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Preface

AF is the most common arrhythmia observed in clinical practice, occurring in up to 1%
of the population and rising fast with advancing age. Radiofrequency catheter ablation
using the pulmonary vein (PV) isolation technique has emerged as one of the most com-
mon methods for the treatment of AF patients. The position and extent of scars provide
important information of the pathophysiology and progression of AF. Late gadolinium
enhancement magnetic resonance imaging (LGEMRI) is a promising technique to visu-
alize and quantify atrial scars. Many clinical studies mainly focus on the location and
extent of scarring areas of the left atrium (LA) myocardium.

The Challenge provides 194 LGEMRIs acquired in real clinical environments from
patients suffering atrial fibrillation (AF). It is aimed to create an open and fair competition
for various research.

The target of this challenge is to automatically segment the LA cavity and quantify
LA scars from LGEMRI. This is however still arduous. First, the image quality of LGE
MRI could be poor. Second, the prior model of scars is hard to construct on account
of the various LA shapes, the thin wall (mean thickness 1.89 ± 0.48 mm reported by
Beinart et al), the surrounding enhanced regions and the complex patterns of scars in AF
patients. To the best of our knowledge, little work has been reported in the literature to
achieve the fully automatic segmentation and quantification of the LA cavity and scars
from LGE MRI.

Note that the LA segmentation is normally required as an initialization for scar
quantification. This is because atrial scars are located on the LA wall, and it is too
hard to directly localize scars due to its small size. However, previous methods nor-
mally solved the two tasks independently and ignored the intrinsic spatial relationship
between the LA and scars. Therefore, in this challenge, we encourage the participants
to achieve joint segmentation. The challenge will provide 194 LGE MRIs globally, i.e.,
from multiple imaging centers around the world, for developing novel algorithms that
can quantify or segment the LA cavity and scars. The challenge presents an open and
fair platform for various research groups to test and validate their methods on these
datasets acquired from the clinical environment. To ensure data privacy, the platform
will enable remote training and testing on the dataset from different centers in local and
the dataset can keep invisible. The aim of the challenge will not only be to benchmark
various LA scar segmentation algorithms, but also to cover the topic of general cardiac
image segmentation, quantification, joint optimization, and model generalization, and
raise discussions for further technical development and clinical deployment. The readers
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can find more information about LAScarQS on the website: https://zmiclab.github.io/
projects/lascarqs22/index.html.

October 2022 Xiahai Zhuang
Lei Li

Sihan Wang
Fuping Wu

https://zmiclab.github.io/projects/lascarqs22/index.html
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LASSNet: A Four Steps Deep Neural
Network for Left Atrial Segmentation

and Scar Quantification

Arthur L. Lefebvre1,2(B) , Carolyna A. P. Yamamoto2,3 , Julie K. Shade2 ,
Ryan P. Bradley2 , Rebecca A. Yu3 , Rheeda L. Ali2,3 ,

Dan M. Popescu2 , Adityo Prakosa2 , Eugene G. Kholmovski2,3 ,
and Natalia A. Trayanova2,3

1 Faculté polytechnique de Mons, UMONS, Mons, Belgium
lefearthur@gmail.com

2 Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE),
Johns Hopkins University, Baltimore, MD, USA

3 Department of Biomedical Engineering, Johns Hopkins University School
of Medicine, Baltimore, MD, USA

Abstract. Accurate quantification of left atrium (LA) scar in patients
with atrial fibrillation is essential to guide successful ablation strate-
gies. Prior to LA scar quantification, a proper LA cavity segmentation
is required to ensure exact location of scar. Both tasks can be extremely
time-consuming and are subject to inter-observer disagreements when
done manually. We developed and validated a deep neural network to
automatically segment the LA cavity and the LA scar. The global archi-
tecture uses a multi-network sequential approach in two stages which
segment the LA cavity and the LA Scar. Each stage has two steps: a
region of interest Neural Network and a refined segmentation network.
We analysed the performances of our network according to different
parameters and applied data triaging. 200+ late gadolinium enhance-
ment magnetic resonance images were provided by the LAScarQS 2022
Challenge. Finally, we compared our performances for scar quantification
to the literature and demonstrated improved performances.

Keywords: Segmentation · Late gadolinium enhancement · Deep
learning · Atrial fibrillation · Left atrium

1 Introduction

Atrial fibrillation (AF) is the most prevalent sustained heart rhythm disorder,
contributing significantly to global health care costs and mortality and mor-
bidity rates [1]. Catheter ablation may offer a cure to AF in some patients.

N.T.
E. G. Kholmovski and N. A. Trayanova—Indicates equal contribution by senior
authors.
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However, AF ablation success rates are modest (50%) in patients with exten-
sive structural remodeling (i.e., fibrosis infiltration, fat accumulation) of the
left atrium (LA) [2]. Such structural remodeling is typically identified from
pre-ablation late gadolinium-enhancement magnetic resonance imaging (LGE-
MRI) [3]. Reconstruction of the atrial anatomy and quantification of the fibrotic
substrate is clinically important for guiding catheter ablation [3]. The first step
of anatomical reconstruction is the segmentation of the atrial myocardium from
cardiac images. Generally, the LA endocardial walls [4] are manually segmented
from the LGE-MRI to reconstruct the atrial anatomy. Location and segmenta-
tion of atrial structures such as the mitral valve, pulmonary veins, and atrial
appendages are a challenge even with significant expertise. Variable left atrial
anatomy and thin atrial walls, compounded with poor and inconsistent image
quality, make segmentation time-consuming and challenging. Atrial segmenta-
tion is also hampered by partial volume effects as the LA is close in proximity to
extra-cardiac structures [5]. Consequently, manual segmentation of the LA from
LGE-MRI has high inter-operator variability even amongst experts [6]. Given the
low reproducibility of existing LGE-MRI segmentation methods, a robust and
fully automated LA segmentation method is critical for accurately reconstruct-
ing the atrium anatomy and identifying the structurally remodeled substrate.
Recently, deep learning techniques have been applied to improve LA segmen-
tation in LGE-MRI [7]. However, even the best networks struggle in segment-
ing regions with sudden changes in the LA anatomy like the pulmonary veins
(PVs) [7]. Furthermore, while there has been increased development of machine
learning techniques for LA segmentation in LGE-MRI, only a few methods pro-
pose segmentation of the scar [8–10]. We developed a deep learning approach
to automatically segment both the LA and LA scar from LGE-MRI images. We
term our network Left Atrium Scar Segmentation Network (LASSNet). LASSNet
simultaneously segments the LA and LA scar and is robust to images collected
by different clinical centers.

2 Methods

2.1 Training and Validation Data

The clinical data used for this work was provided by the LAScarQS 2022 Chal-
lenge [9,11,12]. All the data received institutional ethical approval and have
been anonymized. The images and the corresponding ground truth (GT) seg-
mentations were from four clinical centers and the images were acquired using
1.5 and 3 T MRI scanners.

LAScarQS 2022 Challenge was designed to solve two tasks: “LA Scar Quan-
tification” and “Left Atrial Segmentation from Multi-Center LGE-MRIs”. In
order to solve the first task, 60 LGE-MRIs with the corresponding GT LA cav-
ity segmentations and GT LA scars segmentations were accessible for training.
10 LGE-MRIs without the GT were used to validate the model through an online
submission of the predictions. To solve the second task, 130 LGE-MRIs with the
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GT left atrial cavity segmentations were made accessible for training. 20 LGE-
MRIs without the corresponding GT were provided for validation of the model
through an online submission of the predictions.

2.2 Data Inspection and Pre-processing

Segmentation performances of neural networks (NNs) are highly dependent on the
quality of the input image data and ground truth annotation (segmentation) [13].
Therefore, data inspection was performed by a cardiac MRI expert in our team
to identify image datasets of lower quality, which might have a detrimental effect
on the training of LASSNet for both tasks (represented in Table 1).

Table 1. Analysis of the training data for Task 1 (LA Scar Quantification) and Task
2 (Left Atrial Segmentation from Multi-Center LGE-MRIs).

Analysis of the training data for Task 1

Issue Dataset index

Scans with poor fat suppression can create artifacts 28, 35, 49

Scans acquired too early after contrast injection result
in poor contrast between blood pool and enhancement
and therefore a low accuracy of scar detection

5, 12, 37, 49, 57, 59

Scans with poor image quality for accurate scar detection
(severe blurring, very noisy, etc.)

7, 8, 19, 45,
47, 49, 50, 54

Analysis of the training data for Task 2

Issue Dataset index

Scans with poor fat suppression 70, 78, 85, 109, 111, 123

Scans with poor image quality 33, 39, 75, 129

Datasets with severe errors in LA cavity segmentation 19, 24, 45, 64, 74, 95,
100, 101, 112, 126, 130

Scans with partial coverage of left atrium appendage
(LAA) and left superior pulmonary vein (LSPV)

97, 100, 129

Duplicate post-ablation scans
of the same patient

51, 60

Figure 1 shows examples of the various quality LGE scans provided for LA scar
segmentation. The expert indicated that significant discrepancies in LA cavity GT
segmentations were observed in regions of pulmonary veins (PVs), mitral valve,
LA floor and roof, and LA appendage. Furthermore, one of the right PVs was not
segmented for patients with three right PVs. Poor training data represented 25%
of the dataset for Task 1 and 18.46% for Task 2. We evaluated the performance of
LASSNet with and without the low quality training data in Sect. 3.1.

Then before feeding the image volumes into the NN, the images were pre-
processed to obtain the same voxel size and dimensions. Images and correspond-
ing GT segmentations were pre-processed and normalized before training the
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Fig. 1. Representative examples of various quality LGE scans for LA scar segmenta-
tion: (a) poor quality (very low contrast between scar and blood, sub-optimal inversion
time (TI) value, bad signal-to-noise ratio (SNR)); (b) fair quality (good scar-blood con-
trast, optimal TI, low SNR, artifact in LA); (c) good quality (high scar-blood contrast,
optimal TI, good SNR).

NN. Image augmentation was applied to the normalized images to increase the
amount of data available for training and encourage generalizable performance.

During the scar GT inspection, mislabeled scar voxels were noticed: deep
inside LA cavity (Fig. 2(a)), far outside LA wall (Fig. 2(b)) and enhanced voxels
of anatomical structures adjacent to LA (Fig. 2(c)). Therefore, we constrained
the scar GT voxels to be located into LA wall region of interest (ROI) masks.

Fig. 2. Representative examples of various mislabeled scar voxels (red circles): (a) scar
voxels deep inside LA cavity; (b) scar voxels far outside LA wall ROI; (c) enhanced
voxels of the mitral valve were mislabeled as LA scar (Color figure online).

2.3 The Neural Network Architecture

The global architecture is presented in Fig. 3. It is composed of four NN models.
LASSNet uses a multi-network sequential approach in two stages to segment the
LA cavity and LA Scar. Each stage consists of two steps: (1) A ROI NN that
first detects the anatomical location of the LA (or LA Scar) to be segmented,
followed by (2) a LA (or LA Scar) segmentation (LA(S)SEG) NN that gener-
ates a refined LA cavity segmentation for the first stage or a refined LA Scar
segmentation for the second stage.
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Fig. 3. LASSNet architecture. Step 1: LGE-MRI images are passed into ROI NN
which identifies the region where the left atrium is located. The image volume is then
cropped to the ROI and resampled. Step 2: The image is inputted into the Left Atrium
Segmentation Network (LASEG NN) to perform the LA cavity segmentation. LASEG
NN includes a discriminator for adversarial training. Step 3: LGE-MRI images and
LA wall ROI masks are passed into ROI NN which identifies the region where the left
atrium scar is located. The image volume and the LA wall ROI are then cropped to the
identified ROI and resampled. Step 4: Cropped LGE-MRI images and LA wall ROI
masks are then inputted into the Left Atrium Scar Segmentation Network (LASSEG
NN) to refine the left atrium scar segmentation. LASSEG NN includes a discriminator
for adversarial training.
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Steps 1 and 3: Region Of Interest Neural Networks (ROI NNs):
The objective of the ROI NNs is to identify the region where the LA (or

LA scar) is located to reduce the number of background voxels due to non-
atrial structures. The ROI NNs are a variation of the 3D U-Net [14]. The Stage
1 NN was modified to accept an image volume and a single binary label GT
segmentation of the LA. The Stage 2 ROI NN was modified to accept both an
image volume and a single binary label LA wall ROI image volume as well as
a single binary label GT segmentation of the LA scar. The LA wall ROI image
volume was created from the non-overlapping region of the dilated and eroded
segmentation output of the Stage 1 NN in order to obtain a LA wall where post-
ablation scar should exist [15,16]. We evaluate the performance of LASSNet with
different ROI wall thicknesses in Sect. 3.1. The process to create the LA wall ROI
is represented on Fig. 4.

Fig. 4. Process to create the LA wall ROI where the scar should subsist. We use the
LA cavity segmentation (output of the Stage 1 NN) to create a dilated and an eroded
mask. Both masks are unionized and the non-overlapping is kept as the LA wall ROI.

The U-Nets are fully convolutional NNs which is the most used approach for
biomedical image segmentation [30]. The architecture of the U-Nets is presented
in Fig. 5; it consists of an encoder which down-samples the input image through
a series of convolutions and max-pooling operations down to a bottleneck layer,
followed by a decoder that up-samples the bottleneck representation back to
the original image resolution. We implemented instance normalization instead
of traditional batch normalization [31] to normalize our image volumes across
spatial locations.

Predictions generated by the ROI NNs are activated by a sigmoid function
to generate probabilities that a voxel is either ROI (voxel value 1) or back-
ground (voxel value 0). The predicted atrial (or atrial scar) ROI is then used to
determine an appropriate bounding box by identifying the smallest rectangular
prism containing all predicted ROI voxels. The prism is then padded with a 10-
voxel buffer along all three dimensions. The original image is then cropped to
the padded bounding box and converted to a volumetric array as input to the
LA(S)SEG NN.
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Fig. 5. U-Net model used for each step in LASSNet architecture.

Steps 2 and 4: Left Atrium (Scar) Segmentation Neural Networks
(LA(S)SEG NNs)

The LA(S)SEG NNs are conditional generative adversarial network (GAN)
combinations of a generator and a discriminator, and follow the PatchGan [17]
framework. The generator of the LA(S)SEG NNs follows the same variant of
the 3D U-Net used for the ROI NNs and generates the predicted segmentations.
The architecture is presented in Fig. 5. The step 2 NN was modified to accept a
cropped image volume and a cropped single binary label GT segmentation of the
LA. The step 4 NN was modified to accept both a cropped image volume and a
cropped single binary label LA wall ROI image volume as well as a single binary
label GT segmentation of the LA scar. The discriminator is a deep convolutional
NN that performs image classification. It accepts the GT segmentations and the
predicted segmentation output from the generator as inputs and predicts the
likelihood of the predicted segmentation being real (GT) or fake (generated).
The discriminator is penalized if it misclassifies a predicted segmentation as GT
or vice versa. The discriminator is then used to train the generator. Since the
generator’s output is connected directly to the discriminator’s input, through
backpropagation, the discriminator provides feedback to the generator so it can
generate more realistic segmentation predictions. The goal of the generator is
to encourage the discriminator to misclassify the predicted segmentations as the
GT [18].

2.4 Implementation

Overall, 130 image volumes (LGE-MRI with LA cavity GT segmentations) were
used in the training of Stage 1 and 60 image volumes (LGE-MRI with LA cavity
and LA scar GT segmentations) were used in the training of Stage 2. To avoid
overfitting, early stopping was implemented. Step 1 NNs ran on average for 205
epochs (≈ 12 hours computation time), step 2 NNs for 148 epochs (≈ 12 hours
computation time), step 3 NNs for 175 epochs (≈ 6 hours computation time) and
step 4 NNs for 146 epochs (≈ 6 hours computation time). All networks used the
Adam optimizer [19] with an adaptive learning rate (LR) starting at 10−3. The
NNs were trained using Keras [20] and Tensorflow [21] on an Nvidia K80 GPU
(24GB GDDR5). The loss function is based on the Sørensen-Dice Coefficient
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(Dice). The Dice measures the overlap between two areas (2D) or volumes (3D).
Dice values range from [0, 1], with a Dice of 0 indicating that there is no overlap
and a Dice of 1 indicating a perfect match.

l(P, ̂P ) = 1 − Dice(P, ̂P ) = 1 − 2 ∗ (P ∩ ̂P )

P + ̂P
(1)

where P and ̂P are the 3D image volume ground truth and the predicted 3D
image volume.

3 Experimental Results

The LAScarQS 2022 Challenge was divided in three different phases: training
phase, validation phase and test phase. We present the results obtained from the
validation phase in the following section. To evaluate the performances of the
LA segmentation network (Stage 1) of LASSNet, the Sørensen-Dice Coefficient
(Dice) [22], the Average Surface Distance (ASD) [23,24] and Hausdorff distance
(HD) [25] were used for each image volume as metrics. In addition to those met-
rics that focuses on the LA cavity; the accuracy, the specificity, the sensitivity,
the Sørensen-Dice Coefficient and the Generalized Dice score (GDice) [26,27]
were used to evaluate the performances of the LA scar segmentation (Stage 2).

3.1 Segmentation Performances and Discussion

We present a two stages deep learning (DL) approach to automatically segment
both LA and LA scar from LGE-MRI. We show that LASSNet provides a con-
tinuous and realistic scar pattern and promising results for scar quantification.

First, we trained LASSNet with a ROI wall thickness of 2.5 mm and analyzed
the performances depending on whether or not data quality selection was applied
in Table 2. The LA cavity segmentation varied in Dice from 0.8659 to 0.8892,
ASD from 2.59 to 2.179 mm and HD from 30.66 to 26.27 mm when changing the
training data of Stage 1. Dice, ASD and HD were all improved when increasing
the dataset from 46 to 130 scans; 46 scans is not enough data for LASSNet
to learn to segment the LA cavity correctly. When data quality selection was
applied to the 130 scans dataset by removing the 24 worst quality scans, it
further increased all Stage 1 performances, showing how important it is to have
a high quality training dataset.

For Stage 2, the LA scar segmentation averaged the same accuracy and speci-
ficity (0.99993 and 0.99996) throughout the different LASSNet trainings. The
sensitivity varied from 0.576 to 0.624, scar Dice from 0.559 to 0.591 and GDice
from 0.8942 to 0.9004. Since fewer scans were available, using the full dataset
achieved better results than when quality selection was used. Therefore, it is
preferable to train the model over the 60 scans available with scar GT than over
the 46 higher quality scans only.

Then we analyzed how the Stage 2 segmentation performance changed
depending on the LA wall ROI thickness (2.5 mm or 5 mm). Since Stage 1 was
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Table 2. LASSNet average segmentation performances depending on the
data quality selection. Left atrium cavity Dice coefficient (LAcav Dice), Left atrium
cavity average surface distance (LAcav ASD), Left atrium cavity Hausdorff distance
(LAcav HD), Left atrium scar accuracy (LAscar Acc), Left atrium scar specificity (LAscar

Spe), Left atrium scar sensitivity (LAscar Sen), Left atrium scar Dice coefficient (LAscar

Dice), Left atrium scar generalized Dice coefficient (LAscar GDice) are shown for 4
LASSNet trainings with the Dice as loss function and a ROI wall thickness of 2.5 mm
and depending on whether data quality selection was applied (green if applied and red
if not): LASSNet1 both stages were trained on the Task 1 selected data (46 LGE scans),
LASSNet2 Stage 1 was trained on the Task 2 full data (130 LGE scans) and Stage 2
was trained on the Task 1 full data (60 LGE scans), LASSNet3 Stage 1 was trained
on the Task 2 selected data (106 LGE scans) and Stage 2 was trained on the Task 1
selected data (46 LGE scans), LASSNet4 Stage 1 was trained on the Task 2 selected
data (106 LGE scans) and Stage 2 was trained on the Task 1 full data (60 LGE scans).
Acc, Spe and Sen are expressed in percentage terms, Dice and GDice are adimensional,
and HD and ASD are in millimeters. The best performing model is written in bold.

NNs LAcav LAcav LAcav LAscar LAscar LAscar LAscar LAscar

Dice ASD HD Acc Spe Sen Dice GDice

LASSNet1 0.8659 2.59 30.66 0.9999246 0.9999627 0.576 0.559 0.8953

Stage 1 ± 0.0751 ± 1.31 ± 8.01 ±2.23×10−5 ±1.05×10−5 ± 0.137 ± 0.160 ± 0.0229

LASSNet2 0.8737 2.44 27.14 0.9999258 0,9999603 0.621 0.586 0.8987

Stage 1 & 2 ± 0.0648 ± 1.33 ± 8.77 ±2.39×10−5 ±1.38×10−5 ± 0.116 ± 0.134 ± 0.0237

LASSNet3 0.8892 2.179 26.27 0.9999231 0.9999596 0.588 0.563 0.8942

Stage 1 & 2 ± 0.0432 ± 0.950 ± 11.24 ±2.65×10−5 ±1.32×10−5 ± 0.136 ± 0.151 ± 0.0281

LASSNet4 0.8892 2.179 26.27 0.9999273 0.9999616 0.624 0.591 0.9004

Stage 1 & 2 ± 0.0432 ± 0.950 ± 11.24 ±2.38×10−5 ±1.22×10−5 ± 0.124 ± 0.137 ± 0.0241

identical for each LASSNet, all models obtained the same LA cavity segmenta-
tion performances: 0.8892 for Dice, 2.179 mm for ASD and 26.27 mm for HD.
The LA scar segmentation averages the same accuracy and specificity (0.99992
and 0.99996). Sensitivity varied between 0.588 and 0.680, Dice between 0.563
and 0.588 and GDice from 0.8942 to 0.8948. We obtain very similar performance
for the GDice but better results for the Dice and sensitivity when trained on
a thicker LA wall ROI; LASSNet segments more scar and overlaps more with
the GT. Figure 7 provides visualizations for the scar segmentation results of
LASSNet trained on 5 mm ROI wall thickness and 2.5 mm ROI wall thickness
compared to the ground truth. Both LASSNet predicted scar distributions agree
better with typical ablation locations than the scar GT. Figure 6 shows a repre-
sentative example of the two different thicknesses used for training (5 mm and
2.5 mm) and illustrates the area each LA wall ROI covers. It shows that the
definition of the LA wall ROI used for this study includes too much blood pool
assuming perfect LA cavity segmentation. Typical LA wall thicknesses range
from 0.5 to 3.5 mm [16]. The LA wall ROI of 5 mm thickness generates better
results because the majority of LA wall voxels are included in the LA wall ROI.
On the other hand, for the LA wall ROI of 2.5 mm, only part of LA wall is
included and some scar voxels are situated outside the LA wall ROI. To prevent
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this, a more realistic definition of LA wall thickness can be used to retrain the
NN. The 2.5 mm LA wall ROI was created through an erosion and dilation pro-
cess with the identical kernel size. To get a more realistic definition of the LA
wall ROI and keep a thickness of 2.5 mm, we need to apply a smaller kernel size
for the erosion and a larger kernel size for the dilation.

Fig. 6. Representative example of the two different thicknesses used for training: (a)
LGE-MRI; (b) 2.5 mm LA wall ROI thickness; (c) 5 mm LA wall ROI thickness.

Table 3 shows how the best GDice performing LASSNet behaves for every
scan in the testing dataset. Three scans (Test 1, 5 and 8) failed to achieve a
LA cavity Dice above 0.86. This is because Stage 1 creates artifacts for some
scans when segmenting the LA cavity. Those artifacts are easily noticeable and
quick to correct manually. When excluded, the LA cavity Dice changes to 0.9129
which correspond to the values obtained in the literature. For scar segmentation,
Test 5 and 7 get very low Dice scores (under 0.5) because both have low con-
trast between scar (enhancement) and blood pool. GT and LASSNet predictions
are non-accurate for such scans; they are shown on Fig. 8 and Fig. 9. Figure 10
illustrates LASSNet results with the best scar Dice and scar GDice scores for
testing dataset (Test 9). LASSNet segments more realistic continuous fully con-
nected scar on the posterior LA wall compared to the GT. Figure 7 also shows
more continuous scar on the posterior LA wall and around the right superior

Fig. 7. Comparison of the LA scar prediction depending on the ROI wall thickness
to the ground truth on Test 3: (a) LA scar prediction of LASSNet trained on 5 mm
ROI wall thickness; (b) LA scar prediction of LASSNet trained on 2.5 mm ROI wall
thickness; (c) LA scar ground truth.
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pulmonary vein compare to the GT. Figure 10 demonstrates obvious inconsis-
tencies through slice direction in scar GT. Multiple scans in the testing set have
similar GT scar appearance with obvious scar discontinuities in slice direction.
Such post-ablation LA scar distributions are not realistic and are caused by scar
segmentation methods without scar contiguity constraint in slice direction (e.g.
2D slice-by-slice segmentation) [28,29]. Scar discontinuities in slice direction can
be easily seen in coronal or sagittal view of scar GT segmentations. Figure 10(b)
shows a comparison between scar GT and LASSNet prediction in coronal view.

Table 3. Detailed segmentation performances of LASSNet 4 on the testing
set. Left atrium scar accuracy (LAscar Acc), Left atrium scar specificity (LAscar Spe),
Left atrium scar sensitivity (LAscar Sen), Left atrium scar Dice coefficient (LAscar

Dice), Left atrium scar generalized Dice score (LAscar GDice) are shown for each LGE
scan from the testing set. Acc, Spe and Sen are expressed in percentage terms, Dice
and GDice are adimensional, and HD and ASD are in millimeters. Worst scar Dice is
written in red and the best is written in green.

NNs LAcav LAcav LAcav LAscar LAscar LAscar LAscar LAscar

Dice ASD HD Acc Spe Sen Dice GDice

Test0 0.9135 1.871 28.16 0.9998893 0.9999653 0.573 0.648 0.8665

Test1 0.8005 3.925 36.52 0.9999533 0.9999693 0.704 0.620 0.9121

Test2 0.8931 1.755 15.33 0.9999294 0.9999622 0.686 0.671 0.8858

Test3 0.9382 1.150 16.91 0.9998901 0.9999459 0.643 0.647 0.8968

Test4 0.8871 2.697 29.02 0.9999296 0.9999574 0.681 0.628 0.8997

Test5 0.8530 2.310 18.87 0.9999459 0.9999580 0.622 0.425 0.9110

Test6 0.9176 1.472 26.12 0.9999270 0.9999529 0.701 0.625 0.8807

Test7 0.9316 1.543 16.00 0.9999362 0.9999663 0.288 0.277 0.9353

Test8 0.8487 3.608 51.75 0.9999137 0.9999494 0.665 0.621 0.8776

Test9 0.9089 1.460 24.04 0.9999587 0.9999889 0.673 0.751 0.9388

Fig. 8. LASSNet result with the worst Dice score and scar detection sensitivity for
testing dataset (Test 7 - scan with low contrast between scar and blood pool): (a)
LGE-MRI; (b) Scar GT (red) and scar prediction (green); (c) 3D view of the LA
cavity with scar GT (red); (d) 3D view of the LA cavity with scar prediction (green)
(Color figure online).
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Fig. 9. LASSNet result for LGE scan with low contrast between scar (enhancement)
and blood pool (Test 5): (a) LGE-MRI, (b) Scar GT (red) and scar prediction (green),
(c) 3D view of the LA cavity with corresponding scar GT (red) and (d) 3D view of the
LA cavity with corresponding scar prediction (green) (Color figure online).

Fig. 10. LASSNet result with the best Dice and GDice scores for Testing dataset (Test
9): (a) LGE-MRI with scar GT (red) and scar prediction (green) in the axial view; (b)
LGE-MRI with scar GT (red) and scar prediction (green) in the coronal view; (c) 3D
view of the LA cavity with scar GT (red); (d) 3D view of the LA cavity with scar
prediction (green) (Color figure online).

Table 4 further demonstrates the performances of LASSNet by comparing it
with the previously published methods. For the segmentations of LA and LA
scars, we compared the segmentation performances of LASSNet to the JAS-
GAN model of Jun Chen et al. [8], AtrialJSQnet NN of Lei Li et al. [9], and a
multiview two-task (MVTT) method proposed by Guang Yang et al. [10]. Each
method used different datasets or additional cardiac magnetic resonance (CMR)
scans. Jun Chen et al. and Lei Li et al. results come from the MICCAI 2018
Atrial Segmentation Challenge dataset which provided 100 scans with labels of
LA wall and LA endocardium. Guang Yang et al. used their own dataset which
consisted of 190 scans. Table 4 shows that LASSNet achieves the highest GDice
among those LA scar segmentation methods. LASSNet also achieves the best
LA scar Dice when Test 5 and Test 7 (scans with poor contrast between blood
pool and scar) are excluded. The LA cavity Dice score is slightly lower, compare
to the other methods’ performances and could be further improve.
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Table 4. Comparison of combined LA and LA scar average segmentation
NNs performances. Left atrium cavity Dice coefficient (LAcav Dice), Left atrium scar
sensitivity (LAscar Sen), Left atrium scar Dice coefficient (LAscar Dice), Left atrium scar
generalized Dice score (LAscar GDice) are shown for 5 NNs: LASSNet4, LASSNet4BIS

without Test 5&7, Jun Chen et al. [8] Lei Li et al. [9] and Guang Yang et al. [10]. Sen is
expressed in percentage terms, Dice and GDice are adimensional. The best scores are
written in bold. Note: As the cited sources use different data sets or additional cardiac
magnetic resonance scans, an exact comparison with our results cannot be made. The
benchmarks are thus provided solely as information.

Method LAcav Dice LAscar Sen LAscar Dice LAscar GDice

LASSNet4 0.8892 ±0.0432 0.624±0.124 0.591±0.137 0.9004 ±0.0241

LASSNet4BIS 0.8885 ±0.0443 0.6647 ±0.0422 0.6515 ±0.0438 0.8947 ±0.0241

Jun Chen [8] 0.913 ±0.027 - 0.621 ±0.0110 -

Lei Li [9] 0.913 ±0.032 - 0.543±0.097 0.872 ±0.024

Guang Yang [10] 0.931 ±0.018 0.8677 ±0.0464 - 0.8659 ±0.0560

Accurate and reproducible segmentation of the atrial anatomy and quan-
tification of the fibrotic substrate is clinically important for guiding catheter
ablation in AF patients. However, this clinically essential information is only
available to clinicians in a few research centers because manual segmentation of
LA and LA scar is time-consuming (30-60 mins), challenging and requires very
specific expertise. We have developed deep neural network LASSNet to dras-
tically speedup and simplify segmentation of LA anatomy and LA scar from
atrial LGE-MRI. Once the model is trained, it takes only a couple of minutes to
predict the segmentations. The network was validated on LGE scans acquired
at 4 clinical centers using 1.5 and 3 T MRI scanners. LASSNet demonstrated
excellent performance in LA and LA scar segmentation making it a viable tool
for use in wide clinical practice.

4 Conclusion

In this work, we proposed a deep learning approach to automatically segment
both the LA cavity and LA scar which proved to be robust to atrial LGE-MRI
collected by different clinical centers. Although, the LA cavity segmentation
could be further improved, LASSNet achieves superior scar segmentation per-
formances over previously published methods and shows promising results for
scar segmentation with realistic scar pattern in agreement with typical ablation
locations. Limitations to this work are the limited number of adequate quality
LGE-MRI scans in training and validation datasets, inconsistencies in LA cav-
ity GT and scar GT segmentations, and LGE-MRI scans from only 4 clinical
centers. The LASSNet framework could easily be applied to other segmentation
tasks that demand a two stages refined segmentation task.
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Abstract. Automatic segmentation of left atrial (LA) scars from late
gadolinium enhanced CMR images is a crucial step for atrial fibrillation
(AF) recurrence analysis. However, delineating LA scars is tedious and
error-prone due to the variation of scar shapes. In this work, we propose
a boundary-aware LA scar segmentation network, which is composed of
two branches to segment LA and LA scars, respectively. We explore the
inherent spatial relationship between LA and LA scars. By introducing a
Sobel fusion module between the two segmentation branches, the spatial
information of LA boundaries can be propagated from the LA branch to
the scar branch. Thus, LA scar segmentation can be performed condition
on the LA boundaries regions. In our experiments, 40 labeled images were
used to train the proposed network, and the remaining 20 labeled images
were used for evaluation. The network achieved an average Dice score of
0.608 for LA scar segmentation.

Keywords: Left Atrial Scar · Multi-depth Segmentation ·
Boundary-Aware

1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia, occurring at any age,
from children to the elderly [3]. Clinically, catheter ablation (CA) [8] is a widely
used invasive procedure for AF treatment, but with a 45% recurrence rate [1].
Recent studies demonstrated the relationship between the recurrence of AF and
left atrial (LA) scars after CA [5,15]. Late gadolinium enhanced (LGE) cardiac
MR has emerged as one of the promising techniques for imaging LA scars [14].
Delineating scarring regions from LGE images could analyze the formation of
LA scars, and benefit the monitoring and management of AF patients.

Conventional scar segmentation methods are mainly based on thresholding,
region-growing and graph-cut algorithms [7]. Deep-learning (DL) based meth-
ods have recently been widely studied for LA scar segmentation tasks. Most
DL-based methods explore employing LA or LA walls to improve the scar seg-
mentation. For instance, Chen et al. [2] presented a multi-task segmentation
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methods, where LA and scars were jointly predicted with an attention model; Li
et al. [9,11] formulated the spatial relationship between LA walls and scars as
loss function, which could force the network to focus on objective regions during
inference.

Generally, the size of LA scars is varied largely. In the training dataset of
LAscarQS 2022 [10–12], each LGE image contains average 41.17 scars, and the
size of scars are ranged from 0.98mm3 to 7545.89mm3. Table 1 presents the
statistical information of the scars in LAscarQS 2022. One can observe, 76.1%
of scars sizes are within 50mm3, and they occupy 16.17% of total scars volume;
whereas only 2.8% of scars sizes are larger than 500mm3, but they cover 48% of
total scars volume in the whole dataset. For the tiny objects, a shallower network
could outperform the deep U-Net; For the large objects, a deeper network could
outperform the shallower network [16]. The optimal depth of a segmentation
network can vary due to the variety of sizes, which poses an additional challenge
in performing scar segmentation.

Table 1. Statistical information of scarring regions in the training dataset of LAS-
carQS2022

Range (mm3) 0–50 50–100 100–150 150–200 200–250 250–300 300–350 350–400 400–450 450–500 >500

Number of Scar 1881 262 121 39 24 17 20 14 14 7 71
Percentage (%) 76.15 10.61 4.89 1.58 0.97 0.69 0.809 0.566 0.566 0.28 2.87
Total Number 2470
Scar Volume 33014 18624 14981 6778 5237 4632 6510 5273 5898 3321 99918

Percentage (%) 16.17 9.12 7.34 3.32 2.56 2.27 3.19 2.58 2.89 1.626 48.93
Total Scar Volume 204191

As shown in Fig. 1, we propose a multi-depth boundary-aware network, namely
MDBAnet, to segment different sizes of LA scars. The main contribution of this
work includes: (1) We present a multi-depth segmentation network to segment
multiple sizes of scars. (2) We propose a plug-and-play Sobel [13] fusion module,
which aims to extract LA boundary information to improve scar segmentation.

2 Method

2.1 Network Architecture

MDBAnet comprises two branches, which segment LA and LA scars, respec-
tively. Scars are distributed on the LA wall, and the size of scars varies largely,
as seen from our statistical information (Table 1). In order to achieve scar seg-
mentation of different sizes, the scar branch is stacked with multiple U-Nets
that share the same encoder but with different decoder depths. We expect that
the shallow networks will focus on segmenting small-size scars, while the deep
networks will focus on segmenting large-size scars. Finally, we fuse segmentation
results of each U-Net as follows:
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Fig. 1. The architecture of multi-depth boundary-aware network (MDBAnet). It con-
sists of two segmentation branches, i.e., the scar branch and the left atrial (LA) branch.
In both branches, we introduce multiple U-Nets with different depths to perform scar
and LA segmentation. Furthermore, we propose a Sobel fusion module to extract and
propagate LA boundaries information from the LA branch to the scar branch. For
conciseness, we only reserve the data flow between the deepest LA decoder path and
scar decoder, and all skip connections are omitted.

ŶScar =
1
N

N∑

n=1

Ŷn, (1)

where N is the number of U-Nets with different depths, and Ŷn is the output of
the corresponding U-Net.

Furthermore, we aim to improve the performance of scar segmentation by
jointly performing LA segmentation. Thus, as shown in Fig. 1, we introduce the
LA branch for LA segmentation. The network architecture of the LA branch is
symmetric to the scar branch, which is stacked with multiple U-Nets. It outputs
LA regions for LGE images.

2.2 Sobel Fusion Module

We explore the inherent spatial relationship between LA and LA scars. Gener-
ally, LA scars are distributed around LA boundaries. We introduce a Sobel [6]
operator to extract the boundary information of feature maps. Then a Sobel
fusion module (SFM) is proposed to take full advantage of the spatial relation-
ship between boundary information and LA scars. The input of SFM includes
the feature maps of LA decoder, the previous layer of scar decoder and scar
encoder. The output of SFM can be calculated as follows:

F out =
(
FDec
Scar ⊗ S

(
FDec
LA

)) ⊕ FEnc
Scar, (2)
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where ⊗ and ⊕ represent element-wise multiplication and concatenation, respec-
tively, S represents 3D Sobel operation, FEnc and FDec are the feature map from
the encoder path and decoder path, respectively. Here, Sobel operation is imple-
mented by a fixed kernel convolution layer, which consists of three 3D Sobel
kernels. Following Xu et al. [13], each 3D Sobel Kernel can be described as a
3×3×3 matrix, as shown in Fig. 2. They can be used to extract the boundary
information from the axial, sagittal and coronal views of image.

Fig. 2. Our 3D Sobel kernel

Based on the SFM, the feature map from the decoder path of the LA branch
could be passed to the 3D Sobel Kernel to get the boundary information of
LA. Then we re-calibrate the feature map of the scar branch with the boundary
information, which provides spatial attention and forces the network to focus on
the LA boundaries region.

2.3 Loss Function

We employ Dice loss and cross-entropy loss to jointly optimize the segmentation
results of the network. The total loss of our network is:

L = − DCS(ŶScar, YScar) + CE(ŶScar, YScar)

− DCS(ŶLA, YLA) + CE(ŶLA, YLA),
(3)

where Ŷ{Scar,LA} and Y{Scar,LA} are the predicted and gold standard labels,
respectively; DCS(a, b) calculate the Dice score (DS) between a and b; and
CE(a, b) calculate the cross-entropy loss.
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3 Experiment

3.1 Dataset

We trained and evaluated our method on the Left Atrial and Scar Quantification
& Segmentation Challenge 2022 (LAScarQS 2022) dataset, which aimed to seg-

ment LA and LA scars from LGE CMR images. The challenge dataset provides
a total of 60 labeled and 10 unlabeled LGE CMR images, and gold standard
labels include: LA and LA scars. In our experiment, we split the labeled images
into a training set of 40 cases, and the remaining 20 cases for evaluation. Finally,
the performance of the network was evaluated on 10 unlabeled images.

3.2 Implementations

Our network was implemented in PyTorch, using two NVIDIA GeForce RTX
3080 GPUs. We used SGD optimizer to adjust the network parameters (batch
size = 2, weight decay = 0.00003, momentum= 0.99). The initial learning rate
was set 0.01 and decayed exponentially. During training, enhancement tech-
niques, i.e., random rotation, random scaling, random elastic deformation,
gamma-corrected enhancement and mirroring, were applied on the fly.

3.3 Result

We compared our method to three different segmentation methods:

– nnU-Net [4]: One of the state-of-the-art segmentation networks. We trained
it with 3D LGE images as well as corresponding scar or LA labels.

– MDnet: A multi-depth segmentation network based on U-Net. which is the
scar or LA branch of MDBAnet.

– MDBAnetmul: A variation of MDBAnet. We implement a multiplication
fusion module to propagate information from the LA branch to the scar
branch.

– MDBAnet: The proposed network. It consists two branches with multi-depth
network to segment LA and scars. We implement a Sobel fusion module to
propagate information from the LA branch to the scar branch.

To evaluate methods, DS, Hausdorff distance (HD), sensitivity (Sen) and speci-
ficity (Spe) were calculated between the prediction results and the gold standard
label.

Table 2 shows the segmentation performance of different methods. Meth-
ods using a multi-depth strategy (i.e., MDBAnet, MDBAnetmul and MDnet)
had obtained better segmentation performance compared to single-depth net-
work, i.e., nnU-Net. Particularly, MDnet improved Dice and HD by 0.01 and 1
for scar segmentation, respectively. It proves the effectiveness of using multi-
depth strategy. Meanwhile, scar segmentation could be further improved by
jointly performing LA segmentation. One can see that both MDBAnetmul and
MDBAnet improve the scar segmentation results by utilizing information from
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Table 2. The performance of different methods. DS: Dice score; HD: Hausdorff dis-
tance; Sen: Sensitivity; Spe: Specificity. Note that MDBAnet and MDBAnetmul jointly
produce scar and LA segmentation, while nnU-Net and MDnet independently produce
scar or LA segmentation.

Methods LA
DS HD (mm) Sen Spe

nnU-Net 0.903 (0.032) 20.99 (9.08) 0.926 (0.045) 0.999 (0.001)
MDnet 0.906 (0.032) 22.41 (9.35) 0.918 (0.048) 0.999 (0.001)
MDBAnetmul 0.926 (0.021) 17.83 (11.33) 0.934 (0.037) 0.991 (0.004)
MDBAnet 0.923 (0.027) 19.18 (11.10) 0.933 (0.038) 0.990 (0.005)

Scar
nnU-Net 0.488 (0.090) 39.62 (12.81) 0.418 (0.111) 0.999 (0.001)
MDnet 0.501(0.085) 40.66 (12.88) 0.450 (0.101) 0.999 (0.001)
MDBAnetmul 0.504 (0.087) 33.21 (10.43) 0.459 (0.120) 0.999 (0.001)
MDBAnet 0.512 (0.083) 31.67 (10.86) 0.475 (0.122) 0.999 (0.001)

Fig. 3. Visualization of different scar segmentation methods. Yellow Arrows mark the
advantage of MDBAnet, while yellow Boxes denote the tiny scars. (Color figure online)

the LA branch. For example, MDBAnet achieved an improvement DS by 1.3%
(p = 0.125), and significantly reduced HD from 40.66 to 31.67 (p< 0.05) against
MDnet. Besides, MDBAnetmul propagated the entire feature maps of the LA
branch, while the MDBAnet extracted the boundary information via SFM.
MDBAnet could obtain better DS and HD for scar segmentation. This implied
the benefit of SFM.
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In Fig. 3, we showed four typical cases for visualization. nnU-Net may failed
to perform segmentation for tiny scars (yellow Boxes), which is consist to the
quantanity result of Table 2. Moreover, MDBAnet achieved better results for
some difficult cases, such as ambiguity scars (yellow Arrows). This was probably
due to the usage of SFM, which could force the scar branch to focus on boundary
regions.

4 Conclusion

In this work, we have proposed a multi-depth boundary-aware LA scar segmen-
tation network. It consists of two segmentation branches based on multi-depth
strategy. Meanwhile, we implemented a SFM to propagate information from LA
branch to scar branch. The experimental results showed that multi-depth net-
work has a positive effect on scar segmentation, and SFM was capable of further
improving scar segmentation performance. The network achieved a DS of 0.608
on validation data of LAScarQS 2022.
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Abstract. Accurate Left Atrial (LA) segmentation from Late Gadolin-
ium Enhancement Magnetic Resonance Imaging (LGE MRI) is funda-
mental to the diagnosis of Atrial Fibrillation (AF). Previous approaches
tended to solve this problem by refining network architecture to lever-
age spatial priors in medical imaging. However, the priors modeling can
hardly be achieved due to low image quality and various shapes of LA.
In this paper, we try to learn the priors from generation. The motivation
is simple: if a model can generate or recover image content well, it pos-
sibly has learned the priors well. With the priors built in, such a model
can better segment LA. Specifically, we investigate the self pre-training
paradigm, i.e., models are pre-trained and fine-tuned on the same LGE-
MRI dataset, based on Mask Autoencoder (MAE). In the pre-training
stage, we utilize Vision Transformers (ViT) based auto-encoders to per-
form the pretext task of reconstructing the original MRI images from
only partial patches, where the ViT encoder is encouraged to learn con-
textual information as priors by aggregating global information to recover
the contents in masked patches. In the fine-tuning process, we further
propose an single-scale adaptor for downstream task. The adapter first
has different branches with different numbers of upsampling blocks to
remedy the plain, non-hierarchical property of the ViT. This can better
adapt ViT to dense prediction task. Then, it constructs a feature pyra-
mid directly from the single-scale feature map of ViT using the multi-
scale features from different branches. Finally, the adapter incorporates
a decoder to predict the segmentation results based on the feature pyra-
mid. The proposed model (called ViTUNet) outperforms baseline trained
from scratch and widely used nnUNet model. The final trained model
shows a validation score of 0.89013, 1.70567 and 17.12375 for Dice coef-
ficient, ASD and HD metric, respectively.

Keywords: Left Atrial Segmentation · Masked Autoencoder ·
Self-supervised Learning · Vision Transformer Adapter
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1 Introduction

Left Atrium (LA) myocardium segmentation with high anatomical variability
using Cardiac Magnetic Resonance (CMR) imaging can assist doctors in accu-
rately assessing Atrial Fibrillation (AF), which is the most common arrhythmia
observed in clinical practice [1]. CMR imaging uses magnetic resonance imaging
technology to diagnose heart and prominent blood vessel diseases. It has good
soft tissue contrast resolution, a large scanning field, and can obtain oblique
cross-sectional images in various directions and angles. Non-invasive CMR exam-
ination is currently the gold standard for evaluating cardiac structure and func-
tion. Combined with Late Gadolinium Enhancement Magnetic Resonance Imag-
ing (LGE MRI), it can comprehensively evaluate cardiac structure and morphol-
ogy, cardiac function, myocardial perfusion and myocardial activity. Histopatho-
logically, the degree of LGE-MRI is consistent with the extent of myocardial
necrosis or fibrosis. Therefore, LGE MRI has important clinical significance.

Left Atrial and Scar Quantification & Segmentation (LAScarQS 2022) Chal-
lenge1 [2–4] aims to automatically segment LA cavity and quantify LA scars
from LGE MRI. It provides 200+ LGE MRIs acquired from patients suffering
from AF. The challenge is arduous because the image quality of MRI could be
poor and various shapes of LA and scar make the model hard to aggregate the
spatial information. By investigating the leading methods in previous CMR seg-
mentation challenge, we find that all these methods refine network architecture
[5] or adopt a coarse-to-fine segmentation paradigm [6,7]. Zhang et al. [5] refines
both encoder and decoder. It employs EfficientNet [8] for better representation
ability and a weighted bi-directional feature pyramid network as the decoder.
Another method [6] proposes a two-staged method: firstly detecting a small ROI
pathological region and then performing pathological region segmentation. Liu
et al. [7] also firstly locates the rough position of segmentation target, then pre-
dicts accurate masks in the second stage. Despite the improved performance,
these methods can hardly adapt to various LA shapes, which require the net-
works to capture both global and local context priors in an adaptive way. Since
these methods use heuristically- and artificially-designed networks, they cannot
adaptively capture optimal global and local context for each shape.

Vision Transformer (ViT) [9] based masked image modeling (MIM) [10–12]
pre-training is a good alternative to tackle the drawback of the above methods.
This is because MIM can adaptively aggregate global context to recover the
contents in masked local patches. When the MIM can generate local patches
well, it possibly have learnt both the global and local context very well for gen-
erating various LA shapes in different local patches. The basic idea of MIM is
masking random patches from the input image and reconstructing these patches
from other visible patches. Usually, MIM is pre-trained on a large-scale pretext
dataset, then fine-tuned on downstream tasks. However, due to the prohibition
of using external datasets in the LAScarQS 2022 challenge, we conduct MAE
pre-training on the same downstream task dataset, which is termed as self pre-

1 https://zmiclab.github.io/projects/lascarqs22/.

https://zmiclab.github.io/projects/lascarqs22/
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training. MIM approach randomly samples patches from images to construct
masked and visible patches for the training of a global self-attention-based ViT
backbone, thus encouraging the network to aggregate global context for bet-
ter representative features. The ViT is adopted as the backbone for MIM pre-
training because it does not introduce vision-specific inductive biases. This means
that ViT can be applied to deal with multi-modal data (such as image and text)
and multiple tasks (supervised or unsupervised detection/segmentation). Thus,
our ultimate goal is to pre-train ViT on large-scale multi-modal datasets to bet-
ter learn prior knowledge for a variety of downstream tasks. Particularly, ViT
pre-trained with MIM has demonstrated good performance for segmentation [13],
with a potential application for segmenting multi-modal medical images such as
CT and MRI.

The concept of adapter was proposed in the natural language processing
(NLP) field. Adapters are introduced in pre-trained encoders for task-specific
fine-tuning, facilitating the pre-trained model to adapt to the downstream task.
Current state-of-the-art ViT models for dense prediction tasks are the variants
of ViT that are combined with convolutional inductive bias. The vanilla ViT
architecture lacks prior information of images—hierarchical features, which are
essential for dense prediction tasks. Thus a pre-trained ViT is not competitive
with other transformer architectures combined with inductive bias when trans-
ferred to downstream segmentation task. In conclusion, designing an adapter
that constructs hierarchical features for pre-trained ViT is essential for down-
stream segmentation tasks.

Following [14], we propose to utilize Masked Autoencoder (MAE) based self
pre-training paradigm for LGE MRI. To avoid using external datasets in the
LAScarQS 2022 challenge, we first conduct self pre-training on the same down-
stream task dataset. This is achieved by using MAE training strategy to pre-train
a ViT encoder. For downstream segmentation task, we design an adaptor that
comprises a modified backbone encoder, a feature pyramid and a decoder. Due
to the plain, non-hierarchical property of ViT, we need to redesign a hierarchi-
cal backbone as the encoder for efficient training and better performance. We
achieve this goal by a single-scale adapter, i.e., constructing a feature pyramid
from the last single-scale feature map of ViT as in [15]. This enables the pre-
trained ViT model to be fine-tuned for segmentation tasks without the need to
modify the hierarchical backbone or extract features from different layers and
upsample for different times. Then the feature pyramid is input to a UNETER
decoder to obtain the segmentation results. The results demonstrate that the
proposed fine-tuned model, termed as ViTUNet, outperforms ViTUNet trained
from scratch and other competitive models such as nnUNet.

2 Dataset

The LAScarQS 2022 dataset provides 200 cases of LGE MRI acquired from
patients suffering AF in the validation phase. All these clinical data have gotten
institutional ethic approval and have been anonymized. The challenge involves
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two tasks, i.e., “LA Scar Quantification” and “Left Atrial Segmentation from
Multi-Center LGE MRIs”. The LA segmentation is typically utilized as a prior
for scar quantification as atrial scars are located on the LA wall.

We mainly participate in the “Left Atrial Segmentation from Multi-Center
LGE MRIs” task, which contains 130 LGE MRIs collected from different insti-
tutions. The spatial resolutions of 3D LGE MRI scan from different institutions
are different, i.e., 1.25 × 1.25 × 2.5mm, 1.4 × 1.4 × 1.4mm and 1.3 × 1.3 ×
4.0mm, which reveals the difficulty of the task.

3 Method

Our proposed method pre-trains the ViT encoder by solving the masked image
modeling pretext task so that global and local contexts are adaptively learned as
priors for downstream tasks. For downstream segmentation tasks, we initialize
the ViT encoder with the pre-trained weights and construct a feature pyramid
from the last single-scale feature map of the non-hierarchical ViT backbone.
Then we input the feature pyramid into a decoder to obtain segmentation results.
An overview of the proposed segmentation method is presented in Fig. 1.

3.1 Self Pre-training with Masked Autoencoders

The input LGE MRI volume is firstly randomly split into two sets of patches:
visible patches and masked patches. The pretext task in MIM methods is to
reconstruct the masked patches with the context information from unmasked
patches.

Encoder: The ViT encoder only handles the visible patches and embeds these
visible patches to the latent features. The encoder first maps unmasked patches
to token embeddings by linear projections. Combined with position embedding,
the tokens are then fed into a sequence of transformer blocks which consist of
self-attention modules.

Decoder: The decoder maps the embedding latent tokens from the encoder and
learnable mask tokens to the original images. With additional position embed-
dings, the decoder can reconstruct each patch in specific position. The decoder
also stacks several transformer blocks, but more lightweight than the encoder to
reduce the training budget. The decoder is abandoned after pre-training phase
and will not appear in the downstream fine-tuning stage.

Loss Function: The MSE loss is conducted between the raw voxel values of
the original images and reconstructed voxel values.
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Fig. 1. Our pre-training and fine-tuning architecture. In the pre-training phase, random
patches are masked and only the unmasked patches are input to the encoder to obtain
unmasked tokens. The unmasked tokens and learnable mask tokens are processed by a
decoder which reconstructs the image. During fine-tuning, the pre-trained decoder is
discarded and a new ViTUNet decoder is used for segmentation task.

3.2 Adapter for Downstream Segmentation Task

Considering the non-hierarchical property of ViT, an adapter is necessary to
better adapt the pre-trained ViT encoder to segmentation tasks. The adapter
has a modified backbone encoder, a feature pyramid and a decoder. Firstly, the
pre-trained ViT backbone is modified to better adapt to the segmentation task
during fine-tuning stage. In previous method [12], all the transformer blocks are
divided into 4 subsets and interact with different convolution layers to extract
features of different scales (downsample 4, 8, 16, 32 compared to the original
image). These multi-scale features are then used to construct feature pyramid,
which is input to a decoder to obtain segmentation results. Our proposed adapter
is compatible with the single-scale feature map of pre-trained ViT.

Feature Pyramid: Due to the plain, non-hierarchical property of ViT, we need
to modify the pre-trained ViT to make it a hierarchical backbone for efficient
training and better performance. We achieve this goal by designing a single-scale
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Fig. 2. During fine-tuning, the last single-scale feature map from the ViT encoder is
applied with different convolutions or deconvolutions to construct multi-scale features
or feature pyramid. Then the feature pyramid is input to a UNTER decoder to output
the segmentation map.

adapter. We construct a feature pyramid based on the modified backbone. We
follow [15] to relax the hierarchical constraint on the ViT backbone and explore
the single-scale backbone for dense prediction tasks. This leads to a single-scale
adapter. In our method, the last feature map from the ViT encoder is applied
with different convolutions or deconvolutions to construct multi-scale features.
Taking stride of patch embedding as 16 for an example, feature maps of different
scales { 1

32 ,
1
16 ,

1
8 ,

1
4} are processed with convolutions of stride {2,1, 12 ,

1
4} (12 ,

1
4

means deconvolution). The detailed operations are displayed in Fig. 2.

Segmentation Decoder: After constructing the feature pyramid, we utilize
UNETR [16] decoder, which is randomly initialized, as our segmentation decoder.
The sequential input of our constructed feature pyramid, i.e., {h1, h2, h3, h4, h5}
(the index represents the downsample scale compared to the original resolution),
is input to the UNETR decoder.

Starting from the feature h5, a 2× 2× 2 deconvolution layer is inserted to
increase the resolution to fit with h4, then h5 and h4 are concatenated and
upsampled to match the resolution of larger feature. Such operations are con-
ducted until the concatenation of h2 and h3 are upsampled to the original size.
Then the output layer takes the upsampled features and h1 to output the seg-
mentation results.
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Table 1. Quantitative comparison of our proposed ViTUNet with other state-of-art
methods. We report the DSC value on the offline validation set.

Method DSC

nnUNet [17] 0.9190
UNETR [16] 0.9146
UNETR (MAE pre-trained) [14] 0.9181
ViTUNet 0.9171
ViTUNet (MAE pre-trained) 0.9193

4 Experiments and Results

4.1 Implementation Details

All experiments are conducted with CUDA 11.3, Pytorch 1.12 on NVIDIA Tesla
A100 with 80GB VRAM. We implement our method in the nnU-Net framework
and we adopt the default pre-processing, data augmentation, and post-processing
procedure as in nnU-Net. We adopt data augmentation of additive brightness,
gamma, rotation, scaling, elastic deformation on the fly during training. In all
our experiments, we set the batch size to 2 and use AdamW optimizer with
weight decay 0.1. We train the models for 1000 epochs, with each epoch having
250 iterations. In the first 50 epochs, we warm-up the learning rate from 0 to
2e−4, then the learning rate decayed following the cosine schedule. During MAE
pre-training, we randomly crop a 96× 96× 96 volume as the input, the patch
size is 16× 16 × 16 and the mask ratio is 0.75.

4.2 Quantitative Results on Validation Set

Due to the restricted online submission times, we split the provided training data
into training and validation sets with a ratio of 80%:20%. For a fair comparison,
we train all the models on only 80% training data and report the quantitative
results on the offline validation set. All the results are experimented on Task 2
“Left Atrial Segmentation from Multi-Center LGE MRIs”.

We report our results on our split validation set in Table 1, our proposed
ViTUNet can outperform UNETR in terms of DSC when they are trained from
scratch. Note that our ViTUNet only uses single-scale feature from ViT backbone
while UNETR uses multi-scale features. Our ViTUNet also achieves competitive
performance to nnUNet. Moreover, with MAE self pre-training, ViTUNet can
achieve even better performance than nnUNet. In Fig. 3, we visualize the seg-
mentation results of our ViTUNet and nnUNet on the offline split validation
set. It is obvious that the segmentation results of our ViTUNet outperforms the
results of nnUNet in keeping details.
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Fig. 3. The segmentation results. The first column is original image, the second and
third columns are the segmentation results of out pre-trained ViTUNet and nnUNet,
and the last column represents the ground truth.
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Table 2. Ablations. We study the effectiveness of each component of our proposed
pipeline on offline splited validation set and report DSC. Last row: Our default setting.

Self Pre-train Adapter Normed DSC

� � \ 0.9146
� � \ 0.9171
� � � 0.9181
� � � 0.9193
� � � 0.9194

Ablation Study. In Table 2, we conduct ablation experiments on each compo-
nent of our pipeline. Firstly, the effectiveness of the self pre-train is confirmed
as this method outperforms the method of training from scratch by 0.35% and
0.22% for the setting of without and with adapter, respectively. Secondly, our
proposed single-scale adapter improves the segmentation performance by 0.25%
and 0.12% for models trained from scratch and fine-tuned. Lastly, setting the
normalized value in patches as the reconstruction target also outperforms recon-
structing raw pixels.

Moreover, we conduct ablation study on mask ratio and ViT scale. Figure 5
displays the influence of the masking ratio. The optimal ratios is 75% in our
setting. Masking 75% patches in the input images provides a sufficiently hard
pretext task for the auto-encoder and encourages the pre-trained model to cap-
ture context information, which contributes to the learning of downstream tasks.

Figure 5 also demonstrates that ViT-Base achieves the best performance com-
pared with other ViT models. Due to the lack of inductive bias in self-attention,
ViT model tends to converge better in larger dataset, especially for big ViT
models, so there is an experimental trade-off of the optimal ViT scale. In our
experiment, ViT-Base outperforms other ViT scales (Fig. 4).

4.3 Qualitative Results from MAE Reconstruction on Validation
Set

We display the reconstruction results of MAE with a mask ratio of 75% in
Fig. 5. The three columns represent the original images, the masked images and
the reconstructed images. The visualization indicates that our MAE pre-training
model is capable of inferring the masked information from context. It is worth
noting that visible patches in the reconstructed images are blurrier, and the
contrast of restored pixels differs from the overall image as our reconstruction
target is the normalized value of patches.
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Fig. 4. MAE setting ablations. The left figure displays the final results of 10%, 30%,
50%, 75%, 90% mask ratio, and the right figure represents the segmentation results of
different ViT scale. The conclusion is consistent with our setting that the 75% mask
ratio and ViT-Base encoder achieve best performance in the challenge.

Fig. 5. MAE reconstruction visualization. The first column is the original image, the
second column represents the masked images and masked patches are replaced with
gray blocks, the third column shows the MAE reconstruction results. (Color figure
online)

Table 3. Quantitative comparison of our proposed ViTUNet with other state-of-art
methods. We report the DSC, NSD and HD value on the online validation leaderboard.

Method DSC NSD HD

nnUNet [17] 0.8875 1.7664 17.5357
UNETR [16] 0.8728 2.2195 22.0160
ViTUNet 0.8864 1.7582 16.7074
ViTUNet (MAE pre-trained w/o norm) 0.8888 1.7100 16.5931
ViTUNet (MAE pre-trained w/norm) 0.8901 1.7057 17.1238
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4.4 Challenge Results

The challenge results are shown in Table 3. It is clear that the conclusion is con-
sistent with the experiments in our split validation set. Our proposed ViTUNet
can improve UNETR by 1.36% in terms of DSC when they are trained from
scratch. Compared with nnUNet, our ViTUNet also achieves comparable per-
formance. With MAE self pre-training, ViTUNet can even outperform nnUNet.
We also conduct ablation study on the reconstruction target in the pre-training
process, and the results show that restoring normalized voxels in patches per-
forms better than restoring raw voxels. Our method finally ranks 2nd in the
leaderboard.

5 Conclusion

In this paper, we propose a ViTUNet for Left Atrial (LA) segmentation. The
ViTUNet first pre-trains a ViT-based Masked Autoencoder (MAE) on the target
dataset to learn both global and local context priors, then fine-tunes the pre-
trained model on the same target dataset for segmentation task. During fine-
tuning, ViTUNet constructs feature pyramid from single-scale feature map of the
ViT and inputs the feature pyramid to decoder to obtain segmentation results.
Experimental results show that our proposed ViTUNet can effectively improve
the performance of baseline models and beat nnUNet.
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Abstract. Thanks to the capacity for long-range dependencies and
robustness to irregular shapes, vision transformers and deformable con-
volutions are emerging as powerful vision techniques of segmentation.
Meanwhile, Graph Convolution Networks (GCN) optimize local features
based on global topological relationship modeling. Particularly, they have
been proved to be effective in addressing issues in medical imaging seg-
mentation tasks including multi-domain generalization for low-quality
images. In this paper, we present a novel, effective, and robust frame-
work for medical image segmentation, namely, UGformer. It unifies novel
transformer blocks, GCN bridges, and convolution decoders originating
from U-Net to predict left atriums (LAs) and LA scars. We have identi-
fied two appealing findings of the proposed UGformer: 1). an enhanced
transformer module with deformable convolutions to improve the blend-
ing of the transformer information with convolutional information and
help predict irregular LAs and scar shapes. 2). Using a bridge incor-
porating GCN to further overcome the difficulty of capturing condition
inconsistency across different Magnetic Resonance Images scanners with
various inconsistent domain information. The proposed UGformer model
exhibits outstanding ability to segment the left atrium and scar on the
LAScarQS 2022 dataset, outperforming several recent state-of-the-arts.

Keywords: Left atrium segmentation · Scar prediction ·
Transformer · Graph convolution model

1 Introduction

Late gadolinium enhancement magnetic resonance imaging (LGE-MRI) is typi-
cally used to provide quantitative information on atrial scars [25]. In this mea-

This research is funded by XJTLU Research Development Funding 20-02-60. Compu-
tational resources used in this research are provided by the School of Robotics, XJTLU
Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Zhuang et al. (Eds.): LAScarQS 2022, LNCS 13586, pp. 36–48, 2023.
https://doi.org/10.1007/978-3-031-31778-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31778-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-31778-1_4


UGformer for Robust Left Atrium and Scar Segmentation Across Scanners 37

surement, location and size in the left atrium (LA) indicate pathology (i.e., LA
scars) and progression of atrial fibrillation [12].

Nowadays, deep learning models have been widely used to segment LA cav-
ities and quantify LA scars from LGE-MRIs [3] to help radiologists with initial
screening for quick pathology detection. Meanwhile, LGE-MRIs are often col-
lected by multiple scanners and possibly in low imaging quality. Each of them
produces inconsistent domain information [14], including different contrast and
spatial resolutions. (1) Promoting the generalization of a segmentation model
against domain inconsistency becomes another challenge (Fig. 1).

Fig. 1. Typical examples of LAScarQS Dataset [14–16] in various contrast: (a) Proper
contrast, (b) low contrast, and different spatial resolution (c) 886 × 864, (d) 480 × 480.

Essentially, semantic segmentation is a mapping from input images to output
pixel labels through an empirically designed segmentation model. Recent com-
puter vision research communities have witnessed great achievements brought by
the Convolutional Neural Network (CNN) and Vision Transformers (ViT) [4,10].
However, there is a lack of theoretical explanations to guarantee prediction
and generalization performance [2]. Besides, there is no fixed shape in human
anatomies (i.e., LAs) and pathologies (i.e., LA scars). Atlas-based segmentation
strategy cannot be utilized ideally [13,30], while normal CNNs are not good at
predicting deformable objects either [22].

Conventional CNN-based segmentation models only take care of local depen-
dencies since the convolutional kernel only sees visual information in closing pix-
els within the receptive field. It leads to ignoring the full picture as a whole [21].
Common pooling layers in CNN will also degrade spatial information since it
regards neighboring pixels as one single pixel. Losses in spatial information
restrict the prediction performance of conventional CNN models [26].

Fortunately, Graph Convolutional Networks (GCN) are promised to address
those challenges effectively by leveraging the robustness brought by the topo-
logical properties [11]. The topological relationship extracted by GCN while
performing representation learning has been proved more stable against various
application scenarios than that of the geometric relationship of general vision
models, i.e., CNNs and ViTs [1]. In addition to the local features extracted by
CNNs, GCN also provides an approach to model the relationship among differ-
ent local features. It optimizes local features of low-quality images by Laplacian
smoothing to a certain extent [9], beneficial to promoting generation across data
from different domains.

Meanwhile, recently ViT models are becoming popular in semantic segmen-
tations in handling long-range dependencies. It models spatial image information
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by engaging the self-attention mechanism [24]. Swin Transformer [17] and Seg-
Former [27] are two pioneering approaches to engaging ViTs in segmentation
tasks. Swin Transformer engages sliding window operation. It fulfills the local-
ization of convolutional operations while saving time consumption in computa-
tion. SegFormer connects the transformer to lightweight multi-layer perception
decoders, allowing it to combine local and global attention. In medical image
segmentations, TransUnet [4], UTnet [7], and LeViT-Unet [28] are the first few
trials to integrate ViT modules in the U-Net [22] architecture. All of them achieve
state-of-the-art segmentation performance on the Synapse dataset [23].

Fig. 2. Positions of LA and LA scars [16]

In terms of LA scar prediction, prior work predicts LA and LA scars sepa-
rately without considering the relationship between them [16]. Meanwhile, the
size of the scars is relatively insignificant, bringing difficulties in the predic-
tion. Fortunately, LAs are much easier to be predicted, while LA scars are often
detected near identified LA boundaries Fig. 2. Inspired by [29], we believe that
combining the prediction of LAs and LA scars can be expected to improve scar
segmentation performance.

In this paper, we propose a novel U-shaped GCN with Enhanced Transformer
module (UGformer). It is a two-stage segmentation model by segmenting the
LA before quantifying the irregularly shaped LA scars. It consists of a novel
transformer block as the encoder, convolution blocks as the decoder, and skip-
connections with a GCN as the bridge.

In the encoder, the novel transformer block, namely, enhanced transformer
block (ETB), is built by replacing the single multi-head self-attention module
with paralleling the multi-head self-attention module (MHSA) and deformable
convolutions (DCs). It models global spatial attention while dealing with irregu-
lar shape information by leveraging advantages in both convolutions and trans-
formers, i.e., proper generalization ability and sufficient model capacity [26].
The bridge with GCN connection optimizes the fusion of long-range information
and context information between the encoder and the decoder [9]. It contin-
uously strengthens the representation of intermediate feature maps to find a
low-dimensional invariant topology, improving the extrapolation of segmenta-
tion models.

The major contributions of this paper are summarized as follows:
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– We proposed the UGformer, a novel two-stage segmentation model for LA
and LA scar segmentation.

– In the encoder, we designed a novel enhanced transformer block combining
multi-head self-attention and deformable convolutions to model global atten-
tion and address irregular shapes of LA scars.

– In the bridge, we proposed a novel GCN-based structure to optimize the
global space of intermediate feature layers.

– Compared to other state-of-the-art baselines, the predicting performance of
the proposed model on LAScarQS dataset [14–16] demonstrates the effective-
ness and generalizability of the proposed UGformer.

2 Methodology

As depicted in Fig. 3, the proposed UGformer consists of an encoder, a U-Net
decoder [22], and a bridge. Specifically, the encoder is constructed by ETB, while
deconvolutions are used to build the decoder. They are connected by the bridge
with GCN.

Fig. 3. UGformer Structure

2.1 Encoder Block

In the encoder, the convolutional STEM module [8], including a convolution
module, a GELU module, and a batchnorm to vectorize the input features with
down-sampling, was employed. It promotes quick convergence and robustness
during training.

Each encoding layer (seen in Fig. 3) is constructed by a Patch Aggregation
Block. Be noted that the transformer operation is not designed to downsample
the feature dimension. Instead, it is constructed by the Patch Aggregation Block,
including a 2 × 2 kernel and a stride operation with two steps to fulfill the
hierarchy structure.
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Besides, each layer also contains an ETB (seen in Fig. 4) to enable the
UGformer to obtain both long-range dependencies and local context.

Fig. 4. EBT in UGformer

Inspired from [24], a single MHSA block is involved in ETB to extract long-
range relationships and spatial dependencies. We engage DCs [5] parallel to
MHSA to improve segmenting irregular LAs and quantifying LA scars. To make
ETB adapt to both MHSA and deformable convolutions, a set of learnable
parameters (a and b see Fig. 4) are set to leverage both paralleling parts [19].

2.2 Bridge

The bridge module is added to the skip connection from the original U-Net [22]
with a GCN transformation (seen in Fig. 5). It bridges the encoder with ETB and
the decoder constructed by convolutions to maximize the advantages brought
by transformers and convolutions. It is capable of promoting the optimization
of local features and generalization across data from different domains.

Fig. 5. The GCN Architecture in Fig. 3

GCN in Fig. 5 (see detail structure in Fig. 7) is to extract the spatial features
of topological graphs by using the topologically-stable relationship information.
Meanwhile, after convolutional graph operation, pixels feature belonging to the
same class in semantic segmentation will be close to each other in the feature
manifold (see Fig. 6).

We multiplied the feature map with the corresponding transpose as input of
the GCN block. Global features will be generated by two layers of GCN blocks
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Fig. 6. GCN Topology: the global relationship of graph-based feature structure. The
arrows represent the closer relationship by GCN operations in the graph. The shadow
represents the topology composed of the neighbors of node v1.

Fig. 7. Two Layers of GCN Blocks: Input feature map multiplies its transpose and
update by aggregation rules in GCN block [11].

(see Fig. 7), while the global topological relationship of graph structure-based
features (see Fig. 6) is obtained. The final feature map is fused by adding (see
Fig. 5) the encoder output and the global relationship node feature together.

3 Implementation

3.1 Dataset and Pre-processing

The LAScarQS dataset includes two tasks: 1). LA and LA Scar segmentation
(task 1), and 2). LA Segmentation across scanners (task 2). The first task
contains 60 3D LGE-MRIs with labels containing LAs and LA scars, while the
second consists of 130 3D LGE-MRIs from multiple medical centers with labels
containing only LAs [12].
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Fig. 8. Task 2 scar segmentation procedures: (a). LAMP Input, (b), Predicted LA,
(c). Cropping positions, (d). Cropped ROI and SPM Input, and (e). Predicted Scar

In task 1, 54 subjects (approx. 44 slices per subject) are involved in the
training test, while the remaining 6 subjects are used in the validation set. In
task 2, 117 (approx. 44 slices per subject) and 13 subjects are used in the
training and testing, respectively. Black margins are cropped, while images are
resized to 224 × 224 with the bilinear interpolation before being normailzed to
the range of [0, 1] by the min-max normalization. Each image is augmented 4
times by random rotation with angles sampled from [0◦, 180◦] and translation
less than 0.1·w, where w represents the image width. The prediction performance
is reported based on the 10 testing subjects available.

3.2 Training Details

We first trained the LA segmentation on task 2. The obtained model was loaded
as the pre-training model for task 1. In detail, in the initial stage, the segmenta-
tion model was trained with all the LA labels available, obtaining the LA predic-
tion model (LAPM). Then, we used the LAPM to roughly segment the targetted
LA region, according to which images in the training set were cropped to train
the scar prediction model (SPM). Specifically, the cropping region of interest
(ROI) was implemented via ((xmin − 30, ymin − 30), (xmax + 30, ymax + 30)),
while xmin, xmax, ymin, ymax were boundary pixels of the predicted LA region,
30 was an empirically-selected tolerance of LA prediction (Fig. 8). Finally, the
prediction map was restored to its original size using zero padding.

We implemented our network with the PyTorch library [20]. We ran 30 epochs
on one NVIDIA Geforce RTX 3080Ti GPU. The batch size was 8, and the SGD
optimizer was used. The initial learning rate was set as 10−4, which would be
decayed to the previous 0.1 times when the validation dice records were updated.

4 Experiment

On both tasks, we compared our UGformer with other SOTA models, including
U-Net [22], Res-U-Net [6], Attention-U-Net [18]. We also performed ablation
studies to demonstrate the effectiveness of our EBT and GCN bridge modules.
From obtained results demonstrated in Table 1, Table 2, and Table 3, we found
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that in both task 1 and task 2, the proposed UGformer outperforms other
baselines where transformers are engaged when evaluated by the Dice Score
(DS).

4.1 Comparison to the State-of-the-art Methods (SOTA)

LA on Task 1 and Task 2: In Table 1, the dice scores outside before paren-
theses are performance by the model trained only with task 1 LA dataset, while
the numbers in brackets present results of models pre-trained by task 2 dataset.
We can clearly obverse that UGformer presents better prediction accuracy when
predicting the LAs. Specifically, the proposed UGformer achieves the highest dice
in task 2, outperforming all involved baselines. As shown in Fig. 9, the proposed
UGformer is capable of predicting small pathological areas. At the same time,
unlike Res-U-Net, UGformer is able to avoid most false detection. We believe
that such an appealing factor is brought by the fact that transformers are more
sensitive to irregularly shaped pathological regions [26], while the GCN module
further enhances the predictive power to small regions.

We can also find from Table 1 that the Attention-U-Net performs the best no
matter whether the pre-training stages are presented or not. In the meanwhile,
if initialized by the pre-trained model, the DS of all the involved approaches is
approx. 92 and 93. It is because that LA segmentation of task 1 is a relatively
simple assignment with consistent style information since they are generated
from one single scanner.

Scar on Task 1: The proposed UGformer performs the best in this scenario by
at least 2.5% compared to other baselines. It demonstrates that it is particularly
useful in quantifying irregular and scattered LA scars. As shown in Fig. 10,
UGformer clearly identifies more pathological regions and contributes to fewer
false detections.

Table 1. Comparison between SOTA models.

Method Task 1-LA Task 1-Scar Task 2-LA

DS↑ DS↑ DS↑
U-Net 85.95 (92.24) 67.76 84.42

Res-U-Net 85.26 (92.28) 62.61 83.74

Attention-U-Net 87.40 (93.22) 70.11 85.37

UGformer 85.49 (92.36) 72.66 86.59

4.2 Ablation Studies

Influence of ETB Module: In Table 2, ablations of MHSAs and DCs in the
ETB are presented. We can conclude that both MHSAs and DCs are essential to
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Fig. 9. Prediction results on task 2 LA.

achieve the best segmentation performance at 85.49%, 72.66%, and 86.59% on
DS on task 1-LA, task 1-Scar, and task 2-LA, respectively. Particularly, the
combination of MHSAs and DCs module makes the greatest significant improve-
ment on task 2-LA by 7%. It proves that the two modules contribute to each
other and help the prediction of the model.

Table 2. Comparison of ETB module.

MHSA DC Task 1-LA Task 1-Scar Task 2-LA

DS DS DS

85.06 69.65 78.67

85.26 70.50 80.66

85.49 72.66 86.59

Influence of GCN: Table 3 enumerates the results of ablations of GCN block
when the proposed UGformer and U-Net are used as backbones. From there,
we can find that GCN improves the prediction performance of U-Net in task
1-LA and task 2-LA. However, the improvement in scar prediction in task 1-
Scar with U-Net is insignificant. When GCN is implemented in the UGformer
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Fig. 10. Prediction results on task 1 Scar. Res-U-Net can not predict the pathology. U-
Net and Attention-U-Net can predict a certain part of the pathology. Nevertheless, we
can also obverse worse false detection than that predicted by the proposed UGformer.

architecture, it improves the prediction performance in all settings. Particularly,
when predicting scars, GCN module improves the transformer performance from
70.82% to 72.66% by 2.6%.

Table 3. Comparison of different bridge module.

Architecture GCN Task 1-LA Task 1-Scar Task 2-LA

DS DS DS

U-Net 85.95 67.76 84.42

87.93 67.72 86.79

UGformer 84.47 70.82 85.44

85.49 72.66 86.59
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Influence of the Two-Stage Method: Figure 11 displays the prediction
results with the two-stage prediction approaches and the normal ones. It can
be clearly seen that the two stage method has successfully predicted most of the
scars (see Fig. 11(c)), although some kind of false detection can still be observed.
Nevertheless, with the common prediction method (see Fig. 11(f)), the scar is
almost impossible to be predicted. We can hereby conclude that the two-stage
prediction approach is essential in quantifying scars with irregular and tiny occu-
pations on the picture.

Fig. 11. Prediction results on original images and cropped images

5 Conclusions

In this paper, we proposed the UGformer, a novel U-shaped transformer architec-
ture with a GCN bridge. It is capable of segmenting the left atrium (LA) across
different scanners and quantifying LA scars with a two-stage predicting strategy
given late gadolinium enhancement magnetic resonance images. Specifically, an
enhanced transformer block combining multi-head self-attention and deformable
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convolutions is introduced to model global attention and overcome degradation
in quantifying scars with irregular shapes. We also employ a graph convolu-
tion network (GCN), a novel GCN-based bridge, to optimize the global space of
intermediate feature layers. Extensive empirical experiments on the LAScarQS
2022 challenge dataset have demonstrated the effectiveness and robustness of
the proposed UGformer architecture in LA prediction and scar quantification.
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Abstract. Atrial fibrillation (AF) is the most common cardiac arrhyth-
mia. Accurate segmentation of the left atrial (LA) and LA scars can
provide valuable information to predict treatment outcomes in AF. In
this paper, we proposed to automatically segment LA cavity and quan-
tify LA scars with late gadolinium enhancement Magnetic Resonance
Imagings (LGE-MRIs). We adopted nnU-Net as the baseline model and
exploited the importance of LA boundary characteristics with the TopK
loss as the loss function. Specifically, a focus on LA boundary pixels
is achieved during training, which provides a more accurate boundary
prediction. On the other hand, a distance map transformation of the
predicted LA boundary is regarded as an additional input for the LA
scar prediction, which provides marginal constraint on scar locations.
We further designed a novel uncertainty-aware module (UAM) to pro-
duce better results for predictions with high uncertainty. Experiments
on the LAScarQS 2022 dataset demonstrated our model’s superior per-
formance on the LA cavity and LA scar segmentation. Specifically, we
achieved 88.98% and 64.08% Dice coefficient for LA cavity and scar seg-
mentation, respectively. We will make our implementation code public
available at https://github.com/level6626/Boundary-focused-nnU-Net.

Keywords: 3D U-Net · Segmentation · Left atrium · Boundary
focused · Distance map

1 Introduction

Atrial fibrillation (AF) is the most common heart rhythm disturbance world-
wide, affecting over 33 million people as of 2020 [3]. The shape and distribution
of LA scars due to AF ablation treatments are established indicators of treat-
ment outcome and long term prognosis [20]. Thus, the accurate segmentation
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of the LA region and scars in MRI images is essential for ablation planning
and the post-operation care. In recent years, late gadolinium enhancement mag-
netic resonance imaging (LGE-MRI) has proved to be a promising tool for scar
visualization and evaluation. In LGE-MRI, scar regions are enhanced with high
intensity compared with healthy tissues nearby [23]. However, manual annota-
tion of the LA region and scars is a time-consuming and subjective task. Hence,
developing an automatic segmentation algorithm for the LA region and scars in
LGE-MRI images is vital. To this end, we developed an accurate LA region and
scar segmentation framework with precise objects boundaries.

Related Works. The development of deep learning methods has recently led to
great improvements in biomedical segmentation tasks [13,14]. For example, the
popular U-Net [21] backbone used a u-shaped architecture consisting of a con-
tracting path and an expansive path to extract features from multi-scales and
recovered them to precise localization. It was the most commonly used back-
bone for LGE-MRI LA Segmentation Challenge in MICCAI 2018 [10]. Dozens
of variations of U-Net were proposed to boost its performance, such as resid-
ual connections [1] and attention modules [19]. Specifically, Fabian et al. [5]
believed that fine-tuning a plain U-Net is more worthwhile than adding vari-
ous architecture modifications. They proposed nnU-Net [5], which explores the
inherent properties of datasets to achieve automatic parameter configuration.
Their framework facilitates and enables data preprocessing, network architec-
ture selection, network training, and predictions post-processing without the
need of detailed domain knowledge.

The use of loss functions is of importance for segmentation tasks. For exam-
ple, Cheng et al. [2] proposed a boundary IoU metrics, which has been widely
adopted by previous segmentation methods [12,15,16,18]. Kervadec et al. [6]
designed a novel integral way to compute the distance between two boundaries,
avoiding differential computations of boundary locations. In the field of LA seg-
mentation, Zhao et al. [28] proposed a boundary loss on the distance between
the predicted boundary and ground truth to optimize the segmentation results.
Li et al. [9] employed a spatial encoding loss based on the distance probability
map to introduce a regularization term for the LA segmentation.

On the other hand, the limited number of works [7,9,25,26] reporting LA
scar segmentation performance implies its challenging nature. The small size
and discrete distribution of scars make it hard to achieve a high region-based
evaluation score. In the related works [7,9,25,26], the predicted LA regions have
been used to provide constraints for the scar segmentation to coerce the predicted
scars located near the LA boundary. For example, Li et al. [9] designed a shape
attention mechanism channeling the distance probability map of LA prediction
to the scar predicting module, which is proved to be effective.

Our Contributions. Inspired by the importance of the object boundary in the
LA scar segmentation, we developed a boundary-based framework upon nnU-
Net [5] for LAScarQS 2022 challenge [8–10]. Our framework consists of two
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Fig. 1. Illustration of our proposed framework. GT means ground truth; Pred means
prediction; DM means signed distance map; CE means cross entropy. The 3D input
image is cropped for better visualization.

stages: (1) For LA cavity segmentation, we adopted TopK [24] in conjunction
with Dice [4] as the loss function, because TopK loss [24] could automatically
pay close attention to the boundary regions during the training process. (2) For
LA scar quantification, we exploited the underlying spatial coherence between
the LA cavities and the scars by directly concatenating the signed distance maps
of the boundaries of the predicted LA cavities to the raw LGE-MRI images as
the input. Notably, the outputs of the first stage were post-processed by our
proposed novel uncertainty-aware module (UAM) to improve the final results of
high-uncertainty predictions.

2 Methods

The framework of our method is shown in Fig. 1. We adopted nnU-Net [5] as
the backbone for segmenting both the LA cavities and scars. A combined loss
function of TopK [24] and Dice [4] is adopted in the first stage. The predicted
probability maps of the LA cavities are processed by UAM to achieve better
results. After that, the predicted results of the LA cavities are transformed to a
signed distance map of the LA boundaries. The inputs of the second stage are
constructed by concatenating the raw LGE-MRI and the signed distance map
of boundaries. Cross entropy and Dice [4] loss are combined in the second stage.

TopK Loss for LA Segmentation. Widely-used region-based losses, such
as Dice [4], can usually lead to high accurate segmentations. However, it tends
to overlook the sophisticated boundary shape because a large number of voxels
inside the target shadow the significance of those on the boundary [6,17]. This
may lead to a relatively inaccurate LA boundary segmentation and in turn an
inaccurate scar segmentation. To address this, we adopted TopK loss (1) [24]
to introduce attention to the LA boundary during the training. Boundary-focus
methods [7,9] of LA segmentation attempt to give attention to the boundary.
Actually, for objects that are not too small compared to the receptive field of
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CNN, the boundary is the most variable part of the prediction with the lowest
certainty, the loss of boundary region is the highest among the prediction [27].
Based on the above assumption and reasoning, TopK loss is represented as:

LTopK = − 1
N

∑

i∈K

gi log si (1)

where gi is the ground truth of voxel i, si is the corresponding predicted prob-
ability, and K is the set of the k% voxels with the lowest prediction accuracy.
While sole boundary-focused loss often causes training instability [11], region-
based loss, such as Dice loss (2) [4], is needed at the early stage of the training.
We represent Dice loss as follow:

LDice = 1 − 2|Vs ∩ Vg|
|Vs| + |Vg| (2)

where Vg is the ground truth label and Vs is the prediction result of segmentation.
we coupled TopK with region-based Dice loss as our final loss function (3) for
the LA segmentation.

L = LTopK + LDice (3)

Fig. 2. Boundary constraint: (a) overlap of the LA cavity label (green) and the scar
label (red); (b) overlap of the the extracted boundary mask from the LA cavity ground
truth (blue), LA cavity label (green) and the scar label (red); (c) overlap of the signed
distance map of the boundary mask using Euclidean distance transformation and the
scar label (red). (Color figure online)

Boundary Constraints for Scar Segmentation. Anatomically LA scars
should be exactly located at the surface of the LA cavity. However, we found that
LA scars were located in the adjacent area of the LA boundary. It is inaccurate
to restrict the scars on the hard mask of the LA boundary. To address this,
instead of a hard boundary mask, we adopted a soft boundary distance map to
guide the prediction of LA scars.

To calculate the distance map of the LA boundary, we generated a mask of
the boundary shown in Fig. 2(b). In detail, we substitute the max-pooling for
the erosion operation as follows.
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Mb = Poold(Vg) + Poole(−Vg) (4)

where Poold and Poole denote the 2D max pooling operation for mask dilation
and erosion respectively. Poold uses a kernel with size 5 * 5 and stride 1, while
Poole uses a kernel with size 3 * 3 and stride 1. The width of the boundary mask
is 3 pixels, consisting of 2 pixels out of the exact boundary and 1 pixel inside.
The results finely cover scar labels from the training data.

Given the boundary mask, the distance map of the LA boundary (shown in
Fig. 2(c)) was calculated using Euclidean distance transformation as follows,

E(M) = [d(Mijk, bijk)ijk] (5)

D = E(−M) · (−M) − (E(M) − 1) · M (6)

where d(·) calculates the Euclidean distance between two voxels; Mijk denotes
the voxels on the input mask; bijk denotes the background voxel with the small-
est Euclidean distance to the corresponding input point; n is the number of
dimensions. The original voxel spacing is taken into account in the transforma-
tion instead of assuming equal spacing along axes. The masked distance map of
the boundary is then subtracted from its negated counterpart in 6, giving the
final signed distance map. The signed distance map will be concatenated to the
corresponding raw LGE-MRI image as the input of the network of the second
stage.

Highly Uncertain Prediction. To boost the robustness of our framework,
we designed an uncertainty-aware module (UAM) to detect the highly uncertain
predictions. For these predictions, automatically lowering the threshold of the
probability maps to the final mask outputs proves to be effective in improving
the prediction results. After training each fold of the five-fold cross-validation,
we computed the sum of Shannon entropy [22] for the output probability of each
validation case. The mean and standard deviation was further calculated for all
the cases after the training of all the folds is completed. When doing inference,
the Shannon entropy [22] of the output probability is compared to the population
mean and deviation. We defined an outlier as three standard deviations away
from the population mean. For outliers, the threshold of probability is lower to
0.2 rather than 0.5 to confirm a voxel as foreground.

3 Experiments

Dataset and Preprocessing. The public dataset used in this study is from the
MICCAI 2022 Left Atrial and Scar Quantification & Segmentation Challenge
[8–10]. Task 1 “LA Scar Quantification” provides 60 post-ablation LGE-MRI
training data with manual segmentation of LA and LA scars. Task 2 “Left Atrial
Segmentation from Multi-Center LGE MRIs” provides 100 LGE-MRI training
data with manual segmentations of the LA from three medical centers. Both
pre-ablation and post-ablation images were included in this task. Images in the
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training dataset have two different sizes: 576 * 576 * 44 voxels and 640 * 640 * 44
voxels but with the same voxel dimension of 0.625 * 0.625 * 2.5 mm3. We used the
Task 2 dataset only for the LA segmentation whilst used the Task 1 dataset for
the joint segmentation of LA and LA scars. For testing, Task 1 provides 10 LGE-
MRI images and Task 2 provides 20 LGE-MRI images. Images in the testing
dataset have two different sizes: 576 * 576 * 88 voxels and 640 * 640 * 88 voxels
with the same voxel dimension of 1.0 * 1.0 * 1.0 mm3. All the input images were
normalized by subtracting their mean and dividing by their standard deviation.
Then, the input images were resampled by third-order spline interpolation and
labels were resampled by one-order spline interpolation. Data augmentation was
performed with the batchgenerators module, including Gaussian noise, gamma
correction, random scaling, random rotations, and mirroring.

Implementation Details. For the baseline, We implemented the original nnU-
Net [5] for the LA cavity and scar segmentation using Dice [4] and cross-entropy
as the loss function. All the inputs are original LGE-MRI images. We used
stochastic gradient descent (SGD) with an initial learning rate of 0.01 and a
momentum of 0.99 as the default settings. For the LA segmentation and LA
scar segmentation on the Task 1 dataset, we ran training for 500 epochs and
130 epochs, respectively. For the LA segmentation on the Task 2 dataset, we
ran training for 1000 epochs. Each epoch consists of 250 iterations. The learning
rate was decayed in a polynomial style. If the average of the training loss does
not improve during the previous 30 epochs, the learning rate will be divided by
5. No further uncertainty postprocessing was performed.

We implemented our framework in PyTorch with the same optimizer, learning
rate scheduler and maximum epochs as the baseline. It takes 30 s per image to
calculate the distance map of the LA boundary. We proposed the UAM only for
LA segmentation. Because the scar segmentation is inherent uncertainty [8], we
set the softmax threshold for scar segmentation as 0.2 for all cases. We used 5
NVIDIA GeForce GTX3090 GPUs to train all the 5 folds with a batch size of
2. On the Task 1 dataset, it took 9.5 h to train the LA segmentation model and
another 2.5 h to train the LA scar segmentation model. On the Task 2 dataset,
it took 21.5 h to train the LA segmentation model.

4 Results

Comparison Between Models. The performance of our framework is com-
pared to the baseline (original nnU-Net [5]). For the LA segmentation, Dice
coefficient (Dice [4]), Hausdorff distance (HD), and Average surface distance
(ASD) were used to evaluate the results. For the LA scar segmentation, the Dice
was used to evaluate the segmentation performance.

We conducted thorough experiments to validate the effectiveness of the value
K in the TopK loss. The testing results with different K values for the LA
segmentation are shown in Table 1. When K = 10, substitution of TopK for
cross-entropy reduces Hausdorff distance (HD) by 3.5% and Average surface
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Table 1. LA segmentation with different K values. When K = 100, TopK is the same
as the cross-entropy. When K = 5, it appears that the network cannot be trained
because 5% area is relative small for the network to learn the general region leading to
the highly unstable training process.

K Dice (%) HD ASD

Mean Std Mean Std Mean Std

100 88.78 5.72 16.94 5.27 1.749 0.804

20 88.87 5.66 17.05 5.23 1.735 0.796

10 88.96 5.60 16.45 5.16 1.715 0.784

5 - - - - - -

distance by 2.5%, while Dice score is improved slightly by 0.2%. We visualized
the area of highest 10% cross-entropy loss, i.e., TopK (K = 10) focused area,
during the training process in Supplementary Fig. 1. At the initial training steps,
TopK focused areas are rather scattered when the network is learning the overall
region of the target. While as the training goes on, these areas become more
confined to the boundary area of the LA. When K equals to 5, the training
process is highly unstable, because the 5% area is relative small for the network
to learn the overall region. When K becomes bigger, however, the boundary
focusing ability is gradually lost as shown by larger ASD and HD values.

Table 2. Results of the LA cavity prediction in the ablation study of the LA scar
segmentation. UAM denotes uncertainty-aware module.

Method cavity Dice (%) cavity HD cavity ASD

LA cavity Mean Std Mean Std Mean Std

U-Net 85.77 18.47 50.74 65.57 2.201 2.607

U-Net+TopK 88.09 11.67 25.86 15.51 2.110 2.386

U-Net+TopK+UAM 90.51 4.53 23.32 8.32 1.64 0.987

Table 3. Results of the LA scar prediction in the ablation study of the LA scar
segmentation. DM denotes distance map; UAM denotes uncertainty-aware module.

Method scar Dice (%)

LA cavity LA scar Mean Std

U-Net U-Net 60.46 18.32

U-Net+TopK U-Net+DM 61.45 15.59

U-Net+TopK+UAM U-Net+DM 64.08 13.40
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Fig. 3. Visualisation of Segmentation Results. (a)–(c) show the segmentation results
of the LA cavity, (d)–(f) show the segmentation results of the LA scars. The ground
truth of the LA cavity is labelled with a red line, while the segmentation boundary
from each model is in green. The ground truth of the LA scars is labelled in red, while
the segmentation result from each model is in yellow. (Color figure online)

The testing results of the joint LA and LA scar segmentation are shown in
Table 2, Table 3 and Fig. 3. We conducted ablation studies on the TopK loss
function, distance map of boundary (DM), and UAM. There is a significant
4.7 % improvement in Dice, 27 mm reduction in HD, and 0.56 mm reduction
in ASD of LA cavity segmentation when the TopK loss function was applied
and the uncertainty-aware module was in action. In the scar segmentation, the
distance map concatenated with TopK and UAM brings a 4% improvement in
Dice over our baseline. The reason might be that the additional LA boundary
information helps to constrain and locate scar predictions. The improved LA
cavity prediction for the uncertainty cases also provides more accurate location
guidance for scar predictions.

5 Conclusion

In this paper, we proposed a nnU-Net based approach to segment the LA cav-
ity and LA scars from LGE-MRI images. Given the importance of the shape
characteristics of the LA, we substituted the TopK loss function for the default
cross-entropy, which automatically focuses on the LA boundary. To take into
account the LA boundary in the scar prediction, we proposed to include dis-
tance information by concatenating the distance map of the LA boundary to
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raw LGE-MRI images. An uncertainty-aware module was designed for post-
processing prediction results of poor-quality LGE-MRI images. Our proposed
method has been evaluated on the LAScarQS 2022 dataset and the results have
demonstrated its high accuracy on the LA and LA scar segmentation. In the
future, Our proposed method can be used as a promising tool to support the
managements of cardiovascular diseases.
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Abstract. Convolutions neural networks have obtained promising
results in various medical image segmentation tasks. However, these
methods ignore the problem of domain shift, which will lead to a model
trained in a source domain performing poorly when applied to different
target domains. In this work, we propose a two-stage segmentation net-
work, and utilize histogram matching to eliminate domain shift. Specifi-
cally, the first stage obtains the region of interest by performing coarsely
segmentation on down-sample images. Then the second stage segments
the left atrium (LA) based on the region of interest. The method is eval-
uated on LAScarQS 2022 data-set, acquiring average Dice of 0.87790
for LA segmentation. Besides, the two-stage network is about four times
faster against a single-stage network in the test phase.

Keywords: Deep Learning · Left Atrial Segmentation · Histogram
Matching Augmentation · Domain Shift

1 Introduction

Cardiovascular disease is an important factor causing high mortality in the world.
Previous studies on cardiac images relay on manual delineation and analysis of
cardiac tissue structures such as the bi-ventricular and left atrium [1]. In clinical
application, manually depict the contour of the double ventricle and left atrium
of the heart is time-consuming and inefficient. Utilizing computer-aided methods
could rapidly process large amounts of cardiac image data, and benefit clinical
diagnosis procedures [2].

Traditional atrial segmentation methods include Hough Transform, super-
pixel segmentation, and threshold algorithm [3]. In recent years, deep learning
based methods have been extensively studied in left atrium segmentation. Xia
et al.. [4] designed two networks based on V-Net for GE-MRI three-dimensional
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automatic segmentation of atrium. The first network locates the position of
the atrium, and simultaneous coarse segmentation of the atrium. Then the sec-
ond network precisely splits the results obtained in the first network. This will
reduces memory costs. Chen et al.. [5] proposed shape-aware multi-view auto-
encoder(Shape MAE), learn anatomical shape priors from cardiac short-axis and
long-axis views, then fuse the anatomical priors learned by Shape MAE into an
improved U-Net architecture for cardiac short-axis image segmentation. The
model keeps the compute ascendancy of 2D networks and uses fewer parameters
during training than 3D U-Net, which improves the computational efficiency.

However, these methods ignore the problem of domain shift, which can make
a model trained in a source domain performing poorly when applied to different
target domains. The difference between various collection protocols or instru-
ment, even the tiny distinction among the location of patients’ hearts will lead
to a result in domain shift problem.

In the LAScarQS2022, the data-set consists of LGE MRI images of the heart
provided by multiple centers. Because of the different acquisition devices or
acquisition protocols used by each center, the quality of these LGE MRI images
is very different. As shown in Fig. 1, The intensity distribution of the reference
domain image is quite different from the seen domain image. These differences
bring great challenges to the segmentation of the left atrium, mainly reflected in
the problem of domain shift, which leads to the poor robustness of the model.

Nowadays, a number of researches have put forward to solve the issue of
domain shift, such as domain adaptation [6] and domain generalization [7].
Domain generalization technology attempts to design a model that can be well
applied to new test domains. It is assumed that any domain is composed of
a underlying sharing factor and a domain-specific component, by decomposing
these during the training of the source domain, a domain-independent compo-
nent can be extracted as a model which also performs well in the new domain.
Domain adaptation is to map the data of different distribution sources and tar-
get domains into a feature space, so that the distance between the two in space is
as close as possible. That is, the objective function trained in the source domain
can be migrated to the target domain.

However, for different applications, it requires to modify the network archi-
tecture or the loss function, which leads to less practicability. So Jun ma [8]
introduced the method of histogram matching to solve this problem. However,
during the training and testing, it was found that simply using the histogram
matching with nnU-Net is time consuming. In addition, performing image-level
HM will leads to an unsatisfactory result, as shown in Fig. 1 (image-level HM).

To address the mentioned limitation, we propose a two-stage method as
shown in Fig. 2. A two-stage method combined with ROI-Level histogram match-
ing, which can not only deal with the domain shift but also solve the problem
of too long training time and reduce the influence of surrounding on histogram
matching effect. Our approach performs well in segmentation tasks and simple
to operate.
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Fig. 1. There are various of intensity distribution among LGE-MRI images from dif-
ferent centers. The effect of ROI-Level is significantly better than Image-Level HM

2 Proposed Method

As shown in Fig. 2, we divide the segmentation process into two stages. In the
first stage, the original image is reduced to 44×120×120 and then the performs
histogram matching. And next, it is put into nnU-Net for rough segmentation
to get a rough segmentation result. In the second stage, regions of interest are
extracted from the original image according to the rough segmentation results
of the first stage, and these regions of interest are histogram matched, then put
into nnU-Net for segmentation. The final results are pasted back to the original
image to get the final segmentation image.
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Fig. 2. schematic of the workflow of the proposed two stage segmentation framework.

2.1 ROI-Level Histogram Matching

Histogram matching, also known as histogram specification, refers to an image
enhancement algorithm that converts the histogram of an image into a histogram
of a specified shape, that is to match the histogram of an image to another image.
Because the histogram reflects the distribution of the global pixel gray value of
the image, histogram matching can adjust the global brightness and contrast [9].

As shown in Fig. 1 (Image-Level HM), in the right area of the left atrium. Due
to the interference of the surrounding background, after the histogram matching,
some areas are still similar to the background, and the difference between the
left atrium and the reference domain is still obvious.

In order to reduce the influence of the surrounding on the left atrium during
histogram matching. We specifically perform histogram matching on the ROI.
First, the compressed image is roughly segmented to obtain the approximate area
of the left atrium, this area is the ROI. Then select an image as a reference, and
the rest of the images are histogram matched according to this image. If ROI-
Level HM is performed, the effect will be significantly improved. Figure 3 shows
intensity distribution of the reference domain, seen domain, ROI-Level HM and
Image-Level HM of LA. We can see that the intensity distribution using ROI-
Level HM is closer to the intensity distribution of the reference domain. Then
introduce the principle of histogram matching.
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Fig. 3. Left atrium and its intensity distribution.

Let r be the gray level of the input image, z be the gray level of the output
image, ps(s) be the probability density function of s, and pz(z) be the probability
density function of z. The goal is to estimate pr(r) from the given input image,
and then get pz(z) from pr(r), that is, to get the image we want to output with
the specified probability density function.

First, in histogram equalization, s is the gray level of the image after r is
equalized, and its conversion expression is:

s = T (r) = (L− 1)
∫ r

0

pr(w)dw (1)

where L is a power function of 2, if 8-bit gray level, L=256. This formula shows
that r is mapped to s through the transformation function T .

On this basis, a random variable z is defined:

G(z) = (L− 1)
∫ z

0

pz(t)dt = s (2)

The expression is that z is mapped to s through the transformation function
G, so we can get G(z) = T (r), so z must satisfy the following equation:

z = G−1[T (r)] = G−1(s) (3)

From a given image, getting an image whose gray level has a specified prob-
ability density function should follow the following steps:

– The probability density function is obtained from the input image Pr(r), then
the value of histogram equalization s = T (r) can be obtained according to
equation(3), and round Sk to [0, L−1]. Where Sk is the value after histogram
matching;

– Solve inverse transformation function z = G−1(s). Because z is obtained by
s, this step is the mapping from s to z, and z is the value we expect;

– Since there is also a mapping from r to s, we can replace s with r, and replace
the expression obtained in the second step with the mapping from r to z.
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2.2 nnU-Net

The network structure used in our method is nnU-Net. Because too much artifi-
cial adjustment of the network structure will lead to over-fitting of specific data
sets. The impact of a non-network structure may have a greater impact on task
segmentation. nnU-Net is based on the original U-Net network structure, will
automatically select the optimal pre-processing, training, inference, and post-
processing stages. In many segmentation tasks, nnU-Net has achieved very jelly
results [10].

3 Experiment and Results

3.1 Dataset and Training Protocols

The training set in the LAScarQS challenge has a total of 130 images, and the
test set has 20 images. These images are from three different centers of car-
diac LGE MRI images. These centers are the University of Utah, Beth Israel
Deaconess Medical Center, and King’s College London. The equipment used
came from two different MRI scanner suppliers (Siemens and Philips). The spa-
tial resolution of the images provided by each center is also different, which
is 1.25× 1.25× 2.5mm, 1.4× 1.4× 1.4mm, 1.3× 1.3× 4.0mm. Among the 130
training set images, the contours of the left atrium were manually segmented by
clinically experienced physicians [11–13].

In the process of image preprocessing at each stage, all images are histogram-
matched according to a certain image. Then nnU-Net is used for training, and
the batch size is set to 2. Finally, the images with histogram matching operation
or not are compared respectively. For each experiment, 100 epochs are carried
on the GPU of GTX2080, and the best epoch model is saved to predict.

3.2 Result

As mentioned above, directly matching the histogram of the image will influence
the surrounding, resulting in a result that is not so great. So we first roughly
segment the image and then extract the region of interest according to the former
segmentation result. Then do the histogram matching with these regions, which

Table 1. Segmentation and quantification results of histogram matched and unpro-
cessed datasets.

Method Dice Jaccard 95%HD ASSD Time
SU-Net 0.8998 0.8203 4.968 1.283 30min
HSU-Net 0.9172 0.8483 10.5807 2.3286 45min
TU-Net 0.9229 0.8662 2.7045 0.7525 3min
HTU-Net 0.9328 0.8749 2.4788 0.7095 10min
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can reduce the influence of the surrounding on the region to be segmented. The
result of histogram matching is shown in the Fig. 1.

In the process of image pre-processing at each stage, we divided 130 images
into 90 training images and 40 verification images, and do four groups of com-
parative tests.

– SU-Net: A single stage nnU-Net without histogram matching.
– HSU-Net: A single stage nnU-Net with histogram matching.
– TU-Net: Two stages nnU-Net without histogram matching.
– HTU-Net: Two stages nnU-Net with histogram matching.

The results of each group of comparative tests in the validation image are
shown in Table 1. Dice, Jaccard, 95% Hausdorff distance (95%HD) and Mean
surface distance (ASSD) are given in the table. It can be seen that the Dice
coefficient of HTU-Net is larger. From these evaluation indicators, we can see
that the accuracy of HTU-Net is higher. Figure 4 shows the visualization of
segmentation results. From left to right are the original images, ground truth,
the result of SU-Net, the result of HSU-Net, the result of TU-Net, and the result
of HTU-Net.

Fig. 4. Visualization of segmentation results

At the same time, in the verification stage, the speed of the two stages is much
faster than that of the single stage. Because of the two stages, the first stage uses
downsampling, which avoids semantic segmentation in a high-resolution image.
In the second stage, we only segment the ROI area, which greatly reduces the
area that needs to be segmented. Therefore, in the verification process, the speed
of the two-stage is much faster than the speed of the single-stage. As shown in
Table 1. It takes about 30min to verify 40 images in SU-Net, 45min to verify 40
images in HSU-Net, 3min to verify 40 images in TU-Net, and 10min to verify 40
images in HTU-Net. It can be seen that the speed of the two stages is much faster
than that of the single stage. Although HTU-Net takes a little more time than
TU-Net, it improves the accuracy. In general, HTU-Net is better than TU-Net.
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4 Conclusion

In this paper, in order to solve the problem of large differences in intensity
distribution between different images caused by multi-center data-sets, we use
histogram matching to solve this problem. In order to speed up the time in the
test phase and improve the effect of histogram matching, we use a two-stage
nnU-Net, in which the first stage performs coarse segmentation, and the second
stage is further divided according to the results of the coarse segmentation. In
LAScarQS 2022, our method achieved satisfactory results. And through four sets
of comparative experiments, it can be proved that our method has improved a lot
of accuracy compared with the case without histogram matching, and the test
speed is nearly four times faster. However, in some small areas, the segmentation
effect is not very satisfactory. Subsequent work can improve the network by
imposing size constraints, such as adding unit vector normalization.
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Abstract. Left atrial (LA) segmentation and quantification of atrial
scars have opened a path to automating Atrial Fibrillation (AF) diagno-
sis. This paper proposes a two-stage approach for sequential segmenta-
tion of the LA cavity and scars. Our Multi-scale Weight Sharing (MSWS)
Network extracts features at multiple scales and is used for LA cavity
segmentation. We also propose a Boundary2Patches method which per-
forms segmentation of scars around the detected LA cavity boundary.
The MSWS network learns a better representation of features through
sharing weights across scales, and the Boundary2Patches method focuses
on smaller scars constrained in the region around the LA cavity wall. On
the challenge cohort (validation set), our method achieves an average
Dice score of 0.938 and 0.558 for the LA cavity and scars segmentation
of task 1, and a Dice score of 0.846 for LA cavity segmentation of task
2. The pre-trained models, source code, and implementation details are
available at https://github.com/kabbas570/LAScarQS2022.

Keywords: Left Atrial segmentation · Scar quantification · Atrial
fibrillation (AF) · Multi-scale Weight Sharing Network ·
Boundary2patches

1 Introduction

Atrial Fibrillation (AF) is a condition that produces an irregular, fast or sluggish
heartbeat in the upper chamber of the heart. According to the US Centers for
Disease Control and Prevention (CDC) [5], AF is one of the most prevalent
forms of cardiac arrhythmia that increases the risk of ischemic stroke. Strokes
resulting from AF complications are typically more severe than strokes due to
other underlying causes [6]. Treatment and diagnosis of AF remain a concern.
The assessment of AF patients may depend on the position and size of scars
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which could provide vital information about the onset of AF. Late gadolinium
enhancement magnetic resonance imaging (LGE MRI) has evolved to assess
the extent of scars and the Left Atrial (LA) cavity [10]. The LGE MRI has
allowed scientists to automate the time-consuming diagnosis of AF. However,
such automation requires LA cavity segmentation and scars quantification.

Analyzing the LGE MRI scans could provide valuable insight for AF diag-
nosis and treatment stratification [18]; however, the manual delineation of LA
scarring and cavities for quantification is laborious and highly subjective [16];
therefore, it is desirable to automate the process. This challenge has attracted
considerable research interest even before the era of deep learning. Intensity-
based thresholding [12], clustering methods [7], and graph-cuts [17] were popular
traditional methods. However, these methods have limitations of computational
costs and manual selection for the areas of interest to be segmented.

With the advent of deep learning, LA segmentation and scars quantification
have attracted additional research. Several fully automated methods have been
proposed in this field. One of the most recent methods by Li et al. [15] utilized
shape attention (SA) through a surface projection of the LA cavity and achieved
higher performance for scar quantification. The authors used the inherent corre-
lation between the LA cavity and scars, and trained a joint segmentation archi-
tecture. A hybrid method based on graph cuts and CNNs was used by [13] for
the automatic scar segmentation. A multi-scale three-stage network was used to
learn both local and global features. Vesal et al. [20] employed a UNet [19] based
model with dilated convolutions in the bottleneck to segment 3D volumetric
scans. Each volume is centre-cropped to remove over-represented backgrounds
and to learn only a particular region of interest to improve LA segmentation.
Bian et al. [3] used a pyramid pooling module to extract the features at dif-
ferent scales and improved the robustness of the model against various shapes
of the LA. They also implemented an Online Hard Negative Example Mining
strategy to classify a voxel with low certainty. A contour loss is introduced by [9]
to provide spatial distance information during training and used in a two-stage,
three-dimensional UNet-based architecture. The first UNet generates coarse seg-
mentation maps, and the second UNet refines coarse predictions to segment the
LA at a higher resolution accurately. Yang et al. [21] used an atlas-based method
to identify the LA cavity first and then used a super-pixel-based approach to
detect the scars in that region. Campello et al. [4] introduced a CyclicGan to
first increase the number of annotated LGE MRI scans followed by a modified
UNet [19] network to perform scar tissue segmentation.

Fig. 1. Visualisation of LA cavity and scars from LAScarQS 2022 challenge dataset.
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Challenges remain however, mostly because of the poor quality of annotated
LGE MRI scans, the heterogeneity of LA shape and appearance, and the presence
of small scars and thin tissue walls. Accordingly, the LAScarQS 2022 competition
[14–16] seeks a solution to the aforementioned problems by focusing on the LA
cavity and scars segmentation from LGE MRI. For illustration, Fig. 1 shows
examples of LGE MRIs scan from the LAScarQS 2022 challenge dataset.
In this paper, we focus on segmenting the LGE MRI scans over multiple scales
by concurrently sharing the weights and enabling the kernels to learn shared
representations of features using MSWS-Net. In a second stage, we propose a
Boundary2Patches method to detect the scars around the LA boundary and
quantify the scars using patches and a modified UNet architecture.

2 Proposed Approach

Fig. 2 presents the proposed sequential segmentation framework, for both the LA
cavity and scars segmentation. First, we segment the LA cavity using MSWS-Net
and then use its output as an initialization step for scar quantification. In Fig. 2,
the black arrows represent the workflow for LA cavity segmentation, the lime
green arrows for scars segmentation (Boundary2Patches method), and the orange
color is used only for visualisation, i.e. it is not part of training or inference. For
both tasks, the training is performed separately; but the two steps are merged
together during inference in an sequential manner. The following subsections
will explain in detail each network and the post-processing steps adopted during
training and testing.

Fig. 2. A schematic of the proposed sequential approach for LA and atrial scars seg-
mentation.
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Fig. 3. The proposed Multi-Scale Weight Sharing Network. (a) Extracting features at
various scales from the input. (b) The feature merging module; combining low and high
resolution features.

2.1 Multi-Scale Weight Sharing Network (MSWS-Net)

In this paper, we propose the concept of weight sharing over several scales,
namely, Multi-scale Weight Sharing Network (MSWS-Net), as illustrated in
Fig. 3. All the weight sharing stages must have the same number of kernels
in each layer. In a conventional encoder-decoder architecture such as UNet, the
features are extracted from only a single scale of input and down-sampled by
multiple factors; thus, the convolutional kernels only learn a single scale features
from the input space. Instead, we employ the concept of kernel sharing across
several scales and make kernels capable of learning the same characteristics from
various input spaces. Furthermore, all kernels share the same parameters at each
encoder stage; thus, the overall number of parameters in the architecture does
not increase, and the network benefits from convolving the same kernels with
varying dimensions of incoming feature maps. We experimented with different
numbers of encoders n ∈ [2, 4] and discovered that n = 2 performed best while
n > 2 did not improve the results significantly, detailed experiments are men-
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tioned in Table 1. We speculate that the LA cavity appears self-similar at these
two scales, and increasing the number of encoders beyond 2 has no effect on
the network’s learning ability. Therefore, in our final implementation, we set n
= 2. The optimal number of multi-scale levels depends upon the dataset’s self-
similarity across scale, and a performance boost may vary for different datasets.

The proposed multi-scale weight sharing (MSWS) architecture is depicted in
Fig. 3. It takes two images as input with dimensions [H x W x C] and [H/2 x W/2
x C]; note that number of channels should be the same for both images. For this
challenge, we resized all images to H = 640 and W = 640 using zero padding.
Furthermore, each 2D scan was normalized to zero mean and unit variance. Two
consecutive 3 × 3 convolutions are performed at each encoder stage, followed by
ReLU activation and batch-normalization. The proposed weight-sharing strat-
egy across multiple scales will help the network to learn the features of different
scales. The shared weights are represented by an orange vertical dotted arrow.
At the decoder side, the features of various scales are combined using a fea-
ture merging module (FMM) at each stage. The FMM merges the information
across two-resolution representations. First, it upsamples the lower resolution
features with a factor = 2, and then it preforms an element-wise addition with
the corresponding incoming features from the other encoder. The resultant rep-
resentation is semantically richer and spatially more precise; helping to segment
various shapes of LA cavity efficiently. In Fig. 3, the black arrow, dotted black
arrow and blue arrow represents features of higher-resolution, lower-resolution,
and merged features, respectively.

2.2 Boundary Processing with the Boundary2Patches Method

Fig. 2 depicts a broad overview of the proposed boundary-based processing
method, namely, Boundary2Patches for the scars segmentation. As previously
indicated, the proportion of scars is relatively small compared to the entire image;
therefore, we restricted the search area using the Boundary2Patches approach
to concentrate more on the scars. Current literature implies that scars are most
prevalent across the LA cavity’s boundary; hence, we solely search for scars in the
region adjacent to the LA wall. From the LA cavity segmentation, the boundary
of the LA cavity is identified and 64 × 64 patches from the original image are
extracted along the boundary, as illustrated in Fig. 2. The patch size of 64 × 64 is
selected as it incorporates all the surrounding scars if we reconstruct the ground
truth from these patches. For Boundary2Patches method, we trained another
encoder-decoder network separately and ran it sequentially with MSWS-Net
during inference. The architecture used for Boundary2Patches method is shown
in Fig. 4. It has four stages (two consecutive 3 × 3 convolutions at each stage
with ReLU activation and batch-normalization) at the respective encoder and
decoder sides. For the encoder, features are down-sampled twice using strided
convolution with stride = 2 to avoid the loss of information for small-size scars.
On the decoder side, transposed convolutions are used to upsampled the incom-
ing features, and the upsampled features are concatenated with corresponding
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Fig. 4. The modified UNet architecture for scars segmentation.

features of the encoder for better gradient flow. Sigmoid was used as an acti-
vation function for the last output layer with 1× 1 convolution to generate the
segmentation map for scars.

In the final implementation, we further increased the input information by
concatenating the patches with a probability map of scar based on histogram and
non-negative values obtained after z-score normalization. We discovered that in
LGE MRI, scars have greater intensities than the surrounding areas, thus we
computed the histogram of higher intensities and used it in conjunction with
extracted patches and a non-negative mask of scars, as illustrated in Fig. 2.

3 Dataset Description

The dataset was provided by the LAScarQS 2022 Challenge, which intends
to develop automated/semi-automated methods for segmenting the LA Multi-
Center LGE MRIs and quantifying scars. The dataset consists of 194 LGE
MRIs. The MRI scans of LGE were produced at two distinct locations using
scanners with varying resolutions. The included gold standard labels con-
sist of the LA blood pool (atriumSegImgMO.nii.gz) as well as the LA scars
(scarSegImgM.nii.gz). Furthermore, training and testing on the dataset can be
conducted remotely from several local centers while the dataset remains con-
cealed to preserve data privacy. During the training phase, the dataset was
subdivided into 70% for training, 20% for validation, and 10% for inference
to evaluate our proposed models and undertake ablation experiments.

4 Experimental Details

The proposed framework was implemented in PyTorch, and all the experiments
were performed using a cluster of NVidia A100 GPUs [1]. For both approaches,
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MSWS-Net and Boundary2Patches, the models were trained using Adam opti-
mization [11], with β1, β2= [0.9,0.99], and the learning rate was set to = 0.0001.
During training, we set the maximum number of epochs to 100 and the batch
size to 24. In addition, we employed a custom early stopping mechanism from
terminating the training before the model overfits the data. In our customized
early stopping method, we monitored the validation loss and Dice score and
halted training if either was not improving for five consecutive epochs.

4.1 Loss Function

While analyzing the data, we found that the LA cavity and scars occupy a small
fraction of the full image. Such imbalance in the data could not be handled by
commonly used loss functions for segmentation, such as the Dice loss or binary
cross entropy loss, as listed in Table 2. Initially, MSWS-Net was trained with
a weighted Dice loss, but this led to a greater number of false negatives (FNs)
than false positives (FPs). Consequently, we trained both networks with the
Focal Tversky loss function [2] given by Eqs. 1 and 2,

TIc =
∑N

i=1 ŷicyic + ε
∑N

i=1 ŷicyic + β
∑N

i=1(1 − ŷic̄)yic + α
∑N

i=1 ŷic(1 − yic̄) + ε
(1)

FTLc =
∑

c

(1 − TIc)1/γ (2)

where ŷic is the probability that the pixel is from the LA cavity and yic is the
probability of background class. The hyperparameter α focuses on FPs, β focuses
on FNs, and γ focuses on hard examples. These hyperparameters are tuned to
get a balance between precision and recall in the case of large class imbalance.
In our experiments, we trained MSWS-Net with α, β, γ = [0.3,0.7,0.75] and the
Boundary2Patches method with α, β, γ = [0.4,0.6,0.75].

5 Results and Discussion

This section describes the results of our methods applied to the validation data
for Tasks 1 and 2 of the LAScarQS 2022 challenge. In addition, we performed
ablation studies to measure the effectiveness of the proposed methods. Finally,
MSWS-Net is compared to two of its ablated variants, while Boundary2Patches
was compared to two baseline schemes. The following list overviews four exper-
iments conducted in this paper.

1. Standard UNet Architecture: The ability of proposed MSWS-Net to
extract features at multiple-scales is compared to a standard UNet archi-
tecture with a single encoder and the same number of stages as MSWS-Net.
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2. MSWS-Net without weight sharing: The weight sharing strategy is eval-
uated by training the MSWS-Net without sharing the weights of two encoders.

3. Center-Cropping: We trained the network depicted in Fig. 4 on centred
cropped images for scar quantification and compared the results with the
patch-based technique.

4. Without using the increased input information: We solely used the
cropped patches in the Boundary2Patches method to evaluate the benefit of
employing the additional information concatenated at the input of the net-
work.

5. Choice of Loss function: We experimented with various loss functions and
their combinations. Due to the small volume of the to-be-segmented region of
interest, we modified the focal loss using Tversky loss to reduce the number of
false negatives and achieve the optimal tradeoff between precision and recall.
Table 2 summarizes the results of various loss functions.

6. Number of Weight-Sharing Encoders for MSWS-Net: For MSWS-
Net, we increased the number of encoders from 1 to 4 while sharing the
weights and having spatial dimensions in the range of H × W to H

2n × W
2n ,

where ‘n’ is the number of encoders. We found that n = 2 is the optimal
tradeoff between performance and network complexity for the task at hand.
By increasing the ‘n’, the performance gain was statistically insignificant at
the expense of slower processing and requiring more resources. Table 1 shows
the results of ablation studies conducted to choose optimal number of Weight-
Sharing Encoders for MSWS-Net.

Table 1. Ablation studies to choose optimal number of weight sharing encoders, Giga
Floating Point Operations per Second (GFLOPs), Input Size, and Dice score.

# of Encoders GFLOPs ↓ Input Size (MB) ↓ Dice Score ↑
1 310.80 1.56 0.828

2 339.31 1.95 0.918

3 346.44 2.05 0.920

4 348.22 2.10 0.922

Table 2. Comparison of different loss functions on validations set of task: 1. TPs: True
Positives, FPs: False Positives, FNs: False Negatives, IoU: Intersection over Union.

Loss Function Dice Score ↑ TPs ↑ FPs ↓ FNs ↓
Binary-Cross Entropy 0.895 1,821,410 112,551 305,740

1-IoU 0.906 1,857,001 106,154 270,149

Focal Tversky 0.918 1,847,210 109,765 136,254
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5.1 LA Cavity Segmentation: Task 2

For this task, MSWS-Net is able to segment the LA cavity of different shapes
accurately, achieving a Dice score of 0.846 on the validation set. Table 3 shows
the results of the aforementioned ablation experiments and demonstrates the
effectiveness of multiple scale encoders and weight-sharing schemes. Different
evaluation metrics such as Dice score (DS), Hausdorff Distance (HD), average
surface distance (ASD), and sensitivity were used to quantify the segmentation
performance. The qualitative results are shown in Fig. 5, comparing the visual
performance of MSWS-Net with its ablated versions. The third row indicates the
results of MSWS-Net, whereas the first and second rows represent the results of
standard UNet and MSWS-Net without the weight sharing approach.
For visualization purposes, we have projected the ground truth and predicted
segmentation maps on the input images. In addition, we have assigned different
colors to all qualitative results reported in this paper (Green represents false
positives, Red represents false negatives, and Yellow represents true positives).

5.2 LA Cavity and Scars Segmentation: Task 1

Task 1 of the challenge aims to segment the LA cavity and the atrial scars.
For scar quantification, we first segmented the LA cavity and then used the
Boundary2Patches approach to find scars along the LA boundary, where they
are predominantly present. The performance of the scar segmentation relies on
the precise segmentation of the LA cavity. To improve the segmentation of the
LA cavity, we first trained the MSWS-Net on training data from Task 2 and
then fine-tuned it on Task 1. Ultimately, we obtained a Dice score of 0.938 for
the LA cavity segmentation of Task 1 on the validation set. Figure 6 presents
qualitative results for LA cavity segmentation from Task 1 of the challenge.

For scar quantification, we used the boundaries of predicted LA cavities,
which are predicted via MSWS-Net, to crop the patches during the inference
stage. The number of cropped patches during inference differed for each image,
depending upon the area of the segmented LA cavity. Table 4 summarizes the
performance of the proposed Boundary2Patches method for scar segmentation.
For comparison purposes, we centred cropped the images (384× 384) and tried
to predict the scars, which resulted in lower performance, as listed in Table 4.
We also highlighted the importance of using the increased input information at

Table 3. Validation dataset benchmarks quantitative results for Task 2 of LA cavity
segmentation and comparison of MSWS-Net with its ablated versions.

Method Dice Score ↑ HD (mm) ↓ ASD (mm) ↓
Standard UNet architecture 0.728 96.5 3.22

MSWS-Net without weight sharing 0.708 107.2 5.6

MSWS-Net 0.846 105.7 3.39
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Fig. 5. Qualitative results for Task 2 (LA cavity segmentation). Results of (a) proposed
MSWS-Net (b) Standard UNet architecture (c) MSW-Net without weight sharing strat-
egy.

the input of our network by comparing it to an ablated version of the Bound-
ary2Patches method without the additional input derived from the histogram
and non-negative mask. Some visual results of scar quantification are shown in
Fig. 7.
We additionally applied the connected component analysis (CCA) [8] as a post-
processing step on scar segmentation maps to eliminate small false positives from
the final predictions, which resulted in a boost of 1.06% in the Dice score for
scar quantification, as listed in Table 4. For the CCA implementation, we used
the 4-connected component method and discarded components with less than 10
pixels or more than 450. These numbers were chosen empirically. The CCA algo-
rithm also reduced the detection of true positives, but their dismissal ratio was

Table 4. Validation dataset benchmarks quantitative results for scars quantification
and comparison of different ablation studies for the Boundary2Patches method.

Method Dice Score ↑ Sensitivity ↑
Center-Cropping 0.407 0.412

Boundary2Patches
(single channel input)

0.465 0.484

Boundary2Patches
(three channel input)

0.547 0.559

Boundary2Patches (three channel input
+ post-processing with CCA)

0.558 0.568
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Fig. 6. Qualitative results for Task 1 of LA cavity segmentation.

far less than the removal of false positives, which resulted in improved perfor-
mance. Figure 8 showcases the visual motivation of applying the CCA technique.
It helped to remove the false positive outliers highlighted through the yellow dot-
ted box.

Furthermore, the segmentation performance of the proposed MSWS-Net and
Boundary2Patches method in the LAScarQS 2022 testing set is reported in
Table 5. For task-1, the test set comprises 22 images, and for task-2, it has

Fig. 7. Visual results for scar quantification of Task 1.
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Fig. 8. Removal of small size false positive predictions through CCA technique. (a)
Predictions before applying CCA (b) Refined predictions after applying CCA.

44. We observed that the overall performance on the test set is very similar to
those of the validation benchmarks. For the test phase, the challenge required a
docker file submission. The results are reported in terms of Dice score, HD, and
ASD for LA cavity segmentation and for scars quantification; we evaluated the
performance using Dice score and sensitivity metrics.

Table 5. LAScarQS 2022 testing dataset benchmarks quantitative results for LA cavity
segmentation and scars quantification.

Task Dice Score ↑ HD (mm) ↓ ASD (mm) ↓ Sensitivity ↑
Task-1 LA cavity segmentation 0.922 110.65 3.48 -

Task-2 LA cavity segmentation 0.792 67.45 2.89 -

Task-1 scars quantification 0.549 - - 0.599

6 Conclusion

For the LAScarQS 2022 challenge, we propose a sequential approach to seg-
ment left atrium and atrial scars using a multi-scale weight-sharing network
and boundary-based processing. As the challenge seeks to resolve two problems
jointly, namely the LA cavity’s segmentation and the quantification of scars, we
divided into two sub-tasks to address them together. Essentially, the MSWS-Net
extracts features at various scales, and learns a more accurate representation
of features via multi-scaling and weight-sharing techniques. Additionally, the
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Boundary2Patches method aids in focusing on and accurately segmenting small
scars. Lastly, the proposed approach achieves an average Dice score of 0.938 and
a Dice score of 0.558 for the segmentation of LA cavities and scars, respectively,
in Task 1, as well as an average Dice score of 0.846 for the segmentation of LA
cavities in Task 2.
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Abstract. Atrial fibrillation has become one of the biggest epidemics
and public health challenges, and analysis by the late gadolinium-
enhanced magnetic resonance imaging (LEG MRI)is of great clinical
importance for its diagnosis and treatment. Deep learning-based meth-
ods have achieved great success in left atrial segmentation when the
MRI data comes from a specific center. However, since images from mul-
tiple centers often show large differences, current left atrial segmentation
methods designed for single centers often suffer from significant perfor-
mance degradation when applied to multi-center images. In this paper,
we developed a deep network named LA-HRNet for left atrial segmen-
tation in multi-center LGE MRI based on VoxHRNet, a network used
for whole-brain segmentation. We made three improvements over the
VoxHRNet to make it suited for left atrial segmentation. First, We pro-
pose a feature fusion method capable of generating richer features. Sec-
ond, we propose feature reuse to fuse the multi-scale features generated
in the network with subsequent features. Third, we introduce an aux-
iliary loss in the network. The experimental results on LAScarQS 2022
dataset show that Our proposed improved model has better performance
and realizes stronger generalization ability on the multi-center images.

Keywords: Left atrial segmentation · LGE MRI · Atrial Fibrillation

1 Introduction

Atrial fibrillation (AF) is the most common clinical arrhythmia. AF is caused
by the impaired electrical activity within the atria which leads to myocardial
fibers contracting rapidly in an irregular manner [1]. The incidence and preva-
lence of AF are increasing every year, especially in countries with medium socio-
demographic indices. Now, AF has become one of the biggest cardiovascular
epidemics and public health challenges [2].

In recent years, the late gadolinium-enhanced magnetic resonance imaging
(LGE MRI) has been proven useful for accurately detect, quantify and charac-
terize atrial fibrosis and predict patient outcomes after AF ablation [3]. LGE
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MRI can be used to visualize and quantify left atrial (LA) scarring as well as its
location, which provides important information on the pathophysiology and pro-
gression of AF. In other words, analysis of LGE MRI plays an essential role in the
clinical diagnosis and individualized treatment of patients with AF [4]. However,
manual segmentation of the atria or scars would be a very time-consuming and
labor-intensive task. Thus, automated LGE MRI analysis system has received
great attention in past decade, especially after the widespread use of deep learn-
ing techniques in medical image analysis.

The segmentation task of the LA faces great challenges due to the shape
of the LA, poor image quality, and unclear boundaries. Li et al. [4] provided a
review about current analysis methods for LA LGE MRI for AF studies. Among
those reviewed methods, Li et al. [5]proposed a network for LA and scar seg-
mentation and quantification that combined spatial and shape information. And
they showed good generalization ability and achieved optimal segmentation per-
formance. Also, it was pointed out in [4] that most of current LA segmentation
algorithms are trained and evaluated on LGE MRI data from a specific center.
However, due to the lack of a standard protocol for LGE MRI device, there is
a lot of variation in the images from different medical centers, resulting in poor
re-producibility of LGE MRI [4]. Li et al. [6] investigated domain generaliza-
tion of LA segmentation based on multi-center LGE MRI. The generalization
ability of four common semantic segmentation networks for segmenting LA in
multi-center LGE MRI was experimentally evaluated. It was found that most
models encounter a significant performance degradation when they are applied
to unknown domains, i.e., different centers. And they evaluated the effectiveness
of several domain generalization strategies, all of which were able to mitigate per-
formance degradation. In other words, there are still lots room for improvement
for the goal of improving the performance of LA segmentation on multi-center
data. Therefore, LAScarQS 2022 [7] organized a quantification and segmenta-
tion challenge on multi-center LGE MRI of the LA and scars. This will help to
validate the robustness and generality of the algorithm on a multi-center dataset
and to promote the application of the algorithm in practice.

In this paper, we develop a LA segmentation method for multi-center LGE
MRI, which we call LA-HRNet. We choose the same backbone as the one used
in VoxHRNet [8], which is designed for whole-brain segmentation. We redesign
the feature fusion layer and propose feature reuse to enrich the high-resolution
features with much more semantic information. Finally, we introduce auxiliary
loss to accelerate the convergence of the network. The overall flow of our method
is shown in Fig. 1: (1) In the first stage, the aim of this stage is to achieve target
localization. We resample the original image and achieve a rough segmentation
of the LA, and crop the target area in the original image to reduce memory con-
sumption; (2) In the second stage, a fine-grained segmentation network is trained
based on the cropped target region obtained in our first stage, after which the
predictions are restored to the original input size. Both stages of the segmenta-
tion network were performed using our LA-HRNet design and we trained and
evaluated the segmentation accuracy of our network using the dataset provided
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by the LAScarQS 2022 challenge [7]. Finally, we perform ablation experiments
and compare them with VoxHRNet.

Fig. 1. Two-Stage LA Segmentation Network Process.

2 Methods

2.1 Data Pre-processing

Data Acquisition. The data we used were all from the LAScarQS 2022 chal-
lenge for quantification and segmentation of the LA and scar. We participate in
task 2 named “Left Atrial Segmentation from Multi-Center LGE MRIs”. The
dataset for task 2 contains 130 and 20 LGE MRIs for training and validation,
respectively. These MRI datas are sampled from patients with AF in a real clin-
ical setting in three centers. The three centers include the University of Utah,
Beth Israel Deaconess Medical Center and King’s College London, where they
may choose different equipment and imaging parameters. The original voxel spac-
ing of the training data provided was 0.625 × 0.625 × 2.5 mm3 with dimensions
of 576×576×44/640×640×44, while the image voxel spacing in the validation
dataset was 0.3472×0.3472×2 mm3/0.625×0.625×1.3 mm3, etc. The training
data and the validation data are from different centers and the images are also
very different due to different acquisition methods. This is a big challenge for
the segmentation task, so we pre-processed the data carefully.

Resampling and Crop. Firstly, to avoid adverse effects on prediction accuracy
due to different sampling devices and sampling protocols, we adapted the train-
ing data to the same voxel spacing and size. We first resample the voxel spacing
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of the images to 1.875× 1.875× 3.75 mm3 and then use them to train the rough
segmentation network. The interpolation method used for image resampling is
B spline interpolation and the labels were interpolated using nearest-neighbor
interpolation. For the training images used for segmentation, we first resample
their voxel spacing to 0.625 × 0.625 × 1.25 mm3. Note that a 256 × 256 patch
cropped at the center of the LA could encompass the entire region of the LA
through our statistical study. Therefore, we calculate the center of the LA based
on the results of the localization and then crop the image to a size of 256×256×h.
As shown in Fig. 2, h is the number of slices obtained by choosing all slices with
labels and then choosing 5 additional slices on both the bottom and top of these
annotated slices.

Fig. 2. According to the location information of the LA provided by the rough segmen-
tation network, the image for accurate segmentation is cropped to a size of 256×256×h.

Normalization and Data Augmentation. We observed significant differ-
ences in the intensity of the data from different centers. In order to adapt the
model to the multi-center data, we use a random affine transformation and add
Gaussian noise to the data to simulate the differences caused by different sam-
pling methods. Finally, the data is pre-processed with contrast limited adaptive
histogram equalization (CLAHE) to enhance the contrast of the images, and
then the image is further processed by z-score normalization.

2.2 Network Architectures

We choose VoxHRnet [8] as our backbone. The VoxHRNet is developed from
the well-known HRNet [9]. To allow the network to learn rich spatial representa-
tions and produce accurate semantic segmentation results on whole brain, Li et
al. designed VoxHRNet based on HRNetV2 [10]. The first version of HRNet was
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designed for human posture estimation task. Since the high-resolution spatial
information plays an important role in human posture estimation, the HRNet
maintains a high-resolution representation at all stages of the network and per-
forms repetitive multi-scale feature fusion. Subsequently, HRNetV2 makes pre-
dictions by aggregating features from all resolutions and applies it to seman-
tic segmentation and object detection tasks. VoxHRNet retains the benefits of
HRNetV2 with relevant modifications to suit the whole brain segmentation prob-
lem. First, VoxHRNet adds a stem block to reduce the size of the input image
to H/2 × W/2 × D/2, which reduces the memory requirement of the GPU. In
addition, the VoxHRnet adds a classification subnet at the end of feature extrac-
tion. The classification sub-network first upsamples the features from different
branches and uses the result of their stitching as input, and then outputs a
prediction.

Fig. 3. Our network model and the blocks in it. Conv(a, b, c) indicates that the con-
volutional layer has a kernel size of a × a × a, a stride of b and a padding size of c.

The backbone of VoxHRNet consists of three stages and we have kept only
two of them, which formed our two-stage backbone shown in Fig. 3. The first
stage of our network contains two branches with input dimensions equal to H/2×
W/2×D/2×16 and H/4×W/4×D/4×32 respectively, where H, W, D are the
dimensions of the input images, and the last dimension is the feature channel.
The second stage consists of three branches, the first two branches keep the same
input dimensions as one used in the first stage, and the third branch accepts
input with dimensions H/8 ×W/8 ×D/8 × 64.

To produce a rich high-resolution representation, we also used multi-scale
feature fusion at the end of each stage. As shown in Fig. 4a, the original multi-
scale feature is obtained by accumulating feature generated from all branches.
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The fusion of various scales of feature is achieved by interpolation or strided
convolution. Inspired by Gauss-Seidel method, we redesigned the feature fusion
module. The Gauss-Seidel method is an iterative method in numerical linear
algebra and its basic idea is to try to use the latest obtained parameters to
participate in the iterative computation. We also use the latest obtained features
for subsequent feature fusion whenever possible. In the proposed fusion layer
(Fig. 4b), we first obtain feature of the low-resolution branch. Then, the feature
is utilized to produce high-resolution latent. The red arrow in the figure is our
improved new feature transfer path. This modification will encode much more
high-level semantic information into high-resolution features. Inspired by the
feature-reusing mechanism used in Unet, we fused the input and output features
for each stage, which aims to make full use of the features generated by the
network. The red dotted line in Fig. 3 shows the location and transfer path of
feature-reusing. After the backbone network, the multi-scale features are fed into
the classification sub-network by aggregating them and generating predictions.
The importance of incorporating low-resolution representations together with
high-resolution representations has also been demonstrated in HRNetV2.

Finally, we introduce auxiliary loss [11], which has been shown to be effec-
tive for accelerating the convergence of deep network. As shown in Fig. 4c we
introduced the auxiliary loss at the output of stage1. In summary, the construc-
tion of our network can be simplified as: a high-resolution representation was
maintained in the network and enriched by adequate multi-scale feature fusion
and feature reusing. The final prediction was performed by aggregating features
from all branches.

Fig. 4. The location where our proposed feature fusion layer and auxiliary loss are
added. (a) The original feature fusion layer. (b) Our proposed improved feature fusion
layer. (c) Auxiliary loss structure and location.



High-Resolution Network for Automatic Left Atrial Segmentation 89

3 Results and Discussion

We trained our model on an NVIDIA TESLA T4 with an initial learning rate set
to 0.001. The total training iterations was set to 200 epochs and the parameter
was optimized with RAdam algorithm [12]. For the loss functions, we chose the
Dice loss and CE loss, which are widely used in medical segmentation task. Thus,
our final loss can be formally written by

lComb = lDice :

(
1 − 1

B

∑
i∈B

2∗ ∑
n yiy

′
i∑

n (yi + y′
i)

)
+ lCE :

(
− 1
B

∑
i∈B

yi logPy′
i

)
(1)

where B represents the batch size, y′
i represents the prediction result, and yi

represents the true label.
The weight of the auxiliary loss and the weight of the main loss are both

set to 1. Finally, we divide the training set and the validation set by a ratio of
4:1. We use the Dice Similarity Coefficient (DC) to evaluate the performance of
model during training.

Our rough segmentation network achieved a DC of 0.9552/0.8989 on the
training/validation set. Figure 5 shows two of the segmentation results of our
rough segmentation network on the validation dataset. It can be seen that the
network segment the LA well and provide the precise location of the LA. This
is helpful for subsequent cropping and precise segmentation.

Fig. 5. LA segmentation results of the rough segmentation network. A total of two
validation patient images were selected and three random slices are shown in each row.
The yellow part represents the segmented result. (Color figure online)
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Table 1. The performance of our model (LA-HRNet) and VoxHRNet* with the same
number of stages on each dataset. The evaluation index used is the DC and Haus-
dorff distance (HD). HD is the maximum Euclidean distance among all the minimum
Euclidean distances between two finite points sets and smaller HD value means smaller
surface distance. F means using the new feature fusion layer and R means using feature-
reusing.

Methods Train/validation Data Validation Data (DC / HD)

VoxHRNet* 0.9535 / 0.9176 0.8385 / 32.998

VoxHRNet* + F 0.9539 / 0.9178 0.8610 / 30.953

VoxHRNet* + R 0.9552 / 0.9170 0.8550 / 33.945

VoxHRNet* + F + R 0.9545 / 0.9172 0.8646 / 25.675

LA-HRNet 0.9536 / 0.9202 0.8719 / 22.394

The segmentation results of the LA based on the output of rough segmenta-
tion network are shown in Table 1. The original VoxHRNet achieved 0.9176 DC
on the validation set used for training and a DC of 0.8385 on the officially pro-
vided validation set that comes from centers different from those used in training.
It can be seen that the DC value was reduced by 0.1150 when the trained model
was applied to unseen validation data, suggesting that image from multi-center
poses a greater challenge to the network. When we applied the proposed new
feature fusion layer and feature-reusing method to the network, respectively, we
obtained DC of 0.9178/0.9170 on the trained validation set. And they get a DC
of 0.8610/0.8550 on the validation set, respectively. They all outperform VoxHR-
Net*, which demonstrates the effectiveness of our proposed improvements to the
network for the multicenter-based LGE MRI task of LA segmentation. We sub-
sequently obtained a DC of 0.9172 on the training validation set and a DC of
0.8646 on the validation dataset when we applied both improvements to the net-
work. This again proves the advanced nature of our proposed method. Finally
we introduce auxiliary loss, which leads to the model LA-HRNet. It obtains a
DC of 0.9202 on the validation set used for training and a DC of 0.8719 on the
officially provided validation set. It can be seen that the performance degrada-
tion on the unseen validation set was reduced by 3.33% point. And this also
indicates that the proposed network has a good generalization ability over the
unknown domain. The effectiveness of our proposed methods can also be found
by comparing HD and LA-HRNet achieves the lowest HD of 22.394.

The qualitative results of our method was shown in Fig. 6. It can seen that the
three images may come from different centers since the style of them are different
to each other. We can find that the segmentation of the LA wall is poor, which
may be related to the unclear boundary. We believe that adding multi-center to
the training data or simulating the generation of data from unknown domains
through data augmentation, generative adversarial strategies, etc. will further
improve the domain generalization capability of the model.
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Fig. 6. LA segmentation results. We show segmentation results for three patients and
randomly select three slices. The last row is the 3D reconstructed image of the segmen-
tation result. Yellow is the label and red is the model prediction (Color figure online)

4 Conclusion

In this paper, we present a two-stage framework for automatic segmentation
of the LA in LGE-MRI, which can be used to aid the diagnosis, treatment of
patients with atrial fibrillation. First, we propose a data pre-processing and data
enhancement solution to minimize the input variations of data come from multi-
center. In light of the excellent performance of HRNet achieved on semantic
segmentation task, we adapted it to LA segmentation by incorporating a novel
multi-scale feature fusion strategy and feature reusing. In addition, we introduce
an auxiliary loss to accelerate the convergence of the network. Experiments show
that our method can improve the domain generalization ability of the baseline,
i.e., the VoxHRNet. To further improve the segmentation performance on multi-
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center data, future works can be conducted by incorporating domain adaptation
strategies such as adversarial training based domain invariant feature learning.
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Abstract. Automatic segmentation of the left atrial (LA) cavity and
atrial scars in late gadolinium enhancement magnetic resonance imaging
has significant clinical relevance to diagnosing atrial fibrillation (AF). Nev-
ertheless, automatic segmentation remains challenging because of the poor
image quality, the shape variability of LA, and the small size of scars.
Therefore, this study proposes a multi-task learning model in a coarse-to-
fine framework, among which the fine model simultaneously segmenting
the LA cavity and scars. Specially, we develop an edge-enhanced feature-
guided module (EFGM) to exploit the spatial relationship between LA
and scars using a 3D central difference convolution, exploring the feature
dependence from multi-task learning. Also, a dilated inception module
(DIM) is plugged in to learn multi-scale representation, further improv-
ing the joint segmentation considering the shape difference between the
LA cavity and scar. We evaluate our model on the LAScarQS 2022 val-
idation set. The average Dice scores of the LA cavity and scar are 0.875
and 0.631. Also, the Average Surface Distance (ASD) and Hausdorff Dis-
tance (HD) of the LA cavity are 2.233 mm and 24.731 mm, respectively.
The accuracy, specificity, sensitivity, and generalized Dice score of LA scar
are 0.999, 0.999, 0.603, and 0.916, respectively.

Keywords: Deep learning · Cardiac Segmentation · Joint
optimization · Difference convolution

1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia observed in
clinical practice, occurring in up to 2% of the population and rising fast with
advancing age [10]. Recently, late gadolinium enhancement magnetic resonance
imaging (LGE MRI) has been considered as a promising and reliable technique
to visualize and quantify left atrial scars [11]. The segmentation or quantification
of LA and scars provides important information for the clinical diagnosis and
the treatment of AF patients. Since manual delineations of LA and scars are
time-consuming and subjective, it is crucial to develop techniques for automatic
segmentation of the LA cavity and scar for LGE MRI.
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However, the poor image quality in LGE MRI, various shapes of LA, the sur-
rounding enhanced noise, and the complex patterns of scars make it challenging
to automatically and accurately segment LA and scars. Li et al. reviewed algo-
rithms proposed to perform the LA cavity and scar segmentation or quantifica-
tion from medical images in [2]. Among them, deep learning-based methods are
dominant in these two tasks and they achieved promising results [1,15,16,19–
22]. Nevertheless, most of the methods mentioned in [2] normally solved the two
tasks independently and ignored the intrinsic spatial relationship between LA
and scars which are located on the LA wall, as Fig. 1 shows. The performance
of segmenting the LA cavity and scar may be bottlenecked by the failure in
exploiting the correlation between these two tasks. Multi-task learning has been
shown to outperform methods considering related tasks separately by leverag-
ing the relationship between different tasks. Recently, Li et al. [1] developed a
novel framework where LA segmentation, scar projection onto the LA surface,
and scar quantification are performed simultaneously in an end-to-end style.
The relationship between LA segmentation and scar quantification was explic-
itly explored and has shown significant performance improvements for both tasks
in their work.

Fig. 1. Examples of axial views from two cases in the LAScarQS2022 dataset. The LA
cavity and scar are highlighted in blue and red, respectively. One can see that scars
are located on the LA wall. (Color figure online)
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This paper, inspired by [1], proposes a coarse-to-fine framework to achieve
joint segmentation of LA and scars. In the coarse stage, a vanilla 3D U-Net
[14] is trained to coarsely segment LA and crop a region of interest (ROI) that
contains the whole LA. In the fine stage, a modified dual-task learning 3D U-
Net consisting of two decoders for LA and scars segmentation respectively, is
proposed to segment LA and scars simultaneously. We also introduce an edge-
enhanced feature-guided module (EFGM) at the skip connection between the
shared encoder and the decoder layers for scar segmentation. It includes a differ-
ence convolution submodule based on 3D central difference convolution (CDC)
[7], followed by a spatial attention submodule. We argue that it can help pass
the edge-enhanced features to guide the localization and segmentation of scars as
they are located at the LA wall while utilizing the spatial relationship between
LA and scars. In addition, a dilated inception module (DIM) to extract multi-
scale features is plugged in at the bottleneck of the modified 3D U-Net.

2 Methods

Figure 2 shows the pipeline of our coarse-to-fine joint segmentation framework.
In our work, we develop a two-stage strategy to perform coarse-to-fine joint
segmentation of the LA cavity and scar. In the coarse stage, a vanilla 3D U-
Net is first trained to segment the ROI which contains the whole LA from the
entire 3D volume of each MRI. After the ROIs are detected, they are all cropped
out with a fixed size from the processed MRIs and then fed into the proposed
modified multi-task learning 3D U-Net to obtain segmentation results of LA
cavity and scars simultaneously in the fine stage.

Input

Crop

Network 1

ROI

Final Segmentation

Network 2

Fig. 2. The overall pipeline of our coarse-to-fine joint segmentation of left atrial and
scars framework. The network 1 is a vanilla 3D U-Net to segment the ROI coarsely.
The network 2 is a modified 3D U-Net consisting of two decoders for LA and scar
segmentation respectively to get more accurate segmentation results.
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2.1 Coarse Segmentation of ROIs

As shown in Fig. 1, the regions of the LA cavity and scar are only part of the
whole volume, especially for a scar of such a small size. Therefore, we first employ
a coarse segmentation stage to segment the ROI containing the LA cavity and
scar,aiming at alleviating the class imbalance problem and discarding redundant
or irrelevant surrounding voxels. We choose the vanilla 3D U-Net as our coarse
segmentation network for its effectiveness in various medical image segmentation
tasks without any complex design.

(a) Architecture of proposed modified 3D U-Net (b) Edge-enhanced feature guided module

(c) Dilated Inception module
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Fig. 3. (a)An overview of our proposed modified 3D U-Net with two decoders for LA
and scar segmentation, respectively. (b)Edge-enhanced feature-guided module using 3D
central difference convolution. (c)Dilated Inception module using dilated convolutions
with different rates and shortcut connections.

2.2 Fine and Joint Segmentation of LA and Scars

Most of the automatic scar segmentation or quantification methods require an
accurate initial LA segmentation considering the prior knowledge that atrial
scars are located on the LA wall. Additionally, previous methods usually
solved the two tasks independently and ignored the intrinsic spatial relation-
ship between LA and scars [2]. Therefore, we propose a modified 3D U-Net
consisting of two decoders for LA and scar segmentation and train it in a multi-
task learning manner in the fine stage. Figure 3 (a) provides an overview of
the proposed dual-task learning network architecture. First, an edge-enhanced
feature guided module (EFGM) is introduced at the skip connection between
the shared encoder and decoder layers for scar segmentation. Different from the
original skip connection, the EFGM, which can serve as an edge detector, helps
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preserve differential or edge-related information via extracting edge-enhanced
features and passing them to the corresponding layers at the scar segmentation
decoder. In addition, a dilated inception module (DIM) is introduced at the end
of the original encoder. With the equipment of DIM, the modified 3D U-Net
can capture deep multi-scale semantic features, which is beneficial to the joint
segmentation of LA cavities and scars as they are totally different in size. The
details of the EFGM and the DIM are described below.
Edge-enhanced Feature Guided Module. Difference Convolution, which
explicitly calculates pixel differences during convolution to aggregate local gra-
dient information, has been gradually used in computer vision tasks such as edge
detection [6], face recognition [5], gesture recognition [7], and so on in recent
years. By contrast, vanilla convolution aggregates intensity-level information [6].
As a result, although modern CNNs based on vanilla convolution are powerful
enough to learn rich and hierarchical image representations, it is still hard for
them to focus on edge-related features due to the lack of explicit encoding for
gradient information [5]. The formulations of vanilla convolution and difference
convolution can be written as (take 2D convolution as an example):

y =
∑k×k

i=1
wi · xi (vanilla convolution) (1)

y =
∑

xi,xj∈S
wi · (xi − xj) (difference convolution) (2)

where, xi and xj are the input pixels, wi is the weight in the k × k convolution
kernel. S is the local receptive filed over the feature map.

As mentioned before, scars are located on the LA wall, so we intuitively argue
that the edge information of the LA cavity is important to the localization and
further segmentation of scars. In the vanilla U-Net [13], long skip connections
were introduced to pass features from the encoder path to the decoder path
to recover spatial information lost during downsampling. However, original low-
level features which are simply passed through the skip connections to fuse with
high-level features may contain substantial redundant location or spatial infor-
mation. Motivated by these assumptions, we propose the EFGM equipping differ-
ence convolution at the skip connection between the encoder and the decoder for
scar segmentation in the modified 3D U-Net only to pass the edge-enhanced fea-
tures containing rich edge-related information. With the implementation of the
EFGM, our model can learn to suppress irrelevant regions and highlight salient
regions (edge of LA cavity) useful for more precise localization and segmentation
of scars due to the ability of difference convolution to extract local differential
information from feature maps. Moreover, the edge-enhanced features can also
be regarded as localization guidance for decoding high-level semantic features in
the decoder path in scar segmentation, which benefits the segmentation of scars
located on the LA wall.

Figure 3 (b) illustrates an edge-enhanced feature-guided module. Each mod-
ule mainly includes a difference convolution submodule where we utilize a 3D
central difference convolution (CDC) [7], which is formulated as follows::
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y =
∑

i∈C
wi · (xi − x0) (3)

3D convolution with kernel size 3×3×3 and dilation 1 is used for demon-
stration. The local receptive field cube for the 3D convolution is C =
(−1,−1,−1), (−1,−1, 0), ..., (0, 1, 1), (1, 1, 1).

The same as [6], we use the separable depth-wise convolutional structure
with a shortcut for fast inference and easy training. The residual path in this
module includes a depth-wise convolutional layer, a ReLU layer, and a point-wise
convolutional layer sequentially. To further highlight the edge-related features
and filter background noise, we apply the spatial attention mechanism at the
end of the difference convolution submodule.

Dilated Inception Module. Motivated by the Inception-ResNet-V2 module
[8] and Atrous Spatial Pyramid Pooling (ASPP) [9], we propose the DIM to
encode deep multi-scale features for both LA and scar segmentation. As shown
in Fig. 3 (c), the DIM has four parallel paths with dilated convolutions with
different dilation rates followed by one 1 × 1 convolution. At last, we directly
add the original features with the other four multi-scale features to make a
shortcut mechanism. Different dilation rates can increase the receptive field sizes
of parallel convolution paths by adding zeros between kernel elements without
incrementing parameters. As a result, the proposed DIM can capture features of
objects of various sizes, such as LA cavities and scars, due to the combination
of the dilation convolutions with different dilation rates.

2.3 Loss Function

For the coarse stage only regarding the segmentation of the LA cavity, our loss
function is Dice Loss.

For the fine and joint segmentation stage, our loss function is the sum of the
loss function of segmenting the LA cavity and the loss function of segmenting
scar, as shown in Eq. 4:

Losstotal = LossLA + Lossscar (4)

The loss function used in LA segmentation is the sum of the Dice Loss and the
Cross-Entropy Loss, as shown in Eq. 5:

LossLA = Lossce + Lossdice (5)

For scar segmentation, as the scar only takes up a small fraction of the whole
volume, which can cause a severe class-imbalance problem, the loss function is
the sum of the Dice Loss and the Weighted Cross Entropy Loss, as shown in
Eq. 6:

Lossscar = Losswce + Lossdice (6)
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3 Experiments

3.1 Dataset and Data Preprocessing

MICCAI 2022-LAScarQS2022 (Left Atrial and Scar Quantification & Segmen-
tation Challenge) [1–3] provides 194 LGE MRIs acquired in real clinical envi-
ronment from patients suffering atrial fibrillation (AF) and is composed of two
tasks: 1. LA Scar Quantification 2. Left Atrial Segmentation from Multi-Center
LGE MRIs. In this study, we focus on task 1.

The training dataset provided for task 1 of the LAScarQS 2022 challenge
[1–3] consists of 60 LGE-MRIs with segmentation annotations of LA cavities
and scars. In our experiments, the images and masks were first resampled to the
isotropic resolution of 1 × 1 × 1mm3 . And then, all the volumes were cropped
and zero-pad to the uniform size of 576× 576× 96 . Then we used a 3D version
of contrast limited adaptive histogram localization (CLAHE) [4] to enhance the
contrast of LGE-MRIs, and finally applied sample-wise normalization.

3.2 Implementation Details

Our experiments were run on NVIDIA GeForce RTX 3090 GPU with 24 GB
RAM. We firstly down-sampled the input for the coarse segmentation from 576×
576×96 to 144×144×48 due to memory restriction. The first network was trained
for 100 epochs using the Adam optimizer with a fixed learning rate of 0.001. The
batch size is 4. We randomly chose 48 out of the 60 MRIs as training data; the
rest 12 are validation data. After the training procedure was completed, the
model with the best dice scores on validation data was saved for ROI detection.
For the fine and joint segmentation, we first computed the barycenter of the
ground truth and cropped a region of size 288 × 192 × 96 centered with the
barycenter from the original data. Then the cropped ROIs were fed into the
second network. The second network was trained for 100 epochs using the Adam
optimizer with an initial learning rate of 0.001. The learning rate was reduced
by 0.1 every 1000 iterations and the batch size is 2. We randomly split the data
into training (48 subjects) and testing (12 subjects) subsets for the fine stage.

To reduce the risk of over-fitting and further improve the generalization abil-
ity of our framework, we also apply data augmentation including random flipping
and rotation in both networks training.

At the inference stage, each MRI volume from the testing subset was firstly
down-sampled to 144×144×48 and fed into the first network. The network would
output the predicted binary mask used to locate the ROI. We computed the
barycenter of the predicted mask, cropped a region of size 288×192×96 centered
with this barycenter, and then fed it into the second network. The second network
output the predicted masks of the LA cavity and scar simultaneously inside the
target region and mapped them back to the original size volume, which finished
the inference. The end-to-end segmentation process takes approximately 9 s for
each case.
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4 Results and Discussions

4.1 Ablation Experiments

We run a number of ablation experiments to evaluate the effectiveness of multi-
task learning and the two proposed modules in our modified 3D U-Net. All the
experiments were run in the coarse-to-fine framework mentioned above, sharing
the same coarse stage and we only performed different models in the fine stage
to conduct ablation experiments. Here, U-NetLA denotes the vanilla 3D U-Net
architecture for LA segmentation individually. U-Netscar denotes the vanilla 3D
U-Net architecture for scar segmentation individually. U-NetLA and scar denotes
the multi-task learning 3D U-Net consists of a shared encoder and two decoders
for joint segmentation of LA and scars, which is also our baseline model. Besides,
we successively tested the performance of the baseline model incorporating the
DIM, the baseline model incorporating the EFGM, and the baseline model incor-
porating both the EFGM and the DIM. All these experiments were conducted
using the same aforementioned training configurations and loss functions.

All the models were evaluated through the validation platform provided by
the LAScarQS2022 organizer. As shown in Table 1, the segmentation perfor-
mance of LA was evaluated by the Dice score, average surface distance (ASD)
and Hausdorff distance (HD). The scar’s quantification performance was evalu-
ated via first projecting the segmentation result onto the manually segmented
LA surface. Then, the Accuracy, Specificity and Sensitivity measurement of the
two areas in the projected surface, Dice score (Dice) and generalized Dice score
(Diceg) were used as indicators of the accuracy of scar quantification [1]. Diceg
is a weighted Dice score by evaluating the segmentation of all labels [17,18],
which is formulated as follow [1]:

Diceg =
2
∑Nk−1

k=0 |Sauto
k ∩ Smanual

k |
∑Nk−1

k=0 (|Sauto
k + Smanual

k |)
(7)

where Sauto
k auto and Smanual

k indicate the segmentation results of label k from
the automatic method and manual delineation, respectively, and Nkis the number
of labels.

Table 1. Summary of the quantitative evaluation results of LA segmentation and scar
quantification on the LAScarQS 2022 validation set in ablation experiments. EFGM
denotes the proposed edge-enhanced feature-guided module discussed in Sect. 2.2, and
DIM denotes the proposed dilation inception module discussed in Sect. 2.2.

Method LA Scar
Dice ASD(mm) HD (mm) Accuracy Specificity Sensitivity Dice Diceg

U-NetLA 0.860 2.625 30.028 N\ A N\ A N\ A N\ A N\ A
U-Netscar N\ A N\ A N\ A 0.999 0.999 0.534 0.580 0.909
Base(U-NetLA and scar) 0.869 2.318 27.050 0.999 0.999 0.549 0.596 0.913
Base+EFGM 0.867 2.489 26.170 0.999 0.999 0.588 0.621 0.914
Base+DIM 0.871 2.355 25.636 0.999 0.999 0.605 0.617 0.914
Base+EFGM+DIM 0.875 2.233 24.731 0.999 0.999 0.603 0.631 0.916
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Table 1 presents the quantitative results for LA segmentation and scar quan-
tification. It demonstrates that our baseline model outperforms U-NetLA and
U-Netscar which consider these two related tasks separately, verifying the superi-
ority of multi-task learning. The relationship between LA segmentation and scar
segmentation is exploited implicitly through multi-task learning. Figure 4 and
Fig. 5 illustrate the segmentation results of the LA cavity and scar, respectively,
from the mentioned ablation experiments. One can see that the boundary of seg-
mentation results of U-NetLA is far from the boundary of the ground-truth and
U-Netscar tends to make mistakes on non-LA wall regions and under-segment
scars, while the baseline model results are closer to the ground truth.

Meanwhile, Table 1 illustrates the effectiveness of each proposed module,
suggesting the advantage of the EFGM and the DIM. Compared to the baseline
model, incorporating the DIM reduces about 2mm in HD in segmenting LA and
improves the Dice in segmenting scar by around 2%. This observation implies the
need for learning deep multi-scale features when coping with segmenting targets
of different sizes since scars are quite small compared with the LA cavity. Note
that incorporating the EFGM into the baseline model improves the Dice in seg-
menting scar by around 2.5% compared to the baseline model and outperforms
the baseline model only equipped with the DIM. As shown in Fig. 5, introduc-
ing the EFGM can alleviate the problem of under-segmenting scars observed
in other models. Furthermore, it indicates that the edge-related information can
effectively guide the segmentation of scars while encoding the prior spatial knowl-
edge that scars are located at the LA wall into the framework, thus utilizing the
spatial relationship between LA and scars more explicitly. However, the perfor-
mance of the model which only incorporates the EFGM even degrades a little
in Dice and ASD of segmenting LA compared to the baseline model. We argue
that this is because the EFGM is mainly designed for the scar segmentation task,
which is much more challenging than LA segmentation, so it may not improve
the segmentation performance of LA.

The highest performance gain (about 1.5% in Dice of LA segmentation
and 5% in Dice of scar segmentation compared to U-NetLA and U-Netscar) is
observed when incorporating both the DIM and the EFGM. Moreover, the model
equipped with both two modules achieves the best segmentation performance in
almost all metrics in both tasks. Figure 4 also demonstrates that the boundary
of LA segmentation results is the most consistent with the ground truth among
all the experiments, while Fig. 5 illustrates that our final model can detect and
segment scars more precisely than any other model in our ablation experiments.
It shows that the combination of two modules can further improve the perfor-
mance of the framework. Note that the model incorporating both the DIM and
the EFGM outperforms the model only incorporating the DIM in LA cavity seg-
mentation, but the introduction of the EFGM cannot improve the segmentation
of the LA cavity as mentioned above. This finding is probably attributed to the
explanation that relatively good performance in the scar segmentation task can
boost the LA segmentation task during the simultaneous optimization process
in multi-task learning.
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U −Net Base Base+DIM Base+EFGM Base+EFGM
+DIM

GT

Fig. 4. Visualization of the LA cavity segmentation results on the LAScarQS 2022
validation set by using different training combinations.

Base Base+DIM Base+EFGM Base+EFGM
+DIM

GTU − Net

Fig. 5. Visualization of the scar segmentation results on the LAScarQS 2022 validation
set by using different training combinations.

4.2 Comparison Experiments

We implemented U-Net with different loss functions to conduct comparison
experiments for both LA segmentation and scar segmentation. We used the same
hyper-parameters in these experiments for consistency.

Table 2 tabulates the quantitative comparison results for LA segmentation
and scar quantification. For LA segmentation, our method achieves 0.875 in
Dice, demonstrating its advantage in segmenting the LA cavity more accurately.
Meanwhile, the proposed coarse-to-fine joint segmentation framework obtains
the smallest HD and ASD, which means it can identify the correct boundaries of
LA cavities despite their various shape. Figure 6 also proves that our proposed
model can achieve better segmentation compared to other methods.

Note that our method shows significant improvement in scar quantification
results. As demonstrated in Fig. 7, the vanilla U-Net models tend to under-
segment scars while our method alleviates this problem. With the help of the
DIM and the EFGM, edge-enhanced low-level and multi-scale features are fused
while more contextual semantic information and more precise spatial information
are integrated, facilitating the segmentation of scars which are hard to recognize
and locate due to their small size, complex patterns, and surrounding noise.
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Overall, our method outperformed superiorly to other methods, implying its
effectiveness. This could result from the two major contributions in our frame-
work. First, the multi-task learning model can effectively exploit the relationship
between LA and scars. Moreover, the EFGM and the DIM are introduced to
further boost the multi-task learning process through providing spatial guidance
for segmenting scars and learning multi-scale representation. Second, the two-
stage coarse-to-fine framework can suppress the background pixels that dominate
foreground pixels in the scar segmentation, thus significantly mitigate the class
imbalance problem.

U − Net − BCE Ours GTU − Net − Dice

Fig. 6. Visualization of the LA cavity segmentation results on the LAScarQS 2022
validation set compared with other classic methods.

U − Net − BCE Ours GTU − Net − Dice

Fig. 7. Visualization of the scar segmentation results on the LAScarQS 2022 validation
set compared with other classic methods.
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Table 2. Summary of the quantitative evaluation results of LA segmentation and scar
quantification on the LAScarQS 2022 validation set in comparison experiments.

Method LA Scar
Dice ASD(mm) HD (mm) Accuracy Specificity Sensitivity Dice Diceg

U-NetLA/scar-BCE 0.849 2.980 41.934 0.681 0.999 0.362 0.466 0.890
U-NetLA/scar-Dice 0.845 3.227 43.622 0.670 0.999 0.340 0.427 0.883
Ours 0.875 2.233 24.731 0.999 0.999 0.603 0.631 0.916

5 Conclusion

This paper proposes a coarse-to-fine framework for joint segmentation of LA
and scars from LGE MRI. The coarse segment network is a vanilla 3D U-Net to
extract ROI of the volume, and the fine segment network is a modified 3D U-Net
consisting of two decoders for LA and scar segmentation, respectively, aiming at
segmenting the LA cavity and scar simultaneously in a multi-task learning man-
ner. In addition, we introduce an edge-enhanced feature-guided module using
3D central difference convolution to exploit the spatial relationship between LA
and scars and a dilated inception module to learn multi-scale semantic features
in our modified 3D U-Net. We evaluated our method on the LAScarQS 2022
validation dataset, and the convincing results suggest the effectiveness of the
newly proposed coarse-to-fine framework, especially for scar segmentation or
quantification.
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Abstract. Atrial fibrillation (AF) is the most common cardiac arrhythmia world-
wide; however, the current success rates for catheter ablation (CA) therapy, the
first-line treatment for AF, are suboptimal. Therefore, extensive research has
focused on the relationship between scar tissue in the left atrium (LA) and AF,
and its application for patient stratification and more effective CA therapy strate-
gies. However, quantifying and segmenting LA scar tissue requires significant
data pre-processing from well-trained clinicians. Hence, deep learning (DL) has
been proposed to automatically segment the LAfibrotic scar from late gadolinium-
enhanced cardiac magnetic resonance (LGE-CMR) images. Segmenting LA scar
with DL is challenging as fibrosis from LGE-CMR images has a relatively small
volume and regions surrounding the scar are also enhanced. Therefore, we propose
a two-stage ensemble DL model (TESSLA: two-stage ensemble scar segmenta-
tion for the LA) that segments the blood pool of the LA, estimates the LA wall,
applies an image intensity ratio with Z-score normalisation and combines a scar
segmentation from two independent networks. TESSLA outperformed its con-
stituent models and achieved state-of-art accuracy on the LAScar 2022 challenge
evaluation platform for LA scar segmentation with a Dice score of 0.63 ± 0.14
and a Dice score of 0.58 ± 0.11 for the final test phase. Our workflow provides
a fully automatic estimation of LA fibrosis from clinical LGE CMR scans.

Keywords: Left Atrial Scar · Deep Learning · Segmentation · Atrial Fibrillation

1 Introduction

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, affecting more
than 46 million people worldwide. It is characterised by rapid and irregular electrical
activations of the atrial chambers, resulting in reduced cardiac output [1, 2]. AF is not
directly lethal, but it is associated with an increased risk of stroke and heart failure if
sustained for long periods (known as persistent AF). In a study investigating the risk
factors of cardiovascular diseases with approximately 5000 participants, AF was found
to increase the risk of stroke by 1.5% for ages 50–59 years old and 23.5% for ages 80–
89 years old [3]. The first-line treatment for AF is catheter ablation (CA) therapy. CA
involves using a catheter to ablate (isolate or destroy) arrhythmogenic atrial tissue that
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harbours AF triggers, thus restoring sinus rhythm and potentially the heart’s biomechan-
ical function [4]. However, when treating persistent AF, CA therapy has a suboptimal
AF reoccurrence rate of up to ~ 70% post-intervention [5, 6].

Extensive research has focused on the relationship between scar tissue in the left
atrium (LA) and AF, and its application for patient stratification and more effective CA
therapy strategies, including the DECAAF I and II clinical trial that rely on preprocessed
late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) images [7, 8]. The
preprocessing of LGE-CMR images involves manual segmentation of the left atrium
(LA) and scar tissue by a well-trained clinician. This creates a bottleneck for routine
clinical usage of LA scar quantification and segmentation as it is time-consuming and
requires specialists to perform it.

The standard approach for LA scar segmentation employs thresholding techniques,
which involves evaluating a threshold value based on a fixed number of standard devi-
ations above the average intensity value of the LA wall or blood pool. However, the
selection of threshold values is subjective, and the values can be affected by several
factors such as scanner variability, acquisition timing after gadolinium administration
and whether the LGE-CMR image is pre-or post-ablation [9]. Therefore, to automati-
cally segment LA and scar tissue from LGE-CMR images, deep learning (DL) has been
proposed as an efficient and accurate solution. DL was first applied to LA scar segmen-
tation by Yang et al., who used super-pixel over-segmentation for feature extraction and
stacked sparse auto-encoders [10]. Meanwhile, other studies adopted a DL model for
simultaneous segmentation of the LA wall and LA scar [9]. However, the primary/key
issueswhen segmentingLA scars fromLGE-CMR images are its relatively small volume
and enhanced regions of intensity surrounding it – creating noise during segmentation.
Li et al. addressed this issue by utilising the spatial relationship of the LA and its scar to
jointly segment both using an attention mask on the predicted scar probability map for
shape attention [11]. Following on from utilising the spatial relationship of the LA and
its scar, we propose an ensemble two-stage DL network (TESSLA: two-stage ensemble
scar segmentation for the LA). In addition, to overcome the limitation of generalisability
of the model developed by Li et al., we propose using an intensity ratio (IIR) normalisa-
tion, applied by traditional methods to reduce inter-patient and scanner effects [12, 13].
To summarise, the contributions of this work are:

• First method to feature a two-stage DL model to segment blood pool, estimate LA
wall and predict scar segmentation from LA wall and original LGE-CMR images.

• First DL model to implement IIR normalisation for LA scar segmentation.

2 Methods

2.1 Dataset

The dataset was provided by the Left Atrial and Scar Quantification & Segmentation
Challenge 2022, which includes 60 LGE-CMR images from patients post- and pre-
ablation with corresponding LA blood pool and scar segmentation masks. The images
were collected across three centres (University of Utah, Beth Israel Deaconess Medical
Center and King’s College London). The spatial resolution of the LGE-CMR images
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was either 1.25 × 1.25 × 2.5 mm3 (University of Utah), 1.4 × 1.4 × 1.4 mm3 (Beth
Israel Deaconess Medical Center) or 1.3 × 1.3 × 4.0 mm3 (King’s College London) [9,
11, 14].

Fig. 1. Ground truth segmentation. Left: scar segmentation (green) and LA blood pool (red)
ground truth masks. Right: Same masks with scar projected onto closest point on endocardial
wall. Scar in blood pool and subsequent projections are highlighted with arrows (blue).

Due to 20–35% of the voxels of the scar segmentation masks being within the blood
pool segmentation masks, prior to being used in model training, scar voxels within the
blood pool were projected to the LA surface along the normal direction of the closest
LA endocardial wall voxel (see Fig. 1).

2.2 Proposed Model and Implementation

The proposed model consists of three 3D nn-UNets [15], which form two distinct paths
to predict scar. In the first path (A in Fig. 2) a nn-UNet predicts the segmentation mask
of the LA blood pool from the LGE-CMR image, and a second nn-UNet predicts the LA
scar from the LGE-CMR image and IIR normalised LA wall (derived from the blood
pool prediction and LGE-CMR image). In the second path (B in Fig. 2) a nn-UNet
predicts LA scar directly from the LGE-CMR image (see Fig. 2).

The final LA scar mask is formed by the union of the predictions from the two paths
(post-softmax probability thresholding and nn-UNet postprocessing), to provide a final
ensemble prediction of LA scar (Fig. 3). nn-UNet was chosen for the segmentation as
it automatically configures the optimal U-Net architecture, hyperparameters and image
preprocessing and postprocessing steps and has demonstrated state-of-the-art perfor-
mance in a range of segmentation challenges [15]. Data augmentation was performed
during training and included techniques such as rotations, scaling, Gaussian noise, blur,
brightness, contrast, low-resolution simulation, gamma correction and mirroring [15].
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Fig. 2. Diagram of the proposed TESSLA model, outlining each stage of the model: blood pool
segmentation, LA wall estimation and normalisation, LA scar segmentation from both nn-UNets
and combined scar segmentation.A) Represents first path of TESSLA which predicts LA scar
from normalised LA wall and LGE-CMR image. B) Represents second path of TESSLA which
predicts LA scar from LGE-CMR image.

Fig. 3. Example of how the two different scar predictions (colours red and blue representing each
scar prediction) (left image) are combined for the final prediction (right image).

2.3 LA Wall Estimation and Normalisation

The LA wall was estimated by obtaining the predicted blood pool segmentation mask to
evaluate the boundary of the blood pool/LA endocardial wall and then dilating the wall
boundary outwards (in 3D) by 3 voxels (each LGE-CMR image had a resolution of ~
1 mm). A 3 voxel dilation amount was chosen based on the CT and MRI studies that
found LA wall mean thickness was between 2 and 3 mm (Fig. 4) [16, 17].

The outward dilation was achieved by first dilating and eroding the blood pool
boundary. Then, as shown in Eq. 1 below, the LA wall segmentation mask (Mwall) was
found by the matrix subtracting the blood pool segmentation mask (B) and the eroded
boundary (BE) from the dilated boundary (BD). The subtraction of BD ensured that no
dilation was within the LA blood pool. Lastly, if a voxel’s LGE-CMR image intensity
was less than 1, it was set to 0. The voxel intensity was then normalised and thresholded,
such that a voxel intensity of 1 corresponded to LA wall voxels and 0 corresponded to
background voxels. This process took ~ 5s to run for a single subject on a 12th Gen
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Fig. 4. Example of LA wall estimation with IIR and Z-score normalised LGE-CMR values with
highlighted blood bool (red) from different anatomical views. A) LA wall from sagittal view. B)
LA wall from coronal view. C) LA wall from axial view

Intel(R) Core (TM) i7-12700KF 3.61 GHz.

Mwall = BD − BE − B (1)

An element-wise product, �, of the LA wall segmentation mask (Mwall) and LGE-
CMR image (I ) was applied to determine Iwall . The estimated LA wall region (LAwall)
was then defined to be all voxels where the intensities of image Iwall were above zero.

Iwall = I � Mwall (2)

LAwall = {X |X ∈ Iwall,X > 0} (3)

IIIR = LAwall
∼
XB

(4)

IIR normalisation was then performed by dividing the LAwall by,
∼
XB, the mean blood

pool voxel intensity (Eq. 4) [13]. Note that only the voxel intensities of the estimated

LA wall from I are divided by
∼
XB as they are the only non-zero intensity voxels. The

motivation for LA wall IIR normalisation was to provide the second nn-UNet with a
set of features which are partially homogenised across multiple inter-individual factors
(interscan variability in intensities, contrast dose, the delay time of image acquisition
after contrast injection, body mass index, hematocrit, and renal function) to assist in
model generalisability [18].

I∗ = IIIR − μ

σ
(5)

Using the rule-based preprocessing of the nn-UNet pipeline, all IIR LA wall (IIIR)
voxels were Z-score normalised to get I∗ (Eq. 5, where the mean voxel intensity of
IIIR is μ and the standard deviation is σ ) as better convergence can be achieved during
backpropagation if the average of each input variable over the training set is close to
zero. The latter quality has led Z-score normalisation to becoming a de-facto practice in
computer vision [19].
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3 Results

3.1 Model Implementation and Training

Each nn-UNet model was trained independently for their respective task (blood pool
or LA scar segmentation). The proposed framework was trained using 48 LGE-CMR
images and a further 12 such images were used as a validation set. Each nn-UNet
was trained for 1000 epochs using a combined cross-entropy and Dice loss function,
Stochastic gradient descent was used with Nesterov momentum (µ = 0.99) with an
initial learning rate of 0.01 on an NVIDIA RTX 48GB A6000 GPU; each nn-UNet took
~ 24 h to train [20–22].

3.2 Validation and Test Set Results

As reflected in Tables 1 and 2, TESSLA outperformed both of its constituent models,
justifying the use of an ensemble prediction. Figure 5 further supports this justification,
as it illustrates how the two different nn-UNets predict LA scars that are overlapping but
also different which is reflected in the increase of Dice score and sensitivity. Therefore,
combining the two scar segmentations can predict better LA scar coverage.

On the LAScar 2022 test phase (hold out test set of 24 LGE-CMR images), TESSLA
had a LA scar Dice score of 0.581 ± 0.112 and sensitivity of 0.529 ± 0.145.

Table 1. Validation set results for proposed model and constituent models.

Model Scar Blood

Dice Score Sensitivity Dice Score

TESSLA 0.529 ± 0.070 0.531 ± 0.133 0.927 ± 0.020

nn-UNet (LGE-CMR) 0.506 ± 0.090 0.454 ± 0.134 N/A

nn-UNet (LGE-CMR + LA wall) 0.510 ± 0.080 0.474 ± 0.125 0.927 ± 0.020

Table 2. LAScarQ 2022 evaluation platform results from the hold-out test set (10 3D LGE-CMR)
images from the challenge evaluation platform for the proposed model and constituentmodels.

Model Scar Blood Pool

Dice Score Sensitivity Dice Score

TESSLA 0.634 ± 0.142 0.578 ± 0.162 0.890 ± 0.075

nn-UNet (LGE-CMR) 0.608 ± 0.149 0.524 ± 0.165 N/A

nn-UNet (LGE-CMR + LA wall) 0.593 ± 0.152 0.497 ± 0.152 0.890 ± 0.075
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Fig. 5. Comparison of model prediction from a validation set subject with corresponding scar
segmentation Dice score, where predicted scar is in red and ground truth is in green.

LGE-CMR image quality plays a vital role in accurate TESSLA LA scar prediction,
as shown in Fig. 6 and 7, as images with non-prevalent fibrotic gadolinium binding
or motion artefacts had worse Dice scores. Furthermore, this explains the increase in
LA scar Dice score in the LAScar 2022 evaluation platform results compared to the
validation set results in training, as the evaluation platform set of LGE-CMR images
only had one image with poor quality while the validation set had three. Meanwhile, this
also explains the decrease of scar Dice score on the test phase dataset compared to the
evaluation platform results.

Fig. 6. Example of good quality LGE-CMR image with highlighted regions (gold boxes) of good
gadolinium binding to fibrotic tissue (image on left) and corresponding Dice score. Predicted (red)
and ground truth (green) scar highlighted on the image on the right.

Fig. 7. Example of poor quality LGE-CMR image with highlighted regions of poor (gold boxes)
gadolinium binding to fibrotic tissue (image on left) and corresponding Dice score. Predicted (red)
and ground truth (green) scar highlighted on the image on the right.
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4 Discussion and Conclusion

This study introduces a novel DL model, TESSLA, a two-stage ensemble model for LA
scar segmentation. TESSLA achieved accuracy comparable to the state-of-the-art on
the LAScar 2022 evaluation platform test set by utilising LA wall IIR-Z-score normal-
isation and nn-UNets. To effectively compare these results to the gold standard, a study
of inter-observer variability in manual segmentation would be required. Moreover, the
model results show that poor image quality significantly impacts its performance. Hence,
future work should focus on implementing a method to reduce its effects for better
robustness. The study also demonstrated that integrating an IIR-Z-score normal-isation
to the LA wall into an ensemble model can predict better LA scar coverage. Therefore,
our proposed DLmodel provides better model generalisability for LA scar segmentation
than a single model with LGE-CMR input.

The novel automatic tool for LA scar tissue quantification developed in this study can
be applied in the clinic. Previous studies have suggested that DL LA scar segmentation
tend to have higher Dice score accuracies than conventional thresholding-basedmethods
[9]. Hence, DL models like TESSLA can be superior to the current gold standard of IIR
thresholding, both in accuracy and speed of the LA scar assessment. This could lead to
better patient stratification andAF treatment planning. Furthermore, this will also aid the
clinical implementation of emerging technologies for AF management, such as digital
twins, patient-specific models and AI therapy predictors [23–26].
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Abstract. Segmentation of the late-stage gadolinium-enhanced magnetic reso-
nance imaging (LGE-MRI) is a critical step in the ablation therapy for atrial fibril-
lation (AF). In this work, we propose an end-to-end deep learning-based segmen-
tation method for delineating 3D left atrial (LA) structures in multiple domains.
The proposed method uses the 6 layers deep U-Net architecture as the segmenta-
tion backbone. Curriculum learning is integrated into the deep U-Net architecture,
helping the network learn step by step from easy to difficult scene. We have tested
normal and strong version of data augmentation methods, to verify the effect of
reducing domain shifts. Other techniques like Fourier-based data augmentation
and Swin Transformer Block have also been explored to further improve the seg-
mentation performance. The experimental results demonstrate that the strong ver-
sion of data augmentation method can reduce the domain shifts and achieve more
accurate result, with mean Dice score of 0.881 on the validation set of LAScarQS
2022 challenge. The evaluation results demonstrate our method’s effectiveness
on left atrial segmentation in multi-sequence cardiac magnetic resonance (CMR)
data.

Keywords: Late-stage gadolinium-enhanced MRI · Left atrial segmentation ·
Deep U-Net · Curriculum learning

1 Introduction

Atrial fibrillation (AF) is one of the most common arrhythmia, affecting around 1%
of the population all around the world. Delineating diseased 3D left atrial (LA) struc-
tures is of great importance for ablation treatment of AF and the quantification of atrial
fibrosis. However, due to the nature of unclear boundaries, heterogeneous intensity dis-
tribution, and complex enhancement patterns [1–4] in the late gadolinium-enhanced
magnetic resonance imaging, it is still challenging to apply fully automatic deep learn-
ing based segmentation method on this task. Moreover, the performance of the network
often drops when it is applied to another domain.
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In recent years, many methods have been proposed for the segmentation of 3D LA
and other structures. Some methods [5–7] adopted a two-stage framework, which first
locating region of interest (ROI), and then using another network for fine segmentation.
Nevertheless, such method is troublesome and time-consuming. As for the problem of
domain shifts in cardiac image segmentation, Parreño et al. [8] trained a classifier to
distinguish images from different domains, and then used error propagation to modify
original images. Scannell et al. [9] utilized both segmentation loss and classification
loss to improve robustness of the model. Liu et al. [10] used meta learning for domain
generalization on cardiac images. However, the above mentioned methods needed class
information for different domains, which was not available and could not be acquired
in the data provided by LAScarQS 2022 challenge.

Unlike the large domain gaps between the balanced-steady free precession (bSSFP)
and LGE images, we assumed that domain shifts of images from different centers can
be reduced by properly choosing the data augmentation (DA) methods. In this work, we
propose an end-to-end deep learning-based method for segmenting 3D left atrial (LA)
structures in multiple domains. Our contributions are summarized as follows:

– We propose a simple end-to-end supervised method for solving the problem of left
atrial segmentation in LAScarQS 2022 (Left Atrial and Scar Quantification & Seg-
mentation Challenge), with deep U-Net network as the segmentation backbone.

– We test the effects of default DA method and strong DA method on the robustness
of the network when faced with unknown domains.

– We adopt curriculum learning [11,12] strategy to let the network gradually learn
from easy to difficult scenes. Other techniques like Fourier-based data augmentation
[13] have also been explored to further improve the segmentation performance.

The rest of this paper is organized as follows: Sect. 2 provides details about the
method, including data pre-processing, our segmentation framework, loss function and
post-processing. Section 3 presents experimental results and ablation studies. In Sect. 4,
we conclude this work.

2 Methodologies

2.1 Dataset

We evaluated our method on task 2 of the LAScarQS 2022 challenge dataset [14–16],
which contains 130 3D LGE MRI images for training. The training data are collected
from 3 vendors, containing both pre-ablation data and post-ablation data, with two types
of voxel size. The annotated area is left atrium (LA) cavity. The test data include 64 LGE
MRI images with domains do not appear in the training data.

2.2 Data Pre-processing and Augmentation

The MRI images are firstly truncated to only keep the gray scale with frequency greater
than 20. Then the three adjacent sequences are stacked to form a 3-channel input, with
shape of (B, 3,H,W), where H means height, W means width, B means the batch size,



Deep U-Net Architecture with Curriculum Learning for Left Atrial Segmentation 117

respectively. The images are normalized per slice by first subtracting the mean and then
divided by the standard deviation for both training and testing stage.

Due to the unknown domains appear in test set, data enhancements are necessary
to increase the robustness of the model. We have tested 2 groups of data augmentation
strategies, which is shown in Table 1.

Table 1. Differences in data augmentation settings for normal and strong augmentation strate-
gies. Both flip and shift operation is performed horizontally and vertically; the probability of
random gamma augmentation is 0.5; the Gaussian noise is zero centered, with variance drawn
from U(0, 0.1).

Settings Normal Augmentation Strong Augmentation

Flips p = 0.5 p = 0.5

Rotations (-20◦, 20◦) (-30◦, 30◦)
Zoom factor (0.8, 1.2) (0.7, 1.3)

Shift range (0.1, 0.1) (0.1, 0.1)

Gamma range - (0.7, 1.3)

Elastic deformations - p = 0.3

Random motion - p = 0.3

Gaussian noise - p = 0.15

Inspired by the curriculum Learning [11], we also perform multi-scale image crop-
ping operations. In theory, a curriculum is a set of training criteria, each of which is
related to a reweighting of the training distribution. In practice, the sizes we choose to
crop images include: 192 × 192, 256 × 256, 384 × 384, 448 × 448. For sizes smaller
than 350 × 350, we perform random cropping within the center area with size of 350 ×
350 of the image, the offset factor is sampled uniformly from (0, 350−W) or (0, 350−H),
where the H and W is the target size. For sizes bigger than 350 × 350, we perform
central cropping. During training, in each epoch, we put the cropped images into the
network in order of increasing size. Therefore, the portion occupied by the ventricle
and the myocardium gradually changes from large to small, which helps the network
learn from easy to difficult scenarios.

2.3 Model

We choose the 6 layers deep U-Net as the segmentation backbone, which is shown in
Fig. 1. The max channel size is set to 512. The deep U-Net adopts a hierarchical feature
representation with symmetrical encoder-decoder paths, those features include high-
resolution positional features and low-resolution abstract features. Skip connections are
added between encoder path and decoder path, to concatenate low-level and high-level
information for better feature representation.
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Fig. 1. The architecture of deep U-Net.

2.4 Loss Function and Post-processing

We choose weighted Cross Entropy loss and Dice loss for the deep U-net, which is
defined as:

Lseg = LDice + LweightedCE (1)

Since the input to the network is 3 adjacent CRM images, and each image responses
to 2 classes, the output has a dimension of (B, 6,H,W), then we convert the output into
dimension of (B, 3, 2,H,W). At the evaluation stage, three adjacent sequences stacked
together and are predicted in a non-overlapping manner. We use 4 model ensemble
method with majority voting strategy. The post-processing includes binary dilation and
binary erosion with kernel radius of 6, we also use fill hole strategy and remove 2D
regions smaller than 40 voxels.

3 Results

3.1 Implementation and Evaluation Metrics

All models are implemented in PyTorch, trained on a server with 2 Nvidia GTX1080Ti
GPUs. We set SGD as the optimizer, the batch size is 16. The learning rate is first set to
1e-4, and then use cosine annealing as learning rate schedule. The training procedure
ends after 600 epochs. We adopted 4-fold cross validation method, leave 32 cases for
validation, and 98 cases for training. During the training stage, we stored one checkpoint
with the lowest mean Dice loss of LA region on validation set.
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The LAScarQS 2022 challenge used three metrics, i.e., the Dice coefficient, the
average surface distance (ASD) and the Hausdorff distance for measuring the perfor-
mance of algorithms. The dice coefficient provides a measure of the similarity of two
objects, in a range of [0, 1]. Suppose X represents the ground truth mask, Y represents
the predicted mask, the dice coefficient can be defined as:

dice(X,Y) =
2|X ∩ Y |
|X| + |Y | (2)

The ASD is the average of all distances from points on the boundary of the predicted
segmentation region to the ground truth boundary. The hausdorff distance describes the
similarity between two sets, which is a function of the distance between the two sets of
points. The definition of hausdorff distance between set A and set B is:

H(A, B) = max(h(A, B), h(B, A)) (3)

and h(A, B) represents the hausdorff distance from set A to set B:

h(A, B) = max
a∈A

{
min
b∈B
{d(a, b)}

}
(4)

where d(a, b) stands for the Euclidian distance between two points in set A and set B.
The smaller ASD and hausdorff distance values indicate the more precise segmentation
results.

3.2 Results on 4-Folds Cross Validation Sets

Table 2 presents the performance comparison of different methods: normal data aug-
mentation and strong data augmentation method as described in Sect. 2.2, MixStyle [17]
which randomly shuffle the vector containing feature statistics information and mixes
into original ones to increase the generalizability of the trained model, and the Fourier-
based data augmentation [13] which converts an image into amplitude and phase com-
ponents and then randomly mixes the amplitude component with component from other
image. From Table 2 we can see that the mean dice score on 4-folds validation sets
of strong data augmentation method is slightly lower than normal data augmentation,
while the MixStyle and the Fourier-based methods adopt more aggressive approach for
domain generation. We can see that the stronger the perturbation, the lower the accuracy
on the 4-folds cross validation sets, but we still do not know the generalizability of each
trained model.

3.3 Results on LAScarQS 2022 Challenge Validation Set

From Table 3 we can see that the MixStyle and Fourier-based methods are not suitable
for this task. The failure of these two methods may be explained by the fact both meth-
ods mix information within the domain, while having the risk of amplifying noises. For
example, as Fig. 2 shows, even mixing amplitude component from other image with
relatively low weights (like 0.2) can corrode the brighter areas of the original image.
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Table 2. Averaged Dice scores of LA cavity for each 4-folds comparing four data augmentation
methods. The model used is Deep U-Net.

Method Normal DA Strong DA MixStyle Fourier Aug

Fold 1 0.9166 0.9165 0.9133 0.8951

Fold 2 0.9184 0.9178 0.9112 0.8988

Fold 3 0.9204 0.9185 0.9147 0.9019

Fold 4 0.9180 0.9198 0.9131 0.9083

Mean Dice 0.9184 0.9182 0.9131 0.9010

Fig. 2. The effect of Fourier-based data augmentation. The first column is the original LGE CMR
images, the second column presents randomly mixing the amplitude component of original image
with component from other image.

We have also tested the performance of Swin UNETR [18], which replaces the con-
volution block in the encoding path of the u-net with Swin Transformer Block and adds
residual block in the skip-connection path. In practice, we take a two-stage method, by
firstly using deep U-Net to get a coarse prediction of 3D target region with dimension
of (320, 320, 48) or (320, 320, 48), depending on the spatial resolution of the training
images. Then randomly crop the 3D image into size of (160, 160, 32) and send into
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the Swin UNETR. During the inference stage, we use sliding window inference with
overlapping ratio of 0.5. As shown in Table 3, the Swin UNETR presents relatively
weak domain-generation ability compared to deep U-Net. The experiment results indi-
cate that with faster training speed and better generalization performance, CNNs is still
hard to be replaced by Transformer. We can also see that the strong data augmentation
method may cause a little drop of performance in cross-validation set, but it achieved
best performance when facing unknown domains, with dice score of 0.8811 in vali-

Table 3. LAScarQS 2022 validation dataset benchmarks in terms of average dice score, the aver-
age surface distance (ASD) and the hausdorff distance (HD).

Method Dice score ASD HD

Fourier Aug 0.8572 2.5920 26.5892

MixStyle 0.8702 2.0790 20.9350

Normal DA 0.8798 1.7953 18.7546

Strong DA 0.8811 1.7815 18.9708

Swin UNETR 0.8758 1.9476 20.3082

Fig. 3. Visual comparison of segmentation results of four models on the validation set. Left atrial
is indicated in yellow. (Color figure online)
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dation dataset. Furthermore, a visual comparison of the segmentation results of four
models is presented in Fig. 3. It can be observed that deep U-Net network with normal
or strong data augmentation gives the segmented left atrial regions that are closer to the
ground truth labels.

4 Conclusion

In this work, we propose an efficient end-to-end segmentation method, for the task of
segmenting 3D left atrial (LA) structures. We adopted deep U-Net with strong data
augmentation method to learn the representative features from LGE CMR images. We
further improved the learning strategy using curriculum learning to help the network
gradually adapt to the difficult scenes. The experiment results indicate that the plain
deep U-Net architecture beats Swin UNETR and achieves mean Dice score of 0.881 in
the validation set of LAScarQS 2022 challenge. The experimental results are sufficient
to demonstrate the effectiveness of curriculum learning and the powerful segmentation
ability of deep U-Net.
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Abstract. The mortality rate of cardiovascular and cerebrovascular diseases has
always been the highest in the world. As a common and frequent disease of cardio-
vascular disease, atrial fibrillation has been troubling patients. Therefore,modeling
and analysis of atrial anatomical structure are very important for clinical diagnosis
and treatment of atrial fibrillation. The segmentation of left atrium is the basis of
atrial digital modeling. To solve the problem of cross-domain segmentation of
left atrium, we proposed a segmentation method based on multi-scale decision
level fusion strategy. Similar to most end-to-end segmentation networks, we also
adopted 3D U-Net as the backbone network. However, in the decoder, we adopted
multi-scale up-sampling to obtain multiple outputs, and fused the multiple out-
puts into one by means of multiplication. We used 130 cases with labels which
provided by organizers of LAScarQS 2022 challenge for training and 20 cases
without labels which also provided by them for testing. We uploaded the test
results to the online test platform, which allowed each team to test up to 10 times,
and the best result we achieved was Dice 0.88314, Hausdorff 20.88313mm and
ASSD 1.79399mm.

Keywords: Left Atrium Segmentation · Multi-scale · Decision Level Fusion

1 Introduction

The mortality rate of cardiovascular and cerebrovascular diseases has always been the
highest in the world. As a common and frequent disease of cardiovascular disease,
atrial fibrillation has been troubling patients and seriously affecting patients’ quality
of life [1]. At present, the best treatment for atrial fibrillation is catheter ablation, but
this method only responds well to a small number of patients. In order to screen patients
suitable for this method, the volume and diameter [2] of the left atrium is oftenmeasured,
and atrial segmentation is the basis of quantification of the atrium. In clinical practice,
atrial quantification still adopts time-consuming and labor-intensive manual description
method [3]. So automatic segmentation of left atrium (LA) is desired.

There are still many challenges in developing automated left atrial segmentation,
such as changing atrial shape and poor image quality, as well as cross-domain problems
in the clinic. In Fig. 1, the left atrial and scar quantification and segmentation chal-
lenge described cross-domain segmentation problem. The challenge provides 130 late
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gadolinium enhanced (LGE) magnetic resonance imaging (MRIs) which are from three
imaging centers for training and 20 LGE MRIs for testing.

Center1 Center2 Center3
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Center1 Center2 Center3

Train Samples

Test Samples

Fig. 1. Diagram of multi-center data. Center1 is University of Utah, Center2 is Beth Israel
Deaconess Medical Center and Center3 is King’s College London.

Actually, there are many studies on left atrium segmentation [4–7]. Catalina et al. [8]
reported the benchmark of left atrium segmentation from 3D CT and MRI datasets as
early as 2015, which summarized the left atrial segmentation challenge (LASC) carried
out at the STACOM’13 workshop, in conjunction with MICCAI’13. In this challenge,
region growing and multi-atlas were the dominant algorithms adopted by most teams.
SinceU-Net [9]was successfully applied to themedical image segmentation task in 2015,
more and more researchers have adopted deep learning to solve the problems existing in
the medical image segmentation task. Since then, the left atrium segmentation task has
mainly adopted two solutions: one is the end-to-end deep learning method, the other is
the combination of deep learning and traditional methods.

A representative end-to-end left atrium segmentation method proposed by Xiong
et al. [10] which adopted a dual fully convolutional neural network to segment LGE
MRIs and achieved Dice scores of 0.940 and 0.942 for the LA epicardium and endo-
cardium. Another global benchmark [11] also proposed by Xiong et al. summarized
the 2018 left atrium segmentation challenge, which showed the top method achieved
a Dice scores of 93.2% and mean surface to surface distances of 0.7 mm. In 2018 left
atrium segmentation challenge, most of the competition teams adopted the U-Net-based
end-to-end segmentation method, and only two teams adopted the non-deep learning
method. A number of researchers have continued to study it since the left atrial segmen-
tation challenge. For example, Uslu et al. [12] proposed a multi-task network optimized
to simultaneously generate left atrial segmentation and edge masks from LGE MRIs
which achieved Hausdorff distances of 12.43mm and Dice scores of 0.92. In addition to
U-Net, another representative network structure in medical image segmentation task is
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generative adversarial network (GAN). Chen et al. [13] proposed an inter-cascade gen-
erative adversarial network which named JAS-GAN, to segment the unbalanced atrial
targets from LGE CMR images automatically and accurately in an end-to-end way. In
addition, some end-to-end segmentation methods are performed in conjunction with the
left atrium and scar segmentation task. For example, Yang et al. [14] segmented LA and
scar simultaneously through deep learning in multi-view information which obtained
Dice scores of 93% for LA anatomy and 87% for scar. Medical image segmentation
schemes combining deep learning with traditional methods are often adopted. Zhang
et al. [15] adopted deep convolutional neural network with unscented Kalman filter to
segment LA from long-axis MRIs. Li et al. [16] designed a multi-scale convolutional
neural network combined graph-cut to quantify atrial scar.

The above researchworkmainly focused on the automatic segmentation of left atrium
and the quantification of scar, but few studies aimed to solve the problemof cross-domain
atrial segmentation. Only Li et al. [17] discussed LA segmentation of multi-center LGE
MRIs. To better align with real clinical needs, the challenge proposed two tasks: LA
scar quantification and left atrial segmentation from multi-center LGE MRIs. To solve
the problem of cross-domain segmentation of left atrium, we proposed a segmentation
method based on multi-scale decision level fusion strategy. Similar to most end-to-
end segmentation networks, we also adopted 3D U-Net [18] as the backbone network.
However, in the decoder, we adoptedmulti-scale up-sampling to obtainmultiple outputs,
and fused the multiple outputs into one by means of multiplication.

2 Methodology

2.1 Data Preprocessing

The task 2 of left atrial scar quantification & segmentation challenge provides us 130
LGE MRIs which are from real clinical environment [19, 20]. All 130 cases are manu-
ally marked by specialists in the left atrium. In addition, the challenge organizers have
provided 20 un-labelled cases for online platform testing. These cases presented in the
challenge all have atrial fibrillation and are from multiple centers. Moreover, there is
unknown domain data in the test set that is not in the train set.

In order to facilitate training and testing, we carried out data preprocessing operations
as shown in Fig. 2. For any raw data Foriginal , we zoomed it to n × n × 80 where 80
represents the number of slices and n can be selected based on the size of the raw data.
In this paper, we selected n = 350, 400, 450, 500. Then we cropped the center area to
160 × 160 × 80 and made sure we covered the entire heart chamber. We know that for
segmentation task, boundary has a great influence on segmentation accuracy. There is
unknown domain data in test set. In order to ensure the unification of prior knowledge
during training and testing as much as possible, we used edge detection operator Prewitt
to extract the edge of the image after cropping, and then added the edge and the image
after cropping to get Finput . It is obvious that the edge of the image Finput is enhanced.
The label corresponding to the original image was also preprocessed in the same way.
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Fig. 2. Schematic diagram of data preprocessing. Foriginal is the original image which is not
processed, Finput represents the input of proposed framework which is preprocessed, Fzoom
represents the image which is zoomed,Fcrop represents the image which is cropped, andFprewitt
represents the edge image extracted by the edge operator Prewitt. Pzoom and Pcrop represent
zooming operation and cropping operation, separately.

2.2 Proposed Method

Figure 3 shows proposed segmentation framework of left atrium based on multi-scale
decision level fusion. The preprocessed Finput has been described in Fig. 2. The shape
of inputFinput is 160×160×80, and the shape of outputFoutput is also 160×160×80.
The output Foutput needs to be uploaded to the online test platform, the output Foutput

needs to be conducted Ppr operation (padding and reshaping) to make sure it matches
the shape of original image Foriginal . The backbone of proposed framework is based on
3D U-Net, but the details of each layer is different from it. Each blue block in Fig. 3
represent a combination of dilation convolution. The function of dilation convolution
is to increase the receptive field without increasing the number of parameters, so as
to obtain more features. The DilationConv3D block is composed of three continuous
dilation convolutional layers. The input ofDilationConv3Dblock isDinput and the output
of DilationConv3D block is Doutput , the middle three outputs of consecutive dilation
convolution are Do1, Do2 and Do3, respectively. To enhance feature representation, we
add three consecutive dilation convolutions, the description of DilationConv3D block is
as follows:

Doutput=Do1
(Dinput

) ⊕ Do2
(Do1

(Dinput
)) ⊕ Do3

(Do2
(Do1

(Dinput
)))

(1)

where ⊕ represents addition of mathematics.
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Fig. 3. Proposed segmentation framework of left atrium based on multi-scale decision level
fusion. Finput represents the input of proposed framework which is preprocessed, Foutput rep-
resents the output of proposed framework which corresponds to Finput , Foriginal is the original
image which is not processed. Fsubmit is the final result which is submitted to the validation
phase of LAScarQS. Pts represents the operation of threshold selection, Pmcr represents finding
the maximum connected region, Ppr represents operations of padding and reshaping. Dinput and
Doutput represents the input and output of dilation convolution block, respectively.Do1,Do2 and
Do3 represent the output of different stage. O1, O2 and O3 represent the output of different stride
in up-sampling.

Usually, there is only one output in 3D UNet like O4 in Fig. 3. In order to solve
the problem that cross-domain segmentation is not robust enough, we propose a multi-
scale decision level fusion approach to achieve left atrium segmentation. O1, O2 and
O3 represent the output of stride = 8,4,2 in up-sampling, respectively. O1, O2 and O3
represent different predicted results. So the combination of O1, O2 and O3 is called
decision level fusion. The multi-scale decision level fusion can be described as follows:

O5 = O1 × O2 × O3 × O4 (2)

where× representsmultiplication ofmathematics.O5 is the result of the joint decision of
the four predicted results. In other words, only when the prediction results of each scale
are close enough to the ground truth, the final prediction results can be more accurate.
Foutput is obtained when O5 is conducted Pts operation and Pmcr operation.

3 Experimental Results and Analysis

We conducted experiments on device of Nvidia Geforce RTX 2080Ti. The average
running time of each case is about 20s. In experiments, we adopted 130 patients with
atrial fibrillation for training which were from three centers. And we adopted 20 patients
for testingwhichwere from four centers.We submitted our results to online test platform.
Table 1 shows the best test result of each team published by the online test platform.
As Table 1 shows, not every team participating in the challenge submitted their test
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results. There are three metrics used to measure the performance of different methods:
Dice coefficient, Hausdorff distance and average symmetric surface distance (ASSD). In
Table 1, Team79 achieves the highest Dice score which is above 0.89, the shortest ASSD
and the shortest Hausdorff distance. In fact, each of the top ten teams achieved a Dice
score greater than 0.88, which is a third decimal point difference. Team9 is proposed
method which achieves 0.883 of Dice score, 20.883 of Hausdorff distance and 1.794 of
ASSD.

Table 1. Test results on online test platform.

Method Dice Hausdorff(mm) ASSD(mm)

Team79 0.893 15.863 1.612

Team29 0.890 17.124 1.706

Team52 0.890 16.448 1.715

Team28 0.889 17.203 1.747

Team60 0.886 17.257 1.780

Team44 0.886 17.226 1.763

Team76 0.886 16.996 1.786

Team38 0.886 18.389 1.813

Team9 (Proposed) 0.883 20.883 1.794

Team25 0.881 18.971 1.781

Team41 0.879 21.199 1.900

Team71 0.878 19.796 1.981

Team64 0.877 17.087 1.933

Team44 0.875 28.227 2.383

Team1 0.873 36.351 2.134

Team14 0.868 19.106 2.063

Team26 0.864 33.489 2.026

Team37 0.858 25.553 2.396

Team39 0.853 23.425 2.137

Team46 0.847 105.794 3.395

Team8 0.784 28.259 3.831

Team11 0.775 52.084 5.045

Team56 0.629 43.922 6.690

Team49 0.580 93.419 10.891
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The subjective test results corresponding to Table 1 are shown in Fig. 4. It is obvious
that cases with a Dice coefficient greater than 90% have smooth surface and complete
shape, while the cases with Dice coefficient lower than 90% have serrated surface and
uneven surface.Overall, the segmentation results of left atriumare intact in all 20patients.
Furthermore, the proposed method in this paper is not completely unpredictable because
of unknown domain in the test set, indicating that the proposed framework is useful for
cross-domain segmentation of left atrium.

LA0 86.47% LA1 87.71% LA2 84.89% LA3 86.14% LA4 90.43%

LA5 84.50% LA6 81.78% LA7 74.13% LA8 85.82% LA9 89.13%

LA10 94.25% LA11 92.37% LA12 92.30% LA13 92.78% LA14 94.47%

LA15 86.55% LA16 90.80% LA17 94.49% LA18 92.64% LA19 84.61%

Fig. 4. Subjective experimental results of proposed method on test phase.

To prove that the proposed multi-scale decision level fusion strategy was useful for
atrial segmentation, we performed ablation experiments on different decision levels. The
challenge organizers provided 130 cases with labels, of which 100 cases were randomly
selected for training and the remaining 30 cases for testing in ablation experiments. Data
augmentation and preprocessing are the same as the previous experiment. The ablation
experimental results are shown in Table 2. O1, O2 and O3 are described in Fig. 3. The
proposed method achieved highest Dice score, the shortest Hausdorff distance and the
shortest ASSD. The proposedmethodwithoutO1,O2 andO3 are inferior to the proposed
method. It can be seen that each branch is important for backbone network.

w/o: without.
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Table 2. Ablation experimental results.

Method Dice(%) Hausdorff(mm) ASSD(mm)

Proposed w/o O1 91.342 ± 2.234 9.429 ± 2.666 0.985 ± 0.380

Proposed w/o O2 91.179 ± 2.274 9.475 ± 2.642 0.971 ± 0.383

Proposed w/o O3 91.314 ± 2.147 9.894 ± 2.727 0.937 ± 0.308

Proposed w/o O123 91.275 ± 2.291 9.383 ± 2.297 0.949 ± 0.318

Proposed 91.486 ± 2.150 9.315 ± 2.584 0.930 ± 0.345

4 Conclusion

In this work, in order to segment left atrium from multi-center LGE MRIs and predict
unknown domain data, we proposed a framework based on multi-scale decision level
fusion strategy. Similar to most end-to-end segmentation networks, we also adopted 3D
U-Net as the backbone network. However, in the decoder, we adopted multi-scale up-
sampling to obtain multiple outputs, and fused the multiple outputs into one by means of
multiplication. In the stage of data preprocessing, edge detection operator Prewitt was
used to extract latent features of source domain and target domain.We adopted 130 cases
for training and 20 cases for testing and obtained Dice 0.88314, Hausdorff 20.88313mm
and ASSD 1.79399mm.
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Abstract. Automatic and accurate segmentation of the left atrial (LA)
cavity and scar can be helpful for the diagnosis and prognosis of patients
with atrial fibrillation. However, automating the segmentation can be
difficult due to the poor image quality, variable LA shapes, and small
discrete regions of LA scars. In this paper, we proposed a fully-automatic
method to segment LA cavity and scar from Late Gadolinium Enhance-
ment (LGE) MRIs. For the loss functions, we propose two different losses
for each task. To enhance the segmentation of LA cavity from the multi-
center dataset, we present a hybrid loss that leverages Dice loss with a
polynomial version of cross-entropy loss (PolyCE). We also utilize dif-
ferent data augmentations that include histogram matching to increase
the variety of the dataset. For the more difficult LA scar segmentation,
we propose a loss function that uses uncertainty information to improve
the uncertain and inaccurate scar segmentation results. We evaluate the
proposed method on the Left Atrial and Scar Quantification and Seg-
mentation (LAScarQS 2022) Challenge dataset. It achieves a Dice score
of 0.8897 and a Hausdorff distance (HD) of 16.91 mm for LA cavity and
a Dice score of 0.6406 and sensitivity of 0.5853 for LA scar. From the
results, we notice that for LA scar segmentation, which has small and
irregular shapes, the proposed loss that utilizes the uncertainty estimates
generated by the scar yields the best result compared to the other loss
functions. For the multi-center LA cavity segmentation, we observe that
combining the region-based Dice loss with the pixelwise PolyCE can
achieve a good result by enhancing the segmentation result in terms of
both Dice score and HD. Furthermore, using moderate-level data aug-
mentation with histogram matching improves the model’s generalization
capability.

Keywords: Cardiac MRI · Late Gadolinium Enhancement MRI · Left
Atrium · Scar quantification · Segmentation · Deep learning ·
PolyLoss · Uncertainty

1 Introduction

Atrial fibrillation (AF) is an irregular and often very rapid heart rhythm
(arrhythmia). During atrial fibrillation, the heart’s upper chambers (the atria)
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beat irregularly and out of synchronization with the heart’s lower chambers
(the ventricles). AF increases the risk of stroke, heart failure, and other heart-
related complications [6]. One of the most commonly used techniques to treat
AF patients is radio-frequency catheter ablation using the pulmonary vein (PV)
isolation [27].

Late Gadolinium Enhancement (LGE), sometimes called delayed-
enhancement MRI, is a gold standard imaging technique to visualize and quan-
tify the left atrial (LA) scars. In a clinical routine, human experts generally
segment the LA anatomy and LA scars manually. Manual segmentation is time-
consuming and suffers from intra- and inter-observer variability. This problem
can be addressed by automating the segmentation. However, automatic segmen-
tation of LA anatomy and LA scars from LGE MRI is still challenging due to
poor image quality, variable LA shapes, thin LA walls, and small isolated regions
of the LA scars [16].

Few studies have been proposed to segment LA cavity from LGE MR images.
Gao et al. (2010) [7] and Zhu et al. (2013) [32] utilized region-based active-
contour and variational region growing with shape prior respectively to segment
LA cavity. Tao et al. (2016) [25] used atlas-based methods leveraging auxiliary
images with better anatomical information to help the LA cavity segmentation
from LGE MRI [17]. However, accurately segmenting LA cavity using these
conventional methods depend on additional information such as shape prior
or auxiliary images [17]. Recently, deep learning-based algorithms have been
successfully applied to segment LA cavity from LGE MRI. Vesal et al. (2018) [26]
proposed a 3D U-Net with dilated convolutions at the bottleneck of the network
and residual connections between the encoder blocks to incorporate local and
global information. Chen et al. (2018) [5] adopted multi-task learning to perform
both LA cavity segmentation and pre/post ablation classification. Other works
[10,28,30] utilized a two-stage cascaded segmentation framework to first locate
the region of interest (ROI) that covers the atrial cavity, then used a second
network to segment LA cavity from the cropped ROI. The main problem with
these cascaded approaches is that they can be time- and resource-intensive.

Recently, semi-automatic and fully-automatic deep learning based methods
have been widely used to segment scar [1,21,31]. For LA scar segmentation, some
studies proposed to use non-deep learning based methods such as thresholding
[22,24], clustering [23], deformable and graph-based methods [11,12]. Although
these conventional methods have shown encouraging results, they rely on ini-
tial manual segmentation of the LA cavity. Deep learning methods have been
presented to automatically segment LA scar from LGE MRIs. Li et al. [14] pro-
posed to use graph-cuts with multi-scale CNNs to automatically segment LA
scar. Other works utilized multi-task learning to jointly segment LA cavity and
scar [16,29].

In this paper, we proposed a fully automatic deep learning based method that
leverages a polynomial loss and an uncertainty based loss to segment LA cav-
ity from multi-center LGE MRIs and LA scar from single-center LGE MRIs,
respectively. To increase the variety of the dataset, we also employ various
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data augmentation techniques, including histogram matching. We evaluated our
method on Left Atrial and Scar Quantification and Segmentation (LAScarQS
2022) Challenge dataset. The proposed losses achieve the best result compared
to other losses in both the multi-center LA cavity segmentation and the highly
imbalanced LA scar segmentation. In addition, the employed data augmentation
techniques improve the model’s generalization on the LA cavity segmentation
from multi-center images.

2 Dataset

The Left Atrial and Scar Quantification and Segmentation Challenge (LAS-
carQS 2022)1 consists of 200 LGE MRIs acquired in a real clinical environment
from patients suffering Atrial fibrillation (AF). All the LGE MRIs were collected
from three different clinical centers. The images from the first center (Univer-
sity of Utah) were acquired using Siemens Avanto 1.5T or Vario 3T. The voxel
resolution of the images was 1.25 × 1.25 × 2.5 mm. The LGE MRIs from the sec-
ond center (Beth Israel Deaconess Medical Center) were acquired with Philips
Achieva 1.5T. The spatial resolution of the images was 1.4 × 1.4 × 1.4 mm.
Similar to the second center, the images from the third center (King’s College
London) were acquired with a Philips Achieva 1.5T. The spatial resolution of the
LGE MRI scan was 1.3 × 1.3 × 4.0 mm. The challenge has two tasks. The first
one focuses on left atrial blood pool segmentation from multi-center LGE MRIs.
The second task focuses on segmentation of left atrial scar [15–17]. We declare
that the segmentation method implemented for participation in the LAScarQS
2022 challenge has not used any pre-trained models nor extra MRI datasets other
than those given by the organizers.

3 Methods

3.1 Network Architecture

For both LA cavity and LA scar segmentation, we employed a 3D segmentation
network. The network architecture is based on 3D nnU-Net framework [9]. As
demonstrated in Fig. 1, we altered the standard nnU-Net network architecture
by adding Dropout at the network’s middle layers [3] to lessen overfitting and
improve generalization. The U-Net’s encoder and decoder consist of 10 convolu-
tional layers where each convolution is followed by instance normalization and
Leaky ReLU (negative slope of 0.01) activation function. The kernel size of the
convolution is 3 × 3 × 3. During pre-processing, we resampled all the volumes
to 0.625mm × 0.625mm × 1.0mm and 0.625mm × 0.625mm × 2.5mm for LA
cavity segmentation and LA scar segmentation respectively (the median voxel
spacing of the training cases). The intensity of every volume was normalized to
have zero-mean and unit-variance.

1 https://zmic.fudan.edu.cn/lascarqs22.

https://zmic.fudan.edu.cn/lascarqs22
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Fig. 1. Overview of the network architecture.

3.2 Loss Functions

Recently, Leng et al. (2022) [13] proposed PolyLoss, a new loss function that
expresses the commonly used loss functions such as cross-entropy (Eq. 1) and
focal loss (Eq. 3) as a linear combination of polynomial functions. Using Taylor
expansion, cross-entropy can be represented as sum of polynomial bases (1−p)j ,
as shown in Eq. 2, where p is the prediction probability of the target class [13].
By dropping the higher-order polynomials and adding terms that perturb the
polynomial coefficients, they came up with a simplified version of the polynomial
loss called Poly-1. This loss function modifies the cross-entropy by only adding
one hyper-parameter (ε) [13], as can be seen in Eq. 2. PolyLoss has shown good
performance on computer vision tasks by outperforming cross-entropy and focal
losses [13].

Inspired by [13], in this paper, we proposed a loss function that uses Dice
loss with PolyLoss (Eq. 5) for a LA cavity and scar segmentation. Dice loss is
a region based loss that directly optimizes the Dice coefficient metric as shown
in Eq. 4. We hypothesized that by combining the region based Dice loss with
the polynomial version of the cross-entropy (PolyCE) (Eq. 5) can improve the
segmentation of LA cavity from multi-center LGE MRIs.

LCE = −log(p) =
∞∑

n=1

1
n

(1 − p)n, (1)

LPolyCE = LCE + ε(1 − p), (2)

LFocal = −(1 − p)γ log(p), (3)

LDice = 1 − 2|Y ∩ G|
|Y | + |G| , (4)

LDicePolyCE = LDice + LPolyCE , (5)

where Y and G represent the predicted and manual segmentation maps, respec-
tively.
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Arega et al. (2021) [2] proposed a segmentation model that generates uncer-
tainty estimates (sample variance) during training using the Monte-Carlo-
dropout Bayesian method and utilizes the uncertainty information to enhance
the segmentation results by incorporating it into the segmentation loss function
[2]. During training, the model is sampled N times, and the mean of these sam-
ples is used as the final segmentation. The sample variance (uncertainty) (σi) is
computed as a variance of the N Monte-Carlo prediction samples of each pixel i
[2]. Since sample variance is a pixel-wise uncertainty measure, to determine the
image-level uncertainty the mean of the pixel-wise uncertainty values is com-
puted as shown in Eq. 7, where I is the total number of pixels of the image [2].
This image-level uncertainty is considered as uncertainty loss. Then, it is added
to a segmentation loss with a hyper-parameter value alpha (α) that controls the
contribution of the uncertainty loss to the total loss as shown in Eq. 8. They
have shown that uncertainty information can be advantageous, particularly to
improve the segmentation of semantically and visually challenging pathologies
such as scars which generate higher epistemic uncertainty [2].

In this paper, we proposed to adopt the uncertainty loss in combination
with the hybrid loss of Dice and Focal (DiceFocal) loss [33] (Eq. 6) for LA scar
segmentation. We hypothesized that by fusing DiceFocal loss, which has shown
good performance on highly imbalanced dataset [20], with the uncertainty loss
(Uncertainty DiceFocal Loss) (Eq. 8) can enhance the segmentation of the more
challenging LA scar segmentation.

LSeg(DiceFocal) = LDice + LFocal, (6)

LUncertainty =
1
I

∑

i

(σ2
i ), (7)

LTotal(UncertaintyDiceFocalLoss) = LSeg(DiceFocal) + α × LUncertainty, (8)

3.3 Data Augmentations

We applied a variety of data augmentations to improve the generalization and
robustness of the models in the multi-center dataset, including intensity-based
data augmentation, spatial data augmentation, and histogram matching aug-
mentation [3,9]. Histogram matching is the transformation of an image so that
the histogram of a source image matches the histogram of a reference image [8].
Mathematically, it is the process of altering one image so that the cumulative
distribution function (CDF) of values in each band corresponds to the CDF of
bands in another image. Some examples of the source, reference, and matched
images are shown in Fig. 2.

In the LAScarQS 2022 challenge, there was no specific information about
each training image regarding the clinical center from which they came from.
In this work, we used histogram matching by taking random training images
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and matching them to a selected low performing training images which had the
worst performance in terms of Dice. The matched images were then added to
the training dataset to enhance the generalizability of the model on LA cavity
segmentation from multi-Center LGE MRIs.

Fig. 2. Examples showing histogram matching based data augmentations on LA cavity
segmentation dataset.

3.4 Training

The segmentation models were trained for 1000 epochs in a 5-fold cross-
validation scheme. Stochastic gradient descent (SGD) with Nesterov momentum
(μ = 0.99) with an initial learning rate of 0.01 was used to optimize the network’s
weights. The learning rate was decayed using the “poly” learning rate policy [9].
We employed a mini-batch size of 2. We used a value of 1 for epsilon (ε) in
PolyLoss (Eq. 2) and a value of 2 for gamma (γ) in Focal loss (Eq. 3). For the
uncertainty loss, the weighting factor (α) (in Eq. 8) is empirically selected to be
2.0. For histogram matching, we utilized Simple ITK’s python library [19]. The
training was done on NVIDIA GPUs using Pytorch deep learning framework
based on nnU-Net implementation [9].

4 Results and Discussion

To evaluate LA cavity segmentation, Dice coefficient, average surface distance
(ASD) and Hausdorff distance (HD) metrics were used. For LA scar segmenta-
tion and quantification, accuracy, specificity, sensitivity, Dice coefficient of the
scar, and generalized Dice score of the cavity and scar were used [16]. All the
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comparisons were done on the validation set provided by the challenge. The val-
idation dataset for LA scar segmentation consists of 10 cases from center 1, the
same center as the training dataset. For LA cavity segmentation which focuses
on a multi-center problem, the validation dataset contains 10 cases from center
1, the same center as the training dataset, and 10 cases from center 2.

The baseline method is the standard nnU-Net network [9] with Dropout lay-
ers added at the middle layers of the segmentation network as mentioned in
Sect. 3.1. It uses light data augmentation that includes rotation, scaling, Gaus-
sian blur and noise. In terms of the loss function, the baseline method employs
a hybrid loss of Dice loss with cross-entropy Loss (DiceCE).

Regarding the data augmentation, we separated the experiments into light
data augmentation (baseline), moderate data augmentation and histogram
matching augmentation. The same network architecture was used during the
comparison. The moderate data augmentation uses elastic deformation, rota-
tion, scaling, mirroring, additive brightness, Gaussian noise and blurring. For
histogram matching (HM) augmentation, the matched images were added to
the training dataset as mentioned in Sect. 3.3.

Comparing the data augmentation experiments’ performance in Table 1, it
can be observed that moderate data augmentation improved the segmentation
performance from 17.1836 mm to 16.8721 mm in terms of HD. However, it yielded
a bit worse result in both Dice and ASD compared to the baseline (light data
augmentation). Similarly, the histogram matching-based data augmentation sig-
nificantly decreased the HD from 17.1836 mm to 16.6851 mm. However, its per-
formance was slightly lower in terms of Dice score and ASD.

Comparing the performance of the loss functions on the segmentation of
LA cavity, the proposed loss outperformed the other loss functions as shown
in Table 1. The baseline (DiceCE loss) yielded a Dice score of 0.8884, ASD of
1.74629 and HD of 17.18363 mm whereas DiceFocal loss achieved a Dice score
of 0.8885, ASD of 1.7474 and HD of 17.2035 mm. Using only the polynomial
version of cross-entropy loss (PolyCE) enhanced the segmentation result mainly
in terms of Dice score and HD. When PolyCE is combined with Dice loss, the
segmentation result of LA cavity was improved further from 0.8884 to 0.8897,
from 1.7463 to 1.7203, and from 17.1836 to 16.9067 mm in terms of Dice score,
ASD and HD respectively compared to the baseline which uses DiceCE loss.

Table 2 shows the comparison of the different loss functions on LA scar
segmentation. Compared to LA cavity segmentation, it has imbalanced classes
because the scar is very small compared to the cavity. Due to this, we have com-
pared the proposed loss not only to the baseline but also to other loss functions
which are commonly used for imbalanced segmentation. For example, hybrid loss
functions such as DiceFocal loss [33], and DiceTopK loss [4] which combines Dice
loss with Focal loss and TopK loss respectively to mitigate class imbalance [20].
In the comparison, we have also included Focal loss [18], a loss function that was
designed to deal with foreground-background class imbalance by focusing more
on the hard examples.
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Table 1. Comparison of LA cavity segmentation performance using various data aug-
mentations and compound loss functions on validation set (n = 20) of the challenge.
Dice: Dice score, ASD: average surface distance, HD: Hausdorff distance. The bold
values are the best.

Method Dice ASD HD (mm)

Baseline 0.8884 1.7463 17.1836

Moderate DataAug 0.8868 1.7755 16.8721

HM DataAug 0.8867 1.7536 16.6851

DiceFocal 0.8885 1.7474 17.2035

OnlyPolyCE 0.8893 1.7413 17.0053

Proposed (DicePolyCE) 0.8897 1.7203 16.9067

As shown in Table 2, the baseline, which combines Dice loss with cross-
entropy loss (DiceCE) [9], yielded an accuracy of 0.7764, sensitivity of 0.5529,
Dice score of 0.6258 and generalized Dice score 0.9187 for scar segmentation. The
DicePolyCE loss enhanced the performance of baseline as it increased the accu-
racy, sensitivity, Dice and generalized Dice of scar by 22%, 1%, 0.5%, 0.01%,
respectively. DiceTopK loss [4] achieved an accuracy of 0.7751, sensitivity of
0.5503, Dice score of 0.6222 and generalized Dice score 0.9183 which is lower
than the baseline. Using only Focal loss [18] achieved the worst result as can
be seen in Table 2. The other commonly used loss function for an imbalanced
dataset that is DiceFocal loss [33] yielded much better result compared to the
baseline, DicePolyCE and DiceTopK loss with an accuracy of 0.9999, sensitivity
of 0.5749, Dice score of 0.6363 and generalized Dice score 0.9199. The proposed
loss, where uncertainty loss is combined with DiceFocal loss achieved the best
result outperforming the other loss functions. In terms of specificity, all the loss
functions achieved a similar score of 0.9999.

From the results, we observed that a compound loss that utilizes Dice loss
with the polynomial version of cross-entropy loss (DicePolyCE) consistently
improves the performance of the most common compound loss that combines
Dice loss with cross-entropy loss. The performance enhancement was in both
the mildly imbalanced LA cavity segmentation and the highly imbalanced LA
scar segmentation. This shows the robustness of the proposed loss in LA cavity
and scar segmentation.

In LA scar segmentation, the second proposed loss function which utilizes
uncertainty information outperformed the commonly used loss functions for
highly imbalanced segmentation such as DiceTopK [4] and Focal loss [18] func-
tions [20], DiceFocal loss [33]. This confirms the importance of incorporating
uncertainty information as part of the learning process to enhance particularly
the segmentation of pathologies with irregular structures like scars.
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Table 2. Comparison of LA scar segmentation performance using different compound
loss functions on validation set (n = 10) of the challenge. GDice: generalized Dice score
of cavity and scar. The bold values are the best.

Method Accuracy Specificity Sensitivity Dice GDice

Baseline 0.7764 0.9999 0.5529 0.6258 0.9187

DiceTopK Loss 0.7751 0.9999 0.5503 0.6222 0.9183

DiceFocal Loss 0.9999 0.9999 0.5749 0.6363 0.9199

Focal Loss 0.9999 0.9999 0.5095 0.6047 0.9139

DicePolyCE Loss 0.9999 0.9999 0.5605 0.6301 0.9187

Proposed (Uncertainty+ DiceFocal Loss) 0.9999 0.9999 0.5853 0.6406 0.9205

In terms of data augmentation, the experiments were mainly focused on the
multi-center LA cavity segmentation. From the results, we can say that using
moderate data augmentation and histogram matching can enhance the model’s
generalization as it improved the segmentation result, particularly in terms of
HD compared to the light data augmentation.

5 Conclusion

In this paper, we proposed a fully automatic deep learning method that uti-
lizes a novel hybrid loss function that combines Dice loss with a polynomial
version of cross-entropy loss to segment LA cavity from multi-center LGE MRIs
and an uncertainty-based loss function to segment scar from single-center LGE
MRIs. We also employed various data augmentation techniques, which include
histogram matching, to increase the size and variety of the training dataset. In
the experiments, we have compared the proposed loss function with the com-
monly used losses in the multi-center LA cavity segmentation and in the highly
imbalanced LA scar segmentation. We observe that the proposed losses yield
the best result outperforming the other losses in both LA cavity and scar seg-
mentation. From the results, we can say that using the polynomial version of
cross-entropy in combination with Dice loss can be a better alternative loss func-
tion for anatomical segmentation such as LA cavity. For segmentation such as LA
scar, which generates high epistemic uncertainty due to its small and complex
structure, utilizing a loss function that incorporates uncertainty information can
be useful for robust segmentation. Additionally, applying moderate-level data
augmentation with histogram matching can improve the results and increase
the model’s generalization capability.
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Abstract. Atrial fibrillation (AF) causes irregular heart rhythm, and
its incidence and prevalence are increasing worldwide. It was estimated
that 46.3 million individuals were living with AF in 2016. Late gadolin-
ium enhancement (LGE) magnetic resonance imaging (MRI) offers an
option to image the left atrium (LA) and detect scars in the chamber,
which play a central role in the treatment of AF in patients. This study
proposes a deep convolutional neural network approach to automate seg-
mentation of the LA for LGE MRI images and quantify the scars in the
chamber, which are otherwise tedious and time-consuming tasks to be
performed manually. The proposed method was trained and evaluated
using the datasets provided by the LAScarQS 2022 challenge organizers.
A total of 194 LGE MRI datasets were used in this study which were
acquired from three different clinical centers. The challenge is divided
into two tasks. For the first task, only the post-ablation LGE MRI scans
are considered where the objective is to delineate the LA and scar. The
second task considers both pre and post-ablation scans where the objec-
tive is to segment the LA. The performance of the algorithm is evaluated
using Dice similarity (DM), average surface distance (ASD) and Haus-
dorff distance (HD) metrics. For the first task, the proposed approach
yielded 90.71%, 1.681, and 21.45 for average DM, ASD and HD values
for the segmentation of LA from the validation set. The corresponding
values for the second task are 89.32%, 1.613, and 15.86, respectively. The
proposed method yielded an average DM of 63.31% for the delineation
of LA scar from the validation set.

Keywords: Atrial fibrillation · Magnetic resonance imaging · Deep
convolutional neural network · Left atrium · Late gadolinium
enhancement

1 Introduction

The incidence and prevalence of atrial fibrillation (AF), a cardiac condition that
causes irregular heart rhythm, are increasing worldwide [3]. One option to diag-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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nose AF is to image the left atrium (LA) using late gadolinium enhancement
(LGE) magnetic resonance imaging (MRI) [5]. The manual assessment of the
LGE MRI scans is tedious due to the large number of images produced by MRI
scanners in each scan, and there has been increasing research interest in the
development of automated methods to assess the LA from LGE MRI scans [4].

Earlier methods to delineate the LA from MRI images were based on tradi-
tional segmentation techniques such as salient feature and contour evolution
[12]. Recently, the deep convolutional neural network based techniques have
become the dominant approaches to delineate the LA from MRI scans [7,11]. The
research interest in automated segmentation approaches is evident by the public
segmentation challenge to delineate the chamber from LGE 3D MRI sequences
which was hosted at the Statistical Atlases and Computational Models of the
Heart (STACOM) workshop in the Medical Image Computing and Computer
Assisted Intervention (MICCAI) conference in 2018 [8]. A V-net [6] based con-
volutional neural network approach [10] yielded the best performance among
more than 15 research teams that participated in the challenge. A review of
medical image computing techniques related to the LA assessment using LGE
MRI could be found at [5].

This study proposes a deep convolutional neural network approach, known as
nnU-Net [1], to delineate the LA cavity and scar from LGE MRI scans. Trained
from scratch, the proposed approach was evaluated using the datasets provided
by the LAScarQS 2022 challenge hosted by MICCAI 2022. The challenge consists
of two tasks. The first task is to delineate the LA cavity and scar from LGE MRI
scans acquired from patients at pre-ablation. The second task is to delineate
the LA cavity from LGE MRI scans acquired from patients at pre and post-
ablation. Instead of using the LGE MRI datasets in their original orientation, the
proposed method first aligns them along the coordinate axes. The preprocessing
was applied to both the image datasets and annotated labels. The preprocessed
datasets were then used for training the neural networks. Upon trained, the
neural networks were applied for the prediction of the segmented LA cavity and
scar regions which were then reoriented to match the original image scans.

2 Methodology

In this study, we trained the nnU-Net approach [1] with a modification to the
geometric orientation of the input images and labels. The nnU-Net approach
uses U-Net [9] as the neural network architecture. The overall approach used
for neural network training and inference is given in Fig. 1. The LAScarQS 2022
challenge consists of two tasks. The aim of Task 1 is to delineate both the LA
cavity and scar. The aim of Task 2 is to delineate the LA cavity from scans
acquired at pre and post-ablation. Separate neural networks were trained from
scratch for Task 1 and Task 2.
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Input Volume Orient Orient Input LabelsnnU-Net

Training

Input Volume Orient Reorient Label predictionnnU-Net

Inference

Fig. 1. The proposed neural network based solution to segment the LA cavity and scar
from the LGE MRI volumes.

2.1 Data

The dataset shared by the LAScarQS 2022 challenge organizers consists of 194
LGE MRIs acquired from three different centers, namely, the University of Utah,
Beth Israel Deaconess Medical Center and King’s College London. The images
were acquired using Siemens Avanto 1.5T, Siemens Vario 3T, or Philips Acheiva
1.5T scanners. All scans were acquired using free-breathing with navigator-gating
or navigator-gating with fat suppression option. All scans were acquired as three-
dimensional images with the spatial resolution of 1.25×1.25×2.5, 1.4×1.4×1.4
or 1.3 × 1.3 × 4.0 mm. The patients underwent the MRI examinations prior to
ablation or one month to six months after ablation.

Task 1: The training set for the Task 1 consists of 60 LGE MRI scans with
ground truth delineations of the LA cavity and scar saved in separate files in
NIFTI format. The validation set consists of 10 LGE MRI scans.

Task 2: The training set for the Task 2 consists of 130 LGE MRI scans with
ground truth delineations of the LA cavity. The validation set consists of Task
2 consists of 20 LGE MRI scans.

2.2 Neural Network Training

Two separate nnU-Net [1] frameworks were used for Task 1 and Task 2. The
nnU-Net approach for Task 1 was trained using a multi-label input where sep-
arate label values were used for LA cavity, LA scar and background. The nnU-
Net for Task 2 was trained using the labelling corresponding to LA cavity and
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background only. We used the default nnU-Net configurations for both tasks. A
combination of Dice and cross-entropy loss was used as the loss function in the
neural network optimization. A five-fold cross validation approach was utilized
for training the neural networks. The nnU-Net utilizes a real-time data augmen-
tation strategy where rotations, scaling, and elastic deformations are applied
randomly along with gamma correction and mirroring.

The neural networks for both tasks were trained using 2D U-Net and 3D
U-Net with full resolution options, and the final neural network models were
obtained based on an ensemble of these neural networks. The neural networks
were trained for 1000 epochs on NVIDIA Tesla V100 (16GB memory) graphics
processors. For Task 1, it took around 17 and 24 h to train the neural network
for each fold with 2D and 3D U-Net options, respectively. For Task 2, it took
around 16 and 20 h to train the neural network for each fold with 2D and 3D U-
Net options, respectively. The scripts provided with the nnU-Net framework were
applied to identify the best configuration for both neural networks. The neural
network model for the nnU-Net was implemented using the PyTorch module.

3 Results

The proposed method was evaluated quantitatively over the validation sets
shared by the LAScarQS 2022 challenge organizers for Task 1 and Task 2 using
an automated online system. The ground truth labels for the validation sets were
blinded to the participants.

The proposed approach yielded Dice, average surface distance (ASD) and
Hausdorff distance (HD) metric values of 90.71%, 1.681 and 21.45 for the delin-
eation of the LA cavity in Task 1, respectively. The corresponding values for
Task 2 are 89.32%, 1.613 and 15.86. For LA scar segmentation in Task 1, the
proposed method yielded a Dice metric value of 63.31%. The accuracy, specificity
and sensitivity values of the scar segmentation in Task 1 are 0.99995, 0.99998
and 0.56994, respectively. The quantitative evaluation scores obtained for the
delineation of the LA cavity and scar from Task 1 and Task 2 are reported in
Table 1.

The segmentation results for the LA cavity and scar from an example val-
idation dataset from Task 1 are shown in Fig. 2 where the predictions for the
cavity and scar are shown using green and red labels. Figure 3 shows the 3D
rendered predictions of the cavity and scar using the same colours against the
multi-planar view of the original LGE MRI data.

A 3D rendered results of the predicted labels corresponding to the LA cavity
and scar using 3D Slicer[2] in green and red colors are shown in Fig. 4.

The segmentation results for the LA cavity from an example validation
dataset from Task 2 are shown in Fig. 5 where the predictions for the cavity
are shown using the green label. Figure 6 shows the 3D rendered prediction of
the cavity against the multi-planar view of the original LGE MRI data.
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Table 1. Overall performance of the proposed fully automated method evaluated over
validation LGE MRI datasets acquired from 10 and 20 patients for tasks 1 and 2,
respectively. The evaluations were performed by comparing ground truth delineations
of the LA cavity and scar for Task 1. For Task 2, ground truth delineations were
available only for the LA cavity.

Metric Task 1 (LA cavity) Task 1 (LA scar) Task 2 (LA cavity)

Dice (%) 90.71 63.31 89.32

ASD 1.681 – 1.613

HD 21.45 – 15.86

GDice (%) – 92.14 –

Accuracy – 0.99995 –

Specificity – 0.99998 –

Sensitivity – 0.56994 –

(a) axial view (b) saggital view (c) coronal view

Fig. 2. The neural network predicted segmentation results for the LA cavity (green)
and scar (red) for an example image volume from Task 1 datasets. (Color figure online)

Fig. 3. The neural network predicted segmentation results of LA cavity (green) and
scar (red) for an example image volume from Task 1 datasets rendered on the multi-
planar view of the original data. (Color figure online)
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Fig. 4. The neural network predicted segmentation results of LA cavity (green) and
scar (red) for an example image volume from Task 1 datasets rendered using 3D Slicer.
(Color figure online)

(a) axial view (b) saggital view (c) coronal view

Fig. 5. The neural network predicted segmentation results for the LA cavity for an
example image volume from Task 2 datasets. (Color figure online)

Fig. 6. The neural network predicted segmentation results of the LA cavity for an
example image volume from Task 2 validation dataset rendered on the multi-planar
view of the original data.
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4 Conclusion

In this study, we utilized a deep convolutional neural network approach known
as nnU-Net to delineate the left atrial cavity and scar from late gadolinium
enhancement magnetic resonance imaging as a part of the LAScarQS 2022 seg-
mentation challenge. Instead of using the scans in their original orientation, we
first aligned them along the coordinate axes and input them into the neural net-
work. The proposed method was trained using 60 and 130 datasets for tasks 1
and 2, respectively. The predicted segmentation results were reoriented to match
the corresponding image data. The proposed method yielded Dice score values
of 90.71% and 89.32% for the delineation of the LA cavity over the validation
sets of tasks 1 and 2, respectively. The corresponding value for the LA scar from
task 1 is 63.31%.
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Abstract. Left atrial (LA) and atrial scar segmentation from late gadolinium-
enhanced magnetic resonance imaging (LGEMRI) is an important task in clinical
practice. Late gadolinium enhancement magnetic resonance imaging (LGEMRI)
is commonly used to visualize and quantify left atrial (LA) scars. The position
and extent of LA scars provide important information on the pathophysiology
and progression of atrial fibrillation (AF). LAScarQS 2022: Left Atrial and Scar
Quantification & Segmentation Challenge provided the dataset to evaluate the
segmentationmodel to segment the LA and scars. In this paper, we have developed
a semi-supervised segmentation approach using the pseudo labeling approach.We
have trained two different models for LA segmentation. In the first model, we
have trained 3DResUnet with deep supervision techniques to get the pseudo label
using training and validation datasets and in the secondmodel, we have trained the
nnUNetmodel that uses the pseudo segmentation labels of the first model with true
labels for LA segmentation. The proposed solution provides optimal performance
for the LA segmentation task and achieved a 0.88 Dice score on the validation
dataset. The source code will be publicly available at https://github.com/Respec
tKnowledge/Semi-supervised_Segmentation_LAS-carQS-2022-Challenge.

Keywords: Semi-supervised · LA segmentation · 3DResUNet · Deep
Supervision · nnUNet · Semi-supervised · Pseudo labeling

1 Introduction

The segmentation and quantification of left atrial (LA) and scars from LGEMRI provide
reliable information for patient selection, treatment stratification, and clinical diagnosis
[1]. Automatic segmentation of LA and scars fromLGEMRI is highly desired asmanual
delineations of LA and scars are time-consuming and prone to be subjective.
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Automatic methods. However, the development of automatic techniques remains
challenging, mainly due to poor image quality, various LA shapes, thin LA walls, and
enhanced noise from the surrounding. The challenges for automatic LA cavity segmen-
tation are mainly from the large variations in terms of LA shape, intensity range as well
as poor image quality.

In the past various challenges have been introduced for Left Atrial Segmentation.
In Left Atrial Segmentation Challenge 2013 (LASC 2013) [2], 30 CT and 30 MRI are
provided and various atlas-based methods, such as region growing, statistical shape
models (SSM), and multi-atlas segmentation (MAS) are proposed for LA segmentation.
However, it could be difficult to obtain a reasonable result when applying atlas-based
methods to LGEMRI directly, because in general LGEMRI has relatively poor quality.
A common way to solve this problem is to combine LGEMRI with additional balanced
steady-state free precession (bSSFP) MRI images to incorporate shape prior [3, 4]. In
2020, various deep learning models have been proposed to segment LA from LGEMRI
using 154 LGE MRIs images for the LA segmentation challenge [5]. In this challenge,
the results of deep learning-based methods were significantly better than that of tradi-
tional atlas-based methods. For instance, the Chen et al. [6] proposed a two-task network
for LA segmentation and patient classification. Yang et al. [3] presented a deep network
using transfer learning and employed a deep supervision strategy for LA segmenta-
tion. Currently, LAScarQS 2022 (Left Atrial and Scar Quantification & Segmentation
Challenge) provides more than 200 LGEMRIs that were acquired in a real clinical envi-
ronment from patients suffering fromAtrial fibrillation (AF). The target of this challenge
is to develop (semi-) automatically segment the LA cavity and quantify LA scars from
LGEMRI. This is however still challenging due to the poor image quality of LGEMRI,
the prior model of scars is hard to construct on account of the various LA shapes, the
thin wall, the surrounding enhanced regions, and the complex patterns of scars in AF
patients. To solve the issues for LA segmentation, we need a robust solution for LA
segmentation using LGEMRI. We have been inspired by semi-supervised methods that
exist in the literature [7–11] however.

The main findings of this paper are as follows:

1. We have proposed a semi-supervised two-stage solution for LA segmentation. In the
first stage, an efficient 3DResUnet model with deep supervision was proposed to
train on the training dataset and produced pseudo labels using the sub-training and
validation dataset.

2. The nnUNet [10] state-of-the-Art segmentation model has been trained using a
sub-training and full training dataset to generate pseudo labeling with a validation
dataset. An extensive experiment has been performed to test the proposed two-stages
technique for LA segmentation.

A detailed description of the proposed model is shown in Fig. 1.
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2 Material and Methods

2.1 LAScarQS 2022 Dataset Descriptions

The challenge provided an LGE MRI dataset from multiple imaging centers around
the world. The dataset has been collected from three different centers such as Center 1
(University of Utah), Center 2 (Beth Israel Deaconess Medical Center), and Center 3
(King’s College London). The clinical images were acquired from Siemens Avanto 1.5T
or Vario 3T using free-breathing (FB), Philips Acheiva 1.5T using FB and navigator-
gating with fat suppression, and Philips Acheiva 1.5T using FB and navigator-gating
with fat suppression. The spatial resolution of one 3D LGE MRI scan was 1.25 × 1.25
× 2.5mmusing center1 data, 1.4× 1.4× 1.4mmusing center 2, and 1.3× 1.3× 4.0mm
using center 3. A detailed description of the challenge dataset can be found [13–15].
We participated in task 2 and task 2 datasets consisting of 130 LGE MRIs training and
validation cases. Moreover, 64 LGE MRI unseen testing cases including an unknown
domain do not appear in the training data. The training dataset has been divided into two
parts and these two training parts are used for training and validation of the proposed
approach.

2.2 Proposed Method

Proposed Model. Our proposed model consisted of two stages. In the first stage, we
proposed 3DResUNet with a deep supervision technique. The proposed model was
trained on the training dataset and validation dataset used to predict the labels. These
labels are called pseudo labels. In the second stage, the nnUNet model was trained using
pseudo and training datasets. The pseudo labels with validation cases were used in the
second stage with the original training dataset to train the nnUNet.

3D-ResUnet with Deep Supervision: A framework of the proposed model is pre-
sented as an encoder, a decoder, and a baseline module. The 1 × 1 convolutional layer
with softmax function has been used at the end of the proposed model. The 3D strides
convolutional layer has been used to reduce the input image spatial size. The convo-
lutional block consists of convolutional layers with Batch-Normalization and ReLU
activation functions to extract the different feature maps from each block on the encoder
side. In the encoder block, the spatial input size has been reduced with an increasing
number of featuremaps and on the decoder side, the input image spatial sizewill increase
using a 3D Conv-Transpose layer. The input features’ maps that are obtained from every
encoder block are concatenated with every decoder block feature map to reconstruct the
semantic information. The convolutional (3x3x3conv-BN-ReLu) layer used the input
feature maps extracted from every convolutional block on the encoder side and further
passed these feature maps into the proposed residual module. The spatial size doubled at
every decoder block and feature maps are halved at each decoder stage of the proposed
model. The residual block has been inserted at each encoder block with a skip connec-
tion. The feature concatenation has been done at every encoder and decoder block except
the last 1x1 convolutional layer. The three-level deep-supervision technique is applied
to get the aggregate loss between ground truth and prediction. The nnUNet has been
modified for training and optimization parameters as compared to the original nnUNet.
The batch size in uuUNet was 40 × 256 × 224 using 500 epochs.
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Training and Optimization. The proposed deep learning model is implemented in
PyTorch and other libraries based on python are used for pre-processing and analy-
sis of the datasets. The SimpleITK is used for reading and writing the nifty data volume.
The ITK-SNAP is used for data visualization. The learning rate of 0.0004 with Adam
optimizer has been for training the proposed model. The binary cross-entropy function
is used as a loss function between the output of the model and the ground-truth sample.
2 batch-size with 200 epochs has been used with 20 early stopping steps. The best model
weights have been saved for prediction in the validation phase. The 256× 256× 16 input
image size was used for training. The Pytorch library is used for model development,
training, optimization, and testing. The V100 tesla NVIDIA-GPU machine is used for
training and testing the proposed model. The total training time was 18 h using a single
GPU V100 tesla machine. The data augmentation methods such as horizontal flipping
(p = 0.5), vertical flip (p = 0.5), and RandomGamma (p = 0.8) were used to augment
the dataset for training the proposed model. The dataset cases have different intensity
ranges. The dataset is normalized between 0 and 1 using the maximal and min intensity
normalization method. The training shape of each volume is fixed (256 × 256 × 16)
and resample the prediction mask to the original shape for each validation volume using
the linear interpolation method. The prediction mask produced by our proposed model
has been resampled such that it has the same size and spacing as the original image and
copies all of the meta-data, i.e., origin, direction, orientation, etc.

Fig. 1. Proposed model for segmentation using the LAScarQS 2022 dataset.
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3 Results and Discussion

3.1 Quantitative Results

The performance of our proposed model on unseen validation datasets in terms of Dice,
ASD, and HD is shown in Table 1. This performance is measured by the challenge
organizer using 20validation cases. The average performance using the validation dataset
of the proposed model with validation-based pseudo labels, training set-based pseudo
labels, nnUNet, 3DResUnet, 3DDenseUnet, and base 3DUnet is shown in Table 1. The
80% training dataset used to train the proposed 3DResUnet and nnUNet model used
with pseudo labels generation by 3DResUNet. The proposed model with unlabeled
validation samples achieved the highest performance as compared to using fewer training
samples. The proposed pseudo-label model produced more generalized performance
even with a smaller number of training samples. The Dice score is almost near to the
full supervised training dataset when 80% of semi-supervised sub-training samples were
used in 3DResUnet to produce pseudo labels. However, the HD produced by 3DResUnet
based on an 80% training set in the semi-supervised setting is higher when we used full
training samples with validation samples for a pseudo-label generation. It concluded that
we can use a few training samples with a pseudo label to achieve optimal performance.

Table 1. Performance comparison of the proposed solution with different configurations on the
validation dataset. Where Full-proposed with PLVal is pseudo label using validation and full
supervised training dataset. PLTr is a pseudo label using a semi-supervised sub-training dataset.

Models LAcavity_Dice LAcavity_ASD LAcavity_HD

Full-proposedwithPLVal 0.88550 1.81263 18.38903

Semi-proposedwithPLTr 0.881289 2.83415 66.90356

nnUNet model 0.862269 8.801397 138.4065

3DResUnet model 0.845154 4.694311 106.6657

3DDenseUnet model 0.829744 7.444355 116.2937

3Dunet model 0.81657 12.34645 130.0478

The 3DResUnet produced a better performance as compared to 3DDenseUnet and
base 3DUnet is shown inTable 1. TheResidualmodule hasmany advantages such as alle-
viating the vanishing-gradient problem, strengthening feature propagation, encouraging
feature reuse, and substantially reducing the number of parameters. The performance
analysis for proposed full supervised data with the pseudo label, semi-supervised, and
existing deep learning models for 20 validation subjects is shown in Fig. 2. The result
on unseen test dataset is shown in Table 2.

3.2 Qualitative Results

Figure 3 shows the prediction produced by the proposed model on some validation
subjects (subj_12, subj_15, sub_18). The model somehow predicted the correct seg-
mentation mask. In subj_18, the proposed model produced a little distorted predicted
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segmentationmask as compared to the ground-truth segmentationmaskwhile in subjects
12 and 15, the predicted mask almost has a similar shape as compared to ground-truth
segmentation masks.

Fig. 2. Performance analysis of proposed and existing deep learning models using 20 validation
subjects.

Variability of atrial shapes and poor quality and complex intensity distribution of
LGEMRImake it challenging for automatic LGEMRI-basedLA segmentation.Another
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Table 2. Performance comparison of the proposed solution using Full-proposedwithPLVal on
unseen test dataset

Models LAcavity_Dice LAcavity_ASD LAcavity_HD

Full-proposedwithPLVal 0.939741 1.256029 30.09369

problem is the lack of model generalization ability even for the dataset collected from
the same center.We have trained various supervised 3D encoder and decoder-based deep
learning models using full spatial resolution and patch-based approaches to tackle the
LA segmentation problem and validated them using cross-validation. The results based
on 3D-based UNet deep learning approaches did not provide satisfactory performance
for the LA segmentation problem.

Therefore, it is desired to develop LA LGE MRI efficient models with effective
generalization abilities for multi-center and multi-vendor data. We proposed a semi-
supervised solution to tackle the model generalization problem using this challenging
dataset. The results showed that the performance of our proposed solution is optimal
using a multi-center and multi-vendor challenge dataset. The proposed solution may
tackle an unknown domain for the LA segmentation on an unseen test dataset. There
exists substantial scope for algorithmic improvement in terms of helping the general-
ization capability of the model for the automatic LA LGE MRI-based segmentation
problem.

Fig. 3. Qualitative analysis of prediction using validation cases (sub_12, sub_15, sub_18).
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4 Conclusion and Future Work

In this paper, the semi-supervised method has been proposed for LA segmentation. The
two-stage solution is used to get the optimal performance. In the first stage, the proposed
3DResUNet with deep supervision was used to get the pseudo label and further modified
nnUNet was used to obtain the final prediction. Our proposed solution would be used
to predict the LA segmentation in clinically sitting. In the pseudo labeling approach,
we cater to the validation sample distribution and may be helpful for the generalization
of LA segmentation using multi-domain datasets. In the future, we will explore other
semi-supervised or super-vised methods to further enhance the performance of the LA
and scar segmentation.
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