

1 , . . . , x
(j)
n ). Then the data of . φ is equivalent to giving 

values to .x
(j)
i in . A, for .i = 1, . . . , n; j ∈ N; these values should satisfy 

.F
(j)
l (x(0), . . . , x(j)) = 0. This is equivalent to the data of an .A−point in 

. X∞ = Spec
K[x(0), x(1), . . .]
(F

(j)
l )

j∈N
l=1,...,r

.

Similarly, we have 

. Xm = Spec
K[x(0), x(1), . . . , x(m)]

(F
(j)
l )

j=0,...,m

l=1,...,r

.

Notice that by definition .X0 = X. We denote by .πm the truncation morphism . πm,0
and by .Ψm the morphism from .X∞ to .Xm induced by the fact that the arc space
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is the projective limit of the jet schemes. When there is an ambiguity about the 
variety X whose jet schemes or arc space are considered, these maps are denoted by 
. πX

m,p, πX
m ,Ψ X

m .

In the case where .X = An is an affine space, .Xm is the affine space . Xm :=
SpecK[x(0), x(1), . . . , x(m)] = An(m+1). The truncation morphism .πm,p is the map 
which forgets the last .n(m − p) coordinates .x(p+1), . . . , x(m); it is then the trivial 
fibration whose fiber is . An(m−p).

The geometry of the jet schemes and the arc space of X when X is smooth is 
quite similar locally to the case of the affine space. This follows from the good 
behavior of jet schemes and arc spaces with respect to étale morphisms. One can 
also have a feeling of this on the level of the fibers of .Ψ0; indeed let .x ∈ X be a 
smooth point; let .𝒪X,x be the local ring of X at . x; a .K-arc .γ ∈ X∞ centered at 
. x, corresponds to a morphism of local rings .γ ∗ : 𝒪X,x −→ K[[t]]; since . K[[t]]
is complete (with respect to the . t−adic topology), by the universal property of 
completeness . γ ∗ factors through the completion .𝒪X,x −→ �̂�X,x (with respect to 
the maximal ideal of .𝒪X,x). Since x is a smooth point, by Cohen structure theorem, 
.�̂�X,x 
 K[[x1, . . . , xn]], n being the dimension of X at . x. So the data of . γ is 
equivalent to the data of a local morphism .K[[x1, . . . , xn]] −→ K[[t]]; we deduce 
that .(Ψ X

0 )−1(x) is isomorphic to .(Ψ An

0 )−1(O) where O is any closed point of . An.

The algebra of global functions on the arc space of an affine variety has a 
structure of a differential ring. We assume here for simplicity that the characteristic 
of the field . K is zero. The algebra of global functions on .Ad∞ is 

. ℛ∞ = K[x(0), x(1), . . .].

We have a derivation D on .ℛ∞ defined by .D(x
(j)
i ) = x

(j+1)
i , for . i =

1, . . . , n; j ∈ N. Assume that X is an affine variety (as in (4.1)); if we replace 
in the Eq. (4.2) the variables .x(j)

i by .x(j)
i /j ! (where . j ! is the factorial of . j), we find 

.fl(φ(x1), . . . , φ(xn)) =
∑

j≥0

ℱ(j)
l (x(0), . . . , x(j))

j ! tj , (4.4) 

where .ℱ(0)
l = fl and .ℱ(j)

l is recursively defined by the identity . D(ℱ(j)
l ) = ℱ(j+1)

l ;
Eq. (4.4) follows from the fact that both sides are additive and multiplicative in 
. fl and that this equality is obviously true for .xi. We obtain hence the desired 
differential structure which is induced by the derivation D on the algebra of global 
functions on . X∞

The differential structure is very useful to encode many geometric features of the 
space of arcs, for instance Kolchin’s theorem which states that if X is irreducible, 
then .X∞ is also irreducible ; see also [110, 120] for variants of this theorem. 

Building on the discussion above, we can give an explicit presentation of the 
arc space of the cusp singularity on the curve .X = {x2

1 − x3
0 = 0} ⊂ A2. The 

arc space .X∞ is isomorphic to the space (scheme) whose embedding in the infinite
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dimensional affine space .A2∞ = SpecK[x(0), x(1), . . .] is given by the ideal 

. (x
(0)
1

2 − x
(0)
0

3
, 2x

(0)
1 x

(1)
1 − 3x

(0)
0

2
x

(1)
0 , . . .).

4.3 The Nash Problem and Its Variants 

This subject has been the subject of several surveys [43, 54, 68, 84, 115]. As 
mentioned in the introduction, the Nash problem seeks to detect in the arc space 
information common to all resolution of of singularities of a given variety. For 
this section, we assume for simplicity that . K is an algebraically closed field of 
characteristic zero. Let X be a singular variety and let .μ : Y −→ X be a divisorial 
resolution of singularities of X (divisorial means that the exceptional locus of . μ is 
a divisor). Let  

. E := μ−1(Sing(X)) = ∪r
i=1Ei

be the decomposition of the exceptional locus of . μ into irreducible components. 
Every . Ei defines a divisorial valuation whose center .cX(Ei) on X is included in 
.Sing(X); the corresponding valuation .νEi

associates with a function . h ∈ 𝒪X,cX(Ei)

(the local ring of X at .cX(Ei)) the order of annihilation of .h ◦ μ along .Ei. Note 
that the center is characterized by the fact that the valuation of an element in the 
maximal ideal of .𝒪X,cX(Ei) is strictly positive and that the valuation of an element 
which is not in this maximal ideal is . 0. Note that the center .cY (Ei) of .νEi

on Y is . Ei.

Definition 4.3.1 The divisor . Ei is said to be an essential divisor if for any other 
resolution of singularities .μ′ : Y ′ −→ X (non-necessarily divisorial), we have that 
.cY (Ei) is an irreducible component of the exceptional locus of . μ′.

Note that .νEi
has a center on every . Y ′ as in the above definition because . μ′ is 

proper. In general, it is a difficult task to determine whether a divisor (or a divisorial 
valuation) is essential or not; for surface singularities, essential divisors are exactly 
those which are defined by the irreducible components of the exceptional locus of 
the minimal resolution of singularities. 

The morphism . μ induces a morphism .μ∞ : Y∞ −→ X∞; indeed seeing an arc 
.γ ∈ Y∞ as a morphism .γ : Specκγ [[t]] −→ Y (where . κγ is the residue field of 
.X∞ at . γ ), .μ∞(γ ) is the arc .μ ◦ γ : Specκγ [[t]] −→ X which belongs to .X∞. By 

the valuative criterion of properness we know that any arc . γ on . (Ψ X
0 )

−1
(Sing(X))\

Sing(X)∞ lifts to .Y∞, more precisely to .(Ψ Y
0 )

−1
(E). Using generic smoothness of 

. μ on the irreducible components of .Sing(X), we can show that by restricting . μ we 

have a dominant morphism .(Ψ Y
0 )

−1
(E) −→ (Ψ X

0 )
−1

(Sing(X)). We have that 

.(Ψ Y
0 )

−1
(E) = ∪r

i=1(Ψ
Y
0 )

−1
(Ei)
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is the decomposition into irreducible components: indeed, .(Ψ Y
0 )

−1
(Ei) is irre-

ducible for every i (because Y is smooth and . Ei is irreducible) and there cannot be 
inclusions since the . Ei’s are distinct, in particular the sets of constant arcs on every 

. Ei are different. Now let .Ni = μ∞((Ψ Y
0 )

−1
(Ei)), where the overline indicates the 

Zariski closure. It follows from the discussion above that the we have the following 
decomposition into irreducible components 

. (Ψ X
0 )

−1
(Sing(X)) = ∪i∈J Ni,

where .J ⊂ {1, . . . , r}. Moreover, if . Ei is not essential, then .Ni cannot be an 
irreducible component; this can be seen by considering another resolution . μ′ :
Y −→ X such that the center of . Ei on . Y ′ is not an irreducible component of the 

exceptional locus of .μ′. We conclude that .(Ψ X
0 )

−1
(Sing(X)) has finite number of 

irreducible components and that we have an injection, the Nash map 

. {Irreducible components of (Ψ X
0 )

−1
(Sing(X))} −→ {Essential divisors of X}.

Nash asked (this is the Nash problem) whether the Nash map is bijective. It 
has been proved that this map is bijective for toric varities [73], quasi-ordinary 
singularities [59, 70], for surface singularities [56] and very recently for .T-varieties 
of complexity one whose rational quotient is a curve of positive genus [19]; see also 
([48, 87, 114] for other classes). An essential idea in attacking Nash problem is the 
wedge problem which was introduced by Lejeune-Jalabert [82]; an essential tool of 
this latter is the curve selection lemma proved by Reguera [119]. 

Example 4.3.2 Let .X = {x3
2 − x1x3 = 0} ⊂ A3 be the . A2 singularity. The singular 

locus of X is the origin .(0, 0, 0). We blow up the origin in .A3 and consider the 
chart where the blow up morphism is given by .x1 = uv, x2 = v, x3 = vw; all the 
information is seen in this chart. The total transform of X is then given in this chart 
(which is isomorphic to . A3 provided with the coordinates .(u, v,w)) by 

. x3
2 − x1x3 = v2(v − uw) = 0.

The restriction of the blowup to the strict transform .{v−uw = 0} gives the minimal 
resolution of . X; the exceptional locus of this minimal resolution has two irreducible 
components obtained by intersecting the exceptional divisor .{v = 0} with . {v−uw =
0} : these are the curves .E1 = {u = v = 0} and .E2 = {w = v = 0} and both 
are essential (being the divisor on the minimal resolution of singularities). A direct 
computation gives 

.N1 = {x(0)
1 = x

(1)
1 = x

(0)
2 = x

(0)
3 = 0} ⊂ X∞
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and 

. N2 = {x(0)
1 = x

(0)
2 = x

(0)
3 = x

(0)
3 = 0} ⊂ X∞.

Since we can see from their defining equations that there are no inclusions between 
. N1 and .N2, we have the decomposition into irreducible components: 

. Ψ −1(0) = N1 ∪ N2;

hence, the Nash map for this singularity is bijective. 

In general the Nash map is not bijective [42, 73, 75]. It remains a difficult problem 
to understand when this map is bijective or not and to understand its image in the 
non-surjective case: it follows for instance from [44] that terminal “divisors” belong 
to the image of the Nash map; Till recently, the only known Nash valuations (i.e., 
valuations belonging to the image of the Nash map) were either minimal (minimality 
with respect to the order where a valuation is smaller than another if its action on 
every function is smaller than the action of the other valuation) or terminal and 
questions were made if this is always the case. Recently, counter examples to this 
statement were given which implies that the determination of Nash valuations is still 
a wide open problem [19]. 

Another related problem, the generalized Nash problem extends the above 
problem [71]. Given a variety X (not necessarily singular), and two irreducible 
divisors .E1 ⊂ Y1 and .E2 ⊂ Y2 where for .i = 1, 2, we have a birational 
morphism .μi : Yi −→ X, and where . Y1 and . Y2 are smooth. The problem is 
to to determine when do we have an inclusion .N1 ⊂ N2 ? here, as above for 

.i = 1, 2, .Ni := μi∞((Ψ
Yi

0 )
−1

(Ei)). This problem is wide open even in the case 
where .X = A2, [55]. An equivariant version of this problem was solved for toric 
varieties [69] and more recently for .T-varieties of complexity one whose rational 
quotient is a curve of positive genus [19]. 

I should mention finally for this section, the embedded Nash problem which 
roughly speaking is about understanding the relation between the irreducible 
components of the jet schemes or contact loci and the divisors which are in some 
sense essential for every embedded resolution of singularities [34, 77, 99, 102]. 

4.4 Motivic Invariants of Singularities 

Again here . K is considered to be of characteristic zero and the varieties are 
defined over . K. Motivic integration started with the proof by Kontsevich that two 
birationally equivalent complex projective “Calabi-Yau” varieties have the same 
Hodge numbers. This extends a theorem by Batyrev stating that two such varieties 
have the same betti numbers. The proof of Batyrev uses . p−adic integration; by 
analogy with . p−adic integration, Kontsevich introduced motivic integration (for
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non-singular varieties) and used an approach similar to Batyrev’s proof to prove 
his more general result. Motivic integration was generalized to singular varieties 
by Denef and Loeser [24–26]. There are several excellent introductions to motivic 
integration [18, 26, 29, 36, 93, 135]. We mention below very little about this subject. 

The function that we will be integrating are defined on constructible subset of 
the arc space .X∞ of a variety X (their source domain). Before saying which kind of 
functions we will be measuring, let us mention the Grothendieck ring . ℳ (actually a 
completion of localization of this ring) where these functions and integers will take 
value. 

The Grothendieck ring . ℳ is defined by:

• The generators of . ℳ as a group are the classes of isomorphisms .[V ], V being a 
variety over .K.

• The relations are given by: for .Y ⊂ Z a closed subvariety, .[Z \ Y ] + [Y ] = [Z].
• The product is defined by: for two varieties .Y,Z, . [Y ].[Z] = [Y × Z].
The symbol . [·] is an additive invariant, and is actually a universal additive invariant 
in a sense that for any other additive invariant . χ (like the Euler characteristic or the 
Hodge polynomial) of varieties over . K and for any two varieties .Y,Z, . [Y ] = [Z]
implies .χ(Y ) = χ(Z). Recall here that an invariant .χ : V arC −→ A (where A is an 
abelian group and .V arC is the category of varieties over . C) is said to be additive if 
for .X, Y varieties over .C, .X 
 Y implies .χ(X) = χ(Y ); and for a closed subvariety 
.Z ⊂ X, . χ(X) = χ(X \ Z) + χ(Z).

We denote . L the class .[A1] of .A1. Hence we .[An] = Ln; by the definition of the 
product we know that the class of a point . [∗] is equal to . 1, the neutral element for 
the product. 

Example 4.4.1 

(i) We have that the class of the projective space of dimension 1 is 

. [P1] = [P1 \ ∗] + [∗] = L + 1.

(ii) Let .X = {y2 − x3 = 0} ⊂ A2. Since he morphism .ϕ : A1 −→ X, defined by 
.ϕ(t) = (t2, t3) induces an isomorphism .A1 \ {0} −→ X \ {(0, 0)} we have 

. [X] = [X \ {(0, 0)}] + [(0, 0)] = L − 1 + 1 = L.

(iii) For a Zariski locally trivial fibration .P : E −→ B of fiber . F, we have . [E] =
[B][F ].

Consider the localization .ℳloc := ℳ[L−1]. The values of motivic integrals 
belong to a completion . ℳ̂ of .ℳloc where .L−n tends to zero when n tends to 
infinity. 

A typical measurable set (i.e., its measure exists, see below the definition of . μ)

will be a cylinder (or disjoint union of cylinders), i.e., a subset .A ⊂ X∞ such that
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there exist .m ∈ N and a constructible subset .Cm ⊂ Xm verifying . A = Ψ −1(Cm),

The motivic measure for such A will be defined by 

. μ(A) = lim
n→∞[Ψn(A)]L−nd,

d being the dimension of . X. When X is smooth or when .A ∩ Sing(X)∞ = ∅, the 
value of .[Ψn(A)]L−nd stabilizes for n big enough. When X is smooth, this follows 
from the fact that for .n ≥ m, the truncation map .πn,m is a locally trivial fibration of 
fiber .Ad(n−m); hence 

. [Ψn(A)]L−nd = [C]Ld(n−m)L−nd = [C]L−md = [Ψm(A)]L−md.

The fact that the limit exists in general is a theorem of Denef and Loeser. In general, 
there are other types of measurable sets, of course disjoint (finite or infinite) union 
of cylinders as above, but also for instance for a closed subvariety .V ⊂ X, we have 
. μ(V∞) = 0.

We now can define the motivic integral: Let A be a measurable set and let . α :
A −→ Z∪ {+∞} be a function whose fibers .α−1(n) ⊂ A are measurable for every 
. n. We say that .L−α is integrable if the series 

. 

∫
L−αdμ :=

∑

n∈Z
μ(α−1(n))L−n

is convergent in . ℳ̂.

Example 4.4.2 Let X be a smooth variety of dimension d and let .D ⊂ X be a 
smooth divisor. Let us compute 

. 

∫

X∞
L−ordDdμ

where .ordD : X∞ −→ Z associates with an arc . γ its order of contact with . D. So 
for .n ∈ Z>0, .ord−1

D (n) = (Ψ X
n−1)

−1(Dn−1) \ (Ψ X
n )−1(Dn). Since D is smooth, the 

truncation morphism .πD
n : Dn −→ D is a locally trivial fibration of fiber . A(d−1)n,

hence .[Dn] = [D]L(d−1)n. We conclude that 

. μ(ord−1
D (n)) = Dn−1L−(n−1)d − DnL−nd = [D]L−n(L − 1).

Notice also that .μ(ord−1
D (0)) = [X] − [D]. Hence, 

. 

∫

X∞
L−ordDdμ = [X] − [D] +

∑

n≥1

[D]L−n(L − 1)L−n

. = [X] − [D] + [D] (L − 1)L−2

1 − L−2
.
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Note that in the last line of this example, we have used the computation of a 
geometric series which converges in the considered completion of Grothendieck 
ring. Similar computations can be done for a normal crossing divisor on a smooth 
variety; this, with resolution of singularities and the following change of variables 
formula (Kontsevich, Denef-Loeser [47]) gives a very efficient way to “compute” 
motivic integral. 

Theorem 4.4.3 Let X be a .K-variety and let .f : Z −→ X be a proper birational 
morphism such that Z is smooth. Let .A ⊂ X∞ be a cylinder and α be a function as 
above such that .L−α is integrable. We have 

. 

∫

A

L−αdμX =
∫

f −1∞ (A)

L−α◦f +ordt (Jac(f ))dμZ.

In the case where X is smooth, .Jac(f ) is simply the ordinary jacobian determinant 
of . f ; see for the general definition. In the theorem we used the notations .μX and 
.μZ to stress the spaces where these measures are defined. 

Let X be a smooth variety of dimension d (defined over the field of complex 
numbers) and let .f : X −→ C be a non-constant morphism; here we consider 
the field of complex number because we will talk below about Milnor fibers and 
monodromies. Let .D = {f = 0} be the divisor defined by f on . X. For . m,p ∈
N,m ≥ p, we set 

. Contp(D)m = {γ ∈ Xm; ordtf (γ ) = p}.

The motivic Igusa Zeta function [46] of  f is defined by 

. Z(T ) :=
∑

m≥0

[Contm(D)m]L−mdT m.

This series was introduced by Denef and Loeser in analogy with the . p−adic Igusa 
Zeta function. It is a simple exercise to see that if we define . J (T ) : ∑

m≥0[Dm]T m,

then we have the relation 

. J (T ) = Z(LmT ) − [X]
LmT − 1

.

Using the relation 

.

∫

X∞
L−ordDdμ = Z(L−1)
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which follows from the definitions of both sides of the equality, and the change of 
variables formula, Denef and Loeser proved that .Z(T ) is a “rational” function which 
has the following shape 

. Z(T ) = (L − 1)
∑

S⊂I

[E0
S]

∏

s∈S

L−νs T Ns

1 − L−νs T Ns
.

In this formula, the I is the index set of the irreducible components of the 
exceptional divisor .E = ∪s∈IEi of an embedded resolution of .D ⊂ X; for a subset 
.S ⊂ I, we define .E0

S := (∩s∈SEs) \ (∪i∈I\SEi). The integers . νi and . Ni are also 
part of the data of the embedded resolution that we have considered and they are 
associated with the irreducible components .Ei. In general, few of the .Lνi/Ni are 
actual poles of .Z(T ) as a rational function in . T .

The Igusa motivic monodromy conjecture [46] of Denef Loeser states that if 
.Lνi/Ni is a pole of .Z(T ) then there exists .x ∈ D such that .e2π iνi/Ni is an eigenvalue 
of the action of the local monodromy on the cohomology of the Milnor fiber of f at 
. x. It is analogous to the “. p−adic” Igusa’s monodromy conjecture. 

Another invariant which can be defined from a series similar to .Z(T ) is the 
motivic Milnor fiber [46]: For .m ∈ N and .x ∈ D, define 

. 𝒳m = {γ ∈ X∞ | γ (0) = x and f ◦ γ = γ ∗(f ) = tm + tm+1hγ }.

Let 

. Zf,x(T ) =
∑

m≥0

μX(𝒳m)T m.

As for the motivic Igusa zeta function, .Zf,x is rational and Denef and Loeser defined 
the motivic Milnor fiber at x by 

. Sf,x = − lim
T →∞ Zf,x(T ).

See also [118] for motivic Milnor fiber at . ∞.

The last motivic invariant that we consider in this section is the “geometric” 
motivic series which again was introduced by Denef and Loeser in analogy with 
comparable series in the p-adic settings. Let Y be an algebraic variety over . K, The 
geometric Poincaré series [47] is defined by 

. P(T ) =
∑

m≥0

[Ψm(Y∞)]T m.

It is a rational function which belongs to the subring of .ℳloc[[T ]] generated by 
.ℳloc[T ] and elements of the form .(1 − LaT b), a ∈ Z, b ∈ N \ {0}. This series is 
difficult to compute in general [61, 86, 109].
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Other invariants of “motivic” type were also considered in singularity theory, 
we mention here Batyrev’s stringy invariants [13, 81, 135]. There has been also 
an important use of ideas of motivic integration in the study of real singularities 
[28, 33, 117]. 

Finally, motivic integration has been generalized to more general settings using 
model theory [31, 67]. 

4.5 Jet Schemes and Singularities of Pairs 

The geometry of the arc space and the jet schemes which was needed for the proof 
of the change of variables formula in motivic integration allows to interpret some 
invariants of pairs in terms of dimensions of jet schemes. The first results in this 
direction are due to Mustaţă [106–108]. The first proofs of these results used motivic 
integration, but after [50], easier geometric proofs were found; The papers [51, 68] 
give a very good survey about this type of results; see also [45, 52, 53]. A key fact 
which intervene in many proofs of these results is the interpretation of a divisorial 
valuation on an variety X as the order of annihilation along arcs in an irreducible 
component of some contact locus. More precisely, let us consider an affine variety 
.X = Spec(𝒪X) (which is smooth for simplicity); For an ideal .I ⊂ 𝒪X, consider the 
subvariety .Y = V (I) ⊂ X; let .p ∈ N; the . p−contact locus with Y is by definition 

.Contp(Y ) := {γ ∈ X∞ | ordtγ
∗(I ) = p}, (4.5) 

where .γ ∗ : R −→ K[[t]] is the .K-algebra homomorphism associated with . γ and 

. ordtγ
∗(I ) = minh∈I

{
ordtγ

∗(h)
}
.

Let E be a divisor over  X centered at schematic point .x ∈ X and let . νE be the 
associated divisorial valuation. It follows from [50] that there exists a subvariety 
.Y ⊂ X, an integer number .p ∈ N and an irreducible component . W ⊂ Contp(Y )

such that, for every . h ∈ 𝒪X,x

. νE(h) = minγ∈Wordt (h ◦ γ ).

In the other (easier) direction, every fat irreducible component of .Contp(Y ) (for 
some .p ∈ N and .Y ⊂ X) defines a divisorial valuation . νE on . X. Moreover, E can 
be constructed by a weighted blowing up performed on a log-resolution of . Y ⊂ X;
recall here that a log-resolution of .Y ⊂ X is an embedded resolution which factors 
through the blowing up of Y in . X.

An important feature of the above interpretation of a divisorial valuation is that 
the invariants of a divisor E on X (like its discrepancy) are encoded in the geometry 
of . W. From this, one can deduce Mustaţă’s formula for the log canonical threshold 
of a pair .Y ⊂ X in terms of the dimensions of the jet schemes of Y which are
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embedded in the jet schemes of X [108]; this also leads to the characterization of 
rational complete intersection singularities in terms of jet schemes [106]. Note that 
most invariants of singularities of pairs are defined via divisors appearing on log 
resolutions [95]. The above results are in characteristic zero; similar results exist in 
positive characteristics [139]; See also [72] for recent results and questions in this 
direction. 

4.6 The Jet-Components Graph 

The study of the irreducible components of the jet schemes is significant for the 
search for and the understanding of the geometry of embedded resolutions of 
singularities. But apart from resolutions of singularities, this difficult problem has 
its own interest because the jet schemes contains a lot of information ([24, 25, 
34, 74, 97, 106–108]  etc. . . ).  But  this  information  comes  in  bulk.  One  features  of  
the difficulty of this problem is that while the motivic integration theory (or the 
geometry behind) can say something about the irreducible components of the jet 
schemes of maximal dimensions [108], it is much less powerful in understanding the 
other components which often contain the deep information about the singularities. 
Many questions arise in relation with these irreducible components: 

What is the “structure” of the irreducible components of the jet schemes of a 
singular variety X? 

While one can be interested in the irreducible components of the .m−th jet 
scheme of X for a given .m ∈ N, these components come naturally in projective 
systems and their study becomes more exciting when we consider the variation of 
their geometry in these projective systems. Below we will give a meaning of the 
word “structure” in the question; this structure is still mysterious and very little 
studied, and we understand it in very few cases [32, 97, 101]. 

What is the relation between the geometry of the jet schemes of X and the 
geometry of the singular variety X ? 

Finally, finding explicit relations between the local geometry of the singularities 
and some resolution of singularities remains a central problem in singularity theory. 
In this section, jet schemes stay somehow in the middle: an answer to the second 
question above allows to relate the geometry of the jet schemes to the geometry 
of singularities and the geometric approach to resolution of singularities (Sect. 4.7) 
links the valuations which arise from the irreducible components of the jet schemes 
to resolution of singularities. Apart from this approach, it is now well known that 
there are deep relations between resolution of singularities and jets schemes, e.g., 
[34, 45, 71, 85, 106, 108], but these relations are far from being completely explored; 
the Nash problem can be thought as one of these relations. We (partially) answer 
the first question and “completely” the second question for quasi-ordinary and toric 
surface singularities. Before saying a word about these answers, let us introduce the 
jet components graph which will encode the structure of the irreducible components 
of the jet schemes.
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Definition 4.6.1 ([32, 97, 101]) The jet-components graph of an algebraic variety 
S is the leveled weighted graph . Γ obtained by

• representing every irreducible components of .Sm,m ≥ 1, by a vertex .vi,m, where 
the sub-index m is the level of the vertex;

• joining the vertices .vi1,m+1 and .vi0,m if the morphism .πm+1,m induces a 
morphism between the corresponding irreducible components;

• weighting each vertex by the dimension of the corresponding irreducible compo-
nent. 

Recall that the morphism .πm+1,m : Sm+1 −→ Sm is the truncation morphism which 
is induced by the algebraic morphism . K[t]/(tm+1) −→ K[t]/(tm).

This graph was introduced in [97] and was refined in [32, 101]. Sometimes, we 
also weight the irreducible components by their embedding dimensions; this can be 
necessary to recover the geometry of the singularity. 

Let us present (very) briefly the singularities that we will introduce here: 
Quasi-ordinary singularities of dimension d are those singularities which 

(locally) can be projected to an affine space .(Ad , 0) such that the discriminant locus 
is a normal crossing divisor; they are particularly important in Jung’s point of view 
on resolution of singularities and in equisingularity theory [92]. More about this 
type of singularities is explained in [60, 62, 90, 91, 104]. We are concerned with 
quasi-ordinary hypersurface singularities (over a field of characteristic 0) which are 
defined (locally) by a polynomial in .K[[x1, . . . , xd ]][z] that we see as a polynomial 
in the variable . z. Thanks to the Abhyankar-Jung theorem[1, 76], we know many 
properties of the roots of such a polynomial (in particular they can be represented 
as Puiseux series) and one can use these properties to introduce invariants (charac-
teristic pairs, semigroup, Lattices) of the singularity [62, 79, 90, 91]; these are very 
powerful invariants that actually determine and are determined by the topological 
type of the singularity [57]. In [32], we determine in terms of these invariants 
the irreducible components of the jet schemes of a quasi-ordinary singularity of 
dimension . 2. We determined the geometries and the dimensions of open dense 
subset of these irreducible components, which happen to be isomorphic to affine 
spaces or to trivial fibrations over some (non-normal) toric varieties which encode 
deeply the geometry of quasi-ordinary singularities defined by the approximate roots 
of our singularity; in particular they encode the geometry of the singularity itself. 
Note that approximate roots are roughly speaking associated with truncation of a 
root of a polynomial defining a quasi-ordinary singularity. 

Theorem 4.6.2 ([32]) 
Let .(S, 0) be a a 2-dimensional quasi-ordinary hypersurface singularity. A 

canonical subgraph of the jet components graph of .(S, 0) determines the embedded 
topological type of .(S, 0), and the converse is true. 

We show in Fig. 4.1 a part of the subgraph that appears in the theorem for a 
singularity whose singular locus has two irreducible components, a curve and a 
line. We do not put the weights here in order not to encumber the picture. Here the 
arrows represent a projective system of components which goes till infinity.
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Fig. 4.1 The graph of the surface defined by . f = ((z2 − x3
1 )2 − x7

1x3
2 )2 − x11

1 x5
2 (z2 − x3

1 )

Here we would like to stress on the fact that only when studying how the 
geometry of the irreducible components varies in a projective system of irreducible 
components that we are able to determine the topological type of the singularity. 
Theorem 4.6.2 contains two very delicate results: the determination of the 
irreducible components and the subgraph of the jet components graph on one hand, 
and the fact the this subgraph determines the embedded topological type of the 
singularity; this is to compare with the motivic invariants which do not determine it 
[61]. 

The theorem, as we said before, partially answers the first question above and 
completely answer the second question. It only partially answers the first question 
because we don’t determine all the edges in the jet components graph. This is related 
with and give different and new insight on the generalized Nash problem [34, 71]. 

We also gave in [32] examples of quasi-ordinary surface singularities embedded 
in . A3 whose log canonical threshold (this is an important invariant of singularities 
of pairs which is computed by a divisorial valuation on a log resolution) is not
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obtained by a monomial valuation in any coordinates (For plane curves, the log 
canonical threshold is always computed by a monomial valuation, up to change of 
coordinates). 

An important observation that one can make about the geometry of the irre-
ducible components of the jet schemes of a quasi-ordinary surface is the following: 
For any such irreducible component the graded algebra of the associated valuation 
can be represented by the approximate roots of the singularity; this graded algebra 
reflects the geometry of the component and can be actually recovered from this 
geometry. 

Normal toric surface singularities are the simplest normal toric singularities. 
Such a singularity is simply given by the data of two coprime numbers, its 
embedding dimension can be as high as one wishes and hence can be defined by a 
very large number of equations; moreover, apart from the case of the . An singularities 
(which are hypersurfaces in . A3) they are never locally complete intersections: this 
latter hypothesis is essential for many theorems about or using jet schemes [53, 106]. 
The structure of the jet schemes of toric singularities or even their irreducible 
components are not known in general [107] and determining this structure seems 
to be a difficult problem. We have determined the irreducible components of the 
jet schemes of these singularities and as for quasi-ordinary surface singularities, we 
determined a subgraph of the jet components graph the encodes almost completely 
the singularity: 

Theorem 4.6.3 ([101]) The jet components graph determines the analytical type of 
a normal toric surface singularity in the following sense: two normal toric surface 
singularities are isomorphic if and only if they have the same jet components graph. 

It is worth noticing here that Motivic type invariants do not catch the analytic 
type ([86, 109]). 

The proof of theorem 4.6.3 uses heavily the description of the defining equations 
of the embedding .S ⊂ Ae ([121, 126]), and some syzygies of these equations that 
we describe and that are ad hoc to the problem. It also uses known results on the 
arc space of a toric variety [69, 73, 82]. The proof proceeds by induction on m 
(the level of the jet scheme) and on the embedding dimension . e. In particular it 
uses a kind of approximation of the toric surface S by toric surfaces with smaller 
embedding dimensions. The irreducible components of the jet schemes of toric 
surface singularities were discovered in [98] but the complete understanding of their 
structure and its presentation was only completed in 2017 [101]. 

We close the discussion of this section by mentioning a conjectural link between 
the irreducible components of jet schemes and Floer theory [27].
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4.7 A Geometric Approach to Resolution of Singularities via 
Arc Spaces 

A guiding problem in singularity theory and in algebraic geometry is the problem 
of proving the existence of a resolution of singularities and of understanding how to 
determine it: 

A (abstract) resolution of singularities of an algebraic variety X is a modification 
(a proper birational morphism: an isomorphism on a open subvariety of Y ) . μ :
Y −→ X such that Y is non-singular. 

Another more involved version of resolution of singularities is the embedded 
resolution of a singular variety . X ⊂ Z :

An embedded resolution of singularities of an algebraic variety .X ⊂ Z is a a 
proper birational morphism .μ : Y −→ Z such that Y is non singular and the strict 
transform of X by . μ is non-singular and transversal to the exceptional locus of . μ
(the locus where . μ is not an isomorphism). 

Resolution of singularities has applications that range from Algebraic Geometry 
to Analysis, Dynamical systems, Differential Geometry, Number theory. . . In Alge-
braic Geometry or real and complex analytic geometry, it is used to transform some 
problems concerning singular spaces to problems concerning non singular spaces; it 
allows to define invariants of singularities which help in problems of classification 
of singularities; it also serves as a change of variables when computing integrals. 
An embedded resolution gives an abstract resolution by looking at its restriction 
to the strict transform; it contains and gives (much) more information than the 
information encoded in an abstract resolution. A celebrated theorem proved by 
Hironaka gives the existence of embedded resolution of singularities of varieties 
defined over a field of characteristic zero [66]. In positive characteristics, the 
existence of embedded resolution of singularities is proved only for varieties in 
dimension 2; in dimension 3, there is a proof of the existence of abstract resolution 
of singularities in [34, 35]. This is (with local uniformization, which is a “super” 
local version of resolution of singularities) a very active research subject, see e.g. 
[2, 14, 15, 35, 38, 39, 64, 78, 111, 123, 130]. See [37, 80, 125] for an introduction 
to resolution of singularities. 

The traditional approach to resolve singularities is to iterate blowing ups at 
smooth centers in order to make an invariant drop. This invariant should take values 
in a discrete ordered set with a smallest element (which detects smoothness). It 
should not only detect smoothness, but also should be easy to compute so that its 
behavior can be followed when iterating the blowing ups. The big advantage of this 
approach is that it has worked in characteristic zero and that it gives an algorithm. 
But the construction of such a resolution is rarely linked to the deep geometry of 
the singularities: such a resolution is obtained as a composition of maybe 1 million 
blowups which are not related in general to the deep geometry of the singularities 
of the starting variety.
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The theme of this section is a geometric approach to resolution of singularities; 
an approach which is based on a dialog between the following two themes: 

1. The reverse Nash problem. 
2. Teissier’s conjecture on embedded resolution of singularities with one toric 

morphism. 

The Reverse Nash Problem 
Recall from Sect. 4.3 that the Nash problem (and its variants) searched in the arc 
space and jet schemes for the common data to all resolutions of singularities. What 
we call the reverse Nash problem is the following question: 

Can we construct (or describe) a (abstract or embedded) resolution of singular-
ities of X from its arc space and jet schemes ? 

Teissier’s conjecture on embedded resolution of singularities with one toric 
morphism 

As we mentioned above, the traditional way to resolve singularities is to blowup 
a “permissible” center in order to make an adapted invariant drop and hence to 
define an algorithm which stops after finitely many steps. Such an algorithm exists in 
characteristic . 0, thanks to the existence of a hypersurface of maximal contact (which 
allows an induction on the dimension of the variety) which does not exist when 
working in positive characteristics. Teissier asked [127, 130, 131] the following 
question: 

Given a singular variety .X ⊂ An, does there exist an embedding . X ⊂ An ↪→
AN,N ≥ n, and a toric structure on .AN such that .X ⊂ AN has an embedded 
resolution by one toric morphism ? 

We will call such an embedding torific. This question has an immediate 
transposition to projective varieties .X ⊂ Pn ⊂ PN . When an embedded resolution 
of singularities exists, a torific embedding exists for projective varieties [132]. If 
the reader is not familiar with the theory of toric varieties, he can think of a toric 
morphism as a morphism which is locally defined by monomials: a monomial 
morphism. In general, it is an open conjecture that the answer is yes. If true, this 
conjecture would imply the existence of resolution of singularities. Teissier made 
deep advances in the super local version of this conjecture [131]: the embedded 
local uniformization problem. 

Let us explain in more details what we called a geometric approach to resolution 
of singularities: we would like to use the reverse Nash problem to construct a torific 
embedding; the word geometry is used since this approach is based on the geometry 
of the arc space and jet schemes (and sometimes of the space of valuations which 
does not appear here). Let us consider .X ⊂ An; we are interested in finding a torific 
embedding of . X. We divide the problem into two questions [100]: 

1. Given a divisorial valuation v centered at .0 ∈ An, determine whether there exist 
an embedding .e : An ↪→ AN, (where N depends on v) and a toric proper 
birational morphism .μ : XΣ −→ AN such that:
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• .XΣ is a smooth toric variety (i.e., . Σ is a fan which is obtained by a regular 
subdivision of the positive quadrant .RN+ , this quadrant is the cone defining 
.AN as a toric variety),

• the strict transform . ̃An of . An by . μ is smooth,
• there exists a toric divisor .E′ ⊂ XΣ which intersects . ̃An transversally along 

a divisor .E,

• the valuation defined by the divisor E is . v.

Note that a toric divisor . E′ centered at the origin 0 of . AN = SpecK[x1, . . . , xN ]
corresponds to a divisorial valuation . v′ which is monomial, i.e., there exists a 
vector .α ∈ NN such that .v′ = vα where 

. vα : K[x1, . . . , xN ] −→ N

is defined by: for . h ∈ K[x1, . . . , xN ],

.h =
∑

m=(m1,...,mN )

amx
m1
1 · · · xmN

N , vα(h) = min{m|am �=0} < α,m >; (4.6) 

where .< α,m > is the usual scalar product on . RN.

Then one can formulate the conditions above by saying that there exists an 
embedding .An ↪→ AN such that v is the trace of a monomial valuation defined 
on . AN.

2. Determine a finite number of significant divisorial valuations .v1, . . . , vr on 
.An from the geometry of the jet schemes and the arc space of X (this 
step is to compare with the Nash problem that we mentioned above: very 
roughly speaking, as the Nash problem search for divisorial valuations that will 
“appear” on every resolution of singularities, here we are searching for divisorial 
valuations whose torifications in the sense of question (1) is essential to obtain a 
global torification), then embed as above . An in a larger affine space .AN in such 
a way that all the valuations .v1, . . . , vr can be seen as the traces of monomial 
valuations on . AN.

If .v1, . . . , vr , are well chosen, this should guarantee that the embedding . X ⊂
AN is torific. Let us discuss this last sentence which probably for now looks 
a bit prophetic. Let .v = vα be the monomial valuation defined on . An =
SpecK[x1, . . . , xn] by a vector .α = (α1, . . . , αn), where . αi ∈ N, i = 1, . . . , n.

Let .I ⊂ K[x1, . . . , xn] be an ideal such that the origin 0 belongs to the variety 
.V (I) ⊂ An = SpecK[x1, . . . , xn] defined by it. We will say that I or .V (I) is non-
degenerate with respect to v at 0 if the singular locus of the variety defined by the
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initial ideal .inv(I ) of I does not intersect the torus .(K∗)n. Note that in this context, 
the initial ideal of I relative to v is defined by 

. inv(I ) = {inv(f ), f ∈ I },

where for . f = ∑
ai1,...,inx

i1
1 · · · xin

n ∈ K[x1, . . . , xn],

. inv(f ) =
∑

ai1,...,in �=0,i1α1+···+inαn=v(f )

ai1,...,inx
i1
1 · · · xin

n .

It follows from [10, 11, 112, 130] (see also [134] for the hypersurface case) that 
if for every .α = (α1, . . . , αn), αi ∈ N, i = 1, . . . , n, I is Newton non-degenerate 
with respect to . vα at . 0, then we can construct a proper toric birational morphism 
.Z −→ An that resolves the singularities of .V (I) in a neighborhood of . 0. Notice 
that I can be degenerate with respect to a valuation defined by a vector α if there 
exists an irreducible family of jets (having a large contact with . V (I)) or arcs on  
.V (I) such that for a generic .γ = (γ1(t), . . . , γn(t)) in this family, its order vector 
.(ordtγ1(t), . . . , ordtγn(t)) = α : indeed, by a Newton-Puiseux type theorem (or 
the fundamental theorem of tropical geometry [94]), if this is not satisfied, i.e., if 
there is no arc, .invα (f ) will contain monomials, hence by definition I will be non-
degenerate with respect to .vα. This suggests that arcs detect Newton degeneration, 
and wherever there is a Newton degeneration, there is a degenerate arc passing there 
in the following sense: An arc defines a germ of a curve; we call an arc degenerate 
whenever the associated curve germ cannot be resolved with one toric morphism 
(this can also be detected from the properties of the arc, for instance using the notion 
of Nash multiplicity [83]). There are degenerate arcs that can be traced on a smooth 
variety: think of a (relatively) nasty plane curve like the germ of curve which is 
defined by . ({(y2 − x3)2 − 4x5y − x7 = 0}, 0) ⊂ (A2, 0) = {z = y} ⊂ (A3, 0);
it is associated with the arc .(t4, t6 + t7, t6 + t7) which is traced on .A2. The arc is 
degenerate but .A2 ⊂ A3 is Newton non-degenerate. The moral of this part of the 
story is first that Newton degeneration is detected by degenerate arcs, and second 
that not all degenerate arcs cause Newton degeneration. Moreover, the notion of 
degeneration along an arc can be quantified by an invariant that one can call depth 
and which in the case of a plane curve is the number of Puiseux pairs minus one. 
Question (1) above takes care of this notion of depth and it allows by embedding 
in higher dimension the elimination of degeneration along a family of arcs (or jets) 
that defines a divisorial valuation. Question (2) concerns the determination of those 
families of arcs that cause Newton degeneration. 

We will now give a presentation of results concerning these two questions, with 
some digressions in order to give applications, links between the two questions 
and expand a bit some problems that appear inside these questions and which are 
interesting for their own sakes. 

Let us begin by discussing one aspect of question (1). While this question was 
exposed as a geometric problem, it is related to an “algebraic” problem which makes
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sense for any valuations: determining a generating sequence of a valuation. Let us 
for a moment stick to the case of a divisorial valuation centered at the origin . X =
Ad = SpecR, where .R = K[x1, . . . , xn] is a polynomial ring over an algebraically 
closed field . K. A valuation v is then given by a mapping .v : R −→ N which is 
the order of vanishing along a divisor .E ⊂ Z which satisfies .μ(E) is the origin of 
.An, . μ being a birational map .μ : Z −→ An. Let us explain what is a generating 
sequence of . v.

For . α ∈ N, let  

. 𝒫α = {h ∈ R | v(h) ≥ α}.

We define the .K-graded algebra 

. grvR =
⊕

α∈N

𝒫α

𝒫α+1
.

We call .inv the natural map 

. inv : R −→ grvR, h �→ h mod 𝒫v(h)+1.

Definition 4.7.1 ([124]) A generating sequence of v is a set of elements of R such 
that their image by .inv generates .grvR as a .K-algebra. 

This notion (for any valuation) is central in an earlier version of Spivakovsky’s 
approach [124] to local uniformization and in the present approach of Teissier to 
the same problem [130], with the difference that Teissier restricts his analysis to 
minimal generating sequences for rational valuations. In general, it is very difficult 
to determine a generating sequence of a given valuation, apart in dimensions 1 
and . 2; an abstract approach follows from the valuative Cohen theorem [130]. A 
remarkable advance in this direction was done for (rational) valuations in [40], as 
discussed below. We will show below, at least on an example, the relation between 
this notion and question (1). We will discuss first our new approach from [100] 
for the study of generating sequences of divisorial valuations defined as above. For 
that, we will use the representation of a divisorial valuation as the order of vanishing 
along a family of arcs. 

Let .X = An = Spec R, as above. We have a natural truncation morphism 
.X∞ −→ X, that we denote by .Ψ0; for a n-tuple of series, this simply gives the n-
tuple of constant terms of these series. For .p ∈ N and .Y = V (I) ⊂ X a subscheme 
defined by an ideal .I ⊂ R, we consider the contact locus .Contp(Y ) (see Eq. (4.5)). 

With a fat irreducible component . W of .Contp(Y ), which is included in the fibre 
.Ψ −1

0 (0) above the origin, we associate a valuation .vW : R −→ N as follows: 

.vW(h) = minγ∈W{ordtγ
∗(h)},
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for .h ∈ R. It follows from [50] (see also [45, 120], prop. 3.7 (vii)), that .vW is a 
divisorial valuation centered at the origin .0 ∈ X, and that all divisorial valuations 
centered at .0 ∈ X, can be obtained in this way (see Sect. 4.5) for varying ideals . I.
We are interested in determining a generating sequence of a valuation of the form 
.vW with an irreducible component . W of .Contp(Y ). Recall from 4.2 or [17] the  
functorial definition of the arc space .X∞ : for any algebraic variety . X, the arc space 
.X∞ represents the functor that to a .K-algebra A associates the set of .A−valued arcs 

. X(A[[t]]) := HomK(Spec(A[[t]]),X).

Hence, for a .K-algebra A we have a bijection 

. HomK(Spec(A),X∞) 
 HomK(Spec(A[[t]]),X).

In particular, in our case .X = An = SpecR, we have .X∞ = Spec(R∞), and to 
the identity in .HomK(Spec(R∞),X∞) corresponds the universal family . Λ : R −→
R∞[[t]].

Let us consider the case .n = 2, R = K[x0, x1]. We have 

. R∞ = K[x(j)
i ; i = 0, 1; j ≥ 0],

and . Λ is given by 

. Λ(xi) = x
(0)
i + x

(1)
i t + x

(2)
i t2 + · · · , i = 0, 1.

The procedure that we give can be thought as an elimination algorithm with respect 
to . Λ in the sense that from the equations (that we can see in .R∞) of the irreducible 
component of .Contp(Y ) defining our valuation we will obtain elements in R that 
constitute the generating sequence. Let us show this on an example: Assume that the 
characteristic is not equal to . 2. Let us consider the divisorial valuation associated 
with one irreducible component of .Cont27(Y ), where Y is the curve defined by the 
equation .(x2

1 − x3
0)2 − x5

0x1 = 0. The contact locus .Cont27(Y ) has two irreducible 
components which are sent to the origin 0 by the truncation morphism .π27, the 
interesting one (the other one gives a monomial valuation), that we call . W is defined 
in .A2∞ by the ideal generated by 

. x
(0)
0 , . . . , x

(3)
0 , x

(0)
1 , . . . , x

(5)
1 , x

(6)
1

2 − x
(4)
0

3
,

. (2x
(6)
1 x

(7)
1 − 3x

(4)
0

2
x

(5)
0 )2 − x

(4)
0

5
x

(6)
1

and two inequalities, the most important one of them is .x(4)
0 �= 0. Noticing that the 

first equation which is not that of a coordinate hyperplane being not linear, this gives 
us the first three elements of a generating sequence 

.x0, x1, x2 = x2
1 − x3

0 .
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The last element was obtained by what we called an elimination process which 

corresponds here to dropping the indices in the parentheses from .x
(6)
1

2 −x
(4)
0

3
. Note 

that modulo .x(0)
0 = · · · = x

(3)
0 = x

(0)
1 = . . . = x

(5)
1 = 0, . Λ(x2) = (x

(6)
1

2 −
x

(4)
0

3
)t12 + t13φ, with φ ∈ R∞[[t]]. The remaining equation, modulo the other 

equations, can then be rewritten 

. (2x
(6)
1 x

(7)
1 − 3x

(4)
0

2
x

(5)
0 )2 − x

(4)
0

5
x

(6)
1 = x

(13)
2

2 − x
(4)
0

5
x

(6)
1 .

Again, the elimination process with respect to . Λ corresponds to dropping the indices 
in the parentheses. The 4th and last element of the generating sequence of .vW which 
is then: 

. x3 = x2
2 − x5

0x1.

The valuation .vW is completely determined by its generating sequence . x0, x1, x2, x3
and the values .vW(x0) = 4, vW(x1) = 6, vW(x2) = 13, vW(x3) = 27. By 
construction, for .i = 2, 3 we have polynomials . fi such that 

. xi = fi(x0, . . . , xi−1).

The functions . fi’s provide an embedding .A2 ↪→ A4, which is the geometric 
counterpart of the following morphism 

. K[x0, x1, x2, x3] −→ K[x0, x1, x2, x3]
(x2 − f2(x0, x1), x3 − f3(x0, x1, x2))


 K[x0, x1].

This embedding solves question (1) for the valuation .vW and realizes this latter 
as the trace of the monomial valuation centered at .(A4, 0) and associated with the 
vector .α = (4, 6, 13, 27). Here we only gave the feeling of this, but the reason why 
the second and the third points of question (1) are satisfied follows from the fact that 
if .ν = να then the initial ideal of .(x2 − f2(x0, x1), x3 − f3(x0, x1, x2)) with respect 
to . ν is given by 

. (x2
1 − x3

0 , x2
2 − x5

0x1),

which is a toric (prime) ideal and its singular locus is a point. More generally we 
have 

Theorem 4.7.2 ([100]) For .n = 2, there is a constructive solution of question (1). 

It is important to mention here that determining a generating sequence is not 
necessary to solve question (1) for a given valuation. 

We can give now an example of our geometric approach to the resolution of 
singularities. Let .Y ⊂ A2 be again the curve defined by .(x2

1 −x3
0)2 −x5

0x1 = 0. The
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interesting divisorial valuation is the one associated with the irreducible component 
of .Y25 (or equivalently of .Cont26(Y )) which is defined by the ideal 

. 

(
x

(0)
0 , . . . , x

(3)
0 , x

(0)
1 , . . . , x

(5)
1 , x

(6)
1

2 − x
(4)
0

3)
.

We do not explain here in detail why we choose this divisor but we can say that this 
is the most natural choice which arises from the geometry of the jet schemes, which 
will be discussed below. But we can say that the space of arcs (on Y ) centered at 
the singular point of Y has one irreducible component whose geometry is reflected 
by the geometry of this irreducible component of .Y25. Applying the procedure that 
we explained above, we find an embedding .A2 ↪→ A3, which is the geometric 
counterpart of the following morphism 

. K[x0, x1, x2] −→ K[x0, x1, x2]
(x2 − (x1

2 − x0
3))


 K[x0, x1].

Our curve Y seen in . A3 is then defined by the ideal 

. I = (x2 − (x1
2 − x0

3), x2
2 − x5

0x1).

Its (local) tropical variety (with respect to the embedding in .A3) is the half line 
along the vector .(4, 6, 13) (see [116] for the notion of local tropical variety). The 
initial ideal of I with respect to the monomial valuation associated with the vector 
.(4, 6, 13) is given by the ideal 

. J = (x2
1 − x3

0 , x2
2 − x5

0x1).

The singular locus of the variety defined by this latter ideal (which actually defines 
a monomial curve) is just a point so that this ideal is non-degenerate and can be 
resolved with one toric morphism. Hence, this embedding is torific; more generally, 
this gives another proof of torification for analytically irreducible plane curves [58]. 
Now applying our geometric approach to resolution of singularities to a reducible 
plane curve we were able with de Felipe and González-Pérez to prove in the 
following: 

Theorem 4.7.3 ([41]) For a reducible plane curve singularity, the geometric 
approach to resolution of singularities yields a torific embedding. 

We can actually construct a torification for curves of any embedding dimension. 
What makes things more complicated in higher dimensions, is that the initial ideal 
which is the counter part of the initial ideal that we called J above, is not toric, but it 
still corresponds to a .T − variety (i.e.,) a variety which is equiped with an action of 
a torus of smaller dimension. Some work in this direction is in the ongoing project 
[19].
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4.8 Deformations of Jet Schemes 

In this section, we work over the field of complex number . C. Equisingularity 
theories were introduced by Whitney, Zariski, Teissier, Lê and others [113, 128, 129, 
133, 137] to compare singularities in a family with respect to algebraic, topological, 
geometric or differential invariants. The theory of jet schemes allow to consider two 
new equisingularity conditions; let . X be a (flat) family of singularities defined over 
a base variety . B. One may wonder when .X −→ B induces a (flat) deformation 
.Xm −→ B (or a deformation .(Xm)red −→ B for every .m ∈ N. In general, this is 
not the case; for instance for the embedded family .X −→ (C, 0) which is defined 
by 

. X = {y2 − ux2 − x3 = 0} ⊂ (C3, 0),

where u is the parameter of the deformation, .(Xm)red −→ B is not flat; this follows 
for instance from the fact that dimension of .(Xu)5 (where .Xu is the fiber over u) 
depends on whether .u �= 0 or .u = 0 : it is 6 for .u �= 0 and 7 if .u = 0. For plane 
irreducible curves, it follows from [97] that: 

Theorem 4.8.1 ([97]) Let .X −→ B be a (flat) family of irreducible plane curve 
singularities over a smooth variety . B. The induced family .(Xm)red −→ B is flat for 
every .m ∈ N if and only if the fibers of . X have the same semigroup. 

In the theorem, the notion of semigroup is attached to a plane curve and is defined 
via the local intersection multiplicity of the curve at the origin; this latter defines a 
valuation whose semigroup is by definition the semigroup of the curve [138]. 

Note that, all the known equisingularity theories for families of plane curves are 
equivalent: such a family is equisingular if every fiber has the same semigroup (or 
equivalently the same Puiseux pairs). It follows from [105] that this theorem is no 
longer true if we allow fibers which are not necessarily plane curves. 

Leyton-Alvarez [87, 88] gave a sufficient condition for an embedded one param-
eter family of hypersurfaces .X ⊂ (Cd+1, 0) × (C, 0) to induce a flat deformation: 

Theorem 4.8.2 (Leyton-Alvarez) Let .X ⊂ (Cd+1, 0) × (C, 0) be a flat family 
of hypersurfaces. If the family .X ⊂ (Cd+1, 0) × (C, 0) admits a simultaneous 
embedded resolution then it induces a flat family .(Xm)red −→ (C, 0) for every 
. m ∈ N.

We refer to [89] for a precise definition of a simultaneous embedded resolution. 
The following theorem of Leyton-Alvarez, Mourtada and Spivakovsky is proved in 
[89]. 

Theorem 4.8.3 ([89]) Let .X ⊂ (Cd+1, 0)×(C, 0) be a flat Newton non-degenerate 
family of isolated hypersurface singularities. If . X is .μ-constant then it induces a flat 
family .(Xm)red −→ (C, 0) for every .m ∈ N.
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Let us say that a family .X −→ B is jet schemes equisingular if it induces a flat 
family .(Xm)red −→ B for every .m ∈ N. It is a very interesting line of research to 
compare this notion of equisingularity with the other existing notions. 

4.9 Arc Spaces and Integer Partitions 

This line of research again finds its origin in the study of singularities as we will 
show later but is now making its way into the world of combinatorics and classical 
number theory, so let us begin there. The following identity 

.1 + e−2π

1 + e−4π

1+ e−6π

...

=
⎛

⎝

√
5 + √

5

2
− 1 + √

5

2

⎞

⎠ e
2π
5 (4.7) 

was imagined by Ramanujan and sent to Hardy who says in the article “The Indian
Mathematician Ramanujan” (Amer. Math. Monthly 44 (1937), p. 144), see also [8]: 

[These formulas] defeated me completely. I had never seen anything in the least like them 
before. A single look at them is enough to show that they could only be written down by a 
mathematician of the highest class. They must be true because, if they were not true, no one 
would have had the imagination to invent them. 

Some years later, Ramanujan gave a proof of this formula by considering the 
following . q−difference equation 

.F(x) = F(xq) + xqF(xq2), (4.8) 

where .q ∈ C∗, and .F(x) = ∑
an(q)xn is an analytic function satisfying . F(0) = 1.

If we define .c(x, q) := F(x)
F (xq)

, notice that we have 

. c(x, q) = 1 + xq

c(xq, q)
= 1 + xq

1 + xq2

c(xq2,q)

.

Iterating this last identity we obtain that the left member of the identity (4.7) is equal 
to .c(1, e−2π ). Now if we plug .F(x) = ∑

an(q)xn in the Eq. (4.8), by comparing 
the coefficients of . xn we get 

.an(q) = qn2

(q)n
= qn2

(1 − q)(1 − q2) · · · (1 − qn)
.
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The miracle arrives in the following identity 

.1 +
∑

n≥1

qn2

(q)n
=

∏

i≡ 1,4 (mod 5)

1

1 − qi
. (4.9) 

The left hand side in the identity (4.9) is .F(1). There is another miracle which is 
that .F(q) is also an infinite product and hence .c(1, q) is. And we may then deduce 
Ramanujan’s continued fraction (4.7) by an appeal to the theory of elliptic theta
functions.

The “miracles” above are called the Rogers-Ramanujan identities; they have
appeared “in many different situations”: in statistical mechanics, number theory,
representation theory . . . and we came to them first with Clemens Bruschek and Jan
Schepers via Arc spaces. Before telling the story, let us state another version of the
first Rogers-Ramanujan identity (4.9). 

Definition 4.9.1 A partition of a positive integer n is a decreasing sequence . Λ =
(λ1 ≥ λ2 ≥ · · · ≥ λr) such that .λ1 + · · · + λr = n. The . λi’s are called the parts of 
this partition and r is its size. 

The identity (4.9) can be stated as follows: 

Theorem 4.9.2 (Rogers, Ramanujan) The number of partitions of n with neither 
consecutive parts nor equal parts (of first type) is equal to the number of partitions 
of n whose parts are congruent to 1 or 4 modulo 5 (of second type). 

The generating series of the cardinality of the partitions of the first type is the left 
hand member in the identity (4.9) and the generating series of the cardinals of the
partitions of the second type is the right hand member in (4.9) , i.e., the infinite
product. Now we go back to algebraic geometry and to arc spaces. Let . (X, 0)

be a singularity defined over a field . K which is assumed for simplicity to be of 
characteristic 0 for (0 being a closed point that after a change of coordinates may be 
chosen to be the origin of an affine space containing .(X, 0)). Let .X0∞ = SpecA0∞ be 
the space of arcs centered at the point . 0. It has a natural cone structure which induces 
a grading on .A0∞ (i.e., .A0∞ = ⊕h∈NA0∞,h) and one can consider its Hilbert-Poincaré 
series that we call the Arc-Hilbert-Poincaré series of the singularity: 

. AHPX,0 =
∑

h∈N
dimK A0∞,h qh.

It is not difficult to see that this is an invariant of singularities (it detects 
regularity) and it contains different ingredients which motivate its study from the 
viewpoint of singularity theory: First, if .X ⊂ Ae and considering the jet schemes 
.Xm ⊂ Ae

m = Ae(m+1) and . X0
m ⊂ (Ae)0

m = Aem;
(i) one notices on examples that the defining ideal of .X0

m in .Aem is independent of 
some of the variables of the polynomial ring which is the ring of global sections
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of .Aem and that the number of variables needed to define this ideal (modulo a 
linear change of variables) depends on how singular X is at . 0. The more X is 
singular, the less variables we need for a given . m; such an invariant was actually 
defined by Hironaka as a resolution invariant, see for instance [16] but this is 
another story. 

(ii) The data of an .m−jet determines its coordinates in .Aem and as mentioned in 
the item (1), there are no constraints on some of these coordinates; but there 
are constraints on these “free coordinates” for the jet to be liftable to an arc 
and these constraints come from the equations defining . Xl for .l ≥ m; the 
smallest l such that the equations defining . Xl catch all the constraints on all the 
.m−jets for them to be liftable is related to the Artin-Greenberg function which 
is another invariant of singularities [65, 122]: roughly speaking, Greenberg’s 
theorem states that if a tuple .γ (t) of power series in .K[[t]] is very close in the 
t-adic topology to being an arc on X (which means that . γ coincides with an 
. r−jet on X for some large r) then there is an actual arc . γ ′ on X which is close 
to . γ in the sense that . γ coincides to . t−adic order m with the .m−jet of . γ ′; the  
Artin-Greenberg function .β(m) measures how close you need to be to an arc 
on X to have the same m-jet as an arc on X; again, roughly speaking, the larger 
the function is, the nastier the singularity .(X, 0) is. 

The Arc Hilbert Poincaré series is related in spirit to these two types of invariants: 
Heuristically, the more we have free variables at the level . m, the larger will be the 
dimension of the homogeneous components of .A0∞ of weight less than or equal to 
m will be (note that the homogeneous components of weight less than or equal to m 
are the same as those of the ring of global sections of . X0

m) but also the larger is the 
Artin-Greenberg function. But this invariant is very difficult to compute, because of 
the complicated homological properties of .A0∞ in general, even though sometimes 
for mild singularities this is possible, [26]: 

Theorem 4.9.3 ([26]) Let X be a normal hypersurface in . An with a canonical 
singularity of multiplicity .n − 1 at the origin. Then 

. AHPX,0(q) =
(

n−2∏

i=1

1

1 − qi

)n
⎛

⎝
∏

i≥n−1

1

1 − qi

⎞

⎠
n−1

.

This generalizes a theorem that was obtained in [99] for rational double point 
surface singularities. Some research is still ongoing to reveal the secrets of this 
invariant of singularities but let us go back now to partitions and to a beautiful link 
with the Arc-Hilbert-Poincaré series [25]: 

Theorem 4.9.4 ([25]) 

.For X = Spec
K[x]
(x2)

, AHPX,0(q) =
∏

i≡ 1,4 (mod 5)

1

1 − qi
.
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Notice that the power series in the theorem is the right hand side of the first Rogers 
Ramanujan identity. The proof uses the differential structure of .A0∞ which for . X =
SpecK[x]

(x2)
is given by 

. A0∞ = K[xi, i ∈ N>0]
[x2

1 ] ,

where .[x2
1 ] is the differential ideal generated by . x2

1 and its iterated derivatives with 
respect to the derivation D which is determined by .D(xi) = xi+1. So 

.[x2
1 ] = (x2

1 , 2x1x2, 2x1x3 + 2x2
2 , . . .) (4.10) 

The grading of .A0∞ is induced from the weights given to the variables, . xi being 
of weight . i. We order the monomials using an “adapted” monomial ordering, the 
weighted reverse lexicographical ordering; Now, it is well known that the Hilbert 
Poincaré series of the quotient ring by an ideal I is equal to the Hilbert Poincaré 
series of the quotient ring by the leading ideal (relative to a monomial ordering 
which respects the weight) of . I. This latter is generated by the leading monomials 
of the elements of a Groebner basis of . I. In general, it is very complicated to find a 
Groebner basis theoretically, even when we consider, let us say, the ideal generated 
by the first 5 generators of .I := [x2

1 ], we should add many polynomials to obtain 
a Groebner basis [12]; the miracle is that the generators in (4.10) give a Groebner 
basis with respect to the weighted reverse lexicographical ordering. The proof shows 
actually that any S-polynomial (this is a notion used in Buchberger algorithm for 
computing a Groebner basis) is not relevant and it comes out, after determining its 
weight . w, from the .(w − 4)−th derivative (by D) of the equation 

. 2x2(x
2
1) − x1(2x1x2) = 0.

We deduce that 

. AHPX,0(q) = HP(
K[xi, i ∈ N](

x2
i , xixi+1; i ∈ N>0

) ),

where HP stands for the Hilbert-Poincaré series and where the ideal 

. (x2
i , xixi+1; i ∈ N>0)

is the leading ideal of .[x2
1 ]. Now after a short reasoning, one sees that 

.HP(
K[xi ,i∈N]

(x2
i ,xixi+1;i∈N>0)

) is exactly the generating series of the number of partitions 

of n with neither consecutive nor equal parts. Using the first Rogers-Ramanujan 
identity we get the formula in the theorem.
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Moreover, with very simple commutative algebra applied to 

. HP(
K[xi, i ∈ N]

(x2
i , xixi+1; i ∈ N>0)

)

we find that there is a sequence of power series in the variable q which converges 
in the . q−adic topology to both sides of the Rogers-Ramanujan identities giving a 
commutative algebra approach to these identities; this sequence was stated in an 
empirical way in [9]. 

This theorem was greatly generalized in [26]: 

Theorem 4.9.5 ([26]) For . X = SpecK[x]
(xn)

,

. AHPX,0(q) =
∏

i �≡ 0,n,n+1 mod(2n+1)

1

1 − qi
.

The proof uses similar ideas but the differential calculus is much more involved. 
This latter theorem is related to Gordon’s identities which are partition identities 
generalizing the Rogers-Ramanujan identities. A commutative algebra proof of 
Gordon’s identities was found in the PhD thesis of Pooneh Afsharijoo [4]. 

Now recall that in the proof of Theorem 4.9.3, we considered the Groebner basis 
of the ideal .[x2

1 ] with respect to the weighted reverse lexicographical ordering; the 
heuristic reason of the choice of this ordering is that this allows to see first (i.e., as 
leading monomials) the monomials which concern the larger neighborhoods from 
the point of view of Taylor series: for instance for the polynomial . x2

2 + x1x3,

the leading term with respect to the reverse lexicographical ordering is . x2
2 which 

concerns an approximation of order 2 while .x1x3 concerns an approximation of 
order . 3. But as mentioned before, the Hilbert series of the quotient by the ideal 
.[x2

1 ] is equal to the Hilbert series of the quotient by its leading monomial ideal with 
respect to any monomial ordering respecting the weight. With Pooneh Afsharijoo, 
we considered the weighted lexicographical ordering and we knew that if we catch 
the leading monomial ideal of .[x2

1 ] with respect to this ordering, its Hilbert series 
will be equal to the generating series of the number of partitions appearing in 
the Rogers-Ramanujan identities, but potentially it counts partitions with different 
properties. The problem is that while the Groebner basis of .[x2

1 ] with respect to the 
weighted reverse lexicographical ordering is differentially finite (i.e., it is obtained 
from a finite number of polynomials -here only one polynomial- and all their 
derivatives), we were able to prove that with respect to the weighted lexicographical 
ordering, there is no Groebner basis of .[x2

1 ] which is differentially finite [7]; A 
Groebner basis is then very difficult to determine; but using Groebner basis theory 
computations, we were able to conjecture what is the leading monomial ideal of 
.[x2

1 ]; this remains a conjecture but we were able to prove that the Hilbert series of 
the quotient by this monomial ideal is equal to the series appearing in the Rogers-
Ramanujan identities. By taking a variation of the ideal .[x2

1 ], we have been led to
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the following partition identities [7] where for a partition . λ we denote by .s(λ) its 
smallest part. 

Theorem 4.9.6 ([7]) Let .n ≥ k be positive integers. The number of partitions . λ
of n whose parts are larger or equal to k and whose size is less than or equal to 
.s(λ) − (k − 1) is equal to the number of partitions of n with parts larger or equal 
to k and without neither consecutive nor equal parts. 

For .k = 1, this gives another member of Rogers-Ramanujan identities: Let . n ≥ 1
be a positive integer. The number of partitions of n with size less than or equal to 
the smallest part is equal to the number of partitions of n without consecutive nor 
equal parts. 

It is playful to see this last identity on the partitions of 4 but let us first call 
the partitions of n with size less than or equal to the smallest part, partitions of 
third type; partitions of first and second type were defined in Theorem 4.9.2. The  
partitions of 4 are 

. 4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

The partitions of 4 which are of the first type are the first and the second partitions. 
The partitions of 4 which are of the second type are the first and the fifth 

partitions. 
The partitions of 4 which are of the third type are the first and the third partitions. 

And as the theorem predicts, the number of these partitions, two, is the same for the 
three types. 

Using an idea similar to the one used to guess Theorem 4.9.6, Pooneh Afsharijoo 
has conjectured in her thesis new identities which add new members to Gordon’s 
identities [4, 6]; she proved this conjecture in a particular case and very recently 
with Pooneh Afsharijoo, Jehanne Dousse and Frédéric Jouhet, we proved these very 
exciting identities in general, this is the content of [5] (see also [3]). 

These theorems are small steps (walking steps towards another planet) in study-
ing what we would like to call Ramanujan Hilbert scheme, which parametrizes 
the schemes with a cone structure and whose Hilbert series is equal to . F(1).

There are various generalizations of these theorems or these line of thoughts. I 
can mention for instance [96] or a theorem on partitions of two colours in [7].



4 Jet Schemes and Their Applications in Singularities, Toric Resolutions and. . . 243

4.10 Completions of Localizations of the Algebra of Arcs 

We assume for simplicity that we are working over an algebraically closed field . K
of characteristic zero. Most of the invariants that we have considered in the previous 
section (apart form Sect. 4.9) made use of the reduced structure of the jet schemes 
or the space of arcs. This latter, being often of infinite dimension, its study requires 
commutative algebra in infinite dimension, which till now seems to be a difficult 
issue. Let X be a .K-algebraic variety; the local algebras of the arc space .X∞ were 
studied for two types of points or arcs (for different reasons or motivations):

• The study of the local algebra of .X∞ at a .K-rational arc . γ was motivated by some 
problems related to the Langlands program [24]. The first interesting theorem in 
this direction is the Drinfeld-Grinberg-Kazhdan theorem[20, 49, 63] which states 
that whenever .γ �∈ (Sing(X))∞, there exists a finite dimensional .K-scheme . Y,

a .K- point .y ∈ Y and an isomorphism 

. �̂�X∞,γ ≡ �̂�Y,y⊗̂K[[Ti, i ∈ N]]. (�)

The hat denotes the completion with respect to the maximal ideal. Bourqui and 
Sebag considered a minimal .�̂�Y,y in .(�), in the sense that .�̂�Y,y is not isomorphic 
to .B[[T ]] (B being a local complete noetherian .K-algebra); this formal spectrum 
of .�̂�Y,y is then uniquely determined up to isomorphism and called the formal 
minimal model of X at . γ. For an irreducible plane curve singularity, the formal 
minimal model is independent of the choice the (primitive) arc . γ and thus defines 
an invariant of the singularity. For more about minimal formal models see [21– 
23, 30].

• The study of the local algebra of the arc space at a point associated with divisorial 
valuations (see the Sect. 4.3, see also [71, 119]); this was motivated by the Nash 
problem [119, 120]. It was proved by Reguera that for a divisorial valuation 
.ν = νE (E being the divisor) having a center on . X, denoting by . Pν the point 
in the arc space associated with . ν, the ring .�̂�X∞,Pν is noetherian. Mourtada and 
Reguera found a formula relating the embedding dimension of .�̂�X∞,Pν to the 
Mather discrepency . ̂kE of E and found an upper bound of its dimension in terms 
of the Mather-Jacobian discrepancy [103]. 

Recently, there is a lot of interest on one hand (in the work of Bourqui, 
Sebag and others) in comparing the structure of .�̂�X∞,PνE

with the structure of the 
minimal formal model at a generic .K- arc in the family of arcs associated with 
E (see Sect. 4.3); and on the other hand in understanding the relation between the 
singularities of X and the structure of .�̂�X∞,Pν in the continuity of [103] (see also  
[30]). 

Acknowledgments I would like to express my gratitude to: José Seade for suggesting to me to 
contribute to the handbook of singularities, Monique Lejeune-Jalabert for introducing me patiently 
during my PhD thesis to jet schemes and arc spaces, Bernard Teissier for fruitful discussions



244 H. Mourtada

along years about the different themes of this article, my coauthors and Patrick Popescu-Pampu 
for discussions, corrections and remarks on the various subjects discussed here, the referee for his 
careful reading and useful suggestions. 

References 

1. Shreeram Abhyankar. On the ramification of algebraic functions. Amer. J. Math., 77:575–592, 
1955. 

2. Dan Abramovich, Michael Temkin, and Jaroslaw Wlodarczyk. Functorial embedded 
resolution via weighted blowings up, 2019. 

3. Afsharijoo Pooneh, Dousse Jehanne, Jouhe Frédéric, Mourtada Hussein New companions to 
gordon identities from commutative algebra. Sém. Lothar. Combin., Art 48(12):86B. 2022. 
2021. 

4. Pooneh Afsharijoo. Looking for a new version of Gordon’s identities, from algebraic 
geometry to combinatorics through partitions. PhD thesis, Université De Paris, 2019. 

5. Afsharijoo Pooneh, Dousse Jehanne, Jouhe Frédéric, Mourtada Hussein New companions to 
the Andrews-Gordon identities motivated by commutative algera. Adv. Math, 417:Paper No. 
108946, 40, 2023. 

6. Pooneh Afsharijoo. Looking for a new version of Gordon’s identities. Ann. Comb., 25(3):543– 
571, 2021. 

7. Pooneh Afsharijoo and Hussein Mourtada. Partition identities and application to infinite-
dimensional Gröbner basis and vice versa. pages 145–161. World Sci. Publ., Hackensack, 
NJ, [2020] ©2020. 

8. George E. Andrews. The theory of partitions. Encyclopedia of Mathematics and its 
Applications, Vol. 2. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 
1976. 

9. George E. Andrews and R. J. Baxter. A motivated proof of the Rogers-Ramanujan identities. 
Amer. Math. Monthly, 96(5):401–409, 1989. 

10. Fuensanta Aroca, Mirna Gómez-Morales, and Hussein Mourtada. Groebner fans and 
embedded resolutions of ideals on toric varieties, 2022. 

11. Fuensanta Aroca, Mirna Gómez-Morales, and Khurram Shabbir. Torical modification of 
Newton non-degenerate ideals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 
107(1):221–239, 2013. 

12. Yuzhe Bai, Eugene Gorsky, and Oscar Kivinen. Quadratic ideals and Rogers-Ramanujan 
recursions. Ramanujan J., 52(1):67–89, 2020. 

13. Victor V. Batyrev. Non-Archimedean integrals and stringy Euler numbers of log-terminal 
pairs. J. Eur. Math. Soc. (JEMS), 1(1):5–33, 1999. 

14. Angélica Benito and Orlando E. Villamayor U. Techniques for the study of singularities with 
applications to resolution of 2-dimensional schemes. Math. Ann., 353(3):1037–1068, 2012. 

15. Angélica Benito and Orlando E. Villamayor U. Monoidal transforms and invariants of 
singularities in positive characteristic. Compos. Math., 149(8):1267–1311, 2013. 

16. Jérémy Berthomieu, Pascal Hivert, and Hussein Mourtada. Computing Hironaka’s invariants: 
ridge and directrix. In Arithmetic, geometry, cryptography and coding theory 2009, volume 
521 of Contemp. Math., pages 9–20. Amer. Math. Soc., Providence, RI, 2010. 

17. Bhargav Bhatt. Algebraization and Tannaka duality. Camb. J. Math., 4(4):403–461, 2016. 
18. Manuel Blickle. A short course on geometric motivic integration. In Motivic integration and 

its interactions with model theory and non-Archimedean geometry. Volume I, volume 383 of 
London Math. Soc. Lecture Note Ser., pages 189–243. Cambridge Univ. Press, Cambridge, 
2011. 

19. David Bourqui, Kevin Langlois, and Hussein Mourtada. The nash problem for torus actions 
of complexity one, 2022.



4 Jet Schemes and Their Applications in Singularities, Toric Resolutions and. . . 245

20. David Bourqui and Julien Sebag. The Drinfeld-Grinberg-Kazhdan theorem for formal 
schemes and singularity theory. Confluentes Math., 9(1):29–64, 2017. 

21. David Bourqui and Julien Sebag. The minimal formal models of curve singularities. Internat. 
J. Math., 28(11):1750081, 23, 2017. 

22. David Bourqui and Julien Sebag. Finite formal model of toric singularities. J. Math. Soc. 
Japan, 71(3):805–829, 2019. 

23. David Bourqui and Julien Sebag. The local structure of arc schemes. pages 69–97. World 
Sci. Publ., Hackensack, NJ, [2020] ©2020. 

24. A. Bouthier, B. C. Ngô, and Y. Sakellaridis. On the formal arc space of a reductive monoid. 
Amer. J. Math., 138(1):81–108, 2016. 

25. Clemens Bruschek, Hussein Mourtada, and Jan Schepers. Arc spaces and Rogers-Ramanujan 
identities. In 23rd International Conference on Formal Power Series and Algebraic 
Combinatorics (FPSAC 2011), Discrete Math. Theor. Comput. Sci. Proc., AO, pages 211– 
220. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2011. 

26. Clemens Bruschek, Hussein Mourtada, and Jan Schepers. Arc spaces and the Rogers-
Ramanujan identities. Ramanujan J., 30(1):9–38, 2013. 

27. Nero Budur, Javier Fernández de Bobadilla, Quy Thuong Lê, and Hong Duc Nguyen. 
Cohomology of contact loci. J. Differential Geom., 120(3):389–409, 2022. 

28. Jean-Baptiste Campesato. On a motivic invariant of the arc-analytic equivalence. Ann. Inst. 
Fourier (Grenoble), 67(1):143–196, 2017. 

29. Antoine Chambert-Loir, Johannes Nicaise, and Julien Sebag. Motivic integration, volume 
325 of Progress in Mathematics. Birkhäuser/Springer, New York, 2018. 

30. Christopher Chiu, Tommaso de Fernex, and Roi Docampo. Embedding codimension of the 
space of arcs. Forum Math. Pi, 10:Paper No. e4, 37, 2022. 

31. Raf Cluckers and François Loeser. Constructible exponential functions, motivic Fourier 
transform and transfer principle. Ann. of Math. (2), 171(2):1011–1065, 2010. 

32. Helena Cobo and Hussein Mourtada. Jet schemes of quasi-ordinary surface singularities. 
Nagoya Math. J., 242:77–164, 2021. 

33. Georges Comte and Goulwen Fichou. Grothedieck ring of semialgebraic formulas and 
motivic real Milnor fibers. Geom. Topol., 18(2):963–996, 2014. 

34. Vincent Cossart and Olivier Piltant. Resolution of singularities of threefolds in positive 
characteristic. II. J. Algebra, 321(7):1836–1976, 2009. 

35. Vincent Cossart and Olivier Piltant. Resolution of singularities of arithmetical threefolds. J. 
Algebra, 529:268–535, 2019. 

36. Alastair Craw. An introduction to motivic integration. In Strings and geometry, volume 3 of 
Clay Math. Proc., pages 203–225. Amer. Math. Soc., Providence, RI, 2004. 

37. Steven Dale Cutkosky. Resolution of singularities, volume 63 of Graduate Studies in 
Mathematics. American Mathematical Society, Providence, RI, 2004. 

38. Steven Dale Cutkosky. Resolution of singularities for 3-folds in positive characteristic. Amer. 
J. Math., 131(1):59–127, 2009. 

39. Steven Dale Cutkosky and Hussein Mourtada. Defect and local uniformization. Rev. R. Acad. 
Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113(4):4211–4226, 2019. 

40. Steven Dale Cutkosky, Hussein Mourtada, and Bernard Teissier. On the construction of 
valuations and generating sequences on hypersurface singularities. Algebr. Geom., 8(6):705– 
748, 2021. 

41. Ana Belén de Felipe, Pedro D. González Pérez, and Hussein Mourtada. Resolving 
singularities of curves with one toric morphism, 2021. 

42. Tommaso de Fernex. Three-dimensional counter-examples to the Nash problem. Compos. 
Math., 149(9):1519–1534, 2013. 

43. Tommaso de Fernex. The space of arcs of an algebraic variety. In Algebraic geometry: Salt 
Lake City 2015, volume 97 of Proc. Sympos. Pure Math., pages 169–197. Amer. Math. Soc., 
Providence, RI, 2018. 

44. Tommaso de Fernex and Roi Docampo. Terminal valuations and the Nash problem. Invent. 
Math., 203(1):303–331, 2016.



246 H. Mourtada

45. Tommaso de Fernex, Lawrence Ein, and Shihoko Ishii. Divisorial valuations via arcs. Publ. 
Res. Inst. Math. Sci., 44(2):425–448, 2008. 

46. Jan Denef and François Loeser. Motivic Igusa zeta functions. J. Algebraic Geom., 7(3):505– 
537, 1998. 

47. Jan Denef and François Loeser. Germs of arcs on singular algebraic varieties and motivic 
integration. Invent. Math., 135(1):201–232, 1999. 

48. Roi Docampo and Antonio Nigro. The arc space of the Grassmannian. Adv. Math., 306:1269– 
1332, 2017. 

49. Vladimir Drinfeld. The Grinberg-Kazhdan formal arc theorem and the Newton groupoids. 
pages 37–56. World Sci. Publ., Hackensack, NJ, [2020] ©2020. 

50. Lawrence Ein, Robert Lazarsfeld, and Mircea Mustaţǎ. Contact loci in arc spaces. Compos. 
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53. Lawrence Ein and Mircea Mustaţǎ. Inversion of adjunction for local complete intersection 
varieties. Amer. J. Math., 126(6):1355–1365, 2004. 

54. J. Fernández de Bobadilla and M. Pe Pereira. The Nash problem from geometric and 
topological perspective. pages 173–195. World Sci. Publ., Hackensack, NJ, [2020] ©2020. 

55. Javier Fernández de Bobadilla, María Pe Pereira, and Patrick Popescu-Pampu. On the 
generalized Nash problem for smooth germs and adjacencies of curve singularities. Adv. 
Math., 320:1269–1317, 2017. 

56. Javier Fernández de Bobadilla and María Pe Pereira. The Nash problem for surfaces. Ann. of 
Math. (2), 176(3):2003–2029, 2012. 

57. Yih-Nan Gau. Embedded topological classification of quasi-ordinary singularities. Mem. 
Amer. Math. Soc., 74(388):109–129, 1988. With an appendix by Joseph Lipman. 

58. Rebecca Goldin and Bernard Teissier. Resolving singularities of plane analytic branches with 
one toric morphism. In Resolution of singularities (Obergurgl, 1997), volume 181 of Progr. 
Math., pages 315–340. Birkhäuser, Basel, 2000. 

59. P. D. González Pérez. Bijectiveness of the Nash map for quasi-ordinary hypersurface 
singularities. Int. Math. Res. Not. IMRN, (19):Art. ID rnm076, 13, 2007. 

60. Pedro D. González Pérez. Toric embedded resolutions of quasi-ordinary hypersurface 
singularities. Ann. Inst. Fourier (Grenoble), 53(6):1819–1881, 2003. 

61. Pedro D. González Pérez and Manuel González Villa. Motivic Milnor fiber of a quasi-
ordinary hypersurface. J. Reine Angew. Math., 687:159–205, 2014. 

62. Pedro Daniel González Pérez. The semigroup of a quasi-ordinary hypersurface. J. Inst. Math. 
Jussieu, 2(3):383–399, 2003. 

63. M. Grinberg and D. Kazhdan. Versal deformations of formal arcs. Geom. Funct. Anal., 
10(3):543–555, 2000. 

64. Herwig Hauser and Stefan Perlega. Cycles of singularities appearing in the resolution problem 
in positive characteristic. J. Algebraic Geom., 28(2):391–403, 2019. 

65. M. Hickel. Calcul de la fonction d’Artin-Greenberg d’une branche plane. Pacific J. Math., 
213(1):37–47, 2004. 

66. Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of 
characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid. (2), 79:205–326, 1964. 

67. Ehud Hrushovski and David Kazhdan. Integration in valued fields. In Algebraic geometry 
and number theory, volume 253 of Progr. Math., pages 261–405. Birkhäuser Boston, Boston, 
MA, 2006. 

68. Shihoko Ishii. Arc spaces and singularities. this volume. 
69. Shihoko Ishii. The arc space of a toric variety. J. Algebra, 278(2):666–683, 2004. 
70. Shihoko Ishii. Arcs, valuations and the Nash map. J. Reine Angew. Math., 588:71–92, 2005.



4 Jet Schemes and Their Applications in Singularities, Toric Resolutions and. . . 247

71. Shihoko Ishii. Maximal divisorial sets in arc spaces. In Algebraic geometry in East Asia— 
Hanoi 2005, volume 50 of Adv. Stud. Pure Math., pages 237–249. Math. Soc. Japan, Tokyo, 
2008. 

72. Shihoko Ishii. The minimal log discrepancies on a smooth surface in positive characteristic. 
Math. Z., 297(1–2):389–397, 2021. 

73. Shihoko Ishii and János Kollár. The Nash problem on arc families of singularities. Duke 
Math. J., 120(3):601–620, 2003. 

74. Shihoko Ishii and Ana J. Reguera. Singularities in arbitrary characteristic via jet schemes. In 
Hodge theory and L2-analysis, volume 39 of Adv. Lect. Math. (ALM), pages 419–449. Int. 
Press, Somerville, MA, 2017. 

75. Jennifer M. Johnson and János Kollár. Arc spaces of cA-type singularities. J. Singul., 7:238– 
252, 2013. 

76. Heinrich W. E. Jung. Darstellung der Funktionen eines algebraischen Körpers zweier 
unabhängigen Veränderlichen x, y in der Umgebung einer Stelle x = a, y = b. J. Reine 
Angew. Math., 133:289–314, 1908. 

77. B. Karadeniz, H. Mourtada, C. Plénat, and M. Tosun. The embedded Nash problem of 
birational models of rational triple singularities. J. Singul., 22:337–372, 2020. 

78. Hiraku Kawanoue and Kenji Matsuki. A new strategy for resolution of singularities in the 
monomial case in positive characteristic. Rev. Mat. Iberoam., 34(3):1229–1276, 2018. 

79. K. Kiyek and M. Micus. Semigroup of a quasiordinary singularity. In Topics in algebra, Part 
2 (Warsaw, 1988), volume 26 of Banach Center Publ., pages 149–156. PWN, Warsaw, 1990. 

80. János Kollár. Lectures on resolution of singularities, volume 166 of Annals of Mathematics 
Studies. Princeton University Press, Princeton, NJ, 2007. 

81. Kevin Langlois, Clélia Pech, and Michel Raibaut. Stringy invariants for horospherical 
varieties of complexity one. Algebr. Geom., 6(3):346–383, 2019. 

82. Monique Lejeune-Jalabert. Arcs analytiques et resolution minimale des singularites des 
surfaces quasi homogènes. In Séminaire sur les Singularités des Surfaces, pages 303–336. 
Springer Berlin Heidelberg, 1980. 

83. Monique Lejeune-Jalabert. Courbes tracées sur un germe d’hypersurface. Amer. J. Math., 
112(4):525–568, 1990. 

84. Monique Lejeune-Jalabert. The algebraic answer to the Nash problem for normal surfaces 
according to de Fernex and Docampo. pages 163–172. World Sci. Publ., Hackensack, NJ, 
[2020] ©2020. 

85. Monique Lejeune-Jalabert, Hussein Mourtada, and Ana Reguera. Jet schemes and minimal 
embedded desingularization of plane branches. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A 
Mat. RACSAM, 107(1):145–157, 2013. 

86. Monique Lejeune-Jalabert and Ana J. Reguera. The Denef-Loeser series for toric surface 
singularities. In Proceedings of the International Conference on Algebraic Geometry and 
Singularities (Spanish) (Sevilla, 2001), volume 19, pages 581–612, 2003. 

87. Maximiliano Leyton-Alvarez. Familles d’espaces de m-jets et d’espaces d’arcs. J. Pure Appl. 
Algebra, 220(1):1–33, 2016. 

88. Maximiliano Leyton-Álvarez. Deforming spaces of m-jets of hypersurfaces singularities. J. 
Algebra, 508:81–97, 2018. 

89. Maximiliano Leyton-Álvarez, Hussein Mourtada, and Mark Spivakovsky. Newton non-
degenerate μ-constant deformations admit simultaneous embedded resolutions. Compos. 
Math., 158(6):1268–1297, 2022. 

90. Joseph Lipman. QUASI-ORDINARY SINGULARITIES OF EMBEDDED SURFACES. Pro-
Quest LLC, Ann Arbor, MI, 1965. Thesis (Ph.D.)–Harvard University. 

91. Joseph Lipman. Topological invariants of quasi-ordinary singularities. Mem. Amer. Math. 
Soc., 74(388):1–107, 1988. 

92. Joseph Lipman. Equisingularity and simultaneous resolution of singularities. In Resolution 
of singularities (Obergurgl, 1997), volume 181 of Progr. Math., pages 485–505. Birkhäuser, 
Basel, 2000.



248 H. Mourtada

93. Eduard Looijenga. Motivic measures. Number 276, pages 267–297. 2002. Séminaire 
Bourbaki, Vol. 1999/2000. 

94. Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry, volume 161 of 
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2015. 

95. Kenji Matsuki. Introduction to the Mori program. Universitext. Springer-Verlag, New York, 
2002. 

96. Zahraa Mohsen and Hussein Mourtada. Neighborly partitions and the numerators of Rogers-
Ramanujan identities. Int. J. Number Theory, 19 (2023), no. 4, 859–872. 

97. Hussein Mourtada. Jet schemes of complex plane branches and equisingularity. Ann. Inst. 
Fourier (Grenoble), 61(6):2313–2336 (2012), 2011. 

98. Hussein Mourtada. Jet schemes of toric surfaces. C. R. Math. Acad. Sci. Paris, 349(9– 
10):563–566, 2011. 

99. Hussein Mourtada. Jet schemes of rational double point singularities. In Valuation theory in 
interaction, EMS Ser. Congr. Rep., pages 373–388. Eur. Math. Soc., Zürich, 2014. 

100. Hussein Mourtada. Jet schemes and generating sequences of divisorial valuations in 
dimension two. Michigan Math. J., 66(1):155–174, 2017. 

101. Hussein Mourtada. Jet schemes of normal toric surfaces. Bull. Soc. Math. France, 
145(2):237–266, 2017. 

102. Hussein Mourtada and Camille Plénat. Jet schemes and minimal toric embedded resolutions 
of rational double point singularities. Comm. Algebra, 46(3):1314–1332, 2018. 

103. Hussein Mourtada and Ana J. Reguera. Mather discrepancy as an embedding dimension in 
the space of arcs. Publ. Res. Inst. Math. Sci., 54(1):105–139, 2018. 

104. Hussein Mourtada and Bernd Schober. A polyhedral characterization of quasi-ordinary 
singularities. Mosc. Math. J., 18(4):755–785, 2018. 

105. Hussein Mourtada, Willem Veys, and Lena Vos. The motivic Igusa zeta function of a space 
monomial curve with a plane semigroup. Adv. Geom., 21(3):417–442, 2021. 
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Abstract We discuss the notions of indices of vector fields and 1-forms and their 
generalizations to singular varieties and varieties with actions of finite groups, as 
well as indices of collections of vector fields and 1-forms. 

5.1 Introduction 

Vector fields on a smooth manifold (a real or complex one) and their singular points 
play an important role in many different areas of mathematics. A classical invariant 
of a singular point of a vector field is its index. The notion of the index has a long 
history reflected in a number of classical sources. A famous result is the Poincaré– 
Hopf theorem which states that the sum of the indices of the (isolated) singular 
points of a vector field on a closed (compact, without boundary) manifold is equal 
to the Euler characteristic of the manifold. 

There is no straightforward generalization of the notion of the index of a singular 
point to vector fields on singular varieties. There are several concepts of indices in 
this case. Some of them require special conditions on the vector fields and/or on the 
singular variety. 

In the smooth case, there is essentially no difference between vector fields and 
1-forms. In the case of singular varieties, these settings are essentially different. 
Traditionally the main attention was payed to indices of singular points of vector 
fields (cf. [22]). A suggestion to consider indices of singular points of 1-forms 
alongside with (or instead of) indices of vector fields was first made by V. I. Arnold 
in [7] (he used them for manifolds with boundaries; see also [9]). The authors started 
a study of indices of 1-forms on singular varieties [35]. (It should be mentioned that 
R. MacPherson also used particular 1-forms on singular varieties in [94] to define 
the local Euler obstruction.) 

Indices of vector fields or of 1-forms on (compact) complex analytic manifolds 
are related with the Euler characteristic, that is with the top Chern number. Other 
Chern numbers correspond to indices of collections of vector fields or of 1-forms. 
Therefore it is interesting to study such indices. 

There are some equivariant versions of the Euler characteristic for spaces with 
an action of a finite group G. Therefore it is reasonable to try to define indices of 
singular points of G-invariant vector fields and 1-forms on G-varieties as well. 

Here we give a survey on all these concepts. We give no proofs but for 
every statement we give precise references to articles where one can find more 
details including proofs. There is a comprehensive textbook [22] by J.-P. Brasselet, 
J. Seade, and T. Suwa on a number of these subjects. We also wrote a survey article 
[41] about the developments till 2005.
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Let us outline the contents of this article. In Sect. 5.2, we collect the basic notions 
and classical facts for the case of smooth manifolds. 

In Sect. 5.3, we discuss different generalizations of the notion of the index of a 
singular point to vector fields and 1-forms on singular varieties. 

We start (in Sect. 5.3.1) with the notion which was classically defined first and 
which is very general. It is the radial or Schwartz index. The idea goes back to 
M.-H. Schwartz who started a comprehensive study of vector fields on singular 
(analytic) varieties in [107]. She considered a class of vector fields important for 
a number of constructions related with vector fields on singular varieties: so called 
radial vector fields and radial extensions. For these vector fields she proved a version 
of the Poincaré–Hopf theorem [108–110]. Building on her work, a general notion 
of an index of an isolated singular point of a vector field on a singular variety was 
introduced in [82]. However, this preprint was not published but only circulated 
around (and was also presented at a number of conferences). (A revised version of it 
was only published almost 20 years later [83].) Because of its restricted circulation, 
parts of it were later (re)elaborated in publications of other authors. In the general 
setting, for analytic varieties, this notion of index (called Schwartz index or radial 
index) was defined in [34], see also [38]. (For the case of varieties with isolated 
singularities, it was defined and studied, in particular, in [1, 117]. The paper [1] also  
treated varieties with non-isolated singularities. However, in this case, not indices 
of singular points of a vector field were defined, but indices of a vector field for 
connected components of the singular locus of the variety.) It was noticed in [31] 
that it can also be defined for semianalytic sets. The index was used to define 
characteristic classes for singular varieties, see, e.g., the surveys [14, 113]. 

Section 5.3.2 is devoted to a notion of an index which makes only sense 
on varieties of special types. It is the GSV index named after X. Gómez-Mont, 
J. Seade, and A. Verjovsky who defined it in [64] for vector fields on hypersurfaces 
with isolated singularities. It was generalized to vector fields on isolated complete 
intersection singularities in [116]. A reinterpretation as the “virtual index” is 
discussed in Sect. 5.3.6. This was extended to vector fields on compact complete 
intersections with non-isolated singularities in [92]. 

In Sect. 5.3.3, we introduce the Poincaré–Hopf index for a vector field or 1-form 
on an isolated complex analytic singularity, a notion which is directly related to the 
Poincaré–Hopf theorem but is only defined for a smoothing of the singularity. It was 
first defined for vector fields on complex analytic surfaces in [111]. It coincides with 
the GSV index for isolated complete intersection singularities. 

For the index of an isolated singular point of a holomorphic vector field on a 
complex manifold one has an algebraic formula, see Sect. 5.2.4. The search for such 
a formula for the index of an isolated singular point of a holomorphic vector field on 
a hypersurface with an isolated singularity was the motivation for Gómez-Mont to 
introduce the notion of a homological index in [61]. This is the subject of Sect. 5.3.4. 

The radial (Schwartz) index can be defined for singular points of vector fields 
on arbitrary analytic (or semi-analytic) varieties. Another notion of an index with 
this property is the Euler obstruction which is discussed in Sect. 5.3.5. The key  
ingredient in its construction was defined by R. MacPherson in [94]. He defined
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the Euler obstruction of the differential of the squared distance function. For vector 
fields, it was essentially defined by Brasselet and Schwartz in [18, 23] and [22]. See 
a formal definition in [26]. 

The homological index gives rise to algebraic formulas for the GSV index of a 
holomorphic vector field or 1-form on certain singular varieties generalizing those 
of Sect. 5.2.4. These formulas are discussed in Sect. 5.3.6. We also discuss analytic 
and topological formulas for the index. 

Some of the indices are not defined for general analytic varieties, but all the 
indices above are at least defined for isolated complete intersection singularities. 
The next more general class is the class of essentially isolated determinantal 
singularities introduced in [44] which recently attracted some attention. In the last 
subsection of Sect. 5.3 (Sect. 5.3.7), we study results on indices of 1-forms on such 
singularities. 

In Sect. 5.4, we consider analogues of the above indices for collections of vector 
fields and 1-forms. An analogue of the GSV index for them was introduced in [39]. 
It is discussed in Sect. 5.4.1. 

An analogue of the notion of the Euler obstruction for collections of 1-
forms corresponding to different Chern numbers leads to the notion of Chern 
obstructions introduced in [42, 43]. This is considered in Sect. 5.4.2. There we 
also discuss relations between the Euler obstruction of a map defined in [70] and 
the Chern obstruction of a convenient collection of 1-forms observed by Brasselet, 
N. G. Grulha Jr., and M. A. S. Ruas in [15]. 

Finally we discuss, in Sect. 5.4.3, the generalization of the homological index to 
collections of 1-forms due to E. Gorsky and the second author. 

The final section (Sect. 5.5) is devoted to the case that the variety carries an 
action of a finite group G. Through the Poincaré–Hopf theorem indices of singular 
points of vector fields or 1-forms are often related with the Euler characteristic of 
the underlying variety. The Euler characteristic (properly defined) is an additive 
topological invariant of spaces of some kind, say, of locally closed unions of cells 
in finite CW-complexes. For topological spaces with additional structures one has 
other additive topological invariants which can be considered as generalized Euler 
characteristics. One can expect appropriate notions of indices of singular points 
corresponding to these concepts. There are some notions of generalized Euler 
characteristics for spaces with an action of a finite group G. Some of them take 
values in the group . Z of integers: e.g. the alternating sum of the ranks of the 
invariant parts of the cohomology groups with compact support, the orbifold Euler 
characteristic ([10, 76]), etc. Another one is the alternating sum of classes of the 
cohomology groups as G-modules. It takes values in the ring of representations of 
the group G. It was introduced in [132], see also [134]. The most general (in some 
sense—universal) concept of the generalized Euler characteristic for G-spaces is the 
equivariant Euler characteristic which takes values in the Burnside ring of the group 
G. It was introduced in [129]. We discuss the definition in Sect. 5.5.1. 

A study of indices of singular points of G-invariant vector fields related with the 
Burnside ring of G was started in [93]. The indices therein had values not in the 
Burnside ring of G, but in a related abelian group (not a ring) depending on the
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underlying G-manifold. A study of indices as elements of the Burnside ring itself 
was initiated in [45] and continued in [46]. We first introduce these indices in the 
case of manifolds in Sect. 5.5.2. 

The following subsections treat equivariant versions of the indices of vector fields 
and 1-forms on singular varieties discussed in Sect. 5.3. Namely, the equivariant 
radial index is treated in Sect. 5.5.3, the equivariant GSV and Poincaré–Hopf index 
in Sect. 5.5.4, the equivariant homological index in Sect. 5.5.5 and the equivariant 
Euler obstruction in Sect. 5.5.6. 

The final subsection Sect. 5.5.7 discusses an attempt to generalize the Eisenbud– 
Levine–Khimshiashvili theorem to real quotient singularities. 

5.2 The Case of Smooth Manifolds 

5.2.1 The Index in the Real Case 

Let M be a smooth manifold of dimension n and let X be a vector field on M . 
A neighbourhood of a point .p ∈ M can be identified with a neighbourhood U 
of the origin in . Rn. In local coordinates around a point p, X can be written as 
.X = ∑n

i=1 Xi(x) ∂
∂xi

, where p corresponds to the origin in . Rn. The vector field is 
called continuous, smooth, analytic, etc., if the functions . Xi are continuous, smooth, 
analytic, etc., respectively. A point .p ∈ M with .X(p) = 0 is called a zero or a 
singular point of X. We shall define the index of a vector field at an isolated singular 
point. 

For this purpose, we define the local degree of a mapping. Let .U ⊂ R
n be an 

open subset and .F : U → R
n be a continuous mapping. Let .p ∈ U with . F(p) = 0

and let .Bn
ε (p) = {x ∈ R

n | ||x − p|| ≤ ε} be the ball of radius . ε centred at p 
contained in U such that there are no preimages of F of the origin except p inside 
. Bn

ε (p). The  local degree .degp F of the mapping F at the point p is the degree of 
the mapping 

. 
F

||F || : Sn−1
ε (p) → Sn−1

1

where .Sn−1
ε (p) = ∂Bn

ε (p) and .Sn−1
1 is the unit sphere in . Rn. 

Definition 5.2.1 Let X be a continuous vector field defined on .U ⊂ R
n and let 

.p ∈ U be an isolated zero of X. The  index .ind(X;Rn, p) of X at the singular point 

.p ∈ U is the degree of the mapping .(X1, . . . , Xn) : U → R
n. 

One can easily see that the definition of the index is independent of the choice of 
the local coordinates and of the sphere.
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Now let the vector field X be smooth and p a non-degenerate singular point of 

X. This means that .JX,p := det
(

∂Xi

∂xj
(0)

)
�= 0. Then .ind(X;Rn, p) = sign JX,p, 

where .sign JX,p denotes the sign of .JX,p, i.e., 

. sign JX,p =
{

1 if JX,p > 0,

−1 if JX,p < 0.

The index of an arbitrary isolated singular point p of a smooth vector field X is 
equal to the number of non-degenerate singular points . ̃p which split from the point 
p under a generic perturbation . ̃X of the vector field X in a neighbourhood of the 
point p counted with the appropriate signs .sign JX̃,p̃. 

One of the most important properties of the index of a vector field is the 
Poincaré–Hopf theorem. Suppose that the manifold M is closed, i.e. compact 
without boundary, and that the vector field X has finitely many singular points on it. 
This is equivalent to say that X has only isolated singular points. 

Theorem 5.2.2 (Poincaré–Hopf) Let M be a closed (i.e. compact without bound-
ary) manifold and X be a smooth vector field with only finitely many singular points 
on it. Then the sum 

. 
∑

p∈Sing X

ind(X;M,p)

of indices of singular points of the vector field X is equal to the Euler characteristic 
.χ(M) of the manifold M . 

For a proof of this theorem see, e.g. [98]. 
Instead of a vector field on M , one can consider a 1-form . ω on M . In local 

coordinates, . ω can be written as .ω = ∑n
i=1 Ai(x)dxi . The notions continuous, 

smooth, analytic, etc., and zero, singular point are defined analogously. Indeed, 
using a Riemannian metric one can identify vector fields and 1-forms on a smooth 
(.C∞) manifold. In particular, the index .ind(ω;M,p) of . ω at an isolated singular 
point p is defined to be the degree of the map .(A1, . . . , An) : U → R

n. 

5.2.2 The Index in the Complex Case 

Now let M be a complex manifold of complex dimension n and X be a vector field 
on M . The index .ind(X;M,p) of the vector field X at a singular point . p ∈ M

is defined as the index of X at p on the underlying real 2n-dimensional manifold. 
If the vector field is holomorphic and the singular point p is non-degenerate, then 
the index is equal to . +1. The index of an isolated singular point p of a holomorphic 
vector field X is positive. It is equal to the number of non-degenerate singular points
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which split from the point p under a generic holomorphic perturbation of the vector 
field in the neighbourhood of p. 

If M is a compact complex manifold, then its Euler characteristic .χ(M) is equal 
to the characteristic number .〈cn(T M), [M]〉, where .cn(M) is the top Chern class 
of the manifold M . Therefore the Poincaré-Hopf theorem for a vector field X on a 
compact complex manifold M states that the sum of indices of the singular points 
on the vector field X is equal to .〈cn(T M), [M]〉. 

Now let . ω be a complex continuous 1-form on M . There is a one-to-one 
correspondence between complex 1-forms and real 1-forms on the underlying real 
2n-dimensional manifold. Namely, to a complex 1-form . ω one can associate the 
real 1-form .η = Re ω. However, there is a difference in the orientation of the 
complex cotangent bundle .T ∗M and the orientation of the real cotangent bundle 
with its complex structure forgotten. Therefore, the index .ind(Re ω;Rn, p) does 
not coincide with the index of the 1-form . ω at the point p, but differs from it by the 
sign .(−1)n (see, e.g., [38, p. 235]). Therefore we define: 

Definition 5.2.3 The index .ind(ω;Cn, p) of the complex 1-form . ω at a singular 
point p is .(−1)n times the index of the real 1-form .Re ω at p: 

. ind(ω;Cn, p) := (−1)nind(Re ω;Rn, p).

With this definition, the Poincaré-Hopf theorem for a complex 1-form . ω on a 
compact complex manifold M states that the sum of the indices of the singular 
points of . ω is equal to .(−1)nχ(M) = 〈cn(T

∗M), [M]〉. 

5.2.3 Collections of Sections of a Vector Bundle 

The complex index introduced above is connected with the Euler characteristic, 
hence with the characteristic number .〈cn(T M), [M]〉, where .cn(M) is the top 
Chern class of the manifold M . In this section, we discuss indices related to other 
characteristic numbers. 

Let M be a complex analytic manifold of dimension n and let . {Xj } =
(X1, . . . , Xk) be a collection of k continuous vector fields on M . A  singular point 
of .{Xj } is a point .p ∈ M where .(X1(p), . . . , Xk(p)) are linearly dependent. A 
collection .{Xj } is also called a k-field and a non-singular one is called a k-frame. 
We recall the construction of Chern classes by obstruction theory. 

For natural numbers n and k with . n ≥ k, let .Mn,k be the space of .n × k matrices 
with complex entries and let .Dn,k be the subspace of .Mn,k consisting of matrices of 
rank less than k. The subset .Dn,k is a subvariety of .Mn,k of codimension .n − k + 1. 
The complement .Wn,k = Mn,k\Dn,k is the Stiefel manifold of k-frames (collections 
of k linearly independent vectors) in . Cn. It is known that .Wn,k is .(2n − 2k)-
connected and .H2n−2k+1(Wn,k) ∼= Z (see, e.g., [78]). The latter fact also implies that 
the subvariety .Dn,k is irreducible. Since .Wn,k is the complement of an irreducible
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complex analytic subvariety of codimension .n − k + 1 in .Mn,k , there is a natural 
choice of a generator of the homology group .H2n−2k+1(Wn,k) ∼= Z. Namely, the 
(“positive”) generator is the boundary of a small ball in a smooth complex analytic 
slice in .Mn,k

∼= C
nk transversal to the irreducible subvariety .Dn,k at a non-singular 

point (oriented in the standard way). 
Let .{Xj } be a k-field on M . Let (K) be a suitable triangulation of M and let (D) 

be a cell decomposition of M dual to (K). Let . σ be a .2(n − k + 1)-cell of (D) which 
is contained in an open subset .U ⊂ M where the tangent bundle T M  is trivial. Let 

. (X1(y), . . . , Xk(y))

be the .n × k-matrix the columns of which consist of the components of the vectors 
.X1(y), . . . , Xk(y) with respect to this trivialization. Assume that .{Xj } is a k-frame 
on . ∂σ . Let .ψσ : ∂σ ∼= S2(n−k)+1 → Wn,k be the mapping which sends a point 
.y ∈ ∂σ to the matrix .(X1(y), . . . , Xk(y)). 

Definition 5.2.4 The index .ind({Xj }; σ) of the k-field .{Xj } on . σ is the degree of 
the map . ψ , i.e., the obstruction to extend the k-frame .{Xj } from the boundary . ∂σ

of the cell . σ to its interior. 

This defines a cochain .γ ∈ C2(n−k+1)(M;Z) by setting . γ (σ ) = ind({Xj }; σ)

for each .2(n− k + 1)-cell and extending it linearly. This cochain is in fact a cocycle 
and represents the Chern class .cn−k+1(M) of M . 

Let .π : E → M be a complex analytic vector bundle of rank m over a complex 
analytic manifold M of dimension n. (Special cases of interest are the tangent and 
the cotangent bundles of M .) We shall now generalize the construction above. 

Let .{ω(i)
j } (.i = 1, . . . , s; .j = 1, . . . , m − ki + 1; .

∑s
i=1 ki = n) be a collection 

of continuous sections of the vector bundle .π : E → M . A point .p ∈ M is called 
non-singular for the collection .{ω(i)

j } if at least for some .i ∈ {1, . . . , s} the values 

.ω
(i)
1 (p), . . . , ω

(i)
m−ki+1(p) are linearly independent. This means that for this i the 

vectors .ω(i)
1 (p), . . . , ω

(i)
m−ki+1(p) form an .(m − ki + 1)-frame. We assume that the 

collection .{ω(i)
j } has only isolated singular points. We shall define an index for such 

a collection, cf. [39]. 
Let .k = (k1, . . . , ks) be a sequence of positive integers with . 

∑s
i=1 ki =

n. Consider the space .Mm,k = ∏s
i=1 Mm,m−ki+1 and the subvariety . Dm,k =∏s

i=1 Dm,m−ki+1 in it. The variety .Dm,k consists of sets .{Ai} of . m × (m − ki + 1)

matrices such that .rk Ai < m−ki+1 for each .i = 1, . . . , s. Since .Dm,k is irreducible 
of codimension n, its complement .Wm,k = Mm,k \ Dm,k is .(2n − 2)-connected, 
.H2n−1(Wm,k) ∼= Z, and there is a natural choice of a generator of the latter group. 
This choice defines a degree (an integer) of a map from an oriented manifold of 
dimension .2n − 1 to the manifold .Wm,k.
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Let us choose a trivialization of the vector bundle .π : E → M in a 
neighbourhood of a point p, let  

. (ω
(i)
1 (x), . . . , ω

(i)
m−ki+1(x))

be the .m × (m − ki + 1)-matrix the columns of which consist of the components of 
the sections .ω

(i)
j (x), .j = 1, . . . , m−ki+1, .x ∈ M , with respect to this trivialization. 

Let . Ψp be the mapping from a neighbourhood of the point p to .Mm,k which sends a 

point x to the collection of matrices .{(ω(i)
1 (x), . . . , ω

(i)
m−ki+1(x))}, .i = 1, . . . , s. Its  

restriction . ψp to a small sphere .S2n−1
ε (p) around the point p maps this sphere to the 

subset .Wm,k. The sphere .S2n−1
ε (p) is oriented as the boundary of the corresponding 

ball in the complex affine space . Cn. 

Definition 5.2.5 The index .ind({ω(i)
j };M,p) of the collection of sections .{ω(i)

j } at 

the point p is the degree of the mapping .ψp : S2n−1
ε (p) → Wm,k. 

One can deform the collection .{ω(i)
j } of sections or, equivalently, the map . Ψp

so that this map becomes smooth and transversal to the variety .Dm,k (at smooth 
points of the latter one). This implies that the index .ind({ω(i)

j };M,p) is equal to the 
intersection number of the germ of the image of the map . Ψp with the variety .Dm,k. 

Definition 5.2.6 A singular point p of the collection .{ω(i)
j } of sections is called 

non-degenerate if the map . Ψp is smooth and transversal to the variety . Dn,k ⊂ ℳn,k
at a non-singular point of it. 

If p is a non-degenerate singular point of the collection .{ω(i)
j }, then . indp{ω(i)

j } =
±1. If all the sections .ω(i)

j are complex analytic, then this index is equal to . +1. 
The following statement is a generalization of the well known fact that the (.2(n−

k)-dimensional) cycle Poincaré dual to the characteristic class .ck(E) (.k = 1, . . . , m) 
is represented by the set of points of the manifold M where .m−k+1 generic sections 
of the vector bundle E are linearly dependent (cf., e.g., [69, p. 413]).  

Theorem 5.2.7 Let .
∑s

i=1 ki = n and suppose that the collection . {ω(i)
j } (i =

1, . . . , s; j = 1, . . . , m − ki + 1) of sections of the vector bundle .π : E → M over 
a closed complex manifold M has only isolated singular points. Then the sum of the 
indices of these points is equal to the characteristic number .〈∏s

i=1 cki
(E), [M]〉 of 

the vector bundle E. 

5.2.4 Algebraic Formulas for the Indices 

It turns out that, if the vector fields (or 1-forms) under consideration are analytic 
(and, in the real case, the singular points are algebraically isolated: see the definition 
below) one has algebraic formulas for the indices considered above.
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The simplest algebraic formula is for the index of an isolated singular point 
of a holomorphic vector field on a complex manifold. In local coordinates . z =
(z1, . . . , zn) centred at the singular point, a vector field can be written as . X =∑n

i=1 Xi(z)
∂

∂zi
, where the function germs . Xi are holomorphic. Let .𝒪Cn,0 be the 

ring of germs of holomorphic functions of n variables. 
The first proof of the following theorem is usually attributed to Palamodov [103]. 

Without a detailed proof, it was known earlier. 

Theorem 5.2.8 (Palamodov) The index .ind(X;Cn, 0) of the singular point of the 
holomorphic vector field X is equal to the dimension of the complex vector space 
.𝒪Cn,0/(X1, . . . , Xn), where .(X1, . . . , Xn) is the ideal generated by the germs 
.X1, . . . , Xn. 

Recall that .JX,0 = det
(

∂Xi

∂zj
(0)

)
denotes the determinant of the Jacobian matrix 

of .(X1, . . . , Xn). Then one has the following residue formula for the index 

. ind(X;Cn, 0) = Res

[
JX,0dz

X1 · · ·Xn

]

:= 1

(2πi)n

∫

Γ

JX,0

X1 · · · Xn

dz

where .dz := dz1 ∧ · · · ∧ dzn, . Γ is the real n-cycle .{‖Xk‖ = δk, k = 1, . . . , n} for 
positive . δk small enough, and . Γ is oriented so that .d(arg X1)∧· · ·∧d(arg Xn) ≥ 0, 
see also [11]. 

For a real analytic vector field such that its complexification has an isolated 
singular point (in this situation one says that the singular point is algebraically 
isolated), the index can be computed as the signature of a certain quadratic form: 
[50, 81]. 

Let .F = (f1, . . . , fn) : (Rn, 0) → (Rn, 0) be the germ of an analytic mapping 
such that .F−1

C
(0) = 0, where .FC : (Cn, 0) → (Cn, 0) is the complexification of F 

(i.e. F has an algebraically isolated preimage of the origin). Let .ℰRn,0 be the ring of 
germs of analytic functions on .(Rn, 0). By the assumption .F−1

C
(0) = 0, the factor 

algebra .QF := ℰRn,0/(f1, . . . , fn) has finite dimension. (This dimension is equal to 
.dim𝒪Cn,0/(f1, . . . , fn) = deg0 FC.) We consider on .QF the natural residue pairing 

. 

BF : QF × QF −→ R

(ϕ, ψ) �−→ Res

[
ϕ(x)ψ(x)dx

f1 · · · fn

]

and the residue is similarly defined as in the complex case, namely 

. Res

[
ϕ(x)ψ(x)dx

f1 · · · fn

]

= 1

(2πi)n

∫
ϕ(x)ψ(x)
f1 · · · fn

dx

where .dx := dx1 ∧ · · · ∧ dxn and the integration is along the cycle in . Cn given by 
the equations .‖fk(x)‖ = δk with positive . δk small enough.
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Theorem 5.2.9 (Eisenbud–Levine–Khimshiashvili) The degree .deg0 F of the 
map germ F is equal to the signature .sgn BF of the quadratic form . BF . 

For a proof of this theorem see also [8]. 
This can also be interpreted as a formula for the index of the singular point of the 

vector field .X := ∑
fi

∂
∂xi

or of the 1-form .ω := ∑
fidxi . Moreover, the choice of 

a volume form permits to identify the algebra .QF (as a vector space) with the space 
.Ωω = Ωn

Rn,0/ω ∧ Ωn−1
Rn,0. 

Now let .{ω(i)
j } (.i = 1, . . . , s; .j = 1, . . . , m−ki+1; .

∑s
i=1 ki = n) be a collection 

of holomorphic sections of the (trivial) vector bundle . π : Cm × (Cn, 0) → (Cn, 0)

with an isolated singular point at the origin (see Sect. 5.2.3). Let .I{ω(i)
j } be the ideal 

in the ring .𝒪Cn,0 of germs of analytic functions of n variables generated by the 
.(m − ki + 1) × (m − ki + 1)-minors of the matrices .(ω(i)

1 , . . . , ω
(i)
m−ki+1) for all 

.i = 1, . . . , s. Then one has the following algebraic formula for the index (see [39, 
Theorem 2]). 

Theorem 5.2.10 One has 

. ind({ω(i)
j };Cn, 0) = dimC 𝒪Cn,0/I{ω(i)

j }.

5.3 Vector Fields and 1-Forms on Singular Varieties 

5.3.1 Radial Index 

Let V be a closed (real) subanalytic variety in a smooth manifold M , where M is 
equipped with a (smooth) Riemannian metric. Let .V = ⋃q

i=1 Vi be a subanalytic 
Whitney stratification of V (see [130] for this notion). A (continuous) stratified 
vector field on .V = ⋃q

i=1 Vi is a vector field such that, at each point p of V , it is  
tangent to the stratum containing p. 

Definition 5.3.1 The germ X of a vector field on the germ .(V , p) is called radial 
if, for all .ε > 0 small enough, the vector field is transversal to the boundary of the 
.ε-neighbourhood of the point p and is directed outwards. 

Let . p ∈ V , let .V(p) = Vi be the stratum containing p, .dim Vi = k, and let X 
be a stratified vector field on V in a neighbourhood of the point p. The following 
definition was given by Schwartz in [108]. 

Definition 5.3.2 The vector field X is called a radial extension of the vector field 
.X|Vi

if, for all .ε > 0 small enough, it is transversal to the boundary of the .ε-tubular 
neighbourhood of . Vi and points outwards of the neighbourhood. 

Remark 5.3.3 Note that the definitions of the radial extension in [22, Defini-
tion 2.3.2]), [34, p. 144], and [45, p. 288] use different formulations, but are 
somewhat inaccurate.
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The existence of a radial extension of a vector field on a stratum . Vi is proved in 
[23, Section III.7] (see also [110, Lemme 3.1.2]). 

Let X be a stratified vector field on .(V , p) with an isolated singular point (zero) 
at p. Let . Bε be a closed .ε-neighbourhood in the ambient Riemannian manifold M 
around the point p (small enough so that the boundary .∂Bη of the .η-neighbourhood 
of p with .0 < η ≤ ε intersects all the strata . Vi transversally and the vector field 
X has no singular points on .(V \ {p}) ∩ Bε ). One can show that there exists a 
(continuous) stratified vector field . ̃X on V such that: 

1. the vector field . ̃X coincides with X on a neighbourhood of the intersection of V 
with the boundary .∂Bε of the .ε-neighbourhood around the point p; 

2. the vector field has a finite number of singular points (zeros); 
3. in a neighbourhood of each singular point .q ∈ V ∩ Bε, .q ∈ Vi , the vector field 

. ̃X is a radial extension of its restriction to the stratum . Vi . 

Definition 5.3.4 The radial index (or Schwartz index) .indrad(X;V, p) of the vector 
field X on V at the point p is 

. indrad(X;V, p) :=
∑

q∈SingX̃

ind (X̃|V(q)
;V(q), q) ,

where .ind (X̃|V(q)
, V(q), q) is the usual index of the restriction of the vector field . ̃X

to the smooth manifold .V(q). 

The proof of the fact that the radial index is well-defined holds for this definition 
as well. The described notions of a radial vector field and a radial extension depend 
on the choice of the Riemannian metric, but the radial index does not depend on 
this choice, because, for instance, the space of Riemannian metrics is pathwise 
connected. 

Now let . ω be (the germ at p of) a (continuous) 1-form on .(V , p), i.e. the 
restriction to V of a 1-form defined in a neighbourhood of the point p in the ambient 
manifold M . Let .V = ⋃q

i=1 Vi be a subanalytic Whitney stratification of V . A point 
.p ∈ V is a singular point of . ω if the restriction of . ω to the stratum .V(p) containing 
p vanishes at the point p. 

Definition 5.3.5 The germ . ω of a 1-form at the point p is called radial if, for all . ε
small enough, the 1-form is positive on the outward normals to the boundary of the 
.ε-neighbourhood of the point p. 

An example of a radial 1-form is the germ of the 1-form .dρ2, where . ρ is the 
distance function from p induced by the Riemannian metric. 

Remark 5.3.6 Note that the initial definition of a radial 1-form in [38] used other 
words, but was somewhat inaccurate. This was noticed by an anonymous referee of 
the paper [73]. 

Let .p ∈ Vi = V(p), .dim V(p) = k, and let . η be a 1-form defined in a 
neighbourhood of the point p. As above, let . Ni be a normal slice (with respect to the
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Riemannian metric) of M to the stratum . Vi at the point p and h a diffeomorphism 
from a neighbourhood of p in M to the product .Ui(p) × Ni , where .Ui(p) is an 
.ε-neighbourhood of p in . Vi , which is the identity on .Ui(p). 

Definition 5.3.7 A 1-form . η is called a radial extension of the 1-form .η|V(p)
if there 

exists such a diffeomorphism h which identifies . η with the restriction to V of the 1-
form .π∗

1 η|V(p)
+ π∗

2 ηrad
Ni

, where . π1 and . π2 are the projections from a neighbourhood 

of p in M to .V(p) and . Ni respectively and .ηrad
Ni

is a radial 1-form on . Ni . 

For a 1-form . ω on .(V , p) with an isolated singular point at the point p there 
exists a 1-form . ̃ω on V which possesses the obvious analogues of the properties 
(1)–(3) of the vector field . ̃X above. 

Definition 5.3.8 The radial index .indrad(ω;V, p) of the 1-form . ω at the point p is 

. indrad(ω;V, p) =
∑

q∈Sing ω̃

ind(ω̃|V(q)
;V(q), q) ,

where .ind(ω̃|V(q)
;V(q), q) is the usual index of the restriction of the 1-form . ̃ω to the 

stratum .V(q). 

The definition of the radial index does not depend on the stratification and on 
the chosen vector field . ̃X nor on the chosen 1-form . ̃ω. The sum of the indices 
of an appropriate deformation of the vector field or 1-form on the strata is the 
same for a stratification and for a refinement of it. This implies that the radial 
index does not depend on the stratification. (For a vector field one can consider 
the intersection of two stratifications. For a 1-form one can consider the minimal 
Whitney stratification of the variety.) Moreover, the radial index does not depend 
on the chosen deformation of the vector field or 1-form. This follows from the 
following proposition which is proved in [45, Proposition 2.1]. 

Proposition 5.3.9 The number of singular points (counted with multiplicities) of 
the vector field . ̃X or of a 1-form . ̃ω on a fixed stratum . Vi does not depend on the 
choice of the vector field . ̃X or of the 1-form . ̃ω respectively (and therefore only 
depends on X or . ω respectively). 

Therefore the radial index is well-defined. 
It follows from the definition that the radial index satisfies the law of conservation 

of number. For a vector field X this means the following: if a vector field . X′ with 
isolated singular points on V is close to the vector field X, then 

. indrad(X;V, p) =
∑

q∈Sing X′
indrad(X

′;V, q),

where the sum on the right hand side runs over all singular points q of the vector 
field . X′ on V in a neighbourhood of p.
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The radial index generalizes the usual index for vector fields or 1-forms on 
a smooth manifold. In particular, one has a generalization of the Poincaré-Hopf 
theorem: 

Theorem 5.3.10 (Poincaré–Hopf) For a compact real subanalytic variety V and 
a vector field X or a 1-form . ω with isolated singular points on V , one has 

. 
∑

Q∈Sing X

indrad (X;V,Q) =
∑

Q∈Sing ω

indrad (ω;V,Q) = χ(V )

where .χ(V ) denotes the Euler characteristic of the space (variety) V . 

In [87], the radial index of a vector field with an isolated zero on a real closed 
semialgebraic set with an isolated singularity is related to an intersection index. 

Now we consider the germ .(V , p) of a complex analytic variety of pure 
dimension n embedded in the germ of a complex manifold .(M, p). Then one can 
define analogously the notion of a radial index for a singular point of a complex 
vector field or complex 1-form on .(V , p). In particular, for the germ of a complex 
1-form . ω on .(V , p) the radial index .indrad(ω;V, p) is .(−1)n times the radial index 
.indrad(Re ω;V, p) of the real 1-form .Re ω on .(V , p). 

5.3.2 GSV Index 

Let .(V , 0) ⊂ (CN, 0) be the germ of an n-dimensional complete intersection with 
an isolated singularity at the origin, defined by a holomorphic map germ 

. f = (f1, . . . , fN−n) : (CN, 0) → (CN−n, 0),

i.e. .V = f −1(0). The germ .(V , 0) is called an isolated complete intersection 
singularity (abbreviated ICIS in the sequel). Let .z1, . . . , zN denote the coordinates 
of . CN . Let .X = ∑N

i=1 Xi(z)
∂

∂zi
be the germ of a (continuous) vector field on 

.(CN, 0) tangent to V , i.e. .X(z) ∈ TzV for all .z ∈ V \ {0}. Suppose that X has 
an isolated singular point at the origin. Then the following index is defined. It was 
introduced for hypersurface singularities by Gómez-Mont et al. [64] and generalized 
to ICIS by Seade and Suwa [117]. It is called GSV index. 

Let .Bε ⊂ C
N denote the ball of radius . ε centred at the origin. Let .ε > 0 be 

chosen small enough so that the functions .f1, . . . fN−n and the vector field X are 
defined in a neighbourhood of . Bε, V is transversal to the sphere .Sη = ∂Bη for 
.0 < η ≤ ε, and the vector field X has no zeros on V inside the ball . Bε except 
possibly the origin. The intersection .K := V ∩ Sε is called the link of the ICIS 
.(V , 0). The link K is a .(2n − 1)-dimensional manifold and has a natural orientation 
as the boundary of the complex manifold .(V ∩ Bε) \ {0}.
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Define the gradient vector field .grad fi of a function germ . fi by 

. grad fi =
(

∂fi

∂z1
, . . . ,

∂fi

∂zN

)

.

Note that it depends on the choice of the coordinates .z1, . . . , zN . The gradient 
vector fields .grad f1, . . . , grad fN−n are linearly independent everywhere on V 
except (possibly) at the origin. The set .{X(z), .grad f1(z),  . . . , .grad fN−n(z)} is an 
.(N − n + 1)-frame at each point of K . This frame defines a continuous map 

. Ψ = (X, grad f1, . . . , grad fN−n) : K → WN,N−n+1

from the link K to the Stiefel manifold .WN,N−n+1 of complex .(N − n + 1)-frames 
in . CN . It is known that the Stiefel manifold .WN,N−n+1 is .2(n − 1)-connected and 
.H2n−1(WN,N−n+1) ∼= Z, see Sect. 5.2.3. There is a natural choice of the generator 
of .H2n−1(WN,N−n+1) ∼= Z. Therefore we can make the following definition: 

Definition 5.3.11 The GSV index .indGSV(X;V, 0) of the vector field X on the 
ICIS V at the origin is the degree of the map 

. Ψ : K → WN,N−n+1 .

Remark 5.3.12 Note that one uses the complex conjugation for this definition. 
Therefore the components of the discussed map are of different tensor nature. 
Whereas X is a vector field, .grad fi is more similar to a covector. 

One can also consider the map . Ψ as a map from V to the space .MN,N−n+1 of 
.N × (N − n + 1) matrices with complex entries (defined in a neighbourhood of the 
ball . Bε). It maps the set .V \ {0} to the Stiefel manifold . WN,N−n+1 = MN,N−n+1 \
DN,N−n+1 (see Sect. 5.2.3). Therefore we have the following result: 

Proposition 5.3.13 The GSV index .indGSV (X;V, 0) of the vector field X on the 
ICIS V at the origin is equal to the intersection number .(Ψ (V ) ◦ DN,N−n+1) of 
the image .Ψ (V ) of the ICIS V under the map . Ψ and the variety .DN,N−n+1 at the 
origin. 

Note that, even if the vector field X is holomorphic, the image .Ψ (V ) is in general 
not a complex analytic variety because we use the complex conjugation in the 
definition of . Ψ . 

Now we consider the case of a 1-form on . (V , 0). Let .ω = ∑
Ai(z)dzi be a germ 

of a continuous 1-form on .(CN, 0) which as a 1-form on the ICIS V has (at most) 
an isolated singular point at the origin (thus it does not vanish on the tangent space 
.TpV to the variety V at all points p from a punctured neighbourhood of the origin 
in V ). The set .{ω(z), df1(z), . . . , dfN−n(z)} is a .(N − n + 1)-frame in the space 
dual to .CN for all .z ∈ K . Therefore one has a map 

.Ψ = (ω, df1, . . . , dfN−n) : K → WN,N−n+1.
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Here .WN,N−n+1 is the Stiefel manifold of .(N − n + 1)-frames in the space dual to 
. CN . 

Definition 5.3.14 The GSV index .indGSV (ω;V, 0) of the 1-form . ω on the ICIS V 
at the origin is the degree of the map 

. Ψ : K → WN,N−n+1 .

Just as above . Ψ can be considered as a map from the ICIS V to the space 
.MN,N−n+1 of .N × (N − n + 1)-matrices and the GSV index of . ω is equal to the 
intersection number .(Ψ (V ) ◦ DN,N−n+1). In contrast to the case of a vector field, if 
the 1-form . ω is holomorphic, the map . Ψ and the set .Ψ (V ) are complex analytic. 

A similar construction can be considered in the real setting, see [1] for more  
details. 

5.3.3 Poincaré–Hopf Index 

Let .(V , 0) ⊂ (CN, 0) be the germ of a purely n-dimensional complex analytic 
variety with an isolated singularity at the origin. A smoothing of .(V , 0) is a 1-
parameter deformation .F : (𝒱, 0) → (C, 0) of .(V , 0) (that is .F−1(0) = (V , 0)) 
such that for .t ∈ C \ {0} sufficiently close to 0 the fibre .𝒱t = F−1(t) is smooth, 
cf., e.g. [68, Definition 7.3.1]. The germ .(V , 0) is called a smoothable singularity if 
there exists a smoothing of .(V , 0). 

Let .(V , 0) be a smoothable singularity and let .F : 𝒱 → C be a suitable 
representative of a smoothing of .(V , 0). For simplicity, we assume that . 𝒱 is 
embedded in an open neighbourhood .U ⊂ C

N of the origin. Denote by . Bε the ball 
of radius . ε centred at the origin in .CN and by .Δη the disc in . C of radius . η centred 
at 0. Let .Δ∗

η = Δη \ {0}. By Lê [89, Theorem 1.1] (see also [90, Theorem 6.4.1]), 
for .ε � η > 0 sufficiently small, the mapping 

. F|
F−1(Δ∗

η)∩Bε
: F−1(Δ∗

η) ∩ Bε → Δ∗
η

is the projection of a differentiable fibre bundle over . Δ∗
η. Let .V F

t := 𝒱t ∩ Bε be the 
(Milnor) fibre of this bundle over .t ∈ Δ∗

η. 
Now let X be the germ of a continuous vector field on .(V , 0) with an isolated 

singularity at 0. Then the vector field does not vanish on .V ∩ Sε, where . Sε = ∂Bε

is the boundary of the ball . Bε. Moreover, the intersection .V ∩ Sε is isotopic to 
the intersection of .V F

t with this sphere. Therefore we can assume that the vector 
field X is defined on the boundary .∂V F

t of the Milnor fibre. By Brasselet et al. [22, 
Theorem 1.1.2], there exists an extension . ̃X of the vector field X to the interior of 
the Milnor fibre .V F

t with a finite number of singular points.
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Definition 5.3.15 The Poincaré–Hopf index of X on .(V , 0) relative to the smooth-
ing F is 

. indF
PH(X;V, 0) :=

∑

q∈Sing X̃

ind(X̃;V F
t , q),

where the sum runs over the singular points of the vector field . ̃X on the fibre . V F
t . 

The Poincaré–Hopf index depends on the choice of a smoothing, but does not 
depend on the choice of t and of the extension . ̃X [22, Proposition 3.4.1]. In 
particular, one has the following proposition (see also [22, Proposition 3.4.1]). 

Proposition 5.3.16 Let the vector field X be transversal to the link .K = V ∩ Sε of 
the singularity .(V , 0). Then 

. indF
PH(X;V, 0) = χ(V F

t ).

Now let .(V , 0) be the germ of a complete intersection with an isolated singularity 
at the origin. Then there is an essentially unique smoothing of .(V , 0), since the 
base space of the semi-universal deformation is smooth (see [68, Theorem 7.2.22]). 
Therefore we can write in this case .indPH(X;V, 0) := indF

PH(X;V, 0), where F is 
the unique smoothing of .(V , 0). In this case we have: 

Proposition 5.3.17 For a vector field X on an ICIS .(V , 0) we have 

. indPH(X;V, 0) = indGSV(X;V, 0).

Therefore the Poincaré–Hopf index relative to a smoothing is called the GSV 
index relative to a smoothing in [22]. 

Seade defined in this way an index for a singular point of a vector field on a 
complex analytic surface with a smoothable normal Gorenstein singularity [111]. 

The following corollary of Propositions 5.3.16 and 5.3.17 is proved in [117, 
Proposition 1.4]. 

Proposition 5.3.18 For a vector field X on an ICIS .(V , 0) we have 

. indGSV(X;V, 0) = indrad(X;V, 0) + (−1)nμ,

where . μ is the Milnor number of .(V , 0). 

Similarly, for a 1-form one can prove [49, Proposition 2.8]: 

Proposition 5.3.19 For a 1-form . ω on an ICIS .(V , 0) we have 

.indGSV(ω;V, 0) = indrad(ω;V, 0) + μ.
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There is a generalisation of this index to vector fields on germs of complete 
intersections with non-isolated singularities [20], see also [22, Section 3.5]. Let 
.(V , 0) be the germ of a complete intersection defined by a map germ . F =
(f1, . . . , fk) : (CN, 0) → (Ck, 0). We assume that a neighbourhood of the origin in 
. Cn permits a Whitney stratification adapted to V and satisfying the Thom condition 
(. af ) [130, Definition 4.4.1]. This holds, in particular, if .(V , 0) is an ICIS (say, 
a hypersurface, i.e. .k = 1). Let X be a stratified vector field on .(V , 0) with an 
isolated singularity at the origin. Then one can define in a similar way as above a 
Poincaré–Hopf or GSV index .indPH(X;V, 0) = indGSV(X;V, 0). For details see 
[22, Section 3.5]. 

5.3.4 Homological Index 

Let .(V , 0) ⊂ (CN, 0) be a germ of a complex analytic variety of pure dimension 
n with an isolated singular point at the origin. Let X be a complex analytic vector 
field tangent to .(V , 0) with an isolated singular point at the origin and let . ω be a 
holomorphic 1-form on .(V , 0) with an isolated singularity at the origin. We shall 
define an index of X and . ω in a homological way. 

For this purpose, we consider the module .Ωk
V,0 of germs of holomorphic k-forms 

on .(V , 0). It is defined as follows. Let .IV,0 ⊂ 𝒪CN ,0 be the ideal of germs of 
holomorphic functions vanishing on .(V , 0). Consider the .𝒪CN ,0-module .Ωk

CN ,0
of 

germs of holomorphic k-forms on .(CN, 0). Then 

. Ωk
V,0 = Ωk

CN ,0/{f · Ωk
CN ,0 + df ∧ Ωk−1

CN ,0
: f ∈ IV,0}.

We consider two Koszul complexes: 

.(Ω•
V,0, X) : 0 ←− 𝒪V,0

X←− Ω1
V,0

X←− ...
X←− Ωn

V,0 ←− 0 , . (5.1) 

(Ω•
V,0,∧ω) : 0 −→ 𝒪V,0

∧ω−→ Ω1
V,0

∧ω−→ ...
∧ω−→ Ωn

V,0 −→ 0 . (5.2) 

For the first complex .(Ω•
V,0, X), the arrows are given by contraction with the vector 

field X. For the second complex .(Ω•
V,0,∧ω), the arrows are given by the exterior 

product with the 1-form . ω. The second complex is the dual of the first one. It 
was used by G. M. Greuel in [67]. The sheaves .Ωi

V,0 are coherent sheaves and 
the cohomology sheaves of the complexes are concentrated at the origin and hence 
finite dimensional. 

Remark 5.3.20 If .(V , 0) = (W, 0) × (C, 0) and .X = ∂
∂t

, where t is the coordinate 
on . C, the homology groups of the complex (5.1) are trivial. This implies that, if X 
has an isolated singular point at the origin, the homology groups .Hi(Ω

•
V,0, X) of 

the complex (5.1) are finite dimensional, even if V has non-isolated singularities.
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Remark 5.3.21 On a germ of a complex analytic variety with an isolated singularity, 
holomorphic vector fields with isolated singular points always exist [12]. This is not 
the case for varieties with non-isolated singularities. For example, on the surface in 
. C3 given by 

. xy(x + y)(x + zy) = 0

all holomorphic vector fields vanish on the z-axis (cf. [135, Example 13.2], see also 
[38]). 

Let us denote by .hj (Ω
•
V,0, X) and .hj (Ω

•
V,0,∧ω) the dimension (as a .C-vector 

space) of the j -th homology group of the complex .(Ω•
V,0, X) and . (Ω•

V,0,∧ω)

respectively. 

Definition 5.3.22 

(a) The homological index . indhom(X;V, 0) of the vector field X on .(V , 0) is the 
Euler characteristic of the complex .(Ω•

V,0, X): 

.indhom(X;V, 0) =
n∑

j=0

(−1)jhj (Ω
•
V,0, X) . (5.3) 

(b) The homological index . indhom(ω;V, 0) of the 1-form . ω on .(V , 0) is . (−1)n

times the Euler characteristic of the complex .(Ω•
V,0,∧ω): 

.indhom(ω;V, 0) =
n∑

j=0

(−1)n−j hj (Ω
•
V,0,∧ω) . (5.4) 

The definition of the homological index of a vector field is due to Gómez-Mont 
[61]. The definition was adapted to the case of a 1-form in [49]. Both indices satisfy 
the law of conservation of number [61, Theorem 1.2], [59]. 

Theorem 5.3.23 Let .(V , 0) be an isolated complete intersection singularity. Then 

. indhom(X;V, 0) = indGSV(X;V, 0),

indhom(ω;V, 0) = indGSV (ω;V, 0).

For a vector field X, this was proved in [61, Theorem 3.5] for a hypersurface 
singularity and by H.-Ch. Graf von Bothmer, Gómez-Mont and the first author in 
[13, Theorem 2.4] for a complete intersection singularity. For the proof for a 1-form 
. ω see [49, Theorem 3.2 (iii)]. In [2, 3], methods of computation of the homological 
index are given for Cohen–Macaulay curves, graded normal surfaces, and complete 
intersections.
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Example 5.3.24 Let .(C, 0) be a curve singularity and let .(C, 0) be its normalization. 
Let .τ = dim Ker(Ω1

c,0 → Ω1
C,0

) and .λ = dim ωC,0/c(Ω
1
C,0), where .ωC,0 is the 

dualizing module of Grothendieck and .c : Ω1
C,0 → ωC,0 is the class map (see [24]). 

A Milnor number .μ(f ) of a function f on a curve singularity was introduced for 
curves in . C3 in [66] and for the general case in [99]. In a similar way, one can define 
a Milnor number for an analytic 1-form . ω with a isolated singular point on .(C, 0), 
namely 

. μ(ω) := dim ωC,0/ω ∧ 𝒪C,0.

Then one has 

. μ(ω) = indhom(ω;C, 0) + λ − τ.

For other formulas for .μ(f ) see [102]. 

It follows from Proposition 5.3.19 that, for a 1-form on an ICIS . (V , 0), the  
difference 

. indhom(ω;V, 0) − indrad(ω;V, 0)

between the homological index and the radial index is equal to the Milnor number 
of the singularity. This difference is also defined for the germ of a complex analytic 
space of pure dimension n with an isolated singular point at the origin. By Ebeling 
et al. [49, Proposition 4.1], it does not depend on the 1-form . ω. Therefore one can 
consider this difference as a generalized Milnor number of the singularity .(V , 0). 
In [49], this invariant is computed for arbitrary curve singularities and compared 
with the Milnor number introduced by R. Buchweitz and G. M. Greuel [24] for  
these singularities. See [114] for an interesting question about this Milnor number 
for normal surface singularities. See [115] for a survey on relations between Milnor 
numbers and indices of vector fields and 1-forms on singular varieties. See also 
[136] for a recent extension of the Milnor number and of the homological index to 
a more general setting. 

5.3.5 Euler Obstruction 

In this section, we define the local Euler obstruction of a singular point of a vector 
field or a 1-form. The idea goes back to MacPherson who defined in [94] the Euler  
obstruction of a singular point of a complex analytic variety. As it was written above, 
the idea of the definition goes back to [18, 23] and [22]; an explicit definition was 
given in [26]. 

In order to introduce this notion, we need the notion of the Nash transformation 
of a germ of a singular variety. Let .(V , 0) ⊂ (CN, 0) be the germ of a purely
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n-dimensional complex analytic variety. We assume that V is a representative of 
.(V , 0) defined in a suitable neighbourhood U of the origin in . CN . Let .G(n,N) be 
the Grassmann manifold of n-dimensional vector subspaces of . CN . Let .Vreg be the 
non-singular part of V . There is a natural map .σ : Vreg → U × G(n,N) which is 
defined by .σ(z) = (z, TzVreg). The  Nash transform . ̂V is the closure of the image 
.Im σ of the map . σ in .U × G(n,N). It is a usually singular analytic variety. There 
is the natural base point map .ν : V̂ → V . Let .V̂ ′ := V̂ \ ν−1(V \ Vreg). Then the 
restriction .ν|V̂ ′ maps . ̂V ′ biholomorphically to .Vreg. 

The Nash bundle . ̂T over . ̂V is the pullback of the tautological bundle on the 
Grassmann manifold .G(n,N) under the natural projection map .V̂ → G(n,N). It  
is a vector bundle of rank n. There is a natural lifting of the Nash transformation to 
a bundle map from the Nash bundle . ̂T to the restriction of the tangent bundle . TC

N

of .CN to V . This is an isomorphism of . ̂T and .T Vreg ⊂ TC
N over the regular part 

.Vreg of V . 
Let .V = ⋃q

i=1 Vi be a subanalytic Whitney stratification of V and let X be a 
stratified vector field on V . Let .0 ∈ V be an isolated singular point of X on V . By  
[23], the vector field X has a canonical lifting to a section . ̂X of the Nash bundle . ̂T
over the Nash transform . ̂V without zeros outside of . ν−1(0). Let . ε be chosen such 
that the vector field X is defined on .Bε ∩ V and does not vanish there outside of the 
origin where . Bε is the ball of radius . ε centered at the origin. 

Definition 5.3.25 The local Euler obstruction .Eu(X;V, 0) of the vector field X 
on V at the origin is the obstruction to extend the non-zero section . ̂X from the 
preimage of a neighbourhood of the sphere .Sε = ∂Bε to the preimage of its interior. 
More precisely, it is the value of the obstruction (as an element of . H 2n(ν−1(V ∩
Bε), ν

−1(V ∩Sε))) on the fundamental class of the pair .(ν−1(V ∩Bε), ν
−1(V ∩Sε)). 

Now let . ω be a 1-form on U with an isolated singular point on V at the origin. 
Let . ε be small enough such that the 1-form . ω has no singular points on .V \{0} inside 
the ball . Bε. The 1-form . ω gives rise to a section . ̂ω of the dual Nash bundle .T̂ ∗ over 
the Nash transform . ̂V without zeros outside of .ν−1(0). The following definition was 
given in [38]. 

Definition 5.3.26 The local Euler obstruction .Eu(ω;V, 0) of the 1-form . ω on V at 
the origin is the obstruction to extend the non-zero section . ̂ω from the preimage 
of a neighbourhood of the sphere .Sε = ∂Bε to the preimage of its interior, 
more precisely, its value (as an element of the cohomology group . H 2n(ν−1(V ∩
Bε), ν

−1(V ∩Sε)) ) on the fundamental class of the pair .(ν−1(V ∩Bε), ν
−1(V ∩Sε)). 

We can use the definition of the local Euler obstruction of a 1-form to define 
the local Euler obstruction of a germ of a complex variety which was the original 
definition of MacPherson in [94]. 

Definition 5.3.27 The local Euler obstruction .Eu(V , 0) of the germ .(V , 0) is the 
local Euler obstruction of the radial 1-form .d|r|2 on it, where r is the distance to the 
origin. 

The word local will be usually omitted.
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One has the following Proportionality Theorem due to Brasselet and Schwartz 
[23]. (For a proof see also [22, Section 8.1.1], [19].) Let V be a complex analytic 
variety with a Whitney stratification .{Vi}. 
Theorem 5.3.28 (Proportionality Theorem for Vector Fields) Let . Vi be a stra-
tum of the Whitney stratification and .x ∈ Vi , let  . Xi be a vector field on . Vi with an 
isolated singular point at x, and let X be a radial extension of . Xi . Then one has 

. Eu(X;V, x) = Eu(V , x) · indrad(X;V, x).

Note that .indrad(X;V, x) = ind(Xi;Vi, x). 
There is also a Proportionality Theorem for 1-forms due to Brasselet, Seade, and 

Suwa [21]. 

Theorem 5.3.29 (Proportionality Theorem for 1-Forms) Let . Vi be a stratum of 
the Whitney stratification and .x ∈ Vi , let  . ωi be a 1-form on . Vi with an isolated 
singular point at x, and let . ω be a radial extension of . ωi . Then one has 

. Eu(ω;V, x) = Eu(V , x) · indrad(ω;V, x).

It follows from Theorem 5.3.29 that, if . Vi and . Vj are strata of the Whitney 
stratification with .Vi ⊂ V j , then the local Euler obstruction .Eu(V j , p) at any point 
.p ∈ Vi does not depend on p. It will be denoted by .Eu(Vj , Vi). It is equal to the 
local Euler obstruction .Eu(Nij , p) of a normal slice .Nij of the variety .V j to the 
stratum . Vi at the point p [17, Section 3]. If .Vi �⊂ V j , we assume .Eu(Vj , Vi) to be 
equal to zero. 

In [18], the notion of the local Euler obstruction of a holomorphic function f 
with an isolated critical point on .(V , 0) was introduced. It is defined as follows. Let 
f be a holomorphic function defined in U with a isolated singular point on V at the 
origin. Let .ε > 0 be small enough such that the function f has no singular points 
on .V \ {0} inside the ball . Bε. Let .grad f be the gradient vector field of f as defined 
in Sect. 5.3.2. Since f has no singular points on .V \{0} inside the ball . Bε, the angle 
of .grad f (x) and the tangent space .TxVi to a point .x ∈ Vi \ {0} is less than .π/2. 
Denote by .ζi(x) �= 0 the projection of .grad f (x) to the tangent space . TxVi . The  
vector field on .V \ {0} which is equal to . ζi on . Vi is, in general, not continuous. It 
is shown in [18] that the vector fields . ζi can be glued together to obtain a stratified 
vector field .gradV f on V such that .gradV f is homotopic to the restriction of . grad f

to V and satisfies .gradV f (x) �= 0 unless .x = 0. 

Definition 5.3.30 The local Euler obstruction .Eu(f ;V, 0) of the function f is 
defined to be 

. Eu(f ;V, 0) := Eu(gradV f ;V, 0).

The Euler obstruction of a function f is up to sign the Euler obstruction of the 1-
form df . Namely, let .ω = df for the germ f of a holomorphic function on .(CN, 0).
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Then .Eu(df ;V, 0) differs from the Euler obstruction .Eu(f ;V, 0) of the function 
f by the sign .(−1)n. E.g., for the function .f (z1, . . . , zn) = z2

1 + . . . + z2
n on . Cn

the obstruction .Eu(f ;Cn, 0) is the index of the vector field .
∑n

i=1 zi∂/∂zi (which is 
equal to .(−1)n), but the obstruction .Eu(df ;Cn, 0) is the index of the (holomorphic) 
1-form .

∑n
i=1 zidzi which is equal to 1. 

Denote by .Mf = Mf,t0 the Milnor fibre of f , i.e. the intersection . V ∩ Bε(0) ∩
f −1(t0) for a (regular) value . t0 of f close to 0. In [18, Theorem 3.1] the following 
result is proved. 

Theorem 5.3.31 (Brasselet, Massey, Parameswaran, Seade) Let . f : (V , 0) →
(C, 0) have an isolated singularity at .0 ∈ V . Then 

. Eu(V , 0) =
(

q∑

i=1

χ(Mf ∩ Vi) · Eu(V , Vi)

)

+ Eu(f ;V, 0).

The Euler obstruction of a vector field or 1-form can be considered as an index. 
In particular, it satisfies the law of conservation of number (just as the radial index). 
Moreover, on a smooth variety the Euler obstruction and the radial index coincide. 
This implies the following statement (cf. Theorem 5.3.31). We set . χ(Z) := χ(Z)−1
and call it the reduced (modulo a point) Euler characteristic of the topological space 
Z (though, strictly speaking, this name is only correct for a non-empty space Z). 

Proposition 5.3.32 Let .(V , 0) ⊂ (CN, 0) have an isolated singularity at the origin 
and let .� : CN → C be a generic linear function. Then 

. indrad(ω;V, 0) − Eu(ω;V, 0) = indrad(d�;V, 0) = (−1)n−1 χ(M�),

where . M� is the Milnor fibre of the linear function . � on V . In particular 

. Eu(df ;V, 0) = (−1)n(χ(M�) − χ(Mf )).

For a stratum . Vi of the Whitney stratification .
⋃q

i=0 Vi , .V0 = {0}, of V , let . Ni be 
the normal slice in the variety V to the stratum . Vi at a point of the stratum . Vi and 
let 

. ni = indrad(d�;Ni, 0) = (−1)dim Ni−1 χ(M�|Ni
)

be the radial index of a generic (non-vanishing) 1-form . d� on . Ni . In [38, Theo-
rem 4], the following theorem was proved. 

Theorem 5.3.33 One has 

.indrad(ω;V, 0) =
q∑

i=0

ni · Eu(ω;V i, 0).
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The strata . Vi of V are partially ordered: .Vi ≺ Vj (we shall write . i ≺ j ) iff  
.Vi ⊂ Vj and .Vi �= Vj ; .i � j iff .i ≺ j or . i = j . In [38, Corollary 1], an “inverse” 
of the formula of Theorem 5.3.33 was written in the case when the variety V is 
irreducible and .V = V q . Let . nij (.i � j ) be the index of a generic 1-form . d� on the 
normal slice . Nij : .nij = (−1)dim Nij −1 χ(M�|Nij

) (in particular .nii = 1) and let . mij

be the (Möbius) inverse of the function . nij on the partially ordered set of strata, i.e. 

. 
∑

i�j�k

nijmjk = δik.

Corollary 5.3.34 One has 

. EuV,0 ω =
q∑

i=0

miq · indrad (ω;Vi, 0).

In [33], another proof of Corollary 5.3.34 is given and Theorem 5.3.33 and this 
corollary are applied to give an alternative proof of Theorem 5.3.31. 

Let V be an affine variety. In [118], a global Euler obstruction was defined for 
the variety V as the obstruction to extend a radial vector field, defined outside of a 
sufficiently large compact subset, to a non-zero section of the Nash bundle. 

In [97], the local Euler obstruction was investigated in terms of constructible 
sheaves and characteristic cycles. 

5.3.6 Algebraic, Analytic, and Topological Formulas 

In Sect. 5.2.4, we discussed algebraic formulas for the index of an analytic vector 
field or an analytic 1-form on a smooth manifold. It is natural to try to look for 
analogues of such formulas for vector fields and 1-forms on singular varieties. The 
homological index opens the way for such formulas. 

In [61, Theorem 1], Gómez-Mont proved an algebraic formula for the homo-
logical index of a vector field with an isolated singularity in the ambient space on 
an isolated hypersurface singularity .(V , 0). O. Klehn [85] generalized this formula 
to the case that the vector field has an isolated singularity on the hypersurface 
singularity, but not necessarily in the ambient space. Graf von Bothmer, Gómez-
Mont and the first author [13] gave formulas to compute the homological index in 
the case when .(V , 0) is an isolated complete intersection singularity. L. Giraldo, 
Gómez-Mont, and P. Mardešić [60] studied the homological index of vector fields 
tangent to hypersurfaces with non-isolated singularities. 

Gómez-Mont and P. Mardešić derived algebraic formulas for the index of a real 
vector field with an algebraically isolated singular point at the origin tangent to a 
real analytic hypersurface with an algebraically isolated singularity at the origin as 
well [62, 63, 96]. The index is expressed as the signature of a certain non-degenerate
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quadratic form for an even-dimensional hypersurface and as the difference between 
the signatures of two such forms in the odd-dimensional case. 

O. Klehn [86] proved that the GSV index of a holomorphic vector field X on an 
ICIS .(V , 0) coincides with the dimension of a certain explicitly constructed vector 
space, if X is deformable in a certain sense and V is a curve. Moreover, he gave 
a signature formula for the real GSV index in the corresponding real analytic case 
generalizing the Eisenbud–Levine–Khimshiashvili formula. 

Let . ω be the restriction of a holomorphic 1-form .ω = ∑N
i=1 Ai(z)dzi to an ICIS 

.(V , 0) given by a mapping .f = (f1, . . . , fN−n) : (CN, 0) → (CN−n, 0). Assume 
that . ω has an isolated singular point at the origin (on .(V , 0)). Let I be the ideal 
generated by . f1, ..., .fN−n and the .(N − n + 1) × (N − n + 1)-minors of the matrix 

. 

⎛

⎜
⎜
⎜
⎜
⎝

∂f1
∂z1

· · · ∂f1
∂zN

... · · · ...
∂fN−n

∂z1
· · · ∂fN−n

∂zN

A1 · · · AN

⎞

⎟
⎟
⎟
⎟
⎠

.

In [35, 36], the authors proved the following formula. 

Theorem 5.3.35 One has 

. indGSV (ω;V, 0) = dim𝒪CN ,0/I.

It generalizes the Lê–Greuel formula [67, 88] for the differential of a function. (Note 
that there is a minor mistake in the proof of this theorem in [36] which is corrected in 
[39].) In [40], the authors constructed quadratic forms on the algebra .𝒪CN ,0/I and 

on the space .Ωn
V,0/ω ∧ Ωn−1

V,0 generalizing the Eisenbud–Levine–Khimshiashvili 
quadratic form defined for smooth V . 

In [51–53] A.Esterov gave formulas for the index of a 1-form on an ICIS in terms 
of Newton diagrams of the components under certain genericity conditions. 

T. Gaffney [56] described connections between the GSV index of . ω and the 
multiplicity of pairs of certain modules. 

There are several generalizations of the residue formula of Sect. 5.2.4. P. F. Baum  
and R. Bott [11] considered residues of meromorphic vector fields on compact 
complex manifolds. An integral formula for the GSV index of a holomorphic vector 
field on an ICIS was given by D. Lehmann et al. in [92]. They reinterpreted the 
GSV-index as the virtual index for vector fields on complex complete intersections 
with arbitrary singular sets. This was done in [92] for holomorphic vector fields 
and in [22] in general. See [22, Chapter 5] for more details. For generalizations and 
related results see [79, 91, 121–125]. Klehn generalized the residue formula for the 
GSV index to holomorphic 1-forms on an isolated surface singularity [84]. T. Honda 
and Suwa [77] studied residue formulas for meromorphic functions on surfaces. The 
authors [37] considered indices of meromorphic 1-forms on complete intersections 
with isolated singularities.
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In [71], a topological formula for the index of a gradient vector field .grad g of 
an analytic function .g : (Cn, 0) → (C, 0) taking real values on .Rn ⊂ C

n is given. 
It expresses the index of the gradient vector field on .Rn in terms of signatures of 
certain quadratic forms on the middle homology groups of specific Milnor fibres of 
the germ g. This formula was conjectured in [6] and also proved in [131]. In [34], a 
generalization of such a formula for the radial index of a gradient vector field on an 
algebraically isolated real analytic ICIS in .CN was obtained. 

In [112, 116] formulas are given evaluating the GSV index of a singular point 
of a vector field on an isolated hypersurface or complete intersection singularity in 
terms of a resolution of the singularity. 

5.3.7 Determinantal Singularities 

The GSV index is only defined for ICIS. In the case of ICIS, the indices introduced 
above are best understood. In this subsection, we consider the next more general 
class, namely the class of determinantal singularities. An approach studying indices 
of 1-forms on such singularities was started in [44]. We give the basic definitions 
and facts following this paper. 

Let .Mm,n
∼= C

mn be the space of .m × n-matrices with complex entries. 

Definition 5.3.36 Let t be an integer with .1 ≤ t ≤ min(m, n). The  generic 
determinantal variety of type .(m, n, t) is the subset 

. Mt
m,n := {A ∈ Mm,n | rk (A) < t}

consisting of matrices of rank less than t , i.e. of matrices of which all (.t × t)-minors 
vanish. 

The variety .Mt
m,n has codimension .(m− t + 1)(n− t + 1) in .Mm,n. It is singular. 

The singular locus of .Mt
m,n coincides with .Mt−1

m,n . The singular locus of the latter one 
coincides with .Mt−2

m,n , etc. (see, e.g., [5]). The representation of the variety .Mt
m,n as 

the union of .Mi
m,n \ Mi−1

m,n , .i = 1, . . . , t , is a Whitney stratification of .Mt
m,n. 

Let .U ⊂ C
N be an open domain and .F : U → Mm,n be a holomorphic map 

sending z to the matrix .F(z) = (fij (z)) whose entries .fij (z) are complex analytic 
functions on U . 

Definition 5.3.37 A determinantal variety of type .(m, n, t) is the preimage 
.V = F−1(Mt

m,n) of the variety .Mt
m,n subject to the condition that . codim V =

codim Mt
m,n = (m − t + 1)(n − t + 1). 

The image of a generic map .F : U → Mm,n may intersect the varieties . Mi
m,n

for .i < t . Therefore, it may not be avoided that .F−1(Mt
m,n) has singularities. 

However, a generic map F intersects the strata .Mi
m,n \ Mi−1

m,n of the variety . Mt
m,n

transversally. This means that, at the corresponding points, the determinantal variety
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has “standard” singularities whose analytic type only depends on .i = rk F(z) + 1. 
This inspired the following definitions of [44, p. 114]. 

Definition 5.3.38 A point .x ∈ X = F−1(Mt
m,n) is called essentially non-singular 

if, at the point x, the map F is transversal to the corresponding stratum of the variety 
.Mt

m,n (i.e., to .Mi
m,n \ Mi−1

m,n where .i = rk F(x) + 1). 

Definition 5.3.39 A germ .(V , 0) ⊂ (CN, 0) of a determinantal variety of type 
.(m, n, t) has an isolated essentially singular point at the origin (or is an essentially 
isolated determinantal singularity: EIDS) if it has only essentially non-singular 
points in a punctured neighbourhood of the origin in V . 

Example 5.3.40 An ICIS is an example of an EIDS: it is an EIDS of type .(1, n, 1). 

An essentially isolated determinantal singularity .(V , 0) ⊂ (CN, 0) of type 
.(m, n, t) (defined by a map .F : (CN, 0) → (Mm,n, 0)) has an isolated singularity at 
the origin if and only if .N ≤ (m − t + 2)(n − t + 2). 

We shall consider deformations (in particular, smoothings) of an EIDS given 
by deformations of the matrix which defines the EIDS. Hence they are themselves 
determinantal ones. 

Let .(V , 0) ⊂ (CN, 0) be an EIDS defined by a map . F : (CN, 0) → (Mm,n, 0)

(.V = F−1(Mt
m,n), F is transversal to .Mi

m,n \ Mi−1
m,n at all points x from a punctured 

neighbourhood of the origin in .CN and for all .i ≤ t). 

Definition 5.3.41 An essential smoothing . ̃V of the EIDS .(V , 0) is a subvariety of a 
neighbourhood U of the origin in .CN defined by a perturbation .F̃ : U → Mm,n of 
the germ F transversal to all the strata .Mi

m,n \ Mi−1
m,n with .i ≤ t . 

A generic deformation . ̃F of the map F defines an essential smoothing of the 
EIDS .(V , 0) (according to Thom’s Transversality Theorem). An essential smoothing 
is in general not smooth (for .N ≥ (m − t + 2)(n − t + 2)). Its singular 
locus is .F̃−1(Mt−1

m,n ), the singular locus of the latter one is .F̃−1(Mt−2
m,n ), etc. The  

representation of . ̃V as the union 

. ̃V =
⋃

1≤i≤t

F̃−1(Mi
m,n \ Mi−1

m,n )

is a Whitney stratification of it. An essential smoothing of an EIDS .(V , 0) of type 
.(m, n, t) is a genuine smoothing if and only if .N < (m − t + 2)(n − t + 2). 

There are three distinguished types of resolutions of the variety .Mt
m,n. 

The first one is constructed by considering .m × n-matrices as linear maps . Cn →
C

m. Let  

. Y1 := {(A,W) ∈ Mm,n × G(n − t + 1, n) | A(W) = 0}.

The variety . Y1 is smooth and connected. Its projection to the first factor defines a 
resolution .π1 : Y1 → Mt

m,n of the variety .Mt
m,n.
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Let us consider .m × n-matrices as linear maps .Cm → C
n and let 

. Y2 := {(A,W) ∈ Mm,n × G(m − t + 1,m) | AT (W) = 0}.

Then one gets a resolution .π2 : Y2 → Mt
m,n of the variety .Mt

m,n. 
The third natural modification is given by the Nash transform .Y3 := M̂t

m,n. One  
can show that .π3 : Y3 → Mt

m,n is in fact a resolution of the variety . Mt
m,n, see [44]. 

Let .(V , 0) = F−1(Mt
m,n) ⊂ (CN, 0) be an EIDS and let . ω be a germ of a 

(complex) 1-form on .(CN, 0) whose restriction to .(V , 0) has an isolated singular 
point (zero) at the origin. This means that the restrictions of the 1-form . ω to the strata 
.Vi \ Vi−1, .Vi := F−1(Mi

m,n), .i ≤ t , have no zeros in a punctured neighbourhood of 
the origin. 

An essential smoothing .Ṽ ⊂ U of the EIDS .(V , 0) (in a neighbourhood U of the 
origin in . CN ) is in general not smooth. To define an analogue of the PH-index one 
has to construct a substitute of the tangent bundle to . ̃V . It is possible to use one of 
the following two natural ways. 

One possibility is to use a resolution of the variety . ̃V connected with one of the 
three resolutions of the variety .Mt

m,n described above. Let .πk : Yk → Mt
m,n be 

one of the described resolutions of the determinantal variety .Mt
m,n and let . V k =

Yk ×Mt
m,n

Ṽ , .k = 1, 2, 3, be the fibre product of the spaces . Yk and . ̃V over the variety 
.Mt

m,n: 

. 

The map .Πk : V k → Ṽ is a resolution of the variety . ̃V . For .k = 1, 2 it is also 
called the Tjurina transform after [128], see [54]. The lifting . ωk := (j ◦ Πk)

∗ω
(j is the inclusion map .Ṽ ↪→ U ⊂ C

N ) of the 1-form . ω is a 1-form on a (non-
singular) complex analytic manifold . V k without zeros outside of the preimage of a 
small neighbourhood of the origin. In general, the 1-form . ωk has non-isolated zeros. 

Definition 5.3.42 The Poincaré–Hopf index (PH-index) .indk
PH (ω;V, 0), . k =

1, 2, 3, of the 1-form . ω on the EIDS .(V , 0) ⊂ (CN, 0) is the sum of the indices of 
the zeros of a generic perturbation . ̃ωk of the 1-form . ωk on the manifold .V k (in the 
preimage of a neighbourhood of the origin in . CN ).
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There is also the local Euler obstruction of the 1-form . ω. If one uses the Nash 
transform of the essential smoothing . ̃V of the EIDS .(V , 0) instead of V itself, it is 
called Poincaré–Hopf–Nash index. 

Definition 5.3.43 The Poincaré–Hopf–Nash index (PHN-index) . indPHN (ω;V, 0)

of the 1-form . ω on the EIDS .(V , 0) is the obstruction to extend the non-zero section 
. ̂ω of the dual Nash bundle .T̂ ∗ from the preimage of the boundary .Sε = ∂Bε of 
the ball . Bε to the preimage of its interior, i.e. to the manifold . V 3, more precisely, 
its value (as an element of .H 2d(Π−1

3 (Ṽ ∩ Bε),Π
−1
3 (Ṽ ∩ Sε))) on the fundamental 

class of the pair .(Π−1
3 (Ṽ ∩ Bε),Π

−1
3 (Ṽ ∩ Sε)). 

In [44, Proposition 2], a formula relating the index .indk
PH (ω;V, 0), . k = 1, 2, 3

with the radial indices .indrad(ω;Vi, 0), .i = 0, . . . , t , is given. There is the following 
version of Theorem 5.3.33 for the PHN-index on a determinantal variety [44, 
Proposition 4]. Let .� : Mm,n → C be a generic linear form and let, for .i ≤ j , 

. nij := indrad(d�;M
j−i+1
m−i+1,n−i+1, 0).

By Ebeling and Gusein-Zade [44, Proposition 3], we have 

. indrad(d�;M
j−i+1
m−i+1,n−i+1, 0)

= (−1)dij −1χ(M
j−i+1
m−i+1,n−i+1 ∩ �−1(1)) = (−1)(m+n)(j−i)

(
m − i

m − j

)

,

where . dij is the dimension of .M
j−i+1
m−i+1,n−i+1 equal to . (m− i +1)(n− i +1)− (m−

j + 1)(n − j + 1). 

Theorem 5.3.44 One has 

. indrad(ω;V, 0) =
t∑

i=1

nit indPHN (ω;Vi, 0) + (−1)dim V −1χ(Ṽ , 0).

One can see that, for .i ≤ j ≤ t , the integers .mij from Corollary 5.3.34 are given 
by 

. mij = (−1)(m+n+1)(j−i)

(
m − i

m − j

)

.

The analogue of Corollary 5.3.34, the inverse to Theorem 5.3.44, is the following 
statement, see [44, Proposition 5]. 

Corollary 5.3.45 One has 

.indPHN (ω;V, 0) =
t∑

i=1

mit

(
indrad(ω;Vi, 0) + (−1)dim Vi χ(Ṽi , 0)

)
.
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T. Gaffney et al. [58] proved a generalization of Theorem 5.3.44 and its inverse 
Corollary 5.3.45 relating it with Gaffney’s multiplicities of pairs of modules. 

For isolated determinantal singularities, the relations between the PH-, the PHN-
and the radial indices simplify. For isolated smoothable singularities (i.e. for . N <

(m−t+2)(n−t+2)) all Poincaré–Hopf indices (including the Poincaré–Hopf–Nash 
index) coincide and they are equal to 

. indPH(ω;V, 0) = indrad(ω;V, 0) + (−1)dim V χ(Ṽ , 0).

The paper [44] contains an algebraic formula for this index: Proposition 8 therein. 
To a regret, its proof is wrong. 

N. C. Chachapoyas Siesquén [28] studies the Euler obstruction of an EIDS and 
gives some formulas to calculate it. In [100] (see also [101]), a formula for the Euler 
obstruction of a smoothable IDS is given. The papers [29] and [4] contain results on 
the Euler obstruction of a function on a determinantal variety. 

In [104], codimension two determinantal varieties with isolated singularities are 
studied. The Milnor number is defined to be the middle Betti number of a generic 
fibre of the unique smoothing of such a singularity. For surfaces in . C4, a Lê–Greuel 
formula for the Milnor number of the surface is proved. The Milnor number is 
also related to the Poincaré–Hopf index of the 1-form given by the differential of 
a generic linear projection defined on the surface. For other generalizations of the 
Lê–Greuel formula see [27, 32]. For other results on Milnor numbers of essentially 
isolated determinantal singularities see [16, 55]. 

5.4 Indices of Collections of Vector Fields and 1-Forms 

5.4.1 GSV Index 

Let .(V , 0) ⊂ (CN, 0) be an ICIS defined by a holomorphic map germ . f =
(f1, . . . , fN−n) : (CN, 0) → (CN−n, 0). Let .{X(i)

j } be a collection of vector fields 

on a neighbourhood of the origin in .(CN, 0) (.i = 1, . . . , s; .j = 1, . . . , n − ki + 1; 
.
∑

ki = n) which are tangent to the ICIS . (V , 0) = {f1 = · · · = fN−n =
0} ⊂ (CN, 0) at non-singular points of V . We say that a point . p ∈ V \ {0}
is non-singular for the collection .{X(i)

j } on V if at least for some i the vectors 

.X
(i)
1 (p), . . . , X

(i)
n−ki+1(p) are linearly independent. Suppose that the collection 

.{X(i)
j } has no singular points on V outside of the origin in a neighbourhood of 

it. Let U be a neighbourhood of the origin in .CN where all the functions . fr

(.r = 1, . . . , N −n) and the vector fields .X
(i)
j are defined and such that the collection 

.{X(i)
j } has no singular points on .(V ∩ U) \ {0}. Let .Sδ ⊂ U be a sufficiently small 

sphere around the origin which intersects V transversally and denote by . K = V ∩Sδ

the link of the ICIS .(V , 0). The manifold K has a natural orientation as the boundary
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of a complex analytic manifold. Let .ΨV be the mapping from .V ∩U to .MN,k (for the 
definition of .MN,k see Sect. 5.2.3) which sends a point .x ∈ V ∩ U to the collection 
of .N × (N − ki + 1)-matrices 

. {(grad f1(x), . . . , grad fN−n(x),X
(i)
1 (x), . . . , X

(i)
n−ki+1(x))}, i = 1, . . . , s.

Here .grad fr is the gradient vector field of . fr defined in Sect. 5.3.2. Its restriction 
.ψV to the link K maps K to the subset .WN,k. 

Definition 5.4.1 The GSV index .indGSV({X(i)
j };V, 0) of the collection of vector 

fields .{X(i)
j } on the ICIS .(V , 0) is the degree of the mapping .ψV : K → WN,k, or,  

equivalently, the intersection number of the germ of the image of the map .ΨV with 
the variety .DN,k. 

For .s = 1, .k1 = n, this index is the GSV index of a vector field on an ICIS 
defined in Sect. 5.3.2. 

Let .V ⊂ CP
N be an n-dimensional complete intersection with isolated singular 

points which is defined by homogeneous polynomials .f1, . . . , fN−n in . (N + 1)

variables. Let .{X(i)
j } be a collection of continuous vector fields on .CPN which are 

tangent to V . Let . ̃V be a smoothing of the complete intersection V , i.e. . ̃V is defined 
by .N −n homogeneous polynomials .f̃1, . . . , f̃N−n which are small perturbations of 
the functions . fi and . ̃V is smooth. As in Sect. 5.3.3, one can define approximations 
.{X̃(i)

j } of the vector fields .{X(i)
j } which are tangent to . ̃V . Then one has the following 

analogue of Theorem 5.2.7. 

Theorem 5.4.2 One has 

. 
∑

p∈V

indGSV({X(i)
j };V, p) = 〈

s∏

i=1

cki
(T Ṽ ), [Ṽ ]〉,

where . ̃V is a smoothing of the complete intersection V . 

Now let .{ω(i)
j } be a collection of (continuous) 1-forms on a neighbourhood of 

the origin in .(CN, 0) with .i = 1, . . . , s, .j = 1, . . . , n − ki + 1, .
∑

ki = n. We  
say that a point .p ∈ V \ {0} is non-singular for the collection .{ω(i)

j } on V if at 

least for some i the restrictions of the 1-forms .ω
(i)
j (p), .j = 1, . . . , n− ki + 1, to the  

tangent space .TpV are linearly independent. Assume that the collection .{ω(i)
j } has no 

singular points on V in a punctured neighbourhood of the origin. As above, let U be 
a neighbourhood of the origin in .CN where all the functions . fr (.r = 1, . . . , N − n) 
and the 1-forms .ω(i)

j are defined and such that the collection .{ω(i)
j } has no singular 

points on .(V ∩ U) \ {0}. Let .Sδ ⊂ U be a sufficiently small sphere around the 
origin. As above, let .K = V ∩ Sδ be the link of the ICIS . (V , 0). Let .ΨV be the
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mapping from .V ∩ U to .Mn,k which sends a point .x ∈ V ∩ U to the collection of 
.N × (N − ki + 1)-matrices 

. {(df1(x), . . . , dfN−n(x), ω
(i)
1 (x), . . . , ω

(i)
n−ki+1(x))}, i = 1, . . . , s.

Its restriction .ψV to the link K maps K to the subset .WN,k. 

Definition 5.4.3 The GSV index .indGSV({ω(i)
j };V, 0) of the collection of 1-forms 

.{ω(i)
j } on the ICIS .(V , 0) is the degree of the mapping .ψV : K → WN,k, or,  

equivalently, the intersection number of the germ of the image of the mapping . ΨV

with the variety .DN,k. 

For .s = 1, .k1 = n, this index is the GSV index of a 1-form on an ICIS defined in 
Sect. 5.3.2. 

Let .V ⊂ CP
N be an n-dimensional complete intersection with isolated singular 

points which is defined by homogeneous polynomials .f1, . . . , fN−n in . (N + 1)

variables. Let L be a complex line bundle on V and let .{ω(i)
j } be a collection of 

continuous 1-forms on V with values in L. This means that the forms .ω(i)
j are 

continuous sections of the vector bundle .T ∗V ⊗ L outside of the singular points 
of V . Since, in a neighbourhood of each point p, the vector bundle L is trivial, 
one can define the index .indGSV({ω(i)

j };V, p) of the collection of 1-forms . {ω(i)
j }

at the point p as above. Let . ̃V be a smoothing of the complete intersection V . By  
using, e.g., the pull back along a projection of . ̃V to V , one can consider L as a line 
bundle on . ̃V as well. The collection .{ω(i)

j } of 1-forms can also be extended to a 
neighbourhood of V in such a way that it will define a collection of 1-forms on the 
smoothing . ̃V (also denoted by .{ω(i)

j }) with isolated singular points. The sum of the 

indices of the collection .{ω(i)
j } on the smoothing . ̃V of V in a neighbourhood of the 

point p is equal to the index .indGSV({ω(i)
j };V, p). 

One has the following analogue of Theorem 5.4.2 for 1-forms. 

Theorem 5.4.4 One has 

. 
∑

p∈V

indGSV({ω(i)
j };V, p) = 〈

s∏

i=1

cki
(T ∗Ṽ ⊗ L), [Ṽ ]〉,

where . ̃V is a smoothing of the complete intersection V . 

Now let .(V , 0) be an ICIS defined by a holomorphic map germ . f =
(f1, . . . , fN−n) : (CN, 0) → (CN−n, 0) as above. Let .{ω(i)

j } (.i = 1, . . . , s; 
.j = 1, . . . , n − ki + 1) be a collection of 1-forms on a neighbourhood of the origin 
in .CN without singular points on .V \ {0} in a neighbourhood of the origin. We now 
assume that all the 1-forms .ω(i)

j are complex analytic.
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Let .I
V,{ω(i)

j } be the ideal in the ring .𝒪CN ,0 generated by the functions 

.f1, . . . , fN−n and by the .(N − ki + 1) × (N − ki + 1) minors of all the matrices 

. (df1(x), . . . , dfN−n(x), ω
(i)
1 (x), . . . , ω

(i)
n−ki+1(x))

for all .i = 1, . . . , s. Then we have the following algebraic formula similar to that of 
Theorem 5.3.35 (see [39]). 

Theorem 5.4.5 

. indGSV({ω(i)
j };V, 0) = dimC 𝒪CN ,0/IV,{ω(i)

j }.

Remark 5.4.6 In the case of collections of vector fields, the map .ΨV is not complex 
analytic, whereas it is complex analytic in the case of collections of 1-forms. This 
is the reason that a formula similar to that of Theorem 5.4.5 does not exist for 
collections of vector fields. Moreover, in some cases this index can be negative (see 
e.g. [64, Proposition 2.2]). 

5.4.2 Chern Obstruction 

We now consider a generalization of the notion of the Euler obstruction to 
collections of 1-forms corresponding to different Chern numbers. 

Let .(V , 0) ⊂ (CN, 0) be the germ of a purely n-dimensional reduced complex 
analytic variety at the origin. It can have a non-isolated singularity at the origin. 
Let .k = {ki}, .i = 1, . . . , s, be a fixed partition of n (i.e., . ki are positive integers, 

.

s∑

i=1
ki = n). Let .{ω(i)

j } (.i = 1, . . . , s, .j = 1, . . . , n − ki + 1) be a collection of 

germs of 1-forms on .(CN, 0) (not necessarily complex analytic; it is sufficient that 
they are continuous). Let .ε > 0 be small enough so that there is a representative V 
of the germ .(V , 0) and representatives .ω(i)

j of the germs of 1-forms inside the ball 

.Bε ⊂ C
N . 

Definition 5.4.7 A point .p ∈ V is called a special point of the collection .{ω(i)
j } of 

1-forms on the variety V if there exists a sequence .{pm} of points from the non-
singular part .Vreg of the variety V such that the sequence .TpmVreg of the tangent 
spaces at the points .pm has a limit . L (in .G(n,N) ) as m tends to infinity and the 
restrictions of the 1-forms . ω

(i)
1 , . . . , .ω(i)

n−ki+1 to the subspace .L ⊂ TpC
N are linearly 

dependent for each .i = 1, . . . , s. The collection .{ω(i)
j } of 1-forms has an isolated 

special point on .(V , 0) if it has no special points on V in a punctured neighbourhood 
of the origin.
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For the case .s = 1 (and therefore .k1 = n), i.e. for one 1-form . ω, we discussed 
the notion of a singular point of the 1-form . ω on V in Sect. 5.3.1. One can easily 
see that a special point of the 1-form . ω on V is singular, but not vice versa. (E.g. the 
origin is a singular point of the 1-form dx on the cone .{x2 + y2 + z2 = 0}, but not 
a special one.) On a smooth variety these two notions coincide. 

Let 

. ℒk =
s∏

i=1

n−ki+1∏

j=1

(CN
ij )∗

be the space of collections of linear functions on .CN (i.e. of 1-forms with constant 
coefficients). Then one can show [42, Proposition 1.1] that there exists an open and 
dense set .U ⊂ ℒk such that each collection .{�(i)

j } ∈ U has only isolated special 
points on V and, moreover, all these points belong to the smooth part .Vreg of the 
variety V and are non-degenerate (see Sect. 5.2.3 for the notion of a non-degenerate 
singular point). This implies the following proposition (see [42, Corollary 1.1]). 

Proposition 5.4.8 Let .{ω(i)
j } be a collection of 1-forms on V with an isolated 

special point at the origin. Then there exists a deformation .{ω̃(i)
j } of the collection 

.{ω(i)
j } whose special points lie in .Vreg and are non-degenerate. Moreover, as such a 

deformation one can use .{ω(i)
j + λ�

(i)
j } with a generic collection .{�(i)

j } ∈ ℒk. 

Let .{ω(i)
j } be a collection of germs of 1-forms on .(V , 0) with an isolated special 

point at the origin. Let .ν : V̂ → V be the Nash transformation of the variety 
.V ⊂ Bε (see Sect. 5.3.5). The collection of 1-forms .{ω(i)

j } gives rise to a section . ̂ω
of the bundle 

. ̂T =
s⊕

i=1

n−ki+1⊕

j=1

T̂ ∗
i,j

where .T̂ ∗
i,j are copies of the dual Nash bundle .T̂ ∗ over the Nash transform . ̂V

numbered by indices i and j . Let .̂D ⊂ T̂ be the set of pairs .(x, {α(i)
j }) where . x ∈ V̂

and the collection .{α(i)
j } of elements of . ̂T ∗

x (i.e. of linear functions on . ̂Tx) is such 

that . α(i)
1 ,  . . . , .α

(i)
n−ki+1 are linearly dependent for each .i = 1, . . . , s. The image of 

the section . ̂ω does not intersect . ̂D outside of the preimage .ν−1(0) ⊂ V̂ of the origin. 
The map .̂T \ D̂ → V̂ is a fibre bundle. The fibre .Wx = T̂ \ D̂ of it is .(2n − 2)-
connected, its homology group .H2n−1(Wx;Z) is isomorphic to . Z and has a natural 
generator (see above). The latter fact implies that the fibre bundle .̂T \ D̂ → V̂ is 
homotopically simple in dimension .2n − 1, i.e. the fundamental group .π1(V̂ ) of 
the base acts trivially on the homotopy group .π2n−1(Wx) of the fibre, the last one
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being isomorphic to the homology group .H2n−1(Wx): see, e.g., [120]. The following 
definition was made in [42] (see also [43]). 

Definition 5.4.9 The local Chern obstruction .Ch({ω(i)
j };V, 0) of the collections of 

germs of 1-forms .{ω(i)
j } on .(V , 0) at the origin is the (primary) obstruction to extend 

the section . ̂ω of the fibre bundle .̂T \ D̂ → V̂ from the preimage of a neighbourhood 
of the sphere .Sε = ∂Bε to . ̂V . More precisely, it is the value of this obstruction 
. (as an element of the homology group .H 2n(ν−1(V ∩ Bε), ν

−1(V ∩ Sε);Z) . ) on the 
fundamental class of the pair .(ν−1(V ∩ Bε), ν

−1(V ∩ Sε)). 

The local Chern obstruction .Ch({ω(i)
j };V, 0) can also be described as an 

intersection number, see [42]. Namely, let .𝒟k
V ⊂ C

N × ℒk be the closure of the 

set of pairs .(x, {�(i)
j }) such that .x ∈ Vreg and the restrictions of the linear functions 

. �
(i)
1 , . . . , .�(i)

n−ki+1 to .TxVreg ⊂ C
N are linearly dependent for each .i = 1, . . . , s. (For  

.s = 1, .k = {n}, .𝒟k
V is the (non-projectivized) conormal space of V [127].) The 

collection .{ω(i)
j } of germs of 1-forms on .(CN, 0) defines a section . ω̌ of the trivial 

fibre bundle .CN × ℒk → C
N . Then 

.Ch({ω(i)
j };V, 0) = (ω̌(CN) ◦ 𝒟k

V )0, (5.5) 

where .(· ◦ ·)0 is the intersection number at the origin in .CN ×ℒk. This description 
can be considered as a generalization of an expression of the local Euler obstruction 
as a micro-local intersection number defined in [80], see also [105, Sections 5.0.3 
and 5.2.1] and [106]. 

Remark 5.4.10 The local Euler obstruction is defined for vector fields on singular 
varieties as well as for 1-forms. One can see that collections of vector fields are 
not well adapted to a definition of the local Chern obstructions, at least on varieties 
with non-isolated singularities. The reason is as follows. Vector fields on a singular 
variety V are required to be tangent to the smooth strata of V (of a Whitney 
stratification). For example, on a one-dimensional stratum, all vector fields are 
proportional to each other and therefore a collection cannot have an isolated special 
point in a natural sense. A natural definition of the Chern obstruction of a collection 
of vector fields makes sense for varieties with isolated singularities. (Besides that, 
on a singular variety (with non-isolated singularities) continuous vector fields with 
isolated singular points exist, whereas this may not hold for holomorphic ones, see 
Remark 5.3.21.) 

Being a (primary) obstruction, the local Chern obstruction satisfies the law of 
conservation of number, i.e. if a collection of 1-forms .{ω̃(i)

j } is a deformation of the 

collection .{ω(i)
j } and has isolated special points on V , then 

.Ch({ω(i)
j };V, 0) =

∑
Ch({ω(i)

j };V, p)
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where the sum on the right hand side is over all special points p of the collection 
.{ω̃(i)

j } on V in a neighbourhood of the origin. With Proposition 5.4.8 this implies the 
following statements. The first statement is an analogue of [119, Proposition 2.3]. 

Proposition 5.4.11 The local Chern obstruction .Ch({ω(i)
j };V, 0) of a collection 

.{ω(i)
j } of germs of holomorphic 1-forms is equal to the number of special points on 

V of a generic (holomorphic) deformation of the collection (lying on . Vreg). 

Proposition 5.4.12 Let .{ω(i)
j } be a collection of 1-forms on a compact (say, 

projective) variety V with only isolated special points. Then the sum of the local 
Chern obstructions of the collection .{ω(i)

j } at these points does not depend on the 
collection and therefore is an invariant of the variety. 

It is reasonable to consider this sum as (.(−1)n times) the corresponding 
Chern characteristic number of the singular variety V . It is well known that the 
characteristic numbers of a compact complex manifold cannot have arbitrary values, 
they satisfy certain divisibility properties. A. Buryak [25] showed that, contrary to 
this fact, any set of integers can be the set of Chern characteristic numbers of a 
singular projective variety. 

Let .(V , 0) be an ICIS. The fact that both the Chern obstruction and the GSV 
index of a collection .{ω(i)

j } of 1-forms satisfy the law of conservation of number 
and they coincide on a smooth manifold yields the following statement. 

Proposition 5.4.13 For a collection .{ω(i)
j } on an ICIS .(V , 0), the difference 

. indGSV({ω(i)
j };V, 0) − Ch({ω(i)

j };V, 0)

does not depend on the collection and therefore is an invariant of the ICIS. 

In the framework of the definition of Schwartz–Chern classes of singular varieties 
[23, 107], one has to consider k-fields on n-dimensional varieties. Let us give the 
definition of the Euler obstruction of a k-field following [22]. 

Let .(V , 0) ⊂ (CN, 0) be the germ of a pure n-dimensional complex analytic 
variety. Let .CN = ⋃q

i=1 Vi be a Whitney stratification of .C
N compatible with V , i.e. 

.C
N \V is a stratum. Let (K) be triangulation of .C

N subordinated to the stratification 
.C

N = ⋃q

i=1 Vi and (D) be a cell decomposition of .CN dual to (K). 
Let .{Xj } = (X1 . . . , Xk) be a k-field, i.e. a collection of stratified vector fields, 

i.e. at each point .p ∈ V each vector field . Xj , .j = 1, . . . , k, is tangent to the stratum 
containing p. Assume that .{Xj } has only isolated singular points in V . Let . σ be a 
.2(N − k + 1)-cell of (D). Note that . σ is transverse to all the strata . Vi , .i = 1, . . . , q. 
We assume that .{Xj } has an isolated singularity at the barycentre . bσ of . σ and is a 
k-frame in .(σ \ {bσ })∩V , in particular it does not have any singularities on .∂σ ∩V . 

Let .ν : V̂ → V be the Nash transform of V and . ̂T be the Nash bundle, (cf. 
Sect. 5.3.5). Each vector field . Xj lifts to a section . ̂Xj of the bundle . ̂T over . ν−1(∂σ ∩
V ), see Sect. 5.3.5. The  k-frame .{Xj } lifts to k linearly independent sections . {X̂j }
of . ̂T over .ν−1(∂σ ∩ V ).
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Definition 5.4.14 The local Euler obstruction .Eu({Xj };V, σ) of the k-field . {Xj }
at . bσ is the obstruction to extend .{X̂j } to a collection of k linearly independent 
sections of . ̂T over .ν−1(σ ∩ V ), more precisely, its value (as an element of 
.H 2(N−k+1)(ν−1(σ ∩ V ), ν−1(∂σ ∩ V ))) on the fundamental class of the pair 
.(ν−1(σ ∩ V ), ν−1(∂σ ∩ V )). 

Let .{ωj } be a collection of 1-forms on V with an isolated singularity at the 
barycentre . bσ of . σ . 

Definition 5.4.15 The local Euler obstruction .Eu({ωj };V, σ) of the collection 
.{ωj } at . bσ is defined in a similar way, but now taking sections of the dual Nash 
bundle . ̂T ∗. 

There is also the definition of an Euler obstruction of a map due to N. Grulha 
[70]. 

Let .f = (f1, . . . , fk) : (V , 0) → (Ck, 0) be the germ of an analytic map. 
Let .gradV fj , .j = 1, . . . , k, be the vector fields constructed in Sect. 5.3.5. The  
construction can be done in such a way that for .x ∈ V \ {0} the vector fields 
.(gradV f1(x), . . . , gradV fk(x)) are linearly independent, see [70]. 

Let .Σf be the singular set of f . Let us assume that there exists a cell 
decomposition (D) of .C

N and a .2(N −k+1)-cell of (D) with barycentre 0 such that 
.Σf ∩ ∂σ = ∅. 

Definition 5.4.16 The local Euler obstruction .Eu(f ;V, σ) of the map f relative 
to . σ is defined to be 

. Eu(f ;V, σ) := Eu({gradV fj };V, σ).

It is shown in [15, Corollary 5] that the definition of .Eu(f ;V, σ) does not depend 
on a generic choice of the cell . σ . 

Instead of the collection of vector fields .{gradV fj }, we can consider the 
collection .{dfj } of 1-forms associated to f . This leads to the following definition 
(see [15]). 

Definition 5.4.17 

. Eu∗(f ;V, σ) := Eu({dfj };V, σ).

Relations between the Euler obstructions of k-fields and Chern obstructions were 
described in [15]. 

Let .(V , 0) ⊂ (CN, 0), .{Vi}, (K), and (D) be as above. Assume that 0 is the 
barycentre of a 2k-simplex . τ of the triangulation (K) and let . σ be the dual .2(N −k)-
cell. Since (K) is subordinated to the stratification, the simplex . τ is contained in a 
stratum and the cell . σ is transverse to the strata. A neighbourhood of 0 in .CN is 
homeomorphic to .σ × τ and one has 

.(σ × τ) ∩ V = (σ ∩ V ) × τ ∼= V ∩ Bε
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for a ball . Bε around the origin of sufficiently small radius . ε. Denote by . π1 and . π2
the projections .π1 : σ × τ → σ and .π2 : σ × τ → τ . Note that . τ is a smooth 
manifold, so the index .ind({ωj }; τ, 0) of a collection of 1-forms .{ωj } according to 
Sect. 5.2.3 is defined. The following theorem is proved in [15, Theorem 2.2]. 

Theorem 5.4.18 (Brasselet, Grulha, Ruas) In the above setting, let .{ω(1)
j }, . j =

1, . . . , k − 1, be a collection of germs of 1-forms on . σ and .{ω(2)
j }, . j = 1, . . . , d −

k + 1, be a collection of germs of 1-forms on . τ . The collection of germs of 1-forms 
on .(CN, 0) given by .{ω(i)

j } = {π∗
1 (ω

(1)
j1

), π∗
2 (ω

(1)
j2

)} satisfies 

. Ch({ω(i)
j };V, 0) = Eu({ω(1)

j };V, σ) · ind({ω(2)
j }; τ, 0).

The following corollary is derived from this theorem, see [15, Corollary 2.3, 
Corollary 2.6]. 

Corollary 5.4.19 (Brasselet, Grulha, Ruas) Let .(V , 0) be as above and let . f :
(V , 0) → (Ck, 0) be a map germ. Let .{ω(i)

j } = {ω(1)
j1

, ω
(i)
j2

} be the collection of 

1-forms defined by .{ω(1)
j1

} = {df1, . . . , dfk} and .{ω(2)
j2

} = {�1, . . . , �n−k+2} where 
.�1, . . . , �n−k+1 are linearly independent linear forms dual to the tangent field of . σ
and .�n−k+2 is a radial linear form. Then one has 

. Eu∗(f ;V, σ) = Ch({ω(i)
j };V, 0) = (ω̌(CN) ◦ 𝒟k

V )0

(cf. Eq. (5.5) ).

It follows from this corollary that .Eu∗(f ;V, σ) is independent of a generic 
choice of . σ . Moreover, the following identity [15, Theorem 2.4] is proved using 
this corollary: 

. Eu(f ;V, σ) = (−1)n−k+1Eu∗(f ;V, σ).

Therefore the Euler obstruction .Eu(f ;V, σ) is also independent of a generic choice 
of . σ [15, Corollary 2.5]. 

In [15], also some formulas to compute the Chern obstruction are given. In 
particular, it is shown that the Chern obstruction is related with the polar multiplicity. 
Let .(V , 0) ⊂ (CN, 0) be the germ of a pure n-dimensional complex analytic variety 
and .f : (V , 0) → C

k be a generic projection. The .(n − k + 1)-polar variety 
.Pn−k+1(V ) is the closure of the singular set .Σf of f . Its multiplicity at 0 is denoted 
by .mn−k+1(V , 0). The following theorem is proved in [15, Theorem 3.1]. 

Theorem 5.4.20 (Brasselet, Grulha, Ruas) Let .(V , 0) ⊂ (CN, 0) be the germ 
of a pure n-dimensional complex analytic variety and .f : (V , 0) → C

k be a 
generic projection. Let .{ω(i)

j } be a collection of germs of 1-forms on .(CN, 0) such 

that .{ω(1)
j } = {df1, . . . , dfk} and .{ω(i)

j }, .i = 2, . . . , s, .j = 1, . . . , n − ki + 1,
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are generic subcollections, where . ki , .i = 2, . . . , s, are non-negative integers with 
.
∑s

i=2 ki = k − 1. Then one has 

. Ch({ω(i)
j };V, 0) = mn−k+1(V , 0).

In [57, Theorem 6.1], a formula for the Chern obstruction of a collection of 1-
forms on an equidimensional analytic variety is given in terms of the multiplicity of 
pairs of modules. 

5.4.3 Homological Index 

Here we consider the definition of the homological index for a collection of 1-forms 
due to E. Gorsky and the second author [65]. 

Let .(V , 0) be the germ of a complex algebraic variety of dimension n with an 
isolated singular point at the origin. Let . ki , .i = 1, . . . , s, be positive integers such 
that .

∑s
i=1 ki = n and let .{ω(i)

j }, .i = 1, . . . , s, .j = 1, . . . , n− ki + 1, be a collection 
of germs of holomorphic 1-forms on .(V , 0). 

Let .Wi = C
n−ki+1 be an auxiliary vector space with a basis .u1, . . . , un−ki+1. 

We consider the complex .𝒞(i) = 𝒞(ω
(i)
1 , . . . , ω

(i)
n−ki+1) of sheaves of .𝒪V,0-modules 

defined as follows: 

. 𝒞(i)
0 := Ωn

V,0, 𝒞(i)
t := Ωki−t ⊗ St−1Wi, 1 ≤ t ≤ ki .

The differential .dt : 𝒞(i)
t → 𝒞(i)

t−1 is defined by 

. d1(β) := β ∧ ω
(i)
1 ∧ . . . ∧ ω

(i)
n−ki+1,

dt (β ⊗ ϕ(u)) :=
n−ki+1∑

l=1

(
β ∧ ω

(i)
l

)
⊗ ∂ϕ

∂ul

, 2 ≤ t ≤ ki .

The complex .(𝒞(i), d) is indeed a chain complex [65, Lemma 11]. It is shown in 
[65, Lemma 14] that the cohomology groups of .𝒞(i) are supported on the locus of 
the points where the forms .{ω(i)

j } are linearly dependent. Define 

. 𝒞=
s⊗

i=1

𝒞(i),

where the tensor product is taken over .𝒪V,0.
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Definition 5.4.21 The homological index .indhom({ω(i)
j };V, 0) of the collection of 

1-forms .{ω(i)
j } is the Euler characteristic of the complex . 𝒞: 

. indhom({ω(i)
j };V, 0) :=

n∑

t=0

(−1)t dim Ht(𝒞).

The homological index for a collection of 1-forms with an isolated singular point 
satisfies the law of conservation of number [65, Proposition 18]. The following 
theorem is [65, Theorem 19]. 

Theorem 5.4.22 (Gorsky, Gusein-Zade) Let .(V , 0) be an ICIS and let .{ω(i)
j } be a 

collection of holomorphic 1-forms on .(V , 0) with an isolated singular point. Then 

. indhom({ω(i)
j };V, 0) = indGSV({ω(i)

j };V, 0).

Since both the homological index and the Chern obstruction satisfy the law of 
conservation of number and coincide on a smooth manifold, one has the following 
statement (see [65, Proposition 40]). 

Proposition 5.4.23 Let .(V , 0) ⊂ (CN, 0) be the germ of a complex analytic variety 
of pure dimension n with an isolated singularity at the origin. The difference 

. indhom({ω(i)
j };V, 0) − Ch({ω(i)

j };V, 0)

between the homological index and the Chern obstruction does not depend on the 
collection .{ω(i)

j } and is an invariant of the singularity .(V , 0). 

5.5 Equivariant Indices 

5.5.1 Equivariant Euler Characteristics 

The notions of indices of vector fields and of 1-forms (on smooth manifolds and on 
singular varieties) are related with the Euler characteristic (through the Poincaré– 
Hopf theorem). Therefore it is natural to discuss equivariant versions of the Euler 
characteristic first. 

In what follows we shall consider the additive Euler characteristic defined (for 
topological spaces nice enough, say, for those homeomorphic to locally compact 
unions of cells in finite CW-complexes) as the alternating sum of the dimensions of 
the cohomology groups with compact support: 

.χ(V ) =
∞∑

q=0

(−1)q dim H
q
c (V ;C) . (5.6)
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This Euler characteristic coincides with the “traditional one” (defined as the alter-
nating sum of the dimensions of the usual cohomology groups) for compact spaces 
(finite CW-complexes) and for complex quasi-projective varieties. The additivity of 
the Euler characteristic permits to use it as a sort of a (non-positive) measure for the 
definition of the integral with respect to the Euler characteristic: [133]. 

There are several generalizations of the notion of the Euler characteristic to 
the equivariant setting, i.e. for spaces with actions of a group (say, a finite one). 
The most simple (and the most straightforward) one is obtained by substituting the 
dimensions of the cohomology groups in (5.6) by the classes of the corresponding 
G-modules .H

q
c (V ;C) (spaces of representations of G) in the ring .R(G) of 

representations of the group G. This analogue of the Euler characteristic is defined 
as an element of the ring .R(G). It was introduced in [132] and was used, e.g., in 
[134]. 

A finer equivariant version of the Euler characteristic of a G-space can be defined 
as an element of the Burnside ring .A(G) of the group G, i.e. the Grothendieck ring 
of finite G-sets. The latter is the abelian group generated by the classes .[(Z,G)] of 
finite G-sets modulo the following relations: 

– if .(Z1,G) and .(Z2,G) are isomorphic, i.e., if there exists a bijective G-
equivariant map .Z1 → Z2, then .[(Z1,G)] = [(Z2,G)]; 

– .[(Z1 � Z2,G)] = [(Z1,G)] + [(Z2,G)]. 
The multiplication in .A(G) is defined by the Cartesian product of sets with the 
natural (diagonal) G-action. The Burnside ring .A(G) is the free abelian group 
generated by the classes of irreducible G-sets which are in bijection with the classes 
of conjugate subgroups of the group G: the conjugacy class .[H ] of a subgroup 
.H ⊂ G corresponds to the class of the G-set .G/H . One has a natural ring 
homomorphism .A(G) → R(G), sending a G-set Z to the space of functions 
on Z with the natural (left) action of the group G: .(g∗f )(y) = f (g−1y). This  
homomorphism is, in general, neither a monomorphism nor an epimorphism. In 
what follows we shall mostly use the equivariant version of the Euler characteristic 
with values in .A(G) and therefore we shall refer to it as the equivariant Euler 
characteristic. 

Let V be a sufficiently nice space with an action of the group G. For a point x 
of the space V let .Gx be the isotropy subgroup .{g ∈ G : gx = x} of the point 
x. For a subgroup H of the group G let .V H be the fixed point set of the group H : 
.{x ∈ V : Gx ⊃ H }, and let .V (H) be the set .{x ∈ V : Gx = H } of points with 
the isotropy subgroup coinciding with H . Let .Conjsub G be the set of the conjugacy 
classes of subgroups of G. For a conjugacy class .[H ] of subgroups of G (which 
contains the subgroup H ), let .V [H ] be the set of points such that each of them is 
fixed with respect to a subgroup conjugate to H and let .V ([H ]) be the set of points 
.x ∈ V whose isotropy subgroups .Gx are conjugate to H .
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Definition 5.5.1 The equivariant Euler characteristic of the G-space V is defined 
by 

.χG(V ) =
∑

[H ]∈Conjsub G

χ(V ([H ])/G) · [G/H ] ∈ A(G) . (5.7) 

This notion was introduced in [129]. The equivariant Euler characteristic satisfies 
the additivity property: if W is a closed G-invariant subspace of a G-space V , then 

. χG(V ) = χG(W) + χG(V \ W) .

One can show that it is a universal invariant possessing this property (on the class of 
spaces homeomorphic to locally closed unions of cells in finite CW-complexes with 
cell actions of the group G). The equivariant analogue of the Euler characteristic 
with values in the ring .R(G) of representations of G is obtained from the equivariant 
Euler characteristic by the natural homomorphism .A(G) → R(G) described above. 
Among other reductions of the equivariant Euler characteristic, one can indicate the 
orbifold Euler characteristic (see, e.g., [10], [76]) and its higher order analogues 
([10], [126]). 

5.5.2 Equivariant Indices of Vector Fields and 1-Forms on 
Manifolds 

Let a finite group G act smoothly on (the germ of) the affine space .(Rn, 0). Without 
loss of generality one can assume that the action is linear, i.e. it is defined by a 
representation of G on . Rn. Let  X be a (continuous) vector field on .(Rn, 0) invariant 
with respect to the action of G and with an isolated singular point at the origin. 
(One can see that, for each point p from a neighbourhood of the origin (where X is 
defined), the vector .X(p) is tangent to the subspace .(Rn)Gp of the fixed points of 
the isotropy subgroup .Gp of the point p.) 

We assume .Rn to be endowed with a G-invariant Euclidean metric. Let . ε > 0
be small enough so that the vector field X is defined on a neighbourhood of the 
closed ball . Bε of radius . ε centred at the origin and has no singular points in . Bε

outside the origin. It is easy to see that there exists a G-invariant vector field . ̃X on a 
neighbourhood of . Bε such that: 

(1) The vector field . ̃X coincides with X on a neighbourhood of the sphere . Sε =
∂Bε. 

(2) In a neighbourhood of each singular point .p ∈ Bε \ {0}, the vector field . ̃X
is as follows. Let .H = Gp be the isotropy subgroup of the point p. The  
germ .(Rn, p) is in a natural way isomorphic to .((Rn)H , p) × (((Rn)H )⊥, 0), 
where .((Rn)H )⊥ is the orthogonal complement to the subspace . (Rn)H : the  
direct sum of the subspaces of . Rn corresponding to non-trivial representations
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of H . In a neighbourhood of p the vector .X̃(y1, y2) (.y1 ∈ ((Rn)H , x0), 
.y2 ∈ ((Rn)H )⊥, 0)) is the sum .X1(y1) + X2(y2), where .X1 is a vector field 
on .((Rn)H , p) with an isolated singular point at p, . X2 is an H -invariant radial 
vector field on .((Rn)H )⊥, 0). (Let us recall that, on a zero-dimensional space 
the only vector field (zero) is non-degenerate with the index 1 and also radial.) 

Remark 5.5.2 One can assume that the vector field .X1 is smooth and has a non-
degenerate singular point at . x0 (and therefore .ind(X1; (Rn)H , x0) = ±1), however, 
this is not necessary for the definition. 

Definition 5.5.3 The equivariant index .indG(X;Rn, 0) of the vector field X at the 
origin is defined by the equation 

. indG(X;Rn, 0) =
∑

p∈(Sing X̃)/G

ind(X̃|V(p)
;V(p), p)[Gp] ,

where p is a representative of the orbit . p. (One has .[Gp] = [G/Gp].) 
Remark 5.5.4 One can say that the equivariant index .indG(X;Rn, 0) is the class 
.[Sing X̃] ∈ A(G) of the set .Sing X̃ of singular points of . ̃X with multiplicities equal 
to the usual indices .ind(X̃|(Rn)Gp ; (Rn)Gp , p) of the restrictions of the vector field 

. ̃X to the corresponding fixed point sets (smooth manifolds). 

One has the following equivariant version of the Poincaré-Hopf theorem. 
For a subgroup .H ⊂ G there are natural maps .RG

H : A(G) → A(H) and . IGH :
A(H) → A(G). The  restriction map .RG

H sends a G-set Z to the same set considered 
with the H -action. The induction map . IGH sends an H -set Z to the product . G × Z

factorized by the natural equivalence: .(g1, x1) ∼ (g2, x2) if there exists .g ∈ H such 
that .g2 = g1g, .x2 = g−1x1 with the natural (left) G-action. Both maps are group 
homomorphisms, however the induction map . IGH is not a ring homomorphism. 

Theorem 5.5.5 Let M be a closed (compact, without boundary) G-manifold and 
let X be a G-invariant vector field on M with isolated singular points. Then one has 

. 
∑

p∈(Sing X)/G

IGGp
(indGp(X;M,p)) = χG(M) .

A version of this definition of an equivariant index was given first in [93]. 
However, the index there takes values in an extension of the Burnside ring which 
depends on the G-manifold M and is not a ring. (It takes into account connected 
components of the fixed point sets of subgroups of G.) 

Almost the same definition can be given for the equivariant index . indG(ω;Rn, 0)

of a G-invariant 1-form . ω on . (Rn, 0). A  G-invariant Riemannian metric on a G-
manifold permits to identify invariant 1-forms with invariant vector fields. In this 
way, the equivariant index of a 1-form is the equivariant index of the corresponding 
vector field.
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In the complex setting one has the usual sign correction factor for a complex-
valued 1-form on a complex manifold (see Sect. 5.2.2). 

5.5.3 The Equivariant Radial Index on a Singular Variety 

On a singular G-variety G-invariant vector fields and G-invariant 1-forms cannot be 
identified with each other. Therefore their equivariant indices (even being defined in 
similar ways) cannot be expressed through each other. 

Here we shall give the definition of an equivariant version of the radial index for 
vector fields. The necessary changes for 1-forms are clear. 

Let .(V , 0) be the germ of a closed real subanalytic set with an action of a finite 
group G. We assume .(V , 0) to be embedded into .(RN, 0) and the G-action to be 
induced by an (analytic) action on a neighbourhood of the origin in . (RN, 0). (The  
action on .(RN, 0) can be assumed to be linear.) 

Let .V = ⋃q

i=1 Vi be a subanalytic Whitney G-stratification of V . This means 
that each stratum . Vi is G-invariant, the isotropy subgroups . Gp = {g ∈ G : gp = p}
of all points p of . Vi are conjugate to each other, and the quotient of the stratum . Vi

by the group G is connected. 
Let X be a G-invariant (stratified) vector field on .(V , 0) with an isolated singular 

point at the origin. One can show that there exists a (continuous) G-invariant 
stratified vector field . ̃X on V satisfying Conditions (1)–(3) from Sect. 5.3.1. 

The following definition was made in [45]. Let A be the set (a G-set) of the 
singular points of the vector field . ̃X on .V ∩ Bε considered with the multiplicities 
equal to the usual indices .ind(X̃|V(p)

;V(p), p) of the restrictions of the vector field 
. ̃X to the corresponding strata (smooth manifolds). 

Definition 5.5.6 The equivariant radial index .indG
rad(X;V, 0) of the vector field X 

on V at the origin is the class .[A] ∈ A(G) of the set A of singular points of . ̃X with 
multiplicities. 

One can show that the equivariant radial index is well-defined: see [45]. 

Remark 5.5.7 As above (in the smooth case) one can write the definition as 

. indG
rad(X;V, 0) =

∑

p∈(Sing X̃)/G

ind(X̃|V(p)
;V(p), p)[Gp] ,

where p is a representative of the orbit . p. 

For a subgroup .H ⊂ G, the vector field X is H -invariant and one has 
.indH

rad(X;V, 0) = RG
H (indG

rad(X;V, 0)). 
One has the following generalization of Theorem 5.5.5 (see [45, Theorem 4.6]).
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Theorem 5.5.8 Let .V = ⋃q

i=1 Vi be a compact subanalytic variety and let X be a 
G-invariant stratified vector field on V with isolated singular points. Then one has 

. 
∑

p∈(Sing X)/G

IGGp
(indGp(X;V, p)) = χG(V ) .

Another analogue of the Euler characteristic can be defined for orbifolds: the 
universal Euler characteristic of orbifolds [74]. It takes values in the ring . ℛ
generated, as a free abelian group, by isomorphism classes of finite groups. The 
corresponding analogue of the radial index of vector fields and 1-forms (with values 
in the same ring . ℛ) was defined in [73]. 

5.5.4 Equivariant GSV and Poincaré–Hopf Index 

Let the space .CN be endowed with an action of a finite group G (say, with a linear 
one) and let .(V , 0) = {z ∈ (CN, 0) : f1(z) = · · · = fN−n(z) = 0} be an n-
dimensional germ of an isolated complete intersection singularity defined by G-
invariant function germs .fi : (CN, 0) → (C, 0), .i = 1, . . . , N − n. In the usual 
(non-equivariant) setting (thus for the trivial group G), the GSV index of a vector 
field or of a 1-form on .(V , 0) can be defined in terms of the degree of a certain map 
or in terms of the intersection number of some cycles. Equivariant versions of these 
notions (the degree and the intersection index) are not defined (at least as elements 
of the Burnside ring .A(G)). Therefore, in order to define equivariant versions of 
them, one has to use the fact that the GSV index agrees with the Poincaré–Hopf 
index (Proposition 5.3.17). Namely, let X be a G-invariant vector field on . (V , 0)

with an isolated singularity at the origin. Let .F : (𝒱, 0) → (C, 0) be the essentially 
unique smoothing of .(V , 0) (see Sect. 5.3.3). The vector field . ̃X of Sect. 5.3.3 can 
be made G-invariant. (To get a G-invariant vector field, one can take an arbitrary 
one and take the mean over the group.) Then one can make the following definition 
(cf. [45, Definition 5.1]). 

Definition 5.5.9 The G-equivariant GSV index (or G-equivariant Poincaré–Hopf 
index) is  

.indG
GSV(X;V, 0) =

∑

p∈(Sing X̃)/G

indG(X̃;V F
t , p) ∈ A(G), (5.8) 

where .V F
t is the Milnor fibre corresponding to the smoothing F . 

It is easy to show that the right hand side of (5.8) does not depend on the 
extension . ̃X and therefore the equivariant GSV index is well-defined. 

There is also a generalization to non-isolated complete intersection singularities, 
see [45, Definition 5.1].
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The relation between the equivariant GSV index and the radial one can be 
described as follows. The Milnor fibre .V F

t is a manifold with a G-action and 
therefore its equivariant Euler characteristic .χG(V F

t ) ∈ A(G) is defined. Let 
.χG(V F

t ) = χG(V F
t ) − 1 be the reduced equivariant Euler characteristic of . V F

t . 
(The element .(−1)nχG(V F

t ) ∈ A(G) can be regarded as an equivariant version 
of the Milnor number of the ICIS .(V , 0)). There is the following generalization of 
Proposition 5.3.18 (see [45, Proposition 5.3]). 

Proposition 5.5.10 .indG
GSV(X;V, 0) = indG

rad(X;V, 0) + χG(V F
t ). 

Let the group G act on the projective space .CPN by projective transformations 
and let .V ⊂ CP

N be a G-invariant complete intersection with isolated singularities. 
It has a natural G-invariant smoothing .Ṽ ⊂ CP

N . Let  X be a G-invariant vector 
field on V with isolated singular points. Since the GSV index was defined as the 
Poincaré–Hopf index, it counts singular points of the vector field on the smoothing 
of the ICIS. Therefore one has the following version of the Poincaré–Hopf theorem 
(see [45, Proposition 5.2]). 

Proposition 5.5.11 Let V , . ̃V , and X be as above. Then one has 

. 
∑

p∈(Sing X)/G

IGGp
(indG

GSV(X;V, p)) = χG(Ṽ ) ∈ A(G) .

5.5.5 Equivariant Homological Index 

Let .CN be endowed with an action (say, a linear one) of a finite group G and let 
.(V , 0) ⊂ (CN, 0) be a G-invariant germ of an analytic variety of pure dimension n. 
Let X be a G-invariant holomorphic vector field on .(V , 0) with an isolated singular 
point at the origin. 

Remark 5.5.12 The condition that such a vector field on .(V , 0) exists is a rather 
restrictive condition on the variety. Namely, a neighbourhood in V of any point p 
of .V \ {0} has to be isomorphic to the direct product .(Wp, 0) × (C, 0) for a variety 
.Wp (cf. Remark 5.3.21). This holds, in particular, if .V \ {0} is non-singular. 

Let .Ωi
V,0, .i = 1, 2, . . ., be the modules of germs of differential forms on . (V , 0)

(.Ωi
V,0 = 𝒪V,0). One has natural actions of the group G on them. Consider the 

complex (5.1). It consists of G-modules and therefore its homology groups are 
(finite dimensional) G-modules as well. 

Definition 5.5.13 The equivariant homological index of the vector field X on 
.(V , 0) is 

.indG
hom(X;V, 0) =

n∑

i=0

[
Hi(Ω

•
V,0, X)

] ∈ RC(G) ,
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where .RC(G) is the ring of (complex) representations of the group G and . [·] is the 
class of a G-module in .RC(G). 

Let . ω be a G-invariant holomorphic 1-form on .(V , 0) with an isolated singular 
point at the origin. 

Remark 5.5.14 One can see that (in contrast to the situation for vector fields) 1-
forms with this property always exist. 

Consider the complex (5.2). If .(V , 0) is smooth and .ω(0) �= 0, the homology 
groups of the complex (5.2) are trivial. This implies that, if both V and . ω have 
isolated singular points at the origin, the homology groups .Hi(Ω

•
V,0,∧ω) of the 

complex (5.2) are finite dimensional G-modules. 

Definition 5.5.15 Let .(V , 0) have an isolated singular point at the origin and let . ω
have an isolated singular point at . 0 ∈ V . The  equivariant homological index of the 
1-form . ω on .(V , 0) is 

. indG
hom(ω;V, 0) =

n∑

i=0

[
Hi(Ω

•
V,0,∧ω)

] ∈ RC(G) .

Remark 5.5.16 It is not clear whether this definition makes sense for an arbitrary 
(G-invariant) variety .(V , 0) ⊂ (CN, 0), not necessarily with an isolated singular 
point at the origin, i.e. whether the homology groups .Hi(Ω

•
V,0,∧ω) are finite 

dimensional in this case as well. 

Assume that .(V , 0) = (Cn, 0). It is not difficult to show that the equivariant 
homological index of a vector field X with an isolated singular point coincides with 
the reduction (under the natural homomorphism .A(G) → RC(G)) of the equivariant 
(radial) index of X. This follows from the fact that a G-invariant vector field on . Cn

can be deformed to one with only non-degenerate singular points and it is easy to 
verify the coincidence for a vector field with a non-degenerate singular point. The 
situation is quite different for 1-forms (for a non-trivial group G). A G-invariant 1-
form cannot, in general, be deformed to one with non-degenerate singular points. It 
is not clear how one can describe non-removable singularities of invariant 1-forms 
for an arbitrary finite group G (in order to verify the coincidence of the described 
indices for them). This was made in [95] for the group . Z3 of order 3. For an arbitrary 
finite group G the statement about the coincidence was proved in [75]. 

5.5.6 Equivariant Euler Obstruction 

The Euler obstruction of a vector field or of a 1-form at an isolated singular point 
on a (quasi-projective) singular variety can be regarded as a version of an index 
of it. Similar to the GSV index, the usual (non-equivariant) version of the Euler 
obstruction is defined in terms of the (first) obstruction to extend a section of a
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bundle. An equivariant version of the notion of the first obstruction is not defined (at 
least as an element of the Burnside ring .A(G)). Therefore, to define an equivariant 
version of the Euler obstruction (of a vector field or of a 1-form), one has to use 
another approach. 

A method to define the (local) equivariant Euler obstruction of an invariant 1-
form was suggested in [46]. The idea resembles the one used for the definition of 
the equivariant radial index. Let .(V , 0) ⊂ (CN, 0) be a germ of a complex analytic 
variety with an action of a finite group G and let .{Vi}i∈I be a G-invariant Whitney 
stratification of it. Let . ω be a germ of a G-invariant complex 1-form on . (V , 0)

(that is the restriction of a G-invariant 1-form on .(CN, 0)) with an isolated singular 
point at the origin. Let . Bε be a ball of a small radius . ε around the origin such that 
representatives of V and of . ω are defined in . Bε and the 1-form . ω has no singular 
points on .V \ {0} inside . Bε. Let . ̃ω be a G-invariant 1-form on .V ∩ Bε described in 
Sect. 5.3.5. 

Definition 5.5.17 The G-equivariant local Euler obstruction of the 1-form . ω on 
.(V , 0) is defined by 

. EuG(ω;V, 0) =
∑

p∈(Sing ω̃)/G

(−1)dim V −dim V(p)Eu(V, V(p))·ind(ω̃|V(p)
;V(p), p)[Gp] ,

where p is a point of the orbit .p = Gp, .ind(·) is the usual index of a 1-form on a 
smooth manifold. 

It is not difficult to show that the equivariant local Euler obstruction is well 
defined (that is, that the definition does not depend on the choice of a 1-form . ̃ω) and 
its reduction under the natural reduction homomorphism . RG{e} : A(G) → A({e}) =
Z gives the usual Euler obstruction of the 1-form . ω. 

One has a global version of this notion defined either for a projective or for an 
affine variety, see Sect. 5.3.5. Let  V be a G-invariant affine variety in .CN and let 
. η be a G-invariant real 1-form on .CN which is radial at infinity (this means that it 
does not vanish on the vectors 

. 
∑

i

(

xi

∂

∂xi

+ yi

∂

∂yi

)

for .‖z‖ large enough, .z = (z1, . . . , zN), .zj = xj + yj

√−1) and has only isolated 
singular points on V . 

Definition 5.5.18 The equivariant global Euler obstruction of the affine variety V 
is defined by 

.EuG(V ) :=
∑

p∈(Sing ηrad)/G

IGGp
(EuGp(ηrad;V, p)) ∈ A(G).
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The same definition makes sense for a projective (therefore compact) variety. 
The only difference is that one has to take an arbitrary 1-form . η with only isolated 
singular points. 

5.5.7 Real Quotient Singularities 

Let a finite group G act (linearly) on the space . Rn (and thus on its complexification 
. Cn). For an analytic (real) 1-form . ω on .(Rn, 0), there is defined a natural (Eisenbud– 
Levine–Khimshiashvili) quadratic form B on 

. Ωω := Ωn
Rn,0/ω ∧ Ωn−1

Rn,0 :
see Sect. 5.2.4. Its signature is equal to the index .ind(ω;Rn, 0) of the 1-form . ω. 
If the 1-form . ω is G-invariant, its (equivariant) index .indG(ω;Rn, 0) is defined 
as an element of the Burnside ring .A(G). In this case the Eisenbud–Levine– 
Khimshiashvili quadratic form is also G-invariant and therefore its (equivariant) 
signature .sgnGB is defined as an element of the ring .RR(G) of real representations 
of the group G. One can expect a relation between the equivariant signature . sgnGB

and the equivariant index .indG(ω;Rn, 0) (or rather its reduction . r(indG(ω;Rn, 0))

under the natural homomorphism .r : A(G) → RR(G)). 
The most straightforward conjecture would be that the reduction . r(indG(ω;Rn,

0)) is equal to the equivariant signature . sgnGB. In [72] and also in [30], it was 
explained that (for differentials of function germs) this was not the case. The reason 
is roughly speaking the following. For a (G-invariant) morsification of a function 
germ, the usual signature of the residue pairing can be expressed in terms of the real 
critical points of the morsification, whence an equation for the equivariant signature 
involves also critical points whose complex conjugates lie in the same G-orbit. 

A weaker conjecture can be as follows. Let .r(0) : A(G) → Z be the group homo-
morphism defined by .r(0)([G/H ]) = 1. This means that . r(0)

(∑
aH [G/H ]) =

∑
aH .) Let .BG

ω : ΩG
ω × ΩG

ω → R be the restriction of the residue pairing to the G-
invariant part .ΩG

ω of . Ωω. It is a non-degenerate bilinear form as well. It is possible to 
show that the image of the index .indG(ω;Cn, 0) under the map . r : A(G) → RC(G)

is equal to the class .[ΩC
ω ] of the G-module . ΩC

ω : [75]. Therefore, for the G-invariant 

part .
(
ΩC

ω

)G
of .ΩC

ω , one has 

. dim
(
ΩC

ω

)G = r(0)(indG(ω;Cn, 0)) . (5.9) 

Taking into account relations between dimensions of modules in the complex 
case and signatures of quadratic forms in the real case in the Eisenbud–Levine– 
Khimshiashvili theory, one can conjecture that 

. sgn BG
ω = r(0)(indG(ω;Rn, 0)) .

Again, in general this is not the case.
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Let W be the real part of the quotient .C
n/G. Note that in general .W �= R

n/G. A  
real analytic 1-form . η on W defines a G-invariant analytic 1-form .ω = π∗η on . Cn

(.π : Cn → C
n/G is the quotient map) which is real (that is real on .Rn ⊂ C

n) and, 
moreover, real on .π−1(W). 

One can prove the following statement ([47, 48]): 

Theorem 5.5.19 For an abelian finite group G and for a real analytic G-invariant 
1-form . ω one has 

.sgn BG
ω = r(0)(indG(ω;π−1(W), 0)) . (5.10) 

Remark 5.5.20 It is very probable that the statement holds for non-abelian groups 
as well. However, this is not proved. 
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90. Dũng Tráng, L., Nuño-Ballesteros, J. J., Seade, J.: The topology of the Milnor fibration. This 
handbook, Volume 1, Chapter 6 (2020) 

91. Lehmann, D., Suwa, T.: Residues of holomorphic vector fields relative to singular invariant 
subvarieties. J. Differential Geom. 42, no. 1, 165–192 (1995) 

92. Lehmann, D., Soares, M., Suwa, T.: On the index of a holomorphic vector field tangent to a 
singular variety. Bol. Soc. Brasil. Mat. (N.S.) 26, no. 2, 183–199 (1995) 

93. W. Lück, J. Rosenberg: The equivariant Lefschetz fixed point theorem for proper cocompact 
G-manifolds. In: High-dimensional manifold topology, pp. 322–361. World Sci. Publ., River 
Edge, NJ (2003) 

94. MacPherson, R.: Chern classes for singular varieties. Annals of Math. 100, 423–432 (1974) 
95. Mamedova, F. I.: Simplest singular points of 1-forms invariant with respect to an action of 

group of order three. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2018, no.5, 60–63 
(2018); translation in Moscow Univ. Math. Bull. 73, no. 5, 199–202 (2018) 
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Abstract The motivic Hirzebruch class is a characteristic class “unifying” three 
distinguished characteristic homology classes of singular varieties. In this survey we 
discuss characteristic cohomology classes of vector bundles, characteristic homol-
ogy classes of singular varieties, the motivic Hirzebruch class and related topics 
such as Milnor class and Fulton–MacPherson’s bivariant theory etc., emphasizing 
“categorical aspects”, namely, natural transformations. 

6.1 Introduction 

A characteristic class is usually a cohomology class of a vector bundle, i.e., an 
invariant of vector bundles taking values in the cohomology group of the base 
space. So, the reader might think that a “motivic” characteristic class means one 
taking values in a motivic cohomology group (e.g., [138]) of the base space (e.g., 
see [18, 119, 198]), but “motivic” used in this survey is adjective used in algebraic 
geometry, such as ‘motivic’ measure (e.g., [66, 114, 122]), ‘motivic’ invariant (e.g., 
see [104]) and so on. Roughly speaking, it mainly means ‘additive over cutting into 
pieces’. 

In this survey we discuss characteristic homology classes from categorical 
viewpoints, namely we treat them as 

“natural transformations from certain covariant functors to homology functors”. 
Saunders MacLane, one of the founders of category theory, is said to have remarked: 
“I didn’t invent categories to study functors; I invented them to study natural 
transformations.” (see [223, Historical notes]). Also see MacLane’s book [125, 
§1.4, p.18]:“As Eilenberg-MacLane first observed, ‘category’ has been defined in 
order to be able to define ‘functor’ and ‘functor’ has been defined in order to be 
able to define ‘natural transformations’ ”
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Typical and important characteristic cohomology classes are Chern class, Stiefel– 
Whitney class and Pontryagin class [142]. In the case of a nonsingular variety or a 
differentiable manifold one can define its characteristic cohomology class as that 
of its tangent bundle. However, if it has singularities like algebraic varieties, one 
cannot define its characteristic cohomology class as above, since its tangent bundle 
cannot be defined because of singularities. Of course, if one could define a unique 
vector bundle E up to isomorphism even if the variety has singularities, one could 
define its characteristic cohomology class as the characteristic cohomology class of 
this vector bundle E. However, it seems that the existence of such a vector bundle 
has not been found yet. 

If we consider categorical viewpoints, the characteristic cohomology class of a 
vector bundle can be put in as follows.1 Let .Vect(X) be the set of isomorphisms 
classes of vector bundles over a topological space X. Then we get the contravariant 
functor .Vect : TOP → SET from the category .TOP of topological spaces to 
the category .SETof sets. The cohomology group .H ∗(X) is a contravariant functor 
.H ∗ : TOP → SETif we ignore the group or ring structure of .H ∗(−). Then, the 
operation .c�∗ taking a characteristic cohomology class .c�∗(E) of a vector bundle E 
is a natural transformation .c�∗ : Vect → H ∗. The category .SETcan be replaced 
by the category .MONof monoids, since .Vect(X) is a monoid by considering the 
Whitney sum .E ⊕ F . Furthermore, in the case of multiplicative characteristic 
classes such as Chern class, i.e., in the case when it satisfies . c�∗(E ⊕ F) =
c�∗(E)c�∗(F ), the monoid .Vect(X) can be replaced by the Grothendieck group (or 
“group completion”)2 of the monoid .Vect(X), i.e., the K-group .K(X) (or .K0(X)) 
and the category .MONcan be replaced by the category .ABYof abelian groups, and 
the multiplicative characteristic class can be captured as a natural transformation 
.c�∗ : K(−) → H ∗(−) (cf. [21, 179]). 

In 1960s characteristic classes or some invariants of spaces having singularities 
had come to be defined as homology classes or relative cohomology classes not 
as cohomology classes. The first one was constructed by M.-H. Schwartz. In 
[171] (also see [172]) Schwartz defined a class of a singular variety X embedded 
into a manifold M by a class in the relative cohomology .H ∗(M,M \ X), using  
a stratification and its associated stratified vector bundle. Her class . Schp(X) ∈
H 2p(M,M \ X) is called the p-th Schwartz class of X. For more details, e.g., 
see [48, 50, 53, 57]. Another one defined as a natural transformation was Stiefel– 
Whitney homology class due to D. Sullivan [184] and its Chern class version 
is MacPherson’s Chern class. In the study of Riemann–Roch type theorems, 
A. Grothendieck and P. Deligne made a conjecture about Chern class and its

1 Here we are sloppy, ignoring whether it is a real or complex vector bundle. 
2 Note that the Grothendieck group can be in general defined for a semigroup, i.e., not requiring 
the existence of the unit. In the case of .Vect(X), the class of the zero bundle .X ×{0} is the additive 
unit. 
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modified version3 was solved by R. MacPherson [127]. For the category of complex 
algebraic varieties, MacPherson’s Chern class is a unique natural transformation 
.c∗ : F(−) → H∗(−) satisfying that (“smooth condition”) . c∗(1X) = c(T X) ∩ [X]
for non-singular X. Here .F(−) is a covariant functor such that .F(X) is the abelian 
group of constructible functions on X and .H∗(X) is the Borel–Moore homology 
group. .1X is the characteristic function on X and .c(T X) is the Chern cohomology 
class of the tangent bundle T X. In fact, J.-P. Brasselet and M.-H. Schwartz [50] 
proved that the value .c∗(1X) is equal to the Schwartz class .Sch∗(X) under 
the Alexander duality isomorphism .A : H 2p(M,M \ X) ∼= Hm−2p(X), where 
.m = dimR M the real dimension of M; .A(Schp(X)) = cm−2p(X). Due to this fact, 
the homology class .c∗(X) := c∗(1X) is called the Chern–Schwartz–MacPherson 
class4 of X. 

After MacPherson’s Chern class, Todd class and L-class of singular varieties 
have been constructed as natural transformations, respectively, Baum–Fulton– 
MacPherson’s Todd class (or Baum–Fulton–MacPherson’s Riemann–Roch, abbr., 
BFM-RR)[33] .td∗ : K0(X) → H∗(X) ⊗ Q and Cappell–Shaneson’s L-class 
[58] .L∗ : Ω(X) → H∗(X) ⊗ Q. Here .K0(X) is the Grothendieck group of 
coherent sheaves on X and .Ω(X) is the cobordism group of self-dual constructible 
complex of sheaves on X [221]. These classes should be more precisely, e.g., called 
MacPherson’s Chern class transformations or MacPherson’s Chern class natural 
transformations, but for the sake of simplicity just called MacPherson’s Chern class. 
However, in order to emphasize “natural transformation”, we sometimes use these 
expressions. 

Based on such a formulation of characteristic homology classes, MacPherson 
wrote a survey paper [128], at the very end of which he wrote “It remains to be seen 
if there exists a unified theory of characteristic classes of singular varieties.” At 
that time the case of L-class was not being formulated yet. Only after Intersection 
Homology [92](also see [93] (cf. [35]) and [47, 82, 112, 113, 129, 132]) was 
introduced by M. Goresky and MacPherson, an L-class of a singular variety was 
introduced by themselves [92]. Furthermore, Cappell and Shaneson introduced 
another L-class [58], which was not explicitly described as a natural transformation, 
but was captured as a natural transformation in [207]. For the construction of these 
L-classes one has to assume that X is compact. 

The above three characteristic homology classes .c∗, td∗, L∗ are formulated as 
Grothendieck–Riemann–Roch type theorems,5 i.e., a natural transformation from 
respectively different covariant functors .F(X),K0(X),Ω(X) to the homology 
group. A fundamental problem is whether one can construct a theory which 
“unifies” these three .c∗, td∗, L∗ (cf. [209]), which is more concrete than the above

3 In [94, II, 15.3.5, Note . 871] (cf. [94, IV, 18.3.2, Note 164, II Cohomologie étale, 1]) Grothendieck 
himself explains the difference between his formulation and that of MacPherson. 
4 Thus .c∗(X) is sometimes denoted by .cSM∗ (X). 
5 The word “Riemann–Roch” or “Grothendieck–Riemann–Roch” is not used at all in [127], as 
remarked by Grothendieck. 
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MacPherson’s question. What was in the author’s mind (a prototype was in [214]) 
is that there would be a certain covariant functor .M(X) as a sort of ‘motif’ of these 
three covariant functors .F(X),K0(X),Ω(X) and a certain natural transformation 
.Nc� : M(X) → H∗(X) ⊗ Λc� (which should be related to the characteristic 
cohomology class . c�), from which one would obtain the above three characteristic 
homology classes: (1) .c∗ : F(X) → H∗(X) when .c� = Chern class, (2) . td∗ :
K0(X) → H∗(X) ⊗Q when .c� = Todd class, (3) .L∗ : Ω(X) → H∗(X) ⊗Q when 
.c� = L-class. Roughly speaking, a certain covariant functor .M(X) was considered 
as in the following diagram (not commutative): 

. 

This problem was solved in [52] by considering .M(X) := K0(V/X) the relative 
Grothendieck group or “motivic group” of complex algebraic varieties and defining 
the motivic Hirzebruch class .Ty∗ : K(V/−) → H∗(−) ⊗ Z[y]. Here . Vdenotes the 
category of complex algebraic varieties. 

From a historical viewpoint, clearly the Riemann–Roch Theorem should be 
mentioned. It would be safe to say that the “origin” of the motivic Hirzebruch class 
is the Riemann–Roch Theorem. Here is a very quick and rough explanation (for 
more details see Sect. 6.3.1). For a divisor D on a smooth complex projective curve 
of genus g, Riemann’s inequality is .dimC L(D) � deg D + 1 −g and the difference 
between two sides of the inequality was identified by G. Roch: 

. dimC L(D) − dimC L(K − D) = deg D + 1 − g,

which is the well-known Riemann–Roch Theorem (abbr., RR). This RR was 
extended or generalized by F. Hirzebruch to what is called Hirzebruch–Riemann– 
Roch (abbr., HRR):for a complex vector bundle E over a complex projective 
manifold X the following holds 

. χ(X,E) =
∫

X

(ch(E)) ∪ td(T X)) ∩ [X].

In the case when X is a smooth complex projective curve, RR is “almost” equal to 
HRR. Namely, RR is equal to HRR plus Serre’s Duality or RR plus Serre’s Duality 
is equal to HRR. A. Grothendieck succeeded in extending HRR to the following
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commutative diagram for an algebraic map .f : X → Y of projective complex 
algebraic manifolds X and Y : 

. 

This is called Grothendieck–Riemann–Roch (abbr., GRR). Indeed, HRR is nothing 
but GRR for .f : X → pt the map to a point, which is the meaning of “extending 
HRR to GRR”. 

HRR was generalized by Hirzebruch to the following generalized Hirzebruch– 
Riemann–Roch (abbr., gHRR): 

. χy(X,E) =
∫

X

(
ch(1+y)(E)) ∪ Ty(T X)

) ∩ [X].

The three distinguished cases of gHRR for a trivial line bundle E are the follow-
ing: 

(i) .(y = −1) .χ(X) = ∫
X

c(T X) ∩ [X] (Gauss–Bonnet theorem) 
(ii) .(y = 0) .χa(X) = ∫

X
td(T X)∩[X] (HRR for the trivial line bundle .E = 1X) 

where .χa(X) is the arithmetic genus. 
(iii) .(y = 1) .σ(X) = ∫

X
L(T X) ∩ [X] (Hirzebruch’s signature theorem). 

These three theorems were individually extended to singular varieties, more 
strongly, as the following natural transformations for possibly singular varieties, 
respectively: 

(i) MacPherson’s Chern class: . c∗ : F(−) → H∗(−)

(ii) Baum–Fulton–MacPherson’s Todd class: . td∗ : K0(−) → H∗(−) ⊗ Q

(iii) Cappell–Shaneson’s L-class: . L∗ : Ω(−) → H∗(−) ⊗ Q

These three natural transformations are unified by the motivic Hirzebruch class . Ty∗ :
K0(V/X) → H∗(X) ⊗ Q[y]. 

We also add that the above three theorems; Gauss–Bonnet theorem, HRR for 
the trivial line bundle, and Hirzebruch’s signature theorem, were extended or 
generalized by M. Atiyah and I. M. Singer to Atiyah–Singer Index Theorem! 

In this survey we discuss characteristic classes, the above motivic Hirzebruch 
class and related topics, such as Verdier–Riemann–Roch (abbr., VRR) type for-
mulas, which are “contravariant-theoretical aspects” of these characteristic classes, 
Milnor classes, equivariant motivic Hirzebruch classes, and Fulton–MacPherson’s 
bivariant theory, which is a theory “unifying” homology (covariant) and cohomol-
ogy (contravariant) theories and was introduced with “unifying” three Riemann– 
Roch theorems (i.e., “SGA 6” (see (6.13) in Sect. 6.3.3), BFM-RR and VRR) as one 
motivation of their work.
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Characteristic classes for singular varieties are discussed also in other articles in 
Handbook of Geometry and Topology of Singularities, III; see P. Aluffi [4], J.-P. 
Brasselet [48], R. Callejas-Bedregal et al. [57] and T. Suwa [187]. 

6.2 Characteristic Classes of Complex Vector Bundles 

In this section we give a quick review of characteristic classes (e.g., see [142] and 
also see [48, 78]) of complex vector bundles in a way slightly different from the 
usual or standard one. 

6.2.1 Characteristic Cohomology Classes 

Let . R be a ring and let .Hp(X;R) be the p-th cohomology group of a paracompact 
space X with the coefficient ring . R. Let .Vectn(X) be the set of isomorphism classes 
of complex vector bundles of rank n over X. Then .Vectn : TOP → SET is a 
contravariant functor. Similarly, the correspondence . Hp(−;R) : TOP → SET

taking the p-th cohomology group of a space is also a contravariant functor. 
A characteristic class of degree p (cf. [78, §3.1]) is defined to be a natural 
transformation 

. c�p : Vectn(−) → Hp(−;R).

Namely, for the isomorphism class of a complex vector bundle .E → X, . c�p(E) ∈
Hp(X;R), and for a continuous map .f : X → Y and a complex vector bundle E 
over Y we have .f ∗c�p(E) = c�p(f ∗E), i.e., we have the following commutative 
diagram 

. 

Let .Charp be the set of all characteristic classes of degree p. Then .Charp is an 
abelian group with the operation . +: for .c�p, c�′

p ∈ Charp, we define 

.c�p + c�′
p : Vectn(−) → Hp(−;R)
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by .c�p + c�′
p : Vectn(X) → Hp(X;R) for X with . (c�p + c�′

p)(E) = c�p(E) +
c�′

p(E), which certainly satisfies the above naturality. For .c�p ∈ Charp and . c�q ∈
Charq we define the (cup) product 

. c�p · c�q : Vectn(−) → Hp+q(−;R)

by .c�p · c�′
p : Vectn(X) → Hp+q(X;R) for X with . (c�p · c�′

p)(E) = c�p(E) ∪
c�′

p(E), which certainly satisfies the above naturality. 
Hence .Char := ⊕

p Charp becomes a ring, which shall be called a ring  
of characteristic classes of complex vector bundles of rank n (defined on the 
contravariant functor). Thus a total characteristic class .c� = ∑p c�p of complex 
vector bundles of rank n is a natural transformation . c� = ∑p c�p : Vectn(−) →
H ∗(−;R).

Let .Gn(C
n+k) be the complex Grassmannian manifold [142] consisting of all 

n-dimensional sub vector spaces of the vector space .Cn+k . It is a compact complex 
manifold. The canonical inclusion .C

n+i ⊂ C
n+i+i defined by . (z1, z2, · · · , zn+i ) →

(z1, z2, · · · , zn+i , 0) gives a sequence of inclusions 

. Gn(C
n) ⊂ Gn(C

n+1) ⊂ · · · ⊂ Gn(C
n+k) ⊂ · · ·

whose inductive limit .
⋃

C
n+i is denoted by .Gn(C

∞), called the infinite complex 
Grassmannian manifold [142]. .Gn(C

∞) is a paracompact space and there is the 
tautological rank n complex vector bundle over it and denoted by . π : γ n →
Gn(C

∞). .Gn(C
∞) is called the classifying space of rank n complex vector bundles 

and . γ n is called the universal rank n complex vector bundle because of the following 
theorem (see [142, §5 and Theorem 14.6]), which is a fundamental theorem for 
complex vector bundles and characteristic classes of complex vector bundles: 

Theorem 6.2.1 For a rank n complex vector bundle .E → X over a paracompact 
space X, 

(i) there exists a continuous map .fE : X → Gn(C
∞) such that .E ∼= f ∗

Eγ n, and 
(ii) the continuous map . fE is unique up to homotopy, i.e., if . gE : X → Gn(C

∞)

satisfies .E ∼= g∗
Eγ n, then .fE ∼ gE . 

(iii) If .E ∼= E′ and .E ∼= f ∗
Eγ n and .E′ ∼= g∗

Eγ n, then .fE ∼ gE . 

In other words we have the following set isomorphism: 

. Vectn(X) ∼= [X,Gn(C
∞)], [E] ←→ [fE].

A characteristic class .c�p of degree p is completely determined by the cohomology 
class .c�p(γ n) ∈ Hp(Gn(C

∞);R) of the universal bundle as follows:
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Let .fE : X → Gn(C
∞) be a classifying map for the given vector bundle E and 

consider the following commutative diagram: 

. (6.1) 

Then we have

. c�p(E) = c�p(f ∗
Eγ n)) = f ∗

E(c�p(γ n)).

Conversely, if we choose a cohomology class .αp ∈ Hp(Gn(C
∞);R) and we 

define 

. c�αp : Vectn(X) → Hp(X;R), c�αp (E) := f ∗
Eαp.

(We could use the same symbol . αp instead of .c�αp by setting .αp(E) := f ∗
Eαp, but  

we do not do so in order to avoid some possible confusion.) 
Then this is a characteristic class of degree p; .c�αp : Vect(−) → Hp(−,R). 

Indeed, for a continuous map .g : X → Y and for a vector bundle .F → Y we 
have a classifying map .fF : Y → Gn(C

∞) such that .F ∼= f ∗
F γ n. Hence . g∗F =

g∗(f ∗
F γ n) = (g∗f ∗

F )γ n = (fF ◦ g)∗γ n. Hence .fF ◦ g : X → Gn(C
∞) is a 

classifying map of the pullback vector bundle .g∗F . Thus we have 

. c�αp (g∗F) = (fF ◦ g)∗αp = (g∗f ∗
F )αp = g∗(f ∗

F αp) = g∗(c�αp (F )),

which means that the following diagram commutes: 

. 

We also note that .c�αp (γ n) = id∗
Gn(C∞) αp = αp, since a classifying map for . γ n

is the identity map .idGn(C∞) : Gn(C
∞) → Gn(C

∞). In other words, we have the 
following isomorphism (as a ring) 

. Char =
⊕

p

Charp ∼=
⊕

p

Hp
(
Gn(C

∞);R) = H ∗ (Gn(C
∞);R) ,

. c�p ↔ c�p(γ n) or c�αp ↔ αp.

Hence the upshot is
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Observation 6.2.2 To determine .Char = ⊕p Charp (all the characteristic classes 
of complex vector bundles of rank n) is reduced to determining the cohomology ring 
.H ∗ (Gn(C

∞);R). 

6.2.2 Yoneda’s Lemma 

In fact, if we use the isomorphism .Vectn(X) ∼= [X,Gn(C
∞)], then the above 

commutative diagram (6.1) become as follows: 

. (6.2) 

This is nothing but Yoneda’s Lemma (e.g., see [125]): 

Theorem 6.2.3 (Yoneda’s Lemma, in the Contravariant Case) Let . C be a 
locally small category (i.e., .homC(A,B) is a set) and let .F ∗ : C → SETbe a 
contravariant functor. Let .hA : C → SETbe the (hom-set) contravariant functor 
.hA := homC(−, A). Then the set of all the natural transformations from the hom-
set contravariant functor .hA = homC(−, A) to the contravariant functor .F ∗ is 
isomorphic to the set .F ∗(A): 

. Natural(hA, F ∗) ∼= F ∗(A).

Indeed, Yoneda’s Lemma is proved by the following commutative diagram: Let . τ :
[−, A] → F ∗(−) be a natural transformation: 

. (6.3) 

Note that .f = f ∗(idA) = f ◦ idA. Thus, .τ(f ) = τ(f ∗(idA)), which is . f ∗(τ (idA))

by the naturality of . τ . Thus the natural transformation .τ : [−, A] → F ∗(−) is 
completely determined by the assignment .τ(idA) ∈ F ∗(A). 

Indeed, in our case, the category . C is the homotopy category .hTOP of 
topological spaces and the contravariant functor .F ∗ : hTOP → SET is the
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cohomology theory .H ∗(−;R) forgetting the ring structure. Then, by observing the 
isomorphism .Vectn(−) ∼= [−,Gn(C

∞)] we have 

. Char ∼= Natural
(

Vectn(−),H ∗(−;R)
)

∼= Natural
(
[−,Gn(C

∞)],H ∗(−;R)
)

= Natural
(
homhTOP(−,Gn(C

∞)),H ∗(−;R)
)

∼= H ∗(Gn(C
∞);R) (by Yoneda’s Lemma)

The covariant case is the following, just changing contravariant to covariant: 

Theorem 6.2.4 (Yoneda’s Lemma, in the Covariant Case) Let . C be a locally 
small category (i.e., .homC(A,B) is a set) and let .F∗ : C → SET be a 
covariant functor. where .SETis the category of sets. Let .hA : C → SETbe the 
(hom-set) covariant functor .hA := homC(A,−). Then the set of all the natural 
transformations from the hom-set covariant functor .hA = homC(A,−) to the 
covariant functor . F∗ is isomorphic to the set .F∗(A): 

. Natural(hA, F∗) ∼= F∗(A).

Remark 6.2.5 It follows from the above covariant Yoneda’s lemma that we have 
.Natural

(
[Gn(C

∞),−],H∗(−;R)
) ∼= H∗(Gn(C

∞);R). What is a geometric 

meaning of this? 

If .R = Z, we have the following theorem [142, Theorem 14.5]: 

Theorem 6.2.6 .H ∗(Gn(C
∞);Z) = Z[c1, c2, · · · , cn] where . ci ∈ H 2i

(Gn(C
∞);Z) is called the ith Chern class of the universal bundle . γ n. In particular, 

we have that .H ∗(Gn(C
∞);Z) is a commutative ring graded in even degrees. 

Corollary 6.2.7 A (.Z-coefficient) characteristic class . c� of complex vector bundle 
E of rank n is a polynomial . φ of Chern classes .ci(E) := f ∗

Eci where . fE : X →
Gn(C

∞) is a classifying map for E: .c�(E) = φ(c1(E), c2(E), · · · , cn(E)). If we 
denote .Char(E) be the subgroup (in fact the subring) of .H ∗(X;Z) consisting of all 
the characteristic classes of E, then we have 

. Char(E) = Z[c1(E), c2(E), · · · , cn(E)].

Remark 6.2.8 For real vector bundles, .H ∗(Gn(R
∞);Z2) = Z2[w1, w2, · · · , wn], 

where .wi ∈ Hi(Gn(C
∞);Z2) is the i-th Stiefel–Whitney class of the universal 

bundle and .Char(E) = Z2[w1(E),w2(E), · · · , wn(E)]. 
Lemma 6.2.9 .H ∗(P∞;Z) = Z[α] with .α ∈ H 2(P∞;Z).
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Here we observe that the Chern classes satisfy the following properties and in fact 
they are characterized by these four properties. In other words, this is an axiomatic 
definition of Chern class of complex vector bundles [99, Axioms of Chern class] 
(cf. [142, Remarks on p.38]): 

Theorem 6.2.10 For a complex vector bundle .E → X with .rankC E = n, the total 
Chern class .c(E) ∈ H ∗(X;Z) satisfies the following properties. 

(i) (finiteness) .c(E) = 1 + c1(E) + c2(E) + · · · + cn(E) ∈ H ∗(X;Z) with 
.ci(E) ∈ H 2i (X;Z) and .ci(E) = 0 for .i > n = rankC E, 

(ii) (naturality) .f : X → Y and a vector bundle .E → Y , .c(f ∗E) = f ∗c(E), i.e., 
it commutes with the pullback operation, 

(iii) (Whitney sum formula) .c(E ⊕ F) = c(E) · c(F ) (where . · is the cup product), 
(iv) (normalization) For the tautological line bundle . γ 1

n of the complex projective 
space . Pn, .c1(γ

1
n ) = [Pn−1] ∈ H 2(Pn;Z). Here .[Pn−1] is the Poincaré dual of 

the homology class determined by the hyperplane .Pn−1. 

Such a characteristic class is uniquely determined, i.e., it has to be the Chern class. 

6.3 Hirzebruch–Riemann–Roch and 
Grothendieck–Riemann–Roch 

For this section, e.g., see [99], [85, Notes and References, pp.302–304], [87] and 
[81, §2]. 

6.3.1 Riemann–Roch Theorem 

In this section we quickly recall what is called the (classical6 or original) Riemann– 
Roch theorem (e.g., see [84, Chapter 8], [96, III Curves, §1] and [144, §7C]) (cf. 
[57, §7.4.5]). 

Let X be a smooth complex projective curve of genus g. Let  D be a divisor on 
X, i.e., a formal sum .D =∑P nP P where P is a point of X, .nP ∈ Z and . nP = 0
for all except for a finite number of P . We define 

. 
∑
P

nP P +
∑
P

mP P :=
∑
P

(nP + mP )P.

. 
∑
P

nP P �
∑
P

mP P ⇐⇒ nP � mP .

.L(D) := {f : meromorphic functions on X | div(f ) + D � 0}

6 See Mumford’s book [144, (7.26), p.145 and its Footnote]. 
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where .div(f ) := ∑
P ordP (f ) P is the divisor of a meromorphic function f . 

.div(f )+D � 0 means that .div(f ) � −D =∑P (−nP ) P , i.e., . ordP (f )+nP � 0
for P . 

Problem 6.3.1 Compute the complex dimension .dimC L(D) in terms of some 
invariants of D and X. 

In 1857 B. Riemann gave the following inequality, which is a formula for the lower 
bound of .dimC L(D): 

Theorem 6.3.2 (Riemann’s Inequality) 

. dimC L(D) � deg D + 1 − g

where .deg(D) =∑P nP . 

Then, in 1865 G. Roch filled in the gap of the Riemann’s inequality as the following 
equality, which is called the (classical or original) Riemann–Roch Theorem: 

Theorem 6.3.3 (Riemann–Roch Theorem) 

. dimC L(D) − dimC L(K − D) = deg D + 1 − g (6.4) 

where K is the canonical divisor of X.

In [84, Chapter 8 Riemann–Roch Theorem] Fulton uses the classical proof of Brill 
and Noether to prove the above (6.4). 

This Riemann–Roch theorem can be interpreted in modern terms as follows: 
First, a divisor D determines a holomorphic line bundle .O(D) and .L(D) can be 
described as the space of holomorphic sections of this line bundle .O(D). Thus we 
have

• .dimC L(D) = dimC H 0(X;O(D))

• . dimC L(K − D) = dimC H 0(X;O(K − D))

By Serre duality [177], .Hi(X,E) ∼= Hn−i (X,O(K) ⊗ E∗)∗ for a vector bundle E 
over a smooth projective variety X of complex dimension n, we have  

. dimC H 1(X;O(D)) = dimC H 0(X;O(K − D))

since .O(K) ⊗ O(D)∗ = O(K − D). Also we have  

. deg D =
∫

X

c1(O(D)) ∩ [X], 1 − g = 1

2
χ(X) = 1

2

∫
X

c1(T X) ∩ [X].

Therefore the classical Riemann–Roch theorem (6.4) is expressed as  

. dimC H 0(X;O(D))−dimC H 1(X;O(D)) =
∫

X

(
c1(O(D)) + 1

2
c1(T X)

)
∩[X].

(6.5)



320 S. Yokura

6.3.2 Hirzebruch–Riemann–Roch 

Let E be a holomorphic vector bundle on a compact complex manifold X. The  
Euler–Poincaré characteristic of E is defined as 

. χ(X,E) :=
dim X∑
i=0

(−1)i dimC Hi(X,E).

Hence, the left-hand side of the above formula (6.5) is nothing but the Euler– 
Poincaré characteristic of .L(D): 

. χ(X,O(D)) = dimC H 0(X,O(D)) − dimC H 1(X,O(D)).

J.-P. Serre made the following conjecture (in a letter to Kodaira and Spencer at IAS 
of Princeton (September 29, 1953) (see [100, §1 , p.4]): 

Conjecture 6.3.4 (Serre’s Conjecture) There exists a polynomial .P(X,E) of Chern 
classes of the tangent bundle T X  and E such that . χ(X,E) = ∫

X
P (X,E) ∩ [X].

Clearly the polynomial .c1(O(D)) + 1
2c1(T X) in the right-hand side of (6.5) is  a 

polynomial of Chern classes of .O(D) and TX. 
Using the theory of sheaves and Thom’s bordism7 theory, F. Hirzebruch solved 

the above conjecture for X a complex projective manifold (in less than 3 months, 
circa December 10, 1953, at IAS of Princeton (see [100, §2 , p.10]) as follows 
[98, 99]. 

Before stating Hirzebruch’s theorem, first we recall Chern roots. For a complex 
vector bundle E of rank r , we consider the following Chern polynomial .ct (E) of 
variable t with Chern classes .ci(E) ∈ H 2i (X,Z) as coefficients: 

. ct (E) := 1 + c1(E) t + · · · + cr(E) tr .

If the Chern polynomial .ct (E) is factorized as 

. ct (E) =
r∏

i=1

(1 + αi t)

then .α1, · · · , αr are called Chern roots of E (e.g., see [85, Remark 3.2.3] and also 
[99]). As one can see, these Chern roots of the Chern polynomial are formal roots of 
the polynomial. However, by “enlarging” the cohomology ring .H ∗(X;Z) one can 
really get such roots. That is done by what is called the splitting principle. There 
exists a continuous map .f : X′ → X such that (1) .f ∗E splits into line bundles, 
i.e., .f ∗E ∼= L1 ⊕ · · · ⊕ Lr and (2) the pullback .f ∗ : H ∗(X;Z) → H ∗(X′;Z) is

7 It is usually called “cobordism”, but it is bordism. For their relationship, see Atiyah [19]. 
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a monomorphism. Hence we have . f ∗(ct (E)) = ct (f
∗E) = ct (L1 ⊕ · · · ⊕ Lr) =∏r

i=1 ct (Li) =∏r
i=1 (1 + c1(Li) t). This is similar to that any degree r polynomial 

.f (t) = 1 + a1 t + · · · + ar tr with real coefficients . ai can be expressed as . f (t) =∏r
i=1 (1 + ci t) with complex coefficients . ci , by enlarging the coefficient ring from 

the real numbers . R to the complex numbers . C. 
The important point of considering Chern roots is that 

(i) The ith elementary symmetric polynomial .σi(α1, α2, · · · , αr) of these Chern 
roots is the ith Chern class .ci(E), i.e.,

• .c1(E) = σ1(α1, α2, · · · , αr) =∑1�j�r αj = α1 + α2 + · · · + αr ,
• . c2(E) = σ2(α1, α2, · · · , αr) = ∑1�j<k�r αjαk = α1α2 + α1α2 + · · · +

αr−1αr ,
• .· · · · · ·
• . cr (E) = σr(α1, α2, · · · , αr) = α1α2 · · · αr .

(ii) Any symmetric polynomial .f (α1, α2, · · · , αr) of these Chern roots can be 
expressed uniquely as a polynomial of these elementary symmetric polyno-
mials, i.e., as a polynomial of Chern classes .c1(E), c2(E), · · · , cr (E). (This  
is due to the Fundamental theorem of symmetric polynomials (e.g. see [68, 
Chapter 7], which also holds for symmetric power series.) 

Here are two important examples of symmetric polynomials of Chern roots: 

. ch(E) :=
r∑

i=1

eαi , td(E) :=
r∏

i=1

αi

1 − e−αi
,

which are respectively called the Chern character of E and the Todd class of E. 
Clearly they are both symmetric functions of the Chern roots, hence they are both 
polynomials of Chern classes, as follows (see [85, Examples 3.2.3 and 3.2.4]):8 

. ch(E) = rank E + c1 + 1

2

(
c2

1 − 2c2

)
+ 1

6

(
c3

1 − 3c1c2 + 3c3

)
+

1

24

(
c4

1 − 4c2
1c2 + 4c1c3 + 2c2

2 − 4c4

)
+ · · · ,

td(E) =1 + 1

2
c1 + 1

2

(
c2

1 + c2

)
+ 1

24
(c1c2)+

1

720

(
−c4

1 + 4c2
1c2 + 3c2

2 + c1c3 − c4

)
+ · · · ,

where .ci := ci(E). 
Now we are ready to state the following well-known theorem due to Hirzebruch:

8 For more higher terms, e.g., see [160, §3.1 Chern character & Chern classes, §4.4 Todd genus]. 
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Theorem 6.3.5 (Hirzebruch–Riemann–Roch (HRR)) 

.χ(X,E) =
∫

X

(ch(E) ∪ td(T X)) ∩ [X]. (6.6) 

Here .ch(E) = ∑rank E
i=1 eαi is the Chern character of the vector bundle E with . αi

the Chern roots of E and .td(T X) =∏dim X
j=1

βj

1−e
−βj

is the Todd class of the tangent 

bundle T X  with . βj the Chern roots of T X. 

6.3.3 Grothendieck–Riemann–Roch 

Grothendieck extended the above HRR to a natural transformation (published in 
[37, pp.20–71] and also published by Borel–Serre [41]):9 

. ,10 

. ch(−) ∪ td(−) : K0(−) → H ∗(−) ⊗ Q.

Namely, for an algebraic map .f : X → Y of projective complex algebraic 
manifolds X and Y , the following diagram commutes (Grothendieck–Riemann– 
Roch (GRR)): 

. (6.7) 

Here these two . f! are Gysin (wrong-way) homomorphisms, as explained below and 
.K0(Z) is the Grothendieck group of algebraic vector bundles (locally free sheaves), 
i.e., the quotient of the free abelian group generated by the isomorphism classes of 
locally free sheaves by the subgroup generated by the elements of the form . E−E′ −
E′′ such that .0 → E′ → E→ E′′ → 0 is exact (e.g., see [85]). 

Remark 6.3.6 The Grothendieck group of topological vector bundles and algebraic 
vector bundles are sometimes denoted by .K0

top(X) and .K0
alg(X) to avoid possible 

confusion. .K0
top(X) can be defined using the exact sequence as above, but in the 

case of topological vector bundles .0 → E′ → E → E′′ → 0 is exact if and only if 
.E ∼= E′ ⊕ E′′ (e.g., see [99]).

9 “Grothendieck came along and said, ‘No, the Riemann–Roch theorem is not a theorem about 
varieties, it’s a theorem about morphisms between varieties’,” said Nicholas Katz [102] 
10 Grothendieck gave 4 lectures (12 hours for 4 days) of his proof at the 1st Arbeitstagung (founded 
by Hirzebruch) at Bonn in 1957 (see [131, § 5.4, p.157]). 
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Note that .K0(−) and .H ∗(−) are contravariant functors, so . f! are Gysin (wrong-
way) homomorphisms defined by the following commutative diagrams: 

. 

Here .SX : K0(Z) → K0(Z) is a canonical homomorphism obtained by considering 
the sheaf of holomorphic local sections of a vector bundle and it is an isomorphism 
for smooth X (e.g., see [99]). .f∗ : K0(X) → K0(Y ) is defined by . f∗F :=∑dim X

i=0 (−1)iRif∗F. Thus we have .f! = S−1
Y ◦ f∗ ◦ SX and .f! = P−1

Y ◦ f∗ ◦ PX, 
where .PZ = (−) ∩ [Z] : H ∗(Z) → H∗(Z) denotes the Poincaré duality 
isomorphism for a smooth manifold Z. 

Why is GRR an extension of HRR? Because we do have that 

.[GRR (6.7) for  aX : X → pt] = HRR. 

Indeed, [GRR (6.7) for .aX : X → pt] means the following commutative diagram: 

. 

(6.8) 

Namely, for .E ∈ K0(X) we have 

.ch
(
(aX)!E

) ∪ td(T pt) = (aX)!
(
ch(E) ∪ td(T X)

)
. (6.9) 

Since .ch(V ) = dimC V for a complex vector space V (considered as a vector bundle 
over a point space pt) and we have

• . ch
(
(aX)!E

) ∪ td(T pt) = ch
(
(aX)!E

) = ch
(∑dim X

i=0 (−1)iH i(X,E)
)

=
χ(X,E),

• . (aX)!
(
ch(E) ∪ td(T X)

)
=
∫

X

(
ch(E) ∪ td(T X)

)
∩ [X],

(6.9) means .χ(X,E) = ∫
X

(
ch(E) ∪ td(T X)

)
∩ [X], i.e., HHR.
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Remark 6.3.7 In fact, we see that HRR can be captured as the above commutative 
diagram (6.8) by simply defining .(aX)! : K0(X) → K0(pt) as . (aX)!E =∑dim X

i=0 (−1)iH i(X,E), even if we do knot know GRR (6.7). 

So, the above GRR (6.7) extends the left-hand side commutative diagram of the 
above diagram (6.8) to a map .f : X → Y of non-singular varieties: The 
commutativity of the outer square in the following diagrams follow from that of 
the inner square. 

. 

(6.10) 

. (6.11) 

is also expressed as

. (6.12) 

Here .Tf := T X − f ∗T Y ∈ K0(X), . td(Tf ) = td(T X)

f ∗td(T Y )
∈ H ∗(X) ⊗ Q.

Indeed, (6.11), i.e., .td(T Y ) ∪ ch(f!E) =
(
P−1

Y ◦ f∗ ◦ PX

)
(td(T X) ∪ ch(E)) can
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be written as .
(
td(T Y ) ∪ ch(f!E)

)∩ [Y ] = f∗
((

td(T X) ∪ ch(E)
)∩ [X]

)
. Namely, 

we have .td(T Y )∩ (ch(f!E)∩[Y ]) = f∗
(
td(T X)∩ (ch(E)∩[X])). Then we have 

. ch(f!E) ∩ [Y ] = 1

td(T Y )
∩ f∗
(
td(T X) ∩ (ch(E) ∩ [X]))

= f∗
(

f ∗
(

1

td(T Y )

)
∩ (td(T X) ∩ (ch(E) ∩ [X]))

)

= f∗
(

1

f ∗td(T Y )
∩ (td(T X) ∩ (ch(E) ∩ [X]))

)

= f∗
((

td(T X)

f ∗td(T Y )
∪ ch(E)

)
∩ [X]

)

= f∗
((

td(Tf ) ∪ ch(E)
) ∩ [X]) .

Thus .ch(f!E) = P−1
Y ◦f∗ ◦PX

(
td(Tf )∪ ch(E)

)
= f!
(
td(Tf )∪ ch(E)

)
, i.e., the 

commutative diagram (6.12). Furthermore, (6.12) was extended to the following 
[“SGA 6”, [37]]: For a proper and local complete intersection (abbr., .�.c.i.) 

morphism . f : X → Y

. (6.13) 

Here .Tf ∈ K0(X) is the virtual relative tangent bundle of f (e.g., see [85]). If 
.f : X → Y is a map of smooth manifolds, then .Tf = T X − f ∗T Y ∈ K0(X). 

The inner commutative square of (6.10) was extended to singular vari-
eties, namely Baum–Fulton–MacPherson’s Riemann–Roch (or Baum–Fulton– 
MacPherson’s Todd class) for singular varieties, which is recalled in the following 
section. 

6.4 Three Distinguished Characteristic Classes of Complex 
Algebraic Varieties 

As remarked in the introduction, a characteristic cohomology class .c�(M) of a 
smooth or complex manifold M is defined as the characteristic cohomology class 
.c�(T M) of the tangent bundle TM of the manifold. When it comes to complex 
algebraic varieties, in general a complex algebraic variety has singularities, due to 
which one cannot define a tangent bundle on the variety.
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6.4.1 MacPherson’s Chern Class c∗ 

In [184] D. Sullivan defined a Whitney homology (not cohomology) class . w∗(X) ∈
H∗(X,Z2) of a singular real algebraic variety X. Furthermore, Grothendieck and 
Deligne conjectured (cf. [94, II, 15.3.5, Note .871 and IV, 18.3.2, Note 164, II 
Cohomologie étale, 1]) and MacPherson [127] (cf. [109]) proved the existence of 
Chern homology classes. For a complex algebraic variety Z, .F(Z) denotes the 
abelian group consisting of constructible functions on Z, i.e., 

. F(Z) =
{∑

S⊂Z

aS1S

∣∣∣ aS ∈ Z, S are subvarieties of Z, aS = 0 for almost all S′s
}

.

Here . 1S is the characteristic function on S, i.e., .1S(x) = 1 for .x ∈ S and . 1S(x) = 0
for .x �∈ S. 

Proposition 6.4.1 ([127]) Let .f : X → Y be a morphism. For a characteristic 
function .1W corresponding to a subvariety W in X, we define . (f∗1W)(y) :=
χc(f

−1(y) ∩ W), where . χc is the topological Euler–Poincaré characteristic with 
compact support. Then the group homomorphism 

. f∗ : F(X) → F(Y )

is defined by .f∗(
∑

W aW 1W) :=∑W aWf∗(1W). Then .F : V→ Ab is a covariant 
functor from the category . Vof complex algebraic varieties to the category .Ab of 
abelian groups. 

Remark 6.4.2 If .f : X → pt is a map to a point pt , then we have .f∗1X = χc(X), 
more precisely, .f∗1X = χc(X)1pt . If we identify .F(pt) = Z, we have . f∗1X =
χc(X). 

Theorem 6.4.3 ([127]) There exists a unique natural transformation . c∗ : F(−) →
H∗(−;Z) such that (“smooth condition”) .c∗(1X) = c(T X) ∩ [X] for smooth X. 

As mentioned in Introduction, M.-H. Schwartz [172] defined what is called 
Schwartz class .Sch(X) ∈ H ∗(M,M \ X) for a complex analytic variety X in a 
complex manifold M . For a complex algebraic variety X in a complex manifold M , 
J.-P. Brasselet and M.-H. Schwartz [50] proved that the Schwartz class and the value 
.c∗(X) := c∗(1X) of the characteristic function . 1X are identical under the Alexander 
duality map .A : H ∗(M,M \X) ∼= H∗(X), i.e., .A(Sch(X)) = c∗(X). Thus the class 
.c∗(X) is called the Chern–Schwartz–MacPherson class.
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An idea of MacPherson’s proof is the following: 

(i) The uniqueness follows from (a) resolution of singularities11 and (b) the smooth 
condition. Indeed, by resolution of singularities, for a constructible function 
.α ∈ F(X) we have .α =∑W aW 1W =∑V aV (pV )∗1V with each V smooth, 
.pV : V → X proper and .aV ∈ Z. 

(ii) In order to show the existence, MacPherson introduced (a) Chern–Mather class 
.cMa∗ (W) ∈ H∗(X;Z) for a subvariety W, i.e., . cMa∗ (W) := ν∗

(
c(T̂ W) ∩ [Ŵ ])

where .ν : Ŵ → W is the Nash blow-up and .T̂ W is the tautological Nash 
tangent bundle on . Ŵ , and (b) the local Euler obstruction .EuW of a subvariety 
W (in fact, in [106] M. Kashiwara independently introduced it in the theory of 
D-modules), and used his graph construction method. 

For the definition of the Chern-Mather class and the local Euler obstruction, e.g., 
see [46, 127] (also see [4, 48, 57]). The local Euler obstruction is a constructible 
function and is generically the same as the characteristic function . 1W , i.e., . EuW �
1W , namely .EuW(x) = 1W(x) = 1 for .x �∈ Wsing = the singular locus of W. From 
this we get the following key fact: 

. F(X) =
{∑

W

nW EuW

∣∣∣ nW ∈ Z, nW = 0 for almost all W ’s

}
.

Then MacPherson defined the homomorphism .c∗ : F(X) → H∗(X;Z) by 
.c∗(EuW) := cMa∗ (W) and using the graph construction he showed that . c∗ : F(−) →
H∗(−;Z) is a natural transformation. 

Remark 6.4.4 If we define .c∗ : F(X) → H∗(X;Z) by .c∗(1W) := cMa∗ (W) instead 
of .c∗(EuW) := cMa∗ (W), then this does not give us a natural transformation. For 
example, if X is an irreducible singular curve with only one singularity p which is 
a double point, then .ν∗c∗(1X̂) �= c∗ν∗(1X̂). Indeed, .ν∗(1X̂) = 1X + 1p, hence we 
have .c∗ν∗(1X̂) = c∗(1X) + c∗(1p) = cMa∗ (X) + [p]. On the other hand, since . ̂X is 
smooth and .T X̂ = T̂ X, we have . ν∗c∗(1X̂) = ν∗(cMa∗ (X̂)) = ν∗(c(T X̂) ∩ [X̂]) =
ν∗(c(T̂ X) ∩ [X̂]) = cMa∗ (X). In other words, for the generators of .F(X) switching 
from the characteristic function .1W to the local Euler obstruction .EuW is a key 
trick; in other words, the local Euler obstruction .EuW and the Chern-Mather class 
.cMa∗ (W) is a nice or good pair.

11 In the category of compact complex algebraic varieties, if we consider the rational homology 
group .H∗(X) ⊗ Q instead of the integral homology group .H∗(X), we can prove its uniqueness 
without using the resolution of singularities [110]. 
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Remark 6.4.5 In [155] R. Piene showed the following Todd formula between the 
Chern-Mather class .cMa∗ (X) and the polar class .P∗(X): 

. cMa
k (X) =

k∑
i=0

(−1)i
(

n + 1 − i

k − i

)
Uk−i ∩ Pi(X),

. Pk(X) =
k∑

i=0

(−1)i
(

n + 1 − i

k − i

)
Uk−i ∩ cMa

i (X)

where .U = c1(OX(1)). In a similar manner, in [199] we defined Segre–Mather 
class .sMa∗ (W) := ν∗

(
s(T̂ W) ∩ [Ŵ ]) where .s(T̂ W) is the Segre class of .T̂ W and 

showed a similar Todd formula between the Segre–Mather class and another polar 
class .P ∗(X) [156]: 

. sMa
k (X) =

k∑
i=0

(−1)i
(

n + k

i

)
Ui ∩ P k−i (X),

. P k(X) =
k∑

i=0

(
n + k

i

)
Ui ∩ sMa

k−i (X).

A similar formula is given in [4, Corollary 6.5.7]. 

Remark 6.4.6 The Chern–Schwartz–MacPherson class is described as follows: 

.c∗(X) = cMa∗ (X) +
∑

S⊂Xsing

α(S)cMa∗ (S) (6.14) 

where S’s are all smooth strata of the singular locus .Xsing of a (Whitney) 
stratification of X and .α(S) is a certain integer defined on the strata S. Namely, 
it is the Chern–Mather class of X plus some classes coming from the singular locus. 
A “Segre class version” of the above formula (6.14) was considered in [199, 201]. 
In [103] K. W. Johnson defined a Segre class .s∗(X) := s(d(X),X × X), which is 
the relative Segre class of the diagonal .d(X) in .X ×X where .d : X → X ×X is the 
diagonal map (see [85, §4.2]). Then .s∗(X) = sMa∗ (X)+ some classes supported on 
the singular locus .Xsing .12 

12 Naive questions are (1) what is a “reasonable” Segre class .s∗(X) corresponding to the 
Chern–Schwartz–MacPherson class? and (2) can one get a formula like . s∗(X) = sMa∗ (X) +∑

S⊂Xsing
β(S)sMa∗ (S) with certain integers .β(S)? For Segre classes, Aluffi’s article [4] is  

recommended to read.
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6.4.2 Baum–Fulton–MacPherson’s Todd Class td∗ 

By a different approach P. Baum et al. [33] proved the following theorem, which 
has a description similar to that of MacPherson–Chern class transformation . c∗ :
F(−) → H∗(−): 

Theorem 6.4.7 There exists a unique natural transformation . td∗ : K0(−) →
H∗(−;Q) such that (“smooth condition”) .td∗(OX) = td(T X) ∩ [X] for smooth 
X, where .OX is the structure sheaf of X and .td(T X) is the Todd class. 

This theorem is called Baum–Fulton–MacPherson’s Riemann–Roch, abbr. BFM– 
RR, or Baum–Fulton–MacPherson’s Todd class. Thus, for a proper morphism . f :
X → Y the following diagram commutes: 

. (6.15) 

Remark 6.4.8 In [33] this theorem is proved for quasi-projective varieties. Then the 
general case of complex algebraic varieties can be reduced to the case for quasi-
projective varieties via the technique of ‘Chow envelopes’ as in [85, §18.3]. 

Remark 6.4.9 When we discuss motivation of considering the motivic Hirzebruch 
class, the above statement would be sufficient. However, as to the uniqueness of 
the natural transformation . td∗, we remark the following. In [33, §0 Introduction, 
Riemann–Roch theorem, p. 102], their theorem (for the category of projective 
varieties) is stated as follows: 

There exists a unique natural transformation .τ : K0(−) → H∗(−;Q) such 
that 

(i) For any X, .τ(β ⊗ α) = ch(β) ∩ τ(α) for .α ∈ K0(X) and .β ∈ K0(X), i.e., the 
following diagram is commutative: 

. 

(ii) If X is non-singular and .OX is the structure sheaf on X, then 

.τ(OX) = td(T X) ∩ [X].
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Thus, in the above Theorem 6.4.7 the first condition 1. is missing, but as 
stated in Theorem 6.4.12 below (also see [33, §0 Introduction, Uniqueness 
theorem. p. 103]), the uniqueness follows from only the condition that . τ(OPn

) =
[Pn] + classes of lower dimensions, hence the uniqueness clearly follows from 
a bit stronger condition that .τ(OX) = td(T X) ∩ [X] for smooth X, since 
.τ(OPn

) = td(T P
n) ∩ [Pn] = [Pn] + classes of lower dimensions. Hence we 

can get the uniqueness statement in the above Theorem 6.4.2 for the category of 
projective varieties. For the larger category of quasi-projective varieties, in [33, 
Chapter III, Theorem, pp.119–120] the authors proved the uniqueness of the above 
natural transformation .td∗ satisfying the following three conditions: 

(i) the same as 1. above, 
(ii) the same as 2. above, 

(iii) If U is an open subvariety of X, then the following diagram commutes: 

. 

where the vertical maps . i∗ are restrictions (.i : U → X is the inclusion). 

For the general category of complex algebraic varieties, see [85, §18.3]. 

Remark 6.4.10 Here we emphasize that in [33] the authors make no use of 
resolution of singularities, as written at the end of [33, (0.2), p.104]. If we use 
resolution of singularities, then, in the Zariski topology, for a coherent sheaf F on X 
we have13 

.F =∑V aV (pV )∗OV with V smooth, .pV : V → X proper and . aV ∈ Z

(in the case when .F = OX such a description is also given in [33, (0.2), p.104]). In 
this context the uniqueness of .td∗ follows from the single “smooth condition”. 

A key ingredient of Theorem 6.4.7 is what is called a localized Chern character 
.chM

X (F ) of a coherent sheaf F over X embedded into a smooth manifold M such 
that

• .chM
X (F ) ∈ H∗(X;Q),

• .chX
X(F ) = ch(F ) ∩ [X] if X is smooth.

13 This is similar to the case when we deal with constructible functions, i.e., as pointed out 
in “An idea of MacPherson’s proof”, for a constructible function .α ∈ F(X) we have that 
.α =∑V aV (pV )∗1V . 
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Given a coherent sheaf F over a complex algebraic variety X embedded14 into a 
smooth manifold M , there exists a finite resolution of the pushforward .(iM)∗F , i.e., 
there exists a complex . E• of vector bundles (locally free sheaves) over M such that 

.0 → Er
dr−→ Er−1 → · · · → E1

d1−→ E0 → (iM)∗F → 0 (6.16) 

is exact. Since .((iM)∗F)x = 0 for .x ∈ M \ X, the following complex which is the 
above sequence (6.16) with .(iM)∗F being deleted 

.0 → Er
dr−→ Er−1 → · · · → E1

d1−→ E0 → 0 (6.17) 

is exact over .M \ X, i.e., exact off X. Then .chM
X (F ) := chM

X (E•) a localized Chern 
character of the above complex . E• of vector bundles exact off X (6.17), which is 
defined in two ways; one ([33, Chap.1 Riemann–Roch by Difference-Bundles]) is 
by using the “difference-bundle” of Atiyah–Hirzebruch [22]: 

. chM
X (E•) := L (ch (d(E•))) ∈ H∗(X;Q)

where .d(E•) ∈ K0(M,M \ X) is the “difference-bundle” of . E•, . ch : K0(M,M \
X) → H ∗(M,M \ X;Q) is the Chern character and . L : H ∗(M,M \ X;Q) →
H∗(X;Q) is the Lefschetz duality isomorphism. The other one [33, Chap. 1 
Riemann - Roch by Grassmannian-Graph] is by using MacPherson’s Grassmannian 
graph construction [126] (also see [85, §18.1 Graph Construction]). 

Here we recall that the usual definition of the Chern character .ch(F ) of a 
coherent sheaf F on a smooth complex manifold M is defined to be . ch(F ) :=∑r

i=0(−1)ich(Ei) ∈ H ∗(M;Q), where . 0 → Er
dr−→ Er−1 → · · · → E0 → F →

0 is a finite resolution of F . Hence one could see15 that .chM
X (F ) is a “singular” 

version of the Poincaré dual of the Chern character of F , .ch(F )∩[M] ∈ H∗(M;Q). 
The localized Chern character .chM

X (F ) does not depend on the choice of the 
above finite resolution (6.16) [33, Chap. 1, Proposition (4.1)], but of course does 
depend on the choice of M . However, if we consider capping with the Todd class 
.td ((iM)∗T M) of the pullback of the tangent bundle T M  of the chosen ambient

14 Here we note that a complex algebraic variety X is always embedded (as a closed subset) into 
.RN for some N , because the variety X is covered by finitely many affine varieties, which are 
embedded (as closed subsets) into . Rn for some n, thus it follows from [75, §8.8 Proposition] that 
the variety X is itself embedded (as a closed subset) into .RN for some N . 
15 If we observe this, then it seems to be reasonable to think that using the above resolution (6.16) 
we could “simply” consider a “homology Chern character” . ((iM)∗ch((iM)∗F))∩[X] ∈ H∗(X;Q)

instead of .chM
X (F ) and then, by mimicking the definition (6.18), we define . td((iM)∗T M) ∩

(((iM)∗ch((iM)∗F)) ∩ [X]) = (iM)∗ (td(T M) ∪ ch((iM)∗F)) ∩ [X]. Then it remains to see 
whether it is independent of the resolution (6.16) and the embedding .iM : X → M . 
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smooth manifold M , then it does not depend on the choice of the embedding . iM :
X → M either [33, Chap.1, §6, (8)]: 

.td((iM)∗T M) ∩ chM
X (F ) ∈ H∗(X;Q), (6.18) 

which is nothing but Baum–Fulton–MacPherson’s Todd class of a coherent sheaf F

over X:

.td∗(F ) := td((iM)∗T M) ∩ chM
X (F ) ∈ H∗(X;Q). (6.19) 

Remark 6.4.11 In [173] M.-H. Schwartz gives anther constructions of the localized 
Chern character and in [116] M. Kwieciński gives a comparison between Baum– 
Fulton–MacPherson’s construction and Schwartz’s construction. In [186] T. Suwa 
also gives anther constructions of the localized Chern character and gives a compar-
ison between Baum–Fulton–MacPherson’s construction and his own construction. 

There is the following more strengthened uniqueness theorem [33, Chap. III 
Uniqueness and Graded K]: 

Theorem 6.4.12 (Uniqueness Theorem) .td∗ : K0(−) → H∗(−;Q) is the unique 
natural transformation satisfying either of the following conditions: 

(i) .td∗(β⊗α) = ch(β)∩td∗(α) for .α ∈ K0(X) and .β ∈ K0(X), and .td∗(Opt ) = 1, 
(ii) . td∗(OPn

) = [Pn] + classes of lower dimensions.

As remarked in [33], in the above uniqueness theorem neither condition mentions 
the Todd class of a bundle; the above second condition does not even mention Chern 
classes. The uniqueness theorem as to the second condition follows from the fact 
that .td∗ : K0(−)⊗Q ∼= H∗(−;Q) is an isomorphism and the following theorem [83, 
§5 Natural Transformations,Proposition], the proof of which is due to A. Landman: 

Theorem 6.4.13 Let .α : H∗(−;Q) → H∗(−;Q) be a natural transforma-
tion. If for each projective space .Pn for .n = 0, 1, 2, · · · , . α([Pn]) = [Pn] +
terms of degree �= n, then α is the identity. 

As mentioned in the Introduction, at the very end of [128] MacPherson remarked 
or posed a problem: It remains to be seen whether there exists a unified theory of 
characteristic classes for singular varieties. Motivated by the above formulation of 
characteristic homology classes as natural transformations, it is natural (at least for 
the author when he read [128]) to pose the following very naive question 

Question 6.4.14 Let . c� be a multiplicative characteristic cohomology class, i.e. 
.c�(E ⊕ F) = c�(E)c�(F ). Can one define a reasonable covariant functor . Fc� :
V→ Ab for which there exists a unique natural transformation . c�∗ : Fc�(−) →
H∗(−;Λc�) such that 

(i) when .c� = c is the Chern class, .c�∗ : Fc�(−) → H∗(−;Λc�) becomes 
MacPherson–Chern class transformation .c∗ : F(−) → H∗(−;Z) and
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(ii) when .c� = td is the Todd class, .c�∗ : Fc�(−) → H∗(−;Λc�) becomes Baum– 
Fulton–MacPherson’s Todd class transformation .td∗ : K0(−) → H∗(−;Q). 

This question was treated, e.g., in [200, 202–205].16 

The uniqueness of . c∗ and .td∗ follows from the “smooth condition”. If we drop 
this “smooth condition”, we have the following results for the category of complex 
projective varieties. 

Theorem 6.4.15 ([110]) Any natural transformation .t : F(−) → H∗(−) ⊗ Q is 
a linear combination .t = ∑i�0 ri c∗i ⊗ Q (ri ∈ Q) of components . c∗i ⊗ Q :
F(−)

c∗−→ H∗(−) ⊗ Q
pr2i−−→ H2i (−) ⊗ Q of the rationalized MacPherson–Chern 

class .c∗ ⊗ Q. 

This follows from the following [110], which is a .c∗-version of Theorem 6.4.12: 

Theorem 6.4.16 .c∗⊗Q : F(−) → H∗(−;Q) is the unique natural transformation 
satisfying that . (c∗ ⊗ Q)(1Pn

) = [Pn] + classes of lower dimensions.

Similarly the following theorem follows from Theorem 6.4.12: 

Theorem 6.4.17 ([204]) Any natural transformation .t : K0(−) → H∗(−) ⊗ Q is 

a linear combination .t = ∑i�0 ri td∗i (ri ∈ Q) of components . td∗i : K0(−)
td∗−→

H∗(−) ⊗ Q
pr2i−−→ H2i (−) ⊗ Q.

It follows from Theorems 6.4.15 and 6.4.17 that one cannot solve the above 
question using the covariant functors .K0(−) and .F(−). 

6.4.3 Cappell–Shaneson’s L-Class L∗ 

After Intersection Homology [92] (cf. [47, 112, 113]) was introduced by Goresky 
and MacPherson, a homology L-class of a suitable compact singular variety was 
introduced by themselves [92] and it was also defined by P. Siegel [180] for Witt 
spaces, by M. Banagl [27] (also see [28, 29]) for non-Witt spaces, and by J. Cheeger 
[67] using .L2-forms. Later Cappell and Shaneson defined another L-class [58] using  
the bordism group .Ω(Z) of self-dual constructible complex of sheaves on Z (for 
.Ω(Z), e.g., see [30–32, 44, 45, 52, 58, 167, 207, 221]) and it was observed in [207] 
that Cappell–Shaneson’s L-class is also a natural transformation, similar to . c∗ and 
. td∗: 

Theorem 6.4.18 ([58]) On the category of compact complex algebraic varieties 
there exists a natural transformation .L∗ : Ω(−) → H∗(−) ⊗ Q satisfying 
that .L∗(QX[2 dim X]) = L∗(T X) ∩ [X] for a compact non-singular variety X.

16 At that time Cappell–Shaneson’s paper [58], constructing .L∗ : Ω(−) → H∗(−) ⊗ Q, was not 
published yet, thus the case when .c� = L could not be considered like the other two cases. 
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Here .QX[2 dim X] is the shifted constant sheaf and .L∗(T X) := ∏dim X
i=1

αi

tanh αi
is 

Hirzebruch L-class17 of the tangent bundle T X  with . αi the Chern roots of T X. 
So this L-class transformation is unique18 on the subgroup of .Ω(X) generated by 
.f∗(QM [2 dim M]) with .f : M → X a proper morphism with M smooth (and pure 
dimensional). 

6.4.3.1 Pontryagin–Thom’s Construction of L-Class 

The construction of Goresky–MacPherson’s homology L-class is an extension of 
Pontryagin–Thom’s construction [190] (also see [157]) of the Hirzebruch L-class to 
the singular case, using the intersection homology. So, first we recall Pontryagin– 
Thom’s construction (e.g., see [142, §20], [29, 82, 92, §5.7 and §6.3], [132, §3.3]). 
Key ingredients of Pontryagin–Thom’s construction are the following: 

(i) (cohomotopy set) The k-th cohomotopy set of a topological space X, . πk(X) :=
[X, Sk] is the set of homotopy classes from X to the sphere . Sk . For a manifold 
M of dimension n such that .n < 2k − 1, .πk(Mn) becomes an abelian group 
called Borsuk–Spanier cohomotopy group [42, 181]. 

(ii) (Hurewicz map for cohomotopy and cohomology) The usual or standard 
Hurewicz homomorphism is .h∗ : πk(X) = [Sk,X] → Hk(X) defined by 
.h∗([f ]) := f∗[Sk], where .[Sk] ∈ Hk(S

k) ∼= Z is the fundamental class of 
. Sk . Similarly we have the “dual” Hurewicz map . h∗ : πk(X) → Hk(X;Z)

defined by .h∗([f ]) := f ∗u where .u ∈ Hk(Sk) = Z is the generator such that 
.< u, [Sk] >= 1. 

(iii) (Serre’s theorem [176, Proposition 2’, p. 289]) For a manifold19 M of 
dimension n such that .n � 2k −2, i.e., .n < 2k −1, the above “dual” Hurewicz 
map .h∗ : πk(Mn) → Hk(M;Z) is a .C-isomorphism,20 i.e., both the kernel 
and the cokernel of . h∗ are finite abelian groups. In other words, 

.h∗ ⊗ Q : πk(Mn) ⊗ Q ∼= Hk(M;Q) (6.20) 

is an isomorphism.21 

17 See Appendix 2. 
18 In [207] it was stated that it was unique on the whole cobordism group .Ω(X), thus the 
uniqueness is true on such a subgroup. As pointed above, the whole group .F(X) is generated 
by .f∗1M such that .f : M → X is proper with smooth M and in the Zariski topology .K0(X) is 
generated by .f∗OM such that .f : M → X is proper with smooth M . Hence, in this sense the above 
proof of uniqueness of . L∗ is the same as that of . c∗ and . td∗. 
19 In [176] Serre considers polyhedra. 
20 Let . C denote the class of all finite abelian groups. A homomorphism .h : A → B of abelian 
groups is called a .C-isomorphism if both .Ker(h) and .Coker(h) belong to . C. 
21 Since .h : A → B being a .C-isomorphism implies that .Ker(h ⊗ Q) = Ker(h) ⊗ Q = 0 and 
.Im(h ⊗ Q) = B ⊗ Q, i.e., .h ⊗ Q : A ⊗ Q ∼= B ⊗ Q.
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(iv) (smooth approximation theorem (e.g., [43, Proposition 17.8]) Every continu-
ous map .f : Mn → Sk is homotopic to a smooth map. Hence any element 
.[f ] ∈ πk(Mn) can be represented by a smooth map .f : Mn → Sk . 

Now, let .Mn be a smooth closed oriented manifold (i.e., an oriented compact 
manifold without boundary). If .f : Mn → Sn−4i is a smooth map, then it 
follows from the theorem of Brown and Sard that the set of regular values of f 
is dense in .Sn−4i . For any regular value .p ∈ Sn−4i , the inverse image .f −1(p) is 
a smooth closed submanifold22 (of dimension 4i) of  M and its normal bundle is 
trivial, since it is induced from the normal bundle at the point p in .Sn−4i . Then 
consider the signature23 

.σ(f −1(p)) ∈ Z. This number does not depend on the 
choice of a regular value, since for another regular value q, .f −1(p) is cobordant24 

to .f −1(q) (see [141, §7, Theorem A, p.43]), thus .σ(f −1(p)) = σ(f −1(q)) since 
the signature is a (co)bordism invariant (Thom’s theorem [189]). Furthermore the 
number .σ(f −1(p)) depends only on the homotopy class .[f ] of f (e.g., see [29, 
§6.3] and [132, §3.3]). Indeed, if .f ∼ g : Mn → Sn−4i , then we can have a 
smooth homotopy .h : Mn ×[0, 1] → Sn−4i having p as a regular value and . h−1(p)

is a smooth compact manifold with boundary, which is .f −1(p) � g−1(p), i.e., a 
(co)bordism from .f −1(p) to .g−1(p), hence .σ(f −1(p)) = σ(f −1(p)). Therefore 
the number .σ(f −1(p)) depends only on the homotopy class .[f ] of f (also see [141, 
§7, Theorem B, p.43]), thus it can be denoted by .σ([f ]). Thus we get the following 
map 

.σ : πn−4i (Mn) → Z. (6.21) 

When .4i < n−1
2 , i.e., .n < 2(n − 4i) − 1, the above map (6.21) becomes a group 

homomorphism. Consider rationalizing (6.21): 

.σ ⊗ Q : πn−4i (Mn) ⊗ Q → Q. (6.22) 

Using the above isomorphism (6.20) for .k = n−4i, the above homomorphism (6.22) 
becomes 

.σ ⊗ Q : Hn−4i (M;Q) → Q, (6.23)

22 Let .f : Mn → Sp be a smooth map and let .y ∈ Sp be a regular value of f . Let . b = (v1, · · · , vp)

be a positively oriented basis of the tangent .T S
p
y . Then the pair .(f −1(y), f ∗b) is called the 

the Pontrjagin manifold associated with f (see [141, §7 Framed Cobordism:The Pontrjagin 
Construction]). Any compact framed submanifold .(N,w) of codimension k in M is realized as 
a Pontrjagin manifold for some smooth map .f : M → Sk [141, §7, Theorem C, p.44]. 
23 Here we recall that the signature .σ(M) of a manifold M of real dimension 4r is the number 
of positive eigenvalues minus the number of negative eigenvalues of the intersection pairing 
.H2r (M;Q) ⊗ H2r (M;Q) → Q, and if .dimR M is not divisible by 4, then .σ(M) := 0. 
24 More strongly, .(f −1(p), f ∗b) is framed cobordant to .(f −1(q), f ∗b′), although we do not need 
framing in the above argument. 
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which defines a homology class . σ ⊗Q ∈ Hn−4i (M;Q) ∼= Hom(Hn−4i (M;Q),Q)

by the universal coefficient theorem. Thus we get the homology L-class of M: 

.Ln−4i (M) := σ ⊗ Q ∈ Hn−4i (M;Q). (6.24) 

In fact, the above condition .4i < n−1
2 can be deleted by taking the product . Mn ×Sm

with a sphere .Sm of sufficiently high dimension m (e.g., see [29, §6.3] and [132, 
§3.3]), namely even if .4i � n−1

2 , by considering m such that .4i < n+m−1
2 and 

.m − 4i > 0 (thus .n + m − 4i > n), we can define the above homology class 

.Ln−4i (M). A key fact of this “product by . Sm” argument is the Künneth formula: 

. Hn+m−4i (M
n × Sm) ∼= Hn+m−4i (M

n) ⊗ H0(S
m) ⊕ Hn−4i (M

n) ⊗ Hm(Sm)

∼= Hn−4i (M
n).

It turns out that this is the Poincaré dual of the (cohomology) Hirzebruch L-class 
.L4i (M) ∈ H 4i (M;Q) (see [142], [29, §5.7], [132, §3.3]): 

.Ln−4i (M) = L4i (M) ∩ [M]. (6.25) 

In other words, the Poincaré dual of the above homology class .Ln−4i (M) con-
structed “geometrically”, i.e., by mapping to spheres, is equal to the (cohomology) 
Hirzebruch L-class .L4i (M). This is Pontryagin–Thom’s construction of the Hirze-
buch L-class of a smooth manifold. 

6.4.3.2 Goresky–MacPherson’s L-Class 

Here we follow [29, §6.1 and §6.3]. Let .Xn be a Whitney stratified, closed (= 
compact without boundary), oriented pseudomanifold [92] (cf. [47, 82, 112, 132]) 
which has only strata of even codimension: 

. Xn ⊃ Xn−2 ⊃ Xn−4 ⊃ Xn−6 ⊃ · · ·

Compact complex algebraic varieties are such examples. Since a complex algebraic 
variety can be embedded into a smooth manifold , we assume that the above 
pseudomanifold X is also embedded in a smooth manifold M . 

Definition 6.4.19 (Also See [192, Definition 4.2.11]) A continuous map . f : X →
Sk is called transverse, if  

(i) f is the restriction of a smooth map .f̃ : M → Sk , 
(ii) the north pole .N ∈ Sk is a regular value of . f̃ , and 

(iii) .f̃ −1(N) is transverse to each stratum of X (that is, the submanifold .f̃ −1(N) is 
transverse to X in the sense of Whitney stratified sets).
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If .f : X → Sn−4i is transverse, then .f −1(N) = f̃ −1(N) ∩ X is Whitney stratified 
with strata .f̃ −1(N) ∩ A for each stratum A of X. All these .f̃ −1(N) ∩ A are of 
even codimension in .f −1(N). Thus the signature .σ(f −1(N)) is well-defined using 
the middle perversity intersection homology. To be more precise, using the lower 
middle perversity . m,25 we have the intersection 

.IHm
2i (f

−1(N)) ⊗ IHm
2i (f

−1(N)) → R, (6.26) 

from which we get the signature .σ(f −1(N)). Then we have the following (see [29, 
Proof of Lemma 6.3.2]) 

Lemma 6.4.20 The map 

.σ : πn−4i (X) → Z, σ ([f ]) := σ(f −1(N)) (6.27) 

is a well-defined homomorphism for .2(n − 4i) − 1 > n, i.e., .4i > n−1
2 . 

Then, by Serre’s theorem (which holds for polyhedra, thus for pseudomanifolds 
as well), we have that the rationalized dual Hurewicz map . πn−4i (X) ⊗ Q ∼=
Hn−4i (X) ⊗ Q is an isomorphism (cf. (6.20)). Hence, in the same way as in 
Sect. 6.4.3.1, we can define 

.Ln−4i = σ ⊗ Q ∈ Hn−4i (X;Q). (6.28) 

The restriction .4i > n−1
2 can be deleted by taking the product with sufficiently 

higher dimensional sphere, as in Sect. 6.4.3.1. This homology L-class is Goresky– 
MacPherson’s L-class. 

6.4.3.3 Cappell–Shaneson’s L-Class 

Definition 6.4.21 Let S• be a bounded constructible complex of sheaves on X in 
the derived category Db 

c (X). If the following holds, then S• is called self-dual: 

.S• ∼= D(S•)[2 dimC X] (6.29) 

where D is the Borel–Moore–Verdier dualizing functor [40, 195] (cf. [47, 132]). 

For the following discussion, see [29, p.167–p.169] and also [58] . Let  X• u−→ 
S• v−→ Z• be morphisms in the derived category Db 

c (X) with v ◦ u = 0. Let C•
v be a

25 There is another middle perversity called upper middle perversity . n such that it is complementary 
to the lower middle perversity . m, i.e., .m + n = t , where . t is the top perversity, .t(k) = k − 2. 
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cone26 of v: 

. 

which is a distinguished triangle. Consider its “shifted” distinguished triangle 

from which we get 

. 

Using the homological functor Hom(X•, −), we get the exact sequence 

. Hom(X•, Z•[−1]) → Hom(X•, C•
v [−1]) p∗−→ Hom(X•, S•) v∗−→ Hom(X•, Z•).

Here we set p := −pv[−1]. Since v∗(u) = v ◦ u = 0, there exists u′ : X• → 
C•

v [−1] such that u = p∗(u′) = p ◦ u′, i.e., u′ is a lifting of u to C•
v [−1]: 

. 

Note that this lifting u′ is of course not uniquely determined, but it is the case if 
Hom(X•, Z•[−1]) = 0, which we will assume27 later. Consider a cone C• 

u′ of this 
lifting u′ : X• → C•

v [−1]: 

. (6.30)

26 A cone is not uniquely determined, but uniquely determined up to an isomorphism. 
This fact is called “non-functoriality of cone construction” (cf.[89]). For example, a func-
tor F is required to satisfy F(idX) = idF(X)  for an identity idX , but it is not the 
case for the cone construction, i.e., the following case occurs (e.g., see [29, p.35–36]): 

27 In [29, 58], this vanishing condition is implicitly assumed. 
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This “iterated” cone C• 
u′ is denoted by C• 

u′,v (instead of C•
u,v , used in [29, 58]) 

because it is a mapping cone of this lifting u′. For furthermore discussion on this 
“iterated” cone C• 

u′,v and the proof of the isomorphism (6.32) below, see Appendix 
1. 

Now we assume that we are given an isomorphism DX•[2 dimC X] ∼= Z• such 
that the following diagram commutes: 

. (6.31) 

Then under the commutativity of the above diagram (6.31) we can show that the 
above “iterated” cone C• 

u′,v is also self-dual, i.e., we have: 

.C•
u′,v

∼= DC•
u′,v[2 dimC X]. (6.32) 

Then we have the following definition due to Cappell–Shaneson [58, §2] (also see 
[29, Definition 8.1.11]): 

Definition 6.4.22 Let X• u−→ S• v−→ Z• be morphisms in the derived category with 
v ◦ u = 0 and assume Hom(X•, Z•[−1]) = 0. If there exists an isomorphism 
Z• ∼= D(X•)[2 dimC X] such that the following diagram commute 

. (6.33) 

then the “iterated” cone S•
1 := C•

u′,v is also self-dual. Then we say that S•
1 is obtained

from S• by an elementary cobordism or S•
1 is elementarily cobordant to S•.

Definition 6.4.23 S• is called cobordant to S̃• if there exists a finite sequence S• = 
S•

0 , S•
1 , · · ·  , S•

n = S̃• such that S•
i is elementarily cobrodant to S•

i−1 for 1 � i � n. 

The above cobordism is an equivalence relation. The set of the cobordism classes of 
self-dual complexes on X is denoted by Ω(X), which becomes an abelian group by 
the addition operation [S•

1 ] + [S•
2 ] := [S•

1 ⊕ S•
2 ]. For a morphism f : X → Y the 

pushforward f∗ : Ω(X) → Ω(Y) is defined by 

.f∗([S•]) := [Rf∗S•[− reldim(f )]]
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where Rf∗ is the right-derived functor and reldim(f ) := dim X − dim Y. With this 
pushforward Ω(−) becomes a covariant functor. 

Cappell and Shaneson have defined a homology class L∗(S•) ∈ H∗(X; Q) for a 
self-dual complex S• on a compact singular variety X and showed the following: 

(i) if S• is cobordant to S̃•, then L∗(S•) = L∗(S̃•). 
(ii) L∗(S•

1 ⊕ S•
2) = L∗(S•

1) + L∗(S•
2). 

Thus we have a correspondence L∗ : Ω(−) → H∗(−; Q) defined by L∗([S•]) := 
L∗(S•). It turns out that this is a natural transformation. This is a very rough sketch 
of Cappell–Shaneson’s homology L-class as a natural transformation as stated in 
Theorem 6.4.18 at the beginning of Sect. 6.4.3. 

We also note that Goresky–MacPherson’s L-class and Cappell–Shaneson’s L-
class transformation L∗, denoted LGM∗ (X) and LCS∗ respectively, are related. We 
have LCS∗ ([IC• 

m(X;Q)]) = LGM∗ (X) where IC• 
m(X; Q) is the (lower middle 

perversity) intersection cohomology complex of X. 
Now, how is L∗(S•) defined? It is constructed by using the argument of 

Pontryagin - Thom construction, as in the construction of Goresky–MacPherson’s 
L-class. For details, see [58] and also [29, §8.2.3 Construction of L-class]. 

The above distinguished three theories c∗, td∗, L∗ are natural transformations 
from different covariant functors F(X),  K0(X), Ω(X) to the homology group. As 
remarked in the Introduction, a fundamental problem is whether one can construct 
a theory “unifying” these three characteristic homology classes, which is discussed 
in the following section. 

6.5 Motivic Hirzebruch Class 

6.5.1 A Generalized Hirzebruch–Riemann-Roch 

As recalled above, GRR is an extension of HRR as a natural transformation. 
Similarly the above three distinguished characteristic classes 

(i) . c∗ : F(−) → H∗(−)

(ii) . td∗ : K0(−) → H∗(−) ⊗ Q

(iii) . L∗ : Ω(−) → H∗(−) ⊗ Q

are extensions as natural transformations of the following formulas (of HRR type) 
for X a compact smooth algebraic variety: 

(i) .χ(X) = ∫
X

c(T X) ∩ [X] (Gauss–Bonnet theorem) 
(ii) .χa(X) = ∫

X
td(T X) ∩ [X] (HRR for the trivial line bundle .E = 1X) 

(iii) .σ(X) = ∫
X

L(T X) ∩ [X] (Hirzebruch’s signature theorem).
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In [99] (cf. [101]) F. Hirzebruch introduced a characteristic class unifying the three 
distinguished characteristic cohomology classes .c(E), td(E), L(E) of a complex 
vector bundle E: 

Definition 6.5.1 (Hirzebruch Class) Let E be a complex vector bundle over X 
and y be a variable. Then the following characteristic class is called the Hirzebruch 
class of E: 

. Ty(E) :=
rank E∏
i=1

(
αi(1 + y)

1 − e−αi(1+y)
− αiy

)

where . αi are the Chern roots of the vector bundle, i.e., .c(E) =∏rank E
i=1 (1 + αi). 

Indeed, the Hirzebruch class . Ty specializes to

• .y = −1 : T−1(E) = c(E) =∏rank E
i=1 (1 + αi) the total Chern class,

• .y = 0 : T0(E) = td(E) =∏rank E
i=1

αi

1−e−αi
the total Todd class,

• .y = 1 : T1(E) = L(E) =∏rank E
i=1

αi

tanh αi
the total Hirzebruch L-class. 

We note that the above specializations are due to the following: 

(i) .y = −1: . lim
y→−1

αi(1 + y)

1 − e−αi(1+y)
= lim

y→−1

αi

αie−αi(1+y)
= 1 (by l’Hôpital’s rule). 

(ii) .y = 0: it is obvious. 
(iii) .y = 1: . 2αi

1−e−2αi
− αi = αi

1+e−2αi

1−e−2αi
= αi

eαi +e−αi

eαi −e−αi
= αi

cosh αi

sinh αi
= αi

tanh αi
.

In [142, Appendix B: Bernoulli Numbers, p.281], there is a formula . x
tanh x

=
2x

e2x−1
+ x. By a straightforward computation it can be shown that . 2x

e2x−1
+ x =

2x
1−e−2x − x.

The Hirzebruch class is used in his generalized Hirzebruch–Riemann–Roch 
theorem for Hirzebruch . χy characteristic . 

Definition 6.5.2 ([99]) For a compact complex algebraic manifold X the Hirze-
bruch .χy-genus .χy(X) of X is defined by 

. χy(X) :=
∑
p�0

χ(X,ΛpT ∗X)yp =
∑
p�0

(∑
q�0

(−1)q dimC Hq(X,ΛpT ∗X)
)
yp .

Or we write it as follows:.χy(X) =
∑

p,q�0

(−1)q dimC Hq(X;Ω
p
X)yp.
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More generally we have 

Definition 6.5.3 ([99]) For E a holomorphic vector bundle over X, the  Hirzebruch 
.χy-characteristic of E is defined by 

. χy(X,E) :=
∑
p�0

χ(X,E ⊗ ΛpT ∗X)yp

=
∑
p�0

(∑
q�0

(−1)q dimC Hq(X,E ⊗ ΛpT ∗X)
)
yp .

Theorem 6.5.4 (The Generalized Hirzebruch–Riemann–Roch Theorem [99]) 

. χy(X,E) =
∫

X

(
Ty(T X) ∪ ch(1+y)(E)

) ∩ [X] ∈ Q[y].

Here .ch(1+y)(E) := ∑rank E
j=1 eβj (1+y) is the Chern character “parameterized by 

.1 + y” with . βj being Chern roots of E. 

Hence .ch(1+y)(E) = rank E + ∑i≥1(1 + y)ichi(E) for . ch(E) = rank E +∑
i≥1 chi(E). In particular, for the trivial line bundle E we have 

.χy(X) =
∫

X

Ty(T X) ∩ [X]. (6.34) 

We note that the three distinguished cases of (6.34) are the above three formulas, 
which are repeated here: 

.(y = −1) : χ(X) =
∫

X

c(T X) ∩ [X] (6.35) 

.(y = 0) : χa(X) =
∫

X

td(T X) ∩ [X] (6.36) 

.(y = 1) : σ(X) =
∫

X

L(T X) ∩ [X] (6.37) 

Now that we have (6.34) for the Hirzebruch .χy-genus .χy(X), as GRR extends 
HRR, it is quite natural and reasonable to speculate that there would be a GRR-
type theorem for (6.34), for which one should come up with a reasonable covariant 
functor which is the source of a natural transformation, and it turns out that there is 
one, as explained in the following sections. 

Remark 6.5.5 Since we have the above three formulas (6.35), (6.36), and (6.37), 
we want to mention Atiyah–Singer Index Theorem [23–26] (for a very nice survey, 
e.g., see [81]). This index theorem is clearly influenced by HRR, thus it should 
be mentioned in Sect. 6.3.2, but we mention it in this section. The left-hand side
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of HRR (6.6) is an analytic invariant and the right-hand side of HRR (6.6) is a  
topological invariant. The Atiyah–Singer Index Theorem is also a similar formula, 
involving Chern character and Todd class. The following theorems are cited from 
[178, Theorem (Atiyah-Singer), p.17]) and [101, §5.2 The Atiyah–Singer index 
theorem]), respectively: 

Theorem 6.5.6 X be a compact smooth manifold of dimension n, let  D be an 
elliptic operator on X and let .σ(D) be the symbol of D. Then 

. index(D) = (−1)n (ch(σ (D))td(T X ⊗ C)) [T X] (6.38) 

Theorem 6.5.7 Let X be a compact, oriented, differentiable manifold of dimension 
2n and .D = (Di : Γ Ei → Γ Ei+1) an elliptic complex (.i = 0, · · · ,m − 1), 
associated to the tangent bundle. Then the index of this complex is determined by 
the following formula (cf. [23–25]): 

. ind(D) = (−1)n

((
1

e(T ∗X)

m∑
i=0

(1−)ich(Ei)

)
td(T X ⊗ C)

)
∩ [X]. (6.39) 

The special cases of (6.38) and (6.39) become the following: 

(i) If D is the de Rham operator, then (6.38) and (6.39) become (6.35). 
(ii) If D is the Dolbeault operator, then (6.38) and (6.39) become (6.36). 

(iii) If D is the Hodge operator, then (6.38) and (6.39) become (6.37). 

Here we do not go into details of the theorem and the above special cases, e.g., what 
an elliptic operator is, what the symbol is, what the de Rham operator is, etc. 

Remark 6.5.8 From the viewpoint of characteristic classes of singular varieties, we 
just wonder what an “index theorem” in the singular case could be, namely wonder 
if one could pose the following questions (very vague at the moment): 

(i) Could one get a reasonable formula extending the above formula (6.38) 
and/or (6.39) to a singular complex algebraic variety X? 

(ii) If so, could one get a relative version for a map .f : X → Y of possibly singular 
varieties, as a natural transformation? Note that, as Grothendieck generalized 
HRR to GRR, in [26] Atiyah and Singer extended their index theorem to a 
proper fiber bundle .f : X → Y equipped with a family of elliptic (pseudo) 
differential operators along the fibers. Here X and Y are smooth. 

6.5.2 Hodge–Deligne Polynomial 

Hirzebruch .χy-genus of a smooth compact variety is extended to singular varieties, 
using Deligne’s mixed Hodge structures [70, 72] (also see [153, 154] and [183, 
§9.2.1]), as follows (e.g., see [69]):
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Definition 6.5.9 (Hodge–Deligne Polynomial) For a mixed Hodge structure 
.(H∗(X),W •, F•) with weight filtration .W • and Hodge filtration . F•, the Hodge– 
Deligne polynomial28 

.χu,v(X) is defined by 

. χu,v(X) :=
∑

i,p,q�0

(−1)i(−1)p+q dimC(Gr
p
F GrW

p+qH i
c (X,C))upvq.

.χu,v satisfies the following four properties: 

(i) .X ∼= X′ (isomorphism) .�⇒ .χu,v(X) = χu,v(X
′), 

(ii) .χu,v(X) = χu,v(X \ Y ) + χu,v(Y ) for a closed subvariety .Y ⊂ X, 
(iii) .χu,v(X × Y ) = χu,v(X) · χu,v(Y ), 
(iv) . χu,v(pt) = 1.

6.5.3 Motivic Measure 

The above formula .χu,v(X) = χu,v(X \ Y ) + χu,v(Y ) is sometimes called scissor 
formula or scissor relation (e.g., see [95]). In other words, as mentioned at the very 
beginning of Introduction, the invariant .χu,v is “additive over cutting into pieces”. 
Such an invariant or measure is called motivic invariant or motivic measure. The  
latter term is more often used. For example, the cardinality .|−| counting the number 
of elements of a finite set, of course satisfies .|A| = |A \ B| + |B| for .B ⊂ A, thus 
the cardinality .| − | is a very simple motivic measure. As we will see below, many 
invariants studied in geometry and topology are motivic. In this section we go into 
a bit more details of motivic measure. We will see why we use the term “motivic 
Hirzebruch class” with the adjective “motivic”. 

Let, as before, . Vdenote the category of complex algebraic varieties. 

Definition 6.5.10 Let A be a commutative monoid. A map .a : V→ A is called an 
A-valued additive invariant (cf. [66, Chap.2, §1]) if it satisfies the following three 
conditions: 

(i) .a(X) = a(X′) if .X ∼= X′, 
(ii) .a(∅) = 0, 

(iii) . a(X) = a(Y ) + a(X \ Y ).

Remark 6.5.11 We note that if A is a group, i.e., an abelian group, then the second 
condition .a(∅) = 0 automatically follows from the “scissor formula” . a(X) =
a(Y ) + a(X \ Y ) by considering .X = Y = ∅.

28 It is sometimes called the E-polynomial and denoted by .Eu,v(X). 
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Definition 6.5.12 Let A be a commutative ring. A map .m : V→ A is called an 
A-valued motivic measure (cf. [66, Chap.2, §2]) or an A-valued motivic invariant 
(cf. [104]) if it satisfies the following four conditions: 

(i) .m(X) = m(X′) if .X ∼= X′, 
(ii) .m(X) = m(Y ) + m(X \ Y ), 

(iii) .m(X × Y ) = m(X)m(Y ), 
(iv) .m(pt) = 1 for a singleton pt . 

Therefore the Hodge–Deligne polynomial .χu,v is a .Z[u, v]-valued motivic measure. 

Remark 6.5.13 If A is a domain, then “multiplicativity” . m(X × Y ) = m(X)m(Y )

implies .m(pt) = 0 or .m(pt) = 1, which follows from . m(pt) = m(pt × pt) =
m(pt)m(pt). If .m(pt) = 0, then for any variety X we have . m(X) = m(pt ×
X) = m(pt)m(X) = 0, thus . m is a trivial invariant. So, the very natural condition 
.m(pt) = 1 means in a sense that . m is a non-trivial one. 

Remark 6.5.14 Therefore an A-valued motivic measure or invariant . m is a non-
trivial (condition 4.), multiplicative (condition 3.) and additive (condition 2.) 
invariant (condition 1.) with values in A. 

A motivic measure or invariant is a generalization of the usual counting or 
cardinality of a finite set. Let .�(F ) be the cardinality of a finite set F . 

(i) .�(A) = �(A′) if .A ∼= A′ (bijection, an isomorphism in the category of finite 
sets), 

(ii) .�(A) = �(B) + �(A \ B) for .B ⊂ A, 
(iii) .�(A × B) = �(A) · �(B), 
(iv) .�(pt) = 1. 

Now let us consider whether there exists a .Z-valued “topological” counting . �top
on the category .TOP of topological spaces, satisfying the following properties: 

(i) .�top(A) = �top(A
′) if .A ∼= A′ (isomorphism in .TOP), 

(ii) .�top(A) = �top(B) + �top(A \ B) for a closed subset .B ⊂ A, 
(iii) .�top(A × B) = �top(A) · �top(B), 
(iv) .�top(pt) = 1. 

Remark 6.5.15 If we consider the discrete topology on a set, then we have .�top = �. 

We can see that if there exists such a counting, then we must have that 

. �top(R) = −1,

which follows from a decomposition .R = (−∞, p) � {p} � (p,∞) for any point 
.p ∈ R and .(−∞, p) ∼= R ∼= (p,∞). Hence we have that .�top(R

n) = (−1)n. 
The existence of such a topological counting is guaranteed by the Borel–Moore
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homology group .HBM∗ (X;R) or the cohomology .H ∗
c (X;R) with compact support, 

namely 

. χc(X) :=
∑

i

(−1)i dim Hi
c (X;R) =

∑
i

(−1)i dim HBM
i (X;R)

satisfies the above four properties on a suitable category of topological spaces, 
like real semi-algebraic sets, so that in particular the dimensions above are finite 
dimensional and the Euler–Poincaré characteristic is well defined. In other words, 
for finite CW -complexes, the topological counting is nothing but the Euler–Poincaré 
characteristic: .�top = χc. Motivated by this way of thinking, let us consider the 
following .Z -valued “algebraic” counting: 

(i) .�alg(A) = �alg(A
′) if .A ∼= A′ (isomorphism in . V), 

(ii) .�alg(A) = �alg(B) + �alg(A \ B) for a closed subvariety .B ⊂ A, 
(iii) .�alg(A × B) = �alg(A) · �alg(B), 
(iv) .�alg(pt) = 1. 

In the case of complex algebraic varieties we consider the decomposition . Pn =
Cn � P

n−1 and by induction we have the following decomposition: 

. P
n = C

0 � C
1 � · · · � C

n−1 � C
n.

From which we get the following formula 

. �alg(P
n) = 1 + �alg(C

1) + �alg(C
1)2 + · · · + �alg(C

1)n.

Hence, in contrast to the case of the topological counting . �top, which is uniquely 
determined and is nothing but the Euler–Poincaré characteristic, the “algebraic” 
counting .�alg at least depends on the value .�alg(C

1). Hence there exist infinitely 
many “algebraic” countings. As seen above, the Hodge–Deligne polynomial . χu,v

with any integers .u, v is such an “algebraic” counting. 

6.5.4 The Grothendieck Group of Complex Algebraic Varieties 

Let .Iso(V) be the free abelian group generated by the isomorphism classes .[X] of 
complex algebraic varieties X. Then the homomorphism . χu,v : Iso(V) → Z[u, v]
defined by .χu,v([X]) := χu,v(X) is well-defined. The subgroup of .Iso(V) generated 
by elements of the form .[X] − [Y ] − [X \ Y ] with Y a closed subvariety of X shall 
be denoted by .{[X] − [Y ] − [X \ Y ]} and the quotient 

. K0(V) := Iso(V)/{[X] − [Y ] − [X \ Y ]}
is called the Grothendieck group of complex algebraic varieties. The equivalence 
class of .[X] in .K0(V) is still denoted by .[X] for the sake of simplicity.
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If we define 

. [X] · [Y ] := [X × Y ],

then .K0(V) becomes a commutative ring with the unit .1 := [pt] for the singleton pt . 
In this case .K0(V) is called the Grothendieck ring of complex algebraic varieties. 
Hence we have the following obvious properties: 

(i) .[X] = [X′] if .X ∼= X′, 
(ii) .[X] = [Y ] + [X \ Y ], 

(iii) .[X × Y ] = [X] · [Y ], 
(iv) .[pt] = 1. 

The map .[−] assigning the Grothendieck class .[X] to a variety X 

. [−] : V→ K0(V)

is called the universal motivic measure and we have the following 

Proposition 6.5.16 Let A be a commutative ring and let .m : V→ A be a motivic 
measure. Then there exists a unique ring homomorphism .m : K0(V) → A (using 
the same symbol . m) such that the following diagram commutes: 

. 

Thus the motivic measure .χu,v : V → Z[u, v] induces the ring homomorphism 
. χu,v : K0(V) → Z[u, v].

6.5.5 The Relative Grothendieck Group of Complex Algebraic 
Varieties 

Definition 6.5.17 ([122]) The relative Grothendieck group29 K0(V/X) of X is 
defined to be the free abelian group Iso(V/X) generated by the isomorphism classes 

[V h−→ X] of morphisms over X, h : V → X, modulo the following additivity 
relation 

.[V h−→ X] = [Z h|Z−−→ X] + [V \ Z
h|V \Z−−−→ X] for any closed subvariety Z ⊂ V ,

29 A generalized relative Grothendieck group is considered in [169]. 
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namely, Iso(V/X) modulo the subgroup generated by the elements of the form 

[V h−→ X] − [Z 
h|Z−−→ X] − [V \ Z 

h|V \Z −−−→ X] for any closed subvariety Z ⊂ V . 

Proposition 6.5.18 The following hold: 

(i) K0(V/pt) = K0(V). 
(ii) K0(V/X) is a covariant functor with the pushforward f∗ : K0(V/X) → 

K0(V/Y ) defined by f∗([V h−→ X]) := [V 
f ◦h−−→ Y ] for a morphism f : X → 

Y . 
(iii) K0(V/X) is also a contravariant functor with the pullback f ∗ : K0(V/Y ) → 

K0(V/X) defined by f ∗([V h−→ Y ]) := [X ×Y V h′−→ X] for a morphism 
f : X → Y . Here we consider the fiber product 

. 

(iv) The fiber product gives a ring structure to K0(V/X): 

. [V1
h1−→ X] · [V2

h2−→ X] := [V1 ×X V2
h1×Xh2−−−−→ X].

6.5.6 Motivic Hirzebruch Class 

Here is a question of wether there exists a GRR-type theorem for . χu,v : K0(V) →
Z[u, v], i.e., whether there exists a natural transformation . τ : K0(V/−) → H∗(−)⊗
Z[u, v] such that for .X = pt a point, .τ : K0(V/pt) → H∗(pt) ⊗ Z[u, v] is equal 
to the above homomorphism .χu,v : K0(V) → Z[u, v]. Motivated by the fact that 
the three distinguished characteristic homology classes .c∗, td∗, L∗ are formulated 
as natural transformations satisfying “smooth condition”, as discussed in Sect. 6.4 
above, we impose “smooth condition” that there exists a multiplicative characteristic 

cohomology class . c� such that .τ([X idX−−→ X]) = c�(T X) ∩ [X] for smooth X. This  
“smooth condition” implies that .(u + 1)(v + 1) = 0, i.e., .u = −1 or .v = −1. 
Indeed, let us consider any d-fold (.d �= 1) covering .π : Ẽ → E of smooth elliptic 
curves .E, Ẽ. Note that .T Ẽ = π∗T E and . χu,v(E) = χu,v(Ẽ) = 1 + u + v + uv =
(1 + u)(1 + v). Then we get that . (1 + u)(1 + v) = χu,v(Ẽ) = d · χu,v(E) =
d(1+u)(1+v), i.e., .(1+u)(1+v) = d(1+u)(1+v). Since .d �= 1, .(1+u)(1+v) = 0, 
i.e., .u = −1 or .v = −1. Therefore .χu,v has to be .χ−1,v or .χu,−1. .χu,v(X) is 
in fact symmetric with respect to .(u, v), i.e., .χu,v(X) = χv,u(X), thus .χu,−1(X) =
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χ−1,u(X). We observe that .χu,−1(X) is nicer than .χ−1,u(X) since .χu,−1(X) involves 
only the Hodge filtration as follows: (changing u to y) 

. χy(X) := χy,−1(X) =
∑

i,p�0

(−1)i dimC Gr
p
F

(
Hi

c (X,C)
)

(−y)p.

When X is non-singular and compact, it is equal to the original Hirzebruch .χy-genus 
.χy(X), therefore the above .χy(X) is still called the Hirzebruch .χy-genus, whether 
X is smooth or not. Now let us consider the following commutative diagram for 
.X = P

n: 

. 

Then, for .[Pn idPn−−→ P
n] ∈ K0(V/Pn) we have 

.χy(aPn)∗([Pn idPn−−→ P
n]) = (aPn)∗(τ ([Pn idPn−−→ P

n]). (6.40) 

Then the left-hand side of (6.40) is equal to .χy([Pn −→ pt]) = χy(P
n) and the right-

hand side of (6.40) is equal to .
∫
Pn c�(T P

n) ∩ [Pn]. Thus . χy(P
n) = ∫

Pn c�(T P
n) ∩

[Pn]. Since .χy(P
n) = 1 − y + y2 + · · · + (−1)nyn, we get 

. 

∫
Pn

c�(T P
n) ∩ [Pn] = 1 − y + y2 + · · · + (−1)nyn.

In [99] Hirzebruch proved that such a characteristic class . c� has to be the Hirzebruch 
class . Ty . 

In our previous paper [52] (see also [135, 165, 168] and [216]), using Saito’s 
theory of mixed Hodge modules [159], or alternatively Bittner’s presentation [38] 
in terms of a blow-up relation as in Theorem 6.10.1 (proved via the deep ‘weak 
factorization theorem’), we showed the following theorem: 

Theorem 6.5.19 (Motivic Hirzebruch Class) Let y be an indeterminate. 

(i) There exists a unique natural transformation . Ty∗ : K0(V/X) → H∗(X)⊗Q[y]
satisfying “smooth condition” that .Ty∗([X

idX−−→ X]) = Ty(T X) ∩ [X] for a 
nonsingular variety X. 

(ii) For .X = pt , .Ty∗ : K0(V) → Q[y] is equal to . χy : K0(V) → Z[y] ⊂ Q[y].
Namely, . Ty∗([V → pt]) = χy([V ]) =

∑
i,p�0

(−1)i dimC(Gr
p
F H i

c (V ,C))(−y)p.

Definition 6.5.20 For any (possibly singular) variety X, . Ty∗(X) := Ty∗([X idX−−→
X]) is also called the motivic Hirzebruch class of X.
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The motivic Hirzebruch class transformation . Ty∗ : K0(V/X) → H∗(X) ⊗ Q[y]
is obtained as the composite .Ty∗ := t̃d∗(y) ◦ Λmot

y of the following two natural 
transformations: 

(i) .t̃d∗(y) : K0(X) ⊗ Z[y] → H∗(X) ⊗ Q[y, (1 + y)−1], which is defined by 

. ̃td∗(y) :=
∑
i�0

1

(1 + y)i
td∗i

and called a twisted Baum–Fulton–MacPherson’s Todd class transformation 
[209]. 

(ii) .Λmot
y : K0(V/X) → K0(X) ⊗ Z[y], which is the main key and denoted by 

.mC∗, called the motivic Chern class, in [52]. In this paper, we use the above 
symbol to emphasize the following property of it: 

Theorem 6.5.21 (Motivic Chern Class = “Motivic” .λy-Class Transforma-
tion) There exists a unique natural transformation . Λmot

y : K0(V/X) →
K0(X) ⊗ Z[y] satisfying “smooth condition” that for smooth X, . Λmot

y ([X id−→
X]) =∑dimX

p�0 [Ωp
X]yp = λy(T

∗X) ⊗OX. Here .⊗OX : K0(X) ∼= K0(X) is the 
isomorphism for smooth X, i.e., taking the sheaf of local sections. 

Note that .Ty∗([X
id−→ X]) = Ty(T X) ∩ [X] for X smooth. 

Remark 6.5.22 Even though the target of .t̃d∗(y) is .H∗(X) ⊗ Q[y, (1 + y)−1], the  
image of .Ty∗ = t̃d∗(y) ◦ Λmot

y is in .H∗(X) ⊗ Q[y]. 
Now, in order to define .Λmot

y , first we recall the following four things: 

(i) To X one can associate an abelian category of mixed Hodge modules 
.MHM(X), together with a functorial pullback . f ∗ and pushforward . f∗ on the 
level of bounded derived categories .Db(MHM(X)) for any (not necessarily 
proper) map. These natural transformations are functors of triangulated 
categories. 

(ii) Let .i : Y → X be the inclusion of a closed subspace, with open complement 
.j : U := X\Y → X. Then one has for .M ∈ DbMHM(X) a distinguished 
triangle 

. j!j∗M → M → i!i∗M
[1]→

Hence, by the definition of the Grothendieck group .K0(D
bMHM(X)) of the 

derived category .DbMHM(X), in .K0(D
bMHM(X)) we have the following 

equality 

.[M] = [j!j∗M] + [i!i∗M].
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(iii) For all .p ∈ Z one has a “filtered de Rham complex” functor of triangulated 
categories 

. grF
p DR : Db(MHM(X)) → Db

coh(X)

commuting with proper pushforward. Here .Db
coh(X) is the bounded derived 

category of sheaves of .OX-modules with coherent cohomology sheaves. 
Moreover, .grF

p DR(M) = 0 for almost all p and .M ∈ DbMHM(X) fixed. 
(iv) There is a distinguished element .QH

pt ∈ MHM({pt}/k) such that 

.grF−pDR(QH
X ) � Ω

p
X[−p] ∈ Db

coh(X) (6.41) 

for X smooth and pure dimensional. Here .Q
H
X := (aX)∗QH

pt for .aX : X → pt , 
with .QH

pt viewed as a complex concentrated in degree zero. 

Remark 6.5.23 The above transformations are functors of triangulated categories, 
thus they induce functors even on the level of Grothendieck groups of trian-
gulated categories, which we denote by the same symbol. We note that for 
these Grothendieck groups, by associating to a complex its alternating sum of 
cohomology objects, we have isomorphisms . K0(D

bMHM(X)) � K0(MHM(X))

and .K0(D
b
coh(X)) � K0(X). 

Definition 6.5.24 We define 

(i) .mH : K0(V/X) → K0(MHM(X)) by . mH([V f−→ X]) := [f!QH
V ].

(ii) .grF−∗DR : K0(MHM(X)) → K0(X) ⊗ Z[y, y−1] by 
. grF−∗DR([M]) :=∑p [grF−pDR(M)] · (−y)p.

(iii) . Λmot
y := grF−∗DR ◦ mH : K0(V/X)

mH−−→ K0(MHM(X))
grF−∗DR−−−−−→ K0(X) ⊗

Z[y].
Remark 6.5.25 By (6.41), for X smooth and pure dimensional we have that 

. grF−∗DR ◦ mH([X idX−−→ X]) =∑dimX
p�0 [Ωp

X] · yp ∈ K0(X) ⊗ Z[y]

Remark 6.5.26 If .y = 0, then .T0∗ = t̃d∗(0) ◦ Λmot
0 = td∗ ◦ Λmot

0 and . Λmot
0 ([V f−→

X]) = grF
0 DR([f!QH

V ]). .Λmot
0 shall be denoted by .γ : K0(V/X) → K0(X), which 

is used in Theorem 6.6.1 below. 

Remark 6.5.27 For more recent works on . Ty∗, e.g., see [62–64, 133–137] (cf. [59, 
60]). As to recent applications of motivic Chern class .Λmot

y in Schubert calculus, 
e.g., see [79, 158] (cf. [5–7]).
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6.5.7 A Zeta Function of Motivic Hirzebruch Class 

For a finite set X let .�(X) be the cardinality of X. Let .X(n) := Xn/Sn be the n-th 
symmetric product of X. Then the formal power series 

. ζ�(X)(t) :=
∞∑

n=0

�(X(n))tn

is called a zeta function of the cardinality . � of X. Let .�(X) = m. Then, since . �(X(n))

is equal to the repeated combination .mHn = (m−1+n
m−1

)
, we have  

. ζ�(X)(t) =
∞∑

n=0

(
m − 1 + n

m − 1

)
tn = 1

(1 − t)m
= (1 − t)−�(X).

Remark 6.5.28 (Hasse–Weil Zeta Function and Weil Conjecture) Let X be an alge-
braic variety defined over the finite field . Fp. It is well-known that the Hasse–Weil 

zeta function .ζ�(X(Fp))(t) := exp
(∑

m�1
�(X(Fpm))

m
tm
)

∈ Q[[t]] is expressed 

as .ζ�(X(Fp))(t) = ∑∞
n=0 �(X(n)(Fp))tn (e.g., see [145, Proposition 7.31]). The 

celebrated Weil conjecture is about rationality of this zeta function of a non- singular 
projective algebraic variety:

• .ζ�(X(Fp))(t) = P1(t)P3(t) · · · P2N−1(t)

P2(t)P4(t) · · ·P2N(t)
, where .N = dim X and .Pi(t) is an 

integral polynomial whose degree is equal to .dim Hi(X), and

• the absolute value of the roots of .Pi(t) is equal to . p
i
2 . 

This conjecture was solved by Deligne [71, 73]. 

For the Euler–Poincaré characteristic .χ(X) of a topological space X 

.ζχ (X)(t) =
∞∑

n=0

χ(X(n))tn = (1 − t)−χ(X) (6.42) 

was proved by I. G. Macdonald [124]. Furthermore, for the arithmetic genus . a(X)

and the signature .σ(X) of a complex algebraic variety X 

. ζa(X)(t) = (1 − t)−a(X), ζσ (X)(t) = (1 − t)−σ(X).

were proved by B. Moonen [143] and D. Zagier [222] respectively. Macdonald’s 
formula (6.42) was extended to the Chern–Schwartz–MacPherson class .c∗(X) by T. 
Ohmoto. To describe his formula we need some formulas: 

. log(1 − T )−α = −α log(1 − T ) =
∞∑

r=1

T r

r
α, i.e., (1 − T )−α = exp

( ∞∑
r=1

T r

r
α

)
.
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Let .δk : X → Xk be the diagonal map, i.e., .δk(x) :=
k︷ ︸︸ ︷

(x, x, · · · , x) and . πk :
Xk → X(k) be the projection and let .Δk := πk ◦ δk . Then for a homology class 
.α ∈ HBM∗ (X) we define 

. (1 − tΔ∗)−α = exp

( ∞∑
r=1

(tΔ∗)r

r
α

)

:= exp

( ∞∑
r=1

t rΔr∗(α)

r

)
∈

∞∑
r=1

HBM∗ (X(r);Q)tr

where .(tΔ∗)r := t rΔr∗ and .Δr∗ : HBM∗ (X;Q) → HBM∗ (X(r);Q). With these 
definitions Ohmoto proved: 

Theorem 6.5.29 ([147] (cf. [146])) .ζc∗(X)(t) = (1 − tΔ∗)−c∗(X). 

Furthermore Ohmoto’s formula was extended to the motivic Hirzebruch class: 

Theorem 6.5.30 ([63, 64, 218]) .ζTy∗(X)(t) = (1 − tΔ∗)−Ty∗(X). 

Remark 6.5.31 In [105] M. Kapranov introduced the following motivic zeta func-
tion : 

. ζKap(X)(t) :=
∞∑

n=0

[X(n)]tn ∈ K0(V)[[t]].

He [105] showed that .ζKap(X)(t) is a rational function for a nonsingular projective 
curve X. But M. Larsen and V. A. Lunts [117] showed that .ζKap(X)(t) is not 
necessarily a rational function for a surface X and showed that it is a rational 
function if and only if the Kodaira dimension of X is negative. However, when 
it comes to the Grothendieck ring of Chow motives, which is finer that the 
Grothendieck ring .K0(V) of algebraic varieties, Y. André [10] showed that if the 
Chow motive of X is Kimura-finite (see [111]) then the Chow motivic zeta function 
.ζChow(X)(t) := ∑∞

n=0[Ch(X(n)]tn ∈ K0(CM)[[t]] is a rational function. Here 
.CM denotes the category of Chow motives. 

6.6 A “Unification” of the Three Distinguished 
Characteristic Classes of Singular Varieties 

The above motivic Hirzebruch characteristic class . Ty∗ : K0(V/X) → H∗(X) ⊗
Q[y] becomes the following three transformations for .y = −1, 0, 1:
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(i) (y=-1) .T−1∗ : K0(V/X) → H∗(X) ⊗ Q is a unique natural transformation 

satisfying “smooth condition” that .T−1∗([X idX−−→ X]) = c(T X) ∩ [X] for 
smooth X. 

(ii) (y=0) .T0∗ : K0(V/X) → H∗(X) ⊗ Q is a unique natural transformation 

satisfying “smooth condition” that .T0∗([X idX−−→ X]) = td(T X) ∩ [X] for 
smooth X. 

(iii) (y=1) .T1∗ : K0(V/X) → H∗(X) ⊗ Q is a unique natural transformation 

satisfying “smooth condition” that .T1∗([X idX−−→ X]) = L(T X) ∩ [X] for 
smooth X. 

They are very similar to the transformations .c∗, td∗, L∗. It turns out that . Ty∗ :
K0(V/X) → H∗(X)⊗Q[y] “unifies” these transformations in the following sense: 

Theorem 6.6.1 ([52]) 

.(y = −1): There exists a unique natural transformation . ε : K0(V/−) → F(−)

such that for X nonsingular .ε([X id−→ X]) = 1X. And the following diagram 
commutes 

. 

.(y = 0): There exists a unique natural transformation . γ : K0(V/−) → K0(−)

such that for X nonsingular .γ ([X id−→ X]) = [OX]. And the following diagram 
commutes 

. 

.(y = 1): There exists a unique natural transformation .sd : K0(V/−) → Ω(−) such 

that for X nonsingular .sd([X id−→ X]) = [QX[2dimC X]] . And the following 
diagram commutes for X compact: 

.
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Remark 6.6.2 This theorem can be considered as a positive “answer” to the 
aforementioned MacPherson’s question of whether there is a unified theory of 
characteristic classes of singular varieties [128] (cf. [206, 209]). 

Remark 6.6.3 

(i) .(y = −1): .T−1∗(X) = c∗(X) ⊗ Q. 

(ii) .(y = 0): In general, for a singular variety X we have . Λmot
0 ([X idX−−→ X]) �=

[OX], thus, in general, .T0∗(X) �= td∗(X). So, .T0∗(X) shall be called the 
Hodge–Todd class and denoted by .tdH∗ (X). However, if X is a Du Bois  
variety, i.e., every point of X is a Du Bois singularity (note that a nonsingular 

point is a Du Bois singularity), we have .Λmot
0 ([X idX−−→ X]) = [OX]. This 

is due to the definition of Du Bois variety: X is called a Du Bois variety if 
.OX = gr0

σ (DR(OX)) ∼= gr0
F (Ω∗

X) (see [182] and also [154, Definition 7.34]). 
Hence, for a Du Bois variety X we have .T0∗(X) = td∗(X). For example, S. 
Kovács [115] proved Steenbrink’s conjecture that rational singularities are Du 
Bois, thus for the quotient X of any smooth variety acted on by a finite group 
we have that .T0∗(X) = td∗(X). 

(iii) .(y = 1): In general, .sd([X idX−−→ X]) �= ICX, hence .T1∗(X) �= L∗(X). 
So, our .T1∗(X) shall be called the Hodge–L-class and denoted by . LH∗ (X). A  
conjecture ([52, Remark 5.4]) is that .T1∗(X) = L∗(X) for a rational homology 
manifold. This conjecture has been affirmatively solved by J. Fernández de 
Bobadilla and I. Pallarés [44] and also Fernández de Bobadilla–Pallarés–Saito 
[45] (also see Cappell et al [61] for the hypersurface isolated singularity case, 
Cappell et al [62] for quotient singularity case, Maxim–Schürmann [135] for  
some toric variety case and Banagl [30] (also see [31]) for some threefold 
case.) 

6.7 Verdier–Riemann–Roch and Milnor Class 

6.7.1 Verdier–Riemann–Roch 

The three characteristic classes . c∗, . td∗, .Ω∗ of singular varieties are natural 
transformations from covariant functors to the homology covariant functors. As 
to a contravariant aspect of Baum–Fulton–MacPherson’s Todd classes, in [33, §3, 
Conjecture, p.137] (also see [88, Part II, §0.1.3]) Baum, Fulton and MacPherson 
conjectured that for a .�.c.i. morphism .f : X → Y , 

.td∗(X) = td(Tf ) ∩ f !(td∗(Y )) (6.43) 

where . Tf is the virtual tangent bundle of f (see [85, B.7.6]).
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A morphism .f : X → Y is called a .�.c.i. morphism (of codimension d) [85, 
§6.6] if f factors into a (closed ) regular imbedding .i : X → P of some (constant) 
codimension e, followed by a smooth morphism .p : P → Y of (constant) relative 
dimension .e − d. This notion is independent of such a factorization [85, Appendix 
B.7.6]. A morphism .f : X → Y is called smooth (e.g., see [85, Appendix B 2.7] 
and also [188, Simplicity Theorem, p.584]) if f is flat of some relative dimension n 
and .Ω1

X/Y is a locally free sheaf of rank n. Note that smoothness is preserved under 
the base change, in particular each fiber of f is nonsingular of dimension n. 

In [194] J.-L. Verdier proved the above formula (6.43) affirmatively, by showing 
the following more general statement, which is called Verdier–Riemann–Roch 
(abbr., VRR): 

Theorem 6.7.1 For a .�.c.i. morphism .f : X → Y , the following diagram 
commutes: 

. (6.44) 

Here .f ! : K0(Y ) → K0(X) is the Gysin homomorphism defined by . f !F =∑
i (−1)i TorOY

i (F,OX) and .f ! : H∗(Y ) ⊗ Q → H∗(X) ⊗ Q is the Gysin 
homomorphism (see [85, Example 19.2.1]). 

6.7.2 Milnor Class 

In [210] we showed a similar VRR-type theorem for MacPherson’s Chern class 
transformation .c∗ : F(−) → H∗(−) for a smooth morphism: 

Theorem 6.7.2 For a smooth morphism .f : X → Y , the following diagram 
commutes: 

. (6.45) 

In a general case when .f : X → Y is a .�.c.i. morphism, the commutative 
diagram (6.45) does not necessarily hold and there is some defect for the com-
mutativity. In the simplest case when X is a .�.c.i. variety in a smooth variety M ,



6 Motivic Hirzebruch Class and Related Topics 357

.aX : X → pt is a .�.c.i. morphism. Consider the above diagram for this map 

.aX : X → pt : 

. (6.46) 

For the characteristic function .1pt we have 

. (c∗ ◦ (aX)∗)(1pt ) = c∗((aX)∗(1pt )) = c∗(1X) = c∗(X)

which is Chern–Schwartz–MacPherson’s class and 

.(c(TaX
) ∩ (aX)! ◦ c∗)(1pt ) = c(TaX

) ∩ (aX)!([pt]) = c(T vir
X ) ∩ [X] (6.47) 

which is Fulton-Johnson’s class .cFJ∗ (X) [86] (also see [85]). Certainly, if . aX : X →
pt is smooth, i.e., X is smooth, then .T vir

X = TX and .c∗(X) = c(TX) ∩ [X], 
thus the above diagram commutes. Thus the defect of the commutativity of the 
diagram (6.46), i.e., the difference .c∗ ◦ (aX)∗ − c(TaX

)∩ (aX)! ◦ c∗ evaluated on the 
generator .1pt of .F(pt) is nothing but 

.M(X) := c∗(X) − c(T vir
X ) ∩ [X] (6.48) 

which is (up to sign) what is called “Milnor class” [208, 210, 211]. Naming “Milnor 
class” (at that time) seems to be reasonable, considering the following preceding 
works:

• In [148] (also see [149–152]) A. Parusiński introduced the degree of the 0-
dimensional component of .M(X), i.e., . 

∫
X
M(X), as  a generalized Milnor 

number.
• In the case of hypersurfaces with any singularities, in [3] (also see [1, 2]) P. Aluffi 

expressed the above difference .M(X) in terms of his .μ-class.
• In the case of local complete intersections with isolated singularities, in [174] 

J. Seade and T. Suwa expressed the degree .
∫
X
M(X) as the sum of the 

Milnor numbers of the isolated singularities. In [185] T. Suwa expressed . M(X)

as .(−1)n+1∑
i μ(X, pi)[pi] where .μ(X, pi) is the Milnor number of each 

singularity . pi . Here .n = dim X. 

The Milnor class has been studied by many people from different motivations, e.g., 
see [49, 53, 55, 56, 175]. 

Remark 6.7.3 Here we remark that a general VRR-type theorem for MacPherson’s 
Chern class transformation, i.e., a formula for the defect of the commutativity of
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the diagram (6.45) for a .�.c.i. morphism .f : X → Y has been obtained by J. 
Schürmann [162]. 

Remark 6.7.4 As to Cappell–Shaneson’s L-class .L∗ : Ω(−) → H∗(−) ⊗ Q, we  
do not know if a VRR-type formula holds for a smooth morphism. J. Schürmann 
pointed out that for a .�.c.i. morphism there is no well-defined Gysin map for the 
cobordism group .Ω(−). For a smooth morphism .f : X → Y the Gysin map . f ! =
f ∗[2 reldim f ] where .reldim f = dim X − dim Y is the dimension of the fiber of 
f , thus . f ! commutes with duality up to a shift (see [161, Corollary 3.1.5, p. 315]) 
and induces a map of cobordism groups. However, for a regular embedding i this 
is not the case. One would need some extra condition of “transversality” or “non-
characteristic” (see [166], [107, Proposition 5.4.13 (ii)]), or in more geometric terms 
“a normally non-singular inclusion”, and then . i∗ commutes with duality up to a shift 
for some adapted constructible complexes. 

The motivic Hirzebruch class transformation . Ty∗ : K0(V/−) → H∗(−) ⊗ Q[y]
does satisfy a VRR-type formula for a smooth morphism .f : X → Y , i.e., the 
following diagram commutes (see [52]): 

. (6.49) 

Problem 6.7.5 Identify the defect of the commutativity of the above diagram (6.49) 
for a .�.c.i. morphism .f : X → Y (possibly in a similar way as done in [162] above). 

6.7.3 Generalized Motivic Milnor–Hirzebruch Classes 

As in the case of MacPherson’s Chern class transformation .c∗ : F(−) → H∗(−), 
if we consider the diagram (6.49) for the map .aX : X → pt , then the defect of 
the commutativity of the diagram (6.49), i.e., . Ty∗ ◦ (aX)∗ − Ty(TaX

) ∩ (aX)∗ ◦ Ty∗
evaluated on the distinguished element .[pt

idpt−−→ pt] of .K0(V/pt) is nothing but 
(up to sign) .Ty∗(X) − Ty(T

vir
X ) ∩ [X]. Namely, this is a kind of .Ty∗-version of the 

Milnor class .M(X). 
The Chern–Schwartz–MacPherson class .c∗(X), the Baum–Fulton–MacPherson’s 

Todd class .td∗(X) and Cappell–Shaneson’s L-class .L∗(X) are all the special 
values of the corresponding natural transformations .c∗ : F(−) → H∗(−), 
.td∗ : K0(−) → H∗(−)⊗Q and .L∗ : Ω(−) → H∗(−)⊗Q, respectively. Motivated 
by this fact, we want to capture the Milnor class, more generally the above .Ty∗-
version of the Milnor class, as a special value of some natural transformation. In 
this section we discuss such a transformation [217].
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Let S be a complex algebraic variety and fixed. Let .VS be the category of S-
varieties, i.e., an object is a morphism .h : X → S and a morphism from . h : X → S

to .k : Y → S is a morphism .f : X → Y such that the following diagram commutes: 

. 

The following definition is motivated by the definition of a universal bivariant theory 

.M
C
S

(X
f−→ Y ) defined in Theorem 6.9.17. 

Definition 6.7.6 Let .MProp
�.c.i (V/X

h−→ S) be the monoid consisting of isomorphism 

classes .[V p−→ X] of proper morphisms .p : V → X such that the composite . h ◦ p :
V → S is a .�.c.i. morphism, with the addition .(+) and zero . (0) defined by

• .[V h−→ X] + [V ′ h′−→ X] := [V � V ′ h+h′−−−→ X],
• . 0 := [φ → X].
We define .KProp

�.c.i (V/X
h−→ S) to be the Grothendieck group of the monoid 

.M
Prop
�.c.i (V/X

h−→ S). If  S is a point, .K
Prop
�.c.i (V/X

h−→ S) is denoted by 

.K
Prop
�.c.i (V/X). 

Lemma 6.7.7 

(i) The Grothendieck group .KProp
�.c.i (V/X

h−→ S) is a covariant functor with 
pushforwards for proper morphisms, i.e., for a proper morphism . f : X →
Y ∈ VS

. 

the pushforward .f∗ : K
Prop
�.c.i (V/X

h−→ S) → K
Prop
�.c.i (V/Y

k−→ S) defined by 

.f∗([V p−→ X]) := [V f ◦p−−→ Y ] is covariantly functorial. 

(ii) The Grothendieck group .KProp
�.c.i (V/X

h−→ S) is a contravariant functor with 
pullbacks for smooth morphisms, i.e., for a smooth morhism .f : X → Y ∈ VS , 

the pullback .f ∗ : K
Prop
�.c.i (V/Y

k−→ S) → K
Prop
�.c.i (V/X

h−→ S) defined by
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.f ∗([W p−→ Y ]) := [W ′ p′
−→ X] is contravariantly functorial. Here we consider 

the following commutative diagrams whose top square is a fiber square: 

. 

Proposition 6.7.8 Let .c� : K0(−) → H ∗(−) ⊗ R be a characteristic class of 
complex vector bundles with a suitable coefficients R. Then on the category . VS there 

exists a unique natural transformation . γc�∗ : K
Prop
�.c.i (V/X

h−→ S) → H∗(X) ⊗ R

such that for a .�.c.i. morphism .h : X → S, . γc�∗([X idX−−→ X]) = c�(Th) ∩ [X].
Namely, for a morphism .f : X → Y , i.e., for a commutative diagram 

. 

the following diagram commutes: 

. 

Definition 6.7.9 

(i) If S is a point and .c� = c the Chern class, for a .�.c.i. variety X in a smooth  

manifold we have that .γc∗([X idX−−→ X]) = c(T vir
X ) ∩ [X], which is Fulton– 

Johnson’s class .cFJ∗ (X) (see (6.47)). Thus the natural transformation . γc�∗ :
K
Prop
�.c.i (V/X) → H∗(X) ⊗ R is a generalization of Fulton–Johnson’s class as 

a natural transformation. It is called a motivic Fulton-Johnson-type . c� class, 
denoted by .c�FJ∗ , since it is modeled after Fulton–Johnson’s class .cFJ∗ . 

(ii) If we consider the Hirzebruch class . Ty for the characteristic class . c� and we 
use the motivic Hirzebruch class .Ty∗ : K0(V/X) → H∗(X) ⊗ Q[y], then the
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natural transformation .γTy∗ : K
Prop
�.c.i (V/X

h−→ S) → H∗(X) ⊗ Q[y] is called 
the motivic Fulton–Johnson-type Hirzebruch class and denoted by .Ty

FJ
∗ . 

(iii) The Borel–Moore homology with twisted pushforward . f� = (−1)dim Y−dim Xf∗
is still a covariant functor and shall be denoted by .H�(X). 

Theorem 6.7.10 We define .MTy∗ : K
Prop
�.c.i (V/X

h−→ S) → H�(X) ⊗ Q[y] by 

. MTy∗([V
p−→ X]) := (−1)dim V

(
Ty

FJ
∗ − Ty∗

)
([V p−→ X]).

Then we have that .MTy∗ : K
Prop
�.c.i (V/− h−→ S) → H�(−) ⊗ Q[y] is a unique 

natural transformation such that for a .�.c.i. morphism .h : X → S it satisfies that 

. MTy∗([X
idX−−→ X]) = (−1)dim X

(
Ty

FJ
∗ − Ty∗

)
([X idX−−→ X])

= (−1)dim X
(
Ty(T

vir
X ) ∩ [X] − Ty∗(X)

)
.

Definition 6.7.11 

(i) Let S be a point. Then the above motivic natural transformation 

. MTy∗ : K
Prop
�.c.i (V/X) → H�(X) ⊗ Q[y]

is called a motivic Milnor–Hirzebruch class, even though .KProp
�.c.i (V/X) is not 

the motivic group .K0(V/X), but

• because it is a subgroup of .K0(V/X) and it is defined by using the motivic 
Hirzebruch class .Ty∗ : K0(V/X) → H∗(X) ⊗ Q[y] and also

• because, if we specialize .MTy∗ to the case when .y = −1 and X is a . �.c.i.
variety in a smooth manifold, we have 

. MT−1∗(X) := MT−1∗([X id−→ X])

= (−1)dim X

{
T−1(T

vir
X ) ∩ [X] − T−1∗([X id−→ X])

}

= (−1)dim X
(
cFJ∗ (X) ⊗ Q − c∗(X) ⊗ Q

)

=
(
(−1)dim X

(
cFJ∗ (X) − c∗(X)

) )
⊗ Q,

which is the Milnor class . M(X) = (−1)dim X
(
cFJ∗ (X) − c∗(X)

)
(see (6.48)) of X modulo torsion.
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For a .�.c.i. variety X in a smooth manifold . MTy∗(X) := MTy∗([X
id−→ X])

is called also the motivic Milnor–Hirzebruch class of X. 

(ii) .MT−1∗ : K
Prop
�.c.i (V/X) → H�(X) ⊗ Q is called the motivic Milnor class. 

(iii) The more general one .MTy∗ : K
Prop
�.c.i (V/X

h−→ S) → H�(X)⊗Q[y] is called 
a generalized motivic Milnor–Hirzebruch class. 

In [212, Theorem 2.2] we obtained a VRR-type formula of the Milnor class in 
a special case. The following VRR-type formula of the motivc Milnor–Hirzebruch 
class is a generalization of this result: 

Theorem 6.7.12 For a smooth morphism .f : X → Y , the twisted Gysin pullback 
homomorphism .f � : H∗(Y ) → H∗(X) is defined by .f � = (−1)dim X−dim Y f ∗. For 
a smooth morphism .f : X → Y in the category .VS as in Proposition 6.7.8, the  
following diagram commutes: 

. 

6.7.4 Hirzebruch–Milnor Class via the Vanishing Cycle 
Functor 

In [61], for a hypersurface X, globally defined as the zero-set .X = f −1(0) of an 
algebraic function .f : M → C on a complex algebraic manifold M , the homology 
class .Ty(T

vir
X ) ∩ [X] − Ty∗(X) is denoted by .MTy∗(X) and called the Hirzebruch– 

Milnor class. Hence we have that .MTy∗(X) = (−1)dim XMTy∗(X). 
In [163] J. Schürmann proves the following theorem, which is a generalization 

of Verdier’s result [194] on the specialization of MacPherson’s Chern class transfor-
mation: 

Theorem 6.7.13 Let the situation be as above and let .i : X ↪→ M be the 
inclusion. Then .MHTy∗ : K0(MHM(−)) → H∗(−) ⊗ Q[y, y−1] commutes with 
the specialization, namely the following diagram commutes: 

.
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Here .Ψ ′H
f = Ψ H

f [−1] : K0(MHM(M)) → K0(MHM(X)) is the shifted nearby 
cycle functor. 

Using this specialization theorem, in [61] Cappell–Maxim–Schürmann–Shaneson 
prove the following: 

Theorem 6.7.14 Let the situation be as above. 

. MTy∗(X) = MHTy∗(Φ ′H
f ([QH

M ])).

Here .Φ ′H
f = ΦH

f [−1] is the shifted functor of the vanishing cycle functor . ΦH
f :

K0(MHM(M)) → K0(MHM(X)) defined by . ΦH
f := Ψ H

f − i∗.

Here the following diagrams commute: 

. 

Here we use the following:

• .χHodge : K0(V/Z) → K0(MHM(Z)) is defined by . χHodge([V f−→ Z]) :=
f∗QH

V . Here .Q
H
V := (aZ)∗QH

pt for the constant map .aZ : Z → pt with .Q
H
pt being 

the constant pure Hodge structure . Q of weight zero. For Z smooth .QH
Z is given 

by .Q
H
Z := (OZ, F,QZ,W) with the Hodge filtration F such that . gri

F = 0(i �= 0)

and the pure weight filtration W .
• . rat denotes the forgetful functor which assigns to a complex of mixed Hodge 

modules the underlying rational constructible complex.
• .χstalk : K0(D

b
c (Z)) → F(Z) is defined by, for a constructible sheaf complex . F•, 

. (χstalk(F•)) (x) := χx(F•) :=
∑
j

(−1)j dim Hj(F•)x.
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• .c∗ ⊗ Q : K0(D
b
c (X)) → H∗(X) ⊗ Q is defined by the composite of 

.χstalk : K0(D
b
c (X)) → F(X) and the rationalized MacPherson–Chern class 

homomorphism .c∗ ⊗ Q : F(X) → H∗(X) ⊗ Q. 

Remark 6.7.15 Note that the Milnor class .M(X) is equal to .c∗((Φf (1M)). In [164] 
this result is extended to the case of global complete intersections. 

Definition 6.7.16 ([220, §5.2]) For a hypersurface X, globally defined as the zero-
set .X = f −1(0) of an algebraic function .f : M → C on a complex algebraic 
manifold M , we define 

. MTy∗ : K0(V/X) → H∗(X) ⊗ Q[y]

by . MTy∗([V h−→ X]) := MHTy∗
(
h!h∗(Φ ′

f (QH
M))
)
.

Note that .MTy∗([X idX−−→ X]) = MHTy∗(Φ ′
f (QH

M)) = MTy∗(X). 

Theorem 6.7.17 ([220, §5.2]) For a proper morphism .ρ : N → M of complex 
manifolds and for an algebraic function .f : M → C, we define . Y := (f ◦ρ)−1(0) =
ρ−1(X) and consider the restriction map .ρY : Y → X. Then we have the following 
commutative diagram: 

. 

6.8 Equivariant Theory 

An equivariant theory (e.g., see [8, 9, 193]) is a theory to study objects equipped 
with actions of a group. For example, let X be a topological space with an action of 
a topological group G, simply called a topological G-space. Then it is quite natural 
to think of the quotient space .X/G and/or the fixed point space .XG in order to 
consider invariants of this G-space. A formula describing a global invariant . Inv(X)

of a G-space X in terms of some invariants .Ĩnv(XG) of the fixed point space . XGis 
a “geometric” localization: .Inv(X) = Ĩnv(XG). A typical example of “localization” 
in geometry is the well-known Poincaré–Hopf theorem, which says that the Euler– 
Poincaré characteristic of a differentiable manifold M with a vector field v on M 
having finitely many isolated zeros . xi’s is expressed by .χ(M) = ∑i Indexxi

(v), 
where .Indexxi

(v) is the index of v at . xi . There is another “localization” in algebra. 
That is a localization of a ring or a module. Given a multiplicative closed set S, 
the ring .S−1M := {m

s
|s ∈ S,m ∈ M} is called the localization of M by S. A
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formula connecting this “algebraic” localization and “geometric” localization is a 
“localization” in equivariant theory. A well-known formula is Atiyah–Bott–Berline– 
Vergne formula [20, 36]. 

In this survey we mainly look at aspects of natural transformations. So, we 
consider “natural transformations” between two “functors” of “geometric objects 
equipped with actions of groups”. 

6.8.1 Transformation Group 

Definition 6.8.1 Let G be a topological group and X a topological space. A 
continuous map φ : G × X → X, (φ(g,  x)  is simply denoted gx) is called an 
action30 of G on X if it satisfies two conditions (i) for an unit e ∈ G, ex = x for any 
x ∈ X and (ii) for any g, h ∈ G, g(hx) = (gh)x. (X,G, φ)  is called a topological 
transformation group or a G-action on X and X is called a (topological) G-space. 

Remark 6.8.2 Each g ∈ G gives rise to a continuous map φg : X → X defined by 
φg(x) = φ(g,  x)  = gx. This continuous map is a homeomorphism due to the above 
two conditions.31 Hence we have the adjoint (map to φ) ad(φ) : G → Aut(X) 
defined by ad(φ)(g) := φg . 

Let (X,G, φ)  and (X′,G′, φ′) be two topological spaces with actions of groups G 
and G′ (not necessarily different). Then a morphism (X,G, φ)  → (X′,G′, φ′) is 
defined to be a continuous map f : X → X′ together with a continuous group 
homomorphism ψ : G → G′ such that f (gx)  = ψ(g)f  (x). With this definition we 
get a category, called the equivariant category of topological spaces with actions of 
topological groups (e.g., see [130, §1.5]). 

If we fix a topological group G and we let the above group homomorphism ψ : 
G → G be the identity idG, then we get the following: 

Definition 6.8.3 Let G be a topological group and X and Y be two G-spaces. Then 
a continuous map f : X → Y is called G-equivariant if f (gx)  = gf (x). 

For a fixed topological group G, G-spaces and G-equivariant maps make a category, 
called the category of G-spaces. The category of G-spaces can be considered for 
many underlying categories, e.g., sets with G a group, differentiable manifolds with 
G a Lie group, complex manifolds with G a complex Lie group, algebraic varieties 
with G an algebraic group, and so on. We will use the following definitions:

30 This action is a left action and similarly a right action is also defined. Note that a left action 
can be turned into a right action by defining xg := g−1x and vice versa, i.e., gx := xg−1. If we  
simply define xg := gx instead of xg := g−1x , then this is not a right action, because it does 
not satisfy the above second condition; indeed (xg)h = (gx)h = h(gx) = (hg)x = x(hg), hence 
(xg)h �= x(gh). However, if we define xg := g−1x using the inverse g−1 of g, then it does work. 
31 Because φg−1 ◦ φg = idX (indeed, φg−1 ◦ φg(x) = g−1(gx) = (g−1g)x = ex = x) and  
φg ◦ φg−1 = idX . 
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• Gx := {g ∈ G | gx = x} is the isotropy group of x or the stabilizer of x,
• Gx := {gx | g ∈ G} is the orbit of x,
• XG := {x ∈ X | Gx = G} is the fixed point set.
• X/G := {Gx} is the orbit space.
• Gx ∼= G/Gx (G-bijection).
• If Gx = {e} for any x ∈ X, then the action of G is called free.32 

In the category of G-sets, the following formula for a finite group G, usually called 
“Burnside’s Lemma”, is well-known: 

.|X/G| = 1

|G|
∑
g∈G

|Xg|, namely |X/G| = |X|
|G| + 1

|G|
∑

g∈G−{e}
|Xg| (6.50) 

where |S| denotes the cardinality of a set S. This follows from

. 
∑
g∈G

|Xg| = |{(g, x) ∈ G × X | gx = x}| =
∑
x∈X

|Gx |

and |Gx| = |G/Gx | =  |G| 
|Gx | . Suggested or motivated by this formula, there are 

similar formulas involving some geometric invariants such as the Euler–Poincaré 
characteristic, instead of the cardinality | − |, in other categories, e.g., as in 
Theorem 6.8.11. 

6.8.2 “Simple” G-Equivariant Natural Transformations 

Let .F∗,H∗ : Top → Ab be two covariant functors and .τ : F∗ → H∗ be a 
natural transformation. Then we have at least the following two simple equivariant 
versions: 

(i) (“forget”) Define .for : TopG → Top by .for ((X,G, φ)) = X and 

.for((X,G, φ)
f−→ (Y,G,ψ)) := X

f−→ Y . Then . F
for∗ := F∗ ◦ for : TopG →

Ab is a covariant functor and .τ for : F
for∗ → H

for∗ is an equivariant natural 
transformation. 

(ii) (“quotient”) Define .quot : TopG → Top by .quot((X,G, φ)) := X/G and 

.quot((X,G, φ)
f−→ (Y,G,ψ)) := X/G

f̃−→ Y/G. Then . Fquot∗ := quot ◦ F∗ :
TopG → Ab is a covariant functor. .τquot : Fquot∗ → H

quot∗ is an equivariant 
natural transformation.

32 In this case, every fiber of the projection π : X → X/G at the “point” Gx is the orbit Gx, which  
is bijective to G. Thus, if  G is a free action on X, π : X → X/G is something like “a principal 
G-bundle”. 
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The first one is not interesting since it has nothing to do with the action of G 
at all. The second one is quite natural (for example, .X/G appears in the above 
Burnside’s Lemma), but whether it is interesting or not depends on the action of G. 
For example, consider rotating the 2-dimensional sphere . S2 in . R3 around the z-axis, 
i.e., an action of . S1 on . S2, which is not free, since the isotropy groups . S1

N = S1
S = S1

for the north and south poles N and S. Since the quotient .S2/S1 is homeomorphic 
to the closed interval .[−1, 1], thus homotopy equivalent to a point, one could not 
expect much from the group .F∗(pt), for example, if .F∗ is an ordinary homology. 
Therefore one needs to come up with topologically and geometrically interesting 
equivariant theories .FG∗ for a given covariant functor . F∗. The most well-know one 
is due to what is usually called the Borel construction,33 which is recalled below. 

6.8.3 Cartan Mixing Space and Cartan Mixing Diagram 

We follow [193, §4.3]. Let G be a topological group, P a principal G-bundle and 
M a left  G-space. In [65] H. Cartan constructed a fiber bundle with fiber M in the 
following way. Consider the right action of G on .P × M by the diagonal action34 

.(p,m)g := (pg, g−1m). Then the Cartan mixing space35 
.P ×G M of P and M is 

the orbit space .P ×G M := (P × M)/G and this construction is called the Cartan 
mixing construction.36 The following diagram, called Cartan mixing diagram, is  
commutative: 

. (6.51) 

Here .β : P × M → P ×G M is the projection map .β(p,m) := [p,m], . τ1 :
P ×G M → B is defined by .τ1([p,m]) := α(p) and . τ2([p,m]) := π(m) = Gm

is the orbit of m. Both are well-defined, since . τ1([pg, g−1m]) = α(pg) = α(p) =
τ1([p,m]) and .τ2([pg, g−1m]) = G(g−1m) = (Gg−1)m = Gm = τ2([p,m]). 
Proposition 6.8.4 If .α : P → B is a principal G-bundle and M is a left G-space, 
then .τ1 : P ×G M → B is a fiber bundle with fiber M and the projection map 
.β : P × M → P ×G M is a principal G-bundle.

33 The idea originated with Henri Cartan [65]. In this sense it should be called the Cartan–Borel 
construction. 
34 If we simply define .(p,m)g := (pg, gm), then this action does not satisfy the second condition 
of action by the same reason as in the footnote of Definition 6.8.1 above. 
35 It is also called the balanced product of a right G-space P and a left G-space M . 
36 It is usually called Borel mixing construction or simply the Borel construction. 
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This proposition says that in (6.51) if .α : P → B is a principal G-bundle, then 
.τ1 : P ×G M → B is a fiber bundle with fiber M. Symmetrically, we have 

. (6.52) 

where P is a G-space, M is a principal G-bundle and .τ2 : P ×G M → B is a fiber 
bundle with fiber P. 

6.8.4 Equivariant (Co)homology by Cartan–Borel 
Construction 

Let X and Y be path-connected spaces. If there is a continuous map . f : X → Y

such that .f∗ : πk(X) → πk(Y ) is an isomorphism of homotopy groups for .k � 1, 
then X and Y are called weakly homotopy equivalent.37 If X is weakly homotopy 
equivalent to a point, then X is called weakly contractible. The following lemma 
follows from the above Cartan mixing diagram: 

Lemma 6.8.5 Let G be a topological group and E be a weakly contractible G-
space and P be a G-space with a free action of G such that the projection . π : P →
P/G is a principal G-bundle. Then .(E ×G P ) and .P/G are weakly homotopy 
equivalent. 

Indeed, consider the following Cartan diagram (using (6.52)): 

. 

Since .τ2 : E ×G P → P/G is a fiber bundle with fiber E, we get the long exact 
sequence: .· · · → πk(E) → πk(E ×G P ) → πk(P/G) → πk−1(E) → · · · . Since 
E is weakly homotopy contractible, i.e., .πk(E) = 0 for .k � 0 (.π0(E) = 0 since X 
is path-connected), we have the isomorphism .(τ2)∗ : πk(E ×G P ) ∼= πk(P/G) for 
.k � 1. Thus .(E ×G P ) and .P/G are weakly homotopy equivalent.

37 According to J.H.C. Whitehead’s Theorem [197] (e.g., see also [97]), if X and Y are CW -
complexes, then weakly homotopy equivalence implies homotopy equivalence. 
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Theorem 6.8.6 Let G be a topological group and M a G-space. If .E → B and 
.E′ → B ′ are principal G-bundles such that the total spaces E and . E′ are weakly 
homotopy contractible, then .E×GM and .E′×GM are weakly homotopy equivalent. 

Indeed, since .E × M → E ×G M is a principal G-bundle, it follows from 
Theorem 6.8.6 that .E′ ×G (E × M) = (E′ × (E × G))/G and .E ×G M are weakly 
homotopy equivalent. Replacing the roles of E and . E′, . E×G(E′×M) = (E×(E′×
G))/G and .E′ ×G M are weakly homotopy equivalent. Since . (E′ × (E × G))/G

and .(E × (E′ × G))/G are homeomorphic, .E ×G M and .E′ ×G M are weakly 
homotopy equivalent. 

Now let us consider the singular homology .H∗ and cohomology .H ∗ for a 
covariant and contravariant functor from .Top to . Ab. Since weakly homotopy 
equivalence (i.e., the isomorphism of homotopy groups) implies the isomorphism of 
singular homology and cohomology groups (e.g., see [97]), we have the following: 

Corollary 6.8.7 Let the situation be as in Theorem 6.8.6. Then . H∗(E ×G M) ∼=
H∗(E′ ×G M) and .H ∗(E ×G M) ∼= H ∗(E′ ×G M). 

In [140] J. Milnor38 constructed a universal principal G-bundle . π : EG → BG

such that the total space EG is contractible. Using this universal bundle, for a 
topological G-space X, we define 

. HG∗ (X) := H∗(EG ×G X), H ∗
G(X) := H ∗(EG ×G X)

which are called the equivariant homology and cohomology of a G-space X. . HG∗ (−)

and .H ∗
G(−) are respectively covariant and contravariant functors from .TopG to . Ab, 

since .EG ×G (−) : TopG → Top is covariant. EG is contractible, thus .EG × X is 
homotopy equivalent to X, hence the orbit space is simply denoted by 

. XG := EG ×G X

called the homotopy quotient of X by G. We also see that . XG = (EG × X)/G →
EG/G = BG = ptG is a fiber bundle39 with fiber X. We note that . H ∗

G(pt) =
H ∗(ptG) = H ∗(BG) is the cohomology group of the classifying space BG of a 
topological group, and for a constant map .π : X → pt we have the above fiber 
bundle .πG : XG → ptG = BG, which gives rise to the homomorphism . π∗

G :
H ∗(BG) → H ∗

G(X), thus the equivariant cohomology .H ∗
G(−) is not only a graded 

algebra over . Z, but also a graded algebra over the graded algebra .H ∗(BG) via this 
homomorphism.

38 Milnor’s construction is “functorial”, i.e., any continuous homomorphism .f : G → H induces 
a “natural” continuous map .Bf : BG → BH . Dold and Rashof [74] reformulated Milnor’s 
construction for a topological monoid. R. Milgram [139] construction satisfies that there exists a 
“natural” homeomorphism .B(G × H) ∼= BG × BH . 
39 This bundle .X ↪→ XG → BG is sometimes called the Borel fibration. 
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Remark 6.8.8 As in Sect. 6.2.2, the ring of characteristic classes of principal G-
bundles with values in the singular cohomology .H ∗(−;R) is isomorphic to the 
cohomology ring .H ∗(BG;R) of the classifying space BG. 

Remark 6.8.9 

(i) As long as we restrict ourselves to the category of complex algebraic varieties, 
for example, if we consider Chow group or algebraic cycles, . π : EG →
BG cannot be used because EG and BG are infinite dimensional, thus not 
algebraic varieties. 

(ii) In [191] B. Totaro defines a “classifying space BG”, by considering an 
“approximation” of .EG → BG by a directed system of G-bundles . En → Bn

of certain schemes . En and . Bn such that for any principal algebraic G-bundle 
.E → X there is an affine-space bundle .g : X′ → X and the pullback 
bundle .E′ = g∗E → X′ is obtained as the pullback of .En → Bn by a map 
.X′ → Bn. Then he defines the Chow ring40 

.A∗(BG) of this “classifying space 
BG”, which is isomorphic to the ring of characteristic classes of principal G-
bundles over smooth algebraic varieties with values in the Chow ring (of the 
base variety), which is a “Chow ring version” of the topological one given in 
Remark 6.8.8 (cf. Sect. 6.2.2). Such a characteristic class is called an algebraic 
characteristic class. 

(iii) Using Totaro’s approximation, in [76] D. Edidin and W. Graham defined an 
equivariant Chow group .AG∗ (X) (.AG∗ (pt) is nothing but Totaro’s . A∗(BG)

above) and showed an equivariant version of Baum–Fulton–MacPherson’s 
Riemann–Roch with Chow group. Similarly, in [54] J.-L. Brylinski and B. 
Zhang defined an equivariant Borel–Moore homology group and showed 
an equivariant version of BFM-RR with Borel–Moore homology. In [146] 
T. Ohmoto defined the equivariant covariant functor .FG(−) of equivariant 
constructible functions and showed an equivariant version of MacPherson’s 
Chern class transformation. 

Remark 6.8.10 According to [8, Remark 1.8], the idea of approximating the 
infinite-dimensional spaces EG and BG by finite-dimensional ones can be found 
in the origins of equivariant cohomology [39, Remark XII.3.7].

40 The Chow ring .Ai(X) is the operational Chow ring, i.e., .Ai(X) := Ai(X
idX−−→ X), where  

.A∗(X f−→ Y ) is the operational bivariant theory [85, Definition 17.1] (also see Sect. 6.9.2) 
constructed from the covariant theory of Chow groups .A∗(X), i.e., the group of algebraic cylces 
modulo rational equivalence [85, §1.3]. Note that .A−p(X → pt) ∼= Ap(X) ([85, Proposition 

17.3.1]) and (the Poincaré duality) .Ap(X) = Ap(X
idX−−→ X) ∼= An−p(X) for smooth X of 

dimension n ([85, Corollary 17.4]). In [191] the Chow ring .Ap(X) is defined as the Chow group 
.An−p(X) for smooth X. 
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6.8.5 Equivariant Motivic Hirzebruch Classes 

We give a quick review of equivariant motivic Hirzebruch classes [62] of complex 
algebraic G-varieties for a finite group G. 

Let .VG be the category of G-equivariant quasi-projective varieties. The relative 
Grothendieck group of .VG is a G-equivariant version of .K0(V/X) in Defini-
tion 6.5.17. Namely . K0(V

G/(X,G))41 is defined to be the free abelian group of 

isomorphism classes .[(Y,G)
f−→ (X,G)] of G-equivariant maps, modulo the usual 

“scissor” relation: 

. [(Y,G)
f−→ (X,G)] = [(Z,G)

f |Z−−→ (X,G)] + [(Y \ Z,G)
f |Y\Z−−−→ (X,G)]

for any G-invariant closed algebraic subspaces .Z ⊂ Y . This is a covariant functor 
.K0(V

G/(−,G)) : VG → Ab having the same functorial properties as the covariant 
functor .K0(V/−). For any subgroup .H < G we have the canonical homomorphism 
(“restricting” the action of G to the action of a subgroup H ) 

. resG
H : K0(V

G/(X,G)) → K0(V
H /(X,H))

defined by .resG
H ([(Y,G)

f−→ (X,G)]) := [(Y,H)
f−→ (X,H)]. Here we note that 

.resG
H : VG → VH defined by .resG

H ((X,G)) = (X,H) for the objects .ob(VG) and 

.resG
H ((Y,G)

f−→ (X,G)) = (Y,H)
f−→ (X,H) for the morphisms .mor(VG) is a 

covariant functor. In particular, for an element .g ∈ G, consider the cyclic subgroup 
.< g >:= {gk | k = 1, 2, · · · n(gn = 1)} ⊂ G. Then we have 

. resG
<g> : K0(V

G/(X,G)) → K0(V
<g>/(X,< g >)).

Using .quot : VG → Vand the covariant functor .K0(V/−) : V→ Ab, we have  

. K
quot

0 (V/(−,G)) : VG quot−−−→ V
K0(V/−)−−−−−→ Ab

defined by .Kquot

0 (VG/(X,G)) := K0(V/(X/G)). Similarly, we have the naive 
“quotient” equivariant Borel–More homology: 

. H
BM,quot∗ : VG quot−−−→ V

HBM∗ (−)−−−−−→ Ab

defined by .HBM,quot∗ ((X,G) := HBM∗ (X/G). Then we have the natural transfor-
mation 

.T
quot
y∗ : K

quot

0 (VG/(−,G)) → H
BM,quot∗ ((−,G))

41 In [62] it is written by .KG
0 (V/X). In this paper we use the above notation for later presentation. 
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defined by .T
quot
y∗ ([(Y,G)

f−→ (X,G)]) := Ty∗([Y/G
f̃−→ X/G]), which is the naive 

“quotient” equivariant motivic Hirzebruch class (transformation) defined on the 
category . VG. 

As observed above, for an element .g ∈ G we have the homomorphism . resG
<g> :

K0(V
G/(X,G)) → K0(V

<g>/(X,< g >)). For the sake of simplicity, here we 
just write g for .< g > unless some confusion is possible. Then we consider the 
following sequence of homomorphisms (which are functorial): 

. K0(V
g/(X, g))

χ
g
Hodge−−−−→ K0(MHMg/(X, g))

MHC
g
y−−−−→ K0(Cohg((X, g)))⊗Z[y±1],

where .K0(Cohg((X, g))) is the Grothendieck group of .< g >-equivariant algebraic 
coherent sheaves on .(X,< g >), .χg

Hodge = χ
<g>
Hodge is the equivariant Hodge 

transformation and .MHC
g
y = MHC

<g>
y is the equivariant motivic Chern class 

transformation. Furthermore it follows from [34] that we have the Lefschetz– 
Riemann–Roch transformation 

. Lg : K0(Cohg((X, g))) → K0(X
g)

where .Xg = X<g> (note that we need not consider the cyclic group .< g > to define 
.Xg = {x ∈ X | gx = x} ). Then, using the Baum–Fulton–MacPherson’s Todd class 
transformation .td∗ : K0(X

g) → HBM∗ (Xg) ⊗ Q, combining these maps we get the 
homomorphism, 

. Ty∗(g) : K0(V
G/(X,G)) → HBM∗ (Xg) ⊗ Q[y±1],

which is called the equivariant motivic Atiyah–Singer class (for . g ∈ G) [25]. 
Let .πg : Xg ↪→ X → X/G for each element .g ∈ G. Therefore we have 

. 
∑
g∈G

π
g∗ Ty∗(g) : K0(V

G/(X,G)) → HBM∗ (X/G) ⊗ Q[y±].

Then in [62] Cappell–Maxim–Schürmann–Shaneson obtain the following: 

Theorem 6.8.11 Let the set-up and the notations be as above. As natural transfor-
mations we have the following equality: 

. T
quot
y∗ = 1

|G|
∑
g∈G

π
g∗ Ty∗(g) : K0(V

G/(−,G)) → H
BM,quot∗ ((−,G)) ⊗ Q[y±1]

Remark 6.8.12 In [137] L. Maxim and J. Schürmann introduce what is called 
the delocalized G-equivariant homology as follows. The disjoint union . 

⊔
g∈G Xg

admits an induced G-action by .h : Xg → Xhgh−1
(defined by hx) so that
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the canonical map .i : ⊔g∈G Xg → X defined by the inclusions becomes G-
equivariant. Thus, G acts on .

⊕
g∈G H∗(Xg) by conjugation. Then their delocalized 

G-equivariant homology of X is defined to be the G-invariant subgroup of this 
conjugation action: 

. HG∗ (X) :=
(⊕

g∈G

H∗(Xg)
)G

.

Remark 6.8.13 In [196] A. Weber defines an equivariant motivic Hirzebruch class 

.T T∗y(X
f−→ M) for a complex torus .T = (C∗)r and also discuss localization 

formulas. (Note that he defines an equivariant version of each motivic Hirzebruch 

class .T∗y(X
f−→ M), but it is not defined functorially, i.e., he does not define an 

equivariant natural transformation .T T∗y : K0(V
T/(−,T)) → HT∗ (−) ⊗ Q[y].) 

6.8.5.1 Equivariant Motivic Chern Class mCG∗ 

Let G be a complex linear algebraic group and M be a smooth quasi-projective G-
variety. In Aluffi et al [7] and Fehér et al [79] (also see [80]) the authors show that 
there is a natural transformation 

. mCG∗ : K0(V
G/(M,G)) → K0((M,G)) ⊗ Z[y],

which is a G-equivariant version of the motivic Chern class (transformation) . mC∗ :
K0(V/−) → K0(−) ⊗ Z[y] in Theorem 6.5.21. Here we note that M is smooth,42 

thus the above natural transformation is considered for a G-equivariant proper map 
of smooth quasi-projective varieties .f : (M,G) → (M ′,G), for which we have the  
following commutative diagram: 

. 

For applications of this equivariant motivic Chern class, see [7, 79] and [80].

42 It is not clear whether the condition of M being smooth could be dropped or not. 
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6.9 Bivariant Theories 

Fulton and MacPherson have introduced Bivariant Theory [88] for the study of 
singular spaces. In particular one of their motivations43 of introducing this theory is 
to unify three Riemann–Roch theorems (more accurately Grothendieck–Riemann– 
Roch type theorems), which are the following:

• “SGA 6” [37] (which is an extended version of the original Grothendieck– 
Riemann–Roch theorem [41] to the case of .�.c.i. morphism) (see (6.13) in  
Sect. 6.3.3) : For a proper and .�.c.i. morphism .f : X → Y the following diagram 
commutes: 

.

• “BFM-RR” [33] (see (6.15) in Sect. 6.4.2) : For a proper morphism . f : X → Y

the following diagram commutes: 

.

• “VRR” [194] (see (6.44) in Sect. 6.7.1): For a .�.c.i. morphism .f : X → Y the 
following diagram commutes: 

. 

These three theorems are unified by a Grothendieck transformation from a 
bivariant K-theory .Kalg to a bivariant homology theory . H (see [88, Part II: Products 
in Riemann–Roch, §1 Statement of the theorem]): 

.γ : Kalg(X → Y ) → H(X → Y ) ⊗ Q. (6.53)

43 See a remark stated just before [88, 0.2 Summary of results, p. 123]: One motivation of the 
present work was to unify these three Riemann–Roch theorems, and these various products and 
orientations. 
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For the moment we just note that the bivariant homology theory . H is a unification 

of the homology theory .H∗(X aX−→ pt) = H−∗(X) for a map .aX : X → pt to a 

point pt and the cohomology theory .H∗(X idX−−→ X) = H ∗(X) for the identity map 
.idX : X → X. The bivariant product 

. • : Hi (X
f−→ Y ) ⊗ H

j (Y
g−→ Z) → H

i+j (X
g◦f−−→ Z)

is a generalization of the cup product . ∪ and the cap product . ∩: 

(i) .• : Hi (X
idX−−→ X) ⊗ H

j (X
idX−−→ X) → H

i+j (X
idX−−→ X) is the cup product 

. ∪ : Hi(X) ⊗ Hj(X) → Hi+j (X), α • β = α ∪ β.

(ii) .• : Hi (X
idX−−→ X) ⊗ H

−j (X → pt) → H
i−j (X → pt) is the cap product 

. ∩ : Hi(X) ⊗ Hj(X) → Hi−j (X), α • β = α ∩ β.

Equation (6.53) is, a bit more precisely, the composite of two Grothendieck 
transformations: 

.γ = ch ◦ α : Kalg(X → Y )
α−→ Ktop(X → Y )

ch−→ H(X → Y ) ⊗ Q, (6.54) 

where .Ktop is the bivariant version of the topological K-theory and the Grothendieck 
transformation .ch : Ktop(X → Y ) → H(X → Y ) ⊗ Q is constructed from the 
Chern character .ch : K∗(−) → H ∗(−)⊗Q (see [88, Part I: Bivariant Theories, §3.2 
Grothendieck transformations of topological theories]). The above “SGA 6” and 
“VRR” follow from the following Riemann–Roch formula: for a .�.c.i. morphism 
. f : X → Y

.γ (Of ) = td(Tf ) • Uf (6.55) 

(see [88, Part II:Products in Riemann–Roch, pp.133–137]) where . Of = [OX] ∈
Kalg(X

f−→ Y ) and .Uf ∈ H(X
f−→ Y ) ⊗ Q are canonical orientations and . td(Tf ) ∈

H(X
idX−−→ X)⊗Q = H ∗(X)⊗Q is the total Todd class of the relative tangent bundle 

. Tf . In this section, we give a quick survey on Fulton–MacPherson’s bivariant theory 
and show how one gets the above three Riemann–Roch formulas from the bivariant-
theoretic Riemann–Roch formula (6.58). 

Remark 6.9.1 Speaking of “bivariant theory”, there is another kind of bivariant 
theory introduced by G. Kasparov [108] i.e., the bivariant K-theory, or  KK-theory, 
.KK(X, Y ) (e.g., see [77]), and has been studied by many people working on .C∗-
algebra.
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6.9.1 Fulton–MacPherson’s Bivariant Theories 

We make a quick review of Fulton–MacPherson’s bivariant theory [88], since we 
refer to some axioms required on the theory in later sections. 

Let . C be a category which has a final object pt and on which the fiber product 
or fiber square is well-defined. Also we consider the following classes: 

1. a class . C of maps, called “confined maps” (e.g., proper maps, in algebraic 
geometry), which are closed under composition and base change, and contain 
all the identity maps, and 

2. a class .Ind of commutative diagrams, called “independent squares” (e.g., fiber 
square, “Tor-independent” square, in algebraic geometry), satisfying that 

(a) if the two inside squares in 

. 

are independent, then the outside square is also independent, 
(b) any square of the following forms are independent: 

. 

where .f : X → Y is any morphism. 

Remark 6.9.2 Given an independent square, its transpose is not necessarily inde-
pendent. For example, let us consider the category of topological spaces and 
continuous maps. Let any map be confined, and we allow a fiber square 

.
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to be independent only if g is proper (hence . g′ is also proper). Then its transpose is 
not independent unless f is proper. (Note that the pullback of a proper map by any 
continuous map is proper, because “proper” is equivalent to “universally closed”, 
i.e., the pullback by any map is closed.) 

Definition 6.9.3 A bivariant theory . B on a category . C with values in the category 

of graded abelian groups44 is an assignment to each morphism .X
f−→ Y in the 

category . C a graded abelian group45 

. B(X
f−→ Y )

which is equipped with the following three basic operations. The i-th component of 

.B(X
f−→ Y ), .i ∈ Z, is denoted by .Bi (X

f−→ Y ). 

(i) Product: For morphisms .f : X → Y and .g : Y → Z, the product 

. • : Bi (X
f−→ Y ) ⊗ B

j (Y
g−→ Z) → B

i+j (X
gf−→ Z).

(ii) Pushforward: For morphisms .f : X → Y and .g : Y → Z with f confined, 

the pushforward . f∗ : Bi (X
gf−→ Z) → B

i (Y
g−→ Z).

(iii) Pullback : For an independent square 

. 

the pullback . g∗ : Bi (X
f−→ Y ) → B

i (X′ f ′
−→ Y ′).

An element .α ∈ B(X
f−→ Y ) is sometimes expressed as follows: 

. 

These three operations are required to satisfy the following seven compatibility 
axioms ([88, Part I, §2.2]):

44 Instead of abelian groups, we consider also sets, e.g., such as the set of complex structures and 
the set of Spin structures (see [88, §4.3.2]), and categories, e.g., such as the derived (triangulated) 
category of f -perfect complexes (see [88, §7.1 Grothendieck duality]) as well. 
45 The grading is sometimes ignored. 
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(. A1) Product is associative: for  

. 

. (α • β) • γ = α • (β • γ ).

(. A2) Pushforward is functorial:for 

. 

with confined .f, g, 

. (g ◦ f )∗α = g∗(f∗α).

(. A3) Pullback is functorial: given independent squares 

. 

. (g ◦ h)∗ = h∗ ◦ g∗.

(.A12) Product and pushforward commute: .f∗(α • β) = f∗α • β for 

. 

with confined f , 
(.A13) Product and pullback commute: .h∗(α • β) = h′∗α • h∗β for 

independent squares 

. 

(.A23) Pushforward and pullback commute: .f ′∗(h∗α) = h∗(f∗α) for 
independent squares with f confined
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. 

(.A123) Projection formula: .g′∗(g∗α • β) = α • g∗β for an independent square 
with g confined 

. 

We also require the theory . B to have multiplicative units: 

(Units) For all .X ∈ C , there is an element .1X ∈ B
0(X

idX−−→ X) such that . α•1X =
α for all morphisms .W → X and all .α ∈ B(W → X), and such that 
.1X • β = β for all morphisms .X → Y and all .β ∈ B(X → Y ), and such 
that .g∗1X = 1X′ for all .g : X′ → X. 

A bivariant theory unifies both a covariant theory and a contravariant theory in 
the following sense: 

Definition 6.9.4 For a bivariant theory . B, its associated covariant functors and 
contravariant functors are defined as follows: 

(i) .B∗(X) := B(X
aX−→ pt) is covariant for confined morphisms and the grading is 

given by .Bi (X) := B
−i (X

aX−→ pt). 

(ii) .B
∗(X) := B(X

idX−−→ X) is contravariant for all morphisms and the grading is 

given by .Bj (X) := B
j (X

idX−−→ X). 

A typical example of a bivariant theory is the bivariant homology theory . H(X
f−→

Y ) constructed from the singular cohomology theory .H ∗(−), which unifies the 
singular homology .H∗(X) := H

−∗(X → pt) and the singular cohomology 

.H ∗(X) := H
∗(X idX−−→ X). Here the underlying category . C is the category of spaces 

embeddable as closed subspaces of some Euclidean spaces .Rn and continuous
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maps between them (see [88, §3 Topological Theories]). More generally, Fulton– 
MacPherson’s (general) bivariant homology theory 

. h∗(X → Y )

(here, using their notation) is constructed from a multiplicative cohomology theory 
.h∗(−) [88, §3.1] (see Definition 6.9.5 below). Here the cohomology theory . h∗ is 
either ordinary or generalized (sometimes, called extra-ordinary). A cohomology 
theory . h∗ is called multiplicative if for pairs .(X,A), (Y, B) there is a graded pairing 
(exterior product)46 

. hi(X,A) × hj (Y, B)
×−→ hi+j (X × Y,X × B � A × Y )

such that it is associative and graded commutative, i.e., .α × β = (−1)i+j β × α. 
A typical example of a multiplicative ordinary cohomology theory is the singular 
cohomology theory. The topological complex K-theory .K0(−) and cobordism 
theory .Ω∗(−) are multiplicative generalized cohomology theories. We consider the 
category of spaces embeddable as closed subspaces in some Euclidian spaces . RN

and continuous maps. For example, Whitney’s embedding theorem says that any 
manifold of real dimension m can be embedded as a closed subspace of . R2m. As  
remarked in a footnote in Sect. 6.4.2, we also note that a complex algebraic variety 
is embeddable as a closed subspace of some Euclidean space . RN . We let a confined 
map be a proper map and an independent square be a fiber square. 

Definition 6.9.5 For a continuous map .f : X → Y , choose a map . φ : X → R
n

such that .Φ = (f, φ) : X → Y × R
n defined by .Φ(x) := (f (x), φ(x)) is a closed 

embedding.47 Then we define 

.h∗(X → Y ) := hi+n(Y × R
n, Y × R

n \ Φ(X)). (6.56) 

Theorem 6.9.6 ([88, p.34–p.38]) The above definition (6.56) is independent of the 
choice of the embedding . φ, thus . Φ, and .h∗(X → Y ) is a bivariant theory. 

Remark 6.9.7 

(i) By the definition (6.56) we have .hi(X
idX−−→ X) = hi(X). Indeed, since . idX :

X → X is obviously a closed map (embedding), we can choose . φ : X →
pt so that .Φ = (idX, φ) : X → X × pt ∼= X is a closed map. Hence by

46 The cup product .∪ : Hi(X,A) × Hj (X,B) → Hi+j (X,A ∪ B) is the composite . Hi(X,A) ×
Hj (X,B)

×−→ Hi+j (X × X,X × B � A × X)
Δ∗−→ Hi+j (X,A ∪ B) where .Δ : X → X × X is the 

diagomal map. 
47 Such a map always exist, since our space is embeddable as a closed subspace of some . RN , thus 
this embedding is considered as .φ : X → R

N , then .Φ = (f, φ) is also a closed embedding. 
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the definition (6.56) we have . hi(X
idX−−→ X) = hi(X, (X × pt) \ Φ(X)) =

hi(X,∅) = hi(X).

(ii) .h−i (X
aX−→ pt) = hn−i (Rn,Rn \ Φ(X)) =: hn−i (Rn,Rn \ X) where . Φ =

(aX, φ) : X → pt×R
n = R

n is a closed embedding. If .h∗ = H ∗ is the singular 

cohomology, then . h−i (X
aX−→ pt) = hn−i (Rn,Rn\X) = Hn−i (Rn,Rn\X) =:

HBM
i (X) is the Borel–More homology group (e.g., see [85], [154, B.1]).  

Here is a very simple and easy example of a bivariant theory on the category of finite 
sets: 

Example 6.9.8 (cf. [88, §6.1 The bivariant theory . F and §10.1.2 The Frobenius]) 
Let . F be the category of finite sets, with all maps confined and all fiber squares 

independent. For a map .f : X → Y we define .F(X
f−→ Y ) := F

0(X
f−→ Y ) to be the 

abelian group of .R-valued functions on the source set X. The product, pushforward 
and pullback are defined as follows: 

(i) (product) .• : F(X
f−→ Y ) ⊗ F(Y

g−→ Z) → F(X
g◦f−−→ Z) is defined by 

.(α • β)(x) := α(x) × β(f (x)) for .α ∈ F(X
f−→ Y ), β ∈ F(Y

g−→ Z) and for 
.x ∈ X. 

(ii) (pushforward) For any map .f : X → Y (note that any map is confined) the 

pushforward .f∗ : F(X
g◦f−−→ Z) → F(Y

g−→ Z) is defined by . f∗(α)(y) :=∑
x∈f −1(y) α(x) for .y ∈ Y . 

(iii) (pullback) For a fiber square 

. 

the pullback .g∗ : F(X
f−→ Y ) → F(X′ f ′

−→ Y ′) is defined by . (g∗α)(x′) :=
α(g′(x′)) (the usual functional pullback). 

Definition 6.9.9 ([88, §2.7 Grothendieck transformation]) Let .B,B′ be two 
bivariant theories on a category . C . A  Grothendieck transformation from . B to . B′, 
.γ : B → B

′ is a collection of homomorphisms . B(X → Y ) → B
′(X → Y )

for a morphism .X → Y in the category . C , which preserves the above three basic 
operations: 

(i) .γ (α •B β) = γ (α) •B′ γ (β), 
(ii) .γ (f∗α) = f∗γ (α), and 

(iii) .γ (g∗α) = g∗γ (α). 

Remark 6.9.10 In [?, §2.7 Grothendieck transformations]a Grothendieck transfor-
mation is defined as follows. Let . C and . C be categories and let . : C → C be a
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functor which takes confined maps in . C to confined maps in . C , and independent 
square in . C to independent square in . C , and the final object in . C to the final object 
in . C . We write . X and . f for the image in . C of an object X and a map f in . C . Let  T 
be a bivariant theory on . C and U be a bivariant theory on . C . Then a Grothendieck 

transformation .t : T → U is a collection of homomorphisms . t : T (X
f−→ Y ) →

U(X
f−→ Y), one for each .f : X → Y in . C , which commutes with product, 

pushforward and pullback. However, if we define .U(X
f−→ Y ) := U(X

f−→ Y ) then 
the bivariant theory U on . C can be considered as a bivariant theory on . C , thus a 
Grothendieck transformation can be defined as in Definition 6.9.9 as above. 

A Grothendieck transformation .γ : B → B
′ induces natural transformations 

.γ∗ : B∗ → B∗′ and .γ ∗ : B∗ → B
′∗. 

Remark 6.9.11 Let .t : h∗ → h̃∗ be a natural transformation of two multiplicative 
cohomology theory. Then we get the associated Grothendieck transformation 

.t : h∗(X f−→ Y ) → h̃∗(X f−→ Y ) (6.57) 

since we have .t : h∗+n(Y ×R
n, Y ×R

n\Φ(X)) → h̃∗(Y ×R
n, Y ×R

n\Φ(X)). For  
example, the Chern character .ch : K0(−) → H ∗(−)⊗Q induces the Grothendieck 

transformation .ch : K0(X
f−→ Y ) → H ∗(X f−→ Y ) ⊗ Q, which is . ch : Ktop(X →

Y ) → H(X → Y ) ⊗ Q in (6.54). 

6.9.2 Operational Bivariant Theory 

The above (general) bivariant homology theory .h∗(X → Y ) is constructed from a 
cohomology theory . h∗, i.e., a contravariant theory. When it comes to a covariant 
theory, one can construct what is called an operational bivariant theory [88] (also,  
see [85]). Let . h∗ be a covariant functor (or sometimes called a homology theory). 

Then the associated operational bivariant theory .Boph∗(X
f−→ Y ) is defined as 

follows. For a map .f : X → Y , an element .c ∈ B
oph∗(X

f−→ Y ) is defined to be a 
collection of homomorphisms 

. c(g) : h∗(Y ′) → h∗(X′)

for all .g : Y ′ → Y and the fiber square 

.
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And these homomorphisms .c(g) are required to be compatible with proper pushfor-
ward, i.e., for a fiber diagram 

. 

the following diagram commutes 

. 

If the category . C has a final object pt and .h∗(pt) has a distinguished element 1, 
then the homomorphism .ev : B

oph∗(X → pt) → h∗(X) defined by . ev(c) :=
(c(idpt ))(1) is called the evaluation homomorphism. Let . B be a bivariant theory. 
Then its associated operational bivariant theory .B

op is defined to be the operational 
bivariant theory constructed from the covariant functor .B∗(X) = B(X → pt). Then 
we have the following canonical Grothendieck transformation 

. op : B → B
op

defined by, for each .α ∈ B(X → Y ), 

. op(α) := {(g∗α)• : B∗(Y ′) → B∗(X′)|g : Y ′ → Y }.

In this case it is not clear whether one could construct a Grothendieck transfor-
mation of the associated operational bivariant theories from a natural transformation 
of two covariant functors. To be more precise, if .t : h∗(−) → h̃∗(−) is a natural 
transformation of two covariant functors, then it is not clear whether one could 

construct a Grothendieck transformation .t : Boph∗(X
f−→ Y ) → B

oph̃∗(X
f−→ Y ), 

which is an “operational bivariant theoretic analogue” of (6.57). A kind of similar 
problem is discussed in [88, §8.2]. Suppose that . B is a bivariant theory, . h∗ is 
a covariant functor and there are homomorphisms . φ(X) : B∗(X) = B(X →
pt) → h∗(X), covariant for confined maps, and taking . 1 ∈ B

∗(pt) = B∗(pt)

to .1 ∈ h∗(pt). Then a question is whether there exists a unique Grothendieck 
transformation .Φ : B(X → Y ) → B

oph∗(X → Y ) such that the associated 
map .Φ(X) : B∗(X) → B

oph∗(X → Y ) followed by the evaluation map . evX :
B

oph∗(X → pt) → h∗(X), i.e., .evX ◦ Φ(X), is equal to the given homomorphism 
.φ(X) : B∗(X) → h∗(X). The answer to this question is negative, however the 
answer to a modified question is affirmative [213] (cf. [51]).



384 S. Yokura

6.9.3 Canonical Orientation and Riemann–Roch Formula 

Definition 6.9.12 ([88, Part I, §2.6.2 Definition]) Let S′ be a class of maps in C , 
which is closed under compositions48 and contains all the identity maps. Suppose 

that to each f : X → Y in S′ there is assigned an element θ(f  )  ∈ B(X 
f−→ Y )  

satisfying 

(i) θ(g  ◦ f )  = θ(f  )  • θ(g)  for all f : X → Y, g : Y → Z in S′, 
(ii) θ(idX) = 1X for all X with 1X ∈ B

∗(X) := B∗(X idX−−→ X) the unit element. 

Then θ(f  )  is called an canonical orientation of f . 

Example 6.9.13 A very simple example of a canonical orientation is θ(f  )  = 1X 
the characteristic function on the source set X for any map f : X → Y in 

Example 6.9.8. Another simple example is θ(f  )  = [X idX−−→ X] ∈  MC 
S 

(X 
f−→ Y )  for 

a “specialized” map f : X → Y in the universal bivariant theory MC 
S 

defined later 
in Theorem 6.9.17. For more non-trivial examples, see [88] (e.g., §4 Orientations in 
Topology). 

A canonical orientation makes the covariant functor B∗(X) a contravariant functor 
for morphisms in S′, and also makes the contravariant functor B∗ a covariant functor 
for morphisms in C ∩S′, where we recall that C is a class of confined maps: 

Proposition 6.9.14 (Gysin Homomorphisms) Let B be a bivariant theory. 

(i) As to the covariant functor B∗(X): For a morphism f : X → Y ∈ S′ and the 
canonical orientation θ on S′, the Gysin (pullback) homomorphism 

. f ! : B∗(Y ) → B∗(X) defined by f !(α) := θ(f ) • α

is contravariantly functorial: (g ◦ f )! = f ! ◦ g!. 
(ii) As to contravariant functor B∗: For an independent square 

.

48 In the case of confined maps, we require the stability of pullback, i.e., the pullback of a confined 
map is confined. For this class S′ we do not require the stability of pullback. For example, in [88] 
the class of �.c.i. morphisms is considered as such a class, and the pullback of an �.c.i. morphism 
is not necessarily a �.c.i. morphism. 
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where f ∈ C ∩ S′, the Gysin (pushforward) homomorphism 

. f! : B∗(X) → B
∗(Y ) defined by f!(α) := f∗(α • θ(f ))

is covariantly functorial: (g ◦ f )! = g! ◦ f!. 

We note that these Gysin maps f ! and f! are denoted respectively by f !θ and f θ 
! 

in order to emphasize the canonical orientation θ . 

Definition 6.9.15 (A Riemann–Roch Formula) Let B, B′ be two bivariant theo-
ries on a category Vand let θB, θB′ be canonical orientations on B, B′ for a class 
S′. Let  γ : B → B′ be a Grothendieck transformation. If there exists a bivariant 

element uf ∈ B′(X idX−−→ X) for a map f : X → Y ∈ S′ such that 

. (6.58) 

where A = γ (θB(f )) and B = θB′(f ), then this formula is called a Riemann–
Roch formula for the Grothendieck transformation γ : B → B

′ with respect to the
orientations θB and θB′ .

In [88, Part I, §2.7 Grothendieck transformations] Fulton and MacPherson 
call the above formula (6.58) a Riemann–Roch formula, because a Grothendieck 
transformation γ : B → B′ together with a formula (6.58) gives rise to the three 
Riemann–Roch formulas, as follows: 

(i) “SGA 6”-type formula (see (6.13) in Sect. 6.3.3): for a map f : X → Y ∈ 
C∩ S′, the following diagram commutes: 

. 

Indeed, 

.γ (f θ
! α) = γ (f∗ (α • θB(f ))) = f∗γ (α • θB(f )) = f∗

(
γ (α) • γ (θB(f ))

)

= f∗
(

γ (α) •
(
uf • θB′(f )

))

= f∗
((

γ (α) • uf

)
• θB′(f )

)

= f θ ′
! (γ (α) • uf ).
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(ii) “BFM-RR” type formula (see (6.15) in Sect. 6.4.2) : for a proper map f : X → 
Y , the following diagram commutes: 

. 

(iii) “VRR”-type formula (see (6.44) in Sect. 6.7.1): for a map f : X → Y ∈ S′, 
the following diagram commutes: 

. 

. γ (f !
θα) = γ (θB(f ) • α) = γ (θB(f )) • γ (α) =

(
uf • θB′(f )

)
• γ (α)

= uf •
(
θB′(f ) • γ (α)

)

= uf • f !
θ ′(γ (α)).

By the same way as above, one can see that (6.58) implies (1) SGA 6, (2) BFM-RR 
and (3) VRR. 

6.9.4 A Universal Bivariant Theory 

In a category . C , like a class . C of confined maps, we let . S be another class of maps 
called “specialized maps” (e.g., smooth maps in the category of complex algebraic 
varieties), which is closed under composition and base change,49 and contains all 
the identity maps. 

Definition 6.9.16 Let . B be a bivariant theory on a category . C and let . Sbe as above. 
If a canonical orientation . θ is defined on . B for the class . S and it satisfies that for an 
independent square with .f ∈ S, hence . f ′ ∈ S

.

49 Here we note that on the class . S′ on which a canonical orientation . θ is defined in Defini-
tion 6.9.12 “closed under base change” is not required, but only “closed under composition” is 
required. 
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.θ(f ′) = g∗θ(f ), i.e., the orientation . θ preserves the pullback operation, then we 
call . θ a nice canonical orientation of . B. 

From now on we assume that our category . C satisfies that any fiber square 

. 

with f being confined, i.e., .f ∈ C, is an independent square. In [215] this condition 
is called “.C-independence”. 

Theorem 6.9.17 (A Universal Bivariant Theory [215, Theorem 3.1]) Let . C be a 
category with a class . C of confined morphisms, a class .Ind of independent squares 

and a class . S of specialized maps. We define .MC
S

(X
f−→ Y ) to be the free abelian 

group generated by the set of isomorphism classes of confined morphisms . h : W →
X such that the composite of h and f is a specialized map: .h ∈ C and . f ◦h : W →
Y in . S.

(i) The association .MC
S

is a bivariant theory if the three bivariant operations are 
defined as follows: 

(i) Product: For morphisms .f : X → Y and .g : Y → Z, the product 

. • : M
C
S

(X
f−→ Y ) ⊗ M

C
S

(Y
g−→ Z) →

M
C
S

(X
gf−→ Z)

is defined by .[V h−→ X] • [W k−→ Y ] := [V ′ h◦k′′−−→ X] and extended 
linearly, where we consider the following fiber squares 

. 

(ii) Pushforward: For morphisms .f : X → Y and .g : Y → Z with f 
confined, the pushforward 

. f∗ : MC
S

(X
gf−→ Z) → M

C
S

(Y
g−→ Z)

is defined by .f∗
(
[V h−→ X]

)
:= [V f ◦h−−→ Y ] and extended linearly. 

(iii) Pullback: For an independent square 

.
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the pullback 

. g∗ : MC
S

(X
f−→ Y ) → M

C
S

(X′ f ′
−→ Y ′)

is defined by .g∗
(
[V h−→ X]

)
:= [V ′ h′−→ X′] and extended linearly, 

where we consider the following fiber squares: 

. 

(ii) For a specialized morphism .f : X → Y in . S, 

. θ
M
C
S

(f ) = [X idX−−→ X] ∈ M
C
S

(X
f−→ Y )

is a nice canonical orientation of .MC
S

for . S. 

(iii) (A universality of .MC
S

) Let . B be a bivariant theory on the same category 
. C with the same class . C of confined morphisms, the same class .Ind of 
independent squares and the same class . S of specialized maps, and let . θ be a 
nice canonical orientation of . B for . S. Then there exists a unique Grothendieck 
transformation .γB : MC

S
→ B such that for a specialized morphism . f : X →

Y , 

. γB : MC
S

(X
f−→ Y ) → B(X

f−→ Y )

satisfies the normalization condition that . γB(θ
M
C
S

(f )) = θB(f ).

Proposition 6.9.18 (Commutativity50 ) The universal bivariant theory .M
C
S

is 
commutative in the sense that .g∗(α) • β = f ∗(β) • α for a fiber square 

.

50 If .g∗(α) • β = (−1)deg(α) deg(β)f ∗(β) • α holds, then it is called skew-commutative (see [88, 
Part I:Bivariant Theories, §2.2]). 
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Remark 6.9.19 In [215] (cf. [219]) the author introduced an oriented bivariant 
theory and a universal oriented bivariant theory for the purpose of constructing 

a bivariant-theoretic version .Ω∗(X f−→ Y ) of Levine–Morel’s algebraic cobordism 
in such a way that the covariant part .Ω−∗(X −→ pt) becomes isomorphic to Levine– 

Morel’s algebraic cobordism51 
.Ω∗(X) [120] (also see [121]), thus . Ω∗(X idX−−→ X)

would become a new contravariant cobordism. In [11] T. Annala has succeeded 
in constructing such a biavriant theory, in fact a stronger theory entering into 
derived algebraic geometry, what he calls the bivariant derived algebraic cobordism 
.Ω∗(X → Y ), using the construction of Lowrey–Schürg’s derived algebraic 
cobordism .dΩ∗(X) [123] in  derived algebraic geometry and the construction of 
the universal bivariant theory. Furthermore, in [16] (cf. [13]) Annala and the author 
constructed a bivariant version .Ω∗,∗(X → Y ) of Lee–Pandharipande’s algebraic 
cobordism of bundles .ω∗,∗(X) [118]. For .Ω∗,∗(X → Y ), also see Annala’s papers 
[12–15]. We remark that in [90] (cf. [91]) J. L. Gonzaléz and K. Karu have 
constructed an operational bivariant algebraic cobordism. 

6.10 Bivariant Motivic Hirzebruch Characteristic Classes 

6.10.1 A Bivariant Relative Grothendieck Group 

The definition of a bivariant relative Grothendieck group .K0(V/X
f−→ Y ) ( 

[170, 218]) explained below is motivated by the construction of the above universal 

bivariant theory .MC
S

(X
f−→ Y ). 

Let . Vbe the category of complex algebraic varieties and let . C be the class of 
proper maps and . S the class of smooth maps. Then we denote . MC

S
(X → Y )

by .M(V/X → Y ). Also, .M(V/X → pt) and .M(V/X
idX−−→ X) are respectively 

denoted by .M∗(V/X) and .M∗(V/X). 

Theorem 6.10.1 (Bittner [38]) Let .K0(V/X) be the relative Grothendieck group 
of varieties over .X ∈ ob(V) with .V = V(qp) the category of complex algebraic 
(quasi-projective) varieties.52 Then .K0(V/X) is isomorphic to .M∗(V/X) modulo 
the “blow-up” relation 

. [∅ → X] = 0 and [BlY X′ → X] − [E → X] = [X′ → X] − [Y → X] ,

(6.59)

51 Their cobordims group is a bordism group, i.e., a covariant theory. 
52 This means that . V is the category of complex algebraic varieties and .Vqp is the category of 
complex quasi-projective varieties. In order to define a motivic bivariant Hirzebruch class in 
Sect. 6.10.2 later we need the category .Vqp of quasi-projective varieties. 
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for any cartesian diagram (called the “blow-up diagram”) 

. 

with i a closed embedding of smooth spaces and .f : X′ → X proper. Here 
.BlY X′ → X′ is the blow-up of . X′ along Y with exceptional divisor E. Note  
that all these spaces other than X are also smooth (and quasi-projective in case 
.X′, Y ∈ ob(Vqp)). 

The kernel of the quotient map .q : M∗(V/X) → K0(V/X) is the subgroup 
.BL(V/X) generated by . [BlY X′ → X] − [E → X] − [X′ → X] + [Y → X]
for any blow-up diagram as above. In order to define a bivariant analogue of the 
subgroup .BL(V/X), we observe the following result. 

Lemma 6.10.2 Let .h : X′ → X be a smooth morphism, with .i : S → X′ a 
closed embedding such that the composite .h ◦ i : S → X is also smooth morphism. 
Consider the cartesian diagram 

. (6.60) 

with .q : BlSX′ → X′ the blow-up of . X′ along S and .q ′ : E → S the exceptional 
divisor map. Then: 

(i) .h ◦ q : BlSX′ → X and .h ◦ q ◦ i′ : E → X are also smooth morphisms, with 
.BlSX′, E quasi-projective in case .X′, S ∈ ob(Vqp). 

(ii) This blow-up diagram commutes with any base change in X, i.e. the cor-
responding fiber-square induced by pullback along a morphism .X̃ → X is 
isomorphic to the corresponding blow-up diagram of .S̃ → X̃′. 

(iii) The closed embeddings .i, i′ are regular embeddings, and the projection map q 
as well as .i, i′ are of finite Tor-dimension. 

Definition 6.10.3 For a morphism .f : X → Y in the category .V = V(qp), we  
consider a blow-up diagram 

.
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with h proper and i a closed embedding such that .f ◦ h as well as .f ◦ h ◦ i are 
smooth. 

Let .BL(V/X
f−→ Y ) be the free abelian subgroup of .M(V/X

f−→ Y ) generated 
by 

.[BlSX′ hq−→ X] − [E hiq ′
−−→ X] − [X′ h−→ X] + [S hi−→ X] (6.61) 

for any such diagram, and define .K0(V/X
f−→ Y ) := M(V/X

f−→ Y )

BL(V/X
f−→ Y )

. The 

corresponding equivalence class of .[V p−→ X] shall be denoted by . 
[
[V p−→ X]

]
.

Note that by Lemma 6.10.2 (1) .f ◦h◦q and .f ◦h◦ i ◦q ′ are smooth (with . BlSX′
and E quasi-projective in the case when .V= Vqp), so that the “relative blow-up 

relation” (6.61) makes sense in .M(V/X
f−→ Y ). 

Theorem 6.10.4 ([170, 218]) Let .V= V(qp) be as above. .K0(V/X
f−→ Y ) becomes 

a bivariant theory with the following three operations, so that the canonical 
projection .Bq : M(V/−) → K0(V/−) is a Grothendieck transformation. 

(i) Product operation: For morphisms .f : X → Y and .g : Y → Z, the product 

.� : K0(V/X
f−→ Y ) ⊗ K0(V/Y

g−→ Z) → K0(V/X
gf−→ Z) is defined by 

.

[
[V h−→ X]

]
�
[
[W k−→ Y ]

]
:=
[
[V h−→ X] • [W k−→ Y ]

]
and bilinearly 

extended. 
(ii) Pushforward operation: For morphisms .f : X → Y and .g : Y → Z with 

.f ∈ Prop, the pushforward .f∗ : K0(V/X
gf−→ Z) → K0(V/Y

g−→ Z) is 

defined by .f∗
( [

[V p−→ X]
] )

:=
[
f∗([V p−→ X])

]
and linearly extended. 

(iii) Pullback operation: For an independent square 

. 

the pullback .g∗ : K0(V/X
f−→ Y ) → K0(V/X′ f ′

−→ Y ′) is defined by 

.g∗
( [

[V p−→ X]
] )

:=
[
g∗([V p−→ X])

]
and linearly extended.
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Remark 6.10.5 When Y is a point, the blow-up diagram defining . BL(V/X
f−→ pt)

is nothing but the following: 

. 

such that .h : X′ → X is proper, . X′ and S are nonsingular, and . q : BlSX′ → X′
is the blow-up of . X′ along S with .q ′ : E → S the exceptional divisor map. 

Hence .BL(V/X
f−→ pt) is nothing but .BL(V/X), i.e., we have by Bittner’s theorem 

that .K0(V/X → pt) � K0(V/X). Finally note that we always have a group 
homomorphism .K0(V/X → pt) → K0(V/X) since .BlSX′\E � X′\S in the 
diagram above so that . [BlSX′ → X] − [E → X] = [X′ → X] − [S → X] ∈
K0(V/X). 

Before closing this section, we remark that the above .BL(V/X
f−→ Y ) is a 

bivariant ideal of .M(V/X
f−→ Y ) in the following sense [16] and its proof is 

implicitly in the proof of that .K0(V/X
f−→ Y ) is a bivariant theory [170, Theorem 

4.4]. 

Definition 6.10.6 Let . B be a bivariant theory. A bivariant ideal .I ⊂ B consists of 

(graded) subgroups .I(X
f−→ Y ) ⊂ B(X

f−→ Y ) for each .f : X → Y such that 

(i) if .α ∈ I(X
g◦f−−→ Z), then .f∗α ∈ I(Y

g−→ Z) for .f : X → Y confined; 

(ii) if .α ∈ I(X
f−→ Y ), then .g∗α ∈ I(X′ f ′

−→ Y ′) for .g : Y ′ → Y in an independent 
square 

. 

(iii) if .α ∈ I(X
f−→ Y ), then .β • α ∈ I(X′ f ◦h−−→ Y ) for any .β ∈ B(X′ h−→ X) and 

.α • γ ∈ I(X
g◦f−−→ Y ′) for any .γ ∈ B(Y

g−→ Y ′). 

Bivariant ideals are clearly to bivariant theories what ideals are to rings. 

Proposition 6.10.7 

(i) The (object-wise) kernel of a Grothendieck transformation .γ : B → B
′ is a 

bivariant ideal.
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(ii) Given a bivariant ideal .I ⊂ B, the quotient .B/I defined by 

. (B/I)(X → Y ) := B(X → Y )/I(X → Y )

is a bivariant theory with the induced bivariant operations defined as fol-
lows: 

(a) Product: For morphisms .f : X → Y and .g : Y → Z, the product 
operation 

. • : (B/I)i(X
f−→ Y ) ⊗ (B/I)j (Y

g−→ Z) → (B/I)i+j (X
g◦f−−→ Z)

is defined by . [α] • [β] := [α • β].
(b) Pushforward: For morphisms .f : X → Y and .g : Y → Z with f 

confined, the pushforward operation 

. f∗ : (B/I)i(X
g◦f−−→ Z) → (B/I)i(Y

g−→ Z)

is defined by .f∗([α]) := [f∗α]. 
(c) Pullback : For an independent square 

. 

the pullback operation 

. g∗ : (B/I)i(X
f−→ Y ) → (B/I)i(X′ f ′

−→ Y ′)

is defined by .g∗([α]) := [g∗α]. 
Remark 6.10.8 

(i) The definitions of the above three bivariant operations for .B/I in Proposi-
tion 6.10.7 (2) should be denoted differently to avoid some possible confusion 
with those on the original one . B, e.g., the product . •I, the pushforward .[f∗] and 
the pullback .[g∗], but we use the same symbols for the sake of simplicity. 

(ii) These definitions .[α] • [β] = [α •β], .f∗([α]) = [f∗(α)] and . g∗([α]) = [g∗(α)]
mean in other words that the quotient map .Θ : B → B/I defined by 
.Θ(α) := [α] is a Grothendieck transformation, i.e., .Θ(α • β) = Θ(α) • Θ(β), 
.Θ(f∗(α)) = f∗Θ(α) and .Θ(g∗(α)) = g∗Θ(α).
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6.10.2 A Bivariant Motivic Hirzebruch Class 

Theorem 6.10.9 (A Bivariant Motivic Hirzebruch Class) ([170, Theorem 5.1], 
[218, Theorem 5.14]) There exists a unique Grothendieck transformation 

. BTy : K0(V
qp/−) → H(−) ⊗ Q[y]

satisfying “smooth condition” that for a smooth morphism f : X → Y 

. BTy

([
[X idX−−→ X]

])
= Ty(Tf ) • Uf .

Here BTy is the homomorphism BTy : K0(V
qp /X 

f−→ Y )  → H(X 
f−→ Y )  ⊗ Q[y], 

Ty(Tf ) ∈ H(X idX−−→ X) ⊗ Q[y] =  H ∗(X) ⊗ Q[y] is the Hirzebruch class of the 

relative tangent bundle Tf of f and Uf ∈ H(X 
f−→ Y )  is the canonical orientation 

of f . 

Remark 6.10.10 In order to define BTy : K0(V
qp /−) → H(−) ⊗ Q[y], we appeal 

to Fulton–MacPherson’s Grothendieck transformation α : Kalg(−) → Ktop(−) 
between the bivariant algebraic K-theory and the bivariant topological K-theory, for 
which Fulton and MacPherson consider53 the category of quasi-projective varieties 
(see [88, Part II, §1, §2, §3]). 

Remark 6.10.11 For the map to a point aX : X → pt , the above homomorphism 
BTy : K0(V

qp /X → pt) → H(X → pt)⊗Q[y] is equal to the motivic Hirzebruch 
class Ty∗ : K0(V

qp /X) → H∗(X) ⊗ Q[y]. 
Remark 6.10.12 Let γ Br : F(−) → H(−) be Brasselet’s bivariant Chern class [46], 
which is a bivariant-theoretic version of MacPherson–Chern class c∗ : F(−) → 
H∗(−). γ Br : F(−) → H(−) is a Grothendieck transformation satisfying “weak 
smooth condition” that γ Br(1X) = c(T X) ∩ [X] for a smooth variety X, where 

1X ∈ F(X)  = F(X  → pt), c(T X) ∈ H ∗(X) = H(X idX−−→ X) and [X] = [aX] ∈  
H(X → pt) = H∗(X). A conjecture ([170, 218]) is that Brasselet’s bivariant Chern 
class satisfies “strong smooth condition” that γ Br(1f ) = c(Tf ) • Uf for a smooth 

map f : X → Y , where 1f = 1X ∈ F(X 
f−→ Y ). If this conjecture is correct, then 

the following diagram commutes: 

.

53 It remains to see whether the category Vqp of complex quasi-projective varieties could be 
changed to the category Vof complex algebraic varieties. 
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Here γF : K0(V
qp /X → Y )  → F(X → Y )  is defined by γF([V h−→ X]) := h∗1V . 

In the case when y = 0, we have the following commutative diagram: 

. 

Here we note that the Grothendieck transformation γKalg : K0(V
qp /X → Y )  → 

Kalg(X → Y )  is nothing but mC0 :: K0(V
qp /X → Y )  → Kalg(X → Y )  in [170, 

Corollary 5.3]. 
In the case when y = 1, the problem is to construct a bivariant version BΩ(X → 

Y )  of the cobordism group Ω(X) and a bivariant version BL∗ : BΩ(X → Y )  → 
H(X → Y ) ⊗ Q of Cappell–Shaneson’s L-class L∗ : Ω(−) → H∗(−) ⊗ Q in such 
a way that the following diagram commutes: 

. 
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Appendices 

Appendix 1 

In Sect. 6.4.3.3, by (6.30) we define the “iterated” cone .C•
u′,v . In this appendix 

we discuss properties of this cone and show the self-duality (6.32). For that, 
furthermore, we consider a cone of .u : X• → S•: 

. 

Thus, we have built up the following four triangles (three distinguished triangles, 
marked . Δ, and one commutative triangle, marked . �) of the octahedral diagram,
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where the left-hand-sided one is the upper half and the right-hand-sided one is the 
lower half: 

. (A.1) 

Then it follows from the octahedral axiom that there exists a distinguished triangle

. (A.2) 

which completes the above octahedral diagram (A.1) as follows: 

. (A.3) 

where .a ◦ iu′ = iu ◦ p and .u′ ◦ pu = iv ◦ v′. 

Remark A.0.13 .v ◦ u = 0 if and only if .X• u−→ S• v−→ Z• is embedded into an 
octahedral diagram as in (A.3). 

The distinguished triangle (A.2) gives rise to the distinguished triangle 

. (A.4) 

which implies an isomorphism .C•
u′,v[1] ∼= C•

v′ , hence we get 

.C•
u′,v

∼= C•
v′ [−1]. (A.5)
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Now, we get the following “dualizing version” of the octahedral diagram (A.3): 

. 

(A.6) 

Note that the dualizing functor . D sends a distinguished triangle to a distinguished 
triangle. The above octahedral diagram (A.6) is obtained by applying . D to the 
octahedral diagram (A.3) with the arrows reversed, rotating each square by . 180◦
around the axis connecting the upper-left and lower-right corners of the square and 
then exchanging the right and left squares. 

From this “dualizing version” and (A.5) for the octahedral diagram (A.3), we get 

.C•
Dv′,Du

∼= C•
Du′ [−1]. (A.7) 

We also note that we get the following distinguished triangle from the distinguished

triangle (6.30): from which we 
get the isomorphism 

.C•
Du′ ∼= DC•

u′ [1], i.e., C•
Du′ [−1] ∼= DC•

u′ . (A.8) 

Since .C•
u′,v := C•

u′ , it follows from (A.7) and (A.8) that we have 

.DC•
u′,v

∼= C•
Dv′,Du. (A.9) 

Now we assume that we are given an isomorphism .DX•[m] ∼= Z• (where . m :=
2 dimC X) such that the following diagram commutes: 

. (A.10)
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Here we note that this commutativity (A.10) implies the following commutativity: 

. (A.11) 

Then under this assumption we claim that the above (A.9) implies the following 
self-duality of the above “iterated” cone .C•

u′,v: 

.C•
u′,v

∼= DC•
u′,v[2 dimC X]. (A.12) 

In order to claim (A.12), we assume the vanishing condition . Hom(X•, Z•[−1]) =
0, thus the lifting . u′ is unique as remarked above. We note also the uniqueness 
of the lifting . v′, because we get the following exact sequence by applying the 

cohomological functor .Hom(−, Z•) to the distinguished triangle . X• u−→ S• iu−→
C•

u

[1]−→ X•[1]: 

. 0 = Hom(X•[1], Z•) → Hom(C•
u, Z•)

i∗u−→ Hom(S•, Z•) u∗−→ Hom(X•, Z•).

Here .Hom(X•[1], Z•) ∼= Hom(X•, Z•[−1]) = 0 and . u∗i∗u(v′) = u∗(v′ ◦ iu) =
u∗(v) = v ◦ u = 0. 

Indeed, applying the shifting .[m] to the right-hand-sided square of (A.6), we get 
the left square below, thus .DC•

u′,v[m] ∼= C•
Dv′,Du

[m] ∼= C•
Dv′[m],Du[m]: 

. 

Then, using the above commutativities (A.10) and (A.11), we get the right square 
above. Since the right-hand-sided triangle is distinguished, .DC•

u[m] ∼= C•
v [−1] and 

.Diu[m] = p. Since the map .Dv′[m] is the unique lifting of u to .DC•
u[m] ∼= C•

v [−1], 
i.e., .Dv′[m] is the lifting . u′, thus the right square is isomorphic to the right square 
of (A.1). Thus we can claim that .DC•

u′,v[m] ∼= C•
u′,v.
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Then we have the following definition due to Cappell–Shaneson [58, §2] (also 
see [29, Definition 8.1.11]), which is Definition 6.4.22, but is repeated here for the 
sake of convenience: 

Definition A.0.14 Let .X• u−→ S• v−→ Z• be morphisms in the derived category with 
.v ◦ u = 0 and assume .Hom(X•, Z•[−1]) = 0. If there exists an isomorphism 
.Z• ∼= D(X•)[2 dimC X] such that the following diagram commute 

. (A.13) 

then the “iterated” cone .S•
1 := C•

u′,v is also self-dual. Then we say that . S•
1 is obtained 

from . S• by an elementary cobordism or . S•
1 is elementarily cobordant to . S•. 

Here we emphasize that in the above definition the condition 
.Hom(X•, Z•[−1]) = 0, i.e., . u′ being the unique lifting of u, is crucial, otherwise 
in the discussion above we cannot necessarily claim that the map .Dv′[m] is the 
lifting . u′, thus the self-duality (A.12) holds. Without assuming1 this vanishing 
condition and also by specifying what kind of isomorphism of self-duality, the 
above definition of elementary cobordism is improved by defining it using Youssin’s 
self-dual octahedral diagrams from the beginning so that the self-duality (A.12) 
holds, as done in [52, 221]. Self-dual octahedral diagrams are classified into two 
types; symmetric or even type and skew-symmetric or odd type . For details, see 
[52, 221]. 

Appendix 2 

For this appendix, e.g., see [142]. We take a closer look at .L(E) = ∏rank E
i=1

αi

tanh αi
. 

Let E be a complex vector bundle of rank n. Then we have the following 

.L(E) =
n∏

i=1

αi

tanh αi

=
n∏

i=1

(
1 +

∞∑
k=1

B2k

4k

(2k)! (α2
i )

k

)
(A.14)

1 Instead of assuming the vanishing condition .Hom(X•, Z•[−1]) = 0 in Definition A.0.14, 
we could modify Definition A.0.14 just by requiring the self-duality (A.12), i.e., if (A.13) is  
commutative and the self-duality (A.12) holds, then we say that . S•

1 is obtained from . S• by an 
almost-elementary cobordism. Since .Hom(X•, Z•[−1]) = 0 is not assumed in Youssin’s self-
dual octahedral diagram, Youssin’s elementary cobordism is an almost-elementary cobordism. 
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where .B2k are the Bernoulli numbers: . B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , B8 =

− 1
30 , B10 = 5

66 , B12 = − 691
2730 , · · · . This is due to the following formula 

. 
x

1 − e−x
= 1 + x

2
+

∞∑
k=1

B2k

x2k

(2k)! .

Hence .L(E) is of course a symmetric function (or power series) of .α1, α2, · · · , αn, 
thus it is expressed in terms of Chern classes of E. Furthermore it is a symmetric 
function of .α2

1, α2
2, · · · , α2

n, thus it is expressed in terms of the elementary symmet-
ric polynomials of .α2

1, α2
2, · · · , α2

n, i.e.,

• .σ1(α
2
1, α2

2, · · · , α2
n) = α2

1 + α2
2 + · · · + α2

n,

• .σ2(α
2
1, α2

2, · · · , α2
n) =∑1�j<k�n α2

j α
2
k = α2

1α2
2 + α2

1α2
2 + · · · + α2

n−1α
2
n,

• .· · · · · ·
• . σn(α

2
1, α2

2, · · · , α2
n) = α2

1α2
2 · · · α2

n.

These elementary symmetric polynomials are the terms of the expansion of 

. 

n∏
i=1

(1 + α2
i ).

This can be explained a bit more geometrically as follows. If we consider the 
conjugate . E, the the Chern polynomial of .E ⊕ E is 

. ct (E ⊕ E) = ct (E)ct (E) =
n∏

i=1

(1 + αit)

n∏
i=1

(1 − αit) =
n∏

i=1

(1 − α2
i t

2)

which follows from the fact that .cj (E) = (−1)j cj (E). Then . c2j+1(E ⊕ E) = 0
and .c2j (E ⊕ E) = (−1)j σj (α

2
1, α2

2, · · · , α2
n), in other words 

. σj (α
2
1, α2

2, · · · , α2
n) = (−1)j c2j (E ⊕ E).

It turns out that this is nothing but the j-th Pontryagin class .pj (E) of the complex 
vector bundle E, which is defined by 

. pj (E) := pj (ER) (ER is the underlying real vector bundle of E)

:= (−1)j c2j (ER ⊗ C) (by the definition of Pontryagin class)

= (−1)j c2j (E ⊕ E) (since ER ⊗ C ∼= E ⊕ E)

Therefore the above class .L(E) is a symmetric polynomial of Pontryagin classes 
.pj (E), thus it is usually expressed as 

.L(E) = L (p1(E), p2(E), · · · , pn(E)) . (A.15)
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Here are some lower terms:letting .pj := pj (E), 

.L(E) = 1 + 1

3
p1 + 1

45
(7p2 − p2

1) + 1

945
(62p3 − 13p1p2 + 2p3

1)+ (A.16) 

. 
1

14175
(381p4 − 71p3p1 − 19p2

2 + 12p2p
2
1 − 3p4

1) + · · · .

For more higher terms, e.g., see [160, §4.3 The L-genus]. The equality . pj (E) =
(−1)j c2j (E ⊕ E), i.e., .(−1)jpj (E) = c2j (E ⊕ E) implies that 

. 1 − p1 + p2 + · · · + (−1)npn = (1 + c1 + · · · + cn)

× (1 − c1 + c2 + · · · + (−1)ncn

)
(A.17) 

where .pi := pi(E) and .ci := ci(E). From (A.17) we get 

.pj = c2
j +

j∑
k=1

(−1)k2cj−kcj+k (A.18) 

Here we note that .c0 = 1. Some first lower terms of (A.18) are the following:

• .p1 = c2
1 − 2c2,

• .p2 = c2
2 − 2c1c3 + 2c4,

• .p3 = c2
3 − 2c2c4 + 2c1c5 − 2c6,

• .p4 = c2
4 − 2c3c5 + 2c2c6 − 2c1c7 + 2c8,

• .p5 = c2
5 − 2c4c6 + 2c3c7 − 2c2c8 + 2c1c9 − 2c10. 

So, by plugging (A.18) into (A.14), we can express .L(E) in terms of 
.c1(E), · · · , cn(E). Now, due to (A.14), it is clear that the following power series 

.

n∏
i=1

√
αi

tanh
√

αi

(A.19) 

is clearly a symmetric polynomial of .α1, α2, · · · , αn, not of .α2
1, α2

2, · · · , α2
n. Hence 

it is expressed in terms of Chern classes of E, and in (A.15) each Pontryagin class 
.pj (E) is replaced by each Chern class .cj (E), thus it is expressed as 

.L (c1(E), c2(E), · · · , cn(E)) , (A.20) 

which is usually called L-class of the complex vector bundle. The first lower terms
of this class is the same as (A.16) with .pj replaced by . cj . However, we still 
call .L(E) = ∏n

i=1
αi

tanh αi
the Hirzebruch L-class of E, unless some confusion 

with (A.19) is possible.
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Remark A.0.15 This remark has nothing to do with the theme of the present survey. 

But just as a curiosity, we add this remark as to the term .B2k
4k

(2k)! (α2
i )

k of the above 

formula (A.14). First we note that .B2k
4k

(2k)! (α2
i )

k = B2k
(2αi)

2k

(2k)! . If we replace . αi

by . π , then we have the following well-known relation (discovered by L. Euler) 
between the Bernoulli number .B2k and the Riemann zeta function .ζ(2k) for any 
positive integer k (e.g., see [17, §5.9]): 

. ζ(2k) = (−1)k+1 (2π)2k

2(2k)! B2k or B2k = (−1)k+1 2(2k)!
(2π)2k

ζ(2k).
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editors, Handbook of Geometry and Topology of Singularities II, Springer, 2022, 223–308. 

48. J.-P. Brasselet, Characteristic classes, In J. Cisneros Molina, L. Dũng Tráng, and J. Seade, 
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Preparation Theorem for definable functions, which gives us the opportunity to 
state some needed theorems as well as to describe the way the results presented 
in the second part fit in the landscape. Our stratification theorem (Corollary 7.6.9) 
is obtained as a byproduct of two foregoing results of the author that are proved in 
Sects. 7.5 and 7.6 respectively. The first one asserts that, given a family definable 
in an o-minimal structure, there is a regular vector, up to a definable family of bi-
Lipschitz homeomorphisms. The second one is a bi-Lipschitz version of the famous 
Hardt’s theorem. We give proofs of these two theorems that avoid the use of the real 
spectrum. 

7.1 Introduction 

The study of the Lipschitz geometry of singularities that arise in algebraic and 
analytic geometry began when T. Mostowski constructed stratifications of complex 
analytic sets that admit a Lipschitz version of Thom-Mather isotopy theorem [17]. 
This result was extended by A. Parusiński to real analytic geometry [22, 23], and his 
proof was then adapted to polynomially bounded o-minimal structures [18] (see also  
[12]). The Lipschitz geometry of singularities was investigated later independently 
by the author of the present paper [30–34] (see [35] for a complete expository), as 
well as by several other authors [1–4, 14, 15, 26] (among many others). 

In [30], the author proved a bi-Lipschitz triviality theorem, which can be 
considered as a bi-Lipschitz version of Hardt’s theorem (recalled in Theorem 7.6.3 
below). These notes provide a new proof of this theorem and then derive existence 
of definably locally bi-Lipschitz trivial stratifications. We also include a short 
introduction to the theory of the Lipschitz geometry of sets that are definable in 
o-minimal structures, providing many necessary definitions, proofs, and references. 

The existence of locally bi-Lipschitz trivial stratifications and the description of 
the aspect of singularities occurring in tame geometry (subanalytic, semialgebraic, 
or o-minimal) from the metric point of view that was achieved during the four last 
decades recently turned out to be valuable for applications to analysis of PDE’s and 
geometric measure theory. In [33, 34], the author relied on it so as to compute the . Lp

cohomology of differential forms of bounded subanalytic manifolds, not necessarily 
compact. More recently, these techniques turned out to be useful to study the theory 
of currents [8], as well as to investigate the Sobolev spaces of these manifolds [11, 
28, 29, 36], which is valuable for applications to the theory of PDE on domains with 
non Lipschitz boundary [37]. 

The main difficulty of the proof of the bi-Lipschitz version of Hardt’s theorem 
[30] (see Theorem 7.6.3 below) is the “regular vector theorem” [30, Theorem .3.13] 
(see Theorem 7.3.2 and Corollary 7.3.4). This theorem asserts that, given a set 
.A ⊂ R

n which is definable in an o-minimal structure, there is a definable bi-
Lipschitz homeomorphism .h : Rn → R

n such that .h(A) has a regular vector, which 
means that there is a vector such that the angle between it and all the tangent spaces 
to .h(A) (at its regular points) is bounded away from zero. We prove this result,
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which does not require the structure to be polynomially bounded and which is of 
its own interest. The regular vector theorem was actually also the key ingredient of 
the Lipschitz conic structure theorem in [34], itself useful later to study Sobolev 
spaces of definable manifolds [28, 29, 36], and was of service to M. Czapla to show 
existence of triangulations inducing Whitney stratifications [7]. 

Quite often, especially if, like in the aforementioned applications of Lipschitz 
geometry, Lipschitz isotopies are necessary, one needs a regular vector not only 
for one single set but for a definable family of sets. In [30], this is obtained 
by applying the regular vector theorem to the generic fiber of a family, relying 
on the compactness of the Stone space of the Boolean algebra of definable sets 
(sometimes called the real spectrum). This has nevertheless the inconvenience to 
involve abstract material to which specialists of PDE or geometric measure theory 
may be unfamiliar, and to force to work with an o-minimal structure that expands an 
arbitrary real closed field, that may be non archimedean and totally disconnected, 
which is prone to generate technical complications. 

In the present article, we give a parameterized version of the regular vector theo-
rem (Theorem 7.3.2) on o-minimal structures following the proof given in [30], but 
relying only on very elementary methods. We also combine it with the techniques 
of [34] to prove a local version, with additional properties (Theorem 7.5.14), which 
was used in the latter article to prove the Lipschitz conic structure of subanalytic 
sets. We then provide a proof of the bi-Lipschitz version of Hardt’s Theorem on 
polynomially bounded o-minimal structures (Theorem 7.6.3), and derive existence 
of definably bi-Lipschitz trivial stratifications (Corollary 7.6.9). 

Some Notations and Definitions Throughout this article, .m, n, j , and k will stand 
for integers. The origin of .Rn will be denoted . 0Rn . When the ambient space will 
be obvious from the context, we will however omit the subscript . Rn. We write 
.e1, . . . , en for the canonical basis of . Rn. By . C k mapping on a set .X ⊂ R

n, we  
mean a mapping that extends to a .C k mapping on a neighborhood of X in . Rn. 

We write . |x| for the euclidean norm and .d(x, y) for the euclidean distance (and 
the distance to a subset .P ⊂ R

n will be denoted by .d(x, P )). Given .x ∈ R
n and 

.ε > 0, we denote by .B(x, ε) the open ball of radius . ε centered at x (for the euclidean 
norm). The unit sphere of . Rn centered at the origin is denoted .Sn−1. Given a subset 
A of . Rn, we respectively denote the closure and interior of A by .cl(A) and .int (A), 
and set .δA = cl(A) \ int (A). 

A mapping .ξ : A → R
k is said to be Lipschitz if there is a constant L such that 

for all x and . x′ in A: 

. |ξ(x) − ξ(x′)| ≤ L|x − x′|.

We say that . ξ is L-Lipschitz if we wish to specify the constant. The smallest 
nonnegative number L having this property is called the Lipschitz constant of . ξ
and is denoted . Lξ . By convention, if A is empty then . ξ is Lipschitz and . Lξ = 0. A  
mapping . ξ is bi-Lipschitz if it is a homeomorphism onto its image such that . ξ and 
.ξ−1 are both Lipschitz.



414 G. Valette

Given two functions . ζ and . ξ on a set .A ⊂ R
n with .ξ ≤ ζ we define the closed 

band .[ξ, ζ ] as the set: 

. [ξ, ζ ] := {(x, y) ∈ A × R : ξ(x) ≤ y ≤ ζ(x)}.
The open and semi-open bands .(ξ, ζ ), .(ξ, ζ ], and .[ξ, ζ ), are then defined analo-
gously. 

Given a subset B of A, we write “.ξ � ζ on B” when there is a positive constant 
C such that .ξ(x) ≤ Cζ(x) for all .x ∈ B. We write “.ξ ∼ ζ on B” or “. ξ(x) ∼ ζ(x)

for x in B” whenever both .ξ � ζ and .ζ � ξ hold on B. 

7.2 O-Minimal Structures 

A structure (expanding the field .(R,+, .)) is a family .S = (Sn)n∈N such that for 
each n the following properties hold 

(1) . Sn is a boolean algebra of subsets of . Rn, 
(2) If .A ∈ Sn then .R × A and .A × R belong to .Sn+1, 
(3) . Sn contains .{x ∈ R

n : P(x) = 0}, for all .P ∈ R[X1, . . . , Xn], 
(4) If .A ∈ Sn then .π(A) belongs to .Sn−1, where .π : Rn → R

n−1 is the standard 
projection onto the first .(n − 1) coordinates. 

A structure . S is said to be o-minimal if in addition: 

(5) Any set .A ∈ S1 is a finite union of intervals and points. 

A set belonging to . Sn, for some  n, is called a definable set, and a map whose graph 
is in some . Sn is called a definable map. 

A structure . S is said to be polynomially bounded if for each definable function 
.f : R → R, there exists a positive number a and an .n ∈ N such that . |f (x)| < xn

for all .x > a. 
We fix an o-minimal structure . S for all this article. It will be assumed to be  

polynomially bounded in Sects. 7.2.2 and 7.6 only. For the other sections, this 
assumption is unnecessary. 

We refer to [6, 9] for all the basic facts and definitions about o-minimal structures 
that we shall use all along this article, such as cell decompositions or curve selection 
lemma. We however recall a few definitions helpful to understand the statements of 
the theorems. 

It is a fundamental feature of o-minimal structures that it is possible to construct 
a cell decomposition of . Rn that is compatible with a given arbitrary finite collection 
of elements of . Sn, in the sense that the given sets are unions of cells of this 
decomposition (the word “adapted” is used in [6], instead of compatible). 

The definition of cell decompositions being inductive on the dimension of the 
ambient space, it is obvious that if . C is a cell decomposition of .Rn and if . π :
R

n → R
k (with .k ≤ n) is the canonical projection, then .{π(C) : C ∈ C} is a cell 

decomposition. We will denote it by .π(C).
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Definition 7.2.1 A stratification of a subset of .Rn is a finite partition of it into 
smooth submanifolds of . Rn, called strata. A  stratification is compatible with a set  
if this set is the union of some strata. It is definable if so are the strata. 

Remark 7.2.2 In the above definition, we write “smooth” without specifying the 
degree of smoothness. It is well-known that one can construct Whitney .(b) or 
Verdier .(w) regular definable .C k stratifications of any given definable set [27, 35], 
for every given k. When the structure has .C ∞ cell decomposition, we can construct 
regular stratifications that have .C ∞ strata. Definable .C k manifolds admit definable 
.C k−1 tubular neighborhoods [6]. 

Definition 7.2.3 We say that .(At )t∈Rm is a definable family of subsets of . Rn if the 
set 

. A :=
⋃

t∈Rm

{t} × At

is a definable subset of .Rm × R
n. 

We will sometimes regard a definable subset .A ⊂ R
m ×R

n as a definable family, 
setting for .t ∈ R

m: 

. At := {x ∈ R
n : (t, x) ∈ A}.

Given two definable families .A ⊂ R
m × R

n and .B ⊂ R
m × R

k , we say that 
.Ft : At → Bt , .t ∈ R

m, is a definable family of mappings if the family of the graphs 
.(ΓFt )t∈Rm , is a definable family of subsets of .Rn+k . We will sometimes regard a 
function .f : A → R, .A ∈ Sm+n, as a family of functions .ft : At → R, .t ∈ R

m, 
setting .ft (x) := f (t, x). 

A definable family of mappings .Ft : At → Bt , .t ∈ R
m is uniformly Lipschitz 

(resp. bi-Lipschitz) if there exists a constant L such that . Ft is L-Lipschitz (resp. . Ft

and .F−1
t are L-Lipschitz) for all .t ∈ R

m. 

Given .B ∈ Sm and A as above, we also define the restriction of A to B: 

.AB := A ∩ (B × R
n). (7.1) 

Define finally the m-support of A by

. suppm(A) := {t ∈ R
m : At 
= ∅}.

Definition 7.2.4 Let .A ∈ Sm+n. We will say that  A is definably topologically 
trivial along .U ⊂ R

m if there exist .t0 ∈ U and a definable homeomorphism . H :
U × At0 → AU , .(t, x) �→ (t, ht (x)). The mapping h is then called a trivialization 
of the set A along U . 

The following theorem is sometimes called “definable Hardt’s theorem”, because 
it is the o-minimal counterpart of a theorem proved by R. Hardt about semialgebraic
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families of sets [13]. In this theorem, by definable partition of a set, we mean a 
finite partition of it into definable sets. 

Theorem 7.2.5 [[6, Theorem 5.22]] Given .A ∈ Sm+n, there exists a definable 
partition of .Rm such that A is definably topologically trivial along each element 
of this partition. 

Remark 7.2.6 We shall make use of the following immediate consequence of this 
theorem: given .A ∈ Sm+n, there is a definable partition . P of .R

m such that, for every 
.B ∈ P, . Et is connected for every connected component E of .AB and all .t ∈ B. 

Definition 7.2.7 Let .A ∈ Sm+n. We will say that A is definably bi-Lipschitz 
trivial along .U ⊂ R

m if it is definably topologically trivial along this set, with 
a trivialization .ht : At0 → At which is bi-Lipschitz for every .t ∈ U . 

In Sect. 7.6, we show (Theorem 7.6.3) that definable bi-Lipschitz triviality holds 
up to a definable partition of the parameter space when the o-minimal structure 
is polynomially bounded (which is a necessary condition), giving a Lipschitz 
counterpart of Theorem 7.2.5. 

Remark 7.2.8 In the above definition, the Lipschitz constant of . ht (or . h−1
t ) is a  

function of t . This function is not required to be bounded or locally bounded, 
but, since it is a definable function, it must be continuous on the elements of a 
definable partition of U . As a matter of fact, possibly refining the partition provided 
by Theorem 7.6.3, we see that we could require the Lipschitz constants of the 
trivialization to be locally bounded on every element of this partition (see also 
Remark 7.6.7 on this issue). 

7.2.1 Bi-Lipschitz Trivial Stratifications 

In his pioneer’s work [17], Mostowski constructed stratifications, called today 
Mostowski’s Lipschitz stratifications, that are locally bi-Lipschitz trivial along the 
strata (see Theorem 7.2.10 below). 

Definition 7.2.9 A stratification . Σ of a set X is locally bi-Lipschitz trivial if for 
every .S ∈ Σ , there are an open neighborhood . VS of S in X and a smooth retraction 
.πS : VS → S such that every .x0 ∈ S has an open neighborhood W in S for which 
there is a bi-Lipschitz homeomorphism 

. Λ : π−1
S (W) → π−1

S (x0) × W,

satisfying: 

(i) .πS(Λ−1(x, y)) = y, for all .(x, y) ∈ π−1
S (x0) × W . 

(ii) .Σx0 := {π−1
S (x0)∩Y : Y ∈ Σ} is a stratification of .π−1

S (x0), and . Λ(π−1
S (W)∩

Y ) = (π−1
S (x0) ∩ Y ) × W , for all .Y ∈ Σ .
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When everything is definable (i.e. when so are X, . Λ, . πS , and . Σ), we say that . Σ is 
definably locally bi-Lipschitz trivial. 

We say that a vector field v on a subset of a set X stratified by a stratification . Σ is 
tangent to the strata, when .v(x) ∈ TxS for all .x ∈ S ∈ Σ (at which v is defined). 

One of the main achievements of [17] can then be summarized as: 

Theorem 7.2.10 Every complex analytic set .X ⊂ C
n admits a stratification having 

the following property: for every j , each locally Lipschitz vector field tangent to the 
strata on . Xj (denoting the union of the strata of dimension not greater than j ) can 
be extended to a locally Lipschitz vector field on .Xj+1 that is also tangent to the 
strata. This stratification is locally bi-Lipschitz trivial along the strata. 

The local bi-Lipschitz trivializations of Mostowski’s Lipschitz stratifications are 
actually provided by the flow of a Lipschitz vector field tangent to the strata. 
More generally, the extension property of Lipschitz tangent vector fields that 
enjoy Mostowski’s stratifications ensures a Lipschitz version of the famous Thom-
Mather’s First Isotopy Lemma. 

Theorem 7.2.10 was extended to the real analytic and subanalytic categories 
by A. Parusiński [22, 23], and then to polynomially bounded o-minimal structures 
[18] by N. Nguyen together with the author of the present article (see also [12]). 
We construct in Sect. 7.6 some stratifications that are locally definably bi-Lipschitz 
trivial. We shall make use of the so-called preparation theorem for definable 
functions that we recall below, with a short survey on it (suggested by the referee). 

7.2.2 The Preparation Theorem 

This theorem was established in the subanalytic category by A. Parusiński in [23, 24] 
so as to construct Lipschitz stratifications for subanalytic sets. An independent 
proof was then given by J.-M. Lion and J.-P. Rolin [16], who also provided a 
generalization to the ln-exp structure (which is non polynomially bounded). It 
admits a version that holds on any polynomially bounded o-minimal structure, 
which we present now. 

We thus assume for this subsection the structure to be polynomially bounded. 
We denote by . F the valuation field of the structure, which is the subfield of . R
constituted by all the real numbers α for which the function . (0,+∞)  x �→ xα ∈
R is definable. 

Theorem 7.2.11 [10, Theorem . 2.1] Given some definable functions . f1, . . . , fl :
R

n → R, there is a definable partition . C of . Rn such that for each set .S ∈ C, 
there are exponents .α1, . . . , αl ∈ F , as well as definable functions . θ, a1, . . . , al :
R

n−1 → R, satisfying .Γθ ∩ S = ∅ and for .x = (x̃, xn) ∈ S ⊂ R
n−1 × R and 

.i ∈ {1, . . . , l}: 

.fi(x) ∼ |xn − θ(x̃)|αi ai(x̃). (7.2)
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A function . fi having the property (7.2) is called reduced (in [16, 35]), and the 
function .Ui(x) := fi(x)

|xn−θ(x̃)|αi ai (x̃)
is called the unit of its reduction. The strength of 

Parusiński’s original version of the Preparation Theorem [23, 24] lied in the very  
precise description of the units . Ui , which could be written .ψ ◦ Φ, with . ψ analytic 
function on .cl(Φ(S)) and .Φ = (Φ1, . . . , Φk) bounded mapping on S of the form 
.Φj = |xn − θ(x̃)|βj · bj (x̃) (for each j ), with . bj definable function and . βj ∈
F . Theorem 7.2.11, although being much more general (it deals with an arbitrary 
polynomially bounded o-minimal structure), is thus a partial generalization, since it 
just provides units that are bounded away from zero and infinity (which is however 
satisfying for many purposes, see below). It was nevertheless established [18] that 
the units can be written as the composite of a definable Lipschitz function . ψ with a 
mapping . Φ as above. To the best knowledge of the author, it is not known whether 
this function . ψ can always be chosen .C p with .p ≥ 1 (on .cl(Φ(S)), with . Φ as 
above). 

This precise description of the units is essential to construct Lipschitz tangent 
vector fields on stratified sets. Such vector fields lying in the tangent bundles of the 
strata, their constructions demand to have bounds for the derivative of the functions 
describing the strata. Nevertheless, since the present work, unlike [17, 18, 23], 
avoids constructing Lipschitz vector fields, we are able to spare this technical 
description of the units, which accounts for the fact that the far-reaching partial 
generalization of the Preparation Theorem given by Theorem 7.2.11 will be enough 
for our purpose. 

The proof of Theorem 7.2.11 given in [10] relies on model theoretic principles, 
establishing a valuation property for definable functions which is of its own interest 
but which unfortunately goes beyond the scope of this survey. In the structure of 
semialgebraic sets [5], which is the smallest o-minimal structure (yet very valuable 
for applications), we however can give the following fairly short proof (taken from 
[30]): 

Proof of Theorem 7.2.11 in the Semialgebraic Case As above, a function that sat-
isfies (7.2) (for some semialgebraic functions . ai and . θ , and .αi ∈ Q) will be called 
reduced. 

We first show that the product of two reduced semialgebraic functions on a set S 
is reduced on every element of a semialgebraic partition of S. Take two semialge-
braic functions . f1 and . f2 on a set S such that .f1(x̃, xn) ∼ |xn − θ1(x̃)|α1a1(x̃) and 
.f2(x̃, xn) ∼ |xn − θ2(x̃)|α1a2(x̃), for some semialgebraic functions . a1, a2, θ1, θ2
and .α1, α2 ∈ Q. There is a semialgebraic partition . P of S such that on each 
.D ∈ P, .(θ1 − θ2) has constant sign (positive, negative, or zero), and the functions 
.|xn − θi(x̃)|, |θi(x̃) − θj (x̃)|, .i, j = 1, 2, are comparable with each other (for . ≤). 
Fix .D ∈ P. It is no loss of generality to assume .|xn − θ2(x̃)| ≤ |xn − θ1(x̃)| for 
.(x̃, xn) ∈ D. We distinguish two cases. 

Case 1: .|xn − θ2| ≤ |θ2 − θ1| on D. If .θ1 ≡ θ2 on D then there is nothing to 
prove. Otherwise, either .(xn − θ2) and .(θ2 − θ1) have the same sign on D or
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.
∣∣xn − θ2

θ2 − θ1

∣∣ ≤ 1

2
on this set (since we assume .|xn − θ2(x̃)| ≤ |xn − θ1(x̃)|). In 

either of these two possibilities: 

. |xn − θ1| = |θ2 − θ1|(1 + xn − θ2

θ2 − θ1
) ∼ |θ2 − θ1|,

which clearly yields that .f1 · f2 is reduced on D. 
Case 2: .|θ2 − θ1| ≤ |xn − θ2| on D. Writing now 

. xn − θ1 = (xn − θ2)(1 + θ2 − θ1

xn − θ2
),

it is easy to see that a similar argument applies (see [16] or [35, lemma 1.6.7] 
for more details, these tricks are actually taken from [16]) to show that .f1 · f2 is 
reduced on D. 

Observe that this argument has also shown that a suitable refinement of the 
partition allows to assume that the reductions of two given functions involve the 
same . θ . As we can always take a common refinement of finitely many given 
semialgebraic partitions, we therefore just have to show the theorem in the case 
of one single function f . 

We start by proving the theorem in the case where f is a polynomial on a 
semialgebraic set S. In this case, there is a semialgebraic partition . P of S such 
that on each .D ∈ P: 

.f (x̃, xn) = a(x̃)(xn−ξ1(x̃)) · · · (xn−ξk(x̃))·(x2
n+ζ 2

1 (x̃)) · · · (x2
n+ζ 2

l (x̃)), (7.3) 

for some semialgebraic functions .ξ1, . . . , ξk, ζ1, . . . , ζl (a being the leading coef-
ficient). Fix .D ∈ P. Partitioning D if necessary, we can assume . x2

n and .ζ 2
i (x̃) to 

be comparable (for . ≤) on  D for each i, which means that .(x2
n + ζ 2

i (x̃)) is . ∼ on 
D to one of these two functions (for each i), and consequently, is reduced. By the 
above, since all the terms of the product displayed in the right-hand-side of (7.3) are  
reduced, so must be f . 

We now prove the theorem for an arbitrary semialgebraic function .f : Rn → R. 
There is a semialgebraic partition . P of .Rn such that for every .S ∈ P, there is 
an .(n + 1)-variable nonzero polynomial, say .P(x, y) = ∑d

i=0 ai(x)yi , such that 
.P(x, f (x)) ≡ 0 on S. Fix any .S ∈ P. Refining . P if necessary, we can assume the 
functions .ai(x)f (x)i to be of constant sign and comparable with each other (for . ≤) 
on S. Let  I (resp. J ) denote the set of all the integers .i ≤ d such that . ai(x)f (x)i

is nonnegative (resp. negative) on S, and let .i0 ∈ I as well as .j0 ∈ J be such that 
.ai0(x)f (x)i0 = maxi∈I ai(x)f (x)i and .−aj0(x)f (x)j0 = maxj∈J −aj (x)f (x)j . 
We have on S: 

.ai0(x)f (x)i0 ∼
∑

i∈I

ai(x)f (x)i = −
∑

j∈J

aj (x)f (x)j ∼ −aj0(x)f (x)j0 ,
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and therefore (refining the partition, we can suppose that f has constant sign on S, 
we thus assume it to be positive) 

.f (x) ∼
(−aj0(x)

ai0(x)

)1/(i0−j0)

. (7.4) 

As .ai0(x) and .aj0(x) are polynomials, by the above, refining . P if necessary, we 
can assume that these are reduced functions. Clearly, . 1

ai0 (x)
is then also reduced, 

and, since we have established that the product of two reduced functions can be 
reduced, so will be the rational fraction .aj0(x) · 1

ai0 (x)
on every .S ∈ P, after an extra 

refinement of the partition. By (7.4), this shows the desired fact. ��

7.3 The Regular Vector Theorem 

We denote by .Gn
k the Grassmannian of k-dimensional vector subspaces of . Rn, and 

we set .Gn := ⋃n
k=1 G

n
k as well as .Gn∗ := ⋃n−1

k=1 G
n
k . 

Given a definable set .A ⊂ R
n, we denote by .Areg the set constituted by all the 

points of A at which this set is a .C 1 manifold (without boundary, of dimension 
.dim A or smaller). Define .τ(A) as the closure of the set of vector spaces that are 
tangent to A at a regular point, i.e.: 

. τ(A) := cl({TxA ∈ G
n : x ∈ Areg}).

Given an element . λ of .Sn−1 and a subset .Z ⊂ G
n we set (caution, here Z is not 

a subset of . Rn): 

. d(λ, Z) := inf{d(λ, T ) : T ∈ Z},

with .d(λ,∅) := +∞. 

Definition 7.3.1 Let .A ∈ Sn. An element . λ of .Sn−1 is said to be regular for the 
set A if there is .α > 0 such that: 

. d(λ, τ (A)) ≥ α.

More generally, we say that .λ ∈ Sn−1 is regular for .A ∈ Sm+n if there exists . α > 0
such that for any .t ∈ R

m: 

.d(λ, τ (At )) ≥ α. (7.5) 

We then also say that . λ is regular for the family .(At )t∈Rm . A  subset .C ⊂ Sn−1 is 
regular for a set .A ∈ Sm+n if so are all the elements of .cl(C).
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If .λ ∈ Sn−1 is regular for .A ∈ Sm+n, it is regular for .At ∈ Sn for all .t ∈ R
m. 

But it is indeed even stronger since in (7.5), the angle between the vector . λ and the 
tangent spaces to the fibers is required to be bounded below away from zero by a 
positive constant independent of the parameter t . 

Regular vectors do not always exist, even if the considered set has empty interior 
(which is clearly a necessary condition), as it is shown by the simple example of a 
circle. Nevertheless, when the considered sets have empty interior, up to a definable 
bi-Lipschitz map, we can find such a vector: 

Theorem 7.3.2 Let .A ∈ Sm+n such that . At has empty interior for every .t ∈ R
m. 

There exists a uniformly bi-Lipschitz definable family of homeomorphisms . ht :
R

n → R
n, .t ∈ R

m, such that . en is regular for the family .(ht (At ))t∈Rm . 

Remark 7.3.3 In the above theorem, the family . ht is not required to be Lipschitz 
nor continuous with respect to the parameter .t ∈ R

m. It is nevertheless continuous 
for generic parameters (see [6, Lemma 5.17] or [35, Proposition 2.4.9]). Moreover, 
using Proposition 7.6.5 below, one could see that, along the elements of a suitable 
partition of . Rm, . ht and .h−1

t may be required to be Lipschitz with respect to the 
parameters on compact sets. 

In the case .m = 0, we have the following immediate corollary which was proved 
in [30]: 

Corollary 7.3.4 Let .A ∈ Sn be of empty interior. There exists a definable bi-
Lipschitz homeomorphism .h : Rn → R

n such that . en is regular for .h(A). 

The example of a circle that we already mentioned points out the fact that it is 
not possible for the homeomorphism given by this corollary to be always smooth, 
even if so is A. 

The proof of this theorem is given in Sect. 7.5.4. In order to motivate the 
material that we are going to introduce for this purpose in Sects. 7.4 and 7.5 
(especially Definition 7.5.2 and Theorem 7.5.4), let us now give a brief outline 
of the construction of this homeomorphism (we assume .m = 0 in the outline for 
simplicity), with explicit references to the key results and definitions. 

It is actually easy to see that given .A ∈ Sn, there is a covering of . Rn by finitely 
many sets, say .G1, . . . ,Gl , such that each .Gk ∩ A has a regular vector . λk . As a  
matter of fact, for each k, there is a linear automorphism . hk such that the vector . en

is regular for .hk(Gk ∩ A). The problem is that it is not easy to “paste” these “local 
embeddings” .h1, . . . , hl into a bi-Lipschitz map .h : Rn → R

n. Somehow, the idea 
will be to define h on .

⋃k
i=1 Gi inductively on k, by means of the . hi’s, starting with 

.h = h1. 
We introduce for this purpose an “induction machinery”, called regular sys-

tems of hypersurfaces (Definition 7.5.2). Extending h from .
⋃k

i=1 Gi to . 
⋃k+1

i=1 Gi

somehow requires to change coordinates, and the transition map .hk+1 ◦ h−1
k can 

be interpreted as a turn from the direction . λk to the direction .λk+1. These turns 
could make it difficult to extend a bi-Lipschitz mapping to a bi-Lipschitz mapping 
for we might come back to our starting point. Working with a regular system of
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hypersurfaces H makes it possible to turn “without turning back” (see (7.8) as  
well as (ii) of Definition 7.5.2), progressing in a zigzag but somehow always going 
toward the same Lipschitz upper half-space .Gb(H). 

The main difficulty is therefore the proof of Theorem 7.5.4, which yields 
existence of a suitable regular system of hypersurfaces. In the proof of this theorem, 
the trick to avoid to “turn back” (in the sense of (ii) of Definition 7.5.2) is to  
choose .λk+1 in the same connected component as . λk of the sets of all the regular 
vectors of the previous step (see Proposition 7.5.5). The key lemma on this issue 
is Lemma 7.5.10, which relies on the fact that the fiber .̃π−1

e (λ), for each e and . λ
in .Sn−1 (see (7.9)), is a connected curve of length at least 2, which leaves enough 
space to choose our regular vector (see Remark 7.5.6). 

The proof of Theorem 7.5.4 is splitted into four steps, and a more explicit outline 
of it is provided before the first step (see Sect. 7.5.3). Moreover, the second and third 
steps are preceded by a paragraph that motivates them and gives some more details 
on their proof. 

Remark 7.3.5 Mostowski’s work [17] involved establishing results about existence 
of regular projections (see also [14, 20, 21, 23]). Existence of a regular vector is 
closely related to existence of a regular projection but not completely equivalent 
[19, 20]. This is however not the main difference between Corollary 7.3.4 and the 
theorems of [17, 20, 21, 23]: Corollary 7.3.4 provides one single vector which is 
regular for the whole image of the considered set by some definable bi-Lipschitz 
mapping whereas the theorems of [17, 20, 21, 23] provide a finite set of projections 
such that, at each point of the considered set itself, at least one of them is regular. 

7.4 A Few Lemmas on Lipschitz Geometry 

7.4.1 Regular Vectors and Lipschitz Functions 

Proving Theorem 7.3.2 will require to prove parameterized versions of all the 
lemmas and propositions of [30]. In [15], K. Kurdyka and A. Parusiński provided 
a parameterized version of the “L-regular cell decomposition theorem” [14], which 
enabled them to generalize their proof of Thom’s gradient conjecture on o-minimal 
structures. We start with a result of [15] that will be useful for our purpose. 

Given a and b in a definable connected set A, let:  

. dA(a, b) := inf{length(γ ) : γ : [0, 1] → A, C 0 definable arc joining a and b}

(as definable arcs are piecewise . C 1, their length is well-defined). This defines a 
metric on A, generally referred as the inner metric of A. 

To avoid any confusion, we will refer to the restriction to A of the euclidean 
metric as the outer metric. When A is smooth, a .C 1 function that has bounded 
derivative is Lipschitz with respect to the inner metric, but is not necessary Lipschitz
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(w.r.t. the outer metric), these two metrics being not always equivalent. We however 
have the following result [15, Theorem 1.2]: 

Theorem 7.4.1 Every .A ∈ Sm+n admits a definable partition into cells, such that 
for each .E ∈ P and each .t ∈ R

m, the inner and outer metrics of . Et are equivalent. 
The constants of this equivalence just depend on n (and not on m and t). 

The techniques that we use in Sect. 7.4.2 to prove Proposition 7.4.13 are actually 
related to the main ideas of the proof of this theorem that is given in [15]. It is 
indeed possible to show the above theorem from the latter proposition, together 
with an induction on n. For more details we refer the reader to the latter article (see 
also [35, Chapter 3]). 

Proposition 7.4.2 Every definable Lipschitz function .ξ : A → R, .A ∈ Sn, can be 
extended to an .Lξ -Lipschitz definable function .ξ̃ : Rn → R. 

Proof Set .̃ξ(q) := inf{ξ(p) + Lξ |q − p| : p ∈ A}. By the quantifier elimination 
principle, it is a definable function. An easy computation shows that it is .Lξ -
Lipschitz. ��
Remark 7.4.3 Let .A ∈ Sm+n and let a definable function .ξ : A → R be such that 
.ξt : At → R is a Lipschitz function for every .t ∈ R

m. The respective extensions 
. ̃ξt of . ξt , .t ∈ R

m (with for instance .ξ̃t ≡ 0 if .t /∈ suppmA), provided by the proof 
of the above proposition constitute a definable family of functions. We thus can 
extend definable families of Lipschitz functions to definable families of Lipschitz 
functions. This will be of service. 

Lemma 7.4.4 Let A and B in .Sn+m with .B ⊂ A. If .λ ∈ Sn−1 is regular for A, then 
it is regular for B. 

Proof Assume that .λ ∈ Sn−1 is not regular for B. It means that there is a sequence 
.((ti , bi))i∈N, with .bi ∈ Bti ,reg such that .τ := lim Tbi

Bti ,reg exists and contains 
. λ. Choose for every i a Whitney .(a) regular definable stratification of .Ati (see for 
instance [5, 35] for the definition) compatible with . Bti and .Bti ,reg and denote by . Si

the stratum containing . bi . Moving slightly . bi if necessary, we may assume that . Si

is open in .Bti ,reg (since .Bti ,reg is open and dense in . Bti ), which entails that . Tbi
Si =

Tbi
Bti ,reg . As .Ati,reg is dense in . Ati , for every .i ∈ N, we can find . ai in .Ati,reg , 

which is close to . bi . Moreover, possibly extracting a sequence, we may assume that 
.τ ′ := lim Tai

Ati ,reg exists. If . ai is sufficiently close to . bi , by Whitney .(a) condition, 
we deduce that .τ ′ ⊃ τ , which contains . λ. This yields that . λ is not regular for A. ��
Remark 7.4.5 It is worthy of notice that the proof of the above lemma has 
established that the corresponding number α (see (7.5)) can remain the same for B. 

Given .λ ∈ Sn−1, we denote by .πλ : Rn → Nλ the orthogonal projection onto the 
hyperplane . Nλ normal to the vector . λ, and by . qλ the coordinate of .q ∈ R

n along . λ, 
i.e. the number given by the euclidean inner product of q with . λ.
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Given .B ∈ Sn and .λ ∈ Sn−1, with .B ⊂ Nλ, as well as a function .ξ : B → R, we  
set 

.Γ λ
ξ := {q ∈ R

n : πλ(q) ∈ B and qλ = ξ(πλ(q))}, (7.6) 

and call this set the graph of . ξ for . λ. 

Proposition 7.4.6 The vector .λ ∈ Sn−1 is regular for the set .A ∈ Sm+n if and 
only if there are finitely many uniformly Lipschitz definable families of functions 
.ξi,t : Bi,t → R, .t ∈ R

m, with .Bi ⊂ R
m × Nλ, .i = 1, . . . , p, such that for all 

.t ∈ R
m: 

. At =
p⋃

i=1

Γ λ
ξi,t

.

Proof As the “if” part is clear, we will focus on the converse. Up to an orthogonal 
linear mapping we can assume that . λ = en. Let .A ∈ Sm+n. Take a cell 
decomposition compatible with A and let C be a cell included in A. This cell cannot 
be a band since . en is regular for A (see Lemma 7.4.4). It is thus the graph of a . C 1

function .ξ : D → R, with .D ∈ Sm+n−1, such that . ξt has bounded first derivative 
(independently of t). It therefore must be uniformly Lipschitz with respect to the 
inner metric. It follows from Theorem 7.4.1 that there is a definable partition . P
of D such that for each .E ∈ P, the inner metric of . Et is equivalent to its outer 
metric for all .t ∈ R

m, with constants that just depend on n. The family of functions 
. ξ induces a uniformly Lipschitz family of functions on every element of . P. ��

We finish this subsection with an elementary proposition that will be of service to 
prove Theorem 7.5.4. This proposition yields that we can replace a given collection 
of families of Lipschitz functions with an increasing collection of families of 
Lipschitz functions .ξ1,t ≤ · · · ≤ ξk,t in such a way that the union of the graphs 
is unchanged: 

Proposition 7.4.7 Let .f1,t , . . . , fk,t , .t ∈ R
m, be definable families of functions on 

. Nλ, .λ ∈ Sn−1, and let .L ∈ R. Assume that for all .i ≤ k and for all .t ∈ R
m, the  

function .fi,t is L-Lipschitz. Then, there exist some definable families of functions 
.ξ1,t , . . . , ξk,t on . Nλ such that for all . t ∈ R

m

(i) . ξi,t is L-Lipschitz and all .i ≤ k. 
(ii) .

⋃k
i=1 Γ λ

ξi,t
= ⋃k

i=1 Γ λ
fi,t

. 
(iii) .ξ1,t ≤ · · · ≤ ξk,t . 

Proof Up to an orthogonal linear mapping with may assume . λ = en. We are  
going to define inductively on j some definable integer valued functions . ij :
R

m × R
n−1 → R, .j = 1, . . . , k such that for every .t ∈ R

m and . j ≤ k, the  
functions 

.ξj,t (x) := fij (t,x),t (x) (7.7)
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are L-Lipschitz functions satisfying .ξ1,t ≤ · · · ≤ ξk,t . Indeed, let . i1(t, x) :=
min{i ≤ k : fi,t (x) = minl≤k fl,t (x)}. Then, assuming that .i1, . . . , ij−1 have been 
defined, let 

. ij (t, x) := min{i ∈ Ij (t, x) : fi,t (x) = min
l∈Ij (t,x)

fl,t (x)},

where .Ij (t, x) is the set constituted by the positive integers which are not greater 
than k and different from .i1(t, x), . . . , ij−1(t, x). We clearly have . ξ1,t (x) ≤ · · · ≤
ξk,t (x) if .ξj,t (x) is defined as in (7.7). 

Take a cell decomposition . C of .Rm × R
n−1 such that the functions . (fj,t (x) −

fj ′,t (x)) have constant sign (positive, negative, or zero) on every cell and observe 
that, since the . ij ’s are constant on every cell, they are definable. 

By construction, we have .
⋃k

j=1 Γξj,t
= ⋃k

j=1 Γfj,t
, for all .t ∈ R

m, which entails 
that . en is regular for the graphs of the families . ξj,t , . t ∈ R

m. As a matter of fact,  
for each j , in order to show that .ξj,t is L-Lipschitz, it suffices to establish that the 
functions .ξj |Ct , .C ∈ C, glue together into a continuous function on .Rn−1 for every 
t , which is left to the reader. ��

7.4.2 Finding Regular Directions 

Lemma 7.4.8 Given ν ∈ N, there exists tν > 0 such that for any P1, . . . , Pν in Gn∗ 
there exists a vector λ ∈ Sn−1 such that for any i: 

. d(λ, Pi) > tν.

Proof Given P1, . . . , Pν in Gn∗, let ϕ(P1, . . . , Pν) := supλ∈Sn−1 mini≤ν d(λ, Pi). 
Since the Pi’s have positive codimension, ϕ is a positive function, which, since the 
Grassmannian is compact, must be bounded below away from zero. ��

The next lemma is a refinement of the just above lemma which says that the 
vector λ can be chosen among finitely many ones. 

Lemma 7.4.9 Given ν ∈ N, there exist λ1, . . . , λN in Sn−1 and αν > 0 such that 
for any P1, . . . , Pν in Gn∗ we may find i ≤ N such that for any j ≤ ν: 

. d(λi, Pj ) > αν.

Proof Let tν be the real number given by Lemma 7.4.8 and let λ1, . . . , λN in Sn−1 

be such that
⋃N 

i=1 B(λi, tν 
2 ) ⊃ Sn−1. Suppose that there are P1, . . . , Pν in Gn∗ such
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that for any i ∈ {1, . . . N} we have d(λi,
⋃ν 

j=1 Pj ) ≤ tν 
2 . This implies that any λ in 

Sn−1 satisfies 

. d(λ,

ν⋃

j=1

Pj ) < tν,

contradicting Lemma 7.4.8. It is thus enough to set αν := tν 
2 . ��

The next lemma will require a definition. We estimate the angle between two vector 
subspaces P and Q of Rn in the following way: 

. 
 (P,Q) = sup{d(λ,Q) : λ is a unit vector of P }.

This constitutes a metric on each Gn 
k , k ≤ n. 

Definition 7.4.10 Let α >  0 and Z ∈ Sm+n. We say that the family (Zt )t∈Rm is 
α-flat if: 

. sup{
 (P,Q) : P,Q ∈
⋃

t∈Rm

τ(Zt,reg)} ≤ α.

We then also say that Z is (m, α)-flat. When m = 0, we say that Z is α-flat. 

If P and Q are two vector subspaces of Rn satisfying dim P >  dim Q then

 (P, Q) = 1. As a matter of fact, if Z is (m, α)-flat for some α <  1, then Zt must 
be of pure dimension for all t . 

Remark 7.4.11 It follows from Lemma 7.4.9 that if Z1,t , . . . , Zν,t , t ∈ Rm, are  αν-
flat definable families (where αν is the constant provided by the latter lemma) of 
subsets of Rn of empty interiors then one of the λi’s (that are also provided by the 
latter lemma) is regular for all these families. 

Lemma 7.4.12 Given Z ∈ Sm+n and α >  0, we can find a finite partition of Z into 
(m, α)-flat sets. 

Proof Dividing Z into cells, we may assume that Zt is a manifold for all t ∈ Rm. 
We can cover the Grassmannian by finitely many balls of radius α 

2 , which gives rise 
to a covering U1, . . . , Uk of Z (via the family of mappings Zt  x �→ TxZt ) by  
(m, α)-flat sets. ��

This leads us to the following result that originates in [30] and that will be 
of service in Sect. 7.6. It is closely related to the L-regular cell decompositions 
introduced and constructed in [14]. The difference is that we wish that the regular 
vector for δC can be chosen among finitely many ones. This result was then 
improved by W. Pawłucki [25] who has shown that we can require in addition 
N = n.
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Proposition 7.4.13 There exist λ1, . . . , λN in Sn−1 such that for any A1, . . . , Ap 
in Sm+n, there is a cell decomposition C of Rm+n compatible with all the Ak’s and 
such that for each cell C ∈ C satisfying dim Ct = n (for all t ∈ suppmC), we may 
find λj(C), 1 ≤ j (C)  ≤ N , regular for the family (δCt )t∈Rm . 

Proof According to Lemma 7.4.9 (see Remark 7.4.11 and Lemma 7.4.4) it is  
sufficient to prove by induction on n the following assertions: given α >  0 and 
A1, . . . , Ap in Sm+n, there exists a cell decomposition of Rm+n compatible with 
A1, . . . , Ap and such that for every cell C ⊂ Rm+n of this cell decomposition 
satisfying dim Ct = n, (δCt )t∈Rm is included in the union of no more than 2n 
definable families of empty interior that are all α-flat. 

For n = 0 this is clear. Fix n ∈ N nonzero, α >  0, as well as A1, . . . , Ap 
in Sm+n. Taking a cell decomposition if necessary, we can assume that the Ai’s 
are cells. Apply Lemma 7.4.12 to all the Ai’s, and take a cell decomposition D of 
R

m+n compatible with all the elements of the obtained coverings. Applying then 
the induction hypothesis to the elements of πem+n(D), we get a refinement D′ of 
πem+n(D). 

Given a cell D of D′, each Ai is above D, either the graph of a definable function, 
say ξi,D , or a band, say (ξi,D, ξ ′

i,D), with ξi,D < ξ ′
i,D definable functions on D (or 

±∞). Let C be the cell decomposition given by all the graphs Γξi,D and Γξ ′
i,D 

, i ≤ p, 

D ∈ D′. To check that it has the required property, fix an open cell C = (ξi,D, ξ ′
i,D), 

with ξi,D < ξ ′
i,D definable functions on an open cell D of D′ (or ±∞). Since D′

is compatible with the images under πem+n of the α-flat sets that cover the Ai’s, the 
sets Γξi,D and Γξ ′

i,D 
must be α-flat families, and since 

. δCt ⊂ (
Γξi,D

)
t
∪

(
Γξ ′

i,D

)

t
∪ π−1

en
(δDt ),

we see that the needed fact follows from the induction hypothesis. ��
Remark 7.4.14 We have proved a stronger statement: the distance between the 
regular vector λj(C)  and the tangent spaces to δCt can be bounded below away 
from zero by a positive number depending only on n, and not on the Ak’s. This is 
due to the fact that we apply Lemma 7.4.9 with ν = 2n. 

7.5 Regular Systems of Hypersurfaces 

This section is entirely devoted to the proof of Theorem 7.3.2 which requires some 
material. We first introduce our machinery of regular systems of hypersurfaces. 

Let .Z ∈ Sn and .λ ∈ Sn−1, with .Z ⊂ Nλ (see Sect. 7.4.1 for . Nλ). If .A ∈ Sn is the 
graph of a function .ξ : Z → R for . λ, we denote by .E(A, λ) the subset constituted 
by the points which lie “under the graph”, i.e. we set: 

.E(A, λ) := {q ∈ π−1
λ (Z) : qλ ≤ ξ(πλ(q))}. (7.8)
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Remark 7.5.1 If .A ∈ Sm+n is such that . At is the graph for . λ of a function . ξt :
Nλ → R for every .t ∈ R

m, then .E(At , λ), .t ∈ R
m, is a definable family of sets 

of .Rm × R
n. Indeed, regarding . λ as an element of .Sn+m−1 (i.e., identifying . λ with 

.(0Rm, λ)), .E(A, λ) is also well-defined and .E(A, λ)t = E(At , λ), for all .t ∈ R
m. 

7.5.1 Regular Systems of Hypersurfaces 

Regular systems of hypersurfaces will help us to carry out constructions inductively 
on the dimension of the ambient space. 

Definition 7.5.2 Let . B ∈ Sm. A regular system of hypersurfaces of . B × R
n

(parametrized by B) is a finite collection .H = (Hk, λk)1≤k≤b with . b ∈ N, of  
definable subsets .Hk of .B × R

n and elements .λk ∈ Sn−1 such that the following 
properties hold for each .k < b and every .t ∈ B: 

(i) The sets .Hk,t and .Hk+1,t are the respective graphs for . λk of two functions . ξk,t :
Nλk

→ R and .ξ ′
k,t : Nλk

→ R such that .ξk,t ≤ ξ ′
k,t and which are C-Lipschitz 

with .C ∈ R independent of t . 
(ii) The following equality holds: 

. E(Hk+1,t , λk) = E(Hk+1,t , λk+1).

Let .A ∈ Sm+n. We say that H is compatible with A, if .A ⊂ ⋃b
k=1 Hk . An  

extension of H is a regular system of hypersurfaces (of .B × R
n) compatible with 

the set .
⋃b

k=1 Hk . 

Given a positive integer . k < b, we set:  

. Gk(H) := E(Hk+1, λk) \ int (E(Hk, λk)).

We shall write .Λk(H) for the connected component of the set 

. {λ ∈ Sn−1 : λ is regular for Hk ∪ Hk+1}

that contains . λk . 
We will see (Proposition 7.5.5 below) that the set .Gk(H) may be defined using 

any .λ ∈ Λk(H) (instead of . λk). 
We will say that another regular system . H ′ coincides with H outside .Gk(H) if 

for each j either .H ′
j ⊂ Gk(H) or there exists . j ′ such that .H ′

j = Hj ′ . 
Given a regular system .H := (Hk, λk)k≤b of .B × R

n and a definable set . B ′ ⊂
B, we denote by .HB ′ the regular system of hypersurfaces .(Hk,B ′ , λk) of .B ′ × R

n, 
obtained by considering the sequence of the respective restrictions to . B ′ of the .Hk’s 
(see (7.1)). We will call it the restriction to . B ′ of the regular system H .
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Remark 7.5.3 It is always possible to assume that the .Gk(H)t ’s are of nonempty 
interior for some t . Indeed, if .int (Gk(H)t ) = ∅ for all .t ∈ B, then .Hk = Hk+1 and 
in this case we may remove .(Hk, λk) from the sequence. 

Given a regular system of hypersurfaces (of .B × R
n, .B ∈ Sm) H , it will be 

convenient to extend the notations in the following way. Set for any .t ∈ B: . H0,t :=
{−∞} and .Hb+1,t := {+∞}. By convention, all the elements of .Sn−1 will be regular 
for these two sets. We will also consider that these two sets as the respective graphs 
of the two functions which take .−∞ and .+∞ as respective constant values. Define 
also .λ0 := λ1, .λb+1 := λb, as well as .E(H0, λ0) := ∅, .G0(H) := E(H1, λ1), 
.Gb(H) := (B × R

n) \ int (E(Hb, λb)), as well as .E(Hb+1, λb+1) := B × R
n. 

Remark that now .B × R
n = ⋃b

k=0 Gk(H). 

Theorem 7.5.4 Let .A ∈ Sm+n be such that . At has empty interior for all .t ∈ R
m. 

There exists a definable partition . P of .Rm such that for every .B ∈ P there is a 
regular system of hypersurfaces of .B × R

n compatible with . AB . 

This theorem is the main ingredient of the proof of Theorem 7.3.2. The basic 
strategy of the proof of Theorem 7.5.4 (given in Sect. 7.5.3) relies on the following 
observation. 

Proposition 7.5.5 Let U be a connected subset of .Sn−1, .λ0 ∈ U , and let . ξ : Nλ0 →
R be a continuous definable function. If U is regular for .X := Γ

λ0
ξ then, for each 

.λ ∈ U , the  set  X is the graph for . λ of a function .ξλ : Nλ → R. Moreover, . E(X, λ)

is independent of .λ ∈ U . 

Proof Let 

. C := {λ ∈ U : ∀x ∈ Nλ, card π−1
λ (x) ∩ X = 1}.

We have to check that . C = U . Let .λ ∈ C and set .r(λ) := d(λ, τ (X)). 
We claim that .B(λ,

r(λ)
3 ) ∩ U ⊂ C. Pick .λ′ ∈ B(λ,

r(λ)
3 ) ∩ U different from . λ

and set .l′ = πλ(λ
′). We have to show that the line L generated by . λ′ and passing 

through any .x ∈ Nλ intersects X in exactly one point. The line L is the graph for . λ
of a function .η(x + t l′) = α · t with .α > 2

r(λ)
(we assume .α > 0 for simplicity). 

Since . λ ∈ C, the set X is the graph for . λ of a function . ξλ. By definition of .r(λ), 
.|dxξ

λ| (which exists almost everywhere) is bounded by . 2
r(λ)

. It easily follows from 

the Mean Value Theorem that . ξλ is . 2
r(λ)

-Lipschitz. 

This implies that for t positive large enough we will have . η(x+ t l′) ≥ ξλ(x+ t l′)
and .η(x−t l′) ≤ ξλ(x−t l′) (since . η is growing faster than . ξλ). Thus, there is a point 
.q ∈ πλ(L) such that .ξλ(q) = η(q), which implies that the line L cuts X. Uniqueness 
of the intersection point is clear from the fact that one function is growing faster than 
the other. This yields that .B(λ,

r(λ)
3 ) ∩ U ⊂ C. 

We have shown that C is open in U . Let us now show that it is also closed in U . 
Consider .λ ∈ U and a continuous definable arc . γ in C tending to . λ. Since . r(γ (t))

tends to .r(λ) which is nonzero, the ball .B(γ (t),
r(γ (t))

3 ) contains . λ for .t > 0 small
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enough. The closeness of C therefore follows from the fact that . B(γ (t),
r(γ (t))

3 ) ∩
U ⊂ C. As  U is connected, this yields .U = C. 

It remains to check that .E(X, λ) is independent of .λ ∈ U . It is the closure of one 
of the two connected components of the complement of X. The set  X is the zero 
locus of the function .f (q) = qλ0 − ξ(πλ0(q)). Locally, at a smooth point q of X it 
is clear that .E(X, λ) is determined by the sign of .dqf (λ). But as U is regular for X, 
this function never vanishes, and consequently .E(X, λ) is independent of .λ ∈ U . 

��
Given .e ∈ Sn−1, we define a mapping .̃πe : Sn−1 \ {±e} → Sn−1 ∩ Ne by setting 

.̃πe(u) := πe(u)

|πe(u)| . (7.9) 

Remark 7.5.6 Let .e ∈ Sn−1 and suppose .λ0 ∈ Sn−1 ∩ Ne to be regular for a subset 
.A ⊂ Ne. Since the elements of .̃π−1

e (λ0) lie above the line generated by . λ0, for each 
positive real number a, the set  

. C := π̃−1
e (λ0) ∩ {λ ∈ Sn−1 : d(λ, {±e}) ≥ a}

is regular for .π−1
e (A). Moreover, by Proposition 7.5.5, if  A is the graph of a 

Lipschitz function for . λ0 then .π−1
e (A) is the graph of a Lipschitz function for each 

.λ ∈ C. Furthermore, the latter proposition also entails that in this case we have for 
all .λ ∈ C: 

. E(π−1
e (A), λ) = π−1

e (E(A, λ0)).

7.5.2 Two Preliminary Lemmas 

Proving Theorem 7.5.4 requires two preliminary lemmas on regular systems of 
hypersurfaces. The first one will make it possible for us to assume that the interiors 
of the .Gk(H)t ’s are connected. 

Lemma 7.5.7 Let H be a regular system of hypersurfaces of .B × R
n, .B ∈ Sm. 

There exists a definable partition . P of B such that for every .B ′ ∈ P, we can find an 
extension . Ĥ of .HB ′ such that the set .int (Gk(Ĥ )t ) is connected for all .t ∈ B ′ and 
all k. 

Proof Let .1 ≤ k ≤ b − 1 and suppose that there is t for which .int (Gk(H)t ) is not 
connected. Applying Remark 7.2.6 to .int (Gk(H)) provides a partition . P of B. Let  
.B ′ ∈ P. Possibly replacing H with .HB ′ , we see that we can assume that the the 
property displayed in Remark 7.2.6 holds for .int (Gk(H)).
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Let .A1, . . . , Aν be the connected components of .int (Gk(H)). Set . A′
i = πλk

(Ai)

for . i ≤ ν. For .t ∈ B ′, every fiber .Ai,t is of the form: 

. {q ∈ A′
i,t ⊕ R · λk : ξk,t (πλk

(q)) < qλk
< ξ ′

k,t (πλk
(q))}.

Clearly .ξk,t = ξ ′
k,t on the boundary of .A′

i,t . We thus may define some Lipschitz 
functions . ηi , .1 ≤ i ≤ ν − 1, as follows. We set over .A′

j,t , .ηi,t := ξ ′
k,t , when 

.1 ≤ j ≤ i, and .ηi,t := ξk,t whenever .i < j . Extend the function .ηi,t by setting 

.ηi,t := ξk,t = ξ ′
k,t on .Nλk

\ πλk
(int (Gk(H))). 

Since .η1,t ≤ · · · ≤ η(ν−1),t , it suffices to 

• let .Ĥj := Hj and .̂λj := λj if . j ≤ k

• let .Ĥj,t be the graph of .ηj−k,t for . λk (for every .t ∈ R
m) and .̂λj := λk for 

. k + 1 ≤ j ≤ k + ν − 1
• let .Ĥj := Hj−ν+1 and .̂λj := λj−ν+1 if .k + ν ≤ j ≤ b + ν − 1. 

This is clearly a regular system of hypersurfaces. Note that the .int (Gj (Ĥ )), . k ≤
j < k + ν, are the connected components of .int (Gk(H)). ��
Lemma 7.5.8 Let .H = (Hk, λk)1≤k≤b be a regular system of hypersurfaces of 
.B × R

n, .B ∈ Sm, and let .j ∈ {1, . . . , b}. Let X be a definable subset of . Gj(H)

and assume that . λj is regular for X. Then H can be extended to a regular system of 
hypersurfaces . H ′ compatible with X and which coincides with H outside .Gj(H). 

Proof By property .(i) of Definition 7.5.2, for every parameter . t ∈ B, the sets  
.Hj,t and .Hj+1,t are the respective graphs for . λj of two functions .ξj,t and . ξ ′

j,t . 
By Propositions 7.4.6 and 7.4.2, the definable family . Xt , .t ∈ B, may be included 
in a finite number of graphs for . λj of definable families of functions on .Nλj

, 
say .θ1,t , . . . , θν,t , C-Lipschitz for every .t ∈ B with .C ∈ R independent of t . 
Furthermore, by Proposition 7.4.7, these families of functions can be assumed to 
be totally ordered (for relation . ≤), and satisfy .ξj,t ≤ θi,t ≤ ξ ′

j,t , for every t . Now,  

• let .H ′
k := Hk and .λ′

k := λk whenever .1 ≤ k ≤ j , 
• let .H ′

k,t be the graph of .θk−j,t for . λj and .λ′
k := λj for .j < k ≤ j + ν, .t ∈ R, 

• let .H ′
k := Hk−ν and .λ′

k := λk−ν , whenever .j + 1 + ν ≤ k ≤ b + ν. 

Properties . (i) and .(ii) of Definition 7.5.2 clearly hold by construction. ��
Remark 7.5.9 It will be of service that, in the proof of the above lemma, no extra 
regular vector was necessary, i.e. .{λ1, . . . , λb} = {λ′

1, . . . , λ
′
b+ν}. 

7.5.3 Proof of Theorem 7.5.4 

The proof is divided into four steps. The strategy is to rely on Lemma 7.5.8. The  
reader is invited to first glance at Step 4, which was deliberately made very short 
and sheds light on the reason why this lemma is helpful. The problem to get a
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regular system of hypersufaces compatible with a set A using this lemma is that 
it requires to already have a regular system .H = (Hk, λk)1≤k≤b such that . λj is 
regular for .A∩Gj(H) (for all j ). This fact is not granted by the system H provided 
by Step 1, which satisfies a slightly weaker property. We therefore shall provide (in 
Step 2) another system . Ĥ (see the paragraph just before Step 2 for more details 
on this issue) and then construct in Step 3 what can be considered as a “common 
refinement” of H and . Ĥ , which will be satisfying to apply Lemma 7.5.8 in Step 4. 

Let .A ∈ Sm+n be such that . At has empty interior for every .t ∈ R
m. Let also 

.η ∈ (0, 1] and .λ ∈ Sn−1. We are actually going to prove by induction on n that, given 
any such A, . λ, and . η, there exists a definable partition . P of .Rm such that for every 
.B ∈ P we can find a regular system of hypersurfaces of .B × R

n compatible with 
.AB and such that all the . λk’s (see Definition 7.5.2) can be chosen in .B(λ, η)∩Sn−1. 

Since the result is clear for . n = 1, we take .n ≥ 2 and assume it to be true for 
.(n − 1). Observe that it is enough to establish the claimed statement for arbitrarily 
small values of . η. As explained just above, we split the induction step into 4 steps. 

Step 1 There exists a definable partition . P of .Rm such that for every .B ∈ P, 
there is a regular system of hypersurfaces .H = (Hk, λk)1≤k≤b of .B × R

n, with 
.λk ∈ Sn−1 ∩ B(λ,

η
2 ), such that for every k the set .int (Gk(H)) ∩ AB has a regular 

vector .μ ∈ Sn−1 \ B(±λ, η). 

Proof of Step 1 Take .e ∈ Sn−1 such that .±e /∈ B(λ, η). By Lemma 7.4.12, for each 
.σ > 0, there are finitely many .(m, σ

2 )-flat sets .U1, . . . , Uω that cover A. Consider 
such a partition for .σ = tν , where . tν is given by Lemma 7.4.8, with . ν equal to 
the maximal number of connected components of .π−1

e (x) ∩ At , .(t, x) ∈ R
m × Ne. 

Changing . η, we may assume that .η ≤ tν
4 . 

Take a cell decomposition of .R
m×Ne (identify .R

m×Ne with .R
m×R

n−1) which 
is compatible with the .πe(Ui), .i ≤ ω, and denote by .(Wi)i∈I the collection of the 
cells of this cell decomposition that are open (in .Rm × Ne). 

Since the set . At has empty interior for each . t ∈ R
m, the set .At ∩ π−1

e (Wi,t ) is 
(for each .i ∈ I and t), above .Wi,t , the union of at most . ν (possibly 0) graphs for e 
of continuous functions (not necessarily Lipschitz). 

Choose .η′ > 0 such that we have in .Sn−1 ∩ Ne: 

.B(π̃e(λ), η′) ⊂ π̃e(B(λ,
η

2
)). (7.10) 

Apply the induction hypothesis (identify .R
m×Ne with .R

m×R
n−1) to the families 

.(δWi,t )t∈Rm to get a partition . P. Fix .B ∈ P. There is a regular system of .B ×R
n−1, 

.H = (Hk, λk)k≤b, such that all the . λk’s belong to .B(π̃e(λ), η′). 
By Lemma 7.5.7, up to a refinement of the partition, we may assume that each 

.int (Gk(H)t ) is connected for all .t ∈ B. We may also assume these sets to be of 
nonempty interior for some t (see Remark 7.5.3). Up to an extra refinement, we 
may assume that it happens for all .t ∈ B (by Remark 7.2.6). 

We claim that for each j and k and for every t , either .int (Gk(H)t ) is disjoint 
from .Wj,t or .int (Gk(H)t ) ⊂ Wj,t . To see this, observe that, as . H is compatible
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with the .δWj,t ’s, all the sets .Wj,t ∩int (Gk(H)t ) are open and of empty (topological) 
boundary in .int (Gk(H)t ), for each t . Hence, if nonempty, these are connected 
components of .int (Gk(H)t ). But, as .int (Gk(H)t ) is connected, this entails that 
.Wj,t ∩ int (Gk(H)t ) is either the empty set or .int (Gk(H)t ) itself, as claimed. 

As the .Wi,t ’s are disjoint from each other, for each k there is a unique i such that 
.int (Gk(H)t ) ⊂ Wi,t . After a possible refinement of the partition . P, we can assume 
that for each k, .int (Gk(H)t ) meets the same .Wi,t for all t , i.e. that for every .B ∈ P, 
i depends only on k and not on .t ∈ B. 

We turn to define the regular system H claimed in Step 1. For .1 ≤ k ≤ b, let:  

. Hk := π−1
e (Hk).

Since .λk ∈ B(π̃e(λ), η′), by (7.10), we have .λk ∈ π̃e(B(λ,
η
2 )). Choose some 

.λk ∈ π̃−1
e (λk) ∩ B(λ,

η
2 ). 

As .λk ∈ B(λ,
η
2 ) for all k and neither e nor . −e belongs to .B(λ, η) we have: 

. d(λk,±e) ≥ η

2
, ∀ k ≤ b.

As a matter of fact, by Remark 7.5.6, as . H fulfills conditions .(i) and .(ii) of 
Definition 7.5.2, these conditions are also fulfilled by .H := (Hk, λk)k≤b. 

By Lemma 7.4.8 and our choice of . σ , for all k, the set .AB ∩ int (Gk(H)) is 
the union of finitely many definable sets having a common regular element . μ ∈
Sn−1 (since we have seen that each .int (Gk(H)t ) is included in .Wj,t for some j 
independent of .t ∈ B). Moving slightly . μ, we may assume that .d(μ,±λ) ≥ η (we 
have assumed .η ≤ tν

4 ). This completes the proof of the first step. ��
The desired partition of .Rm will be obtained after finitely many refinements of 

the partition . P. Clearly, it is enough to prove the result for all the sets . AB , .B ∈ P. 
We thus can fix B in . P and identify A and .AB in the next steps below. For simplicity, 
we will not indicate either the partitions of the parameter space .Rm resulting from 
the successive refinements of . P, working always with A (instead of . AB ). 

The flaw of the first step is that the regular vector . μ that we get for . Gk(H) ∩ A

might not be in .Λk(H). If it belongs to this set, Proposition 7.5.5 and Lemma 7.5.8 
suffice to conclude (see Step 4). Had the vector e (used in Step  1) been regular 
for A, we could have required .μ ∈ Λk(H) in Step 1, using Lemma 7.5.10 below 
in the same way as we will do in Step 2 to construct . Ĥ by means of .πμ (see 
assumption (7.12)). One could therefore think that not much was achieved so far as 
we need a regular vector to carry out our construction and finding a regular vector 
is all our purpose. However, since we can focus on the sets .A ∩ Gp(H), which all 
have a regular vector (provided by Step 1), by repeating in Step 2 the construction 
of the first step (replacing e with . μ and making use of Lemma 7.5.10), we will 
get a system .(Ĥk, λ̂k)k≤b̂ with .̂λk ∈ Λp(H) regular for .Gp(H) ∩ Gk(Ĥ ) ∩ A, for  
each fixed .p ≤ b. It will then remain to find (in Step 3, see the paragraph before
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Step 3 for more details) a common extension of H and . Ĥ , obtained at Steps 1 and 2 
respectively. 

Step 2 Fix .p ≤ b. There exists a regular system of hypersurfaces . Ĥ = (Ĥk, λ̂k)k≤b̂

such that for every . k, .̂λk ∈ Λp(H)∩B(λ, η) and is regular for .Gp(H)∩Gk(Ĥ )∩A. 

Proof of Step 2 Note that as . λp is regular for the set .Hp ∪ Hp+1, there exists . r > 0
such that .B(λp, r) is regular for .Hp ∪ Hp+1. Taking r smaller if necessary, we may 
assume that .r ≤ η

4 . 
Let .r ′ > 0 be such that we have in .Sn−1 ∩ Nμ: 

.B(π̃μ(λp), r ′) ⊂ π̃μ(B(λp,
r

2
)). (7.11) 

To complete the proof of Step 2, we need a lemma. 

Lemma 7.5.10 Let l in .Sn−1, .0 < r ≤ 1, and .κ ∈ N. Let C be a subset of . Gn and 
.μ ∈ Sn−1 such that 

.d(μ,C) > 0. (7.12) 

There exists .α > 0 such that for any .P1, . . . , Pκ in C and any .y ∈ π̃μ(B(l, r
2 )) there 

exists .̂λ ∈ B(l, r) ∩ π̃−1
μ (y) such that: 

. d( λ̂,

κ⋃

i=1

Pi) ≥ α.

The proof of this lemma is postponed. We first see why it is enough to carry out 
the proof of Step 2. Let .κ ≥ 1 be the maximal number of connected components 
of .A ∩ Gp(H) ∩ π−1

μ (x), .x ∈ Nμ. Applying this lemma with this integer . κ , with 
.C = ⋃

t∈B τ(At ∩Gp(H)t ) and .l = λp (. μ being given by Step 1), we get a positive 
constant α. 

By Lemma 7.4.12, we can cover .(Gp(H)t ∩ At)t∈Rm by .α2 -flat families, say 
.U ′

1,t , . . . , U
′
ω′,t , .ω

′ ∈ N. Take a cell decomposition .(W ′
i )i∈I ′ of .Rm × Nμ (identify 

.R
m × Nμ with .Rm × R

n−1) which is compatible with the .πμ(U ′
i ), .i ≤ ω′. 

For any .i ∈ I ′ the family .π−1
μ (W ′

i,t ) ∩ Gp(H)t ∩ At , .t ∈ B, is thus included in 
the union of no more than .κ α

2 -flat families. 
Lemma 7.5.10 thus implies that for any .i ∈ I ′ and any .y ∈ π̃μ(B(λp, r

2 )), there 
exists .̂λ ∈ B(λp, r) ∩ π̃−1

μ (y) such that for any .t ∈ B: 

.d
(̂
λ , τ(π−1

μ (W ′
i,t ) ∩ Gp(H)t ∩ At)

) ≥ α

2
. (7.13) 

Apply the induction hypothesis to get a regular system of hypersurfaces . H ′′ =
(H ′′

k , λ′′
k)k≤b′′ of .B ×Nμ (identify .Nμ with .R

n−1, up to a refinement of the partition
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. P) compatible with the .δW ′
i,t ’s. Do it in such a way that all the . λ′′

k are elements of 
.B(π̃μ(λp), r ′) (where . r ′ is given by (7.11)). 

Define now: 

.Ĥk,t := π−1
μ (H ′′

k,t ). (7.14) 

The compatibility with the families .δW ′
i,t implies that every .int (Gk(H

′′))t is 
included in .W ′

i,t for some i (possibly refining the partition of the parameter space), 
by the same argument as the one we used in Step 1 for .Gk(H) and the partition 
.(Wi)i∈I . 

As a matter of fact, according to (7.13) for .y = λ′′
k , we know that for every 

integer .k ≤ b′′ there exists .̂λk ∈ B(λp, r) ∩ π̃−1
μ (λ′′

k) such that for any .t ∈ B: 

.d
(
λ̂k , τ (π−1

μ (int (Gk(H
′′)t )) ∩ Gp(H)t ∩ At)

) ≥ α

2
. (7.15) 

Let us check that .Ĥ := (Ĥk, λ̂k)k≤b̂ (where .̂b := b′′) is the desired regular 
system of hypersurfaces. For this purpose, observe that, since neither . μ nor . −μ

belongs to .B(λ, η), we have for each k (recall that .r ≤ η
4 and .λp ∈ B(λ,

η
2 ), as well  

as .̂λk ∈ B(λp, r)): 

. d(̂λk,±μ) ≥ r.

By Remark 7.5.6, as .̂λk ∈ π̃−1
μ (λ′′

k), this implies that the family . Ĥ fulfills the 
conditions of Definition 7.5.2. 

Furthermore, as .B(λp, r) ⊂ B(λ, η) (since .r ≤ η
4 and .λp ∈ B(λ,

η
2 )), all the . ̂λk’s 

belong to .B(λ, η). Note also that as .B(λp, r) is regular for .Hp ∪ Hp+1, the vector 
. ̂λk belongs to .Λp(H). This completes the proof of the second step. ��

The inconvenience of Step 2 (we would like to apply Lemma 7.5.8, see Step 4) is  
that the provided vector is regular for .A∩Gp(H)∩Gk(Ĥ ) (instead of .A∩Gk(Ĥ )). 
If . Ĥ were an extension of the family H constructed in Step 1, this would be no 
problem since in this case we would have .Gk(Ĥ ) ⊂ Gp(H) (or . int (Gk(Ĥ )) ∩
int (Gp(H)) = ∅). Thus, we will have to find a common extension . H̃ of H and . Ĥ
given by Steps 1 and 2 respectively. This is what is carried out in the proof of Step 3. 

Step 3 Fix .p ≤ b. There exists an extension .H̃ = (H̃k, λ̃k)k≤b̃ of H which 
coincides with H outside .Gp(H), and such that for each k, . ̃λk belongs to . B(λ, η)

and is regular for .A ∩ Gk(H̃ ) ∩ Gp(H). 

Proof of Step 3 Let . Ĥ be the regular system given by Step 2 and let .k ≤ b̂ be 
an integer. Because .̂λk ∈ Λp(H), by Proposition 7.5.5, the sets .Hp and .Hp+1 are 
respectively the graphs for . ̂λk of two functions . ζk and . ζ ′

k . Moreover, the set .Ĥk is 
also the graph for . ̂λk of a function . ̂ξk . Define: 

.θk := min(max(ζk, ξ̂k), ζ
′
k)
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in order to get a function whose graph for . ̂λk is included in .Gp(H). We now define 
the desired regular family .(H̃k, λ̃k)1≤k≤b̃ as follows: 

• Let .H̃k := Hk and .̃λk := λk if .k < p. 
• Let .H̃p := Hp and .̃λp := λ̂1. 
• Let .H̃k be the graph of .θk−p for .̂λk−p, and let .̃λk := λ̂k−p, whenever . p + 1 ≤

k ≤ p + b̂. 
• And finally let .H̃k := Hk−b̂ and . λ̃k := λk−b̂ if . p + b̂ + 1 ≤ k ≤ b + b̂. 

Let us check that properties . (i) and .(ii) of Definition 7.5.2 hold for the family 
. H̃ . For .k < p − 1, or .k ≥ p + b̂ + 1, the result is clear since the family . H̃ is indeed 
the family H (after renumbering). 

For .k = p − 1, properties . (i) and .(ii) for . H̃ follow from . (i) and .(ii) for H and 
Proposition 7.5.5 since we have assumed .̂λ1 ∈ Λp(H). 

It remains to check . (i) and .(ii) for .H̃k+p, with .0 ≤ k ≤ b̂. We start with . (i). By  
. (i) for . Ĥ , the set .Ĥk+1 is the graph for . ̂λk of a function . ̂ξ ′

k such that .̂ξk ≤ ξ̂ ′
k . Define 

now: 

. θ ′
k = min(max(ζk, ξ̂

′
k), ζ

′
k).

Claim The graph of . θ ′
k for . ̂λk is that of .θk+1 for .̂λk+1. 

To see this, note that the graph of . θ ′
k (resp. . θk+1) for . ̂λk (resp. .̂λk+1) matches 

with .Ĥk+1 over .E(Hp+1, λ̂k) \ E(Hp, λ̂k) (resp. .̂λk+1). But, by Proposition 7.5.5, 
the sets .E(Hp, l) and .E(Hp+1, l) do not depend on .l ∈ Λp(H). As . ̂λk and . ̂λk+1
both belong to .Λp(H), this already shows that the two graphs involved in the above 
claim match over .int (Gp(H)). 

The graph of . θ ′
k (resp. . θk+1) for . ̂λk (resp. .̂λk+1) is also constituted by the points 

of .Hp \ int (E(Ĥk+1, λ̂k)) (resp. .̂λk+1) on the one hand and by the points of . Hp+1 ∩
E(Ĥk+1, λ̂k) (resp. .̂λk+1) on the other hand. By .(ii) for . Ĥ , the claim ensues. 

This claim proves that .H̃p+k+1, which is by definition the graph of .θk+1 for .̂λk+1, 
is indeed also the graph of . θ ′

k for . ̂λk . Therefore, to check . (i) (for .H̃k+p, .k ≤ b̂), we 
just have to prove that .θk ≤ θ ′

k . But, as .̂ξk ≤ ξ̂ ′
k , this comes down from the respective 

definitions of . θ ′
k and . θk . 

Let us check property .(ii) for . H̃k+p, for .k ≤ b̂. Observe first that if . k = b̂, it is  
then a consequence of Proposition 7.5.5, since we have assumed that . ̂λk belongs to 
.Λp(H). 

Let now k be such that .0 ≤ k ≤ b̂ − 1. First note that by .(ii) for . Ĥ we have: 

. E(Ĥk+1, λ̂k) = E(Ĥk+1, λ̂k+1).

But, .E(H̃k+p+1, λ̂k) (resp. .̂λk+1) is constituted by the points of .E(Hp, λ̂k) (resp. 
.̂λk+1) together with the points of .E(Hp+1, λ̂k)∩E(Ĥk+1, λ̂k) (resp. .̂λk+1). As . ̂λk+1
and . ̂λk both belong to .Λp(H), this establishes .(ii) for . H̃ .
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To complete the proof of Step 3, it remains to make sure that for every .k ≤ b̂ the 
vector .̃λk+p is regular for .Gk+p(H̃ )∩Gp(H)∩A. By definition, we have .̃λp = λ̂1, 
.̃λk+p = λ̂k for .1 ≤ k ≤ b̂, and: 

.Gk+p(H̃ ) ⊂ Gk(Ĥ ) ∩ Gp(H), (7.16) 

for each .0 ≤ k ≤ b̂. 
As for any k the vector . ̂λk is regular for .A ∩ Gk(Ĥ ) ∩ Gp(H) (see Step 2), this 

implies that for each .k ≤ b̂, the vector .̃λk+p is regular for .A ∩ Gk+p(H̃ ). This  
completes the proof of the third step. ��
Step 4 There is a regular system of hypersurfaces .Ȟ = (Ȟk, λ̌k)k≤b̌

compatible 

with A and such that .λ̌k ∈ B(λ, η) for all k. 

Proof of Step 4 By Lemma 7.5.8 (applied .(̃b + 1) times to . H̃ of Step 3), we may 
extend . H̃ to a regular system .Ȟ = (Ȟk, λ̌k)k≤b̌

compatible with the set 

. Gp(H) ∩
b̃⋃

k=0

Gk(H̃ ) ∩ A = Gp(H) ∩ A.

By Step 3, we have .λ̌k ∈ B(λ, η) for all k (see Remark 7.5.9). Since . Ȟ is an 
extension of H (. H̃ being itself an extension of H ) which coincides with H outside 
.Gp(H), we may carry out this construction on all the .Gp(H)’s successively. This 
provides the desired regular system. ��

It remains to prove Lemma 7.5.10. The lemma below describes a property of . ̃πμ

that we need for this purpose. 

Lemma 7.5.11 Let .μ ∈ Sn−1, .T ∈ G
n, and .x ∈ T . If  .v ∈ Sn−1 is tangent at x to 

the curve .̃π−1
μ (π̃μ(x)) then we have: 

. d(μ, T ) ≤ d(v, T ).

Proof Let w be the vector of . T which realizes .d(v, T ). Remark that the vectors 
x, . μ, and v are in the same two dimensional vector space. Moreover .(x, v) is an 
orthonormal basis of this plane. Write .μ = αx + βv with .α2 + β2 = 1. Then, as x 
and w both belong to T we have 

. d(μ, T ) ≤ |μ − (αx + βw)| = |β| · |v − w| ≤ d(v, T ).

��
Proof of Lemma 7.5.10 We will work up to a (“projective”) coordinate system of 
.Sn−1 defined as follows. Let .U+

i (resp. . U−
i ) denote 

.{x ∈ Sn−1 : xi ≥ ε}
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(resp. .xi ≤ −ε) with .ε > 0. Define then .hi : U+
i → R

n−1 (resp. .gi : U−
i → R

n−1) 

by .hi(x1, . . . , xn) = ( x1
xi

, . . . ,
x̂i

xi
, . . . , xn

xi
) (resp. .gi(x1, . . . , xn), here the . ̂ means 

the term is omitted). We can assume that .B(l, r) entirely fits in one single .U+
i or 

. U−
i , say .U+

i (up to a linear change of coordinate of . Rn). 
Through such a chart, the elements .Sn−1 ∩ T , .T ∈ C, will be identified with 

their respective images, which are affine subspaces of . Rn−1. The set .Sn−1 ∩Nμ also 
becomes an affine subspace . Δ, and . ̃πμ an orthogonal projection along a line, say 
L. We denote by . π this projection. By Lemma 7.5.11 and hypothesis (7.12), there 
exists .u > 0 such that for any .T ∈ C (the angle between affine spaces is defined as 
the angle between the associated vector spaces): 

.
 (L, T ) ≥ u. (7.17) 

We have to find .α > 0 such that for any .P1, . . . , Pκ in C and any . y ∈
π(hi(B(l, r

2 ))) there exists .̂λ ∈ hi(B(l, r)) ∩ π−1(y) such that: 

.d( λ̂,

κ⋃

i=1

Pi) ≥ α. (7.18) 

For any .y ∈ π(hi(B(l, r
2 ))), the length of .π−1(y)∩hi(B(l, r)) is bounded below 

away from zero by a strictly positive real number . α0 (. hi is bi-Lipschitz). 
It is an easy exercise of elementary geometry to derive from (7.17) that for any  

.α > 0 the set .{x ∈ π−1(y) : d(x, T ) ≤ α} is a segment of length not greater than 

. 2α
u

, for all .T ∈ C and .y ∈ Δ. 
Let .α := α0u

4κ
. By the preceding paragraph, we see that if (7.18) failed for some 

.y ∈ π(hi(B(l, r
2 ))), we could cover .π−1(y) ∩ hi(B(l, r)) by . κ segments of length 

not greater than . 
α0
2κ

. This contradicts the fact that the length of . π−1(y) ∩ hi(B(l, r))

is not less than . α0. ��

7.5.4 Proof of Theorem 7.3.2 

By Theorem 7.5.4, there is a definable partition . P of .R
m such that for every . B ∈ P

there exists a regular system of hypersurfaces compatible with . AB . Fix .B ∈ P and 
such a regular system of hypersurfaces .H = (Hk, λk)1≤k≤b. 

For each .t ∈ B, we shall define the desired definable mapping .ht over 
.E(Hk,t , λk) by induction on k, in such a way that for all . t ∈ B

. ht (E(Hk,t , λk)) = E(Fk,t , en),

where .Fk,t is the graph for . en of .ηk,t : R
n−1 → R, with .(ηk,t )t∈B uniformly 

Lipschitz definable family of functions.
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For .k = 1, choose an orthonormal basis of .Nλ1 and set .ht (q) := (xλ1 , qλ1), 
where .xλ1 stands for the coordinates of .πλ1(q) in this basis. 

Let now . k ≥ 1. By .(i) of Definition 7.5.2, for any .t ∈ B the sets . Hk,t

and .Hk+1,t are the respective graphs for . λk of two functions .ξk,t and . ξ ′
k,t . For  

.q ∈ E(Hk+1,t , λk) \ E(Hk,t , λk), extend . ht by defining .ht (q) as the element: 

. ht

(
πλk

(q) + ξk,t (πλk
(q)) · λk

) + (
qλk

− ξk,t (πλk
(q))

)
en.

Thanks to the property .(ii) of Definition 7.5.2, we have:  

. E(Hk+1,t , λk+1) = E(Hk+1,t , λk),

and hence . ht is actually defined over .E(Hk+1,t , λk+1). Since .ξk,t is C-Lipschitz 
with C independent of t , the . ht ’s constitute a uniformly bi-Lipschitz family of 
homeomorphisms. Note also that the image of . ht is .E(Fk+1,t , en), where . Fk+1,t

is the graph (for . en) of the uniformly Lipschitz family of functions: 

. ηk+1,t (x) := ηk,t (x) + (ξ ′
k,t − ξk,t ) ◦ πλk

◦ h−1
t (x, ηk,t (x)),

for .(t, x) ∈ B×R
n−1. This completes the induction step, giving . ht over .E(Hb,t , λb). 

To extend . ht to the whole of . Rn do it similarly as in the case .k = 1. 

7.5.5 Regular Vectors and Set Germs 

For R positive real number and .n > 1 we set 

. Cn(R) := {(t, x) ∈ [0,+∞) × R
n−1 : |x| ≤ Rt}.

We also set .C1(R) := [0,+∞). 
Our purpose is to show Theorem 7.5.14, which is an improvement of Corol-

lary 7.3.4 asserting that, in the case of germs of subsets of .Cn(R), the provided 
homeomorphism may be required to preserve the first coordinate in the canonical 
basis. This fact is an essential ingredient of the Lipschitz conic structure theorem 
[34, 35], which recently proved very useful to study Sobolev spaces of bounded 
subanalytic domains [28, 29, 33, 34, 36]. 

Definition 7.5.12 Let .A,B ⊂ R
n. A definable map .h : A → B is vertical if it 

preserves the first coordinate in the canonical basis of . Rn, i.e. if for any .t ∈ R, 
.π(h(t, x)) = t , for all .x ∈ At , where .π : Rn → R is the orthogonal projection onto 
the first coordinate.
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We start with a preliminary lemma which is of its own interest. We use the 
notation .f (t) � g(t) to express that .f (t) ≤ g(t)φ(t), for some function . φ tending 
to zero as t goes to zero. 

Lemma 7.5.13 Let .h : (X, 0) → (Cn(R), 0) be a germ of vertical definable map, 
with .X ⊂ Cn(R

′), for  some  R and . R′. If  .(ht )t∈R is uniformly Lipschitz then h is a 
Lipschitz map germ. 

Proof Suppose that h fails to be Lipschitz. Then, by Curve Selection Lemma, we 
can find two definable arcs in X, say .p(t) and .q(t), tending to zero along which: 

.|p(t) − q(t)| � |h(p(t)) − h(q(t))|. (7.19) 

We may assume that .p(t) (and so .h(p(t))) is parametrized by its first coordinate 
(since the first coordinate of .p(t) induces a homeomorphism from a right-hand-side 
neighborhood of zero in . R onto a right-hand-side neighborhood of zero in . R), i.e. 
we may assume .p(t) = (t, p2(t), . . . , pn(t)). 

As .p(t) and .h(p(t)) are definable arcs in .Cn(R
′) and .Cn(R) respectively, we 

have: 

.|h(p(t)) − h(p(t ′))| ∼ |t − t ′| ≤ |p(t) − q(t)| (7.20) 

and

.|p(t) − p(t ′)| ∼ |t − t ′| ≤ |p(t) − q(t)|, (7.21) 

where . t ′ denotes the first coordinate of .q(t). 
Therefore, we can easily derive from (7.19), (7.20), and (7.21): 

. |h(p(t)) − h(q(t))| ∼ |h(p(t ′)) − h(q(t))| ∼ |p(t ′) − q(t)| � |p(t) − q(t)|,

in contradiction with (7.19). ��
Theorem 7.5.14 Let X be the germ at 0 of a definable subset of .Cn(R) (for 
some R) of empty interior. There exists a germ of vertical bi-Lipschitz definable 
homeomorphism (onto its image) .H : (Cn(R), 0) → (Cn(R), 0) such that . en is 
regular for .H(X). 

Proof We denote by .e1, . . . , en the canonical basis of . Rn and by .e′
1, . . . , e

′
n−1 the 

canonical basis of .Rn−1 (so that .en = (0, e′
n−1)). Apply Theorem 7.3.2 to X, 

regarded as a family of .R × R
n−1. This provides a uniformly bi-Lipschitz family 

of homeomorphisms .ht : R
n−1 → R

n−1, .t ∈ (0, ε), such that .e′
n−1 is regular 

for the family .(ht (Xt ))t∈R. Up to a family of translations, we may assume that 
.h(t, 0) ≡ 0, which implies that .H : (Rn, 0) → (Rn, 0), .(t, x) �→ (t, ht (x)), maps 
.Cn(R) into .Cn(R

′) for some . R′ (and up to a family of homothetic transformations
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we may assume .R = R′). By Lemma 7.5.13, the map-germ H is bi-Lipschitz near 
the origin. 

We now have to check that . en is regular for the germ of the definable set . Y :=
H(X). Suppose not. Then, by Curve Selection Lemma, there exists a definable arc 
.γ : [0, ε] → Yreg with .γ (0) = 0 and .en ∈ τ := limt→0 Tγ (t)Yreg . But, as . e′

n−1
is regular for the family .(Yt )t∈[0,ε], we have .e′

n−1 /∈ limt→0 Tγ̃ (t)Yγ1(t), if . γ (t) =
(γ1(t), γ̃ (t)) ∈ R × R

n−1. This implies that: 

. τ ∩ Ne1 
= lim
t→0

(Tγ (t)Yreg ∩ Ne1)

(since the latter does not contains the vector .en = (0, e′
n−1) while the former does). 

Hence, . τ cannot be transverse to .Ne1 (since otherwise the intersection with the limit 
would be the limit of the intersection) which means that . e1 is orthogonal to . τ . This  
implies that the limit vector .limt→0

γ (t)
|γ (t)| = limt→0

γ ′(t)
|γ ′(t)| ∈ τ is orthogonal to . e1, 

from which we can conclude 

. lim
t→0

γ1(t)

|γ (t)| = 0,

in contradiction with .γ (t) ∈ Cn(R). ��

7.6 Definable Bi-Lipschitz Triviality in Polynomially 
Bounded O-Minimal Structures 

The results of this section are valid under the extra assumption that the structure is 
polynomially bounded. It is not difficult to produce counterexamples to these results 
(except however to Proposition 7.6.5) as soon as this assumption fails. We are going 
to establish a bi-Lipschitz triviality theorem for definable families (Theorem 7.6.3), 
from which we will derive a stratification result (Corollary 7.6.9). 

We start with a preliminary lemma. As in Sect. 7.2.2, we denote by . F the 
valuation field of the structure, which is the subfield of . R constituted by all the 
real numbers α for which the function .(0,+∞)  x �→ xα ∈ R is definable. 

Lemma 7.6.1 Let .ξ : Rm+n → R be a definable nonnegative function. There exist 
some definable subsets of .Rm+n, say  .W1, . . . ,Wk , and a definable partition . P of 
.R

m+n such that for any .V ∈ P there are .α1, . . . , αk in . F such that for each . t ∈ R
m

we have on .Vt ⊂ R
n: 

.ξt (x) ∼ d(x,W1,t )
α1 · · · d(x,Wk,t )

αk . (7.22) 

Proof We prove it by induction on n. For .n = 1, the result follows from 
Theorem 7.2.11. Let .n ≥ 2 and assume that the proposition is true for .(n − 1). 
Let .λ1, . . . , λN be the elements of .Sn−1 given by Proposition 7.4.13.
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For each i, applying the Preparation Theorem (Theorem 7.2.11) to . ξ ◦ Λi :
R

m+n → R, where . Λi is an orthogonal linear mapping of .Rm+n sending . (0Rm, en)

onto .(0Rm, λi) and preserving the m first coordinates (below, we sometimes regard 
.Λi as a transformation of . Rn), we obtain a partition of .Rm+n. The images of 
all the elements of this partition under the map .Λi provide a new partition of 
.R

m+n, denoted by . Pi . Let .(Vj )j∈J be a common refinement of the . Pi’s. Applying 
Proposition 7.4.13 to the finite family constituted by all the sets of the partition 
.(Vj )j∈J , we get a partition . Σ of .Rm+n into cells. 

Let .E ∈ Σ be an open cell. By construction and Proposition 7.4.13, there is 
.i ≤ N such that . λi is regular for . δE. It means that . en is regular for the family 
.(Λ−1

i (δE)t )t∈Rm . Hence, it follows from Proposition 7.4.6 that there is a partition 
.QE of .Λ−1

i (cl(E)) into cells, such that each element C is either the graph of a 
uniformly Lipschitz family of functions or a set of the form 

.C = {(z, y) ∈ B × R : η1(z) < y < η2(z)}, (7.23) 

with .B ∈ Sm+n−1 and .η1 < η2 definable functions on B such that .(η1,t )t∈Rm and 
.(η2,t )t∈Rm are uniformly Lipschitz. 

Observe that it suffices to show the desired statement for the restriction to each 
cell .C ∈ QE of the family of functions .ξt ◦ Λi , .t ∈ R

m. For the elements C of the 
partition .QE which are graphs of some uniformly Lipschitz family of functions, one 
may easily deduce the result from the induction hypothesis. 

Fix thus a cell .C ⊂ Λ−1
i (E) as in (7.23). There is j such that .C ⊂ Λ−1

i (Vj ). By  
construction, there are .r ∈ F and some functions a and . θ on the basis B of C such 
that for .x = (x̃, xn) ∈ Ct , . t ∈ R

m, we have:  

. ξt ◦ Λi(x) ∼ at (x̃)|xn − θt (x̃)|r .

Thanks to the induction hypothesis we thus only have to check the result for the 
function .|xn − θt (x̃)|. 

As .Γθ ∩ C = ∅, we can assume that for every .(t, x̃) ∈ B, either . θt (x̃) ≤ η1,t (x̃)

or .θt (x̃) ≥ η2,t (x̃). Assume for instance that .θt (x̃) ≤ η1,t (x̃). Writing for . t ∈
suppm(C) and .x = (x̃, xn) ∈ Ct : 

. xn − θt (x̃) = (xn − η1,t (x̃)) + (η1,t (x̃) − θt (x̃)),

we see that (up to a partition of C we may assume that the terms of the right-hand-
side are comparable for the partial order relation . ≤) .|xn − θt (x̃)| is . ∼ either to 
.|xn − η1,t (x̃)| or to .|η1,t (x̃) − θt (x̃)|. 

For the latter functions, since they are .(n − 1)-variable functions, the desired 
result is a consequence of the induction hypothesis. Moreover, since .η1,t is 
Lipschitz, .|xn − η1,t (x̃)| is . ∼ to the distance to the graph of .η1,t for every t . This  
shows the result for the given cell C. ��
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Remark 7.6.2 The constants of the equivalence in the above lemma depend on t . 
However, the family of exponents .α1, . . . , αk just depends on .V ∈ P. 

We recall that the structure is assumed to be polynomially bounded in this section. 

Theorem 7.6.3 Given .A ∈ Sm+n, there exists a definable partition of . Rm such that 
A is definably bi-Lipschitz trivial along each element of this partition. 

Proof We prove the result by induction on n. We shall show that the trivialization 
H may be required to induce a trivialization of some given definable subsets of A. 

Let .A ∈ Sm+n and let .C1, . . . , Ck be some definable subsets of A. Apply 
Theorem 7.3.2 to the set .{(t, x) : x ∈ δAt ∪ ⋃k

i=1 δCi,t }. This provides a definable 
family of bi-Lipschitz maps .Gt : Rn → R

n, .t ∈ R
m, such that . en is regular for the 

families of sets .(δGt (Ci,t ))t∈Rm , .i = 1, . . . , k, and .(δGt (At ))t∈Rm . 
As we can work up to a family of bi-Lipschitz maps, we will identify . Gt with the 

identity map. By Propositions 7.4.2, 7.4.6, and 7.4.7, we can find some definable 
functions .ξ1 ≤ · · · ≤ ξs on .Rm+n−1, with .(ξi,t )t∈Rm uniformly Lipschitz for all i, 
and a cell decomposition . D of .R

m+n−1 such that A and the . Cj ’s are unions of some 
graphs .Γξi|D , .i ∈ {1, . . . , s}, .D ∈ D, or bands .(ξi|D, ξi+1|D), .i ∈ {0, . . . , s}, . D ∈ D

(where .ξ0 ≡ −∞ and .ξs+1 ≡ +∞). 
Refining the cell decomposition . D if necessary (without changing notations), we 

can assume it to be compatible with the zero loci of the functions .(ξi+1 − ξi). By  
Lemma 7.6.1, up to an extra refinement of the cell decomposition, we can assume 
that there are finitely many definable subsets .W1, . . . , Wc of .Rm × R

n−1 such that 
on every cell we can find .r1, . . . , rc in . F such that for all .i = 1, . . . , s − 1 and any 
.t ∈ R

m: 

.ξi+1,t (x) − ξi,t (x) ∼ d(x,W1,t )
r1 · · · d(x,Wc,t )

rc . (7.24) 

Refining one more time the cell decomposition . D, we may assume that the .Wi’s are 
unions of cells. 

Applying now the induction hypothesis to the cells of . D provides a partition 
. P. Fix .B ∈ P and let .H(t, x) = (t, ht (x)) denote the obtained trivialization of 
.B × R

n−1 along B. We have .ht (Ct0) = Ct for some .t0 ∈ B and for all . C ∈ D. We  
are going to lift the trivialization H to an trivialization of .B × R

n. 
Given a point .(t, x) ∈ B × R

n−1 and .1 ≤ i ≤ s − 1 let 

. H̃ (t, x, νξi,t0(x)+(1−ν)ξi+1,t0(x)) := (t, ht (x), νξi,t (ht (x))+(1−ν)ξi+1,t (ht (x)),

for all .ν ∈ [0, 1]. Set also for .ν ∈ (0,∞): 

. H̃ (t, x, ξ1,t0(x) − ν) := (t, ht (x), ξ1,t (ht (x)) − ν),

as well as 

.H̃ (t, x, ξs,t0(x) + ν) := (t, ht (x), ξs,t (ht (x)) + ν).
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Because . D is compatible with the zero loci of the functions .(ξi+1 − ξi) and since 
the trivialization h was required to preserve the cells of . D, it is easily seen that . H̃t is 
a continuous mapping for each .t ∈ R

m. Observe also that, since the . Wi’s are unions 
of cells of . D, we have .ht (Wi,t0) = Wi,t , for all i. Since . ht is bi-Lipschitz for every 
.t ∈ B, we can derive from (7.24), that for each .t ∈ B we have: 

. (ξi+1,t − ξi,t ) ◦ ht ∼ (ξi+1,t0 − ξi,t0).

This shows the bi-Lipschitzness of . H̃t on the sets .[ξi,t |Dt , ξi+1,t |Dt ], .D ∈ D, .D ⊂ B, 
.i < s. The bi-Lipschitzness of . H̃t on the sets .(−∞, ξ1,t |Dt ) and .(ξs,t |Dt ,+∞) is 
clear since the .(ξi,t )t∈B are families of Lipschitz functions. 

The continuity of . Ht and .H−1
t with respect to t follows from a well-known fact, 

up to an extra refinement of the partition of the parameter space [6, Lemma 5.17 and 
Exercise 5.21]. ��
Remark 7.6.4 We have proved a stronger statement since the trivialization is also 
defined on the ambient space .B × R

n. We can also require the trivialization to 
preserve a finite number of given definable subfamilies of A. 

In Theorem 7.6.3, the constructed trivialization . ht is Lipschitz for every t (see 
Definition 7.2.7). The Lipschitz condition may also be required to hold with respect 
to the parameter t on relatively compact sets, as it will be established by Proposition 
7.6.6, which requires the following proposition. 

Proposition 7.6.5 Let .A ∈ Sm+n and let .ft : At → R be a definable family of 
functions. If . ft is Lipschitz for all .t ∈ R

m then there exists a definable partition . P
of . Rm such that for every .B ∈ P, .f : A → R, .(t, x) �→ ft (x) induces a Lipschitz 
function on .A ∩ K , for every compact subset K of .B × R

n. 

Proof We prove the result by induction on m. The case .m = 0 being vacuous, 
assume the result to be true for .(m − 1), .m ≥ 1. By Proposition 7.4.2 (see 
Remark 7.4.3), we may assume that .A = R

m+n. It is well-known that there is a 
definable partition . P of the parameter space, such that f is continuous on every 
.B × R

n, .B ∈ P (again, see [6, Lemma 5.17 and Exercise 5.21]). Fix an element 
.B ∈ P (we shall refine several times the partition . P). 

We start with the (easier) case where .dim B < m. In this case, there is a partition 
of B such that every element of this partition has a regular vector (using for instance 
Remark 7.4.11), that, without loss of generality, we can assume to be .em ∈ Sm−1. 
Thanks to Proposition 7.4.6, it is therefore enough to deal with the case where B is 
the graph of a Lipschitz function, say .ξ : D → R, .D ∈ Sm−1. The result in this 
case now follows from the induction hypothesis applied to the function . D × R

n 
(t, x) �→ f (t, ξ(t), x). 

We now address the case .dim B = m. The function .B  t �→ Lft being definable, 
partitioning B if necessary, we can assume this function to be continuous on this
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set. In particular, it is bounded on compact subsets of B. Let Z be the set of points 
.q ∈ Γf for which there exists a sequence .qk ∈ (Γf )reg tending to q such that 

. (0Rm, en+1) ∈ lim Tqk
(Γf )reg,

where .en+1 is the last vector of the canonical basis of . Rn+1. Let . π : Rm ×R
n+1 →

R
m denote the projection omitting the last .(n + 1) coordinates. We claim that . π(Z)

has dimension less than m. 
Assume otherwise. Take a .(w)-regular definable stratification of . Γf compatible 

with Z and let .S ⊂ Z be a stratum such that .π(S) has dimension m. Let . S′ be the 
set of points of S at which .π|S is a submersion. Since .π(S) is of dimension m, by  
Sard’s Theorem, the set . S′ cannot be empty. Moreover, by definition of . S′, .TqS′ is 
transverse to .{0Rm} × R

n+1 at any point q of . S′. 
Let .q ∈ S′ ⊂ Z. By definition of Z, there is a sequence . qk tending to q such that 

.(0Rm, en+1) ∈ τq := lim Tqk
(Γf )reg . The .(w) condition ensures that .τq ⊃ TqS′ (. S′

is a manifold for it is open in S). Consequently, . τq is transverse to .{0Rm} ×R
n+1 as 

well. 
But since .Lft is locally bounded (it was assumed to be continuous), the vector 

.en+1 does not belong to .lim Txk
Γftk

, if .qk = (tk, xk) in .Rm × R
n+1, which means 

that 

. (lim Tqk
Γf ) ∩ {0Rm} × R

n+1 
= lim
(
Tqk

Γf ∩ {0Rm} × R
n+1)

(since the latter does not contain the vector .(0Rm, en+1) while the former does), and 
hence, that . τq cannot be transverse to .{0Rm}×R

n+1 (since otherwise the intersection 
with the limit would be the limit of the intersection). A contradiction. 

This establishes that .dim π(Z) < m. Since we can refine . P into a partition which 
is compatible with .π(Z), we thus see that we can suppose .B ⊂ R

m \ π(Z) (we are 
dealing with the case .dim B = m). 

For .(t, R) ∈ (Rm \ π(Z)) × [0,+∞) set: 

. ϕ(t, R) := sup{∂f
∂t

(t, x) : x ∈ B(0Rn , R), f is C 1 at x}

(which is finite, by definition of Z, since .Lft is bounded). As . ϕ is definable, up to 
a partition of B, this function may be assumed to be continuous (and thus bounded 
on compact sets) for .R ≥ ζ(t), with .ζ : B → R definable function. The function f 
therefore induces a function which is Lipschitz with respect to the inner metric on 
every compact set of .B ×R

n. By Theorem 7.4.1, up to an extra refinement partition, 
we can suppose that the inner metric and the outer metric of B are equivalent, which 
means that so are the inner and outer metrics of .B × R

n, establishing that f is 
Lipschitz on every compact set of .B × R

n. ��
As a matter of fact, the trivialization given by Theorem 7.6.3 may be required to 

satisfy the Lipschitz condition with respect to the parameters on compact sets:
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Proposition 7.6.6 Let .A ∈ Sm+n. Refining the partition provided by Theorem 7.6.3, 
we may obtain the following extra fact: for any element B of this partition, the 
trivialization .H : B × At0 → AB , .(t, x) �→ (t, ht (x)), induces a bi-Lipschitz 
mapping on .(B × At0) ∩ K , for every compact subset K of .B × R

n. 

Proof This is a consequence of Theorem 7.6.3 and Proposition 7.6.5. ��
Remark 7.6.7 As explained in Remark 7.2.8, refining the partition if necessary, 
we can assume that the Lipschitz constants of . ht and .h−1

t are locally bounded 
on each element B of the partition. It is indeed worthy of notice that, thanks to 
Łojasiewicz inequality, we can show that .Lht � d(t, cl(B) \ B)−k , with .k ∈ N. 
This is an attractive feature of Theorem 7.6.3 since bi-Lipschitz trivializations 
that are obtained by integration of vector fields (like on Mostowski’s Lipschitz 
stratifications, see Sect. 7.2.1) generally have Lipschitz constants that are bounded 

by functions of type .exp
(

C
d(t,cl(B)\B)

)
, .C > 0, (by Gronwall’s inequality). 

In the above proposition, the compactness assumption is essential, as shown by 
the following example. 

Example 7.6.8 Consider the set .A = {(t, x, y) ∈ R
3 : y = tx}. This set is bi-

Lipschitz trivial along . R. However, it is easy to check that we could not require a 
trivialization .H(t, x, y) to be bi-Lipschitz with respect the parameter t , even along 
a compact interval (i.e., we have to require that x and y also remain in a compact 
set in order to ensure Lipschitzness with respect to t). 

The inconvenience of bi-Lipschitz triviality theorems that are provided by 
integration of Lipschitz vector fields, such as the bi-Lipschitz version of Thom-
Mather First Isotopy Lemma that holds on Mostowski’s Lipschitz stratifications 
[17, 23], is that they do not provide definable trivializations. Theorem 7.6.3 enables 
us to construct stratifications that are locally definably bi-Lipschitz trivial, which is 
valuable for applications [34]. 

Corollary 7.6.9 Given a definable set X, we can find a definable stratification of 
this set which is locally definably bi-Lipschitz trivial. This stratification may be 
required to be compatible with finitely many given definable subsets of X. 

Proof This follows from standard arguments of construction of definable stratifica-
tions. Theorem 7.6.3 and Proposition 7.6.5 yield that local definable bi-Lipschitz 
triviality holds generically, which is sometimes rephrased by saying that it is a 
stratifying condition (see for instance [35, Proposition 2.7.5] for more details). We 
can require our stratification to satisfy Whitney’s .(a) condition (which is also a 
stratifying condition [5, 27, 35]), which yields that .Σx0 (in .(ii) of Definition 7.2.9) 
exclusively consists of manifolds. ��
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24. A. Parusiński, On the preparation theorem for subanalytic functions, New Developments in 
Singularity Theory (Cambridge, 2000), NATO Sci. Ser. II Math. Phys. Chem., vol 21, Kluwer 
Academic, Dordrecht (2001), pp. 192–215.



448 G. Valette

25. W. Pawłucki, Lipschitz cell decomposition in o-minimal structures, Illinois J. Math. 52 (2009), 
no. 3, 1045–1063. 

26. M. A. S. Ruas, G. Valette, C0 and bi-Lipschitz K-equivalence, Math. Z., 269 (2011), 293–308. 
27. Ta Lê Loi, Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math. 42 

(1998), no. 2, 347-356. 
28. A. Valette, G. Valette, Poincaré inequality on subanalytic sets, J. Geom. Anal. 31 (2021), 1046– 

10472. 
29. A. Valette, G. Valette, Trace operators on bounded subanalytic manifolds, arXiv:2101.10701. 
30. G. Valette, Lipschitz triangulations, Illinois J. Math. 49 (2005), issue 3, 953–979. 
31. G. Valette, The link of the germ of a semi-algebraic metric space, Proc. Amer. Math. Soc. 135 

(2007), no. 10, 3083–3090. 
32. G. Valette, On metric types that are definable in an o-minimal structure, J. Symbolic Logic 73 

(2008), no. 2, 439–447. 
33. G. Valette, L∞ cohomology is intersection cohomology, Adv. Math. 231 (2012), no. 3-4, 1818-

1842. 
34. G. Valette, Poincaré duality for Lp cohomology on subanalytic singular spaces, Math. Ann, 

380 (2021), 789–823. 
35. G. Valette, On subanalytic geometry, survey. Available at 

http://www2.im.uj.edu.pl/gkw/sub.pdf 
36. G. Valette, On Sobolev spaces of bounded subanalytic manifolds, arXiv:2111.12338. 
37. G. Valette, On the Laplace equation on bounded subanalytic manifolds, arXiv:2208.11931.


 -563 19619 a -563
19619 a
 


Chapter 8 
Lipschitz Geometry of Real 
Semialgebraic Surfaces 

Lev Birbrair and Andrei Gabrielov 

Contents 

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  450 
8.2 Inner Lipschitz Equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  452 
8.3 Normal Embedding Theorem, Lipschitz Normally Embedded Sets . . . . . . . . . . . . . . . . . . . . . . .  454 
8.4 Pizza Decomposition of the Germ of a Semialgebraic Function . . . . . . . . . . . . . . . . . . . . . . . . . . .  456 
8.5 Outer Lipschitz Geometry, Snakes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  458 
8.6 Tangent Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  459 
8.7 Ambient Equivalence: Metric Knots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  460 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  461 

Abstract We present here basic results in Lipschitz Geometry of semialgebraic 
surface germs. Although bi-Lipschitz classification problem of surface germs with 
respect to the inner metric was solved long ago, classification with respect to the 
outer metric remains an open problem. We review recent results related to the outer 
and ambient bi-Lipschitz classification of surface germs. In particular, we explain 
why the outer bi-Lipschitz classification is much harder than the inner classification, 
and why the ambient Lipschitz Geometry of surface germs is very different from 
their outer Lipschitz Geometry. In particular, we show that the ambient Lipschitz 
Geometry of surface germs includes all of the Knot Theory. 
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8.1 Introduction 

Lipschitz classification of semialgebraic surfaces has become in recent years one of 
the central questions of the Metric Geometry of Singularities. It was stimulated by 
the finiteness theorems of Mostowski, Parusinski and Valette (see [15, 16, 20]). They 
proved that there are finitely many Lipschitz equivalence classes in any semialge-
braic family of semialgebraic sets. Lipschitz classification is intermediate between 
Smooth (too fine) and Topological (too coarse) classifications. For example, smooth 
classification of most singularities is not finite. It may be even infinite dimensional 
for non-isolated singularities. 

Here we review recent developments in Lipschitz Geometry of semialgebraic 
surfaces (two-dimensional real semialgebraic sets). Since we are mainly interested 
in singularities of semialgebraic surfaces, our main object is a semialgebraic surface 
germ .(X, 0) at the origin of . Rn. Note that most results presented in this paper remain 
true for subanalytic sets, and for the sets definable in a polynomially bounded o-
minimal structure. 

A connected semialgebraic set .X ⊂ R
n inherits from . Rn two metrics: the outer 

metric .dist (x, y) = |y − x| and the inner metric .idist (x, y) = length of the 
shortest path in X connecting x and y. Note that .dist (x, y) ≤ idist (x, y). A  
semialgebraic set is called Lipschitz Normally Embedded if these two metrics are 
equivalent (see Definition 8.2.3). 

For the surface germs, there are three natural equivalence relations: 

1. Inner Lipschitz equivalence: .(X, 0) ∼i (Y, 0) if there is a homeomorphism 
.h : (X, 0) → (Y, 0) bi-Lipschitz with respect to the inner metric. 

2. Outer Lipschitz equivalence: .(X, 0) ∼o (Y, 0) if there is a homeomorphism 
.h : (X, 0) → (Y, 0) bi-Lipschitz with respect to the outer metric. 

3. Ambient Lipschitz equivalence: 
.(X, 0) ∼a (Y, 0) if there is an orientation preserving bi-Lipschitz homeomor-
phism .H : (Rn, 0) → (Rn, 0) such that .H(X) = Y . 

Inner Lipschitz Geometry of surface germs is relatively simple. The building 
block of the inner Lipschitz classification of surface germs is a .β-Hölder triangle 
(see Definition 8.2.1). A surface germ .(X, 0) with an isolated singularity and 
connected link is inner Lipschitz equivalent to a .β-horn (see Definition 8.2.2). If the 
singularity is not isolated, classification is made by the theory of Hölder Complexes 
(see [1]). A Hölder Complex is a triangulation (decomposition into Hölder 
triangles) of a surface germ. Canonical Hölder Complex (see Definition 8.2.10) is a  
complete invariant of the inner Lipschitz equivalence of surface germs. 

Outer Lipschitz Geometry of surface germs is much more complicated. For 
example, the germs of all irreducible complex curves are inner Lipschitz equivalent 
to .(C, 0), while the outer Lipschitz classification of the germs of complex plane 
curves is described by their sets of essential Puiseux pairs (see [12, 17]). Even for 
the union of two normally embedded Hölder triangles, the outer Lipschitz Geometry 
is not simple (see [3]).
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A special case of a surface germ is the union of a Hölder triangle T and a graph of 
a Lipschitz semialgebraic function f defined on T . The outer Lipschitz equivalence 
of two such surface germs is equivalent to the Lipschitz contact equivalence of 
the two functions. This relates outer Lipschitz Geometry of surface germs with the 
Lipschitz Geometry of functions. A complete invariant of the contact equivalence 
class of a Lipschitz function f defined on a Hölder triangle T , called a “pizza,” is 
defined in [9]. Informally, a pizza is a decomposition of T into “slices,” Hölder sub-
triangles .{Ti} of T , such that the order of f on each arc .γ ⊂ Ti depends linearly on 
the order of contact of . γ with a boundary arc of . Ti . 

For the general surface germs, Lipschitz classification with respect to the outer 
metric is still an open problem. 

The study of Lipschitz Normally Embedded, or simply Normally Embedded, sets 
was initiated by Kurdyka and Orro [14]. Kurdyka proved that any semialgebraic 
set admits a “pancake decomposition,” a finite partition into normally embedded 
subsets. Using this partition, Kurdyka and Orro proved that any semialgebraic set 
admits a semialgebraic “pancake metric” equivalent to the inner metric. Normal 
Embedding theorem of Birbrair and Mostowski states that, for any semialgebraic 
set X, there is a semialgebraic and bi-Lipschitz with respect to the inner metric 
embedding .Ψ : X → R

m, where .m ≥ 2 dim(X) + 1 (see [10]). Lipschitz Normal 
Embedding of complex analytic sets is addressed in the paper by Anne Pichon in 
the present volume. 

The set of semialgebraic arcs in .(X, 0) parameterized by the distance to the 
origin is called the Valette link .V (X) of the germ .(X, 0) (see Definition 8.3.6). 
The tangency order of arcs (see Definition 8.3.9) defines a non-archimedean metric 
on .V (X). 

A pancake decomposition is called minimal if it is not a refinement of another 
pancake decomposition. A natural question related to Lipschitz Normal Embedding 
of surface germs is uniqueness of a minimal pancake decomposition. The answer 
is negative even for a Hölder triangle. Gabrielov and Sousa in [13] gave examples 
of Hölder triangles having several combinatorially non-equivalent minimal pancake 
decompositions. 

Relations between the ambient and outer equivalence of surface germs were 
studied in [2, 5, 6]. In the paper [2] the authors presented several outer Lipschitz 
and ambient topologically equivalent families of surface germs in . R3 and . R4, 
which are pairwise ambient Lipschitz non-equivalent. In [5, 6], several “Universality 
Theorems” were formulated. Informally, these theorems state that, even when the 
link of a surface germ is topologically a trivial knot, the classification problem of 
the ambient Lipschitz equivalence of such surface germs “contains all of the knot 
theory.”
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8.2 Inner Lipschitz Equivalence 

Definition 8.2.1 For 1 ≤ β ∈ Q, the standard β-Hölder triangle Tβ is the germ at 
the origin of R2 of the surface {x ≥ 0, 0 ≤ y ≤ xβ} (see Fig. 8.1a). A β-Hölder 
triangle is a surface germ inner Lipschitz equivalent to Tβ . 

Definition 8.2.2 For 1 ≤ β ∈ Q, the standard β-horn Cβ is the germ at the origin 
of R3 of the surface {z ≥ 0, x2 + y2 = z2β} (see Fig. 8.1b). A β-horn is a surface 
germ inner Lipschitz equivalent to Cβ . 

Definition 8.2.3 A semialgebraic set X is called Lipschitz Normally Embed-
ded (LNE) if the inner and outer metrics on X are equivalent: dist (x, y) ≤ 
idist (x, y) ≤ C dist (x, y) for some constant C >  0 and all x, y ∈ X. 

For example, the germ of an algebraic curve {x3 = y2} is not LNE, while the 
standard β-horn Cβ is LNE. 

Theorem 8.2.4 Given the germ (X, 0) of a semialgebraic surface with isolated 
singularity and connected link, there is a unique rational number β ≥ 1 such that 
(X, 0) is inner Lipschitz equivalent to the standard β-horn Cβ . 

Birbrair’s theory of Hölder Complexes (see [1]) is a generalization of Theorem 
8.2.4 for the surface germs with non-isolated singularities. 

Definition 8.2.5 A Formal Hölder Complex is a pair (G, β), where G is a graph 
and β : EG → Q≥1 is a function, where EG the set of edges of G. 

Definition 8.2.6 A Geometric Hölder Complex corresponding to a Formal Hölder 
Complex (G, β) is a surface germ (X, 0) such that 

1. For small ε >  0, the intersection of X with the ε-ball Bε is homeomorphic to the 
cone over G, and the intersection of X with the ε-sphere Sε is homeomorphic to 
G. 

2. For any edge g ∈ EG, the subgerm of (X, 0) corresponding to g is a β(g)-Hölder 
triangle. 

Fig. 8.1 A β-Hölder triangle and a β-horn
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Theorem 8.2.7 For any surface germ (X, 0) ⊂ Rn, there exists a Formal Hölder 
Complex (G, β) such that (X, 0) is a Geometric Hölder Complex corresponding to 
(G, β). 

Remark 8.2.8 For a given surface germ (X, 0), the Formal Hölder Complex (G, β) 
in Theorem 8.2.7 is not unique. The simplification procedure described below 
reduces it to the unique Canonical Hölder Complex corresponding to (X, 0). 

Definition 8.2.9 We say that a vertex v0 of the graph G is non-critical if it is 
adjacent to exactly two edges g1 and g2 of G, and these edges connect v0 with 
two different vertices of G. A vertex v0 of G is called a loop vertex if it is adjacent 
to exactly two different edges g1 and g2 of G, and these edges connect v0 with the 
same vertex v1 of G. The other vertices of G (neither non-critical nor loop vertices) 
are called critical. 

Definition 8.2.10 An Abstract Hölder Complex (G, β) is Canonical if 

1. All vertices of G are either critical or loop vertices; 
2. For any loop vertex v of G adjacent to the edges g1 and g2, one has β(g1) = 

β(g2). 

Now we define a simplification procedure, reducing an Abstract Hölder 
Complex (G, β) to a Canonical one. 

We start with eliminating non-critical vertices. Let v0 be a non-critical vertex of 
G, connected with the vertices v1 and v2 of G by the edges g1 and g2. Then we 
remove the vertex v0 from the set of vertices of G, and replace the edges g1 and g2 
of G with the single edge g0 connecting v1 with v2. Let  G′ be the graph obtained 
from G by this operation. We define an abstract Hölder complex (G′, β ′), setting 
β ′(g0) = min(β(g1), β(g2)) and β ′(g) = β(g) for all edges g of G′ other than g0 
(see Fig. 8.2a). 

We repeat this operation until there are no non-critical vertices. After that, we 
take care of the loop vertices of G. 

Let (G, β) be an Abstract Hölder Complex without non-critical vertices. If a 
loop vertex v0 of G is connected by the edges g1 and g2 with the same vertex v1, 
such that β(g1) 	= β(g2), we define an Abstract Hölder Complex (G, β ′), replacing 
β1 = β(g1) and β2 = β(g2) with β ′(g1) = β ′(g2) = min(β1, β2) (see Fig. 8.2b). 
We repeat this operation for all loop vertices of G. 

The main results of the paper [1] are the following: 

Theorem 8.2.11 (Inner Lipschitz Classification Theorem) The surface germs 
(X, 0) and (X′, 0) are Lipschitz equivalent with respect to the inner metric if, 
and only if, the corresponding Canonical Hölder Complexes are combinatorially 
equivalent. 

Theorem 8.2.12 (Realization Theorem) Let (G, β) be an Abstract Hölder Com-
plex. Then there exists a surface germ (X, 0) such that (X, 0) is a Geometric Hölder 
Complex corresponding to (G, β).
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Fig. 8.2 Simplification of Hölder complexes 

Remark 8.2.13 The theory of Hölder Complexes implies that a germ (X, 0) of an 
irreducible complex curve, considered as a real surface germ, is inner Lipschitz 
equivalent to the germ (C, 0). Otherwise (X, 0) is inner Lipschitz equivalent to the 
union of finitely many germs (C, 0) pinched at the origin. 

8.3 Normal Embedding Theorem, Lipschitz Normally 
Embedded Sets 

Examples of Lipschitz Normally Embedded (LNE) Surface Germs 
1. The standard β-horn Cβ is LNE. 
2. A germ of an irreducible complex curve is LNE if, and only if, it is smooth. 

There are many examples of not normally embedded surface germs. On the other 
hand, we have the following result: 

Theorem 8.3.1 (See [7, 10]) Let X ⊂ Rm be a connected semialgebraic set. Then 
there exist a normally embedded semialgebraic set X̃ ⊂ R

q , where q ≤ 2 dim  X+1, 
and an inner bi-Lipschitz homeomorphism p : X → X̃. This map is called a normal 
embedding of X. 

Definition 8.3.2 A subset X̃ ⊂ Rm is called Lipschitz Normally Embedded if there 
exists a bi-Lipschitz homeomorphism Ψ : X̃inner → X̃outer . 

Here X̃inner means the space X̃ equipped with the inner metric, and X̃outer means 
X̃ equipped with the outer metric. The difference with Definition 8.2.3 is that in 
Definition 8.3.2 we do not a priori suppose that Ψ is the identity map. 

Proposition 8.3.3 The two definitions of Lipschitz Normally Embedded sets are 
equivalent.
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Pancake decomposition of Kurdyka [14] implies that there exists a decomposi-
tion of any semialgebraic set X into LNE semialgebraic subsets. 

Theorem 8.3.4 There is a decomposition of any semialgebraic set X into subsets 
Xi such that 

1. ∪Xi = X. 
2. Xi are semialgebraic LNE sets. 
3. dim(Xi ∩ Xj) <  min(dim Xi, dim Xj) for i 	= j . 

Remark 8.3.5 Using pancake decomposition, Kurdyka and Orro defined the so-
called pancake metric (see [7, 14]). It is a semialgebraic metric equivalent to the 
inner metric. 

Definition 8.3.6 (See [19]) An arc in Rn is (a germ at the origin of) a mapping γ : 
[0, ε)  → Rn such that γ (0) = 0. Unless otherwise specified, arcs are parameterized 
by the distance to the origin, i.e., |γ (t)| =  t . We usually identify an arc γ with its 
image in Rn. The  Valette link of a germ (X, 0) is the set V (X)  of all arcs γ ⊂ X. 

Theorem 8.3.7 (See [19]) Let (X, 0) and (Y, 0) be germs of semialgebraic sets 
in Rn. If these germs are semialgebraically (inner, outer or ambient) Lipschitz 
equivalent, then there exists a bi-Lipschitz map h : X → Y (or h : Rn → Rn 

such that h(X) = Y in the case of ambient equivalence) preserving the distance to 
the origin, i.e., such that h(X ∩ Sε) = Y ∩ Sε for small ε >  0. 

Definition 8.3.8 Let f 	≡ 0 be (a germ at the origin of) a Lipschitz function defined 
on an arc γ . The  order ordγ f of f on γ is the exponent q ∈ Q such that f (γ  (t))  = 
ctq + o(tq ) as t → 0, where c 	= 0. If f ≡ 0 on  γ , we set  ordγ f = ∞. 

Definition 8.3.9 The tangency order of arcs γ and γ ′ is tord(γ,  γ ′) = ordγ |γ (t)− 
γ ′(t)|. The tangency order of an arc γ and a set of arcs Z ⊂ V (X)  is tord(γ,  Z)  = 
supλ∈Z tord(γ,  λ). The tangency order of two subsets Z and Z′ of V (X)  is 
tord(Z,  Z′) = supγ∈Z tord(γ,  Z′). Similarly, itord(γ, γ ′), itord(γ, Z) and 
itord(Z, Z′) are the tangency orders with respect to the inner metric. 

Remark 8.3.10 If (X, 0) is a germ of a semialgebraic curve, i.e., X = ∪γi is a 
finite family of semialgebraic arcs, then the outer Lipschitz Geometry of (X, 0) is 
completely determined by the tangency orders tord(γi, γj ) (see [4]). 

Proposition 8.3.11 A surface germ (X, 0) is LNE if, and only if, for any two arcs 
γ1 and γ2 in X one has tord(γ1, γ2) = itord(γ1, γ2). 

Proposition 8.3.12 Let (X, 0) ∈ Rn be a surface germ inner Lipschitz equivalent 
to a β-horn. The Grassmannian G(n, 2) can be considered as the space of 
all orthogonal projections ρ : R

n → R
2. Then there exists an open dense 

semialgebraic subset ˜G ⊂ G(n, 2) such that for all ρ ∈ ˜G one has β = 
min{γ1,γ2}⊂V (X)  tord(ρ(γ1), ρ(γ2)). 

The following proposition was proved first by Alexandre Fernandes [12]. A 
special case of this is the Arc Criterion of Normal Embedding [11].
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Proposition 8.3.13 Let (X, 0) and (Y, 0) be surface germs. A semialgebraic home-
omorphism Φ : (X, 0) → (Y, 0) preserving the distance to the origin is bi-Lipschitz 
if, and only if, for any two arcs γ1, γ2 ∈ V (X)  one has 

.tord(γ1, γ2) = tord(Φ(γ1),Φ(γ2)). (8.1) 

A special case of Pancake Decomposition for surface germs can be stated as 
follows: 

Theorem 8.3.14 Let (X, 0) be a semialgebraic surface germ. Then there exists a 
decomposition of (X, 0) into the germs (Xi, 0) such that 

1. ∪Xi = X. 
2. Each Xi is a LNE βi-Hölder triangle. 
3. For i 	= j , the intersection Xi ∩ Xj is either the origin or a common boundary 

arc of Xi and Xj . 

Definition 8.3.15 A pancake decomposition of a surface germ is minimal if the 
union of any two adjacent Hölder triangles Xi and Xj is not normally embedded. 
Two pancake decompositions are combinatorially equivalent if they are combinato-
rially equivalent as Hölder Complexes. 

The answer to a natural question “Are any two minimal pancake decompositions 
of the same surface germ combinatorially equivalent?” is negative (see Sect. 8.5). 

8.4 Pizza Decomposition of the Germ of a Semialgebraic 
Function 

This section is related to the outer Lipschitz Geometry of a special kind of a surface 
germ: The union of a Lipschitz Normally Embedded (LNE) Hölder triangle and the 
graph of a semialgebraic Lipschitz function defined on it. 

Definition 8.4.1 Given a semialgebraic Lipschitz function f defined on a .β-Hölder 
triangle T , let  

.Qf (T ) =
⋃

γ∈V (T )

ordγ f. (8.2) 

It was shown in [9] that .Qf (T ) is either a point or a closed interval in .Q ∪ {∞}. 
Definition 8.4.2 A Hölder triangle T is elementary with respect to a Lipschitz 
function f if, for any .q ∈ Qf (T ) and any two arcs . γ and . γ ′ in T such that 
.ordγ f = ordγ ′f = q, the order of f is q on any arc in the Hölder triangle 
.T (γ, γ ′) ⊆ T bounded by the arcs . γ and . γ ′.
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Definition 8.4.3 Let T be a Hölder triangle and f a semialgebraic Lipschitz 
function defined on T . For each arc .γ ⊂ T , the  width .μT (γ, f ) of the arc . γ with 
respect to f is the infimum of exponents of Hölder triangles .T ′ ⊂ T containing . γ
such that .Qf (T ′) is a point. For .q ∈ Qf (T ) let .μT,f (q) be the set of exponents 
.μT (γ, f ), where . γ is any arc in T such that .ordγ f = q. It was  shown in [9] that, 
for each .q ∈ Qf (T ), the  set  .μT,f (q) is finite. This defines a multivalued width 
function .μT,f : Qf (T ) → Q ∪ {∞}. If  T is elementary with respect to f , then the 
function .μT,f is single valued. When f is fixed, we write .μT (γ ) and . μT instead of 
.μT (γ, f ) and .μT,f . 

Definition 8.4.4 Let T be a Hölder triangle and f a semialgebraic Lipschitz 
function defined on T . We say that T is a pizza slice associated with f if it is 
elementary with respect to f and, unless .Qf (T ) is a point, .μT,f (q) = aq + b is 
an affine function on .Qf (T ). If  T is a pizza slice such that .Qf (T ) is not a point, 
then the supporting arc . γ̃ of T with respect to f is the boundary arc of T such that 
.μT (γ̃ , f ) = maxq∈Qf (T ) μT,f (q). In that case, .μT (γ, f ) = tord(γ, γ̃ ) for any arc 
.γ ⊂ T such that .tord(γ, γ̃ ) ≤ μT (γ̃ , f ). 

Definition 8.4.5 (See [9, Definition 2.13]) Let f be a non-negative semialgebraic 
Lipschitz function defined on a .β-Hölder triangle .T = T (γ1, γ2) oriented from . γ1
to . γ2. A  pizza on T associated with f is a decomposition .{T
}p
=1 of T into .β
-
Hölder triangles .T
 = T (λ
−1, λ
) ordered according to the orientation of T , such 
that .λ0 = γ1 and .λp = γ2 are the boundary arcs of T , .T
∩T
+1 = λ
 for .0 < 
 < p, 
and each triangle . T
 is a pizza slice associated with f . 

A pizza .{T
} on T is minimal if .T
−1 ∪ T
 is not a pizza slice for any .
 > 1. 

Definition 8.4.6 (See [9, Definition 2.12]) An abstract pizza is a finite ordered 
sequence .{q
}p
=0, where .q
 ∈ Q≥1 ∪ {∞}, and a finite collection .{β
,Q
, μ
}p
=1, 
where .β
 ∈ Q≥1 ∪ {∞}, .Q
 = [q
−1, q
] ⊂ Q≥1 ∪ {∞} is either a point or a closed 
interval, .μ
 : Q
 → Q ∪ {∞} is an affine function, non-constant when . Q
 is not a 
point, such that .μ
(q) ≤ q for all .q ∈ Q
 and .minq∈Q


μ
(q) = β
. 

Definition 8.4.7 Two pizzas are combinatorially equivalent if the corresponding 
abstract pizzas are the same. 

Theorem 8.4.8 (See [9, Theorem 4.9]) Two non-negative semialgebraic Lipschitz 
functions f and g defined on a Hölder triangle T are contact Lipschitz equivalent 
if, and only if, minimal pizzas on T associated with f and g are combinatorially 
equivalent. 

Let .T = T (γ1, γ2) and .T ′ = T (γ ′
1, γ

′
2) be two normally embedded .β-Hölder 

triangles. We say that .(T , T ′) is a normal pair if 

.
tord(γ1, T

′) = tord(γ1, γ
′
1) = tord(γ ′

1, T ),

tord(γ2, T
′) = tord(γ2, γ

′
2) = tord(γ ′

2, T ).
(8.3) 

For example, a pair .(T ,Graph(f )) considered in this section satisfies this 
condition. The following question is natural: Let .T = T (γ1, γ2) and .T ′ = T (γ ′

1, γ
′
2)
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be a normal pair of semialgebraic .β-Hölder triangles. Is it true that the union . T ∪T ′
is outer Lipschitz equivalent to the union .T ∪ Graph(f ), where f is the distance 
function .f (x) = dist (x, T ′) defined on T ? In the paper [3] the authors give 
examples when this is not true. This is true, however, when T is elementary with 
respect to f . 

8.5 Outer Lipschitz Geometry, Snakes 

Definition 8.5.1 Let (X, 0) be a surface germ. An arc γ of X is Lipschitz non-
singular if there exists a normally embedded Hölder triangle T ⊂ X such that γ is 
an interior arc of T and γ 	⊂ X \ T . Otherwise, γ is Lipschitz singular. It follows 
from the pancake decomposition that a surface germ X contains finitely many 
Lipschitz singular arcs. The union of all Lipschitz singular arcs in X is denoted 
by Lsing(X). A Hölder triangle T ⊂ X is non-singular if all interior arcs of T are 
Lipschitz non-singular. 

Definition 8.5.2 If T = T (γ1, γ2) is a non-singular β-Hölder triangle, an arc γ of 
T is generic if itord(γ1, γ  )  = itord(γ, γ2) = β. The set of generic arcs of T is 
denoted G(T ). 

Definition 8.5.3 An arc γ of a Lipschitz non-singular β-Hölder triangle T is 
abnormal if there are two normally embedded Hölder triangles T ′ ⊂ T and T ′′ ⊂ T 
such that T ′∩T ′′ = γ and T ∪T ′ is not normally embedded. Otherwise γ is normal. 
The set Abn(T ) of abnormal arcs of T is outer Lipschitz invariant. 

Definition 8.5.4 A non-singular β-Hölder triangle T is called a β-snake if 
Abn(T ) = G(T ). 

The following important property of snakes can be interpreted as “separation of 
scales” in outer Lipschitz Geometry. 

Lemma 8.5.5 Let T be a β-snake, and let {Tk}p 
k=1 be a minimal pancake decom-

position of T . Then each Tk is a β-Hölder triangle. 

Remark 8.5.6 Minimal pancake decompositions of a snake may be combinatorially 
non-equivalent, as shown in Fig. 8.3. We use a planar plot to represent the link of a 
snake. The points in Fig. 8.3 correspond to arcs of the snake. The points with smaller 
Euclidean distance inside the shaded disks correspond to arcs with the tangency 
order higher than their inner tangency order β. Black dots indicate the boundary 
arcs of pancakes. 

Definition 8.5.7 A β-Hölder triangle T is weakly normally embedded if, for 
any two arcs γ and γ ′ of T such that tord(γ,  γ ′) > itord(γ,  γ ′), we have  
itord(γ, γ ′) = β. 

Proposition 8.5.8 Let T be a β-snake. Then T is weakly normally embedded.
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Fig. 8.3 Two combinatorially non-equivalent minimal pancake decompositions of a snake. Black 
dots indicate the boundary arcs of pancakes 

8.6 Tangent Cones 

Definition 8.6.1 The tangent cone C0X of a semialgebraic set X at 0 is defined as 
follows: 

. C0X = Cone

(

lim
ε→0

1

ε

(

X ∩ {|x| = ε})
)

,

where the limit here means the Hausdorff limit. 

Remark 8.6.2 There are several equivalent definitions of the tangent cone of a 
semialgebraic set. In particular, the tangent cone C0X can be defined as the set 
of tangent vectors at the origin to all arcs in X. The tangent cone of a semialgebraic 
set is semialgebraic. 

The tangent cone is Lipschitz invariant: 

Theorem 8.6.3 (See [18]) If two germs (X, 0) and (Y, 0) are outer (resp. ambient) 
Lipschitz equivalent, then the corresponding tangent cones C0X and C0Y are outer 
(resp. ambient) Lipschitz equivalent. 

The result is important in Theory of Metric Knots (see [2, 5, 6]) for the proof of 
Universality Theorem below. This result was also used to prove that, if a complex 
analytic set is a Lipschitz nonsingular submanifold of Cn, then it is a smooth 
submanifold [8]. Moreover, the result was used in the recent study of the Zariski 
Multiplicity Conjecture (see the paper of Fernandes and Sampaio in the present 
volume).
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8.7 Ambient Equivalence: Metric Knots 

Definition 8.7.1 Two germs of semialgebraic sets (X, 0) and (Y, 0) in Rn are outer 
Lipschitz equivalent if there exists a homeomorphism h : (X, 0) → (Y, 0) bi-
Lipschitz with respect to the outer metric. The germs are semialgebraic outer 
Lipschitz equivalent if the map h can be chosen to be semialgebraic. The germs are 
ambient Lipschitz equivalent if there exists an orientation preserving bi-Lipschitz 
homeomorphism H : (Rn , 0) → (Rn , 0), such that H(X)  = Y . The germs are 
semialgebraic ambient Lipschitz equivalent if the map H can be chosen to be 
semialgebraic. 

Definition 8.7.2 The link at the origin LX of a germ (X, 0) in Rn is the equivalence 
class of the sets X ∩ Sn−1 

0,ε for small positive ε with respect to the ambient Lipschitz 
equivalence. The tangent link of X is the link at the origin of the tangent cone of X. 

Remark 8.7.3 By the finiteness theorems of Mostowski, Parusinski and Valette (see 
[15, 16, 20]) the link at the origin is well defined. We write “the link at the origin” 
speaking of this notion of the link from Singularity Theory, reserving the word 
“link” for the notion of the link in Knot Theory. If n = 4 and X has an isolated 
singularity at the origin, then each connected component of LX is a knot in S3. 

Definition 8.7.4 A metric knot is an ambient Lipschitz equivalence class of a 
surface germ (X, 0) in R4 with an isolated singularity and connected link. In 
particular, the link at the origin of the germ X is an isotopy class of an ordinary 
topological knot in S3. 

The following result (so called Universality Theorem for metric knots) shows 
the difference between outer and ambient Lipschitz Geometry of surface germs in 
R
4: 

Theorem 8.7.5 (Universality Theorem) One can associate to each knot K in S3 

a semialgebraic surface germ (XK, 0) in R4 so that: 

1. The link at the origin of each germ XK is a trivial knot; 
2. All germs XK are outer Lipschitz equivalent; 
3. Two germs XK1 and XK2 are ambient semialgebraic Lipschitz equivalent only if 

the knots K1 and K2 are isotopic. 

The idea of a proof is illustrated in Fig. 8.4, representing the link at the origin of 
a surface germ XK . A detailed explanation can be found in [6]. 

The following result is a more complicated version of Universality Theorem: 

Theorem 8.7.6 For any two knots K and L in S3, one can associate a semialge-
braic surface germ X̃KL so that: 

1. The link at the origin of X̃KL is isotopic to L. 
2. The tangent link of X̃KL is isotopic to K . 
3. All surface germs X̃KL are outer bi-Lipschitz equivalent.
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Fig. 8.4 The proof of 
Theorem 8.7.5 

The theorem implies, for example, that for a given tangent cone one can find 
infinitely many outer Lipschitz equivalent, but not ambient Lipschitz equivalent 
surface germs. 
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Abstract The multiplicity of an algebraic curve C in the complex plane at a point 
p on that curve is defined as the number of points that occur at the intersection of 
C with a general complex line that passes close to the point p. It is shown that p 
is a singular point of the curve C if and only if this multiplicity is greater than or 
equal to 2, in this sense, such an integer number can be considered as a measure of 
how singular can be a point of the curve C. In these notes, we address the classical 
concept of multiplicity of singular points of complex algebraic sets (not necessarily 
complex curves) and we approach the nature of the multiplicity of singular points 
as a geometric invariant from the perspective of the Multiplicity Conjecture (Zariski 
1971). More precisely, we bring a discussion on the recent results obtained jointly 
with Lev Birbrair, Javier Fernández de Bobadilla, Lê Dũng Tráng and Mikhail 
Verbitsky on the bi-Lipschitz invariance of the multiplicity. 

9.1 Introduction 

Unless explicitly mentioned to the contrary, all the analytic subsets of . Cn considered 
here are closed subsets of . Cn. 

9.1.1 Local Analytic Structure 

Let .p ∈ X ⊂ C
n and .q ∈ Y ⊂ C

m be analytic subsets. We say that the pair 
.(X, p) is analytic equivalent to .(Y, q) if there exist neighbourhoods .U ⊂ C

n of 
p and .V ⊂ C

m of q and an analytic mapping .F : U ∩ X → V ∩ Y ; . F(p) =
q with inverse map .G : V ∩ Y → U ∩ X also analytic. This definition gives us 
an equivalence relation; each equivalence class is what we call a local analytic 
structure. We establish that the equivalence class of .(Cn, 0) is the regular local 
analytic structure in dimension n. Local Analytic Geometry is the research field in 
Mathematics in charge of describing all local analytic structures. 

Given .p ∈ X ⊂ C
n an analytic subset, we denote by .OX,p the set of analytic 

functions defined in some neighbourhood of p in X equipped with natural binary 
operations of addition and multiplication. Defined in that way, .OX,p is a local ring 
with maximal ideal given by 

. MX,p = {f ∈ OX,p : f (p) = 0}.

Next result makes a bridge connecting Local Analytic Geometry with Commu-
tative Algebra (see [5]). 

Theorem 9.1.1 Let .p ∈ X ⊂ C
n and .q ∈ Y ⊂ C

m be analytic subsets. The pair 
.(X, p) defines the same local analytic structure as .(Y, q) if, and only if, .OX,p is 
isomorphic to .OY,q as local .C-algebras. 

As already mentioned here, we observe that this theorem above provides a way 
to study the classification of local analytic structures from the algebraic point of
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view. Next, from the algebraic point of view, we present one of the more important 
invariant of local analytic structures. 

Proposition 9.1.2 Let .X ⊂ C
n be an analytic subset such that in a neighbourhood 

of .p ∈ X it has pure dimension d. There exists a polynomial .P(t) ∈ C[t] of degree d 
such that .P(k) is equal to .dimOX,p/Mk

X,p as a . C vector space, for k large enough. 
Moreover, the leading coefficient of .P(t) times . d! is equal to some positive integer e. 
Definition 9.1.3 The polynomial .P(t) is called the Hilbert-Samuel Polynomial 
of the pair .(X, p). The integer number e provided in the above proposition is called 
multiplicity of X at p and denoted by .m(X,p). 

Example 9.1.4 Let us show that .m(Cn, 0) = 1. Actually, we know that .OCn,0 is 
isomorphic to .C{z1, . . . , zn}, so, it has pure dimension n. Hence, .Mk

Cn,0 is the ideal 
of .C{z1, . . . , zn} generated by .za1

1 · · · zan
n where .a1, . . . , an are non-negative integer 

numbers such that .a1 + · · · + an = k and, therefore, 

. dimOCn,0/M
k
Cn,0 = 1

n! (n + k − 1)(n + k − 2) · · · (k + 1)(k)

. ∴ .m(Cn, 0) = 1. 

Example 9.1.5 Let .X ⊂ C
2 be the cusp defined by 

. X = {(z1, z2) ∈ C
2 : z3

1 = z2
2}.

In this case, we see that .m(X, 0) = 2. Indeed, .OX,0 is isomorphic to . C{z1, z2}/I
where I is the ideal of .C{z1, z2} generated by .z1, z2 with the following relation 
.z3

1 = z2
2. In other words, we have that .OX,0 is isomorphic to 

. f (z1) + g(z1)z2 : f (z1), g(z1) ∈ C{z1}.

Hence, 

. dimOX,0/M
k
X,0 = 2k − 1,

and as .(X, 0) has pure dimension 1, we get .m(X, 0) = 2. 

Next result says that multiplicity of points is an invariant of the local analytic 
structure. 

Theorem 9.1.6 Let .p ∈ X ⊂ C
n and .q ∈ Y ⊂ C

m be analytic subsets. If . (X, p)

defines the same local analytic structure as .(Y, q), then .m(X,p) = m(Y, q). 

Proof Let us assume that .(X, p) defines the same local analytic structure as .(Y, q), 
hence .OX,p is isomorphic to .OY,q as local .C-algebra. Then, 

. dimOX,p/Mk
X,p = dimOY,q/Mk

Y,q ∀k,
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and .(X, p) and .(Y, q) have the same Hilbert-Samuel Polynomial. In particular, 
.m(X,p) = m(Y, q). ��

Next we see a more geometric way to get the multiplicity of points (see [15] and 
[5]). 

Proposition 9.1.7 Let .X ⊂ C
n be an analytic subset such that in a neighbourhood 

of .p ∈ X it has dimension d. If  .L : Cn → C
d is a generic linear projection, then 

its restriction to .X ∩ U defines a finite mapping of topological degree m for each 
small enough neighbourhood .U ⊂ C

n of the point p. Moreover, if .X ⊂ C
n is an 

analytic subset such that in a neighbourhood of .p ∈ X it has pure dimension d then 
the integer number m is equal to the multiplicity .m(X,p). 

In the above proposition, let us make clear that a linear projection . L : Cn → C
d

is generic when the intersection of .Ker(L) with the tangent cone .C(X, p) (see 
Sect. 9.3) is only the null vector. 

Example 9.1.8 Let .X ⊂ C
n be a hypersurface defined as the zero set of an analytic 

function .f : U ⊂ C
n → C in a neighbourhood U of the origin .0 ∈ C

n; .f (0) = 0. 
Let us write 

. f (z) = fm(z) + fm+1(z) + · · · + fk(z) + · · ·

where each .fk(z) is a homogeneous polynomial of degree k and . fm 	≡ 0. In this  
case, .m(X, 0) = m. 

Definition 9.1.9 We say that .p ∈ X ⊂ C
n is a regular point (of X) if . OX,p

∼=
OCk,0. A point .p ∈ X is singular if it is not regular. 

Corollary 9.1.10 Let .X ⊂ C
n be an analytic subset such that in a neighbourhood 

of .p ∈ X it has pure dimension d. Then, p is a regular point of X if and only if 
.m(X,p) = 1. 

Although multiplicity is enough to identify the regular local analytic structures, 
the following example shows us that discrete invariants are not enough to describe 
all local analytic structures. 

Example 9.1.11 (Whitney 1965) Let us consider the following family of four lines 
through the origin 

. Xt : x · y · (y − x) · (y − tx) = 0.

For generic .s 	= t , H. Whitney (see [35]) noted that the local analytic structures 
.(Xs, 0) and .(Xt , 0) are not analytic equivalent.
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. 

0

9.1.2 Local Topological Structure 

Let .p ∈ X ⊂ C
n and .q ∈ Y ⊂ C

n be analytic subsets. We say that the pair . (X, p)

is topological equivalent to .(Y, q) if there exist neighbourhoods .U ⊂ C
n of p and 

.V ⊂ C
m of q and a homeomorphism .F : U ∩X → V ∩Y ; .F(U ∩X) = V ∩Y and 

.F(p) = q. This definition give us an equivalence relation; each equivalence class is 
what we call a local topological structure. We establish that the equivalence class 
of .(Cn, 0) is the regular local topological structure in dimension n. 

In the 60’s, results that pointed to the possibility of describing the local topology 
of analytical sets only with discrete invariants greatly boosted research on the 
subject and attracted eminent mathematicians to questions that are still open today. 
Actually, it was proved that there are only countably many infinite local topological 
structures and, in the direction of looking for nice discrete invariants of the local 
topological structures, in 1971 O. Zariski (see [37]) placed the following question 
which is still unanswered 

[O. Zariski 1971] Let .X, Y ⊂ C
n be analytic subsets of codimension 1 such that .(X, p) and 

.(Y, q) are topological equivalent, is it true that .m(X,p) must be equal to .m(Y, q)? 

9.1.3 Local Lipschitz Structure 

Let .p ∈ X ⊂ C
n and .q ∈ Y ⊂ C

n be analytic subsets. We say that the pair . (X, p)

is bi-Lipschitz equivalent to .(Y, q) if there exist neighbourhoods .U ⊂ C
n of p and 

.V ⊂ C
m of q and a Lipschitz map .F : U ∩ X → V ∩ Y ; .F(p) = q with inverse 

map .G : V ∩ Y → U ∩ X also Lipschitz, i.e. there exists a positive constant . λ � 1
such that the bi-univocal correspondence F satisfies: 

. 
1

λ
|x1 − x2| � |F(x1) − F(x2)| � λ|x1 − x2| ∀x1, x2 ∈ X ∩ U.

This definition give us an equivalence relation; each equivalence class is what we 
call a local Lipschitz structure. We establish that the equivalence class of .(Cn, 0)
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is the regular local Lipschitz structure in dimension n. Lipschitz Geometry of 
Singularities is the research field in Mathematics in charge of describing all local 
Lipschitz structures. 

In the mid 80’s (see [22]), Tadeusz Mostowski proved that there are only 
countably many infinite local Lipschitz structures (Parusinski proved the real 
version of such result in [25]); this result greatly stimulated research on the Lipschitz 
geometry of singularities, mainly in looking for discrete invariants for the respective 
classification problem. In this direction, the main objective of these notes is to 
bring a survey of results, some of them published with other collaborators, on the 
following issues: 

Question AL(d): Let .X ⊂ C
n and .Y ⊂ C

m be two complex analytic sets with 
.dim X = dim Y = d, .0 ∈ X and .0 ∈ Y . If there exists a bi-Lipschitz 
homeomorphism .ϕ : (X, 0) → (Y, 0), then is .m(X, 0) = m(Y, 0)? 

Question AL(.n, d): Let .X, Y ⊂ C
n be two complex analytic sets with . dim X =

dim Y = d and .0 ∈ X ∩ Y . If there exists a bi-Lipschitz homeomorphism 
.ϕ : (Cn,X, 0) → (Cn, Y, 0) (i.e., .ϕ : (Cn, 0) → (Cn, 0) is a bi-Lipschitz 
homeomorphism such that .ϕ(X) = Y ), then is .m(X, 0) = m(Y, 0)? 

We call each one of the above questions of bi-Lipschitz invariance of the 
multiplicity problem. We emphasize the importance of citing some of the main 
references of pioneering results in the proposed investigation of multiplicity as 
an invariant of local structures that are less rigid than analytic (like Lipschitz 
structures), namely: in the paper [14], Gau and Lipman proved the invariance of 
multiplicity for differentiable local structures (Ephraim, in [10], addressed the case 
of continuously differentiable local structures, see also the result proved by Trotman 
in [33]) and, in the paper [6], assuming severe restrictions on the Lipschitz constants 
that conjugate two pairs .(X, p) and .(Y, q), Comte showed that .m(X,p) = m(Y, q). 

In recent works written in collaboration with Birbrair (UFC), Fernández de 
Bobadilla (BCAM), Lê (Aix-Marseille) and Verbitsky (IMPA), we proved the 
following results. 

1. Regular local Lipschitz structure is equivalent to regular local analytic structure 
(see [1] and [30]); 

2. In dimension 2, the multiplicity is an invariant of the local Lipschitz structure 
(see [3]); 

3. In dimension greater than 2, the multiplicity is not an invariant of the local 
Lipschitz structure (see [2]). 

Pham and Teissier in [26], with contributions of Fernandes in [11] and Neumann 
and Pichon in [24], proved that multiplicity is an invariant of the local Lipschitz 
structure in dimension 1 (see also [13]). Therefore, Results 2 and 3 above, together 
with the result of Pham and Teissier, can be summarized as follows: the multiplicity 
is invariant of the local Lipschitz structure only in dimensions 1 and 2. 

Let us describe how these notes are organized. Section 9.2 contains preliminary 
results where we introduce the concept of Lipschitz normally embedded sets and we 
present the Pancake Decomposition Theorem. Section 9.3 is devoted to explore the
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notion of tangent vectors, more precisely, we introduce the concept of tangent cone 
to singular points and, among other results, we present a proof of the bi-Lipschitz 
invariance of the tangent cone of subanalytic singularities. In Section 9.4, we recover 
the notion of regular local Lipschitz structure and we introduce other notions of 
local Lipschitz regularities; we also present a proof that Lipschitz regularity of 
a local analytic structure implies that such structure must be analytic regular. In 
Section 9.5, we introduced the so-called relative multiplicities, we present a proof 
that such multiplicities are bi-Lipschitz invariant and we show that Question AL(d) 
(resp. AL(.n, d)) has a positive answer if, and only if, it has a positive answer for 
irreducible homogeneous algebraic singularities. Finally, in Section 9.6 we address 
the problem of the bi-Lipschitz invariance of the multiplicity. 

9.2 Lipschitz Normally Embedded Sets 

In this section we define Lipschitz normally embedded sets and we present some 
important properties of this notion. 

Let .Z ⊂ R
n be a path connected subset. Given two points .q, q̃ ∈ Z, we define 

the inner distance on Z between q and . q̃ by the number: 

. dZ(q, q̃) := inf{Length(γ ) | γ is an arc on Z connecting q to q̃}.

Definition 9.2.1 We say that Z is Lipschitz normally embedded (LNE), if there is 
a constant .C � 1 such that .dZ(q, q̃) � C‖q − q̃‖, for all .q, q̃ ∈ Z. We say that Z is 
Lipschitz normally embedded at p (shortly LNE at p), if there is a neighbourhood 
U such that .p ∈ U and .Z ∩ U is an LNE set or, equivalently, that the germ . (Z, p)

is LNE. In this case, we also say that Z is C-LNE (resp. C-LNE at p). 

Proposition 9.2.2 Let .X ⊂ R
n and .Y ⊂ R

m be non-empty subsets. Assume that 
there exists a bi-Lipschitz homeomorphism .ψ : X → Y . Then, X is LNE at . x0 ∈ X

if and only if Y is LNE at .ψ(x0). 

Proof The proof is left as an exercise for the reader. ��
Let us recall the following “Pancake decomposition” result: 

Lemma 9.2.3 (Proposition 3 in [17]) Let .X ⊂ R
m be a subanalytic set and .ε > 0. 

Then for each p in the closure of X, denoted by . X, there exist .δ > 0 and a finite 
decomposition .X ∩ Bδ(p) = ⋃k

j=1 Γj such that: 

(i) each . Γj is a subanalytic connected analytic submanifold of . Rm, 
(ii) each . Γ j satisfies .dΓ j

(x, y) � (1 + ε)‖x − y‖ for any .x, y ∈ Γ j . 

The above result has the following consequence: 

Proposition 9.2.4 Let .X ⊂ R
m be a subanalytic set. Then . dX induces the same 

topology on X as the topology induced by the standard topology on . Rm.
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Proof The proof is left as an exercise for the reader. ��

9.2.1 Exercises 

Exercise 9.2.5 Prove that any connected compact C1 submanifold of Rn is LNE. 

Exercise 9.2.6 Let X ⊂ Cn be a complex analytic set. Then for any x, y ∈ X, we  
have that 

. dX(x, y) = inf
β∈Ω(x,y)

∫ 1

0
‖β ′(t)‖dt,

where Ω(x, y) = {β : [0, 1] →  X; β(0) = x, β(1) = y and β is piecewise C1}. 
Exercise 9.2.7 Prove Proposition 9.2.2. 

Exercise 9.2.8 Prove Proposition 9.2.4. 

Exercise 9.2.9 Let X ⊂ C2 be a complex analytic curve. Let X1, . . . , Xr be the 
irreducible components of X (at 0). Then, X is LNE at 0 if and only if each Xi is 
smooth at 0 and for i 	= j , Xj and Xi meet transversally at 0. 

Exercise 9.2.10 Let X ⊂ Cm be a complex algebraic set. Assume that dX(x, y) =
‖x − y‖ for all x, y ∈ X. Prove that X is an affine linear subspace of Cm. 

9.3 Tangent Cones 

We begin this section with the definition of tangent cone of a subset .X ⊂ K
m at a 

point, where . K is . R or . C. 

Definition 9.3.1 Let .X ⊂ K
m be a set such that .x0 ∈ X. We say that .v ∈ K

m is a 
tangent vector of X at .x0 ∈ K

m if there are a sequence of points .{xi} ⊂ X tending 
to . x0 and a sequence of positive real numbers .{ti} such that 

. lim
i→∞

1

ti
(xi − x0) = v.

Let .C(X, x0) denote the set of all tangent vectors of X at . x0. We call .C(X, x0) the 
tangent cone of X at . x0. 

Recall that a subset of .Cn is called a complex cone if it is a union of one-
dimensional complex linear subspaces of . Cn. 

Remark 9.3.2 In the case where .X ⊂ C
m is a complex analytic set such that .0 ∈ X, 

.C(X, 0) is the zero locus of a set of complex homogeneous polynomials (see [36,
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Theorem 4D]). In particular, .C(X, 0) is a complex algebraic subset of .Cm and is a 
complex cone. More precisely, let .I(X) be the ideal of .OCm,0 given by the germs 
which vanishes on X. For each .f ∈ OCm,0, let  

. f = fk + fk+1 + · · ·

be its Taylor development where each . fj is a homogeneous polynomial of degree j 
and .fk 	= 0. So, we say that . fk is the initial part of f and we denote it by . in(f ). In  
this way, .C(X, 0) is the affine variety of the ideal .I∗(X) = 〈in(f ); f ∈ I(X)〉. 
Example 9.3.3 Examples of tangent cones: 

(1) If .X = {(x, y) ∈ R
2; x3 = y2} then .C(X, 0) = {(x, y) ∈ R

2; y = 0 and 
.x � 0}; 

(2) Let .f : (Cn, 0) → (C, 0) be a complex analytic function and let . f =
fk + fk+1 + · · · be its Taylor development at the origin where each . fj is a 
homogeneous polynomial of degree j and .fk 	= 0. Then .C(V (f ), 0) = V (fk); 

(3) If .X = {(x, y) ∈ C
2; x3 = y2} then .C(X, 0) = {(x, y) ∈ C

2; y = 0}. 
Proposition 9.3.4 Basic properties: 

(1) If .A ⊂ X then .C(A, p) ⊂ C(X, p) for all .p ∈ A; 
(2) For .X, Y ⊂ R

m and .p ∈ X ∩ Y , we have 

(a) .C(X ∪ Y, p) = C(X, p) ∪ C(Y, p); 
(b) .C(X ∩ Y, p) ⊂ C(X, p) ∩ C(Y, p); 

(3) For .X ⊂ R
m, .Y ⊂ R

n and .(p, q) ∈ X × Y , we have . C(X × Y, (p, q)) =
C(X, p) × C(Y, p); 

(4) If X is a .C1-smooth submanifold of .Rm then .C(X, p) = TpX for all .p ∈ X, 
where .TpX is the tangent space of X at p; 

(5) Let .ϕ : (Rn, p) → (Rm, ϕ(p)) be the germ of a mapping which is differentiable 
at p. If  .X ⊂ R

m is a set such that .p ∈ X then . Dϕp(C(X, p)) ⊂
C(ϕ(Y ), ϕ(p)), where .Dϕp is the derivative of . ϕ at p; 

(6) If .X ⊂ R
m and .p ∈ X then .C(X, p) is a closed subset of . Rm, . C(X, p) =

C(X, p) and .C(X, p) is a real cone, i.e., for each .v ∈ C(X, p), we have that 
.λv ∈ C(X, p) for all .λ > 0. 

Proof The proof is left as an exercise for the reader. ��
Note that the tangent cones are not topological invariant in the sense that . (X, p)

can be topological equivalent to . (Y, q), but .C(X, p) and .C(Y, q) are not homeo-
morphic . Indeed, the real cusp .X = {(x, y) ∈ R

2; y3 = x2} is homeomorphic to 
the real line .L = {(x, y) ∈ R

2; y = 0}, but .C(X, 0) = {(0, y) ∈ R
2; y � 0} is not 

homeomorphic to .C(L, p) = L, for any .p ∈ L. The main result of this section is to 
prove that the tangent cones are bi-Lipschitz invariant. 

Another way to present the tangent cone of a subset .X ⊂ R
m at the origin . 0 ∈ R

m

is via the spherical blow-up of .Rm at the point 0 as it is going to be done in the 
following: let us consider the spherical blowing-up at the origin of .Rm
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. 
ρm : Sm−1 × [0,+∞) −→ R

m

(x, r) �−→ rx.

Notice that .ρm : Sm−1 × (0,+∞) → R
m \ {0} is a homeomorphism with inverse 

map .ρ−1
m : Rm \ {0} → S

m−1 × (0,+∞) given by .ρ−1
m (x) = ( x

‖x‖ , ‖x‖). Let us 
denote 

. X′ := ρ−1
m (X \ {0}) and ∂X′ := X′ ∩ (Sm−1 × {0}).

Proposition 9.3.5 If .X ⊂ R
m is a subanalytic set and .0 ∈ X, then . ∂X′ = S0X ×

{0}, where .S0X = C(X, 0) ∩ S
m−1. 

Proof The proof is left as an exercise for the reader. ��

9.3.1 Characterization of Tangent Cones 

In this section, we present one more way to consider tangent vectors of subanalytic 
sets. More precisely, the following proposition and its corollaries give us nice 
characterizations of tangent vector of subanalytic sets X in terms of velocity of 
arcs in X. 

We start by recalling the following fundamental result in real algebraic geometry 
(see [4, Lemma 6.3]): 

Lemma 9.3.6 (Curve Selection Lemma) Let X be a subanalytic subset of . Rn and 
.x ∈ R

n being a non-isolated point of . X. Then, there exist .δ > 0 and an analytic 
map .γ : (−δ, δ) → R

n such that .γ (0) = x and .γ ((0, δ)) ⊂ X. 

Proposition 9.3.7 Let .Z ⊂ R
m be a subanalytic set with .p ∈ Z \ {p}. A vector . v ∈

R
m is a tangent vector of Z at p if and only if there exists a continuous subanalytic 

arc .γ : [0, ε) → Z such that .γ ((0, ε)) ⊂ Z and .γ (t) − p = tv + o(t), where 
.g(t) = o(t) means . lim

t→0+
g(t)
t

= 0. 

Proof Without loss of generality, we assume .p = 0. Thus, . Y = ρ−1
m (X \ {0}) ⊂

S
m−1 × [0,+∞) and . Y are subanalytic sets. We are going to consider two cases: 

1) Case .v 	= 0. Since v is a tangent vector of Z at 0, there are a sequence . {sk}k∈N
of positive real numbers and a sequence .{zk}k∈N ⊂ Z such that . lim

k→+∞ zk = 0

and . lim
k→+∞

1
sk

zk = v. In particular, . lim
k→∞

zk‖zk‖ = v
‖v‖ and .u = ( v

‖v‖ , 0) ∈ Y . 

Then by Curve Selection Lemma (Lemma 9.3.6), there exists an analytic arc 
.β : (−δ, δ) → S

n−1 × R such that .β(0) = u and .β((0, δ)) ⊂ Y . By writing 
.β(t) = (x(t), s(t)), we have that .s : [0, δ) → R is an analytic and non-constant 
function such that .s(0) = 0 and .s(t) > 0 if .t ∈ (0, δ). By analyticity of 
. s′, one can suppose that s is strictly increasing in the domain .[0, δ). Hence,
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.s : [0, δ/2] → [0, δ′] is a subanalytic homeomorphism, where .δ′ = s( δ
2 ). We  

define .γ : [0, ε) → Z by 

. γ (t) = ρm ◦ β ◦ s−1(t‖v‖) = ρm(x(s−1(t‖v‖)),
s(s−1(t‖v‖))) = t‖v‖x(s−1(t‖v‖)),

where .ε = min{ δ′
‖v‖ , δ′}. Therefore, 

. lim
t→0+

γ (t)

t
= lim

t→0+
t‖v‖x(s−1(‖v‖t))

t
= lim

t→0+‖v‖x(s−1(‖v‖t))=‖v‖x(0)=v,

and thus .γ (t) = tv +o(t) and .γ ((0, ε)) ⊂ Z. Since . γ is a composition of proper 
continuous subanalytic maps, it is a continuous subanalytic map as well. 

2) Case .v = 0. In this case, let .{zk}k∈N ⊂ Z be a sequence such that . lim
k→+∞ zk =

0. Thus, .{ xk‖xk‖ }k∈N is, up to take subsequence, a convergent sequence. Let 

.v′ ∈ R
m be the limit of this sequence, i.e., . lim

k→∞
xk‖xk‖ = v′. Likewise as it was 

done in the Case 1), one can show that there exists a continuous subanalytic arc 

.γ : [0, ε) → Z such that .γ (t) = tv′ + o(t). Let us define .γ̃ : [0, ε
1
2 ) → Z by 

.γ̃ (t) = γ (t2). Thus, we have .γ̃ (t) = o(t) = tv + o(t). 
Reciprocally, if there exists a continuous subanalytic arc .γ : [0, ε) → Z such that 
.γ (t) = tv + o(t) and .γ ((0, ε)) ⊂ Z, then for each .k ∈ N we define . sk = ε

k+2
and .zk = γ (sk). Thus, it is clear that v is a tangent vector of Z at 0, since 
. lim
k→+∞ zk = 0 and . lim

k→+∞
1
sk

zk = v. 

��
It is an immediate consequence of Proposition 9.3.7 the following result: 

Corollary 9.3.8 Let X be a subanalytic set in . Rm, .p ∈ X \ {p}. Then . C(X, p) =
{v ∈ Rm; there exists a continuous subanalytic arc .γ : [0, ε) → Z such that 
.γ ((0, ε)) ⊂ Z and .γ (t) − p = tv + o(t)}. 
Proposition 9.3.9 Let X be a subanalytic set in . Rm, .p ∈ X. If  . v ∈ C(X, p) \
{0} then we can take a continuous subanalytic arc .γ : [0, ε) → X such that 
.γ ((0, ε)) ⊂ X, .γ (t)−p = tv+o(t) and, moreover, satisfies anyone of the following 
conditions: 

(i) .‖γ (t) − p‖ < t‖v‖; 
(ii) .‖γ (t) − p‖ = t‖v‖; 
(iii) .‖γ (t) − p‖ > t‖v‖, for all .t ∈ (0, ε). 

Proof The proof is left as an exercise for the reader. ��
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9.3.2 Bi-Lipschitz Invariance of Tangent Cones 

The main goal of this section is to show the so-called bi-Lipschitz invariance of the 
tangent cones of subanalytic sets in the following sense: if .(X, p) is bi-Lipschitz 
equivalent to .(Y, q), then .C(X, p) is bi-Lipschitz homeomorphic to .C(Y, q). 

Lemma 9.3.10 (McShane-Whitney-Kirszbraun’s Theorem [20], [34] and [16]) 
Let .h : X ⊂ R

n → R
m be a Lipschitz mapping. Then there exists a Lipschitz 

mapping .H : Rn → R
m such that .H |X = h. 

Proof It is enough to consider the case that X is a closed subset and . m = 1. Let  
.C > 0 be a constant such that .|h(x) − h(y)| � C‖x − y‖ for all .x, y ∈ X. We  
define .H : Rn → R by .H(x) = inf{h(y) + C‖x − y‖; y ∈ X}. For . x ∈ X, we have  
that .h(x) − h(y) � ‖h(x) − h(y)‖ � C‖x − y‖, and thus .H(x) = h(x). Given  
.u, v ∈ R

n, for each . ε > 0, let .x0, y0 ∈ X such that . H(u) > h(x0) + C‖x0 − u‖ − ε

and .H(v) > h(x0) + C‖x0 − v‖ − ε. Thus, 

. H(u) − H(v) � h(y0) + C‖y0 − u‖ − h(y0) − C‖y0 − v‖ + ε � C‖u − v‖ + ε

and 

. H(v) − H(u) � h(x0) + C‖x0 − v‖ − h(x0) − C‖x0 − u‖ + ε � C‖u − v‖ + ε.

Finally, by taking .ε → 0+, we get .|H(u) − H(v)| � C‖u − v‖, which finishes the 
proof. ��

Now we can state and prove the main result of this section. 

Theorem 9.3.11 (Theorem of the Bi-Lipschitz Invariance of the Tangent Cones) 
Let .X ⊂ R

n and .Y ⊂ R
m be subanalytic sets. If there are constants . C1, C2 > 0

and a bi-Lipschitz homeomorphism .φ : (X, x0) → (Y, y0) such that 

. 
1

C1
‖x − y‖ � ‖φ(x) − φ(y)‖ � C2‖x − y‖, ∀x, y ∈ X,

then there is a global bi-Lipschitz homeomorphism .dφ : C(X, x0) → C(Y, y0) such 
that .dφ(0) = 0 and 

. 
1

C1
‖x − y‖ � ‖dφ(x) − dφ(y)‖ � C2‖x − y‖, ∀x, y ∈ C(X, x0).

Proof This proof follows closely the proof presented in [30]. The last part of this 
proof follows from the ideas presented in the proof of Theorem 3.1 in [31].
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Let .φ : X → Y be a bi-Lipschitz homeomorphism. By McShane-Whitney-
Kirszbraun’s Theorem, there exists .φ̃ : Rn → R

m a Lipschitz map such that . ̃φ|X =
φ and .ψ̃ : Rm → R

n another Lipschitz map such that .ψ̃ |Y = φ−1. Let us define 
.ϕ,ψ : Rn × R

m → R
n × R

m as follows: 

. ϕ(x, y) = (x − ψ̃(y + φ̃(x)), y + φ̃(x))

and 

. ψ(z,w) = (z + ψ̃(w),w − φ̃(z + ψ̃(w))).

Since . ϕ and . ψ are composition of Lipschitz maps, they are also Lipschitz maps. 
Next, we show that .ψ = ϕ−1. In fact, if .(x, y) ∈ R

n × R
m then 

. ψ(ϕ(x, y)) = ψ(x − ψ̃(y + φ̃(x)), y + φ̃(x))

= (x − ψ̃(y + φ̃(x)) + ψ̃(y + φ̃(x)), y + φ̃(x) −
φ̃(x − ψ̃(y + φ̃(x)) + ψ̃(y + φ̃(x)))

= (x, y + φ̃(x) − φ̃(x))

= (x, y),

and if .(z, w) ∈ R
n × R

m then 

. ϕ(ψ(z,w)) = ϕ(z + ψ̃(w),w − φ̃(z + ψ̃(w)))

= (z + ψ̃(w) − ψ̃(w − φ̃(z + ψ̃(w)) + φ̃(z + ψ̃(w))), w −
φ̃(z + ψ̃(w)) + φ̃(z + ψ̃(w)))

= (z + ψ̃(w) − ψ̃(w),w)

= (z, w).

Therefore .ψ = ϕ−1. Finally, it is clear that .ϕ(X × {0}) = {0} × Y . 

Thus, by doing the identifications .X ↔ X×{0} and .Y ↔ {0}×Y , we may assume 
that X and Y are subsets of same .RN and there is a bi-Lipschitz homeomorphism 
.ϕ : RN → R

N such that .ϕ|X = φ. 
Without loss of generality, we assume that .x0 = y0 = 0. Let .K > 0 be a constant 

such that 

.
1

K
‖x − y‖ � ‖ϕ(x) − ϕ(y)‖ � K‖x − y‖, ∀x, y ∈ R

N. (9.1) 

For each .k ∈ N, let us define the maps .ϕk, ψk : RN → R
N given by . ϕk(v) =

kϕ( 1
k
v) and .ψk(v) = kϕ−1( 1

k
v). For each integer .m � 1, let us define .ϕk,m :=
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ϕk|Bm 
: Bm → RN and .ψk,m := ψk|BmK

: BmK → R
N , where . Br denotes the 

Euclidean closed ball of radius r and with centre at the origin in . RN . Since 

. 
1

K
‖x − y‖ � ‖ϕk,1(x) − ϕk,1(y)‖ � K‖x − y‖, ∀x, y ∈ B1, ∀k ∈ N

and 

. 
1

K
‖u − v‖ � ‖ψk,1(u) − ψk,1(v)‖ � K‖u − v‖, u, v ∈ BK, ∀k ∈ N,

there exist a subsequence .{kj,1}j∈N ⊂ N and Lipschitz maps . dϕ1 : B1 → R
N

and .dψ1 : BK → R
N such that .ϕkj,1,1 → dϕ1 uniformly on .B1 and . ψkj,1,1 →

dψ1 uniformly on .BK (notice that .{ϕk,1}k∈N and .{ψk,1}k∈N have uniform Lipschitz 
constants). Furthermore, it is clear that 

. 
1

K
‖u − v‖ � ‖dϕ1(u) − dϕ1(v)‖ � K‖u − v‖, ∀u, v ∈ B1

and 

. 
1

K
‖z − w‖ � ‖dψ1(z) − dψ1(w)‖ � K‖z − w‖, ∀z,w ∈ BK.

Likewise as above, for each . m > 1, we have  

. 
1

K
‖x − y‖ � ‖ϕk,m(x) − ϕk,m(y)‖ � K‖x − y‖, x, y ∈ Bm, ∀k ∈ N

and 

. 
1

K
‖u − v‖ � ‖ψk,m(u) − ψk,m(v)‖ � K‖u − v‖, u, v ∈ BmK, ∀k ∈ N.

Therefore, for each .m > 1, there exist a subsequence .{kj,m}j∈N ⊂ {kj,m−1}j∈N and 
Lipschitz maps .dϕm : Bm → R

N and .dψm : BmK → R
N such that . ϕkj,m,m → dϕm

uniformly on .Bm and .ψkj,m,m → dψm uniformly on .BmK with . dϕm|Bm−1
= dϕm−1

and .dψm|B(m−1)K
= dψm−1. Furthermore, 

.
1

K
‖u − v‖ � ‖dϕm(u) − dϕm(v)‖ � K‖u − v‖, ∀u, v ∈ Bm (9.2) 

and

.
1

K
‖z − w‖ � ‖dψm(z) − dψm(w)‖ � K‖z − w‖, ∀z,w ∈ BmK. (9.3)
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Let us define .dϕ, dψ : RN → R
N by .dϕ(x) = dϕm(x), if .x ∈ Bm and . dψ(x) =

dψm(x), if .x ∈ BmK and, for each . j ∈ N, let .nj = kj,j and .tj = 1/nj . 

Claim .ϕnj
→ dϕ and .ψnj

→ dψ uniformly on compact subsets of . RN . ��
Proof Let .F ⊂ R

N be a compact subset. Let us take .m ∈ N such that . F ⊂ Bm ⊂
BmK . Thus, .{nj }j>m is a subsequence of .{kj,m}j∈N and, since . ϕkj,m,m → dϕm

uniformly on .Bm and .ψkj,m,m → dψm uniformly on . BmK , it follows that . ϕnj
→ dϕ

and .ψnj
→ dψ uniformly on F . ��

Claim .dϕ : RN → R
N is a bi-Lipschitz homeomorphism and .dψ = (dϕ)−1. ��

Proof It follows from inequalities (9.2) and (9.3) that .dϕ, dψ : R
N → R

N are 
Lipschitz mappings. Therefore, it is enough to show that .dψ = (dϕ)−1. In order to 

do that, let .v ∈ R
N and .w = dϕ(v) = lim

j→∞
ϕ(tj v)

tj
. Thus, 

. 

‖dψ(w) − v‖ =
∥
∥
∥
∥ lim

j→∞
ψ(tj w)

tj
− v

∥
∥
∥
∥ = lim

j→∞

∥
∥
∥
∥

ψ(tj w)

tj
− tj v

tj

∥
∥
∥
∥

= lim
j→∞

1
tj

∥
∥
∥
∥ψ(tjw) − tj v

∥
∥
∥
∥ = lim

j→∞
1
tj

∥
∥
∥
∥ψ(tjw) − ψ(ϕ(tj v))

∥
∥
∥
∥

� lim
j→∞

K
tj

∥
∥
∥
∥tjw − ϕ(tj v)

∥
∥
∥
∥ = lim

j→∞ K

∥
∥
∥
∥w − ϕ(tj v)

tj

∥
∥
∥
∥

= 0.

Then, .dψ(w) = dψ(dϕ(v)) = v, for all .v ∈ R
N , i.e., .dψ ◦ dϕ = idRN . 

Analogously, one can show that .dϕ ◦ dψ = idRN . ��
Claim .dϕ(C(X, 0)) = C(Y, 0). ��
Proof By the previous claim, it is enough to verify that .dϕ(C(X, 0)) ⊂ C(Y, 0). In  
order to do that, let .v ∈ C(X, 0). Then, there is .α : [0, ε) → X such that . α(t) =
tv + o(t). Thus, .ϕ(α(t)) = ϕ(tv) + o(t), since . ϕ is a Lipschitz map. However, 
.ϕ(tj v) = tj dϕ(v) + o(tj ) and then 

. dϕ(v) = lim
j→∞ ϕnj

(v) = lim
j→∞

ϕ(tj v)

tj
= lim

j→∞
ϕ(α(tj ))

tj
∈ C(Y, 0).

��
Therefore, .dϕ : C(X, 0) → C(Y, 0) is a bi-Lipschitz homeomorphism. 

Claim . 1
C1

‖v − w‖ � ‖dϕ(v) − dϕ(w)‖ � C2‖v − w‖, ∀v,w ∈ C(X, 0). ��
Proof Let .v ∈ C(X, 0). By Proposition 9.3.7, there is a curve .γ : [0, ε) → X such 
that .γ (t) = tv + o(t). Then, we obtain 

.

∥
∥
∥

ϕ(tj v)

tj
− ϕ(γ (tj ))

tj

∥
∥
∥ = o(tj )

tj
→ 0 as j → +∞.



478 A. Fernandes and J. E. Sampaio

Therefore, 

. lim
j→+∞

ϕ(tj v)

tj
= lim

j→+∞
ϕ(γ (tj ))

tj
= dϕ(v).

As .ϕ|X×{0} = 0 × φ, we have  

. lim
j→+∞

φ(γ (tj ))

tj
= dϕ(v). (9.4) 

Therefore, if .v,w ∈ C(X, 0), there are curves .γ, β : [0, ε) → X such that . γ (t) =
tv + o(t) and .β(t) = tw + o(t). Thus, by the hypothesis of the theorem, we get 

. 1
C1

∥
∥
∥

γ (tj )

tj
− β(tj )

tj

∥
∥
∥ �

∥
∥
∥

φ(γ (tj ))

tj
− φ(β(tj ))

tj

∥
∥
∥ � C2

∥
∥
∥

γ (tj )

tj
− β(tj )

tj

∥
∥
∥.

Passing to the limit .j → +∞ and using (9.4), we obtain 

. 
1

C1
‖v − w‖ � ‖dϕ(v) − dϕ(w)‖ � C2‖v − w‖.

��
This proves the theorem. 

9.3.3 Exercises 

Exercise 9.3.12 Prove Proposition 9.3.4. 

Exercise 9.3.13 Prove Proposition 9.3.5. 

Exercise 9.3.14 Prove Proposition 9.3.9. 

Exercise 9.3.15 Let X1 ⊂ R
m1 and X2 ⊂ R

m2 be closed sets such that 
C(Xi, pi) = {v ∈ R

mi ; there exists a continuous arc γ : [0, ε)  → Xi 
such that γ (t)  − pi = tv  + o(t)}. If there is a bi-Lipschitz homeomorphism 
φ : (X1, p1) → (X2, p2), then prove that there is a global bi-Lipschitz 
homeomorphism dφ : C(X1, p1) → C(X2, p2) such that dφ(0) = 0. 

9.4 Lipschitz Regularity Theorem and the Bi-Lipschitz 
Invariance of the Multiplicity 1 

We start this section with the introduction of different notions of Lipschitz regular 
points (or Lipschitz regularity). The aim of this section is to show that, for any
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analytic subset .X ⊂ C
n, Lipschitz regularity of X at .p ∈ X implies that p is an 

analytic regular point of X (for any notion of Lipschitz regularity we work with). 

9.4.1 Notions of Lipschitz Regularity 

Definition 9.4.1 We say that a set X ⊂ Rn is Lipschitz regular (resp. a Lipschitz 
submanifold) at  p ∈ X if there exist an open neighbourhood U ⊂ Rn and a bi-
Lipschitz homeomorphism ϕ : U ∩ X → Bd (resp. ϕ : U → Bn such that ϕ(U ∩ 
X) = Bn ∩ (Rd × {0})), where Bk is the unit open ball of Rk centred at the origin. 

Definition 9.4.2 We say that a set X ⊂ Rn is a Lipschitz graph at p ∈ X if there 
exist an open neighbourhood U ⊂ Rn and a Lipschitz map F : Bd → Rn−d such 
that U ∩ X = graph(F ). 

It is clear the following: 

(1) If X is a Lipschitz graph at p then it is a Lipschitz submanifold at p; 
(2) If X is a Lipschitz submanifold at p then it is Lipschitz regular at p. 

However, the converses of (1) and (2) are not true in general for semialgebraic sets 
(see Exercises 9.4.10 and 9.4.11). 

9.4.2 Ck Smoothness of Analytic Sets 

In this subsection, we present other notions of regularity of sets apart from those 
presented in Sect. 9.4.1. 

Definition 9.4.3 For .k ∈ N∪{∞, ω}, we say that a set .X ⊂ R
n is . Ck submanifold 

or .Ck smooth at .p ∈ X if there exist an open neighbourhood .U ⊂ R
n of p and 

a . Ck diffeomorphism (or a homeomorphism when .k = 0) .ϕ : U → Bn such that 
.ϕ(U ∩ X) = Bd × {0} and .ϕ(p) = 0. 

Since we can see .Cn as .R2n, subsets of .Cn are subsets of .R2n. Therefore the 
notions of regularity or smoothness introduced in Definitions 9.4.1, 9.4.2 and 9.4.3 
make sense even to subsets of . Cn. 

Proposition 9.4.4 If a complex analytic subset X is . C1 smooth at .x0 ∈ X, then X 
is a complex analytic submanifold at . x0. 

Proof The proof is left as an exercise for the reader. ��
Example 9.4.5 The set .X = {(x, y, z) ∈ C

3; y3 = z2 and .x = 0} is .C0 smooth 
at any .p ∈ X. Indeed, let .φ : C → Y = {(x, y) ∈ C

2; y2 = x3} be the 
homeomorphism given by .φ(t) = (t2, t3). Let .ψ : C2 → C be a continuous 
extension of .φ−1 and let .ϕ : C × C

2 → C
2 × C be the map given by .ϕ(s, u) =
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(s + ψ(u),  u  − φ(s  + ψ(u))). We have that . ϕ is a homeomorphism such that 
.ϕ−1(t, v) = (t − ψ(v + φ(t)), v + φ(t)) and .ϕ(X) = C × {0}. However, since 
.m(X, 0) = 2, by Proposition 9.4.4 and Corollary 9.1.10, X is not . C1 smooth at 0. 

9.4.3 Lipschitz Regularity of Analytic Sets 

The following result is due to Sampaio in [30], but it was proved in a slight weaker 
version by Bibrair at al. in [1]. 

Theorem 9.4.6 (Lipschitz Regularity Theorem) Let .X ⊂ C
n be a complex 

analytic set. If X is Lipschitz regular at .x0 ∈ X, then X is smooth at . x0. 

Proof Let .X ⊂ C
n be a d-dimensional complex analytic set. Assume that X 

is Lipschitz regular at . x0 ∈ X. Let .h : U → B be a subanalytic bi-Lipschitz 
homeomorphism between an open neighbourhood U of . x0 in X and .B ⊂ R

2d , 
that is, an open Euclidean ball centred at the origin .0 ∈ R

2d . Let us suppose 
that .h(x0) = 0. By Theorem 9.3.11, .dh : C(X, x0) → T0B is a bi-Lipschitz 
homeomorphism between the tangent cones .C(X, x0) and .T0B = R

2d . In particular, 
.C(X, x0) is a topological manifold. 

The next result was proved by D. Prill in [27]: ��
Theorem 9.4.7 (Prill’s Theorem) Let .V ⊂ C

n be a complex cone. If .0 ∈ V has 
a neighborhood homeomorphic to a Euclidean ball, then V is a linear subspace of 
. Cn. 

Now, since we consider complex analytic sets, the tangent cone at . x0 of a 
complex analytic set is a complex cone (see Remark 9.3.2). Then .C(X, x0) is a 
d-dimensional linear subspace of . Cn. 

Moreover, by Proposition 9.2.2, X is LNE at . x0. Thus, our main theorem is 
consequence of the following: 

Proposition 9.4.8 Let .X ⊂ C
n be a complex analytic subset. Let .x0 ∈ X be 

such that the tangent cone .C(X, x0) is a linear subspace of . Cn. If there exists a 
neighbourhood U of . x0 in X such that U is LNE, then X is smooth at . x0. 

Proof Since .E := C(X, x0) is a linear subspace of . Cn, we can consider the 
orthogonal projection 

. P : Cn → E.

We may suppose that .x0 = 0 and .P(x0) = 0. Let us choose linear coordinates . (x, y)

in . Cn such that . E = {(x, y) ∈ C
n; y = 0}. ��

Claim There exist positive constants C and . ρ such that . X ∩ Bρ ⊂ {(x, y); ‖y‖ <

C‖x‖}. ��
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Proof Indeed, if this claim is not true, there exists a sequence . {(xk, yk)}k∈N ⊂ X

such that . lim
k→+∞(xk, yk) = 0 and .‖yk‖ � k‖xk‖. Thus, up to a subsequence, one can 

suppose that . lim
k→+∞

yk

‖yk‖ = y0. Since . ‖xk‖‖yk‖ � 1
k

, we obtain that .(0, y0) ∈ C(X, 0), 

which is a contradiction, because .y0 	= 0. Therefore, Claim 9.4.3 is true. ��
Notice that the germ of the restriction of the orthogonal projection P to .X ∩ Bρ is a 
finite complex analytic map germ. 

Moreover, we have the following: 

Claim If .γ : [0, ε) → X is a real analytic arc, such that .γ (0) = 0, then the arcs . γ
and .P ◦ γ are tangent at 0. ��
Proof In order to prove this claim, let us write .γ (t) = (x(t), y(t)). By the previous 
claim, there exists .t0 > 0 such that .‖y(t)‖ � C‖x(t)‖ for all .t � t0, since 
. lim
t→0+ γ (t) = 0. Thus, since . x(t)

t
is bounded, . y(t)

t
is bounded. Let us suppose that 

.y(t) 	= o(t). Then, there exist a sequence .{tk}k∈N ⊂ (0,+∞) and .r > 0 such 

that .tk → 0 and . ‖y(tk)‖
tk

� r for all k. Since .
{

y(tk)
tk

}

k∈N is bounded, up to a 

subsequence, one can suppose that . lim
k→+∞

y(tk)
tk

= y0. Therefore, . lim
k→+∞

γ (tk)
tk

=
(v′, y0) ∈ C(X, 0), where .v = (v′, 0). However, this is a contradiction, since 
.‖y0‖ � r > 0 and this implies that .y0 	= 0. Then, .y(t) = o(t) and, therefore, 
.γ (t) = tv + o(t). ��

In this way, the germ at 0 of .P|X : X → E is a ramified cover and the ramification 
locus is the germ of a codimension .� 1 complex analytic subset . Σ of the linear 
space E. 

The multiplicity of X at 0 can be interpreted as the degree m of this germ of 
ramified covering map, i.e. there are open neighbourhoods . U1 of 0 in X and . U2 of 
0 in  E, such that m is the degree of the topological covering: 

. P|X : X ∩ U1 \ P −1
|X (Σ) → E ∩ U2 \ Σ.

Let us suppose that the degree m is greater than 1. Since . Σ is a codimension . � 1
complex analytic subset of the space E, there exists a unit tangent vector . v0 ∈
E \ C(Σ, 0). 

Since . v0 is not tangent to . Σ at 0, there exists a positive real number k such that 
the real cone: 

. {v ∈ E | ‖v − tv0‖ < tk, ∀ 0 < t < 1}

does not intersect the set . Σ . Since we have assumed that the degree . m � 2, we  
have at least two different liftings .γ1(t) and .γ2(t) of the half-line .r(t) = tv0, i.e. 
.P(γ1(t)) = P(γ2(t)) = tv0. Since P is the orthogonal projection on the tangent 
cone . E, the vector . v0 is the unit tangent vector to the arcs . γ1 and . γ2 at 0. By
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construction, we have .dist(γi(t), P
−1
|X (Σ)) � kt (.i = 1, 2), where by dist we mean 

the Euclidean distance. 
On the other hand, any path in X connecting .γ1(t) to .γ2(t) is the lifting of a 

loop, based at the point . tv0, which is not contractible in the germ of .E \ Σ at 0. 
Thus the length of such a path must be at least 2kt . It implies that the inner distance, 
.dX(γ1(t), γ2(t)), in X, between .γ1(t) and . γ2(t), is at least 2kt . But, since .γ1(t) and 

.γ2(t) are tangent at 0, that is .
‖γ1(t) − γ2(t)‖

t
→ 0 as t → 0+, and . k > 0, we  

obtain that X is not LNE near 0. Otherwise there will be .λ > 0 such that: 

. dX(x1, x2) ≤ λ‖x1 − x2‖ for all x1, x2 ∈ X near 0,

hence: 

. 2k � dinner(γ1(t), γ2(t))

t

� λ
‖γ1(t) − γ2(t)‖

t
→ 0.

which is a contradiction. 
Therefore, .m = m(X, 0) = 1, and thus by Exercise 9.4.13 X is smooth at 0. 
This concludes the theorem. . �
As a consequence, we obtain that the multiplicity 1 is a bi-Lipschitz invariant. 

Corollary 9.4.9 Let .X ⊂ C
n and .Y ⊂ C

m be complex analytic sets. If there is a 
bi-Lipschitz homeomorphism .ϕ : (X, 0) → (Y, 0) then .m(X, 0) = 1 if and only if 
.m(Y, 0) = 1. 

9.4.4 Exercises 

Exercise 9.4.10 Let L = {(x, y) ∈ C2; x3 = y2}∩S
3. Prove that X = Cone(L) = 

{tu; u ∈ L and t � 0} is Lipschitz regular at 0, but it is not a Lipschitz submanifold 
at 0. 

Exercise 9.4.11 Give an example of a semialgebraic set X ⊂ Rn which is Lipschitz 
submanifold at 0 of Rn, but it is not a Lipschitz graph at 0. 

Exercise 9.4.12 Let X = {(x, y, z)  ∈ R3; x3 + y3 + z3 = 0}. Prove that: 

(a) X is not C1 smooth at 0; 
(b) X is Lipschitz regular at 0. 

Exercise 9.4.13 Let X be a pure dimensional complex analytic set with 0 ∈ X. 
Prove that X is smooth at 0 if and only if m(X, 0) = 1.
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Exercise 9.4.14 Let X ⊂ Cn and Y ⊂ Cm be complex analytic sets. If there is a 
bi-Lipschitz homeomorphism ϕ : X → Y then prove that ϕ(Reg(X)) = Reg(Y ) 
and ϕ(Sing(X)) = Sing(Y ), where for a complex analytic set A ⊂ Ck , Reg(A) 
denotes the subset of points x ∈ A such that for some open neighbourhood U ⊂ C

k 

of x, X ∩ U is a complex analytic submanifold of Ck , and Sing(A) = A \ Reg(A). 

9.5 Relative Multiplicities and Multiplicity of Homogeneous 
Singularities 

In this section, we define the relative multiplicities of a complex analytic set at a 
point. Moreover, we prove that the relative multiplicities are bi-Lipschitz invariant 
(see Theorem 9.5.1). We also present a reduction of the Questions AL(d) and 
AL(.n, d) for homogeneous algebraic sets (see Corollary 9.5.4). 

9.5.1 Bi-Lipschitz Invariance of the Relative Multiplicities 

Let .X ⊂ C
n be a complex analytic set such that . 0 ∈ X. Let .X1, . . . , Xr be the 

irreducible components of . C(X, 0). Fix .j ∈ {1, . . . , r}. For a generic point . x ∈
(Xj ∩ S

2n−1) × {0}, the number of connected components of the germ . (ρ−1(X \
{0}), x) is constant, and we denote this number by .kX(Xj ). The integer numbers 
.kX(Xj ) are called the relative multiplities of X at 0. 

The following result, which was proved by Fernandes and Sampaio in the paper 
[12], shows the bi-Lipschitz invariance of the relative multiplicities. 

Theorem 9.5.1 Let .X ⊂ C
n and .Y ⊂ C

m be two complex analytic sets with 
.p = dim X = dim Y , .0 ∈ X and .0 ∈ Y . Let .X1, . . . , Xr and .Y1, . . . , Ys be the 
irreducible components of the tangent cones .C(X, 0) and .C(Y, 0), respectively. If 
there exists a bi-Lipschitz homeomorphism .ϕ : (X, 0) → (Y, 0), then .r = s and, up 
to a reordering of indices, .kX(Xj ) = kY (Yj ), . ∀ j . 

Proof Let .S = {tk}k∈N be a sequence of positive real numbers such that 

. tk → 0 and
ϕ(tkv)

tk
→ dϕ(v)

where .dϕ is a tangent map of . ϕ as in Theorem 9.3.11. Since .dϕ is a bi-Lipschitz 
homeomorphism, we obtain .r = s and there is a permutation . σ : {1, . . . , r} →
{1, . . . , s} such that .dϕ(Xi) = Yσ(i) .∀ i. This is because we can assume . dϕ(Xi) =
Yi . ∀ i up to a reordering of indices. Let 

.SX = {(x, t) ∈ S
2n−1 × S; tx ∈ X}.
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Thus, .ρ−1 ◦ ϕ ◦ ρ : SX → Y ′ is an injective and continuous map that extends 
continuously to a map . ϕ′ : SX → Y ′.

For each generic point .x ∈ S0Xj × {0}, we know that .kX(Xj ) is the number of 
connected components of the set .ρ−1(X \ {0}) ∩ Bδ(x) for .δ > 0 small enough. 
Then, .kX(Xj ) can be seen as the number of connected components of the set . (SX ∩
S

2n−1 × {tk}) ∩ Bδ(x) for k large enough. 
Let .π : Cn → C

p be a linear projection such that 

. π−1(0) ∩ (C(X, 0) ∪ C(Y, 0)) = {0}.

Let us denote the ramification locus of 

. π|X : X → C
p and π|C(X,0) : C(X, 0) → C

p

by .σ(X) and .σ(C(X, 0)) respectively. 
Given a generic point .v′ ∈ C

p \ (σ (X) ∪ σ(C(X, 0))) (generic here means that 
. v′ defines a direction not tangent to .σ(X)∪σ(C(X, 0))), let .η, ε > 0 be sufficiently 
small such that 

. Cη,ε(v
′) = {w ∈ C

p| ∃t > 0; ‖tv′ −w‖ < ηt}∩Bε(0) ⊂ C
p \σ(X)∪σ(C(X, 0)).

The number of connected components of .π−1(Cη,ε(v
′)) ∩ X is exactly .m(X), 

since .Cη,ε(v
′) is simply connected and .π : X \ π−1(σ (X)) → C

p \ σ(X) is a 
covering map. Then, we get that .π |V : V → Cη,ε(v

′) is bi-Lipschitz for each 
connected component V of .π−1(Cη,ε(v

′)) ∩ X. Therefore, for each .j = 1, . . . , r , 
there are different connected components .Vj1, . . . , VjkX(Xj ) of . π−1(Cη,ε(v

′)) ∩ X

such that .C(Vji, 0) ⊂ Xj , .i = 1, . . . , kX(Xj ). 
Let us suppose that there is .j ∈ {1, . . . , r} such that .kX(Xj ) > kY (Yj ), it means 

that if we consider a generic point .x = (v, 0) ∈ ∂X′ ∩ Xj × {0}, there are at 
least two different connected components .Vji and .Vjl of .π−1(Cη,ε(π(v))) ∩ X and 
sequences .{(xk, tk)}k∈N ⊂ ρ−1(Vji)∩ SX and .{(yk, tk)}k∈N ⊂ ρ−1(Vjl)∩ SX such 
that .lim(xk, tk) = lim(yk, tk) = x and .ϕ′(xk, tk), ϕ

′(yk, tk) ∈ ρ−1(Ṽjm), where . ̃Vjm

is a connected component of .π−1(Cη,ε(π(dϕ(v)))) ∩ Y . 
Since .ϕ(tkxk), ϕ(tkyk) ∈ Ṽjm . ∀ .k ∈ N and .V = Ṽjm is bi-Lipschitz 

homeomorphic to .Cη,ε(π(dϕ(v))), we have  

. ‖ϕ(tkxk) − ϕ(tkyk)‖ = o(tk)

and 

. dY (ϕ(tkxk), ϕ(tkyk)) � dV (ϕ(tkxk), ϕ(tkyk)) = o(tk).

Now, since X is bi-Lipschitz homeomorphic to Y , we have .dX(tkxk, tkyk) � o(tk). 
On the other hand, since .tkxk and .tkyk lie in different connected components of
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.π−1(Cη,ε(π(v)))∩X, there exists a constant .C > 0 such that .dX(tkxk, tkyk) � Ctk , 
which is a contradiction. 

We have proved that .kX(Xj ) � kY (Yj ), .j = 1, . . . , r . By similar arguments, 
using that .ϕ−1 is a bi-Lipschitz map, we also can prove .kY (Yj ) � kX(Xj ), . j =
1, . . . , r . ��

9.5.2 Reduction to Homogeneous Algebraic Sets 

Proposition 9.5.2 Let X ⊂ Cn be a d-dimensional complex analytic set such that 
0 ∈ X. Let X1, . . . , Xr be the irreducible components of C(X, 0). Then 

. m(X, 0) =
r∑

j=1

kX(Xj )m(Xj , 0).

Proof The proof is left as an exercise for the reader. ��
Next result follows from Theorem9.5.1 and Proposition 9.5.2. 

Theorem 9.5.3 Let X ⊂ Cn and Y ⊂ Cm be two complex analytic sets with 
dim X = dim Y = d, 0 ∈ X and 0 ∈ Y . Let X1, . . . , Xr (resp. Y1, . . . , Ys) be  
the irreducible components of C(X, 0) (resp. C(Y, 0)). If there exists a bi-Lipschitz 
homeomorphism ϕ : (X, 0) → (Y, 0), then r = s and there exist a bijection 
σ : {1, . . . , r} → {1, . . . , s} and a bi-Lipschitz homeomorphism dϕ : C(X, 0) → 
C(Y, 0) with dϕ(0) = 0 and such that dϕ(Xi) = Yσ(i)  and kX(Xi) = kY (Yσ(i)) 
for all i ∈ {1, . . . , r}. Additionally, if m(Xi, 0) = m(Yσ(i), 0) for all i ∈ {1, . . . , r}, 
then m(X, 0) = m(Y, 0). 

As a direct consequence of the above theorem, we obtain that to solve Question 
AL(d) (resp. AL(n, d)), it is enough to solve it only for irreducible homogeneous 
algebraic sets. 

Corollary 9.5.4 Question AL(d) (resp. AL(n, d)) has a positive answer if and 
only if it has a positive answer for irreducible homogeneous algebraic sets. 

9.5.3 Exercises 

Exercise 9.5.5 Prove Proposition 9.5.2. 

Exercise 9.5.6 Prove Theorem 9.5.3.
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9.6 Bi-Lipschitz Invariance of the Multiplicity 

This section is devoted to present a complete answer to the Question AL(d) on the  
bi-Lipschitz invariance of the multiplicity. We also present some partial results of 
other authors concerning the questions AL(d) and AL(.n, d). We start by addressing 
the case of complex singularities of dimension 1. 

9.6.1 Multiplicity of Curves 

Theorem 9.6.1 Let X ⊂ Cn and Y ⊂ Cm be two complex analytic curves. If 
ϕ : (X, 0) → (Y, 0) is a bi-Lipschitz homeomorphism, then m(X, 0) = m(Y, 0). 

Proof Let us consider X ⊂ Cn and Y ⊂ C
m be two complex analytic curves; 0 ∈ X 

and 0 ∈ Y . Then, we know that the tangent cones C(X, 0) and C(Y, 0) are union of 
complex lines through the origin, let us say: 

. C(X, 0) =
r⋃

i=1

LX
i and C(Y, 0) =

s⋃

j=1

LY
j .

Since ϕ : (X, 0) → (Y, 0) is a bi-Lipschitz homeomorphism, it follows, by 
Theorem 9.5.3, that r = s and there exist a bijection σ : {1, . . . , r} → {1, . . . , s} 
and a bi-Lipschitz homeomorphism dϕ : C(X, 0) → C(Y, 0) with dϕ(0) = 0 and 
such that dϕ(LX 

i ) = LY 
σ(i)  and kX(LX 

i ) = kY (LY 
σ(i)) for all i ∈ {1, . . . , r}. Then, 

since m(LY 
j , 0) = 1 and m(LX 

i , 0) = 1 ∀i, j , it follows from Theorem 9.5.3 that 
m(X, 0) = m(Y, 0). ��

9.6.2 Multiplicity of 2-Dimensional Analytic Hypersurfaces 

In this subsection, we bring a positive answer to the Question AL(3,2). Notice that 
such a result is a consequence of the positive answer of Question AL(2) which the 
proof we sketch in the end of this section. Since our proof of Question AL(2) we 
sketch here relies on a non-trivial topological result that we do not prove here, we 
decide to keep this subsection with a proof of the positive answer for AL(3,2) which 
is quite complete and self-contained. 

Let .f : Cn → C be a homogeneous polynomial with .degf = d. We recall that 
the map .φ : S2n−1 \f −1(0) → S

1 given by .φ(z) = f (z)
|f (z)| is a locally trivial fibration 

(see [21], §4). Notice that, .ψ : Cn \ f −1(0) → C \ {0} defined by . ψ(z) = f (z)

is a locally trivial fibration such that its fibres are diffeomorphic to the fibres of 
. φ. Moreover, we can choose as geometric monodromy the homeomorphism .hf :
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Ff → Ff given by .hf (z) = e
2πi
d · z, where .Ff := f −1(1) is the (global) Milnor 

fibre of f (see [21], §9). 
It follows from Theorem 3.3 and Remark 3.4 in [18] the following: 

Proposition 9.6.2 Let .f, g ⊂ C
n+1 → C be two irreducible homogeneous 

polynomials. If .ϕ : (Cn+1, V (f ), 0) → (Cn+1, V (g), 0) is a homeomorphism, then 
the induced maps in homology of the monodromies of f and g at 0 are conjugated. 
In particular, the monodromies of f and g at 0 have the same Lefschetz number and 
.χ(Ff ) = χ(Fg). 

Definition 9.6.3 Let .f : (Cn+1, 0) → (C, 0) be a complex analytic function with 

. dim SingV (f ) = 1 and SingV (f ) = C1 ∪ . . . ∪ Cr.

Then .bi(f ) denotes the i-th Betti number of the Milnor fibre of f at the origin, 
.μ′

j (f ) is the Milnor number of a generic hyperplane slice of f at . xj ∈ Cj \ {0}
sufficiently close to the origin and .μ′(f ) =

r∑

i=1
μ′

i (f ). 

Let us remind some results on Milnor number of a generic hyperplane slice. 
In [19], .μ′(f ) is denoted by . σf and it was proved in [19, Theorem 4.1] that it is 

an embedded topological invariant. We state that result here. 

Proposition 9.6.4 Let .f, g : (Cn+1, 0) → (C, 0) be complex analytic functions 
with 1-dimensional singular sets. If there is a homeomorphism . ϕ : (Cn+1, V (f ), 0)

→ (Cn+1, V (g), 0), then .μ′(f ) = μ′(g). 

Proposition 9.6.5 (Theorem 5.11 in [28]) Let .f ⊂ C
n+1 → C be a homogeneous 

polynomial with degree d and 1-dimensional singular set. Then 

. χ(Ff ) = 1 + (−1)n((d − 1)n+1 − dμ′(f )).

The following result was proved by Sampaio in [32]. 

Theorem 9.6.6 Let .X, Y ⊂ C
n+1 be two complex analytic hypersurfaces with 

.0 ∈ X ∩ Y . Assume that each irreducible component . Xi of .C(X, 0) satisfies 

.dim SingXi � 1. If  .ϕ : (Cn+1, X, 0) → (Cn+1, Y, 0) is a bi-Lipschitz homeomor-
phism, then . m(X, 0) = m(Y, 0).

Proof Let .f̃ , g̃ : (Cn+1, 0) → (C, 0) be two reduced complex analytic functions 
such that .X = V (f̃ ) and .Y = V (g̃). Let .f1 · · · fr (resp. . g1, . . . , gs) be the  
irreducible factors of the decomposition of .in(f̃ ) (resp. .in(g̃)) in irreducible 
polynomials. Then, .r = s and by reordering the indices, if necessary, there exists 
a bi-Lipschitz homeomorphism .ψ = dϕ : (Cn+1, 0) → (Cn+1, 0) such that 
.ψ(V (fi)) = V (gi) for all .i ∈ {1, . . . , r}. Fixed  i, we denote .f = fi , .g = gi , 
.d = m(V (f ), 0) and .e = m(V (g), 0). By Proposition 9.6.2, .χ(Ff ) = χ(Fg). ��
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We have two cases to consider: 

Case 1) .χ(Ff ) 	= 0, .χ(Fg) 	= 0 as well. 

Claim If .0 < k < d (respectively .0 < k < e), then .Λ(hk
f ) = 0 (respectively 

.Λ(hk
g) = 0), where .Λ(hk

f ) (respectively .Λ(hk
g)) denotes the Lefschetz number 

of . hk
f (respectively . hk

g). ��
Proof We start the proof using the Topological Cylindric Structure at Infinity 
of Algebraic Sets (see [8], p. 26, Theorem 6.9) to justify that .F = f −1(1) has 
the same homotopy type of .FR = F ∩ {x ∈ C

n; ‖x‖ � R} for R large enough. 

We have that the geometric monodromy .hf : F → F given by .hf (x) = e
2πi
d x, 

restricted to . FR , induces a map .h = hf |FR
: FR → FR . It is clear that . hk does 

not have a fixed point for .0 < k < d, hence .Λ(hk) = 0. Since . hf is homotopy 
equivalent to h, it follows that .Λ(hk

f ) = 0 for any .0 < k < d. ��
It follows from Proposition 9.6.2 that .Λ(hk

f ) = Λ(hk
g) for all .k ∈ N. Since f 

and g are homogeneous polynomials with degrees d and e respectively, . hd
f =

id : Ff → Ff and .he
g = id : Fg → Fg , we get .Λ(hd

f ) = χ(Ff ) 	= 0 and 
.Λ(he

g) = χ(Fg) 	= 0. Thus, it follows from previous claim that .d = e. 
Case 2) .χ(Ff ) = χ(Fg) = 0. 

By the Lipschitz Regularity Theorem (Theorem 9.4.6), we have that 
.ψ(Sing(V (f ))) = Sing(V (g)) and, in particular, . dim Sing(V (f )) =
dim Sing(V (g)). Thus, we can suppose that .d, k > 1. If . dim Sing(V (f )) = 0
then .χ(Ff ) = 1+ (−1)n(d −1)n+1 = 0 and .χ(Fg) = 1+ (−1)n(k−1)n+1 = 0. 
This implies .d = k = 2. 
Thus, we can assume that .dim Sing(V (f )) 	= 0. In this case, we have 
.dim SingV (f ) = dim Sing(V (g)) = 1. Since .χ(Ff ) = χ(Fg) = 0, by  
Proposition 9.6.5, we have  

. (d − 1)n+1 − μ′(f )(d − 1) + (−1)n − μ′(f ) = 0

and 

. (k − 1)n+1 − μ′(f )(k − 1) + (−1)n − μ′(g) = 0.

Thus, we define the polynomial map .P : R → R by 

. P(t) = tn+1 − μ′(f )t + (−1)n − μ′(f ), ∀t ∈ R.

Since .μ′(f ) = μ′(g) (see Proposition 9.6.4), then .d − 1 and .k − 1 are positive 
zeros of P . Since .μ′(f ) = μ′(g) � 1, by Descartes’ Rule, P has at most one 
positive zero. Thus, .d = k. 
As a consequence, we obtain the result proved by Fernandes and Sampaio in [12] 
which says that the multiplicity of surface singularities in . C3 is invariant under 
bi-Lipschitz homeomorphisms.
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Corollary 9.6.7 Let .f, g : (C3, 0) → (C, 0) be two complex analytic functions. 
If .ϕ : (C3, V (f ), 0) → (C3, V (g), 0) is a bi-Lipschitz homeomorphism, then 
.m(V (f ), 0) = m(V (g), 0). 

9.6.3 Invariance of the Multiplicity Under Semi-Bi-Lipschitz 
Homeomorphisms on the Functions 

In this section, we define some notions of equivalence on germs of functions and we 
prove some results on invariance of the multiplicity under those equivalences. 

Definition 9.6.8 We say that two germs of analytic functions . f, g : (Cn, 0) →
(Cm, 0) are semi-bi-Lipschitz equivalent, if there are constants .C1, C2 > 0 and a 
germ of bijection .ϕ : (Cn, 0) → (Cn, 0) such that 

(1) .
1
C1

‖x‖ � ‖ϕ(x)‖ � C1‖x‖, for all small enough .x ∈ C
n; 

(2) .
1
C2

‖f (x)‖ � ‖g ◦ ϕ(x)‖ � C2‖f (x)‖, for all small enough .x ∈ C
n. 

Definition 9.6.9 Let .U ⊂ C
n be an open set such that .0 ∈ U and let . f : U → C

be an analytic function. Then, for each .r > 0 such that .Br(0) ⊂ U , we define 

. δr (f ) = sup{δ; |f (z)|
‖z‖δ is bounded on Br(0) \ {0}}.

Note that .δr (f ) does not depend on .r > 0 (see Exercise 9.6.25). Thus, we define 
this common number by .δ(f ). 

Proposition 9.6.10 Let .f, g : (Cn, 0) → C be a germ of an analytic function. Then, 
.ord0(f ) = δ(f ). 

Proof If .δ > m := ord0(f ) and .f = fm +fm+1 + . . . with .fm 	= 0, then we choose 
.v 	∈ V (fm). Thus, . lim

t→0+
|f (tv)|

tδ
= +∞. Then, .δ(f ) � ord0(f ). 

If .δ < m, then . lim
z→0

|f (z)|
‖z‖δ = 0. Thus, there exists .r > 0 such that . |f (z)|

‖z‖δ � 1, for  

all .z ∈ Br(0). This implies .δ(f ) � ord0(f ). 
Therefore, .δ(f ) = ord0(f ). ��
The next result is due to Comte, Milman and Trotman [7]. 

Theorem 9.6.11 Let .f, g : (Cn, 0) → C be two germs of analytic functions. If f 
and g are semi-bi-Lipschitz equivalent, then .ord0(f ) = ord0(g). 

Proof By hypothesis, there are open neighbourhoods .U, Ũ of .0 ∈ C
n, constants 

.C1, C2 > 0 and a bijection .ϕ : U → Ũ such that 

(1) .
1
C1

‖x‖ � ‖ϕ(x)‖ � C1‖x‖, for all .x ∈ U ; 

(2) .
1
C2

‖f (x)‖ � ‖g ◦ ϕ(x)‖ � C2‖f (x)‖, ∀x ∈ U.
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Let .δ < δ(g). Thus, we may take .̃r > 0 such that . |g(z)|
‖z‖δ is bounded on .Br̃(0) \ {0}, 

.Br̃(0) ⊂ Ũ and .Br(0) ⊂ U , where .r = r̃
C1

. In particular, .ϕ(Br(0)) ⊂ Br̃(0). 
Moreover, we have 

. 
|f (x)|
‖x‖δ

= |f (x)|
‖ϕ(x)‖δ

‖ϕ(x)‖δ

‖x‖δ

� C1C2
|g(ϕ(x))|
‖ϕ(x)‖δ

,

for all .x ∈ Br(0) \ {0}. Since .
|g(z)|
‖z‖δ is bounded on .Br̃(0) \ {0}, then .

|f (x)|
‖x‖δ is bounded 

on .Br(0) \ {0}. This implies 

. {ρ; |g(z)|
‖z‖ρ is bounded on Br̃(0) \ {0}} ⊂ {s; |f (x)|

‖x‖s is bounded on Br(0) \ {0}},

Then, we obtain .δ̃r (g) � δr (f ) and, since .δr (f ) = δ(f ) and .δ̃r (g) = δ(g), we have  
.δ(g) � δ(f ). Therefore, by Proposition 9.6.10, .ord0(g) � ord0(f ). Similarly, we 
obtain .ord0(f ) � ord0(g). Thus, we have the equality .ord0(g) = ord0(f ). ��
Definition 9.6.12 We say that two germs of analytic functions . f, g : (Cn, 0) → C

are:

• bi-Lipschitz right equivalent, if there is a bi-Lipschitz homeomorphism 
.ϕ : (Cn, 0) → (Cn, 0) such that .f (x) = g ◦ ϕ(x), for all small enough .x ∈ C

n;
• bi-Lipschitz right-left equivalent, if there are bi-Lipschitz homeomorphisms 

.ϕ : (Cn, 0) → (Cn, 0) and .φ : (C, 0) → (C, 0) such that . f (x) = φ ◦ g ◦ ϕ(x),

for all small enough .x ∈ C
n;

• rugose equivalent, if there are constants .C1, C2 > 0 and a germ of bijection 
.ϕ : (Cn, 0) → (Cn, 0) such that 

(1) .
1
C1

‖x − y‖ � ‖ϕ(x) − ϕ(y)‖ � C1‖x − y‖, for all small enough . (x, y) ∈
C

n × f −1(0); 
(2) .

1
C2

‖f (x)‖ � ‖g ◦ ϕ(x)‖ � C2‖f (x)‖, for all small enough .x ∈ C
n;

• bi-Lipschitz contact equivalent, if there are a constant .C > 0 and a germ of 
bi-Lipschitz homeomorphism .ϕ : (Cn, 0) → (Cn, 0) such that 

. 
1

C
‖f (x)‖ � ‖g ◦ ϕ(x)‖ � C‖f (x)‖,

for all small enough .x ∈ C
n. 

The following result is a direct consequence from the definitions.



9 Bi-Lipschitz Invariance of the Multiplicity 491

Proposition 9.6.13 Let .f, g : (Cn, 0) → C be two germs of analytic functions. Let 
us consider the following statements: 

(1) f and g are bi-Lipschitz right equivalent; 
(2) f and g are bi-Lipschitz right-left equivalent; 
(3) f and g are bi-Lipschitz contact equivalent; 
(4) f and g are rugose equivalent; 
(5) f and g are semi-bi-Lipschitz equivalent. 

Then, .(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). 

Proof The proof is left as an exercise for the reader. ��
We finish this subsection by stating some direct consequences of Theorem 9.6.11 
and Proposition 9.6.13. 

Corollary 9.6.14 (See [29]) Let .f, g : Cn → C be two germs of analytic functions. 
If f and g are rugose equivalent, then .ord0(f ) = ord0(g). 

Corollary 9.6.15 Let .f, g : (Cn, 0) → C be two germs of analytic functions. If f 
and g are bi-Lipschitz contact equivalent, then .ord0(f ) = ord0(g). 

Corollary 9.6.16 Let .f, g : (Cn, 0) → C be two germs of analytic functions. If f 
and g are bi-Lipschitz right-left equivalent, then .ord0(f ) = ord0(g). 

Corollary 9.6.17 Let .f, g : (Cn, 0) → C be two germs of analytic functions. If f 
and g are bi-Lipschitz right equivalent, then .ord0(f ) = ord0(g). 

9.6.4 Lipschitz Invariance of Multiplicity When the Lipschitz 
Constants Are Close to 1 

Let us remind the result proved by Draper in [9] which says that the multiplicity of 
complex analytic set X at a point p is the density of X at p. 

Theorem 9.6.18 (Draper [9]) Let .Z ⊂ C
k be a pure d-dimensional complex 

analytic subset with .0 ∈ Z. Then 

. m(Z, 0) = lim
r→0+

H2d(Z ∩ B
2k

r (0))

μ2dr2d

where .H2d(Z ∩ B
2k

r (0)) denotes the 2d-dimensional Hausdorff measure of . Z ∩
B

2k

r (0) = {x ∈ Z; ‖x‖ � r} and .μ2d is the volume of 2d-dimensional unit ball. 

By using the above equality, we obtain the following: 

Proposition 9.6.19 Let .X ⊂ C
n and .Y ⊂ C

m be two germs at 0 of complex analytic 
sets with .dim X = dim Y = d. If there are constants .C1, C2 > 0 and a bi-Lipschitz
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homeomorphism .ϕ : (X, 0) → (Y, 0) such that 

. 
1

C1
‖x − y‖ � ‖ϕ(x) − ϕ(y)‖ � C2‖x − y‖, ∀x, y ∈ X

then 

. 
1

(C1C2)2d
m(X, 0) � m(Y, 0) � (C1C2)

2dm(X, 0).

Proof The proof is left as an exercise for the reader. ��
As a consequence of the above proposition, we obtain a result proved by Comte 

in [6, Theorem 1]. 

Theorem 9.6.20 Let .X ⊂ C
n and .Y ⊂ C

m be two germs at 0 of complex analytic 
sets with .dim X = dim Y = d and .M = max{m(X, 0),m(Y, 0)}. If there are 
constants .C1, C2 > 0 and a bi-Lipschitz homeomorphism .ϕ : (X, 0) → (Y, 0) such 
that 

. 
1

C1
‖x − y‖ � ‖ϕ(x) − ϕ(y)‖ � C2‖x − y‖, ∀x, y ∈ X

and .(C1C2)
2d � 1 + 1

M
, then . m(X, 0) = m(Y, 0).

In fact, we obtain a slight better result than Theorem 9.6.20. 

Theorem 9.6.21 Let .X ⊂ C
n and .Y ⊂ C

m be two germs at 0 of complex 
analytic sets with .dim X = dim Y = d. Let .X1, . . . , Xr and .Y1, . . . , Ys be the 
irreducible components of the tangent cones .C(X, 0) and .C(Y, 0), respectively 
and let .M = max{m(X1, 0), . . . , m(Xr, 0),m(Y1, 0), . . . , m(Ys, 0)}. If there are 
constants .C1, C2 > 0 and a bi-Lipschitz homeomorphism .ϕ : (X, 0) → (Y, 0) such 
that 

. 
1

C1
‖x − y‖ � ‖ϕ(x) − ϕ(y)‖ � C2‖x − y‖, ∀x, y ∈ X

and .(C1C2)
2d � 1 + 1

M
, then . m(X, 0) = m(Y, 0).

Proof By the bi-Lipschitz invariance of the tangent cones (see Theorem 9.3.11), 
there is a global bi-Lipschitz homeomorphism .dϕ : C(X, 0) → C(Y, 0) such that 
.dϕ(0) = 0 and . 1

C1
‖v−w‖ � ‖dϕ(v)−dϕ(w)‖ � C2‖v−w‖, ∀v,w ∈ C(X, 0).

By Theorem 9.5.1, .r = s and, up to a re-ordering of indices, . kX(Xj ) = kY (Yj )

and .Yj = dϕ(Xj ), . ∀ j . Moreover, by Proposition 9.5.2, we obtain 

.m(X, 0) =
r∑

j=1

kX(Xj ) · m(Xj , 0)
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and 

. m(Y, 0) =
r∑

j=1

kY (Yj ) · m(Yj , 0).

Since . Xj and . Yj are homogeneous algebraic sets, we have .deg(Xj ) = m(Xj , 0) and 
.deg(Yj ) = m(Yj , 0). By Theorem 9.6.20, .m(Xj , 0) = m(Yj , 0) for all j . Therefore, 
. m(X, 0) = m(Y, 0). ��

9.6.5 Question AL(2) and Final Comments 

Let us recall the Question AL(d). 

Question AL(d) Let .X ⊂ C
n and .Y ⊂ C

m be two complex analytic sets 
with .dim X = dim Y = d, .0 ∈ X and .0 ∈ Y . If there exists a bi-Lipschitz 
homeomorphism .ϕ : (X, 0) → (Y, 0), then is .m(X, 0) = m(Y, 0)? 

We finish this section bringing a complete answer to this question. Next result is 
a positive answer to that. Its proof was published in [3]. It is valuable to mention 
that Neumann and Pichon also got a positive answer to question AL(2) with the 
additional hypothesis that the considered surface singularities are normal (see [23]). 

Theorem 9.6.22 Let .X ⊂ C
N+1 and .Y ⊂ C

M+1 be two complex analytic surfaces. 
If .(X, 0) and .(Y, 0) are bi-Lipschitz homeomorphic, then .m(X, 0) = m(Y, 0). 

In view of what we have already proved, mainly Theorem 9.5.3 which says that 
it is enough to addresses Question AL(d) for irreducible homogeneous singularities, 
we have that the above theorem is an immediate consequence of the following result 
proved in [3]. 

Proposition 9.6.23 Let .S ⊂ C
n be a 2-dimensional homogeneous and irreducible 

algebraic setalgebraic sets!irreducible. Then the multiplicity .m(S, 0) = m is given 
by the following: the torsion part of .H 2(S \ 0,Z) is isomorphic to .Z/mZ. In  
particular, if .S, S′ are 2-dimensional homogeneous and irreducible algebraic sets 
such that .(S, 0) and .(S′, 0) are homeomorphic, then .m(S, 0) = m(S′, 0). 

Proof In order to prove this theorem, as we saw above, by Theorem 9.5.3, it is  
enough to assume that .X ⊂ C

N+1 and .Y ⊂ C
M+1 are 2-dimensional homogeneous 

and irreducible algebraic setsalgebraic sets!homogeneous. Since a bi-Lipschitz 
homeomorphism between .(X, 0) and .(Y, 0) is also a homeomorphism between 
them, by Proposition 9.6.23, it follows that .m(X, 0) = m(Y, 0). ��

Finally, we complete the answer of Question AL(d) by showing that, for 
dimension d greater then 2, we always have singularities which are bi-Lipschitz 
homeomorphic with different multiplicities. This result was proved in [2].
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Theorem 9.6.24 For each .n � 3, there exists a family .{Yi}i∈N of n-dimensional 
complex algebraic varieties .Yi ⊂ C

ni+1 such that: 

(a) for each pair .i 	= j , the germs at the origin of .Yi ⊂ C
ni+1 and .Yj ⊂ C

nj +1 are 
bi-Lipschitz equivalent, but .(Yi, 0) and .(Yj , 0) have different multiplicity. 

(b) for each pair .i 	= j , there are n-dimensional complex algebraic varieties 
.Zij , Z̃ij ⊂ C

ni+nj +2 such that .(Zij , 0) and .(Z̃ij , 0) are ambient bi-Lipschitz 
equivalent, but .m(Zij , 0) = m(Yi, 0) and .m(Z̃ij , 0) = m(Yj , 0) and, in 
particular, they have different multiplicity. 

Proof (Sketch of the Proof) Let .{pi}i∈N be the family of odd prime numbers. For 
each . i ∈ N, let . Xi be an embedding of .CP 1 × CP 1 into .CP ni with degree . 4pi =
2 ·2 ·pi (we can do this by using a composition of Segre and Veronese embeddings). 
Let .Yi ⊂ C

N+1 be the respective affine algebraic complex cone associated to . Xi and 
. Si its the respective link at the origin of .Cni+1. More precisely, .Si = Yi ∩ S

2ni+1. 
By construction, .m(Yi, 0) = 4pi for all .i ∈ N. On the other hand, it was proved in 
[2] that . Si is diffeomorphic to .S2 × S

3 for all .i ∈ N and, then .(Yi, 0) is bi-Lipschitz 
homeomorphic to .(Yi, 0) while .m(Yi, 0) 	= m(Yi, 0) for all .i 	= j . Hence, Item (a) 
is proved. 

Concerning to Item (b), let .fij : Yi → Yj be a bi-Lipschitz homeomorphism 
such that .fij (0) = 0 (we are considering .f −1

ij = fji). Let . Fij : Cni+1 → C
nj +1

be a Lipschitz extension of .fij (see Lemma 9.3.10). Let us define . φ,ψ : Cni+1 ×
C

nj +1 → C
ni+1 × C

nj +1 as follows: 

. φ(x, y) = (x − Fji(y + Fij (x)), y + Fij (x))

and 

. ψ(z,w) = (z + Fji(w),w − Fij (z + Fji(w))).

It easy to verify that . φ and . ψ are inverse maps of each other. Since . φ and . ψ
are composition of Lipschitz maps, they are also Lipschitz maps. Moreover, if 
we denote .Zij = Yi × {0} and .Z̃ij = {0} × Yj , we get .φ(Zij ) = Z̃ij (see 
[30]). Therefore, .(Zij , 0) and .(Z̃ij , 0) are ambient bi-Lipschitz equivalent, while 
.m(Zij , 0) = m(Yi, 0) and .m(Z̃ij , 0) = m(Yj , 0) are different. ��

9.6.6 Exercises 

Exercise 9.6.25 Prove that δr (f ) as in Definition 9.6.9 does not depend on r >  0. 

Exercise 9.6.26 Prove Proposition 9.6.13. 

Exercise 9.6.27 Give a direct proof to Corollary 9.6.16. 

Exercise 9.6.28 Prove Proposition 9.6.19.
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Abstract Any subanalytic germ .(X, 0) ⊂ (Rn, 0) is equipped with two natural 
metrics: its outer metric, induced by the standard Euclidean metric of the ambient 
space, and its inner metric, which is defined by measuring the shortest length of 
paths on the germ .(X, 0). The germs for which these two metrics are equivalent up 
to a bilipschitz homeomorphism, which are called Lipschitz Normally Embedded, 
have attracted a lot of interest in the last decade. In this survey we discuss many 
general facts about Lipschitz Normally Embedded singularities, before moving our 
focus to some recent developments on criteria, examples, and properties of Lipschitz 
Normally Embedded complex surfaces. We conclude the manuscript with a list of 
open questions which we believe to be worth of interest. 

10.1 Definition, First Examples, and Some General Results 

10.1.1 Definition 

Let .(X, dX) and .(Y, dY ) be two metric spaces. A homeomorphism .φ : X → Y is 
said to be a bilipschitz equivalence if there exist two positive real numbers . K1 and 
. K2 such that, given any two points x and . x′ in X, we have  

. K1 dX(x, x′) � dY

(
φ(x), φ(x′)

)
� K2 dX(x, x′).

Two metric spaces are said to be bilipschitz equivalent if there exists a bilipschitz 
equivalence from one to the other. 

A connected subanalytic subspace X of . Rn is naturally equipped with two 
metrics on .(X, 0): its outer metric . do, induced by the standard Euclidean metric 
of the ambient space, and its inner metric . di , which is the associated arc-length 
metric on the germ, defined as follows: 

. di(x, y) = inf
{
length(γ )

∣∣ γ is a rectifiable path in X from x to y
}
.

Note that for an arc to be rectifiable essentially means that its length can be 
computed and is finite, see [22] for details. Given any two points x and y in X, we  
have .do(x, y) � di(x, y). Moreover, the inner distance between two given points 
can be computed as a limit of sums of outer distances, so that two spaces which 
are bilipschitz equivalent for the outer metric are bilipschitz equivalent for the inner 
metric as well.1 In general, the converse does not hold, but there exists a special

1 Surprisingly, we do not know any reference for this simple fact, so here is a proof: if . f : X → Y

is a subanalytic map that is a K-Lipschitz for the outer metrics and .γ : [0, 1] → X is a rectifiable 
path between two points x and . x′ of X, then .f ◦γ is a rectifiable path between .f (x) and .f (x′) in Y 
and we have . di

(
f (x), f (x′)

)
� length(f ◦γ ) = supn

∑n−1
i=1 do

(
(f ◦γ )(i/n), (f ◦γ )(i + 1/n)

)
�

K supn

∑n−1
i=1 do

(
γ (i/n), γ (i + 1/n)

) = K length(γ ). By taking the infimum over all such paths 
. γ , we obtain .di

(
f (x), f (x′) � K di(x, x′), that is  f is K-Lipschitz for the inner metrics. 
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class of spaces, or of space germs, which have the remarkable property that their 
inner and outer bilipschitz classes coincide, in the following sense. 

Definition 10.1.1 A connected subanalytic subspace X of . Rn is Lipschitz Normally 
Embedded (or simply LNE) if there exists a subanalytic homeomorphism . f : X →
X which is a bilipschitz equivalence between the inner and outer metrics of X, that 
is such that there exists a real number .K � 1 satisfying, for all .x, y in X, 

. 
1

K
di

(
f (x), f (y)

)
� do(x, y) � Kdi

(
f (x), f (y)

)
.

If x is a point of X, the germ .(X, x) is LNE if there is a neighborhood U of x in . Rn

such that .X ∩ U is LNE. 

Since the inner and the outer geometries of .(X, x) are invariant under bilipschitz 
homeomorphisms (see [42, Proposition 7.2.13]), this property only depends on the 
subanalytic type .(X, x), and not on the choice of an embedding in some smooth 
ambient space .(Rn, 0).2 

This notion was first introduced by Birbrair and Mostowski in the seminal 
paper [9]. Their definition is slightly different because they require the identity 
map, and not just any subanalytic homeomorphism, to be bilipschitz between inner 
and outer metrics, but in fact the two definitions are equivalent. This is a piece 
of folklore knowledge which is a consequence of the main result of loc. cit. In  
Sect. 10.1.3 we recall that result and include a proof of the equivalence that was 
kindly communicated to us by the Lev Birbrair. Note that in loc. cit. LNE spaces 
are simply called normally embedded; in the subsequent literature on the subject the 
term Lipschitz was added to distinguish this notion from those of projective normal 
embedding (in algebraic geometry) and normality (in local geometry, commutative 
algebra and singularity theory). 

Notice that a compact space X is LNE if and only if the germs .(X, x) are LNE 
for all points x if X. Our aim is to present a state of the art on the LNE-ness of real 
and complex analytic germs. 

10.1.2 First Examples 

Example 10.1.2 A smooth germ (X, 0) is Lipschitz Normally Embedded, since it 
is analytically equivalent to (Rn , 0), where the inner metric and the outer metric 
coincide. 

Example 10.1.3 Let Y ⊂ Rn be a subanalytic subspace of the sphere Sn−1 of radius 
1 centered at the origin of Rn, and assume that Y is LNE. Then the cone C(Y, 0)

2 Note that while the result of loc. cit. is only stated in the semialgebraic setting, its proof carries 
through for arbitrary subanalytic germs. 
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Fig. 10.1 The real cusp 
y2 − x3 = 0 

over Y with apex 0, which consists of the union of the half-lines with origin 0 that 
intersect Y , is LNE as well. 

Example 10.1.4 The germ (C, 0) of the real cusp C with equation y2 − x3 = 0 in  
R
2 is not LNE. Indeed, given a real number t >  0, consider the two points p1(t) = 

(t, t3/2) and p2(t) = (t,−t3/2) on C (see Fig. 10.1). Then do

(
p1(t), p2(t)

) = 2t3/2, 
so that in the germ, as t goes two zero, the outer distance between p1(t) and p2(t) 
has order t3/2, which we write as do

(
p1(t), p2(t)

) = Θ(t3/2).3 On the other hand, 
the shortest path on C between the two points p1(t) and p2(t) is obtained by taking 
a path going through the origin, so that we have di

(
p1(t), p2(t)

) = Θ(t). Therefore, 
taking the limit of the quotient as t tends to 0, we obtain: 

. 
do

(
p1(t), p2(t)

)

di

(
p1(t), p2(t)

) = Θ(t1/2) −→ 0.

Note that the existence of two such arcs p1 and p2 is due to the fact that the tangent 
cone T0X of (X, 0) at 0 is not reduced (it has equation y2 = 0). This is an occurrence 
of a general result which will be stated as Theorem 10.1.29. 

Example 10.1.5 A complex curve germ (C, 0) ⊂ (CN , 0) is LNE if and only if it 
consists of smooth transversal curve germs. Indeed, if the latter is true then (C, 0) 
is analytically equivalent to the germ of a union of transversal lines, which being 
a cone is LNE. The converse is more delicate and can be obtained by combining 
several results. First, if (C, 0) ⊂ (CN , 0) is a complex curve germ, then any generic 
linear projection � : CN → C2 restricts to the germ of a bilipschitz homeomorphism
�|(C,0) : (C, 0) → (

�(C), 0
)
for the outer metric ([45, pp. 352–354]). Therefore, it 

suffices to prove the result for a plane curve (C, 0) ⊂ (C2, 0). The key argument,

3 More precisely, throughout this text, we use the big-Theta asymptotic notations of Bachmann– 
Landau in the following form: given two function germs f, g : ([0,∞), 0) → ([0,∞), 0), we say  
that f is big-Theta of g, and we write f (t)  = Θ(g(t)), if there  exist  η >  0 and  K >  0 such that  
K−1g(t) � f (t) � Kg(t) for all t satisfying f (t) � η. 
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which is close to the one presented in Example 10.1.4, is that a complex curve germ 
(C, 0) ⊂ (C2, 0) admitting a non essential Puiseux exponent q >  1 contains two 
arcs p1(t) and p2(t) such that di

(
p1(t), p2(t)

) = Θ(t) and do(p1(t), p2(t)) = 
Θ(tq ), and therefore (C, 0) cannot be LNE. For example, the complex cusp y2 − 
x3 = 0 in  C2, which has has Puiseux expansion y = x3/2, contains the two arcs 
p1(t) = (t, t3/2) and p2(t) = (t, −t3/2) whose inner distance is Θ(t) and whose 
outer distance is Θ(t3/2). 

Notice that, more generally, the inner and outer bilipschitz types of complex 
curve germs are completely understood. On the one hand, the inner bilipschitz 
geometry of a complex curve (C, 0) is trivial in the sense that for the inner metric 
(C, 0) is bilipschitz equivalent to a straight cone over its link, that is to a union of 
smooth transversal curve germs (see [42, Proposition 7.2.2]). On the other hand, 
the outer bilipschitz type of (C, 0) determines and is determined by its embedded 
topological type; for an algebraic proof of this result involving Lipschitz saturation 
of ideals, see the pioneering paper by Pham and Teissier [40] or its recent English 
translation [41]; for a more geometric approach, see [18] or [35]. 

Example 10.1.6 Starting from dimension 3 it is easy to find examples of non-
LNE complex analytic germs which have non-isolated singularities, for example 
by taking the product of a non-LNE germ with a line. For instance, the product 
of a real cusp with a real line, that is the complex hypersurface in C3 with equation 
y2−x3 = 0, is not LNE. One gets other examples by taking a homogeneous complex 
space with a non-LNE link; such an example is given by the hypersurface germ in 
(C3, 0) with equation x2z + y3 = 0 

Example 10.1.7 The first examples of non-LNE complex surface germs with an 
isolated singularity were obtained by Birbrair, Fernandes, and Neumann in 2010 
[6]. It is the family of Brieskorn surfaces xb + yb + za = 0 where b >  a  and a is 
not a divisor of b. In fact, what the authors of loc. cit. show is much stronger: with 
respect to the inner metric, those surface germ are not bi-Lipschitz equivalent to any 
LNE complex algebraic set. 

While few examples of families of LNE singularities are known, it is still 
unclear whether LNE-ness is common among complex singularities with isolated 
singularities, even in the case of surfaces. The second part of the present paper 
discusses several recent advances on this front. 

Example 10.1.8 The space of n × m real and complex matrices also contain 
remarkable families of LNE subspaces. For example, the Lie group GL+

n (R) 
consisting of n × n matrices with positive determinant is LNE, and so are the set of 
n × n matrices Xn−1 with rank n − 1 and its closure, which is the set of matrices of 
determinant zero [24]. These results are generalized in [25] to the  sets  Xt of m × n 
matrices of given rank t � min(m, n) and their closures Xt by using elementary 
arguments of linear algebra and trigonometry, and LNE-ness is also proved in loc. 
cit. for other families such as symmetric and skew-symmetric matrices of given 
rank t and their closures, upper triangular matrices with determinant zero, and the 
intersections of those spaces with some linear subspaces.
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10.1.3 The Pancake Decomposition, the Pancake Metric, and 
the Embedding Problem 

In this section, we present three important theorems which can be considered as the 
first historical results around Lipschitz Normal Embeddings. We will state them in 
the semialgebraic setting, but they remain true in the subanalytic and polynomially 
bounded o-minimal categories with the obvious adaptations. 

Since LNE spaces can be thought of as the simplest ones with respect to inner and 
outer Lipschitz geometries, it is natural to ask whether every semialgebraic subset 
of . Rn admits a finite decomposition as a union of LNE sets. The answer is positive, 
as was established by Parusinski and Kurdyka: 

Theorem 10.1.9 (Pancake Decomposition [27, 38, 39]) Let .X ⊂ R
n be a closed 

semialgebraic set. Then we can write 

. X =
r⋃

i=1

Xi

as a finite union of closed semialgebraic subsets of such that: 

(i) all . Xi are LNE; 
(ii) for every .i �= j we have .dim(Xi ∩ Xj) < min(dimXi, dimXj). 

This remarkable result has several important consequences. First, it enables 
to approach the following natural question: given a closed connected subset 
semialgebraic subset X in . Rn is the inner metric .di : X×X → R�0 a semialgebraic 
function? Note that this is clearly the case for the outer metric on X. 

The following theorem, proved by Kurdyka and Orro, states that . di is bilipschitz 
equivalent to a semialgebraic metric with a bilipschitz constant as close as we want 
from 1. To define such a semialgebraic metric, consider a pancake decomposition 
.P = {Xi}ri=1 of X. Given two points .x, y in X let .Zx,y be the set consisting of all the 
finite ordered sequences .z = (z1, . . . , zs) of points on X such that .z1 = x, .zs = y, 
and for every .k ∈ {1, . . . , s−1}, there is a pancake . Xik such that . Xik ∩{z1, . . . , zs} =
{zk, zk+1}. Finally, set 

. dP (x, y) = inf
(z1,...,zs )∈Zx,y

s−1∑

k=1

di(zk, zk+1).

Theorem 10.1.10 (Pancake Metric, [28]) The function .dp : X × X → R is 
semialgebraic and defines a metric on X (called the pancake metric) which is 
bilipschitz equivalent to . di . Moreover, for all .ε > 0, there exists a pancake 
decomposition (obtained by refinement), such that the underlying pancake metric 
satisfies 

.∀x, y ∈ X, di(x, y) � dP (x, y) � (1 + ε)di(x, y).
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An important application of the result above is the solution by Birbrair and 
Mostowski of the embedding problem, which asks whether every compact con-
nected semialgebraic set is inner bilipschitz equivalent to a LNE semialgebraic set: 

Theorem 10.1.11 ([9]) Let X be a compact connected semialgebraic subset of . Rn. 
Then, for every .ε > 0, there exists a semialgebraic set .Xε ⊂ R

m such that: 

(i) .Xε is semialgebraically bilipschitz equivalent to X with respect to the inner 
metric; 

(ii) . Xε is LNE; 
(iii) the Hausdorff distance between X and . Xε is less than . ε. 

Note that, when X is a complex analytic set, it is not always possible to choose 
. Xε to be complex algebraic. For instance, as already mentioned in Example 10.1.7, 
a surface germ defined by an equation of the form .xb + yb + za = 0, where . b > a

and a is not a divisor of b, does not admit a complex algebraic normal embedding, 
that is, it is not inner bi-Lipschitz equivalent to a LNE complex algebraic set. 

We can now explain the equivalence of Definition 10.1.1 with the definition of 
[9], as we promised in the first section. The proof of the following corollary was 
communicated to us by Lev Birbrair. 

Corollary 10.1.12 A connected subanalytic subspace X of . Rn is LNE (in the sense 
of Definition 10.1.1) if and only if the identity map of X is a bilipschitz equivalence 
between the inner and outer metrics of X. 

Proof Let .g : (X, di) → (Xε, di) a bilipschitz homeomorphism between X and a 
LNE subanalytic subset of . Rm as in Theorem 10.1.11 and let . f : (X, di) → (X, do)

be a subanalytic bilipschitz homeomorphism, which exists by Definition 10.1.1. 
We deduce that .g ◦ f −1 is bilipschitz with respect to the outer metrics (note 
that here we are using the fact that the identity of . Xε is bilipschitz between its 
inner and outer metrics, which is what was intended for LNE in [9]; this proof 
would still be valid with the other definition, by further composing g with the 
appropriate homeomorphism). Therefore .g ◦ f −1 is also bilipschitz with respect 
to the inner metrics (see Footnote 1 at p. 498). This implies that . IdX = f ◦ f −1 =
f ◦ g−1 ◦ g ◦ f −1 is bilipschitz from .(X, di) to .(X, do). ��

10.1.4 Characterization of LNE-Ness via Arcs 

In this subsection we recall a necessary and sufficient condition for the LNE-ness of 
a semialgebraic set which was proved by Birbrair and Mendes. As in the previous 
section, the results stay true in the subanalytic or more generally polynomially 
bounded o-minimal setting (see [7, Remark 2.3]). 

Definition 10.1.13 Let .(X, 0) ⊂ (Rn, 0) be a semialgebraic germ. A real arc on 
.(X, 0) is the germ of a semialgebraic map .δ : [0, η) → X for some .η > 0, such that 
.δ(0) = 0 and .‖δ(t)‖ = t (see also Remark 10.1.16).
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When no risk confusion may arise, we will use the same notation for a real arc . δ

and for the germ .
(
δ([0, η)), δ(0)

)
of its parametrized image. 

Definition 10.1.14 Let .(X, 0) ⊂ (Rn, 0) be a semialgebraic germ and let 
.δ1 : [0, η) → X and .δ2 : [0, η) → X be two real arcs on X. The  outer contact 
of . δ1 and . δ2 is defined to be infinity if .δ1 = δ2 and is otherwise the rational number 
.qo = qo(δ1, δ2) defined by 

. ‖δ1(t) − δ2(t)‖ = Θ(tqo).

The inner contact of . δ1 and . δ2 is the rational number .qi = qi(δ1, δ2) defined by 

. di

(
δ1(t), δ2(t)

) = Θ(tqi ).

Remark 10.1.15 The existence and rationality of the inner contacts . qi is a conse-
quence of the fact that the inner metric is bilipschitz equivalent to the pancake metric 
(Theorem 10.1.10), which is semialgebraic. 

Remark 10.1.16 The inner and outer contacts .qi(δ1, δ2) and .qo(δ1, δ2) can also be 
defined taking reparametrizations by real slices of . δ1 and . δ2 as follows. First note 
that if . δ1 and . δ2 have different tangent directions then .qi(δ1, δ2) = qo(δ1, δ2) = 1, 
so we may assume that they have the same tangent direction. We can then choose 
coordinates .(x1, . . . , xn) such that along the tangent half-line of . δ1 and . δ2 we have 
.x1 > 0 except at 0. For .j = 1, 2, consider the reparametrization . ̃δj : [0, η) → R

n

defined by .δ̃j (t) = δj ∩ {x1 = t}. Then we have .‖δ̃1(t) − δ̃2(t)‖ = Θ(tqo) and 
.di

(
δ̃1(t), δ̃2(t)

) = Θ(tqi ). Indeed, this is an easy consequence of the following 
standard lemma: 

Lemma 10.1.17 Let .B ⊂ R
n be any closed compact convex neighborhood of 0 in 

. Rn and denote by . B1 is the unit ball of . Rn. Let .φ : B → B1 be the homeomorphism 
which maps each ray from 0 to .∂B linearly to the ray with the same tangent, but of 
length 1. Then the map .φ : B → B1 is a bilipschitz homeomorphism. 

We can now state the main result of this subsection, which is a criterion to 
determine if a closed semialgebraic germ is LNE using arcs and their contact orders. 

Theorem 10.1.18 (Arc Criterion, [7]) Let .(X, 0) ⊂ (Rn, 0) be a closed 
semialgebraic germ. Then .(X, 0) is LNE if and only if all pairs of real arcs . δ1 and 
. δ2 in .(X, 0) satisfy .qi(δ1, δ2) = qo(δ1, δ2). 

The proof of this theorem is based on the Curve Selection Lemma. Since the 
latter only applies to semialgebraic metrics, the semialgebraicity of the pancake 
metric and Theorem 10.1.10 play again a fundamental role. 

Example 10.1.19 A straightforward application of the arc criterion shows that the 
real surface S in . R3 defined by the equation .x2 + y2 − z3 = 0 is LNE. See also 
Example 10.1.26.
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The criterion given in Theorem 10.1.18 is difficult to use effectively in practice 
since it requires to compute the inner and outer contact orders of an immense amount 
of pairs of arcs. In Sect. 10.2 we state an analogous criterion for complex surface 
germs where the number of pairs of arcs to be tested is reduced drastically to just 
finitely many pairs. This makes the criterion much more efficient to prove LNE-ness 
and enables one to obtain several infinite families of LNE complex surface germs 
with isolated singularities. 

10.1.5 Characterization of LNE-Ness via the Links 

Recall that the link of a d-dimensional subanalytic germ .(X, 0) ⊂ R
n, which is 

defined by embedding .(X, 0) in a suitable smooth germ .(CN, 0) and intersecting 
it with a small sphere, is, up to homeomorphism, a well defined real .(2d − 1)-
dimensional oriented pseudo-manifold (a smooth manifold if .(X, 0) has isolated 
singularities) which determines and is determined by the homeomorphism class of 
the germ .(X, 0). In this subsection we discuss the relation between a germ being 
LNE and its link being LNE. One implication is always satisfied: 

Lemma 10.1.20 Let .(X, 0) be a subanalytic germ in .Rn such that .(X \ {0}, 0) is 
connected. Then, if .(X, 0) is LNE, so is its link. 

This is a consequence of the fact that, whenever the link of .(X, 0) is connected, 
given two real arcs . δ1 and . δ2 as in Definition 10.1.14, their inner contact can be 
computed as the asymptotic of the inner distances between the points .δ1(t) and . δ2(t)

on the representative .X ∩ {||x|| = t} of the link of .(X, 0). The converse implication 
is only true in some special cases, such as for conical subset of . Rn, as treated by 
Kerner, Pedersen, and Ruas: 

Proposition 10.1.21 ([25, Proposition 2.8]) Let .Sn−1 be the unit sphere centered 
at the origin of . Rn, let  M be a compact subset of .Sn−1, and let . X = C(M) ⊂ R

n

be the cone over M , that is the union of the half-lines with origin 0 and passing 
through points of M . Then X is LNE if and only if M is LNE (as a subset of . Rn). 

The proof is obtained by performing direct computations of inner and outer 
distance between points inside .C(M). 

Remark 10.1.22 In the case where M does not intersect the meridian sphere . Sn−2 =
Sn−1 ∩R

n−1 × {0} ⊂ R
n, then .X = C(M) is also the cone .C(N) over the compact 

set .N = C(M) ∩ R
n−1 × {±1}, and the map .φ : M → N sending a point x of 

M to the point of the half-line through x which intersects .Rn−1 × {±1} realizes a 
bilipschitz homeomorphism for the outer metric. Therefore, the LNE-ness of M is 
equivalent to that of N in this case.
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Example 10.1.23 Consider the cone .C(N) in . R3 over the union of the two circles 

. N = {
(x, y, 1) ∈ R

3
∣∣ ((x − 1)2 + y2 − 1

)(
(x + 1)2 + y2 − 1

) = 0
}
.

Then .C(N) is not LNE since N is not LNE at the intersection point . q = (0, 0, 1)
of the two circles. Indeed, the two arcs .p1(t) = (−1 + √

1 − t2) and . p2(t) =
(1 − √

1 − t2) on .(N, q) satisfy .qo(p1, p2) = 3/2 �= qi(p1, p2) = 1. 

In [30], Mendes and Sampaio proved a broad generalization of Proposi-
tion 10.1.21 which provides a characterization of LNE subanalytic germs via 
their links. This result was further generalized by Nguyen in [36] to any definable 
set in a o-minimal structure (not necessarily polynomially bounded). We state here 
this most general version. 

Theorem 10.1.24 [30, 36] Let .(X, 0) be a definable germ in .(Rn, 0) and let 
.ρ : (X, 0) → (R, 0) be the germ of a continuous definable function such that 
.ρ(x) = Θ(‖x‖). Suppose that .(X \ {0}, 0) is connected. Then the following 
statements are equivalent: 

(i) .(X, 0) is LNE; 
(ii) There exist real numbers .r0 > 0 and .C > 0 such that, for every .r ∈ (0, r0], the  

set .Xr = ρ−1(r) ∩ X is LNE with Lipschitz constant bounded by C. 

Remark 10.1.25 Condition (ii) is stated in [30] in the case where the function . ρ
equals the distance to the origin. In that case, .Xr = Sn−1

r ∩ X is the link of . (X, 0)
at distance r and a germ .(X, 0) satisfying condition (ii) is said to be link-LNE (or 
simply LLNE). 

The proof of Theorem 10.1.24 in the case where .(X, 0) and . ρ are subanalytic 
is based on the Curve Selection Lemma, used in a similar way as in the proof of 
Theorem 10.1.18 given in [7], and on a result of Valette [46, Corollary 2.2] which 
states the existence of a bilipschitz homeomorphism .h : (X, 0) → (X, 0) such that 
for all x in a neighborhood of the origin we have .‖h(x)‖ = ρ(x). 

Example 10.1.26 As an application of Theorem 10.1.24, consider again the real 
hypersurface S defined in . R3 by the equation .x2 +y2 − z3 = 0 of Example 10.1.26, 
and fix .t > 0. Then the intersection .St = S ∩ {z = t} is a circle with radius . t3/2. 
Therefore, every . St is LNE with Lipschitz constant .C = 2π , so that S is link-LNE 
and hence LNE. 

Example 10.1.27 (36, Proposition 3.11) Consider the semialgebraic germ . (X, 0) ⊂
(R3, 0) defined by .X = {(t, x, z) ∈ R

3|0 � x � t, z2 = t2x2} and the 
semialgebraic function .ρ : (X, 0) → (R+, 0) define by .(t, x, z) �→ t . Then 
.ρ(w) = Θ(‖w‖) and .Xr = ρ−1(r)∩X is LNE but its Lipschitz constant is .Θ(1/r). 
Therefore, condition (ii) of Theorem 10.1.24 is not satisfied, which implies that 
.(X, 0) is not LNE.



10 On Lipschitz Normally Embedded Singularities 507

10.1.6 LNE-Ness and Moderately Discontinuous Homology 

In [13], Fernández de Bobadilla, Heinze, Pe Pereira, and Sampaio defined a 
homology theory called Moderately Discontinuous homology. It produces families 
of groups which are invariants of the bilipschitz homeomorphism classes of 
subanalytic germs with respect to either the inner or the outer metric. In particular, 
given a subanalytic germ .(X, 0) ⊂ (Rn, 0), the identity map on .(X, 0) induces 
homomorphisms between the corresponding Moderately Discontinuous homology 
groups of .(X, 0) with respect to these two metrics, and it is easy to check that 
if .(X, 0) is LNE then these homomorphisms are isomorphic. The authors asked 
whether the converse is true: 

Question 10.1.28 Let .(X, 0) ⊂ (Rn, 0) be a subanalytic germ and assume that 
the identity map induces isomorphisms at the level of Moderately Discontinuous 
homology with respect to the inner and the outer metric at every point of .(X, 0). Is  
.(X, 0) necessarily LNE? 

In general, the answer is no: Example 10.1.27 is a counter-example, as shown 
by Nguyen in [36, Proposition 3.11]. Notice that that example is semialgebraic and 
has a non-isolated singularity. The question is still open in the case of an isolated 
singularity or in the complex analytic setting. 

10.1.7 LNE-Ness and Tangent Cones 

In this subsection, we state and discuss two necessary conditions for the LNE-ness 
of a subanalytic germ .(X, 0) ⊂ (Rn, 0) in term of its tangent cone, proved by 
Fernandes and Sampaio. 

Theorem 10.1.29 ([19, Corollary 3.11]) Let .(X, 0) ⊂ (Rn, 0) be a subanalytic 
germ and let .T0X be its tangent cone at 0. If  X is LNE, then the two following 
conditions are satisfied: 

(i) .T0X is LNE; 
(ii) .T0X is reduced. 

Proof (Sketch) The proof of the first part uses the following notion of tangent cone 
of a subanalytic germ in .(X, 0) ⊂ (Rn, 0), introduced in [19, Section 2.2], which 
generalizes the classical definition in the real or complex analytic setting. Let . D0(X)

be the set of unitary vectors v in .Rn \ {0} such that there exist a sequence of points 
.(xj )j∈N in .X \ {0} converging to 0 such that .limj→+∞

xj

‖xj ‖ = v; the  tangent cone 

.T0X of .(X, 0) at 0 is defined by 

.T0X = {tv | v ∈ D0(X), t ∈ R
+}.
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Assume that .(X, 0) is LNE. Let .0 ∈ U ⊂ X be a small neighborhood of 0 in X 
and let .λ > 0 such that for all .x, y ∈ U, di(x, y) � λdo(x, y). The proof of the 
first part of the theorem presented in [19] considers two vectors .v,w in .T0X and 
constructs an arc α in .T0X between v and w with length at most .(1 + λ)‖x − y‖. 
The arc α is obtained by an elegant argument using the Arzelà–Ascoli Theorem, as 
the limit of arcs joining two sequences of points .(xj ) and .(yj ) in .(X, 0) such that 
.lim

xj

‖xj ‖ = v and .lim
yj

‖yj ‖ = w. The second part of the theorem requires a definition 
of reducedness for the tangent cone, introduced in [4] and based on an equivalent 
definition of the tangent cone .T0X using spherical blowups. We refer to [19, Section 
3] for details, and only remark that the definition coincides with the classical one in 
the case of an analytic germ. The proof consists then in the construction of a pair of 
arcs .(p1, p2) which does not satisfy the arc criterion in the neighborhood of a non 
reduced component of .T0X, in a similar way as in Example 10.1.4. ��

The converse of Theorem 10.1.29 is not true. It is easy to find counter-
examples among semialgebraic germs with non-isolated singularities, such as . X ={
(x, y, z) ∈ R

3
∣∣ (x2+y2−z2

)(
x2+(|y|−z−z3)2−z6

) = 0, z � 0
}
[19, Example 

3.12]. 
Note that in the example above the link of .(X, 0) is not LNE, hence . (X, 0)

cannot be LNE itself thanks to Lemma 10.1.20. Therefore, it becomes natural to 
ask the following question: given a subanalytic germ .(X, 0) ⊂ (Rn, 0) whose 
link is LNE and satisfying Conditions (i) and (ii) of Theorem 10.1.29, is  . (X, 0)
necessarily LNE? The answer is negative, even among complex germs with isolated 
singularities. A counter-example is given by Neumann and the second author in the 
appendix of [19]:4 

Proposition 10.1.30 The hypersurface germ in .(C3, 0) with equation 

. y4 + z4 + x2(y + 2z)(y + 3z)2 + (x + y + z)11 = 0

is not LNE , it has an isolated singularity at 0, and its tangent cone is reduced and 
LNE. 

To end this subsection, let us mention that Fernandes and Sampaio proved in [20] 
the following analogue of Theorem 10.1.29 about complex algebraic sets of any 
dimension which are LNE at infinity, recovering in particular the results of [16]. 

Theorem 10.1.31 Let X be complex analytic set in . Cn. Assume that: 

(i) X is Lipschitz Normally Embedded at infinity, that is there exists a compact 
subset K of .Cn such that each connected component of .X \ K is Lipschitz 
Normally Embedded; 

(ii) The tangent cone of X at infinity is a linear subspace of . Cn. 

Then X is an affine linear subspace of . Cn.

4 Note that the link of a subanalytic germ with isolated singularities is smooth, and therefore LNE. 
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We refer to [20] for details, and in particular to [20, Section 4] for the definition 
of the tangent cone at infinity. This result is remarkable since it shows that an a 
priori mild assumption at infinity forces the rigidity of the whole X. Note that if X 
is Lipschitz regular at infinity, that is if outside of a large compact set in . Rn it is 
bilipschitz homeomorphic to an open subset of . Rk for some k, then X is LNE at 
infinity (this is [20, Corollary 3.3]). 

10.1.8 LNE in Topology and Other Fields 

Lipschitz Normal Embeddings have also been useful to study problems in topology. 
For example, Birbrair et al. [8] prove that for a large class of real analytic 
parametrized surfaces in . R4 LNE-ness implies the triviality of the knot obtained 
as their link. 

More recently, Fernandes and Sampaio [21, Theorem 3.2] showed that two LNE 
compact subanalytic sets which are close enough with respect to the Hausdorff 
distance have isomorphic fundamental groups. This leads them to give topological 
conditions on the link of a LNE germ that ensure that the germ is smooth, (see 
Theorem 4.1 in loc. cit.), from which they derive the following remarkable result, 
which is a metric version, in arbitrary dimension, of Mumford’s link criterion for 
the smoothness of normal surface germs. 

Theorem 10.1.32 ([21, Theorem 4.2]) Let .(X, 0) be a complex analytic germ of 
dimension k with isolated singularities. Then .(X, 0) is smooth if and only if it is 
locally metrically conical and its link at 0 is .(2k − 2)-connected. 

The definition for X being locally metrically conical at 0 is given in [21, page 4]. 
We note that an earlier result towards a metric characterization of smoothness was 
obtained by Birbrair et al. [5], who proved that a germ which is outer bilipschitz 
equivalent to a smooth germ .(Cm, 0) is itself smooth. 

We also remark that a problem related to the embedding problem discussed in 
Sect. 10.1.3 is studied in functional analysis. Indeed, some people working in that 
field are interested in studying different classes of embeddings (some of which 
closely resemble those of the Theorem 10.1.11 of Birbrair and Mostowski) of 
discrete metric spaces into suitable Banach spaces. We refer the interested reader 
to the monograph [37] and to the many references found therein. 

10.2 LNE Among Complex Surface Germs 

The goal of this section is to overview some recent advances on the study of LNE 
singularities among complex surface germs.
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10.2.1 A Refinement of the Arc Criterion 

As was mentioned in Sect. 10.1.4, the arc-based criterion for LNE-ness of Birbrair 
and Mendes given in Theorem 10.1.18 is difficult to use effectively in practice, as it 
requires to compute inner and outer contact orders of infinitely many pairs of arcs. 
Whenever .(X, 0) is a normal surface germ, this situation has been improved upon by 
Neumann, Pedersen, and the second author of this survey (see [33]), and then further 
in an upcoming work by Pedersen, Schober, and the two authors (see [17]), leading 
to a drastic reduction of the amount of pairs of real arcs whose contact orders have 
to be compared, down to a finite (and in fact rather small) number. 

In order to state the improved criterion we need to introduce the notion of test 
curve. Given a sequence of point blowups .ρ : Yρ → C

2 of .(C2, 0) and an irreducible 
component E of the exceptional divisor .ρ−1(0) of . ρ, a  test curve at E is any 
plane curve germ .(γ, 0) ⊂ (C2, 0) whose strict transform via . ρ is a smooth curve 
transverse to E at a smooth point of .ρ−1(0). For the purpose of the criterion, it is 
sufficient to take for . ρ any sequence such that the strict transform . Δ∗ via . ρ of the 
discriminant curve . Δ of a generic plane projection .� : (X, 0) → (C2, 0) of . (X, 0)
is a disjoint union of irreducible curves cutting the exceptional divisor .ρ−1(0) of 
. ρ at smooth points (such as for example any good embedded resolution of . Δ), 
to consider a suitable subset .{E0, . . . , Es} of the set of irreducible components of 
.ρ−1(0), and to pick one test curve . γi at . Ei for each .i = 0, . . . , s; this gives rise to 
a set  .{γ0, . . . , γs} called a family of test curves for .(X, 0) with respect to . �. We can 
now state the criterion. 

Theorem 10.2.1 ([17, 33]) Let .(X, 0) be a normal surface singularity, let 
.� : (X, 0) → (C2, 0) be a generic plane projection of .(X, 0), and let . {γ0, . . . , γs}
be a family of test curves for .(X, 0) with respect to . �. Then the following conditions 
are equivalent: 

(i) .(X, 0) is LNE. 
(ii) For every .j = 0, . . . , s and for every pair of distinct irreducible components . ξ

and . ξ ′ of the principal part of .�−1(γj ), then . ξ and . ξ ′ have the same multiplicity 
as . γj and satisfy the equality . qi(ξ, ξ ′) = qo(ξ, ξ ′).

In the statement, the principal part of .�−1(γj ) is a curve obtained by deleting 
from .�−1(γj ) some irreducible components, namely those that do not pull back to 
curvettes on a suitable canonical subgraph of the minimal good resolution of .(X, 0). 
Contact orders between two complex curve germs . ξ and . ξ ′ are defined in a similar 
way as those between real arcs by looking at the shrinking rates as .ε > 0 goes to 0 
of the inner or outer distance between the sets .ξ ∩ {||x|| = ε} and .ξ ′ ∩ {||x|| = ε}. 
These are simple to compute in practice; for example this can be done by looking 
at the Puiseux expansions of the images of the irreducible curves . ξ and . ξ ′ through 
a second generic plane projection, which is easy to do with computer software such 
as Singular or Maple. 

The version of the criterion of [17] improves upon that of [33] because the latter 
requires the map . ρ used to construct a test family to be a good embedded resolution
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of the family of the projections via . � of the polar curves with respect to all generic 
plane projections of .(X, 0) (which in particular demands to determine the Nash 
transform of the latter) and not just to one of them, then to consider a greater number 
of irreducible components of .ρ−1(0), to take  all possible test curves at any such 
component, and finally to pull those curves back again with respect to all generic 
plane projections of .(X, 0). 

10.2.2 Examples 

The improvement of Birbrair and Mendes’s arc criterion discussed in the previous 
subsection lead to the discovery of several infinite families of LNE complex surface 
germs with isolated singularities, no examples of which were previously known. 

Theorem 10.2.2 ([34]) Let .(X, 0) be a normal complex surface germ assume that 
it is rational. Then .(X, 0) is LNE if and only if it is a minimal singularity. 

This result gives the first known infinite family of non-conical LNE normal 
complex surface singularities, and is in fact the main reason why the criterion of 
[33] was developed. For a thorough discussion of rational surface singularities we 
refer the reader to [29, 32], here we only recall that a surface singularity . (X, 0)
is rational if and only if the exceptional divisor E of its minimal good resolution 
consists of rational curves and its dual graph is a tree which satisfies a numerical 
condition (see [29, Theorem 4.2]). If moreover E is reduced, that is if the pullback 
of a general element of the maximal ideal of .(X, 0) vanishes with order one along 
each component of E, then .(X, 0) is said to be minimal. 

The fact that a rational singularity which is LNE is minimal based on Laufer’s 
algorithm [29, Proposition 4.1] to determine the fundamental cycle .Zmin (see the 
Footnote 5 on p. 515 for the definition of .Zmin). Conversely, in order to apply the 
criterion of Theorem 10.2.1 and show that a minimal surface singularity is LNE, the 
proof of Theorem 10.2.2 relies on a detailed study of the generic polar curves of 
minimal surface singularities performed in [43]. 

More generally, an equidimensional complex germ .(X, 0) of multiplicity m and 
embedding dimension e is said to be minimal if it is reduced, Cohen–Macaulay, with 
reduced tangent cone, and Abhyankar’s inequality .m � e−dim(X, 0)+1 is in fact an 
equality. The last condition means that minimal singularities generally live in high-
dimensional ambient spaces. At the other side of the spectrum, the first family of 
LNE normal hypersurface singularities in . C3 was discovered later by Misev and the 
first author of this survey, who studied LNE-ness among .superisolated singularities. 
In order to define those, consider a complex hypersurface germ .(X, 0) in .(C3, 0), 
defined by the equation .f (x, y, z) = 0, and write f as a sum of polynomials . f =
fd + fd+1 + . . ., with .fd �= 0 and each . fi homogeneous of degree i. Then .(X, 0) is 
said to be superisolated if the plane projective curve defined by .fd+1 = 0 does not 
intersect the singular locus of the projectivized tangent cone .C0X = {

(x : y : z) ∈
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P
2 
C

∣∣ fd(x : y : z) = 0
}
of .(X, 0). This implies that a single blowup of X along 0 is 

sufficient to resolve its singularities. 

Theorem 10.2.3 ([31]) Let .(X, 0) be a superisolated normal complex surface 
germ. Then .(X, 0) is LNE if and only if its tangent cone is reduced and LNE. 

Recall that the tangent cone of a LNE singularity has to be reduced and LNE 
thanks to Theorem 10.1.29. 

The further improvement obtained in [17] over the criterion of [33] allows to 
generalize the theorem above and obtain new families of LNE normal hypersurface 
singularities in . C3. In particular, the following result follows. 

Theorem 10.2.4 ([17]) Let n and k be two positive integers such that .n � k and let 
.(X, 0) be the hypersurface in .(C3, 0) defined by the equation 

. 

k∏

i=1

(aix + biy) − zn = 0,

where the .(ai, bi)’s are pairs of nonzero complex numbers such that the k points 
.(ai : bi) of . P1

C
are pairwise distinct. Then .(X, 0) is LNE. 

Observe that whenever .n < k then the tangent cone of .(X, 0) is defined by 
.zn = 0. As the latter is non reduced, then .(X, 0) cannot be LNE, or this would 
contradict Theorem 10.1.29. 

10.2.3 Properties of LNE Surfaces 

Lipschitz Normally Embedded complex surface singularities have many remarkable 
properties. For example, the authors of this survey, together with Belotto da Silva, 
proved the following: 

Proposition 10.2.5 ([3, Proposition 2.2]) Let .(X, 0) be a complex LNE normal 
surface germ. Then the minimal resolution of .(X, 0) factors through the blowup 
of X along 0, the exceptional components of this blowup are reduced, and the 
topological type of .(X, 0) determines its multiplicity (which a priori is a datum 
of analytic nature). 

The same paper also contains the following deeper result. 

Theorem 10.2.6 ([3, Theorems 1.1 and 1.2]) Let .(X, 0) be a complex LNE 
normal surface germ. Then the topological type of .(X, 0) determines the following 
data: 

(i) The dual graph of the minimal good resolution of .(X, 0) which factors through 
the blowup of the maximal ideal and through the Nash transform, decorated by 
two families of arrows corresponding respectively to the strict transform of a
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generic hyperplane section and to the strict transform of the polar curve of a 
generic plane projection. 

(ii) The (embedded) topological type of the discriminant curve of a generic 
projection. 

Moreover, this data can be computed explicitly from the dual graph of the minimal 
good resolution of .(X, 0). 

This theorem generalizes to all LNE normal surface germs results that were 
previously known only for minimal surface singularities. In that special case, the 
first property was established by Spivakovsky [43, III, Theorem 5.4], while the 
second one was later proven by Bondil [11, Theorem 4.1], [12, Proposition 5.4]. 

This result can be thought of as a unique solution, for the class of LNE normal 
surface singularities, to the so-called problem of polar exploration, which asks 
to determine the generic polar variety of a singular complex surface germ. This 
problem was studied for a general surface germ .(X, 0) by the same authors together 
with Némethi [1], relying on the study of the inner rates of .(X, 0). Those are 
an infinite family of metric invariants that appeared naturally in the study of 
the Lipschitz geometry of .(X, 0) in the foundational work [10], and were then 
systematically studied in [2]. From this point of view, it is worth noticing that in 
the paper [3] referred to above it is also shown that the topological type of a LNE 
normal surface germ .(X, 0) determines its inner rates (see Proposition 5.1 of loc. 
cit.), and this combined with the main result of [2] is what allows them to determine 
the combinatorics of the polar curve of a generic plane projection of .(X, 0). 

10.3 Open Questions 

We conclude this survey by putting forward some open questions about LNE 
singularities that we find worth of interest. 

10.3.1 Behavior Under Blowup and Nash Transform 

It was a long-held belief by several experts in the field that the point blowup of 
a LNE complex surface germ .(X, 0) with an isolated singularity would most likely 
have itself only LNE singularities. The following counterexample took therefore the 
authors by surprise. 

Example 10.3.1 The hypersurface .(X, 0) in .(C3, 0) defined by the equation 

.(x + y)(2x + y)(x + 2y) − z5 = 0
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is LNE (it is a special case of Theorem 10.2.4 from [17]). However, the blowup of X 
along 0 has a singularity whose local equation is . 2x3

1 +7x2
1y1+7x1y2

1 +2y3
1 −w2 =

0, whose tangent cone .w2 = 0 is non reduced. 

On the other hand, the following question is still open. 

Question 10.3.2 Let .(X, 0) be a LNE complex surface germ with an isolated 
singularity. Does the Nash transform of .(X, 0) have itself only LNE singularities? 

Observe that by da Silva et al. [3, Corollary 4.7], if .(X, 0) is LNE then its 
Nash transform has only sandwiched singularities. Since sandwiched singularities 
are rational, in order to give a positive answer to Question 10.3.2 thanks to 
Theorem 10.2.2 one would have to show that they are minimal. 

10.3.2 Topological Types of LNE Surface Singularities 

It is a very natural question to study the topological properties of LNE singularities. 
In order to start such an investigation, it seems wise to restrict oneself to the case of 
normal complex surfaces. In this context, it is well-known that, by a classical result 
of Neumann, the topological type of a normal surface singularity .(X, 0) is equivalent 
to the datum of the weighted dual graph . Γπ of the minimal good resolution . π
of .(X, 0), where each vertex is weighted by the genus and self-intersection of the 
corresponding exceptional component of . π . 

A first observation is then that being LNE is not a topological property, as shown 
by the following example, kindly provided to us by Jan Stevens. 

Example 10.3.3 Let . X1 be the hypersurface in . C3 defined by the equation . x4 +
y4 + z4 = 0 and let . X2 be the surface in . C4 defined by the equations .y2 = xz and 
.w2 = x4 + z4. The two surface germs .(X1, 0) and .(X2, 0) are normal and have the 
same topological type, since for both of them the exceptional divisor of the minimal 
resolution is a single curve of genus 3 and self-intersection . −4. However, .(X1, 0) is 
LNE, since it is the cone over the smooth projective curve .x4 + y4 + z4 = 0, while 
.(X2, 0) is not, since its tangent cone, which is defined by the equations .w2 = 0 and 
.y2 = xz, is non reduced. 

However, given a weighted graph . Γ one can say that . Γ is LNE if there exists a 
LNE normal surface singularity with resolution graph . Γ . The following question is 
therefore very natural. 

Question 10.3.4 Is there a combinatorial characterization of LNE weighted graphs? 

The first results of [3] provide some obstructions for a weighted graph . Γ to be 
LNE. Denote by .Zmin the fundamental cycle of . Γ . We then say that a vertex v of
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.Γ (V ) is a numerical .L-node of . Γ if .Ev · Zmin < 0.5 It  was then  shown in [3, 
Proposition 2.2.(ii)] that whenever .(X, 0) is a LNE singularity whose weighted dual 
graph is . Γ then .Zmin coincides with the maximal ideal cycle .Zmax of .(X, 0).6 In 
particular, the numerical .L-nodes of . Γ coincide with its usual .L-nodes, which are 
the vertices which correspond to the exceptional components of the blowup of X 
along 0. It then follows from Proposition 10.2.5 that the numerical .L-nodes of . Γ
are reduced, which means that whenever . Γ is the dual resolution graph of a LNE 
surface then it satisfies the following combinatorial condition: 

. writing Zmin = ∑
dvEv, we have dv = 1 for every v such that Zmin · Ev < 0.

A weighted graph satisfying the condition above is called a Kodaira graph. 
Kodaira graphs are precisely those which can be realized as dual resolution graphs of 
the so-called Kodaira singularities, a class of surface singularities defined in terms 
of a suitable family of curves and introduced by Karras [23] after work of Kulikov 
[26]. It seems worthwhile of interest to fully investigate the relations between 
Lipschitz Normal Embeddings and Kodaira singularities (or the subclass of Kodaira 
singularities consisting of the so-called Kulikov singularities introduced by Stevens 
[44]). As a first step towards this, we mention that among rational singularities 
the only ones that are Kodaira are precisely the minimal singularities (see [23, 
Example 2.8 plus Theorem 2.9]), that is the ones that are also LNE (and Kulikov). 
However, not all Kulikov singularities (and therefore not all Kodaira singularities) 
are LNE, since their projective tangent cone is not necessarily reduced (see [44, 
Example 2.4] for a Kulikov singularity with reducible tangent cone; moreover its 
minimal resolution does not factor through the blowup of its maximal ideal). 

10.3.3 Generalizations of the Arc Criterion 

We have mentioned in Sect. 10.2 how improving the arc criterion for LNE-ness of 
Theorem 10.1.18 proved to be extremely useful in the study of LNE complex surface

5 Let us briefly recall the precise definitions of the combinatorial notions we use here, in particular 
that of the fundamental cycle and how to make sense of the intersection number .Ev · Zmin. A  
weighed graph is a finite connected graph . Γ without loops and such that each vertex . v ∈ V (Γ )

of . Γ is weighted by two integers, its genus .g(v) ∈ Z�0 and its self-intersection .e(v) ∈ Z�0. 
Let .E = ⋃

v∈V (Γ ) Ev be a configuration of curves whose dual weighted graph is . Γ , so that in  

particular .g(v) = g(Ev) and .E 2
v = e(v), and  let  .IΓ = (Ev · Ev′ ) be the incidence matrix of . Γ . 

We assume that . IΓ is negative definite. A divisor on . Γ is a formal sum .D = ∑
v∈V (Γ ) mvEv over 

the set of the irreducible components of E with integral coefficients. The fundamental cycle . Zmin
of . Γ is then the unique nonzero divisor on . Γ which is minimal among those divisors D satisfying 
.D · Ev < 0 for all .v ∈ V (Γ ). Its existence was shown by Artin, and its coefficients are all strictly 
positive. 
6 The cycle .Zmax is the divisor on . Γ whose coefficient at a vertex v is the order of vanishing of a 
generic linear form of .(X, 0) along the exceptional component . Ev associated with v. 
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germs. It would therefore be very interesting to find similar improvements in a more 
general setting, and in particular for complex germs of higher dimensions. 

Question 10.3.5 Find an improvement of the arc criterion of Birbrair and Mendes 
(Theorem 10.1.18) that only requires to compare the inner and outer contact orders 
of a finite (and in fact as small as possible) family of pairs of real arcs, for complex 
germs of arbitrary dimension. 

Let now .(X, 0) be an algebraic complex germ. The arc space .L∞(X, 0) of . (X, 0)
is a scheme that parametrizes all complex arcs on X that are centered in 0, which are 
by definition the points of X with coordinates in .C[[t]] and such that setting . t = 0
we obtain the complex point .0 ∈ X. Its geometry, and the geometry of the jet spaces 
of .(X, 0) (the varieties parametrizing the jets of .(X, 0), which are its complex arcs 
truncated at a given order), reflect interesting properties of the singularity of .(X, 0). 
Their study plays an important role in many subareas of algebraic geometry, such 
as in the theory of motivic integration. This leads us to formulate the following 
problem. 

Question 10.3.6 Give a criterion for the LNE-ness of a germ .(X, 0) in terms of the 
geometries of the arc or jet spaces of .(X, 0). 

Such a criterion should involve testing the contact orders for generic arcs (or 
families of arcs, which are commonly called wedges) of some suitable irreducible 
subschemes of the arc space. In dimension 2, this could be related to the irreducible 
components of .L∞(X, 0), and hence to the essential valuations of .(X, 0), thus 
relating Lipschitz geometry to the notorious Nash problem solved by Fernández 
de Bobadilla and Pe Pereira in [14]. In arbitrary dimension, the LNE-ness of a germ 
.(X, 0) could possibly be read in terms of its terminal valuations, whose relation to 
the geometry of .L∞(X, 0) was detailed by de Fernex and Docampo [15]. 

More generally, the relations between the geometry of arc and jet spaces and 
Lipschitz geometry are completely unexplored. Some recent results, such as the 
appearance of Mather discrepancies in [1], suggest that this may be a matter worth 
exploring. 

10.3.4 Higher Dimensional LNE Complex Singularities 

As should now be clear to the reader, very little is known about complex LNE 
singularities starting from the dimension 3. Since the simplest family of LNE 
surface germs consists of minimal surface singularities, the following question is 
very natural. 

Question 10.3.7 Are minimal singularities in arbitrary dimension LNE? 

Recall that the definition of minimal singularities in arbitrary dimensions appears 
after Theorem 10.2.2.
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Minimal singularities form a building block in the Minimal Model Program. 
Therefore, more generally, can we hope to characterize LNE singularities, or at least 
provide new classes of higher-dimensional examples, using the invariants appearing 
in the Minimal Model Program? 
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Abstract In this (mainly) expository notes, we study the multiplicity of a local 
Noetherian ring .(B,m) at an .m-primary ideal I , paying special attention to the 
geometrical aspects of this notion. To this end, we will be considering suitably 
defined finite extensions .S ⊂ B, with S regular. We will explore some applications 
like the explicit description of the equimultiple locus of an equidimensional variety, 
or the computation of the asymptotic Samuel function. 

11.1 Introduction 

When it comes to measure how bad a singularity is, the case of a hypersurface in 
the affine space can provide some intuition. Let us assume that k is a field, let . A =
k[X1, . . . , Xn] and let .f ∈ A be a non-zero polynomial defining a hypersurface 
.H ⊂ A

n
k . For a given point .ζ ∈ H , denote by .p ⊂ A the corresponding prime ideal. 

We can consider the order of f at . p, 

. νζ (f ) := max{n : f ∈ pnAp} � 1.

The hypersurface H is regular at . ζ if .νζ (f ) = 1, otherwise H is singular at . ζ . In  
such case, .νζ (f ) � 2, and we can think that the larger .νζ (f ) be, the more singular 
the point will be. It is quite natural to ask whether this measurement can be made 
directly at the local ring of the hypersurface at . ζ . To address this question, let us first 
fix some notation. We will use .k(p) to denote the residue field at . p and . ̄pi to refer to 
.(pi +〈f 〉/〈f 〉). Let .B = A/〈f 〉, and set .Bp̄ = (A/〈f 〉)p̄. Then the value .νζ (f ) has 
an impact on the dimensions of the .k(p)-vector spaces: 

. Bp̄/p̄Bp̄, Bp̄/p̄
2Bp̄, Bp̄/p̄

3Bp̄, . . . , Bp̄/p̄
�Bp̄, . . . ,

or equivalently, on the dimension of the .k(p)-vector spaces 

. Bp̄/p̄Bp̄, p̄Bp̄/p̄
2Bp̄, p̄2Bp̄/p̄

3Bp̄, . . . , p̄
�−1Bp̄/p̄

�Bp̄, . . .

Notice that the quotients of the later sequence correspond to the j -th degree pieces 
of the graded ring .Grp̄Bp̄

(Bp̄) = ⊕
i p

i
Bp̄/p

i+1
Bp̄ of the local ring .Bp̄ = OH,ζ . 

Actually, the previous approach can be applied in a more general setting. We can 
assume, for instance, that B is the coordinate ring of an arbitrary algebraic variety 
defined over a field k, or even, just any local Noetherian ring. Then, for a prime 
.p ⊂ B, the multiplicity B at . p comes in naturally as an invariant when trying to 
measure the growth of dimension of the graded pieces of the graded ring 

.GrpBp
(Bp) =

⊕

i�0

piBp/p
i+1Bp
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as .k(p)-vector spaces, or equivalently, the growth of the lengths of the .Bp-modules, 
.Bp/p

i+1Bp, for .i = 0, 1, . . .. 
To be more precise, this growth is encoded asymptotically by the so called 

Hilbert-Samuel polynomial of . Bp at . p. This is a polynomial of degree . d = dim(Bp)

and the multiplicity at . p, . eBp
, is (up to some suitable factor) the leading coefficient 

of that polynomial. 
But, what does the multiplicity tell us about the singularity at a given point? If 

. p is a regular point in .Spec(B) then .GrpBp
(Bp) is isomorphic to a polynomial ring 

in d-variables with coefficients in .k(p). In such case the Hilbert-Samuel polynomial 
can be easily computed and it can be checked that the multiplicity at . p equals one. 
Moreover, under some conditions, multiplicity one implies regularity. As another 
example, if .B = R/〈f 〉, where R is a regular ring, then the multiplicity can 
be computed in terms of a local writing of the equation f at each point. More 
precisely, if the order of f at a prime .p ∈ Spec(R) is m, then the multiplicity at 
the corresponding prime, . p/〈f 〉, in  B equals m. In general, however, there is no 
apparent algebraic method that brings clear geometric insight on the meaning of the 
multiplicity. 

The purpose of these notes is to focus on the geometric aspects of the multiplicity. 
To fix ideas, assume that B is an equidimensional ring of finite type over a field k. 
Now suppose that we want to present B as a finite extension of a regular ring. To 
do so, we could start, for instance, by considering Noether’s Normalization Lemma. 
This tells us that if the Krull dimension of B is d, then B is a finite extension of a 
polynomial ring in d variables with coefficients in k, .S = k[X1, . . . , Xd ]. Let . K(S)

be the fraction field of S. Then it can be shown that the multiplicity of B at any 
prime . p, .eBp

(pBp), is bounded above by the generic rank of the extension .S ↪→ B, 
i.e., 

. eBp
(pBp) � [K(S) ⊗S B : K(S)].

Actually, the multiplicity can be defined at any .p-primary ideal I , .eBp
(IBp), and 

it can be equally shown that, for a finite extension with S regular the same inequality 
holds in this more general setting, if .I ∩ S is a prime, i.e., 

.eBp
(IBp) � [K(S) ⊗S B : K(S)]. (11.1) 

Here, we will be interested in the study of finite extensions .S ⊂ B with S regular 
for which the equality in (11.1) holds, and then we will say that .S ⊂ B is finite-
transversal with respect to I . 

Finite-transversal extensions do not always exists, see Sect. 11.3.3. However 
they can be constructed at the completion of the local ring .(Bp, pBp), maybe after 
enlarging the residue field, see Sect. 11.3.4. 

In [30] Villamayor pointed out that finite-transversal extensions with respect to 
a prime . p can always be constructed in a local étale neighborhood of .(Bp, pBp), 
when .Bp is essentially of finite type over a perfect field k. In [7, Appendix A] 
such construction is described in full detail. Here we will reproduce some of the
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arguments in [7] with a twofold purpose. On the one hand, to show that the same 
procedure can be used to construct finite-transversal morphisms with respect to any 
.p-primary ideal I . On the other, we will follow the different parts of the proof to 
illustrate distinct aspects of this construction with a list of examples. 

As it turns out, finite-transversal morphisms play a role in describing the top 
multiplicity locus of B, via the so called presentations of the multiplicity. Such 
description, given by Villamayor in [30], was presented to show a stronger result, 
namely, that it is possible to resolve the singularities of an algebraic variety using the 
multiplicity as the main invariant (this was a question posed by Hironaka in [16]). 
This approach to resolution will be discussed in Sect. 11.5. 

In addition, finite-transversal morphisms appear as well as a tool for the 
computation of the asymptotic Samuel function. In [15], Hickel gives a procedure 
for the computation of the asymptotic Samuel function respect to an .m-primary 
ideal I in an equicharacteristic local ring .(R,m). To this end, he considers the 
completion . R̂, where he constructs a finite-transversal extension with respect to 
. I R̂. Here we will see that his arguments are equally valid if we can find a finite 
transversal projection in a suitably defined étale neighborhood of .(R,m). 

This manuscript is mostly expository and some of the statements presented here 
are slight variations of results in [30] and also in [15]. Precise references to these 
articles will be given along the paper. 

These notes are organized as follows. The multiplicity at an ideal of a local 
Noetherian ring is treated in Sect. 11.2, and some known properties are described. 
Finite-transversal morphisms are defined and constructed in Sect. 11.3. Finally, 
applications are addressed in Sects. 11.4, 11.5 and 11.6. 

Notation For a quotient of a polynomial ring with coefficients in a ring A, . B =
A[X1, . . . , Xn]/J , we will use lowercase, . xi , to denote the class of the variable . Xi

in B, for .i = 1, . . . , n. This notation will be used in the examples along the paper. 

11.2 The Multiplity Function 

Let .(R,m, k) be a Noetherian local ring, and consider the function: 

. 
HSR,m : N → N

� 	→ dimk(R/m�+1).

This is referred to as the Hilbert-Samuel function of R at . m. 

Theorem 11.2.1 Let .(R,m, k) be a Noetherian local ring. Then the Hilbert-Samuel 
function .HSR,m is of polynomial type, i.e., there exists a polynomial . pR,m(X) ∈
Q[X] such that for .� 
 0, 

.HSR,m(�) = pR,m(�).
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In addition, the degree of .pR,m(X) equals .d = dim(R), the Krull dimension of the 
ring R. Moreover, 

. pR,m(X) = eR(m)
Xd

d! + . . . ,

where .eR(m) ∈ N. 

For a proof see for instance [29, Theorem 11.1.3], where the theorem is stated in a 
much more general setting. We refer to .pR,m(X) as the Hilbert-Samuel polynomial 
of R with respect to . m, and we say that .eR(m) ∈ N is the multiplicity of the local 
ring R at . m or simply the multiplicity of R. Sometimes we write . eR to refer to 
.eR(m). 

Example 11.2.2 If .(R,m, k) is a d dimensional regular local ring, then 

. dimk R/m�+1 =
(

d + �

d

)

,

and 

. pR,m(X) = Xd

d! + . . . .

Therefore, for a regular local ring, .eR = 1. The converse holds if we require R to 
be unmixed (i.e., formally equidimensional, that is, the .m-adic completion of R is 
equidimensional). 

Theorem 11.2.3 [18, Theorem 40.6] A Noetherian local ring .(R,m) is regular if 
and only if it is unmixed and .eR = 1. 

Remark 11.2.4 If .(R,m, k) is a regular local ring, .f ∈ R is a non-zero element, 
and .B = R/〈f 〉, then 

. νm(f ) = eB(m/〈f 〉),
see [29, Example 11.2.8]. Hence, in the hypersurface case the order of the defining 
equation at a given point equals the multiplicity at the point. 

11.2.1 Multiplicity at m-Primary Ideals 

Let .(R,m, k) be a Noetherian local ring of dimension d. As we will see in  
forthcoming sections, sometimes it is convenient to work with arbitrary .m-primary 
ideals. If . a is an .m-primary ideal, then, in the same way as we did before, the 
following Hilbert-Samuel function can be defined: 

.
HSR,a : N → N

� 	→ λR(R/a�+1),
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where . λR denotes the length as R-module. An analogous of Theorem 11.2.1 holds, 
and there is a polynomial, the Hilbert-Samuel polynomial of R at . a, .PR,a(X), so  
that for .� 
 0, 

. HSR,a(�) = Pa(�),

and moreover, 

. Pa(X) = eR(a)
Xd

d! + . . . ,

with .eR(a) ∈ N (see [29, Theorem 11.1.3]). The positive integer .eR(a) is the 
multiplicity of R at the .m-primary ideal . a. From the definition it follows that 

.eR(a) � eR = eR(m). (11.2) 

It is quite natural to ask under which conditions the previous inequality is an 
equality. First, recall that an element .r ∈ R belongs to the integral closure, . a, of . a if 

. r� + a1r
�−1 + . . . a�−1r + a� = 0

for some .� ∈ N>0 and some .ai ∈ ai , .i = 1, . . . , � (see [29, Section 1.1] for 
more details and properties). If . a and . b are two .m-primary ideals with .a = b, then 
.eR(a) = eR(b) (see [29, Proposition 11.2.1]). What can be said if .eR(a) = eR(b)? 
The following theorem of Rees settles this question. 

Theorem 11.2.5 [24], [29, Theorem 11.3.1] Let .(R,m) be a formally equidimen-
sional Noetherian local ring and let .a ⊂ b be two .m-primary ideals. Then .b ⊂ a if 
and only if .eR(a) = eR(b). 

In a Noetherian ring, if .a ⊂ b and .b ⊂ a then . a is a reduction of . b. See [29, 
Chapter 8] for further details. 

There is a similar statement as that of Theorem 11.2.5 for ideals that are not 
primary to the maximal ideal of the local ring .(R,m). But before stating that 
theorem we need another definition. 

Definition 11.2.6 Let .(R,m) be a local Notherian ring and let .I ⊂ R be an 
ideal. The analytic spread of I , .�(I ), is defined as the Krull dimension of the ring 
.R[I t]/mR[I t], where t is an indeterminate. This is the same as the Krull dimension 
of the ring 

. GrI (R) ⊗ k(m) =
∞⊕

i=0

I i/(I im).

Observe that the analytic spread of I is the dimension of the fiber over . m of the blow 
up of R at I .
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See [9] for the generalization of the notion of analytic spread to arbitrary 
filtrations of ideals and some advances about this invariant. 

The following theorem of Böger generalizes Rees’s Theorem. 

Theorem 11.2.7 [6], [29, Corollary 11.3.2] Let .(R,m) be a Noetherian formally 
equidimensional local ring, and let .I ⊆ J be two ideals with .�(I ) = ht(I ). Then 
.J ⊂ I if and only if .eRp

(Ip) = eRp
(Jp) for every prime ideal . p minimal over I . 

In the following lines we mention a couple of properties of the multiplicity: The 
additivity (Theorem 11.2.8) and the behavior under flat extensions Sect. 11.2.2. 

Theorem 11.2.8 [29, Theorem 11.2.4] Let .(R,m) be a local Noetherian ring, let 
. a be an .m-primary ideal, and let . P be the set of minimal prime ideals . p of R such 
that .dim(R/p) = dim R. Then 

. eR(a) =
∑

p∈P
eR/p(a).

Geometrically, Theorem 11.2.8 says that the multiplicity at a point of an equidi-
mensional algebraic variety is the sum of the multiplicities at each of the irreducible 
components containing the point. If the variety is not equidimensional, then the only 
additions to the multiplicity at a given point come from the irreducible components 
of maximum dimension that contain the point. 

11.2.2 The Multiplicity and Flat Extensions 

Let .(R,m, k) be a Noetherian local ring, let . a be an .m-primary ideal and suppose 
that .(R,m, k) → (R′,m′, k′) is a flat extension of local Noetherian rings. Then it 
can be checked that 

.eR′(aR′) = eR(aR) · λR′(R′/mR′). (11.3) 

See [14, Chapter I, Proposition 5.1]. 
From there it follows that if .(R′,m′, k′) is an étale extension of .(R,m, k) then 

.eR(m) = eR′(m′). And the same equality holds if . R′ is the .m-adic completion of R, 
i.e., .eR(m) = e

R̂
(m̂). 

11.2.3 Shortcuts for the Computation of the Multiplicity 

We already saw how the multiplicity at a point of a hypersurface in a regular 
ring is related to the order of the ideal of definition. In general, there is no such 
straightforward procedure to compute this invariant. However, there are some cases 
in which the calculation becomes easier.
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Suppose that .(R,m, k) is a Noetherian local ring of Krull dimension d, and let . a
be an ideal of definition of R, that is, an .m-primary ideal generated by d elements, 
.a = 〈a1, . . . , ad〉. Then: 

.eR(a) � λR(R/a), (11.4) 

and the equality holds if and only if R is Cohen-Macaulay. This follows from 
considering the morphism of .R/a-graded rings: 

. 
ϕ : (R/a)[X1, . . . , Xd ] → Gra(R) = R/a ⊕ a/a2 ⊕ . . . ⊕ an/an+1 ⊕ . . .

Xi 	→ āi ∈ a/a2.

Since . ϕ is surjective, 

. λR(aj /aj+1) � λR

(
(R/a)[X1, . . . , Xd ]j

)
,

where .(R/a)[X1, . . . , Xd ]j denotes the j -th degree piece of the graded .R/a-algebra 
.(R/a)[X1, . . . , Xd ]. Therefore, 

. λR(R/aj+1) � λR(R/a)

(
j + d

d

)

.

Notice that if R is Cohen-Macaulay then . ϕ is an isomorphism and the equality 
in (11.4) holds. For a complete proof of this fact see [27, Theorem 19.3.11]. See 
also [29, Proposition 11.1.10]. 

The following statement gives a criterion for algorithmic computation of the 
multiplicity in the case of k-algebras of finite type, with k a field. For a given 
monomial order . > in a polynomial ring .k[X1, . . . , Xr ] and for an ideal . I ⊂
k[X1, . . . , Xr ], we use .L(I) to refer to the ideal generated by the leading monomials 
of the non-zero elements in I with respect to . >. 

Proposition 11.2.9 [13, Proposition 5.5.7] Let . > be a local degree ordering on 
.k[X] = k[X1, . . . , Xr ] (that is, .deg(Xα) > deg(Xβ) implies .Xα < Xβ ). Let . I ⊂
〈X〉 = 〈X1, . . . , Xr 〉 be an ideal and let .B = k[X]〈X〉/I . Let .m = 〈X〉/I . Then 

. HSB,m = HS(k[X]〈X〉/L(I )),〈X〉.

In particular, .k[X]/I and .k[X]〈X〉/L(I) have the same multiplicity with respect to 
. 〈X〉. 

11.2.4 Geometric Interpretation of the Multiplicity [14, 
Chapter I, pg. 15] 

By examining the hypersurface case we can get some insight on the geometric 
meaning of the multiplicity. So let us consider a hypersurface .H ⊂ A

n
k with defining 

ideal .〈f 〉 ⊂ k[X1, . . . , Xn] and suppose that .ζ ∈ H is the closed point with 
maximal ideal .m = 〈X1, . . . , Xn〉. Assume that f is regular with respect to . Xn, (i.e.,
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.f (0, . . . , 0, Xn) �= 0; this can always be assumed after a linear change of variables 
and a suitable finite extension of k). Then we can apply Weierstrass Preparation 
Theorem [13, Corollary 6.2.8] at the .m-adic completion of .k[X1, . . . , Xn], and 
assume that, up to multiplication by a unit, f can be written as a polynomial in 
the variable . Xn with coefficients in the ring .k[[X1, . . . , Xn−1]], i.e., 

.f = Xr
n + a1X

r−1
n + . . . + ar (11.5) 

with .ai ∈ k[[X1, . . . , Xn−1]]. Actually, Weierstrass Preparation Theorem holds 
at étale neighborhood of the local ring at . ζ (see [25, Theorem 6.7]), thus the 
expression (11.5) can also be seen as a polynomial in .Xn with coefficients in 
some regular local ring S of dimension .n − 1, with .S[Xn] an étale extension of 
.k[X1, . . . , Xn]. 

Hence, after a convenient étale neighborhood of . ζ is selected, we can assume 
that the coordinate ring of H is isomorphic to 

. B = S[Xn]/〈Xr
n + a1X

r−1
n + . . . + ar 〉.

Observe that B is a finite extension of S and if .K(S) is fraction field of S then the 
generic rank of the extension .S ⊂ B is given by .[B ⊗S K(S) : K(S)] = r . 

Letting .mB = m/〈f 〉 we have that 

.eB(mB) = νm(f ) � r = [B ⊗S K(S) : K(S)]. (11.6) 

From here it follows that, in a neighborhood of . ζ , H cannot be finitely projected 
to a regular variety .Z = Spec(S) with generic rank lower than .eB(mB). 

Notice that, in the previous discussion, the maximal ideal .mB ⊂ B dominates a 
maximal ideal .mS ⊂ S and therefore .mSB generates an .mB -primary ideal .I ⊂ B. 
As we will see in the next section, the following inequality holds: 

.eB(I ) � [B ⊗S K(S) : K(S)]. (11.7) 

In fact, we will see that the previous inequalities hold for the localization at a 
point of the affine coordinate ring B of an arbitrary variety over a field k. Recall that 
by Noether’s Normalization Lemma the k-algebra B can be expressed as a finite 
extension of a polynomial ring over k. 

However:

• it is not obvious that the generic rank of such an extension be bounded below by 
the maximum multiplicity of B, and

• it is not immediate either that one can find suitable finite projections to regular 
rings where the equality in (11.7) holds. 

All these questions will be properly addressed in the next section.
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11.3 Zariski’s Multiplicity Formula 

The starting point of this section is precisely the last discussion from the previous 
one. There, we were trying to understand the geometric meaning of the multiplicity 
of a local Noetherian ring .(R,m) at an .m-primary ideal .I ⊂ R. To this end we 
want to consider finite extensions .S ⊂ R where S is a local regular ring. With this 
objective in mind, the goal of this section is twofold. On the one hand, we will see 
that under mild assumptions the inequality (11.7) holds. This will be a consequence 
of Zariski’s multiplicity formula stated in Theorem 11.3.1 below. On the other hand, 
we will discuss the problem of finding a suitable finite extension .S ⊂ R so that 
the equality in (11.7) holds. This will lead us to the notion of finite-transversal 
morphisms which will be discussed in the second part of the section. 

11.3.1 Zariski’s Multiplicity Formula for Finite Projections 

Our purpose is to study Zariski’s multiplicity formula, which relates multiplicities 
in a finite extension of rings. 

Let .A ⊂ B be a finite extension of rings. If A is local with maximal ideal . M then 
B is semi-local (see for instance [31, Th. 15, page 276]). Denote by .Q1, . . . ,Qr the 
maximal ideals of B. Note that the set .{Q1, . . . ,Qr } corresponds to the fiber over 
. M of the finite morphism, 

. Spec(B) → Spec(A).

As we will see, Zariski’s formula relates the multiplicity of A at . M to the 
multiplicities of the local rings .BQi

, .i = 1, . . . , r , at the extension of the ideal 
.MBQi

. 

Theorem 11.3.1 [31, Theorem 24, page 297 and Corollary 1, page 299] With 
the previous assumptions and notation, suppose furthermore that .(A,M) is a 
Noetherian local domain, that B is equidimensional, and that no non-zero element 
of A is a zero divisor in B. Denote by .K = K(A) the quotient field of A, and let 
.L = K ⊗A B. Let . k0 be the residue field of A, and let . ki be the residue field of . BQi

, 
.i = 1, . . . , r . Then: 

. [L : K]eA(M) =
r∑

i=1

[ki : k0]eBQi
(MBQi

).

Note that from our assumptions .dim(BQi
) = dim(A) = d for all .i = 1, . . . , r , and 

hence all the Hilbert polynomials that are involved in the formula have degree d.
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Example 11.3.2 Let .A = k[Y ]〈Y 〉 be the localization of the polynomial ring in one 
variable at the maximal ideal . 〈Y 〉. Here .M = 〈Y 〉A. Let .B = A[X]/〈f 〉 where 
.f = Xa(X2 + 1)b + Y c and .c > max{a, b}. 

The extension .A ⊂ B is finite, and the generic rank is . [K(A) ⊗A B : K(A)] =
a + 2b = degX(f ). Since A is regular, we have that .eA(M) = 1. 

Assume that .k = R. Then there are two maximal ideal ideals in B, .Q1 and . Q2, 
corresponding to .〈x, y〉 and .〈x2 + 1, y〉, respectively. The residue field of .BQ1 is 
again . R and the residue field of .BQ2 is . C. Hence Zariski’s multiplicity formula is 
expanded as follows: 

. (a + 2b) · 1 = [L : K]eA(M) =

. = [k1 : k0]eBQ1
(MBQ1) + [k2 : k0]eBQ2

(MBQ2) = 1 · a + 2 · b.

Note that .MBQi
is a reduction of . QiBQi

, for .i = 1, 2, therefore . eBQi
(MBQi

) =
eBQi

(QiBQi
), and by Remark 11.2.4 .eBQi

(QiBQi
) == νk[X,Y ]qi

(f ), where 
.qi/〈f 〉 = Qi . 

If the ground field is .k = C then B has three maximal ideals, . Q1, .Q′
2 and . Q′′

2, all  
whose residue fields are isomorphic to . C. In this case Zariski’s multiplicity formula 
splits to 

. (a + 2b) · 1 = [L : K]eA(M) =
= [k1 : k0]eBQ1

(MBQ1) + [k′
2 : k0]eBQ′

2
(MBQ′

2
) + [k′′

2 : k0]eBQ′′
2
(MBQ′′

2
) =

= 1 · a + 1 · b + 1 · b.

The multiplicities involved can be computed with the same argument as above. 

11.3.2 Finite-Transversal Projections 

A first consequence of Zariski’s multiplicity formula (Theorem 11.3.1) is that we 
can generalize inequality (11.6) to the non hypersurface case, and even for a wider 
class of rings (not only those of finite type over a field k): 

Assume that S is a regular local ring and that .S ⊂ B is a finite extension under 
the assumptions of Theorem 11.3.1. Then, for any prime ideal . P ∈ Spec(B)

. eBP
(PBP ) � [L : K],

where .K = K(S) and .L = K ⊗S B. 
Finite extensions .S ⊂ B where the equality holds will be said to be transversal 

with respect to P . In fact we state the following more general definition: 

Definition 11.3.3 Let .S ⊂ B be a finite extension of excellent Noetherian rings 
with S regular and B equidimensional. Suppose that no non-zero element of S is a



532 A. Bravo and S. Encinas

zero divisor in B. We say that the projection .Spec(B) → Spec(S) (or the extension 
. S ⊂ B) is  finite-transversal with respect to .P ∈ Spec(B) if 

. eBP
(PBP ) = [L : K].

Let .I ⊂ B be a P -primary ideal. We say that the projection . Spec(B) → Spec(S)

(or the extension . S ⊂ B) is finite-transversal with respect to the ideal I if 

. eBP
(IBP ) = [L : K],

and .I ∩ S is a prime ideal of S. 

Note that the conditions in Definition 11.3.3 imply that the associated primes of 
B are exactly the minimal primes of B, .Ass(B) = Min(B). 

A second consequence of Theorem 11.3.1 is the following equivalence, which 
gives a characterization of finite-transverval projections: 

Proposition 11.3.4 [30, Corollary 4.9] Let S be regular ring and let .S ⊂ B be a 
finite extension. Suppose that B is Noetherian, excellent and equidimensional and 
that the non-zero elements of S are non-zero divisors in B. 

Let .P ∈ Spec(B) be a prime ideal of B and .I ⊂ B be a P -primary ideal. Set 
.p = P ∩ S. The following are equivalent: 

(i) .eBP
(IBP ) = [L : K] and .I ∩ S = p is a prime ideal in S, i.e., the extension 

.S ⊂ B is finite-transversal w.r.t. I . 
(ii) The following three conditions hold: 

(i) P is the only prime of B dominating . p, 
(ii) .k(P ) = BP /PBP = Sp/pSp = k(p), 
(iii) .pBP is a reduction of the ideal .IBP . 

We will refer to (i)–(iii) as Zariski’s conditions of the finite extension .S ⊂ B with 
respect to the P -primary ideal I . 

Note that Proposition 11.3.4 is stated in [30, Corollary 4.9] for . I = P a prime  
ideal, but the generalization to primary ideals is straightforward. 

Example 11.3.5 Let .B = k[X, Y ]/〈X2 − Y 3〉. We can consider two finite projec-
tions .Spec(B) → Spec(Si), .i = 1, 2: 

(a) .S1 = k[Y ] ⊂ B, and 
(b) .S2 = k[X] ⊂ B. 

Let .P = 〈x, y〉 ⊂ B and note that .eBP
(PBP ) = 2. 

The finite extension in (a) is finite-transversal with respect to P , while the finite 
extension in (b) is not because the generic rank of .S2 ⊂ B is 3. However, extension 
(b) is finite-transversal with respect to the P -primary ideal .〈x〉B. 

On the other hand, note that almost any linear projection from .Spec(B) to a one 
dimensional regular linear subvariety of . A2

k is finite-transversal with respect to P .
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11.3.3 Do Finite-Transversal Projections Exist in General? 

Given a Noetherian, excellent and equidimensional ring B, a point .P ∈ Spec(B) and 
a P -primary ideal I , we wonder if there exist a regular ring S and a finite-transversal 
projection w.r.t. I , .Spec(B) → Spec(S). 

The answer, in general, is negative, even for k-algebras of finite type over a field 
k. Note that if such projection exists then the ideal I has a reduction with . d =
dim(B) elements. 

This last observation gives a necessary condition not always satisfied as the 
following example illustrates. 

Example 11.3.6 Let .k = F2 and let 

. B = k[X, Y ]/〈XY(X + Y )〉.

Then the ideal .〈x, y〉 ⊂ B has no reductions generated by one element, see [29, 
Example 8.3.2]. This means that for B and the maximal ideal .I = 〈x, y〉, there does 
not exist a finite-transversal projection w.r.t. I . 

11.3.4 Construction of Finite-Transversal Projections 

If .(B,m) is a local complete Noetherian, equidimensional ring containing an infinite 
coeficient field, such that .Ass(B) = Min(B), then the answer to (Sect. 11.3.3) is  
positive. Let .I ⊂ B be a .m-primary ideal. Since the residue field is infinite, by 
Swanson and Huneke [29, Proposition 8.3.7] there exists a reduction of I generated 
by .d = dim(B) elements, .x1, . . . , xd . Choose a coefficient field .k′ ⊂ B and set 
.S = k′[[x1, . . . , xd ]] ⊂ B. Note that since .x1, . . . , xd are analytically independent, 
S is a ring of power series in d variables. The extension .S ⊂ B is finite by Cohen 
[8, Theorem 8, page 68] and we conclude that the projection . Spec(B) → Spec(S)

is finite-transversal with respect to . m. See also [15, Proof of Theorem 1.1]. 
If B is a k-algebra of finite type, then Noether’s normalization Lemma seems to 

provide a possible approach to address Sect. 11.3.3. We could find a regular ring S 
and a finite extension .S ⊂ B, but Noether’s normalization is not enough to guarantee 
Zariski’s conditions (i)–(iii) in Proposition 11.3.4. 

However, (not necessarily finite) morphisms for which conditions (ii) and (iii) 
hold are not hard to construct. As we will see, this will be a consequence of applying 
Noether’s normalization to the graded ring .GrIBP

(BP ). This motivates the following 
definition, which is a weaker version of the notion of finite-transversal projection. 

Definition 11.3.7 Let .S ⊂ B be a (possibly non-finite) extension of Noetherian 
rings, with S regular and B equidimensional. Let .P ∈ Spec(B) be a prime ideal and 
let .I ⊂ B be a .PBP -primary ideal.
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We say that the projection .Spec(B) → Spec(S) is local-transversal with respect 
to the ideal I if 

(i) .p = I ∩ S is a prime ideal and P is an isolated point in the fiber over . p, 
(ii) .k(P ) = BP /PBP = Sp/pSp = k(p), 

(iii) .pBP is a reduction of the ideal .IBP . 

Given a k-algebra B of finite type and a P -primary ideal I , we want to show that, 
locally for the étale topology, there exists a projection to a regular ring S which is 
local-transversal w.r.t. to I . This is achieved by applying the following result. 

Theorem 11.3.8 [14, Th. 10.14, page 60] Let .(B,m) be a Noetherian local ring 
and let . a be an ideal of B. If  .a1, . . . , as ∈ a, then the following conditions are 
equivalent: 

(i) .a1, . . . , as ∈ a generate a reduction of . a. 
(ii) The quotient ring 

. (Gra(B) ⊗B B/m)
/ 〈ã1, . . . , ãs〉

has Krull dimension zero, where . ̃a is the class of a in .a/(am). 

Proposition 11.3.9 [7, Proposition 34.1] Let B an equidimensional k-algebra of 
finite type, where k is a perfect field, let .m ⊂ B be a maximal ideal, and let I be a 
.m-primary ideal. Then there exists an étale extension .λ : B → B ′, a maximal ideal 
.m′ ∈ Spec(B ′) dominating . m, and a local-transversal projection w.r.t. .IB ′

m′ ∩ B ′, 
.β : S → B ′, 

. 

Proposition 11.3.9 can be read as saying that, after an étale extension .B → B ′, 
there exist a local-transversal projection w.r.t. .IB ′, .S ⊂ B ′. 

Proof First, we can assume that . m is a rational closed point in .Spec(B). To do so,  
let .k1 = B/m be the residue field of B at set .B1 = B ⊗k k1. Now choose a maximal 
ideal .m1 ∈ Spec(B1) mapping to . m, and replace B and . m by . B1 and . m1. 

Next, we want to construct a reduction of .IBm1 generated by . d = dim((B1)m1)

elements .y1, . . . yd ∈ m1. Such a reduction exists, in the local ring, if the residue 
field is infinite, see [29, Proposition 8.3.7], but we can avoid this hypothesis 
enlarging . k1 if necessary. Set .R1 = (B1)m1 . Then the graded ring . GrIR1(R1)

is a .k1-algebra of finite type of dimension d (see [29, Proposition 5.1.6]). After 
considering a finite extension of the base field .k1 ⊂ k2 (if needed) we can apply 
the graded version of Noether’s normalization Lemma ([29, Theorem 4.2.3]): Set 
.B2 = B1 ⊗k1 k2 and let .m2 ∈ Spec(B2) be a maximal ideal mapping to . m1. If
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.R2 = (B2)m2 , then there are degree one elements .ȳ1, . . . , ȳd ∈ GrIR2(R2) such that 

.k2[ȳ1, . . . , ȳd ] is isomorphic to the polynomial ring of d variables and 

. k2[ȳ1, . . . , ȳd ] ⊂ GrIR2(R2) = GrI (B2)m2

(
(B2)m2

)

is finite. 
Choose representatives .y1, . . . , yd ∈ I (B2)m2

of .ȳ1, . . . , ȳd . By Theorem 11.3.8 
we conclude that .y1, . . . , yd generate a reduction of .I (B2)m2

. Select some . f ∈ B2
so that .y1, . . . , yd ∈ (B2)f . Finally .B ′ = (B2)f , .m′ = m2, and . S2 = k2[y1, . . . , yd ]
give the required extension, local-transversal w.r.t. .IB ′

m′ ∩ B ′. See [7, 34.3] for 
complete details. ��
Remark 11.3.10 Note that after following the proof, the statement of Proposi-
tion 11.3.9 can reformulated as follows. There exists a finite extension .k ⊂ k′, 
an element .f ∈ B ⊗k k′, and a maximal ideal .m′ ⊂ B ′ = (B ⊗k k′)f , together with 
a smooth .k′-algebra of finite type S and morphisms of finite type . λ and . β

. 

such that the projection . β is local-transversal w.r.t. .IB ′
m′ . Moreover S can be chosen 

to be a polynomial ring with d variables over . k′. 

Example 11.3.11 Let .B = k[X, Y ]/〈h〉, where .h = X2(X2 + 1) + Y 5. Let . I =
m = 〈x, y〉 ⊂ B. 

Note that the graded ring of .Bm at .IBm is .GrIBm
(Bm) = k[X, Y ]/〈X2〉, and the 

ideal .〈y〉Bm is a reduction of .IBm by Theorem 11.3.8. If .S = k[Y ], then .S ⊂ B is 
local-transversal w.r.t. I . 

The extension .S ⊂ B is finite but the generic rank is 4 and multiplicity of .Bm is 
2. This implies that .S ⊂ B is not finite-transversal w.r.t. I . 

One could consider the localization at .f = X2 + 1 in order to have condition 
(i) in Proposition 11.3.4, but then .S ⊂ Bf is not a finite extension. However, as we 
will see in Example 11.3.15, if we consider a convenient étale extension of S then a 
finite-transversal projection can be constructed. 

The next lemma guarantees that the local-transversal condition is stable under 
étale base changes. 

Lemma 11.3.12 [7, Corollary 34.6, Example 34.8] Assume that .S ⊂ B is local-
transversal w.r.t. an .m-primary ideal I . If  .S → C is an étale extension and . m′ ⊂
B ⊗S C dominates . m, then 

. C → B ⊗S C

is again local-transversal w.r.t. .I ′ = I (B ⊗S C)m′ ∩ (B ⊗S C).
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Theorem 11.3.13 [7, Proposition 31.1] Let k be a perfect field and let B be an 
equidimensional k-algebra of finite type with .Ass(B) = Min(B). Let . m ∈ Spec(B)

be a maximal ideal and let I be an .m-primary ideal. Then there exist k-algebras . B ′
and S, morphisms of finite type . λ and . β, 

. 

and a maximal ideal .m′ ∈ Spec(B ′), such that 

(i) . λ is an étale morphism, and .m = m′ ∩ B, 
(ii) . S′ is a regular ring, 
(iii) . β is finite-transversal w.r.t. .IB ′

m′ . 

Moreover, if .S ⊂ B is a local-transversal projection w.r.t. I , then the extension 
.S′ ⊂ B ′ can be obtained by pull-back of a suitable étale map .S → S′ and a 
localization at some .f ∈ B ⊗S S′, 

. 

Theorem 11.3.13 is sketched in [30, 6.11] when I is a maximal ideal and full 
details of the proof are given in [7, Appendix A]. We reproduce here that proof 
to check that it also holds for an arbitrary .m-primary ideal and to illustrate such a 
construction with an example, see Example 11.3.15. One of the main ingredients of 
the proof is Zariski’s Main Theorem: 

Theorem 11.3.14 [19, Theorem 1, page 41] Let .S ⊂ B be a ring extension, and 
assume that B is an S-algebra of finite type. Let .A ⊂ B be the integral closure of S 
in B. Let .P ∈ Spec(B) be a prime ideal and set .n = P ∩S. If  P is an isolated point 
of the fiber over . n then there exists .f ∈ A, .f �∈ P such that .Af = Bf . 

In other words, if S is essentially of finite type over a field k, Theorem 11.3.14 is 
saying that the (non necessarily finite) S-algebra B is, locally at P , isomorphic to a 
localization of an algebra which is finite over S. 

Proof of Theorem 11.3.13 By Theorem 11.3.9 we can assume that there exists a 
local-transversal projection .S ⊂ B w.r.t. I . In fact, it comes from the proof of 
Theorem 11.3.13 that S can be assumed to be a polynomial ring. 

First, by Zariski’s Main Theorem 11.3.14, there exists .f ∈ A, such that . Af =
Bf , where A is the integral closure of S in B. Set .n = I ∩ S ∈ Spec(S) and let
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.p1, . . . , ps ∈ Spec(A) be all the maximal ideals dominating . n. We may assume that 

.m ∩ A = p1. 
Moreover, choosing .g ∈ (p2 ∩ · · · ∩ ps) \ p1, we have that .mBfg is the only 

maximal ideal in .Bfg dominating . n. 
This means that the extension .S ⊂ Bfg fulfills properties (i), (ii) and (iii) 

in Proposition 11.3.4, but the ring extension might not be finite. We will use 
Lemma 11.3.12 in order to prove that the Theorem 11.3.13 holds after an étale base 
change extension. 

Consider the henselization . S̃ of .(S)n (see [25, Appendix C]), where .n = I ∩ S, 
and the diagram: 

. 

where . n′ is the maximal ideal of the local ring . S̃; note that . A′ (resp. . B ′) is a semi-
local ring and we are denoting by .p′

1, . . . , p
′
s′ (resp. .m′

1, . . . ,m
′
t ′ ) the maximal ideals 

dominating . n′. Assume that . p′ dominates . p and that . m′ dominates . m. Since . S̃ is 
henselian we have that 

. A′ = A′
p′

1
⊕ . . . ⊕ A′

p′
s′
,

and each direct summand is finite over . S̃. In particular .S̃ → A′
p′ is finite. 

By the choice of .g ∈ A it follows that . p is the only point in the fiber over . n of 
.S → Ag . Therefore by Bravo and Villamayor [7, Lemma 34.5] . p′ is the only point 
over . p of .Ag → A′

g , 

. 

Since fg  is invertible in .A′
p′ then there exists an integral equation 

. ((fg)−1)n + d1((fg)−1)n−1 + . . . + dn−1(fg)−1 + dn = 0,

di ∈ S̃, ∀i = 1, . . . , n. (11.8)
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Now consider a local étale neighborhood . Ẽ of . Sn containing the elements . di , for  
.i = 1, . . . , n. 

Observe that .Ẽ ⊂ Ẽ ⊗ Afg is a finite extension and there is a unique maximal 
ideal .P ⊂ Ẽ ⊗ Afg dominating . p. Therefore, .Ẽ ⊗ Afg = (Ẽ ⊗ A)P. And since 
.Ẽ⊗Afg ⊂ A′

p′ is flat, the relation (11.8) also holds at .Ẽ⊗Afg , and hence . Ẽ⊗Afg

is finite over . Ẽ. 
Now note that, 

. Ẽ ⊗ Afg = Ẽ ⊗ Bfg = Ẽ ⊗ Bm,

and therefore the extension .Ẽ ⊂ Ẽ⊗Bm is finite-transversal w.r.t. .I ′ = I (Ẽ⊗Bm). 
Finally observe that since .Sn → Ẽ is local étale, then there exists an S-algebra of 

finite type E such that .S → E is étale and such that . Ẽ is a localization of E (see [7, 
§32.4]). As consequence the finite extension is .E → E ⊗S Bfg is finite-transversal 
w.r.t. .I (E ⊗S Bfg). The following diagram summarizes the different extensions: 

. 

��
Example 11.3.15 Let us go back to Example 11.3.11 and let us assume now that 
the characteristic of k is different from 2. Let .S̃ = k{{Y }} be the henselization of 
.k[Y ]〈Y 〉. By Hensel’s Lemma, the degree 4 polynomial .h = X2(X2+1)+Y 5 factors 
as 

.h = h1 · h2 = (X2 + a1X + a2)(X
2 + b1X + b2) (11.9) 

where .a1, a2, b1, b2 ∈ S̃ and such that .a1, a2, b1, b2−1 ∈ 〈Y 〉. A direct computation 
gives that 

. a1 = 0, b1 = 0, b2 = 1 − a2, a2
2 − a2 + Y 5 = 0

Let .α ∈ S̃ be an element so that .α2 = 1

4
− Y 5, for instance the power series 

.α = 1

2

√
1 − 4Y 5 = 1

2

∞∑

i=0

(
1/2

i

)

(−1)i4iY 5i .
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Then .a2 = 1

2
− α and .b2 = 1

2
+ α are solutions for the factorization (11.9). 

Let .E = S[a2, (2a2 − 1)−1] and note that .S ⊂ E is an étale extension. The 
extension 

. B → B ′ = B ⊗S E = E[X]/〈X2(X2 + 1) + Y 5〉
is also étale. 

Let x be the class of X in . B ′ and set .e = 1+ 1

1 − 2a2
(x2 +a2). Note that .e2 = e, 

that the extension .E ⊂ B ′
e is finite. Finally, we have that .E ⊂ B ′

e is finite-transversal 
w.r.t. .〈x, y〉B ′

e. 
Another possibility is to consider an étale extension of B that contains a square 

root of . x2 + 1, see [7, §36] for further details. 

11.4 Finite-Transversal Morphisms and Multiplicity 

In this section we will focus on one of the main results of [30], stated below as 
Theorem 11.4.3. This theorem gives a procedure to describing the top multiplicity 
locus of a variety using finite-transversal projections. In this context, the notion 
of algebraic presentations of a finite extension plays a role (see Sect. 11.4.1). We 
discuss several applications and consequences of Theorem 11.4.3 in Sects. 11.4.2, 
11.4.3 and 11.4.4. In addition, we present some results refining the number of 
generators needed for algebraic presentations in the context of finite-transversal 
morphisms (see Proposition 11.4.6). Finally, several examples are given in the hope 
that they help clarify some of the key ideas in the exposition. 

We start with a generalization of a well known property of minimal polynomials 
for field extensions of the quotient field of an integrally closed domain. This result is 
essential in the exposition given in Sect. 11.4.1 which is a key step for understanding 
the statement of Theorem 11.4.3. 

Proposition 11.4.1 [30, Lemma 5.2] Let .S ⊂ B be a finite extension such that the 
non-zero elements of S are non-zero divisors in B. Assume that S is a regular ring 
and let .K = K(S) be the quotient field of S. Let .θ ∈ B and let .f (Z) ∈ K[Z] be 
the monic polynomial of minimal degree such that .f (θ) = 0. If  .S[θ ] denotes the 
S-subalgebra of B generated by . θ , then 

(i) the coefficients of f are in S, .f (Z) ∈ S[Z], and 
(ii) .S[θ ] ∼= S[Z]/〈f (Z)〉. 
Proof (Comments on the Proof) Let .q1, . . . , qm be the minimal primes of B. From  
the hypotheses we have that .Ass(B) = Min(B) and that .L = K ⊗S B is the total 
ring of fractions of B. Then 

.L = L1 ⊕ · · · ⊕ Lm,
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where . Li is a local Artinian ring for .i = 1, . . . , m. Note that the minimal primes 
of L, .Q1, . . . ,Qm, are in one-to-one correspondence with .q1, . . . , qm. Consider the 
following diagram, 

. 

where .θ̄i ∈ K(B/qi ) is the class of .α(θ)i ∈ Li . 
Observe that .f (Z) has been chosen such that .f (α(θ)) = 0 ∈ L. Let .gi(Z) be 

the minimal polynomial of . θ̄i over K , for .i = 1, . . . , m, and note that since S is 
normal, .gi(Z) ∈ S[Z]. Now we have that the irreducible factors of .f (Z) in . K[Z]
are the .gi(Z), 

. f (Z) = (g1(Z))r1 · · · (gm(Z))rm.

Hence .f (Z) ∈ S[Z]. 
Finally, since . α is injective .f (θ) = 0 ∈ B. This gives a well defined morphism 

.S[Z]/〈f (Z)〉 → S[θ ], which can be shown to be an isomorphism, see [30, page 
342]. ��

The following example illustrates the necessity of the hypothesis on the non-zero 
elements of S mapping to non-zero divisors in B. 

Example 11.4.2 Let .S = k[X, Y ] and let . B = k[X, Y,Z]/〈(Z2 + X5)(Z +
X3), Y (Z2 + X5)〉. The minimal primes of B are .q1 = 〈z2 + x5〉 and . q2 = 〈y, z2 +
x3〉. We have that .K = K(S) = k(X, Y ) and that .L = K ⊗S B = K[Z]/〈Z2 +X5〉. 
The minimal polynomial of z over K is .f (Z) = Z2 +X5. However .f (z) is not zero 
in B. In particular, .S[z] = B is not isomorphic to .S[Z]/〈f (Z)〉. 

11.4.1 Algebraic Presentations of Finite Extensions 

Let .S ⊂ B be a finite extension such that every non-zero element of S is not a 
zero-zivisor in B. Since the extension .S ⊂ B is finite, in particular of finite type, 
there are elements .θ1, . . . , θe ∈ B such that .B = S[θ1, . . . , θe]. We will say that  
.S[θ1, . . . , θe] is an algebraic presentation of the extension .S ⊂ B. 

Let .fi(Zi) ∈ K[Zi] be the polynomial of minimal degree such that .fi(θi)) = 0, 
.i = 1, . . . , e. By Proposition 11.4.1, .fi(Zi) ∈ S[Zi]. Let .di = deg(fi(Zi)) be the 
degree of the polynomial .fi(Zi) for .i = 1, . . . , e. We may assume that all .di � 2, 
since otherwise . θi ∈ S. We have a diagram
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. (11.10) 

We want to study such diagrams when .S ⊂ B is finite-transversal with respect to 
some prime P in B. This is the purpose of the next theorem. 

Theorem 11.4.3 [30, Proposition 5.7] Let B be an excellent and equidimensional 
ring, and let .S ⊂ B a finite extension such that every non-zero element of S is 
not a zero-zivisor in B. Fix an algebraic presentation .S[θ1, . . . , θe] of .S ⊂ B. Let 
.β : Spec(B) → Spec(S) and let .βi : Spec (S[Zi]/〈fi(Zi)〉) → Spec(S), for  . i =
1, . . . , e. Suppose that the generic rank .n = [L : K] � 2 and let .p ∈ Spec(S). Then 
the following conditions are equivalent:

• The point . p is the image by . β of a point of multiplicity n of .Spec(B).
• For every .i = 1, . . . , e, the point . p is the image by . βi of a point of multiplicity . di

of .Spec (S[Z]/〈fi(Z)〉). 
Theorem 11.4.3 has several interpretations and consequences, that we will 

describe in the next paragraphs. 

11.4.2 Theorem 11.4.3 and Finite-Transversal Morphisms 

With the notation and the hypotheses of the theorem, let . Bi = S[θi] =
S[Zi]/〈fi(Zi)〉, for .i = 1, . . . , e. Then diagram (11.10) can be rewritten as 

. 

(11.11) 

Now observe that the theorem says that the projection . β : Spec(B) → Spec(S)

is finite-transversal w.r.t. .P ∈ Spec(B) if and only if all the projections . βi :
Spec(Bi) → Spec(S) are finite-transversal w.r.t. .Pi = αi(P ).



542 A. Bravo and S. Encinas

11.4.3 Theorem 11.4.3 and an Explicit Description of the Top 
Multiplicity Locus of Spec(B) 

Let .Fn ⊂ Spec(B) be the set of points of multiplicity .n = [L : K], and assume that 
. Fn is not empty. Then Theorem 11.4.3 gives us a procedure to describe . Fn explicitly. 
To see this consider the following diagram 

. 

(11.12) 

Observe that there is a closed embedding of .Spec(B) in the regular scheme 
.Spec(S[Z1, . . . , Ze]). Note that .dim(B) = dim(C) and that .Spec(B) corresponds 
to the union of some irreducible components of .Spec(C). 

Let .Edi
be the set of points of multiplicity . di of the hypersurface .{fi(Zi) = 0} in 

.Spec(S[Z1, . . . , Ze]), for .i = 1, . . . , e. The theorem says that 

. Fn = Ed1 ∩ · · · ∩ Ede .

In other words, the top multiplicity locus of .Spec(B) can be described as the top 
multiplicity locus of the complete intersection .Spec(C). Note that the generic rank 
of .β ′ : Spec(C) → Spec(S) is .d1 · · · de = dimK(C⊗S K) and that . n = dimK(B⊗S

K) is the generic rank of .S ⊂ B. Theorem 11.4.3 says that if .p ∈ Spec(S) then the 
following assertions are equivalent

• The point . p is the image by . β of a point of multiplicity n of .Spec(B).
• The point . p is the image by . β ′ of a point of multiplicity .d1 · · · de of .Spec(C). 

If S is a k-algebra of finite type, with k a perfect field, then . S[Z1, . . . , Ze]
is smooth over k, and the module of differential operators of order .� j , 
.Diffjk (S[Z1, . . . , Ze]), is free. Then we have that the closed set .Edi

is defined 
by the ideal 

.

〈
Δ(fi(Zi)) | Δ ∈ Diffdi−1

k (S[Z1, . . . , Ze])
〉
. (11.13) 

Actually, a similar description can also be given in a more general setting without
assuming k to be perfect, see [2, Section 7] for details. 

Finally, suppose we are give any equidimensional k-algebra of finite type B and 
let .P ∈ Spec(B) be a maximal ideal with multiplicity greater than one. Then, by 
Theorem 11.3.13, and after an étale extension of B, we always may assume that 
we have a finite-transversal projection .S ⊂ B w.r.t. P , with S smooth over k. As a
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consequence, we can explicitly describe the top multiplicity locus of any B as above 
in a conveniently chosen étale extension. 

Example 11.4.4 Let .V ⊂ A
3
k = Spec(k[X, Y,Z]) be the monomial curve defined 

by 

. X = t3, Y = t4, Z = t5.

Then .V = Spec(B), where .B = k[X, Y,Z]/J and . J = 〈X3−YZ, X2Y −Z2, Y 2−
XZ〉. Let .S = k[X]. Then the extension .S ⊂ B is finite since .Y 3−X4, Z3−X5 ∈ J . 
Note that these integral relations can be obtained using standard bases, see [13, 
Proposition 3.1.5]. 

The generic rank of the extension is .3 = dimk(X)(B⊗k[X]k(X)) and we have also 
that .em(B) = 3, where .m = 〈x, y, z〉 ⊂ B. In this case, .S ⊂ B is a finite-transversal 
extension w.r.t. . m, and .S[y, z] is an algebraic presentation of B. 

The minimal polynomials (in the variable W ) of  y and z are, respectively . W 3 −
x4 and .W 3 − x5. Set .C = k[X, Y,Z]/〈Y 3 − X4, Z3 − X5〉. Note that . Spec(C)

has two irreducible components of dimension one. The curve .Spec(B) is one of 
the irreducible components of .Spec(C). By Theorem 11.4.3, the locus of points of 
multiplicity 3 of .Spec(B) (only the origin) coincides with the locus of points of 
multiplicity 9 of .Spec(C). 

In Example 11.4.4 the dimension of the ring .Bm is one and the embedding 
dimension is three. The algebraic presentation is generated by two elements, y and 
z, over S and any other algebraic presentation over a regular ring is generated by 
two elements at least. 

In general, the difference of the embedding dimension and the dimension of the 
local ring, the so called excess of embedding dimension, is a lower bound for the 
number of generators of an algebraic presentation. However, this lower bound can 
always be achieved after localization, a fact that is proved in Proposition 11.4.6 
below. First we need a technical result for finite extensions of local rings. 

Lemma 11.4.5 Let .(S, n) and .(B,m) be Noetherian local rings and suppose that 
.S ⊂ B is a finite extension, with S is regular. Assume that the residue fields are 
equal, .S/n ∼= B/m = k. If .t = dimk(m)(m/m2)−dim(B) is the excess of embedding 
dimension of B, then there are elements .θ1, . . . , θt ∈ m such that 

. B = S[θ1, . . . , θt ].

Proof Write .B = S[θ1 . . . , θe]. Since .S/n ∼= B/m we can assume that .θi ∈ m (here 
a translation by elements of S may be needed). We have that .nB+〈θ1, . . . , θe〉 = m, 
hence .e � t . After reordering the . θi’s, we may assume that .m = nB + 〈θ1, . . . , θt 〉. 

Consider the S-module .N = S[θ1, . . . , θt ] ⊂ B. We claim that 

.N/nN = B/nB.
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If the claim holds then by Nakayama’s Lemma we have that .N = B as required. 
To prove the claim, let . θ̄i be the class of . θi in .B̄ = B/nB, for .i = 1, . . . , e, and 

denote by .m = mB̄ the maximal ideal of the local ring . B̄. We have that . θ̄1, . . . θ̄t

generate . m in . B̄. 
Note that . B̄ is an Artinian local ring, hence complete. Since .dimk(m/m2) = t , 

by Cohen’s structure Theorem, .B̄ ∼= k[[Z1, . . . , Zt ]]/J for some ideal J , where the 
classes of . Zi correspond to . θ̄i , .i = 1, . . . , t . Now note that every . θ̄i is nilpotent, 
hence for some integers . αi we have .Zαi

i ∈ J and then 

. B̄ ∼= k[Z1, . . . , Zt ]/I

for some ideal .I ⊂ k[Z1, . . . , Zt ]. ��
Proposition 11.4.6 Let .S ⊂ B be a finite-transversal extension w.r.t. an .m-primary 
ideal .I ⊂ B, with . m a maximal ideal in B. Let .t = dimk(m)(m/m2) − dim(Bm) be 
the excess of embedding dimension of B at . m. Then there are elements . θ1, . . . , θt ∈
B and .g ∈ S such that 

. Bg = Sg[θ1, . . . , θt ].

Proof As in Lemma 11.4.5, write .B = S[θ1 . . . , θe], with .θi ∈ m for .i = 1 . . . , e. 
Let .n = m ∩ S. Then the extension .Sn ⊂ B ⊗S Sn is finite. By condition (i) 
in Proposition 11.3.4 .Bm = B ⊗S Sn. Therefore .Sn ⊂ Bm is finite, and by 
Lemma 11.4.5, after reordering the . θi , we have that 

. Bm = Sn[θ1, . . . , θt ].

Note that, for .j = t + 1, . . . , e, . θj is a polynomial in .θ1, . . . , θt with coefficients in 
. Sn. Hence there exists some .g ∈ S such that .θj ∈ Sg[θ1, . . . , θt ], .j = t + 1, . . . , e, 
and it follows that 

. Bg = Sg[θ1, . . . , θt ].

��
Example 11.4.7 Let .S = k[Y ]. In the polynomial ring .S[X1, X2] consider the ideal 

. J = 〈X2
1 − Y 5, X1 − X2 − X1X2(1 + X1)〉,

and let .B = S[X1, X2]/J . Note that .X2
2(1 + Y 5 + Y 10) + 2Y 5X2 − Y 5 ∈ J which 

gives an integral relation of . X2 with coefficients in . Sf , with .f = 1+Y 5 +Y 10. The  
extension .Sf ⊂ Bf is finite, and .Sf [x1, x2] is an algebraic presentation of .Sf ⊂ Bf . 
We have that .Sf ⊂ Bf is finite-transversal w.r.t. .m = 〈y, x1, x2〉Bf . 

Note that the surface with affine ring .R = S[X1, X2]/〈X1 − X2 − X1X2〉 is 
regular and .Spec(B) is a curve in .Spec(R). In this case the dimension of .Bm is one
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with embedding dimension two, since 

. mBm = 〈y, x1〉Bm = 〈y, x2〉Bm.

Proposition 11.4.6 says that for some localization of . Sf we have to be able to find 
an algebraic presentation of .Sf ⊂ Bf with only one generator, either . x1 or . x2. 

Some Groebner basis computations show that 

. X1(1 + Y 5) − X2(1 + Y 5 + Y 10) − Y 5 ∈ J,

an then .Bf = Sf [x1]. On the other hand, if .g = (1 + Y 5) then .Sfg ⊂ Bfg is 
finite-transversal w.r.t. .mBfg and .x1 ∈ Sfg[x2]. Thus .Bfg = Sfg[x2]. 

11.4.4 Theorem 11.4.3 and Homeomorphic Copies of the Top 
Multiplicity Locus of Spec(B) 

Finally, there is a third main consequence of Theorem 11.4.3, whose meaning will 
be clarified in the Sect. 11.5, see Theorem 11.5.5 (iii) and part (iv), which is stated 
in Sect. 11.5.2. 

Corollary 11.4.8 [30, Corollary 5.9] Let .S ⊂ B be a finite extension of generic 
rank n, and suppose it is under the assumptions of Theorem 11.4.3. Assume that the 
set of points of multiplicity n of B, .Fn ⊂ Spec(B), is not empty. Then 

(i) Zariski’s conditions hold for any .P ∈ Fn: 

(i) . β is a set theoretical bijection between . Fn and .β(Fn), 
(ii) if .P ∈ Fn and .p = β(P ) then .k(P ) = BP /PBP = Sp/pSp = k(p), and 
(iii) .pBP is a reduction of .PBP . 

(ii) . Fn is closed in .Spec(B), and . Fn is homeomorphic to .β(Fn). 
(iii) .β(Fn) = Spec(S) if and only if .S = Bred. 

In other words, Corollary 11.4.8 says that when .S ⊂ B is finite transversal of generic 
rank n then we can see a homeomorphic image of . Fn in .Spec(S). 

11.5 Finite-Transversal Morphisms and Resolution of 
Singularities 

In the present section we discuss the central result in [30], stated as Theorem 11.5.5 
below, and its applications to resolution of singularities. The key idea here is that 
the description of the top multiplicity locus of a variety given in Theorem 11.4.3 is
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stable after blowing up a regular equimultiple center, see Theorem 11.5.5. We will 
make these ideas more precise along the following paragraphs. 

Resolution of Singularities 
Now we go back to our discussion in the Introduction. There, we mentioned the 
role of the order function when measuring how singular a hypersurface .H ⊂ A

n
k is. 

When the characteristic is zero, proving the existence of a resolution of singularities 
is a complex task, and yet, it somehow reduces to considering the order of ideals. 
In other words and very roughly speaking, to resolve singularities Hironaka faced 
two main problems:

• Problem 1. Given a sheaf of ideals J on a smooth scheme V and a positive 
integer b, prove that there exists a finite sequence of blow ups so that a suitable 
transform of J has maximum order below b (see Theorem 11.5.2 below).

• Problem 2. Prove that improving the singularities of an algebraic variety X by 
blow ups is equivalent to solving problem 1 (see Theorem 11.5.3 below and the 
discussion that follows). 

Our purpose is to give a few hints on these ideas. In order to do so, we start with 
some definitions. 

Pairs and Their Role in Resolution of Singularities 

Definition 11.5.1 Let V be smooth scheme of finite type over a field k, let J be a 
sheaf of ideals on V and let .b ∈ Z a positive integer. 

– We refer to .(J, b) as a pair over V . 
– The singular locus of .(J, b) is the closed subset of V , 

. Sing (J, b) := {ζ ∈ V : νζ (J ) � b}.

– A permissible center Y for .(J, b) is a closed regular subset .Y ⊂ V such that 
.Y ⊂ Sing (J, b). 

– A permissible blow up of V is the blow up of V at a permissible center Y , . V ←
V1. 

– For a permissible blow up, .V ← V1, with exceptional divisor . E1, the transform 
of the pair .(J, b) is the pair, .(J1, b), where 

.JOV1 = I(E1)
b · J1.



11 Hilbert-Samuel Multiplicity and Finite Projections 547

With the previous notation, a resolution of a pair is a sequence of permissible 
blow ups, 

. 
V = V0 ← V1 ← . . . ← V�

(J, b) = (J0, b) (J1, b) . . . (J�, b),

so that .Sing (J�, b) = ∅. 
To be precise, an additional condition on the permissible centers needs to 

be asked: they need to have normal crossings with the exceptional divisors that 
successively appear in the sequence. 

Theorem 11.5.2 [16] If the characteristic of k is zero, a resolution of .(J, b) exists. 

Why Pairs? 
The previous statement might lead to more questions than answers: 

(i) How is the theorem proven and why the hypothesis on the characteristic? 
(ii) Is it really necessary and statement about general pairs? Is it not enough to 

resolve pairs .(J, b) with b equal to the maximum order of J at V ? 
(iii) While it is clear what the pair for a hypersurface could be, it is not obvious 

how to proceed in the general case. 

Regarding to question (1): Maximal contact 
Theorem 11.5.2 is proven by induction on the dimension of V : the existence 

of a resolution of .(J, b) follows from another theorem that basically says that a 
resolution of .(J, b) can be achieved if we know how to resolve pairs in smooth .(n−
1)-dimensional schemes. And this does not hold in general over fields of positive 
characteristic. For those interested in a deeper understanding on the topic we refer 
to the so called theory of maximal contact (see [12], also [4]). 

Regarding to question (2): An example 
Let .H : {z2 + (y3 − x5) = 0} ⊂ A

3
k , where k is a field of characteristic different 

from 2. If we want to find a resolution of singularities of H we can start by resolving 
the pair .(〈z2 +(y3 −x5)〉, 2) in . A3

k . The theory of maximal contact would tell us that 
a finding a resolution of .(〈z2 + (y3 − x5)〉, 2) is equivalent to finding a resolution 
of the pair .(〈(y3 − x5)〉, 2) in . A2

k . Observe that the number .b = 2 in the second 
pair is not the maximum order of the ideal .〈(y3 − x5)〉 in . A2

k . Hence, a theorem of 
resolution of general pairs as Theorem 11.5.2 is needed. 

Regarding to question (3): Presentations for the Hilbert-Samuel function 
If .H ⊂ V is a hypersurface of maximum order m, then it is clear that a resolution 

of the pair .(I(H),m) leads to a sequence of blow ups over H so that the strict 
transform of H has maximum order below m. And resolution follows by induction 
on the order. 

For arbitrary varieties, Hironaka used presentations of the Hilbert-Samuel 
function. For a variety X we will use .HSX to refer to its Hilbert-Samuel function. 
This function satisfies a series of properties that make it suitable as an invariant to 
approach resolution (see [5]):
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(A) .HSX is an upper semi-continuous function on X; we will denote by . max HSX

its maximum value on X, and by .Max HSX the closed set of X where this 
maximum is achieved; 

(B) .HSX is constant on X if and only if X is regular; 
(C) If .Y ⊂ Max HSX is a closed regular center and if .X ← X1 is the blow up at Y , 

then 

. max HSX � max HSX1 .

The key point here is that the closed set .Max HSX can be expressed as the 
singular locus of a pair. But not any pair will work. Actually we need a suitably 
defined pair whose resolution induces a sequence of blow ups over X that forces the 
maximum value of .HSX to go down. This is done via the so called standard basis 
(see [3]): 

Theorem 11.5.3 (Presentations for the Hilbert-Samuel function) At an étale neigh-
borhood of each closed point .ξ ∈ MaxHSX, we can assume X to be locally 
embedded in a smooth scheme V where we can find elements . f1, . . . , fr ∈ OV,ξ

such that: 

(i) .I(X)ξ = 〈f1, . . . , fr 〉; 
(ii) Denoting by . mi the maximum order of the hypersuface .Hi = {fi = 0}, we  

have that 

. MaxHSX =
r⋂

i=1

MaxHSHi
=

r⋂

i=1

{ζ : νζ (fi) = mi};

(iii) If .Y ⊂ MaxHSX is a closed regular center, if .V ← V1 is the blow up at Y , and 

. maxHSX = maxHSX1 ,

then 

. MaxHSX1 =
r⋂

i=1

MaxHSHi,1

where .Hi,1 is the strict transform of . Hi , .i = 1, . . . , r . 

A consequence of the theorem is that a pair .(J, b) can be naturally attached to 
the previous data: 

Set .M := ∏r
i=1 mi and .Mi = M/mi . Let .J := 〈f M/m1

1 , . . . , f
M/mr
r 〉. Then 

resolving the pair .(J,M) leads to a sequences of blow ups, 

.X ← X1 ← . . . ← X�
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so that 

. max HSX = max HSX1 = . . . > max HSX�
.

Remark 11.5.4 It is worthwhile to make two observations to regarding Hironaka’s 
approach to resolution: 

(a) Hironaka uses the Hilbert-Samuel function, which takes values in . NN. The  
multiplicity function also satisfies properties (A), (B) and (C) from above (see 
[11]), takes values on . N and has a natural geometric interpretation. Hence, it 
is quite natural to ask whether it can replace the role of the Hilbert-Samuel 
function in the resolution process. This is a question posed by Hironaka in 
[16] and answered affirmatively by Villamayor in [30] (this follows from 
Theorem 11.5.5 below). 

(b) The use of the Hilbert-Samuel function requires working with an embedding of 
X in some smooth scheme of dimension .n � d + 1. This leads to the definition 
of convenient pairs some smooth n-dimensional scheme and then induction 
on resolution of pairs is applied in .n − 1, n − 2, . . . ,-dimensions. As we will 
see, Villamayor’s approach using the multiplicity simplifies this last step. More 
precisely, the problem of lowering the multiplicity of a d-dimensional variety is 
shown to be equivalent to the resolution of a pair in some smooth scheme of the 
same dimension d (at least when the characteristic is zero). 

11.5.1 Regarding to Remark 11.5.4 (a): Presentations for the 
Multiplicity Function 

We dedicate the following lines to Villamayor’s approach to resolution using the 
multiplicity function as the main invariant. We start by fixing some notation. We will 
use .MultX to refer to the multiplicity function on X, .max MultX for its maximum 
value on X and .Max MultX for the closed set of points of X where this value is 
achieved. 

Let X be an equidimensional variety with .max MultX > 1. A  simplification of 
the multiplicity of X is a finite sequence of blow ups 

. X = X0 ← X1 ← . . . ← Xn

so that 

. max MultX0 = max MultX1 = . . . = max MultXn−1 > max MultXn.

As a corollary of Theorem 11.5.5 below, we get that it is possible to resolve 
singularities in characteristic zero via simplifications of the multiplicity. As Hiron-
aka’s Theorem 11.5.3, Villamayor’s statement is also of local nature. Hence, we will
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assume that X is an affine variety. Note that the parts (i) and (ii) of the next theorem 
have been already stated and discussed in Theorem 11.4.3 and Sect. 11.4.3. 

Theorem 11.5.5 [30, §6, Theorem 6.8] (Presentations for the Multiplicity function) 
Let .X = Spec(B) be an affine equidimensional algebraic variety of dimension d 
defined over a perfect field k, and let .ξ ∈ MaxMultX be a closed point. Then, there 
is an étale neighborhood . B ′ of B, mapping .ξ ′ ∈ Spec(B ′) to . ξ , a smooth k-algebra 
S together with a finite-transversal morphism at . ξ ′, .β : Spec(B ′) → Spec(S) so 
that if .B ′ = S[θ1, . . . , θe] and .fi(Zi) ∈ K(S)[Zi] denote the minimum polynomial 
of . θi over .K(S) for .i = 1, . . . , e, then .fi(Zi) ∈ S[Zi] and there is a diagram: 

. 

for which the following hold: 

(i) Let .V = Spec(S[Z1, . . . , Ze]), and let .I(X) be the defining ideal of X at V . 
Then 

. 〈f1, . . . , fe〉 ⊂ I(X);

(ii) Denoting by . mi the maximum order of the hypersuface .Hi = {fi = 0} ⊂ V , 
we have that 

. MaxMultX =
e⋂

i=1

MaxMultHi
=

e⋂

i=1

{ζ : νζ (fi) = mi};

(iii) Let .Y ⊂ MaxMultX be a closed regular center. Then .β(Y ) is regular in 
.Spec(S). Now, if  .X ← X1 is the blow up at Y , and .Spec(S) ← T1 is the 
blow up at .β(Y ) then there is a commutative diagram 

. (11.14) 

where the horizontal maps are blow ups and the vertical are finite morphisms.
Moreover, if

.maxMultX = maxMultX1 ,
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then .β1 : X1 → T1 is finite-transversal w.r.t. any point in .MaxMultX1 and if 
.V ← V1 is the blow up at Y , then 

. MaxMultX1 =
e⋂

i=1

MaxMultHi,1

where .Hi,1 is the strict transform of . Hi in . V1, for .i = 1, . . . , e. 

A consequence of the theorem is that a pair .(J, b) can be naturally attached to 
the previous data: 

Set .M := ∏e
i=1 mi and .Mi = M/mi . Let .J := 〈f M/m1

1 , . . . , f
M/me
e 〉. Then 

resolving the pair .(J,M) leads to a sequences of blow ups, 

. X ← X1 ← . . . ← X�

so that 

. max MultX = max MultX1 = . . . > max MultX�
,

i.e., to a simplification of the multiplicity of X. 

11.5.2 Regarding to Remark 11.5.4 (b): Resolution of Pairs in 
Dimension d = dimX 

Notice that Villamayor’s Presentations of the Multiplicity come equipped with a 
finite projection to dome d-dimensional smooth scheme. This finite-transversal 
projection has one additional property: 

(iv) If .T ⊂ β(MaxMultX) ⊂ Spec(S) is a regular closed subscheme, then 
.β−1(T )red is also regular and the simultaneous blow ups at T and . β−1(T )red
lead to a commutative diagram as (11.14) with the same properties as in 
Theorem 11.5.5 (iii). 

When the characteristic of the base field is zero, there is a pair on .Spec(S) (which 
is a d-dimensional scheme) whose resolution induces a resolution of the pair .(J,M). 
Thus, a simplification of the multiplicity of X is directly achieved via the resolution 
of a d-dimensional pair, where .d = dim X, see [1, Chapter 7] for more details. 

11.6 Finite-Transversal Morphisms and the Asymptotic 
Samuel Function 

The asymptotic Samuel function was introduced by Samuel in [26] and afterwards 
studied by D. Rees [20–23]. Here we review the definition and some properties. For 
further details we refer the reader to [17] and [29]. Our purpose here is to prove
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Theorem 11.6.8 which is a slightly modified version of a theorem of Hickel on the 
computation of the asymptotic Samuel function (see Theorem 11.6.7 for Hickel’s 
statement). 

Suppose A is a commutative ring with unit 1, and let .I ⊂ A be a proper ideal. For 
each .f ∈ A consider the value .νI (f ) = sup{� ∈ N ∪ {∞} | f ∈ I �}. Observe that 
for .f, g ∈ A we have .νI (f +g) � min{νI (f ), νI (g)} and .νI (f ·g) � νI (f )+νI (g). 
In particular, for .m ∈ N, .νI (f

m) � mνI (f ) and the inequality could be strict. The 
asymptotic Samuel function is a normalized version of the ordinary function, which, 
as we will see, has a nicer behavior. 

Definition 11.6.1 The asymptotic Samuel function at I , .ν̄I : A → R ∪ {∞}, is  
defined as: 

.ν̄I (f ) = lim
n→∞

νI (f
n)

n
, f ∈ A. (11.15) 

The limit (11.15) exists in .R�0 ∪ {∞} (see [17, Lemma 0.2.1]. When .(A,m) is 
a local regular ring, .νm = νm. The next proposition summarizes some of the main 
properties of the asymptotic Samuel function. 

Proposition 11.6.2 [17, Corollary 0.2.6, Proposition 0.2.9] The function . ̄νI is an 
order function, i.e., it satisfies the following properties: 

(i) .ν̄I (f + g) � min{ν̄I (f ) + ν̄I (g)}, for all .f, g ∈ A, 
(ii) .ν̄I (f · g) � ν̄I (f ) + ν̄I (g), for all .f, g ∈ A, 
(iii) .ν̄I (0) = ∞ and .ν̄I (1) = 0. 

Furthermore, for each .f ∈ A and each .r ∈ N: 

(iv) .ν̄I (f
r ) = rν̄I (f ); 

(v) .ν̄I r (f ) = 1

r
ν̄I (f ). 

Note that if .f ∈ A is nilpotent then .ν̄I (f ) = ∞. 

Example 11.6.3 If .A = k[X, Y ]/〈X2 + Y 3〉 and if .m = 〈x, y〉 ⊂ A, then it can be 
checked that .νm(y) = 1, while .νm(x) = 3/2. However, if . A = k[X, Y,Z]/〈X2 +
Y 2 + Z3〉, .m = 〈x, y, z〉 and the characteristic is different from 2, then . νm(x) =
νm(y) = νm(z) = 1. 

The Asymptotic Samuel Function on Noetherian Rings 

When A is Noetherian, the number .νI (f ) measures how deep the element f lies in 
the integral closure of powers of I : 

Proposition 11.6.4 [29, Corollary 6.9.1] Suppose A is Noetherian. Then for a 
proper ideal .I ⊂ A and every .a ∈ N, 

.I a = {f ∈ R | ν̄I (f ) � a}.
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Corollary 11.6.5 Let A be a Noetherian ring and .I ⊂ A a proper ideal. If . f ∈ A

then 

. ̄νI (f ) � a

b
⇐⇒ f b ∈ I a.

See also [10] for a generalization of the asymptotic Samuel function to arbitrary 
filtrations of ideals and properties. 

The previous characterization of . νI leads to the following result that gives a 
valuative version of the function. 

Theorem 11.6.6 Let A be a Noetherian ring, and let .I ⊂ A be a proper ideal not 
contained in a minimal prime of A. Let .v1, . . . , vs be a set of Rees valuations of the 
ideal I . If .f ∈ A then 

. ̄νI (f ) = min

{
vi(f )

vi(I )
| i = 1, . . . , s

}

.

Proof See [29, Lemma 10.1.5, Theorem 10.2.2] and [28, Proposition 2.2]. ��
In particular, it follows from here that when A is a Noetherian ring, .νI (f ) always 

takes values in .Q ∪ {∞}. 
On a Explicit Formula for the Computation of the Asymptotic Samuel Function 

In [15] M. Hickel presented a series of nice results regarding the asymptotic Samuel 
function. In particular, he proved the following theorem with an explicit method for 
its calculation: 

Theorem 11.6.7 [15, Theorem 2.1] Let .(R,m, k) be a complete local Noetherian 
domain of equal characteristic and Krull dimension d. Let .I ⊂ R be an .m-
primary ideal and suppose that I has a reduction generated by d elements, . J =
〈x1, . . . , xd〉 ⊂ R. Let .r ∈ R. Let .A := k[[x1, . . . , xd ]] ∼= k[[X1, . . . , Xd ]], let  
.mA ⊂ A be the maximal ideal, and let 

. p(Z) = Z� +
�∑

i=1

aiZ
�−i

be the minimal polynomial of r over .K(A). Then: 

. νI (r) = min
1�i��

νmA
(ai)

i
.

The theorem gives a method for the explicit computation of the asymptotic 
Samuel function for a local Noetherian ring .(R,m, k) of equal characteristic, by 
passing to the completion and then reducing to the domain case. The existence of a 
reduction of the ideal I generated by d elements can be achieved by extending the 
residue field.
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Following the arguments in Sect. 11.3, the previous result can be shown to hold 
in a suitable étale neighborhood of R, when R is equidimensional and an algebra 
of finite type over a perfect field k. Thus, under these additional hypotheses, the 
completion is not needed and the reduction to the domain case is avoided. 

Theorem 11.6.8 Let .(B,m) be a Noetherian equicharacteristic, equidimensional 
local ring of Krull dimension d. Let .I ⊂ m be an .m-primary ideal. Assume that 
there exists a local étale neighborhood .(B ′,m′) of .(B,m) with a finite-transversal 
morphism w.r.t. I , .S ⊂ B ′. Let .b ∈ B. If  

. p(Z) = Z� + a1Z
�−1 + . . . + a�

is the minimal polynomial of .b ∈ B ′ over the fraction field of S, .K(S), then . p(Z) ∈
S[Z] and 

.νI (b) = min

{
νmS

(ai)

i
: i = 1, . . . , �

}

, (11.16) 

where .mS = m′ ∩ S. 

Proof We follow the ideas of Hickel in the proof of [15, Theorem 2.1] to check that 
the result also holds in this different setting. To ease the notation let us assume that 
.B = B ′, and let .mS = m ∩ S. Since the extension .S ⊂ B is assumed to be finite-
transversal w.r.t. I we have that .mSB is a reduction of I generated by d-elements. 
Let .b ∈ B. Then .L = B ⊗S K(S) is a finite extension of .K(S), although not 
necessarily a domain. Let 

. p(Z) = Z� + a1Z
�−1 + . . . + a� ∈ K(S)[Z]

be the minimal polynomial of b over .K(S). Observe that .p(Z) might not be 
irreducible over .K(S). By Proposition 11.4.1 .p(Z) ∈ S[Z] and the subring of 
.S[b] ⊂ B is isomorphic to .S[Z]/〈p(Z)〉. Thus .S[b] is free of rank . � over S. Taking 
the .mS-adic completion of S we have a commutative diagram, 

. 

where the vertical maps are finite while the horizontal maps are faithfully flat and 
. ̃k is the residue field of S (which is also the residue field of B). Since the rank of
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.S[b] ⊗S Ŝ over . ̂S is . �, .p(X) is also the minimal polynomial of .b ∈ S[b] ⊗S Ŝ over 

. ̂S. By Cohen [8, Theorem 8], .B ⊗S Ŝ is complete, and then the claim follows from 
[15, Theorem 2.1] if .B ⊗S Ŝ is a domain. 

Otherwise, we will see that the same argument given in [15, Theorem 2.1] can 
be used in this case to prove a similar result. Set .J = 〈X1, . . . , Xd〉 ⊂ Ŝ, let  
.J1 = 〈X1, . . . , Xd〉T and let .J2 = 〈X1, . . . , Xd〉R. Then . J2 is a reduction of IR. 
And we have that that 

. νI (b) = νIR(b) = νJ2(b) = νJ1(b),

where the last equality comes from the fact that .T ⊂ R is a finite extension and using 
Corollary 11.6.5. On the one hand, if .h(Z) = Zm + c1Z

m−1 + . . . + cm ∈ Ŝ[Z] is 
any monic polynomial with .q(b) = 0 then 

. νJ1(b) � min

{
νm

Ŝ
(ci)

i
: i = 1, . . . , s

}

,

(see [15, pg. 1374]). To verify the equality (11.16), we follow the argument in the 
proof of [15, Theorem 2.1] to check that the hypothesis on T being a domain is not 
needed. 

If b is a unit or nilpotent, then we are done. Suppose otherwise that . νI (b) =
r/s > 0, where .r, s ∈ N>0 and consider the diagram: 

. 

Notice that all the maps are finite, and that the first vertical is under the assumptions 
of Proposition 11.4.1. Hence if .q(Z) is the minimal polynomial of . bs over .K(S′), 
we have that .q(Z) ∈ S′[Z] and moreover, .S′[bs] ∼= S[Z]/〈q(Z)〉. 

In addition, the conditions in Proposition 11.3.4 hold for the first vertical finite 
map: 

(i) There is a unique maximal ideal . m′ in .S′[bs] dominating the maximal ideal 
.mS′ of . S′; 

(ii) The residue fields at . m′ and at .mS′ are the same, hence .m′ = mS′ + 〈bs〉; 
(iii) The expansion of the maximal ideal of . S′, .mS′ in .S′[bs], generates a reduction 

of . m′. 

Hence, by Zariski’s multiplicity formula for finite projections, the multiplicity of 
.S[bs] at . m′ is the same as the generic rank of the finite extension .S′ ⊂ S′[bs]. In  
other words, .S′ ⊂ S′[bs] is finite-transversal w.r.t. . m′. Therefore, the polynomial 
.q(Z) ∈ S′[Z] determines a hypersurface in .Spec(S′[Z]) whose multiplicity at
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.〈Xr
1, . . . , X

r
d, Z〉 is the same generic rank of the finite extension. Thus, if 

. q(Z) = Zm + c1Z
m−1 + . . . + cm

necessarily .ci ∈ 〈Xr
1, . . . , X

r
n〉iS′. 

Next, since .q(Zs) is a multiple of .p(Z), following word by word the proof of 
Hickel in [15, pgs. 1374-5], we get that 

. νJ (b) � min
i

{
νm

Ŝ
(ai)

i
: i = 1, . . . , �

}

.

��
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Abstract In this chapter we study the comparison between the logarithmic and the 
meromorphic de Rham complexes along a divisor in a complex manifold. We focus 
on the case of free divisors, starting with the case of locally quasihomogeneous 
divisors, and we explain how D-module theory can be used for this comparison. 

12.1 Introduction 

We survey a number of results known as comparison theorems, along the lines 
of the comparison theorem of Grothendieck. Grothendieck’s Comparison Theorem 
states that, for any hypersurface D in a complex manifold X, the cohomology of 
the meromorphic de Rham complex with respect to .D ⊂ X (i.e. .hq(Ω•

X(�D)) for 
.0 � q � dim X) coincides with .Rqj∗CU where .j : U := X � D → X is the 
inclusion and .CU is the constant sheaf . C on U . In effect, the hypercohomology 
of this complex is the (topological) cohomology . H •(U ;C). If  D is a normal 
crossing divisor (NCD), this comparison result was proved by Atiyah and Hodge, 
and Grothendieck’s proof reduces the general case to the case of a NCD by using 
Hironaka’s resolution of singularities. When D is an arrangement of hyperplanes 
in . Cn, the Brieskorn complex .B• computes the singular cohomology of the 
complement .U = C

n
�D, .H •(U ;C); and this is also a comparison result. There is 

a class of divisors, the so-called free divisors, introduced by Kyoji Saito, for which 
a certain number of comparison results can be proven. We survey these results and 
show how .D-module theory provides a way to deal with them. 

The content of the paper is as follows. In Sect. 12.2.1 we first recall 
Grothendieck’s comparison theorem (see also Sect. 12.3.6), that there is a canonical 
isomorphism 

. hq(Ω•
X(�D)) → R

qj∗CU

for .0 � q � dim X. If X is Stein, then the global morphisms analogous to the 
previous ones 

. hq(Γ (X,Ω•
X(�D))) → Hq(U ;C)

are isomorphisms. We then recall Brieskorn’s Theorem proving that if D is a finite 
union of hyperplanes in .X = C

n, with equations .hj = 0, then the cohomology 
of the complement .Hq(X � D;C) can be computed as the cohomology of the so 
called Brieskorn complex . B•, which is the .C-subalgebra of the exterior algebra 
.Γ (X,Ω•

X(�D)) generated by the forms . 
dhj

hj
. 

Kyoji Saito (see Sect. 12.2.3) introduced the notion of logarithmic meromorphic 
form with respect to a divisor D in a complex manifold X: a meromorphic form . ω
has a logarithmic pole along the divisor D if both .hω and .hdω are holomorphic, 
where h is a local equation for D. Note in particular that all of Brieskorn’s forms 
have logarithmic poles along an arrangement of hyperplanes .D ⊂ C

n. Logarithmic 
meromorphic forms form an .OX-subcomplex of the meromorphic de Rham complex
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.Ω•
X(�D). A natural question asks for the class of divisors .D ⊂ X for which the 

inclusion 

. Ω•
X(log D) ↪→ Ω•

X(�D)

is a quasi-isomorphism (i.e. when the two complexes have the same cohomol-
ogy). By analogy with Grothendieck’s comparison theorem, if the morphism 
.Ω•

X(log D) ↪→ Ω•
X(�D) is a quasi-isomorphism we say that the divisor D 

satisfies the logarithmic comparison theorem (LCT), or that LCT holds for D. 
Theorem 12.2.5 states that any locally quasihomogeneous free divisor . D ⊂ X

satisfies LCT. In 1977 H. Terao conjectured (see Sect. 12.2.4) that LCT always holds 
for hyperplane arrangements (which are, of course, locally quasihomogeneous), and 
this conjecture was finally proved by Daniel Bath in [2]. 

A free divisor is linear if the module .Der(− log D) of logarithmic derivations 
with respect to D (as defined by K. Saito in [58], see Sect. 12.2.3) has a basis of 
vector fields whose coefficients are linear forms. In Sect. 12.2.5 we recall a number 
of results on linear free divisors and in particular the theorem of [28], which gives 
a completely independent proof that a global version of LCT holds for “reductive” 
linear free divisors. 

In Sect. 12.3 we introduce the background in .D-module theory that is used 
in Sect. 12.4. This last section is devoted to state a .D-module criterion for the 
Logarithmic Comparison Theorem for free divisors. First, and following the paper 
of F.J. Calderón-Moreno [10], we consider the sheaf .VD

X of logarithmic differential 
operators on X, with respect to a free divisor .D ⊂ X and the logarithmic Spencer 
complex .Sp•(log D) which is a locally free resolution of the .VD

X -module . OX. By  
using [13] one generalizes the construction of this last complex to an arbitrary left 
.VD

X -module. This constructions are used to prove the main theorem in this context. 
This theorem, proved by Calderón-Moreno and Narváez-Macarro ([13, Cor. 4.2]  
and [53, Corollary 1.7.2]), states that a free divisor .D ⊂ X satisfies the Logarithmic 
Comparison Theorem if and only if the natural morphism 

. � : DX

L⊗
VD

X

OX(D) −→ OX(�D)

is an isomorphism in the derived category of .DX-modules (see Theorem 12.4.7). 
Fixing a point .p ∈ D, a reduced local equation f of the germ .(D, p) and a basis 
.{δ1, . . . , δn} of .Der(− log D)p, the morphism . �p is an isomorphism if and only 

if the complex .DX,p

L⊗
VD

X,p

OX,p(D) is concentrated in cohomological degree 0, 

.DX,pf −1 = OX,p(�D) and the .DX,p-annihilator of .f −1 ∈ OX,p(�D) equals the 
left ideal .DX,p(δ1 + α1, . . . , δn + αn), where .δi(f ) = αif for .i = 1, . . . , n, see  
Sect. 12.4.3. That gives a .D-module criterion to test if LCT holds for a given free 
divisor .D ⊂ X. Finally we treat some examples to show how this criterion can be 
applied in practice.
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12.2 Comparison Theorems 

12.2.1 Grothendieck’s Comparison Theorem 

To calculate the cohomology of a space with constant coefficients . C, one can use a 
resolution of the constant sheaf .CX and then calculate the hypercohomology of the 
resolution. For example, on a complex manifold the holomorphic Poincaré lemma 
(see e.g. [26, Ch. 2, Par. 2, Ex. 2.5.1]—the proof for .C∞ forms is easily adapted to 
the holomorphic case) shows that the complex of holomorphic differential forms 

. (12.1) 

is exact, so that .Ω•
X is a resolution of .CX by locally free .OX-modules. If X is 

in addition a Stein space—for example, the complement of a divisor D in . Cn, 
or a convex open set in . Cn—then all of the sheaves in the complex are acyclic: 
.Hj(X,Ωk

X) = 0 for .j > 0 and .k � 0 (in effect, this is the definition of 
‘Stein space’). In this case the double complex with which one calculates the 
hypercohomology is reduced to the complex of global sections 

. 0 → Γ (X,OX) → Γ (X,Ω1
X) → · · ·

and so one has the analytic de Rham theorem: 

Theorem 12.2.1 If X is a Stein manifold then 

. (12.2) 

is an isomorphism.

Here if we view .Hj(X;C) as the singular cohomology group, then the arrow 
is given by the integration of differential forms along singular chains, which we 
will refer to as the de Rham morphism. Note that this theorem already implies the 
non-trivial fact that the cohomology of a Stein manifold vanishes above middle real 
dimension. 

If X is the complement of a divisor (a hypersurface) .D ⊂ C
n, then .Ωk

X (or more 
precisely .j∗Ωk

X, where .j : X → C
n is inclusion) is equal to the sheaf of germs 

of holomorphic forms with arbitrary singularities along D. This is strictly larger 
than the sheaf .Ωk(�D) of meromorphic forms with poles along D, since it places 
no restriction on the behaviour of the extension to D, and in particular allows also 
forms with essential singularities along D. In [32, Th. 2],1 Alexander Grothendieck

1 It is noted in [32] that the contents of this paper formed part of a letter of the author to M. F. 
Atiyah, dated October 14, 1963, except for some remarks dated November 1963 and July 1965. 
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showed that despite this difference, there are canonical isomorphism of sheaves of 
complex vector spaces 

.hq
(
Ω•

Cn(�D)
) 	 R

qj∗CCn�D, q = 0, . . . , n, (12.3) 

where .R
qj∗ is the q-th right derived functor of the left-exact functor . j∗, see e.g. [35, 

I.7]. The maps in (12.3) are given by the composition of the adjunction 

. Ω•
Cn(�D) → j∗j−1Ω•

Cn(�D) = j∗Ω•
Cn�D

with the inverse of Poincaré quasi-isomorphism .CCn�D
∼→ Ω•

Cn�D
. 

Taking into account that . Cn is Stein, by Grothendieck [32, Corollary, page 97], 
one has .Hj(Cn,Ωk

Cn(�D)) = 0 for .j > 0 and any k, and there are canonical 
isomorphisms of complex vector spaces 

. (12.4) 

for .q � 0. 
These maps are formal in the sense that they come from adjunction and Poincaré 

lemma. A well known (but not obvious) fact, see Remark 12.2.2, is that these maps 
coincide with the de Rham map given by integration of meromorphic forms along 
singular chains composed with the isomorphism between singular cohomology with 
coefficients in . C and sheaf cohomology with coefficients in the constant sheaf 
.CCn�D (see [56, Ch. 4; Th. 4.14]). 

The isomorphism in (12.3) can be stated as an isomorphism in the derived 
category, which is of course valid on any complex manifold X and any divisor 
.D ⊂ X, namely 

.Ω•
X(�D) 	 Rj∗CX�D. (12.5) 

This is known as Grothendieck’s Comparison Theorem (see Theorem 12.3.11). The 
core assertion is that one can ignore essential singularities along D. 

To end this section, let us emphasize that Grothendieck’s proof of (12.5) used in  
an essential way Hironaka’s resolution of singularities (in the complex algebraic and 
the complex analytic settings), and became a model to follow for the cohomological 
study of algebraic varieties over an arbitrary field. This fact brought conferred upon 
the resolution of singularities in positive characteristic a privileged place in the 
construction of cohomological theories, to the extent that it appeared as a matter of 
substance in this context. On the other hand, Grothendieck’s comparison theorem 
became a completely new and unexpected way to understand regular singular 
points (at infinity) of integrable connections on algebraic fiber bundles (see footnote 
(13) in [32], dated July 1965, and the crucial work [21]), and more generally, a 
conceptual way to incorporate regularity as a central notion in .D-module theory 
(see [45]). Finally, .D-module theory itself has provided new tools to understand
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Grothendieck’s comparison theorem and to avoid resolution of singularities in its 
treatment [47, 48] (see also [49]). 

In this paper we would like: (1) to explain what the logarithmic comparison 
means, drawing some analogies with Grothendieck’s comparison theorem; (2) to 
survey the original proof of the Logarithmic Comparison Theorem for locally 
quasihomogeneous free divisors (see Theorem 12.2.5); and (3) to explain how .D-
module theory provides a characterization of those free divisors which satisfy the 
Logarithmic Comparison Theorem (see Sect. 12.4.3). We emphasise that in all of 
them resolution of singularities does not play any rôle. 

Remark 12.2.2 For any topological space X, one denotes by .Hq(X;C) the singular 
homology group of X with values in . C, for .q � 0. Recall that the singular homology 
group .Hq(X;C) is by definition the homology group .hq(C•(X), ∂) of the complex 
.(C•(X), ∂) of singular chains of X with coefficients in . C, where . ∂ denotes the 
boundary map. 

Recall also that the complex of singular cochains .(C•(X), δ) is defined as 

. C•(X) := HomC(C•(X),C),

where . δ is the coboundary map associated with the boundary map . ∂ . The singular 
cohomology group .Hq(X;C), of  X with values in . C for .q � 0, is by definition the 
cohomology group .hq(C•(X), δ). 

There exists a natural morphism 

. Hq(X;C)
ψq−→ Hq(X;C)∗ := HomC(Hq(X;C),C).

For any .[η] ∈ Hq(X;C) and any .[γ ] ∈ Hq(X;C), one has 

. ψq([η])([γ ]) = η(γ )

where . [ ] means equivalence class in the corresponding (co)homology group. The 
morphism . ψq is an isomorphism, for .q � 0, since . C is a field. 

If X is a complex manifold with .dim X = n � 1, the de Rham morphism 

. dRq : hq(Γ (X,Ω•
X)) −→ Hq(X;C)

is defined (or induced) by integration of differential q-forms over singular q-chains: 

. dRq([ω])([γ ]) :=
∫

γ

ω ∈ C

where . ω is a q-form, . γ is a singular q-chain and . [ ] means equivalence class in the 
corresponding (co)homology group. Here, to be precise, one needs to consider . C∞
chains, and the point is that the inclusion of the complex of .C∞ singular chains of 
X with coefficients in . C in .C•(X) is a quasi-isomorphism (see [44, Ap. A, Th. 2.1]).
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The de Rham theorem states that if X is a Stein manifold then .dRq is an 
isomorphism for .q = 0, . . . , n; see e.g. [44, App. A, Th. 3.1]. In the . C∞
category, the de Rham theorem holds in much greater generality, for all paracompact 
differentiable manifolds, (see loc. cit.). 

Recall that by the Poincaré Lemma the complex (12.1), i.e. the complex 

. 0 → CX → Ω•
X,

is exact. Since the category .Mod(CX), of sheaves of .C-vector spaces, has enough 
injectives (see e.g. [65, Ex. 2.3.12]), there exists an injective resolution 

. 0 → CX → I •
X

and a natural morphism 

. Ω•
X → I •

X,

unique up to homotopy equivalence, making the obvious diagram commute (see [31, 
Rq. 3, Th. 2.4.1] and e.g. [65, 2.5]). So for any q, there is a natural morphism 

. αq : hq(Γ (X,Ω•
X)) → hq(Γ (X, I •

X)) = Hq(X;CX)

where the last equality is just the definition of the sheaf cohomology of the constant 
sheaf . CX. 

Moreover, as mentioned in the introduction, if X Stein, then each .Ωq
X is acyclic 

for the “global sections functor” .Γ (X; ), and hence the natural morphism . αq is an 
isomorphism (see [31, Rq. 3, Th. 2.4.1] and e.g. [65, 2.5]).  

Finally, for any complex manifold X (in fact, for any locally contractible 
topological space) let us consider, see e.g. [56, Ch. 4, Th. 4.14], the complex 

.0 → CX → S̃•
X (12.6) 

where, for .q � 0, one denotes by .̃Sq
X the sheaf associated to the presheaf . Sq

X

of singular q-cochains on X. Local contractibility means that each point has a 
fundamental system of neighbourhoods which are contractible. In each of these, the 
complex of singular cochains is exact. It follows that the complex of sheaves (12.6) 
is exact. As before for the complex .Ω•

X (but now with the complex . ̃S•
X in its place), 

and again using the injective resolution . I •
X of . CX, for each q there is a natural 

morphism 

. βq : Hq(X;C) = hq(Γ (X, S̃•
X)) → hq(Γ (X, I •

X)) = Hq(X;CX)

where the first equality is just the definition of the singular cohomology . Hq(X;C)

(see [56, Ch. 4, Prop. 4.12]). Since the sheaves .̃Sq
X are all flabby they are also
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acyclic for the functor .Γ (X; ) (see [56, Ch. 4, ex. 1.10, 2 and Prop. 3.3]). Hence the 
morphism . βq is an isomorphism for .q � 0. 

So, for any q we have the following diagram of isomorphisms 

. (12.7) 

It is “well-known” that the diagram commutes, up to a sign, although a concrete
reference for this result seems to be elusive.

12.2.2 The Brieskorn Complex 

For a special class of divisors, namely hyperplane arrangements in affine space 
.X = C

n, Brieskorn, in [7] generalising Arnol’d in [1], had already given a way of 
calculating the cohomology of the complement. If D is the union of hyperplanes . Hj

with equations .hj = 0, .j = 1, . . ., N , then the collection of meromorphic 1-forms 

.
dhj

hj
generates a .C-subalgebra .B• of the exterior algebra .Γ (X,Ω•

X(�D)). Since 

.d
(

dhj

hj

)
= 0, all exterior derivatives on .B• are zero, and .B• is a subcomplex of 

the complex .Γ (X,Ω•
X(�D)) with derivative zero, known as the Brieskorn complex. 

Brieskorn showed 

Theorem 12.2.3 The de Rham morphism .Bp → Hp(U ;C) is an isomorphism. 
�
Note that each of Brieskorn’s forms 

. ωj1,...,jk
:= dhj1

hj1

∧ · · · ∧ dhjk

hjk

has at most a first order pole along D, so in this special case his result is stronger 
than Grothendieck’s. 

An earlier version of Brieskorn’s result, that it holds for a normal crossing 
divisor (NCD)([33]) played an important role in Deligne’s mixed Hodge theory: 
every quasiprojective variety U has a projective compactification .U ↪→ X in which 
.D := X � U is a NCD. Similarly, every singular variety has a resolution whose 
exceptional divisor is once again an NCD. Deligne used the poles to define the 
weight filtration on the cohomology of U . 

If .D = ⋃N
j=1{hj = 0} is a union of more general irreducible divisors 

.{hj = 0}, the analogous Brieskorn complex . B• generated by the closed forms . 
dhj

hj

does not in general calculate the cohomology of the complement: for example, if 
D is irreducible, this complex reduces to .0 → B0 → B1 → 0, whereas .X � D
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may have cohomology in higher dimensions. Deligne and Dimca explored the 
relation between pole order and the Hodge filtration in the cohomology of complex 
projective varieties in [22]. 

12.2.3 The Logarithmic Comparison Theorem 

Kyoji Saito, in [58], introduced a fruitful generalisation of the Brieskorn complex. 
A meromorphic form . ω has a logarithmic pole along the divisor D if both .hω and 
.hdω are regular, where h is a local equation for D. Note in particular that all of 
Brieskorn’s forms have logarithmic poles along D. 

Denote the sheaf of germs of meromorphic k-forms with logarithmic poles by 
.Ωk

X(log D). Then .Ω•
X(log D) is again a subcomplex of .Ω•

X(�D). In the same article 
Saito also described the dual of .Ω1

X(log D), namely the sheaf of “logarithmic 
derivations”, .Der(− log D), whose stalk at .x ∈ D consists of germs of vector 
fields on X which are tangent to D at its smooth points. The duality arises from 
the contraction pairing 

. Ω1
X(log D) × Der(− log D) → OX, (ω, ξ) → ιξ (ω) = ω(ξ).

Saito showed that this is a perfect pairing, so that .Ω1
X(log D) is also the dual 

of .Der(− log D). Saito’s interest was especially in the case where D is a free 
divisor, that is, where .Der(− log D) (or, equivalently, .Ω1

X(log D)) is a locally 
free sheaf of .OX-modules. Because the dual of any .OX-module has depth at least 
2 when .depthOX � 2 (see e.g. [60], or [38, Lemma 9.2]), it follows from this 
that every plane curve is a free divisor. More interesting is the fact, proved by 
K. Saito, that the discriminant in the base of a versal deformation of an isolated 
hypersurface singularity is a free divisor. Looijenga generalised this by showing 
in [38, Corollary 6.13] that it holds also for the discriminant in the base of a 
versal deformation of an isolated complete intersection singularity (ICIS), and later 
authors ([8, 63]) have extended this to the discriminants of a range of non-ICIS 
singularities, to discriminants in quiver representation spaces [9] and more generally 
in prehomogeneous vector spaces [29]. 

Since for any divisor .D ⊂ X one has a natural morphism 

. Ω•
X(log D) ↪→ Ω•

X(�D)

one can ask for the class of divisors .D ⊂ X such that the previous natural morphism 
is a quasi-isomorphism (or an isomorphism in the derived category of sheaves of 
.CX-vector spaces). 

Definition 12.2.4 If the morphism .Ω•
X(log D) ↪→ Ω•

X(�D) is a quasi-isomorphism 
we say that the divisor D satisfies the logarithmic comparison theorem (LCT), or 
that the LCT holds for D.
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By Grothendieck’s comparison theorem, the LCT holds for a divisor D if and 
only if the morphism .hq(Ω•

X(log D)) → R
qj∗CU is an isomorphism for . 0 � q �

dim X. Any NCD satisfies the LCT, after [21, Cap. II, Lemme 6.9]. 

Theorem 12.2.5 (Logarithmic Comparison Theorem, [15]) If .D ⊂ X is a 
locally quasihomogeneous free divisor with complement U , then the de Rham 
morphism 

.Ω•
X(log D) → Rj∗CU (12.8) 

is a quasi-isomorphism.

Here locally quasihomogeneous means that at each point .p ∈ D there are local 
coordinates on X in which D has a weighted homogeneous local equation with all 
weights strictly positive—in other words, locally there is a good .C∗-action centred 
at p. Divisors with this property are also known as strongly quasihomogeneous, and 
as positive. Evidently hyperplane arrangements have this property, and it also holds 
for the discriminants of stable maps in Mather’s “nice dimensions”, because of the 
remarkable (and unexplained) fact that in the nice dimensions, all stable germs are 
quasihomogeneous in suitable coordinates (see [51, Section 7.4] for a pedestrian 
proof of this). 

Local quasihomogeneity is used twice in the proof of Theorem 12.2.5. First, it 
allows an inductive argument on the dimension of the divisor. 

Lemma 12.2.6 Let X be a complex manifold of dimension n, let  D be a strongly 
quasihomogeneous divisor in X, and let .p ∈ D. Then there is an open neighbour-
hood U of p such that for each .q ∈ U ∩ D, with .q �= p, the germ at q of the pair 
.(X,D) is isomorphic to the germ at 0 of a product .(Cn−1 × C,D0 × C) where . D0
is a strongly quasihomogeneous divisor. 

To prove that (12.8) is an isomorphism at .p ∈ D, one uses induction on the 
dimension of the divisor. It is easy to see that if (12.8) holds for a a divisor
.D0 ⊂ C

n−1 then it holds for .D0 × C ⊂ C
n−1 × C. Lemma 12.2.6 therefore says 

that we may assume by induction that (12.8) holds at all points of .D ∩ U � {p}. 
Note that the induction begins with the divisor .0 ⊂ C; it is well known that 
.H 1(C � {0};C) 	 C, generated by the logarithmic form . dz

z
. Thus in what follows 

we assume .n � 2. 
The main body of the proof of Theorem 12.2.5 then consists in showing 

that (12.8) also holds at p (which for convenience we suppose is the point
.(0, . . ., 0)), by showing that for any sufficiently small polycylinder V centred at 
p, the de Rham morphism 

. hp(Γ (V,Ω•
X(log D)) → Hp(V � D;C)

is an isomorphism. The argument involves two Čech-de Rham double complexes 
associated with Stein covers .{Vi} of .V � {0}, with .Vi = V � {xi = 0}, and . {V ′

i =
Vi �D} of .V �D, and the two standard spectral sequences associated to each one.
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The complexes are 

.Kp,q =
⊕

i0<i1<···<iq

Γ

⎛

⎝
q⋂

j=0

Vij ,Ω
p
X(log D)

⎞

⎠ (12.9) 

and

.K̃p,q =
⊕

i0<i1<···<iq

Γ

⎛

⎝
q⋂

j=0

V ′
ij
,Ω

p
X

⎞

⎠ (12.10) 

with differentials d, the exterior derivative, and . ď , the Cech differential. The 
inclusion .V ′

i ↪→ Vi determines a morphism .ρ0 : Kp,q → K̃p,q which commutes 

with d and . ď and thus gives rise to morphisms of the associated spectral sequences, 
which we denote by .′ρ� and . ′′ρ�, where the subindex . � refers to the page of the 
spectral sequence. 

First Spectral Sequences 
Applying d to (12.9) and (12.10) , we get the first page of the first spectral sequence
associated to each double complex:

. 
′Ep,q

1 = hp(K•,q) =
⊕

i0<i1<···<iq

hp

⎛

⎝Γ

⎛

⎝
q⋂

j=0

Vij ,Ω
•
X(log D)

⎞

⎠

⎞

⎠

and 

. 
′Ẽp,q

1 = hp(K̃•,q ) =
⊕

i0<i1<···<iq

hp

⎛

⎝Γ

⎛

⎝
q⋂

j=0

V ′
ij
,Ω•

X

⎞

⎠

⎞

⎠

=
⊕

i0<i1<···<iq

Hp(

q⋂

j=0

V ′
ij
;C).

Since 0 is excluded from all of the open sets in the covers, the induction hypothesis 
implies that .′ρp,q

1 : ′Ep,q

1 → ′Ẽp,q

1 is an isomorphism for all .p, q, and it follows that 
.
′ρp,q∞ is also an isomorphism. Thus, . ρ0 induces an isomorphism of the cohomology 
of the total complexes of .K•,• and .K̃•,•.
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Second Spectral Sequences 
Because .{Vi} and .{V ′

i } are Stein covers, applying . ď gives, as first pages of the second 
spectral sequences, 

. 
′′Ep,q

1 = Hq(V � {0},Ωp
X(log D)) and ′′Ẽp,q

1 = Hq(V � D,Ω
p
X).

Because D is a free divisor, all of the .Ωp
X(log D), as well as the . Ω

p
X, are free .OX-

modules, and thus since .Hq(V�{0},OX) is zero except for .q = 0 and .q = n−1 (see 
e.g. [38, (8.14)]), .Hq(V�{0},Ωp

X(log D)) also vanishes except in these dimensions. 
In other words 

. 
′′Ẽp,q

1 = 0 except for q = 0 and q = n − 1.

Now because .V �D is a Stein space and .Ω
p
X is coherent, . ′′Ẽp,q

1 = Hq(V �D,Ω
p
X)

is equal to 0 for all .q > 0, and the spectral sequence . ′′Ẽ collapses at . E2, with 

.
′′Ẽp,0∞ = Hp(V � D;C), ′′Ẽp,q∞ = 0 if q > 0. (12.11) 

We claim that .
′′E also collapses at . E2. In view of the vanishing already remarked 

upon, it is enough to show that the complex .(′′E•,q

1 , d), i.e. 

. 0 → Hn−1(V � {0},Ω0
X(log D)) → Hn−1(V � {0},Ω1

X(log D)) → · · ·
→ Hn−1(V � {0},Ωt

X(log D)) → 0 (12.12) 

is exact. This is the only point at which the argument departs from “general
nonsense”.

Each of the groups in (12.12) is generated by classes of the form .cαωα where 
.cα ∈ Hn−1(V � {0},OX) and . ωα is a basis element of .Ωp

X(log D) in V . 
Recall that .(D, 0) is assumed weighted homogeneous in V , with respect to 

positive weights .w1, . . ., wt for the coordinate functions. We have 

. Hn−1(V � {0},OX) = Γ (V �
⋃

i{xi = 0},OX)
∑

j Γ (V �
⋃

i �=j {xi = 0},OX)
.

Each term in the numerator can be represented by a Laurent series in which all 
exponents are negative; series in the denominator have all exponents negative, 
bar one. An easy lemma shows that .Ωp

X(log D)0 has a basis consisting of forms 
of weighted degree strictly less than . 

∑
j wj . It follows that  the complex (12.12)

has zero weight-zero part. But since the exterior derivative d preserves weighted
degrees, it follows that using the Lie derivative with respect to the Euler form, one
can construct a contracting homotopy from the complex to its weight zero part.
Thus, it is exact.
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We are left with 

. 
′′Ep,0∞ = hp(Γ (V � {0},Ω•

X(log D)) = hp(Γ (V,Ω•
X(log D))),

′′Ep,q∞ = 0 if q > 0 (12.13) 

(since .tn > 1 and .Ωp(log D) is locally free, 0 is a removable singularity). The 
theorem now follows from (12.11) , (12.13) and the isomorphism of the cohomology
of the total complexes of .K•,• and .K̃•,•. 

The importance of local quasihomogeneity for logarithmic comparison theorem 
remains unclear. It was shown to be necessary for plane curves in [14], and for free 
surfaces in 3-space in [30], but in higher dimensions, local weak quasihomogeneity 
is sufficient, see [19], [53, Remark 1.7.4] and Theorem 12.4.14. In [34] the authors 
characterize the family of quasi-homogeneous divisors with isolated singularity 
satisfying LCT. In [3, Cor. 1] it is proven that if D is a divisor with isolated 
singularities and D satisfies LCT then it is locally quasi-homogeneous. 

Definition 12.2.7 A divisor  D is locally weakly quasihomogeneous [19, Def. 2.1]  
if at each point .p ∈ D there are local coordinates on X in which D has a weak 
weighted homogeneous local reduced equation .f = 0, that is: all the weights are 
non negative and not all of them are 0, with f of strictly positive weight. 

12.2.4 Conjecture of Terao 

H. Terao conjectured in [61, Conjecture 3.1] that LCT always holds for hyperplane 
arrangements. After partial results of Wiens and Yuzvinsky in [66], the conjecture 
was finally proved by Daniel Bath in [2]. Bath’s proof uses induction on the 
codimension of the flats of the arrangement, and a spectral sequence argument 
similar to the argument of [15] given above. The argument of [2] is not obviously 
extendable outside the case of hyperplane arrangements, due to the particular 
strategy employed for studying the Castelnuovo-Mumford regularity of logarithmic 
forms for arrangements. 

12.2.5 Linear Free Divisors and Logarithmic Comparison 
Revisited 

A free divisor .D ⊂ C
n is linear if .Der(− log D) = Γ (Cn,Der(− log D)) has a 

basis of vector fields whose coefficients are linear forms. Normal crossing divisors 
are of course the simplest examples, and are in fact the only linear free divisors 
among hyperplane arrangements. In [9] R.-O. Buchweitz and the second author 
showed that the discriminant in the representation space of a Dynkin quiver, with 
a root of the underlying diagram as dimension vector, is a linear free divisor. All 
irreducible linear free divisors are classified, though not under that name, in [59], 
where the operation of castling derives them from four basic examples.
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If .D ⊂ C
n is a linear free divisor then the set of weight zero vector fields in 

.Der(− log D) is a Lie algebra of dimension n; it is isomorphic to the Lie algebra of 
the Lie subgroup of .GD consisting of linear automorphisms of the pair .(Cn,D). For  
linear free divisors, [28] gives an argument for the logarithmic comparison theorem 
which is quite different from the proof of [15]. When D is a linear free divisor, 
then it turns out that .Cn

� D is a single orbit of the identity component .G0
D of 

the group . GD , so .H ∗(Cn
� D;C) is the cohomology of .G0

D/Sp, where . Sp is the 
isotropy subgroup of a point p. Since .G0

D is path connected, the action of . Sp on 
.H ∗(G0

D;C) is trivial, so .H ∗(G0
D/Sp;D) = H ∗(G0

D;C). Second, in this case the 
weight zero subcomplex of .Γ (Cn,Ω•

Cn(log D)) coincides with the complex of Lie 
algebra cohomology, with complex coefficients, of the Lie algebra .gD of . G0

D . By  
an argument using weighted homogeneity, .Γ (Cn,Ω•

Cn(log D)) is chain homotopic 
to its weight zero subcomplex. Thus, .Γ (Cn,Ω•

Cn(log D)) coincides with the Lie 
algebra cohomology of .gD with complex coefficients. For compact connected Lie 
groups G, a well-known argument shows that the Lie algebra cohomology coincides 
with the topological cohomology of the group. For linear free divisors the group 
.G0

D is never compact, but the isomorphism also holds good for the larger class of 
reductive groups, and for a significant class of linear free divisors, including all 
those mentioned above, .G0

D is indeed reductive. 

12.2.6 A Pairing Hp (X � D) × Hq (D) → Hp+q (D) 

The paper [50] introduces a variant .Ω̌k
D of the module of Kähler forms .Ωk

D , defined 
by 

. Ω̌k
D := Ωk

X

hΩk
X(log D)

,

where h is a reduced equation for D. Note that .Ω̌0
D = Ω0

D = OD . Since . dh
h

has a 

logarithmic pole and .Ωk
X(log D) ⊃ Ωk

X, it follows that . hΩk
X(log D) ⊇ dh∧Ωk−1

X +
hΩk

X, so .Ω̌k
D is a quotient of . Ωk

D . If  D is a free divisor then each .Ω̌k
D is a maximal 

Cohen-Macaulay .OD-module, and coincides with .Ωk
D at smooth points of D. The  

.Ω̌k
D form a complex with respect to the usual exterior derivative: if . ω ∈ Ωk

X(log D)x

then . dh
h

∧ ω ∈ Ωk+1
X (log D), from which it follows that .d(hω) ∈ hΩk+1

X (log D). 

We denote the exterior derivative on this complex by . ď . If  D is quasihomogeneous 
then .(Ω̌•

D, ď) is a resolution of .CD ([50, Lemma 3.3]). 
Straightforward calculations show 

(i) there is a well-defined pairing 

.Ωk
X(log D) × Ω̌�

D → Ω̌k+�
D , defined by (ωk, ω�) → ωk ∧ ω�. (12.14)
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Note that there is no comparable wedge pairing 

. Ωk
X(log D) × Ω�

D → Ωk+�
D .

For such a pairing to be well defined, the wedge of .ωk ∈ Ωk
X(log D) with 

.ω� ∈ (dh ∧ Ω�−1
X + hΩ�

X) would have to lie in .dh ∧ Ωk+�−1
X + hΩk+�

X , 
and in general this does not hold. For example, if .h = h1h2, and we take 
.ω1 = dh1

h1
∈ Ω1

X(log D) and .ω′
1 = dh ∈ dh ∧ Ω0

X, then 

. ω1 ∧ ω′
1 = dh1

h1
∧ (

h1dh2 + h2dh1
) = dh1 ∧ dh2 /∈ (

dh ∧ Ω1
X + hΩ2

X

)
.

(ii) The pairing (12.14) descends to a pairing on the homology of the two
complexes,

. hk(Γ (X,Ω•
X(log D)) × h�(Γ (X, Ω̌•

D)) → hk+�(Γ (X, Ω̌•
D)).

(iii) When D is locally quasihomogeneous then in view of the LCT and the 
exactness of .Ω̌•

D , this gives a pairing 

. Hk(X � D;C) × H�(D;C) → Hk+�(D;C).

The properties of this pairing remain to be explored. 

12.3 DX-modules 

In this section we recall some of the basics of .D-module theory. We mainly follow 
[37, 46] and [27]. The section contains the necessary terminology and results that 
are used in the subsequent sections. 

12.3.1 Basic Objects 

Let X be a complex manifold of dimension .n � 1 and . OX (or simply . O) be the sheaf 
of germs of holomorphic functions on X. The sheaf of rings (or more precisely of 
.C-algebras) .OX is coherent: this is Oka’s theorem [41, 55]. 

We denote by .DX (or simply by . D) the sheaf of linear differential operators on X 
with holomorphic coefficients [37, I, §1], [27, Def. 3]. Sometimes we say operators 
(or differential operators) on X instead of linear differential operators on X with 
holomorphic coefficients. For any open set .U ⊆ X, .D(U) is a .O(U)-algebra and so 
. D is a sheaf of .O-algebras.
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If .(U ; x1, . . . , xn) is a chart in X and .U ⊂ X is connected, any operator . P ∈
D(U) can be written in a unique way as a finite sum 

. P =
∑

α∈Nn

cα∂α =
∑

α∈Nn

cα∂
α1
1 · · · ∂αn

n

where .α = (α1, . . . , αn), .cα ∈ O(U) and . ∂i is the partial derivative . ∂
∂xi

. For any 
.x ∈ X, the stalk .DX,x is a non-commutative .OX,x-algebra, since .∂ixi − xi∂i = 1 for 
.1 � i � n. 

If .P ∈ D(U) is non zero, the order of P is the non negative integer 

. ord(P ) = max{|α| ; cα �= 0}

where .|α| = α1 + · · · + αn. We also write .ord(0) = −∞. 
For .k ∈ N, we denote by .Fk(D) the subsheaf of . D whose sections can be 

written locally as operators of order less than or equal to k. Each .Fk(D) is a sheaf 
of coherent .O-modules and the family .F • := (F k(D))k is a discrete increasing 
exhaustive filtration of . D. One has .F 0(D) = O and . Fk(D)F �(D) = Fk+�(D)

for .k, � � 0. The associated sheaf of graded rings (and more precisely, of graded 
.C-algebras) is 

. grF •(D) :=
⊕

k∈N

Fk(D)

F k−1(D)

where we write .F−1(D) = {0}. 
If .P,Q are local sections in . D, the difference .[P,Q] := PQ − QP is called 

the commutator of . (P,Q). For .x ∈ X, the stalk .grF •(Dx) 	 grF •(D)x is a 
commutative ring since .ord([P,Q]) � ord(P ) + ord(Q) − 1. Thus, .grF •(D) is 
a sheaf of commutative .C-algebras. 

The sheaves of rings .DX and .grF •(DX) are coherent (see [37, I, Th. 3.2], [27, 
Prop. 9]). 

We denote 

. σk : Fk(D) → Fk(D)

F k−1(D)

the natural projection map (which is a morphism of .O-modules) and we call it the 
kth symbol map. 

If P is an operator of order k we simply write 

. σ(P ) = σk(P )

and we call this element the principal symbol of P .
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If .(x1, . . . , xn) is a system of local coordinates around a point .x ∈ X, then . ∂i =
∂

∂xi
∈ F 1(Dx) and we write .ξi = σ(∂i) for .1 � i � n. 

There is an isomorphism of .Ox-algebras 

.grF •(Dx) −→ Ox[ξ1, . . . , ξn] (12.15) 

see e.g. [37, I, §1], [27, Prop. 4]; the image of an element .P + Fk−1(Dx), with 
.P ∈ Fk(Dx), being simply .σk(P ). Compare this morphism with (12.3.3). Since 
.grF •(Dx) is noetherian, a standard argument using induction on the order of the 
operators, proves that .Dx is a left and right noetherian ring. 

12.3.2 Filtrations 

Let . M be a left .D-module (i.e. a sheaf of left .D-modules). A filtration of . M is a 
collection, .(Mk)k∈N, of .O-submodules of . M such that: 

(i) For any .k, � ∈ N : .Mk ⊂ Mk+1 and .F�(D)Mk ⊂ Mk+� . 
(ii) .M = ∪k∈NMk . 

To any filtration .Γ := (Mk)k∈N of . M we associate its graded .O-module 

. grΓ (M) :=
⊕

k∈N

Mk

Mk−1

with .M−1 := {0}. More generally, .grΓ (M) is a .grF •(D)-module. A filtration . (Mk)k
of . M is said to be good is the following two conditions hold 

(i) For any .k ∈ N, .Mk is a coherent .OX-module. 
(ii) There exist .k0 ∈ N such that for any .� ∈ N, .F�(D)Mk0 = Mk0+�. 

Any coherent .D-module . M admits locally (i.e. after restriction to sufficiently 
small open subsets in X) good filtrations (see e.g. [37, I, p. 7], [27, Prop. 10]). 

Let .Γ := (Mk)k) be a filtration of . M. Then . Γ is locally good (i.e. after restriction 
to sufficiently small open subsets in X, . Γ is a good filtration) if and only if . grΓ (M)

is a coherent .grF •(D)-module (see [37, I, Prop. 4.1], [27, Th. 1]). 
Let .M be a coherent left .DX-module. Then there exists a coherent sheaf 

of ideals .J(M) of .grF •(DX) with the following property: for any open subset 
.U ⊂ X such that the restriction .MU admits a good filtration, one has . J(M)U 	√

anngr(DU )(gr(MU)), where .gr(DU) = grF •(DU) and .anngr(DU )(gr(MU)) is 

the sheaf of annihilating ideals of the coherent .gr(DU)-module .gr(MU) (see [27, 
Prop.17; Rmk. 6]). 

Definition 12.3.1 Let . M be a coherent .DX-module. The closed analytic subset of 
the cotangent bundle .T ∗X defined by the coherent sheaf of ideals .J(M) is called 
the characteristic variety of . M and is denoted by .Char(M).
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Example 12.3.2 

1) The characteristic variety of the .DX-module . {0} is . ∅, and .Char(DX) = T ∗X and 
then .dim Char(DX) = 2n = 2 dim X. 

2) If .M = DX

I
where .I ⊂ DX is a coherent sheaf of left ideals in . DX, the  

characteristic variety .Char(M) is the closed analytic subset of .T ∗X defined by 
the coherent sheaf of ideals .grF •(I) ⊂ grF •(DX), since the filtration on the 
quotient . M, induced by the . F • filtration on . DX, is a locally good filtration. 

3) The .DX-module .OX can be presented locally as a quotient . DX,x/DX,x

(∂1, · · · , ∂n) where .{∂1, . . . , ∂n} is a basis of .Der(OX,x). The graded ideal 
.gr(DX,x(∂1, · · · , ∂n)) equals .gr(D)(ξ1, . . . , ξn) (recall that . ξi is the principal 
symbol of . ∂i (12.3.1)). Then .Char(OX) = T ∗

XX, that is, the zero section of the 
cotangent bundle .T ∗X, and .dim Char(OX) = n. 

The characteristic variety .Char(M) ⊂ T ∗X of a coherent .DX-module is 
involutive (e.g. [25, 42], [27, App. B]). Hence, if . M is a non zero module, one 
has .2n � dim(Char(M)) � n. This is called Bernstein’s inequality. It is proved in 
[4] for modules over the Weyl algebra. 

Definition 12.3.3 A coherent .DX-module is said to be holonomic if either . M = {0}
or .dim(Char(M)) = dim X. 

The .DX-module .OX is holonomic while .DX is not holonomic as .DX-module. 
If .M = DX

I
where . I is a sheaf of non zero locally principal ideals (i.e. locally 

generated by a single differential operator) then . M is holonomic if and only if 

.dim X = 1, since .dim Char(DX

I
) = 2n − 1. A central result in .DX-module theory 

is 

Theorem 12.3.4 [36] If  D is a hypersurface in a complex manifold X then the 
.DX-module .OX(�D) of meromorphic functions in X with poles on D is holonomic. 

We finish this subsection with a result that we use later on (see Sect. 12.3.5): 

Theorem 12.3.5 A non zero coherent .DX-module . M is holonomic if and only 
if .Exti

DX
(M,DX) = 0 for .i �= n. In this case, .Extn

DX
(M,DX) is a coherent 

holonomic right .DX-module. 

The proof follows from [37, IV; Ths. 4.2.5, 4.2.6], see also [27, Ths. 7, 8].  

12.3.3 The Natural Isomorphism 

SymOX 
(Der(OX)) ∼→grF •(DX) 

There is a natural injective morphism of .OX-modules 

.Der(OX)
ι→ gr(1)

F •(D) ⊂ grF •(D)
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mapping a local section .δ ∈ Der(OX) to .σ(δ) ∈ gr(1)
F •(D). Then, by the universal 

property of the symmetric algebra (see [6, §6, Prop. 2]) there exists a unique 
morphism of .OX-algebras 

.κ : SymOX
(Der(OX)) → grF •(DX), (12.16) 

extending the morphism .ι : Der(OX) → grF •(D). Since .grF •(DX) is a graded .OX-
algebra and .ι(Der(OX)) ⊂ gr(1)

F •(D), by [Remark 1, p. 498, loc.cit.] the morphism 
. κ is graded so that we have, for any .k � 0 a morphism of .OX-modules 

. κk : Sym(k)

OX
(Der(OX)) → gr(k)

F • (DX).

By Bourbaki [6, §6, Th. 1] and since .Der(OX) is a locally free .OX-module of rank 
n, for any .x ∈ X, .SymOX,x

(Der(OX,x)) is canonically isomorphic to the polynomial 
algebra .OX,x[T1, . . . , Tn], the canonical isomorphism being obtained by mapping 
. ∂i to . Ti for .1 � i � n. Locally, for .α = (α1, . . . , αn) and .|α| = ∑

i αi = k, 
one has .κk(∂

α1
1 · · · ∂αn

n ) = σ(∂
α1
1 · · · ∂αn

n ) where .σ( ) means the principal symbol 
(see (12.3.1)). Then . κk is an isomorphism for any k and . κ is a graded isomorphism. 
The isomorphism . κ is the intrinsic version of the isomorphism (12.15). 

12.3.4 The Spencer Complex 

Let X be a complex manifold of dimension .n � 1. 

Definition 12.3.6 ([46, Chap I, (2.1)]) The Spencer complex in X is the following 
complex of left .DX-modules, denoted .Sp•

X (or simply . Sp•): 

. 0 → D⊗OX

n∧
Der(OX)

ε−n−→ · · · ε−2−→ D⊗OX
Der(OX)

ε−1−→ D

where the differential . ε• is defined by 

.

ε−1(P ⊗ δ) = Pδ,

ε−p(P ⊗ (δ1 ∧ · · · ∧ δp)) =
p∑

i=1

(−1)i−1Pδi ⊗ (δ1 ∧ · · · δ̂i · · · ∧ δp))+

∑

1�i<j�p

(−1)i+jP ⊗ ([δi, δj ] ∧ δ1 ∧ · · · δ̂i · · · δ̂j · · · ∧ δp) (2 � p � n).
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We denote by .S̃p•
X (or simply . ̃Sp•) the augmented complex 

. Sp•
X

ε0−→ OX → 0

where .ε0(P ) = P(1). 

Remark 12.3.7 The complex .Sp•
X is a locally free resolution of the left .DX-module 

. OX. Since .Der(OX) is a locally free .OX-module, each left .DX-module 

. Spp
X := DX ⊗OX

p∧
Der(OX)

is locally free (of rank . 
(
n
p

)
). 

To prove that .Sp•
X is a resolution of . OX, or equivalently that .S̃p•

X is acyclic, we 
can proceed locally at each point .x ∈ X. If we choose local coordinates . (x1, . . . , xn)

on X around x, the partial derivatives .(∂1, . . . , ∂n)—where .∂i = ∂
∂xi

—form a basis 
of the free .OX-module .Der(OX)x . The differential .ε−p,x can be written as 

. ε−p,x(P ⊗ (∂i1 ∧ · · · ∧ ∂ip )) =
p∑

j=1

(−1)j−1P∂ij ⊗ (∂i1 ∧ · · · ∂̂ij · · · ∧ ∂ip ).

So, the complex .S̃p•
X,x is a Koszul complex (which is denoted by . K(∂1, . . . , ∂n;DX)

in [43, I.2]. This complex is exact (see e.g. [24]). We give here a proof of the 
acyclicity of .S̃p•

X,x based on [10, Th. 3.1.2; Prop. 4.1.3] (which proves a more 
general result and follows a suggestion of B. Malgrange [43, I.2]).  

We consider a discrete increasing filtration .G• := G• (
S̃p•

X

)
on the complex 

.S̃p•
X (or more precisely on the complex .S̃p•

X,x). The discrete filtration .G• is 
compatible with the differentials and the associated graded complex is exact. This 
implies that the complex .S̃p•

X is exact since the filtration . G• is discrete (i.e. . Gk = 0
if .k < 0). 

The definition of . G• is as follows: for .0 � p � n and .k ∈ N, write 

. Gk,−p := Gk

(

D⊗OX

p∧
Der(OX)

)

= Fk−p(D) ⊗OX

p∧
Der(OX)

where .F •(D) is the order filtration in . D. We also write .Gk,1 := Gk(OX) = OX for 
all .k ∈ N. 

For each .k, p one has .ε−p(Gk,−p) ⊂ Gk,−p+1 since for any . P ∈ Fk−p(D)

one has .P∂i ∈ Fk−p+1(D). Thus, .Gk,• is a complex of .OX-modules for any k and 
.(Gk,•)k is a discrete increasing exhaustive filtration (simply denoted by . G•) of the  
complex .S̃p•

X.
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For each .0 � p � n, the family .(Gk,−p)k is a discrete increasing exhaustive 
filtration of the .D-module .D⊗ ∧p Der(OX) whose associated graded .OX-module 

. grG•,−p

(

D⊗
p∧

Der(OX)

)

is naturally isomorphic to 

. grF •(D)[−p] ⊗
p∧

Der(OX).

The last isomorphism follows from the fact that .
∧p Der(OX) is a locally free .OX-

module and therefore .OX-flat. 
Then the associated graded complex .grG•(S̃p•) is 

. 0 → grF •(D)[−n] ⊗
n∧
Der(OX)

τ−n−→ · · · τ−1−→ grF •(D)
τ0→ OX → 0

where the differential .τ• = gr(ε•) is acting by 

. 

τ0(Q) = Q0,

τ−1(Q ⊗ ∂i) = Qσ(∂i),

τ−p(Q ⊗ (∂i1 ∧ · · · ∧ ∂ip )) =
p∑

j=1

(−1)j−1Qσ(∂ij ) ⊗ (∂i1 ∧ · · · ∂̂ij · · · ∧ ∂ip ))

(2 � p � n),

where the tensor product is taken over . OX, . Q0 is the .0− th homogenous component 
of .Q ∈ grF •(D) and .σ( ) is the principal symbol of the corresponding differential 
operator (see (12.3.1)). So, the last complex is nothing but the augmented Koszul 
complex with respect to the regular sequence .{σ(∂1), . . . , σ (∂n)} in the commuta-
tive ring .grF •(D). Hence this complex is acyclic. 

12.3.5 The de Rham Complex of a DX-Module 

We follow here [46, Chap. I (2.6)]. Let . M be a left .DX-module. The left exact 
functor 

.HomDX
(OX, ∗) : Mod(DX) −→ Mod(CX)
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can be derived to give a functor 

. RHomDX
(OX, ∗) : Db(DX) −→ Db(CX).

Here .Mod(AX) stands for the category of (left) .AX-modules and .Db(AX) for the 
derived category of complexes of .AX-modules with bounded cohomology. 

Definition 12.3.8 Let . M be a left .DX-module. The complex .RHomDX
(OX,M) in 

.Db(CX) is called the de Rham complex of . M. It is denoted by .DR(M). 

Let . M be a left .DX-module. Since . M carries an integrable connection, there is a 
natural morphism of sheaves of .CX-vector spaces 

. ∇ : M −→ Ω1
X ⊗OX

M

given locally by 

. ∇(m) =
n∑

i=1

dxi ⊗ ∂i(m).

Proposition 12.3.9 ([46, Lemme (2.6.3)]) For any left .DX-module . M, the complex 
.DR(M) can be represented by the complex 

. Ω•
X(M) := 0 → M

∇−→ Ω1
X ⊗OX

M
∇−→ · · · ∇−→ Ωn

X ⊗OX
M → 0

concentrated in degrees .[0, n], where . ∇(ω ⊗m) = ω ∧∇(m)+ (−1)deg(ω)dω ⊗m.

Proof By Remark 12.3.7 the complex .S̃p
•

is a locally free resolution of the left 
.DX-module . OX. Thus .DR(M) is represented by .HomDX

(Sp•,M). Moreover, for 

.p = 0, . . . , n, the .OX-modules .HomDX
(DX ⊗OX

∧p
Der(OX),M) and . Ωp

X ⊗ M

are isomorphic. And there exists a natural quasi-isomorphism, in .Db(CX), from 
.HomDX

(DX ⊗OX

∧•
Der(OX),M) to .Ω•

X ⊗ M. 
�
Following [46, Ch. 1, (4.1)], if . M is a complex in the derived category . Db

c (DX)

(complexes of left .DX-modules, with bounded and coherent cohomology), the 
complex 

. RHomDX
(M,DX)

of right .DX-modules has bounded and coherent cohomology. 

Definition 12.3.10 Let . M be a complex in .Db
c (DX). The dual of . M is the complex 

.M∗ in .Db
c (DX) defined by 

. M∗ = HomOX
(Ωn

X,RHomDX
(M,DX))[n]

where .n = dim X.
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The dual .M∗ is also denoted .D(M). The dual .M∗ of a holonomic .DX-module 
. M is also holonomic (see [46, Ch. I, (4.1)] and Theorem 12.3.5). The dual . O∗

X

is naturally isomorphic to .OX and there is a natural isomorphism in the derived 
category . Db(CX)

. DR(M)
∼→ RHomDX

(M∗,OX).

The last complex is called the (holomorphic) solution complex of . M∗. 

12.3.6 Grothendieck’s Comparison Theorem Revisited 

The statement of (a version of) Grothendieck’s Comparison Theorem is as follows 
(see Sect. 12.2.1): 

Theorem 12.3.11 ([32, Th. 2]) If D is a divisor in the complex manifold X, and 
.j : U := X � D ↪→ X is the inclusion, then the de Rham morphism 

.Ω•
X(�D) −→ Rj∗CU (12.17) 

is a quasi-isomorphism.

Remark 12.3.12 If D is a normal crossing divisor, the result is due to Atiyah-Hodge 
[33]. The proof of Grothendieck uses Hironaka’s resolution of singularities to reduce 
the general case to the normal crossing divisor one. 

Theorem 2 in [32] is more general. It holds for a reduced complex analytic space 
X, an analytic closed subset .D ⊂ X, assuming .U := X � D is non singular and 
dense in X, and that U can be defined locally by one equation. 

Mebkhout [46, Chap. 2, §2]2 interprets Grothendieck’s comparison theorem as 
the regularity of the .DX-module . OX. This regularity is equivalent to the fact that, in 
the derived category .Db(CX), the natural morphism 

. DR(OX(�D)) → DR(Rj∗j−1OX)

is a quasi-isomorphism for any divisor D. This last morphism is the de Rham 
morphism (12.17) since .DR(OX(�D)) equals .Ω•

X(�D) and .DR(Rj∗j−1OX) is 
quasi-isomorphic to .Rj∗j−1 DR(OX) = Rj∗j−1Ω•

X 	 Rj∗CU , by Poincaré 
Lemma.

2 Following Mebkhout’s Ph.D. Thesis. 
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12.4 Free Divisors and Logarithmic D-modules 

12.4.1 The Sheaf of Logarithmic Differential Operators with 
Respect to a Free Divisor 

Let X be a complex analytic manifold of dimension n and .D ⊂ X a hypersurface. 
Let us denote .U = X � D and .j : U ↪→ X the corresponding open immersion. 

When D is a free divisor, there is a nice sheaf of subrings of the sheaf . DX

of linear differential operators in X, namely the sheaf of logarithmic differential 
operators with respect to D, denoted by . VD

X . It is the sheaf of subrings of .DX with 
stalks 

. VD
X,x = {P ∈ DX,x | P(J

j
x ) ⊂ J

j
x ∀j � 0}.

Moreover, .VX is a sheaf of filtered rings, with the induced filtration by the order 
filtration in . DX, whose graded ring is commutative and the canonical map 

.SymOX
Der(− log D) −→ grVD

X (12.18) 

is an isomorphism of commutative graded .OX-algebras (see [10, Cor. 2.1.6]; 
compare with Sect. 12.3.3). As a consequence, .VD

X is generated by .OX and 
.Der(− log D), and .VD

X is the enveloping algebra of .Der(− log D) considered as 
a Lie algebroid (cf. [20, §(2.1)]). From there we deduce that .VD

X is a left and right 
coherent sheaf of rings (one can proceed as in the case of . DX, Sect. 12.3.1, or as in  
[5, Th. 1.2.5]) and its stalk at each point of X is a left and right Noetherian ring of 
finite global homological dimension .� 2n (cf. [5, App. IV, Prop. 4.14 and Th. 5.1]). 

12.4.2 The Logarithmic Spencer Complex 

From now on, we will assume that .D ⊂ X is a free divisor in a complex manifold 
X of dimension .n � 1. 

Definition 12.4.1 ([10, Def. 3.1.1]) The logarithmic Spencer complex associated 
with .D ⊂ X is the following complex of left .VD

X -modules, denoted .Sp•(log D): 

.0 → VD
X ⊗OX

n∧
Der(− log D)

ε−n−→ · · · ε−2−→ VD
X ⊗OX

Der(− log D)
ε−1−→ VD

X
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where the differential . ε• is defined by 

. 

ε−1(P ⊗ δ) = Pδ,

ε−p(P ⊗ (δ1 ∧ · · · ∧ δp)) =
p∑

i=1

(−1)i−1Pδi ⊗ (δ1 ∧ · · · δ̂i · · · ∧ δp))+

∑

1�i<j�p

(−1)i+jP ⊗ ([δi, δj ] ∧ δ1 ∧ · · · δ̂i · · · δ̂j · · · ∧ δp) (2 � p � n).

We denote by .S̃p
•
(log D) the augmented complex 

. Sp•(log D)
ε0−→ OX

where .ε0(P ) = P(1). 

For a free divisor D the complex .Sp•(log D) is a locally free resolution of the 
left .VD

X -module .OX [10, Th. 3.1.2] (this is a particular case of Proposition 12.4.6). 

Remark 12.4.2 The logarithmic Spencer complex should be compared with the 
Spencer complex (see Definition 12.3.6). 

The logarithmic Spencer complex generalizes the one given in [23, App. A (A.4)] 
for a normal crossing divisor .D ⊂ X. Actually, this definition is a sheaf version of 
the Rinehart complex of a Lie-Rinehart algebra (see [57]). 

A logarithmic connection (with respect to D) on an .OX-module . E is a .C-linear 
map 

. ∇ : E→ Ω1
X(log D) ⊗OX

E

satisfying the Leibniz rule, i.e. .∇(ae) = da ⊗ e + a∇(e) for any holomorphic 
function a and any local section e of . E. 

As in the classical case (see Sect. 12.3.5), such a . ∇ may be extended to a family 
of .C-linear maps 

. ∇p : Ω
p
X(log D) ⊗OX

E→ Ω
p+1
X (log D) ⊗OX

E,

with .∇p(α ⊗ e) = dα ⊗ e + (−1)pα ∧ ∇(e) for any logarithmic p-form α and any 
local section e of . E.
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We say that the logarithmic connection . ∇ is integrable if .∇p+1 ◦ ∇p = 0 for all 
.p � 0. In such a case, the logarithmic de Rham complex of .(E,∇) is by definition 
the complex (of sheaves of complex vector spaces) 

. Ω•
X(log D)(E) : = E→ Ω1

X(log D) ⊗OX
E→ Ω2

X(log D) ⊗OX
E→ · · ·

→ Ωn
X(log D) ⊗OX

E,

where . E is placed in degree 0. 
Any logarithmic connection . ∇ on an .OX-module . E gives rise to an action of 

logarithmic vector fields .Der(− log D) on . E

. (δ, e) −→ ∇δ(e) = 〈δ,∇(e)〉

for any logarithmic vector field . δ and any local section e of . E, where .〈δ,∇(e)〉 is 
induced by the contraction of logarithmic 1-forms by logarithmic vector fields. 

Obviously, the exterior derivative .d : OX → Ω1
X(log D) is a logarithmic 

connection which is integrable, and .Ω•
X(log D)(OX) = Ω•

X(log D). 
When D is free, the following result holds, by essentially the same proof as in 

the classical case. 

Proposition 12.4.3 Assume that D is a free divisor and let . ∇ be a logarithmic 
connection on an .OX-module . E. The following properties are equivalent: 

(i) . ∇ is integrable. 
(ii) .∇[δ,δ′] = [∇δ,∇δ′ ] for all logarithmic vector fields .δ, δ′. 

Since the sheaf of logarithmic differential operators .VD
X is the enveloping algebra 

of the Lie algebroid .Der(− log D) provided that D is a free divisor, we obtain the 
following corollary. 

Corollary 12.4.4 Assume that D is a free divisor and let . E be an .OX-module. The 
following data are equivalent: 

(a) An integrable logarithmic connection . ∇ on . E. 
(b) A structure of left .VD

X -module on . E extending its .OX-module structure. 

Moreover, the action of a logarithmic derivation . δ on . E in (b) is given by . δ · e =
∇δ(e) for each local section e of . E. 

From now on, we assume that D is a free divisor.  
Any locally free .OX-module of finite rank endowed with an integrable logarith-

mic connection will be called an ILC, for short. Examples of ILCs are the invertible 
.OX-modules .OX(kD), .k ∈ Z, which carry an obvious structure of left .VD

X -module. 
We define the logarithmic Spencer complex of an arbitrary left .VD

X -module in 
the following way.
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Definition 12.4.5 ([13]) Let . E be a left .VD
X -module. The logarithmic Spencer 

complex of . E (with respect to .D ⊂ X) is the following complex of left .VD
X -modules, 

denoted .Sp•(log D)(E): 

. 0 → VD
X ⊗OX

n∧
Der(− log D) ⊗OX

E
ε−n−→ · · · ε−2−→

VD
X ⊗OX

Der(− log D) ⊗OX
E

ε−1−→ VD
X ⊗OX

E

where the differential . ε• is defined by 

. 

ε−1(P ⊗ δ ⊗ e) = Pδ ⊗ e − P ⊗ δe,

ε−p(P ⊗ (δ1 ∧ · · · ∧ δp)) ⊗ e

=
p∑

i=1

(−1)i−1Pδi ⊗ (δ1 ∧ · · · δ̂i · · · ∧ δp)) ⊗ e

−
p∑

i=1

(−1)i−1P ⊗ (δ1 ∧ · · · δ̂i · · · ∧ δp)) ⊗ δie

+
∑

1�i<j�p

(−1)i+jP ⊗ ([δi, δj ] ∧ δ1 ∧ · · · δ̂i · · · δ̂j · · · ∧ δp) ⊗ e (2�p� n).

We denote by .S̃p
•
(log D)(E) the augmented complex 

. Sp•(log D)(E)
ε0−→ E

where .ε0(P ⊗ e) = Pe. 

Note that for .E= OX we have .Sp•(log D)(OX) = Sp•(log D). 

Proposition 12.4.6 For any ILC . E, the logarithmic Spencer complex of . E (with 
respect to a free divisor .D ⊂ X) .Sp•(log D)(E) is a locally free resolution of the 
. VD

X–module . E. 

The proof of this proposition is similar to the proof in Remark 12.3.7. Namely, 
we consider the discrete increasing filtration .G• := G• (

S̃p
•
(log D)(E)

)
on the 

complex .S̃p
•
(log D)(E) given, for .0 � p � n and . k ∈ N, by  

.Gk,−p : = Gk

(

VD
X ⊗OX

p∧
Der(− log D) ⊗OX

E

)

= Fk−p(VD
X ) ⊗OX

p∧
Der(− log D) ⊗OX

E
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where .F •(VD
X ) is the filtration induced by the order filtration in . D. We also write 

.Gk,1 := Gk(E) = E for all .k ∈ N. The associated graded complex turns out to 
be (locally) the tensor product over .OX of . E and the augmented Koszul complex 
with respect to .{σ(δ1), . . . , σ (δn)} ⊂ grVD

X , .{δ1, . . . , δn} being a local .OX-basis 
of .Der(− log D), which is exact since . E is locally free over .OX and .grVD

X is 
(locally) a polynomial ring over .OX in the variables .{σ(δ1), . . . , σ (δn)} (see the 
isomorphism (12.18)). 

By using the logarithmic Spencer resolution Proposition 12.4.6, as in the case of 
.DX (see Sect. 12.3.4), we obtain a canonical isomorphism of complexes of sheaves 
of complex vector spaces 

. Hom
VD

X

(Sp•(log D),E) 	 Ω•
X(log D)(E),

for any left .VD
X -module . E, and so an isomorphism in the derived category 

. RHom
VD

X

(OX,E) 	 Ω•
X(log D)(E).

This is completely similar to Proposition 12.3.9. 

12.4.3 A D-Module Criterion for LCT 

Grothendieck’s comparison theorem (see (12.2.1) and (12.3.6)) tells us that the 
natural map .Ω•

X(�D) → Rj∗CX�D obtained by composition of the adjunction map 
.Ω•

X(�D) → Rj∗j−1Ω•
X(�D) = Rj∗Ω•

X�D = j∗Ω•
X�D with the inverse of the 

induced map by the Poincaré quasi-isomorphism .CX�D → Ω•
X�D is an isomor-

phism in the derived category of sheaves of complex vector spaces. Definition 12.2.4 
tells us that LCT holds for D when the natural morphism 

.Ω•
X(log D) ↪→ Ω•

X(�D) (12.19) 

is a quasi-isomorhism. Let us explain how this map can be interpreted in terms of
.D-module theory in the case of free divisors. 

On one hand, we have canonical isomorphisms (in the derived category) 

. Ω•
X(log D) 	 RHom

VD
X

(OX,OX) 	 RHomDX

(
DX

L⊗
VD

X

OX,OX

)
.

By taking .DX-duals .D(−) (see Definition 12.3.10) we obtain 

. RHomDX

(
DX

L⊗
VD

X

OX,OX

)
	 RHomDX

(
DOX,D

(
DX

L⊗
VD

X

OX

))
	

RHomDX

(
OX,D

(
DX

L⊗
VD

X

OX

))
= DR

(
D

(
DX

L⊗
VD

X

OX

))
,
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and by using the duality formula in [13, Cor. 3.1.2] (see also [54, Th. (A.32)]), we 
obtain 

. D

(
DX

L⊗
VD

X

OX

)
	 DX

L⊗
VD

X

OX(D),

and so 

.Ω•
X(log D) 	 · · · 	 DR

(
DX

L⊗
VD

X

OX(D)

)
. (12.20) 

On the other hand we have another canonical isomorphism (see Proposition 12.3.9) 

. Ω•
X(�D) = Ω•

X(OX(�D)) 	 RHomDX
(OX,OX(�D)) = DR(OX(�D)).

(12.21) 

The point is that the inclusion .OX(D) ⊂ OX(�D) induces a canonical left .DX-
linear map 

.� : DX

L⊗
VD

X

OX(D) −→ OX(�D), (12.22) 

and we have the following theorem ([13, Cor. 4.2] and [53, Cor. 1.7.2]):  

Theorem 12.4.7 If .D ⊂ X is a free divisor, the following properties hold: 

(1) The logarithmic comparison map (12.19) corresponds to the map (12.22) under 
the .DR functor and the canonical isomorphisms (12.20) and (12.21). 

(2) The following properties are equivalent: 

(2–1) The logarithmic comparison theorem holds for D, i.e. the map (12.19) is  
a quasi-isomorphism. 

(2–2) The map (12.22) is an isomorphism (in the derived category of .DX-
modules). 

(2–3) The canonical map 

. j!CX�D −→ Ω•
X(log D)(OX(−D))

is a quasi-isomorphism.
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Remark 12.4.8 

(a) Let us notice that property (2–3) above comes from taking Grothendieck-
Verdier duals. Namely, .

(
Rj∗CX�D

)∨ 	 j!CX�D and 

. 
(
Ω•

X(log D)
)∨ 	

(
DR

(
DX

L⊗
VD

X

OX(D)

))∨

(�)	 RHomDX

(
DX

L⊗
VD

X

OX(D),OX

)
	

RHom
VD

X

(OX(D),OX) 	 RHom
VD

X

(
O∗

X,OX(D)∗
) 	

RHom
VD

X

(OX,OX(−D)) 	 Ω•
X(log D)(OX(−D)),

where we have used Mebkhout local duality formula in .(�) (see [46, Chap. I, 
(4.3)]; see also [52]). 

(b) Let us also notice that the complex .Ω•
X(log D)(OX(−D)) is a subcomplex of 

. Ω•
X, since locally .Ω•

X(log D)(OX(−D)) = f Ω•
X(log D) with .f = 0 a reduced 

local equation of D, and .f Ω
p
X(log D) ⊂ Ω

p
X for .p = 0, . . . , n. Moreover, 

. Ω•
X(log D)(OX(−D)) 	 · · ·

	 RHomDX

(
DX

L⊗
VD

X

OX(D),OX

)
	

RHomDX

(
DOX,D

(
DX

L⊗
VD

X

OX(D)

))

	 RHomDX

(
OX,DX

L⊗
VD

X

OX

)
= DR

(
DX

L⊗
VD

X

OX

)

and we can prove that the inclusion .Ω•
X(log D)(OX(−D)) ↪→ Ω•

X comes from 
the map of .DX-modules 

.DX

L⊗
VD

X

OX −→ OX, P ⊗ a −→ P(a), (12.23) 

by applying the .DR(−) functor. 

Remark 12.4.9 Let us understand in concrete terms the significance of the 
map (12.22) being an isomorphism. First of all, (12.22) is an isomorphism if and 
only if it is so stalkwise, and obviously . �p is an isomorphism for each .p ∈ X � D. 
Let us take a point .p ∈ D, a reduced local equation .f ∈ OX,p of D and a basis 
.δ1, . . . , δn ∈ Der(− log D)p with .δi(f ) = αif , .αi ∈ OX,p, .i = 1, . . . , n. On the  
other hand, .OX,p(D) is generated as .VD

X,p-module by .f −1 and the kernel of 

.P ∈ VD
X,p −→ P(f −1) ∈ OX,p(D)
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is the left ideal generated by .δ1 + α1, . . . , δn + αn, i.e. 

. OX,p(D) 	 VD
X,p/VD

X,p〈δ1 + α1, . . . , δn + αn〉.

Consequently the map .�p : DX,p

L⊗
VD

X,p

OX,p(D) −→ OX,p(�D) is an 

isomorphism (in the derived category of .DX,p-modules) if and only if the following 
properties hold: 

(i) The complex .DX,p

L⊗
VD

X,p

OX,p(D) is exact in cohomological degrees .�= 0, 

and 
(ii) .OX,p(�D) 	 DX,p/DX,p〈δ1 + α1, . . . , δn + αn〉. 
The isomorphism in (ii) comes from the map 

. P ∈ DX,p −→ P(f −1) ∈ OX,p(�D),

and so property (ii) is equivalent to 

(ii-1) .OX,p(�D) is generated as .DX,p-module by .f −1, and 
(ii-2) The .DX,p-annihilator of .f −1 ∈ OX,p(�D) is the left ideal generated by . δ1 +

α1, . . . , δn + αn. 

Notice that property (ii-2) is equivalent to the fact that the .DX,p-annihilator of . f −1

is generated by order 1 operators. From [62] we know that the last property implies 
that the b-function of the germ f has no integer roots strictly less than . −1, and so 
property (ii-2) implies property (ii-1) (by the Bernstein functional equation). We 
conclude that the map . �p is an isomorphism if and only if the following properties 
hold: 

(i) The complex .DX,p

L⊗
VD

X,p

OX,p(D) is exact in cohomological degrees .�= 0, 

and 
(ii-2) The .DX,p-annihilator of .f −1 ∈ OX,p(�D) is the left ideal generated by 

.δ1 + α1, . . . , δn + αn. 

Let us recall the following definition [16]. 

Definition 12.4.10 A free divisor .D ⊂ X is called Spencer if the complex 

.DX

L⊗
VD

X

OX is concentrated in cohomological degree 0 and .DX ⊗
VD

X

OX is 

holonomic. 

The free divisor .D = ((xz + y)(x4 + y5 + xy4) = 0) ⊂ C3 is not a Spencer 
divisor since the complex in Definition 12.4.10 is neither concentrated in degree 0 
nor holonomic in degree 0 (see [13] example 5.1).
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If the the LCT holds for a free divisor D, then . D(OX(�D)) 	
.D

(
DX

L⊗
VD

X

OX(D)

)
	 DX

L⊗
VD

X

OX, and so D is Spencer and . D(OX(�D)) 	
DX ⊗

VD
X

OX (since both .OX(�D) and its dual are holonomic). 

To check whether the complex .DX

L⊗
VD

X

OX is concentrated in cohomological 

degree 0, we can use the logarithmic Spencer complex .Sp•(log D), which is a locally 
free resolution of . OX as a left .VD

X -module. So we have to check whether the complex 
.DX ⊗

VD
X

Sp•(log D) is concentrated in cohomological degree 0 or not. 

For this, we can consider again the discrete increasing filtration . G• :=
G•

(
DX ⊗

VD
X

Sp•(log D)
)

on the complex .DX ⊗
VD

X

Sp•(log D) given by, for 

.0 � p � n and .k ∈ N, 

. Gk,−p := Gk

(

DX ⊗OX

p∧
Der(− log D)

)

= Fk−p(DX) ⊗OX

p∧
Der(− log D)

where .F •(DX) is the filtration by the order filtration in . D. The associated 
graded complex turns out to be (locally) the Koszul complex with respect to 
.{σ(δ1), . . . , σ (δn)} ⊂ grDX, .{δ1, . . . , δn} being a local .OX-basis of .Der(− log D), 

but in general, this is not a regular sequence3 and so . grG•
(
DX ⊗

VD
X

Sp•(log D)
)

is not concentrated in cohomological degree 0. This fact motivates the following 
definition [10, Def. 4.1.1]. 

Definition 12.4.11 We say that a free divisor .D ⊂ X is Koszul at a point .p ∈ D if 
for some (and hence for any) local basis .{δ1, . . . , δn} of .Der(− log D)p, the symbols 
.{σ(δ1), . . . , σ (δn)} form a regular sequence in .grDX,p; and we say that D is Koszul 
if it so at any point .p ∈ D. 

Let us notice that the Koszul property for a free divisor .D ⊂ X is equivalent to 

saying that the complex .grDX

L⊗
grVD

X

OX is concentrated in cohomological degree 

0. In that case, the module .grDX⊗
grVD

X

OX has automatically dimension .n = dim X. 

Any Koszul free divisor D is Spencer since, from the very definition, the complex 
.DX ⊗

VD
X

Sp•(log D) is concentrated in cohomological degree 0 (its graded complex 

with respect to .G• is concentrated in cohomological degree 0), and . DX ⊗
VD

X

OX is holonomic since it is locally presented as .DX,p/DX,p〈δ1, . . . , δn〉, where 
.{δ1, . . . , δn} is a basis of .Der(− log D)p, and the quotient of .grDX,p by the ideal 

.〈σ(δ1), . . . , σ (δn)〉 has dimension n. Moreover, in this case . gr
(
DX ⊗

VD
X

OX

)
	

grDX ⊗
grVD

X

OX, .{δ1, . . . , δn} is an involutive basis of the ideal .DX,p〈δ1, . . . , δn〉

3 Remember that .{σ(δ1), . . . , σ (δn)} is a regular sequence in .grVD
X since this ring is (locally) a 

polynomial ring in the variables .{σ(δ1), . . . , σ (δn)} with coefficients in . OX . 



12 Logarithmic Comparison Theorems 591

with respect to the order filtration and the characteristic variety of .DX ⊗
VD

X

OX is 

(locally) given by .σ(δ1) = · · · = σ(δn) = 0. 
Actually, the condition for a free divisor to be Koszul is equivalent to the fact 

that the logarithmic stratification of D [58, §3] is locally finite, or equivalently, 
that any logarithmic stratum of D is holonomic in the sense of loc. cit. (see [28, 
Theorem (7.4)]). In particular, any plane curve and any free hyperplane arrangement 
is a Koszul free divisor. 

On the other hand, we know that any locally quasihomogeneous free divisor is 
Koszul [11].4 Furthermore, the roots of the b-function of a reduced local equation 
.f = 0 of any locally quasihomogeneous free divisor are symmetric with respect to 
.−1 (see [12, Theorem 5.6], [54, Corollary (4.2)]) and the .D[s]-annhilator of . f s is 
generated by order one operators [12, Corollary 5.8]. From there we deduce a purely 
algebraic proof of Theorem 12.2.5, based on Theorem 12.4.7 (see [54, Corollary 
(4.5) and Remark (4.6)]). 

Remark 12.4.12 Notice also that, for any hyperplane arrangement, free or not, 
with equation .f = 0, reduced or not, the .DX,p-annihilator of . f −1 ∈ OX,p(∗D)

if generated by operators of order 1 [64, Th. 5.3]. As mentioned before, see 
Sect. 12.2.4, LCT holds for any hyperplane arrangement [2]. 

If a free divisor .D ⊂ C
n is Spencer with a polynomial defining equation .f = 0, 

then by Castro-Jiménez and Ucha-Enríquez [17, Crit. 3.1 and 4.1], D satisfies LCT 
if and only if the annihilating ideal in . D of .1/f is generated by operators of order 
1; that is, if condition (ii.2) in Remark 12.4.9 holds. In [17, Rk. 5.8] examples are 
given of three free divisors in . C3, defined by quasi-homogeneous polynomials (with 
strictly positive weights), that do not satisfy LCT and hence, by Theorem 12.2.5, 
they are not locally quasi-homogeneous. That gives a negative answer to a question 
proposed in [12, Prob. 6.5]. 

Remark 12.4.13 The sheaf .Ω̌•
D introduced in [50] (see Sect. 12.2.6) is the quotient 

of .Ω•
X by the subcomplex .Ω•

X(log D)(OX(−D)), and so there is a commutative 
diagram of complexes of sheaves of .C-vector spaces 

. (12.24) 

with exact rows, where the vertical arrows are the natural ones. The bottom row
comes from the triangle

.DX

L⊗
VD

X

OX −→ OX −→ K• +1−→

4 Actually, it is easy to see that for any locally quasihomogeneous divisor, free or not, the 
logarithmic stratification of D is locally finite. 
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by applying the .DR(−) functor. 
The middle vertical arrow in (12.24) is a quasi-isomorphism by Poincaré lemma, 

and . λ is a quasi-isomorphism if and only if . λ is a quasi-isomorphism. So, we can 
add another equivalent property to (2) in Theorem 12.4.7: 

(2–4) The canonical map .CD −→ Ω̌•
D is a quasi-isomorphism. 

We deduce a new proof of Theorem 12.2.5 by using [50, Lemma 3.3], where it 
is proven that the map . λ is a quasi-isomorphism for any locally quasihomogeneous 
divisor (not necessarily free). 

In fact, a similar argument shows that LCT holds for any locally weakly 
quasihomogeneous free divisor and a posteriori any such free divisor is Spencer 
(see Definition 12.2.7) (see [19, Remark 3.11] and [53, Remark 1.7.4], although 
the statement in [19, Remark 3.11] that any logarithmic differential form has a non 
negative weight is wrong). Namely, we have the following. 

Theorem 12.4.14 If .D ⊂ X is a locally weakly quasihomogeneous free divisor, 
then D satisfies the logarithmic comparison theorem. 

Proof By Theorem 12.4.7 (2–3), we need to prove that the complex . Ω•
X(log D)

(OX(−D))p is exact for any .p ∈ D. Since D is locally weakly quasihomogeneous, 
there are local coordinates .x1, . . . , xr , xr+1, . . . , xn centered at p, .r > 0, weights 
.(w1, . . . , wr , 0, . . . , 0), .wi > 0 for all .i = 1, . . . , r , and a reduced local equation f 
of D at p which is quasihomogeneous in these coordinates with .wt(f ) > 0. 

By the standard argument (see Lemma 3.3 in [50]), the complex 

. Ω•
X(log D)(OX(−D))p = f Ω•

X(log D)p

is homotopic to its weight zero subcomplex, and the theorem is a consequence of 
the following lemma. 
�
Lemma 12.4.15 Let f be a quasihomogeneous polynomial in . C{xr+1, . . . , xn}
[x1, . . . , xr ], of strictly positive weight with respect to weights . (w1, . . . , wr , 0,

. . ., 0) with .w1, . . ., wr all strictly positive. Then, for any .p > 0 and any non-zero 
quasihomogeneous logarithmic p-form . ω, we have .wtω > −wtf . 

Proof Since .f ω must be holomorphic, we know that .wtω � −wtf . We may  
assume .∂f/∂x1 �= 0 (i.e. f effectively depends on . x1). 

Suppose that . ω is a non-zero logarithmic p-form, and that .wtω = −wtf . Then, 
.α = f ω is a non-zero holomorphic p-form with .wtα = 0. That means that α only 
depends on the variables .xr+1, . . . , xn of weight 0: 

. α =
∑

r+1�i1<...<ip�n

αi1,...,ip (xr+1, . . . , xn)dxi1 ∧ . . . ∧ dxip .

Reordering the variables, we may assume .αr+1,...,r+p �= 0.
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Since . ω is logarithmic, the .p + 1-form .df ∧ω is holomorphic (this follows from 
the fact that .f ω and .f dω are holomorphic). The coefficient of . dx1 ∧ dxr+1 ∧ . . . ∧
dxr+p in .df ∧ ω, which must be holomorphic, is 

. 
αr+1,...,r+p

f

∂f

∂x1
.

So f divides .αr+1,...,r+p
∂f
∂x1

in the ring of power series .C{x1, . . . , xr , xr+1, . . . , xn}. 
However, f and .∂f/∂x1 are quasihomogeneous polynomials in . C{xr+1, . . . , xn}
[x1, . . . , xr ]. By equating homogeneous parts, we deduce that f also divides 
.αr+1,...,r+p∂f/∂x1 in .C{xr+1, . . . , xn}[x1, . . . , xr ]. Since . wt(∂f/∂x1) = wt(f ) −
wt(x1), this is impossible. 
�

A natural question is to characterize free divisors for which LCT holds. This has 
been done in [14] for plane curves, and more generally in [62, Cor. 1.8] and [54, Th.  
(4.7)] for Koszul free divisors. For general free divisors the following conjecture 
remains open [14, Conjecture 1.4]: 

Conjecture 12.4.16 Let .D ⊂ X a free divisor. If LCT holds for D, then D is 
strongly Euler homogeneous, i.e. for each .p ∈ D there is a local reduced equation 
of D at p and a germ of vector field . χ at p, singular at p, such that .χ(f ) = f . 

In [18, §3, 4] the authors provide an infinite family of free divisors for which 
LCT does not hold. Any divisor of this family is defined by a polynomial 

. fp,q = (x
p

1 − x
q

2 )

n∏

i=3

(x1xi + x2)

for .n � 3 and .3 � p < q. 

12.4.4 The Logarithmic Spencer Complex Revisited 

Recall that, see (12.4.2), for a free divisor D in a complex manifold X, the logarith-
mic Spencer complex .Sp•(log D) is a locally free resolution of the left .VD

X -module 
.OX [10, Th. 3.1.2]. We are going to describe the complex .DX ⊗

VD
X

Sp•(log D) in 

terms of a (local) basis .{δ1, . . . , δn} of the free .OX-module .Der(− log D). We can 
write 

.[δi, δj ] =
n∑

k=1

α
ij
k δk
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for .1 � i < j � n where .αij
k ∈ OX for .k = 1, . . . , n. We also have  

. DX ⊗
VD

X

Spp(log D) = DX ⊗
VD

X

VD
X ⊗OX

p∧
Der(− log D)

	 DX ⊗OX

p∧
Der(− log D)

for .p = 0, . . . , n, and we also denote .ε−p the differential of this complex of left 
.DX-modules. We denote this complex by .Sp•

DX
(log D). 

For .p ∈ N we denote . Λp := {(i1, . . . , ip) ∈ N
p | 1 � i1 < i2 < . . . <

ip � n}. The free left .DX-module . DX ⊗OX

∧p
Der(− log D) 	 ⊕

i∈Λp
DX ei

has rank .
(
n
p

)
with basis .{ei |i ∈ Λp}, for .p = 0, . . . , n. An isomorphism from 

.DX ⊗OX

∧p Der(− log D) onto .
⊕

i∈Λp
DX ei maps 

. 1 ⊗ δi1 ∧ · · · ∧ δip → ei.

For .p ∈ N and .i ∈ Λp we fix the following notations:

• The support of . i is .supp(i) = {i1, . . . , ip}.
• .supp(i) = {1, . . . , n} � supp(i).
• .i(̂k) := (i1, . . . , ik−1, ik+1, . . . , ip) ∈ Λp−1, for .1 � k � p.

• .i(k̂, �) := i(̂k)(�̂ − 1) ∈ Λp−2, .1 � k < � � p.
• .σ(q; i) := max{j ∈ {1, . . . , p} | ij < q} and .σ(q; i) = 0 if .q < i1.
• i( qq) = (i1, . . . , ik−1, q, ik+1, . . . , ip) ∈ Λp+1 for .k = σ(q; i) and . q ∈

{1, . . . , n} � {i1, . . . , ip}. 
The complex .(Sp•

DX
(log D), ε−•) can be written as the complex 

.(
⊕

i∈Λ• DX ei, ε̃−•) where 

. ̃ε−p :
⊕

i∈Λp

DX ei −→
⊕

j∈Λp−1

DX ej

is the morphism of left .DX-modules defined by

ε̃−p(ei) = 
p∑

k=1 

(−1)k−1δik ei(̂k) +
∑

1��<m�p 
(−1)�+m

∑

q∈supp(i(�̂,m)) 

(−1)σ(q;i(�̂,m)) αi�im 
q ei(�̂,m)( qq). 

Notice that the complex .(
⊕

i∈Λ• DX ei, ε̃−•) can be viewed as a non commutative 
version of a Koszul complex.
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Let us write down an example for .n = 3. 
One has: 

. 

ε−1(ei) = δi for i = 1, 2, 3,

ε−2(eij ) = δiej − δj ei −
3∑

q=1

α
ij
q eq for 1 � i < j � 3,

ε−3(e123) = δ1e23 − δ2e13 + δ3e12 + (α13
1 + α23

2 )e12

+ (−α12
1 + α23

3 )e13 + (−α12
2 − α13

3 )e23

= (δ3 + α13
1 + α23

2 )e12 + (−δ2 − α12
1 + α23

3 )e13 + (δ1 − α12
2 − α13

3 )e23.

12.4.5 The Annihilator Ideal of 1/f for a reduced equation f 
of a normal crossing divisor in Cn 

Write .D = DCn,0 and .f = x1 · · · xr for .1 � r � n. One has the following equality 

. AnnD(1/f ) = D(∂r+1, . . . , ∂n, x1∂1 + 1, . . . , xr∂r + 1).

Since the inclusion .An := An(C) ⊂ D is flat, it is enough to prove a similar equality 
for the Weyl algebra . An instead of . D. The inclusion 

. An(∂r+1, . . . , ∂n, x1∂1 + 1, . . . , xr∂r + 1) ⊂ AnnAn

(
1

f

)

is obvious since each generator of the first ideal annihilates .1/f . To prove the 
opposite inclusion, let us assume first .1 = r = n and write .x = x1 and .∂ = ∂x . First 
of all, any .P = P(x, ∂) ∈ A1 can be written as 

. P = Q(x∂ + 1) + R + S

for unique .Q ∈ A1, .R := R(x) ∈ C[x] and .S := S(∂) ∈ C[∂](∂). If .P( 1
x
) = 0 and 

.S(∂) is not zero with order .s � 1, then .R
x

+ S(∂)( 1
x
) = 0 which is a contradiction 

since the order of the pole of the rational function .
R
x

+S(∂)( 1
x
) is .s +1. Then . S = 0

and then .R = 0 and .P ∈ A1(x∂ + 1). The general case .1 � r � n can be reduced 
to .r = n by taking, for any operator P annihilating . 1

x1···xr
, the remainder of the 

division of P by .∂r+1, . . . , ∂n. Finally, for the case .r = n we proceed by division of 
an operator P annihilating . 1

x1···xn
, with respect to .∂1x1, . . . , ∂nxn. 

The .D-module criterion for LCT gives another proof that LCT holds for normal 
crossing divisors. Indeed, any such divisor .D ≡ (x1 · · · xr = 0) ⊂ C

n is Koszul 
free and then the complex .D ⊗VSp•(log D) is concentrated in cohomological
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degree 0 and .D⊗VO is locally presented as the quotient . D/D(∂r+1, . . . , ∂n, x1∂1 +
1, . . . , xr∂r + 1), since .{x1∂1, . . . , xr∂r , ∂r+1, . . . , ∂n} is a basis of .Der(− log D). 
Finally, one has 

. 
D

D(∂r+1, . . . , ∂n, x1∂1 + 1, . . . , xr∂r + 1)
	 Df −1 = O(�D).

The last equality follows from the well-know fact that the (global) Bernstein-Sato 
polynomial of .f = x1 · · · xr is .(s + 1)r . 
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