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1 Introduction 

Mean values are widely used in management, economics, sociology, engineering 
and other areas of theory and practice. In statistics (see, for example, [8, 22]), mean 
values are aggregate representations of the varying characteristics of a group of 
homogeneous objects. Mean values cancel out random variations of a particular 
characteristic and tend to represent the effect caused by the main factors affecting 
it. Mean values allow us to compare the levels of the same characteristic in different 
groups of objects and to investigate the causes of such differences. 

It is known that it is impossible to define a universally applicable notion of 
the mean value which satisfies all desirable properties [1, 8]. Instead, different 
notions of the mean value are required for different problems and situations. 
However, in some applications, it may be unclear which of the known mean values 
should be used, and different means may point to different conclusions. Policy 
recommendations in such situations may become problematic [6, 8, 10, 12, 16]. 

Grabisch et al. [7] regarded mean values as idempotent aggregation functions and 
concluded that the class of such functions “is huge, making the problem of choosing 
the right function (or family) for a given application a difficult one”. 

In this paper, we consider new approaches to the definition of the mean value 
based on the ideas and methods of multicriteria optimization. Such means turn out to 
be multi-valued, i.e., represented by sets of points. These allow two interpretations, 
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either as the range of possible mean values in some specific situations (characterized 
by scale properties, such as equal importance or ordinality, and/or transfer princi-
ples), or as whole sets for the given sample. 

2 Definition of Mean Values as Nondominated Points 

Let X be the set of real numbers consisting of at least n ≥ 2 elements referred to as 
data or points. These elements are typically obtained as a result of measurement of 
some characteristic: 

X = {x1, x2, . . . , xn} . (1) 

These data are assumed homogeneous in the sense that they are obtained by utilizing
the same scale of measurement [21, 23]. We assume that the data (1) are quantitative, 
i.e., the measurement is performed either on the interval scale or on the ratio scale 
[15]. 

The elements of the set (1) can be ranked in the non-decreasing and non-
increasing order. 

X↑ =< x(1), x(2), . . . , x(n) >; X↓ =< x[1], x[2], . . . , x[n] >, (2) 

where x(1) ≤ x(2) ≤ . . . ≤ x(n) and x[1] ≥ x[2] ≥ . . . ≥ x[n]. In statistics, the set (1) is
typically referred to as a sample and its non-decreasing sequence X↑ as a variational
series.

Let Ø be an arbitrary fixed number (a point in Re). Its distance from any point 
xi from X is given by yi = |x - xi|. Then the distance from Ø to the dataset X can 
be characterized by the vector y = (y1, y2, . . . , yn). We can view this vector as the 
value of the vector criterion f (x) = (f1(x), f2(x), . . . , fn(x)), where fi(x) = |x - xi|, 
which is an element of the nonnegative quadrant .Ren+ = [0,+∞)n. 

Let P� be a preference relation (strict partial order) on .Ren+, where � is 
information about the preferences with respect to distance: if yP�y′, where y = f (x) 
and y′ = f (x′), then the point x is closer to the dataset X than x′. 

The relation P� generates the corresponding relation P� on the numeric axis Re: 
xP�x′ ⇐⇒ f (x)P�f (x′). 

Therefore, any candidate that we may choose as the closest to X and representing 
the set X must be nondominated under P� . If the set  G�(X) of nondominated under 
P� points is externally stable, we refer to all such points as pn-means (principal 
new means) and, more specifically (reflecting the information �), as the means with 
respect to P� . 

If there is no further information about the preferences of the DM on . Ren+, we  
obtain the Pareto relation P∅ defined as follows: 

yP∅ z ⇐⇒ yi ≤ zi, i  = 1, 2, . . .  , n; y 
= z.
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Relation P∅ generates the Pareto relation P∅ on Re: xP∅x′ ⇐⇒ f (x)P∅f (x′). 

Theorem 1 The set of all means of the dataset (1) with respect to P∅ is the segment 
G∅(X) = . X = [x(1), x(n)], where x(1) = mini∈N xi and x(n) = maxi∈N xi, N = {1, 2, 
. . .  ,n}. This set is externally stable. 

Therefore, the notion of the means with respect to P∅ is equivalent to the means 
in the sense of Cauchy. 

Proofs of this and the following theorems can be found in [19, 20]. 
Let us note that, if the function ϕ is increasing on Re+, then changing the original 

criteria fi(x) = |x - xi| by ϕ(fi(x)) does not change the set G∅(X). For example, one 
can use “smooth” criteria fi(x) = (x - xi)2. Therefore, the original use of formula 
fi(x) = |x - xi| as a measure of distance is not essential and is not a limiting 
assumption for the suggested approach. 

3 Mean Values for Equally Important Criteria 

In this section, we assume that all criteria are equally important [17] and denote 
this information E. In this case, the distance from the point x to the dataset X 
is represented by the preference relation PE on Re, which is defined by the two 
equivalent decision rules [17], where fi(x) = |x - xi|: 

xP Ex′ ⇐⇒ (
f(1)(x) ≤ f(1)

(
x′) , f(2)(x) ≤ f(2)

(
x′) , . . . , f(n)(x) ≤ f(n)

(
x′)) , 

and at least one of these inequalities is strict; 

xP Ex′ ⇐⇒ (
f[1](x) ≤ f[1]

(
x′) , f[2](x) ≤ f[2]

(
x′) , . . . , f[n](x) ≤ f[n]

(
x′)) , 

and at least one of these inequalities is strict. 
In this case, the pn-means (with respect to PE) (elements of the set GE(X)) are 

the points on the numerical axis which are nondominated under PE. 

Theorem 2 We have GE(X) ⊆ G∅(X) = . X, and the set GE(X) is externally stable. 

Note that, if the function ϕ is increasing on Re+, then changing the original 
criteria fi(x) to criteria ϕ(fi(x)) does not change the relation PE and the set GE(X). 

Let us consider examples of sets GE(X) constructed according to the methods 
described in Sect. 5. 

Example 1 Let n = 3 and X = {1, 2, 5}. In this example, GE(X) = [1.5, 3]. 

In the above example, the set GE(X) is a single line segment. However, for large 
n, this set may be the union of several segments, excluding their endpoints.
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Example 2 For n = 6 and different sets X, we have:  

GE ({10, 11, 15, 61, 107, 110}) = [10.5, 83) ∪ (83.5, 85) ∪ (106.5, 108) ; 

GE ({10, 11, 40, 55, 70, 110}) = [10.5, 18) ∪ (18; 67.5) ∪ (68, 75) ; 

GE ({10, 57, 61, 64, 109, 110}) = (56.5, 57.5) ∪ (58.5, 88.5) ∪ (108, 109.5] . 

Examples 1 and 2 also illustrate the following result. 

Theorem 3 Let the distance between two adjacent elements x(i) and x(i + 1) of the 
variational series (2) be the smallest among all other pairs of adjacent elements 
of this series, and let these two elements be uniquely defined. Then the midpoint 
xc = ½(x(i) + x(i + 1)) is an element of GE(X). Moreover, if x(i) is x(1) or if x(i + 1) is 
x(n), then xc is the left or, respectively, right, endpoint of the set GE(X). 

If x(1) 
= x(n) and (x(1), x(n)) 
⊂ GE(X), for some values of parameter s, the power 
mean. 

gs (X) =
(

1 

n 

n∑

i=1 

(xi)
s

)1\s 
, s 
= 0. 

is not the mean with respect to PE. This is because, as s increases on Re, the function 
gs(X), extended to preserve continuity, passes through all values from the interval 
(x(1), x(n)) [8]. However, we have the following result: 

Theorem 4 The arithmetic mean is a mean with respect to PE, i.e., g1(X)∈GE(X). 

Example 3 According to Example 2, for  X = {10, 57, 61, 64, 109, 110} we have: 
GE(X) = (56.5, 57.5) ∪ (58.5, 88.5) ∪ (108, 109.5]. In this example, the geometric 
mean g0(X) = 54.66
∈GE(X) and harmonic mean g−1(X) = 35.75
∈GE(X), and 
g1(X) = 68.5∈GE(X). In Example 1, for  X = {1, 2, 5}, we have  GE(X) = [1.5, 
3]. Here, the quadratic mean g2(X) = 3.162
∈GE(X), but g1(X) = 2.67∈GE(X). 

Theorem 5 The median is a mean with respect to PE, i.e., if n is an odd integer and 
the median is unique, we have .μ(X) = x(

n+1
2

) ∈ GE(X). If  n is an even number, 

the median is not unique and we have .μ(X) =
[
x( n

2 )
, x( n

2 +1)

]
⊆ GE(X). 

Examples 1 and 2 provide illustrations to the above theorem. 
It should be noted the following peculiarity of the means with respect to PE: if  

the points xi∈X and xj∈X, xi < xj, are included in GE(X), then the point xk∈X, such 
that xi < xk < xj, may not belong to GE(X)! 

Example 4 For n = 7 and different sets X, we have:  

X′ = {1, 2, 3, 6, 8, 9, 11} ,GE
(
X′) = [2; 3) ∪ (3; 8.5] ;
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X′′ = {1, 2, 3, 7, 8, 10, 11} ,GE
(
X′′) = [2; 3) ∪ (3.5; 9] . 

Here x(2), x(4)∈GE(X), whereas x(3) 
∈GE(X) for both sets X = X′ and X = X′′. 
Moreover, the point x(3) = 3 is a punctured point of the set GE(X′) (it is dominated 
under PE by the point x(5) = 8, and in its arbitrarily small neighborhood there are 
points nondominated under PE). 

This feature clearly violates the very principle of constructing means as points 
closest to points from X, and is not consistent with the intuitive concept of a mean 
value. Therefore, the presence of this feature can be considered as a paradox of 
means with respect to PE. 

4 Mean Values for Equally Important Criteria Measured 
on the First Ordered Metric Scale 

Let y be any vector estimate such that yi > yj. Consider any δ > 0 such that yi – 
δ ≥ yj + δ. Define the vector estimate z by replacing component yi by yi − δ and yj 
by yj + δ, but  yi – δ ≥ yj + δ. Moving from y to z reduces the larger deviation yi from 
one point in the sample and increases a smaller deviation yj from a different point, 
by the same amounts δ. The resulting set of distances becomes closer to the ideal 
set of minimally possible equal deviations. Assume that, for any y and δ described 
above, the vector estimate z is preferred to the original vector estimate y, in the sense 
that z is “closer” to X than y and is therefore more suitable for the definition of the 
mean. Denote � the information about the described principle. Such approach is an 
analogue of Pigou-Dalton’s principle of transfer for income distribution [2, 5]. This 
means that the equally important criteria have a common first ordered metric scale 
[4]. The preference relation PE�, generated on Ren by the joint information E and
�, is defined by the following decision rule [14, 18]: 

xP E�x′ ⇐⇒ f[1](x) ≤ f[1]
(
x′) , f[1](x) + f[2](x) ≤ f[1]

(
x′) + f[2]

(
x′) , . . .  

. . . f[1](x) + f[2](x) + · · · +  f[n](x)≤f[1]
(
x′) +f[2]

(
x′)+ . . . f[n]

(
x′) , 

and at least one of these inequalities is strict. In this case, the pn-means are the points 
that are nondominated under PE�. Because PE� ⊃ PE, we have  GE(X) ⊇ GE�(X). 

Theorem 6 The arithmetic mean is a mean with respect to PE�, i.e., g1(X)∈GE�(X). 

Theorem 7 If n is odd, the median (which is uniquely defined), is a mean with 
respect to PE�, i.e., μ(X) ∈ GE�(X). If n is even and the median is not uniquely 
defined, we only have μ(X) ∩ GE�(X) 
= ∅. 

Example 5 If n = 5 and X = {1, 2, 3, 5, 11}, we have  GE�(X) = [3, 6], μ(X) = 3 
and g1(X) = 4.4. If n = 4 and X = {10, 11, 12, 110}, we have GE�(X) = [11.5,
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60], μ(X) = [11, 12] and g1(X) = 35.75. If X = {10, 11, 20, 110}, we have  
GE�(X) = [15.5, 60], μ(X) = [11, 20] and g1(X) = 37.75. 

Let us define the set H = {1, 2, . . . , h}, where h = �(n + 1)/2� is the integer part 
of (n + 1)/2. 

Theorem 8 The set GE�(X) is externally stable and coincides with the segment [α, 
β], where 

α = 
1 

2 
minp∈H

(
x(p) + x(n+1−p)

)
, β  = 

1 

2 
maxp∈H

(
x(p) + x(n+1−p)

)
(3) 

Example 6 For n = 5, we have h = �(n + 1)/2� =  3 and H = {1, 2, 3}. For  X = {1, 
2, 7, 8, 11}, using Theorem 8, we have:  

α = 
1 

2 
min

{
x(1) + x(5), x(2) + x(4), x(3) + x(3)

} = 
1 

2 
min {1 + 11, 2 + 8, 7 + 7} 

= 
1 

2 
min {12, 10, 14} = 5; 

β = 
1 

2 
max

{
x(1) + x(5), x(2) + x(4), x(3) + x(3)

} = 
1 

2 
max {12, 10, 14} = 7; 

Therefore, GE�(X) = [α, β] = [5, 7]. 

5 On the Construction of Sets of Mean Values 

For the construction of the set GE(X), we can use known methods of multicriteria 
optimization developed for the construction of the sets of nondominated variants 
[17]. Such methods utilize families of functions that are increasing (decreasing), 
or at least non-decreasing (non-increasing) with respect to PE. For example, we 
can solve a parametric program which minimizes the function of single variable 
ψ(f (x)|c) = minπ∈� maxi∈N {fπ(i)(x) –  ci} on the set X, by varying the vector 
parameter .c ∈ f

(
X

)
. However, even if n is not very large, the number n! of terms  

of this function (with respect to which the maximization is performed) turns out 
unacceptably large. 

Taking into account that the set X is one-dimensional, we can utilize a different 
approach. Namely, we can consider a dense grid with the small step h which covers 
the set X, and identify the nondominated (with respect to PE) points of this grid 
by simple enumeration [9]. The step h depends on the required precision and can
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decrease in the process of calculations of the set GE(X). We used this approach for 
the construction of the set GE(X) in Examples 1 Ë 2. 

Example 7 Let us demonstrate the construction of the set GE(X) for  X = {1, 2, 5, 
9, 11}. Using computer for the calculations, while reducing the step length h, we  
obtain the following results: 

h = 1: [2, 7] ∪ [9, 9]. 
h = 0.1: [1.5, 7.4] ∪ [8.6, 9.4]. 
h = 0.01: [1.50, 7.49] ∪ [8.51, 9.49]. 
h = 0.001: [1.500, 7.499] ∪ [8.501, 9.499]. 
h = 0.0001: [1.5000, 7.4999] ∪ [8.5001, 9.4999] 

Using the enumeration approach with h = 0.01, we found out that the point 4.5 
dominates the points 7.5 and 8.5. Similarly, the point 2.5 dominates the point 9.5. 
Therefore, by Theorem 2, we have  GE(X) = [1.5, 7.5) ∪ (8.5, 9.5). 

Let us highlight another result that may be useful in the construction of the set 
GE(X). 

Theorem 9 Let vector estimates of all x∈X be located at the points of some uniform 
grid covering X. Then, in order to test if any grid point is a mean with respect to PE, 
it suffices to compare its vector estimate only with the vector estimates of all the 
other points of the grid. 

Let us note that the uniform grid required by the conditions of Theorem 9 
can always be constructed if all points in X are rational numbers. In practical 
applications, these would typically be integer numbers or decimal fractions. 

It is worth noting that it is easier to construct the set of means GE�(X) than the 
set GE(X). According to Theorem 8, the set GE�(X) is easily found by calculating 
the endpoints α and β of the segment [α, β] using formulae (3) – see Example 6. 

6 On Comparing Multi-valued Means 

In practice, it is important that we can compare the mean values measured on 
the same scale. For the means that are uniquely defined, this is a simple task of 
comparing the two numerical values. In the case of multi-valued means, in statistics, 
it is common to substitute such means by a single number, e.g., in the case of a 
median when n is an even number. 

The set G�(X) consists of l intervals with the endpoints x1, x2; x3, x4; . . . ; 
x2l-1, x2l, and these intervals do not intersect with each other. Define the length 
D�(X) of the set  G�(X) as the sum of the lengths of all these intervals: . D�(X) =∑l

k=1

∣∣x2k − x2k−1
∣∣. Furthermore, define .D�

x (X) the length of the part of the set 
G�(X) that is located to the right of the point x. It includes the (part) of one interval
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and all the other intervals located to the right of x. The relative length .d�
x (X) is 

defined as the ratio .d�
x (X) = .D�

x (X): D�(X). 
Because none of the points of the set G�(X) has any advantages (in the sense of 

representing the sample) compared to its other points, any of them may be regarded 
as an equally valid candidate for the choice of the mean. This is analogous to the 
principle of insufficient reason for decision making under ignorance [13]. Using 
first-order stochastic dominance [11], we say that the mean G�(X′) is not less than 
the mean G�(X′′) and state this as G�(X′)) � G�(X′′), if .d�

x

(
X′) ≥ .d�

x

(
X′′) for 

each x∈Re. If the latter inequality is strict for at least one x∈Re, the former mean is 
greater than the latter. This relationship between the means (“is not less than”) is a 
partial quasi-order. The corresponding relation “is greater than” is denoted � and is 
a partial strict order (it is irreflexive and transitive). This strict relation is essentially a 
probabilistic dominance relation, or a strict first-order stochastic dominance relation 
[11]. Note that we have .d�

x (X) = 1−F(x), where F(x) is the cumulative distribution 
function corresponding to the uniform distribution with the density equal to 1 / 
D�(X) on  G�(X) and equal to zero outside G�(X). 

It is clear that the relation � is weak in the sense that it would typically not 
result in a definitive comparison of the means. Relation � can be extended using the 
ideas of second-order stochastic dominance, but this approach does not appear to be 
sufficiently effective in practice either. 

Another approach would be to “compress” the means that are not uniquely 
defined to single-valued means. However, this would lead to a loss of information, 
and the results of comparison would be approximate. For example, let the mean 
G�(X) consist of several not intersecting intervals defined by the endpoints x1, x2; 
x3, x4; . . . ; x2l-1, x2l. We can represent this mean by its the centre of mass x�(X) and 
refer to it as the centroid mean. 

Example 8 Let GE(X′) = [1, 2) ∪ (5, 8) and GE(X′′) = [1.5, 4.5] ∪ (8, 9]. We have: 

xE
(
X′) = (1.5 · 1 + 6.5 · 3) /4 = 5.25; xE

(
X′′) = (3 · 3 + 8.5 · 1) /4 = 4.375. 

Because 5.25 > 4.375, we can accept that the mean GE(X′) is greater than GE(X′′). 
It is useful to note that, if G�(X′) � G�(X′′), then x�(X′) >  x�(X′′) [11]. 
It is worth noting that it easier to compare the means GE�(X′) and GE�(X′′) than 

the means GE(X′) and GE(X′′), because the former are the segments [α′, β ′] and 
[α′′, β′′] respectively. Because the graph of the function .dE�

x (X) is a broken line 
consisting of the single segment [α, β] on which it decreases from 1 to 0, GE�(X′) 
GE�(X′′) is true if and only if α′ ≥ α′′ and β ′ ≥ β′′. 

For the simplified application of the mean GE�, we can represent the segment 
[α, β] by its midpoint γ = ½ (α + β), which can be referred to as the centroid mean 
(with respect to PE�). 

Example 9 The means of the real GDP per capita in Europe calculated based on the 
data from Eurostat [3] are shown in Table 1 and Fig. 1.



Mean Values: A Multicriterial Analysis 265

Table 1 Mean real GDP per capita in Europe (in Euro) 

Year 2012 2013 2014 2015 2016 2017 2018 2019 

m 25,741 25,825 26,257 27,063 27,564 28,274 28,909 29,249 
μ 21,780 20,400 20,250 21,020 22,270 23,200 24,120 24,570 
α 19,720 19,745 20,250 21,020 21,995 22,840 23,245 23,485 
β 40,840 41,310 42,015 42,970 43,850 43,750 44,335 44,545 
γ 30,280 30,528 31,133 31,995 32,923 33,295 33,790 34,015 

value, 1000 euro 

year2012 2013 2014 2015 2016 2017 2018 2019 

20 

25 

45 

35 

40 

30 

β 

α 

γ 

m 
μ 

 

Fig. 1 Means of the GDP per capita in Europe 

Table 1 shows that the GDP per capita m is increasing in the period from 2012 
to 2019, but the median GDP per capita μ is decreasing until 2014 and is increasing 
afterwards. Therefore, it is impossible to make a definite conclusion about the GDP 
growth in the given period. However, the mean GE� (defined by its boundaries α 
and β) is increasing (there is only an insignificant decrease of β in 2017), and the 
condensed mean γ is increasing over the whole period. This observation supports 
the conclusion that the GDP per capita in Europe has been increasing in the given 
period. 

7 On Stability of Pn-Means 

The question of stability of the means with respect to small perturbations of the data 
(1) is important from both theoretical and practical points of view. 

Because G∅(X) = . X = [x(1); x(n)], a small change of the values xi may lead only 
to small changes of x(1) and x(n). Therefore, the set of the means G∅(X) is stable.
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However, the mean with respect to PE may not be stable in the sense that a very 
small perturbation of a single point in X may lead to a noticeable change of the set 
GE(X). The following examples illustrate this possibility. 

Example 10 For X = {1, 2, 3}, we have  GE(X) = [1.5, 2.5]. However, for Xε = {1, 
2 − ε, 3}, where ε > 0 is very small, we have GE(Xε) = [1.5 – 0.5ε, 2]. The right 
endpoint of the set of the means with respect to PE has changed by 0.5. 

Example 11 For X = {10, 25, 40, 110}, we have  GE(X) = [25, 60]. However, for 
Xε = {10, 25, 40 + ε, 110}, where ε > 0 is very small, we have GE(Xε) = [17.5, 60]. 
It is interesting that, although only one point in X has increased by a very small ε, 
the left endpoint of the set of the means (with respect to PE) has decreased by 7.5. 

Let us now consider the issue of stability of the mean with respect to PE�. 

Example 12 In the setting of Example 10, we have  GE�(X) = {2} and GE�(Xε) = [2 
− ε, 2]. Here, a change of one of the data points in X by ε leads to the change of 
one of the endpoints of the set of the means with respect to PE� by the same ε. 

Example 13 Under the conditions of Example 11, we have  GE�(X) = [32.5, 60] Ë 
GE�(Xε) = [32.5 + 0.5ε, 60]. In this example, a change of one of the data points in 
X by ε results in the change of one of the endpoints for the set of the means by 0.5ε. 

Consider the general case. Suppose that the dataset X stated by (1) has changed 
to the set Xε = {x1 + ε1, x2 + ε2, . . . , xn + εn}, where ε1, ε2, . . .  , εn are arbitrary 
numbers. 

Theorem 10 The mean with respect to PE� is stable in the following sense: If X is 
changed to Xε, the endpoints of the set of the means GE�(X) = [α, β] do not change 
by more than the following value: 

max{|ε1|, |ε2|, . . . , |εn|}. 
Therefore, the means with respect to P∅ and PE� are stable with respect to 

small perturbations of the dataset (1), while the means with respect to PE may be 
noticeably unstable. 

8 The Case of Data with Repetitions 

Assume that the dataset allows repetitions, i.e., the point x1 occurs β1 times, x2 
occurs β2 times, . . . , xn occurs βn times. In this case, the dataset (1) is replaced by 
Table 2. 

Table 2 Data with 
repetitions 

Value xi x1 x2 . . .  xn 
Weight β i β1 β2 . . .  βn 
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In statistics, the numbers β i are referred to as weights or (absolute) frequencies, 
and they are used for the calculation of weighted means. 

All our results obtained above, starting with the definition of pn-means, are 
extended to the described more general case. For this, we consider the dataset 
consisting of the repeating values x1 (β1 times), x2 (β2 times) and so on, i.e., we 
restate the data in Table 2 as follows: 

⎛ 

⎜ 
⎝x1, . . . , x1︸ ︷︷ ︸

β1 

, x2, . . . , x2︸ ︷︷ ︸
β2 

, . . . , xn, . . . , xn︸ ︷︷ ︸
βn 

⎞ 

⎟ 
⎠ . 

The use of the described methods of construction of pn-means in this case may be 
computationally demanding as the dimension of the problem becomes very large 
for large values β i. To overcome this problem, we may use decision rules developed 
in theory of qualitative criteria importance measured on continuous scale [18]. In 
this approach, we treat the integer numbers β i as quantitative coefficients reflecting 
the importance of criteria and use notation Pβ and Pβ� to denote the corresponding 
relations instead of PE and PE�. 

To state the relevant decision rules for the vector estimates y and z, define the 
following set and values: 

W (y, z) = {y1} ∪ {y2} ∪ · · · ∪ {ym} ∪ {z1} ∪ {z2} ∪ · · · ∪ {zm} 
= {

w1, w2, . . . , wq

}
, w1 > w2 > · · ·  > wq; 

=
∑

i:yi≥wk 
βi , bk(z) =

∑

i:zi≥wk 
βi bk(y) =

∑

i:yi≥wk 
βi 

=
∑

i:zi≥wk 
βi , k  = 1, 2, . . .  , q  − 1; 

dk(y) = 
k∑

j=1 

bj (y)
(
wj − wj+1

)
, k  = 1, 2, . . . , q  − 1. 

Decision rule for Pβ: 

yP β z ⇐⇒ bk(y) ≤ bk(z), k = 1, 2, . . . , q  − 1, (4) 

and at least one of these inequalities is strict.
Decision rule for Pβ�: 

yP β�z ⇐⇒ dk(y) ≤ dk(z), k = 1, 2, . . . , q–1, (5)
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Table 3 Data in Example 14 

Value xi 1 2 4 5 7 9 11 
Weight β i 2 1 4 1 2 3 1 

Table 4 Data for Example 15 

Number i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Value x(i) 1 1 2 4 4 4 4 5 7 7 9 9 9 11 

and at least one of these inequalities is strict. 

Example 14 Consider the dataset in Table 3. 

Using decision rules (4) and (5), let us compare points 5 and 3 which have the 
following vector estimates: y = f (5) = (4, 3, 1, 0, 2, 4, 6) and z = f (3) = (2, 1, 1, 2,  
4, 6, 8). In this case, W = (8, 6, 4, 3, 2, 1, 0). Therefore,  q = 7. We have: 

b(y) = (b1(y), b2(y), . . . , b6(y)) = (0, 1, 6, 7, 9, 13);  
b(z) = (b1(z), b2(z), . . . , b6(z)) = (1, 4, 6, 6, 9, 14);  
d(y) = (d1(y), d2(y), . . .  , d6(y)) = (0, 2, 8, 15, 24, 37); 
d(z) = (d1(z), d2(z), . . . , d6(z)) = (2, 10, 16, 22, 31, 45). 

Note that b1(y) = 0 <  b1(z) = 1 but  b4(y) = 7 >  b1(z) = 6. According to (4), neither 
yPβz nor zPβy is true. However, because all 6 inequalities (5) are true and at least 
one of them is strict, we have yPβ�z. 

Note that formula (3) is easier to use if we first rearrange data with repetitions in 
the form (1). 

Example 15 Consider the data from Table 3 of Example 14. We can rearrange these 
data as in Table 4 in which we specify the ordinal number i for each point and the 
corresponding value x(i). 

Using formulae (3), we consecutively calculate: 

α = 1 
2 min

{
x(1) + x(14), x(2) + x(13), x(3) + x(12), x(4) + x(11), x(5) + x(10), 

x(6) + x(9), x(7) + x(8)

} = 
= 1 

2 min {1 + 11, 1 + 9, 2 + 9, 4 + 9, 4 + 7, 4 + 7, 4 + 5} 
= 1 

2 min {12, 10, 11, 13, 11, 9} = 4.5; 

β = 1 
2 max

{
x(1) + x(14), x(2) + x(13), x(3) + x(12), x(4) + x(11), x(5) + x(10), 

x(6) + x(9), x(7) + x(8)

} = 
= 1 

2 max {12, 10, 11, 13, 11, 11, 9} = 6.5. 

Therefore, Gβ�(X) = [4.5, 6.5].
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9 Conclusion 

In this paper, we introduced new notions of the means based on unifying ideas of 
multicriteria optimization. These notions do not require certain properties of the 
means, which are typically assumed by the conventional approaches in statistics and 
which can sometimes complicate the choice of a suitable mean in some problems 
[8]. Instead, our approach utilizes the distance from a current point to each point 
of the dataset. The proximity from a current point to all points in the dataset is 
characterized by the vector components of which are the distances between the 
current point and each point of the dataset. The means are defined as the points 
which are nondominated with respect to the preference relation among the vectors of 
distances characterized by scale properties, such as equal importance or ordinality, 
and/or transfer principles. 

It turns out that such means are typically not unique and that their sets may have 
a complex structure. This potentially complicates the calculation of such means for 
large samples. However, the advances in computer and software technologies make 
this computational issue less problematic. 

The suggested means allow two different interpretations, either as the range of 
possible mean values in some specific situations characterized by scale properties, 
or as whole sets that characterize the chosen sample. 

Among the new means introduced in this paper, the means defined with respect to 
relation PE� should be of the most practical interest. The set GE�(X) of such means 
has a simple structure (it is a segment [α, β]), and it is stable with respect to small 
perturbations of the dataset. Furthermore, there exists a simple exact method for the 
calculation of the set GE�(X). Namely, we have suggested analytical formulae for 
the calculation of the endpoints α Ë β. 

In applications, the comparison of different multi-valued means developed in 
our paper may be uninteresting because they usually turn out to be incomparable 
under the corresponding partial preference relation. However, in some problems, the 
described multi-valued approach has advantages over the use of known means (see, 
e.g., Example 9). If, instead of the set of pn-means, we consider their corresponding 
centres of mass, then such centroid means are uniquely defined. The latter are 
equally operational as the conventional means and but are less informative than the 
original pn-means. For example, instead of the mean GE�(X) = [α, β], we may use 
the corresponding centroid mean (with respect to PE�) γ = ½ (α + β). 

The suggested new means are a useful complement to the range of conventional 
means used in statistics. Among further research avenues arising from our paper, 
let us note development of new pn-means under different assumptions about the 
properties of the scales of measurement and corresponding computational methods. 
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