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Abstract. Automatic segmentation of the left atrial (LA) cavity and
atrial scars in late gadolinium enhancement magnetic resonance imaging
has significant clinical relevance to diagnosing atrial fibrillation (AF). Nev-
ertheless, automatic segmentation remains challenging because of the poor
image quality, the shape variability of LA, and the small size of scars.
Therefore, this study proposes a multi-task learning model in a coarse-to-
fine framework, among which the fine model simultaneously segmenting
the LA cavity and scars. Specially, we develop an edge-enhanced feature-
guided module (EFGM) to exploit the spatial relationship between LA
and scars using a 3D central difference convolution, exploring the feature
dependence from multi-task learning. Also, a dilated inception module
(DIM) is plugged in to learn multi-scale representation, further improv-
ing the joint segmentation considering the shape difference between the
LA cavity and scar. We evaluate our model on the LAScarQS 2022 val-
idation set. The average Dice scores of the LA cavity and scar are 0.875
and 0.631. Also, the Average Surface Distance (ASD) and Hausdorff Dis-
tance (HD) of the LA cavity are 2.233 mm and 24.731 mm, respectively.
The accuracy, specificity, sensitivity, and generalized Dice score of LA scar
are 0.999, 0.999, 0.603, and 0.916, respectively.

Keywords: Deep learning · Cardiac Segmentation · Joint
optimization · Difference convolution

1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia observed in
clinical practice, occurring in up to 2% of the population and rising fast with
advancing age [10]. Recently, late gadolinium enhancement magnetic resonance
imaging (LGE MRI) has been considered as a promising and reliable technique
to visualize and quantify left atrial scars [11]. The segmentation or quantification
of LA and scars provides important information for the clinical diagnosis and
the treatment of AF patients. Since manual delineations of LA and scars are
time-consuming and subjective, it is crucial to develop techniques for automatic
segmentation of the LA cavity and scar for LGE MRI.
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However, the poor image quality in LGE MRI, various shapes of LA, the sur-
rounding enhanced noise, and the complex patterns of scars make it challenging
to automatically and accurately segment LA and scars. Li et al. reviewed algo-
rithms proposed to perform the LA cavity and scar segmentation or quantifica-
tion from medical images in [2]. Among them, deep learning-based methods are
dominant in these two tasks and they achieved promising results [1,15,16,19–
22]. Nevertheless, most of the methods mentioned in [2] normally solved the two
tasks independently and ignored the intrinsic spatial relationship between LA
and scars which are located on the LA wall, as Fig. 1 shows. The performance
of segmenting the LA cavity and scar may be bottlenecked by the failure in
exploiting the correlation between these two tasks. Multi-task learning has been
shown to outperform methods considering related tasks separately by leverag-
ing the relationship between different tasks. Recently, Li et al. [1] developed a
novel framework where LA segmentation, scar projection onto the LA surface,
and scar quantification are performed simultaneously in an end-to-end style.
The relationship between LA segmentation and scar quantification was explic-
itly explored and has shown significant performance improvements for both tasks
in their work.

Fig. 1. Examples of axial views from two cases in the LAScarQS2022 dataset. The LA
cavity and scar are highlighted in blue and red, respectively. One can see that scars
are located on the LA wall. (Color figure online)
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This paper, inspired by [1], proposes a coarse-to-fine framework to achieve
joint segmentation of LA and scars. In the coarse stage, a vanilla 3D U-Net
[14] is trained to coarsely segment LA and crop a region of interest (ROI) that
contains the whole LA. In the fine stage, a modified dual-task learning 3D U-
Net consisting of two decoders for LA and scars segmentation respectively, is
proposed to segment LA and scars simultaneously. We also introduce an edge-
enhanced feature-guided module (EFGM) at the skip connection between the
shared encoder and the decoder layers for scar segmentation. It includes a differ-
ence convolution submodule based on 3D central difference convolution (CDC)
[7], followed by a spatial attention submodule. We argue that it can help pass
the edge-enhanced features to guide the localization and segmentation of scars as
they are located at the LA wall while utilizing the spatial relationship between
LA and scars. In addition, a dilated inception module (DIM) to extract multi-
scale features is plugged in at the bottleneck of the modified 3D U-Net.

2 Methods

Figure 2 shows the pipeline of our coarse-to-fine joint segmentation framework.
In our work, we develop a two-stage strategy to perform coarse-to-fine joint
segmentation of the LA cavity and scar. In the coarse stage, a vanilla 3D U-
Net is first trained to segment the ROI which contains the whole LA from the
entire 3D volume of each MRI. After the ROIs are detected, they are all cropped
out with a fixed size from the processed MRIs and then fed into the proposed
modified multi-task learning 3D U-Net to obtain segmentation results of LA
cavity and scars simultaneously in the fine stage.

Input

Crop

Network 1

ROI

Final Segmentation

Network 2

Fig. 2. The overall pipeline of our coarse-to-fine joint segmentation of left atrial and
scars framework. The network 1 is a vanilla 3D U-Net to segment the ROI coarsely.
The network 2 is a modified 3D U-Net consisting of two decoders for LA and scar
segmentation respectively to get more accurate segmentation results.
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2.1 Coarse Segmentation of ROIs

As shown in Fig. 1, the regions of the LA cavity and scar are only part of the
whole volume, especially for a scar of such a small size. Therefore, we first employ
a coarse segmentation stage to segment the ROI containing the LA cavity and
scar,aiming at alleviating the class imbalance problem and discarding redundant
or irrelevant surrounding voxels. We choose the vanilla 3D U-Net as our coarse
segmentation network for its effectiveness in various medical image segmentation
tasks without any complex design.

(a) Architecture of proposed modified 3D U-Net (b) Edge-enhanced feature guided module

(c) Dilated Inception module
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Fig. 3. (a)An overview of our proposed modified 3D U-Net with two decoders for LA
and scar segmentation, respectively. (b)Edge-enhanced feature-guided module using 3D
central difference convolution. (c)Dilated Inception module using dilated convolutions
with different rates and shortcut connections.

2.2 Fine and Joint Segmentation of LA and Scars

Most of the automatic scar segmentation or quantification methods require an
accurate initial LA segmentation considering the prior knowledge that atrial
scars are located on the LA wall. Additionally, previous methods usually
solved the two tasks independently and ignored the intrinsic spatial relation-
ship between LA and scars [2]. Therefore, we propose a modified 3D U-Net
consisting of two decoders for LA and scar segmentation and train it in a multi-
task learning manner in the fine stage. Figure 3 (a) provides an overview of
the proposed dual-task learning network architecture. First, an edge-enhanced
feature guided module (EFGM) is introduced at the skip connection between
the shared encoder and decoder layers for scar segmentation. Different from the
original skip connection, the EFGM, which can serve as an edge detector, helps
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preserve differential or edge-related information via extracting edge-enhanced
features and passing them to the corresponding layers at the scar segmentation
decoder. In addition, a dilated inception module (DIM) is introduced at the end
of the original encoder. With the equipment of DIM, the modified 3D U-Net
can capture deep multi-scale semantic features, which is beneficial to the joint
segmentation of LA cavities and scars as they are totally different in size. The
details of the EFGM and the DIM are described below.
Edge-enhanced Feature Guided Module. Difference Convolution, which
explicitly calculates pixel differences during convolution to aggregate local gra-
dient information, has been gradually used in computer vision tasks such as edge
detection [6], face recognition [5], gesture recognition [7], and so on in recent
years. By contrast, vanilla convolution aggregates intensity-level information [6].
As a result, although modern CNNs based on vanilla convolution are powerful
enough to learn rich and hierarchical image representations, it is still hard for
them to focus on edge-related features due to the lack of explicit encoding for
gradient information [5]. The formulations of vanilla convolution and difference
convolution can be written as (take 2D convolution as an example):

y =
∑k×k

i=1
wi · xi (vanilla convolution) (1)

y =
∑

xi,xj∈S
wi · (xi − xj) (difference convolution) (2)

where, xi and xj are the input pixels, wi is the weight in the k × k convolution
kernel. S is the local receptive filed over the feature map.

As mentioned before, scars are located on the LA wall, so we intuitively argue
that the edge information of the LA cavity is important to the localization and
further segmentation of scars. In the vanilla U-Net [13], long skip connections
were introduced to pass features from the encoder path to the decoder path
to recover spatial information lost during downsampling. However, original low-
level features which are simply passed through the skip connections to fuse with
high-level features may contain substantial redundant location or spatial infor-
mation. Motivated by these assumptions, we propose the EFGM equipping differ-
ence convolution at the skip connection between the encoder and the decoder for
scar segmentation in the modified 3D U-Net only to pass the edge-enhanced fea-
tures containing rich edge-related information. With the implementation of the
EFGM, our model can learn to suppress irrelevant regions and highlight salient
regions (edge of LA cavity) useful for more precise localization and segmentation
of scars due to the ability of difference convolution to extract local differential
information from feature maps. Moreover, the edge-enhanced features can also
be regarded as localization guidance for decoding high-level semantic features in
the decoder path in scar segmentation, which benefits the segmentation of scars
located on the LA wall.

Figure 3 (b) illustrates an edge-enhanced feature-guided module. Each mod-
ule mainly includes a difference convolution submodule where we utilize a 3D
central difference convolution (CDC) [7], which is formulated as follows::
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y =
∑

i∈C
wi · (xi − x0) (3)

3D convolution with kernel size 3×3×3 and dilation 1 is used for demon-
stration. The local receptive field cube for the 3D convolution is C =
(−1,−1,−1), (−1,−1, 0), ..., (0, 1, 1), (1, 1, 1).

The same as [6], we use the separable depth-wise convolutional structure
with a shortcut for fast inference and easy training. The residual path in this
module includes a depth-wise convolutional layer, a ReLU layer, and a point-wise
convolutional layer sequentially. To further highlight the edge-related features
and filter background noise, we apply the spatial attention mechanism at the
end of the difference convolution submodule.

Dilated Inception Module. Motivated by the Inception-ResNet-V2 module
[8] and Atrous Spatial Pyramid Pooling (ASPP) [9], we propose the DIM to
encode deep multi-scale features for both LA and scar segmentation. As shown
in Fig. 3 (c), the DIM has four parallel paths with dilated convolutions with
different dilation rates followed by one 1 × 1 convolution. At last, we directly
add the original features with the other four multi-scale features to make a
shortcut mechanism. Different dilation rates can increase the receptive field sizes
of parallel convolution paths by adding zeros between kernel elements without
incrementing parameters. As a result, the proposed DIM can capture features of
objects of various sizes, such as LA cavities and scars, due to the combination
of the dilation convolutions with different dilation rates.

2.3 Loss Function

For the coarse stage only regarding the segmentation of the LA cavity, our loss
function is Dice Loss.

For the fine and joint segmentation stage, our loss function is the sum of the
loss function of segmenting the LA cavity and the loss function of segmenting
scar, as shown in Eq. 4:

Losstotal = LossLA + Lossscar (4)

The loss function used in LA segmentation is the sum of the Dice Loss and the
Cross-Entropy Loss, as shown in Eq. 5:

LossLA = Lossce + Lossdice (5)

For scar segmentation, as the scar only takes up a small fraction of the whole
volume, which can cause a severe class-imbalance problem, the loss function is
the sum of the Dice Loss and the Weighted Cross Entropy Loss, as shown in
Eq. 6:

Lossscar = Losswce + Lossdice (6)
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3 Experiments

3.1 Dataset and Data Preprocessing

MICCAI 2022-LAScarQS2022 (Left Atrial and Scar Quantification & Segmen-
tation Challenge) [1–3] provides 194 LGE MRIs acquired in real clinical envi-
ronment from patients suffering atrial fibrillation (AF) and is composed of two
tasks: 1. LA Scar Quantification 2. Left Atrial Segmentation from Multi-Center
LGE MRIs. In this study, we focus on task 1.

The training dataset provided for task 1 of the LAScarQS 2022 challenge
[1–3] consists of 60 LGE-MRIs with segmentation annotations of LA cavities
and scars. In our experiments, the images and masks were first resampled to the
isotropic resolution of 1 × 1 × 1mm3 . And then, all the volumes were cropped
and zero-pad to the uniform size of 576× 576× 96 . Then we used a 3D version
of contrast limited adaptive histogram localization (CLAHE) [4] to enhance the
contrast of LGE-MRIs, and finally applied sample-wise normalization.

3.2 Implementation Details

Our experiments were run on NVIDIA GeForce RTX 3090 GPU with 24 GB
RAM. We firstly down-sampled the input for the coarse segmentation from 576×
576×96 to 144×144×48 due to memory restriction. The first network was trained
for 100 epochs using the Adam optimizer with a fixed learning rate of 0.001. The
batch size is 4. We randomly chose 48 out of the 60 MRIs as training data; the
rest 12 are validation data. After the training procedure was completed, the
model with the best dice scores on validation data was saved for ROI detection.
For the fine and joint segmentation, we first computed the barycenter of the
ground truth and cropped a region of size 288 × 192 × 96 centered with the
barycenter from the original data. Then the cropped ROIs were fed into the
second network. The second network was trained for 100 epochs using the Adam
optimizer with an initial learning rate of 0.001. The learning rate was reduced
by 0.1 every 1000 iterations and the batch size is 2. We randomly split the data
into training (48 subjects) and testing (12 subjects) subsets for the fine stage.

To reduce the risk of over-fitting and further improve the generalization abil-
ity of our framework, we also apply data augmentation including random flipping
and rotation in both networks training.

At the inference stage, each MRI volume from the testing subset was firstly
down-sampled to 144×144×48 and fed into the first network. The network would
output the predicted binary mask used to locate the ROI. We computed the
barycenter of the predicted mask, cropped a region of size 288×192×96 centered
with this barycenter, and then fed it into the second network. The second network
output the predicted masks of the LA cavity and scar simultaneously inside the
target region and mapped them back to the original size volume, which finished
the inference. The end-to-end segmentation process takes approximately 9 s for
each case.
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4 Results and Discussions

4.1 Ablation Experiments

We run a number of ablation experiments to evaluate the effectiveness of multi-
task learning and the two proposed modules in our modified 3D U-Net. All the
experiments were run in the coarse-to-fine framework mentioned above, sharing
the same coarse stage and we only performed different models in the fine stage
to conduct ablation experiments. Here, U-NetLA denotes the vanilla 3D U-Net
architecture for LA segmentation individually. U-Netscar denotes the vanilla 3D
U-Net architecture for scar segmentation individually. U-NetLA and scar denotes
the multi-task learning 3D U-Net consists of a shared encoder and two decoders
for joint segmentation of LA and scars, which is also our baseline model. Besides,
we successively tested the performance of the baseline model incorporating the
DIM, the baseline model incorporating the EFGM, and the baseline model incor-
porating both the EFGM and the DIM. All these experiments were conducted
using the same aforementioned training configurations and loss functions.

All the models were evaluated through the validation platform provided by
the LAScarQS2022 organizer. As shown in Table 1, the segmentation perfor-
mance of LA was evaluated by the Dice score, average surface distance (ASD)
and Hausdorff distance (HD). The scar’s quantification performance was evalu-
ated via first projecting the segmentation result onto the manually segmented
LA surface. Then, the Accuracy, Specificity and Sensitivity measurement of the
two areas in the projected surface, Dice score (Dice) and generalized Dice score
(Diceg) were used as indicators of the accuracy of scar quantification [1]. Diceg
is a weighted Dice score by evaluating the segmentation of all labels [17,18],
which is formulated as follow [1]:

Diceg =
2
∑Nk−1

k=0 |Sauto
k ∩ Smanual

k |
∑Nk−1

k=0 (|Sauto
k + Smanual

k |)
(7)

where Sauto
k auto and Smanual

k indicate the segmentation results of label k from
the automatic method and manual delineation, respectively, and Nkis the number
of labels.

Table 1. Summary of the quantitative evaluation results of LA segmentation and scar
quantification on the LAScarQS 2022 validation set in ablation experiments. EFGM
denotes the proposed edge-enhanced feature-guided module discussed in Sect. 2.2, and
DIM denotes the proposed dilation inception module discussed in Sect. 2.2.

Method LA Scar
Dice ASD(mm) HD (mm) Accuracy Specificity Sensitivity Dice Diceg

U-NetLA 0.860 2.625 30.028 N\ A N\ A N\ A N\ A N\ A
U-Netscar N\ A N\ A N\ A 0.999 0.999 0.534 0.580 0.909
Base(U-NetLA and scar) 0.869 2.318 27.050 0.999 0.999 0.549 0.596 0.913
Base+EFGM 0.867 2.489 26.170 0.999 0.999 0.588 0.621 0.914
Base+DIM 0.871 2.355 25.636 0.999 0.999 0.605 0.617 0.914
Base+EFGM+DIM 0.875 2.233 24.731 0.999 0.999 0.603 0.631 0.916
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Table 1 presents the quantitative results for LA segmentation and scar quan-
tification. It demonstrates that our baseline model outperforms U-NetLA and
U-Netscar which consider these two related tasks separately, verifying the superi-
ority of multi-task learning. The relationship between LA segmentation and scar
segmentation is exploited implicitly through multi-task learning. Figure 4 and
Fig. 5 illustrate the segmentation results of the LA cavity and scar, respectively,
from the mentioned ablation experiments. One can see that the boundary of seg-
mentation results of U-NetLA is far from the boundary of the ground-truth and
U-Netscar tends to make mistakes on non-LA wall regions and under-segment
scars, while the baseline model results are closer to the ground truth.

Meanwhile, Table 1 illustrates the effectiveness of each proposed module,
suggesting the advantage of the EFGM and the DIM. Compared to the baseline
model, incorporating the DIM reduces about 2mm in HD in segmenting LA and
improves the Dice in segmenting scar by around 2%. This observation implies the
need for learning deep multi-scale features when coping with segmenting targets
of different sizes since scars are quite small compared with the LA cavity. Note
that incorporating the EFGM into the baseline model improves the Dice in seg-
menting scar by around 2.5% compared to the baseline model and outperforms
the baseline model only equipped with the DIM. As shown in Fig. 5, introduc-
ing the EFGM can alleviate the problem of under-segmenting scars observed
in other models. Furthermore, it indicates that the edge-related information can
effectively guide the segmentation of scars while encoding the prior spatial knowl-
edge that scars are located at the LA wall into the framework, thus utilizing the
spatial relationship between LA and scars more explicitly. However, the perfor-
mance of the model which only incorporates the EFGM even degrades a little
in Dice and ASD of segmenting LA compared to the baseline model. We argue
that this is because the EFGM is mainly designed for the scar segmentation task,
which is much more challenging than LA segmentation, so it may not improve
the segmentation performance of LA.

The highest performance gain (about 1.5% in Dice of LA segmentation
and 5% in Dice of scar segmentation compared to U-NetLA and U-Netscar) is
observed when incorporating both the DIM and the EFGM. Moreover, the model
equipped with both two modules achieves the best segmentation performance in
almost all metrics in both tasks. Figure 4 also demonstrates that the boundary
of LA segmentation results is the most consistent with the ground truth among
all the experiments, while Fig. 5 illustrates that our final model can detect and
segment scars more precisely than any other model in our ablation experiments.
It shows that the combination of two modules can further improve the perfor-
mance of the framework. Note that the model incorporating both the DIM and
the EFGM outperforms the model only incorporating the DIM in LA cavity seg-
mentation, but the introduction of the EFGM cannot improve the segmentation
of the LA cavity as mentioned above. This finding is probably attributed to the
explanation that relatively good performance in the scar segmentation task can
boost the LA segmentation task during the simultaneous optimization process
in multi-task learning.
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U − Net Base Base+DIM Base+EFGM Base+EFGM
+DIM

GT

Fig. 4. Visualization of the LA cavity segmentation results on the LAScarQS 2022
validation set by using different training combinations.

Base Base+DIM Base+EFGM Base+EFGM
+DIM

GTU − Net

Fig. 5. Visualization of the scar segmentation results on the LAScarQS 2022 validation
set by using different training combinations.

4.2 Comparison Experiments

We implemented U-Net with different loss functions to conduct comparison
experiments for both LA segmentation and scar segmentation. We used the same
hyper-parameters in these experiments for consistency.

Table 2 tabulates the quantitative comparison results for LA segmentation
and scar quantification. For LA segmentation, our method achieves 0.875 in
Dice, demonstrating its advantage in segmenting the LA cavity more accurately.
Meanwhile, the proposed coarse-to-fine joint segmentation framework obtains
the smallest HD and ASD, which means it can identify the correct boundaries of
LA cavities despite their various shape. Figure 6 also proves that our proposed
model can achieve better segmentation compared to other methods.

Note that our method shows significant improvement in scar quantification
results. As demonstrated in Fig. 7, the vanilla U-Net models tend to under-
segment scars while our method alleviates this problem. With the help of the
DIM and the EFGM, edge-enhanced low-level and multi-scale features are fused
while more contextual semantic information and more precise spatial information
are integrated, facilitating the segmentation of scars which are hard to recognize
and locate due to their small size, complex patterns, and surrounding noise.
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Overall, our method outperformed superiorly to other methods, implying its
effectiveness. This could result from the two major contributions in our frame-
work. First, the multi-task learning model can effectively exploit the relationship
between LA and scars. Moreover, the EFGM and the DIM are introduced to
further boost the multi-task learning process through providing spatial guidance
for segmenting scars and learning multi-scale representation. Second, the two-
stage coarse-to-fine framework can suppress the background pixels that dominate
foreground pixels in the scar segmentation, thus significantly mitigate the class
imbalance problem.

U − Net − BCE Ours GTU − Net − Dice

Fig. 6. Visualization of the LA cavity segmentation results on the LAScarQS 2022
validation set compared with other classic methods.

U − Net − BCE Ours GTU − Net − Dice

Fig. 7. Visualization of the scar segmentation results on the LAScarQS 2022 validation
set compared with other classic methods.
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Table 2. Summary of the quantitative evaluation results of LA segmentation and scar
quantification on the LAScarQS 2022 validation set in comparison experiments.

Method LA Scar
Dice ASD(mm) HD (mm) Accuracy Specificity Sensitivity Dice Diceg

U-NetLA/scar-BCE 0.849 2.980 41.934 0.681 0.999 0.362 0.466 0.890
U-NetLA/scar-Dice 0.845 3.227 43.622 0.670 0.999 0.340 0.427 0.883
Ours 0.875 2.233 24.731 0.999 0.999 0.603 0.631 0.916

5 Conclusion

This paper proposes a coarse-to-fine framework for joint segmentation of LA
and scars from LGE MRI. The coarse segment network is a vanilla 3D U-Net to
extract ROI of the volume, and the fine segment network is a modified 3D U-Net
consisting of two decoders for LA and scar segmentation, respectively, aiming at
segmenting the LA cavity and scar simultaneously in a multi-task learning man-
ner. In addition, we introduce an edge-enhanced feature-guided module using
3D central difference convolution to exploit the spatial relationship between LA
and scars and a dilated inception module to learn multi-scale semantic features
in our modified 3D U-Net. We evaluated our method on the LAScarQS 2022
validation dataset, and the convincing results suggest the effectiveness of the
newly proposed coarse-to-fine framework, especially for scar segmentation or
quantification.
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