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Abstract. Atrial fibrillation (AF) is the most common cardiac arrhythmia world-
wide; however, the current success rates for catheter ablation (CA) therapy, the
first-line treatment for AF, are suboptimal. Therefore, extensive research has
focused on the relationship between scar tissue in the left atrium (LA) and AF,
and its application for patient stratification and more effective CA therapy strate-
gies. However, quantifying and segmenting LA scar tissue requires significant
data pre-processing from well-trained clinicians. Hence, deep learning (DL) has
been proposed to automatically segment the LAfibrotic scar from late gadolinium-
enhanced cardiac magnetic resonance (LGE-CMR) images. Segmenting LA scar
with DL is challenging as fibrosis from LGE-CMR images has a relatively small
volume and regions surrounding the scar are also enhanced. Therefore, we propose
a two-stage ensemble DL model (TESSLA: two-stage ensemble scar segmenta-
tion for the LA) that segments the blood pool of the LA, estimates the LA wall,
applies an image intensity ratio with Z-score normalisation and combines a scar
segmentation from two independent networks. TESSLA outperformed its con-
stituent models and achieved state-of-art accuracy on the LAScar 2022 challenge
evaluation platform for LA scar segmentation with a Dice score of 0.63 ± 0.14
and a Dice score of 0.58 ± 0.11 for the final test phase. Our workflow provides
a fully automatic estimation of LA fibrosis from clinical LGE CMR scans.
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1 Introduction

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, affecting more
than 46 million people worldwide. It is characterised by rapid and irregular electrical
activations of the atrial chambers, resulting in reduced cardiac output [1, 2]. AF is not
directly lethal, but it is associated with an increased risk of stroke and heart failure if
sustained for long periods (known as persistent AF). In a study investigating the risk
factors of cardiovascular diseases with approximately 5000 participants, AF was found
to increase the risk of stroke by 1.5% for ages 50–59 years old and 23.5% for ages 80–
89 years old [3]. The first-line treatment for AF is catheter ablation (CA) therapy. CA
involves using a catheter to ablate (isolate or destroy) arrhythmogenic atrial tissue that
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harbours AF triggers, thus restoring sinus rhythm and potentially the heart’s biomechan-
ical function [4]. However, when treating persistent AF, CA therapy has a suboptimal
AF reoccurrence rate of up to ~ 70% post-intervention [5, 6].

Extensive research has focused on the relationship between scar tissue in the left
atrium (LA) and AF, and its application for patient stratification and more effective CA
therapy strategies, including the DECAAF I and II clinical trial that rely on preprocessed
late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) images [7, 8]. The
preprocessing of LGE-CMR images involves manual segmentation of the left atrium
(LA) and scar tissue by a well-trained clinician. This creates a bottleneck for routine
clinical usage of LA scar quantification and segmentation as it is time-consuming and
requires specialists to perform it.

The standard approach for LA scar segmentation employs thresholding techniques,
which involves evaluating a threshold value based on a fixed number of standard devi-
ations above the average intensity value of the LA wall or blood pool. However, the
selection of threshold values is subjective, and the values can be affected by several
factors such as scanner variability, acquisition timing after gadolinium administration
and whether the LGE-CMR image is pre-or post-ablation [9]. Therefore, to automati-
cally segment LA and scar tissue from LGE-CMR images, deep learning (DL) has been
proposed as an efficient and accurate solution. DL was first applied to LA scar segmen-
tation by Yang et al., who used super-pixel over-segmentation for feature extraction and
stacked sparse auto-encoders [10]. Meanwhile, other studies adopted a DL model for
simultaneous segmentation of the LA wall and LA scar [9]. However, the primary/key
issueswhen segmentingLA scars fromLGE-CMR images are its relatively small volume
and enhanced regions of intensity surrounding it – creating noise during segmentation.
Li et al. addressed this issue by utilising the spatial relationship of the LA and its scar to
jointly segment both using an attention mask on the predicted scar probability map for
shape attention [11]. Following on from utilising the spatial relationship of the LA and
its scar, we propose an ensemble two-stage DL network (TESSLA: two-stage ensemble
scar segmentation for the LA). In addition, to overcome the limitation of generalisability
of the model developed by Li et al., we propose using an intensity ratio (IIR) normalisa-
tion, applied by traditional methods to reduce inter-patient and scanner effects [12, 13].
To summarise, the contributions of this work are:

• First method to feature a two-stage DL model to segment blood pool, estimate LA
wall and predict scar segmentation from LA wall and original LGE-CMR images.

• First DL model to implement IIR normalisation for LA scar segmentation.

2 Methods

2.1 Dataset

The dataset was provided by the Left Atrial and Scar Quantification & Segmentation
Challenge 2022, which includes 60 LGE-CMR images from patients post- and pre-
ablation with corresponding LA blood pool and scar segmentation masks. The images
were collected across three centres (University of Utah, Beth Israel Deaconess Medical
Center and King’s College London). The spatial resolution of the LGE-CMR images
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was either 1.25 × 1.25 × 2.5 mm3 (University of Utah), 1.4 × 1.4 × 1.4 mm3 (Beth
Israel Deaconess Medical Center) or 1.3 × 1.3 × 4.0 mm3 (King’s College London) [9,
11, 14].

Fig. 1. Ground truth segmentation. Left: scar segmentation (green) and LA blood pool (red)
ground truth masks. Right: Same masks with scar projected onto closest point on endocardial
wall. Scar in blood pool and subsequent projections are highlighted with arrows (blue).

Due to 20–35% of the voxels of the scar segmentation masks being within the blood
pool segmentation masks, prior to being used in model training, scar voxels within the
blood pool were projected to the LA surface along the normal direction of the closest
LA endocardial wall voxel (see Fig. 1).

2.2 Proposed Model and Implementation

The proposed model consists of three 3D nn-UNets [15], which form two distinct paths
to predict scar. In the first path (A in Fig. 2) a nn-UNet predicts the segmentation mask
of the LA blood pool from the LGE-CMR image, and a second nn-UNet predicts the LA
scar from the LGE-CMR image and IIR normalised LA wall (derived from the blood
pool prediction and LGE-CMR image). In the second path (B in Fig. 2) a nn-UNet
predicts LA scar directly from the LGE-CMR image (see Fig. 2).

The final LA scar mask is formed by the union of the predictions from the two paths
(post-softmax probability thresholding and nn-UNet postprocessing), to provide a final
ensemble prediction of LA scar (Fig. 3). nn-UNet was chosen for the segmentation as
it automatically configures the optimal U-Net architecture, hyperparameters and image
preprocessing and postprocessing steps and has demonstrated state-of-the-art perfor-
mance in a range of segmentation challenges [15]. Data augmentation was performed
during training and included techniques such as rotations, scaling, Gaussian noise, blur,
brightness, contrast, low-resolution simulation, gamma correction and mirroring [15].
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Fig. 2. Diagram of the proposed TESSLA model, outlining each stage of the model: blood pool
segmentation, LA wall estimation and normalisation, LA scar segmentation from both nn-UNets
and combined scar segmentation.A) Represents first path of TESSLA which predicts LA scar
from normalised LA wall and LGE-CMR image. B) Represents second path of TESSLA which
predicts LA scar from LGE-CMR image.

Fig. 3. Example of how the two different scar predictions (colours red and blue representing each
scar prediction) (left image) are combined for the final prediction (right image).

2.3 LA Wall Estimation and Normalisation

The LA wall was estimated by obtaining the predicted blood pool segmentation mask to
evaluate the boundary of the blood pool/LA endocardial wall and then dilating the wall
boundary outwards (in 3D) by 3 voxels (each LGE-CMR image had a resolution of ~
1 mm). A 3 voxel dilation amount was chosen based on the CT and MRI studies that
found LA wall mean thickness was between 2 and 3 mm (Fig. 4) [16, 17].

The outward dilation was achieved by first dilating and eroding the blood pool
boundary. Then, as shown in Eq. 1 below, the LA wall segmentation mask (Mwall) was
found by the matrix subtracting the blood pool segmentation mask (B) and the eroded
boundary (BE) from the dilated boundary (BD). The subtraction of BD ensured that no
dilation was within the LA blood pool. Lastly, if a voxel’s LGE-CMR image intensity
was less than 1, it was set to 0. The voxel intensity was then normalised and thresholded,
such that a voxel intensity of 1 corresponded to LA wall voxels and 0 corresponded to
background voxels. This process took ~ 5s to run for a single subject on a 12th Gen
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Fig. 4. Example of LA wall estimation with IIR and Z-score normalised LGE-CMR values with
highlighted blood bool (red) from different anatomical views. A) LA wall from sagittal view. B)
LA wall from coronal view. C) LA wall from axial view

Intel(R) Core (TM) i7-12700KF 3.61 GHz.

Mwall = BD − BE − B (1)

An element-wise product, �, of the LA wall segmentation mask (Mwall) and LGE-
CMR image (I ) was applied to determine Iwall . The estimated LA wall region (LAwall)
was then defined to be all voxels where the intensities of image Iwall were above zero.

Iwall = I � Mwall (2)

LAwall = {X |X ∈ Iwall,X > 0} (3)

IIIR = LAwall
∼
XB

(4)

IIR normalisation was then performed by dividing the LAwall by,
∼
XB, the mean blood

pool voxel intensity (Eq. 4) [13]. Note that only the voxel intensities of the estimated

LA wall from I are divided by
∼
XB as they are the only non-zero intensity voxels. The

motivation for LA wall IIR normalisation was to provide the second nn-UNet with a
set of features which are partially homogenised across multiple inter-individual factors
(interscan variability in intensities, contrast dose, the delay time of image acquisition
after contrast injection, body mass index, hematocrit, and renal function) to assist in
model generalisability [18].

I∗ = IIIR − μ

σ
(5)

Using the rule-based preprocessing of the nn-UNet pipeline, all IIR LA wall (IIIR)
voxels were Z-score normalised to get I∗ (Eq. 5, where the mean voxel intensity of
IIIR is μ and the standard deviation is σ ) as better convergence can be achieved during
backpropagation if the average of each input variable over the training set is close to
zero. The latter quality has led Z-score normalisation to becoming a de-facto practice in
computer vision [19].
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3 Results

3.1 Model Implementation and Training

Each nn-UNet model was trained independently for their respective task (blood pool
or LA scar segmentation). The proposed framework was trained using 48 LGE-CMR
images and a further 12 such images were used as a validation set. Each nn-UNet
was trained for 1000 epochs using a combined cross-entropy and Dice loss function,
Stochastic gradient descent was used with Nesterov momentum (µ = 0.99) with an
initial learning rate of 0.01 on an NVIDIA RTX 48GB A6000 GPU; each nn-UNet took
~ 24 h to train [20–22].

3.2 Validation and Test Set Results

As reflected in Tables 1 and 2, TESSLA outperformed both of its constituent models,
justifying the use of an ensemble prediction. Figure 5 further supports this justification,
as it illustrates how the two different nn-UNets predict LA scars that are overlapping but
also different which is reflected in the increase of Dice score and sensitivity. Therefore,
combining the two scar segmentations can predict better LA scar coverage.

On the LAScar 2022 test phase (hold out test set of 24 LGE-CMR images), TESSLA
had a LA scar Dice score of 0.581 ± 0.112 and sensitivity of 0.529 ± 0.145.

Table 1. Validation set results for proposed model and constituent models.

Model Scar Blood

Dice Score Sensitivity Dice Score

TESSLA 0.529 ± 0.070 0.531 ± 0.133 0.927 ± 0.020

nn-UNet (LGE-CMR) 0.506 ± 0.090 0.454 ± 0.134 N/A

nn-UNet (LGE-CMR + LA wall) 0.510 ± 0.080 0.474 ± 0.125 0.927 ± 0.020

Table 2. LAScarQ 2022 evaluation platform results from the hold-out test set (10 3D LGE-CMR)
images from the challenge evaluation platform for the proposed model and constituentmodels.

Model Scar Blood Pool

Dice Score Sensitivity Dice Score

TESSLA 0.634 ± 0.142 0.578 ± 0.162 0.890 ± 0.075

nn-UNet (LGE-CMR) 0.608 ± 0.149 0.524 ± 0.165 N/A

nn-UNet (LGE-CMR + LA wall) 0.593 ± 0.152 0.497 ± 0.152 0.890 ± 0.075
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Fig. 5. Comparison of model prediction from a validation set subject with corresponding scar
segmentation Dice score, where predicted scar is in red and ground truth is in green.

LGE-CMR image quality plays a vital role in accurate TESSLA LA scar prediction,
as shown in Fig. 6 and 7, as images with non-prevalent fibrotic gadolinium binding
or motion artefacts had worse Dice scores. Furthermore, this explains the increase in
LA scar Dice score in the LAScar 2022 evaluation platform results compared to the
validation set results in training, as the evaluation platform set of LGE-CMR images
only had one image with poor quality while the validation set had three. Meanwhile, this
also explains the decrease of scar Dice score on the test phase dataset compared to the
evaluation platform results.

Fig. 6. Example of good quality LGE-CMR image with highlighted regions (gold boxes) of good
gadolinium binding to fibrotic tissue (image on left) and corresponding Dice score. Predicted (red)
and ground truth (green) scar highlighted on the image on the right.

Fig. 7. Example of poor quality LGE-CMR image with highlighted regions of poor (gold boxes)
gadolinium binding to fibrotic tissue (image on left) and corresponding Dice score. Predicted (red)
and ground truth (green) scar highlighted on the image on the right.
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4 Discussion and Conclusion

This study introduces a novel DL model, TESSLA, a two-stage ensemble model for LA
scar segmentation. TESSLA achieved accuracy comparable to the state-of-the-art on
the LAScar 2022 evaluation platform test set by utilising LA wall IIR-Z-score normal-
isation and nn-UNets. To effectively compare these results to the gold standard, a study
of inter-observer variability in manual segmentation would be required. Moreover, the
model results show that poor image quality significantly impacts its performance. Hence,
future work should focus on implementing a method to reduce its effects for better
robustness. The study also demonstrated that integrating an IIR-Z-score normal-isation
to the LA wall into an ensemble model can predict better LA scar coverage. Therefore,
our proposed DLmodel provides better model generalisability for LA scar segmentation
than a single model with LGE-CMR input.

The novel automatic tool for LA scar tissue quantification developed in this study can
be applied in the clinic. Previous studies have suggested that DL LA scar segmentation
tend to have higher Dice score accuracies than conventional thresholding-basedmethods
[9]. Hence, DL models like TESSLA can be superior to the current gold standard of IIR
thresholding, both in accuracy and speed of the LA scar assessment. This could lead to
better patient stratification andAF treatment planning. Furthermore, this will also aid the
clinical implementation of emerging technologies for AF management, such as digital
twins, patient-specific models and AI therapy predictors [23–26].
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