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Abstract. Left atrial (LA) segmentation and quantification of atrial
scars have opened a path to automating Atrial Fibrillation (AF) diagno-
sis. This paper proposes a two-stage approach for sequential segmenta-
tion of the LA cavity and scars. Our Multi-scale Weight Sharing (MSWS)
Network extracts features at multiple scales and is used for LA cavity
segmentation. We also propose a Boundary2Patches method which per-
forms segmentation of scars around the detected LA cavity boundary.
The MSWS network learns a better representation of features through
sharing weights across scales, and the Boundary2Patches method focuses
on smaller scars constrained in the region around the LA cavity wall. On
the challenge cohort (validation set), our method achieves an average
Dice score of 0.938 and 0.558 for the LA cavity and scars segmentation
of task 1, and a Dice score of 0.846 for LA cavity segmentation of task
2. The pre-trained models, source code, and implementation details are
available at https://github.com/kabbas570/LAScarQS2022.

Keywords: Left Atrial segmentation · Scar quantification · Atrial
fibrillation (AF) · Multi-scale Weight Sharing Network ·
Boundary2patches

1 Introduction

Atrial Fibrillation (AF) is a condition that produces an irregular, fast or sluggish
heartbeat in the upper chamber of the heart. According to the US Centers for
Disease Control and Prevention (CDC) [5], AF is one of the most prevalent
forms of cardiac arrhythmia that increases the risk of ischemic stroke. Strokes
resulting from AF complications are typically more severe than strokes due to
other underlying causes [6]. Treatment and diagnosis of AF remain a concern.
The assessment of AF patients may depend on the position and size of scars
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which could provide vital information about the onset of AF. Late gadolinium
enhancement magnetic resonance imaging (LGE MRI) has evolved to assess
the extent of scars and the Left Atrial (LA) cavity [10]. The LGE MRI has
allowed scientists to automate the time-consuming diagnosis of AF. However,
such automation requires LA cavity segmentation and scars quantification.

Analyzing the LGE MRI scans could provide valuable insight for AF diag-
nosis and treatment stratification [18]; however, the manual delineation of LA
scarring and cavities for quantification is laborious and highly subjective [16];
therefore, it is desirable to automate the process. This challenge has attracted
considerable research interest even before the era of deep learning. Intensity-
based thresholding [12], clustering methods [7], and graph-cuts [17] were popular
traditional methods. However, these methods have limitations of computational
costs and manual selection for the areas of interest to be segmented.

With the advent of deep learning, LA segmentation and scars quantification
have attracted additional research. Several fully automated methods have been
proposed in this field. One of the most recent methods by Li et al. [15] utilized
shape attention (SA) through a surface projection of the LA cavity and achieved
higher performance for scar quantification. The authors used the inherent corre-
lation between the LA cavity and scars, and trained a joint segmentation archi-
tecture. A hybrid method based on graph cuts and CNNs was used by [13] for
the automatic scar segmentation. A multi-scale three-stage network was used to
learn both local and global features. Vesal et al. [20] employed a UNet [19] based
model with dilated convolutions in the bottleneck to segment 3D volumetric
scans. Each volume is centre-cropped to remove over-represented backgrounds
and to learn only a particular region of interest to improve LA segmentation.
Bian et al. [3] used a pyramid pooling module to extract the features at dif-
ferent scales and improved the robustness of the model against various shapes
of the LA. They also implemented an Online Hard Negative Example Mining
strategy to classify a voxel with low certainty. A contour loss is introduced by [9]
to provide spatial distance information during training and used in a two-stage,
three-dimensional UNet-based architecture. The first UNet generates coarse seg-
mentation maps, and the second UNet refines coarse predictions to segment the
LA at a higher resolution accurately. Yang et al. [21] used an atlas-based method
to identify the LA cavity first and then used a super-pixel-based approach to
detect the scars in that region. Campello et al. [4] introduced a CyclicGan to
first increase the number of annotated LGE MRI scans followed by a modified
UNet [19] network to perform scar tissue segmentation.

Fig. 1. Visualisation of LA cavity and scars from LAScarQS 2022 challenge dataset.
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Challenges remain however, mostly because of the poor quality of annotated
LGE MRI scans, the heterogeneity of LA shape and appearance, and the presence
of small scars and thin tissue walls. Accordingly, the LAScarQS 2022 competition
[14–16] seeks a solution to the aforementioned problems by focusing on the LA
cavity and scars segmentation from LGE MRI. For illustration, Fig. 1 shows
examples of LGE MRIs scan from the LAScarQS 2022 challenge dataset.
In this paper, we focus on segmenting the LGE MRI scans over multiple scales
by concurrently sharing the weights and enabling the kernels to learn shared
representations of features using MSWS-Net. In a second stage, we propose a
Boundary2Patches method to detect the scars around the LA boundary and
quantify the scars using patches and a modified UNet architecture.

2 Proposed Approach

Fig. 2 presents the proposed sequential segmentation framework, for both the LA
cavity and scars segmentation. First, we segment the LA cavity using MSWS-Net
and then use its output as an initialization step for scar quantification. In Fig. 2,
the black arrows represent the workflow for LA cavity segmentation, the lime
green arrows for scars segmentation (Boundary2Patches method), and the orange
color is used only for visualisation, i.e. it is not part of training or inference. For
both tasks, the training is performed separately; but the two steps are merged
together during inference in an sequential manner. The following subsections
will explain in detail each network and the post-processing steps adopted during
training and testing.

Fig. 2. A schematic of the proposed sequential approach for LA and atrial scars seg-
mentation.
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Fig. 3. The proposed Multi-Scale Weight Sharing Network. (a) Extracting features at
various scales from the input. (b) The feature merging module; combining low and high
resolution features.

2.1 Multi-Scale Weight Sharing Network (MSWS-Net)

In this paper, we propose the concept of weight sharing over several scales,
namely, Multi-scale Weight Sharing Network (MSWS-Net), as illustrated in
Fig. 3. All the weight sharing stages must have the same number of kernels
in each layer. In a conventional encoder-decoder architecture such as UNet, the
features are extracted from only a single scale of input and down-sampled by
multiple factors; thus, the convolutional kernels only learn a single scale features
from the input space. Instead, we employ the concept of kernel sharing across
several scales and make kernels capable of learning the same characteristics from
various input spaces. Furthermore, all kernels share the same parameters at each
encoder stage; thus, the overall number of parameters in the architecture does
not increase, and the network benefits from convolving the same kernels with
varying dimensions of incoming feature maps. We experimented with different
numbers of encoders n ∈ [2, 4] and discovered that n = 2 performed best while
n > 2 did not improve the results significantly, detailed experiments are men-
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tioned in Table 1. We speculate that the LA cavity appears self-similar at these
two scales, and increasing the number of encoders beyond 2 has no effect on
the network’s learning ability. Therefore, in our final implementation, we set n
= 2. The optimal number of multi-scale levels depends upon the dataset’s self-
similarity across scale, and a performance boost may vary for different datasets.

The proposed multi-scale weight sharing (MSWS) architecture is depicted in
Fig. 3. It takes two images as input with dimensions [H x W x C] and [H/2 x W/2
x C]; note that number of channels should be the same for both images. For this
challenge, we resized all images to H = 640 and W = 640 using zero padding.
Furthermore, each 2D scan was normalized to zero mean and unit variance. Two
consecutive 3 × 3 convolutions are performed at each encoder stage, followed by
ReLU activation and batch-normalization. The proposed weight-sharing strat-
egy across multiple scales will help the network to learn the features of different
scales. The shared weights are represented by an orange vertical dotted arrow.
At the decoder side, the features of various scales are combined using a fea-
ture merging module (FMM) at each stage. The FMM merges the information
across two-resolution representations. First, it upsamples the lower resolution
features with a factor = 2, and then it preforms an element-wise addition with
the corresponding incoming features from the other encoder. The resultant rep-
resentation is semantically richer and spatially more precise; helping to segment
various shapes of LA cavity efficiently. In Fig. 3, the black arrow, dotted black
arrow and blue arrow represents features of higher-resolution, lower-resolution,
and merged features, respectively.

2.2 Boundary Processing with the Boundary2Patches Method

Fig. 2 depicts a broad overview of the proposed boundary-based processing
method, namely, Boundary2Patches for the scars segmentation. As previously
indicated, the proportion of scars is relatively small compared to the entire image;
therefore, we restricted the search area using the Boundary2Patches approach
to concentrate more on the scars. Current literature implies that scars are most
prevalent across the LA cavity’s boundary; hence, we solely search for scars in the
region adjacent to the LA wall. From the LA cavity segmentation, the boundary
of the LA cavity is identified and 64 × 64 patches from the original image are
extracted along the boundary, as illustrated in Fig. 2. The patch size of 64 × 64 is
selected as it incorporates all the surrounding scars if we reconstruct the ground
truth from these patches. For Boundary2Patches method, we trained another
encoder-decoder network separately and ran it sequentially with MSWS-Net
during inference. The architecture used for Boundary2Patches method is shown
in Fig. 4. It has four stages (two consecutive 3 × 3 convolutions at each stage
with ReLU activation and batch-normalization) at the respective encoder and
decoder sides. For the encoder, features are down-sampled twice using strided
convolution with stride = 2 to avoid the loss of information for small-size scars.
On the decoder side, transposed convolutions are used to upsampled the incom-
ing features, and the upsampled features are concatenated with corresponding
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Fig. 4. The modified UNet architecture for scars segmentation.

features of the encoder for better gradient flow. Sigmoid was used as an acti-
vation function for the last output layer with 1× 1 convolution to generate the
segmentation map for scars.

In the final implementation, we further increased the input information by
concatenating the patches with a probability map of scar based on histogram and
non-negative values obtained after z-score normalization. We discovered that in
LGE MRI, scars have greater intensities than the surrounding areas, thus we
computed the histogram of higher intensities and used it in conjunction with
extracted patches and a non-negative mask of scars, as illustrated in Fig. 2.

3 Dataset Description

The dataset was provided by the LAScarQS 2022 Challenge, which intends
to develop automated/semi-automated methods for segmenting the LA Multi-
Center LGE MRIs and quantifying scars. The dataset consists of 194 LGE
MRIs. The MRI scans of LGE were produced at two distinct locations using
scanners with varying resolutions. The included gold standard labels con-
sist of the LA blood pool (atriumSegImgMO.nii.gz) as well as the LA scars
(scarSegImgM.nii.gz). Furthermore, training and testing on the dataset can be
conducted remotely from several local centers while the dataset remains con-
cealed to preserve data privacy. During the training phase, the dataset was
subdivided into 70% for training, 20% for validation, and 10% for inference
to evaluate our proposed models and undertake ablation experiments.

4 Experimental Details

The proposed framework was implemented in PyTorch, and all the experiments
were performed using a cluster of NVidia A100 GPUs [1]. For both approaches,
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MSWS-Net and Boundary2Patches, the models were trained using Adam opti-
mization [11], with β1, β2= [0.9,0.99], and the learning rate was set to = 0.0001.
During training, we set the maximum number of epochs to 100 and the batch
size to 24. In addition, we employed a custom early stopping mechanism from
terminating the training before the model overfits the data. In our customized
early stopping method, we monitored the validation loss and Dice score and
halted training if either was not improving for five consecutive epochs.

4.1 Loss Function

While analyzing the data, we found that the LA cavity and scars occupy a small
fraction of the full image. Such imbalance in the data could not be handled by
commonly used loss functions for segmentation, such as the Dice loss or binary
cross entropy loss, as listed in Table 2. Initially, MSWS-Net was trained with
a weighted Dice loss, but this led to a greater number of false negatives (FNs)
than false positives (FPs). Consequently, we trained both networks with the
Focal Tversky loss function [2] given by Eqs. 1 and 2,

TIc =
∑N

i=1 ŷicyic + ε
∑N

i=1 ŷicyic + β
∑N

i=1(1 − ŷic̄)yic + α
∑N

i=1 ŷic(1 − yic̄) + ε
(1)

FTLc =
∑

c

(1 − TIc)1/γ (2)

where ŷic is the probability that the pixel is from the LA cavity and yic is the
probability of background class. The hyperparameter α focuses on FPs, β focuses
on FNs, and γ focuses on hard examples. These hyperparameters are tuned to
get a balance between precision and recall in the case of large class imbalance.
In our experiments, we trained MSWS-Net with α, β, γ = [0.3,0.7,0.75] and the
Boundary2Patches method with α, β, γ = [0.4,0.6,0.75].

5 Results and Discussion

This section describes the results of our methods applied to the validation data
for Tasks 1 and 2 of the LAScarQS 2022 challenge. In addition, we performed
ablation studies to measure the effectiveness of the proposed methods. Finally,
MSWS-Net is compared to two of its ablated variants, while Boundary2Patches
was compared to two baseline schemes. The following list overviews four exper-
iments conducted in this paper.

1. Standard UNet Architecture: The ability of proposed MSWS-Net to
extract features at multiple-scales is compared to a standard UNet archi-
tecture with a single encoder and the same number of stages as MSWS-Net.
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2. MSWS-Net without weight sharing: The weight sharing strategy is eval-
uated by training the MSWS-Net without sharing the weights of two encoders.

3. Center-Cropping: We trained the network depicted in Fig. 4 on centred
cropped images for scar quantification and compared the results with the
patch-based technique.

4. Without using the increased input information: We solely used the
cropped patches in the Boundary2Patches method to evaluate the benefit of
employing the additional information concatenated at the input of the net-
work.

5. Choice of Loss function: We experimented with various loss functions and
their combinations. Due to the small volume of the to-be-segmented region of
interest, we modified the focal loss using Tversky loss to reduce the number of
false negatives and achieve the optimal tradeoff between precision and recall.
Table 2 summarizes the results of various loss functions.

6. Number of Weight-Sharing Encoders for MSWS-Net: For MSWS-
Net, we increased the number of encoders from 1 to 4 while sharing the
weights and having spatial dimensions in the range of H × W to H

2n × W
2n ,

where ‘n’ is the number of encoders. We found that n = 2 is the optimal
tradeoff between performance and network complexity for the task at hand.
By increasing the ‘n’, the performance gain was statistically insignificant at
the expense of slower processing and requiring more resources. Table 1 shows
the results of ablation studies conducted to choose optimal number of Weight-
Sharing Encoders for MSWS-Net.

Table 1. Ablation studies to choose optimal number of weight sharing encoders, Giga
Floating Point Operations per Second (GFLOPs), Input Size, and Dice score.

# of Encoders GFLOPs ↓ Input Size (MB) ↓ Dice Score ↑
1 310.80 1.56 0.828

2 339.31 1.95 0.918

3 346.44 2.05 0.920

4 348.22 2.10 0.922

Table 2. Comparison of different loss functions on validations set of task: 1. TPs: True
Positives, FPs: False Positives, FNs: False Negatives, IoU: Intersection over Union.

Loss Function Dice Score ↑ TPs ↑ FPs ↓ FNs ↓
Binary-Cross Entropy 0.895 1,821,410 112,551 305,740

1-IoU 0.906 1,857,001 106,154 270,149

Focal Tversky 0.918 1,847,210 109,765 136,254
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5.1 LA Cavity Segmentation: Task 2

For this task, MSWS-Net is able to segment the LA cavity of different shapes
accurately, achieving a Dice score of 0.846 on the validation set. Table 3 shows
the results of the aforementioned ablation experiments and demonstrates the
effectiveness of multiple scale encoders and weight-sharing schemes. Different
evaluation metrics such as Dice score (DS), Hausdorff Distance (HD), average
surface distance (ASD), and sensitivity were used to quantify the segmentation
performance. The qualitative results are shown in Fig. 5, comparing the visual
performance of MSWS-Net with its ablated versions. The third row indicates the
results of MSWS-Net, whereas the first and second rows represent the results of
standard UNet and MSWS-Net without the weight sharing approach.
For visualization purposes, we have projected the ground truth and predicted
segmentation maps on the input images. In addition, we have assigned different
colors to all qualitative results reported in this paper (Green represents false
positives, Red represents false negatives, and Yellow represents true positives).

5.2 LA Cavity and Scars Segmentation: Task 1

Task 1 of the challenge aims to segment the LA cavity and the atrial scars.
For scar quantification, we first segmented the LA cavity and then used the
Boundary2Patches approach to find scars along the LA boundary, where they
are predominantly present. The performance of the scar segmentation relies on
the precise segmentation of the LA cavity. To improve the segmentation of the
LA cavity, we first trained the MSWS-Net on training data from Task 2 and
then fine-tuned it on Task 1. Ultimately, we obtained a Dice score of 0.938 for
the LA cavity segmentation of Task 1 on the validation set. Figure 6 presents
qualitative results for LA cavity segmentation from Task 1 of the challenge.

For scar quantification, we used the boundaries of predicted LA cavities,
which are predicted via MSWS-Net, to crop the patches during the inference
stage. The number of cropped patches during inference differed for each image,
depending upon the area of the segmented LA cavity. Table 4 summarizes the
performance of the proposed Boundary2Patches method for scar segmentation.
For comparison purposes, we centred cropped the images (384× 384) and tried
to predict the scars, which resulted in lower performance, as listed in Table 4.
We also highlighted the importance of using the increased input information at

Table 3. Validation dataset benchmarks quantitative results for Task 2 of LA cavity
segmentation and comparison of MSWS-Net with its ablated versions.

Method Dice Score ↑ HD (mm) ↓ ASD (mm) ↓
Standard UNet architecture 0.728 96.5 3.22

MSWS-Net without weight sharing 0.708 107.2 5.6

MSWS-Net 0.846 105.7 3.39
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Fig. 5. Qualitative results for Task 2 (LA cavity segmentation). Results of (a) proposed
MSWS-Net (b) Standard UNet architecture (c) MSW-Net without weight sharing strat-
egy.

the input of our network by comparing it to an ablated version of the Bound-
ary2Patches method without the additional input derived from the histogram
and non-negative mask. Some visual results of scar quantification are shown in
Fig. 7.
We additionally applied the connected component analysis (CCA) [8] as a post-
processing step on scar segmentation maps to eliminate small false positives from
the final predictions, which resulted in a boost of 1.06% in the Dice score for
scar quantification, as listed in Table 4. For the CCA implementation, we used
the 4-connected component method and discarded components with less than 10
pixels or more than 450. These numbers were chosen empirically. The CCA algo-
rithm also reduced the detection of true positives, but their dismissal ratio was

Table 4. Validation dataset benchmarks quantitative results for scars quantification
and comparison of different ablation studies for the Boundary2Patches method.

Method Dice Score ↑ Sensitivity ↑
Center-Cropping 0.407 0.412

Boundary2Patches
(single channel input)

0.465 0.484

Boundary2Patches
(three channel input)

0.547 0.559

Boundary2Patches (three channel input
+ post-processing with CCA)

0.558 0.568
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Fig. 6. Qualitative results for Task 1 of LA cavity segmentation.

far less than the removal of false positives, which resulted in improved perfor-
mance. Figure 8 showcases the visual motivation of applying the CCA technique.
It helped to remove the false positive outliers highlighted through the yellow dot-
ted box.

Furthermore, the segmentation performance of the proposed MSWS-Net and
Boundary2Patches method in the LAScarQS 2022 testing set is reported in
Table 5. For task-1, the test set comprises 22 images, and for task-2, it has

Fig. 7. Visual results for scar quantification of Task 1.
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Fig. 8. Removal of small size false positive predictions through CCA technique. (a)
Predictions before applying CCA (b) Refined predictions after applying CCA.

44. We observed that the overall performance on the test set is very similar to
those of the validation benchmarks. For the test phase, the challenge required a
docker file submission. The results are reported in terms of Dice score, HD, and
ASD for LA cavity segmentation and for scars quantification; we evaluated the
performance using Dice score and sensitivity metrics.

Table 5. LAScarQS 2022 testing dataset benchmarks quantitative results for LA cavity
segmentation and scars quantification.

Task Dice Score ↑ HD (mm) ↓ ASD (mm) ↓ Sensitivity ↑
Task-1 LA cavity segmentation 0.922 110.65 3.48 -

Task-2 LA cavity segmentation 0.792 67.45 2.89 -

Task-1 scars quantification 0.549 - - 0.599

6 Conclusion

For the LAScarQS 2022 challenge, we propose a sequential approach to seg-
ment left atrium and atrial scars using a multi-scale weight-sharing network
and boundary-based processing. As the challenge seeks to resolve two problems
jointly, namely the LA cavity’s segmentation and the quantification of scars, we
divided into two sub-tasks to address them together. Essentially, the MSWS-Net
extracts features at various scales, and learns a more accurate representation
of features via multi-scaling and weight-sharing techniques. Additionally, the
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Boundary2Patches method aids in focusing on and accurately segmenting small
scars. Lastly, the proposed approach achieves an average Dice score of 0.938 and
a Dice score of 0.558 for the segmentation of LA cavities and scars, respectively,
in Task 1, as well as an average Dice score of 0.846 for the segmentation of LA
cavities in Task 2.
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