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Abstract. Understanding indicators in self-regulated learning (SRL) that affect
mathematical success using quantitative techniques such as epistemic networks
hold potential for providing effective scaffolds that draw directly from the learner’s
perspective. Tied to learning success, SRL provides a range of frameworks for
identifying students’ affective, cognitive, and metacognitive performance in a
computer-based learning environment. This research can investigate how ENA
can contribute as a visualization device to understanding of the metacognitive
aspect of math learning. With the aim, we collected text responses from an online
math problem-solving environment that encouraged reflections on self-regulated
learning patterns that differ by the rate of correctness and familiarity with the edu-
cational tool. Student responses consisted of their explanations of strategies and
solutions after the scaffolding instructions. Our team deductively designed detec-
tors reflecting on assembling and translating operations (Winne’s SMARTmodel)
to examine differences in the learner’s self-regulated learning behaviors. We then
leveraged Epistemic Network Analysis (ENA) using these detected indicators as
codes to compare the results within two categories: performance on correctness
and familiarity developed over time.Models show stronger co-occurrence between
numerical representation and contextual representation and highlight the critical
impact of outcome orientation on learner success.When the final answer is correct,
or learners are more familiar with the educational tool, there is a strong outcome
orientation connected to contextual representation within SRL operations.

Keywords: self-regulated learning · mathematics education · problem solving ·
epistemic network analysis

1 Introduction

A growing research interest in understanding cognitive and metacognitive actions using
learner data from online learning environments has encouraged the proliferation of self-
regulated learning (SRL) theoretical models. Several studies have pointed out the impor-
tance of self-regulation in learning science, as it is closely associated with positive
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learning outcomes [1–3]. Learners who regulate their learning are aware of the learn-
ing process as they acquire knowledge or skills and actively participate in and control
the necessary steps toward mastery [3]. A growing community of scholars proposes a
dynamic trajectory model with phases and processes of SRL: that learning behavior
is developed over time and composed of preparation, performance, and reflection [4–
6]. Despite this landscape, fewer studies have evaluated how these strategies function
simultaneously.

Responses to inventories and think aloud are regarded as two categories of self-report
data that are commonly collected in computer-based learning environments (CBLEs) to
measure SRL constructs [7], and prior research has leveraged quantitative ethnographic
approaches for SRL data mining such as Epistemic Network Analysis (ENA) [8–11].
These developments benefit learning analytics by making previously unobservable pat-
terns of the process of thinking visible in online learner data while avoiding issues with
the accuracy of memory retrieval. Real-time self-report is complementary to online trace
measures, which offers a more direct way to examine learners’ thought processes and
explain more variance in learners’ performance by revealing unobservable problem-
solving steps and strategies [12]. Shaffer [13] explained the idea of thick description
by noting that language is not just a reflection of how the mind works but also a tiered
‘hierarchy of meanings.‘

Using learning analytics and quantitative ethnography, we can shed light on the
implications of students’ self-reported answers during their interactions with computer-
based learning environments. The research question seeks to unpack the contextual
SRL strategies in math problem-solving and understand how they are associated with
successful performance. The following research questions were scrutinized in the paper:
(1) What are the differences in connections made between four SRL indicators across
learner responses with correct and incorrect answers to math problems? And (2) How
do learner patterns of SRL indicators differ as they get familiar with the CueThink and
generate more Thinklets (a series of problem-solving tasks)? We develop automatic
detectors as codes within an approach of epistemic network analysis (ENA) for SRL
process analysis. The current study is concerned with building detectors that detect
SRL components of operations based on Winne and Hadwin’s SMART model, which
consists of five operations: (1) searching, (2)monitoring, (3) assembling, (4) rehearsing,
and (5) translating. Based on data collected from the CueThink, we deductively define
four SRL indicators and detect each of them in discourse. These indicators include (1)
numerical representation, (2) contextual representation, (3) outcome orientation, and (4)
data transformation. Additionally, we defined an indicator called strategy orientation,
but there are not enough examples in the dataset to include it in the analysis. We develop
a set of epistemic network models to evaluate differences in individual performance on
correctness and general development of familiarity. In our study, a method of learning
analytics in conjunctionwith a practice of quantitative ethnography is expected to provide
insights about the dynamic associations of SRL indicators detected in math problem
solving.
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2 Literature Review

Self-regulated learning has gained popularity in education research, and be expanded in
use and conceptualization across disparate goals and measurements including: (1) types
ofmeasures in data reflecting SRLbehaviors, (2) constructed processes ormodels of SRL
processes, and (3) analytical methods to evaluate SRL.Detecting cognitive andmetacog-
nitive learning activities in log data that differentiate less efficient learner performance
from more efficient learner behaviors could inform the design of more fundamentally
conductive prompts and scaffoldings for long-term independent learning. Deeply rooted
in established SRL constructs, recent studies explore the idea of developing detectors
to investigate SRL patterns [14–17]. These detectors focus on fine-grained micro-level
SRL processes to find help-seeking, self-monitoring, self-assessment, goal-setting, and
information assembly. According to Zimmerman’s cyclical phase model, students with
mastery of SRL analyze the learning task and motivate themselves in a forethought
phase, control and be aware of the learning progress in the performance phase, and
assess and react to their performances in the self-reflection phase [18]. Most approaches
for detecting self-regulated learning strategies have not fully explored Winne’s [19] the-
ories. Winne and colleagues [19, 24, 35] suggest that higher-level cognitive strategies
are integrated into every phase and process of SRL, including both the top-to-bottom
processing and their independence and associations with different cognitive abilities in
the context of a learning situation. Our broader research aims to develop new opera-
tionalized indicators to understand learners’ SRL behaviors on an online mathematics
problem-solving platform. Winne and Hadwin [20] investigated the process of SRL
as four states in sequence, including recognization of the learning task, building goals
and plans, implementing them, and reviewing the output of prior steps based on feed-
back and adaptations. Further developing an integrated theory, Winne’s SMART model
of SRL [19] identified five operations of cognitive and behavioral actions in task per-
formance: searching, monitoring, assembling, rehearsing, and translating. It attempts
to place diverse constructs into one framework that functions in all of the four SRL
sequential tasks [20].

Literature in quantitative ethnography explored SRL in collected log data based on
textual inputs and categorized learning events [8, 9, 11, 21]. Paquette and colleagues
[8] examined SRL with trace data collected from 98 students in an open-ended online
learning environment that allowed students to build models of scientific concepts and
phenomena causally. ENAwasused to illustrate the problem-solving actions in relation to
‘information seeking, solution construction, and solution assessment’ (p. 4).Uzir and col-
leagues [21] studied blended learning environments and investigated time management
and learning tactics associated with positive learning outcomes. They used ENAmodels
to illustrate different patterns in different strategy groups. Gamage and colleagues [9]
compared MOOC participants based on familiarity (i.e., first-time user/multiple classes
completer) and used ENA to compare reflections on video-watching and communica-
tion in log data and interviews. Wu et al. [11] developed ENA models to evaluate the
metacognitive behaviors of learners in collaborative learning contexts based on self-
report reflection. By drawing upon this knowledge, this paper combines a method of
labeling log files via text replay with a study of the occurrence of self-regulated learning
operations in math problem-solving.
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Fig. 1. CueThink’s interface. Screenshots of CueThink’s Four Phases. Adapted from Jiayi et al.
(2022).

3 Method

3.1 CueThink

CueThink is an online learning application that allows middle school students to tackle
math word problem practice, aiming at developing their math knowledge, self-regulated
learning skills, critical thinking, and independent problem-solving strategies. Students
independently complete assignments using CueThink, and teachers review and grades
them later. Peer and supervisor feedback can be given asynchronously in CueThink’s
online classroom community combining with the school setting. Except for students
working on randomly assigned math problems, the overall online setting is the same for
all students. During the problem-solving procedure, students use CueThink to solve a
math problembymanipulatingmultimedia tools (e.g., create a screencast video, generate
a table, make a draft, etc.). CueThink developed four phases (see Fig. 1) aligningwith the
temporal and sequential nature of self-regulated learning (i.e., Understand, Plan, Solve,
and Review) consolidated together as a Thinklet. Learners can move back and forth
across the four phases in CueThink, and select any Thinklet to continue with a status
of ‘Create Thinklet.’ At the same time, the tool captures how learners solve the math
problem in each phase by recording their performance during learning events, including
their textual inputs, answers to multiple-choice questions, a screencast video, and the
time spent on each activity. As a means of labeling log files, we use a method known
as text replays. It allows us to retrieve a segment of learner behavior that contains a
sequence of actions for a selected period, and organize pieces of information in a textual
format.
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Students create a Thinklet and start with the Understand phase, where students are
invited to engage with a math word problem and respond to three question prompts: (1)
“What do you notice?” (2) “What do you wonder?” and (3) “What is your estimation
about the answer?” In this phase, students look for information from given resources,
understand the story, and are encouraged to gather meaningful pieces of information for
completing a learning task. The second phase is the Plan phase, in which students will
read a multiple-choice question about math problem-solving strategies and will have
the option to draw a picture, model an equation, work backwards from the solution, etc.
The Plan phase encourages students to write a plan on math problem-solving steps, and
discuss solutions from a story. Students develop their thoughts and strategies based on
prior understanding and explain their plans through descriptive written responses. In
the Solve phase, students explore multimedia scaffolding tools (e.g., ruler, calculator,
colorful pen, etc.) andwork on awhiteboard space. Students thenmake a screencast video
to describe and demonstrate their use of tools. In the Review phase, students provide final
answers to the given math problem and reflect on the quality of their answers, video, and
performance in prior phases. CueThink fosters this activity by asking students to fill in
a checklist. To evaluate students’ performance, the current study will focus on students’
textual responses generated in the Understanding phase and Planning phase (phases
1–2), and their final answers provided in the Review phase (phase 4). The structure of
phases and events is summarized in Table 1.

Table 1. Learning Events in Three Phases with Textual Inputs.

Phase Event

Understand What do you notice?
What do you wonder?
Estimate your answer?

Plan Write down (your planning journal)?

Review Review your estimation?
Final answer?

3.2 Participants and Procedures

CueThink has been used by 79 students from six classes in a suburban middle school in
California in grades 6th and 7th (approximately 11–12 years old). In 2020, this school’s
ethnic diversity index is near 50%, and about half of the students are English learners.
White students andHispanic/Latino students bothmakeup40%of the student population,
while African American students and Asian students each make up 5%.

Data about student usage events and system operations are recorded in log files
within the CueThink system. Users’ log files, for example, record when they log in,
what pages they view, and what text they type or select as their answer to multiple
choice questions. Each student spent an average of 5.2 h using CueThink and 1.8 h
on each Thinklet [22]. We coded and analyzed 349 Thinklets based on activities and
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textual responses. We consider a learner high-performing if the learner has more correct
final answers than incorrect final answers, which means more than 50% of the solved
problems are correct. Otherwise, we regard them as a relatively low-performing group.
For the first comparison, we split 349 Thinklets into two categories based on the rate of
the correctness of individuals: low performing group (NL = 104) and high performing
group (NH = 245). In the second category, we identified four levels of familiarity (i.e.,
first time/second time/third time generating a Thinklet, and more than three times) in
349 Thinklets. When we talk about learner behaviors, we focus on automatedly detected
indicators of SRL processes designed for aligning with Winne and Hadwin’s SMART
model [20], which we will further discuss in the next section.

3.3 Detectors and Code Book

As a learning analytics team effort, the process of building automated detectors of self-
regulated behaviors is challenging, recursive, and iterative. The first step was to convert
the log data into human-readable text replays and then operationalize qualitative ele-
ments concerning Winne and Hadwin’s SMART constructs [22]. Each indicator was
classified as one of the strategies relevant to the SMARTmodel, existing in every phase.
The log data is usually restructured to reflect the constructs that researchers would like
to measure. To define the final codebook, the research team and system developers
communicated several times, including seven stages: 1) define concepts of codes and
operationalization, 2) refine conceptualization in small groups, 3) build the first code-
book, 4) refine it again, 5) implement the codebook, 6) revise the description of codebook
based on implementation [22].

In this study, we mainly focus on assembling and translating operations consider-
ing the design of the learning environment and data availability, while other operations
not detected in discourse were excluded from our analyses. According to Winne [24],
by tra you are attempting to identify a relationship, and by translating you are chang-
ing the way in which a given piece of information is presented. Two coders developed
four SRL indicators and coded them manually (See Table 2), including (1) numerical
representation, (2) contextual representation, (3) outcome orientation, and (4) data trans-
formation. Numerical and contextual representations, usually defined as strategies used
at the beginning of the problem-solving process, contribute to a learner’s representa-
tion of a problem story and recognition of a learning task [20]. Both indicators reflect
assembling in the SMART model in that learners actively use, control, and manipu-
late information provided in the learning environment to make a general representative
picture. The other indicator (outcome orientation) reflects assembling by explaining
a learner’s goal-setting and planning behaviors and stressing an outcome-focus. Data
transformation is representative of the translating operation, in that learners adjust and
make a change to the way information is presented in the problem to find a solution.
Two raters examine inter-rater reliability in their coding process (see Table 3). Based on
clear definition of classification and fully communication, all the Cohen’s kappa results
are above 0.6 verifying the relatively high agreement between two raters.
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Table 2. SRL Code Book with Examples

SMART Category Codes Description Examples

Assembling Numerical
Representation (NR)

The learner’s representation
of the problems includes
numerical components and
demonstrates a level of
understanding of how the
numerical values are used in
the math problem

“I will add the total
amount of
withdrawals. Next, I
will add the two
deposits (25 + 50).”

Assembling Contextual
Representation (CR)

The learner’s representation
of the problem includes
contextual details relating to
the
setting/characters/situations
within the given math
problem

“Jen has $ 20 for
walking his
neighbor’s dog.”

Assembling Outcome Orientation
(OO)

The learner provides only a
numerical estimate of the
final answer for the given
math problem, suggesting
that learners are focused on
the output instead of the
process itself

“Last, I will add the
−83 and −30 to get
−112, then do 113
− 76 = 37.”

Translating Data Transformation
(DT)

The learner manipulates the
ways information is
represented to them in the
problem to find a solution.
This suggests active
problem solving

“I have to make the
problem easier and
then solve it. I think
we have to find the
mean of each pen.”

Table 3. SRL Code Book Kappa Results

SMART Codes Kappa

Assembling Numerical Representation
(NR)

0.832

Assembling Contextual Representation
(CR)

0.628

Assembling Outcome Orientation (OO) 0.736

Translating Data Transformation (DT) 0.742
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3.4 Epistemic Network Analysis

Using the webtool (version 1.7.0) [27], we generated two sets of epistemic networks to
visualize differences in patterns of connections across the generated codes (numerical
representation, contextual representation, outcome orientation, and data transformation).
The first set of networks compare low-performing and high-performing student groups
based on the number of correct final answers. Correctness of final answers is an essential
metric in evaluating a student’s abilities in math problem solving. CueThink participants
were divided into a low-performing student group (0% - 50% of final answers correct)
and high-performing student group (51% - 100%of final answers correct). In general, if a
learner has more correct answers than incorrect answers, we conceptualize them as high
performing. Unit variables consisted of the binary low/high performance groups, subset
byuser ID.Conversationswere segmentedby thevariableThinklet ID so that associations
were only calculated across data within each Thinklet. A whole conversation stanza
window was used to aggregate co-occurrences across all lines of data in each Thinklet.
Since the initial unit compares two groups, a mean rotation was used to maximize
differences across the x-axis.

The second set of networks track patterns of change across participants as they
repeatedly work through Thinklets. Learners could begin a new Thinklet at any time,
and tended to generate more Thinklets as they were assigned more math problems. Stu-
dents’ first Thinklet serves as a record of their initial experience using and exploring
CueThink. As students begin and complete subsequent Thinklets, they gain familiarity
with the specific online learning environment, and learners are more likely to develop
expertise in adapting functions, prompts, and external resources in the tool. Most stu-
dents generated two to four Thinklets, with a few participants creating five or more.
To track changes in participants’ connection-making between codes across Thinklets,
models were generated using the unit variable “Order,” which groups data into first,
second, third, and fourth or more Thinklet participation. This unit was also subset by
participants’ Thinklet ID. Conversations were again segmented by Thinklet ID, and a
whole conversation stanza window was applied. For both sets of networks, goodness of
fit was assessed, and Mann-Whitney tests were calculated to assess statistically signif-
icant differences between groups. Figures and interpretive descriptions are provided in
the following section to examine how learners using CueThink engaged in self-regulated
learning practices, which offers insight into SRL behavioral patterns in relation to math
problem-solving performance.

4 Results and Discussion

4.1 Group by Low and High Performing

Asweevaluate the networks basedon correctness,we found that four nodes are connected
loosely generally, and data transformation and contextual representation are always
closely associated in both networks. To detect the difference between groups as low
performing and high performing based on the overall rate of correctness, we compare
two networks along the X-axis. Along the X axis, a two sample t-test assuming unequal
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Fig. 2. Networks of Low Performers and High Performers

variance showed low performing group (mean = 0.11,SD = 0.26,N = 29) was sta-
tistically significantly different from high performing group (mean = −0.06,SD =
0.44,N = 51) at the 0.05 alpha level (t77.96 = −2.24, p = 0.03*, Cohen’s d = 0.45).
Observing Fig. 2, there is no extraordinary difference between the two networks if we
conduct Mann Whitney test. However, we find a co-occurrence of data transformation
and contextual representation appears often in both groups, which is more evident in
low-performing group network. Within the network of low performing group, most co-
occurrences of codes are between 0.33 and 0.40, where no specific connection stands out.
When we compare it with high performing group, it shows that lines connected to data
transformation are slightly thicker.We notice that within the network of high performers,
the co-occurrence of contextual representation and outcome orientation (0.37) is stronger
than numerical representation and data transformation (0.27), data transformation and
outcome orientation (0.29), outcome orientation and numerical representation (0.30),
and numerical representation and contextual representation (0.30). The co-occurrence
of contextual representation and outcome orientation stands out more in the high per-
forming group than the low performing group. An example of this would be a student
who goes beyond simply providing the numerical answer to the math problem (out-
come orientation) by providing a clarifying contextual representation of a background,
a situation, a character, or a setting. Julia (pseudonym), a student in the high perform-
ing group, connected these two codes in the following example: ‘I will take the total
from my withdrawals from the bank and add it to the total from my deposits, and my
leftover amount will be my answer (25 + 50).’ These results indicate that CueThink
distinguished learners based on their rate of correctness and SRL performance during
the problem-solving process. This can be shown as learners who have a high rate of
correctness focusing heavily on obtaining a numerical answer (outcome orientation), as
well as using contextual details to aid in understanding and solving the problem (contex-
tual representation) within a given situation. Most learners pay attention to contextual
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details (contextual representation) andmanipulate and transform the given data informa-
tion within the math problem (data transformation). But when they have the intention or
habit of seeing the numerical outcome in the understanding and planning phase, learners
tend to improve the correctness of their final answers.

4.2 Group by Familiarity

Fig. 3. Networks of Four Levels in Familiarity

To build epistemic networks of familiarity, we grouped Thinklets based on the order
they have been generated for each individual. We use One, Two and Three to refer to
the Thinklets generated by a learner for the first time, second time, and third time.
We use Four to refer to the group of ‘after-third-Thinklet’ conditions, which involves all
Thinklets generated after the third time. In total, there are 108 items in the Four category,
77 in theOne, 76 in the Two, and 65 in the Three. Co-occurrences of data transformation
and contextual representation show a less and less stable connection fromTime 1 to Time
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4. As we can observe, the importance of the four codes has been distributed much more
evenly in the latter network. However, the diminishing numbers of co-occurrence rates
do not simply reflect a failure of self-regulated learning operations to connect in the text.
These numbers are impacted by sample format (unit and conversation variables). Every
learner at least generates oneThinklet, but there are fewer and fewer learners havingmore
than three and four Thinklets. The differences in numbers within each network provide
more information. The largest number in the first, second, and third networks always
represents a strong co-occurrence of contextual representation and data transformation,
but there is a decrease in importance compared to other numbers within each network.
In contrast, the importance of the association of outcome orientation and contextual
representation is stronger from the first to fourth network. Comparing every two-pair of
four models, we received results showing significant differences between One vs. Four
(Mdn = −0.41, U = 2525, p = 0.00*, r = 0.39), Two vs. Four (Mdn = −0.41, U =
2483, p = 0.00*, r = 0.40), and Three vs. Four (Mdn = −0.41, U = 2701, p = 0.01,
r = 0.23). In situations where multiple hypotheses get tested, the alpha level will be
corrected by Bonferroni approach, that the significant alpha level will be 0.008. In this
case, two comparing groups still show significantly differences (Fig. 3).

In summary, network Four is mostly different from other three conditions. If we
combine datasets of One, Two, and Three together and compared it to Four, along the X-
axis a Mann-Whitney test we detected that Thinklets generated after the third time (Mdn
= 0.32, N = 45) were statistically significantly different at the alpha = 0.05 level from
other conditions (Mdn = 0.56, N = 78, U = 926, p < 0.001, r = 0.47). We concluded
that as the students get more familiar with the scaffoldings and prompt in the system,
they start to use more strategies about outcome orientation. They also consider outcome
orientation and contextual representation together much more often in explaining their
understandings and problem-solving strategies about the math problem.

5 Conclusion

The findings of this study suggest that researchers can label andmeasure the connections
between various cognitive behaviors with roots in Winne’s SMART model. This paper
examines how assembling and translating operations by connecting contextual represen-
tation and data transformation could impact the performance of learners as they become
more familiar with the learning environment. Additionally, we understand how different
aspects or focuses of content can related within the assembling operation by connecting
contextual representation and outcome orientations. It sheds light on the possibility of
deconstructing the unit category in the SMART model to see different patterns.

The innovative approach applied in this paper connects automated detectors of
SRL constructs to ENA models based on the textual responses in the learning environ-
ment. Epistemic networks can illustrate the co-occurrences of SRL indicators to show
a dynamic pattern of SRL behaviors and stress the importance of connections among
micro-level SRL operations. Findings offer insights into how math problem-solving
languages can reveal and support the intentional SRL process. A range of analyses con-
ducted in this study demonstrated that contextual representation and data transformation
are associated with math problem-solving and have been heavily relied on by learners.
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Otherwise, students focus more on outcome orientation as they become proficient users
of the CueThink platform. When they get familiar with functions and tools embedded
in the system and generate more correct answers, we detect more outcome orientation
in the text.

It is pertinent to note that there are a limited number of students participating in
this study. The future potential of this work is investigating more students and their
performances on math problem solving. The current study has limitations in exploring
other operations within Winne’s [25] SMART model. In the future, we will work on
developing more constructs connecting SRL theories and the context of the learning
environment. Another challenging problem is how to interpret the connections of our
measuring constructs of self-regulated learning within a discourse of teaching and cur-
riculum design. One possible implication is that, in the math problem solving system,
we provide suggestions for students about making full use of numbers (numerical rep-
resentation), building relationships between values and equations (data transformation),
and having expectation and estimation about the final answer (outcome orientation). The
difference between the two performing groups is not cogent enough to persuade future
learners to learn from high-performing group, but it could be a method used for future
research. Also, it is a promising direction to consider learner behavioral events and tex-
tual responses together in understanding the continuing development of self-regulated
learning. It facilitates learning scientists to design more think-aloud activities and foster
students to verbalize and visualize their cognitive processes. However, we still have the
challenge of making sense of the trajectory nature of log data associated with discourse
data when the language is generated based on given prompts and questions. Addition-
ally, instead of only developing codes deductively, we might consider generating codes
inductively to better understand special learning environment and learners’ personality.
It is crucial to frame what is occurring in the internal world of the learner instead of fit-
ting learner words into a pre-structured framework [26]. It argues for the importance of
interpreting cultures in discourse rather than straying from textual contexts and relying
only on abstract concepts. Overall, this study is an exploratory learning journey, and we
will continue to appreciate the power of language in explaining learner behaviors and
thoughts.
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