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Abstract. Thanks to the capacity for long-range dependencies and
robustness to irregular shapes, vision transformers and deformable con-
volutions are emerging as powerful vision techniques of segmentation.
Meanwhile, Graph Convolution Networks (GCN) optimize local features
based on global topological relationship modeling. Particularly, they have
been proved to be effective in addressing issues in medical imaging seg-
mentation tasks including multi-domain generalization for low-quality
images. In this paper, we present a novel, effective, and robust frame-
work for medical image segmentation, namely, UGformer. It unifies novel
transformer blocks, GCN bridges, and convolution decoders originating
from U-Net to predict left atriums (LAs) and LA scars. We have identi-
fied two appealing findings of the proposed UGformer: 1). an enhanced
transformer module with deformable convolutions to improve the blend-
ing of the transformer information with convolutional information and
help predict irregular LAs and scar shapes. 2). Using a bridge incor-
porating GCN to further overcome the difficulty of capturing condition
inconsistency across different Magnetic Resonance Images scanners with
various inconsistent domain information. The proposed UGformer model
exhibits outstanding ability to segment the left atrium and scar on the
LAScarQS 2022 dataset, outperforming several recent state-of-the-arts.

Keywords: Left atrium segmentation · Scar prediction ·
Transformer · Graph convolution model

1 Introduction

Late gadolinium enhancement magnetic resonance imaging (LGE-MRI) is typi-
cally used to provide quantitative information on atrial scars [25]. In this mea-
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surement, location and size in the left atrium (LA) indicate pathology (i.e., LA
scars) and progression of atrial fibrillation [12].

Nowadays, deep learning models have been widely used to segment LA cav-
ities and quantify LA scars from LGE-MRIs [3] to help radiologists with initial
screening for quick pathology detection. Meanwhile, LGE-MRIs are often col-
lected by multiple scanners and possibly in low imaging quality. Each of them
produces inconsistent domain information [14], including different contrast and
spatial resolutions. (1) Promoting the generalization of a segmentation model
against domain inconsistency becomes another challenge (Fig. 1).

Fig. 1. Typical examples of LAScarQS Dataset [14–16] in various contrast: (a) Proper
contrast, (b) low contrast, and different spatial resolution (c) 886 × 864, (d) 480 × 480.

Essentially, semantic segmentation is a mapping from input images to output
pixel labels through an empirically designed segmentation model. Recent com-
puter vision research communities have witnessed great achievements brought by
the Convolutional Neural Network (CNN) and Vision Transformers (ViT) [4,10].
However, there is a lack of theoretical explanations to guarantee prediction
and generalization performance [2]. Besides, there is no fixed shape in human
anatomies (i.e., LAs) and pathologies (i.e., LA scars). Atlas-based segmentation
strategy cannot be utilized ideally [13,30], while normal CNNs are not good at
predicting deformable objects either [22].

Conventional CNN-based segmentation models only take care of local depen-
dencies since the convolutional kernel only sees visual information in closing pix-
els within the receptive field. It leads to ignoring the full picture as a whole [21].
Common pooling layers in CNN will also degrade spatial information since it
regards neighboring pixels as one single pixel. Losses in spatial information
restrict the prediction performance of conventional CNN models [26].

Fortunately, Graph Convolutional Networks (GCN) are promised to address
those challenges effectively by leveraging the robustness brought by the topo-
logical properties [11]. The topological relationship extracted by GCN while
performing representation learning has been proved more stable against various
application scenarios than that of the geometric relationship of general vision
models, i.e., CNNs and ViTs [1]. In addition to the local features extracted by
CNNs, GCN also provides an approach to model the relationship among differ-
ent local features. It optimizes local features of low-quality images by Laplacian
smoothing to a certain extent [9], beneficial to promoting generation across data
from different domains.

Meanwhile, recently ViT models are becoming popular in semantic segmen-
tations in handling long-range dependencies. It models spatial image information
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by engaging the self-attention mechanism [24]. Swin Transformer [17] and Seg-
Former [27] are two pioneering approaches to engaging ViTs in segmentation
tasks. Swin Transformer engages sliding window operation. It fulfills the local-
ization of convolutional operations while saving time consumption in computa-
tion. SegFormer connects the transformer to lightweight multi-layer perception
decoders, allowing it to combine local and global attention. In medical image
segmentations, TransUnet [4], UTnet [7], and LeViT-Unet [28] are the first few
trials to integrate ViT modules in the U-Net [22] architecture. All of them achieve
state-of-the-art segmentation performance on the Synapse dataset [23].

Fig. 2. Positions of LA and LA scars [16]

In terms of LA scar prediction, prior work predicts LA and LA scars sepa-
rately without considering the relationship between them [16]. Meanwhile, the
size of the scars is relatively insignificant, bringing difficulties in the predic-
tion. Fortunately, LAs are much easier to be predicted, while LA scars are often
detected near identified LA boundaries Fig. 2. Inspired by [29], we believe that
combining the prediction of LAs and LA scars can be expected to improve scar
segmentation performance.

In this paper, we propose a novel U-shaped GCN with Enhanced Transformer
module (UGformer). It is a two-stage segmentation model by segmenting the
LA before quantifying the irregularly shaped LA scars. It consists of a novel
transformer block as the encoder, convolution blocks as the decoder, and skip-
connections with a GCN as the bridge.

In the encoder, the novel transformer block, namely, enhanced transformer
block (ETB), is built by replacing the single multi-head self-attention module
with paralleling the multi-head self-attention module (MHSA) and deformable
convolutions (DCs). It models global spatial attention while dealing with irregu-
lar shape information by leveraging advantages in both convolutions and trans-
formers, i.e., proper generalization ability and sufficient model capacity [26].
The bridge with GCN connection optimizes the fusion of long-range information
and context information between the encoder and the decoder [9]. It contin-
uously strengthens the representation of intermediate feature maps to find a
low-dimensional invariant topology, improving the extrapolation of segmenta-
tion models.

The major contributions of this paper are summarized as follows:
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– We proposed the UGformer, a novel two-stage segmentation model for LA
and LA scar segmentation.

– In the encoder, we designed a novel enhanced transformer block combining
multi-head self-attention and deformable convolutions to model global atten-
tion and address irregular shapes of LA scars.

– In the bridge, we proposed a novel GCN-based structure to optimize the
global space of intermediate feature layers.

– Compared to other state-of-the-art baselines, the predicting performance of
the proposed model on LAScarQS dataset [14–16] demonstrates the effective-
ness and generalizability of the proposed UGformer.

2 Methodology

As depicted in Fig. 3, the proposed UGformer consists of an encoder, a U-Net
decoder [22], and a bridge. Specifically, the encoder is constructed by ETB, while
deconvolutions are used to build the decoder. They are connected by the bridge
with GCN.

Fig. 3. UGformer Structure

2.1 Encoder Block

In the encoder, the convolutional STEM module [8], including a convolution
module, a GELU module, and a batchnorm to vectorize the input features with
down-sampling, was employed. It promotes quick convergence and robustness
during training.

Each encoding layer (seen in Fig. 3) is constructed by a Patch Aggregation
Block. Be noted that the transformer operation is not designed to downsample
the feature dimension. Instead, it is constructed by the Patch Aggregation Block,
including a 2 × 2 kernel and a stride operation with two steps to fulfill the
hierarchy structure.
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Besides, each layer also contains an ETB (seen in Fig. 4) to enable the
UGformer to obtain both long-range dependencies and local context.

Fig. 4. EBT in UGformer

Inspired from [24], a single MHSA block is involved in ETB to extract long-
range relationships and spatial dependencies. We engage DCs [5] parallel to
MHSA to improve segmenting irregular LAs and quantifying LA scars. To make
ETB adapt to both MHSA and deformable convolutions, a set of learnable
parameters (a and b see Fig. 4) are set to leverage both paralleling parts [19].

2.2 Bridge

The bridge module is added to the skip connection from the original U-Net [22]
with a GCN transformation (seen in Fig. 5). It bridges the encoder with ETB and
the decoder constructed by convolutions to maximize the advantages brought
by transformers and convolutions. It is capable of promoting the optimization
of local features and generalization across data from different domains.

Fig. 5. The GCN Architecture in Fig. 3

GCN in Fig. 5 (see detail structure in Fig. 7) is to extract the spatial features
of topological graphs by using the topologically-stable relationship information.
Meanwhile, after convolutional graph operation, pixels feature belonging to the
same class in semantic segmentation will be close to each other in the feature
manifold (see Fig. 6).

We multiplied the feature map with the corresponding transpose as input of
the GCN block. Global features will be generated by two layers of GCN blocks
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Fig. 6. GCN Topology: the global relationship of graph-based feature structure. The
arrows represent the closer relationship by GCN operations in the graph. The shadow
represents the topology composed of the neighbors of node v1.

Fig. 7. Two Layers of GCN Blocks: Input feature map multiplies its transpose and
update by aggregation rules in GCN block [11].

(see Fig. 7), while the global topological relationship of graph structure-based
features (see Fig. 6) is obtained. The final feature map is fused by adding (see
Fig. 5) the encoder output and the global relationship node feature together.

3 Implementation

3.1 Dataset and Pre-processing

The LAScarQS dataset includes two tasks: 1). LA and LA Scar segmentation
(task 1), and 2). LA Segmentation across scanners (task 2). The first task
contains 60 3D LGE-MRIs with labels containing LAs and LA scars, while the
second consists of 130 3D LGE-MRIs from multiple medical centers with labels
containing only LAs [12].
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Fig. 8. Task 2 scar segmentation procedures: (a). LAMP Input, (b), Predicted LA,
(c). Cropping positions, (d). Cropped ROI and SPM Input, and (e). Predicted Scar

In task 1, 54 subjects (approx. 44 slices per subject) are involved in the
training test, while the remaining 6 subjects are used in the validation set. In
task 2, 117 (approx. 44 slices per subject) and 13 subjects are used in the
training and testing, respectively. Black margins are cropped, while images are
resized to 224 × 224 with the bilinear interpolation before being normailzed to
the range of [0, 1] by the min-max normalization. Each image is augmented 4
times by random rotation with angles sampled from [0◦, 180◦] and translation
less than 0.1·w, where w represents the image width. The prediction performance
is reported based on the 10 testing subjects available.

3.2 Training Details

We first trained the LA segmentation on task 2. The obtained model was loaded
as the pre-training model for task 1. In detail, in the initial stage, the segmenta-
tion model was trained with all the LA labels available, obtaining the LA predic-
tion model (LAPM). Then, we used the LAPM to roughly segment the targetted
LA region, according to which images in the training set were cropped to train
the scar prediction model (SPM). Specifically, the cropping region of interest
(ROI) was implemented via ((xmin − 30, ymin − 30), (xmax + 30, ymax + 30)),
while xmin, xmax, ymin, ymax were boundary pixels of the predicted LA region,
30 was an empirically-selected tolerance of LA prediction (Fig. 8). Finally, the
prediction map was restored to its original size using zero padding.

We implemented our network with the PyTorch library [20]. We ran 30 epochs
on one NVIDIA Geforce RTX 3080Ti GPU. The batch size was 8, and the SGD
optimizer was used. The initial learning rate was set as 10−4, which would be
decayed to the previous 0.1 times when the validation dice records were updated.

4 Experiment

On both tasks, we compared our UGformer with other SOTA models, including
U-Net [22], Res-U-Net [6], Attention-U-Net [18]. We also performed ablation
studies to demonstrate the effectiveness of our EBT and GCN bridge modules.
From obtained results demonstrated in Table 1, Table 2, and Table 3, we found
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that in both task 1 and task 2, the proposed UGformer outperforms other
baselines where transformers are engaged when evaluated by the Dice Score
(DS).

4.1 Comparison to the State-of-the-art Methods (SOTA)

LA on Task 1 and Task 2: In Table 1, the dice scores outside before paren-
theses are performance by the model trained only with task 1 LA dataset, while
the numbers in brackets present results of models pre-trained by task 2 dataset.
We can clearly obverse that UGformer presents better prediction accuracy when
predicting the LAs. Specifically, the proposed UGformer achieves the highest dice
in task 2, outperforming all involved baselines. As shown in Fig. 9, the proposed
UGformer is capable of predicting small pathological areas. At the same time,
unlike Res-U-Net, UGformer is able to avoid most false detection. We believe
that such an appealing factor is brought by the fact that transformers are more
sensitive to irregularly shaped pathological regions [26], while the GCN module
further enhances the predictive power to small regions.

We can also find from Table 1 that the Attention-U-Net performs the best no
matter whether the pre-training stages are presented or not. In the meanwhile,
if initialized by the pre-trained model, the DS of all the involved approaches is
approx. 92 and 93. It is because that LA segmentation of task 1 is a relatively
simple assignment with consistent style information since they are generated
from one single scanner.

Scar on Task 1: The proposed UGformer performs the best in this scenario by
at least 2.5% compared to other baselines. It demonstrates that it is particularly
useful in quantifying irregular and scattered LA scars. As shown in Fig. 10,
UGformer clearly identifies more pathological regions and contributes to fewer
false detections.

Table 1. Comparison between SOTA models.

Method Task 1-LA Task 1-Scar Task 2-LA

DS↑ DS↑ DS↑
U-Net 85.95 (92.24) 67.76 84.42

Res-U-Net 85.26 (92.28) 62.61 83.74

Attention-U-Net 87.40 (93.22) 70.11 85.37

UGformer 85.49 (92.36) 72.66 86.59

4.2 Ablation Studies

Influence of ETB Module: In Table 2, ablations of MHSAs and DCs in the
ETB are presented. We can conclude that both MHSAs and DCs are essential to
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Fig. 9. Prediction results on task 2 LA.

achieve the best segmentation performance at 85.49%, 72.66%, and 86.59% on
DS on task 1-LA, task 1-Scar, and task 2-LA, respectively. Particularly, the
combination of MHSAs and DCs module makes the greatest significant improve-
ment on task 2-LA by 7%. It proves that the two modules contribute to each
other and help the prediction of the model.

Table 2. Comparison of ETB module.

MHSA DC Task 1-LA Task 1-Scar Task 2-LA

DS DS DS

85.06 69.65 78.67

85.26 70.50 80.66

85.49 72.66 86.59

Influence of GCN: Table 3 enumerates the results of ablations of GCN block
when the proposed UGformer and U-Net are used as backbones. From there,
we can find that GCN improves the prediction performance of U-Net in task
1-LA and task 2-LA. However, the improvement in scar prediction in task 1-
Scar with U-Net is insignificant. When GCN is implemented in the UGformer
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Fig. 10. Prediction results on task 1 Scar. Res-U-Net can not predict the pathology. U-
Net and Attention-U-Net can predict a certain part of the pathology. Nevertheless, we
can also obverse worse false detection than that predicted by the proposed UGformer.

architecture, it improves the prediction performance in all settings. Particularly,
when predicting scars, GCN module improves the transformer performance from
70.82% to 72.66% by 2.6%.

Table 3. Comparison of different bridge module.

Architecture GCN Task 1-LA Task 1-Scar Task 2-LA

DS DS DS

U-Net 85.95 67.76 84.42

87.93 67.72 86.79

UGformer 84.47 70.82 85.44

85.49 72.66 86.59
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Influence of the Two-Stage Method: Figure 11 displays the prediction
results with the two-stage prediction approaches and the normal ones. It can
be clearly seen that the two stage method has successfully predicted most of the
scars (see Fig. 11(c)), although some kind of false detection can still be observed.
Nevertheless, with the common prediction method (see Fig. 11(f)), the scar is
almost impossible to be predicted. We can hereby conclude that the two-stage
prediction approach is essential in quantifying scars with irregular and tiny occu-
pations on the picture.

Fig. 11. Prediction results on original images and cropped images

5 Conclusions

In this paper, we proposed the UGformer, a novel U-shaped transformer architec-
ture with a GCN bridge. It is capable of segmenting the left atrium (LA) across
different scanners and quantifying LA scars with a two-stage predicting strategy
given late gadolinium enhancement magnetic resonance images. Specifically, an
enhanced transformer block combining multi-head self-attention and deformable
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convolutions is introduced to model global attention and overcome degradation
in quantifying scars with irregular shapes. We also employ a graph convolu-
tion network (GCN), a novel GCN-based bridge, to optimize the global space of
intermediate feature layers. Extensive empirical experiments on the LAScarQS
2022 challenge dataset have demonstrated the effectiveness and robustness of
the proposed UGformer architecture in LA prediction and scar quantification.
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