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Abstract 

General relativity offers a classical description to gravitation and spacetime, and 
is a cornerstone for modern physics. It has passed a number of empirical tests 
with flying colours, mostly in the weak-gravity regimes, but nowadays also in 
the strong-gravity regimes. Radio pulsars provide one of the earliest extrasolar 
laboratories for gravity tests. They, in possession of strongly self-gravitating 
bodies, i.e. neutron stars, are playing a unique role in the studies of strong-field 
gravity. Radio timing of binary pulsars enables very precise measurements of 
system parameters, and the pulsar timing technology is extremely sensitive to 
various types of changes in the orbital dynamics. If an alternative gravity theory 
causes modifications to binary orbital evolution with respect to general relativity, 
the theory prediction can be confronted with timing results. In this chapter, we 
review the basic concepts in using radio pulsars for strong-field gravity tests, with 
the aid of some recent examples in this regard, including tests of gravitational 
dipolar radiation, massive gravity theories, and the strong equivalence principle. 
With more sensitive radio telescopes coming online, pulsars are to provide even 
more dedicated tests of strong gravity in the near future. 
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12.1 Introduction 

Pulsars are rotating magnetized neutron stars. On the one hand, due to their large 
moment of inertia (.I ∼ 1038 kgm2) and usually small external torque, their rotation 
is extremely stable. If a pulsar sweeps a radiating beam in the direction of the Earth, 
a radio pulse could be recorded using large-area telescopes for each rotation. As 
fundamentally known in physics, such a periodic signal can be viewed as a clock. 
Therefore, pulsars are famously recognized as astrophysical clocks in astronomy. 
Even better, thanks to a sophisticated technique called pulsar timing [58], pulsar 
astronomers can accurately record a number of periodic pulse signals. These pulses’ 
times of arrival are compared with atomic clocks at the telescope sites. Some of 
these observations can be carried out and last for decades. From a large number of 
times of arrival of these pulse signals, the physical properties of pulsar systems are 
inferred to a great precision [39]. For example, a recent study with 16 years of timing 
data of the Double Pulsar,1 PSR J0737. −3039A/B, gives the rotational frequency of 
pulsar A in the binary system [37], 

.ν = 44.05406864196281(17)Hz . (12.1) 

It has sixteen significant digits, and the numbers in the parenthesis give the
uncertainty of the last-two digits. Such a precision rivals the precision of atomic
clocks on the Earth [30], and also it possibly calls for an extension of the usual 
use of floating numbers in computer numerics for future precision pulsar timing 
experiments. Pulsars are truly precision clocks. 

•? Exercise 
12.1. During the 16 years of observation, how many cycles have PSR J0737. −3039A 

rotated? 

On the other hand, neutron stars are the densest objects known that are made 
of standard-model materials. For such a compact object, gravity plays a vital role 
in shaping its internal structure and affecting its external dynamics. As explicitly 
demonstrated by Damour and Esposito-Farèse [16], if gravity is described by an 
alternative theory to the general relativity—in their case, a class of scalar-tensor 
gravity theories—nonperturbative phase-transition-like behaviours might happen 
for neutron stars, resulting in large deviations from general relativity in the strong 
field of neutron stars [17, 25, 46]. These large deviations will manifest in the timing

1 Currently, PSR J0737. −3039A/B is the only discovered double neutron star system whose two 
neutron stars were both detected as pulsars [14, 41, 49], known as Pulsar A and Pulsar B. 
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data of pulsars in some way (cf. Sect. 12.2), and they could provide smoking-gun 
signals for gravity theories regarding the strong-field properties. Combining the 
strong-field nature of neutron stars and the precision measurements of times of 
arrival, radio pulsars are truly ideal to test alternative theories of gravity [51,63,64], 
augmenting what have been done in the weak field of the Solar System [65], and 
complementing what are recently being performed with gravitational waves [3–5] 
and black hole shadows [6–8, 50]. 

Currently, more than three thousands of radio pulsars are discovered2 [43]. The 
most useful subset of pulsars in testing alternative gravity theories are millisecond 
pulsars in clean binaries.3 Their times of arrival at telescopes are imprinted with 
information from the following sources: 

1. the Solar system dynamics which affect the motion of radio telescopes; 
2. the binary dynamics which are resulted from the mutual gravitational interaction 

between the two binary components; and 
3. the interstellar medium which affects the propagation of radio waves in a 

frequency-dependent way, in terms of dispersion, scattering, and so on. 

A formalism, which includes the above effects and connects the proper time of the 
pulse signals in the pulsar frame to the observed coordinate time at the telescopes, 
is called a pulsar timing model. One of the widely used timing models for binary 
pulsars is the Damour-Deruelle timing model [15]. It is a phenomenological model 
that applies to a large set of alternative gravity theories which are possibly being the 
underlying theory for the binary’s orbital motion. 

In the Damour-Deruelle timing model, a handful of parameterized post-Keplerian 
(PPK) parameters are introduced for generic Lorentz-invariant extensions of gravity 
theories [19]. The values of PPK parameters differ in different gravity theories. 
Therefore, measurements of these PPK parameters can be converted into constraints 
on parameters in the alternative gravity theories. The most frequently used PPK 
parameters include . ω̇, . Ṗb, . γ , r , and s. The PPK parameter . ω̇ describes the periastron 
advance of the binary orbit, the PPK parameter . Ṗb describes the orbital period 
decay caused by the radiation of gravitational waves, the PPK parameter . γ describes 
combined effects from the Doppler time delay and gravitational time delay, and the 
PPK parameters .(r, s) describe the Shapiro time delay imprinted by the spacetime 
curvature of the companion star. The values of these five PPK parameters in the

2 https://www.atnf.csiro.au/people/pulsar/psrcat/. 
3 In one case, a pulsar in a triple system, PSR J0337+1715, provides the best limit on the strong 
equivalence principle [9, 47, 59]. 

https://www.atnf.csiro.au/people/pulsar/psrcat/
https://www.atnf.csiro.au/people/pulsar/psrcat/
https://www.atnf.csiro.au/people/pulsar/psrcat/
https://www.atnf.csiro.au/people/pulsar/psrcat/
https://www.atnf.csiro.au/people/pulsar/psrcat/
https://www.atnf.csiro.au/people/pulsar/psrcat/
https://www.atnf.csiro.au/people/pulsar/psrcat/
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general relativity are given in Damour and Deruelle [15] and Lorimer and Kramer 
[39], 

.ω̇ = 3

(
Pb

2π

)−5/3

(T�M)2/3
(
1 − e2

)−1
, . (12.2) 

Ṗb = −192π

5

(
Pb

2π

)−5/3 (
1 + 73

24
e2 + 37

96
e4

) (
1 − e2

)−7/2
T
5/3
� mAmBM−1/3 , . 

(12.3) 

γ = e

(
Pb

2π

)1/3

T
2/3
� M−4/3mB(mA + 2mB) , . (12.4) 

r = T�mB , . (12.5) 

s = x

(
Pb

2π

)−2/3

T
−1/3
� M2/3m−1

B , (12.6) 

where . Pb and e are respectively the orbital period and orbital eccentricity, . mA
and .mB are the masses of the pulsar and its companion in unit of the Solar mass 
(. M�), the total mass .M ≡ mA + mB, and .T� ≡ GM�/c3 = 4.925490947μs. 
Equations (12.2)–(12.6) take different forms in alternative gravity theories, often 
with dependence on the extra charges of the binary components in the theory, e.g., 
these PPK parameters depend on scalar charges of the pulsar and its companion 
in the scalar-tensor theory [17]. In pulsar-timing observation, each PPK parameter 
is independently measured. Eventually, for a gravity theory to pass the tests from 
pulsar timing, it should give consistent predictions to all the measured values of 
PPK parameters with a unique set of physical parameters of the binary system. 
These consistency checks are often illustrated in the mass-mass diagram. For an 
example, in Fig. 12.1 the measurements of three PPK parameters, . ω̇, . γ , and . Ṗb, 
from the Hulse-Taylor pulsar PSR B1913+16, give consistent component masses 
when the general relativistic Eqs. (12.2)–(12.4) are used [61]. Therefore, general 
relativity passes the tests posed by the Hulse-Taylor pulsar [61]. 

•? Exercise 
12.2. For the Hulse-Taylor pulsar PSR B1913+16, the following parameters are measured 

directly via pulsar timing: .Pb = 0.322997448918(3) d, .e = 0.6171340(4), . ω̇ =
4.226585(4) deg yr−1, and  .γ = 0.004307(4) s [61]. Assuming general relativity, please 
derive the two component masses for this binary system. 

In this following, we will give a few more concrete and recent examples where 
binary pulsars play a key role in limiting alternative gravity theories, including 
the gravitational dipolar radiation in the scalar-tensor gravity (Sect. 12.2), two
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Fig. 12.1 Consistency of 
general relativity in 
describing three measured 
PPK parameters (. ω̇, . γ , and  
. Ṗb) from PSR B1913+16 in 
the mass-mass diagram [61] 

classes of massive gravity theories (Sect. 12.3), and the strong equivalence principle 
(Sect. 12.4). These examples are by no means complete, and certainly reflect 
the somehow biased topics that the author is interested in. A short perspective 
discussion is given in Sect. 12.5. For more extensive reviews on using radio pulsars 
for gravity tests, readers are referred to Refs. [35, 42, 51, 57, 63, 64]. 

12.2 Strong-Field Effects and Gravitational Dipolar Radiation 

Scalar-tensor gravity theories represent a well posed, healthy extension of Einstein’s 
general relativity by including a nonminimally coupled scalar field in the Lagrangian 
of gravity [10, 13, 65]; see also Sects. 4.4.4 and 7.4.1 for the discussion of gravity 
theories involving additional scalar fields as mediator of the gravitational interac-
tion. Shortly after the first discovery of the Hulse-Taylor binary pulsar, Eardley [24] 
pointed out that a gravitational dipolar radiation could be used as a discriminant for 
such a class of gravity theories. An extra dipolar radiation term can be tested with 
the PPK parameter . Ṗb. Investigation along this line was boosted by the theoretical 
discovery that in a slightly extended version of the original scalar-tensor gravity, 
nonperturbative effects develop for certain neutron stars [16, 17]. The so-called 
spontaneous scalarization (see also Sect. 7.4.1 for more details) introduces a much 
enhanced gravitational dipolar radiation for a scalarized neutron star in a binary. 
The dipolar radiation in principle can even dominate over the quadrupolar radiation 
predicted by the general relativity in binary pulsar observations [cf. Eq. (12.3)], but 
still keeping all weak-field gravity tests satisfied. This enters the regime of strong-
field gravity tests, where weak-field tests have a rather limited power.
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A general class of scalar-tensor gravity theories have the following action in the 
Einstein frame, 

. S = c4

16πG∗

∫
d4x

c

√−g∗
[
R∗ − 2gμν∗ ∂μϕ∂νϕ − V (ϕ)

] + Sm

[
ψm;A2(ϕ)g∗

μν

]
,

(12.7) 

where .g
μν∗ and . R∗ are the metric tensor and Ricci scalar respectively, .ψm collec-

tively denotes standard-model matter fields, . ϕ is an extra scalar field, and quantities 
with stars are in the Einstein frame. The novel aspect lies in the fact that it is a 
conformal metric .A2(ϕ)g∗

μν instead of .g∗
μν itself that couples to matter fields. Such 

a nonminimal coupling is important for the discussions below. 
The class of scalar-tensor gravity theories carefully examined by Damour and 

Esposito-Farèse [16, 17] has 

.V (ϕ) = 0 , . (12.8) 

A(ϕ) = exp
(
β0ϕ

2/2
)

, . (12.9) 

α0 = β0ϕ0 , (12.10) 

where . ϕ0 is the asymptotic value of . ϕ at infinity, and . α0 and . β0 are two theory 
parameters. This is the class of scalar-tensor theories, sometimes denoted as 
.T1(α0, β0) and called the Damour-Esposito-Farèse theory, that are most widely 
confronted with pulsar observations [28, 53, 63, 71]. 

•? Exercise 
12.3. Derive field equations for the Damour-Esposito-Farèse theory. 

•? Exercise 
12.4. Based on the field equations, derive the modified Tolman-Oppenheimer-Volkoff 

equations for the Damour-Esposito-Farèse theory, for a spherically symmetric neutron star. 

By integrating the modified Tolman-Oppenheimer-Volkoff equations derived 
from theory (12.7), one gets a boost in a neutron star’s scalar charge when its 
mass reaches a critical point. This phenomenon is understood from the viewpoint 
of Landau’s phase transition theory when a tachyonic instability kicks in and
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Fig. 12.2 Blue curves show the effective scalar charge in the Damour-Esposito-Farèse scalar-
tensor gravity theory with .|α0| =  10−5 and, from top to bottom, .β0 = −4.8, −4.6,−4.4,−4.2. 
The AP4 equation of state is assumed in the calculation. Triangles show the observational bounds 
from binary pulsars [53, 71] and gravitational waves [1, 2] at the 90% confidence level. The mass 
uncertainty for these neutron stars is indicated at the 68% confidence level 

a new branch of neutron star solutions with scalar charges are energetically 
favored [ 25, 34, 46]. We define the effective scalar charge of a neutron star [16], 

.αA ≡ ∂ lnmA

∂ϕ0
, (12.11) 

which is a representative quantity characterizing the strength of deviation from
general relativity. In Fig. 12.2, example curves for the effective scalar charge as a 
function of neutron star mass are given in blue lines from top to bottom for . β0 =
−4.8,−4.6,−4.4,−4.2, assuming the AP4 equation of state and .|α0| = 10−5. As  
we can easily seen, indeed that for certain mass range of neutron stars, .|αA| can be 
very large while keeping its value very small in weak-gravity fields. 

The emission of gravitational dipolar radiation in a binary pulsar is proportional 
to the difference in the effective scalar couplings of the two binary components A 
and B, and to the leading order, it contributes to an additional decay rate of orbital 
period via [17], 

. Ṗ
dipole
b = −2πG∗

c3

(
1 + e2

2

)(
1 − e2

)−5/2
(
2π

Pb

)
mAmB

M
(αA − αB)2 .

(12.12) 

While neutron stars have significant scalar charges, white dwarfs, being weak-field
objects, are hardly different from their counterparts in general relativity with a van-
ishingly small scalar charge .αB � α0 → 0, where . α0 is well constrained by Solar 
System weak-field tests [65]. Therefore, neutron-star white-dwarf binaries turn out
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to be the most sensitive probe in this regard [28, 53]. Recently, a new study [71] 
shows explicitly that neutron-star neutron-star binaries with a significant difference 
in the masses of binary components are also excellent laboratories. Therefore, to 
test the gravitational dipolar radiation in scalar-tensor gravity, asymmetric binary 
pulsars are needed4 [63]. 

•? Exercise 
12.5. When the dipolar-radiation-induced orbital decay is comparable to the quadrupolar-

radiation-induced orbital decay for the Hulse-Taylor pulsar? Derive the critical value for the 
effective scalar charge. 

Some illustration for a specific equation of state, AP4, is given in Fig. 12.2, 
along with constraints on the gravitational dipolar radiation from seven binary pul-
sars [71]: five neutron-star white-dwarf binaries (PSRs J0348+0432, J1012+5307, 
J1738+0333, J1909. −3744, and J2222. −0137) and two asymmetric neutron-star 
neutron-star binaries (PSRs J0737. −3039A and J1913+1102). For comparison, we 
also show a constraint from the first binary neutron star merger observed via 
gravitational waves [2]. In principle, the uncertainty in the superanuclear neutron-
star matter is entangled with strong-field gravity tests [48]. Nevertheless, nowadays 
we have enough well-measured binary pulsar systems to populate the whole mass 
range for neutron stars, and a combined study [53, 71] has verified that for each 
reasonable equation of state, the possibility for spontaneous scalarization in the 
Damour-Esposito-Farèse scalar-tensor gravity theory is very low. Following the 
method developed by Shao et al. [53], a dedicated Bayesian parameter-estimation 
study combining the above-mentioned seven pulsar systems has basically closed the 
possibility of developing spontaneous scalarization for an effective scalar coupling 
larger than .10−2 for the theory given by Eqs. (12.7)–(12.10), no matter of the 
underlying yet-uncertain equation of state for supranuclear neutron-star matters. 

It is worth to mention that, when performing Markov-chain Monte Carlo 
Bayesian parameter estimation, the integration of the modified Tolman-
Oppenheimer-Volkoff equations needs to be carried out by more than millions of 
times on the fly thus computationally expensive. Recently, reduced-order surrogate 
models, which extract dominating features to represent accurate enough integration 
results, were bulit to aid the speedup of the calculation [29, 70]. The codes of 
these reduced-order surrogate models are publicly available at https://github. 
com/BenjaminDbb/pySTGROM and https://github.com/mh-guo/pySTGROMX for 
community use.

4 Unfortunately, we have not detected yet suitable neutron-star black-hole binaries for this test, 
which are also potentially very good testbeds [38]. 

https://github.com/BenjaminDbb/pySTGROM
https://github.com/BenjaminDbb/pySTGROM
https://github.com/BenjaminDbb/pySTGROM
https://github.com/BenjaminDbb/pySTGROM
https://github.com/BenjaminDbb/pySTGROM
https://github.com/mh-guo/pySTGROMX
https://github.com/mh-guo/pySTGROMX
https://github.com/mh-guo/pySTGROMX
https://github.com/mh-guo/pySTGROMX
https://github.com/mh-guo/pySTGROMX
https://github.com/mh-guo/pySTGROMX
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Although the original Damour-Esposito-Farèse scalar-tensor gravity theory is 
disfavored by binary pulsar timing results, in further extended, generic scalar-tensor 
gravity theories, neutron stars can still be scalarized. This is particularly true for a 
massive scalar-tensor theory with .V (ϕ) ∼ m2ϕ2 when the Compton wavelength 
of the scalar field is smaller than the orbital separation of the binary [45, 66, 69]. 
Basically the modification with respect to the general relativity in the orbital 
dynamics is suppressed exponentially in a Yukawa fashion. Fortuitously, without 
giving much details, such kind of massive scalar-tensor theories can be efficiently 
probed via the tidal deformability measurement in gravitational waves [1,31,32]. In 
this sense, a combination of pulsar timing data and gravitational wave data is called 
for to probe a larger parameter space for scalar-tensor gravity theories [53]. 

In the past few years, other variants of scalar-tensor gravity theories triggered 
great enthusiasm. Some of them not only give scalarized neutron stars, but also 
scalarized black holes, in contrast to the no-hair theorem. A particularly interesting 
class of such theory includes a topological Gauss-Bonnet term, 

.G = Rαβγ δR
αβγ δ − 4RαβRαβ + R2 , (12.13) 

coupling to the scalar field [23, 56, 67]. In Eq. (12.13), .Rαβγ δ and .Rαβ are the 
Riemann tensor and Ricci tensor respectively. Preliminary constraints on the scalar-
Gauss-Bonnet gravity from binary pulsars are presented by Danchev et al. [20]. 
This is a new field where observations of compact objects including neutron stars 
and black holes are crucial to reveal the strong-field information of gravitation. 

12.3 Radiative Effects in Massive Gravity Theories 

Radiative tests from binary pulsars are powerful, as the related PPK parameter, . Ṗb, 
can be very well measured from a long-term timing project on suitable pulsars [19]. 
This parameter improves with observational time span .Tobs quite fast, as .T

−5/2
obs . The  

orbital decay rate . Ṗb is not only useful for constraining the dipolar gravitational 
wave emission, but also in other radiative aspects of gravitation, for example, in 
constraining the extra radiation caused by a certain model of the breaking down of 
the Lorentz symmetry [68],5 or a nonzero mass of gravitons [21, 26, 44, 55]. Here 
we give a brief introduction to the latter. 

In general relativity, the hypothetical quantum particle for gravity, graviton, is 
a massless spin-2 particle. However, massive gravity theories are found to provide 
interesting phenomena related to the evolution of the Universe, e.g. the accelerated 
expansion and dark energy [21]. Therefore, probing the upper bounds of the graviton 
mass is fundamentally important to field theories and cosmology studies, and it is 
one of the central topics in gravitational physics.

5 Recall that there are numerous different models of Lorentz invariance violation or doubly special 
relativity, see Chaps. 1 or 2. 
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One of the early study of using binary pulsars to test the graviton mass was 
performed by Finn and Sutton in 2002 [26]. They investigated a linearized gravity 
with a massive graviton with the action, 

. S = 1

64π

∫
d4x

[
∂λhμν∂

λhμν − 2∂νhμν∂λh
μλ + 2∂νhμν∂

μh

− ∂μh∂μh − 32πhμνT
μν + m2

g

(
hμνh

μν − 1

2
h2

) ]
,

(12.14) 

where the last term gives a unique graviton mass under certain conditions6 [26] 
while the others are just linearized expansions from the Einstein-Hilbert action with 
.hμν ≡ gμν −ημν and .h ≡ h

μ
μ. It was shown that extra gravitational wave radiation 

exists in theory (12.14), which results in a fractional change in the orbital decay 
rate, by Finn and Sutton [26] 

.
Ṗb − ṖGR

b

ṖGR
b

= 5

24

(
1 − e2

)3
1 + 73

24e
2 + 37

96e
4

(
Pb

2πh̄

)2

m2
g . (12.16) 

Here .ṖGR
b is the value predicted by the general relativity in Eq. (12.3). Notice that 

the fractional change is proportional to .∝ P 2
b m2

g. Therefore, if the precision of . Ṗb
is given, binary pulsars with larger orbits have a larger figure of merit for the test. 
However, usually, the precision of . Ṗb crucially depends on the orbital size, and it 
turns out that, still, binary pulsars with smaller orbits have a larger figure of merit. 

The most recent constraint in this Finn-Sutton framework was provided by 
a combination of multiple best-timed binary pulsars with a Bayesian statistical 
treatment. A collection of nine best-timed binary pulsars (PSRs J0348+0432, 
J0737. −3039, J1012+5307, B1534+12, J1713+0747, J1738+0333, J1909. −3744, 
B1913+16, and J2222. −0137) provide a tight bound on the graviton mass, 

.mg < 5.2 × 10−21 eV/c2, (90% C.L.) , (12.17) 

using a uniform prior in .lnmg [44]. This limit is not the strongest limit on the 
graviton mass [22]. However, from a theoretical point of view, it is a bound from 
binary orbital dynamics, complementary to, e.g. the kinematic dispersion-relation 

6 The conditions are that (i) the wave equation takes a standard form for the trace-reversed metric 
perturbation . ̄hμν

.

(
� − m2

g

)
h̄μν + 16πTμν = 0 , (12.15) 

and the theory recovers the general relativity in the limit when .mg → 0, namely, there is no van 
Dam-Veltman-Zakharov discontinuity [26].
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tests from the LIGO/Virgo/KAGRA observation of gravitational waves [5]. It is 
worth mentioning that the theory (12.14) has some drawbacks including ghosts and 
instability [22, 26], and here it is only used as a strawman target for illustration. 

•? Exercise 
12.6. Derive the lower limit for the Compton wavelength of gravitons from Eq. (12.17). 

It is interesting to note, that in different massive gravity theories, the dependence 
of the extra radiation on the graviton mass is in general different. It depends on 
the specifics of the illustrated gravity theory. This is due to the deep fundamental 
principles in the designs of a number of variants of massive gravity theories. For 
example, in a cosmologically motivated massive gravity theory, known as the cubic 
Galileon theory with the action [21], 

. S =
∫

d4x

[
−1

4
hμν(Eh)μν + hμνTμν

2MPl
− 3

4
(∂ϕ)2

(
1 + 1

3m2
gMPl

�ϕ

)
+ ϕT

2MPl

]
,

(12.18) 

the specific way of the addition of the scalar field . ϕ introduces the so-called 
screening mechanism, thus avoids the stringent constraints from the Solar System, 
yet provides important changes to the cosmological evolution. In the action (12.18), 
. ϕ is the Galileon scalar field, .Tμν is the matter energy-momentum tensor, .T ≡ T

μ
μ, 

.MPl is the Planck mass, and 

.(Eh)μν ≡ −1

2
�hμν + · · · (12.19) 

is the Lichnerowicz operator. For a central massive body with massM , the screening
radius is .r� = (

M/16m2
gM

2
Pl

)1/3, within which, the theory exhibits strong couplings 
and it reduces to the canonical gravity. 

•? Exercise 
12.7. By knowing that the Earth is within the screening radius of the Sun, derive the upper 

limit of graviton mass in the cubic Galileon theory. 

According to de Rham et al. [21], though with a screening mechanism to suppress 
modification at the high density region within . r�, this cubic Galileon theory predicts
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a different scaling behaviour for the gravitational radiation. For a system with a 
typical length scale L, the  fifth-force suppression factor is .∼ (

L/r�
)3/2, and the 

suppression factor for the gravitational radiation is .∼ (Pb/r�)
3/2. As for a binary 

system, one has .L ∼ vPb where v is a characteristic velocity. Therefore, the 
gravitational radiation is, compared with the fifth force, less suppressed by a factor 
of .v3/2, and it provides a valuable window to look for evidence of this theory via 
radiative channels, for example, in binary pulsar systems. 

Analytic radiative powers were worked out by de Rham et al. [21], and the extra 
radiative channels include monopolar radiation, dipolar radiation, and quadrupolar 
radiation. For binary pulsar systems with different orbital periods and orbital 
eccentricities, the dominate radiation channel can be different [55]. For the current 
set of binary pulsars, the quadrupole radiation is the dominating factor among the 
extra channels [21, 55]. 

The most up-to-date constraint from binary pulsars is 

.mg < 2 × 10−28 eV/c2, (95% C.L.) , (12.20) 

for the cubic Galileon theory, and the cumulative probability distributions of the
graviton mass are given in Fig. 12.3 for two different priors [55]. Such a tight 
constraint was obtained from the combination of fourteen best-timed binary pulsar 
systems, including PSRs J0348+0432, J0437. −4715, J0613. −0200, J0737. −3039, 
J1012+5307, J1022+1001, J1141. −6545, B1534+12, J1713+0747, J1738+0333, 
J1756. −2251, J1909. −3744, B1913+16, and J2222. −0137. One should keep in 
mind that, the limit (12.20) is theory specific, and in this situation, only applies 
to the cubic Galileon theory given in Eq. (12.18). Nonetheless, it provides an 
interesting example that for a gravity theory designed for cosmological purposes 
at corresponding lengthscales, binary pulsar systems with astronomical lengthscales 
still provide intriguing and useful bounds. It is an illustration of using binary pulsars 

Fig. 12.3 Cumulative 
probability for the graviton 
mass with two different priors 
in the cubic Galileon 
theory [55]. Shaded regions 
show the excluded graviton 
mass values at the 95% 
confidence level
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in the studies of cosmology by examining the modification to binary orbits brought 
by a cosmologically-motivated modified gravity. 

12.4 Strong Equivalence Principle and Dark Matters 

Binary pulsars are not only useful for the radiative tests introduced in the above 
sections, they also provide superb limiting power in the conservative aspects of 
gravitational dynamics for orbital evolutions. Below we introduce an example of 
examining the strong equivalence principle via the conservative dynamics of binary 
pulsars [18, 72], and its extension to test certain interesting properties of dark 
matters [54, 60]. 

As discovered by Damour and Schäfer [18], a perturbed binary orbit with an 
equivalence-principle-violating abnormal acceleration has a characteristic evolution 
in its orbital elements. The notable change is the appearance of a vectorized 
superposition of two eccentricity vectors for the real orbital eccentricity. It provides 
a graphical understanding of the underlying dynamics for a binary in presence 
of equivalence principle violations. The real orbital eccentricity vector, . e(t), is  
an addition of a rotating normal eccentricity vector, .eR(t), in its post-Newtonian 
fashion, and an extra abnormal eccentricity vector, . e�, which is time independent 
and whose length is proportional to the Eötvös parameter, . �, describing the 
violation of the equivalence principle. If .� = 0, the abnormal eccentricity vector 
.e� = 0 and it returns to the precessing case in the general relavitity. A graphical 
illustration is given in Fig. 12.4. As we discussed in Sect. 12.1, the pulsar timing 

Fig. 12.4 Graphical illustration of the time-varying orbital eccentricity vector, . e(t), for  a binary  
pulsar, in the presence of strong equivalence principle violation [18]. The orbital eccentricity vector 
evolves according to .e(t) = e� + eR(t), where .eR(t) is the usual precessing eccentricity vector in 
the general relativity, and the constant abnormal eccentricity is in the direction of . a⊥, which  is  the  
projection of the external Galactic acceleration in the orbital plane 
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technique is very sensitive to tiny changes in the orbit, and such a change can be 
captured in pulsar timing data [18]. 

At the beginning, such a scenario was applied to a few binary pulsars in a 
statistical sense by marginalizing over some unknown angles to obtain constraints 
on the violation of the equivalence principle [18]. Later it was implemented to 
a handful of binary pulsars with an improved statistical methodology to better 
account for the movements of binary pulsars in the Milky Way [63]. Then, with 
better data and more information about binary pulsar systems, a direct method was 
developed [27]. The direct method not only can constrain the equivalence principle 
violation, but in principle can detect it if it exists. 

The most stringent limit using binary pulsars comes from a precisely timed long-
orbital-period binary pulsar, PSR J1713+0747 [72], as larger orbits have higher 
figures of merit in such a test [18]. Using the improved direct method, the limit 
on the Eötvös parameter from PSR J1713+0747 is [72], 

.|�| < 2 × 10−3 , (95% C.L.) . (12.21) 

Though it is much less limiting than the earlier constraint obtained from the Solar
System [60, 65], the limit (12.21) encodes strong-field effects. For example, in the 
case of the aforementioned scalar-tensor gravity, the strong-field version of Eötvös 
parameter will be very different from its weak-field counterpart [27]. Therefore, 
such a limit from neutron stars is a standalone bound and applicable to the strong 
version of equivalence principle [51, 63]. 

The limit (12.21) is not only interesting to gravitational physics, it also has its 
value when we look at it from a different angle. As we now know, the binary pulsar 
is actually immersed in the ocean of dark matters in the Milky Way. As we have 
not really understood what the very nature of dark matter is, the above method for 
testing the equivalence principle provides a non-traditional probe to dark matter’s 
properties. Shao et al. [54] proposed a method where such a limit, with a proper 
handle, can be converted to the interaction properties between dark matters and 
ordinary matters. 

If there is a long-range fifth force between dark matter particles and ordinary 
matter fields, as many field theories will suggest [60], it is likely to introduce an 
apparent violation of the strong equivalence principle if we have not taken the fifth 
force into account in our standard assumptions. The role of the Galactic acceleration 
in Fig. 12.4, whose projection on the orbital plane is . a⊥, is replaced by the attraction 
of dark matters to the binary system. The difference in the acceleration to two binary 
components (a neutron star and a white dwarf in the case of PSR J1713+0747), 
described by . �, is replaced by a quantity related to the long-range fifth-force 
between dark matters and ordinary standard-model matters [54]. 

Detailed analysis of PSR J1713+0747 [54] took into consideration of the Galactic 
distribution of dark matters, and gave a very different bound in nature that could 
be obtained from terrestrial experiments [60]. The current observational data of 
PSR J1713+0747 already imply that, if there is such a long-range fifth force between 
dark matters and ordinary matters, its magnitude should be no more than 1% of
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the gravitational force between them. Such a limit provides a useful complement 
to other types of dark-matter experiments, which are usually looking for short-
range forces between the hypothesized dark-matter particles and the standard-model 
particles [60], including the searches in underground laboratories, particle colliders, 
and X-ray/.γ -ray observations via high-energy satellites. 

12.5 Summary 

In this chapter, we present some basic concepts of using binary pulsars as fun-
damental clocks in a curved spacetime to probe various types of modifications 
to the binary orbits. These modifications could have been caused by a modified 
gravity theory or some other new physics like a long-range fifth force between 
dark matters and ordinary matters. As pulsar timing provides us with very accurate 
measurements, it puts constraints on tiny changes caused by an alternative gravity 
theory other than the general relativity. Moreover, neutron stars are intrinsically 
strong-gravity objects, and nonperturbative aspects of the strong-field gravity can 
also be studied via radio pulsar experiments. Actually, quite many strong-field limits 
are still best provided by pulsar timing experiments, even nowadays in presence 
of new types of observations like gravitational waves and black hole shadows. A 
careful study shows that the limits from pulsar timing are actually complementary 
to those from gravitational wave detections and black hole shadows [8, 53]. Proper 
combinations of these strong-gravity experiments could provide a more complete 
landscape to gravitation in the strong-field . 

Solely focusing on the radio pulsar side, the timing experiments can be carried 
out for decades, in particular for some interesting systems like the Hulse-Taylor 
pulsar PSR B1913+16 [61] and the Double Pulsar PSR J0737. −3039A/B [37]. 
Long-term observations improve the precision of PPK parameters with the obser-
vational time span . Tobs. For examples, the precision in the orbital decay parameter, 
. Ṗb, improves very fast, as .T −5/2

obs , and the precision in the periastron advance 

rate, . ω̇, improves as .T −3/2
obs . Furthermore, the sensitivity of radio telescopes is also 

improving, notably with the Five-hundred-meter Aperture Spherical Telescope in 
China [33, 40] and the Square Kilometre Array in South Africa and Australia [52, 
62]. The former has already been operating for a couple of years, while the latter 
has also entered the construction phase recently. The improvement in the sensitivity 
of radio telescopes directly converts to improvements in the timing precision. 
Therefore, the real improvement for PPK parameters is faster than the theoretical 
power law predictions. Last but not the least, radio telescopes are also continuously 
discovering new pulsar systems, and some of these systems with suitable system 
properties will contribute to strong-field gravity tests. We are even looking forward 
to discovering yet-undetected binary pulsar systems like neutron-star black-hole 
binaries with short orbital periods .Pb � 1 day or pulsars around the Sgr A. ∗ black 
hole with orbital periods .Pb � 10 years [11, 12, 38], which will provide completely 
new gravity tests in the strong-field regimes [36].
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