
A Bi-directional Attribute
Synchronization Mechanism for Access

Control in IoT Environments

Bruno Cremonezi1, Luciano F. da Rocha2, Alex B. Vieira2, José Nacif3,
André L. de Oliveira2, and Edelberto Franco Silva2(B)

1 Federal University of Paraná - UFPR, Curitiba, Brazil
2 Federal University of Juiz de Fora University - UFJF, Juiz de Fora, MG, Brazil

edelberto@ice.ufjf.br
3 Federal University of Viçosa - UFV, Viçosa, Brazil

http://edelbertofranco.ice.ufjf.br

Abstract. The Attribute-Based Access Control (ABAC) model is widely
used for IoT due to its capacity to express access policies through
attributes, making this method granular and flexible. However, if we
assume that attributes are essentially mutable, the irreducible network
latency and the architectures proposed to acquire a better communication
performance of the IoT expose the point where those policies are evaluated
as outdated attributes. Therefore, access policies can be wrongly evalu-
ated, resulting in consistency and security problems. In this paper, we pro-
pose a method to reduce this exposure through a bi-directional attribute
synchronization capable of mapping all attributes and evaluating their
current consistency after a change. If the modified attribute does not affect
the access, it will remain valid. Otherwise, a revocation occurs, reducing
the risks of unintended accesses. Our modeling allows demonstrating the
correctness of our method and its capability to revoke every unintended
access that may occur after an attribute change.

Keywords: IoT · Access Control · ABAC · Age of Information ·
UPPAAL

1 Introduction

The Internet of Things (IoT) is a technological trend in which common everyday
objects are now equipped with sensing and communication capabilities. There-
fore, the so-called IoT devices are becoming increasingly popular in our lives
and today form a hyper-connected ecosystem of devices, enabling the emergence
of several revolutionary applications on the market [9]. Although the benefits
of this hyper-connected ecosystem to society with the provision of applications
that enable automation, convenience, and effectiveness for everyday tasks, it also
raises several concerns regarding the security and privacy of its users [18].

IoT devices are present in all sectors of our lives, collecting, accessing,
and transferring information, often confidential or critical. Therefore, ensuring

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023

Published by Springer Nature Switzerland AG 2023. All Rights Reserved

J. Taheri et al. (Eds.): MobiCASE 2022, LNICST 495, pp. 75–88, 2023.

https://doi.org/10.1007/978-3-031-31891-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31891-7_6&domain=pdf
http://orcid.org/0000-0002-0058-9260
https://doi.org/10.1007/978-3-031-31891-7_6

76 B. Cremonezi et al.

that such information is not transferred to malicious locations and/or individ-
uals, authentication and access control are essential and critical tasks for IoT
devices [18]. Concerning access control, the attribute-based model (ABAC) is
widely adopted in IoT applications due to its flexibility and expressiveness [16].
In an access control model, access decisions are taken based on identification
attributes assigned to people, objects, or environments present in a hyper-
connected IoT ecosystem against a previously defined access policy [6]. How-
ever, attributes and policies are mutable, and ideally, the entity that evaluates
the access policy, i.e., the decision point, should have all these values in real-time.
In practice, keeping all these values in real-time at the decision point is unfeasi-
ble. Because, even though the attributes and access policies can be accessed in
real-time, there is an irreducible latency of the network that introduces a risk
that some values arrive outdated at the decision point [12]. Moreover, in order
to improve authorization performance, by avoiding sending attribute and pol-
icy query requests over the network, attributes and policies are usually stored
in caches, whose values could be outdated when requested. Therefore, due to
the irreducible latency of the network or outdated caches, some access decisions
taken may be incorrect, leading to security and consistency problems [12].

In this paper, we investigate the problem of security and consistency in an
IoT environment concerning the attributes of users and objects. As a first step to
address this problem, we propose an attribute mapping model, a bi-directional
synchronization model for all attributes, and a model capable of determining
the consistent state of the attributes in the network to determine whether the
access remains valid or must be revoked after an attribute update. Here, we
used two approaches: if the access remains valid, an access update is performed,
keeping its validity for the previously established time window; in case the access
becomes invalid, its revocation occurs immediately. It is important to highlight
although the consistency problem is extensively explored in practice, this work
explores the formal modeling of this problem through timed automata. We seek
to demonstrate the correctness of the proposal and its ability to deliver correct
accesses at the end of a given execution.

The remainder of this work is organized as follows: Sect. 2 presents related
works. Section 3 describes the bi-directional attribute synchronization method.
Section 4 details the evaluation methodology. Section 5 discusses the results
obtained. Finally, Sect. 6 presents conclusions and future directions.

2 Related Work

The security and consistency problem considered in this work can be addressed
through a quick update of the attributes at the decision point. Within this scope,
there is a number of studies addressing the issue of consistency in distributed
systems, ranging from classic [1,5] to contemporary [11,15] methods. As high-
lighted by [17], many access control models are not fully compatible with the
assumptions of distributed systems, being directed to more static environments
or using reactive queries to attributes and policies.

Access Control in IoT Environments 77

Considering ABAC as an access control method, we have that it has premises
of distributed environments due to its flexibility and granularity. Thus, we keep
the focus on this access control model and its related work regarding consistency
definition and credential updates. The previous related work closest to the stud-
ied concept is by Lee and Winslett (LW) [13,14]. Although the work of [17] is
inspired by the previous one, a new perspective is considered since it evaluates
the updating and not the revocation of a policy. On the other hand, our proposal
evaluates the updating and consistency of attributes for use in ABAC applied to
IoT and computational fog. In this paper, we propose the evolution and creation
of a new research topic related to the investigation introduced by [17]. Our work
is one of the first to evolve the concept of update and consistency operation for
attributes in a distributed access policy scenario.

3 Assumptions and System Modeling

This work operates under the eXtensible Access Control Markup Language
(XACML) standard. We chose XACML by being a consolidated authorization
standard and explicitly defined for the access control model ABAC [3]. XACML
offers specifications that cover all ways of using ABAC, from policy definitions
to architecture, to support this model. Moreover, several related works available
in the literature point to the XACML model as suitable to be used in an IoT
scenario [7]. To illustrate it, Fig. 1 presents a diagram with the entities speci-
fied by the XACML model and the order of messages exchanged between them.
According to the XACML model, four entities are needed to implement ABAC:
Policy Enforcement Point (PEP), Policy Decision Point (PDP), Policy Infor-
mation Point (PIP), and the Policy Administration Point (PAP). In this work,
access policies are considered immutable. However, it is important to note that
the entity responsible for updating and distributing such policies to the PDPs
is PAP (0) [16].

Fig. 1. XACML architecture.

78 B. Cremonezi et al.

In Fig. 1, when a given IoT user wants to access a given object, e.g., per-
forming a reading operation on a device, the PEP intercepts this request (1) and
generates an authorization request which is forwarded to the PDP (2). However,
to assess whether or not this access should be authorized, the PDP looks for an
access policy previously stored through the PAP and queries which attributes
are needed to evaluate this policy through the PIP (3). Based on the policies
and attributes, the PDP evaluates the access and sends its decision to the PEP
(4), which allows or not the access of the user (5) [16].

Users, Attributes and Policies: In this work, for convenience, the term user is
used to determine something/someone that requests access to a certain compu-
tational resource. However, it is important to note that a user could be a person,
service, application, or even another IoT device. Regardless of the nature of the
user, it is assumed that he/she has one or more identities with a set of attributes
that describe them. Usually, in large applications - and even in medium-sized
applications - it is common for the user to have several identities that represent
him/her stored into several different locations [10]. The attributes of identities
are mutable and vary between discrete values. Regarding access policies, this
work uses immutable policies divided into rules. Each rule presents a set of
attributes and the values they must have to determine if an access is valid or
not. If any policy rule is satisfied, the access is valid. Otherwise, if all rules are
not satisfied, the access is considered invalid [12].

PIP, PAP, and PDP: This work operates under an ABAC authorization envi-
ronment with multiple authorities. It is assumed that there are multiple PDPs,
PEPs, and PIPs distributed over a large geographic area, which serve access
requests from various IoT entities. This scenario is quite common in many appli-
cations to improve the performance of the authorization process [16]. Addition-
ally, this work determines that the PIP is segmented in a network arranged in
a tree topology. The root node represents an extensive repository of attributes
capable of storing the attributes of all IoT entities, and the nodes below, in
turn, represent the attribute caches commonly used to obtain better authoriza-
tion performance and store sub-sets of attributes. The details of the operation
of this PIP located in the root are described in the next section.

Request-Response Attribute Template: Figure 2 illustrates the architecture
proposed in this work, in which several IoT entities access each other and request
authorizations from the PDPs. Note that when the PEP intercepts an access
request, it is forwarded to one of the multiple PDPs, which in turn requests the
attributes necessary for policy evaluation. Assuming that the PIP is segmented
in a network arranged in a tree topology, the attribute request goes through
multiple caches toward the root in order to find the requested attributes. If any
cache has the attribute, they are sent directly through them. Otherwise, this
request reaches the root of the tree that responds to attributes with a high
latency [8].

Access Control in IoT Environments 79

Fig. 2. Architecture of the authorization system

3.1 Problem Formulation

Managing people’s attributes, IoT devices, and applications is an essential and
challenging task as attributes can change frequently. For example, suppose a user
accesses information from IoT devices related to multiple academic projects. This
user can change position, join new projects, change location, etc. Similarly, new
devices can be added to projects, other devices can be removed, and many other
changes can happen. All these changes, although seemingly minor, can pose a
significant challenge when using multiple PIPs to store identities. Assuming the
ABAC operates in an environment with multiple authorities and several PIPs,
for every access that occurs, an attribute query must be performed to determine
whether the access is valid or not. However, as attributes are changeable over
time and the PIP is segmented into a network arranged in a tree topology, all
attributes must be updated in all caches consistently in the tree. Or, if access was
previously wrongfully allowed, it must be revoked. Therefore, our main objective
is to limit PDP exposure to outdated attributes, update them consistently and
ensure that current and future accesses occur securely.

80 B. Cremonezi et al.

4 Bi-directional Attribute Synchronization Mechanism

In this section, the bi-directional attribute synchronization mechanism is pre-
sented. Basically, it discusses how to map and synchronize all user attributes in
multiple PIPs. The purpose of our method is to allow centralized control of user
attributes among several caches of attributes. For this, for each attribute present,
the method maps its location and that of its copies, which maintains strict con-
trol over the current state of consistency of the system and, consequently, reduces
the exposure of PDPs to outdated attributes. In general, even though the PIP is
segmented in a network arranged in a tree topology, our method is able to offer a
synchronized PIP across its entire network to allow a consistent environment of
attributes. Therefore, through the proposed mechanism, it is possible to ensure
that all attributes are correctly mapped and synchronized with the rest of the
network.

4.1 Attribute Mapping

In our system model, the attributes and several copies of attributes are dis-
tributed in a PIP segmented in a network arranged in a tree topology. In order
to make this PIP consistent, it is assumed that the root node of the PIP tree
has a controlling role for the attributes. In this work, this entity is named as
attribute manager. In other words, its objective, besides offering attributes, is
to monitor its copies spread across the network and keep them updated. There-
fore, the root contains an updated database with all attributes and provides
a global and combined view of all attributes. To illustrate its function, Fig. 3
presents an example of its usefulness. Note that the left PIP (1) has the iden-
tity with the identifier “user01” and this identity has the attribute “name” with
the value “Alex”. Similarly, the PIP on the right (2) also has the identity with
the identifier “user01”, however, instead of the “name”, this identity has the
attribute “position” with the value “Professor”. As many PIPs do not have the
full view of users and attributes may be missing in others, the attribute man-
ager allows an overview of the user. Therefore, the attribute manager has the
attributes of both identities and creates a complete identity with the attributes
“name” and “position”. In addition, the attribute manager creates a base that
points out in which PIPs the identity is stored. If this identity is removed from
cache PIPs or added to others, these PIPs must send an attribute map update
message to the manager.

4.2 Attribute Synchronization

As attributes are mutable, any PIP can perform an attribute update operation.
However, to reflect this change in other PIPs, it is needed to perform attribute
synchronization. In this work, we propose the mechanism of the bi-directional
synchronization of attributes. It has this name because, at first, it is sent to the
attribute manager (update occurs “up”), and the manager, from its attribute
map, updates all caches (update occurs down). To exemplify this process, Fig. 4

Access Control in IoT Environments 81

Fig. 3. Attribute Mapping

illustrates an attribute update. Assume that user “user01” has its identity repli-
cated in both PIPs (1 and 2). Assume that, due to some operational change, this
user’s title changed from “teacher” to “researcher” and this change occurred in
PIP 2. (a). PIP 2. forwards this change to the attribute manager (b), which
updates the global view of the system (c). After updating the global view, it
searches its attribute map in which PIPs this attribute was stored and updates
them (d).

Fig. 4. Attribute Synchronization

It is important to note that the synchronization process takes place through
an essential operation. There is a PIP, which is the source of the change (i.e.,
the PIP where an attribute was changed), and a PIP, which is the target of the

82 B. Cremonezi et al.

change (PIP where the change will be propagated). Note that the map serves as
a guide for this operation. Every PIP that acts as cache has a map that points to
the attribute manager, and the manager, in turn, has a map with all the caches
that attribute is present. Although it is not the focus of this paper, and we
will not address a distributed way of managing attributes, our proposal allows
PIPs cache to replicate attributes among themselves and map their replicas for
a possible update, in case the system needs more performance and a distributed
spread.

It is also worth mentioning that, in our method, it is considered that the
attribute manager is capable of providing a correct mapping of the location
of all attributes. Therefore, as long as there are no network failures or difficulties
in sending messages, our method guarantees that the attributes are synchronized
in the cache PIPs and, consequently, in the decision points for decision-making
and access revalidation. However, there is no guarantee that these attributes were
not modified or attacked in the cache PIPs. However, this scenario is considered
outside the scope of this work.

4.3 Access Revalidation

In this work, it is assumed that when a PDP makes an access decision, it main-
tains a history of this permission (P), which shows which access rule was met and,
consequently, which attributes were used to make the decision (P = a1, a2, ...).
Therefore, after an attribute change, the PIP announces a change to the PDP,
and the accesses are re-evaluated. In this job, permissions have three states:
valid, unknown, and revoked. Therefore, instead of evaluating the entire access
policy, only the permission is first evaluated.

Fig. 5. Access Revalidation

When taking into account, the mutability of attributes, Fig. 5 illustrates how
the permissions state change when the decision point receives a message that
informs it that a particular attribute has been updated. If the attribute does not
change permission, i.e., the modified attribute is not used in that permission,
the access permission will remain valid. If the attribute is used, but the result of
that access rule’s decision does not change, the permission will also remain valid.
If the attribute affects the access permission in such a way that the rule that
granted it permission becomes invalid, this access will not become invalid, but
unknown. For these cases, the entire access policy must be re-evaluated through

Access Control in IoT Environments 83

the new attribute. If any other rule of the access policy is satisfied, this access
permission returns to the valid state and is updated with the new rule that
satisfies it. If the access no longer satisfies any other rule, an access revocation
occurs, which is immediately communicated to the PEP, which suspends the
user’s access to the resource.

5 Results

For the evaluation of the proposed bi-directional synchronization mechanism of
attributes, we carried out a formal verification through timed automata. Con-
ceptually, timed automata is a generalization of finite automata to a continuous-
time domain. In addition to the traditional transitions and states, the automaton
also has a finite number of real variables, called clocks, whose values increase
with derivative 1 concerning the passage of time. Each automaton transition can
be constrained by clock values and can only occur if a particular condition is
satisfied. In general, no clock modification operations exist except for the reset
operation. Moreover, it is also important to note that the value of a clock can
only be compared against rational constants and not against the value of other
clocks [2].

5.1 The UPPAAL Tool

The UPPAAL [4] tool allows system modeling by defining several basic automata
in an editor. In addition, the tool has a system trajectory simulator and an
automatic property verification module. The verification module uses algorithms
and data structures available in the literature to perform a model-checking of
the system, which is a Cartesian product of basic automata, against properties
expressed in a subset of TCTL logic (Timed Computation Tree Logic).

In TCTL logic, conceptually, the quantifier A denotes “for every trajectory”,
while the quantifier E denotes “there is a trajectory”. For analysis, these quanti-
fiers must be combined with the quantifiers <> and [], which denote, respectively,
“in some state of the trajectory (eventually)” and “in all states of the trajec-
tory”. Therefore, the UPPAAL tool can present in its simulator an example and
a counter-example of a given expression ϕ when a property of type E <> ϕ is
true (example) or when a property of type A[]ϕ is false (counter-example). For
the present work, we only used the basic properties of reachability expressed by
the predicate E <> ϕ, which denotes the existence of a trajectory in which the
formula ϕ becomes valid at some future time.

5.2 Scenario and Models

This work considers an IoT application in which a user requests access to several
devices - such as thermostats, for example - in different locations [17]. Consider
the scenario in Fig. 6 for illustrative purposes. Suppose Alex is a newly hired
teacher and is located near PEP (1). Your identity has 3 attributes: Role, Trust,

84 B. Cremonezi et al.

and Location. At an instant of time t1, he started working, and his identity was
pegged with the lowest trust level, for example, the value 1. In this application,
an access policy denies users all operations on the IoT device if its trust level is
1. After some time, a top Alex user updates his trust level to the value 2 on the
base PIP (1). At that moment, Alex performs access at the time instant t2 and
is allowed, for example, to turn the device on/off. Now suppose Alex changes his
location to PEP(2). If the update level attribute has been synchronized with the
PIP (2), Alex will be able to perform access at the instant t3. Otherwise, the
access will be denied incorrectly. This work enumerates the conditions for this
access to be incorrectly denied. This situation is modeled below.

Fig. 6. Evaluation scenario

The automaton shown in Fig. 7 models the scenario shown in Fig. 6. This
automaton controls user behavior and offers the action of requesting access
(CLIENT PLEASE REQUEST ACCESS), updating the attributes of an iden-
tity (PIP PLEASE CHANGE ATTRIBUTES) and changing the location by the
of a user (CLIENT PLEASE CHANGE LOCATION). It is important to note
that the “!” and “?” are synchronism between the automata. Simply put, a tran-
sition with the “?” implies a transition waiting for synchronization, whereas a
transition with the operator “!” activates synchronization.

For all communication that occurs between users and XACML entities,
we model sending (SENT) and receiving messages (RECEIVED) through
an automaton that models the communication channel (Fig. 8). For every
message sent (SENT), the communication channel implies a communica-
tion delay that causes a specific time instant t to pass. Only then does the
other entity receive it (RECEIVED). For example, in our channel, when
an access request is sent to the PEP, the channel synchronizes this mes-
sage (ACCESS REQUEST SENT[e]?), waits an instant of time t, and only
then forwards this message to the PEP via the synchronization message
(ACCESS REQUEST RECEIVED[channel]!). Note that all messages shown
in Fig. 1 are modeled in this channel through ACCESS REQUEST, DECI-
SION REQUEST, ATTRIBUTE REQUEST, ACCESS RESPONSE, DECI-
SION RESPONSE, ATTRIBUTE RESPONSE synchronizations. Furthermore,

Access Control in IoT Environments 85

Fig. 7. Automate - Evaluation Scenario

the synchronization of updated attributes in a given PIP with the attribute
manager is modeled in the GA SYNC ATTRIBUTE message.

Fig. 8. Automate - Communication channel

Figure 9 illustrates the automaton that models the PEP. When intercepting a
client access request (ACCESS REQUEST RECEIVED), the automaton sends
a decision request (DECISION REQUEST SENT) to the PDP and waits for
the PDP to respond. After responding (DECISION RESPONSE RECEIVED),
the PEP interprets the PDP response and sends it to the client
(ACCESS RESPONSE SENT).

Figure 10 illustrates the automaton that models the PDP. Upon
receiving a decision request from the PEP (DECISION REQUEST
RECEIVED), the automaton sends to the PIP an attribute request
(ATTRIBUTE REQUEST SENT) and waits for the PIP to respond. After the
PIP sends the requested attributes (ATTRIBUTE RESPONSE RECEIVED),

86 B. Cremonezi et al.

Fig. 9. Automata - PEP

the PDP evaluates the access policy and sends its decision to the PEP (DECI-
SION RESPONSE SENT). It is important to note that, throughout its oper-
ation, the PDP can be requested to re-evaluate access after changing a spe-
cific attribute, updating unaffected accesses, and revoking incorrect accesses
(CHECK ACCESS PDP) as presented in Sect. 4.3.

Fig. 10. Automate - PDP

Figure 11 illustrates the automaton that models the PIP. Its main func-
tion is to wait for an attribute request (ATTRIBUTE REQUEST RECEIVED)
and respond appropriately (ATTRIBUTE RESPONSE SENT). In this work,
as the attribute is mutable, its change occurs directly in the PIP
(PIP PLEASE CHANGE ATTRIBUTE) and triggers the sending of a message
to the attribute manager to start the synchronization process. It is important to
note that when the PIP receives a synchronization message from the attribute
manager (SYNC PIP), it sends the PDP a request to reassess the accesses
(CHECK ACCESS PDP).

Finally, to close the models, Fig. 12 presents the automaton that represents
the attribute manager. In general, its main function is to wait for attribute syn-
chronization requests (GA SYNC ATTRIBUTE RECEIVED) from a PIP and
send the request to the other PIPs where the attribute is mapped (SYNC PIP).

5.3 Formal Verification of Models

To start the formal verification of our model, we define three basic properties
to be achieved. In the first moment, we want to verify if the model is free of
stops and correct. Therefore, the following expression was used: E <> deadlock.
In our tests, the time limit was 30 min, and we could not find any unexpected
stops. While this does not prove that the model is free of deadlocks, it indicates
that it is correct. Our second expression was used to check the existence of

Access Control in IoT Environments 87

Fig. 11. Automate - PIP

Fig. 12. Automate - Attribute Manager

improper accesses at the instant t3. For this, the following expression was used:
E <> PEP [2] · invalidAuthorization(). Translating it: “Is there a trajectory
where there is invalid access in PEP 2?”. In this case, the simulator pointed
it out as true and presented several examples in which if the synchronization
process occurs after the access request in PEP 2, this access is granted incorrectly.
Therefore, to verify that our method revokes these accesses correctly, we use the
third expression: E <> PEP [2] · invalidAuthorization() && SCENARIO ·
END. In this case, the simulator pointed out this expression as false. As much
as there exist accesses that may have been granted improperly, at one point, our
method is capable of re-validate them, and, at the end of the verification, there
is no invalid access. Thus, we demonstrated that our method, at some point, can
recognize improper access and revoke it correctly.

6 Conclusion

This work presented a study of real-time aspects of the bi-directional syn-
chronization method of attributes through its modeling and verification in the
UPPAAL tool. We used the Timed Automata formalism and assumed a perfect
channel model to carry out a complete verification of the protocol that allowed us
to identify situations and conditions for improper access. However, at the same
time, our verification demonstrated that all unauthorized accesses at the end of
the simulation were revoked. The results point to two directions for future work.
On the one hand, it would be interesting to implement a distributed version of
our method since, as much as our centralized approach removes the consistency
problem, it can lead to scalability and fault tolerance problems. Moreover, we

88 B. Cremonezi et al.

chose to use a perfect communication channel in this work. Although this demon-
strated how our method works, to verify its correctness in a real environment,
it is necessary to explore its behavior when messages are delayed, lost, and in
other situations.

References

1. Adya, A.: Weak consistency: a generalized theory and optimistic implementations
for distributed transactions. Ph.D. thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and . . . (1999)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

3. Anderson, A., et al.: extensible access control markup language (XACML) version
1.0. OASIS (2003)

4. Behrmann, G., et al.: UPPAAL 4.0 (2006)
5. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database sys-

tems. ACM Comput. Surv. (CSUR) 13(2), 185–221 (1981)
6. Bezawada, B., Haefner, K., Ray, I.: Securing home IoT environments with

attribute-based access control. In: Proceedings of the Third ACM Workshop on
Attribute-Based Access Control, pp. 43–53 (2018)

7. Caserio, C., Lonetti, F., Marchetti, E.: A formal validation approach for XACML
3.0 access control policy. Sensors 22(8), 2984 (2022)

8. Cremonezi, B., Gomes Filho, A.R., Silva, E.F., Nacif, J.A.M., Vieira, A.B.,
Nogueira, M.: Improving the attribute retrieval on ABAC using opportunistic
caches for fog-based IoT networks. Comput. Netw. 213, 109000 (2022)

9. Dian, F.J., Vahidnia, R., Rahmati, A.: Wearables and the internet of things (IoT),
applications, opportunities, and challenges: a survey. IEEE Access 8, 69200–69211
(2020)

10. Garbis, Jason, Chapman, Jerry W..: Identity and access management. In: Garbis,
J., Chapman, J.W. (eds.) Zero Trust Security, pp. 71–91. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-1-4842-6702-8 5

11. Harding, R., Van Aken, D., Pavlo, A., Stonebraker, M.: An evaluation of distributed
concurrency control. Proc. VLDB Endow. 10(5), 553–564 (2017)

12. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations (draft). NIST Spec. Publ. 800(162), 1–54 (2013)

13. Lee, A.J., Winslett, M.: Safety and consistency in policy-based authorization sys-
tems. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 124–133 (2006)

14. Lee, A.J., Winslett, M.: Enforcing safety and consistency constraints in policy-
based authorization systems. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(2), 1–33
(2008)

15. Perrin, M.: Distributed Systems: Concurrency and Consistency. Elsevier, Amster-
dam (2017)

16. Ravidas, S., Lekidis, A., Paci, F., Zannone, N.: Access control in internet-of-things:
a survey. J. Netw. Comput. Appl. 144, 79–101 (2019)

17. Shakarami, M.: Operation and administration of access control in IoT environ-
ments. Ph.D. thesis, The University of Texas at San Antonio (2022)

18. Tawalbeh, L., Muheidat, F., Tawalbeh, M., Quwaider, M., et al.: IoT privacy and
security: challenges and solutions. Appl. Sci. 10(12), 4102 (2020)

https://doi.org/10.1007/978-1-4842-6702-8_5

	A Bi-directional Attribute Synchronization Mechanism for Access Control in IoT Environments
	1 Introduction
	2 Related Work
	3 Assumptions and System Modeling
	3.1 Problem Formulation

	4 Bi-directional Attribute Synchronization Mechanism
	4.1 Attribute Mapping
	4.2 Attribute Synchronization
	4.3 Access Revalidation

	5 Results
	5.1 The UPPAAL Tool
	5.2 Scenario and Models
	5.3 Formal Verification of Models

	6 Conclusion
	References

