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Abstract 

Neutron stars are highly compact astrophysical objects and therefore of utmost 
relevance to learn about theories of gravity. Whereas the proper equation of 
state of the nuclear matter inside neutron stars is not yet known, and a wide 
range of equations of state is still compatible with observations, this uncertainty 
can be overcome to a large extent, when dimensionless neutron star properties 
are considered. In this case universal relations between neutron star properties 
and for the gravitational radiation in the form of quasi-normal modes arise. 
These universal relations can be rather distinct for alternative theories of gravity 
as compared to General Relativity. Moreover, the presence of new degrees of 
freedom in alternative theories of gravity leads to further types of gravitational 
radiation, that may be revealed by pulsar observations and gravitational wave 
detectors. Here an introduction to neutron stars, their properties and universal 
relations is presented, followed by two examples of alternative theories of gravity 
featuring interesting effects for neutrons stars. 

7.1 Introduction 

When massive stars with initial mass .M � 8M� have burnt the nuclear fuel in 
their core gravitational collapse results, leaving behind a highly compact remnant, a 
neutron star or a black hole. (The latter will be discussed in the next Chaps. 8 and 9.) 
While predicted shortly after the discovery of the neutron [1], neutron stars were 
only observed in the late 60s, when very regular radio pulses appeared in the data 
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taken by Jocelyn Bell [2]. The radio pulses were emitted by a pulsar, now known 
as PSR B1919+21, a rapidly rotating neutron star with misaligned magnetic field. 
Ever since numerous pulsars including a double pulsar have been discovered [3–7]. 
The extreme regularity of these pulses allows for high precision tests of General 
Relativity and severe constraints for various alternative theories of gravity (see e.g. 
[8, 9]). 

On the theoretical side, Tolman, Oppenheimer and Volkoff (TOV) considered 
in the 30s already the description of neutron stars, deriving and solving the TOV 
equations for a simple equation of state (EOS) of the nuclear matter, namely a 
cold Fermi gas [10, 11]. This work had profound implications, since it showed that 
neutron stars can be supported against the gravitational pull only up to a maximum 
mass, while beyond this mass the collapse of the stellar core will continue and 
lead to a black hole. The value of the maximum mass depends of course on the 
EOS for the nuclear matter. The proper EOS for nuclear matter under such extreme 
conditions as present in neutron stars is still unknown, though [12–14]). 

In recent years much progress has been made based on the discovery of 
gravitational waves and the advent of multi-messenger astronomy [15–17]. In 
particular, the observation of GW170817, where the merger of a neutron star binary 
was reported and analyzed led to new constraints on the neutron star EOS, since it 
allowed to put constraints on the tidal effects experienced by the coalescing bodies 
and on the neutron star radii [18]. Further analysis also hinted at a new value (range) 
for the maximum mass of neutron stars [19,20]. Previous observations of pulsars had 
already revealed the existence of neutron stars with masses of about 2 solar masses 
[21–23]. 

In the following we will focus mainly on static neutron stars. We will start with 
the derivation of the TOV equations, and then address a set of important neutron star 
properties. Besides their mass and radius, we will consider their moment of inertia, 
their rotational quadrupole moment and their tidal deformability. Subsequently we 
will address seismology of neutron stars. Thus we will consider the normal modes 
and quasi-normal modes (QNMs) of neutron stars, representing their reaction to 
perturbations. The uncertainty of the EOS reflected in the neutron star properties 
and QNMs will then be largely reduced with the help of universal relations (see 
e.g. [24, 25]). Our final concern will be the consideration of neutron stars in a set 
of alternative gravity theories featuring an additional scalar degree of freedom, 
where we will highlight some interesting new aspects as compared to General 
Relativity. 

7.2 Static Neutron Stars 

7.2.1 Tolman-Oppenheimer-Volkoff Equations 

In General Relativity (GR) static neutron stars are obtained by solving the Tolman-
Oppenheimer-Volkoff (TOV) equations for a given equation of state (EOS) of the 
nuclear matter. We will now derive this set of equations.
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To this end we start from the Einstein equations 

.Gμν = Rμν − 1

2
gμνR = 8πGTμν, (7.1) 

and employ the stress-energy tensor of an isotropic perfect fluid describing the
nuclear matter

.Tμν = (ρ + P) uμuν + gμνP, (7.2) 

whose four-velocity in the rest system is .uμ = (
ut , 0, 0, 0

)
. In mixed co-

and contravariant components the stress-energy tensor then reads . T
μ
ν =

diag(−ρ, P, P, P ) with energy density . ρ and pressure P . 
A convenient metric ansatz for static spherically symmetric neutron stars is given 

by 

.ds2 = gμνdxμdxν = −e2�(r)dt2 + e2�(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (7.3) 

which contains two unknown functions, .�(r) and .�(r), where the latter can be 
expressed in terms of the mass function . m(r)

.e2�(r) = 1

1 − 2m(r)
r

. (7.4)

•? Exercise 
7.1. Show that the Einstein Tensor becomes with this ansatz 

.G00 = e2� 2m′

r2 , . (7.5) 

Grr = 2

r

(

�′ − m

r2

(
1 − 2m

r

)−1
)

, . (7.6) 

Gθθ = r2
[(

�′′+�′2)
(

1−2m

r

)
+�′

r

(
1−m′−m

r

)
− 1

r2

(
m′−m

r

)]
, . (7.7) 

Gϕϕ = sin2 θGθθ . (7.8)
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From the Einstein equations .G0
0 = κT 0

0 and .Gr
r = κT r

r (.κ = 8πG) we find 

.m′ = κ

2
ρr2, . (7.9) 

�′ =
κ
2 r3P + m

(
1 − 2m

r

)
r2

. (7.10) 

Employing these two equations in the Einstein equation .Gθ
θ = κT θ

θ using 

.�′′ = d

dr
�′ = d

dr

⎛

⎝
κ
2 r3P + m

(
1 − 2m

r

)
r2

⎞

⎠ (7.11) 

we obtain the equation for pressure P , where we can identify the Newtonian part
(underlined) and the relativistic corrections

.P ′ = −mρ

r2

(
1 + P

ρ

) (
1 + κ

2

P

m
r3

) (
1 − 2m

r

)−1

. (7.12) 

The system of equations (7.9), (7.10) and (7.12) are the  TOV equations, represent-
ing three equations for four unknowns. Therefore we have to provide an EOS . ρ(P )

in order to solve the equations. 
A relatively simple EOS is the so-called polytropic EOS 

.ρ = P

� − 1
+

(
P

K

)�

, (7.13) 

where . � is the adiabatic index and K the polytropic constant. Many realistic EOSs 
can be parametrized as piecewise polytropic EOSs (see e.g. [26]). 

Neutron stars are compact objects with a given radius R. Outside this radius 
the pressure and the density vanish. Therefore, the exterior is simply described 
by the Schwarzschild spacetime. Asymptotic flatness requires that the function . �
satisfies .�(∞) = 0. The mass function .m(r) assumes its asymptotic value M at 
the surface of the star, where M corresponds to the mass of the neutron star in 
geometric units. At the center regularity requires that .m(0) = 0. The density and 
the pressure at the center are .ρc(Pc) and .Pc = P(0), respectively. . Pc is a free 
parameter. 

By varying the central pressure a family of neutron star solutions for a given EOS 
is obtained. The mass-radius relation of numerous such families of neutron stars 
is shown in Fig. 7.1. Clearly, there is a strong EOS dependence of the mass-radius 
relation. Observations of high mass pulsars constrain the EOSs, however, since their 
maximum mass should allow for the measured mass values [21–23].
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Fig. 7.1 Mass-radius relation of neutron stars in GR: mass M (in solar masses . M�) vs radius R 
(in km) for numerous EOSs. The horizontal lines indicate high mass pulsars, the data was obtained 
from [21] ©2010 Macmillan Publishers Limited. All rights reserved; [23] ©the Author(s), under 
exclusive license to Springer Nature Limited 2019; and [27] ©2021 by Annual Reviews under CC 
BY 4.0 license. The upper left corner marks the causality limit obtained in [28] ©2022 The Authors 
under CC BY 4.0 license. Data reprinted with permission 

7.2.2 Properties 

While the mass and radius of a neutron star are easily obtained, once an equation 
of state and a central pressure are specified, further properties of interest typically 
involve perturbation theory around the TOV background solution. In lowest order 
perturbation theory the moment of inertia I is obtained. To this end, we consider a 
slowly rotating neutron star, that rotates with uniform angular velocity . � around the 
axis .θ = 0 (. π ). The metric then acquires a non-diagonal component 

.δgtφ = −εω r2 sin2 θ, (7.14) 

where . ε is a perturbation bookkeeping parameter, and the new metric function . ω
arising from the rotation needs to be determined. All other rotational effects in 
the metric are of higher order. This also holds for the effects on the density and 
pressure, which are even functions under time reversal. The fluid velocity receives 
a contribution 

.δUμ = (
0, 0, 0, ε�Ut

)
, (7.15) 

where .Ut = e−� is the time-component in the non-rotating frame.
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The slow rotation induces a new component in the stress-energy tensor 

.δTtφ = r2 (ρ + P) ε (ω − �) sin2 θ − Pεω r2 sin2 θ. (7.16) 

A priori, the new function . ω could depend on two coordinates, r and . θ . Moreover, 
the resulting partial differential equation does not separate, therefore an expansion 
of . ω in terms of vector spherical harmonics should be made [29, 30]. Inspection of 
the boundary conditions w.r.t. regularity and asymptotic flatness shows, however, 
that only a single l can contribute, .l = 1, leaving . ω as a function of r only, 
determined by 

. ω′′ +
(

4

r
− �′ − �′

)
ω′ − 2

[
�′′ + (

�′ − �′)
(

�′ + 1

r

)]
ω

+ 2κe2� [Pω + (ρ + P) (� − ω)] = 0. (7.17)

•? Exercise 
7.2. Assume .ω = ω(r) and derive the Einstein tensor for the metric 

.ds2 = −e2�(r)dt2 + e2�(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
− 2εω r2 sin2 θdtdφ, (7.18) 

to first order in . ε. Consider the energy-momentum tensor component (7.16) , and show that
the . tφ component of the Einstein equations is given by (7.17) .

Expansion at infinity allows to extract the angular momentum J 

.ω(r) = 2J

r3 + O(
1

r5 ), (7.19) 

and the moment of inertia I , since .J = I�. When calculating the moment of 
inertia for various EOSs, one obtains a large variation of its value for neutron 
stars with the same mass, as expected from the large variation of the radii, shown 
in Fig. 7.1 (see e.g. [31]). This is illustrated in Fig. 7.2, where the moment of 
inertia is shown versus the mass (Fig. 7.2a) and the radius (Fig. 7.2b) for several 
EOSs. 

Of considerable interest is also the quadrupole moment Q that is induced by 
rotation. However, to extract the quadrupole moment one has to go to second order 
in . �. As shown by Hartle and Thorne [29,32,33] the appropriate parametrization of
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(a) 

(b) 

Fig. 7.2 Moment of inertia I of neutron stars in GR: (a, upper) I (in solar masses .M� times the 
squared solar gravitational radius . RS ) vs mass  M (in solar masses .M�); (b, lower)  I vs radius R 
(in km) for several EOSs 

the metric is given by 

. ds2 = − e2�
[
1 + 2ε2 (h0 + h2P2)

]
dt2 + e2�

[
1 + 2e2�ε2 (m0 + m2P2) /r

]
dr2

+ r2
[
1 + 2ε2 (v2 − h2) P2

] [
dθ2 + sin2 θ (dφ − εωdt)2

]
, (7.20)
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where . P2 is the Legendre polynomial .P2 = (
3 cos2 θ − 1

)
/2, and . h0, . h2, . m0, . m2

and . v2 are radial functions. The density and pressure possess analogous second 
order terms. After solving the resulting set of differential equations the quadrupole 
moment Q can be read from the asymptotic behavior [29, 32, 33] 

.h2(r) → Q

r3 . (7.21) 

A further important property of neutron stars is their tidal deformability [34]. In 
this case one considers a binary system, where the tidal forces of the companion 
compact object deform the neutron star [33–35]. The tidal Love number . λ is related 
to the tidal quadrupole moment and is obtained by placing the neutron star into an 
external quadrupolar tidal field. The appropriate ansatz for the perturbations then 
consists of a subset of the previous ansatz for the rotational quadrupole moment 
with .ω = h0 = m0 = 0 [33]. The boundary conditions are of course different, since 
an external quadrupole field is present. The asymptotic form of the function . h2, 

.h2 → a−2r
2 + a−1r + a3

r3 , (7.22) 

then provides the tidal Love number . λ

.λ = a3

3a−2
. (7.23) 

In a similar manner one can also obtain the higher multipole moments and the higher
Love numbers [24]. 

7.2.3 Quasi-Normal Modes 

Asteroseismology allows to extract important information on the stability and 
ringdown of neutron stars, when perturbed (see e.g. [36, 37]). Neutron stars possess 
a rich spectrum of modes, associated with the nuclear matter and the gravitational 
field. Since General Relativity features gravitational waves starting with quadrupole 
(.l = 2) radiation, QNMs arise when .l ≥ 2. These possess a complex eigenvalue . ω
whose real part is the characteristic frequency .ωR of the mode, while the imaginary 
part . ωI represents its decay rate. 

The linear perturbations of the metric Ansatz and the fluid read [38] 

.gμν = g(0)
μν (r) + εhμν(t, r, θ, ϕ) , . (7.24) 

ρ = ρ0(r) + εδρ(t, r, θ, ϕ) , . (7.25) 

p = p0(r) + εδp(t, r, θ, ϕ) , . (7.26) 

uμ = u(0)
μ (r) + εδuμ(t, r, θ, ϕ) , (7.27)
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where the superscript .(0) denotes the static and spherically symmetric background 
solutions. The perturbations, in contrast, depend on all four coordinates. 

To proceed one then expands the perturbations in tensorial spherical harmonics 
characterized by multipole numbers l and m [39]. The high symmetry of the 
background solutions then leads to a split of the perturbations into two separate 
classes: axial perturbations and polar perturbations. Axial perturbations transform 
as .(−1)l+1 under parity, and therefore do not couple to the fluid. They are pure 
space-time modes. Polar modes on the other hand are parity-even and transform as 
.(−1)l . These include the perturbations of the pressure and energy density of the 
fluid. 

Expansion and Fourier decomposition of the axial perturbations of the metric 
yields 

. h(axial)
μν

=
∑

l,m

∫

⎡

⎢
⎢⎢
⎣

0 0 −h0
1

sin θ
∂
∂φ

Ylm h0 sin θ ∂
∂θ

Ylm

0 0 −h1
1

sin θ
∂
∂φ

Ylm h1 sin θ ∂
∂θ

Ylm

−h0
1

sin θ
∂
∂φ

Ylm −h1
1

sin θ
∂
∂φ

Ylm 0 0

h0 sin θ ∂
∂θ

Ylm h1 sin θ ∂
∂θ

Ylm 0 0

⎤

⎥
⎥⎥
⎦

e−iωt dω, (7.28) 

whereas for polar perturbations one finds

. h
(polar)
μν

=
∑

l,m

∫
⎡

⎢
⎢
⎣

rle2νH0Ylm −iωrl+1H1Ylm 0 0
−iωrl+1H1Ylm rle2λH2Ylm 0 0

0 0 rl+2KYlm 0
0 0 0 rl+2 sin2 θKYlm

⎤

⎥
⎥
⎦

e−iωt dω , (7.29) 

(using .(t, r, θ, ϕ) order for the matrix). The corresponding decomposition of the 
density and the pressure of the fluid inside the star is 

.δρ =
∑

l,m

∫
rlE1Ylme−iωt dω , δp =

∑

l,m

∫
rl�1Ylme−iωt dω , (7.30)
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and the perturbation of the velocity is 

.δuμ =
∑

l,m

∫
⎡

⎢⎢
⎣

1
2 rleνH0Ylm

rliωe−ν
(
eλW/r − rH1

)
Ylm

−iωrle−νV ∂θYlm

−iωrle−νV ∂φYlm

⎤

⎥⎥
⎦ e−iωt dω , (7.31) 

while outside the star there is no fluid, of course. All perturbation functions depend
only on the radial coordinate r , the multipole numbers l, m, and the complex
eigenvalue . ω. (In contrast to the previous section, here . ω is just a complex number, 
not a function.) The resulting systems of ordinary differential equations must then 
be simplified by specific choices of gauge and solved subject to an appropriate set 
of boundary conditions. These boundary conditions require regularity at the center 
of the star and a purely outgoing wave behavior at infinity. Moreover, they require 
continuity of the metric perturbation functions and their derivatives at the border 
of the star, where the pressure and the energy density vanish. Together all these 
requirements then select a discrete set of values for the complex eigenvalue . ω for a 
given l, representing the fundamental frequency and its overtones (see e.g. [40, 41] 
for further details). In Sect. 9.3.1, further details on QNMs will also be discussed in 
the context of BHs. 

The fundamental f mode .(l = 2) in GR is illustrated in Fig. 7.3, where the 
frequency .ωR (Fig. 7.3a) and the decay time .τ = 1/ωI (Fig. 7.3b) are shown 
versus the mass of the neutron stars for several EOSs. The figure reveals clearly 
the significant dependence of the modes on the EOS. 

7.3 Universal Relations 

As discussed above, dimensionful neutron star properties depend significantly on the 
employed EOS. If, however, properly scaled dimensionless quantities are considered 
instead, an important set of universal relations arises in GR, which exhibit only little 
EOS dependence. 

7.3.1 I -Love-Q Relations 

In geometric units the so-called compactness C is a simple dimensionless quantity. 
It represents the ratio of the mass M and the radius R of a neutron star, .C = M/R. 
The compactness of neutron stars ranges typically in the interval .0.1 < C < 0.3, 
while a Schwarzschild black hole has a compactness of .C = 0.5, since its horizon 
radius is given by .R = 2M . Clearly, compactness is a relevant physical property, 
and being dimensionless, it is a suitable candidate to feature in universal relations. 

A first  universal relation can thus be envisaged that exhibits a suitably scaled 
moment of inertia . Ī versus the compactness C. Since .J = �I , a dimensionless
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(a) 

(b) 

Fig. 7.3 Fundamental f mode (. l = 2) of neutron stars in GR: (a) frequency .ωR (in kHz) vs mass 
M (in solar masses .M�); (b) decay time .τ = 1/ωI (in s) vs mass M (in solar masses . M�) for  
several EOSs 

moment of inertia is obtained in geometric units in terms of .Ī = I/M3. (Recall, 
that .J/M2 is dimensionless.) This .Ī -C relation is demonstrated in Fig. 7.4 for 
several EOSs. While dependence on the EOS has been reduced considerably for 
these dimensionless quantities as compared to the dimensionful quantities I , M and 
R shown in Fig. 7.2, this relation is less impressive than the I -Love-Q relations 
discussed in the following.
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Fig. 7.4 Upper figure: Universal .Ī -C relation for several EOSs. Lower figure: Relative deviation 
of a value F from the best fit . Ffit

Table 7.1 Best fit coefficients in (7.32) for the relations between the variables . Ī , . Q̄ and . ̄λ. Data  
taken from [24] ©2017 Elsevier B.V. All rights reserved. Data reprinted with permissions. Earlier 
approaches towards this latest data have been already published in [42] 

.yi .xi .ai .bi .ci .di . ei

.Ī .λ̄ 1.496 0.05951 0.02238 .−6.953 × 10−4 . 8.345 × 10−6

.Ī .Q̄ 1.393 0.5471 0.03028 0.01926 . 4.434 × 10−4

.Q̄ .λ̄ 0.1940 0.09163 0.04812 .−4.283 × 10−3 . 1.245 × 10−4

Besides the dimensionless moment of inertia . Ī the dimensionless quadrupole 
moment .Q̄ = QM/J 2 and the dimensionless Love number .λ̄ = λ/M5 feature 
prominently in the I -Love-Q relations. These relations do not involve the compact-
ness, but consider only the dimensionless quantities . Ī , . ̄λ and . Q̄. Obtained by Yagi 
and Yunes [24, 42], the truly remarkable I -Love, I -Q, and Q-Love relations can be 
expressed as simple curves of the type 

. ln yi = ai + bi ln xi + ci(ln xi)
2 + di(ln xi)

3 + ei(ln xi)
4, (7.32) 

where . yi represent the first and . xi the second dimensionless quantity, as seen in 
Tables 7.1 and 7.2, where the coefficients . ai to . ei yield an excellent fit to the data of 
a very large number of EOSs with very different properties of the matter of the star 
[24, 42]. In fact, the deviations of the data from the best fit shown are below 1%. 

Analogous relations can be considered for the higher multipole moments and 
higher Love numbers. In the usual nomenclature the mass corresponds to the lowest 
mass moment .M = M0 and the angular momentum to the lowest current moment
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Table 7.2 Best fit coefficients in (7.32) for the relations between the variables . S̄3, .M̄4 and . Q̄. 
Data taken from [24] ©2017 Elsevier B.V and [48] ©2014. The American Astronomical Society. 
All rights reserved. Data reprinted with permissions 

.yi .xi .ai .bi .ci .di . ei

.S̄3 .Q̄ .3.131 × 10−3 2.071 .−0.7152 0.2458 . −0.03309

8.337.M̄4 .Q̄ .−0.02287 3.849 .−1.540 0.5863 . − × 10−2

.J = S1. Higher mass moments possess even index, .M2l , and higher current 
moments odd index, .S2l+1 [39, 43–46]. The quadrupole moment then corresponds 
to .Q = M2. Higher tidal mass and current moments are referred to as . λn [47]. 
Examples of universal relations for higher moments are exhibited in Table II 
[24,48]. These represent the .S̄3-. Q̄ and .M̄4-. Q̄ relations, that possess larger deviations 
(4% and 10%) than the I -Love-Q relations. 

In this connection the expression three hair relations was coined [24,48]. This is 
a generalization of the no-hair (two hair relation), highlighting that Kerr black holes 
are fully determined by only two quantities (hairs), their mass and their angular 
momentum. In the three hair relations of neutron stars the additional quantity 
besides the mass and the angular momentum is the quadrupole moment [24, 48]. 
In contrast to the two hair relation of black holes, the three hair relations of 
neutron stars are only approximate relations. Their validity for neutron stars has 
been associated with an approximate symmetry that emerges at high compactness: 
the self-similarity of isodensity surfaces [24, 49]. 

7.3.2 Quasi-Normal Modes 

Universal relations arise also in the study of quasi-normal modes. As illustrated 
above, quasi-normal modes feature a considerable dependence on the EOS. How-
ever, Anderson and Kokkotas pointed out rather early that universal relations may 
reduce this EOS dependence significantly [36,50], as confirmed in numerous further 
studies, e.g., [51–58]. 

A set of universal relations for the fundamental f mode of neutron stars 
is illustrated in Fig. 7.5, where Fig. 7.5a and b exhibit the dimensionless scaled 
frequency .MωR/c and the dimensionless scaled decay rate .MωI/c, respectively, 
versus the compactness .C = M/R for several EOSs. Analogous relations are 
shown in Fig. 7.5c and d, where instead of the compactness C the so-called effective 
compactness .η = √

M3/I = Ī−1/2 was used, that is based on the dimensionless 
moment of inertia . Ī . It was introduced in [55], where also the following best fit was 
provided for the f mode 

.MωR = −0.0047 + 0.133η + 0.575η2, MωI = 0.00694η4 − 0.0256η6.
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(a) (b) 

(c) (d) 

Fig. 7.5 Universal relation for the fundamental f mode (.l = 2) of neutron stars in GR: (a, upper 
left) scaled frequency .MωR /c vs compactness .C = M/R; (b, upper right) scaled decay rate . MωI /c

vs compactness .C = M/R for several EOSs; (c, lower left) and (d, lower right) analogous, but vs 
the effective compactness . η = √

M3/I

The parametrization in terms of the effective compactness reduces the errors (as 
compared to the compactness) and is therefore preferable. Various further universal 
relations for the quasi-normal modes have been found, among them for instance 
a relation between the scaled frequency of a mode and the scaled damping rate 
[56, 57]. 

Universal relations can be of use in many different circumstances [24]. First of 
all, they can be employed to extract further information on neutron star properties 
not yet known from explicit measurements. In case of the lowest moments, for 
instance, the I -Love-Q relations would allow to obtain any two of the three 
quantities, once the third one would be measured [24], while the seven lowest 
moments could be obtained from measurements of the mass, rotation period and 
moment of inertia with the help of the three-hair-relations [48]. On the other hand, 
in the case of the quasi-normal mode measurement of an axial or polar mode would 
allow the determination of the mass M and the moment of inertia I of a star by 
invoking the .MωR-. η and .MωI -. η relations [55]. Moreover, the radius R might be 
extracted and conclusions with respect to the EOS might be possible. Currently 
universal relations are already employed to reduce degeneracies in the analysis of 
gravitational waves [24]. Last but not least, as discussed next universal relations 
also provide a means to test alternative gravity theories.
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7.4 Neutron Stars in Alternative Gravity Theories 

Studies of alternative gravity theories are motivated largely by the quest for a theory 
of quantum gravity and by cosmological issues like dark matter and dark energy, 
see also the discussions in the previous Chaps. 1–5. Such theories typically involve 
new degrees of freedom, with the simplest being a real scalar field (see Sects. 4.4.4 
and 4.4.5 for torsion-scalar gravity theories for example). If indeed such additional 
degrees of freedom would be present, their consequences might not only resolve 
the issues intended, but they might also have observable consequences that could 
be tested by observations in the solar system or observations of black holes and 
neutron stars and gravitational waves emitted by these compact objects [59–62]. 
In the following neutron stars will be discussed for two widely employed types of 
alternative gravity theories. 

7.4.1 Scalar-Tensor-Theories 

Scalar-tensor theories introduce in addition to the gravitational metric tensor field a 
gravitational scalar field (see e.g. [63–66]). A generic action for such scalar-tensor 
theories is given by 

. S = 1

16πG

∫
d4x

√−g̃
[
F(�)R̃−Z(�)g̃μν∂μ�∂ν�−2U(�)

]
+Sm

[
�m; g̃μν

]
,

(7.33) 

where the tilde indicates that the respective quantities are in the so-called Jordan
frame, . � is the gravitational scalar field, and . Sm denotes any additional matter fields 
. �m. In the Jordan frame the gravitational scalar field does not couple directly to the 
matter fields and the weak equivalence principle is retained. The functions . F(�)

and .Z(�) cannot be chosen arbitrary, but need to meet some physical restrictions 
[67]. 

While neutron stars can be studied directly in the Jordan frame, it is typically 
more convenient to transform to the so-called Einstein frame, which can be achieved 
by means of a conformal transformation of the metric .gμν = F(�)g̃μν , and an 
associated transformation of the gravitational scalar field denoted by . ϕ now [64– 
66]. 

.

(
dϕ

d�

)2

= 3

4

(
dln(F (�))

d�

)2

+ Z(�)

2F(�)
. (7.34) 

In the Einstein frame, the action then reads

. S = 1

16πG

∫
d4x

√−g
[
R− 2gμν∂μϕ∂νϕ − 4V (ϕ)

] + Sm[�m; A2(ϕ)gμν],
(7.35)
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where the Einstein frame quantities are denoted without tilde, and the following 
relations hold 

.A(ϕ) = F−1/2(�) , 2V (ϕ) = U(�)F−2(�). (7.36) 

In the simplest case the scalar potential is chosen to vanish, .U(�) = 0 = V (ϕ). 
The gravitational scalar field is then massless and has no self-interactions.

•? Exercise 
7.3. Show that variation of the action (7.35) leads to the Einstein equations 

.Rμν − 1

2
gμνR = 2∂μϕ∂νϕ − gμνg

αβ∂αϕ∂βϕ + 8πTμν (7.37) 

and gravitational scalar field equation

.∇μ∇μϕ = −4πk(ϕ)T , (7.38) 

where .T = T
μ
μ , and .k(ϕ) = d ln(A(ϕ))

dϕ
. 

The function .A(ϕ) determines the coupling between the scalar field and the 
matter. The stress-energy tensor .T̃μν is provided in the physical Jordan frame and 
then transformed into the Einstein frame 

.Tμν = A2T̃μν, (7.39) 

where the Bianchi identities yield

.∇μT μ
ν = k(ϕ)T ∂νϕ. (7.40) 

The freedom in the choice of coupling function .A(ϕ) leads to different types of 
scalar-tensor theories, and thus different consequences for neutron stars in these 
theories. At the same time it leads to a variety of physical effects, that can be 
compared to observations and thus result in more or less stringent constraints 
from observations. Brans-Dicke theory, for instance, is obtained for the simple 
parametrization .A = eκϕ , i.e., .k(ϕ) = κ with constant . κ , addressed further below 
[63]. Here another coupling function is considered, 

.A(ϕ) = e
1
2 βϕ2

, k(ϕ) = βϕ, (7.41) 

that leads to the interesting phenomenon of spontaneous scalarization of neutron
stars, discovered by Damour and Esposito-Farèse [68].
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Spontaneous scalarization in neutron stars is matter induced. It can arise in 
theories with coupling functions, that possess a quadratic dependence on the 
gravitational scalar field such that it satisfies a Klein-Gordon type equation with 
an effective mass, i.e., 

.∇μ∇μϕ = m2
effϕ. (7.42) 

In that case the GR neutron star solutions remain solutions of the scalar-tensor
theory, since for vanishing scalar field the equations reduce to the GR equations.
However, in addition to the GR solutions new solutions with a gravitational scalar
field may arise, when the neutron matter represents a sufficiently strong source to
induce a tachyonic instability, .m2

eff = −4πGβT < 0. While typical neutron stars 
possess .T = 3p −ρ < 0, so .β < 0 must be chosen for spontaneous scalarization to 
occur, both T and . β could also be positive, but in this case the neutron stars would 
need a pressure dominated core [69, 70]. 

When evaluating a family of GR neutron stars by increasing the central pressure, 
at some point a neutron star with a zero mode arises. Beyond this point scalarization 
sets in, and a branch of scalarized neutron stars is present in addition to the GR 
neutron stars. In fact, GR neutron stars then possess an unstable mode, whereas the 
scalarized neutron stars become the physically preferred stable configurations (see, 
e.g., [68, 71]). The scalar field at the center of the star and the scalar charge are 
largely independent of the EOS, and thus basically universal, only depending on the 
gravitational potential at the center of the neutron star [31]. 

Pulsar observations have by now virtually excluded the possibility of sponta-
neous scalarization of neutron stars for the simplest case of a massless scalar field 
[72]. These conclusions are based on the expected effects of dipolar and thus scalar 
radiation on the orbits of the compact objects. However, the inclusion of a genuine 
mass term with a sufficiently large mass for the scalar field allows to circumvent 
these observational constraints, since the dipolar radiation becomes rather negligible 
when the orbital separation of a binary star system is much larger than the scalar 
field Compton wavelength [73]. Evaluation of the properties and quasi-normal 
modes of scalarized neutron stars with a massive gravitational scalar field also 
leads to universal relations (see e.g., [74–76]). Depending on the strength of the 
scalarization, they may differ significantly from those of neutron stars in GR. 

7.4.2 f (R) Theories 

In .f (R) theories the gravitational action is no longer given by the curvature scalar 
. R, but by some function of the curvature scalar, .f (R) [77–79]. A particular well-
motivated such theory is based on 

.f (R) = R+ aR2 , (7.43)
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since this model (called the Starobinsky model) is capable to predict the inflationary 
phase of the early universe consistent with observations. .f (R) theories can also be 
transformed to the Einstein frame, since from a mathematical point of view they are 
equivalent to scalar-tensor theories. As shown in [80,81] such a transformation then 
leads to a scalar field with a Brans-Dicke type coupling function and a scalar field 
potential 

.A(ϕ) = e
− 1√

3
ϕ

, V (ϕ) = 3m2
ϕ

2

(
1 − e

− 2ϕ√
3
)2

. (7.44) 

The scalar field mass .mϕ is identified in the transformation from the coefficient of 
the . ϕ2 term of the potential .V (ϕ), that arises in the transformation, and is thus a 
function of the coupling constant a of the .f (R) theory considered, .mϕ = 1/

√
6a. 

The parameter a therefore determines the mass of the scalar field, and can be chosen 
well within the current observational window [73].

•? Exercise 
7.4. Transform (7.43) into a scalar tensor theory. Follow the steps which were outlined in

Sect. 4.4.5 for teleparallel .f (G) theories of gravity. 

Besides leading to distinct I -Love-Q relations (see e.g., [82, 83]), this . f (R)

theory has a distinct spectrum of quasi-normal modes [28, 84–86]. In particular, 
in contrast to GR, monopole (.l = 0) and dipole (.l = 1) radiation arises due to the 
additional degree of freedom. In GR neutron stars possess only .l = 0 normal modes. 
But in such an .f (R) theory, these modes become propagating modes. Interestingly, 
these modes feature a very small decay rate . ωI , which means that they are ultra long-
lived [85]. Moreover, the scale of the frequency . ωR is determined by the neutron star 
size for small Compton wavelength .Lϕ = 1/mϕ of the scalar field, while for large 
. Lϕ the frequency follows . Lϕ . 

The universal relations for quasi-normal modes exhibit distinct features, as well, 
and therefore might be exploited to put further bounds on such a theory [28, 84]. 
Figure 7.6 illustrates a set of universal relations for the fundamental f mode (.l = 2) 
for two values of the scalar mass .mϕ for this .f (R) theory, analogous to Fig. 7.5 
for GR. Due to the presence of the new degree of freedom, however, this f mode 
is not the only polar quadrupole (.l = 2) mode. There is an additional scalar . l = 2
mode present, and there are also the scalar dipole and monopole modes, all of them 
exhibiting universal relations [28].
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Fig. 7.6 Universal relation for the fundamental f mode (.l = 2) of neutron stars in . f (R) =
R+aR2 theory with .mϕ = 0.0108 neV and 0.1084 neV: (left) scaled frequency .MωR /c vs effective 

compactness .η = √
M3/I (right) scaled decay rate .MωI /c vs effective compactness . η = √

M3/I

for several EOSs. For comparison also the GR relations are shown 

7.5 Conclusion 

Since neutron stars are highly compact objects, they represent ideal astrophysical 
objects to learn about gravity. While the current lack of knowledge of the physical 
EOS of nuclear matter under these extreme conditions leads to larger ranges of 
possible values of their physical properties and their emitted radiation, the presence 
of universal relations, which are rather independent of the EOS, reduces these 
uncertainties to a large extent. Moreover, universal relations may be rather different 
for GR and for alternative theories of gravity, thus allowing to put bounds on 
such theories once the corresponding measurements will have been achieved with 
sufficient accuracy. 
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