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Abstract 

In general relativity, the only dynamical field describing the gravitational inter-
action of matter, is the metric. It induces the causal structure of spacetime, 
governs the motion of physical bodies through its Levi-Civita connection, and 
mediates gravity via the curvature of this connection. While numerous modified 
theories of gravity retain these principles, it is also possible to introduce another 
affine connection as a fundamental field, and consider its properties—curvature, 
torsion, nonmetricity—as the mediators of gravity. In the most general case, this 
gives rise to the class of metric-affine gravity theories, while restricting to metric-
compatible connections, for which nonmetricity vanishes, comprises the class 
of Poincaré gauge theories. Alternatively, one may also consider connections 
with vanishing curvature. This assumption yields the class of teleparallel gravity 
theories. This chapter gives a simplified introduction to teleparallel gravity, with 
a focus on performing practical calculations, as well as an overview of the most 
commonly studied classes of teleparallel gravity theories. 

4.1 Introduction 

In his original work, Einstein formulated the general theory of relativity in terms 
of the metric tensor as the fundamental field variable of the gravitational field, 
which describes gravity by the curvature of its Levi-Civita connection. Numerous 
modified gravity theories depart from this formulation, either keeping the metric as 
the only fundamental field variable and modifying its dynamics through a modified 

M. Hohmann (�) 
Laboratory of Theoretical Physics, Institute of Physics, University of Tartu, Tartu, Estonia 
e-mail: manuel.hohmann@ut.ee 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
C. Pfeifer, C. Lämmerzahl (eds.), Modified and Quantum Gravity, Lecture Notes 
in Physics 1017, https://doi.org/10.1007/978-3-031-31520-6_4

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31520-6protect T1	extunderscore 4&domain=pdf

 885 56780 a 885 56780 a
 
mailto:manuel.hohmann@ut.ee
mailto:manuel.hohmann@ut.ee
mailto:manuel.hohmann@ut.ee
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4
https://doi.org/10.1007/978-3-031-31520-6_4


146 M. Hohmann

action, or by adding further fundamental field which couple non-minimally to 
the curvature [1]. However, there exist also other classes of gravity theories, in 
which the curvature of the Levi-Civita connection plays a less prominent role, 
and another, independent connection is introduced as a fundamental field variable 
next to the metric. Unlike the Levi-Civita connection, this connection is assumed 
to have vanishing curvature, but instead one allows for non-vanishing torsion or 
nonmetricity, or both. Gravity theories of this type are known as teleparallel gravity 
theories. 

In fact, already Einstein studied the possibility to describe gravity in terms of the 
torsion of a flat, metric-compatible connection instead of curvature [2], in an attempt 
to unify gravity and electromagnetism. While this attempt was not successful, it 
gave rise to a new class of gravity theories, now known as metric teleparallel 
gravity theories [3, 4], in which gravity is mediated by torsion instead of curvature. 
Only much later another class of gravity theories was introduced, which attributes 
gravity to the nonmetricity of a flat, torsion-free (i.e., symmetric) connection, and is 
hence known as symmetric teleparallel gravity [5]. Finally, allowing for both torsion 
and nonmetricity leads to the realm of general teleparallel gravity [6]. It is worth 
mentioning that these theories are embedded in the much wider and well-studied 
framework of metric-affine gravity theories [7, 8], for the metric-compatible case 
also in the framework of Poincaré gauge theories [9, 10], as it was discussed in 
the previous chapter, Chap. 3. However, a full account of this relationship and the 
historic development and studies of teleparallel gravity theories would by far exceed 
the scope of this chapter. 

Despite the long-standing history of teleparallel gravity theories and the studies 
of their fundamental properties and underlying structure for several decades, a 
renewed and growing interest in teleparallel modifications and extension of general 
relativity and their phenomenology has arisen only recently with the growing 
number of unexplained observations and tensions in cosmology. Numerous theories 
have been constructed as possible candidates to explain the early and late acceler-
ating phases of the universe, known as inflation and dark energy eras, to resolve 
the question of singularities and the information paradox of black holes, and to 
provide alternative pathways towards a quantization of gravity and a unification 
with other fundamental forces. The phenomenology of these theories greatly differs 
and depends on their choice of dynamical fields and action, so that a full account 
would, again, exceed the scope of this chapter, and we must limit ourselves to a more 
general discussion of the class of teleparallel gravity theories, and leave specific 
theories and their phenomenological properties for further reading [4]. 

The aim of this chapter is to provide a practical introduction to teleparallel 
gravity. In Sect. 4.2 we give a simplified summary of the general structure and 
underlying mathematical foundations of teleparallel gravity theories in their three 
flavors—general, symmetric and metric. In particular, we discuss the fundamental 
fields in these theories, the general form of the action and the field equations. 
This practical introduction continues in Sect. 4.3, where we explain how to 
formulate physical principles and perform common calculations necessary to solve 
the gravitational field equations of teleparallel gravity theories. We discuss how the



4 Teleparallel Gravity 147

invariance of the action under diffeomorphisms leads to the conservation of the 
matter currents, and show how to construct teleparallel geometries with spacetime 
symmetries and their perturbations, which can be used to solve the field equations of 
a given theory of gravity and thus study its phenomenology. Finally, Sect. 4.4 gives 
an overview of the most commonly studied classes of teleparallel gravity theories 
and their field equations, and briefly summarizes their common properties. 

There are many interesting aspects of teleparallel gravity which cannot be 
covered in this chapter, as they would by far exceed its scope and its aim towards 
performing practical calculations. In particular, we do not discuss the role of gauge 
symmetries in teleparallel gravity, which allow its interpretation as a gauge theory 
of the translation group. In relation to this, we do not discuss its formulation in 
terms of a tetrad. Throughout the chapter, we use only the tensor notation, which is 
more widespread in relating gravity to observations, and avoid the use of differential 
form language, which is often more concise and thus preferred by theorists, but 
less common in practical calculations of phenomenology. Further, we cannot cover 
fundamental questions such as the number of degrees of freedom of these theories, 
which is studied in their Hamiltonian formulation, and hints towards theoretical 
issues known under the term strong coupling. The interested reader is encouraged 
to follow the references provided in this chapter for a more detailed account of these 
mathematical foundations, their applications and possible issues. 

We use the convention that spacetime coordinate indices are labeled with 
lowercase Greek letters (observe the difference to the convention in the previous 
chapter, Chap. 3) and take the values .(0, 1, 2, 3), as well as the metric signature 
.(−1,+1,+1,+1). 

4.2 Dynamical Fields, Action and Field Equations 

In this introductory section we give an overview of the dynamical fields and their 
properties, the general structure of the action, and the variational methods used to 
obtain their field equations. Here we focus on three different flavors of teleparallel 
theories: general teleparallel theories, in which both torsion and nonmetricity 
are allowed to be non-vanishing, are discussed in Sect. 4.2.1; we then restrict 
the theories to symmetric teleparallel gravity by imposing vanishing torsion in 
Sect. 4.2.2, and to metric teleparallel gravity by imposing vanishing nonmetricity 
in Sect. 4.2.3. 

4.2.1 General Teleparallel Gravity 

We start our discussion of teleparallel gravity theories from the viewpoint of metric-
affine gravity, in which next to the metric .gμν a connection with coefficients 
.�μ

νρ is introduced as a fundamental field on the spacetime manifold M , which 
is independent of the Levi-Civita connection. To distinguish these two connections, 
we write the latter, and all derived quantities such as the covariant derivative and the
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curvature tensor, with a circle on top, i.e., 

.
◦
�μ

νρ = 1

2
gμσ

(
∂νgσρ + ∂ρgνσ − ∂σ gνρ

)
. (4.1) 

Given another, independent connection, their difference can always be written in the
form

.�μ
νρ − ◦

�μ
νρ = Mμ

νρ = Kμ
νρ + Lμ

νρ . (4.2) 

Here, .Mμ
νρ is called the distortion: it is the difference between two connection 

coefficients, and hence a tensor field. If one of these two connections is the Levi-
Civita connection of a metric, the distortion decomposes further into the contortion 
.Kμ

νρ and the disformation .Lμ
νρ , which can be obtained as follows. First, define the 

torsion 

.T μ
νρ = �μ

ρν − �μ
νρ , (4.3) 

as well as the nonmetricity

.Qμνρ = ∇μgνρ = ∂μgνρ − �σ
νμgσρ − �σ

ρμgνσ . (4.4) 

These are, again, tensor fields. Using the metric to raise and lower indices, one then
obtains the contortion

.Kμ
νρ = 1

2

(
Tν

μ
ρ + Tρ

μ
ν − T μ

νρ

)
, (4.5) 

as well as the disformation

.Lμ
νρ = 1

2

(
Qμ

νρ − Qν
μ

ρ − Qρ
μ

ν

)
. (4.6) 

Hence, in the presence of a metric, an independent connection can always uniquely
be specified in terms of its torsion and nonmetricity, which determine its deviation
from the Levi-Civita connection.

The dynamical fields then enter the action of the theory, which is of the general 
form 

.S[g, �,ψ] = Sg[g, �] + Sm[g, �,ψ] , (4.7) 

where the gravitational part . Sg of the action depends only on the metric and the 
connection, while the matter part . Sm also depends on some set of matter fields . ψI , 
whose components we do not specify further and simply label them with an index 
I . By variation with respect to these matter fields, the matter action determines 
the matter field equations, which govern the dynamics of the matter fields in a
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given gravitational field background. In general, this background depends both on 
the metric .gμν and the connection .�μ

νρ . Further, varying the matter action with 
respect to the metric and the connection gives rise to the energy-momentum . �μν

and hypermomentum .Hμ
νρ defined by the variation [7] 

.δSm =
∫

M

(
1

2
�μνδgμν + Hμ

νρδ�μ
νρ + 
Iδψ

I

) √−gd4x , (4.8) 

where .
I = 0 are the matter field equations. The specific form of .�μν and 
.Hμ

νρ depends on the type of matter under consideration and its coupling to the 
background geometry. These terms will act as the source of the gravitational field 
equations. To obtain the latter, one writes the variation of the gravitational part of 
the action in the similar form 

.δSg = −
∫

M

(
1

2
Wμνδgμν + Yμ

νρδ�μ
νρ

) √−gd4x , (4.9) 

where any necessary integration by parts has been carried out in order to eliminate
derivatives acting on the variations. This variation defines two further tensor fields,
which we denote .Wμν and .Yμ

νρ , and which will enter as the dynamical part of the 
gravitational field equations. 

The action and variation given above constitute the general form for a metric-
affine theory of gravity. In teleparallel gravity, however, the connection is further 
restricted to have vanishing curvature, 

.Rμ
νρσ = ∂ρ�μ

νσ − ∂σ �μ
νρ + �μ

τρ�τ
νσ − �μ

τσ �τ
νρ ≡ 0 . (4.10) 

Note that this condition involves both the connection coefficients and their deriva-
tives. In the context of Lagrange theory, such type of condition constitutes a non-
holonomic constraint. Different possibilities exist to implement this constraint [11]. 
One possibility is to add another term of the form 

.Sr =
∫

M

r̃μ
νρσ Rμ

νρσ d4x , (4.11) 

where the tensor density .r̃μ
νρσ acts as a Lagrange multiplier, and can be taken to be 

antisymmetric in its last two indices, .r̃μνρσ = r̃μ
ν[ρσ ], since the contraction of its 

symmetric part with the antisymmetric indices of the curvature tensor vanishes and 
thus does not contribute to the action. Variation with respect to .r̃μ

νρσ then yields the 
constraint equation .Rμ

νρσ = 0. In order to derive the variation with respect to the 
connection coefficients, note that the variation of the curvature can be expressed as 

.δRμ
νρσ = ∇ρδ�μ

νσ − ∇σ δ�μ
νρ + T τ

ρσ δ�μ
ντ . (4.12)
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With the help of this expression, as well as performing integration by parts, one 
obtains the variation of the Lagrange multiplier term . Sr in the action with respect to 
the connection as 

.

δ�Sr =
∫

M

r̃μ
νρσ

(∇ρδ�μ
νσ − ∇σ δ�μ

νρ + T τ
ρσ δ�μ

ντ

)
d4x

=
∫

M

(
T σ

σρ r̃μ
νρτ − T ρ

ρσ r̃μ
ντσ + T τ

ρσ r̃μ
νρσ

−∇ρ r̃μ
νρτ + ∇σ r̃μ

ντσ
)
δ�μ

ντ d4x .

(4.13) 

Combining all terms, one finds that the gravitational field equations are given by the
metric field equation

.Wμν = �μν , (4.14) 

as well as the connection field equation

. Ỹμ
ντ = H̃μ

ντ + T σ
σρ r̃μ

νρτ − T ρ
ρσ r̃μ

ντσ + T τ
ρσ r̃μ

νρσ − ∇ρ r̃μ
νρτ + ∇σ r̃μ

ντσ ,

(4.15) 

where it is convenient to define the tensor densities

.Ỹμ
ντ = Yμ

ντ√−g , H̃μ
ντ = Hμ

ντ√−g . (4.16) 

Note that the connection equation still contains the undetermined Lagrange multi-
plier .r̃μ

νρσ . However, the latter can be eliminated using the following procedure. 
First, we calculate the divergence 

. ∇τ Ỹμ
ντ = ∇τ H̃μ

ντ + ∇τ

(
T σ

σρ r̃μ
νρτ − T ρ

ρσ r̃μ
ντσ + T τ

ρσ r̃μ
νρσ

)

− ∇τ∇ρ r̃μ
νρτ + ∇τ∇σ r̃μ

ντσ . (4.17) 

The last two terms can be simplified by realizing that the Lagrange multiplier . ̃rμ
νρσ

is antisymmetric in its last two indices, so that one can apply the commutator of 
covariant derivatives given by 

. 2∇[ρ∇σ ]r̃μνρσ = −T τ
ρσ ∇τ r̃μ

νρσ

− Rτ
μρσ r̃τ

νρσ + Rν
τρσ r̃μ

τρσ + Rρ
τρσ r̃μ

ντσ + Rσ
τρσ r̃μ

νρτ − Rτ
τρσ r̃μ

νρσ .

(4.18) 

Also using the vanishing curvature (4.10) , the only remaining term is given by

.2∇[ρ∇σ ]r̃μνρσ = −T τ
ρσ ∇τ r̃μ

νρσ . (4.19)
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Further, one can use the antisymmetry of the Lagrange multiplier to write 

.∇τ

(
T σ

σρ r̃μ
νρτ − T ρ

ρσ r̃μ
ντσ + T τ

ρσ r̃μ
νρσ

) = 3∇[τ
(
T τ

ρσ ]r̃μνρσ
)
. (4.20) 

The derivative of the torsion tensor can be rewritten by making use of the curvature-
free Bianchi identity

.∇[νT μ
ρσ ] + T μ

τ [νT τ
ρσ ] = Rμ[νρσ ] = 0 , (4.21) 

from which after contraction follows

.3∇[τ T τ
ρσ ] = −3T τ

ω[τ T ω
ρσ ] = T τ

τωT ω
ρσ . (4.22) 

By combining all terms, one finds that the divergence (4.17) of the connection field
Eq. (4.15) reads

. 
∇τ Ỹμ

ντ = ∇τ H̃μ
ντ + T τ

τωT ω
ρσ r̃μ

νρσ + 3T τ [ρσ ∇τ ]r̃μνρσ − T τ
ρσ ∇τ r̃μ

νρσ

= ∇τ H̃μ
ντ + T τ

τωT ω
ρσ r̃μ

νρσ + 2T τ
τ [ρ∇σ ]r̃μνρσ .

(4.23) 

Similarly, contracting the field Eq. (4.15) with the trace of the torsion tensor, one
obtains

.T ω
ωτ Ỹμ

ντ = T ω
ωτ H̃μ

ντ + T ω
ωτT

τ
ρσ r̃μ

νρσ + 2T ω
ω[ρ∇σ ]r̃μνρσ . (4.24) 

Subtracting these two equations, the Lagrange multiplier terms cancel, and one
obtains the connection field equations

.∇τ Ỹμ
ντ − T ω

ωτ Ỹμ
ντ = ∇τ H̃μ

ντ − T ω
ωτ H̃μ

ντ . (4.25) 

This equation can also be rewritten by eliminating the density factors using

.∇μ

√−g = 1

2
gνρ∇μgνρ

√−g = 1

2
Qμν

ν√−g = Mν
νμ

√−g , (4.26) 

where the last expression follows from rewriting the covariant derivative of the
metric in terms of its (vanishing) covariant derivative with respect to the Levi-Civita
connection using the decomposition (4.2) . The latter can also be used to write the
torsion as

.T μ
νρ = Mμ

ρν − Mμ
νρ . (4.27)
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Using these relations and the definition (4.16) of the densities .Ỹμ
νρ and . H̃μ

νρ , the  
field equations become 

.∇τ Yμ
ντ − Mω

τωYμ
ντ = ∇τHμ

ντ − Mω
τωHμ

ντ . (4.28) 

Equations (4.14) and (4.28) constitute the field equations for the dynamical fields
in teleparallel gravity. In Sect. 4.4 we will derive these field equations explicitly for 
selected gravity theories. 

•? Exercise 
4.1. Check the integration by parts performed in Eq. (4.13) . Recall that the covariant

derivative of a tensor density receives an extra term, which is not present for pure tensors.

Besides the method of Lagrange multipliers, the teleparallel field equations can 
also be obtained by using the method of restricted variation. Using this method, 
no Lagrange multiplier is introduced, the constraint equation (4.10) of vanishing
curvature is imposed to restrict the connection .�μ

νρ , and the variation .δ�μ
νρ is 

restricted in order to preserve this constraint. Using the expression (4.12) , one finds
that the variation of the connection must be of the form

.δ�μ
νρ = ∇ρξμ

ν (4.29) 

for a tensor field .ξμ
ν . Indeed, for the curvature perturbation one then finds 

.δRμ
νρσ = ∇ρ∇σ ξμ

ν − ∇σ ∇ρξμ
ν + T τ

ρσ ∇τ ξ
μ

ν = 0 , (4.30) 

using the formula for the commutator of covariant derivatives in the absence of
curvature. It follows that the variation of the action takes the form

.

δ�S =
∫

M

(
H̃μ

νρ − Ỹμ
νρ

)
∇ρξμ

νd4x

=
∫

M

(
T σ

σρH̃μ
νρ − ∇ρH̃μ

νρ − T σ
σρỸμ

νρ + ∇ρỸμ
νρ

)
ξμ

νd4x ,

(4.31) 

where the second line follows from integration by parts. Hence, one finds the same
connection field equation (4.25).
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4.2.2 Symmetric Teleparallel Gravity 

The class of teleparallel gravity theories discussed in the previous section, in 
which the affine connection .�μ

νρ is restricted only by the flatness condition (4.10) ,
is also known as general teleparallel gravity, and is the youngest among the
different classes of teleparallel gravity theories. Two other classes of teleparallel
gravity theories can be obtained by demanding that either the torsion (4.3) or the
nonmetricity (4.4) vanishes. We will start with the former condition, which yields
the class of symmetric teleparallel gravity theories, which refers to the fact that the
coefficients of a torsion-free connection are symmetric in their lower two indices.
In order to implement the condition of vanishing torsion, one may proceed in full
analogy to the flatness condition in the previous section, by adding another Lagrange
multiplier term

.St =
∫

M

t̃μ
νρT μ

νρd4x , (4.32) 

where variation with respect to the tensor density .t̃μ
νρ leads to the constraint 

equation .T μ
νρ = 0. In order to derive the field equations, one then proceeds as 

in the previous section, by varying the full action and eliminating the Lagrange 
multipliers from the resulting field equations. This calculation is rather lengthy, 
but straightforward, and so we will not show it here. Instead, we will follow 
the alternative procedure of restricted variation of the action, by considering 
only variations .δ�μ

νρ which maintain the vanishing curvature and torsion of the 
connection. We can use the fact that the flatness is maintained by the variation (4.29) ,
and further restrict the form of .ξμ

ν . It turns out that this is achieved by setting 
.ξμ

ν = ∇νζ
μ for some vector field . ζμ, and thus 

.δ�μ
νρ = ∇ρ∇νζ

μ . (4.33) 

Using the fact that covariant derivatives commute in the absence of curvature and
torsion, one now immediately sees

.δT μ
νρ = δ�μ

ρν − δ�μ
νρ = ∇ν∇ρζμ − ∇ρ∇νζ

μ = 0 . (4.34) 

The variation of the action with respect to the connection is then simply given by

.

δ�S =
∫

M

(
H̃μ

νρ − Ỹμ
νρ

)
∇ρ∇νζ

μd4x

= −
∫

M

∇ρ

(
H̃μ

νρ − Ỹμ
νρ

)
∇νζ

μd4x

=
∫

M

∇ν∇ρ

(
H̃μ

νρ − Ỹμ
νρ

)
ζμd4x ,

(4.35)
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where integration by parts simplifies due to the vanishing torsion. The connection 
field equation thus becomes 

.∇ν∇ρỸμ
νρ = ∇ν∇ρH̃μ

νρ . (4.36) 

Together with the metric field equation (4.14) , it constitutes the field equations of
symmetric teleparallel gravity.

4.2.3 Metric Teleparallel Gravity 

We finally come to the remaining class of theories, which are defined by imposing 
the condition of vanishing nonmetricity, so that the connection becomes metric-
compatible. This class of theories is therefore known as metric teleparallel gravity, 
or simply as teleparallel gravity, since it was conceived first among the three 
different classes we discuss here. To derive its field equations, one can also in this 
case either introduce a Lagrange multiplier 

.Sq =
∫

M

q̃μνρQμνρd4x , (4.37) 

and vary with respect to the tensor density .q̃μνρ to obtain .Qμνρ = 0, or find a 
suitable restriction on the connection variation. Here we will follow once again 
the latter approach. From the definition (4.4) of the nonmetricity, one obtains its
variation

.δQμνρ = ∇μδgνρ − gσρδ�σ
νμ − gνσ δ�σ

ρμ = ∇μ(δgνρ − 2ξ(νρ)) , (4.38) 

provided that the variation of the connection is chosen to implement the flatness
condition (4.29) . Here we also used the metric compatibility of the connection
to commute lowering an index with the covariant derivative. It turns out that the
condition of vanishing nonmetricity imposes a relation

.δgμν = 2ξ(μν) (4.39) 

between the variations of the metric and the connection. Since both are now
expressed in terms of the tensor field . ξμν , the field equations follow from the total 
variation 

. 

δS =
∫

M

(
�μνξ(μν) + Hμνρ∇ρξμν − Wμνξ(μν) − Yμνρ∇ρξμν

)√−gd4x

=
∫

M

(
�(μν) − ∇ρHμνρ + HμνρT τ

τρ − W(μν)

+ ∇ρYμνρ − YμνρT τ
τρ

)
ξμν

√−gd4x ,

(4.40)
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after performing integration by parts, and using the metric compatibility of the 
connection to obtain .∇μ

√−g = 0. Keeping in mind that .Wμν and .�μν are defined 
by the variation of the action with respect to the metric, and thus symmetric by 
definition, one obtains the field equation 

.Wμν − ∇ρYμνρ + YμνρT τ
τρ = �μν − ∇ρHμνρ + HμνρT τ

τρ . (4.41) 

This single field equation therefore conveys the dynamics in metric teleparallel
gravity.

4.3 Physical Aspects and Formalisms in Teleparallel Geometry 

To be able to make contact with phenomenology and observations, it is necessary 
to discuss a few general physical principles in the framework of teleparallel 
gravity. The first principle, which we discuss in Sect. 4.3.1, is the conservation 
of the matter currents, which are energy-momentum and hypermomentum, which 
follows from the invariance of the action under diffeomorphisms. We then continue 
with spacetime symmetries in Sect. 4.3.2, which can be used to obtain solutions 
of teleparallel gravity theories, such as black holes, whose phenomenology can 
subsequently be studied. In particular, we focus on the case of homogeneous and 
isotropic teleparallel spacetimes, and derive the dynamical variables which appear in 
teleparallel cosmology. Finally, we discuss the theory of perturbations of teleparallel 
geometries in Sect. 4.3.3. These form the basis of testing teleparallel gravity theories 
using gravitational waves and high-precision post-Newtonian observations. 

4.3.1 Energy-Momentum-Hypermomentum Conservation 

In order to be independent of the choice of coordinates, the different components . Sg
and . Sm of the action discussed in the previous sections are demanded to be indepen-
dently invariant under diffeomorphisms. Note that an infinitesimal diffeomorphism 
generated by a vector field .X = Xμ∂μ changes the metric by 

.δXgμν = (LXg)μν = Xρ∂ρgμν + ∂μXρgρν + ∂νX
ρgμρ = 2

◦∇(μXν) , (4.42) 

while the connection is changed by

. 

δX�μ
νρ = (LX�)μνρ

= Xσ ∂σ �μ
νρ − ∂σ Xμ�σ

νρ + ∂νX
σ �μ

σρ + ∂ρXσ �μ
νσ + ∂ν∂ρXμ

= ∇ρ∇νX
μ − Xσ Rμ

νρσ − ∇ρ(Xσ T μ
νσ ) ,

(4.43)
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compare with the discussion in the context of Riemann-Cartan spaces in Sect. 3.2.4 
of the previous chapter. Note that both expressions are tensor fields, despite the fact 
that the connection coefficients are not tensor fields. Their variation, however, being 
an infinitesimal difference between connection coefficients, is a tensor field. In the 
teleparallel case, the curvature tensor vanishes. Using these formulas, it is now easy 
to calculate the change of the gravitational part . Sg of the action, which reads 

. 

δXSg = −
∫

M

(
1

2

√−gWμνδXgμν + Ỹμ
νρδX�μ

νρ

)
d4x

= −
∫

M

{√−gWμν
◦∇μXν + Ỹμ

νρ
[∇ρ∇νX

μ − ∇ρ(Xσ T μ
νσ )

]}
d4x

=
∫

M

[√−g
◦∇νWμ

ν + T σ
μν(∇ρỸσ

νρ − T τ
τρỸσ

νρ)

− ∇ν(∇ρỸμ
νρ − T τ

τρỸμ
νρ) + T ω

ων(∇ρỸμ
νρ − T τ

τρỸμ
νρ)

]
Xμd4x .

(4.44) 

Assuming that the gravitational part . Sg of the action is invariant under diffeomor-
phisms, this variation must vanish identically for arbitrary vector fields . Xμ. Hence, 
it follows that the terms .Wμν and .Ỹμ

νρ obtained from the variation of the action 
satisfy 

. 
√−g

◦∇νWμ
ν + T σ

μν(∇ρỸσ
νρ − T τ

τρỸσ
νρ)

− ∇ν(∇ρỸμ
νρ − T τ

τρỸμ
νρ) + T σ

σν(∇ρỸμ
νρ − T τ

τρỸμ
νρ) = 0 . (4.45) 

Alternatively, one can also write this relation without density factors, and finds

. 
◦∇νWμ

ν + T σ
μν(∇ρYσ

νρ − Mτ
ρτYσ

νρ)

− ∇ν(∇ρYμ
νρ − Mτ

ρτYμ
νρ) + Mσ

νσ (∇ρYμ
νρ − Mτ

ρτYμ
νρ) = 0 . (4.46) 

This equation is derived from a purely geometric property of the gravitational part
of the action, and so it is a geometric identity, i.e., it holds for any field configuration
of the metric .gμν and the connection .�μ

νρ , independently of whether these satisfy 
the gravitational field equations or not1 . Such a relation is therefore also said to hold 
off-shell. This is to be contrasted with the variation of the matter action . Sm, which

1 This equation takes the same role as .
◦∇νGμ

ν = 0 for the Einstein tensor, which is satisfied 
identically as a consequence of the Bianchi identities. 
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reads 

.

δXSg =
∫

M

(
1

2

√−g�μνδXgμν + H̃μ
νρδX�μ

νρ + 
̃I δXψI

)
d4x

=
∫

M

{√−g�μν
◦∇μXν + H̃μ

νρ
[∇ρ∇νX

μ − ∇ρ(Xσ T μ
νσ )

]

+
̃ILXψI
}

d4x .

(4.47) 

Here, .
̃I = 0 (or equivalently .
I = 0, without using densities) are the matter field 
equations. If these are satisfied, and only then, demanding that the matter action is 
invariant under diffeomorphisms generated by an arbitrary vector field .Xμ leads to 
the energy-momentum-hypermomentum conservation law 

. 
√−g

◦∇ν�μ
ν + T σ

μν(∇ρH̃σ
νρ − T τ

τρH̃σ
νρ)

− ∇ν(∇ρH̃μ
νρ − T τ

τρH̃μ
νρ) + T σ

σν(∇ρH̃μ
νρ − T τ

τρH̃μ
νρ) = 0 , (4.48) 

or, again in the version without densities,

. 
◦∇ν�μ

ν + T σ
μν(∇ρHσ

νρ − Mτ
ρτHσ

νρ)

− ∇ν(∇ρHμ
νρ − Mτ

ρτHμ
νρ) + Mσ

νσ (∇ρHμ
νρ − Mτ

ρτHμ
νρ) = 0 . (4.49) 

Since this relation does not hold for arbitrary field configurations of the gravitational
and matter field, but only for those which satisfy the matter field equations .
I = 0, 
it is said to hold on-shell. Note that we have not made any assumptions on the 
properties of the connection except for vanishing curvature. In particular, we have 
not imposed vanishing torsion or nonmetricity. It follows that the geometric identity 
and energy-momentum-hypermomentum law given above hold for all three classes 
of teleparallel gravity theories (but their expressions will simplify in the symmetric 
and metric cases, as we will see below). Finally, we remark that in the case of 
vanishing hypermomentum, i.e., for matter which couples only to the metric and not 
to the connection, which is most commonly considered in the context of teleparallel 
gravity, the conservation law reduces to 

.
◦∇ν�μ

ν = 0 , (4.50)

which is the well-known energy-momentum conservation.
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•? Exercise 
4.2. Show that the conservation law (4.49) can also be derived from the geometric

identity (4.46) , by imposing the gravitational field equations.
This is most straightforward for the general teleparallel gravity class, whose gravi-

tational field equations are (4.14) and (4.28) . One easily sees that the terms appearing
in the identity (4.46) are exactly the left-hand sides of the gravitational field equations.
Replacing them with the respective right-hand sides, one obtains the energy-momentum-
hypermomentum conservation law (4.49) . Of course, the same holds true also if one uses
the tensor density version of these equations.

A similar derivation can also be used in the case of symmetric teleparallel gravity, 
where one assumes vanishing torsion, .T μ

νρ = 0. In this case, it is most convenient 
to start from the density version (4.45) , which simplifies to become

.
√−g

◦∇νWμ
ν − ∇ν∇ρỸμ

νρ = 0 . (4.51) 

Using the metric field equation (4.14) and the connection field equation (4.36) , one
thus immediately obtains the conservation law

.
√−g

◦∇ν�μ
ν − ∇ν∇ρH̃μ

νρ = 0 , (4.52) 

which agrees with the general form (4.48) in the absence of torsion. What is
most remarkable in the case of symmetric teleparallel gravity is the fact that
one can also proceed in a different order: by imposing the matter field equations
.
I = 0, from which follows the conservation law (4.52) , further imposing
the metric field equation (4.14), and using the identity (4.51) , one obtains the
connection field equation (4.36) . In other words, any field configuration of the
matter and gravitational fields, which satisfies the matter and metric field equations,
automatically satisfies also the connection field equation. For this reason, one often
omits the latter when it comes to solving the field equations.

Finally, we study the energy-momentum-hypermomentum conservation also in 
the metric teleparallel setting. In this case, one can omit the density factors in 
the geometric identity (4.45) , since the connection is metric-compatible, so that it
becomes

. 
◦∇νWμ

ν + T σ
μν(∇ρYσ

νρ − T τ
τρYσ

νρ)

− ∇ν(∇ρYμ
νρ − T τ

τρYμ
νρ) + T σ

σν(∇ρYμ
νρ − T τ

τρYμ
νρ) = 0 . (4.53)
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Further, we impose the metric teleparallel gravity field equation (4.41) , which we
will write in the form

.Wμν − �μν = Aμν , (4.54) 

where we have defined the abbreviation

.Aμν = ∇ρYμνρ − YμνρT τ
τρ − ∇ρHμνρ + HμνρT τ

τρ . (4.55) 

Note that the left hand side of the field equation (4.54) is symmetric by definition.
Hence, when the equation holds, also the right hand side must be symmetric, and
thus .A[μν] = 0. We then take the Levi-Civita covariant derivative of this equation, 
which reads 

.
◦∇νW

μν − ◦∇ν�
μν = ◦∇νA

μν . (4.56) 

On the right-hand side, we can use the relation

.

◦∇νA
μν = ∇νA

μν − Kμ
ρνA

ρν − Kν
ρνA

μρ

= ∇νA
μν − 1

2

[
(Tρ

μ
ν + Tν

μ
ρ − T μ

ρν)A
ρν

−(Tρ
ν
ν + Tν

ν
ρ − T ν

ρν)A
μρ

]

= ∇νA
μν − Tρ

μ
νA

ρν − T ν
νρAμρ ,

(4.57) 

where we have used the symmetry .A[μν] = 0 to obtain the last line. Now 
combining the geometric identity (4.53), the divergence (4.56) of the gravitational
field equation and the result (4.57) , one finally arrives at

. 
◦∇ν�μ

ν + T σ
μν(∇ρHσ

νρ − T τ
τρHσ

νρ)

− ∇ν(∇ρHμ
νρ − T τ

τρHμ
νρ) + T σ

σν(∇ρHμ
νρ − T τ

τρHμ
νρ) = 0 , (4.58) 

which agrees with (4.49) in the case of vanishing nonmetricity.

4.3.2 Spacetime Symmetries and Cosmology 

In the previous section we have made use of the transformation laws (4.42) 
of the metric and (4.43) of the connection under infinitesimal diffeomorphisms
generated by a vector field X. The same transformation laws also find application
in the discussion of symmetric spacetimes, i.e., teleparallel geometries, which are
invariant under the action of particular vector fields, .δXgμν = 0 and . δX�μ

νρ =
0 [12, 13]. The choice of these vector fields depends on the physical situation
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under consideration. A few common examples can be expressed most conveniently 
in spherical coordinates .(t, r, ϕ, ϑ): a  stationary spacetime is invariant under the 
(timelike) vector field . ∂t ; spherical symmetry is conveyed by the three rotation 
generators 

. sin ϕ∂ϑ + cos ϕ

tan ϑ
∂ϕ , − cos ϕ∂ϑ + sin ϕ

tan ϑ
∂ϕ , −∂ϕ ; (4.59) 

finally, cosmological symmetry comprises of invariance under both rotations as
given above and translations, defined by the vector fields

.χ sin ϑ cos ϕ∂r + χ

r
cos ϑ cos ϕ∂ϑ − χ sin ϕ

r sin ϑ
∂ϕ , . (4.60a) 

χ sin ϑ sin ϕ∂r + χ

r
cos ϑ sin ϕ∂ϑ + χ cos ϕ

r sin ϑ
∂ϕ , . (4.60b) 

χ cos ϑ∂r − χ

r
sin ϑ∂ϑ , (4.60c) 

where we used the abbreviation .χ = √
1 − (ur)2, and u can be any real or 

imaginary number, so that the sign of .u2 ∈ R determines the curvature of the spatial 
hypersurfaces of constant time t . For .u2 > 0, their spatial curvature is positive, while 
.u2 < 0 corresponds to negative spatial curvature. Finally, .u2 = 0 is the spatially flat 
case. 

Symmetric spacetimes are often considered as potential solutions to the field 
equations of a given theory, since they are completely characterized by fewer 
functions than there are components of the dynamical fields, and these functions 
depend on a smaller number of coordinates, hence leading to a simple ansatz for 
solving the field equations. As a simple and physically well motivated example, we 
show this for the case of cosmological symmetry in the teleparallel geometry. It is 
well known that the most general metric which is homogeneous and isotropic is the 
Friedmann-Lemaître-Robertson-Walker metric 

.gμν = −nμnν + hμν , (4.61) 

where the hypersurface conormal

.nμdxμ = −Ndt (4.62) 

and spatial metric

.hμνdxμ ⊗ dxν = A2
[

dr ⊗ dr

χ2
+ r2(dϑ ⊗ dϑ + sin2 ϑdϕ ⊗ dϕ)

]
(4.63) 

are fully determined by two functions of time, known as the lapse function
.N = N(t) and scale factor .A = A(t). Using this metric, we can apply the
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decomposition (4.2) of the affine connection, and we find that the most general
homogeneous and isotropic connection is characterized through its torsion and
nonmetricity

.T μ
νρ = 2

A
(T1h

μ
[νnρ] + T2nσ εσμ

νρ) , . (4.64a) 

Qρμν = 2

A
(Q1nρnμnν + 2Q2nρhμν + 2Q3hρ(μnν)) , (4.64b) 

by five further functions .T1,T2,Q1,Q2,Q3 of time, and .εμνρσ is the totally 
antisymmetric tensor normalized such that 

.ε0123 = √−g = NA3r2 sin ϑ

χ
. (4.65) 

Note that in general the curvature of this connection does not vanish, and so
one must impose additional constraints on the aforementioned functions. Before
discussing these constraints, it is most convenient to introduce the conformal time
derivative

.F ′ = A

N

dF

dt
(4.66) 

acting on any time-dependent scalar function .F = F(t), as well as the conformal 
Hubble parameter 

.H = A′

A
= 1

N

dA

dt
. (4.67) 

With the help of these definitions, the conditions on the parameter functions under
which the curvature tensor vanishes become

.T2(H− T1 + Q2) = 0 , . (4.68a) 

T2(H− T1 + Q2 − Q3) = 0 , . (4.68b) 

(H− T1 + Q2)(H− T1 + Q2 − Q3) − T2
2 + u2 = 0 , . (4.68c) 

(Q1 + Q2)(H− T1 + Q2) + (H− T1 + Q2)
′ = 0 , . (4.68d) 

(Q1 + Q2)(H− T1 + Q2 − Q3) − (H− T1 + Q2 − Q3)
′ = 0 , . (4.68e) 

T′
2 = 0 . (4.68f)

Note that u appears in only one of these equations; nevertheless, it plays an
important role for the solutions of this system, as we will show now. For this
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purpose, consider first the case .u2 	= 0. In this case the condition (4.68c) implies

.(H− T1 + Q2)(H− T1 + Q2 − Q3) 	= T2
2 . (4.69) 

From the two conditions (4.68a) and (4.68b) then further follows that either the right
hand side vanishes, or both factors on the left hand side vanish. We first consider
this latter case. The condition (4.68c) then requires .T2 = ±u, and we find that all 
remaining equations are solved by 

.T2 = ±u , T1 − Q2 = H , Q3 = 0 . (4.70) 

Also we see that we must demand u to be real in order to obtain a real value of
the connection coefficients; hence, this solution is valid only for positive spatial
curvature .u2 > 0. Alternatively, the first two equations (4.68a) and (4.68b) can also
be solved by setting .T2 = 0. From the remaining equations then follows the solution 

. T2 = 0 , (H− T1 + Q2)(H− T1 + Q2 − Q3) = −u2 ,

Q1 +Q2 = −H
′ −T′

1 +Q′
2

H−T1 +Q2
. (4.71) 

Now we see that both signs of . u2 are allowed. These are the only two possibilities 
to solve the first three equations, and so we may turn our attention to the case .u = 0. 
In this case the third Eq. (4.68c) mandates

.(H− T1 + Q2)(H− T1 + Q2 − Q3) = T2
2 , (4.72) 

and we see that both sides of this equation must vanish in order to satisfy the
conditions (4.68a) and (4.68b), so that all solutions will have .T2 = 0. For the left 
hand side, we are free to choose at most one of the two factors to be non-vanishing. 
This leads to the three possible solutions 

.T2 = 0 , T1 − Q2 = H , Q3 = 0 (4.73) 

if both factors vanish,

.T2 = 0 , T1 − Q2 + Q3 = H , Q1 + Q2 = −Q
′
3

Q3
(4.74) 

if only the second factor vanishes, as well as

.T2 = 0 , T1 − Q2 = H , Q1 + Q2 = Q
′
3

Q3
(4.75)



4 Teleparallel Gravity 163

if only the first factor vanishes. These are the only possible homogeneous and 
isotropic teleparallel geometries. Note that for each solution one has three conditions 
on the five parameter functions, so that two of them can be freely chosen to 
parametrize the solution, and must be determined alongside the scale factor A and 
lapse N by solving the field equations of a given teleparallel gravity theory. 

In the discussion above we have assumed a general teleparallel geometry, for 
which both torsion and nonmetricity are allowed to be non-vanishing. From the 
solutions we have found one can now easily deduce the symmetric and metric 
teleparallel geometries. We start with the former, by imposing the additional 
condition .T1 = T2 = 0. One immediately sees that this condition is not compatible 
with the first solution (4.70), which explicitly demands .T2 	= 0, and so this 
solution cannot be restricted to symmetric teleparallel gravity. This is different for 
the remaining solutions. From the solution (4.71) , one obtains the spatially curved
case

.(H+ Q2)(H+ Q2 − Q3) = −u2 , Q1 + Q2 = −H
′ + Q′

2

H+ Q2
, (4.76) 

while the three spatially flat solutions become

.Q2 = −H , Q3 = 0 , . (4.77a) 

Q2 − Q3 = −H , Q1 + Q2 = −Q
′
3

Q3
, . (4.77b) 

Q2 = −H , Q1 + Q2 = Q
′
3

Q3
. (4.77c) 

For each of these solutions one has two conditions on the three scalar functions
.Q1,2,3 which parametrize the nonmetricity, so that one of them remains undeter-
mined by the symmetry condition, and is left to be determined by the gravitational 
field equations [14, 15]. 

In a similar fashion, one can also restrict the general teleparallel cosmologies to 
the metric teleparallel geometry, by imposing the conditions .Q1 = Q2 = Q3 = 0 of 
vanishing nonmetricity. For the first solution (4.70) , this leads to

.T2 = ±u , T1 = H , (4.78) 

while the second solution (4.71) becomes

.T2 = 0 , T1 = H± iu . (4.79) 

For the latter, we have explicitly solved the appearing quadratic equation. In this
case we see that u must be imaginary in order to obtain a real torsion, and so we
are restricted to the case .u2 < 0 of negative spatial curvature. Finally, the three
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solutions for .u = 0 reduce to the common case 

.T2 = 0 , T1 = H . (4.80) 

In all three cases, the two free functions in the torsion scalar are fixed by the
conditions of cosmological symmetry and vanishing curvature, so that the field
equations are fully expressed in terms of the scale factor A and the lapse N [16]. 

•? Exercise 
4.3. Determine the homogeneous and isotropic symmetric teleparallel geometries (4.76) 

and (4.77) , as well as the homogeneous and isotropic metric teleparallel geome-
tries (4.78) ,(4.79) and (4.80) .

4.3.3 Perturbation Theory 

Besides the use of symmetric spacetimes as shown in the previous section, another 
common approach to simplify the (in general non-linear) field equations of a given 
teleparallel gravity theory is to start from a known, usually highly symmetric 
solution of the field equations, given by a metric .ḡμν and a flat affine connection 
with coefficients .�̄μ

νρ , and perform a perturbative expansion of the dynamical 
fields and their governing field equations around this solution. For this purpose, 
one conventionally introduces a perturbation parameter . ε on which the solution 
will depend, and which can be related, for example, to the gravitational constant 
for a weak-field approximation, or the inverse speed of light for a low-velocity 
approximation. The full solution .gμν(ε) and .�μ

νρ(ε), is then expanded in a Taylor 
series 

.gμν =
∞∑

k=0

εk

k!
dk

dεk
gμν

∣∣∣∣
ε=0

, �μ
νρ =

∞∑

k=0

εk

k!
dk

dεk
�μ

νρ

∣∣∣∣
ε=0

(4.81) 

around the background solution .ḡμν = gμν(0) and .�̄μ
νρ = �μ

νρ(0). Different 
conventions are abundant for the terms in this Taylor expansion, either for the 
coefficients 

.δkgμν = dk

dεk
gμν

∣∣∣∣
ε=0

, δk�μ
νρ = dk

dεk
�μ

νρ

∣∣∣∣
ε=0

, (4.82)
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or for the full terms 

.
k
gμν = εk

k!
dk

dεk
gμν

∣∣∣∣
ε=0

,
k

�μ
νρ = εk

k!
dk

dεk
�μ

νρ

∣∣∣∣
ε=0

. (4.83) 

In the following, we will make use of the latter, as it turns out to be shorter for the
examples we consider. It follows from the fact that the metric .gμν is a symmetric 
tensor field that the same property holds also for all terms .

k
gμν in its perturbative 

expansion. For the connection coefficients, one similarly concludes from the fact 

that both .�μ
νρ and .�̄μ

νρ are connection coefficients that the remaining terms . 
k

�μ
νρ

with .k > 0 are tensor fields. In order to determine these terms, one performs 
a similar Taylor expansion of the gravitational field equations in the perturbation 
parameter . ε. It is the main virtue of this expansion that at each perturbation order 
k, the corresponding terms of the field equations comprise a linear equation for the 

field terms .
k
gμν and .

k

�μ
νρ at the same order, which contain the lower order terms 

as a source; hence, they can be solved subsequently for increasing orders, where 
the previously found solutions for lower orders are used in each further order to be 
solved. 

In the case of teleparallel gravity, it is important to keep in mind that next to 
the gravitational field equations also the constraint (4.10) of vanishing curvature
must be satisfied at any perturbation order. In the symmetric and metric teleparallel
classes of theories, also either the torsion (4.3) or nonmetricity (4.4) must vanish
at each order. While it is possible to simply consider these constraints as additional
equations which must be solved next to the field equations at each order, one may
also pose the question whether it is possible to find a general perturbative solution
to these constraints, which is independent of the gravity theory under consideration,
and which can then be inserted into the perturbed field equations of any specific
gravity theory. To obtain this solution, one needs to perform a perturbative expansion
of the corresponding constraint equations. We start by showing this procedure for
the flatness constraint (4.10) . At the zeroth order, this simply becomes the vanishing
of the curvature

.0 = R̄μ
νρσ = ∂ρ�̄μ

νσ − ∂σ �̄μ
νρ + �̄μ

τρ�̄τ
νσ − �̄μ

τσ �̄τ
νρ (4.84) 

for the background connection .�̄μ
νρ , which we assume to be satisfied from now on. 

For the first-order perturbation of the curvature, one finds the condition 

.0 = 1
Rμ

νρσ = ∇̄ρ

1
�μ

νσ − ∇̄σ

1
�μ

νρ + T̄ τ
ρσ

1
�μ

ντ , (4.85) 

where all quantities which are calculated with respect to the background connection
are denoted with a bar. Now it is helpful to recall that the commutator of covariant
derivatives is given by

.∇̄ρ∇̄σ λμ
ν − ∇̄σ ∇̄ρλμ

ν = R̄μ
τρνλ

τ
ν − R̄τ

νρνλ
μ

τ − T̄ τ
ρσ ∇̄τ λ

μ
ν (4.86)
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for a tensor field .λμ
ν , where the two curvature terms on the right hand side vanish. 

Hence, we can solve the flatness condition at the first perturbation order by setting 

.
1
�μ

νρ = ∇̄ρ

1
λμ

ν (4.87) 

with an arbitrary first-order tensor field .
1
λμ

ν . To illustrate the further procedure, we 
calculate the second order curvature perturbation 

.0 = 2
Rμ

νρσ = ∇̄ρ

2
�μ

νσ − ∇̄σ

2
�μ

νρ + T̄ τ
ρσ

2
�μ

ντ + 2
1
�μ

τ [ρ
1
�τ |ν|σ ] , (4.88) 

where we now also need to take into account the first-order connection perturbation.

A naive ansatz .∇̄ρ

2
λμ

ν for .
2
�μ

νρ is therefore not sufficient. In order to cancel the 
term arising from the first-order connection perturbation, one also needs to include 

terms which are quadratic in .
1
λμ

ν , and must contain one derivative. One finds that a 
possible solution is given by 

.
2
�μ

νρ = ∇̄ρ

2
λμ

ν − 1
λμ

τ ∇̄ρ

1
λτ

ν . (4.89) 

Note that this solution is not unique. Alternatively, one could choose, for example,

.
2
�μ

νρ = ∇̄ρ

2
λμ

ν + ∇̄ρ

1
λμ

τ

1
λτ

ν . (4.90) 

This becomes clear by realizing that these solutions differ only by a term

.∇̄ρ(
1
λμ

τ

1
λτ

ν), which can be absorbed by a redefinition of .
2
λμ

ν . By a similar 
procedure, one can also subsequently solve the flatness condition at any higher 
perturbation order. 

For the symmetric and metric teleparallel cases, one can make use of the already 
determined solution of the perturbative flatness condition, and further restrict the 

perturbation tensor fields .
k

λμ
ν in order to achieve a connection with vanishing torsion 

or nonmetricity at any perturbation. We start with the former, which means that the 

background connection coefficients .�̄μ
νρ as well as the perturbations .

k

�μ
νρ must be 

symmetric in their lower two indices. To obtain this property, one can make use of 
the result that the flat connection perturbations can always be parametrized in the 
form 

.
k

�μ
νρ = ∇̄ρ

k

λμ
ν +

k−1∑

j=1

j,k

�μ
τ

j

�τ
νρ , (4.91) 

where .
j,k

�μ
τ is determined by solving the flatness condition at the k’th perturbation 

order. Indeed, we have seen this form explicitly for the first order (4.87) , as

well as the second order (4.89), where for the latter .
1,2

�μ
τ = − 1

λμ
τ . Using this
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parametrization, it follows that once we have solved the condition of vanishing 
torsion up to the perturbation order .k − 1, the condition for the k’th order simply 
becomes 

.∇̄[ρ
k

λμ
ν] = 0 . (4.92) 

Further using the fact that the covariant derivatives with respect to the background
connection commute in the absence of curvature and torsion, we can thus write the
solution as

.
k

λμ
ν = ∇̄ν

k

ζμ , (4.93) 

where we introduced the perturbation parameters . 
k

ζμ. Note, however, that also in this 
case numerous other parametrizations of the connection coefficients can be found. 
A parametrization which turns out particularly convenient for practical calculations 
arises from the fact that two flat, torsion-free connections, are locally related by a 
diffeomorphism. It follows that also the perturbed connection .�μ

νρ , which depends 
on the perturbation parameter . ε, and the background .�̄μ

νρ , are locally related by a 
family . �ε of diffeomorphisms parametrized by . ε, such that 

.�μ
νρ(ε) = �∗

ε �̄
μ

νρ . (4.94) 

Performing a Taylor expansion in order to obtain the perturbation terms . 
k

�μ
νρ , we  

see that on the right hand side .�̄μ
νρ remains fixed, and we need to expand the 

diffeomorphism .�ε into a corresponding Taylor series. It turns out that such an 

expansion gives rise to a series of vector fields . 
k

ξμ for .k > 0, in terms of which the 
Taylor expansion reads [17–19] 

.
k

�μ
νρ =

∑

l1+2l2+...=k

1

l1!l2! · · ·

(

Ll1
1
ξ

· · ·Llj
j

ξ

· · · �̄
)μ

νρ . (4.95) 

It is instructive to calculate the lower order terms explicitly, using the formula (4.43) 
with vanishing curvature and torsion. For the background, the expansion trivially
reduces to

.
0
�μ

νρ = �̄μ
νρ . (4.96) 

For the first order, only one term appears on the right-hand side, which reads

.
1
�μ

νρ =
(
L1

ξ
�̄

)μ

νρ = ∇̄ν∇̄ρ

1
ξμ , (4.97)
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while for the second order one finds the two terms 

. 

2
�μ

νρ =
(
L2

ξ
�̄

)μ

νρ + 1

2

(
L1

ξ
L1

ξ
�̄

)μ

νρ

= ∇̄ν∇̄ρ

2
ξμ + ∇̄(ν

1
ξσ ∇̄ρ)∇̄σ

1
ξμ − 1

2
∇̄ν∇̄ρ

1
ξσ ∇̄σ

1
ξμ + 1

2

1
ξσ ∇̄ν∇̄ρ∇̄σ

1
ξμ .

(4.98) 

It is also helpful to compare these formulas with the perturbations (4.87) and (4.89) ,
together with the substitution (4.93) . For the first perturbation order, the perturba-
tion (4.87) becomes

.
1
�μ

νρ = ∇̄ν∇̄ρ

1
ζμ , (4.99) 

which agrees with (4.97) for .
1
ζμ = 1

ξμ. At the second order, the perturbation (4.89) 
becomes

.
2
�μ

νρ = ∇̄ν∇̄ρ

2
ζμ − ∇̄σ

1
ζμ∇̄ν∇̄ρ

1
ζ σ , (4.100) 

which agrees with the result (4.98) for

.
2
ζμ = 2

ξμ + 1

2

1
ξσ ∇̄σ

1
ξμ . (4.101) 

Also one easily checks that the curvature and torsion vanish at any perturbation
order. This type of perturbative expansion is used, for example, to determine the
propagation of gravitational waves [20] and the post-Newtonian limit [21, 22]. 

Finally, we take a look at the form of the perturbations in the metric teleparallel 
case, which means that the nonmetricity must vanish at all perturbation orders. This 
holds in particular for the background, 

.0 = Q̄μνρ = ∇̄μḡνρ , (4.102) 

and so raising and lowering indices of the perturbations with the metric commutes
with the covariant derivative, which greatly simplifies the calculations. We make use

of this fact for calculating the conditions on the connection perturbation .
k

λμ
ν which 

we need to satisfy in order to obtain vanishing nonmetricity. At the linear order, the 
perturbation of the nonmetricity is given by 

.
1

Qμνρ = ∇̄μ

(
1
gνρ − 2

1
λ(νρ)

)
, (4.103)
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and so it vanishes if we fix the symmetric part of the connection perturbation by the 
condition 

.2
1
λ(μν) = 1

gμν . (4.104) 

One could naively conclude that the same formula holds identically also for higher
orders, replacing the first perturbation order with an arbitrary order k. However, this
is not the case, as follows from a perturbative expansion of the nonmetricity (4.4) ,
whose higher than linear orders contain products of the lower order perturbations of
the metric and the connection. For example, for the second order we have

.

2
Qμνρ = ∇̄μ

(
2
gνρ − 2

2
λ(νρ)

)
− 2∇μ

1
λσ

(ν

(
1
gρ)σ − 1

λρ)σ

)

= ∇̄μ

(
2
gνρ − 2

2
λ(νρ) − ḡσω

1
λσ

ν

1
λω

ρ

)
,

(4.105) 

after substituting .
1
gνρ from the first order result, so that we can easily read off the 

condition for the second order perturbation. Following the same procedure also for 
higher order perturbations, one arrives at the general formula 

.2
k

λ(μν) = k
gμν − ḡρσ

k−1∑

j=1

j

λρ
μ

k−j

λσ
ν . (4.106) 

We see that the condition of vanishing nonmetricity links the symmetric part of
the connection perturbation to the perturbation of the metric, and so the latter can

always be expressed in terms of the former, leaving .
k

λμν as the only independent 
perturbation variable. Like in the case of symmetric teleparallel gravity, this 
perturbative expansion is used for the calculation of gravitational waves [23] and the 
post-Newtonian limit [24], but also in the cosmological perturbation theory around 
flat [25] and general [26] cosmological backgrounds. 

In order to get further acquainted with the perturbations theory formalism, that is 
presented in this section please solve the following exercise step by step. 

•? Exercise 
4.4. Calculate the perturbations of the curvature, torsion and nonmetricity tensors up to 

the second order for an arbitrary perturbation around a flat connection and metric. What 
are the conditions arising on the perturbations if one demands that the perturbed connection 
remains flat at any order? Which further conditions arise if one also demands that either 
torsion or nonmetricity vanish?
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4.4 Teleparallel Gravity Theories 

In this final section, we discuss a few selected classes of teleparallel gravity theories, 
their actions and field equations. These theories constitute modifications of general 
relativity, which depart from a reformulation of the Einstein-Hilbert action in 
terms of teleparallel geometries, known as the teleparallel equivalent of general 
relativity, which we discuss in Sect. 4.4.1. A simple modification is then obtained 
by replacing the Lagrangian of these theories by a free function thereof, as we show 
in Sect. 4.4.2. Another modification arises by considering the most general action 
which is quadratic in torsion and nonmetricity, and which we show in Sect. 4.4.3. 
Moreover, modified theories can be obtained by considering a scalar field as another 
dynamical variable in addition to the metric and the flat connection; we discuss 
theories of this type in Sect. 4.4.4, and see how a particular subclass of them is 
connected to a previously discussed class of theories in Sect. 4.4.5. 

4.4.1 The Teleparallel Equivalents of General Relativity 

In the previous sections we have discussed the general form of the action and 
field equations for teleparallel gravity theories, but we have not yet considered any 
particular theories. As a starting point for the construction of modified teleparallel 
gravity theories, we now pose the question how the well-known general relativity 
action and field equations can be cast into the teleparallel framework. The crucial 
observation to answer this question is the fact that the decomposition (4.2) of the
independent connection with respect to the Levi-Civita connection of the metric
induces a related decomposition of the curvature given by

.Rμ
νρσ = ◦

Rμ
νρσ + ◦∇ρMμ

νσ − ◦∇σ Mμ
νρ +Mμ

τρMτ
νσ −Mμ

τσ Mτ
νρ . (4.107) 

Keeping in mind that the curvature (4.10) of the teleparallel connection is imposed
to vanish, one can solve for the curvature tensor of the Levi-Civita connection, and
finds

.
◦
Rμ

νρσ = − ◦∇ρMμ
νσ + ◦∇σ Mμ

νρ − Mμ
τρMτ

νσ + Mμ
τσ Mτ

νρ . (4.108) 

This allows us to replace the Ricci scalar . 
◦
R in the Einstein-Hilbert action 

.Sg = 1

2κ2

∫

M

◦
R

√−gd4x (4.109) 

by

.
◦
R = −G + B , (4.110)
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where we defined the terms 

.G = 2Mμ
τ [μMτν

ν] , B = 2
◦∇μM [νμ]

ν . (4.111) 

One can see that B becomes a boundary term in the action, and therefore does
not contribute to the field equations. Omitting this term from the action, one thus
obtains [6] 

.Sg = − 1

2κ2

∫

M

G
√−gd4x . (4.112) 

This is the action of the general teleparallel equivalent of general relativity
(GTEGR). To study the nature of this equivalence, we calculate the gravitational
field equations. Note that the variation of the distortion tensor is given by

. δMμ
νρ = δ�μ

νρ − δ
◦
�μ

νρ = δ�μ
νρ − 1

2
gμσ

( ◦∇νδgσρ + ◦∇ρδgνσ − ◦∇σ δgνρ

)
,

(4.113) 

and so the variation of the gravity scalar becomes

.δG = Uμνδgμν + V ρμν
◦∇ρδgμν + Zμ

νρδ�μ
νρ , (4.114) 

where we have introduced the abbreviations

.Uμν = Mρσ(μMσ
ν)

ρ − Mρ(μν)Mσ
ρσ . (4.115a) 

V ρμν = Mρ(μν) − Mσ(μ
σ gν)ρ − M [ρσ ]

σ gμν
. (4.115b) 

Zμ
νρ = Mνσ

σ δρ
μ + Mσ

μσ gνρ − Mνρ
μ − Mρ

μ
ν . (4.115c) 

This allows us to calculate the variation of the action (4.112) and perform integration
by parts in order to eliminate the derivatives acting on the metric perturbation .δgμν . 
The resulting variation then takes the form (4.9) with

. 

Wμν = 1

κ2

(
Uμν − ◦∇ρV ρ

μν + 1

2
Ggμν

)

= 1

κ2

[
◦∇(μMρ

ν)ρ − ◦∇ρMρ
(μν) + Mρ

σ(μMσ
ν)ρ − Mρ

σρMσ
(μν)

− 1

2

( ◦∇ρMσρ
σ − ◦∇ρMρσ

σ + MρσωMωρσ − Mρ
ωρMωσ

σ

)
gμν

]

(4.116)
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and 

.Yμ
νρ = 1

2κ2 Zμ
νρ = 1

2κ2 (Mνσ
σ δρ

μ + Mσ
μσ gνρ − Mνρ

μ − Mρ
μ

ν) . (4.117) 

By comparing with the relation (4.108) , one finds that the first equation can be
rewritten as

.Wμν = 1

κ2

(
◦
Rμν − 1

2

◦
Rgμν

)
, (4.118) 

and so the metric equation resembles Einstein’s equation

.
◦
Rμν − 1

2

◦
Rgμν = κ2�μν . (4.119) 

We also need to consider the connection field equation (4.28) , which becomes

. 
1

κ2

( ◦∇[μMνρ
ρ] + ◦∇[νMρμ

ρ] + Mν
ρ[μMρσ

σ ] + Mρ
σ [νMσμ

ρ])

= ∇τHμ
ντ − Mω

τωHμ
ντ . (4.120) 

Once again making use of the relation (4.108) , the term in brackets becomes

.
◦
Rνρ

μρ + ◦
Rρμ

νρ = ◦
Rν

μ − ◦
Rμ

ν = 0 , (4.121) 

which vanishes, since the Ricci tensor of the Levi-Civita connection is symmetric.
Hence, one is left with the equation

.∇τHμ
ντ − Mω

τωHμ
ντ = 0 (4.122) 

for the hypermomentum, which must be satisfied for any matter which is compatible
with the gravitational action (4.112) . Note that the connection does not appear
anywhere on the gravitational side of the field equations, due to the fact that it
enters into the action only through a total derivative term. For consistency, one
conventionally assumes that it does not couple to the matter fields, so that the
hypermomentum vanishes, and so the constraint (4.122) is satisfied identically,
see also the discussion in the context of Poincaré gauge theory in Chap. 3 around 
Eq. (3.139). The only non-trivial field equation is then Einstein’s equation (4.119) ,
and so the field equations of GTEGR are equivalent to those of general relativity,
hence justifying the name teleparallel equivalent.

Since the connection only has a spurious appearance in the action (4.112), one
may expect that it will not enter the field equations also in the symmetric and
metric classes of teleparallel gravity theories. This is not obvious from the Lagrange
multiplier approach of deriving the field equations, since the Lagrange multiplier
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terms (4.32) and (4.37) are not total derivatives, and so the connection enters
the field equations obtained by variation with respect to the Lagrange multipliers.
Nevertheless, keeping in mind that this approach yields the same field equations
as the approach of restricted variation, and that in the latter the variation of the
connection appears only through a total derivative in the action, one may still expect
to obtain an equivalent of general relativity. This is particularly easy to see in the
case of symmetric teleparallel gravity, since its metric field equation (4.14) takes
the same form as in the case of general teleparallel gravity, and hence once again
resembles the Einstein equations (4.119), irrespective of the constraint . T μ

νρ = 0
imposed on the connection. For the remaining field equation (4.36) , it is helpful to
recall that for the variation (4.117) the left hand side of the field equation (4.28) 
vanishes identically, and hence does the left hand side of the equivalent field
equation (4.25) . In the absence of torsion, the torsion term vanishes, and one is
left with

.∇ρỸμ
νρ = 0 . (4.123) 

Hence, also the left hand side of the symmetric teleparallel field equation (4.36) 
vanishes identically, leaving only the hypermomentum constraint

.∇ν∇ρH̃μ
νρ = 0 , (4.124) 

which can be satisfied by demanding vanishing hypermomentum.
A similar argument holds in the case of metric teleparallel gravity. Once again, 

one can make use of the fact that the left hand side of the field equation (4.25) 
vanishes identically for the variation (4.117) . In the absence of nonmetricity, the
covariant derivative (4.26) of the density factor .

√−g vanishes, and so this factor 
can be canceled from the equations. One is then left with the equation 

.∇τ Yμ
ντ − T ω

ωτYμ
ντ = 0 . (4.125) 

Using this result, the metric teleparallel field equation (4.41) reduces to

.Wμν = �μν − ∇ρHμνρ + HμνρT τ
τρ . (4.126) 

Demanding once again vanishing hypermomentum, one therefore obtains Einstein’s
equation (4.119) also in this case.

In order to gain more insight into the underlying structure of the different 
teleparallel equivalents of general relativity, it is helpful to decompose the gravity 
scalar G and the boundary term B into the individual contributions from the torsion 
and the nonmetricity. Using the connection decomposition (4.2), the contortion (4.5)
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and the disformation (4.6) , one finds

. G = 1

4
QμνρQμνρ − 1

2
QμνρQρμν − 1

4
Qρμ

μQρν
ν + 1

2
Qμ

μρQρν
ν

+ 1

4
T μνρTμνρ + 1

2
T μνρTρνμ−T μ

μρTν
νρ +T μνρQνρμ−T μ

ρμQρν
ν +T μ

ρμQνρ
ν ,

(4.127) 

as well as

.B = ◦∇μ(2Tν
νμ + Qν

νμ − Qμν
ν) . (4.128) 

•? Exercise 
4.5. Make sure you understand the expansions of G and B into torsion and non-metricity 

tensors. Reproduce the above expressions. 

If either torsion or nonmetricity vanish, these expressions simplify. In particular, 
the gravity scalar (4.127) reduces to the nonmetricity scalar

.

Q = 1

2
QρμνP

ρμν

= 1

4
QμνρQμνρ − 1

2
QμνρQρμν − 1

4
Qρμ

μQρν
ν + 1

2
Qμ

μρQρν
ν

(4.129) 

or the torsion scalar

.

T = 1

2
T ρ

μνSρ
μν

= 1

4
T μνρTμνρ + 1

2
T μνρTρνμ − T μ

μρTν
νρ ,

(4.130) 

respectively, where we have introduced the nonmetricity conjugate

.P ρμν = Lρμν − 1

2
gμν(Qρσ

σ − Qσ
σρ) + 1

2
gρ(μQν)σ

σ (4.131) 

and the superpotential

.Sρ
μν = Kμν

ρ − δμ
ρ Tσ

σν + δν
ρTσ

σμ . (4.132)
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In terms of these scalars, the action of the symmetric teleparallel equivalent of 
general relativity (STEGR) becomes [5] 

.Sg = − 1

2κ2

∫

M

Q
√−gd4x , (4.133) 

while for the metric teleparallel equivalent of general relativity (MTEGR2 ) one 
has [28] 

.Sg = − 1

2κ2

∫

M

T
√−gd4x . (4.134) 

Within their respective class of teleparallel gravity theories, these actions yield
the same metric field equation as general relativity, and are thus common starting
points for the construction of modified gravity theories, as we will see in the
following sections. Note, however, that the construction of teleparallel equivalent
theories is not confined to general relativity; in fact, the same procedure of replacing
the Riemann tensor of the Levi-Civita connection using the relation (4.108) , and
possibly omitting boundary terms, can be applied to the action of any gravity theory
whose action uses the metric as a fundamental variable [27]. 

4.4.2 The f (G)  Classes of Modified Theories 

After discussing in the previous section a number of teleparallel gravity theories, 
whose metric field equation reproduces Einstein’s field equation of general relativity 
for matter without hypermomentum, we now turn our focus towards modifications 
of these gravity theories. For the Einstein-Hilbert action (4.109) , a well-known and
thoroughly studied class of gravity theories is obtained by replacing the Ricci scalar
. 
◦
R by .f (

◦
R), where f is an arbitrary real function of one variable, which is chosen 

such that the phenomenology of the resulting theory matches with observations, e.g., 
in cosmology. The same procedure can also be applied to the teleparallel equivalent 
theories [29]. Starting with the GTEGR action (4.112) , one thus obtains the action

.Sg = − 1

2κ2

∫

M

f (G)
√−gd4x . (4.135) 

In order to derive the field equations, one proceeds as shown in the previous section,
by variation of the action and integration by parts, so that the gravitational part .Sg

2 In the literature, the abbreviation TEGR is more common, since it was developed prior to the other 
equivalent theories. Another proposed nomenclature is “antisymmetric teleparallel equivalent of 
general relativity” (ATEGR) [27], since the distortion tensor becomes antisymmetric in its first two 
indices. However, the term “metric” or “metric-compatible” is more abundant in the contemporary 
literature on teleparallel gravity to denote the case of vanishing nonmetricity. 
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takes the form (4.9) , with

.Wμν = 1

κ2

[
f ′Uμν − ◦∇ρ(f ′V ρ

μν) + 1

2
fgμν

]
(4.136) 

and

.Yμ
νρ = 1

2κ2 f ′Zμ
νρ . (4.137) 

where we wrote .f, f ′, . . . as a shorthand for .f (G), f ′(G), . . ., and used the 
abbreviations (4.115) we introduced for the variation of the gravity scalar G. Hence,
it follows that the gravitational field equations are given by the metric equation

.f ′Uμν − ◦∇ρ(f ′V ρ
μν) + 1

2
fgμν = κ2�μν (4.138) 

and the connection equation

.∇ρ(f ′Zμ
νρ) − f ′Mω

ρωZμ
νρ = 2κ2(∇ρHμ

νρ − Mω
ρωHμ

νρ) . (4.139) 

These equations can be written more explicitly as follows. First, recall that

.Uμν − ◦∇ρ(V ρ
μν) + 1

2
Ggμν = ◦

Rμν − 1

2

◦
Rgμν (4.140) 

is the left hand side of the GTEGR field equation. Using this fact, the metric field
equation (4.138) becomes

.f ′
(

◦
Rμν − 1

2

◦
Rgμν

)
− V ρ

μν

◦∇ρf ′ + 1

2
(f − f ′G)gμν = κ2�μν . (4.141) 

Finally, substituting .V ρ
μν using the variation (4.115) , one obtains

. f ′
(

◦
Rμν − 1

2

◦
Rgμν

)
− Mρ

(μν)

◦∇ρf ′ + ◦∇(μf ′Mσ
ν)σ + M [ρσ ]

σ gμν

◦∇ρf ′

+ 1

2
(f − f ′G)gμν = κ2�μν . (4.142) 

Similarly, one can use the fact that the left hand side of the GTEGR connection
equation vanishes, and hence

.∇ρ(Zμ
νρ) − Mω

ρωZμ
νρ = 0 , (4.143)
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to write the connection field equation as 

.Zμ
νρ∇ρf ′ = 2κ2(∇ρHμ

νρ − Mω
ρωHμ

νρ) , (4.144) 

and substituting the variation (4.115) ,

. Mνρ
ρ∇μf ′ + Mσ

μσ gνρ∇ρf ′ − Mνρ
μ∇ρf ′ − Mρ

μ
ν∇ρf ′

= 2κ2(∇ρHμ
νρ − Mω

ρωHμ
νρ) . (4.145) 

The most important difference which distinguishes the .f (G) class of theories from 
GTEGR is the fact that for .f ′′ 	= 0 the connection contribution to the action is no 
longer a total derivative, and so the connection remains as a dynamical field in the 
field equations, which now also contain a non-trivial connection field equation. It 
follows in particular that these field equations are not equivalent to those of . f (

◦
R)

gravity, since the latter has the metric as its only dynamical field, and its field 
equations are of fourth derivative order3 . In contrast, the field equations of . f (G)

gravity are of second derivative order. 
In analogy to the GTEGR action (4.112) , which is based on the general

teleparallel geometry containing both torsion and nonmetricity, also the teleparallel
equivalent theories based on more restricted geometries can be generalized by intro-
ducing a free function into their respective actions (4.133) and (4.134) . Equivalently,
one can take the action (4.135) and impose the vanishing torsion or nonmetricity
either by introducing Lagrange multipliers or by imposing the constraint alongside
a restricted variation. It turns out that the resulting field equations can be simplified,
as we will see in the following. We start with the symmetric teleparallel gravity
action [30] 

.Sg = − 1

2κ2

∫

M

f (Q)
√−gd4x . (4.146) 

The variation of this action is still given by the expressions (4.136) and (4.137) ,
but these simplify due to the vanishing torsion, and can be expressed in terms of the
nonmetricity. Also the field equation simplify, which one can see as follows, starting
with the connection equation. From the general form (4.36) follows that only the
symmetric part .Ỹμ

(νρ) contributes, since the covariant derivatives commute in the 
absence of curvature and torsion. Using (4.137) , this means that only the symmetric
part .Zμ

(νρ) contributes, which is given by 

.Zμ
(νρ) = Qμ

νρ − 1

2
gνρQμσ

σ + 1

2
δ(ν
μ Qρ)σ

σ −Qσ
σ(νδρ)

μ = −2P (νρ)
μ . (4.147)

3 They can be reduced to second order by introducing an auxiliary scalar field. 
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The connection equation therefore becomes 

. − ∇ν∇ρ(f ′P̃ νρ
μ) = κ2∇ν∇ρH̃μ

νρ , (4.148) 

where .P̃ νρ
μ = √−gP νρ

μ, and we omitted the symmetrization brackets around the 
indices, which are redundant due to the contraction with the commuting derivatives. 
Similarly, we can also simplify the metric field equation, which takes the same 
form (4.138) , and can equivalently be written as

.f ′Uμ
ν −

◦∇ρ(
√−gf ′V ρμ

ν)√−g
+ 1

2
f δμ

ν = κ2�μ
ν , (4.149) 

using the fact that the Levi-Civita connection is metric compatible, so that we can
raise and lower indices and introduce the density factor .

√−g inside the derivative. 
Changing this covariant derivative to the independent connection, one has 

. 
◦∇ρ(

√−gf ′V ρμ
ν) = ∇ρ(

√−gf ′V ρμ
ν)

+ √−gf ′(Lσ
σρV ρμ

ν − Lρ
σρV σμ

ν − Lμ
σρV ρσ

ν + Lσ
νρV ρμ

σ ) . (4.150) 

Calculating the variation terms

.Uμν = 1

4
Qμρσ Qν

ρσ + 1

4
(Qρμν − Q(μν)ρ)Qρσ

σ − QρσμQ[ρσ ]ν (4.151) 

and

. V ρμν = 1

2
Qρμν − Q(μν)ρ − 1

2
gμν(Qρσ

σ − Qσ
σρ) + 1

2
gρ(μQν)σ

σ = P ρμν ,

(4.152) 
one finds that they combine into

. Uμ
ν − Lσ

σρV ρμ
ν + Lρ

σρV σμ
ν + Lμ

σρV ρσ
ν − Lσ

νρV ρμ
σ

= 1

2
(Qμ[ρ

ρQνσ
σ ] − Q(ν

μρQρ)σ
ρ + Qρμσ Qνρσ ) = −1

2
P μρσ Qνρσ . (4.153) 

Combining these results, the metric field equation finally becomes

. − ∇ρ(
√−gf ′P ρμ

ν)√−g
− f ′

2
P μρσ Qνρσ + 1

2
f δμ

ν = κ2�μ
ν . (4.154) 

Note, however, that this form changes if one raises or lowers indices, which appear
also under the metric-incompatible covariant derivative . ∇ρ . 

Finally, we also take a closer look at the metric teleparallel case, by impos-
ing vanishing nonmetricity. Under this restriction, the general action (4.135)
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becomes [31–33] 

.Sg = − 1

2κ2

∫

M

f (T )
√−gd4x . (4.155) 

In this case we need to consider only the single field equation (4.41) , whose left
hand side now takes the form

. Wμν − ∇ρYμνρ + YμνρT τ
τρ

= 1

κ2

[
f ′Uμν − ◦∇ρ(f ′V ρμν) + 1

2
fgμν − 1

2
∇ρ(f ′Zμνρ) + 1

2
f ′ZμνρT τ

τρ

]
.

(4.156) 

using the variation expressions (4.136) and (4.137) . In order to simplify this
expression, we transform the covariant derivative with respect to the independent
connection to that of the Levi-Civita connection, and find

. ∇ρ(f ′Zμνρ) − f ′ZμνρT τ
τρ = ◦∇ρ(f ′Zμνρ) + f ′(Kμ

σρZσνρ + Kν
σρZμσρ) ,

(4.157) 

where the trace of the torsion tensor cancels with a trace of the contortion tensor.
Now we can combine the two covariant derivatives, and evaluate

.V ρμν + 1

2
Zμνρ = 2Tσ

σ [ρgν]μ + T [νρ]μ − 1

2
T μνρ = −Sμνρ . (4.158) 

We are left with the terms

.Uμν − 1

2
(Kμ

σρZσνρ + Kν
σρZμσρ) = 2Kνρ[σ Kρσ

μ] = SρσνKρσ
μ . (4.159) 

Combining all terms and lowering indices, which commutes with all covariant
derivatives since these are now metric-compatible, we can write the field equation
as

. 
◦∇ρ(f ′Sμν

ρ) + f ′Sρσ
νKρσμ + 1

2
fgμν = κ2(�μν − ∇ρHμν

ρ + Hμν
ρT τ

τρ) .

(4.160)

Also this equation can be brought into various other forms by using the identities
which hold for the contortion and the torsion.
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4.4.3 The General Quadratic Lagrangians 

The GTEGR action (4.112) has the appealing property that the gravity
scalar (4.111) , unlike the Ricci scalar, is quadratic in first order derivatives of
the dynamical fields, and hence more reminiscent of the kinetic energy of a gauge
field. This invites for another class of modified teleparallel gravity theories, by
considering an action which is an arbitrary linear combination of all possible
scalars which can be obtained by contracting the product of the distortion tensor
.Mμ

νρ with itself. One easily checks that there are 11 possible terms: five terms arise 
from contracting .Mμ

νρ with a second copy carrying the same indices in an arbitrary 
permutation, and six terms arising from contracting two arbitrary traces of the 
distortion tensor with each other, where in both cases terms which are distinguished 
only by the order of the factors are counted only once, since they are identical. This 
gives rise to the generalized gravity scalar [6] 

.

G = Mμνρ(k1Mμνρ + k2Mνρμ + k3Mμρν + k4Mρνμ + k5Mνμρ)

+ k6Mρμ
μMρν

ν + k7Mμρ
μMνρ

ν + k8M
μ

μρMν
νρ

+ k9Mμρ
μMν

νρ + k10M
μ

μρMρν
ν + k11Mρμ

μMνρ
ν

(4.161) 

with arbitrary constants .k1, . . . , k11. Equivalently, one could also start from the 
expression (4.127) , and consider the most general scalar which is quadratic in the
torsion and nonmetricity tensors. Again one finds 11 possible terms, so that their
most general linear combination is of the form

.

G = a1T
μνρTμνρ + a2T

μνρTρνμ + a3T
μ

μρTν
νρ

− b1Q
μνρTρνμ − b2Q

ρμ
μT ν

νρ − b3Qμ
μρT ν

νρ

+ c1Q
μνρQμνρ + c2Q

μνρQρμν + c3Q
ρμ

μQρν
ν

+ c4Q
μ

μρQν
νρ + c5Q

μ
μρQρν

ν ,

(4.162) 

where we introduced the arbitrary constants .a1, . . . , a3, b1, . . . , b3, c1, . . . , c5. 
Demanding that both expressions agree, one easily checks that these two sets of 
constants are related to each other by 

. k1 = 2a1 − b1 + 2c1 , k2 = −2a2 + b1 + 2c2 , k9 = −2a3 + 2b2 − b3 + 2c5 ,

k4 = a2 + c2 , k5 = a2 − b1 + 2c1 , k6 = c4 , k7 = a3 + b3 + c4 ,

(4.163)

k8 = a3 − 2b2 + 4c3 , k3 = −2a1 + b1 + c2 ,

k10 = −b3 + 2c5 , k11 = b3 + 2c4 .
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Further, choosing the values of these constants to be 

. k11 = −k2 = 1 , k1 = k3 = k4 = k5 = k6 = k7 = k8 = k9 = k10 = 0 ,

(4.164) 

one finds that the scalar . G reduces to G. Hence, one may expect that the class of 
modified gravity theories defined by the action 

.Sg = − 1

2κ2

∫

M

G
√−gd4x (4.165) 

has a well-defined limit towards GTEGR, which is achieved if the constant
parameters in the action take the aforementioned values. In order to derive the
field equations, one can proceed in full analogy to the GTEGR field equations we
discussed before. First, it is helpful to calculate the variation of the scalar (4.161) ,
and write it in the form

.δG = Uμνδgμν +Vρμν
◦∇ρδgμν +Zμ

νρδ�μ
νρ . (4.166) 

Here we have made use of the abbreviations

. Uμν = k1(M
μρσ Mν

ρσ − Mρμ
σ Mρ

νσ − Mρσ
μMρσμ) − k2Mρ

σ(μMσ
ν)ρ

+ k3(M
μρσ Mν

σρ − 2Mρσ(μMρ
ν)σ ) − k4M

ρμ
σ Mσν

ρ − k5M
ρσμMσρ

ν

+ k6M
μρ

ρMνσ
σ − k7M

ρμ
ρMσν

σ − k8Mρ
ρμMσ

σν − k9Mρ
ρ(μMσ

ν)σ

− (2k6Mρσ
σ + k11Mσρ

σ + k10M
σ

σρ)Mρ(μν) , (4.167a) 

as well as

. Vρμν = −2k6g
ρ(μMν)σ

σ − k11g
ρ(μMσ

ν)σ − k10Mσ
σ(μgν)ρ

+ 1

2
gμν

[
(2k6 −k10 −k11)M

ρσ
σ + (k11 −2k7 −k9)M

σρ
σ + (k10 −2k8 −k9)Mσ

σρ
]

+ (k4 − k5 − k1 − k3)M
(μν)ρ + (k5 − k4 − k1 − k3)M

(μ|ρ|ν)

+ (k1 − k2 + k3 − k4 − k5)M
ρ(μν) (4.167b) 

and

. Zμ
νρ = 2k1Mμ

νρ + k2(M
νρ

μ + Mρ
μ

ν) + 2k3Mμ
ρν + 2k4M

ρν
μ + 2k5M

ν
μ

ρ

+ 2k6Mμσ
σ gνρ + 2k7M

σν
σ δρ

μ + 2k8Mσ
σρδν

μ + k9(Mσ
ρσ δν

μ + Mσ
σνδρ

μ)

+ k10(M
ρσ

σ δν
μ + Mσ

σμgνρ) + k11(M
νσ

σ δρ
μ + Mσ

μσ gνρ) . (4.167c)
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By inserting the variation (4.166) into the variation of the action (4.165) and
integration by parts, one obtains the form (4.9) , with

.Wμν = 1

κ2

(
Uμν − ◦∇ρVρ

μν + 1

2
Ggμν

)
(4.168) 

and

.Yμ
νρ = 1

2κ2Zμ
νρ . (4.169) 

Hence, by comparing with the corresponding GTEGR expressions (4.116) 
and (4.117) , we see that these have the same form, and one simply replaces the
terms derived by variation of G with those obtained from . G in its place. One 
therefore finds the metric field equation 

.Uμν − ◦∇ρ(Vρ
μν) + 1

2
Ggμν = κ2�μν , (4.170) 

as well as the connection field equation

.∇τZμ
ντ − Mω

τωZμ
ντ = 2κ2(∇τHμ

ντ − Mω
τωHμ

ντ ) , (4.171) 

with the abbreviations (4.167) .
A more comprehensible set of field equations is obtained for the more restricted 

geometries, in which we impose either vanishing torsion or vanishing nonmetricity. 
This can most easily be seen from the expression (4.162) , which shows that
numerous terms vanish identically in either of these two cases. We first consider
the symmetric teleparallel case of vanishing torsion. In this case, . G reduces to the 
generalized nonmetricity scalar [30] 

.

Q = 1

2
QρμνPρμν

= c1Q
μνρQμνρ + c2Q

μνρQρμν + c3Q
ρμ

μQρν
ν

+ c4Q
μ

μρQν
νρ + c5Q

μ
μρQρν

ν ,

(4.172) 

and only the five constant parameters .c1, . . . , c5 remain present in the action. In 
place of the nonmetricity conjugate (4.131) we now have the generalized expression

. Pρμν = 2c1Q
ρμν + 2c2Q

(μν)ρ + 2c3g
μνQρσ

σ

+ 2c4Qσ
σ(μgν)ρ + c5(g

μνQσ
σρ + gρ(μQν)σ

σ ) . (4.173)
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For the corresponding class of gravity theories depending on these parameters, 
whose action reads 

.Sg = − 1

2κ2

∫

M

Q
√−gd4x , (4.174) 

the term “Newer General Relativity” has been coined. Its field equations can be
obtained in great analogy to the other symmetric teleparallel gravity theories we
have encountered before. First, we derive the connection field equation (4.36) ,
and use the fact that only the symmetric part .Yμ

(νρ) contributes. Using the 
variation (4.169) , we thus calculate

. Zμ
(νρ) = −2c2Qμ

νρ − 2(2c1 + c2)Q
(νρ)

μ − 2gνρ(2c4Q
σ

σμ + c5Qμσ
σ )

− 4(c4 + c5)Qσ
σ(νδρ)

μ − 2(4c3 + c5)δ
(ν
μ Qρ)σ

σ = −2P(νρ)
μ , (4.175) 

which generalizes the similar relation (4.147) . Hence, we find that the connection
field equation can be written in the simple form

. − ∇ν∇ρ(P̃νρ
μ) = κ2∇ν∇ρH̃μ

νρ , (4.176) 

using the tensor density .P̃νρ
μ built from the generalized nonmetricity conju-

gate (4.173) . We then proceed with the metric equation, which still takes the general
form (4.170) also in the symmetric teleparallel case, but can be simplified as follows.
Raising one index and introducing a density factor, it can equivalently be written as

.Uμ
ν −

◦∇ρ(
√−gVρμ

ν)√−g
+ 1

2
Gδμ

ν = κ2�μ
ν . (4.177) 

The covariant derivative with respect to the Levi-Civita connection can be trans-
formed to the independent connection, by using the relation

. 
◦∇ρ(

√−gVρμ
ν) = ∇ρ(

√−gVρμ
ν)

+ √−g(Lσ
σρVρμ

ν − Lρ
σρVσμ

ν − Lμ
σρVρσ

ν + Lσ
νρVρμ

σ ) . (4.178) 

To proceed further, we need the terms

. Uμν=(2c1Q
ρσμ+c2Q

σρμ)Qρσ
ν−(2c1+c2)Q

ρσ(μQν)
ρσ −(c1+c2)Q

μρσ Qν
ρσ

− c4Qρ
ρ(μQν)σ

σ + 2c4Qρ
ρμQσ

σν −
(
c3 + c5

2

)
Qμρ

ρQνσ
σ

+ (2c4Q
σ

σρ + c5Qρσ
σ )

(
1

2
Qρμν − Q(μν)ρ

)
(4.179)
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and 

. Vρμν = 2c1Q
ρμν + 2c2Q

(μν)ρ + 2c3g
μνQρσ

σ

+ 2c4Qσ
σ(μgν)ρ + c5(g

μνQσ
σρ + gρ(μQν)σ

σ ) , (4.180) 

which are obtained from the more general expressions (4.167) by imposing vanish-
ing torsion. A tedious, but straightforward calculation shows that the resulting terms
can be combined to yield

. Uμ
ν − Lσ

σρVρμ
ν + Lρ

σρVσμ
ν + Lμ

σρVρσ
ν − Lσ

νρVρμ
σ

= −(c1Q
μρσ + c2Q

ρσμ)Qνρσ − c3Q
μρ

ρQνσ
σ − c4Q

ρ
ρσ Qν

μσ − c5Q(ν
μρQρ)σ

σ

= −1

2
Pμρσ Qνρσ . (4.181) 

This finally yields the metric field equation

. − ∇ρ(
√−gPρμ

ν)√−g
− 1

2
Pμρσ Qνρσ + 1

2
Qδμ

ν = κ2�μ
ν (4.182) 

for the Newer General Relativity class of gravity theories, where we now also used
the relation .G = Q in the absence of torsion. Note that a special case is obtained 
when the parameters take the values (4.164) , for which we have

.c1 = 1

4
, c2 = −1

2
, c3 = −1

4
, c4 = 0 , c5 = 1

2
. (4.183) 

In this case we find .Q = Q and .Pμνρ = P μνρ , so that the theory reduces to STEGR. 
Finally, also in the metric teleparallel geometry we can find a general class 

of gravity theories, whose action is now quadratic in the torsion tensor. By 
imposing vanishing nonmetricity, the scalar (4.161) becomes the generalized torsion
scalar [34] (see also Chap. 3 around Eq. (3.166) ),

.
T = 1

2
T ρ

μνSρ
μν

= a1T
μνρTμνρ + a2T

μνρTρνμ + a3T
μ

μρTν
νρ ,

(4.184) 

where the generalized superpotential is now given by 

.Sρ
μν = 2a1Tρ

μν + 2a2T
[νμ]

ρ + 2a3Tσ
σ [νδμ]

ρ . (4.185) 

The resulting class of gravity theories, which is now defined by the action 

.Sg = − 1

2κ2

∫

M

T
√−gd4x , (4.186)
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is known as “New General Relativity”4 . In this case, the left hand side of the field 
equations (4.41) becomes

. Wμν − ∇ρYμνρ + YμνρT τ
τρ

= 1

κ2

[
Uμν − ◦∇ρVρμν + 1

2
Ggμν − 1

2
∇ρZμνρ + 1

2
ZμνρT τ

τρ

]
. (4.187) 

with the help of the formulas (4.168) and (4.169) . In order to combine the
two derivative terms, we convert the covariant derivative .∇ρ with respect to the 

independent connection to a Levi-Civita covariant derivative . 
◦∇ρ , using the relation 

.∇ρZμνρ −ZμνρT τ
τρ = ◦∇ρZμνρ + Kμ

σρZσνρ + Kν
σρZμσρ . (4.188) 

Now the two terms under the derivative combine into

.Vρμν + 1

2
Zμνρ = −2a1T

μνρ −2a2T
[ρν]μ −2a3Tσ

σ [ρgν]μ = −Sμνρ . (4.189) 

The remaining terms take, once again, a very simple form, which is given by

. Uμν − 1

2
(Kμ

σρZσνρ + Kν
σρZμσρ)

= [(a2 − 2a1)K
ρσν + (3a2 − 2a1)K

νρσ ]Kρσ
μ + a3Kρσ

σ Kνρμ = SρσνKρσ
μ .

(4.190) 

Hence, the full field equations of New General Relativity become

.
◦∇ρ(Sμν

ρ)+Sρσ
νKρσμ+ 1

2
Tgμν = κ2(�μν −∇ρHμν

ρ +Hμν
ρT τ

τρ) . (4.191) 

Also for this class of theories a special case is obtained by choosing the parameter
values (4.164) , which now implies

.a1 = 1

4
, a2 = 1

2
, a3 = −1 . (4.192) 

In this case, the theory reduces to MTEGR, with .T = T and .Sρ
μν = Sρ

μν .

4 This term is also, more commonly, used for a particular subclass of theories, in which . 2a1 +a2 =
0 and .a3 = −1, so that there is only one free parameter besides the gravitational constant . κ [34]. 
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4.4.4 Scalar-Teleparallel Theories 

While the classes of modified teleparallel gravity theories we considered so far were 
constructed purely from the metric and the flat affine connection as fundamental 
fields, we now consider a class of theories in which in addition a scalar field 
is introduced as a fundamental field variable. Also, this class of theories can be 
motivated by analogy with a scalar-tensor modification of the Einstein-Hilbert 
action (4.109) of general relativity, which takes the general form

.Sg = 1

2κ2

∫

M

[
A(φ)

◦
R − B(φ)gμν

◦∇μφ
◦∇νφ − 2κ2V(φ)

]√−gd4x , (4.193) 

where .A,B,V are free functions of the scalar field . φ. Here we work in the so-
called Jordan frame, which means that we assume no direct coupling between the 
scalar field and any matter fields. Recalling that the Ricci scalar . 

◦
R can be written 

in the form (4.110), one may expect that replacing . 
◦
R by .−G + B one obtains a 

teleparallel equivalent of the scalar-curvature theory, while using only .−G instead 
leads to an inequivalent scalar-teleparallel theory, since the omitted term is not a 
boundary term due to the non-minimal coupling term .A(φ). One can cover both 
cases by considering the action 

. Sg = 1

2κ2

∫

M

[
−A(φ)G − B(φ)gμν

◦∇μφ
◦∇νφ − Ĉ(φ)B − 2κ2V(φ)

] √−gd4x ,

(4.194) 

where we introduced another free function . Ĉ of the scalar field. Keeping in mind 
that B is a boundary term, i.e., a total divergence, we see that the field equations do 
not change if we add an arbitrary constant to . Ĉ. To resolve this ambiguity, we can 
use integration by parts, 

.Ĉ
◦∇μM [νμ]

ν = ◦∇μ(ĈM [νμ]
ν) − Ĉ′M [νμ]

ν

◦∇μφ , (4.195) 

and omit the boundary term. Defining a new parameter function .C = Ĉ′, we then 
have 

. Sg = 1

2κ2

∫

M

[
−A(φ)G − B(φ)gμν

◦∇μφ
◦∇νφ

+ 2C(φ)M [νμ]
ν

◦∇μφ − 2κ2V(φ)
]√−gd4x . (4.196) 

Note that for .A′ + C = 0, the action becomes equivalent to the scalar-curvature 
action (4.193) . To derive the field equations for this generalized class of theories, we
proceed by varying the action as with the previous examples. Due to the presence of
an additional fundamental field, also the variation (4.9) is enhanced by an additional
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term, and becomes 

.δSg = −
∫

M

(
1

2
Wμνδgμν + Yμ

νρδ�μ
νρ + �δφ

) √−gd4x , (4.197) 

after eliminating derivatives of the variations using integration by parts. Varying the
action (4.196) , we find the terms

. Wμν = 1

κ2

{
A

◦
Rμν − A

2

◦
Rgμν + C ◦∇μ

◦∇νφ − (B− C′)
◦∇μφ

◦∇νφ

+ (A′ + C)
( ◦∇(μφMρ

ν)ρ − Mρ
(μν)

◦∇ρφ + M [ρσ ]
σ

◦∇ρφgμν

)

+
[(
B
2

− C′
)

◦∇ρφ
◦∇ρφ − C ◦∇ρ

◦∇ρφ + κ2V
]

gμν

}
, . (4.198a) 

Yμ
νρ = 1

2κ2

[
A(gνρMσ

μσ + δρ
μMνσ

σ − Mνρ
μ − Mρ

ν
μ)

+C(gνρ
◦∇μφ − δρ

μ

◦∇νφ)
]

, . (4.198b) 

� = 1

2κ2

[
−2B

◦∇μ

◦∇μφ − B′ ◦∇μφ
◦∇μφ + CB +A′G

]
+V , (4.198c) 

where we have made use of the relations (4.108) and (4.111) , and from now on
we omit the argument . φ of the parameter functions for brevity. We can then read 
off the field equations and study their properties. We start with the metric field 
equation (4.14) , which reads

. A
◦
Rμν − A

2

◦
Rgμν + C ◦∇μ

◦∇νφ + (A′ + C)
( ◦∇(μφMρ

ν)ρ − Mρ
(μν)

◦∇ρφ

+M [ρσ ]
σ

◦∇ρφgμν

)

−(B−C′)
◦∇μφ

◦∇νφ+
[(
B
2

− C′
)

◦∇ρφ
◦∇ρφ − C ◦∇ρ

◦∇ρφ + κ2V
]

gμν = κ2�μν .

(4.199) 

It is most remarkable that in the case .A′ + C = 0 the only term containing 
the flat, affine connection vanishes from these field equations, and one finds that 
they indeed resemble the field equations of scalar-curvature gravity in this case. To 
check whether this property holds also for the connection field equation (4.28) , we
calculate

. ∇τ Yμ
ντ − Mω

τωYμ
ντ

= A
′ + C
2κ2

[
Mνρ

ρ

◦∇μφ + Mρ
μρ

◦∇νφ − (Mνρ
μ + Mρ

μ
ν)

◦∇ρφ
]

, (4.200)
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where any terms involving the covariant derivative of the distortion .Mμ
νρ cancel as 

a consequence of the flatness of the connection. We see that this expression becomes 
trivial for .A′ + C = 0. In that case, the connection field equation 

. (A′ + C)
[
Mνρ

ρ

◦∇μφ + Mρ
μρ

◦∇νφ − (Mνρ
μ + Mρ

μ
ν)

◦∇ρφ
]

= 2κ2(∇τHμ
ντ − Mω

τωHμ
ντ ) (4.201) 

becomes a constraint for the hypermomentum. Finally, we study the scalar field
equation

. − 2B
◦∇μ

◦∇μφ − B′ ◦∇μφ
◦∇μφ + CB +A′G + 2κ2V′ = 0 . (4.202) 

Here the right hand side vanishes, since we do not consider any direct coupling
between the scalar field and matter. Note that if .C = −A′, i.e., in the case of the 
scalar-curvature equivalent, the two terms .CB + A′G combine to .−A′ ◦

R, and the 
equation becomes independent of the teleparallel connection, as one would expect, 
and as we have seen for the remaining field equations. Further, one finds that the 
scalar field equation contains second order derivatives of both the scalar field and 
the metric, where the latter enter through the boundary term. In order to eliminate 
these metric derivatives from the equation, it is common to apply a “debraiding” 
procedure by adding a suitable multiple of the trace of the matter field equation. 
The latter reads 

. −A ◦
R − 3C

◦∇μ

◦∇μφ + 2(A′ + C)M [μν]
ν

◦∇μφ

+ (B− 3C′)
◦∇μφ

◦∇μφ + 4κ2V = κ2�μ
μ . (4.203) 

Hence, calculating the linear combination

. CWμ
μ + 2A� = 1

κ2

[
− (2AB+ 3C2)

◦∇μ

◦∇μφ + (BC− 3CC′ −AB′)
◦∇μφ

◦∇μφ

+ (A′ + C)
(
AG + 2CM [μν]

ν

◦∇μφ
) ]

+ 2AV′ + 4CV , (4.204) 

we find that the debraided scalar field equation

. − (2AB+ 3C2)
◦∇μ

◦∇μφ + (BC− 3CC′ −AB′)
◦∇μφ

◦∇μφ

+ (A′ + C)
(
AG + 2CM [μν]

ν

◦∇μφ
)

+ 2κ2(AV′ + 2CV) = κ2C�μ
μ

(4.205)
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does not contain any derivatives of the independent connection, and has only first 
order derivatives of the metric tensor, which enter through the distortion and the 
Christoffel symbols contained in the covariant derivative. Also here we see that the 
teleparallel connection does not contribute to the field equation for .A′ + C = 0. 
Further, one finds that the trace of the energy-momentum tensor acts as the matter 
source for the scalar field. 

•? Exercise 
4.6. Understand that for .A′+C = 0, the field equations are independent of the teleparallel 

connection, i.e. one recovers scalar-tensor gravity theories. 

It is now easy to study how the field equations change if we consider the 
symmetric or metric teleparallel geometries instead of the general teleparallel 
geometry we have used to construct the scalar-teleparallel gravity theory discussed 
above. We start with the former, which yields a class of scalar-nonmetricity theories 
of gravity, whose action is given by [35, 36] 

. Sg = 1

2κ2

∫

M

[
−A(φ)Q − B(φ)gμν

◦∇μφ
◦∇νφ

+ C(φ)(Qν
νμ − Qμν

ν)
◦∇μφ − 2κ2V(φ)

]√−gd4x . (4.206) 

For the metric field equations, which retain the general form (4.14) , we see that the
only change compared to the general teleparallel case arises from those terms which
involve the teleparallel affine connection. These terms greatly simplify and become

.
◦∇(μφMρ

ν)ρ − Mρ
(μν)

◦∇ρφ + M [ρσ ]
σ

◦∇ρφgμν = −P ρ
μν

◦∇ρφ , (4.207) 

using the nonmetricity conjugate (4.131) . The metric field equations therefore read

. A
◦
Rμν − A

2

◦
Rgμν + C ◦∇μ

◦∇νφ − (B− C′)
◦∇μφ

◦∇νφ − (A′ + C)P ρ
μν

◦∇ρφ

+
[(
B
2

− C′
)

◦∇ρφ
◦∇ρφ − C ◦∇ρ

◦∇ρφ + κ2V
]

gμν = κ2�μν . (4.208) 

We then continue with the connection equation, which now takes the form (4.36).
Here we can make use of several simplifications we have employed before. First,
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using the variation (4.115) of the gravity scalar G, we write the variation (4.198) as

.

Yμ
νρ = 1

2κ2

[
AZμ

νρ + C
(
gνρ

◦∇μφ − δρ
μ

◦∇νφ
)]

= 1

2κ2

[
AZμ

νρ + C (
gνρ∇μφ − δρ

μgνσ ∇σ φ
)]

,

(4.209) 

where we used the fact that any covariant derivative acts equally on the scalar field . φ. 
Next, we introduce a density factor .

√−g and take a covariant derivative, to calculate 

. 

∇ρỸμ
νρ = 1

2κ2 ∇ρ

[
AZ̃μ

νρ + √−gC
(
gνρ∇μφ − δρ

μgνσ ∇σ φ
)]

=
√−g

2κ2

[
A′Zμ

νρ∇ρφ +
(

1

2
Qρτ

τC+ C′∇ρφ

) (
gνρ∇μφ − δρ

μgνσ ∇σ φ
)

+ C (
gνρ∇ρ∇μφ − gνσ ∇μ∇σ φ − Qρ

ρν∇μφ + Qμ
νσ ∇σ φ

) ]

= 1

2κ2 (A′ + C)Z̃μ
νρ∇ρφ

= 1

2κ2 ∇ρ[(A+ Ĉ)Z̃μ
νρ] ,

(4.210) 

where we used the identity .∇ρZ̃μ
νρ = 0 we found in deriving the STEGR field 

equations, and the fact that numerous terms involving the scalar field cancel, while 
the remaining terms combine to a very compact form. Here . Ĉ is defined by . Ĉ′ = C
only up to an irrelevant constant. To obtain the connection field equations, we apply 
another covariant derivative, and use the relation (4.147) to finally obtain

.∇ν∇ρỸμ
νρ = 1

2κ2 ∇ν∇ρ[(A+ Ĉ)Z̃μ
νρ] = − 1

κ2 ∇ν∇ρ[(A+ Ĉ)P̃ νρ
μ] . (4.211) 

Hence, we see that the left hand side of the connection field equations

. − ∇ν∇ρ[(A+ Ĉ)P̃ νρ
μ] = κ2∇ν∇ρH̃μ

νρ (4.212) 

vanishes identically for .A′ + C = 0. At last, we come to the scalar field equation, 
which we consider in its debraided form (4.205) . Imposing vanishing torsion, the
only affected term is given by

.AG + 2CM [μν]
ν

◦∇μφ = AQ + 2CQ[μν]
ν

◦∇μφ , (4.213)
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and so the scalar field equation undergoes the trivial change to become 

. − (2AB+ 3C2)
◦∇μ

◦∇μφ + (BC− 3CC′ −AB′)
◦∇μφ

◦∇μφ

+ (A′ + C)
(
AQ + 2CQ[μν]

ν

◦∇μφ
)

+ 2κ2(AV′ + 2CV) = κ2C�μ
μ .

(4.214) 

This completes the field equations for the scalar-nonmetricity class of gravity
theories.

We finally also take a brief look at the metric teleparallel case, and study the field 
equations of a class of scalar-torsion theories defined by the action [37–39] 

. Sg = 1

2κ2

∫

M

[
−A(φ)T − B(φ)gμν

◦∇μφ
◦∇νφ

+ 2C(φ)Tν
νμ

◦∇μφ − 2κ2V(φ)
]√−gd4x , (4.215) 

which directly follows from the action (4.196) by imposing vanishing nonmetricity.
Recall that under this condition the single field equation obtained by simultaneous
variation of the metric and connection is given by (4.41). Using the variation (4.198) ,
these field equations become

. A
◦
Rμν − A

2

◦
Rgμν + C ◦∇μ

◦∇νφ − (B− C′)
◦∇μφ

◦∇νφ + (A′ + C)Sμν
ρ

◦∇ρφ

+
[(
B
2

− C′
)

◦∇ρφ
◦∇ρφ − C ◦∇ρ

◦∇ρφ + κ2V
]

gμν

= κ2(�μν − ∇ρHμνρ + HμνρT τ
τρ) . (4.216) 

These equations are supplemented by the scalar field equation, which follows from
the general teleparallel equation (4.205) by using

.AG + 2CM [μν]
ν

◦∇μφ = AT − 2CTν
νμ

◦∇μφ , (4.217) 

in the absence of nonmetricity. Hence, the (debraided) scalar field equation takes
the form

. − (2AB+ 3C2)
◦∇μ

◦∇μφ + (BC− 3CC′ −AB′)
◦∇μφ

◦∇μφ

+ (A′ + C)
(
AT − 2CTν

νμ
◦∇μφ

)
+ 2κ2(AV′ + 2CV) = κ2C�μ

μ (4.218)

in the metric teleparallel gravity setting.
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4.4.5 Scalar-Teleparallel Representation of f (G)  Theories 

Among the general classes of scalar-teleparallel theories of gravity discussed in 
the previous section there is a particular subclass of theories, defined by a suitable 
choice of the parameter functions .A,B,C,V, whose field equations turn out to be 
equivalent to those of the .f (G) class of theories. Note that for a given function f , 
the choice of the parameter functions in the scalar-teleparallel representation is not 
unique, and different choices are connected by redefinitions of the scalar field. For 
the general teleparallel geometry, a straightforward procedure is to start from the 
action (4.135), and to rewrite it, similarly to the .f (

◦
R) class of theories [40], in the 

form 

.Sg = − 1

2κ2

∫

M

[f (φ) − ψ(φ − G)]√−gd4x , (4.219) 

thereby introducing two scalar fields . ψ and . φ. Here . ψ is a Lagrange multiplier, and 
imposes the constraint 

.φ = G (4.220) 

for the scalar field . φ. Variation with respect to the latter yields another constraint 

.ψ = f ′(φ) , (4.221) 

which can then be used to solve for the scalar field . ψ . The remaining field equations 
are the metric field equation 

. ψ

(
◦
Rμν − 1

2

◦
Rgμν

)
+

( ◦∇(μψMρ
ν)ρ − Mρ

(μν)

◦∇ρψ + M [ρσ ]
σ

◦∇ρψgμν

)

+ 1

2
[f (φ) − φψ]gμν = κ2�μν , (4.222) 

as well as the connection field equation

. Mνρ
ρ

◦∇μψ + Mρ
μρ

◦∇νψ − (Mνρ
μ + Mρ

μ
ν)

◦∇ρψ = 2κ2(∇τHμ
ντ − Mω

τωHμ
ντ ) .

(4.223) 

Together with the constraints (4.220) and (4.221) , one finds that these reproduce the
.f (G) field equations (4.142) and (4.145) .

Instead of keeping two scalar fields, one can take one further step and substitute 
the constraint (4.221) in the action (4.219) , which then becomes

.Sg = − 1

2κ2

∫

M

[f (φ) − f ′(φ)(φ − G)]√−gd4x . (4.224)
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Note that this does not change the metric and connection field equations. Variation 
with respect to the scalar field now yields the field equation 

.(G − φ)f ′′ = 0 , (4.225) 

which resembles the constraint (4.220) for .f ′′ 	= 0. By comparison with the general 
scalar-teleparallel action (4.196) , one reads off the relations

. A(φ) = f ′(φ) , B(φ) = 0 , C(φ) = 0 , V(φ) = f (φ) − φf ′(φ)

2κ2
.

(4.226) 

Alternatively, if the constraint (4.221) is invertible, one may also solve it for . φ

instead, which yields a different parametrization. The resulting action then takes 
the form 

.Sg = − 1

2κ2

∫

M

[ψG − 2κ2U(ψ)]√−gd4x , (4.227) 

where . U is implicitly defined by 

.U(ψ) = V(φ) . (4.228) 

To obtain a more explicit relation, one may differentiate with respect to . φ on both 
sides, which yields 

.f ′′(φ)U′(ψ) = −φf ′′(φ)

2κ2 . (4.229) 

This shows that .f (φ) and .U(ψ) are related by a Legendre transformation. In this 
case the scalar field equation becomes 

.G = −2κ2U′(ψ) , (4.230) 

once again reproducing the constraint (4.220) , up to a change of parametrization.
It is easy to check that for the values (4.226) of the parameter functions

(and hence also for the equivalent parametrization via . ψ) indeed yield a class 
of theories whose field equations reproduce those of the .f (G), .f (Q) [35] and 
.f (T ) [41] classes of gravity theories, if suitable restrictions are imposed on the 
torsion or nonmetricity of the connection. Substituting the values (4.226) and the
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constraint (4.220) into the metric field equation (4.199) yields

. f ′ ◦
Rμν − f ′

2

◦
Rgμν + f ′′ ( ◦∇(μGMρ

ν)ρ − Mρ
(μν)

◦∇ρG + M [ρσ ]
σ

◦∇ρGgμν

)

+ 1

2
(f − f ′G)gμν = κ2�μν , (4.231) 

which, using .f ′′ ◦∇μG = ◦∇μf ′, reproduces the field equation (4.142) . The same
relation is used to show that the connection field equation (4.201) , which becomes

. f ′′ [Mνρ
ρ

◦∇μG + Mρ
μρ

◦∇νG − (Mνρ
μ + Mρ

μ
ν)

◦∇ρG
]

= 2κ2(∇τHμ
ντ − Mω

τωHμ
ντ ) , (4.232) 

resembles the connection field equation (4.145) . We then continue with the sym-
metric teleparallel case. Here, the connection equation (4.212) becomes

. − ∇ν∇ρ(f ′P̃ νρ
μ) = κ2∇ν∇ρH̃μ

νρ , (4.233) 

which is obviously identical to the corresponding equation (4.148) . The metric field
equation (4.208) takes the form

.f ′ ◦
Rμν − f ′

2

◦
Rgμν − f ′′P ρ

μν

◦∇ρQ + 1

2
(f − f ′Q)gμν = κ2�μν . (4.234) 

To bring this to the familiar form, one raises one index, and uses the fact that the left
hand side of the STEGR field equation satisfies

. − ∇ρ(
√−gP ρμ

ν)√−g
− 1

2
P μρσ Qνρσ + 1

2
Qδμ

ν = Rμ
ν − 1

2
Rδμ

ν . (4.235) 

This can be used to replace the Einstein tensor, so that the scalar-nonmetricity field
equation becomes

.− f ′∇ρ(
√−gP ρμ

ν)√−g
− f ′

2
P μρσ Qνρσ −P ρμ

ν

◦∇ρf ′+ 1

2
f δμ

ν = κ2�μ
ν . (4.236) 

Observe that the two derivative terms can be combined into a single term, which
yields the field equation (4.154). A similar procedure can be applied to the scalar-
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torsion case, whose field equations (4.216) now read

. f ′ ◦
Rμν − f ′

2

◦
Rgμν + f ′′Sμν

ρ
◦∇ρT + 1

2
(f − f ′T )gμν

= κ2(�μν − ∇ρHμνρ + HμνρT τ
τρ) . (4.237) 

Here one uses the left hand side of the MTEGR field equation, which can be written
as

.
◦∇ρ(Sμν

ρ) + Sρσ
νKρσμ + 1

2
T gμν = ◦

Rμν − 1

2

◦
Rgμν . (4.238) 

Using this relation to replace the Einstein tensor, one finds

. f ′ ◦∇ρ(Sμν
ρ) + f ′Sρσ

νKρσμ + Sμν
ρ

◦∇ρf ′ + 1

2
fgμν

= κ2(�μν − ∇ρHμνρ + HμνρT τ
τρ) . (4.239) 

Once again the two derivative terms can be combined, and one has the field
equation (4.160) .

4.5 Summary, Outlook and Open Questions 

In this chapter we have given an introduction to teleparallel gravity theories, their 
underlying geometric structure which defines the fundamental fields of the theory, 
the general form of the field equations and the actions and field equations of a 
few selected classes of teleparallel gravity theories. We have seen that the main 
difference between teleparallel and curvature-based gravity theories such as general 
relativity is the existence of an independent, curvature-free connection, which 
appears as one of the fundamental fields mediating the gravitational interaction. 
From a mathematical point of view, this additional connection, together with the 
metric tensor, forms the foundation of teleparallel geometry. From a phenomeno-
logical point of view, the teleparallel connection is simply another field which enters 
the field equations and must be taken into account when these equations and their 
solutions are studied, e.g., for exact solutions exhibiting spherical or cosmological 
symmetry, or when performing perturbation theory. The coupling of this new field 
to other fields such as the metric and matter fields is determined by the particular 
teleparallel gravity action under consideration. Since these can be vastly different 
across the whole class of teleparallel gravity theories, they also lead to a plethora of 
potential new phenomenology. 

Teleparallel gravity theories are an active field of research and many questions 
are yet unanswered at the time of writing of this chapter. One of the most prominent 
open questions is known as the “strong coupling problem” [42, 43]. It refers to
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the fact that both the Hamiltonian analysis and higher order perturbation theory 
predict the presence of additional degrees of freedom compared to general relativity 
in several classes of teleparallel gravity, which are not manifest as propagating 
modes in the linear perturbation theory. Such modes are called strongly coupled, 
and their presence hints towards possible instabilities and a lack of predictability, 
which potentially renders the perturbation theory around such background solutions 
invalid. Among the most common approaches to clarify the nature and severity of 
these issues is the Hamiltonian analysis and the study of constraints. 

Besides fundamental questions, also the phenomenology of teleparallel gravity 
theories leaves numerous possibilities for further studies, which can potentially lead 
to new experimental tests. Active fields at the time of writing this chapter include 
the study of cosmology using the method of dynamical systems, cosmological 
perturbations, black holes and other exotic compact objects, as well as their shadows 
and their perturbations, which are closely related to the emission of gravitational 
waves. Hence, it is reasonable to expect numerous future developments in this field. 
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