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Chapter 1
An Introduction to Mathematics Teaching 
and Learning in the Elementary 
and Middle School Years

Donna Kotsopoulos , Adam K. Dubé , and Katherine M. Robinson 

Abstract This edited collection focuses on interdisciplinary approaches to under-
standing teaching and learning during the elementary and middle school years. The 
elementary and middle school years are a formative period in children’s mathemati-
cal learning making effective teaching critical for mathematical success during this 
period and later. The collection encompasses international perspectives from the 
fields of mathematics education, mathematical development, and cognition utilizing 
relevant disciplinary theoretical orientations and methodologies. In this chapter we 
introduce Part I which focusses on innovative pedagogical approaches to teaching 
and Part II which focusses on important methods and factors relating to mathemati-
cal learning. The collection highlights both key developments in research but also 
on how research can be best put into practice.
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1.1  An Introduction to Mathematics Teaching and Learning 
in the Elementary and Middle School Years

There is an enduring need in research to undertake interdisciplinary theories and 
methodologies to understand mathematical teaching and learning. Practical and 
effective recommendations for teachers, parents, schools, and policy makers are 
always needed. As an example, consider a teacher supporting a student in the fourth 
grade who is struggling with multiplication. The teacher has used a variety of peda-
gogical approaches to support teaching and learning based on their understanding of 
how to teach multiplication, but to no avail. The student is still not grasping the 
concepts. This approach of trial and error pedagogy is not uncommon in classrooms 
and in homes as teachers, caregivers, and parents alike often find themselves strug-
gling to support learners of all ages. What might the research say about how to sup-
port mathematical teaching and learning given a student’s challenges? Cognitive 
science may offer a perspective related to cognitive load. Educational neuroscience 
might illustrate why certain approaches are not productive because of the way neu-
ral pathways are activated. Educational psychology may offer perspectives related 
to motivation or learning theories. Developmental psychologists may offer a per-
spective related to working memory. This simple example illustrates the immense 
complexities of understanding teaching and learning in mathematics – especially 
when there are challenges. The complexities underscore the importance of interdis-
ciplinary approaches for understanding teaching and learning of mathematics.

This edited collection, focuses on interdisciplinary approaches to understanding 
teaching and learning during the elementary and middle school years. It is an exten-
sion of our edited collection, Mathematical learning and cognition in early child-
hood: Integrated interdisciplinary research (Robinson et al., 2019). The aim of this 
earlier book was to advance the sometimes disparate perspectives of education, 
developmental psychology, educational psychology, mathematics, cognitive sci-
ence, and neuroscience. The focus was on early childhood and covered the pre-
school and early school years. The success of this book was undoubtedly linked to 
the dearth of interdisciplinary perspectives and the recognition of the importance of 
mathematical learning in the early years. These were also motives for us to continue 
advancing these perspectives. Like our first edited collection, this book will be rel-
evant to scholars/educators in the field of mathematics education and also those in 
mathematical development and cognition. Each chapter also includes practical rec-
ommendations and implications for teachers, parents, caregivers, school, and policy 
makers. This edited collection brings together interdisciplinary and international 
perspectives and includes contributions from esteemed scholars from various fields 
of knowledge, theoretical orientations, and methodologies. The book is organized in 
two sections. Part I focuses on the pedagogical approaches to teaching. Part II 
focuses on mathematical learning.

A focus on the elementary and middle school years, in addition to being a natural 
extension to the first edited collection focused on the early years, is a developmen-
tally significant period for teaching and learning of mathematics. Children who fall 

D. Kotsopoulos et al.
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behind during these years are at significant risk for later difficulties in more advanced 
mathematics including algebra and calculus (Lee & Mao, 2020; McEachin et al., 
2020). Falling behind in mathematics during the elementary and middle school 
years leaves children at risk of limitations for their educational attainment and then 
vocational options (Dougherty et al., 2017). This collection approaches this issue by 
taking diverse disciplinary perspectives on how children are taught mathematics 
and how they learn mathematics. Contributing researchers across multiple disci-
plines are increasingly turning their attention to elementary and middle school 
mathematics and investigating typically developing children as well as children 
with or at-risk of learning disabilities. This edited collection makes a significant and 
needed contribution to current knowledge for both researchers and educators in 
the field.

Our edited collection begins in Part I with a focus on teaching in Chap. 2. Alibali, 
Bartel, and Yeo begin their chapter with what they describe as an “ordinary moment” 
in a classroom where a teacher presents a diagram and uses gestures during instruc-
tion. Their chapter reviews literature on the role and use of diagrams and gestures 
by teachers to guide students’ attention. These scholars from the US and Singapore 
show that teachers use both to schematize-specific features of mathematical prob-
lems or tasks, such as important elements and structural relations. More impor-
tantly, the use of these supports increases the likelihood that students encode those 
features and supports student performance and learning.

In Chap. 3, Polotskaia, Savard, Fellus, and Freiman focus on teaching strategies 
that inform student’s approaches to solving word problems. In the chapter, they 
outline a rationale for the Equilibrated Development Approach (EDA) to word 
problem solving and provide its principles and epistemological stance. The authors 
share examples of original teaching-learning activities fostering students’ mathe-
matical thinking and sense making in solving word problems, as well as classroom 
observations. Their discussion highlights the intersection point of mathematics edu-
cation, educational psychology, learning theories, and studies in neuro-education to 
demonstrate how the EDA approach coalesces insights garnered from these diverse 
study areas to constitute an innovative way of teaching word-problem solving in 
elementary school.

In Chap. 4, LeSage and Mamolo describe research that focuses on the tensions 
of teaching mathematics for social justice. The authors describe the experiences of 
a Canadian educated middle school teacher’s attempts to introduce socially relevant 
project-based teaching while teaching in a South American international school. 
The authors explore and analyse the tensions the teacher experienced as she navi-
gated the competing perspectives and expectations of the school community. This 
chapter offers insights into the uncertain journey of curricular change.

The theme of social justice in teaching and learning continues in Chap. 5. Italian 
scholars, Morselli and Robotti, engage in design-based research to design and 
implement inclusive activities for the teaching and learning of algebraic proof. 
These scholars draw from a combination of interdisciplinary theoretical tools and 
references from neuroscience, cognitive science, education, and mathematics edu-
cation. With a focus on Universal Design for Learning principles, they detail how to 
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design inclusive educational activities to improve and optimize teaching and learn-
ing for all students.

Part I concludes with Chap. 6 from Dickson, Kotsopoulos, and Musio who 
explore a board-wide professional development (PD) initiative aimed at improving 
mathematical achievement. Where many studies focus on teacher learning through 
PD, their research emphasize student learning from PD. The importance of sus-
tained PD as opposed to “one-off” efforts were emphasized.

In Part II, our attention shifts to mathematical learning and the learner. Alam and 
Dubé in Chap. 7 turn our attention to the home environment. These researchers 
describe the Digital Home Numeracy Practice (DHNP) Model and detail its compo-
nents. They explore the affect of digital factors on middle school children’s mathe-
matics practice. The model addresses how different aspects of family, such as 
parental factors (e.g., socio-economic situation, mathematics attitude and beliefs), 
children’s factors (e.g., cognition, motivation, and self-regulation in general, and 
mathematics attitude in specific) and parent-child relationship may contribute to 
children’s digital mathematics learning.

Woods in Chap. 8 describes “number talks” where teachers encourage students 
to mentally solve mathematics problems and then come together as a class to share 
their mathematical reasoning through whole class and small group discussion. The 
chapter highlights how a teacher leverages number talks to support students to (a) 
develop agency, (b) distribute authority, and (c) share mathematical reasoning. 
Mental computations were found to play an important role.

In Chap. 9, Anchan and Soylu present evidence-based recommendations for 
teaching mathematics to bilingual and multilingual middle school children. 
Classroom recommendations were developed drawing on psychological and neural 
mechanisms of bilingual mathematical learning and cognition, as well as sociocul-
tural issues and implications for classroom practice. Key recommendations for 
practice include techniques such as code switching. Additionally, there is a discus-
sion about the need for changes in teacher training and educational policy-making 
in order to increase awareness about bilingual children’s needs.

Gontijo and Fonseca focus on mathematical creativity in 5th grade students in 
Chap. 10. The authors describe primary classroom research focused on a series of 
workshops that explicitly introduced creativity techniques to instruction. Pre- and 
post-tests of creativity, motivation, and mathematical performance showed improve-
ment in students over time. The potential for creativity in mathematics instruction 
and in learner responses is highlighted. An important contribution of this chapter is 
the description of the creativity techniques.

Chapter 11 by Headley, Plano Clark, Stitzlein, Brown, and Swoboda focuses on 
the critical relationship between literacy and mathematics. This chapter introduces 
Symbolic Mathematics Language Literacy (SMaLL) as a framework to conceptual-
ize reading and writing using the symbols and syntax of mathematics. It presents a 
mixed methods study that highlights how variations in SMaLL can be experienced 
among adolescents. A key contribution is the proposition that SMaLL exposes 
implicit literacy-for-mathematics demands in learning standards and offers research-
ers a useful framework for investigating them.

D. Kotsopoulos et al.
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Part II concludes with Chap. 12 by Chan, Closser, Smith, Lee, Drzewiecki, and 
Ottmar. These authors present Graspable Math (GM) which is an online dynamic 
algebra notation system designed based on the research of cognitive, perceptual, 
and affective processes to support student learning. The chapter describes how log 
data recorded in GM offer a window into students’ mathematical cognition, percep-
tual processes, and problem-solving strategies that can inform both research and 
instructional practice. The chapter informs classroom instruction and future research 
by providing teachers and researchers with in-depth feedback on students’ use of 
mathematical strategies and understanding from log data.

We conclude with a prelude to our upcoming third volume that will extend this 
work: Mathematical cognition and understanding: Perspectives on mathematical 
minds in the elementary and middle school years (Robinson et al., In press). This 
third volume will shift the focus to the cognitive underpinnings involved in elemen-
tary and middle school students’ mathematical knowledge and the diverse, interdis-
ciplinary approaches to investigating and increasing the conceptual underpinnings 
of mathematical understanding. Our gratitude to the incredible scholars who con-
tributed to this edited collection, Springer for their enduring confidence in our col-
lective work, and our readers who support these collections.
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Chapter 2
Instructional Supports for Mathematical 
Problem Solving and Learning: Visual 
Representations and Teacher Gesture

Martha W. Alibali, Anna N. Bartel, and Amelia Yeo

Abstract Teachers’ efforts to guide students’ attention are potentially important 
for students’ learning. In this chapter, we consider two types of external supports 
that teachers frequently use to guide students’ attention: diagrams and gestures. We 
argue that teachers use diagrams and gestures to schematize specific features of 
mathematical problems or tasks, such as important elements and structural rela-
tions. In turn, teachers’ schematizing increases the likelihood that students encode 
those features. If the schematized features are relevant to the problem or task at 
hand, students’ appropriate encoding of those features will support their perfor-
mance and learning. We present a selective review of research (including our own) 
on the roles of diagrams and teacher gestures in helping students encode key fea-
tures and discern structure in instructional material.

Keywords Mathematics learning · Gesture · Diagrams · Encoding · Problem 
solving · Instruction · Teachers

2.1  Introduction

At any moment during instruction, there are many possible targets for students’ 
attention. Given the abundant possibilities, and given the importance of attention for 
learning, it seems likely that teachers’ efforts to guide students’ attention are impor-
tant for students’ learning. In this chapter, we consider some of the techniques that 
teachers routinely use to guide students’ attention in classroom settings. We focus 
specifically on two types of external supports for attention: diagrams and gestures.
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Imagine a middle-school teacher giving a lesson about a mathematical story 
problem. The teacher would like the students to attend to the mathematical relation-
ships expressed in the story, rather than focusing on the details of the people and 
objects in the story. The teacher could draw a diagram to depict the mathematical 
relationships, in an effort to highlight those relationships and draw students’ atten-
tion to them.

Now imagine another middle-school teacher presenting a lesson about linear 
equations. At the outset of the lesson, this teacher would like the students to attend, 
in a general way, to a specific symbolic equation and the associated graph, which are 
written on the board. At a later point in the lesson, the teacher would like the stu-
dents to attend to specific elements of these representations, namely, the y-intercept 
in the equation and the y-intercept on the graph. The teacher could use pointing 
gestures, first to guide students’ attention to the graph and the equation in a general 
way, and then to zero in on the y-intercept in each inscription.

The teachers’ actions in these examples are quite ordinary, and perhaps even 
mundane. But in our view, these actions merit deeper consideration in terms of their 
function in the ongoing instruction. In each case, the instructional material is com-
plex, and as each lesson unfolds, the teacher wishes for students to attend to certain 
aspects of the material at hand and not others. To do so, the teachers use external 
supports—in one case, a diagram, and in the other, a series of pointing gestures—to 
help students attend to important aspects of the material. With these external sup-
ports, teachers highlight the specific aspects of the material to which they would like 
students to attend in the moment.

It stands to reason that students will learn more if they pay attention to the “right” 
things at the “right” times. Of course, some forms of learning occur in the absence 
of focused attention (Conway, 2020). However, most forms of learning require that 
learners attend to the to-be-learned material. Students need to attend to instruction-
ally relevant information in order to encode and operate on that information (Fisher 
et al., 2014). When students sustain attention to relevant lesson material, they are 
more likely to learn and retain that content.

What kinds of practices do teachers use in their efforts to manage students’ atten-
tion to instructional material? In considering this issue, it is important to bear in 
mind the distinction between “paying attention” in general, and attending to spe-
cific, relevant features of the context at hand. Practices that encourage students to 
stay alert—such as varying instruction and implementing exercise or stretching 
breaks—may help students to pay attention and to learn, in general (Drollette et al., 
2012; Hill et al., 2010). However, other sorts of practices may help students to focus 
on specific, relevant features of the instructional material or the ongoing instruction 
as it unfolds.

In this chapter, we consider how teachers manage students’ attention to specific, 
instructionally relevant information, with a focus on two approaches that teachers 
regularly use: diagrams and hand gestures. We argue that these supports help stu-
dents to attend to and discern key elements and structural features of mathematical 
problems and inscriptions.

M. W. Alibali et al.
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Many past studies on diagrams and gestures have yielded evidence that these 
supports are beneficial for performance and learning. For example, diagrams have 
been shown to support performance in equation solving (Chu et al., 2017) and story 
problem solving (Cooper et  al., 2018; Múñez et  al., 2013). Gestures have been 
shown to support learning about missing-value equations (Cook et  al., 2013; 
Koumoutsakis et al., 2016), linear equations (Alibali et al., 2013), conservation of 
quantity (Church et al., 2004), and bilateral symmetry (Valenzeno et al., 2003). A 
few studies have revealed null or negative effects of these supports in some settings 
or for some subgroups of learners. For example, Yeo et  al. (2017b) found that 
middle- school students learned less about links between equations and graphs after 
a lesson that included gestures to the equations than after a comparable lesson that 
did not include such gestures. Booth and Koedinger (2012) found that low-ability 
sixth-grade students performed less well on story problems with diagrams than on 
comparable, text-only story problems—however, low-ability eighth graders per-
formed better with diagrams. On the whole, the bulk of past research suggests that 
diagrams and teacher gestures are beneficial for students’ performance and learn-
ing, but the size of the benefit varies depending on characteristics of the setting and 
the learner, as well as on the specifics of the diagrams or the gestures. Thus, dia-
grams and teachers’ gestures can support students’ performance and learning, but 
there are variations in the size and consistency of the benefits.

Why are diagrams and teacher gestures generally beneficial for problem solving 
and learning? We argue that both diagrams and gestures can schematize relevant 
information, and this makes students more likely to encode and use that informa-
tion. We define schematizing as the process of highlighting or preserving some ele-
ments or relations and neglecting others (see Kita et al., 2017, for discussion). When 
teachers use diagrams or gestures to schematize specific aspects of problems or 
inscriptions (and consequently, to guide attention away from others), this increases 
the likelihood that students encode the highlighted elements and relations. If the 
schematized elements or relations are relevant to the problem or task at hand, appro-
priate encoding will in turn support students in performing or learning those tasks. 
From this perspective, instructional practices that schematize relevant aspects of the 
structure of instructional material should support students’ encoding, and therefore 
their performance and learning.

Thus, we suggest that teachers use diagrams and gestures to guide students’ 
attention in ways that help students “see” key features or aspects of structure in the 
task or problem at hand. It is sometimes difficult for students to identify important 
elements within complex mathematical inscriptions, so teachers may use gestures 
or diagrams that highlight or depict those elements. Likewise, it is sometimes dif-
ficult for students to discern relevant structure in mathematical problems, so teach-
ers may use diagrams or gestures that highlight or depict that structure. By helping 
them focus their attention, these external supports, in turn, can support students in 
encoding features and in discerning structure.

It is worth noting that, in addition to highlighting key elements and structures in 
other representations, diagrams and gestures can also represent mathematical infor-
mation directly. For example, a diagram of a story problem is itself a representation 

2 Instructional Supports for Mathematical Problem Solving and Learning: Visual…



12

of the story problem, as well as a means to highlight key elements in the story prob-
lem text. A gesture that traces a right angle is itself a representation of that specific 
angle, as well as a means to highlight structure in the geometric figure to which it 
refers. Thus, in using these supports, teachers both highlight key elements and struc-
tures in other representations and provide students with additional representations 
of targeted mathematical information.

In this chapter, we present a selective review of research (including our own) on 
the roles of diagrams and teachers’ gestures in supporting students’ attention during 
instruction. We focus on the role of these supports in helping students encode key 
features and discern structure in instructional material. We begin by considering 
teachers’ gestures as an external support for students’ encoding of lesson-relevant 
information.

2.2  Teacher Gesture as an External Support for Attending 
to Instructionally Relevant Information

Teachers regularly produce gestures in classroom instruction. A large body of litera-
ture has considered the functions of gesture in communication (see, e.g., Church 
et al., 2017). Along with several other functions, this body of literature highlights 
the role of gesture in guiding attention to relevant information in settings that 
involve communication, including in instruction (Alibali et al., 2011; Church et al., 
in press).

One type of gesture that teachers commonly use to guide students’ attention is 
deictic gestures, which include pointing and tracing gestures that are directed toward 
specific objects, inscriptions, or locations (see Cooperrider & Mesh, 2022, and Kita, 
2003, for further information on this class of gestures). Such gestures highlight the 
referents of those gestures—that is, the objects, inscriptions, or locations to which 
those gestures refer—as the current focus of the discourse. In some cases, teachers 
may also use blocking or covering-up gestures in an effort to direct their listeners’ 
attention away from specific objects, inscriptions, or locations.

A brief example from a high school geometry lesson illustrates how one teacher 
used gesture, both to highlight information that she wanted the students to focus on, 
and to “anti-highlight” or downplay other information that she wanted students not 
to focus on. The geometric figure that is the focus of the example is shown in 
Fig. 2.1, and an excerpt of the teacher’s speech and gestures during the lesson are 
presented in Table 2.1. In the excerpt, the teacher is focusing on a problem that the 
students had been asked to solve, namely, proving that the three line segments 
depicted in the diagram in Fig. 2.1 (i.e., the segments from the vertex to points A, B, 
and C) are congruent.

At the outset of the excerpt, the teacher wishes for students to focus on the three 
line segments. She refers to the line segments in her speech (saying, “all three of 
these segments”; Unit 1  in Table 2.1) and simultaneously uses gestures to guide 
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Fig. 2.1 Inscription that is 
the focus of the lesson 
excerpted in Table 2.1

students’ attention sequentially to each one of them. She does so by indicating the 
endpoints of each segment with her right hand at the vertex (labeled V for ease of 
reference in Fig. 2.1, although it was not labeled on the board) and her left hand 
indicating, in turn, the point of tangency for each of the segments (points A, B, and 
C) (Unit 1 in Table 2.1; see Fig. 2.2, Panel A [top left]). Moments later, when she 
wishes to emphasize segments VA and VB, she traces along the length of each seg-
ment in gesture (Unit 3). Thus, she uses two different forms of deictic gestures—
pointing and tracing—to guide students’ attention to the portions of the inscription 
that are most relevant in the current moment.

When she wishes students to focus solely on the two line segments that are tan-
gent to circle Q, the teacher refers to the other segment, VC, saying “Let’s just for-
get about this one” (Unit 2 in Table 2.1). She uses her right arm to physically cover 
segment VC, putting it out of students’ sight (and presumably, out of students’ 
minds) for the moment (Fig. 2.2, Panel B, [top right]). Along with her speech, her 
“blocking” gesture guides students’ attention away from a (momentarily) irrelevant 
part of the inscription. In this way, the teacher seeks to ensure that the students are 
attending to the information that is critical in the moment, rather than other irrele-
vant information, which could potentially be confusing or could overload students’ 
memories.

The teacher also wants the students to connect the current problem to a specific 
theorem, the two-tangent theorem, that they had proved in class the day before. (The 
two-tangent theorem holds that any two tangent segments that are drawn to a circle 
from the same external point are congruent.) The teacher refers to that previous 
exercise, both in speech (“That’s what we did in the lab yesterday, right?”; Unit 4 in 
Table 2.1) and in gesture. She takes a step forward so that she can point to the rele-
vant inscription from the day before, which was still present on the board (Unit 5 in 

2 Instructional Supports for Mathematical Problem Solving and Learning: Visual…



14

Table 2.1 Excerpt from geometry lesson

Unit Modality Transcript

1 Speech Really, they’re saying all three of {[these segments] [are the same] [ ]}
Gesture 1. RH index-finger point to V (vertex where the three segments come together). 

Note: She holds this gesture in place while producing each of the next three 
gestures
2. LH index-finger point to A (point of tangency for segment VA on circle Q)
3. Left hand index-finger point to B (point of tangency for segment VB on 
circles Q and P)
4. LH index-finger point to C (point of tangency for segment VC on circle P)

2 Speech Let’s just {forget about this one right here, for a second…
Gesture 1. Places right arm with hand extended over segment VC, fully covering it

3 Speech Are [these two segments gonna be the] [same?
Gesture Note: Her right arm is covering segment VC through this entire utterance

1. LH holding marker traces from V to A
2. LH holding marker traces from V to B, holds at B

4 Speech That’s what we did in the lab yesterday, right?]}
Gesture Note: Her gestures in this utterance are held from the preceding utterance: 

right arm covering segment C, LH holding marker at B

5 Speech That’s what we just proved [right here], right…
Gesture 1. RH index finger point to circle in a different diagram (located to the left of 

the focal diagram) on the board
6 Speech …is that [this one’s] gonna be congruent to [this one.]

Gesture 1. Draws tick mark on segment VA
2. Draws tick mark on segment VB

Within each unit, the speech transcript is in the top row and the gesture transcript is in the bottom 
row. The words that accompany each gesture are indicated in brackets. Curly brackets indicate 
segments in which the teacher holds a gesture with one hand while producing additional gestures 
with the other hand (indicated in square brackets and in the text description)

Table 2.1; see Fig. 2.2, Panel C [bottom]), and then she steps back to return to the 
example at hand (Unit 6). This segment of the discourse is what Alibali and col-
leagues (2014) have called a “linking episode”, in which a teacher seeks to connect 
ideas in some way. Here, the teacher seeks to connect a general theorem—the focus 
of the previous lesson—to the current problem, which draws on that theorem. By 
pointing to the inscription used when proving the theorem in the previous class 
period, the teacher helps students reactivate the concept that they learned with that 
inscription, so that they can apply it to the example at hand. Pointing to the inscrip-
tion provides students with an additional cue for retrieving the relevant informa-
tion—a cue that may be more effective at reactivating those concepts than her 
words, which are quite general and even vague (“what we did in the lab”, “what we 
just proved”).

In summary, the teacher first guided students’ attention to the line segments, and 
she then asked students to “forget about” one of them, while she zeroed in on the 
other two. Thus, in this brief excerpt, we see that the teacher uses gestures to help 
students focus on relevant elements of this highly complex inscription. She also 
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Fig. 2.2 Images from the excerpt presented in Table 2.1. Panel A (top left): Teacher using pointing 
gestures to indicate line segment; Panel B (top right): teacher using “covering up” gesture to 
encourage students to “forget about” a line segment for a moment; Panel C (bottom): teacher point-
ing to related inscription to link it to the current example

uses gestures to connect the example at hand to a previous inscription that the class 
had used earlier in proving a related theorem.

2.3  Do Teachers’ Gestures Help Students Encode 
Instructionally Relevant Information?

The example above focuses on how a teacher uses gesture to highlight certain ele-
ments of the inscription at hand and to “anti-highlight” or downplay other elements. 
Naturalistic data of this sort are compelling, but such data cannot address a key 
question: do teachers’ gesture actually influence how students encode instruction-
ally relevant information? To address this question, one approach is to use an 
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experimental design that compares students’ encoding of problem features when the 
teacher gestures in different ways.

Numerous studies have investigated whether students learn more when teachers 
produce gestures than when they do not (e.g., Church et al., 2004; Cook et al., 2013; 
Koumoutsakis et al., 2016; Valenzeno et al., 2003). These studies align with other 
research showing that gestures have a beneficial effect on comprehension of speech 
in other, non-instructional settings. Indeed, two comprehensive meta-analyses of 
the effects of speakers’ gestures on listeners’ comprehension (Dargue et al., 2019; 
Hostetter, 2011) have demonstrated beneficial effects of gesture. Both revealed a 
medium effect size (.61 for Hostetter, 2011, and .54 for Dargue et al., 2019 [for 
gesture observation]). These values indicate that across studies, roughly 70% of the 
participants who saw speakers’ gestures scored above the mean score for partici-
pants who did not see speakers’ gestures. If gestures had no effect on comprehen-
sion, one would expect this value to be 50%.

Studies investigating the effects of gesture on comprehension have been con-
ducted in a range of settings, and many have focused on conversational settings 
rather than instructional settings (e.g., Kelly et  al., 1999). Studies that focus on 
learning have used diverse types of gestures in the experimental stimuli and have 
examined diverse outcome measures. Although many studies have included point-
ing and/or tracing gestures, the dependent variables have generally not focused on 
students’ encoding of the referents of the gestures, but rather on other, “down-
stream” outcomes, such as whether students learned from the lessons.

Two recent studies have investigated student’ attention to features of the instruc-
tional material using eye-tracking methodology. One of these studies focused on 
elementary-school students’ learning to solve missing-addend mathematical equa-
tions of the format 3 + 4 + 5 = ___ + 5 from a brief instructional video, and it com-
pared students’ eye movement patterns in two conditions: one in which the instructor 
produced gestures while providing the verbal instruction, and one in which the 
instructor provided instruction in speech alone (Wakefield et al., 2018). Students 
who viewed the video that included instructor gestures showed different patterns of 
attention to the instructional material than students who viewed the speech-alone 
lesson. They looked more at the problem that the instructor pointed to, and they 
looked less at the instructor. They were also more likely to align their visual atten-
tion with the content of the instructor’s speech. And, not surprisingly, participants 
who viewed the speech-and-gesture lesson solved more of the posttest problems 
correctly than did participants who viewed the speech-alone lesson.

The second study used a similar eye-tracking approach to examine young chil-
dren’s visual attention in a lesson about analogical reasoning (Guarino et al., 2021). 
In the experimental task used in this study, children were asked to identify an item 
in a target scene that corresponded relationally to a specific item in a source scene, 
in the context of a distractor item that matched the target item in features but not 
relations. For example, given a source scene that showed a dog chasing a cat, the 
participant might be asked to identify the item that corresponded to the dog in a 
target scene that showed a boy chasing a girl, and that also included another dog. 
The lesson video in this study focused on teaching children to make relational 
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comparisons; one version of the lesson was presented in speech alone, and the other 
included gestures that highlighted the relational comparisons in the source and tar-
get scenes, and in so doing, directed attention away from the distractors that matched 
in features but not relations. Guarino and colleagues found that children who 
received instruction that included gestures attended less to the distractor items, and 
they were more likely to align their visual attention with the content of the instruc-
tor’s speech. Thus, the instructor’s gesture helped the children to attend to relevant 
visual information at the appropriate times. However, in this study, gesture did not 
benefit learning; there were similar levels of learning about analogical reasoning in 
both conditions.

Importantly, neither of these studies included measures of whether participants 
actually encoded the information that the instructor highlighted in gestures in the 
lessons that included gesture. To examine whether people encode information more 
effectively when speakers highlight that information in gestures, our research team 
has conducted three experiments examining whether students’ encoding differs, 
depending on the teacher’s gestures. All three studies investigated this question in 
the context of graphs of linear equations.

Our primary research question was whether students encoded the intercepts and 
slopes of the lines in the graphs, and whether the teacher’s gestures to those features 
of the line would influence students’ encoding. To assess encoding, we asked stu-
dents to reconstruct the lines they had seen by drawing them on provided, blank 
graph frames; this measure is based on the assumption that students who had 
encoded the y-intercept and slope of a line on a graph when the teacher presented it 
would be able to reconstruct that line moments later, if requested to do so.

Our studies used a software-based teacher avatar (see Fig.  2.3), developed in 
prior work (Anasingaraju et al., 2016; Vest et al., 2020), that can gaze, speak, ges-
ture, and write. We used the avatar so that we could perfectly control the teacher’s 
gestures and speech. The experimental stimuli were presented in brief video excerpts 
of the teacher avatar presenting linear graphs. On all trials, the teacher said, “Take a 
look at this line.” On some trials, the teacher pointed to the y-intercept of the line 
while uttering this statement, and on other trials, she traced the slope increase near 
the center of the graph by tracing a right angle under the line, starting from the line, 
tracing over one unit and then up to meet the line. In one experiment, we also 
included trials in which the teacher simply gazed at the line while speaking and did 
not produce any gestures. The teacher’s speech was identical across conditions; the 
only way in which the stimuli differed was in the nature of the teacher’s gestures.

In two experiments with undergraduate participants, we found that the avatar 
instructor’s gesture influenced participants’ encoding of slope in the given graphs 
(Yeo et  al., 2017a). One experiment showed that participants were significantly 
more likely to correctly encode the slopes of the lines when the teacher used over- 
and- up tracing gestures to indicate the lines’ slopes than when she used no gestures. 
The second experiment showed that participants were significantly more likely to 
correctly encode the slopes of the lines when the teacher used over-and-up tracing 
gestures to indicate the lines’ slopes than when she pointed to the y-intercepts of the 
lines. Neither study revealed a beneficial effect of the teacher’s pointing to the 
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Fig. 2.3 The teacher avatar presenting a line without gesture (top), with a pointing gesture to the 
y-intercept (middle), and with a gesture tracing the unit increase in slope (indicated with red 
arrows that were not present on the graph)
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y-intercepts on participants’ encoding of the y-intercepts of the lines, perhaps 
because the participants were very successful at encoding the y-intercepts, even 
without teacher gestures to the y-intercepts. These findings align with the hypothe-
sis that teachers’ gestures influence participants’ encoding of instructionally rele-
vant information. In both experiments, teachers’ gestures to visual representations 
of linear functions supported undergraduate students in successfully encoding a key 
feature—the slopes of the lines.

Our third study focused on middle-school students, and it compared students’ 
encoding when the avatar teacher used over-and-up tracing gestures and when she 
pointed to the lines’ y-intercepts (Yeo et al., in preparation). Like the undergraduate 
participants, the middle-school students were significantly more likely to correctly 
encode the slopes when the teacher used over-and-up tracing gestures than when 
she pointed to the y-intercepts. Also similar to the undergraduates, the middle- 
school students’ encoding of the y-intercepts of the lines did not vary with the teach-
ers’ gestures, because the students were highly successful at encoding the 
y-intercepts, regardless of whether the teacher pointed to the y-intercepts or not. 
Thus, the instructor’s gesture supported students’ encoding of the slopes of the lines.

The effect sizes in each of these experiments were small, but for both under-
graduates and middle-school students, students were more likely to correctly encode 
slope when the avatar teacher produced a gesture that highlighted slope than when 
she produced a gesture that highlighted intercept. It is worth noting that on each 
trial, the teacher uttered only a single sentence (“Take a look at this line”) and pro-
duced only a single gesture (a point to the intercept vs. an over-and-up tracing ges-
ture to highlight slope). In our view, the fact that this very small manipulation 
yielded reliable effects is noteworthy. When one considers the number of gestures 
that a teacher produces over the course of single lesson, the potential, cumulative 
impact of such gestures on students’ encoding of the instructional material is poten-
tially large.

The work reviewed here suggests that teachers’ gestures do indeed support stu-
dents’ encoding of instructionally relevant information. By guiding students where 
to look, teachers’ gestures enhance the likelihood that students attend to and encode 
such information. Such gestures guide students’ attention to specific features of 
inscriptions; for example, gesture to the slopes of the lines yielded benefits for 
encoding of slope, but not for encoding of intercepts. In this way, the teacher’s ges-
tures helped students accurately encode relevant aspects of the inscription at hand 
and ignore irrelevant features—thus, helping students to schematize key information.

2.4  Diagrams as External Supports for Discerning Structure

Another type of external support for learning that teachers commonly use in class-
room settings is diagrams. Diagrams are two-dimensional visual representations 
that are schematic, in the sense that they selectively depict some aspects of the 
represented entity or situation and omit others (Bryant & Tversky, 1999; Tversky, 
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2011). Because of their schematic nature, different diagrams of the same entity or 
situation may depict different features of that entity or situation. Diagrams make 
particular features salient, and in so doing, they influence students’ attention to 
those features. Just as gestures that highlight different features of mathematical rep-
resentations lead to differences in learners’ encoding of those representations, dia-
grams that make salient different aspects of mathematical entities or situations may 
lead to differences in how learners attend to those entities or situations. From this 
perspective, then, diagrams that schematize different information may have differ-
ent effects on how people interpret and conceptualize the entities or situations 
depicted in the diagrams.

One study in the domain of scientific reasoning has addressed the possibility that 
diagrams that schematize different features lead students to conceptualize situations 
differently. In this study, Lee (2010) presented 9th-grade students with diagrams 
depicting the earth’s orbit around the sun, and he examined whether different dia-
grams were associated with different incorrect conceptualizations of the cause of 
the seasons. Lee found that certain combinations of diagram features were associ-
ated with specific misconceptions; for example, students were more likely to offer 
side-based explanations (which incorrectly attribute the seasons to one side of the 
earth facing the sun and the other side facing away) when diagrams included shad-
ing of half of the earth and depicted an elongated orbital path.

Research on data visualization has also examined how people interpret graphical 
depictions of data, and whether different graphical features lead people to make dif-
ferent inferences about the underlying data distributions (Shah et al., 1999; Shah & 
Freedman, 2011; Zacks & Tversky, 1999). This work has shown that people who 
view line graphs tend to interpret the underlying data in terms of continuous trends, 
and they tend to describe the data using continuous, trend-related language (e.g., 
“Height increases with age”; Zacks & Tversky, 1999). In contrast, people who view 
bar graphs of the same data tend to interpret the data in terms of individual data 
points, and they tend to describe the data using discrete comparisons (e.g., “12-year- 
olds are taller than 10-year-olds”; Zacks & Tversky, 1999). Thus, different visual 
representations of the same data lead people to focus on different aspects of the 
distributions when interpreting and describing the data.

Building on this related work, we sought to examine whether different diagrams 
would differentially support learners in understanding algebraic story problems and 
symbolizing them in equations. We selected story problems as our task domain, in 
light of past work showing that people find such problems challenging (Koedinger 
& Nathan, 2004; Mayer, 1982; Nathan et al., 1992; Reed, 1999). Story problems 
often include information that is irrelevant to the symbolization and solution pro-
cess (such as specific details of the cover stories) and learners often have difficulty 
identifying the critical features of the story situations.

More complex story problems present greater challenges than simpler ones. For 
example, Heffernan and Koedinger (1997) reported that people find it more difficult 
to correctly symbolize two-operator story problems than to correctly symbolize 
pairs of corresponding one-operator problems. Their findings suggest that integrat-
ing multiple operations into a single structure is challenging and error prone. An 
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illustrative example is provided in Table 2.2. Based on Heffernan and Koedinger’s 
(1997) results, students should be less likely to successfully symbolize the two- 
operator problem (first row of Table 2.2) than to successfully symbolize the pair of 
corresponding one-operator equations (second row of Table 2.2).

In light of this prior work, we investigated the role of two different types of dia-
grams in supporting learners’ symbolization of two-operator story problems (Bartel 
& Alibali, 2021). Both diagrams were in the form of “tape diagrams”, which are 
diagrams that represent relevant quantities in horizontal strips that resemble pieces 
of tape (Chu et al., 2017; Murata, 2008). One of the diagrams—which we call the 
integrated diagram—directly represented the integration of the two operations. The 
other—which we call the discrete diagram—represented the two operations sepa-
rately. A sample problem and the two corresponding diagrams are presented in 
Fig. 2.4. We hypothesized that the integrated diagrams would help students to grasp 
the structure of the story problems and to symbolize the story problems in inte-
grated, two-operator equations.

We tested these predictions in two experiments with undergraduate participants. 
We examined whether participants generated accurate representations of the story 
problem structure, either in one-operator equations (e.g., for the problem in Fig. 2.4, 
22 − 7 = x, x * 5 = n) or in a single integrated two-operator equation (e.g., for the 
problem in Fig. 2.4, (n/5) + 7 = 22). We analyzed the data from the two experiments 
both separately and in combination. The analysis of the combined dataset showed 
that participants in the diagram conditions were more likely to accurately symbolize 
the problem structure than participants who did not receive diagrams. However, a 
close look at the data revealed that this beneficial effect of diagrams was driven by 
participants who had lower visuospatial abilities. This subgroup of participants rep-
resented the problems more accurately with the support of diagrams that highlighted 
the operations and/or their integration, whereas participants with strong visuospatial 
abilities tended to accurately represent the problems, whether diagrams were pres-
ent or not.

Table 2.2 Sample two-operator problem and corresponding pair of one-operator problems

Problem 
type Example Equations

Two- 
operator

Neil bought a package of 40 sunflower seeds. He emptied the bag 
and planted an equal number of seeds in each of four flowerpots. 
The next day, Neil decided he wanted to save some seeds, so he 
took two seeds out of each flowerpot. Write an expression for 
how many sunflower seeds were in each flowerpot.

(40/4) − 2 = x

Two 
one- 
operator

(1) Neil bought a package of 40 sunflower seeds. He emptied the 
bag and planted an equal number of seeds in each of four 
flowerpots. Write an expression for the number of sunflower 
seeds Neil planted in each flowerpot.

40/4 = x

(2) The next day, Neil decided he wanted to save some seeds, so 
he took two seeds out of each flowerpot. Write an expression for 
how many sunflower seeds were in each flowerpot.

x − 2 = y

Modeled after Heffernan and Koedinger (1997)
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Erica has a bag of marbles. 

She empties the bag and 

gives an equal number to 

each of her five friends. 

After that, another person 

gives each of the friends 

seven marbles. In the end, 

each friend has twenty-

two marbles.

How many marbles were in Erica’s bag to start?

Please write an equation for this problem:

Erica has a bag of marbles. 

She empties the bag and 

gives an equal number to 

each of her five friends. 

After that, another person 

gives each of the friends 

seven marbles. In the end, 

each friend has twenty-

two marbles.

How many marbles were in Erica’s bag to start?

Please write an equation for this problem:

Fig. 2.4 Two-operator story problem with the discrete diagram (left panel), which depicts each of 
the operations, and the integrated diagram (right panel), which depicts the operations and their 
relationships

We also considered whether the discrete and integrated diagrams were differen-
tially beneficial. We had predicted that the integrated diagrams, which depicted the 
operations and their relationships, might be more helpful than the discrete diagrams, 
which depicted the operations but not their relationships. Because the relationship 
between operations was a key aspect of the problems’ structure, we predicted that 
diagrams that schematized this relationship might be more beneficial. Indeed, this 
was the case for a specific subgroup of participants, namely, participants who had 
more negative attitudes towards mathematics. These participants were more likely 
to accurately symbolize the problems’ structures when the problems were accompa-
nied by integrated diagrams than when they were accompanied by discrete diagrams.

We were also interested in whether diagrams supported undergraduate students 
in generating integrated, two-operator equations, in light of Heffernan and 
Koedinger’s past work highlighting the challenges of combining operations into an 
integrated structure. To address this question, we compared the likelihood that par-
ticipants generated integrated equations (e.g., (n/5) + 7 = 22) in the two diagram 
conditions. In one of the experiments, participants were indeed more likely to gen-
erate integrated equations in the integrated diagram condition, as we had pre-
dicted—but in the other experiment, participants were similarly likely to generate 
integrated equations in both diagram conditions. Given that each experiment repre-
sents an independent test of this effect, these mixed results suggest that the pre-
dicted effect may be small, or it may depend on other factors that were not measured 
in our experiment.

In summary, both types of diagrams were beneficial for students with less strong 
visuospatial skills, and the integrated diagram was especially beneficial for partici-
pants with negative attitudes towards mathematics. The findings suggest that the 
diagrams were beneficial for participants who, because of their pattern of skills or 
attitudes, were unlikely to effortfully engage with the story problems, either because 
they found that visualizing the relationships expressed in the stories was challeng-
ing, or because they had negative attitudes toward mathematics. Further, in one 
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experiment, the integrated diagrams supported students in generating integrated 
equations, providing some support for the idea that the schematic nature of the dia-
gram guided students’ conceptualizations in a particular way. It is worth noting that 
both of these studies were conducted with undergraduate students. It seems likely 
that the findings would generalize to younger students; however, further research is 
needed to be certain. It is also worth emphasizing that the studies involved symbol-
izing algebraic story problems—a task that is common in middle and high school.

We suggest that diagrams are beneficial largely because they are schematic. 
Diagrams distill and depict the most important elements and relations in a mathe-
matical situation, so they can help learners to discern what it important and what is 
not. This view is supported by other research suggesting that visual representations 
that incorporate many rich, perceptual details may be less beneficial for learning 
and transfer than diagrams that are more bland and schematic (e.g., Cooper et al., 
2018; Kaminiski & Sloutsky, 2013; Kaminski et al., 2008; Menendez et al., 2020). 
Visual representations that include “seductive details” can be visually appealing, 
but they can also limit generalization and transfer. Extraneous features may provide 
additional targets for visual attention, making it more challenging for learners to 
attend to the critical features of the task at hand.

Our broader point is that diagrams that appropriately schematize key aspects of 
problem structure can support students’ performance on tasks, such as symboliza-
tion, that require discerning and attending to structural features of the problems. 
Diagrams are not equally beneficial for all subgroups of students, but many students 
can profit from the support for discerning structure that diagrams provide.

2.5  Implications for Educational Practice

Teachers often wish to support their students in successfully attending to and encod-
ing instructional material in mathematics lessons, and they have many tools at their 
disposal for doing so. In this chapter, we have sought to highlight two tools that 
teachers commonly use to guide students’ attention and to help students discern and 
encode structure: gestures and diagrams. Both gestures and diagrams can schema-
tize information, and they can therefore support students’ encoding.

Teachers may wish to reflect on what specific features or relations they would 
like to highlight, given the goals of the current lesson, and to consider what means 
of guiding attention to and schematizing those features or relations may be most 
effective. Gestures are always readily available, and they can be generated “on the 
spot” to address challenges or “trouble spots” in instructional communication. 
Diagrams may require more advanced planning and preparation—but diagrams can 
also be spontaneously created, depending on the tools and media that are available, 
and they can be readily used in both in-person and virtual instruction.

Gestures and diagrams have different affordances, and these affordances may 
make one or the other form of support better suited for a particular lesson or a par-
ticular instructional goal. Gestures are fleeting, and once produced, their “moment” 
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has passed. If a student happens to be inattentive at the moment when a gesture is 
produced, that student might miss out on the potential support that the gesture could 
provide. Diagrams are longer-lasting, and they are generally still present if one 
looks away and then looks back. However, diagrams are static, and as such, they 
may be easy to ignore. Gestures are dynamic, and they involve movement and 
force—so they may attract attention in ways that diagrams do not. Gestures can  
also be produced over or on top of other representations (e.g., tracing a line on a 
graph)—so that they are spatially contiguous with other, related representations 
(Mayer, 2009)—though they can also be produced in “neutral space”, away from 
the representations to which they refer (or over imaginary representations). In con-
trast, diagrams are generally placed alongside other representations, and as they are 
not spatially contiguous, they often require learners to engage in a mapping process, 
which can be quite  challenging. These distinct affordances may influence how  
students use gestures and diagrams as supports—but at present, there is limited 
scientific understanding of these affordances and their implications for student 
learning.

We began this chapter with two examples of ordinary classroom moments—a 
teacher drawing a diagram to illustrate a story problem, and a teacher pointing to 
elements of a graph and an equation. Although the teachers’ actions in each case 
may seem quite unremarkable, we have argued that they are critically important for 
guiding students’ attention and supporting students’ encoding of problem features 
and their discerning of mathematical structure. There is more to be learned about 
precisely how and for whom diagrams and gestures are beneficial; however, at a 
minimum, it is clear that both diagrams and gestures play a role in effective peda-
gogy. As such, we encourage scholars of teaching and learning to more deeply con-
sider the roles of gestures and diagrams in fostering students’ understanding, and 
we encourage teachers to be planful about how they use gestures and diagrams in 
instruction.
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Chapter 3
Equilibrated Development Approach 
to Word Problem Solving in Elementary 
Grades: Fostering Relational Thinking

Elena Polotskaia, Annie Savard, Olga Fellus, and Viktor Freiman

Abstract The issue of how teaching strategies inform students’ approaches to solv-
ing word problems has been, and still remains, the focus of attention in mathematics 
education. In this book chapter, we outline a rationale for the Equilibrated 
Development Approach (EDA) to word problem solving and provide its principles 
and epistemological stance. The EDA is informed by and critically engages with the 
tenets of sociocultural theory, the Vygotskian paradigm for learning, and Davydov’s 
and Galperin’s theoretical and empirical work (Vygotsky LS, Educational psychol-
ogy. St. Lucie Press, Boca Raton, 1997; Davydov VV, Problems of developmental 
instruction: a theoretical and experimental psychological study. Nova Science 
Publishers, Hauppauge, 2008; Galperin P, Georgiev L, The formation of elementary 
mathematical notions. Soviet Stud Psychol Learn Teach Math 1:189–216, 1969). 
For a decade now, we have used the EDA to construct, refine, and gradually imple-
ment new ways of teaching problem solving. We share examples of original teach-
ing-learning activities fostering students’ mathematical thinking and sense making 
in solving word problems. We also share examples from our classroom observations 
to suggest alternative teaching strategies in elementary mathematics. The purpose 
of our work is to surface processes of understanding quantitative relationships and 
to shed light on the role they play in one’s capacity- building in solving word prob-
lems. In this chapter, we discuss our work within the intersection point of mathe-
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matics education, educational psychology, learning theories, and studies in 
neuro-education to demonstrate how the EDA approach coalesces insights garnered 
from these diverse study areas to constitute an innovative way of teaching word-
problem solving in elementary school.

Keywords Word problem solving · Relational thinking · Teaching mathematics · 
Elementary school

3.1  Introduction

Teaching mathematics through problems is integral to K-12 school curricula. At 
elementary school level, students are expected to first tackle problems that involve 
additive structures (addition and subtraction) and then work on problems that pres-
ent multiplicative structures (multiplication and division). In our work, we observed 
that a traditional way of teaching word problems in class constitutes a top-down 
approach, in which students are expected to first master the arithmetic operations 
and only then apply these operations in word problems (Cavalcante et al., 2019). 
This top-down strategy generates multiple, varied, and potentially counterproduc-
tive challenges for the learners, because the tendency to focus on prescribed calcula-
tions leaves little, if any, space to focusing on mathematical structure and, in turn, to 
making sense of the problem at hand. To address this tension, we bring perspectives 
from different fields of research to demonstrate the relevance, and necessity, of 
studying the mathematical structures in word problem instead of focusing on per-
forming operations on numerical values.

3.2  Theoretical Background

3.2.1  Operational Paradigm

A copious body of research approaches word problem solving from the point of 
view of the mathematical structure problems represent. To identify this structure, 
the meaning of a particular action-related cue or relationship given in the text is usu-
ally used (e.g., Greer, 1992; Schwartz, 1996). Many researchers are in consensus 
that the entry point in word problems is understanding the wording as a reflection of 
an arithmetic operation (Carpenter et  al., 1999; Nesher et  al., 1982; Riley et  al., 
1984). Savard et  al. (2018) identified this approach as the Operational Paradigm 
because it emphasizes arithmetic operation as a means to understanding a problem. 
Within the Operational Paradigm, the arithmetic operations are considered the most 
important mathematical knowledge to be developed. In classrooms that are oriented 
toward the operational paradigm, students first learn about elementary arithmetic 
operations in situations where the wording corresponds directly to an operation.  
For example, the problem “Marta has 3 apples. Mark gives her 2 more apples. 
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How many apples does Marta have now?” corresponds to the addition operation 
3 + 2. Students see the problem as a story, reproduce the story using objects in a 
sequential way, and construct the answer as the final state of this story. This match-
ing of word constructions to specific operations has been identified as the essential 
entry point to the development of problem-solving skills within the Operational 
Paradigm (e.g., Nesher et al., 1982; Riley et al., 1984).

Evidently, not all problems can be solved using wording that corresponds directly 
to an operation. For example, the problem “Jim had 5 cookies. He received some 
more cookies. Now he has 8 cookies. How many cookies has he received?” requires 
a non-intuitive transformation of the semantic meaning of the story (receive more) 
into a subtraction operation (8˗5 =?), and thus, is more difficult for students to carry 
out. At some point of this developmental path, students are expected to reason about 
the problem in a holistic flexible way, and see the problem as a structure that can be 
transformed into different operations (Lesh & Zawojewski, 2007). To that end, a 
student “is able to read the word ‘more,’ and yet perform a subtraction operation” 
(Nesher et al., 1982, p. 392). Thus, the Operational Paradigm implies that at some 
point, the learner should jump from a sequential intuitive thinking to a non-intuitive 
transformation of the semantic structure of a problem.

The idea of different levels of difficulty in word problems was supported by stud-
ies conducted by Pape (2003, 2004). Pape’s notions of consistent (e.g., The Marta 
problem) and inconsistent language (e.g., The Jim problem) can be used to explain 
students’ difficulties in word problem solving. To solve a consistent problem, no 
structure transformation is required. A structure transformation that is required to 
solve inconsistent problems represents a substantial difficulty for students. Within 
the Operational Paradigm, there is no clear theoretical solution to this gap.

3.2.2  Insights from Neuro-education and the Developmental 
Aspects of Learning

Research in neuro-education can shed light on the way mathematical thinking is 
developed and organized. Stavy and Babai (2010) used brain imaging to analyze the 
process of solving certain geometric problems. In some problems, a congruent con-
dition—cases where figures with smaller perimeters have smaller areas—was used, 
so the solution could be intuitive and straightforward. In other cases, incongruent 
conditions, where the relationship between the change in the perimeters and the 
change in the areas was opposite, necessitated some logical analysis to solve the 
task correctly. Stavy and Babai (2010) showed that the parts of the brain that were 
most active during the problem-solving process differed when it came to solving 
direct intuitive (congruent condition) versus solving reflexive inverse (incongruent 
condition) problems. This study is relevant to our work as it suggests that the differ-
ence in brain activation for intuitive versus reflexive thinking can also be applied to 
arithmetic word problem solving because it helps explain the difficulty in transition-
ing to types of word problems that require a transformation of the semantic structure 
of the problem.
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Piaget’s perception of learning grounds the learning of new skills on already 
constructed knowledge (Piaget, 1964). If the sequential thinking of arithmetic oper-
ations (i.e., direct sequential thinking) is what students develop first, then it is the 
only available skill and is automatically retrieved when solving word problems. 
Stavy and Babai’s (2010) study helps us understand that a different way of thinking 
activates a different area in the brain thus necessitating learning a different set of 
skills. Problems that do not align with the sequential thinking of arithmetic opera-
tions may require reflection and transformation because their semantic structure 
does not linearly correspond to a particular arithmetic operation and this, in turn, 
requires activation of other brain areas that were not previously used. If we consider 
intuitive thinking as something that heavily relies on knowledge of operations and 
if we acknowledge that transformations of semantic structure of problems are 
treated differently in the brain, we can better understand why many students strug-
gle with the shift from sequential intuitive thinking to holistic and flexible thinking. 
It is possible that the practice in intuitive thinking does not so much contribute to the 
development of structural analysis and transformation skills.

Another aspect in neuroscience research that can inform the process of word prob-
lem solving is the attention the solver pays to available information. The neuroscien-
tist Robertson (2017) explains that word-problem solvers might sometimes ignore 
the essence of a problem by paying more attention to its superficial aspects. He 
explains that this is quite natural at the beginning of the learning process. Robertson 
(2017) also points to the important role mental schema plays in the process of analyz-
ing and solving a problem. He argues that mental schema directly influences the way 
the solver sees the situation from the beginning of the process of solving the problem. 
We suggest that initial mental schema can guide students in representing a problem. 
Using available knowledge, students create representations of what they pay atten-
tion to. Thus, if thinking about objects or about the exact number of objects is what 
students pay attention to in the problem’s text, then they think about the numerical 
value and not necessarily about the relationship between quantities.

To draw students’ attention to the wording of arithmetic problems, teachers often 
highlight keywords (e.g., won, removed, shared, times more) and the known data—
numbers in the text. Yet, this approach can distract students’ attention from the 
mathematical structure of the problem. Not paying attention to structure is more 
often than not the de-facto instruction. This naïve ignorance of inconsistent word 
problems can develop into a firm solving strategy, that, in turn, may be difficult or 
even impossible to unlearn or reform. The long-term effect of not attending to 
inconsistent structures manifests itself at post-secondary level as researchers 
observed the “keywords translate to operation” strategy that is instilled in elemen-
tary school mathematics in some university students (Hegarty et  al., 1995). 
Furthermore, Bednarz (2009) builds on the work of others and explains that the first 
learned strategy persists and generates obstacles years after its formation potentially 
as a result of years of practice that solidify this way of thinking.

These studies in neuroeducation and mathematics education help us see why the 
developmental trajectory based on the operational paradigm fails so many learners. 
The introduction of the operations followed by a disproportionate use of word 
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problems that can be directly interpreted into arithmetic operations can produce the 
“intuitive thinking” effect. Excessive attention paid to numbers and keywords 
together with the visual representations of discrete objects and numerical symbols 
can hinder the goal of structural understanding of a problem. Later, the initially 
constructed strategy of the direct translation of keywords into operations can 
become an obstacle to the holistic and flexible understanding of the mathematical 
structure of more complex problems. We suggest that in the long term, the opera-
tional approach can potentially exacerbate difficulties of some students in 
mathematics.

A growing number of studies over the last decades brings new perspectives to 
highlight the relationship between mathematical structures and word problem solv-
ing (e.g., Cai et al., 2005; Ng & Lee, 2009; Xin et al., 2011). They emphasize the 
idea that understanding a situation mathematically requires students to recognize 
relationships between given quantities. Thus, many researchers suggest that to 
ensure success in word problem solving, it is relational thinking that students should 
develop more.

3.2.3  Relational Paradigm

In the second half of the twentieth century, Russian psychologists Galperin and 
Georgiev (1969) and then Davydov (1982) promoted the idea that teaching numbers 
and operations should be preceded by an intentional teaching of quantitative 
relationships in elementary school. In addition to demonstrating that the idea of 
equivalence and related additive principles arise from relational thinking, Davydov 
also argued that the concept of number emerges from the multiplicative comparison 
of two magnitudes, one functioning as a unit of measure and the other as the quan-
tity that is being measured. For example, measuring a string can give 5.5 inches, 14 
centimeters and 4 lengths of a paperclip, thus the number depends on the unit of 
measurement in relation to the measured quantity. However, many traditional teach-
ing contexts do not build on the idea of measurement and its relational nature at the 
beginning of the learning trajectory. Davydov (1982) went as far as claiming that 
starting with counting and operations precludes relational thinking as well as the 
understanding of underlying mathematical principles. He argued:

Although children of ages 6 or 7 can readily solve in an abstract (e.g., 3 + 2 = ? or 8 - 5 = ?) 
or concrete (e.g., add two apples to three apples) form, they cannot explain what numbers 
are, how they arose, or why in using numbers it is necessary to add or subtract (p. 225).

At the very beginning of a new learning trajectory that was proposed by Davydov 
and his colleagues, students were asked to manipulate real objects comparing quan-
tities of water, areas of surfaces, and lengths of ropes with the objective of develop-
ing holistic and generalized understanding of the underlying quantitative 
relationships. In this learning trajectory, teachers discussed with students the sche-
matic and symbolic representations to model the underlying relationships in 
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problems. Only when some basic relationships are mustered by learners do they 
start to use this knowledge to develop their formal understanding of natural num-
bers. Operations appear as tools to find unknown values in a relationship, which 
preserve its equilibrium. For example, the value 3 (=8–5) preserves the equilibrium 
of the relationship described in the Jim problem (see p. 2).

Davydov’s relational approach to the development of number sense has been 
recognized as an important contribution to elementary mathematics teaching theory 
(Iannece et al., 2009; Lins & Kaput, 2004; Sophian, 2007) thus opening a possibility 
of a new developmental trajectory grounded within the relational paradigm 
(Polotskaia & Savard, 2018). The development of Davydov’s ideas yielded the 
reconsidering of problem solving as a learning activity. In our work, we questioned 
the types of thinking that should support a successful process of solving a word 
problem and favored the quantitative relationships over operations. Yet, we acknowl-
edged research (e.g., Nesher et al., 1982; Okamoto, 1996; Riley et al., 1984) that has 
confirmed the important role that number knowledge and operations play in sup-
porting successful problem solving. Keeping in mind these two arguments, we con-
sidered both numerical and relational thinking as two necessary but not sequenced 
stages of problem-solving knowledge development. We organize teaching so that 
students can develop holistic relational thinking and numerical thinking in harmony 
and coherence with each other (Polotskaia, 2015).

3.3  Equilibrated Development Approach

Further developing Davydov’s ideas, our study proposes a balanced approach. We 
consider the learning trajectory not as a straight line, but as a network of learning 
paths that can be efficiently interconnected. Thus, we argue for an Equilibrated 
Development Approach (EDA) to teaching elementary mathematics. In a recent 
study, we develop the EDA by identifying and integrating into the traditional cur-
riculum the notions of two additive and three multiplicative relationships (Polotskaia 
& Savard, 2018; Polotskaia & Savard, 2021) (see Appendix 1). These quantitative 
relationships function as mental tools giving access to the mathematical meaning of 
a problem, one that is sometimes replaced in the student’s mind by a simplistic 
image of an operation with numbers. The understanding of a problem as network of 
relationships contributes to equilibrate the complex process of the developing math-
ematical knowledge. Furthermore, constructing visual representations of relation-
ships allows students to express their relational understanding making relationships 
explicit through the use of tangible tools that can be used for a mathematical discus-
sion. Thus, the ability to construct sound visual representations of relationships is an 
important element of the developmental path towards relational thinking.

To summarize, the Equilibrated Development Approach puts forward:

• Paying attention to studying five basic relationships (see Table 3.1);
• Using visual representations of relationships by constructing and analyzing dia-

grams; and
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Table 3.1 Five simple multiplicative relationships

Relationship Description Model Examples

Additive 
composition

This relationship can 
be used if a quantity is 
composed of two (or 
more) parts

1. There are red apples 
and green apples
2. Ann has marbles. 
She wins more marbles

Additive 
comparison

This relationship can 
be used when two 
quantities are 
compared to highlight 
the difference

1. Ann has fewer 
buttons than Olga.

Multiplicative 
composition

This relationship can 
be used if one quantity 
is composed of a 
number of equal parts 
(the number can be 
real).

1. Max has many boxes 
with the same number 
of marbles in each.
2. A car moving with a 
constant speed made a 
certain distance in a 
certain time.

Multiplicative 
comparison

This relationship can 
be used if one quantity 
is compared in a 
multiplicative way to 
the other quantity. The 
latter is physically 
distinct from the 
former, and the 
comparison yields a 
number whether it is 
known or unknown.

1. Max has three times 
as many marbles as 
Maya.
2. Max’s shoe is twice 
as long as Maya’s shoe.
3. How many times is 
Maya younger than 
max?

Cartesian 
product

This relationship can 
be used if all three 
elements have 
different physical 
origins and none of 
them can be seen as a 
pure number or as a 
unit of measurement.

1. One uses a number 
of skirts and a number 
of blouses to create 
costumes.
2. One evaluates a 
rectangular area in 
relation to its length 
and width.

• Conducting conceptually rich mathematical discussions about relationships by 
conjecturing, justifying, proving, making inferences, verbalizing, and mak-
ing sense.

The developmental impact of the EDA on learners is fundamentally different from 
the one often promoted within the operational paradigm. A simple (1 operation) 
arithmetic problem can be analyzed and understood as a simple relationship. 
Relational paradigm suggests that all word problems presenting one quantitative 
relationship require two steps: (1) transforming the semantic meaning of the text 
into a visually represented relationship, then (2) using the properties of the relation-
ship at hand to deduce an operation, which allows, in turn, to find the unknown 
element. The transformations of meaning among the text, the visual representation, 
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and the operation require more effort from the learner to solve the problem than a 
simple keyword translation. At the same time, the learner will develop relational 
thinking instead of automatizing the direct translation of keywords.

A traditional task of solving a word problem requires a calculation of a numeri-
cal answer. This explicit expectation by itself, can distract students’ attention from 
the relationships in favor of numbers and operations. Thus, the goal of studying 
relationships requires new forms of learning tasks and activities.

3.3.1  Activities to Promote Relational Thinking and Modeling

Our teaching experiment and design projects (Freiman et  al., 2017; Polotskaia, 
2014; Polotskaia & Savard, 2018) helped us create several new forms of activities 
for students in grades 2 to 6. Such activities direct students’ attention to the quanti-
tative relationships and explicitly require students to model those relationships visu-
ally. A visual representation of a relationship serves at least two objectives. To 
represent a quantity in a relationship, the learner needs to mentally transform the 
idea of a number into a line segment (Davydov & Mikulina, 1988). The mental 
exercise of connecting a discrete and a continuous representation of a number con-
tributes to the development of number sense. A visual expression of the learner’s 
relational thinking makes it easy for the teacher and other learners to access the 
student’s thinking and react in more adequate ways. Below, we describe some types 
of activities putting forward the visual modeling of relationships.

When the time comes to solve word problems, the relational analysis and  
calculation are carefully integrated into a cyclic process described by the ethno- 
mathematical model (Mukhopadhyay & Greer, 2001; Polotskaia, 2014; Savard, 
2008). The model is represented graphically in Fig. 3.1; an example of a solving 
process will follow in the section titled How it Works in Class.

According to the ethno-mathematical model, to solve a problem, the solver 
should become familiar with the sociocultural context of the problem through read-
ing the text (story). Using her mental representation of the problem, the solver 
should express the situation within the mathematical context by creating a model 
producing a holistic view of the quantitative relationships involved. At this moment, 
the numbers given in the problem are not included in the analysis (see “97” on 
Fig. 3.1). From the model, the arithmetic operation to apply can be derived, thus 
transforming the holistic view into a calculation plan. At this point, the numbers are 
used to conduct the calculation (see “97” on Fig. 3.1). The learner should then make 
sense of the numerical results in terms of the sociocultural context evaluating it in 
relation to the wording of the problem. Thus, the problem-solving process is orga-
nized in a cycle, potentially supporting the development of both relational and 
numerical thinking in learners. This process of solving requires multiple transfor-
mations of meaning thus fostering learners’ mathematical thinking development.

The teacher’s explicit request to construct a representation transforms the step 
“understand the problem” into an analysis and a modelling process. Instead of 
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Fig. 3.1 Ethno-mathematical model of the problem-solving process

focusing on known data and keywords in the text of the problem, the teacher invites 
students to think about the type of situation at hand (comparison or not) and to rep-
resent all important elements as related together. In the next section, we provide a 
partial verbatim of a lesson in one of the experimental classes to illustrate this type 
of analysis.

The ethno-mathematical model for problem solving offers multiple entry points 
depending on the intention of the activity. In turn, it occasions different opportuni-
ties for the learner to enhance their relational thinking. See below different  
examples of activities, which illustrate diverse pathways through the ethno- 
mathematical model.

3.3.1.1  Activity 1. Communicating the Mathematical Structure 
of a Problem: The Captain’s Game

This activity is a game that can be applied to any traditional word problem 
(Ducharme & Polotskaia, 2010). The game consists of communicating the mathe-
matical structure of a problem between a team and its captain. A team of 3–4 stu-
dents chooses its captain and the captain leaves the room. The rest of the team 
analyzes a word problem and tries to represent it visually while respecting the fol-
lowing rules:
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On our classroom shelf there are 45 books and 8 
boxes of games. Each box contains the same 
number of games. In total there are 32 games. 
How many games are stored in each box? 

Fig. 3.2 Word problem 
and its possible 
representation for the 
Captain’s game. 
(Polotskaia et al., 2023)

Rule Didactic goal

They may not write words or 
letters.

Use a different semiotic system.

They may not use mathematical 
or other symbols for operations.

Use an analog visual way to represent a relationship.

Only the numbers appearing in 
the problem can be used.

Represent a quantity as a continuous object rather than a set 
of discrete objects and identify those quantities using 
numbers from the problem.

They can use the symbols “=” 
and “?“as well as any drawings.

Signal an equality by using “=”. Mark with “?” the missing 
quantity.

This representation should then serve the captain as a message describing the 
problem. The captain, who did not read the word problem, uses the message to pro-
pose arithmetic operations with appropriate numbers to calculate the numerical 
answer to the initial problem. The team that wins the game (against other teams) is 
the one whose message clearly represents the problem in a way that the captain is 
able to obtain a correct numerical answer. This is only possible if the quantitative 
relationships are well represented. Figure 3.2 presents a word problem and its rep-
resentation according to the rules of the game.

3.3.1.2  Activity 2. Mathematically Impossible Situations (MIS)

This activity is described as the “Who’s wrong?” activity in Savard and Polotskaia 
(2017). Starting with a traditional word problem that usually includes a story and a 
question, the teacher replaces the question (e.g., “How many in each box?”) with a 
statement (e.g., “In each box, there are 6 apples”) in such a way that the story 
becomes mathematically impossible.

There are 24 apples in boxes.
There are 12 boxes.
In each box, there are 6 apples.

The teacher invites students to see whether the situation is mathematically sound 
and to make suggestions about what may be mathematically impossible. It could be 
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any of the three facts. The teacher then covers the numbers using post-it notes and 
constructs together with the students a visual representation without numbers to 
make sense of the quantitative relationship presented in the story. Together, they 
evaluate three hypotheses about which number is not correct and for each hypothe-
sis, they calculate the number corresponding to the two other values in the 
relationship.

3.3.1.3  Activity 3. Working in a Computer Environment

To allow students to work with word problems while ignoring numbers, we designed 
a computer environment (Freiman et al., 2017). Here, the text of a problem on the 
screen shows boxes with letters where numbers are usually present (Fig. 3.3). At 
any time, a student can click on any letter to obtain a numerical value that is ‘hid-
den’ behind the letter.

To solve a problem, students need to analyze it in a general way, understand, and 
represent relations visually (e.g., using paper and a pencil). Using the representa-
tion, students try to figure out the operation to use and construct the solution in a 
general form (using letters). For example, in the Lucie c) problem (Fig. 3.3), the 
intended expression is N − D. The computer environment can evaluate this general 
solution and provide an immediate feedback to the student.

Working in the computer environment was organized as a cycle. At the first step, 
students are expected to find one or two problems they were not successful with. At 

Fig. 3.3 Working in a computer environment. (www.elenapolotskaia.com)
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Table 3.2 Additive versus multiplicative comparison

Wording

Simon is 12 years old. He is 5 years 
younger than Benoit. How old is 
Benoit?

Simon is 12 years old. He is 5 times 
younger than Benoit. How old is 
Benoit?

Convenient 
representation

the second step, students decide collectively which “non-successful” problem(s) 
they wish to discuss together with the teacher. During the discussion, students inter-
act with the teacher and with each other to formulate and justify their thinking about 
relationships, thus solidifying their shared understanding of the problem, its graphi-
cal representation, and its solution. In our approach, the whole-class discussion, and 
not the computer, is the main pedagogical tool helping learners to construct deeper 
understanding. They then return to individual work in the computer environment to 
test their new knowledge, thus engaging in a new cycle of knowledge construction.

3.3.1.4  Activity 4. Differentiation Between Additive 
and Multiplicative Relationships

The goal of this activity is to direct students’ attention to the differences in expressions 
of additive versus multiplicative comparison (see Table 3.2). The teacher proposes 
simultaneously two different word problems with similar wording, one presenting an 
additive relationship, and the other a multiplicative relationship. The teacher then 
invites students to analyze and visually represent and compare the two situations.

While each of these activities emphasizes different aspects of the ethno- 
mathematical model, the main goal for all of them is to help students grasp quantita-
tive relationships, be able to represent them visually, and derive mathematical 
conclusions based on the relational understanding of a situation. This quest for 
understanding is supported by mathematically rich discussions, recognized by many 
researchers as an important tool for the development of learners’ mathematical 
thinking (e.g., Biron et al., 2016; Stein et al., 2008). In what follows, we showcase 
how such discussion is organized in the classroom.

3.4  How It Works in Class

The following excerpt presents a part of a lesson in grade 4. Previously, in grade 3, 
these students have been using diagrams to represent and solve additive word prob-
lems. In grade 4, they participated in two activities to discuss multiplicative compo-
sition relationships. In this new lesson, the students discuss, for the first time, a 
situation where quantities are compared in a multiplicative way. The teacher is 
assisted by a consultant because the approach and the activity are both new for her.
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T- teacher.
C- Consultant.

At the beginning of the activity, the teacher briefly reminds the students that they 
have already discussed some relationships and proposes to analyze and represent 
the following situation.

The 2nd cycle students will participate in different sporting activities. They have a 
choice between hockey, climbing, or swimming.

We know that:

• Two times more students chose hockey than climbing.
• Three times more students chose swimming than climbing.
• Some students chose climbing.

The situation described on the whiteboard contains only comparison statements, but 
not numerical values for the mentioned quantities. There is no question either. The 
formulation of the task makes the calculation impossible. To begin with, the teacher 
explicitly invites students to read and reformulate comparison statements. Students 
speak to their partner to express their thinking orally and negotiate the meaning of 
the problem together.

T: (after 2 minutes) What do you think about the first statement? How can you refor-
mulate it?

Claudie: I would say, there are more students participating in hockey than in 
climbing.

T: First of all, there are more students participating in hockey than in climbing, how 
do you know this?

Claudie: They say two times more students chose hockey than climbing. … Two 
times fewer to climbing.

T: They say two times more students chose hockey than climbing and you 
deduce that …?

Claudie: two times fewer…
T: Where?
Claudie: to climbing.
T: So, two times fewer to climbing.
Claudie: (put the proposed expression on the blackboard).
T: Antoine, do you want to say something? Is it exactly the same? Please go ahead.
Antoine: There are two times more to hockey, so for climbing there are two 

times fewer.
Tania: You need to take twice the number of students who will do hockey.
T: We take twice the number of students participating in hockey… why?
Tania: To find the number for hockey…
T: To find the number of students in hockey, we need to take twice the number of 

students to hockey …? Is it so? There is something here. Think more.
C: Anybody can complete the statement? We need to take twice the number of stu-

dents … where?
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Claudie: Take twice the number of persons to climbing and to hockey to know how 
many in total.

C: To find the total. OK. But, if I take twice the number of people to climbing, what 
will I find?

Nik: The number of persons to hockey.
T: Anything else? OK.

Together the group formulates two new versions of the relational expression describ-
ing the same relationship between the number of participants to climbing and to 
hockey. It is difficult for individual students to formulate a complete relational 
expression. But together they arrive at an expression using an opposite adjective 
(fewer instead of more) and to another one using an action (take twice). These 
important logical connections between the original expression, inverse expression 
and an action (operation) can potentially support the understanding of the situation 
in a relational way as a network of ideas rather than as a calculation recipe.

The teacher discusses the second statement in the same way. They arrive to the 
following formulations:

• There are three times fewer students to climbing than to swimming.
• You need to take three times the number for climbing to know the number for 

swimming.
• If we know the number for climbing, we need to multiply it by three to find the 

number for swimming.

The teacher distributes the task (the wording of the situation and an annotated place 
for a representation) to students. She asks students to represent the situation by 
using segments. Each segment represents the number of students to each sport. The 
shortest segment represents the sport with fewest students, and the longest segment 
represents the sport with the largest number of participants. The place for the repre-
sentation is pre-organized so the students need only to decide on the length of each 
segment.

Students work in teams of two. The teacher observes the students’ work and 
decides to discuss the representation with the whole group. She invites all students 
to sit near the whiteboard.

T: We will start with the first statement, and you will tell me what to do to rep-
resent it.

T: There are two times more students to hockey than to climbing. Can I draw seg-
ments using this information?

Students: You draw a long segment for hockey and a short one for climbing.
T: (Draws a very long segment for hockey and a very short one for climbing) Like 

this? Does it work? You say, I should draw a long segment for hockey and a short 
one for climbing. We said two times more for hockey. (Points to the long seg-
ment.) Should this line be like this? (See Fig. 3.4.)

The teacher uses the student’s idea suggesting one line to be longer than the other, 
but she intentionally exaggerates the length in her drawing to attract students’ 
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Fig. 3.4 The teacher’s first 
proposal of a 
representation “more 
hockey than climbing”
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yFig. 3.5 The teacher 
shows “two times the value 
of climbing for hockey”

attention to the quantitative part of the comparison expression without directly indi-
cating the problem with her drawing.

Nik: It doesn’t work.
T: How should it be then?
Nik: It should be smaller.
T: It should be smaller because there is another one bigger? Shall we ask for help?
Matis: It should be two times longer than climbing.
T: A-a! I know that in hockey, there are two times more students than in climbing, 

so my line should be twice as long as for climbing. If for climbing it is like this 
(shows the length with her fingers), so for hockey it should be two times this 
(shows two times the same distance with her fingers on the line for hockey). (See 
Fig. 3.5)

The teacher makes specific gestures to mimic the “two times” expression on the 
diagram. In future activities, students will use this meaningful gesture (Wagner 
et al., 2008) to deepen their understanding of multiplication, division, and multipli-
cative relationships.

C: Or you can start with the hockey. Your line for hockey is beautiful!
T: A-a!
Mike: You divide it in two.
C: Why should we divide it in two?
Antoine and Mike together: Because one half is the line for climbing.
T: Why can we take the half for the climbing?
Antoine: Because it’s two times. You divide in two.
T: (Draws a segment for climbing and shows that it compares to a half of hockey). 

Like this? Makes sense? (See Fig. 3.6)

In the episode above, students are able to formulate an inverse operation: based on 
the “more” statement, they propose a division to find the climbing representation.
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Fig. 3.6 The teacher 
constructs a half

T: Rosalie, what did I do to find the line for climbing?
Rosalie: You took a half of hockey.
T: Why?
Rosalie: Because … (Seems to be blocked.)
T: Claudie?
Claudie: Because at first, we had a big line. And for climbing… We know that in 

hockey there are two times more than for climbing. For hockey, we need to take 
the climbing two times.

T: Ok, for hockey, we need to take the line of climbing two times. But we found the 
line for climbing from the line for hockey. How did we do this?

Antoine: We divided it in two parts.
T: (does a gesture of cutting the line of hockey) We divided it in two. We separated 

it in two parts. There are two times fewer for the climbing.

The teacher continued to discuss the division idea even though it was already for-
mulated and carried out. Not all students can see the inversion or can explain it (see 
Rosalie above). More work is needed to allow for each student to recognize the 
equivalence of “times more” comparison and “times fewer” comparison. The dis-
cussion is always about the multiplicative comparison relationship at hand. Using 
the visual representation on the whiteboard makes the relationship visible and lends 
itself available for students to describe it in different words, and to operate on it.

In what follows, the teacher discusses the second statement in the same way. She 
suggests that the students are ready to construct a representation on the whiteboard 
themselves.

T: Rosalie, let’s do it, you can do it (gives the pen to Rosalie). Three times more 
students chose swimming than climbing.

Rosalie: (Draws a segment equal to climbing, stops and observes, continues the line, 
draws the second part, observes, and draws the third part.)

T: How did you find the length of the line for swimming?
Rosalie: The line for swimming is three times longer than the line for climbing. 

(Shows that the edge of the first part corresponds to the end of the segment for 
the climbing.) I divided it in three.

T: Did you divide it in three? (Points to the climbing.)
T: (Shows with her two hands the segment for climbing.) Did you divide this 

in three?
Roslaie: No.
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Fig. 3.7 Construction of the line of swimming

T: What did you do?
Roslaie: This line (shows the line for swimming), I divided it in three.
T: How did you construct this line?
Rosalie: (Shows the segment for climbing) I took this three times.
T: A-a! You took the line for climbing three times.
T: (Shows the segment for climbing with her two hands and repeats the gesture three 

times on the line for swimming.) You took climbing and you repeated it three 
times. (See Fig. 3.7.)

The teacher pays careful attention to the words the student uses to explain her work. 
The student uses the word “divide” to reflect the fact that the line she drew is divided 
in three parts. However, this verb does not correspond to the action needed to con-
struct the line for swimming (which is taking three times).

Noah: But…
T: Noah?
Noah: It is not long enough.
T: How is it not?
Noah: If hockey is two times …
T: Come please and show how we should arrange this.
Noah: (compares the segment for hockey with the segment for swimming to show 

that two parts of swimming do not correspond to two parts of hockey.)
T: Please, arrange it. Use a cursive line to compare.
Noah: (puts a vertical cursive line and makes the third part of swimming line equal 

to the first part, to obtain three equal parts).
Ron: Exactly!
T: Is it better now?
Everybody: Yes!

The above episode shows the advantage of the visual representation of relation-
ships. The students visually analyze the correspondence of all three segments to the 
two comparative statements. Thus, they can see that the visual representation of the 
swimming segment does not respect the proportions of the hockey segment.

The teacher invites students to adjust their representations before continuing the 
discussion about different ways to formulate the two relationships. By analyzing the 
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constructed visual representation, the group formulates more statements about the 
situation.

• To obtain the line for climbing, you need to take a half of the line for hockey.
• Two times climbing gives hockey.
• Three times the number of students in climbing gives the number of students in 

swimming.
• Three times the line of climbing gives the line of swimming.
• You take the line for swimming, and you cut it in tree pieces to obtain the line of 

climbing.
• The climbing represents one third of the swimming.

While observing their work students try to discover more relationships without 
any prompt.

Nic: Can we compare the line of hockey with the line of swimming? I can take 
the line of hockey plus one time the line of climbing and it gives the line of 
swimming.

In this class, many students wanted to continue the discussion and compare 
swimming and hockey, but it implies a multiplicative comparison, which seemed 
too difficult to figure out (2/3) and the lesson was over. Only in the next lesson the 
students would know the numbers and the question of the problem. Then they would 
use their representations and the mathematical understanding of the story to propose 
a calculation to find the numerical answer.

The lesson we described shows the careful work of the teacher, through a math-
ematically rich discussion, to construct students’ deeper understanding of multipli-
cative comparison and the relationship between multiplication and division. The 
calculation part of the solving process is intentionally delayed to allow the discus-
sion about relationships. Students’ attention is constantly directed toward the rela-
tionships between quantities. The teacher together with the students constructs 
visual representations of the relationships. Notably, the process of modelling and 
the constructed visual model helps students to see each relation from multiple per-
spectives and to find multiple logical connections between different formulations. 
All this work is about the coordination between the sense provided in the textual 
expressions and the sense coming from the visual representation of relationships.

The word problem activity discussed above is qualitatively different from typical 
classroom work that is observed in a more traditional approach and that follows an 
operational paradigm. The traditional approach draws students’ attention to key 
words and known numbers for the purpose of finding a numerical solution. Within 
the relational approach, however, that we showcase above, students learn to appreci-
ate the system of relationships in a word problem and consequently they can con-
struct a network of logical connections through a process of sensemaking. In this 
process, students use gestures meaningfully to build up a more profound under-
standing of mathematical relationships. Only later, will they get to numerical calcu-
lations. Taken together, the relational approach exemplifies capacity building in and 
through negotiation and coordination of mathematical meaning.
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3.5  Conclusion

The EDA is an innovative approach to teaching problem-solving. The focus on 
quantitative relationships and their visual modeling allows students to develop rela-
tional thinking which, as many researchers increasingly believe, is the foundation of 
algebraic thinking (Kieran, 2018). Relational analysis of problems requires impor-
tant intellectual work from students thus contributing to a sustainable mathematical 
thinking development. We argue that including relational analysis in a form of the 
tasks and activities illustrated in this chapter in every day classroom work would be 
strongly beneficial for enhancing mathematical thinking in all students.

Previous work (e.g., Freiman et al., 2017; Polotskaia & Savard, 2018; Savard & 
Polotskaia, 2017) demonstrates the increased interest students pay to activities 
guided by the ethno-mathematical model and mathematical discussions organized 
by the teacher. Specifically, Polotskaia and Savard (2018) reported a qualitative 
change in how students approach additive word problems, which seems to contrib-
ute to the observed significant improvement in students’ capacity in solving them. 
Moreover, these findings suggest that for students who learned to think relationally, 
the traditionally difficult (inconsistent) problems are much less difficult than for 
students who learned within the operational paradigm.1 In addition, from our collec-
tive theoretical work and practical experience, we conjecture that learning about 
relationships is accessible for learners at any stage of the learning trajectory. While 
it is certainly better to start with relationships at the very beginning, our practice 
shows that students in grades 2, 3 and 4, as well as teachers, can successfully inte-
grate this powerful practice to their previous knowledge of numbers and operations.

It is important to highlight that the positive outcome for students we observed in 
our research is not due to the introduction and use of diagrams per se. The careful 
work on the relationships, the constant sense making and negotiation through the 
mathematically rich oral discussions allow the students to make visible their rela-
tional thinking and use it to solve word problems. Therefore, the role of the teacher 
in the process is crucial.

The EDA approach is new and very different from what mathematics teaching 
usually looks like in regular school settings. As shown by other researchers (e.g., 
Blanton et al., 2015; Gjære & Blank, 2019; Malara & Navarra, 2018), an essentially 
different approach requires from teachers a thorough rethinking and rebuilding of 
their teaching practices. This process of reconstruction usually takes a lot of time 
and requires special training and support. The teachers in all our studies reported an 
important and positive shift in students’ thinking and thus appreciated the approach 
saying that they substantially changed the way they conceive their teaching. 
However, all of the teachers we worked with highlighted the need for ongoing train-
ing and support to be able to fully implement the EDA in their classes. We suggest 
that EDA is incorporated not only in teacher education programs but also in 

1 See Polotskaia and Savard (2018) for quantitative and qualitative analyses of evidence from the 
experimental and control groups.
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professional development continual support to introduce a much-needed change in 
how early mathematics is taught.Funding InformationThe research projects dis-
cussed in this chapter were funded by the Quebec ministry of éducation (“Chantier 
7” funding opportunity 2012 and 2015).
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Chapter 4
Experiences of Tension in Teaching 
Mathematics for Social Justice

Ann LeSage and Ami Mamolo

Abstract Teachers who commit themselves to change embark upon a difficult and 
sometimes lonely journey of self-doubt. In this chapter, we meet Nora, a Canadian 
educated middle school teacher who was hired as part of a school-wide initiative to 
introduce curricular change in an elite South American international school. Nora’s 
attempts to introduce socially relevant project-based teaching to her mathematics 
class were met with resistance, even amongst a backdrop of reform. We explore and 
analyse the tensions that emerged for Nora as she navigated the competing perspec-
tives and expectations of her supervisors, colleagues, students and parents. This 
chapter contributes new insight into the experiences, supports, and shifts needed to 
help teachers persist through the uncertain journey of curricular change.

Keywords Teacher tensions · Teaching mathematics for social justice · Social 
justice context problems · Collegial tensions · Student tensions

4.1  Introduction

This chapter explores the tensions surrounding and experienced by Nora, a Canadian 
educated teacher who was hired by an elite South American school (colegio) to sup-
port curricular change in their middle school mathematics program. Nora brought 
with her a practice that was characterized by student-centered, socially responsible 
interdisciplinary approaches that emphasized conceptual understanding, reasoning 
and communication, and realistic worldly applications. Teachers who consider 
adopting such approaches that deviate from traditional expectations for classroom 
mathematics instruction can find themselves stuck in a web of competing perspec-
tives with little professional support (administrative, pedagogical, mathematical, or 
emotional) as they navigate the tensions that invariably emerge. In this chapter we 
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explore the tensions that emerged for Nora as she navigated the competing perspec-
tives and expectations of her supervisors, colleagues, students and parents.

Nora’s tensions are not unique. In general, teachers are required to respond to 
novel challenges that emerge in their classrooms. Lampert and Ball (1999) recog-
nized that teachers must “be prepared for the unpredictable … [and]…figure out 
what is right practice in the situation” (p. 39). Rowland and Zazkis (2013) agree, 
and state further that teaching “involves attending to students’ questions, anticipat-
ing some difficulties and dealing with unexpected ones, taking advantage of oppor-
tunities, making connections, and extending students’ horizons beyond the 
immediate tasks” (p. 138). Through this narrative inquiry research, we shed light on 
some of the anticipated and unexpected difficulties that emerged as tensions for 
Nora as she introduced reform-oriented practices in an environment that embraced 
traditional approaches to teaching and learning mathematics. Nora faced resistance 
from her administration, colleagues, students and their parents, and despite her 
experience and competence as a mathematics teacher, she felt stuck in a web of 
competing forces. We analyze Nora’s stories with an eye toward how teacher educa-
tion programs might better support pre-service teachers to be prepared for the 
unpredictable.

4.2  Background and Context

4.2.1  The Colegio Context

The colegio in which Nora taught is a private, coeducational, non-denominational 
international school, which follows American curricula and boasts having earned a 
reputation as a progressive educational leader in Latin America. It is a bi-language 
school (English and Spanish) that is internationally competitive, on par with leading 
K–12 institutions across the globe. The school is divided into four divisions: Pre- 
Primary, Primary, Middle School and High School. Each division has a Principal, 
who reports to the School Director. The Director is the most senior administrator at 
the school. He, along with the school’s Board of Governors are the decision makers 
for all matters concerning school operations.

The colegio has been a pillar of the community for generations, and students are 
often from families where multiple generations of alumni l. There is a strong sense 
of pride, history and ownership within the tightly-knit school community and many 
alumni stay active with this community. There is a culture of high expectations on 
students to do well and become the future leaders of their country.

The colegio imports approximately 25% of their teachers, head-hunted specifi-
cally from the United States and Canada. Nora was one of the imported teachers and 
was recruited by the school’s Director while she was completing her Master of 
Education in Canada. The Director who hired Nora had been at the school for over 
two decades and had a strong vision for how they intended to maintain and advance 
the colegio’s reputation as a leading progressive educational institution. They had 
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initiated reform-oriented programs across the colegio’s departments and programs, 
and was on a head-hunting mission to recruit like-minded international instructors 
when he met and recruited Nora. The Director made clear to Nora at the time of her 
recruitment that they expected her to introduce major changes to the mathematics 
department, in line with their vision for the colegio.

Nora was brought to the colegio to better align their mathematics programming 
with the rest of the colegio’s progressive programming, which was seen by the 
Director as lagging behind in reform efforts. It became clear to Nora early on that 
the Director’s vision was not shared amongst the majority of her mathematics col-
leagues. The resistance to the Director’s vision and Nora’s approaches was strong 
early on, and Nora soon realized that she was not in a position to implement or 
advocate for the large-scale changes for which she was recruited. When she 
expressed this to the Director, they encouraged her to keep true to her pedagogical 
approach and make changes where she could.

4.2.2  Introducing Nora

Nora is a 35-year-old female English-speaking Canadian. At the time of this 
research, Nora had been teaching for six years, including at international schools in 
the United Arab Emirates, and had just completed her Master in Education degree. 
Nora brought a varied educational background and work experience to her teaching 
practice. Nora’s professional life has been laden with circumstances that required 
her to assume life-changing risks (i.e., pursuing a non-traditional first career; leav-
ing her first career without a complete vision for her next career; moving overseas 
to teach at international schools; moving to countries where English was not the 
primary language). As such, she has developed an openness to accepting ambiguity 
and emotionally risky situations. She has learned that, generally, positive outcomes 
result from what might be perceived as more risky life choices. She enjoys being 
immersed in situations that require her to think creatively or being in spaces of 
uncertainty where she is provided with new opportunities to learn and discover. We 
describe Nora’s orientation to teaching in the following section.

4.3  Methodology and Data

We adopted a person-centred research approach (Waite et al., 2010) to understand 
Nora’s experiences as she struggled to introduce reform-oriented mathematics ped-
agogies at an international school in South America. We explore Nora’s stories and 
discuss the internal and external tensions she experienced through the lens of narra-
tive inquiry space (Connelly & Clandinin, 1985, 1994, 2000). Connelly and 
Clandinin’s narrative research provides the framework for understanding the influ-
ence of teachers’ stories, experiences and reflection on the development of their 
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teaching knowledge, practice, and beliefs. Connelly and Clandinin assert that 
teacher narratives are human constructs which are both personal and social. 
Personal, “reflecting a person’s life history, and social, reflecting the professional 
contexts in which the teacher lives” (p. 318). They emphasize that narrative inquiry 
space is three-dimensional; encompassing the elements of temporality (past, pres-
ent, and future), personal individuality, and place or context. Thus, the stories teach-
ers narrate are situated and developed within a time and place, and are interpreted 
and understood through the experiences of the teacher. Nora’s stories provide insight 
into her beliefs, teaching practice, and the tensions she experienced during a time of 
change, in the specific context of one international school in South America.

To understand the tension stories Nora experienced, we collected data from 
Nora’s written reflective accounts and through semi-structured interviews. Nora’s 
written and oral stories helped us understand her lived experiences and the tensions 
she encountered in her teaching and professional life. Among the tensions experi-
enced by Nora were ones she witnessed her students going through; that is, her 
perception of students’ experiences of tension resulted in tensions of her own.

4.3.1  Nora’s Orientation to Mathematics Teaching 
and Learning

Nora possesses a dynamic view of mathematics, coupled with a philosophy of 
teaching that is best described as a problem-solving, non-traditional (Raymond, 
1997) or social constructivist (Ernest, 1989, 1994; Vygotsky, 1978). She believes 
that learning mathematics requires teaching in a way that engages students. She 
endeavours to expose her students to a broad range of mathematical concepts and 
encourages them to solve complex, open-ended problems which are embedded in 
real-life contexts. Nora strives to create a classroom environment that nurtures stu-
dents’ and teachers’ development of mathematics competence and confidence. As a 
constructivist teacher, Nora advocates the creation of mathematical communities 
that encourage both students and teachers to actively construct mathematical 
assumptions through investigations and explorations.

An example of how Nora enacted these practices in her teaching were through 
multi-week projects that incorporated a variety of math concepts and allowed stu-
dents to explore other subjects through a mathematical lens. Given the magnitude of 
these large-scale projects, they were introduced only once or twice per year. The 
projects required students to work collaboratively in groups to solve real-life open- 
ended, complex problems. Nora developed two such projects for her students: The 
Design Your House Project and the Environmental Project.

The Design Your House Project required students to design the interior and exte-
rior, including landscaping, of a home. Students were given budget constraints for 
materials and labour costs. The budgets varied from group to group to add an ele-
ment of realism to the project and to emphasize issues of fairness. The students 
created architectural floor plans, then designed the building ensuring to stay within 
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their limited budget constraints. After designing the 2-dimensional plan, selecting 
construction materials and establishing their construction costs, the students built 
three-dimensional scale models of their homes including landscaping features (all 
of which were built to scale). Upon completion of their homes, each group created 
a brochure introducing their property to their school peers.

The Environmental Project required students to investigate local environmental 
issues (e.g., at the school, city or country level), determine solutions to address the 
issue, develop a plan to implement the solution then present their plan to the appro-
priate governmental body. As an example, a group of students decided to tackle the 
problem of excessive waste on the school campus. With the assistance of the school 
custodial staff, students collected and organized the garbage on the school property 
over a 1-week period. They determined how to categorize the waste and explored 
how the school could begin to reduce the amount of waste put into the landfill. 
Through exploration of the data, they determined that the colegio and students could 
take action to address the organic and recyclable materials. They proposed a school- 
wide recycling program and worked with the custodial staff and gardeners to create 
recycling and composting sites throughout the school campus. The students pre-
sented their environmental plan to the school’s Board of Governors, who passed the 
plan, and took the necessary steps to put their plan into action the following 
school year.

4.4  Teaching Math for Social Justice

The House Project and Environment Project align with what Mamolo et al. (2018) 
describe as “social justice context problems,” (p.  378) which are in-depth and 
extended mathematical explorations that foster deep mathematical thinking, proce-
dural fluency, and a broader understanding of the relevance of mathematics for 
understanding and addressing various societal issues. The problems involve creat-
ing artefacts that address a social issue via a mathematically informed perspective. 
The problems and artefact creation require extended experiences grappling with and 
applying mathematical concepts; such experiences are considered crucial in foster-
ing conceptual understanding and deep learning (e.g., Flewelling & Higginson, 
2001; Watson, 2008). Such projects aim to foster critical awareness of social injus-
tices in the lived experiences of others around them while emphasizing the impor-
tance of exploring, questioning, negotiating and discussing ideas, approaches, and 
solutions. Such projects are modeled after Gutstein’s (2006) framework for Teaching 
Math for Social Justice (TMSJ). In his framework, Gutstein (2006) posits two 
dimensions of Teaching Mathematics for Social Justice, which are summarized in 
Table 4.1.

The TMSJ framework was developed by Gutstein through his work with under-
privileged middle school students. He describes the importance of using mathemat-
ics to change the world, as it can foster in students a sense that they are “capable of 
making change” and may help them develop “a sense of social agency” (p. 27). In 
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Table 4.1 TMSJ pedagogical goals

Social justice pedagogical goals Mathematics pedagogical goals

Reading the world 
with mathematics

Using mathematics to 
understand world issues, 
inequities, and 
opportunities

Reading the 
mathematical word

Developing mathematical 
power, understanding, and 
literacy

Writing the world 
with mathematics

Using mathematics to 
take action and initiate 
changes in your 
community and beyond

Succeeding 
academically in a 
traditional sense

Succeeding in school, 
standardized tests, and 
post-secondary school.

Developing 
positive social and 
cultural identities

Being able to see yourself 
as able, confident, 
competent, and valuable

Changing one’s 
orientation to 
mathematics

Seeing mathematics as 
relevant, connected, and 
powerful for understanding 
real issues.

Gutstein (2006)

line with these perspectives, Bartell (2013) suggests, “The purpose of education is 
not to integrate those who are marginalized into the existing society but rather to 
change society so that all are included” (p. 3). In Nora’s case, the school and stu-
dents were not the marginalized individuals but rather came from families that were 
among the wealthiest and most powerful in the country. Students were accustomed 
to travelling internationally and had accrued worldly experiences that aligned with 
the expectations that they would be future leaders, destined for important things. 
This reality sharpened Nora’s resolve to help her students empathize and understand 
the lived realities that existed beyond their communities. She explained:

Budgets were always a part of the lessons because [in their reality] the kids had more 
money than they could spend. It was eye-opening for a lot of them, for example, when they 
were designing their houses and couldn’t afford some of the luxuries they were used to at 
home. [They would say,] “What do you mean we can’t have an indoor pool and theater?” 
Um, yea… most of the world doesn’t live this way!

For Nora, the disconnect between her students’ lived experiences and those of “most 
of the world” became an important factor in the social justice pedagogical goals of 
her projects. For instance, in the housing project, students were assigned realistic 
budgets based on a scale factor of the number of letters in their name as a way to 
help read the world with mathematics. For example, Daily Labor Rates were calcu-
lated as follows: each vowel of a student’s surname was valued at $16.25 plus each 
letter “L” in a student’s full name (first+middle+surname) was valued at $15. The 
number of days, Total Labor Days, was determined by the number of letters in a 
student’s first name. The project required students to research actual costs of labor, 
materials, and so forth, and even students with very long names were required to 
revisit their original plans, reassess, redesign, and confront how this constraint 
impacted the ability to realize their dream. Constraints in the environment project 
impacted the issue students could tackle as well as solutions they could propose, and 
helped connect students’ understanding of reading the world with mathematics to 
their understanding of writing the world with mathematics. The waste reduction 
program proposed by students to the school Board of Governors is an example of 
taking action to initiate change, which resulted in new environmental policy and 
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procedures in their school. Through their work on the projects, students developed 
a broader and more empathetic awareness of how mathematics is relevant for solv-
ing real world problems, as well as of the social inequities around them and what it 
might mean to make valuable contributions to their communities. Mathematically, 
the projects were quite rich, yet in line with other research (Bartell, 2013; Garii & 
Rule, 2009; Gustein, 2006; Nolan, 2009; Xenofontos et al., 2020) balancing math-
ematical and social justice pedagogical goals was challenging. As Nora described:

These were Pre-Algebra students, about grade 7 in the American system. But we went well 
beyond, to Algebra 2 content. The projects took a long time, 6-8 weeks, and love them or 
hate them, the students were embedded in them. The first project [the housing project] was 
tough at first, and I’m not sure we explored the social side of it as much as I might have 
liked. My pedagogy was really different from what they were used to, and there was a lot of 
resistance. By the time we did the environment project, the students were more on board 
and we could dive deeper to where students were actually presenting plans to make changes 
in their communities and some of these changes were actually put into action. It was 
awesome.

4.4.1  Tensions in Teaching Math for Social Justice

Tensions necessarily emerge in teaching as teachers negotiate unanticipated situa-
tions which elicit an inner turmoil about what course of action to take next (Berry, 
2007; Floden & Buchmann, 1993; Katz & Raths, 1992; Lampert, 1985). Tensions 
in teaching are seen as ubiquitous and inescapable (Mason, 1988) though they can 
ebb and flow over time (Berry, 2007). Tensions can be unsolvable and recurring 
(Cuban, 1992; Lampert, 1985), and while it is possible to discuss tension in isola-
tion of other tensions, they are not independent of them (e.g, Katz & Raths, 1992; 
Lampert, 1985; Mason, 1988). Tensions are “related in complex ways that reflect 
the complexity of teaching situations” (Sparrow & Frid, 2001, p. 453).

Balancing pedagogical goals aimed at fostering both mathematics learning and 
social understanding can elicit specific tensions around whether the social issues 
will take precedence over the mathematics learning (e.g., Wager & Stinson, 2012), 
or whether the social issue is inadequately explored (e.g., Bartell, 2013), or whether 
to embrace real and messy data versus made-up data to smooth out the mathematics 
(Mamolo, 2018). Mamolo and Pinto (2015) discuss tensions in the form of per-
ceived and actual risks involved in enacting pedagogies that jar with the belief that 
education ought to be value neutral and avoid controversial topics. Mamolo and 
Pinto (2015, p. 90) write:

Mistaking value neutrality as a characteristic of education undermines the goal of social 
justice. Items that appear in curriculum documents privilege certain knowledge, skills, and 
attitudes… in particular, within mathematics, values underpin the conventions, approaches, 
and nature of what are viewed as acceptable ways of engaging in the discipline (Ernst, 1989)

Preservice teachers who engaged with social justice context problems as part of 
their mathematics professional development also experienced tensions that led to an 
articulation of pedagogical goals for teaching math for social justice in teacher 
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education (Mamolo, 2018). These goals and their associated tensions include 
(Mamolo, 2018, p. 39):

 1. Reading the mathematical world: this goes beyond understanding of content (the 
mathematical word), to include knowledge of mathematical sensibilities, values, 
and ways of being. Tensions emerged for participants who believed that debate 
and ambiguity do not belong in mathematics;

 2. Fostering success in non-traditional ways: using complexities of social justice 
contexts with local, national, or global connections to promote and reveal math-
ematical understanding. Tensions emerged regarding participants’ struggles to 
recognize and articulate the mathematics in their work; and

 3. Changing one’s orientation toward mathematics class: this goal speaks to the 
perceived purposes of school mathematics and the role of a teacher. Tensions 
emerged for participants who believed that the class content was irrelevant to 
most pupils yet necessary to master.

As with the participants from Mamolo (2018), Nora’s experiences teaching with 
social justice context problems surfaced tensions within and across these three 
goals. In what follows, we analyze the tensions experienced by Nora as she faced 
resistance from her students and their parents, her colleagues, and her supervisor. 
Tensions surfaced with respect to reading the mathematical world, fostering suc-
cess in non-traditional ways, and changing one’s orientation toward mathematics 
class. Each tension was experienced simultaneously with other tensions and elicited 
new ones. Nora was like a fly caught in a spider’s web, suspended in tension, where 
a disruption of one strand causes reverberations across the others. For the sake of the 
paper, we disaggregate individual tensions first and discuss how they manifested for 
Nora. Such a disaggregation allows us to unweave the complexity of the spider’s 
web and zoom in on how Nora’s experiences in tension had unanticipated conse-
quences that created new tensions.

4.5  Nora’s Tensions

Prior to beginning her teaching at the colegio, Nora anticipated there would be ten-
sions with the culture and language differences between her and her students, as 
well as with her reform-based pedagogy and the traditional approaches to teaching 
mathematics of the school. Indeed, it was precisely these tensions that brought Nora 
to the colegio. Her adventurous spirit had drawn her to international teaching in the 
past. Nora recounted being head-hunted by the Director of the colegio, who was a 
fixture in the community.

The Director was a brilliant man, and also charismatic, as he somehow convinced me to 
accept a teaching position at the school. I had no intentions of going to South America (I 
was hoping to secure a position in Madagascar). However, he convinced me that I would be 
a perfect fit and that I was exactly what the Math Department needed at the time… someone 
that didn’t teach traditionally; someone that focused on manipulatives, problem solving and 
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conceptual understanding. He informed me that, although he strongly supported reform 
ideals, that the students, parents and the other math teachers may not embrace the same 
philosophy. I knew that it was not going to be easy and that there was going to be resistance 
to this change. However, I knew that he had my back. And at the end of the day, he would 
fight for me and help me stand up for what I believed in.

4.5.1  Student Tensions: Fostering Success 
and Changing Orientation

Nora anticipated that her pedagogical approaches which included fostering success 
in non-traditional ways would elicit resistance from her students and their parents, 
and had experienced such tensions in the past. Nora wrote:

As with many Middle School students, they were verbal about their distaste for the level of 
detail required in the writing (justifying answers, explaining thinking, explaining why an 
equation works, etc.). Some complained to their parents and the Middle School Principal. 
Some parents voiced their concerns to the Principal, as their child’s grades were lower in 
the first Quarter of the year (compared to previous years). Grades were very important in 
this school, as such, any slipping of the grades was problematic for the students and their 
parents.

I recall during the first Parent Interviews in the Fall term, having to explain to parents that 
once their child became more proficient with explaining their thinking, that their grades 
would rebound and that they would learn more than if we simply used the traditional text-
book approach. I recall inviting parents and the Principal to my classroom to see what we 
were doing. None of the parents accepted my invitation, but the Principal did come to my 
class (a few times) and interacted with the students.

The heavy writing component of the social justice projects was especially frustrat-
ing for students. In general, teachers face resistance when introducing reform meth-
ods (Remillard, 1999, 2000; Ross, 1999; Ross et al., 2003; Roulet, 1998) such as 
ones that require students to communicate and explain their thinking in writing – 
after all, there is a perception that math is about numbers, and numbers are univer-
sal. Nora’s students, who were learning the material in their non-native language, 
were resistant to this change. Students, and their parents, were accustomed to the 
school’s textbook tradition, which focused on computational or procedural compe-
tence, rather than conceptual understanding. Such approaches fall short of realistic 
mathematics used in everyday or academic contexts (e.g., Moschkovich, 2002) and 
do little to help students read the word with mathematics or develop connections 
between their identities and their school learning (e.g., Gustein, 2006).

Previous research on the effects of textbooks on teaching and learning suggests 
that textbooks can be a substantial impediment to nontraditional teaching. There is 
a persistent theme running through these studies that textbooks reinforce a tradi-
tional approach to mathematics teaching, one dominated by a reliance on recall of 
procedures in place of fostering student thinking (Eisenhart et al., 1993; Frykholm, 
1996; Grant et al., 1996; Spillane, 2000). Further, as Mamolo and Pinto (2015) note, 
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traditional or conventional textbooks tend to under-emphasize social justice con-
texts or issues in their address of subject matter, and as such, reliance on them works 
against social justice aims.

The tension experienced by Nora as she confronted resistance to her nontradi-
tional approaches, relates to the social justice pedagogical goal for teacher educa-
tion: fostering success in nontraditional ways. Nora felt tensions regarding students’ 
(and their parents’) uncertainty about whether her nontraditional approaches could 
foster success. The writing requirement emerged as a recurring challenge for stu-
dents and, as such, emerged as a recurring tension for Nora. For instance, Nora 
recalled that:

Pretty much all of my students equated math teaching with textbook teaching. They were 
used to working from a textbook and were open with me about how much easier that was 
for them. Using a textbook was less work. But they also described textbooks as boring and 
lacking challenge. Students told me that while they might have learned less if I taught from 
the textbook, their grades would have been better. I knew their parents were worried about 
grades. And I knew that my students were feeling the pressure from their parents too.

Nora had planned for, and had experience with, students’ resistance to her 
approaches. She knew that students’ grades would rebound once they adapted to the 
sociomathematical norms of her classroom. However, a new tension emerged with 
respect to the parental resistance she experienced.

The school was well established in the community. My students’ parents went to this 
school, and so did their grandparents. Generations of the same families went there, and 
families were very much a part of the school culture. Parents had been part of the school for 
their whole lives pretty much, and they really felt that they “knew more about the school” 
than any new teacher would. The parents were very well educated, Ivy League graduates, 
very well off, very intimidating… They applied intense pressure on my Principal, and it was 
because of their request that the Principal visited my classes to appraise me and give 
feedback.

After the Principal’s class visits, we would debrief the lesson and she would provide me 
with feedback. Most of her feedback focused on how I interacted with the students and 
helping me understand the cultural differences (i.e., softening my approach, more positive 
reinforcement, more comforting/more physical contact, etc.).

Part of the tensions Nora experienced was from a pedagogical disconnect between 
her and her students. Nora knew that students were not accustomed to explaining 
their thinking, and that it took time for them to appreciate this as a teaching strategy. 
This was a recurring tension that Nora perceived in her students and it led to a new 
tension for Nora as she adapted her practice to better connect with her students. 
Nora decided to allow her students to work and discuss their ideas in their native 
language (Spanish), rather than in the language of their instruction (English). This 
created a new tension for Nora who did not speak Spanish and could not understand 
what her students were saying in her class. Nora had to trust her students to be on 
task and as such release some of her control over the class. This tension relates to 
dynamics of control (the teacher’s) and autonomy (the students’) and the social 
justice pedagogical goal for teacher education: changing one’s orientation to 
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mathematics class. By allowing students to speak in a language with which she was 
unfamiliar, Nora took a risk and tensions emerged as she negotiated a changing 
orientation to her ideas of classroom activity, student autonomy and trust. As 
Mamolo and Pinto (2015) noted:

Conventional and enduring “cultural myths” (Nuthall, 2004) place the teacher in control (at 
the front of the class with quiet students), the curriculum and textbook as the authorities of 
what and how students should be taught, and undebatable truths as the requisite knowledge 
to be acquired. There are risks involved on all three counts – social risks involved in manag-
ing a class that seems “out of control”, subject-matter risks in diverting from prescribed 
approaches, and an intersection of social and subject-matter risks in negotiating disparate 
interpretations of mathematical “truths.” (p. 92)

Tensions for Nora extended beyond the classroom community to the broader school 
community, in which students and their parents were integral members. Nora identi-
fied the school community as an external impediment (tension). Tensions emerged 
with other members of the school community as well, including with her principal 
and colleagues. Fullan (2001) cited a positive community of practice as a quintes-
sential contributor to successful school and board-wide reform efforts. Nora felt that 
she did not have a positive community of practice supporting her change efforts. 
She cited the following elements within the school community as negatively influ-
encing her efforts to implement non-traditional mathematics pedagogy: the tradi-
tional beliefs and experiences of parents; the traditional beliefs and practices of 
colleagues; and the lack of collegial support or collaboration within the school.

4.5.2  Collegial Tensions: Changing Orientation 
and Mathematical Being

Nora’s feelings of being unsupported in her reform efforts are reflected in the 
research literature, where studies have cited a multitude of factors that impede 
movement toward mathematics reform teaching practices. Such explanations 
include the social teaching norms of the school (including school politics and paren-
tal involvement) and the nature of the immediate classroom situation (LeSage, 
1999; Raymond, 1997; Remillard, 1999, 2000; Roulet, 1998); and feelings of isola-
tion from colleagues (Roulet, 1998). Nora explained the effect that the Principal’s 
visit had on her:

The Principal was a good teacher. She had similar ideas about fostering student thinking 
and getting them to explain their ideas. I remember early in my first year teaching at the 
colegio, my students complained to the Principal that I was always asking them to explain 
things. I would say things like, “oh, what are you doing there? Explain it to me, I don’t 
understand.” It was a way for me to get them talking without feeling like I was testing them. 
But the students were worried that I really didn’t understand! I still think it’s hilarious that 
they thought this. They went to the Principal and complained, and she had my back. She 
assured them I knew what I was doing and reinforced me. That changed when she started 
getting feedback from parents.
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I think the parents kind of panicked when they saw the first Quarter grades. There were 
some students who were used to getting A+’s in their typical rote-based courses, and were 
now getting B+’s in my conceptual-based course. So, I guess I’m not surprised that parents 
were worried. The resistance did not surprise me. Change is difficult for everyone. However, 
when faced with resistance to my teaching, it forced me to question my abilities and myself. 
It would have been easier to teach from the textbook. It would have been less work for me; 
and my students would have faced fewer frustrations. Knowing in your mind that you will 
have to face resistance is one thing, but having to experience it is a totally different thing. 
Because the resistance comes from so many different places, it can be hard to see through 
the fog of resistance to that light at the end, where you know eventually the students will 
benefit, the parents will be on board, and the Principal will be on board. But you really need 
the students to go with you and be on board. It can be exhausting because you are continu-
ally fighting them, their beliefs about what you should be doing, what you should know… 
even if I wasn’t doubtful about my abilities before, I become doubtful because there was so 
much resistance.

The resistance Nora felt from her Principal could be articulated as a tension experi-
enced by the Principal regarding Nora’s reform teaching and the perceived purposes 
of school mathematics and the role of the teacher. This tension aligns with the social 
justice pedagogical goal for teacher education of changing one’s orientation toward 
mathematics class, and highlights the Principal’s dilemma of how to support Nora 
and her students while responding to the pressures and demands of their parents. 
The Principal’s tension translated into tension for Nora as she had to work to earn 
the support of her Principal, despite the fact that she had been headhunted by the 
colegio’s Director because of her approaches and successes in teaching mathemat-
ics. One of the consequences felt by the resistance and actions of the Principal was 
that Nora began to doubt her expertise and this doubt led to tensions in Nora’s sense 
of her mathematical abilities. Thus, for Nora, tensions around changing orientation 
toward mathematics class elicited a new tension in her reading the mathematical 
world. Reading the mathematical world includes knowledge of the multifaceted 
ways that individuals engage with mathematics, for what different purposes, and to 
what different ends (Mamolo, 2018). It speaks to a holistic understanding of the 
mathematical world and ways of navigating within it. Mathematical sensibilities 
such as explaining the why, deductive reasoning, asking what if, negotiating realis-
tic constraints, and debating possible solutions were parts of the mathematical world 
that Nora could navigate fluently and which she brought into her classes. The 
entrenched school culture of textbook teaching and the tensions that emerged 
because of her different view of the mathematical world elicited in Nora what she 
described as a “strong fear of imposter syndrome”, which was contributed to by her 
interactions with colleagues at the colegio. Nora wrote:

The greatest resistance from colleagues were from the Secondary Math teachers; in particu-
lar, one senior teacher. He had a PhD in Mathematics, taught a number of the Secondary 
math courses as well as mathematics (part time) at a local university. He was very tradi-
tional in his teaching methods and beliefs about how mathematics should be taught. His 
depth of mathematical knowledge and his status in the school community intimidated me. 
He had taught at the school for about 15 years. At the time, I had my M.Ed. and did not have 
a degree in Mathematics. What did I know? It took me until my second year at the school 
before I could begin to defend my teaching with any level of confidence or articulation.
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In line with observations from Mamolo (2018), Nora struggled to articulate the 
mathematical power of learning activities that required students to explicate their 
thinking and that contextualized mathematics in issues of social justice. Nora made 
efforts to meet regularly for lunchtime chats with her most resistant colleague.

We would meet over lunch and chat. At first it was difficult, but our relationship warmed up 
over time. This particular teacher did not understand why I required my students to write 
and did not see the value in such activities… His perspective was that numbers / math are 
universal and that requiring students to write and explain their ideas as they tackled these 
complex problems was not appropriate for math class. There was truth to his argument that 
having students whose English was not strong write in math was challenging for them, and 
I considered allowing students to write in Spanish, but could not figure out how to assess 
their work if I allowed them to do so.

Nora’s approach was open-minded, and she accepted feedback and advice, and 
worked to adapt her practice to best support her students. She met regularly with the 
Principal, her colleagues, and the Director.

The continued support Nora received from her Director helped her address some 
of the hurdles she faced: “He pushed me forward and always encouraged me to 
continue to fight for change.” Nora was also buoyed by the support of a friend who 
taught English at the school:

She was a fabulous support and wonderful cheerleader for change. I’m not sure my second 
year would have been as positive if she were not a significant person in my life. As an 
English teacher, she was an advocate for writing across the curriculum, and always encour-
aged me to continue to help the students write about their thinking and about their math 
experiences.

Tensions around her ability to read the mathematical world, and the legitimacy 
of how she did so, recurred for Nora throughout her teaching at the colegio. Nora 
described this tension as “not a constant pressure, but intermittent”. She reflected:

It doesn’t make any sense on the surface. My fear is that people are going to figure out that 
I don’t know how to teach and I don’t know math. But my belief that my students are more 
important than my fear, that’s the tension… imposter syndrome and me.… my fear is out-
weighed by the benefit to my students… so the scale tips and you face those fears because 
you’re supposed to, because it’s your job. Because it doesn’t make any other sense, that I 
pushed through to make this change… it’s exhausting, but we do it anyway because at the 
end of day we want systemic change to happen.

Nora’s resilience in the face of a multitude of tensions and pressure coming from 
every direction seemed to come from an unshakable belief in the importance of 
what she was doing. Like the fly caught in a web, the tensions experienced by Nora, 
from her colleagues, principal, students, and parents, were interconnected. 
Experiences of tension in one area elicited new tensions in other areas, creating a 
complex space in which Nora was suspended in fear. Nora’s belief in student- 
centered benefits of her teaching approaches, as well as her personality and open-
ness to risk-taking, contributed to her openness to feedback, criticism, and even 
surveillance. She reflected:
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It certainly was not easy. But, in the end, I knew my students could do it. If they were will-
ing, we could explore some exciting topics in more interesting ways than any textbook 
could offer. … and we did! Over my two years at the colegio, I did see changes. Changes in 
students’ perspectives of mathematics, more support from my high school teaching col-
leagues as they saw changes in their incoming students’ understanding of mathematics and 
their mindset, and less resistance from incoming parents (it was a tight community, so lots 
of talk/gossip about this ‘new’ math).

I remember a significant moment in my relationship with my Math PhD colleague, when he 
acknowledged my teaching practice was influencing student understanding of math. I 
believe he learned about what my students were doing from some of his own students who 
had siblings in my class. I recall my students telling me that they helped older siblings with 
their math homework … and this information was relayed to the High School teacher. I 
remember this as a turning point. Afterwards, we would have lunch hour conversations 
where I would show him what my students were working on, and sometimes he helped me 
see the depth of their mathematical thinking that I sometimes did not see. At one point, he 
gave me test questions from his Grade 10 class; and my students were able to answer 
them … some more proficient than his own students. I remember laughing about this with 
him over a lunchtime chat and teasing him that perhaps my ideas weren’t so outrageous.

4.6  Implications for Teaching

The findings from this study hold particular implications for the mathematics edu-
cation community as teachers who commit themselves to changing their teaching 
practice embark upon a difficult and sometimes lonely journey of self-doubt. This 
journey is frequently complicated by community and/or student resistance to change 
(LeSage, 1999, 2005; Manouchehri, 2003; Raymond, 1997; Ross, 1999; Ross et al., 
2002; Roulet, 1998). For Nora, the journey also exposed her to tensions that are 
sometimes hidden – the tensions that can arise amongst administrators with diver-
gent positions and pressures. Whereas the Director who hired Nora was accountable 
to the Board of Directors and was leading the teaching changes, the Principal who 
oversaw Nora was accountable to students’ parents and was leading the teachers. 
While Nora described her Director as a support, she described her Principal as an 
appraiser, and we suggest that understanding the tensions experienced at the admin-
istrative level and their impact on fostering curricular changes may be an important 
part of understanding teachers’ journey toward reform. In Nora’s case, the resis-
tance she felt from students, parents, administrators and colleagues manifested as 
tensions felt about her approaches to, and mathematics pedagogical knowledge for, 
teaching mathematics for social justice. Such approaches necessarily come with 
risk and tension for which teachers may be ill-supported (e.g., Mamolo & Pinto, 
2015). This chapter contributes new and refined understanding about the interplay 
of tensions impacting teachers who attempt to introduce these new practices in their 
classes.
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4.6.1  Elicited and Eliciting Tensions

Nora’s story is significant because she is not the typical middle school teacher. Her 
orientation toward mathematics teaching already aligned strongly with the afore-
mentioned pedagogical goals for teacher education, which is not the norm. 
Moreover, Nora is an individual who embraces risk and had accrued several non-
conventional experiences before teaching at the colegio – she had relevant industry 
experience as an environmental engineer, had previously taught in international 
schools, she held an advanced degree in education, and had strong convictions about 
the effectiveness of her approaches. Nevertheless, she was deeply shaken by the 
tensions that emerged.

Tensions Nora experienced with respect to one pedagogical goal elicited tensions 
in another; these tensions were recurring, complex, and layered. For Nora, fostering 
student success in non-traditional ways elicited tensions in her orientation toward 
mathematics class. The interdisciplinary social projects elicited resistance from stu-
dents regarding writing and explaining their thinking in English, which led to a 
change in Nora’s practice that allowed for Spanish language discussions in her 
class. This elicited tension in Nora’s orientation toward mathematics class, as she 
had to release part of her teacher control over the class discussions and allow for an 
unprecedented amount of student autonomy. Further, Nora’s orientation toward 
mathematics class elicited tensions in her reading the world with mathematics. The 
resistance expressed by Nora’s colleagues elicited recurring feelings of self-doubt 
and self-efficacy as she struggled to articulate the mathematical relevance of her 
activities. Nora’s experiences are in-line with teachers’ tensions when learning to 
teach math for social justice, including tensions from balancing pedagogical goals 
and from external factors such as parents and colleagues (e.g., Xenofontos et al., 
2020). For instance, Mamolo (2018) noted that:

The ability to articulate relevant mathematics pedagogical goals, as encouraged by the 
structures in the [social justice projects], may also help address some of the concerns and 
pressures experienced by teachers who may be reluctant to stray from more “stereotypical” 
approaches to mathematics teaching (p. 51).

4.6.2  Preparing for Sticky Situations

Nora’s story highlights the complexities and interconnection of tensions that are 
elicited and experienced when introducing curricular change in mathematics. Even 
in a setting that was recognized as progressive, traditional expectations for mathe-
matics were prevalent and strongly held. While Nora anticipated some resistance to 
her approaches, she was unprepared for the emotional toll she experienced while 
feeling tensions amongst what she was hired to do, what she was pressured to do, 
and what she believed she needed to do for her students.
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These tensions, coupled with feelings of self-doubt, can derail teachers from 
attempting to introduce a new way of engaging with mathematics in their class-
rooms. Teacher education programs that prepare individuals to teach mathematics 
for social justice need to help build resilience to these anticipated tensions and pres-
sures (as well as to the unanticipated ones). We suggest that part of the answer lies 
in mathematics and the pedagogical goals of reading the mathematical world, fos-
tering success in non-traditional ways, and changing one’s orientation toward 
mathematics class (Mamolo, 2018). Extended experiences with mathematical tasks 
such as the social justice projects can help preservice teachers overcome their own 
resistance to such approaches, particularly when time is spent explicitly articulating 
the mathematical nature, relevance, and importance of those experiences.
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Chapter 5
Designing Inclusive Educational Activities 
in Mathematics: The Case of Algebraic 
Proof

Francesca Morselli and Elisabetta Robotti

Abstract In the chapter we address the issue of designing and implementing inclu-
sive activities for the teaching and learning of mathematics and, in particular, for 
algebraic proof. To this aim, we present design-based research that benefits from a 
combination of theoretical tools and references from neuroscience, cognitive sci-
ence, education and mathematics education. We rely on the Universal Design for 
Learning principles to design inclusive educational activities to improve and opti-
mize teaching and learning for all students, and we promote the activation of forma-
tive assessment strategies, so as to create an educational path each student is led to 
become responsible of his/her learning. In the chapter, we detail the design process, 
showing how the theoretical tools contribute to the creation and implementation of 
inclusive activities for the teaching and learning of algebraic proof, and we provide 
evidence of the effectiveness of the approach in terms of proof understanding and 
inclusion.

Keywords Inclusive mathematics education · Universal design for learning · 
Multimodality · Formative assessment · Algebra · Proof and proving

5.1  Introduction

UNESCO defines inclusive education as an ongoing process aimed at offering qual-
ity education for all, while respecting diversity and the different needs and abilities, 
characteristics, and learning expectations of students and communities, eliminating 
all forms of discrimination. UNESCO’s Incheon Declaration highlights the impor-
tance of developing high quality educational research, taking in account the speci-
ficities of national education systems, to ensure inclusive and equitable quality 
education opportunities for all: “no education target should be considered met 

F. Morselli (*) · E. Robotti 
Mathematics Department, University of Genova, Genoa, Italy
e-mail: morselli@dima.unige.it; robotti@dima.unige.it

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2023
K. M. Robinson et al. (eds.), Mathematical Teaching and Learning, 
https://doi.org/10.1007/978-3-031-31848-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31848-1_5&domain=pdf
mailto:morselli@dima.unige.it
mailto:robotti@dima.unige.it
https://doi.org/10.1007/978-3-031-31848-1_5


70

unless met by all” (Education 2030, Incheon Declaration and Framework for 
Action , 2015, p. 7).

Inclusion and how it is approached should be an urgent consideration for math-
ematics education. Indeed, data from the latest OECD assessment (OECD, 2019) 
show that more than half of the world’s adolescent population does not meet the 
minimum standards in mathematics and reading (in Italy 1 student out of 4 at the 
age of 15 is in a state of mathematical illiteracy, and only 2% of these students reach 
the highest level). Therefore, the UN set the following goals for the 2030 agenda: 
“By 2030, ensure that all girls and boys complete a program free, fair and quality 
primary and secondary education“and also “Build and improve educational facili-
ties that are child, disability and gender sensitive and provide safe, non-violent, 
inclusive and effective learning environments for all” (Education 2030, Incheon 
Declaration and Framework for Action, 2015, p. 20).

In this perspective, we address the issue of designing and implementing inclusive 
activities for the teaching and learning of mathematics and, in particular, for alge-
braic proof. Therefore, we present a design-based research that benefits from a com-
bination of theoretical tools and references from neuroscience, cognitive science, 
education and mathematics education.

In the last decade there was a growing interest for networking theories in math-
ematics education, seen as a research practice that may improve the understanding 
of didactical phenomena (Prediger et  al., 2008). There are different networking 
strategies, for instance we refer to the combining strategy, where a conceptual 
framework is built by juxtaposing elements from different theories. We point out 
here that Prediger and colleagues refer to all theories in mathematics education. In 
the same vein, in this contribution we explore the viability of an interdisciplinary 
approach (combining theoretical tools coming from cognitive psychology, educa-
tion and mathematics education) to design and implement inclusive educational 
activities for a first encounter with algebraic proof.

In order to design and implement efficient educational activities with a focus on 
inclusion, it is important to take into account the student dimension. Both cognitive 
and educational science researchers refer to learning profiles (Armstrong et  al., 
2012), although there is not a shared definition of them. This is also evidenced by 
Karahiannalis and Nöel (2020) who establish common ground, at a cognitive level, 
attempting to transpose relevant aspects of the cognitive psychology literature into 
the field of mathematics education (Karagiannakis et al., 2017; Karagiannakis & 
Baccaglini-Frank, 2014). Exploiting these studies, some researchers have been 
actively trying to elaborate theoretical grounding, both for research on students with 
low achievement in mathematics and students with Mathematical Learning 
Difficulties (MLD), when teaching and learning include physical and digital arti-
facts (e.g., Baccaglini-Frank et al., 2014; Baccaglini-Frank & Robotti, 2013; Robotti 
et al., 2015). For instance, Baccaglini-Frank and Robotti (2013) referred to a “radi-
cal” approach in the development of technological tools for MLD. Within this 
approach, software is designed to propose fundamental mathematical content (e.g., 
the notion of “variable” or “function”) in ways that take advantage of particular 
hardware and software affordances. The interactions with software designed 
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according to this approach are frequently less constrained: tasks within the environ-
ment need to be designed by an educator (as they might not be part of the software), 
input and feedback may be given in various ways, and the role of the teacher 
becomes fundamental in mediating the meanings developed by the students within 
the environment. Thus, inclusion is realized by designing educational activities that 
consider the educational context and the learning profiles of the students (also stu-
dents with MLD), combining theoretical tools and exploiting software that was pur-
posefully created.

We argue that inclusive educational activities should be planned so that they 
address a plurality of students, with a plurality of learning profiles. According to 
researchers in cognitive science and neuroscience, (Núñez & Lakoff, 2005) and in 
mathematics education as well (Radford et al., 2009, Arzarello & Robutti, 2010, 
Nemirowsky, 2003), this can be done exploiting a multimodal approach. Indeed, 
mathematical thinking develops through a multimodal approach, where many 
modalities may be activated simultaneously. Multimodal activities seem especially 
effective for students with low achievement in mathematics (or even a diagnosis of 
Mathematical Learning difficulties). In the chapter, we detail the design process, 
showing how the theoretical tools contribute to the creation and implementation of 
inclusive activities for the teaching and learning of algebraic proof, and we provide 
evidence of the effectiveness of the approach.

5.2  Theoretical Framework

5.2.1  Multimodal Approach

The notion of multimodality arose within the paradigm of embodied cognition, a 
cognitive science theory that recognizes the central role of the body in shaping 
thinking. According to Loncke and colleagues (Loncke et al., 2006), multimodality 
is the use of two or more forms of communication from the two main modalities, 
namely auditory and visual, and is deeply intertwined with perceptuo-motor activi-
ties. Multimodality concerns cognitive science and also neuroscience, because it 
details how the body is involved in thinking and learning. Indeed, it emphasizes 
sensory and motor functions, and their importance for successful interaction with 
the environment. In the perspective of neuroscience, the sensory-motor system of 
the brain is multimodal rather than modular: “an action like grasping… (1) is neu-
rally enacted using neural substrates used for both action and perception, and (2) the 
modalities of action and perception are integrated at the level of the sensory-motor 
system itself and not via higher association areas.” (Gallese & Lakoff, 2005, p. 459).

We are particularly interested in the effect that the multimodality perspective 
may have on mathematics education. Arzarello (2006), quoting Nemirovsky, points 
to how research in math education suggests that the paradigm of multimodality 
implies that “the understanding of a mathematical concept rather than having a defi-
nitional essence, spans diverse perceptuomotor activities, which become more or 
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less active depending o f the context” (Nemirovsky, 2003, p. 108). Also, Radford 
(2006) highlights that the understanding of relationships between bodily actions 
carried out through artifacts (objects, technological tools, etc.) and linguistic and 
symbolic activity is essential to understand human cognition, and mathematical 
thinking in particular. In other words, the multimodality perspective suggests that 
human activity is multimodal and cognitive processes should be analyzed taking 
into account all the involved modalities (Radford et al., 2009). During mathematical 
activities involving media, students produce a variety of signs such as words, ges-
tures, and actions on the tools, interactions, and written or oral signs of whatever 
nature” (Arzarello & Robutti, 2010, p.718). In this perspective, we consider signs 
produced by students in math activities with media as expression of multimodal 
approach devoted to the development of algebraic proof. Our reference to the 
Universal design for learning (UDL), that will be discussed in the next paragraph, is 
coherent with the multimodality perspective.

5.2.2  Universal Design for Learning

Universal Design for Learning (UDL) is a framework to improve and optimize 
teaching and learning for all people (Rose & Meyer, 2006), based on scientific 
insights into how humans learn. Indeed, neuroscience research has identified three 
primary neurological networks that impact learning (CAST, 2018) Cherrier 
et al., 2020):

• The recognition network deals with perception, language and symbols (incom-
ing stimuli) and affects “what” students learn

• The strategic network mediates “how” students process incoming information 
(physical action, expression and communication) based on past experience or 
background knowledge

• The affective network regulates students‘attitudes about incoming information 
as well as their motivation to engage in specific activities — the “why” students 
want to learn and “why” they are engaged.

Successful teaching and learning involve all the three networks simultaneously and 
it is designed on UDL‘s three principles:

• Multiple means of engagement  - tap into learners’ interests, offer appropriate 
challenges, and increase motivation

• Multiple means of representation - give learners various ways of acquiring infor-
mation and knowledge

• Multiple means of expression - provide learners alternatives for demonstrating 
what they know.

CAST (Center for Applied Special Technology), a nonprofit education research and 
development organization, created the Universal Design for Learning framework 
and the UDL Guidelines (https://udlguidelines.cast.org/more/research- evidence). In 
Fig. 5.1 the three principle of UDL are presented in more detail.
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Fig. 5.1 UDL Guidelines. (https://udlguidelines.cast.org/action- expression/expression- communi 
cation/construction- composition)

The first UDL principle focuses on providing multiple means of engagement: 
indeed, besides recognizing the necessity of recruiting students’ interest, one must 
know that not all the learners will find the same activities or information equally 
relevant or valuable. For our focus, we rely specifically to the following principles: 
vary demands and resources to optimize challenge (UDL 8.2), foster collaboration 
and community (UDL 8.3), develop self-assessment and reflection (UDL 9.3),

The second UDL principle focuses on providing multiple means of representa-
tion. As far as representation of math objects is concerned, this principle suggests to 
provide options for perception in terms of alternative means (i.e., registers) of rep-
resentation (algebraic language, for instance) through which the math object can be 
represented (UDL 1.2, UDL 1.3). This principle suggests to lead students to improve 
comprehension about information at disposal, activating background knowledge 
(UDL 3.1), highlighting big ideas and new ideas to answer tasks (UDL 3.2) and to 
guide information processing (UDL 3.3) and design strategies of solution (UDL 2.3, 
UDL 2.4). It also suggests to move students towards generalization (UDL3.4), so 
that they will be able to transfer their learning to new contexts (UDL3.4). In the 
teaching and learning sequence we will discuss, the proposed tasks will allow active 
participation, exploration and experimentation.

Providing multiple means of action and expression is the third UDL principle. In 
the teaching and learning sequence we will discuss, physical action on 
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representations of math objects (UDL 5.2) supports mathematical thinking. 
Similarly, actions, like gestures and moving objects (cf., just writing), support com-
munication (UDL 5.1). Managing information, resources, ideas, … in order to 
develop math thinking (UDL 6.3), supports the executive functions which are essen-
tial in guiding appropriate goal setting (UDL. 6.1) and monitoring progress (UDL 
6.4). Such a focus on goal setting and progress monitoring suggests a link with 
formative assessment, that will be treated in the subsequent section.

5.2.3  Formative Assessment

Formative assessment is defined as a method of teaching in which “evidence about 
student achievement is elicited, interpreted, and used by teachers, learners, or their 
peers, to make decisions about the next steps in instruction that are likely to be bet-
ter, or better founded, than the decisions they would have taken in the absence of the 
evidence that was elicited” (Black & Wiliam, 2009, p. 7). A key element of forma-
tive assessment is feedback, that is any “information provided by an agent (e.g., 
teacher, peer, book, parent, self, experience) regarding aspects of one’s performance 
or understanding” (Hattie & Timperley, 2007, p.81). Wiliam and Thompson (2007) 
provide a description of five main strategies to perform formative assessment in 
class: (FA1) clarifying and sharing learning intentions and criteria for success; 
(FA2) engineering effective classroom discussions and other learning tasks that 
elicit evidence of student understanding; (FA3) providing feedback that moves 
learners forward; (FA4) activating students as instructional resources for one 
another; (FA5) activating students as the owners of their own learning. Such strate-
gies may be activated by the teacher, but also by the peers and by the student him-
self. Indeed, formative assessment should in principle lead to auto-regulation.

5.2.4  Algebraic Proof

As already mentioned, we are interested in the design and implementation of inclu-
sive activities for the teaching and learning of mathematics. In the present contribu-
tion, we address the topic of proof. There is a wide amount of research on the 
teaching and learning of proof, see the work of Stylianides et al. (2016) for a recent 
overview. Here we focus on students’ first encounter with proof, an important learn-
ing experience encompassing both understanding what a proof is and in learning 
how to prove (Balacheff, 1982). As De Villiers (1990) points out, it is crucial to 
make students aware of the different functions that proof has in mathematical activ-
ity: verification/conviction, explanation, systematization, discovery, 
communication.

Lin et al. (2012) present a series of principles for task design aimed at promoting 
conjecturing, proving, and the transition between conjecture and proof. In relation 
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to conjecturing, it is important to provide students with an opportunity to engage in: 
(C1) observing specific cases and generalizing; (C2) constructing new knowledge 
based on prior knowledge; (C3) transforming prior knowledge into a new statement; 
(C4) reflecting on the conjecturing process and on the produced conjectures. 
Concerning the transition from conjecture to proof, the teacher should propose tasks 
that raise students’ need to prove. Moreover, the teacher should establish “social 
norms that guide the acceptance or rejection of participants’ mathematical argu-
ments” (p. 317), emphasizing that the acceptance /rejection is based on the logical 
structure of the argument and not on the authority of the instructor. In relation to 
proving, it is important to guide students: P1) to express in different modes of argu-
ment representation (verbal arguments, symbolic notations, etc.); P2) to understand 
that “different modes of argumentation are appropriate for different types of state-
ments” (p. 318); P3) to create and share their own proofs and to evaluate proofs 
produced by the teacher, thus “changing roles”; and P4) to become aware of the 
problem of sufficient and necessary proof.

Focusing on algebraic proof, we refer to Boero (2001) who describes the funda-
mental cycle of formalization, transformation and interpretation. Performing a 
proof by algebraic language encompasses the following crucial issues: the choice of 
the formalization, that must be correct but also goal-oriented; the validity and use-
fulness of the transformations; the correct and purposeful interpretation of algebraic 
expressions in a given context of use.

We draw from the aforementioned theoretical tools, coming from different 
domains, to sketch a theoretical framework for the design and implementation of 
inclusive activities in mathematics concerning algebraic proof. In Sects. 5.3, 5.4 and 
5.5 we discuss a teaching and learning sequence that is conceived within this theo-
retical frame.

5.3  Method: A Design-Based Approach

From a methodological point of view, the sequence is the result of cycles of design, 
enactment, analysis and redesign, according to the design-based approach (DBCR, 
2003). Following this approach, we take as a starting point specific theoretical 
claims concerning the teaching and learning process (UDL principles, guidelines 
for the first approach to proof, formative assessment strategies) and we aim to 
understand “the relationships among theory, designed artifacts, and practice” 
(DBCR, 2003, p.  6), also considering the design of the teaching and learning 
sequence as an outcome of the research in itself. Moreover, the research is charac-
terized by a strong interaction and collaboration between researchers and teachers, 
who take part in the design, implementation and a posteriori analysis.

The teaching and learning sequence we present is the result of cycles of design, 
enactment, analysis and redesign that started in 2012 and involved four teachers of 
a lower secondary school in the North of Italy. At present, five cycles were per-
formed in grade 7 (pupils’ age: 12–13), involving 8 classes (about 160 pupils). For 
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our analysis, we rely on teacher’s notes, observer’s notes, video recordings of the 
class discussions and written productions of the students.

In Sect. 5.4 we discuss the design of the teaching and learning sequence on alge-
braic proof; in Sect. 5.5 we give a general overview of the implementation and in 
Sect. 5.6 we carry out a qualitative analysis of relevant excerpts from the 
implementation.

Our analysis addresses the following research questions:

 1. Is the combined framework efficient in helping to promote inclusive educational 
activities?

 2. And, in that case, are they effective for the teaching and learning of alge-
braic proof?

5.4  From Theoretical Tools to Design: An Educational 
Sequence on Isoperimetric Rectangles

The teaching and learning sequence concerns isoperimetric rectangles. At the core 
of the sequence is the conjecture and explanation of the fact that, among all the 
rectangles with fixed perimeter, the square has the maximum area. In the designed 
sequence, the students start from the empirical evidence to grasp the idea of varia-
tion of the area according to the length of the sides. Then, students are asked to 
conjecture about the maximum area. Afterwards, they are guided by the teacher to 
feel the need for a general explanation and to appreciate the power of algebra in 
leading to a proof. The task sequence is organized in the following steps.

Step 1: Individually, students complete the explorative paper and pencil task in 
paper and pencil: “Draw four rectangles with a perimeter of 20 cm”. Afterwards, 
students work in small groups on the following task: “Compare the methods you 
used to draw the rectangles and synthesize”.

Step 2: Students work in groups and cut cardboard to create a set of isoperimetric 
rectangles.

Step 3: Students work in groups, aided by paper and pencil, on the following ques-
tions: “Do you think all the rectangles have the same area? If not, what is the 
rectangle with the biggest area?”

After each of the steps 1, 2, 3 the teacher promotes a mathematical discussion.
Step 4: Once established that the square is the rectangle with the biggest area, the 

teacher guides the students to prove the property. The proof, carried out in alge-
braic language, is presented at the blackboard, with the teacher involving the 
students via open questions. When presenting the proof, the teacher refers to the 
previous steps. For instance, the teacher underlines that using algebra allows one 
to generalize from a specific rectangle to the generic rectangle, that is a rectangle 
with the same perimeter as the square.
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Step 5: Each student receives a sheet containing the written proof of the property, 
and is asked to fill some open sentences concerning the proving process (for 
instance: “I put the rectangle over the square in order to…”; “I use letters 
because….”).

After step 5, the teacher collects written answers from the students and promotes a 
discussion amongst them.

Step 6: Each student is asked to answer to the following open question: “Looking 
back at the previous steps, you may note that we worked on the problem of iso-
perimetric rectangles by means of different approaches: we used paper and pen-
cil, cardboard, we drew a rectangle over a square on the blackboard, we used 
letters. What does each approach tell you?? Do they make you understand the 
same thing? Were they equally easy to follow and understand?”

This teaching and learning sequence is conceived under the perspective of multimo-
dality. Indeed, the construction of meanings is strictly bound throughout all the 
activities; on one hand, to the use of tools (e.g., paper and pencil, cardboards); on 
the other hand, to the interactions between people working together (small groups, 
class discussions). This way of working is typical of perceptuo-motor activities 
described in literature (e.g. Nemirovsky, 2003), where students are involved in solv-
ing mathematical problems individually or in groups.

Further, the sequencing is conceived according to the principles by Lin et  al. 
(2012): students observe specific cases and generalize, so as to formulate a conjec-
ture (principle C1). When conjecturing, they construct new knowledge based on 
prior knowledge (C2), so as to transform prior knowledge into a new statement 
(C3). Concerning the transition to proof, the teacher proposes different modes of 
argument representation (principle P1), paying special attention to the link between 
geometric and algebraic representations. During the guided proof and the subse-
quent individual reconstruction, students are led to reflect on the cycle of algebra, 
from the formalization (using letters to express relations) to the transformation and 
interpretation of algebraic expressions.

The sequence is conceived according to the UDL principles to ensure that all 
students can access and participate in meaningful, challenging learning activities 
about proof. There are different ways to take in and categorize information, to make 
sense of letters, symbols, colors and shapes, to connect new learning to prior knowl-
edge. This is done so that each student may have a privileged channel of access and 
processing of information: visual-verbal, visual non-verbal, auditory and kines-
thetic (UDL7). The steps involve different registers of representation, hence many 
channels of access to information (UDL1). Throughout the sequence, each student 
may address the problem on the basis of the privileged channel. For instance, the 
student may do some conjecture on the biggest area on the basis of the drawing, or 
on the basis of the manipulation of cardboards (UDL4). During group work and 
discussion the students compare individual strategies with different means of 
expression and communication (UDL5). In line with the UDL principles, modes of 

5 Designing Inclusive Educational Activities in Mathematics: The Case of Algebraic…



78

representation alternate so as to scaffold the solving process of any student. Working 
on different modes of representation (UDL2) is a support for reasoning, and also 
promotes motivation (UDL8). Guiding students to tackle the problem in multiple 
ways promotes sustaining effort and persistence and provides multiple means of 
engagement (UDL8). During steps 5 and 6 students are led to internalize the prov-
ing process by means of a guided reflection (UDL6.1). Such activity supports self- 
regulation and metacognition (UDL9).

The cycles of design, implementation and redesign were performed taking into 
account the UDL perspective. For instance, the use of cardboard was suggested by 
a student. In the first cycle of design, the students just worked on paper and pencil, 
produced the conjecture and were guided in the algebraic proof. In the algebraic 
proof, the idea of posing the square over the rectangle, and after comparing the non- 
coinciding areas, is crucial. One student, Bianca, interacting with the teacher during 
the guided proof, made the gesture of superimposing two concrete figures. This 
gave the idea of making students construct figures on cardboard (UDL1.2, UDL5.2). 
In the second cycle of implementation, each group was asked to construct a set of 
isoperimetric rectangles with a freely chosen perimeter, and after the set was given 
to another group, with no information on the measures, so as to promote an explora-
tion without reference to the specific rectangles, that could pave the way to general-
ization (UDL3.4). Anyway, some groups still measured the sides, because they 
preferred to ground their exploration also on the numerical aspects (UDL3). From 
the third cycle on, each group could keep the set of rectangles they constructed and 
ground their reasoning on the drawing, the cardboards or the measures, according to 
their own privileged way of approaching the problem (UDL2.3, UDL2.4).

During the designed sequence many formative assessment strategies are acti-
vated. In steps 1 and 3, the student is asked to explain respectively the procedure for 
drawing isoperimetric rectangles and the conjecture. Explaining makes the student 
responsible for his/her learning (strategy FA5). During group work and all the class 
discussions, students act as instructional resources for the classmates (strategy 
FA4). During the guided proof of the statement (step 4), the teacher explicates the 
learning objectives of the activity (strategy FA1). During steps 5 and 6, students are 
encouraged by the task itself to become responsible for their own learning (strategy 
FA5); the teacher may gather information on the learning process, and use it to pro-
vide individual feedback (FA3).

Table 5.1 presents a synthesis of the steps, outlining which principles were put 
into action in each step. The presence of principles in the same line suggests the 
coherency of the combined theoretical framework, while the absence of principles 
in some rows (for instance, in steps 5 and 6 there is no reference to principles refer-
ring to conjecture and proof) shows the necessity of combining theoretical 
references.
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Table 5.1 Synthesis of the steps of the designed educational sequence and of the principles put 
into action in each step

Step
Algebraic 
proof UDL

Formative 
assessment

1. “Draw four rectangles with a perimeter of 
20 cm”. “Compare the methods you used to draw 
the rectangles and synthesize”.

C1 UDL2
UDL7.1
UDL7.2

FA5
FA4

2. Construct a set of isoperimetric rectangles in 
cardboard

C1
C2

UDL1.2
UDL2.1 
UDL2.4 
UDL2.5
UDL4
UDL5.1 
UDL5.2

FA5
FA4

3. “Do you think all the rectangles have the same 
area? If not, what is the rectangle with the biggest 
area?”

C1
C2
C3

UDL3.3
UDL3.4
UDL2.3 UDL 
2.4

FA5

4.Guided proof P1 FA1
5. Individual reconstruction of the proof UDL1.4

UDL8.1
UDL6.4
UDL5.2

FA5
FA3

6. Individual “looking back” UDL1.4
UDL 6.1
UDL9.1

FA5
FA3

Note. (C1) observing specific cases and generalizing; (C2) constructing new knowledge based on 
prior knowledge; (C3) transforming prior knowledge into a new statement; (C4) reflecting on the 
conjecturing process and on the produced conjectures; (P1) to express in different modes of argu-
ment representation (verbal arguments, symbolic notations, etc.); (FA1) clarifying and sharing 
learning intentions and criteria for success; (FA2) engineering effective classroom discussions and 
other learning tasks that elicit evidence of student understanding; (FA3) providing feedback that 
moves learners forward; (FA4) activating students as instructional resources for one another; (FA5) 
activating students as the owners of their own learning. For UDLs, see Fig. 5.1

5.5  The Teaching and Learning Sequence: An Overview

In this section we present a general overview of the implementation of the teaching 
and learning sequence through the theoretical tools previously introduced. We refer 
to data collected in a class of 22 students that was involved in the third cycle of 
experimentation.

Steps 1 and 2 paved the way to the conjecture concerning the biggest area (step 
3). This excerpt from a groupwork is representative of student answers: students go 
back and forth from the geometric representation of the problem to the arith-
metic one.

Students often did not insert the square as a special case of rectangle, although 
the sides of the square represent a suitable solution for the arithmetic problem (find-
ing two numbers with a fixed sum). The square was refused because it is not in their 
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concept image of rectangle. A further analysis of the provided explanations may be 
found in (Levenson & Morselli, 2014).

Ready access to sets of cardboard rectangles strongly supported students’ rea-
soning. By moving, overlapping and cutting cardboard, students realized that the 
area varies (when they overlap figures and cut the exceeding part, they cannot cover 
all the figure), realized that area increases when the rectangle has the two consecu-
tive sides with similar measures, and conjectured about the square as the rectangle 
with the biggest area. Other students relied on the measures, thus shifting back to 
the numerical mode of representation of the problem (see Fig. 5.2).

Figure 5.3 shows the “ladder” of rectangles in cardboard and the idea of “cutting 
and overlapping” with cardboards and represented in paper and pencil.

This part of the sequence is efficiently narrated in the following student excerpt:

… after cutting them we overlapped them, finding out that there was always a part exceed-
ing. This made me understand that the exceeding part may be cut out into the figure, and the 
part that was not exceeding could be put “in common” with the other figures. In my group 
we also out [the rectangles] in a sequence, from the smallest to the biggest. And we found 
that if we went on [the rectangle] became small and thin, or vice versa with a bigger area. 
And we found that we got a square and got the conclusion that the square is a special kind 
of rectangle.

The last sentence of the student (“the square is a special kind of rectangle”) is linked 
to the previously mentioned issue of steps 1 and 2: not all the students, at first, 

Fig. 5.2 Group work on step 1. (Translation: “In order to make rectangles with a perimeter of 20 
cm, one must make 10 cm and then multiply by 2. With this method one can make 9 rectangles: 
6+4, 7+3, 8+2, 9+1, 4+6, 3+7, 2+8 and 1+9, but the first, second, third and fourth one are equal to 
the last four. 5+5 cannot be done because a square is made”)
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Fig. 5.3 From the students‘productions

inserted the square into the set of rectangles, because the square did not correspond 
to their concept image of rectangle. Interestingly, students were keener to accept the 
square as a special case of rectangle at the end of step 3, when they found out that 
the square has the biggest area. In other words, they extended their concept image 
of a rectangle so as to include the square in order to have the square as the rectangle 
with the biggest area. Here an intuition supported by visualization and manipulation 
contributes to the refinement of the concept image. This shows how the multimodal 
approach, according to the UDL principles, contributes to mathematical thinking.

Step 3 was followed by a class discussion, where the issue of generality emerged. 
This paved the way to step 4, where the teacher guided the students to explain in 
general terms why the square is the rectangle with the biggest area. The proof relies 
on the previous experience with the cardboards (overlapping the rectangle on the 
square and comparing the areas of the non-coinciding parts), and algebraic lan-
guages adds generality (letters represent measures, so that the rectangle is the 
generic rectangle with the same perimeter as the square). During the proof there was 
a back and forth between visual and algebraic modes of representation, which we 
can relate to the UDL principles concerning modes of representation and means of 
expression and communication. During such activity, all the students were involved 
in the class discussion (under the mediation of the teacher) because they could rely 
on the different modes of representation to support their reasoning and also to com-
municate it. Thus, the class discussion was a crucial moment not only for promoting 
a first approach to proof, but also for inclusion: all the students had at their disposal 
means to act and communicate—allowing them to take part in the discussion and 
then contribute to the construction of meaning. Moreover, the teacher used the 
guided proof to clarify the learning intentions of the activity (formative assessment 
strategy FA1).

During step 5 (individual reflection on the algebraic proof) students were led to 
reflect on each step of the proving process, giving meaning to all the process (e.g., 
the formalization, the transformation of the inequality in an equivalent one, the final 
interpretation of the inequality) and reflecting again on the employed modes of rep-
resentation (figure, letters, …). Each step of the proving process was justified in 
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natural language, thus promoting a link between algebraic and natural language 
modes of representation.

Finally, in step 6, students were asked to recall and reflect on the whole teaching 
and learning sequence, giving meaning to all the steps. Students’ narratives and 
reflections will be analyzed in the subsequent paragraph, with the aim of under-
standing whether the designed sequence constitutes an inclusive activity on alge-
braic proof.

5.6  Analysis

We focus on Step 6, analyzing student excerpts1 that provide evidence of the effi-
cacy of the sequence in terms of inclusion and teaching and learning of algebraic 
proof. We choose to focus on step 6 because it is the last one of the sequence, and 
because it requires students to adopt a reflective stance on all the sequences. Due to 
space constraints it is not possible to report on all the students’ productions, so we 
will focus on those excerpts in which the reflection on relevant themes (conjecturing 
and proving processes, use of multiple means of representations, progress in under-
standing, encountered difficulties) was particularly rich, clear and complete.

Camilla (translated): In the first approach I understood well what is the meaning of isoperi-
metric rectangle. In the second approach I understood well which was the rectangle with the 
biggest area because overlapping the cardboards one group created a square which is a 
special rectangle. We understood that [the square] has the biggest area. In the third approach 
we specified better why the square has the biggest area.

Camilla describes the journey from discovery to explanation. Moreover, Camilla 
ascribes to each approach a specific role in terms of construction of meaning: the 
first one (figural) makes the students understand the problem and the relations at 
issue, the second approach (kinesthetic) leads to the conjecture and its perceptive 
verification, the third approach (verbal, non-visual, symbolic) allows to generalize 
and reach an explanation. The evolution is accompanied and mediated by the differ-
ent registers of representation, action and communication, thus supporting the effi-
cacy of the UDL principles as a guide for the design of the sequence.

Erika (translated): The first approach was not very useful to me because, since we used a 
particular measure, I did not know whether what I understood could be applied to any rect-
angle. Moreover, it was not very useful because just drawing you could not see anything 
special and if you noticed something, you could hardly see it. The second method was very 
useful because we all had the idea of overlapping them to see which was the one with the 
biggest area and we understood it was the square. And also thanks to a sort of “ladder” with 
the square as a starting point and each step was a rectangle with longer basis and shorter 
height in comparison with the side of the square. But in this way you don’t understand why 
the square is the rectangle with the biggest area. The third method was the most important 
because it gave motivation to the fact that the square is the rectangle with the biggest area.

1 All the excerpts were transcribed verbatim and translated by the authors.
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Erika proposes meta-level reflections on the function of each approach towards 
meaning construction: for instance, she points out that the drawing is too specific 
and static and doesn’t allow seeing invariants. On the contrary, the dynamic actions 
on concrete figures in cardboards allowed her to see invariants and relations. Erika 
is aware of the fact that the cardboards give a perceptual evidence for the conjecture 
(“also thanks to a sort of “ladder” with the square as a starting point”) but do not 
provide a general explanation (“in this way you don’t understand why the square is 
the rectangle with the biggest area”). Erika also recognizes the value of the alge-
braic language as a generalizing tool (“The third method was the most important 
because it gave an explanation”). Erika also explicates a link between action on 
figures in cardboard and algebraic transformation. We point out that Erika judges 
the approaches in terms of “usefulness”, thus expressing her personal preference 
and functionality in relation to the objective of conjecturing and proving. Erika 
seems to be fully aware of the learning intentions of the activity.

Gaia (translated): I had more difficulties in understanding the last activity because with the 
cardboards and without letters it is easier… you can move figures, you cut the pieces that 
are left, you add to what is missing… but the concept is not as accurate as the one with 
letters.

Gaia points out that concrete representation on cardboards allows action (thus pro-
moting conjecture) and communication to the classmates. At the same time, the 
concrete representation does not hinder the necessity of moving to another repre-
sentation (algebra) in order to generalize.

Beatrice (translated): we did many approaches, but the easiest was the one where we had 
to draw four rectangles with the same perimeter but drawn in different ways; the approach 
of cutting cardboards was not difficult, the only problem was to draw rectangles that were 
equal to those on the cardboard; the method on the blackboard seemed to me more difficult 
to understand. On the blackboard there were a square and a rectangle overlapped, they had 
the same perimeter and, by means of calculation, we had to explain why the area of the 
square is bigger than the area of the rectangle. They all say the same thing, but in different 
ways, for example they want to make understand that rectangles that are isoperimetric to the 
square are infinite, but with drawing and the cutting you understand less because you cannot 
draw infinite ones, whilst with the mind and numbers you can go on to infinity. For me, a 
student in difficulty should try the first two methods, but a student not in difficulty should 
try the third one. With the third method I had difficulty because I could not understand well, 
while with the first two method I understood the concept of area, but I could not immedi-
ately grasp the idea of infinity but it was not possible to do it. The first two approaches are 
also more amusing because you can compare your ideas with the ones of your mates and if 
you don’t understand the mates can help him, while if you are alone you have to understand 
by your own, which is more difficult. […] Not everybody understands letters and figures 
and calculations, but with the drawing and easier explanations you understand more.

Beatrice recognizes that the sequence was organized in terms of evolution of gener-
ality. She is also aware at metacognitive level of the fact that the algebraic approach, 
although valuable in terms of generality, is more demanding in terms of cognitive 
load. She adds considerations in terms of engagement and points out the different 
methods are suitable for different students.
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Ivan (translated): They are all useful and each of us can use his own method but they all 
take the same result, so there is not a wrong method among them. They all take to the result 
and each of us may use his own.

Ivan, in a very synthetic way, seems to confirm that the designed sequence achieved 
its main goals: provide all students with multiple modes of representation, occa-
sions of action and motivations to address the problem, and construct the meaning 
of algebraic proof.

5.7  Discussion

In this contribution we presented a combined theoretical framework, consisting of 
theoretical tools from mathematics education, education, cognitive science, and 
neuroscience. In a design-based research perspective, we used them in combined 
theoretical framework to design, implement and analyze a teaching and learning 
sequence to realize an inclusive activity on algebraic proof.

The students, starting from the empirical evidence, grasped the idea of variation 
of the area according to the length of the sides. Afterwards, they were guided by the 
teacher to feel the need for a general explanation and to appreciate the power of 
algebra in leading to a general explanation. During the guided proof and the subse-
quent individual reconstruction, students were led to reflect on the cycle of algebra, 
from the formalization (using letters to express relations) to the transformation and 
interpretation of algebraic expressions. We point out that students at the same time 
grasped the necessity of a new mode of representation (algebraic language) and 
learn how to use it, with the semantic level (reference to the meaning of the expres-
sions) supporting the syntactic one (transformation). As we discussed in the previ-
ous section, students’ answers in step 6 are promising, because they show that 
students highly appreciated having at disposal multiple means of representation to 
ground their reasoning. At the same time, students recognized the explanatory and 
generalizing power of the algebraic language.

Students’ reflections in step 6, conceived as a formative assessment occasion, 
suggest to us that the designed sequence promoted an inclusive approach to conjec-
turing and algebraic proving. From the point of view of algebraic proof, students 
were able to report the evolution from exploration, to conjecture, to proof. Moreover, 
they were generally aware of the need for a general explanation and appreciated the 
proving power of algebraic language. From the point of view of inclusion, we saw 
the effectiveness of the three principles of UDL “in action”. A crucial issue is that 
in the teaching and learning sequence each register has its own status (and students 
show to be aware of this), but for each student a register may play a specific function 
with respect to the learning objective (UDL 2.4, UDL2.5). All students are using 
muliple sources of information to make sense of the other, with their preference 
reflected in their excerpts. Some students are completely aware of the generalizing 
power of algebra, other students appreciate the necessity of algebra after having 
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dealt with the dynamism of cardboards. In general, figures in cardboards are effi-
cient in activating the reasoning that leads to the conjecture, because the dynamic 
work on the figures allows one to identify geometric invariants (UDL 4.1). 
Interestingly, students themselves are aware of the two dimensions of the registers 
(status in reference to the designed teaching sequence, function in relation to the 
personal learning experience throughout the sequence). This suggests that provid-
ing multiple registers of representation enriches and makes the teaching and learn-
ing sequence really inclusive, without losing the content-related objectives of the 
activity (approach to proof). Moreover, we observed that students link their appre-
ciation of one register to the fact that working in that register fosters understanding 
(UDL2.4). Having at disposal more than one register of representation, students 
could not only formulate their conjectures, but also communicate their conjecturing 
process to the teacher and the peers (UDL5.1, UDL 2.5).

5.8  Implications and Conclusions

On the basis of these findings, we argue that the combined framework was efficient 
for designing inclusive educational activities. It was particularly effective for the 
teaching and learning of algebraic proof. Such results suggest that integrating theo-
retical tools coming from neuropsychology, cognitive science and education may 
help with designing inclusive teaching and learning sequences in mathematics edu-
cation. More specifically, we suggest to integrate UDL principles into the design 
principles for promoting conjecturing, proving, and the transition between conjec-
ture and proof (Lin et al., 2012). To this aim, the observation of specific cases to 
gain their generalization (C1) should be performed with multiple means of repre-
sentation, action and communication. Using multiple means of representation 
(UDL2) (for instance, concrete materials and symbolic representations) is effective 
in the conjecturing phase; it is important that the work on concrete materials is fol-
lowed by the verbal and symbolic formulation of the conjectures, exploiting multi-
ple means of representation and communication. Multiple means of action, 
representation and communication promote generalization, and effectively support 
students’ engagement in the task (UDL7) and students’ sharing of ideas (UDL5). 
Moreover, special attention should be payed to the communication of the conjectur-
ing process and of the produced conjecture. Once the conjecture is proved, it is 
important to look back at all the process (C4) and give meaning to the different 
phases as well as to the different means of representation that were used in each of 
them (C4, P1). It is important to give meaning to the algebraic proof by connecting 
it to the different means of action and representation. This helps to make the acquired 
knowledge more stable. The “looking back” phase is also crucial in sustaining effort 
(UDL8), because it makes students focus on the objectives of the activity and on all 
the conjecturing and proving process. Moreover, the “looking back” phase supports 
a control system on the processes. Therefore, this phase also supports self- 
regulation (UDL9).
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Chapter 6
A Sustained Board Level Approach 
to Elementary School Teacher 
Mathematics Professional Development

Brandon Allan Dickson, Donna Kotsopoulos , and Carolyn Mussio

Abstract In this chapter, we explored a school board’s response to improving 
mathematics achievement. While mathematics achievement is an area of interest in 
many jurisdictions, competing interests often limit professional development (PD) 
in mathematics to ‘one-off’ sessions. This research was completed in the context of 
a study analyzing student mathematical achievement. The school board in which 
this study took place had mathematics scores below the provincial average on pro-
vincial standardized tests. Multiple provincial level mathematics curriculum and 
strategy changes also occurred immediately prior to the year of PD programming. In 
response, the school board implemented yearlong, twice weekly virtual interactions 
led by school-based facilitators, focused specifically on grades 1–3 teachers. The 
emphasis of the PD was on the development of school-based professional learning 
communities made up of elementary school teachers, the principal, and Student 
Program Support Teachers. Where many studies focus on teacher learning through 
PD, we emphasize student learning from PD. Results from one school within the 
board with lower mathematics scores, but high teacher participation in the PD sug-
gest the success of this sustained PD.  This research contributes to the literature 
related to professional development and teachers’ mathematical content knowledge. 
Implications for school boards and directions for further research are discussed.
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6.1  Introduction

Preservice and beginning teachers increasingly state that they feel uncomfortable 
developing and implementing effective mathematics programming at the elemen-
tary school level (Brady & Bowd, 2006; Wessels, 2014). One of the main ways that 
teachers enhance their practice is through professional development (PD; Miller 
et al., 2015) and it is often focused primarily on teacher’s learning (Carney et al., 
2016). The impact on student learning is often understated or overlooked (Sztajn 
et al., 2007).

In this chapter, we report research that emphasizes student mathematical learn-
ing as a result of PD. We also provide a framework for PD which targets student 
learning. We focus on the experience of one school board which implemented a 
district wide, virtual approach to mathematics PD. In response to declining mathe-
matics scores on provincial standardized tests across the district and a province 
wide focus on improving mathematics achievement, a sustained PD program was 
organized for elementary school teachers and implemented over the course of one 
full school year. Beyond regional concerns about declining achievement, mathemat-
ics is recognized as a skill which is particularly important to develop in young chil-
dren. This is because, the biggest predictor of mathematics success in later grades, 
is mathematics success in the early years (Duncan et al., 2007). Teachers’ mathe-
matical knowledge has a huge impact on student learning. In fact, it is one of the 
greatest predictors of early mathematics success (Tchoshanov, 2011); hence, the 
importance of this effort to link PD and student-level outcomes.

We focus on the results of this initiative in one school at which all three elemen-
tary school teachers and a Student Program Support Teacher (SPST) participated in 
the PD.  Our study combines qualitative observation with quantitative data from 
student test scores to explore the outcomes of this year-long, multi-pronged PD 
initiative. Implications for curriculum implementation and directions for areas for 
further research will be shared.

6.2  Professional Development (PD) Programming

There is abundant literature related to effective professional development in math-
ematics education. Research shows that teachers who participate in PD tend to have 
already successfully implemented new learning received from past PD in their own 
practice (Guskey, 2002). As a result, effective PD must be connected to classroom 
practice to keep teachers engaged (Grimmett, 2014). Unsurprisingly, students have 
shown improvement in their learning in classrooms where teachers engage in PD 
(Fishman et al., 2013). Effective PD still requires the learning be linked to opportu-
nities for implementation in the classroom and collaboration with other teachers 
(Desimone & Garet, 2015). Particularly impactful are opportunities for in-school 
coaching with professionals who can help to advance teachers’ practice in real time 
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(Koellner & Jacobs, 2015). This implementation however requires a great deal of 
investment of time and resources from leadership at the school and board level 
(Darling-Hammond et al., 2005).

PD programming is often run from the school board level; however, school board 
approaches vary drastically. Koellner and Jacobs (2015) describe PD along a con-
tinuum from highly adaptable to highly specific. One example on continuum they 
mention would be the range from one-on-one coaching sessions, which are highly 
adaptable, to large group workshops which are more rigid in their structure. They 
also mention that school board level PD programs tend to be focused on individual 
subjects and do not often provide individualized support to specific educators, but 
rather focus on broad approaches which are applicable to everyone (Desimone 
et al., 2006; Koellner & Jacobs, 2015; Landry et al., 2009). Traditional PD is often 
measured in hours or ‘seat-time’ in a specific location and is often not evaluated 
based on the relevance to the practice of individual teachers (Polly et al., 2018; Polly 
& Hannafin, 2010). The literature generally agrees that PD focused on the experi-
ence of the individual teachers as learners is far more effective than approaches 
which focus on broad concepts not relevant to everyone (Hill et  al., 2013; Polly 
et al., 2018).

Despite the fact that large, board level PD may not be the most effective method, 
conducting smaller PD sessions is a challenge given the limited resources available 
for PD. These limitations include both physical items such as technology to deliver 
such programming, and the limited time of facilitators and teachers for such pro-
gramming (Shernoff et al., 2017). There is a general recognition that school board 
level approaches to PD are necessary and may even be effective if implemented 
correctly. In general, it is recognized that school board level approaches to PD are 
more successful when they focus on interactions between PD organizers and teach-
ers as well as interactions between teachers. This can come in a variety of forms, 
and therefore, it is not the form of PD which matters so much as the ability to make 
contact (Desimone & Garet, 2015; Hochberg & Desimone, 2010; Koellner & 
Jacobs, 2015).

Even when PD is content focused, the quality of interactions in the PD program-
ming is a key factor in the success of PD, rather than strictly the content which is 
taught (Carney et al., 2019). There is less consensus however on how to make PD 
focused on teachers’ learning. Some claim that smaller PD sizes and an increased 
number of facilitators are needed to make traditional PD more meaningful and 
allow for these interactions to take place (Hochberg & Desimone, 2010). Others 
argue that online videoconferencing and frequent follow-ups through email can pro-
vide opportunities to supplement traditional PD programming, even in larger groups 
(Carney et al., 2019).

Regardless of format, student-centred approaches to PD need to be sustained 
over long periods of time rather than being one-offs. They also ought to focus on 
specific content, rather than broad instructional strategies, and should use the time 
to support depth of learning in the content area being taught (Polly et al., 2018). 
This kind of learning can be incentivized by school board funded resources such as 
technology or lesson plans which promote engagement and encourage teachers to 
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attend PD programming (Wayne et al., 2008). Further, regardless of format, student- 
centred approaches can be built through hands-on learning opportunities and can be 
promoted through opportunities for in-class evaluation and support to provide 
reflection in real time (Polly & Hannafin, 2010). The success of any PD relies on 
teachers seeing the success of their own learning in student achievement, which will 
ultimately promote continued engagement. Therefore, promoting student centred 
PD programming is essential (Petrides & Nodine, 2005). School board support, in 
the form of planning support and release time, for small school-based communities 
of teachers to work together as a form of PD has shown to increase teacher account-
ability (White & Lim, 2008) as teachers learn from peers and increase their own 
learning (Doig & Groves, 2011).

The study of how to best facilitate this kind of teacher success and learning in 
mathematics PD is well documented. Typically, mathematics PD operates as single 
session programming in large group sessions with the potential for small group 
breakouts (Polly et al., 2018). Often, PD is intended to provide teachers with strate-
gies for development of their teaching rather than helping with the development or 
planning of whole lessons or units. Often PD programs do not address specific 
mathematical content areas or deal directly with curriculum expectations (Simpson 
& Linder, 2014). If collaboration occurs, it is usually between teachers within a 
school, rather than knowledge dispersal within a whole school board. It also fre-
quently happens because of the decisions of individual teachers’ initiative, rather 
than because of the design of PD sessions. (Remoe-Gillen, 2017). Of the few studies 
that exist with a focus on student learning, there is consensus that when consistent 
PD is delivered and sessions are layered to promote stronger curricular understand-
ing, with intersystem collaboration, both teacher learning and student learning ben-
efit (Polly et al., 2016; Polly et al., 2017; Remoe-Gillen, 2017).

6.3  Assessing Mathematics Professional Development

The success of mathematics PD programs has been measured in different ways. 
Traditionally, teacher learning, and teacher self-efficacy have been used as the eval-
uation criteria of PD programs as teachers are the recipients of PD (Carney et al., 
2016). The danger with this is that it prioritizes educators’ learning with the assump-
tion it will result in student learning.

Miller et al. (2015) have developed a more complex framework analyzing the 
success of PD programs through studying interconnected systems that contribute to 
PD success: “the learning activity system (PD activities, their coherence, opportuni-
ties for reflection and time for supervised application of new learning), the teacher 
learning system (teacher’s beliefs, values and perceptions) and the school/school 
board systemic context (school practice, routine, and policies)” (p. 320). The study 
of PD programs through this lens, while important to ensure that the system sup-
ports the success of the program, still does not evaluate student learning as a result 
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of the PD, which, even recognizing that student success is a result of numerous fac-
tors, can be an indicator of the overall success and suitability of the PD program-
ming. This can create a cycle whereby the impact on student learning is a secondary 
success criterion to the impact on teacher learning. We base our study on Miller 
et al.’s (2015) framework to understand the potential for impact of the PD on the 
various systems. However, we build on this understanding of successful PD using 
the simple premise that for PD to be a success the impact on students must be cen-
tral (Grossman et al., 2001; Sztajn et al., 2007). Therefore, while our qualitative 
findings will seek to understand success of the various systems of PD, our quantita-
tive analysis evaluates the impact of this PD on student mathematics achievement.

6.4  Provincial Context

This research was completed in the wider context of a study analyzing PD and stu-
dent mathematical achievement. Our specific study takes place in a publicly funded 
school board in Southwestern Ontario. In the province of Ontario, mathematics and 
literacy scores are measured on the provincial standardized test which is adminis-
tered by the Education Quality and Accountability Office (EQAO, 2019). Tests at 
the elementary level are administered in Grade 3 and Grade 6 for both mathematics 
and English. The tests are graded on a scale of Level 1–4 (corresponding with letter 
grades D-A). The criteria to meet the provincial expectations on any test is Level 3 
or 70%. While these tests are not a progression requirement for students from grade- 
to- grade, and do not impact students’ school-level report cards, the EQAO reports 
are used by both school board and school level administrators as one gauge of the 
successes of the programming and the challenges being experienced by their 
schools. It is also used by the provincial government to adjust provincial education 
objectives, develop curriculum and shift funding.

In the Canadian province of Ontario, scores on the provincially administered 
standardized mathematics test at the Grade 3 level had declined from 63% of stu-
dents at or above the provincial standard in mathematics in 2015–2016, to 61% in 
the 2017–2018 school year. In response to provincially declining mathematics, in 
2016 a Renewed Math Strategy (Ontario Ministry of Education, 2016b) was intro-
duced. This was expanded on in 2018 by a province mandated ‘back to the basics’ 
approach to mathematics called, Focusing on the Fundamentals of Math: A Teacher’s 
Guide (Fundamentals) (Ontario Ministry of Education, 2018). These new docu-
ments were incorporated across the province. Recognizing that there are inherent 
equity issues with standardized tests and that these tests are often inaccurate in their 
description of student learning, the emphasis in Ontario on the results of the EQAO 
tests makes the declining scores on this test relevant to students and board level 
responses. While this is not the entirety of our analysis, it provides important con-
text for the PD sessions that were implemented.
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6.5  The Professional Development Sessions

Our research focuses on the experience of three elementary school classes in 
Bayfield school (pseudonym used throughout) a school within this school board in 
the Canadian province of Ontario. Two of the three elementary school teachers at 
this school were early career teachers with fewer than three years of teaching expe-
rience. The third teacher had over 10 years of teaching experience and was a math-
ematics lead at a former school. In total, 32 students participated in this research. 
There were 19 girls and 13 boys in either grade 1 or grade 2.

In the school board in which our study took place, the PD format described was 
also inspired by a lack of supply teachers, either certified occasional teachers, or 
uncertified support personnel to supervise classrooms and the subsequent inability 
to procure release time. The school board in which our study took place had experi-
enced a decline in standardized test scores similar to that experienced at the provin-
cial level. In the 2017–2018 school year the board had 55% of Grade 3 students at 
or above the provincial standard in math, 6% below the provincial average (EQAO, 
2019). At this same school, the test at the grade 6 level showed only 41% of students 
were at or above the provincial standard in mathematics in 2017–2018. These tests 
were relatively consistent across years, with student scores on standardized tests 
declining substantially more than the provincial average between their grade 3 and 
grade 6 tests.

In response to this decline, a team of four facilitators were tasked with designing 
and implementing mathematics PD to improve student mathematics achievement 
across the entire school board. Facilitators are generalist elementary teachers (i.e., 
no curricular specialization) who are seconded from classroom instruction to work 
at the school board level to assist with professional learning. They are typically 
assigned to work with 5–6 elementary schools to support teachers and provide indi-
vidualized programming approaches. Facilitators regular work involves them being 
in the classroom with teachers for co-planning, co-teaching and co-assessing. These 
facilitators had existing relationships with classroom teachers, as a result of this 
school-based work, and were able to build on these relationships to run virtual 
mathematics PD. As such facilitators are aware not just of system level priorities, 
but the needs of individual schools and classrooms.

In the 2018–2019 school year, the role of the facilitators shifted to a focus on 
supporting implementation of the government’s new initiative, Fundamentals 
(Ontario, 2018). The PD program implemented by the facilitators was to be sus-
tained across the whole year with multiple points of contact, with a focus on numer-
acy in the elementary school grades. The PD was designed to directly link curricular 
expectations to the government’s new Fundamentals initiative and support teachers 
in understanding how they might space practice of these fundamental skills through-
out the school year.

Facilitators began this programming based on feedback from elementary school 
teachers that it was difficult to envision anything other than a ‘unit-by-unit’ approach 
to mathematics instruction. As a result, they wanted to develop a program that 
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would support educators in developing a common understanding of what mathe-
matics learning and teaching could ‘look like and sound like’ in the elementary 
school years.

The facilitators adopted and modified a Ministry recommended scope and 
sequence approach (Ontario, 2016a) which focused on layered learning through 
repetition. A series of unit layouts and lesson plan bundles that laid out week-to- 
week learning goals for the whole school year were put in a web-based drive that 
was shared with all elementary teachers. These were intended to supplement, rather 
than replace individual teachers’ lesson plans. Full, ready-to-use lesson plan 
resources were distributed as well. Professional reading such as government policy 
documents and academic journals were also provided in the drive.

The focus of the PD was not simply giving access to these resources, but to use 
them to structure professional learning throughout the year. A multi-step PD pro-
gram was developed that involved weekly live video conference training, weekly 
emails with highlights from the video conference learning and related tasks, in addi-
tion to traditional face-to-face PD sessions and one-on-one in class support at some 
schools. In total, from the end of September to the beginning of June, approximately 
22 weekly video sessions occurred where facilitators would combine content learn-
ing with answering questions and modelling use of tasks as laid out in the Scope and 
Sequence documents. Some of the key features for successful PD that were included 
in this study are outlined in Table 6.1.

Although our current study focussed on one specific school with three elemen-
tary school teachers, all elementary school teachers across the school board were 
invited to attend these weekly sessions, and recordings of the sessions were posted 

Table 6.1 Key features of successful PD Programming

Key PD features
Key feature Definition

Sustained regular live 
contact

Providing multiple opportunities for live PD on a related topic over 
the course of a series of weeks or months, rather than single 
sessions, to provide opportunities for learning and questions

Regular follow-up Opportunities for engagement between scheduled sessions, such as 
emails or pre-recorded videos

One-to-one support Giving teachers an opportunity for facilitators to come into the 
classroom and work with the teacher to implement the PD learning 
into their instruction

Focus on classroom 
implementation and student 
learning

Live sessions, emails, and lesson plans should be focused on 
classroom implementation to demonstrate the potential benefits of 
the PD to teachers. This can include connection to curriculum

Model lesson plans Lesson plans created by facilitators or co-created with teachers as 
a model for new lessons, or as examples of how to implement the 
PD learning in their own classroom

Release time Opportunities for supply teachers to take over the class so that the 
teacher can participate in the PD during time

Collaboration between 
teachers

Opportunities as part of the PD for teachers to work in groups 
within their schools to share ideas and co-plan
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online for any teacher unable to attend. Additionally, 29 weekly emails were sent 
out to principals, SPSTs and all elementary school teachers in the board’s 45 ele-
mentary schools with additional resources, and information on assessment or learn-
ing for that week. Two board-wide, full day PD sessions were also planned on 
designated PD days for all elementary teachers providing expert speakers and col-
laborative learning for teachers. Two additional half days of release time were pro-
vided by the board so that teachers could meet in small groups to engage in content 
learning and co-teach in another elementary school classroom within their own 
school. Figure 6.1 below is an example of one of the emails sent to teachers. The 
email refers to an image which teachers were familiar with which noted the three 
pillars of successful mathematics classrooms: three-part lessons, building commu-
nity and mini lessons to practice.

The email from Fig. 6.1 followed an online session based on assessment in math-
ematics. The weekly live PD was focused on the process of scaffolding mathematics 
teaching and understanding where students are, and how to move them to the next 
step of their learning. The emails were intended to summarize key learnings from 
the live PD sessions and to support teachers in their classroom practice by providing 
tasks they could try with their students. Figure 6.2 below shows an example of how 
emails included specific resources for teachers to use.

By connecting curriculum expectations and providing links to specific resources, 
this PD provided ways for teachers to incorporate the weekly learning into their own 
practice. Teachers at all levels of knowledge were able to apply the new learning 
directly into their classrooms.

By the end of the school year, teachers had incorporated much of this mathemat-
ics PD into their own practice. One classroom teacher noted that many of the math-
ematics lessons they used were either directly from the PD programming provided 
or had resulted out of co-planning sessions with other teachers.

For our next section, we analyze the resultant data from this PD programming. 
Data collected in this project includes scores from provincial standardized 

Fig. 6.1 Example email on assessment
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Fig. 6.2 Example email with expectations

mathematics tests, Prime Number test results (Nelson, 2005) as a pre and post-test, 
and quotes from teachers at the end of the year recorded by the first author. Prime 
tests are mathematics tests developed by Nelson Education to align with the Ontario 
and Canadian mathematics curriculums to allow teachers to evaluate students’ level 
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of understanding and develop programming to support them. These tests evaluate 
each of the strands of the curriculum including: number and operations, patterns and 
algebra, geometry, data management and probability and measurement.

6.6  Results

At Bayfield school, all three elementary school teachers saw great value in the PD 
programming as was evidenced by their attendance and use of the various aspects of 
the PD. In total, 20 of 22 video conference sessions were attended as a group includ-
ing all of the teachers and the SPST. Email follow-ups were read together and incor-
porated into planning. Day long PD sessions were also attended as a school unit. A 
facilitator came into the school five times to work with teachers on mathematics 
lesson planning. Mathematics lessons were often co-planned by all three teachers 
using the Scope and Sequence documents as the framework while incorporating 
session information into their planning. Teachers reported that between their three 
classes, they tried almost every activity they were introduced to through the PD at 
least once. The existence of key PD features in this programming such as sustained 
regular live contact, regular follow-up, one-to-one support and collaboration 
between teachers clearly promoted high uptake and meaningful interaction.

Below we detail two tasks as examples of the results of the PD programming and 
how it manifested itself in Bayfield School. These tasks were not direct lessons from 
the PD programming, but rather were identified by teachers after attending the PD 
sessions (Fig. 6.3).

In this activity students drew two numbers out of a bag which went on the left 
side of the sheet, for example, numbers 7 and 3. They then placed that number of 
blocks into the scale. Students then drew a third number from the bag. This number 
had to be smaller than the sum of the first two. This number was the place in the first 
box on the right and they place this many blocks in the box. Students then had to 
determine how many more blocks would need go into the other side of the scale. If 
the scale balanced, students knew they were right and repeated the activity.

In subtraction smash (Fig. 6.4), students used a paper clip as the first spinner to 
determine the minuend. They then placed pieces of sticky tack on the ten frames. 
They then used the second spinner to determine the subtrahend and took away that 
number of pieces of tack. They wrote these numbers below and determined the 
difference.

These lessons illustrate opportunities for students to develop basic numeracy 
skills through games identified as a result of teacher learning from the PD. Neither 
of these lessons was one of the pre-made lessons given as part of the PD. These 
lessons, however were identified by the teachers as a result of their learning from 
the PD programming. For example, one teacher noted that the balance the scale 
activity lesson idea resulted from PD programming on mathematical fluency and 
recognizing that there can be multiple ways in which to add to the same number. 
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Fig. 6.3 Balance the scale activity

Fig. 6.4 Subtraction Smash activity

These tasks were coupled with teaching instructions and support from facilitators to 
implement the PD in their classrooms. This is evidence of the impact of a the PD on 
classroom implementation. Teachers at various levels of mathematics knowledge 
were able to introduce these fundamental numeracy skills in ways that students 
found engaging.
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6.6.1  Changes in Mathematical Achievement

Prime assessments (Nelson, 2005) were administered by teachers before the PD 
programming began and at the end of the school year. Release time was provided for 
supply coverage so that teachers could administer tests one-on-one to students to 
reduce the potential impact on students tests of having an unknown researcher con-
ducting their tests. Prime tests are utilized by some school boards in the province of 
Ontario to measure elementary students’ basic mathematical proficiency. Students 
are given a score out of 20. On these tests, a score under 13 is considered pre-phase 
1 (beginner), a score between 13–17 is considered phase 1 (concrete) and over 17 is 
considered phase 2 (whole number comfort). In total 32 students across the three 
classes consented to participating in the study.

On Prime tests at the start of the year, students’ mean score was 9.2 out of 20. On 
post-tests, students’ mean score was 14 out of 20. The mean score saw students 
move from beginner to whole number comfort. A Wilcoxon Signed-Ranks indicated 
that the median post-test ranks were statistically significantly higher than the median 
pre-test ranks, Z = 4.19, p <  .000. Due to the limited number of participants and 
logistical challenges, our study did not have a control group to compare the increase 
in student learning against. However, our findings are corroborated by provincial 
standardized mathematics test scores, which indicated that Bayfield School saw an 
8% increase in elementary school students at or above the provincial standard in 
mathematics from 2017–2018 before the PD program was implemented to 
2018–2019 when this PD began. The school board in which this study took place 
saw a 2% increase over this span. The province as a whole saw a 3% decrease in 
Grade 3 student achievement in the same year. Provincial test results from Bayfield 
school showed that in 2017–2018, before the PD intervention began, 50% of stu-
dents had been at or above the provincial standard in mathematics. This was 5% 
below the school board average.

6.6.2  Teacher Perceptions

One teacher who was new to the profession noted the particular challenges of teach-
ing mathematics saying, “It is hard to come up with new ways to teach math con-
cepts, so you teach the way you remember being taught. This PD allowed me to 
learn from the other teachers and see what they did and how they used the lessons 
the team gave us. I think I learned a lot about how to teach math.” This teacher noted 
that they did not have a background in mathematics and therefore had felt somewhat 
uncomfortable teaching mathematics before this PD programming. They mentioned 
that their mathematics anxiety would likely go away with time, but that this PD 
programming increased teachers’ comfort with teaching mathematics. The teachers 
are noting the importance of collaboration between teachers in their school and their 
increased comfort with teaching.
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The most experienced teacher, who had been a mathematics lead previously, 
noted that they were not used to this kind of sustained PD and wished this level of 
support had been available earlier in their career. The teacher noted specifically that 
this PD included curricular links and a focus on classroom implementation, there-
fore they did not have to struggle to connect the lessons from the PD to the curricu-
lum. The teacher also noted that this PD felt different because it was focused on 
classroom instruction and student success criteria, rather than on their own learning 
as teachers. In specific reference to their own instruction, they noted:

I used to count by 2s and by 5s with the students at the start of everyday. They knew it off 
by heart. But when I did the tests, I was disappointed how few were able to complete that 
part (of the test). They knew the numbers but not the meaning of them. I didn’t know how 
else to teach it though. In doing the PD, I got lesson plan ideas and was able to use those. 
The students seemed to do much better on that part of the test the second time.

Both of these quotes illustrate not just that teachers were satisfied with the program-
ming and felt that they learned something, but also that their practice changed as a 
result of the programming. Student success as a result of these changes is 
detailed below.

6.7  Discussion

6.7.1  Success of the Professional Development Programming

The focus of this study was on a school board level approach to professional devel-
opment programming for elementary school teachers. The study evolved from look-
ing simply at the experience of teachers’ perceptions of the PD programming to 
evaluating the impact of this kind of programming on students’ mathematics perfor-
mance. Our results indicated that this kind of PD which included several key fea-
tures such as sustained programming, regular follow-up, model lesson plans and 
focus on classroom implementation also led to significant increases in student 
achievement in mathematics. While the provincial standardized mathematics scores 
continued to decline, this PD may have led to an increase in school board level 
mathematics scores. The fact that such an intensive, targeted approach to increasing 
numeracy in the elementary school grades was not a surprise but rather the hope and 
goal of this kind of PD focused primarily on the fundamentals of specific content 
areas such as numeracy (Polly et al., 2018). This increase in student achievement 
aligns well with research showing the potential positive impacts of PD on student 
success (Fishman et al., 2013).

A large part of the increase in students’ mathematics understanding may be 
attributed to increased teacher comfort with content and their subsequent ability to 
teach content. Rather than just telling teachers how to teach content, this PD pro-
gramming gave teachers the resources such as model lesson plans to apply in their 
classroom and opportunities to practice with one-to-one support. This approach is 
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consistent with the literature on the need to connect PD to classroom practice to 
keep teachers engaged (Grimmett, 2014). Further, by seeing student achievement 
resulting from the PD programming, the teachers in this school were willing to 
continue to incorporate learning from the PD into their practice (Petrides & Nodine, 
2005). In the case of Bayfield School, this resulted in a high uptake from the three 
teachers participating in a high percentage of the sessions and meaningful collabo-
ration between teachers within the school. The opportunity for facilitators’ support 
in classes to help teachers in implementing their learning in the classroom and 
release time also gave teachers an opportunity for coaching on their own practice 
(Koellner & Jacobs, 2015). Where teachers noted that they did not know in the past 
how to teach new content, being given not just the means to do so but the skills to 
do it effectively through student-centred PD programming and collaboration 
allowed teachers to make meaningful shifts in their own practice (Carney et al., 2019).

The format of collaborative video-conference sessions and addressing questions 
publicly in weekly emails allowed for a level of engagement and inter-school col-
laboration that had not previously occurred. This resulted in teachers learning from 
the experience of others, corroborating findings that collaboration between teachers 
in different schools promotes more successful mathematics PD (Remoe-Gillen, 
2017). This research also supports Simpson and Linder’s (2014) discussion of the 
importance of curricular ties in PD to make lesson planning relevant to educators, 
as teachers noted that they tried most of the activities they were offered because they 
could see the relevance. In the present study, the focus on the key features of suc-
cessful PD such as student-centered approach to PD with activities intended for 
classroom use to meet student success criteria resulted in increased scores by stu-
dents on Prime tests and an increased school score on standardized tests. This sug-
gests that sustained, student centered, collaborative PD should be leveraged for a 
variety of academic subjects to enrich the learning of students.

All of this is not to say that the teachers at Bayfield school or teachers in the 
school board studied are lesser mathematics teachers and therefore required this 
kind of PD to effectively teach content. Nor is this an indictment of new teachers or 
schools with many beginning teachers. Like teachers at many schools, teachers at 
Bayfield school were doing remarkable things in mathematics teaching prior to this 
intervention, one teacher had even been a mathematics lead previously. Rather this 
is to note that, given the vast differences in teachers comfort levels with and the 
ability to teach mathematics, this kind of programming can positively impact teach-
ers at all levels of experience and all levels of comfort.

6.7.2  Limitations and Next Steps

One potential limitation of this research was the short time frame. A more longitu-
dinal approach to the evaluation of PD programming would also provide insight into 
how further teacher development would continue to support students, and at what 
point this sort of programming becomes redundant and could be replaced with 
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additional PD efforts. This research would benefit from a longitudinal analysis to 
understand if teacher engagement remains high in subsequent years and if decreased 
engagement corresponds to decreasing student achievement. Further, research using 
a control class to compare the results of the PD programming would give better 
perspective on the impact of this PD programming specifically.

Additionally, as one teacher noted, by having teachers conduct the Prime testing 
they were aware of their students’ level of understanding and what they needed to 
improve on. While we recognize the potential problems of teachers ‘teaching to the 
test’ after they learned where their students could improve, there is also a need to 
recognize that through this PD programming, teachers were given training on using 
Assessment for Learning skills (Ontario Ministry of Education, 2020), which evalu-
ates where students are at and allows teaching to adjust accordingly. Through this 
PD and research, in conducting pre-tests, teachers were given the opportunity to 
recognize what they needed to learn more about and adjusted their instruction 
accordingly to support meaningful student learning.

One problem that we considered was the potential scalability of this kind of pro-
gramming While it was possible to give release time to a certain number of teachers 
as an incentive to participate in the PD, school boards may not be able to support 
and fund such release time for intra-school collaboration if this PD were scaled to 
include more grades and resulted in higher teacher participation school board wide. 
Additionally, this kind of programming in a virtual setting is still heavily reliant on 
teachers independently engaging with the scheduled PD programming. To make 
this effective at a larger scale would certainly require more resources and support 
from administration to ensure this collaboration is sustained. Further, the teachers 
noted that this kind of virtual programming did not allow for consistent regular 
interaction with teachers from other schools, and so a focused effort on maintaining 
inter-school relationships is key to ensuring this PD continues to produce innovative 
practices and does not become routine.

6.8  Implications for School Boards

These preliminary results suggest that the PD program implemented in this school 
board produced positive early results on student learning, which occurred despite 
the fact that provincial elementary school mathematics scores decreased the year 
that this PD and the new Fundamentals approach was introduced. The implementa-
tion of the key features of successful PD promoted teacher success in this school 
board, which resulted in student learning. The reality is that students’ mathematics 
achievement will vary with the quality of the learning environment and knowledge 
of the teacher. In providing this kind of PD programming however, school districts 
can begin to level the playing field and mitigate the variance between student suc-
cess, by providing all teachers with a base of knowledge and materials in a subject 
that is so often fraught with anxiety.
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Additionally, as this programming was not mandatory for teachers across the 
board, our results provide important implications for teachers, beyond just boards 
trying to create PD which is meaningful for teachers and encourages participation. 
As teachers are looking for potential PD to participate in, our findings provide 
important context on the potential implications for students. Where teachers are on 
the lookout for quality PD programming to build on their skills, focusing on the 
presence of the key features of PD we identified in potential PD programs will help 
teachers access programming with the best chance of learning for both them and 
their students. Further, the success of this programming in developing meaningful 
student learning ought to serve as a call to action for educators to rally around and 
seek out meaningful PD opportunities.
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Chapter 7
A Digital Home Numeracy Practice 
(DHNP) Model to Understand the Digital 
Factors Affecting Elementary and Middle 
School Children’s Mathematics Practice

Sabrina Shajeen Alam and Adam K. Dubé 

Abstract The home is an important environment for individualized mathematics 
instruction, one that must be strongly considered given that children spend more 
time at home than in schools. As a result, researchers argue that we must understand 
how exposure to numeracy activities at home can provide a foundation for chil-
dren’s mathematics education. In this chapter, we outline how digital home numer-
acy practices (DHNPs) could serve as a primary means of home mathematics 
learning. We also propose a DHNP model and detail its components. The model 
addresses how different aspects of family, such as parental factors (e.g., socio- 
economic situation, mathematics attitude and beliefs), children’s factors (e.g., cog-
nition, motivation, and self-regulation in general, and mathematics attitude in 
specific) and parent-child relationship may contribute to children’s digital mathe-
matics learning. Further, it differentiates between indirect and direct practices of 
home numeracy activities using technology. Finally, we discuss the potential ave-
nues for future research on and practical implications for DHNP during the elemen-
tary and middle school years.

Keywords Mathematics education · Home numeracy · DHNP model

7.1  Introduction

Educational technology has been shown to have a positive impact on children’s 
educational attainment (e.g., mathematics achievement; Cheung & Slavin, 2013). 
Using technological tools has become a dominant learning culture altering how 
educators and parents are teaching and how children are learning (Kukulska-Hulme, 
2010). One could say that the learning culture of today has shifted from paper-pen 
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to finger-screen (i.e., digital devices like tablets and smartphones). This shift is par-
ticularly noticeable in mathematics education and has become commonplace for 
middle school aged children.

As soon as computers became affordable and prevalent, there was a shift from 
learning to operate computers for mathematics activities (i.e., computing) to using 
computers to support mathematics learning (Durmus & Karakirik, 2006). Children 
are now extending their mathematics knowledge with the support of a range of digi-
tal tools (e.g., e-textbooks, videos, games). Previous studies have established the 
overall effectiveness of technology-based mathematics learning and instruction in 
classrooms; for example, Fabian et al. (2016) conducted a meta-analysis of over 60 
studies on the efficacy of mobile devices as a tool for classroom-based mathematics 
learning and found positive gains across most studies.

Over the past decade, majority of children in North American homes now have 
access to digital devices (Funk et al., 2017). We are now poised to see the same shift 
seen in middle school classrooms repeated in the home, with digital devices having 
the potential to become a ubiquitous learning tool for home numeracy. However, 
research has largely focused on digital mathematics practices in formal context (i.e., 
school) and there is a dearth of research on digital mathematics practice at home.

Home numeracy is an established and expanding research field, led by mathe-
matical cognition researchers, that primarily focuses on identifying analog (non- 
digital) home numeracy practices (HNP), their frequency, and their link to later 
mathematics achievement (Blevins-Knabe & Austin, 2016). Previous research 
shows that home environment during middle childhood predict mathematics 
achievement in late adolescence (Tang & Davis-Kean, 2015). Given the prolifera-
tion of digital devices in the home, it is conceivable that digital home numeracy 
practices (DHNP) should be incorporated into the study of home numeracy. 
Considering this, in this chapter we propose a model of home numeracy that centers 
DHNP and can be used as a guide for understanding the digital factors impacting 
middle school children’s mathematics practice.

7.2  Digital Home Numeracy Practice (DHNP)

We define DHNP as the use of digital devices (such as cellphones, tablets) to foster 
children’s mathematics understanding and learning at home. In USA, majority of 
homes (84%) have at least one mobile device available (Funk et al., 2017) and edu-
cational apps on mobile devices are affordably priced (m = $15 CAD, Dubé et al., 
2020). Consequently, there are increasing opportunities for children from diverse 
socio-economic backgrounds to access them (Callaghan & Reich, 2018). More than 
94% of North American parents let their children access digital devices (Wood 
et al., 2016), Given this widespread use and availability, it is fair to surmise that 
DHNP may already be part of the home learning environment and parents might 
have a positive attitude towards DHNP. This may be particularly true for middle 
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schoolers, considering that the top commercially developed mathematics apps tar-
get mathematics topics for this age group (Dubé et al., 2020). In the next section, we 
describe how digital tools help children learn mathematics from a theoretical stand-
point using theories and research that help us understand human-machine 
interactions.

7.2.1  Theoretical Underpinnings for DHNP

A child’s central experience of learning with a digital device is their interaction with 
the object itself. The theoretical model has three components:

7.2.1.1  Cognitive-Communicative Model (CCM)

McEwen and Dubé (2017) propose that a mutual understanding between a user and 
a digital tool is co-constructed in an active and dynamic way during child-tablet 
computer interaction. When using a digital device, an interactive form of communi-
cation arises where user and device both serve as senders and receivers of informa-
tion. Thus, the bi-directional interactive relationship between a child and a device is 
central to conceptualizing how digital devices shape mathematics learning. When 
considering how children learn from mathematics apps, we must think of both units 
in the interaction (child and app) as active agents that are affecting the other. Within 
the CCM, the affordances of the device are critical to successful child-device 
interactions.

7.2.1.2  Affordance Theory

Originally coined by Gibson (1977), affordances are the product of an interaction 
between an organism and an object (e.g., human + hammer  =  hammering) that 
depend on the physical attributes of the object and a person’s knowledge of their 
use. In digital technology use, affordances are a product between a user and a digital 
device reflecting possible actions the device can perform. Children come to under-
stand affordances of a mathematics app through exploring and using it (Dubé & 
McEwen, 2017). Research suggests that learning with digital devices is more effec-
tive when the affordance is more concrete and aligns with the learning content. For 
example, practicing number line estimation on a touch-screen device is more effec-
tive if the user is allowed to drag across the number line rather than tap it (i.e., a 
continuous gesture for a continuous concept, Dubé & McEwen, 2015). The reason 
that concrete and congruent affordances may matter is because these physical inter-
actions between children and their educational app screens are supported by embod-
ied cognition.
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7.2.1.3  Embodied Cognition

Embodied cognition states that our physical movement (or motor behavior) influ-
ences cognition (Schneegans & Schöner, 2008); such that, there is a close link 
between motor (generate action) and sensory surfaces (give sensory signal to the 
surroundings), and our motor and sensory systems shape and influence how we 
think and learn by contributing additional information that is incorporated into cog-
nition. Thus, the level of embodiment that occurs during touch-screen interaction 
(c.f., a game controller, watching a screen) increases the overall sensory experience 
and contributes information to the interaction that may influence learning (Tran 
et al., 2017). Critically, many embodiments are determined by the software design 
and not the physical device itself. For example, allowing a child to use a drag ges-
ture for a number line activity is determined by the software designer and not the 
device manufacturer. So educational media running on devices must be designed 
with the correct features.

7.2.2  Design Features of Effective Educational Media

Research has identified specific design features of educational media that can 
improve children’s learning with digital devices (Hillmayr et  al., 2020), such as 
virtual manipulatives, digital feedback, and digital scaffolding.

7.2.2.1  Virtual Manipulatives

Children experience better sensory involvement by directly touching and physi-
cally moving touch-screen devices. On touch screen devices, interactive and 
dynamic objects (e.g., interactive 3-D pictures, Moyer-Packenham et al., 2002) are 
called virtual manipulatives. Virtual manipulatives can be thought of as cognitive 
technological tools (Zbiek et al., 2007). For mathematics specifically, they can be 
defined as interactive, technology-enabled visual representations of dynamic phys-
ical mathematics objects (e.g., pattern blocks, cubes; Moyer-Packenham et  al., 
2002). Virtual manipulatives are helpful because they create an interactive environ-
ment for learners to pose and answer their own questions and to connect mathemat-
ics concepts with operations (Durmus & Karakirik, 2006). Virtual manipulatives 
have two fundamentally different affordances than physical ones. First, children 
can easily be allowed to alter a virtual object whereas a real object cannot be altered 
(e.g., size, shape, and color of objects). Second, apps with virtual manipulatives 
often give users hints and digital feedback that guide the experience (Anderson-
Pence, 2014).
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7.2.2.2  Digital Feedback

Digital feedback (Bokhove & Drijvers, 2010) refers to information provided by 
digital tools (such as mathematics apps) to users on their performance on a given 
task that is intended to shape their behavior, interactions within the task/app, and 
overall understanding (e.g., Plass et  al., 2011). Common sensory feedback that 
occurs during digital mathematics activities are audio (a sound contingent on a 
behavior/response; Blair, 2013) and visual feedback (written text or imagery for 
correct/wrong answers; see an example in Alam & Dubé, 2022, 2023). There are 
several forms of digital feedback (Cayton-Hodges et al., 2015; Johnson & Priest, 
2014). Status feedback provides assistance during problem solving (e.g., suggesting 
the next step). Corrective feedback informs learners of a mistake and guides them to 
correct mistakes. Conceptual feedback asks learners questions to reconsider their 
perceptions of the tasks. Finally, explanatory feedback helps learners reduce the 
amount of extraneous processing that occurs when selecting information to com-
plete a task (e.g., look here, this is important) and entails providing learners with a 
principle-based evaluation of the accuracy of their answers (e.g., this is wrong 
because). The quality of mathematics learning likely depends on the type of feed-
back provided by digital tools. For example, research indicates that explanatory 
feedback can be more beneficial for learning than corrective feedback (Hattie & 
Timperley, 2007), as it often uses adaptive features (i.e., intelligent tutoring system; 
Hillmayr et al., 2020).

7.2.2.3  Digital Scaffolding

Digital scaffolding delivers support to learners so they can meaningfully partici-
pate in a learning task and subsequently gain skills they would not be able to 
acquire unaided (i.e., computer-based support). Overall, the impact of digital scaf-
folding on learning outcome shows robust positive effects; g = 0.46, p < .01 (see 
the meta- analysis by Belland et al., 2017). Cayton-Hodges et al. (2015) catego-
rized various forms of scaffolds, including on-demand hints (i.e., offered at the 
learner’s requests), on-error hints (i.e., offered when mistakes happen), guiding 
questions, and reflections (i.e., prompted reflections through logical questions). 
Thus, mathematics apps can function as cognitive tools by assisting learners in 
their completion of cognitive tasks via digital scaffolds (Lajoie, 2005). Research is 
needed to determine which kinds of digital scaffolding optimizes learning 
(Lajoie, 2014).
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7.3  The DHNP Model

The DHNP model consists of two structural components: an outer and inner model 
(see Fig. 7.1 for the conceptual model). In the following sections, we describe and 
delineate these components as well as discuss the underlying theoretical assump-
tions of DHNP and how they may affect mathematics learning during elementary 
and middle school years.

Fig. 7.1 Conceptual Model of DHNP
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7.3.1  DHNP Outer Model

7.3.1.1  Home Learning Environment (HLE)

The family is a child’s foremost teacher and advocate (Lehrl et al., 2020). When 
accounting for weekends, summer, and holidays, children spend only an estimated 
1000 hours of a year in school in the USA (Hull & Newport, 2011), whereas they 
have approximately 5000  hours outside of school (Cross & Cross, 2017). Thus, 
children spend most of their time in home environments with parents and caretak-
ers. The HLE is, therefore, a critical source of support for children’s overall aca-
demic achievement (Niklas & Schneider, 2017). Three key features of HLE 
accelerate children’s academic development: their involvement in learning exer-
cises, parent-child interaction quality, and the educational resources available 
(Bradley & Corwyn, 2002). More broadly, the HLE has several components such as 
home literacy, home numeracy, and supportive climate (Kluczniok, 2017); each 
contributes to successful developmental outcomes (Lehrl et  al., 2020). Thus, the 
HLE significantly contributes to children’s educational and social development 
(e.g., Tamis-LeMonda et al., 2019), due to its central role in children’s daily lives 
(Lehrl et al., 2020).

7.3.1.2  Home Numeracy Environment (HNE)

The HNE, which falls under the HLE, consists of the numerical activities (Hart 
et  al., 2016) and supports (Zippert & Rittle-Johnson, 2020) parents provide to 
develop children’s early mathematics skills. Previous research has used a variety of 
HNE measures to identify activities (e.g., playing card games) that support chil-
dren’s mathematics learning and predict their numerical knowledge (Mutaf et al., 
2018). Importantly, it is not a simple matter of the more activities the better. Instead, 
some HNE activities do not correlate to children’s math performance (e.g., quantity 
and counting skills; Missall et al., 2015). A possible explanation for some of these 
inconsistent findings might be that parents sometimes do not recognize age- 
appropriate activities for their children (Fluck et al., 2005; Skwarchuk, 2009). Thus, 
other aspects of the HNE need to be considered to understand which activities are 
beneficial and why. We have categorized the HNE into two components: explicit 
(factors directly affecting numeracy activities) and implicit (greater context in 
which numeracy activities occur).

7.3.1.3  Implicit Components of the HNE: Parental Factors, Child Factors 
and Parent-Child Relationships

Parental Factors Parental involvement is beneficial for children’s academic 
achievement (Levine et al., 2010); they are supposed to act as active advocates for 
quality mathematics education. As argued, parents are a major influence on the 
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HNE (Blevins-Knabe, 2016). However, there is more to parental factors than just 
their numeracy knowledge. Critically, implicit parent factors affect the HNE indi-
rectly by creating a context for direct numeracy practices.

Antecedent Factors Demographic variables can be considered antecedent factors 
that parents bring to the HNE, as they affect but are not affected by other factors. 
They include indices of socio-economic status (SES, i.e., income, education level, 
family composition, and housing) as well as cultural backgrounds that affect to 
what extent parents get involved in home numeracy activities with their children 
(Del Rio et  al., 2017). The following SES factors affect children’s mathematics 
performance.

• Parents’ education. Anders et al. (2012) conducted a study where they found that 
mothers in Germany who hold a graduate degree engaged in more mathematics 
learning activities (such as mathematics games) more than mothers who only 
completed high school education.

• Economic condition. The U.S department of Education (2007) reveals that eco-
nomically disadvantaged children show two times more mathematics deficien-
cies by fifth grade than well-off children (National Center of Education 
Statistics, 2007).

• Socio-cultural background influences parental values and academic expectations 
for their children. For example, European American parents in the USA had 
lower academic expectations than minority parents, even though their ninth grad-
ers had higher scores on exams than those of minority parents (Hossler & Stage, 
1992). Regrettably, researchers’ understanding of the HNE of low-SES families 
is still limited (Cheung et al., 2020); specifically, fewer studies have considered 
the impact of SES on mathematics performance during middle childhood.

Physical Resources A meta-analysis of family influences on children’s overall 
academic performance reveals that home mathematics learning resources help chil-
dren to do better in mathematics (Sirin, 2005). Home numeracy resources (such as 
the number of mathematics books; Zhu & Chiu, 2019) are a key component of the 
home numeracy experience; however, little attention has been given to identifying 
the physical resources at home (Anders et al., 2012); even less attention has been 
given to the digital home mathematics resources.

Mathematics Attitudes, Feelings, and Anxiety Parental mathematics attitudes 
have a large impact on children’s behavior, attitude, and beliefs about their own 
mathematics abilities and academic achievement overall (e.g., Eccles, 1983; Eccles 
et al., 1982). These attitudes are conveyed to children through parental behavior and 
activities (Gunderson et al., 2012). Greater parental mathematics anxiety reduces 
parent-child verbal (i.e., conversation) and physical involvement (i.e., numeracy 
activities), which has been linked to children’s poor mathematics performance at 
school (Berkowitz et  al., 2015). During middle childhood, parent’s mathematics 
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anxiety may become particularly salient due to the transition from elementary to 
high school in which parents have trouble helping children with more advanced 
mathematics homework (Soni & Kumari, 2015). Specifically, parent’s mathematics 
anxiety can result in more controlling support during mathematics homework, and 
this is negatively related to children mathematics achievement (Retanal et al., 2021). 
Given that 93% and 17% of adults report either some or high levels of mathematics 
anxiety, respectively (USA sample, Ashcraft & Moore, 2009; Blazer, 2011), it 
seems likely that parents’ mathematics anxiety must be considered when under-
standing the HNE.

Expectations for Children’s Mathematics Performance Parents’ expectations for 
their children’s academic performance may affect the HNE. Alexander et al. (1994) 
defined parental expectation as their reliance on children’s academic performance 
and judgements of their child’s future success. Academic expectations are based on 
children’s grades and the resources available to them (i.e., more resources more 
expectations; see Yamamoto & Holloway, 2010). Several determinants of parental 
expectations (e.g., ethnic background) influence the HNE and have both direct and 
indirect effects on children’s subsequent mathematics performance (Yamamoto & 
Holloway, 2010). However, evidence for the role of parental expectations is still 
mounting and more work is needed (Del Rio et al., 2017).

Beliefs, Values, and Experience The HNE includes parents’ beliefs, values, and 
experience that altogether have an impact on children’s mathematics success or fail-
ure (e.g., Eccles et al., 1982, Yee & Eccles, 1988).

• Parental beliefs. Positive parental beliefs regarding the importance of the HNE 
are linked to greater HNP; however, belief and practice are not perfectly aligned 
(Napoli et al., 2021).

• Parents’ mathematics value affects children via two pathways: how much par-
ents value mathematics overall and how much they value their way to teach 
mathematics (cf., school math, Muir, 2012). There is a disconnect between how 
parents were taught mathematics and how it is learned today (Marshall & Swan, 
2010) and this contributes to valuing mathematics less when it comes to helping 
children with the subject. How much parents value mathematics overall influ-
ences how much importance they place on the HNE and is shown to affect chil-
dren’s future mathematics motivation (Jacobs et al., 2005).

• Parents’ mathematics and technology experience may influence the opportuni-
ties of technology exposure for mathematics learning offered to children, with 
research showing that parents who use technology less in their own lives provid-
ing fewer technology interactions to their children (McPake et al., 2013).

Child Factors Many child factors affecting the HNE stem from parental factors 
and this directionality (parent to child) can be best understood with the opportunity- 
propensity framework.
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Opportunity-Propensity (O-P) Framework Byrnes and Miller’s (2007), 
opportunity- propensity (o-p) framework proposes that there are three factors (ante-
cedent, propensity, and opportunity) that independently but collectively determine 
children’s academic achievement.

Antecedent factors are latent aspects of the HNE, such as parent’s SES (educa-
tion, income) and parental expectations (as previously discussed). These factors set 
the stage for opportunity and propensity. Propensity factors support or influence 
children’s mathematics learning when children are given opportunities (Zhu & 
Chiu, 2019), such as being exposed to mathematics related activities. According to 
Byrnes and Miller (2007), propensity has three primary aspects: capability or cogni-
tion (e.g., intelligence), willingness or motivation (e.g., interest, expectations), and 
self-regulation (e.g., strategic thoughts and behaviors guiding learning goal). The 
likelihood of HNP being effective depends on how children’s propensity enables 
them to take advantage of the provided opportunities (i.e., numeracy practice) at 
home (see Byrnes & Miller, 2007). Children who have more willingness to do math-
ematics show better mathematics performance (Fisher et al., 2012).

Mathematics Attitude, Anxiety, and Feelings The Expectancy value model of 
Eccles et al. (1982) argues that parental beliefs and behaviors have a strong relation 
with children’s attitudes, beliefs, and cognitions. Following this theory, parental 
mathematics factors may act as precursors to their children’s mathematics attitude, 
anxiety and feelings, and this conjecture has been supported by previous research 
(e.g., Maloney et al., 2015; Soni & Kumari, 2015). Several measures have been used 
to understand children’s mathematics attitudes; however, more research is needed to 
understand the extent to which children’s mathematics attitudes influence the 
HNE. Within the O-P framework, attitudes are propensities that moderate how chil-
dren take advantage of opportunities in the HNE.

Parent-Child Relationships As children grow older, continuous parental affec-
tion, positive reinforcement, warmth, sensitivity, and support for autonomy 
(Edwards & Knoche, 2010) all contribute to children’s long-term academic success 
(National Scientific Council on the Developing Child, 2004). For mathematics, 
positive and warm parental support of children’s home mathematics learning is 
associated with their further academic success (Jacobs et al., 2005), as it helps chil-
dren to develop positive attitudes about mathematics and their ability to learn new 
mathematics skills (Chavkin, 1994). Thus, how much home numeracy practice 
improves children’s mathematics outcomes depends on not just the frequency of 
opportunities but also the quality of those opportunities.

7.3.1.4  Explicit Components of the HNE

The implicit components of the HNE reviewed previously are factors that indirectly 
affect home numeracy practices (HNP), which are the explicit factors of the 
HNE. The explicit factors can be defined as the frequency of numeracy related 
activities at home (e.g., writing numbers), the extent of numerical exposure, and the 
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frequency and level of numeracy conversations between parents and children 
(LeFevre, Sowinski, et al., 2009b; Levine et al., 2010). These HNP discussions (ver-
bal) and activities (physical) are associated with children’s mathematics knowledge 
and performance (e.g., Mutaf et  al., 2018). These are often categorized as either 
formal or informal (i.e., direct or indirect; LeFevre, Skwarchuk, et  al., 2009a). 
Despite these seemingly clear terms, HNPs are not always easily delineated 
(LeFevre et al., 2010).

Direct HNP are opportunities in which parents directly instruct their children 
about mathematics with the goal of improving specific numeracy skills (Kleemans 
et al., 2012; LeFevre et al., 2002) or overall mathematics knowledge (Skwarchuk 
et al., 2014). The implicit factors of the HNE can mediate the frequency of direct 
HNP. For example, parents who have positive mathematics attitudes and high aca-
demic expectations are more involved in direct HNP (Susperreguy et  al., 2020). 
Indirect HNP are opportunities (e.g., playing games involving a numbered board) in 
which mathematics learning may occur incidentally even though teaching about 
mathematics is not the purpose of the activities (Skwarchuk et al., 2014). Children’s 
formal mathematics knowledge is primarily developed during indirect HNP through 
parent-child discussion (Ginsburg et al., 2008; LeFevre, Skwarchuk, et al., 2009a) 
about mathematics concepts, numbers, and quantity that arise during everyday 
activities (e.g., cooking and talking about quantity; Bjorklund et  al., 2004; 
Vandermaas-Peeler et al., 2012).

Analog and Digital Forms of HNP Each aspect of HNP (i.e., direct, and indirect) 
can be further broken down into analog and digital. Analog HNP (AHNP) are math-
ematics activities with non-digital objects, such as counting apples or shopping 
(indirect AHNP) and solving mathematics problems on paper (direct AHNP). 
AHNP has been the focus of research interest for several decades. Despite this 
focus, there are relatively few studies that have investigated the full range of AHNP 
to gain a comprehensive understanding of how non-digital and/or conventional 
forms of home mathematics practice affect mathematics outcomes. DHNP is a rela-
tively recent practice that has arisen due to the availability and affordance of digital 
devices in the home. Indirect DHNP are digital mathematics applications or apps 
that are designed as play-like experiences (e.g., game-based learning) that teach 
mathematics via the intrinsic integration of mathematics into play activities (e.g., 
DragonBox Algebra) whereas direct DHNP are e-textbooks and online open- 
learning systems that more closely mirror formal mathematics instruction (e.g., 
khan academy).

7.3.2  DHNP Inner Model

Our proposed model of DHNP consists of constructs that detail both the quantity 
and quality of DHNP. This is a newly developed model that differentiates between 
analog and digital that can guide future HNE research by providing a detailed 
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breakdown of the factors that may contribute to the effect of DHNP on children’s 
mathematics outcomes.

7.3.2.1  DHNP Components

Having provided a brief coverage of theories used to study and conceptualize how 
children interact with and learn from digital tools, we now provide a model that 
identifies the key components researchers should consider when studying how tech-
nology use in the home affects children’s mathematics understanding.

Quantity of DHNP This component of the model is foremost concerned with the 
number of opportunities for DHNP experiences as well as detailing the nature of 
those opportunities (device type, operating system).

• Frequency of DHNP is the rate of weekly or even daily children’s home digital 
tools use (e.g., mathematics apps) is a central measure for studying DHNP. Such 
a measure can be obtained via standard self-report data but can also be captured 
via operating-system-level software, available on most modern devices, that 
tracks the frequency and length of software use on devices (e.g., iOS’s Screen 
Time feature). Other aspects of this component provide insights into the nature 
of these uniquely digital opportunities. Understanding the frequency of DHNP is 
important because learning from devices is the result of ongoing 
interaction/communication with the device (CCM theory).

• Operating system refers software that runs devices contributes to different affor-
dances (e.g., accessibility features provided by iOS are different from Android) 
and should be considered along with device type.

• Device type. Educational apps on touch-screen devices (such as a smartphone) 
provide very different interaction affordances than traditional PCs or even lap-
tops (Segal, 2011), such as more embodied, gesture-based interactions (Dubé & 
McEwen, 2017). As new mathematics learning technologies are created, each 
with unique affordances (e.g., augmented reality mathematics apps like 
Photomath), it is important to account for the type of device providing the learn-
ing opportunity and not just how frequently it occurs.

Quality of DHNP As argued by the CCM, DHNP consists of an interaction 
between the child and the digital mathematics tool. Thus, the factors determining 
the quality of DHNP must consider both human and device factors.

Human Factors There are several factors related to parents and children which 
directly influence the quality of DNP. These are more than just the setting for the 
HNE (implicit components), but rather factors that are proposed to have a direct 
effect on the quality of DNP and may account for improvements in children’s math-
ematics ability.
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• Parental involvement. In the USA, 66% of families report engaging in weekly 
parent-child digital play sessions (Wartella, 2019) and these are opportunities for 
parental involvement in DHNP. The level of involvement will likely range from 
accompanying children’s mathematics app use by playing together to simply 
monitoring their child’s independent use. Parents’ mathematics attitudes and 
anxiety (as already discussed in the DHNP outer model) may mediate parental 
involvement in DHNP and must also be considered.

• Types of parental feedback. Parental feedback (i.e., discussions about mathemat-
ics arising in the game) during or following app use may also shape children’s 
digital home numeracy experience just as it does with AHNP (Vandermaas- 
Peeler et al., 2012).

• Parents’ comfort with technology. Parents’ role in children’s digital practices is 
likely influenced by their comfort with technology (Hatzigianni & Margetts, 
2014). If parents are comfortable with technology, they may provide more oppor-
tunities for DHNP and may be more likely to engage in them (i.e., provide feed-
back, play together).

• Parental perceptions of mathematics app effectiveness. Their involvement may 
also extend to their perceptions of children’s digital device use, with some par-
ents having a negative view of children’s digital device use more generally (e.g., 
screen time, Delen et al., 2015). In contrast, many parents think that mathematics 
games are beneficial for their children’s mathematics learning (Wartella, 2019); 
perhaps, because mathematics games are perceived as fun and effective (Cheng 
& Su, 2012). Parental perceptions of digital tools may also be influenced by their 
SES, technology knowledge, and previous exposure to digital devices. So, under-
standing DHNP must account for the role of parents.

• Reasons for using mathematics apps at home. In addition to parental factors, 
researchers should investigate the reasons for using mathematics apps at home. 
Possible reasons could include teachers assigning apps as homework, parents 
giving mathematics apps to children as a form of distraction or education, and/or 
children seeking out DHNP themselves for practice or entertainment (i.e., play-
ing games; Oliemat et  al., 2018). Who is providing the opportunity and why 
could account for varying frequencies of direct and indirect DHNP and impact 
children’s propensity?

• Children’s mathematics app skills. Children’s’ capacity to independently engage 
in and take advantage of DHNP may also depend on their level of digital exper-
tise or children’s mathematics app skills. As such, children’s digital device 
capacity or skill should be considered as a primary propensity (see Byrnes & 
Miller, 2007) that mediates their DHNP exposure. Children who understand the 
affordances (e.g., what actions are possible) of a specific game may engage in 
more effective communication with the digital devices, such as selecting the 
appropriate gesture (e.g., Wang et al., 2021), and completing mathematics apps 
efficiently with fewer interaction mistakes (Dubé & McEwen, 2017; Moyer- 
Packenham et al., 2016). They do not need their parents to initiate the DHNP 
experiences or not even require adult guidance.
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Digital Factors Besides human factors, app factors are also important— the digital 
aspects of DHNP. There are several digital factors that may affect the quality of 
DHNP. They include app selection, app type, app curriculum, and app support.

• App selection. From the 200,000+ educational apps currently available (Apple, 
2019), parents, teachers, and/or children must choose which mathematics apps to 
download. Selecting mathematics apps with learning benefits, that is quality 
apps, is obviously important; however, the task of identifying and selecting qual-
ity apps can be difficult (Yusop & Razak, 2013), and little is known about how 
people select apps. When searching for mathematics apps in an App Store, the 
app selection process is informed not only by their children’s learning needs but 
also how App Stores are designed and the information they provide (Dubé et al., 
2020; Vaala et al., 2015). For each app, App Stores provide textual information 
on price, consumer reviews and ratings, the popularity of the app via download 
rates, and written description of the app; as well as visuals depicting the app 
including pictures and videos. App selection could be influenced by any combi-
nation of these factors (e.g., selecting visually appealing top-rated apps without 
reading written description). Eye tracking research shows that educators look at 
written descriptions of apps more than visuals and other text information (Pearson 
et al., 2021), but nothing is known about parents’ app selection process.

• App types. There are a variety of mathematics apps available, with the most com-
mon being videos, e-textbook, tutoring, and games. Mathematics videos provide 
non-interactive, multi-sensory learning experiences that explain or demonstrate 
mathematics concepts or procedures to learners (Carr, 2012; Outhwaite et al., 
2019; Pavio, 1986). E-textbooks are multimedia digital books (i.e., video, audio) 
that can include limited interactivity (e.g., interactive quizzes, 3D images, graphs, 
Van Horne et al., 2017; Rockinson-Szapkiw et al., 2013). Tutoring apps are inter-
active drill-and-practice or quiz activities (Kaur et al., 2017) that often provide 
immediate feedback and virtual reward systems (e.g., points). Games are interac-
tive, goal-oriented activities (Dubé & Keenan, 2016) in which learning content is 
transformed into a play behavior and used to complete the goal of the game (e.g., 
beat the boss by solving a fraction puzzle, Bedwell et al., 2012; Kafai, 1996). 
Games provide a unique way to teach mathematics by intrinsically integrating 
the learning contents (i.e., curriculum) into the game activities (Kafai, 1996), a 
special feature that makes games unique from other types. The nature and level 
of interaction differs both quantitively and qualitatively between each type of 
Mathematics app; therefore, the study of DHNP must consider app type when 
describing the HNE.

• App curriculum. An app’s curriculum refers to the mathematics topics it con-
tains. Generally, a mathematics app’s curriculum tends to focus on a specific 
mathematics topic (e.g., apps just for arithmetic, measurement, geometry, spatial 
reasoning, Dubé et al., 2020). However, it is possible for a single mathematics 
app to contain more than one mathematics topic and build multiple mathematics 
skills. It is more common for videos, e-textbooks, and tutors to cover multiple 
mathematics topics than games. This occurs because different mathematics top-
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ics lend themselves to different game types that can be hard to combine into a 
single app. Also, mathematics game curriculums tend to focus on elementary to 
middle school mathematics topics while there are more video, e-textbooks, and 
tutor apps for mathematics topics typically taught to adolescents. Thus, mathe-
matics apps with topics appropriate for children in middle childhood are more 
likely to be games than other app types and this means that the DHNP of middle 
childhood may be comprised of more indirect than direct HNP. Not by a choice 
the parents make, but by virtue of the apps available.

• App supports. Design features from effective educational media (i.e., manipula-
tives, feedback, scaffolds, Hillmayr et  al., 2020) should be incorporated into 
mathematics apps so that they properly support children’s learning. For example, 
some mathematics apps provide hands-on or physical experiences (such as tap-
ping or dragging blocks, dice, 3-D shapes, graphs, cards) by including virtual 
manipulatives to help children understand math. One such app is virtual manipu-
lative by abcya.com. In the app, interactive visual representations of percentages, 
fractions, and decimals are provided to help children 8+ to visually understand 
the relationships among these mathematics concepts through finger tapping, 
pressing, and dragging. Digital feedback and scaffolds can also be included in 
mathematics apps by providing hints and guidance based on their mathematics 
performance. Researchers have identified a broad range of feedback (Cayton- 
Hodges et al., 2015) and scaffold types that digital learning tools can provide 
(Lajoie, 2014). Research suggests that the majority of the top 90 mathematics 
apps in the Apple App store do not contain these features (Dubé et al., 2020). 
Future DHNP studies must determine whether parents are selecting apps con-
taining these features for use in their homes.

7.4  How Does the Proposed DHNP Model Contribute 
to Middle School Mathematics Education?

The DHNP model combines various components of HNE, and it also integrates 
several digital components, which is a unique contribution in the field of home 
numeracy. Furthermore, the proposed model is based on the principle that digital 
home numeracy is an individualized learning tool that is directly influencing chil-
dren’s learning (Hillmayr et al., 2020). This proposition calls for an avenue of new 
research to investigate how digital technologies are already being used by children 
as a mathematics learning tool in the home, how effective this form of numeracy 
practice really is, and which factors impact children’s m mathematics learning the 
most. Now, why should we answer these questions? Generally, learning progress 
becomes optimized when there is a strong educational alliance between school, 
home, and community (Groves et al., 2006; Nokali et al., 2010; Vincent et al., 2005). 
If children are learning at home, they can eventually transfer their acquired knowl-
edge from informal (i.e., home) to formal context (i.e., school) and thus obtain 
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better mathematics performance in the future; however, empirical evidence on 
DHNP is required.

7.5  Potential Avenues for Practical Implications on DHNP

What is the importance of DHNP for researchers, parents, and teachers? Researchers 
need to identify how DHNP helps children’s mathematics learning, whereas parents 
and teachers need research-backed guidelines to make DHNP more efficient for 
their children and students. Currently, there are no formal guidelines for parents and 
educators on how to properly implement digital mathematics apps in the classroom 
or home (Dubé & Dubé, 2020). The components of the DHNP model can serve as 
the basis for such guidelines. Based on the previous discussion the following theory- 
driven guidelines are proposed.

 1. DHNP encompasses both indirect/‘fun’ mathematics apps like games and more 
direct/‘traditional’ forms of digital mathematics practice.

 2. The quality of DHNP must be considered alongside quantity.
 3. Quality of DHNP is affected by more than just the apps themselves, parental and 

child factors are also important.
 4. Parents should be involved in their child’s DHNP, give children feedback on their 

app use, and be comfortable with fundamentals of digital app use.
 5. Children vary in their mathematics apps skill; some children may need more 

support than others.
 6. Not all mathematics apps are equal:

 (a) There are different types of mathematics apps, ranging from interactive 
games to passive educational videos, and selecting appropriate ones 
takes effort.

 (b) Some apps are more aligned with the school curriculum than others.
 (c) Select apps that contain a range of in-app supports, such as feedback, virtual 

manipulatives, and scaffolds.

Empirical research is necessary to evaluate the efficacy of these guidelines. 
Preliminary data from Canadian parents of middle school children suggests that 
parental involvement in DHNP is related to children’s mathematics ability (Alam & 
Dubé, 2022, 2023). Further research is needed to understand how the various DHNP 
components impact children’s mathematics ability and to test if these theory-driven 
guidelines are empirically supported.

7.6  Summary

This chapter proposed a DHNP model containing outer and inner components. 
Existing research is available on the outer components of the DHNP model (i.e., 
HLE, HNE). In contrast, the DHNP inner model is a novel framework in need of 
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empirical support to grow and/or refine its components. We hold that the DHNP 
model can be used to study how digital mathematics experiences shape children’s 
mathematics knowledge and the underlying factors which influence those experi-
ences. Going forward, we would argue the DHNP model should be investigated as 
a holistic approach to understanding the home learning environment. Exploring the 
DHNP model during elementary and middle school years is crucial as research on 
the impact of digital technology during this developmental phase is less prevalent 
(Blumberg et al., 2019). The next step is for researchers to test and refine this DHNP 
model or propose contrasting models that can guide researchers, educators, and 
parents’ understanding of how an increasingly common home numeracy activity is 
impacting children’s mathematics learning in the elementary and middle 
school years.
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Chapter 8
How Number Talks Assist Students 
in Becoming Doers of Mathematics

Dawn M. Woods

Abstract Number talks are discussions where teachers encourage their students to 
mentally solve mathematics problems and then come together as a class to share 
their mathematical reasoning. As students share, listen, and discuss their solution 
strategies, they begin to make connections between how procedures are the same, 
different, and/or more efficient. In this chapter, I explore how a teacher leverages 
number talks to support students in becoming doers of mathematics. Findings from 
this study reveal how the teacher supported students to (a) develop agency, (b) dis-
tribute authority, and (c) share mathematical reasoning. Further, it was found that 
mental computation played an important role since it supported students to discover 
ingenious, effective, and efficient ways of solving mathematical problems.

Keywords Number talks · Doers of mathematics · Agency · Authority · 
Mathematical reasoning · Sociomathematical norms · Mental computation

8.1  Introduction

Number talks are five-to-fifteen-minute discussions where a  teacher encourages 
their students to mentally solve computation problems and then come together as a 
class to share and discuss their mathematical reasoning (Parrish, 2010/2014). 
Typically, this whole class discussion progresses through five phases where the 
teacher: (a) sets the stage by supporting students to enter into the discussion in a 
way that makes sense to them, (b) launches the discussion by sharing a mathemati-
cal representation (i.e., mathematical expressions, equations, models) and provides 
students with enough time to mentally solve it, (c) gathers student responses, (d) 
facilitates a whole class discussion where students’ share mathematical reasoning, 
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and (e) summarizes key ideas and conclusions (e.g., Humphreys & Parker, 2015; 
Parrish, 2010/2014).

During number talks, students productively struggle with number relationships, 
apply their new understandings to computation strategies, and then discuss and ana-
lyze their reasoning. For this chapter, mathematical reasoning is defined as an 
evolving process where students conjecture, generalize, and investigate mathemati-
cal ideas (Lannin et al., 2011; Russell, 1999). As students engage in mathematical 
reasoning during number talks, they have opportunity to become doers of mathe-
matics, characterized by seeing sense in mathematics, perceiving it as useful, and 
believing that steady effort in learning mathematics pays off (Aguirre et al., 2013; 
Jackson, 2009; Martin, 2009; National Research Council [NRC], 2001).

Because of the explicit focus on number relationships and number theory, prac-
titioner focused articles have considered number talks to be an instructional practice 
that improves students’ number sense, mental mathematics, and mathematical rea-
soning abilities (Gerstenschlager & Strayer, 2019; Humphreys & Parker, 2015; 
Parker & Humphreys, 2018; Parrish, 2010/2014, 2011; Parrish & Dominick, 2016; 
Sun et al., 2018). While these practitioner focused articles are helpful in how under-
standing how number talks may support students in becoming doers of mathemat-
ics, little empirical research explores how the classroom community is developed to 
support number talks. For these reasons, in this chapter, I share the story of how Ms. 
Jones (pseudonym), a third-grade teacher, uses number talks to assist students in 
becoming doers of mathematics.

8.2  Conceptual Framework

I begin by describing how the situative perspective is a lens to view how Ms. Jones 
and her students participated in learning centered on number talks. Then, I discuss 
the role mental computation plays in number talks and conclude by highlighting the 
importance of developing sociomathematical norms to support students in becom-
ing doers of mathematics.

8.2.1  A Situative Perspective on Knowing and Learning

A situative perspective is a lens to understand how students learn to become doers 
of mathematics as they actively participate within a learning community centered 
on number talks (Greeno, 1998, 2006; Lave, 1988; Lave & Wenger, 1991). As stu-
dents in Ms. Jones’ class engage in number talks, they not only learn how to build 
relationships that enable them to think with each other (Wenger, 1998), but also 
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have opportunity to develop productive dispositions that support them to become 
doers of mathematics (Aguirre et  al., 2013; Jackson, 2009; Martin, 2009; NRC, 
2001). In this space, Ms. Jones builds habits where students are encouraged to try 
new strategies and receive social support for their efforts within their learning com-
munity. Because Mrs. Jones takes time to explicitly build these habits, the distribu-
tion of authority–who’s in charge of making mathematical contributions–shifts 
(Cobb et  al., 2009; Engle & Greeno, 2003). As students engage in higher order 
thinking with others, they realize that they have conceptual agency or the ability, 
permission, and obligation to exercise control over their learning process and view 
themselves as an effective learner and doer of mathematics (Cobb et  al., 2009; 
NRC, 1987).

8.2.2  The Role of Mental Computation During Number Talks

Number talks begin with students mentally solving a computation problem (Parrish 
2010/2014). In this space, students are encouraged to work on a problem in their 
heads (e.g., solving a mathematical problem by mirroring traditional strategies or 
using a nontraditional procedure) in order produce an exact answer (Reys, 1984; 
Sowder, 1988; Trafton, 1978). In Ms. Jones’ class, students select a strategy that is 
most efficient and effective for them (Blöte et al., 2000; Torbeyns & Verschaffel, 
2016) since the computation problem is problematized to support sensemaking 
(Hiebert et  al., 1996). Because students are mentally solving a problem, prior 
research confirms that this process provides students with an opportunity to (a) 
develop conceptual understanding into why algorithms work, (b) advance creative 
and independent thinking, (c) improve problem solving skills, and (d) advance com-
putational estimation skills (Reys, 1984; Reys et al., 1995).

Once students mentally solve the computation problem, Ms. Jones leads a whole 
class discussion supporting students to share what they know and understand about 
the many ways to solve the problem. This opportunity to share and listen to each 
other’s solution strategies has the potential to build mathematical capacity. As stu-
dents share and listen to the different ways of solving the problem, Ms. Jones builds 
mathematical vocabulary, highlights mathematical strategies, and supports students 
in connecting how nontraditional and traditional procedures are the same, different, 
and/or more efficient when solving problems mentally. Here, students glean an 
understanding of the structure of number and their properties because of the varied 
procedures invented by students. As students listen and make connections, they are 
emboldened to create innovative ways of manipulating numbers (Cobb & Merkel, 
1989; Sowder, 1992). Hence, the role of mental computation during number talks 
may support students in becoming doers of mathematics since they are actively 
solving, sharing, listening, and making mathematical connections.

8 How Number Talks Assist Students in Becoming Doers of Mathematics
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8.2.3  Developing Sociomathematical Norms 
for Doing Mathematics

For number talks to assist students in becoming doers of mathematics, the teacher 
takes on the role of a learning coach supporting students to explain and make sense 
of their own and their peers’ mathematical thinking. As part of this role, the teacher 
attends to the development of sociomathematical norms so that generative learning 
occurs (Yackel & Cobb, 1996). Research characterizes four sociomathematical 
norms that are particularly salient for supporting conceptual thinking. These socio-
mathematical norms are: (a) explanation is not a procedural description, but consists 
of a mathematical argument, (b) understanding the relationships between multiple 
strategies supports mathematical thinking, (c) mistakes provide opportunities to 
reconceptualize a problem by exploring alternative strategies, and (d) collaborative 
discussion involves individual accountability and using mathematical argumenta-
tion to reach consensus (Kazemi & Stipek, 2001).

Consequently, as teachers develop these sociomathematical norms in their class-
rooms, number talks shift from a focus on correct answers and sharing procedural 
descriptions to drawing mathematical connections between different solution meth-
ods (Ball, 1993; Stein et al., 2008; Wood & Turner-Vorbeck, 2001). In this space, 
discussions also include deliberation on which strategies might be most accurate, 
efficient, and/or flexible (Nathan & Knuth, 2003). Since students’ mathematical 
thinking is made visible, taken-as-shared understandings are developed and stu-
dents gain autonomy as they fully participate within the community of practice 
(Lave & Wenger, 1991; Wood et al., 2006; Yackel & Cobb, 1996).

8.3  Study Context

Ms. Jones was a third-grade teacher who had 11 years of experience and taught in a 
large suburban district in the southwestern United States. During this study, Ms. 
Jones engaged in number talks to leverage student-to-student talk in ways that sup-
ported them to become doers of mathematics. Over the course of a 15-week period, 
her students (n = 12) took ownership of their learning as Ms. Jones built habits that 
supported her students to listen, try new strategies, share their thinking, and learn 
how to accept support from others. Hence, the focus of this study was to understand 
how Ms. Jones leveraged number talks to build a community that assisted her stu-
dents in becoming doers of mathematics. A secondary focus was to explore how 
mental mathematics may have played a supporting role in assisting students in rea-
soning about mathematics.

A variety of data were collected to document how number talks assisted student 
in becoming doers of mathematics. Over 15  weeks, number talk observations 
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ranging from eight to 28 min were digitally recorded and transcribed. A second data 
source was participation in a weekly Number Talk Club (NTC) where five third- 
grade teachers collaborated on leveraging number talks to develop learning com-
munities supporting students in doing mathematics. These NTC sessions ranged in 
length from 25 to 52 min, were digitally recorded, and transcribed. A third data 
source was a modified version of the Vision of High-Quality Mathematics Instruction 
(VHQMI) interview protocol (Munter, 2014). This interview protocol was con-
ducted at the beginning and the end of the study to track changes in the discourses 
teachers employed to describe ideal classroom practice (e.g., Hammerness, 2001). 
These interviews were digitally recorded and transcribed. Alternating between 
number talk observations, NTC sessions, and interviews, deductive (i.e., theory, 
hypothesis, observation, and confirmation)/inductive reasoning (i.e., observation, 
pattern, tentative hypothesis) was used in a circular approach to emphasize observa-
tions and to understand how number talks (and mental computation) supported stu-
dents to become doers of mathematics (Dubbels, 2011; Hutchins, 1995).

8.4  How Did Number Talks Assist Ms. Jones’ Students 
in Becoming Doers of Mathematics?

From the beginning of the study, Ms. Jones demonstrated that she was an experi-
enced and reflective practitioner with a vision of mathematics instruction that sup-
ported developing mathematical practices such as problem solving, reasoning and 
proof, communication, representation, and mathematical connections in her stu-
dents (Common Core State Standards for Mathematics, 2010). During the initial 
interview, she revealed that mathematics instruction begins by hooking students so 
that they are interested, as well as offering hands-on explorations (with tools and/or 
models) in ways that problematized mathematics as relevant and meaningful for 
students. She believed that the role of a teacher was to be a facilitator, using forma-
tive assessment (i.e., pre- and post-testing) to drive instruction, while purposefully 
employing questioning strategies to check students’ understanding of the mathe-
matical content. Yet, missing from this vision of mathematics instruction was how 
students developed productive dispositions that support them to see and make sense 
of mathematics.

Because of this, three dilemmas surfaced during NTCs where Ms. Jones, sup-
ported by her colleagues, replayed, rehearsed, and re-visioned (c.f. Horn, 2010) how 
to use number talks. These dilemmas were: (a) “I’m hearing just the same stuff”, (b) 
how can all students “feel a little bit safer” to share their mathematical thinking, and 
(c) “some of them still struggle with explaining their reasoning.” Therefore, the fol-
lowing sections make visible how Ms. Jones re-visioned these dilemmas to provide 
her students with opportunities to become doers of mathematics.

8 How Number Talks Assist Students in Becoming Doers of Mathematics
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8.4.1  Building Agency by Establishing 
Sociomathematical Norms

As Ms. Jones and colleagues talked about number talks during week three of the 
study, Ms. Jones expressed, “I’m hearing just the same stuff” regarding the strate-
gies elicited from students during number talks. She explained how number talks 
were a “show and tell of traditional strategies” and wondered what approach she 
could use to support students to share different ways of solving the computation 
problems. In addition, she wondered about how to provide opportunities for stu-
dents to develop an understanding of what numbers mean and an ability use num-
bers flexibly to make comparisons and perform operations (Berch, 2005; Gersten & 
Chard, 1999). As Ms. Jones and colleagues analyzed these concerns, they concluded 
that number talks should be a space where mental computation encouraged students 
to move away from using traditional methods as they selected strategies (i.e., 
decomposition, place value, standard algorithm, compensation) that were most effi-
cient and effective for them. They also determined that when students listened to 
each other and then tried out a “new to them strategy” or when mathematical con-
nections were made between the strategies that number sense was being developed.

Equipped with these new understandings, Ms. Jones’ established the sociomath-
ematical norm of exploring new strategies. Evidence of this was heard during a 
number talk later in week three. She stated to the students,

When you have a solution, go ahead and give me a thumbs up and start preparing in your 
head your way. Now remember mathematicians, we talked earlier this week about pushing 
yourself to try out a new strategy. Maybe one that is a little less familiar, but you've heard 
another friend use.

In this moment, Ms. Jones invited students to extend their mathematical thinking by 
trying out a new strategy. Next, she wrote the mathematical expression 62–16 on the 
board and students followed the established number talk routine by solving the 
problem mentally. After students shared their first-time answers, ranging from 46 to 
54, Ms. Jones asked the students to turn and talk with a partner and to listen in way 
where they would be able to share “the method that your partner came up with.” Not 
only was this a new feature of the established number talk routine, but it also pro-
vided students with the opportunity to listen for understanding in a less public space 
as they practiced and clarified their mathematical contribution (Chapin et al., 2013).

After a few moments of partner talk about solving 62–16, Ms. Jones began the 
whole class discussion phase of the number talk. In the following vignette, notice 
how Ms. Jones supported students (all names are pseudonyms), in trying out a strat-
egy that was new for them.

 1. Ms. Jones: Well, let’s go ahead and let Charlie build on what you started. You 
started how he solved it and then why don’t you talk to us about why or how 
you started this way?

 2. Charlie: Um, I did it because Sai did it and I wanted to try it.
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 3. Ms. Jones: Okay. You never tried it before, and you tried it like Sai had done 
before. Okay. So, tell me, what did you do next?

 4. Charlie: I did six minus one which equals five.
 5. Ms. Jones: Hold on really quick. So, you did six minus one. What is the six? 

What does that mean?
 6. Andy: Sixty.
 7. Ms. Jones: [To Andy:] Thank you for adding on.
 8. Charlie: So, 60 minus 10 and then that equals 50.
 9. Ms. Jones: Okay.
 10. Charlie: And then I added back the four to 50.
 11. Ms. Jones: You added back the four to 50, like this? [Modeling it on the 

whiteboard.]
 12. Charlie: Uh-huh, and that equals 54.
 13. Ms. Jones: Yes. I like, I like that. You tried it like another student in the room. 

We talk about when we write, we can use the strategies of other authors. You 
just used the strategy of another mathematician! How neat. So, let’s continue 
with this and let’s see what other solutions we came up with or what other ways.

Although Charlie’s answer was incorrect, this vignette illustrated how the socio-
mathematical norm of exploring new strategies was taken up by the class. Here, Ms. 
Jones did not hear “just the same stuff”, as students took risks to share their peers 
thinking, as well as to try out a strategy that was new to them. For example, in line 
2, Charlie revealed that his strategy was like one that Sai shared the other day, 
thereby providing evidence that Charlie was stretching himself to try out a new and 
maybe a more flexible way to subtract two numbers.

Also evident in this vignette is that Ms. Jones made mathematics visible as she 
focused the conversation to build taken-as-shared meanings that could further sup-
port her students to stretch themselves to try out a new strategy. For example, in line 
5 she paused Charlie’s explanation to make mathematics visible by stating, “Hold 
on really quick. So, you did six minus one. What is the six? What does that mean?” 
Here, she requested for Charlie to acknowledge the connection between his expla-
nation and the (missing) place value of the digits so all students could understand 
his thinking. The vignette also revealed that at least one other student, Andy, was 
following Charlie’s explanation since he interjected, “Sixty” in line 6.

Notably, the error that was shared by Charlie was not ignored, but instead became 
an opportunity for students to explore differences within solutions. An illustration 
of how errors became opportunities began as Tucker, who was also trying out Sai’s 
strategy, realized that he made a computational error as his partner Juliana was 
explaining his solution strategy. He interjected, “I did two minus six, which I prob-
ably got that one wrong. It is actually negative four, but I accidentally made it nega-
tive six.” Then, Tucker continued by explaining his revised strategy, “I did 60 minus 
10 which equals 50. And 50 minus four would equal, would equal to 46.” In this 
moment, not only did Tucker revise his thinking, but this exchange also provided 
Charlie with the insight into his error about how the negative four should be 
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subtracted and not added to the fifty. As the remainder of the number talk unfolded, 
there was evidence that at least three other students pushed themselves to try out 
Sai’s strategy resulting in answers ranging from 44 to 46.

Providing an opportunity for all students to make mathematical connections dur-
ing the number talk, as well as to try out a new strategy, Ms. Jones asked for students 
to share strategies that were different from Sai’s. Here, Ms. Jones called on Bhavna 
to share a strategy that could help students to make mathematical connections.

 1. Bhavna: I got 46. I decomposed the 62 to a 60 and a two.
 2. Ms. Jones: Okay.
 3. Bhavna: I did 60 minus 10. That equals 50.
 4. Ms. Jones: How did you get the 10?
 5. Bhavna: From the 16.
 6. Ms. Jones: What did you do?
 7. Bhavna: I decomposed the 16 to a ten and six.
 8. Ms. Jones: Okay.
 9. Bhavna: I did 60 minus 10 and that equals 50. Umm… [pause]
 10. Ms. Jones: Does anybody want....
 11. Bhavna: Oh, yeah...
 12. Ms. Jones: You got it. Okay.
 13. Bhavna: I did 50 minus six and that equals 44. [pause] I did 44 plus two which 

equals to 46.
 14. Ms. Jones: Okay. Do I have anybody that wants to agree or disagree with this 

answer? And tell me why? I now have two solutions for 46. So, do you agree or 
disagree with this and why? Elijah?

 15. Elijah: I agree because she decomposed that and then she added back the two 
from, because she never subtracted it, so she added back the two from the 60.

 16. Ms. Jones: She added back the two from the 60. All right, Sofia, do you agree 
or disagree?

 17. Sofia: I agree because... Umm [pause].... I just agree.
 18. Ms. Jones: You just agree, you just think she was correct. Okay. Did anybody 

have an additional way before we start unpacking this just a little bit more? 
Okay. Because we’ve got a lot of answers. We tried a lot of new ways, which 
was super, super awesome.

During this exchange, Bhavna shared a different, flexible solution strategy resulting 
in the answers of 46. Next, in line 14, Ms. Jones invited students to reason about the 
answer of 46 since this was the answer that was emerging as correct. In this moment, 
Elijah, in line 15 offered up a claim and evidence to why 46 was the answer. First, 
he claimed that he agreed with Bhavna. Then he stated evidence, “she decomposed 
that and then she added back the two from because she never subtracted it, so she 
added back the two from the 6”. Although Elijah did not connect the evidence back 
to the claim with a warrant, he was beginning to engage in mathematical argumenta-
tion to convince other members of his learning community that 46 was the 
true answer.
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Before the number talk concluded, two other students shared different strategies 
based on place value confirming that the answer was in fact, 46. Then Ms. Jones 
summarized the number talk process as she reflected out loud with her students 
attentively listening,

I really pushed you on your thinking on that one. I can tell, because you got a little uncer-
tain, but you know what? That happens when we're trying a new strategy. It's not always 
going to work for us the exact first time we try it. But what you guys did was you commu-
nicated, you got creative with your solutions and some of you tried some things you hadn't 
done before.

In this moment, Ms. Jones realized a shift as she shared what she noticed during the 
number talk. Here, she not only reflected on how students creatively pushed them-
selves to explore new strategies, but how they also explored differences in strate-
gies, claimed errors, and used math talk as they made important mathematical 
connections.

A salient aspect of the dilemma, “I’m hearing just the same stuff”, was for Ms. 
Jones to navigate how to support her students’ shifting roles as they became doers 
of mathematics. In this, and future, number talks Ms. Jones decentered herself so 
that her students could try out a new strategy and listen to each other share their 
ingenious ways of handling numbers. Because of this, authority (i.e., who’s in 
charge of making mathematical contributions) became jointly distributed between 
students and the teacher (Cobb et al., 2009). This shift in authority lead to students 
exercising conceptual agency or control over their learning process; a key factor in 
mathematical learning (Cobb et al., 2009; Boaler & Greeno, 2000). Further, it could 
be argued that mental computation played an important role since it supported stu-
dents to generate creative ways of handling numbers (Cobb & Merkel, 1989; Reys, 
1984; Sowder, 1992) by using methods that were most efficient and effective for 
them (e.g., Blöte et al., 2000; Torbeyns & Verschaffel, 2016).

8.4.2  Shifting Authority Through Small Group Number Talks

As the NTC in week 7 began, Ms. Jones revealed that she wanted to modify her 
number talk routine because she noticed that some students may not have the space 
to share their mathematical thinking. Thinking aloud, she re-visioned how she could 
continue to shift authority so that all students felt comfortable talking during num-
ber talks. She concluded, “that way I can kind of sit with some students, and other 
groups could just do their number talk. That way they [those I sit with] feel a little 
bit safer.” Other members of the NTC added on as they reflected on the dilemma of 
who was in charge of making mathematical contributions.

Equipped with this new idea, Ms. Jones tried small group number talks to sup-
port students in developing confidence while continuing to distribute authority 
among students so that they felt safe to make mathematical contributions. During 
week 8, the students mentally solved 70–59 = 70–60 + 1 to determine if it was true 
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or false. Then, students discussed their solution strategies in small groups of three 
or four. Here, they asked each other questions about their answers and defended 
their strategies as Ms. Jones guided from the periphery while supporting quiet stu-
dents to interject their thinking. After small groups had time to share and defend 
their answers, Ms. Jones transitioned from small groups to a whole class number 
talk. In this space, small group leaders summarized by sharing a strategy that was 
new to them, consensus on true or false, and mistakes that were claimed. For exam-
ple, one group shared,

 1. Small Group Leader: He did 59 and he rounded it to 60 and then he did 70 minus 
60 equals 10. And then he did 10 plus one, which equals 11. And then he did 70 
minus 60 again and got 10, and then 10 plus one equals 11 and he got true.

 2. Ms. Jones: Okay. Did the rest of your group members agree?
 3. Small Group Leader: Yes. Everybody but Melissa. She got false and said she 

thought she messed up.
 4. Ms. Jones: Okay, what got her confused?
 5. Small Group Leader: She did 59 plus one, which equals 60. And then she did 70 

minus 60 equals 10. And then she did 70 minus 60 again, which equals 10 plus 
one, which equals 11.

This moment revealed that as students shared their thinking during small group 
number talks, they had opportunities to tell their mathematical ideas, as well as 
agree and disagree about them. In fact, these conversations shifted into a process 
where students defended an answer and investigated mathematical ideas together. 
Further, this process supported students to enact the sociomathematical norm of 
claiming mistakes as they engaged in mathematical argumentation to reach 
consensus.

During the next NTC in week eight, Ms. Jones replayed what the students said 
about the small group experience: “I said, ‘What’d y’all think?’ They’re like, ‘This 
is awesome. Everybody got to talk in the smaller group.’ My whole goal was to get 
all students talking. So, in a smaller group, it did!” In this replay, Ms. Jones shared 
that her students not only took-up but were excited about the opportunity to share 
their mathematical reasoning during small group number talks.

Taken together, these moments revealed that small group number talks felt “a 
little bit safer”. As Ms. Jones guided small group number talks from the periphery, 
she provided an extra layer of encouragement and support so that students felt com-
fortable in making mathematical contributions. Further, small group number talks 
provided opportunities for students to share in progress thinking and claim mis-
takes, while revising their mathematical thinking as they discussed the mental com-
putation problem.
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8.4.3  Learning How to Share Mathematical Reasoning During 
Whole Group Number Talks

As the teachers reflected on what they noticed about their students’ mathematical 
thinking during the NTC in week 13, Ms. Jones revealed, “They’re starting to say, 
‘I would like to add on to that”, or “I think she’s saying…” without prompting. Yet, 
she noted “they’re getting better at sharing it [their strategy, but] some of them still 
struggle with explaining their reasoning.” Since conjecturing, generalizing, and 
investigating mathematical ideas is the essence of mathematical activity (Lannin 
et al., 2011; Russell, 1999), Ms. Jones wanted to support students to engage in rea-
soning, specifically argumentation. In a mathematics classroom, argumentation is 
typically defined as a line of reasoning where students defend why their answers are 
true (Sriraman & Umland, 2014) for the purpose of concept development (Stapes & 
Newton, 2016). To this end, Ms. Jones wondered if sentence stems such as, “I agree 
with _____ because _____” or “I disagree with _____ because _____” would be an 
entry point into argumentation during a number talk.

In week 15, Ms. Jones introduced the sentence stems designed to promote rea-
soning and then displayed the number talk 68 + 36 = 104, as represented by a strip 
diagram on the board. Since she was continuing to shift agency by supporting stu-
dents to feel a bit safer in sharing their mathematical thinking, the number talk on 
this day followed the routine of individual students solving the problem mentally 
and then providing evidence of their claims in small groups of three before the 
whole group discussion.

As the whole group discussion phase of the number talk began, Ms. Jones asked, 
“Would anybody like to defend an answer?” Hazel volunteered to defend her answer 
of 68 by providing evidence that she, “did 104 minus 36 and then I got 68. So, I 
checked my answer. I did 68 plus 36 and I got 104.” Next, Elizabeth offered her 
argument.

 1. Elizabeth: I would like to agree with Hazel and um ... I would like to agree with 
the answer 68 because I did my math thinking, I decomposed 104 and 36 and 
then doing all the math…

 2. Ms. Jones: Could you come up here and show me that, really quick? How [did] 
you decompose 104 and 36? I hear some kids are impressed. Let’s see how you 
did this. And what was the reason you did this?

 3. Elizabeth: Because I couldn’t solve the problem just by it being the big num-
bers. I couldn’t solve it. So, I decomposed it to where it would help me.

 4. Ms. Jones: Okay. So then talk just about what you did.
 5. Elizabeth: And then I did 4 minus 6, which equals negative 2. And then I did 

zero minus 30, which equals negative 30. I did negative 30 plus negative 2 
which equals negative 32. And then I did 32 minus 104.
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 6. Ms. Jones: 32 minus 104? Or ...
 7. Elizabeth: Wait, let me think.
 8. Ms. Jones: I see some shared thinking (referring to the shared thinking hand 

signal that many students were doing in support of Elizabeth’s thinking). I see 
some friends that are thinking that you did something that they did.

 9. Elizabeth: I mean, and then I did 100 minus 36.
 10. Ms. Jones: 36?
 11. Elizabeth: 32.
 12. Ms. Jones: Okay. And you got ...
 13. Elizabeth: And I got 68.
 14. Mrs. Jones: Okay, so you’re just showing us a different strategy for how you 

solved for that?
 15. Elizabeth: Yes. I got the same answer in a different way.

During this exchange, Elizabeth established a mathematical argument, supported by 
a claim, evidence, and warrant. In line 1 she made a claim that she agreed with 
Hazel. In line 3, she shared that her evidence was different than Hazel’s and then 
provided her thinking to support her claim. Even though the evidence provided was 
messy (an error in subtraction in line 5), it was an attempt at reasoning about a 
mathematical idea. Then in line 15, Elizabeth concluded with a warrant which con-
nected her evidence back to the claim that she agreed with Hazel.

When Ms. Jones realized that “some of them still struggle with explaining their 
reasoning,” this provided the opportunity to revise what explaining mathematical 
thinking could sound like during number talks. Students, like Hazel and Elizabeth, 
were actively working on establishing a mathematical argument by making claims 
and providing evidence to justify the claim. Although the warrants in these data 
typically did not take the form of generalizations or connections to rules that made 
the evidence true, students were sharing their mathematical thinking in ways that 
built engagement in mathematics.

Recall from Ms. Jones’ initial interview that the development of students’ pro-
ductive dispositions that support them to see and make sense of mathematics was 
missing in her vision of mathematics instruction. Yet, these findings suggest that 
Ms. Jones took steps to develop students’ agency and shift authority, to support 
students in sharing their mathematical reasoning during number talks.

The final interview confirmed these shifts as Ms. Jones shared how students 
should take ownership of their learning as they “facilitate themselves”, meaning that 
students did the work of mathematicians as they mentally solved, clarified, and 
reasoned about solution strategies together. She stated,

If kids are not able to communicate their math thinking, then you really don’t know where 
they are at until you can get them to really explain it and talk through the process. As a 
teacher [a number talk] lets you see that they really grasp it.

For Ms. Jones and the students, number talks became a shared learning space where 
students made mistakes, pushed themselves to explore new strategies, and shared 
their mathematical reasoning. Therefore, it could be argued that because of these 
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rich opportunities to learn together during number talks, students in Ms. Jones’ 
classroom became doers of mathematics.

8.5  Discussion

Throughout the 15-week study, Ms. Jones noticed three main dilemmas hindering 
the way students participated in number talks: (a) “I’m hearing just the same stuff”, 
(b) how can all students “feel a little bit safer” to share their mathematical thinking, 
and (c) “some of them still struggle with explaining their reasoning”. With the sup-
port of colleagues during the NTC, she replayed, rehearsed, and re-visioned how 
number talks could become a generative learning space to support her students in 
sharing their reasoning during these mathematical discussions (Woods, 2018).

Ms. Jones realized different structures were needed to support students in build-
ing habits leading to productive dispositions about mathematics (NRC, 2001). In 
terms of “hearing just the same stuff”, Ms. Jones deliberately promoted the socio-
mathematical norm of trying out a “new to them” strategy during number talks (e.g., 
Yackel & Cobb, 1996). As students took-up this norm and stretched their thinking 
to explore new and different strategies, Ms. Jones encouraged them to practice shar-
ing, as well as actively listening, with a partner during turn and talks (Chapin et al., 
2013). In this less public space students not only revised their thinking, but also 
heard “new to them” strategies and asked clarifying questions to aid understanding. 
As students shared, discussed, and refined strategies they discovered they had abil-
ity, permission, and obligation to exercise agency over their learning process (Cobb 
et  al., 2009; NRC, 1987). Evidence of this was found in the variety of different 
strategies that students used over the course of the study that were different from the 
“same stuff” that they typically shared during number talks.

As students exercised agency, Ms. Jones decentered herself as students explored 
ingenious ways of handling numbers and shared their thinking. Because of this, 
authority or who’s in charge of making mathematical contributions became jointly 
distributed between students and the teacher (Cobb et al., 2009). Yet, Ms. Jones real-
ized that not all students had the opportunity to make contributions to number talks. 
Therefore, she developed a new support–small group number talks–so that all stu-
dents had the space to share their mathematical thinking.

The goal of these small group number talks was to provide support to students 
who needed extra encouragement to share their thinking. In this space, students felt 
“a little bit safer” and shared their mathematical ideas, agreed and disagreed about 
them, and revised their thinking. Evidence of this was found in Ms. Jones’ replay 
during the NTC in week eight. Here, she reported how her students were excited 
about the structure because “everybody got to talk in the smaller group”, thereby 
shifting authority to make mathematical contributions among more students.

As more students participated during number talks, Ms. Jones realized that 
“some of them still struggle with explaining their reasoning.” Because of this, Ms. 
Jones realized the need to explicitly focus on mathematical reasoning since it is the 
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essence of mathematical activity (Lannin et  al., 2011; Russell, 1999), as well as 
provided connections to content learning (Staples & Newton, 2016). In fact, some 
of Ms. Jones’ students engaged in argumentation as early as week three when they 
stated a claim, defended why their answers were true, or agreed/disagreed with a 
solution strategy (Sriraman & Umland, 2014). Yet, Ms. Jones wanted to provide all 
students access to this mathematical activity. For this reason, she illuminated a path 
to argumentation using sentence stems. As students used statements such as “I agree 
with _____ because _____” during a number talk, they entered a space where they 
engaged in mathematical reasoning (Chapin et  al., 2013) as they stated a claim, 
provided evidence, and a warrant.

In these data, rich moments of mathematical argumentation were just beginning. 
Often, arguments were missing warrants and if there were warrants, generalizations 
or connections to rules that made the evidence true was often missing. Yet, students 
were engaging in number talks differently by the end of the study. This could be 
because Ms. Jones noticed and wondered about how she could leverage number 
talks to support students in doing mathematics. First, Ms. Jones enacted sociomath-
ematical norms such as trying out a “new to them” strategy (e.g., Yackel & Cobb, 
1996). Second, she decentered herself so that authority could be jointly distributed 
so that students could exercise conceptual agency (Cobb et al., 2009). Third, she 
supported students to feel safer in making contributions, thereby further distributing 
authority among all students. I argue that these three moves created the space for all 
students to engage in mathematical reasoning since students discovered that they 
had an obligation to exercise agency and control over their learning processes (Cobb 
et al., 2009; NRC, 1987).

It can also be argued that mental computation played an invaluable role in assist-
ing students to become doers of mathematics during number talks. Prior research 
revealed how mental computation provided students with moments to not only 
develop conceptual understanding into why algorithms work, but also advance cre-
ative and independent thinking (Reys, 1984; Reys et  al., 1995). Further, mental 
math gave students permission to find ways to creatively handle numbers (Cobb & 
Merkel, 1989; Reys, 1984; Sowder, 1992). Throughout the study, Ms. Jones not 
only encouraged students to use mental math, but also to find methods that were 
most efficient and effective for them (e.g., Blöte et al., 2000; Torbeyns & Verschaffel, 
2016), as they tried out different strategies.

8.6  Implications for Teaching and Learning

Although more and different types of data are needed to confirm that students devel-
oped productive dispositions that support them to become doers of mathematics, 
evidence provided in this chapter illustrates that students were generating their own 
understanding as they talked about different solution strategies during number talks. 
Noticeably, number talks became a shared learning space where students made 
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mistakes, pushed themselves to explore new strategies, and shared their mathemati-
cal reasoning.

So, what are the implications from this study for teachers, like Ms. Jones, who 
want to empower their students to do mathematics? First, this generative mathemat-
ics learning space built upon the features of community already established within 
the classroom. For example, Ms. Jones had routines established, such as morning 
meeting, to address students daily social-emotional needs. Because of this, there 
was already a culture of care and safety established within the classroom on which 
to build a rich, mathematics-focused learning community.

Second, as Ms. Jones took an inquiry stance into her practice by noticing what 
the students were doing during number talks and then wondering how to leverage 
the routine to support deeper learning, the established community began to shift into 
a community of practice. In this space, students were encouraged to enact socio-
mathematical norms while receiving social support for their efforts within their 
learning community.

Third, as Ms. Jones shared authority with her students, there was a notable shift 
in agency – or students’ ownership of their learning – as habits were built that sup-
ported students to listen, try new strategies, share their thinking and mistakes, and 
accept support from others. As students took ownership of their learning, Ms. Jones 
decentered herself (as small group number talks were established) so that students 
could engage in mathematical reasoning. This shift in agency and authority sup-
ported students in Ms. Jones’ classroom to be doers of mathematics.

Because of these three implications, the daily 10-to-15-minute number talks 
became a shared learning space where students made mistakes, pushed themselves 
to explore new strategies, and shared their mathematical reasoning. Notable was 
how Ms. Jones took the time to develop a classroom community that ultimately 
shifted authority in ways where students could exercise conceptual agency. Because 
of these shifts, and the role mental mathematics played, it could be argued that as 
students reasoned about mathematics together during number talks, they were doers 
of mathematics.
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Chapter 9
Language Matters: Mathematical 
Learning and Cognition in Bilingual 
Children

Mona Anchan and Firat Soylu

Abstract Although many bilingual children receive formal training in their non- 
dominant language in the USA and other multicultural societies, educational pro-
grams tailored for the needs of bilingual children are scarce. Like in other areas of 
instruction, bilingual children face additional challenges when learning math, given 
the language divide between home numeracy and formal school environments. This 
chapter presents evidence-based recommendations for teaching math to bilingual 
and multilingual children in elementary and middle schools. To ground these rec-
ommendations in research findings, psychological and neural mechanisms of bilin-
gual mathematical learning and cognition are discussed, as well as sociocultural 
issues and implications for classroom practice. To support bilingual children’s math 
learning in their non-dominant language, we recommend allowing code-switching 
and other off-loading strategies, strengthening fact retrieval in both languages, 
incorporating the child’s home and cultural contexts, instructing in their home lan-
guage or finding online alternatives, providing culturally-relevant math instruction 
and feedback, and making connections between mathematics and children’s every-
day lives. We also discuss the need for changes in teacher training and educational 
policy-making in order to increase awareness about bilingual children’s needs and 
to transition bilingualism from being a disadvantage in formal education to being a 
quality that can enrich and enhance children’s educational experiences.
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9.1  Introduction

According to the 2019 national report about mathematical performance in USA, 
16% of English-speaking children in fourth grade did not achieve basic proficiency 
in math; this, however, is not as alarming as the 41% of fourth grade children cate-
gorized as bilinguals who lack basic mathematical proficiency (National Assessment 
of Educational Progress, 2019). With 23% of the U.S. school population being 
bilingual and growing (U. S. Census Bureau, 2021), understanding how bilingual 
individuals process mathematics is especially relevant for effectively teaching 
mathematics and improving their mathematical learning outcomes. This is espe-
cially important to ensure mathematics instruction is accessible and equitable for a 
subset of those bilingual children classified as English Language Learners (ELL) 
who constitute 10% of the U.S. school population (U.  S. Department of 
Education, 2020).

If mathematics test outcomes were to serve as a proxy for children’s understand-
ing of basic mathematics (as they often do in policy circles), then the tradition of 
teaching mathematics in English or another dominant cultural language often yields 
difficulties for bilingual children. When bilingual children do not have access to 
educational opportunities or resources to learn basic mathematics in their home 
language early on, lack of connections between English and their home language 
may lead to academic difficulties in the short-term and potential long-term setbacks 
such as fewer career prospects and a lower quality of life (Dowker, 2019; Shin, 
2013). However, these contextual matters are rarely considered in neuroscientific 
studies designed to understand how the brain processes different mathematical 
tasks. This unintentional oversight thereby continues to exacerbate existing inequi-
ties. For example, if most mathematical cognition studies that utilize neuroimaging 
proceed with the unspoken assumption that language proficiency does not play a 
primary role in mathematical processing by not classifying their participants’ lan-
guage status (see a list of all neuroimaging studies in numerical cognition in the 
review by Peters & De Smedt, 2018), then resulting recommendations to improve 
academic outcomes would incorrectly presume a person’s language status as incon-
sequential for mathematics teaching and learning. Even considering the few math-
ematical cognition studies that do examine bilingualism, bilingual participants are 
treated categorically without qualifying their exact proficiency levels in their two 
languages.

Therefore, Whitford and Luk (2019) suggest treating bilingualism as the dynamic 
experience that it is. Most bilinguals, regardless of their proficiency, often have to 
perform mental gymnastics (Kroll et al., 2015) to cognitively manage the language 
system in which they are operating by activating the language they are currently 
using while suppressing competing representations in their other language. However, 
the quality and efficiency of bilinguals’ mental gymnastics depend on their past and 
current interactions. For instance, a child who learns English as a second language 
in a natural/unstructured environment with high exposure to that language (e.g., 
home, relatives, neighbors, media, etc.) will have a different proficiency level than 

M. Anchan and F. Soylu



153

someone who learns English as a second language in a more structured environment 
like school (Bedore et al., 2016; Ruiz-Felter et al., 2016).

Since a child’s language proficiency and bilingualism experience varies based on 
the interaction between their two languages and various environmental factors, 
Whitford and Luk (2019) suggest considering how bilingualism impacts cognition 
across ages and different sociocultural factors by examining the interaction between 
language factors (exposure, background, proficiency) and a variety of cognitive 
(e.g., verbal and non-verbal IQ) and demographic (e.g., education, socioeconomic 
status) variables. Understanding how bilingualism affects experiences (of mathe-
matical learning or otherwise) is especially important now, given the economic and 
social shifts towards operating in multiple languages in this increasingly globalized 
world (Surrain & Luk, 2019). Outside of research that directly studies bilingualism, 
there is also a call to report and treat a child’s language exposure, proficiency, and 
demographic variables in all developmental studies due to its potential to be a hid-
den moderator (Byers-Heinlein et al., 2019). Like the research sector, it is important 
to provide similar evidence-based recommendations for teaching and learning pur-
poses as well. To provide such recommendations to mathematics educators who 
work with bilingual children and adults, findings from various fields (i.e., psycho-
linguistics, mathematics education, cognitive neuroscience, educational policy) 
were consolidated with insights from mathematical cognition about bilingual math-
ematics learning in international contexts.

While the cognitive demands of bilingualism are ever present in a bilingual 
child’s development (Whitford & Luk, 2019), these cognitive demands seem to 
unequally affect students’ mathematics performance (Anchan & Soylu, 2021d), 
which could have downstream effects on their future numerical development. 
Understanding numerical development requires connecting theories and findings 
across different levels, and studying how environmental and cultural factors (e.g., 
language, home numeracy environment, socio-economic level), as well as biologi-
cal factors (e.g., neural, genetic) contribute to the development of numerical skills.

In this chapter, we utilize the interdisciplinary lenses of educational neurosci-
ence to present how bilingual children in the elementary and middle school years 
develop their mathematical thinking and learn mathematics (Han et al., 2019; Knox, 
2016). The pragmatic epistemology of this framework allows an educational con-
cern (i.e., poor mathematical performance in bilingual children) to define a course 
of action by drawing on interdisciplinary insights about children’s language profi-
ciency, their cognitive processes, and sociocultural factors related to their school 
and home environments. But extrapolating insights from multiple disciplines has its 
own challenges. For example, it is not always possible to keep terminology consis-
tent while crossing disciplinary boundaries. Therefore, at the risk of compromising 
precision for a pragmatic cause, we have used the term ‘bilingual’ broadly in this 
chapter, only qualifying bilingual proficiency when reported by the original study. 
It is our hope that this lack of precision will advance research in the areas of bilin-
gual mathematical cognition and mathematics education by prompting further con-
versations and discussions not just across academic disciplines but also among 
practitioners, administrators, and parents.
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9.2  Biological and Cultural Evolution of Mathematical Skills

Given that human mathematical skills are to a large extent an outcome of recent 
cultural evolution, the human brain does not have dedicated systems that originally 
evolved to support mathematical cognition. Instead, similar to many other cognitive 
skills, mathematical cognition makes use of neural systems that evolved to support 
other functions (Anderson, 2010, 2014). Early studies focused on understanding the 
role of language, symbolic, visuospatial, and sensorimotor systems for fundamental 
mathematical skills, like numerosity estimation, subitizing, counting, and arithme-
tic (e.g., Dehaene, 1992). Across nearly 30 years of research, we learned that we 
share some fundamental mathematical skills with other animals, enabling estima-
tion of physical and numerical magnitudes, but beyond that mathematical develop-
ment strongly relies on body-based, visuospatial, symbolic, and verbal 
representations, which are embedded in sociocultural contexts where development 
takes place (O’Shaughnessy et al., 2021). But with the world becoming increasingly 
connected and globalized, evidence about bilingual brains is calling a fundamental 
assumption in these studies into question (Whitford & Luk, 2019). Can mathemati-
cal cognition findings about neural processing be extended to all populations when 
many of these studies did not account for individuals’ language status (monolin-
gual, bilingual, multilingual) or include it as a variable? And how does this affect 
how bilingual children are taught math? With this goal in mind, this chapter outlines 
evidence about brain development and mathematical processing in bilinguals, fol-
lowed by some recommendations to integrate these findings in the mathematics 
classroom (or home) while teaching bilingual children.

9.3  Bilingual Brains Process Information Differently

While monolingual and bilingual brains both process languages and cognitive tasks 
efficiently, the brain networks carrying out similar tasks and the associated out-
comes may differ (Anderson et al., 2018). The fundamental architecture and lan-
guage processing mechanisms involved in the bilingual brain may not always be 
accessible or examinable in monolinguals (Kroll et al., 2015). This insight is reiter-
ated in neuroimaging and behavioral studies that show monolingual and bilingual 
children and adults performing differently on similar tasks or using different brain 
networks (Bialystok, 1999; Bialystok & Martin, 2004; Anderson et al., 2018). For 
example, in an fMRI study, Anderson et  al. (2018) compared monolinguals and 
English-French bilingual adults on verbal and nonverbal task-switching experi-
ments. While monolinguals used 2 different networks to process the verbal and 
non-verbal tasks, bilinguals used a common network for both tasks. Other studies 
suggest that bilinguals have enhanced executive functioning skills such as atten-
tional control (Bialystok & Majumder, 1998; Bialystok, 1999), mental flexibility 
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(Mielecki et  al., 2017) and inhibitory control (Bialystok & Martin, 2004; Kroll 
et al., 2008; van Heuven & Dijkstra, 2010) as a result of juggling two languages.

9.4  Bilingual Mathematical Development

The implicit assumption in many elementary and middle school classrooms is that 
mathematics is learned in a language-independent way (Anchan, 2019). A growing 
body of neurocognitive evidence suggests otherwise. When examining mathemati-
cal problem solving in Turkish-German bilingual elementary school students, for 
example, Kempert et  al. (2011) found language proficiency in the language of 
instruction/testing to be predictive of their mathematical performance. Bilinguals 
activate mathematical representations in both languages at all times. Therefore, they 
would either actively inhibit representations in one language while performing 
operations in the other (Kroll et al., 2008) or they would use some cognitive subpro-
cess to choose one language over the other (Dijkstra & Van Heuven, 2002). As a 
result of these background processes, bilinguals may react significantly slower than 
monolinguals on some tasks. Juggling additional subprocesses (Kroll, 2008) may 
also lead bilinguals to make more errors on mathematical tasks, leading to some 
disadvantages in bilinguals. Venkatraman et  al. (2006) fMRI-scanned English- 
Chinese bilinguals as they performed two arithmetic tasks—base-7 addition and 
percentage estimation—to study exact and approximate number processing. They 
performed the tasks in both English and Chinese where they were trained in one 
language and untrained in the other. Language switching effects were found in both 
types of number processing – approximate number processing (left inferior frontal 
gyrus [LIFG], left inferior parietal lobule, angular gyrus), and exact number pro-
cessing (bilateral posterior intraparietal sulcus, LIFG) – suggesting that mathemati-
cal calculation (which depends on retrieval of mathematical facts) relies on verbal 
and language-related networks. Therefore, mathematical processing is not indepen-
dent of language.

More specifically, mathematical retrieval, calculation, and performance seem to 
depend upon the primary language of mathematics instruction. When bilingual high 
schoolers were trained on multiplication and subtraction problems in one language 
(German or French) and tested in both languages, Saalbach et al. (2013) found cog-
nitive costs related to language switching when language of arithmetic instruction 
differed from the students’ frequently used language. Similarly, in a sample of 193 
German-French bilinguals between the ages of 12–23, Van Rinsveld et al. (2015, 
2016) found bilingual participants’ language proficiency to be crucial for solving 
simple and complex addition problems. While extended amounts of practice in both 
languages helped bilingual participants to perform equally well on simple single- 
digit addition problems, this was not true for more complex addition problems that 
involved double-digit or larger numbers. The number words used to describe the 
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numbers also made a difference in how bilinguals processed numbers. For example, 
a bilingual whose primary language is English may read 24 as “twenty-four” but a 
bilingual who primarily speaks German may read is as “four-and-twenty.” These 
small but significant differences seem to compound over time leading bilinguals to 
process mathematics problems faster and more easily in their first language. In the 
case of simple multiplication, Salillas and Wicha (2012) similarly showed that the 
memory networks established in a bilingual individual’s childhood does not affect 
their retrieval process in adulthood even if the other language is dominant.

While many of the previously mentioned studies support the notion that arithme-
tic facts are encoded in verbal memory in the language of mathematics instruction 
(Dehaene & Cohen, 1995), there is also evidence to suggest that bilinguals represent 
mathematical facts for each language separately (Campbell & Xue, 2001). Martinez- 
Lincoln et al. (2015) compared bilingual teachers’ arithmetic performance in their 
primary or secondary language of instruction. They found that when the teachers 
performed arithmetic in their primary language of instruction, they maintained a 
primary language advantage. When their performance in their teaching and non- 
teaching languages were compared using Event-Related potentials (ERPs, i.e., brain 
signals), teachers showed more efficient access to their language they taught in, 
regardless of whether it was their first or second language. This suggests that access 
to terms even in the secondary language of instruction improved with use and prac-
tice. Although this study was done in adults, it could have implications for mathe-
matical learning in children.

Cerda et al. (2019) recorded ERPs in bilingual children as they verified the cor-
rectness of multiplication problems that were presented as spoken number words in 
Spanish and English blocks. Even though participants showed a language bias, they 
elicited comparable N400 amplitudes (i.e., brain response to encountering some-
thing unexpected that usually happens when the number presented does not match 
the expected answer) for both languages, which suggests similar cognitive pro-
cesses in both registers at the semantic level. According to these adult and child 
studies, if a bilingual child’s development in both languages is almost balanced, 
disadvantages arising from mathematics instruction in their second language could 
be mitigated by increased functional use of their second language. This, however, 
may not be the case for bilingual children with partial or limited use of their second 
language such as English Language Learners. For such bilinguals, Van Rinsveld 
et al. (2016) found that providing contextual cues in their home language during 
instruction helped bilingual participants perform better in mathematics even in their 
second language. This means that despite their level of proficiency in both lan-
guages, bilingual individuals must learn mathematical facts in both languages to 
retrieve them at the same rate; otherwise, they will face cognitive costs when per-
forming in their second language, because they would most likely retrieve facts in 
the language of instruction and translate them into the other language (Schwartz & 
Sprouse, 1996).
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9.5  Insights from Bilingual Mathematical Education in USA 
and Other Countries

Research about bilingual mathematical education corroborates much of the cogni-
tive findings about bilingual mathematical development presented earlier. For 
example, while examining the math learning success of Filipino-English bilingual 
children in the fifth grade, Bernardo and Calleja (2005) found that they were more 
likely to understand and solve word problems in their first language. This first lan-
guage advantage was observed even in bilinguals whose first language was English 
(Bernardo, 2002). A parallel observation was documented outside the USA, where 
Clarkson and Galbraith (1992) found Papua New Guinean sixth grade students who 
were proficient in both their languages (English, and a second native language, e.g., 
Tok Pisin or Hiri Motu) scoring considerably higher on two different mathematical 
tests compared to their less proficient bilingual peers. Some bilingual students even 
performed better than their monolingual peers, despite the latter belonging to 
schools with more resources. Further examination led Clarkson (1992) to conclude 
that this may be due to Papua New Guinea’s national policy promoting the use of 
students’ original languages in school, allowing them to easily understand difficult 
mathematical concepts in classrooms. Planas and Civil (2013) compared students 
from Mexico in Tucson, USA, and students from Latin America in Barcelona, 
Spain. In both cases, the primary language of instruction were English and Catalan 
respectively. They showed that students’ level of participation in the mathematics 
classroom depended on the language of instruction; low levels of participation were 
associated with instructing in students’ non-home language. These studies from 
other countries support the recommendation to incorporate bilinguals’ home lan-
guage in mathematics instruction in U.S. classrooms as well.

9.5.1  Frequency of Language Use

Mathematical cognition models in sync with insights about word frequency 
(Ashcraft, 1992) and information processing (Anderson, 1983) state that when a 
language in which mathematics is taught and learned is used frequently, those math-
ematical facts will be stored and retrieved in that language most efficiently. Campbell 
and Clark’s (1988) encoding-complex model of mathematical cognition also posits 
that each language has its own representation of arithmetic facts, and the rate of 
retrieving those facts is dependent on experience (Campbell & Epp, 2004). Since 
‘reaction time’ or the time to access mathematical facts and solve problems is a 
primary measure of mathematical performance in schools, understanding how effi-
ciently children retrieve their learned mathematical facts (which depends on experi-
ence and practice) is important for teaching mathematics to bilingual children. The 
frequency of language use seems to be important to children (Thordardottir, 2019) 
not only when they are learning mathematics but also while maintaining learned 
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facts through retrieval-based procedures such as practice and problem-solving. In 
the next section, based on a review of bilingual and mathematical education research 
in the USA as well as other countries, we make evidence-based recommendations 
for math teachers and parents to reduce elementary and middle school bilingual 
children’s cognitive load, supplement their math learning processes, and improve 
their math learning outcomes.

9.6  Evidence-Based Recommendations

9.6.1  Allowing Code-Switching

An overwhelming body of research seems to suggest that ‘code-switching’ or 
switching between their two languages should not be discouraged or penalized 
among bilingual children, thereby encouraging, and even normalizing bilingual 
instruction for all children. Parvanehnezhad and Clarkson (2008) studied language 
switching in Iranian bilingual children as they solved mathematical problems and 
explained their reasoning in an interview setting. Students reported switching 
between their home language (Farsi) and the language of instruction (English) when 
they found the problem to be difficult, when they were more familiar with the Farsi 
version of the numbers or words being used, and when they were in a Persian school 
environment. It is equally important to consider the cognitive processes a bilingual 
student may be employing while learning mathematics in either language so instruc-
tion and communication of mathematical concepts can be tailored to their ‘zone of 
proximal development’ (Zaretskii, 2009). In addition to promoting students’ under-
standing of mathematical concepts, teaching mathematics in students’ first language 
also seems to nurture socioemotional aspects of their learning. In a comparison of 
five multicultural schools in Sweden, bilingual students between the ages of 9 and 
16 reported higher levels of confidence, engagement and learning when bilingual 
mathematics teachers instructed their students and engaged them in mathematical 
activities using both languages. Students also felt secure using both languages while 
doing and understanding mathematics problems (Norén, 2008).

9.6.2  Allowing Other ‘Off-loading’ Strategies

Similar to code-switching, implementing other sensorimotor strategies (e.g., finger 
counting, sketching, diagramming, visual aids, etc.) can also help bilingual children 
to offload some of their persistent cognitive load, thereby allowing for better math-
ematical processing and performance. Children who use their fingers to count and 
do arithmetic in the early school years (K to second grades) were found to perform 
better in the later school years (Baroody & Wilkins, 1999; Crollen & Noël, 2015; 
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Long et al., 2016). Before children switch to mental number representations entirely, 
fingers help children as a cognitive offload or embodied processing mechanism, 
later to be replaced by fact retrieval, which is more efficient and makes cognitive 
resources available for learning of more advanced arithmetic and algebra. 
Neuroimaging studies both with children (Berteletti & Booth, 2015) and adults 
(Soylu & Newman, 2016) show an association of the finger sensorimotor system 
with number processes. In addition, multiple studies showed that children’s finger 
gnosis (the ability to individuate fingers) scores correlate with or predict their math-
ematical skills (Fayol et al., 1998; Noël, 2005), even though there are also some 
studies not showing such an association (Long et al., 2016). There are also studies 
showing that fine motor ability correlates with (Fischer et al., 2018) or predicts (Luo 
et al., 2007) mathematical skills in young children. Similarly, visual mathematical 
representations (VMRs) and computer-based Mathematical Cognitive Tools 
(CMTs) help educators to scaffold their instruction and help children to cognitively 
offload while learning (Sedig & Liang, 2006).

9.6.3  Strengthen Retrieval of Mathematical Facts 
in Both Languages

Since basic mathematical facts are the building blocks of higher-level math, 
strengthening bilingual children’s retrieval of basic mathematical facts in both their 
languages is crucial for their mathematical development. Neuroimaging studies 
show that with higher arithmetical skills, both children (Rosenberg-Lee et al., 2011) 
and adults (Grabner et al., 2007; Prado et al., 2011) show less activation in the intra-
parietal sulcus (i.e., associated with calculation) and more in angular gyrus (associ-
ate with retrieval) during arithmetic tasks, particularly for addition and multiplication, 
given the higher reliance on retrieval of arithmetic facts for these operations. Further, 
in a study conducted with adults, parietal activation during a complex multiplication 
task shifted from intraparietal sulcus (i.e., calculation) to angular gyrus (i.e., 
retrieval), as these adults were trained with the multiplication facts included in the 
task (Grabner et  al., 2009). Automatizing calculation processes by switching to 
retrieval via practice could be another way to help students reduce their cogni-
tive load.

9.6.4  Incorporating Home and Cultural Contexts

Another recommendation to improve bilingual children’s learning outcomes in 
mathematics is to draw on the children’s home and cultural contexts. Whether 
monolingual, bilingual, or multilingual, Secada and De La Cruz (1996) suggested 
that students need to make sense of mathematics instruction in order to perform 
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satisfactorily, and that is often achieved by connecting children’s problem-solving 
strategies to mathematics instruction in school. Building on this suggestion, they 
recommend using children’s home and cultural backgrounds to promote mathemati-
cal understanding among students from varied cultural and linguistic backgrounds. 
According to Secada and De La Cruz (1996), teachers should consider adopting 
these four principles in their teaching practice: (1) assessing students’ understand-
ing constantly; (2) allowing students to choose from a variety of mathematical con-
tent and levels that is interesting, open-ended, and accessible; (3) building on 
students‘prior knowledge and home experiences; (4) developing mathematical lan-
guage in their cultural and linguistic context. For bilingual students, the last two 
suggestions are all the more crucial from a standpoint of equity; it would allow them 
to build their own understanding of mathematical concepts from a similar starting 
point as their monolingual peers.

9.6.5  Mathematics Instruction in the Home Language

While it is recommended that bilingual children’s home language is utilized for 
mathematics instruction, the context, setting, and manner of this instruction should 
also be considered. For example, the Redwood City study for Mexican American 
bilingual children (Cohen, 1976) found that separating bilingual children from their 
monolingual peers to instruct them in Spanish did not necessarily have the desired 
effect in academic achievement. In a study of third to fourth grade children who 
were instructed bilingually for 6 years, bilingual children outperformed their public- 
school peers (instructed in English) in Spanish reading, vocabulary, and storytell-
ing. However, their public-school peers, whether monolingual or bilingual, 
performed better in English storytelling, which means that separating bilingual stu-
dents could result in them having lesser opportunities to practice syntactic improvi-
sation in English. The comparisons between the bilingual-schooled and 
public-schooled children yielded mixed results in mathematics and English vocabu-
lary performance.

A meta-analysis of bilingual education programs conducted by Willig (2012) 
found similar mixed results with small to moderate differences favoring bilingual 
education in reading, language skills, mathematics, and total achievement when the 
tests were in English, and in reading, language, mathematics, writing, social studies, 
listening comprehension, and attitudes toward school or self when tests were in 
other languages. The mixed performance in mathematics and other subjects seen in 
these studies further suggest that separate instruction may not be the most effective 
strategy in mathematics instruction for bilinguals.

Since most classrooms have bilingual children who speak more than one non- 
English language which mathematics teachers may not speak themselves, it is not 
practically feasible to instruct all bilingual children in their home language. One 
recent innovation that some mathematics teachers have implemented to deal with 
this challenge is to connect with teachers in other countries teaching the same 
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material and provide students some 1-on-1 online instruction or recordings of the 
instruction in the student’s home language (WestEd, 2020). Teachers also reported 
organizing their classes in rotating stations where students with various home lan-
guages were grouped together and each station included instruction in a different 
home language; students would then take turns learning from the instruction at each 
station, wherein the student familiar with the language of instruction would explain 
what they learned to their station peers who were not familiar with the language, 
thereby ‘flipping the script’ (WestEd, 2020). Despite such creative solutions, there 
is a shortage of mathematics instructional practices that is inclusive for all bilingual 
students.

9.6.6  Immersive Bilingual Programs or Structured 
Immersive Sessions

In 1996, Rossel and Baker reported only 25% of the 300 evaluated immersive bilin-
gual programs to be methodologically acceptable. Surprisingly, Willing (2012) 
reported similar results 16 years later. Willig (2012) called for quality research in 
the field of bilingual education to remedy the high prevalence of methodological 
shortfalls seen in this domain. This suggests that there has been a need for effective 
bilingual programs in USA for at least 25 years. According to Rossell and Baker 
(1996), only 9% of the methodologically acceptable programs showed bilingual 
education to be more effective than regular classroom instruction for mathematical 
performance.

A few studies found bilingual education more effective than regular classroom 
instruction but even then, structured immersion was still considered as the ideal 
format for bilinguals with limited English proficiency. Structured immersion pro-
grams help bilingual children acquire language skills in their second language so 
they can succeed in a classroom where mathematics and other instruction occurs 
primarily in English. A meta-analysis conducted by Greene (1997) similarly recom-
mended using their native language (versus English-only instruction) when instruct-
ing bilingual children with limited English proficiency for moderate learning 
benefits.

From a teaching point of view, therefore, it seems that in addition to some edu-
cational innovation, providing mathematics instruction in a bilingual child’s home 
language in early elementary grades without separating them from their monolin-
gual or balanced bilingual/multilingual peers might prove most beneficial. This 
could be done in the form of supplementary structured immersion sessions where 
English is taught explicitly to low-proficiency bilinguals who are grouped and 
instructed according to their English proficiency. Another way to do this might be to 
start or maintain quality two-way immersion (TWI) programs that have succeeded 
in preparing bilingual students for better mathematical understanding and perfor-
mance in both their languages. Lindholm-Leary and Borsato (2005) examined 
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general school-related attitudes, mathematics coursework, and mathematical 
achievement in three groups of high school students—Hispanics who used to be 
ELLs, native English-speaking Hispanics, and Caucasian English-speaking mono-
linguals —enrolled in a TWI program throughout all the elementary grades. They 
found all three groups had positive attitudes toward mathematics and school, were 
enrolled in college preparation mathematics courses, and were performing at aver-
age or above average levels in math. Marian et al. (2013) confirmed this finding in 
their comparison of test scores across different elementary school programs. They 
found that Bilingual TWI programs positively affected students’ mathematics and 
reading performance regardless of their language status. Bilingual students in TWI 
programs outperformed their peers in transitional programs of instruction. Similarly, 
English-speaking students in TWI programs outperformed their peers in regular 
classrooms.

9.6.7  Feedback and Culturally Relevant 
Mathematics Instruction

But any program or type of instruction is only as effective as the sum of its compo-
nents, and educators play the most vital role in this equation. This is very much in 
line with Clarkson and Gabraith (1992) who cautioned against treating bilingualism 
as a unidimensional factor, and instead advocated designing research and programs 
by accounting for the myriad of factors that play a role in educating bilingual chil-
dren. Teacher-driven learning supplements, such as feedback and culturally relevant 
mathematics instruction, is one such factor that has been shown to be effective in 
instructing bilingual children. Cardelle-Elawar (1990) trained four pre-service 
mathematics teachers to provide oral feedback to their low-performing sixth graders 
who were bilingual. The oral feedback was modeled on Mayer’s model of metacog-
nition and 4-step-problem solving: (1) translation, (2) integration, (3) planning and 
monitoring, (4) solution execution. Effective implementation of this model showed 
that just 6 h of feedback led to higher mathematics performance in low-performing 
bilingual students.

Cahnmann and Remillard (2002) qualitatively examined teachers’ role in mak-
ing mathematics instruction accessible to students from diverse backgrounds. 
Individual cases found two effective strategies for instructing bilingual students in 
math, given the implicit assumption that they are teacher-generated: (1) drawing 
connections between the student’s culture and mathematical concepts; (2) pursuing 
the complexities of mathematics and making it meaningful to the student. Cahnmann 
and Remillard also called on administrators to provide generous scaffolding and 
support to their teachers so they, in turn, can provide similar levels of support to 
their bilingual students.
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9.6.8  Discussions About Mathematics and Culture

Supporting teachers as they do this complex non-formulaic work of teaching and 
supporting bilingual students is crucial due to the dearth of existing structural sup-
ports in the educational system. Bose and Remillard (2011) examined national pol-
icy reports detailing U.S. mathematics instruction to identify ways to render 
mathematics education more equitable. Due to its definition and focus being 
restricted to procedural and factual knowledge, resulting recommendations for 
mathematics instruction focused on supporting teacher content knowledge over 
other forms of knowledge. This is unfortunate since evidence suggests that teachers 
must wield various types of knowledge and skills to teach students effectively and 
further facilitate student learning.

For example, Bernardo and Calleja (2005) showed that bilingual students usually 
neglected to consider real-life constraints and connections while solving word prob-
lems. This can be easily rectified if teachers are supported and encouraged to teach 
mathematics in the context of a student’s everyday experiences (including language) 
instead of the typical procedural manner devoid of linguistic markers. Moschkovich 
(2007a, b) suggested that having a mathematical discussion with bilingual students 
would draw on existing sociolinguistic resources allowing them to make meaning of 
mathematical concepts and integrate it into their lives more willingly. Dominguez 
(2011) similarly advocates capitalizing on students’ experiences as bilinguals as 
cognitive resources to teach math. In their study, pairs of students who solved prob-
lems showed differences in their communication and thought patterns, depending 
on the context and language.

9.6.9  Making Connections Between Mathematics and Aspects 
of Children’s Lives

There are additional strategies used by elementary and middle school teachers in 
regular classrooms that, not so surprisingly, have been found to be effective in 
instructing bilinguals. Gutiérrez (2002) highlighted three high school mathematics 
teachers who successfully instructed many Hispanic students. The strategies they 
used to do so included building on students’ previous knowledge, using supplemen-
tary textbook materials, and promoting teamwork which allowed students to work 
in their primary language alongside peers. Musanti et al. (2009) conducted a case 
study of a first-grade bilingual teacher learning and teaching Cognitively Guided 
Instruction, a framework used to understand student’s understanding of contextual-
ized word-problems. They found that ongoing reflections, collegial conversations, 
and constantly analyzing students’ work enriched a teacher’s understanding of how 
students learned math; this, in turn, allowed them to provide more opportunities for 
students to explain their solutions and thinking, thereby creating an effectual feed-
back loop between instruction and performance. Therefore, instructing bilinguals in 
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their home language or a mixture of both languages while connecting the content to 
their own life and culture in the form of discussions, reflections, and teamwork 
might foster understanding of mathematical concepts and boost mathematical per-
formance in bilinguals.

9.6.10  Confirmations from Non-USA Contexts

The recommendations suggested in previous sections have also been replicated in 
countries outside North America. Gale et al. (1981) tested elementary school chil-
dren’s academic performance in both English-only and bilingual program classes in 
Milingimbi, an Aboriginal community in Australia. Although not immediately 
apparent, by their seventh year in the program, the children enrolled in bilingual 
classes outperformed their English-only peers in seven out of ten tests, mathematics 
being one of them. Based on a study of bilingual students in Norway, Özerk (1996) 
similarly suggested that a case could be made for the adoption of bilingual educa-
tion grounded in pedagogical evidence. Özerk compared mathematics teaching and 
learning between two groups of linguistic-minority Norwegian students; one group 
was instructed in the students’ second language (typical monolingual setting like 
most U.S. classrooms) and the other in a bilingual classroom. The linguistic- 
minority students instructed in a bilingual classroom performed at the same level or 
better in mathematics than their peers from the monolingual classroom. Based on 
high attendance and promotion rates coupled with low dropout rates for Guatemalan 
bilingual schools, Patrinos and Velez (2009) proposed switching from regular to 
bilingual education programs for students belonging to disadvantaged populations, 
estimating national cost savings of $five million. According to them, students 
enrolled in bilingual schools performed above average on all subject matters.

These cross-sectional findings were further substantiated by a 4-year longitudi-
nal study in The Netherlands investigating the effects of using English as the lan-
guage of instruction during the first 4 years of secondary education (Admiraal et al., 
2006). Academic performance of these bilingual students, who were equally profi-
cient in English and Dutch, was compared to students instructed in Dutch. They 
found that the students enrolled in the bilingual program outperformed their peers 
in regular classrooms, and also showed higher English language proficiency. The 
same was found to be true in Cambodia (Lee et al., 2015) and Mozambique (Benson, 
2000). Lee et al. (2015) recommended using a student’s first language for mathe-
matics instruction to foster understanding of mathematical concepts, much like 
researchers’ recommendations in the U.S. context. Similar to the U.S. context, 
Benson (2000) found teaching in two different Bantu languages in transitional bilin-
gual programs more promising for educating bilinguals than instructing them in 
their non-native language. While transitional programs are a step in the right direc-
tion when considering equitable bilingual mathematics education, international data 
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lends support to U.S. findings about two-way immersion programs suggesting that 
they still might be the most effective for instructing and educating bilingual as well 
as monolingual children.

Similar support for TWI programs was found in a Canadian study. Math, English, 
and French performance of elementary-school students (ages 6–12) in Montreal’s 
four different public-school programs—French-as-a-second-language, delayed and 
early French immersion, and full French-medium schooling (i.e., teaching all sub-
jects in French)—were compared in a longitudinal study (Lambert et al., 1993). The 
control group for this study consisted of students enrolled in an all-English and all- 
French school. Except for French oral skills, they found students in French-medium 
and French immersion programs to be indistinguishable from students in all-French 
schools on written aspects of French, English, and Math. This also supports the 
view that students’ oral proficiency in a language is determined by the opportunities 
for social interaction available to them.

9.6.11  Need for More Innovation and Research

Although American and international research corroborates the benefits of bilingual 
education and the importance of teaching mathematics in a child’s home language, 
its effectiveness is contingent upon thoughtful implementation of bilingual instruc-
tion as well as consideration of students’ needs. Examining the implementation of 
mathematics instruction in Malaysian bilingual classrooms, Lim and Chew (2007) 
pointed out that approaching mathematics instruction in a procedural manner when 
instructing in a non-dominant language led to poor understanding of mathematical 
concepts among students and therefore, poor mathematical performance. In the 
same vein, Tsung and Cruickshank (2009) showed the detrimental effects on math-
ematical performance when students do not receive adequate instruction in their 
mother tongue. They conducted case studies of two schools in China, a rural minor-
ity elementary school that instructed in a minority language (not Mandarin or 
Cantonese) and an urban mixed minority elementary school where Mandarin was 
the primary language of instruction. Minority ethnic children performed poorly in 
all three—their mother tongue, Mandarin, and English—compared to their peers 
instructed in Mandarin. These studies suggest that teaching bilingual children math-
ematics in their home language in an immersive environment is necessary but not 
sufficient. To address the need for more research and innovation, educators and 
parents are encouraged to partner with interdisciplinary researchers (e.g., educa-
tional psychologists/neuroscientists) so their practical knowledge and insights can 
become an integral part of the efforts to improve math teaching and learning for 
bilingual and multilingual children (Anchan, 2022).
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9.7  Conclusion

Using an interdisciplinary lens, this chapter outlined the similarities and differences 
in how bilingual children learn and process mathematics compared to the estab-
lished monolingual norm. To avoid conceptualizing bilinguals as two monolinguals 
in one (Grosjean, 1989), recommendations were made for teaching mathematics to 
bilingual children in the elementary and middle school years based on studies from 
the fields of mathematics education, educational policy, and educational psychology 
which were further supported by evidence from cognitive neuroscience, mathemati-
cal cognition, psycholinguistics, and cognitive science. Proper and suitable execu-
tion of mathematics instruction in a bilingual child’s home language as well as the 
dominant school language is only part of the whole picture. Student-level factors 
such as their pre-existing knowledge, cultural background, interests, and motiva-
tions must be given equal consideration to tailor effective mathematics instruction 
for bilingual students. Additionally, offloading bilingual students’ persistent cogni-
tive load by recruiting their other sensory modalities while creating an immersive 
learning environment can also help. Mixed methods research (Anchan & Soylu, 
2021a, b, c, d, e) is currently underway to precisely target various aspects of this 
topic and address this educational concern pragmatically and cohesively.
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Chapter 10
Mathematical Creativity of Learning  
in 5th Grade Students

Cleyton Hércules Gontijo  and Mateus Gianni Fonseca 

Abstract In this chapter, we present a differentiated approach to fifth grade stu-
dents’ mathematical learning, including the development of creative thinking in 
mathematics. Interdisciplinary workshops based on creativity techniques were car-
ried out with 51 Brazilian students weekly for 3 months. Pre- and post-tests of math-
ematical creativity, mathematical motivation scale, and tests of school mathematical 
performance were completed. Our findings demonstrate that students developed 
creative thinking in mathematics, as well as several unusual solutions that show us 
how a child can be potentially creative in mathematics when encouraged to do so.

Keywords Mathematical creativity · Mathematical learning

10.1  Introduction

Creativity is essential in all areas of knowledge and is recognized as a specific pro-
duction resulting from specific processes in an area and evaluated by their special-
ists (Chamberlin & Moon, 2005). This leads to the need to seek ways to characterize 
it in different fields of knowledge. As Sak et al. (2017) point out, a creative novel 
belongs to literature, a creative painting belongs to the arts, the invention of a new 
energy source belongs to science, and a new theory of numbers belongs to mathe-
matics. Some inventions or discoveries require specific work from various domains, 
such as mathematical physics, genetics, or business. In this chapter, we will discuss 
mathematical creativity.
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Creativity can be complex because it involves many factors generating changes 
in the artistic, scientific, technological, and other fields. It “occurs in the interaction 
between skills, processes and the environment, an interaction through which some-
thing is produced that is defined as new and useful in a given social context” (Morais 
& Fleith, 2017, p. 22). This interaction can be seen in classrooms when teachers 
pose a problem to students and use creativity techniques to generate ideas that lead 
to the solution. For example, brainstorming in a whole group setting is a creativity 
technique that aims to generate many ideas without judgments a priori. All students 
can contribute by presenting the ideas. Then, everyone gets involved in judging the 
ideas presented, looking for the one that can best lead to the solution of the problem.

Some research has shown that encouraging creativity can contribute to improv-
ing student performance in mathematics. For example, Fonseca (2019) analyzed the 
effects of an after-school creativity techniques-based course on high school stu-
dents’ performance in mathematics. Students were divided into control and experi-
mental groups. Instruction for the control group was conventional and similar to 
school learning. For the experimental group, the classes were based on techniques 
aimed to stimulate creative thinking in mathematics. Statistically significant results 
were only found in the experimental group, which obtained the greatest increase in 
all variables. The inclusion of creativity techniques in mathematics classes favors 
both the capacity for creative thinking and motivation and, consequently, a better 
performance in mathematics (Fonseca, 2019).

In this chapter, we define mathematical creativity, review important aspects of 
mathematical creativity, and showcase how techniques for creative mathematics 
problem solving were applied in a classroom setting. We report on the results of 
interdisciplinary workshops based on creativity techniques were carried out with 
fifth grade Brazilian students. The following research question was undertaken: How 
can creativity thinking be developed in mathematics in elementary school students?

10.2  Mathematical Creativity

Studies of mathematical creativity are enduring. There are indications that Poincaré 
was the first mathematician to investigate creativity in the field of mathematics 
based on observation of his own practice (Gontijo et al., 2019; Hadamard, 1954; 
Muir, 1988; Sriraman, 2004). Poincaré said:

What is, in fact, mathematical creation? It does not consist in making new combinations 
with already known mathematical entities. Anyone could do this, but the combinations that 
could be obtained in this way would be limited in number and, for the most part, totally 
devoid of interest. Creating consists, precisely, not in building useless combinations, but 
those that are useful and that are in a tiny minority. To create is to discern, to choose. 
(Poincaré, 1911/1995, p. 8)

Building on Poincaré’s view, creating in mathematics consists of interweaving asso-
ciations that collaborate to reach a goal  – which can be finding the result of an 
expression/equation or the solving of different problems.
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Over the years, other authors have proposed refinements and new concepts about 
mathematical creativity, such as Hadarmard (1954), Krutetskii (1976), Livne et al. 
(1999) and Gontijo (2007). It is worth noting that although their definitions of cre-
ativity may vary slightly, they essentially converge on a capacity to produce differ-
ent ideas to solve mathematical problems.

For this chapter we used the definition about mathematical creativity proposed 
by Gontijo (2007), which considers

mathematical creativity as the ability to present countless possibilities of solutions appro-
priate to a problem-situation, so that they focus on different aspects of the problem and/or 
different ways of solving it, especially unusual ways (originality), both in situations that 
require the resolution and elaboration of problems and in situations that require the classi-
fication or organization of objects and/or mathematical elements according to their proper-
ties and attributes, whether textually, numerically, graphically or in the form of a sequence 
of actions. (p. 49)

First, this definition emphasizes that creativity is the ability to present many answers 
to the same problem as a fluency of thought. The ability to present answers that can 
be classified into different categories, as they focus on different aspects of the prob-
lem or different ways of solving them, is what we call flexibility of thought. 
Originality corresponds to the ability to present infrequent or unusual responses. 
The characterization of an answer as original depends on the group where that 
answer was produced, observing a set of variables (Fonseca & Gontijo, 2020; 
Fonseca, 2019; Gontijo, 2007, 2018).

Second, this definition is useful for the study of mathematical creativity, as it 
highlights the desire that the individual can leave a static mental framework towards 
the construction of multiple innovative solutions for the different problems that are 
present every day, being able to use different resources for this – which is also in 
part called divergent thinking (Lee et al., 2003; Lev-Zamir & Leikin, 2013). This 
way, we consider that the way in which mathematics is worked in classrooms needs 
to be changed.

We emphasize that the activities with the greatest potential to favor the develop-
ment of mathematical creativity or of creative thinking in mathematics are those that 
contemplate open problems, that is, the problems that enable the student to generate 
innumerable ways to solve them (Gontijo, 2020). Closed questions that only demand 
previously studied algorithmic applications are not enough. It is necessary to include 
questions that allow the formulation of conjectures, hypotheses, multiple answers 
and/or adoption of multiple solution paths.

10.3  Creativity Techniques

There are a variety of creativity techniques, each with its own purpose. According 
to Gontijo (2015, p. 17),

Creativity techniques aim to encourage students to solve problems favoring the 
creation of original solutions; rules, principles and generalizations; new algorithms; 
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new questions and problems and new mathematical models. Some techniques also 
enable a deep understanding of mathematical conceptions while students investi-
gate a problem. [...] Furthermore, the use of creativity techniques can be a very 
effective way for students to develop a passion for learning Mathematics.

For our research, we have adapted creativity techniques in mathematics, such as 
(1) Brainstorming; (2) Braindrawing; (3) Brainwriting; (4) List of attributes; (5) 
Checklist; (6) Reworking of tasks; (7) Scamper; (8) What if . . .; (9) Forced relation-
ships; (10) Alternative uses; and (11) Dramatization. Regardless of the modality 
technique, it is important to build an environment free from punishment and criti-
cism, so that participants feel free to create (Wechsler et al., 2018) and observe four 
basic rules: (a) no criticism, in order to provide a climate pleasant and free for the 
participants; (b) chain generation, which refers to the fact that listed ideas can and 
should be used to generate new ideas; and (c) mutation and combination, a way of 
combining the ideas generated or even improving them (Bianchi, 2008; Conklin & 
Dacey, 2004; Wechsler et al., 2018).

The Brainstorming (i.e., oral), Braindrawing (i.e., drawing) and Brainwriting 
(i.e., written) techniques are similar in their conception, differing only in the modal-
ity of the way the generated ideas are registered. One activity that can be carried out 
using these techniques is to record on the blackboard the following numbers: 
3902 — 51062 — 7250. The teacher then asks students to list all the common char-
acteristics of the numbers presented (orally or in writing). Then he/she asks them to 
write as many numbers as they can that have characteristics common to the numbers 
presented.

Another creativity technique is the attribute list. This technique involves identi-
fying optimal characteristics or attributes. It involves a process of partitioning the 
product or process under analysis into smaller units, which helps to ‘see’ it, under-
stand it, reinvented it, or used it more effectively. Three major steps characterize this 
technique: (a) list the identified attributes; (b) modify attributes in different ways; 
(c) transfer the modified attributes to other situations. For example, an activity that 
can be developed from the list of attributes refers to identifying the properties of 
quadrilaterals. Students may be asked to record the characteristics of squares, rect-
angles, diamonds, trapezoids and parallelograms. Based on these characteristics, 
they analyze what they have in common and what makes them different, consolidat-
ing their knowledge of these geometric shapes. The checklist provides the list of 
attributes, rather than generating the list, and invites participants to reflect on and 
compare among the listed attribute to the analyzed object.

The “re-elaboration of tasks” and the “what if...” are part of a technique called 
SCAMPER, where each letter represents an action in the creative process: S  – 
Substitute, C – Combine, A – Adjust, M – Modify, P – Put (to other uses), E – 
Eliminate and R – Reverse. For a fuller description of each, refer to Wechsler et al. 
(2018). To see how this technique might be applied to developing mathematical 
creativity, consider this common problem: “Marcos has a daughter and needs to buy 
her school supply. The initial amount of R$ 250.00 can be divided into two equal 
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installments: one in the act and one for 30 days. Another option is to pay in cash 
with a 10% discount. How much Marcos will save if he chooses a lump sum cash 
payment instead of installments?”

In this case, we can encourage students to make “variations” in some of problem 
element(s) using the Scamper technique. The following questions may contribute 
to this:

• Which other people, places, values could be put into this problem? (Substituting 
some elements of the problem);

• Which kind of concepts could be explored in this problem? An example would 
be indicate a fine and interest fees that would be applied in the delay of the 
installment (Combining elements);

• Is it possible to adapt this problem, creating other questions with the same data 
presented? (Adjusting the problem);

• Can we reframe or redefine the problem? (Modifying the problem);
• What other types of purposes could be attributed to the reasoning used to solve 

this problem? (Put – to other uses);
• Could any information of the problem be suppressed? If yes, which one(s)? What 

would be the implication(s) of this suppression? (Eliminating elements of the 
problem);

• After working with this activity, can you imagine a mathematical problem that 
involves this context, but with a totally different question? (Reversing the situa-
tion. Arranging the situation differently and unusually).

The technique of forced relationships, or object-focus as mentioned by Bianchi 
(2008), refers to proposing associations that involve attributes and qualities between 
two non-commonly related objects. In general, you select an initial object and this 
must be contrasted with a second “strange” object.

Thinking about alternative uses for the same object is another technique to stim-
ulate creativity. According to Conklin and Dacey (2004), this is a technique linked 
to the development of originality. It is associated with exploring different possibili-
ties from the same process or product, in the case of this chapter from the same 
problem. The authors offer as an example the function y = 5x + 2 and how it can be 
understood through a context or graphically. Thus, offering different meanings for 
this function would be a way of alternative uses to interpret it, for example, to rep-
resent the price quotation of some type of transport or the amount to be charged by 
a service provider, among others.

And, finally, the technique of dramatization, which can also include actions such 
as mime, dance and singing with the purpose of providing students with moments 
for an improvisation creation that uses a corporal expression. From an “immersion 
in a given character”, they can see something from a different perspective than the 
traditional one. The goal is freedom of thought to increase concentration, vocabu-
lary, sense of humor, etc. Furthermore, it can help reduce shyness, when this is the 
case (Fonseca & Gontijo, 2021).
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10.4  Workshop Model to Stimulate Creative Thinking 
in Mathematics

Looking for a way to stimulate mathematical creativity, Gontijo (2020)  system-
atized a model of workshops. This model consists of six follow described steps:

• Warm up: motivational moment – classroom climate;
• Approach to the task: bridge between warm-up and the investigative problem;
• Investigative problem: problem that encourages student participation by generat-

ing, evaluating and selecting ideas
• Formalization of concepts and definitions: moment of systematization of con-

cepts and definitions used during the workshop
• Retrospective: reflection on what was produced and systematized;
• Future projections: reflection on how the was experienced in the workshop can 

be used in other contexts

During the execution of the warm-up steps, approach to the task and the investiga-
tive problem, creativity techniques are used to stimulate the generation of ideas, 
which is intended to enrich the moment with debate and the collective construction 
of knowledge, as well as the development of creativity thinking in mathematics. 
Below, we present an example of a series of workshops planned for pedagogical 
work with students in the fifth year of elementary school, based on the workshop 
model shown in Image 1. The workshops aimed to explore problems involving the 
operations of addition, subtraction, multiplication, and division, in a playful context 
mediated by games and games, through which students were asked about the strate-
gies used to “win” the games and how they built these strategies to achieve 
their goals.

10.5  Application of Mathematical Creativity

Our study was conducted with two classes of fifth Grade students (n = 51) from a 
public school from Federal District, Brasilia/Brazil. In each class, eight workshops 
were held, each supported by creativity techniques Data collection occurred over six 
additional sessions. The eight workshops were planned and executed once a week, 
with an average duration of 3 h each and are outlined in Table 10.1.

Table 10.1 Workshops

Workshop Objective
Creativity 
techniques

1 Mathematical (magical) divinations: Students conjecture, establish 
hypotheses and identify patterns, based on guesswork or on critical 
thinking. In this opportunity, the contents of addition, multiplication 
and numerical expressions were explored

Brainstorming
What if …

(continued)
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Workshop Objective
Creativity 
techniques

2 Estimate: Students investigate how many pencils there were at 
school, producing reasonable arguments that could justify the 
answers presented. The second activity was related to estimating 
the mass of school kits. These activities, in addition to exploring the 
ability to make estimates and work with measurements, also sought 
to develop skills to solve and elaborate problems with natural 
numbers involving the different meanings of operations

Brainstorming
Forced 
relationships 
Scamper

3 Investigating movements: Students made balloon-powered cars 
with the aim of investigating the factors that could contribute to the 
cars reaching the greatest distance in the shortest time. Thus, 
students could come to test ways to increase the distance covered 
by the carts and thus, stimulating scientific thinking, as well as 
participating in a collaborative and playful experience, as a way to 
foster creativity in the school space

Brainwriting
Checklist
Scamper
Reworking of 
tasks

4 Calendar secrets: Students identify regularities and patterns in 
calendars, which is a great instrument to carry out investigations in 
everyday contexts, as well as to stimulate logical reasoning. 
Students were instructed to look for patterns of numbers and 
operations, based on problems presented by the instructors

Brainstorming
Reworking of 
tasks
What if …

5 Healthy and conscious consumption: Students carried out activities 
in which they had to solve and elaborate problems involving 
purchase and sale situations, payment methods, used terms such as 
change and discount, performed mental calculations, estimates, 
reading of graphs and elaboration of tables, construction and 
interpretation of bar graphs. All these actions were developed in a 
context of discussion about sustainability, ethical, conscious and 
responsible consumption, from a contextualized approach

Brainstorming
Checklist
Dramatization
Scamper

6 Geometric Constructions: Students established links between the 
geometric shapes that compose it and the real world, in order to 
build geometric concepts (area, perimeter, side, angles, etc.) from 
the identification of flat figures, their characteristics, description 
and classification

Braindrawing
List of 
attributes
Alternative 
uses

7 Numerical Problems: Students explored mathematical “guessing” 
and one “game”. In relation to the game, among other objectives, it 
was sought to exercise calculation of simple divisions and times 
tables; explore the concept of di-visors of a number and analyze the 
possible values for the remainders of the divisions of the numbers 
on the board by the numbers of the dice. During the game, a set of 
investigative questions was presented to students to encourage the 
use of creative thinking in the activity

Brainstorming
Forced 
relationships
Reworking of 
tasks

8 Playing with numbers: Students explores problems involving the 
operations of addition, subtraction, multiplication and division, in a 
playful context mediated by games, in which students were asked 
about the strategies used to “win” the games and how they built 
these strategies

Brainstorming
Reworking of 
tasks

Table 10.1 (continued)
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10.6  Data Sources

Two versions of the Mathematical Creativity Test (Carvalho, 2019) were adminis-
tered, one before and one after the workshops. Both versions are composed of three 
items that involve the following activities: the first item involves performing arith-
metic operations, the second item involves geometry, requiring the division of rect-
angles into a certain number of parts with the same size and third item asks for the 
elaboration of mathematical problems from information presented in a graph. For 
each item, students received an answer sheet and were instructed to produce as 
many solutions as possible in the time given for each item. Thus, the responses were 
analyzed considering fluency (number of valid responses produced), flexibility 
(number of categories resulting from the grouping of responses according to the 
similarity among the resolution strategies used) and originality (rare responses 
among study participants) (Carvalho, 2019; Fonseca, 2015; Gontijo, 2007). The 
scores were calculated using the model developed by Leikin (2009), called Multiple 
Solution Tasks, which resulted in a general score encompassing elements related to 
fluency, flexibility and originality of the answers presented.

The second instrument applied was the 21-item Classroom Climate Likert Scale 
for Mathematical creativity (Gontijo, 2018). Responses include Never, Few times, 
Often, and Always. Some example items are: (a) I was happy with my performance 
in the mathematics workshops; (b) I found myself creative in the mathematics work-
shops; (c) I became interested in the contents taught in the mathematics workshops.

10.7  Results and Discussion

The table below shows the results of the mean, median and standard deviation 
obtained with the application of the Mathematics Creativity Test, Version A (in the 
pre-test) and Version B (post-test), by class and by the set of students (Table 10.2).

The analysis of these data shows us that the workshops increased students’ math-
ematical creativity scores, evidencing that these developed fluency, flexibility, and 
originality of thinking measured by the tests. We note that while in the pre-test, the 
results were mostly concentrated between scores from 1.02 to 1.54; the results of 
the post-test are mostly concentrated between the scores of 1.47 and 1.89.

Significant differences were found from the comparison between the means with 
the student t-test between the pre- and post-tests applied (Total of students  – 
t(50) = −18.38, p < .05). It is worth mentioning that significant differences were 

Table 10.2 Mean, Median and Standard Deviation of the scores on the Mathematical Creativity Test

General N = 51 Grade A N = 25 Grade B N = 26
Average Median S.D. Average Median S.D. Average Median S.D.

Pre-test 1.35 1.36 0.27 1.31 1.33 0.25 1.37 1.36 0.29
Post-test 1.71 1.76 0.22 1.67 1.73 0.22 1.76 1.79 0.22
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also found when each group was compared separately, which suggests that the inter-
ventions achieved the expected effect (Class A – t(24) = −12.07, p < .05; Class B – 
t(25) = −13.87, p < .05).

The increase in the average scores between the pre-test and the post-test results 
from the stimuli that the students had during the workshops, as they had contact 
with different types of activities that required fluency, flexibility, and originality of 
thought in solving mathematics problems. As an example, we highlight workshops 
7 and 8, which aimed to work with arithmetic operations and problems involving 
numbers. The creativity techniques Brainstorming, Forced relationships and 
Reworking of tasks enabled students to develop creative thinking strategies to 
respond to the post-test satisfactorily, manipulating numbers creatively to compose 
and solve numerical expressions with mathematical operations. This type of activity 
was explored in the first item of the mathematical creativity test.

The results obtained in the post-test can also be understood from the skills devel-
oped explicitly in workshop 6, which had geometry as its main focus. The work 
with the identification and construction of geometric shapes, exploring their charac-
teristics and classification, as well as perimeter and area calculations, brought the 
students closer to activities such as the second test item, which required the division 
of a rectangle into a certain number of equal parts. The Braindrawing and List of 
attributes creativity techniques may have contributed to developing the skills 
required in the second item of the test.

Another example related to the increase in scores refers to the activities devel-
oped in workshop 5, in which the students had to solve and elaborate mathematical 
problems. The creativity techniques used in this workshop, especially Scamper 
(Wechsler et al., 2018), provide students with skills to transform a given problem- 
situation into other problem-situations, and this type of activity was present in the 
third item of the mathematical creativity test.

These results are compatible with the results found in the research by Carvalho 
(2019) and Fonseca (2019). The two research involved the application of pre-test 
and post-test with an intervention between them, based on mathematics classes/
workshops using creativity techniques. The compatibility found with the results of 
these research allow us to infer that the workshops presented here created an atmo-
sphere in the classroom that contributed to so that students feel confident to mani-
fest fluency, flexibility, and originality of thought. That is, the classes contributed 
favorably to the development of creativity in mathematics.

It is worth mentioning that the creativity techniques that was used by the teacher 
during the workshop are pedagogical strategies. The techniques are alternatives that 
can help the teacher stimulate creativity, nurturing a favorable climate and contrib-
uting to the generation of ideas (Conklim & Dacey, 2004; Gontijo, 2015). We defend 
that is not necessary a direct instruction on the techniques with the students, but the 
using it naturally, as brought by Fonseca and Gontijo (2021).

The analysis of the data obtained by Classroom Climate Likert Scale for 
Mathematical Creativity shows that students have positive perceptions about them-
selves in relation to mathematics based on the activities developed in the work-
shops. To illustrate these results, we present answers given to the item “I was happy 
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with my performance in the mathematics workshops”. Most students, 52%, said 
they were always satisfied with their performance. Another 36% said they were 
often satisfied and only 12% said they were rarely satisfied. It is noteworthy that 
none of the students said they were ever satisfied with their own performance. 
Overall, 88% of students chose alternatives that express a positive perception of 
their performance. We consider this fact relevant, as it was relevant that no student 
did not express dissatisfaction with its result. The workshop model also contributes 
to the development of motivation in mathematics. It is worth noting that the litera-
ture highlights that one of the characteristics of a creative individual is their motiva-
tion with the field, after all, the individual needs to be motivated in what one intends 
to be creative (Gontijo, 2007, 2020; Grégoire, 2016).

The students‘positive perceptions may be related to the structure of the work-
shops, based on the six steps that comprise them. The initial activities – Warm up, 
were designed to motivate students and contribute to the development of positive 
attitudes towards mathematics. The study by Borges (2019) was developed from the 
inclusion of warm-up activities in math classes. The results showed positive effects 
when comparing groups that received these activities with groups that did not. In 
addition to having more positive attitudes towards mathematics, they also performed 
better in school assessments. The present research found similar elements with 
regard to student motivation and task involvement.

We highlight as the most relevant point, the development of workshops enabled 
students to generate, evaluate and select ideas considered appropriate to solve prob-
lem situations. These types of problems require more than mastering facts and pro-
cedures. They require the search for answers based on mathematical concepts and 
procedures and their relationships (Gontijo, 2020; Schoenfeld, 2013). In addition, in 
the case of the workshops held, problems were sought that could foster the interest 
and motivation of students, favoring engagement in tasks.

10.8  Considerations and Implications

In the field of mathematics, discussions about teaching strategies that can favor the 
development of creative thinking are still scarce. This is despite this area of   knowl-
edge playing an important role in the learning. Possibly, the way the teaching of 
mathematics has historically been conducted in schools has not encouraged teachers 
and students to think of other ways to organize the pedagogical work with this 
subject.

In this chapter, we sought to address some theoretical bases on creative thinking 
in mathematics, presenting some ways to assess this type of thinking and how to 
stimulate it through pedagogical workshops, based on the presentation of empirical 
evidence. We also presented a practical example of a workshop designed for stu-
dents in the fifth year of elementary school. It is worth nothing that the adopted 
model can be used in different school years, given its validation with elementary, 
secondary and higher education students.
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The workshop model and the mathematical creativity techniques mentioned can 
contribute to the engagement of students in mathematical tasks, especially when the 
activities are guided by real-world problems, as they stimulate the ability to trans-
form ideas into actions, taking risks, planning and managing study projects to 
achieve objectives. Benefits may extend to students’ progression in their education, 
but also in their daily lives at home and in society, preparing them for the civic 
experience and for professional practice. By stimulating creative thinking in math-
ematics, we provide students with deeper engagement and understanding, as we 
encourage them to “switch on” their brains and actively engage in math learning 
through inquiry, problem solving. As our results demonstrate, this contributes to a 
positive self-concept in relation to mathematics.

We emphasize that the use of the workshop model presented in this chapter must 
be accompanied by a series of strategies to favor the development of other charac-
teristics in students, which are important for creativity, among them: strengthening 
personality traits such as self-confidence, curiosity, persistence, independent think-
ing and courage; explore new situations and deal with the unknown; helping stu-
dents overcome emotional blocks, such as fear of failure, fear of being criticized, 
and feelings of inferiority and insecurity; and implementation of activities that pres-
ent challenges and opportunities for creative activity (Alencar et al., 2018).

In addition to adopting the strategies mentioned above, mathematics teachers 
must prioritize the use of problem situations in the planning of mathematics lessons, 
offering challenging activities, based both on the students‘life context and on 
abstract situations that require the use of formal language. and specific procedures 
characteristic of mathematics. Thus, activities involving the formulation and resolu-
tion of problems, and involving the redefinition of mathematical elements, can 
become a valuable instructional resource for learning mathematics and promoting 
creativity in this area.

Funding Source Federal District Research Support Foundation
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Chapter 11
Symbolic Mathematics Language Literacy: 
A Framework and Evidence from a Mixed 
Methods Analysis

Marcia Gail Headley, Vicki L. Plano Clark, Sarah M. Stitzlein, 
Rhonda Douglas Brown, and Christopher M. Swoboda

Abstract The relationship between literacy and mathematics is poorly understood. 
Existing theoretical frameworks, such as disciplinary literacy and mathematical dis-
course, do not carefully account for the uniqueness and ubiquity of symbolic math-
ematics in curriculum. Symbolic mathematics, the writing system of mathematics, 
is so unique that its symbols and conventions are not addressed in language arts 
classrooms. It is so ubiquitous in mathematics classrooms that discourse revolves 
around it. This chapter introduces Symbolic Mathematics Language Literacy 
(SMaLL) as a framework to conceptualize reading and writing using the symbols 
and syntax of mathematics. Also, it presents a mixed methods study that highlights 
how variations in SMaLL can be experienced among adolescents. The study used 
mixed methods spectrum analysis to explore the range of cognitive and  metacognitive 
variations in students’ reading of symbolic mathematics (i.e, x ) in isolation and 
within expository text. Cognitive reactions to reading symbolic mathematics were 
measured quantitatively using an orthographic error-detection task. Metacognitive 
strategies for reading symbolic mathematics were elicited using qualitative inter-
views. The theoretical discussion of SMaLL exposes implicit literacy- for-
mathematics demands in learning standards and offers researchers a useful 
framework for investigating them. The empirical findings provide educators peda-
gogical knowledge about the spectrum of SMaLL among adolescents.
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Did you read the problem carefully? Students may hear this question in mathemat-
ics classes, from elementary school to university. Some mathematics teachers may 
ask variations of this question multiple times during a single class. It may be used 
to prompt persistence in independent problem-solving. Alternatively, it may be 
posed to direct students’ attention to mathematical text. Carefully questioning stu-
dents about when and how they read mathematical text can offer teachers insights 
into how reading symbolic mathematics differs among students. This chapter is 
inspired by former students who had the courage to say I don’t know how to read 
math and the willingness to develop reading skills in mathematics class.

Research substantiates a reliable relationship between literacy and mathematics 
skills (Singer & Strasser, 2017; Vukovic & Lesaux, 2013). In cognitive psychology, 
researchers include measures of reading skills in studies of mathematical develop-
ment to tease apart literacy- and mathematics-specific skills. In education, research-
ers design studies aimed at understanding how literacy and mathematics skills work 
together to support mathematical learning (Casa et  al., 2020; Drageset, 2015). 
Despite synergistic agendas across fields, researchers face formidable challenges to 
identifying component literacy skills that support mathematical development and 
understanding how literacy skills operate in mathematics classrooms.

Multiple frameworks attempt to explain relationships between literacy and math-
ematics. Content area literacy, for example, suggests skills learned in language arts 
classrooms should transfer to mathematics (Fang & Schleppegrell., 2008). 
Disciplinary literacy suggests students should develop the literacy skills that math-
ematicians use in their work (Johnson et al., 2011). Finally, mathematical discourse 
suggests specialized conversation skills should support learning mathematics (Kysh 
et  al., 2007). Each framework reveals important insights. However, none fully 
account for the centrality of symbolic mathematics in curriculum and instruction.

Symbolic mathematics refers to the formal writing system of mathematics educa-
tion and mathematicians. Classroom discourse often revolves around symbolic 
mathematics written on papers or boards. For example, a teacher might gesture to 
text-based communication such as A r� � 2  and say, Let’s discuss what you 
already know and what you want to learn about this (Nessel & Baltas, 2007). 
Symbolic mathematics is so commonplace during instruction that students must 
read it to engage in everyday lessons. Also, they must be fluent in it to demonstrate 
achievement on assessments.

The purpose of this chapter is to define and illustrate Symbolic Mathematics 
Language Literacy (SMaLL; Headley, 2016). SMaLL is a framework for inspecting 
the reading and writing skills necessary to use the symbols and syntax of academic 
mathematics. These skills are undertheorized and understudied despite the wide-
spread use of symbolic mathematics in instruction. SMaLL offers researchers a use-
ful theoretical foundation for investigating the role of literacy in mathematical 
development and offers educators a new way of thinking about students’ cognitive 
and metacognitive interactions with mathematical text.
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The chapter is organized in four parts. First, we share an analysis of symbolic 
mathematics in curriculum to justify the need for a framework like SMaLL. Second, 
we present SMaLL as a theoretically grounded literacy-for-mathematics frame-
work. Next, we present a mixed methods study of SMaLL among adolescents to 
highlight strategies for generating empirical evidence of variations in SMaLL. In 
conclusion, the potential of SMaLL as a tool for advancing interdisciplinary research 
and generating pedagogical knowledge about differences in mathematical develop-
ment is discussed.

11.1  Symbolic Mathematics in Curriculum

The inception of SMaLL began with an analysis of elementary, middle, and high 
school mathematics standards through the lens of curriculum theory. More specifi-
cally, the Common Core State Standards (CCSS; National Governors Association 
[NGA], 2016) was examined to explore the degree to which literacy and mathe-
matics are described as separate areas of study and the extent to which literacy 
skills are implicit in the mathematics standards. In this section, we discuss that 
analysis to explain how two issues – framing content and unacknowledged curricu-
lar demands (Au, 2012)  – underscore the significance of developing a SMaLL 
framework.

The CCSS, written in two documents, isolates mathematics standards (CCSS-M) 
from literacy standards (CCSS-LA+) for the language arts (in the language of 
instruction) and other content areas. One document, the Common Core State 
Standards for English Language Arts & Literacy in History/Social Studies, Science, 
and Technical Subjects (CCSS-LA+, NGA, 2010a), presents an “integrated model 
of literacy” (p. 4). It describes literacy as a cohesive collection of reading, writing, 
listening, and speaking skills that are used with “increasing fullness and regularity” 
(p. 7) as literacy emerges. The CCSS-LA+ distinguishes between literary text (e.g., 
poems, stories, novels) and informational text in content areas (e.g., historical docu-
ments, scientific explanations, technical instructions). The CCSS-LA+ explicitly 
identifies mathematics in a statement of “what is not covered” and indicates that 
literacy standards in mathematics “modeled on [CCSS-LA+] are strongly encour-
aged” (p. 6).

The CCSS-LA+ does not give a concise definition of reading or writing. Reading 
is described in terms of development over time as

a steadily growing ability to discern more from and make fuller use of text, including mak-
ing an increasing number of connections among ideas and between texts, considering a 
wider range of textual evidence, and becoming more sensitive to inconsistencies, ambigui-
ties, and poor reasoning in texts (p. 8).

This implies a common definition of an instance of reading as “the process of 
extracting and constructing meaning from text” (Faust & Kandelshine-Waldman, 
2011, p. 546). Writing is portrayed as reading’s counterpart in text-based communi-
cation: the process of generating text from which meaning can be extracted.
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The other document, the Common Core State Standards for Mathematics 
(CCSS-M; NGA, 2010b) describes what students should know and be able to do as 
a result of mathematics instruction. Specific standards are organized by grade and 
domain (e.g., fractions, algebra, functions, statistics). Notably, the CCSS-M speci-
fies eight overarching standards of mathematical practice (see Table 11.1) that apply 
to the study of mathematics across all grade-levels and domains. There is no explicit 
description of the role of literacy in mathematics in the CCSS-M. The introduction, 
however, suggests reading is, minimally, an inherent element of mathematics educa-
tion. For example, it indicates that screen reader or speech-to-text technology are 
appropriate supports for some students. The statement is an acknowledgement that 
text is an expected mode of communication. Furthermore, it suggests that students 
who cannot read mathematical text for themselves are dependent on devices (or oth-
ers) to read aloud to them.

Table 11.1 SMaLL skills in CCSS-M mathematical practices

Mathematical practice Exemplar of relevant SMaLL skill(s)

1. Make sense of 
problems and 
persevere in solving 
them.

Students can read expressions and equations and explore their 
relationships to other representations.

2. Reason abstractly 
and quantitatively.

Students can determine when it is possible and useful to write variable 
expressions or algebraic equations to represent a quantity or 
relationship.

3. Construct viable 
arguments and critique 
the reasoning of 
others.

Students can read expressions and equations and examine their 
validity. Also, students can write expressions and equations in an 
organized progression to clarify their strategies and justify their claims.

4. Model with 
mathematics.

Given a real-world problem, students can identify constants, variable 
quantities, and relationships. Also, they can write expressions and 
equations useful for generating reasonable solutions.

5. Use appropriate 
tools strategically.

Students can read symbolic mathematics as needed to employ learning 
tools (e.g., Desmos). Also, students can write expressions and 
equations in formats required for tools such as Excel and graphing 
calculators.

6. Attend to precision. Students can read A = πr2 and understand its relationship to the 
statement, “Area equals pi times the radius squared.” Also, students can 
write unambiguous expressions and equations using conventional 
symbolic mathematics to express their meaning (e.g., write x2 but not 
2x or x2 to convey the statement, “X times itself”).

7. Look for and make 
use of structure.

Students can read the distributive property, a(b + c) = ab + bc, and 
make use of the pattern to simplify or factor expressions with similar 
structures.

8. Look for and 
express regularity in 
repeated reasoning.

Given a table with the sum of the interior angles of a triangle, 
quadrilateral, and pentagon, students can write (n − 2)180 to express 
the sum of the interior angles of a polygon with n sides.

Note: The words read and write are presented in bold to highlight the examples of literacy 
demand
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Although the CCSS largely treats mathematics as distinct from literacy, a close 
read of the CCSS-M reveals underlying reading and writing requirements through-
out. Table 11.1 itemizes each mathematical practice and provides an exemplar to 
make implicit literacy demands explicit. Literacy skills are also unacknowledged in 
some grade- and domain-specific standards. For example, an eighth-grade standard 
is “Apply the Pythagorean Theorem” (p. 52). The description suggests that, pre-
sented with a b c2 2 2� � , students should be able to render a reading such as “A 
squared plus B squared equals C squared” or “the sum of the squares of the short 
sides of a right triangle is equal to the square of its hypotenuse.” There are, however, 
some grade- and domain-specific standards that describe literacy goals precisely. 
For example, a fifth-grade standard is, “Read, write, and compare decimals to thou-
sandths” (p. 35). The example is a multidigit decimal number written in expanded 
form. A clarification indicates comparing decimals entails reading mathematical 
symbols (<, >, =).

The CCSS is not necessarily representative of global standards for mathematics. 
Standards and curricula outside the US may differ in three ways: language of 
instruction; framing of literacy and mathematics as similar/distinct content areas; or 
degree to which the literacy demands of mathematics are implied or explicit. Despite 
these differences, reading and writing symbolic mathematics are universal require-
ments for mathematics achievement. Assessments used to make international com-
parisons substantiate this. For example, The International Mathematics and Science 
Study (TIMSS) requires eighth graders to read and write algebraic expressions to 
demonstrate their mathematics knowledge and skill (see item M032761; International 
Association for the Evaluation of Educational Achievement [IEA], 2013; 2017).

In summary, symbolic mathematics plays an important role in mathematics edu-
cation. It is an historically significant writing system that mathematicians developed 
to transcend complications of everyday languages, to recognize patterns, and to 
solve important problems (Devlin, 2000). It remains the writing system of mathe-
matics education and the medium of mathematics assessment. Conceptualizing 
mathematics as distinct from language arts can obscure the domain-specific literacy 
skills underlying mathematical development. It is, however, clear that learning to 
read and write symbolic mathematics is essential to mathematics achievement.

11.2  Symbolic Mathematics Language Literacy (SMaLL)

SMaLL is a reading-focused framework aligned with theories of human develop-
ment and reading acquisition. It addresses limitations of extant literacy-for- 
mathematics frameworks such as disciplinary literacy (Brozo & Crain, 2018; Fang 
& Chapman, 2020; Johnson et al., 2011; Wilson, 2011) and mathematical discourse 
(Bennett, 2014; Bertolone-Smith & Gillette-Koyen, 2019; Herbel-Eisenmann et al., 
2013; Moschkovich, 2007; Sfard, 2007). Unlike disciplinary literacy, SMaLL cre-
ates a platform for investigating students’ development of domain-specific literacy 
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in relationship to grade-level expectations. Unlike mathematical discourse, SMaLL 
prioritizes reading as a literacy practice during the mathematical learning process.

SMaLL is grounded in the developmental bio-cultural co-constructivism 
(DBCCC) theory of human development. DBCCC holds that human development is 
a multilevel process of “continuous, interdependent, co-productive” (Baltes et al., 
2006, p. 3) transaction between culture, behavior, and neurobiology. In the context 
of DBCCC, SMaLL is conceptualized as one aspect of human development. SMaLL 
posits that classroom discourse experiences related to reading, intentional use of 
metacognitive strategies for reading, and automated cognitive reading processes 
contribute to individual differences in SMaLL acquisition (see Fig. 11.1). DBCCC 
guards against deterministic views of SMaLL development by acknowledging stu-
dents’ behavioral agency as well as cultural and neurobiological conditions beyond 
their control.

SMaLL is also informed by research produced during the reading wars between 
whole language and phonics (Pearson, 2004). The debates fueled research aimed at 
revealing necessary, sufficient, and ideal conditions for reading acquisition. 
Research related to whole language explored top-down environmental (e.g., 

Fig. 11.1 Symbolic Mathematics Language Literacy (SMaLL). (Adapted from Baltes et al. 2006)
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at- school, at-home) processes of reading acquisition. Advocates of whole language 
argue that reading skills develop somewhat naturally in the context of a “literate 
environment” (Hempenstall, 1997, p. 400). Research related to phonics explored 
bottom-up cognitive processes correlated to reading acquisition and gave rise to 
multicomponent models of readings (Coltheart et  al., 2001; Frost, 2012; Wolf, 
2007). Advocates of phonics argue that phonemic, morphologic, orthographic, syn-
tactic, and semantic skills are necessary skills for learning to read text in any lan-
guage (National Institute of Child Health and Human Development [NICHHD], 
2000; Brady et al., 2011; Wolf et al., 2009). The SMaLL framework incorporates 
elements from both sides of the debate, asserting that reading symbolic mathemat-
ics is a complex multilevel phenomenon that is influenced by both cultural and 
cognitive processes.

The inclusion of cognition in the SMaLL framework sets it apart from other 
literacy- for-mathematics frameworks. In particular, SMaLL is built on interdisci-
plinary findings from reading and mathematics cognition research. The triple-code 
model (Dehaene, 2011; Dehaene et  al., 2003) posits that mathematics cognition 
involves three brain regions – quantity, verbal, and visual circuits – in adults (e.g., 
Schmithorst & Brown, 2004) and children (Ansari & Dhital, 2006; LeFevre et al., 
2010). Similar cognitive processes are implicated in both reading and mathematics 
performance, particularly among struggling students (e.g., Dirks et  al., 2008; 
Rubinsten, 2009; Simmons & Singleton, 2008). Meta-analytic evidence suggests 
differences in orthography impact correlations found between measures of reading 
and mathematics (Singer & Strasser, 2017). Maruyama et al. (2012) argues that, 
during development, reading symbolic mathematics puts strong demands on lan-
guage processing regions of the brain until simple expressions become “compiled” 
(p. 1457) in visual regions. For a summary of evidence of cognitive relationships 
between reading and mathematics see Brown (2018).

The scope of SMaLL is intentionally focused in important ways. SMaLL does 
not account for literacy demands of the language of instruction on mathematical 
development. It also does not attempt to account for mathematical literacy (i.e., 
conceptual understanding of mathematical ideas or the ability to do mathematics). 
For example, given x2 , SMaLL is concerned with how a student reads the text 
(e.g., “the square root of X squared”); and it does not attempt to account for how 
students understand this as a concise representation of x x⋅  or that it can be sim-
plified to x .  For these reasons, SMaLL should be regarded as a complementary 
theory that can be compared, contrasted, or combined with other literacy-for-math-
ematics frameworks and comprehensive theories about mathematical development.

The SMaLL framework holds open the possibility that literacy-for-mathematics 
skills include separable components of mathematical development that are worthy 
of exploration in their own right. Thinking of SMaLL as a domain-specific reading 
skill influenced by neurobiological processes, individual behavior, and classroom 
culture allows researchers and educators to think about how reading relates to math-
ematical development through a new lens. They can consider what SMaLL skills 
students develop under various conditions at various time points and explore how 
SMaLL relates to mathematical development. For example, in the absence of formal 
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instruction, a preschool child should have few SMaLL skills (e.g., naming single 
digit Arabic numerals) and limited mathematical development (e.g., counting small 
sets). Later, assuming access to high-quality CCSS-M instruction through first 
grade, the child should be able to read, for example, 8 5>  as “eight is greater than 
five” (and, vice versa, write the spoken phrase). SMaLL compels consideration of 
other possibilities as well. For example, a child may be able to do one of these 
things but not the other. Also, a child may be able to do both in the absence of com-
prehension of the relative magnitude of the values.

The SMaLL framework facilitates interdisciplinary investigation of literacy for 
mathematics and its component skills assuming that symbolic mathematics are 
“graphemic strings of symbolic characters governed by a grammar” (Ranney, 1987, 
p. 29). Initial hypotheses about top-down cultural components include the supposi-
tion that students need access to mathematical texts and encouragement to read 
them. Initial hypotheses about bottom-up cognitive components include the suppo-
sition that reading symbolic mathematics requires the same skills necessary for 
reading other writing systems: phonological skills (abilities related to mapping 
symbolic mathematics to sounds or oral/inner-speech), orthographic skills (abilities 
related to recognizing symbols and conventionally combined units of symbols), 
semantic skills (abilities related to assigning meaning to symbolic mathematics), 
and syntactic skills (abilities related to de/composing symbols into meaningful 
units). Another important hypothesis, which follows from the DBCCC foundation, 
is that students’ behavioral agency and deployment of metacognitive strategies 
shape their SMaLL development.

11.3  Empirical Exploration of SMaLL Variations

To explore whether empirical evidence aligned with the literature-driven frame-
work, we conducted a study of SMaLL among adolescents learning mathematics 
under the CCSS-M (Headley, 2016). The study used an innovative multilevel mixed 
methods research design (Headley & Plano Clark, 2020) and addressed these 
research questions:

Cognitive level. Do adolescents vary in their cognitive reactions to reading symbolic 
mathematics?

Metacognitive level. In what ways do adolescents vary in their metacognitive strategies 
for reading symbolic mathematics?

Multilevel. In what ways does the integrated evidence support a theory of SMaLL as a 
multilevel aspect of human development?

We employed a quantitative strand of inquiry using operationalized variables and 
statistics alongside a qualitative strand of inquiry using interviews and grounded 
theory principles (Charmaz, 2015). The two strands were designed with crosswalks 
(Yin, 2006) to facilitate across-level and across-strand integration and theory- 
building (Greene, 2007; Rossman & Wilson, 1985). The primary integration 
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technique was spectrum analysis, which yielded evidence-based refinements to the 
SMaLL framework.

The research site and participants were recruited to generate a sample of adoles-
cents who had a shared school culture and a range of differences in terms of class-
room culture and academic achievement. The site was a middle school serving all 
seventh- and eighth-grade students in a large district in a midwestern state in the US.

Each participant was enrolled in a grade-appropriate core mathematics course 
(aligned with the CCSS-M) in addition to one of two electives: Math Extension or 
Math Intervention. Table 11.2, which describes the quantitative and qualitative sam-
ples, suggests the sampling strategies effectively captured similar variation in grade- 
level, gender, and elective enrollment for both strands of inquiry. Participants were 
told the study was about reading in mathematics class and assured they would not 
be asked to make calculations or solve mathematics problems.

11.3.1  Quantitative Strand: Cognitive Evidence of SMaLL

Table 11.3 provides a summary of the quantitative measurement tools and variables. 
The Symbol Decision Task, the centerpiece of the quantitative strand, was a mea-
sure of reading symbolic mathematics at a cognitive level. The remaining data col-
lection tools generated data that served two methodological purposes. First, the 
variables allowed for exploration of relationships predicted by the SMaLL frame-
work and relevant literature. Second, the data supported the across-strand and 
across-level integration necessary to address the mixed methods research question. 
Only Mathematics Assessment Test (MAT) data were secondary, collected from 
school records. The remaining data were primary, collected in person by the authors.

The Symbol Decision Task for SMaLL (SDT-SMaLL) was an innovative cogni-
tive task that measures orthographic awareness. It was a modified version of a 
timed lexical decision task (Lepore & Brown, 2002; Naples et al., 2012). A lexical 
decision task presents correctly spelled words and incorrectly spelled word-like 

Table 11.2 Participant demographics by strand

Quantitative (N = 158) n % Qualitativea (N = 18) n %

Grade Grade

7th 88 56 7th 10 56
8th 70 44 8th 8 44
Gender Gender

Female 65 41 Female 10 56
Male 93 59 Male 8 44
Elective enrollment Elective enrollment

Math intervention 134 85 Math intervention 15 83
Math extension 24 15 Math extension 3 17

a The qualitative sample is a subset of students from the quantitative sample
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Table 11.3 Quantitative measurement tool and variable guide

Measurement tool Variable Directional interpretation

Symbol decision task SDT-SMaLL Higher sum, more orthographic awareness
Math print exposure survey MPES Higher sum, more exposure
Math Reading habits survey MRHS Higher sum, more productive behaviors
Math anxiety survey MAS Lower sum, less anxiety
Math achievement test MAT Higher score, higher achievement

foils such as brain and brane, respectively. To complete a lexical decision task, 
respondents make a judgment about whether the text is written correctly or not. 
Likewise, the SDT-SMaLL presented conventionally composed chunks of sym-
bolic mathematics and visually similar unconventionally composed foils such as 
x2  and x2 , respectively. In both tasks, orthographic awareness is demonstrated 

by accurately distinguishing between correctly written text and incorrectly written 
text. The SDT- SMaLL was a reading-only task and did not require the ability to 
identify mathematically correct solutions or equivalent expressions (as in 
Kroeger, 2012).

Before completing the SDT-SMaLL, participants read along with oral instruc-
tions telling them to read chunks of text and respond yes or no to the question: Is the 
text readable? After reviewing a description of the display-response pattern, partici-
pants completed a practice round to acclimate themselves to the 1500 ms limit on 
viewing time. The display-response timing forced a cognitive reaction (i.e., a 
response made before metacognitive activity can be completed; Staresina & Wimber, 
2019). During the data collection round, each participant viewed and responded to 
60 items in random order. Half of the items were conventionally composed (relative 
to near grade-level CCSS-M standards). The remaining 30 items were visually simi-
lar unconventionally composed foils.

The Math Print Exposure Survey (MPES) and Math Reading Habits Survey 
(MRHS) were novel data collection tools analogous to surveys used in literacy 
research (Cunningham et al., 2001; Cunningham & Stanovich, 1990). The former 
assessed access to mathematical text. Each of the 15 items is a formula (e.g., 
A r� � 2 ) associated with near grade-level mathematics curriculum. To complete 

the survey, participants selected Never, Only one or two times, A few times, or Many 
times to indicate how often they had seen the formula in any context. The latter 
measured the frequency of literacy-for-mathematics behaviors. Participants selected 
Never, Rarely, Sometimes, Frequently, or Always in response to 10 statements such 
as When I do a math problem, I read the problem more than once and When I see 
math symbols, I get someone else to read them to me.

The remaining measurement tools are well-described in the literature. The Math 
Anxiety Survey (MAS) was a minimally modified  – adapted to reduce reading 
level – version of a survey of positive and negative affect towards mathematics (Bai 
et al., 2009). The Math Achievement Test (MAT) was a grade-level assessment used 
for statewide school accountability (Ohio Department of Education, 2021).
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The quantitative results were, for the most part, consistent with the literature- 
driven theory of SMaLL. Participants varied in their cognitive reactions to reading 
symbolic mathematics. Correlations (see Table 11.4) suggest that more orthographic 
awareness was associated with more math print exposure, lower mathematics anxi-
ety, and higher mathematics achievement. However, the correlation between ortho-
graphic awareness and math reading habits was not statistically significant as 
expected. Regression analyses suggest that orthographic awareness may be useful 
in modeling grade-level mathematics achievement (see Table 11.5). Among eighth 
graders, for instance, 50% of the variation in mathematics achievement scores was 
explained by orthographic awareness and mathematics anxiety while controlling for 
measures of math print exposure and math reading habits. In summary, the results 
suggests that orthographic awareness may be an essential cognitive component 
of SMaLL.

11.3.2  Qualitative Strand: Metacognitive Evidence of SMaLL

Participants in the qualitative strand of inquiry completed a semi-structured inter-
view (30–50  minutes). Ten expository text selections related to near grade-level 
mathematics topics were the centerpiece of the qualitative strand. The text selec-
tions, adapted from open-access instructional support websites, were used to induce 

Table 11.4 Orthographic awareness: Correlational analysis

7th graders SDT-SMaLL MPES MRHS MAS

MPES 0.34
(0.00)

MRHS 0.18
(0.12)

0.43
(0.00)

MAS −0.43
(0.00)

−0.43
(0.00)

−0.37
(0.00)

MAT6 0.47
(0.00)

0.44
(0.00)

0.20
(0.07)

−0.49
(0.00)

8th graders SDT-SMaLL MPES MRHS MAS

MPES 0.56
(0.00)

MRHS 0.14
(0.25)

0.41
(0.00)

MAS −0.42
(0.00)

−0.31
(0.01)

−0.58
(0.00)

MAT7 0.56
(0.00)

0.28
(0.04)

0.33
(0.01)

−0.66
(0.00)

Note: The p-values are displayed in parentheses below the Pearson’s r value. SDT-SMaLL = Symbol 
Decision Task, Symbolic Mathematics Language Literacy version; MPES = Math Print Exposure 
Survey; MRHS = Math Reading Habits Survey; MAS = Math Anxiety Survey; MAT6 = Math 
Achievement (sixth grade content; MAT7 = Math Achievement (seventh grade content)
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Table 11.5 Mathematics achievement: Regression model summaries

Variable B SE(B) t Sig. (p)

7th grade
(intercept) 403.83 44.34 9.109 < 0.01
MAS −1.47 0.56 −2.61 0.01
SDT-SMaLL 2.67 1.22 2.19 0.03
MPES 0.95 0.46 2.06 0.04

F(3, 68) = 12.88, p < 0.01
Adj R2=.33
8th grade

(intercept) 410.27 43.32 9.47 < 0.01
MAS −2.08 .43 −4.87 < 0.01
SDT-SMaLL 3.78 1.37 2.75 < 0.01

F(2, 53) = 28.79, p < 0.01
Adj R2=.50

Note: B = unstandardized regression coefficient; SE(B) = standard error of the coefficient

metacognitive behavior for reading symbolic mathematics. Each text selection had 
symbolic mathematics features in common with SDT-SMaLL or MPES items to 
create crosswalks. For example, one reading selection discussed inequalities and 
included >  so that, during the mixed methods integration, it could be analyzed in 
conjunction with SDT-SMaLL items that included visually similar symbols. The 
text selections varied in multiple ways: length, topic, complexity of symbolic math-
ematics, and ratio of English to symbolic mathematics text. Each selection was 
expository only (i.e., none presented a problem to be solved). In preparation for the 
interview, the text selections were formatted using a similar font, pasted into text-
boxes of the same width, printed, and cut to length.

During the interview, the text selections were displayed in three rounds. In the 
first round, the participant viewed all 10 selections and (quickly) selected the most 
readable. After participants read the text aloud, they answered follow-up questions 
about why that text was selected and how choices were made during reading. The 
second round was like the first. However, for the third round, the participant 
(quickly) identified the text selection that was most unreadable. After attempting to 
read the text aloud, they answered follow-up questions about their strategies for 
reading when it is effortful. The purpose of this strategy was three-fold. First, it 
simulated reading instances (ranging in difficulty) that might occur in the class-
room. Second, it allowed participants to refer to particular features of text to explain 
their experience of reading mathematical text. Importantly, it increased the likeli-
hood of activating a variety of crosswalks (e.g., producing metacognitive descrip-
tions of reading inequalities that could be compared to the cognitive reactions of 
SDT-SMaLL items with > ).

The qualitative analysis began with coding text selections as readable or unread-
able based on manifest content (Cho & Lee, 2014). That was followed by an itera-
tive process of generating tentative codes and returning to the data to test themes 
(Creswell & Miller, 2000). The iterative analysis was guided by grounded-theory 
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principles in the sense that the goal was to reveal “the possible range of empirical 
meanings, actions, and process” (Charmaz, 2015, p. 1616, emphasis in original). 
The analysis resulted in concept maps for readability criteria and reading process 
(see Headley, 2016).

Readability criteria concepts included four themes related to identifying mathe-
matical text as readable or unreadable. The first, and most dominant, criterion was 
print features. Participants noticed two distinct writing systems: symbolic mathe-
matics and English. They also noticed how the text was structured and the relative 
length of text in each system. They differed in opinions about what made mathemat-
ical text more readable. For example, Jackson said, “[It] has a long paragraph sec-
tion . . . I know I could read that.” However, Nicky said, “When I’m reading math, I 
don’t think that I’d have to read words first, just numbers and variables and stuff.”

The remaining three criteria were familiarity, translation, and math self-efficacy. 
Text selections related to familiar (i.e., recent or repeated classroom topics) and 
unfamiliar topics were generally regarded as readable and unreadable, respectively. 
However, familiarity was not sufficient for readability. For example, Delaney had no 
trouble describing the topic of the text selection she identified as unreadable: “Well, 
[this] is about slope and lines and point-slope . . .” Some text selections were identi-
fied as unreadable because the participant could not generate a coherent translation. 
For example, Bobby explained, “I just didn’t really know how to say it.” Self- 
efficacy for doing mathematics also played a role in readability. Elena, referring to 
“all the little squared and cubes and stuff” in an unreadable text selection, explained: 
“I’ve never really done super well with exponents.”

Two reading process themes emerged: perception and production. Perception 
involved receiving the text as visual stimuli. Production involved generating a 
translation in the form of oral/inner speech. Three perception processes  – auto-
matic, intentional, assisted  – were related to mathematical text that were easy, 
effortful, and difficult to read, respectively. Amelia described her automatic percep-
tion as “natural” saying “[the symbols] look weird, but in your brain, they kind of 
trigger something.” Gil explained his intentional strategy this way: “You just kind 
of have to stop and re-read it . . .” Robin explained her strategy for getting assis-
tance: “I would [ask] a person . . . if I still didn’t understand it, I’d use videos on 
YouTube.”

Production processes entailed making decisions about whether to read text in a 
compressed or expanded fashion (e.g., read A as “A” or “area”). Participants’ 
rationales for compressing or expanding depended on ideas about the purpose for 
reading (e.g., self-teaching, writing during problem solving, discourse with others). 
For example, Owen noted,

I sometimes use the words… When I am more like learning the equations and the variables, 
that's when I'd be more likely to use the words…But once I know what it is and I can just 
memorize; I can do it easily. I just do it like the shortened version.

A compressed reading did not always indicate efficiency or comprehension. In 
some cases, compressing text indicated reading difficulty. Martin, for instance, gave 
a halting compressed reading of d rt= . Asked about his hesitation, he explained, 
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“I was sort of deciding if I should use the word[s]… or just the letter[s]. I used the 
letter[s]…. I didn’t know what they stand for.”

In summary, the qualitative results suggest SMaLL involves a variety of meta-
cognitive skills. Students use different criteria to judge text with symbolic mathe-
matics. In addition, students apply different processes to reading text judged as 
readable and unreadable. Notably, reading symbolic mathematics using a compres-
sion process may indicate either a lack of comprehension or a shift towards 
efficiency.

11.3.3  Mixed Methods Integration: Multilevel Evidence 
of SMaLL

Integration (Bryman, 2006; Tashakkori & Teddlie, 2008) was conducted using what 
we called spectrum analysis. Spectrum analysis involves the purposeful use of both 
graphical and narrative strategies for integration (i.e., joint displays and weaving 
narrative, respectively; Fetters et al., 2013; Plano Clark & Sanders, 2015). Spectrum 
analysis was designed to embrace the theory-building nature of the inquiry and 
honor the inclusive mission of mathematics education. Its name is an acknowledge-
ment of its aim to offer a summary of the majority or most-likely experiences in the 
context of the possible range of unique experiences that may exist. Conducting 
spectrum analysis involves mixing the quantitative tradition of focusing on central 
tendency with the qualitative tradition of recognizing unique voices. It is accom-
plished by iteratively juxtaposing quantitative and qualitative data/findings (e.g., 
tables, profiles, expository composition) and testing assertions (Cronenberg & 
Headley, 2019).

Spectrum analysis began with the construction of an across-participant joint dis-
play of quantitative data illustrating the relative location of qualitative participants 
for each quantitative measure (see Fig. 11.2). Locating the qualitative participants 
on quantitative scales offered an initial glimpse of who might experience SMaLL in 
typical or unusual ways. Next, within-participant profiles of each qualitative partici-
pant were developed (see Headley, 2016). Finally, the profiles were reviewed, 
grouped and regrouped, and ordered and reordered in a variety of ways to test asser-
tions about the center and extremes of the SMaLL spectrum.

The spectrum analysis revealed that students like Owen, who appeared to be 
somewhat typical in terms of quantitative measures relevant to SMaLL, were not 
homogenous in their qualitative experiences of SMaLL. To illustrate how the quali-
tative data complemented the quantitative data at the extremes of the SMaLL spec-
trum, we provide excerpts of narratives for Loren and Peter. Loren and Peter were 
opposites in both quantitative and qualitative ways.

Loren, a seventh grader enrolled in Math Intervention, appears to the left on the 
spectra in Fig. 11.2. Her mathematics achievement score fell just short of the state 
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Fig. 11.2 Across-participant Joint Display: Quantitative Spectra. Letters correspond to qualitative 
participants’ pseudonyms. Stacked letters indicate participants at the same location on the spec-
trum. Names below the spectra highlight participants whose locations were similar (left to right) 
relative to one another for each of the spectra. The asterisk indicates the grand mean among ado-
lescents in the quantitative sample

standard for proficiency. In selecting readable text selections, Loren looked for 
brevity in terms of both symbolic mathematics and English. She identified a text 
selection describing four rules for solving inequalities as unreadable for her because 
“It had a lot more words and numbers… and then the bolded stuff.” She attempted 
to read one rule, “The inequality X minus two is something to five [has the] same 
solutions as the inequality X something to seven” (emphasis added to highlight 
translation corresponding to > ). Then she explained, “I couldn’t tell if [the sym-
bols] were greater than or less than.” Asked what she might do if she were reading 
aloud in class and came to symbolic mathematics she could not read, she explained 
without hesitation, “I would just stop, and eventually the teacher would say the 
answer.”

Peter, an eighth grader enrolled in a Math Extension elective, appears to the right 
on the spectra in Fig. 11.2. His mathematics achievement score was well above the 
state standard for proficiency. Peter selected the two longest text selections as read-
able. Referring to the same text selection Loren identified as unreadable, he 
explained that it was readable for him because it had more words and more “struc-
ture” (referring to numbered rules, bold text, and indented examples). He read 

d rt=  as “distance equals rate times time” and explained, “The reason I prefer to 
read it [that] way is because it sort of reminds me of what all the variables mean.” 
Peter identified a text selection with subscripts as the most unreadable because 
“sometimes if I’m reading subscripts… I’ve switched X one and X two around 
before.” Describing how he approached difficult-to-read mathematical text, he iden-
tified multiple strategies including decoding symbols and searching for English- 
language context clues.
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Fig. 11.3 Empirical Model of SMaLL Among Adolescents in Middle School. The shaded circles 
represent the general conclusions, one for each level. The dashed circles represent themes related 
to nearby general conclusions for this sample. The dashes and double-ended arrows are a reminder 
that, according to the framework, the across-level processes should be understood as interactive, 
transactional, and reciprocal

The spectrum analysis yielded rich insights into qualitative variations in SMaLL 
among participants who appeared similar from a quantitative perspective. It also 
revealed that students at the extremes of the SMaLL spectrum may have different 
kinds of metacognitive strategies for reading symbolic mathematics. Figure 11.3 
shows the updated model of SMaLL summarizing the findings supported by the 
mixed methods analysis. It illustrates the general conclusions (one for each level), 
across-level interactions and transactions, and variables and themes that warrant 
further exploration.
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11.4  Discussion and Conclusions

SMaLL is an innovative framework for conceptualizing literacy for mathematics. 
SMaLL names symbolic mathematics as the writing system for the language of 
mathematics and identifies reading symbolic mathematics as a process worthy of 
inspection in the endeavor to understand mathematical development. It is funda-
mentally different from extant literacy-for-mathematics frameworks because it is 
grounded in theories of human development and aligned with reading acquisition 
research findings. The framework invites investigations of mathematics-specific 
reading skills that might be shaped by cultural shifts in curriculum and instruction, 
behavioral efforts to develop metacognitive strategies, and neurobiological changes 
that automate cognition.

In this chapter, we highlighted variations in SMaLL.  The quantitative results 
indicates that orthographic awareness of symbolic mathematics can vary and is 
related to mathematics achievement, mathematics anxiety, and exposure to common 
mathematical formulas. The qualitative results suggest adolescents vary in terms of 
the criteria they use to judge the readability of mathematical text as well as the strat-
egies they use to generate oral/inner speech translations of mathematical text. 
Finally, the mixed methods analysis supports the theory of SMaLL as a multilevel 
aspect of development with similarities – at the cognitive, metacognitive, and cul-
tural levels – to reading acquisition. Evidence from this first empirical exploration 
of SMaLL among middle school students supports and extends the literature-driven 
theory. The portraits can reasonably contribute to pedagogical knowledge about 
possible differences in SMaLL among middle school students. However, more 
research is necessary to determine what SMaLL skills are probable among students 
and develop descriptions of how transactions between cognition, metacognition, 
and discourse typically impact SMaLL development.

SMaLL is a departure from frameworks like content area literacy that suggest it 
is specialized language-of-instruction skills (e.g., English) that promote mathemati-
cal development. It raises questions about whether reading skills specific to sym-
bolic mathematics are requisite for the mathematical development imagined in 
curricula. It opens the possibility that differences in curricula (e.g., elementary 
school vs. middle school, English-language vs. Chinese-language) might require 
more (or less) or different kinds of SMaLL skills. The strong theoretical foundation 
of SMaLL offers solid grounding for empirical studies of these issues.

For now, the greatest value of the SMaLL framework lies in its potential to rein-
vigorate interdisciplinary literacy-for-mathematics research and inspire teachers to 
address the pedagogical demands of teaching students whose SMaLL skills differ in 
number and kind. In cognitive science, researchers might advance SMaLL theory 
by interrogating the SDT-SMaLL (Douglas et al., 2020), developing measures of 
orthographic awareness for other grade levels (Xu et al., 2021), or developing mea-
surement tools to explore other plausible component skills. In learning sciences, 
researchers might advance SMaLL theory by questioning the relationship between 
the reading culture in mathematics classrooms and students’ experiences of SMaLL.
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Research aimed at refining the theory of SMaLL and revealing relationships 
between SMaLL skills and mathematics achievement is critical to improving math-
ematics education. If orthographic awareness is as important to learning mathemat-
ics as phonological awareness is to reading acquisition, opportunities to improve 
mathematics education are being missed. More broadly, if SMaLL is essential to 
mathematical development, literacy for mathematics should be reframed in curri-
cula. Reframing will require care because curriculum is a “tool that structures the 
accessibility of knowledge” (Au, 2012, p. 44). On the one hand, allowing SMaLL 
demands to remain unacknowledged limits all students’ access to instruction that 
supports SMaLL. On the other hand, standards that outline a single SMaLL trajec-
tory may limit particular students’ access to rich mathematical experiences (Keefe 
& Copeland, 2011). Viable strategies for making SMaLL explicit in curricular doc-
uments depend on further study and conscientious integration of research into 
practice.

Being able to read the text they see in mathematics class matters to students. 
However, for some, reading symbolic mathematics is daunting. Elena, for instance, 
made this plea for help:

We've learned how to do this [math], and we've learned what it's for and where to use it. But 
we've never really been taught how to read it… It just seems a little backwards… [teachers] 
should teach us more about that.

It is possible that SMaLL operates as a secret gateway – or gatekeeper – to mathe-
matics achievement and STEM careers (Vilorio, 2014). We are eager to see the 
SMaLL framework employed to advance literacy-for-mathematics research with 
the hope that it will inspire progress towards explicit curriculum and instructional 
support.
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Chapter 12
Grasping Patterns of Algebraic 
Understanding: Dynamic Technology 
Facilitates Learning, Research, 
and Teaching in Mathematics Education

Jenny Yun-Chen Chan, Avery Harrison Closser, Hannah Smith, Ji-Eun Lee, 
Kathryn C. Drzewiecki, and Erin Ottmar

Abstract Prior work has established that cognitive and perceptual processes influ-
ence students’ attention to notational structures in mathematical expressions, which 
in turn affects their problem-solving approaches and performance. Advances in edu-
cational technology provide opportunities to further investigate these processes, 
improve student learning, and inform classroom instruction. Chapter 12 presents 
Graspable Math (GM), an online dynamic algebra notation system designed based 
on the research of cognitive, perceptual, and affective processes to support student 
learning. The log data recorded in GM offer a window into students’ mathematical 
cognition, perceptual processes, and problem-solving strategies that can inform 
both research and instructional practice. First, we review the evidence of using GM 
to support algebra learning with elementary and middle school students. Next, we 
describe how log data from GM provide opportunities to research students’ problem- 
solving processes and their uses of mathematical strategies. To conclude, we discuss 
how this work can inform classroom instruction and future research by providing 
teachers and researchers with in-depth feedback on students’ use of mathematical 
strategies and understanding.
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As students transition from arithmetic to algebra, learning how to attend to nota-
tional structures is an important component of developing algebraic thinking that 
can later impact students’ performance (Kieran, 1989). In addition to cognitive and 
affective factors, perceptual features, such as the color and spacing of symbols, 
influence students’ attention to notational structures in mathematical expressions, 
consequently impacting students’ problem-solving approaches and performance 
(Alibali et al., 2018; Kirshner & Awtry, 2004; Landy & Goldstone, 2010; Marghetis 
et  al., 2016). For instance, students may be inclined to solve problems from 
left  to  right, which sometimes violates mathematical rules, such as the order of 
operations (e.g., 3 + 4 × 5). Perceptual features, such as spatial proximity between 
symbols, can direct students’ attention to important elements of the notation that 
guide their problem-solving approach (e.g., 3 + 4×5; the spacing of symbols pro-
vides grouping that is congruent with the order of operations). To that end, 
technology- based learning tools that leverage visual, auditory, and/or sensory fea-
tures of instructional materials to direct students’ attention towards key patterns in 
the notational structure of mathematical expressions and equations may positively 
impact students’ development of mathematical thinking.

Tapping into perceptual motor systems during algebra practice may provide 
unique opportunities for students to explore the structures of algebra both physi-
cally and visually. The key to designing successful perceptual practice for algebra 
relies on tools that conceptually embody mathematical rules. Over the past several 
years, members of our team have developed a digital learning platform called 
Graspable Math (GM; activities.graspablemath.com). GM is a dynamic algebra 
notation system in which numbers and mathematical symbols can be physically 
moved and rearranged through specified gesture-actions (i.e., mouse or touch screen 
actions, such as dragging, shaking, and tapping symbols) that result in fluid, real- 
time transformations on the screen. These gesture-actions were developed as analo-
gies to the dynamics of algebraic problem solving, providing students with “gestural 
congruency” between the gesture-actions in GM and the mathematical meaning of 
the notation (Lindgren & Johnson-Glenberg, 2013; Segal, 2011) to explore alge-
braic structures (Ottmar et al., 2015).

Beyond supporting student learning and engagement (Landy & Goldstone, 2007, 
2010; Ottmar et al., 2015; Ottmar & Landy, 2017; Weitnauer et al., 2016), the log 
data recorded within GM (e.g., mouse clicks and actions, the timestamp for each 
action) enable a granular examination of learning by providing a window into stu-
dents’ cognitive processes and the underlying mechanisms of learning. The data can 
also inform instruction by providing teachers with detailed information about their 
students’ problem-solving processes and behaviors during practice activities.

In this chapter, we present GM as a technology-based pedagogical tool for ele-
mentary and middle school students, and as a research and teaching tool that pro-
vides rich information on students’ mathematical cognition, perceptual strategies, 
and problem-solving processes. We synthesize theoretical and empirical work on 
GM, describe how researchers can use this tool to unpack underlying mechanisms 
of mathematics learning, and discuss ways for practitioners to incorporate GM in 
classroom instruction.

J. Y.-C. Chan et al.
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12.1  Theories of Perceptual Learning 
and Embodied Cognition

Perceptual learning theory suggests that reasoning and learning about mathematics 
are inherently perceptual; the way that students perceive visual, auditory, and sen-
sory information guides the way that they process materials and learn (Goldstone 
et  al., 2017; Jacob & Hochstein, 2008; Kellman et  al., 2010; Kirshner & Awtry, 
2004; Patsenko & Altmann, 2010). Perceptual learning allows students to make 
extensive use of perceptual-motor routines and motion-based metaphors when solv-
ing problems and equations (Goldstone et al., 2017). For example, the spatial prox-
imity between terms can help learners consistently follow the order of operations 
when solving equations. Students are more likely to solve equations correctly when 
the spacing between symbols strategically highlights the grouping of the symbols 
and the operation that should be completed first (e.g., 6 + 2×9; Landy & Goldstone, 
2010). Regardless of a student’s level of mathematical knowledge, the tendency to 
use perceptual features and groupings in mathematics notation is somewhat auto-
matic (Harrison et al., 2020; Marghetis et al., 2016), and has implications for the 
ways in which individuals interpret, compute, and produce mathematics notation.

Researchers have found that the visual features of abstract mathematical struc-
tures influence students’ ability to learn appropriate rules. For instance, when the 
rules are visually salient in notation (e.g., 2(x − y) = 2x − 2y), middle school stu-
dents are better able to remember and recognize these rules compared to when the 
rules are not visually salient (e.g., x2 − y2 = (x − y)(x + y); Kirshner & Awtry, 2004). 
Further, ample evidence suggests that the visual presentation of notation impacts 
how students reason, process, understand, and learn mathematics (e.g., Braithwaite 
et al., 2016; Harrison et al., 2020; Landy & Goldstone, 2010). As an example, using 
perceptual features, such as color, can direct students’ attention to relevant informa-
tion (e.g., highlighting the equal sign in red within an equation, 4 + 7 = 13 − __, to 
support reasoning of equivalence) and help adapt their perceptual experiences to 
support high-level cognition (Alibali et al., 2018; Gibson, 1969; Goldstone et al., 
2017). With this understanding, researchers, developers, and teachers can leverage 
perceptual features in instructional materials to support student learning by direct-
ing their attention to important visual cues in notation during problem solving.

Beyond shaping students’ thinking processes, perceptual features also impact 
students’ actions which reflect and further influence their learning. Embodied cog-
nition theories contend that students’ physical experiences in the world impact their 
cognitive processes, including thinking and reasoning in mathematics (Abrahamson 
et al., 2020; Foglia & Wilson, 2013; Nathan et al., 2014; Shapiro, 2010; Wilson, 
2002). Specifically, Alibali and Nathan (2012) posit that mathematical cognition is 
“based in perception and action, and it is grounded in the physical environment” 
(p. 247). In other words, students’ learning environments influence the way they 
perceive instructional materials which, in turn, informs their cognitive processes, 
learning, and problem solving.
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12.2  Leveraging Perceptual and Embodied Learning Within 
Graspable Math

GM uses perceptual features to direct students’ attention to notational structures; it 
also embeds embodied features to allow dynamic manipulation of symbols. Among 
other design choices, GM supports perceptual and embodied learning through three 
distinct features: (1) the visual presentation of spacing between terms and operands in 
mathematical notation, (2) students’ ability to manipulate notation on the screen, and 
(3) the fluid transformations that provide immediate feedback on students’ actions.

12.2.1  Perceptual Features Guide Students’ Attention 
to Notational Structures

Gestalt principles of grouping posit that we tend to perceive groups of objects as a 
whole rather than individual objects (Hartmann, 1935). For instance, when viewing 
“×”, we perceive one symbol rather than four intersecting lines. Following the 
Gestalt principle of grouping by spatial proximity, GM intentionally displays nota-
tions in a way that encourages students to group terms in the order of operations—
terms surrounding higher-precedence operations (e.g., ×, ÷) are closer together than 
terms surrounding lower-precedence operations (e.g., +, −). Spatial proximity has 
been shown to impact mathematical reasoning during problem solving (e.g., Landy 
& Goldstone, 2010). For example, people tend to perform operations that are physi-
cally spaced closer together, even if those operations conflict with the order of oper-
ations (e.g., incorrectly simplifying 6+2 × 9 to 72 by performing addition before 
multiplication; Harrison et  al., 2020). This phenomenon supports the notion that 
people rely on perceptual systems to process symbolic notations and are influenced 
by spatial properties of mathematical notation (Goldstone et al., 2017; Wagemans 
et al., 2012). Such research suggests that perception plays a key role in mathemati-
cal thinking. Further, strategically leveraging spatial proximity when presenting 
mathematical notations in digital learning tools may be an effective approach to 
support student learning. By systematically varying the spatial proximity between 
terms following the order of operations, GM aims to help direct students’ attention 
to the correct groupings of terms and operands, which in turn may support their 
development of perceptual-motor routines for transforming algebraic notation.

12.2.2  Transforming Abstract Symbols into Objects Makes 
Algebra Concrete for Learners

GM is a dynamic algebra notation system where all symbols are individual objects 
that can be manipulated by dragging and dropping each object with a mouse or on 
a touch screen. By treating symbols like objects on a screen, students can work 
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through problems by moving symbols to transform expressions and equations, 
resulting in a tangible learning experience. This design reflects embodied cognition 
theories which posit that thinking does not occur internally; instead, it is a process 
grounded in our physical experiences with tactile or imaginary objects (Abrahamson 
et al., 2020; Nathan et al., 2014). For instance, aligned with Melcer and Isbister’s 
(2016) Embodied Learning Games and Simulations Framework, GM utilizes object- 
centered embodiment by having students manipulate numbers and symbols as 
objects on the screen. Students can tap, drag, and manipulate symbols in a physical- 
to- digital format of embodiment where students’ physical gesture-actions (i.e., 
mouse movement or touchscreen activity) result in changes to digital objects on the 
screen, allowing students to connect their actions with mathematical transforma-
tions. Given that individuals tend to treat abstract symbols as physical objects dis-
tributed in space (De Lima & Tall, 2008; Dörfler, 2003; Landy & Goldstone, 2009, 
2010), GM provides a digital playground for students to explore mathematical sym-
bols as manipulatable objects. Through dynamic manipulations that result in fluid 
visualizations of algebraic principles, students can learn which actions are appropri-
ate and valid in particular mathematical contexts.

12.2.3  Immediate Visual Feedback Informs Students’ 
Problem Solving

GM provides a fluid visualization that allows students to see the transformation 
process of algebraic expressions and equations. When students complete a valid 
gesture-action, GM responds with a fluid visualization of an expression or equation 
transformation in real-time, so students receive immediate visual feedback on their 
actions. For example, students can tap the “+” in “7 + 3” and see the two numbers 
combined into “10” (Fig. 12.1a); they can also drag and drop the “3” from right to 
left in “2 + 3” to change the expression to “3 + 2” (Fig. 12.1b). In GM, students are 
able to learn patterns of problem-solving behavior and algebraic principles through 
interacting with symbols and viewing the fluid visualizations that provide automatic 
feedback. Compared to solving equations using paper and pencil, the fluid visual-
izations may help direct students’ attention towards structural patterns in algebraic 
notation by offloading the cognitive demands of calculations onto the system and 
shifting students’ focus to the problem-solving process as a whole. By developing 
students’ perceptual-motor routines of algebraic equation solving, students can 
encounter, discover, and practice mathematical principles in action (Nathan et al., 
2016, 2017).

These features of GM have been intentionally designed to support students’ per-
ception and action that influence mathematical thinking and learning. By develop-
ing a system based on theories of perceptual and embodied learning, GM is uniquely 
situated to advance learning theories by using log data to address research questions 
on how students learn algebra, how students’ problem-solving strategies and behav-
ior develop over time, and how systems like GM can support and inform classroom 
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Fig. 12.1 Mathematical expressions are digital objects in Graspable Math. Students can use 
gesture- actions in GM to (a) add numbers together, and (b) commute terms. GM also provides 
visual feedback on invalid gesture-actions through (c) shaking and (d) an error message. (e) GM 
records a history of students’ actions within the system

instruction. Next, we describe GM and the ongoing research efforts to understand 
the development of mathematical cognition and student learning in GM.

12.3  Graspable Math: A Tool to Advance Theory, Research, 
and Practice

Developed based on the tenets of perceptual learning and embodied cognition, GM 
is an interactive algebra notation system that allows students to pick up and trans-
form mathematical expressions and equations (Weitnauer et al., 2016). As students 
transform expressions, GM provides immediate feedback and fluid visualizations of 
their mathematically valid gesture-actions (Fig. 12.1a, b). It is important to note that 
GM only enacts valid mathematical actions. When students attempt mathematically 
invalid actions, GM provides visual feedback to students. For example, if a student 
attempts to combine “2x” and “3” by tapping the addition sign, the expression 
shakes and remains as “2x + 3”, indicating that the action is invalid (Fig. 12.1c). If 
a student tries to substitute a number (e.g., 4) with a non-equivalent expression (e.g., 
2 + 3), the system does not enact the incorrect substitution. Instead, a message 
appears on the screen informing the student that “the total of the new expression 
should be the same as the original” (Fig. 12.1d). By allowing students to manipulate 
and transform notation with immediate visual feedback, they can explore mathe-
matical properties and concepts, such as commutativity, associativity, distributivity, 
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and equivalence (Chan et al., 2022a; Knuth et al., 2006; Prather & Alibali, 2009), 
and experience the consequences of valid and invalid transformations through per-
ception and action.

GM also has an extensive data logging system that records all of students’ actions 
as they interact with the system. In GM, each mouse click, movement, error, and 
moment-by-moment problem-solving process is recorded and time-stamped. For 
instance, as a student picks up and drags “2″ into “(x + 3)”, the system records the 
initial (i.e., 2(x + 3)) and end (i.e., (2x + 2 · 3)) states of the expression and time-
stamps the actions of dragging and dropping the “2″ (Fig. 12.1e). As such, the data 
in GM reveal students’ steps, errors, and the timing of these actions. These detailed 
logs of students’ actions allow researchers and teachers to study or monitor the 
microstructure of students’ problem-solving processes during mathematical tasks. 
Further, by analyzing these actions across problems, we can gain insights into stu-
dents’ behavioral patterns, and their approaches to problem solving. We can also 
utilize these data to identify common misconceptions or behavioral strategies shared 
by multiple students within a class.

GM aims to promote students’ intuitive, efficient, and mathematically valid 
perceptual- motor routines while they engage with and explore algebraic concepts in 
a dynamic environment. Specifically, by leveraging the dynamic capabilities of 
technology tools, designing activities that target common gaps in student knowl-
edge (NGA Center & CCSSO, 2010), and providing feedback on students’ problem- 
solving processes, tools like GM may help students develop appropriate “structural 
intuition” (Kellman et al., 2010, p. 299) and perceptual-motor routines (Goldstone 
et al., 2017) of algebraic notations. Building upon the GM approach and cognitive 
theories, our team has been designing practical tools, available on activities.grasp-
ablemath.com, for classroom uses. These tools include discovery puzzle-based 
games (e.g., From Here to There!), an interactive whiteboard for in-class demon-
strations (Graspable Math Canvas), and a series of activities that leverage the 
dynamic notation system for algebra learning (Graspable Math Activities). We are 
also designing dashboards that allow teachers to identify students’ potential mis-
conceptions, tailor classroom instruction to students’ needs, and respond in real 
time when students are struggling by seeing automatic updates on students’ prog-
ress within the activities.

Further, we have begun to explore how digital tools can be used for students to 
explore the interconnections between multiple representations of algebraic equa-
tions, and for teachers to demonstrate these connections. Research has shown that 
students struggle to make connections between representations (e.g., Bernardo & 
Okagaki, 1994; Clement et al., 1981; Landy et al., 2014; Martin & Bassok, 2005), 
hindering student learning and understanding of algebraic symbols (Koedinger & 
Nathan, 2004). By integrating Geogebra (i.e., a dynamic geometry tool) within GM, 
teachers and students can link the algebraic equations with coordinate graphs 
(Fig.  12.2). As teachers or students apply gesture-actions on one representation, 
such as dragging a line up or down to change the slope in the graph, they can see the 
corresponding changes to the slope value in the equation. The synchronous changes 
between an equation and its corresponding graph can help demonstrate the relations 
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Fig. 12.2 A sample task in Graspable Math with Geogebra integration where students solve and 
graph a system of equations

between these two representations, as well as the connections between each element 
of the representations. Further, the green paths connecting the system of equations 
trace x and y through the history derivation, allowing students to follow the transfor-
mation process for each term.

In summary, tools like GM allow students to experience fluid visualizations of 
expressions and the interconnections of algebraic representations, as well as allow-
ing teachers to model and discuss mathematical principles using gesture-actions on 
expressions. The log data collected through these tools also provide researchers a 
window into students’ thinking processes. In these ways, GM acts as an instruc-
tional tool to support teachers and students and as a research platform to advance 
our understanding of how perceptual features and embodied actions impact stu-
dents’ behavior and learning.

12.4  Research on Mathematical Cognition 
and Student Learning

12.4.1  Evidence of Student Learning in Graspable Math 
and From Here to There!

The effectiveness of GM has been examined across several studies over the past 
decade. Early studies demonstrated the usability of GM as well as student benefits 
of using the tool, such as being able to work through algebra problems more effi-
ciently and with fewer errors than using paper and pencil (Ottmar et  al., 2012; 
Weitnauer et  al., 2016). Since then, several classroom-based studies have 
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demonstrated the impact of GM on student learning through playing a gamified ver-
sion of GM, From Here to There!. These studies test GM’s effects on learning com-
pared to other educational technologies (Chan et al., 2022a; Decker-Woodrow et al., 
in press), the potential predictors of these effects (Hulse et al., 2019), the underlying 
mechanisms (Chan et al., 2023; Ottmar et al., 2015), and ways in which GM can be 
effectively incorporated in classroom instruction (Ottmar & Landy, 2017).

From Here To There! (FH2T) is an interactive mathematics puzzle game that 
leverages the GM technology and has been developed through iterative design and 
testing cycles (Ottmar et  al., 2015). The game presents problems that challenge 
students to transform starting expressions and equations in the center of the screen 
into a specified goal state (located in the white box; Fig. 12.3)—an expression or 
equation that is mathematically equivalent to, but visually different from, the start-
ing expression or equation. While the starting expression and the goal state are not 
connected by an equal sign, the transformation process demonstrates and provides 
students practice with mathematical equivalence, grounding abstract concepts in 
physical movements (Abrahamson et al., 2020). Different from other instantiations 
of GM, problems in FH2T are presented with gamified elements, such as challenges 
and rewards. For instance, students can retry problems and receive up to three clo-
vers when they solve the problem in the most efficient way. The clovers act as points 
that help students monitor their performance and serve as an extrinsic motivator for 
efficient problem solving (Liu et al., 2022; von Ahn, 2013). In FH2T, students can 
also request hints as needed to receive support so the problems can be challenging 
without eliciting excessive frustration (Aleven & Koedinger, 2002). Through this 
design, FH2T integrates GM technology with engaging features to create a playful 
learning environment for students to practice algebraic skills.

To measure the effectiveness of FH2T compared to other learning tools, we con-
ducted a randomized controlled trial with 475 middle school students (Chan et al., 
2022a). Students were randomly assigned to play FH2T or complete online problem 
sets adapted from open-source curricula. Students completed four 30-minute 

Fig. 12.3 (a) A sample problem in From Here to There! and (b, c, d) a potential transformation 
process involving two steps to (e) reach the goal state and (f) gain rewards
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sessions (a total of 2 hours) of mathematics problem solving using their assigned 
technology. It is important to note that the online problem sets provided hints and 
correctness feedback during problem solving, and these supports were previoiusly 
shown to improve middle school students’ mathematical learning compared to tra-
ditional paper-and-pencil homework (Mendicino et al., 2009). Results indicated that 
students, regardless of condition, improved their understanding of mathematical 
equivalence from pretest (M = 63.33% [percentage of correct answers], 3.80 out of 
6 points) to posttest (M = 69.00%, 4.14 points). Further, students in the FH2T condi-
tion (M = 71.67%, 4.30 points) scored 5% (0.30 points) higher on the posttest com-
pared to their counterparts in the online problem set condition (M = 66.67%, 4.00 
points), Hedge’s g = 0.16 and improvement index = 6.4. While the effect size might 
seem small, practically speaking, the benefit of FH2T did emerge after only a 2-hour 
intervention in comparison to an established and effective educational technology. 
Further, the What Works Clearinghouse (2020) improvement index of 6.4 suggests 
that an average student at the 50th percentile may improve to 56.4th percentile after 
a two-hour intervention of FH2T compared to completing online problem sets. 
These findings suggest that FH2T may be effective at improving middle school 
students’ understanding of mathematical equivalence above and beyond traditional 
online problem sets.

The Elementary version of FH2T (FH2T:E) has also been shown to be effective 
for classroom use. In FH2T:E, the problems are designed to promote understanding 
of early mathematical concepts among elementary students. With 185 second grad-
ers, we found that completing more problems within FH2T:E was associated with 
higher posttest scores and this effect was significant above and beyond students’ 
prior knowledge (Hulse et al., 2019). Specifically, for every one standard deviation 
increase in the number of completed problems within FH2T:E, students scored an 
average of 3.07% (0.46 out of 15 points) higher on the posttest (M = 74.20%, 11.13 
points) when controlling for pretest (M = 65.93%, 9.89 points). In summary, the two 
studies (Chan et al., 2022a; Hulse et al., 2019) demonstrate that the FH2T games 
can improve mathematics performance in both elementary and middle school stu-
dents, showing promise as a digital tool to promote mathematical learning across 
grade levels.

We have further investigated potential mechanisms of learning behind FH2T and 
how playing the game leads to gains in students’ notation fluency by comparing two 
versions of FH2T—fluid visualization and retrieval practice (Ottmar et al., 2015). 
Students in the fluid visualization condition used gesture-actions to dynamically 
manipulate terms and saw the expression automatically transformed on the screen. 
Students in the retrieval practice condition also used gesture-actions, but entered 
the resulting expression instead of viewing the automatic transformation (e.g., tap-
ping the addition sign in 7 + 3 then typing in 10). Results showed that, after four 
30-minute intervention sessions, students in the fluid visualization condition  
(pretest: M = 33.07%, 9.92 out of 30 points; posttest: M = 36.27%, 10.88 points) 
showed a 3.20% (0.96 points) increase in their equation-solving performance 
whereas the students in the retrieval practice condition (pretest: M = 36.67%, 11.00 
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points; posttest: M = 34.87%, 10.46 points) did not (average gain: −1.80%, −0.54 
points). One interpretation of the findings is that rather than requiring students to 
focus on computations and typing in answers at each step, the fluid visualization 
liberates students to focus on the overall transformation process of the algebraic 
expressions. Thus, fluid visualization may help alleviate the cognitive demands of 
computations, providing opportunities for students to practice and improve their 
fluency in the perceptual-motor routines of algebra (Goldstone et al., 2010, 2017; 
Landy & Goldstone, 2007). Further work is needed to understand how these find-
ings relate to prior work on the benefit of practicing arithmetic fact retrievals 
(Ashcraft & Christy, 1995; McNamara, 1995).

Given that the fluid visualization within FH2T improves learning, we conducted 
a study to examine when, in the instructional sequence, dynamic manipulation com-
bined with fluid visualization is effective for learning (Ottmar & Landy, 2017). In 
that study, seventh graders who had little knowledge of algebraic equation solving 
(pretest: M = 12.61%, 2.27 out of 18 points) used GM to transform and solve equa-
tions for one hour either before or after a one-hour lesson of equation solving using 
paper and pencil. Students who practiced equation solving using GM first scored 
higher on the immediate algebra posttest (M = 87.28%, 15.71 points) and the reten-
tion test one month later (M = 84.78%, 15.26 points) compared to the students who 
received the traditional instruction with paper and pencil first (posttest: M = 
74.61%, 13.43; retention: M = 77.89%, 14.02 points). These findings suggest that 
using GM early in algebra lessons may support and prepare students for future 
learning.

In summary, this body of work has demonstrated that GM and FH2T can be 
powerful tools to support student learning in algebra. Specifically, it provides evi-
dence for the positive impacts of FH2T compared to traditional online problem sets 
and the influence of progress on this positive impact. It also suggests that coupling 
dynamic manipulations of mathematical symbols with fluid visualizations of 
expression transformations may  potentially be more beneficial for learning than 
having students practice mental calculations. Further, providing students the oppor-
tunity to dynamically interact with abstract symbols prior to, instead of after, explicit 
instruction may better prepare students for learning. Beyond their effects on student 
learning, GM and FH2T also collect rich data that allow researchers to investigate 
the cognitive processes underlying students’ problem solving.

12.4.2  Analyzing Students’ Problem-Solving Processes 
in Graspable Math

Beyond an instructional tool, GM is a research tool that can provide insights into 
students’ problem-solving processes for researchers and teachers. It logs all student 
actions and mouse-movements, allowing researchers to examine, analyze, and visu-
alize students’ problem-solving processes as well as their mathematical errors at 
scale. By doing so, teachers and researchers can go beyond the correctness of 
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student responses to investigate how students solve problems and what mathemati-
cal misconceptions students may hold. For instance, the log data may show that a 
student repeatedly tries to add an integer with a variable (e.g., 2 + x), suggesting that 
the student may have misconceptions about operations with unlike terms. In short, 
GM makes student thinking visible for both researchers and teachers.

By leveraging the log data within GM and applying methods and approaches 
from different fields, we have conducted a number of studies that expand the litera-
ture on perceptual learning, student engagement, and problem solving. For exam-
ple, we have examined students’ behavioral engagements (Lee et  al., 2022a), 
problem-solving errors (Bye et  al., 2022), and steps in the problem-solving pro-
cesses (Chan et  al., 2022c). Here, we review the findings on the variability and 
productivity of problem-solving steps as well as predictors of strategy efficiency in 
middle school students. Efficient and flexible problem solving is a primary goal in 
mathematics education (NGA Center & CCSSO, 2010), and by understanding how 
students solve problems and what influences their problem-solving behaviors, we 
can inform researchers and educators to design instruction that better support stu-
dents’ problem solving and mathematical learning. By reviewing these findings, we 
aim to provide examples of the ways in which analyzing the rich log data can offer 
critical insights into students’ problem-solving  processes and different learning 
theories. Further, by situating this work within the larger context of related work, we 
aim to demonstrate the unique affordances of GM for research and practice.

Observing individual and aggregate visualizations of all student actions in GM 
and FH2T has revealed notable variation in students’ problem-solving approaches 
and factors that impact their approaches. To visualize students’ problem-solving 
processes across the entire sample, we created Sankey diagrams of paths in stu-
dents’ problem-solving processes to see the variability and frequencies of how stu-
dents move from step to step (See Fig. 12.4a; Lee et al., 2022c). For example, in the 
problem of transforming 9 · 4 into 3 · 6 · 2, we found remarkable variations in the 
number of steps that students took to reach the goal state, the sequence of transfor-
mations, and the mathematical strategies and properties they used. In this particular 
example, 64% of the students (the two blue paths at the upper left of Fig. 12.4a) 
made a productive first step that brought them closer to the goal state, and these 
students tended to solve the problem using an efficient strategy that involved the 
fewest number of steps. In contrast, the remaining 36% of the students who made a 
non-productive first step (the remaining red paths at the lower left of Fig. 12.4a) 
tended to solve the problem in suboptimal ways that involved more steps than nec-
essary. These findings demonstrate that the log data within GM can provide valu-
able insights into students’ thinking process and decisions as they solve problems. 
Specifically, students vary in their problem-solving approaches and their first steps 
on a problem may have important implications on their strategy efficiency. 
Additionally, these visualizations can help teachers identify patterns of problem- 
solving behavior to discuss during instruction.

To investigate the factors that impact students’ first steps, we have examined how 
different features of problems influence the productivity of students’ solution strate-
gies. Prior work has suggested that students use proximity as a perceptual cue to 
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Fig. 12.4 Visualizations of students’ problem-solving process. (a) A Sankey Diagram showing 
variations of solution strategies among 343 students on one problem (adapted from Lee, Stalin, 
et al., 2022). Individual student examples show (b) efficient and (c) inefficient solution strategies 
on problem 9 · 4
Note: For readability and interpretability, Fig. 12.4a was truncated to the first 10 steps

group symbols aligning with the order of operations (Landy & Goldstone, 2010), 
and that mathematics standards tend to focus on base 10 numbers, such as 10 or 100 
(NGA Center & CCSSO, 2010). To examine how these factors would interact to 
influence students’ solution strategies, we designed problems that varied in whether 
the numbers to be combined were adjacent (e.g., 47 + 53 + b → 100 + b) or non- 
adjacent to each other (e.g., 47 + b + 53 → 100 + b) and whether the problem 
involved 100 or non-100 numbers (e.g., 47 + 52 + b → 99 + b; Lee et al., 2022b). 
Using the log data within GM, we coded whether students’ first steps were produc-
tive or non-productive, and found that students’ first steps were more likely to be 
productive when the numbers to be combined were adjacent versus non-adjacent to 
each other and when the goal was to make 100 versus non-100 numbers. These find-
ings extend prior work demonstrating the effects of problem features on problem 
solving. Through the log data, we see that the structure and presentation of prob-
lems impact students’ first step on a problem, and consequently students’ problem- 
solving process and performance.

In addition to providing information on what steps students take to solve prob-
lems, the log data also reveal when actions are taken. For example, to transform  
9 · 4 into 3 · 6 · 2, Student X first paused for 10.56 seconds, made a productive first 
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step by factoring 9, then reached the goal state in three steps—the fewest steps pos-
sible to complete this problem (Fig.  12.4b). Making a non-productive first step, 
Student Y first multiplied 9 and 4 to make 36, reset the problem, then reached the 
goal state after another four steps, taking a total of 68 seconds (Fig.  12.4c). As 
shown in these examples, these data visualizations demonstrate that students vary in 
the amount of time they take between each step while problem solving, and they 
take different series of mathematically allowable steps to link two states of an 
expression.

To further explore the microstructure of students’ problem-solving processes, we 
have examined the role of students’ pause time (i.e., time paused before first action 
/ total problem-solving time) on their strategy efficiency (i.e., the total number of 
steps taken to solve problems) in FH2T (Chan et al., 2022b). We focused on pause 
time because previous studies have shown a positive relation between pausing and 
mathematical performance, and it has been used as a behavioral indicator of think-
ing and planning (e.g., Gobert et al., 2015; Paquette et al., 2014). Analyses of the log 
data in GM have revealed that students with longer pause time use more efficient 
strategies involving fewer steps, and that pause time remains a strong and significant 
predictor even when accounting for students’ algebraic knowledge, mathematics 
anxiety, and mathematics self-efficacy. The results extend previous findings in the 
algebraic problem-solving literature (e.g., Ramirez et  al., 2016; Star & Rittle- 
Johnson, 2008) by suggesting that pause time is a unique predictor of strategy effi-
ciency above and beyond prior knowledge and affective factors. Further, they 
provide evidence for the importance of examining students’ problem-solving pro-
cesses in digital learning platforms. In particular, the log data offer unique opportu-
nities to examine the relations between students’ behavioral patterns and their 
solution strategies.

In summary, analyzing log data collected in educational technologies like GM 
allows researchers to efficiently examine students’ problem-solving processes at a 
fine-grained level and effectively visualize the variability of solution strategies in 
problem-solving contexts across a large group of students. Using a number of ana-
lytics techniques, we have created visualizations that reveal students’ problem-solv-
ing processes, identified ways in which problem features impact students’ solution 
strategies, and found behavioral indicators that predict students’ strategy efficiency. 
This work extends prior literature on mathematics problem solving, provides impli-
cations for instruction, and shows promise in using log data to examine potential 
mechanisms through which educational technologies may improve learning.

12.5  Implications for Research and Education

GM and the larger theoretical framework of this research have several implications. 
First, the findings show that subtle design choices in the presentation of instruc-
tional materials may have consequential impacts on students’ thinking and 
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reasoning of mathematics. For students, GM is a tool to actively explore algebraic 
concepts and develop fluency in mathematical reasoning through dynamic interac-
tions with mathematical symbols and notation. GM allows students to discover rela-
tional properties of arithmetic and algebra through exploration and play. For 
educators, GM is an instructional tool that grounds mathematics teaching and learn-
ing in perception and embodiment. GM can facilitate instruction by serving as a 
formative assessment tool to gain insights into students’ understanding and miscon-
ceptions. The variety of GM tools, such as the Canvas and Activities, can also sup-
plement classroom instruction and provide teachers with a dynamic platform to 
design activities for their students. For researchers, GM is a platform to collect 
fine-grained data about student behavior and performance during problem solving 
that can inform classroom practice. Further, the iterative design cycle we undertake 
can serve as a guidepost for researchers to develop theory-driven educational tech-
nologies. Looking ahead, future work on GM and similar educational technologies 
should leverage the log data within the systems to further understand students’ 
thinking process, develop tools that efficiently identify students’ misconceptions, 
and design instructional resources that effectively improves students’ mathematical 
learning.

12.6  Conclusion

Developed based on theories of perceptual learning and embodied cognition, GM is 
an interactive algebra notation system designed to leverage cognitive, perceptual, 
and affective processes during learning and instruction. To date, multiple studies 
have revealed the benefits of using GM on mathematical learning in elementary and 
middle school students. Further, researchers can utilize the log data in GM to 
explore students’ mathematical cognition, perceptual processes, and problem- 
solving strategies. This work has advanced our understanding of the mechanisms 
underlying mathematical learning and informed both research and instructional 
practice. In conclusion, GM and its extensions allow teachers and students to expe-
rience algebraic concepts through dynamic manipulation of symbols. Further, the 
research on GM can inform classroom instruction and future research by providing 
teachers and researchers with in-depth, actionable feedback on students’ knowledge 
and use of mathematical strategies.
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