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Aims and Scope 
Optimization has continued to expand in all directions at an astonishing rate. New 
algorithmic and theoretical techniques are continually developing and the diffusion 
into other disciplines is proceeding at a rapid pace, with a spot light on machine 
learning, artificial intelligence, and quantum computing. Our knowledge of all 
aspects of the field has grown even more profound. At the same time, one of the 
most striking trends in optimization is the constantly increasing emphasis on the 
interdisciplinary nature of the field. Optimization has been a basic tool in areas 
not limited to applied mathematics, engineering, medicine, economics, computer 
science, operations research, and other sciences. 

The series Springer Optimization and Its Applications (SOIA) aims to publish 
state-of-the-art expository works (monographs, contributed volumes, textbooks, 
handbooks) that focus on theory, methods, and applications of optimization. Topics 
covered include, but are not limited to, nonlinear optimization, combinatorial opti-
mization, continuous optimization, stochastic optimization, Bayesian optimization, 
optimal control, discrete optimization, multi-objective optimization, and more. New 
to the series portfolio include Works at the intersection of optimization and machine 
learning, artificial intelligence, and quantum computing. 

Volumes from this series are indexed by Web of Science, zbMATH, Mathematical 
Reviews, and SCOPUS.
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Preface 

This book presents the state of the art in the emerging field of data science which 
includes models for layered security, protection of large gathering sites, cancer 
diagnostics, self-driving cars and other applications with catastrophic consequences 
of wrong decisions. The manipulability of aggregation procedures for the case of 
large numbers of voters is analyzed from a theoretical point of view and justified 
by computational experiments involving at least an order of magnitude larger 
number of voters. Many tree-type structures are considered: from phylogenetic 
trees representing the main patterns of vertical descent through consensus trees 
and super- trees widely used in evolutionary studies to combine phylogenetic 
information contained in individual gene trees. The statistical part of this book 
studies an impact of data mining and modeling on predictability assessment of time 
series. New notions of mean values based on ideas of multicriteria optimization are 
compared to their conventional definitions leading to fresh algorithmic approaches. 
To summarize, the book presents methods for automated analysis of patterns 
and models for data of different nature with applications ranging from scientific 
discovery to business intelligence and analytics. The style of the written chapters 
allows to recommend this book for senior undergraduate and graduate data mining 
courses providing a broad yet in-depth review integrating novel concepts from 
machine learning and statistics. The main parts of the book include exploratory data 
analysis, pattern mining, clustering, and classification supported by real life case 
studies. 

Students and professionals specializing in computer and management science, 
data mining for high-dimensional data, complex graphs, and networks will benefit 
from many cutting-edge ideas and practically motivated case studies. 

From a technical point of view, each paper has received at least two referee 
reports, and almost all papers are presented at the International conference “Data 
Analysis, Optimization and Their Applications” on the occasion of Boris Mirkin’s 
80th birthday, January, 30–31, 2023. Dolgoprudny, Moscow Region, Moscow 
Institute of Physics and Technology. 

With the purpose to keep the atmosphere of that conference, we have included 
the Book of Abstracts and its schedule. We would like to thank all speakers and
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contributors to the conference and volume dedicated to Boris Mirkin’s 80th birthday. 
Without the crucial support on organizational issues, the conference and the book 
could not have become a reality. Here is the list of our supporters and reviewers: 

Fuad Aleskerov, NRU HSE, Russia 
Daniel Berend, Ben Gurion University, Israel 
Jean Diatta, University of la Réunion, France 
Trevor Fenner, University of London, UK 
Sergei Frenkel, FRC Computer Science and Control, Russia 
Alexander Gasnikov, MIPT, Russia 
Boris Goldengorin, University of Florida, USA 
Eugene Koonin, NIH/NLM/NCBI, USA 
Sergei Kuznetsov, NRU HSE, Russia 
Boris Kovalerchuk, Central Washington University, USA 
Leonid Litinskii, ISA RAS, Russia 
Vladimir Makarenkov, University of Quebec in Montreal, Canada 
Magomed Malsagov, ISA RAS, Russia 
Boris Mirkin, NRU HSE, Russia and UL London, UK 
Susana Nascimento, New University of Lisbon, Portugal 
Alexandre Orlov, Bauman Moscow State Technical University, Russia 
Panos Pardalos, University of Florida, USA 
Natalia Pavlova, MIPT, Russia 
Andrei Raigorodskii, MIPT, Russia 
Alexey Remizov, MIPT, Russia 
Fred Roberts, Rutgers University, USA 
Yuri Sidel’nikov, MAI, Russia 
Konstantin Vorontsov, Lomonosov MSU, Russia 

Tashkent, Uzbekistan Boris Goldengorin 
Gainesville, FL, USA 
Moscow, Russia Sergei Kuznetsov
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International Conference “Data Analysis, Optimization 
and Their Applications” on the Occasion of Boris Mirkin’s 
80th Birthday 

(January 30–31, 2023. Dolgoprudny, Moscow Region, Moscow Institute of Physics 
and Technology) 

https://mipt.ru/education/chairs/dm/conferences/data-analysis-optimization-
and-their-applications-2023.php 

The conference is organized in honor of professor Boris Mirkin’s 80th birthday 
to celebrate his contributions in the fields of Data Science that he introduced or 
extensively explored: Anomalous Cluster, Bi-cluster, Categorical Factor Analysis, 
Chain Order Partition, Complementary Partition Criterion, Core-Shell Cluster, Data 
Recovery Approach, Distance Between Partitions, Federation Consensus Rule, Gen-
eralization in Taxonomy, Interval Order, Linear Stratification, Mapping Between 
Evolutionary Trees, Minkowski Weighted Feature Clustering, Parsimonious Gene 
History Reconstruction, Single Cluster Clustering, Structured Partition, Taxonomic 
Rank of Results, Tri-clustering. 

Organization Committee 

Fuad Aleskerov, NRU HSE, Russia 
Trevor Fenner, University of London, UK 
Alexander Gasnikov, MIPT, Russia 
Fred Roberts, Rutgers University, USA 
Boris Goldengorin, University of Groningen, The Netherlands 
Sergei Kuznetsov, NRU HSE,Russia, Co-Chair 
Boris Kovalerchuk, Central Washington University, USA 
Vladimir Makarenkov, University of Quebec in Montreal, Canada 
Panos Pardalos, University of Florida, USA
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Schedule 

Monday, 30 January 2023 

Time Speaker, Table of Contents 
10:30–10:55 Conference Opening 
11:00–11:25 Sergei Kuznetsov 
11:30–11:55 Boris Mirkin 
12:00–12:25 Soroosh Shalileh 

Coffee break 
13:00–13:25 Guy Leshem 
13:30–13:55 Yakov Karandashev 
14:00–14:25 Maria Pilgun 

Lunch 
15:00–15:25 Konstantin Vorontsov 
15:30–15:55 Maria Poptsova 
16:0016:25 Fred Roberts 

Coffee break 
17:00–17:25 Eugene Koonin 
17:30–17:55 Boris Goldengorin 
18:00–18:25 Vladimir Makarenkov 

19:00 Conference Dinner, https://theorybar.ru/ 

Tuesday, 31 January 2023 

Time Speaker 
11:00–11:25 Fuad Aleskerov 
11:30–11:55 Alexander Lepskiy 
12:00–12:25 Irina Maximova 

Coffee break 
13:00–13:25 Yuliya A Veselova 
13:30–13:55 Tendai Chikake 
14:00–14:25 Alexey Samosyuk 

Lunch 
15:00–15:25 Alexander Rubchinsky 
15:30–15:55 Susana Nascimento 
16:00–16:25 Dmitry Frolov 

Coffee break 
17:00–17:25 Aleksandr Beznosikov 
17:30–17:55 E Dov Neimand  
18:00–18:25 Boris Kovalerchuk 
18:30–18:55 Alexander Karpov
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Biclustering, n-Clustering and Formal Concept Analysis 

Authors Sergei Kuznetsov 
Abstract The term bi-clustering was coined by Boris Mirkin to denote grouping objects 

based not on a similarity or distance notion, but on commonality of shared 
attributes, so that two types of entities – objects and attributes – are grouped at 
the same type. Formal Concept Analysis, based on Galois connections and 
lattice of closed sets, proposes a model of a strict bi-cluster – called (formal) 
concept – where a subset of objects shares all attributes from a subset of binary 
attributes. The order on concepts is closely related to implicational 
dependencies, both of exact (like functional dependencies) and approximate 
(liked association rules) nature. Several well-known types of bi-clusters can be 
efficiently reduced to concepts, thus taking advantage of machinery developed 
for processing concepts. We consider some useful relaxations of concepts and 
their generalization to multidimensional and unstructured data. 

Affiliation National Research University Higher School of Economics, Moscow, Russian 
Federation 

Contact skuznetsov@hse.ru 
Keywords Bi-cluster, n-cluster, formal concept, lattice of closed sets, dependency, 

association rule 

Clustering as Empirical Classification 

Authors Boris Mirkin 
Abstract Clustering can be considered within various frameworks: machine learning, data 

science, systems analysis. We consider it part of the science of classification 
established by Aristotle a while ago. Unfortunately, the science of classification 
is not well developed yet, although one may distinguish among its goals and 
structures. Classification goals include: domain structuring, relating different 
aspects of phenomena, and knowledge representation. Classification structures 
included those faceted, ranking, partition, typology, and hierarchy. We analyze 
the current state of clustering research with respect to classification structures 
and goals. 

Affiliation NRU HSE, Moscow, RU and UL London, UK, 
Contact bmirkin@hse.ru 
Keywords Clustering, Classification, Clustering goals

skuznetsov@hse.ru
skuznetsov@hse.ru
bmirkin@hse.ru
bmirkin@hse.ru
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Classification Using Marginalized Maximum Likelihood 
Estimation and Black-Box Variational Inference 

Authors Soroosh Shalileh 
Abstract Based upon variational inference (VI), a new set of 

classification algorithms has recently emerged. This set of 
algorithms aims (A) to increase generalization power; (B) 
to decrease computational complexity. However, the 
complex math and implementation considerations have led 
to the emergence of black-box variational inference 
methods (BBVI). Relying on these principles, we assume 
the existence of a set of latent variables during the 
generation of data points. We subsequently marginalize the 
conventional maximum likelihood objective function w.r.t 
this set of latent variables and then apply black-box 
variational inference to estimate the model’s parameters. 
We evaluate the performance of the proposed method by 
comparing the results obtained from the application of our 
method to realworld and synthetic data sets with those 
obtained using basic and state-ofart classification 
algorithms. We proceed and scrutinize the impact: (1) the 
existence of non-informative features at various 
dimensionalities, (2) the imbalanced data representation, 
(3) non-linear data sets, and (4) different data set size on 
the performance of algorithms under consideration. The 
results obtained prove to be encouraging and effective. 

Affiliation Center for Language and Brain, NRU HSE University, 
Moscow, Russian Federation 

Contact sr.shalileh@gmail.com 
Keywords Automatic differentiation, Classification with Black Box 25 

Variational Inference, Variational Inference, Classification

sr.shalileh@gmail.com
sr.shalileh@gmail.com
sr.shalileh@gmail.com
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Purifying Data by Machine Learning with Certainty Levels 

Authors Shlomi Dolev, Guy Leshem 
Abstract For autonomic computing, self-managing systems, and 

decision-making under uncertainty and faults, in many cases we 
are using machine learning models and combine them to solve 
any problem. This models uses a dataset, or a set of data items, 
and data item is a vector of feature values and a classification. In 
many cases, these data sets include outlier and/or misleading data 
items that were created by input device malfunctions or were 
maliciously inserted to lead the machine learning to wrong 
conclusions. A reliable machine learning model must be able to 
handle a corrupted data set; otherwise, a malfunctioning input 
device that corrupts a portion of the data set or malicious 
adversary may lead to inaccurate classifications. Therefore, the 
challenge is to find an effective method to evaluate and increase 
the certainty level of the learning process as much as possible. 
This work introduces the use of a certainty level measure to 
obtain better classification capability in the presence of corrupted 
or malicious data items. Assuming we know the data distribution, 
e.g., is a normal distribution (which is a reasonable assumption in 
a large amount of data items) and/or a known upper bound on the 
given number of corrupted data items, our techniques define a 
certainty level for classifications. Another approach that will be 
presented in this work suggests enhancing the random forest 
techniques (the original model was developed by Leo Breiman) 
to cope with corrupted data items by augmenting the certainty 
level for the classification obtained in each leaf in the forest. This 
method is of independent interest that of significantly improving 
the classification of the random forest machine learning 
technique in less severe settings. 

Affiliation Dolev Shlomi, Ben-Gurion University of the Negev, Israel; 
Department of Computer Science Ashkelon Academic College, 
Israel 

Contact dolev@cs.bgu.ac.il, gleshem2525@gmail.com 
Keywords Data corruption, PAC learning, Machine learning, Certainty level

dolev@cs.bgu.ac.il,
dolev@cs.bgu.ac.il,
dolev@cs.bgu.ac.il,
dolev@cs.bgu.ac.il,
gleshem2525@gmail.com
gleshem2525@gmail.com
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Anomaly Detection with Neural Network Using a Generator 

Authors A.S. Markov, E.Yu. Kotlyarov, N.P. Anosova, V.A. Popov, Yakov 
Karandashev, D.E. Apushkinskaya 

Abstract This paper concerns with the problem of detecting anomalies on X-ray images 
taken by full-body scanners (FBS). Our previous work describes the sequence of 
image preprocessing methods used to convert the original images, which are 
produced with FBS, to images with visually distinguishable anomalies. In this 
paper, we focus on development of the proposed methods, including the 
addition of preprocessing methods and the creation of generator which can 
produce synthetic anomalies. Examples of processed images are given. The 
results of using a neural network for anomaly detection are shown. 

Affiliation Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian 
Federation 

Contact to.asmarkov@gmail.com,tyztot@gmail.com,anosova-np@rudn.ru, 
popov-va@rudn.ru,karandashev@niisi.ras.ru,apushkinskaya@gmail.com 

Keywords Full-body scanner, X-ray image, anomaly detection, image histogram 
equalization, generator, neural network, U-Net 

Data and Text Interpretation in Social Media: 
Urban Planning Conflicts 

Authors Maria Pilgun, Nailia Gabdrakhmanova 
Abstract The relevance of this study is determined by the need to develop technologies 

for effective urban systems management and resolution of urban planning 
conflicts. The paper presents an algorithm for analyzing urban planning 
conflicts on the example of data and text interpretation in social media. The 
material for the study was data from social networks, microblogging, blogs, 
instant messaging, forums, reviews, video hosting services, thematic portals, 
online media, print media, and TV related to the construction of the Big circle 
metro line (Southern section) in Moscow (Russian Federation). Data collection: 
1 October 2020–10 June 2021. Number of tokens: 62 657 289. To analyze the 
content of social media, a multi-modal approach was used. The paper presents 
the results of research on the development of methods and approaches for 
constructing mathematical and neural network models for analyzing the social 
media users’ perceptions based on the user generated content and on digital 
footprints of users. Artificial neural networks, differential equations, and 
mathematical statistics were involved in building the models. Differential 
equations of dynamic systems were based on observations enabled by machine 
learning. In combination with mathematical and neural network model, the 
developed approaches made it possible to draw a conclusion about the tense 
situation, identify complaints of residents to constructors and city authorities, 
and propose recommendations to resolve and prevent conflicts. 

Affiliation Russian State Social University, Moscow, Russian Federation, Peoples’ 
Friendship University of Russia, Moscow, Russia, Russian Federation 

Contact pilgunm@yandex.ru,gabd-nelli@yandex.ru 
Keywords Time series, neural networks, stochastic process, differential equation, urban 

environment, social tension, social media

to.asmarkov@gmail.com, tyztot@gmail.com, anosova-np@rudn.ru,
to.asmarkov@gmail.com, tyztot@gmail.com, anosova-np@rudn.ru,
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Rethinking Probabilistic Topic Modeling from the Point 
of View of Classical Non-Bayesian Regularization 

Authors Konstantin Vorontsov 
Abstract Probabilistic topic modeling with hundreds of its models and 

applications has been an efficient text analysis technique for almost 
twenty years. This research area has evolved mostly within the 
frame of the Bayesian learning theory. For a long time, the 
possibility of learning topic models with a simpler conventional 
(non-Bayesian) regularization remained underestimated and rarely 
used. The framework of additive regularization for topic modeling 
(ARTM) fills this gap. It dramatically simplifies the model inference 
and opens up new possibilities for combining topic models by just 
adding their regularizers. This makes the ARTM a tool for 
synthesizing models with desired properties and gives rise to 
developing the fast online algorithms in the BigARTM open-source 
environment equipped with a modular extensible library of 
regularizers. In this paper, a general iterative process is proposed 
that maximizes a smooth function on unit simplices. This process 
can be used as inference mechanism for a wide variety of topic 
models. This approach is believed to be useful not only for 
rethinking probabilistic topic modeling, but also for building the 
neural topic models increasingly popular in recent years. 

Affiliation Federal Research Center “Computer Science and Control” of RAS, 
M.V.Lomonosov Moscow State University (MSU), Moscow, 
Russian Federation 

Contact voron@mlsa-iai.ru 
Keywords Probabilistic Topic Modeling, Additive Regularization of Topic 

Models, EM-algorithm, BigARTM, Multimodal Topic Modeling, 
Hierarchical Topic Modeling, Hypergraph Topic Modeling, 
Sequential Topic Modeling, Topical Embedding, Transactional 
Data, Recommender Systems, Latent Dirichlet Allocation, Bayesian 
Learning.

voron@mlsa-iai.ru
voron@mlsa-iai.ru
voron@mlsa-iai.ru
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Generating Genomic Maps of Z-DNA with the Transformer 
Algorithm 

Authors Dmitry Umerenkov, Vladimir Kokh, Alan Herbert, Maria Poptsova 
Abstract Z-DNA and Z-RNA were shown to play an important role in various processes 

of genome functioning acting as flipons that launch or suppress genetic 
programs. Genome-wide experimental detection of Z-DNA remains a challenge 
due to dynamic nature of its formation. Recently we developed a deep learning 
approach DeepZ, based on CNN and RNN architectures, that predicts Z-DNA 
regions using additional information from omics data collected from different 
cell types. Here we took advantage of the transformer algorithm that trains 
attention maps to improve classifier performance. We started with pretrained 
DNABERT models and fine-tuned their performance by training with 
experimental Z-DNA regions from mouse and human genome wide studies. The 
resulting DNABERT-Z outperformed DeepZ. We demonstrated that 
DNABERT-Z finetuned on human data sets also generalizes to predict Z-DNA 
sites in mouse genome. 

Affiliation Sber Artificial Intelligence Lab, Moscow, Russian Federation Laboratory of 
Bioinformatics, Faculty of Computer Science, HSE University, Moscow, 
Russian Federation, InsideOutBio, Charlestown, MA, USA 

Contact mPoptsova@hse.ru 
Keywords non-B DNA structures, machine learning, deep learning, transformer, Z-DNA 

Graph-Theoretical Models of the Spread and Control 
of Disease and of Fighting Fires 

Authors Fred S. Roberts 
Abstract We will describe irreversible threshold processes on graphs that model the 

spread of disease and lead to insights about strategies for vaccination, 
quarantine, etc.; we will describe models of the control of fires that are 
mathematically analogous to the disease spread models. The analogy will lead 
to insights about both types of processes and a variety of challenging 
graph-theoretical problems. 

Affiliation DIMACS, Rutgers University Piscataway, NJ USA 
Contact froberts@dimacs.rutgers.edu 
Keywords Graph-theoretical models, Disease spread models, Vaccination models, 

Threshold processes, The firefighter problem

mPoptsova@hse.ru
mPoptsova@hse.ru
froberts@dimacs.rutgers.edu
froberts@dimacs.rutgers.edu
froberts@dimacs.rutgers.edu
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The Last Universal Cellular Ancestor: What Have We 
Learned After 20 Years of Effort? 

Authors Eugene Koonin 
Abstract In 2003, Boris Mirkin and colleagues published a seminal on the 

Last Universal Cellular Ancestor (LUCA). In this work, a 
modified maximum parsimony approach was developed and 
applied to reconstruct the genome of the LUCA from a mapping 
of genes that are conserved across different ranges of extant 
organism on the universal phylogenetic tree. The size and 
composition of the reconstructed gene sets of the LUCA 
critically depended on the key parameter, namely, the gain 
penalty, or the ratio of the rates of gene gain, via emergence of 
new genes and horizontal gene transfer, to the rate of gene loss. 
As it can be expected, the size of the reconstructed gene sets grew 
with increasing gain penalty (g) such that the number of genes 
mapped to the LUCA varied from less than 600 for g=1 (gene 
gains considered as frequent as gene gains) to about 1700 for 
g=10 (gains considered 10 times less frequent than losses). 
During the 20 years elapsed since the publication of this work, 
several attempts to reconstruct the gene set of the LUCA using 
more sophisticated algorithms and many more genomes of 
prokaryotes have been undertaken, but the results of Mirkin and 
colleagues do not appear to have been superseded. At the time of 
the original publication, the high rate of horizontal gene transfer 
in bacteria and archaea had been just discovered, and a low gain 
penalty, leading to a simple LUCA, appeared most plausible. 
Subsequently, however a confluence of biological considerations 
was increasingly pointing towards a LUCA that was comparable 
in complexity to modern bacteria and archaea. The 
reconstructions obtained by Mirkin and colleagues in 2003 with 
the largest gain penalties might have been surprisingly accurate, 
at least in terms of the number of genes in the LUCA genome. 
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Pseudo-Boolean Polynomials, Dilworth Theorem and Data 
Aggregation 

Authors Boris Goldengorin 
Abstract In this talk, we use a pseudo-Boolean representation of the given 

matrix (two-dimensional table) with the purpose to aggregate 
(compress) its columns preserving their monotone behavior [2]. A 
natural application of Dilworth theorem (1950) [1] to the simplified 
polynomial returns the mi-nimum number of aggregated columns. 
Further, matrix compactification can be done by truncation columns 
depending on the number of rows fairly representing the original 
data [3]. We show that truncated pseudo-Boolean polynomials are 
invariants to represent clusters of equivalent data (matrices). The 
presented approach might be applied to 3- and multi-dimensional 
data sets. Promising preliminary experiments with the 
4-dimensional Iris Flower dataset, 30-dimensional Wisconsin 
diagnostic breast cancer (WDBC), edge/blob detection, contour 
analysis, image segmentation and optical character recognition 
(OCR) are discussed in the talk of Tendai Chikake [4]. 
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Abstracts. International conference “Data Analysis, Optimization 
and their Applications” on the occasion of Boris Mirkin’s 80th 
birthday. MIPT, 2023. Page 23 
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Inferring Multiple Consensus Trees and Super-Trees Using 
Clustering: A Review 

Authors Vladimir Makarenkov, Gayane S Barseghyan, Nadia Tahiri 
Abstract Phylogenetic trees (i.e. evolutionary trees, additive trees or 

X-trees) play a 
key role in the processes of modeling and representing species 
evolution. Genome evolution of a given group of species is 
usually modeled by a species phylogenetic tree that represents 
the main patterns of vertical descent. However, the evolution of 
each gene is unique. It can be represented by its own gene tree 
which can differ substantially from a general species tree 
representation. Consensus trees and supertrees have been widely 
used in evolutionary studies to combine phylogenetic information 
contained in individual gene trees. Nevertheless, if the available 
gene trees are quite different, then the resulting consensus tree or 
supertree can either include many unresolved subtrees 
corresponding to internal nodes of high degree or can simply be a 
star tree. This may happen if the available gene trees have been 
affected by different reticulate evolutionary events, such as 
horizontal gene transfer, hybridization or genetic recombination. 
In this case, the problem of inferring multiple alternative 
consensus trees or supertrees, using clustering, becomes relevant 
since it allows one to regroup in different cluster gene trees 
having similar evolutionary patterns (e.g. gene trees representing 
genes that have undergone the same horizontal gene transfer or 
recombination events). We critically review recent advances and 
methods in the field of phylogenetic tree clustering, discuss the 
methods’ mathematical properties and describe the advantages 
and limitations of multiple consensus trees and supertree 
approaches. In the application section, we show how the 
discussed supertree clustering approach can be used to cluster 
aaRS evolutionary trees according to their evolutionary patterns. 

Affiliation Département d’Informatique, Université du Québec à Montréal, 
Case postale 8888, Succursale Centre-ville, Montreal, QC, H3C 
3P8, Canada 
Département d’Informatique, Université de Sherbrooke, 2500 
Boulevard de l’Université, Sherbrooke, Québec J1K 2R1, Canada 

Contact makarenkov.vladimir@uqam.ca 
Keywords Clustering, Cluster validity index, Consensus tree, k-means, 

k-medoids, Phylogenetic tree, Robinson and Foulds distance, 
Supertree

makarenkov.vladimir@uqam.ca
makarenkov.vladimir@uqam.ca
makarenkov.vladimir@uqam.ca


Program and Abstract Book xix

The Model of Tunnel Clustering and Its Applications 

Authors Fuad Aleskerov, Darya Chubarova , Vyacheslav Yakuba 
Abstract We propose a man-machine procedure for dynamic pattern analysis. 

This very model allows us to analyze the changes of clusters over 
time of objects of different nature based on ε-tube defined on the 
parameters of objects. We present several examples of a dynamic 
pattern-analysis; in particular, we consider the oil export/import 
operations among countries in 2005–2020. 
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About Some Clustering Algorithms in Evidence Theory 

Authors Alexander Lepskiy 
Abstract The Dempster–Shafer theory of evidence considers data that have a 

frequency-set nature (the so-called body of evidence). In recent years, there has 
been interest in clustering such objects to approximate them with simpler bodies 
of evidence, to analyze the inconsistency of information, reducing the 
computational complexity of processing algorithms, revealing the structure of 
the set of focal elements, etc. The article discusses some existing algorithms for 
clustering evidence bodies and suggests some new algorithms and approaches in 
such clustering. 
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Controllability of Triangular Systems with Phase Space 
Change 

Authors Irina Maximova 
Abstract In the present paper, the controllability of a composite system of the following 

structure is investigated: two phase spaces and two consecutive time intervals 
are given, in each space on the corresponding time interval the motion of the 
object is described by a nonlinear system. The phase spaces are changed with 
the help of some given mapping, and the docking of trajectories is also 
connected with it. The conditions of controllability of this system from the 
initial set of one space to the finite set of another space are obtained in the paper. 
An approach to finding trajectories for this motion is proposed. 

Affiliation S. M. Nikolsky Mathematical Institute, Peoples’ friendship university of Russia 
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Manipulation by Coalitions in Voting with Incomplete 
Information 

Authors Yuliya A Veselova 
Abstract We consider the problem of coalitional manipulation in collective decision 

making and a probabilistic approach for solving it. We assume that voters have 
some information about other voters’ preferences from opinion polls held before 
voting. There are five different types of poll information functions. Coalition 
members are assumed to have identical preferences. We consider the probability 
that in a randomly chosen preference profile there exists a coalition which has 
an incentive to manipulate under a given type of poll information. We answer 
the following questions. How does coalitional manipulability differ from 
individual? How do different types of poll information affect coalitional 
manipulability? We answer these questions via both theoretical investigation 
and computational experiments. 
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Pseudo-Boolean Polynomials (pBp) for Dimensionality 
Reduction and Image Processing 

Authors Tendai Chikake, Boris Goldengorin 
Abstract We introduce usage of a reduction property of penalty-based formulation of 

pseudo-Boolean polynomials as a mechanism for invariant dimensionality 
reduction in cluster analysis processes. In our experiments, we show that 
multidimensional data, like a 4-dimensional Iris Flower dataset, can be reduced 
to 2-dimensional space while a 30-dimensional Wisconsin Diagnostic Breast 
Cancer (WDBC) dataset can be reduced to 3-dimensional space, and through 
linear edge searches we can extract clusters in a linear and unbiased manner 
with competitive accuracies, reproducibility, and clear interpretation. 
We further showcase the exploitation of equivalence and polynomial degree for 
detecting gradient change in image data represented in greyscale matrices. 
These properties enable us to propose new methods of edge/blob detection, 
contour analysis, image segmentation and optical character recognition (OCR) 
using combinatorial techniques. 
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Clicks, Random Graphs and Neural Networks 

Authors Alexey Samosyuk, Shokorov Viacheslav 
Abstract In this work, we present several computational experiments that demonstrate 

applications the Erdős-Rényi graph model and the Johnson–Lindenstrauss 
lemma to the evolution of neural networks during training and fine-tuning on the 
academia- and industry-level datasets (MS1M, WebFace42) and models 
(ShuffleNetv2, ResNet200). We show this on the 2 million classes FaceID 
problem, followed by the domain adaptation step. 
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Algorithm of Trading on the Stock Market, Providing 
Satisfactory Results 

Authors Alexander Rubchinsky, Kristina Baikova 
Abstract The paper proposes a new trading algorithm for S&P-500 stock market, which 

provides positive results over a sufficiently long period of time. No assumptions 
are made about the behave or of this market (including probabilistic ones), and 
no predictions are made and used. The daily real stock price data are considered, 
and the gain (or loss) that would be obtained if the proposed stock choice 
algorithm for the next day was applied is calculated. The algorithm uses only 
the closing price data for the preceding days and includes a special stopping rule 
based on the income, accumulated since an initial day of a considered period till 
a current day. The suggested algorithm substantially uses the previously 
developed approach to construction a family of graph decompositions (see 
publications [1−3]). 
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Three-Stage Cluster Modeling for the Spatiotemporal 
Analysis of Coastal Upwelling 

Authors Susana Nascimento, Alexandre Martins, Paulo Relvas, Joaquim F. Lu
√�=s, 

Boris Mirkin 
Abstract This work proposes a three-stage spatiotemporal clustering approach for the 

automatic recognition and analysis of coastal upwelling from Sea Surface 
Temperature (SST) grids derived from satellite images. 
The algorithm, core-shell clustering, models the upwelling as an evolving 
cluster whose core points are constant during a certain time window while the 
shell points move through an in-and-out binary sequence. The least squares 
minimization of clustering criterion allows to derive key parameters in an 
automated way. 
The algorithm is initialized with an extension of Seeded Region Growing 
offering self-tuning thresholding, the STSEC algorithm, that is able to precisely 
delineate the upwelling regions at each SST instant grid. Yet, the application of 
STSEC to the SST grids as temporal data puts the business of finding relatively 
stable “time windows”, here called “time ranges”, for obtaining the core clusters 
onto an automated footing. 
The approach successfully applies to SST image data for sixteen successive 
years of coastal upwelling of the Canary Current Upwelling System, covering 
two distinct regions: the Portuguese coast and the Morocco coast. The extracted 
time series of upwelling features presented consistent regularities among the 
upwelling seasons. 
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A Three-Step Method for Audience Extension in Internet 
Advertising using an Industrial Taxonomy 

Authors Dmitry Frolov, Zina Taran 
Abstract The paper addresses a very common problem in targeted digital 

advertising, insufficient audience size. Many approaches to audience 
extension frequently lead to much diminishing quality metrics, such 
as audience quality or conversion rates. This is the case, for 
example, for so-called lookalike techniques. We present a novel 
method for the efficient extension of target audiences. Our base is a 
popular taxonomy of user interests, the IAB contents taxonomy, 
combined with the representation of browsing behavior of millions 
of users by fuzzy sets of visited IAB taxonomy segments, that are 
leaves of the taxonomy tree. We use this idea in our method. The 
method consists of three steps: (1) computing membership values 
for the interest segments for a user by a classifier; (2) performing 
generalization of those sets and obtaining highranked segments, 
which is a core part of the method; (3) obtaining a set of advertising 
campaigns for a user. Our method involves an algorithm for 
optimally lifting individual fuzzy leaf sets into a higher rank 
taxonomy node, a so-called “head subject”. The head subject must 
cover the input fuzzy leaf set in such a way that the number of errors 
is minimized. This algorithm was proposed as an intelligent 
information retrieval tool. It can be applied, however, to a very 
different task of targeted advertisement. To extend the audiences of 
a targeted advertisement, we find their head subjects off-line. Given 
a set of taxonomy segments corresponding to targeted audiences, we 
include a user as a target if her head subject covers any of those 
segments. This lifting-based step does increase the number of 
successful matches between user segments and campaign segments 
two- or three-fold without losing in the targeting quality, the 
click-through rate, CTR. This is in stark contrast to the conventional 
look-alike methods for increasing the audience numbers by reducing 
the admissibility thresholds, which leads to a large decrease in CTR, 
which was experimentally proven. 
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SARAH-Based Variance-Reduced Algorithm for Stochastic 
Finite-Sum Cocoercive Variational Inequalities 

Authors Aleksandr Beznosikov, Alexander Gasnikov 
Abstract Variational inequalities are a broad formalism that encompasses a vast number 

of applications. Motivated by applications in machine learning and beyond, 
stochastic methods are of great importance. In this paper, we consider the 
problem of stochastic finite-sum cocoercive variational inequalities. For this 
class of problems, we investigate the convergence of the method based on the 
SARAH variance reduction technique. We show that for strongly monotone 
problems it is possible to achieve linear convergence to a solution using this 
method. Experiments confirm the importance and practical applicability of our 
approach. 
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A Parallel Linear Active Set Method 

Authors E. Dov Neimand, Şerban Sabău 
Abstract Given a linear-inequality-constrained convex minimization problem in a Hilbert 

space, we develop a novel binary test that examines sets of constraints and 
passes only active-constraint sets. The test employs a blackbox, 
linear-equality-constrained convex minimization method but can often fast fail, 
without calling the black-box method, by considering information from 
previous applications of the test on subsets of the current constraint set. This fast 
fail, as a function of the number of dimensions, has quadratic complexity and 
can be completely multi-threaded down to near-constant complexity. Only when 
the test is unable to fast fail, does it use the blackbox method. In both cases, the 
test generates the optimal point over the subject inequalities. Iterative and 
largely parallel applications of the test over growing subsets of inequality 
constraints yields a minimization algorithm. We also include an adaptation of 
the algorithm for a non-convex polyhedron in Euclidean space. Outside of 
calling the black-box method, complexity is not a function of accuracy. The 
algorithm does not require the feasible space to have a non-empty interior, or 
even be nonempty. With ample threads, the multi-threaded complexity of the 
algorithm is constant as a function of the number of inequalities. 
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Visual Explanable Machine Learning for High-Stake 
Decision-Making with Worst Case Estimates 

Authors Charles Recaido, Boris Kovalerchuk 
Abstract A major motivation for explaining and rigorous evaluating Machine Learning 

(ML) models is coming from high-stake decision-making tasks like cancer 
diagnostics, self-driving cars, and others with possible catastrophic 
consequences of wrong decisions. This paper shows that visual knowledge 
discovery (VKD) methods, based on the General Line Coordinates (GLC) 
recently developed, can significantly contribute to solving this problem. The 
concept of hyperblocks (n-D rectangles) as interpretable dataset units and GLC 
are combined to create visual selfservice machine learning models. Two variants 
of Dynamic Scaffold Coordinates (DSC) are proposed. It allows losslessly 
mapping high-dimensional datasets to a single two-dimensional Cartesian plane 
and building interactively an ML predictive model in this 2-D visualization 
space. Major benefits of DSC1 and DSC2 are their highly interpretable nature. 
They allow domain experts to control or establish new machine learning models 
through visual pattern discovery. It opens a visually appealing opportunity for 
domain experts, who are not ML experts, to build ML models as a self-service 
bringing the domain expertise to the model discovery, which increases model 
explainability and trust for the end user. DSC were used to find, visualize, and 
estimate the worst-case validation splits in several benchmark datasets, which is 
important for high-risk application. For large datasets, DSC is combined with 
dimensionality reduction techniques such as principal component analysis, 
singular value decomposition, and t-distributed stochastic neighbor embedding. 
A software package referred to as Dynamic Scaffold Coordinates 
Visualization System (DSCViz) was created to showcase the DSC1 and DSC2 
systems. 
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Preferences over Mixed Manna 

Authors Alexander Karpov 
Abstract We define a new class of Condorcet domains, which are called GF-domains. 

GF-domains are unique Condorcet domains that are weakly minimally rich, 
semi-connected and contain a pair of mutually reverse preference orders. 
GF-domains are single-peaked on a circle that leads to a clear interpretation. 
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Optimal Layered Defense For Site 
Protection 

Tsvetan Asamov, Emre Yamangil, Endre Boros, Paul B. Kantor, 
and Fred Roberts 

We are pleased to dedicate this paper to our friend and 
colleague Boris Mirkin on the occasion of his 80th birthday. 

1 Introduction 

We study the problem of defending a target such as a stadium or a large gathering 
place with multiple access paths. In practice, the notion of “layered defense” is 
commonly used to describe the idea that we have an outer perimeter where we 
first seek to capture dangerous entities (vehicles, people, cargo), then perhaps a 
middle perimeter or perimeters where we do the same thing using different methods 
and perhaps information gathered from the outer perimeter, and then an inner 
perimeter where we again use different methods and information gathered from 
earlier perimeter defense. Thus, as vehicles approach a stadium, we might do license 
plate reading; in a middle layer or layers we use radiation detectors or behavioral 
detection of patrons after they have parked their cars; then in an inner layer we 
use metal detection through wanding or walkthrough magnetometers or where we 
inspect bags or pat-down patrons. We seek to make this idea of layered defense 
precise in an abstract, simplified way. 

We speak abstractly of “sensors” at each layer of defense, but understand that 
our “sensors” could be physical sensors but also tests of different kinds such as 
behavioral observation. Our approach is based in an increasing literature that deals 
with inspection processes using a number of potential tests, for example at ports of 
entry. In the past few years numerous techniques for sensor optimization of port-of-
entry inspection have been explored in the literature [1, 5–9, 12–14, 16, 17]. Several 
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authors have reported numerical results that demonstrate significant improvement 
over straightforward inspection approaches [1, 6, 7, 12, 13, 16]. In line with existing 
practices, most researchers have assumed that the vast majority of the inspected 
items and people are perfectly legal and only a very small proportion of the incoming 
flow is harmful. Under such circumstances, the sensor operating cost (though not the 
capital cost) is usually only a small fraction of the overall cost of the inspection 
operation. The bulk of the total cost and time spent is attributed to a thorough 
inspection procedure that is performed on potential suspicious items and individuals. 
Such a situation is usually encountered in airport security checkpoints, border 
crossings, maritime port inspection stations, large sports stadiums, etc. 

In mathematical terms, the problem of layered site security is quite different from 
optimizing a set of sensors searching for illegal cargo at a port-of-entry. Unlike 
much of the existing inspection optimization work which considers two distinct 
populations of inspected items, i.e. legal and illegal, in our model we only consider 
the latter. We work under the assumption that we can incorporate the processing 
cost of occasional encounters of legal traffic into the overall cost curve for detecting 
contraband. 

2 Mathematical Model 

To develop our ideas, we have formulated a model of a perimeter defense of the 
target with two layers of defense where we have a limited budget for surveillance 
and we need to decide how much to invest in each layer and where to invest it if 
there are several locations where we might do inspection in each layer. Defense at 
the outer layers might be less successful but could provide useful information to 
selectively refine and adapt strategies at inner layers. Arranging defense in layers 
so that decisions can be made sequentially might significantly reduce costs and 
increase chance of success. Monitoring at an outer layer could not only hinder an 
attacker but could provide information about the current state of threat that could 
be used to refine and adapt strategies at inner layers. There is a complex tradeoff 
between maximizing the cost-effectiveness of each layer and overall benefits from 
devoting some efforts at the outer layer to gathering as much information as possible 
to maximize effectiveness of the inner layer. 

To give a stylized abstract version of what we have in mind, consider Fig. 1, 
where we show a target in the middle, threats arrive via two inner channels and each 
is reachable from two outer flows of vehicles, patrons, etc. 

Fig. 1 An abstract model of 
layered defense showing a 
target in the middle, threats 
arriving via two inner 
channels, and each reachable 
from two outer flows of 
vehicles, patrons, etc.
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We concentrate in this paper on the problem with two layers of defense, where 
each security layer has a number of sensors placed on possible paths of incoming 
illegal flow of vehicles and/or patrons. Inner layers are composed of sensors that are 
used to detect units that have managed to infiltrate outer layers undetected. Every 
interior sensor is connected to one or more sensors in the immediately preceding 
outer layer in the sense that it is responsible for backing up those sensors, i.e., the 
goal of the interior sensor is to discover traffic which has remained undetected by 
those outer sensors. In order for an illegal unit to penetrate the system, it would 
need to remain unnoticed at all layers of inspection. We denote the set of sensors 
in the internal layer of defense with I , and the set of sensors in the external layer 
with J . We assume that sensors in the set I share a limited total resource budget X 
and sensors in the set J share a limited total budget Y . More subtle models allow 
one to make decisions about how much budget to allocate between the inside and 
outside layers. Our objective is to develop optimization methods to determine the 
optimal allocation of resources to security sensors in such a manner that the expected 
detection rate of incoming threats is maximized. For modeling purposes we employ 
the following assumptions:

• There exists only one type of violation that we are protecting against.
• The expected number of contraband units on each incoming path is a known 

parameter. For the outermost perimeter sensor j , we denote the incoming 
contraband flow with . Fj .

• For each sensor .i ∈ I , located at the inside security layer, we know the function 
.Dx

i (x), which specifies the detection rate at the sensor for contraband items if 
the total amount of resources made available to the sensor is x, and similarly 
for each .j ∈ J we know the detection function .Dy

j (y). In this paper we assume 
that the detection functions are specified as concave increasing piecewise linear 
functions. Thus, we do not require the detection functions to be differentiable 
everywhere, which is an important property of our method. We also assume that 
the resources are normalized to take values between 0 and 1.

• All sensors at a given layer share a limited common resource. For example, 
an outside perimeter could be supported by a fixed number of infrared motion 
detectors or license plate readers, while an inside perimeter could consist of 
walkthrough magnetometer tests or security guards conducting wanding of 
patrons. 

Our goal is to allocate the total outside resources among individual sensors and 
allocate the total inside resources among individual sensors in order to maximize 
the detected illegal flow. Thus we arrive at the following mathematical formulation:
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.

max
x,y

∑

i∈I

⎧
⎨

⎩

⎛

⎝
∑

j∈N(i)

Fj · D
y
j (yj )

⎞

⎠ + Dx
i (xi)

⎛

⎝
∑

j∈N(i)

Fj (1 − D
y
j (yj ))

⎞

⎠

⎫
⎬

⎭

s.t.
∑

i∈I

xi ≤ X

∑

j∈J

yj ≤ Y

xi ≥ 0,∀i ∈ I

yj ≥ 0,∀j ∈ J

(1) 

where .N(i) denotes the set of outside sensors adjacent to inside sensor i. Here, the 
first sum over the outside neighbors j of i gives the flow that is captured at j and 
the second sum gives the flow that is not captured at j but is captured at i. 

Now, let us examine the given objective function. Clearly, it contains mixed 
nonlinear product terms of detection probabilities. Moreover, since there are no pure 
quadratic terms, we know that in general the objective function is neither convex, 
nor concave. We illustrate this in Example 2.1. 

Example 2.1 (Indefinite Objective Function) Suppose we have a single exterior 
sensor j preceding a single interior sensor i, as shown in Fig. 2. In this case, we 
would need to solve the following problem. 

.

max
xi,yj

{
Fj · D

y
j (yj ) + Dx

i (xi) · (Fj · (1 − D
y
j (yj )))

}

s.t. 0 ≤ xi ≤ X

0 ≤ yj ≤ Y

(2) 

Let us for a moment consider what would happen if .Dx
i (x) = x and .Dy

j (y) = y as 

shown in Fig. 3. In that case, .Dx
i and .Dy

j are differentiable everywhere. Thus, if we 
denote the objective function in problem (2) as  

. f i,j (xi, yj ) = Fj · D
y
j (yj ) + Dx

i (xi) · (Fj · (1 − D
y
j (yj )))

then we know 

Fig. 2 A model of layered defense showing a target with a single exterior sensor preceding a 
single interior sensor 
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Fig. 3 Linear detection rates at both the exterior and interior sensors of Fig. 2 

.

∇f i,j (xi, yj ) =
⎡

⎣
∂f i,j (xi ,yj )

∂xi

∂f i,j (xi ,yj )

∂yj

⎤

⎦

=
[

Fj (1 − D
y
j (yj ))

Fj (1 − Dx
i (xi))

]

=
[

Fj (1 − yj )

Fj (1 − xi)

]

≥
[

0
0

]

(3) 

Therefore the objective function (Fig. 4) is increasing everywhere in the feasible 
region. Thus, we know that we would get an optimal solution to problem (2) by  
setting .xi = X and .yj = Y . However, upon further inspection we can notice that if 
we attempted to solve the problem as a convex optimization problem, we would run 
into difficulties. The Hessian of the objective function has the following form: 

. ∇2f i,j (xi, yj ) =
[

0 −Fj

−Fj 0

]
(4) 

And its two eigenvalues are .λ1 = Fj and .λ2 = −Fj . Hence we know that the 
Hessian matrix associated with the quadratic terms is indefinite. 

The indefiniteness of the Hessian presents a major obstacle to solving the 
problem with standard solvers for quadratic programming. In our study, we tried 
solving numerous instances using different methods implemented in the MATLAB 
optimization toolbox. While in some cases we were able to produce consistent 
output, none of the examined methods were able to overcome the indefiniteness 
of the Hessian matrix for all possible values of the input parameters. This created 
the need for the development of an alternative solution method for the problem.
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Fig. 4 A plot of the objective function of (2) for the case of .Dx
i (xi) = xi , D

y
j (yj ) = yj and 

.Fj = 1. In this case three of the corners of the feasible region are optimal solutions 

3 Exhaustive Search Methods 

A standard approach to such problems is a brute force approach that fixes a 
resource partition mesh and enumerates all possibilities. This exhaustive search 
approach would be to discretize the resource space for each sensor into a number 
of subintervals. Then we could examine every possible resource allocation scenario 
and among all feasible cases select the one that maximizes the objective function 
value. However, this method would be computationally intractable even for trivial 
cases. For example, suppose that we have four inside sensors, and each of them 
is related to exactly two outside sensors. Further, suppose we split the parameter 
search space of each sensor into one hundred discrete intervals. Then we would 
need to evaluate the objective function a total of .1004+8 = 1024 times, which is 
clearly unacceptable unless a very large cluster is used. Moreover, if we considered 
a slightly larger case of fifteen interior sensors, each supporting a couple of outside 
perimeter sensors, then the number of cases explodes to .10015+30 = 1090, which 
exceeds the current estimates for the number of atoms in the universe.
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However, it is sufficient to discretize the parameter space for the interior sensors. 
Then, for each fixed set of values, we can find the optimal configuration of 
the exterior perimeter by solving a linear programming problem. If we take this 
approach, then the two above mentioned instances require, respectively, the solution 
of .108 and .1030 small linear programming problems. While this is a significant 
improvement, we are still subjected to the curse of dimensionality as the number 
of sensors in the interior perimeter increases. Fortunately, we can overcome this 
challenge. 

4 Dynamic Programming Method 

To illustrate the idea behind our method, we consider the following basic example. 
Suppose we would like to solve problem (2) for the case when .Dx

i and .Dy
j are 

general piecewise linear functions, as illustrated in Fig. 5. 
In that case, the objective function .f i,j (xi, yj ) of problem (2) is still continuous. 

Further, .f i,j (xi, yj ) is differentiable everywhere except at points corresponding to 
corner points of the detection functions .Dx

i and . Dy
j . Moreover, at points where 

.f i,j (xi, yj ) is differentiable, its gradient has the form 

.

∇f i,j (xi, yj ) =
[

∂f (xi ,yj )

∂xi
∂f (xi ,yj )

∂yj

]

=
[

ciFj (1 − D
y
j (yj ))

cjFj (1 − Dx
i (xi))

]

≥
[

0
0

]

(5) 

Fig. 5 Piecewise linear detection rates at both the exterior and interior sensors of Fig. 2
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for some constants .ci, cj ≥ 0. Thus, the optimal solution is again obtained by setting 
.xi = X and .yj = Y . 

Our solution method involves four main steps. 

Step 1 
For a fixed .ε > 0, we create a partition .Y = {0, ε, 2ε, . . . , Y } of the interval .[0, Y ], 
as well as a partition .X = {0, ε, 2ε, . . . , X} of the interval .[0, X]. 
Step 2 
For every pair of sensors .i, j such that .i ∈ I and .j ∈ N(i), we compute . T i,j (Xi, Yj )

for each .(Xi, Yj ) ∈ X × Y , where we use .T i,j (Xi, Yj ) to denote the maximum 
amount of detected illegal contraband when inner sensor i uses at most . Xi inner 
resources, and outer sensor j uses at most . Yj outer resources. Formally, we need to 
compute the optimal value of the following optimization problem: 

.T i,j (Xi, Yj ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
xi,yj

{
Fj · D

y
j (yj ) + Dx

i (xi) · (Fj · (1 − D
y
j (yj )))

}

s.t. 0 ≤ xi ≤ Xi

0 ≤ yj ≤ Yj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(6) 

We can solve an instance of problem (6) in .O(1) time by setting .xi = Xi and 
.yj = Yj . Thus, we can compute .T i,j (Xi, Yj ) for each .(Xi, Yj ) ∈ X × Y in 
.O(|X ||Y|). Hence, we can plot the objective function in (2) with arbitrary precision 
which would ultimately allow us to solve problem (1) with arbitrary precision (see 
Fig. 6). 

Step 3 
Now, suppose that instead of a single outside sensor j , we consider two outside 
sensors . j1 and . j2 that are both backed up by inner sensor i (see Fig. 7). We use 
.{j1, j2} to denote quantities that refer to the combined system with two outside 
sensors . j1 and . j2. For example, .T i,{j1,j2} denotes a table of optimal detection values 
for the combined system of inside sensor i and two outside sensors . j1 and . j2. 
Further, we also use .Xi,{j1,j2} and .Y i,{j1,j2} to denote the amount of inside and 
outside resources budgeted to the sensor system of inner sensor i, and outer sensors 
. j1 and . j2. Please recall that in Step 2, we computed the two tables of optimal 
values .T i,j1 and .T i,j2 (considering first the problem with only sensors .i, j1 and 
then the problem with only sensors .i, j2 (see Fig. 8)). Since they both share the 
same inner sensor, all we need to do in order to find the optimal detection value 
.T i,{j1,j2}(Xi,{j1,j2}, Y i,{j1,j2}) for the combined system is to determine the optimal 
way to allocate .Y i,{j1,j2} between sensor . j1 and . j2. Thus we have the problem of 
optimizing the following formulation:
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Fig. 6 A plot of the objective function of (2) for piecewise linear functions .Dx
i (xi) and . D

y
j (yj )

. T i,{j1,j2}(Xi,{j1,j2}, Y i,{j1,j2}) =

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
yi,j1 ,yi,j2

T i,j1
(
Xi,{j1,j2}, yi,j1

) + T i,j2
(
Xi,{j1,j2}, yi,j2

)

s.t.

yi,j1 + yi,j2 ≤ Y i,{j1,j2}

yi,j1 ∈ Y

yi,j2 ∈ Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7) 

Notice that even though we consider all different values of .y
i,j1
j , y

i,j2
j ∈ Y , 

problem (7) can be solved in time linear in the cardinality of . Y . This is accomplished 
by using two index variables initialized at the two ending points of the outside 
resource partition . Y . 

If we have three outside sensors .j1, j2, j3 corresponding to inside sensor i, then 
we can find their solution matrix .T i,{j1,j2,j3} as follows. Once we have computed
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Fig. 7 A network with two  
outside sensors (green and 
blue) and one inside sensor 
backing them both up 

Fig. 8 Finding separate solutions for inner sensor i with each outside sensor . j1 and . j2

the matrix .T i,{j1,j2} we use it as an input to Eq. (7), together with the matrix . T i,j3

to generate the solution matrix .T i,{j1,j2,j3}. By recursion, we can solve a problem 
instance that involves one inner sensor i and any number of outside sensors. We 
denote with . T i the solution table of optimal values corresponding to inner sensor i 
together with all of its adjacent outside sensors .j ∈ N(i). 

Step 4 
Suppose we are given two matrices, .T i1 and . T i2 , that correspond respectively to two 
inner sensors . i1 and . i2 with their adjacent outside sensors. In order to determine the 
optimal detection value .T {i1,i2}(X{i1,i2}, Y {i1,i2}) for the combined system, we need 
to find the optimal way to allocate .X{i1,i2}

i between .T i1 and . T i2 . Thus we consider 
the problem of optimizing the following,
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.T {i1,i2}(X{i1,i2}, Y {i1,i2}) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
xi1 ,xi2 ,yi1 ,yi2

T i1
(
xi1 , yi1

) + T i2
(
xi2 , yi2

)

s.t.

xi1 + xi2 ≤ X{i1,i2}

yi1 + yi2 ≤ Y {i1,i2}

xi1 , xi2 ∈ X

yi1 , yi2 ∈ Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8) 

We point out that problem (8) can be solved in .O(|X ||Y|) time. Finally, once we 
have computed .T {i1,i2}, we can proceed by recursion to solve problems involving an 
arbitrary number of interior and exterior sensors. 

5 Running Time 

We consider the running times of all of the four steps. 

Step 1: Creating the partitions takes .O(|X | + |Y|). 
Step 2: For every pair .i, j such that .i ∈ I, j ∈ N(i), we have to compute a matrix 

in .O(|X ||Y|) time. Thus, step 2 takes .O(|X ||Y||I ||J |). 
Step 3: For every .i ∈ I we perform step 3 .|N(i)| times, and every time we 

need to compute .|X ||Y| number of entries, each taking .O(|Y|). Thus the overall 
complexity of step 3 is .O(|X ||Y|2|I ||J |). 

Step 4: We need to execute this step .|I | − 1 times. Each of .|X ||Y| entries in 
the resulting matrix takes .O(|X ||Y|) time to compute. Thus, the computational 
complexity of step 4 is .O((|X ||Y|)2|I |). 
Since the four steps are performed sequentially, we know the overall running 

time of the dynamic programming method is .O(|X ||Y|2|I |(|J | + |X |)). 

6 Convergence 

So far, we have only considered discrete approximations of the optimal detection 
values. In this section we show that as the partition mesh .ε → 0, the values of the 
discrete approximation tables T converge to the true continuous optimal detection 
values t . 

Since, the discrete approximation is exact for the case of one inside and one 
outside sensor, we know 

.t i,j (Xi, Yj ) = T i,j (Xi, Yj ), ∀(Xi, Yj ) ∈ X × Y
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Consider the objective function .f i,j (·, ·) of the system consisting of inner 
sensor i and its external neighbor j . Since .f i,j is continuous, as well as quadratic 
everywhere except for a set of measure zero, we know that .f i,j is Lipschitz 
continuous and we denote its Lipschitz constant with .Li,j . If we choose . L ∈ R

such that 

. L = max
i∈I

j∈N(i)

Li,j

then L is a Lipschitz constant for all functions .f i,j . 
Suppose .i ∈ I and .j1, j2 ∈ N(i), . j1 �= j2. We use .ξ i,{j1,j2} to denote the error 

between the true optimal detection value .t i,{j1,j2}, and the discrete approximation 
.T i,{j1,j2}. We would use lower case .xi,j1 and .xi,j2 to denote the optimal way to split 
up the inside resources .Xi,{j1,j2} between .t i,j1 and .t i,j2 , while .yi,j1 and .yi,j2 denote 
the optimal way to split up the outside resources .Y i,{j1,j2} between .t i,j1 and .t i,j2 . 

On the other hand, we would use .Xi,j1 and .Xi,j2 to denote the optimal way to 
split up the inside resources .Xi,{j1,j2} between .T i,j1 and .T i,j2 , while .Y i,j1 and . Y i,j2

denote the optimal way to split up the outside resources .Y i,{j1,j2} between .T i,j1 and 
.T i,j2 . Before we proceed, we need to introduce the following notation. We use . 	x

to denote the point in . X that is closest to x from below, and we use .	y
 to denote 
the point in . Y that is closest to y from below. Similarly, we use .�x� to denote the 
point in . X that is closest to x from above, and we use .�y� to denote the point in . Y
that is closest to y from above. Then the discrete approximation error can be written 
as, 

. ξ i,{j1,j2}
(
Xi,{j1,j2}, Y i,{j1,j2}

)

= t i,{j1,j2}
(
Xi,{j1,j2}, Y i,{j1,j2}

)
− T i,{j1,j2}

(
Xi,{j1,j2}, Y i,{j1,j2}

)

= t i,j1
(
xi,j1 , yi,j1

)
+ t i,j2

(
xi,j2 , yi,j2

)

−T i,j1
(
Xi,j1 , Y i,j1

)
− T i,j2

(
Xi,j2 , Y i,j2

)

≤ t i,j1
(
xi,j1 , yi,j1

)
+ t i,j2

(
xi,j2 , yi,j2

)

−T i,j1
(
	xi,j1
, 	yi,j1


)
− T i,j2

(
	xi,j2
, 	yi,j2


)

= t i,j1
(
xi,j1 , yi,j1

)
+ t i,j2

(
xi,j2 , yi,j2

)

−t i,j1
(
	xi,j1
, 	yi,j1


)
− t i,j2

(
	xi,j2
, 	yi,j2


)

=
{
t i,j1

(
xi,j1 , yi,j1

)
− t i,j1

(
	xi,j1
, 	yi,j1


)}

+
{
t i,j2

(
xi,j2 , yi,j2

)
− t i,j2

(
	xi,j2
, 	yi,j2


)}
(9)
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Since we have .
{
t i,jk

(
xi,jk , yi,jk

) − t i,jk
(	xi,jk
, 	yi,jk
)} ≤ √

2εL for both . k =
1, 2 the bound 

.ξ i,{j1,j2}
(
Xi,{j1,j2}, Y i,{j1,j2}

)
≤ 2

√
2εL (10) 

follows. Now, we can also bound the error in the case of three outside sensors:

.

ξ i,{j1,j2,j3}
(
Xi,{j1,j2,j3}, Y i,{j1,j2,j3}

)
=

= t i,{j1,j2,j3}
(
Xi,{j1,j2,j3}, Y i,{j1,j2,j3}

)

− T i,{j1,j2,j3}
(
Xi,{j1,j2,j3}, Y i,{j1,j2,j3}

)

= t i,{j1,j2}
(
xi,{j1,j2}, xi,{j1,j2}

)
+ t i,j3

(
xi,j3 , yi,j3

)

− T i,{j1,j2}
(
Xi,{j1,j2}, Y i,{j1,j2}

)

− T i,j3
(
Xi,j3 , Y i,j3

)

≤ t i,{j1,j2}
(
xi,{j1,j2}, yi,{j1,j2}

)
+ t i,j3

(
xi,j3 , yi,j3

)

− T i,{j1,j2}
(
	xi,{j1,j2}
, 	yi,{j1,j2}


)

− T i,j3
(
	xi,j3
, 	yi,j3


)

≤ t i,{j1,j2}
(
xi,{j1,j2}, yi,{j1,j2}

)
+ t i,j3

(
xi,j3 , yi,j3

)

− t i,{j1,j2}
(
	xi,{j1,j2}
, 	yi,{j1,j2}


)

− t i,j3
(
	xi,j3
, 	yi,j3


)
+ 2

√
2εL

=
{
t i,j1

(
xi,j1 , yi,j1

)
− t i,j1

(
	xi,j1
, 	yi,j1


)}

+
{
t i,j2

(
xi,j2 , yi,j2

)
− t i,j2

(
	xi,j2
, 	yi,j2


)}

+ 2
√

2εL

≤ √
2εL + √

2εL + 2
√

2εL

= 4
√

2εL

(11) 

Proceeding by induction, we know that
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. ξ i ≤ 2
√

2(|J | − 1)εL,∀i ∈ I

since an inside sensor can have at most . |J | adjacent outside sensors. 
Now, suppose that .i1, i2 ∈ I, i1 �= i2. Then, 

.

ξ {i1,i2}
(
X{i1,i2}, Y {i1,i2}

)

= t {i1,i2}
(
X{i1,i2}, Y {i1,i2}

)
− T {i1,i2}

(
X{i1,i2}, Y {i1,i2}

)

= t i1
(
xi1 , yi1

)
+ t i2

(
xi2 , yi2

)
− T i1

(
Xi1 , Y i1

)
− T i2

(
Xi2 , Y i2

)

≤ t i1
(
xi1 , yi1

)
+ t i2

(
xi2 , yi2

)
− T i1

(
	xi1
, 	yi1


)
− T i2

(
	xi2
, 	yi2


)

≤ t i1
(
�xi1�, �yi1�

)
+ t i2

(
�xi2�, �yi2�

)

− T i1
(
	xi1
, 	yi1


)
− T i2

(
	xi2
, 	yi2


)

=
{
t i1

(
	xi1
, 	yi1


)
− T i1

(
	xi1
, 	yi1


)}

+
{
t i2

(
	xi2
, 	yi2


)
− T i2

(
	xi2
, 	yi2


)}

+
{
t i1

(
�xi1�, �yi1�

)
− t i1

(
	xi1
, 	yi1


)}

+
{
t i2

(
�xi2�, �yi2�

)
− t i2

(
	xi2
, 	yi2


)}

≤ 2
√

2 (|J | − 1) εL + 2
√

2 (|J | − 1) εL + 2
√

2εL

≤ 4
√

2 (|J |) εL

(12) 

We can also bound the error in the case of three inside sensors and all of their 
adjacent outside sensors: 

. ξ {i1,i2,i3}(X{i1,i2,i3}, Y {i1,i2,i3})

= t {i1,i2,i3}
(
X{i1,i2,i3}, Y {i1,i2,i3}

)
− T {i1,i2,i3}

(
X{i1,i2,i3}, Y {i1,i2,i3}

)

= t {i1,i2}
(
x{i1,i2}, y{i1,i2}

)
+ t i3

(
xi3 , yi3

)

−T {i1,i2}
(
X{i1,i2}, Y {i1,i2}

)
− T i3

(
Xi3 , Y i3

)

≤ t {i1,i2}
(
x{i1,i2}, y{i1,i2}

)
+ t i3

(
xi3 , yi3

)

−T {i1,i2}
(
	x{i1,i2}
, 	y{i1,i2}


)
− T i3

(
	xi3
, 	yi3


)
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≤ t {i1,i2}
(
�x{i1,i2}�, �y{i1,i2}�

)
+ t i3

(
�xi3�, �yi3�

)

−T {i1,i2}
(
	x{i1,i2}
, 	y{i1,i2}


)
− T i3

(
	xi3
, 	yi3


)

=
{
t {i1,i2}

(
	x{i1,i2}
, 	y{i1,i2}


)
− T {i1,i2}

(
	x{i1,i2}
, 	y{i1,i2}


)}

+
{
t i3

(
	xi3
, 	yi3


)
− T i3(	xi3
, 	yi3
)

}

+
{
t {i1,i2}

(
�x{i1,i2}�, �y{i1,i2}�

)
−t {i1,i2}

(
	x{i1,i2}
, 	y{i1,i2}


)}

+
{
t i3

(
�xi3�, �yi3�

)
−t i3(	xi3
, 	yi3
)

}

≤ 4
√

2|J |εL + 2
√

2(|J | −  1)εL + 2
√

2εL 

≤ 6
√

2(|J |)εL (13) 

Proceeding by induction, we know that . ξI the error of the discrete approximation 
for the entire set of internal sensors I and all of their adjacent outside sensors is 
bounded by 

. ξI ≤ 2
√

2|I ||J |εL

Therefore, 

.

lim
ε→0

ξI = t I (XI , Y I ) − T I (XI , Y I )

≤ lim
ε→0

2
√

2|I ||J |ε

= 0

(14) 

Hence, as .ε → 0 the discrete approximation .T I (XI , Y I ) converges to the true 
continuous optimal detection value .t I (XI , Y I ). 

7 The Case of an Adaptive Adversary 

So far, our model assumed a fixed flow of dangerous material on each pathway, 
and we have presented a method that would allow law enforcement officials to 
use current information on attacker behavior to maximize the amount of captured 
illegal or dangerous contraband. However, we can think of attackers as intelligent 
adversaries who would adjust their strategy once they observe the changes in site 
security. Therefore, the goal of a defensive strategy could be to make sure that no 
path leading into the site has a violation detection rate that is unreasonably low. For
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example, suppose we have an adaptive adversary who recognizes how much of a 
resource we use for sensors on each node and then chooses the path that minimizes 
the probability of detection. To defend against such an adversary we might seek to 
assign sensor resources so as to maximize the minimum detection rate on any path. 
Hence we face the following optimization challenge: 

.

max
x,y

min
i∈I

j∈N(i)

{
D

y
j (yj ) + Dx

i (xi)(1 − D
y
j (yj ))

}

s.t.
∑

i∈I

xi ≤ X

∑

j∈J

yj ≤ Y

xi ≥ 0,∀i ∈ I

yj ≥ 0,∀j ∈ J

(15) 

In order to solve this problem we can use a similar approach to the one discussed in
the previous section.

Steps 1 and 2 
These are identical to their counterparts described in Sect. 4, with .Fj = 1 for every 
outside sensor j . 

Step 3 
Once again, we denote by .T i,j the resulting table of values generated at Step 2. 
More specifically, we denote with .T i,j (Xi, Yj ) the optimal detection value that can 
be achieved by investing .(Xi, Yj ) ∈ X×Y resources of respectively, inner and outer 
resources. Then we consider the case of two outside sensors .j1, j2 that are backed 
up by inner sensor i. We can merge .T i,j1 and .T i,j2 into a single solution according 
to: 

.

T i,{j1,j2}(Xi,{j1,j2}, Y i,{j1,j2}) =

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
yi,j1 ,yi,j2

min
{
T i,j1

(
Xi,{j1,j2}, yi,j1

)
, T i,j2

(
Xi,{j1,j2}, yi,j2

)}

s.t.

yi,j1 + yi,j2 ≤ Y i,{j1,j2}

yi,j1 ∈ Y

yi,j2 ∈ Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16) 

where .T i,{j1,j2}(Xi,{j1,j2}, Y i,{j1,j2}) is the optimal detection value for the combined 
system.
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Again, if we proceed by induction, we can generate an optimal value table for a 
problem instance that involves one inner sensor i, and an arbitrary number of outside 
sensors. We denote such a table by . T i . 

Step 4 
Consider two matrices .T i1 and .T i2 that correspond to respectively inner sensors 
. i1 and . i2 with all of their adjacent outside sensors. We could again merge the two 
solutions into a single global solution according to the following rule: 

. T {i1,i2}(X{i1,i2}, Y {i1,i2}) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
xi1 ,xi2 ,yi1 ,yi2

min
{
T i1

(
xi1 , yi1

)
, T i2

(
xi2 , yi2

)}

s.t.

xi1 + xi2 ≤ X{i1,i2}

yi1 + yi2 ≤ Y {i1,i2}

xi1 , xi2 ∈ X

yi1 , yi2 ∈ Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17) 

where .T {i1,i2}(X{i1,i2}, Y {i1,i2}) denotes the optimal value for the combined system 
that employs internal sensors . i1 and . i2, and all of their outside neighbors. 

Once again, if we have a third branch consisting of inside sensor . i3 and its outside 
neighbors, then we can use .T {i1,i2} and .T i3 as inputs to Eq. (17) and find the table 
of optimal values .T {i1,i2,i3} for the combined system consisting of inside sensors 
.i1, i2, i3, and all of their adjacent outside sensors. Proceeding by induction, we know 
that even if we have an adaptive adversary, we can solve problems involving an 
arbitrary number of interior and exterior sensors, as well as sensor detection curves 
specified by concave increasing piecewise linear functions. 

8 Computational Results 

In this section we present computational results for the methods developed above. 
The experiments were performed on an AMD Phenom X4 9550 workstation with 
6GB of DDR2 RAM. We consider two different system configurations, and for each 
of them we provide plots of the objective function value for both the original and 
adaptive adversary models. 

Example 8.1 In this example we consider an inner layer consisting of four sensors, 
one with three adjacent outside sensors (indices 1, 2, 3), a second with two adjacent 
outside sensors (indices 4, 5), a third with two adjacent outside sensors (indices 6, 7), 
and a fourth with two adjacent outside sensors (indices 8, 9). For each inside sensor 
.i ∈ I , we specify .Dx

i (x) = min{0.2x, 0.4 + 0.1x}. Further, for the first outside
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Fig. 9 Solution maximizing the expected amount of captured contraband for a range of interior 
and exterior budgets for Example 8.1 

sensor we use .D
y
j1

(y) = min{0.3y, 0.3+0.1y, 0.5+0.05y}, and for outside sensors 

of index .j = 2, 3, . . . , 9, we use .D
y
j (y) = min{0.3y, 0.3 + 0.1y}. In addition, all 

outside sensors have exactly 1 unit of incoming flow. Figure 9 gives the solution 
maximizing the expected amount of captured contraband for a range of interior and 
exterior budgets, i.e., the solution to the first problem. The solution matrix includes 
10,302 distinct points and the computation took 117 seconds. 

We can also calculate the adaptive adversary solution maximizing the minimum 
probability of capturing contraband along all paths for a range of interior and 
exterior budgets. The solution shown in Fig. 10 includes 40,401 distinct points and 
the computation took 3102 seconds (52 minutes). 

Example 8.2 In this example, we modify Example 8.1 so that all the outside sensors 
have exactly 1 unit of incoming flow except for outside sensors 1 and 9 which 
have 10 units of incoming flow. Figure 11 shows the optimal objective values of 
the maximized amount of captured contraband for a range of interior and exterior 
budgets. The solution table includes 10,302 distinct points, and the computation 
took 119 seconds. 

In this example we only changed the flow values of Example 8.1. For this reason, 
we do not need to compute a new adaptive adversary solution, as it would be 
identical to the one for Example 8.1. Naturally, this illustrates the robustness of 
the adaptive adversary formulation compared to its original counterpart.
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Fig. 10 Adaptive adversary solution maximizing the minimum probability of capturing contra-
band along all paths for a range of interior and exterior budgets for Example 8.1 

Fig. 11 Solution maximizing the expected amount of captured contraband for a range of interior 
and exterior budgets for Example 8.2 

9 Closing Remarks 

We have considered the problem of determining the optimal resource allocation for 
layered security. A computational method for the maximization of captured contra-
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band and an adaptive adversary approach for the maximization of the worst case 
probability of detection have been developed. Both methods are computationally 
tractable and can be applied to non-trivial practical problems. 

We have a great deal more that we can do in the future. One thing is to consider 
both legal and illegal flow, which we also refer to as respectively good and bad 
units. Hence, in addition to detecting bad units we could consider false positive 
decisions for each sensor and adopt a risk-averse optimization approach [3]. Another 
possible direction would be attempting to write the problem as a large game and use 
approximation methods similar to the ones developed by Grigoriadis and Khachian 
[10]. Alternatively, we could look into interdiction on planar graphs methods similar 
to the ones developed by Zenklusen [18, 19]. 

Still another approach is to follow the applications of Stackelberg games that 
have been used in pioneering defensive approaches at the nation’s airports, ports, 
and in applications by the Federal Air Marshals Service, US Coast Guard, etc. (see 
[11, 15]). In a Stackelberg game between an attacker and a defender, the defender 
(security) acts first. The attacker can observe the defender’s strategy and choose 
the most beneficial point of attack. The challenge is to introduce some randomness 
in the defender’s strategy to increase the uncertainty on the part of the attacker. 
Bayesian Stackelberg games do exactly that. Layered defense makes this into a new 
kind of Stackelberg game to analyze, one with two rounds, one involving the outer 
layer and one involving the inner layer based on results at the outer layer. We can 
look both at nonrandomized and randomized strategies for the defender. 

There are many other directions in which this work could go. Even with our 
current model, we have not yet developed practical methods to handle more than 
two layers of defense. There are also many variations on our model that could 
be quite interesting. For example, we could consider a fixed resource limit that 
the defender could allocate between inner and outer layers. Then, we could allow 
adaptive redistribution of resources across layers and across time (see [2, 4]). 

Disclaimer The views and conclusions contained in this document are those of the authors and 
should not be interpreted as necessarily representing the official policies, either expressed or 
implied, of the U.S. Department of Homeland Security. 
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Developing and Running a Set 
of Competitive College/University 
Blended Courses 

Alexander S. Belenky 

1 Introduction 

Distance learning is one of the rapidly growing directions in higher education, and, 
according to numerous reports, only in the U.S., it currently embraces millions of 
students [1]. Higher education specialists continue to discuss various philosophical 
and pedagogical problems of distance learning, including those related to the quality 
of education that it may provide (compared to a traditional off-line higher education) 
[2]. At the same time, the distance learning economics becomes one of the areas 
which starts to concern administrations of all the colleges and universities at which 
the courses available via the Internet are or are planned to be in use [3]. 

One of the topics that is actively discussed in scientific publications in the frame-
work of the economics of distance learning deals with specifics of the so-called 
blended courses [4–7]. A group of such courses is formed by those incorporating 
recorded fragments from particular courses available on the Internet into lectures 
and seminars that are taught by college/university professors in classrooms offline. 

The available data on studies analyzing the effectiveness of various forms of dis-
tance learning in general suggest that from the viewpoint of the quality of education, 
blended courses can be not less effective than recorded ones [8, 9]. Moreover, the 
so-called “peer effect”—which is inevitably present in all the blended courses— 
apparently, positively affects this quality [10, 11]. However, running a blended 
course on a particular subject may require the college/university administration to 
provide more professors and teaching assistants than it would provide for an offline 
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course on the same subject. Yet, in most cases, such an expansion of the teaching 
personnel can be done only within financial boundaries of the college/university 
budget. 

Meeting desirable quality requirements within certain financial restrictions is 
a typical decision-making problem that is solved in industrial, transportation, 
agricultural, business, financial, and other systems (See, for instance [12–18].) 
These systems have long been using decision support tools letting their users find 
the best allocation of those financial resources that they can afford to spend in order 
to be competitive in corresponding markets. It seems that the administration of every 
college/university would benefit from having similar tools at its disposal to meet the 
challenges that the education market of potential new students currently poses and 
will pose in the future. This is the case since all the colleges/universities compete, 
particularly, for new students interested in good higher education. 

One should draw attention of college/university administrations to the fact that 
if properly advertised, an obligation to offer blended courses that are based on 
recorded lectures and seminars of professors from the most famous universities in 
the world is a factor positively affecting the student enrollment. Moreover, adopting 
such a strategic decision of providing thus designed and advertised blended courses 
is likely to affect positively the college/university position in the education market 
in general, along with its budget, due to at least two reasons. 

First, almost all the potential college/university new students who are interested 
in acquiring knowledge (rather than only a diploma) dream on studying at Harvard, 
MIT, Cambridge, Oxford, Princeton, Stanford and other world-famous universities. 
Yet, many of these students are unable to study there due to either low high 
school grades or financial reasons (or both). If a particular college/university could 
convince potential new students of the above-mentioned kind that they would listen 
to the same lecturers on most of the courses as do students from these famous 
universities while being (a) offered effective tutorials prior to the start of every 
course, and (b) explained all the course nuances in a simple manner understandable 
to them, this would make a difference in making enrollment decisions by these 
potential new students that are favorable to this college/university. 

Second, if all such potential college/university new students were offered to study 
both these courses and tutorials at an affordable cost—which may, eventually, be 
lower than the cost of studying the same subjects off line at other colleges/universi-
ties—their intent to enroll at this college/university would become even stronger. 

Thus, the question that a college/university administration—interested in running 
blended courses there in principle—needs to answer is: How to make the above 
education strategy a reality, and how to convince potential new students to enroll at 
this college/university? 

Two sets of problems are to be addressed by the interested college/university to 
answer this question. 

The first set includes problems associated with finding such a structure of each 
particular blended course (which is based on the above-mentioned recordings) that 
would help the college/university administration convince the potential new students 
that from the very first lectures, they would become sure to succeed in studying the
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course. (Certainly, the administration should make it clear that this success can come 
only if the enrolled students (a) strictly follow recommendations of the teaching 
personnel assigned to run this course, and (b) bend every effort to succeed.) 

The second set includes problems associated with financial aspects of organizing 
and running blended courses in a manner making it financially affordable to both 
the college/university and the students. 

Addressing problems from the first set (associated with choosing the structure of 
each blended course) implies conducting comprehensive studies on how different 
categories of students focus on both the subject of a lecture in general and particular 
information or techniques discussed in the course. Also, the studies are to determine 
the best way to run the lecture by choosing an optimal sequence of fragments from 
the recorded courses and the explanations of the scope of these fragments that 
should either precede a particular fragment or immediately follow it. These studies 
should lead to designing testing questions to be asked by the teacher running the 
course before going to the next fragment. However, all this should be done in a 
manner that would not turn the lecture into a discussion with the audience that 
may consume much of the lecture time. Finally, the structure of tutorials offered 
by the college/university to let the students succeed in studying each blended course 
designed in the chosen manner should be determined and announced in advance. 

Published recommendations of the teachers, along with, possibly, even special 
consultations of these teachers, can make a difference in the effectiveness of such 
study results. Certainly, the experience and pedagogical skills of those to be chosen 
to run blended courses matter a great deal. It’s especially so if every teacher chosen 
to teach a blended course manages to test a particular version (or even different 
particular versions) of this blended course that she/he proposes to run on groups of 
the students similar (or at least close) to those who are expected to study the course 
at the college/university. 

Addressing problems from the second set implies the determination of 

(a) the minimal budget to organize and run the teaching of a set of chosen blended 
courses to secure such a percentage of the students (who are to study courses 
from this set) expected to succeed in studying each particular course from the 
set that would not be lower than a certain desirable one, and 

(b) the maximal percentage of the students (who are to study blended courses from 
this set of the chosen courses) expected to succeed in studying all the courses 
from the set under a particular budget. 

Though with respect to the first set of problems, there is a room (if not a 
necessity) for the use of mathematical methods, these problems are currently 
discussed in scientific publications on this subject mostly at the level of hypotheses 
[19–21]. The authors of these publications either only set or set and verify the 
proposed hypotheses by conducting polls among both the students and the teachers. 
Problems from the second set are rarely considered in scientific publications at all, 
and no helpful quantitative analysis of these problems have so far been offered. 
The latter leaves college/university administrations “unarmed” in dealing with the
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economics of organizing and running blended courses or incorporating other forms 
of distance learning into the curricula there. 

The present paper focuses on those problems from the second set of the above-
mentioned ones that are associated with finding and analyzing financial options 
available to a college/university administration interested in organizing and running 
blended courses of the considered kind. Particularly, the paper aims at providing 
a description of a decision-support tool for college/university administrations that 
lets them quantitatively estimate the budget needed to design and run a set 
of blended courses of any chosen structure. Proceeding from this budget, the 
administration of an interested college/university can certainly calculate tuition 
fees for those its potential new students who are to pay for their education in line 
with the college/university financial policies being currently in force. (However, a 
description of corresponding calculation schemes and methodologies implementing 
these policies lies beyond the subject of the present paper.) 

The proposed tool can help administrations of interested colleges/universities 
develop an optimal strategy of organizing and running blended courses with the 
use of available recorded materials (courses) from leading universities in the world 
(as well as, certainly, with the use of those from any other universities). It’s 
implemented by means of standard software packages that can particularly be run 
on personal computers. 

As far as the author is aware, the proposed decision-making tool is the first 
one capable of solving particular economic problems that the administration of a 
college/university interested in organizing and running blended courses faces in its 
attempt to make the distance learning a part of the education process there. 

Besides the Introduction, the paper includes three more sections. In Sect. 2, a  
brief review of research publications in five important (from the author’s viewpoint) 
areas associated with organizing the use of recorded courses in distance learning 
in general and in running blended courses at colleges/universities in particular 
is presented. In Sect. 3, a new mathematical model proposed by the author 
for calculating an optimal strategy of hiring teachers to run a set of blended 
courses with the use of recorded materials is described. Also, in this section, two 
integer programming problems, formalizing those outlined in the Introduction, are 
formulated on the basis of this model. Section 4 indicates, in particular, a set of 
problems associated with running blended courses that could present interest for 
college/university administrations and should be researched in the future. 

2 A Brief Review of Research Publications in Five Major 
Areas Related to the Use of Blended Courses in the 
Education Process 

Despite (a) the importance of using online courses in blended learning as a 
way to dramatically improve the quality of education worldwide, and (b) the 
obvious necessity to address the economics of hiring new university teachers to
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run particular blended courses, both those from abroad and from other universities 
in the country, these problems don’t seem to have been studied quantitatively in 
scientific publications. As far as the author is aware, only qualitative considerations 
of the above two aspects of online education, both in general and with respect 
to blended courses, have so far been presented either in the form of case studies 
or in that of open discussions. As one can see from the publications cited in the 
Introduction, papers covering at least five important aspects of education related to 
blended learning—(a) online distance learning advantages in general, (b) blended 
courses specifics, (c) the effectiveness of blended learning, (d) peer-effect in blended 
learning, and (e) choosing the structure of blended learning—are those on only 
qualitative aspects of the corresponding topics. 

The aim of the review presented below is to give the reader an impression on 
(a) the substance of the topics covered by contemporary publications on blended 
learning, and (b) the state of affairs in this field, which has motivated the proposed 
quantitative analysis of the problem of using available online courses in designing 
blended ones. 

Online Distance Learning Problems An important mission of online education— 
which is close to the topic of the present paper—consists of providing opportunities 
for bringing a high quality of education offered by the most prestigious col-
leges/universities in the world to colleges/universities of a (currently) modest level 
of education quality. By reducing their expenses, the latter colleges/universities 
may be able to make a higher level of education quality financially affordable 
to both them and their students by widely using online courses developed by 
leading colleges/universities in the world [3], particularly, by incorporating recorded 
fragments from these online courses into blended courses that they can offer. To 
implement this mission, as well as other social missions of online education, two 
groups of problems associated with distance learning are to be studied. 

The first group of these problems includes those associated with “distance learn-
ers” such as communications among online learners [2], approaches to structuring 
assessments of studying parts of an online course, which affect student’s learning 
strategies [22], creating appropriate social environments affecting the motivation 
to learn [23] and encouraging the presence of the so-called “massive learning” 
phenomenon [24], choosing the structure of instructions provided in all forms of 
online learning [25], along with teacher-student relationships that affect student’s 
achievements [26], the effectiveness of online learning in the form of discussions 
vs. so-called “silent learning” [27], pedagogical aspects of the knowledge perception 
by the learners and the behavior of participants of the online education, along with 
micro- and macro-level environment surrounding this activity [28]. 

The second group of the problems includes those associated with teachers 
and administrations of colleges/universities involved in running distance learning 
courses such as preparing teachers for running online courses [29], encouraging 
teachers to switch to teaching online [30] or/and to using online materials in blended 
educational courses, particularly, by providing information on the effectiveness 
of online education [31] and comparing this effectiveness with that of traditional
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learning [32], along with examples of successfully substituting off-line classes 
with distance learning [33], describing principal advantages of online learning 
[34], designing learning communities [35], and providing accessibility to online 
education to people with disabilities [36]. 

Both groups of the above problems are studied in the framework of surveys of 
answers to some questionnaires [37–40] or case studies [22, 23, 36, 41]. 

Blended Courses Specifics A comparison of the students’ performance in tra-
ditional studies and in blended learning is offered in [4], where the authors, 
particularly, suggest that students with high great point averages in prior studies 
achieve better results in studying blended courses. Based upon reports of 74 second-
year students on their self-control and self-regulated learning skills, the authors 
of [5] conclude that these skills, along with the actual participation in (attending) 
the course, are key factors to predict the final grades for an online course. In [6], 
predicting the final outcome of studying a blended course and detecting students 
who are at risk of poorly studying a particular course is studied by considering 29 
“usage variables”. The author of [6] suggests that only 14 of these variables turned 
out to be significant, including four variables that allowed one to predict the learning 
outcome with a reasonable accuracy. An analysis of the blended learning impact on 
studying both STEM and non-STEM disciplines, presented in [42], suggests that 
studying STEM disciplines in the framework of blended learning is more effective 
than studying them in the framework of traditional studies. At the same time, a 
comparison of exam and quiz results in blended and traditional courses, presented 
in [7] for a set of introductory economic courses, did not discover substantial 
advantages of blended learning. 

Eight problems that the teachers who conduct blended courses face are described 
in [43] as those being part of three inductive categories—instructional processes, 
community concerns, and technical issues—detected as a result of processing the 
response of 117 teachers from four Universities in Turkey to questions they were 
asked in the interviews. Results of a study reported in [44] suggest that only 
a minority of all the students use particular tools in studying blended courses 
supported by content management systems (CMS), and the students regulate the 
use of these tools as the blended course unfolds. Students’ approaches to inquiry 
and collaborations in the course of working on a blended course are studied in 
[45], and a division of the students into subgroups within a group of more than 200 
students, with similar approaches to the inquiries and learning technologies within 
each subgroup, is reported there with respect to a particular one-semester blended 
course. The authors of this study believe that such a division helps explain why 
students from some of the subgroups are more successful in studying the course 
than students from the other ones. 

Four key challenges in designing blended courses—(1) incorporating flexibility, 
(2) stimulating interaction, (3) facilitating students’ learning processes, and (4) fos-
tering an emotional learning climate—and approaches to resolving corresponding 
problems are outlined in a review of 640 sources and 20 studies, presented in [46].
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Patterns of the students’ evaluation of and experience with online, blended, and 
face-to-face courses are compared in [47]. 

The Effectiveness of Blended Learning A case study related to implementing a 
blended learning approach to developing a course is presented in [48], where 
both students’ responses to the blended learning environment and thoughts of 
the course author on the requirements that a successful blended course should 
meet are discussed. An approach to integrating online and face-to-face learning 
with blended learning, which was successfully implemented at Suleyman Demirel 
University via a University Learning Management Systems (LMS) with respect to a 
particular computer engineering course, is described in [9]. A set of bottlenecks 
in contemporary higher education, which is described in [49], is considered by 
the authors, particularly, from the viewpoint of the ability of blended courses 
to contribute to effectively solving corresponding problems of managing higher 
education. 

Twenty research studies analyzed in the framework of a review, presented in 
[50], let the review authors suggest that there exist two groups of main factors, 
each affecting the solving of creative problems in a blended learning environment, 
that should be considered. The first group includes four particular factors affecting 
the solving process, whereas the remaining five factors, determining the blended 
learning environment, form the second group. Results of an experiment with 
the MAgAdI on-line system—an adaptive, integrated into the learning process 
web environment, developed to support the learning processes in which several 
knowledge fields, courses, and teachers get involved—are discussed in [8]. The 
authors of [8] assert that the use of that on-line system helps successfully blend 
traditional teaching methods with various learning environments. 

Peer Effects in Learning Peer effects—as a phenomenon associated with an 
affection that the interaction with peers may have on a person’ behavior in a 
group learning—have some general features. This is why these effects are currently 
studied mostly in general though they may have certain specifics in blended learning 
and affect compositions of learners (who take blended courses) to achieve better 
academic results. 

Fundamentals of peer effects in higher education, including the definition of 
this phenomenon, are discussed in [10], where the authors assert that these effects 
affect the economics of higher education, mostly since (according to these authors), 
they “eliminate awkward anomalies in the institutional behavior of colleges and 
universities and in the economic structure of higher education as an industry if they 
exist.” Three interaction patterns of peer talks—a tutor-led question-and-answer 
pattern, a cumulative-exploratory pattern, and a dispute-exploratory one—within 
a particular educational environment in which third-year students are to train first-
year ones are identified in [51]. The authors of that paper believe that using the 
identified patterns may improve the effectiveness of studies with respect to all the 
subjects of learning. 

The underlying mechanism of peer effects is studied in [11] with respect to a 
group of first year students for which the academic abilities of different student
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subgroups are measured and compared. According to the authors of that paper, (a) 
male, minority, and low-ability students are affected by their peers the most, and (b) 
the transfer of general knowledge within all the subgroups has more effect than that 
of specific knowledge. 

A theoretical model attempting to explain (and compare) different peer effects 
in different fields of studies based upon researching the behavior of the first year 
students in a middle-sized public university in Italy is presented in [52]. Peer 
effects in students’ academic performance are studied in [53] based upon a set of 
publications in the field, and one of the findings, presented in that paper, suggests 
that high ability students have higher positive peer effect on other high ability 
students at both school and college/university level. At the college/university level, 
the findings suggest that the background of roommates affects students’ academic 
performance. 

Choosing the Structure of a Blended Course An approach to structuring a blended-
learning bachelor program in electrical engineering, designed for a group of students 
who study this subject alongside with working (as being employed), is discussed in 
[21]. Several options for information exchange such as establishing a connection 
with the course of mathematics, retrieving references needed to study the course, 
electronic module questionnaires, and a feedback channel functioning during the 
whole course are used in structuring the course. A methodology (Q-methodology) 
to designing blended education courses is considered in [19] to identify learning 
perspectives of the students enrolled, along with peculiarities of their perceptions 
of the course, which helps estimate possible student achievements as a result of 
studying the course. The author of [19] identifies four perception types and offers 
his observations on the academic achievements of the students with some of those 
perception types. 

A mathematical thinking approach underlying the structure of a blended course 
in part of a calculus course related to multivariable calculus is proposed in [54], 
where the authors assert that creating a blended learning environment is adequate to 
developing mathematical thinking in students. A set of guidelines that are based on 
theories of instructional design for writing instructors, offered in [55], are aimed at 
supporting effective student learning. The authors of that publication suggest that in 
designing the course, the instructors should focus on five issues: (1) a substantiation 
of the need for the course, (2) the structure of the audience to learn the course, 
(3) advantages of developing the course in an on-line form, (4) basic pedagogical 
principles, and (5) available resources. 

A concept of blended learning, along with basic elements of its teaching mode 
frame, is discussed in [56]. A set of guides, documents, and publications related to 
practical aspects of designing blended courses, along with common principles of 
designing such courses, an appropriate terminology, and strategies to use to meet 
accreditation requirements, is considered in [57]. The authors of that publication 
discuss approaches to using online technologies and to the course implementation, 
along with the problems and difficulties to bear in mind in designing blended 
courses, and outline directions of further research in this field. Detailed instructions
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on designing blended courses to achieve learning objectives, along with certain 
tools and templates, are offered in the books [20] and [58]. The books contain both 
theoretical and practical considerations related to designing blended courses and 
reflect the experience of their authors in developing such courses and in converting 
traditional courses into blended learning ones. 

As one can see from the presented review, and as mentioned in the Introduction to 
this paper, all the discussions and reasonings in all the above five areas are conduced 
at the level of philosophical and pedagogical observations and suggestions. No tools 
for either a formalized analysis or a conversion of these discussions and reasonings 
into practical activities have so far been proposed. 

At the same time, it is clear that the college/university competitiveness in 
the market of potential new students cannot be based on such observations and 
discussions only. College/university administrations that possess tools for making 
strategic decisions based on a formalized financial analysis of which economically 
affordable decisions can and which ones should be made will undoubtedly have 
substantial competitive advantages in the above-mentioned market. 

3 The Statements of the Problems and Their Mathematical 
Formulation 

AUniversity/College (for the sake of definiteness, a University further in this section 
of the paper) intents to start teaching blended courses in one of foreign languages, 
for instance, in English, and it’s to decide how to organize this activity. The number 
of blended courses to be taught in English equals K , and the number of teachers-
native speakers of English language—can (a) cover all these K courses, and (b) be 
hired by the University from abroad—equals (or doesn’t exceed) L. Besides hiring 
teachers from abroad to run these K blended courses, the University considers a 
possibility to offer to teach some courses from this set of K blended courses or all 
the K blended courses to teachers-native speakers of the country’s language who 
speak English well. To this end, the University considers potential candidates to 
teach blended courses from among those who are currently employed either by the 
University or by other universities in the country. 

The University plans to buy (or to take from the open sources) recorded online 
courses that are taught by distinguished professors from leading universities in 
the world and to use these recordings in designing all the above-mentioned K 
blended courses, no matter who will finally be chosen to teach these courses. Each 
of the teachers (a) invited from abroad, (b) invited from other universities in the 
country, and (c) currently employed by the University, who are invited to teach each 
particular course from the set of K blended courses, is to teach it in one and the 
same manner. That is, she/he is to teach each such course in the form of lectures and 
seminars, and these lectures and seminars are to be based on or substantially use the 
above-mentioned acquired materials from the recorded online courses.
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Each of the teachers considered by the University to be invited to teach courses 
from the set of K blended courses (from among those who can be chosen 
from professors currently working at the University, or can be hired from other 
universities in the country, or can be invited from abroad) can teach no more than 
a certain number of these blended courses. If a teacher from the University is 
assigned to teach some courses from the set of K blended courses, her/his existing 
assignments for teaching courses in the country’s language are to be covered by 
other teachers either currently working at the University or by those to be hired 
from other universities in the country (though not by any of those invited to teach 
courses from the set K) on the hourly basis. Each potential candidate to teach any 
particular course from the set of K blended courses is tested by experts recognized 
by the University. Such experts are to estimate a percentage of the students who are 
likely to succeed in studying this course should this candidate be selected to teach 
the course. 

The University is interested in estimating two (indicated in the Introduction) 
numbers associated with organizing and running the above-mentioned K blended 
courses: 

(1) What is the minimal budget to organize the teaching of these K blended 
courses in English to secure a percentage of the University students (who are 
to study courses from this set) expected to succeed in studying each particular 
course (from these K blended courses) to be not lower than a certain desirable 
percentage? 

(2) What is the maximal percentage of the students (who are to study courses from 
this set) expected to succeed in studying each particular course from these K 
blended courses under any particular budget that the University can afford to 
spend to organize and run these courses? 

All the teachers-native speakers of the country’s language who are potentially 
capable of teaching courses in English from the set of K blended courses (both 
from the University and from other universities in the country) are called course 
developers further in the paper. If any course from the K blended courses is to be 
taught by a teacher-native speaker of English (invited from abroad), the students 
assigned to study this course are to take (a) an advanced course in English language, 
and (b) corresponding tutorials to be prepared to understanding fragments from the 
corresponding recorded courses, prior to the commencement of the course. 

Let 

• K be the number of blended courses that the University plans to teach in English 
yearly, say, in the next T years, 

• B be the yearly budget allocated by the University to cover the expenses 
associated with developing and running the set of K blended courses within T 
years, 

• . B0 be the cost of recorded online courses that the University acquires to use in 
developing the set of K blended courses, 

• M be the number of potential course developers who are currently employed by 
the University,
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• R be the number of teachers currently working at other universities in the country 
who are interested in working at the University, and who are considered by the 
University as potential course developers, 

• L be the number of teachers-native speakers of English from abroad who can 
cover the needs of the University in teaching courses from the set of K blended 
courses and who the University can financially afford to invite, 

• . ci be the basic yearly salary of course developer i (who is a teacher currently 
employed by the University) and who is chosen (assigned) to teach courses from 
the set of K blended courses, .i ∈ 1,M , 

• .∇ik be the additional yearly salary of course developer i from the University, 
assigned to teach courses from the set of K blended courses, for developing and 
teaching course .k, k ∈ 1,K, i ∈ 1,M , 

• . br be the basic yearly salary of course developer r from another university in the 
country invited to teach courses from the set of K blended courses, .r ∈ 1, R, 

• . δrk be the additional yearly salary of developer r , invited from another university 
in the country to teach courses from the set of K blended courses, for developing 
and teaching course .k, k ∈ 1,K, r ∈ 1, R, 

• . gr be the relocation cost associated with hiring course developer r from another 
university in the country to teach courses from the set of K blended courses, 
.r ∈ 1, R, 

• . al be the basic yearly salary of teacher l to be invited from abroad to teach courses 
from the set of K blended courses in English, .l ∈ 1, L, 

• .�lk be the additional yearly salary of teacher l, invited from abroad to teach 
courses from the set of K blended courses in English, for teaching course . k, k ∈
1,K, l ∈ 1, L, 

• . hl be the relocation cost associated with the invitation of teacher l from abroad 
to teach courses from the set of K blended courses in English, .l ∈ 1, L, 

• . di be the per hour salary of a (currently employed by the University) teacher, who 
is to substitute course developer i (who is assigned to teach courses from the set 
of K blended courses) in all the activities associated with teaching the courses 
“vacated” by course developer i, .i ∈ 1,M (if there are such course developers), 

• . tik be the number of hours per year that course developer i “vacates” (as a result 
of switching to teaching course k from the set of K blended courses) that are 
to be covered by other teachers (either by those who are currently employed at 
the University or by those to be hired from other universities in the country), 
.i ∈ 1,M, k ∈ 1,K , 

• . αik be the expert estimate of a percentage of the students expected to succeed 
in studying blended course k that is taught by course developer i from the 
University, .i ∈ 1,M, k ∈ 1,K , 

• .βrk be the expert estimate of a percentage of the students expected to succeed 
in studying blended course k that is taught by course developer r invited from 
another university in the country, .r ∈ 1, R, k ∈ 1,K , 

• . γlk be the expert estimate of a percentage of the students expected to succeed 
in studying blended course k that is taught by teacher l invited from abroad, 
.l ∈ 1, L, k ∈ 1,K ,
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• . ωk be a desirable (targeted) by the University percentage of the students expected 
to succeed in studying blended course .k, k ∈ 1,K , 

• . uk be a Boolean variable that equals 1 if course k from the set of K blended 
courses is to be taught by a teacher invited from abroad (so that a special English 
language course and tutorials are to be run by the University for the students who 
choose to study blended course .k ∈ 1,K) and equals 0, otherwise, 

• . fk be the yearly cost of running the advanced English language course and the 
corresponding tutorials for the students who choose to study blended course 
.k, k ∈ 1,K , 

• . xik be a Boolean variable that equals 1 if course developer i from the University is 
assigned to teach blended course .k, i ∈ 1,M, k ∈ 1,K , and equals 0, otherwise, 

• . sr be a Boolean variable that equals 1 if course developer r to be invited from 
another university in the country is qualified to teach courses from the set of K 
blended courses and equals 0, otherwise, .r ∈ 1, R, 

• .yrk be a Boolean variable that equals 1 if course developer r from another 
university in the country is invited to teach blended course . k, k ∈ 1,K, r ∈ 1, R
and equals 0, otherwise, 

• . wl be a Boolean variable that equals 1 if teacher l from abroad is invited to teach 
courses from the set of K blended courses and equals 0, otherwise, .l ∈ 1, L, 

• . zlk be a Boolean variable that equals 1 if teacher l from abroad is invited to teach 
blended course k and equals 0, otherwise, .l ∈ 1, L, k ∈ 1,K , 

• .M�(i) ⊂ 1,K be a subset of courses from the set of K blended courses that 
course developer i (from the University) can’t teach, .i ∈ 1,M , 

• .R�(r) ⊂ 1,K be a subset of courses from the set of K blended courses that 
course developer r (to be invited from another university in the country) can’t 
teach, .r ∈ 1, R, 

• .L�(l) ⊂ 1,K be a subset of courses from the set of K blended courses that 
teacher l (to be invited from abroad) can’t teach, .l ∈ 1, L, 

• . νi be the maximal number of courses from the set of K blended courses that 
course developer i (from the University) can teach concurrently, .i ∈ 1,M , 

• . μr be the maximal number of courses from the set of K blended courses that 
course developer r (to be invited from another university in the country) can 
teach concurrently, .r ∈ 1, R, 

• . πl be the number of courses from the set of K blended courses that teacher l (to 
be invited from abroad) can teach concurrently, .l ∈ 1, L, and 

• . qk be the yearly budget that the University can spend for additional salaries to 
be paid to the teacher who teaches course k from the set of K blended courses 
(along with the English language course and corresponding tutorials, if need be) 
and to the one who substitutes this teacher (if there is one). 

Assumptions 

1. The numbers of potential candidates from other universities in the country to 
choose from to (a) invite to become blended course developers, and (b) replace 
teacher i for the hours “vacated” by this teacher are known large integers.
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Course developers .i, i ∈ 1,M and .j, j ∈ 1, R are paid an extra salary 
for developing and running courses from the set of K blended courses. This 
developing is done in line with the structure of each blended course they are 
invited to teach, which is to be provided by the University administration. 
However, the basic salary of developer .i, i ∈ 1,M remains the same as it 
was before the assignment to teach blended courses (and it’s not a part of the 
budget B, allocated to cover the expenses associated with hiring teachers to teach 
courses from the set of K blended courses). 

2. Teachers invited from abroad to teach courses from the set of K blended 
courses come with already developed such courses (in line with the structure 
of these courses to be provided by the University administration in advance). 
Nevertheless, they are paid extra salaries .∇lk, l ∈ 1, L, k ∈ 1,K for teaching 
these courses while their basic salaries are specified by corresponding contracts 
sighed between each of them and the University administration. 

All the salaries paid to each teacher invited by the University—both to each 
of those invited from other universities in the country and to each of those 
invited from abroad—are part of the budget B, allocated to cover the expenses 
associated with hiring teachers to develop and run courses from the set of K 
blended courses. 

3. For the sake of simplicity, it’s further assumed that both the tutorials and special 
English language courses are run for blended course k only if this course is to be 
taught by a teacher invited from abroad (though, generally, at least the tutorials 
may be run if a teacher of any of the two other kinds is to run this course), 
introducing Boolean variables similar to . uk may reflect this case in the system of 
constraints (1), (2), to be presented further in this paper). 

4. All the contracts with every teacher invited from abroad to teach courses from 
the set of K blended courses and with every blended course developer from other 
universities in the country, hired by the University to teach blended courses from 
this set, are signed for T years. 

5. In considering the use of recorded fragments of online lectures in designing 
blended courses, along with the invitation of outside teachers to teach blended 
courses (including those invited from abroad), the University administration 
chooses a total set of blended courses that it plans to start offering at the 
University yearly within T years so that no new blended courses are added by 
the University within these T years. 

6. All the information needed for estimating the values of the parameters . αik,

i ∈ 1,M, k ∈ 1, k, .βrk, r ∈ 1, R, k ∈ 1, k, and . γlk, l ∈ 1, L, k ∈ 1, k
is considered to be available with respect to all the teachers invited to teach 
blended courses from the set K at the University. Teachers from abroad who 
are considered to be invited to teach blended courses in line with the required 
structure of these courses (to be provided by the University administration) 
are asked to provide some of their recorded lectures on the same subjects in 
advance, to let the University administration and the experts make corresponding 
estimates. To make these estimates, the University arranges testing of the
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provided recorded materials on a selected group of its students to find out what 
kinds of training courses and tutorials are to be run to help the students better 
understand both the substance of the blended courses and the language to be 
used in presenting (the designed) blended courses to the audience, which these 
courses are prepared for. 

The systems of constraints 

.

M∑

i=1

xik +
R∑

r=1

yrk +
L∑

l=1

zlk = 1, k ∈ 1,K,

M∑

i=1

xik ≤ 1, k ∈ 1,K,

K∑

k=1

xik ≤ νi, i ∈ 1,M,

xik = 0, k ∈ M�(i) ⊂ 1,K,

yrk ≤ sr ≤
K∑

k=1

yrk, r ∈ 1, R, k ∈ 1,K,

R∑

r=1

yrk ≤ 1, k ∈ 1,K,

K∑

k=1

yrk ≤ μr, r ∈ 1, R,

yrk = 0, k ∈ R�(r) ⊂ 1,K,

L∑

l=1

zlk − uk = 0, k ∈ 1,K,

zlk ≤ wl ≤
K∑

k=1

zlk, l ∈ 1, L, k ∈ 1,K,

L∑

l=1

zlk ≤ 1, k ∈ 1,K,

K∑

k=1

zlk ≤ πl, l ∈ 1, L,

zlk = 0, k ∈ L�(l) ⊂ 1,K,

L∑

l=1

�lkzlk +
R∑

r=1

δrkyrk+

M∑

i=1

∇ikxik +
M∑

i=1

ditikxik + fkuk ≤ qk, k ∈ 1,K,

(1)

and
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.

L∑

l=1

wl(al + hl) +
K∑

k=1

L∑

l=1

�lkzlk +
R∑

r=1

sr (br + gr) +
K∑

k=1

R∑

r=1

δrkyrk+

K∑

k=1

M∑

i=1

∇ikxik +
K∑

k=1

M∑

i=1

ditikxik +
K∑

k=1

fkuk ≤ B − B0

(2) 

should hold for the first year in the set of T years (also, see concluding Remark 9).
Taking into account the system of constraints (1) and (2), the two problems stated 

earlier in this section of the paper can mathematically be formulated as follows: 

Problem 1 The problem consists of maximizing the minimum percentage of the 
total number of students expected to succeed in studying a course from the set . 1,K
(when these courses are considered to be equally important from the University’s 
viewpoint), and this problem is formulated proceeding from the fixed yearly budget 
B (for T consecutive years). This problem is the Boolean programming problem 

. min
k∈1,K

( M∑

i=1

αikxik +
R∑

r=1

βrkyrk +
L∑

l=1

γlkzlk

)
→ max

(xik,yrk,zlk,uk,sr ,wl)
(3) 

under the systems of constraints (1), (2). 

Problem 2 The problem consists of minimizing the maximal value of the yearly 
budget for organizing and running courses from the set of K blended courses (which 
is that for the first of the T consecutive years), provided the desirable (targeted) 
percentages of the students expected to succeed in studying the courses from this 
set (determined by the numbers .ωk, k ∈ 1,K) are attained. This problem is the 
Boolean programming problem 

.

L∑

l=1

wl(al + hl) +
K∑

k=1

L∑

l=1

�klzkl +
R∑

r=1

sr (br + gr) +
K∑

k=1

R∑

r=1

δkrykr+

K∑

k=1

M∑

i=1

∇ikxik +
K∑

k=1

M∑

i=1

ditikxik +
K∑

k=1

fkuk → min
(xik,yrk,zlk,uk,sr ,wl)

(4) 

under the system of constraints (1) and the additional system of constraints 

.

M∑

i=1

αikxik +
R∑

r=1

βrkyrk +
L∑

l=1

γlkzlk ≥ ωk, k ∈ 1,K. (5) 

In both problems, it is assumed that the systems of constraints (1), (2) (in  
Problem 1) and (1), (2), (5) (in Problem 2) are compatible, which can be verified, 
and appropriate corrections in the systems of constraints (1), (2) can be made with 
the use of the technique proposed, in particular, in [59].
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In Problems 1 and 2, it is assumed that the parameters .αik, βrk , and . γlk—which 
are expert estimates of percentages of the students who are to take course .k ∈ K and 
are expected to succeed in studying this course if the course is taught by a developer 
from the University, or by a developer from another university in the country, or 
by a teacher invited from abroad, respectively—are known numbers provided to the 
University administration by expects recognized by the University. 

4 Concluding Remarks 

1. It’s clear that, generally, Boolean programming problems (1)–(3) and (1), (2), 
(4), (5) can also serve as mathematical formulations of problems associated with 
finding an optimal composition of the teachers to run any set of offline courses at 
a college/university, for instance, in physics, mathematics, biology, etc., without 
the use of recordings of any lectures on corresponding subjects. If this is the 
case, any training courses and tutorials in the corresponding subjects may or 
may not be run, and teachers from abroad may or may not be invited to teach the 
corresponding offline courses. To formulate both problems in this case, some 
variables and parameters, being present in the system of constraints (1), (2), 
should be omitted. 

Such a possibility to use the proposed models and Boolean programming 
problems stems from the obvious observation: The nature of stuffing a set of 
blended courses with teachers and that of stuffing a set of offline courses with 
ones is the same, and so should be their mathematical formalization. Indeed, in 
both cases, an optimal combination of the teachers from any available set of them 
to teach courses within certain financial limits should be determined. However, 
stuffing offline courses at, for instance, a modest university differs from stuffing 
blended ones there. 

Indeed, to make blended courses attractive to potential new students, the 
college/university administration should 

(a) properly advertise these courses as those to be taught with the use of 
fragments of lectures given by professors from famous universities in the 
world, 

(b) convince the potential new students that both the tutorials and the training 
courses to accompany each offered blended course (if there are ones to 
accompany it) are designed to let every interested student succeed in studying 
this course, 

(c) pay extra salaries to the chosen teachers for developing each blended 
course (in line with its structure to be provided by the college/unversity 
administration), and 

(d) apply a reliable procedure of estimating the ability of each potential teacher 
to teach a blended course
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to let the expert estimates of the percentage of the students expected to succeed 
in studying this course be not lower than a particular desirable number (which is 
known for standard offline courses on the same subjects). 

Finally, the blended courses to be included in the college/university curricula 
should be designed and run in such a manner that the students who are the 
most successful in studying the offered blended courses may eventually become 
prepared to continue their education in those world-famous universities, whose 
recorded fragments of lectures were part of these blended courses. For instance, 
upon graduation, bachelor students may succeed in getting admitted to these 
universities for master programs, whereas master students may get admitted 
for Ph.D. studies there. Needless to say that if this happened, it would be an 
excellent contribution to the university’s prestige and would sharply contrasted 
the described strategy of designing and running blended courses from that 
of running traditional offline ones. The college/university may even organize 
subgroups of the most advanced enrolled students interested in making these 
moves to the world-leading universities to help them succeed in implementing 
their desire. This can be done, particularly, by offering them specially designed 
blended courses with a more intensive use of the recorded online lectures given 
by distinguished professors at those universities. 

2. While designing blended courses based on fragments of recorded lectures of 
distinguished lecturers from world-leading universities is a good option for 
advanced potential and current college/university students, blended courses for 
both less prepared potential and current students may use recordings of ordinary 
lecturers, including those offered by college/university teachers. In both cases, 
problems (1)–(3) and (1), (2), (4), (5) (with changes reflecting a particular 
strategy of designing and running blended courses) can be used for receiving 
corresponding quantitative financial estimates. 

3. The formulations of Problems 1 and 2 suggest that the proposed decision support 
tool may help a college/university to substantiate the budget needs in talks with 
legal entities that care about the quality of education that this college/university 
provides and its prestige (such as local and federal administrations for public 
colleges/universities and contributing sponsors for private ones). Particularly, 
this tool helps the college/university substantiate the size of B − B0—the 
college/university’s budget that is planned by the college/university to be spend 
for organizing and running K blended courses—particularly, in the talks with 
these legal entities associated with the competitiveness of the college/university 
in the market of new potential students. 

4. In this paper, the competitiveness of a college/university in a market of potential 
students is considered with respect to new potential students only. However, it’s 
clear that, generally, the competitiveness of a college/university also depends 
on how the education process is arranged for the students who have been with 
this college/university at least for some time. Appropriate arrangements motivate 
such students to complete their education where they are currently enrolled 
rather than encourage them to transfer to another college/university to receive a 
corresponding degree there. With respect to blended courses, which can be either
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core ones or electives, the same features that attract the attention of potential 
new students should be present in the blended courses offered to already enrolled 
college/university students. Also, one should bear in mind that the quality of 
teaching these courses affects the intents of new potential students to enroll at 
the college/university, since such intents are partly motivated by the information 
on this quality received from its current students. 

5. The proposed scheme of using fragments from recorded online courses is only 
one of the options to use such recordings. Since most of these courses are 
available free of charge, the college/university administration may decide to use 
online courses as a substitution for offline ones, without designing and running 
new (blended) courses. From the author’s teaching experience, it seems hard to 
believe that the recorded online lectures can always substitute the presence of a 
lecturer live in auditorium for a majority of the students studying these courses 
while (at least) not positively affecting the percentage of the students who are 
likely to study corresponding online courses successfully. In any case, it looks 
reasonable to “test” both approaches to using the recorded online courses before 
making a final decision on this matter. 

6. Organizing tutorials to prepare particular groups of college/university students 
for successfully studying new blended courses is always a challenge. The major 
problem here is associated with timely preparing the students to (a) understand 
the facts to be presented in a particular blended course, and (b) be comfortable 
with the style of the material presentation by the teacher chosen to run this 
blended course. The time left for this preparation much depends on when the 
selection of the teachers to run the courses is completed, and the results of 
providing corresponding tutorials substantially depend on who runs the tutorials 
for each new course from the set of K blended courses. The latter may become a 
complicated problem when the teacher chosen to run a particular blended course 
is not currently employed at the college/university. 

Also, one needs to emphasize that a teacher chosen to teach a blended 
course at a college/university is free to develop these courses on her/his own, 
as long as she/he adheres to the structure of the course determined by the col-
lege/university administration. (However, discussing approaches to developing 
particular blended courses in line with their assigned structures lies beyond the 
scope of this paper.) 

Finally, in the model (1), (2), it was assumed that the tutorials and English 
language courses are organized and run only for blended courses to be taught by 
the teachers invited from abroad. However, generally, this may not be the case. 
Both kinds of course developers (from the University and from other universities 
in the country) may require to run both tutorials for the blended courses to be 
taught by them and the English language courses to be offered by corresponding 
departments at the University. 

Let M̃ ⊂ M and R̃ ⊂ R be subsets of those course developers who require 
to organize and run tutorials (with or without additional courses in English 
language to be organized by the college/university), let f̃ U 

ik and f̃ OU 
rk be the
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costs or running these tutorials, and let ψ̃U 
ik and ψ̃

OU 
rk be the costs or running 

additional English language courses, requested by the developers from the 
college/university and by those from other colleges/universities in the country, 
respectively. Then, for instance, the first (of the T ) inequalities in (2) will take 
the form 

.

L∑

l=1

wl(al + hl) +
K∑

k=1

L∑

l=1

�lkzlk +
R∑

r=1

sr (br + gr) +
K∑

k=1

R∑

r=1

δrkyrk+

K∑

k=1

M∑

i=1

∇ikxik +
K∑

k=1

M∑

i=1

ditikxik +
K∑

k=1

fkuk +
∑

i∈M̃

K∑

k=1

f̃ U
ik xik

+
∑

r∈R̃

K∑

k=1

f̃ OU
rk yrk +

∑

i∈M̃

K∑

k=1

ψ̃U
ik xik +

∑

r∈R̃

K∑

k=1

ψ̃OU
rk yrk ≤ B − B0.

(6) 

Here, it’s assumed that if developer i∗ from the set M̃ doesn’t require to
organize and run tutorials for blended course k∗ ∈ 1,K , the coefficient f̃ U

i∗k∗
equals zero. The same assumption holds for the coefficient f̃ OU

r∗∗k∗∗ (if developer
r∗∗ from the set R̃ doesn’t require to organize and run tutorials for blended course
k∗∗, k∗∗ ∈ 1,K) and for the coefficients ψ̃U

i∗k∗ and ψ̃OU
r∗∗k∗∗ .

7. Generally, the college/university administration may exercise two approaches to 
using recorded fragments of online lectures in designing blended courses, which 
differ in the budget for running these courses. That is, it can offer the same set 
of blended courses on a yearly basis within, say, T years so that no new blended 
courses are added within these T years (see Assumption 5 from Sect. 3). The 
other one implies widening the spectrum of blended courses yearly (or even more 
often) depending on the results at the end of a particular year (or even on those of 
each year), including financial results associated with running blended courses. 

One can easily be certain that the proposed model can be used in formalizing 
corresponding mathematical problems in the framework of the second approach 
though the structure of the system of constraints in the corresponding problems 
will be different. That is, this system will have a block-diagonal structure binding 
variables related to each particular year (during T years) within a separate block, 
along with a block binding all the variables of the system of constraints [60]. 

8. The proposed tool demonstrates the potential of an adequate mathematical 
modelling, systems analysis, operations research techniques, and standard opti-
mization software in solving practical problems arising in the economics of 
education. 

9. One should bear in mind that if inequality (2) holds for the first year in the set 
of T years, the restriction for a yearly budget for all the K courses will also 
hold for all the other years from this set (since all the expenses associated with 
the relocation of the invited teachers, which are reflected in (2), as well as the 
expenses B0, take place in this first year).



42 A. S. Belenky

10. In the models underlying the formulations of Problems 1 and 2, it’s assumed 
that both the set of potential course developers from other colleges/universities 
in the country and that from those to be invited from abroad are known to 
the college/university administration in advance, before these two problems 
are solved. Also, it’s assumed that both the tutorials (for each special course) 
and the English language courses, provided by the teachers, are taken by the 
students during the period of T years only once. Finally, it’s assumed that any 
substitution of the teachers from other colleges/universities in the country and 
from abroad for the years from the set of T years can be done only by the 
college/university teachers (unless the relocation expenses of an invited teacher, 
not currently employed by the college/university, are covered by it), and the 
values ci, i  ∈ 1,M , are taken into account. 

One of further research directions of studying both problems considered in this 
paper should concern the development of approaches to solving these problems 
under uncertainty conditions. This uncertainty is associated with the impossibility 
to determine the exact values of expert estimates of the parameters αik, βrk, γlk— 
percentages of the students expected to succeed in studying each of K blended 
courses with respect to every teacher considered by the college/university admin-
istration as a candidate for teaching this course—in principle. Though the proposed 
tool lets the college/university administration conduct multiple calculations for any 
number of sets of these expert estimates that the administration may be interested to 
explore, one should understand that information on the values of these estimates is 
that of a probabilistic nature. Moreover, establishing any particular regularities and 
parameters of distribution laws describing the dynamics of these parameters seems 
to present considerable difficulties. 

At the same time, there exist approaches to treating similar information (on 
parameter values in corresponding mathematical models) that let formulate prob-
lems under uncertainty conditions similar to those considered in this paper as linear 
or mixed programming ones solving which can be done by using standard software 
packages, available even on PCs [61]. However, the applicability of such approaches 
to considered problems depends on whether assertions similar to those presented in 
[61] can be mathematically proven. 
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SARAH-Based Variance-Reduced 
Algorithm for Stochastic Finite-Sum 
Cocoercive Variational Inequalities 

Aleksandr Beznosikov and Alexander Gasnikov 

1 Introduction 

In this paper we focus on the following unconstrained variational inequality (VI) 
problem: 

.Find z∗ ∈ R
d such that F(z∗) = 0, (1) 

where .F : Rd → R
d is some operator. This formulation is broad and encompasses 

many popular classes of tasks arising in practice. The simplest, however, widely 
encountered example of the VI is the minimization problem: 

. min
z∈Rd

f (z).

To represent it in the form (1), it is sufficient to take .F(z) = ∇f (z). As another also 
popular practical example, we can consider a saddle point or min-max problem: 

. min
x∈Rdx

max
y∈Rdy

g(x, y).

Here we need to take .F(z) = [∇xg(x, y),−∇yg(x, y)]. 
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From a machine learning perspective, it is interesting not the deterministic 
formulation (1) , but the stochastic one. More specifically, we want to consider the
setup with the operator .F(z) = Eξ∼D

[
Fξ (z)

]
, where . ξ is a random variable, . D

is some distribution, .Fξ : R
d → R

d is a stochastic operator. But it is often the 
case (especially in practical problems) that the distribution . D is unknown, but we 
have some samples from . D. Then, one can replace with a finite-sum Monte Carlo 
approximation, i.e. 

.F(z) = 1

n

n∑

i=1

Fi(z). (2) 

In the case of minimization problems, statements of the form (1) + (2) are also called
empirical risk minimization [37]. These types of problems arise both in classical 
machine learning problems such as simple regressions and in complex, large-scale 
problems such as neural networks [23]. When it comes to saddle point problems, in 
recent times the so-called adversarial approach has become popular. Here one can 
highlight Generative Adversarial Networks (GANs) [13] and the adversarial training 
of models [25, 40]. 

Based on the examples mentioned above, it can be noted that for operators of the 
form (2) , computing the full value of F is a possible but not desirable operation,
since it is typically very expensive compared to computing a single operator . Fi . 
Therefore, when constructing an algorithm for the problem (1) + (2) , one wants to
avoid computing (or compute very rarely) the full F operator. This task can be
solved by a stochastic gradient descent (SGD) framework. Currently, stochastic
methods for minimization problems already have a huge background [14]. The first 
methods of this type were proposed back in the 1950s by Robbins and Monro [35]. 
For example, in the most classic variant, SGD could be written as follows: 

.zk+1 = zk − ηvk, (3) 

where .η > 0 is a predefined step-size and .vk = ∇fi(z
k), where .i ∈ [n] is 

chosen randomly [38]. In this case, the variance of . vt is the main source of slower 
convergence or convergence only to the neighbourhood of the solution [7, 21, 31]. 

But for minimization problems of the finite-sum type, one can achieve stronger 
theoretical and practical results compared to the method (3) . This requires the use of
a variance reduction technique. Recently, many variance-reduced variants of SGD
have been proposed, including SAG/SAGA [10, 34, 36], SVRG [3, 19, 39], MISO 
[27], SARAH [18, 29, 30, 32], SPIDER [11], STORM [9], PAGE [24]. The essence 
of one of the earliest and best known variance-reduced methods SVRG is to use 
.vk = ∇fi(z

k) − ∇fi(z̃) + ∇f (z̃), where .i ∈ [n] is picked at random, where . i ∈
[n] is picked at random and the point . ̃z is updated very rarely (hence we do not 
need to compute the full gradient often). With this type of methods it is possible to 
achieve a linear convergence to the solution. But for both convex and non-convex
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smooth minimization problems, the best theoretical guarantees of convergence are 
given by other variance-reduced technique SARAH (and its modifications: SPIDER, 
STORM, PAGE). 

In turn, stochastic methods are also investigated for variational inequalities and 
saddle point problems [4–6, 12, 15–17, 20, 28], including methods based on variance 
reduction techniques [1, 2, 5, 6, 8, 22, 33]. Most of these methods are based on the 
SVRG approach. At the same time, SARAH-based methods have not been explored 
for VIs. But as we noted earlier, these methods are the most attractive from the 
theoretical point of view for minimization problems. The purpose of this paper is to 
partially close the question of SARAH approach for stochastic finite-sum variational 
inequalities. 

2 Problem Setup and Assumptions 

Notation We use .〈x, y〉 := ∑n
i=1 xiyi to denote standard inner product of . x, y ∈

R
d where . xi corresponds to the i-th component of x in the standard basis in . Rd . It  

induces .�2-norm in . Rd in the following way .‖x‖2 := √〈x, x〉. 
Recall that we consider the problem (1), where the operator F has the form (2) .

Additionally, we assume

Assumption 1 (Cocoercivity) Each operator Fi is �-cocoercive, i.e. for all u, v ∈
R

d we have

.‖Fi(u) − Fi(v)‖2 ≤ �〈Fi(u) − Fi(v), u − v〉. (4) 

This assumption is somehow a more restricted analogue of the Lipschitzness 
of Fi . For convex minimization problems, �-Lipschitzness and �-cocoercivity are 
equivalent. Regarding variational inequalities and saddle point problems, see [26]. 

Assumption 2 (Strong Monotonicity) The operator F is μ-strongly monotone, 
i.e. for all u, v ∈ Rd we have 

.〈F(u) − F(v); u − v〉 ≥ μ‖u − v‖2. (5) 

For minimization problems this property means strong convexity, and for saddle 
point problems strong convexity–strong concavity. 

3 Main Part 

For general Lipschitzness variational inequalities, stochastic methods are usually 
based not on SGD, but on the Stochastic Extra Gradient method [20]. But due to the
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fact that we consider cocoercive VIs, it is sufficient to look at SGD like methods for 
this class of problems. For example, [26] considers SGD, [6]—SVRG. Following 
this reasoning, we base our method on the original SARAH [29]. 

Algorithm 1 SARAH [29] for stochastic cocoercive variational inequalities 
1: Parameters: Stepsize γ >  0, number of iterations K, S. 
2: Initialization: Choose z̃0 ∈ R

d . 
3: for s = 1, 2, . . . , S  do 
4: z0 = z̃s−1 

5: v0 = F(z0) 
6: z1 = z0 − γ v0 

7: for k = 1, 2, . . . , K  − 1 do 
8: Sample ik independently and uniformly from [n] 
9: vk = Fik (z

k ) − Fik (z
k−1) + vk−1 

10: zk+1 = zk − γ vk 

11: end for 
12: z̃s = zK 

13: end for 

Next, we analyse the convergence of this method. Note that we will use the vector 
. vK in the analysis, but in reality this vector is not calculated by the algorithm. Our 
proof are heavily based on the original work on SARAH [29]. Lemma 1 gives an 
understanding of how .‖vk‖2 behaves during the internal loop of Algorithm 1. 

Lemma 1 Suppose that Assumptions 1 and 2 hold. Consider SARAH (Algorithm 1) 
with .γ ≤ 1

�
. Then, we have 

. E[‖vK‖2] ≤(1 − γμ)KE[‖F(z0)‖2].

Proof We start the proof with an update for . vk: 

. ‖vk‖2 =‖vk−1‖2 + ‖Fik (z
k) − Fik (z

k−1)‖2 + 2〈Fik (z
k) − Fik (z

k−1), vk−1〉.

Next, we use an update for . zk and make a small rearrangement 

.‖vk‖2 =‖vk−1‖2 + ‖Fik (z
k) − Fik (z

k−1)‖2 − 2

γ
〈Fik (z

k) − Fik (z
k−1), zk − zk−1〉

=‖vk−1‖2 + ‖Fik (z
k) − Fik (z

k−1)‖2 − 1

γ
〈Fik (z

k) − Fik (z
k−1), zk − zk−1〉

− 1

γ
〈Fik (z

k) − Fik (z
k−1), zk − zk−1〉.
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Taking the full mathematical expectation, we obtain 

. E[‖vk‖2] =E[‖vk−1‖2] + E[‖Fik (z
k) − Fik (z

k−1)‖2]

− 1

γ
E[〈Fik (z

k) − Fik (z
k−1), zk − zk−1〉]

− 1

γ
E[〈Fik (z

k) − Fik (z
k−1), zk − zk−1〉].

Independence of the . ik generation gives 

. E[‖vk‖2] =E[‖vk−1‖2] + E[‖Fik (z
k) − Fik (z

k−1)‖2]

− 1

γ
E[〈Fik (z

k) − Fik (z
k−1), zk − zk−1〉]

− 1

γ
E[〈Eik [Fik (z

k) − Fik (z
k−1)], zk − zk−1〉]

=E[‖vk−1‖2] + E[‖Fik (z
k) − Fik (z

k−1)‖2]

− 1

γ
E[〈Fik (z

k) − Fik (z
k−1), zk − zk−1〉]

− 1

γ
E[〈F(zk) − F(zk−1), zk − zk−1〉].

With Assumptions 1 and 2, we get 

. E[‖vk‖2] ≤E[‖vk−1‖2] + E[‖Fik (z
k) − Fik (z

k−1)‖2]

− 1

γ �
E[‖Fik (z

k) − Fik (z
k−1)‖2]

− μ

γ
E[‖zk − zk−1‖2]

=(1 − γμ)E[‖vk−1‖2] +
(

γ � − 1

γ �

)
E[‖Fik (z

k) − Fik (z
k−1)‖2].

In the last step we substitute .zk−1 − zk = γ vk . The choice of .0 < γ ≤ 1
�
gives 

. E[‖vk‖2] ≤(1 − γμ)E[‖vk−1‖2].

Running recursion and using .v0 = F(z0), we finish the proof. �
The following lemma gives how different . vK and .F(zK) are in the inner loop of 

Algorithm 1.
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Lemma 2 Suppose that Assumption 1 holds. Consider SARAH (Algorithm 1). Then, 
we have 

. E[‖F(zK) − vK‖2] ≤ γ �

2 − γ �
E[‖F(z0)‖2].

Proof Let us consider the following chain of reasoning: 

. E[‖F(zk) − vk‖2] =E[‖[F(zk−1) − vk−1] + [F(zk) − F(zk−1)] − [vk − vk−1]‖2]
=E[‖F(zk−1) − vk−1‖2] + E[‖F(zk) − F(zk−1)‖2]

+ E[‖vk − vk−1‖2]
+ 2E[〈F(zk−1) − vk−1, F (zk) − F(zk−1)〉]
− 2E[〈F(zk−1) − vk−1, vk − vk−1〉]
− 2E[〈F(zk) − F(zk−1), vk − vk−1〉]

=E[‖F(zk−1) − vk−1‖2] + E[‖F(zk) − F(zk−1)‖2]
+ E[‖vk − vk−1‖2]
+ 2E[〈F(zk−1) − vk−1, F (zk) − F(zk−1)〉]
− 2E[〈F(zk−1) − vk−1,Eik [vk − vk−1]〉]
− 2E[〈F(zk) − F(zk−1),Eik [vk − vk−1]〉]

=E[‖F(zk−1) − vk−1‖2] − E[‖F(zk) − F(zk−1)‖2]
+ E[‖vk − vk−1‖2]

≤E[‖F(zk−1) − vk−1‖2] + E[‖vk − vk−1‖2].

Here we also use that 

. Eik [vk − vk−1] = Eik [Fik (z
k) − Fik (z

k−1)] = F(zk) − F(zk−1).

Running recursion and using .v0 = F(z0), we have  

.E[‖F(zK) − vK‖2] ≤
K∑

k=1

E[‖vk − vk−1‖2]. (6) 

In the same way as in Lemma 1, we can derive 

.‖vk‖2 =‖vk−1‖2 + ‖Fik (z
k) − Fik (z

k−1)‖2 + 2〈Fik (z
k) − Fik (z

k−1), vk−1〉

=‖vk−1‖2 + ‖Fik (z
k) − Fik (z

k−1)‖2 − 2

γ
〈Fik (z

k) − Fik (z
k−1), zk − zk−1〉
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≤‖vk−1‖2 + ‖Fik (z
k ) − Fik (z

k−1)‖2 − 
2 

γ �
‖Fik (z

k ) − Fik (z
k−1)‖2 

=‖vk−1‖2 +
(

γ � − 2 
γ �

)
‖Fik (z

k ) − Fik (z
k−1)‖2 

=‖vk−1‖2 +
(

γ � − 2 
γ �

)
‖vk − vk−1‖2. 

After a small rewriting and with the full expectation, we get 

. E[‖vk − vk−1‖2] ≤ γ �

2 − γ �
E[‖vk−1‖2 − ‖vk‖2].

By substituting this into the expression (6) and using .v0 = F(z0), we finish the 
proof. �

Let us combine Lemmas 1 and 2 into the main theorem of this paper. 

Theorem 1 Suppose that Assumptions 1 and 2 hold. Consider SARAH (Algo-
rithm 1) with .γ = 2

9� and .K = 10�
μ
. Then, we have 

. E[‖F(z̃s)‖2] ≤ 1

2
E[‖F(z̃s−1)‖2].

Proof We start from 

. E[‖F(zK)‖2] ≤ 2E[‖F(zK) − vK‖2] + 2[E‖vK‖2].

Applying Lemma 1 and 2, we have 

. E[‖F(zK)‖2] ≤
[

2γ �

2 − γ �
+ 2(1 − γμ)K

]
E[‖F(z0)‖2]

≤
[

2γ �

2 − γ �
+ 2 exp(−γμK)

]
E[‖F(z0)‖2].

Here we also use that .γμ ∈ (0; 1) (for .γ ≤ 2
9� ) and then .(1 − γμ) ≤ exp(−γμ). 

The substitution . γ and K gives 

. E[‖F(zK)‖2] ≤ 1

2
E[‖F(z0)‖2].

We know that .z0 = z̃s−1 and .zK = z̃s and have 

.E[‖F(z̃s)‖2] ≤ 1

2
E[‖F(z̃s−1)‖2].

�



54 A. Beznosikov and A. Gasnikov

Since we need to find a point z such that .F(z) ≈ F(z∗) = 0, we can easily get 
an estimate on the oracle complexity (number of . Fi calls) to achieve precision . ε. 

Corollary 1 Suppose that Assumptions 1 and 2 hold. Consider SARAH (Algo-
rithm 1) with .γ = 2

9� and .K = 10�
μ
. Then, to achieve .ε-solution (.E‖F(z̃S)‖2 ∼ ε2), 

we need 

. O
([

n + �

μ

]
log2

‖F(z0)‖2
ε2

)
oracle calls.

Proof From Theorem 1 we need the following number of outer iterations: 

. S = O
(
log2

‖F(z0)‖2
ε2

)
.

At each outer iteration we compute the full operator one time, and at the remaining 
.K − 1 iterations we call the single operator . Fi two times per one inner iteration. 
Then, the total number of oracle calls is 

. S × (2 × (K − 1) + n) = O
([

n + �

μ

]
log2

‖F(z0)‖2
ε2

)
.

�
Note that the obtained oracle complexity coincides with the similar complexity 

for SVRG from [6]. It is interesting to see how these methods behave in practice. 

4 Experiments 

The aim of our experiments is to compare the performance of different methods for 
stochastic finite-sum cocoercive variational inequalities. In particular, we use SGD 
from [26], SVRG from [6] and SARAH. We conduct our experiments on a finite-
sum bilinear saddle point problem: 

.g(x, y) = 1

n

n∑

i=1

[
gi(x, y) = x�Aiy + a�

i x + b�
i y + λ

2
‖x‖2 − λ

2
‖y‖2

]
, (7) 

where .Ai ∈ R
d×d , .ai, bi ∈ R

d . This problem is .λ-strongly convex–strongly concave 
and, moreover, L-smooth with .L = ‖A‖2 for .A = 1

n

∑n
i=1 Ai . We take  .n = 10, 

.d = 100 and generate matrix A and vectors .ai, bi randomly, .λ = 1. For this problem 

the cocoercivity constant .� = ‖A‖22
λ

. The steps of the methods are selected for best 
convergence. For SVRG and SARAH the number of iterations for the inner loops is
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(a) (b) (c) 

Fig. 1 Bilinear problem (7) : Comparison of state-of-the-art SGD-based methods for stochastic
cocoercive VIs. (a) Small . �. (b) Medium . �. (c) Large . �

taken as . �
λ
. We run three experiment setups: with small .� ≈ 102, medium . � ≈ 103

and big .� ≈ 104. 
See Fig. 1 for the results. We see that SARAH converges better than SVRG, and 

SGD converges much slower. 
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Dimensionality Reduction Using 
Pseudo-Boolean Polynomials for Cluster 
Analysis 

Tendai Mapungwana Chikake and Boris Goldengorin 

1 Introduction 

In the fields of data visualization and cluster analysis, dimensionality reduction 
mechanisms play pivotal roles in providing better understanding of relations and 
clusters in input data. Dimensionality reduction techniques work by transforming 
data from high-dimensional spaces into low-dimensional spaces such that the low-
dimensional representations retain meaningful properties of the original data, ideally 
close to their intrinsic dimensions [1]. 

Real-world data is often available in high-dimensional spaces which are usually 
cognitively and computationally hard to process [2]. Human observers as well as 
presentation mediums readily available, like 2-dimensional papers or screens, are 
presented with representational challenges whenever data is available in higher 
than 3-dimensional spaces and consequently the identity of classes, useful or noisy 
features becomes harder to discover [2]. 

Data scientists often spend enormous amounts of time and effort digging for 
relevant features that determine classes or those features that bring useless noise in 
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datasets. Automated systems like artificial neural networks can be used in the feature 
selection processes [3], but often require large amounts of data and challenges like 
feature superposition [4], underfitting, overfitting, and interpretation concerns arise 
[5]. 

In fields where large numbers of observations and/or large numbers of variables 
exist such as signal processing, computer vision, speech recognition, neuroinfor-
matics, and bioinformatics, usage of dimension reduction techniques is crucial 
[6]. Dimensionality reduction simplifies cluster analysis tasks for both human and 
machine processors [6]. 

In this work, we observe that our powerful dimensionality reduction method can 
assist in reducing the abuse of statistical methods and/or artificial neural networks 
in tasks that can be solved in combinatorial steps. We show this by qualifying 
our dimensionality reduction method, followed by linear clustering of reduced 
samples. This advantage is available because our reduction method has invariability 
properties, and it is intuitively easy to interpret. The problems of invariability and 
interpretability are among the top problems of currently available dimensionality 
reduction methods [7]. Dimensionality reduction tools that lack interpretability 
and/or invariability can be disfavoured in critical tasks such as clustering models 
that input medical tests/measurements to predict a diagnosis. Our work is directed 
to solving such challenges. 

Cluster analysis or clustering is the task of grouping a set of objects in such 
a way that objects in the same group (called a cluster) are more similar (in some 
sense) to each other than to those in other clusters [8]. Clustering is a major task of 
exploratory data analysis, and a common technique for statistical data analysis, used 
in many fields, including pattern recognition, image analysis, information retrieval, 
bioinformatics, data compression, computer graphics and machine learning [8]. 

Abuse of statistical methods and/or artificial neural networks often arise in cases 
where data is minimal. This abuse may result in overfitted, irreproducible or hard-
to-interpret solutions which may be undesirable to use in some critical tasks. 

The invariant manipulation based on formulation of pseudo-Boolean polyno-
mials presented in this work, can enable cluster analysts to extract simple rules 
of associations in data without the need for machine learning. The formulation of 
pseudo-Boolean polynomials is very simple, computationally efficient, invariant to 
ordering, and easy to explain and reproduce. 

Our overall contributions in this paper are: 

1. Qualifying the usage of the reduction property of penalty-based pseudo-Boolean 
polynomials formulation for dimensionality reduction of multidimensional data 
where it is feasible. 

2. Reducing overdependence on data-driven approaches in solving problems that 
can be solved with combinatorial steps. 

Dimensionality reduction using pseudo-Boolean polynomials formulation, 
revolves around the manipulation of the reduction and equivalence properties 
of penalty-based pseudo-Boolean polynomials [9].
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We present our results on classical Wisconsin Diagnostic Breast Cancer (WDBC) 
[10] and Iris Flower datasets [11], which have too few samples, such that the usage 
of a data-driven methods like artificial neural networks for clustering would result 
in abuse. 

The Iris Flower dataset [11] has samples of size .1 × 4 and present challenges of 
identifying clusters by plotting on a Cartesian plane for the analyst while the Wis-
consin Diagnostic Breast Cancer (WDBC) [10] dataset, has samples of size . 1 × 30
that result in 30-Dimensionality representation that would be incomprehensible for 
Cartesian plot based analysis. 

Our proposed method is limited to data whose samples can be represented as 
cost matrices where each cell represents a cost relationship of its respective column 
and row. In the experiment sections, we show how these complex datasets can be 
reduced to .2 × 1 and .3 × 1 dimensionality which are easily analysed on a Cartesian 
plane and Cartesian space respectively. Simple linear demarcations are then used to 
qualify the label of a given sample without any machine learning process or non-
linear alteration of data. 

2 Related Work 

Principal Component Analysis (PCA) and the T-distribute Stochastic Neighbour 
Embedding (t-SNE) are arguably the most popular dimensionality reduction meth-
ods in cluster analysis tasks. The choice of usage of either, is usually case based. 
The T-distribute Stochastic Neighbour Embedding is often used for visualizing high 
dimensional data. It works by converting similarities between data points to joint 
probabilities and tries to minimize the Kullback-Leibler divergence between the 
joint probabilities of the low-dimensional embedding and the high-dimensional data 
[12]. T-SNE has a cost function that is not convex, i.e., with different initializations 
different reductions may result [12]. The non-convex nature of the cost function in 
the t-SNE tool is a major drawback in comparison with the Principal Component 
Analysis method as well as the pseudo-Boolean polynomials-based reduction that 
we qualify in this paper. 

Dimensionality reduction by pseudo-Boolean polynomials formulation ensures 
unique reduced Hammer-Beresnev polynomials, regardless of possible difference 
in ordering of input matrices [9]. Consequently, our method is guaranteed to output 
the same reductions, regardless of difference in initializations or input orderings. 

Principal Component Analysis (PCA), is an orthogonal linear transformation that 
transforms data to a new coordinate system such that the greatest variance by some 
scalar projection of the data comes to lie on the first coordinate (called the first 
principal component), the second-greatest variance on the second coordinate, and so 
on [13]. The major drawback of PCA is that it changes the distances involved in our 
data because it reduces dimensions in a way that preserves large pairwise distance 
better than small pairwise distance [14]. These changes can be very sensitive to our 
algorithms, especially when working with Euclidean distance-based algorithms.
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Modifications to the Principal Component Analysis (PCA) method exists like 
the kernel principal component analysis (kernel PCA) [1] and Graph-based kernel 
PCA [15], that can be employed in a nonlinear manner but the distance and data 
dependence concerns prevail. 

Other techniques include Linear discriminant analysis (LDA) [16], Generalized 
discriminant analysis (GDA) [17], and Uniform manifold approximation and pro-
jection (UMAP) [18]. All of these techniques, raise all or some of the concerns 
outlined above as they are largely dependent on data distribution to operate. 

The pseudo-Boolean polynomials approach presented in this work, operates in 
isolation for each individual sample, such that no distribution biases are introduced 
to any given sample. The combinatorial operations are constant and invariant to 
ordering across all samples. 

3 Methods 

In mathematics and optimization, a pseudo-Boolean function is a function of the 
form .f : Bn → R, where .B = {0, 1} is a Boolean domain and . n is a non-negative 
integer called the degree of the function [19]. 

We utilise a penalty based formulation of pseudo-Boolean polynomials described 
in [20] for data aggregation which provides us an invariant dimensionality reduction 
property that we present in this work. 

Goldengorin et al. [9] highlights fundamental reduction properties of pseudo-
Boolean polynomials which guarantee the maintenance of the underlying initial 
information while reducing the size of the problem. 

We extend the objective goal in [20] by describing our problem as a problem 
of minimising the cost of describing a given sample and thereby reducing the 
dimensionality of the particular sample. 

Given a sample where observables (e.g. physical quantities, types of measure-
ments, etc.) .I = {1, 2, ..., m} (ordered by their correlation strengths to labels), their 
physical measurements .J = {1, 2, ..., n}, and . p the maximum dimensionality size 
desired, to minimise the cost of describing the given sample, our task is to find a set 
.S ⊆ I with .|S| = p minimising the prespecified objective function. 

We define the instance of the problem by an .m × n matrix .C = [cij ] of costs 
(distances, bandwidth, time, (dis)similarities, (in)significance, etc.), .j ∈ J and 
.i ∈ I , and the goal is to find a set .S ⊆ I with .|S| = p, such that we minimise total 
cost 

.fc(S) =
∑

j∈J

min{cij|i ∈ S}, (1) 

with the assumption that entries of . C are non-negative and finite [20]. 
According to AlBdaiwi et al. [20], the objective function .fc(S) of this kind 

of problem can be formulated in terms of pseudo-Boolean polynomials and from
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[19] all pseudo-Boolean polynomials can be uniquely represented as multilinear 
polynomials of the form 

.f (y) =
∑

S⊆I

cS
∏

i∈S

yi (2) 

Pseudo-Boolean polynomials formulation is achievable in polynomial time and 
allows us to achieve compact representations of relatively large problems [20]. 

From (2), .
∏

i∈S yi is the term of the monomial .cS

∏
i∈S yi . Monomials with 

the same term are called similar monomials [9], and they can be added together 
in a process called reduction [9] which is central to our dimensionality reduction 
solution as it allows us to reduce the number of columns in the initial cost matrix. 

In addition to compacting large problems, there exists different instances that 
have similar (reduced) Hammer–Beresnev polynomials, mainly because similar 
monomials can be aggregated and disaggregated [9]. 

These properties are essential in cluster analysis because samples which might 
look dissimilar in higher dimensional space, can actually converge to similarity in 
their reduced pseudo-Boolean polynomials form. 

This work seeks to exploit these fundamental properties: representational reduc-
tion and equivalence as dimensionality reduction and clustering mechanisms respec-
tively. 

By treating measurable attributes of multidimensional data, like physical mea-
surements, pixel positioning and intensity distribution in image data, and other 
describable/measurable attributes as information costs of describing samples, we 
can formulate for each sample, a cost matrix . C which we can manipulate and reduce, 
in an ordering invariant manner, by pseudo-Boolean polynomials formulation and 
achieve lower dimension representation of each sample independent of any other 
samples in the dataset. 

The equivalence [9] property and other distance comparisons can then be applied 
on the reduced data representation for cluster analysis. 

Visualizing a matrix sample of size .1 × n where .n ∈ {1, 2, 3} is easily compre-
hensive by scatter plotting along 1-D, 2-D, and 3-D planes respectively. If classes 
are present in the data, we can identify linear or non-linear lines or plane separators 
that demarcate boundaries of clusters in the data. 

The pseudo-Boolean approach to dimensionality reduction in measured features 
for sample clustering is a penalty-based approach that relies on the fact that we 
require attributes that positively distinguish underlying classes for each instance to 
be sufficiently represented based on their importance to the classifier. 

The task seeks to minimize measurements that insignificantly contribute to the 
identity of a sample in a specific class. 

A sample is described by an .m × n matrix .C = [ci,j ] where . I represents the 
measured feature while . J represent the measurement such that columns of the 
matrix contain homogenous quantities. In reducing the dimensionality of samples 
in the Iris Flower dataset [11] for example, . I represents measured features, sepal, 
and petal while . J represent the measurements width and length thereof.
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We define the decisive insignificance . S of an attribute to classifying a sample 
into a specific cluster as 

.fc(S) =
∑

j∈J

min{cij |i ∈ S} (3) 

and the dimensionality reduction task is the problem of finding

.S∗ ∈ arg min{fc(S) : ∅ ⊂ S ⊆ I, |S| = p}, (4) 

where . p is the output dimension size, which we however choose to be . |J | such that 
no measurement is lost. 

By processing our samples into pseudo-Boolean polynomials we achieve the 
sample representations with the least possible information costs needed to represent 
them. 

4 Experimental Setup 

4.1 The Iris Flower Dataset 

Table 1 shows the Iris Flower dataset [11], a classical and popular dataset in the 
machine learning community. The task on this dataset is to classify Iris plants into 
three species (Iris setosa, Iris versicolor, and Iris virginica) using the lengths and 
widths measurements of their petals and sepals. The dataset contains 150 samples. 

Our method requires that data is structured as matrices, where columns are 
measurements and rows are the features measured. For this dimensionality reduction 
task, we first reshape the structure of all instances from .1 × 4 sized instances to 
.2 × 2 sized instances, where rows represent the measurement type (Sepal, Petal) 
and the columns represent the measurements (Length and Width) of the features 
collected from 3 different species: 

Table 1 Iris dataset 

ID Sepal length (cm) Sepal width (cm) Petal length (cm) Petal width (cm) Target 

1 5.4 3.0 4.5 1.5 Versicolor 

2 7.7 2.8 6.7 2.0 Virginica 

3 5.2 3.4 1.4 0.2 Setosa 

4 4.8 3.4 1.9 0.2 Setosa 

. . . . . . 

. . . . . . 

. . . . . . 

150 6.6 3.0 4.4 1.4 Versicolor
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Table 2 Transformed 
instance 

Length (cm) Width (cm) 

Sepal 5.4 3.0 

Petal 4.5 1.5 

Fig. 1 Scatter on sepal length-width 

We transform the samples into costs matrices by making rows of measured 
features (Sepal, Petal) and columns of measurements (Length, Width) resulting in 
.2 × 2 costs matrices as shown in Table 2. 

One cluster in the Iris Flower dataset, Iris-Setosa is linearly separable from others 
while Iris-virginica and Iris-versicolour are not linearly separable between each 
other as shown in Figs. 1 and 2. 

Figure 1 shows the scatter plot on lengths and widths of sepal measurements 
of the samples while Fig. 2 shows the scatter plot on lengths and widths of petal 
measurements of the samples. 

Applying the pseudo-Boolean polynomials reduction program, we reduce all 
samples to .2 × 1 matrices. After applying combinations of like terms and dropping 
of zero columns, the pseudo-Boolean polynomials of the instance in Table 2 reduces 
to 

. 

[
6.0
2.4y2

]

Applying the reduction method on every sample, results in a list of samples 
reduced to .2 × 1 matrices of the form .a + by2 which can be plotted and classified 
on a Cartesian plane by simple boundary lines. 

Our results on this dataset also expose the overfitting flaw which may be 
overlooked in works that abuse artificial neural networks such as the reported 100% 
clustering accuracy reported in [21].
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Fig. 2 Scatter on petal length-width 

4.2 The Wisconsin Diagnostic Breast Cancer (WDBC) Dataset 

The Wisconsin Diagnostic Breast Cancer (WDBC) [10] dataset, is another classical 
and popular dataset in the machine learning community. The dataset has 569 
instances of 30 real-valued features that describe characteristics of the cell nuclei 
present in digitized images extracted by a fine needle aspirate (FNA) on a breast 
mass [22]. 

Ten real-valued features were computed for each cell nucleus: 

1. radius (mean of distances from centre to points on the perimeter) 
2. texture (standard deviation of greyscale values) 
3. perimeter 
4. area 
5. smoothness (local variation in radius lengths) 
6. compactness (.perimeter2/area − 1.0) 
7. concavity (severity of concave portions of the contour) 
8. concave points (number of concave portions of the contour) 
9. symmetry 

10. fractal dimension (“coastline approximation” . − 1) 

The mean, standard error (se), and “worst” or largest (mean of the three largest 
values) of these features were computed for each image, resulting in 30 features 
[22]. 

The task on this dataset is to predict whether a breast cancer diagnosis is benign 
or malignant based on these features.
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The best known predictive accuracy (97.5%) was obtained by using a separating 
plane in the 3-D space of Worst Area, Worst Smoothness and Mean Texture features 
using repeated tenfold cross-validations [22], and this classifier has correctly 
diagnosed 176 consecutive new patients as of November 1995 [10]. 

The separating plane was obtained using Multisurface Method-Tree (MSM-T) 
[23], a classification method which uses linear programming to construct a decision 
tree where relevant features are selected using an exhaustive search in the space of 
1–4 features and 1–3 separating planes [23]. 

Samples of size .3 × 10, result in 30-Dimensionality representations, that are hard 
to visualise on a Cartesian plot and consequently hard for the analyst to identify the 
features that are useful in making an accurate diagnosis. 

To qualify our dimensionality reduction tool, we input each sample as a 
.3 × n; n ∈ 1, 2, 3, . . . , 10 matrix where rows . J represent the measurement type 
(Mean, Standard error (se), Worst) and the columns . I the measured features. 

Applying the pseudo-Boolean polynomials formulation, we reduce all samples to 
.3 × 1 matrices which can be plotted and classified on a Cartesian space by a simple 
boundary plane. Since our formulation runs in polynomial time, we can iterate 
all possible arrangements of measured features and discover the set of measured 
features which has the best fitting plane that separates samples into benign or 
malignant. 

5 Results and Discussion 

5.1 The Iris Flower Dataset 

Figure 3 illustrates the identification of cluster boundaries by simple identification 
of lines that best separate the aggregated samples on a Cartesian plane. Plotting the 
coefficients of the reduced instances, where the terms 1 and y2 are abscissa and 
ordinate respectively, allows us to visualize properly the possible clusters from the 
data. 

The most important thing to note is that this reduction correctly represents the 
original instances with less information cost, and allows us to discover a pair of 
straight lines that separate the respective clusters. 

All instances that lie in the region .y ≤ x
4 + 2, are classified safely as Iris-setosa, 

while the line .y = 13x
20 + 5, separates Iris-versicolor from Iris-virginica. 

It is also important to note that, some instances which seemed distinct of each 
other, actually have similar reduced pseudo-Boolean polynomials form. e.g. 

.

[
5.4 3.4
1.7 0.2

]
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Fig. 3 Cartesian plot on resultant .2 × 1 dimensions after reduction by pseudo-Boolean polynomi-
als formulation and the best boundary lines 

and 

. 

[
5.1 3.7
1.5 0.4

]

all reduce to 

. 

[
1.9
6.9y2

]

and in perfect confirmation of the equivalence condition; the instances also lie in 
the same cluster. 

Looking at the single outlier, 

. 

[
5.1 3.7
1.5 0.4

]

which was reduced to 

. 

[
2.0
6.7y2

]

and classified as Iris-virginica instead of Iris-versicolor we observe the faulty nature 
of learning-based cluster methods such as support-vector machines and [21]’s X-
Boosted artificial neural network, which output 100% cluster accuracy on some test 
runs. The original measurements of this outlier, perfectly fit the cluster Iris-virginica
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as there are samples of Iris-virginica that have very little difference in measured 
values to this outlier, while its values are also significantly distinct from the other 
Iris-versicolor samples. The incorrectly clustered instance might be attributed to 
misclassification by the persons who labelled the dataset, or perhaps just a naturally 
occurring outlier. 

This finding exposes, the overfitting concerns that arise from learning-based 
methods, like the Space Vector Machine (SVM) and [21]’s X-Boosted artificial 
neural network, that would report 100% accuracy in some tests. Additionally, 
changing the train/test data, result in varied accuracies when these methods are 
used, thereby losing the invariant and reproducibility attributes that our method 
guarantees. 

5.2 The Wisconsin Diagnostic Breast Cancer (WDBC) Dataset 

Plotting the coefficients of the reduced instances just as in the previous dataset, 
allows us to visualize properly the possible clusters from the data. 

The reduction correctly represents the original instances with less information 
cost, and allows us to discover a combination of features with the best plane that 
separates the respective clusters. 

Of all the combinations of features explored, the combination with the best 
separating plane (95.4% accuracy) consisted of 

1. radius 
2. texture 
3. perimeter 
4. smoothness 
5. compactness 
6. concavity 
7. symmetry 
8. fractal dimension 

excluding area and concave points features (Fig. 4). 
Instances with the shortlisted features are separable by a plane .z = . 85x−2y−0.4

at an accuracy of 95.4%. 
Although, falling short of the accuracy (97.5%) reported in [10], our method 

manages to present the dimensionality reduction capacity of a simple and invariant 
method that is solely based on manipulation of orderings. 

As shown in the experiments results reported in this paper, our method can be 
used for unsupervised clustering of multidimensional data as well as in feature 
selection processes in cluster analysis. Our method allows us to have a better 
understanding of how multidimensional features contribute to classification of 
samples in an invariant and explainable manner and in some cases achieve unbiased 
and unsupervised clustering in cluster analysis processes.
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Fig. 4 Cartesian plot on resultant .3 × 1 dimensions after reduction by pseudo-Boolean polynomi-
als formulation and the best separating plane 

6 Conclusion 

In this paper, we managed to showcase a combinatorial method for dimensionality 
reduction for cluster analysis, based on the formulation and reduction of pseudo-
Boolean polynomials. 

We tested our method on simple datasets, and managed to show that we can 
classify data samples with competitive accuracies by simple and linear data slices 
(lines and planes). Our proposed solution is invariant and interpretable while 
avoiding biases that may be involved when we use statistical methods because each 
sample is reduced in an independent manner, solely based on its own description.
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It can be noted that dimension reduction using pseudo-Boolean polynomials 
on high-level features is a powerful tool for lossless dimension reduction and has 
potential of accelerating low memory representation of complex data that empowers 
other complex tasks like interpretable unsupervised clustering in computer vision, 
bioinformatics, natural language processing and machine learning. 

We expect to reproduce even better state-of-the-art accuracies on other data 
science tasks, when we apply more powerful tools like decision trees and artificial 
neural networks on instances in their reduced pseudo-Boolean polynomials forms. 

The biggest takeaway from our findings is the invariability and interpretability 
nature of the dimension reduction process using pseudo-Boolean polynomials 
formulation. 
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Pseudo-Boolean Polynomials Approach to 
Edge Detection and Image Segmentation 

Tendai Mapungwana Chikake, Boris Goldengorin, and Alexey Samosyuk 

1 Introduction 

In digital image processing and computer vision, image segmentation is the process 
of partitioning a digital image into multiple image segments, also known as image 
regions or image objects [1]. The process has close relationship to blob extraction, 
which is a specific application of image processing techniques, whose purpose is to 
isolate (one or more) objects (aka. regions) in an input image [2]. 

The goal of segmentation is to simplify and/or change the representation of an 
image into something that is more meaningful and easier to analyse [1]. 

There exist classical and AI based methods for the purpose of segmentation/blob-
extraction. These methods converge into semantic [3], instance [4] and panoptic [5] 
segmentation. The underlying techniques of these methods can be classified into 
threshold filtering, clustering, differential motion subtraction, histogram, partial-
differential equation solving, graph partitioning, supervised neural-network asso-
ciation and edge detecting methods. Our proposed method lies at the intersection of 
edge detection and threshold filtering methods. 
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Image segmentation plays a pivotal role, as a preprocessing step in localizing 
region of interest in content-based image retrieval, anomaly detection in industrial 
imagery, medical imaging, object detection and recognition tasks. 

Our proposed method utilise the reduction, equivalence and degree properties 
of penalty-based pseudo-Boolean polynomials for purposes of extracting regions 
of interest which provide course segmentation that can be extended to image 
segmentation. We derive our methodology from [6]’s work on penalty-based 
pseudo-boolean formulation for purposes of data aggregation on p-median problems 
in the context of image processing. 

Our method bases its operation on a combination of threshold filtering and 
edge detection by deterministically grouping masks which convey regions of colour 
gradient shift. 

Localizing regions of interest in a blind manner is a difficult task, often requiring 
pattern recognition of big image data to derive useful utility. Our approach avoids 
learning of patterns from data and operate in a deterministic manner. 

In our method, we partition an input image into small patches which we treat as 
information cost matrices. We aggregate these matrices into their smallest possible 
pseudo-Boolean polynomials and group together equivalent instances, thereby 
delineating spatially contrasting regions in image representations. 

We verify our method by applying it to simple images containing primitive 
shapes and then scale up to simple natural scene images where we show that the 
method can competitively extract segments. 

Our proposed method seeks to 

• introduce a blind preprocessing step for semantic segmentation 
• assist with unsupervised annotation of segmentation datasets 
• promote deterministic approaches to computer vision solutions. 

The proposed method requires tuning of three parameters to balance performance 
and fine-tuned segmentation results. 

2 Related Work 

Currently, our proposed method acts as a supportive step to a final segmentation 
processor. This means that our method is still a complementary processing tool to 
complete an image segmentation task. 

Complete semantic segmentation requires the clustering of parts of an image 
together and proposing an object class while instance segmentation is concerned 
with detecting and delineating each distinct object of interest appearing in an 
image [7]. 

Our current solution cannot yet attach object classes but can distinctly delineate 
some individual objects in an image. The method achieves this by separating 
neighbouring pixels into blob or edge region based on the degree of a pseudo-
Boolean polynomial calculated on patches extracted from the image.
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The resulting masks can be refined into classifications or delineations of distinct 
objects by an additional process which we are still working on. Our end goal is to 
achieve a solution for complete segmentation. 

By the time of writing, popular solutions to instance and semantic segmentations 
are mostly based on either Mask R-CNN [8] or the U-Net Convolutional Network 
[9]. Both solutions are learning-based methods and require large amounts of labelled 
ground truth data. Neural network based methods also require accelerated computer 
processors to perform in reasonable time. Our solution avoids learning rules from 
data and can be easily run on non-accelerated CPUs. 

Since our method is based on classifying edge and blob regions in an image, 
the Canny edge detector [10], introduced in 1986 by John F. Canny, is a closely 
related technique. The Canny edge detector is an edge detection operator which 
uses a multi-stage algorithm to detect a wide range of edges in images. The Canny 
method detects edges by first applying a Gaussian filter to smooth the image in order 
to remove the noise, followed by the finding of the intensity gradients in the image 
[11]. After these steps, the method applies a gradient magnitude threshold filtering 
or lower bound cut-off suppression to get rid of spurious response to edge detection 
and then apply a double threshold to determine potential edges and conclude its 
process by tracking edges by hysteresis [10]. The Canny algorithm is adaptable to 
various environments because its parameters allow it to be tailored to recognition 
of edges of differing characteristics depending on the particular requirements of 
a given implementation [11]. The optimised Canny filter is recursive, and can be 
computed in a short, fixed amount of times, but the implementation of the Canny 
operator does not give a good approximation of rotational symmetry and therefore 
gives a bias towards horizontal and vertical edges [11]. In contrast, our method, 
calculate the pseudo-Boolean polynomial in normal and transposed patch matrices 
and selects the pseudo-Boolean polynomial form with the highest degree during the 
blob/edge classification step, thereby avoiding the edge direction bias. 

From an indirect perspective we can look at blind aggregation of possible 
distinct objects in image data in terms of blob extraction. Popular solutions using 
this paradigm, have underlying usage of either of the popular blob extraction 
methods which include Laplacian of Gaussian [12], Difference of Gaussian [13], 
or Determinant of a Hessian [14], among other methods. 

Laplacian of Gaussian is a blob extraction method which determines the blobs 
by using the Laplacian of Gaussian filters [12]. The Laplacian is a 2-D isotropic 
measure of the second spatial derivative of an image which highlights regions of 
rapid intensity change and is therefore, often used for edge detection [12]. We 
often apply the Laplacian after an image smoothening method with something 
approximating a Gaussian smoothing filter in order to reduce its sensitivity to noise. 
In our method, the Gaussian smoothing filter step is an optionally used when applied 
to noisy image instances. 

The Difference of Gaussian method determines blobs by using the difference of 
two differently sized Gaussian smoothed images and follows generally most of the 
concept of the Laplacian of Gaussian [12].



76 T. M. Chikake et al.

Determinant of a Hessian to aggregate regions of possible segmentation is 
achieved by determining blobs using the maximum in the matrix of the Hessian 
determinant [14]. 

Generally, blob extraction based methods, propose small and numerous regions 
of interest making them hard to extend into spatial segmentation. 

On the other hand, our method aggregates equivalent regions, by assigning 
zero or pseudo-Boolean polynomials with lower degree as blob regions and edge 
otherwise. Regions initially described in different colour distributions in the pixel 
array often output high-order pseudo-Boolean polynomials which indicate contour 
regions. This property allows us to extract larger and fewer spatial regions of interest 
in an image, making our method stand out against the other blob aggregation 
methods. 

3 Methods 

In mathematics and optimization, a pseudo-Boolean function is a function of the 
form .f : Bn → R, where .B = {0, 1} is a Boolean domain and . n is a non-negative 
integer called the degree of the function [15]. 

Goldengorin et al. [16] highlights fundamental reduction and equivalence prop-
erties of penalty-based pseudo-Boolean polynomials which guarantee the mainte-
nance of underlying initial information while reducing the problem complexity. 

We utilise this formulation on image patches to achieve compact representations 
of patches, and based on the degrees and equivalence [16] properties of the resultant 
pseudo-Boolean polynomials, we can qualify an edge/blob classifier on input 
patches. 

Given an image patch represented by an .m × n sized matrix which we treat as an 
information cost matrix . C, our first task is to determine the minimum possible way 
of representing this cost in a way that allows us to compare if the patch is extracted 
from a blob region or a contour region. 

A patch that overlaps regions of contrasting information (i.e. overlapping an 
edge) in an image, results in a representation that is costly in comparison to one 
that lies over a blob region. We claim this assertion because matrix values in blob 
regions are usually equivalent or have very small differences between each other 
and since [16]’s pseudo-Boolean polynomial formulation is penalty-based, similar 
costs cancel out. 

Reducing the patches to their smallest pseudo-Boolean polynomials provides 
comparable instances which can be tested for equivalence as well. This property 
is termed equivalence in [16] and can be used to fine-tune edges or detect similar 
regions on the image matrix. 

The Pseudo-Boolean representation according to [6] requires the generation of 
a coefficients matrix and its respective terms’ matrix, whose combination creates 
monomials of the pseudo-Boolean polynomial.
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After the generation of these matrices, most of the processing: local aggregation, 
reduction of columns, and p-truncation processes are heavily dependent on the 
terms’ matrix. 

Using an example instance to illustrate the formulation process, we take a . 4 × 5
patch from an image. 

Let 

. C =

⎡

⎢⎢⎣

8 8 8 5
12 7 5 7
18 2 3 1
5 18 9 8

⎤

⎥⎥⎦

The terms encoding function takes as input the permutations (. �) matrix which is 
an index ordering of the input matrix. 

. � =

⎡

⎢⎢⎣

4 3 3 3
1 2 2 1
2 1 1 2
3 4 4 4

⎤

⎥⎥⎦

Using . �, we sort the initial cost matrix . C

. sortedC =

⎡

⎢⎢⎣

5 2 3 1
8 7 5 5
12 8 8 7
18 18 9 8

⎤

⎥⎥⎦

and derive the .ΔC matrix 

. �C =

⎡

⎢⎢⎣

5 2 3 1
3 5 2 4
4 1 3 2
6 10 1 1

⎤

⎥⎥⎦

Using the . � matrix we calculate the terms’ matrix 

.y =

⎡

⎢⎢⎣
y4 y3 y3 y3

y1y4 y2y3 y2y3 y1y3

y1y2y4 y1y2y3 y1y2y3 y1y2y3

⎤

⎥⎥⎦
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and derive the resulting pseudo-Boolean polynomial 

. 

⎡

⎢⎢⎣

5 2 3 1
3y4 5y3 2y3 4y3
4y1y4 1y2y3 3y2y3 2y1y3
6y1y2y4 10y1y2y3 1y1y2y3 1y1y2y3

⎤

⎥⎥⎦

We then perform local aggregation by summing similar terms and get a compact 
representation of the initial instance as 

. 

⎡

⎢⎢⎣

0 0 11
0 11y3 3y4

2y1y3 4y2y3 4y1y4
0 12y1y2y3 6y1y2y4

⎤

⎥⎥⎦

which in this particular example has 50% less cost compared to the initial instance 
when expressed as polynomial. 

We then search for the equivalent matrix with the minimum number of columns 
and in this particular example, it is already reduced to this state. 

When pseudo-Boolean polynomials are reduced to their smallest instance, an 
equivalence property is apparent because different instances of similar information 
converge into a similar reduced pseudo-Boolean polynomials. 

This property is central to the blob aggregation task, and in this task these regions 
of equivalence in the reduced pseudo-Boolean polynomials context, occupy the set 
of blobs. 

Below are examples of cost matrices, which are initially different but converge 
into similar reduced instances. 

. 

⎡

⎢⎢⎣

138 138 138 136
139 139 138 137
142 141 139 138
142 140 139 138

⎤

⎥⎥⎦

and 

. 

⎡

⎢⎢⎣

136 136 138 140
138 137 138 140
140 139 140 141
139 139 140 141

⎤

⎥⎥⎦

reduce to
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Fig. 1 Pseudo-Boolean polynomial degree plotted for an image of primitive shapes 

. 

⎡

⎢⎢⎣

550
3y1
6y1y2
1y1y2y4

⎤

⎥⎥⎦

By plotting the degree of the pseudo-Boolean polynomials of each patch on a 
surface plot, we observe contours available in spatial features of a given image as 
shown in Fig. 1. 

For our edge/blob classifier, we use the pseudo-Boolean polynomial degree . r to 
classify whether the particular patch lies over a contour or a blob region. We select 
.p < m to be the cut-off threshold for classification and based on this value, we can 
alter how fine/course should our edges be. If the degree . r of the pseudo-Boolean 
polynomial calculated on the patch is higher than . p then the patch lies over an edge 
or blob otherwise. The edge/blob classifier if simply 

.f (r, p) =
{
edge if r < p,

blob otherwise
(1)
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Given an image, broken into small patches of size .4 × 4, the maximum possible 
degree is . 3, and we can select .p = 1, such that we have a binary set of patches, 
where patches, whose pseudo-Boolean polynomials reduce to a constant are 
described as blob regions, and the rest as edge points. 

Using equivalence [6], we can fine-tune the classified edges, should neighbouring 
patches exhibit contrasting edge/blob classes by equating the blobs in favour of the 
edge or vice-versa depending on how fine we require our edges to be. 

4 Experimental Setup 

Given an image of size .200 × 200 containing basic primitive shapes of continuous 
colour shown in Fig. 2a, we extract patches of significantly smaller sizes, e.g. . 6 × 6
as shown in Fig. 2b. 

We then apply the formulation and reduction of pseudo-Boolean polynomials on 
each patch and group them into a binary set .S = {Blob,Edge} based on the pseudo-
Boolean polynomial degree. 

Patches whose pseudo-Boolean polynomial degree .r < p are considered Blobs 
and Edge otherwise. 

Patches with constant pixel values .x ∈ [0, 255] like 

. 

⎡

⎢⎢⎣

99 99 99 99
99 99 99 99
99 99 99 99
99 99 99 99

⎤

⎥⎥⎦

are guaranteed to converge to constant (zero-degree pseudo-Boolean polynomials), 

. 
[
396

]

Fig. 2 Input image of primitives and its patching process. (a) Input image. (b) Showing . 6 × 6
sized patches
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while some, with varied pixel values which cancel out like 

. 

⎡

⎢⎢⎣

254 254 19 84
254 254 19 84
254 254 19 84
254 254 19 84

⎤

⎥⎥⎦

also converge to constant (zero-degree pseudo-Boolean polynomials) 

. 
[
611

]

Consequently these patches are grouped among the set of patches whose informa-
tion cost is described as blob region. 

There are patches which contain varied pixel data which may converge to high-
order pseudo-Boolean polynomials like 

. 

⎡

⎢⎢⎣

254 254 6 17
254 254 6 17
254 254 6 17
254 254 6 123

⎤

⎥⎥⎦

and 

. 

⎡

⎢⎢⎣

254 254 6 17
254 254 6 123
254 254 6 123
254 254 6 123

⎤

⎥⎥⎦

which converge to 

. 

[
531

106y1y2y3

]

a 3rd-degree pseudo-Boolean polynomial which would be classified as lying on edge 
regions, should the cut-off threshold be given as .r = 2. In the particular simple case 
of the image in Fig. 2a, patches which lie at shape edges converge to these non-zero 
degree pseudo-Boolean polynomials. 

By colour-coding the patches which belong to the set of patches which have 
pseudo-Boolean polynomial’s degree .r = 0, we can observe regions of colour 
continuation, which we can classify as blobs as shown in Fig. 3. 

As can be observed from Fig. 3, the method allows us to find border points (white 
coloured) on simple objects found in the image. 

Applying the same process on a natural and unprocessed image may not 
result in desirable or useful aggregation as natural images often have less drastic
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Fig. 3 Colour coding blue to discovered, zero-degreed pseudo-Boolean polynomials of input 
instances 

transition of spatial features. For this reason we ported the use of a Gaussian 
filter as a preprocessing step, followed by a pixel set aggregation step which is 
essentially a multivalued threshold processing. Instead of raw pixels as input in our 
patches, we group ranges into sets of pixels whose size depends on the variance of 
pixel distribution in the image to promote group convergence of pseudo-Boolean 
polynomials. 

We create these .f (x) = sets of pixels as 

.f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 5,

1 if x ∈ [5, 10),
2 if x ∈ [10, 15),
. . .

. . .

. . .

51 if x > 250,

(2)
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thereby reducing the information cost range from .[0, 255] to .[0, 51] for instance. 
Natural images tend to have smooth transitions of pixel values for neighbouring 

pixels at atomic level due to anti-aliasing in RGB representation of image data, 
thereby reducing the chances of neighbouring pixel patches converging into equiv-
alent groups and consequently coarse edges but the Gaussian filter preprocessing 
together with the grouping of pixel ranges promotes finer edges. 

5 Results and Discussion 

We apply our aggregation process on natural images and observe the need for the 
Gaussian filter as well as the pixel set aggregation preprocessing to achieve useful 
segmentation. Figure 4 shows input image of a noisy and natural image that we pass 
through the segmentation processes without preprocessors as shown in Fig. 5, and 
with processors as shown in Fig. 6. 

As can be observed in Fig. 6, a Gaussian preprocessing and pixel grouping step 
allow us to achieve better edge and blob extraction. A Set of pixels, each of size 
40, limit our cost range from .[0, 255] to .[0, 7] and encourage pronunciation of 
contrasting regions. 

Additionally, we can observe that including a costly operation which aggregates 
those reduced pseudo-Boolean polynomials into equivalent groups finds numerous, 
insignificantly small and unuseful groups in the setups which exclude the prepro-
cessing steps, while larger equivalent groups can be aggregated in the setups which 
involve all the preprocessing steps. 

Fig. 4 Input natural image 
for preprocessing comparison
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Fig. 5 Segmentation without the pre-processing steps 

5.1 Dubai Landscape Dataset 

We apply our method with selected processing parameters on the Dubai landscape 
dataset [17]. In this experiment we show that our method can extract edges of land-
scape features on satellite imagery which can be used for semantic segmentation. 

Humans in the Loop published an open access dataset annotated for a joint 
project with the Mohammed Bin Rashid Space Center in Dubai, UAE, which 
consists of aerial imagery of Dubai obtained by MBRSC satellites and annotated 
with pixel-wise semantic segmentation in 6 classes [17]. 

The full solution on this dataset requires placing labels on each segmented region, 
however our current method can only segment regions on boundary edges. 

The distinctive advantages of our method against the state-of-art neural network 
based solutions in instance segmentation are: 

• blind segmentation(no learning is involved, which can be prone to overfit-
ting/under fitting issues) 

• faster and CPU friendly segmentation 
• explainable mathematical steps to segmentation.
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Fig. 6 Segmentation with all the pre-processing steps included 

Our method is also not limited to a given dataset, since it works in a blind manner, 
which does not require prior familiarity of related image data except for purposes 
of choosing the threshold ranges. Provided with images which contain contrasting 
features, we can guarantee that our method will propose segmentations of features 
in pure mathematical and deterministic steps. 

Figure 7 show an example processing of our method on an image sample in the 
Dubai Landscape dataset [17]. 

Our method brings to limelight unbiased and fast computer vision in a segmenta-
tion task. The parameters required to achieve useful segmentation using our method 
are limited to: 

1. Gaussian filter kernel size, 
2. pixel thresholding size and, 
3. patch sizes. 

The optimal choice of these parameters is the only limitations for the general-
ization of our proposed method, and we propose in our future work, an automized 
process for selecting these parameters.
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Fig. 7 Example segmentation [Dubai landscape] 

The performance of the method, based on the choice of the patch size parameter 
is linearly dependent: the smaller the patch size, the finer the segmentation but 
longer processing, and vice-versa. 

6 Conclusion 

In this article, we presented our proposed method of formulating pseudo-Boolean 
polynomials on image patches which results in unsupervised edge detection, blob 
extraction and image segmentation processes. We managed to show that our 
proposed method, works in a fast, unbiased and competitively accurate manner in 
segmenting contrasting regions in image data. We plan to automate the choosing of 
processing parameters so that our method achieves full functionality as a general 
purpose image segmentation tool and one of the major tasks in our next challenges 
is focused on grouping blob regions based on colour histograms to provide labels 
and consequently achieve complete semantic segmentation. 
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Purifying Data by Machine Learning 
with Certainty Levels 

Shlomi Dolev and Guy Leshem 

1 Introduction 

Motivation A fundamental paradigm used for autonomic computing, self-
managing systems, and decision-making under uncertainty and faults is machine 
learning. Classification of machine learning algorithms that are designed to deal 
with Byzantine (or malicious) data are of great interest since a realistic model of 
learning from examples should address the issue of Byzantine data. Previous work, 
as described below, tried to cope with this issue by developing new algorithms 
using a boosting algorithm (e.g., “AdaBoost”, “Logitboost” etc.) or other robust and 
efficient learning algorithms e.g., [13]. These efficient learning algorithms tolerate 
relatively high rates of corrupted data. In this paper we try to handle the issue 
using a different approach, that of introducing the certainty level measure as a tool 
for coping with corrupted data items, and of combining learning results in a new 
and unique way. We present two new approaches to increase the certainty levels 
of machine learning results by calculating a certainty level that takes into account 
the corrupted data items in the training data-set file. The first scheme is based 
on identifying statistical parameters when the distribution is known (e.g., normal 
distribution) and using an assumed bound on the number of corrupted data items 
to bound the uncertainty in the classification. The second scheme uses decision 
trees, similar to the random forest techniques, incorporating the certainty level 
to the leaves. The use of the certainty level measure in the leaves yields a better 
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collaborative classification when results from several trees are combined to a final 
classification. 

Previous Work In the Probably Approximately Correct (PAC) learning frame-
work, Valiant [14] introduced the notion of PAC learning in the presence of 
malicious noise. This is a worst-case model of errors in which some fraction 
of the labeled examples given to a learning algorithm may be corrupted by an 
adversary who can modify both example points and labels in an arbitrary fashion. 
The frequency of such corrupted examples is known as the malicious noise rate. 
This study assumed that there is a fixed probability β (0 < β  <  1) of an error 
occurring independently on each request, but the error is of an arbitrary nature. In 
particular, the error may be chosen by an adversary with unbounded computational 
resources and knowledge of the function being learned, the probability distribution 
and the internal state of the learning algorithm (note that in the standard PAC model 
the learner has access to an oracle returning some labeled instance (x,C(x))for each 
query, where C(x) is some fixed concept belonging to a given target class C and x 
is a randomly chosen sample drawn from a fixed distribution D over the domain X. 
Both C and D are unknown to the learner and each randomly drawn x is independent 
of the outcomes of the other draws. 

In the malicious variant of the PAC model introduced by Kearns and Li [8], the 
oracle is allowed to ‘flip a coin’ for each query with a fixed bias η for heads. If 
the outcome is heads, the oracle returns some labeled instance (x,�) antagonistically 
chosen from X × {−1,+1}. If the outcome is tails, the oracle is forced to behave 
exactly like in the standard model returning the correctly labeled instance (x,C(x)) 
where x ∼ D (x is a drawn sample from the distribution D). 

In both the standard and malicious PAC models the learner’s goal for all inputs 
ε, � >  0 is to output some hypothesis H ∈ H (where H is the learner’s fixed 
hypothesis class) by querying an oracle at most m times for some m = m(ε,�) 
in the standard model, and for some m = m(ε,�, η) in the malicious model. For 
all targets C ∈ C and distributions D, the hypothesis H of the learner must satisfy 
Ex∼D[H(x) �= C(x)] ≤  ε with a probability of at least 1 − � with respect to 
the oracle’s randomization. We will call ε and � the accuracy and the confidence 
parameter, respectively. Kearns and Li [8] have also shown that for many classes 
of Boolean functions (concept classes), it is impossible to accurately learn ε if the 
malicious noise rate exceeds ε 

1+ε
. In fact, for many interesting concept classes, such 

as the class of linear threshold functions, the most efficient algorithms known can 
only tolerate malicious noise rates significantly lower than this general upper bound. 

Despite these difficulties, the importance of being able to cope with noisy data 
has led many researchers to study PAC learning in the presence of malicious noise 
[1–3, 5, 6, 9, 13]. In Servedio [13], a PAC boosting algorithm is developed using 
smooth distributions. This algorithm can tolerate low malicious noise rates but 
requires access to a noise-tolerant weak learning algorithm of known accuracy. This 
weak learner, L, which takes as input a finite sample S of m labeled examples, 
has some tolerance to malicious noise; specifically, L is guaranteed to generate 
a hypothesis with non-negligible advantage provided that the frequency of noisy
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examples in its sample is at most 10% and that it has a high probability to learn with 
high accuracy in the presence of malicious noise at a rate of 1%. 

Our Contribution We present a verifiable way to cope with arbitrary faults 
introduced by even the most sophisticated adversary, and show that the technique 
withstands this malicious (called Byzantine) intervention so that even in the worst 
case scenario the desired results of the machine learning algorithm can be achieved. 
The assumption is that an unknown part of a data-set is Byzantine, namely, 
introduced to mislead the machine learning algorithm as much as possible. Our goal 
is to show that we can ignore/filter the influence of the misleading portions of the 
malicious data-set and obtain meaningful (machine learning) results. In reality, the 
Byzantine portion in the data-set may be introduced by a malfunctioning device with 
no adversarial agenda, nevertheless, a technique proven to cope with the Byzantine 
data items will also cope with less severe cases. In this paper, we develop three new 
approaches for increasing the certainty level of the learning process, where the first 
two approaches identify and/or filter data items that are suspected to be Byzantine 
data items in the data-set (e.g., a training file). In the third approach we introduce 
the use of the certainty level for combining machine learning techniques (similar to 
the previous studies). 

The first approach fits best the case in which the Byzantine data is added to the 
data-set, and is based on the calculation of the statistical parameters of the data-set. 
The second approach considers the case where part of the data is Byzantine, and 
extends the use of the certainty level for those cases in which no concentrations 
of outliers are identified. Data-sets often have several features (or attributes) which 
are actually columns in the training and test files that are used for cross-checks 
and better prediction of the outcome in both simple and sophisticated scenarios. 
The third approach deals with cases in which the Byzantine data is part of the data 
and appear in two possible modes: where part of the data in a feature is Byzantine 
and/or where several features are entirely Byzantine. The third technique is based 
on decision trees similar to the Random Forest algorithm [4]. After the decision 
trees are created from the training data, each variable from the training data passes 
through these decision trees, and whenever the variable arrives to a tree leaf, its tree 
classification is compared with its class. When the classification and the class are 
in agreement, a right variable of the leaf is incremented; otherwise, the value of a 
wrong variable of this leaf is incremented. The final classification for every variable 
will be determined according to the right and wrong values. This enhancement of the 
random forest is of an independent interest conceptually and practically, improving 
the well known random forest technique. 

Road Map The rest of the paper is organized as follows: In the next section 
(Sect. 2), we describe approaches for those cases in which Byzantine data items 
are added to the data-set, and the ways to identify statistical parameters when the 
distribution of a feature is known. In Sects. 3 and 4, we present those cases in 
which the Byzantine adversary receives the data-set and chooses which items to 
add/corrupt. Section 3 describes ways to cope with Byzantine data in the case of a 
single feature with a classification of a given certainty level. Section 4 extends the
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use of the certainty level to handle several features, extending and improving the 
random forest techniques. The conclusion appears in Sect. 5. 

2 Addition of Byzantine Data 

We start with the cases in which Byzantine data is added to the data-set. Our goal 
is to calculate the statistical parameters of the data-set, such as the distribution 
parameters of the uncorrupted items in the data-set, despite the addition of the 
Byzantine data. Consider the next examples that derive the learning algorithm to 
the wrong classification, where the raw data contains one feature (or attribute) of 
the samples (1 vector) that obeys some distribution (e.g., normal distribution), plus 
additional adversary data. The histogram that describes such an addition is presented 
on the left side of Fig. 1, where the “clean” samples are inside the curve and the 
addition of corrupted data is outside the curve (marked in blue). The corrupted 
data items in these examples are defined as samples that cause miscalculation of 
statistical parameters like . μ and . σ and as a result, the statistical variables are less 
significant. Another case of misleading data added to the data-set, a special case to 
the one above, is demonstrated on the right side of Fig. 1. The histogram of these 
samples is marked in green, where the black vertical line that crosses the histogram 
separates samples with labels . +1 and . −1. The labels of the misleading data are 
inverted with relation to the labels of other data items with the same value. To 
achieve our goal to calculate the most accurate statistical parameters for the feature’s 
distribution in the sample population, we describe a general method to identify and 
filter the histograms that may include a significant number of additional corrupted 
data items. 

Fig. 1 Histogram of original samples with additional corrupted data outside the normal curve but 
in the bound of .μ±3σ (left), and outside the normal curve and outside the bound of .μ±3σ (right)
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Method for Identifying Suspicious Data and Reducing the Influence of Byzan-
tine Data This first approach is based on the assumption that we can separate 
“clean” data by a procedure based on the calculation of the . μ and . σ parameters 
of the uncorrupted data. According to the central limited theorem, 30 data items 
chosen uniformly, which we call a batch, can be used to define the . μ and . σ . Thus, 
the first step is to try to find at least 30 clean samples (with no Byzantine data). 
Note that according to the central limit theorem, the larger the set of samples, 
the closer the distribution is to being normal, therefore, one may choose to select 
more than 30 samples. We use n=30 as a cutoff point and assume that the sampling 
distribution is approximately normal. In the presence of Byzantine data one should 
try to ensure that the set of 30 samples will not include any Byzantine items. 
This case is similar to the case of a shipment of N objects (real data) in which 
m are defective (Byzantine). In probability theory and statistics, hypergeometric 
distribution describes the probability that in a sample of n distinctive objects drawn 
from the shipment, exactly k objects are defective. The probability for selecting k 
items that are not Byzantine is: 

.P(X = k) =
(
m
k

)(
N−m
n−k

)
(
N
n

) (1) 

Note that for clean samples k=0 and the equation will be 

.P(X = 0) =
(
N−m

n

)
(
N
n

) (2) 

In order to prevent the influence of the adversary on the estimation of . μ and . σ (by 
addition of Byzantine data), we require that the probability in equation 2 will be 
higher than 50. % (.P > 1

2 ). Additionally, according to the Chernoff bound we will 
obtain a lower bound for the success probability of the majority of n independent 
choices of 30-sample batches (thus, by a small number of batch samplings we will 
obtain a good estimation for the . μ and . σ parameters of clean batches). The ratio 
between N (all samples) to m (Byzantine samples) that implies a probability to 
sample a clean batch that is greater than . 12 is presented in Fig. 2. 

As demonstrated in Fig. 2 the ratio between N (all samples), and m (Byzantine 
samples) is about 2. % (e.g., 20 Byzantine samples for every 1000 samples, so if this 
Byzantine ratio is found by the new method (as described below) the probability 
that any other column in the data-set will contain a Byzantine sample is very low (in 
other words, the confidence that in every other column the samples are “clean” is 
high)). Our goal is to sample a majority of “clean” batches to estimate statistical 
parameters such as . μ and . σ of the non-Byzantine samples in the data-set. The 
estimation of these parameters will be done according to an Algorithm 1.
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The procedure below: 

Algorithm 1 Estimate statistical parameters 
1. For 1 to the chosen B do (B will be selected according to the Chernoff bound. �), 
2. Randomly and uniformly choose a batch of size n (e.g., .n = 30) from the population of 

interest(e.g., one feature), 

3. Compute the desired batch statistic . μ and .σ
(
μ = 1

n
	n

i=1xi , and, σ =
√

1
n−1	n

i=1(xi − x)2
)
, 

4. end for 
5. On the assumption that the distribution of the original data is normal or approximately normal, 

the histogram of the estimated . μ and . σ is also approximately normal (according to the central 
limit theorem). The probability to choose a “clean” batch is higher than 50. %, therefore, at least 
50. % or more of the estimations are clean. The value of . μ̂ (and . ̂σ ) will be chose to be the median 
of the . μ (and . σ ), thus ensuring that our choice has at least one clean batch with higher (and one 
with lower) . μ (and . σ ,respectively). 
. � The Chernoff bound gives a lower bound for the success probability of majority agreement 
for b independent, equally likely events, and the number of trials is determined according to the 
following equation: .B ≥ 1

2(P−1/2)2
ln 1√

ε
, where the probability .P > 1

2 and . ε is the smallest 

probability that we can promise for an incorrect event (e.g., for the probability of a correct event 
at a confidence level of 95. % or 99. %, the probability for an incorrect event, . ε, is 0.05 or 0.01, 
respectively). 

Algorithm 1: Description of a method for estimating statistical parameters like . μ

and . σ . 

Using Expected Value and Variance to Predict Distribution Shape Up to this 
stage, we used the central limit Theorem (CLT), stating that: the average samples of 
observations uniformly drawn from some population with any distribution shape is 
approximately distributed as a normal distribution, resulting in the expected value 

Fig. 2 Ratio between N (all samples) to m (Byzantine samples) for .P ≥ 1
2
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and the variance. Based on CLT, we were able to efficiently obtain (using Chernoff 
bound) the expected value and the variance of the data item values. Next, for every 
given number of data items, and type of distribution graph, the parameters of the 
graph that will respect these values (expected value, variance, distribution type, 
and number of data items) can be found. In the sequel, we consider the case of 
a distribution type of graph which reflects the normal distribution. The next stage 
for identifying suspicious data items is based on analysis of the overflow of data 
items beyond the distribution curve (Fig. 1). The statistical parameters which were 
found in the previous stage are used in the procedure described in Algorithm 2, the  
procedure below: 

Algorithm 2 Technique for removing suspected data 
1. Take the original sample population of interest (e.g., one feature from the data set) and create a 

histogram of that data, 
2. Divide the histogram into . � bins within the range .μ ± 3σ (e.g., .� = 94), and count the actual 

number of data items in every bin, 
3. Compute the number of data items in every bin by using the integral of the normal curve 

according to . μ and . σ (which were found by the previous method (Algorithm 1)) multiplied 
by the number of “clean” samples. �, and compare with the actual number, 

4. If the ratio between the counted number of data items in a bin and the computed number 
according to the integral is higher than 1+. ξ (e.g., . ξ=0.5), the data items in this column are 
suspect, 

5. The samples from the suspicious bins will be marked and will not be considered by the machine 
learning algorithm. 
. � N, the number of the “clean” samples can be define to be 98. % of the total number f data items, 
assuming the data-set contains at most 2. % Byzantine items. Alternately one may estimate the 
number of the “clean” samples using the calculated . μ and . σ . We assume that batches . μ (and 
. σ ) very near to the selected . μ (and . σ ) represent “clean” population. Thus, the bins from the 
histogram with these values are probably clean. The ratio between the original number of data 
items in this clean bin to the integral of the normal curve for this bin can be used as an estimation 
for N. 

Algorithm 2: Description of the first technique for removing suspected data items. 
The suspicious bins, those with a significant overflow, are marked and will not be 

considered for the training process of the machine learning. The data-set after the 
cleaning process contains values from bins (in the data histogram) without overflow 
(e.g., the ratio between the integral of the normal curve to the data items in the same 
bin is approximately 1). 

Note that when the number of extra data items in the bins (which was counted 
during the “cleaning” process) with overflow (data items outside the integral curve) 
is higher than 2. % of the whole data-set, we can assume that the other bins are clean. 
The next section deals with the remaining uncertainty. 

Experiments and Results We present results to demonstrate the qualities of our 
new approach, and to reveal the differences between a data-set with and without 
corrupted data in order to validate the proposed method experimentally. The
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Table 1 Results of C4.5 
algorithm, on original and 
corrupted data 

Test No. Dataset Accuracy 

1 Artificial data 100. %

2 Artificial data 78. %

with corrupted data 

3 Artificial data 96. %

after removing 

suspicious data 

comparison between the data-sets was done with the C4.5 algorithm [12]. C4.5 
uses a decision tree developed by Quinlan [11], and is an extension of Quinlan’s 
earlier ID3 (Iterative Dichotomiser 3) algorithm [10]. The decision trees generated 
by C4.5 can be used for classification, and for this reason C4.5 is often referred to 
as a statistical classifier. For this comparison we used an available tool based on the 
C4.5 file from “Classification Toolbox for Matlab”. The results appear in Table 1. 

The data-set for the first experiment is an artificial data-set created by Matlab 
software with the function “normrnd” (which generates random numbers from a 
normal distribution with a mean parameter . μ and a standard deviation parameter 
. σ )—this database consist of uniformly distributed data and contains 1 attribute 
(2296 samples) and 2 classes (. −1,. +1). Note that in the presence of Byzantine 
data items the resulting data-set must be a worse case with relation to the original 
data items and the learning algorithm. Here we deliberately introduced a corrupt 
data-set that includes Byzantine data to demonstrate the benefits of the proposed 
technique. For the second and third experiments, the previous database is extended 
with corrupt data (such as the data-set shown in Fig. 1) that also has an inverted 
label in relation to the label with the same value (2296 “clean” plus 45 “corrupted”, 
2341 samples in total). 

3 Corruption of Existing Data, Single Feature Learning with 
a Certainty Level 

We continue considering the case where part of the data in the feature is corrupted. 
Our goal in this section is to find the certainty level of every sample in the 
distribution in the case where the upper bound on a number of corrupted data items 
is known. This section is actually a continuation of the previous, as both sections 
deal with a single feature, where the first deals with an attempt to find overflow of 
samples and the second, cope with unsuccessful such attempts; either due to the 
fact that the distribution is not known in advance, or that no overflows are found. 
The histogram of these samples is colored green, where the black vertical line that 
crosses the histogram separates samples with labels . +1 and . −1. The labels of the 
Byzantine data have an inverted label with relation to the label of the non-Byzantine
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data items with the same value. To achieve our goal we describe a general method 
that bounds the influence of the Byzantine data items. 

Method to Bound the Influence of the Byzantine Data Items The new approach 
is based on the assumption that an upper . ξ on the number of Byzantine data items 
that may exist in every bin in the distribution is known (e.g., maximum . ξ equals 8 
items). The certainty level . ζ of each bin is calculated by the following equations: 

.ζ−1 = L−1 − ξ

N
(3) 

.ζ+1 = L+1 − ξ

N
(4) 

Where .L−1 is the number of data items that are labeled as . −1, .L+1 is the number 
of data items that are labeled as . +1, and N is the number of data items in the bin. 

Algorithm 3 Finding the certainty level 
1. Take the original sample of size n from the population of interest (e.g., one feature from the 

data set), 
2. Sort the n data items (samples) according to their value and create their histogram, 
3. Count data items at every bin, where the size of bin is the value of natural number in the 

histogram . ± 0.5 (e.g., for the natural number 73, the bin is between 72.5 to 73.5) and count the 
number of data items that are labeled as . −1 and . +1. 

4. Find the certainty level . ζ of each bin according to equations 3 and 4, and the assumption of the 
size of the maximum . ξ . 

Algorithm 3: Description of the method for finding the certainty level of every 
sample for . ξ Byzantine data items in every bin in the distribution. 

4 Corruption of Existing Data, Multi-Feature Learning (with 
a New Decision Trees Algorithm) 

Our last contribution deals with the general cases in which corrupted data are part of 
the data-set and can appear in two modes: (i) An entire feature is corrupted (Fig. 3), 
and (ii) Part of the features in the data-set is corrupted and the other part is clean. 
Note that there are several ways to corrupt an entire feature, including: (1) inverting 
the classification of data items, (2) selection of random data items, and (3) producing 
classifications inconsistent with the classifications of other non-corrupted features. 
Our goal, once again, is to identify and to filter data items that are suspected to 
be corrupted. The first case (i) is demonstrated by Fig. 3, where the raw data items 
contain one feature and one vector of labels, where part of the features are totally
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Fig. 3 Histogram of original samples with corrupted data inside the normal curve 

non-corrupted and part are suspected to be corrupted (for all samples in this column 
there is a wrong classification). 

Method to Bound the Influence of the Corrupted Data Items Our technique is 
based on the Random Forest; like the Random Forest algorithm [4] we use decision 
trees, where each decision tree that is created depends on the value of a random 
vector that represents a set of random columns chosen from the training data. 
Large numbers of trees are generated to create a Random Forest. After this forest 
is created, each instance from the training data set passes through these decision 
trees. Whenever a data set instances arrives to a tree leaf, its tree classification is 
compared with its class (. +1 or  . −1); when the classification and the class agree the 
right instance of the leaf is incremented; otherwise the value of the wrong instance 
of this leaf is incremented, e.g., 351 instances were classified by Node 5 (leaf): 348 
with the right classification and 3 with the wrong classification (Fig. 4). 

Certainty Adjustment Due to Byzantine Data Bound The certainty level . ζ of 
each leaf can be calculated based on the assumption that the upper bound on 
the number of corrupted data items . ξ at every leaf in the tree is known. These 
calculations are arrived at using equations 3 and 4, where, .L−1 is the number of
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Fig. 4 Example of a decision tree for predicting the response for the instances in every leaf with 
right or wrong classification 

variables (in the leaf) that are labeled as . −1, .L+1 is the number of instances (in 
the leaf) that are labeled as . +1, and N is the total number of variables that were 
classified by the leaf. 
In the second step, each instance from the test data set passes through these decision 
trees to get its classification. Each new tested instance will get a classification result 
and a confidence level, where the confidence level is in the terms of the (training) 
right and wrong numbers associated with the leaf in the tree. The final classification 
is a function of the vector of tuples .〈classif ication; right;wrong; 〉 with refer-
ence to a certainty level rather than a function of the vector of . 〈classif ication〉
which is used in the original Random Forest technique. In this study we show one 
possibility for using the vector of .〈classif ication; right;wrong; 〉, though other 
functions can be used as well to improve the final classification. 

Algorithm 4: Description of the method for identifying and filtering Byzantine 
data for multi-feature data-sets. 

We tune down the certainty in each leaf using a given bound on the cor-
rupted/Byzantine data items. The contribution of this part includes a conceptual 
improvement of the well known random forest technique; by re-examining all data 
items in the data set. The re-examination counts the number of right and wrong 
classifications in each leaf of the tree.
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Algorithm 4 Identify and filter Byzantine data 
1. First, select the number of trees to be generated, e.g. K , 
2. For k=1 to K do 
3. A vector . θk is generated, where . θk represents the data samples selected for creating the tree (e.g., 

random columns chosen from training data sets - these columns are usually selected iteratively 
from the set of columns, with replacement between iterations), 

4. Construct tree T (. θk ,y) by using the decision tree algorithm, 
5. End for 
6. Each instance from the training data passes through these decision trees, and for every leaf the 

number of instances that are classified correctly (right) and incorrectly (wrong) are counted, 
then the percentages of right and wrong classifications are calculated, 

7. Each instance from the test data set passes through these decision trees and receives a 
classification, 

8. Each new instance will receive a result .〈classif ication; right; wrong; 〉 from trees in the 
forest, right and wrong percentages from all the trees are summarized (e.g., sample 10 is 
classified by Tree No.  1 at Node  5 as  . +1 with 90. % (or 0.9) correctness and 10. % (or 0.1) 
incorrectness, by Tree No. 2 at Node 12 as . +1 with 94. % (or 0.94) correctness and 6. % (or 
0.06) incorrectness, where the total correctness of . +1 for this sample from both trees is 92. %
(or 0.92) and 8. % (or 0.08) for . −1). The final classification for each instance will be determined 
according to the difference between the total correctness (right classifications) for . +1 to the  
total incorrectness (wrong classifications) for . +1 that are summarized from all trees. �. 
. � This is one option for using the right and wrong counters to determine the classification. 

Experiments and Results In order to validate the proposed method experimen-
tally, we present results to demonstrate the qualities of our new approach and 
reveal the differences when a data-set with and without corrupted data is processed. 
The comparison between the data-set was done with the Multi-Feature algorithm 
of Algorithm 4. Using the Matlab function T=treefit(X,y) the algorithm creates a 
decision tree T for predicting response y as a function of predictor X. X is an n-by-
m matrix of predictor values. y is a vector of n response values (for classification). 
Another experiment was run to determine the number of wrong samples (at every 
leaf) the classification trees can handle. Thus, from the correctness and incorrectness 
values of every leaf (which were found in step 5 in the method above) certain 
numbers of samples will be subtracted (for correctness) or added (for incorrectness) 
and vice versa (e.g., leaf 5 at tree in Fig. 4 for class . −1 was found with 348 samples 
with correct classification and 3 samples with incorrect classification. If 8 Byzantine 
samples are present in the leaf, the classification of the data will change to 340 with 
correct classification and 11 with incorrect classification. The results are presented 
in Table 2. 

For the first experiment (Tests 1 and 2), we used the “Satimage” data-set which 
is a well known data-set for classification of a satellite image. The original data for 
this database was generated from data purchased from NASA by the Australian 
Center for Remote Sensing, and contains 36 attributes and 6 classes (2296 for 
training and 2000 for testing). For the second experiment (Tests 3 and 4), we 
used an artificial data-set which was created by Matlab software with the function 
“normrnd” (generates random numbers from the normal distribution with a mean
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Table 2 Results of the Multi-Feature algorithm, on original and corrupted data 

Accuracy Accuracy right 

Test No. Data set majority vote and wrong 

1 Setimage 88.1.% 92.25. %

2 Artificial data base on Setimage 88.7.% 92.4. %

3 Artificial data with corrupted data case 1 Low (less than 
65. %) 

87.8. %

4 Artificial data with corrupted data case 2 85.3.% 92.4. %

5 Setimage with 12 corrupted samples at every leaf 88.1.% 89.20. %

parameter . μ and a standard deviation parameter . σ )—this database is constructed by 
uniformly chosen data items, and contains 36 features (2296 samples) and 2 classes 
(. −1,. +1). For the third experiment (Tests 5 and 6), we used artificial data where 
some features (the entire columns) are corrupted and the other features are not (case 
1). For the fourth experiment (Tests 7 and 8), we used artificial data where part of the 
data in the feature (column) are corrupted and some features (columns) are corrupted 
(case 2). For Tests 9 and 10 we used the original “Satimage” data-set. To summarize, 
we demonstrated that algorithm 4 significantly improve the classification process 
with and without Byzantine data. 

5 Conclusion and Future Work 

In this work we present the development (the details of the experiment results appear 
in [7] of three methods for dealing with corrupted data in different cases: The first 
method considers Byzantine data items that were added to a given non-corrupted 
data set. Batches of uniformly selected data items and Chernoff bound are used to 
reveal the distribution parameters of the original data set. The adversary, knowing 
our machine learning procedure, can choose, in the most malicious way on, up to 
the 2. %. malicious data; Note, that there is no requirement for the additional noise 
to come from distribution different than the data items distribution. We prove that 
the use of uniformly chosen batches and the use of Chernoff bound reveals the 
parameters of the non-Byzantine data items. We propose to use certainty level that 
takes into account the bounded number of Byzantine data items that may influence 
the classification. The third method is designed for the case of several features, some 
of which are partly or entirely corrupted. We present an enhanced random forest 
technique based on certainty level at the leaves. The enhanced random forest copes 
well with corrupted data. We implemented a system and show that ours performs 
significantly better than the original random forest both with and without corrupted 
data sets; we are certain that it will be used in practice. 

In the scope of distributed systems, such as sensor networks, the methods can 
withstand malicious data received from a small portion of the sensors, and still 
achieve meaningful and useful machine learning results.
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On Impact of Data Models 
on Predictability Assessment of Time 
Series 

Sergey Frenkel 

1 Introduction 

Significant advances in the development of forecasting systems achieved in the 
framework of Machine Learning (ML), primarily based on neural networks, do not 
eliminate the difficulties of their use in very critical cases, for example, as it turned 
out, when predicting the development of the COVID19 pandemic. Among the many 
reasons, the main ones of which are, of course, related to the lack of knowledge 
of the relevant subject areas, one can also point out that modern ML, in particular, 
those that using mathematical models based on statistical data, often do not take into 
account some mathematical properties of random data, which are used in specific 
MO systems with prediction models. 

In the last decade, work on learning theory for sequence recognition (or online 
learning) has tried to avoid as far as possible the need to use assumptions about 
the exact types of probability distributions of the data. However presently most 
modern forecasting tools, primarily based on neural networks and Deep Learning, 
still use parametric statistical models, often based on Gaussian distributions for 
a priori estimates of the expected quality of a prediction. Assumptions about the 
Gaussian distribution are also essential for the SMV (Support Vector Machine 
[1]) algorithm [2]. It is shown that the accuracy of linear models can increase if 
the feature is distributed similarly to the normal law. Deep neural networks study 
predictive relationships using a number of non-linear layers to build intermediate 
representations of features, encoding previously obtained information into a latent 
variable zt, while the final forecast is created only using zt, without taking into 
account the possible characteristics of the data that exist within certain probabilistic 
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models, and the main hopes for getting a suitable result are placed on computing 
power. 

In a more general sense, in many modern tools based on neural networks (NN), 
the formation of a forecast of data values at points in time in the future is performed 
as a search for internal patterns and relationships without using any classical 
mathematical procedures (Markov models or other probability theory models) or 
underlying formal theories. Training is carried out on examples, and not on a 
mathematical model, although using various mathematical tools, such as linear or 
logistic regression, at intermediate stages – for example, algorithms based on search 
trees and boosting (XGB, etc.) [3]. These circumstances are often supplemented by 
the opacity of the transformation of the input data (i.e., the construction of features, 
for example, in deep learning algorithms [4]), which makes it difficult to a priori 
assess the impact of certain input data properties on the prediction efficacy. As the 
analysis shows, this can lead to incorrect forecasts, to the inefficiency of the tools 
and procedures of the forecasting subsystems as part of information and computing 
systems. 

Therefore, it is important to make a preliminary assessment of how efficient a 
particular forecasting tool is from the point of view of the designer of a specific 
software forecasting tool (“Prediction instrument” – PI). Hereinafter, PI refers to 
software implementations of prediction algorithms. 

Most research on network traffic forecasting has focused on classical statistical 
methods that rely heavily on the use of past (“historical”) data, and the time spent 
on obtaining a forecast depends largely on the computational complexity of the 
algorithm relative to the volume of this history. 

In particular, in recent years there has been a significant increase in the number 
of studies using computational approaches, including machine learning methods, 
to predict various activities in complex computing systems – from user response 
on websites for various purposes, to traffic through it and/or workload prediction. 
However, the existing literature mainly focuses on the analysis of algorithms 
implemented in modern software products for solving specific problems, and there is 
no comprehensive review to answer many important questions, such as the impact of 
the different types of data models used and the specifics of the mathematical models 
underlying the basis of the algorithms used [3]. 

At the same time, most models assume that the more observations are used, 
the more accurate (better) the forecast. Therefore, the problem of high accuracy 
is associated with the problem of computational costs, and hence the speed. In 
cases where prediction time is critical, for example, for real-time network traffic 
prediction problem, the task of prediction is to minimize computational costs as 
much as possible while maintaining an acceptable level of accuracy (efficiency) of 
the predictor. 

One way to solve this problem is to take into account and use the properties 
of mathematical time series models that model traffic and job flows, which can 
significantly affect the prediction. One way to ensure that the abundance of modern 
approaches and models is taken into account is to develop a general conceptual 
model of the prediction problem, which is actually absent in the modern literature.
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This paper offers an overview of the indicated mathematical models for predict-
ing the behavior of complex systems, primarily telecommunication systems. 

Our main goal is to analyze the requirements for mathematical models of data 
and systems with processes occurring in them, whose behavior is required to be 
predicted using certain software tools, taking into account the availability of data on 
the functioning and typical ways of user actions with prediction tools. 

We propose a certain categorization of modern algorithms and forecasting 
methods based on probabilistic models, primarily focusing on current progress in 
machine learning methods. 

The probabilistic data models used in modern approaches for various prediction 
problems are considered and analyzed, and the conditions and requirements for 
prediction models/algorithms are formulated in the framework of probabilistic 
models for prediction, from the point of view of harmonization (coordination) 
both (data and prediction algorithms) models. Various formal-logical (semantic, 
ontological methods) [5] remain outside our field of vision. 

A conceptual model of the process of selecting predictors for a specific data set 
is proposed and substantiated, on the basis of which a system of recommendations 
and a selection scheme can be built. 

Various examples of the influence of the characteristics of random sequences 
and processes on the accuracy of prediction are considered and analyzed, including 
problems of predicting the sign of increments of random series and processes. 

We consider from a unified standpoint various prediction models that are 
traditionally considered within the framework of various sections of theoretical 
computer science [6], probabilistic disciplines [6, 22], and Machine learning [3, 4]. 

Since there have been many reviews recently on the practical use of various 
professional prediction software [3, 4, 9], this paper does not provide a detailed 
overview, but only links to sources detailing the relevant software tools. 

2 Description and Statement of the Prediction Problem 

Although mathematical (probabilistic) models for predicting random sequences, 
series and processes have a history of more than eighty years [7], intensive 
research in this areas continue so far. This is due to the huge variety of tasks 
that are faced when processing large amounts of data. For these tasks, different 
criteria for prediction accuracy, different data models, different requirements for 
the time (efficiency) of obtaining a forecast may be required. For example, for 
many problems of predicting the values of financial indices, the criterion for the 
minimum standard deviation of the predicted data from the true values (on which 
the Kolmogorov-Wiener criterion and their numerous linear modifications is based 
[7]) may well be suitable. But it is obviously not suitable, for example, when 
it is required to predict the sign of the increment. In some problems, it is quite 
reasonable to use as a criterion some values averaged over large past samples,
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in others, local estimates are needed. There are prediction algorithms (predictors) 
that use numerical (measured) data without any assumptions about their statistical 
and probabilistic properties (like many algorithms that use the concept of a neural 
network [3]), and there are implicitly assuming data as samples from a normal 
stationary process, or as transitions of a Hidden Markov Net (i.e. generated by a 
Markov source [8]). 

In this regard, we fix the following approaches to the problem of prediction 
present in the literature: 

– as one of the mathematical problems of estimating unknown conditional proba-
bility distributions (“theoretic-probabilistic approach”), 

– as one of the mathematical problem of choosing the optimal solution DM 
(decision making) approach, 

– as an algorithmic control problem. 

In principle, the practical application of prediction models requires a combination 
of these approaches, which in one form or another must be implemented in practice, 
although in the literature these approaches exist for the most part isolated. In my 
opinion, this is bad both for practice and for teaching students. 

In the Probabilistic approach, the task of prediction is as follows: 
Let at the time t, the conditional probabilities γ(xt + 1|x1,x2,.,xt) (or the probabil-

ity distribution density P(xt + 1|x1, . . . , xt)) are estimated for the implementation of 
the process x1,x2, . . . ,xt. In other words, estimates of how likely it is that at time 
t + 1 we will see the value that we predict. It is clear that the more accurate (in the 
accepted metric) the estimate, the better the forecast. At the next time t + 1, we have 
to estimate the probabilities γ(xt + 2|x1 . . .  xt + 1) (or the density p(xt + 2|x1, . . .  , 
xt + 1)) and so on. Mathematical model estimates γ(xt + 1|x1,x2,.,xt), as well as the 
conditional probability γ() itself, is called a “predictor” in the literature [14]. 

Along with γ(), predictors are also called software products (for example, some 
modules of cloud MS AWS Azure ML, Google Cloud ML, etc.) that are used for 
prediction. 

In the future, these software products will be called as previously (Introduction), 
“Prediction instrument”)PI) which may be a subsystem of intelligent decision 
support (IDS), and the word “predictor” will be used in both senses with the 
necessary explanations, if this does not directly follow from the context. 

In the DM formulation, the following prediction problem is formulated, taking 
into account the requirement for the efficiency (accuracy) of the forecast: for a 
given space of strategies B, the space of possible predictable values X, and the loss 
function l(b, x), b ∈ B, x ∈ X, choose the predicted next value xt = bt given the 
knowledge of past states x1, . . . ,xt − 1 (from X), so that the total the loss from the 
prediction error (“loss”) would be asymptotically close to the loss obtained by the 
best fixed strategy known a posteriori after looking at the entire sequence x1, . . .  
xt. – i.e. a well-chosen (predicted) bt should minimize possible a posteriori losses. 

The strategy is a function that returns an output vector y for each input vector x 
according to the conditional distribution function P(y|x) (or γ()) [14, 16].
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The third statement of the problem, which we call the “algorithmic model” of 
prediction, consists in using various conceptual models for obtaining a prediction 
that do not explicitly contain any basic elements of mathematical models of the 
above two mathematical formulations of the prediction problem. In terms of content, 
conceptual models underlie the input language for describing the task of obtaining a 
forecast (more details below), in particular, the parameters of called functions from 
certain machine learning libraries [9, 17, 50], which can specify the structure of the 
predictor used. For example, a search tree in eXtreme Gradient Boosting Regressor 
aka XGBRegressor, if the user conceptual model considers the forecasting process 
as a search for an acceptable (by the selected performance criterion) prediction 
among a set of possible values in a fixed data area, or as a structure of a neural 
network (number of layers, excitation functions etc.), for example, using the LSTM 
model. XGB, from the point of view of the user of the prediction tool, is a gradient 
boosting machine that reads some dataset, applies to it various methods of predicting 
(not necessarily using any probabilistic models) the future values of the time series, 
using an iterative procedure to adaptively change the samples from the training data, 
trying different ways of predicting the results of evaluating misclassified records. 
This can be seen as incremental addition of prediction methods (referred to as 
“prediction models”) until further improvement is made. These “prediction models” 
can be developed based on any of the above two classes of mathematical models, 
but they are not present in the description (input language) of the algorithmic model 
in any way – from the point of view of XGBRegressor, these are just more or less 
successful predictors (oracles). 

There are dozens of other algorithmic models that operate from the user’s point 
of view as a solution (best prediction) search engine, for example, using Linear 
Regression, Neural Networks;. Support Vector Machines (SVMs), Artificial Neural 
Networks, etc. 

3 Conceptual Model of the Prediction Problem 

In software algorithmic prediction models, as in other machine learning systems, 
algorithmic models are based on the use of experience gained as a result of 
solving problems at the training stage. For example, an automatically trained binary 
classifier is usually understood as a model that represents the characteristics of the 
classes learned at the training stage [10, 11]. 

A more or less coherent description of such models can be made on the basis of 
the idea of a conceptual model. 

The Conceptual Model (CM) is a set of notions (“points of view”) about the 
elements, objects (both real and model), and the goals of the modeled system, as 
well as the relationships between them, expressed in terms of a particular theory. 
From this point of view, the CM of the prediction algorithm should represent data 
types and assumptions about their mathematical properties.
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Considering that the object of our interest is probabilistic models of prediction, 
the conceptual model (CM) in the paper means a (formalized or natural) description 
of the relationships between elements, objects (both real and model) and the goals of 
mathematical models and algorithms predictions, as well as the relationship between 
them expressed in probabilistic terms. 

Note that in the framework of modern software development methodologies 
(Software Engineering), a conceptual model is understood as a formalized descrip-
tion of project requirements in one or another data modeling language (for example, 
UML) [12], and the corresponding language allows a certain typing and structuring 
of these concepts. 

However, this is necessary only if there are information-logical relations between 
the elements of the system being developed, and if they are not taken into account, 
it can lead to conflicts during the functioning of the system. An example is the 
requirement to comply with the temporal order of occurrence of certain events [13]. 

Since the prediction problem as such (without details of its software imple-
mentation) does not require such a description, we will consider textual informal 
KMs. 

The main requirements for a conceptual and mathematical model are that they 
must provide a representation of patterns and trends in the data that are important to 
the user, in which case it will be a predictive model for current data to predict what 
will happen next. In this case, the model should allow the evaluation of actions. 
Steps to be taken to obtain optimal results. 

Therefore, CM should represent the upper level of the description of a software 
product that performs the prediction of the “future” from known data, which we 
call the Predictor. Within the framework of the ML paradigm, we consider that 
the predictor is being trained, and then, based on his training, forms a forecast. 
Training is on some sequence, and the goal is to tune the parameters of the model 
implemented by this program to predict the future part of the (not yet observed) 
sequence. In practice, this may consist not only in tuning the parameters of one 
particular model, but also in choosing a set, predictor, and/or training samples from 
a certain region, and the goal is to predict new sequences from the same region as 
accurately as possible. 

The usual approach for this scenario is to develop a theoretical model of the 
real process (random sequence or process) consisting of identified process steps and 
possible state transitions with their transition probabilities. 

3.1 Requirement for Consistency of CM Components 

In order to have a tool for describing the options for using these approaches to 
solving prediction problems, we define a conceptual model of prediction algorithms, 
which must be consistent with a mathematical (probabilistic!) model, i.e. provide a
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representation of all the necessary elements of the subject area of a given prediction 
problem in a mathematical model of the predictor and it allows a priori assessment 
of its effectiveness (one or another measure of prediction error, for example). An 
example (and source) of possible “inconsistency” for the binary sequence predictor 
model is the fact that according to [14]: 

for any predictor, there is a stationary and ergodic source such that the error 

|P(xt + 1|x1 . . .  xt) – P′(xt + 1|x1 . . .  xt)| does not go to 0 when the length of the 
observed sequence t goes to infinity (Here P() and P′( ) are the true probabilistic 
distribution and its estimate respectively). 

This means that for any binary sequence {xt} that models this or that data, for any 
predictor of binary data, it may turn out that the predictor chosen for prediction does 
not guarantee that the error in estimating the probability distribution of the predicted 
value x *t + 1 with respect to the distribution of the true value xt + 1 converges to 0 
as the length of the training sequence increases. 

In this sense, this predictor is inconsistent with the data model as a random 
sequence {xt} (say, Markovian), and to overcome this inconsistency, the description 
of the QM must include the concepts of describing the probabilistic model that 
explicitly or implicitly underlies the software implementation of the predictor. This 
means that, at a minimum, one should always have a set of predictors, in the hope 
that among them there will be one for which the specified property does not hold 
(the difference between the specified distributions will converge to zero relatively 
quickly), and the conceptual model should include a description of the choice 
(enumeration) predictors. 

Another example of possible inconsistency between data models and predictor 
mathematical models is the presence of a non-linear relationship between past and 
future values among the data (for example, self-similarity [15]). If this circumstance, 
i.e., a possible mathematical model of the data, is not represented in the conceptual 
model of the proposed prediction method, then there is an obvious uncertainty in 
the choice of an effective algorithm used in the available toolbox. 

So, the conceptual model in our understanding should be the top level description 
of a software product that performs the prediction of the “future” from known data, 
which we call the Predictor. Within the framework of the ML paradigm, we consider 
that the predictor is being trained, and then, based on his training, forms a forecast. 
Training is on some sequence, and the goal is to tune the parameters of the model 
implemented by this program to predict the future part of the (not yet observed) 
sequence. In practice, this may consist not only in tuning the parameters of one 
particular model, but also in choosing a set, predictor, and/or training samples from 
a certain region, and the goal is to predict new sequences from the same region as 
accurately as possible.
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3.2 Generalized Representation of the Conceptual Model 
of the Prediction Problem 

We will consider the predictor p of values of the sequence x1, . . . ,xt as a function 
bt + 1 = fp (xt-m, . . . ,xt), which calculates the value of the random sequence 
predicted by the predictor fp at time t, m is the number of terms of the sequence 
preceding by the time t, which is used in this predictor p to obtain a prediction 
(bt + 1 means exactly the estimate of the true value of xt + 1 and may not coincide 
with it). 

A sequence of random data xt-m, . . . ,xt (or a segment of the implementation of a 
continuous process) can be considered either as a training sample (its part) and / or 
as input data for some regression model (for example, ARIMA), i.e. as a regression 
xt + 1 over xt-M, . . .  , xt, where M ≤ m, and for M < m values between xt-m and xt-M 
are used for the training. 

Functions fp belong to one or another family of algorithms (for example, neural 
networks, gradient, etc.). 

We will call the prediction is “probabilistic” if the values at the next moment 
of time are predicted only with a certain probability (Note that the prediction 
algorithm, i.e. the method of calculating from known (observed) values) can be 
either deterministic or probabilistic). 

With that said, the conceptual model is presented as: 

CM =
{

Mθ 
D (S), ML, FLM

}
(1) 

where Mθ
D(S) is a prediction model defined by the data type D (binary, real), with

a probability measure θ on D, and a structure S on D, which refers to the way data
of type D is structured as predictor input variables (for example, splitting data for
training and test choices, or scalar or vector data, etc. [9, 11, 50]), 

ML is a model of loss (“PENALTY”) from the received prediction with loss 
function L(XS,YS), where XS, YS ∈ D observed (XS) and YS predicted data with 
structure S given by some ratio on D × D (e.g., “success rate”, the ratio of the 
number of successful predictions to the total number of predictions), related with a 
measure of predictability [8, 14, 21] and prediction efficiency, 

FLM = {f1,..fm} is a set of predictors based on the models Mθ 
D(S) and ML – 

consisting of predictors in the sense defined above, i.e. methods for estimating the 
future value with the conditional probability distribution of the predicted value. 

We assume that the predictor fp always corresponds to an admissible prediction 
model, i.e. all its input data and parameters can be uniquely determined within 
the framework of the model under consideration at the moment, and therefore are 
consistent in the sense indicated above (as it was introduced in the Sect. 3.1 for the 
concept of CM).
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This construction (CM) allows representing classes of models according to the 
types of predicted data, used probability measures, loss functions when making 
decisions about the acceptability of the received forecast. 

Example 1 
Let θ be the probability Bernoulli measure on D = {0,1}n – the set of sequences of 
length n = 1,2 . . .  – the number that determines the length of the sequences under 
consideration. From the point of view (2), n is a parameter of the structure S, for the 
sequence Xt = {x1, x2„ xi, . . . , xt-1, xt|}∈D. Probability P (xi = 1) = θ. 

For different structures, a model with a given probability measure will have its 
own peculiarity (see reasoning about [19] in the 4.1). 

Let the loss function is “0/1loss”, that is a measure of the loss of the predictor 
user from prediction errors of the form “zero is predicted instead of the true value” 
and vice versa, equal to the proportion of incorrect predictions for a sequence of 
length n, those: 

en = Ep
(
�i=1,nI(bt �= xt)/n

)
, 

where I() – indicator function, bt, xt – predicted and true value, respectively, Ep 
means distribution averaging with parameter �. 

One can consider the following predictor bt = f(xt-1), where f ∈ FLM and the loss 
function is defined, known [8] as “the optimal rule for predicting the criterion of 
minimum loss in measure en”: 

bt = 1 if Prob(1) >  1/2 (2) 

bt = 0 if Prob(1) <  1/2 

and in the case, Prob(0) = Prob(1) = 1/2, the prediction is not performed. 
In this case, as it is easy to see, the average losses are equal to the error probability 

1-�, when � > 1/2, and �, if 0 is considered “success”, which can be expressed as: 

Lp = min(�, 1 − �) (3) 

Instead of a single predictor, we can consider the actions of some subset of FML
predictors.

In this case, the conceptual model for binary data (D = {1,0}n) can generate the 
well-known “multi-expert” prediction scheme, in which binary prediction is viewed 
as a game between the predictor and the environment, and predictors (whose goal is 
to minimize expertise loss) that fulfills the prediction. 

Each expert F is a sequence of functions Ft: {0,1}t-1 ➔ {0,1}, t ≥ 1, i.e. expertise 
is a way of setting a probability distribution on a set of sequences {0,1}t-1. Each 
expert defines a forecast strategy as follows: when observing with the first t-1 bits 
y1,. yt-1 expert F predicts that the next bit of y is 1 with probability Ft(yt-1) [16].
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It is easy to see that the content of the conceptual model of this approach does 
not differ from the previously considered view of prediction as an estimate of the 
conditional distributions of certain events associated with a random binary sequence 
(with possible differences in the prediction efficiency estimates used). 

Let us now consider what requirements should be met by mathematical models of 
data in the specific prediction problems, for example, traffic in telecommunication 
networks, so that it is possible to ensure and control the prediction efficiency 
in a given cycle (at a given step) of prediction, i.e. to ensure consistency with 
the properties of the input data and the criterion making a decision about the 
effectiveness of the considered algorithmic prediction model. 

4 Requirements for Mathematical Models of Prediction 

As it is easy to see from (1), the first issue that should be taken into account 
when choosing/developing mathematical models of predictors is the probabilistic 
measure used in a particular problem, and hence the probabilistic distribution model 
considered on the data set D, and the measure of prediction accuracy determined by 
the measure ML (2). 

An obvious criterion for forecast accuracy is the distribution of the probability of 
prediction error (which determines the risk of incorrect prediction), which obviously 
depends on the probabilistic data model, and, formally, its assessment should be 
based on knowledge of the probability distributions of the data, and models of 
the relationship between the distribution of data and the probability of the correct 
forecast. But usually these distributions are unknown. 

From a formal point of view, the unknown distribution of the predicted data 
means impossibility of a priori estimation of the accuracy (uncertainty) of the 
prediction with a given prediction algorithm leads either to the requirements for its 
assessment in the prediction process, or to the use of Bayesian methods [17] of the  
distribution of the desired conditional probability p(y|x) predicting x from known 
data y, which is also associated with technical difficulties. 

This indicates the need for a certain theoretical model that allows traffic 
prediction problems to be based not on specific knowledge of distributions, but on 
knowledge. About general properties of distributions of certain class. However, the 
ability to overcome this problem depends on the data type D. 

4.1 About Binary Data Prediction 

This class of problems can be of interest both in itself and in solving problems of 
predicting the sign of increments of discrete or continuous random processes (see 
Sect. 5).
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So, for discrete data from some finite alphabet A, one of the theoretical 
approaches to overcome the problem of the lack of exact knowledge of the data 
distribution is to use the concept of an individual sequence, which is considered as 
existing in a single instance, and not as a sample trajectory from the ensemble, as 
is customary in theory. Random processes. It is believed that it is generated by a 
random source, usually a stationary ergodic one. 

A natural question is: can one predict the next values of an individual sequence 
by estimating a probability distribution based on the past, for example, a specified 
proportion of correct predictions up to time t, and then minimizing the expected 
loss in this assignment (i.e., acting as if future events actually happened with 
an estimated probability). The answer is yes, if you use the so-called. “universal 
scheme” predictor [14]. 

A well-known and used example of a universal measure for symbolic 
(binary, in particular) sequences, which expresses the conditional probability 
Prob(xt + 1|x1, . . . xt) and is built on the basis of a universal code U, the redundancy 
of which is asymptotically minimal for classes of Bernoulli and Markov sources 
[14] (the most famous example is the code obtained as a result of applying the 
Lempel-Ziv (LZ) compression algorithms [14]). 

According to the well-known result [14], let U be a universal code for some set 
of sources � generating letters from the alphabet A, and the measure μU for each 
word v in the alphabet A is given by the equality. 

As shown in [14], under the assumption of equiprobable generation of binary 
strings from the set U by some (hypothetical) data source, the conditional probabil-
ity Prob(xt + 1|x1, . . . xt) can be expressed: 

μU(v) = 2−|v|/
∑

u∈Av 
2−|U(u)| 

where v is the considered string x1, . . . ,xt from a given set of binary strings in 
a given universal code (e.g., LZ), which provides compression as much as their 
entropy allows, Av denotes the number of strings A|v|. 

Then the measure μU is universal on �, i.e., predicting the next value of any 
sequence from the set given by sources from �, about which there is reason to 
assume that this is a Markov sequence, can be predicted with some minimum error 
without knowledge the exact distribution parameters, as: 

Prob (xt+1|x1, . . . xt) = μU (x1, . . . ,  xt−1, xt) /μU (x1, . . . , xt−1) . 

Note that the above LZ algorithm [14], which performs lossless character sequence 
compression, can at the same time act as a predictor by determining xt + 1 as the 
corresponding leaf in the partial match tree [14] with the conditional probability 
induced by the stepwise algorithm parsing (Recall that one of the well-known 
criteria for the randomness of a binary sequence is the possibility of its compression 
(to a value corresponding to the unit of entropy per symbol, which is the randomness 
criterion [18])).
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Let us now clarify the issue of prediction accuracy. 
Since the predictor is considered as a conditional distribution, the question of 

using a universal predictor is reduced to estimating the closeness of the estimated 
distribution P(xt + 1 = a|x1,..xt) and the conditional distribution γ known at time t 
(by the predictor) at time t + 1. It is known [14] that an effective measure of the 
closeness of two distributions is the Kullback-Leibler measure: 

KL
(

P
∥∥∥γ

)
=�a∈AP (xt+1 = a|x1, x2, ., xt) log (P (xt+1 = a|x1, x2, ., xt) / 

γ (xt+1|x1, x2, ., xt)) . 

where KL is the divergence measure of the Kullback-Leibler (KL) distributions. 
A more practical and simpler example of a universal predictor is the Laplace 

Predictor L(xt + 1 = a| x1 . . . xt). 
It estimates the conditional probabilities P(xt + 1 = a ∈ A| x1, x2 . . . , xt) from 

the known values of x1, . . . , xt like: 

γ (xt = a|x1, . . .  xt−1) =
(
nx1,...xt−1 + 1

)
/ (|t| + |A|)

)
. 

where nx1, . . .  xt-1 is the number of occurrences of the letter a in the subsequences 
x1, . . . xt-1. 

If A = {0,1}: 

γ (xt = 1|x1, . . .  xt−1) = (n1 + 1) / (M + 2) , 

γ (xt = 0|x1, . . . xt−1) = (n0 + 1) / (M + 2) . 

n1, n0 are the number of ones and zeros in the sample of the size |t| =  M. 
It is important to note that the predicted probabilities cannot be equal to zero 

even through a certain letter did not occur in the word x1, . . . , xt − 1,xt. 
For example, for the sequence 01010, the Laplace predictor: 

γ (1|01010) = 3/7 for A = {0, 1} . 

It was shown in [9] that for any source with probabilistic distribution P that generates 
independent and identically distributed symbols from the alphabet A, Laplace 
predictor error satisfies the inequality: 

KL (P, L) ≤ log (e (|A| −  1) / (t + 1)) . 

(e = 2.718 . . . is the Euler number) .
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As it is not hard to see, Laplace predictor is universal as its considers prediction as 
a set of estimations of unknown (conditional) probabilities, and the average error 
of the Laplace predictor (estimated either by the KL divergence or the variation 
distance) goes to zero for any unknown i.i.d. source, when the sample size t grows. 
Moreover, it can be easily shown that the error (and the corresponding variation 
distance) goes to zero with probability 1, when t goes to infinity. Obviously, such 
a property is very desirable for any predictor and for larger classes of sources, like 
Markov, stationary and ergodic, etc. 

We see that the error of the Laplace predictor tends to zero for any source that 
generates independent and equally distributed symbols (i.e. does not depend on the 
probability distributions of symbols (the probability of occurrence of symbols), but 
requires certain (theoretically) probabilistically-conditioned constraints). 

Unfortunately, there is no predictor that has this property for any stationary 
ergodic source [6, 8]). But the universal predictor γ, for any stationary ergodic 
source ω generating letters from some finite alphabet A, ensures that another 
measure of error tends to zero, namely, the Cesàro mean of errors: 

limt→∞
(
�t=1,sKL(ω, γ)t

)
/t = 0. 

In other words, we can talk about the universality according to Cesare with such a 
measure of error, the predictor γ is universal for the set of sources � if for it this 
expression = 0 for any ω ∈ �. That is, if we know to which of the wide class of 
(stationary ergodic) sources (generating data) can belong data, then we can, given 
this equality to conclude that for any source ω ∈ �, the value of the predictor γ(x1, 
. . .  ,xt) approaches the probability ω(x1 . . . xt), which means that the predictor is 
universal (in the sense of averaging over the divergence KL on the interval of length 
t). 

From this equality, we can conclude that, in a certain sense, the universal measure 
μ is a nonparametric estimate for an unknown conditional probability distribution 
P. 

Thus, if the KL-Cesaro estimate is relevant to the prediction problem under 
consideration (for example, there is a monotonic relationship between γ() and some 
predictive quality criterion, for example, in terms of the loss function), then θ in 
the representation {Mθ 

D(S), ML, FLM}, we can consider as an arbitrary stationary 
ergodic measure. 

As it shown in [14], whatever the actual data generation mechanism, using a 
universal approach (more precisely, estimating the quality of a prediction based on 
it) does not perform much worse than any other possible forecasting method that 
uses knowledge of the probability distributions of data. 

Thus, using the results of the universal predictor theory, one can abstract from 
the parameters of specific distributions in the course of prediction. 

To better understand the implications of this result, let’s ask, does additional 
information about the probabilistic properties of the data always improve the 
prediction score?
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A negative answer follows, for example, from the results of [19]. In [19] 
was proved that for any finite i.i.d. a sequence of binary data in which each 
outcome “success “or failure” (0 or 1) the conditional expectation of the proportion 
of successes among the results that immediately follow a series of consecutive 
successes will be strictly less than the corresponding conditional probability of 
success (from which one determines expectation – depends on the occurrence of 
at least one series of k consecutive successes within the first n – 1 trials, where n > 3 
and 1 < k < n – 1).  

Thus, the choice of the structure S, so that it includes k previous values of the 
binary sequence, in this case, can lead to a worse prediction. It all depends on the 
prediction model. 

Correspondingly, attempts to use knowledge about the probabilistic properties of 
binary sequences do not always lead to better forecasts, and the resulting forecast 
depends on the accepted criterion (“optimal Bernoulli”, in the considered case (2)). 

This suggests that additional information does not always lead to an increase 
in the a priori probability of a correct forecast; here we are talking about a priori 
probability, because explicitly a posteriori probability when choosing a prediction 
method (or predictor) is not present – it can only be estimated indirectly, based on 
the results of past work. 

Let us consider how criteria are manipulated in the modern practice of MO-based 
predictions to ensure independence from the knowledge of distributions. 

4.2 Performance Criterion Not Related to Data Distributions 

As the analysis of the literature shows, another way to avoid the need to evaluate 
the exact laws of distributions is to use the criterion of empirical risk minimization 
(ERM) [20, 51]. 

The main idea behind ERM is that we cannot know the true “risk” when running 
on a particular dataset because we don’t know the true distribution of the data the 
algorithm will operate on, but instead we can measure its performance on an already 
known dataset training data (“empirical” risk), and minimize it. Cloud computing 
traffic prediction papers [20] show that the principle of risk minimization used by 
time series prediction algorithms affects the accuracy of algorithms in different ways 
in environments with different traffic models. ERM is rated as: 

bt = argh∈H min
(
Remp (h)

)

Remp (h) =
(
�i=1,nL

(
h (x) , x

′))
/n 

where L(h(x),x’) is a loss function that measures how much the prediction value 
x’ = bt under hypothesis h∈H differs from the true value x = xt.
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In other words, Remp is an estimate of the average loss calculated from n previous 
observations. As shown in [21] the proportion of correct predictions averaged over 
the number of observations is the estimate of the predictor γ(), and (as it is easy to 
show) this estimate coincides with Remp for the specified “0/1loss” with Hamming-
type loss function L(a, b): 

L (a, b) = 1, if a �= b, and L (a, b) = 0 in the case of a = b, 

where a, b are true and predicted values respectively. 
However, no assumptions are made about the distribution of the predicted data. 
So, for symbolic/binary random sequences that could be considered as stationary 

ergodic, there are no characteristics other than ordinary frequencies (Laplace, 
Bernoulli optimal predictor (2)) that significantly affect the prediction efficiency. 

4.3 Influence of Probabilistic Properties of Random Time 
Series on Prediction Efficiency 

The concept of probabilistic causality, introduced in the context of random processes 
homogeneous in time, can be used to determine the similarity relation on stochastic 
processes. 

Examples of Concepts in the Theory of Random Processes with Real Values 
Affecting the Efficiency of Prediction 

Let we have two random processes X(t) and Y(t) defined on an ordered set real 
domain R with associated probability functions P and Q on the same result set. We 
say that the two processes are causally similar [52] if:  

P (x (t) |x(t − a)) = Q (x (t) |x(t − a)) , ∀t and ∀a > 0. 

where “|” as previously means conditional probability. 
It is obvious that all processes that are homogeneous in time and transferred in 

time are causally determined. 
Intuitively, this is true for a closed physical system, but not for an open system, 

since in this second case other external variables may influence dynamic evolution. 
If two processes are homogeneous in time, Markovian and jointly of the same 
transition matrix, it is also easy to show that they are causally similar. 

Finally, if two Markov processes (not necessarily time-homogeneous) share the 
same transition matrix at the same time step, then they are also causally similar. 

From the point of view of the prediction problem, this means that the conditional 
distribution of the predictor γ () for a particular data set can be determined by 
different mathematical models, which will be considered below.
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Other important concepts in prediction theory are dependency models of past 
and future values of data (linear or non-linear models, correlation structures) and 
stationarity of data in the sense that some (usually hypothetical) laws governing the 
change in data over time of observation (and associated change in events) remain 
unchanged, at least during the collection of the history, on which the forecast must 
be made. 

For example, for highly correlated time series (including the case of binary 
sequences), linear regression models (ARIMA, such as [3]) give a better prediction 
than if they are weakly correlated. 

In other words, if, when considering the model properties of the time series, 
we restrict ourselves only to the correlation properties of the sequence, and 
the conditional forecast probability γ(xt + 1|x1,x2,.,xt) considered above is clearly 
related to correlation (as is the case, for example, for Gaussian distributions, 
when correlation is equivalent to independence), then according to the degree of 
correlation we can expect one or another quality of prediction by a linear regression 
predictor. 

However, as a study of the literature has shown, many examples of data, for 
example, telecommunication network traffic, considered as a random sequence 
(time series), in general, have more complex and subtle properties from the point of 
view of the theory of random processes, and, accordingly, they have more complex 
of prediction models. 

For example, the traffic values at the predicted moment may depend on events 
significantly remote in time (LRD – Long-range dependence, see below) and it is 
natural to assume that LRD traffic prediction will be quite effective (since informa-
tion about the past clearly affects the predicted future). Moreover, the trajectories 
(realizations) random processes with such properties have “self-similarity”, i.e. 
repeatability of patterns on different time scales [23]. 

4.4 Self-Similarity as a Nonlinear Relationship Between 
the Past and the Future 

In fact, the self-similarity property reflects the nonlinear relationship between the 
past and the future. 

The fact is that, for example, the self-similar behavior of traffic, and its long-term 
correlation, although used as the basis for forecasting] [, but on the condition that 
the predictor should not respond to short-term traffic changes. However, there are 
situations where this short-term data is important, for example, at the beginning of 
a DDoS attack [24]. 

At the same time, self-similarity means a nonlinear relationship between the 
present and the future, since the repeatability of a form on different scales can 
not be expressed by a linear transformation, since the transformation in time is 
associated with the appearance of new harmonics in the spectral representation of 
corresponding random process.
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If in the discrete spectrum of a random process (time series) x(t) there is only 
one spectral frequency harmonic ω, and at some future moment x(t + k) 2ω appears 
(a “faster” component), then this can only be expressed with using non-linear 
transformation of values x(t + k − m), . . .  x (t + k − 1), m < k. This circumstance 
can also make it inefficient to use a very large volume of observations. 

From a more general point of view, self-similarity is a term from fractal theory 
[25], which describes objects that visually look the same regardless of scale, which 
is expressed in the fact that local signal patterns are repeated many times in a 
whole time series on different (usually small) time scales, so the original set can 
be reproduced from its smaller portion at suitable magnification.(Intuitively, this 
property means the presence of a past-future connection structure that, from an 
intuitive point of view, could increase the possibility of correct prediction). For 
example, in a number of methods [24], self-similarity destruction is a predictive 
feature – the methods are based on the observation that the presence of a DDoS 
attack reduces the degree of self-similarity of normal traffic, since DDoS tools do 
not generate self-similar traffic, and this is reflected in the traffic. 

In the practice of telecommunications networks, self-similarity can be caused 
by so-called “Elephant” connections [27], generating a continuous stream with 
an extremely large total size of bytes created by, for example, a TCP stream or 
other network channel protocols. These streams can use extremal share of the total 
bandwidth over a period of time. Thus, it is they who will determine the state of 
traffic during this period of time (say, the volume of transmitted packets per second, 
or packet delay), and it is this period that affects the structure of traffic in this time. 

Note that self-similarity is also called scale invariant under the transformation 
x = bx, y = ay, if a curve F(x) is scale invariant under the transformation [28, 45]: 

F (bx) = aF (x) ≡ bHF (x) . 

where the exponent H = log(a)/log(b) is called the Hurst exponent (also known as 
Hurst parameter or simply H). The Hurst exponent H determines the time separating 
correlated (for example, stronger than a certain threshold value) of random process 
(e.g., traffic) samples from each other (more details below). 

Hurst exponent: 

E (R (n) /S (n)) = CnH, n → ∞. 

R(n) is the range of the first n cumulative deviations from the mean S(n) is the series 
(sum) of the first n standard deviations E(n) is the expected value n is the time span 
of the observation (number of data points in a time series), C is a constant. 

Practically, in nature, there is no limit to time, and thus H is non-deterministic 
as it may only be estimated based on the observed data. The calculation of H is 
considered in detail in [28]. 

This value shows the degree of presence of self-similarity in the time series, since 
its value is the greater, the smaller the time shift between the same pairs of values in 
this time series.
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(The greater the delay between two identical pairs of values in the time series, 
the smaller the Hurst coefficient.) 

The presence of self-similarity properties raises the question of the possibility of 
using it to increase the efficiency of predictors. 

Therefore, let us briefly consider well-known approaches to mathematical mod-
els of time series with self-similarity. 

1. Poisson models 

Speaking about the possibility of using the Poisson flow model as a means of 
modeling self-similarity, we note that in [29] it is shown that, for example, modeling 
network traffic with the Poisson model, assuming that the packet length will tend 
to smooth out by averaging over a long time scale, may be incorrect, precisely 
because network traffic exhibits a long-term dependence. At the same time, uniform 
sampling from heavy-tailed distributions can produce poor estimates, since a 
relatively small number of samples can seriously affect the final estimates. 

The slow decay of the variance of a random process (e.g., in the number of 
arriving packets) as the scale of self-similar traffic increases is in stark contrast to the 
mathematical structure provided by the Poisson simulation, in which the variance 
of the arrival process decays as the square root of the scale measure. 

Therefore, less traditional models and properties of random process consider for 
the series with self-similarity. 

2. Long Range Distance model 

If a random process, for example, network traffic, can have the property of a long-
range (extended in time) dependence [23], in which the correlation is preserved 
between events sufficiently remote in time corresponding to changes, then one 
speaks of a Long Range Distance (LRD) model. 

From the point of view of correlations, the time series Xt, t ∈ Z, is called long-
range dependent if its covariance function [25, 26, 27, 28]: 

γ (t) = E (X0 − EX0) (Xt − EXt) ∼ c | t |2−2H 
, t → ∞, 

H ∈[1/2,1] – the Hurst exponent. 
In spectral terms, the presence of LRD properties can be represented as: 

f(�)� c|�|2H-1 при ��0 

где f(�) is the spectral density Xt, 

c > 0 is a constant. 

The larger H, the stronger the time dependence, because the covariance function 
decays more slowly at infinity (i.e., the correlation of events separated in time is
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preserved at large H), i.e. the decay of the values of the autocorrelation function 
is much slower than the exponential convergence typical of (short-range) classical 
models such as autoregressive moving averages (i.e. if the data is represented by a 
process with autocorrelation properties). 

In the case of processes without LRD, there is no dependence (H = 0.5) and its 
autocorrelation rk = 0 for the lags k ≥ 1. 

The time series describing the traffic becomes self-similar due to the simultane-
ous influence of many sources (for example, as in the above [24]), and the aggregate 
multi-level source traffic (throughput traffic) with a distribution of latency with 
heavy tails for the time interval in which the source is active or inactive, can be 
approximated by Fractional Brownian Motion (FBM) as shown in [25, 27, 45]. 
Therefore, FBM is considered as a natural tool for modeling the phenomenon of 
self-similarity. 

3. Fractional Brownian motion model 

Fractional Brownian Motion (FBM) with the Hurst parameter H is a continuous 
Gaussian process with an autocorrelation function. At the same time, for H > ½, 
which, formally, means the LRD-property. But in contrast to the classical Brownian 
motion, the increments FBM (of the difference process) do not have to be indepen-
dent, and knowledge of the law of this dependence (for example, the conditional 
distributions indicated above) in some cases could improve the prediction (as 
prediction of a process with known prediction) with continuous time on [0, T] that 
has zero (conditional!) expectation for all t in [0, T] (see the possible use of this 
property for prediction in Sect. 5 of this paper). 

Note that in terms of using process properties for prediction, a Brownian Motion 
(BM) without “fractionality” is a motion in which the process value changes with 
random increments over time, and the prediction is determined by this randomness. 

At the same in this process there is a certain “memory”, which means the 
dependence between the past and the future. 

From a formal point of view, BM is the integral of white noise. These motions 
define paths that are random but (statistically) self-similar, i.e. the approximate 
trajectory (section) of the particle’s motion (“outlining” the implementation of a 
random process) resembles the entire path, and this is an intuitively understandable 
possibility of prediction. But this requires a model that contains one or another 
description of the structure of fractals, and not just a probabilistic model of 
increments. 

Section 5 will show how the measurable properties of the autocorrelation 
function can be used to make a forecast. 

So, the Hurst exponent can clearly indicate whether the time series has the 
property of a pure random walk, or has some correlation structure [22, 25, 29]. For 
example, in the field of Internet of Things [31] the prediction model may include 
a parameter for network traffic as a priori knowledge. Since the self-similarity 
property is well interpreted in terms of describing traffic by IT specialists, its use 
in conjunction with the features of the deep network increases the interpretability
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of the model, namely, the ability to understand how data properties, in particular 
self-similarity, affect the quality of the forecast. 

4.5 Stationarity as a Property of a Random Process Affecting 
Predictability 

Let us now consider another important property of the data modeled by a random 
process, namely, the stationarity. 

It is intuitively clear that the stationarity of a random process in the narrow 
sense is more favorable for forecasting than non-stationarity, if only because the 
joint probability distribution W(xt + 1,x1, . . . xt), which determines the conditional 
probability of the predictor γ(xt + 1|x1, . . . xt), does not depend on time. 

Most of the considered real processes, however, are not strictly speaking 
stationary. 

For example, this in most cases concerns network traffic, where non-stationarity 
can be associated with its hopping over a wide range of time scales, and, many 
publications show [25, 27] that network traffic does not in principle have stationary 
behavior, also due to the presence of time cycles (daily, weekly) and can be 
easily affected by network reconfigurations (for example, manual reconfiguration, 
dynamic routing changes), communication failures and the deployment of new 
machines and applications. 

Obviously, for similar reasons, time series describing other real processes, such 
as electricity consumption, etc., can also behave. 

In other words, one can speak confidently about stationarity only to a certain 
extent. 

To estimate this “confidence degree”, statistical tests for stationarity are well 
known [32], however, it is difficult to include their results in the prediction model, 
since apart from intuitive qualitative arguments that stationary processes are better 
predicted than non-stationary ones, nothing can be used in the model. 

In [31], predictors are compared based on short-term correlations, which is 
typical for problems of estimation, classification, and prediction of non-stationary 
processes, and it is investigated whether it is useful to include a long-range depen-
dence in the prediction model, which, as noted, is associated with the self-similarity 
property. The conclusion is that, first of all, short-term correlations dominate the 
contribution to predictor performance, i.e. time to calculate satisfactory, in terms of 
the applied criterion, predicted values. As a consequence, linear prediction with a 
relatively short correlation structure is sufficient for prediction applications, rather 
than the long-term correlations that exist between the future value of the time series 
(e.g., traffic level and remembered history)). This is the case, for example, when 
there are very many short connections, sometimes called ‘mice’ flows [27]. 

In [28] it is shown that relatively short observations can be considered as 
stationary, at least in variance, because under self-similarity, the variance of the
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sample mean decreases more slowly than the reciprocal of the sample X(m) size m 
(slowly decay variances) Var(X(m)) ~ a2m-β with () < β < 1, a2 is a positive constant. 

It is also significant that autocorrelations decay as hyperbolic functions, and not 
exponentially fast. 

Accordingly, with a certain degree of conventionality, one can also speak of 
stationarity in terms of autocorrelation functions. 

Hurst Exponent as a Measure of Stationarity In [31, 33, 34] it is shown that the 
Hurst exponent H can act as a stationarity criterion for the self-similar process. 

Let us point out its connection with the possible conventional characteristics of 
mathematical statistics and the theory of random processes, and, accordingly, with 
predictability. 

Values H > 1 indicate non-stationarity. 
For a stationary self-similar process H∈ (0.5.1). The closer the value of the Hurst 

parameter is to 1, the slower the dispersion decays as the time scale increases, and 
the traffic is said to become more pulsating, and therefore non-stationary. 

Let us consider how these properties of LRD (self-similar) series affect the 
technique for solving various prediction problems. If the task is to predict the 
following values according to the root-mean-square criterion, and there is reason 
to consider the series stationary according to H), then it makes sense to consider 
(compare with) the Kolmogorov-Wiener optimal prediction criterion. 

First of all, it is known that the root-mean-square error of linear prediction for 
the simplest known linear forecast for a stationary time series x(t) is [35]: 

ε =
(

1 − ρ2
)

var(x) , 

where the correlation coefficient is ρ = ACF(1), 
ACF(1) means the autocorrelation function in the lag 1, 
where the error corresponds to the minimum mean square error (Mean Square 

Error-MSE): 

σ2 = E(x (t + m) − Xe)
2 

where Xe is the predicted value, for example, by the Kolmogorov linear predictor. 

Xe = �i=1,n aix (t − i) , 

coefficients ai are the objects of the Kolmogorov-Wiener optimal linear prediction 
task. 

Therefore, given that for the LRD process the autocorrelation function [22, 45]: 

ACH (k) = 1/2
(
(k + 1)2H − 2k2H + (k − 1)2H

)
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where k is the lag number, there is a monotonic relationship between the root-
mean-square error of linear prediction epsilon and the Hurst exponent in the interval 
[0.5–1]. 

This analysis can be useful when using predictive software tools such as the 
ARMA moving average autoregressive model, the AR autoregressive model, the 
moving average MA model, and the ARIMA autoregressive integrated moving 
average; see, for example in [36]. 

In the case of H > 1, prediction methods for stationary series become inefficient, 
unexpected bursts with a magnitude much larger than expected from traditional 
models, which is consistent with non-stationarity. 

It is important, however, that when the initial process B is nonstationary, for the 
increment, the fractional Brownian motion has stationary and dependent increments. 
The last expression shows that the increments are positively correlated if H∈(1/2, 
1), uncorrelated if H = 1/2, and negatively correlated if H ∈ (0, 1/2). 

This property turns out to be important for predicting the sign of increments, and 
will be discussed in Sect. 5. 

Note, that most statistical forecasting methods are based on the assumption that 
time series can be made approximately stationary (i.e. “stationary”) by going over 
the difference in data over time, so that instead of directly considering index, we 
calculate the difference between successive time steps. 

However, the ability to predict data with a time difference, rather than the data 
directly, is a much more significant indicator of the model’s predictive power. 

Indeed, the prediction of a pure random walk is impossible in principle, but 
success rate SR > 0.5 may appear simply due to a slight change in neighboring 
values and an accuracy criterion that is insensitive to these changes (in a large 
percentage of observed cases). 

For a stationary process, the MSE linear prediction theory based on the 
Kolmogorov-Wiener model assumes that the time series has a finite mean and 
variance. 

However, for time series with LRD properties, this cannot always be done. The 
fact is that many real data streams formed as a result of overlaying data from several 
sources have self-similarity and LRD-property, and at the same time are distributed 
according to Pareto [24]. 

4.6 Influence of Probability Distributions of Processes 
with LRD on Prediction 

For systems with H ≥ 0.5, a Gaussian probability distribution function cannot be 
used as a characteristic pdf. One should therefore look for an alternative distribution 
function to characterize these systems. Numerous studies of LRD series have shown 
that their distributions are close to Pareto [37]: 

PPar (X) = aba/xa+1
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where x ≥ a. The mean and variance of xt that follows are, respectively, given by: 

μPar (x) = ab/ (a−1) 

VarPar (x) = ab2/(a–1)2 (a–2) 

x ≥ a > 0, b > 0 

It can be easily seen that μPar and VarPar do not exist if a = 1, 2. 
If it obeys the Pareto law, then the above expression approaches infinity for 

a = 2, no matter how large the estimation interval is. Therefore, the use of Wiener-
Kolmogorov predictors to conclude on the predictability of the LRD series relative 
to the usual MSE is unacceptable. 

Reference [37] shows the relationship between H and the parameters of the 
Pareto distribution, which can provide finite values of expectation and variance, and 
hence the possibility of linear prediction by the MSE criterion 

For an LRD series with finite variance, the covariance slowly decreases to 0 as a 
power function. Such time series can be called LRD time series with finite variance. 

In this case, the distributions of the LRD values of the series can have heavy 
tails [23]. shows that if the heavy-tailed distribution of a time series distribution 
with LRD does not allow an acceptable estimate of mean and variance, the 
MSE generalization can be used with Kolmogorov-Wiener predictor in a linear 
combination of past observed values. 

There are examples where a stochastic process shows heavy tails in the domain 
of a probability distribution, [38], but the tail parameters can be used to represent 
correlation functions of LRD processes with infinite variance. 

Let us consider how these properties of LRD (self-similar) traffic affect the 
technique for solving various prediction problems. If the task is to predict the next 
values by the root-mean-square criterion, then it makes sense to compare with the 
Kolmogorov-Wiener criterion as the basis of most linear regression methods. 

Note that considering that for many problems of traffic prediction, the prediction 
of increments can be a practically important task, the fact of their stationarity can 
be effectively used, without searching for the optimal root-mean-square solution 
(Sect. 5). 

Let us now briefly consider the specifics of using nonlinear prediction models 
with regard for time series with the considered properties. 

4.7 Nonlinear Models and Neural Algorithms 

A non-linear prediction model in modern IPs can be implemented either in non-
linear regression models or in artificial neural networks [39], for example, in
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the deep learning models such as convolutional neural networks (CNNs), Graph 
Convolutional Network (GCN) [40] and recurrent neural networks (RNN) [41], in 
addition to machine learning algorithms such as Support Vector Regression (SVR) 
[41, 42]. 

However, the neural network can have problems due to overfitting [4], when the 
model explains well only the examples from the training set, adapting to the training 
examples, instead of learning to classify the examples that did not participate in the 
training. It is easy to see that self-similarity can contribute to this phenomenon. At 
the same time, such a common way to reduce overfitting as Dropout – turning off 
some neurons with a certain probability on some data interval from the training 
process may not work due to the fact that training will be similar to the previous 
one. 

Also, possible sudden changes in cloud traffic can be easily confused by a neural 
network with traffic anomalies, which leads to training inefficiency. 

These sudden changes can be interpreted as non-stationarity by calculating the 
values of H. 

Another non-linear time series forecasting technique that is being tried for traffic 
forecasting is support vector regression (SVR) [39], which is based on structural 
risk minimization. However, the choice of suitable kernel functions and optimal 
parameters is very difficult [43]. Examples are briefly discussed in [44]. 

From the above analysis of the dependence of the efficiency of using prediction 
models on specific properties of time series, it follows that the natural way to take 
into account the dependence of predictor properties on data behavior (stationarity, 
nonlinearity of dependence) is their online selection in the process of solving the 
network control problem. 

This is confirmed in many publications. For example, in [47] it was concluded 
that for predicting the response time and throughput of cloud services, at different 
stages of resource use, artificial neural network and linear regression algorithms 
have different efficiency. In other words, the overall prediction accuracy can 
be improved by combining different prediction algorithms. However, due to the 
computational complexity of prediction algorithms, the computational complexity 
of choosing search tree prediction tools may be unacceptable for the problems of 
using prediction in online network management (for examples when using popular 
predictors, see Sect. 5). 

It is important, that the data represented by time series is different from other 
data models in the sense that it gives us additional information about the time of 
occurrence of events that can be used when building a machine learning model. For 
example, if the time series is highly correlated in time, then its value at time “t + 1” 
is likely to be close to the value at time “t”, and the model actually does, one that 
when predicting the value at time “t + 1”, it simply uses the value at time “t” as its 
prediction. 

However, if we are talking about predicting a change in the sign of the increment, 
then this closeness does not give anything significant. 

Therefore, let us consider separately the problem of predicting the sign of the 
increments of random time series and processes.
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5 Properties of Probability Distributions as Characteristics 
of the Predictability of the Sign of Increments of Random 
Time Series and Processes 

An example of the usefulness of predicting the sign of traffic increments is, for 
example, when attacks on a network are carried out in a way that cannot be detected 
by antivirus software, and analysts have to rely on analyzing changes in network 
traffic (traffic volume), or the direction of changes in file write intensities [46]. 

In some cases, when analyzing traffic, trend analysis is used not only because of 
the usefulness of this characteristic itself, but also due to the fact that in this case 
the forecast is more accurate than for the absolute values of the predicted traffic 
characteristics (for example, traffic volume per unit time) [47]. 

Consider the problem of predicting the trend sign of the time series {xi} by the 
incremental sequence �t + 1 = xt + 1 – xt. In this case, �t + 1 is a centered value, 
with a sample mean close to zero for finite segments x. As is known from the theory 
of random processes, the correlation between successive values of �t + 1 turns out 
to be much weaker [22] than in the original sequence {xt}. At first glance, this 
may indicate a worse predictability of increments compared to the predictability 
of the original xt values. This, however, concerns the values of the increments, 
not their sign. Moreover, since the sign of the increment means the direction of 
change, the sign of the residual autocorrelation of neighboring values is an important 
characteristic, since from a practical point of view, a negative sign of autocorrelation 
(“negative correlation”) means a tendency to a multidirectional trend in neighboring 
sections of the sequence, which, obviously, can be used to predict the sign of 
the change. Further, we will show that these intuitive assumptions have a certain 
mathematical justification in the theory of random processes [48]. 

Definition 1 The change in the sign of the increment of values in ran-
dom data is predictable (and the sign of the increment is predictable) if 
E(sign(�t + 1)/Ft) �= E(sign(�t + 1)), where E is the sign of the expectation 
(according to the distribution of values, in this case �t), Ft is a part of the 
probability space on which the random process is considered, which corresponds 
to the observed values xt, or xt-k, . . . ,xt, or, say, some sample estimate of the 
conditional mean xt + 1, etc. (from a formal point of view, Ft corresponds to the 
so-called “filtering” in the theory of random processes [30]). 

In other words, a sign change is predictable if the probability of its current value 
(“−” or “+”) changes when certain previous events Ft change. 

In terms of the forecasting approach adopted in mathematical statistics, this 
means that we can express, say, the probability of a positive change as: 

Pr (�t+1 > 0|Ft) = E (I (�t+1 > 0) |Ft) , 

where I() is the indicator function.
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It is easy to show [48] if the conditional distribution D(�t + 1|Ft) can be 
approximated by the normal distribution N(a, σ2(�t + 1|t), where: 

σ2 (�t+1|Ft) = E(� − E (�))2, 

a = E (�) ,

� = {�1, .. �t, �t + 1} are increments over the entire area of consideration of the 
random sequence X = {xt-k, . . . ,xt,..}, 

σ2(�t + 1|Ft) = E(� − E(�))2 is conditional variance of increments in time in 
which events occur, in particular, over the entire time interval (t − k, . . . ,t) in which 
values xt-k, . . . ,xt, then the probability of a positive sign: 

Pr (�t+1 > 0) = �(a, σ (�t+1|Ft)) , 

where � is the standard normal distribution function. 
It is clear from the above that a zero mean would make the sign unpredictable 

(at least for a normal increment distribution) in the sense of the definition given 
above, since variations “up” and “down” with any variance about zero mean for a 
symmetric distribution occur equiprobably. 

For an arbitrary distribution D, it can be obtained that the minimum estimate of 
the prediction error relative to the true sign of �t + 1 of the assumed “loss function”: 

Loss (�t + 1, �’t + 1) = Et(I(�t + 1 > 0) – �’t + 1|t)2 is achieved by estimating:

�’t+1|t = E (I (�t+1 > 0|�t)) = P (�t+1 > 0|�t) = 1 − F
(−at+1|t/σt+1|t

)

where, we repeat, the conditional expression ( . . . |t) means the calculation of the 
observed values up to the moment t inclusive. 

Therefore, the dynamics of changes in variations (“volatility”, to use the termi-
nology of financial mathematics) will affect the sign forecast in all cases when the 
conditional mean is not equal to zero. Then the sign of the increment is predictable, 
even if the conditional mean is unpredictable at zero mean. 

If the distribution of F is skewed, then the sign can be predicted even if the 
mean is zero: in this case, the time-varying skewness can be a determining factor in 
predicting the sign. 

But for a non-zero conditional mean (a > 0), even if the distribution is symmetric 
about the conditional mean and the conditional mean is constant by assumption 
(unlike the t-dependent variation of σ(t + 1|t), the sign of the increment is 
predictable by the above definition. 

So, conclusions about the predictability of a feature can only be based on 
knowledge of the symmetry of the law of distribution of time series, modeled by 
a random process with this law, and on the distribution parameters, namely, the 
mean, variance, skewness, etc.
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5.1 Binary Prediction Model of Sign 

The considered approach to determining the predictability of the sign of increments 
has a certain connection with another sign prediction paradigm based on the 
consideration of a binary sequence corresponding to the signs. For example, it is 
natural to assume that the value of the new binary sequence is 0 if xt-xt-1 ≤ 0 and 
1 in the case of a positive increment, and use this binary sequence to predict the 
corresponding statistics of the sign change sequence. At the same time, it is obvious 
that this statistic corresponds to the statistic of the change in signs of the increment. 

In the most general form, the concept of predictability for binary sequences can 
be represented as follows. 

Definition 2 A binary sequence x1,x2, . . .  from some distribution Z is predictable 
for a predictor implementing some polynomial algorithm A if for each 1 < i < n and 
any polynomial algorithm for estimating the next value rejects any statistical test for 
the inequality [32]: 

| Prob(A(x1, x2, ..xi−1)) = xi) − 1/2 |≤ O(ν(n)) 

where A(si−1 
1) is an event consisting in observing a segment of the sequence up 

to the moment i which consists in observing a segment of the sequence up to the 
moment i, is the predicted value, O(ν(n)) denotes a function decreasing faster than 
any polynomial in n. 

It is easy to see that in this conceptual model, rule (2) with loss function (3) can 
easily be used as a predictor [21]. 

5.2 On the Connection Between the Properties 
of Autocorrelation Functions of Random Processes 
and the Probabilities of Changing Signs of Increments 

Consider the approach to sign prediction as a nonlinear short-term traffic prediction. 
It is shown in [49] that the sign of the difference between neighboring obser-

vations x1,x2, . . .  , can be correctly predicted with a probability >1/2 despite the 
well-known fact of decorrelation of independent increments (Sect. 2). Consider a 
sequence of centered random variables y = {yi = xi – (Exi)}, i = 1, . . . ,t.. with zero 
mean and probability density P(y). 

If we assume that the increments yi are independent, then the conditional 
expectation of its increments yi + 1− yi at the last observed value of yi is: 

E (yi+1 − yi|yi) = E (yi+1|yi) − E (yi |yi) = −yi
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which follows from the fact that E(yi|yi) = yi, E(yi + 1|yi) = 0 with zero expectation, 
and all increments {yi} are independent. 

Accordingly, considering the conditional mean as a sign predictor, the following 
rule is proposed for predicting the sign of the difference yi + 1 − yi: 

sign (yi+1 − yi) = − sign (yi) (4) 

In [49], it is stated that uncorrelated increments are sufficient to fulfill the indicated 
sign relation. Although uncorrelated does not always mean independence, for 
network traffic this assumption can be accepted. Indeed, in real processes, the 
dependence of time-sequential values often takes place due to a non-stationary 
trend, which is eliminated by centering yi ≡ xi – Exi, and in addition, most real data, 
such as changes in traffic volumes, changes in the number of requested IP addresses, 
etc. It somehow can be connected with a random change (decrease-increase) of some 
external factors [50], and can be represented by random walk processes close to 
processes with independent increments [22, 30]. 

Regarding the prediction accuracy according to the rule (4) (called in the [44] 
as SC (“Sign criterion-based”) predictor), we can give more subtle mathematical 
reasoning [42]. 

The share of successful predictions according to (4) for sufficiently long 
sequences is proposed to be estimated as [49]: 

R = 
1 

2 
+ (1 − F(0)) F(0) 

where: 

F (x) =
∫ x 

−∞ 
dyP (y) 

y = yi+1 − yi,; 

P() is a probability distribution function (pdf), F(0) obviously represents the 
probability of increments being negative and 1-F(0) positive. 

It is easy to see that R reaches its maximum at F(0) =1/2, i.e. with a symmetrical 
distribution of the increment (difference) of the initial random time series. 

These formulas mathematically express, at first glance, a paradoxical result, that 
when guessing the sign of the increment of independent random variables from the 
previous value of the centered process, you can get the probability of success more 
significantly more than ½! 

This fact can also be given some elementary probabilistic justification. 
Indeed, the truth of (4) depends on a combination of three conditions for the 

ratios between yt + 1, yt (i.e., we consider all possible obvious relations “>0” “0<” 
“yt + 1<> yt”). In total, 23 = 8 such conditions can be formally written down 
(zero values are excluded by measurement practice). Moreover, in 4 cases (4) are 
performed correctly, two cases are contradictory (and therefore impossible), and
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with two combinations there will be a deliberately false solution, namely, in the 
cases yt + 1 > 0, yt > 0, yt + 1 > yt, yt + 1 < 0, yt < 0, yt + 1 < yt. 

Assuming that all combinations are equally probable, we obtain the a priori 
probability of the correct execution of (1) equal to 2/3. 

At the same time, there is no reason to believe that two combinations leading to 
incorrect predictions will occur on a certain interval several times more often than 
those leading to correct ones. 

5.3 Joint Use of SC Predictor and 1/0 Predictor 

One of the signs of the possibility of using (4) as a predictor is the uncorrelatedness 
(or extremely weak correlation) of successive differences in the values of the 
considered time series (process) with a tendency to negative correlation of the 
values yi + 1-yi and yi, since the “anti-correlation” of two random variables means a 
tendency to change in the opposite direction [22, 49]. 

The point is that if within a time interval the data is positively correlated, then 
changes in a given direction will tend to future changes in the same direction, and 
the path will be smoother than the normal Brownian motion process. If the data is 
negatively correlated, then there will be a positive change more likely than a negative 
one. 

The proposed technique of joint use of the continuous and binary sign prediction 
models presented here is applied in [44] (called as “SC-0/1 procedure”) and 
compared with MLP, XGB, LSTM predictions widely used in modern practice. 
Experiments show the high efficiency of the proposed approach. 

It is essential that the rule (4) does not require the use of a long sequence of 
past observations, which may be inefficient in case of strong non-stationarity and 
nonlinearity of the predicted data. 

6 Conclusion 

As the analysis of the literature shows, many modern prediction tools based on the 
principles of MO do not work effectively due to the pronounced nonlinearity of 
traffic changes and non-stationarity, the possible inadequacy of assumptions about 
the need for a large amount of previous observations. This paper is an attempt 
at some ordering and categorization of a huge stream of publications on modern 
methods, techniques and models of forecasting data of various nature, which should 
to a certain extent simplify the search and analysis of some results of the theory of 
random processes, allowing a quick assessment of the predictability of both absolute 
data values and signs of their change. 

For this, the concept of a conceptual model of algorithms for predicting the 
state of systems in the subject area, widely used in modern Big Date and Software
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Engineering, is adapted to represent specific probabilistic models of random 
sequences and processes of various nature (symbolic, binary, real). Under such a 
conceptual model, the paper refers to a formalized description of the relationships 
between elements, objects (both real and model) and goals of mathematical models 
and prediction algorithms, as well as the relationships between them, expressed in 
probabilistic terms. 

Such a construction allows one to represent classes of models according to the 
types of predicted data, the probability measures used, and loss functions when 
making decisions about the acceptability of the received forecast. 

Guided by this CM, such sensitive elements of models as the specific manifesta-
tions of the nonlinearity of past and future relations, the degree of stationarity, the 
characteristics of autocorrelation functions, the specificity of distribution laws, and 
the criteria for prediction accuracy are singled out. 

The proposed procedure for using a preliminary assessment of the indicated 
characteristics of probabilistic models makes it possible to assess the presence of 
significant non-stationarity in data flows, when it is impossible to consider long 
sequences for predictor training. For highly non-stationary time series, the learning 
process is associated with enumeration of parameters (for example, neural network 
coefficients) if necessary, retraining of models caused by the above non-stationarity, 
which can take a lot of time even on the most expensive computing systems (GPU, 
clusters). 

Among the tasks of forecasting, the task of predicting signs of increments 
(direction of change) of the time series process is singled out separately. The 
previously proposed prediction procedure [44] implemented as a simple heuristic 
rule for predicting the increment of two neighboring values of a random sequence is 
considered. The connection of this approach for time series with known approaches 
for predicting binary sequences is shown. 

At the same time, since the efficiency of prediction algorithms theoretically 
depends on the volume of previous observations, which can be unreliable due to 
the non-linear and non-stationary nature of the time series (simulating, for example, 
the traffic of telecommunication networks, which is what rule (4) corresponds to). 
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A Three-Step Method for Audience 
Extension in Internet Advertising Using 
an Industrial Taxonomy 

Dmitry Frolov and Zina Taran 

1 Introduction 

Modern technologies transform many areas of human life and modify industries. 
The era of Big Data brought on remarkable possibilities for extracting meaningful 
insight from the data. In particular, the growth of the digital advertising, whereby 
an increasing share of advertisement moves from traditional formats (such as 
TV, radio, out-door) to the Internet both accelerates the production of raw data 
and creates the demand for insight generated from it. Digital advertising brings 
new ways to investigate potential audiences, create and control advertisements, 
and evaluate results. Companies wish to predict consumer preferences, determine 
relevant customer segments for particular products or services, and target marketing 
offers based on the data. The amount and diversity of data on one hand, and the 
rapidly increasing sophistication of methods on the other allow for such predictions 
to be carried out with ever increasing accuracy. For example, they allow marketers 
to expand on their time-tested ideas of targeting consumers. Whereas in the past 
simple regression methods allowed a company to identify a group of people that 
were very much like their existing customers, nowadays it becomes possible to go 
beyond that to what is now referred to as an audience extension. In general, ability 
to derive better, more accurate insight and to extract more information from the data 
becomes essential for any business that wishes to remain competitive. The objective 
of this paper is to propose a better method of extracting useful user insight from the 
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data that the organization is likely already collecting without the need to gather new 
information. 

2 Programmatic Targeting in Internet Advertising 

Nowadays, digital advertising approaches allow an advertiser to choose appropriate 
user audiences for their campaigns. The most popular approach is programmatic, 
a recently emerged technique. Programmatic brings real-time bidding (RTB) to 
allow an advertiser to make their purchasing decisions separately for every contact 
with every user [6, 17]. A real-time bidding system provides an auction for the 
advertisement impression between multiple advertisers, and each advertiser has a 
possibility to buy relevant audience only [7, 13, 16]. This technology relies on 
assigning users with their interest profiles containing estimates of levels of their 
interest in this or that market segment. Consider a conventional, currently much 
popular, approach to programmatic selection of targeted audiences [2, 14]. This 
approach (CAS) requires to pre-specify a threshold t (usually, .t = 0.3 or .t = 0.4) 
and formulate a condition: Given a set of market segments provided by an advertiser 
and a user’s profile, check whether the profile has one or more of the advertiser’s 
market segments. If yes, the user is selected as part of the audience if at least one of 
these segments has its fuzzy weights greater than t , according to the CAS rule. 

An issue with CAS is that the number of users satisfying the condition at 
threshold t may be less than the number specified in the advertisement order; say, 
they want to show their advert to a million users, but only three hundred thousand of 
those under observation satisfy the condition. In this case, a conventional strategy 
is to have CAS extended (CASE) by lessening t to . t ′, .t ′ < t , so that more users 
satisfy the condition at . t ′ than at t . This may increase the number of users exposed 
to the advert indeed, but usually the efficiency lessens, because the added users have 
a weaker tendency to be impressed by the advert. A similar diminishing response 
rates can be caused by popular the so-called look-alike techniques [8]. 

To overcome this issue without decreasing the threshold, we propose using 
segments profiles ‘generalized’ over an industrial taxonomy rather than the original 
ones. This method utilizes a novel algorithm for most adequate generalization in 
taxonomies [1] to extend user segments by parsimoniously lifting them over IAB 
content taxonomy into a higher rank ‘head subject’. This algorithm was proposed 
as an intelligent information retrieval tool [1]. Here it is applied to a very different 
task of targeted advertisement. 

An approach for user profiling to involve an industrial ontology, to which we 
follow, was originated by [9] and further advanced by various authors such as 
[2]. The approach involves the following blocks: (a) an industrial ontology in the 
format of a rooted tree taxonomy, to provide for marketing user behavior segments, 
(b) a system for tracking users’ web surfing histories, and (c) a device to convert 
the users’ histories into user profiles. A user profile assigns weights to taxonomy 
segments according to user’s interests in them. Advertising system has to detect
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users belonging to chosen segments and provide advertisement impressions for 
them. To apply this approach, we use industrial taxonomy IAB (see https://www. 
iab.com/ [3]). As a device converting user surfing histories into user profiles, we use 
a random forest classifier based on paper [15]. 

The paper is organized as follows. Section 3 is devoted to a model and a 
method of computation generalization. Section 4 describes our combined method, 
Development and Lifting of User Segments Profile (DLUSP), to extend audiences 
of targeted advertising. Section 5 describes results of several real-world experiments 
comparing a popular conventional approach and DLUSP: our method does increase 
the number of successful matches between user segments and campaign segments 
2.5-3-fold without losing in the targeting quality. Section 6 draws a conclusion and 
lists directions for future works. 

3 Parsimoniously Generalization a Fuzzy Thematic Subset in 
Taxonomy 

Let us consider the main definitions related to generalization in taxonomies, 
according to [1], to describe the principles of computational generalization in detail. 

Mathematically, a taxonomy is a rooted tree whose nodes are annotated by 
taxonomy topics. We consider the following problem. Given a fuzzy set S of 
taxonomy leaves, find a node .t (S) of higher rank in the taxonomy, that covers 
the set S in a most specific way. Such a “generalization”, or “lifting” problem is 
a mathematical explication of the human facility for generalization, that is, “the 
process of forming a conceptual form” of a phenomenon represented, in this case, 
by a fuzzy leaf subset. 

Consider, for the sake of simplicity, a hard set S shown with five black leaf boxes 
on a fragment of a tree in Fig. 1. Figure 2 illustrates the situation at which the set 
of black boxes is lifted to the root, which is shown by blackening the root box, and 
its offspring, too. If we accept that set S may be generalized by the root, this would 
lead to a number, four, white boxes to be covered by the root and, thus, in this way, 
falling in the same concept as S even as they do not belong in S. Such a situation 
will be referred to as a gap. Lifting with gaps should be penalized. Altogether, the 
number of conceptual elements introduced to generalize S here is 1 head subject, 
that is, the root to which we have assigned . S, and the 4 gaps occurred just because 
of the topology of the tree, which imposes this penalty. Another lifting decision is 
illustrated in Fig. 3: here the set is lifted just to the root of the left branch of the tree. 
We can see that the number of gaps has drastically decreased, to just 1. However, 
another oddity emerged: a black box on the right, belonging to S but not covered by 
the root of the left branch at which the set S is mapped. This type of error will be 
referred to as an offshoot. At this lifting, three new items emerge: one head subject, 
one offshoot, and one gap. This is less than the number of items emerged at lifting 
the set to the root (one head subject and four gaps, that is, five), which makes it
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Fig. 1 A crisp query set, 
shown by black boxes, to be 
conceptualized in the 
taxonomy 

Fig. 2 Generalization of the 
query set from Fig. 1 by 
mapping it to the root, with 
the price of four gaps 
emerged at the lift 

Fig. 3 Generalization of the 
query set from Fig. 1 by 
mapping it to the root of the 
left branch, with the price of 
one gap and one offshoot 
emerged at this lift 

more preferable. Of course, this conclusion holds only if the relative weight of an 
offshoot is less than the total relative weight of three gaps. 

We are interested to see whether a fuzzy set S can be generalized by a node t 
from higher ranks of the taxonomy, so that S can be thought of as falling within the 
framework covered by the node t . The goal of finding an interpretable pigeon-hole 
for S within the taxonomy can be formalized as that of finding one or more “head 
subjects” t to cover S with the minimum number of all the elements introduced at the 
generalization: head subjects, gaps, and offshoots. This goal realizes the principle 
of Maximum Parsimony (MP). 

Consider a rooted tree T representing a hierarchical taxonomy so that its nodes 
are annotated with key phrases signifying various concepts. We denote the set of all 
its leaves by I . The relationship between nodes in the hierarchy is conventionally 
expressed using genealogical terms: each node .t ∈ T is said to be the parent of 
the nodes immediately descending from t in T , its children. We use .χ(t) to denote 
the set of children of t . Each interior node .t ∈ T − I is assumed to correspond to a 
concept that generalizes the topics corresponding to the leaves .I (t) descending from
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t , viz. the leaves of the subtree .T (t) rooted at t , which is conventionally referred to 
as the leaf cluster of t . 

A fuzzy set on I is a mapping u of I to the non-negative real numbers that assigns 
a membership value, or support, .u(i) ≥ 0 to each .i ∈ I . We refer to the set .Su ⊂ I , 
where .Su = {i ∈ I : u(i) > 0}, as the  base of u. In general, no other assumptions 
are made about the function u, other than, for convenience, commonly limiting it 
to not exceed unity. Conventional, or crisp, sets correspond to binary membership 
functions u such that .u(i) = 1 if .i ∈ Su and .u(i) = 0 otherwise. 

Given a fuzzy set u defined on the leaves I of the tree T , one can consider u to be 
a (possibly noisy) projection of a higher rank concept, u’s “head subject”, onto the 
corresponding leaf cluster. Under this assumption, there should exist a head subject 
node h among the interior nodes of the tree T such that its leaf cluster .I (h) more or 
less coincides (up to small errors) with . Su. This head subject is the generalization of 
u to be found. The two types of possible errors associated with the head subject, if it 
does not cover the base precisely, are false positives and false negatives, referred to 
in this paper, as gaps and offshoots, respectively. They are illustrated in Figs. 2 and 
3. Given a head subject node h, a gap is a node t covered by h but not belonging 
to u, so that .u(t) = 0. In contrast, an offshoot is a node t belonging to u so that 
.u(t) > 0 but not covered by h. Altogether, the total number of head subjects, gaps, 
and offshoots has to be as small as possible. To this end, we introduce a penalty 
for each of these elements. Assuming for the sake of simplicity, that the black box 
leaves on Fig. 1 have membership function values equal to unity, one can easily see 
that the total penalty at the head subject raised to the root (Fig. 2) is equal to . 1+ 4γ
where 1 is the penalty for a head subject and . γ , the penalty for a gap, since the lift 
on Fig. 2 involves one head subject, the root, and four gaps, the blank box leaves. 
Similarly, the penalty for the lift on Fig. 3 to the root of the left-side subtree is equal 
to .1 + γ + λ where . λ is the penalty for an offshoot, as there is one copy of each, 
head subject, gap, and offshoot, in Fig. 3. Therefore, depending on the relationship 
between . γ and . λ either lift on Fig. 2 or lift on Fig. 3 is to be chosen. That will be the 
former, if .3γ < λ, or the latter, if otherwise. 

Consider a candidate node h in T and its meaning relative to fuzzy set u. An  h-
gap is a node g of .T (h), other than h, at which a loss of the meaning has occurred, 
that is, g is a maximal u-irrelevant node in the sense that its parent is not u-irrelevant. 
Conversely, establishing a node h as a head subject can be considered as a gain of 
the meaning of u at the node. The set of all h-gaps will be denoted by .G(h). A node 
.t ∈ T is referred to as u-irrelevant if its leaf-cluster .I (t) is disjoint from the base 
. Su. Obviously, if a node is u-irrelevant, all of its descendants are also u-irrelevant. 

An h-offshoot is a leaf .i ∈ Su which is not covered by h, i.e., .i /∈ I (h). The  set of  
all h-offshoots is .Su − I (h). Given a fuzzy topic set u over I , a set of nodes H will 
be referred to as a u-cover if: (a) H covers . Su, that is, .Su ⊆ ⋃

h∈H I (h), and (b) the 
nodes in H are unrelated, i.e. .I (h) ∩ I (h′) = ∅ for all .h, h′ ∈ H such that .h 	= h′. 
The interior nodes of H will be referred to as head subjects and the leaf nodes as 
offshoots, so the set of offshoots in H is .H ∩ I . The  set of  gaps in H is the union of 
.G(h) over all head subjects .h ∈ H − I .
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We define the penalty function .p(H) for a u-cover H as: 

.
p(H) =

∑

h∈H−I

u(h) + +
∑

h∈H−I

∑

g∈G(h)

λv(g) +
∑

h∈H∩I

γ u(h). (1) 

The problem we address is to find a u-cover H that globally minimizes the 
penalty .p(H). Such a u-cover is the parsimonious generalization of the set u. 

Before applying an algorithm to minimize the total penalty, one needs to execute 
a preliminary transformation of the tree by pruning it from all the non-maximal 
u-irrelevant nodes, i.e. descendants of gaps. Simultaneously, the sets of gaps . G(t)

and the internal summary gap importance .V (t) = ∑
g∈G(t) v(g) in Eq. (1) can be 

computed for each interior node t . We note that the elements of . Su are in the leaf 
set of the pruned tree, and the other leaves of the pruned tree are precisely the gaps. 
After this, our lifting algorithm ParGenFS applies. For each node t , the algorithm 
ParGenFS computes two sets, .H(t) and .L(t), containing those nodes in .T (t) at 
which respectively gains and losses of head subjects occur (including offshoots). 
The associated penalty .p(t) is computed too. 

An assumption of the algorithm is that no gain can happen after a loss. Therefore, 
.H(t) and .L(t) are defined assuming that the head subject has not been gained (nor 
therefore lost) at any of t’s ancestors. The algorithm ParGenFS recursively computes 
.H(t), .L(t) and .p(t) from the corresponding values for the child nodes in .χ(t). 

Specifically, for each leaf node that is not in . Su, we set both .L(·) and .H(·) to 
be empty and the penalty to be zero. For each leaf node that is in . Su, .L(·) is set to 
be empty, whereas .H(·), to contain just the leaf node, and the penalty is defined as 
its membership value multiplied by the offshoot penalty weight . γ . To compute . L(t)

and .H(t) for any interior node t , we analyze two possible cases: (a) when the head 
subject has been gained at t and (b) when the head subject has not been gained at t . 

In case (a), the sets .H(·) and .L(·) at its children are not needed. In this case, 
.H(t), .L(t) and .p(t) are defined by: 

.

H(t) = {t}
L(t) = G(t)

p(t) = u(t) + λV (t).

(2) 

In case (b), the sets .H(t) and .L(t) are just the unions of those of its children, and 
.p(t) is the sum of their penalties: 

.

H(t) =
⋃

w∈χ(t)

H(w)

L(t) =
⋃

w∈χ(t)

L(w)

p(t) =
∑

w∈χ(t)

p(w).

(3)
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To obtain a parsimonious lift, whichever case gives the smaller value of .p(t) is 
chosen. 

When both cases give the same values for .p(t), we may choose, say, (a). The 
output of the algorithm consists of the values at the root, namely, H – the  set of  
head subjects and offshoots, L – the set of gaps, and p – the associated penalty. 
ParGenFS Algorithm 
INPUT: u, T 
OUTPUT: .H = H(Root), .L = L(Root), . p = p(Root)

I Base case: for each leaf of the T . 
for each leaf . i ∈ I

. L(i) = 

if . u(i) > 0

. H(i) = {i}

. p(i) = γ u(i)

else 
. H(i) = 

. p(i) = 0

II Recursion: for each internal node of the T , down up to the Root. 
. pgain = u(t) + λV (t)

. pnogain = ∑
w∈χ(t) p(w)

if . pgain ≤ pnogain

. H(t) = {t}

. L(t) = G(t)

. p(t) = pgain

else 
. H(t) = ⋃

w∈χ(t) H(w)

. L(t) = ⋃
w∈χ(t) L(w)

. p(t) = pnogain

III Return the sets .H = H(Root), .L = L(Root), .p = p(Root). 

It was mathematically proven that the algorithm ParGenFS leads to an optimal 
lifting indeed [1]. 

4 A 3-Step Method, Developing and Lifting of User Segments 
Profiles 

Intuitively, the method consists of three steps: (1) computing membership values 
for the interest segments for a user by a classifier; (2) performing generalization of 
those sets and obtaining high-ranked segments, which is a core part of the method; 
(3) obtaining a set of advertising campaigns for a user. 

There are three inputs to our method, Developing and Lifting of User Segment 
Profile (DLUSP). These are: (i) a large set of internet users from which the audience
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Fig. 4 IAB Contents taxonomy fragment 

is recruited for an advertisement; (ii) an industrial taxonomy of goods and services; 
(iii) a set of taxonomy segments relevant to an advertisement under consideration. 

The user set in (i) is maintained by a special service storing information of 
millions individual users visiting popular sites such as amazon.com or ozon.ru 
for making purchases, getting services, etc., for native advertising. Such is Data 
Management Platform (DMP) developed in a small company, start-up Natimatica, 
Ltd. (see https://natimatica.com). 

The industrial taxonomy in (ii) is exemplified by the IAB Content taxonomy [3], 
which is a 4-layer rooted tree of taxonomy topics. We focus on its leaf segments. A 
fragment from Business and Finance branch of the IAB taxonomy can be seen in 
Fig. 4. 

The set of taxonomy segments in (iii) comes from a chat between a specially 
assigned company employee and the advertiser of the contents of their advertise-
ment. 

Our method DLUSP includes two technically loaded components: Development 
of user segment profile (DUSP) and Lifting of user segment profile (LUSP). 

The DUSP works within the DMP; it assigns any individual user with a fuzzy set 
of IAB leaf segments relevant to their visits. The visits are reflected in texts from 
the visited pages. These texts are transformed into a numerical format [5], which 
are further transformed into fuzzy membership values for leaf segments by a special 
Random Forest classifier [15]. The resulting fuzzy set is referred to as the user’s 
profile. 

The LUSP works at a given a user segments profile. It finds a higher-rank 
taxonomy node generalizing the profile. We developed an algorithm in [1] to ‘lift’ 
the profile to its ‘head subject’, a node in the higher ranks of the taxonomy tree. 
The head subject tightly covers the profile, usually bringing in some errors, ‘gaps’ 
and ‘offshoots’. A gap is a taxonomy tree node covered by the head subject but 
not being in the profile. An offshoot is a node in in the profile, but not covered by 
the head subject. Our algorithm globally minimizes a penalty function combining 
the numbers of head subjects and gaps and offshoots, as well as fuzzy membership 
values. In this, we use experimentally chosen penalties for gaps (.λ = 0.2) and

https://natimatica.com
https://natimatica.com
https://natimatica.com
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Business 
and Finance 

EconomyIndustriesBusiness 

Business Administration 
Consumer Issues 
... 

Marketing and 
Advertising 

SalesStartups 

Topic with minor support (t)<0 

Topic with high support u(t)>0 

Gap 

Head subject 

Fig. 5 An example of user segments profile lifted in IAB taxonomy fragment 

offshoots (.γ = 0.9). An example of an optimally lifted segments profile is presented 
in Fig. 5. 

The developed method consists of the following steps applied at a set of 
advertising campaigns requested by advertisers. 
DLUSP Algorithm 
INPUT: a user identifier U ; threshold t for user selection; set of active advertising 
campaigns C 
OUTPUT : . CF – a set of targeted campaigns for the user identifier U 
In a loop A over elements of C: 

I Perform the DUSP to obtain a user interest profile S for the given identifier U 
from the user data storage system (DMP). 

II Obtain a set of head subjects . HS using the ParGenFS algorithm to generalize 
the user profile S (.λ = 0.2, .γ = 0.9). 

III For the set of active advertising campaigns .C = {c1, . . . , cK }, extract the sets of 
segments assigned to them: .{pc1, . . . , pcK

}. Compare the obtained head subjects 
.HS with each of the sets of segments . pci

. Obtain .CF – the set advertising 
campaigns that should be shown to U . To do this, check the intersection of 
. pci

and the set .χ(HS) formed by the union of . HS and all its descendants in the 
taxonomy tree: 

(a) If .pci
∩ χ(HS) 	= ∅, add the . ci campaign to the set . CF ; 

(b) if .pci
∩ χ(HS) = ∅, do not add the campaign . ci to the set . CF . 

End of loop A 

IV Return the set . CF .
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Table 1 Examples of lifting of user segments profiles 

Segments assigned by a classifier (with 

User membership values) Segments after applying LUSP 

1 {Cloud Computing (0.596), Web Development 
(0.481), Internet for Beginners (0.432), IT and 
Internet Support (0.356), Social Networking 
(0.312)} 

{Internet (1.0)} 

2 {Men’s Jewelry and Watches (0.662), Men’s 
Business Wear (0.514), Men’s Casual Wear 
(0.443), Men’s Outerwear (0.320)} 

{Men’s Fashion (1.0)} 

3 {3-D Graphics (0.678), Video Software 
(0.571), Graphics Software (0.570), Operating 
Systems (0.308), Business Accounting and 
Finance (0.351) } 

{Computer Software and 
Applications (0.902), Business 
Accounting and Finance (0.351)} 

Note that the DLUSP method does not eliminate the need for targeting that is 
specified outside the terms of the user’s interests, for example, geographical (user 
regions) or demographics (gender, user age) criteria. 

Three examples of applying LUSP to user segments profiles are presented in 
Table 1. 

5 Experiments and Results 

Table 2 presents comparative results of testing DLUSP method at real life adver-
tising campaigns in Natimatica, Ltd., involving the three targeting methods under 
consideration: 

1. Conventional programmatic targeting based on matching segments (CAS); 
2. Audience extending by decreasing thresholds (CASE); 
3. Audience extending by lifting user segments profiles (LUSP). 

Our comparison criteria were the following: (a) numbers of advertising impres-
sions obtained, (b) numbers of clicks, and (3) click-through rates (CTR, (b)/(a)). The 
last metric is especially important, because it usually characterizes the quality of the 
audience impressed by the advertisement. At CASE method, the lessened threshold 
values were chosen to have audience sizes approximately equal to those emerged at 
the DLUSP method. 

Out of two methods for expanding the audience under comparison, CASE and 
LUSP, the latter is the clear winner. Indeed, in all the three cases presented, 
the minimum increase of the number of clicks by LUSP was 74%, whereas the 
maximum increase by CASE was 44%.
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Table 2 Advertising campaign results at different targeting methods 

Method 

IAB segments 

Campaign selected Metric CAS CASE LUSP 

Software for 
parental control 
of children. 
Duration: 10 
days 

Internet Safety, 
Anti-virus 
Software, Daycare 
and Pre-School, 
Parenting Children 
Aged 4–11, 
Parenting Teens 

Impressions 378933 1017598 
(+168.5%) 

942104 
(+148.6%) 

Clicks 1061 1526 (+43.8%) 2544 (+139.8%) 

CTR,% 0.28 0.15 
(. −46.4%) 

0.27 (. −3.6%) 

Frame houses 
for villages. 
Duration: 4 days 

Houses, Outdoor 
Decorating, 
Gardening, 
Remodeling & 
Construction, 
Landscaping 

Impressions 87599 160204 
(+82.9%) 

153032 
(+74.7%) 

Clicks 201 288 (+43.3%) 367 (+82.6%) 

CTR,% 0.24 0.18 
(. −25.0%) 

0.24 (+0.0%) 

Mortgage at a 
major Russian 
bank. Duration: 
10 days 

Home Financing, 
Personal Loans 

Impressions 159342 275035 
(+72.6%) 

289308 
(+81.6%) 

Clicks 749 853 (+13.9%) 1302 (+73.9%) 

CTR,% 0.47 0.31 
(. −34.0%) 

0.45 (. −4.3%) 

6 Conclusion and Further Work 

One can clearly see the efficiency of the proposed method within the advertising 
approach based on user profiling. This method is based on lifting of user segments 
within an industrial taxonomy. It appears that the found general head subjects are 
as informative of customer interests as the most specific segments in their surfing 
histories. This finding allows us to significantly expand the audience for an advert 
without much loss in the click-through rate. 

The observation that transit to head subjects does not much change the customer 
clicking attitudes accords with intuition. An additional advantage of our method is 
that it involves no external audiences. 

Directions for future research lie in further expanding of tested advertising 
campaigns. Furthermore, we plan to compare DLUSP method with audience 
proximity look-alike methods [8]. Also, our plans include developing a strategy for 
parameters fitting in the lifting algorithm, . λ and . γ . 
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From Prebase in Automata Theory 
to Data Analysis: Boris Mirkin’s Way 

Boris Goldengorin 

1 Mirkin’s Prebase in Abstract Automata Theory: A Warm 
Up 

Let me review some of Boris’ results. 
One cannot miss a groundbreaking discovery of simple relations between regular 

expressions and abstract automata made by Boris Mirkin and his PhD supervisor 
Mark Spivak in 1960s in the University of Saratov (Russia), a faraway outpost 
of the Computer Science developments, to never ever reappear on the map after 
both left the place. It should be said that these results were overlapping those by J. 
Brzozowski in the University of Toronto related to the introduced by him the concept 
of event derivative. Nevertheless, Prof. J. Brzozowski made a good use of his Polish 
roots: He noted the work by Boris published in Russia, in Russian, and described 
it in several synopses in the Journal of Symbolic Logic in 1969–1971 (see [1]) – 
these pieces paved the way to lasting recognition of Boris’s work in the concept 
of Mirkin’s prebase. What is curious about this – the fact that Boris did not know 
anything of these publications, because of the power of the Soviet “iron curtain” 
effectively preventing the Russian scientists from any international contacts under 
pre-text of the “class struggle”. He learnt of J. Brzozowski’s activities in 40 years, in 
the dusk of their careers. Here is an extract from B. Mirkin’s letter to J. Brzozowski 
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of 2012: “If I had known of this, then my decision to walk off the automata field 
might have been more difficult for me – or never happen!” 

2 Jump to Group Choice and Data Analysis 

In the end of 1960s B. Mirkin moved to work in the Institute of Economics, Siberian 
Branch of the USSR Academy of Sciences, Novosibirsk, Russia. 

There, he started research on consensus among binary relations. He was moti-
vated by the idea that since socio-economic decisions are mostly not quantitative (at 
least, this was so in the USSR), then corresponding mathematical models should be 
based on non-quantitative data too. In Boris’ own words, he “proceeded to extend 
rankings to unordered partitions as embodiment of nominal features. The world 
had moved on by then and was becoming more receptive to minority rights. For 
example: everybody knows that most people are “early birds”, whereas some are 
“owls” preferring working long evenings and waking up late; thus, the normative 
rule that “the early bird catches the worm” was changing to a less restrictive motto: 
“no matter which, early bird or owl, just behave accordingly” [2]. 

This idea underlay Boris’ move from rankings to partitions including develop-
ment of what later was called Mirkin’s distance between partitions, inspired by 
analogous development of the distance between rankings by J. Kemeny [3]. Also, 
this research produced various extensions of the celebrated Arrow’s theorem of 
impossibility of democratic choice [4], culminating in characterization of Arrow’ 
monotonicity and alternative independence axioms with those consensus choice 
functions which he called federation consensus choice rules [5]. Supplemented 
with analyses of real-world data on expert judgement and voting behavior, this led 
to publication of Mirkin’s first monograph, on mathematics of group choice and 
related issues [6]. Boris began working on that by following an advice from Misha 
Braverman, a founding father of Russian data science efforts. Misha said: “This 
subject is getting popular, and it would be a good idea to show to our ‘cognoscenti’ 
that there is no point in reinventing the wheel [2].” This book not only propelled B. 
Mirkin into top ranks of the Soviet mathematics-economics research community, but 
it also opened way to do research and get published on this subject by scientists in 
several Soviet satellite countries such as Bulgaria. The authorities in those countries 
did not permit publications on subjective preferences because no work in that area 
had been published in the Soviet Union. 

Developing further approximation models for binary relation data, Boris came to 
the analysis of structure of pair-wise similarity, or pair-wise interaction, matrices. 
Encouraged by his bosses who instituted a lab for data analysis managed by 
Boris, he, together with his collaborators such as V. Kupershtokh, V. Trofimov, 
and P. Rostovtsev, developed a machinery, both methods and codes, for finding 
approximate individual clusters and partitions in similarity data [7], as well as more 
weird structures such as “structured partition” [8] or “chain order partition” [9]. The 
latter, chain order partition, is a unique development arguably having no analogues
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in the literature, a structure to model processes of change [9]. Unfortunately, 
currently no research is conducted over these two concepts. 

The former, structured partition, is a partition with a network of links between 
the parts to be found, the concept akin to that of block-model emerged in social 
psychology [10]. This was applied, under Boris’ supervision, to (a) the analysis 
of organization structures of big industrial enterprises leading to improvements of 
those when two structures in big industrial enterprises, the material flow and control 
ones, were co-analyzed [11], and (b) analysis of genetic structures based on genetic 
experiment results [12]. 

Motivated by the idea that partition is a structure to properly represent categorical 
features, B. Mirkin extended his thinking to what he referred to as “categorical 
factor analysis” [13, 14]. He represented the structure to be found by an “ideal” 
similarity matrix, being zero-one binary relation matrix assigned with real alpha 
and beta for one and zero, respectively. After such a structure has been found 
to approximate a given similarity matrix, the one-by-one extraction approach of 
the Principal Component Analysis can be applied to compute a residual similarity 
matrix so that a next approximate structure can be looked for (this is partially 
described in a later review [14], including an independent discovery of what is 
referred to as additive clustering). This approach was successfully applied by B. 
Mirkin and his collaborators for extracting from similarity data such structures as 
partitions [14], single clusters [15], bi- and tri-clusters [16], fuzzy clusters [17], and 
communities in feature-rich networks [18]. 

Then B. Mirkin moved to cluster-modeling conventional object-to-feature data 
matrices. He was the first to develop a matrix factorization model with a least-
squares fitting criterion to underlie the celebrated k-means clustering [19]. He has 
referred to this view as a “data recovery approach” [20, 21], which predates the 
very popular “encoder-decoder data reconstruction” approach in deep learning. 
In clustering, this brings forth a celebrated Pythagorean decomposition of the 
square data scatter in the sum of two items, the k-means square error criterion, the 
unexplained part, and a complementary criterion, the explained part. The explained 
part sheds a really new light on such issues as the “real” goal of k-means clustering 
(finding big anomalous clusters, according to B. Mirkin) and the contributions of 
nominal features (appearing to coincide with various measures of deviation from 
the statistical independence, including the celebrated Pearson’s chi-squared, which 
relates, rather unexpectedly, to the data normalization scaling utilised) [21]. This 
alone, in my view, should suffice to bring forward a sound mathematical theory 
for combinatorial clustering to embrace such aspects as mixed scale data, data 
normalization options, clustering criteria and algorithms at different data formats 
(contingency tables, entity-to-feature data tables, similarity data), etc. 

B. Mirkin masterly used these equivalencies, first discovered in the concept of 
matrix correlation between features developed by him and his collaborators (see, 
for example, in [22]), for grouping of massive sociology survey datasets together 
with P.S. Rostovtsev. At that time, back in 1970s, a “massive dataset” was to 
embrace some several dozen thousand objects, so that it could not fit into a single 
computer memory and, thus, had to be processed over an externally linked magnet
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tape at which the dataset had to be stored. Such was a dataset collected by a 
renown Russian social hygienist T. Shanin in mid-1970s over various respiratory 
diseases among more than 60,000 residents of Akademgorodok, a research center 
at which the Institute of Economics is located. Using an approximation criterion 
expressed in terms of bivariate association indexes, Rostovtsev and Mirkin were 
able to classify the respondents in 14 “respiratory disease” clusters and, further on, 
test the hypotheses of main factors underlying this structure. The organizer of the 
survey suspected, with a degree of certainty, that the factors were human habits 
of “smoking” and “drinking”. To their surprise, the computer scientists failed to 
demonstrate that. On the contrary, both “smoking” and “drinking” appeared almost 
statistically independent of their clustering results. Instead, two different factors 
have been found: “bad housing” and “presence of the disease in the family”. At that 
time, under the Soviet rule, such a result was absolutely a “no-go”, as contradicting 
to both medical views of that time and the soviet mentality, so that the report 
was never published. Of course, currently, in 50 years, it seems obvious that the 
official point of view stressed on individuals themselves as those responsible for 
their diseases by smoking and drinking, whereas the researchers demonstrated that 
the diseases were socially conditioned rather than individually: It is the “socialist 
state” which is responsible for the need in both improvement of housing and medical 
services. 

B. Mirkin was not satisfied with the developed methods, he extended this 
approximation model to related issues such as clustering with explicit feature 
weights [23], hierarchical clustering [24], fuzzy clustering [25], and multicriteria 
linear stratification [26]. 

Among his results in this perspective, let me mention a few amazing, even 
perhaps amusing, but rather unique empirical facts: 

(a) At extending k-means to weighted features and Minkowski exponent, at the Iris 
dataset, much popular in data science, the number of errors reduces to just 5 
from conventional 15–17 errors admitted by popular fuzzy and crisp clustering 
methods [23] – this is comparable to the record found with supervised machine 
learning algorithms; 

(b) At a representative sample of 30 international data scientists, Boris’ automatic 
stratification method over three criteria: (i) citation level, (ii) merit, and (iii) 
taxonomic rank of the results, gave zero weight to the celebrated Hirsch index 
and manifested no correlation between the criterion of the scientist’s taxonomic 
rank (iii) and each, (i) citation, and (ii) merit levels [26]; 

(c) The set of 40 partitions produced at various Minkowski exponent p values (at 
p running through a sequence of values from p = 1 to p  = 4: p = 1.0, 1.05, 
1.1, . . .  , 3.95, 4.0) forms an environment to reflect the ground truth partition, 
which is supposed to be unrelated; this observation is supported by the analysis 
of synthetic datasets, as well as celebrated Irvine repository datasets [27]. 

B. Mirkin has described his views on data analysis, in general, and clustering, 
specifically, in two recent monographs [20, 21(c)].



From Prebase in Automata Theory to Data Analysis: Boris Mirkin’s Way 151

3 Last Universal Cellular Ancestor (LUCA) 

My account of B. Mirkin’s main subjects would be far from complete if I fail 
to mention his results in genomics, as well as a follow-up development. That all 
started with early work by Boris on interval orders, for which he found a “global” 
characterization [28] simultaneously with P. Fishburn in the USA who found a 
“local” characterization [29]. Boris’ diploma student participated in a volleyball 
contest, at which he and his nearest teammate got friendly and had a chat of their 
respective research projects, which, to their mutual amazement, appeared to be 
quite similar – one in mathematics, the other in genetics. S. Rodin, the student in 
genetics, was interested in interval graphs because those were models of procaryote 
genomes bombarded by mutation-causing DNA products. Joint work by B. Mirkin 
and S. Rodin generated effective methods [30(a)], as well as successful analyses of 
genetic data on structure, semantics and evolution of genomic systems described 
in their monograph [30(b)]. Unfortunately, this work did not bring much harvest to 
Boris, except for a few questions raised such as: “How come this guy may work 
for Genomics while being on payroll in Economics?” However, later-on, it is the 
interval graphs that led Boris to meet Prof. Fred Roberts, then Associate Director 
of DIMACS, a National Center for Discrete Mathematics and Computer Sciences at 
the Rutgers University NJ, who also had worked on interval graphs and who helped 
Boris to obtain two grants from the Office of Naval Research USA (1993–1998). 
Boris came to the USA because his boss in Moscow had said to him over telephone: 
“There is a real muddle here in Russia; stay out there as long as you can.” 

While in DIMACS, Ilya Muchnik, a friend and roommate of Boris, asked his 
help in interpretation of an algorithm for comparison of different evolutionary trees 
over the same organisms [31]. Boris said: “This I cannot do because I see no 
biologically sound idea behind the algorithm. What I can do is to develop a graph-
theoretic model for the conventional “gene duplication-independent existence-loss 
of one copy” explanation of the differences in evolutionary trees for different gene 
families”. He made a ring to the main author of paper [31] asking for explanation of 
the biological meaning of the algorithm, and after receiving no explanation, went 
ahead with his own thinking [32(a)]. Later, prompted by Prof.-Dr. M. Vingron 
(currently Head of Department in Max Plank Institute for Molecular Genetics, 
Berlin, FRG) who happened to visit DIMACS at that very time, he proceeded to 
establish equivalence between three different ways of comparison between different 
gene and species trees [32(b)], including that from paper [31]. This work was 
noticed by Dr. E. Koonin from NCBI NIH USA who had developed his own 
approach to the issue, supported by massive genomic data. At that time Boris already 
was teaching in Birkbeck University of London. Jointly with his colleague from 
Birkbeck, Prof. T. Fenner, B. Mirkin developed a model and maximum parsimony 
algorithm for Koonin’s approach to gene history reconstruction, which allowed 
them to reconstruct and interpret the contents of the genome of the very first living 
organism (572 genes altogether) [33(a)], as well as the ancestral lactic (milk) acid 
bacteria [33(b)]. Here is the Dr. Eugene Koonin evaluation: “During the 20 years
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elapsed since the publication of this work, several attempts to reconstruct the gene 
set of the LUCA using more sophisticated algorithms and many more genomes 
of prokaryotes have been undertaken, but the results of Mirkin and colleagues do 
not appear to have been superseded.”, see the Book of Abstracts. International 
conference Data Analysis, Optimization and their Applications on the occasion 
of Boris Mirkin’s 80th birthday. MIPT, 2023. Page 23. 

Currently Boris, together with T. Fenner and others, works to convert his 
biologically motivated constructions into modeling such elusive AI concepts as 
cognitive abstraction/generalization and interpretation. Their first successful results 
on generalization in taxonomies are published in [34]. Another his big successful 
project, just completed, is modeling of an oceanic phenomenon, “upwelling”, much 
important for fishing industries, by using invented by him concept of core-shell 
cluster, jointly with his collaborators from Portugal [35]. 

4 Who Is Boris Mirkin? 

Turning to personal characteristics of B. Mirkin, I would like to cite from an 
insightful fragment by Dr. Igor Mandel who points out that Boris is always (a) 
working on issues of his own choice, (b) making fun of joys and sorrows of life, 
and (c) being tolerant to whoever and whatever occurs [36]. 

“The best way to learn something about someone’s personality is to observe 
what he or she is doing when circumstances are changing. Most people follow 
the mainstream, with all its twists. Yet some follow their goals regardless of these 
fluctuations. As long as I know Boris, he belongs to the minority. He has changed 
a dozen positions in five or six countries in the turbulent for Russia times from 
the end of the 1980s, but one thing remained constant—he continued working and 
reflected his work in his writing. From the first one, “Group Choice” (1974, in 
Russian), which elevated him to the top of the analytical community and triggered 
our meeting, to the latest one “Core Data Analysis” (2019)—he always wrote books 
of his results interwoven with other international results within corresponding fields. 
Of course, he has written many articles as well, but his passion to write books seems 
to me unprecedented. I vividly remember how much it cost me to write just one 
and can imagine what it is to have produced ten, on different topics, of the very 
high quality, highly original, and almost all as a single author. One may expect that 
a person capable of doing that is a kind of gloomy scientist thinking only about 
writing mandatory number of pages per day and will be way off. 

In fact, all our talks started and ended with jokes and laughing, which seems to be 
the second constant element in Boris’ life. He has not only permanently produced 
jokes himself, but vividly reacted to those of others. It was the main reason why 
most of our scientific discussions quickly went in an unpredictable direction, and 
ultimately the original topic could disappear entirely (but new ones emerged). As a 
result, we published only one joint work, while another one is still buried under a 
pile of jokes for the past 5 years.
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The third, and the most surprising constant, is Boris’ tolerance. Since we both 
are living in what is referred to as “interesting times”, what the Chinese would wish 
to their enemies, I had expected to hear extreme opinions and complaints, from the 
left, the right, the top, and from the bottom—and I did hear much of those indeed. 
But never from Boris. His tolerance was not only towards the politics, but in fact 
towards everything; his belief in good side of all, in general, and of human nature, 
in particular, I’m sure, is a key in helping him to overcome many troubles and to 
keep his first and second constants (i.e., writing and laughing) alive. A wonderful 
painting by Alexander Makhov hangs on the wall in Boris’ Moscow apartment—a 
big fish is spasmodically bent at the beach in the attempt to get off the hook from 
the fishing line. I definitely saw it as a symbol of tragedy and torture—but Boris 
suddenly said that he purchased it because he sees there an unshakable will to fight 
and survive. And I agreed that this interpretation was also possible—actually, might 
be the only one reasonable.” 

I would illustrate this third feature of tolerance – should I say “kindness”? – by a 
story of my own.  

A few years ago, I arrived with my wife and three English-speaking children 
aged 11, 13, and 15 at Moscow to an apartment rented by phone. To place children 
in a Moscow school, at least temporary registration with police in Moscow of some 
of the parents is required. I talked to both my acquaintances and long-term friends, 
each of whom gave me a big NO, “absolutely impossible”, followed by a set of 
useless advices. As a result, the children did not study yet, and I continued to turn 
to everyone I encountered to request a Moscow registration. 

Passing by the office of Prof. Mirkin at HSE NRU, I decided to stop by to say 
hello. We have known each other for a long time, yet our relations remained rather 
superficial. Anyway, I walked into the celebrated professor’s office with apologetic 
concern about my registration needs. Boris did not hesitate and despite all my 
warnings that all my friends, good acquaintances, countrymen told me NO, he said: 
Ok, I’ll think about it and give you my answer tomorrow. The next day, when I 
called Boris, I received a firm Yes, which was – still is – to me beyond any words of 
gratitude. 
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Manipulability of Aggregation 
Procedures for the Case of Large 
Numbers of Voters 

Alexander Ivanov 

1 Introduction 

Manipulability occurs when during a voting an agent misrepresents his/her prefer-
ences and gets a better outcome of the procedure. 

It was proven in Gibbard [10] and Satterthwaite [19] that for the case of single-
valued social choice every non-dictatorial aggregation procedure is manipulable. 
Then, Duggan and Schwartz [8] showed the same result for the case of multi-valued 
choice when ties between alternatives are possible. Thus, a question arises: which 
aggregation procedure is the least manipulable one? 

Since then, various papers studying manipulability have been published, a non-
exhaustive list includes [2, 6, 7, 9, 16, 18, 20, 21]. 

Two approaches have been used in most papers. The first one is to look for an 
analytical solution, i.e., to find a formula for a certain manipulability index for a 
certain aggregation procedure [9, 16]. The main difficulty is that analytical solutions 
are usually found only for most popular positional rules, for example, Plurality rule, 
Inverse Plurality rule, Borda’s rule. However, it is known that such rules are more 
manipulable [2], and the less manipulable aggregation procedures, for example, 
Hare’s procedure, Nanson’s procedure [3] are more complicated to find an analytical 
formula for them. 

That is why there is the second approach: computer modeling. One of the first 
papers in this area [2] used computer modeling to generate all possible profiles 
for small cases: 3 . . . 5 alternatives and 3 . . .  10 agents. Later, researchers started 
generating a large random number of profiles (one million) to get approximate 
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estimations of manipulability indices. Such an approach allowed to estimate the 
degree of manipulability of many aggregation procedures without deriving any 
analytical formulae for the cases of 3 . . . 100 agents ([1, 3]; Aleskerov et al. [4]). 

The results from computer modeling showed that the least manipulable aggre-
gation procedures in most cases are Inverse Borda’s rule, Nanson’s procedure and 
Hare’s procedure [3]. 

However, some questions have arisen from the results for the case of 3 . . .  100 
agents. For example, if there is no least manipulable aggregation procedure for the 
case of small number of agents, maybe there is one for the case of large number of 
agents? It was shown in Aleskerov and Kurbanov [2] and Aleskerov et al. [3] that 
the manipulability indices for even and odd numbers of agents may vary 3–5 times. 
Does that result hold for larger number of agents? 

In this paper, we address these and other questions by comparing the previously 
known results in literature from computer modeling for the case of 3 . . . 100 agents 
with our new results from computer modeling for the cases of 3 . . . 10,000 agents 
for the case of Impartial Culture and 3 alternatives. 

2 Main Notions 

2.1 Aggregation Procedures 

We use similar notation as in Aleskerov and Kurbanov [2] and Aleskerov et al. [3]. 
We denote the number of agents as n, and the number of alternatives as m. Each 
agent has a preference (linear order) over the set of alternatives. For the case of n 
agents there are m! possible preferences. The set of agents with their preferences 
over the set of alternatives comprise a profile, P. An aggregation procedure C(P) 
determines the winner taking a profile P as an input. 

We consider nine scoring aggregation procedures and use the same definitions as 
in Aleskerov and Kurbanov [2] and Aleskerov et al. [3]: 

1. Plurality rule 
The alternative which is the first best for the largest number of agents is 

chosen. 
2. q-Approval rule with q = 2 

The alternative which is the first best or the second best for the largest number 
of agents is chosen. 

3. Borda’s rule 
For each alternative Borda’s count is calculated: for each agent for whom it is 

first best, the alternative gets m − 1 points, for each agent for whom it is second 
best, the alternative gets m − 2 points . . .  for each agent for whom it is m-th 
best, the alternative gets 0 points. The result of the aggregation procedure is the 
alternative with the highest Borda’s count, i.e., the alternative(s) with the highest 
sum of points.
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4. Black’s procedure 
The procedure chooses the unique Condorcet winner if it exists, and uses 

Borda’s rule otherwise. 
5. Threshold rule 

The alternative which is the worst for the smallest number of agents is chosen. 
If there are more than one such alternatives, the number of agents for whom they 
are second-worst alternatives are compared, etc., until the winner is found. 

6. Hare’s procedure 
If there is an alternative which is the first best for the simple majority of agents, 

it is the winner. Otherwise, the alternative with the least number of first-best votes 
is eliminated, and the procedure repeats. 

7. Inverse Borda’s rule 
Borda’s count is calculated for all alternatives. The alternative with the lowest 

Borda’s count is eliminated, and the procedure repeats until the winner is found. 
8. Nanson’s procedure 

Borda’s count is calculated for each alternative. Then, the average Borda’s 
count among alternatives is calculated. The alternatives with Borda’s count less 
than the average are eliminated, and the procedure repeats. 

9. Coombs’ procedure 
The alternative which is the worst for the largest number of agents is 

eliminated. Procedure repeats until the winner is found. 

In Aleskerov et al. [3] 10 aggregation procedures are studied. In addition to 9 aggre-
gation procedures described above, Inverse Plurality rule is included. However, for 
the case of 3 alternatives which we consider in this paper, Inverse Plurality rule has 
the same definition as q-Approval rule with q = 2. 

2.2 Manipulation and Manipulability Index (NK-Index) 

If P is a profile where all agents cast their sincere preferences, and P
′
is a profile, 

where an agent misrepresents her preferences, then manipulation happens if C(P
′
)

�C(P) for the manipulating agent. 
Every profile is marked either as manipulable or non-manipulable. A profile is 

called manipulable, if there exists at least one way of successful manipulation by at 
least one agent. If there are no ways for any agent to misrepresent her preferences 
and to get a better outcome, then the profile is non-manipulable. 

The most widely used index to estimate the degree of manipulability of an 
aggregation procedure is Nitzan-Kelly index (NK-index) which was introduced in 
Nitzan [17], Kelly [14, 15]. NK-index stands for the share of manipulable profiles 
in the total number of profiles: 

NK  = 
number of manipulable prof iles 

total number of prof iles
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2.3 Extended Preferences 

What happens in the case of a tie between two or more alternatives in the aggregation 
procedure? One approach is to use an additional tie-breaking rule, for example, 
alphabetical tie-breaking rule. This approach, however, is not neutral to the set 
of alternatives. For this reason, we use another approach known in the literature, 
namely, the so-called extended preferences. Such an approach allows ties between 
alternatives: if there is a tie, then all such alternatives constitute the social choice. 
For example, if both alternatives {a} and {c} under Plurality rule have equal number 
of votes, then the result of the procedure is {a, c}. It means that the result of an 
aggregation procedure C(P) is a non-empty subset of the set of alternatives (multi-
valued choice). Then, extended preferences are used to allow an agent to compare 
two multi-valued choices (the results of the aggregation procedure before and after 
a manipulation attempt). Detailed research regarding preferences extension axioms 
and extended preferences can be found in Barberà et al. [7]. 

We consider four ways of constructing extended preferences (EP) for the case of 
three alternatives: Leximin, Leximax, Risk-lover, Risk-averse. Their definitions are 
the same as in Aleskerov et al. [3]. 

Suppose that an agent has the sincere preferences a � b � c. Then, we consider 
four EPs: 

1. Leximin: multi-valued choices are compared alphabetically, and the choice 
where the worst alternative is better is more preferred. EP under Leximin 
(three multi-valued choices where the ordering is different among four EPs are 
underlined): 

{a} � {a, b} � {b} � {a, c} � {a, b, c} � {b, c} � {c} 

2. Leximax: multi-valued choices are compared alphabetically, and the choice 
where the best alternative is better is more preferred. EP under Leximax: 

{a} � {a, b} � {a, b, c} � {a, c} � {b} � {b, c} � {c} 

3. Risk-averse (“PWorst” in Aleskerov et al. [3]: multi-valued choices are compared 
by the probability of the worst alternative, and the choice where the probability 
of the worst alternative alphabetically, and the choice, where probability of the 
worst alternative is lower, is better. EP under Risk-averse: 

{a} � {a, b} � {b} � {a, b, c} � {a, c} � {b, c} � {c} 

4. Risk-lover (“PBest” in Aleskerov et al. [3]: multi-valued choices are compared 
by the probability of the best alternative, and the choice where the probability of 
the best alternative, and the choice, where probability of the best alternative is 
higher, is better. EP under Risk-lover:
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{a} � {a, b} � {a, c} � {a, b, c} � {b} � {b, c} � {c} 

For example, if in some profile an agent has sincere prefenrece a � b � c, the result 
with sincere preferences is {a, c} and the result with insincere preferences is {b}, then 
it is manipulation for Leximax EP and Risk-lover EP, and there is no manipulation 
for Leximin EP and Risk-averse EP. 

2.4 Impartial Culture and Computer Modeling Scheme 

What is the probability of a certain profile? We use Impartial Culture (IC) proba-
bilistic model which was first studied in Guilbaud [11]. Under IC all preferences 
are equally likely. If each of n agents has one of m! preferences, the total number of 
profiles under IC is equal to (m!)n. 

It can be noticed, that the number of profiles is growing very fast. Even a modern 
supercomputer cannot generate all possible profiles for cases of n > 30. That is why 
computer modelling papers use random profile generation. Instead of generating all 
possible profiles which is impossible for large n, 1,000,000 profiles are generated 
randomly. As it was shown in Karabekyan [13], such an approach allows to estimate 
the degree of manipulability of aggregation procedures with the precision of 0.001 in 
manipulability indices. We use this approach for estimating manipulability indices. 

As a result, the computer modelling scheme to estimate the degree of manipula-
bility of a given aggregation procedure for a given number of agents and for a given 
number of alternatives usually consists of the following steps: 

1. Random 1,000,000 profiles are generated 
2. For each profile, the sincere choice is calculated 
3. For each profile each possible manipulation attempt by each agent is generated, 

i.e. for each of n agents m ! − 1 ways of misrepresenting preferences are 
considered 

4. If there is at least one successful manipulation attempt for at least one agent, 
the profile is marked as manipulable. If all possible manipulation attempts lead 
to the same or worse choice for manipulating agents, the profile is marked as 
non-manipulable. 

5. After all profiles are analyzed, manipulability indices are calculated. 

It can be noticed that the computational complexity of the scheme is high. For 
each of the randomly generated 1,000,000 profiles all possible n ∗ (m ! − 1) 
manipulation attempts should be checked, meaning we should calculate the new 
result of the aggregation procedure C(P

′
) for each attempt. Finally, the algorithm 

repeats for every n. Detailed estimations of the complexity of the algorithms of 
computer modelling for calculating manipulability indices can be found in Ivanov 
[12]. The estimations for the cases of up to 10,000 agents took 3 weeks on one 
personal computer.
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2.5 Results 

We obtained the results for the case of m = 3 alternatives and for n = 3 . . . 10,000 
agents for the cases of Leximin, Leximax, Risk-averse and Risk-lover EP for 
Impartial Culture. 

First, we provide the results for the case of n = 3 . . . 100 agents. In Aleskerov et 
al. [3] the results for similar cases are provided, but with gaps: they calculated cases 
of n = 3 . . . 25, then n = 29, 30, 39, 40, etc. Picture 1 fills the missing picture for 
the cases of 31 . . . 38, 41 . . . 48, etc. agents. 

The shapes of the lines suggest that there are certain periods in the values of NK-
index. The idea that there are such periods in the values of NK-index was previously 
discussed in the literature, for example, in Aleskerov et al. [3] it is suggested that the 
period for most of the 9 discussed procedures is either 2 or 3. Having the chart for 
all n from 3 to 100, we can confirm that the periods for Black’s procedure, Nanson’s 
procedure, Inverse Borda’s procedure are equal to 2, for Plurality rule, q-Approval 
q = 2 rule and Threshold rule periods are equal to 3, but we can suggest that the 
periods for Coomb’s procedure and Hare’s procedure are equal to 6, while NK-
index for Borda’s rule does not have any visible periods. This conclusion holds not 
only for Leximin EP, but also for other extended preferences as well. For example, 
Picture 2 illustrates the three rules (Borda’s rule with no period, Coomb’s rule and 
Hare’s procedure with the period of 6) for both Leximin and Leximax EP. 

Next, we would like to verify the hypothesis from Aleskerov et al. [3] that both 
Leximin EP and Risk-averse EP show the same values of NK-index, and both 
Leximax and Risk-lover EP show the same values of NK-index for most rules. Such 
a result was presented in Aleskerov et al. [3] for the cases of n ≤ 100 agents. We 
studied the cases of 100 < n ≤ 10,000 agents, and found out that for 5 procedures 
(Plurality, q-Approval with q = 2, Borda, Threshold and Coombs’ procedures) 
it is true, but for other 4 procedures (Nanson, Inverse Borda, Black and Hare’s 
procedures) there are differences in the values of NK-index between Leximin EP 
and Risk-averse EP, Leximax EP and Risk-lover EP. 

Picture 1 NK-index, Leximin, 3–100 agents
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Picture 2 Leximin and Leximax EP for Borda’s rule, Coombs and Hare’s procedures 

Picture 3 NK-index for Hare’s procedure for four types of extended preferences 

For example, Picture 3 shows the results for Hare’s procedure for all four types 
of extended preferences, and it can be noticed, that, for example, for the case of 77 
agents NK-index is the same, but for 78 agents NK-index is different for all four 
extended preferences. 

The next idea is to evaluate the difference in NK-index for four extended 
preferences. For small numbers of agents we can notice that the difference in NK-
index may be large, for example, NK-index for Hare’s procedure for 18 agents for 
Risk-lover EP is equal to 0.12, while for Risk-averse EP NK = 0.23, almost twice 
higher. Let us compare the differences for larger numbers of agents. For n = 90: 
NK = 0.0788 for Risk-lover and NK = 0.0954 for Risk-averse (21% higher); for 
n = 990: NK = 0.0253 for Risk-lover and NK = 0.0265 for Risk-averse (4.7% 
higher); for n = 9990: NK = 0.008043 for Risk-lover and NK = 0.008136 for Risk-
averse (1.1% higher). The difference between values of the NK-index for different 
extended preferences decreases with growing number of agents, but still exists. 

From Aleskerov et al. [3] and Aleskerov et al. [4] we know that there are 
3 aggregation procedures which are the least manipulable for most cases for 
n = 3 . . . 100 agents: Hare’s procedure, Nanson’s procedure and Inverse Borda’s 
procedure. Let us compare the values of NK-index for these rules for the cases of 
large number of agents (Picture 4)
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It can be noticed, that for large number of agents Nanson’s procedure shows 
the smallest values of NK-index, i.e., is the least manipulable. Inverse Borda’s 
procedure is more manipable than Nanson’s procedure, but less manipulable than 
Hare’s procedure. 

In order to have a better look at the difference between manipulability of the 
aggregation procedure, we suggest the following chart (Picture 5) 

Horizontal axis stands for the number of agents, while the vertical axis stands for 
the ratio between a certain rule and the least manipulable rule (Nanson’s procedure). 

The line for the Nanson’s procedure (blue line) is given as a reference line 
(NK-index for Nanson’s procedure divided by NK-index for Nanson’s procedure 
is always equal to 1), because it allows to see that other procedures (e.g., Hare’s 
procedure) may be less manipulable than Nanson’s procedure only for small 
numbers of agents. According to our calculations, for the cases of n ≤ 26 agents 
Hare’s procedure is sometimes less manipulable than Nanson’s procedure, but for 
all cases of n > 26 agents Nanson’s procedure is the least manipulable for Leximin 
EP. 

Next, we analyze the results for Leximax EP (Picture 6) 
For the case of Leximax EP, for small numbers of agents Hare’s procedure is 

often less manipulable than Nanson’s procedure. For example, for the cases of 

Picture 4 Nanson’s, Inverse Borda’s and Hare’s procedures for Leximin EP 

Picture 5 NK-index ratios to Nanson’s procedure NK-index, Leximin EP
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Picture 6 NK-index ratios to Nanson’s procedure NK-index, Leximax EP 

Picture 7 NK-index ratios to Nanson’s procedure NK-index, Risk-averse EP 

Picture 8 NK-index ratios to Nanson’s procedure NK-index, Risk-lover EP 

3 . . .  68 agents Hare’s procedure is less manipulable in 34 out of 66 cases. However, 
Nanson’s procedure is the least manipulable for all cases of n > 68 agents. 

Picture 7 shows the case of Risk-averse EP. 
Again, for small n Hare’s procedure sometimes is the least manipulable, but 

Nanson’s procedure is the least manipulable for all cases of n > 20 agents. 
Picture 8 shows the case of Risk-lover EP.
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Picture 9 NK-index ratios to Nanson’s procedure NK-index, Leximin EP (remaining 6 proce-
dures) 

Table 1 Ratios between NK-index for a given procedure to Nanson’s procedure’s NK-index 

Procedure Leximin Leximax Risk-averse Risk-lover 

Plurality rule 3.81 3.69 3.81 3.69 
q-approval, q = 2 3.70 3.65 3.70 3.65 
Borda’s rule 2.22 2.14 2.22 2.14 
Black’s procedure 1.45 1.4 1.45 1.40 
Threshold rule 2.50 2.43 2.50 2.43 
Inverse Borda’s rule 1.09 1.08 1.09 1.08 
Hare’s procedure 1.39 1.35 1.40 1.34 
Coomb’s procedure 1.61 1.61 1.61 1.61 

We see the same situation: for the cases of n ≤ 74 Hare’s procedure sometimes 
is the least manipulable, but for n > 74 Nanson’s procedure is the least manipulable. 

The next interesting result is that the ratio between the values of NK-index for 
aggregation procedures converges with growing n. In Pictures 5, 6, 7, and 8 we saw 
that result for Hare’s procedure and Inverse Borda’s procedure, Picture 9 shows the 
rest of the considered procedures (Plurality rule, Borda’s rule, Black’s procedure, 
Threshold rule, q-Approval rule with q = 2, Coombs procedure) in the same type of 
the chart: ratio of their NK-index to the NK-index of Nanson’s procedure. 

In Table 1 we provide summarized results as the average ratios between each 
procedure’s NK index and Nanson’s procedure’s NK index. 

For example, Plurality rule has in average 3.81 times larger values of NK-index 
than Nanson’s procedure for the same n. 

It can be noticed that the second least manipulable procedure is Inverse Borda’s 
procedure which is in average 1.08–1.09 times more manipulable than Nanson’s 
procedure. Such close results may be explained by similar mechanisms of the 
procedures: in both procedures Borda’s count is calculated, and in Nanson’s 
procedure alternatives with less than average count are eliminated, while in Inverse 
Borda’s procedure only the alternative with the lowest Borda’s count is eliminated.
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Preferences over Mixed Manna 

Alexander Karpov 

1 Introduction 

A preference model is an important building block of economic and political science 
theories. In the wide-spread Arrovian approach [1, 2, 20] each agent has a preference 
relation that is represented by a linear order over a set of alternatives. 

A preference domain (subset of linear orders over a finite set) is a basic 
preference model. It is natural to assume that a society does not contain all 
possible preference orders. It is assumed that the set of alternatives is somehow 
structured, and this structure leads to a domain of structured preferences. The 
axis of alternatives that leads to single-peaked preferences is the most well-known 
such example. Single-peaked on a circle preferences [24], single-peaked on a tree 
preferences [7], Euclidean preferences [23], median spaces preferences [21], group-
separable preferences [13] are examples of structured preferences that are specified 
by a structure of alternatives. 

The literature on structured preferences (see surveys [9, 14, 28]) focuses almost 
exclusively on domains over the set of desirable alternatives. The most influential 
example of such a model is single-peaked preferences. All alternatives and agents’ 
ideal points are placed on a line (axis). This line implies only an order, but not a 
distance between alternatives. Alternatives that are further from the agent’s ideal 
point are worse for the agent. By this rule, we can compare alternatives only from 
one side of the ideal point. A domain of single-peaked preferences is a set of 
preference orders that are consistent with a given axis of alternatives. 
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Condorcet domains are sets of linear orders with the property that, whenever the 
preferences of all agents belong to this set, the majority relation induced by the 
preference profile with an odd number of voters has no cycles. The single-peaked 
domain is a Condorcet domain. 

Considering all possible domains, Puppe [26] showed that the single-peaked 
domain is the only minimally rich and connected Condorcet domain that contains 
two completely reversed preference orders. Minimal richness condition requires that 
each alternative is a top alternative in at least one preference order from the domain. 
The minimal richness is a key property that reflects the desirability of alternatives. 

In some cases, alternatives are undesirable outcomes, i.e. possible places for 
potentially polluting factories. In this case, single-dipped preferences is a suitable 
model. They are defined in the same fashion as the single-peaked preferences. There 
is a line (axis); the further from the agent’s worst point the better the alternative is. 
For each alternative and each single-dipped domain, there is a preference order from 
the domain such that this alternative is a bottom alternative in this preference order. 

Mixing goods and bads is a natural development of economic models (see e.g. 
[3]). In the case of preference models, this mixing leads to a weak minimal richness 
condition. It requires that each alternative is either the top, or bottom alternative in 
at least one preference order from the domain. 

This paper describes the set of connected and weakly minimally rich Condorcet 
domains that contain two completely reversed preference orders. These preferences 
have the following common structure. There is a linear ordering of alternatives and 
a partition of alternatives on “inside” and “outside” alternatives. For each triple 
of alternatives, if the median of this triple, according to the linear ordering, is 
an inside alternative, then the restriction of the domain to this triple is single-
peaked with a given axis. If the median of this triple, according to the linear 
ordering, is an outside alternative, then the restriction of the domain to this triple 
is single-dipped with a given axis. We call these domains GF-domains. The single-
peaked domain, the single-dipped domain, and the Fishburn’s domain [10] are  
examples of GF-domains. We have shown that all GF-domains are subsets of 
single-peaked on a circle domains. Single-peaked on a circle preferences [24] are  
straightforward generalization of single-peaked preferences. The main shortcoming 
of single-peaked on a circle preferences is that they do not guarantee the transitivity 
of collective preferences obtained by the majority rule. Restriction to GF-domain 
solves this problem. Each GF-domain is a Condorcet domain. 

Single-peaked on a circle preferences are a finite population generalization of 
the circular city model [29]. This model is a basic spatial firm competition model 
[31]. The circular city model is also applied in political science [22]. In this case, 
far-left and far-right candidates are close to each other. Extremist candidates can be 
considered as outside alternatives for the centrist policy electorate. GF-domain is an 
appropriate model for the centrist policy electorate. 

Another model that combines goods and bads is the structured dichotomous 
preferences model [8, 30]. In this case each agent partitions the set of alternatives in 
two subsets: approved alternatives (goods) and disapproved alternatives (bads).
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The structure of the paper is as follows. Section 2 contains the main result con-
cerning characterization of GF-domains. Section 3 discusses possible interpretations 
of GF-domains. Section 4 concludes. 

2 Model 

Let a finite set .X = {1, . . . , m} be the set of alternatives, and a finite set . N =
{1, . . . , n} be the set of agents. Each agent .i ∈ N has a preference order . Pi over 
X (each preference order is a linear order). Let .L(X) be the set of all linear orders 
over X. An  n-tuple of preference orders is a preference profile . P = (P1, . . . , Pn) ∈
L(X)n. For brevity, we will write preference order as a string, e.g. .12 . . . m, which 
means .1P2P3 . . . Pm. 

A subset of preference orders .D ⊆ L(X) is called a domain of preference orders. 
A domain D is a Condorcet domain if whenever the preferences of all agents belong 
to the domain, the majority relation of any preference profile with an odd number of 
agents is transitive. A Condorcet domain D is maximal if every Condorcet domain 
(on the same set of alternatives) that contains D as a subset coincides with D. 

Each domain of single-peaked preferences is defined by an axis. An axis is a 
linear order over X. A preference profile P is single-peaked with respect to axis . α, 
if agent i’s upper-contour sets .U(Pi, x) = {y ∈ X|yPix} are connected according 
to the axis (this means that for any two elements from this set all elements between 
them according to the axis belong to this set). A preference profile P is single-
dipped with respect to axis . α, if agent i’s the lower-contour sets . L(Pi, x) = {y ∈
X|xPiy} are connected according to the axis. 

A Condorcet domain D is connected if every two orders from the domain can be 
obtained from each other by a sequence of transpositions of neighboring alternatives 
such that the resulting order belongs to the domain at each step. A Condorcet domain 
D is semi-connected if it contains two completely reversed orders and an entire path 
connecting them. A Condorcet domain has maximal width if it contains a pair of 
completely reversed linear orders. 

A Condorcet domain D is minimally rich if, for each alternative .x ∈ X, there is 
an order .P ∈ D such that P has x as a top alternative. A Condorcet domain D is 
weakly minimally rich if, for each alternative .x ∈ X, there is an order .P ∈ D such 
that P has x as either top or bottom alternative. 

A domain D is a peak-pit domain if, for each triple of alternatives, the restriction 
of the domain to this triple is either single-peaked, or single-dipped. 

A domain D is called a Fishburn’s domain if it satisfies the alternating scheme 
[10]: there exists a linear ordering of alternatives .a1, . . . , am such that for all . i, j, k
with .1 ≤ i < j < k ≤ m the restriction of the domain to the set .{ai, aj , ak} is 
single-peaked with axis .aiaj ak if j if is even (odd), and it is single-dipped with 
axis .aiaj ak if j is odd (even). The reverse of Fishburn’s domain is also a Fishburn’s 
domain.
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Having the natural ordering of alternatives we obtain the following Fishburn’s 
domains in the case of four and five alternatives: 

. F4 = {1234, 1243, 2134, 2143, 2413, 2431, 4213, 4231, 4321},

. F5 = {12345, 12354, 13245, 13254, 13524, 13542, 31245, 31254, 31524, 31542, 35124,

. 35142, 35412, 35421, 53124, 53142, 53412, 53421, 54312, 54321}.
In the example with five alternatives, triples with medians 2 and 4 are single-

dipped, triples with median 3 are single-peaked. 2 and 4 are never-top alternatives 
(in some orders, these alternatives are bottom alternatives), 3 is a never-bottom 
alternative (in some orders it is top alternative). A more detailed analysis of small 
Fishburn’s domains can be found in [18]. 

Fishburn’s domain has arrangements of pseudolines representation [12], rhombus 
tiling diagrams representation [6], median graph representation [27], weak order of 
a finite Coxeter group representation [17]. The number of linear orders in Fishburn’s 
domains is found by [12]. If the number of alternatives does not exceed seven, then 
Fishburn’s domains contain the highest number of linear orders among all Condorcet 
domains [11, 12]. For a higher number of alternatives, Fishburn’s domain is the basis 
for an algorithmic construction of large Condorcet domains [6, 16]. 

A domain D is called a GF-domain if there exists a linear ordering of alternatives 
.a1, . . . , am and a subset .A ⊆ X such that for all .i, j, k with .1 ≤ i < j < k ≤ m the 
restriction of the domain to the set .{ai, aj , ak} is single-peaked with axis .aiaj ak if 
.aj ∈ A, and it is single-dipped with axis .aiaj ak if .aj ∈ X \ A. 

The GF-domain is a natural generalization of the Fishburn’s domain. In con-
trast with Fishburn’s domains, GF-domains are closed under removing candidates 
operation. The following proposition generalizes [26] characterization of the single-
peaked domain of preferences by weakening minimal richness to weak minimal 
richness. 

Proposition 1 

(a) Each GF-domain is a connected and weakly minimally rich Condorcet domain 
with maximal width. (In particular, GF-domain is semi-connected.) 

(b) Conversely, let domain D be a semi-connected and weakly minimally rich 
Condorcet domain. Then, domain D is a GF-domain. 

Proof 

(a) Each GF-domain D is a peak-pit domain that contains a pair of reversed orders 
.a1, . . . , am, .am, . . . , a1. From [6], each maximal peak-pit domain that contains 
a pair of reversed orders is semi-connected. From [25], each maximal semi-
connected domain is connected. 

Alternatives .a1, am are simultaneously top and bottom alternatives. Let us 
consider a triple of alternatives .a1, x, am. If  .x ∈ A, then it is never last in the 
restriction of D to this triple. If .x ∈ X \ A, then it is never first in the restriction 
of D to this triple. Thus, alternatives from A occupy top alternatives, alternatives 
from .X \ A occupy bottom alternatives. From [26], each alternative from A is
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a top alternative in restriction of D to A and each alternative from .X \ A is a 
bottom alternative in restriction of D to .X \ A. Thus, each alternative form X is 
either top, or bottom alternative in D. 

(b) Suppose that domain D is a semi-connected and weakly minimally rich 
Condorcet domain. Because of semi-connectedness, the restriction of domain 
D to each triple of alternatives is semi-connected. Thus, this restriction is either 
single-peaked, or single-dipped. Because of semi-connectedness, domain D 
contains a pair of mutually reversed orders .a1 . . . am, .am . . . a1. 

Alternatives .a1, am are simultaneously top and bottom alternatives in domain 
D. There is no third such alternative, otherwise the restriction of D to this triple 
is neither single-peaked, nor single-dipped. 

Let us consider axis .a1 . . . am. For each triple of alternatives, we have either 
top alternative median, or bottom alternative median. If the median alternative 
is a top alternative, then the restriction of domain D to this triple has three 
different top alternatives and this restriction is single-peaked where the median 
alternative is a never-last alternative in this restriction. If the median alternative 
is bottom alternative, then the restriction of domain D to this triple has three 
different bottom alternatives and this restriction is single-dipped where the 
median alternative is a never-first alternative in this restriction. Thus, domain 
D is a GF-domain. 

��
A preference profile . P is single-peaked on a circle (SPOC) with respect to a 

circular permutation of alternatives C if agent i’s upper contour sets . U(Pi, x) =
{y ∈ X|yPix} are intervals according to the circular permutation. Lower contour 
sets also form intervals according to the circular permutation. Preferences single-
peaked on a circle and preferences single-dipped on a circle are equivalent. SPOC 
domain is symmetric, i.e. it contains a reverse of each preference order, which 
belongs to the domain (see [5, 15] for studies of symmetric Condorcet domains). 
The following proposition presents the forbidden configurations characterization for 
the SPOC domain. 

Proposition 2 ([24]) A preference profile is SPOC if and only if it avoids three 
configurations (.{x, y} means, that alternatives are situated in any order) 

(i) there are two agents .i, j ∈ N and five alternatives .x, y, z, t, r ∈ X such that 

. {x, y}PizPi{t, r},

. {x, t}PjzPj {y, r};

(ii) there are three agents .i, j, k ∈ N and four alternatives .x, y, z, t ∈ X such that 

. {x, y}Pi{z, t},

.{x, z}Pj {y, t},
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. {x, t}Pk{y, z};

(ii) there are three agents .i, j, k ∈ N and four alternatives .x, y, z, t ∈ X such that 

. {y, z}Pi{x, t},

. {x, z}Pj {y, t},

. {x, y}Pk{z, t}.

Applying forbidden configurations characterization of the SPOC domain we will 
prove that GF-domain is SPOC, but not maximal SPOC. 

Proposition 3 Each GF-domain is a subset of a SPOC domain. 

Proof We will prove that each GF-domain avoids configurations (i), (ii), (iii) from 
Proposition 2. 

If we have a linear ordering of alternatives order .a1...am, then preference orders 
.a1...am and .am...a1 belong to the corresponding maximal GF-domain. 

If a maximal GF-domain D contains suborders xyz and zyx, alternatives .x, z are 
not never-top, and are not never-bottom in the restriction of D to set .{x, y, z}. Thus, 
alternatives .x, z are not median in triple .x, y, z, and the corresponding ordering of 
alternatives has subordering xyz or zyx. 

If a domain D has configuration (i): there are two agents .i, j ∈ N , and five 
alternatives .x, y, z, t, r ∈ X such that .{x, y}PizPi{t, r}, .{x, t}PjzPj {y, r}, then we 
have .yPizPit, tPj zPjy. Thus, the restriction of the ordering of alternatives to the 
set .{y, z, t} is either yzt or tzy. 

If alternatives .x, r are situated on the same side of z in the ordering, then, 
without loss of generality, we have subordering .yz{t, x, r} and triples .y, z, x and 
.y, z, r have median z. Restrictions of D to these triples are either simultaneously 
single-peaked with never-bottom z or simultaneously single-dipped with never-top 
z. .{x, y}Piz reveals single-dipped triple, .zPj {y, r} reveal single-peaked triple. We 
get a contradiction. 

If alternatives x and r are not situated on the same side of z in the ordering, 
then, without loss of generality, we have ordering .{y, x}z{t, r} and triples .t, z, x and 
.y, z, r have median z. It contradicts with being a GF-domain because restriction to 
.t, z, x is single-peaked, and restriction to .y, z, r is single-dipped. 

If a domain D has configuration (ii): there are three agents .i, j, k ∈ N , 
and four alternatives .x, y, z, t ∈ X such that .{x, y}Pi{z, t}, and .{x, z}Pj {y, t}, 
and .{x, t}Pk{y, z}, then restriction to set .{y, z, t} is single-peaked (restriction 
of configuration is .yPi{z, t}, and ., zPj {y, t}, and .tPk{y, z}). For each renaming 
of alternatives we can rename agents in order to get initial configuration. All 
alternatives are permutable. Without loss of generality, alternative t is never-bottom 
in this triple. We have .yPitPiz and .zPj tPjy. Thus, the restriction of the ordering to 
the set .{y, z, t} is either ytz or zty.
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Within each four-alternatives restriction of a GF-domain we have either for four 
three-alternatives restrictions of the same type or two three-alternatives restriction 
of one type and two three-alternatives restriction of another type. 

If all restrictions are single-peaked, then we cannot have three upper contour 
sets with x: .{x, y}, .{x, z}, .{x, t}. Thus, we have two single-peaked restrictions with 
never-bottom t and two single-dipped restrictions. 

In restrictions to sets .{x, z, t} and .{x, y, t} alternative t is a bottom alternative in 
one suborder. Thus, restrictions to sets .{x, z, t} and .{x, y, t} are single-dipped, and 
restriction to set .{x, y, z} is single-peaked. The median of .{x, y, z} does not equal 
to t . We get a contradiction 

The argument for configuration (iii) is similar. ��

3 Discussion 

GF-domains receive clear SPOC interpretation and succeeds all algorithmic appli-
cations of SPOC domains from Peters and Lackner [24]. 

For GF-domain ordering .a1 . . . am, there is a circular permutation of alterna-
tives for the corresponding SPOC domain. Let .a1t1 . . . tkam be the order of top 
alternatives and .a1b1 . . . blam be the order the bottom alternatives. These orders 
of alternatives are restrictions of the GF-domain ordering on the top and bottom 
alternatives correspondingly. The circular permutation .a1t1 . . . tkambl . . . b − 1 is 
presented in Fig. 1. We propose the following interpretations of the picture. 

Fig. 1 An example of 
circular permutation of 
alternatives with partition on 
inside and outside alternatives
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There is a lake and a beach that occupies an interval of the lake coast. All 
agents take a rest on the beach. Alternatives are locations of ice-cream stands. Some 
of them are inside the beach (inside alternatives), others - outside. Some outside 
alternatives are better than some inside alternatives for some agents, but there is no 
agent which has an outside alternative as the first choice. 

Another interpretation is time or calendar circle. 24-hours circle has a common 
working hours interval. A video conference session should proceed every day at 
exactly the same time slot. All agents prefer to do it within their working hours, but 
they can also compare outside alternatives. 365-days circle has a common school 
holidays interval. Students are going to have a trip. All agents prefer to do it within 
their holidays (inside alternatives), but can discuss other options. 

Under political science interpretation [22], centrist policy candidates are inside 
alternatives. Extremist candidates from both sides complete the circle and constitute 
outside alternatives set. 

[29] used the term “outside goods”, which is not equivalent to our outside 
alternatives. A circular product differentiation model with an additional partition of 
products, e.g. domestic (inside), foreign (outside) leads to GF-domain interpretation. 
Consumers prefer domestic products, but can compare foreign products. 

4 Conclusion 

Empirical studies [19] show that single-peaked preferences are a theoretical concept 
without examples from real-world elections. Nearly single-peaked preferences [4] 
are aimed to approximate pure single-peaked preferences and enlarge the set of 
considered preference profiles. There are many ways to define nearly single-peaked 
preferences: preference profiles that become single-peaked after deleting k agents, 
or after deleting k alternatives, or after partitioning on k parts, or after executing k 
swaps of consecutive alternatives in preference orders, etc. All these generalizations 
are heuristic and do not have clear theoretical properties, e.g. all such domains are 
not Condorcet domains. 

Despite nice mathematical properties of the Fishburn’s domain, it has no 
applications in social choice theory. This paper axiomatically justifies a set of 
nearly single-peaked domains (GF-domains) and provides an interpretation for these 
preferences. Introducing GF-domains is a step towards applications of the new class 
of structured preferences, including the Fishburn’s domain. 

Forbidden configurations characterization of the GF-domain is an open problem. 
This characterization will lead to a deeper understanding of GF-domain structure 
and new applications in computational social choice theory. 
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About Some Clustering Algorithms in 
Evidence Theory 

Alexander Lepskiy 

1 Introduction 

The Dempster–Shafer evidence theory [2, 15] considers data that is represented 
by a pair of objects .F = (A,m), where . A is the set of non-empty subsets 
(focal elements) of some base set X, m is a non-negative numerical function of 
sets (mass function) defined on the set of all subsets of the base set. The focal 
element .A ∈ A describes the membership set of the true alternative .x ∈ A (for 
example, the air temperature forecast), and the mass .m(A) of this focal element A 
specifies the degree of belief that .x ∈ A. Some set functions are put into one-to-one 
correspondence with the body of evidence. For example, there are such functions 
as belief and plausibility functions, which can be considered as the lower and upper 
bounds of the probability measure. 

The tools for aggregating information presented by bodies of evidence, consid-
ering the reliability of information sources, their inconsistency and inaccuracy, are 
widely developed in the theory of evidence. However, many of the evidence body 
processing operations are computationally complex. In addition, it is required to 
reveal the enlarged structure of the set of focal elements in several problems, to 
analyze the degree of homogeneity of the body of evidence, its internal inconsis-
tency, etc. Therefore, there is a need to approximate complex evidence bodies with 
many focal elements by simpler evidence bodies with a smaller number of focal 
elements. Both an approximation of a set function (for example, a belief function) 
corresponding to the body of evidence by another set function from a given class, 
and an approximation based on clustering of a set of focal elements are considered. 
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Pignistic probability is an example of the first type of approximation [16]. Below we 
consider only an approximation based on the clustering of the set of focal elements. 

Evidential data have their own frequency-set specifics. Therefore, direct ana-
logues of the well-known clustering algorithms for ’point’ data either need deep 
modernization or additional interpretability. 

This article will analyze some modern methods for clustering bodies of evidence. 
The article is of an overview and methodological nature, but it will consider a new 
method, which is an analogue of the k-means method for evidence bodies. 

2 Necessary Information from Evidence Theory 

Let X be some finite (for simplicity) basic set, .2X be the set of all subsets from 
X. Let us consider some subset of non-empty sets (focal elements) . A from . 2X

and a non-negative set function (mass function) .m : 2X → [0, 1] that satisfies 
the conditions: .m(A) > 0 ⇔ A ∈ A, .

∑
A∈A m(A) = 1. A pair .F = (A,m) is 

called a body of evidence. Let .F(X) be the set of all evidence bodies on X. 
There is a one-to-one correspondence between the body of evidence . F =

(A,m) and the belief function .Bel(A) = ∑
B⊆A m(B) or the plausibility function 

.P l(A) = ∑
B∩A�=∅ m(B), which can be considered as lower and upper bounds for 

the probability .P(A), respectively. The following special cases of evidence bodies 
are distinguished: 

(1) a categorical body of evidence of the form .FA = ({A}, 1), i.e., a non-empty set 
A is the only focal element with unit mass; 

(2) a vacuous body of evidence .FX = ({X}, 1). 

An arbitrary body of evidence .F = (A,m) can be represented as . F =∑
A∈A m(A)FA. 
The body of evidence of the type .Fα

A = αFA + (1 − α)FX is called simple. 
The body of evidence .F = (A,m) on X can be represented as a weighted 

hypergraph with a set of vertices X, a set of hyperedges . A and their weights .m(A), 
.A ∈ A. 

Example 1 Let we have .X = {a, b, c, d, e} and the body of evidence . F =
0.35F{a} + 0.15F{a,b} + 0.2F{a,c} + 0.25F{d,e} + 0.05F{c,d,e} is given on X, i.e. 
.A = {{a} , {a, b}, {a, c}, {d, e}, {c, d, e}}. The hypergraph of the evidence body F 
is shown in Fig. 1. 	


If two sources of information are represented by the bodies of evidence . F1 =
(A1,m1) and .F2 = (A2,m2) on X, then the degree of conflict (contradiction) 
between these sources can be assessed using some functional (measure of external 
conflict) [10] .Con : F(X)×F(X) → [0, 1], which takes on greater values the more 
pairs of non-overlapping (or ‘weakly over-lapping’) focal elements of two evidence 
bodies with large masses exist. The classical measure of external conflict is [2]
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Fig. 1 Evidence body 
hypergraph 

. Con(F1, F2) =
∑

A∩B=∅
m1(A)m2(B),

which we will use below. In addition to the measure of external conflict, the measure 
of internal conflict .Conin : F(X) → [0, 1] of one body of evidence is also 
considered [11]. The ability to evaluate internal conflict is one possible application 
of evidence body clustering (see Remark 2 below). 

3 Basic Approaches for Clustering Body of Evidence 

The clustering of the body of evidence .F = (A,m) is primarily related to the 
clustering of the set of its focal elements . A. There are two formulations of the 
problem of clustering a set of focal elements. 

1. It is required to find such a subset of .A′ ⊆ 2X that would be ’close’ to . A in 
some sense, but .

∣∣A′∣∣ � |A|. The new mass function .m′(A), is found either by a 
local redistribution of the masses .m(B) of the sets B involved in the formation 
of a new focal element .A ∈ A′, or by a global redistribution that minimizes the 
discrepancy functional between .F = (A,m) and .F ′ = (

A′,m′). 
2. It is required to find such a partition (or cover) of the set . A of focal elements 

into subsets (clusters) .{A1, . . . ,Al} that would correspond in some sense to the 
structure of the set . A. 

The first type of clustering is used to reduce the computational complexity of 
algorithms for processing evidence bodies or solving other approximation problems. 
The second type of clustering is used to identify the structure of a set of focal 
elements, to estimate the degree of heterogeneity, inconsistency, etc. 

Next, we consider some implementations of clustering of these two types, 
namely: 

(1) hierarchical clustering; 
(2) clustering based on the density function of the distribution of conflict focal 

elements; 
(3) clustering based on conflict optimization (including an analogue of the k-means 

method for evidence bodies).
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3.1 Hierarchical Inner and Outer Clustering 

The simplest approximation procedure by clustering was proposed in [12], where 
‘close’ focal elements or focal elements with small masses were combined. In this 
case, the masses of the combined focal elements were summed up. A more complex 
clustering scheme, which is analogous to divisional-agglomerative algorithms [13] 
in some sense, has been proposed in [7] and [3, 14]. Two clusterings are the 
result of this algorithm. One of them is internal in the form of evidence body 
.F− = (

A−,m−)
, the other is external in the form .F+ = (

A+,m+)
. The set of  

focal elements .A− of internal clustering is the intersection of some sets from . A. 
While the set of focal elements .A+ of external clustering is the union of some sets 
from . A. The masses of focal elements that are united in .A+ or intersect in .A− are 
summarized: .m−(B) = ∑

A m(A) if .B = ⋂
A ∈ A− and . m+(C) = ∑

A m(A)

if .C = ⋃
A ∈ A+. In this case, such a pair .(A,B) of focal elements is chosen 

for union/intersection, which delivers the minimum increment of the measure of 
imprecision [5] .f (F ) = ∑

A∈A m(A) |A|. 
The increments of this measure at the union/intersection of two sets and will be 

equal 

. δ∪(C,D) = (m(C) + m(D)) |C ∪ D| − m(C) |C| − m(D) |D|

and 

. δ∩(C,D) = m(C) |C| + m(D) |D| − (m(C) + m(D)) |C ∩ D| ,

respectively. Therefore, the algorithm unites (intersects) those focal elements step 
by step, which deliver the minimum to the functional .δ∪(C,D) (. δ∩(C,D)) at  
.C �= D. These procedures are repeated until a predetermined number . l < |A|
of focal elements remains, or some proximity condition between the original body 
of evidence .F = (A,m) and its clustering is satisfied. As a result of such 
clustering, bodies of evidence .F− and .F+ are obtained, which in the theory of 
trust functions are called specialization and generalization of the body of evidence 
F , respectively [4]. Thus, the algorithm for hierarchical inner and outer clustering 
will be as follows. 

Algorithm 1 
Input data: body of evidence .F = (A,m), the number of focal elements in 

clustering l. 
Output data: bodies of evidence .F− = (

A−,m−)
and .F+ = (

A+,m+)
. 

1. Let .F− = F+ = F . 
2. Let’s find the pairs .(A−, B−) = arg minC �=Dδ∩(C,D) and . (A+, B+) =

arg minC �=Dδ∪(C,D) in .A− and . A+, respectively. Let’s replace a pair . (A−, B−)

with a set .A− ∩ B− in . A−, and a pair .(A+, B+) with a set .A+ ∪ B+ in . A+. 
We get new sets .A− and . A+. Let’s recalculate the masses: .m−(A− ∩ B−) ←
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Fig. 2 Inner and outer clustering 

m−(A−) + m−(B−), .m+(A+ ∪ B+) ← m+(A+) + m+(B+), the masses of the 
remaining focal elements from .A− and .A+ do not change. 

3. Step 2 is repeated until .l <
∣∣A−∣∣ = ∣∣A+∣∣. 	


Example 2 We have the following transformations of sets of focal elements for the 
outer and inner approximations of the body of evidence from Example 1 and .l = 2, 
respectively (pairs of merged/intersected focal elements at each step are marked in 
bold): 

. A = {{a}, {a, b}, {a, c}, {d, e}, {c, d, e}} → {{a}, {a, b}, {a, c}, {c, d, e}} →

. → {{a, b}, {a, c}, {c, d, e}} → {{a, b, c}, {c, d, e}} = A+,

. A = {{a}, {a, b}, {a, c}, {d, e}, {c, d, e}} → {{a}, {a, b}, {a, c}, {d, e}} →

. → {{a}, {a, b}, {d, e}} → {{a}, {d, e}} = A−.

We obtain the outer and inner approximations of the evidence body F , respectively 
.F+ = 0.7F{a,b,c} + 0.3F{c,d,e} and .F− = 0.7F{a} + 0.3F{d,e} (see Fig. 2). 	


3.2 Clustering Based on Conflict Density Distribution 

Another approach to clustering is to find a small (by cardinality) subset . A′ ⊆
A of ’significant’ focal elements. What characteristics of focal elements can be 
considered significant? These can be the mass of the focal element, its cardinality 
(a measure in the case of a measurable X), the number of other focal elements that 
intersect with the given one, etc. In [1], these characteristics were combined in the 
concept of the density of distribution of conflict focal elements. Non-overlapping 
focal elements are called conflicting. 

A function .ψF : 2X → [0, 1] is called the conflict density distribution of the 
evidence body .F = (A,m) if it satisfies the conditions:
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1. .ψF (A) = 0 if.B ∩ A �= ∅ .∀B ∈ A; 
2. .ψF (A) = 1 if .B ∩ A = ∅ .∀B ∈ A; 
3. .ψαF1+βF2 = αψF1 + βψF2 .∀F1, F2 ∈ F(X), where .α + β = 1, .α ≥ 0, .β ≥ 0. 

It can be shown that the conflict density function will be equal to . ψF (A) =∑
B:A∩B=∅ m(B) = 1 − P l(A). ‘Significant’ focal elements in [1] were those that 

maximize the function .ϕF (A) = m(A)ψF (A), .A ∈ A. The distance between the 
selected focal elements was another characteristic that was considered in [1] when 
choosing elements for .A′ ⊆ A. This distance should not be too small. Thus, the set 
.A′ ⊆ A will consist of sets that provide a large value of the function .ϕF and are 
located at a sufficiently large distance from each other. Let .d(A,B) be a metric on  
the set of focal elements. Then the algorithm for choosing the set .A′ ⊆ A will be as 
follows. 

Algorithm 2 
Input data: body of evidence .F = (A,m), the minimum possible value . h1 > 0

of .ϕF (A) for every .A ∈ A′; the minimum possible distance .h2 > 0 between focal 
elements from . A′. 

Output data: the body of evidence .A′ ⊆ A. 

1. Let the set of focal elements be ordered in descending order of the function . ϕF : 
.ϕF (A1) ≥ ϕF (A2) ≥ . . . ≥ ϕF (Ak). Put .A′ = {A1}, .s := 2. 

2. If .ϕF (As) ≤ h1, then the end. Otherwise, go to step 3. 
3. If .minA∈A′d(A,As) > h2, then .A′ := A′ ∪ {As}, .s := s + 1, go to step 2. 	


The function .d(A,B) = |A�B| can be used as a metric between focal elements, 
where . � is the symmetric difference of sets. To take into account not only the mutual 
position of focal elements, but also their masses, one can use metrics on the set of 
all evidence bodies .F(X) [8]. For example, if a certain metric . ρ is chosen on .F(X), 
then the metric on . 2X can be defined as .d(A,B) = ρ(F

m(A)
A , F

m(B)
B ), where .F

m(A)
A , 

.F
m(B)
B are simple evidence bodies. For example, .Fm(A)

A = m(A)FA+(1−m(A))FX. 
In particular, the following metric that is popular in evidence theory [9] between 
evidence bodies .F1 = (A1,m1) and .F2 = (A2,m2) can be used: 

. ρJ (F1, F2) =
√√√√

1

2

∑

A,B∈2X\{∅}
sA,B(m1(A) − m2(A))(m1(B) − m2(B)),

where .sA,B = |A ∩ B|/|A ∪ B| is the Jaccard index. It is easy to see that 
.ρJ (F1, F2) ∈ [0, 1] .∀F1, F2 ∈ F(X). It can be shown that then the metric 
.dJ (A,B) = ρJ (F

m(A)
A , F

m(B)
B ) takes the form. 

Lemma 1 . d2
J (A,B) = (m(A) − m(B))2 + m(A)m(B)

|A�B|
|A∪B| −

.(m(B) − m(A))
|B|m(B)−|A|m(A)

|X| . 

In particular, if .m(A) = m(B) = m, then .dJ (A,B) = m

√
|A�B|/|A ∪ B|.
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Note that Algorithm 2 can be considered as an evidential analogue of the popular 
‘point’ the DBSCAN algorithm (DensityBased Spatial Clustering of Applications 
with Noise, [6]). 

Example 3 Algorithm 2 will give the following result for the evidence body from 
Example 1 using the metric . dJ , .h1 = 0.1, .h2 = 0.2. 

Step 1. .ϕF ({a}) = 0.105, .ϕF ({a, b}) = 0.045, .ϕF ({a, c}) = 0.05, . ϕF ({d, e}) =
0.175, .ϕF ({c, d, e}) = 0.025. Therefore, the set of focal elements will be ordered 
as follows: .A = {{d, e}, {a}, {a, c}, {a, b}, {c, d, e}}, .A′ = {{d, e}}, .s := 2. 

Step 2. .ϕF ({a}) = 0.105 > h1 ⇒ go to step 3. 
Step 3. .dJ ({d, e}, {a}) ≈ 0.317 > h2 ⇒ .A′ := A′ ∪ {{a}} = {{d, e}, {a}}, 

.s := 3. 
Step 2.1. .ϕF ({a, c}) = 0.05 < h1 ⇒ the end. 
As a result, we get a new set of focal elements .A′ = {{d, e}, {a}}. 
The general view of the body of evidence with the set of focal elements . A′ will 

be as follows .F ′(x) = xF{a} + (1 − x)F{d,e}, .x ∈ [0, 1]. The masses of the focal 
elements of the body of evidence . F ′ can be found from the condition of minimizing 
the distance between F and . F ′. For example, if we use the metric . ρJ , then the 
solution to the problem .ρJ (F, F ′(x)) → min will be as follows .x0 = 149

240 ≈ 0.62. 
Then .F ′ = 0.62F{a} + 0.38F{d,e} and .ρJ (F, F ′(x0)) = 0.196. 	


3.3 Clustering Based on Conflict Optimization 

These methods are based on the assumption of the heterogeneity of those bodies 
of evidence that need clustering. This heterogeneity, in particular, may be a 
consequence of the aggregation in a given body of evidence .F = (A,m) of 
information from different, sometimes contradictory, sources. In this case, it is 
required to find such a partition (or cover) of the set of focal elements . A into subsets 
(clusters) .{A1, . . . ,Al} in order to optimize intracluster or intercluster conflict. 

If a certain subset .A′ ⊆ A of focal elements is selected, then we will further 
consider the following local redistribution of masses from . A to . A′ (and such a body 
of evidence will be denoted by .F(A′) = (A′,m′)): .m′(A) = m(A) .∀A ∈ A′, 
.m′(X) = 1 − ∑

A∈A′ m(A). In particular, if , then . F({A}) = F
m(A)
A = m(A)FA +

(1 − m(A))FX (simple evidence). 
Then the following clustering optimization problem can be formulated. It is 

required to find such a partition (or cover) of the set of focal elements . A into subsets 
(clusters) .C = {A1, . . . ,Al} in order to maximize the external conflict between 
evidence clusters: .Con(F (A1), . . . , F (Al )) → max. 

In the following algorithm, Algorithm 2 can be used to extract the set from l 
centers of new clusters .C = {A1, . . . ,Al}. The remaining focal elements from the 
set are redistributed among l clusters so that .Con(F (A1), . . . , F (Al )) → max.
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Algorithm 3 
Input data: body of evidence .F = (A,m), a selected small set . A′ =

{A1, . . . , Al} of l focal elements that will be the centers of new clusters. 
Output data: partition (cover) .C = {A1, . . . ,Al} of the set of all focal elements 

. A. 

1. Let .A(0)
i = {Ai}, .i = 1, . . . , l. 

2. Focal elements from are redistributed among clusters .A(0)
1 , . . . ,A(0)

l according 
to the principle of conflict maximization between evidence clusters. The focal 

element .B ∈ A\
{
A(0)

1 , . . . ,A(0)
l

}
will be assigned to that cluster .A(0)

i for which 

the maximum conflict measure is reached: 

. A(0)
i = arg max

j :B∈A(0)
j

Con
(
F

(
A(0)

1

)
, . . . , F

(
A(0)

j ∪ {B}
)

, . . . , F
(
A(0)

l

))
.

If equal maximum conflict values are obtained when assigning the element B to 
several clusters .A(0)

j , .j ∈ J , then this element B is included in all these clusters, 
and the mass value .m(B) is evenly distributed over the updated clusters, i.e. 
element B will be included in each cluster .A(0)

j , .j ∈ J with weight .m(B)
/|J |.

	

Example 4 Let’s redistribute the remaining focal elements . A\A′ = {{a, b}, {a, c},
.{c, d, e}} in accordance with Algorithm 4 for the body of evidence from Example 1 
and the set of focal elements .A′ = {{d, e}, {a}} selected in Example 3. 

Step 1. .A(0)
1 = {{d, e}}, .A(0)

2 = {{a}}. 
Step 2. Let .B = {a, b}. If .B ∈ A1, then we obtain: 

.F
(
{B} ∪ A(0)

1

)
= 0.15F{a,b} + 0.25F{d,e} + 0.6FX, 

.F
(
A(0)

2

)
= 0.35F{a} + 0.65FX. 

Then .Con
(
F

(
{B} ∪ A(0)

1

)
, F

(
A(0)

2

))
= 0.25 · 0.35 = 0.0875. 

If .B ∈ A2, then we obtain: 

.F
(
A(0)

1

)
= 0.25F{d,e} + 0.75FX, 

. F
(
{B} ∪ A(0)

2

)
= 0.35F{a} + 0.15F{a,b} + 0.5FX

and .Con
(
F

(
A(0)

1

)
, F

(
{B} ∪ A(0)

2

))
= 0.125. 

Thus, the element .B = {a, b} will be assigned to the cluster . A2. 
Let .B = {a, c}. If .B ∈ A1, then we obtain: 

.F
(
{B} ∪ A(0)

1

)
= 0.2F{a,c} + 0.25F{d,e} + 0.55FX, 

.F
(
A(0)

2

)
= 0.35F{a} + 0.65FX. 

Then .Con
(
F

(
{B} ∪ A(0)

1

)
, F

(
A(0)

2

))
= 0.25 · 0.35 = 0.0875. 

If .B ∈ A2, then we obtain:
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.F
(
A(0)

1

)
= 0.25F{d,e} + 0.75FX, 

. F
(
{B} ∪ A(0)

2

)
= 0.35F{a} + 0.2F{a,c} + 0.45FX

and .Con
(
F

(
A(0)

1

)
, F

(
{B} ∪ A(0)

2

))
= 0.1375. 

Thus, the element .B = {a, c} will be assigned to the cluster . A2. 
Let .B = {c, d, e}. If .B ∈ A1, then we obtain: 

.F
(
{B} ∪ A(0)

1

)
= 0.25F{d,e} + 0.05F{c,d,e} + 0.7FX, 

.F
(
A(0)

2

)
= 0.35F{a} + 0.65FX. 

Then .Con
(
F

(
{B} ∪ A(0)

1

)
, F

(
A(0)

2

))
= 0.105. 

If .B ∈ A2, then we obtain: 

.F
(
A(0)

1

)
= 0.25F{d,e} + 0.75FX, 

. F
(
{B} ∪ A(0)

2

)
= 0.35F{a} + 0.05F{c,d,e} + 0.6FX

and .Con
(
F

(
A(0)

1

)
, F

(
{B} ∪ A(0)

2

))
= 0.0875. 

Thus, the element .B = {a, c} will be assigned to the cluster . A1. 
Thus, we get a partition .C = {A1,A2}, where .A1 = {{d, e}, {c, d, e}}, . A2 =

{{a}, {a, b}, {a, c}}. 	

Another variant of the optimization problem of evidence body clustering will be 

considered below. It is required to find such a partition (or cover) of the set of focal 
elements . A into subsets (clusters) .C = {A1, . . . ,Al} in order to minimize the total 
internal conflict within evidence clusters: .	 = ∑l

i=1 Conin(F (Ai )) → min, where 
.Conin is a measure of internal conflict. The total external conflict . Conin(F (Ai )) =∑

B∈Ai
Con(F ({B}, Ci)) between each body of evidence .F({B}), .B ∈ Ai and 

some reference evidence (center) . Ci of the i-th cluster can be considered as an 
internal conflict by analogy with the classical k-means algorithm 

We will assume that center . Ci has the form 

.Ci =
∑

A∈Ai

αi(A)FA, (1) 

where .αi = (αi(A))A∈Ai
∈ S|Ai |, . Sk = {(t1, . . . , tk) : ti ≥ 0, i = 1, . . . , k,

.
∑k

i=1 ti = 1
}

is an k-dimensional simplex. The following theorem is true. 

Theorem 1 Let .P lAi
(A) = ∑

B∈Ai :
A∩B �=∅

m(B) be the restriction of the plausibility 

function to the set . Ai . Then the minimum of the functional . 	 for a fixed cover 
.C = {A1, . . . ,Al} will be achieved at 

.αi = (αi(A))
A∈Ai

∈ S∣∣∣Ai

∣∣∣
, i = 1, . . . , l, (2)
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where .Ai =
{

A ∈ Ai : A = arg max
A∈Ai

P lAi
(A)

}
. 

Then the clustering algorithm (analogous to k-means) will be as follows. 

Algorithm 4 
Input data: body of evidence .F = (A,m); number of clusters l; initial centers of 

clusters—bodies of evidence .C
(0)
i , .i = 1, . . . , l; maximum conflict threshold within 

clusters .Conmax ∈ [0, 1]; .s = 0. 
Output data: partition (covering) .C = {A1, . . . ,Al} of the set of all focal 

elements . A. 

1. Focal elements are redistributed among clusters according to the prin-
ciple of minimizing the conflict between evidence clusters and clus-
ter centers. The focal element .B ∈ A refers to the cluster .A(s)

i for 

which is achieved .miniCon
(
F({B}), C(s)

i

)
. ≤ Conmax. If it is true that  

.miniCon
(
F({B}), C(s)

i

)
> Conmax, then the focal element B is assigned 

as the center of the new cluster. As a result, clusters .A(s)
i , .i = 1, . . . , l are 

obtained. 
2. New cluster centers are calculated using formulas (1), (2), .s ← s + 1. 
3. Steps 1 and 2 are repeated until the clusters (or their centers) stabilize. 	

Corollary 1 Algorithm 4 converges in a finite number of steps. 

Example 5 Algorithm 4 will give the following result for the evidence body from 
Example 1. Let .l = 2 be set, and the initial centers of the clusters coincide with the 
focal elements identified by Algorithm 2: .C

(0)
1 = F({d, e}) = 0.25F{d,e} +0.75FX, 

.C
(0)
2 = F({a}) = 0.35F{a} + 0.65FX; .Conmax = 1; .s = 0. 

Step 1.1. We have 

.Con
(
F({a}), C(0)

1

)
= 0.0875, .Con

(
F({a, b}), C(0)

1

)
= 0.0375, 

.Con
(
F({a, c}), C(0)

1

)
= 0.05, 

.Con
(
F({d, e}), C(0)

1

)
= Con

(
F({c, d, e}), C(0)

1

)
= 0, 

.Con
(
F({a}), C(0)

2

)
= Con

(
F({a, b}), C(0)

2

)
= Con

(
F({a, c}), C(0)

2

)
= 0, 

.Con
(
F({d, e}), C(0)

2

)
= 0.0875, . Con

(
F({c, d, e}), C(0)

2

)
= 0.0175

Then the initial clustering will have the form according to the principle of 
minimizing the conflict between evidence clusters and cluster centers: . A(0)

1 =
{{d, e}, {c, d, e}}, .A(0)

2 = {{a}, {a, b}, {a, c}}. 
Step 1.2. New cluster centers are calculated using formulas (1), (2): 
.P lA(0)

1
({d, e}) = P lA(0)

1
({c, d, e}) = 0.3, 

.P lA(0)
2

({a}) = P lA(0)
2

({a, b}) = P lA(0)
2

({a, c}) = 0.7. 

Therefore
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.C
(1)
1 = αF{d,e} + (1 − α)F{c,d,e}, .C(1)

2 = βF{a} + γF{a,b} + (1 − β − γ )F{a,c}, 
where .α, β, γ ∈ [0, 1], .β + γ ≤ 1. 
Step 2.1. Focal elements are redistributed: 

.Con
(
F({a}), C(1)

1

)
= 0.35, .Con

(
F({a, b}), C(1)

1

)
= 0.15, 

.Con
(
F({a, c}), C(1)

1

)
= 0.2α, 

.Con
(
F({d, e}), C(1)

1

)
= Con

(
F({c, d, e}), C(1)

1

)
= 0, 

.Con
(
F({a}), C(1)

2

)
= Con

(
F({a, b}), C(1)

2

)
= Con

(
F({a, c}), C(1)

2

)
= 0, 

.Con
(
F({c, d, e}), C(1)

2

)
= 0.05(β + γ ), .Con

(
F({d, e}), C(1)

2

)
= 0.25. 

Then .A(0)
1 = {{d, e}, {c, d, e}}, .A(0)

2 = {{a}, {a, b}, {a, c}}. The clusters have 
stabilized. 	

Remark 1 Since cluster centers may depend on parameters . α = (α(A))

A∈Ai
∈

S∣∣∣Ai

∣∣∣
(see formula (2)), additional procedures for choosing these parameters can be 

used in the algorithm, such as: 

(1) cover minimization .C = {A1, . . . ,Al}. For example, .
∑l

i=1 |Ai | → min. 
(2) minimizing the uncertainty of evidence bodies . Ci , .i = 1, . . . , l. For example, 

(measure of imprecision [5]) .H(Ci) = ∑
A∈Ai

αi(A) |A| → min. 
(3) minimizing the distance between the centers of clusters and the original body 

of evidence with respect to some metric . ρ: .ρ(Ci, F ) → min, .i = 1, . . . , l; etc.  

Remark 2 Clustering a body of evidence .F = (A,m) can be used to evaluate 
its internal conflict. If .C = {A1, . . . ,Al} is a cover (or partition) of the set 
of focal elements . A, then the internal conflict can be estimated by the formula 
.Conin(F ) = Con(F (A1), . . . , F (Al )). So, the measure of internal conflict of the 
body of evidence from Example 1 using the clustering of Example 5 (or Example 4) 
will be equal to . Conin(F ) = Con(F ({d, e}, {c, d, e}1), F ({a}, {a, b}, {a, c})) =
0.2. 

4 Conclusion 

The article discusses the main known and currently being developed areas of 
evidence body clustering. In particular, the following classes of algorithms are 
considered: (a) hierarchical clustering algorithms; (b) clustering algorithms based 
on the density function; (c) clustering algorithms based on conflict optimization. 

On the one hand, many of the considered algorithms are analogues of the 
corresponding algorithms for “point” data. On the other hand, the dual frequency-
multiple nature of the bodies of evidence imposes peculiar restrictions, the need 
to use “one’s own” measures of proximity (for example, based on measures of 
conflict), etc. Some algorithms (for example, hierarchical ones) are explained by
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the peculiar goals of such clustering (for example, generating generalizations and 
specializations of the body of evidence). 

All these features leave a lot of room for creativity in the development of 
algorithms for clustering bodies of evidence. 
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Inferring Multiple Consensus Trees 
and Supertrees Using Clustering: A 
Review 

Vladimir Makarenkov, Gayane S. Barseghyan, and Nadia Tahiri 

1 Introduction 

The term phylogeny (i.e. phylogenetic tree or evolutionary tree) was introduced 
by Haeckel in 1866 [35], who defined it as “the history of the paleontological 
development of organisms by analogy with ontogeny or the history of individual 
development”. A phylogenetic tree represents a hypothesis about evolution of a 
given group of species which are usually associated with the tree leaves. 

In mathematics, phylogenetic trees are called additive trees or X-trees (as their 
leaves are often associated with the set of species X; [3]). Let us now present some 
necessary mathematical definitions related to phylogenetic trees. The distance δ(x,y) 
between two vertices x and y in a phylogenetic tree T is defined as the sum of the 
edge lengths in the unique path linking x and y in T. Such a path is denoted (x,y). A 
leaf is a vertex of degree one. Usually, a leaf represents a contemporary species (or 
a taxon). 

Definition 1 Let X be a finite set of n taxa. A dissimilarity d on X is a non-negative 
function on X × X such that for any x, y from X: 

d(x,y) = d(y,x) ≥ d(x,x) = 0. 

Definition 2 A dissimilarity d on X satisfies the four-point condition if for any x, y, 
z, and w from X: d(x,y) + d(z,w) ≤ max {d(x,z) + d(y,w); d(x,w) + d(y,z)}. 
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Fig. 1 An example of a tree metric on the set X of five taxa (on the left) and the corresponding 
phylogenetic tree (additive tree or X-tree) on the right 

Definition 3 For a finite set X, a phylogenetic tree (i.e. an additive tree or an X-
tree, i.e. a tree whose leaves are labeled according to a final set of species X) is an 
ordered pair (T, ϕ) consisting of a tree T, with vertex set V, and a map ϕ: X → V with 
the property that, for all x ∈ X with degree at most two, x ∈ ϕ(X). A phylogenetic 
tree is binary if ϕ is a bijection from X into the leaf set of T and every interior vertex 
has degree three. 

The theorem relating the four-point condition and a dissimilarity representability 
by a phylogenetic tree is as follows: 

Theorem 1 (Zarestskii, Buneman, Patrinos & Hakimi, Dobson). Any dissimilarity 
satisfying the four-point condition on X × X (where X is a finite set of species) 
can be represented by a phylogenetic tree T such that for any x, y from X, d(x,y) 
is equal to the length of the path linking the leaves x and y in T. This dissimilarity 
is called a tree metric. Furthermore, this tree is unique. 

Figure 1 gives an example of a tree metric on the set X of five taxa and the 
corresponding phylogenetic tree. 

Unfortunately, real-life evolutionary distances (or dissimilarities) rarely satisfy 
the four-point condition. Thus, one need to carry out an approximation algorithm 
to infer a tree metric matrix from a given matrix of evolutionary distances [32]. 
Among the most known distance-based approximation algorithms we can mention 
Neighbor-Joining [63], UPGMA [66], FITCH [31], and MW [45, 47]. 

Biologists often need to compare phylogenetic trees to each other in order to 
discover different evolutionary histories that govern a given set of species. There 
are several measures for comparing phylogenetic trees. The most popular of them 
include the Robinson and Foulds topological distance (RF) [61], the least-squares 
distance (LS), the bipartition dissimilarity (BD) [11], and the quartet distance (QD) 
[14]. In this literature review, we will mainly explore the methods based on the 
Robinson and Foulds distance. The Robinson and Foulds topological distance [61] 
between two trees is the minimum number of elementary operations (contraction 
and expansion) of nodes needed to transform one phylogenetic tree into another. It 
is also the number of splits (or bipartitions) that are present in one tree and absent 
in the other. The two phylogenetic trees in question must have the same set of taxa. 
The closer two phylogenetic trees are topologically, the smaller the value of the RF 
distance. It is often relevant to normalize the value of the RF distance by dividing 
it by its maximum possible value (equal to 2n-6) for two binary phylogenetic trees
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with n leaves. The RF distance calculation between two trees with n leaves can be 
carried out in O(n) [22, 46, 48]. 

Often phylogenetic tree reconstruction methods do not return a single phyloge-
netic tree as output, but a collection of different trees [32]. Moreover, phylogenetic 
trees inferred for different genes often differ from each other. There is no absolute 
criterion for determining whether one tree is better than the others (except for 
the use of intrinsic criteria, e.g., the use of bootstrap scores). For this reason, 
it is preferable to seek a consensus representation of these trees, such that their 
concordant parts appear clearly in relation to the discordant parts. The resulting 
representation is called a consensus tree. Traditional consensus methods generate a 
single phylogenetic tree that is a representative of all of the input trees [15]. One 
of the first consensus methods was proposed by Adams (1972). Since then, a wide 
variety of methods have been developed. How to use them has been the subject of 
much debate [15, 27]. 

The main types of consensus trees are the following: the strict consensus tree 
[58, 67], the majority-rule consensus tree [53], the Nelson consensus tree [59], 
and the extended majority-rule consensus tree [30]. Let us briefly recall the main 
characteristics of each of these consensus trees. 

The strict consensus tree (or Nelson’s cladogram) is inferred by considering only 
those tree splits (i.e. bipartitions induced by the internal tree edges) that are identical 
in all trees compared. Conflicting parts of phylogenetic trees are represented by 
multifurcations in a strict consensus tree. 

It is sometimes more convenient to have a less strict criterion than the one used by 
the strict consensus tree in order to allow bipartitions that are not necessarily present 
in all trees. When comparing a set of phylogenetic trees with different topologies, it 
is possible to search for the monophyletic groups that appear most frequently (often 
in more than 50% of the trees) among all the trees compared. The resulting tree is 
the majority-rule consensus tree. 

The extended majority-rule consensus tree contains all majority bipartitions to 
which the remaining compatible bipartitions are added in turn, starting with the most 
frequent bipartitions for the given tree set. The process stops when a completely 
resolved (i.e. binary) tree is obtained. The extended majority consensus tree is the 
most frequently used in molecular biology, as it is always the best resolved among 
the three types of consensus trees discussed so far. 

The Nelson consensus tree includes the heaviest set of compatible bipartitions. 
It consists in finding a clique of maximum weight in a compatibility graph of the 
entire bipartition set, which is NP-hard [15, 59]. 

Unfortunately, in many practical situations, phylogenetic trees used as input of 
consensus tree reconstruction methods can be quite divergent. This can happen, 
for example, when the input trees represent the evolution of different genes which 
have been affected by multiple reticulate evolutionary events such as horizontal 
gene transfer, hybridization or intragenic/intergenic recombination, ancient gene 
duplication or gene loss [2, 49, 57]. These evolutionary events can be unique for 
a subgroup of the input gene trees. Thus, it seems to be much more appropriate 
to represent this subgroup by its own consensus tree. However, the conventional
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consensus tree methods provide only one candidate tree for a given set of input 
gene phylogenies without considering their possible subgroups (or clusters) [44]. 

Figure 2 shows an example of four seven-leaf phylogenetic trees T1, T2, T3, 
and T4. Here, the solution consisting of two majority-rule consensus trees, T12 and 
T34, seems to be much more appropriate than the conventional consensus solution 
consisting of a single majority-rule consensus tree, T1234, i.e., here a star tree (a tree 
having no internal edges at all). 

In many evolutionary studies gene trees to be combined are defined on different, 
but partially overlapping, sets of taxa (e.g. see Tree of Life project; [44]). It is very 
unlikely that all the genes considered have been sequenced for the same sets of 
species. In order to reconcile such trees, supertree reconstruction methods should 
be applied [7, 54, 75, 76]. Supertrees synthesize a given set of small (i.e. partial) 
trees with partial taxon overlap into comprehensive supertrees that include all taxa 
present in the given set of trees. 

The most known supertree inference method is Matrix Representation with 
Parsimony (MRP) [6, 60] that carries out matrix-like aggregation of the given partial 
trees. The supertree reconstruction methods are commonly used for phylogenetic 
analysis of organisms with large genomes [8, 29, 38, 52]. For organisms with 
small genomes, such as prokaryotes, several approaches to genomic phylogenetic 
analysis have been adopted. In particular, supertree analysis provides new insights 
into the evolution of prokaryotes that could not be solved by many other approaches 
[21]. Recently, Makarenkov et al. [51] and Tahiri et al. [72] have used supertree 
phylogenetic analysis to characterize the evolution of SARS-CoV-2 genes. 

As in the case of consensus trees, in many practical situations multiple conserva-
tive supertrees should be inferred to best represent the evolution of a given group of 
gene trees. Figure 3 shows an example of four phylogenetic trees T1, T2, T3, and T4 
defined on different, but mutually overlapping, sets of seven taxa. Here, the solution 
consisting of two majority-rule supertrees, T12 and T34, is more appropriate than that 
consisting of a single majority-rule supertree, T1234, i.e., here a star tree, yielded by 
the traditional supertree approach. 

The idea of building multiple consensus trees was originally formulated by 
Maddison [43]. He discovered that consensus trees for some subsets of input trees 
may differ a lot and that they are generally much better resolved than the single 
traditional consensus tree characterizing the whole set of the input trees. Many 
approaches have been developed to provide solutions for classifying phylogenetic 
trees based on the well-known clustering algorithms, such as k-means and k-
medoids. We discuss their main features in the Methods section. 

Partitioning is a clustering approach used to divide a given set of elements 
(or taxa) into a meaningful set of groups of elements (objects or entities) called 
clusters (or classes) [55, 56]. The objective of partitioning is to find groups of 
similar elements according to a given similarity measure. The four main partitioning 
approaches that can be used to group the elements based on the set of their features 
(or variables) are the following: (1) a center of gravity, i.e., the k-means algorithm 
[40, 42], where k denotes the number of clusters; (2) a geometric median, i.e., k-
medians [13]; (3) a center containing the most frequent modes, i.e., k-modes [36];
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Fig. 2 Four phylogenetic trees T1, T2, T3, and  T4 defined on the same set of seven leaves. Their 
single (traditional) majority-rule consensus tree is a star tree T1234. The majority-rule consensus 
trees, T12 and T34, constructed for the pairs of topologically close trees: T1 and T2, and  T3 and T4, 
respectively
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Fig. 3 Four phylogenetic trees T1, T2, T3, and  T4 defined on different, but mutually overlapping, 
sets of seven taxa. Their single (traditional) majority-rule supertree is a star tree T1234. The  
majority-rule supertrees, T12 and T34, constructed for the pairs of topologically close trees: T1 
and T2, and  T3 and T4, respectively 

(4) a medoid- based approach, in which a medoid is a cluster element that minimizes 
the sum of the distances between it and all other cluster elements, i.e., k-medoids 
[37]. In our literature review, we will mainly focus only on the k-means and k-
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medoids algorithms as they have been extensively used in tree clustering (see the 
Methods section). Both of them are very fast, as the time complexity of k-means 
is O(I × K × M × N), where I is the number of iterations in the internal loop of 
k-means, K is the number of clusters, M is the number of features characterizing the 
given set of elements, and N is the number of elements, whereas the time complexity 
of k-medoids is O(I × K × M × (N − K)2). It is worth noting that the k-medoids 
algorithm is much less sensitive to outliers than k-means. The Euclidean, Manhattan 
and Minkowski metrics are the most frequently used in the objective function of 
k-means and k-medoids [23, 24, 56]. However, in the case of tree clustering the 
Robison and Foulds topological distance or another tree distance should be used 
instead, and phylogenetic trees will play the role of cluster elements. 

2 Methods 

The Phylogenetic Islands [43] is a method that divides a collection of trees based 
on the branch length of the trees and the number of branch rearrangements by 
which the input trees differ. The author considers the three following types of 
branch rearrangement: NNI (nearest neighbor interchange), SPR (subtree pruning-
regrafting), and TBR (tree bisection reconnection) [69, 70]. In NNI rearrangements, 
a clade (i.e. a subtree) can be moved to a nearby branch only, in SPR, it can be moved 
to a nearby or a distant branch, and in TBR, it can be moved to a nearby or a distant 
branch, with the clade also being rerooted. This method was developed to find the 
most-parsimonious trees using tree search algorithms, i.e., it starts with multiple 
starting points to find multiple islands. Maddison formally defines an island of trees 
of length L as a collection of n trees that satisfy three requirements: (1) all trees are 
of length < L; (2) each tree is connected to every other tree in the island through a 
series of trees, all of the length < L, with adjacent trees in the series differing only 
by a single rearrangement; and (3) all trees that satisfy criteria 1 and 2 are included 
in the set. Multiple islands can be discovered by performing many searches with a 
tree search tools available in PAUP* [69] and Henning86 [28], each search starting 
with a different tree. The trees are generally much more similar within islands than 
between islands, as shown by the analysis of partition metrics between trees (e.g. 
the Robinson and Foulds distance or the partition metric). The author concluded 
that trees on different islands may have different effects on trait evolution. 

Characteristic trees that minimize the information loss [68] is an alternative 
approach to single consensus postprocessing methods in phylogenetic analysis. The 
presented approach was developed using popular clustering algorithms, namely k-
means and agglomerative clustering [43]. The method proposed by Stockham et al. 
minimises the information loss using the characteristic tree concept. This method 
can be used to improve the resolution level of the output consensus trees and 
to provide more details about how the candidate trees are distributed. The major 
limitation of this method is that the input phylogenetic trees must have the same set 
of species (consensus case) and the method cannot address the case of homogeneous
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data (i.e. when the number of cluster K = 1). The objective function of the method 
considered by Stockham et al. [68] is as follow:  

OF = 
K∑

k=1 

Nk∑

i=1 

RF 2 (
T st k , Tki

)
, (1) 

where K is the number of clusters, Nk is the number of trees in cluster k, RF2 is the
squared Robinson and Foulds topological distance between the tree Tki (i.e. tree i of
cluster k) and the tree . T st

k that is the strict consensus tree of cluster k. 
Multipolar Consensus (MPC) method [12] consists of finding a small set of 

trees including all splits with support greater than a predefined threshold. Given 
the splits to be displayed, the number of trees in the multipolar consensus must 
be minimised. This method can display more secondary evolutionary signals than 
majority-rule consensus. As the methods of Maddison [43] and Stockham et al. [68], 
the MPC method always generates as a solution multiple consensus trees and never 
a single one. Bonnard et al. [12] rely on a heuristic coloring scheme, called Greedy 
Coloring Algorithm, that uses two main steps: (1) to create an order on the vertices; 
and (2) to consider the vertices one by one in that order, assigning to a vertex the 
first color that is not assigned to an already colored vertex related to it. The MPC 
method differs from the other tree clustering methods in at least two ways: (1) it is 
more parsimonious, as each non-kernel split present in an input tree is represented 
only once; (2) it does not require prior clustering of the input trees. As a result, the 
time complexity of MPC is polynomial on the number of input splits, but only linear 
on the number of input trees. 

The TreeOfTrees method [20] allows the comparison of X-tree topologies 
obtained from multiple sets of aligned gene sequences. The main goal of this 
method is to detect genes with identical histories using bootstrap sampling, and 
weighted or unweighted consensus. The comparison between tree sets is based 
on several tree metrics leading to a unique tree labelled by the gene trees (i.e. a 
kind of hierarchical tree clustering is presented). To estimate the robustness of the 
congruence between the input gene trees, a resampling procedure is used, which 
results in the construction of a “tree of gene trees” that provides both: a simple 
tree representation of the proximity of the gene trees, and a bootstrap value for 
each bipartition of the tree of trees. Each leaf of the tree of trees corresponds 
to a single gene (or a bootstrapped phylogenetic tree representing its evolution). 
The comparison between tree topologies starts by transforming each of the input 
trees into a pairwise distance matrix, counting the number of edges separating 
two taxa, or using a path length metric. The resulting tree distance matrix allows 
an unambiguous determination of the tree topology. The consensus tree T is 
constructed by enumerating all bipartitions belonging to the set of the input trees. 
Darlu and Guénoche propose the weighted consensus method, defined using the 
following weight function:
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w (Bi) =
∑

Tk∈S 
τk, (2) 

where Bi is the bipartition i, Tk is a tree of cluster k, S is the subset of the input
trees containing the bipartition Bi, and τ k is the measure of the quality of the tree
Tk. Then, the authors define the weight of each of the input tree Tk as the sum of the
weights of the internal edges contained in Tk using the following formula:

�(Tk) =
∑

Bi∈Tk

w (Bi) . (3) 

Multiple Consensus Trees [34] is a tree clustering method intended to decide 
whether there is a single consensus among the input gene trees or not, and to detect 
divergent genes using a partitioning method. If the given gene trees are all congru-
ent, they should be compatible with a single consensus tree. Otherwise, multiple 
consensus trees corresponding to divergent genetic patterns can be identified. The 
multiple consensus tree method optimises a generalised score, over a set of tree 
partitions to decide whether the given set of gene trees is homogeneous or not. 
The author considers unrooted X-trees only and focuses on the following consensus 
strategies: an X-tree is represented by a set of its bipartitions, each corresponding 
to an internal edge of the tree. Removing each internal edge results in a split, and 
hence a bipartition of the set of taxa X. The weight of each bipartition . Bi = Xi ∪X′

i

is the number Ni of X-trees in the profile that contain that bipartition. The author 
defines the weight of an X-tree T, relative to the tree profile π of N trees, as follows: 

Wπ(T ) =
∑

Bi∈Tm 

w (Bi) =
∑

Bi∈Tm 

Ni, (4) 

where w(Bi) is the weight of each bipartition Bi of T, Ni is the number of internal
majority edges (i.e. the edges satisfying the following condition .Ni > N

2 ), and Tm 
is the tree T restricted to its majority edges. The weight of each bipartition Bi is the 
number Ni of X-trees in the profile containing this bipartition. 

The author generalizes the score (4), defining it for a partition of trees Pπ in k 
classes, as follows: 

Wk (Pπ) =
∑

i=1,...,k 
pi × Wπi

(
T maj 

i

)
, (5) 

where Pπ is a partition of the set of trees π in k classes (π1, . . . , πk) containing
respectively {p1, . . . , pk} trees, and .T

maj
i is the majority consensus trees correspond-

ing to class i. 
Islands of Trees [65] is the method based on any appropriate pairwise tree-to-

tree distance metric that extends the notion of island to any set or multiset of trees, 
such as those that can be generated by Bayesian or bootstrap methods and facilitates
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finding islands of trees a posteriori. This can be useful when the strict consensus of 
most parsimonious trees is relatively unresolved, although it relies on the analytical 
program (Silva and Wilkinson used PAUP*) to identify not only the number of 
islands, but also the constituents of most parsimonious trees. Distinct subsets of 
trees, such as tree islands, are complementary to other means of data exploration 
that involve attempts at partitioning sets of trees to obtain better summaries and 
promote better understanding of evolution. However, this method is of limited use 
for large phylogenetic tree distributions because it replaces the calculation of the 
distance with a very large number of pairwise comparisons of trees. 

Inferring multiple consensus trees using k-medoids [71] is a fast method for 
inferring multiple consensus trees from a given set of phylogenetic trees defined 
on the same set of species. This method is based on the k-medoids partitioning 
algorithm to partition a given set of trees into multiple tree clusters. The well-
known Silhouette and Caliński-Harabasz cluster validity indices have been adapted 
for tree clustering with k-medoids to determine the most appropriate number of 
clusters. It can be used to identify groups of gene trees that have similar evolutionary 
histories within the group and different evolutionary histories between the groups. 
This method is suitable for the analysis of large genomic and phylogenetic datasets. 

Compared to the objective function used by Stockham et al. [68] (see Eq. 1), 
Tahiri et al. [71] used the majority-rule consensus tree instead of the strict consensus 
tree, and the unsquared RF distances instead of the squared one. The straightforward 
objective function to be minimized is then as follows: 

OF = 
K∑

k=1 

Nk∑

i=1 

RF
(
T maj 

k , Tki

)
, (6) 

where RF is the Robinson and Foulds distance between the tree Tki (i.e. tree i of
cluster k) and .T

maj
k that is the majority-rule consensus tree of cluster k. Nevertheless, 

computing the majority-rule consensus tree or the extended majority-rule consensus 
tree requires at least O(nN) time, where n is the number of leaves (taxa or species) 
in each tree and N is the number of trees. 

Thus, Tahiri et al. [71] used the following objective function in their method 
which is based on k-medoids: 

OFmed = 
K∑

k=1 

Nk∑

i=1 

RF
(
T m 

k , Tki

)
, (7) 

where .T m
k is the medoid of cluster k, defined as a tree belonging to cluster k that 

minimizes the sum of the RF distances between it and all other trees in k. This  
version of the objective function is much faster than that based on Eq. (6) because it 
does not require the majority-rule consensus tree recomputation at each basic step 
of clustering algorithm. The running time of this method is O(nN2 + rK(N-K)2I), 
where O(nN2) is the time needed to precalculate the matrix of pairwise RF distances
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of size (N × N) between all input trees, K is the number of clusters, I is the number 
of iterations in the internal loop of k-medoids, and r is the number of different 
random starts used in k-medoids (usually hundreds of different random starts are 
needed to obtain good clustering results; [56]). 

Inferring multiple consensus trees and supertrees using k-means [72] is a  
new method for inferring multiple alternative consensus trees and supertrees that 
best represent the main evolutionary patterns of a given set of gene trees. This 
method is based on the use of the popular k-means clustering algorithm and the 
Robinson and Foulds topological distance. It partitions a given set of trees into one, 
for homogeneous data, or multiple, for heterogeneous data, cluster(s) of trees. The 
authors show how the popular Caliński-Harabasz, Silhouette, Ball and Hall, and Gap 
cluster validity indices can be used in tree clustering with k-means. The Euclidean 
property of the square root of the Robinson and Foulds distance is used to define a 
fast and efficient objective function that is as follows: 

OFEA = 
K∑

k=1 

1 

Nk 

Nk−1∑

i=1 

Nk∑

j=i+1 

RF
(
Tki, Tkj

)
, (8) 

The time complexity of the tree clustering algorithm based on Eq. (8) is  
O(nN2 + rNKI). 

Moreover, the authors establish some interesting properties, and use them in the 
clustering process, of the general objective function defined in Eq. (6). Specifically, 
the lower and the upper bounds of this objective function OF are established in 
Theorem 2 below: 

Theorem 2 [72]. For a given cluster k containing Nk phylogenetic trees (i.e. additive 
trees or X-trees) the following inequalities hold: 

1 

Nk − 1 

Nk−1∑

i=1 

Nk∑

j=i+1 

RF
(
Tki, Tkj

) ≤ 
Nk∑

i=1 

RF
(
T maj 

k , Tki

)

≤ 
2 

Nk 

Nk−1∑

i=1 

Nk∑

j=i+1 

RF
(
Tki, Tkj

)
, 

(9) 

where Nk is the number of trees in cluster k, Tki and Tkj are, respectively, trees i

and j in cluster k, and .T
maj
k is the majority-rule consensus tree of cluster k. 

In the same paper, Tahiri et al. show how their method can be extended to the 
case of supertree clustering. In the supertree clustering context, we assume that 
a given  set of  N unrooted phylogenetic trees may contain different, but mutually 
overlapping, sets of leaves. In this case, the original objective function OF shown in 
Eq. (6) can be reformulated as follows:
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OFST = 
K∑

k=1 

Nk∑

i=1 

RFnorm (STk, Tki) = 
K∑

k=1 

Nk∑

i=1

(
RF (STk, Tki) 

2n (STk, Tki) − 6

)
, (10) 

where K is the number of clusters, Nk is the number of trees in cluster k,
RFnorm(STk,Tki) is the normalized Robinson and Foulds topological distance
between tree i of cluster k, denoted Tki, and the majority-rule supertree of this
cluster, denoted STk, reduced to a subtree having all leaves in common with Tki.
The RF distance is normalized here by dividing it by its maximum possible value
(i.e. 2n(STk,Tki)-6, where n(STk,Tki) is the number of common leaves in STk and
Tki). The RF distance normalization is performed here to account equally the
contribution of each tree to clustering. Clearly, Eq. (10) can be used only if the 
number of common leaves in STk and Tki is larger than 3. 

An analog of Eq. (8) can be used in supertree clustering to avoid supertree 
recalculations at each step of k-means. This can be done using the following 
objective function: 

OFST EA = 
K∑

k=1 

1 

Nk 

Nk−1∑

i=1 

Nk∑

j=i+1
(

RF
(
Tki, Tkj

)

2n
(
Tki, Tkj

) − 6 
+ α × 

n (Tki) + n
(
Tkj

) − 2n
(
Tki, Tkj

)

n (Tki) + n
(
Tkj

)
)

, 

(11) 

where n(Tki) is the number of leaves in tree Tki, n(Tkj) is the number of leaves in
tree Tkj, n(Tki,Tkj) is the number of common leaves in trees Tki and Tkj, and α is the
penalization (tuning) parameter, taking values between 0 and 1, needed to prevent
from putting to the same cluster trees having small percentages of common leaves.

The simulations conducted by Tahiri et al. [72] illustrated that their new tree 
clustering method is faster and generally more efficient than the methods of 
Stockham et al. [68], Tahiri et al. [71] and Bonnard et al. [12] discussed earlier 
in this section. 

3 Cluster Validity Indices Adapted to Tree Clustering 

In this section, we show how the popular Caliński-Harabasz, Silhouette, Ball and 
Hall, and Gap cluster validity indices can be used in tree clustering with k-means.
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3.1 Caliński-Harabasz Cluster Validity Index Adapted for Tree 
Clustering 

The first cluster validity index we consider here is the Caliński-Harabasz index [17]. 
This index, sometimes called the variance ratio criterion, is defined as follows: 

CH = 
SSB 
SSW 

× 
N − K 
K − 1 

, (12) 

where SSB is the index of intergroup evaluation, SSW is the index of intragroup
evaluation, K is the number of clusters and N is the number of elements (i.e. trees in
our case). The optimal number of clusters corresponds to the largest value of CH.

In the traditional version of CH, when the Euclidean distance is considered, the 
SSB coefficient is evaluated by using the L2-norm: 

SSB = 
K∑

k=1 

Nk‖mk − m‖2, (13) 

wheremk (k = 1 ...K) is the centroid of cluster k,m is the overall mean (i.e. centroid)
of all elements in the given dataset X, and Nk is the number of elements in cluster k.
In the context of the Euclidean distance, the SSW index can be calculated using the
two following equivalent expressions:

SSW =
K∑

k=1

Nk∑

i=1

‖xki − mk‖2 =
K∑

k=1

1

Nk

⎛

⎝
Nk−1∑

i=1

Nk∑

j=i+1

∥∥xki − xkj

∥∥2
⎞

⎠ , (14) 

where xki and xkj are elements i and j of cluster k, respectively [17]. 
To use the analogues of Eqs. (13) and (14) in tree clustering, Tahiri et al. [72] 

used the concept of centroid for a given set of trees. The median tree [4, 5] plays 
the role of this centroid in a tree clustering algorithm. The median procedure [5] is  
defined below. The set of median trees, Md(�), for a given set of trees� = {T1, . . .  , 
TN} having the same set of leaves S, is the set of all trees T defined on S, such that: 
.
∑N

i=1 RF (T , Ti) is minimized. If N is odd, then the majority-rule consensus tree, 
Maj(�) of �, is the only element of Md(�). If N is even, then Md(�) is composed 
of Maj(�) and of some more resolved trees. 

Tahiri et al. [72] proposed to use some formulas based on the properties of the 
Euclidean distance to define SSB and SSW in k-means-like tree clustering. These 
formulas do not require the computation of the majority (or the extended majority)-
rule consensus trees at each iteration of k-means. Precisely, they replace the term
‖xki − xkj‖2 in Eq. (14) by  RF(Tki,Tkj) to obtain the formula for SSW :
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SSW = 
K∑

k=1 

1 

Nk 

Nk−1∑

i=1 

Nk∑

j=i+1 

RF
(
Tki, Tkj

)
, (15) 

where Tki and Tkj are trees i and j of cluster k, respectively.
Also, in the case of the Euclidean distance, the formula is as follows: 

SSB + SSW = 
1 

N 

⎛ 

⎝ 
N−1∑

i=1 

N∑

j=i+1

∥∥xi − xj

∥∥2 
⎞ 

⎠ , (16) 

where xi and xj are two different elements of X [17]. 
As a result, the approximation to the global variance between groups, SSB, can 

be evaluated as follows: 

SSB = 
1 

N 

⎛ 

⎝ 
N−1∑

i=1 

N∑

j=i+1 

RF
(
Ti, Tj

)
⎞ 

⎠ − SSW , (17) 

where Ti and Tj are trees i and j in the set of trees�, and SSW is calculated according
to Eq. (15). 

Based on the Euclidean properties of the square root of the Robinson and Foulds 
distance, Eqs. (15) and (17) establish the exact formulas for calculating the indices 
SSB and SSW for the objective function OFEA defined by Eq. (8). Interestingly the 
objective function OFEA can also be used as an approximation of the objective 
function defined in Eq. (6) (obviously, the centroid of a cluster of trees is not 
necessarily a consensus tree of the cluster; furthermore, it is not necessarily a 
phylogenetic tree). 

3.2 Ball-Hall Index Adapted for Tree Clustering 

Another relevant criterion to consider in this review is the Ball-Hall index. In 1965, 
Ball and Hall (BH) introduced the ISODATA procedure [1] to measure the average 
dispersion of groups of objects with respect to the mean square root distance, i.e. 
the intra-group distance. Unlike the CH index, the BH index can be used to find 
solutions consisting of a single consensus tree. Tahiri et al. [72] adapted the BH 
criterion for tree clustering with k-means, which led to the following formula: 

BH = 
1 

K 

K∑

k=1 

1 

Nk 

Nk∑

i=1 

RF
(
T maj 

k , Tki

)
. (18)

Furthermore, the following formula can be used to avoid the majority-rule tree
calculation:
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BH = 
1 

K 

K∑

k=1 

1 

N2 
k 

Nk−1∑

i=1 

Nk∑

j=i+1 

RF
(
Tki, Tkj

)
. (19) 

3.3 Silhouette Index Adapted for Tree Clustering 

The next popular criterion we consider here is the Silhouette (SH) width index [62]. 
Traditionally, the Silhouette width of cluster k is defined as follows: 

s(k) = 
1 

Nk 

⎡ 

⎣ 
Nk∑

i=1 

b(i) − a(i) 

max
(
a(i), b(i) 

⎤ 

⎦ , (20) 

where Nk is the number of elements belonging to cluster k, a(i) is the average
distance between element i and all other elements belonging to cluster k, and b(i) is
the smallest, over-all clusters k′ different from k, of all average distances between i
and all the elements of cluster k’.

Equations (21) and (22) can be used to calculate a(i) and b(i), respectively, in 
case of tree clustering: 

a(i) =
∑Nk 

j=1 RF
(
Tki, Tkj

)

Nk 
, (21) 

b(i) = min
1≤k′≤K,k′ 	=k

∑Nk′
j=1 RF

(
Tki, Tk′j

)

Nk′
, (22) 

where Tk′j is tree j of cluster k
′, such that k′ 	= k, and Nk′ is the number of trees in

cluster k′.
The optimal number of clusters, K, corresponds to the maximum average value 

of SH that is calculated as follows: 

SH = s(K) = 
K∑

k=1 

[s(k)] 

K 
. (23) 

The value of the SH index defined by Eq. (23) is located in the interval between −1 
and +1.
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3.4 Gap Statistic Adapted for Tree Clustering 

The last criterion that we are discussing here is the Gap statistic [73]. As the BH 
index, Gap allows solutions consisting of a single consensus tree. The formulas 
proposed by Tibshirani et al. [73] are based on the properties of the Euclidean 
distance. In the context of tree clustering, Tahiri et al. [72] adapted the Gap statistic 
by defining the total intracluster distance, Dk, characterizing the cohesion between 
the trees belonging to the same cluster k, as follows: 

Dk = 
Nk∑

i=1 

Nk∑

j=1 

RF
(
Tki, Tkj

)
. (24) 

The sum of the average total intracluster distances, VK , can be calculated using the
following formula:

VK =
K∑

k=1

1

2Nk

Dk. (25) 

The Gap statistic, which reflects the quality of a given clustering solution with K
clusters, is traditionally defined as follows:

GapN(K) = E∗
N {log (VK)} − log (VK) , (26) 

where .E∗
N denotes expectation under a sample of size N from the reference 

distribution. The following formula [73] for the expectation of log(VK) was used 
in our method: 

E∗
N {log (VK)} = log

(
Nn  
12

)
−

(
2 

n

)
log(K), (27) 

where n is the number of tree leaves. The largest value of the Gap statistic
corresponds to the best clustering.

4 Example of Application to Evolutionary Data 

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that attach the appropriate 
amino acid to their cognate transfer RNA. The structure-function aspect of aaRSs 
has long interested biologists [33, 77]. It has been observed that the central role 
played by aaRSs in translation suggest that their evolutionary histories and that of 
the genetic code can be closely related [77]. This information would make aaRS 
gene domain analysis a key component of tree-of-life inference [16, 74]. Woese
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et al. examined the evolutionary profiles of each of the 20 standard aaRSs used 
by living cells to construct the evolutionary history of proteins organized into 5 
groups (nonpolar aliphatic R group, nonpolar, aromatic R group, polar, uncharged 
R group, positively charged R group, and negatively charged R group). To conduct 
their famous aaRS analysis Woese et al. considered a total of 72 species from 3 
main domains (Archaea, Eukarya and Bacteria), which can be represented by leaves 
of the related phylogenetic trees. 

In our study, we used 36 aaRS phylogenetic trees (i.e. aaRS gene trees) originally 
constructed by Woese et al. These trees had different, but mutually overlapping, sets 
of leaves (in total 72 different species were considered). They are available on our 
GitHub repository along with our program at the following URL address: https:// 
github.com/TahiriNadia/KMeansSuperTreeClustering. These 36 trees were used as 
input for our KMeansSuperTreeClustering algorithm [72]. Our supertree clustering 
algorithm was carried out with the following options: the Caliński-Harabasz [17] 
cluster validity index was used to select the best number of clusters (the number of 
clusters varied from 2 to 10 in our experiments) and the penalization parameter α 
was set to 1. 

In these settings, our algorithm found that the best solution for these data 
corresponds to a 2-cluster partitioning. Each of these clusters of trees can be 
represented by its own supertree. The first obtained cluster includes 19 trees for 
a total of 61 different species, while the second obtained cluster includes 17 trees 
for a total of 56 species. The supertrees (see Figs. 3 and 4) for the two obtained 
tree clusters were inferred using the CLANN program [19]. In CLANN, we used 
the most similar supertree (dfit) method [18] with the mrp criterion. This criterion 
involves a matrix representation based on the parsimony criterion. Next, we inferred 
the most common (by cluster) horizontal gene transfers (HGT) that characterize the 
evolution of phylogenetic trees included in the two obtained clusters of trees. The 
HGT detection method by Boc et al. [11] was used for this purpose. It proceeds 
by reconciliation of the species and gene phylogenetic trees. In our case, the two 
obtained supertrees played the role of gene trees, while the species phylogenetic 
trees followed the NCBI taxonomic classification (see https://www.ncbi.nlm.nih. 
gov/Taxonomy/CommonTree/wwwcmt.cgi); they are presented by full edges in 
Figs. 4 and 5. These supertrees were not fully resolved (i.e. the first supertree, see 
Fig. 4 contains 9 internal nodes with degree greater than 3, whereas the second 
supertree, see Fig. 5 contains 10 internal nodes with degree greater than 3). We used 
the version of the HGT algorithm available on the T-Rex website [9] and Armadillo 
1.1 [41] workflow platform to identify the scenarios of HGT events that reconcile 
each species tree with the corresponding supertree. The root of all of these trees 
was placed on the edge that splits the clade of Bacteria with those of Eukarya and 
Archaea. Two frequent horizontal gene transfers were found for the first supertree 
and four for the second supertree. Our results indicate that most of aminoacyl-tRNA 
synthetases underwent a two-way evolution. The obtained results are in line with the 
results of Dohm et al. [26] and Sharaf et al. [64] that aminoacyl-tRNA synthetases 
possess two versions of most tRS, one cytosolic and one mitochondrial.

https://github.com/TahiriNadia/KMeansSuperTreeClustering
https://github.com/TahiriNadia/KMeansSuperTreeClustering
https://github.com/TahiriNadia/KMeansSuperTreeClustering
https://github.com/TahiriNadia/KMeansSuperTreeClustering
https://github.com/TahiriNadia/KMeansSuperTreeClustering
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
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A. aeolicus 
T. maritima 
Synechocystis sp. PCC 6803 
C. tepidum 
P. gingivalis 
C. trachomatis 
M. pneumoniae 
M. genitalium 
D. radiodurans 
T. aquaticus 
T. pallidum 
B. burgdorferi 
S. coelicolor 
M. tuberculosis 
C. glutamicum 
T. ferrooxidans 
H. pylori 
C. crescentus 
R. capsulatus 
R. prowazekii 
B. bacilliformis 
B. pertussis 
N. gonorrhoeae 
H. influenzae 
P. aeruginosa 
F. tularensis 
S. typhimurium 
E. coli 
C. longisporum 
C. acetobutylicum 
B. subtilis 
S. aureus 
E. faecalis 
L. delbrueckii 
L. casei 
S. pyogenes 
S. pneumoniae 
T. thermophila 
P. falciparum 
T. vaginalis 

H. sapiens 
D. melanogaster 
N. locustae 
S. cerevisiae 
O. sativa 
N. tabacum 
A. thaliana 
C. symbiosum 
A. pernix 
P. aerophilum 
S. solfataricus 
M. thermautotrophicus 
H. salinarum 
A. fulgidus 
M. barkeri 
P. horikoshii 
P. furiosus 
M. maripaludis 
M. jannaschii 

G. intestinalis 
Eukaryota 

Archaea 

Bacteria 

G. lambia 

Fig. 4 Species tree (full edges) corresponding to the NCBI taxonomic classification constructed 
for 61 species from the first cluster of 19 aaRS phylogenetic trees. The two horizontal gene transfers 
(indicated by arrows) were found using the HGT-Detection program of Boc et al. [9]
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A. aeolicus 
T. maritima 
Synechocystis sp. PCC 6803 
C. tepidum 
P. gingivalis 
C. trachomatis 
M. pneumoniae 
M. genitalium 
S. coelicolor 
M. tuberculosis 
D. radiodurans 
T. thermophilus 
T. pallidum 
B. burgdorferi 
C. acetobutylicum 
L. bulgaricus 
E. faecalis 
S. pyogenes 
B. subtilis 
S. aureus 
T. ferrooxidans 
B. pertussis 
N. gonorrhoeae 
H. pylori 
C. jejuni 
C. crescentus 
R. capsulatus 
R. prowazekii 
Z. mobilis 
R. meliloti 
A. brasilense 
C. burnetii 
H. influenzae 
E. coli 
F. tularensis 
A. calcoaceticus 
P. fluorescens 
P. aeruginosa 
P. falciparum 
G. intestinalis 
S. cerevisiae 
H. sapiens 
C. elegans 
L. luteus 
A. thaliana 
C. symbiosum 
A. pernix 
P. aerophilum 
S. solfataricus 
M. thermautotrophicus 
P. horikoshii 
H. marismortui 
A. fulgidus 
M. barkeri 
M. maripaludis 
M. jannaschii 

Archaea 

Eukaryota 

Bacteria 

Fig. 5 Species tree (full edges) corresponding to the NCBI taxonomic classification constructed 
for 56 species from the first cluster of 17 aaRS phylogenetic trees. The four horizontal gene 
transfers (indicated by arrows) were found using the HGT-Detection program of Boc et al. [9]
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5 Conclusion 

In this paper, we have reviewed the state-of-the-art systematic methods for inferring 
multiple alternative consensus trees and supertrees from a given set of phylogenetic 
trees (i.e. additive trees, evolutionary trees or X-trees). Most of the reviewed 
papers describe algorithms proceeding by k-means or k-medoids clustering of tree 
topologies. In the case of consensus tree clustering problem, all the trees should be 
defined on the same set of taxa (i.e. species associated to the tree leaves), whereas 
in the case of supertree clustering problem, the trees can be defined on different, 
but mutually overlapping, sets of taxa. In many instances, multiple consensus 
trees and supertrees represent more relevant evolutionary models than traditional 
single consensus trees and supertrees. The resolution of multiple consensus trees 
and supertrees is generally much better than that of single consensus trees or 
supertrees inferred by conventional methods [43]. Thus, multiple consensus trees 
and supertrees have the potential of preserving much more plausible information 
from a set of given gene trees. Clustering seems to be an intuitive natural solution 
for inferring multiple consensus trees and supertrees. Tree clustering has a direct 
practical application in evolutionary studies. It allows one to identify sets of 
genes that have been affected to the same horizontal gene transfer, hybridization, 
intragenic/intergenic recombination events, or those that have undergone the same 
ancient gene duplications and gene losses during their evolution [2, 10, 25, 50]. 

Since the beginning of the Tree of Life inference project [44], the number 
of studies dealing with supertree theory has grown considerably. The methods 
described in this paper can be used for inferring multiple alternative subtrees of the 
Tree of Life as it contains many unresolved clades (i.e. subtrees with high degrees 
of its internal nodes). From the practical point of view the problem of constructing 
multiple alternative supertrees is more relevant than that of constructing multiple 
alternative consensus trees because most of currently available gene trees are not 
defined on exactly the same sets of taxa. However, to the best of our knowledge, 
the only study addressing this relevant problem remains the recent work of Tahiri 
et al. [72]. The authors of this work showed how some remarkable properties of 
the Robinson and Foulds topological distance (original or normalized) and the k-
means partitioning algorithm can be used to achieve very promising tree clustering 
performance. Finally, in the application section, we showed how this method can 
be applied to cluster phylogenetic trees from the famous aaRS phylogenetic dataset 
originally described by Woese et al. [77]. 

An interesting option for further investigations consists in the use of some other 
popular tree distances in the objective function of clustering algorithms. Among 
them, we need to mention the branch score distance [39] and the quartet distance 
[14], which also have the Euclidean properties as the square root of the Robinson 
and Foulds distance.



Inferring Multiple Consensus Trees and Supertrees Using Clustering: A Review 211

References 

1. Ball, G.H., Hall, D.J.: ISODATA, a Novel Method of Data Analysis and Pattern Classification. 
Stanford Research Institute, Menlo Park (1965) 

2. Bapteste, E., Boucher, Y., Leigh, J., et al.: Phylogenetic reconstruction and lateral gene transfer. 
Trends Microbiol. 12(9), 406–411 (2004) 

3. Barthélemy, J.P., Guénoche, A.: Trees and Proximity Representations. Wiley, Chichester 
(1991) 

4. Barthélemy, J.P., McMorris, F.R.: The median procedure for n-trees. J. Classif. 3(2), 329–334 
(1986) 

5. Barthélemy, J.P., Monjardet, B.: The median procedure in cluster analysis and social choice 
theory. Math. Soc. Sci. 1(3), 235–267 (1981) 

6. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and 
the desirability of combining gene trees. Taxon. 41(1), 3–10 (1992) 

7. Bininda-Emonds, O.R. (ed.): Phylogenetic Supertrees: Combining Information to Reveal the 
Tree of Life. Springer (2004) 

8. Bininda-Emonds, O.R., Cardillo, M., Jones, K.E., et al.: The delayed rise of present-day 
mammals. Nature. 446, 507–512 (2007) 

9. Boc, A., Diallo, A.B., Makarenkov, V.: T-REX: a web server for inferring, validating and 
visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(W1), W573–W579 (2012) 

10. Boc, A., Makarenkov, V.: Towards an accurate identification of mosaic genes and partial 
horizontal gene transfers. Nucleic Acids Res. 39(21), e144 (2011) 

11. Boc, A., Philippe, H., Makarenkov, V.: Inferring and validating horizontal gene transfer events 
using bipartition dissimilarity. Syst. Biol. 59(2), 195–211 (2010) 

12. Bonnard, C., Berry, V., Lartillot, N.: Multipolar consensus for phylogenetic trees. Syst. Biol. 
55(5), 837–843 (2006) 

13. Bradley, P.S., Mangasarian, O.L., Street, W.N.: Clustering via con-cave minimization. Adv. 
Neural Inf. Process. Syst. 9, 368–374 (1997) 

14. Bryant, D., Tsang, J., Kearney, P.E., et al.: Computing the quartet distance between evolu-
tionary trees. SIAM J. Appl. Math. 9(11), 285–286 (2000) 

15. Bryant, D.: A classification of consensus methods for phylogenetics. DIMACS series in 
discrete mathematics and theoretical computer science. 61, 163–184 (2003) 

16. Bullwinkle, T.J., Ibba, M.: Emergence and evolution. Top. Curr. Chem. 344, 43–87 (2014) 
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Anomaly Detection with Neural Network 
Using a Generator 

Alexander S. Markov, Evgeny Yu. Kotlyarov, Natalia P. Anosova, 
Vladimir A. Popov, Yakov M. Karandashev, and Darya E. Apushkinskaya 

1 Introduction 

Full body scanners are often used in facilities that require increased security control. 
They allow to make quickly a picture of a person in the X-ray range, where the 
operator of the full body scanner (FBS) can see all the objects on the body and 
visually confirm the presence of prohibited items. 

The process has a number of significant drawbacks, including those related 
to the human factor: a manual analysis of the image requires considerable time 
and attention, which leads to tiredness of the FBS operator and can have a 
negative impact on the quality of image analysis. This process can be substantially 
automated, making it cheaper for the organization and more comfortable for the 
person. 

Deep neural networks have been used to solve the problem. This paper presents 
ways to preprocess the data, create synthetic data with generator module to augment 
the dataset and train U-Net model with it. Analysis of the results are also provided. 
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2 Problem Statement 

It is required to develop a solution that matches each X-ray image with a Boolean 
mask, where true values correspond to the pixels of anomaly objects, such as phones, 
weapons, metal objects, etc. 

The dataset is provided by a company specializing in the development of FBS. 
It includes 1654 original human body photos taken from four different FBS in the 
X-ray spectrum. Each picture is a 16-bit image in tiff format of .∼ 1600×500 pixels. 
The images contain various anomalies such as: clothing, accessories, weapons, 
prosthetics, etc. 

Let us highlight three problems with the data: 

1. The anomalies are faintly visible in the original images. 
2. Different FBS produce images with different distribution of pixel values. For this 

reason, the original data are not suitable for automatic processing by a neural 
network. 

3. Dataset contains very few amount of really dangerous items such as weapons, 
knifes etc. 

Thus, we have to develop an algorithm for image preprocessing which solves 
our first and second tasks. After that, it is necessary to label the anomalies on the 
images. Finally, to automate this process, we have to train the neural network to 
detect anomalies. 

3 Methods 

3.1 Overview of Existing Approaches 

Segmentation of objects on X-ray images is a very common problem. Firstly, the 
classical image processing methods [1, 2] used to solve this problem. Later, convo-
lutional neural networks are started to be applied. In [3, 4], SegNet architecture and 
its modification, simplifying the original network and allowing to perform training 
on a small set of data, were provided. A further development of SegNet is the XNet 
architecture [5] perfectly fitted to X-ray images, especially for segmentation of soft 
tissue and bones. 

Segmentation problem has been particularly widespread in the medical field. A 
huge number of works were dedicated to segmentation of cellular structures [6–8]. 
The most widely used architecture for segmentation problem is U-Net [6]. It uses 
only convolutional layers, which allows to pass images of arbitrary size to the input 
layer and get a mask with classes on the output layer.
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3.2 Image Preprocessing 

For the data labeling process and for improving the visual perception the original 16-
bit images were modified. The image preprocessing algorithm consists of a sequence 
of transformations. 

Firstly, we subtract the minimum values of the pixels from all pixels of the image. 
Secondly, the Gaussian Filter is applied to reduce the noise. After that, we apply the 
following pipeline of filters according to our previous work [9]: 

. Threshold truncating → Histogram Equalization → Threshold truncating

→ Adaptive Histogram Equalization → Threshold truncating

The result of this algorithm can be seen in Fig. 1. 

Fig. 1 The result of the novel algorithm. Original image (left), old preprocessing (middle), and 
current preprocessing (right)
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3.3 Labeling 

After processing the dataset, the anomalies became much more visible. Due to this, 
anomaly objects were manually labeled in the images. The detailed description can 
be found in [9]. 

3.4 Neural Network 

To solve the problem of anomaly detection the U-Net network with three levels was 
chosen (see Fig. 2). Training was performed with the PyTorch framework on Nvidia 
gtx 1080ti graphics processor with 11gb of memory. Parameters of training are as 
follows: Adam algorithm [10] as optimizer, learning rate parameter 0.001, batch 
size 10. Training is performed on 1454 images. The size of the test dataset is 200 
images. 

The input of the model is a preprocessed grayscale image of size .512× 512. The  
output is a Boolean mask of the same size characterizing the probabilities of finding 
anomalies in the corresponding parts of the image. 

To augment the variability of the data we used a standard random cropping, 
which allowed us to generate a large number of images containing different body 
parts. Also the additional anomalies were added with the generator described below. 

Fig. 2 The architecture of the neural network
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4 Generator 

In the process of research, we found that customer-supplied images contain 
practically no dangerous or anomalous objects. However, in order to get stable and 
high-quality results, it necessary to have a comprehensive training dataset. 

To solve this problem we created the generator, an additional module that 
generate anomalies in real time and add them to the source images before pass 
them to neural network, thus increasing the number of anomaly examples during 
the training. 

The schematic diagram of the generator is shown in Fig. 3. The upper arrow 
represents the learning process of the network without the generator, the lower 
one—with it. 

The generator works in two modes: 

1. generating random geometric polygons with pixel intensities picked from normal 
distribution, followed by applying a Gaussian filter to the polygon area; 

2. choosing random objects from a manually created library of anomalies, con-
taining various objects (such as weapons, clothing, accessories etc) in the X-ray 
spectrum; these objects are put on the original image using the following formula: 

Fig. 3 Schematic diagram of the generator
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Fig. 4 Dual mode of the generator work 

Fig. 5 Polygons overlaid by 
a generator on the human 
body
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. img = img − γ ∗
(
[216 − 1] − anomaly

)

Dual modes of generator work are illustrated in Figs. 4 and 5. It can be seen that 
the distribution of pixel intensity in the modified image regions is visually similar 
with the regions with native anomalies. 

To increase the statistical diversity of generated examples, the following augmen-
tation techniques were used: 

• increase or decrease the generated anomaly by a random magnifying factor; 
• rotate the generated anomaly by a random angle; 
• change the pixel intensity of the superimposed object due to random coeffi-

cient . γ . 

5 Results 

As a result of the work carried out, we developed the algorithm that preprocesses the 
images and maps them into Boolean mask with potentially dangerous or anomalous 
objects highlighted. The results of this model are shown in Fig. 6. One can see that 
the neural network has learned to identify large anomaly objects, but the borders of 
these objects are distinguished poorly. 

Fig. 6 Several examples of preprocessed images with resulting masks
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Fig. 7 Result without 
generator (left) and with 
generator (right) 

On the CPU, it takes 4 seconds on average to process one image. Due to the 
auxiliary augmentation with the generator the results obtained by this model seems 
to be more accurate (see Figs. 7 and 8) then results provided in the work [9]. 

6 Conclusions 

The proposed data preprocessing scheme can be used for various personal inspection 
scanners. It allows normalizing the data from different personal inspection devices 
(or with different radiation settings), and all objects become visible to humans. 
Using the proposed processing approach, a training dataset was generated. 

The generator module allows us to greatly diversify the training samples, 
increasing the quality of the final neural network.
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Fig. 8 Result without 
generator (left) and with 
generator (right) 

The U-Net neural network was trained based on the created dataset. The seg-
mentation quality of the trained model generally allows recognizing the anomalies 
of any size. The model can be used at industrial sites, as a means of automating the 
FBS to find objects such as weapons, phones, metal ingots and others, significantly 
increasing the speed and effectiveness of the operator. 
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Controllability of Triangular Systems 
with Phase Space Change 

Irina Sergeevna Maximova 

1 Literature Review 

Problems with changing phase space are a subclass of the so-called composite 
(hybrid) systems. These problems are characterized by the fact that at successive 
time intervals the motion of an object is described by different systems of differential 
equations and by some couplings for trajectories’ dockings. 

The emergence of this type of problems is initially associated with the study of 
multistage processes of space flight [1]. Such models were characterized by fixed 
switching sequences. In this case, when the trajectory reaches a certain manifold, the 
dimensionality of the space, the control vector, or the equations of motion change. 
After that this class of problems began to be applied to the physical problems of 
launching a rocket from a controlled object (submerged or surface). 

Reducing or increasing the dimensionality of phase spaces in problems with 
variable dimensionality is closely related to the concepts of aggregation and 
decomposition. One of the peculiarities of aggregation is dimensionality reduction. 
The most frequently encountered situation that makes the use of the aggregation 
required is dealing with a large set of data that is poorly observable and difficult 
to “work with”. Decomposition methods, on the contrary, lead to an increase in 
dimensionality. Decomposition allows to carry out a consistent breakdown of the 
system into subsystems, which, in turn, can be broken down into their constituent 
parts. As a result, decomposition allows us to structure large and complex objects 
into subsystems that have the required properties. For example, [2] applies a method 
of sequential aggregation of variables to bring a nonlinear system to a special form, 
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with reduced dimensionality. The publication [3] researched a method of forecasting 
performance in technological process control systems based on the use of artificial 
neural networks. Dimensionality reduction in this model is made by pre-filtering 
of data. The problems of optimization of composite systems were studied by V.G. 
Boltyansky [4], L.T. Ashchepkov [5], V.N. Rozova [6, 7], V. R. Bargsegayn [8]. 

However, in the above-mentioned works, the matter of optimization for given 
quality criteria was mainly studied. In the meantime, all typical theorems of the 
existence of optimal control assume the existence of at least one admissible control, 
generating a trajectory satisfying the given boundary conditions. The latter is the 
essence of the controllability problem. Thus, the problem of controllability is 
important and relevant for solving optimization problems. 

The controllability problems with a phase space change were researched by the 
author in [9–11]. In this paper, nonlinear systems of the so-called triangular form 
are considered. An important feature of this class of systems is that with a certain 
replacement of variables they are mapped to linear systems. The controllability 
of linear systems is thoroughly studied, which allows us to use various criteria to 
study them. Triangular systems describe a number of physical processes, such as 
orientation of a satellite in orbit, control of a robotic manipulator, etc. The class 
of triangular systems was first introduced and reviewed by V. I. Korobov [12]. The 
approach proposed by V. I. Korobov was further developed in [13]. 

In the theory of optimal control the following two problems play an important 
role: under what conditions there is a control that transfers the system from one 
position to another at certain interval of time and, if such control exists, its analytical 
representation has to be found. The first problem for linear systems is fully solved 
by now. A number forms of necessary and sufficient conditions for the existence 
of controls have been obtained. For nonlinear systems, however, the problem of 
controllability is far from being solved due to the diversity of classes of nonlinear 
systems and the complexity of their description. The problem of constructing an 
analytical representation of a control transitioning the system from one point to 
another was first solved by Kalman in [14, 15]. Broad classes of controls in explicit 
form for some systems transitioning an object from one position to another were 
obtained by V. I. Korobov, G. M. Sklyarov in [16]. 

In this paper for the problem of controllability with a phase space change, 
where the motion of the object is described by two nonlinear triangular systems 
on consecutive time segments, the conditions of controllability of the object from 
the initial set of one space to the finite set of the other space are obtained. Also in 
the paper the explicit form of the trajectories, which carry out this transition, was 
obtained. 

2 Problem Statement 

In two phase spaces .X = Rn and .Y = Rm of variables .x = (x1, . . . , xn) and 
.y = (y1, . . . , ym) the motion of the controlled object is described by the following 
non-linear systems of differential equations:
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.

{
dxi

dt
= fi(x1, . . . , xi+1), i = 1, . . . , n − 1,

dxn

dt
= fn(x1, . . . , xn; u).

(1) 

. x ∈ X, t ∈ [0, τ ], u(t) ∈ U.

.

{
dyk

dt
= gk(y1, . . . , yk+1), k = 1, . . . , m − 1,

dym

dt
= gm(y1, . . . , ym; v).

(2) 

. y ∈ Y, t ∈ [τ, T ], v(t) ∈ V.

The time moments . τ and T are given. In the space X the initial set .M0 and the 
transition hyperplane .� = (x, c) are given. The trajectories are docked using a given 
mapping .q : X → Y , .y(τ) = q(x(τ)). The transition from one space to another is 
also implemented by means of this mapping. In the space Y there is a finite set . M1. 

The controlled object moves according to the following scheme: on the time 
interval .[0, τ ] the object moves from the initial set .M0 by solutions of the system 
(1), at time . τ the object gets on . � and the transition to space Y occurs under the 
action of a linear mapping .q : X → Y , .q(x(τ)) = y(τ). The resulting point .y(τ) is 
the starting point for the motion of the object in space Y . Further movement on the 
time interval .[τ, T ] is performed by the object from the point .y(τ) to the set .M1 by 
solutions of the system (2). And .y(τ) /∈ M1 (otherwise the problem is solved). 

The problem is to find the conditions under which the object described by the 
systems (1) and (2), is controllable on .[0, T ] from the set .M0 of space X to the set 
.M1 of space Y . An object described by the systems (1) and (2),is called controllable 
from .M0 to .M1, [10] if on the segments .[0, τ ] and .[τ, T ] there are such admissible 
controls .u(t) ∈ U and .v(t) ∈ V , that their corresponding solutions of the systems 
satisfy the boundary conditions .x(0) ∈ M0, .x(τ) ∈ � and .y(τ) = q(x(τ)), . y(T ) ∈
M1.

The controllability conditions of the object described by systems (1) and (2) can 
be formulated as the following statement. 

3 Main Result 

Let functions .fi(x1, · · · , xi+1), i = 1, . . . , n and . gk(y1, · · · , yk+1), k = 1, . . . , m

the systems (1) and (2), have the continuous partial derivatives up to .(n − i + 1)-th 
and .(m − k + 1)-th orders inclusive and let 

. 

∣∣∣∣
∂fi

∂xi+1

∣∣∣∣ ≥ a > 0, atall x1, · · · , xn+1,

.

∣∣∣∣
∂gk

∂yk+1

∣∣∣∣ ≥ b > 0, atall y1, · · · , ym+1,
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where a and b—are constants independent of .x1, · · · , xn+1 and . y1, · · · , ym+1
respectively. And let the docking conditions for the trajectories . y(τ) = q(x(τ))

be satisfied. Then the object described by the systems (1) and (2) is controllable 
from the initial set .M0 of space X to the finite set .M1 of space Y . 

Let us investigate the motion of an object in space X from the initial set .M0 to 
the transition hyperplane . � on the time interval .[0, τ ]. Let’s examine the following 
controllability problem—to choose the control u so as to get from the point . x0 ∈ M0
to the point .x1 ∈ � by the solutions of the system (1). Here is a way of constructing 
a control that solves the problem. 

Let’s examine the system (1): 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2, x3),

· · ·
ẋn−1 = fn−1(x1, . . . , xn),

ẋn = fn(x1, . . . , xn; u).

Lets introduce substitution of the variables as follows: 

. 

z1 = x1 ≡ F1(x1),

zi = ∂Fi−1

∂xi

f1(x1, x2) + . . . + ∂Fi−1

∂xi−1
fi−1(x1, . . . , xi) ≡

≡ Fi(x1, . . . , xi), i = 2, . . . , n.

(3) 
The introduced substitution of the variables can be written in the form .z = F(x), 

where 

.F(x) =

⎛

⎜⎜⎝

F1(x1)

F2(x1, x2)

· · ·
Fn(x1, . . . , xn)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

P0x1

P1P0x1

· · ·
Pn−1Pn−2 · . . . · P0x1

⎞

⎟⎟⎠ (4) 

where .P0, P1, . . . , Pn−1—differential operators of the following form 

.P0 ≡ I, Pi = f1
∂

∂x1
+ . . . + fi

∂

∂xi

, i = 1, . . . , n − 1, (5) 

I—is an identical operator. Let’s designate a new control as .zn+1: 

.

zn+1 = ∂Fn

∂x1
f1(x1, x2) + . . . + ∂Fn

∂xn

fn(x1, . . . + xn, xn+1) ≡

≡ Fn+1(x1, . . . + xn, xn+1) = PnPn−1Pn−2 · . . . · P0x1,

(6)
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where .Pn = f1
∂

∂x1
+ . . . + fn

∂
∂xn

. After this replacement of variables, the system 
(1) is reduced to the form 

.żi = zi+1, i = 1, . . . , n. (7) 

The resulting linear system (7) is fully controllable at time period . τ . This is  
proved by from the Kalman rank criterion. It is known that if a system 

. ẋ = Ax + Bu

is linear on x and u, and if the rank of the matrix .(B,AB, . . . , An−1B) is n, then 
the system is completely controllable at time period . τ . 

A system of equations is called completely controllable at time period . τ , if there 
exists an admissible control .u(t) with which the corresponding trajectory of the 
system connects any given points at time period . τ . 

Since .x0 ∈ M0 -is an arbitrary point of the initial set, and .x1 ∈ �—is an arbitrary 
point on the transition hyperplane, with the complete controllability of the system 
(7), there exists an admissible control transitioning the object from the point . x0 to 
the point . x1 to the point . τ . 

In the system (7) the new control .zn+1 in a from of a function from t will be 
chosen in the way so that in time period . τ we can get from a point 

.z(0) = (F1(x10), . . . , Fn(x10, . . . , xn0))
T (8) 

to the point

.z(τ ) = (F1(x11), . . . , Fn(x11, . . . , xn1))
T . (9) 

A control . zn+1, e.g. [13], can be chosen as 

. zn+1(t) = −bT
0 e−AT

0 tN−1(z0 − e−A0τ zτ ),

where 

. N =
∫ τ

0
e−A0t b0b

T
0 e−AT

0 t dt.

By substituting the functions .zi(t), i = 1, . . . , n + 1 into the left hand sides of (3) 
and (6), we consecutively find the functions .x1(t), . . . , xn+1(t) from these equa-
tions. Indeed, the first equality from the formulas (3) and (6) gives . x1 ≡ F(x1) =
z1(t). If the functions .x1(t), . . . , xi−1(t) are found through .z1(t), . . . , zi−1(t) (let 
.xj (t) = Hj(z1(t), . . . , zj (t)), j = 1, . . . , i − 1), then the function .xi(t) is found 
from i to the equality of the relations (3) and (6): 

.Fi(x1(t), . . . , xi−1(t), xi(t)) = zi(t). (10)



230 I. S. Maximova

For the solvability of Eq. (10) it is sufficient to establish that 

.
∂Fi

∂xi

= ∂f1

∂x2

∂f2

∂x3
· . . . · ∂fi−1

∂xi

, i = 2, . . . , n + 1 (11) 

then .| ∂Fi

∂xi
| ≥ a > 0, which means that the function .zi = Fi(x1, . . . , xi) is 

strictly monotone on . xi and with the fixed values of .x1, . . . , xi−1 and changing 
. xi continuously maps the interval .(−∞,∞) to the interval .(−∞,∞), which means 
that Eq. (10) is solvable. The relation (11) comes from (3) and (6) as  

. 
∂F2

∂x2
= ∂f1

∂x2
,

∂F3

∂x3
= ∂

∂x3

(
∂F2(x1, x2)

∂x1
f1(x1, x2) + ∂F2(x1, x2)

∂x2
f2(x1, x2, x3)

)
= ∂f1

∂x2

∂f2

∂x3

etc. Let us show that the functions 

. xi(t) = Hi(z1(t), . . . , zn(t)), i = 1, . . . , n

satisfy the system (1) under the obtained control 

. xn+1 = Hn+1(z1(t), . . . , zn+1(t)),

which is measurable, because .Hn+1, zi , i = 1, . . . , n are continuous from their 
arguments, and .zn+1(t) is continuous by t . From (3) we have  

.żi =
i∑

j=1

∂Fi(x1(t), . . . , xi(t))

∂xj

dxj

dt
. (12) 

Since .żi = zn+1(t) = Fi+1(x1(t), . . . , xi+1(t), then 

.żi = ∂Fi(x1(t), . . . , xi(t))

∂xj

fj (x1(t), . . . , xj+1(t)). (13) 

Thus, Eqs. (12) and (13) are  

. 
dzi

dt
=

i∑

j=1

∂Fi(x1(t), . . . , xi(t))

∂xj

×
(

dxj

dt
− fj (x1(t), . . . , xj+1(t)

)

= 0, i = 1, . . . , n. (14) 

The . � determinant of the resulting system with respect to 

.
dxj

dt
− fj (x1(t), . . . , xj+1(t)), j = 1, . . . , n
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is different from zero, since 

. � = ∂F1

∂x1

∂F2

∂x2
. . .

∂Fn

∂xn

=
(

∂f1

∂x2

)n−1 (
∂f2

∂x3

)n−2

· . . . ·
(

∂fn

∂xn

)
�= 0.

Then it follows from (14) that 

. 
dxj

dt
− fj (x1(t), . . . , xj+1(t)), j = 1, . . . , n

where .xn+1(t) = u(t). Since the trajectory .z(t) passes through the points (8), (9), 
then due to the unique solvability of the relation (3) with respect to .x1, . . . , xn, 
the resulting functions .xi(t) satisfy the boundary conditions . xi(0) = xi0, xi(τ ) =
xi1, i = 1, . . . , n. 

After the object falls on the transition hyperplane . �, we make a transition to the 
space Y using the mapping .q : X → Y and obtain the starting point for the motion 
of the object in the space Y .y(τ) = q(x(τ)). This point does not belong to the finite 
set .M1 ∈ Y . Thus we obtained the following problem in space Y : 

for an object whose motion is described by a system of equations 

.

{
dyk

dt
= gk(y1, . . . , yk+1), k = 1, . . . , m − 1,

dym

dt
= gm(y1, . . . , ym; v).

(15) 

.y ∈ Y = Rm, t ∈ [τ, T ], v(t) ∈ V, find an admissible control v with that the 
corresponding solution of the system (15) satisfies the boundary conditions . y(τ) =
q(x(τ)), .y(T ) ∈ M1. Similarly to the space X, we replace the variables and reduce 
the nonlinear system to a linear one. 

. 

z1 = y1 ≡ G1(y1),

zk = ∂Gk−1

∂yk

g1(y1, y2) + . . . + ∂Gk−1

∂yk−1
gk−1(y1, . . . , yk) ≡

≡ Gk(y1, . . . , yk), k = 2, . . . , m.

(16) 
We designate the control by

.

zm+1 = ∂Gm

∂y1
g1(y1, y2) + . . . + ∂Gm

∂ym

gm(y1, . . . + ym, ym+1) ≡

≡ Gm+1(y1, . . . + ym, ym+1).

(17) 

As a result of this replacement, the system (15) is reduced to the form 

.żk = zk+1, k = 1, . . . , m. (18)
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As in the previous case, the system (18) is, by virtue of the Kalman rank criterion, 
completely controllable. That is, there exists an admissible control v which transfers 
the object described by this system from any point to any point on the time interval 
.[τ, T ]. Due to complete controllability of the system, we assume .y(τ) as the initial 
point and an arbitrary point .y(T ) ∈ M1 as the final point. In the system (18) lets  
choose a new control .zm+1 as a function of t so that in time .T − τ to get from the 
point 

.z(τ ) = (G1(y10), . . . ,Gm(y10, . . . , ym0))
T (19) 

to the point

.z(T ) = (G1(y11), . . . ,Gm(y11, . . . , ym1))
T . (20) 

The control .zm+1 will be chosen as 

. zm+1(t) = bT
0 eCT

0 (T −t)N−1(zT − eCT
0 (T −τ)zτ ),

where 

. N =
∫ T

τ

eC0(T −t)b0b
T
0 eCT

0 (T −t)dt.

By substituting the functions .zi(t), i = 1, . . . , m + 1 into the left-hand sides of 
formulas (16) and (17), we find the functions .y1(t), . . . , ym+1(t) from obtained 
equalities. Due to the unique solvability of the relation (16) (which is proved  
analogously to the space X), the obtained functions .y1(t), . . . , ym+1(t) satisfy 
the boundary conditions .yi(τ ) = yiτ , yi(T ) = yiT , i = 1, . . . , m. Thus, the 
controllability of the object described by the systems (1) and (2) from the initial 
set .M0 of space X to the finite set .M1 of space Y on the time interval .[0, T ] is 
proved. The equations of trajectories satisfying the given boundary conditions are 
also explicitly obtained. Which proves the statement. 

Let us consider an example that illustrates this approach to research. 

4 Example 

In the .X = R3 and .Y = R3 spaces, the motion of the controlled object is given by 
the following nonlinear systems of differential equations: 

.

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x4
1 + x2,

ẋ2 = −4x3
1x2 + x3,

ẋ3 = −28x10
1 − 28x6

1x2 + u, t ∈ [0, 1].
(21)
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.

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = 2y2
1 + y2,

ẏ2 = −4y1y2 + y3,

ẏ3 = −48y4
1 − 24y2

1y2 + v, t ∈ [1, 2].
(22) 

In the space .X = R3 the initial set .M0 = (1, 1, 2) is given, in the space .Y = R3 the 
final set .M1 = (0,−1, 1) is given. The motion of the object is carried out according 
to the following scheme: on the time interval .[0, 1], the object moves by solutions 
of the system (21) from the initial set .M0 to the point .(0, 0, 0), then it moves to 
the space .Y = R3, given by the mapping .q(x1, x2, x3) = (y1, y2, y3) and further 
movement on the time interval .[1, 2] is performed by solutions of the system (22). 
It is required to determine whether the object is controllable from the set . M0 ∈ X

to the set .M1 ∈ Y on the interval .[0, 2] and find the trajectories implementing this 
transition. Let us apply the above approach to the study. Lets consider the motion 
of the object in the space .X = R3. We investigate the controllability problem from 
the point .x(0) = (1, 1, 2)T to the point .x(1) = (0, 0, 0)T on the segment . [0, 1]. By  
replacing the variables 

.

⎧
⎪⎪⎨

⎪⎪⎩

z1 = x1,

z2 = x4
1 + x2,

z3 = 4x7
1 + x3

(23) 

system (21) is mapped to a linear system 

.

⎧
⎪⎪⎨

⎪⎪⎩

ż1 = z2,

ż2 = z3,

ż3 = u.

(24) 

The resulting linear system (24) is, by virtue of the Kalman rank criterion, 
completely controllable. We choose the new control so that for the time . T = 1
we get from the point .z(0) = (1, 2, 6)T to the point .z(1) = (0, 0, 0)T . It can be 
taken [13], for example, as 

. u(t) = −bT
0 e−AT

0 tW−1(z(0) − e−A01z(1)),

where .W−1 is matrix inverse to the matrix 

. W =
∫ 1

0
e−A0t b0b

T
0 e−AT

0 t dt.

Then the control has a form 

.u(t) = (
0 0 −1

)
⎛

⎜⎝
1 0 0
−t 1 0
t2

2 −t 1

⎞

⎟⎠

⎛

⎝
720 360 60
360 192 36
60 36 9

⎞

⎠

⎛

⎝
1
2
6

⎞

⎠ = −900t2 + 960t − 186.
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Substituting the obtained control into the system (24) and considering the boundary 
conditions, we obtain 

.

⎧
⎪⎪⎨

⎪⎪⎩

z1(t) = −15t5 + 40t4 − 31t3 + 3t2 + 2t + 1,

z2(t) = −75t4 + 160t3 − 93t2 + 6t + 2,

z3(t) = −300t3 + 480t2 − 186t + 6.

(25) 

By making the inverse replacement, we obtain that the trajectories of the system
(21) connecting the points .x(0) = (1, 1, 2)T and .x(1) = (0, 0, 0)T , on the time 
interval .[0, 1] have the form 

. 

⎧
⎪⎪⎨

⎪⎪⎩

x1(t)= z1(t)= − 15t5 + 40t4 − 31t3 + 3t2 + 2t + 1,

x2(t)= z2(t)− x4
1 = − 75t4 + 160t3 − 93t2 + 6t + 2 − (75t4 + 160t3 − 93t2 + 6t + 2)4,

x3(t)= z3(t)− 4x7
1 = − 300t3 + 480t2 − 186t + 6 − 4(75t4 + 160t3 − 93t2 + 6t + 2)7.

(26) 

Now, using the mapping .q : X → Y , .q(x1, x2, x3) = (y1, y2, y3) we move to 
the space .Y = R3. The resulting point .y(1) = q(0, 0, 0) = (0, 0, 0) is the initial 
point when the object moves in this space by solutions of the system (22). Thus, we 
obtained the following controllability problem: from the point .y(1) = (0, 0, 0)T get 
to the point .y(2) = (0,−1, 1)T on the time interval .[1, 2]. Let us reduce the system 
(22) to a linear one by changing the variables 

.

⎧
⎪⎪⎨

⎪⎪⎩

z1 = y1,

z2 = 2y2
1 + y2,

z3 = 8y3
1 + y3.

(27) 

After this replacement the system will of the form

.

⎧
⎪⎪⎨

⎪⎪⎩

ż1 = z2,

ż2 = z3,

ż3 = v.

(28) 

Similarly to the previous case, due to the complete controllability of the resulting 
linear system, the control transitioning the system (28) from the point . z(1) =
(0, 0, 0)T to the point .z(2) = (0,−1, 1)T will be chosen as 

. v(t) = bT
0 eAT

0 (2−t)N−1(z(2) − eA0(2−t)z(1)),

where .N−1—is the inverse of the matrix 

.N =
∫ 2

1
eA0(2−t)b0b

T
0 eAT

0 (2−t)dt.
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The control has the form 

. v(t) =
(

0 0 1
)

⎛

⎜⎝
1 0 0

2 − t 1 0
(2−t)2

2 2 − t 1

⎞

⎟⎠

⎛

⎜⎝
720 −360 60

−360 192 −36

60 −36 9

⎞

⎟⎠

⎛

⎜⎝
0

−1

1

⎞

⎟⎠ = 210t2 − 612t + 429.

Substituting the obtained control into the system (28), we find the trajectories 

.

⎧
⎪⎪⎨

⎪⎪⎩

z1(t) = 3, 5t5 − 25, 5t4 + 71, 5t3 − 96, 5t2 + 63t − 16,

z2(t) = 17, 5t4 − 102t3 + 214, 5t2 − 193t + 63,

z3(t) = 70t3 − 306t2 + 429t − 193.

(29) 

From the formula (27) we obtain the trajectories of the original system (22) 
connecting the points .y(1) = (0, 0, 0)T and .y(2) = (0,−1, 1)T on the time interval 
.[1, 2]. 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(t) = z1 = 3, 5t5 − 25, 5t4 + 71, 5t3 − 96, 5t2 + 63t − 16,

y2(t) = z2 − 2y2
1 =

= 17, 5t4 − 102t3 + 214, 5t2 − 193t + 63

−2(3, 5t5 − 25, 5t4 + 71, 5t3 − 96, 5t2 + 63t − 16)2,

y3(t) = z3 − 8y3
1 =

= 70t3 − 306t2 + 429t − 193

−8(3, 5t5 − 25, 5t4 + 71, 5t3 − 96, 5t2 + 63t − 16)3.

(30) 

Thus, we get that the object described by the systems (21) and (22) is controlled 
from the set .M0 = (1, 1, 2) of space .X = R3 to the set .M1 = (0,−1, 1) of space 
.Y = R3 on the time interval .[0, 2]. The trajectories along which the transition is 
happening have the form 

. 

⎧
⎪⎪⎨

⎪⎪⎩

x1(t) = −15t5 + 40t4 − 31t3 + 3t2 + 2t + 1,

x2(t) = −75t4 + 160t3 − 93t2 + 6t + 2 − (75t4 + 160t3 − 93t2 + 6t + 2)4,

x3(t) = − 300t3 + 480t2 − 186t + 6 − 4(75t4 + 160t3 − 93t2 + 6t + 2)7, t ∈ [0, 1]

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y1(t) = 3, 5t5 − 25, 5t4 + 71, 5t3 − 96, 5t2 + 63t − 16,

y2(t) = 17, 5t4 − 102t3 + 214, 5t2 − 193t + 63

−2(3, 5t5 − 25, 5t4 + 71, 5t3 − 96, 5t2 + 63t − 16)2,

y3(t) = 70t3 − 306t2 + 429t − 193

−8(3, 5t5 − 25, 5t4 + 71, 5t3 − 96, 5t2 + 63t − 16)3, t ∈ [1, 2].
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A Parallel Linear Active Set Method 

E. Dov Neimand and Şerban Sabău 

1 Introduction 

For years, interior point methods have dominated the field of linear constrained 
convex minimization [16, 20]. These methods, though powerful, often exhibit three 
downsides. First, many interior point methods do not lend themselves to parallel 
implementations without imposing additional criteria. Second, they often require 
the feasible space be nonempty, [12], or even require a starting feasible point, and 
when one is unavailable fall back on a second optimization problem, Phase I Method 
[5]. Third, they typically terminate when they are within an .ε > 0 distance of the 
true optimal point, rendering their complexity a function of their accuracy [5, 10]. 

Here we introduce a linear-inequality-constrained convex minimization method 
that alleviates these drawbacks. Our method can offer superior performance to state-
of-the-art methods when the number of processors is polynomial as a function 
of the number of constraints in Euclidean space. When this is not the case, 
though computationally more complex, our method’s simple implementation, non-
asymptotic convergence, and broad applicability offer considerable value. 

Minimization of convex objective functions over non-convex polyhedra struggles 
to balance slower accurate methods, those with global solutions, against heuristic 
algorithms that offer a local optimum or pseudo optimal points that may or may not 
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be in the feasible space, Diamond et al. [7]. We present a second algorithm, modified 
from the first that optimizes over non-convex polyhedra. The method does not 
compromise on accuracy and has similar complexity to the convex method. Our non-
convex method takes advantage of information about the non-convex polyhedron’s 
faces for improved performance over the convex algorithm. 

For a simple brute force approach to the three problems facing standard interior 
point methods, [19] presents a progenitor to Algorithm 1, in finding the projection, 
.�P (y), of a point, .y ∈ R

n, onto a convex polyhedron, .P ⊂ R
n. Their algorithm 

first checks if .y ∈ P , and if it is not, considers each subset of P ’s defining 
inequality constraints, as equality constraints. Projections onto these sets of equality 
constraints are easily found. A filter removes the affine projections that are outside 
P , and of those that remain, the closest to y is .�P (y). 

In expanding from polyhedral projections in . Rn to a generic convex objective 
function in a Hilbert space, our algorithm makes use of a black-box linear-equality 
constrained convex minimization method for our objective function . f : H →
R. Textbooks and papers on unconstrained minimization in Hilbert spaces are 
now ubiquitous, [3, 4, 6] provide examples. Recently [11] and [14] presented 
unconstrained minimization methods atop the plethora of preceding research. 
Given a set of linear-equality constraints, Boyd et al. [5], suggests eliminating 
the linear equality constraints with a change in variable, reducing the problem 
to unconstrained minimization in fewer dimensions. Reliance on our black-box 
method is well-founded. 

Unconstrained convex functions can often be optimized quickly. Some functions, 
like projection functions can be optimized in .O(n3) operations over an affine space 
in . Rn, Plesnik [15]. Note that there is no .ε > 0 term in the complexity. 

Our algorithm employs a test that, together with the black box method, reviews a 
set of linear inequality constraints, L. The test passes L only if the black-box method 
can generate the constrained optimal point by treating L’s elements as equality 
constraints. Necessary criteria often allow for the test to fast fail L without using 
the black-box method, instead looking back at previous applications of the test on 
subsets of L that have one less inequality than L. This fast fail, as a function of the 
number of dimensions, has quadratic sequential complexity, and can be completely 
multi-threaded down to near constant complexity. When the test is unable to fast 
fail, it resorts to calling the black-box method on the inequality turned equality 
constraints in L. In both cases the test generates the optimal point of f over L. 

Iterative and largely parallel application of the test over growing sets of inequality 
constraints yields Algorithm 1, which returns .argminP f . Algorithm 1 does not 
employ the test for sets larger than .min(r, n), where r is the total number of 
constraints and .n ∈ N ∪ {∞} the dimension of the Hilbert space . H. Unlike [19], 
which continues to project onto all the affine spaces after computing and in order 
to confirm .�P (y), Algorithm 1 ceases its search as soon as the black-box method 
computes the optimal points. 

Our algorithm does not utilize an iterative minimization sequence and therefor 
preserves valuable properties of the underlying unconstrained minimization method.
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When .argminH f finds an exact answer without the need for an iteration arriving 
within an . ε distance of the optimal point, so too does our algorithm. 

Because of the finite number of operations required to compute the projection 
onto an arbitrary affine space, our methods excel as a projection function. Recently, 
Rutkowski, [17], made progress with non-asymptotic parallel projections in a 
Hilbert space. Where the number of inequality constraints is r , we figure the 
complexity of their algorithm to be .O(2r−1r3) before parallelization, and . O(r3)

over .2r−1 processors. Our method compares favorably with theirs as a function of 
the number of constraints. 

Contributions of the Paper: Our methods have distributed complexity. We 
eliminate common assumptions like the needs for nonempty feasible spaces, a 
starting feasible point, and a nonempty interior. We develop polyhedral properties 
to construct easy-to-check, necessary conditions that allow for skipping many of 
the affine spaces that slow down their forebears. All these reasons will likely lead 
to the common usage of our convex algorithm on systems capable of large scale 
multi threading and our non-convex algorithm when even a small amount of multi 
threading is available and an accurate result is required. 

For a quick peek at our algorithm’s complexity, let our objective function . f :
H → R, where . H is an .n ∈ N ∪ {∞} dimensional Hilbert space with the standard 
inner product, .〈·, ·〉, be the projection function, .O(n3), and have .r ∈ N inequality 
constraints. If .r >> n, the complexity comes out to .O(rn+1n4). This complexity 
result is weaker than the polynomial time of interior point methods reviewed by 
Polik et al. [16], however when a large number of threads are available to process 
the problem in parallel, the time complexity of the algorithm is .O(n4), constant as 
a function of the number of inequalities. 

In Sect. 2, we introduce definitions necessary for reading the algorithm. In 
Sect. 3, we present the algorithm. In Sect. 4, we state and prove the algorithm’s 
foundation. In Sect. 5, we prove that the algorithm works and find its complexity. 
In Sect. 6, we expand our work to minimization over non-convex polyhedra and 
present Algorithm 2, the adaptation of Algorithm 1 for non-convex polyhedra. 

2 Some Definitions 

We present a handful of prerequisite definitions before proceeding to our algorithm. 

Definition 2.1 Let P be a convex polyhedron and .HP a finite collection of . r ∈ N

closed half-spaces in . H, an  .n ∈ N ∪ {∞} dimensional Hilbert space. This lets . P =⋂
HP , the intersection of the r half spaces in . HP . For all .H ∈ HP we define the 

boundary hyperplane . ∂H , the vector .nH ∈ H normal to . ∂H , and .bH ∈ R such that 
.H = {x ∈ H|〈x, nH 〉 ≤ bH }. For any .H ∈ HP we say that H is a half-space of P 
and .∂H a hyperplane of P . 

We use the term polyhedron to refer to convex polyhedra. For the non-convex 
polyhedra we address in Sect. 6, we state their non convexity explicitly.
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Example 2.2 Examples of polyhedra include .H,∅, {42}, a rectangle, and a set we’ll 
call the ‘A’ polyhedron, a simple unbounded example we will use to illustrate more 
complex ideas later on. ‘A’.:= {(x, y) ∈ R

2|y ≤ 1
2 and x + y ≤ 1 and − x + y ≤ 1}. 

We have .H‘A’ = {F̄ , G̀, H́ } with .F̄ := {(x, y) ∈ R
2|y ≤ 1

2 }, . G̀ := {(x, y) ∈
R
2|x + y ≤ 1}, and .H́ := {(x, y) ∈ R

2| − x + y ≤ 1}. Both the name of the 
‘A’ polyhedron and the half-space accents were selected for their iconicity to avoid 
confusion when we come back to this example. 

For a convex objective function, .f : H → R, constrained to a polyhedron, 
P , the minimization algorithm below determines if P is empty, or finds the set 
.argminP f . Throughout the paper we will use .f : H → R for an arbitrary convex 
objective function constrained by an arbitrary polyhedron, P . 

Example 2.3 Given some .y ∈ H, let  .f (x) = ‖x − y‖. We consider the projection 
problem .�P (y) := argminP f . Here, f is strictly convex and the optimal set 
.argminP f will always have a unique value, Boyd et al. [5]. 

Definition 2.4 We say A is an affine space of P if it is a nonempty intersection of a 
subset of P ’s hyperplanes. We will denote the set of P ’s affine spaces with . AP :=
{⋂H∈η ∂H |η ⊆ HP } \ {∅}. Note that .AP has at most . 

∑n
i=1

(
r
i

) ≤ min(rn, 2r )

elements since the intersection of more than n distinct hyperplanes will be an empty 
set, or redundant with an intersection of fewer hyperplanes. 

Example 2.5 If .HP = {F,G,H } then . AP = {H, ∂H, ∂G, ∂F, ∂H ∩ ∂G, ∂H ∩
∂F, ∂F ∩ ∂G, ∂H ∩ ∂G ∩ ∂F }. If .P ⊂ R

3, .∂H might be a plane, .∂H ∩ ∂G a line, 
and .∂H ∩ ∂G ∩ ∂F a single point. However, if any of those intersections are empty 
then they are not included in . AP . We have .H ∈ AP since if we choose .η = ∅ then 
for all .x ∈ H we trivially have .x ∈ H for all .H ∈ η, therefor .x ∈ ⋂

H∈∅ H = H. 

Example 2.6 Consider the ‘A’ polyhedron from Example 2.2. It’s worth noting that 
‘A’ has an affine space, in this case the point .∂G̀ ∩ ∂H́ , that is disjoint with ‘A’. The 
affine space that is a point at the top of the ‘A’ is outside of our polyhedron, but still 
a member of .A‘A’. This is a common occurrence. 

Definition 2.7 For .A ∈ AP , we define the P -cone of A as . PA := ⋂{H ∈
HP |∂H ⊇ A}, the polyhedron whose hyperplanes, a subset of the hyperplanes of 
P , intersect to equal A. These are subsets of f ’s linear-inequality constraints. 

Example 2.8 We have .H ∈ AP , so it is appropriate to note that for a polyhedron, P 
we have .PH = H. We comment on this here since in the algorithm presented below 
we will consider the P -cone for every .A ∈ AP . 

Example 2.9 If we use the ‘A’ polyhedron (2.2), then the ‘A’-cone of the top point 
‘A’.

∂H́∩∂G̀
= H́ ∩ G̀. Note that .F̄ ∩ G̀ ∩ H́ = ‘A’ ⊂ ‘A’

∂F̄∩∂G̀
. 

Definition 2.10 For .A,B ∈ AP , we say that B is an immediate superspace of A 
if .B � A and there exists an .H ∈ HP such that .A = ∂H ∩ B. We will also say that 
A is an immediate subspace of B. We will denote the set of all of A’s superspaces 
with . BA.
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Algorithm 1: Finds . argminP f

Input: A set of half-spaces HP and a function f : H conv.−−−→ R 
Output: argminP f 

1 for i ← 0 to  min(n, r) do 
2 for A ∈ AP with codim(A) = i in parallel do 
3 if ∃B ∈ BA s.t. mB ∩ (PA \ A) �= ∅ then 
4 mA ← mB ∩ PA 
5 else  
6 mA ← argminA f is computed and saved. 
7 if mA ∩ P �= ∅ then 
8 return  mA ∩ P 

9 return argminP f is empty. 

Example 2.11 In the ‘A’ example (2.2). The immediate superspaces of . ∂G̀ ∩ ∂H́

are . ∂G̀ and . ∂H́ . The immediate superspace of . ∂F̄ is . R2. Observe that if an arbitrary 
A has co-dimension i, then its immediate superspaces have co-dimensions .i − 1. 

3 The Optimization Algorithm 

Algorithm 1 uses the test presented in the if else statement on Line 3 to find the 
optimal point of f in P by iterating over all the affine spaces of P until an affine 
space .A ∈ AP that has nonempty .argminA f ∩ P is found, and then returns 
the optimal point courtesy of the black-box method. In Theorem 5.3 below, we 
guarantee that the algorithm returns .argminP f . 

In the Algorithm 1, for  some .A ∈ AP we use . mA as a place to store .argminPA
f , 

previously computed with a call to the black-box method. 
In the introduction we described the use of a test to determine if an affine space 

.A ∈ AP is the active set of constraints. What we really want to know is, does 

.minA f = minP f ? For that matter, does such an A even exist? And if it does, how 
will the test recognize it? 

We prove our results regarding the answers to these questions in Sects. 4 and 5, 
but we’ll work through a couple of examples for finding that A now. Yes, such an A 
does exist, and when we refer to the test that recognizes that A, we’re referring to 
lines 3 and 7. The purpose of these examples is to aid in an intuitive understanding 
of the algorithm. 

Example 3.1 Consider a polyhedron, .P ⊆ R
3, with a typical vertex, A, to which 

we will apply the test, optimizing some strictly convex function, f . 
When we say that A is a typical vertex, we mean that it’s the intersection of three 

planes. That lets us build . PA, a polyhedral cone, as the intersection of the three 
plane’s half spaces.
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The test first looks at all the immediate superspaces of A. We find each of these 
by removing one of the three planes. Each of A’s three immediate superspace is 
the intersection of two planes. These lines are the edges of the cone that is . PA, and 
they intersect at A. We’ll call these lines .B,C and D. Each one has its own P -
cone, .PB, PC and . PD . These cones are all the intersections of two of . PA’s three half 
spaces. 

By the time we arrive at the test for A, the algorithm has already computed the 
optimal points for each of the cones, .PB, PC and . PD . Those optimal points were 
stored respectively as .mB,mC and . mD . Still on Line 3, the test checks if any of 
those points are in . PA. If so, then A is not the active constraint set. This is the fast 
fail since we don’t need to compute .argminA f . Suppose, without loss of generality, 
the test found that .mC ∈ PA. A nice result of the fast fail is that we now know that 
.mC is the optimal point of . PA. That is, .mA ← mC , which, if there were more 
dimensions, would be useful later on. 

If all .mB,mC and .mD are outside of . PA, then we progress to the else statement 
now knowing that .minPA

f = minA f . And that’s where the black-box method 
comes in, because it can compute .argminA f . We save that computation as . mA for 
future use. 

There’s one last thing to do. We’ve verified that .mB,mC,mD ∈ PA
c, and 

computed . mA. If  .mA ∈ P , then .mA is the optimal point over P and the algorithm 
concludes. If it’s not, we move on to apply the test to some other affine space of P . 

By checking the affine spaces in order of co-dimension, we ensure that we’ve 
already done the work on immediate superspaces to set the test up for success. 

There are lots of why questions to be asked about Example 3.1. Sections 4 and 5 
should answer those questions. You can find a complete and detailed run through of 
Algorithm 1 in Example 3.2. 

Example 3.2 We will revisit Example 2.2 by walking the problem . �‘A’(1, 1)
through Algorithm 1. Refer to Fig. 1 throughout this example for your convenience. 

We begin Line 1 with .i ← 0, setting us up to consider on Line 2 all the affine 
spaces in .AP with co-dimension 0. The only such affine space is . H, so  .A ← H. 
On Line 3, we note that . H has no immediate superspaces, so .BH = ∅, and the 
condition in the if, statement is false. We proceed to the else statement and compute 
.mH ← �H(1, 1) = (1, 1). We now check the condition on Line 7 and find . mH

as .(1, 1) is not in P . The condition is false. The inner loop completes an iteration, 
and with no more affine spaces of co-dimension 0, the inner loop concludes. The 
outer loop on Line 1 progresses to .i ← 1, to look at all of P ’s affine spaces of 
co-dimension 1 on Line 2. 

There are three affine spaces of co-dimension 1, . ∂H́ , . ∂G̀, and . ∂F̄ . Each affine 
space of co-dimension 1 has the same set of immediate superspaces, . B

∂H́
= B

∂G̀
=

B∂F̄ = {H}. 
On Line 2, we will arbitrarily look at .A ← ∂H́ first, though ideally all three affine 

spaces would be considered in parallel. On Line 3, we review every . B ∈ B
∂H́

= {H}
to check if .mB ∈ P

∂H́
\ ∂H́ . There’s just the one, .mH = (1, 1), so the check is easy.
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Fig. 1 Example 3.2 

Is .(1, 1) ∈ P
∂H́

\ ∂H́? We have  .P
∂H́

= H . Yes,  .−1 + 1 < 1. The condition on 
Line 3 is true. We proceed to Line 4 and assign .m

∂H́
← (1, 1). Completing the 

inner loop iteration for . H́ , we move onto .A ← ∂G̀ and .A ← ∂F̄ . 
For both .A ← ∂G̀ and .A ← ∂F̄ , on Line  3 we have . mB as .(1, 1). We check the 

condition on Line 3. Is . mB as .(1, 1) in .F̄ \ ∂F̄ ? Is it in .G̀ \ ∂G̀? No.  Both  A as . ∂F̄

and . ∂G̀ go to the else statement where we compute .m∂F̄ = �∂F̄ (1, 1) = (1, 1
2 ) and 

.m
∂G̀

= �
∂G̀

(1, 1) = ( 12 ,
1
2 ). However, on line 7, different things happen to them. 

We check .m
G̀

and .mF̄ for membership in P on Line 7. The point .(1, 1
2 ) ∈ P c, 

but the point .( 12 ,
1
2 ) ∈ P , taking A as . ∂G̀ to the return statement on Line 8. We  

conclude .�‘A’(1, 1) = ( 12 ,
1
2 ). 

Note that if both conditions on Line 7 had turned out false, we now know 
.mF̄ ,m

H́
, and . m

G̀
, preparing us for the next iteration of the outer loop where we 

consider affine spaces of co-dimension .i ← 2. 

Remark 3.3 Below, in Theorem 5.11 we present the complexity of Algorithm 1. If  
the Hilbert space is finite dimensional, uses the standard inner product, .r >> n, and 
the black-box method takes .M(n) operations, then the complexity of the algorithm 
is .O(rn · (r · n + M(n))) when run sequentially, and .O(n(n + M(n))) when run in 
parallel. 

4 Polyhedral Proofs 

In this section we present novel necessary and sufficient conditions for an affine-
space A to have .minA f = minP f and guarantee A’s existence for the case when
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.argminP f �= ∅. While The Sufficient Criteria (4.14) require the computation 

.minA f , The Necessary Criteria (4.10) do not. This significantly reduces the number 
of affine spaces over which we call the black-box method to calculate .argminA f . 

4.1 Preliminary Proofs 

Definition 4.1 For a, b ∈ H, we use  a, b to denote the closed line segment from a 
to b and a, b to denote the line containing a and b. 

We include Lemma 4.2 and 4.3 for the reader’s convenience. They are proved in 
Neimand et al. [13]. 

Lemma 4.2 Let a, b ∈ H. If  H is a half-space such that a ∈ H and b ∈ Hc, then 

∂H ∩ a, b has exactly one point. 

Lemma 4.3 Let a, b, and c be distinct points in H with b ∈ a, c . 

1. ‖a − b‖ + ‖b − c‖ = ‖a − c‖
2. ‖a − b‖ < ‖a − c‖. 
3. If f : H → R is convex and f (a) < f  (c) then f (b) < f  (c). 
4. If f : H → R is convex and f (a) ≤ f (c) then f (b) ≤ f (c). 

Definition 4.4 We use the following notations. For any X ⊂ H we use aff(X) to 
denote the affine hull of X, Br(y) to denote the open ball centered at y ∈ H with 
a radius of r ∈ R, int(X) for the interior of X, and relint X to denote the relative 
interior of X. 

Lemma 4.5 Let K ⊆ P be a nonempty convex set and A be the smallest space with 
regards to inclusion in AP such that K ⊆ A, and let y ∈ relint K , then for some 
H ∈ HP (Def. 2.1), if y ∈ ∂H then A ⊆ ∂H . 

Proof Let H ∈ HP such that y ∈ ∂H ∩ relint K . There exists an ε >  0 and 
N := Bε(y) ∩ aff(K), such that N ⊆ K ⊆ P ∩ A. 

Let us falsely assume A is not a subset of ∂H . If  K ⊆ ∂H , then by the definition 
of A, A ⊆ ∂H in contradiction to the false assumption we just made. Therefor, K 
is not a subset of ∂H and there exists an a ∈ K \ ∂H . Since K ⊆ P it follows that 
a ∈ int(H). 

Let tε := 1 + ε
2‖a−y‖ ∈ R and yε := (1 − tε)a + tεy. Observe that ‖yε − y‖ =

‖(1− tε)a+ tεy−y‖ = ε
2‖a−y‖‖a−y‖ = ε

2 , giving  yε ∈ Bε(y)∩a, y. Note that any 
line containing two points in an affine space is entirely in that affine space; since 
a, y ∈ aff K , we have  a, y ⊆ aff K . Since yε ∈ a, y, we have  yε ∈ aff K , and we 
may conclude yε ∈ N . 

Let ty := (‖a − y‖+ 2−1ε)−1‖a − y‖. From our earlier definition of yε , we have  
yε = (−2−1‖a − y‖−1ε)a + 2−1‖a − y‖−1(2‖a − y‖ + ε)y. By isolating y and 
substituting in ty , we get y = (1 − ty)a + tyyε , giving  y ∈ a, yε .
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If yε is in int(H), then by convexity of int(H), we have  a, yε ⊂ int(H), including 
y, a contradiction to y ∈ ∂H . 

If yε is in ∂H , we have two points of a, y in ∂H . It follows that a, y ⊆ ∂H and 
a ∈ ∂H , a contradiction. 

All that remains is for yε ∈ Hc ⊆ P c. But  yε ∈ N and N ⊆ P , a contradiction. 
��

Proposition 4.6 Let K ⊆ P be a nonempty convex set and A be the smallest space 
with regards to inclusion in AP such that K ⊆ A. Then for any x ∈ relint K there 
exists an ε >  0 such that PA ∩ Bε(x) = P ∩ Bε(x). 

Proof We may assume that HP is nonempty and that A �= H, otherwise the proof 
is trivial. 

Let x ∈ relint K . Let  Q ⊆ H be a polyhedron such that HQ = HP \ HPA
. 

Then we can define ε := miny∈∂Q ‖y − x‖. If we falsely assume ε = 0, then there 
exists an H ∈ HQ with x ∈ ∂H ∩ P . Since x ∈ relint K , we may conclude from 
Lemma 4.5 that A ⊂ ∂H and that H ∈ HPA

, a contradiction. We may conclude
ε >  0. 

(⊆) Let  y ∈ Bε(x) ∩ PA. Let’s falsely assume y ∈ P c. There exists an H ∈ HP 
such that y ∈ Hc. We have  HP = HQ 

·∪ HPA
. Since y ∈ PA it follows that 

H ∈ HQ. Since x ∈ P ⊆ H , by Lemma 4.2 we may consider the unique ∂H ∩ x, y , 
and from Lemma 4.3 conclude that ‖∂H ∩ x, y −x‖ < ‖x−y‖ < ε, a contradiction 
to our choice of epsilon. We may conclude that PA ∩ Bε(x) ⊆ P ∩ Bε(x). 

(⊇) With P ⊆ PA, it follows that PA ∩ Bε(x) ⊇ P ∩ Bε(x). ��
Lemma 4.7 For any convex K ⊂ H, the  set  argminK f is convex. 

Lemma 4.7 is proved in Niemand et al. [13]. 

4.2 The Necessary Criteria 

Definition 4.8 If argminP f �= ∅, we define the min space of f on P as the 
smallest A ∈ AP with regards to inclusion that has argminP f ⊆ A. Equivalently, 
the min space is the intersection of all the hyperplanes of P that contain argminP f . 
Where f and P are implied, we omit them. 

Remark 4.9 If argminP f �= ∅, then the min space exists and is unique. If there 
are no hyperplanes of P that contain argminP f , giving argminP f ⊆ argminH f , 
then the min space is H. 

Theorem 4.10 (The Necessary Criteria) Let A be the min space for some f on 
P , then A meets the Necessary Criteria which are as follows: 

1. argminP f ⊆ argminA f 
2. argminA f = argminPA f
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Proof (4.10.1) From Definition 4.8, we have minA f ≤ minP f . 
Let’s falsely assume there exists a a ∈ A such that f (a) <  minP f and let 

x ∈ relint argminP f . 
By Proposition 4.6, there exists an ε >  0 such that Bε(x)∩P = Bε(x)∩PA. The  

line segment a, x is entirely in A ⊂ PA, so we may choose ty := 1− ε
2‖a−x‖ ∈ (0, 1) 

so that y := (1 − ty)a + tyx ∈ a, x ∩ Bε(x) ∩ PA. Since y ∈ a, x, by Lemma 4.3.3 
we have f (y) < f  (x) = minP f . Proposition 4.6 gives y ∈ P , a contradiction. ��
Proof (4.10.2) Let’s falsely assume that there exists an x ∈ (PA \ A) such that 
f (x) ≤ minP f , which by Definition 4.8 has argminP f ⊂ A, and let y ∈ 
relint argminP f . Then by Proposition 4.6, we can let ε >  0 such that Bε(y) ∩ P = 
Bε(y) ∩ PA. 

Since x ∈ PA \ A, it follows from convexity of PA that x, y \ {y} ⊂  PA \ A. If  
there was a second point beside y in A, then by the definition of an affine space, x 
would be in  A as well. 

As in 4.10.1, we may choose a z ∈ x, y ∩ Bε(y) ⊂ P ∩ PA with a distance of ε
2 

from y. We have  z ∈ P \ A, and by Lemma 4.3, f (z) ≤ f (y). If  f (z) = f (y), this  
stands in contradiction to argminP f ⊆ A. If  f (z) < f  (y), we have a contradiction 
to y ∈ argminP f . 

We may conclude that for all x ∈ PA \ A, f (x) >  minP f . From  4.10.1, we  
see that if x ∈ A, then f (x) ≥ minP f . Combining these two and the fact that 
argminP f ⊆ A, we achieve the desired result. ��

4.3 The Sufficient Criteria 

For those affine spaces that meet the necessary criteria (4.10), we next consider The 
Sufficient Criteria 

Definition 4.11 Let .A,B ∈ AP , with .A � B. We can say that B disqualifies A 
from P , with regards to f , if  B is the min space of f on . PA. If there is no such 
B, then we say A is a candidate for f on P . Where f and P are implied, they are 
omitted. 

Lemma 4.12 The min space is a candidate. 

Proof Let .A,B ∈ AP such that B disqualifies A. The min space of . PA is B. There 
exists an .x ∈ argminPA

f \A, otherwise A would be the min space over . PA and not 
B. But this is a contradiction to The Necessary Criteria (4.10.2). ��
Lemma 4.13 If and only if .A ∈ AP is a candidate, then . argminA f =
argminPA

f . 

Proof Let A be a candidate, and falsely assume .argminA f �= argminPA
f . This  

means . PA has a min space other than A, and that min space disqualifies A, in  
contradiction to A being a candidate.
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Let .argminA f = argminPA
f . Let’s falsely assume there exists a B that 

disqualifies A. That means there exists an .x ∈ (PA \ A) ∩ argminPB
f in 

contradiction to .argminPA
f = argminA f . ��

Proposition 4.14 (The Sufficient Criteria) Let A be a candidate and 
.argminA f ∩ P �= ∅. Then .argminA f ∩ P = argminP f . 

Proof Let A be a candidate of P with .argminA f ∩ P �= ∅. 
Let .x ∈ argminPA

f ∩ P . Since .P ⊆ PA, for all .y ∈ P we have .f (x) ≥ y. 
But .x ∈ P so .x ∈ argminP f . Therefore, (1) .argminPA

f ∩ P ⊆ argminP f . 
Let .x ∈ argminP f . Since .f (x) = minP f = minPA

f and .x ∈ PA we have 
.x ∈ argminPA

f . That is to say, (2) .argminP f ⊆ argminPA
f . We also have  

(3) .argminP f ⊆ P . We can combine the three set inequalities to conclude 
.argminPA

f ∩ P = argminP f . 
To complete the proof we again recall Lemma 4.13, and note . argminA f ∩ P =

argminPA
f ∩ P = argminP f . ��

Let .A ∈ AP . If for all .B ∈ AP with .B � A we know .argminB f , 
we can use disqualification to determine that A is not the min space, without 
expensively computing .argminA f . Furthermore, if B disqualifies A, then we also 
know .argminPA

f = argminB f = argminPB
f which was previously computed. 

This is not our fast fail, A may have too many superspaces, but we’re getting closer. 

Remark 4.15 If A is the intersection of m hyperplanes of P , then it has m immediate 
superspaces, each can be generated by taking the intersection of .m − 1 of the 
hyperplanes that intersect to make A. Note that .m < min(n, r) since A can’t be 
the intersection of more than the total number of hyperplanes, or more hyperplanes 
than there are dimensions. 

Theorem 4.16 Let .A ∈ AP , then A is disqualified from P , if and only if there exists 
an immediate superspace, B, such that .argminPB

f ∩ (PA \ A) is nonempty. 

Proof (. ⇒) Let .A ∈ AP , such that A is disqualified from P . 
If A is disqualified by some .B ∈ BA, then there exists an . x ∈ argminB f ∩ PA ∩

Ac. Since B is a min space for . PA, the Necessary Criteria (4.10) give . argminB f =
argminPB

f achieving the desired result. 
If A is disqualified by some C that is not an immediate superspace of A, then 

C is the min space of A, and there exists a . c ∈ argminC f = argminPC
f

(Theorem 4.10) with .c ∈ PA \ A, such that for all .x ∈ PC , we have  .f (x) ≥ f (c). 
Since .c ∈ PA and .PA ⊆ PB we have .c ∈ PB . Since .PB ⊂ PC we have 
.c ∈ argminPB

f , the desired result. 
(. ⇐) Let  B be an immediate superspace of A, and let .b ∈ argminPB

f ∩(PA \A). 
Since .PA � PB and .x ∈ argminPB

f , then .b ∈ argminPA
f . The min space of . PA

contains . b, which is in . Ac, so that space is not A, and therefor disqualifies A. ��
Remark 4.17 Let .A ∈ AP . Proposition 4.16 and its results allow us to determine if 
A meets the necessary criteria by looking exclusively at A’s immediate superspaces, 
. BA, and their P -cones. For any .B ∈ BA there exists an .HB ∈ HP such that
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.A = ∂HB ∩B; if .argminPB
f ∩ (HB \A) is nonempty, then . argminPB

f ∩ (PA \ A)

is nonempty, and A is disqualified. We check if any .B ∈ BA disqualifies A by 
confirming .〈argminPB

f, nHB
〉 ≤ bH is nonempty. If the complexity of computing 

the inner product is n and .m := codimA = |BA| ≤ n, then when .argminPB
f is 

known for all .B ∈ BA, Remark 4.15 and Theorem 4.16 let us check the Necessary 
Criteria for A in .O(m · n). This same check, when the inequality holds, yields 
.argminPA

f . This is the fast fail. 

We can now detail the test method introduced in Sect. 1. If the fast fail is 
successful for an affine space A, then we have the optimal points of the disqualifying 
set that are in . PA as .argminPA

f ; there is no need for any additional computation. 
If the fast fail is unsuccessful, then A is a candidate and Lemma 4.13 tells us 
we can use the black-box method to compute .mA ← argminA f where . mA :=
argminPA

f . With the test complete and knowledge of .argminPA
f , we prepare to 

apply the test to A’s immediate sub-spaces. 
This result lends itself to Algorithm 1, wherein we begin by finding the optimum 

over . H, then at each iteration find the optimum of all the P -cones of the immediate 
sub-spaces, until one of those spaces meets the necessary and sufficient criteria. 

5 Algorithm Proofs and Analysis 

5.1 Proof of Function 

Lemma 5.1 When the if else statement in Algorithm 1 Line 3 accesses mB for some 
B ∈ BA that mB has already been saved to memory. 

Proof We will prove by induction on the affine space’s co-dimension. The base A 
is H, since it is the only affine space of P with co-dimension 0. The Hilbert space 
has no immediate superspaces, that is BH = ∅, and therefor mB for some B ∈ BH 
is never called. For an affine space with co-dimension j , we will assume that all the 
affine spaces of co-dimension j − 1 had their requisite input available. We note that 
every affine space, B of co-dimension j − 1 was put up for review by Line 2, and 
generated an mB on Line 4 or Line 6. The superspaces of A’s and the minimums 
over their P -cones are all available. ��
Lemma 5.2 The if else statement on Line 3 goes to the else statement, if and only 
if A is a candidate. 

Proof Let’s assume conditions in the if statement are not met and the else statement 
is reached. This means the if statement on Line 3 determined that for every 
immediate superspace, B ∈ BA, we have  mB ∩ (PA \ A) = ∅. Equivalently, 
argminPB f ⊂ (PA \ A)c which by Corollary 4.16 gives A as a candidate. 

Let A be a candidate, then the if statement on Line 3 will find that for all B ∈ BA 
we have mB ∩ (PA \ A) = ∅, and the else statement will be reached. ��
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Theorem 5.3 The return set of Algorithm 1 is equal to argminP f . 

Proof By Remark 4.9, if argminP f �= ∅, the min space exists, and by Lemma 4.12 
the min space is a candidate. The two for loops will iterate over every affine space 
of P until a candidate is found that meets the sufficient criteria, checked with a 
true statement on line 7 and a false one on line 3. By Corollary 4.14 the min space 
meets the Sufficient Criteria (4.14). If argminP f is nonempty, then a return set is 
guaranteed. 

Let A be candidate (see Lemma 5.2) and the else statement reached. If Line 7 
finds that The Sufficient Criteria (4.14) are met, then the conditions for Proposi-
tion 4.14 are satisfied, insuring the algorithm returns argminP f . 

If argminP f = ∅, then the conditions for The Sufficient Criteria (4.14) are  
never met and the if statement on Line 7 will reject every A. Once all the affine 
spaces have been reviewed, the final return statement is called and an empty set is 
returned. ��
Example 5.4 Referring back to Example 3.2, ∂ G̀, whose minimum is the minimum 
for ‘A’ is not the min space; ∂ G̀ ∩ ∂ F̄ is. However ∂ G̀ is a candidate and The 
Sufficient Criteria are met. What the min space definition gives us is that if a 
minimum exists, we can find its min space. But our set of candidates that meet 
the Sufficient Criteria is broader. 

Proposition 4.14 insures that, in spite of the algorithm not having found the min 
space, argminP f is still returned. 

5.2 Complexity 

Lemma 5.5 If f is strictly convex, then for any convex K , argminK f has at most 
one element. 

We will limit the scope of this complexity analysis to strictly-convex f . This  
significantly simplifies our work and implementation of the algorithm by insuring 
that each mB in Algorithm 1 has a single element. Computing weather mB∩PA = ∅ 
then becomes mB ∈ PA. 

Definition 5.6 For clarity, we use brackets to indicate the computational complex-
ity of a process, as a function of n and possibly some ε >  0. Thus [〈·, ·〉] is the 
number of steps it takes to compute inner product, ranging from n to n3 for finite 
inner products and likely a function of ε for infinite Hilbert spaces. For some affine 
space A, we have [argminA f ] as the number of steps it takes to compute our black-
box method. 

Corollary 5.7 Checking if mB ∩ PA �= ∅ on Line 3 has the same complexity as 
computing inner product, O([〈·, ·〉]). 
Proof This is a direct result of Remark 4.17. ��
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Lemma 5.8 Checking if ∃B ∈ BA s.t. mB ∩ (PA \ A) �= ∅ on Line 3 has 
O(min(n, r) · [〈·, ·〉]) sequential computational complexity and O([〈·, ·〉]) time 
complexity if run in parallel over min(n, r) processors. 

Proof By Corollary 5.7, Checking mB ∩PA �= ∅ has complexity O([〈·, ·〉]). A loop 
checks this once for each B ∈ BA, with Remark 4.15 giving |BA| ≤  min(n, r). Each 
B ∈ BA can be checked for mB ∩ (PA \ A) �= ∅ independently of one another, so 
they can all be checked in parallel. ��
Lemma 5.9 The if statement on Line 7 is O(r · [〈·, ·〉]) sequential computational 
complexity and O([〈·, ·〉]) when run in parallel over r processors. 
Proof Checking if a point is in P requires checking that the point is in each H ∈ 
HP . Checking if a point is in a half-space is O([〈·, ·〉]) and since these r checks are 
independent of one another, they can be done in parallel. ��
Lemma 5.10 Running the entire if else statement that begins on Line 3 has 
O(r · [〈·, ·〉] + [argminA f ]) sequential computational complexity, or O([〈·, ·〉] + 
[argminA f ]) time complexity if run in parallel over r processors. 
Proof We saw in Lemma 5.8 the if statement’s complexity. If there is no fast fail, 
the else portion computes argminA f . 

The inner if statement on Line 7 is O(r), so adding these three components we 
get O(min(n, r) · [〈·, ·〉] + [argminA f ] +  r · [〈·, ·〉]) computational complexity. In 
simplifying, note that min(n, r) ≤ r . 

For the parallel case, we have, O([〈·, ·〉] + [argminA f ] + [〈·, ·〉]), which also 
simplifies to the desired expression. 

The same r threads that are used on Line 3 can be used again on Line 7, so there’s 
no need for more than r processors. ��
Theorem 5.11 Algorithm 1 has O(min(rn , 2r ) ·(r ·[〈·, ·〉]+[argminA f ])) sequen-
tial computational complexity, and O(min(n, r) · ([〈·, ·〉] + [argminA f ])) time 
complexity when run in parallel over O(min(r 

1 
2 · 2r+ 1 

2 , rn+1)) processors. 

Proof For computational complexity we note that the two for loops in Algorithm 1 
iterate over all the affine spaces inAP , so we multiply our results from Lemma 5.10 
by AP . 

For the parallel case, the outer loop cannot be run in parallel. The inner can. 
The number of iterations for the inner loop, for any i ≤ min(r, n) is

(
r 
i

)
, because 

each affine space of co-dimension i is the intersection of i hyperplanes of P . 
Consequently, with maxi<min(r,n)

(
r 
i

)
processors, the inner loop approaches O(1) 

parallel time complexity. The number of iterations of the outer loop is min(n, r). 
We note that r is a maximum number of iterations for the outer loop since the 

co-dimension of an affine space A ∈ AP is the number of hyperplanes that intersect 
to make A. That number of hyperplanes, and therefore the co-dimension, cannot 
exceed the number of P ’s hyperplanes, r . We have  n as a maximum because the 
intersection of more than n hyperplanes will be an empty set or redundant with the 
intersection of fewer hyperplanes.
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All that remains is to compute maxi≤min(n,r)

(
r 
i

)
. If  n >  r 2 , Pascal’s triangle tells 

us that we have the maximum at i = r 
2 , the Central Binomial Coefficient. Stirling’s 

formula [18] tells us
(
r 
r 
2

) ∼ (πr)− 1 
2 2r+ 1 

2 . If  n <  r 2 , then the maximum number 

of processors for the inner loop becomes
(
r 
n

) ≤ rn. This puts the total number of 

processors for the inner loop at O(min(r− 1 
2 · 2r+ 1 

2 , rn )). 
Multiplying by the number of processors we need for the if else statement gives 

us the desired result. ��
When r >>  n  we have polynomial sequential complexity as a function of r , 

and parallel complexity that’s constant using a polynomial number of threads, as 
function of r . When n >> r  then sequential and parallel complexities, as well as 
the number of processors, as a function of n are the complexity of the black-box 
method plus the inner product method. 

Note that unlike many interior point methods, the complexity is not a function 
of accuracy; outside of the black-box method, there is no ε term that compromises 
speed with the desired distance from the correct answer. 

6 Non-Convex Polyhedra 

This section expands the results of the previous section to conclude with a multi-
threaded algorithm for computing the global minimum in the case of non-convex 
polyhedral constraints. Since the algorithm is not dependent on a starting feasible 
point, we find all the local optimum as they meet the necessary criteria, and the 
optimal of the points that meet the necessary criteria is the global optimum. Our non-
convex constraints algorithm exploits the representation of non-convex polyhedra to 
achieve faster results than the convex algorithm presented above. 

We will work with the description from [8] for non-convex polyhedra, where the 
polyhedron is represented by its faces, where each face, a convex polyhedron itself, 
has knowledge of its own faces and its neighbors. Together with the definition of 
non-convex polyhedra in [9], we define a non-convex polyhedron as follows. 

Definition 6.1 A non-convex polyhedron .P ⊂ R
n is the union of a set of convex 

polyhedra, . P . Namely, .P = ⋃
P . We denote the set of faces of P with .FP and 

include .P ∈ FP as the lone exception to the requirement that P ’s faces be convex. 
Note that . FP is closed to intersections. 

Definition 6.2 We can redefine P ’s affine spaces, .AP so that . AP = {A|∀P∃Q ∈
P , with A ∈ AQ and ∃F ∈ FP such that affF = A} ∪ {Rn}. 
Lemma 6.3 If P is convex, then .AP under Definition 6.2 is a subset of .AP under 
Definition 2.4, and that subset includes every affine space that has a non empty 
intersection with P .
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Proof Let .A ∈ AP for Definition 6.2. Then there exists some .Q ∈ P and . F ∈ FP

so that .affF = A. Each .n − 1 dimensional face in . F has .affF = ∂H for some 
.H ∈ HP , and each lower dimensional face is an intersection of those hyperplanes. 
We may conclude that .A ∈ AP for Definition 2.4 since it is the intersection of 
hyperplanes of P . The intersection of A and P is nonempty since A contains a face 
of P . ��

Though .∂P ⊆ ⋃
AP , in many cases, .AP under Definition 6.2 is substantially 

smaller than it is under Definition 2.4. Definition 6.2 excludes affine spaces that 
have an empty intersection with P . The pruning is possible because of the additional 
information in our non-convex polyhedral representation. 

We use the following result to construct . AP , Definition 6.2. 

Lemma 6.4 A necessary condition for a set of .n − 1-dimensional faces .φ ⊆ FP to 
have .aff(

⋂
F∈φ F ) ∈ AP is that the angles between every pair of faces in . φ is less 

than 180 degrees. 

Proof Let .F,G ∈ φ with the angle between them greater than 180 degrees, 

we can choose a point .x ∈ int(F ) so that the angle between .x,�F∩G(x) and 

.�G(x),�F∩G(x) is greater than 180 degrees. While .x ∈ P and .�G(x) ∈ P the 

line .x,�G(x), excluding its endpoints, is outside of P . There is no convex set with 
faces F and G, and therefor it is possible to construct an arrangement for . P without 
the affine space. ��

We can restrict the elements of .AP because an optimal point . x over P is also the 
optimal point over some polyhedron .Q ∈ P , and therefore it can be found with the 
necessary criteria by looking at all the affine spaces of Q that contain faces of P . 

Algorithms exist for decomposing non-convex polyhedra into their convex 
components, [2], however we achieve better results by maintaining the non-convex 
form. By iterating over .AP from definition 6.2, we iterate over every face of each 
polyhedron in . P that might contain P ’s optimal point. 

Corollary 6.5 Let .G ∈ P , then if the optimal point . x of P has .x ∈ G, either 
.x ∈ argminRn f or .x ∈ ∂P . 

Proof We may consider the more general statement: If . x is an optimal point of P , 
then .x ∈ argminRn f or .x ∈ argmin∂P f which is a direct result of the convexity of 
f . ��

For purposes of checking the necessary criteria, we need to define the P -cone of 
an affine space, .A ∈ AP , where P is non convex. The natural choice is to find a 
convex .Q ∈ P and use . QA. However, since we don’t know the composition of . P , 
we need a practical way to build . PA. We do this exactly as we did in Algorithm 1. 

Definition 6.6 If .A ∈ AP , then there exists an .F ∈ FP such that .affF = A. Every  
such F is the intersection .n−1 dimensional faces, .φ ⊆ FP such that .F = ⋂

φ. For  
each .G ∈ φ we have an .HG ∈ HP such that .∂HG = affG. Then .PA = ⋂

G∈φ HG.
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Lemma 6.7 If P is convex, then Definition 6.6 is equivalent to Definition 2.7. 

Remark 6.8 Let .Q,R be convex polyhedra with .A ∈ AQ ∩ AR and .HQA
= HRA

, 
then if A meets the Necessary Criteria 4.10 for Q, it also does for R. That is to say, 
the elements of . P don’t matter, only the neighborhood of A. 

Definition 6.9 We redefine a min space and say that .A ∈ AP is a min space on a 
non-convex polyhedron, P , if there is a convex polyhedron .Q ⊆ P such that A is a 
min space on Q. 

Existence of a min space (Definition 6.9) is immediate from the definition of 
a non-convex polyhedron, though unlike in Definition 4.8, it is not unique. The 
following corollary follows. 

Corollary 6.10 Each min space (Definition 6.9) meets The Necessary Crite-
ria 4.10. 

Proof The necessary conditions for a space to be a min space remain the same, 
because for any .x ∈ argminP f we have a .Q ∈ P so that .x ∈ argminQ f . ��

This means that if some .A ∈ AP meets the Necessary Criteria (4.10), exactly 
which .Q ∈ P it’s in doesn’t matter. 

The sufficient conditions, checking if .x ∈ P change a bit. We don’t know the 
polyhedra of . Q and it will not work to check if the point is in all of the half spaces 
of P , since P is not necessarily the intersection of half spaces. We therefor do not 
check The Sufficient Criteria (4.14). 

Proposition 6.11 (The Sufficient Criteria for a Non-convex Polyhedron) Let . M
be the set of affine spaces that are candidates and have that for each .A ∈ M there 
exists an .F ∈ Fp such that .affF = A with .argminA f ∈ F , then . argminP f =
argmin{f (x)|x ∈ ⋃

M}. 
Proof Let .x ∈ A ∈ M, then by the assumptions set above, .x ∈ P . 

Remark 6.10 gives us .argminP f = argmin{f (x)|x ∈ P and . x ∈ argminA f

where . A meets the Nec. Criteria . }. ��
Since the minimum on the right hand side of the equation is a taken from a finite 

set, it’s easy to compute. 

Remark 6.12 We have .P ∈ FP , often with .affP = R
n ∈ AP . If  .Rn ∈ M, 

we can check .argminRn f for membership in P with an algorithm like the one 
in Akopyan et al. [1]. For checking membership in any other .F ∈ FP , we note that 
F is a convex polyhedron. Checking membership in a F is substantially faster than 
checking membership P . 

With the curated . AP , and the adjusted membership test, Algorithm 1 may 
proceed as above, except that when a point is found to be in P , it is saved and 
the algorithm continues. On completion, the minimum of all the points that have 
been saved is the minimum of P . If the set of saved points is empty, there is no 
minimum. For details, see Algorithm 2.
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Algorithm 2: Finds .argminP f for a non-convex polyhedron P 
Input: A set of faces FP and a function f : Rn conv.−−−→ R 
Output: minP f 

1 M ← ∅ 
2 for  i ← 0 to  min(n, r) do 
3 for A ∈ AP with codim(A) = i in parallel do 
4 if ∃B ∈ BA s.t. mB ∩ (PA \ A) �= ∅ then 
5 mA ← mB ∩ PA 
6 else  
7 mA ← argminA f is computed and saved. 
8 Let F ∈ F such that aff F = A 
9 if mA ∩ F �= ∅ then 

10 add mA to M. 

11 return argmin{f (x)|x ∈ ⋃
M} 
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Mean Values: A Multicriterial Analysis 

Vladislav V. Podinovski and Andrey P. Nelyubin 

1 Introduction 

Mean values are widely used in management, economics, sociology, engineering 
and other areas of theory and practice. In statistics (see, for example, [8, 22]), mean 
values are aggregate representations of the varying characteristics of a group of 
homogeneous objects. Mean values cancel out random variations of a particular 
characteristic and tend to represent the effect caused by the main factors affecting 
it. Mean values allow us to compare the levels of the same characteristic in different 
groups of objects and to investigate the causes of such differences. 

It is known that it is impossible to define a universally applicable notion of 
the mean value which satisfies all desirable properties [1, 8]. Instead, different 
notions of the mean value are required for different problems and situations. 
However, in some applications, it may be unclear which of the known mean values 
should be used, and different means may point to different conclusions. Policy 
recommendations in such situations may become problematic [6, 8, 10, 12, 16]. 

Grabisch et al. [7] regarded mean values as idempotent aggregation functions and 
concluded that the class of such functions “is huge, making the problem of choosing 
the right function (or family) for a given application a difficult one”. 

In this paper, we consider new approaches to the definition of the mean value 
based on the ideas and methods of multicriteria optimization. Such means turn out to 
be multi-valued, i.e., represented by sets of points. These allow two interpretations, 
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either as the range of possible mean values in some specific situations (characterized 
by scale properties, such as equal importance or ordinality, and/or transfer princi-
ples), or as whole sets for the given sample. 

2 Definition of Mean Values as Nondominated Points 

Let X be the set of real numbers consisting of at least n ≥ 2 elements referred to as 
data or points. These elements are typically obtained as a result of measurement of 
some characteristic: 

X = {x1, x2, . . . , xn} . (1) 

These data are assumed homogeneous in the sense that they are obtained by utilizing
the same scale of measurement [21, 23]. We assume that the data (1) are quantitative, 
i.e., the measurement is performed either on the interval scale or on the ratio scale 
[15]. 

The elements of the set (1) can be ranked in the non-decreasing and non-
increasing order. 

X↑ =< x(1), x(2), . . . , x(n) >; X↓ =< x[1], x[2], . . . , x[n] >, (2) 

where x(1) ≤ x(2) ≤ . . . ≤ x(n) and x[1] ≥ x[2] ≥ . . . ≥ x[n]. In statistics, the set (1) is
typically referred to as a sample and its non-decreasing sequence X↑ as a variational
series.

Let Ø be an arbitrary fixed number (a point in Re). Its distance from any point 
xi from X is given by yi = |x - xi|. Then the distance from Ø to the dataset X can 
be characterized by the vector y = (y1, y2, . . . , yn). We can view this vector as the 
value of the vector criterion f (x) = (f1(x), f2(x), . . . , fn(x)), where fi(x) = |x - xi|, 
which is an element of the nonnegative quadrant .Ren+ = [0,+∞)n. 

Let P� be a preference relation (strict partial order) on .Ren+, where � is 
information about the preferences with respect to distance: if yP�y′, where y = f (x) 
and y′ = f (x′), then the point x is closer to the dataset X than x′. 

The relation P� generates the corresponding relation P� on the numeric axis Re: 
xP�x′ ⇐⇒ f (x)P�f (x′). 

Therefore, any candidate that we may choose as the closest to X and representing 
the set X must be nondominated under P� . If the set  G�(X) of nondominated under 
P� points is externally stable, we refer to all such points as pn-means (principal 
new means) and, more specifically (reflecting the information �), as the means with 
respect to P� . 

If there is no further information about the preferences of the DM on . Ren+, we  
obtain the Pareto relation P∅ defined as follows: 

yP∅ z ⇐⇒ yi ≤ zi, i  = 1, 2, . . .  , n; y 
= z.
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Relation P∅ generates the Pareto relation P∅ on Re: xP∅x′ ⇐⇒ f (x)P∅f (x′). 

Theorem 1 The set of all means of the dataset (1) with respect to P∅ is the segment 
G∅(X) = . X = [x(1), x(n)], where x(1) = mini∈N xi and x(n) = maxi∈N xi, N = {1, 2, 
. . .  ,n}. This set is externally stable. 

Therefore, the notion of the means with respect to P∅ is equivalent to the means 
in the sense of Cauchy. 

Proofs of this and the following theorems can be found in [19, 20]. 
Let us note that, if the function ϕ is increasing on Re+, then changing the original 

criteria fi(x) = |x - xi| by ϕ(fi(x)) does not change the set G∅(X). For example, one 
can use “smooth” criteria fi(x) = (x - xi)2. Therefore, the original use of formula 
fi(x) = |x - xi| as a measure of distance is not essential and is not a limiting 
assumption for the suggested approach. 

3 Mean Values for Equally Important Criteria 

In this section, we assume that all criteria are equally important [17] and denote 
this information E. In this case, the distance from the point x to the dataset X 
is represented by the preference relation PE on Re, which is defined by the two 
equivalent decision rules [17], where fi(x) = |x - xi|: 

xP Ex′ ⇐⇒ (
f(1)(x) ≤ f(1)

(
x′) , f(2)(x) ≤ f(2)

(
x′) , . . . , f(n)(x) ≤ f(n)

(
x′)) , 

and at least one of these inequalities is strict; 

xP Ex′ ⇐⇒ (
f[1](x) ≤ f[1]

(
x′) , f[2](x) ≤ f[2]

(
x′) , . . . , f[n](x) ≤ f[n]

(
x′)) , 

and at least one of these inequalities is strict. 
In this case, the pn-means (with respect to PE) (elements of the set GE(X)) are 

the points on the numerical axis which are nondominated under PE. 

Theorem 2 We have GE(X) ⊆ G∅(X) = . X, and the set GE(X) is externally stable. 

Note that, if the function ϕ is increasing on Re+, then changing the original 
criteria fi(x) to criteria ϕ(fi(x)) does not change the relation PE and the set GE(X). 

Let us consider examples of sets GE(X) constructed according to the methods 
described in Sect. 5. 

Example 1 Let n = 3 and X = {1, 2, 5}. In this example, GE(X) = [1.5, 3]. 

In the above example, the set GE(X) is a single line segment. However, for large 
n, this set may be the union of several segments, excluding their endpoints.
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Example 2 For n = 6 and different sets X, we have:  

GE ({10, 11, 15, 61, 107, 110}) = [10.5, 83) ∪ (83.5, 85) ∪ (106.5, 108) ; 

GE ({10, 11, 40, 55, 70, 110}) = [10.5, 18) ∪ (18; 67.5) ∪ (68, 75) ; 

GE ({10, 57, 61, 64, 109, 110}) = (56.5, 57.5) ∪ (58.5, 88.5) ∪ (108, 109.5] . 

Examples 1 and 2 also illustrate the following result. 

Theorem 3 Let the distance between two adjacent elements x(i) and x(i + 1) of the 
variational series (2) be the smallest among all other pairs of adjacent elements 
of this series, and let these two elements be uniquely defined. Then the midpoint 
xc = ½(x(i) + x(i + 1)) is an element of GE(X). Moreover, if x(i) is x(1) or if x(i + 1) is 
x(n), then xc is the left or, respectively, right, endpoint of the set GE(X). 

If x(1) 
= x(n) and (x(1), x(n)) 
⊂ GE(X), for some values of parameter s, the power 
mean. 

gs (X) =
(

1 

n 

n∑

i=1 

(xi)
s

)1\s 
, s 
= 0. 

is not the mean with respect to PE. This is because, as s increases on Re, the function 
gs(X), extended to preserve continuity, passes through all values from the interval 
(x(1), x(n)) [8]. However, we have the following result: 

Theorem 4 The arithmetic mean is a mean with respect to PE, i.e., g1(X)∈GE(X). 

Example 3 According to Example 2, for  X = {10, 57, 61, 64, 109, 110} we have: 
GE(X) = (56.5, 57.5) ∪ (58.5, 88.5) ∪ (108, 109.5]. In this example, the geometric 
mean g0(X) = 54.66
∈GE(X) and harmonic mean g−1(X) = 35.75
∈GE(X), and 
g1(X) = 68.5∈GE(X). In Example 1, for  X = {1, 2, 5}, we have  GE(X) = [1.5, 
3]. Here, the quadratic mean g2(X) = 3.162
∈GE(X), but g1(X) = 2.67∈GE(X). 

Theorem 5 The median is a mean with respect to PE, i.e., if n is an odd integer and 
the median is unique, we have .μ(X) = x(

n+1
2

) ∈ GE(X). If  n is an even number, 

the median is not unique and we have .μ(X) =
[
x( n

2 )
, x( n

2 +1)

]
⊆ GE(X). 

Examples 1 and 2 provide illustrations to the above theorem. 
It should be noted the following peculiarity of the means with respect to PE: if  

the points xi∈X and xj∈X, xi < xj, are included in GE(X), then the point xk∈X, such 
that xi < xk < xj, may not belong to GE(X)! 

Example 4 For n = 7 and different sets X, we have:  

X′ = {1, 2, 3, 6, 8, 9, 11} ,GE
(
X′) = [2; 3) ∪ (3; 8.5] ;
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X′′ = {1, 2, 3, 7, 8, 10, 11} ,GE
(
X′′) = [2; 3) ∪ (3.5; 9] . 

Here x(2), x(4)∈GE(X), whereas x(3) 
∈GE(X) for both sets X = X′ and X = X′′. 
Moreover, the point x(3) = 3 is a punctured point of the set GE(X′) (it is dominated 
under PE by the point x(5) = 8, and in its arbitrarily small neighborhood there are 
points nondominated under PE). 

This feature clearly violates the very principle of constructing means as points 
closest to points from X, and is not consistent with the intuitive concept of a mean 
value. Therefore, the presence of this feature can be considered as a paradox of 
means with respect to PE. 

4 Mean Values for Equally Important Criteria Measured 
on the First Ordered Metric Scale 

Let y be any vector estimate such that yi > yj. Consider any δ > 0 such that yi – 
δ ≥ yj + δ. Define the vector estimate z by replacing component yi by yi − δ and yj 
by yj + δ, but  yi – δ ≥ yj + δ. Moving from y to z reduces the larger deviation yi from 
one point in the sample and increases a smaller deviation yj from a different point, 
by the same amounts δ. The resulting set of distances becomes closer to the ideal 
set of minimally possible equal deviations. Assume that, for any y and δ described 
above, the vector estimate z is preferred to the original vector estimate y, in the sense 
that z is “closer” to X than y and is therefore more suitable for the definition of the 
mean. Denote � the information about the described principle. Such approach is an 
analogue of Pigou-Dalton’s principle of transfer for income distribution [2, 5]. This 
means that the equally important criteria have a common first ordered metric scale 
[4]. The preference relation PE�, generated on Ren by the joint information E and
�, is defined by the following decision rule [14, 18]: 

xP E�x′ ⇐⇒ f[1](x) ≤ f[1]
(
x′) , f[1](x) + f[2](x) ≤ f[1]

(
x′) + f[2]

(
x′) , . . .  

. . . f[1](x) + f[2](x) + · · · +  f[n](x)≤f[1]
(
x′) +f[2]

(
x′)+ . . . f[n]

(
x′) , 

and at least one of these inequalities is strict. In this case, the pn-means are the points 
that are nondominated under PE�. Because PE� ⊃ PE, we have  GE(X) ⊇ GE�(X). 

Theorem 6 The arithmetic mean is a mean with respect to PE�, i.e., g1(X)∈GE�(X). 

Theorem 7 If n is odd, the median (which is uniquely defined), is a mean with 
respect to PE�, i.e., μ(X) ∈ GE�(X). If n is even and the median is not uniquely 
defined, we only have μ(X) ∩ GE�(X) 
= ∅. 

Example 5 If n = 5 and X = {1, 2, 3, 5, 11}, we have  GE�(X) = [3, 6], μ(X) = 3 
and g1(X) = 4.4. If n = 4 and X = {10, 11, 12, 110}, we have GE�(X) = [11.5,
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60], μ(X) = [11, 12] and g1(X) = 35.75. If X = {10, 11, 20, 110}, we have  
GE�(X) = [15.5, 60], μ(X) = [11, 20] and g1(X) = 37.75. 

Let us define the set H = {1, 2, . . . , h}, where h = �(n + 1)/2� is the integer part 
of (n + 1)/2. 

Theorem 8 The set GE�(X) is externally stable and coincides with the segment [α, 
β], where 

α = 
1 

2 
minp∈H

(
x(p) + x(n+1−p)

)
, β  = 

1 

2 
maxp∈H

(
x(p) + x(n+1−p)

)
(3) 

Example 6 For n = 5, we have h = �(n + 1)/2� =  3 and H = {1, 2, 3}. For  X = {1, 
2, 7, 8, 11}, using Theorem 8, we have:  

α = 
1 

2 
min

{
x(1) + x(5), x(2) + x(4), x(3) + x(3)

} = 
1 

2 
min {1 + 11, 2 + 8, 7 + 7} 

= 
1 

2 
min {12, 10, 14} = 5; 

β = 
1 

2 
max

{
x(1) + x(5), x(2) + x(4), x(3) + x(3)

} = 
1 

2 
max {12, 10, 14} = 7; 

Therefore, GE�(X) = [α, β] = [5, 7]. 

5 On the Construction of Sets of Mean Values 

For the construction of the set GE(X), we can use known methods of multicriteria 
optimization developed for the construction of the sets of nondominated variants 
[17]. Such methods utilize families of functions that are increasing (decreasing), 
or at least non-decreasing (non-increasing) with respect to PE. For example, we 
can solve a parametric program which minimizes the function of single variable 
ψ(f (x)|c) = minπ∈� maxi∈N {fπ(i)(x) –  ci} on the set X, by varying the vector 
parameter .c ∈ f

(
X

)
. However, even if n is not very large, the number n! of terms  

of this function (with respect to which the maximization is performed) turns out 
unacceptably large. 

Taking into account that the set X is one-dimensional, we can utilize a different 
approach. Namely, we can consider a dense grid with the small step h which covers 
the set X, and identify the nondominated (with respect to PE) points of this grid 
by simple enumeration [9]. The step h depends on the required precision and can
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decrease in the process of calculations of the set GE(X). We used this approach for 
the construction of the set GE(X) in Examples 1 Ë 2. 

Example 7 Let us demonstrate the construction of the set GE(X) for  X = {1, 2, 5, 
9, 11}. Using computer for the calculations, while reducing the step length h, we  
obtain the following results: 

h = 1: [2, 7] ∪ [9, 9]. 
h = 0.1: [1.5, 7.4] ∪ [8.6, 9.4]. 
h = 0.01: [1.50, 7.49] ∪ [8.51, 9.49]. 
h = 0.001: [1.500, 7.499] ∪ [8.501, 9.499]. 
h = 0.0001: [1.5000, 7.4999] ∪ [8.5001, 9.4999] 

Using the enumeration approach with h = 0.01, we found out that the point 4.5 
dominates the points 7.5 and 8.5. Similarly, the point 2.5 dominates the point 9.5. 
Therefore, by Theorem 2, we have  GE(X) = [1.5, 7.5) ∪ (8.5, 9.5). 

Let us highlight another result that may be useful in the construction of the set 
GE(X). 

Theorem 9 Let vector estimates of all x∈X be located at the points of some uniform 
grid covering X. Then, in order to test if any grid point is a mean with respect to PE, 
it suffices to compare its vector estimate only with the vector estimates of all the 
other points of the grid. 

Let us note that the uniform grid required by the conditions of Theorem 9 
can always be constructed if all points in X are rational numbers. In practical 
applications, these would typically be integer numbers or decimal fractions. 

It is worth noting that it is easier to construct the set of means GE�(X) than the 
set GE(X). According to Theorem 8, the set GE�(X) is easily found by calculating 
the endpoints α and β of the segment [α, β] using formulae (3) – see Example 6. 

6 On Comparing Multi-valued Means 

In practice, it is important that we can compare the mean values measured on 
the same scale. For the means that are uniquely defined, this is a simple task of 
comparing the two numerical values. In the case of multi-valued means, in statistics, 
it is common to substitute such means by a single number, e.g., in the case of a 
median when n is an even number. 

The set G�(X) consists of l intervals with the endpoints x1, x2; x3, x4; . . . ; 
x2l-1, x2l, and these intervals do not intersect with each other. Define the length 
D�(X) of the set  G�(X) as the sum of the lengths of all these intervals: . D�(X) =∑l

k=1

∣∣x2k − x2k−1
∣∣. Furthermore, define .D�

x (X) the length of the part of the set 
G�(X) that is located to the right of the point x. It includes the (part) of one interval
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and all the other intervals located to the right of x. The relative length .d�
x (X) is 

defined as the ratio .d�
x (X) = .D�

x (X): D�(X). 
Because none of the points of the set G�(X) has any advantages (in the sense of 

representing the sample) compared to its other points, any of them may be regarded 
as an equally valid candidate for the choice of the mean. This is analogous to the 
principle of insufficient reason for decision making under ignorance [13]. Using 
first-order stochastic dominance [11], we say that the mean G�(X′) is not less than 
the mean G�(X′′) and state this as G�(X′)) � G�(X′′), if .d�

x

(
X′) ≥ .d�

x

(
X′′) for 

each x∈Re. If the latter inequality is strict for at least one x∈Re, the former mean is 
greater than the latter. This relationship between the means (“is not less than”) is a 
partial quasi-order. The corresponding relation “is greater than” is denoted � and is 
a partial strict order (it is irreflexive and transitive). This strict relation is essentially a 
probabilistic dominance relation, or a strict first-order stochastic dominance relation 
[11]. Note that we have .d�

x (X) = 1−F(x), where F(x) is the cumulative distribution 
function corresponding to the uniform distribution with the density equal to 1 / 
D�(X) on  G�(X) and equal to zero outside G�(X). 

It is clear that the relation � is weak in the sense that it would typically not 
result in a definitive comparison of the means. Relation � can be extended using the 
ideas of second-order stochastic dominance, but this approach does not appear to be 
sufficiently effective in practice either. 

Another approach would be to “compress” the means that are not uniquely 
defined to single-valued means. However, this would lead to a loss of information, 
and the results of comparison would be approximate. For example, let the mean 
G�(X) consist of several not intersecting intervals defined by the endpoints x1, x2; 
x3, x4; . . . ; x2l-1, x2l. We can represent this mean by its the centre of mass x�(X) and 
refer to it as the centroid mean. 

Example 8 Let GE(X′) = [1, 2) ∪ (5, 8) and GE(X′′) = [1.5, 4.5] ∪ (8, 9]. We have: 

xE
(
X′) = (1.5 · 1 + 6.5 · 3) /4 = 5.25; xE

(
X′′) = (3 · 3 + 8.5 · 1) /4 = 4.375. 

Because 5.25 > 4.375, we can accept that the mean GE(X′) is greater than GE(X′′). 
It is useful to note that, if G�(X′) � G�(X′′), then x�(X′) >  x�(X′′) [11]. 
It is worth noting that it easier to compare the means GE�(X′) and GE�(X′′) than 

the means GE(X′) and GE(X′′), because the former are the segments [α′, β ′] and 
[α′′, β′′] respectively. Because the graph of the function .dE�

x (X) is a broken line 
consisting of the single segment [α, β] on which it decreases from 1 to 0, GE�(X′) 
GE�(X′′) is true if and only if α′ ≥ α′′ and β ′ ≥ β′′. 

For the simplified application of the mean GE�, we can represent the segment 
[α, β] by its midpoint γ = ½ (α + β), which can be referred to as the centroid mean 
(with respect to PE�). 

Example 9 The means of the real GDP per capita in Europe calculated based on the 
data from Eurostat [3] are shown in Table 1 and Fig. 1.
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Table 1 Mean real GDP per capita in Europe (in Euro) 

Year 2012 2013 2014 2015 2016 2017 2018 2019 

m 25,741 25,825 26,257 27,063 27,564 28,274 28,909 29,249 
μ 21,780 20,400 20,250 21,020 22,270 23,200 24,120 24,570 
α 19,720 19,745 20,250 21,020 21,995 22,840 23,245 23,485 
β 40,840 41,310 42,015 42,970 43,850 43,750 44,335 44,545 
γ 30,280 30,528 31,133 31,995 32,923 33,295 33,790 34,015 

value, 1000 euro 
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Fig. 1 Means of the GDP per capita in Europe 

Table 1 shows that the GDP per capita m is increasing in the period from 2012 
to 2019, but the median GDP per capita μ is decreasing until 2014 and is increasing 
afterwards. Therefore, it is impossible to make a definite conclusion about the GDP 
growth in the given period. However, the mean GE� (defined by its boundaries α 
and β) is increasing (there is only an insignificant decrease of β in 2017), and the 
condensed mean γ is increasing over the whole period. This observation supports 
the conclusion that the GDP per capita in Europe has been increasing in the given 
period. 

7 On Stability of Pn-Means 

The question of stability of the means with respect to small perturbations of the data 
(1) is important from both theoretical and practical points of view. 

Because G∅(X) = . X = [x(1); x(n)], a small change of the values xi may lead only 
to small changes of x(1) and x(n). Therefore, the set of the means G∅(X) is stable.
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However, the mean with respect to PE may not be stable in the sense that a very 
small perturbation of a single point in X may lead to a noticeable change of the set 
GE(X). The following examples illustrate this possibility. 

Example 10 For X = {1, 2, 3}, we have  GE(X) = [1.5, 2.5]. However, for Xε = {1, 
2 − ε, 3}, where ε > 0 is very small, we have GE(Xε) = [1.5 – 0.5ε, 2]. The right 
endpoint of the set of the means with respect to PE has changed by 0.5. 

Example 11 For X = {10, 25, 40, 110}, we have  GE(X) = [25, 60]. However, for 
Xε = {10, 25, 40 + ε, 110}, where ε > 0 is very small, we have GE(Xε) = [17.5, 60]. 
It is interesting that, although only one point in X has increased by a very small ε, 
the left endpoint of the set of the means (with respect to PE) has decreased by 7.5. 

Let us now consider the issue of stability of the mean with respect to PE�. 

Example 12 In the setting of Example 10, we have  GE�(X) = {2} and GE�(Xε) = [2 
− ε, 2]. Here, a change of one of the data points in X by ε leads to the change of 
one of the endpoints of the set of the means with respect to PE� by the same ε. 

Example 13 Under the conditions of Example 11, we have  GE�(X) = [32.5, 60] Ë 
GE�(Xε) = [32.5 + 0.5ε, 60]. In this example, a change of one of the data points in 
X by ε results in the change of one of the endpoints for the set of the means by 0.5ε. 

Consider the general case. Suppose that the dataset X stated by (1) has changed 
to the set Xε = {x1 + ε1, x2 + ε2, . . . , xn + εn}, where ε1, ε2, . . .  , εn are arbitrary 
numbers. 

Theorem 10 The mean with respect to PE� is stable in the following sense: If X is 
changed to Xε, the endpoints of the set of the means GE�(X) = [α, β] do not change 
by more than the following value: 

max{|ε1|, |ε2|, . . . , |εn|}. 
Therefore, the means with respect to P∅ and PE� are stable with respect to 

small perturbations of the dataset (1), while the means with respect to PE may be 
noticeably unstable. 

8 The Case of Data with Repetitions 

Assume that the dataset allows repetitions, i.e., the point x1 occurs β1 times, x2 
occurs β2 times, . . . , xn occurs βn times. In this case, the dataset (1) is replaced by 
Table 2. 

Table 2 Data with 
repetitions 

Value xi x1 x2 . . .  xn 
Weight β i β1 β2 . . .  βn 
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In statistics, the numbers β i are referred to as weights or (absolute) frequencies, 
and they are used for the calculation of weighted means. 

All our results obtained above, starting with the definition of pn-means, are 
extended to the described more general case. For this, we consider the dataset 
consisting of the repeating values x1 (β1 times), x2 (β2 times) and so on, i.e., we 
restate the data in Table 2 as follows: 

⎛ 

⎜ ⎝x1, . . . , x1︸ ︷︷ ︸
β1 

, x2, . . . , x2︸ ︷︷ ︸
β2 

, . . . , xn, . . . , xn︸ ︷︷ ︸
βn 

⎞ 

⎟ ⎠ . 

The use of the described methods of construction of pn-means in this case may be 
computationally demanding as the dimension of the problem becomes very large 
for large values β i. To overcome this problem, we may use decision rules developed 
in theory of qualitative criteria importance measured on continuous scale [18]. In 
this approach, we treat the integer numbers β i as quantitative coefficients reflecting 
the importance of criteria and use notation Pβ and Pβ� to denote the corresponding 
relations instead of PE and PE�. 

To state the relevant decision rules for the vector estimates y and z, define the 
following set and values: 

W (y, z) = {y1} ∪ {y2} ∪ · · · ∪ {ym} ∪ {z1} ∪ {z2} ∪ · · · ∪ {zm} 
= {

w1, w2, . . . , wq

}
, w1 > w2 > · · ·  > wq; 

=
∑

i:yi≥wk 
βi , bk(z) =

∑
i:zi≥wk 

βi bk(y) =
∑

i:yi≥wk 
βi 

=
∑

i:zi≥wk 
βi , k  = 1, 2, . . .  , q  − 1; 

dk(y) = 
k∑

j=1 

bj (y)
(
wj − wj+1

)
, k  = 1, 2, . . . , q  − 1. 

Decision rule for Pβ: 

yP β z ⇐⇒ bk(y) ≤ bk(z), k = 1, 2, . . . , q  − 1, (4) 

and at least one of these inequalities is strict.
Decision rule for Pβ�: 

yP β�z ⇐⇒ dk(y) ≤ dk(z), k = 1, 2, . . . , q–1, (5)
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Table 3 Data in Example 14 

Value xi 1 2 4 5 7 9 11 
Weight β i 2 1 4 1 2 3 1 

Table 4 Data for Example 15 

Number i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Value x(i) 1 1 2 4 4 4 4 5 7 7 9 9 9 11 

and at least one of these inequalities is strict. 

Example 14 Consider the dataset in Table 3. 

Using decision rules (4) and (5), let us compare points 5 and 3 which have the 
following vector estimates: y = f (5) = (4, 3, 1, 0, 2, 4, 6) and z = f (3) = (2, 1, 1, 2,  
4, 6, 8). In this case, W = (8, 6, 4, 3, 2, 1, 0). Therefore,  q = 7. We have: 

b(y) = (b1(y), b2(y), . . . , b6(y)) = (0, 1, 6, 7, 9, 13);  
b(z) = (b1(z), b2(z), . . . , b6(z)) = (1, 4, 6, 6, 9, 14);  
d(y) = (d1(y), d2(y), . . .  , d6(y)) = (0, 2, 8, 15, 24, 37); 
d(z) = (d1(z), d2(z), . . . , d6(z)) = (2, 10, 16, 22, 31, 45). 

Note that b1(y) = 0 <  b1(z) = 1 but  b4(y) = 7 >  b1(z) = 6. According to (4), neither 
yPβz nor zPβy is true. However, because all 6 inequalities (5) are true and at least 
one of them is strict, we have yPβ�z. 

Note that formula (3) is easier to use if we first rearrange data with repetitions in 
the form (1). 

Example 15 Consider the data from Table 3 of Example 14. We can rearrange these 
data as in Table 4 in which we specify the ordinal number i for each point and the 
corresponding value x(i). 

Using formulae (3), we consecutively calculate: 

α = 1 
2 min

{
x(1) + x(14), x(2) + x(13), x(3) + x(12), x(4) + x(11), x(5) + x(10), 

x(6) + x(9), x(7) + x(8)

} = 
= 1 

2 min {1 + 11, 1 + 9, 2 + 9, 4 + 9, 4 + 7, 4 + 7, 4 + 5} 
= 1 

2 min {12, 10, 11, 13, 11, 9} = 4.5; 

β = 1 
2 max

{
x(1) + x(14), x(2) + x(13), x(3) + x(12), x(4) + x(11), x(5) + x(10), 

x(6) + x(9), x(7) + x(8)

} = 
= 1 

2 max {12, 10, 11, 13, 11, 11, 9} = 6.5. 

Therefore, Gβ�(X) = [4.5, 6.5].
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9 Conclusion 

In this paper, we introduced new notions of the means based on unifying ideas of 
multicriteria optimization. These notions do not require certain properties of the 
means, which are typically assumed by the conventional approaches in statistics and 
which can sometimes complicate the choice of a suitable mean in some problems 
[8]. Instead, our approach utilizes the distance from a current point to each point 
of the dataset. The proximity from a current point to all points in the dataset is 
characterized by the vector components of which are the distances between the 
current point and each point of the dataset. The means are defined as the points 
which are nondominated with respect to the preference relation among the vectors of 
distances characterized by scale properties, such as equal importance or ordinality, 
and/or transfer principles. 

It turns out that such means are typically not unique and that their sets may have 
a complex structure. This potentially complicates the calculation of such means for 
large samples. However, the advances in computer and software technologies make 
this computational issue less problematic. 

The suggested means allow two different interpretations, either as the range of 
possible mean values in some specific situations characterized by scale properties, 
or as whole sets that characterize the chosen sample. 

Among the new means introduced in this paper, the means defined with respect to 
relation PE� should be of the most practical interest. The set GE�(X) of such means 
has a simple structure (it is a segment [α, β]), and it is stable with respect to small 
perturbations of the dataset. Furthermore, there exists a simple exact method for the 
calculation of the set GE�(X). Namely, we have suggested analytical formulae for 
the calculation of the endpoints α Ë β. 

In applications, the comparison of different multi-valued means developed in 
our paper may be uninteresting because they usually turn out to be incomparable 
under the corresponding partial preference relation. However, in some problems, the 
described multi-valued approach has advantages over the use of known means (see, 
e.g., Example 9). If, instead of the set of pn-means, we consider their corresponding 
centres of mass, then such centroid means are uniquely defined. The latter are 
equally operational as the conventional means and but are less informative than the 
original pn-means. For example, instead of the mean GE�(X) = [α, β], we may use 
the corresponding centroid mean (with respect to PE�) γ = ½ (α + β). 

The suggested new means are a useful complement to the range of conventional 
means used in statistics. Among further research avenues arising from our paper, 
let us note development of new pn-means under different assumptions about the 
properties of the scales of measurement and corresponding computational methods. 

Acknowledgments This work is an output of a research project implemented as part of the 
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University).
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Data and Text Interpretation in Social 
Media: Urban Planning Conflicts 

Maria Pilgun and Nailia Gabdrakhmanova 

1 Introduction 

The article presents the results of the development of an algorithm for constructing 
mathematical and neural network models for the study of digital content generated 
by various actors, as well as for the rapid detection, prevention and resolution of 
urban conflicts, which are necessary for the effective management of urban systems. 

The analysis of social tension in a metropolis is a vital task, and the speed of 
conflict detection is of great importance, as well as predictive analytics, which 
enables prediction of emerging conflict situations in order to develop effective 
measures to prevent them. It is the analysis of digital data generated by users 
that makes it possible to analyze the situation in real time and quickly detect 
social tension in the urban environment. Real-time data analysis is in demand in 
various fields: in the field of medical laboratory diagnostics [1]; for observations 
of coupled biological, chemical, and physical processes in the ocean from the 
macro to micro scale [2]; in real time intelligent systems [3]; for High-speed 3d 
railroad tie deflection mapping in real-time using an array of air-coupled non-
contact transducers [4], etc. The objectives of the study were to develop and test 
an algorithm that includes the integration of neural network and mathematical 
models for analyzing digital content to identify semantic accents that characterize 
the dissatisfaction of residents, as well as to assess the positioning features of 
the project in the media space, segments of the greatest informational attention, 
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social tension among residents of the metropolis during the urban planning project 
implementation, as well as to predict the development of the situation. In particular, 
the study was aimed at analyzing the dynamics of information activity on digital 
resources to track changes in the mood of the active citizens of the city and certain 
districts of Moscow involved in the discussion of the construction of the Metro 
Great Ring Line (Southern Section) (GRL), identify key content topics triggering 
the involvement of users in the discussion of the project and timely predict emerging 
and/or developing conflict situations. The analysis was conducted during the active 
stage of the GRL construction (Southern Section), which included the construction 
of three new GRL metro stations (Novatorskaya, Vorontsovskaya and Zyuzino), as 
well as the reconstruction of the Kakhovskaya station. Research questions were as 
follows: Will the results obtained with the use of neural network and mathematical 
models match? Does the proposed model make it possible to identify and analyze 
social tension in the metropolis, as well as predict the situation? 

Sections of manuscript: Introduction. 2. Materials and Methods. 2.1. Text Anal-
ysis Methods. 2.2. Approaches to Mathematical Modeling. 3. Results. 3.1. General 
Description of the Content. 3.2. Neural Network Semantic Model 3.2.1. Content 
sentiment. 3.2.2. Key Negative Semantic Accents Presented in the User-Generated 
Content. 3.2.3. Social Tension Level. 3.3. Simulation Data. 4. Discussion. 5. 
Conclusions. Author Contributions. Funding. Institutional Review Board Statement. 
Informed Consent Statement. Data Availability Statement. Conflicts of Interest. 
References. 

2 Materials and Methods 

The material for the study was the verbal content generated by users on digital 
platforms, dedicated to the implementation of the GRL project (Southern Section), 
as well as digital footprints. The data were collected between October 1, 2020 and 
June 10, 2021 (Table 1). 

Audience coverage is ensured mainly by microblogs, instant messengers, social 
net-works and videos (Fig. 1). Twitter, Telegram, VKontakte and YouTube are the 
top coverage-ensuring sources (Fig. 2). 

Table 1 Quantitative 
characteristics of data 

Parameter name Values 

Number of tokens 62 657 289e 

Number of messages 7063 

Maximum number of messages per day 614 

Number of active authors 933 

Activity (posts per author) 7.57 

Number od sources 213
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Fig. 1 Digital sources ranked by audience reach 

Fig. 2 Types of sources ranked by audience reach
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Fig. 3 Distribution of actors’ digital footprints by types of sources 

To generate content dedicated to the implementation of the GRL project (South-
ern Sec-tion), the actors preferred to use social networks, video hosting and 
microblogs (Fig. 3). 

Among social networks, the undisputed leader was the VKontate platform. 
Instagram, YouTube and Facebook were also popular with users (Fig. 4). 

2.1 Text Analysis Methods 

The article presents a methodology for determining the perception of a certain 
situation by actors, which is implemented based on the results of the analysis 
of the content generated by users and their digital footprints. The study involved 
an interdisciplinary approach. To interpret the data, neural network text analysis, 
analysis of lexical associations using the TextAnalyst 2.3 technology, a detailed 
description of which is presented in [5, 6]; content analysis [7–9] using the AutoMap 
service; and Sentiment analysis using the Eureka Engine sentiment module were 
performed. For visual analytics, the Tableau platform was used. 

2.2 Approaches to Mathematical Modeling 

It follows from the objective formulated above that the mathematical model shall be 
dynamic. Dynamic mathematical models make it possible to analyze the situation 
and make predictions several steps ahead. In this article, the authors have developed 
several different types of mathematical models to study the potential of a conflict 
situation based on digital data. At the first stage, the problem was formalized and 
a time series was constructed based on pre-processed digital data. Currently, quite 
a lot of methods have been developed for the analysis of time series [10–13]. The
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Fig. 4 Distribution of actors’ digital footprints by sources 

article presents the results of developing models according to observational data 
using deterministic and stochastic models; and a comparative analysis of models in 
terms of the prediction accuracy was conducted. When developing models, ordinary 
differential equations (ODEs) [14, 15], stochastic differential equations (SDE) [15], 
regression analysis [16] and convolutional neural networks (CNN) [17] were used. 

3 Results 

3.1 General Description of the Content 

The dynamics of the total number of messages (Fig. 5) shows two growth peaks: on 
March 24, 2021 (2241) and April 1, 2021 (1699). A similar situation is shown by 
the dynamics of the number of unique messages on April 1, 2021 (958) (Fig. 6). 

The peak of growth in the total number of messages on March 24, 2021 (2241) 
is deter-mined by the information that Muscovites are invited to vote for the name
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Fig. 5 Dynamics of the total number of messages 

Fig. 6 Dynamics of the number of unique messages 

for the new GRL station. The peak of the total number of messages (1699) and the 
number of unique messages (958) falls on April 1, 2021 and is associated with the 
opening of the Narodnoye Opolchenie and Mnevniki metro stations of the Great 
Ring Line. The peak of growth in the number of views falls on April 1, 2021 
(11,050,725) (Fig. 7) and in the activity of authors on March 24, 2021 (1237); data 
for April 1, 2021 (599) (Fig. 8) shows similar results.
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Fig. 7 Dynamics of the number of views 

Fig. 8 Dynamics of the authors’ activity 

In the geolocation of authors’ digital footprints, users on the territory of Russia 
logically prevail. Meanwhile, there are actors from different countries who are 
interested in the problems of building the GRL (Southern Section). Analysis of 
the actors’ digital footprints geolocation by regions shows that the Central Federal 
District (CFD) represents the maxi-mum number of actors, and the actors of the 
Nizhny Novgorod Region and the North-Western Federal District (NWF D) are also 
highly active. Among Moscow actors, the most active are actors from Khoroshevo-
Mnevniki, as well as residents of the following districts: Kosino-Ukhtomsky, 
Maryina Roshcha, Basmanny District, Sokolinaya Gora, Sokolniki, Zyuzino.
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Fig. 9 Content sentiment by 
coverage 

3.2 Neural Network Semantic Model 

3.2.1 Content Sentiment 

The sentiment feature of the vast majority of messages and digital footprints in the 
context of references to the project is neutral (Figs. 9 and 10). 

Messages with negative and neutral posts were generated on the following plat-
forms (in descending order): VKontakte, Telegram, Twitter; and positive messages 
were posted on VKontakte, as well as on mos.ru and Telegram. Data analysis 
showed that relevant content in 2021 increased significantly compared to 2020 
(Fig. 11). Of course, it should be borne in mind that the large portion of content 
is gen-erated by biased media. Meanwhile, it is important to note that the number of 
negative messages increased by 2.1 times, neutral—by 2.2 times, and positive— by 
3.1 times (Fig. 12). 

The top sources ranked by the sentiment types are shown in Fig. 13, 14, and 15. 

3.2.2 Key Negative Semantic Accents Presented in the User-Generated 
Content 

• Complaints against project designers and builders who make town planning mis-
takes while designing and do not take the needs of citizens into account.
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Fig. 10 Users’ digital 
footprints sentiment 

• Residents are outraged by the lack of dialogue with the authorities and the quality 
of public hearings. 

• Poor location of new stations. 
• Decreased living standards of residents, the emergence of a structural risk 

for residential buildings; residents demand to sign contracts for insurance of 
residential buildings against possible destruction and want to reduce fees for 
housing and utilities services or receive compensation for utility bills. 

• Unsuccessful (according to residents) location of exits and the transition 
(removal) of surface pedestrian crossings. 

• Increased noise levels in residential buildings during the construction; in partic-
ular, by-pass roads will be laid under the windows of the buildings. 

• Construction works performed at night. 
• Sidewalks become narrower; pedestrian areas are transferred to new places under 

the windows of residential buildings. 
• Risk of technological catastrophes during the construction. 
• Deterioration of the transport situation in the area, since the usual transport routes 

of the residents of the area will be blocked during the construction period. 
• Destruction of the green zone of the city. 
• Residents fear that the construction of new metro lines will significantly impair 

the movement of residents of older districts, as they will not be able to enter the 
metro cars, which will be overcrowded at the previous stations.
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Fig. 11 Dynamics of the 
total number of messages 

Fig. 12 Dynamics of 
messages with various 
sentiment types 

• The construction will change the usual ground public transport routes. 
• Complication of the system of transfers, inefficiency of transport connections, 

deterioration in the design of transfers in comparison with the previous stages of 
construction of the metro system:



Data and Text Interpretation in Social Media: Urban Planning Conflicts 281

Fig. 13 Top-sources with a positive sentiment 

Fig. 14 Top-sources with a negative sentiment 

• Low quality of design of new stations in comparison with the Soviet period of 
construction and foreign international experience: 

• Pits excavated for the construction cause flooding. 
• Elimination of parking lots for Muscovites’ private vehicles. 
• The needs of people with limited mobility, for whom the urban environment be-

comes unsurmountable, are not taken into account. 
• Negative aspects of the GRL construction are superimposed on old conflicts 

between residents and builders:
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Fig. 15 Top-sources with a neutral sentiment 

Table 2 Social stress and social well-being indices 

Facility name Social stress index Social well-being indes 

GRL (Southern Section) 3.39 12.75 

– confrontation between residents and builders from the Novatorov Street station 
to the Sevastopolsky Prospekt station. 

– residents’ protests against the construction of the Biryulyovskaya metro line. 
– dissatisfaction of residents caused by frequent replacements of the pavements. 

3.2.3 Social Tension Level 

The result of the analysis of the consolidated database showed a low level of social 
stress of 5.39 and a moderate value of the social well-being index of 12.75 (Table 2) 

Analysis of the data showed a low level of social tension caused by the GRL 
(Southern section) construction. In terms of the number of negative messages, the 
Vorontsovskaya station is slightly ahead of other stations; the minimum number of 
negative reactions is observed for the Novatorskaya station. In the positive cluster, 
the Kakhovskaya station is the leader; the minimum number of positive messages 
is related to the Novatorskaya station. In the neutral cluster, the Zyuzino station 
takes the first place; the minimum number of neutral messages is related to the 
construction of the Novatorskaya station (Fig. 16).
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Fig. 16 Social tension rating 

3.3 Simulation Data 

The problem under consideration belongs to the class of problems that are difficult 
to formalize. Based on the above analysis of the situation according to digital data, 
the following formalization of the problem was adopted. The following groups have 
been introduced: 

P is a group of actors with a positive attitude towards the project; pos(t) is the 
number of comments of the group P at the moment t, 

N is a group of actors with a negative attitude towards the project; neg(t) is the 
number of comments of the group N at the moment t; 

U is a group of actors with a neutral attitude towards the project; u(t) is the 
number of comments of the group U at the moment t. 

In view of the problem under consideration, we assumed that the percentage of 
all three groups of the part society that is not involved in social networks is the 
same as for the part of the society that is involved. Due to the fact that we are 
primarily interested in the dynamics of the number of actors with a positive and 
negative attitude, and given that the activity of posts varies depending on the day of 
the week, holidays, etc. the following normalization is adopted.
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Table 3 Fragment of the 
initial data 

t p(t) n(t) 

1 0.0537 0.0107 

2 0.1024 0.0097 

3 0.0357 0.0476 

4 0.0217 0.1086 

5 0.0645 0.0967 

6 0.0845 0.0234 

Fig. 17 Dynamics of the initial data p(t) and n(t) 

Two new variables have been introduced: p(t)=pos(t)/u(t), n(t)=neg(t)/u(t). 
Table 3 contains a fragment of the initial data for p(t), n(t). In Fig. 17, the  

dynamics of the initial data p(t) and n(t) is presented. 

General Formulation 
Time series {p(t)}, {n(t)} are given, where t=1,.., N, which characterize the level of 
positive and negative attitude towards the project, respectively. The sampling step is 
constant. It is necessary to build dynamic models for predicting and analyzing the 
emergence of a conflict situation according to these data. 

Mathematical Models with Regression Analysis 
The best known and widely used models for time series analysis are various auto-
regressive models. Trends of the time series {p(t)}, {n(t)} are built using regression 
analysis methods. As a result of estimating the model parameters, the following 
equations are obtained: 

.p(t) = 0, 1 + 0, 001t; n(t) = 0.06 + 0.0001t
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The obtained estimates of the trend coefficients preceding t indicate that the series 
{p(t)} grows faster than the series {n(t)}. 

Mathematical Models Based on Ordinary Differential Equations (ODEs) 
To analyze the behavior of a dynamic system, it is important to have continu-
ous mathematical models. The most suitable continuous models are differential 
equations. In this section, we present the results of building mathematical models 
based on ODEs. When choosing the general form of the differential equation, the 
problem under consideration can be represented as a competition problem: two-
species struggle in populations, an arms race, military operations, etc. [10]. We 
have looked at various ODE models for describing competition. After comparing 
the results of the built models, systems of autonomous differential equations were 
chosen to describe the processes. The chosen equation is as follows: 

.

{ dp
dt

= α1 · n + β1 · p + γ1
dn
dt

= α2 · n + β2 · p + γ2
(1) 

Model parameter estimates (1) were found using the multiple regression method 
and the Nelder-Mead method. At the first step, using regression analysis, we found 
coefficient estimates using the regression analysis method for each equation (1) 
separately; then this solution was adjusted using the Nelder-Mead method for the 
system. The process of coefficient approximation resulted in the following values: 

.α1 = 0, 07;β1 = 0.8; γ1 = −0.18;α2 = −0.05;β2 = 0.5; γ2 = −0.03. For 
ODE models, it is important that the estimates of parameters . α1 and . α2 are within 
the following range: .0 < α1 < 1; . 0 < α2 < 1.

The model obtained (1) was studied in the nOp plane in order to determine the 
qualitative behavior of the p(t),n(t) functions in time. Equation (1) has the following 
equilibrium position: 

. 

{ dp
dt

= 0
dn
dt

= 0

The equilibrium values of n and p are obviously found from the following 
conditions: 

. 

{
α1 · n + β1 · p + γ1 = 0
α2 · n + β2 · p + γ2 = 0

The following values of equilibrium states are calculated: . p0 = 0.228, n0 = 0.08
The values of the equilibrium states match the estimates of the mathematical 

expectation of the p(t), n(t) time series. We used the result obtained when choosing 
a stochastic differential equation (SDE) model. This result can also indicate the 
adequacy of the built model. Analyzing the estimates of the coefficients for the 
system of differential equations (1), it can be noted that the series {p(t)} grows 
faster than the series {n(t)}.
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Mathematical Models Based on Stochastic Differential Equations (SDEs) 
To describe the evolution of systems with interacting elements, there are two 
approach-es: the construction of deterministic or stochastic models. Stochastic 
calculus is a powerful tool for describing many processes. A stochastic differential 
equation (SDE) is a differential equation in which one or more terms repre-
sent a stochastic process. The SDE solution is also a stochastic process. Unlike 
deterministic ones, stochastic models make it possible to take into account the 
probabilistic nature of birth-and-death processes, as well as the effects of the 
external environment, which cause random fluctuations in the model parameters. 
The most commonly used example of an SDE is an equation with a white noise term. 
For each time series, a mathematical model was built in the form of the Ornstein-
Uhlenbeck process: 

.dp = α1 · (β1 − p(t))dt + σ1 · δW1 (2) 

.dn = α2 · (β2 − n(t))dt + σ2 · δW2 (3) 

where .σW is the Wiener process. To estimate the parameters of models (2) and (3), 
the Vasicek model construction algorithm was used [18]. As a result of building the 
model, the following parameters were obtained: 

. α1 = 0.79;β1 = 0.23; σ1 = 0.21;α2 = 0.46;β2 = 0.08; σ2 = 0.08

For SDE models, for an equilibrium to exist, the following condition must be met: 

. β1 · β2 > α1 · α2.

This condition is met for the built models. 

Mathematical Model with CNNs 
Traditionally designed for 2D image data, CNNs can be used to model univariate 
and multivariate time series prediction problems. In our problem, the data are 
considered in the form of a multivariate time series. The input of the CNN was data 
with an interval of 2. The choice of the size of the number of input time steps has 
an important impact on how much data will be used for training. An estimate of the 
size of the number of input time steps was obtained using estimates of time series 
autocorrelations. When training the neural net-work, the input of the CNN was the 
vector ([x(k. −2),y(k. −2)], ([x(k. −1),y(k. −1)]) ), the vector [ x(k),y(k)] was taken 
as a response vector. The process was implemented in the Google Colaboratory 
environment (Google Research product used for code writing); the models were 
implemented and trained using machine learning libraries such as: tensorflow, keras, 
sklearn. Additionally, the mathematical libraries numpy, pandas and matplotlib were 
used for calculations and plotting.When training the CNN, the ADAMAX optimizer 
was used, and ReLU was used as an activation function. The following training 
results were obtained:
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Table 4 Fragment of the 
simulation results 

t p .p̂ e 

1 0.179104 0.079104 0.1 

2 0.290323 0.290323 3.33E. −16 

3 0.429688 0.36875 0.060938 

4 0.233577 0.157664 0.075912 

5 0.87218 0.5 0.37218 

6 0.27897 0.1 0.17897 

Table 5 Mean retro 
prediction error for all models 

b ARMA ODE SDE CNN 

p 0.04 0.1624 0.084 0.025 

n 0.009 0.016 0.009 0.003 

Epoch 98/100: 164/164-0s-loss: 0.0140-405ms/epoch-2ms/step; Epoch 99/100: 
164/164-0s-loss: 0.0141-404ms/epoch-2ms/step; Epoch 100/100: 164/164-0s-loss: 
0.0139-396ms/epoch-2ms/step; Train Score: 0.18 RMSE; Test Score: 0.30 RMSE. 

Table 4 shows a fragment of the simulation results for p(t) on the test set. The 
following designations are agreed for the table: t for time, p for a real value, . p̂ for a 
model value, e for an absolute calculation error. 

Comparative Analysis of the Models Obtained 
To assess the quality of the mathematical models built, we used the average retro 
prediction error for 10 steps ahead for the time series {p(t)} and {n(t)}. The estimate 
of the mean error is found by the formula: 

. E = 1

n

(
n∑

i=1

(xi − x̂i )

)2

where . xi is the value of the time series at the i-th point of the retro prediction; . x̂i is 
the model value of the time series at the i-th point of the retro prediction. Table 5 
shows the calculated values of the mean prediction error for all models. 

It follows from the table that the models built using convolutional neural 
networks yield the smallest prediction error. However, the built analytical models 
are important for the analysis of the situation. Such models are models built on 
the basis of ODEs and SDEs. Comparing the average retro prediction errors of the 
ODE and SDE models, we can conclude that it is important to take into account the 
stochastic nature of the processes. 

4 Discussion 

The article presents a solution to the problem of identifying social tension using 
mathematical models based on the interpretation of digital data generated by various 
types of users. The task was divided into subtasks: (1) collect and filter data;
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(2) build a neural network semantic model; (3) build a mathematical model; and 
(4) make a management decision. Studies undertaken in the course of building 
mathematical models have shown that the models for the problem posed must 
meet the following requirements. Mathematical models must have the properties 
of dynamism and adaptability; it is necessary to take in-to account the stochastic 
component. When solving the problem, four models of different types were built. 
The built models can be used as parallel models. However, in addition to this, 
each model has its own characteristics, which makes it possible to more accurately 
analyze and predict the situation in terms of a potential conflict. The smallest 
retro prediction error corresponds to convolutional neural networks. To analyze the 
situation for the presence of a conflict situation, SDEs and ODEs are more suitable. 

5 Conclusions 

The main (key) tool in the study undertaken is neural network models and differ-
ential equations. At the first stage, neural networks were used for text analysis and 
data filtering. At the next stage, on the basis of the obtained solutions, the problem 
was formalized and mathematically formulated. It is shown that it is possible to 
analyze and monitor the situation based on the forecast of time series using CNNs. 
As a result of solving the problem, the following specific conclusions were made, 
regarding this situation. The study showed that the integration of neural network and 
mathematical models for the analysis of digital content made it possible to identify 
real points of dissatisfaction and positioning of the project in the media space, 
segments of the greatest informational attention, social tension among residents of 
Moscow and its districts around the GRL (Southern Section) construction place, as 
well as to predict the development of the situation. 

The level of social stress and digital aggression determined in this study showed 
how sensitive residents of Moscow and residents of construction areas are to the 
information activity and involvement of network users in the discussion of the 
GRL construction and ongoing construction work on the Southern sector: and 
also made it possible to draw conclusions about the level of social tension and 
approval of the current situation around the object of study. Certain potential risks 
of conflict with residents may arise during the construction of the Vorontsovskaya 
station. Meanwhile, data analysis and calculation of social stress and social well-
being indices made it possible to predict the absence of strong opposition to the 
construction on the part of the residents of the district. The course of events 
confirmed the correctness of the results obtained. 
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Visual Explainable Machine Learning for 
High-Stakes Decision-Making with Worst 
Case Estimates 

Charles Recaido and Boris Kovalerchuk 

1 Introduction 

1.1 Motivation and Approach Overview 

Many Machine Learning (ML) models are complex black boxes for the end users, 
which creates difficulties for trusted decision making using them [11, 15] due 
to various and often hidden assumptions made in the model discovery process. 
Decision-making can be a life critical or high-risk process. One dataset this 
work considers is the Wisconsin Breast Cancer (WBC) dataset [6, 19]. This is a 
benchmark dataset used to classify tumors as benign or malignant. A misdiagnosis 
of a malignant tumor as benign could be a fatal decision for a patient [19]. Other 
high-risk applications include self-driving cars, missile launches, certain investment 
strategies and others. A large part of the current impressive successes of deep 
learning models is not in the high-risk decisions. For many high-risk decisions, the 
user still reluctant to rely on machine learning models due multiple reason including 
the lack of model interpretability and uncertainty on model accuracy. 

ML algorithms often rely on random splitting available data into training and 
validation data. The accuracy of each conducted split as well as the average 
model accuracy for splits like ten-fold cross validation can be high and considered 
appropriate dependent on application. However, the accuracy of the worst-case split 
can be significantly lower than the average, where most difficult cases are put to 
the validation set to test the model in the most stressful situations. For life-critical 
or high-risk decision-making, models with lower average accuracy among many 
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random splits but higher accuracy using the estimate of worst-case split may be 
preferable [9]. This approach is known as a minmax strategy based on the Shannon 
function [9] with the goal of finding the model that produces the highest accuracy 
on most difficult validation data. While finding the exact solution of this problem 
is computationally challenging the visual knowledge discovery approach allows 
successfully to find an upper estimate of it, as this chapter shows below. 

This work considers two main problems: (1) the interpretability of ML models 
where many advanced ML models are difficult to understand, respectively called 
black boxes, and (2) the reliability of accuracy of ML models, where the model 
accuracy can be exaggerated, which is unacceptable in applications with high cost 
of individual errors. 

Many techniques to increase human interpretability of machine learning models 
exist including data visualization, e.g., [15–18, 24]. The combination of data 
visualization and machine learning can provide self-service models for the end-
user [18]. Self-service visualization models allow an end-user to apply their 
domain knowledge to tweak the model rules for better decision-making. Human 
interpretability also provides benefits in data transparency, data fairness, and the 
development of new models. 

Multiple approaches can be found in the literature to address model inter-
pretability and reliability of accuracy problems. This chapter follows the approaches 
presented in [9, 11] based on the visual means. Practically all interpretability studies 
one way or another use visualization, but mostly to present the results of model 
explainability studies. The approach that we follow in this chapter has a fundamental 
advantage of having lossless visual means as a major part of both ML model 
discovery and explanation. It provides a basis for a self-service model discovery 
and interpretation by the end-user/domain expert. 

Unfortunately, not every known visualization technique fit well this goal. 
Machine learning data are fundamentally multidimensional, but popular existing 
methods to visualize multidimensional data like principal component analysis 
(PCA), multidimensional scaling (MDS), t-distributed stochastic neighbor 
embedding (t-SNE) and RadVis are lossy one way or another in representing 
multidimensional data. It means that attempts to discover multidimensional pattern 
in these visualizations have a fundamental flaw. In addition, artificially created 
new coordinates like PCA and t-SNE components do not have natural domain 
interpretations and can be viewed as black-box dimensionality reduction (DR) 
techniques. 

The patterns which exist in n-D space can be lost or corrupted in the process 
of conversion of n-D data to these visualizations in 2-D/3-D before we will try to 
discover patterns in these visualization spaces. For instance, two different n-D points 
can be mapped to a single point in the visualization space due to much smaller size 
of 2-D/3-D space than n-D space. It is well illustrated by the Johnson-Lindenstrauss 
lemma [22]. 

The corruption of n-D patterns is illustrated in Fig. 1 for t-SNE for Wisconsin 
Breast Cancer (WBC) data. Each n-D rectangle (hyperblock, HB) is a continuous 
part of the n-D space, but in t-SNE some of those hyperblocks are not continuous.
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Fig. 1 Corruption of interpretable patterns of 9-D points in t-SNE in WBC data 

Some cases of the same hyperblock are far away in t-SNE visualization with 
multiple cases of other hyperblocks in between. 

Next, all n-D points in the hyperblock are within the distances d1,d2, . . . ,dn 
from the center n-D point of the HB in the respective coordinates. This is an 
interpretable similarity in contrast with, say, similarity in Euclidian distance often 
used in multiple kernels, that can be non-interpretable for heterogenous data with 
heterogeneous attributes like, blood pressure, pulse, temperature and so on. Fig. 1 
shows 648 9-D cases mapped to the first two t-SNE components with 8 malignant 
hyperblocks and 4 benign hyperblocks. The red arrow on the top points to the blue 
case from benign HB B2 and the red arrow in the center of this picture points to 
another blue case from the same benign hyperblock B2, which are far away from the 
first blue case with multiple cases on other HBs in between. This picture shows other 
cases with the same issue. It also shows multiple cases from benign and malignant 
classes that are near each other. They are good candidates to be checked for the 
worst-case validation set. See cases between two black lines as an example.
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Therefore, we rely on General Line Coordinates (GLC), which losslessly 
visualize n-D data with unique graph constructing algorithms [10]. Generally, 
multidimensional GLC are mapped to graphs in 3-D/2-D space to enhance visual 
aids. In this chapter to form a powerful tool with high level visual clarity GLC we 
combine them with non-overlapping hyperblocks. The main advantage of HBs over 
other methods like many kernels is that HBs are interpretable, and all samples of 
the dataset can be grouped forming pure HBs known as atomic HBs [12]. Therefore, 
complex datasets can be considered unions of the atomic HBs. 

While PCA, t-SNE and other lossy methods can corrupt data as was shown above 
for t-SNE, if the corruption is minor or can be controlled, these methods are very 
useful. t-SNE is a non-linear unsupervised dimensionality reduction technique that 
has been applied to high dimensional datasets such as MNIST handwritten digits 
(784 dimensions) [3] and genomic sampling [8]. Therefore, we explore capabilities 
of lossy methods in this chapter in combination with General Line Coordinates for 
visual class separation. 

This work explores a new visualization method through the combination of a 
novel General Line Coordinates system called Dynamic Scaffolding Coordinates 
(DSC) along with hyperblocks, and dimensional reduction techniques such as 
principal component analysis and t-distributed stochastic neighbor embedding. 
Visualizations of high clarity are produced for multiple benchmark datasets where 
worst-case data splits can be discovered that impact model performance. These 
new methods are called Dynamic Scaffolding Coordinates (DSC1, and DSC2). 
DSC1 has basis in parallel coordinates whilst DSC2 has basis in Shitted Paired 
Coordinates [10]. DSC1 and DSC2 are lossless data visualization methods, which 
compact multiple input coordinates to only two axes. 

One immediate consequence of our visual approach is that large datasets 
hamper visual knowledge discovery (VKD) due to line occlusion and permutation 
complexity [10]. We adjusted our dynamic scaffolding approach by incorporating 
hyperblocks and/or methods like PCA and t-SNE to reduce the number of lines and 
lay a foundation for our dynamic scaffolds to grow from. 

We packaged DSC1 and DSC2 into a software toolkit DSCViz [25]. DSCViz 
grants the user interactive capabilities such as changing attribute order, emphasizing 
or deemphasizing classes and/or attributes, visualizing the coordinate system via 
polylines, markers, or both, zoom and drag capabilities, and clipping/bounding 
algorithms for sample selection. In addition, DSCViz includes parallel coordinate 
and shifted paired coordinate plots with the same functionalities listed above. All 
functionalities are purposefully built to enhance visual knowledge discovery for 
the end user. DSCViz was developed using Python as the default programming 
language, QTCreator for the GUI interface, and OpenGL for plot rendering. 

We applied the DSCViz software to a real problem, which is using visual 
knowledge discovery to find the upper estimate of the worst dataset split to training 
and validation sets (also referred to as the most difficult or worst-case split) 
and/or reduce false predictions to improve critical decision-making such as tumor 
diagnosis. This is achieved by analyzing visually the DSC1 and DSC2 plots for 
regions of class overlap and selecting these samples for a validation set. This
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validation set is expected to reduce general model accuracy when compared to 
standard k-fold cross validation. One challenge of this VKD approach we found 
was that not all overlapped regions are equal when discriminating classes from 
each other, some overlapped regions practically do not impact model performance 
whereas other overlapped regions have a great impact when used in the validation 
set. 

Several worst-case split experiments were conducted on benchmark datasets 
such as Seeds, Iris, and Wisconsin Breast Cancer [6]. We further investigated our 
visualization tool on very large datasets such as MNIST handwritten digits [3]. 

1.2 Forms of General Line Coordinates 

There are many forms of GLC visualizations which are dependent on the graph 
constructing algorithm. GLC generalize multidimensional coordinate systems with 
multiple axes such as parallel coordinates (PC), radial (star) coordinates, shifted 
paired coordinates (SPC) and others, by allowing more flexibility in location 
of coordinates [10]. This work uses PC and SPC to construct two new GLC 
visualizations on a 2-D plane. 

Parallel line coordinates (PC) represent multidimensional data using several 
one-dimensional axes. Parallel line coordinates have been used extensively for 
visual knowledge discovery and decision-making [21]. Each axis in a PC plot is 
independent and represents the informational space of one attribute. For instance, a 
4-D point x = (1,3,2,5) is represented by a polyline (directed graph) with 4 nodes 
located on respective 4 vertical axes at the respective positions (1,3,2,5). Figure 
2a shows the Iris dataset on a parallel coordinate plot. Each axis is responsible 
for one of four attributes: petal width, petal length, sepal width, and sepal length. 
The minimum and maximum values of each axis correspond to the range of each 
attribute. Increasing the range of one attribute will have no effect on the other 
attributes. Figure 2a shows a clear classification area for the red class on the bottom 
right-hand corner across two attributes. Any new samples that would plot in the 
bottom right-hand corner would be classified as red class. Establishing a rule to 
classify blue and green cases from each other is more difficult as they exhibit overlap 
on all four attributes. Figure 2b shows the Iris dataset in another form of General 
Line Coordinates. 

Shifted paired coordinates represent multidimensional data using several two-
dimensional axes [10, 18]. Each two-dimensional axis holds the informational space 
of two attributes. SPC show relationships between pairs of attributes. For instance, a 
4-D point x = (1,3,2,5) is represented by a polyline (directed graph) which connects 
node/point (1,3) of the first pair of coordinates in one Cartesian plot with node/point 
(2,5) of the second pair of coordinates in another Cartesian plot. This leads to a 
limitation of the SPC plot in which an even number of attributes are required. 
A dataset with an odd number of attributes will require engineering, duplicating,
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Fig. 2 Transformation of a 4-D PC plot to a 2-D GLC plot. (a) Iris dataset in Parallel Coordinates. 
(b) Iris dataset in one form of General Line Coordinates 

Fig. 3 Iris dataset on a shifted paired coordinate plot 

or removing an attribute. Duplicating of an attribute is most desirable because it 
preserves information of the dataset. 

Figure 3 shows the lossless Iris dataset on a shifted paired coordinates plot. The 
first attribute-pair shows a relationship between sepal width (vertical) and sepal 
length (horizontal), and the second attribute-pair shows a relationship between petal 
width (vertical) and petal length (horizontal). Separation of the red class is shown 
in the blue rectangle. Green and blue classes are highly overlapped. The order 
of attributes is important when making a SPC plot due to the unique relationship 
between any two attributes, which leads to visually different plots. This introduces a 
new hurdle in developing multidimensional visualizations, which is the exponential 
time complexity of plotting every attribute order permutation and choosing the best 
one. 

Figure 4 is a visually appealing representation of class separation of the Iris 
dataset in SPC constructed using an alternative pairing of the same 4 coordinates. 
The red class is completely separated from the red and green class. In Fig. 3 the 
green class and blue class had large amounts of overlap, but for this permutation of 
attributes the blue and green classes overlap in a much smaller area. The difference
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Fig. 4 Iris dataset on SPC with high visual classification clarity 

between Figs. 3 and 4 is quite drastic in readability to the user. The time to produce 
every attribute permutation of the Iris dataset and choose the plot for Fig. 4 was 
only a few seconds, however, computing permutations of larger multidimensional 
datasets may not be feasible. 

A hyperblock (HB) is a multidimensional “rectangle” (n-orthotope) with set of 
multidimensional points {x = (x1, x2, . . . , xn)} with center c = (c1, c2, . . . , cn) and 
side lengths L = (L1, L2, . . . ,Ln) [12, 20] such that, 

∀i ∈ N, | xi − ci |≤ 
Li 
2 

(1) 

If a HB has equal length sides, then it is known as a hypercube. HBs can represent
a group of samples with similar attribute values and can be used to condense
the number of lines needed for visualization. HBs are highly interpretable data
units as a combination of individual coordinates without imposing non-interpretable
operations between coordinates. This allows for the separation of different data units
that exist among multiple attributes during model creation. In contrast, some other
kernels known in machine learning are not interpretable. For example, in k-nearest
neighbors, a Euclidean distance search requires a summation of squared differences
for all attributes and computing square roots of them. This may have no meaning in
the domain, like cancer diagnostics, and not appropriate to the domain expert. In a
previous study hyperblocks were used to generalize decision tree rules [12]. Class
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Fig. 5 Hyperblock in 4-D 
space with boundary lines 
(pink) on a PC plot 

purity ratings are given to HBs, with the purest HBs containing samples from only 
one class, and the least pure HBs contain equal number of samples from all classes. 

Figure 5 shows a HB in 4-D space. The boundary lines (pink) contain several 
green samples. The green lines can be omitted, and the pink boundary lines will 
still contain the information space of all those samples. Methods like principal 
component analysis can produce HBs but those HBs can be non-interpretable. Non-
overlapping interpretable hyperblocks from a specific dataset can be found by using 
decision trees, Merger Hyperblock algorithm [12], and other methods. For this 
research we considered the decision tree method for creating hyperblocks due to the 
smaller time complexity of running a decision tree compared to Merger Hyperblock 
algorithm. 

1.3 Related Studies 

In this section we discuss prior studies involving General Line Coordinates systems 
and other approaches like Local Interpretable Model-agnostic Explanations (LIME) 
and their applications. 

The LIME method was proposed as means to approximate less interpretable 
models such as neural networks [14, 23]. It approximates a learning model at the 
local level by performing perturbation around a particular input and mapping the 
output through linear models. LIME has been used in many applications from 
natural language processing [4] to computer vision [14]. However, LIME and 
similar methods have a limited interpretability for heterogeneous data [11] in  
contrast with decision trees and logical models, which we exploit in this study with 
methods based on the GLC. 

For GLC these studies include interactive visual knowledge discovery in shifted 
paired coordinates, Pareto optimization in GLC, GLC-L coordinate system, and 
more [10]. In [18] interpretability of machine learning models was increased by 
developing interactive shifted paired coordinates system in the SPCVis software. 
SPVis introduces a plethora of features that adapt the shifted paired coordinate
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system such as non-linear scaling, non-orthogonal displays, and serpent parallel 
coordinates. In addition, in [18] a genetic algorithm and coordinate order optimizer 
are used to find strong attribute permutations that led to class separability, which 
is especially important for high-dimensional datasets. The SPCVis optimization 
algorithms allow to produce a multi-stage visual classifier. Accuracy results using 
SPCVis on Seeds, Wisconsin Breast Cancer, and Iris datasets are comparable to 
ML algorithms from the literature. Our study also uses SPC, not for discovering 
classification models directly, but by using SPC to design new lossless visualizations 
DSC2. 

In [5, 10] General Line Coordinates are used to transform non-image data 
(vectors filled with general numeric attribute information) into an image. One 
important factor of it is that GLC is a lossless projection from multidimensional data 
into two dimensions, and the produced image contains all the original information 
of the dataset. This approach allowed to apply to any dataset that is not image such 
as Wisconsin Breast Cancer dataset and input that data into a Convolutional Neural 
Network. While our research uses a GLC system with dynamic scaffolding, [5] 
used an alternative GLC system referred to as GLC-L where angles are calculated 
by optimizing a linear discrimination function. There is a close link between DCS1 
and GLC-L in design of the visualization, but with a significant difference in their 
use to discover visual patterns. 

The first difference between GLC-L and DSC2 is in the ways of assigning angles 
and ordering of attributes. In GLC-L the order of the attributes (segments of the 
polyline) is not critical, but in scaffolding it is optimized. In DSC we derive the 
angles and order of attributes from external sources like location of values of the 
attributes in parallel coordinates, shifted paired coordinates, decision trees and other 
possible sources. It is based on the idea that if some attributes separate classes better 
than other in external sources, then it can be exploited to assign angles and order of 
attributes in DSC to improve visualization. Next, DSC allows adding/engineering 
additional attributes to improve visualization too. 

In [1, 10] GLC-L and Pareto optimization are used to find a best-case scenario 
in certain datasets like student performance, and local weather. As an example, one 
might want to know which month is best to go hiking, or which pre-major classes 
lead to better students in preparation for getting accepted into a Computer Science 
program. It is demonstrated in [1, 10] how to pin down key attributes that would 
form a basis for the Pareto subsets, and those subsets would lead to a Pareto Frontier. 
This work was able to condense several parallel coordinate plots into a single GLC-
L plot. This work also uses GLC-L visualization method, which is similar DSC 
methods we develop in this study, but for setting up priorities among alternatives in 
the Pareto set, not for discovering classification models. 

In [12] Parallel Coordinates are used as a basis for discovering interpretable 
classification rules. In this work we propose to use the parallel coordinates to 
design an alternative dynamic visualization DSC1 for better visual discrimination 
of classes. Parallel coordinates are static, where the location of the next coordinate
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does not depend on the location of the previous coordinates. The dependence using 
in DSC allows to capture more complex patters than in static parallel coordinates. 

2 Dynamic Scaffold Coordinates with Hyperblocks 

2.1 Dynamic Scaffolding Coordinates Based on Parallel 
Coordinates 

Dynamic Scaffolding Coordinates based on Parallel Coordinates (DSC1) generalize 
the parallel coordinate plot by creating a series of origin-to-attribute scaffolds. Each 
attribute axis is given a certain angle and the scaffolds connected tip-to-tail to form 
a polyline to represent losslessly n-D data. The axis tilt can be user-defined or found 
analytically through optimization. The axis tilt is required to better visualize data 
trends across two dimensions. Without the axis tilt the line components would stack 
vertically in one dimension. 

The DSC1 graph construction algorithm (Fig. 6) as follows:  

1. Set up dataset sample coordinates in the same manner as a Parallel Coordinates 
plot. 

2. Apply a rotation transformation for each individual attribute axis with pre-
defined angles. 

3. Create a vector from the origin to the attribute point for each attribute. Each of 
these vectors is called a scaffold. The scaffolds are created for all samples. 

4. The first attribute scaffold position is left untouched; however, the tail of the first 
attribute scaffold is removed, making the tips of the first attribute the “origin” of 
the polyline. 

5. Translate the remaining scaffolds to the tip of the preceding scaffold. 

Mathematically this process can be described as follows. Consider n-D point 
X = (x1,x2,..,xn), then we produce rotated vectors x1,x2,..,xn from X, such as shown 
in Fig. 6b, with lengths equal to respective values of xi, ||xi|| = xi. i = 1:n. Then we 
add these vectors to the origin point O: Vn = O + x1 + x2 + . . .  + xn to produce a 
directed graph like shown in Fig. 6c. Here, in contrast with classical summation of 
vectors with the n-D point, which will produce a single n-D point Vn, we preserve 
results of all consecutive sums Vi = O + x1 + x2 + . . . xi. These points (V1,V2, . . . , 
Vn) are vertices of the directed graph like shown in Fig. 6c. 

The angles in the DSC1 graph construction algorithm are chosen to visually show 
separation of classes that separate on one attribute called the attribute of separation. 
The attribute of separation is placed first in the order of attributes and given the 
steepest angle to emphasize its importance and the order for the remaining attributes 
sharing the same angle (Fig. 7b), however the possibility exists to change the angle 
of each attribute as shown in Fig. 8. The comparison of Fig. 7a with Iris data 
in parallel coordinates with the same data in DSC1 in Figs. 7b and 8 shows the
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Fig. 6 Visual steps for construction of the DSC1 plot. (a) One sample on parallel coordinates. (b) 
Rotating the axes. (c) Rotating the axes 

Fig. 7 Side-by-side comparison of Parallel Coordinates and DSC1 of Iris dataset. (a) Iris dataset 
on Parallel Coordinates. (b) Iris dataset on DSC1 

pure advantages of DSC1 over the parallel coordinates for this dataset, while both 
methods losslessly represent all these four-dimensional data in 2-D visualization 
space.
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Fig. 8 DSC1 with a different 
rotation for each attribute 

Fig. 9 Hiding polylines and 
certain attribute markers on 
DSC1 

Fig. 10 DSC1 visualized using only HBs. (a) HB boundaries on DSC1. (b) Shaded HBs on DSC1 

Other techniques may be applied to DSC1 such as hiding certain attributes 
markers and hiding the polylines. Figure 9 is another representation of Fig. 7b 
where the polylines are hidden as well as the first three attributes. These self-service 
techniques can be deployed by the end-user to highlight certain attributes or regions 
of the dataset that may be of interest. 

Figures 7b, 8 and 9 clearly shows that blue and green classes overlap. We can find 
subsets of those classes in the form of hyperblocks, which do not overlap as Fig. 10 
shows. Next, DSC1 software grants the user the ability to reduce graphs of samples 
to an upper and lower hyperblock boundary line as shown in Fig. 10. This alternative 
visualization reduces line occlusion, which can enhance visual knowledge discovery 
in sample dense but highly separable datasets. 

Dynamic scaffolding coordinates can be used to create visual classifiers. Partic-
ularly in DSC1 this can be done via a series of DSC1 plots using graphical linear
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Fig. 11 DSC1 plot series classifier. (a) Complete Iris dataset with graphically linear separator 
(black line). (b) Top split. (c) Bottom split 

separators. Figure 11a shows the graphical linear separator that separates the entire 
Setosa (red) class from the Virginica (blue) and Versicolor (green) classes. The next 
step of the classifier is separating the Virginica and Versicolor classes. There does 
not exist a spot that can completely divide the two classes without misclassifying 
some samples as shown in Fig. 11b, thus one must analyze the best spot for a 
graphically linear separator. This methodology is very similar to rule establishment 
in a decision tree where clear divides between classes may not exist. 

2.2 Dynamic Scaffolding Coordinates Based on Shifted Paired 
Coordinates 

Dynamic Scaffolding Coordinates (DSC2) based on Shifted Paired Coordinates 
generalize the Shifted Paired Coordinates by creating a series of origin-to-pair 
scaffolds. Each scaffold is connected tip-to-tail; however, the tail of the first scaffold 
line is removed as the first attribute pair is the starting point of the multidimensional 
line.
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Fig. 12 Visual steps for construction of the DSC2 plot. (a) One sample with scaffolds on SPC. (b) 
Connecting the scaffolds. (c) Removing the first scaffold 

The DSC2 graph construction algorithm illustrated in Fig. 12 is as follows: 

1. Set up dataset sample coordinates in the same manner as a SPC plot. 
2. Create a scaffold from the origin to the attribute-pair point for each attribute-pair 

and for all samples. 
3. The first attribute-pair scaffold position is left untouched; however, the tail of the 

first scaffold is removed, making the tips of the first attribute-pair the “origin” of 
the polyline. 

4. Translate the remaining scaffolds, to the tip of the preceding scaffold 

The general mathematical description of the DSC2 process is the same as for DSC1. 
The only difference is that vectors are produced by using SPC not by using parallel 
coordinates. Here we create a set of 2-D vectors yi from n-D point X = (x1,x2,..,xn) 
as follows, y1 = (x1,x2), y2 = (x3,x4), . . .  yn/2 = (xn-1,xn) for even n. If the dimension 
n is odd then we repeat the last xn getting y(n + 1)/2 = (xn,xn). Then we add these 
vectors yi to the origin point O: Vn =O+ y1 + y2 + . . .  + yn/2 to produce a directed 
graph like shown in Fig. 12. Here, again, in contrast with classical summation of 
vectors with the n-D point, which will produce a single n-D point Vn, we preserve 
results of all consecutive sums Vi = O + y1 + y2 + . . . yi. These points (V1,V2, . . . , 
Vn) are vertices of the directed graph. The DSC2 process is also lossless in the same 
way as DSC1 process without any loss of n-dimensional information. In contrast, 
with DSC1 it contains two times less nodes for even n. Figure 13 allows to compare
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Fig. 13 Side-by-side comparison of SPC and DSC2 of Iris Dataset. (a) Iris dataset on SPC. (b) 
Iris dataset on DSC2 

Iris data in SPC and DSC2. Here in contrast with DSC1 vs. parallel coordinates, 
DSC2 did not produced better separation of the classes than SPC. In the next section 
we will show a way how DSC2 is enhanced to make more appealing on these data 
for finding the area where the classes overlap. 

3 Methods and Experimental Results 

In this section we describe the methods for visualizing hyperblocks and finding 
the worst-case splits of data to training and validation sets in DSC. These methods 
are illustrated on Iris, Seeds, and Wisconsin Breast Cancer (WBC) datasets. In 
addition, we explored how our visualization performs on large datasets such as 
MNIST Handwritten Digits. Attributes of interest are developed to produce class 
separation on the DSC2 plot. Attributes of interest are important because testing 
every attribute permutation on a DSC2 plot, a factorial time complexity problem, is 
not feasible for large datasets of a high dimensionality. 

3.1 Overview of Methods 

We employed three methods to find the attributes of interest: (1) hyperblock 
analysis from decision trees, (2) principal component analysis, and (3) t-distributed 
stochastic neighbor embedding (t-SNE).
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As was pointed out above hyperblocks play an important role in visualization of 
multidimensional data of multiple classes. While in general, the distribution of data 
of multiple classes can be very complex in multidimensional space, hyperblocks 
are quite simple and interpretable. Therefore, there is a great interest to visualize 
hyperblocks, which do not overlap in the n-D space, also non-overlapping in the 
2-D visualization space. If this goal will be reached, then data with more complex 
distributions in a high-dimensional space can be represented as combinations of 
several hyperblocks. This is especially beneficial when those hyperblocks are pure, 
i.e., contain only cases of given class. 

More formally and specifically this task can be formulated as follows. Consider 
m non-overlapping HBi, i = 1:m in the n-D space. It means that for each pair HBi 

HBj exists a coordinate Xk(i,j) where these HBs do not overlap. The goal is finding 
and using those separating coordinates Xk(i,j) to visualize HBs without-overlap in 
2-D. 

If the number of these separating coordinates is relatively small, then the chances 
to visualize those hyperblocks non-overlapping in the 2-D visualization space is 
much higher. However, it is possible that all Xk(i,j) differ for all pairs of these HBs. 
The total number of these pairs is the number of pairs combinations. Thus, the 
attempts to visualize many non-overlapping hyperblocks in DSC1 without overlap 
can fail. 

For three HBs it can be done successfully as the Iris example above demonstrates. 
Therefore, a sequential process is feasible, where first data are split to three 
hyperblocks. These initial HBs can be impure in a high-dimensional space. Then 
for each of these HBs, the process continues to split them to 2-3 hyperblocks. With 
more iterations, the HBs can be made purer and purer. As we see, this is very similar 
to the decision tree process, while it does not require a binary split. It can operate 
with three HBs at each iteration. In the actual examples below, we used the decision 
trees to find the hyperblocks as a computationally efficient process. 

Additional attributes can be very beneficial in the situation when hyperblocks 
are not sufficient to resolve the issue being too simple relative to the actual 
distribution of the cases, which may require too many hyperblocks. The main 
idea of using additional attributes is as follows. We compute first two principal 
components of the dataset, add them to the dataset as two additional attributes and 
use in visualization along with original attributes. Similarly, we can use t-SNE or 
Multidimensional Scaling (MDS) components. 

As was shown in Sect. 2.1 for DSC1 and below for DSC2 for the Iris dataset 
hyperblock analysis was successful for class separation. On the other hand, to 
produce quality class separation of a more complex WBC dataset on DSC2 using 
hyperblock analysis was not sufficient. To visualize WBC class separation, we 
escalated to using two principal components in addition to the real dataset attributes. 
Likewise, for MNIST we were unable to produce class separation using hyperblock 
analysis or principal components and escalated to using t-distributed stochastic 
neighbor embedding components in addition to principal components.
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Fig. 14 Four levels below the root (level 0) of the Iris decision tree 

3.2 DT Hyperblocks with Iris Dataset 

The Iris dataset contains 150 samples of three types of Iris flower (Setosa, Virginica, 
and Versicolor) [6, 7]. The number of samples are balanced between the classes 
meaning there is 50 samples per Iris flower. The dataset has four attributes relating 
to petal width, petal length, sepal length, and sepal width. 

The decision tree (DT) analysis is a simple way to develop HBs for this dataset. 
Figure 14 shows a decision tree model built using the Classification and Regression 
Tree algorithm (CART) with Gini impurity criterion, and greedy approach on the 
best split. This figure forms HBs of the Iris dataset. Each sub-branch of the DT 
represents one HB. To produce non-overlapping HBs from a DT a parent and 
child node cannot simultaneously be selected because the parent node contains the 
information of the child, essentially a child is a sub-hyperblock contained inside a 
parent hyperblock. Going deep into a decision tree a branch can form 100% pure 
HBs, which contain cases of only one class. However, it runs the risk of overfitting 
as HBs with very few or a single sample will be present, as some full branches ended 
in the terminal nodes of the DT show in Fig. 14 with a single case. 

The HB ended in the red node has 100% Setosa purity, the HB ended in the 
green node has 97.78% versicolor purity, and the HB ended in blue node has 97.61% 
virginica purity. These HBs have high purity and contain many samples to reduce 
the possibility of overfitting. The HB ended in cyan node has only 61.53% virginica 
purity. It is highly impure. The nodes with the orange highlighted text illustrate 
the decision tree rules which create such HBs. These DT rules can be applied 
to multidimensional visualizations when ordering attributes as shown in Fig. 15. 
Figure 16 is a modified Fig. 15b where connecting lines are omitted. In Fig. 16
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Fig. 15 Side-by-side comparison of SPC and DSC2 of three Iris HBs with outlined classes. (a) 
Iris dataset on SPC. (b) Iris dataset on DSC2 

Fig. 16 Three main class 
hyperblocks chosen from the 
decision tree 

the rectangle 1.1 includes the start points of the cases of Setosa class (class 1), the 
rectangle 1.2 includes the end points of cases of this class. Similarly, rectangles 2.1, 
2.2, 3.1 and 3.2 show in DSC2 these points of cases from remaining two classes. 

One caveat to the transformation of SPC to DSC2 is that the succeeding attribute-
pairs can condense onto the preceding attribute-pair as shown in Fig. 16 where the 
tips of the green class are nearby the tail of the blue class for some samples. See 
rectangles 2.2 and 3.1 in Fig. 16. It is particularly noticeable when an attribute-
pair consist of zeros or very small values. One method we deployed to combat 
this phenomenon is to scale certain attributes-pairs to be larger than the succeeding 
attribute-pairs as shown in Fig. 17. 

This effect has diminishing returns on attribute-pairs that come last due to 
polyline growth always being in the positive up and right directions, thus it is 
beneficial to carefully select the first couple of attribute-pairs. 

By decreasing the size of the succeeding attribute pairs or increasing the size of 
the preceding attribute pairs we were able to highlight better separability between
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Fig. 17 Downscaling 
attribute-pair axes 

Fig. 18 Emphasizing key attribute-pairs on DSC2. (a) Scaling second attribute pair to 10%. (b) 
Scaling second attribute pair to 99% 

classes. In Fig. 15b there was higher visual class overlap, and it was difficult to 
select samples for a validation set that would result in a worst-case split, however in 
Fig. 18 it is immediately noticeable which samples to select for a worst-case split. 

The Setosa (red) class is completely separated and can be omitted from the 
worst-case decision analysis as ML models would not struggle to classify Setosa 
from the other two classes. However, Virginica (blue) and Versicolor (green) have 
overlap. This leaves 100 samples between the two classes and a 90%–10% test-
validation split would require 10 samples to be selected which is shown in Fig. 
18a. DSCViz features a clipping function that employs the Cohen-Sutherland line 
clipping algorithm to find samples that are clipped by a user defined rectangle. There 
also exists vertex bounding where samples are selected if any vertex of the sample’s 
polyline is contained within the box. This can be useful when viewing the dataset 
using marker points rather than polylines. 

Figure 19 is used to explain the reason why we need to reduce class overlap as 
much as possible before choosing samples for a worst-case validation split. Whilst 
the orange rectangle is certainly over an area that appears to be highly overlapped, 
picking those samples may not lead to a bad split because those attributes are likely 
to not be used by the classification algorithms. Clearly a model such as DT or SVM 
would make a classification decision using the third or fourth attributes and ignore 
the first two attributes. By reducing overlap as much as possible we can determine 
which areas of a dataset that a ML model might use in the decision-making process
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Fig. 19 Two areas of overlap 
on the Iris dataset on PC 

Fig. 20 Non-linear scaling 
on certain attributes of the Iris 
dataset in DSC2 after 
non-linear rescaling 

rather than ignore. The black rectangle is an excellent spot to choose samples for 
a bad split. However, the Iris dataset is a simple dataset, and it is clear where ML 
models may decide to create rules. On larger datasets it is more difficult to determine 
what areas of overlap are forced into a ML model’s rule creation rather than ignored. 

This analysis highlights the close relations between (1) building a visualization 
with the smallest overlap of cases of different classes and (2) finding the worst 
validation set in this visualization space. In essence, while these problems may seem 
unrelated, but they are really two sides of the same coin. We want to get visualization 
where the classes are separated as much as possible and then pick up the area where 
they still overlap to be used as a worst validation set. 

Another technique known as non-linear scaling [10, 18] can be used to separate 
Iris data as shown in Fig. 20. The decision tree in Fig. 14 for the Iris dataset made 
a rule that separated majority of the Setosa class (red) at a normalized value of 0.17 
for petal length. Another decision tree was used to pick up separation using the petal 
width attribute. The Virginica class (blue) was separated from the Versicolor class 
(green) 0.67 for petal length. Samples with a petal length attribute greater than 0.17 
scaled closer to a normalized value of one, while values less than 0.17 were scaled 
closer to a normalized value of zero. Likewise for petal width we used 0.67 as the 
indicator to push attributes values towards 0 or 1. Non-linear scaling exaggerations
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Fig. 21 Non-linear scaling technique on SPC 

is also applied. A high exaggeration would squish attribute values at the limits of 0 
and 1 whilst a low exaggeration will retain more of the original data. 

Figure 21 demonstrates how non-linear scaling was applied on the first attribute-
pair to create Fig. 20. The classes are pushed in the direction of the corresponding 
color arrows. The Virginica class (blue) is pushed up because it is above the black 
horizontal line and the Versicolor class (green) and Setosa class (red) are pushed 
down as they are below the black horizontal line. The red class is pushed to the 
left because it is on the left side of the black vertical line whilst the green and blue 
classes are pushed right as they are right of the black vertical line. 

3.3 DT Hyperblocks with Seeds Dataset 

The Seeds dataset contains 210 samples of three types of wheat seeds (Kama, Rosa, 
and Canadian) [2, 6]. The number of samples are balanced between the classes 
meaning there is 70 samples per wheat seed. The dataset has seven attributes relating 
to area, perimeter, compactness, length of kernel, width of kernel, asymmetry 
coefficient, and length of kernel groove. 

Immediate separation of classes is not apparent using a PC or SPC as shown in 
Fig. 22. Note that the Kernel Groove attribute was duplicated to create an even 
number of attributes for the SPC plot. We used a decision tree analysis to find 
attributes of interest for DSC2 in the process like what described above for the
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Fig. 22 Seeds dataset on SPC and PC. (a) Seeds dataset on Shifted Paired Coordinates. (b) Seeds 
dataset on Parallel Coordinates 

Fig. 23 Seeds on DSC2 after 
scaling and HB analysis 

iris dataset. This decision tree is in Appendix A. The attributes of interest happened 
to be area and kernel groove. The resulting visualization in DSC2 is shown in Fig. 
23, which demonstrates its advantages over visualization of the same Seeds data in 
Shifted Paired Coordinates and Parallel Coordinates shown in Fig. 22. The three  
classes of seeds are much better separated in Fig. 23. 

Analyzing the decision tree in Appendix A, we established three hyperblocks 
with relatively high purity: the green HB contained 68 samples of the green class 
and 1 sample from the red class, whilst the blue HB contained 70 samples of the red 
class and 14 samples of the red class, and finally, the red HB contained 55 samples 
of the red class and 2 samples of the green class. The green HB was separated from 
the red and blue HBs at a kernel groove value of 5.576 whilst the red and blue HBs 
were further separated from each other at an area value of 13.410. This decision tree
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Fig. 24 Enhanced Version of 
the Seeds DSC2 Plot 

Table 1 Standard ten-fold cross validation model accuracy on Seeds dataset 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 AVG 

DT 95.2 95.2 90.5 95.2 100.0 81.0 100.0 95.2 76.2 81.0 91.0 
SVM 100.0 95.2 90.5 100.0 100.0 85.7 100.0 90.5 71.4 66.7 90.0 
RF 85.7 95.2 95.2 95.2 100.0 95.2 100.0 95.2 71.4 85.7 91.9 
KNN 95.2 95.2 90.5 85.7 100.0 81.0 95.2 90.5 76.2 76.2 88.6 
LR 100.0 95.2 95.2 100.0 100.0 81.0 95.2 90.5 81.0 76.2 91.4 
NB 90.5 90.5 95.2 90.5 100.0 90.5 100.0 95.2 61.9 76.2 89.0 
SGD 81.0 85.7 81.0 90.5 81.0 85.7 95.2 81.0 71.4 90.5 84.3 
MLP 95.2 90.5 81.0 95.2 100.0 81.0 95.2 90.5 85.7 81.0 89.5 

model is also a CART model with Gini impurity criterion, and greedy approach on 
the best split. 

Using Fig. 23 we employed a box clipping algorithm on 21 samples of the Seeds 
dataset which appeared to be overlapped. Figure 23 is the full dataset and is difficult 
to see the boxes we used to clip samples as we plucked individual samples at a time. 
Figure 24 offers an enhanced view of Fig. 23 which shows the samples we clipped 
into the validation set. 

After selecting 21 samples (10% of the Seeds dataset) and removing the 
duplicated kernel groove attribute we compared our validation split to a standard 
ten-Fold Cross Validation (CV) package in the scikit-learn library [13]. The 10 splits 
were reused for each model of the eight contained in Table 1. For each ML model all 
parameters were kept as default. The classifiers are as follows: Decision Tree (DT) 
using CART algorithm and greedy approach, Support Vector Machine (SVM) with 
linear approach and l2 penalty, Random Forests (RF) with 100 estimators, K-Nearest 
Neighbors (KNN) with 5 neighbors and uniform weights, Logistic Regression (LR)
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Table 2 Estimate of the 
worst-case split on Seeds 
dataset 

Model Accuracy 

DT 57.14% 
SVM 38.10% 
RF 61.90% 
KNN 23.81% 
LR 38.10% 
NB 57.14% 
SGD 42.86% 
MLP 23.81% 

with l2 penalty, Gaussian Naïve Bayes (NB), Stochastic Gradient Descent (SGD) 
linear classifier, and Multilayer Perceptron (MLP) with one hidden layer of 100 
hidden units. 

Table 1 shows that standard ML algorithms can classify the Seeds dataset within 
84.3–91.9% average accuracy without any additional processing, dimensional 
reduction, or feature engineering. The lowest split was 66.7% in SVM, and the 
highest split was 100% across seven models. The best performing model was 
Random Forest, and the worst performing model was Stochastic Gradient Descent. 

Table 2 shows that despite the strong model accuracies obtained in Table 1, all  
eight classifiers had an accuracy between 23.81% and 61.9% in the upper estimate of 
the worst-case split. Again Random Forest was the best performing algorithm whilst 
KNN had the lowest performance. Intuitively this makes sense that KNN would be 
the lowest because the samples we took from the DSC2 plot had neighbors from a 
different class. 

3.4 DT Hyperblocks and Principal Components 
with Wisconsin Breast Cancer Dataset 

The Wisconsin Breast Cancer dataset contains 699 samples using nine descriptive 
attributes: clump thickness, uniformity of cell size, uniformity of cell shape, 
marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal 
nucleoli, and mitoses [6, 19]. We removed 16 samples which have missing values 
leaving a total of 683 samples. Those 683 samples include 444 benign cases and 
239 malignant cases. We chose the WBC dataset due the high-risk nature of cancer 
tumor diagnosis. A misdiagnosis of a malignant tumor as a benign tumor could 
prove fatal for the patient [19]. 

Figure 25 shows the WBC dataset on PC and SPC plots. In both types of plots 
the dataset samples are heavily overlapped, however, the benign class (green) is 
concentrated towards the bottom of both plots. The benign class has 1.86 times more 
samples than the malignant class (red), but the malignant class consumes more area 
of the plot.
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Fig. 25 Wisconsin Breast Cancer dataset on PC and SPC. (a) Malignant class on top on PC. (b) 
Benign class on top on PC. (c) Malignant class on top on SPC. (d) Benign class on top on SPC 

Fig. 26 DSC2 of the WBC dataset. (a) Benign class on top on DSC2. (b) Malignant class on top 
on DSC2 

We remove the mitosis attribute for the SPC plot as it requires an even number 
of attributes. This decision was made from analysis of DT (see Appendix B), that 
showed the mitosis feature was not used for complete set separation in DT. As in 
the previous datasets the decision tree model also used CART with Gini impurity 
criterion, and greedy approach on the best split. 

Figure 26 shows the WBC dataset on DSC2. It is shown that the benign class 
(green) exists mostly in the bottom left corner and has short polyline growth whilst 
the malignant class (red) also starts in the bottom left corner but has long polyline 
growth. To reduce the area of overlap to a manageable level we employed attribute 
scaling to find regions of overlap that would have meaning to a ML model. 

Using the DT analysis in Appendix B, it was difficult to decide attributes of 
interest because of the many branches and deep level of the decision tree. Unlike 
the Iris dataset the WBC dataset requires multiple attributes to separate the two 
classes. It was noticed that the uniformity of cell size and uniformity of cell shape 
attributes were a reoccurring attribute that the decision tree used to create rules. 
Thus, we made these two attributes the attribute of interest and placed them as the 
first attribute-pair on DSC2 (Fig. 27). After upscaling, the first attribute-pair we 
were able to develop a clearer picture of where proper overlap can exist for a worst-
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Fig. 27 WBC dataset on DSC2 after upscaling the first attribute-pair 

Fig. 28 WBC dataset with 
two Principal Components 

case split. Proper overlap refers to areas of overlap that likely will not be ignored by 
the classier algorithms. The red squares in Fig. 27 represent areas that would clip 
samples for a validation set. 

Next we further escalated WBC data visualization by utilizing principal compo-
nent analysis as an attempt to preserve global structure in only two dimensions. 
These two principal components would become our attributes of interest and 
accordingly placed as the first attribute-pair (Fig. 28). Compared to Fig. 27 it became 
easier to identify which samples would result in a worst-case split. To have enough 
samples to fill a validation set we used overlapped samples and samples that were 
near the boundaries of the two classes.
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Fig. 29 WBC Principal 
Components 

For some datasets dynamic scaffolding coordinates may not be necessary when 
looking for worst case splits. The two attributes of interest (in this case the principal 
components) in the form of a scatterplot would be just as effective. However, when 
combining the WBC attributes with the two principal components we were able to 
capture the general structure of the samples. One obvious trend in Fig. 28 that does 
not show up in Fig. 29 is that malignant cases tend to have large values across many 
attributes whereas benign cases tend to have attribute values close to zero. The end-
user can gain a better insight into which samples are likely malignant and which 
ones are benign. It could also be useful in determining edge cases of benign tumors 
that may transform into a malignant tumor later. Of course, this line of logic would 
require going through the scientific process to determine if benign cases with long 
polylines are more likely to turn into malignant cases. With Fig. 29 these higher-
level insights would not be possible as the points themselves have no differentiation 
besides location and class color. 

3.5 MNIST Handwritten Digits with Autoencoder and T-SNE 
Components 

The datasets we experimented in previous sections were relatively small in both 
dimensions, and the number of cases. The goal of this section is to explore 
capabilities of DSC visualization for a much larger dataset. For this purpose, we 
selected the MNIST Handwritten digits dataset (MNIST) [3], which contains 60,000 
samples of digits on a 28 × 28-pixel grid in a training set. There is an additional 
test set containing 10,000 samples. The dataset is available from Kaggle.com. The  
pixel values are represented in grayscale between 0 and 255. The 28 × 28-pixel 
grid was converted to a 784-dimensional dataset. In the previous sections, we 
were able to visualize smaller datasets in SPC and parallel coordinates and have 
shown advantages of DSC over them. For larger MNIST dataset, a SPC or PC our
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Fig. 30 784 Attributes of 
MNIST on DSC2 

implementations did not handle the 784 attributes. These methods require special 
treatment to deal with heavy occlusion. The decision three approach, which was 
successful for smaller datasets above, has a limited applicability to the MNIST 
dataset, because the produced DT was very large, deep and with accuracy only 
around 79%. Respectively, finding attributes of interest in the MNIST DT was 
difficult. 

Unlike SPC and PC we were able to render a plot that fit inside the application 
window using DSC2. The plot in Fig. 30 gave lack of insight into the dataset as 
all ten digits were stacked on top of each other. The dimension reduction technique 
using Autoencoder was more successful. In prior work [5] two digits of MNIST 
were analyzed together using 32 autoencoder features with a high model accuracy. 
Therefore, we reduced the MNIST dataset to 32 autoencoder attributes and plot 
them on DSC2. Unlike [5] that compared only two digits, we chose to compare a 
single digit to all other digits. 

Figure 31 provided interesting digit patterns of the MNIST dataset on DSC2. 
Each digit had a slightly different polyline growth pattern and density. However, 
there is large amounts of overlap between the ten-digit classes, and it was difficult 
to visually separate the classes from each other. The next attempt was to use t-SNE 
components as attributes of interest (Fig. 33), considering that t-SNE has been used 
to visualize MNIST digits with high clarity (Fig. 32). 

We reduced the MNIST dataset from 784 attributes to only 50 truncated Singular 
Value Decomposition (SVD) components. SVD describes a linear transformation 
through rotations and scaling. It is essentially a map between different sized vector 
spaces. We used Truncated SVD which is beneficial when data is sparse. MNIST 
can be considered sparse as many pixels in a single digit pixel-grid are without ink. 
With these 50 SVD components we generated two t-SNE components. However, 
t-SNE has several drawbacks. t-SNE components cannot be applied to unseen data 
without applying them simultaneously with the training data due to the lack of a 
parametric embedding [16], which leads to t-SNE algorithm being considered as a 
difficult to interpret or black box dimension reduction technique. Next, t-SNE does 
not preserve distance between clusters, nor does it preserve cluster density [13]. It 
is also very visible in our Fig. 1 for WBC data as we discussed in Sect. 1. t-SNE  
can be simplified to a dimensional reduction technique that does not preserve global 
structure but preserves local neighborhoods [8]. t-SNE uses a perplexity parameter
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Fig. 31 Each MNIST Digit using autoencoder features against all other digits on DSC2 

which we set to 30. The creator of t-SNE recommends a perplexity value between 5 
and 50 [13]. This parameter is related to how many nearby neighbors any point may 
have. 

Like the WBC with PCA in DSC2 plot from the previous section, we grew our 
sample polylines from the two t-SNE components which became our attributes of 
interest. The MNIST SVD components were downscaled by a factor of 0.003 to 
keep the polylines from growing on top of other clusters. Figures 32 and 33 look
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Fig. 32 t-SNE components 
for MNIST 

Fig. 33 t-SNE + MNIST 
attributes on DSC2 

very similar when the entire plot is in frame. However, zooming in on the DSC2 
plot can reveal important differences between Figs. 32 and 33. 

Figure 34 reveals that certain points can end up growing into the main cluster 
of their class when using DSC2 scaffolding on top of t-SNE. There is a risk to 
this analysis however, since t-SNE does not preserve distances, whilst the scaffolds 
from the SVD components do preserve distance in SVD. In future work we will 
consider other ways of visualizing MNIST dataset without having to rely on black 
box techniques such as t-SNE, but for our current research we found t-SNE and 
scaffolding to produce class clusters with high clarity. While MNIST dataset is not 
a high-risk application, if we were to choose samples for worst-case analysis, we 
would pick samples that lie in a class cluster but are not part of that class.
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Fig. 34 t-SNE scatterplot vs. DSC2 scaffolds. (a) t-SNE only scatterplot. (b) t-SNE + DSC2 
scaffolds 

3.6 Comparison of Worst and Average Validation Sets for 
Different Classifiers 

This section is devoted to comparison of performance on average and worst 
validation sets, where average validation sets are obtained by using k-fold cross 
validation and the worst validation sets are obtained by visual methods described 
in the previous sections. It is important to know how big the difference is between 
accuracy for the average and worst validation sets for different classifiers to be able 
to select better ones. 

Classification results were obtained from eight standard ML classifiers in the 
sci-kit learn Python library [13] using ten-fold cross validation. The single ten-fold 
cross validation tested against eight models was compared to the validation split 
found using several box-clipping areas in Fig. 29. The samples in the multiple boxes 
were clipped using Cohen Sutherland algorithm into a validation set of 67 samples 
which is 9.81% of the entire WBC dataset. The PCA components were removed, and 
the mitosis attribute was added back to both the training and validation set. The goal 
of our DSC2 visualization was to select samples from the original dataset that may 
lead to an upper estimate of the worst-case split. We refer to this validation split as 
an upper estimate, as this methodology does not guarantee the absolute worst-case 
split. 

For each ML model all parameters were kept as default, except for the multilayer 
perceptron which was given an additional hidden layer from the default of one hid-
den layer. The classifiers are as follows: Decision Tree (DT) using CART algorithm 
and greedy approach, Support Vector Machine (SVM) with linear approach and l2 
penalty, Random Forests (RF) with 100 estimators, K-Nearest Neighbors (KNN) 
with 5 neighbors and uniform weights, Logistic Regression (LR) with l2 penalty,
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Table 3 Standard tenfold Cross Validation model accuracy for WBC dataset 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 AVG 

DT 95.7 91.3 95.7 92.6 95.6 91.1 94.1 98.5 97.1 95.6 94.7 
SVM 92.8 98.6 95.7 94.1 98.5 97.1 97.1 100 98.5 98.5 97.1 
RF 92.8 94.2 95.7 94.1 98.5 97.1 98.5 98.5 98.5 98.5 96.6 
KNN 91.3 98.6 95.6 94.1 100 97.1 98.5 100 98.5 98.5 97.2 
LR 92.7 97.1 94.2 94.1 100 97.1 95.5 100 97.1 100 96.8 
NB 92.7 95.6 94.2 94.1 98.5 95.6 97.1 97.1 98.5 97.1 96.1 
SGD 95.7 92.8 95.7 94.1 100 91.2 95.6 98.5 98.5 100 96.2 
MLP 89.8 89.9 94.2 92.6 100 94.1 97.1 100 98.5 98.5 95.5 

Table 4 Upper estimate of 
the worst split from 
PCA-DSC2 analysis for 
WBC dataset 

Model Accuracy (%) 

DT 62.12 
SVM 62.12 
RF 65.15 
KNN 60.60 
LR 63.63 
NB 72.72 
SGD 57.58 
MLP 60.60 

Gaussian Naïve Bayes (NB), Stochastic Gradient Descent (SGD), and Multilayer 
Perceptron (MLP) with one hidden layer of 100 hidden units. 

Table 3 shows that standard ML algorithms can classify the WBC dataset 
within 94–97% average accuracy without any additional processing, dimensional 
reduction, or feature engineering. The lowest split is resulted in 89.8% and the 
highest split is resulted in 100%. The best performing model was KNN and SVM, 
and the worst performing model was DT classifier. 

Table 4 shows that despite the strong model accuracies obtained in Table 3, all  
eight classifiers had an accuracy between 57% and 72% in the upper estimate of 
the worst-case scenario. In life-critical and other high-risk applications knowing 
the worst performance of a model can influence reliance on the model and the 
possibilities of incorporating additional models into decision-making as a safeguard. 
In this case ten-fold cross validation accuracy suggests using KNN or SVM 
classifiers, but the model that performed the best on the estimate of the most difficult 
split was Naïve Bayes by a margin of 7.57% of the next best model Random Forest. 

4 DSCViz Software 

DSCViz provides a GUI application to control dynamic scaffolding coordinates, 
parallel coordinates, and shifted paired coordinates plots. It is available upon request 
for not commercial use. After the dataset is uploaded information about the dataset
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Fig. 35 DSCViz application running SPC plot 

will populate in the top left corner of the window. The user then selects which of the 
four plots to create using the radio button and clicking generate plot. 

From here the user has the capabilities to drag and zoom in real time using GPU 
rendering by making various OpenGL calls. The dataset vertices are stored in the 
GPU memory for fast access when doing matrix operations. 

DSCViz has been used on datasets such as MNIST, which can include 40 million 
data points, of course many are overlapped and do not render. If the dragging and 
zooming is slow a user may use hiding all the classes and markers, dragging the plot, 
and then reactivating. There are no immediate slowdowns for small datasets such as 
WBC and Iris, or MNIST after dimensional reduction techniques are applied. 

A user can establishes a specific order of features in the UI. Similarly, classes can 
also be reordered. Individual class markers, class polylines, as well as the plot axes 
all have toggles to hide. The attribute markers can be controlled at the attribute level 
by toggling them in the highlight column. There is a general slider that controls the 
transparency of unselected attributes. The slider set at 0 will completely hide the 
attributes. 

DSCViz gives the user the ability to clip samples from the dataset. The line 
clipping algorithm is Cohen-Sutherland. There is also the option to clip samples 
by any vertex or end vertices. Unlike the line clipping method, the vertex methods 
only clip samples that have a vertex inside the clipping area. Sequential clips can 
be added and saved any time. The user may remove and reset the clip entirely. All 
clipping samples are moved into the validation set. Figures 35, 36 and 37 illustrate 
DSCViz.
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Fig. 36 Lowering attribute 
transparency 

Fig. 37 Two clipping areas on DSCViz
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5 Conclusions 

This study contributes to visual and interpretable machine learning methods by 
developing DSC1 and DSC2 systems that can be used for multidimensional visual-
ization, analysis, and classification. DSC1 and DSC2 have self-service components 
that allow domain experts to change, add, or remove attributes and select regions of 
highly condensed samples for model selection. 

Hyperblocks as interpretable data units are used to highlight attributes of 
separation within a dataset as a computationally efficient alternative to genetic 
or brute force algorithms for attribute order permutation selection. When HBs 
are unable to provide adequate attributes of separation, we escalated to various 
dimension reduction techniques that allowed for visualizing dimensionally rich 
datasets like MNIST. 

The results in Tables 2 and 4 show the lower accuracy of standard ML models 
for benchmark datasets when looking for difficult dataset splits. Section 3 provides 
a framework of visualizing these difficult splits on DSC2. One area that we would 
like to improve on is visualizing difficult splits in a dataset without reliance 
on dimensional reduction techniques to provide plot clarity. In future work we 
look towards developing dimension reduction techniques that preserve hyperblock 
structure or adapting other dimension reduction techniques. 

A.1 Appendices 

A.1.1 Appendix A – Seeds Dataset Decision Tree
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Algorithm of Trading on the Stock 
Market, Providing Satisfactory Results 

Alexander Rubchinsky and Kristina Baikova 

1 Introduction 

The presented work is in line with a broad scientific direction associated with 
the analysis of market graphs that describe the behavior of the stock market (see, 
for example, articles [4, 5]). Within this direction, much attention was paid to 
decompositions of market graphs. Methods have been developed for selecting 
clusters corresponding to certain groups of stocks. Considerable attention has been 
given to the study of the dynamics of stock markets, including predictions of major 
crises in them. 

Along with such general problems, of great interest are the problems of short-
term analysis of the stock market, including the development of algorithms for daily 
trading in the stock market that provide positive financial results. As an example, we 
point to publications [6–9] devoted to such algorithms. In these works, as in most 
studies of the stock market, the value of shares is described by random processes. 

The choice of shares for trading in the next days is defined by various deter-
ministic mechanisms that process known prices in the previous days. Naturally, the 
results obtained depend both on the probabilistic models used and on the rules of 
preliminary data processing. It is not the purpose of this paper to review in any 
detail the numerous publications in this direction. We can only note that the great 
variety of methods, problem statements and algorithms most likely indicate a certain 
dissatisfaction with both the existing models and the financial results obtained on 
their basis. 
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The presented paper uses the reverse scheme in a sense. No probabilistic con-
siderations about share prices are assumed simply because stock market processes 
can be considered as probabilistic with a great reserve. At the same time there is 
no doubt about their uncertainty. The use of probabilistic models and methods to 
analyze systems under uncertainty may be successful in some cases, but there are 
no guarantees in the general case. However, not in the analysis of the raw data, but in 
the proposed trading algorithm itself, simple probabilistic methods are used, which 
− although theoretically − allow us to apply the central limit theorem and obtain 
results with some appropriate reliability. The presentation of the proposed approach 
to the development of a daily trading algorithm is the content of this paper. 

In more detail, it is possible to imagine the general scheme of the daily trading 
algorithm consisting of four consecutive blocks: 

1. Analysis of market data for a current day and for a certain number of previous 
days. 

2. Building a group of shares on the basis of this analysis, which is advisable to 
trade the next day, or recommendation to skip trading the next day, which is 
quite rare. 

3. Calculation of profits (or losses) as a result of trading the next day. 
4. Making a decision to stop trading for a certain period, depending on the results 

achieved during the previous period. 

Let us pay attention to the essential difference between one-day trading skipping 
and cessation of trading for a more or less noticeable period. The next day’s trading 
is skipped when negative results are expected, while the termination of trading for 
some appreciable period is performed according to results already achieved (without 
forecasting). This approach, previously unseen, is proposed – among other new 
algorithms related to the first three blocks – in this article. 

Let us point out the main stages of the proposed general scheme. Two decom-
positions relating to today and yesterday are constructed to analyze previous data, 
i.e. the clusters, into which the set of all shares is divided today and yesterday are 
determined. For this purpose, we use the previously developed method of frequency 
decomposition of graphs [1–3], applicable to arbitrary undirected graphs. Here it 
is used to decompose the market graphs introduced in the article [9] – graphs 
constructed on the basis of correlation matrices for all the shares presenting in the 
market. 

Then we consider the intersection of clusters from the two constructed decom-
positions, consisting of the maximum number of shares and at the same time dense 
enough (in the sense of the average closeness of the shares included in them, i.e. the 
closeness to 1 of the correlation coefficients for most pairs of shares presenting in 
the market on both days and earlier). One would hope that for most of these shares 
with similar behavior, the pattern of price changes (i.e., their decreases or increases) 
would remain the same tomorrow as today. To what extent this hope is justified and 
what to do if it does not materialize, is shown in this article. 

The calculation of profits and losses does not require any special methods, 
because after the close of trading, all of tomorrow’s prices are known.
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Table 1 Annual and 
accumulative incomes for 
1990–2010 

Year Annual income, $ Added with previous years, $ 

1990 110 110 
1991 −50 50 
1992 84 134 
1993 150 284 
1994 53 337 
1995 189 526 
1996 376 902 
1997 254 1156 
1998 292 1448 
1999 −4 1444 
2000 −380 1068 
2001 585 1653 
2002 596 2249 
2003 −265 1984 
2004 160 2144 
2005 −10 2134 
2006 107 2251 
2007 127 2378 
2008 −12 2366 
2009 −174 2204 
2010 −18 2186 

The last stage shows what should be done in the general case when the 
monotonicity assumption is not realized. Great losses can be avoided by means of 
a fairly simple stopping algorithm, which is well known in other situations, but has 
proven useful in the analysis of the stock market. 

The proposed trading scheme was used for daily operations (considering the 
skipping of some days and the cessation of trade for some periods not exceeding 
one quarter) from 01.01.1990 to 31.12.2010, i.e. 21 years. 

These numbers in Table 1 show the gains (or losses) for each year as well as 
accumulated incomes till every year. The amounts may seem insignificant, but each 
share is used no more than 5 times in daily trading. Increasing the number of the 
same shares will correspondingly increase the income. 

Obtained experimental results together with regression line are also given in 
the graphic below (see Fig. 1). It clear demonstrates the time dependence of gains 
increase, close enough to the linear one. 

The material of the article is structured as follows. 

• The Introduction gives the idea of the proposed approach to the development of 
everyday trading scheme in the stock market. 

• Section 2 demonstrates the preliminary description of the suggested scheme and 
present the informal algorithm of this scheme.
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Fig. 1 Time dependence of accumulated income 

• Section 3 is devoted to the detailed description of the essential algorithms 
included in the general scheme. 

• Material in Conclusion indicates possible modifications of the considered 
approach aimed at increasing its efficiency, and summarized the main results 
of the article. 

2 Preliminary Description of the Suggested General Scheme 

Let us give a meaningful (not completely formal) description of the trading scheme 
under consideration. A period of one quarter is chosen for detailed independent 
analysis. The first day of the quarter has index 0. All operations start from day 1 and 
continue no later than the penultimate day of the quarter. 

We denote the current day by the index t. After the market closes, we analyze 
data on the prices of all stocks at the closure time today (on day t), yesterday (on 
day t–1), as well as on 15 preceding days, which can be partially earlier than the 
beginning of the given quarter. 

Within the framework of the trading scheme under consideration, operations 
related to day t are performed after the market closure on day t (steps 1–9), when at 
the time of market functioning on day t + 1 (step 10), and after the market closure 
on day t + 1 (steps 11–13).
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Below 4 algorithms, named as A, B, C, D, are mentioned. Their detail descrip-
tions and all the encountered below notations, are presented in Sect. 3. Here we  
describe only the structure of the considered trading scheme. 

It is assumed that we know the prices of all the shares at the closure time of 
trading on day t and in the previous 15 working days. 

The flowchart of the scheme is presented in Fig. 2. Its short description is given 
below. 

Fig. 2 Flowchart of the 
general scheme
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The Concise Description of the General Scheme 
Step 0. Initialization. Specify operations, which are to be executed before the 

repeated steps start at t = 1. 
Step 1. Specify the complete of all the shares which are traded in the market on day 

t and in the previous 14 working days. 
Step 2. Immediately after the closure of trading on day t, algorithm A constructs in 

parallel 5 decompositions L0(t) − L4(t) of the set of shares traded on day t. 
Step 3. k = 0. 
Step 4. Algorithm B constructs the set of shares Mk(t). 
Step 5. Checks the condition |Mk(t)| < 200. If it is satisfied, go to step 7. Otherwise, 

go to step 6 
Step 6. Decomposition Lk(t) is not considered further, the income °k(t + 1) for day 

t + 1 is defined as 0, and the accumulated income Gk(t + 1) is defined equal to 
Gi(t). Go to step 8. 

Step 7. Add Mk(t) to the remaining group of sets. 
Step 8. k = k + 1 
Step 9. If k < 5 go to step 4. Otherwise, go to step 6 
Step 10. Trade shares of the remaining groups Mk(t). These shares are traded on 

the next day t + 1 at the opening and closing of the stock market according to 
Algorithm C. 

Step 11. After closure time at the same day t + 1 actual income °k(t + 1) for day 
t + 1 and actual accumulated income Gi(t + 1) are calculated for the shares of 
set Mk(t), belonging to the remaining group. 

Step 12. The accumulated incomes are added up. The result is denoted and saved as 
S(t + 1). This number is the impotent indicator of the proposed trading method. 

Step 13. Algorithm D produces one of two decisions depending on the value of 
S(t + 1): 

– Go to step 14 
– Stop trading until the beginning of the next quarter. 

Step 14. Continue trading for the next value t = t + 1, according to the steps 1–13 
of the above-described general scheme. 

It is quite clear that the considered scheme demonstrates a very small part of 
the opportunities provided by the stock market. We accentuate that the main goal 
of this work is not so much to develop a specific gaining trading algorithm, as to 
experimentally justify the existence of such algorithms. 

3 Detailed Description of Algorithms 

In this section we consider separately the steps 0–14 from the general scheme (see 
the previous section). All the required notations are introduced as it appears. Evident
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steps like t = t + 1 are not considered here. They were presented in the general 
scheme above in Sect. 2. 

Detailed Scheme of the Approach 
2.0. Initialization 
2.0.1. Prices matrix determination. Every day from the considered period 1990– 

2010 shares of 500 greatest companies in USA were traded in stock market S&P-
500 (in 2014 this number was increased to 505). The prices (at closure time) of all 
the shares in the S&P-500 stock market are extracted from Blumberg database. 

Rather rare changes in the list of the 500 shares in 14 days preceding day 0 can 
still occur. Since we will need correlation coefficients for 15 days, including day 0 
as the last day, it is necessary to “align” the list, that is, the final list should include 
the maximal possible number of the same shares that were traded for all 15 days 
ending in day 0. Recall that day 0 is the first working day of the quarter in question. 
There are usually from 490 to 500 such shares. This number is further denoted as n. 
The prices of these shares at closure time form the required matrix with n columns 
and 15 rows. It is designated as P(0). Pay attention that only data known before 
day 0 and day 0 itself is used in construction matrix P, which is the output of step 
2.0.1. Pay attention that the number 15 is one of parameters used in the considered 
algorithms. 

2.0.2. Calculation a matrix of distances between shares for day 0. The matrix R 
of pairwise correlation coefficients is calculated basing on the above constructed 
matrix of prices. Its elements rij are equal to standard correlation coefficient 
between i-th and j-th columns of matrix P (i, j = 1, . . . , n). Distance dij between 
two shares (say, i and j) is defined by the formula dij = 1–rij, where rij is the 
correspondent element of matrix R. The determined distance d is close to 0 for 
«very similar» shares and is close to 2 for «very dissimilar» shares. Therefore, 
matrix D = (dij) is considered as the dissimilarity matrix. For convenience we put 
dii = ∞  (i = 1, . . .  , n). This will avoid the appearance of loops at the vertices in 
all further algorithms. By the construction dij = dji (symmetry). This matrix D is 
the output of step 2.0.2, while matrix P is its input. 

2.0.3. Building a market graph for day 0. From a detailed description of the 
original system by the distance matrix, it is easy to obtain its more concise 
(but in many cases no less useful) description by a graph. Here is – just for 
the sake of clarity – a well-known algorithm of building this graph, commonly 
called the neighborhood graph. Because our initial system is a stock market, its 
neighborhood graph is often named as market graph. 

Algorithm for constructing a neighborhood graph. 
The input to this algorithm is an n × n distance matrix D and a counting number 

k > 0. Assume k = 4 (another parameter of the general algorithm). Let us recall 
that n denotes the number of objects in the system under consideration (number of 
shares in day 0). 

Step 1. Define an n × n integer matrix A and set all elements aij equal to 0 in it.
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Step 2. For each i = 1, . . . , n, perform the following operations. 

2.1. Define dk equal to the distance from i to its k-th nearest neighbor. 
2.2. Let aij = 1 and aji = 1 for all j such that dij ≤ dk. 

The graph G, whose adjacent matrix is the constructed matrix A, is the output of the 
step 3.1.3 of the considered algorithm, while distance matrix D is its input. 

2.0.4. Construction of 5 decompositions of the market graph for day 0 into 
12 subgraphs. This algorithm (designated as A) is the central in the suggested 
general algorithm. It required a special attention as well as a significant volume, 
exceeding the volume requiring for exposition Ñf all the other steps together. At 
the same time this method of graph decomposition is applicable for arbitrary 
graphs and can be used in many situations far from stock markets. 

Therefore, this material is presented as special section in the Appendix. 

2.0.5. Constant for stopping rule. Assume Q− = −25 and Q+ = 50. 
2.1. Specify the complete of all the shares which are traded in the market on 

day t and in the previous 14 working days. 

This step completely coincides with step 2.0.1. 

2.2. Construction of 5 decompositions L0(t) − L4(t) of the set of shares traded 
on day t. 

This step completely coincides with step 2.0.4 relatively to data for day t. 
Step 3 (see page 5) is clear. 

2.4. Construction of the set of shares Mk(t). Input of this algorithm B incudes 
already known decompositions Lk(t − 1) and Lk(t). Its output consists of the set 
of shares Mk(t). Algorithm B is described in the Appending B. 

Steps 5–9 (see page 6) are clear. 

2.10. Algorithm C. Its input includes a set M of shares, presented on the market 
in both days t–1 and t (index k is omitted for simplicity). This set was found at 
item 2.4. It also includes price matrices P(t–1) and P(t) for days t–1 and t, used  
at item 2.4. Let us go directly to the trading algorithm. Consider this set M and 
shares from set M. For each of them, one of three situations is possible, known 
at the end of day t: 

1): c(t–1) > Ô(t), 
2): Ô(t–1) < Ô(t), 
3): c(t–1) = c(t), 

where c(t) and c(t–1) denote the share price at closure time on the current day t and 
on the previous day t–1. 

For shares from the first group, on the next day t + 1, it is proposed to sell this 
share at a price at the market opening, which is assumed to be close to the price c(t)
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at the market closure time in the day before, and buy it at the market closure time at 
price c(t + 1), which will be in day t + 1. 

For shares from the second group, on the next day t + 1, it is proposed to buy 
this share at a price at the market opening, which is assumed to be close to the price 
c(t) at the market closure time the day before, and sell it at the market closure time 
at price c(t + 1), which will be on day t + 1. 

For shares from the third group (of which there are usually very few or none at 
all), do nothing. 

The essence of the proposed approach lies in the fact that one can hope that the 
trend of price changes in 1 day will remain the same, and then both operations will 
bring income. If you do the same with all shares on the market, then the result will 
coincide with the movement of the entire market, which can hardly be of interest. 
However, in this case, the shares under consideration belong to the intersection of 
two clusters of shares with similar behavior, which allows us to hope for a positive 
result for most of them. It is clear that in many cases the situation is the opposite 
one, but we partially correct it omitting the trade at some days (see simple steps 5 
and 6 in page 6, and algorithm D below). 

Note that in both cases the number of shares does not change. In the first case, 
you need to have one share in order to sell it at the morning, and at the end of the day 
to buy it, after which there will again be one share. In the second case, you buy one 
share at the morning and sell it at the evening and have the same number of shares. 
Since it is not known in advance which case occurs, one must have one copy of each 
share at the beginning of trading. Further, it is no longer necessary to buy shares, 
and the presence of one share of each type will be permanent. Sometimes you will 
have to buy one share when a new company enters the S&P-500 list, which is quite 
rare. Finally, you can buy shares only as needed, when a new share is included in 
the considered set M under case 1). We emphasize once again that there is no need 
to buy such a share further due to the algorithm described above. 

Steps 11 and 12 (see page 6) are clear. 

2.13. Algorithm D. Stopping rule. At the initialization stage (see item 2.0) two 
numerical parameters were given, a negative number Q− and a positive number 
Q+. If the accumulated income on day t + 1 is between Q− and Q+, then we 
let t = t + 1 and go to the next day (see item 2.1). In the second case no further 
action is taken till the beginning of the next quarter. The last accumulated income 
S(t + 1) since the beginning of the current quarter till the day t + 1 is considered 
as the result of trading in this quarter. The annual sums of these quarter incomes 
are shown in the left column of Table 1. 

The situation is remotely reminiscent of the well-known problem of hiring a 
secretary. In that problem we had to stop at the already arrived candidate, not 
knowing whether the next candidate would be better or worse than this one. But in 
the secretary problem, some probabilistic assumptions about all the girls are used. 
In our case, there are no assumptions about the next day’s incomes.
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The two-threshold strategy under consideration is cautious. It seeks not to 
maximize gains, but to minimize losses. In this case it leads to the fact that the 
negative number Q− is noticeably less modulo than the positive number Q+. Some 
examples of this strategy are given in Table 2. The point here is that positive results 
can be obtained even when the result for the whole quarter is sharply negative. 

Example 1 The columns in Table 2 show the accumulated incomes during one 
quarter (in dollars). The corresponding periods are indicated in the column headings. 
The results of the algorithm (i. e. revenues for the quarter) are in bold italics. Let us 
take a look at the quarters one by one. 

In the third quarter of 1990, acting according to our cautious algorithm, we would 
have lost 37.81. By continuing to play, we could win 10 to 20 times more. But after 
all, we do not know the future and do not try to predict it – therefore we console 
ourselves that our losses are relatively small. 

In the second quarter of 2003, we would have lost (according to our algorithm) 
48.53. But by continuing to play, we would have lost many times more (see the 
second column of Table 2). 

In the second quarter of 2009, according to the algorithm, we win 110.04, despite 
sharply negative earnings in this quarter in the future. At the same time, at the 
beginning of the quarter, you can win much more. But again, we must remember 
that we do not know and cannot predict the future with any reliability. And the 
positive gain is determined just by the proposed cautious algorithm. 

In the second quarter of 2010, the situation is almost the same as in the previous 
case. It is worth paying attention to the fact that in the first 7 days, in accordance 
with the algorithm, we continue to play, since the accumulated winnings lie within 
the specified limits. And only on the seventh day we get a positive income of 64.97. 

Approximately the same situation occurs in the third quarter of 2008. On any day 
after the third one, all accumulated incomes are large negative numbers in absolute 
value. Note also that this period immediately precedes the great hypothec crisis. 
However, in this case, the same algorithm gives a win. 

4 Conclusion 

Of course, individual examples do not provide any, even experimental, evidence of 
the effectiveness of the proposed approach. The results of its application for 21 years 
(84 quarters), presented in Table 1 and Fig. 1, give more confidence. Of course, our 
model is very crude and it is possible to achieve better results, but the main thing is 
that even in such a very limited model it is possible to get reliable winnings. That 
is, a stock market is still not the casino in Monte-Carlo, as some economists and 
mathematicians believe. 

This section briefly discusses some possible modifications of the proposed 
approach to building a stock market trading algorithm. Their detailed development 
and experimental analysis are expected to be carried out in the future.
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Table 2 Results of the stopping rule 

day 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

1990.03 

1.87 
−37.81 
−29.28 
−30.60 
−63.45 
−23.80 
−38.08 
−16.50 
−20.38 
−12.21 

2.20 
−9.97 
23.86 
43.19 
40.74 
45.27 
54.97 
65.04 
99.41 

124.13 
162.42 
254.55 
387.14 
395.83 
391.82 
435.10 
387.94 
372.00 
341.46 
345.53 
309.71 
461.33 
462.93 
514.56 
644.86 
768.67 
694.44 
808.70 
794.72 
740.76 
694.17 
621.82 
638.01 
657.14 
698.90 
670.21 
657.02 
654.46 
643.02 
643.11 
657.43 
639.95 
643.64 
635.74 
702.99 
727.64 
776.62 
751.98 
794.38 
868.18 
751.35 

2003.02 

−20.45 
−48.53 
−48.64 
−69.85 
−37.14 
−71.35 
−74.88 
−69.82 
−3.00 
−29.44 
−99.40 

−119.01 
−131.40 
−104.03 
−117.17 
−78.16 

−191.34 
−131.22 
−128.53 
−151.42 
−195.96 
−228.00 
−239.65 
−265.69 
−272.08 
−362.69 
−278.48 
−288.64 
−280.09 
−323.43 
−315.62 
−378.93 
−368.71 
−370.35 
−348.14 
−298.61 
−268.00 
−280.17 
−243.74 
−286.73 
−265.99 
−306.70 
−296.01 
−240.30 
−240.90 
−199.15 
−365.78 
−159.07 
−140.38 
−161.73 
−440.17 
−462.85 
−434.17 
−403.30 
−436.16 
−444.14 
−453.86 
−481.22 
−512.26 
−547.67 
−548.38 

2009.02 

111.04 
−22.36 
148.25 
−17.76 
190.73 
175.18 
193.53 
49.62 
81.91 

220.45 
147.45 

−158.20 
−163.12 
−224.21 
−132.39 
−277.57 
−228.20 
−364.99 
−359.86 
−377.81 
−378.17 
−411.95 
−452.49 
−551.34 
−798.60 

−1049.88 
−997.94 
−871.18 
−951.90 
−947.46 

−1081.20 
−1119.23 
−1097.77 
−1083.21 
−1073.82 
−1126.20 
−1258.27 
−1300.08 
−1251.13 
−968.94 
−973.64 
−976.48 

−1094.78 
−1118.52 
−1094.18 
−1094.18 
−1093.69 
−1010.27 
−1072.76 
−1001.57 
−917.57 
−900.69 
−913.50 
−892.12 
−914.96 
−916.67 
−926.93 
−773.61 
−787.02 
−842.32 
−911.70 

2010.02 

28.30 
−16.59 
−9.44 
2.01 
17.94 
64.97 

106.42 
100.08 
169.59 
154.55 
123.23 
200.43 
282.49 
311.81 
313.97 
334.28 
276.57 
354.90 
221.31 
142.00 
6.07 

27.201 
82.94 

320.68 
−292.23 
−371.70 
−403.57 
−653.62 
−373.94 
−395.17 
−437.35 
−367.52 

90.99 
−200.04 
−392.17 
−466.49 
−498.34 
−549.75 
−615.60 
−598.67 
−622.40 
−495.78 
−732.76 
−584.18 
−619.31 
−636.68 
−679.71 
−639.85 
−657.56 
−694.39 
−691.72 
−687.11 
−702.59 
−693.88 
−635.22 
−610.49 
−585.11 
−603.75 
−605.57 
−397.75 
−322.10 

2008.03 

3.86 
54.53 

−222.08 
−916.43 

−1039.49 
−1105.21 
−932.70 
−868.61 

−1068.26 
−872.12 
−906.28 
−899.01 

−1023.60 
−862.44 
−968.81 

−1044.34 
−1080.09 
−1078.26 
−1264.07 
−1688.44 
−1583.05 
−1647.96 
−1697.20 
−1642.82 
−1766.43 
−1835.13 
−1773.20 
−1847.60 
−1735.40 
−1901.70 
−1705.62 
−1736.97 
−1685.75 
−1488.36 
−1387.45 
−1393.37 
−1516.16 
−1629.21 
−1574.56 
−1614.50 
−1527.08 
−1194.11 
−1103.36 
−990.84 

−1022.11 
−863.94 
−668.36 
−735.37 
−653.44 
−563.36 

−1148.45 
−1477.14 
−1829.09 
−2310.33 
−1788.85 
−2250.99 
−2144.64 
−2132.37 
−2129.00 
−2073.36 
−2170.33 
−2625.77
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1. Instead of summing at step 12, one can consider individual accumulated payoffs 
Sk(t + 1) (k = 0, 1, . . . , 4) and apply the stopping algorithm to them separately. 
The decision to continue or stop trading is also made separately for 5 processes. 

2. With both modifications, it is possible to increase the number of decompositions 
and, accordingly, the considered groups of shares, etc. (for example, up to 10). 
Recall that stock prices are not assumed to be random: they are exact inputs. At 
the same time, the construction of decompositions is a random process that uses a 
standard random generator. Therefore, the average gains for one quarter obtained 
by the proposed algorithm (averaging is taken over the number of decompositions 
−5, 10, etc.) are limited random variables to which the central limit theorem can 
be applied. Their limiting value can be considered as one of the characteristics 
of the real process of trade in a given quarter. Strictly speaking, the obtained 
experimental results show that the sum of the mentioned quarterly averages 
grows with time. Of course, so far this is not an exact (albeit experimental) 
statement, but a substantive hypothesis that needs careful verification. 

3. When looking at some periods (for example, 4 out of 5 given in Table 2), large 
accumulated losses in the second half of the periods are striking. This means 
that for the majority of stocks from the selected groups, the direction of price 
change is unstable. The algorithm has a parameter sg = 1, which indicates our 
main assumption about the preservation of the sign of the cost change. However, 
when it is replaced by −1, the winnings will be given by precisely those shares 
for which the change in value turned out to be nonmonotonic. It is possible that 
an adaptive strategy of replacing sg with the opposite value can give a noticeable 
gain, given the rather long periods of time in which the price change has a fixed 
direction or, conversely, it is unstable. Some analogy is the classic example of 
controlling the stop of a rocket, the engine of which has only two possibilities 
− maximum thrust in one of two directions. This example is given in the first 
chapters of almost all textbooks on the theory of automatic control. However, in 
our case, special numerical experiments are required. 

4. The possibilities of the proposed approach can significantly increase if, instead 
of a fixed time period of one quarter, we consider variable periods, depending 
on the already accumulated gains. The same applies to trading within 1 day. The 
essence of the matter is that it can be assumed that the basic regularities of the 
functioning of the stock market do not depend much on changes in the scale 
of analysis, i.e., it has a fractal character. Of course, this also requires detailed 
research. 

5. The material in this article is based on an analysis of data from a single S&P-500 
market. It would be important and interesting to apply the proposed approach to 
other stock markets. 

One of the authors (Rubchinsky) is grateful to professor F.T. Aleskerov for his 
support and professor B.G. Mirkin for many years of attention to his work in the 
field of data analysis.
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Appendix. Algorithm A 

Here the considered step 2.0.4 of the algorithm is presented as the algorithm of 
constructing decomposition of an arbitrary graph into K subgraphs, where K is an 
arbitrary counting number larger than 1. The initial graph G (see step 2.0.3), distance 
matrix D, the number K and the repetitions parameter T (a counting number larger 
than 100) form the input of the algorithm. 

The method consists in constructing a binary tree whose vertices correspond to 
sequentially defined subsets of the set of vertices. The root of the tree corresponds 
to the set of all the vertices of the graph in question. For each constructed subset of 
vertices (denoted by X) there are two natural indicators. They are as follows: 

The average value d(X) of distances between all pairs of vertices (for one-element 
subsets X by definition d(X) = 0). 

The number of elements N(X) in a given subset X. Of course, this number is 
known. After these preliminary remarks we pass to the direct description of the 
algorithm. 

1. The set X0 of all vertices of the original graph is taken as the root of the binary 
tree under construction 

2. Consider all the leaves of the already constructed binary tree. Select the leave 
X contained the maximal number of elements. Let us perform the following 
operations: 

3.1 Construct a neighborhood graph based on the set of vertices X and the 
complete distance matrix D (see step 2.0.3 above in Sect. 2). 

3.2. Apply to the constructed graph the frequency dichotomy algorithm (FDA), 
summarized in subsection FDA below, and construct T dichotomies. 

3.3. The result of applying FDA is a family of pairs of sets (X1, X2). If there 
are pairs, in which both sets X1 and X2 consist of more than one element) go 
to step 3.4. Otherwise (it means that each pair has at least one single element 
set) go to step 3.5. 

3.4. For each pair (X1, X2), for which both are not single element sets, calculate 
the indicators d(X1) and d(X2) (once again recall that the matrix D of all 
pairwise distances is known, so all the calculations are done very quickly). 
Let us proceed to step 3.6. 

3.5. For each pair (X1, X2), for which one of the sets is single element set, 
calculate the indicators d(X1) and d(X2) (recall that for any single element 
set X d(X) = 0). 

3.6. Let us choose the pair (X1, X2) for which the maximum of {d(X1), d(X2)} 
is minimal. 

3.7. The found subsets X1 and X2 are added to the binary tree as sons of vertices 
X. Their first estimates are already computed, and the second estimates 
(number of elements) are known, since the sets themselves are known. 

3.8. If the number of leaves in the constructed tree is less than the input 
parameter K, return to step 2. Otherwise, go to the last step 4. 

4. Required decomposition is constructed.
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FDA The above algorithm uses (at step 3.2) the frequency dichotomy algorithm 
(FDA). It is the most complicated but inalienable part in the suggested approach. 
This algorithm was expounded in publications [5, 6] in other environments and 
purposes, and therefore it seems of expedient to present it here. As the other 
algorithms, included in step 2.0.4, it is applicable to arbitrary undirect graphs. There 
are two of above-mentioned input parameters – graph G and repetitions parameter 
T. 

The algorithm constructs the family of dichotomies. It consists of initialization 
stage and consecutive repetitions of the main stage (described below) whose number 
T is one of prespecified parameters. Let us give its formal description. 

1. Initialization. At this stage, each edge of the original graph is associated with 
a random integer from 1 to 5 inclusive (5 is a parameter of FDA, too). The 
maximum of these random values is denoted by Fmax. Further, in the process 
of performing FDA, the counting numbers assigned to edges ej of the graph will 
be denoted by fj and called the frequency in the edge ej. 

2. The main stage. The input of the main stage is the aforementioned current 
frequency values in all the edges of the graph and the current value Fmax. The  
output of the main stage will be described below (after describing the operations 
performed on it). The flowchart of the main stage is shown in Fig. 3. Below  is  a  
detailed description of the steps to be performed. 

Step 1. Using a standard generator of uniformly distributed random numbers, two 
different vertices of the graph are selected. 

Step 2. For two selected vertices, Dijkstra algorithm finds the shortest path 
connecting them. The length of an edge is its current frequency. Path length is 
equal to the length of its longest edge, not the sum of the lengths of all its edges. 
It is well known that Dijkstra algorithm is applicable in such cases, with the only 
change: when determining the continued path, instead of the sum of the lengths 
of the initial segment and the added edge, the maximum of the same two numbers 
is considered. 

Step 3. The maximum edge frequency Fp in the path found at step 2 is determined. 
Step 4. If Fp < Fmax, then go to step 5. Otherwise, go to step 6. 
Step 5. The frequencies are modified: the number 1 is added to the frequencies of 

all the edges of the path found in step 2. Go to step 1. 
Step 6. As in step 5, the frequencies are modified: the number 1 is added to the 

frequencies of all edges of the last path found in step 2. Only one difference 
takes place as compared to step 5: the next step is step 7. 

Step 7. The maximum frequency in the edges is increased: Fmax = Fmax +1. 

The output of every execution main stage will be determined by the end of this 
Section FDA.
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Fig. 3 Flowchart of the 
main stage of FDA 

Fig. 4 Cuts and paths in the 
graph 

Let us give some explanations and comments to the main stage of FDA. There 
are three different cases just before performing the frequency comparison in step 4, 
denoted as cases A, B, C in Fig. 4. Bold lines represent the edges with the maximal 
frequency, while the thin lines represent the paths connecting a pair of vertices a 
and b. 

In case A the set of all edges with the maximal frequency does not contain any cut 
of the original graph. Therefore, the shortest path found at step 2 does not contain 
edges with the maximal frequency due to the minimax definition of the path length. 
Consequently, the maximal frequency Fp, found at step 3, is less than Fmax, and we 
go to step 5, at which the frequencies in all edges of the found path increase by 1, 
after which we return to step 1 of the main stage. This consideration is central to 
this algorithm. Indeed, if the maximal frequency Fp in the edges on the found path 
is equal to Fmax, then this means that the set of edges, the frequency of which is 
equal to Fmax, contains a graph cut, so the constructed path intersects this cut. If 
these edges did not contain a cut, then Dijkstra algorithm for minimax would find a 
path, in which in all the edges the frequency would be less than Fmax. 

In case B, the set of all the edges with the maximal frequency does contain a 
cut of the original graph, but the found path does not contain the edges with the
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maximal frequency, since both of its ends are located on the same side of the cut. 
The process continues as in case A. 

In case C, the set of all the edges with the maximal frequency contains a cut of 
the original graph, and the ends of the found path are located in opposite sides of 
the cut. Therefore, this path has at least one edge that is included in the specified 
cut. And the frequency in this edge is the maximal, that is, it coincides with Fmax. 
Therefore, after the comparison at step 4, the process will proceed in a different way 
(with steps 6 and 7). 

The Output of the Main Stage By the end of the main stage a cut of the initial 
graph is found. Therefore, if all thÈ edges with maximal frequency were removed 
from the graph, the number of connectivity components in the remaining graph 
would be more than 1. We declare the component with the maximal number of 
vertices as the 1-st part of the next constructed dichotomy of the graph, and declare 
another component (if there is only one) or the union of all the other components (if 
there is more than one) as the 2-nd part of this dichotomy. This dichotomy of the set 
of vertices of the initial graph is the output of the main stage. The frequencies in all 
the edges and the maximum frequency Fmax are also memorized. These values are 
used in the subsequent execution of the main stage. 

We emphasize that the aforementioned deletion is purely virtual and in fact not a 
single edge is removed from the graph. 

The main stage is repeated T times and T dichotomies (some of them can 
coincide) form the output of step 2.0.4, considered in Sect. 2. 
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Classification Using Marginalized 
Maximum Likelihood Estimation and 
Black-Box Variational Inference 

Soroosh Shalileh 

1 Introduction: Background, Previous Works, and 
Motivation 

Classification is a popular field of machine learning, with various applications. 
To this date, various methods have been proposed, one may group them into five 
categories as follows. 

The first category of methods regularly is referred to as the discriminative 
methods: and the goal is to learn a mapping function so that the difference between 
the predicted values and the corresponding target values is minimized [13, 29]. The 
second category of methods is frequently referred to as the generative methods: and 
the objective is to learn the process which generates data so that the error between 
the predictions and the corresponding target values is minimized [2, 5, 9, 24]. 

The third category of methods is designed to learn a set of simple decision rules 
inferred from data to predict the target values, see [6, 25, 28] for more details. 
The fourth category of methods aims to combine the predictions of several base 
estimators (usually from the previous category) to enhance the generalizability 
power. This category of the method is called ensemble learning methods; Arcing 
classifier [7] and Random Forest [8] are some the well-known examples of this 
category. 

This fifth category of methods is based on the concept of variational inference. 
The complex mathematical and implementation aspects of this category and the 
advances in automatic differentiation have led to the emergence of black-box 
variational inference (BBVI) [27]. The goal is to reduce the mathematical and 
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implementation complexities while advancing the prediction power. The core idea 
in BBVI is that instead of obtaining a closed-form solution of an objective function, 
an integrated sampling technique with automatic differentiation will be applied 
to compute the stochastic gradient of an objective function for estimating the 
underlying parameters of a data set. 

Our proposed method belongs to this class of methods. More precisely, we 
assume that there exists a set of latent variables during the data generation process 
and accordingly we marginalize the conventional maximum likelihood estimation to 
obtain a new objective function; then we apply BBVI to optimize the newly obtained 
objective function for enhancing the classification power and taking into account the 
uncertainty. 

It ought to mention that the proposed method of this work differs from the 
previous works in various aspects as it is described below. 

In [9, 14, 24] a Mean-Field variational inference is used to estimate the marginal-
ized likelihood. Furthermore, to reduce the variance, the “control variates” method 
is applied. The authors obtained a closed-form solution for a specific model in their 
objective function. On the contrary, we avoid obtaining any closed-form solution for 
optimizing our objective function. Instead, we apply the so-called reparametrization 
technique associated with stochastic gradient descent to optimize our objective 
function. 

The proposed methods in [5] and this work both utilize the reparametrization 
technique and a stochastic optimizer to estimate the marginalized likelihood. How-
ever, the objective function in [5] is a function of two arguments: (1) the underlying 
parameters of data points and (2) the underlying parameters of latent variables. On 
the contrary, in our objective function, we integrate these two parameters. 

The proposed method of [2] is the most similar work from the literature to the 
current work. To be more precise, in both of these works, the objective function is 
marginalized over latent variables to obtain a marginalized likelihood estimation. 
Nevertheless, in [2] after applying the optimality condition, a discrete indicator 
function is used to reduce the variance of the gradient estimator. And based on this 
indicator function, they modified the objective function. On the contrary, we use 
the definition of the derivative of logarithm during the optimization of our objective 
function. More importantly, the algorithm used in [2] is a random sampling of the 
data points for computing the gradient of the objective function. Nevertheless, we 
applied the so-called BBVI. 

Noteworthy to mention that we published our preliminary results over four real-
world data sets and the moon-shape synthetic data at the IDEAL 2021 conference 
[30]; however, the current work contains significantly more experimental results. 
More precisely, in the current work, we study the performance of our proposed 
method at seven real-world data sets and 80 synthetic data sets to scrutinize the 
impact of (1) different feature spaces, (2) imbalanced data representation, and (3) 
dataset sizes. 

The rest of this paper is organized as follows. Section 2 describes our proposed 
method. Section 3 is devoted to experimental settings and experimental results are 
explained in Sect. 4. Finally, Sect. 5 concludes the paper and explains the future 
directions.
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2 A Marginalized Likelihood Estimation Using Black Box 
Variational Inference 

Let .X = {xi}Ni=1 be a set of N data points such that .xi ∈ R
V is a V-dimensional 

data point. And let .Y = {yi}Ni=1 be the set of corresponding labels. Where . yi is in 
the form K dimensional one-hot vector, that is, .yi ∈ R

K where K is the number 
of classes. And let . θ represents the model parameters to be estimated. We assume 
that during the generation of data points X, there exist a set of latent variables . Z =
{zj }Mj=1. Therefore we can define an objective function marginalized over the latent 
variables as follows: 

.

Lm(θ) = − log
∫

p(Z|X; θ)p(Y |X,Z; θ) dZ

= −
N∑

i=1

log
M∑

j=1

p(zj |xi; θ)p(yi |xi, zj ; θ)

(1) 

In this case, each data point is marginalized with respect to all of the latent 
variables (of all classes for instance). In order to optimize the proposed objective 
function (1), one can find an analytical solution for a specific distribution(s): yet 
there is no guarantee for the model to fit the data properly. More so, for some 
distributions .p(Z|X; θ) might become intractable. 

Therefore, in this work instead of finding an analytical solution for a specific 
distribution, we adopt BBVI [27] to find an approximation for the proposed 
objective function. Noteworthy to add that applying optimality conditions directly 
onto Eq. (1) does not lead to a straightforward solution; thus, we optimize its 
evidence lower bound (ELBO). 

To this end, let us recall the definition of ELBO first. For any two given 
distributions .r(x) and .q(x) over the same support, the ELBO of .r(x) using . q(x)

is: .ELBO := Eq(x)[log r(x)] − H(x), where .H(x) is Shannon Entropy of .q(x). 
Considering the ELBO’s definition and specifying .P(Y,Z|X; θ) and . P(Z|X; θ)

as .r(x) and .q(x) respectively, and applying Jensen’s inequality implies: 

.

− log
∫

P(Z|X; θ)P (Y |X,Z; θ) dZ ≤ −
∫

P(Z|X; θ) logp(Y,Z|X; θ) dZ

+ H(Z)

. 

(2a) 

= −
∫

p(Z|X; θ) logp(Y |X,Z; θ) dZ

(2b) 

Where the RHS of Eq. (2a) is derived from the definition of ELBO. And 
clearly, .H(Z) = ∫

P(Z|X; θ) logP(Z|X; θ)dZ is, indeed, the Shannon entropy.
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By substituting the definition of .H(Z) and opening the log of joint probability, i.e., 
.logp(Y,Z|X, θ), Eq.  (2b) will be obtained. 

Let us denote Eq. (2b) with .L̃m(θ) that is: 

.L̃m(θ) = −
∫

p(Z|X; θ) logP(Y |X,Z; θ) dZ (3) 

Applying optimality condition on Eq. (3) yields: 

.∇θ L̃m(θ) = ∇θ [−
∫

p(Z|X; θ) logP(Y |X,Z; θ) dZ]. (4a) 

= −
∫

∇θ [p(Z|X; θ) logP(Y |X,Z; θ)] dZ. (4b) 

= −
∫

∇θ [p(Z|X; θ)] logP(Y |X,Z; θ)

+ p(Z|X; θ)∇θ [logp(Y |X,Z; θ)] dZ. (4c) 

= −
∫

p(Z|X; θ)∇θ [logp(Z|X; θ)] logP(Y |X,Z; θ)

+ p(Z|X; θ)∇θ [logp(Y |X,Z; θ)] dZ. (4d) 

= −Ep(Z|X;θ)[∇θ [logp(Z|X; θ)] logP(Y |X,Z; θ)

+ ∇θ [logp(Y |X,Z; θ)]] (4e) 

Due to dominated convergence theorem [10], we can push the derivative 
inside the integral which justifies Eq. (4b). Obviously, Eq. (4c) derived by taking 
derivatives of multiplication of two functions. Equation (4d) is obtained by replacing 
.∇θ [p(Z|X; θ)] with the definition of derivative of logarithm, that is, . ∇ log f (.) =
∇f (.)
f (.)

. And clearly, Eq. (4e) is derived from the definition of expectation. 
Equation (4e) can be optimized using any Monte Carlo gradient estimators 

like as Path-Wise Monte Carlo Gradient Estimator [19], which also known 
as reparametrization, or Score-Function gradient estimator [22, 27], local 
reparametrization [20], FlipOut [23]. In this work, we adopt the Path-Wise Monte 
Carlo gradient estimator. 

To adopt this estimator, we need to assume that there exists a transformation 
rule: such that we can draw samples . εi (.i = 1, . . . , N) from a simpler distribution 
.S(εi) which is independent of . θ and then we can transform this variate through 
a deterministic path .t (εi; θ). Concretely, .zi = t (εi; θ) for .εi ∼ S where S is a 
parameter-free distribution. This is equivalent to saying that for a given . ε that comes 
from a distribution S with no free parameters, it is possible to transform that noise 
source with a function that depends on the parameters to get a random variable that 
has the same distribution as the original one. As an example, assume .ε ∼ N (0, I ), 
and then do the location and scale transformation of . ε, that is, .Z = εσ + μ and
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this implies .Z ∼ N (μ, σ 2). This technique is also called the reparametrization 
technique [19]. 

Applying the reparametrization technique, i.e rewriting the Eq. (4e) using  . Z =
t (ε, θ) yields: 

. ∇θ L̃m(θ) = − Ep(Z|X;θ)[∇θ [logp(Z|X; θ)] logP(Y |X,Z; θ)

+ ∇θ [logp(Y |X,Z; θ)]]. (5a) 

= − Ep(t (ε,θ)|X;θ)[∇θ [logp(t (ε, θ)|X; θ)] logp(Y |X, t (ε, θ), θ)

+ ∇θ [logp(Y |X, t (ε, θ); θ)]] (5b) 

For the sake of convenient we rewrite Eq. (4e) as Eq.  (5a). And Eq. (5b) is the  
result of applying reparametrization trick on it. In the next step, we can apply Monte 
Carlo gradient estimation on Eq. (5b). Concretely, (1) we draw samples .{εl}Ll=1; 
(2) we evaluate the argument of expectation using the above set; (3) and finally, 
we compute the empirical mean of evaluated quantities. Equation (6) explains the 
Monte Carlo estimate of gradient of objective function: 

.

∇θ L̃m(θ) ≈ 1

L

L∑

l=1

∇θ [logp(t (εl, θ)|X; θ)] logp(Y |X, t (εl, θ), θ)

+ ∇θ [logp(Y |X, t (εl, θ); θ)]
where εl ∼ S(ε); Z = t (ε, θ)

(6) 

Since, indeed, we maximize a marginalized likelihood estimation we name the 
base of our proposed algorithm as MMLE. And for ease of notation let .g(.) represent 
the summation argument. And .t (εl, θ) is the Gaussian location and scale transform. 
With this new notation, we summarized our proposed algorithm for optimizing 
Eq. (6) in Algorithm 3. 

Algorithm 3: Marginalized Maximum Likelihood Estimation (MMLE) 

Input: X = {(xi}N 
i=1 and Y = {yi)}N 

i=1: training set 
Hyper-parameters: α: learning rate 
Result: θ : learned parameters 
θ,  t  initialize the model parameters and step counter respectively 
while not converged do 

M = {xi, yi}M 
i=1 ∼ X, Y ; % draw mini-batch of samples M 

ε = {εl}M 
l=1 (ε

l ∼ S(ε); % draw samples, εl , from  S(.) 
θ = θ + α 1 

M

∑M 
l=1 g(.); % update rule from Eq. (6) 

t = t + 1; % step counter 
end 

It is noteworthy to add that, during the training process, i.e, optimizing . L̃m(θ)

the latent variables are considered, therefore the obtained parameters, . θ , implicitly
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contain the impacts of latent variables: consequently, for predicting the labels of a 
given test data point we can integrate out the term .p(t (ε, θ)|X, θ). Concretely, once 
the model parameters . θ are obtained we can use this model to predict the probability 
of j-th test data points using .p(yj |xj , t (ε, θ), θ). 

We have implemented our proposed algorithm using TensorFlow Probability [1]. 
If the linear activation function is applied, we add the suffix “Li” to denote this 
version (MMLE-Li), and if we use the “ReLu” activation function, we denote it 
with MMLE-Re. 

The source code of our proposed algorithm, as well as other algorithms under 
consideration and other supplementary materials, can be found in our GitHub 
repository: https://github.com/Sorooshi/MMLE-by-BBVI. 

3 Experimental Setting 

To set a computational experiment, one should specify its constituents: 

1. The purposes of experiments; 
2. The set of data sets for scrutinizing the algorithms under consideration; 
3. The set of algorithms under comparison; 
4. The set of criteria for evaluation and comparison of the experimental results. 

We describe them, in sequence, in separate subsections. 

3.1 Purposes of Experiments 

We investigate: (1) the impact of the existence of non-informative features at 
different features dimensionality with the fixed number of informative features; (2) 
the impact of non-linear data; (3) the impact of the imbalanced data representation 
with the fixed number informative feature; (4) the impact of data sets size; and, 
finally, (5) comparison of the performance of the algorithms under consideration 
over the real-world and synthetic data sets. 

Each case mentioned above consists of various settings—as we explain shortly— 
we repeat each of those settings five times and report the average and standard 
deviation. 

3.2 Data Sets 

In order to scrutinize items one to four, we use different synthetic data sets as they 
are described in the corresponding subsections. We also use seven real-world data

https://github.com/Sorooshi/MMLE-by-BBVI
https://github.com/Sorooshi/MMLE-by-BBVI
https://github.com/Sorooshi/MMLE-by-BBVI
https://github.com/Sorooshi/MMLE-by-BBVI
https://github.com/Sorooshi/MMLE-by-BBVI
https://github.com/Sorooshi/MMLE-by-BBVI
https://github.com/Sorooshi/MMLE-by-BBVI
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sets to compare our proposed method’s performance with other works from the 
literature. 

3.2.1 Synthetic Data Sets 

1. Investigating the impact of the existence of non-informative features at different 
features dimensionality with a fixed number of informative features: We use the 
designed scheme in [15] which is publicly available at the python scikit-learn 
library. We generate normally distributed data points with standard deviation 
equal to unity about vertices of a two-dimensional cube with sides of length 
equal to two. After generating the hypercube, next we considered three cases: 
(A) without non-informative features, (B) with 18, and (C) 198 non-informative 
features. To make the data sets more challenging, once we generate a data set, we 
swap 50% of the labels. We set the number of classes and informative features 
equal to two. 

2. Investigating the impact of non-linear data: In order to study the ability of 
algorithms in classifying non-linear data sets, we consider a moon-shape data 
generator. The source code and more details can be found [26]. 

3. Investigating the impact of imbalanced representation: We investigate the impact 
of non-informative versus informative features in ba lanced and imbalanced data 
sets. In imbalanced data sets, 0.95% of data points are devoted to one class 
while the second class consists of the remaining 0.05%. Noteworthy to add that 
investigating the impact of features overlap over the balanced and imbalanced 
data set is considered future work. 

4. Investigating the impact of data set size: For all the experiments above, two 
different sizes of data sets are considered, namely, (1) medium-size data sets 
having 1000 samples; (2) big-size data sets having 100,000 samples. Moreover, 
five repeats are considered for each of these cases, and the average and standard 
deviations are reported. 

3.2.2 Real World Data Sets 

Table 1 describes the characteristics of the seven real-world data sets we use to 
validate and compare the performance of our proposed method. 

Noteworthy is that if a data set contains the categorical feature, those features 
are converted to one-hot-encoded vectors. Moreover, if the authors of a data 
set do not provide train and test splits, we use .60% for training the algorithms 
and the remaining .40% for evaluating the performance of the algorithms under 
consideration. And This procedure is repeated five times, and the average and 
standard deviation of the metric in use are reported.
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Table 1 The real-world data set’s characteristics 

Data set Points Features Classes 

IRIS [11] 150 4 3 

MNIST [21] 70,000 .28 × 28 gray-scale image 10 

KDD-99 [31] 4,898,431 41 2 

German Credit Risk (GCR) [17] 1000 20 2 

Breast cancer Wisconsin (BCW) [3] 569 30 

Wine data set [12] 178 13 3 

Forest Cover Type (CovType) [4] 581,012 54 7 

3.3 Competitors 

We compare the performance of our proposed algorithm with three classification 
algorithms. Below we list those algorithms and the corresponding hyperparame-
ters. 

1. Conventional Maximum Likelihood Estimation (C-MLE): a three-layers neural 
network with the number of units equal to the number of features; 

2. AdaBoost [16]: base_estimator=Decision Tree, n_estimators=50, learn-
ing_rate=1.0, algorithm=’SAMME.R’ 

3. Classification with Path-Wise Gradient Estimator (CLS PW-Re) [5]: 

The learning rate and the number of epochs, in respect, are fixed to .0.01 and 
1500. Adam optimizer [18] is used. 

3.4 Evaluation Metrics 

We use Area Under the Receiver Operating Characteristic Curve (ROC AUC) 
from prediction scores as the metric to compare the performance of our proposed 
algorithm with other works from the literature. 

4 Experimental Results 

4.1 Study the Impact of the Existence of Non-informative 
Features vs. Fixed Number of Informative Features: 
Balanced and Imbalanced 

The results of this study at medium-size and big-size data sets are recorded in 
Tables 2 and 3 respectively.
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Table 2 Comparison of methods at medium-size Gaussian hyper-cube synthetic data with two 
informative features. The best results are highlighted in the bold-face font 

Data 

Balanced Imbalanced 

2+0-F 2+18-F 2+198-F 2+0-F 2+18-F 2+198-F 

Algorithms ave(std) ave(std) ave(std) ave(std) ave(std) ave(std) 

AdaBoost 0.769(0.034) 0.766(0.011) 0.783(0.020) 0.562(0.021) 0.549(0.030) 0.771(0.022) 

C-MLE 0.791(0.028) 0.783(0.018) 0.801(0.024) 0.588(0.034) 0.589(0.043) 0.793(0.014) 
CLS PW-Re 0.387(0.103) 0.266(0.040) 0.318(0.219) 0.495(0.010) 0.485(0.027) 0.277(0.018) 

MMLE-Li 0.781(0.034) 0.779(0.011) 0.797(0.027) 0.573(0.037) 0.565(0.020) 0.729(0.064) 

MMLE-Re 0.790(0.025) 0.785(0.019) 0.797(0.022) 0.576(0.042) 0.599(0.053) 0.783(0.016) 

Table 3 Comparison of methods at big-size Gaussian hyper-cube synthetic data with two 
informative features. The best results are highlighted in the bold-face font 

Data 

Balanced Imbalanced 

2+0-F 2+18-F 2+198-F 2+0-F 2+18-F 2+198-F 

Algorithms ave(std) ave(std) ave(std) ave(std) ave(std) ave(std) 

AdaBoost 0.796(0.004) 0.786(0.008) 0.790(0.007) 0.576(0.004) 0.577(0.007) 0.577(0.003) 

C-MLE 0.798(0.002) 0.787(0.008) 0.791(0.007) 0.575(0.004) 0.576(0.004) 0.578(0.003) 
CLS PW-Re 0.500(0.000) 0.298(0.055) 0.343(0.129) 0.579(0.003) 0.577(0.005) 0.570(0.010) 
MMLE-Li 0.796(0.005) 0.772(0.011) 0.790(0.008) 0.575(0.004) 0.578(0.004) 0.523(0.059) 
MMLE-Re 0.795(0.006) 0.780(0.009) 0.788(0.009) 0.573(0.006) 0.577(0.004) 0.547(0.039) 

C-MLE wins the competition of the balance and imbalanced data sets with 
two and 200 features. Moreover, our proposed method wins the competition when 
we have 20 features. By comparing the corresponding results of balanced and 
imbalanced data sets, the performance of all the algorithms under consideration 
decreases significantly once the representation of data sets becomes imbalanced. 
More interestingly, one can observe that, on average, the increase in the number of 
features from 20 to 200 leads to an improvement in the performance of algorithms. 

Notwithstanding, the obtained results show the limit of algorithms under con-
sideration. To be more specific, it shows that increasing the number of training 
samples improves the performance of algorithms (on average). However, it may 
not necessarily lead to perfect or nearly perfect classification results in the case of 
having quite a few non-informative features. 

4.2 Study the Performance of Algorithms over Moon-Shape 
Data Set: Balanced and Imbalanced 

The results of applying different algorithms on moon-shape data sets are recorded 
in Table 4.
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Table 4 Comparison of methods over moon shape data set. The best results are highlighted in the 
bold-face font 

Data 

Balanced Imbalanced 

Med. Big Med. Big 

Algorithms ave(std) ave(std) ave(std) ave(std) 

AdaBoost 0.881(0.011) 0.899(0.001) 0.873(0.018) 0.899(0.001) 
C-MLE 0.898(0.004) 0.903(0.001) 0.904(0.012) 0.888(0.001) 

CLS PW-Re 0.301(0.096) 0.256(0.122) 0.220(0.075) 0.892(0.001) 

MMLE-Li 0.886(0.008) 0.796(0.005) 0.891(0.013) 0.888(0.001) 

MMLE-Re 0.880(0.008) 0.795(0.006) 0.887(0.015) 0.882(0.002) 

Table 5 Comparison of methods over Real-World Multi-Class data sets. The best results are 
highlighted in the bold-face font 

GCR BCW IRIS MNIST CovType Wine 

Algorithms ave(std) ave(std) ave(std) ave(std) ave(std) ave(std) 

AdaBoost 0.989(0.010) 0.988(0.006) 0.979(0.010) 0.647(0.000) 0.802(0.002) 0.862(0.153) 
C-MLE 1.000(0.000) 0.969(0.003) 0.995(0.003) 0.761(0.000) 0.922(0.001) 0.999(0.001) 
CLS PW-Re 0.860(0.095) 0.960(0.011) 0.995(0.003) 0.708(0.010) 0.972(0.001) 0.997(0.003) 
MMLE-Li 1.000(0.000) 0.970(0.007) 0.998(0.001) 0.671(0.009) 0.928(0.002) 1.000(0.000) 
MMLE-Re 1.000(0.000) 0.987(0.004) 0.996(0.004) 0.496(0.002) 0.952(0.006) 1.000(0.000) 

One can easily observe that C-MLE dominates this table, though the performance 
of the proposed method is also acceptable. 

4.3 Experimental Results at Real-World Data Sets 

The comparison of the performance of the algorithms under consideration over the 
real-world data sets is reported in Table 5. 

AdaBoost and CLS PW-Re, in respect, win the competition of BCW and 
CovType data sets. GCR competition has three winners, namely, two versions of 
the proposed methods of this work and C-MLE. Moreover, our proposed method 
wins the IRIS and Wine competitions. 

5 Conclusion and Future Work 

In this paper, we propose a marginalized likelihood objective function by assuming 
the existence of latent variables during the data generation process. We optimally 
estimate the data distribution’s parameters by applying black-box variational infer-
ence. The determination of the parameters of marginalized likelihood estimation
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allows for the classification of the test data points. We evaluate and compare 
the proposed method’s performance using both fundamental and start-of-the-art 
algorithms over both real-world and synthetic data sets. This led us to conclude 
that the proposed method is effective and competitive. 

Moreover, we scrutinize the impact of: (1) existence of non-informative features 
at different features dimensionalities with a fixed number of informative features, (2) 
different data set size, (3) non-linear data, and (4) imbalanced data representation. 

Our experiments show that when the number of non-informative features 
increases from 2 to 20, on average, the performance of algorithms degenerates. 
However, when this number increases to 200, the performance of algorithms 
improves rather significantly. 

We also observed that in the case of the balanced data set, although the increase 
in the number of training samples leads to some relatively subtle improvements in 
the algorithm’s performance, this improvement is still far from the point of having 
outstanding results, especially in the non-linear data set, like moon-shape data. 

Drawing conclusions from our experiments on the imbalanced data sets are not 
as straightforward as in other cases. Nevertheless, we observe that the increase in 
the number of training samples, on average, does not improve the performance of 
the algorithms under consideration. 

The list of our future works is as follows: 

1. Investigating the impact of applying different distributions instead of standard 
Gaussian distribution in path-wise gradient estimator; 

2. Investigating the impact of applying different transformation rules; 
3. investigating the impact of applying different Monte Carlo gradient estimators 

on our proposed objective function; 
4. increasing the computational speed; 
5. modifying our proposed method, i.e., the objective function and corresponding 

algorithm for the task of regression; 
6. extending the current implementation of the proposed objective function with a 

more complicated network structure. 
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Generating Genomic Maps of Z-DNA 
with the Transformer Algorithm 

Dmitry Umerenkov, Vladimir Kokh, Alan Herbert, and Maria Poptsova 

1 Introduction 

Deep learning models such as convolutional neural networks (CNN) and recurrent 
neural networks (RNN) have been successfully applied to the tasks of genomics to 
predict various genomic features such as promoters [1], enhancers [2], transcription 
factor binding sites [3], protein-RNA binding sites [4], splice sites [5], histone 
codes [6], nucleosome positions [7], and non-coding functional variants [6, 8]. 
The advantage of CNN is that it recognizes a genomic element of within a region 
of interest using filters that can be interpreted as DNA motifs. RNN has strength 
in capturing long-range dependencies in the sequence, but its interpretation is not 
straight forward. 

Since the first key publication on the transformer architecture that uses an 
attention mechanism to draw global dependencies between input and output in 
an unsupervised manner [9], this novel approach to learning and prediction has 
been gradually replacing CNN and RNN in all applications, initially in machine 
translation area and later in computer vision. Over last 2 years applications 
with transformers appeared in proteomics and genomics gradually replacing and 
outperforming CNNs and RNNs. 
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The first successful applications of transformers in bioinformatics were for 
protein sequences. A transformer model was used to learn representations of 
250 million protein sequences. The high-capacity 34-layer transformer had approx-
imately 670 million parameters, and was trained using data from the three datasets 
with different evolutionary diversity. Even though learning was unsupervised, the 
final model was able to identify biochemical properties of amino acids and structural 
properties of proteins from sequence alone [10]. 

A similar approach was implemented in ProtTrans [11] that is based on auto-
regressive models (Transformer-XL, XLNet) and auto-encoder models (BERT 
(Bidirectional Encoder Representations from Transformers), Albert, Electra, T5). 
The model was refined using a protein sequence dataset containing almost 400 bil-
lion amino acids. With the learned representations, the model generated highly 
accurate per-residue prediction of protein secondary structure, protein sub-cellular 
localization, and membrane and water-soluble proteins. 

The next step forward was made in MSA Transformer [12] with an approach 
based on multiple sequence alignments (MSA) of proteins with relationships learnt 
from both rows and columns. MSA transformer was used in supervised structure 
prediction, and attention maps were used to predict protein contacts. The success 
of transformer architecture culminated in AlphaFold2 that predicts de novo 3D 
protein conformation from an input of the primary amino acid sequences of a 
previously uncharacterized protein. The algorithm was trained using MSAs and 
the available collection of PDB structures [13]. The final model, Evoformer has 
a hybrid architecture consisting of a number of attention-based and non-attention-
based components. 

Learning representations of DNA sequence also progressed with the use of 
transformer-based models. One approach called Enformer predict gene expression 
and promoter-enhancer interactions using DNA sequence information extracted 
from contiguous genomic regions of up to 200 kb in length [14]. The model based on 
genomic features extracted by BERT improves performance in predicting enhancers 
[15] and N6-methyladenine sites when trained in one species and tested in another, 
consistent with the evolutionary conservation of the processes involved [16]. 

Further improvement in prediction quality came with pretrained self-supervised 
BERT-like models. The implementations include DNABERT [17], GeneBERT [18], 
and LOGO [19]. DNABERT was pretrained on human genome using k-mers 
representations and then finetuned to improve its power to predict promoters, splice 
sites and transcription factor binding motifs. DNABERT can also be applied to 
genomes of species other than the one used in the initial training. GeneBERT is 
another approach that combines genomic one-dimensional sequences with matrices 
of transcription factors and corresponding binding regions [18]. The updated 
model improved classification of promoters, transcription factor binding sites 
(TFBS), splicing sites, and disease-related regions. LOGO utilizes the same idea 
of pre-training on k-mers representations but has much lighter architecture than 
DNABERT. It was tested on promoters, promoter-enhancer interactions, histone 
modifications and TFBS. It also showed good result in determining non-coding 
functional variants for both inherited diseases and complex traits or diseases.
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All the applications of the above-mentioned transformer models predict regula-
tory DNA elements that are linear. 3D DNA secondary structures represent another 
layer of genomic encoding [20]. They act as flipons [21] that launch or suppress 
genetic programs depending on their DNA conformation that can vary as the context 
changes. Flipons can form a range of non-B-DNA structures, such as the left-
handed Z-DNA and the four-stranded quadruplex structures that depend on their 
sequence composition. The change in 3D structure enables the switch from one 
genetic programs to another by engaging proteins that bind specifically to each 
conformer [22]. 

Prediction of flipons is a challenge. Machine learning, especially deep learning 
approaches, helped identify factors that contribute to flipon state. Here we focus 
on Z-DNA in which the double helix twists to the left rather than to the right as 
it does in Watson-Crick B-DNA. The transition is driven by the energy produced 
during processes such as RNA transcription or when nucleosomes or other protein 
complexes are evicted from DNA. The energy stored by Z-DNA is then available to 
drive the assembly of protein complexes that perform specific functions. In the best 
studied example, Z-DNA and its Z-RNA counterpart play a key role in regulating 
interferon responses and in initiating cellular death pathways [23–28]. 

ZHUNT is the first model for Z-DNA prediction [29, 30] and is based on the 
experimentally determined energetic cost of dinucleotide transitions from the B- to 
Z-conformation as measured in vitro [29]. The best Z-DNA forming sequences have 
an alternating pyrimidine-purine motif, with the d(CG)n sequence flipping most 
easily. The flip to Z-DNA involves every second base adopting a syn conformation 
with the base pointing back to the deoxyribose ring rather than away from it as in 
the anti-conformation. Of all the bases, guanine adopts the syn conformation most 
easily. The syn-anti alternation accounts for the zig-zag nature of the Z-DNA back-
bone. However, sequences such as GGGG where the pyrimidine base is replaced 
by guanine will also form Z-DNA. While the energy cost for GGGG is higher, it is 
still lower than the cost for form Z-DNA from alternating d(AT)n, a sequence that 
is more prone to form a hairpin as the repeat lengthens. Overall, the major energetic 
cost to forming Z-DNA is that incurred from forming two B-Z junctions, as this 
process requires disruption of the double helical structure at both ends of the flipon. 
Once established, the transition is cooperative and can extend from the site where 
Z-DNA was nucleated to adjacent regions. Currently, it is uncertain how many Z-
DNA forming sequences identified by ZHUNT affect biological function, although 
enrichment of Z-flipons in promoter regions is reported [30]. 

Recently we developed DeepZ [31] – a deep learning approach based on CNN 
and RNN architectures and on the experimental mapping of Z-flipons in vivo. The  
algorithm built the model using information from sequence composition, ZHUNT 
B- to Z- transition energies and approximately 1000 omic features extracted from 
the extensive genomewide ENCODE datasets that describe many different cell and 
tissue states. Performance of the DeepZ model was assessed using human and 
mouse ChIP-seq data. While the model improves the prediction quality for flipon 
state in vivo, precision is not high, likely reflecting the complex nature of the model 
and the high correlation between feature sets.
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Here we applied state-of-the-art transformer models to the task of Z-DNA 
prediction using data obtained from in vivo experiments that employ Z-DNA 
specific binding proteins to enrich for Z-DNA (or Z-RNA) forming flipons. We 
chose DNABERT model pretrained on 6-mers for human genomes that can also 
be fine-tuned for mouse genome. We explored attention maps of the fine-tuned Z-
DNABERT model to learn sequence specificity of Z-DNA regions as well as the 
surrounding regions and compared model performance with DeepZ and ZHUNT. 
We also discussed complementarity between the two different approaches, DeepZ 
and Z-DNABERT. 

2 Material and Methods 

2.1 Z-DNA Data Sets 

ChIP-seq data from Shin et al. for human genome [32] comprised 359 Z-DNA 
regions covering 134,807 bps. ChiP-seq data from mouse genome [28] comprised 
1765 regions with total length of 709,708 bps. Permanganate/S1 Nuclease Foot-
printing Z-DNA data contained 41,324 regions with total length of 773,788 bp in 
human and 24,885 regions with total length of 609,476 bases in mouse genomes 
[33]. All original datasets were filtered for ENCODE blacklisted regions. 

For DNABERT the data was preprocessed by converting a sequence into 6-mer 
representation. Each nucleotide position is represented by a k-mer consisting of 
a current nucleotide and the next 5 nucleotides. The data was split into 5 stratified 
folds so we could train 5 individual models with 80% of the data and assess precision 
and recall using the remaining 20%. Due to the large imbalance between positive (Z-
DNA) and negative (not Z-DNA) classes we randomly sampled the negative class 
with the following ratio: 20 for human ChIP-seq data, 4 for mouse ChIP-seq data, 
and 2 for Kouzine et al. human and mouse data. 

2.2 Benchmark Models 

The DeepZ model was run with the set of 1054 omics features as described in [31] 
for human Shin et al. data set [32] and with the set of 874 omics features as described 
in [28] for mouse genome from which only 544 are in common. Predictions for the 
test set and whole genome were done the same way as for DNABERT models.
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Fig. 1 Schema of DNABERT used for fine-tuning the model with Z-DNA datasets 

2.3 Fine-Tuning DNABERT Model 

Schema of Z-DNABERT model is presented in Fig. 1. DNABERT was fine-tuned 
for the Z-DNA segmentation task with the following hyperparameters: epochs =3, 
max_learnirng_rate = 1e-5, learning_rate_scheduler = one_cycle (warmup 30%) 
batch size = 24. We trained 5 models, each on 80% of the positive class examples, 
and randomly sampled negative class examples. For each 512 bp region from the 
whole genome the final prediction was made by averaging the predictions of the 
models that used data not seen during training. 

3 Z-DNABERT: Fine-Tuning DNABERT for Z-DNA 
Prediction 

Currently there are 4 experimental Z-DNA data sets available: ChIP-seq (Chromatin 
Immunoprecipitation followed by DNA sequencing of fragments) data from Shin
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Table 1 Comparison of Z-DNABERT with other Z-DNA prediction ML models. Predictions are 
made both on validation set and at the genome-wide level 

Validations on the test set: Precision Recall F1 ROC AUC 
Human Shin et al. Zaa 
ChIP-seq on HeLa cells 

DeepZ 0.59 0.56 0.57 0.937 

Z-DNABERT 0.68 0.43 0.53 0.95 
Human Kouzine et al DeepZa 0.011 0.298 0.023 0.893 

Z-DNABERT 0.78 0.89 0.83 0.99 
Mouse Zhang et al. ZBP1 
and Z22 ChIP-seq on MEF 

DeepZ 0.62 0.54 0.58 0.90 

Z-DNABERT 0.57 0.42 0.48 0.97 
Mouse Kouzine et al. DeepZb 0.0006 0.17 0.001 0.678 

Z-DNABERT 0.71 0.79 0.75 0.99 
Whole-genome predictions Prec@0.5 Recall@0.5 F1@0.5 ROC AUC 
Human Shin et al. Zaa 
ChIP-seq on HeLa cells 

DeepZ 0.11 0.27 0.16 0.915 

Z-DNABERT 0.01 0.48 0.02 0.95 
Human Kouzine et al DeepZa 0.04 0.01 0.02 0.88 

Z-DNABERT 0.12 0.73 0.20 1.00 
Mouse Zhang et al. ZBP1 
and Z22 ChIP-seq on MEF 

DeepZ 0.40 0.16 0.23 0.873 

Z-DNABERT 0.04 0.42 0.07 0.96 
Mouse Kouzine et al. Z-DeepZb 0.003 0.013 0.005 0.633 

DNABERT 0.05 0.76 0.09 1.00 

4aDeep-Z that was trained on Shin et al. data 
bDeep-Z that was trained on Zhang et al. data 

et al. for human genome [32], ChiP-seq data from mouse genome resulted from 
curaxin treatment of mouse embryonic fibroblasts from Zhang et al. [28], and 
Permanganate/S1 Nuclease (KS1) Footprinting in human and mouse genomes is 
based on the single-stranded nature of the junctions between B- and Z-DNA [33]. 
These different methods vary in their resolution. While KS1 maps directly at the 
level of nucleotides, ChIP-seq is based on pull down of fragments of 100–150 base 
pairs long and depends on the specificity of the antibody used in the pull-down. 
Each method therefore supplies different data, with ChIP-seq also identifying other 
sequences that closely associate with Z-flipons. 

We compared performance of Z-DNABERT with our previous machine learning 
method DeepZ (Table 1). Z-DNABERT showed high performance when taking two 
metrics into account – F1 and ROC AUC. The highest performance was achieved 
on the more extensive Kouzine et al. data sets, especially on the whole-genome 
predictions. 

When comparing the test set and whole genome prediction results, the recall 
metric does not change much, so the models correctly find all the regions labeled as 
Z-DNA. Meanwhile, the precision drops sharply, indicating many false positives in 
the model’s predictions. These false positives could be predictions of novel potential
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Z-forming regions that were not detected under the experimental conditions used 
for mapping as only a subset of all-possible Z-flipons is active in the cell line 
used. Supporting this idea is the higher precision of the Kouzine data compared 
to the smaller ChIP-seq data set. The former has more nucleotides labelled as Z-
DNA 0,02% (815 thousand out of 3 billion) compared to the ChIP-seq data 0,004% 
in human ChIP-seq data (136 thousand out of 3 billion nucleotides). Also, very 
high ROC-AUC metrics on whole-genome data show that the model false-positives 
have probability scores consistently lower than true positives, which could indicate 
that the regions detected as false-positive are actually regions which have a lower 
probability of forming Z-DNA in the cells tested. 

Learning Z-DNA Sequences from Attention Maps 
It was noticed experimentally that CG/TG/CA repeats are more prone to flip from B-
to Z-conformation. However, the detailed analysis of experimentally determined Z-
DNA regions showed that other sequences also form Z-DNA, including sequences 
such as GGGG where the pyrimidine base is replaced by guanine. Transformer 
architecture allows interpretation of important features by analysis of attention 
maps. Results can be interpreted according to the difference in the expected 
frequency of k-mers in the input sequence versus their rank in the output and 
compared to the frequency in the genome or in the genomic region of interest. 
This approach is helpful for assessing ChIP-seq data, as a priori, the distribution 
of ZHUNT predicted Z-flipons in the genome is highly enriched in promoter 
regions. Many sequences associated with promoters, such as TATA boxes or GC 
rich segments will have high frequencies in the pull-downs independently of their 
ability to flip to Z-DNA. 

The distributions of 6-mers according to their rank in the attention map are given 
in Table 2. When the model is learning it pays attention not only to the k-mers 
inside Z-DNA regions but also to the k-mers in the flanking regions. For example, 
according to attention ranking k-mer GGGGAA is the seventh most frequent 
that the model uses to define Z-DNA, however this k-mer is the 40th according 
to the frequency of occurrence inside Z-DNA regions. Also, k-mers GGGGAA 
CAGGGA TGGGGA GGGGGA AGGGAG GGGAGC are rarely at the site of Z-
DNA nucleation, they likely can propagate the flip to Z-DNA once it is initiated. As 
predicted by this model, these non-canonical Z-forming sequences are frequently 
associated with alternating pyrimidine/purine sequences that nucleate the flip in 
conformation. Use of such contestual information improves Z-DNA prediction by 
Z-DNABERT. 

Visualization of attention maps of a short Z-DNA region from Kouzine et al. data 
is given in Fig. 2 and for a longer region from Shin et al. data – in Fig. 3. While Z-
DNA formation in the longer region in Fig. 3 is slightly more costly energetically 
due to the replacement of pyrimidines by purines, once flipped, it will accumulate 
energy from that shorter Z-DNA sequences in the region and revert them back to 
B-DNA [34]. The propensity of both short and long regions to form Z-DNA is 
supported by the ZHUNT score that is shown overlapped with attention maps.
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Table 2 6-mers with top 21 attentions vs frequencies 

hg Shin et al hg Kouzin et al mm Zhang et al mm Kouzin et al 

Att 6-mer Freq 6-mer Freq 6-mer Freq 6-mer Freq 

1 TGTGTG 1 GCGCGC 1 AAGAAG 1 CACACA 2 

2 GTGTGT 2 GTGTGT 5 AGAAGA 2 TGTGTG 1 

3 CGCGCG 4 CGCGCG 2 GAAGAA 3 GTGTGT 3 

4 GCGCGC 3 ACACAC 6 CTTCTT 4 ACACAC 4 

5 CACACA 5 TGTGTG 3 CTCGAG 13 CGCGCG 6 

6 ACACAC 6 GCGCGG 7 TCTTCT 5 GCGCGC 5 

7 GGGGAA 40 CACACA 4 CACACA 7 GTGTGC 7 

8 AAAAAA 17 CCGCGC 10 CAGCAG 6 ACACAT 9 

9 CAGGGA 43 GGGCGC 11 TCCTCC 9 ATGTGT 11 

10 GTGCGC 11 GCGCCC 12 TTCTTC 8 GCACAC 8 

11 TGGGGA 331 GTGCGC 17 GGAGGA 12 ATACAC 65 

12 GGGGGA 39 GGCGCG 9 CCCGGG 11 GTGTAT 43 

13 GCTGGG 9 GTGTGC 14 AAAAAA 14 TACACA 61 

14 GTGTGC 7 GCGCAC 19 CTGCTG 10 GGCGCG 12 

15 TGCGCG 8 GCACAC 15 CTGCCT 19 TGCGTG 14 

16 TGCATG 21 GCCCGC 20 CAGAGG 16 GTATGT 63 

17 GGGAAG 33 GCGGGC 16 GTCCCG 18 CACACG 27 

18 AGGGAG 429 CGCGCC 8 CTTAGG 21 ACATAC 55 

19 GGGAGC 458 GCGTGC 25 GCCGGC 25 CATACA 52 

20 AGAAAG 38 GCACGC 26 AGGAGG 29 CACATA 38 

21 GGGAAA 80 CCCGCG 18 CTCTGG 23 CACGCA 19
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Fig. 2 Attention-head plots of a Z-DNA region from Kouzine et al. human dataset. Z-DNA – red, 
B-DNA – green. Left column – attention from Z-DNA prone GTGTGC to the surrounding regions. 
Middle column – attention from all 12 heads. Right column – attention from the head 8, that paid 
attention to the flanking regions to define Z-DNA region. Violet line in the middle plot depicts 
relative fluctuations of Z-score predicted with ZHUNT 

4 Z-DNABERT Cross-Species Predictions 

We tested how well Z-DNABERT model trained on one genome can predict Z-DNA 
regions in another genome. Table 3 show the results of the model performance that 
was trained on mouse and then applied on human genome using Kouzine et al. data 
sets. Performance metrics remain high. The provided Z-DNA prediction tool allows
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Fig. 3 Attention-head plots of a Z-DNA region from Shin et al. human dataset. Z-DNA – red, 
B-DNA – green. Left column – attention from CGGGGG to the entire region. Middle column – 
attention from all 12 heads. Right column – attention from the head 1, that paid attention to the 
flanking regions to define Z-DNA region. Violet line in the middle plot depicts relative fluctuations 
of Z-score predicted with ZHUNT 

Table 3 DNABERT cross-species predictions 

Trained Predict Prec Recall F1 ROC AUC 

Human Kouzine et al. hg Kousine et al. 0.78 0.89 0.83 0.998 
Mouse Kouzine et al. hg Kousine et al. 0.70 0.87 0.77 0.993
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a user to input sequence into four pretrained model to identify Z-flipons with a high 
level of confidence. 

5 Discussion 

Determining functional Z-DNA regions is not a trivial task and has been resolved 
by various approaches starting with the ZHUNT algorithm that is based on 
thermodynamic and biophysical model of energies measured in vitro. Newer models 
like DeepZ employed deep neural network models trained on DNA sequence, its 
biophysical properties, and in vivo effects measured with omics data. Here we 
propose another approach that differ both from ZHUNT and DeepZ. The approach 
takes use of a next generation machine learning approach based on the transformer 
algorithm implemented in DNABERT. We tuned the model, which we call Z-
DNABERT, for detecting Z-flipons with experimental Z-DNA data derived from 
human and mouse genomes. Based only on DNA sequence, with contextual learning 
both from KS1 nucleotide resolution data and ChIP-seq fragments, DNABERT-Z 
outperformed DeepZ and showed high performance on cross-species predictions. A 
further advantage of Z-DNABERT approach is we can make use of omics datasets 
to identify features associated with Z-flipons as the data was not used for training, 
whereas previously they were incorporated into the DeepZ model. Further, use 
of datasets like KS1 allows localization of the epigenetic features at nucleotide 
resolution, something not possible with DeepZ. The Z-DNABERT approach also 
allows for generalization, allowing us to develop a user-friendly interface where 
Z-flipons can be predicted for the genome of interest with a single Z-DNABERT 
pretrained model. 

Transformer architectures allows for interpretation by highlighting tokens (DNA 
k-mers in our case) to which the model paid high attention. Analysis of the top 
high-attention k-mers in all of the four models trained on different Z-DNA data 
sets revealed a regularity not only in Z-DNA but also in surrounding regions. In the 
agreement with earlier studies, TG/GT repeats and their complimentary counterparts 
CA/AC followed by GC/CG are the top-six most frequent in all datasets except 
for Zhang et al. where Z-flipons were identified in promoter of L1 LINE elements 
by ChIP-seq using the Z-DNA specific Z22 antibody. These repeats are both most 
frequent and have high attention. Of interest are repeats that have high attention 
but they are not the most frequent, such as GGGGAA k-mer, which is the seventh 
by attention and 40th by frequency in the Shin et all data set or CTCGAG, which 
is fifth by attention and 13th by frequency in Zhang et al. dataset. Based on the 
measurements of Shing et al. and the ZHUNT energetics, these sequences are will 
require higher energy to form Z-DNA under physiological conditions. It is also 
likely that Z-DNABERT incorporates regions that are prone to form B-Z junctions 
as they greatly affect the energetics of the flip. Also, Z-prone regions may be 
associated with other sequences that are bound by architectural proteins like those 
that contain HMG domains. Such proteins bind to A-rich regions and induce them
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to bend, providing a barrier preventing the transmission of supercoiling to adjacent 
regions. These bends may then promote Z-DNA formation by trapping negative 
supercoils that arise in active promoter regions. In the presence of polyG repeats, 
Z-DNA formation may compete with folding of other non-B-structures like G-
quadruplexes, with the outcome depending on whether the energy is sufficient to 
initiate formation of one flipon or the other. Indeed, the possible co-occurrence of 
Z-flipons and G-flipons is supported by the Kouzine et al. data [35]. The finetuned Z-
DNABERT showed good performance in this situation as it was able to distinguish 
the higher frequency of k-mers enriched in Z-flipons compared to that of other k-
mers present in the DNA from ChIP-seq experiments. 

DeepZ and Z-DNABERT are complementary approaches. DeepZ learns from 
omics signals (mostly from ChIP-seq signals for TFs and histone marks) that often 
produce broad peaks due to the size of the fragments analyzed while Z-DNABERT 
can exploit the nucleotide resolution of the Kouzine et al. data. Omics signals 
detected by DeepZ can then be further explored with DNABERT-Z to identify more 
precise boundaries of a potential Z-flipon. 

The full extent of gene regulation by Z-DNA is still largely unknown. We lack 
experimental data for the majority of cell types, tissues and species, with little 
information on the effect of perturbations. The advances in deep learning models can 
take what is available and provide insights into the underlying biology by analysis 
of large orthogonal datasets. The pre-trained transformer model DNABERT, fine-
tuned on the experimental data provides a framework for whole-genome Z-DNA 
annotations and makes predictions that are testable at the bench. 
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Manipulation by Coalitions in Voting 
with Incomplete Information 

Yuliya A. Veselova 

1 Introduction 

We consider the problem of manipulation in collective decision making. It is well-
known that voters can misrepresent their preferences in order to achieve a more 
preferable result. Of course, it is better when all voters want to declare their sincere 
preferences, otherwise, a collective decision would be biased and, consequently, 
would not reflect the preference of a society. Unfortunately, all social choice rules 
which have at least three possible outcomes are either manipulable or dictatorial. 
This result is called Gibbard-Satterthwaite theorem [5, 7, 14]. 

One approach to comparing manipulability of social choice rules is calculating 
the probability of manipulation. This method has been successfully applied to 
studying both individual and coalitional manipulation in different probabilistic 
models many times in the literature, see [1–4, 8, 9, 11, 12, 15]. However, the common 
assumption in publications of this line of research is that voters know each others’ 
sincere preference, i.e. public information is reliable and complete. This is a rather 
strong assumption, but helps to simplify the comparative analysis of manipulability 
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of social choice rules. Intuitively, incomplete information would make manipulation 
more difficult and rare. 

A more realistic assumption is that voters have some information from opinion 
polls held before voting. This information could be represented, for example, by 
preferences of a subset of voters, or a list of candidate scores, or the winner of 
the election. A mathematical model for manipulation under poll information is 
presented by Reijngoud and Endriss [13]. 

In the current research we apply this model to studying coalitional manipulability 
of social choice rules under different types of poll information. We consider the 
probability that in a randomly chosen preference profile there exists a coalition 
which has an incentive to manipulate under a given type of poll information. The 
formalization of coalitional manipulation in voting includes some assumptions: (1) 
voters form a coalition if they have the same preference; (2) all members of a 
coalition manipulate in the same way; (3) a coalition has an incentive to manipulate, 
if there exists an insincere strategy such that the coalition cannot become worse off 
and there is a chance of becoming better off with this strategy. 

In our study the analysis of manipulation probability has three directions: 

1. We analyze the power of a coalition: how coalitional manipulability differs from 
individual. Could coalitional manipulability be less than individual? 

2. We compare manipulability of different social choice rules (we consider six 
popular rules which have polynomial complexity of calculating a winner: 
plurality rule, Borda rule, veto rule, runoff procedure, STV rule, and Copeland 
rule). 

3. We study the role of information available to voters. How do different types of 
poll information affect coalitional manipulability? 

We answer these questions via both theoretical investigation and computational 
experiments. We prove that for scoring rules (plurality, Borda, and veto rule in 
our analysis) the probability of coalitional manipulation is equal to the probability 
of individual manipulation if voters have information about the election winner 
after tie-breaking. Computational experiments are conducted in MatLab for all six 
rules and five poll information types for 3 alternatives and the number of voters 
from 3 to 15. It is shown that the probability of coalitional manipulation is almost 
always higher than individual manipulation and in many cases is very close to 
1. The exceptions are the Borda rule and veto rule: the probability of coalitional 
manipulation is less than the probability of individual manipulation in some cases. 
This observation shows that manipulating with the same strategy is not optimal for 
coalition members in these cases. The veto rule even becomes almost strategy-proof 
in incomplete information if there are more than 10 voters.
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2 The Model 

2.1 Definitions and Notations 

There is a finite set of voters .N = {1, . . . , n} and a finite set of m alternatives 
X. Each voter i has a strict preference on X, a linear order . Pi . If voter i prefers an 
alternative a to an alternative b, we write .aPib. The set of all linear orders is denoted 
by .L(X). An  upper contour set of an alternative a in a preference order . Pi is . Pia =
{b ∈ X : bPia}. Similarly, a lower contour set of a in . Pi is .aPi = {b ∈ X : aPib}. 

An ordered set of individual preferences, .P = (P1, . . . , Pn) ∈ L(X)N , is called 
a preference profile. A contraction of a preference profile onto the set .A ⊆ X is 
.P/A = (P1/A, . . . , Pn/A), where .Pi/A = Pi ∩ (A × A). A  coalition is a subset of 
voters, .K ⊆ N , . PK is a preference profile of coalition members, .P−K—preference 
profile of all other voters, .N \ K . .P = (PK,P−K). 

A vector of positions for alternative a is .v(a,P) = (v1(a,P), . . . , vm(a,P)), 
where .vj (a,P) denotes the number of voters having a on the j -th position in a 
preference order. 

An .m × m matrix of a weighted majority graph for a profile . P is denoted by 
.WMG(P) and consists of elements 

.WMG(P)kl = |{i ∈ N : akPial}|. (1) 

By . μ we denote majority relation: .akμal if .WMG(P)kl > WMG(P)lk . 
A matrix of a majority graph is .MG(P), where 

.MG(P)kl =

⎧
⎪⎪⎨

⎪⎪⎩

1, if akμal,

−1, if alμak,

0, otherwise.

(2) 

A social choice correspondence (SCC) is a mapping .C : L(X)N → 2X \ {∅}. 
A social choice rule or simply rule is a mapping .F : L(X) → X. A rule can be 
obtained from SCC by using a tie-breaking rule .T : 2X \ {∅} → X. We consider 
an alphabetic tie-breaking rule: assume some linear order on X to be predefined, 
.aPT bPT c . . ., and when alternatives are tied, we choose the one which dominates 
all others by . PT (has a higher priority). So a rule F is derived from SCC C, if  
.T (C(P)) = F(P). 

2.2 Poll Information Functions 

It is assumed that an opinion poll is held before voting and it reveals voters’ sincere 
preferences, . P. However, for some reasons not all information becomes available



380 Y. A. Veselova

to voters. Instead of . P, voters get to know just .π(P), function . π is called a poll 
information function (PIF). We consider the following types of PIF. 

1. Profile: .π(P) = P. 
2. Score: .π(P) = S(P) = (S(a1,P), . . . , S(am,P)) assigns to each alternative its 

score (to be explained further) according to a given SWF F . It may be defined 
specifically for some rules, e.g. sequential procedures. 

3. Rank: .π(P) = R returns a social ordering. 
4. Winner: .π(P) = C(P). 
5. Unique winner (1Winner): . π(P) = F(P)

2.3 Individual Manipulation 

Thus, a voter i has information .π(P) about a preference profile . P and knows her 
own preference order. A set of preference profiles of .N \ {i} consistent with her 
knowledge is called information set and defined as follows 

.W
π(P)
i = {P′−i ∈ L(X)N\{i} : π(Pi,P′−i ) = π(P)}. (3) 

Given two PIFs . π and . π ′, if .∀P ∈ L(X)N ∀i ∈ N W
π(P)
i ⊆ W

π ′(P)
i , then . π is at 

least as informative as . π ′. Of course, the most informative is Profile-PIF. 
Then, when is a voter willing to manipulate, i.e. misrepresent her preference in 

order to achieve a more preferable result? It is assumed that if there is at least one 
possible situation in which manipulation makes her better off and nothing changes 
in all other possible situations, then a voter has an incentive to manipulate under PIF 
. π [13]. 

Definition 1 Given a rule F and a preference profile . P, we say, that voter i has an 
incentive to .π -manipulate under F , if there exists .P̃i ∈ L(X) s.t. 

(i) there is no .P′−i ∈ W
π(P)
i , s.t. .F(P) Pi F (P̃i ,P′−i ); 

(ii) there exists .P′−i ∈ W
π(P)
i , s.t. .F(P̃i,P′−i ) Pi F (P). 

Definition 2 A rule  F is called susceptible to individual .π -manipulation if there 
exists a profile .P ∈ L(X)N and a voter .i ∈ N who has an incentive to .π -manipulate 
in . P under F . 

Let .Iind(m, n, π, F ) be the probability that in a preference profile, randomly 
chosen from .L(X)N there exists at least one voter who has an incentive to .π -
manipulate under F . 

2.4 Coalitional Manipulation 

We assume that voters form a manipulating coalition if they have identical prefer-
ences. A coalition of voter i is denoted by K and it consists of all voters having the
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same preference as voter i. However, . π is the only information available to voters, 
each voter does not know exactly who is in her coalition. In each preference profile 
. P′ of voter i’s information set there is a set . K ′ of her coalition members (allies). 

Then, a voter is willing to manipulate within a coalition when there is a strategy . P̃

(insincere preference), such that the voting result is not less preferable in all profiles 
and is more preferable in at least one profile of her information set assuming that 
all members of her coalition vote . P̃ (denoted by .P̃′

K ′) in each possible preference 
profile . P′. More formally, 

Definition 3 Given a rule F and a preference profile . P, we say, that voter i has an 
incentive to .π -manipulate within a coalition,1 if there exists .P̃ ∈ L(X) s.t. 

(i) there is no .P′ ∈ W
π(P)
i s.t. .F(P′) Pi F (P̃′

K ′ ,P′
−K ′); 

(ii) there exists .P′ ∈ W
π(P)
i s.t. .F(P̃′

K ′ ,P′
−K ′) Pi F (P′), where .P̃′

K ′ is a preference 

profile of a coalition . K ′ in . P′, s.t. all voters of . K ′ vote . P̃ . 

If voter i has an incentive to manipulate within a coalition, then we similarly say 
that the whole coalition has an incentive to manipulate. 

Definition 4 A rule  F is called coalitionally manipulable under . π if there exists a 
profile .P ∈ L(X)N and a voter .i ∈ N who has an incentive to .π -manipulate within 
a coalition in . P. 

Denote by .Icoal(m, n, π, F ) the probability that in a preference profile, randomly 
chosen from .L(X)N there exists at least one voter who has an incentive to .π -
manipulate within a coalition under F . 

2.5 Social Choice Correspondences 

Here we give the definition of social choice correspondences that we focus on in this 
chapter. For each of them we need to specify how scores and rankings are computed 
to use them in .Score-PIF and .Rank-PIF. 

• Scoring rules. A scoring rule is defined by a scoring vector .s = (s1, . . . , sm), 
where . sj denotes the score assigned to an alternative for the j -th position in 
individual preferences. The total score of each alternative .aj ∈ X is calculated as 
.S(aj ,P) = ∑m

h=1 sh ·vh(aj ,P). Then, .R = P ∪I is defined as follows: . ∀ak, al ∈
X i) .akPal ⇔ S(ak,P) > S(al,P); ii) .akIal ⇔ S(ak,P) = S(al,P). 

– Plurality: .sP l = (1, 0, . . . , 0). 
– Veto (Antiplurality): .sV = (1, . . . , 1, 0). 
– Borda: .sB = (m − 1,m − 2, . . . , 1, 0).

1 The definition of coalitional manipulation differs from a standard one due to simplification we 
made: voters have identical preferences and manipulate in the same way. In a general framework, 
voters may have different preferences and manipulate differently. 
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• Run-off procedure. It has two stages: 

(1) The plurality score is calculated for each alternative. A first-stage vector of 
scores 

. S1(P) = (S1(a1,P), . . . , S1(am,P)),

where .S1(aj ,P) = 〈sP l, v(aj ,P)〉. If  .∃ ak ∈ X s.t. .S1(ak) > n/2, then 
social ordering is .akPaj , .aj Iah .∀aj , ah ∈ X\{ak} and procedure terminates. 
Otherwise, procedure moves on to the stage two. 

(2) Two alternatives with maximal number of scores are chosen: 
.ak = argmaxaj ∈X(S1(aj ,P)), . al = argmaxaj ∈X\{ak}(S1(aj ,P)).

If there are ties, they are broken according to the alphabetical tie-breaking 
rule T . Then a second-stage vector of scores is calculated: . S2(P) =
(S2(ak,P), S2(al,P)), where 

. S2(ak,P) = 〈sP l, v(ak,P/{ak, al})〉,

. S2(al,P) = 〈sP l, v(al,P/{ak, al})〉.

The alternative with the higher score is considered better, .akPal if . S2(ak,P) >

S2(al,P) and .alP ak if .S2(al,P) > S2(ak,P). Both of them are better than all 
other alternatives, .∀aj ∈ X \ {ak, al} .alP aj , akPaj . All other alternatives are 
considered as indifferent .∀aj , ah ∈ X \ {ak, al} .aj Iah. The output of Score-PIF 
is .S(P) = (S1(P), S2(P)). 

• Single Transferable vote (STV). This is a multi-stage procedure, which we define 
in an iterative form. 
(0) .t := 1, .Xt := X, . Pt := P.

(1) .∀aj ∈ Xt St (aj ,P) := 〈sP l, v(aj ,Pt )〉. 
(2) If .∃aj ∈ Xt s.t. .St (aj ,P) > n/2, then .∀ah, al ∈ Xt \ {aj } .ajPah, ahIal , 
the procedure terminates. Else .ak := argminaj ∈Xt (St (aj ,P)), . ∀aj ∈ Xt \ {ak}
.ajPak . 
(3) .t := t + 1, .Xt := Xt \ {ak}, .Pt := P/Xt . Go to step 1.  
The output of Score-PIF is .S(P) = (S1(P), . . . , St∗(P)), where . t∗ is the number 
of cycles done by procedure. 

• Copeland. A majority graph is computed. Then scores of alternatives are 
computed as follows 

. S(ak,P) =
m∑

l=1

MG(P)kl .

Ranking .R = P ∪ I is defined as usual: . ∀ak, al ∈ X

(i) .akPal ⇔ S(ak,P) > S(al,P); 
(ii) .akIal ⇔ S(ak,P) = S(al,P).
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3 Theoretical Results 

In this section we prove some statements about the probability of individual and 
coalitional manipulation under incomplete information for any number of voters and 
alternatives. Before proving theorems, let us introduce some notations and consider 
an auxiliary statement, Lemma 1. Let  d denote the number of preference profiles 
for n voters and m alternatives, i.e. .d = (m!)n, and .dF (a) is the number of profiles 
in .L(X)N where alternative a wins according to a rule F . Further, let .z(a) be the 
number of preference profiles in .L(X)N where no voter has alternative a on the last 
position in a preference order and let .zF (a) denote the number of preference profiles 
where alternative a wins according to a rule F and does not take the last position in 
any preference order. 

Lemma 1 For any alternative a and any rule F , s.t. for every . x ∈ X

.limn→∞ dF (x)/d = 1/m, .limn→∞ zF (a)/dF (a) = 0. 

Proof The total number of preference profiles for n voters and m alternatives is 
.d = (m!)n. The number of preference profiles where no voter has alternative a on 
the last place in a preference order does not depend on a rule or alternative and 
equals .z(a) = (m! − (m − 1)!)n. Thus, the share of preference profiles where no 
voter has alternative a on the last place in a preference order: 

.
z(a)

z
= (m! − (m − 1)!)n

(m!)n =
(

m! − (m − 1)!
m!

)n

=
(
1 − 1

m

)n

. (4) 

.
z(a)

dF (a)
= z(a)

d
· d

dF (a)
. (5) 

Since the rule is such that for any .x ∈ X .limn→∞ dF (x)/d = 1/m, 
.limn→∞ d/dF (x) = m. Using this and Eq. (5), we have 

. lim
n→∞

z(a)

dF (a)
= 0. (6) 

As .zF (a)/dF (a) < z(a)/dF (a), .zF (a)/dF (a) also tends to 0 as n goes to infinity. 

Now let us introduce some simplifying notations. Let .S(a) be initial scores of a, 
i.e .S(a,P), and .S̃(a) be scores of a after manipulation of an individual or a group 
(depending on the context), i.e. .S(a, (P̃i ,P−i )) or .S(a, (P̃K,P−K)). The first result 
concerns individual manipulation under .Winner-PIF for plurality rule. 

Theorem 1 .limn→∞ Iind(m, n,Winner,Plurality) = 1 − 1/m with alphabetic tie-
breaking. 

Proof Let .X = {a1, a2, . . . , am} and .a1PT a2PT . . . PT am. The PIF is . π(P) =
F(P). The  result  .F(P) could consist of one alternative, i.e. .F(P) = {ak}, . k ∈
{1, 2, . . . , m}, or there can be a draw.
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First, consider the case .F(P) = {ak}, .k ∈ {2, 3, . . . , m}. It means that . S(ak) ≥
S(aj ) + 1 .∀j �= k. Suppose there is a voter i who thinks that . ak is the worst 
alternative. Since it is known that .S(ak) ≥ S(aj ) + 1 .∀j �= k there is an equal 
chance (from voters’ point of view) for any other alternative to win if it gets plus 
one score. Thus, the best strategy for voter i is to vote for alternative . ah, which is 
the best for voter i among alternatives that tie-break against . ak . So, if .F(P) = {ak}, 
.k ∈ {2, 3, . . . , m} and there is at least one voter that has . ak one the lowest position 
in a preference order, then a preference profile . P is individually manipulable under 
.π(P) = F(P). 

If .F(P) = {a1}, then .S(a1) ≥ S(aj ) + 1 .∀j �= 1. However, even if any voter 
manipulates in favor of some other alternative . ah, it could not win, since . S̃(a1) ≥
S̃(ah) and .a1PT ah. Thus, in case of a tie, .S̃(a1) = S̃(ah), . a1 wins. So, all profiles 
with the unique winner . a1 are not manipulable by individuals under .π(P) = F(P). 

The proportion of profiles with a single-valued outcome for plurality rule tends to 
1 as  n goes to infinity.2 Since the rule is neutral (it means, it treats all the alternatives 
equally), the chance of winning for each of them tends to .1/m. As we derived 
earlier, when the winner is .F(P) = {ak}, .k ∈ {2, 3, . . . , m}, then manipulation 
is possible in profiles with at least one voter having . ak on the last place, if . F(P) =
{a1}, then individual manipulation is impossible. By Lemma 1, for all .a ∈ X, 
.limn→∞(dF (a)−zF (a))/dF (a) = 1. The number of manipulable profiles is not less 
then .dF (a2)−zF (a2)+. . .+dF (am)−zF (am) and the number of non-manipulable is 
not less then .dF (a1). Thus, . limn→∞(dF (a2)−zF (a2)+. . .+dF (am)−zF (am))/d =
1 − 1/m. 

Thus, with infinite n only .1/m of profiles will be non-manipulable. In this 
connection, let us recall the result from [16] which says that the same probability, 
but with .1Winner-PIF equals one. If a voter manipulates within a coalition under 
.Winner-PIF, then again asymptotic probability equals 1. 

Theorem 2 .limn→∞ Icoal(m, n,Winner,Plurality) = 1 with alphabetic tie-
breaking. 

Proof Let .X = {a1, a2, . . . , am} and .a1PT a2PT . . . PT am. The PIF is . π(P) =
F(P). 

Let us prove that all preference profiles with a single winner and a voter having 
the winning alternative on the last position in a preference order are coalitionally 
manipulable. If .F(P) = {ak}, .k ∈ {1, 2, . . . , m}, then .S(ak) ≥ S(aj ) + 1 .∀j �= k. 
Consider a voter i who thinks that . ak is the worst alternative, . ah is her second-best, 
and . al is her best alternative. 

Suppose, in voter’s information set there is at least one preference profile . P′, 
such that the number of voters in her coalition is not less than 2, .|K ′| ≥ 2, and 
.S(ak) − S(ah) < |K ′|. In this case, manipulation of . K ′ by voting for . ah leads to

2 We refer to [6]. It is shown that the probability of a tie between any pair of alternatives with 
plurality rule tends to 0 as the number of voters goes to infinity (by Central Limit Theorem). 
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.S̃(ah) > S̃(ak) and the winning of . ah. If  .n ≥ 7, then such profile exists in voter 
i’s information set .Wπ(P)

i (since .S(al) ≥ |K ′| ≥ 2, .S(ak) ≥ S(al) + 1 ≥ 3, and 

.S(ak) = S(ah) + 1). In other profiles of .Wπ(P)
i , s.t. .S(ak) − S(ah) ≤ |K ′|, this  

manipulation will not change anything. Thus, in profile . P voter i has an incentive to 
manipulate within a coalition. 

As a consequence of Lemma 1, the share of profiles with at least one voter 
having the winning alternative on the last place in a preference order tends to 
1. Furthermore, the share of profiles that result in a tie tends to zero. Thus, the 
probability of coalitional manipulation under .Winner-PIF tends to 1 as n goes to 
infinity. 

Theorem 3 .limn→∞ Icoal(m, n,Winner,Borda) = 1 with alphabetic tie-breaking. 

Proof Again, we prove that if the winner is unique, .F(P) = {ak}, then a voter 
having . ak on the last place in a preference order has an incentive to .Winner-
manipulate within a coalition in Borda rule. Let us fix the tie-breaking order 
.a1PT a2PT . . . PT am and assume that voter i’s preference is .ahPialPi . . . Piak . If  
.F(P) = {ak}, then for all .j ∈ {1, 2, . . . , m}, .j �= k, .S(ak) ≥ S(aj ) + 1. 

Consider those profiles . P′ of .Wπ(P)
i , s.t. .|K ′| > S(ak) − S(al). Suppose voter 

i and her coalition members change their preferences to .alP̃ ahP̃ . . . P̃ ak (switch 
the best and the second-best alternative). Then the new scores will be . S̃(ah) =
S(ah) − |K ′|, .S̃(al) = S(al) + |K ′|, .S̃(aj ) = S(aj ) for all .aj ∈ X \ {ah, al}, 
and .S̃(al) > S̃(ak), so,  . al will be the winner. In profiles . P′ of .Wπ(P)

i , s.t. . |K ′| <

S(ak) − S(al) noting will change, and if .|K ′| = S(ak) − S(al), it depends on tie-
breaking between . ak and . al . Thus, voters with . ak on the last place have an incentive 
to manipulate within a coalition in . P. 

Borda rule also satisfies the requirement of Lemma 1, i.e. for any .x ∈ X we 
have .limn→∞ dF (x)/d = 1/m by neutrality and zero ties probability [10]. Thus, 
the share of profiles with at least one voter having the winning alternative on the 
last place tends to 1 as n goes to infinity. Since all these profiles are coalitionally 
manipulable under .Winner-PIF, .limn→∞ Icoal(m, n,Winner,Borda) = 1. 

The next theorem shows that the probability of manipulation for scoring rules is 
the same when we consider individual or coalitional manipulation under .1Winner-
PIF. Let us introduce some more notations for the proof. 

For a scoring vector .s = (s1, s2, . . . , sm), a jump is a non-zero difference between 
two adjacent scoring values. If s has r jumps, then this means that there are distinct 
.k1, . . . , kr ∈ {1, . . . , m − 1} such that .sk1 > sk1+1, . . . , skr > skr+1, while all other 
differences are zero. We use the notation .Δj = skj

− skj +1 for .j = 1, . . . , r to 
denote the non-zero differences between scoring values. 

Theorem 4 For any number of voters n and any number of alternatives m 
.Iind(m, n, 1Winner, F ) = Icoal(m, n, 1Winner, F ) for scoring rules. 

Proof Let .X = {a1, . . . , am}. Consider a scoring rule with a scoring vector 
.s = (s1, s2, . . . , sm), the first jump in s goes after . k1. Let us prove that voter i with
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a preference .a1Pia2Pi . . . Piam has no incentive to manipulate under .1Winner-PIF, 
if .F(P) ∈ {a1, a2, . . . , ak1+1}. If  .F(P) = a1, then obviously there is no need for 
i to misrepresent her preference. Suppose that .F(P) = b, . b ∈ {a2, a3, . . . , ak1+1}
and i manipulates in favor of some a, s.t. aPb. If  i puts alternative a higher (if a 
is not . a1), then nothing changes for a since .s1 = . . . = sk1 . Thus, i could only 
put b lower in . P̃i , but then some alternative .c ∈ {ak1+2, . . . , am} goes higher in 
a preference order. If there are no jumps in s after .k1 + 1, then nothing changes 
for b and c. If there are other jumps after .k1 + 1, then c gets plus A scores. 
Since the only information is .F(P) = b, i.e. .S(b,P) ≥ S(x,P) .∀x ∈ X, 
there exists .P′ ∈ W

π(P)
i , s.t. . S(c, (P̃i ,P′−i )) = S(c,P′) + A > S(x, (P̃i ,P′−i ))

.∀x ∈ X \ {c}. The same is true for the concept of coalitional manipulation. If 
for some .P′ ∈ W

π(P)
i holds . S(c, (P̃i ,P′−i )) = S(c,P′) + A > S(x, (P̃i ,P′−i ))

.∀x ∈ X \ {c}, then . S(c, (P̃K,P′−K)) = S(c,P′) + |K|A > S(x, (P̃K,P′−K))

.∀x ∈ X \ {c}. Therefore, i does not have an incentive to manipulate under .1Winner-
PIF when .F(P) ∈ {a1, a2, . . . , ak1+1} either individually or within a coalition. 

Now suppose that .F(P) = c and .c ∈ {ak1+2, . . . , am}. Voter i cannot give 
alternatives from .{a1, a2, . . . , ak1} more scores, but can increase the score of . ak1+1

by . Δ1. So, let . P̃i equal . Pi but .ak1+1 is switched with .a ∈ {a1, a2, . . . , ak1}. 
Thus, .S(ak1+1, (P̃i ,P′−i )) = S(ak1+1,P′) + Δ1 and . S(a, (P̃i ,P′−i )) = S(a,P′) −
Δ1 and .S(x, (P̃i ,P′−i )) = S(x,P′) for all .x ∈ X \ {a, ak1+1}. So, either 
.S(ak1+1, (P̃i ,P′−i )) > S(x, (P̃i ,P′−i )) for all .x ∈ X \ {ak1+1} and .ak1+1 wins 

or .S(c, (P̃i ,P′−i )) > S(ak1+1, (P̃i ,P′−i )) and c wins. In case of a tie the result 
is again either .ak1+1 or c depending on a tie-breaking order. The same holds for 
coalitional manipulation, but .S(ak1+1, (P̃K,P′−K)) = S(ak1+1,P′) + |K|Δ1 and 

.S(a, (P̃K,P′−K)) = S(a,P′) − |K|Δ1. Thus, for all .P′ ∈ W
π(P)
i the result is not 

worse then .F(P) after manipulation of i or K and better for some .P′ ∈ W
π(P)
i . 

Therefore, if .F(P) ∈ {ak1+2, . . . , am}, voters with a preference . a1Pia2Pi . . . Piam

have an incentive to manipulate both individually and within a coalition under. 
Thus, for any voter having an incentive to manipulate individually there is also an 

incentive to manipulate within a coalition under .1Winner-PIF. At the same time, if a 
voter does not have an incentive to manipulate individually under .1Winner-PIF, then 
there is no incentive to manipulate coalitionally. It means that the set of individually 
manipulable profiles is the same as the set of profiles manipulable within a coalition. 
So, for scoring rules .Iind(m, n, 1Winner, F ) = Icoal(m, n, 1Winner, F ). 

As shown by Veselova [16], the probability of manipulation for plurality rule 
under .1Winner-PIF tends to 1. By Theorem 4, .Icoal(m, n, 1Winner,Plurality) also 
tends to 1. On the other hand, it was proved that .Iind(m, n, 1Winner,Veto) = 0 by 
Reijngoud and Endriss [13], and by Theorem 4 .Icoal(m, n, 1Winner,Veto) = 0.
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4 Computational Experiments 

This section shows computed values of .Icoal(m, n, π, F ) for all PIFs from 
Sect. 2.2 and all rules listed in Sect. 2.5. Moreover, we compare these values 
with .Iind(m, n, π, F ) computed in the work of Veselova [16]. We consider . m = 3
and n from 3 to 15. All computations were done in MatLab. Results are represented 
in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. 

We make the following observations. 

• Except for veto rule and only one case with Borda rule, coalitional manipulability 
is not less than individual. Particularly, we observe a clear going-to-1 tendency 
not only for .1Winner-PIF, but also for .Winner-PIF (all rules except for veto) and 
.Rank-PIF in some cases (plurality, Borda, runoff, STV). 

• In all cases with non-zero individual manipulability of veto rule the values of 
coalitional manipulability are strictly lower than individual. 

• Individual and coalitional manipulability under .1Winner-PIF coincide not only 
for scoring rules, but for all rules under consideration. Moreover, for runoff and 
Copeland rule these values coincide under .Winner-PIF. 

• The observation ‘less information—equal or higher manipulability’ is still true 
in the coalition case for plurality rule, runoff, and STV. With little exceptions it 
holds for Copeland and with only one exception case for Borda rule. For veto 
rule the opposite is true: ‘less information—equal or less manipulability’. 
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Fig. 1 Plurality rule, individual
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Fig. 2 Plurality rule, group 
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Fig. 3 Borda rule, individual
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Fig. 4 Borda rule, group 

• A rule is called strongly computable from .π -images if a voter knowing .π(P) can 
compute the result of the rule for any way of her misrepresenting preference. One 
of results of the work by Veselova [16] is that individual manipulability under . π

does not change compared to a complete information case if the rule is strongly 
computable from .π -images. The same does not hold for coalitional manipulation. 

• With n growing coalitional manipulation of veto rule quickly becomes zero for 
any kind of incomplete information. It could be explained by the following argu-
ment. Manipulation in veto rule means switching the least preferred alternative 
and some other. The larger is the number of voters, the larger is the cardinality of 
the maximal possible coalition of voter i. The larger is the coalition, the bigger is 
the chance of making the least preferred alternative the winner by adding scores 
to it. 

• Periodicity of manipulability index for Copeland rule is rather strong for .Winner-
PIF and .1Winner-PIF, its amplitude is around 0.4–0.6. So, slight changes in 
the number of voters may lead to a considerable reduction in manipulation 
possibilities.
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Fig. 5 Veto rule, individual 
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Fig. 6 Veto rule, group
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Fig. 7 Runoff, individual 
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Fig. 8 Runoff, group
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Fig. 9 STV, individual 
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Fig. 10 STV, group
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Fig. 11 Copeland rule, individual 

5 Conclusion 

Studying individual manipulation is convenient for modeling and revealing incen-
tives of separate voters. However, other voters might also take part in manipulation 
and this assumption can change voters’ incentives. Every voter has a group of co-
minded people and she can take them into account even if she does not know their 
exact number. For a single voter it is easier to predict actions of voters of her type. 
Having the same preference, they also have the same incentives. So, the aim of this 
work was to consider group actions of co-minded people in manipulation model 
under incomplete information and compare results with individual manipulation. 

In the theoretical part, we considered asymptotic behavior of individual and 
coalitional manipulation probability for plurality rule and coalitional manipulation 
probability for Borda rule under .Winner-PIF. Finally, we proved that individual 
and coalitional manipulation are equal for scoring rules under .1Winner-PIF. The 
computational part of the research illustrates theoretical findings for the case of 
3 alternatives and, additionally, allows to observe the behavior of manipulation 
probabilities for other rules and PIFs. 

This work is just the first attempt to combine informational aspect and manip-
ulation by groups in one model. It sheds some light on the problem of their joint 
influence. Thus, we showed that incomplete information of the types that allow 
to compute the winner increases manipulability for plurality, Borda, runoff, STV, 
and Copeland rules. The effect of coalitional manipulation is the same. On the
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Fig. 12 Copeland rule, group 

contrary, for veto rule manipulability decreases under incomplete information and 
considering also coalitional manipulation makes this effect stronger. 

The question that we did not touch here is that some coalition members may 
decide not to manipulate and that is related to the question of the safety of 
coalitional manipulation. Additionally, a more significant influence on incentives to 
manipulation may be expected from voters with a different preference, because they 
can also manipulate, counter-manipulate, etc. If we add such uncertainty about the 
actions of other manipulators and consider it together with incomplete information, 
results may be difficult to predict. 
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Rethinking Probabilistic Topic Modeling 
from the Point of View of Classical 
Non-Bayesian Regularization 

Konstantin Vorontsov 

1 Introduction 

Topic modeling is a popular natural language processing technique, which has 
been actively developed since the late 1990s and still finds many applications [6, 
10, 16, 30]. A probabilistic topic model reveals the latent thematic structure of 
a text document collection representing each topic by a probability distribution over 
words, and describing each document with a probabilistic mixture of topics. 

Topic modeling can be considered as a soft clustering of documents. Unlike 
conventional hard clustering, a document is allocated among several topical clusters 
instead of belonging entirely to one cluster. Topic models are also called soft bi-
clustering, since the words are also distributed over topics. 

The problem of topic modeling of a text document collection is posed as a low-
rank matrix factorization. This is an ill-posed problem, which may have infinitely 
many solutions. Regularizers are introduced to impose additional restrictions on the 
model and make the solution more stable [50]. In complex problems, there can be 
several regularizers. 

Starting with the LDA, Latent Dirichlet Allocation model [7], Bayesian learning 
remains the dominant approach in topic modeling. Its main disadvantage is that 
the inference process is unique for each model, and the more complex the model, 
the more difficult its calculations. There are currently no easy ways to automate 
the inference as well as to construct complex models from the simpler ones. 
Bayesian regularization is introduced via prior distributions, however, the use of 
optimization criteria is more convenient and commonly accepted. Many models 

K. Vorontsov (�) 
Federal Research Center “Computer Science and Control” of RAS and Institute of Artificial 
Intelligence of M.V.Lomonosov Moscow State University, Moscow, Russia 
e-mail: voron@mlsa-iai.ru 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
B. Goldengorin, S. Kuznetsov (eds.), Data Analysis and Optimization, Springer 
Optimization and Its Applications 202, 
https://doi.org/10.1007/978-3-031-31654-8_24

397

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31654-8protect T1	extunderscore 24&domain=pdf

 885
55738 a 885 55738 a
 
mailto:voron@mlsa-iai.ru
mailto:voron@mlsa-iai.ru
mailto:voron@mlsa-iai.ru
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24
https://doi.org/10.1007/978-3-031-31654-8_24


398 K. Vorontsov

assume Dirichlet prior distributions, which simplifies Bayesian inference due to the 
conjugacy property. It was mathematical convenience that predetermined the special 
role of the Dirichlet distribution in topic modeling, despite the lack of convincing 
linguistic justifications. Finally, the Bayesian inference is inconvenient to combine 
with neural network learning procedures [64]. The above barriers prevent the topic 
modeling from the widespread adoption. Topic models more complicated than LDA 
are rarely used in the text analysis industry. Hundreds of models remain “the studies 
for one paper”. 

The disadvantages mentioned above are overcome in the Additive Regularization 
of Topic Models (ARTM), which is an approach based on classical non-Bayesian 
regularization [53, 55]. As shown in [33], a wide class of Bayesian topic models 
can be restated in terms of ARTM. After that, it is possible to transfer regularizers 
from one model to another or to combine the regularizers from various models 
into a composite model with the required properties. For learning any ARTM 
models, a general algorithm is used, in which regularizers can be added as plug-
ins. The modular technology for ARTM is implemented in the open source library 
BigARTM, http://bigartm.org [21, 57]. Let us emphasize that ARTM is a general 
framework for inferring and combining topic models rather than another model or 
method. 

In this paper, an even more general approach is proposed. A theorem on the 
maximization of a smooth function on unit simplices is proven. From this theorem, 
a family of iterative EM-like algorithms can be inferred for learning topic models 
of various structures with arbitrary smooth regularizers. In fact, topic modeling 
becomes a theory of a single theorem. 

An iteration of the general algorithm is not much different from the gradient step 
of a neural network learning process. This observation opens up new perspectives 
for learning neural topic models, as well as learning neural networks with non-
negativity and normalization constraints imposed on some of the parameter vectors. 

2 Maximization on Unit Simplices 

Define the norm operator, which transforms an arbitrary numeric vector .(xi)i∈I into 
a non-negative normalized vector: 

. pi = norm
i∈I

(xi) = (xi)+∑
k∈I

(xk)+
, for all i ∈ I,

where .(x)+ = max{0, x} is a positive part operation. If .xi � 0 for all .i ∈ I , then the 
result of the norm operator is the null vector. Otherwise, the vector .(pi)i∈I lies on 
the unit simplex and defines a discrete probability distribution on a finite set I .

http://bigartm.org
http://bigartm.org
http://bigartm.org
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Theorem 1 Let the function .f (�) be continuously differentiable with respect to 
the set of vectors .� = (ωj )j∈J , .ωj = (ωij )i∈Ij

. If  . ωj is the vector of the local 
extremum of the mathematical programming problem 

. f (�) → max
�

,
∑

i∈Ij

ωij = 1, ωij � 0, i ∈ Ij , j ∈ J

and if .ωij
∂f

∂ωij
> 0 for some i, then . ωj satisfies the equations 

.ωij = norm
i∈Ij

(
ωij

∂f

∂ωij

)
. (1) 

Proof The Lagrangian of the optimization problem with non-negativity and nor-
malization constraints is 

. L (�) = f (�) −
∑

j∈J

λj

(∑

i∈Ij

ωij − 1

)
+

∑

j∈J

∑

i∈Ij

μijωij ,

with . λj and .μij factors corresponding to normalization and nonnegativity con-
straints respectively. Equate the partial derivatives of the Lagrangian to zero, as 
required by the Karush–Kuhn–Tucker conditions: 

.
∂L

∂ωij

= ∂f

∂ωij

− λi + μij = 0; μijωij = 0. (2) 

Multiplying both sides of Eq. (2) by . ωij , one gets 

. ωij

∂f

∂ωij

= ωijλj .

Denote the left side of the equality by . Aij . Then .Aij = ωijλj . According to the 
condition of the theorem, there exists i such that .Aij > 0. Consequently, .λj > 0. 
If . ∂f

∂ωij
< 0 for some i, then .μij = λi − ∂f

∂ωij
> 0, consequently, .ωij = 0. 

Combining the equation .ωijλt = Aij for .Aij > 0 with a zero solution . ωij = 0
for .Aij � 0, we get .ωijλj = (Aij )+. Summing these equations over i, express the 
dual variable: .λj = ∑

i∈Ij
(Aij )+. Substituting . λj into the formula .ωij = 1

λj
(Aij )+, 

we get the required Eq. (1) .
The theorem is proven.

The simple iteration method can be used to solve the system numerically. The 
update formula (1) is similar to the gradient maximization step .ωij = ωij + η

∂f
∂ωij

. 
In both cases, the gradient of .f (�) is calculated. Three differences are worth noting: 
instead of an additive gradient step, a multiplicative update is used, the vector is 
projected onto the unit simplex by the norm operator, and the step size . η is irrelevant.
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Assuming that (1) is always applicable consider the iterative process

. ωt+1
ij = norm

i∈Ij

(
ωt

ij

∂f (�t )

∂ωt
ij

)
, t = 0, 1, 2, . . .

Theorem 2 Let .f (�) be an upper bounded, continuously differentiable function, 
and all . �t , starting from some iteration . t0, satisfy the following conditions: 

• .∀j ∈ J .∀i ∈ Ij .ωt
ij = 0 → ωt+1

ij = 0 (keeping zeros) 

• .∃ε > 0 .∀j ∈ J .∀i ∈ Ij .ωt
ij /∈ (0, ε) (separation from zero) 

• .∃δ > 0 .∀j ∈ J .∃i ∈ Ij .ωt
ij

∂f (�t )
∂ωij

� δ (nondegeneracy) 

Then .f (�t+1) > f (�t ) and .
∣∣ωt+1

ij − ωt
ij

∣∣ → 0 under .t → ∞. 

This theorem was proved by I. A. Irkhin as a generalization of his convergence 
results for the EM-algorithm in topic modeling [27]. 

3 Probabilistic Topic Modeling 

Consider the collection D of text documents composed of terms from a vocabu-
lary W . The  terms can be words, lemmatized words, n-grams or phrases, depending 
on the methods used for text preprocessing. Each document .d ∈ D is a sequence 
of terms .w1, w2, . . . , wnd

, where . nd means the document length. Under the “bag 
of words” hypothesis, the order of terms does not matter, then the document d can 
be represented compactly by a conditional distribution .p̂(w |d) = ndw

nd
, where . ndw

counts how many times the term w occurs in the document d. 
Conditional independence is the assumption that each topic generates terms 

regardless of the document: .p(w | t) = p(w |d, t). According to this assumption 
and the law of total probability, 

.p(w |d) =
∑

t∈T

p(w | t) p(t |d) =
∑

t∈T

ϕwtθtd . (3) 

Probabilistic Topic Model, PTM (3) describes how documents are generated
from the known distributions .p(w | t) and .p(t |d). Learning PTM from data is 
an inverse problem: given a collection estimate model parameters . ϕwt = p(w | t)
and .θtd = p(t |d). In the matrix form, .� = (ϕwt )W×T and .� = (θtd)T ×D . 

Log-likelihood maximization is usual learning criterion for PTMs: 

. ln
∏

d∈D

∏

w∈d

p(w |d)ndw =
∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

ϕwtθtd → max
�,�

(4)

with linear constraints that make columns nonnegative and normalized:
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.

∑

w∈W

ϕwt = 1, ϕwt � 0;
∑

t∈T

θtd = 1, θtd � 0. (5) 

For a better understanding of topic modeling consider the learning problem (4) 
and (5) from four points of view.

Firstly, it is a problem of approximate low-rank matrix factorization. The rank . |T |
is usually much smaller than both .|D| and .|W | dimensions. The problem is ill-
posed because its solution is not unique: .�� = (�S)(S−1�) for infinitely many 
nonsingular S matrices. Regularization can be added to the main criterion in order 
to make the solution better defined and more stable using an extra knowledge or 
data. 

Secondly, it is a document auto-encoder. The encoder .f� : ndw

nd
→ θd transforms 

.|W |-dimensional sparse vector representation of the document .p̂(w |d) into .|T |-
dimensional topical embedding .θd = p(t |d). Linear decoder . g� : θd → �θd

attempts to reconstruct the original representation as accurately as possible. 
Matrix . � is a parameter of both encoder and decoder. The matrix . � = (θ1, . . . , θD)

is the result of all documents encoding. This important difference between the 
matrices . � and . � becomes obscure if considered only from the matrix factorization 
point of view. 

Thirdly, it is a soft bi-clustering of both documents and terms by topical 
clusters T . Each document d and each term w are softly allocated to all clusters 
according to the distributions .p(t |d) and .p(t |w) respectively, instead of being 
hardly assigned to only one cluster. The model is also capable of estimating topic 
distribution for a term in a document .p(t |d,w), for a sentence .p(t |s), and for 
arbitrary text fragment. In general, we call a distribution .p(t |x) for an object x the 
topical embedding of x. 

Fourth, it is a language model that predicts the occurrence of words in documents. 
Admittedly, conventional topic models are bad competitors in this role. Good word 
predictions are possible only from local contexts, however, they are violated by the 
bag-of-words hypothesis. In topic modeling, many ways have been proposed to go 
beyond this hypothesis and process text as a sequence of terms. Another flaw is more 
fatal: one can hardly expect that the appearance of a word is determined only by its 
topics, even if they were estimated from the local context. Deep neural networks 
based on attention models [51] and transformer architecture, such as BERT [17] 
and GPT-3 [11] capture the entire set of linguistic phenomena and predict words 
in a text much better than PTMs and even better than humans do. However, these 
models are non-interpretable: it is impossible to understand which phenomena are 
captured, and what each coordinate of the text embedding means. 

In contrast to neural models, topical embeddings are interpretable. The topic 
can tell about itself addressing frequent words from the .p(w | t) distribution, or 
extracting topical phrases with automatic topic labeling [37] or summarization 
methods. Moreover, topical embedding .p(t |x) can tell about non-textual object x 
in words or phrases of natural language.
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Thus, topic modeling is aimed not so much at predicting words in documents as 
revealing the thematic structure of a text collection, determining the semantics of 
documents and related objects, explaining topics in natural language. 

4 Additive Regularization 

To solve the ill-posed problem of stochastic matrix factorization, we add regu-
larization criterion .R(�,�) to the log-likelihood (4) , under non-negativity and
normalization constraints (5) :

.L(�,�) =
∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

ϕwtθtd + R(�,�) → max
�,�

. (6) 

Generally, several requirements may be imposed, each formalized by a regular-
izer .Ri(�,�), .i = 1, . . . , k. The scalarization approach for multicriteria optimiza-
tion leads to the Additive Regularization for Topic Modeling (ARTM), proposed 
in [53]: 

. R(�,�) =
k∑

i=1

τiRi(�,�),

where non-negative regularization coefficients . τi , .i = 1, . . . , k, are hyperparameters 
of the learning algorithm. 

Theorem 3 Let the function .R(�,�) be continuously differentiable. Then the point 
.(�,�) of the local extremum of the problem (6) , (5) satisfies the system of equations
with auxiliary variables .ptdw = p(t |d,w), if zero columns of the matrices . �, . �
are excluded from the solution: 

.ptdw = norm
t∈T

(
ϕwtθtd

); . (7) 

ϕwt = norm
w∈W

(
nwt + ϕwt

∂R

∂ϕwt

)
; nwt =

∑

d∈D

ndwptdw; . (8) 

θtd = norm
t∈T

(
ntd + θtd

∂R

∂θtd

)
; ntd =

∑

w∈d

ndwptdw. (9) 

Proof Proof can be found in [55], but it can be easier derived from Theorem 1. Let’s  
rewrite (7) as follows:

.ptdw = norm
t∈T

(
ϕwtθtd

) = ϕwtθtd∑
s ϕwsθsd

= ϕwtθtd

p(w |d)
.
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Let’s apply the formula (1) to the function (6) and substitute the auxiliary
variables .ptdw in the resulting expressions: 

. ϕwt = norm
w∈W

(
ϕwt

∂L

∂ϕwt

)
= norm

w∈W

(
ϕwt

∑

d∈D

ndwθtd

p(w |d)
+ ϕwt

∂R

∂ϕwt

)

= norm
w∈W

(∑

d∈D

ndwptdw + ϕwt

∂R

∂ϕwt

)
;

θtd = norm
t∈T

(
θtd

∂L

∂θtd

)
= norm

t∈T

(
θtd

∑

w∈d

ndwϕwt

p(w |d)
+ θtd

∂R

∂θtd

)

= norm
t∈T

(∑

w∈d

ndwptdw + θtd

∂R

∂θtd

)
.

Zero columns in the . � and . � matrices appear in those cases when the positive 
coordinate condition in Theorem 1 is not satisfied. Zero columns can be removed 
from the matrices, which is allowed by the condition of the theorem. 

The theorem is proven. 

A topic t is degenerate if . nwt + ϕwt
∂R

∂ϕwt
� 0 for all w ∈ W.

The degeneracy of the topic is a consequence of the excessively strong sparsing 
effect of the regularizer R. Zeroing the column of the matrix . � means that the model 
prefers to abandon this topic. Reducing the number of topics can be a desirable side 
effect of regularization. 

A document d is degenerate if . ntd + θtd
∂R
∂θtd

� 0 for all t ∈ T .

The degeneracy of the document means that the model is not capable to describe 
it. May be, the document is too short or doesn’t match the topical structure of the 
collection. 

Learning a topic model is a numerical solution of the (7) –(9) system. The simple
iteration method leads to the Expectation–Maximization (EM) algorithm, in which
two steps are performed at each iteration: E-step (7) and M-step (8) and (9) . With
a rational implementation of this algorithm each iteration is performed in one
linear pass through the collection. For each term w in each document d the topical
embedding .p(t |d,w) is calculated by the E-step formula and is immediately used 
to update the counters .nwt and . ntd . 

Fast online algorithm, implemented in the BigARTM library [57], uses par-
allelization, splitting the collection into batches, controlling the update rate of 
. � matrix, and a few more tricks to increase the computational speed [1, 21]. As 
a result, BigARTM outperforms other freely available topic modeling tools such as 
Gensim and Vowpal Wabbit by up to 20 times on some tasks [33]. 

Probabilistic Latent Semantic Analysis (PLSA) is historically the first probabilis-
tic topic model [23]. In ARTM it corresponds to zero regularizer 

.R(�,�) = 0.
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Latent Dirichlet Allocation (LDA) [7] is the first and most cited Bayesian 
model. It imposes restrictions on the columns of the . � and . � matrices in the 
form of Dirichlet prior distributions. In ARTM it corresponds to the cross-entropy 
regularizer [33] 

.R(�,�) =
∑

t∈T

∑

w∈W

βwt ln ϕwt +
∑

d∈D

∑

t∈T

αtd ln θtd . (10) 

If the hyperparameters . βwt , .αtd are positive, then the regularization smoothes 
the conditional distributions . ϕwt , .θtd bringing them closer to the given vectors 
.normw(βwt ), .normt (αtd). If . βwt , .αtd are negative, then the effect of the regularizer 
is sparsing instead of smoothing, as can be seen from the M-step formulas: 

. ϕwt = norm
w∈W

(
nwt + βwt

); θtd = norm
t∈T

(
ntd + αtd

)
.

In the Bayesian interpretation, hyperparameters are bounded from below: 
.βwt > −1, .αtd > −1, due to the properties of the Dirichlet distribution. Therefore, 
sparsing effect is restricted and weak. There are no such restrictions in the ARTM 
interpretation, since a priori Dirichlet distributions are not introduced into the 
model. 

5 Comparison with Bayesian Learning 

Let for generality X be the observed data set (e.g. the text documents collection), 
.p(X |�) be a probabilistic data model with . � parameters (e.g. the . � and . � matri-
ces), .p(� |γ ) be a priori distribution of model parameters with hyperparameters . γ
(in the LDA model, the Dirichlet distributions with hyperparameters . βwt , . αtd ). Then 
the posterior distribution of . � parameters is given by the Bayes’ formula: 

. p(� |X, γ ) = p(�,X |γ )

p(X |γ )
∝ p(X |�)p(� |γ ),

where the symbol . ∝ means “equals up to normalization”. Bayesian inference is 
useful in many data analysis problems where we do something with model param-
eters: testing statistical hypotheses, interval estimating, sampling, etc. However, in 
the practice of topic modeling Bayesian inference is performed only to get a point 
estimate of the . � parameters: 

. � := arg max
�

p(� |X, γ ).

Maximizing a posteriori (MAP) gives a point estimate for . �, bypassing the 
intermediate step of the approximate and tedious posterior inference:
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. � := arg max
�

(
ln p(X |�) + ln p(� |γ )

)
.

The logarithm of the prior distribution can be considered as a classical non-
Bayesian regularization criterion .R(�) = ln p(� |γ ). In this form, it can be sep-
arated from a particular model and brought to another model. 

Additive regularization generalizes log-priors to any regularizers, including those 
that do not have a probabilistic nature, as well as their linear combinations, without 
violating the convergence properties: 

. � := arg max
�

(
ln p(X |�) +

∑

i

τiRi(�)
)
.

The main disadvantage of Bayesian inference is that it requires sophisticated 
calculations unique to each model, which makes it difficult to regularly com-
bine multiple requirements and constraints. In Bayesian learning, there are no 
conventional regularization mechanisms based on criteria, since there is actually 
no optimization problem for . �. Additional information can be introduced either 
through the prior distribution or through the very structure of the model. If the prior 
distributions are not Dirichlet distributions, then the inference becomes noticeably 
more complicated. Non-unified inference incur implementing and testing costs for 
each model. 

The Dirichlet distribution plays a special role in Bayesian topic modeling. 
Although it has no convincing linguistic justification, most models are built on it in 
the literature. The reason is solely in the mathematical convenience of the Dirichlet 
prior conjugated with a multinomial distribution. In ARTM there is no reason 
to prefer the Dirichlet distribution to other regularizers. 

The additivity of regularizers leads to a modular topic modeling technology, 
which is implemented in the BigARTM open source project [57]. In applications, 
composite models with desired properties can be built by adding ready-to-use 
regularizers from the library, without new mathematical calculations and coding. 
The development of such a technology within the Bayesian framework is hardly 
possible. 

6 Overview of Models and Regularizers 

Many topic models, originally formulated in the Bayesian paradigm can be refor-
mulated in terms of classical non-Bayesian regularization [33]. 

Combination of smoothing, sparsing and decorrelation regularizers has proven 
itself well in practice in many studies [54, 55, 61]. Topic decorrelation regularizer 

.R(�) = −τ

2

∑

t∈T

∑

s∈T \t

∑

w∈W

ϕwtϕws
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not only makes the topics more diverse, but also groups common words into separate 
background topics and purges all other topics from them [49]. 

Semi-supervised topic models use the smoothing regularizer of . � matrix to 
set the seed words for some of the topics so that subject topics of interest can 
crystallize in their place during the iterative process. This technique has been 
used for searching rare topics in social media, such as symptoms, diseases, and 
their treatments [41, 42]; crime and extremism [36, 47]; ethnicities and interethnic 
relations [8, 34, 40]. For example, to search for a given number of ethno-relevant 
topics within the ARTM framework, smoothing regularization was applied using 
the vocabulary of ethnonyms. After that, the topic model was able to determine 
how topics are specialized by ethnicity [2, 3]. In particular, multi-ethnic topics were 
found, helping sociologists to identify the aspects of interethnic relations. 

Multimodal topic model describes documents containing not only words, but 
also terms of other modalities: categories, authors, time, tags, entities, users, etc. 
Each modality .m ∈ M has its own dictionary of terms .Wm, own matrix .�m with 
normalized columns, and own log-likelihood criterion. The problem is to maximize 
the weighted sum of these criteria over modalities: 

.

∑

m∈M

τm

∑

d∈D

∑

w∈Wm

ndw ln
∑

t∈T

ϕm
wtθtd + R

({�m},�) → max
�,�

. (11) 

Multimodal data helps to determine the document topics more accurately. Con-
versely, the topic model can be used to reveal the semantics of modalities or predict
missing modality metadata.

Classification topic model is a special case of the multimodal PTM with the 
modality C of categories or classes. The model predicts class probabilities for 
a document .p(c |d) with a linear classifier using topic probabilities .p(t |d) as 
features: 

. p(c |d) =
∑

t∈T

p(c | t)p(t |d) =
∑

t∈T

ϕct θtd .

Experiments showed that this topic model outperforms conventional multiclass 
classification methods on large text collections with a large number of unbalanced, 
overlapping, interdependent classes [46]. Similar results on the same collections 
were reproduced for the multimodal ARTM in [56]. Unbalanced classes can contain 
both a small and a very large number of documents. Overlapping classes means that 
a document may belong to many classes. Interdependent classes share terms and 
topics, therefore, they can compete and interfere when classifying a document. 

Multilingual topic model is another case of multimodal PTM, when languages 
act as modalities. Linking parallel texts into a common document is enough 
for synchronizing topics across languages in cross-language document search 
tasks [58]. Regularizers based on bilingual dictionaries have been proposed in [18], 
however, the parallel texts linking remains the main contribution to the search 
quality.



Rethinking Probabilistic Topic Modeling from Classical Regularization 407

Triple matrix topic model arises from the assumption that topics are generated 
not by a document, but by one of the modalities, for example, categories, authors, or 
tags. The author-topic model ATM [45], the tag weighted topic model TWTM [35], 
and the model for detecting behaviour dynamics in video [24] can be viewed as 
triple matrix factorization: 

. p(w |d) =
∑

t∈T

p(w | t)
∑

a∈A

p(t |a)p(a |d) =
∑

t∈T

ϕwt

∑

a∈A

ψtaπad,

where A is a dictionary of authors, tags, or behaviours respectively. The EM-like 
algorithm given in [33] for this model can be easily obtained as a corollary of the 
maximization theorem on unit simplices. 

Hierarchical topic models divide topics into smaller subtopics recursively. There 
is a wide variety of approaches and methods for learning and evaluating topical 
hierarchies [62]. The top-down level-wise strategy based on ARTM has been 
proposed in [15] and improved in [5]. The hierarchy is built from top to bottom, 
each child level having greater number of topics than the parent level has. Each 
level is a conventional flat topic model, which is linked with the parent level by 
conditional probabilities .ψst = p(s | t) of subtopics .s ∈ S in parent topics .t ∈ T . 
The regularizer tries to approximate parent topics .ϕwt by a probabilistic mixture of 
child topics .ϕws with coefficients . ψst : 

.R(�,�) = τ
∑

t∈T

∑

w∈W

nwt ln
∑

s∈S

ϕwsψst . (12) 

The maximization of .R(�,�) coincides up to notation with the main topic 
modeling task (4) , with parent topics t considered as pseudo-documents with term
frequencies .nwt = ntϕwt . This regularizer can be implemented by simply adding 
.|T | pseudo-documents to the collection before building each child level. The linking 
matrix . � is produced by the model in the columns of the . � matrix corresponding 
to pseudo-documents. 

Multimodal hierarchical topic models perform well in document-by-document 
topic-based search [25, 26]. Combining decorrelation, sparsing, and smoothing 
regularizers along with modalities of n-grams, authors and categories significantly 
improves search quality. In experiments with exploratory search in technology 
blogs, both precision and recall reach 90%. Optimal (in terms of search quality) 
dimension of topical embeddings at the third level of the hierarchy turned out to 
be several times higher than that of the flat model. This means that the gradual 
fragmentation of topics into smaller subtopics allows topical embeddings to keep 
more useful information about documents. 

Topic model for mining polarized opinions is actually a two-level hierarchy, in 
which the upper level determines topics in news [20]. The second level is based 
on unusual modalities, dividing the topic into subtopics with polarized opinions 
about the topic. The modalities are: named entities with positive and negative 
sentiments, named entities with their semantic roles, triplets “subject, predicate,
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object”. Experiments have shown that each of the three modalities is important for 
improving the polarized opinions detection. A similar two-level hierarchy has been 
proposed in [43], where syntactic modalities were used at the child level to divide 
parent level topics into more detailed client intents in the collection of contact center 
dialogs. 

Hyperparameter optimization strategies. Additive regularization loses to 
Bayesian modeling in only one aspect. The more regularizers are used, and the 
more regularization coefficients have to be selected, the more careful balancing 
they require. Early studies have shown that regularizers can interfere with each 
other, and that understanding their interactions leads to sequential strategies of 
adding regularizers to the model [54]. 

Adding regularizers during the iteration process in the order {. � decorrelation, 
. � sparsing, . � smoothing} has been proven to be a successful strategy for topic-
based exploratory search [25, 61]. In further experiments, the hyperparameter space 
was extended with modality weights, pseudo-document weights and the number 
of topics at each level in the hierarchical model [26]. When regularizer starts 
from a given iteration, learning algorithm must be restarted from this point many 
times with hyperparameter values iterated over a coarse grid. The model quality is 
controlled visually by multiple criteria during the iterative process. 

Later, this technique was extended and implemented in TopicNet open source 
library, which operates on top of BigARTM hiding technical details from the 
user [12]. The user specifies only the high-level regularization strategy. TopicNet 
automates computational experiments on hyperparameter optimization, providing 
logging and visualization. 

A more general framework for hyperparameter optimization in ARTM is based 
on evolutionary algorithms and representation of a learning process as a multi-
stage strategy for changing hyperparameters [31]. Later this approach was extended 
by a surrogate model for PTM evaluation, which reduced the time for automatic 
selection of hyperparameters [32]. 

7 Hypergraph Topic Models of Transactional Data 

Topic models of text collections describe occurrences of words in documents. 
Multimodal topic models describe documents that may contain the terms of several 
modalities: words, tags, categories, authors, etc. In all these cases, the model 
describes pairwise interactions between documents and terms. In more complex 
applications, the initial data may describe transactions between three or more 
objects. For example, “user u clicked ad b on page s” in an advertising network; 
“user u wrote word w on blog page d” in a social network; “buyer b bought item g 
from seller s” in a sales network; “client u departed from airport x to airport y by 
airline a” in passenger air transportation; “user u rated the film f in a contextual 
situation s” in a recommender system. Another modality could be transaction time.
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the set of modalities M : 

the set of edge types K : 

the set of topics T : 

Fig. 1 An example of a hypergraph with vertices of three modalities, edges of five types, and five 
topics 

In all of the examples above, a multi-object transaction can not be reduced to the 
pair interactions. 

Transactional data can be represented by a hypergraph .� = 〈V,E〉 defined by 
the set of term vertices V and the set of transaction edges E. Each edge e of E 
is a subset of two or more vertices, .e ⊂ V . The task is to restore unknown topic 
distributions of vertices .p(t |v) from the observed dataset of transactions. 

Each vertex has modality m from the set M . Denote by .Vm the set of vertices 
having modality m. In conventional topic models, there are two modalities: terms 
.V1 = W and documents .V2 = D; each edge transaction .e = (d,w) means that the 
term w occurs in the document d; thus, the hypergraph is a bipartite graph. 

In more complicated applications, transactions can be of various types. For 
example, in the advertising network, along with triplet data “user u clicked ad b 
on page s”, there may be pair data “user u visited page s”, “page s contains term w”, 
“ad b contains term w”, “user’s u query contains term w”. 

Let K be the set of transaction types. Transactional data of type k is a dataset 
of edges .Ek ⊂ E. Each edge .e ∈ Ek occurs in the dataset .nke times, having a latent 
topic .t ∈ T . Figure 1 shows an example of a hypergraph. 

Assume that each transaction .e ∈ E has one dedicated vertex d called container, 
and denote the edge by .e = (d, x), where x is the set of all other vertices of the 
edge. Similar to a document, a container has a distribution of topics .p(t |d). Denote 
the set of all containers by D. 

We accept several hypotheses of conditional independence. Assume that neither 
the distribution of topics .p(t |d) in a container d, nor distributions of vertices 
in topics .p(v | t) depend on the type of the edge k. Next, suppose that the process of 
generating the edge .(d, x) ∈ Ek consists of two steps. First, a topic t is generated 
from the distribution .p(t |d). Then the set of vertices .x ⊂ V is generated so that 
each vertex .v ∈ x of the modality m is generated from the distribution .p(v | t) over 
the set .Vm independently of the other edge vertices. 

The topic model expresses the probabilities of hypergraph edge through condi-
tional distributions associated with their vertices: 

.p(x |d) =
∑

t∈T

p(t |d)
∏

v∈x

p(v | t) =
∑

t∈T

θtd

∏

v∈x

ϕvt .
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In matrix notation, the model parameters are matrices . � and . �m, . m ∈ M , as in  
the multimodal topic model (11) .

Learning the hypergraph model is log-likelihoods maximization for all edge 
types k with weights . τk , under the usual non-negativity and normalization con-
straints, improved by the regularizer .R(�,�): 

.

∑

k∈K

τk

∑

dx∈Ek

nkdx ln

(∑

t∈T

θtd

∏

v∈x

ϕvt

)
+ R(�,�) → max

�,�
; (13) 

∑

v∈Vm

ϕvt = 1, ϕvt � 0;
∑

t∈T

θtd = 1, θtd � 0.

Theorem 4 Let the function .R(�,�) be continuously differentiable. Local maxi-
mum point .(�,�) of the problem (13) satisfies the system of equations with respect
to model parameters . ϕvt , . θtd and auxiliary variables .ptdx = p(t |d, x), if zero  
columns of the matrices . �m, . � are excluded from the solution: 

.ptdx = norm
t∈T

(
θtd

∏

v∈x

ϕvt

)
; . (14) 

ϕvt = norm
v∈Vm

(∑

k∈K

∑

dx∈Ek

[v ∈ x] τknkdxptdx + ϕvt

∂R

∂ϕvt

)
; . (15) 

θtd = norm
t∈T

(∑

k∈K

∑

dx∈Ek

τknkdxptdx + θtd

∂R

∂θtd

)
; (16) 

Proof Let us apply Theorem 1 on maximization on unit simplices, extracting the 
expression for the auxiliary variables .ptdx defined in (14) :

. ϕvt = norm
v∈Vm

(
ϕvt

∑

k∈K

τk

∑

dx∈Ek

nkdx

θtd

p(x |d)

∂

∂ϕvt

∏

u∈x

ϕut + ϕvt

∂R

∂ϕvt

)

= norm
v∈Vm

(∑

k∈K

∑

dx∈Ek

τknkdx[v ∈ x]ptdx + ϕvt

∂R

∂ϕvt

)
;

θtd = norm
t∈T

(
θtd

∑

k∈K

τk

∑

x∈d

nkdx

1

p(x |d)

∏

v∈x

ϕvt + θtd

∂R

∂θtd

)

= norm
t∈T

(∑

k∈K

∑

x∈d

τknkdxptdx + θtd

∂R

∂θtd

)
.

The theorem is proven.
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The hypergraph model is a broad generalization of conventional PTMs. Despite 
this, the derivation of the EM-algorithm out of Theorem 1 is no more difficult than 
in the conventional case. This algorithm is implemented in BigARTM project. 

8 Hypergraph Recommender Topic Models 

Let U be a finite set of users, I be a finite set of items that users can take or prefer. 
The probabilistic topic model predicts user preferences: 

. p(i |u) =
∑

t∈T

p(i | t) p(t |u).

This model is equivalent to the topic model of a text collection, up to terminology: 
documents . → users, terms . → items, topics . → interests. Following the analogy, 
the bag-of-words transforms into the bag-of-transactions hypothesis. In this case, 
dataset can be considered as .nui counters of the user u transactions with the item i. 
Depending on the application, transactions may be purchases, visits, likes, etc. 

There is a well-known “cold start” issue in recommender systems. Nothing to 
recommend to a new user, since there is no history of his preferences. Nobody 
to recommend a new item, since no one has chosen it yet. To solve this problem, 
additional data about users and items can be involved. In particular, these may be 
data .nua on the user attributes .a ∈ A or data .nib on the item properties .b ∈ B. 
If items have text descriptions, then B is a dictionary of terms used in these 
descriptions. Such recommender systems are called, respectively, attribute-aware 
and content-aware. 

Users’ advice to each other can also be used as additional data. These are pairwise 
interactions between users .nuu′ or trust-aware data. 

User preferences may change over time or depend on the situation. To take 
into account such information, two more modalities are introduced: the set of 
situations C and the set of time intervals J . Interactions between them are described 
by transactions of three or more terms, for example, .nuic for “user u selected item i 
in situation c”, or .nuicj for “user u selected item i in situation c in time interval j . 
Such systems are called, respectively, context-aware and time-aware. 

Many types of .∗∗∗-aware models were introduced separately in the litera-
ture [14]. The hypergraph model can combine them all and learn topical embeddings 
for any interacting terms regardless their nature, Fig. 2. 

The recommender system data is different from the text collections as it has no 
natural analogue of a document or container. The set of transactions .(u, i) may 
increase with time for both the user u and the item i, unlike unchanging documents. 

Assume that the edges of the hypergraph .x ⊂ V do not contain container vertex. 
The edge generative process first generates a topic t from the distribution . πt = p(t)

which is common to the entire collection. Then the vertices .v ∈ x are generated 
independently of each other from distributions .ϕvt = p(v | t) over modalities . Vm:
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Fig. 2 Types of transactions between six modalities in a recommender system: users U , items I , 
user attributes A, item properties B, contextual situations C, time intervals J 

. p(x) =
∑

t∈T

p(t)
∏

v∈x

p(v | t) =
∑

t∈T

πt

∏

v∈x

ϕvt .

Topic models, in which documents act as one of the modalities, are called 
symmetric [52]. As before, maximization problem is for regularized log-likelihood 
under normalization and non-negativity constraints: 

.

∑

k∈K

τk

∑

x∈Ek

nkx ln

(∑

t∈T

πt

∏

v∈x

ϕvt

)
+ R(�, π) → max

�,π
; (17) 

∑

v∈Vm

ϕvt = 1, ϕvt � 0;
∑

t∈T

πt = 1, πt � 0.

Theorem 5 Let the function .R(�, π) be continuously differentiable. Local maxi-
mum point .(�, π) of the problem (17) satisfies the system of equations with respect
to model parameters . ϕvt , . πt and auxiliary variables .ptx = p(t |x), if zero columns 
of the .�m matrices are excluded from the solution: 

.ptx = norm
t∈T

(
πt

∏

v∈x

ϕvt

)
.. (18) 

ϕvt = norm
v∈Vm

(∑

k∈K

∑

x∈Ek

[v ∈ x] τknkxptx + ϕvt

∂R

∂ϕvt

)
; . (19) 

πt = norm
t∈T

(∑

k∈K

∑

x∈Ek

τknkxptx + πt

∂R

∂πt

)
. (20)
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Proof follows straightforwardly from the maximization theorem on unit sim-
plices, as in the case of the previous theorem. 

In BigARTM the symmetrized model is not implemented, but it is not difficult 
to simulate it. To to this, the collection is split in some way into documents (for 
example, by transaction time), then a strong regularizer is introduced for smoothing 
the columns of the . � matrix towards the .(nt ) vector summed over all documents. 

9 Sequential Text Topic Models 

The bag-of-words hypothesis is one of the most criticized assumptions in topic 
modeling. Many approaches was proposed in the literature in order to go beyond 
the bag-of-words restrictive assumption, either completely or partially. 

Topic models with n-grams exploit the fact that stable combinations of n consec-
utive words often, though not always, represent subject domain terms or names. 
The n-grams may tell much more about topics than the same words treated 
independently. Topics built on the n-gram dictionary are better interpretable, than 
those built on unigrams [29, 60]. There are two approaches to using n-grams in 
topic modeling. In the first one, the dictionary of n-grams is built at the stage of text 
preprocessing using automatic extraction of terms, keywords, or collocations [19]. 
Then, the n-gram dictionary is used as a modality. The second approach is more 
complicated, in which topic modeling is combined with n-gram extraction [59, 60]. 
Concentration of distribution .p(t |w) in one or more topics is usually a strong 
indication that the n-gram w is a subject domain term. 

Word network topic model predicts the appearance of a word nearby to another 
word, instead of predicting it in the document. “Nearby” means, say, no more 
than 10 words away or in one sentence. Define for each word .u ∈ W a pseudo-
document . du consisting of all words that occur nearby to the word u throughout the 
collection. Denote by .nuw the number of occurrences of the word w in a pseudo-
document . du. 

The word network topic model WNTM [65] and the earlier word topic model 
WTM [13] predict a word in the neighborhood of other word: 

. p(w |u) =
∑

t∈T

p(w | t) p(t |du) =
∑

t∈T

ϕwtθtu.

The log-likelihood can be used either as a regularizer for other topic model, 
or as the main learning criterion. In the first case, topic model is learned by the 
document collection augmented by pseudo-documents. In the second case, only 
pseudo-documents are used: 

.

∑

u,w∈W

nuw ln
∑

t∈T

ϕwtθtu → max
�,�

.
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According to the distributional hypothesis the meaning of a word is determined 
by the distribution of all words, in whose environment it occurs [22]. Words found in 
similar contexts have similar semantics, and in the model they should receive similar 
embeddings. Word embeddings implemented in the word2vec program [38, 39] 
are also learned from word co-occurrence data. They encapsulate the meanings of 
words so well that paired associations turn into vector equalities: 

. king − queen = man − woman;
Moscow − Beijing = Russia − China.

The additively regularized WNTM also has this property [44], unlike con-
ventional topic models. Moreover, topical embeddings are coordinate-wise inter-
pretable, unlike word2vec and neural embeddings. 

Sentence topic model can be considered as a special case of hypergraph topic 
model. Vertices of the hypergraph are words, edges are sentences. This approach 
is equivalent to the sentence topic model senLDA [4] and Twitter-LDA short 
message model [63] first proposed in terms of Bayesian learning. The hypergraph 
representation gives a lot of freedom in defining edges. These can be not only 
sentences, but also noun phrases, syntagmas, lexical chains, and in general any 
group of words, with reasonable assumption that they are generated by a common 
topic. 

E-step regularization. The idea behind using intradocument word order data is to 
impose regularization constraints on topical embeddings .ptdw = p(t |d,w). They  
specialize topical embeddings .p(t |w) from the global context of the collection 
to the narrower document context. Further narrowing of the context to the local 
neighborhoods of words requires processing the document as a sequence of word 
embeddings. 

Define the regularizer .R(�,�,�) as a function of the matrices . �, . � and a three-
dimensional matrix of auxiliary variables .� = (ptdw)T ×D×W . According to (7) , the
elements of . � matrix are functions of . � and . � matrices. Therefore, the regularizer 
has a form .R̃(�,�) = R(�(�,�),�,�). Then, Theorem 3 can be applied to it. 
However, it is more convenient to write the system of equations in terms of the 
partial derivatives of the regularizer R rather than . R̃. 

Consider the problem of the regularized log-likelihood maximization under non-
negativity and normalization constraints (5) :

.

∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

ϕwtθtd + R(�(�,�),�,�) → max
�,�

. (21) 

Theorem 6 Let the function .R(�,�,�) be continuously differentiable and does 
not depend on .ptdw for all .w /∈ d . Then the point .(�,�) of the local extremum of 
the problem (21) , (5) satisfies the system of equations with auxiliary variables . ptdw

and .p̃tdw, if zero columns of the matrices . �, . � are excluded from the solution:
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. ptdw = norm
t∈T

(
ϕwtθtd

);

p̃tdw = ptdw

(
1 + 1

ndw

(
∂R

∂ptdw

−
∑

z∈T

pzdw

∂R

∂pzdw

))
; . (22) 

ϕwt = norm
w∈W

( ∑

d∈D

ndwp̃tdw + ϕwt

∂R

∂ϕwt

)
; . (23) 

θtd = norm
t∈T

( ∑

w∈d

ndwp̃tdw + θtd

∂R

∂θtd

)
. (24) 

Proof First, we define the function .pzdw(�,�) = ϕwzθzd∑
t ϕwt θtd

and find its partial 
derivatives. For any . t, z ∈ T

. ϕwt

∂pzdw

∂ϕwt

= ϕwt

[z= t]θtd

∑
u ϕwuθud − θtdϕwzθzd

(
∑

u ϕwuθud)2

= ptdw[z= t] − ptdwpzdw; . (25) 

θtd

∂pzdw

∂ϕtd

= θtd

[z= t]ϕwt

∑
u ϕwuθud − ϕwtϕwzθzd

(
∑

u ϕwuθud)2

= ptdw[z= t] − ptdwpzdw; (26) 

Note that the resulting expressions (25) and (26) are the same.
Let us introduce an auxiliary function Q of the variables .�,�,�: 

. Qtdw(�,�,�) = ∂R(�,�,�)

∂ptdw

−
∑

z∈T

pzdw

∂R(�,�,�)

∂pzdw

.

Let us differentiate the superposition .R̃(�,�) = R(�(�,�),�,�), given that 
.∂pzdw′/∂ϕwt = 0 if .w = w′; .∂pzd ′w/∂θtd = 0 if .d = d ′; .∂R/∂ptdw = 0 if .w ∈ d: 

.ϕwt

∂R̃

∂ϕwt

= ϕwt

∂R

∂ϕwt

+
∑

d∈D

ϕwt

∑

z∈T

∂R

∂pzdw

∂pzdw

∂ϕwt

; . (27) 

θtd

∂R̃

∂θtd

= θtd

∂R

∂θtd

+
∑

w∈d

θtd

∑

z∈T

∂R

∂pzdw

∂pzdw

∂θtd

. (28) 

Using (25) and (26) , we get the identity

.ϕwt

∑

z∈T

∂R

∂pzdw

∂pzdw

∂ϕwt

= θtd

∑

z∈T

∂R

∂pzdw

∂pzdw

∂θtd

= ptdwQtdw.
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Let us substitute the resulting expressions into (27) and (28) , which we then
substitute into the system of equations from Theorem 3: 

. ptdw = norm
t∈T

(
ϕwtθtd

);

ϕwt = norm
w∈W

( ∑

d∈D

ndwptdw +
∑

d∈D

Qtdwptdw + ϕwt

∂R

∂ϕwt

)
; . (29) 

θtd = norm
t∈T

( ∑

w∈d

ndwptdw +
∑

w∈d

Qtdwptdw + θtd

∂R

∂θtd

)
. (30) 

Substituting of the auxiliary variable .p̃tdw according (22) allows us to rewrite the
equations (29) and (30) in the required form (23) and (24) .

The theorem is proven.

In the EM-algorithm, topical embeddings .ptdw = p(t |d,w) are calculated for 
each word w in the document d. Then they are transformed into new vectors . p̃tdw

and used at the M-step instead of .ptdw. We call this technique E-step regularization 
or E-step post-processing. This is an optional procedure, which does not affect the 
implementation of other computations in the EM-algorithm. This approach was used 
in [48] to improve the quality of topical segmentation of documents. 

Moreover, the post-processing formula does not necessarily need to be derived 
from the regularization criterion. You can do the opposite: transform the sequence 
of topical embeddings .ptdw into .p̃tdw using a heuristical post-processing, for 
example, smoothing, sparsing, or segmentation. In fact, this corresponds to some 
regularization criterion .R(�), that does not have to be written explicitly. 

Theorem 7 Let vectors .(p̃k
tdw)t∈T satisfying the normalization condition 

.
∑

t p̃k
tdw = 1 be substituted in the M-step formulas instead of topical embeddings 

.(pk
tdw)t∈T for each .(d,w): .ndw > 0 at the k-th iteration of the EM-algorithm. Then 

such a transformation is equivalent to adding a smoothing–sparsing regularizer: 

.R(�) =
∑

d∈D

∑

w∈d

ndw

∑

t∈T

(p̃k
tdw − pk

tdw) ln ptdw. (31) 

The proof immediately follows from substitution of (31) into (22) .
One-pass topic modeling. In the EM-algorithm, the computation of document

topical embedding .θd = (θtd)t∈T requires many iterations over the document. 
Nevertheless, . θd can be calculated in a one linear pass through the document [28]. 
The explicit formula .θtd(�) follows from the M-step equation or from the total 
probability formula, where the distribution . p(t) is assumed to be fixed:  

.θtd(�) =
∑

w∈d

p(t |w)p(w|d) =
∑

w∈d

ndw

nd

norm
t∈T

(
ϕwtp(t)

)
.
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Although formally this equality constraint is not an optimization criterion, in fact it 
plays the role of a regularizer and can be used in combination with other regularizers 
within the ARTM framework. 

Theorem 8 Let the functions .θtd(�) and .R(�,�) be continuously differentiable. 
Then the point . � of the local extremum of the problem (6) , (5) with equality
constraints .θtd = θtd(�) satisfies the system of equations with auxiliary variables 
.ptdw = p(t |d,w), . ntd , and .p′

tdw, if zero columns of the matrices . �, . � are excluded 
from the solution: 

. ptdw = norm
t∈T

(
ϕwtθtd

);

ntd =
∑

w∈d

ndwptdw + θtd

∂R

∂θtd

;

p′
tdw = ptdw + ϕwt

ndw

∑

s∈T

nsd

θsd

∂θsd

∂ϕwt

;

ϕwt = norm
w∈W

(∑

d∈D

ndwp′
tdw + ϕwt

∂R

∂ϕwt

)
.

Like the E-step post-processing, modification of the EM-algorithm leads to the 
transformation of the topical embeddings .ptdw into .p′

tdw, which are substituted into 
the usual M-step equation for the . � matrix, without affecting the implementation of 
the remaining computations. 

Experiments on three text collections [28] have shown that the one-pass algo-
rithm is not only much faster but also improves the model in terms of sparseness, 
difference, logLift and coherence topic quality measures. The BigARTM and 
TopicNet libraries were used for the experiments. 

The one-pass topic modeling opens up possibilities for fast computation of local 
contextual topical embeddings and processing of text as a sequence of words beyond 
the bag-of-words restrictive assumption. 

10 Discussion and Conclusions 

Hundreds of Bayesian topic models described in thousands of papers over the past 
two decades, can be reformulated in terms of classical non-Bayesian regularization. 
After this, they can be inferred easily, literally by one line of calculations out of 
the theorem on the maximization of a smooth function on unit simplices. One may 
wonder why this opportunity has not been noticed over so long time, especially 
given that Bayesian inference is laborious and unique to each model, which brings 
many technical inconveniences to researchers.
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Many areas of data analysis and machine learning including image and signal 
processing are being developed according to the same general scenario. First, 
the formal model and the optimization problem are stated; then various specific 
structures, auxiliary criteria and regularizers are added; and finally, the transition 
to Bayesian regularization takes place. This transition usually occurs when there is 
a practical need for evaluation not only the model parameters themselves, but also 
their posterior distributions. 

In Probabilistic Topic Modeling, the typical development scenario was violated 
and the community moved to Bayesian learning skipping the natural stage of 
development within the classical regularization. The very paradox is that in the 
practice of topic modeling, posterior distributions are used only for maximum 
likelihood point estimation. 

Additive regularization (ARTM) is an attempt to fill the gap, though it might be 
late as the focus of community interest has already shifted to deep neural networks, 
attention models, and transformer architectures. Topic modeling is now focused 
more on the fusion with neural networks in search of opportunities to combine the 
best of two worlds [64]. 

Both worlds of models, neural-based and topic-based, generate vector represen-
tations of words and texts. 

Both worlds tend to models homogenization [9], that is, to have a unified vector 
space that embeds any heterogeneous objects of any nature based on data about 
their interactions. It was demonstrated above how the hypergraph topic models 
implement this idea. 

Both worlds of models can generate global and local embeddings. It has been 
shown above how the topic models can process a sequential text. The neural network 
models are much more complicated, their embeddings are able to absorb all the 
information about the connections between words, but it is out of our understanding 
which connections and how exactly are taken into account. Topic models are 
much simpler, their embeddings take into account only the lexical co-occurrence 
of words, while retaining interpretability. The coordinate-wise interpretability is 
a direct consequence of the fact that topic embeddings are non-negative normalized 
vectors on a unit simplex. 

Avoiding the Bayesian inference makes topic models closer to neural models, 
thus making their deeper integration possible. As soon as non-negativity and 
normalization constraints are imposed, any vector parameter of a neural network 
can be learned with the use of the multiplicative gradient steps from the theorem 
of maximization on unit simplices. These are the promising opportunities for future 
research. 

This work was supported by the Russian Foundation for Basic Research (project 
no. 20-07-00936).
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