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Preface 

From an observational as well as theoretical perspective, it is evident that general 
relativity and the standard model of particle physics cannot be the final answer 
to our understanding of the gravitational interaction. The incompleteness is easily 
demonstrated by puzzling observations and theoretical obstacles such as: dark 
matter and dark energy, the rotation curves of galaxies, the accelerated expansion 
of the universe as well as the Hubble and density fluctuation tension in cosmology; 
the prediction of the existence of singularities and infinite tidal gravitational 
acceleration; still open consistency question between quantum theory and gravity, 
such as the information paradox or the vacuum energy, and the still elusive theory 
of quantum gravity. 

The search for a better understanding of the gravitational interaction is an 
ongoing worldwide effort, and the theoretical ideas, as well as the experimental 
searches, are numerous. 

The 740. Wilhelm and Else Heraeus Seminar “Experimental Tests and Signatures 
of Modified and Quantum Gravity”, which took place virtually in February 2021, 
was a meeting where the problem of the gaps in our understanding of the gravita-
tional interaction was discussed from a large variety of different viewpoints. The 
topics ranged from fundamental theoretical approaches to experimental searches for 
modified and quantum gravity effects on scales from earth-based laboratories to the 
whole universe. 

One insight from the seminar was, that, to step forward towards a self-consistent 
complete picture of gravity, it is important to extend the communication between 
the different communities working on modified and quantum gravity on different 
scales. Theoreticians need to be aware of which kind of theoretical models are 
constrained by experiments, by how much and at what scales. On the other hand, 
experimentalists need to know more precisely where to look in their data for 
quantum gravity effects predicted by theory. In addition, the connection between 
experiments searching for deviations from general relativity on different scales can 
be improved. 

The goal of this book is to give a comprehensible overview on the different angles 
and viewpoints on modified and quantum gravity for the different communities 
working on this topic. In particular, the aim is to give master and PhD students 
as well as postdocs and researchers, working on one specific subject in the field, a 
readable access and broad overview over different other approaches to the topic. To

v



vi Preface

cover all possible aspects of deviations from general relativity in one volume is not 
possible; thus, we decided to demonstrate the variety of possible effects on selected 
topics. One selection criterion was to cover aspects from all scales and all regimes, 
i.e. from the local laboratory to the universe, as well as from classical to quantum. 

We envision that this book serves as door opener between the different 
approaches to understand the fundamental nature of the gravitational interaction. 

Bremen, Germany Christian Pfeifer 
March 2023 Claus Lämmerzahl
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Part I 

Theoretical Models Beyond Special and 
General Relativity 

Theoretical models for modified and quantum gravity are numerous. Some aim 
to be a fundamental theory of nature, like the standard model of particle physics, 
others aim for an approximate phenomenological description of physics, which is 
only valid on certain energy or length scales. This first part of the book is devoted 
to different theoretical approaches that aim to explain shortcomings of general 
relativity. 

Chapter 1 discusses a path from one of the most famous and prominent fun-
damental approach to quantum gravity, namely String Theory, towards predictions 
of observables, by deducing a Chern-Simons term modified theory of gravity with 
torsion, in a limit of fundamental String Theory. The effective theory is then 
connected to Lorentz invariance violating terms appearing in the Standard Model 
Extension. 

A different angle on deviations from local Lorentz invariance, caused by the 
quantum nature of gravity, is discussed in Chap. 2. The concept of a fundamental 
observer invariant energy or length scale (the Planck energy or Planck length for 
example), leads to quantum deformations of local Lorentz (or Poincaré) symmetry, 
which can be described by Hopf algebras or momentum dependent spacetime 
geometry. The new symmetry algebra discussed is known as .κ-Poincré symmetry 
and the framework is called doubly (or deformed) special relativity. 

Chapter 3 discusses gravity as a gauge theory of the Poincaé group, to set 
gravity on similar footings as how we describe the other three fundamental forces 
in physics. In contrast to pure general relativity, the geometry of spacetime can 
contain not only curvature but also torsion; the former being the field strength of the 
gauged Lorentz group, while the later is the field strength of the gauged group of 
translations. 

The following Chapter, Chap. 4 picks these ideas up and considers general flat 
spacetime geometries with torsion or non-metricity as carrier of the information 
about the gravitational interaction. Most interestingly, one can understand already 
classical general relativity without the need to introduce curvature, but instead as 
theory of torsion or of non-metricity alone. These reformulations nicely serve as
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starting point for modified theories of gravity based on these more general geometric 
concepts. 

In the final Chap. 5 of Part I, consequences from deformations or violations 
of local Lorentz invariance on gravitational lensing images are discussed. The 
phenomenological consequences are derived from the Hamiltonian, as well as the 
Lagrangian description of light propagation. For the former the starting point are 
modified dispersion relations, while the later considers Finsler spacetimes geometry. 
For certain (but certainly not all) models both approaches can be seen as dual to 
each other, one leading to a momentum dependent spacetime geometry, the other to 
a velocity dependent one. 

Part II of this book, will deal with astrophysical systems and possible signatures 
of modified and quantum gravity in cosmic observations.
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Abstract 

We discuss situations under which Lorentz symmetry is violated in effective 
gravitational field theories that arise in the low-energy limit of string theory. In 
particular, we discuss spontaneous violation of the symmetry by the ground state 
of the system. In the flat space-time limit, the effective theory of the broken 
Lorentz Symmetry acquires a form that belongs to the general framework of the 
so-called Standard Model Extension (SME) formalism. A brief review of this 
formalism is given before we proceed to describe a concrete example, where we 
discuss a Lorentz-symmetry-Violating (LV) string-inspired cosmological model. 
The model is a gravitational field theory coupled to matter, which contains 
torsion, arising from the fundamental degrees of freedom of the underlying string 
theory. The latter, under certain conditions which we shall specify, can acquire a 
LV condensate, and lead, via the appropriate equations of motion, to solutions 
that violate Lorentz and CPT (Charge-Parity-Time-Reversal) symmetry. The 
model is described by a specific form of an SME effective theory, with specific 
LV and CPT symmetry Violating coefficients, which depend on the microscopic 
parameters of the underlying string theory, and thus can be bounded by current-
era phenomenology. 
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1.1 Lorentz- and CPT Symmetries in Particle Physics and 
Cosmology and Their Potential Violation 

Ignoring gravity, particle-physics theory and the respective phenomenology, as we 
understand them today, are based exclusively on Lorentz Symmetric formalisms. 
The Standard Model (SM) of Particle Physics, which is a mathematically consistent 
gauge field theory of the electromagnetic, weak and strong interactions, in flat 
Minkowski space-time background, is a relativistic (i.e Lorentz invariant), unitary 
quantum field theory, with local, renormalizable interactions. As such, it satisfies the 
important CPT theorem [1, 2], proved independently by Schwinger [3], Lüders [4], 
Pauli [5], Bell [6] and Jost [7], which states that such field theories are described 
by Lagrangian densities that are invariant under the successive action (in any 
order) of the generators of the discrete symmetries of Charge Conjugation (C), 
Parity (or spatial reflexion symmetry) (P) and Time Reversal (T). Although it is 
often stated that Lorentz invariance violation is somewhat fundamental in inducing 
CPT violation [8, 9], nonetheless there have been objections to this statement, 
through explicit examples given in [10, 11], which support the thesis that the 
aforementioned conditions for the validity of the CPT theorem, that is, locality, 
unitarity and Lorentz invariance, are truly independent, since, for instance, non-
local but otherwise Lorentz invariant models could be explicitly constructed which 
violate CPT. Indeed, the proof of the theorem of [8, 9] necessitates well-defined 
time-ordered products and transfer (thus scattering) matrices, which exclude non-
local or non-unitary models, for which scattering matrices are not well defined. 

This CPT symmetry has important implications for particle physics in that it 
implies equality of masses m, lifetimes (or equivalently decay widths . �), magnitude 
(with opposite sign) of electric charges .q+ = −q−, and magnetic dipole moments 
. gm, between particles (matter) and antiparticles (antimatter). The most stringent 
experimental bound between particle-antiparticle mass differences to date refers to 

the neutral-Kaon system, .K0,K
0

[12]: 

.
mK0 − mK

0

mK0 + mK
0 < 10−18, with

�K0 − �K
0

1
2 (�K0 + �K

0
)

< 10−17 , (1.1) 

where .mK0
is its (rest) mass, .�K0

its decay width, and the overline above a symbol 
denotes a quantity referring to the corresponding antiparticle. For completeness, we 
mention that the most stringent current upper bounds in the differences between 
proton (p)-antiproton(. p) electric charges and electron (. e−)-positron(. e+) magnetic 
dipole moments are [12] 

.q(p) − q(p) < 10−21 e ,
gm(e+) − gm(e−)

1
2 (gm(e+) + gm(e−))

< 2 × 10−12 (1.2)

where e is the electron charge (at zero energy scale).
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For atoms, CPT invariance means that the anti-matter atoms will have identical 
spectra with the corresponding matter atoms. We mention at this stage that, since 
antihydrogen has been produced in the Laboratory [13–15], it provides, together 
with other man-made antimatter atoms, such as antirprotonic helium [16–18], a 
playground for additional tests of CPT invariance, at an atomic spectra level [19,20]. 

The implications of CPT invariance for the evolution and state of the Universe 
are also of immense importance. If CPT symmetry characterises a (yet elusive 
though) quantum theory of gravity, which is believed to describe the birth and 
dynamics of our Universe immediately after the Big Bang (i.e. at times after the 
Big Bang of order of the Planck time .tPl ∼ 5.4 × 10−44 s), then matter and 
antimatter would have been generated in equal amounts in the early Universe. The 
dominance of matter over antimatter in the Cosmos, however, is overwhelming. 
Indeed, a plethora of observations, including cosmic microwave background (CMB) 
ones [21], as well measurements on the abundance of elements in the Universe 
(Big-Bang-Nucleosynthesis (BBN) data) [22], yield the following matter-antimatter 
asymmetry (or baryon-asymmetry in the universe (BAU), as it is alternatively called, 
due to the dominance of baryonic matter among the observable matter) : 

.�n = nB − nB

nB + nB

∼ nB − nB

s
= (8.4 − 8.9) × 10−11, (1.3) 

at the early stages of the cosmic expansion, i.e at times .t ∼ 10−6 s and temperatures 
.T � 1 GeV. In the above expression, s denotes the entropy density of the Universe, 
and .nB(B) the baryon (antibaryon) number densities. The above number essentially 

implies the existence of one antiproton in .109 protons in the Universe. 
In the framework of CPT-symmetric quantum field theories, in the absence of 

quantum gravity, which is a valid one at the regime of temperatures and times for 
which (1.3) applies, one could generate such an asymmetry, provided the following
conditions, postulated by A.D. Sakharov [23], are met in the early Universe: 

1. Baryon-number (B)-violating interactions that allow the generation of states with 
.B �= 0 starting from an initial state with .B = 0; 

2. Interactions capable of distinguishing between matter and antimatter. Assuming 
CPT symmetry, this would require violation of both C and CP; 

3. Since matter-antimatter asymmetry is impossible in chemical equilibrium, one 
also requires some breakdown of chemical equilibrium during an epoch in the 
early Universe, otherwise any generated matter-antimatter asymmetry would be 
washed out by the reverse interaction. 

In the Standard Model of particle physics, which is a Lorentz and CPT invariant, uni-
tary, local quantum field theory, the above conditions are met but only qualitatively. 
Indeed, Baryon number violation occurs due to quantum chiral anomalies [24– 
28], as a consequence of non-perturbative (instanton) effects of the electroweak 
gauge group SU(2), which lead to non-conservation of the chiral Baryon-number
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current .J Bμ: 

. ∂μJ B μ ∝ g2nf Tr(Fμν ·Fμν) + Abelian weak hypercharge UY(1)terms ,

(1.4) 

where the Tr is over SU(2) gauge group indices, g is the SU(2) coupling, . nf is the 
flavour (generation) number, and .Fμν is the field strength of the SU(2) gauge field. 
Due to the instanton effects, the system of the early Universe can tunnel through to 
a sector with non-zero baryon number from a state with a zero baryon number, and 
as a result there is induced B-number violation.1 

Moreover, CP Violation (CPV) is known to charascterise the hadron sector of 
the Standard Model (it has been observed for the first time in the neutral Kaon 
system [29]). However, the order of the observed CP violation in the quark sector of 
the Standard Model is several orders of magnitude smaller than the one required 
to produce the BAU (1.3) . Moreover, CPV has still not been observed in the
lepton sector. For these reasons, physicists attempt to extend the Standard Model
in order to discover new sources of CPV that could explain the BAU according
to Sakharov’s conditions (e.g. supersymmetric models, extra dimensions, including
strings, models with right-handed neutrinos etc.).

Minimal, not necessarily supersymmetric, Lorentz and CPT invariant field-
theoretic extensions of the Standard Model, in (.3 + 1)-dimensional space time, 
that could provide extra sources of CPV, are the ones augmented with massive 
right-handed neutrinos (RHN) in their spectra. Such models, with three species 
of heavy sterile Majorana RHN, might be used as providers—via the seesaw 
mechanism [30–35]—of light masses for (at least two of) the active neutrinos of 
the Standard Model, as required by the observed flavour oscillations [36]. In such 
models, in the early Universe, there is lepton asymmetry generation (Leptogenesis), 
through appropriate one-loop corrected decays of the RHN into Standard Model 
particles and antiparticles [37, 38]. In such processes, which are CPT-conserving, 
the existence of a non-trivial CPV requires more than one species of Majorana 
neutrinos [38] and at least one-loop corrections in the appropriate decay processes. 
These features lead to a difference in the respective CPV decay widths of the 
Majorana neutrino into standard-model particles and antiparticles, thus producing 
a Lepton-number (L) violation at an appropriate cosmological freeze-out point. We 
stress that tree-level decays and cases with only one species of Majorana neutrino 
lead to zero lepton asymmetry in CPT invariant models. 

Such lepton number asymmetry generation is then communicated to the baryon 
sector via equilibrated sphaleron processes [24, 26], which violate both B and 
L numbers, but preserve their difference B-L (Baryogenesis). This Baryogenesis

1 We remark that the chiral anomalies also induce the same amount of lepton number (L) violation, 
since .∂μJ B μ = ∂μJ L μ. 
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through Leptogenesis mechanism is currently a very popular one for the generation 
of matter-antimatter asymmetry in the Universe [38].2 

Although there is a well established theoretical understanding of the above 
processes in the context of more or less conventional (i.e Lorentz and CPT invariant) 
particle physics models, nonetheless the lack of experimental evidence for the 
existence of additional sources (beyond the Standard Model) of CP violation, and 
right-handed neutrinos, may be a hint that some other, less conventional mechanism 
is in operation to explain the big question as to why we exist, that is, why there is this 
overwhelming dominance of matter over antimatter in our observable Universe. In 
this respect, a question arises as to whether the above processes of generating matter-
antimatter asymmetry in the Universe could have a geometric origin, possibly due 
to quantum fluctuations of space time (quantum gravity), which are strong in the 
early Universe, and such that they violate Lorentz and CPT symmetry, leading to 
unconventional origins and processes for Lepto/Baryogenesis. 

The theory of quantum gravity is still elusive, despite several theoretical attempts 
in the past and current centuries. One of the biggest questions associated with 
a consistent quantum theory of space time concerns the dynamical emergence 
of spacetime itself, and therefore the background independence of the theory. In 
some background-independent modern approaches to quantum gravity, e.g. the so-
called spin foam models [42, 43], one starts from a rather abstract discrete set of 
states, which eventually condense to form dynamically the space-time continuum. 
Lorentz invariance in such models of quantum gravity, at least in the way we are 
familiar with from particle physics, may thus not be sacrosanct. We also mention 
at this stage, that in more conventional models, where a background space time is 
assumed, Wheeler has conjectured, many years ago, that microscopic black-hole 
and other topologically non trivial fluctuations of space time, may themselves give 
space time a “foamy structure” at Planck length scales [44], which may not respect 
Lorentz symmetry. Such structures may also hinder information from a low-energy 
observer, who conducts scattering experiments, which may lead to an effective 
decoherence of quantum matter in such space times. In such systems, the quantum 
operator corresponding to the generator of CPT symmetry may not be well-defined 
in the effective low-energy theory [45], leading to intrinsic CPT violation, which 
may have distinguishing features [46, 47] as compared to conventional violation 
of CPT symmetry, the latter occurring, for instance, as a result of violation of 
Lorentz invariance in effective local field theories [8], in which the generator of CPT

2 In most leptogenesis scenarios, the RHN are superheavy, of masses close to the Grand Unification 
scale, .mN � 1014 GeV, as required by microscopic seesaw models (including supersymmetric 
ones). Nonetheless, there are also non-supersymmetric models [39, 40], termed the . νMinimal 
Standard Model (. νMSM), according to which the sterile Majorana neutrinos have masses spanning 
the range from a few GeV to .O(10) keV, with the lightest having very weak couplings to the 
Standard Model sector, so that it has a life time longer than the lifetime of the Universe, and as 
such it can provide a candidate for (warm) dark matter. Baryogenesis mechanisms in this latter 
framework have been discussed in [41]. 
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symmetry is well defined, but does not commute with the Hamiltonian operator of 
the system. 

In general, the idea that LV and/or CPT Violation (CPTV) might characterise 
some approaches to quantum gravity, and their effective low-energy field theories, 
which may lead to interesting phenomenology, has gained attention in recent years, 
as a result of the increased sensitivity of experiments, especially cosmic multi-
messenger ones, to such violations. Although at present there is no experimental 
evidence for such violations, nonetheless the sensitivity of some experiments to 
some model parameters may reach Planck scale sensitivity, or even surpass it under 
some circumstances [48], thus approaching the regime of quantum gravity. 

String theory [49], which is one of the most successful to date attempts to unify 
gravity with the rest of the fundamental interactions in nature, but so far has been 
developed as a space-time background-dependent approach, is based perturbatively 
on well-defined scattering matrices, and as such, most of its effective low-energy 
field theories so far are characterised by Lorentz and CPT invariance. There has also 
been an attempt to claim that non perturbative strings would also be characterised 
by some form of CPT invariance [50]. Nonetheless, there is no rigorous proof 
that non-perturbative string theory is not characterised by ground states which do 
violate Lorentz and/or CPT symmetries, leading to effective low-energy theories 
which are plagued by such violations. To the contrary, there are claims, supported 
by plausibility arguments, that such ground states do exist [51–54] in the landscape 
of (open) string vacua, thereby leading to the possibility of spontaneous Lorentz and 
CPT Violation in string theory (although it must be said that the non-perturbative 
stability of such vacua has not been rigorously established, as yet). 

•> Important 

It is the purpose of this book chapter to discuss another scenario for the spontaneous 
violation of Lorentz and CPT symmetry in the closed string sector, which in fact 
will also involve gravitational anomalies. As we shall see, the condensation of the 
corresponding anomaly currents, in the presence of primordial gravitational waves, 
will result in the spontaneous breaking of Lorentz and CPT symmetry, with far 
reaching consequences for unconventional Baryogenesis through Leptogenesis in 
the respective string-inspired cosmologies, but also for inflation [55–58]. 

Before doing so, it is instructive to mention that a formalism for testing 
phenomenologically the predictions of local effective field theories with Lorentz 
and CPT Violation is the so-called SME [59–61], whose LV and CPTV parameters 
and their current bounds have been tabulated in [62]. An SME in the presence of 
gravitational backgrounds has also been formulated [63]. In the next section we 
review briefly the SME formalism in flat space-time backgrounds, which will be of 
relevance to us here.
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1.2 The Standard-Model-Extension Effective Field Theory 
Formalism 

The SME formalism [59–61] assumes that the spontaneous breakdown of Lorentz 
and/or CPT symmetries arises in effective local interacting field theories, which 
are initially Lorentz and CPT invariant, respecting unitarity and locality, and as 
such can be expressed in terms of (an infinite in principle) set of local quantum 
field theory operators, involving general-coordinate invariant (and thus also locally, 
in space-time, Lorentz invariant, on account of the equivalence principle) products 
of tensorial field operators .OSM

μ1μ2...
(with .μi = 0, . . . 3 being (.3 + 1)-dimensional 

space-time indices, .i = 1, 2, . . . , ), depending on the fields of the Standard Model, 
with field operators .Cμ1μ2... involving fields beyond the Standard Model. The 
spontaneous breaking of Lorentz and/or CPT symmetries arises from condensation 
of the latter operators, which in this way obtain non-trivial constant vacuum 
expectation values .〈Cμ1μ2...〉 = constant �= 0 (“background tensors”): 

. OSM
μ1μ2...

Cμ1μ2... condensation⇒ OSM
μ1μ2...

〈Cμ1μ2...〉 μi = 0, . . . 3, i = 1, 2, . . . .

(1.5) 

The background tensors of (mass) dimension five and higher, are suppressed by
appropriate inverse powers of the scale . � of new physics, beyond the Standard 
Model, up to which the effective SME is valid. A complete classification of dimen-
sion five LV and CPTV operators in the fermion, scalar (Higgs) and gauge sectors 
of the Standard Model extension in flat space-time (Minkowski) backgrounds, 
including interactions among these sectors, as well as modifications of the respective 
kinetic terms, has been provided in [64]. 

•> Important 

The following criteria for acceptable SME operators have been adopted (which also 
characterise operators of any dimension in the SME formalism): 

1. The operators must be gauge invariant. 
2. The operators must be Lorentz invariant, after contraction with a background 

tensor. 
3. The operators must not be reduced to a total derivative (as this would imply that 

the respective operators would not contribute to the dynamics of the system). 
4. The operators must not reduce to lower-dimension operators by the use of the 

Euler-Lagrange equations of motion. 
5. The operators must couple to an irreducible background tensor. 

The SME formalism should be viewed as an effective field theory formalism, 
providing a framework to perform calculations that are associated with (sponta-
neous) violation of Lorentz (and CPT) symmetry which can be used in the respective 
tests. It is not meant to delve into the microscopic way by means of which the
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symmetry violating background condensate tensors .〈Cμ1μ2...〉 arise, if at all, as this 
is a feature of the underlying ultraviolet (UV) complete theory of quantum gravity. 
As already mentioned, the various background tensors constitute the parameters of 
the SME effective theory, whose experimental bounds from a plethora of diverse, 
terrestrial and extraterrestrial experiments/observations, including cosmological 
measurements, are tabulated and continuously updated in [62]. 

For our purposes below, we shall restrict ourselves to the free fermion sector, and 
in particular to the lowest order (and simplest) SME effective Lagrangian [59–61]: 

. LSME fermion
eff = ψ(x)

( i

2
γ μ

↔
∂μ −M

)
ψ(x), M = m1 + aν γ ν + bμ γ5 γ ν,

(1.6) 

where .ψ(x) denote a generic fermion, that could be a chiral spinor or even a 
Majorana one (in the case of right-handed neutrinos), m is its mass, the quantity 
. 1 denotes the identity in spinor space, and .γ5 = iγ 0 γ 1 γ 2 γ 3 is the chirality matrix. 
The coefficients . aμ and . bμ in the generalised mass term in (1.6) are both LV and
CPTV background vectors.

•? Exercise 
1.1. Consider the Lagrangian of a Dirac fermion .ψ(x) of mass m, coupled to electromag-

netic, .Aμ(x), and axion (pseudoscalar) fields, .b(x): 

. LA,b,ψ = −1

4
Fμν Fμν + ψ(x)

( i

2
γ μ

↔
∂μ −q Aμ(x)γ μ − m1 − i gch ∂μb(x) γ μ γ5

)
ψ(x)

(1.7) 

where .e, gch ∈ R denote the corresponding real couplings, and .Fμν is the Maxwell tensor. 

(i) First, show that under Lorentz transformations, including improper ones, i.e. parity P 
and time reversal T, the quantities .ψ γ μψ transform as .�μ

ν ψ γ νψ , while . ψ γ μ γ5ψ

transform as .det(�) �
μ
ν ψ γ ν γ5ψ , where .det(�) denotes the determinant of the 

Lorentz transformations .�
μ
ν (including improper ones). 

(ii) Then, by taking into account the way the vector .Aμ(x) and pseudoscalar field . b(x)

transform under such transformations, prove the Lorentz and CPT invariance of the 
Lagrangian (1.7) .

(iii) Finally, by using the explicit transformations of the spinor fields under Parity (P), 
Charge conjugation (C) and Time reversal (T), and the corresponding transformations 
of the .Aμ(x) and .b(x) fields, that you can find in standard quantum field theory 
books [1, 2], prove the CPT invariance of (1.7) , under any order of the combined
application of C, T, P. Pay special attention to argue that under the antiunitary T
operation, the imaginary unit i that appears in the Lagrangian transforms as . T i T −1 =
−i. 

(iv) Consider now the case of constant background vector fields .〈Aμ〉 ≡ aμ = constant, 
and .〈∂μb〉 ≡ bμ = constant whose values remain constant under Lorentz (proper
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or improper) transformations. Show that these terms violate both Lorentz and CPT 
invariance. 

Hint: To prove (i), assume without proof that under a Lorentz transformation (schemat-
ically .x → �x) a Dirac spinor .ψ(x) transforms as .ψ ′(x) = S ψ(�−1x), with . S =
e

i
2 ωαβ �αβ

, .�αβ = i
4 [γ α, γ β ], .α, β = 0, . . . 3, .ωαβ = −ωβα the six independent 

parameters of a (3+1)-dimensional Lorentz transformation, and .γ α the Dirac matrices. 
Then, by considering infinitesimal transformations, .ψ

′
(x) = ψ(�−1x) S−1, and using 

standard properties of Dirac matrices [2], as well as the fact that .�α
β =

(
e− 1

2 ωμν Mμν
)α

β
, 

with .(Mμν)αβ = ημα δν
β − ηνα δ

μ
β , .α, β, μ, ν = 0, . . . 3, prove that .S γ μ S−1 = �

μ
ν γ ν . 

In the context of our string-inspired model [55–58], we shall describe a mech-
anism for the dynamical generation of the LV and CPTV background . bμ in the 
effective field theory (1.6) , through an appropriate condensate of gravitational waves
in a string-inspired gravitational effective field theory with torsion and anomalies.
In fact, as we shall see, the coefficient . bμ in this case will be associated with a 
condensation of the dual of a totally antisymmetric component of a torsion tensor 
in the (.3 + 1)-dimensional spacetime arising from string compactitication. In our 
model, there is no generation of an . aμ background, so from now on we set this 
coefficient to zero. 

We mention at this stage, that, phenomenologically, there are stringent bounds of 
the coefficient . bμ today, which amount to [62]: 

.|b0| < 0.2 eV, |bi | < 10−31 GeV. (1.8) 

We shall show that such bounds are quite naturally respected in our cosmological
model, as a consequence of the cosmic (temperature) evolution of the LV and CPTV
coefficients . bμ, which are generated during the inflationary period, and remain 
undiluted in the radiation era [55–58]. 

As we shall discuss, these background vectors .bμ play an important rôle 
in inducing phenomenologically-relevant Leptogenesis in string-inspired effective 
particle-physics models which involve RHN in their spectra [57, 65–68]. It is 
worth stressing already at this point that, unlike the conventional CPT and Lorentz 
invariant approaches [38], which require at least two species of (Majorana) RHN, 
and one-loop treatment for the respective decays, in order for the necessary CPV 
to be effective in producing the lepton asymmetry, this type of LV and CPTV 
Leptogenesis occurs at tree level, and one species of RHN suffices. As we shall 
see, it is the CPTV properties of the background vector . bμ, in the presence of which 
the RHN decays into standard-model particles take place, that guarantee this. 

We stress that the association of . bμ to torsion provides a geometric origin to 
the cosmic matter-antimatter asymmetry generated in this way. We also remark 
that, given the universal coupling of the torsion to all fermion species, including 
lepton and quarks of the Standard Model, such a LV and CPTV mechanism through
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torsion condensation, may also lead directly to matter-antimatter asymmetries (LV 
and CPTV direct baryogenesis [69, 70]) in this Universe, without necessitating the 
presence of RHN, but we shall not explore these latter scenarios here. 

The geometric concept of torsion in gravitational theories, exists also indepen-
dent from its connection to string theory, as will be discussed in Chaps. 3 and 4 and 
Poincaré gauge theory and Teleparallel gravity. 

1.3 A String-Inspired Gravitational Theory with Torsion 
and Anomalies 

We are now well motivated to start employing string theory considerations that will 
lead us to the effective gravitational theory with the aforementioned LV and CPTV 
properties. To this end, we first remark that in closed string theory [49], the bosonic 
massless gravitational mutliplet consists of a spin-zero (scalar) field, the dilaton 
.�(x), a spin-two symmetric tensor field, the graviton, .gμν(x) = gνμ(x), where . μ, ν

are spacetime indices, and a spin-one antisymmetric tensor (or Kalb-Ramond (KR)) 
field .Bμν(x) = −Bνμ(x). In the phenomenologically-relevant case of superstrings, 
this multiplet belongs to the ground state of string theory, which is augmented by 
the (local) supersymmetry partners of these fields. In our approach we shall not 
discuss those partners, and concentrate only on the aforementioned bosonic fields. 
In the scenario of [57], which we follow as a prototype model for our discussion 
in this chapter, we assume that supersymmetry is dynamically broken during a pre-
inflationary epoch of the string-inspired Universe, and, as such, the supersymmetric 
partner fields acquire heavy masses, even close to the Planck scale. Therefore they 
decouple from the low-energy spectrum, which is of relevance to our subsequent 
discussion. 

We next remark that, in the framework of perturbative strings, the closed-
string .σ -model deformation describing the propagation of the string in a KR field 
background .Bμν , is given by the world-sheet expression [49]: 

. �Sσ
B ≡

∫

�(2)

d2σ Bμν(X) εAB∂AXμ ∂BXν , μ, ν = 0, . . . 3, A,B = 1, 2 ,

(1.9) 

where the integral is over the surface .�(2), which corresponds to the string-tree-
level world-sheet with the topology of a two-dimensional sphere .S(2). For our 
purposes, such lowest genus world-sheet topologies suffice, given that string loop 
corrections, which would be associated with higher-genus world-sheet surfaces, 
are subdominant for weak string couplings we assume throughout; the indices 
.A,B = 1, 2 are world-sheet indices, .εAB = −εBA is the world-sheet covariant 
Levi-Civita antisymmetric tensor, and . Xμ, .μ = 0, . . . 3, are world-sheet fields, 
whose zero modes play the rôle of target-space coordinates. We have assumed that
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consistent string compactification [49] to (.3 + 1) spacetime dimensions has taken 
place, whose details will not be discussed here. 

It can be seen straightforwardly (using Stokes theorem, and taking into account 
that the spherical-like surface .�(2) has no boundary) that the integrand in (1.9) is
invariant under the following U(1) gauge transformation in target space (which is
not related to electromagnetism):

.Bμν → Bμν + ∂μθν(X) − ∂νθμ(X), μ, ν = 0, . . . 3, (1.10) 

where .θμ(X), .μ = 0, . . . 3, are gauge parameters. 

•? Exercise 
1.2. Starting from the expression for the world-sheet deformation (1.9) , prove its invari-

ance under the gauge transformation (1.10) .

This implies that the target-space effective action, which describes the low-
energy limit of the string theory at hand, will be invariant under the U(1) gauge 
symmetry (1.10), and, as such, it will depend only on the field strength of .Bμν : 

.Hμνρ = ∂[μ Bνρ] , (1.11) 

where the symbol .[. . . ] indicates total antisymmetrisation of the respective indices. 
However, in string theory [49], cancellation between gauge and gravitational 

anomalies in the extra dimensional space requires the introduction of Green-
Schwarz counterterms [71], which results in the modification of the field strength 
.Hμνρ by the respective Chern-Simons (gravitational (“Lorentz”, L) and gauge (Y)) 
anomalous terms : 

. H = dB + α′

8 κ

(
�3L − �3Y

)
,

�3L = ωa
c ∧ dωc

a + 2

3
ωa

c ∧ ωc
d ∧ ωd

a, �3Y = A ∧ dA + A ∧ A ∧ A,

(1.12) 

where we used differential form language, for notational convenience. In the above
expression, . H is a three-form, the symbol . ∧ denotes the exterior product among 
differential (. k, �) forms (.f(k) ∧ g(�) = (−1)k � g(�) ∧ f(k)), .A ≡ Aμ dxμ denotes 
the Yang-Mills gauge field one form, and .ωa

b ≡ ωa
μb dxμ is the spin connection 

one form, with the Latin indices .a, b, c, d being tangent space (SO(1,3)) indices. 
The quantity . α′ is the Regge slope .α′ = M−2

s , where .Ms is the string mass scale, 
which is in general different from the reduced Planck scale in four space-time
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dimensions that enters the definition of the four-dimensional gravitational constant 
.κ = √

8π G = M−1
Pl , with .MPl = 2.43 × 1018 GeV (we work in units of . ̄h = c = 1

throughout this work). 
To lowest (zeroth) order in a perturbative expansion in powers of the Regge 

slope . α′, i.e. to quadratic order in a derivative expansion, the low-energy effective 
four-dimensional action corresponding to the bosonic massless string multiplet, 
reads [49]:3 

. SB =
∫

d4x
√−g

( 1

2κ2
[−R + 2 ∂μ� ∂μ�] − 1

6
e−4�HλμνHλμν + . . .

)
,

(1.13) 

with the ellipses .. . . denoting higher-derivative terms, and possible dilaton poten-
tials (arising from string loops or other mechanisms in effective string-inspired 
models, such as dilaton and non-critical-string cosmologies [72–74], and pre-
Big-Bang scenarios [75].). The action (1.13) can be found by either matching
the corresponding (lowest order in derivatives) string scattering amplitudes with
those obtained from the action (1.13) , or by considering the world-sheet conformal
invariance conditions (i.e. the vanishing of the corresponding Weyl-anomaly coef-
ficients [49]) of the corresponding two-dimensional . σ model, which describes the 
propagation of strings in the backgrounds of .�, gμν and .Bμν , and identify them with 
the corresponding equations of motion stemming from the effective action (1.13) .4 

In our approach we shall consider the dilaton field as fixed to an appropriate 
constant value, corresponding to minimisation of its potential, so that the string 
coupling .gs = exp(�) is fixed to phenomenologically acceptable values [49]. 
Without loss of generality, then, we may set from now on . � = 0. This is a self  
consistent procedure, as explained in [56] (see also Exercise 1.16 in Sect. 1.4.3) ,  
which yields the .� = 0 configuration as a solution for the dilaton equation that acts 
as a constraint in this case. 

The torsion [82] interpretation of .Hμνρ arises by noticing that one can combine 
the quadratic in .Hμνρ terms of (1.13) with the Einstein-Hilbert curvature scalar term
R in a generalised curvature scalar .R(�) with respect to a generalised connection, 
so that the action (1.13), with .� = 0, is equivalent to the action: 

.SB =
∫

d4x
√−g

1

2κ2

(
− R(�) + . . .

)
, (1.14)

3 In this work we follow the convention for the signature of the metric .(+,−,−,−), and the  
definitions of the Riemann Curvature tensor .Rλ

μνσ = ∂ν �λ
μσ + �

ρ
μσ �λ

ρν − (ν ↔ σ), the Ricci 

tensor .Rμν = Rλ
μλν , and the Ricci scalar .R = Rμνg

μν . 
4 There are, of course, well-known ambiguities in such processes [76–79], associated with local 
field redefinitions which leave the perturbative string scattering matrix invariant, according to the 
equivalence theorem of local quantum field theories [80,81]. Such ambiguities, allow for instance, 
the string effective actions at quartic order in derivatives (.O(α′)) to be cast in the dilaton-Gauss-
Bonnet combination [76], which is free from gravitational ghosts. 
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where 

.�
ρ

μν = �ρ
μν + κ√

3
Hρ

μν �= �
ρ

νμ (1.15) 

where .�
ρ
μν = �

ρ
νμ is the torsion-free Christoffel symbol. Since the KR field strength 

satisfies 

.Hμ
νρ = −Hμ

ρν , (1.16) 

it plays the rôle of contorsion [82]. This contorted geometry contains only a totally 
antisymmetric component of torsion [82].5 

•? Exercise 
1.3. Prove the equivalence, up to total derivative terms, of the actions (1.13) and (1.14) ,

taking into account (1.15) and (1.16) .

The modification (1.12) leads to the Bianchi identity (in differential form 
language) [49] 

.dH = α′

8 κ
Tr

(
R ∧ R − F ∧ F

)
(1.17) 

where .Ra
b = dωa

b + ωa
c ∧ ωc

b is the curvature two form, .F = dA + A ∧ A is the 
Yang-Mills field-strength two form, and the trace (Tr) is over Lorentz- and gauge-
group indices, respectively. The non zero quantity on the right hand side of (1.17) is
the “mixed (gauge and gravitational) quantum anomaly” [84]. In the (more familiar) 
component form, the identity (1.17) , becomes:

. ε
μ

abc Habc
;μ = α′

32 κ

√−g
(
Rμνρσ R̃μνρσ − Fμν F̃ μν

)
≡ √−gG(ω,A),

(1.18) 

where the semicolon denotes gravitational covariant derivative with respect to the
standard Christoffel connection, and

.εμνρσ = √−g εμνρσ , εμνρσ = sgn(g)√−g
εμνρσ , (1.19)

5 Using local field redefinition ambiguities [49,76–78,83] one can extend the torsion interpretation 
of . H to .O(α′) effective actions, which include fourth-order derivative terms. 
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denote the gravitationally covariant Levi-Civita tensor densities, totally antisym-
metric in their indices, with .εμνρσ (.ε0123 = +1, etc.) the Minkowski-space-time 

Levi-Civita totally antisymmetric symbol. The symbol .(̃. . . ) over the curvature or 
gauge field strength tensors denotes the corresponding duals, defined as 

.R̃μνρσ ≡ 1

2
εμνλπR

ρσ
λπ , F̃ μν ≡ 1

2
εμνρσ Fρσ , (1.20) 

respectively. The mixed-anomaly term is a total derivative term

.
√−gG(ω,A) = √−gKμ(ω,A);μ = ∂μ

(√−gKμ(ω,A)
)

(1.21) 

as can be seen from

. 
√−g

(
Rμνρσ R̃μνρσ − Fμν F̃ μν

)

= 2 ∂μ

[
εμναβ ωab

ν

(
∂α ωβab + 2

3
ω c

αa ωβcb

)

− 2εμναβ
(
Ai

ν ∂αAi
β + 2

3
f ijk Ai

ν Aj
α Ak

β

)]
, (1.22) 

where .i, j, k denote gauge group indices, with .f ijk the gauge group structure 
constants. 

•? Exercise 
1.4. Using the definitions of the curvature and gauge field strength differential forms (in a 

shorthand notation, for brevity), .R = dω+ω∧ω and .F = dA+A∧A, in terms of the spin 
connection . ω and the gauge field connection . A, respectively, prove Eq. (1.17) , by taking the
exterior derivative of the three form . H in (1.12) .

•> Important 

In our four-dimensional cosmology [55–58] we shall not cancel the anomalies. 
In fact, we shall assume that only fields of the bosonic degrees of freedom of the 
massless gravitational string multiplet appear as external fields in the effective action 
describing the dynamics of the early Universe. Chiral fermionic and gauge matter 
are generated at the end of the inflationary period as we shall discuss later on. 
With the above assumptions, one may implement the Bianchi identity (1.17) as a
constraint in a path-integral, via a pseudoscalar (axion-like) Lagrange multiplier
field . b(x). After the .Hμνρ path-integration, then, one arrives at an effective action 
for the dynamics of the early epoch of the string-inspired Universe, which, upon the
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assumption of constant dilatons, contains only gravitons and the now dynamical 
field .b(x), canonically normalised, without potential, which corresponds to the 
massless string-model-independent gravitational (or KR) axion field [83, 85]: 

. Seff
B =

∫
d4x

√−g
[

− 1

2κ2 R + 1

2
∂μb ∂μb +

√
2

3

α′

96 κ
b(x)Rμνρσ R̃μνρσ + . . .

]

=
∫

d4x
√−g

[
− 1

2κ2 R + 1

2
∂μb ∂μb

]

−
∫

d4x

√
2

3

α′

96 κ
b(x)Rμνρσ

∗Rμνρσ + . . .

=
∫

d4x
√−g

[
− 1

2κ2 R + 1

2
∂μb ∂μb −

√
2

3

α′

96 κ
Kμ(ω) ∂μb(x) + . . .

]
.

(1.23) 

In passing from the first to the second line of (1.23) we have used the definitions
(1.19) and that sgn(g)=-1. The symbol .

∗Rμνρσ denotes the dual with respect to the 
flat-space-time Levi-Civita totally antisymmetric symbol .εμνρσ , with .ε0123 = +1, 
etc.: 

.
∗Rμνρσ ≡ 1

2
εμνλπR

ρσ
λπ , (1.24) 

In the last line of (1.23) we have used (1.22), setting .A = 0 (.Kμ(ω) = Kμ(ω, 0)), 
and performed appropriately the integration by parts, taking into account that fields 
and their first derivatives vanish at space-time infinity. The action (1.23) is nothing
other than the action describing the Chern-Simons modification of general relativity
in the presence of axion fields [86, 87]. In fact, from this latter point of view, one 
may view this action as a generic Chern-Simons-modified-gravity action, beyond 
the specific context of string theory, in which case the coefficient of the Chern-
Simons term should be replaced by a generic real parameter: 

.

√
2

3

α′

96 κ
⇒ ACS ∈ R , (1.25) 

to be determined “phenomenologically” in various contexts (e.g., rotating black
holes and wormholes, beyond string theory, as in [88–90]).
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•? Exercise 
1.5. Consider the path integral of the action (1.13) with respect to the field .Hμνρ , setting 

the dilaton .� = 0: 

.ZH =
∫
DH exp(iSB) , (1.26) 

where .DH denotes the appropriate path-integration measure. Insert the Bianchi-identity 
(1.18), in the absence of gauge fields (.A = 0), as a .δ-functional constraint, 

. δ
(
ε

μ
abc Habc

;μ − α′

32 κ

√−g
(
Rμνρσ R̃μνρσ

))
,

in the integrand of (1.26). By representing the .δ(x) functional as an integral over a 
pseudoscalar Lagrange multiplier field, perform the .H-path integration, and normalise 
appropriately the Lagrange multiplier to link it to the field .b(x) appearing in the action 
(1.23), with canonical kinetic term, thus mapping (1.26) to a path integral over . b(x)

corresponding to the action (1.23) . Why the Lagrange multiplier field in this case has to
be a pseudoscalar?

We note that classically, in (3+1) dimensional space-times, the duality between 
.Hμνρ and .b(x) is provided by the relation (corresponding to saddle points of the 
. H path-integral (1.26) after the b-representation of the Bianchi-constraint-(1.18) .δ-
functional) [72, 83] 

. − 3
√

2 ∂σ b = √−g εμνρσ Hμνρ. (1.27) 

The ellipses .. . . in (1.23) denote subdominant, for our purposes, higher derivative
terms (in fact an infinity of them), but also other axions, arising from compacti-
fication in string theory [85], which have been discussed in [58], but will not be 
the focus of our present study. The reader should notice the presence of anomalous 
CP-violating couplings of the KR axion to gravitational anomalies in the action 
(1.23) . These will play an important role in inducing inflation in our string-inspired
cosmology.

We note at this stage that, had we kept gauge fields in our early-universe 
cosmology as external fields, the KR axion field would also exhibit Lagrangian 

couplings of the form .∝ b(x)Tr
(
Fμν F̃μν

)
. Such terms would not contribute to 

the stress tensor, being topological.
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•? Exercise 
1.6. Prove that the contributions of the term 

. b(x)Tr
(
Fμν F̃μν

)

where .Fμν is the (non-Abelian, in general) gauge field strength, and .̃Fμν its dual (defined 
below Eq. (1.18) ), to the stress-energy tensor of the theory (the variation of the action w.r.t.
the metric) vanish identically.

This needs to be contrasted with the gravitational anomaly terms in (1.23) , whose
variation with respect to the metric field .gμν yields non-trivial results [86, 87]: 

. δ
[ ∫

d4x
√−g b Rμνρσ R̃μνρσ

]
= 4

∫
d4x

√−g Cμν δgμν

= −4
∫

d4x
√−g Cμν δgμν , (1.28) 

where

. Cμν ≡ −1

2

[
uσ

(
εσμαβRν

β;α + εσναβR
μ

β;α
)

+ uστ

(
R̃τμσν + R̃τνσμ

)]
,

(1.29) 

is the (tracelss) Cotton tensor [86], 

.gμν Cμν = 0 , (1.30) 

with .uσ ≡ ∂σ b = b;σ , uστ ≡ uτ ;σ = b;τ ;σ . Taking into account conservation 
properties of the Cotton tensor [86], 

.Cμν

;μ
= 1

8
uν Rαβγ δ R̃αβγ δ , (1.31) 

we observe that the gravitational field (or Einstein-Chern-Simons) equations stem-
ming from (1.23) (and (1.25) ) read:

.Rμν − 1

2
gμν R −ACS Cμν = κ2 T

μν
matter, (1.32)
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where .T
μν
matter denotes a matter stress tensor, which in our early-Universe cosmology 

includes only the KR axion-like field [55–58] 

.T b
μν = ∂μb ∂νb − 1

2

(
∂αb ∂αb

)
. (1.33) 

In more general situations, .T
μν
matter contains all matter and radiation fields, but does 

not contain couplings to the curvature or derivatives of the metric tensor. 

•? Exercise 
1.7. Prove the variational Eq. (1.28) and the properties (1.30) and (1.31) of the Cotton

tensor, using its definition (1.29) .

•> Important 

From the properties of the Einstein and Cotton tensors, stated above, we observe 
that the matter stress tensor is not conserved but it satisfies the conservation of an 
improved stress tensor in the form: 

.T
μν

improved ;μ ≡ T
μν

matter ;μ +ACS Cμν

;μ = 0 . (1.34) 

The presence of the Cotton tensor in this conservation equation indicates exchange
of energy between the KR axion field and the gravitational anomaly term, in
a way consistent with diffeomorphism invariance and general covariance [55]. 
For Friedman-Lema. ̂itre-Robertson-Walker (FLRW) geometries, the gravitational 
anomaly terms vanish, but this is not the case for (chiral) fluctuations about the 
FLRW background which violate CP invariance, for instance chiral gravitational-
wave (GW) perturbations, as we discuss below. 

•? Exercise 
1.8. Prove (1.34).
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1.4 Chiral Gravitational-Wave (Quantum) Fluctuations, 
Anomaly Condensates and Running-Vacuum-Model 
Inflation 

In the string-inspired cosmological model of [55, 57], which is assumed to describe 
the dynamics of the early Universe, only fields from the massless gravitational string 
multiplet are assumed to appear in the effective gravitational action. The generation 
of chiral fermionic and gauge matter occurs at the end of the inflationary era, as 
we shall discuss later on. For constant dilatons, we assumed so far, this implies that 
the effective Chern-Simons-modified gravity action (1.23) is the relevant one for a
discussion of inflation in such a Universe. In the presence of (chiral) gravitational-
wave (GW) quantum fluctuations of spacetime the anomaly terms are non trivial.
In the literature there have been essentially two ways of computing the effects of
GW on the gravitational anomaly terms: one is through Green’s functions [91], and 
the other through canonically quantised linearised gravity formalism [92], which we 
adopt below as it seems closer to our spirit that the anomaly condensates are induced 
by quantum gravitational fluctuations. 

1.4.1 Chiral-Gravitational-Wave Quantized Perturbations 

To this end, let one consider quantised tensor perturbations .hij (η, x) in a flat FLRW 
expanding Universe: 

.ds2 = a2(η)
(
dη2 − (δij + 2hij (η, x)

)
dxidxj , i, j = 1, 2, 3 , (1.35) 

where .a(η) is the scale factor of the FLRW Universe, and . η is the conformal 
time [93], which is related in our approach to the Robertson-Walker time t via 

.a(η)dη = +dt , (1.36) 

(we consider the flow of both times in the same direction). The perturbations can
be written in terms of their three-dimensional-space Fourier components, .hp(k, η), 
with .p = Left (L) or Right (R), as [92]: 

.hij (x, η) =
√

2

MPl

∫
d3k

(2π)3/2 eik · x ∑
p=L, R

ε
p
ij (k) hp(k, η), (1.37)
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with .εp
ij (k) the polarisation tensors, satisfying: 

. kiε
p
ij (k) = 0, ε

p �
ij (k) ε

p′
ij (k) = 2 δpp′ ,

εilm εL �
ij (k) εR

jl(k) = εilm εR �
ij (k) εL

jl(k) = 0 ,

εilm εL �
ij (k) εL

jl(k) = −εilm εR �
ij (k) εR

jl(k) = −2i
km

|k| , (1.38) 

where the . � denotes complex conjugation. 
We quantise the tensor perturbations, assumed weak, by writing the tensor 

perturbation as an operator .̂hij (k) in the Heisenberg picture, which implies that 
it satisfies the corresponding Einstein equation [92]: 

. ̂hij (x, η) =
√

2

MPl

∫
d3k

(2π)3/2

∑
p=L,R

(
eik · x ε

p
ij (k) ĥp(k, η)

)
,

ĥp(k, η) = hp(k, η) âp(k) + h�
p(−k, η) â †

p (−k) , (1.39) 

where the .(̂. . . ) denotes a quantum operator, and for the creation, .̂a†
p(k), and 

annihilation operators, .̂ap(k), we have the canonical commutation relations 

.

[
âp(k) , â

†
p′(k′)

]
= δ(3)(k − k′) (1.40) 

and the hermitian conjugate relation, with all others zero. The time-independent
vacuum state . |0〉 is defined by its annihilation by .̂ap(k), i.e. 

.̂ap(k)|0〉 = 0 . (1.41) 

Assuming weak tensor perturbations . hij , (1.35) , we may show that, up to second
order in such perturbations, the gravitational Chern Simons term assumes the form

. Rμνρσ
∗Rμνρσ = − 8

a(η)4 εijk
( ∂2

∂xl ∂η
hjm

∂2

∂xm ∂xi
hkl

− ∂2

∂xl ∂η
hjm

∂2

∂xl ∂xi
hkm + ∂2

∂η2 hjl

∂2

∂xi ∂η
hlk

)
, (1.42) 

where .εijk , .i, j, k = 1, 2, 3 spatial indices, is the totally antisymmetric symbol 
in Euclidean three-dimensional space. We remind the reader that the dual tensor 
.
∗Rμνρσ is defined (cf. (1.24) ) with respect to the flat space-time Levi-Civita symbol
.εμνρσ , with .ε0ijk = +1 ≡ εijk , .i, j, k = 1, 2, 3.
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•? Exercise 
1.9. Starting from the metric (1.35), prove (1.42) , up to second order in weak tensor

perturbations . hij . 

•> Important 

The classical quantity (1.42) becomes a Chern-Simons operator .
̂Rμνρσ R̃μνρσ upon 

replacing .hij (η, x) by the corresponding quantum operators .̂hij (η, x) (1.39) . Using
(1.40) and (1.41), one can show [92] that the vacuum expectation value of the Chern-
Simons operator 

. 〈0| ̂Rμνρσ
∗Rμνρσ |0〉 = 16

a(η)4 M2
Pl

∫
d3k

(2π)3

[
k2h�

L(k, η) h′
L(k, η)

− k2 h�
R(k, η) h′

R(k, η)

− h� ′
L (k, η) h′′

L(k, η) + h� ′
R (k, η) h′′

R(k, η)
]
, (1.43) 

where .k ≡ |k|, and the prime denotes derivative with respect to the conformal 
time . η. Notice that the vacuum expectation value (1.43) vanishes in a Left-Right
symmetric situation, therefore the result is only non zero when there is gravitational
birefringence, i.e. chirality (in the sense of differences between left-right GW
perturbations).

•? Exercise 
1.10. Inserting (1.39) into (1.42), and using canonical quantization properties, (1.40) and

(1.41), prove the result (1.43) for the vacuum expectation value of the gravitational Chern
Simons operator.

The physical momenta .k/(a(η)) of the graviton modes should be cut-off at an 
UltraViolet (UV) scale . μ, which means that terms in the ultraviolet regime dominate 
the integrals. It is at this point that to have a full understanding of the condensate 
one needs the UV complete theory of quantum gravity, such as the full string theory 
in this case.
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In [91], it was assumed that in the evolution equation of the graviton modes one 
can keep only up to second order derivative terms. Although, as correctly remarked 
in [92], this is far from a satisfactory treatment within a quantum gravity regime, 
as required by the fact that the dominant part of the Fourier integration is near 
the UV cut-off, where quantum gravity is fully operational, nonetheless, for our 
purposes of discussing qualitatively the effects of gravitational anomaly condensates 
on inducing a running vacuum inflation, this will suffice [55–58], in view of the 
slow-roll of the weak axion KR field that characterises our cosmology model, as we 
shall discuss below. 

Making this assumption, it can be easily seen that, in an inflationary (de Sitter-
like) space-time background of interest to us here, with an approximately constant 
Hubble parameter .H � constant, the normalised solutions of the Einstein-Chern-
Simons gravitational field Eq. (1.32) , in the presence of a weak anomaly term,
assume the form:

. hp=L,R(k, η) ∼ exp(−i kη) exp(±k �(η − η0)) ,

� ≡ 4

a2(η)

(
f ′′(b) + a(η)H f ′(b)

)
. (1.44) 

where

.f (b) ≡
√

2

3

1

24

b(η)

M2
s MPl

= 3.4 × 10−2

M2
s MPl

b(η) , (1.45) 

with . η0 signalling the beginning of the inflationary phase in conformal-time-. η
coordinates. The . ± in the exponent of the second factor on the right-hand side of 
(1.44) refer to left (L), right (R) movers respectively. In arriving at (1.44) we ignored
the “matter” contributions to the Einstein equations, as these are associated with the
slowly rolling stiff-matter KR axions in our context (see below), and thus yield
subleading terms, quadratic in . ḃ [55, 57] (the dot denotes derivative with respect 
to the cosmic Robertson-Walker time t , which is related to the conformal time 
. η via (1.36)). Thus, the quantity . � is assumed weak in our approach, .|�| � 1, 
due to the slow-roll assumption for the KR axion field, which . � depends upon (cf. 
(1.44) ,(1.45) ). In our approximations below, therefore, we keep only terms linear in
. �. 

On substituting (1.44) and (1.45) in (1.43) , then, and performing the Fourier
integrations, up to an UV cutoff . μ [91, 92], such that .k ≤ a(η)μ, we obtain to 
first order in . �: [92]: 

.〈0| ̂Rμνρσ
∗Rμνρσ |0〉 = 4 H 2

π2 M2
Pl

�μ4 . (1.46)
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Passing from a conformal to Robertson-Walker cosmic time, we write . � = 4f̈ +
8 H ḟ . In our case .f̈ � H ḟ as a consequence of the slow roll nature of the 
KR axion, which arises dynamically in a self consistent way, upon formation of 
gravitational anomaly condensates [55–58], to be reviewed below. Thus, for our 
purposes, we may ignore the . f̈ terms, and approximate: 

.� � 0.27
H

M2
s MPl

ḃ(t) , (1.47) 

Hence, (1.46) yields

.〈0| ̂Rμνρσ
�Rμνρσ |0〉 � 1.1

π2

( H

MPl

)3
μ4 ḃ(t)

M2
s

. (1.48) 

In the specific context of string theory, it is reasonable to define the effective theory
below the string mass scale, . Ms , which therefore should act as an UV cutoff, 
hence we can identify .μ ∼ Ms . On the other hand, in generic Chern-Simons 
modified gravity theories, the string scale enters only in the coefficient of the 
Chern-Simons anomaly term .ACS (1.25) , which is viewed as a phenomenological
parameter. In such a context, it is natural to assume that the UV cut-off scale of
the graviton modes is the Planck scale .μ ∼ MPl, while the string scale (and thus 
the magnitude of the coefficient .ACS) can be determined phenomenologically by 
discussing conditions for the formation of the anomaly condensate [56], which we 
do in the next subsection. The reader should recall that our main aim in this work is 
to demonstrate that the formation of anomaly condensates will connect this Chern-
Simons gravitational theory with the (Lorentz and CPT Violating) Standard Model 
Extension framework [59, 60], described in Sect. 1.2. 

1.4.2 Gravitational-Anomaly Condensates and Spontaneous 
Violation of Lorentz Symmetry 

In [55, 57] we have discussed the possibility of forming a condensate of the 
gravitational anomaly, in case there is a macroscopic number of sources of GW, with 
constructive interference. Below we shall clarify in some detail how we envisage 
the appearance of such a condensate, and what is its connection with the vacuum 
expectation value of the Chern Simons term operator (1.43) during inflation. It is
understood that our approach will be phenomenological, providing only plausibility
arguments for the condensate formation. The microscopic treatment requires a
complete (non-perturbative) understanding of the underlying string theory or, more
general, the UV complete theory of quantum gravity that characterises the effective
theory, should one view the action (1.23) as a generic Chern-Simons modified
gravity model, with a phenomenological Chern-Simons coefficient .ACS (1.25).
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To this end, we assume that the condensate is created by the collective effects of a 
(time-dependent) number .N(t) of sources of GW per unit volume in the expanding 
Universe (in this notation, the total number of sources is given by . N = ∫

d4xN(t) =∫
d4x

√−g
N(t)√−g

, with .n� ≡ N(t)√−g
the proper number density of sources). In this case, 

the induced tensor perturbations in (1.35) are replaced by the sum

.hij (n, x) ⇒
N(t)∑
I=1

hI
ij (η, x), (1.49) 

expressing the collective effect of sources, where the index I labels the source
that produces a specific GW perturbation. In this effective, “phenomenological”
approach, each individual .h

(I)
ij satisfies an Einstein-Chern-Simons field equation, 

but the collective metric induced under (1.49) does not, as a result of the dynamical
(time dependent) nature of .N(t), given that the dynamics of the formation of 
sources can only be dealt with in a full theory of UV quantum gravity, such 
as string theory etc.6 Nonetheless, we may proceed in a rather agnostic, phe-
nomenological approach, and quantize each individual . hI

ij by means of replacing it 

simply with operators .̂hI
ij (η, x) (1.39) , with the creation and annihilation operators,

.̂aI †(k), âI (k), respectively, now carrying a “source” index I . For the vacuum we 
demand 

. aI (k)|0〉 = 0, and aI (k) aJ †(k′) |0〉 = δIJ δ(3)(k − k′)|0〉,
I, J = 1, . . .N(t) , (1.50) 

where .δIJ denotes a Kronecker delta. It is then immediately seen, that, upon 
assuming that the dominant GW perturbations .hI

p(k, η) coming from these set of 
sources have all the same magnitude, so that the index I can be omitted from the 
corresponding expression, we arrive at the analogue of (1.43) in this multi-source
case:

. 〈0| ̂Rμνρσ
∗Rμνρσ |0〉N = N(t)

16

a4 M2
Pl

∫
d3k

(2π)3

[
k2h�

L(k, η) h′
L(k, η)

− k2 h�
R(k, η) h′

R(k, η) − h′
L

�
(k, η) h′′

L(k, η) + h′
R

�
(k, η) h′′

R(k, η)
]
, (1.51) 

that is, the collective effect is represented by a simple multiplication of the
right-hand side of (1.43) by the number of sources. We stress again this is a
plausible, but effective description, valid for weak GW perturbations from the

6 Indeed, one may envisage that the primordial sources of GW appear dynamically as excitations of 
the ground state of the full quantum gravity system, and span the whole range, from non-spherically 
collapsing domain walls in a pre-inflationary epoch, to merging primordial black holes [57], which 
are themselves created from (quantum) gravitational vacuum perturbations. 
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various sources. This result, however, allows us now to represent the gravitational-
anomaly condensate as 

.〈Rμνρσ R̃μνρσ 〉condensateN = 1√−g
〈0| ̂Rμνρσ

∗Rμνρσ |0〉N , (1.52) 

to quadratic order in the weak GW perturbations, where .
√−g is the de Sitter 

unperturbed background metric, which was estimated above, cf. (1.48) . In arriving
at (1.52) we used (1.19) and (1.20). Using the estimate (1.48) , we can thus estimate
the magnitude of the gravitational anomaly condensate, induced by a macroscopic
number of sources . N(t), as:  

. 〈Rμνρσ R̃μνρσ 〉condensateN = N(t)√−g

1.1

π2

( H

MPl

)3
μ4 ḃ(t)

M2
s

≡ n�

1.1

π2

( H

MPl

)3
μ4 ḃ(t)

M2
s

. (1.53) 

The reader should recall that in the above expression .n� ≡ N(t)√−g
denotes the number 

density (over the proper de Sitter volume) of the sources. Without loss of generality, 
we may take this density to be (approximately) time independent during inflation. 

From the anomaly Eq. (1.22) , which expresses the gravitational Chern-Simons
term (1.53) as a divergence of an anomaly current, and assuming isotropy and
homogeneity of the background space time (which we can justify microscopically
in our framework through pre-inflationary epochs [57,58]) we may write, to leading 
order in GW pertubations during inflation [55–57]: 

. 〈Kμ

;μ
〉condensateN � d

dt
< K 0 > +3 H < K 0 >� n�

1.1

π2

( H

MPl

)3
μ4 ḃ(t)

M2
s

,

(1.54) 

where .< K 0 > denotes the (dominant) average temporal component of the anomaly 
current in the de-Sitter background. 

We next observe that from the Euler-Lagrange equations of the KR axion 
stemming from (1.23) , one obtains:

.
1√−g

∂μ

(√−g[∂μb −ACSKμ]
)

= 0 , (1.55) 

which for isotropic and homogeneous cosmological space times, leads to a solution
(under the assumption of the formation of a condensate)

.ḃ = ACS < K 0 >, (1.56)
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where in the case of strings, the Chern-Simons coefficient .ACS is defined in (1.25) 
(see also (1.23) ). A condensate should be a (approximately) time-independent solu-
tion during inflation, hence upon substituting (1.56) onto the evolution Eq. (1.54) ,
we obtain that a (approximately) constant solution .

d
dt

< K 0 >� 0 necessitates a 
constant H (inflation) and also the condition [55–57]: 

.0 � 1 − n�

1.1

3 π2

( H

MPl

)2 μ4ACS

M2
s MPl

, (1.57) 

during inflation. In the context of string theory (1.23), for which the coefficient . ACS

is given by . 1
96

√
2
3

MPl
M2

s
(cf. (1.25) , (1.23) ), this condition translates to:

. 1 � 3 × 10−4 n�

( H

MPl

)2 ( μ

Ms

)4 ⇒ n
1/4
�

μ

Ms

∼ 7.6 ×
(MPl

H

)1/2
.

(1.58) 

•? Exercise 
1.11. Verify (1.57) and (1.58), starting from (1.54) and (1.56) .

In [56], we have assumed .n� � O(1). In that case, upon taking the Planck data 
results for the upper bound of the inflationary Hubble scale . HI [21] 

.
HI

MPl
� 10−5 , (1.59) 

we obtain from Eq. (1.58) , .μ � 2.4 × 103 Ms . In [56–58] we assumed that the  
graviton modes are allowed to have momenta up to Planck scale, thus taking 
.μ ∼ MPl.7 This determined the string scale at a high value and is consistent 
with the transplanckian conjecture, that no momenta of the effective field theory 
exceeds the Planck scale. However, from the point of view of a specific micro-
scopic string theory, it may seem more appropriate to consider . μ ∼ Ms , as  
mentioned above, and adopted in [92], but considering the proper number density 
of sources . n� as the adjustable parameter that will guarantee the formation of time-
independent gravitational-anomaly condensates. In this scenario, one obtains from 

7 In [56,57] we followed the Green’s function method of [91], instead of the Fourier method of [92] 
adopted here, in order to evaluate the condensate. The two methods cannot be directly compared, 
especially in view of the various approximations involved. Nonetheless, as we see by comparing 
(1.58) with the corresponding one in [56], in our model, the two methods yield qualitatively similar 
results, that agree in order of magnitude, as expected for consistency.
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(1.58) and (1.59) ,

.n� � 3.3 × 1013 , (1.60) 

which defines the macroscopic number of sources (per proper volume) needed to
produce a gravitational anomaly condensate in the context of an effective Chern-
Simons gravitational theory, inspired from strings, with the string scale .Ms playing 
the rôle of the UV cutoff in the theory. In this second approach, the string scale is 
arbitrary and the conditions for the formation of the condensate translate into bounds 
on the number density of the sources of GW that lead to the condensate. 

•> Important 

Thus, upon formation of the condensate during inflation (.H = HI � constant), we 
obtain a constant cosmic rate for the KR axion field, which we parametrise as [55]: 

.ḃ = ACSK 0 � constant = √
2ε H MPl. (1.61) 

The parameter .ε � 1 needs to be compatible with the slow-roll cosmological 
data [21] (see discussion below, Eq. (1.79) ).

This background solution violates spontaneously Lorentz symmetry. This can be 
readily seen from the duality relation (1.27), which connects . ḃ with the dual of the 
Kalb-Ramond torsion field, 

.constant = ḃ ∝ εijkHijk, i, j, k = 1, 2, 3. (1.62) 

This implies the dynamical selection of a preferred Lorentz frame by the ground 
state of the theory, in which the spatial components of the totally antisymmetric 
torsion of the system is constant. As we shall discuss later on, this property 
connects this gravitational theory with a SME effective field theory at the end of 
the inflationary period, when chiral fermionic matter, along with gauge fields, is 
assumed generated, according to the approach of [55–58]. 

We now remark that the creation of the anomaly condensate (1.53) produces in
principle a linear potential for the KR axion (cf. (1.23) )

.V (b) = b(x)ACS 〈Rμνρσ R̃μνρσ 〉condensate N , (1.63) 

with 

. ACS 〈Rμνρσ R̃μνρσ 〉condensate N
Eq. (1.61) = n�

1.1

π2

( H

MPl

)4
μ4

√
2ε M2

Pl

M2
s

√
2

3

MPl

96 M2
s

Eq. (1.59) 
� 4.3 × 10−10 √

ε M3
Pl , (1.64) 

where in the last inequality we saturated the bound (1.60), for concreteness.
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The potential (1.63) is reminiscent of the linear axion-monodromy inflation
potentials from appropriate brane compactifications (in, say, type IIB strings [94]). 
Such linear potentials have been argued to lead to slow-roll hill-top inflation. 
However, in our case the situation is very different. As we shall argue next, inflation 
in our scenario arises due to the non-linearities of the Running-Vacuum-Model 
(RVM)-type vacuum energy, in particular the condensate induced .H 4 term, without 
the need for external fields. The linear axion potential then serves merely as a 
consistency check of the slow-roll KR axion (1.56) which characterises our case
and leads to the parametrization (1.61). In [55–58] we have taken .ε ∼ O(10−2), as  
a generic slow-roll parameter of the cosmological data [21], but this is not restrictive, 
given that b is not the inflaton, in the sense that it is not the linear potential of the KR 
axion that drives inflation in our case but the RVM non linearities. We shall discuss 
in the next Sect. 1.4.3 the RVM properties of our inflation, and come back to this 
issue of estimating theoretically the order of magnitude of the phenomenological 
parameter . ε (see Eq. (1.79) ).

For the moment, we proceed to estimate the condensate contribution to the 
vacuum energy density. Indeed, under the formation of a condensate (1.53) , one
may expand the effective action (1.23) about this condensate, by writing for the
gravitational Chern Simons term:

. b(x)Rμνρσ R̃μνρσ = 〈b(x)Rμνρσ R̃μνρσ 〉condensate N+ : b(x)Rμνρσ R̃μνρσ : ,
(1.65) 

where .: · · · : denotes normal ordering (i.e. the creation operators appearing in the 
pertinent quantum-field correlation functions are placed on the of the left of the 
annihilation operators), which ensures that the vacuum expectation value of the 
second term vanishes, upon quantization. The condensate term behaves as a de-
Sitter type cosmological constant in the following sense [55, 57]: the integrated 
solution of (1.61), implies .b(t) = b(t0) + √

2ε H (t − t0)MPl, where . t0 denotes 
the beginning of inflation. The duration of inflation .�t is given by .H�t = Ne, 
where .Ne = O(60 − 70) is the number of e-foldings [21], thus in order for .b(t) not 
to change order of magnitude during the entire inflationary period, we may require 

.|b(t0)| � Ne

√
2ε MPl = O(102)

√
ε MPl , (1.66) 

in which case the condensate term behaves approximately as a de Sitter (positive)
cosmological constant term, provided (in our conventions) .b(t0) < 0 [55]. 

The total vacuum energy, with contributions from the KR axion (b) terms, the 
gravitational Chern-Simons (non condensate) terms, proportional to the Cotton 
tensor (1.29) , and the condensate itself (cond), can be obtained by the total stress
energy tensor appearing in the appropriate Einstein-Chern-Simons equations (1.32) ,
upon inclusion of a de Sitter term. It can be easily shown (using (1.61)) that the
dominant term in the early Universe vacuum energy density is the one due to the
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condensate, which acquires the form 

.ρcond = 1.3 × 10−3 √
ε

|b(0)|
MPl

( μ

Ms

)4
n� H 4, (1.67) 

where the various quantities appearing in (1.67) have been defined previously. The
reader should recall that consistency of our approach requires the condition (1.58) ,
which, on saturating the bounds (1.59) , (1.60), for definiteness, yields (cf. (1.64) ):

.ρcond ≡ �

κ2 ∼ 4.3 × 1010 √
ε

|b(0)|
MPl

H 4 . (1.68) 

Given (1.66) , this implies that the condensate term dominates over any other
contributions to the vacuum energy coming from the KR axion field b or the Cotton
tensor due to the gravitational Chern-Simons term [55–58]. We leave the verification 
of this as an exercise to the reader. 

•? Exercise 
1.12. Start from the property (1.31) of the Cotton tensor, for the temporal component

.ν = 0, and replace the Chern-Simons anomaly term .Rαβγ δ R̃αβγ δ on the right-hand-side 
by its condensate. Consider the left-hand side of (1.31) on a homogeneous and isotropic
de Sitter background and thus argue, using also (1.30), that a constant .C00 arises as a 
consistent solution of this equation. Show that the constant .C00 is a negative quantity, but 
leads to subleading in magnitude contributions to the total vacuum energy compared to the 
condensate contributions. Also show that the energy density of the KR field, stemming from 
the stress tensor (1.33) , is subleading to the energy-density contribution of the condensate
term (you should make use of the parametrisation (1.61), assuming simply .ε � 1). 

We also leave it as an exercise to the reader to prove that the equation of state of 
this cosmological fluid satisfies [58] is of de-Sitter type during the condensate phase, 
in the sense that the total pressure (.ptotal) and energy (.ρtotal) density, including KR 
axion (b), gravitational Chern-Simons (Cotton tensor, .Cμν , gravitational anomaly 
(gGS)) contributions, and condensate (1.68) contributions, satisfy:

.pb + pgCS = −(ρb + ρgCS) > 0, and ptotal = −ρtotal < 0 , (1.69) 

where the superscript “total” denotes the (algebraic) sum of contributions from the
b-axion, gCS and the (dominant) condensate . � terms.
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•? Exercise 
1.13. Consider the total (modified) stress-energy tensor in our string-inspired cosmology, 

.T total
μν = T b

μν +ACS Cμν + �gμν. (1.70) 

Using the results of exercise 1.12, on the estimate of the approximately constant . C00, as well  
as Eq. (1.61), the trace property (1.30) and the conservation Eq. (1.34) , for an inflationary
background spacetime, prove the following:

. pb = ρb (stiff massless axion matter), p�
cond = −ρ�

cond ,

pgCS = 1

3
ρgCS , ρb = −2

3
ρgCS , (1.71) 

where the pressure density terms .pgCS are associated with the spatial diagonal components 
of the Cotton tensor (1.29) , . Cii , no sum over .i = 1, 2, 3, whilst the energy-density .ρgCS is 
linked to the temporal components .C00 [55, 58]. From (1.71) , then, prove

. ρb + ρgCS = 1

3
ρgCS = −1

2
ρb < 0 ,

pb + pgCS = −(ρb + ρgCS) > 0 (1.72) 

thus proving the de-Sitter (RVM-type) equation of state (1.69) .

A remark is in order regarding the contributions of the non-condensate anomaly 
terms in (1.69) (and (1.72) ), which are negative and such that the total energy density
of the KR axion plus the Cotton-tensor-dependent anomaly terms is negative,
satisfying though a de-Sitter-like equation of state. Were it not for the condensate-.�-
(1.68) dominance, whose energy density is positive, the system would behave as an
exotic one with “phantom matter” [95, 96]. The condensate dominance ensures that 
the vacuum of this string-inspired cosmology is characterised by a dominant positive 
vacuum energy of the form (1.68), with a de-Sitter-like equation of state (1.69) . The
reader should also observe from the result of the first line of (1.72) , in combination
with the estimate (1.61) , that the total energy density of our cosmological fluid,
including the condensate (1.68) reads [55–57]: 

. ρtotal = ρb + ρgCS + ρ�
condensate = −1

2
ε M2

Pl H
2 + 4.3 × 1010 √

ε
|b(0)|
MPl

H 4 .

(1.73) 

This form of the energy density is that of the running vacuum model (RVM) of
Cosmology [97–100], whose main features we review briefly in the next Sect. 1.4.3 
for completeness. This will also clarify the type of inflation induced by the 
condensate, since so far we have simply assumed a constant Hubble parameter



1 Lorentz Symmetry Violation in String-Inspired Effective Modified Gravity Theories 33

to estimate the anomaly condensate, without specifying the microscopic origin of 
inflation. 

As we shall show below, the inflation in our case is due to the non-linearities 
of the condensate term (1.68) , which depends on the fourth power of the Hubble
parameter, and dominates in the early universe. No external inflaton fields are
required. The KR axion field will provide though a slowly-moving pseudoscalar
field during this RVM inflation [55–58], whose rate of change can be constrained 
by the cosmological data [21]. 

1.4.3 Condensates and Running-Vacuum-Model Inflation 

The RVM cosmology [97–100] is an effective cosmological framework, with a 
cosmic-time-varying dark energy .�(t), which, nonetheless, is still characterised by 
an equation of state of de Sitter type: 

.pRVM(t) = −ρRVM(t) (1.74) 

where p (. ρ) denotes the vacuum pressure (energy) density. The energy density is 
a function of even powers of the Hubble parameter .H(t) as a result of general 
covariance [97–100]:8 

. ρRVM(t) ≡ 1

κ2 �(t) = 3

κ2

(
c0 + ν H(t)2 + α

H 2
I

H(t)4 + ζ

H 4
I

H(t)6 + . . .
)
,

(1.76) 

in a standard parametrisation within the RVM framework, where .HI is a fixed 
inflationary scale (obtained from the data, (1.59)), and the .. . . denote higher powers 
of .H 2(t). The (dimensionless) coefficients .ν, α, ζ, . . . can be determined either 
phenomenologically, by fitting the model with the data, especially at late eras, 
or can be computed within specific quantum field theory models [100–102]. The 
RVM framework provides a smooth cosmic evolution of the Universe [103, 104], 

8 The expression (1.76) is the integrated form of the initially proposed ‘renormalization-
group(RG)-like’ evolution of the energy density, with .H(t) playing the rôle of the RG scale [97– 
99], 

.
d

dlnH
ρRVM =

∞∑
i=1

ciH
2i , (1.75) 

with . ci constant dimensionful in general coefficients (except the . c4 coefficient which is dimension-
less in (3+1)-dimensions). In general, the expansion also includes terms . Ḣ , which however can be 
expressed in terms of .H 2 and the deceleration parameter q. In most of the realistic applications, the 
various epochs of the Universe are characterised roughly by constant q’s and as such the expansion 
in even powers of .H 2 suffices.
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explaining its thermodynamical and entropy production aspects, as a result of the 
decay of the running vacuum [105–107], and a viable alternative to the . �CDM 
at late epoch, with in-principle observable deviations, compatible with the current 
phenomenology [108–110] (see also [111, 112] for fits of general .�-varying 
cosmologies). The RVM framework also provides potential resolutions [113] to the  
recently observed, persisting tensions in the current-epoch cosmological data [114– 
116], provided the latter do not admit mundane astrophysical and/or statistical 
explanations [117]. 

Phenomenologically, truncation of the expansion of the right-hand side of (1.76) 
to terms of fourth power in .H(t) suffices to describe the entire Universe evolution 
from inflation at early epochs to the current era, where the rôle of the cosmological 
constant is played by the constant . c0, which appears as an integration constant when 
passing from the differential (1.75) to the integrated form (1.76) of the vacuum
energy density, assuming, as is standard in RVM, that the entire evolution of the
Universe is explained by (1.76), with constant coefficients .c0, ν, α. However, in the 
case of microscopic systems, such as the string-inspired one we discuss here, there 
may be phase transitions separating the various eras, and as a result the coefficients 
of the RVM evolution might change from era to era. Moreover, within local quantum 
field theory studies [100–102], at least in non-minimally coupled scalar fields to 
gravity examined in those works, there is no coefficient .H 4 arising, but only . H 2

and .H 6 (and higher). As we discussed in [57] and review here, a term .H 4 arises 
as a result exclusively of the condensation of gravitational anomalies in this string-
inspired Chern-Simons modified theory. As we shall discuss below, the higher than 
.H 2 non-linear terms provide inflation within the RVM framework, without the need 
for external inflaton fields. 

Indeed, let us restrict our attention to the case (1.76) (relevant for our purposes
here). Let us denote collectively quantities referring to matter and radiation with
the suffix “m”. The pertinent equation of state reads .pm = ωm ρm, which can be 
added to the RVM framework in such a way that the total energy and pressure 
densities, including the vacuum (RVM) contributions, are given by . ptotal = pRVM +
pm, ρtotal = ρRVM +ρm. From the conservation of the total stress tensor of vacuum 
matter and radiation one obtains the following evolution equation for the Hubble 
parameter .H(t) [103, 104]: 

.Ḣ + 3

2
(1 + ωm)H 2

(
1 − ν − c0

H 2
− α

H 2

H 2
I

)
= 0 . (1.77) 

Ignoring . c0 (which, as we shall see, is a consistent assumption in our case), leads 
to a solution for .H(a) as a function of the scale factor a (in units of the present-era 
scale factor) and the equation of state .ωm of matter/radiation: 

.H(a) =
(

1 − ν

α

)1/2
HI√

D a3(1−ν)(1+ωm) + 1
, (1.78)
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where .D > 0 is an integration constant. For the early Universe, .a � 1, and thus 
one may assume without loss of generality that .D a3(1−ν)(1+ωm) � 1. On account of 
(1.78) , then, this leads to an (unstable) dynamical early de Sitter phase, characterised

by an approximately constant Hubble parameter, .Hde Sitter �
(

1−ν
α

)1/2
HI . 

•? Exercise 
1.14. Starting from (1.77), and assuming .c0 = 0, prove that a solution for .H(a(t)) is 

given by (1.78) .

It can be seen that at the current epoch, where .a(t) � 1, and one has matter 
dominance (.ωm � 0), there are in principle observable deviations from the . �CDM 
model, still compatible though with the current phenomenology, due to the non-
trivial .νH 2 term in (1.76) which dominates today. Phenomenologically, by fitting
the CMB, weak- and strong- lensing, and baryon-acoustic-oscillation data [108– 
112], one obtains .0 < ν = O(10−3) today, which incidentally is the order 
of magnitude of this parameter required by consistency of the RVM with BBN 
data [118]. 

In our string-inspired model, as discussed in the previous subsection, we observe 
that the dominant condensate term (1.68) is of the RVM form (1.76) , with the

constant .α ∼ √
ε

|b(0)|
MPl

∼ O(102)ε, if one saturates the bound (1.66) . In general,
the total energy density of the vacuum (1.73) is of RVM form, with . c0 = 0. The  
coefficient of the .H 2 term, though, is negative, in contrast to the conventional 
RVM. This is due to the effects of the Chern-Simons (quadratic in curvature) 
terms in the effective action (1.23). In the microscopic model of of [55], during 
the post inflationary period, cosmic electromagnetic background fields can switch 
the sign of this term to a positive one, thus recovering the conventional RVM form 
at late epochs. This RVM form during inflation is consistent with the condensate 
itself inducing inflation at early epochs of the Universe evolution, according to the 
arguments leading to (1.78). So the estimate of the condensate (1.68) , in a constant
inflationary background with H constant, is self consistent [55–58]. 

Let us now comment briefly on estimating the order of magnitude of . ε [58]. To 
this end, we may assume that the presence of the condensate is compatible with the 
Freedman equation for this Universe, implying that, during inflation, one has: 

. 
3

κ2 H 2 = ρtotal � ρ�
condensate = 4.3 × 1010√ε

|b(0)|
MPl

H 4

Eq. (1.68) ⇒ ε ∼ 7 × 10−3 = O(10−2) , (1.79)
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where we saturated the bounds (1.66) and (1.59) , for definiteness. The order of
magnitude of . ε is thus the same as the one assumed in [55, 58]. This should be 
considered as an allowed upper bound. On account of (1.66), for .Ne = O(60 − 70), 
this value imply transplanckian values for the magnitude of .b(0), .|b(0)| � 8.4MPl. 
This does not affect the transplanckian conjecture, since the effective action depends 
only on . ḃ which assumes sub-planckian values. It may be in conflict though with the 
so-called distance conjecture of swampland [119], which, however seems to affect 
also almost all single-field inflation models. This issue can only be resolved within 
the full UV complete string theory framework, and is beyond the effective field 
theory we are considering here, and beyond our purposes. Finally, we conclude this 
section by remarking that, with an .ε = O(10−2), the RVM coefficient . α (cf. (1.76) )
in our model turns out to be of .O(1), and positive, while the . ν coefficient assumes 
the value .ν = − 1

6ε ∼ −1.7 × 10−3. Both coefficients are of the same order of 
magnitude as the corresponding ones in [58].9 

We leave as a series of exercises for the reader to discuss the potentially drastic 
role of non-trivial, cosmic-time dependent, dilatons for the fate of the condensate, 
during RVM inflation, in a toy model. 

•? Exercise 
1.15. Consider the string effective action in the presence of non-trivial dilatons . �, under 

the constraint (1.18) in the absence of gauge fields, in its dual form, that is, the effective
action written in terms of the (canonically normalised) Lagrange multiplier KR axion
fields [120]: 

. Seff
B �

∫
d4x

√−g
[ 1

2κ2 R − 1

2 κ2 ∂μ� ∂μ� − 1

2
e−2� ∂μb ∂μ +ACS ∂μb(x)Kμ + . . .

]
,

(1.80) 

where .Kμ is the gravitational anomaly current (1.22), and .ACS = 1
96

√
2
3

MPl
M2

s
(cf. (1.25) ),

with .Ms the string scale. 

(i) You should notice that there is no dilaton coupling in the Chern-Simons anomaly 
term. Explain briefly this feature. 

(ii) Consider a homogeneous and isotropic cosmological model based on the action 
(1.80) , and assume that a slowly-varying with the cosmic time condensate for
the Chern-Simons gravitational anomaly has been formed, so that (1.53) is in
operation, but in an RVM form, i.e. one should replace the constant .HI by a slowly 

9 The alert reader might have noticed different numerical factors in front of the .H 4 terms in the 
vacuum energy density (1.73), as compared to those in [55–57]. This is due to the fact that in 
estimating the condensate (1.68) we followed here the method and normalizations of [92] instead 
of [91]. However, as we have just seen, and already remarked in Footnote 7, there are no qualitative 
or quantitative changes in the main phenomenological conclusions between these two frameworks.
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varying .H(t): 

. 〈Rμνρσ R̃μνρσ 〉condensate � n�

1.1

π2

(H(t)

MPl

)3
μ4 ḃ(t)

M2
s

� 3.5 × 1012
(H(t)

MPl

)3
M2

s ḃ(t) , (1.81) 

where in the second (approximate) equality (which you should verify explicitly) we
used, for definiteness, an . n� that satisfies (1.58) for a constant inflationary scale . HI

saturating the upper bound of (1.59), as inferred from the data [21]. .HI here should 
not be identified with .H(t). This would ensure that in the absence of non trivial 
dilatons, one would recover the situation discussed previously, with .H � HI . 

(iii) Write down the dilaton and KR axion equations of motion, derived from the 
homogeneous and isotropic cosmological version of the action (1.80) .

(iv) Show that 

.e−2�(t)ḃ = ACSK 0 , (1.82) 

is a solution of the KR axion equation of motion.
(v) Make the assumption that . ̇b in (1.81) can be replaced by the one in the solution (1.82) 

in terms of the dilaton .�(t). Then, by approximating the anomaly-current equation 
in a Robertson-Walker background corresponding to .H(t) as 

.〈∇μKμ〉 � d

dt
〈K 0〉 + 3 H(t) 〈K 0〉 � 〈Rμνρσ R̃μνρσ 〉condensate, (1.83) 

derive the condition for the validity of (1.83) :

.H(t) e�(t) � 10−5MPl , (1.84) 

for an approximately time-t-independent condensate .〈K 0〉. 
(vi) Using (1.84) , show that the dilaton equation of motion stemming from the action

(1.80) leads to:

.3H 2 Ḣ − (Ḣ )2 + H Ḧ � 7.2 × 10−15 M2
Pl

M4
s

〈K 0〉2 . (1.85) 

(vii) In this toy cosmological model, assume the validity of (1.85) from an initial cosmic
time . t0 in which .H(t0) → HI , where .HI saturates the observational bound (1.59) .
Then, assuming slow roll for H , in which .H Ḧ and .(Ḣ )2 terms in (1.85) are
subleading, show that one obtains an inflationary scenario with a higher-than-simple-
exponential expansion for the scale factor .a(t) of this dilaton-dominated Universe, 
that is, show that 

.a(t) ∼ exp
(3HI

4c1

[(
1 + c1(t − t0)

)4/3 − 1
])

, (1.86) 

in units of .a(t0), and determine the constant .c1 > 0. Interpret the boundary condition 
.H(t0) = HI in the context of the model of [57] discussed previously in this work. 

(viii) Check and discuss the self consistency of the slow-roll assumption for .H(t) in part 
(vii). 

(ix) Finally, by assuming the validity of the Friedmann equation, provide an estimate 
of .〈K 0〉 for this RVM universe, in which the condensate (1.81) dominates the total
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energy density. To answer this part of the question, first discuss the conditions under 
which the background axion field . b(t), satisfying (1.82) , does not change order of
magnitude under the entire duration of inflation.

The above exercise on a potential role of the dilaton on the induced RVM 
inflation does not constitute a complete treatment within string theory. In the case of 
bosonic (or Heterotic) strings, in addition to the anomaly four-derivative (order . α′) 
Chern-Simons term in the effective action, there are also four-derivative (quadratic 
in curvature) Gauss-Bonnet (GB) terms [76–79], which are non-trivial when the 
dilaton is non-trivial. The exception is the type IIB string, for which the GB terms 
are absent. 

•? Exercise 
1.16. Consider the string-inspired effective action (1.80) , but in the presence of a

quintessence-type dilaton-. � potential, arising, for instance, in non-critical string cosmolo-
gies [72, 73]: .V (�) = C exp(c1�), where .C, c1 ∈ R are appropriate real constants. 
Determine . c1 and . C such that a dilaton .� = 0 is a consistent solution of the equations 
of motion, corresponding to the case studied in [55–58], in which an anomaly condensate 
is formed, with .ḃ = ACS〈K 0〉 = constant. Comparing your results with the studies in 
[72, 73], and using their definitions for super (sub) critical string, depending on the sign of 
. C, determine which type of non-critical string this situation corresponds to. 

1.5 Links with the Lorentz- and CPT- Violating Standard 
Model Extension, and Leptogenesis 

We now come to the final, but also crucial, topic of our discussion, namely how the 
above results are linked to the Standard Model Extension [59, 60] with Lorentz and 
CPT Violation. This becomes possible if we consider the generation of fermionic 
(chiral) matter, which in our model occurs towards the end of the RVM inflationary 
period, as a consequence of the decay of the running vacuum. 

As discussed in [55–58], in the context of the precursor string-theory model, 
(chiral) fermionic matter, represented by a generic fermion . ψ for our purposes, for 
brevity, will couple to the (totally antisymmetric) torsion .Hμνρ via the gravitational 
covariant derivative. Adding the fermion action to the string action (1.13) , with
.� = 0, and performing the path-integration over the torsion field .Hμνρ in a curved 
background, with the .δ-functional constraint (1.18), implemented as in Exercise 1.5, 
and being represented in terms of the pseudoscalar Lagrange multiplier field .b(x)
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(KR axion), one obtains the effective action: 

. Seff =
∫

d4x
√−g

[
− 1

2κ2 R + 1

2
∂μb ∂μb −

√
2

3

α′

96 κ
∂μb(x)Kμ

]

+ SFree
Dirac or Majorana +

∫
d4x

√−g

×
[(
Fμ + α′

2 κ

√
3

2
∂μb

)
J 5μ − 3α′ 2

16 κ2 J 5
μJ 5μ

]
+ . . . , (1.87) 

where .J 5μ ≡ ∑
ψγ 5 γ μ ψ denotes the axial fermion current , . Fd =

εabcd ebλ ∂a eλ
c, with .eμ

c the vielbeins (with Latin indices pertaining to the tan-
gent space of the space-time manifold at a given point, in a standard notation), 
.SFree

Dirac or Majorana denotes the free-fermion kinetic terms, and the .. . . in (1.87) indicate 
gauge field kinetic terms, as well as terms of higher order in derivatives. The action 
(1.87) is valid for both Dirac or Majorana fermions.10 The reader is invited to take 
note of the presence in (1.87) of the CP-violating interactions of the derivative of
the field b with the axial fermion current .J 5μ, as well as of the repulsive axial-

fermion-current-current term, .− 3α′ 2

16 κ2 J 5
μJ 5μ, which is characteristic of theories 

with Einstein-Cartan torsion [82, 121], as is our string-inspired model [83]. The 
proof of (1.87) is left as a set of exercises for the reader.

•? Exercise 
1.17. Consider for definiteness a Dirac fermion . ψ in a curved space-time with a string-

inspired totally antisymmetric torsion . Hμνρ , as in (1.15) . First, on using the definition of the
gravitational covariant derivative acting on the fermions in terms of vielbeins .ea

μ and the 
torsionful spin connection .ωa

μ b corresponding to (1.15) (where Latin indices are tangent-
space indices), write down the kinetic term of the corresponding Dirac Lagrangian density.
Then, by means of properties of the product of three Dirac . γ μ matrices, prove the existence 
in the Lagrangian density of a linear coupling of the fermion axial current . ψ γ 5 γ μ ψ

to .εμνρσ Hνρσ , where the covariant Levi-Civita tensor density .εμνρσ has been defined in 
(1.19), and determine its coefficient. Then, by adding this fermion action to (1.13) , consider
the constrained path-integration over .Hμνρ , using a .δ-functional constraint for (1.18) , as
in Exercise 1.5. On representing the .δ-functional by means of the canonically normalised 
Lagrange multiplier field .b(x), then, prove (1.87) . Show also that, for Robertson-Walker
backgrounds, in the absence of perturbations, the quantity .Fd = εabcd ebλ ∂a eλ

c vanishes.

10 In case of multifermion theories, as required in phenomenologically realistic models, one simply 
has to sum the appropriate effective action terms over all the fermion species, with the axial current 
reading as .J 5μ = ∑

i=fermion species ψiγ
5γ μψi . 
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We next observe, that, in case of the spontaneous LV background (1.61) , due
to the anomaly condensate in our cosmology, the fermion-axial-current-KR-axion
interaction in (1.13) leads to a LV and CPTV interaction with the background, which
is of a SME type (1.6), with .aμ = 0 and 

.bμ = M−1
Pl ḃ δμ 0 , μ = 0, . . . 3 , ḃ = constant , (1.88) 

having only a temporal component, with . b the solution to the KR equation of motion 
stemming from (1.23) .

•> Important 

In the presence of massive right-handed neutrinos, with standard portals, coupling 
the RHN sector to SM lepton and Higgs sectors, then, one can consider the following 
fermion action in the background (1.88) :

. L = LSM + iN γ μ ∂μ N − mN

2
(NcN + NNc)

− Nγ μ bμ γ 5N −
∑
f

yf Lf φ̃dN + h.c. (1.89) 

where h.c. denotes hermitian conjugate, .LSM denotes the SM Lagrangian, N is the 
RHN field (with .Nc its charge conjugate field), of (Majorana) mass . mN , . φ̃ is the 
SU(2) adjoint of the Higgs field . φ (.φ̃d

i ≡ εijφj , i, j = 1, 2, SU(2) indices), and . Lf

is a lepton (doublet) field of the SM sector, with f a generation index, .f = e, μ, τ , 
in a standard notation for the three SM generations; .yf is a Yukawa coupling, 
which is non-zero and provides a non-trivial (“Higgs portal”) interaction between 
the RHN and the SM sector, used in the seesaw mechanism for generation of SM 
neutrino masses. As discussed in [65–68], and we shall describe briefly below, such 
backgrounds can produce phenomenologically correct leptogenesis. In particular, 
we consider lepton-number asymmetry originating from tree-level decays of heavy 
sterile RHN into SM leptons. 

Indeed, in the context of the model (1.89) , a lepton asymmetry is generated
due to the CPV and CPTV tree-level decays of the RHN N into SM leptons, in
the presence of the background (1.88), through .Channel I : N → l−h+ , ν h0, 
and .Channel II : N → l+h− , ν h0, where .�± are charged leptons, . ν (. ν) are  
light, “active”, neutrinos (antineutrinos) in the SM sector, . h0 is the neutral Higgs 
field, and .h± are the charged Higgs fields, which, at high temperatures, above the 
spontaneous electroweak symmetry breaking, of interest in this scenario [57,65–68], 
do not decouple from the physical spectrum. As a result of the non-trivial . b0 �= 0
background (1.88), the decay rates of the Majorana RHN between the channels I 
and II are different, resulting in a Lepton-number asymmetry.
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•? Exercise 
1.18. Consider the tree-level decays of a massive Majorana neutrino N , of mass . mN , 

in the theory (1.89) into charged lepton and Higgs particles and antiparticles only, in the
background (1.88) . By following standard particle physics methods, prove that the tree-
level decay rates . �, .N → �−h+ and .N → �+h−, are given, respectively, by: 

. �N→�−h+ =
∑

f =e,μ,τ

|yf |2
32 π2

m2
N

�

� + b0

� − b0
, �N→�+h− =

∑
f =e,μ,τ

|yf |2
32 π2

m2
N

�

� − b0

� + b0
,

with � =
√

m2
N + b2

0 . (1.90) 

The reader should observe that the difference between these two rates vanishes for vanishing
background .b0 → 0. To linear order in . b0, with .|b0| � mN , argue that these decay rates 
may be interpreted as implying the presence of “effective” RHN masses . m±

N eff = mN ±2b0
in the .�∓ h± decay channels, respectively. 

Such asymmetries in the decay rates produce lepton asymmetry, which can then 
be communicated [68] to the baryon sector by means of appropriate baryon(B) and 
lepton(L)-number violating but B-L conserving processes, e.g. sphalerons in the SM 
sector of the model [24–28], according to standard leptogenesis scenarios [37, 38]. 

Before closing, we remark that in the actual model of [55–58] the situation is 
a bit more complicated than the simplified scenario with a constant background 
(1.88) surviving in the radiation phase. The generation of chiral fermions at the
end phase of the RVM inflation in the model leads to a cancellation of the
primordial gravitational anomalies by the ones generated by the chiral fermions
themselves, leaving only possible chiral anomalies (in the gauge sector) surviving
in the post-inflationary period. This leads, as a consequence, to a temperature
dependence for the background .b0 ∝ T 3, during the post inflationary period, as 
explained in detail in [55]. For the short period of leptogenesis, such temperature 
dependent backgrounds are almost constant, and the resulting lepton asymmetry 
can be calculated analytically [65, 66, 68], leading to similar, qualitatively and 
quantitatively, conclusions as the simple constant-background (1.88) case, reviewed
above.

The advantage of the . T 3 temperature dependence of the axion background . B0, 
which survives the inflationary period, is that one can trace it to the current era (up 
to complications including chiral anomalies, which can change the . T 3 behaviour, 
e.g. to . T 2, as discussed in some detail in [55]). The current KR axion background 
is well below the current bounds (1.8) of this background [62]. Specifically one 
finds [55] .b0|today ∼ 10−44 eV, if chiral anomalies are ignored (i.e., . T 3 scaling), and 
.b0|today ∼ 10−34 eV, if chiral anomalies take over at late epochs. Even if one takes 
into account the relative motion of our Earthly laboratory frames with respect to the 
CMB frame (with velocity . vi , .|v| = O(390 ± 60) km/sec [21,122] ), which leads to
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spatial components of the background .bi = γ
vi

c
b0, with .γ ∼ 1 the Lorentz factor, 

the resulting spatial components . bi of the LV and CPTV background lie comfortably 
within the existing bounds (1.8) [62]. 

The following exercise provides the reader with a simple way to understand the 
. T 3 scaling of . ḃ in the absence of chiral anomalies, during the post-inflationary era 
of the cosmological model of [55–58]. 

•? Exercise 
1.19. Consider the KR axion .b(x) equation of motion stemming from the effective 

action (1.87) for the case of a conserved axial-fermion current .J 5 μ(x) in the absence of 
gravitational anomalies (i.e. set .Kμ = 0). 

(i) Show, that in a homogeneous and isotropic Robertson-Walker background, in the 
radiation-dominated era, there is a . T 3 scaling of the cosmic rate of the .b(x) field, . ̇b, 
where T is the cosmic temperature (use standard cosmology arguments [93] to relate 
the scale factor of the Universe to the cosmic temperature T ). 

(ii) By assuming [55] that the radiation era succeeds the inflationary one, during which the 
inflationary scale . HI is related to the (de-Sitter observer dependent) Gibbons-Hawking 
temperature [123], .T = HI /2π , determine the T -scaling proportionality constant in 
the expression for . ̇b of part (i), using the parametrization (1.61) (with an .ε = O(10−2), 
and a .HI saturating the bound (1.59) ) at the exit phase of inflation/beginning of the
radiation era in the framework of the model of [55–58]. Thus show that this . ̇b satisfies 
the current LV and CPTV bounds (1.8) .

1.6 Summary and Outlook 

With the above remarks we conclude our discussion on how one can obtain Lorentz 
and/or CPT Violating terms, that appear phenomenologically in the SME effective 
Lagrangian, starting from a microscopic quantum gravity theory. Within our specific 
string-inspired cosmological field theory example, we have seen how condensates 
of primordial gravitational waves, of quantum-gravitational origin, can lead to 
spontaneous violation of Lorentz and CPT symmetries in low-energy effective 
theories, which contain terms of a form appearing in SME Lagrangians. 

We have pointed out the crucial role of the UV complete theory of quantum 
gravity in leading to these condensates. The lack, however, of a complete under-
standing of energy regimes above the Planck scale, even in the context of UV 
complete theories, such as strings, has some consequences for the accuracy of the 
relative estimates. Nonetheless, we hope we made it clear to the reader that LV 
and CPTV processes might play a crucial role on the existence of our Universe, 
and thus ourselves, given, the potential link of the spontaneous violation of Lorentz 
and CPT symmetries by the condensates to the matter-antimatter asymmetry in our 
Universe, as we discussed above. An important aspect of our considerations is that



1 Lorentz Symmetry Violation in String-Inspired Effective Modified Gravity Theories 43

the matter-antimatter asymmetry in the Cosmos might have a geometric origin, 
as a consequence of the close connection of LV to condensates of torsion (axion-
like) fields, which characterise the massless gravitational multiplet of string theory 
(which is also the ground state of the phenomenologically relevant superstrings). 

From a phenomenological point of view it would be interesting to explore 
further the profile of the primordial GW generated during our RVM inflation, 
as well as the densities of primordial black holes during that era, especially 
in models with non-trivial dilatons, such as (1.80) (in case of type-IIB-string
inspired models), or extensions thereof, including Gauss-Bonnet-dilaton coupled
combinations (in case of heterotic and bosonic strings). There is the possibility of
enhanced gravitational perturbations and densities of primordial black holes in such
models, which could affect the aforementioned GW profiles at post inflationary
(radiation) eras, thus leading to observable in principle effects in interferometers.
In addition, effects of the LV and CPTV SME-type background coefficients . bμ

(1.88) , which are linked to forbidden atomic transitions and other modifications
of atomic spectra [20, 54, 59, 61], might affect BBN physics, given the increasing 
nature of this coefficient with the cosmic temperature, which might lead to further 
constraints. These are issues to be examined in the future, by extending, for instance, 
the LV analysis of [124] to incorporate appropriately the CPTV effects arising in our 
framework. 
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2Deformed Relativistic Symmetry Principles 

Michele Arzano, Giulia Gubitosi, and José Javier Relancio 

Abstract 

We review the main features of models where relativistic symmetries are 
deformed at the Planck scale. We cover the motivations, links to other quan-
tum gravity approaches, describe in some detail the most studied theoretical 
frameworks, including Hopf algebras, relative locality, and other scenarios 
with deformed momentum space geometry, discuss possible phenomenological 
consequences, and point out current open questions. 

2.1 Introduction 

The proposal that local space-time symmetries might be deformed at the Planck 
scale was put forward in the early 2000s [1, 2]. The motivation was given by 
phenomenological studies on the possibility that the energy-momentum dispersion 
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relation of particles is deformed at the Planck scale .EP ∼ 1019 GeV, such that1 

[3–9] 

.m2c4 = E2 − |p|2c2 + η
En

En
P

|p|2c2 . (2.1) 

Because this law is not covariant under the standard Lorentz transformations linking 
inertial observers in special relativity, the first studies proposing such a modified 
dispersion relation assumed that invariance under Lorentz symmetries was broken 
at ultra-high energies, where the modification appearing in (2.1) becomes relevant.
As a consequence, a preferred reference frame would emerge, where the dispersion
law would take the form (2.1) , and this frame was typically identified with the rest
frame with respect to the cosmic microwave background. This scenario is usually
called Lorentz Invariance Violation (LIV), similar to what was discussed in Chap. 1 
emerging from String Theory. 

In the alternative framework proposed in [1, 2, 10, 11], a modified dispersion 
relation of the kind of (2.1) can take the same form in all inertial frames of reference,
if the laws of transformation between these frames are in turn modified. In particular,
they must admit two relativistic invariant quantities, the speed of light and the Planck
energy . EP . For this reason, such framework was called Doubly Special Relativity 
(DSR). 

The relation between the special relativistic and the DSR scenario can be 
understood in analogy to the transition from the Galilean relativity of Newtonian 
mechanics to special relativity [12]. In Galilean relativity the (kinetic) energy of a 
particle is related to its momentum .p ≡ mv by 

.E = |p|2
2m

. (2.2) 

All observers moving with relative constant velocity see the same law, and are linked 
by Galilean boosts, whose generator is: 

.BG
j = iE

∂

∂pj

. (2.3) 

Notice that according to these laws spatial velocities add up linearly and there is 
no maximum speed. Special relativity can be seen as a deformation of Galilean 
relativity that emerges when considering large velocities. In special relativity the 
energy-momentum dispersion relation reads 

.E2 = |p|2c2 + m2c4 , (2.4)

1 This formula is to be understood as indicating the lowest-order correction to the standard special-
relativistic expression in powers of the particle’s energy over the Planck energy, where the order 
is given by the positive integer n and . η is a dimensionless parameter indicating the strength of the 
effect at the Planck scale. In general, formulas considering all-order corrections go beyond this 
simple power-law expression, see e.g. Sect. 2.3.3. 
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where c is a velocity scale. This law is not covariant under Galilean boosts, so that 
in order for it to take the same form for all observers moving at constant relative 
speed the laws of transformation linking these observers need to be deformed. These 
transformations, the Lorentz boosts generated by, 

.Bj = i
pj

c2

∂

∂E
+ iE

∂

∂pj

, (2.5) 

are a deformation of the Galilean boosts, such that (2.4) is covariant. They are such
that the speed scale c is a relativistic invariant, identified with the speed of light,
and that velocities no longer add linearly. Galilean boosts (and Galilean relativity in
general) are recovered in the small velocity limit, . |v|

c
→ 0 (see e.g. [13, 14]). 

A further modification of the laws linking observers moving at constant relative 
speed, which generalizes the Lorentzian boosts, allows us to retain covariance when 
extending the dispersion relation from the special relativistic form (2.4) to the
modified form (2.1) . Just as the extension of boosts from the Galilean form to the
Lorentzian form (necessary to describe a high-velocity regime) introduces an new
invariant scale c, the extension of boosts to their DSR form (supposedly necessary to
describe a very-high energy regime) introduces another relativistic invariant scale,
the Planck energy . EP .2 Explicit examples of these modified boost transformations 
are provided in Sects. 2.2 and 2.3.3. 

While the basic ideas behind the DSR proposal are quite simple, the mathe-
matical formalization and the study of phenomenological implications have already 
taken the efforts of many researchers over the past two decades. On the theoretical 
level, we have now several mathematical frameworks that can accommodate the 
DSR principles, some more developed than others. These include most notably 
quantum groups and Hopf algebras (see Sect. 2.3), curved momentum space models 
and modified phase space models (see Sects. 2.4 and 2.5). Each framework is more 
suited to study specific phenomenological implications, so it is worth pursuing 
all of them in parallel. On the phenomenological side, one of the most relevant 
advancements concerns the uncovering of the deep links between modified boost 
transformations and the loss of absolute locality. Just like the modification of boost 
transformations induced by the transition from Galilean to special relativity requires 
us to give up the absoluteness of simultaneity, in the transition from special to 
doubly special relativity we are required to give up the absoluteness of locality. This 
was understood at the beginning of the past decade, leading to the development 
of the relative locality proposal, whose implications are the center of a very active 
research programme (see Sect. 2.4.2).

2 While in special relativity c is the maximum allowed speed, in DSR it is to be understood as the 
speed of low-energy massless particles. And the Planck energy is a relativistic invariant, but is not 
necessarily the maximum allowed energy. It might be the case in some specific models, but it is 
not true in general. 
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In this review, we aim at providing the reader with the current state of the art of 
this research field, highlighting the progress that has been made in the theoretical 
modelling and the phenomenological developments, and pointing out current open 
questions. 

2.1.1 Link to More Fundamental QG Frameworks 

As we have discussed above, DSR was motivated by phenomenological consider-
ations relevant in searches for effects induced by Planck-scale physics. However, 
subsequent studies showed that deformations of relativistic symmetries can emerge 
in specific limits of more fundamental quantum gravity theories. 

For example, it is now well established that departures from special relativity 
could arise in a “semiclassical” regime of quantum gravity, where the gravitational 
degrees of freedom are integrated out and leave an effective field theory for the 
matter fields. Of course, this cannot be done explicitly for the full quantum theory 
of gravity, but this was shown to be the case in 2+1 dimensions, where gravity can 
be quantized as a topological field theory and can be coupled to point particles, 
represented by topological defects [15–22]. 

In the loop quantum gravity approach, one can adopt a perspective suggest-
ing deformations of relativistic symmetries in the regime where the large-scale 
(coarse-grained) space-time metric is flat [23–26]. This is done by studying the 
modifications to the hypersurface deformation algebra, which is the algebra of 
generators of invariance with respect to local diffeomorphisms. Such modifications 
provide a picture [25] that is consistent with deformations of the relativistic 
symmetries of the kind that are encountered in the .κ-Minkowski non-commutative 
spacetime, described in Sect. 2.3. Besides these studies, more heuristic arguments 
supporting the emergence of deformed relativistic symmetries have also been put 
forward in the context of .3 + 1-dimensional loop quantum gravity [18, 27] and of 
polymer quantization [28]. 

Finally, is has been established that deformed relativistic symmetries emerge in 
the context of non-commutative space-time geometry [29–40]. This point will be 
discussed in greater detail in Sect. 2.3, for the specific case of the .κ-Minkowski 
spacetime. 

2.2 Doubly Special Relativity—Phenomenological Models 

The fundamental ingredients to define the phenomenolgy associated to a DSR 
kinematical model are
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• the energy-momentum dispersion relation, which can be schematically denoted 
as3 

.C(E,p) = μ2 , (2.6) 

where . μ is (a function of) the mass of the particle;
• the conservation laws of energy and momenta in interactions, which for n 

incoming particles with momenta .p(i) and m outgoing particles with momenta 
.p(o) can be written as 

.

(
p

(i)
1 ⊕ p

(i)
2 ⊕ ...p(i)

n

)
μ

=
(
p

(o)
1 ⊕ p

(o)
2 ⊕ ...p(o)

m

)
μ

, (2.7) 

were . ⊕ encodes a deformed addition law of energy and momenta;
• the laws of transformation between inertial observers, encoded via the action of 

boost transformations on energy and momenta, such that4 

.pμ → (Bξ � p)μ , (2.8) 

where . ξ is the rapidity characterizing the magnitude of the boost.5 

These ingredients need to combine into quite a rigid structure, constrained by the 
requirement that relativistic invariance is not spoiled [12, 41–43]. The observer 
independence of the dispersion relation can be stated as the requirement that it is 
invariant under boosts 

.C(Bξ � E,Bξ � p) = C(E,p) . (2.9) 

Covariance of the conservation laws is achieved if the sum of momenta of all
incoming (outgoing) particles transforms as a momentum under boosts:

.q = p1 ⊕ p2... ⊕ pn ↔ Bξ � q = Bξ � (p1 ⊕ p2... ⊕ pn) . (2.10) 

In special relativity (where momenta add linearly, .p1⊕p2...⊕pn = p1+p2...+pn) 
the above condition is achieved by asking that 

.Bξ � (p1 ⊕ p2... ⊕ pn) = (Bξ � p1
)⊕ (Bξ � p2

)
... ⊕ (Bξ � pn

)
, (2.11)

3 From now on we set .c = 1. 
4 One might also consider deformations of the other relativistic symmetries, but here we will only 
focus on boosts for simplicity. 
5 In the following we will sometimes use a simplified notation omitting the explicit indication of 
the four-vector index . μ. 
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and this is also the case for DSR models with a commutative law of addition of 
momenta . ⊕. However, one may have DSR models where the deformed addition 
rule . ⊕ is noncommutative (a notable example is provided by models based on the .κ-
Poincaré Hopf algebra, discussed in the following Section). In this case, covariance 
of the conservation law (2.7) can only be achieved if the boost acts on systems of
interacting particles in a non-trivial way. Namely, the rapidity parameter with which
different particles participating in the interaction transform depends on the momenta
of the other particles [41,42,44,45]. Considering the addition of n momenta . pi , the  
action of boosts is given by 

. Bξ � (p1 ⊕ p2... ⊕ pn) ≡ (Bξ1 � p1
)⊕ (Bξ2 � p2

)
... ⊕ (Bξn � pn

)
,

(2.12) 

where .ξ1 = ξ1(p2, ...pn), .ξ2 = ξ2(p1, p3...pn) and so on, such that .ξi = ξ when 
.p1, ..., pi−1, pi+1, ..., pn vanish. This notion of covariance of the conservation laws 
is a generalization of the one we are familiar with, based on the intuition we built 
working with special relativity. Even though this might seem counter-intuitive, it 
can be shown that it does not lead to the emergence of preferred observers (see a 
detailed discussion in [42], arXiv version). Very recently, issues related to what is 
called “history problem” have emerged in association to boost actions of the sort of 
(2.12) . Since this is quite a subtle point which is currently under further study, we
are not going to discuss the details here. The interested reader can refer to [45]. 

When considering only first order corrections to special relativity (e.g., the . n = 1
case of (2.1) ), the constraints we just discussed can be translated into constraints on
the coefficients of the possible correction terms that can be added to the dispersion
relation, the law of addition of momenta and the boost [12, 41, 43]. In particular, 
it can be shown that these constraints imply some “golden rules” on the allowed 
physical processes for theories without preferred frames: for example, photons 
cannot decay into electron-positron pairs and it must be possible for a photon of 
any arbitrarily low energy to produce electron-positron pairs when it interacts with 
a sufficiently high-energy photon [12]. These conditions guarantee that there is no 
threshold associated to a photon, a fundamental requirement for any DSR theory. In 
fact, because the energy of a photon could be tuned above or below the threshold 
with an appropriate boost, the existence of such threshold would identify a preferred 
frame. 

Having exposed the general requirements that a DSR model needs to meet, we 
are going to provide one simple example, in order to see an application of the general 
concepts we have just exposed. Because the subtleties emerging when the addition 
law . ⊕ is noncommutative will be discussed in detail in the following Section, here 
we are going to consider a .1 + 1 dimensional DSR model with a commutative 
addition law. Specifically, let us consider a DSR model where all deviations from 
special relativity are only relevant at the first order in the ratio . E

EP
between the
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particles’ energy and the Planck energy. This amounts to take .n = 1 in the dispersion 
relation (2.1) :

.m2 = E2 − p2 + η
E

EP

p2 . (2.13) 

In order for this equation to be covariant under Lorentz boosts, their action needs
to be modified in such a way that energy and momentum transform non-linearly
[12, 41, 46]: 

.
Bξ � E = E + ξp ,

Bξ � p = p + ξE + ξ
η

EP

(
E2 + p2

2

)
.

(2.14) 

•? Exercise

2.1. Show that the dispersion relation (2.13) is not covariant under the action of standard
special-relativistic boosts and verify its covariance with respect to the deformed boosts
(2.14) .

In turn, the modified boost transformations (2.14) are not compatible with
standard conservation laws in interactions. Considering a process with two incoming
particles .a, b, and two outgoing particles .c, d, a conservation law that is covariant 
under the transformation (2.14) is

.
Ea + Eb + η

EP
papb = Ec + Ed + η

EP
pcpd

pa + pb + η
EP

(Eapb + Ebpa) = pc + pd + η
EP

(Ecpd + Edpc) .
(2.15) 

This encodes a modified law of addition of energy and momenta:

.
Ea ⊕ Eb = Ea + Eb + η

EP
papb ,

pa ⊕ pb = pa + pb + η
EP

(Eapb + Ebpa) ,
(2.16) 

which is covariant assuming the following action of boosts on the interacting
particles:

.
Bξ � (Ea ⊕ Eb) = (Bξ � Ea

)⊕ (Bξ � Eb

)
,

Bξ � (pa ⊕ pb) = (Bξ � pa

)⊕ (Bξ � pb

)
.

(2.17)
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•? Exercise 

2.2. Verify that the addition law (2.16) is covariant with respect to the deformed boosts
(2.14) .

Notice, that since we are working at the first order in . E
EP

, the modified boost 
action and addition law are not the unique possible choices to have a relativistic 
picture starting from the dispersion relation (2.13) . Another possibility is discussed
in Sect. 2.3.3. More thorough studies of the possibilities available at the first order 
can be found in [12, 41]. 

In closing this section, we want to remark that, while working in momentum 
space suffices to study the kinematics of interactions, other possible predictions of 
DSR models affect the propagation of particles (e.g., one might have an induced 
energy dependence in the travel time of massless particles, see Sect. 2.6). However, 
in order to study this kind of effects we are required to find a suitable way to describe 
the spacetime in which such particles propagate, or, by the least, if we want to 
compute the energy-dependent shift in the time of arrival of particles with different 
energies, we need to define a time coordinate. As we mentioned in the introduction, 
and will be discussed in greater detail in Sect. 2.4.2, in DSR models we expect 
departures from the observer-independent notion of locality that applies in special 
relativity, and one might have that the space-time picture depends on the energy of 
the particle used to probe it. So defining spacetime is a highly nontrivial task, and 
the various mathematical frameworks that are discussed in the following can be seen 
as different ways to implement a spacetime picture within the DSR scenario. 

2.3 Hopf Algebras and the Example of κ-Poincaré 

By far the most studied example of deformation of space-time symmetries is the 
.κ-Poincaré algebra. Such model was introduced in the early 1990s [47–49] and it 
was historically the first attempt at modifying the algebraic structure of relativistic 
symmetries in order to introduce a fundamental energy scale using the theory of 
Hopf algebras. The study of .κ-deformed relativistic kinematics as a candidate for 
an effective description of Planck-scale physics [31, 50, 51] paved the way to the 
formulation of DSR models [1, 2]. 

2.3.1 Emergence of Hopf Algebra Structures in Quantum Theory 

In order to understand how Hopf algebra structures allow for the introduction of 
an additional invariant scale in the description of space-time symmetries, it will 
be necessary to first briefly review how Hopf algebraic structures emerge in the
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description of symmetries in physical systems (for a more extensive and pedagogical 
treatment we refer the reader to [52]). 

In relativistic quantum theory invariance under the isometries of Minkowski 
spacetime requires that the states describing elementary particles carry a unitary 
irreducible representation of the Poincaré group. For a real scalar field, for example, 
we have a “one-particle” Hilbert space . H, whose elements can be given in terms of 
complex functions on the positive mass-shell in four-momentum space and whose 
elements we denote as kets labelled by the spatial momentum carried by the particle 
.|k〉 ∈ H. Multi-particle states will be described by (symmetrized) tensor products 
of such irreducible representations belonging to the Fock space [53]. Let us now 
look at how observables act on such states. We focus on the specific example of 
observables . Pi , the generators of space translations of the Poincaré algebra. One-
particle states labelled by the linear momentum above are diagonal under the action 
of these operators 

.Pi |k〉 = ki |k〉 , (2.18) 

where . ki is the i-th component of the vector . k. The action of the observable . Pi on 
generic Fock space elements is given by its second quantized version 

. d�(Pi) ≡ 1 + Pi + (Pi ⊗ 1 + 1 ⊗ Pi)

+(Pi ⊗ 1 ⊗ 1 + 1 ⊗ Pi ⊗ 1 + 1 ⊗ 1 ⊗ Pi) + ... , (2.19) 

where 1 is the identity operator. The additional information required to extend the
representation of the Poincaré algebra from the one-particle Hilbert space to the
Fock space, as encoded in (2.19) , can be formalized in terms of an operation called
the coproduct

.�Pi = Pi ⊗ 1 + 1 ⊗ Pi , (2.20) 

in terms of which (2.19) can be written as

.d�(Pi) ≡ 1 + Pi + �Pi + �2Pi + ... + �nPi + ... , (2.21) 

where

.�n ≡ (� ⊗ 1) ◦ �n−1 , n ≥ 2 , (2.22) 

with .�1 ≡ �. The coproduct (2.20) gives us the action of the observable . Pi linear 
on a two-particle state 

.|k l〉 ≡ 1√
2

(|k〉 ⊗ |l〉 + |k〉 ⊗ |l〉) . (2.23)
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In particular 

.�Pi |k l〉 = (ki + li )|k l〉 , (2.24) 

and thus, the eigenvalue of .�Pi on a two-particle state is simply its total linear 
momentum. For our purposes it is important to notice that the coproduct encodes 
the property of additivity of quantum numbers. As we will see, the possibility to 
render non-abelian such property for quantum numbers associated to space-time 
symmetries is at the core of the concept of deformation we consider. 

Before proceeding we need to introduce one more ingredient concerning the 
action of observables on the states . 〈k|, i.e., on elements of the dual6 to the one-
particle Hilbert space . H∗. Since . H carries a representation of the Poincaré algebra 
on the space .H∗ can be defined a dual representation. Starting from the action 
(2.18), one defines the action of . Pi on a vector .〈k′| ∈ H∗, so that the following 
equality holds 

.(Pi〈k′|)|k〉 = −〈k′|(Pi |k〉) . (2.25) 

We thus see that the dual representation defines an action from the left of the
translations generators on bras given by

.Pi〈k| = −ki〈k| . (2.26) 

Notice that such action is different from the action from the right, which is simply
obtained by taking the hermitian adjoint of (2.18) 

.〈k|Pi ≡ (Pi |k〉)† = 〈k|ki . (2.27) 

We thus see that the dual representation can be defined in terms of a map, known as
the antipode

.S(Pi) = −Pi , (2.28) 

connecting the left and right action of the generators .S(Pi) on dual states 

.Pi〈k| = −ki〈k| = 〈k|(−ki) ≡ 〈k|S(Pi) . (2.29) 

To understand the physical role of the antipode map let us recall that given the one-
particle Hilbert space . H, the space describing anti-particles is given by the complex 
conjugate Hilbert space . H̄. Such Hilbert space is isomorphic to the dual Hilbert 
space .H∗ [52], and thus, for example, for a complex scalar field the bras . 〈k| can

6 By definition, elements of the dual of a Hilbert space . H are continuous linear maps from . H to . C. 
Given the inner product .〈k′|k〉 on . H, it is evident that bra . 〈k| is an element of the dual space. 
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be identified with antiparticle states. This shows that the antipode map introduced 
above describes the way observables act on antiparticle states. 

At the algebraic level, the coproduct and the antipode maps are additional 
ingredients which (together with certain consistency conditions, the interested 
reader can consult [52] for details) equip the algebra of generators of space-time 
symmetries (and as a matter of fact of any quantum observable) with the structure 
of a Hopf algebra. We thus see that Hopf algebra structures are not just an abstract 
mathematical construct but are used in our everyday quantum field theory when we 
look at the action of observables on antiparticles or on systems with more than one 
particle. 

2.3.2 The κ-Poincaré Hopf Algebra and Spacetime Relativistic 
Symmetries 

After our brief detour concerning the algebraic structures underlying the action 
of symmetry generators on the states of a relativistic quantum system, we are 
now ready to introduce the .κ-Poincaré Hopf algebra. The best way to understand 
the structure of such deformation of the Poincaré algebra is to start from a four-
momentum space which is no longer a vector space, as in ordinary relativistic 
systems, but its geometry is that of a non-abelian Lie group which admits an action 
of the Lorentz group. In the .κ-deformed context such group is denoted by . AN(3)

and it is defined by the Iwasawa decomposition of the five-dimensional Lorentz 
group .SO(4, 1). Such decomposition is better understood by starting from the Lie 
algebra .so(1, 4) written as a direct sum of subalgebras 

.so(1, 4) = so(1, 3) ⊕ n ⊕ a , (2.30) 

where the algebra . a is generated by the element 

.H =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (2.31) 

and the algebra . n by the elements 

.ni =
⎡
⎣

0 (εi)
T 0

εi 0 εi

0 −(εi)
T 0

⎤
⎦ , (2.32) 

where . εi are unit vectors in i-th direction (.ε1 = (1, 0, 0), etc), and T denotes 
transposition.
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We now introduce a constant parameter, which carries dimensions of energy, 
denoted by . κ . We can use such constant to define non-commuting objects with 
dimension of length7 

.X0 = − i

κ
H , Xi = i

κ
ni . (2.33) 

These non-commuting coordinates obey the commutator

.[X0, Xi] = 1

κ
Xi [Xi,Xj ] = 0 , (2.34) 

known in the literature as the .κ-Minkowski non-commutative spacetime [54]. 
From (2.30) it follows that every element . λ of the group .SO(1, 4) can be 

decomposed as follows 

.λ = (Kna) or λ = (K ϑ na) , (2.35) 

where .K ∈ SO(1, 3), the element a belongs to group the A generated by H 

.A = exp
(
ik0X

0
)

= exp

(
k0

κ
H

)
=

⎡
⎢⎢⎢⎢⎢⎣

cosh k0
κ

0 0 0 sinh k0
κ

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

sinh k0
κ

0 0 0 cosh k0
κ

⎤
⎥⎥⎥⎥⎥⎦

, (2.36) 

and the element n belongs to the group N generated by the matrices . ni

. N = exp
(
ikiX

i
)

= exp

(
− 1

κ
kini

)
=

⎡
⎢⎢⎢⎢⎢⎣

1 + 1
2κ2 k

2 k1
κ

k2
κ

k3
κ

1
2κ2 k

2

k1
κ

0 0 0 k1
κ

k2
κ

0 0 0 k2
κ

k3
κ

0 0 0 k3
κ

− 1
2κ2 k

2 − k1
κ

− k2
κ

− k3
κ

1 − 1
2κ2 k

2

⎤
⎥⎥⎥⎥⎥⎦

,

(2.37) 

and . ϑ=diag(. −1,1,1,1,. −1). 

7 As we will explain in the following section, in some approaches to DSR based purely on the 
geometry of momentum space one assumes to be in a “semiclassical” regime of quantum gravity, 
such that the Planck constant . ̄h and the Newton constant G vanish, but their ratio is fixed and finite. 
In this regime, one can build an energy scale .EP but not a length scale .LP → 0. In the context of 
Hopf algebra and non-commutative geometry, this is not the regime that is considered, since one 
needs a constant with dimensions of length to govern space-time noncommutativity as in (2.34).
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The group .AN(3) can be identified with the product group .NA. Elements of 
.AN(3) can be expressed as plane waves on the non-commutative .κ-Minkowski 
spacetime with the time component appearing to the right [31] 

.êk = exp(ikiXi) exp
(
ik0X

0
)

. (2.38) 

The four-momenta . kμ are coordinate functions on the group .AN(3) known 
as bicrossporduct coordinates. The quotient group structure of . AN(3) �
SO(1, 4)/SO(1, 3) allows us to obtain another system of coordinates. Indeed, 
it is well known that the quotient of Lie groups .SO(1, 4)/SO(1, 3) is the de Sitter 
space. Acting with the subgroup .AN(3) of .SO(1, 4) on the vector . O

.O =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0
κ

⎤
⎥⎥⎥⎥⎥⎦

, (2.39) 

we obtain the coordinates 

. p0 = κ sinh
k0

κ
+ k2

2κ
e

k0
κ ,

. pi = kie
k0
κ ,

.p4 = κ cosh
k0

κ
− k2

2κ
e

k0
κ , (2.40) 

on de Sitter space defined as the submanifold of the five-dimensional Minkowski 
space by the equation 

. − p2
0 + p2

i + p2
4 = κ2 .

•? Exercise 

2.3. Using the relations (2.40) show that the coordinates .k0,k correspond to comoving 
coordinates on the de Sitter manifold, according to which the line element is . ds2 = dk2

0 −
e2k0/κdk2. Use [44] as guidance. 

Notice how such embedding coordinates only cover “half” of de Sitter manifold 
determined by the inequality 

.p0 + p4 > 0 . (2.41)
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Considering two sets of coordinates 

. p0 = ±(κ sinh
k0

κ
+ k2

2κ
e

k0
κ ) ,

. pi = ±kie
k0
κ ,

.p4 = ∓(κ cosh
k0

κ
− k2

2κ
e

k0
κ ) , (2.42) 

we can cover the entire de Sitter manifold, and this is reflected in the fact that the
group SO(1,4) can be written in the form

.SO(1, 4) = KNA ∪ KϑNA . (2.43) 

In fact, non-trivial geometrical properties of momentum space are a generic 
feature of DSR models. The relative locality proposal, see Sect. 2.4, takes this 
observation as a starting point. 

We are now ready to discuss the algebra structure of .κ-deformed symmetries. 
We start with translation generators that can be defined as acting like ordinary 
derivatives on non-commutative plane waves, once we have chosen an ordering 
of the non-commuting factors [35]. Let us focus on the time-to-the-right ordered 
plane waves (2.38) and define translation generators associated to bicrossproduct
coordinates as

.P̃μ êk ≡ kμêk . (2.44) 

The eigenvalues . kμ are coordinates on the .AN(3) group manifold, and thus, just real 
numbers, from which we can deduce that the generators of translations commute 

.[P̃μ, P̃ν] = 0 . (2.45) 

In order to determine the other commutators of the .κ-Poincaré algebra we need to 
define the action of the Lorentz group on the .AN(3) momentum space. 

Let us introduce the following notation for the Iwasawa decomposition for an 
element of . λ ∈ SO(4, 1)

.λ = Kg g , (2.46) 

with .Kg ∈ SO(3, 1) and .g ∈ AN(3). Uniqueness of the Iwasawa decomposition 
guarantees that given the Lorentz group element . Kg and g, there are unique elements 
. K ′

g′ , . g′, satisfying 

.Kg g = g′ K ′
g′ , (2.47)
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so that one defines the Lorentz transformed group valued momentum as 

.g′ = Kg g(K ′
g′)−1 . (2.48) 

In order to derive the action of such Lorentz transformation on momenta, and thus
the commutators with the generators of translations, one can write the following
expression for infinitesimal transformations

.Kg ≈ 1 + iξaka , K ′
g′ ≈ 1 + iξa hb

a(g)kb , (2.49) 

where . ka are the generators of the Lorentz algebra .so(1, 3), and .hb
a(g) is a matrix 

function of the momentum. We can write the momentum group element as a matrix 
in terms of embedding coordinates (2.39) 

.g =
⎛
⎝

p̃4 p/p+ p0

p 1 p
p̃0 −p/p+ p4

⎞
⎠ , (2.50) 

where 1 is the unit .3×3 matrix and .p+ = p0+p4. Plugging such a matrix expression 
for g and . g′, and (2.49) in (2.48), one remarkably obtains [55] that the action of the 
Lorentz generators (and thus also of the Lorentz group) on the four-momenta . pμ

is the ordinary one. Thus, defining the set of translation generators associated to 
embedding coordinates through the following action on plane waves 

.Pμ êk ≡ pμêk , (2.51) 

(notice how this differs from (2.44) by the different choice of momentum space
coordinates p and k) we have that they obey the ordinary commutators with
generators of rotations . Mi and . Ni : 

. [Mi, Pj ] = i εijkpk, [Mi, P0] = 0
[
Ni, Pj

] = i δijP0, [Ni, P0] = i Pi . (2.52) 

Now we come to one of the key points which distinguishes the .κ-deformed 
algebra from the standard Poincaré algebra. As the reader might have noticed, 
we have already introduced two different sets of translation generators: the ones 
associated to bicrossproduct coordinates, which we denoted by . P̃μ, and those 
associated to embedding coordinates . Pμ. In the literature, these different sets of 
generators are known as different bases of the .κ-Poincaré algebra. The generators 
. Pμ (together with the generators of rotations and boosts) are known as the “classical 
basis” of the .κ-Poincaré algebra [56], since at the Lie algebra level they just 
reproduce the standard Poincaré algebra. The generators .P̃μ determine the so-
called “bicrossproduct basis” [54]. Using the coordinate transformation (2.40),
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one can easily see that the commutators between the bicrossproduct generators of 
translations and the Lorentz ones are deformed 

. [Mi, P̃j ] = i εijkP̃k, [Mi, P̃0] = 0 ,

[
Ni, P̃j

]
= i δij

(
κ

2

(
1 − e−2P̃0/κ

)
+ P̃2

2κ

)
− i

1

κ
P̃i P̃j ,

[
Ni, P̃0

]
= i P̃i .

(2.53)

•? Exercise 

2.4. Compute the commutators (2.53) starting from (2.52) and using the change of basis
(2.40) .

Notice how in the classical basis since the algebra is undeformed so is the mass 
Casimir (an element of the algebra commuting with all other elements) 

.Cκ(P ) = P 2
0 − P2 , (2.54) 

reflecting the invariance under .SO(3, 1) transformations of the subspaces . p4 =
const. of de Sitter space. Of course, the same invariant object written in bicrossprod-
uct coordinates will have a very complicated non-linear form. Thus, we see that 
the curved manifold structure of momentum space makes it possible to have non-
linear energy-momentum dispersion relations which at leading order are formally 
analogous to the modifications of the energy-momentum dispersion relations 
characterizing models in which Lorentz invariance is broken. Here, however, such 
modifications are fully compatible with the action of Lorentz transformations which 
are now deformed according, e.g., to the modified commutators (2.53) . This feature
is at the basis of the general ideas of DSR models, in which the deformation
parameter . κ is seen as a fundamental, observer independent, Planckian energy scale, 
see Sects. 2.1, 2.2 and 2.3.3. The price to pay for the introduction of such a scale in 
a way in which Poincaré symmetries are preserved is to renounce to the Abelian 
additivity of quantum numbers associated to such symmetries, as we show below. It 
is important to notice that this last feature is also present in the classical basis. So 
this basis is not equivalent to special relativity, despite having a trivial algebra and 
Casimir.
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Before proceeding, let us summarize the results obtained so far: in the classical 
basis, the .κ-Poincaré algebra is nothing but the ordinary Poincaré algebra. In the 
bicrossproduct basis, the commutators are given by [52] 

.[P̃μ, P̃ν] = 0 , . (2.55) 

[Mi, P̃j ] = i εijkP̃k, [Mi, P̃0] = 0 ,

[
Ni, P̃j

]
= i δij

(
κ

2

(
1 − e−2P̃0/κ

)
+ P̃2

2κ

)
− i

1

κ
P̃i P̃j ,

[
Ni, P̃0

]
= i P̃i . 

(2.56) 

[Mi,Mj ] = i εijkMk, [Mi,Nj ] = i εijkNk, [Ni,Nj ] = −i εijkMk , (2.57) 

while the Casimir invariant is given by

.Cκ(P̃ ) =
(

2κ sinh
P̃0

2κ

)2

− P̃2e
P̃0
κ . (2.58) 

Notice that the relation between the classical basis Casimir, .Cκ(P ), and the 

bicrossproduct one, . Cκ(P̃ ), is [57] .Cκ(P ) = Cκ(P̃ )
(

1 + 1
4κ2Cκ(P̃ )

)
. As a matter 

of fact, the presence of the invariant energy scale . κ in the model renders any function 
of .Cκ(P ) a good candidate for the invariant mass Casimir. Historically, (a variant 
of) the bicrossproduct basis Casimir .Cκ(P̃ ) was first derived in the literature using 
contraction techniques on a q-deformed anti-de Sitter algebra [48]. For this reason, 
the vast majority of works focusing on the applications of the .κ-Poincaré algebra 
adopted such Casimir to define a .κ-deformed energy-momentum dispersion relation. 

We are now ready to discuss the so-called co-algebra sector of the .κ-Poincaré 
algebra, namely, the generalization to the .κ-deformed setting of the coproduct and 
antipode maps discussed at the beginning of this section. As we have seen, working 
in the classical basis one can establish a Lie algebra isomorphism between the .κ-
Poincaré algebra and the ordinary Poincaré algebra. Thus, at the one-particle level, 
irreducible representations of the .κ-Poincaré algebra can be identified with those 
of the ordinary Poincaré algebra [58]. As in ordinary quantum field theory, such 
irreducible representations for a scalar field can be constructed starting from plane 
waves. In the .κ-deformed case, we deal with non-commutative plane waves (2.38) 
which, as in the standard case, can be put in correspondence with kets labelled by the
eigenvalues associated to space-time translation generators. States characterized by
on-shell momenta provide irreducible representations of the Lie algebra. We focus
on bicrossproduct generators,

.P̃μ|k〉 = kμ|k〉 . (2.59)
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Such kets can be put in correspondence with ordinary plane waves 

.〈x|k〉 ∼ ek (2.60) 

equipped with a non-commutative .-product, such that 

.ek  el ≡ êk êl , (2.61) 

where . ̂ek and . ̂el are the ordered plane waves (2.38) . To any choice of ordering it
will correspond a different choice of .-product for ordinary plane waves [35]. The 
non-commutative nature of the .-product is simply a reflection of the non-Abelian 
structure of momentum space. Indeed, the product of non-commutative plane waves 
. ̂ek and . ̂el , results in an ordered plane wave 

.êk êl = êk⊕l , (2.62) 

where .k⊕ l is a non-Abelian addition law for the four-momenta k and l. Its form can 
be derived explicitly (see e.g. [59]) by re-ordering the factors in the product .êk êl in 
such a way to restore the normal ordering with all the factors containing .X0 to the 
right using the Baker-Campbell-Hausdorff formula for the Lie algebra (2.34) . The
resulting addition law is

.k ⊕ l = (k0 + l0,k + e−k0/κ l) . (2.63) 

Another way to derive such non-Abelian addition law would be to read-off the
bicrossproduct four-momentum of the product matrix .êk⊕l = êk êl obtained using 
the matrix expressions (2.36) and (2.37). Looking at the plane wave .êk⊕l , we can 
write 

.êk⊕l ∼ 〈x|k ⊕ l〉 = (〈x|k〉 ⊗ 〈x|l〉) , (2.64) 

where the .-product is seen as a map defined on the tensor product of two copies of 
the space of functions on Minkowski space-time. Now, since .P̃μêk⊕l = (k ⊕ l)êk⊕l , 
we can derive the co-product for the bicrossproduct translation generators through 
the identity [60] 

.P̃μ〈x|k ⊕ l〉 = (〈x|(�P̃μ(|k〉 ⊗ l〉)) , (2.65) 

obtaining

.�P̃0 = P̃0 ⊗ 1 + 1 ⊗ P̃0 , �P̃i = P̃i ⊗ 1 + e−P̃0/κ ⊗ P̃i . (2.66) 

This shows that, in the .κ-deformed context, the non-Abelian composition law of 
four-momenta is translated into a non-tivial coproduct for translation generators.
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This in turn can be seen as a non-Abelian generalization of the Leibniz rule for 
the action of such generators on tensor product states. The non-trivial structure of 
the .κ-deformed coproduct is intimately related to the non-Abelian product of two 
momentum group elements. The operation of taking the inverse of a momentum 
group element translates instead into a deformation of the antipode map. In terms of 
non-commutative plane waves, we can define a new plane wave labelled by a new 
momentum .�k such that 

.êk ê�k = 1 , (2.67) 

in other words, .ê�k ≡ (êk)
−1. It is easy to see that from the definitions above we 

have .k ⊕ (�k) = 0. One can easily show (e.g. by inverting the matrix expression 
for . ̂ek and reading off the coordinates) that 

. � k = (−k0,−ek0/κ k) . (2.68) 

Recalling our definition of antipode map (2.29) , this immediately reflects on the
non-trivial antipode map on translation generators

.S(P̃μ) = (−P̃0,−eP̃0/κ P̃) . (2.69) 

The last ingredients needed to complete our “derivation” of the .κ-Poincaré Hopf 
algebra are the co-products and antipodes for the Lorentz generators. In analogy 
with the generators of translations, the coproducts for the Lorentz generators can be 
obtained from the action of the .SO(3, 1) group on the product of two momentum 
.AN(3) group elements (an alternative derivation in terms of the so-called Weyl 
maps can be found in [35]). Such action is given by a generalization of (2.48) 

.Kg g h K ′−1
(gh)′ = (gh)′. (2.70) 

We immediately see that .(gh)′ �= g′ h′, which shows that the Lorentz group action 
on momentum space is not Leibnizian. For the antipodes, one looks at the action of 
Lorentz transformations on inverse group elements, namely 

.(g−1)′ = K ′
g′ g−1 K−1

g . (2.71) 

Using the infinitesimal form of the transformations (2.49) , together with matrix
representation of the .AN(3) group elements and of the Lorentz generators, one can 
show (see [55] for details) that the coproduct and antipode for rotation generators 
remain trivial 

.�Mi = Mi ⊗ 1 + 1 ⊗ Mi , S(Mi) = −Mi , (2.72)
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while for boost generators one finds 

.�(Ni) = Ni ⊗ 1 + P −1+ ⊗ Ni + εijk

1

κ
PjP

−1+ ⊗ Mk , (2.73) 

.S(Ni) = −NiP+ + εijk

1

κ
PjMk , (2.74) 

where .P+ = P0 + P4, with .P4 =
√

κ2 + P 2
0 − P2. Written in terms of the 

bicrossproduct generators such coproduct and antipode read 

.�(Ni) = Ni ⊗ 1 + e−P̃0/κ ⊗ Ni + 1

κ
εijkP̃j ⊗ Mk , (2.75) 

.S(Ni) = −e
P̃0
κ (Ni − 1

κ
εijkP̃jMk) . (2.76) 

These complete our description of the co-algebra structure of the .κ-Poincaré Hopf 
algebra.

•? Exercise 

2.5. Using the change of basis (2.40) , compute the co-algebra structure in terms of the
generators . Pμ of the classical basis. 

2.3.3 Link to DSR Phenomenological Models 

The Hopf algebra structure just described can be used to define a phenomeno-
logical model for DSR of the kind discussed in Sect. 2.2. In fact, because in the 
bicrossproduct basis the translation generators form a Hopf-subalgebra, they can be 
represented as an algebra of functions over momentum space [44, 61, 62], such that 
the translation generators correspond to the coordinate functions . pμ, 

.P̃μ(p) = pμ . (2.77) 

Then, the Casimir (2.58) can be used to read a deformed dispersion relation.
Given that the Casimir is by definition an invariant of the symmetry generators, it
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can be equated to (a function of) the squared mass of the particle . μ2, so that the 
energy-momentum dispersion relation reads 

.μ2 =
(

2κ sinh
p0

2κ

)2 − p2e
p0
κ � p2

0 − p2 − 1

κ
p0p2 , (2.78) 

where we have also indicated the first-order expansion in . 1
κ

. In this scenario, 
the parameter . κ gives the relativistically invariant energy scale. Invariance of this 
dispersion relation can be verified explicitly by performing a boost transformation 
according to:8 

. 
B

ξ
j � p0 ≡ p0 + ξ{Nj , p0} = p0 + ξpj ,

B
ξ
j � pi ≡ pi + ξ{Nj , pi} = pi + ξδij

[
κ
2

(
1 − e−2p0/κ

)− 1
2κ
p2
]

− ξ 1
κ
pipj ,

in which . ξ is the rapidity parameter. 
When comparing the first-order expansion with (2.13) , we see that the two

expressions are equivalent upon setting .
1
κ

= η
EP

. However, we are now going to 
show that the other ingredients of the DSR model inspired from the .κ-Poincaré Hopf 
algebra, namely, the composition law and the deformed boosts, when considered at 
the first order in the deformation parameter, are not the same as the ones of the model 
discussed in Sect. 2.2, despite the two models sharing the same first-order dispersion 
relation. This is possible because when working to the first order in the deformation 
parameter the relativistic constraints leave open some degrees of freedom in the 
definition of the model [12, 41], so that starting from the same deformed dispersion 
relation one can construct different relativistic models. The model we are discussing 
in this section is in principle valid to all orders in . 1

κ
, even though it might still be 

the case that it only describes physics in a limited energy range (one could imagine 
that Nature is such that DSR models only describe the relativistic symmetries in a 
limited energy range, above which one might have a full breakdown of symmetries, 
or a restoration of special relativistic symmetries). 

Other structures of the Hopf sub-algebra of translations are linked to the 
properties of the momentum space. Specifically, a deformed composition law of 
momenta is read off from the Hopf algebra coproduct: 

.�(Pμ)(p, q) = (p ⊕ q)μ , (2.79)

8 We adopt a semiclassical approximation, so that symmetry generators act on the momentum 
space coordinates via Poisson brackets. The properties of the generators of the Hopf algebra 
are inherited by the Poisson brackets with the convention that, if .[G, f (Pμ)] = ih(Pμ), then  
.{G, f (pμ)} = h(pμ), for any generator G of the Hopf algebra. The functions f , h, take as  
argument the translation generators .Pμ in the first case, and the momentum space coordinates 
. pμ in the second one. This approximation is justified in the “semiclassical” limit we mentioned in 
the previous footnote and further described in Sect. 2.4. 
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so that the deformed addition law . ⊕ reads 

.
Ea ⊕ Eb = Ea + Eb ,

pa ⊕ pb = pa + eEa/κpb .
(2.80) 

Notice that this is also compatible with the interpretation of the momentum space
as a group manifold, so that the momentum composition is defined by the group
multiplication law (2.62) –(2.63) .

In contrast to the example considered in Sect. 2.2, here we have a composition 
law for spatial momenta that is noncommutative (because of the noncocommu-
tativity of the coproduct) and associative (because of the coassociativity of the 
coproduct). 

As we already mentioned briefly in Sect. 2.2, when the addition rule . ⊕ is 
noncommutative then the momenta of each particle are boosted with rapidities 
that depend on the other particles’ momenta, and this guarantees covariance of the 
addition law. The model we are describing in this section is an example of such 
behaviour. In fact, it is now well understood [44,45,63] that the addition law (2.80) 
is not covariant if each momentum is boosted with the same rapidity . ξ : 

.pa → Bξ � pa , pb → Bξ � pb . (2.81) 

In fact, calling .q ≡ pa ⊕ pb, it can be shown that: 

.Bξ � q �= (Bξ � pa) ⊕ (Bξ � pb) . (2.82)

•? Exercise 

2.6. Show explicitly that 

.Bξ � q �= (Bξ � pa) ⊕ (Bξ � pb) . (2.83) 

What does work to achieve covariance of the addition law is to account for a 
“backreaction” of the individual momenta onto the rapidity . ξ [44,45].9 This is such

9 A similar feature as the one we are discussing here for boosts exists for rotation transformations, 
see [44]. 
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that the rapidity with which the second momentum transforms is affected by the first 
momentum:10 

.Bξ � q = (Bξ � pa) ⊕ (Bξ�pa � pb) , (2.84) 

where .ξ � pa ≡ e−Ea/κξ . As discussed in detail in [42], such backreaction does 
not identify a preferred frame of reference and is fully compatible with relativistic 
invariance.

•? Exercise 

2.7. Verify the covariance of the conservation law (2.80) under the transformation (2.84) .
Use [45] as guidance. 

Since the model we are discussing in this section is linked to a Hopf algebra, 
we can understand such action of boosts on composed momenta in terms of the 
properties of the coproduct of the boost generator (2.75) . In fact, one can interpret
the backreaction (2.84) in terms of a law of “addition” of boost generators that
dictates how composed momenta transform. The “total boost” generator

.N[pa⊕pb] = N[pa ] + e−Ea/κN[pb], (2.85) 

is defined by the coproduct of the boost generator in the underlying Hopf algebra,
Eq. (2.75). Here, the notation .N[pa ] indicates that the transformation only acts on . pa

and not on . pb. The “total boost” of rapidity . ξ then has the following action on the 
momenta of each of the two interacting particles: 

. 

Bξ � pa = pa + ξ{N[pa⊕pb], pa} = pa + ξ{N[pa ], pa} ,

Bξ � pb = pb + ξ{N[pa⊕pb], pb} = pb + ξe−Ea/κ {N[pb], pb}
= pb + (ξ � pa){N[pb], pb} .

When considering the composition of several momenta, the rapidity acting on 
each of them receives a backreaction from all the other momenta that come before 
it in the composition law. Specifically, considering the addition of n momenta 

.p(1) ⊕ ... ⊕ p(n) , (2.86)

10 A more general expression applies when considering finite transformations [44]; however, here 
we only discuss the first order in . ξ . 
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the rapidity with which the particle with momentum . pk is boosted reads: 

.ξ [p(k)] = ξ � p(1) � ... � p(k−1) ≡ ξ � (p(1) ⊕ ... ⊕ p(k−1)) . (2.87) 

Again, we can interpret the backreaction in terms of the action of a total boost.
Boosting each momentum with its own boost generator, .N[p(i)], and incorporating 
the backreaction on the rapidity, as explained above, is completely equivalent to 
boosting each momentum with the total boost generator [45] 

.N[⊕n
i=1 p(i)] = N[p(1)] + e−E(1)/κN[p(2)] + · · · + e

−
(∑n−1

i=1 E
(i)
0

)
/κ

N[p(n)] . (2.88) 

2.3.4 DSR on Curved Spacetime—The κ-(Anti) de Sitter Example 

Most of the currently available DSR models, including the .κ-Poincaré algebra 
described in this section, describe deformations of the relativistic transformations 
in flat spacetime. However, as we will discuss in Sect. 2.6, the most interesting phe-
nomenological applications refer to the propagation of particles over cosmological 
distances, where the flat spacetime approximation is no longer valid. 

Phenomenological studies aimed at extending DSR models to de Sitter or even 
Friedmann-Robertson-Walker spacetimes have been undertaken in relatively recent 
times [64–67], while some first exploratory studies were already performed more 
than a decade ago [18, 68]. An interesting line of investigation concerns the 
the generalization of the .κ-Poincaré Hopf algebra to allow for a non-vanishing 
cosmological constant . �. This leads to a quantum-deformed (Anti)-de Sitter Hopf 
algebra, known as .κ-(A)dS [69, 70] and its associated non-commutative spacetime 
[71, 72]. 

These investigations agree on the fact that in general one should expect a 
nontrivial interplay between effects due to the quantum deformation and those due 
to spacetime curvature. For example, once the quantum deformation is taken into 
account the effects that are classically associated to space-time curvature acquire a 
new energy-dependence [64, 65, 68, 73, 74]. Moreover, when space-time curvature 
is present, the description of the geometrical properties of momentum space is 
non-trivial [75–78] and it turns out that one needs to account for an enlarged 
momentum space, which includes additional coordinates associated to “hyperbolic 
angular momentum”. In .3+1 dimensions, the geometry of these momentum spaces 
is half of the .(6 + 1)- dimensional de Sitter space in the case of .κ-dS, and half of a 
space with .SO(4, 4) invariance for .κ-AdS [76]. 

We are not going to revisit the details of the derivation of the results we 
mentioned, since this would go beyond the scope of these notes. A thorough review 
and additional references can be found in [75]. 

Here we recall only some of the more interesting features concerning the 
interplay between the quantum deformation and curvature parameters, in order to
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illustrate the previous remarks. The rotations sector is deformed into a quantum 
.so(3) algebra with deformation parameter given by .η/κ = √−�/κ: 

. �(J3) = J3 ⊗ 1 + 1 ⊗ J3,

�(J1) = J1 ⊗ e
η
κ
J3 + 1 ⊗ J1, �(J2) = J2 ⊗ e

η
κ
J3 + 1 ⊗ J2, (2.89) 

and whose deformed brackets read11 

. {J1, J2} = e2 η
κ
J3 − 1

2η/κ
− η

2κ

(
J 2

1 + J 2
2

)
, {J1, J3} = −J2, {J2, J3} = J1 .

(2.90) 

The translations sector, that provides the deformed composition law for momenta 
in the corresponding DSR model, as seen for the .κ-Poincaré case in the previous 
section, reads 

. �(P0) = P0 ⊗ 1 + 1 ⊗ P0,

�(P1) = P1 ⊗ cosh(ηJ3/κ) + e−P0/κ ⊗ P1 − ηK2 ⊗ sinh(ηJ3/κ)

− η

κ
P3 ⊗ J1 + η2

κ
K3 ⊗ J2 + η2

κ2 (ηK1 − P2) ⊗ J1J2e
− η

κ
J3

− η2

κ2 (ηK2 + P1) ⊗
(
J 2

1 − J 2
2

)
e− η

κ
J3 ,

�(P2) = P2 ⊗ cosh(ηJ3/κ) + e−P0/κ ⊗ P2 + ηK1 ⊗ sinh(ηJ3/κ)

− η

κ
P3 ⊗ J2 − η2

κ
K3 ⊗ J1 − η2

κ2 (ηK2 + P1) ⊗ J1J2e
− η

κ
J3 (2.91) 

− 1

2

η2

κ2 (ηK1 − P2) ⊗
(
J 2

1 − J 2
2

)
e− η

κ
J3 ,

�(P3) = P3 ⊗ 1 + e−P0/κ ⊗ P3 + 1

κ

(
η2K2 + ηP1

)
⊗ J1e

− η
κ
J3

− 1

κ

(
η2K1 − ηP2

)
⊗ J2e

− η
κ
J3 .

Notice that the deformed composition law for momenta involves the full Lorentz 
sector, which indicates that the construction of the associated momentum needs 
to include the Lorentz sector, as we discussed at the beginning of this subsection.

11 Here we are using Poisson brackets instead of commutators because we are taking the 
semiclassical limit which turns a Hops algebra into a Poisson-Lie algebra. 
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Moreover, the deformed brackets describe both non-commutativity due to space-
time curvature (.η �= 0) and quantum deformation: 

. {P1, P2} = −η2 sinh
(
2 η

κ
J3
)

2η/κ
− η

2κ

(
2P 2

3 + η2(J 2
1 + J 2

2 )
)

− η5

4κ3
e−2 η

κ
J3
(
J 2

1 + J 2
2

)2
,

{P1, P3} = 1

2
η2J2

(
1 + e−2 η

κ
J3

[
1 + η2

κ2

(
J 2

1 + J 2
2

)])
+ η

κ
P2P3 , (2.92) 

{P2, P3} = −1

2
η2J1

(
1 + e−2 η

κ
J3

[
1 + η2

κ2

(
J 2

1 + J 2
2

)])
− η

κ
P1P3 .

Finally, the Casimir of the algebra reads 

. Cκ,η = 2κ2
[
cosh(P0/κ) cosh

(η

κ
J3

)
− 1
]

+ η2 cosh(P0/κ)(J 2
1 + J 2

2 )e− η
κ
J3

− eP0/κ
(
P2 + η2K2

) [
cosh

(η

κ
J3

)
+ η2

2κ2 (J 2
1 + J 2

2 )e− η
κ
J3

]

+ 2η2eP0/κ

[
sinh

( η
κ
J3
)

η
R3 + 1

κ

(
J1R1 + J2R2 + η

2κ
(J 2

1 + J 2
2 )R3

)
e− η

κ
J3

]
,

(2.93) 

where .Ra = εabcKbPc. As expected, in the .κ → ∞ limit we obtain the de 
Sitter Casimir, and in the .η → 0 limit, we obtain the .κ-Poincaré Casimir in the 
bicrossproduct basis (2.58) .

A derivation of the DSR model that would correspond to the .κ-(A)dS algebra 
in .3 + 1 dimensions is still missing, due to the difficulty of defining the phase 
space of particles when coordinates and momenta are intertwined in such a way. 
Preliminary studies on the propagation of free particles in .1 + 1 dimensions were 
recently performed [73], see also Sect. 2.6. 

2.4 Relative Locality 

We have seen in the previous sections that DSR models are most naturally described 
in momentum space rather than in spacetime. Indeed, a commonly accepted view, 
also supported by the results concerning the emergence of DSR within more 
fundamental quantum gravity theories discussed in Sect. 2.1.1, is that DSR may 
characterize a semi-classical and “non-gravitational” regime of quantum gravity. 
That is, heuristically, the limit in which Newton and Planck constants are negligible, 
.GN → 0 and .h̄ → 0, so that both quantum and gravitational effects are small,
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but their ratio .h̄/GN remains constant [79, 80]. In this regime, which is labeled 
the “relative-locality regime”, for reasons that will be made clear in the following, 
modifications of standard physics governed by the Planck energy . EP ∼ √

h̄/GN �=
0 can be present. Given the presence of this energy scale, it is natural to take as 
fundamental notion that of momentum space, assumed to be a pseudo-Riemannian 
manifold with an origin, a metric .gμν(p), and a connection .�νσ

μ , which can have 
torsion and non-metricity. The energy scale is then linked to the curvature scale of 
such manifold. 

On the other hand, in this limit the Planck length .LP ∼ √
h̄GN goes to 

zero, which smooths out possible small-scale properties of spacetime, such as 
noncommutativity. Nevertheless, this does not mean that we can describe spacetime 
as we usually do in general relativity or in quantum physics. In particular, the 
notion of locality becomes observer-dependent: the fact that two events take place 
at the same space-time point can only be established by observers close to the 
events themselves. The introduction of an observer-independent energy scale in 
DSR implies relativity of locality just as the introduction of an observer-independent 
speed scale in special relativity implies relativity of simultaneity. 

The relative locality proposal [79, 80] resulted from a deepening in the under-
standing of the fate of the locality principle in DSR models [81–85]. Besides clar-
ifying this important issue, the proposal also provided a more physical framework 
to understand the interpretation of the group manifold underlying the .κ-Poincaré 
Hopf algebra as a curved momentum space, which was discussed in the previous 
section [44,45,61]. In fact, the relative-locality framework provides an interpretation 
based on the geometry of momentum space for deformations of on-shellness and of 
conservation laws of energy-momentum: the metric on momentum space is linked 
to the on-shell relation while the affine connection on momentum space is related to 
the law of composition of momenta, which enters into the laws of conservation of 
energy-momentum. 

2.4.1 Geometry of Momentum Space 

One-particle system measurements allow the observer to determine the metric 
of momentum space through the dispersion relation, linked to the square of the 
geodesic distance from the origin to a point p in momentum space corresponding to 
the momentum of the particle: 

.m2 = D2(0, p) =
∫ 1

0
ds
√

gμνṗμṗν , (2.94) 

where . pμ is the solution of the geodesic equation for the metric .gμν [61]. 
In order to allow us to construct a relativistic model for particle kinematics, the 

metric .gμν must be maximally symmetric, leading to only three options: Minkowski, 
de Sitter, or anti-de Sitter metrics. In most cases studied so far, the metric is that of 
de Sitter [42, 44, 61]. Anti-de Sitter momentum spaces have been explored [86, 87],
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but it is not clear whether they lead to viable models. However, as we mentioned 
above, the momentum space manifold can have a non-metric connection, so that its 
geometry is not completely determined by the metric. 

Determination of the addition rules of energy-momentum in particles interactions 
can be used to define the connection of the momentum space. This connection is in 
general non-metrical, in the sense that it is not the Levi-Civita connection given by 
the metric defined by the deformed dispersion relation. 

Considering the momenta of two particles, the original proposal of [79,80] relies 
on the parallel transport of the momentum of one particle to the point in momentum 
space corresponding to the momentum of the other particle [42], and defines the 
connection via 

.�τλ
ν (k) = − ∂2(p ⊕k q)ν

∂pτ ∂qλ

∣∣∣∣
p=q=k

, (2.95) 

where

.(p ⊕k q)
.= k ⊕ ((�k ⊕ p) ⊕ (�k ⊕ q)) , (2.96) 

and . � is the so-called antipode operation of . ⊕, which we already encountered in 
the previous section, such that .(�p) ⊕ p = (⊕p) � p = 0. The antisymmetric 
part of this connection is the torsion, which is linked to the noncommutativity of the 
composition law 

.T τλ
ν (k) = − ∂2 ((p ⊕k q) − (q ⊕k p))ν

∂pτ ∂qλ

∣∣∣∣
p=q=k

, (2.97) 

while non-associativity of the composition law determines the connection curvature

.Rμνρ
σ (k) = 2

∂3 ((p ⊕k q) ⊕k r − p ⊕k (q ⊕k r))σ

∂p[μ∂qν]∂rρ

∣∣∣∣
p=q=r=k

, (2.98) 

where the bracket denotes the anti-symmetrization. In [79, 88], the nonmetricity, 
defined from the metric and the connection as 

.Nμνρ = ∇ρgμν(k) , (2.99) 

is claimed to be responsible for the leading order time-delay effect in the arrival of
photons from distant sources, see also Sect. 2.6. 

Notice that because of the derivatives of the addition law appearing in the 
definition of the torsion, one may have non-commutative composition laws that 
still produce a symmetric (i.e. torsionless) connection. This can be traced back to 
the fact that, when going beyond the first order in the deformation, the definition 
(2.95) does not allow for a unique identification of the composition law based on
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a given connection (and in particular, symmetric connections can be associated to 
non-commutative composition laws). Motivated by this, an alternative proposal for 
the connection was provided in [42]. In this alternative proposal, there is a one-
to-one correspondence between the composition law and the connection (at least 
up to second order in the deformation) and symmetric connections correspond to 
commutative composition laws. The drawback is that not all possible composition 
laws can be mapped to a connection, but only those satisfying a cyclic property [42]. 
The two proposals for the connection are equivalent when applied to the .κ-Poincaré 
kinematics described in Sect. 2.3.3.

•? Exercise 

2.8. Compute the connection (2.95) associated to the composition law of the .κ-Poincaré 
model, Eq. (2.80). Use [42, 44] as guidance. 

The reason why a geometrical description of the relativistic kinematics is useful 
is that it may allow to characterize the property of kinematics on momentum space 
of being (DSR-)relativistic in terms of constraints on the geometry. We have already 
discussed one such example in the case of the dispersion relation and the momentum 
space metric. Concerning the connection, a thorough analysis is provided in [42]. 

2.4.2 Spacetime and Relativity of Locality 

Some of the most relevant phenomenological applications of the deformed kinemat-
ics encoded in the relative locality proposal require that some notion of spacetime is 
provided. This is particularly important for studies of the time of flight, where one 
looks for a difference in the arrival time of particles with different energies emitted 
simultaneously by some astrophysical source (see Sect. 2.6). 

The relative locality framework provides a proposal for a description of space-
time suited for this purpose, that is compatible with the deformed relativistic 
symmetries of the momentum space and allows for a description of the phase space 
of a single free particle, as well as in the more complex case of interacting particles. 
Notice that this last point is especially nontrivial. In fact, when the momentum space 
is curved, one can take the momentum space as the base manifold and construct 
spacetime as the cotangent space to the momentum space at a given point p.12 Such 
notion is well defined in the case of one free particle, because the particle lives 
on one point of the curved momentum manifold, p. Then one can define the free 
particle dynamics in a canonical way, with the role of spacetime and momentum

12 This is a completely analogous construction to the one of general relativity where momentum 
space is the cotangent space of the space-time manifold at a point in spacetime. 



78 M. Arzano et al.

space exchanged with respect to the usual construction: spacetime coordinates . xμ

are canonically conjugated to momenta via Poisson brackets,13 

.{xu, pν} = δμ
ν , (2.100) 

and the dynamics of a free particle is described by the action 

.Sfree =
∫

dλ
(
−xμṗμ +N

(
D(p)2 − m2

))
. (2.101) 

The over-dot indicates the derivative with respect to the affine parameter . λ and the 
parameter . N is a Lagrange multiplier enforcing on-shellness .D(p)2 − m2 = 0 (see 
Eq. (2.94)). Variation of (2.101) with respect to .xμ and .pμ yields, respectively, 
conservation of momentum 

.ṗμ = 0 , (2.102) 

and the evolution equation for the space-time coordinates: 

.ẋμ = −N ∂C
∂pμ

, (2.103) 

where .C(p) ≡ D(p)2 − m2.

•? Exercise 

2.9. Show that, in .1 + 1 dimensions, the on-shell relation and the constraint equations in 
the case of the .κ-Poincaré model are (use [44, 45] for guidance): 

.m = κ arccosh

(
cosh

p0

κ
− e

p0
κ

(p1)
2

2κ2

)
, . (2.104) 

ṗμ = 0 , . (2.105) 

∂x1

∂x0 ≡ ẋ1

ẋ0 = 2κp1

κ2
(
e−2p0/κ − 1

)+ (p1)2
. (2.106) 

In the case of the .κ-Poincaré model, after integrating the coordinates evolution 
(2.106) and using the on-shell relation (2.104), one finds the worldline [44]: 

. x1(x0) = x1(0) + v(p)x0 , v(p) = ep0/κ
√

e2p0/κ + 1 − 2 ep0/κ cosh(m/κ)

1 − ep0/κ cosh(m/κ)
.

(2.107)

13 See [89] for alternative, but physically equivalent, prescriptions. 
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Because the momentum .pμ is a constant of motion, the spatial velocity . v(p)

is constant as well. The linearity of the worldlines with respect to space-time 
coordinates indicates that spacetime is flat. The deformed expression for .v(p) can 
be attributed to the non-trivial geometry of momentum space. Notice that in the 

.κ → ∞ limit .v(p) =
√

p2
0−m2

p0
as expected. 

When several interacting particles are considered, it is not obvious what momen-
tum to use in order to build the spacetime at the interaction event. For each particle 
I with momentum . pI , the construction outlined above requires a different set of 
space-time coordinates . xμ

I , each living on the cotangent space of the momentum 
manifold at a different point .pI and canonically conjugate to the associated 
momentum. If the particles are not interacting, the total action is given by the sum 
of the free actions of each particle: 

. Stot =
∑
I

Sfree
I ,

Sfree
I =

∫ ∞

−∞
dλ
(
−x

μ
I ṗI

μ +NI

(
D(pI )2 − m2

I

))
. (2.108) 

If the particles are interacting, it does not make sense to ask that the coordinates 
. x

μ
I take the same value for all I ’s at the interaction event, because the space-time 

coordinates of each particle live in different cotangent spaces. The solution provided 
within the relative locality framework is to introduce a boundary interaction term in 
the action, with a constraint that enforces momentum conservation at the interaction 
[90]. In the case of a single vertex (interaction among n incoming and m outgoing 
particles) the total action is: 

. Stot =
n+m∑
I=1

Sfree
I + Sint ,

Sfree
I = ±

∫ ±∞

λI
0

dλ
(
−x

μ
I ṗI

μ +NI

(
D(pI )2 − m2

I

))
,

Sint = zμKμ(p1(λ
1
0), . . . , pn(λ

n
0), pn+1(λ

n+1
0 ), . . . , pm(λm

0 )) , (2.109) 

where the . ± sign is chosen according to whether the I -th particle is outgoing or 
incoming, . λI

0 is the value of the affine parameter at the endpoint of the worldline of 
each particle where the interaction occurs, and . zμ is a Lagrange multiplier enforcing 
the conservation law .Kμ(p1(λ

1
0), . . . , pn(λ

n
0), pn+1(λ

n+1
0 ), . . . , pm(λm

0 )) = 0. . Kμ

accounts for the deformed composition of momenta 

.p1 ⊕ · · · ⊕ pn = pn+1 ⊕ · · · ⊕ pm , (2.110) 

and can take different forms compatible with this relation (see [45, 89]).
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From varying the action one gets similar constraints for each interacting particle 
as those found for the free particle, Eqs. (2.104) –(2.106) . Additionally, the interac-
tion term yields an additional constraint on the endpoints of the worldlines at the
interaction,

.x
μ
I (λI

0) = ∓zν ∂Kν

∂pI
μ

∣∣∣∣
λ=λ0

, (2.111) 

where the upper (lower) sign is for outgoing (incoming) particles.14 In the case of 
special relativity, .Kμ = p1 + · · · + pn − (pn+1 + · · · + pm), and all the worldlines 
simply end up at the interaction point .x

μ
I = zμ, so that the interaction is local. If the 

nonlinearity of momentum space induces nonlinear corrections to the composition 
law of momenta (as e.g. in (2.80) ), then the worldlines will have in general different
endpoints, since .

∂Kν

∂pI
μ

�= ∂Kν

∂pJ
μ

. In this case, only if the interaction happens at . zμ = 0

then all worldlines end at .x
μ
I = zμ = 0. If instead .zμ �= 0, then each worldline ends 

at a different value of . xμ
I . This is a manifestation of relative locality: only a local 

observer, .zμ = 0, sees the interaction as local, while other observers, . zμ �= 0, see  
each worldline ending at a slightly different point. A more in-depth discussion can 
be found in [61], Section V. 

It can be shown that this space-time picture is compatible with the deformed 
relativistic symmetries, see [45, 61]. In particular, the worldlines transform covari-
antly under translations and boosts, if the corresponding generators are taken to be 
the “total generators” in the sense already discussed in Sect. 2.3.3, see Eq. (2.88) .
Moreover, the “interaction coordinates” . zμ transform as the space-time coordinates 
of a single particle with momentum given by the total momentum of the vertex. 

Notice that the action (2.109) can be further expanded to include several
interaction vertices, sharing some of the particles involved. In doing so, however,
one runs into what is known as “history problem” (sometimes also called “spectator
problem”). Because the action is invariant under the action of “total generators”, one
needs to know the whole sequence of causally connected vertices in order to cor-
rectly define such operators and transform any individual vertex [45]. Understanding 
how to solve this issue is still an open problem currently under study. 

2.5 Deformed Kinematics on Curved Momentum Space 

In the previous section we have discussed a possible way to describe a curved 
momentum space which takes into account a relativistic deformed kinematics. 
In that approach, the starting ingredients are the free particle energy-momentum 
dispersion relation and the addition law of momenta in interactions. From these,

14 This result was recently rederived using a line element in phase space for a multi-particle system 
in [91]. 
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one can derive the geometrical properties of the momentum space (metric and 
connection) following the prescriptions discussed in Sect. 2.4.1. In this section we 
develop a different perspective [92]: we start from the geometry of a maximally 
symmetric curved momentum space and derive all the ingredients of a deformed 
kinematics, preserving a relativity principle [12, 41–43]. 

2.5.1 Definition of the Deformed Kinematics 

A relativistic deformed kinematics (we will see in Sect. 2.5.2 that this construction 
preserves a relativity principle) can be obtained by identifying the isometries of the 
momentum space metric with the composition law and the Lorentz transformations 
in the one-particle system, fixing the dispersion relation. 

It is well known that in a four dimensional maximally symmetric space, there are 
10 isometries [93]. An isometry is a transformation .k → k′ such that, when acting 
on a momentum metric .gμν(k), does not changes the form of the metric, i.e., 

.gμν(k
′) = ∂k′

μ

∂kρ

∂k′
ν

∂kσ

gρσ (k) . (2.112) 

By choosing a system of coordinates such that .gμν(0) = ημν , we can write the 
isometries as 

.k′
μ = [Ta(k)]μ = Tμ(a, k) , k′

μ = [Jω(k)]μ = Jμ(ω, k) , (2.113) 

where a is a set of four parameters and . ω of six, and 

.Tμ(a, 0) = aμ , Jμ(ω, 0) = 0 . (2.114) 

Here .Jμ(ω, k) are the 6 Lorentz isometries (three rotations and three boosts) which 
form a subgroup (Lorentz algebra), leaving the origin in momentum space invariant. 
On the other hand, .Tμ(a, k) are the other 4 isometries associated to translations 
which transform the origin. This idea was also considered in [87] but, as we will  
see, there is some arbitrariness that needs to be fixed in order to obtain the desired 
kinematics. 

Therefore, the isometries .k′
μ = Jμ(ω, k) are the Lorentz transformations of the 

one-particle system, being . ω the six parameters of a Lorentz transformation. In order 
to define the dispersion relation .Cκ(k), we can use any arbitrary function of the 
distance from the origin to a point k, in such a way that special relativity is recovered 
when taking the limit in which the high-energy scale tends to infinity15 . Since the 
distance is invariant under a Lorentz transformation, the equality .Cκ(k) = Cκ(k′)

15 Note that in the previous section the squared distance was identified with the squared of the 
distance in momentum space, but any function of the Casimir will be also a Casimir. 
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holds, which allows us to determine the Casimir directly from .Jμ(ω, k) without 
computing the explicit form of the distance: 

.
∂Cκ(k)

∂kμ

Jαβ
μ (k) = 0 . (2.115) 

The other 4 isometries .k′
μ = Tμ(a, k) are related with translations and define the 

composition law .p ⊕ q of two momenta p, q through 

.(p ⊕ q)μ
.= Tμ(p, q) . (2.116) 

Indeed one can see that this composition is related with the composition of
translations

.p ⊕ q = Tp(q) = Tp(Tq(0)) = (Tp ◦ Tq)(0) . (2.117) 

In the following, we will discuss the possible different definitions of translations for
a given metric.

Then, the deformed kinematics can be obtained from a momentum metric by 

.

gμν(Ta(k)) =∂Tμ(a, k)

∂kρ

∂Tν(a, k)

∂kσ

gρσ (k) ,

gμν(Jω(k)) = ∂Jμ(ω, k)

∂kρ

∂Jν(ω, k)

∂kσ

gρσ (k) .

(2.118) 

These equations must be satisfied for any a, . ω. One can see, from the limit . k → 0
in (2.118) 

.

gμν(a) =
[

lim
k→0

∂Tμ(a, k)

∂kρ

] [
lim
k→0

∂Tν(a, k)

∂kσ

]
ηρσ ,

ημν =
[

lim
k→0

∂Jμ(ω, k)

∂kρ

] [
lim
k→0

∂Jν(ω, k)

∂kσ

]
ηρσ ,

(2.119) 

that

. lim
k→0

∂Tμ(a, k)

∂kρ

= δρ
αeα

μ(a) , lim
k→0

∂Jμ(ω, k)

∂kρ

= Lρ
μ(ω) , (2.120)
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where .eα
μ(k) is the inverse of the tetrad of the momentum space metric,16 and . L

ρ
μ(ω)

is the standard Lorentz transformation matrix with parameters . ω. From Eq.  (2.116) 
and Eq. (2.120) , one obtains

. lim
k→0

∂(a ⊕ k)μ

∂kρ

= δρ
αeα

μ(a) , (2.121) 

which establishes a relationship between the composition law and the tetrad.
We can write, for infinitesimal transformations 

.Tμ(ε, k) = kμ + εαTα
μ(k) , Jμ(ε, k) = kμ + εβγJβγ

μ (k) , (2.122) 

then Eq. (2.118) becomes

.
∂gμν(k)

∂kρ

Tα
ρ(k) = ∂Tα

μ(k)

∂kρ

gρν(k) + ∂Tα
ν (k)

∂kρ

gμρ(k) , (2.123) 

.
∂gμν(k)

∂kρ

Jβγ
ρ (k) = ∂Jβγ

μ (k)

∂kρ

gρν(k) + ∂Jβγ
ν (k)

∂kρ

gμρ(k) , (2.124) 

which define the Killing vectors .Jβγ , but do not completely determine . Tα . This can 
be understood from the fact that if . Tα , .Jβγ are a solution of the Killing equations 
(2.123) –(2.124), then .T′α = Tα + cα

βγJ
βγ is also a solution of Eq. (2.123) for any 

arbitrary constants . cα
βγ , and then, .T ′

μ(ε, 0) = Tμ(ε, 0) = εμ, where . T ′
μ(ε, k) = kμ+

εαT′α
μ (k). We can eliminate this ambiguity by taking into account that the isometry 

generators close an algebra [94]. Therefore we can ask the isometry generators, 
written as 

.T α = xμTα
μ(k), J αβ = xμJαβ

μ (k) , (2.125) 

which lead to the Poisson brackets

.{T α, T β} = xρ

(
∂Tα

ρ(k)

∂kσ

Tβ
σ (k) − ∂Tβ

ρ(k)

∂kσ

Tα
σ (k)

)
, . (2.126) 

{T α, J βγ } = xρ

(
∂Tα

ρ(k)

∂kσ

Jβγ
σ (k) − ∂Jβγ

ρ (k)

∂kσ

Tα
σ (k)

)
, (2.127) 

to close a particular algebra. Note that .xμ are canonically conjugated variables 
of . kν , satisfying the Poisson brackets of (2.100). This ambiguity in defining the
translations is just the ambiguity in the choice of the isometry algebra, leading

16 Note that the metric .gμν is the inverse of .gμν . 



84 M. Arzano et al.

each choice to a different composition law, and therefore to different relativistic 
deformed kinematics. Note that the dispersion relation is univocally defined once 
the metric is given, while the composition law can take different forms depending on 
the choice of the generators of translations . T α , leading to different kind of deformed 
kinematics (see [41, 43] for a systematic way of constructing deformed kinematics 
order by order in the high-energy scale), as we will see in the following. 

2.5.2 Relativistic Deformed Kinematics 

In this part we demonstrate that the previously defined kinematics are in fact 
relativistic. This can be understood from the following diagram: 

. 

where the momentum with prime denotes the transformation through . Jω, and . Tp, 
.Tp′ are the translations with parameters p and . p′, respectively. We can define . q̄ as a 
point in momentum spaces satisfying 

.(p ⊕ q)′ = (p′ ⊕ q̄) . (2.128) 

From this definition it is easy to note that for . q = 0, also .q̄ = 0, and for any other 
value .q �= 0, the point . q̄ is obtained from q by an isometry, being this a composition 
of the translation . Tp, a Lorentz transformation . Jω, and the inverse of the translation 
. Tp′ . This transformation is obviously an isometry, due to the fact that the isometries 
are a group of transformations, and therefore, any composition of isometries is also 
an isometry. Since we have proved that there is an isometry from .q → q̄, leaving the 
origin invariant, then the distance of both points to the origin are the same, which is 
tantamount to say 

.Cκ(q) = Cκ(q̄) . (2.129) 

From Eqs. (2.128) –(2.129) one can see that the deformed kinematics with ingredi-
ents C and . ⊕ is a relativistic deformed kinematics when identifying the momenta 
.(p′, q̄) as the two-particle Lorentz transformation of .(p, q). Indeed, Eq. (2.128) 
implies that the composition law is invariant under the previously defined Lorentz 
transformation and Eq. (2.129), together with .Cκ(p) = Cκ(p′), that the deformed 
dispersion relation of both momenta is also Lorentz invariant. From this definition 
of the two-particle Lorentz transformations, one of the points (p) transforms as a
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single momentum, but for the other one (q) the transformation generally depends of 
both momenta (which indeed is the case of several examples obtained within Hopf 
algebras [44, 45, 55]). 

In the literature, it was also considered a deformed dispersion relation, and 
some Lorentz transformations (in the one-particle system) compatible with it, in 
the geometrical context. In particular, one way to consider such modification of 
the special relativistic kinematics is through a velocity or momentum dependent 
spacetime, known as Finsler [95] and Hamilton [96] geometries, respectively. 
The case of Finsler geometries was considered in [97–99], while [100–102] were  
devoted to Hamilton spaces. In this geometrical constructions a clear connection 
with a deformed composition law and two-particle Lorentz transformations is still 
missing. 

2.5.3 κ-Poincaré Relativistic Kinematics 

Here we show how the kinematics of .κ-Poincaré defined in Sect. 2.3.3 can be 
obtained from the previous prescription, and explain how other models can also 
be defined in this context. 

Let us consider an isotropic kinematics, for which the general form of the algebra 
of the generators of isometries must be 

.{T 0, T i} = c1

κ
T i + c2

κ2
J 0i , {T i, T j } = c2

κ2
J ij , (2.130) 

where we impose the generators .Jαβ to satisfy the standard Lorentz algebra, and 
because of the fact that isometries are a group, the Poisson brackets of .T α and . Jβγ

are fixed by Jacobi identities. Different algebras of the generators of translations, 
i.e., different choices of the coefficients .(c1/κ) and .(c2/κ

2) will lead to different 
composition laws. 

For the simple case where .c2 = 0 in Eq. (2.130) , the generators of translations
close a subalgebra17 

.{T 0, T i} = ± 1

κ
T i . (2.131) 

A well known result of differential geometry (see Ch.6 of Ref. [103]) is that, when 
the generators of left-translations .T α transforming .k → Ta(k) = (a ⊕ k) form a 
Lie algebra, also the generators of right-translations . T̃ α transforming .k → (k ⊕ a), 
close the same algebra but with a different sign 

.{T̃ 0, T̃ i} = ∓ 1

κ
T̃ i . (2.132)

17 We have reabsorbed the coefficient . c1 in the scale . κ . 
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We have found the explicit relation between the infinitesimal right-translations and 
the tetrad of the momentum metric in Eq. (2.121) , which gives

.(k ⊕ ε)μ = kμ + εαeα
μ ≡ T̃μ(k, ε) . (2.133) 

Comparing with Eqs. (2.122) and (2.125) , we see that right-translation generators
are given by

.T̃ α = xμeα
μ(k) . (2.134) 

Both algebras (2.131) –(2.132) satisfy .κ-Minkowski noncommutativity (2.34) ,
so the problem of finding a tetrad .eα

μ(k) fulfilling the algebra of Eq. (2.132) is  
tantamount to obtaining a representation of this noncommutativity written in terms 
of canonical coordinates of the phase space. As a particular solution, one can see 
that the following choice of the tetrad 

.e0
0(k) = 1 , e0

i (k) = ei
0(k) = 0 , ei

j (k) = δi
j e

∓k0/κ , (2.135) 

leads to a representation of .κ-Minkowski noncommutativity. 
For obtaining the finite translations .Tμ(a, k), which form a subgroup inside the 

isometry group, Eq. (2.120) can be generalized to defining a transformation that
does not change the form of the tetrad:

.eα
μ(T (a, k)) = ∂Tμ(a, k)

∂kν

eα
ν (k) . (2.136) 

If .Tμ(a, k) is a solution to the previous equation, leaving invariant the form of the 
tetrad, the metric will also be invariant, so it is then an isometry. These previously 
defined translations form a group, since the composition of two transformations 
also leaves the tetrad invariant. Indeed, we can solve Eq. (2.136) for the tetrad in
Eq. (2.135) , obtaining

.T0(a, k) = a0 + k0, Ti(a, k) = ai + kie
∓a0/κ , (2.137) 

so the deformed addition (or composition) law (DCL) is

. (p ⊕ q)0 = T0(p, q) = p0 + q0 , (p ⊕ q)i = Ti(p, q) = pi + qie
∓p0/κ ,

(2.138) 

which is the one obtained in the bicrossproduct basis of .κ-Poincaré kinemat-
ics (2.66) (up to a sign depending on the choice of the initial sign of . κ in Eq. (2.135)).
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•? Exercise 

2.10. Derive Eqs. (2.137) , (2.138) from (2.136) and (2.135) explicitly.

From (2.115) one can obtain the dispersion relation, where .Jαβ are the infinites-
imal Lorentz transformations satisfying Eq. (2.124) with the metric . gμν(k) =
eα
μ(k)ηαβe

β
ν (k) defined by the tetrad (2.135) :

.

0 = J
αβ
0 (k)

∂k0
, 0 = −J

αβ
0 (k)

∂ki

e∓2k0/κ + J
αβ
i (k)

∂k0
,

± 2

κ
Jαβ

0 (k)δij = −∂Jαβ
i (k)

∂kj

− ∂Jαβ
j (k)

∂ki

.

(2.139) 

One finally gets

.J0i
0 (k) = −ki , J0i

j (k) = ±δi
j

κ

2

[
e∓2k0/κ − 1 − k2

κ2

]
± kikj

κ
, (2.140) 

which is equivalent to (2.53) ,and so

.Cκ(k) = κ2
(
ek0/κ + e−k0/κ − 2

)
− e±k0/κk2 , (2.141) 

which is the same function of the momentum which defines the dispersion relation
of .κ-Poincaré kinematics in the bicrossproduct basis (2.58) (up to the sign in . κ). 

Finally, using the diagram of Sect. 2.5.2, we can find . q̄ satisfying 

.(p ⊕ q)′ = p′ ⊕ q̄ . (2.142) 

Equating both expressions and taking only the linear terms in .εαβ (parameters of the 
infinitesimal Lorentz transformation) one arrives to the equation 

.εαβJαβ
μ (p ⊕ q) = εαβ

∂(p ⊕ q)μ

∂pν

Jαβ
ν (p) + ∂(p ⊕ q)μ

∂qν

(q̄ν − qν) . (2.143)
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From the composition law of (2.138) with the minus sign, we find

. 
∂(p ⊕ q)0

∂p0
= 1 ,

∂(p ⊕ q)0

∂pi

= 0 ,

∂(p ⊕ q)i

∂p0
= −qi

κ
e−p0/κ ,

∂(p ⊕ q)i

∂pj

= δ
j
i , . (2.144) 

∂(p ⊕ q)0

∂q0
= 1 ,

∂(p ⊕ q)0

∂qi

= 0 ,
∂(p ⊕ q)i

∂q0
= 0 ,

∂(p ⊕ q)i

∂qj

= δ
j
i e−p0/κ .

(2.145) 

Therefore, we obtain 

.

q̄0 = q0 + εαβ

[
Jαβ

0 (p ⊕ q) −Jαβ
0 (p)

]
,

q̄i = qi + εαβ ep0/κ
[
Jαβ

i (p ⊕ q) −Jαβ
i (p) + qi

κ
e−p0/κJαβ

0 (p)
]

,

(2.146) 

and one can check that this is the Lorentz transformation of the two-particle system
of .κ-Poincaré in the bicrossproduct basis (2.75) .

For the choice of the tetrad in Eq. (2.135), the metric in momentum space reads18 

. g00(k) = 1 , g0i (k) = gi0(k) = 0 , gij (k) = −δij e
∓2k0/κ .

(2.147)

•? Exercise 

2.11. Show that (2.147) is a de Sitter momentum space metric with curvature .(12/κ2) . 

This shows that the .κ-Poincaré kinematics in the bicrossproduct basis [104] can 
be completely obtained from the geometric ingredients of a de Sitter momentum 
space with the choice of the tetrad of Eq. (2.135) . By using different choices of
tetrad, such that the generators of Eq. (2.134) close the algebra Eq. (2.132) , one can
find the .κ-Poincaré kinematics in different bases. Therefore, the different bases of 
.κ-Poincaré can be geometrically interpreted as different choices of coordinates in 
de Sitter space. 

Different relativistic kinematics, outside the Hopf algebra scheme, can be 
obtained in the aforementioned framework.

18 This is the de Sitter metric written in the comoving coordinate system used in Refs. [44, 92]. 
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•? Exercise 

2.12. Snyder kinematics is a very particular kinematics from the point of view of Lorentz 
symmetry. Indeed, it is compatible with linear Lorentz invariance in both one- and two-
particle systems. The deformed addition law is given by [105] 

.(p ⊕ q)μ = pμ

⎛
⎝
√

1 + q2

�2 + pρηρνqν

�2
(

1 +√1 + p2/�2
)
⎞
⎠+ qμ . (2.148) 

Show that Snyder kinematics can be derived imposing .c1 = 0 in Eq. (2.130) .

Moreover, the kinematics known as hybrid models [106] can be obtained when 
. c1, . c2 are non-zero. As a final note, it is important to notice that, with the 
construction discussed here, different kinematics (with different composition laws) 
are related to the same metric, and therefore, also to the same dispersion relation. 

2.5.3.1 Comparison with Previous Works 
In this section, we will compare the prescription followed in this section with the one 
proposed in Ref. [90]. This comparison can only be carried out for the .κ-Poincaré 
kinematics, since as we will see, the associativity property of the composition law 
plays a crucial role. 

In order to make the comparison, we consider the derivative of Eq. (2.136) with
respect to . pτ , and display it in terms of the deformed addition law 

.
∂eα

ν (p ⊕ q)

∂pτ

= ∂eα
ν (p ⊕ q)

∂(p ⊕ q)σ

∂(p ⊕ q)σ

∂pτ

= ∂2(p ⊕ q)ν

∂pτ ∂qρ

eα
ρ (q) . (2.149) 

One can find the second derivative of the deformed addition law

.
∂2(p ⊕ q)ν

∂pτ ∂qρ

= eρ
α(q)

∂eα
ν (p ⊕ q)

∂(p ⊕ q)σ

∂(p ⊕ q)σ

∂pτ

, (2.150) 

where . eν
α is the inverse of . eα

ν , .eα
ν e

μ
α = δ

μ
ν . But also using Eq. (2.136) , one has

.eρ
α(q) = ∂(p ⊕ q)μ

∂qρ

eμ
α (p ⊕ q) , (2.151) 

and then

.
∂2(p ⊕ q)ν

∂pτ ∂qρ

+ �σμ
ν (p ⊕ q)

∂(p ⊕ q)σ

∂pτ

∂(p ⊕ q)μ

∂qρ

= 0 , (2.152)
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where 

.�σμ
ν (k)

.= −eμ
α (k)

∂eα
ν (k)

∂kσ

. (2.153)

•? Exercise 

2.13. Check that the combination of tetrads and derivatives appearing in Eq. (2.153) in
fact transforms like a connection [93] under a change of momentum coordinates. 

In Ref. [42], it is proposed another way to define a connection and a DCL 
in momentum space through parallel transport, establishing a link between these 
two ingredients. It is easy to check that the DCL obtained in this way satisfies 
Eq. (2.152) . This equation only determines the DCL for a given connection if one
imposes the associativity property of the composition. Comparing with the previous
reference, one then concludes that the DCL obtained from translations that leaves
the form of the tetrad invariant is the associative composition law one finds by
parallel transport, with the connection constructed from a tetrad and its derivatives
as in Eq. (2.153) .

Finally, if the DCL is associative, then Eq. (2.96) reduces to

.(p ⊕k q) = p ⊕ k̂ ⊕ q. (2.154) 

Replacing q by .(k̂ ⊕ q) in Eq. (2.152), which is valid for any momenta (.p, q), one 
obtains 

. 
∂2(p ⊕ k̂ ⊕ q)ν

∂pτ ∂(k̂ ⊕ q)ρ
+ �σμ

ν (p ⊕ k̂ ⊕ q)
∂(p ⊕ k̂ ⊕ q)σ

∂pτ

∂(p ⊕ k̂ ⊕ q)μ

∂(k̂ ⊕ q)ρ
= 0 .

(2.155) 

Multiplying by .∂(k̂ ⊕ q)ρ/∂qλ, one finds 

. 
∂2(p ⊕ k̂ ⊕ q)ν

∂pτ ∂qλ

+ �σμ
ν (p ⊕ k̂ ⊕ q)

∂(p ⊕ k̂ ⊕ q)σ

∂pτ

∂(p ⊕ k̂ ⊕ q)μ

∂qλ

= 0 .

(2.156) 

Taking .p = q = k in Eq. (2.156) , one finally gets

.�τλ
ν (k) = − ∂2(p ⊕k q)ν

∂pτ ∂qλ

∣∣∣∣
p,q→k

, (2.157)



2 Deformed Relativistic Symmetry Principles 91

which is the same expression of Eq. (2.95) proposed in Ref. [90]. This concludes 
that the connection of Eq. (2.153) constructed from the tetrad is the same connection
given by the prescription developed in Ref. [90] when the DCL is associative. 

2.6 Phenomenological Consequences 

Given the current stage of development of DSR, which we have described in the 
previous sections, phenomenological studies can rely on a framework to describe 
kinematics, while a full theory capable of describing the dynamical features of 
DSR is still missing. In this context, the two main avenues of investigation concern 
particle propagation effect and effects due to the modified kinematics in interactions. 

Particle propagation effects have played a prominent role in the birth and 
the development of phenomenological studies in quantum gravity in general 
[3, 107, 108], and are very relevant for the phenomenology of DSR models in 
particular [109, 110]. As we are going to discuss more in detail in the following, 
the deformed kinematics described by DSR may lead to in-vacuo dispersion in 
particle propagation, producing shifts in the time of arrival of photons with different 
energies emitted simultaneously by the same source. Even though these effects 
will be in general suppressed by the ratio between the particle’s energy and 
the Planck energy, they could be amplified significantly over large propagation 
distances, such as those characterizing astrophysical sources. In fact, sensitivity 
of astrophysical observations allows for meaningful constraints on Planck-scale 
suppressed time shifts, see Chap. 6. Another class of propagation effects which may 
be present in DSR models is known as “dual lensing” [111–113], and is such that 
the apparent direction from which astrophysical particles are emitted depends on 
their energy. This kind of effect has until now received less attention than the time 
shift, because current experiments have a limited source localisation capabilities. 
However, future multi-satellite telescopes will significantly improve space-time 
localization of sources with respect to traditional telescopes, possibly opening a 
window on dual lensing investigation. 

Since the time shift effect is at the moment the one that is receiving the largest 
attention in theoretical and phenomenological studies, we will focus on that in the 
following before we briefly discuss modifications of interaction effects. 

2.6.1 Propagation Effects: Time Shift 

As we mentioned in the introduction, DSR models where originally conceived 
to provide a relativistic framework to encode Planck-scale modified energy-
momentum dispersion relation which can induce potentially observable corrections 
to particles’ speed of propagation. 

In the subsequent theoretical developments it was progressively understood that 
the emergence of the sort of effects that provided the original motivation is not a 
necessary consequence of DSR, and even when such time shift effects do emerge
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they can take different quantitative dependence on the relevant quantities at play, 
including space-time curvature, which was ignored in the first studies. 

So while the original idea concerned quite a specific kind of propagation effect, 
these more recent findings provide us with a range of possibilities for effects we 
can search for in astrophysical data. On the one hand, it is important to be aware of 
all the possibilities, in order to make sure not to miss a discovery opportunity. On 
the other hand, when some of these effects are excluded by experimental analyses, 
we get an essential guidance on the construction of a consistent DSR model that is 
compatible with observations. While one might worry that the variety of possibilities 
that at the moment seem to be compatible with the DSR framework might imply a 
lack of predictivity, one should consider that longitudinal propagation effects are not 
the only ones that can emerge in this framework (we already mentioned transverse 
propagation effects and effects on interactions), and that relativistic compatibility 
imposes compatibility conditions between the different effects. 

The first DSR phenomenological studies were based on models such as the 
ones described in Sect. 2.2, and in that context the velocity of particles was simply 
deduced from the modified energy-momentum dispersion via .v = ∂E/∂p. The  
first studies of the phenomenological consequence of Hopf-algebra deformations 
of relativistic symmetries [31, 36] observed that the group velocity of plane 
waves defined in this framework would imply a momentum-dependent velocity 
for massless particles. This conclusion, which relied on the assumption that in the 
Hopf algebra framework one could still define the group velocity as . v = ∂E

∂p
, was  

challenged by studies claiming that alternative definitions of the velocity should 
be used [114–117], leading to standard propagation velocity. The validity of . v =
∂E/∂p ultimately relies on the assumption that a Hamiltonian description is still 
available, such that .v ≡ dx/dt = {x,H(p)}, where .{...} are Poisson brackets, and 
that phase space coordinates satisfy the usual relation .{x, p} = 1 , so that .x = ∂/∂p. 

For this reason, subsequent studies [83] relied on a covariant Hamiltonian 
formalism to derive the particle’s worldline from 

.ẋ0 = {x0, C} , . (2.158) 

ẋi = {xi, C} , (2.159) 

where the role of the Hamiltonian is played by the (possibly deformed) Casimir
of the DSR algebra (both in the Hopf algebra setting and in more general
phenomenological models), e.g. given by (2.58) . The use of this formalism allows us
to account for a possibly deformed symplectic structure of the phase space, namely
a deformed bracket .{x, p} between coordinates and momenta. And in fact it turned 
out that, depending on the choice of this bracket (different choices being linked by 
momentum-dependent redefinitions of the coordinates), one could alternatively get 
standard [116] or momentum dependent velocities for massless particles within the 
same momentum-space DSR description. 

A solution to this puzzle came [83, 85, 118] when it was pointed out that 
looking at the expression of the coordinate velocity is not enough to state whether
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a time shift effect is to be expected. In fact, in presence of relativity of locality 
the equations of motion (leading to the worldlines) written by an observer are 
affected by coordinate artifacts when they are used to infer the behaviour of particles 
far away from the observer. One needs to compare the observations made by 
observers local to the emission and to the detection of the particle whose propagation 
time is being computed. By doing this, one accounts for the possibly nontrivial 
action of the translation generators on the spacetime coordinates. In particular, 
for the model inspired by the .κ-Poincaré algebra in the bicrossproduct basis (see 
Sect. 2.3.3) it turned out that such nontrivial action compensates the effect of 
momentum-dependent redefinition of coordinates, so that the time shift effect cannot 
be reabsorbed in such a way [61, 85].19 This observation set the ground for the 
investigations that led to the relative locality proposal, discussed in Sect. 2.4. 

By performing the Hamiltonian analysis, and properly transforming from the 
reference frame of the emitter to that of the observer, one can show that for the .κ-
Poincaré model of Sect. 2.3.3 the expected time shift between a low-energy massless 
particle (not affected by DSR effects) and a high-energy massless particle (for which 
DSR effects are relevant) seen by the observer local to the detection is [61, 73, 85, 
124]: 

.�t = −L
(

1 − e− E
κ

)
� −L

E

κ
, (2.160) 

where .L = T is the distance/time of flight between the source and the detector 
according to low energy particles20 and we also gave the first-order expression in 
powers of the particle energy over the energy deformation scale . κ .

•? Exercise 

2.14. Derive Eq. (2.160), following e.g. [124]. Notice that the first order expression in 
(2.160) coincides with the one that would be derived from the modified dispersion relation
(2.13) by using .v = ∂E

∂p
and .

η
EP

= 1
κ

. 

In recent studies on the relative locality framework, the importance of specifying 
the emission/detection mechanism has emerged [61, 125]. This is due to the fact

19 Of course one might reach different conclusions concerning time shift when using different 
bases of the .κ-Poincaré algebra. For example, using the the classical basis of .κ-Poincaré, there 
could be an absence of time shifts for massless particles with different energies [119]. Within 
the relative locality framework this can be understood in terms of the non-invariance of physical 
predictions under momentum space diffeomorphisms [120]. Moreover, depending on the effective 
scheme used for studying this effect, different time delay formulas are obtained, and may not lead 
to a time delay [119, 121–123]. 
20 Remember that we set the low-energy particle velocity .c = 1. 
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that in order for the the action describing the interaction vertex (2.109) to be
covariant, one needs to consider the translation/boost generators associated to the
total momentum of the vertex [45, 61], and this depends on the particles entering 
the interaction. Because of this, one may or may not predict a time shift effect, 
depending on the interactions at play [61]. Whether this is a specific feature of 
the relative locality framework, due to the insistence on the use of a Lagrangian 
formalism, or whether a similar behaviour is to be expected in any DSR model 
where a Hamiltonian approach is used is still matter of investigation (see [45] for  
a discussion on the conceptual drawbacks of using a “total momentum” or “total 
boost” generator). 

A somewhat parallel line of investigation has been focusing on how to include 
the effects of space-time curvature on the DSR-induced time shifts. Expressions 
such as (2.160) are valid for situations where space-time curvature can be neglected.
However, given the cosmological distance of sources used to test this kind of effect,
curvature should be taken into account, and it is generically expected to induce a
dependence of the time shift on the redshift z of the source. Until very recently,
the great majority of studies assumed that one can simply replace the momenta
appearing in the modified velocity of propagation with the physical momenta
.p → p/a, where a is the scale factor in a Friedmann-Robertson-Walker (FRW) 
metric. Then the time shift between a low-energy and a high-energy particle emitted 
simultaneously can be found by asking that they travelled the same comoving 
distance, and reads, for the .n = 1 case of (2.1) :

.�t = η
E0

EP

D(z) , . (2.161) 

D(z) = 1

H0

∫ z

0
dζ

(1 + ζ )√
�m(1 + ζ )3 + ��

, (2.162) 

with . H0, .�m and .�� denoting, respectively, the Hubble parameter, the matter 
fraction and the cosmological constant in a FRW universe. . E0 is the energy of the 
high-energy particle measured today.

•? Exercise 

2.15. Compute the time shift (2.161) using the criteria described in the above paragraph.
Use [126] as guidance. 

In [64, 127] it was pointed out that one could in principle consider a more 
general dependence of the physical momenta on the scale factor. Moreover, in
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[64] it was observed that the formula (2.161) is valid in the DSR scenario only
when translational invariance is not deformed, otherwise one gets a more general
dependence on the redshift of the source.21 . In [73] the time shift expected in a de 
Sitter spacetime with Hopf-algebra deformation of the relativistic symmetries was 
computed. 

2.6.2 Modified Interaction Effects 

As we mentioned, the DSR framework is not currently embedded into a theory 
providing the dynamics of particles interactions. For this reason, we can only make 
arguments on the allowed interactions based on kinematical constraints. 

Both modifications of the dispersion relation and of the energy-momentum 
conservation law have a relevant role in this kind of analysis. As we discussed in 
Sect. 2.2, relativistic consistency generally provides quite a rigid structure on the 
allowed combinations of dispersion relation and conservation laws, and this affects 
crucially the kinematical analysis of interactions, making any possible modification 
very mild. 

In order to make this point clearer, let us start from an example where the 
relativistic consistency is violated, because there is a modified dispersion relation 
but everything else is the same as in special relativity. Clearly in this case the 
modified dispersion relation identifies a preferred frame, where it takes the specific 
form considered. This kind of scenario belongs to the framework of Lorentz 
Invariance Violation (LIV). 

We are not going to review the LIV framework in detail. Here we simply 
want to characterize the phenomenological differences between this and the DSR 
framework as far as interactions are concerned. Notice that since in both models 
one can envisage the emergence of modified dispersion relations, one expects in 
both cases propagation effects for particles traveling from astrophysical sources.22 

In the LIV framework, modified dispersion relations can have significant implica-
tions for certain decay processes [128, 129]. For example, massless particles would 
be allowed to decay, so that a process like photon decay into an electron-positron 
pair (.γ → e++e−) would become possible. Using the dispersion relation (2.1) with
.n = 1, and assuming that the law of energy-momentum conservation is unmodified 
with respect to the one of special relativity, as usually done in LIV studies, one finds

21 The result of [64] was obtaining starting from a deformation of the relativistic transformations 
in de Sitter spacetime, which is maximally symmetric, and then deducing the time shift in FRW 
via a slicing procedure, first devised in [68]. 
22 As we mentioned in the previous subsection, even propagation effects might allow to distinguish 
between the two frameworks, since there could be a different dependence on the redshift of the 
source. 
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a relation between the opening angle . θ between the outgoing electron-positron pair 
and their energies . E+, E−

. cos θ = 2E+E− + 2m2
e − 2 η

EP
(E+E2− + E−E2+)

2E+E− − m2
e

(
E+
E− + E−

E+

) (2.163)

•? Exercise 

2.16. Derive Eq. (2.163), see [109] for guidance. 

For .η < 0, the process is always forbidden (.cos θ > 1), as in special relativity, 
but, for positive . η and .Eγ >> (m2

eEP /|η|)1/3, one finds that one may have . cos θ <

1. Notice that the energy scale .(m2
eEP )1/3 ∼ 1013 eV is within reach of astrophysics 

observations, and, in fact, strong constraints on . η have been set using the fact that 
we see photons of higher energies coming from astrophysical sources [128]. 

Conversely, any DSR model must have stable massless particles. By establishing 
the existence of a threshold for photon decay one could therefore falsify the DSR 
idea. In fact, an energy threshold for the decay of massless particles cannot be 
introduced as an observer-independent law, and is therefore incompatible with the 
DSR principles. Massless particles which are below a threshold energy value for one 
observer will be above that threshold for other boosted observers, and this would 
allow to identify a preferred frame. Let us see how this works in practice when 
considering the photon decay process discussed above when the kinematics is given 
by the DSR model considered in Sect. 2.2, straightforwardly generalized to the 3+1 
dimensions. 

From the conservation of spatial momenta encoded in the addition law (2.16) one
finds that23 

. p2
γ = p2+ + p2− + 2p+p− cos θ + 2

η

EP

(E+E2− + E−E2+)

+2
η

EP

(E2+E− + E2−E+) cos θ , (2.164)

23 We write all formulas up to the first order in . η
EP

. For ultra-relativistic electrons and positrons 

one can consider .me
η

EP
� 0. 
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where .p+, p− and . pγ are, respectively, the spatial momentum of the positron, the 
electron and the photon. Using the dispersion relation (2.13) this becomes

. E2
γ + η

EP

E3
γ =E2+ + E2− − 2m2

e + 2

(
E+E− − m2

e

(
E+
E−

+ E−
E+

))

cos θ + η

EP

(E3+ + E3−)

+ 2
η

EP

(E+E2− + E−E2+) + 3
η

EP

(E+ + E−) E+E− cos θ .

(2.165) 

Using the conservation of energy encoded in (2.16) one obtains:

. E2+ + E2− + 2E+E− + η

EP

(E+ + E−)3 + 2
η

EP

(E+ + E−)E+E− cos θ =

E2+ + E2− − 2m2
e + 2

(
E+E− − m2

e

(
E+
E−

+ E−
E+

))
cos θ + η

EP

(E3+ + E3−)

+ 2
η

EP

(E+E2− + E−E2+) + 3
η

EP

(E+ + E−) E+E− cos θ . (2.166) 

From this, one finds that the correction terms cancel out and one recovers the
standard special-relativistic result

. cos θ = 2E+E− + 2m2
e

2E+E− − m2
e

(
E+
E− + E−

E+

) , (2.167) 

that signals the impossibility of such decay (one always has .cos θ > 1). 
While massless particles decays are forbidden in DSR, one might still have 

modifications of the threshold for the decay of massive particles. However, it turns 
out that in this case the modification of the thresholds is only appreciable for 
energies of the order of the Planck scale . EP , which render them unobservable in 
practice. Nevertheless, since in some DSR models there could be an absence of 
time delays [119, 121–123], one might assume that in these scenarios the effective 
Planck energy is much lower, without being incompatible with current observations 
in particle accelerators [130, 131] and in astroparticle physics [132, 133] 

For similar reasons as the ones discussed above, in DSR it is also forbidden to 
have a threshold below which a photon cannot produce electron-positron pairs in 
interactions with another sufficiently high-energy photon. Such process is indeed 
always allowed in special relativity, regardless of the energy of the low-energy 
photon, and this must be the case also in DSR scenarios. This is a necessary 
consequence of the fact that two relatively boosted observers attribute different 
energy to a given photon, and if there was a threshold then it would be possible
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to distinguish frames where the interaction can take place from those where the 
interaction cannot take place.

•? Exercise 

2.17. Using again the 3+1 version of the model of Sect. 2.2 as done above, perform the 
kinematical analysis of the process .γ γ → e+e− focusing on a collinear process. Given 
some low energy . ε for the low-energy photon, find the minimum energy .Emin of the high-
energy photon for the process to take place. Show that within this model one recovers the 

same result as in special relativity, .Emin = m2
e

ε
. Use [12] as guidance. 
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3Poincaré Gauge Gravity Primer 

Yuri N. Obukhov 

Abstract 

We give an introductory overview of the classical Poincaré gauge theory of 
gravity formulated on the spacetime manifold that carries the Riemann-Cartan 
geometry with nontrivial curvature and torsion. After discussing the basic 
mathematical structures at an elementary level in the framework of the standard 
tensor analysis, we formulate the general dynamical scheme of Poincaré gauge 
gravity for the class of Yang-Mills type models, and consider a selected number 
of physically interesting consequences of this theory. 

3.1 Introduction 

The gauge-theoretic approach in classical field theory has a long history (going back 
to the early works of Weyl, Cartan, Fock, for an overview see [1–3]) and it underlies 
the modern understanding of the nature of the physical interactions [4–6]. The 
original Yang-Mills [7] treatment of the internal symmetry groups was subsequently 
extended to the spacetime symmetries by Utiyama [8], Sciama [9] and Kibble [10]. 
The detailed review of the development of the gauge approach in gravity theory and 
the corresponding mathematical structures can be found in [11–22]. It is worthwhile 
to mention that the book [22] provides an essentially complete bibliography on this 
subject. Here we do not intend to present an exhaustive and comprehensive review 
of the Poincaré gauge gravity theory, and give a rather concise and elementary 
introduction into the subject. One may view this paper as a continuation of the earlier 
work [23–25]. 
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The Poincaré gauge (PG) gravity is a natural extension of Einstein’s general 
relativity (GR) theory. Being based on gauge-theoretic principles, it takes into 
account the spin (commonly viewed as a microstructural property of matter) as an 
additional physical source of the gravitational field on an equal footing with the 
energy and momentum (naturally viewed as macroscopic properties of matter). The 
corresponding spacetime structure is then adequately described by the Riemann-
Cartan geometry with curvature and torsion. From the mathematical point of view, 
the PG formalism arises as a special case of the metric-affine gravity (MAG) theory 
[16] that provides a unified framework for the study of alternative theories based 
on post-Riemannian geometries [26, 27]. Other special cases of MAG include the 
geometries of Riemann of GR [28], Weyl [29], Weitzenböck [30] (which will also 
be discussed further in Chap. 4), etc. 

The Poincaré gauge gravity occupies a prominent place in the colorful landscape 
of modified gravitational theories that generalize or extend the physical and 
mathematical structure of Einstein’s GR. Among such theories it is worthwhile 
to highlight the large classes of .f (R) and .f (T ) models, and of theories with 
nonminimal coupling to matter, developed mainly in the context of relativistic 
cosmology, see [31–37]. The so-called Palatini approach represents another class of 
widely discussed theories in which metric and connection are treated as independent 
variables in the action principle [38–40]. 

Our basic notation and conventions are consistent with [16, 41]. In particular, 
Greek indices .α, β, · · · = 0, . . . , 3, denote the anholonomic components (for exam-
ple, of an orthonormal frame . eα), while the Latin indices .i, j, · · · = 0, . . . , 3, label 
the holonomic components (e.g., the world coordinate basis . ei). Spatial components 
are numbered by Latin indices from the beginning of the alphabet .a, b, · · · = 1, 2, 3. 
To distinguish separate holonomic components from the anholonomic ones, we put 
hats over the latter indices: e.g., .eα = {e0̂, e1̂, e2̂, e3̂} vs. .ei = {e0, e1, e2, e3}. The  
totally antisymmetric Levi-Civita tensor is denoted .ηijkl . The Minkowski metric 
is .gαβ = diag(c2,−1,−1,−1), while the coordinate components of a spacetime 
metric are denoted by . gij . All the objects related to the parity-odd sector (coupling 
constants, irreducible pieces of the curvature, etc.) are marked by an overline, to 
distinguish them from the corresponding parity-even objects. Partial derivatives are 
denoted .∂n

i1....in
= ∂n

∂xi1 ....∂xin
. 

3.2 Riemann-Cartan Geometry 

We model spacetime as a four-dimensional smooth manifold M , and leaving aside 
the global (topological) aspects, we focus only on local issues. The local coordinates 
. xi , .i = 0, 1, 2, 3, are introduced in the neighborhood of an arbitrary point of 
the spacetime manifold. The geometrical (gravitational) and physical (material) 
variables are then fields of different nature (both tensors and nontensors) over the 
spacetime. They are characterized by their components and transformation proper-
ties under local diffeomorphisms .xi → x′i (xk). An infinitesimal diffeomorphism
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.xi → xi + δxi , 

.δxi = ξ i(x), (3.1) 

is thus parametrized by the four arbitrary functions .ξ i(x). 

3.2.1 Geometrical Structures 

In the framework of what can be quite generally called an Einsteinian approach 
(with the principles of equivalence and general coordinate covariance as the 
cornerstones), the gravitational phenomena are described by the two fundamental 
geometrical structures on a spacetime manifold: the metric . gij and connection .�ki

j . 
As Einstein himself formulated [28], the crucial achievement of his theory was the 
elimination of the notion of inertial systems as preferred ones among all possible 
coordinate systems. 

From the geometrical point of view, the metric introduces lengths and angles 
of vectors, and thereby determines the distances (intervals) between points on the 
spacetime manifold. The connection introduces the notion of parallel transport and 
defines the covariant differentiation . ∇k of tensor fields. In the metric-affine theory of 
gravity, the connection is not necessarily symmetric and compatible with the metric. 
Under infinitesimal diffeomorphisms (3.1), these geometrical variables transform as 

.δgij = − (∂iξ
k) gkj − (∂j ξ

k) gik, . (3.2) 

δ�ki
j = − (∂kξ

l) �li
j − (∂iξ

l) �kl
j + (∂lξ

j ) �ki
l − ∂2

kiξ
j . (3.3) 

The Riemann-Cartan geometry of a spacetime manifold is characterized by two 
tensors: the curvature and the torsion which are defined [27] as  

.Rkli
j := ∂k�li

j − ∂l�ki
j + �kn

j�li
n − �ln

j�ki
n, . (3.4) 

Tkl
i := �kl

i − �lk
i, (3.5) 

whereas the nonmetricity vanishes:

.Qkij := −∇kgij = − ∂kgij + �ki
lglj + �kj

lgil = 0. (3.6) 

The curvature and the torsion tensors determine the commutator of the covariant
derivatives. For a tensor .Ai1...ip

j1...jq of arbitrary rank and index structure: 

. (∇k∇l − ∇l∇k)A
i1...ip

j1...jq = − Tkl
n∇nA

i1...ip
j1...jq

+
p∑

r=1

Rkln
ir Ai1...n...ip

j1...jq −
q∑

r=1

Rkljr

nAi1...ip
j1...n...jq . (3.7)
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By applying the covariant derivative .∇l to the metricity condition (3.6), and 
evaluating the commutator of covariant derivatives, we find 

.Rlk(ij) = 0, (3.8) 

i.e., the curvature tensor is skew-symmetric in both pairs of its indices.

The Riemannian (Levi-Civita) connection .
◦
�kj

i is uniquely determined by the 
conditions of vanishing torsion and nonmetricity which yield explicitly 

.
◦
�kj

i = 1

2
gil(∂j gkl + ∂kglj − ∂lgkj ). (3.9) 

Here and in the following, a circle over a symbol denotes a Riemannian object (such
as the curvature tensor) or a Riemannian operator (such as the covariant derivative)
constructed from the Christoffel symbols (3.9). The deviation of the Riemann-
Cartan geometry from the Riemannian one is then conveniently described by the 
contortion tensor 

.Kkj
i := ◦

�kj
i − �kj

i . (3.10) 

The system (3.5) and (3.6) allows to find the contortion tensor in terms of the torsion: 

.Kkj
i = − 1

2
(Tkj

i + T i
kj + T i

jk) . (3.11) 

From this we can check the skew symmetry in the two last indices, .Kk(ij) = 0, 
which is also seen directly when we use (3.10) in (3.6). Furthermore, combining 
(3.10) with (3.5) one can express the torsion tensor in terms of the contortion, 

.Tkj
i = − 2K[kj ]i . (3.12) 

Substituting (3.10) into (3.4), we find the relation between the non-Riemannian and 
the Riemannian curvature tensors 

.Rkli
j = ◦

Rkli
j − ◦∇kKli

j + ◦∇ lKki
j + Kkn

jKli
n − Kln

jKki
n. (3.13) 

Applying the covariant derivative to (3.4)–(3.6) and antisymmetrizing, we derive 
the Bianchi identities [27]: 

.∇[nRkl]i j = T[kl
mRn]mi

j , . (3.14) 

∇[nTkl]i = R[kln]i + T[kl
mTn]mi . (3.15)
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3.2.2 Special Cases 

When the torsion vanishes, 

.Tij
k = 0, (3.16) 

the Riemann-Cartan spacetime reduces to the Riemannian geometry of Einstein’s

GR, which is characterized by the curvature .
◦
Rkli

j constructed from the Christoffel 
symbols (3.9). In this case, the connection is no longer an independent dynamical 
variable. 

Quite remarkably, the vanishing curvature condition 

.Rkli
j = 0, (3.17) 

also produces a meaningful spacetime structure. This is known as the Weitzenböck
geometry [30] which is characterized by the property of a distant parallelism [42, 
43]: the result of a parallel transport of a vector from a point x to a point y does not 
depend on a path along which it is transported. The Weitzenböck geometry underlies 
another interesting gauge gravity theory which is based on the group of spacetime 
translations [44–58], also known as teleparallel gravity, which will be the topic of 
Sect. 3.5 and Chap. 4. 

When both conditions (3.16) and (3.17) are satisfied, the spacetime reduces to a 
flat Minkowski geometry. Figure 3.1 summarizes the landscape of special cases of 
the Riemann-Cartan geometry. 

Riemann-
Cartan 

Riemann 

Minkowski 

Weitzenbock 
(teleparallel) 

U 

T 

M 

V 

T=0 R=0 

R=0 T=0 

4 

4 

4 

4 .. 

Fig. 3.1 A Riemann-Cartan space .U4 with torsion T and curvature R and its different limits 
(nonmetricity vanishes: .Qkij := −∇kgij = 0), see [19], p. 174. ©Imperial College Press 2013, 
reproduced with permission. All rights reserved
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3.2.3 Local Lorentz Structures (Frame Formalism) 

The components of geometrical objects above are defined with respect to a coordi-
nate basis . ei of the tangent space, which is composed of four vectors tangential to 
the coordinate lines . xi . Under the change of the local coordinates .xi → x′i (xk) the 
coordinate basis transforms as 

.e′
k = ∂xi

∂x′k ei, (3.18) 

and this yields the corresponding transformation of the metric, connection, and 
other geometrical objects. The vectors of the coordinate basis . ei are neither unit, 
nor orthogonal; their lengths and mutual angles are encoded in the components of 
the metric via the definition of the scalar product: .gij = (ei, ej ). 

It is then reasonable to introduce, at every point of the spacetime manifold, a 
local orthonormal frame . eα for which the scalar product .(eα, eβ) = gαβ is equal to 
the Minkowski metric. To distinguish the local Lorentz frame from the coordinate 
basis, we label their legs by Greek letters instead of the Latin ones. Decomposing 
. eα with the respect to . ei , 

.eα = ei
α ei , (3.19) 

we find the frame (tetrad, or vierbein) components .ei
α(x). Repeating the same for the 

coframe (basis of the cotangent space), we eventually obtain the inverse orthonormal 
coframe with components .eα

i (x). By construction we have 

.gij = eα
i e

β
j gαβ, (3.20)

•? Exercise 
3.1. Find an orthonormal frame for the Kerr metric of a black hole with the total mass M 

and the angular momentum J , which is described by the line element 

.ds2 = gij dxidxj = gtt dt2 + 2gtφdtdφ + gθθ dθ2 + gφφdφ2 , (3.21) 

where

.

gtt = c2
(

1 − 2mr

�

)
, gtϕ = j0c sin2θ

2mr

�
, grr = − �


,

gθθ = − � , gϕϕ = − sin2θ

�

(
(r2 + j2

0 )2 − j2
0  sin2θ

)
,

(3.22) 

with .� = r2 + j2
0 cos2 θ , . = r2 + j2

0 − 2mr , .m = GM/c2 and .j0 = J/Mc. The  
Schwarzschild black hole is recovered in the non-rotating limit .j0 → 0.
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which explains why the coframe is sometimes called a “square root” of the metric. 
Normally, a local Lorentz frame is anholonomic since it cannot be constructed from 
partial derivatives .eα

i �= ∂if
α of some functions .f α(x), and this is measured by the 

anholonomity object 

.Cij
α = ∂ie

α
j − ∂j e

α
i . (3.23) 

In order to describe the parallel transport of vectors with respect to local Lorentz 
frames, one needs to transform the connection components accordingly: 

.�kα
β = ei

αe
β
j �ki

j + e
β
i ∂ke

i
α. (3.24) 

It is worthwhile to notice that we can rewrite this as

.∂ke
α
i + �kβ

αe
β
i − �ki

j eα
j = 0, (3.25) 

which in the literature is sometimes called a “postulate” of the vanishing of the
“total” covariant derivative of the coframe. This is an unfortunate misunderstanding
(sadly, a widely spread one). Both relations are not postulated, they merely
describe a transformation law of the connection. The inverse transformation is
straightforwardly derived from (3.24): 

.�ki
j = e

j
βeα

i �kα
β + e

j
β∂ke

β
i . (3.26)

•? Exercise 
3.2. Verify (3.26) .

By definition (3.18), the tetrad relates the world coordinate and the local Lorentz 
components of geometrical objects, e.g., .V α = eα

i V i . By making use of (3.24)– 
(3.26), we then also relate the covariant derivatives: . eα

j ∇iV
j = DiV

α = ∂iV
α +

�iβ
αV β . It is convenient to distinguish notationally the covariant derivative in the 

world coordinates . ∇i from the covariant derivative . Di in the local Lorentz frames. 
In particular, recasting the metricity condition (3.6) into the local Lorentz 

disguise we can demonstrate the skew symmetry of the local Lorentz connection: 

. − ei
αe

j
β∇kgij = −Dkgαβ = �kα

γ gγβ + �kβ
γ gαγ = �kαβ + �kβα = 0. (3.27)
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3.2.4 Symmetries in Riemann-Cartan Space: Generalized Killing 
Vectors 

As is well known, symmetries of a Riemannian spacetime are generated by Killing 
vector fields. Each such field defines a so-called motion of the spacetime manifold, 
that is a diffeomorphism which preserves the metric . gij . The Lie derivative .Lζ is 
defined along any vector field .ζ = ζ iei and it maps tensors into tensors of the same 
rank. Let us recall the explicit form of the Lie derivative of the metric and connection 
[59,60], which can be derived directly from the transformation laws (3.2) and (3.3): 

.Lζ gij = ζ k∂kgij + (∂iζ
k)gkj + (∂j ζ

k)gik, . (3.28) 

Lζ �kj
i = ζ n∂n�kj

i + (∂kζ
n)�nj

i + (∂j ζ
n)�kn

i − (∂nζ
i)�kj

n + ∂k(∂j ζ
i).

(3.29) 

The latter quantity measures the noncommutativity of the Lie derivative with the
covariant derivative

. (Lζ ∇k − ∇kLζ )A
i1...ip

j1...jq

=
p∑

r=1

(Lζ �kl
ir )Ai1...l...ip

j1...jq −
q∑

r=1

(Lζ �kjr

l)Ai1...jp
j1...l...jq . (3.30) 

A vector field . ζ is called a Killing vector field if .Lζ gij = 0. This condition can 
be recast, using (3.28), into an equivalent form 

.
◦∇iζj + ◦∇j ζi = 0, (3.31) 

which is called a Killing equation. By covariant differentiation with respect to the
Riemannian connection, after some algebra we derive from this

.Lζ

◦
�ki

j = 0, Lζ

◦
Rkli

j = 0. (3.32) 

That is, the Lie derivatives along the Killing vector field . ζ vanish for all Riemannian 
geometrical objects. Moreover, one can show that the same is true for all higher 
covariant derivatives of the Riemannian curvature tensor [60] 

.Lζ

( ◦∇n1 . . .
◦∇nN

◦
Rkli

j
) = 0. (3.33) 

Let us generalize the notion of a symmetry to the Riemann-Cartan spacetime. 
We begin by noticing that for an arbitrary .λα

β (Greek indices mean that this object



3 Poincaré Gauge Gravity Primer 113

is defined with respect to a local Lorentz frame . eα
i ), we can recast (3.28) and (3.29) 

into 

. Lζ gij = (
Lζ e

α
i − λγ

αe
γ

i

)
e
β
j gαβ + (

Lζ e
β
j − λγ

βe
γ

j

)
eα
i gαβ

+ eα
i e

β
j

(
Lζ gαβ + λαβ + λβα

)
, . (3.34) 

Lζ �ki
j =(
Lζ e

j
α + λα

γ ej
γ

)
Dke

α
i + ej

αDk

(
Lζ e

α
i − λγ

αe
γ

i

)

+ ej
αe

β
i

(
Lζ �kβ

α + Dkλβ
α
)
. (3.35) 

This is straightforwardly derived from (3.20) and (3.26) by making use of the 
standard definitions of the Lie derivatives of the coframe and the local Lorentz 
connection (which are, geometrically, both covectors), . Lζ e

α
k = ζ i∂ie

α
k + (∂kζ

i)eα
i

and .Lζ �kβ
α = ζ i∂i�kβ

α + (∂kζ
i)�iβ

α , whereas for the world scalar . Lζ gαβ =
ζ i∂igαβ . 

Accordingly, a natural definition of the symmetry of the Riemann-Cartan 
manifold can be formulated as the set of conditions 

.Lζ gαβ = −λαβ − λβα, . (3.36) 

Lζ e
α
i = λβ

αe
β
i , . (3.37) 

Lζ �kβ
α = −Dkλβ

α, (3.38) 

where the possible form of .λβ
α(x) is eventually determined by the vector field 

. ζ , which is naturally called a generalized Killing vector of the Riemann-Cartan 
spacetime. We will solve these equations explicitly for the spherical symmetry in 
Sect. 3.4.2). Since the Minkowski metric .gαβ has constant components, (3.36) yields 
the skew symmetry .λαβ = − λβα . As a result, from (3.34) and (3.35) we find 

.Lζ gij = 0, . (3.39) 

Lζ �ki
j = 0. (3.40) 

Thereby, the generalized Killing vector . ζ generates a diffeomorphism of the 
spacetime manifold that is simultaneously an isometry (3.39) and an isoparallelism 
(3.40). 

Combining (3.40), (3.32) and (3.10), we derive .Lζ Kki
j = 0 for the contortion, 

and we accordingly conclude that the generalized Killing vector leaves the torsion 
and the Riemann-Cartan curvature tensors invariant 

.Lζ Tij
k = 0, Lζ Rklj

i = 0. (3.41)
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•? Exercise 
3.3. Verify (3.41) .

It is also straightforward to demonstrate that 

.Lζ

(∇n1 . . . ∇nN
Tij

k
) = 0, Lζ

(∇n1 . . . ∇nN
Rklj

i
) = 0 , (3.42) 

for any number of covariant derivatives of the torsion and the curvature.

3.2.5 Matter Variables 

Without specializing the discussion of matter to any particular physical field, we can 
describe matter by a generalized field . ψA. The range of the indices .A,B, . . . is not 
important in our study. However, we do need to know the behavior of the matter 
field under spacetime diffeomorphisms (3.1): 

.δψA = − (∂iξ
j ) (σj

i)AB ψB. (3.43) 

Here .(σj
i)AB are the generators of general coordinate transformations that satisfy 

the commutation relations 

.(σj
i)AC(σl

k)CB − (σl
k)AC(σj

i)CB = (σl
i)AB δk

j − (σj
k)AB δi

l . (3.44) 

We immediately recognize in (3.44) the Lie algebra of the general linear group 
.GL(4, R). This fact is closely related to the standard gauge-theoretic interpretation 
[16] of metric-affine gravity as the gauge theory of the general affine group 
.GA(4, R), which is a semidirect product of spacetime translation group times 
.GL(4, R). 

The transformation properties (3.43) determine the form of the covariant and the 
Lie derivative of a matter field: 

.∇kψ
A := ∂kψ

A − �ki
j (σj

i)AB ψB, . (3.45) 

Lζ ψ
A := ζ k∂kψ

A + (∂iζ
j )(σj

i)AB ψB. (3.46) 

The commutators of these differential operators read

.(∇k∇l − ∇l∇k)ψ
A = −Rklj

i(σi
j )ABψB − Tkl

i∇iψ
A, . (3.47) 

(Lζ ∇k − ∇kLζ )ψ
A = − (Lζ �kj

i)(σi
j )ABψB. (3.48)
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3.2.6 Irreducible Decomposition of Curvature and Torsion 

In order to establish the dynamical scheme of the Poincaré gauge gravity in 
a most transparent way, and also to understand more clearly the coupling of 
the gravitational field to the physical sources of different physical nature, it is 
convenient to decompose the Poincaré gauge field strengths, the curvature and the 
torsion, into irreducible parts. 

With the help of the metric . gij and the totally antisymmetric Levi-Civita tensor 
.ηijkl , one can construct a number of contractions of the curvature. In particular, we 
introduce the Ricci tensor and the co-Ricci tensor as 

.Rij := Rkij
k, Rij := 1

2
Rklm

i ηklmj , (3.49) 

respectively. By definition, the former is a parity-even object, whereas the latter is a
parity-odd one. We can split (3.49) into the skew-symmetric and symmetric pieces 

.Rij = R[ij ] + R(ij), Rij = R[ij ] + R(ij), (3.50) 

and, furthermore, extract the traceless parts from the latter

. ↗Rij := R(ij) − 1

4
Rgij , ↗R ij := R(ij) − 1

4
Rgij . (3.51) 

Here the curvature scalar and pseudoscalar arise naturally as the traces

.R = gijRij = Rij
ji , R = gijR

ij = 1

2
Rijkl η

ijkl . (3.52) 

With the help of a straightforward algebra we can verify that the antisymmetric
Ricci parts are related via

.R[ij ] = 1

2
ηijklR[kl], (3.53) 

and it will be convenient to denote the skew-symmetric tensor as

.Řij := R[kl]. (3.54) 

Then irreducible parts of the curvature tensor are as follows: 

.
(2)Rkl

ij =↗Rm
[iηj ]m

kl, . (3.55) 

(3)Rkl
ij = − 1

12
R ηkl

ij , . (3.56) 

(4)Rkl
ij = − 2↗R[k [i δ

j ]
l] , . (3.57)
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(5) Rkl 
ij = − 2 Ř[k [i δ j ] 

l] , . (3.58) 

(6)Rkl
ij = − 1

6
R δ[ki δ

j
l]. (3.59) 

In the literature, the five objects (3.55)–(3.59) are known [16] as the “paircom”, 
“pscalar”, “ricsymf”, “ricanti”, and “scalar” parts, respectively. Finally, the Weyl 
part is defined as 

.
(1)Rkl

ij = Rkl
ij −

6∑

I=2

(I )Rkl
ij (3.60) 

Introducing the trace vector and the axial trace vector, respectively, 

.Tj := Tij
i , T j = 1

2
Tkliη

klij , (3.61) 

the torsion tensor decomposition reads .Tkl
i = (1)Tkl

i + (2)Tkl
i + (3)Tkl

i , with 

.
(2)Tkl

i = 2

3
δi
[kTl], . (3.62) 

(3)Tkl
i = − 1

3
ηkl

ij T j , . (3.63) 

(1)Tkl
i = Tkl

i − (2)Tkl
i − (3)Tkl

i . (3.64) 

3.3 General Structure of Poincaré Gauge Gravity 

The gauging of the Poincaré symmetry group is well understood within the 
framework of a general gauge-theoretic approach which is formulated as a heuristic 
scheme in the Lagrange formalism in the Minkowski space of special relativity 
for the purpose of deriving a new interaction from a conserved Noether current 
associated with rigid symmetry group [4–6]. Such a new gauge interaction arises 
from the requirement that the rigid (global) symmetry should be extended to a local 
symmetry. 

In contrast to the standard theories of electroweak and strong interactions, which 
are based on the gauging of internal symmetries, the gauge theory of the gravita-
tional interaction is underlied by external symmetry groups of the spacetime. In 
the absence of gravity, the fundamental spacetime symmetry of the flat Minkowski 
space is its group of motions, namely, the Poincaré group .T4 � SO(1, 3), the semi-
direct product of the translations group . T4 (four parameters . εα) and the Lorentz 
group .SO(1, 3) (six parameters .εαβ = − εβα). The corresponding Lagrange-
Noether treatment of the invariance of Minkowski space under rigid (global) 
Poincaré transformations gives rise to the conservation laws of the canonical
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energy-momentum .�α
i and spin angular momentum .ταβ

i = − τβα
i currents. In 

relation with this, it is worthwhile to recall Wigner’s classification [61] of quantum 
mechanical systems in a Minkowski space according to mass and spin. 

An appropriate gauge-theoretic formalism that extends the approach of Yang and 
Mills [7] from the case of internal symmetries to the spacetime symmetry groups 
was developed by Utiyama, Sciama and Kibble [8–10]. Up-to-date reviews of the 
Poincaré gauge theory of gravity can be found in [3, 24, 25], and for more historic 
and technical details readers may refer to [12,16,19,21,22]. Here we briefly outline 
the most essential notions and constructions. 

3.3.1 Poincaré Gauge Gravity Kinematics 

Following the general Yang-Mills-Utiyama-Sciama-Kibble gauge-theoretic scheme, 
the 10-parameter Poincaré group .T4 � SO(1, 3) gives rise to the 10-plet of the 
gauge potentials which are consistently identified with the orthonormal coframe 
.eα

i (4 potentials corresponding to the translation subgroup . T4) and the local 
connection .�i

αβ = −�i
βα (6 potentials for the Lorentz subgroup .SO(1, 3)). The 

corresponding field strengths of translations and Lorentz rotations arise as covariant 
“curls” 

.Tij
α = ∂iej

α − ∂j ei
α + �iβ

αej
β − �jβ

αei
β, . (3.65) 

Rijα
β = ∂i�jα

β − ∂j�iα
β + �iγ

β�jα
γ − �jγ

β�iα
γ . (3.66) 

Comparing these with (3.4) and (3.5), respectively, with an account of (3.26), we 
immediately identify the Poincaré gauge field strengths (3.65) and (3.66) with the 
torsion .Tij

α = eα
k Tij

k and the curvature .Rijα
β = ek

αe
β
k Rijk

l of the Riemann-Cartan 
geometry on the spacetime manifold. 

In accordance with the heuristic gauging scheme, the gravitational spin-
connection interaction is derived from the rigid Lorentz symmetry of a matter 
field .ψA which belongs to a representation of the Lorentz group with the generators 
.(ραβ)AB : 

.δψA = − 1

2
εαβ(ραβ)AB ψB. (3.67) 

When the transformation is extended to the local one with infinitesimal parameters
.εαβ = εαβ(x), the covariant derivative is introduced by 

.Diψ
A = ∂iψ

A − 1

2
�i

αβ(ραβ)AB ψB. (3.68)
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The Poincaré gauge field strengths satisfy the Bianchi identities, cf. (3.14) and 
(3.15): 

.D[kTij ]α = e[kβRij ]βα , . (3.69) 

D[kRij ]αβ = 0. (3.70) 

Note that the rigid Lie algebra of the Poincaré group is extended to a so-called 
deformed, soft, or local “Lie algebra” (.Dα and .ραβ = − ρβα generate translations 
and Lorentz transformations, respectively): 

.

[Dα,Dβ ] = − Tαβ
γ Dγ + Rαβ

γ δρδγ

[ραβ,Dγ ] = − gγαDβ + gγβDα

[ραβ, ρμν] = − gαμρβν + gανρβμ + gβμραν − gβνραμ

⎫
⎪⎪⎬

⎪⎪⎭
. (3.71) 

The rigid Lie algebra of Minkowski space is recovered for .Tαβ
γ = 0 and .Rαβ

γ δ = 0, 
when .Dα → ∂a in Cartesian coordinates, for details see [12]. 

3.3.2 Poincaré Gauge Gravity Dynamics: Yang-Mills Type Models 

Assuming the standard minimal coupling, the total Lagrangian of interacting 
gravitational and matter fields reads 

.L = V (gij , Rijk
l, Tki

j ) + Lmat(gij , ψ
A,∇iψ

A). (3.72) 

In general, the gravitational Lagrangian V is constructed as a diffeomorphism 
invariant function of the curvature and torsion. The matter Lagrangian .Lmat depends 
on the matter fields .ψA and their covariant derivatives .∇iψ

A. 
Let us now specialize to the general quadratic model with the Lagrangian that 

contains all possible quadratic invariants of the torsion and the curvature: 

. V = − 1

2κc

{
a0R + a0R + 2λ0 + 1

2

3∑

I=1

[
aI

(I)T kl
i Tkl

i − aI

2
(I )Tmni Tkl

i ηmnkl
]

+ �2
ρ

2

6∑

I=1

[
bI

(I)Rkl
ij Rkl

ij − bI

2
(I )Rmnij Rkl

ij ηmnkl
]}

. (3.73) 

Here .κ = 8πG
c4 is Einstein’s gravitational constant, so the dimension of . [κc] =

s kg. −1. .G = 6.67 × 10−11 m . 3 kg. −1 s. −2 is Newton’s gravitational constant. The 
speed of light .c = 2.9 × 108 m/s. 

Besides the linear “Hilbert type” part characterized by . a0 and . a0, the Lagrangian 
(3.73) contains several additional coupling constants which fix the “Yang-Mills 
type” part: .a1, a2, a3, .a1, a2, a3, .b1, · · · , b6, .b1, · · · , b6, and . �2

ρ . The latter has
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the dimension .[�2
ρ] = [area] so that .[�2

ρ/κc] = [h̄], whereas . aI , . aI , . bI and . bI are 
dimensionless. Moreover, not all of these constants are independent: in the parity-
odd sector we take .b2 = b4 and .b3 = b6 because the two pairs of terms in (3.73) 
are the same: 

.
(2)Rmnij Rkl

ij ηmnkl = (4)Rmnij Rkl
ij ηmnkl = (2)Rmnij

(4)Rkl
ij ηmnkl, . (3.74) 

(3)Rmnij Rkl
ij ηmnkl = (6)Rmnij Rkl

ij ηmnkl = (3)Rmnij
(6)Rkl

ij ηmnkl, (3.75) 

whereas .
(1)Rmnij Rkl

ij ηmnkl = (1)Rmnij
(1)Rkl

ij ηmnkl and . (5)Rmnij Rkl
ij ηmnkl =

(5)Rmnij
(5)Rkl

ij ηmnkl . Similarly, for the torsion one finds 

.
(2)Tmni Tkl

i ηmnkl = (3)Tmni Tkl
i ηmnkl = (2)Tmni

(3)Tkl
i ηmnkl, (3.76) 

which leads to a constraint .a2 = a3.

•? Exercise 
3.4. Use the definitions (3.55)–(3.60) and (3.62)–(3.64), to prove (3.74) , (3.75) and (3.76) .

For completeness, we included the cosmological constant . λ0 with the dimension 
of the inverse area, .[λ0] = [�−2]. In the special case .a0 = a0 = 0 the 
purely quadratic model is obtained without the Hilbert-Einstein linear term in the 
Lagrangian. 

In the literature, the quadratic Poincaré gravity theories are often formulated in 
terms of the standard tensor objects which are not decomposed into irreducible parts. 
In order to be able to compare (3.73) to the models studied in the literature, let us 
rewrite the Lagrangian V explicitly: 

. V = − 1

2κc

{
a0R + a0R + 2λ0

+ α1 Tkl
i T kl

i + α2 Ti T i + α3 Tkl
i Ti

kl

+ α1 ηklmn Tkli Tmn
i + α2 ηklmn Tklm Tn

+ �2
ρ

(
β1 RijklR

ijkl + β2 RijklR
ikj l + β3 RijklR

klij

+ β4 RijR
ij + β5 RijR

ji + β6 R2

+ β1 ηklmn RklijRmn
ij + β2 ηklmn RklRmn

+ β3 ηklmn Rklm
i Rni + β4 ηklmn Rklmn R

)}
. (3.77)
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Using the definitions of the irreducible torsion (3.62)–(3.64) and curvature (7.43)– 
(3.60) parts, we find the relation between the coupling constants: 

.a1 = 2α1 − α3, a2 = 2α1 + 3α2 − α3, a3 = 2α1 + 2α3, . (3.78) 

a1 = − 4α1, a2 = a3 = − 4α1 − 3α2, . (3.79) 

b1 = 2β1 + β2 + 2β3, . (3.80) 

b2 = 2β1 − 2β3, . (3.81) 

b3 = 2β1 − 2β2 + 2β3, . (3.82) 

b4 = 2β1 + β2 + 2β3 + β4 + β5, . (3.83) 

b5 = 2β1 − 2β3 + β4 − β5, . (3.84) 

b6 = 2β1 + β2 + 2β3 + 3β4 + 3β5 + 12β6, . (3.85) 

b1 = − 4β1, b2 = b4 = − 4β1 + β3, . (3.86) 

b5 = − 4β1 − 2β2 + 2β3, b3 = b6 = − 4β1 + 3β3 + 12β4. (3.87) 

The inverse of (3.78) reads 

.α1 = 2a1 + a3

6
, α2 = a2 − a1

3
, α3 = a3 − a1

3
. (3.88) 

Not all terms in the Lagrangian (3.77) are independent, since the expressions 

.VGB = − 1

4
ηklmnηijpqRkl

ijRmn
pq = RklijR

ijkl − 4RijR
ji + R2, . (3.89) 

VPC = 1

2
ηklmnRklijRmn

ij , . (3.90) 

VNY = R + 1

2
ηklmnTkliTmn

i, (3.91) 

are the total divergences. Integrating these scalar quantities (with appropriate
normalization factors) over the spacetime manifold, one obtains the topological
invariants [62–64] known as the Euler, Pontryagin (or Chern), and Nieh-Yan 
characteristics, respectively. Therefore, some of the constants . β3, . β5, . β6, . β1, . a0, and 
. α1, may be eliminated (same applies to the set of constants . bI , . bI , . aJ ). However, 
here this possibility is not used. 

The Poincaré gauge gravity field equations arise from the variation of the total 
action with respect to the coframe and connection. They read explicitly 

. a0

(
Ri

j − 1

2
Rδ

j
i

)
− a0Ri

j − λ0δ
j
i

+ (T )
q i

j + �2
ρ

(R)
q i

j −
[
(∇l − Tl)h

jl
i + 1

2
Tmn

jhmn
i

]
= κ�i

j , . (3.92)
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a0

(
Tij 

k + 2T[iδk 
j ]

)
− 

a0 

2 
ηij 

mn
(
Tmn 

k + 2T[mδk 
n]

)
− 2hk [ij ] 

−2�2 
ρ

[
(∇l − Tl)h

kl 
ij + 

1 

2 
Tmn 

k hmn 
ij

]
= κcτij 

k . (3.93) 

Here the gravitational momenta are described by

.hij
k =

3∑

I=1

aI
(I)T ij

k − 1

2
ηij

mn

3∑

I=1

aI
(I)T mn

k, . (3.94) 

hij
kl =

6∑

I=1

bI
(I)Rij

kl − 1

2
ηij

mn

6∑

I=1

bI
(I)Rmn

kl, (3.95) 

from which we construct the two objects quadratic in the torsion and the curvature

.
(T )
q i

j = Tin
khjn

k − 1

4
δ
j
i Tmn

khmn
k, . (3.96) 

(R)
q i

j = Rin
klhjn

kl − 1

4
δ
j
i Rmn

klhmn
kl . (3.97) 

3.3.2.1 Example: Matter with Spin 
In order to give an explicit example of a typical physical matter source of the 
gravitational field in PG theory, we recall the classical model of spinning fluid 
[65]. This model was first worked out by Weyssenhoff and Raabe [66] as a  
direct development of the ideas of Cosserats [67] who proposed to describe the 
microstructure properties of a medium by attaching a rigid material frame to every 
element of a continuum. Using the variational principle for the spinning fluid [68], 
one derives the canonical energy-momentum and spin tensors: 

.�j
i = uiPj − p

(
δi
j − 1

c2 uju
i
)
, . (3.98) 

τij
k = ukSij , (3.99) 

where . ui is the 4-velocity of the fluid and p is the pressure. Fluid elements are 
characterized by their microstructural properties: the energy density . ε, the intrinsic 
spin density .Sij = −Sj i (subject to the Frenkel supplementary condition . Sij u

j =
0), and the momentum density 

.Pi = 1

c2

[
εui + uj (∇k − Tk)(Sij u

k)
]
. (3.100)
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3.3.3 Parity-Even Model: Particle Spectrum 

To streamline the subsequent discussion, we now specialize to the purely parity-even 
model and hence assume .a0 = 0, .aI = 0, and .bI = 0 in the rest of the paper. 

The number of graviton modes in PG theory (that mediate the gravitational 
interaction) is much larger than in Einstein’s theory. The analysis of the particle 
spectrum for the quadratic model (3.73) reveals [69–71] that the dynamics of 
graviton modes in different .JP (spin.parity) sectors is determined by the following 
combinations of the coupling constants: 

.

2+ : �1 = b1 + b4,

2− : �2 = b1 + b2,

0+ : �3 = b4 + b6,

0− : �4 = b2 + b3,

1+ : �5 = b2 + b5,

1− : �6 = b4 + b5,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.101) 

μ1 = − a0 + 2a3,

μ2 = − 2a0 + a2,

μ3 = − a0 − a1,

⎫
⎪⎪⎬

⎪⎪⎭
(3.102) 

which specify the corresponding kinetic and mass terms for these modes. The
mapping (3.101) between the two sets of coupling constants . bI and . �I is not one-to-
one. Namely, whereas .bI = 0 yields .�I = 0, inverse is not true, and from . �I = 0
we find .b1 = −b2 = b3 = −b4 = b5 = b6, which brings the curvature square part 
of the gravitational Lagrangian (3.77) to . b1VGB, cf. (3.89). 

The general analysis of the particle spectrum with both parity-even and parity-
odd sectors included can be found in the recent papers [72, 73]. 

3.4 Physical Consequences of Poincaré Gauge Gravity 

In this introductory review, we do not aim to deal with all the aspects of PG theory. 
Instead, we will focus on the issues of correspondence of PG and GR for the whole 
class of models (3.73) and then will discuss in some more detail several specific 
models that were studied in the literature.
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3.4.1 Correspondence with GR: Torsionless Solutions 

Let us discuss the correspondence of the vacuum field equations (3.92)–(3.93) for  
the Yang-Mills type quadratic Lagrangian (3.73) and Einstein’s general relativity 
under the assumption of vanishing torsion, .Tkl

i = 0. Then we find .hij
k = 0, hence 

.
(T )
q i

j = 0, whereas .Ri
j = 0 and the curvature has only three nontrivial parts (3.57), 

(3.59), (3.60). A direct computation yields 

.
(R)
q i

j = �1
(1)Rikl

j ↗Rkl + �3

6
R↗Ri

j , (3.103) 

and in vacuum (when .�i
j = 0 and .τij

k = 0) the field equations (3.92)–(3.93) 
reduce to 

.a0

(
Ri

j − 1

2
Rδ

j
i

)
− λ0δ

j
i + �2

ρ�1
(1)Rikl

j ↗Rkl + �2
ρ�3

6
R↗Ri

j = 0, . (3.104) 

�1∇l
(1)Rkl

ij + �3

6
∇[iR δk

j ] = 0. (3.105) 

As we see, only two coupling constants . �1 and . �3 enter the field equations. This is 
consistent with the fact that they essentially determine the structure of the effective 
Lagrangian obtained from (3.77) for the vanishing torsion, .Tkl

i = 0: 

. V = − 1

2κc

(
a0R + 2λ0 + �2

ρ

12

{
(4�1 − �3) RijklR

ijkl + 4(�3 − �1) RijR
ij
}

+ �2
ρβ6

{
RijklR

klij − 4RijR
ji + R2

} )
. (3.106) 

The last line does not contribute to the field equations, being a total divergence of
the Euler (Gauss-Bonnet) topological term (3.89). When .�1 = 0 and . �3 = 0, the  
field equations reduce to Einstein’s equation with the cosmological term. 

Contracting (3.104), we find 

.a0R = − 4λ0, (3.107) 

and, provided .a0 �= 0, the system (3.104)–(3.105) is recast into 

.aeff
0 ↗Ri

j + �2
ρ�1

(1)Rikl
j ↗Rkl = 0, . (3.108) 

�1

(
∇i ↗Rj

k − ∇j ↗Ri
k
)

= 0. (3.109)
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where the effective constant is introduced by 

.aeff
0 = a0 + �2

ρ�3R

6
= a0 − 2�2

ρ�3λ0

3a0
. (3.110) 

The last equation (3.109) follows from the Bianchi identity (3.14). 
It is obvious that the vacuum Einstein spaces [74] with a cosmological term 

(3.107) 

. ↗Rij = 0, i.e., Rij = 1

4
R gij , (3.111) 

are solutions of the system (3.108)–(3.109). The questions is: are there other 
solutions, or (3.111) represents the unique solution? When .a0 �= 0, there are several 
situations depending on the values of . �1 and . �3. 

When .�1 = 0, the system (3.104)–(3.105) reduces to 

.aeff
0 ↗Rij = 0. (3.112) 

Then we have one of the two possibilities. If .aeff
0 �= 0 the system (3.112) coincides 

with Einstein’s field equations (3.111). In the special case .aeff
0 = 0, equations 

(3.108)–(3.109) are fulfilled identically, and the solutions are arbitrary spaces which 
satisfy .a0R = − 4λ0. 

If .�1 �= 0, we introduce 

.ξ := aeff
0

�2
ρ�1

(3.113) 

and the system (3.108)–(3.109) is then recast into 

.
(1)Riklj ↗Rkl = − ξ ↗Rkl, . (3.114) 

∇i ↗Rjk − ∇j ↗Rik = 0. (3.115) 

One can prove (for technical details and the references, see [71]) that the only 
solutions of the system (3.108)–(3.109) are Einstein spaces (3.111), provided 

.ξ �=
{

0, − 2λ0

3a0
,

4λ0

3a0

}
. (3.116) 

When . ξ takes one of the exceptional values listed in (3.116), the system (3.108)– 
(3.109) admits solutions with .↗Rij �= 0 which are not Einstein spaces [75]. 

For completeness, let us mention that similar conclusions can be derived for the 
purely quadratic model with .a0 = 0. In this case the cosmological constant should 
vanish .λ0 = 0, and we find .ξ = �3R/6�1.
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3.4.2 Correspondence with GR: Birkhoff Theorem 

Let us now return to the general case, and discuss the correspondence of PG and 
GR without assuming vanishing torsion. In view of the fact that the fundamental 
gravitational experiments in our Solar system are perfectly consistent with the 
Schwarzschild geometry, a natural question arises: to which extent the solutions 
of the field equations in PG theory may deviate from the Schwarzschild spacetime? 

Quite generally, spherically symmetric solutions are of particular interest in all 
field-theoretic models. In Einstein’s general relativity theory, the Schwarzschild 
metric is a unique solution of the gravitational field equations under the assumption 
of a spherical symmetry of the spacetime geometry and matter source distribution. 
This remarkable result is known as the Birkhoff theorem. 

In order to discuss the validity of the generalized Birkhoff theorem in Poincaré 
gauge gravity, we need to clarify how the spherical symmetry is described for the 
gravitational gauge fields [76–78]. Following Sect. 3.2.4, in the local coordinate 
system .xi = (t, r, θ, ϕ), the most general spherically symmetric spacetime interval 

.ds2 = A2dt2 − B2dr2 − C2(dθ2 + sin2 θdϕ2) (3.117) 

depends on the three arbitrary functions .A = A(t, r), .B = B(t, r), .C = C(t, r). 
An .SO(3) rotation motion of the manifold M is generated by three vector fields 

. ζ i{x} =

⎛

⎜⎜⎝

0
0

sin ϕ

cos ϕ cot θ

⎞

⎟⎟⎠ , ζ i{y} =

⎛

⎜⎜⎝

0
0

− cos ϕ

sin ϕ cot θ

⎞

⎟⎟⎠ , ζ i{z} =

⎛

⎜⎜⎝

0
0
0

−1

⎞

⎟⎟⎠ ,

(3.118) 

and the spherical invariance is manifest in the vanishing Lie derivative of the metric 
.Lζ gij = 0 under the action .ζ : SO(3) × M → M . 

In the framework of Poincaré gauge gravity, the general spherically symmetric 
configuration for the gravitational gauge field potentials (.eα

i , �iβ
α) reads 

.eα
i =

⎛

⎜⎜⎝

A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 C sin θ

⎞

⎟⎟⎠ , (3.119) 

for the coframe, and for the connection (using an obvious matrix notation):

.�0β
α =

⎛

⎜⎜⎝

0 f 0 0
f 0 0 0
0 0 0 f

0 0 −f 0

⎞

⎟⎟⎠ , �1β
α =

⎛

⎜⎜⎝

0 g 0 0
g 0 0 0
0 0 0 g

0 0 −g 0

⎞

⎟⎟⎠ , . (3.120)
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�2β 
α = 

⎛ 

⎜⎜⎝ 

0 0  p q 
0 0  q −p 
p −q 0 0  
q p 0 0  

⎞ 

⎟⎟⎠ , �3β 
α = sin θ 

⎛ 

⎜⎜⎝ 

0 0  −q p  
0 0  p q  

−q −p 0 − cot θ 
p −q cot θ 0 

⎞ 

⎟⎟⎠ . 

(3.121) 

This increases the number of arbitrary functions by eight more variables: . f =
f (t, r), .g = g(t, r), .p = p(t, r), .q = q(t, r), and .f = f (t, r), .g = g(t, r), 
.p = p(t, r), .q = q(t, r). 

The gauge potentials (3.119)–(3.121) are constructed in full agreement with the 
analysis in Sect. 3.2.4, and they satisfy the generalized invariance conditions (3.37)– 
(3.38): 

.Lζ eα
i = ζ

λβ
α e

β
i , Lζ �iβ

α = −Di

ζ

λβ
α, (3.122) 

where the Lorentz algebra-valued .
ζ

λαβ = − ζ

λβα parameter is determined by vector 
fields which generate symmetries. For the rotation symmetry generators (3.118) we  
have explicitly 

. 
ζ{x}
λ β

α = cos ϕ

sin θ

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠ ,
ζ{y}
λ β

α = sin ϕ

sin θ

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠ ,
ζ{z}
λ β

α = 0.

The general spherically symmetric configuration is only invariant under the 
group of proper rotations .SO(3), however, it is not invariant under spatial reflections 
when the parity-odd functions . f , . g, . p, . q are nonzero. By demanding also the 
invariance under reflections, one extends the symmetry group from .SO(3) to the 
full rotation group .O(3), and such an extension imposes an additional condition on 
field configurations, which forbids parity-odd variables: .f = g = p = q = 0. 

The generalized Birkhoff theorem in the Poincaré gauge gravity is much more 
nontrivial [79–85] than its Riemannian analogue in GR, since besides the metric 
(coframe) variables .A,B,C there are additional connection variables .f, g, p, q and 
.f , g, p, q, and the torsion is not assumed to be zero. To prove the generalized 
Birkhoff theorem, one needs to plug the spherically symmetric ansatz (3.119)– 
(3.121) into the field equations (3.92)–(3.93) and then establish the conditions under 
which these field equations admit only solutions with the vanishing torsion and the 
Schwarzschild metric. There are different types of conditions: some of them may 
restrict the coupling constants (hence, refine the structure of the Lagrangian V ), 
other conditions may impose constraints on the geometric properties of spacetime. 
Among the latter are: an asymptotic flatness condition which requires that in the 
limit of .r → ∞ the metric approaches the Minkowski line element, i.e. .A → 1, 
.B → 1, .C → r , or an assumption of the vanishing scalar curvature.
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There are two versions of the generalized Birkhoff theorem in the Poincaré gauge 
gravity [71,78]: the strong (SB) and the weak (WB) ones. The strong .SO(3) theorem 
reads: under the assumption of the spherical symmetry in the sense of invariance 
under the proper rotation .SO(3) group, the Schwarzschild (Kottler, in general, when 
the cosmological constant is nontrivial) spacetime with zero torsion is a unique 
solution of the vacuum field equations. This result holds for the four families in 
the class of quadratic models (3.73): 

(SB1) No curvature square terms, .bI = 0 (thus .�I = 0), provided .μ1μ2μ3 �= 0. 
(SB2) .�1 = �2 = �5 = �6 = 0, .�3 �= 0,�4 �= 0, provided the scalar curvature 

R is constant, and .μeff
1 μeff

2 μeff
3 �= 0, where .μeff

I are obtained from (3.102) by  
replacing . a0 with an effective coupling constant (3.110). 

(SB3) .�I = 0, provided .μ1μ2μ3 �= 0. This case is close to (SB1) but not quite 
equivalent, see the remark below (3.102). 

(SB4) No torsion square terms, .a1 = a2 = a3 = 0, but .a0 �= 0 and . �1 = �2 =
�4 = �5 = �6 = 0, .�3 �= 0, provided .aeff

0 �= 0. 

It is important to notice that in the latter case the gravitational field equations 
yield for the curvature scalar .a0R = − 4λ0, and thereby the condition . aeff

0 �= 0
actually means that the constant . ξ �= 0, cf. (3.116). 

The weak .O(3) version of the Birkhoff theorem reads: under the assumption of 
the spherical symmetry in the sense of invariance under the full rotation .O(3) group, 
when spatial reflections are included along with proper rotations, the Schwarzschild 
(Kottler, in general) spacetime without torsion is a unique solution of the vacuum 
field equations. In addition to the above cases, the weak theorem holds for the 
following families in the class of quadratic models (3.73): 

(WB1) No curvature square terms, .bI = 0 (thus .�I = 0), provided .μ2μ3 �= 0. 
(WB2) .�1 = �6 = 0, .�2 �= 0,�3 �= 0,�4 �= 0,�5 �= 0, provided the scalar 

curvature .R(�) is constant, and .μeff
2 μeff

3 �= 0. 
(WB3) .�1 = �3 = �6 = 0, .�2 �= 0,�4 �= 0,�5 �= 0, provided .μ2μ3 �= 0. 
(WB4) .a1 = a2 = 0, but .a0 �= 0 and .�1 = �6 = 0, . �2 �= 0,�3 �= 0,�4 �=

0,�5 �= 0, provided .aeff
0 �= 0. 

(WB5) .a1 = a2 = 0, but .a0 �= 0 and .�6 = 0,�1 �= 0, . �2 �= 0,�3 �= 0,�4 �=
0,�5 �= 0, provided the . ξ constant (3.113) satisfies the condition (3.116). 

(WB6) .a1 = a2 = 0, but .a0 �= 0 and .�1 = �6 �= 0, . �2 �= 0,�3 �= 0,�4 �=
0,�5 �= 0, provided the . ξ constant (3.113) satisfies the condition (3.116). 

(WB7) .a1 = a2 = 0, but .a0 �= 0 and arbitrary . �I , under the condition of 
asymptotic flatness. 

(WB8) .�1 = �2 = �4 = �5 = �6 = 0,�3 �= 0, provided .μ1μ2μ3 �= 0 and the 
curvature scalar vanishing condition. 

3.4.3 Correspondencewith GR: Dynamical Torsion Beyond Einstein 

The class of Yang-Mills type quadratic Lagrangians (3.73) encompasses many 
interesting and physically viable models. Since Einstein’s general relativity theory
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(GR) is convincingly supported by experiments in terrestrial laboratories and 
astrophysical observations both in the Solar system and on the extra-galactic scales, 
it is important to investigate the relation between the general Poincaré gravity and 
GR. 

3.4.3.1 Einstein-Cartan Theory 
The most well known is the so-called Einstein-Cartan theory which is the closest 
extension of GR. The corresponding Lagrangian is obtained from (3.73) by  
dropping all quadratic terms, for the coupling constants .a0 = 1, .a1 = a2 = a3 = 0, 
and .bI = 0: 

.VEC = − 1

2κc
(R + 2λ0) . (3.123) 

The gravitational field equations (3.92)–(3.93) then reduce to 

.Ri
j − 1

2
Rδ

j
i − λ0δ

j
i = κ�i

j , . (3.124) 

Tij
k + 2T[iδk

j ] = κcτij
k. (3.125) 

The Einstein-Cartan theory represents a certain degenerate case of the Poincaré 
gauge gravity in the sense that the second field equation (3.125) describes an 
algebraic coupling between the spin of matter and the torsion. This means that 
the torsion is a non-dynamical field which vanishes outside the matter sources, and 
thereby the first equation (3.124) reduces to Einstein’s field equation of GR. 

Resolving (3.125), one can express the torsion in terms of the matter spin, and 
plugging it in (3.124), it is possible to recast the latter into an effective Einstein field 
equation 

.
◦
Rij − 1

2

◦
Rgij − λ0gij = κ

eff
�ij , (3.126) 

where the original canonical energy-momentum tensor is replaced by the effective 
energy-momentum tensor that includes additional contributions of the spin. For the 
particular case of the spinning fluid (3.98)–(3.99) one finds 

.
eff
�ij= −peff

(
gij − 1

c2 uiuj

)
+ εeff

c2 uiuj +
(
gkl+ 1

c2 ukul
) ◦∇k

(
u(iSj)l

)
, (3.127) 

where the effective pressure and energy density depend on spin:

.peff = p − ζκc2

8
SijSij , . (3.128) 

εeff = ε − ζκc2

8
SijSij . (3.129) 

Here the numeric constant .ζ = 1.
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A qualitatively equivalent model (which can be called a generalized Einstein-
Cartan theory “EC. +”) is obtained as a natural extension of the Lagrangian (3.123) 
when we include all possible torsion quadratic terms: 

.VEC+ = − 1

2κc

(
R + 2λ0 + 1

2

3∑

I=1

aI
(I)T kl

i Tkl
i
)
. (3.130) 

The resulting field equations then read

. Ri
j − 1

2
Rδ

j
i − λ0δ

j
i + Tin

khjn
k − 1

4
δ
j
i Tmn

khmn
k

− (∇l − Tl)h
jl

i − 1

2
Tmn

jhmn
i = κ�i

j , . (3.131) 

Tij
k + 2T[iδk

j ] − 2hk [ij ] = κcτij
k, (3.132) 

where, recalling (3.94), 

.hij
k = a1

(1)T ij
k + a2

(2)T ij
k + a3

(3)T ij
k . (3.133) 

Since the second field equation (3.132) still describes an algebraic coupling of 
the matter spin and the torsion, one can resolve the latter and recast (3.131) into  
an effective Einstein field equation (3.126). In this model, however, the effective 
energy-momentum then picks up a dependence on the coupling constants . aI . For  
the case of the spinning fluid (3.98)–(3.99) one again finds (3.127)–(3.129), but 
with a more nontrivial constant 

.ζ = 4

3(1 + a1)
− 1

3(1 − 2a3)
. (3.134) 

It is worthwhile to note that . a2 does not contribute in view of the Frenkel condition 
.Sij u

j = 0 imposed on the spin density. When the torsion-square terms are absent, 
.a1 = a2 = a3 = 0, we recover the value .ζ = 1 of the Einstein-Cartan theory. It is 
interesting to note that there exists a large class of models with the torsion quadratic 
Lagrangians (3.130) which yield .ζ = 0. 

Qualitatively, the EC and EC. + models are very much alike, because they both 
can be recast into the form of the effective Einstein theory (3.126) with the energy-
momentum tensor modified by the spin contributions. The magnitude of the terms 

quadratic in spin in .
eff
�ij becomes comparable with the original canonical energy-

momentum tensor .�ij at densities .ρ ≥ ρcr = m2c4

h̄2G
of the spinning matter built of 

particles with the mass m [11]. For the mass of a nucleon, the critical density . ρcr ≈
1057 kg/m. 3 is still much smaller than the Planck density .ρPl ∼ 1097 kg/m. 3 at which 
the quantum-gravitational effects are expected to start dominating. Consequently, 
the torsion can be essential already at the level of the classical theory of the
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gravitational interactions. In particular, this may avert the singularity in the early 
universe, predicting a finite minimum for the cosmological scale factor reached at 
the critical matter density [86]. 

A thorough analysis of the observational cosmology in the Einstein-Cartan 
theory with the Weyssenhoff spinning fluid can be found in [87–91]. Other 
physical consequences of the Einstein-Cartan theory are discussed in great detail 
in [11, 17, 22]. 

3.4.3.2 Einstein’s GR as a Special Case of Poincaré Gravity Theory 
In the Einstein-Cartan theory above, we assumed the minimal coupling of the matter 
to the Poincaré gauge fields, which is a natural assumption in the framework of the 
gauge-theoretic approach. 

Quite remarkably, however, one can also view Einstein’s general relativity theory 
as a special case in the framework of the Poincaré gauge gravity theory under the 
assumption of a suitable nonminimal coupling of matter to the Riemann-Cartan 
geometry of spacetime. 

In order to demonstrate this, we start with the extended Einstein-Cartan 
Lagrangian (3.130) and fix the torsion coupling constants as 

.a1 = − 1, a2 = 2, a3 = 1

2
. (3.135) 

As a result, (3.133) reduces to 

.hij
k = − (1)T ij

k + 2(2)T ij
k + 1

2
(3)T ij

k = −Kk
ij − 2T [iδj ]

k , (3.136) 

where we used (3.62)–(3.64) and (3.10). A direct computation then yields a 
remarkable simplification of the left-hand sides of the field equations (3.131) and 
(3.132): 

.
◦
Ri

j − 1

2

◦
Rδ

j
i = κ�i

j , . (3.137) 

0 = κcτij
k. (3.138) 

The last equation would be an obviously contradictory relation for the case of the
minimal coupling, allowing only for the spinless matter. Nevertheless, this equation
becomes meaningful under the assumption of a special type of nonminimal cou-
pling, when the Lagrangian .Lmat = Lmat(ψ

A,Diψ
A, eα

i , Tij
α) of the matter fields 

.ψA depends on the torsion tensor .Tij
α that, however, may enter the Lagrangian only 

in a combination 

.Diψ
A − 1

2
Ki

αβ(ραβ)AB ψB , (3.139)
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Technically, this means that the spinning matter couples only to the Levi-Civita 
connection. Then one can demonstrate [92] that the source on the right-hand side of 
(3.137) has the form 

.�i
j = m

�i
j + c

2

◦∇k

(
m
τ jk

i + m
τ j

i
k + m

τ i
kj

)
, (3.140) 

where .
m
�i

j is the canonical energy-momentum tensor, and 

.c
m
τ αβ

k = (ραβ)AB ψB ∂Lmat

∂DkψA
,

m
τ ij

k = m
τ αβ

keα
i e

β
j , (3.141) 

is the canonical spin tensor. We immediately recognize in (3.140) the well known 
metrical energy-momentum tensor symmetrized by means of the Belinfante-
Rosenfeld procedure. 

3.4.3.3 Von der Heyde Model 
As we saw above, the Einstein-Cartan theory is the closest generalization of Ein-
stein’s GR which takes into account the spin of matter as a source of the gravitational 
field. This changes the geometrical structure of the spacetime manifold, but the 
torsion remains a non-dynamical field which disappears in the absence of spin. This 
motivates the study of more general Poincaré gravity models in which the torsion 
becomes a dynamical field. Here we briefly consider two such models. 

The von der Heyde (VdH) model [13, 93] attracted considerable attention in the 
literature. It is described by the Lagrangian that does not contain a linear in the 
curvature Hilbert-Einstein term, and is purely quadratic in the Poincaré gauge field 
strengths: 

.VVdH = − 1

2κc

(
− 1

2
Tij

kT ij
k + TiT

i + �2
ρ

2
Rij

klRij
kl

)
. (3.142) 

One thus recovers a special case of the general Lagrangian (3.73) with .a0 = 0, 
.bI = 1, .I = 1, . . . , 6, and 

.a1 = − 1, a2 = 2, a3 = − 1. (3.143) 

A peculiar feature of the VdH model is that it demonstrates a remarkable compat-
ibility with GR despite the absence of the Hilbert-Einstein term in the Lagrangian.
Technically, this is explained by an almost the same set of the torsion coupling
constants, cf. (3.143) and (3.135). 

Unlike the Einstein-Cartan theory, the VdH model predicts nontrivial dynamical 
torsion effects. To demonstrate this, let us specialize to the spherically symmetric
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ansatz (3.117), (3.119)–(3.121). Inspecting the Poincaré gauge field equations 
(3.92)–(3.93) for the Lagrangian (3.142), we then find an exact solution for the 
metric variables 

.A2 = 1 − 2m

r
+ r2

4�2
ρ

, B = 1

A
, C = r, (3.144) 

whereas the anholonomic torsion components .Tμν
α = ei

μe
j
νeα

k Tij
k read 

.T1̂0̂
0̂ = T1̂0̂

1̂ = T0̂2̂
2̂ = T2̂1̂

2̂ = T0̂3̂
3̂ = T3̂1̂

3̂ = m

Ar2
. (3.145) 

Here .m = GM/c2 is an integration constant, with M interpreted as a total mass 
of the field configuration. From the point of view of the Riemannian geometry, the 
line element (3.117), (3.144) describes the Schwarzschild-de Sitter (or Kottler) GR 
solution, where the dynamical torsion induces a “fake” cosmological term. 

One can extend this result to the axially symmetric case, and demonstrate that the 
Kerr-de Sitter metric of a massive and rotating field configuration with dynamical 
torsion is an exact solution in the VdH model [13, 94]. Moreover, a systematic 
analysis [95] reveals the existence of such solutions in a more general class of 
Poincaré gauge models with the Yang-Mills type Lagrangian (3.73). 

3.4.3.4 Cembranos-Valcarcel Model 
While in VdH model a “fake” cosmological term arises from the dynamical torsion, 
the latter can manifest even more nontrivial effects in the Cembranos-Valcarcel 
model [96, 97]. The corresponding Lagrangian is a special case of (3.73), where 
.a0 = 1, and the torsion coupling constants are fixed by (3.135), whereas the 
curvature coupling sector reads 

.b3 = − b2, b5 = − b2

3
, b1 = b4 = b6 = 0. (3.146) 

Specializing again to the spherically symmetric ansatz (3.117), (3.119)–(3.121), one 
then finds an exact solution for the metric variables 

.A2 = 1 − 2m

r
− λ0r

2

3
+ Q2

r2
, B = 1

A
, C = r, (3.147) 

where an arbitrary integration constant . σ0 enters 

.Q2 = 2b2�
2
ρσ 2

0

3
, (3.148)
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and determines the structure of the dynamical torsion. The latter (as before, in 
anholonomic components .Tμν

α = ei
μe

j
νeα

k Tij
k) reads explicitly: 

.T1̂0̂
0̂ = T1̂0̂

1̂ = dA

dr
, . (3.149) 

T2̂0̂
2̂ = T1̂2̂

2̂ = T3̂0̂
3̂ = T1̂3̂

3̂ = A

2r
, . (3.150) 

T0̂3̂
2̂ = T3̂1̂

2̂ = T2̂0̂
3̂ = T1̂2̂

3̂ = σ0

Ar
. (3.151) 

As we now see, from the point of view of the Riemannian geometry, the line element
(3.117), (3.147) describes the Reissner-Nordström-de Sitter GR solution, where the 
dynamical torsion induces a “fake” electric charge (3.148), and the torsion plays a 
role of a fictitious electromagnetic field. 

An extension of the Cembranos-Valcarcel results for a more general models with 
both the parity-even and parity-odd sectors included was discussed in [78]. It is 
worthwhile to notice that the generalized Birkhoff theorem is not valid for the von 
der Heyde and the Cembranos-Valcarcel models, and precisely this fact underlies 
the existence of the spherically symmetric solutions with nontrivial torsion. 

3.4.4 Gravitational Waves 

In conclusion, it is instructive to discuss a possible physical manifestation of the 
rich graviton spectrum (3.101) and (3.102) of Poincaré gauge gravity theory in the 
form of the gravitational waves. 

The study of gravitational waves is of fundamental importance in physics, that 
became an even more significant issue after the purely theoretical research in 
this area was finally supported by the first experimental evidence [98, 99]. The 
plane-fronted gravitational waves represent an important class of exact solutions 
[100–102] which generalize the basic properties of electromagnetic waves in flat 
spacetime to the case of curved spacetime geometry. 

Let us discuss the gravitational wave solutions in the PG model with the general 
quadratic Lagrangian (3.73) for the case without the cosmological constant .λ0 = 0. 
We start with the flat Minkowski geometry described by the coframe and connection 
.̂eα

i = δα
i , .̂�iβ

α = 0, where .xi = (x0, x1, x2, x3) are Cartesian coordinates. 
Differentiating the phase variable .σ = x0 − x1, we introduce the wave covector 
.ki = ∂iσ = (1,−1, 0, 0). With .kα = ê i

αki , the gravitational wave ansatz is then 
introduced as a Kerr-Schild deformation of the flat background: 

.eα
i = êα

i + 1

2
U kαki, . (3.152) 

�iβ
α = �̂iβ

α + (kβWα − kαWβ) ki . (3.153)
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The resulting line element (with .ρ = x0 + x1) 

.ds2 = gαβeα
i e

β
j dxidxj = dσdρ + Udσ 2 − δABdxAdxB, (3.154) 

represents the plane-fronted wave in the form of Brinkmann [103, 104]. By 
construction, .kα = (1,−1, 0, 0), so that .kα = (1, 1, 0, 0). Therefore, this is a null 
vector field, .kαkα = 0. 

The gravitational wave configuration (3.152) and (3.153) is described by the two 
unknown variables U and .Wa which determine wave’s profile, they are functions 
.U = U(σ, xA) and .Wα = Wα(σ, xA) of the phase . σ and the transversal coordinates 
.xA = (x2, x3). From now on, the indices from the beginning of the Latin alphabet 
.a, b, c, · · · = 0, 1, whereas the capital Latin indices run .A,B,C . . . = 2, 3. In  
addition, we assume the orthogonality .kαWα = 0, which is guaranteed if we choose 

.Wα =
{

Wa = 0, a = 0, 1,

WA = WA(σ, xB), A = 2, 3.
(3.155) 

Obviously, .∂ik
α = 0, and .Dik

α = 0 for the wave covector with constant 
components, and we straightforwardly find the torsion and the curvature: 

.Tkl
i = − 2kik[k�l], Rkl

ij = − 4k[kk[i�l]j ] . (3.156) 

Here we constructed the two objects from the derivatives of .U = U(σ, xA) and 
.Wα = Wα(σ, xA) with respect to the transversal coordinates .xA = (x2, x3): 

.�i =
{
�a = 0, �A = 1

2
∂AU − δABWB

}
, . (3.157) 

�j
i =

{
�b

a = 0, �B
a = 0, �b

A = 0, �B
A = ∂BWA

}
. (3.158) 

The translational and rotational Poincaré gauge field strengths (3.156) have  
qualitatively the same structure as the electromagnetic field strength .Fij of a plane 
wave, that has the properties .kjFij = 0, .k[iFjk] = 0, .FijF

ij = 0. In complete 
analogy, the Poincaré gauge field strengths of a gravitational wave satisfy 

.kjTij
k = 0, k[iTjk]l = 0, Tij

kT ij
l = 0, . (3.159) 

kjRij
kl = 0, k[iRjk]mn = 0, Rij

klRij
mn = 0. (3.160) 

In addition, however, for the gravitational Poincaré gauge field strengths we find

.klTij
l = 0, klRij

kl = 0. (3.161)
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The torsion (3.156) vanishes when .�i = 0, which means that .WA = 1
2δAB∂BU , 

Then U remains the only nontrivial variable and the solution reduces to the usual 
plane gravitational wave of the Riemannian GR. By noticing this, it is convenient to 
express the wave profile vector variable in terms of potentials 

.WA = 1

2
δAB∂B(U + V ) + 1

2
ηAB∂BV , (3.162) 

where .ηAB = − ηBA is the totally antisymmetric Levi-Civita tensor on the two-
dimensional space of the wave front. This brings us to the physically transparent 
representation of the plane wave in the Poincaré gauge gravity in terms of the three 
scalar variables .U = U(σ, xA), and .V = V (σ, xA), .V = V (σ, xA), where the 
first one is a Riemannian mode, and the two last ones account for the torsion wave 
modes. 

The explicit gravitational wave solution is constructed as follows [105, 106]. 
Substituting the wave ansatz (3.152), (3.153) and (3.162) into the gravitational field 
equations (3.92) and (3.93), the latter reduce to the system of three linear differential 
equations 

.a0 U − μ3 V = 0, . (3.163) 

�2
ρ �1(a0 + μ3)V − a0μ3 V = 0, . (3.164) 

�2
ρ �2 V − μ3 V = 0. (3.165) 

Here . = δAB∂A∂B is the two-dimensional Laplacian on the .(x2, x3) space. Using 
the solutions of (3.164) and (3.165) for the torsion waves in (3.163), we can find the 
Riemannian mode U from the resulting inhomogeneous equation. 

Quite remarkably, all the three wave modes are massless when .μ3 = 0. 

3.5 Teleparallel Gravity 

Presently, considerable research efforts are focused on the teleparallel theory of the 
gravitational field. From the gauge-theoretic point of view, the latter is based on 
the gauging of the group of spacetime translations, and it is worthwhile to mention 
that the fundamental relation of translation symmetry to gravity was clear already 
at the beginning of the 1960s to Sakurai, Glashow, Gell-Mann, and Feynman (see 
the historic account in [3]). The conserved energy-momentum current of matter 
is associated to translations via the Noether theorem, and it naturally arises as a 
physical source of the corresponding gauge gravitational field. 

The structure of the teleparallel gravity (TG) as a translational gauge theory 
became essentially established since 1970s, see [44–58]. A revival of interest to the 
gauge-theoretic subtleties underlying TG has lead to a recent highly enlightening 
discussion [48, 107–110], in particular within the fruitful framework of Tartu
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Fig. 3.2 Classification of 
Poincaré gauge theories of 
gravity (see the frontispiece 
of [19]. ©Imperial College 
Press 2013, reproduced with 
permission. All rights 
reserved): PG = Poincaré 
gauge gravity, EC = 
Einstein-Cartan theory, GR = 
Einstein’s general relativity, 
TG = translation gauge 
theory (teleparallel theory), 
GR. || = a specific TG known 
as teleparallel equivalent of 
GR. The symbols denote 
here: rectangle—general class 
of theories; circle—viable 
models 

PG 

TG EC 

GR GR 

R= 0 

0=T 

conferences. Since the teleparallel gravity theory is considered in full depth in the 
comprehensive review of Manuel Hohmann in Chap. 4 of this volume, here we 
merely highlight the main features of TG as a special case of PG, see Fig. 3.2. 

The gauging of the group of translations yields the condition (3.17) that intro-
duces the distant parallelism geometry of Weitzenböck on the spacetime manifold. 

As a result, the general Yang-Mills type Lagrangian (3.73) reduces to (we confine 
attention to the parity-even case, and assume zero cosmological constant, for now) 
[57, 111, 112] 

.VTG = − 1

4κc

(
a1

(1)T kl
i Tkl

i + a2
(2)T kl

i Tkl
i + a3

(3)T kl
i Tkl

i
)

. (3.166) 

The gravitational field equations can be derived from the action principle either by
implementing the teleparallel condition (3.17) by means of the Lagrange multiplier, 
or by making use of the gauge .�iα

β = 0 which means that the connection (3.26) 
takes the Weitzenböck form 

.�ki
j = ej

α∂ke
α
i . (3.167) 

Then the torsion reduces to the anholonomity object (3.23). 
The dynamical contents of a general TG model (3.166) strongly depends on the 

values of the coupling constants .a1, a2, a3. In particular, in generic case, black hole 
solutions are absent in this theory [47, 48], and there is no consistency with GR.
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However, for a very special case when the coupling constants .a1, a2, a3 take 
the values (3.135), the dynamics of the gravitational field is fully consistent with 
Einstein’s theory. Then the Lagrangian is simplified to 

.VGR|| = − 1

2κc

(
− 1

4
Tkl

i T kl
i + Ti T i + 1

2
Tkl

i Ti
kl

)
, (3.168) 

and this model is called a teleparallel equivalent of GR.

3.6 Conclusion and Outlook 

In this review we presented, at an elementary level using the standard tensor 
language, the formulation of the theory of gravitational interaction as a gauge theory 
of the Poincaré symmetry group. This approach is developed along the lines of a 
heuristic scheme in which a new physical interaction is derived in the Lagrange-
Noether formalism from a conserved current corresponding to the rigid symmetry 
group by extending the latter to a local symmetry. Leaving aside the derivation of 
the relevant conservation laws, which was thoroughly discussed earlier in [3,24,25], 
we have formulated here the general dynamical scheme of Poincaré gauge gravity 
for the class of the Yang-Mills type models (3.73) and considered a selected number 
of particular physically interesting models. 

A more mathematically elaborated formulation of the gauge gravity approach 
in terms of the modern differential geometry language of the affine frame bundle 
can be found in [16, 21–23]. We did not intend to give a detailed review of the 
physical contents of the Poincaré gauge gravity theory. This subject was intensively 
studied in the past and the relevant results are available in the classic reviews 
[11, 13, 17]. At present we are again observing a considerable growth of interest 
to the gauge gravitational issues. The search and analysis of exact solutions of the 
gravitational field equations is at the center of the current research, which is essential 
for improvement of understanding of the nature of the gravitational interaction 
[71, 94–97, 113]. 

It is worthwhile to mention that the recent advances in the modern cosmological 
science have seriously warmed up the interest in the thorough revision of universe’s 
evolution in the broad framework of the modified gravity theories and, in particular, 
in Poincaré gauge gravity. The early predictions [86, 114, 115] of a possible 
avertion of singularity in the early universe, and more recent proposals of possible 
modifications of the late stage of cosmological evolution [116–121], are currently 
revisited and extended with an aim to better understand the role of the torsion in the 
early universe and to resolve the problem of the dark energy [122–125], furthermore, 
the inclusion of parity-odd sector was critically evaluated in [126–131]. 

The last but not least remarks are in order about the direct experimental 
tests and estimates of the torsion effects to probe possible deviations of the 
spacetime structure beyond the Riemannian geometry, in accordance with Einstein’s 
[132] statement that “. . . the question whether this continuum has a Euclidean,
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Riemannian, or any other structure is a question of physics proper which must be 
answered by experience, and not a question of a convention to be chosen on grounds 
of mere expediency.” The consistent analysis [93, 133–135] of the propagation 
equations, derived from the conservation laws of PG theory in the framework of 
the multipole expansion approach, demonstrates that the torsion couples only to 
the intrinsic spin and never to the orbital angular momentum of test particles. The 
predicted spin-torsion effects are expected to be quite small, and no spacetime 
torsion effects were directly observed so far. From the analysis of the data available 
from precision experiments with spinning particles in high energy physics and 
astrophysical observations, performed in the numerous theoretical studies [136– 
149], one typically finds a rather strong bound .|T | � 10−15 m. −1 for the magnitude 
of the spacetime torsion. 

Acknowledgments I am grateful to Friedrich Hehl for the careful reading of the manuscript and 
helpful comments. 
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18. M. Blagojević, Gravitation and Gauge Symmetries (Institute of Physics, Bristol, 2002) 
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4Teleparallel Gravity 

Manuel Hohmann 

Abstract 

In general relativity, the only dynamical field describing the gravitational inter-
action of matter, is the metric. It induces the causal structure of spacetime, 
governs the motion of physical bodies through its Levi-Civita connection, and 
mediates gravity via the curvature of this connection. While numerous modified 
theories of gravity retain these principles, it is also possible to introduce another 
affine connection as a fundamental field, and consider its properties—curvature, 
torsion, nonmetricity—as the mediators of gravity. In the most general case, this 
gives rise to the class of metric-affine gravity theories, while restricting to metric-
compatible connections, for which nonmetricity vanishes, comprises the class 
of Poincaré gauge theories. Alternatively, one may also consider connections 
with vanishing curvature. This assumption yields the class of teleparallel gravity 
theories. This chapter gives a simplified introduction to teleparallel gravity, with 
a focus on performing practical calculations, as well as an overview of the most 
commonly studied classes of teleparallel gravity theories. 

4.1 Introduction 

In his original work, Einstein formulated the general theory of relativity in terms 
of the metric tensor as the fundamental field variable of the gravitational field, 
which describes gravity by the curvature of its Levi-Civita connection. Numerous 
modified gravity theories depart from this formulation, either keeping the metric as 
the only fundamental field variable and modifying its dynamics through a modified 
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action, or by adding further fundamental field which couple non-minimally to 
the curvature [1]. However, there exist also other classes of gravity theories, in 
which the curvature of the Levi-Civita connection plays a less prominent role, 
and another, independent connection is introduced as a fundamental field variable 
next to the metric. Unlike the Levi-Civita connection, this connection is assumed 
to have vanishing curvature, but instead one allows for non-vanishing torsion or 
nonmetricity, or both. Gravity theories of this type are known as teleparallel gravity 
theories. 

In fact, already Einstein studied the possibility to describe gravity in terms of the 
torsion of a flat, metric-compatible connection instead of curvature [2], in an attempt 
to unify gravity and electromagnetism. While this attempt was not successful, it 
gave rise to a new class of gravity theories, now known as metric teleparallel 
gravity theories [3, 4], in which gravity is mediated by torsion instead of curvature. 
Only much later another class of gravity theories was introduced, which attributes 
gravity to the nonmetricity of a flat, torsion-free (i.e., symmetric) connection, and is 
hence known as symmetric teleparallel gravity [5]. Finally, allowing for both torsion 
and nonmetricity leads to the realm of general teleparallel gravity [6]. It is worth 
mentioning that these theories are embedded in the much wider and well-studied 
framework of metric-affine gravity theories [7, 8], for the metric-compatible case 
also in the framework of Poincaré gauge theories [9, 10], as it was discussed in 
the previous chapter, Chap. 3. However, a full account of this relationship and the 
historic development and studies of teleparallel gravity theories would by far exceed 
the scope of this chapter. 

Despite the long-standing history of teleparallel gravity theories and the studies 
of their fundamental properties and underlying structure for several decades, a 
renewed and growing interest in teleparallel modifications and extension of general 
relativity and their phenomenology has arisen only recently with the growing 
number of unexplained observations and tensions in cosmology. Numerous theories 
have been constructed as possible candidates to explain the early and late acceler-
ating phases of the universe, known as inflation and dark energy eras, to resolve 
the question of singularities and the information paradox of black holes, and to 
provide alternative pathways towards a quantization of gravity and a unification 
with other fundamental forces. The phenomenology of these theories greatly differs 
and depends on their choice of dynamical fields and action, so that a full account 
would, again, exceed the scope of this chapter, and we must limit ourselves to a more 
general discussion of the class of teleparallel gravity theories, and leave specific 
theories and their phenomenological properties for further reading [4]. 

The aim of this chapter is to provide a practical introduction to teleparallel 
gravity. In Sect. 4.2 we give a simplified summary of the general structure and 
underlying mathematical foundations of teleparallel gravity theories in their three 
flavors—general, symmetric and metric. In particular, we discuss the fundamental 
fields in these theories, the general form of the action and the field equations. 
This practical introduction continues in Sect. 4.3, where we explain how to 
formulate physical principles and perform common calculations necessary to solve 
the gravitational field equations of teleparallel gravity theories. We discuss how the
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invariance of the action under diffeomorphisms leads to the conservation of the 
matter currents, and show how to construct teleparallel geometries with spacetime 
symmetries and their perturbations, which can be used to solve the field equations of 
a given theory of gravity and thus study its phenomenology. Finally, Sect. 4.4 gives 
an overview of the most commonly studied classes of teleparallel gravity theories 
and their field equations, and briefly summarizes their common properties. 

There are many interesting aspects of teleparallel gravity which cannot be 
covered in this chapter, as they would by far exceed its scope and its aim towards 
performing practical calculations. In particular, we do not discuss the role of gauge 
symmetries in teleparallel gravity, which allow its interpretation as a gauge theory 
of the translation group. In relation to this, we do not discuss its formulation in 
terms of a tetrad. Throughout the chapter, we use only the tensor notation, which is 
more widespread in relating gravity to observations, and avoid the use of differential 
form language, which is often more concise and thus preferred by theorists, but 
less common in practical calculations of phenomenology. Further, we cannot cover 
fundamental questions such as the number of degrees of freedom of these theories, 
which is studied in their Hamiltonian formulation, and hints towards theoretical 
issues known under the term strong coupling. The interested reader is encouraged 
to follow the references provided in this chapter for a more detailed account of these 
mathematical foundations, their applications and possible issues. 

We use the convention that spacetime coordinate indices are labeled with 
lowercase Greek letters (observe the difference to the convention in the previous 
chapter, Chap. 3) and take the values .(0, 1, 2, 3), as well as the metric signature 
.(−1,+1,+1,+1). 

4.2 Dynamical Fields, Action and Field Equations 

In this introductory section we give an overview of the dynamical fields and their 
properties, the general structure of the action, and the variational methods used to 
obtain their field equations. Here we focus on three different flavors of teleparallel 
theories: general teleparallel theories, in which both torsion and nonmetricity 
are allowed to be non-vanishing, are discussed in Sect. 4.2.1; we then restrict 
the theories to symmetric teleparallel gravity by imposing vanishing torsion in 
Sect. 4.2.2, and to metric teleparallel gravity by imposing vanishing nonmetricity 
in Sect. 4.2.3. 

4.2.1 General Teleparallel Gravity 

We start our discussion of teleparallel gravity theories from the viewpoint of metric-
affine gravity, in which next to the metric .gμν a connection with coefficients 
.�μ

νρ is introduced as a fundamental field on the spacetime manifold M , which 
is independent of the Levi-Civita connection. To distinguish these two connections, 
we write the latter, and all derived quantities such as the covariant derivative and the
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curvature tensor, with a circle on top, i.e., 

.
◦
�μ

νρ = 1

2
gμσ

(
∂νgσρ + ∂ρgνσ − ∂σ gνρ

)
. (4.1) 

Given another, independent connection, their difference can always be written in the
form

.�μ
νρ − ◦

�μ
νρ = Mμ

νρ = Kμ
νρ + Lμ

νρ . (4.2) 

Here, .Mμ
νρ is called the distortion: it is the difference between two connection 

coefficients, and hence a tensor field. If one of these two connections is the Levi-
Civita connection of a metric, the distortion decomposes further into the contortion 
.Kμ

νρ and the disformation .Lμ
νρ , which can be obtained as follows. First, define the 

torsion 

.T μ
νρ = �μ

ρν − �μ
νρ , (4.3) 

as well as the nonmetricity

.Qμνρ = ∇μgνρ = ∂μgνρ − �σ
νμgσρ − �σ

ρμgνσ . (4.4) 

These are, again, tensor fields. Using the metric to raise and lower indices, one then
obtains the contortion

.Kμ
νρ = 1

2

(
Tν

μ
ρ + Tρ

μ
ν − T μ

νρ

)
, (4.5) 

as well as the disformation

.Lμ
νρ = 1

2

(
Qμ

νρ − Qν
μ

ρ − Qρ
μ

ν

)
. (4.6) 

Hence, in the presence of a metric, an independent connection can always uniquely
be specified in terms of its torsion and nonmetricity, which determine its deviation
from the Levi-Civita connection.

The dynamical fields then enter the action of the theory, which is of the general 
form 

.S[g, �,ψ] = Sg[g, �] + Sm[g, �,ψ] , (4.7) 

where the gravitational part . Sg of the action depends only on the metric and the 
connection, while the matter part . Sm also depends on some set of matter fields . ψI , 
whose components we do not specify further and simply label them with an index 
I . By variation with respect to these matter fields, the matter action determines 
the matter field equations, which govern the dynamics of the matter fields in a
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given gravitational field background. In general, this background depends both on 
the metric .gμν and the connection .�μ

νρ . Further, varying the matter action with 
respect to the metric and the connection gives rise to the energy-momentum . �μν

and hypermomentum .Hμ
νρ defined by the variation [7] 

.δSm =
∫

M

(
1

2
�μνδgμν + Hμ

νρδ�μ
νρ + 
Iδψ

I

) √−gd4x , (4.8) 

where .
I = 0 are the matter field equations. The specific form of .�μν and 
.Hμ

νρ depends on the type of matter under consideration and its coupling to the 
background geometry. These terms will act as the source of the gravitational field 
equations. To obtain the latter, one writes the variation of the gravitational part of 
the action in the similar form 

.δSg = −
∫

M

(
1

2
Wμνδgμν + Yμ

νρδ�μ
νρ

) √−gd4x , (4.9) 

where any necessary integration by parts has been carried out in order to eliminate
derivatives acting on the variations. This variation defines two further tensor fields,
which we denote .Wμν and .Yμ

νρ , and which will enter as the dynamical part of the 
gravitational field equations. 

The action and variation given above constitute the general form for a metric-
affine theory of gravity. In teleparallel gravity, however, the connection is further 
restricted to have vanishing curvature, 

.Rμ
νρσ = ∂ρ�μ

νσ − ∂σ �μ
νρ + �μ

τρ�τ
νσ − �μ

τσ �τ
νρ ≡ 0 . (4.10) 

Note that this condition involves both the connection coefficients and their deriva-
tives. In the context of Lagrange theory, such type of condition constitutes a non-
holonomic constraint. Different possibilities exist to implement this constraint [11]. 
One possibility is to add another term of the form 

.Sr =
∫

M

r̃μ
νρσ Rμ

νρσ d4x , (4.11) 

where the tensor density .r̃μ
νρσ acts as a Lagrange multiplier, and can be taken to be 

antisymmetric in its last two indices, .r̃μνρσ = r̃μ
ν[ρσ ], since the contraction of its 

symmetric part with the antisymmetric indices of the curvature tensor vanishes and 
thus does not contribute to the action. Variation with respect to .r̃μ

νρσ then yields the 
constraint equation .Rμ

νρσ = 0. In order to derive the variation with respect to the 
connection coefficients, note that the variation of the curvature can be expressed as 

.δRμ
νρσ = ∇ρδ�μ

νσ − ∇σ δ�μ
νρ + T τ

ρσ δ�μ
ντ . (4.12)
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With the help of this expression, as well as performing integration by parts, one 
obtains the variation of the Lagrange multiplier term . Sr in the action with respect to 
the connection as 

.

δ�Sr =
∫

M

r̃μ
νρσ

(∇ρδ�μ
νσ − ∇σ δ�μ

νρ + T τ
ρσ δ�μ

ντ

)
d4x

=
∫

M

(
T σ

σρ r̃μ
νρτ − T ρ

ρσ r̃μ
ντσ + T τ

ρσ r̃μ
νρσ

−∇ρ r̃μ
νρτ + ∇σ r̃μ

ντσ
)
δ�μ

ντ d4x .

(4.13) 

Combining all terms, one finds that the gravitational field equations are given by the
metric field equation

.Wμν = �μν , (4.14) 

as well as the connection field equation

. Ỹμ
ντ = H̃μ

ντ + T σ
σρ r̃μ

νρτ − T ρ
ρσ r̃μ

ντσ + T τ
ρσ r̃μ

νρσ − ∇ρ r̃μ
νρτ + ∇σ r̃μ

ντσ ,

(4.15) 

where it is convenient to define the tensor densities

.Ỹμ
ντ = Yμ

ντ√−g , H̃μ
ντ = Hμ

ντ√−g . (4.16) 

Note that the connection equation still contains the undetermined Lagrange multi-
plier .r̃μ

νρσ . However, the latter can be eliminated using the following procedure. 
First, we calculate the divergence 

. ∇τ Ỹμ
ντ = ∇τ H̃μ

ντ + ∇τ

(
T σ

σρ r̃μ
νρτ − T ρ

ρσ r̃μ
ντσ + T τ

ρσ r̃μ
νρσ

)

− ∇τ∇ρ r̃μ
νρτ + ∇τ∇σ r̃μ

ντσ . (4.17) 

The last two terms can be simplified by realizing that the Lagrange multiplier . ̃rμ
νρσ

is antisymmetric in its last two indices, so that one can apply the commutator of 
covariant derivatives given by 

. 2∇[ρ∇σ ]r̃μνρσ = −T τ
ρσ ∇τ r̃μ

νρσ

− Rτ
μρσ r̃τ

νρσ + Rν
τρσ r̃μ

τρσ + Rρ
τρσ r̃μ

ντσ + Rσ
τρσ r̃μ

νρτ − Rτ
τρσ r̃μ

νρσ .

(4.18) 

Also using the vanishing curvature (4.10) , the only remaining term is given by

.2∇[ρ∇σ ]r̃μνρσ = −T τ
ρσ ∇τ r̃μ

νρσ . (4.19)



4 Teleparallel Gravity 151

Further, one can use the antisymmetry of the Lagrange multiplier to write 

.∇τ

(
T σ

σρ r̃μ
νρτ − T ρ

ρσ r̃μ
ντσ + T τ

ρσ r̃μ
νρσ

) = 3∇[τ
(
T τ

ρσ ]r̃μνρσ
)
. (4.20) 

The derivative of the torsion tensor can be rewritten by making use of the curvature-
free Bianchi identity

.∇[νT μ
ρσ ] + T μ

τ [νT τ
ρσ ] = Rμ[νρσ ] = 0 , (4.21) 

from which after contraction follows

.3∇[τ T τ
ρσ ] = −3T τ

ω[τ T ω
ρσ ] = T τ

τωT ω
ρσ . (4.22) 

By combining all terms, one finds that the divergence (4.17) of the connection field
Eq. (4.15) reads

. 
∇τ Ỹμ

ντ = ∇τ H̃μ
ντ + T τ

τωT ω
ρσ r̃μ

νρσ + 3T τ [ρσ ∇τ ]r̃μνρσ − T τ
ρσ ∇τ r̃μ

νρσ

= ∇τ H̃μ
ντ + T τ

τωT ω
ρσ r̃μ

νρσ + 2T τ
τ [ρ∇σ ]r̃μνρσ .

(4.23) 

Similarly, contracting the field Eq. (4.15) with the trace of the torsion tensor, one
obtains

.T ω
ωτ Ỹμ

ντ = T ω
ωτ H̃μ

ντ + T ω
ωτT

τ
ρσ r̃μ

νρσ + 2T ω
ω[ρ∇σ ]r̃μνρσ . (4.24) 

Subtracting these two equations, the Lagrange multiplier terms cancel, and one
obtains the connection field equations

.∇τ Ỹμ
ντ − T ω

ωτ Ỹμ
ντ = ∇τ H̃μ

ντ − T ω
ωτ H̃μ

ντ . (4.25) 

This equation can also be rewritten by eliminating the density factors using

.∇μ

√−g = 1

2
gνρ∇μgνρ

√−g = 1

2
Qμν

ν√−g = Mν
νμ

√−g , (4.26) 

where the last expression follows from rewriting the covariant derivative of the
metric in terms of its (vanishing) covariant derivative with respect to the Levi-Civita
connection using the decomposition (4.2) . The latter can also be used to write the
torsion as

.T μ
νρ = Mμ

ρν − Mμ
νρ . (4.27)
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Using these relations and the definition (4.16) of the densities .Ỹμ
νρ and . H̃μ

νρ , the  
field equations become 

.∇τ Yμ
ντ − Mω

τωYμ
ντ = ∇τHμ

ντ − Mω
τωHμ

ντ . (4.28) 

Equations (4.14) and (4.28) constitute the field equations for the dynamical fields
in teleparallel gravity. In Sect. 4.4 we will derive these field equations explicitly for 
selected gravity theories. 

•? Exercise 
4.1. Check the integration by parts performed in Eq. (4.13) . Recall that the covariant

derivative of a tensor density receives an extra term, which is not present for pure tensors.

Besides the method of Lagrange multipliers, the teleparallel field equations can 
also be obtained by using the method of restricted variation. Using this method, 
no Lagrange multiplier is introduced, the constraint equation (4.10) of vanishing
curvature is imposed to restrict the connection .�μ

νρ , and the variation .δ�μ
νρ is 

restricted in order to preserve this constraint. Using the expression (4.12) , one finds
that the variation of the connection must be of the form

.δ�μ
νρ = ∇ρξμ

ν (4.29) 

for a tensor field .ξμ
ν . Indeed, for the curvature perturbation one then finds 

.δRμ
νρσ = ∇ρ∇σ ξμ

ν − ∇σ ∇ρξμ
ν + T τ

ρσ ∇τ ξ
μ

ν = 0 , (4.30) 

using the formula for the commutator of covariant derivatives in the absence of
curvature. It follows that the variation of the action takes the form

.

δ�S =
∫

M

(
H̃μ

νρ − Ỹμ
νρ

)
∇ρξμ

νd4x

=
∫

M

(
T σ

σρH̃μ
νρ − ∇ρH̃μ

νρ − T σ
σρỸμ

νρ + ∇ρỸμ
νρ

)
ξμ

νd4x ,

(4.31) 

where the second line follows from integration by parts. Hence, one finds the same
connection field equation (4.25).
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4.2.2 Symmetric Teleparallel Gravity 

The class of teleparallel gravity theories discussed in the previous section, in 
which the affine connection .�μ

νρ is restricted only by the flatness condition (4.10) ,
is also known as general teleparallel gravity, and is the youngest among the
different classes of teleparallel gravity theories. Two other classes of teleparallel
gravity theories can be obtained by demanding that either the torsion (4.3) or the
nonmetricity (4.4) vanishes. We will start with the former condition, which yields
the class of symmetric teleparallel gravity theories, which refers to the fact that the
coefficients of a torsion-free connection are symmetric in their lower two indices.
In order to implement the condition of vanishing torsion, one may proceed in full
analogy to the flatness condition in the previous section, by adding another Lagrange
multiplier term

.St =
∫

M

t̃μ
νρT μ

νρd4x , (4.32) 

where variation with respect to the tensor density .t̃μ
νρ leads to the constraint 

equation .T μ
νρ = 0. In order to derive the field equations, one then proceeds as 

in the previous section, by varying the full action and eliminating the Lagrange 
multipliers from the resulting field equations. This calculation is rather lengthy, 
but straightforward, and so we will not show it here. Instead, we will follow 
the alternative procedure of restricted variation of the action, by considering 
only variations .δ�μ

νρ which maintain the vanishing curvature and torsion of the 
connection. We can use the fact that the flatness is maintained by the variation (4.29) ,
and further restrict the form of .ξμ

ν . It turns out that this is achieved by setting 
.ξμ

ν = ∇νζ
μ for some vector field . ζμ, and thus 

.δ�μ
νρ = ∇ρ∇νζ

μ . (4.33) 

Using the fact that covariant derivatives commute in the absence of curvature and
torsion, one now immediately sees

.δT μ
νρ = δ�μ

ρν − δ�μ
νρ = ∇ν∇ρζμ − ∇ρ∇νζ

μ = 0 . (4.34) 

The variation of the action with respect to the connection is then simply given by

.

δ�S =
∫

M

(
H̃μ

νρ − Ỹμ
νρ

)
∇ρ∇νζ

μd4x

= −
∫

M

∇ρ

(
H̃μ

νρ − Ỹμ
νρ

)
∇νζ

μd4x

=
∫

M

∇ν∇ρ

(
H̃μ

νρ − Ỹμ
νρ

)
ζμd4x ,

(4.35)
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where integration by parts simplifies due to the vanishing torsion. The connection 
field equation thus becomes 

.∇ν∇ρỸμ
νρ = ∇ν∇ρH̃μ

νρ . (4.36) 

Together with the metric field equation (4.14) , it constitutes the field equations of
symmetric teleparallel gravity.

4.2.3 Metric Teleparallel Gravity 

We finally come to the remaining class of theories, which are defined by imposing 
the condition of vanishing nonmetricity, so that the connection becomes metric-
compatible. This class of theories is therefore known as metric teleparallel gravity, 
or simply as teleparallel gravity, since it was conceived first among the three 
different classes we discuss here. To derive its field equations, one can also in this 
case either introduce a Lagrange multiplier 

.Sq =
∫

M

q̃μνρQμνρd4x , (4.37) 

and vary with respect to the tensor density .q̃μνρ to obtain .Qμνρ = 0, or find a 
suitable restriction on the connection variation. Here we will follow once again 
the latter approach. From the definition (4.4) of the nonmetricity, one obtains its
variation

.δQμνρ = ∇μδgνρ − gσρδ�σ
νμ − gνσ δ�σ

ρμ = ∇μ(δgνρ − 2ξ(νρ)) , (4.38) 

provided that the variation of the connection is chosen to implement the flatness
condition (4.29) . Here we also used the metric compatibility of the connection
to commute lowering an index with the covariant derivative. It turns out that the
condition of vanishing nonmetricity imposes a relation

.δgμν = 2ξ(μν) (4.39) 

between the variations of the metric and the connection. Since both are now
expressed in terms of the tensor field . ξμν , the field equations follow from the total 
variation 

. 

δS =
∫

M

(
�μνξ(μν) + Hμνρ∇ρξμν − Wμνξ(μν) − Yμνρ∇ρξμν

)√−gd4x

=
∫

M

(
�(μν) − ∇ρHμνρ + HμνρT τ

τρ − W(μν)

+ ∇ρYμνρ − YμνρT τ
τρ

)
ξμν

√−gd4x ,

(4.40)
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after performing integration by parts, and using the metric compatibility of the 
connection to obtain .∇μ

√−g = 0. Keeping in mind that .Wμν and .�μν are defined 
by the variation of the action with respect to the metric, and thus symmetric by 
definition, one obtains the field equation 

.Wμν − ∇ρYμνρ + YμνρT τ
τρ = �μν − ∇ρHμνρ + HμνρT τ

τρ . (4.41) 

This single field equation therefore conveys the dynamics in metric teleparallel
gravity.

4.3 Physical Aspects and Formalisms in Teleparallel Geometry 

To be able to make contact with phenomenology and observations, it is necessary 
to discuss a few general physical principles in the framework of teleparallel 
gravity. The first principle, which we discuss in Sect. 4.3.1, is the conservation 
of the matter currents, which are energy-momentum and hypermomentum, which 
follows from the invariance of the action under diffeomorphisms. We then continue 
with spacetime symmetries in Sect. 4.3.2, which can be used to obtain solutions 
of teleparallel gravity theories, such as black holes, whose phenomenology can 
subsequently be studied. In particular, we focus on the case of homogeneous and 
isotropic teleparallel spacetimes, and derive the dynamical variables which appear in 
teleparallel cosmology. Finally, we discuss the theory of perturbations of teleparallel 
geometries in Sect. 4.3.3. These form the basis of testing teleparallel gravity theories 
using gravitational waves and high-precision post-Newtonian observations. 

4.3.1 Energy-Momentum-Hypermomentum Conservation 

In order to be independent of the choice of coordinates, the different components . Sg
and . Sm of the action discussed in the previous sections are demanded to be indepen-
dently invariant under diffeomorphisms. Note that an infinitesimal diffeomorphism 
generated by a vector field .X = Xμ∂μ changes the metric by 

.δXgμν = (LXg)μν = Xρ∂ρgμν + ∂μXρgρν + ∂νX
ρgμρ = 2

◦∇(μXν) , (4.42) 

while the connection is changed by

. 

δX�μ
νρ = (LX�)μνρ

= Xσ ∂σ �μ
νρ − ∂σ Xμ�σ

νρ + ∂νX
σ �μ

σρ + ∂ρXσ �μ
νσ + ∂ν∂ρXμ

= ∇ρ∇νX
μ − Xσ Rμ

νρσ − ∇ρ(Xσ T μ
νσ ) ,

(4.43)
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compare with the discussion in the context of Riemann-Cartan spaces in Sect. 3.2.4 
of the previous chapter. Note that both expressions are tensor fields, despite the fact 
that the connection coefficients are not tensor fields. Their variation, however, being 
an infinitesimal difference between connection coefficients, is a tensor field. In the 
teleparallel case, the curvature tensor vanishes. Using these formulas, it is now easy 
to calculate the change of the gravitational part . Sg of the action, which reads 

. 

δXSg = −
∫

M

(
1

2

√−gWμνδXgμν + Ỹμ
νρδX�μ

νρ

)
d4x

= −
∫

M

{√−gWμν
◦∇μXν + Ỹμ

νρ
[∇ρ∇νX

μ − ∇ρ(Xσ T μ
νσ )

]}
d4x

=
∫

M

[√−g
◦∇νWμ

ν + T σ
μν(∇ρỸσ

νρ − T τ
τρỸσ

νρ)

− ∇ν(∇ρỸμ
νρ − T τ

τρỸμ
νρ) + T ω

ων(∇ρỸμ
νρ − T τ

τρỸμ
νρ)

]
Xμd4x .

(4.44) 

Assuming that the gravitational part . Sg of the action is invariant under diffeomor-
phisms, this variation must vanish identically for arbitrary vector fields . Xμ. Hence, 
it follows that the terms .Wμν and .Ỹμ

νρ obtained from the variation of the action 
satisfy 

. 
√−g

◦∇νWμ
ν + T σ

μν(∇ρỸσ
νρ − T τ

τρỸσ
νρ)

− ∇ν(∇ρỸμ
νρ − T τ

τρỸμ
νρ) + T σ

σν(∇ρỸμ
νρ − T τ

τρỸμ
νρ) = 0 . (4.45) 

Alternatively, one can also write this relation without density factors, and finds

. 
◦∇νWμ

ν + T σ
μν(∇ρYσ

νρ − Mτ
ρτYσ

νρ)

− ∇ν(∇ρYμ
νρ − Mτ

ρτYμ
νρ) + Mσ

νσ (∇ρYμ
νρ − Mτ

ρτYμ
νρ) = 0 . (4.46) 

This equation is derived from a purely geometric property of the gravitational part
of the action, and so it is a geometric identity, i.e., it holds for any field configuration
of the metric .gμν and the connection .�μ

νρ , independently of whether these satisfy 
the gravitational field equations or not1 . Such a relation is therefore also said to hold 
off-shell. This is to be contrasted with the variation of the matter action . Sm, which

1 This equation takes the same role as .
◦∇νGμ

ν = 0 for the Einstein tensor, which is satisfied 
identically as a consequence of the Bianchi identities. 
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reads 

.

δXSg =
∫

M

(
1

2

√−g�μνδXgμν + H̃μ
νρδX�μ

νρ + 
̃I δXψI

)
d4x

=
∫

M

{√−g�μν
◦∇μXν + H̃μ

νρ
[∇ρ∇νX

μ − ∇ρ(Xσ T μ
νσ )

]

+
̃ILXψI
}

d4x .

(4.47) 

Here, .
̃I = 0 (or equivalently .
I = 0, without using densities) are the matter field 
equations. If these are satisfied, and only then, demanding that the matter action is 
invariant under diffeomorphisms generated by an arbitrary vector field .Xμ leads to 
the energy-momentum-hypermomentum conservation law 

. 
√−g

◦∇ν�μ
ν + T σ

μν(∇ρH̃σ
νρ − T τ

τρH̃σ
νρ)

− ∇ν(∇ρH̃μ
νρ − T τ

τρH̃μ
νρ) + T σ

σν(∇ρH̃μ
νρ − T τ

τρH̃μ
νρ) = 0 , (4.48) 

or, again in the version without densities,

. 
◦∇ν�μ

ν + T σ
μν(∇ρHσ

νρ − Mτ
ρτHσ

νρ)

− ∇ν(∇ρHμ
νρ − Mτ

ρτHμ
νρ) + Mσ

νσ (∇ρHμ
νρ − Mτ

ρτHμ
νρ) = 0 . (4.49) 

Since this relation does not hold for arbitrary field configurations of the gravitational
and matter field, but only for those which satisfy the matter field equations .
I = 0, 
it is said to hold on-shell. Note that we have not made any assumptions on the 
properties of the connection except for vanishing curvature. In particular, we have 
not imposed vanishing torsion or nonmetricity. It follows that the geometric identity 
and energy-momentum-hypermomentum law given above hold for all three classes 
of teleparallel gravity theories (but their expressions will simplify in the symmetric 
and metric cases, as we will see below). Finally, we remark that in the case of 
vanishing hypermomentum, i.e., for matter which couples only to the metric and not 
to the connection, which is most commonly considered in the context of teleparallel 
gravity, the conservation law reduces to 

.
◦∇ν�μ

ν = 0 , (4.50)

which is the well-known energy-momentum conservation.
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•? Exercise 
4.2. Show that the conservation law (4.49) can also be derived from the geometric

identity (4.46) , by imposing the gravitational field equations.
This is most straightforward for the general teleparallel gravity class, whose gravi-

tational field equations are (4.14) and (4.28) . One easily sees that the terms appearing
in the identity (4.46) are exactly the left-hand sides of the gravitational field equations.
Replacing them with the respective right-hand sides, one obtains the energy-momentum-
hypermomentum conservation law (4.49) . Of course, the same holds true also if one uses
the tensor density version of these equations.

A similar derivation can also be used in the case of symmetric teleparallel gravity, 
where one assumes vanishing torsion, .T μ

νρ = 0. In this case, it is most convenient 
to start from the density version (4.45) , which simplifies to become

.
√−g

◦∇νWμ
ν − ∇ν∇ρỸμ

νρ = 0 . (4.51) 

Using the metric field equation (4.14) and the connection field equation (4.36) , one
thus immediately obtains the conservation law

.
√−g

◦∇ν�μ
ν − ∇ν∇ρH̃μ

νρ = 0 , (4.52) 

which agrees with the general form (4.48) in the absence of torsion. What is
most remarkable in the case of symmetric teleparallel gravity is the fact that
one can also proceed in a different order: by imposing the matter field equations
.
I = 0, from which follows the conservation law (4.52) , further imposing
the metric field equation (4.14), and using the identity (4.51) , one obtains the
connection field equation (4.36) . In other words, any field configuration of the
matter and gravitational fields, which satisfies the matter and metric field equations,
automatically satisfies also the connection field equation. For this reason, one often
omits the latter when it comes to solving the field equations.

Finally, we study the energy-momentum-hypermomentum conservation also in 
the metric teleparallel setting. In this case, one can omit the density factors in 
the geometric identity (4.45) , since the connection is metric-compatible, so that it
becomes

. 
◦∇νWμ

ν + T σ
μν(∇ρYσ

νρ − T τ
τρYσ

νρ)

− ∇ν(∇ρYμ
νρ − T τ

τρYμ
νρ) + T σ

σν(∇ρYμ
νρ − T τ

τρYμ
νρ) = 0 . (4.53)
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Further, we impose the metric teleparallel gravity field equation (4.41) , which we
will write in the form

.Wμν − �μν = Aμν , (4.54) 

where we have defined the abbreviation

.Aμν = ∇ρYμνρ − YμνρT τ
τρ − ∇ρHμνρ + HμνρT τ

τρ . (4.55) 

Note that the left hand side of the field equation (4.54) is symmetric by definition.
Hence, when the equation holds, also the right hand side must be symmetric, and
thus .A[μν] = 0. We then take the Levi-Civita covariant derivative of this equation, 
which reads 

.
◦∇νW

μν − ◦∇ν�
μν = ◦∇νA

μν . (4.56) 

On the right-hand side, we can use the relation

.

◦∇νA
μν = ∇νA

μν − Kμ
ρνA

ρν − Kν
ρνA

μρ

= ∇νA
μν − 1

2

[
(Tρ

μ
ν + Tν

μ
ρ − T μ

ρν)A
ρν

−(Tρ
ν
ν + Tν

ν
ρ − T ν

ρν)A
μρ

]

= ∇νA
μν − Tρ

μ
νA

ρν − T ν
νρAμρ ,

(4.57) 

where we have used the symmetry .A[μν] = 0 to obtain the last line. Now 
combining the geometric identity (4.53), the divergence (4.56) of the gravitational
field equation and the result (4.57) , one finally arrives at

. 
◦∇ν�μ

ν + T σ
μν(∇ρHσ

νρ − T τ
τρHσ

νρ)

− ∇ν(∇ρHμ
νρ − T τ

τρHμ
νρ) + T σ

σν(∇ρHμ
νρ − T τ

τρHμ
νρ) = 0 , (4.58) 

which agrees with (4.49) in the case of vanishing nonmetricity.

4.3.2 Spacetime Symmetries and Cosmology 

In the previous section we have made use of the transformation laws (4.42) 
of the metric and (4.43) of the connection under infinitesimal diffeomorphisms
generated by a vector field X. The same transformation laws also find application
in the discussion of symmetric spacetimes, i.e., teleparallel geometries, which are
invariant under the action of particular vector fields, .δXgμν = 0 and . δX�μ

νρ =
0 [12, 13]. The choice of these vector fields depends on the physical situation
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under consideration. A few common examples can be expressed most conveniently 
in spherical coordinates .(t, r, ϕ, ϑ): a  stationary spacetime is invariant under the 
(timelike) vector field . ∂t ; spherical symmetry is conveyed by the three rotation 
generators 

. sin ϕ∂ϑ + cos ϕ

tan ϑ
∂ϕ , − cos ϕ∂ϑ + sin ϕ

tan ϑ
∂ϕ , −∂ϕ ; (4.59) 

finally, cosmological symmetry comprises of invariance under both rotations as
given above and translations, defined by the vector fields

.χ sin ϑ cos ϕ∂r + χ

r
cos ϑ cos ϕ∂ϑ − χ sin ϕ

r sin ϑ
∂ϕ , . (4.60a) 

χ sin ϑ sin ϕ∂r + χ

r
cos ϑ sin ϕ∂ϑ + χ cos ϕ

r sin ϑ
∂ϕ , . (4.60b) 

χ cos ϑ∂r − χ

r
sin ϑ∂ϑ , (4.60c) 

where we used the abbreviation .χ = √
1 − (ur)2, and u can be any real or 

imaginary number, so that the sign of .u2 ∈ R determines the curvature of the spatial 
hypersurfaces of constant time t . For .u2 > 0, their spatial curvature is positive, while 
.u2 < 0 corresponds to negative spatial curvature. Finally, .u2 = 0 is the spatially flat 
case. 

Symmetric spacetimes are often considered as potential solutions to the field 
equations of a given theory, since they are completely characterized by fewer 
functions than there are components of the dynamical fields, and these functions 
depend on a smaller number of coordinates, hence leading to a simple ansatz for 
solving the field equations. As a simple and physically well motivated example, we 
show this for the case of cosmological symmetry in the teleparallel geometry. It is 
well known that the most general metric which is homogeneous and isotropic is the 
Friedmann-Lemaître-Robertson-Walker metric 

.gμν = −nμnν + hμν , (4.61) 

where the hypersurface conormal

.nμdxμ = −Ndt (4.62) 

and spatial metric

.hμνdxμ ⊗ dxν = A2
[

dr ⊗ dr

χ2
+ r2(dϑ ⊗ dϑ + sin2 ϑdϕ ⊗ dϕ)

]
(4.63) 

are fully determined by two functions of time, known as the lapse function
.N = N(t) and scale factor .A = A(t). Using this metric, we can apply the
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decomposition (4.2) of the affine connection, and we find that the most general
homogeneous and isotropic connection is characterized through its torsion and
nonmetricity

.T μ
νρ = 2

A
(T1h

μ
[νnρ] + T2nσ εσμ

νρ) , . (4.64a) 

Qρμν = 2

A
(Q1nρnμnν + 2Q2nρhμν + 2Q3hρ(μnν)) , (4.64b) 

by five further functions .T1,T2,Q1,Q2,Q3 of time, and .εμνρσ is the totally 
antisymmetric tensor normalized such that 

.ε0123 = √−g = NA3r2 sin ϑ

χ
. (4.65) 

Note that in general the curvature of this connection does not vanish, and so
one must impose additional constraints on the aforementioned functions. Before
discussing these constraints, it is most convenient to introduce the conformal time
derivative

.F ′ = A

N

dF

dt
(4.66) 

acting on any time-dependent scalar function .F = F(t), as well as the conformal 
Hubble parameter 

.H = A′

A
= 1

N

dA

dt
. (4.67) 

With the help of these definitions, the conditions on the parameter functions under
which the curvature tensor vanishes become

.T2(H− T1 + Q2) = 0 , . (4.68a) 

T2(H− T1 + Q2 − Q3) = 0 , . (4.68b) 

(H− T1 + Q2)(H− T1 + Q2 − Q3) − T2
2 + u2 = 0 , . (4.68c) 

(Q1 + Q2)(H− T1 + Q2) + (H− T1 + Q2)
′ = 0 , . (4.68d) 

(Q1 + Q2)(H− T1 + Q2 − Q3) − (H− T1 + Q2 − Q3)
′ = 0 , . (4.68e) 

T′
2 = 0 . (4.68f)

Note that u appears in only one of these equations; nevertheless, it plays an
important role for the solutions of this system, as we will show now. For this
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purpose, consider first the case .u2 	= 0. In this case the condition (4.68c) implies

.(H− T1 + Q2)(H− T1 + Q2 − Q3) 	= T2
2 . (4.69) 

From the two conditions (4.68a) and (4.68b) then further follows that either the right
hand side vanishes, or both factors on the left hand side vanish. We first consider
this latter case. The condition (4.68c) then requires .T2 = ±u, and we find that all 
remaining equations are solved by 

.T2 = ±u , T1 − Q2 = H , Q3 = 0 . (4.70) 

Also we see that we must demand u to be real in order to obtain a real value of
the connection coefficients; hence, this solution is valid only for positive spatial
curvature .u2 > 0. Alternatively, the first two equations (4.68a) and (4.68b) can also
be solved by setting .T2 = 0. From the remaining equations then follows the solution 

. T2 = 0 , (H− T1 + Q2)(H− T1 + Q2 − Q3) = −u2 ,

Q1 +Q2 = −H
′ −T′

1 +Q′
2

H−T1 +Q2
. (4.71) 

Now we see that both signs of . u2 are allowed. These are the only two possibilities 
to solve the first three equations, and so we may turn our attention to the case .u = 0. 
In this case the third Eq. (4.68c) mandates

.(H− T1 + Q2)(H− T1 + Q2 − Q3) = T2
2 , (4.72) 

and we see that both sides of this equation must vanish in order to satisfy the
conditions (4.68a) and (4.68b), so that all solutions will have .T2 = 0. For the left 
hand side, we are free to choose at most one of the two factors to be non-vanishing. 
This leads to the three possible solutions 

.T2 = 0 , T1 − Q2 = H , Q3 = 0 (4.73) 

if both factors vanish,

.T2 = 0 , T1 − Q2 + Q3 = H , Q1 + Q2 = −Q
′
3

Q3
(4.74) 

if only the second factor vanishes, as well as

.T2 = 0 , T1 − Q2 = H , Q1 + Q2 = Q
′
3

Q3
(4.75)
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if only the first factor vanishes. These are the only possible homogeneous and 
isotropic teleparallel geometries. Note that for each solution one has three conditions 
on the five parameter functions, so that two of them can be freely chosen to 
parametrize the solution, and must be determined alongside the scale factor A and 
lapse N by solving the field equations of a given teleparallel gravity theory. 

In the discussion above we have assumed a general teleparallel geometry, for 
which both torsion and nonmetricity are allowed to be non-vanishing. From the 
solutions we have found one can now easily deduce the symmetric and metric 
teleparallel geometries. We start with the former, by imposing the additional 
condition .T1 = T2 = 0. One immediately sees that this condition is not compatible 
with the first solution (4.70), which explicitly demands .T2 	= 0, and so this 
solution cannot be restricted to symmetric teleparallel gravity. This is different for 
the remaining solutions. From the solution (4.71) , one obtains the spatially curved
case

.(H+ Q2)(H+ Q2 − Q3) = −u2 , Q1 + Q2 = −H
′ + Q′

2

H+ Q2
, (4.76) 

while the three spatially flat solutions become

.Q2 = −H , Q3 = 0 , . (4.77a) 

Q2 − Q3 = −H , Q1 + Q2 = −Q
′
3

Q3
, . (4.77b) 

Q2 = −H , Q1 + Q2 = Q
′
3

Q3
. (4.77c) 

For each of these solutions one has two conditions on the three scalar functions
.Q1,2,3 which parametrize the nonmetricity, so that one of them remains undeter-
mined by the symmetry condition, and is left to be determined by the gravitational 
field equations [14, 15]. 

In a similar fashion, one can also restrict the general teleparallel cosmologies to 
the metric teleparallel geometry, by imposing the conditions .Q1 = Q2 = Q3 = 0 of 
vanishing nonmetricity. For the first solution (4.70) , this leads to

.T2 = ±u , T1 = H , (4.78) 

while the second solution (4.71) becomes

.T2 = 0 , T1 = H± iu . (4.79) 

For the latter, we have explicitly solved the appearing quadratic equation. In this
case we see that u must be imaginary in order to obtain a real torsion, and so we
are restricted to the case .u2 < 0 of negative spatial curvature. Finally, the three
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solutions for .u = 0 reduce to the common case 

.T2 = 0 , T1 = H . (4.80) 

In all three cases, the two free functions in the torsion scalar are fixed by the
conditions of cosmological symmetry and vanishing curvature, so that the field
equations are fully expressed in terms of the scale factor A and the lapse N [16]. 

•? Exercise 
4.3. Determine the homogeneous and isotropic symmetric teleparallel geometries (4.76) 

and (4.77) , as well as the homogeneous and isotropic metric teleparallel geome-
tries (4.78) ,(4.79) and (4.80) .

4.3.3 Perturbation Theory 

Besides the use of symmetric spacetimes as shown in the previous section, another 
common approach to simplify the (in general non-linear) field equations of a given 
teleparallel gravity theory is to start from a known, usually highly symmetric 
solution of the field equations, given by a metric .ḡμν and a flat affine connection 
with coefficients .�̄μ

νρ , and perform a perturbative expansion of the dynamical 
fields and their governing field equations around this solution. For this purpose, 
one conventionally introduces a perturbation parameter . ε on which the solution 
will depend, and which can be related, for example, to the gravitational constant 
for a weak-field approximation, or the inverse speed of light for a low-velocity 
approximation. The full solution .gμν(ε) and .�μ

νρ(ε), is then expanded in a Taylor 
series 

.gμν =
∞∑

k=0

εk

k!
dk

dεk
gμν

∣∣∣∣
ε=0

, �μ
νρ =

∞∑

k=0

εk

k!
dk

dεk
�μ

νρ

∣∣∣∣
ε=0

(4.81) 

around the background solution .ḡμν = gμν(0) and .�̄μ
νρ = �μ

νρ(0). Different 
conventions are abundant for the terms in this Taylor expansion, either for the 
coefficients 

.δkgμν = dk

dεk
gμν

∣∣∣∣
ε=0

, δk�μ
νρ = dk

dεk
�μ

νρ

∣∣∣∣
ε=0

, (4.82)
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or for the full terms 

.
k
gμν = εk

k!
dk

dεk
gμν

∣∣∣∣
ε=0

,
k

�μ
νρ = εk

k!
dk

dεk
�μ

νρ

∣∣∣∣
ε=0

. (4.83) 

In the following, we will make use of the latter, as it turns out to be shorter for the
examples we consider. It follows from the fact that the metric .gμν is a symmetric 
tensor field that the same property holds also for all terms .

k
gμν in its perturbative 

expansion. For the connection coefficients, one similarly concludes from the fact 

that both .�μ
νρ and .�̄μ

νρ are connection coefficients that the remaining terms . 
k

�μ
νρ

with .k > 0 are tensor fields. In order to determine these terms, one performs 
a similar Taylor expansion of the gravitational field equations in the perturbation 
parameter . ε. It is the main virtue of this expansion that at each perturbation order 
k, the corresponding terms of the field equations comprise a linear equation for the 

field terms .
k
gμν and .

k

�μ
νρ at the same order, which contain the lower order terms 

as a source; hence, they can be solved subsequently for increasing orders, where 
the previously found solutions for lower orders are used in each further order to be 
solved. 

In the case of teleparallel gravity, it is important to keep in mind that next to 
the gravitational field equations also the constraint (4.10) of vanishing curvature
must be satisfied at any perturbation order. In the symmetric and metric teleparallel
classes of theories, also either the torsion (4.3) or nonmetricity (4.4) must vanish
at each order. While it is possible to simply consider these constraints as additional
equations which must be solved next to the field equations at each order, one may
also pose the question whether it is possible to find a general perturbative solution
to these constraints, which is independent of the gravity theory under consideration,
and which can then be inserted into the perturbed field equations of any specific
gravity theory. To obtain this solution, one needs to perform a perturbative expansion
of the corresponding constraint equations. We start by showing this procedure for
the flatness constraint (4.10) . At the zeroth order, this simply becomes the vanishing
of the curvature

.0 = R̄μ
νρσ = ∂ρ�̄μ

νσ − ∂σ �̄μ
νρ + �̄μ

τρ�̄τ
νσ − �̄μ

τσ �̄τ
νρ (4.84) 

for the background connection .�̄μ
νρ , which we assume to be satisfied from now on. 

For the first-order perturbation of the curvature, one finds the condition 

.0 = 1
Rμ

νρσ = ∇̄ρ

1
�μ

νσ − ∇̄σ

1
�μ

νρ + T̄ τ
ρσ

1
�μ

ντ , (4.85) 

where all quantities which are calculated with respect to the background connection
are denoted with a bar. Now it is helpful to recall that the commutator of covariant
derivatives is given by

.∇̄ρ∇̄σ λμ
ν − ∇̄σ ∇̄ρλμ

ν = R̄μ
τρνλ

τ
ν − R̄τ

νρνλ
μ

τ − T̄ τ
ρσ ∇̄τ λ

μ
ν (4.86)
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for a tensor field .λμ
ν , where the two curvature terms on the right hand side vanish. 

Hence, we can solve the flatness condition at the first perturbation order by setting 

.
1
�μ

νρ = ∇̄ρ

1
λμ

ν (4.87) 

with an arbitrary first-order tensor field .
1
λμ

ν . To illustrate the further procedure, we 
calculate the second order curvature perturbation 

.0 = 2
Rμ

νρσ = ∇̄ρ

2
�μ

νσ − ∇̄σ

2
�μ

νρ + T̄ τ
ρσ

2
�μ

ντ + 2
1
�μ

τ [ρ
1
�τ |ν|σ ] , (4.88) 

where we now also need to take into account the first-order connection perturbation.

A naive ansatz .∇̄ρ

2
λμ

ν for .
2
�μ

νρ is therefore not sufficient. In order to cancel the 
term arising from the first-order connection perturbation, one also needs to include 

terms which are quadratic in .
1
λμ

ν , and must contain one derivative. One finds that a 
possible solution is given by 

.
2
�μ

νρ = ∇̄ρ

2
λμ

ν − 1
λμ

τ ∇̄ρ

1
λτ

ν . (4.89) 

Note that this solution is not unique. Alternatively, one could choose, for example,

.
2
�μ

νρ = ∇̄ρ

2
λμ

ν + ∇̄ρ

1
λμ

τ

1
λτ

ν . (4.90) 

This becomes clear by realizing that these solutions differ only by a term

.∇̄ρ(
1
λμ

τ

1
λτ

ν), which can be absorbed by a redefinition of .
2
λμ

ν . By a similar 
procedure, one can also subsequently solve the flatness condition at any higher 
perturbation order. 

For the symmetric and metric teleparallel cases, one can make use of the already 
determined solution of the perturbative flatness condition, and further restrict the 

perturbation tensor fields .
k

λμ
ν in order to achieve a connection with vanishing torsion 

or nonmetricity at any perturbation. We start with the former, which means that the 

background connection coefficients .�̄μ
νρ as well as the perturbations .

k

�μ
νρ must be 

symmetric in their lower two indices. To obtain this property, one can make use of 
the result that the flat connection perturbations can always be parametrized in the 
form 

.
k

�μ
νρ = ∇̄ρ

k

λμ
ν +

k−1∑

j=1

j,k

�μ
τ

j

�τ
νρ , (4.91) 

where .
j,k

�μ
τ is determined by solving the flatness condition at the k’th perturbation 

order. Indeed, we have seen this form explicitly for the first order (4.87) , as

well as the second order (4.89), where for the latter .
1,2

�μ
τ = − 1

λμ
τ . Using this
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parametrization, it follows that once we have solved the condition of vanishing 
torsion up to the perturbation order .k − 1, the condition for the k’th order simply 
becomes 

.∇̄[ρ
k

λμ
ν] = 0 . (4.92) 

Further using the fact that the covariant derivatives with respect to the background
connection commute in the absence of curvature and torsion, we can thus write the
solution as

.
k

λμ
ν = ∇̄ν

k

ζμ , (4.93) 

where we introduced the perturbation parameters . 
k

ζμ. Note, however, that also in this 
case numerous other parametrizations of the connection coefficients can be found. 
A parametrization which turns out particularly convenient for practical calculations 
arises from the fact that two flat, torsion-free connections, are locally related by a 
diffeomorphism. It follows that also the perturbed connection .�μ

νρ , which depends 
on the perturbation parameter . ε, and the background .�̄μ

νρ , are locally related by a 
family . �ε of diffeomorphisms parametrized by . ε, such that 

.�μ
νρ(ε) = �∗

ε �̄
μ

νρ . (4.94) 

Performing a Taylor expansion in order to obtain the perturbation terms . 
k

�μ
νρ , we  

see that on the right hand side .�̄μ
νρ remains fixed, and we need to expand the 

diffeomorphism .�ε into a corresponding Taylor series. It turns out that such an 

expansion gives rise to a series of vector fields . 
k

ξμ for .k > 0, in terms of which the 
Taylor expansion reads [17–19] 

.
k

�μ
νρ =

∑

l1+2l2+...=k

1

l1!l2! · · ·

(

Ll1
1
ξ

· · ·Llj
j

ξ

· · · �̄
)μ

νρ . (4.95) 

It is instructive to calculate the lower order terms explicitly, using the formula (4.43) 
with vanishing curvature and torsion. For the background, the expansion trivially
reduces to

.
0
�μ

νρ = �̄μ
νρ . (4.96) 

For the first order, only one term appears on the right-hand side, which reads

.
1
�μ

νρ =
(
L1

ξ
�̄

)μ

νρ = ∇̄ν∇̄ρ

1
ξμ , (4.97)
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while for the second order one finds the two terms 

. 

2
�μ

νρ =
(
L2

ξ
�̄

)μ

νρ + 1

2

(
L1

ξ
L1

ξ
�̄

)μ

νρ

= ∇̄ν∇̄ρ

2
ξμ + ∇̄(ν

1
ξσ ∇̄ρ)∇̄σ

1
ξμ − 1

2
∇̄ν∇̄ρ

1
ξσ ∇̄σ

1
ξμ + 1

2

1
ξσ ∇̄ν∇̄ρ∇̄σ

1
ξμ .

(4.98) 

It is also helpful to compare these formulas with the perturbations (4.87) and (4.89) ,
together with the substitution (4.93) . For the first perturbation order, the perturba-
tion (4.87) becomes

.
1
�μ

νρ = ∇̄ν∇̄ρ

1
ζμ , (4.99) 

which agrees with (4.97) for .
1
ζμ = 1

ξμ. At the second order, the perturbation (4.89) 
becomes

.
2
�μ

νρ = ∇̄ν∇̄ρ

2
ζμ − ∇̄σ

1
ζμ∇̄ν∇̄ρ

1
ζ σ , (4.100) 

which agrees with the result (4.98) for

.
2
ζμ = 2

ξμ + 1

2

1
ξσ ∇̄σ

1
ξμ . (4.101) 

Also one easily checks that the curvature and torsion vanish at any perturbation
order. This type of perturbative expansion is used, for example, to determine the
propagation of gravitational waves [20] and the post-Newtonian limit [21, 22]. 

Finally, we take a look at the form of the perturbations in the metric teleparallel 
case, which means that the nonmetricity must vanish at all perturbation orders. This 
holds in particular for the background, 

.0 = Q̄μνρ = ∇̄μḡνρ , (4.102) 

and so raising and lowering indices of the perturbations with the metric commutes
with the covariant derivative, which greatly simplifies the calculations. We make use

of this fact for calculating the conditions on the connection perturbation .
k

λμ
ν which 

we need to satisfy in order to obtain vanishing nonmetricity. At the linear order, the 
perturbation of the nonmetricity is given by 

.
1

Qμνρ = ∇̄μ

(
1
gνρ − 2

1
λ(νρ)

)
, (4.103)
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and so it vanishes if we fix the symmetric part of the connection perturbation by the 
condition 

.2
1
λ(μν) = 1

gμν . (4.104) 

One could naively conclude that the same formula holds identically also for higher
orders, replacing the first perturbation order with an arbitrary order k. However, this
is not the case, as follows from a perturbative expansion of the nonmetricity (4.4) ,
whose higher than linear orders contain products of the lower order perturbations of
the metric and the connection. For example, for the second order we have

.

2
Qμνρ = ∇̄μ

(
2
gνρ − 2

2
λ(νρ)

)
− 2∇μ

1
λσ

(ν

(
1
gρ)σ − 1

λρ)σ

)

= ∇̄μ

(
2
gνρ − 2

2
λ(νρ) − ḡσω

1
λσ

ν

1
λω

ρ

)
,

(4.105) 

after substituting .
1
gνρ from the first order result, so that we can easily read off the 

condition for the second order perturbation. Following the same procedure also for 
higher order perturbations, one arrives at the general formula 

.2
k

λ(μν) = k
gμν − ḡρσ

k−1∑

j=1

j

λρ
μ

k−j

λσ
ν . (4.106) 

We see that the condition of vanishing nonmetricity links the symmetric part of
the connection perturbation to the perturbation of the metric, and so the latter can

always be expressed in terms of the former, leaving .
k

λμν as the only independent 
perturbation variable. Like in the case of symmetric teleparallel gravity, this 
perturbative expansion is used for the calculation of gravitational waves [23] and the 
post-Newtonian limit [24], but also in the cosmological perturbation theory around 
flat [25] and general [26] cosmological backgrounds. 

In order to get further acquainted with the perturbations theory formalism, that is 
presented in this section please solve the following exercise step by step. 

•? Exercise 
4.4. Calculate the perturbations of the curvature, torsion and nonmetricity tensors up to 

the second order for an arbitrary perturbation around a flat connection and metric. What 
are the conditions arising on the perturbations if one demands that the perturbed connection 
remains flat at any order? Which further conditions arise if one also demands that either 
torsion or nonmetricity vanish?
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4.4 Teleparallel Gravity Theories 

In this final section, we discuss a few selected classes of teleparallel gravity theories, 
their actions and field equations. These theories constitute modifications of general 
relativity, which depart from a reformulation of the Einstein-Hilbert action in 
terms of teleparallel geometries, known as the teleparallel equivalent of general 
relativity, which we discuss in Sect. 4.4.1. A simple modification is then obtained 
by replacing the Lagrangian of these theories by a free function thereof, as we show 
in Sect. 4.4.2. Another modification arises by considering the most general action 
which is quadratic in torsion and nonmetricity, and which we show in Sect. 4.4.3. 
Moreover, modified theories can be obtained by considering a scalar field as another 
dynamical variable in addition to the metric and the flat connection; we discuss 
theories of this type in Sect. 4.4.4, and see how a particular subclass of them is 
connected to a previously discussed class of theories in Sect. 4.4.5. 

4.4.1 The Teleparallel Equivalents of General Relativity 

In the previous sections we have discussed the general form of the action and 
field equations for teleparallel gravity theories, but we have not yet considered any 
particular theories. As a starting point for the construction of modified teleparallel 
gravity theories, we now pose the question how the well-known general relativity 
action and field equations can be cast into the teleparallel framework. The crucial 
observation to answer this question is the fact that the decomposition (4.2) of the
independent connection with respect to the Levi-Civita connection of the metric
induces a related decomposition of the curvature given by

.Rμ
νρσ = ◦

Rμ
νρσ + ◦∇ρMμ

νσ − ◦∇σ Mμ
νρ +Mμ

τρMτ
νσ −Mμ

τσ Mτ
νρ . (4.107) 

Keeping in mind that the curvature (4.10) of the teleparallel connection is imposed
to vanish, one can solve for the curvature tensor of the Levi-Civita connection, and
finds

.
◦
Rμ

νρσ = − ◦∇ρMμ
νσ + ◦∇σ Mμ

νρ − Mμ
τρMτ

νσ + Mμ
τσ Mτ

νρ . (4.108) 

This allows us to replace the Ricci scalar . 
◦
R in the Einstein-Hilbert action 

.Sg = 1

2κ2

∫

M

◦
R

√−gd4x (4.109) 

by

.
◦
R = −G + B , (4.110)
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where we defined the terms 

.G = 2Mμ
τ [μMτν

ν] , B = 2
◦∇μM [νμ]

ν . (4.111) 

One can see that B becomes a boundary term in the action, and therefore does
not contribute to the field equations. Omitting this term from the action, one thus
obtains [6] 

.Sg = − 1

2κ2

∫

M

G
√−gd4x . (4.112) 

This is the action of the general teleparallel equivalent of general relativity
(GTEGR). To study the nature of this equivalence, we calculate the gravitational
field equations. Note that the variation of the distortion tensor is given by

. δMμ
νρ = δ�μ

νρ − δ
◦
�μ

νρ = δ�μ
νρ − 1

2
gμσ

( ◦∇νδgσρ + ◦∇ρδgνσ − ◦∇σ δgνρ

)
,

(4.113) 

and so the variation of the gravity scalar becomes

.δG = Uμνδgμν + V ρμν
◦∇ρδgμν + Zμ

νρδ�μ
νρ , (4.114) 

where we have introduced the abbreviations

.Uμν = Mρσ(μMσ
ν)

ρ − Mρ(μν)Mσ
ρσ . (4.115a) 

V ρμν = Mρ(μν) − Mσ(μ
σ gν)ρ − M [ρσ ]

σ gμν
. (4.115b) 

Zμ
νρ = Mνσ

σ δρ
μ + Mσ

μσ gνρ − Mνρ
μ − Mρ

μ
ν . (4.115c) 

This allows us to calculate the variation of the action (4.112) and perform integration
by parts in order to eliminate the derivatives acting on the metric perturbation .δgμν . 
The resulting variation then takes the form (4.9) with

. 

Wμν = 1

κ2

(
Uμν − ◦∇ρV ρ

μν + 1

2
Ggμν

)

= 1

κ2

[
◦∇(μMρ

ν)ρ − ◦∇ρMρ
(μν) + Mρ

σ(μMσ
ν)ρ − Mρ

σρMσ
(μν)

− 1

2

( ◦∇ρMσρ
σ − ◦∇ρMρσ

σ + MρσωMωρσ − Mρ
ωρMωσ

σ

)
gμν

]

(4.116)
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and 

.Yμ
νρ = 1

2κ2 Zμ
νρ = 1

2κ2 (Mνσ
σ δρ

μ + Mσ
μσ gνρ − Mνρ

μ − Mρ
μ

ν) . (4.117) 

By comparing with the relation (4.108) , one finds that the first equation can be
rewritten as

.Wμν = 1

κ2

(
◦
Rμν − 1

2

◦
Rgμν

)
, (4.118) 

and so the metric equation resembles Einstein’s equation

.
◦
Rμν − 1

2

◦
Rgμν = κ2�μν . (4.119) 

We also need to consider the connection field equation (4.28) , which becomes

. 
1

κ2

( ◦∇[μMνρ
ρ] + ◦∇[νMρμ

ρ] + Mν
ρ[μMρσ

σ ] + Mρ
σ [νMσμ

ρ])

= ∇τHμ
ντ − Mω

τωHμ
ντ . (4.120) 

Once again making use of the relation (4.108) , the term in brackets becomes

.
◦
Rνρ

μρ + ◦
Rρμ

νρ = ◦
Rν

μ − ◦
Rμ

ν = 0 , (4.121) 

which vanishes, since the Ricci tensor of the Levi-Civita connection is symmetric.
Hence, one is left with the equation

.∇τHμ
ντ − Mω

τωHμ
ντ = 0 (4.122) 

for the hypermomentum, which must be satisfied for any matter which is compatible
with the gravitational action (4.112) . Note that the connection does not appear
anywhere on the gravitational side of the field equations, due to the fact that it
enters into the action only through a total derivative term. For consistency, one
conventionally assumes that it does not couple to the matter fields, so that the
hypermomentum vanishes, and so the constraint (4.122) is satisfied identically,
see also the discussion in the context of Poincaré gauge theory in Chap. 3 around 
Eq. (3.139). The only non-trivial field equation is then Einstein’s equation (4.119) ,
and so the field equations of GTEGR are equivalent to those of general relativity,
hence justifying the name teleparallel equivalent.

Since the connection only has a spurious appearance in the action (4.112), one
may expect that it will not enter the field equations also in the symmetric and
metric classes of teleparallel gravity theories. This is not obvious from the Lagrange
multiplier approach of deriving the field equations, since the Lagrange multiplier
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terms (4.32) and (4.37) are not total derivatives, and so the connection enters
the field equations obtained by variation with respect to the Lagrange multipliers.
Nevertheless, keeping in mind that this approach yields the same field equations
as the approach of restricted variation, and that in the latter the variation of the
connection appears only through a total derivative in the action, one may still expect
to obtain an equivalent of general relativity. This is particularly easy to see in the
case of symmetric teleparallel gravity, since its metric field equation (4.14) takes
the same form as in the case of general teleparallel gravity, and hence once again
resembles the Einstein equations (4.119), irrespective of the constraint . T μ

νρ = 0
imposed on the connection. For the remaining field equation (4.36) , it is helpful to
recall that for the variation (4.117) the left hand side of the field equation (4.28) 
vanishes identically, and hence does the left hand side of the equivalent field
equation (4.25) . In the absence of torsion, the torsion term vanishes, and one is
left with

.∇ρỸμ
νρ = 0 . (4.123) 

Hence, also the left hand side of the symmetric teleparallel field equation (4.36) 
vanishes identically, leaving only the hypermomentum constraint

.∇ν∇ρH̃μ
νρ = 0 , (4.124) 

which can be satisfied by demanding vanishing hypermomentum.
A similar argument holds in the case of metric teleparallel gravity. Once again, 

one can make use of the fact that the left hand side of the field equation (4.25) 
vanishes identically for the variation (4.117) . In the absence of nonmetricity, the
covariant derivative (4.26) of the density factor .

√−g vanishes, and so this factor 
can be canceled from the equations. One is then left with the equation 

.∇τ Yμ
ντ − T ω

ωτYμ
ντ = 0 . (4.125) 

Using this result, the metric teleparallel field equation (4.41) reduces to

.Wμν = �μν − ∇ρHμνρ + HμνρT τ
τρ . (4.126) 

Demanding once again vanishing hypermomentum, one therefore obtains Einstein’s
equation (4.119) also in this case.

In order to gain more insight into the underlying structure of the different 
teleparallel equivalents of general relativity, it is helpful to decompose the gravity 
scalar G and the boundary term B into the individual contributions from the torsion 
and the nonmetricity. Using the connection decomposition (4.2), the contortion (4.5)
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and the disformation (4.6) , one finds

. G = 1

4
QμνρQμνρ − 1

2
QμνρQρμν − 1

4
Qρμ

μQρν
ν + 1

2
Qμ

μρQρν
ν

+ 1

4
T μνρTμνρ + 1

2
T μνρTρνμ−T μ

μρTν
νρ +T μνρQνρμ−T μ

ρμQρν
ν +T μ

ρμQνρ
ν ,

(4.127) 

as well as

.B = ◦∇μ(2Tν
νμ + Qν

νμ − Qμν
ν) . (4.128) 

•? Exercise 
4.5. Make sure you understand the expansions of G and B into torsion and non-metricity 

tensors. Reproduce the above expressions. 

If either torsion or nonmetricity vanish, these expressions simplify. In particular, 
the gravity scalar (4.127) reduces to the nonmetricity scalar

.

Q = 1

2
QρμνP

ρμν

= 1

4
QμνρQμνρ − 1

2
QμνρQρμν − 1

4
Qρμ

μQρν
ν + 1

2
Qμ

μρQρν
ν

(4.129) 

or the torsion scalar

.

T = 1

2
T ρ

μνSρ
μν

= 1

4
T μνρTμνρ + 1

2
T μνρTρνμ − T μ

μρTν
νρ ,

(4.130) 

respectively, where we have introduced the nonmetricity conjugate

.P ρμν = Lρμν − 1

2
gμν(Qρσ

σ − Qσ
σρ) + 1

2
gρ(μQν)σ

σ (4.131) 

and the superpotential

.Sρ
μν = Kμν

ρ − δμ
ρ Tσ

σν + δν
ρTσ

σμ . (4.132)



4 Teleparallel Gravity 175

In terms of these scalars, the action of the symmetric teleparallel equivalent of 
general relativity (STEGR) becomes [5] 

.Sg = − 1

2κ2

∫

M

Q
√−gd4x , (4.133) 

while for the metric teleparallel equivalent of general relativity (MTEGR2 ) one 
has [28] 

.Sg = − 1

2κ2

∫

M

T
√−gd4x . (4.134) 

Within their respective class of teleparallel gravity theories, these actions yield
the same metric field equation as general relativity, and are thus common starting
points for the construction of modified gravity theories, as we will see in the
following sections. Note, however, that the construction of teleparallel equivalent
theories is not confined to general relativity; in fact, the same procedure of replacing
the Riemann tensor of the Levi-Civita connection using the relation (4.108) , and
possibly omitting boundary terms, can be applied to the action of any gravity theory
whose action uses the metric as a fundamental variable [27]. 

4.4.2 The f (G)  Classes of Modified Theories 

After discussing in the previous section a number of teleparallel gravity theories, 
whose metric field equation reproduces Einstein’s field equation of general relativity 
for matter without hypermomentum, we now turn our focus towards modifications 
of these gravity theories. For the Einstein-Hilbert action (4.109) , a well-known and
thoroughly studied class of gravity theories is obtained by replacing the Ricci scalar
. 
◦
R by .f (

◦
R), where f is an arbitrary real function of one variable, which is chosen 

such that the phenomenology of the resulting theory matches with observations, e.g., 
in cosmology. The same procedure can also be applied to the teleparallel equivalent 
theories [29]. Starting with the GTEGR action (4.112) , one thus obtains the action

.Sg = − 1

2κ2

∫

M

f (G)
√−gd4x . (4.135) 

In order to derive the field equations, one proceeds as shown in the previous section,
by variation of the action and integration by parts, so that the gravitational part .Sg

2 In the literature, the abbreviation TEGR is more common, since it was developed prior to the other 
equivalent theories. Another proposed nomenclature is “antisymmetric teleparallel equivalent of 
general relativity” (ATEGR) [27], since the distortion tensor becomes antisymmetric in its first two 
indices. However, the term “metric” or “metric-compatible” is more abundant in the contemporary 
literature on teleparallel gravity to denote the case of vanishing nonmetricity. 
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takes the form (4.9) , with

.Wμν = 1

κ2

[
f ′Uμν − ◦∇ρ(f ′V ρ

μν) + 1

2
fgμν

]
(4.136) 

and

.Yμ
νρ = 1

2κ2 f ′Zμ
νρ . (4.137) 

where we wrote .f, f ′, . . . as a shorthand for .f (G), f ′(G), . . ., and used the 
abbreviations (4.115) we introduced for the variation of the gravity scalar G. Hence,
it follows that the gravitational field equations are given by the metric equation

.f ′Uμν − ◦∇ρ(f ′V ρ
μν) + 1

2
fgμν = κ2�μν (4.138) 

and the connection equation

.∇ρ(f ′Zμ
νρ) − f ′Mω

ρωZμ
νρ = 2κ2(∇ρHμ

νρ − Mω
ρωHμ

νρ) . (4.139) 

These equations can be written more explicitly as follows. First, recall that

.Uμν − ◦∇ρ(V ρ
μν) + 1

2
Ggμν = ◦

Rμν − 1

2

◦
Rgμν (4.140) 

is the left hand side of the GTEGR field equation. Using this fact, the metric field
equation (4.138) becomes

.f ′
(

◦
Rμν − 1

2

◦
Rgμν

)
− V ρ

μν

◦∇ρf ′ + 1

2
(f − f ′G)gμν = κ2�μν . (4.141) 

Finally, substituting .V ρ
μν using the variation (4.115) , one obtains

. f ′
(

◦
Rμν − 1

2

◦
Rgμν

)
− Mρ

(μν)

◦∇ρf ′ + ◦∇(μf ′Mσ
ν)σ + M [ρσ ]

σ gμν

◦∇ρf ′

+ 1

2
(f − f ′G)gμν = κ2�μν . (4.142) 

Similarly, one can use the fact that the left hand side of the GTEGR connection
equation vanishes, and hence

.∇ρ(Zμ
νρ) − Mω

ρωZμ
νρ = 0 , (4.143)



4 Teleparallel Gravity 177

to write the connection field equation as 

.Zμ
νρ∇ρf ′ = 2κ2(∇ρHμ

νρ − Mω
ρωHμ

νρ) , (4.144) 

and substituting the variation (4.115) ,

. Mνρ
ρ∇μf ′ + Mσ

μσ gνρ∇ρf ′ − Mνρ
μ∇ρf ′ − Mρ

μ
ν∇ρf ′

= 2κ2(∇ρHμ
νρ − Mω

ρωHμ
νρ) . (4.145) 

The most important difference which distinguishes the .f (G) class of theories from 
GTEGR is the fact that for .f ′′ 	= 0 the connection contribution to the action is no 
longer a total derivative, and so the connection remains as a dynamical field in the 
field equations, which now also contain a non-trivial connection field equation. It 
follows in particular that these field equations are not equivalent to those of . f (

◦
R)

gravity, since the latter has the metric as its only dynamical field, and its field 
equations are of fourth derivative order3 . In contrast, the field equations of . f (G)

gravity are of second derivative order. 
In analogy to the GTEGR action (4.112) , which is based on the general

teleparallel geometry containing both torsion and nonmetricity, also the teleparallel
equivalent theories based on more restricted geometries can be generalized by intro-
ducing a free function into their respective actions (4.133) and (4.134) . Equivalently,
one can take the action (4.135) and impose the vanishing torsion or nonmetricity
either by introducing Lagrange multipliers or by imposing the constraint alongside
a restricted variation. It turns out that the resulting field equations can be simplified,
as we will see in the following. We start with the symmetric teleparallel gravity
action [30] 

.Sg = − 1

2κ2

∫

M

f (Q)
√−gd4x . (4.146) 

The variation of this action is still given by the expressions (4.136) and (4.137) ,
but these simplify due to the vanishing torsion, and can be expressed in terms of the
nonmetricity. Also the field equation simplify, which one can see as follows, starting
with the connection equation. From the general form (4.36) follows that only the
symmetric part .Ỹμ

(νρ) contributes, since the covariant derivatives commute in the 
absence of curvature and torsion. Using (4.137) , this means that only the symmetric
part .Zμ

(νρ) contributes, which is given by 

.Zμ
(νρ) = Qμ

νρ − 1

2
gνρQμσ

σ + 1

2
δ(ν
μ Qρ)σ

σ −Qσ
σ(νδρ)

μ = −2P (νρ)
μ . (4.147)

3 They can be reduced to second order by introducing an auxiliary scalar field. 
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The connection equation therefore becomes 

. − ∇ν∇ρ(f ′P̃ νρ
μ) = κ2∇ν∇ρH̃μ

νρ , (4.148) 

where .P̃ νρ
μ = √−gP νρ

μ, and we omitted the symmetrization brackets around the 
indices, which are redundant due to the contraction with the commuting derivatives. 
Similarly, we can also simplify the metric field equation, which takes the same 
form (4.138) , and can equivalently be written as

.f ′Uμ
ν −

◦∇ρ(
√−gf ′V ρμ

ν)√−g
+ 1

2
f δμ

ν = κ2�μ
ν , (4.149) 

using the fact that the Levi-Civita connection is metric compatible, so that we can
raise and lower indices and introduce the density factor .

√−g inside the derivative. 
Changing this covariant derivative to the independent connection, one has 

. 
◦∇ρ(

√−gf ′V ρμ
ν) = ∇ρ(

√−gf ′V ρμ
ν)

+ √−gf ′(Lσ
σρV ρμ

ν − Lρ
σρV σμ

ν − Lμ
σρV ρσ

ν + Lσ
νρV ρμ

σ ) . (4.150) 

Calculating the variation terms

.Uμν = 1

4
Qμρσ Qν

ρσ + 1

4
(Qρμν − Q(μν)ρ)Qρσ

σ − QρσμQ[ρσ ]ν (4.151) 

and

. V ρμν = 1

2
Qρμν − Q(μν)ρ − 1

2
gμν(Qρσ

σ − Qσ
σρ) + 1

2
gρ(μQν)σ

σ = P ρμν ,

(4.152) 
one finds that they combine into

. Uμ
ν − Lσ

σρV ρμ
ν + Lρ

σρV σμ
ν + Lμ

σρV ρσ
ν − Lσ

νρV ρμ
σ

= 1

2
(Qμ[ρ

ρQνσ
σ ] − Q(ν

μρQρ)σ
ρ + Qρμσ Qνρσ ) = −1

2
P μρσ Qνρσ . (4.153) 

Combining these results, the metric field equation finally becomes

. − ∇ρ(
√−gf ′P ρμ

ν)√−g
− f ′

2
P μρσ Qνρσ + 1

2
f δμ

ν = κ2�μ
ν . (4.154) 

Note, however, that this form changes if one raises or lowers indices, which appear
also under the metric-incompatible covariant derivative . ∇ρ . 

Finally, we also take a closer look at the metric teleparallel case, by impos-
ing vanishing nonmetricity. Under this restriction, the general action (4.135)
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becomes [31–33] 

.Sg = − 1

2κ2

∫

M

f (T )
√−gd4x . (4.155) 

In this case we need to consider only the single field equation (4.41) , whose left
hand side now takes the form

. Wμν − ∇ρYμνρ + YμνρT τ
τρ

= 1

κ2

[
f ′Uμν − ◦∇ρ(f ′V ρμν) + 1

2
fgμν − 1

2
∇ρ(f ′Zμνρ) + 1

2
f ′ZμνρT τ

τρ

]
.

(4.156) 

using the variation expressions (4.136) and (4.137) . In order to simplify this
expression, we transform the covariant derivative with respect to the independent
connection to that of the Levi-Civita connection, and find

. ∇ρ(f ′Zμνρ) − f ′ZμνρT τ
τρ = ◦∇ρ(f ′Zμνρ) + f ′(Kμ

σρZσνρ + Kν
σρZμσρ) ,

(4.157) 

where the trace of the torsion tensor cancels with a trace of the contortion tensor.
Now we can combine the two covariant derivatives, and evaluate

.V ρμν + 1

2
Zμνρ = 2Tσ

σ [ρgν]μ + T [νρ]μ − 1

2
T μνρ = −Sμνρ . (4.158) 

We are left with the terms

.Uμν − 1

2
(Kμ

σρZσνρ + Kν
σρZμσρ) = 2Kνρ[σ Kρσ

μ] = SρσνKρσ
μ . (4.159) 

Combining all terms and lowering indices, which commutes with all covariant
derivatives since these are now metric-compatible, we can write the field equation
as

. 
◦∇ρ(f ′Sμν

ρ) + f ′Sρσ
νKρσμ + 1

2
fgμν = κ2(�μν − ∇ρHμν

ρ + Hμν
ρT τ

τρ) .

(4.160)

Also this equation can be brought into various other forms by using the identities
which hold for the contortion and the torsion.
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4.4.3 The General Quadratic Lagrangians 

The GTEGR action (4.112) has the appealing property that the gravity
scalar (4.111) , unlike the Ricci scalar, is quadratic in first order derivatives of
the dynamical fields, and hence more reminiscent of the kinetic energy of a gauge
field. This invites for another class of modified teleparallel gravity theories, by
considering an action which is an arbitrary linear combination of all possible
scalars which can be obtained by contracting the product of the distortion tensor
.Mμ

νρ with itself. One easily checks that there are 11 possible terms: five terms arise 
from contracting .Mμ

νρ with a second copy carrying the same indices in an arbitrary 
permutation, and six terms arising from contracting two arbitrary traces of the 
distortion tensor with each other, where in both cases terms which are distinguished 
only by the order of the factors are counted only once, since they are identical. This 
gives rise to the generalized gravity scalar [6] 

.

G = Mμνρ(k1Mμνρ + k2Mνρμ + k3Mμρν + k4Mρνμ + k5Mνμρ)

+ k6Mρμ
μMρν

ν + k7Mμρ
μMνρ

ν + k8M
μ

μρMν
νρ

+ k9Mμρ
μMν

νρ + k10M
μ

μρMρν
ν + k11Mρμ

μMνρ
ν

(4.161) 

with arbitrary constants .k1, . . . , k11. Equivalently, one could also start from the 
expression (4.127) , and consider the most general scalar which is quadratic in the
torsion and nonmetricity tensors. Again one finds 11 possible terms, so that their
most general linear combination is of the form

.

G = a1T
μνρTμνρ + a2T

μνρTρνμ + a3T
μ

μρTν
νρ

− b1Q
μνρTρνμ − b2Q

ρμ
μT ν

νρ − b3Qμ
μρT ν

νρ

+ c1Q
μνρQμνρ + c2Q

μνρQρμν + c3Q
ρμ

μQρν
ν

+ c4Q
μ

μρQν
νρ + c5Q

μ
μρQρν

ν ,

(4.162) 

where we introduced the arbitrary constants .a1, . . . , a3, b1, . . . , b3, c1, . . . , c5. 
Demanding that both expressions agree, one easily checks that these two sets of 
constants are related to each other by 

. k1 = 2a1 − b1 + 2c1 , k2 = −2a2 + b1 + 2c2 , k9 = −2a3 + 2b2 − b3 + 2c5 ,

k4 = a2 + c2 , k5 = a2 − b1 + 2c1 , k6 = c4 , k7 = a3 + b3 + c4 ,

(4.163)

k8 = a3 − 2b2 + 4c3 , k3 = −2a1 + b1 + c2 ,

k10 = −b3 + 2c5 , k11 = b3 + 2c4 .
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Further, choosing the values of these constants to be 

. k11 = −k2 = 1 , k1 = k3 = k4 = k5 = k6 = k7 = k8 = k9 = k10 = 0 ,

(4.164) 

one finds that the scalar . G reduces to G. Hence, one may expect that the class of 
modified gravity theories defined by the action 

.Sg = − 1

2κ2

∫

M

G
√−gd4x (4.165) 

has a well-defined limit towards GTEGR, which is achieved if the constant
parameters in the action take the aforementioned values. In order to derive the
field equations, one can proceed in full analogy to the GTEGR field equations we
discussed before. First, it is helpful to calculate the variation of the scalar (4.161) ,
and write it in the form

.δG = Uμνδgμν +Vρμν
◦∇ρδgμν +Zμ

νρδ�μ
νρ . (4.166) 

Here we have made use of the abbreviations

. Uμν = k1(M
μρσ Mν

ρσ − Mρμ
σ Mρ

νσ − Mρσ
μMρσμ) − k2Mρ

σ(μMσ
ν)ρ

+ k3(M
μρσ Mν

σρ − 2Mρσ(μMρ
ν)σ ) − k4M

ρμ
σ Mσν

ρ − k5M
ρσμMσρ

ν

+ k6M
μρ

ρMνσ
σ − k7M

ρμ
ρMσν

σ − k8Mρ
ρμMσ

σν − k9Mρ
ρ(μMσ

ν)σ

− (2k6Mρσ
σ + k11Mσρ

σ + k10M
σ

σρ)Mρ(μν) , (4.167a) 

as well as

. Vρμν = −2k6g
ρ(μMν)σ

σ − k11g
ρ(μMσ

ν)σ − k10Mσ
σ(μgν)ρ

+ 1

2
gμν

[
(2k6 −k10 −k11)M

ρσ
σ + (k11 −2k7 −k9)M

σρ
σ + (k10 −2k8 −k9)Mσ

σρ
]

+ (k4 − k5 − k1 − k3)M
(μν)ρ + (k5 − k4 − k1 − k3)M

(μ|ρ|ν)

+ (k1 − k2 + k3 − k4 − k5)M
ρ(μν) (4.167b) 

and

. Zμ
νρ = 2k1Mμ

νρ + k2(M
νρ

μ + Mρ
μ

ν) + 2k3Mμ
ρν + 2k4M

ρν
μ + 2k5M

ν
μ

ρ

+ 2k6Mμσ
σ gνρ + 2k7M

σν
σ δρ

μ + 2k8Mσ
σρδν

μ + k9(Mσ
ρσ δν

μ + Mσ
σνδρ

μ)

+ k10(M
ρσ

σ δν
μ + Mσ

σμgνρ) + k11(M
νσ

σ δρ
μ + Mσ

μσ gνρ) . (4.167c)
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By inserting the variation (4.166) into the variation of the action (4.165) and
integration by parts, one obtains the form (4.9) , with

.Wμν = 1

κ2

(
Uμν − ◦∇ρVρ

μν + 1

2
Ggμν

)
(4.168) 

and

.Yμ
νρ = 1

2κ2Zμ
νρ . (4.169) 

Hence, by comparing with the corresponding GTEGR expressions (4.116) 
and (4.117) , we see that these have the same form, and one simply replaces the
terms derived by variation of G with those obtained from . G in its place. One 
therefore finds the metric field equation 

.Uμν − ◦∇ρ(Vρ
μν) + 1

2
Ggμν = κ2�μν , (4.170) 

as well as the connection field equation

.∇τZμ
ντ − Mω

τωZμ
ντ = 2κ2(∇τHμ

ντ − Mω
τωHμ

ντ ) , (4.171) 

with the abbreviations (4.167) .
A more comprehensible set of field equations is obtained for the more restricted 

geometries, in which we impose either vanishing torsion or vanishing nonmetricity. 
This can most easily be seen from the expression (4.162) , which shows that
numerous terms vanish identically in either of these two cases. We first consider
the symmetric teleparallel case of vanishing torsion. In this case, . G reduces to the 
generalized nonmetricity scalar [30] 

.

Q = 1

2
QρμνPρμν

= c1Q
μνρQμνρ + c2Q

μνρQρμν + c3Q
ρμ

μQρν
ν

+ c4Q
μ

μρQν
νρ + c5Q

μ
μρQρν

ν ,

(4.172) 

and only the five constant parameters .c1, . . . , c5 remain present in the action. In 
place of the nonmetricity conjugate (4.131) we now have the generalized expression

. Pρμν = 2c1Q
ρμν + 2c2Q

(μν)ρ + 2c3g
μνQρσ

σ

+ 2c4Qσ
σ(μgν)ρ + c5(g

μνQσ
σρ + gρ(μQν)σ

σ ) . (4.173)
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For the corresponding class of gravity theories depending on these parameters, 
whose action reads 

.Sg = − 1

2κ2

∫

M

Q
√−gd4x , (4.174) 

the term “Newer General Relativity” has been coined. Its field equations can be
obtained in great analogy to the other symmetric teleparallel gravity theories we
have encountered before. First, we derive the connection field equation (4.36) ,
and use the fact that only the symmetric part .Yμ

(νρ) contributes. Using the 
variation (4.169) , we thus calculate

. Zμ
(νρ) = −2c2Qμ

νρ − 2(2c1 + c2)Q
(νρ)

μ − 2gνρ(2c4Q
σ

σμ + c5Qμσ
σ )

− 4(c4 + c5)Qσ
σ(νδρ)

μ − 2(4c3 + c5)δ
(ν
μ Qρ)σ

σ = −2P(νρ)
μ , (4.175) 

which generalizes the similar relation (4.147) . Hence, we find that the connection
field equation can be written in the simple form

. − ∇ν∇ρ(P̃νρ
μ) = κ2∇ν∇ρH̃μ

νρ , (4.176) 

using the tensor density .P̃νρ
μ built from the generalized nonmetricity conju-

gate (4.173) . We then proceed with the metric equation, which still takes the general
form (4.170) also in the symmetric teleparallel case, but can be simplified as follows.
Raising one index and introducing a density factor, it can equivalently be written as

.Uμ
ν −

◦∇ρ(
√−gVρμ

ν)√−g
+ 1

2
Gδμ

ν = κ2�μ
ν . (4.177) 

The covariant derivative with respect to the Levi-Civita connection can be trans-
formed to the independent connection, by using the relation

. 
◦∇ρ(

√−gVρμ
ν) = ∇ρ(

√−gVρμ
ν)

+ √−g(Lσ
σρVρμ

ν − Lρ
σρVσμ

ν − Lμ
σρVρσ

ν + Lσ
νρVρμ

σ ) . (4.178) 

To proceed further, we need the terms

. Uμν=(2c1Q
ρσμ+c2Q

σρμ)Qρσ
ν−(2c1+c2)Q

ρσ(μQν)
ρσ −(c1+c2)Q

μρσ Qν
ρσ

− c4Qρ
ρ(μQν)σ

σ + 2c4Qρ
ρμQσ

σν −
(
c3 + c5

2

)
Qμρ

ρQνσ
σ

+ (2c4Q
σ

σρ + c5Qρσ
σ )

(
1

2
Qρμν − Q(μν)ρ

)
(4.179)
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and 

. Vρμν = 2c1Q
ρμν + 2c2Q

(μν)ρ + 2c3g
μνQρσ

σ

+ 2c4Qσ
σ(μgν)ρ + c5(g

μνQσ
σρ + gρ(μQν)σ

σ ) , (4.180) 

which are obtained from the more general expressions (4.167) by imposing vanish-
ing torsion. A tedious, but straightforward calculation shows that the resulting terms
can be combined to yield

. Uμ
ν − Lσ

σρVρμ
ν + Lρ

σρVσμ
ν + Lμ

σρVρσ
ν − Lσ

νρVρμ
σ

= −(c1Q
μρσ + c2Q

ρσμ)Qνρσ − c3Q
μρ

ρQνσ
σ − c4Q

ρ
ρσ Qν

μσ − c5Q(ν
μρQρ)σ

σ

= −1

2
Pμρσ Qνρσ . (4.181) 

This finally yields the metric field equation

. − ∇ρ(
√−gPρμ

ν)√−g
− 1

2
Pμρσ Qνρσ + 1

2
Qδμ

ν = κ2�μ
ν (4.182) 

for the Newer General Relativity class of gravity theories, where we now also used
the relation .G = Q in the absence of torsion. Note that a special case is obtained 
when the parameters take the values (4.164) , for which we have

.c1 = 1

4
, c2 = −1

2
, c3 = −1

4
, c4 = 0 , c5 = 1

2
. (4.183) 

In this case we find .Q = Q and .Pμνρ = P μνρ , so that the theory reduces to STEGR. 
Finally, also in the metric teleparallel geometry we can find a general class 

of gravity theories, whose action is now quadratic in the torsion tensor. By 
imposing vanishing nonmetricity, the scalar (4.161) becomes the generalized torsion
scalar [34] (see also Chap. 3 around Eq. (3.166) ),

.
T = 1

2
T ρ

μνSρ
μν

= a1T
μνρTμνρ + a2T

μνρTρνμ + a3T
μ

μρTν
νρ ,

(4.184) 

where the generalized superpotential is now given by 

.Sρ
μν = 2a1Tρ

μν + 2a2T
[νμ]

ρ + 2a3Tσ
σ [νδμ]

ρ . (4.185) 

The resulting class of gravity theories, which is now defined by the action 

.Sg = − 1

2κ2

∫

M

T
√−gd4x , (4.186)
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is known as “New General Relativity”4 . In this case, the left hand side of the field 
equations (4.41) becomes

. Wμν − ∇ρYμνρ + YμνρT τ
τρ

= 1

κ2

[
Uμν − ◦∇ρVρμν + 1

2
Ggμν − 1

2
∇ρZμνρ + 1

2
ZμνρT τ

τρ

]
. (4.187) 

with the help of the formulas (4.168) and (4.169) . In order to combine the
two derivative terms, we convert the covariant derivative .∇ρ with respect to the 

independent connection to a Levi-Civita covariant derivative . 
◦∇ρ , using the relation 

.∇ρZμνρ −ZμνρT τ
τρ = ◦∇ρZμνρ + Kμ

σρZσνρ + Kν
σρZμσρ . (4.188) 

Now the two terms under the derivative combine into

.Vρμν + 1

2
Zμνρ = −2a1T

μνρ −2a2T
[ρν]μ −2a3Tσ

σ [ρgν]μ = −Sμνρ . (4.189) 

The remaining terms take, once again, a very simple form, which is given by

. Uμν − 1

2
(Kμ

σρZσνρ + Kν
σρZμσρ)

= [(a2 − 2a1)K
ρσν + (3a2 − 2a1)K

νρσ ]Kρσ
μ + a3Kρσ

σ Kνρμ = SρσνKρσ
μ .

(4.190) 

Hence, the full field equations of New General Relativity become

.
◦∇ρ(Sμν

ρ)+Sρσ
νKρσμ+ 1

2
Tgμν = κ2(�μν −∇ρHμν

ρ +Hμν
ρT τ

τρ) . (4.191) 

Also for this class of theories a special case is obtained by choosing the parameter
values (4.164) , which now implies

.a1 = 1

4
, a2 = 1

2
, a3 = −1 . (4.192) 

In this case, the theory reduces to MTEGR, with .T = T and .Sρ
μν = Sρ

μν .

4 This term is also, more commonly, used for a particular subclass of theories, in which . 2a1 +a2 =
0 and .a3 = −1, so that there is only one free parameter besides the gravitational constant . κ [34]. 
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4.4.4 Scalar-Teleparallel Theories 

While the classes of modified teleparallel gravity theories we considered so far were 
constructed purely from the metric and the flat affine connection as fundamental 
fields, we now consider a class of theories in which in addition a scalar field 
is introduced as a fundamental field variable. Also, this class of theories can be 
motivated by analogy with a scalar-tensor modification of the Einstein-Hilbert 
action (4.109) of general relativity, which takes the general form

.Sg = 1

2κ2

∫

M

[
A(φ)

◦
R − B(φ)gμν

◦∇μφ
◦∇νφ − 2κ2V(φ)

]√−gd4x , (4.193) 

where .A,B,V are free functions of the scalar field . φ. Here we work in the so-
called Jordan frame, which means that we assume no direct coupling between the 
scalar field and any matter fields. Recalling that the Ricci scalar . 

◦
R can be written 

in the form (4.110), one may expect that replacing . 
◦
R by .−G + B one obtains a 

teleparallel equivalent of the scalar-curvature theory, while using only .−G instead 
leads to an inequivalent scalar-teleparallel theory, since the omitted term is not a 
boundary term due to the non-minimal coupling term .A(φ). One can cover both 
cases by considering the action 

. Sg = 1

2κ2

∫

M

[
−A(φ)G − B(φ)gμν

◦∇μφ
◦∇νφ − Ĉ(φ)B − 2κ2V(φ)

] √−gd4x ,

(4.194) 

where we introduced another free function . Ĉ of the scalar field. Keeping in mind 
that B is a boundary term, i.e., a total divergence, we see that the field equations do 
not change if we add an arbitrary constant to . Ĉ. To resolve this ambiguity, we can 
use integration by parts, 

.Ĉ
◦∇μM [νμ]

ν = ◦∇μ(ĈM [νμ]
ν) − Ĉ′M [νμ]

ν

◦∇μφ , (4.195) 

and omit the boundary term. Defining a new parameter function .C = Ĉ′, we then 
have 

. Sg = 1

2κ2

∫

M

[
−A(φ)G − B(φ)gμν

◦∇μφ
◦∇νφ

+ 2C(φ)M [νμ]
ν

◦∇μφ − 2κ2V(φ)
]√−gd4x . (4.196) 

Note that for .A′ + C = 0, the action becomes equivalent to the scalar-curvature 
action (4.193) . To derive the field equations for this generalized class of theories, we
proceed by varying the action as with the previous examples. Due to the presence of
an additional fundamental field, also the variation (4.9) is enhanced by an additional
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term, and becomes 

.δSg = −
∫

M

(
1

2
Wμνδgμν + Yμ

νρδ�μ
νρ + �δφ

) √−gd4x , (4.197) 

after eliminating derivatives of the variations using integration by parts. Varying the
action (4.196) , we find the terms

. Wμν = 1

κ2

{
A

◦
Rμν − A

2

◦
Rgμν + C ◦∇μ

◦∇νφ − (B− C′)
◦∇μφ

◦∇νφ

+ (A′ + C)
( ◦∇(μφMρ

ν)ρ − Mρ
(μν)

◦∇ρφ + M [ρσ ]
σ

◦∇ρφgμν

)

+
[(
B
2

− C′
)

◦∇ρφ
◦∇ρφ − C ◦∇ρ

◦∇ρφ + κ2V
]

gμν

}
, . (4.198a) 

Yμ
νρ = 1

2κ2

[
A(gνρMσ

μσ + δρ
μMνσ

σ − Mνρ
μ − Mρ

ν
μ)

+C(gνρ
◦∇μφ − δρ

μ

◦∇νφ)
]

, . (4.198b) 

� = 1

2κ2

[
−2B

◦∇μ

◦∇μφ − B′ ◦∇μφ
◦∇μφ + CB +A′G

]
+V , (4.198c) 

where we have made use of the relations (4.108) and (4.111) , and from now on
we omit the argument . φ of the parameter functions for brevity. We can then read 
off the field equations and study their properties. We start with the metric field 
equation (4.14) , which reads

. A
◦
Rμν − A

2

◦
Rgμν + C ◦∇μ

◦∇νφ + (A′ + C)
( ◦∇(μφMρ

ν)ρ − Mρ
(μν)

◦∇ρφ

+M [ρσ ]
σ

◦∇ρφgμν

)

−(B−C′)
◦∇μφ

◦∇νφ+
[(
B
2

− C′
)

◦∇ρφ
◦∇ρφ − C ◦∇ρ

◦∇ρφ + κ2V
]

gμν = κ2�μν .

(4.199) 

It is most remarkable that in the case .A′ + C = 0 the only term containing 
the flat, affine connection vanishes from these field equations, and one finds that 
they indeed resemble the field equations of scalar-curvature gravity in this case. To 
check whether this property holds also for the connection field equation (4.28) , we
calculate

. ∇τ Yμ
ντ − Mω

τωYμ
ντ

= A
′ + C
2κ2

[
Mνρ

ρ

◦∇μφ + Mρ
μρ

◦∇νφ − (Mνρ
μ + Mρ

μ
ν)

◦∇ρφ
]

, (4.200)
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where any terms involving the covariant derivative of the distortion .Mμ
νρ cancel as 

a consequence of the flatness of the connection. We see that this expression becomes 
trivial for .A′ + C = 0. In that case, the connection field equation 

. (A′ + C)
[
Mνρ

ρ

◦∇μφ + Mρ
μρ

◦∇νφ − (Mνρ
μ + Mρ

μ
ν)

◦∇ρφ
]

= 2κ2(∇τHμ
ντ − Mω

τωHμ
ντ ) (4.201) 

becomes a constraint for the hypermomentum. Finally, we study the scalar field
equation

. − 2B
◦∇μ

◦∇μφ − B′ ◦∇μφ
◦∇μφ + CB +A′G + 2κ2V′ = 0 . (4.202) 

Here the right hand side vanishes, since we do not consider any direct coupling
between the scalar field and matter. Note that if .C = −A′, i.e., in the case of the 
scalar-curvature equivalent, the two terms .CB + A′G combine to .−A′ ◦

R, and the 
equation becomes independent of the teleparallel connection, as one would expect, 
and as we have seen for the remaining field equations. Further, one finds that the 
scalar field equation contains second order derivatives of both the scalar field and 
the metric, where the latter enter through the boundary term. In order to eliminate 
these metric derivatives from the equation, it is common to apply a “debraiding” 
procedure by adding a suitable multiple of the trace of the matter field equation. 
The latter reads 

. −A ◦
R − 3C

◦∇μ

◦∇μφ + 2(A′ + C)M [μν]
ν

◦∇μφ

+ (B− 3C′)
◦∇μφ

◦∇μφ + 4κ2V = κ2�μ
μ . (4.203) 

Hence, calculating the linear combination

. CWμ
μ + 2A� = 1

κ2

[
− (2AB+ 3C2)

◦∇μ

◦∇μφ + (BC− 3CC′ −AB′)
◦∇μφ

◦∇μφ

+ (A′ + C)
(
AG + 2CM [μν]

ν

◦∇μφ
) ]

+ 2AV′ + 4CV , (4.204) 

we find that the debraided scalar field equation

. − (2AB+ 3C2)
◦∇μ

◦∇μφ + (BC− 3CC′ −AB′)
◦∇μφ

◦∇μφ

+ (A′ + C)
(
AG + 2CM [μν]

ν

◦∇μφ
)

+ 2κ2(AV′ + 2CV) = κ2C�μ
μ

(4.205)
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does not contain any derivatives of the independent connection, and has only first 
order derivatives of the metric tensor, which enter through the distortion and the 
Christoffel symbols contained in the covariant derivative. Also here we see that the 
teleparallel connection does not contribute to the field equation for .A′ + C = 0. 
Further, one finds that the trace of the energy-momentum tensor acts as the matter 
source for the scalar field. 

•? Exercise 
4.6. Understand that for .A′+C = 0, the field equations are independent of the teleparallel 

connection, i.e. one recovers scalar-tensor gravity theories. 

It is now easy to study how the field equations change if we consider the 
symmetric or metric teleparallel geometries instead of the general teleparallel 
geometry we have used to construct the scalar-teleparallel gravity theory discussed 
above. We start with the former, which yields a class of scalar-nonmetricity theories 
of gravity, whose action is given by [35, 36] 

. Sg = 1

2κ2

∫

M

[
−A(φ)Q − B(φ)gμν

◦∇μφ
◦∇νφ

+ C(φ)(Qν
νμ − Qμν

ν)
◦∇μφ − 2κ2V(φ)

]√−gd4x . (4.206) 

For the metric field equations, which retain the general form (4.14) , we see that the
only change compared to the general teleparallel case arises from those terms which
involve the teleparallel affine connection. These terms greatly simplify and become

.
◦∇(μφMρ

ν)ρ − Mρ
(μν)

◦∇ρφ + M [ρσ ]
σ

◦∇ρφgμν = −P ρ
μν

◦∇ρφ , (4.207) 

using the nonmetricity conjugate (4.131) . The metric field equations therefore read

. A
◦
Rμν − A

2

◦
Rgμν + C ◦∇μ

◦∇νφ − (B− C′)
◦∇μφ

◦∇νφ − (A′ + C)P ρ
μν

◦∇ρφ

+
[(
B
2

− C′
)

◦∇ρφ
◦∇ρφ − C ◦∇ρ

◦∇ρφ + κ2V
]

gμν = κ2�μν . (4.208) 

We then continue with the connection equation, which now takes the form (4.36).
Here we can make use of several simplifications we have employed before. First,
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using the variation (4.115) of the gravity scalar G, we write the variation (4.198) as

.

Yμ
νρ = 1

2κ2

[
AZμ

νρ + C
(
gνρ

◦∇μφ − δρ
μ

◦∇νφ
)]

= 1

2κ2

[
AZμ

νρ + C (
gνρ∇μφ − δρ

μgνσ ∇σ φ
)]

,

(4.209) 

where we used the fact that any covariant derivative acts equally on the scalar field . φ. 
Next, we introduce a density factor .

√−g and take a covariant derivative, to calculate 

. 

∇ρỸμ
νρ = 1

2κ2 ∇ρ

[
AZ̃μ

νρ + √−gC
(
gνρ∇μφ − δρ

μgνσ ∇σ φ
)]

=
√−g

2κ2

[
A′Zμ

νρ∇ρφ +
(

1

2
Qρτ

τC+ C′∇ρφ

) (
gνρ∇μφ − δρ

μgνσ ∇σ φ
)

+ C (
gνρ∇ρ∇μφ − gνσ ∇μ∇σ φ − Qρ

ρν∇μφ + Qμ
νσ ∇σ φ

) ]

= 1

2κ2 (A′ + C)Z̃μ
νρ∇ρφ

= 1

2κ2 ∇ρ[(A+ Ĉ)Z̃μ
νρ] ,

(4.210) 

where we used the identity .∇ρZ̃μ
νρ = 0 we found in deriving the STEGR field 

equations, and the fact that numerous terms involving the scalar field cancel, while 
the remaining terms combine to a very compact form. Here . Ĉ is defined by . Ĉ′ = C
only up to an irrelevant constant. To obtain the connection field equations, we apply 
another covariant derivative, and use the relation (4.147) to finally obtain

.∇ν∇ρỸμ
νρ = 1

2κ2 ∇ν∇ρ[(A+ Ĉ)Z̃μ
νρ] = − 1

κ2 ∇ν∇ρ[(A+ Ĉ)P̃ νρ
μ] . (4.211) 

Hence, we see that the left hand side of the connection field equations

. − ∇ν∇ρ[(A+ Ĉ)P̃ νρ
μ] = κ2∇ν∇ρH̃μ

νρ (4.212) 

vanishes identically for .A′ + C = 0. At last, we come to the scalar field equation, 
which we consider in its debraided form (4.205) . Imposing vanishing torsion, the
only affected term is given by

.AG + 2CM [μν]
ν

◦∇μφ = AQ + 2CQ[μν]
ν

◦∇μφ , (4.213)
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and so the scalar field equation undergoes the trivial change to become 

. − (2AB+ 3C2)
◦∇μ

◦∇μφ + (BC− 3CC′ −AB′)
◦∇μφ

◦∇μφ

+ (A′ + C)
(
AQ + 2CQ[μν]

ν

◦∇μφ
)

+ 2κ2(AV′ + 2CV) = κ2C�μ
μ .

(4.214) 

This completes the field equations for the scalar-nonmetricity class of gravity
theories.

We finally also take a brief look at the metric teleparallel case, and study the field 
equations of a class of scalar-torsion theories defined by the action [37–39] 

. Sg = 1

2κ2

∫

M

[
−A(φ)T − B(φ)gμν

◦∇μφ
◦∇νφ

+ 2C(φ)Tν
νμ

◦∇μφ − 2κ2V(φ)
]√−gd4x , (4.215) 

which directly follows from the action (4.196) by imposing vanishing nonmetricity.
Recall that under this condition the single field equation obtained by simultaneous
variation of the metric and connection is given by (4.41). Using the variation (4.198) ,
these field equations become

. A
◦
Rμν − A

2

◦
Rgμν + C ◦∇μ

◦∇νφ − (B− C′)
◦∇μφ

◦∇νφ + (A′ + C)Sμν
ρ

◦∇ρφ

+
[(
B
2

− C′
)

◦∇ρφ
◦∇ρφ − C ◦∇ρ

◦∇ρφ + κ2V
]

gμν

= κ2(�μν − ∇ρHμνρ + HμνρT τ
τρ) . (4.216) 

These equations are supplemented by the scalar field equation, which follows from
the general teleparallel equation (4.205) by using

.AG + 2CM [μν]
ν

◦∇μφ = AT − 2CTν
νμ

◦∇μφ , (4.217) 

in the absence of nonmetricity. Hence, the (debraided) scalar field equation takes
the form

. − (2AB+ 3C2)
◦∇μ

◦∇μφ + (BC− 3CC′ −AB′)
◦∇μφ

◦∇μφ

+ (A′ + C)
(
AT − 2CTν

νμ
◦∇μφ

)
+ 2κ2(AV′ + 2CV) = κ2C�μ

μ (4.218)

in the metric teleparallel gravity setting.
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4.4.5 Scalar-Teleparallel Representation of f (G)  Theories 

Among the general classes of scalar-teleparallel theories of gravity discussed in 
the previous section there is a particular subclass of theories, defined by a suitable 
choice of the parameter functions .A,B,C,V, whose field equations turn out to be 
equivalent to those of the .f (G) class of theories. Note that for a given function f , 
the choice of the parameter functions in the scalar-teleparallel representation is not 
unique, and different choices are connected by redefinitions of the scalar field. For 
the general teleparallel geometry, a straightforward procedure is to start from the 
action (4.135), and to rewrite it, similarly to the .f (

◦
R) class of theories [40], in the 

form 

.Sg = − 1

2κ2

∫

M

[f (φ) − ψ(φ − G)]√−gd4x , (4.219) 

thereby introducing two scalar fields . ψ and . φ. Here . ψ is a Lagrange multiplier, and 
imposes the constraint 

.φ = G (4.220) 

for the scalar field . φ. Variation with respect to the latter yields another constraint 

.ψ = f ′(φ) , (4.221) 

which can then be used to solve for the scalar field . ψ . The remaining field equations 
are the metric field equation 

. ψ

(
◦
Rμν − 1

2

◦
Rgμν

)
+

( ◦∇(μψMρ
ν)ρ − Mρ

(μν)

◦∇ρψ + M [ρσ ]
σ

◦∇ρψgμν

)

+ 1

2
[f (φ) − φψ]gμν = κ2�μν , (4.222) 

as well as the connection field equation

. Mνρ
ρ

◦∇μψ + Mρ
μρ

◦∇νψ − (Mνρ
μ + Mρ

μ
ν)

◦∇ρψ = 2κ2(∇τHμ
ντ − Mω

τωHμ
ντ ) .

(4.223) 

Together with the constraints (4.220) and (4.221) , one finds that these reproduce the
.f (G) field equations (4.142) and (4.145) .

Instead of keeping two scalar fields, one can take one further step and substitute 
the constraint (4.221) in the action (4.219) , which then becomes

.Sg = − 1

2κ2

∫

M

[f (φ) − f ′(φ)(φ − G)]√−gd4x . (4.224)
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Note that this does not change the metric and connection field equations. Variation 
with respect to the scalar field now yields the field equation 

.(G − φ)f ′′ = 0 , (4.225) 

which resembles the constraint (4.220) for .f ′′ 	= 0. By comparison with the general 
scalar-teleparallel action (4.196) , one reads off the relations

. A(φ) = f ′(φ) , B(φ) = 0 , C(φ) = 0 , V(φ) = f (φ) − φf ′(φ)

2κ2
.

(4.226) 

Alternatively, if the constraint (4.221) is invertible, one may also solve it for . φ

instead, which yields a different parametrization. The resulting action then takes 
the form 

.Sg = − 1

2κ2

∫

M

[ψG − 2κ2U(ψ)]√−gd4x , (4.227) 

where . U is implicitly defined by 

.U(ψ) = V(φ) . (4.228) 

To obtain a more explicit relation, one may differentiate with respect to . φ on both 
sides, which yields 

.f ′′(φ)U′(ψ) = −φf ′′(φ)

2κ2 . (4.229) 

This shows that .f (φ) and .U(ψ) are related by a Legendre transformation. In this 
case the scalar field equation becomes 

.G = −2κ2U′(ψ) , (4.230) 

once again reproducing the constraint (4.220) , up to a change of parametrization.
It is easy to check that for the values (4.226) of the parameter functions

(and hence also for the equivalent parametrization via . ψ) indeed yield a class 
of theories whose field equations reproduce those of the .f (G), .f (Q) [35] and 
.f (T ) [41] classes of gravity theories, if suitable restrictions are imposed on the 
torsion or nonmetricity of the connection. Substituting the values (4.226) and the
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constraint (4.220) into the metric field equation (4.199) yields

. f ′ ◦
Rμν − f ′

2

◦
Rgμν + f ′′ ( ◦∇(μGMρ

ν)ρ − Mρ
(μν)

◦∇ρG + M [ρσ ]
σ

◦∇ρGgμν

)

+ 1

2
(f − f ′G)gμν = κ2�μν , (4.231) 

which, using .f ′′ ◦∇μG = ◦∇μf ′, reproduces the field equation (4.142) . The same
relation is used to show that the connection field equation (4.201) , which becomes

. f ′′ [Mνρ
ρ

◦∇μG + Mρ
μρ

◦∇νG − (Mνρ
μ + Mρ

μ
ν)

◦∇ρG
]

= 2κ2(∇τHμ
ντ − Mω

τωHμ
ντ ) , (4.232) 

resembles the connection field equation (4.145) . We then continue with the sym-
metric teleparallel case. Here, the connection equation (4.212) becomes

. − ∇ν∇ρ(f ′P̃ νρ
μ) = κ2∇ν∇ρH̃μ

νρ , (4.233) 

which is obviously identical to the corresponding equation (4.148) . The metric field
equation (4.208) takes the form

.f ′ ◦
Rμν − f ′

2

◦
Rgμν − f ′′P ρ

μν

◦∇ρQ + 1

2
(f − f ′Q)gμν = κ2�μν . (4.234) 

To bring this to the familiar form, one raises one index, and uses the fact that the left
hand side of the STEGR field equation satisfies

. − ∇ρ(
√−gP ρμ

ν)√−g
− 1

2
P μρσ Qνρσ + 1

2
Qδμ

ν = Rμ
ν − 1

2
Rδμ

ν . (4.235) 

This can be used to replace the Einstein tensor, so that the scalar-nonmetricity field
equation becomes

.− f ′∇ρ(
√−gP ρμ

ν)√−g
− f ′

2
P μρσ Qνρσ −P ρμ

ν

◦∇ρf ′+ 1

2
f δμ

ν = κ2�μ
ν . (4.236) 

Observe that the two derivative terms can be combined into a single term, which
yields the field equation (4.154). A similar procedure can be applied to the scalar-
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torsion case, whose field equations (4.216) now read

. f ′ ◦
Rμν − f ′

2

◦
Rgμν + f ′′Sμν

ρ
◦∇ρT + 1

2
(f − f ′T )gμν

= κ2(�μν − ∇ρHμνρ + HμνρT τ
τρ) . (4.237) 

Here one uses the left hand side of the MTEGR field equation, which can be written
as

.
◦∇ρ(Sμν

ρ) + Sρσ
νKρσμ + 1

2
T gμν = ◦

Rμν − 1

2

◦
Rgμν . (4.238) 

Using this relation to replace the Einstein tensor, one finds

. f ′ ◦∇ρ(Sμν
ρ) + f ′Sρσ

νKρσμ + Sμν
ρ

◦∇ρf ′ + 1

2
fgμν

= κ2(�μν − ∇ρHμνρ + HμνρT τ
τρ) . (4.239) 

Once again the two derivative terms can be combined, and one has the field
equation (4.160) .

4.5 Summary, Outlook and Open Questions 

In this chapter we have given an introduction to teleparallel gravity theories, their 
underlying geometric structure which defines the fundamental fields of the theory, 
the general form of the field equations and the actions and field equations of a 
few selected classes of teleparallel gravity theories. We have seen that the main 
difference between teleparallel and curvature-based gravity theories such as general 
relativity is the existence of an independent, curvature-free connection, which 
appears as one of the fundamental fields mediating the gravitational interaction. 
From a mathematical point of view, this additional connection, together with the 
metric tensor, forms the foundation of teleparallel geometry. From a phenomeno-
logical point of view, the teleparallel connection is simply another field which enters 
the field equations and must be taken into account when these equations and their 
solutions are studied, e.g., for exact solutions exhibiting spherical or cosmological 
symmetry, or when performing perturbation theory. The coupling of this new field 
to other fields such as the metric and matter fields is determined by the particular 
teleparallel gravity action under consideration. Since these can be vastly different 
across the whole class of teleparallel gravity theories, they also lead to a plethora of 
potential new phenomenology. 

Teleparallel gravity theories are an active field of research and many questions 
are yet unanswered at the time of writing of this chapter. One of the most prominent 
open questions is known as the “strong coupling problem” [42, 43]. It refers to
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the fact that both the Hamiltonian analysis and higher order perturbation theory 
predict the presence of additional degrees of freedom compared to general relativity 
in several classes of teleparallel gravity, which are not manifest as propagating 
modes in the linear perturbation theory. Such modes are called strongly coupled, 
and their presence hints towards possible instabilities and a lack of predictability, 
which potentially renders the perturbation theory around such background solutions 
invalid. Among the most common approaches to clarify the nature and severity of 
these issues is the Hamiltonian analysis and the study of constraints. 

Besides fundamental questions, also the phenomenology of teleparallel gravity 
theories leaves numerous possibilities for further studies, which can potentially lead 
to new experimental tests. Active fields at the time of writing this chapter include 
the study of cosmology using the method of dynamical systems, cosmological 
perturbations, black holes and other exotic compact objects, as well as their shadows 
and their perturbations, which are closely related to the emission of gravitational 
waves. Hence, it is reasonable to expect numerous future developments in this field. 
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5Gravitational Lensing in Theories with Lorentz 
Invariance Violation 

Jean-François Glicenstein and Volker Perlick 

Abstract 

Theories with Lorentz Invariance Violation are motivated e.g. by ideas from 
quantum gravity. In such theories the light rays are no longer given as the lightlike 
geodesics of a Lorentzian metric, therefore gravitational lensing can be used for 
confronting such theories with observations. In the first part of this chapter we 
discuss lensing in the DSR model, in the second part we summarize what is 
known about light rays in Finsler spacetimes. 

5.1 Motivation 

Several phenomenological approaches to quantum gravity, semi-classical (low-
energy) limits of fundamental quantum gravity theories, modified gravity theories, 
and the standard model extension, predict deformations or violations of local 
Lorentz invariance. In this book we encountered already two examples of this 
kind, one emerging from string theory, see Chap. 1, and one from the doubly 
special relativity framework, see Chap. 2. In this chapter we will discuss how 
deformations and violations of Lorentz invariance would manifest themselves in 
gravitational lensing images. We approach this topic from two sides: In the first part 
we use the Hamiltonian approach, which is particularly convenient for determining 
lensing features from modified dispersion relations directly. In the second part, 
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where we concentrate on Finsler modifications of General Relativity, we start 
from the Lagrangian approach which is dual to the Hamiltonian approach and 
sometimes advantageous, e.g. for describing light rays by a variational principle. 
Both approaches are equally appropriate for the formulation of gravitational theories 
with violation of local Lorentz invariance. 

More explicitly, several quantum gravity theories predict the appearance of 
energy-momentum dependent terms in space-time metrics. The presence of these 
terms can be experimentally tested with photon propagation. In particular, this 
will lead to modifications of the Schwarzschild metric, used for relativity tests 
in the solar system and modifications of extensions of this metric which are 
commonly used to describe the gravitational lensing of light from distant galaxies 
by foreground galaxies. For this purpose it is convenient to use a Hamiltonian 
description of the motion of test particles (photons in our case) in the background 
cosmic object. Among other things, this is advantageous since Hamiltonians give 
an immediate access to dispersion relations, which are modified by quantum gravity 
effects. If the Hamiltonian is homogeneous with respect to the momenta, this 
induces a Finsler geometric structure [39]. 

Section 5.2 gives a brief introduction to gravitational lensing and some defini-
tions. Section 5.3 discusses lensing in the DSR model introduced in [4]. A similar 
formalism can be applied to lensing in rainbow gravity models. We will show that 
some current constraints on that model can be improved by studying high-energy 
lensing by distant objects. Section 5.4 is devoted to light propagation in Finsler 
spacetimes. Whereas up to now a full-fledged theory of gravitational lensing in 
Finsler spacetimes does not exist, several mathematical results with relevance to 
lensing have been found. These results are summarized in this section. 

5.2 Gravitational Lensing 

Lensing is the scattering of photons from distant sources by a mass distribution. 
Light propagation in general relativistic spacetimes is discussed by Perlick [36]. A 
standard reference on gravitational lensing is the book by Schneider, Ehlers and 
Falco [44]. A generic property of gravitational lenses is the existence of multiple 
propagation paths (multiple images) as is the case for mirages. Gravitational lensing 
is widely used to constrain mass distributions in the universe. Notable examples are 
the distribution of compact dark matter such as MACHOs or primordial black holes, 
and the large scale dark matter distribution. Gravitation models such as MOND or 
modified gravity can be constrained by studying the lensing of distant objects. 

Different lensing regimes are defined depending on the value of the lens mass M 
or the Schwarzschild radius which is defined as .rS = 2GM

c2
= 2.95 M

M� km. An order 

of magnitude of the deflection angle is .α ∼ rS
s
where s is the typical size of the 

lens (assuming it is not a black hole). The typical delay between images induced by 
lenses is .�T ∼ crS. Notable lensing regimes are
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1. femtolensing, which is the lensing of light (wavelength . λ) by asteroid-like masses 
with .λ > rS. The various propagation paths interfere and produce spectral 
oscillations. 

2. microlensing, which is the lensing of light by stellar type objects. Deflection 
angles and time delays are too small to be observable by current instruments 
for most lenses. The main observable in this regime is the light magnification as 
a function of time. 

3. macro-(or strong) lensing, which occurs in the lensing of background galaxies 
by intervening galaxies. Galaxies have masses in the .1011 − 1012M� range and 
sizes in the 1–10 kpc range. The typical angular size of a macrolens is 

. θL � 6′′
(

ML

1012M�

)1/2 (1Gpc
DOL

)
.

Time delays between images are of the order of 1 month. Images location and 
time delays are thus observable. In principle, the magnification of images is also 
observable, however it is affected by microlensing by stars in the lens galaxy. 

4. weak lensing, which is the lensing by galaxy clusters or large scale structures. 
The shape of background galaxies is distorted, leading to measurements of shear 
and magnification. 

In the rest of this chapter, we will be exclusively concerned with macrolensing. 

5.2.1 Lens Equation 

The lensing geometry is shown in Fig. 5.1. 
In the “thin lens approximation”, the photon moves on a straight line until it gets 

deflected towards the observer. The angular distance to the lens, located at redshift 
. zL is .DOL, the angular distance from lens to observer is .DLS. Coordinates are 
taken in the plane perpendicular to the line of sight (the “lens plane”). The projected 
source position on the lens plane is at . η, and the impact parameter of the particle 
trajectory at . ζ.

Lens models predict the dependence of the deflection angle . δθ on the geometry 
and model parameters. The simplest example is the relation 

.δθ = 2rS
η

. (5.1) 

for Schwarzschild lenses of General Relativity. The relation between the distances
and . δθ (called the lens equation) is shown by a simple heuristic argument to be: 

.θO + θS = DLS + DOL

DLSDOL

(ζ − η) = δθ (5.2)



202 J.-F. Glicenstein and V. Perlick

Fig. 5.1 Lensing geometry. 
Here .DLS is the angular 
distance between the lens and 
the source, .DOL is the 
angular distance between the 
lense and the observer, . η is 
the position of the source 
projected to the lens plane, . ζ
is the impact parameter of the 
light ray, and . δ	 is the 
deflection angle, that is 
predicted from the 
propagation of light rays 
through spacetime 

5.3 Lensing in DSR 

In this section we demonstrate explicitly how lensing images change, compared 
to the GR, when photons are subject to modified dispersion relations. Lensing 
is studied in the Hamiltonian formalism. The starting point is the most general 
Lorentz Invariance breaking, space rotation invariant Hamiltonian in DSR, given 
in Sect. 5.3.1. The simplest model, Schwarzschild lenses is studied in Sect. 5.3.2. 
Section 5.3.3 describes a more realistic galactic mass model: the Single Isothermal 
Lens (SIL) model. Lensing is best studied in isotropic coordinates instead of the 
more usual Schwarzschild coordinates. Sections 5.3.4, 5.3.5 and 5.3.6 discuss the 
transformation to isotropic coordinates. Galaxy lensing is then studied in Sect. 5.3.7. 
The main result of Sect. 5.3.7 is Eq. (5.85) which gives the lensing delay as a
function of photon energy. Known high-energy lensing systems are presented in
Sects. 5.3.8, 5.3.9, and 5.3.10. Finally, Eq. (5.85) is used in Sect. 5.3.10 to constrain 
the LIV energy scale. 

5.3.1 Hamiltonian of a Single Particle in the Field of a Massive 
Object 

The most general Lorentz Invariance breaking, space rotation invariant Hamiltonian 
in DSR is [4]: . 

. H = − 4

εl2P

sinh

(
εlP

2
(cpt + dpr)

)2

. + eεlP (cpt+dpr )

[(
− h + c2

)
p2

t + 2cdprpt +
(

g + d2
)

p2
r + 1

r2
w2
]

. (5.3)
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where .w2 = p2
θ + p2

φ

sin2 θ
, .pt , pr , pθ , pφ are the usual momenta conjugate to . t, r, θ, φ

and .ε = ±1 depending on whether the particle motion is super- or supraluminic. The 
Hamiltonian (5.3) depends on the unknown length scale of LIV, which is denoted
by . lP , and assumed to be of the order of the inverse of the Planck mass. In principle, 
the functions .c, d can be chosen arbitrarily, as long as they obey the normalization 
condition 

.
c(t, r)2

g(t, r)
+ d(t, r)2

h(t (r)
= −1 (5.4) 

where g and h are the t t- and rr-component of a spherically symmetric spacetime
metric.

Gravitational lensing, our main application, assumes that sources and observers 
are located in “flat” space, at large distances from the lens, so that 

. lim
r→∞ g(r) = lim

r→∞ h(r) = 1 (5.5) 

When .r → ∞, the Hamiltonian (5.3) should tend to the .κ-Poincaré Hamiltonian 

.Hκ(x, p) = − 4

lP
2 sinh

(
lP

2
pt

)2

+ elP ptp2 , (5.6) 

which corresponds to the .c = 1, d = 0 limit of Hamiltonian (5.3) .

•? Exercise 

5.1. Investigate whether one can find a coordinate transformation such that the Hamilto-
nian (5.3) tends to (5.6) in the large distance limit.
Solution Using condition (5.5) in the large distance limit, one has

. − (c∞)2 + (d∞)2 = −1

where 

. lim
r→∞ c = c∞

lim
r→∞ d = d∞

Using the point transformation 

.t ′ = c∞t − d∞r

r ′ = −d∞t + c∞r,
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the canonical transformation from the old to the new coordinates is generated by: 

.F2 = (c∞t − d∞r)(pt )
′ + (−d∞t + c∞r)(pr )

′ (5.7) 

.(pt )
′, ((pr )

′ are the new momenta. The relation between the old and new momenta is 

.(pt )
′ = c∞pt + d∞pr . (5.8) 

(pr )
′ = c∞pr + d∞pt (5.9) 

In the large r limit, Hamiltonion (5.3) is thus transformed into

.Hκ(x′, p′) = − 4

lP
2 sinh

(
lP

2
(pt )

′
)2

+ elP (pt )
′
((pr )

′2 + w2/r2) , (5.10) 

which is identical to Hamiltonian (5.6) only if .r = r ′. This happens when . c � c∞ = ±1
and .d � d∞ = 0. From now on, .c = 1 and .d = 0 are assumed. 

In the small . lP limit (.lP pt � 1), the Hamiltonian (5.3) simplifies further to

.H = −h(r)p2
t + (1 + εlP pt

√
h(r))

[
g(r)p2

r + 1

r2
w2
]

. (5.11) 

5.3.2 Deformed Schwarzschild Hamiltonian 

Stellar objects, in particular the Sun, can be modelled as Schwarzschild lenses. The 
g and h functions of the Schwarzschild Hamiltonian are given by . f (r) = g(r) =
1 − r

rS
and .h(r) = 1/f (r). .rS = 2GML

c2
is the Schwarzschild radius and .ML is the 

mass of the lensing object. The deflection of light from distant stars by the Sun and 
the time delay of a signal sent from Earth and reflected off a planet are well known 
solar system tests on General Relativity. 

5.3.2.1 Hamilton’s Equations 
The deflection angle and time-delay are usually directly derived from the 
Schwarzschild metric (see e.g [46]). Here we follow an alternative Hamiltonian 
approach. Only the main steps are sketched, the reader should refer to [19] for  
details. 

•? Exercise 

5.2. Show from Hamilton’s equations that . pt and . pφ are left invariant in the motion. If in 
addition .pφ = 0, then . pθ is also invariant.
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Introducing the affine parameter . λ, the other Hamilton’s equations are derived 
from Eq. (5.11) :

. 
dt

dλ
= ∂H

∂pt

= −2
pt

f (r)
+
(

εlP√
f (r)

)[
f (r)p2

r + 1

r2
pθ

2
]

dr

dλ
= ∂H

∂pr

= 2f (r)pr

(
1 + εlP

pt√
f (r)

)

dθ

dλ
= ∂H

∂pθ

= 2

r2
pθ

(
1 + εlP

pt√
f (r)

)

This is completed by the requirement that .H = 0, since we are interested in photon 
trajectories. This allows eliminating . pr by 

.f (r)pr =
√√√√ p2

t(
1 + εlP

pt√
f (r)

) − f (r)

r2
pθ

2 . (5.12) 

Next, . λ is then eliminated, followed by a change of variable from r to . u = 1/r.

Finally, one obtains the equations 

.
dt

du
�

pt(1 − (
3εlP pt

2
√

f (u)
))

u2f (u)2pr

. (5.13) 

dθ

du
= − pθ√

p2
t

(1+εlP (
pt√
f (u)

))
− f (u)u2pθ

2
(5.14) 

Equations (5.14) and (5.13) are the basis for the calculation of the deflection angle
and the time-delay for DSR deformed Schwarzschild lenses. But before moving to
the deflection angle calculation, we need to properly define the impact parameter
which is the quantity labelled as . η in Eq. (5.1) .

5.3.2.2 Impact Parameter 
Let .u0 = 1

R0
be a solution of the equation: 

.
p2

t

(1 + εlP (
pt√
f (u)

))
− f (u)u2pθ

2 = 0 (5.15) 

Following [46], chapter 6.3, the impact parameter . β is defined as 

.
1

β2 = p2
t

p2
θ (1 + εlP pt )

(5.16) 

. β does not depend on . rS and is kept fixed in the calculation.
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•? Exercise 

5.3. Show that the impact parameter . β can be expressed as a function of . u0, namely that, 
to first order in the small parameter .u0rS, the relation between . β and . u0 is 

.
1

β
= u0 + rSu20(1/2εlP pt − 1)

2
(5.17) 

Compare with equation 3.3.6 from [46]. 
Hint Introduce . β in Eq. (5.15) to obtain

.
1

β2 (1 − 1/2εlP pt rSu0) − u20 + rSu30 = 0. (5.18) 

To the order zero in .rSu0, the relation between . u0 and . β is . 1
β

= u0. Write . 1
β

= u0(1 +
rSu0x) with .x � 1 and expand Eq. (5.18) to first order in x and . rSu0.

5.3.2.3 Deflection Angle 
Introducing . u0, and using Eq. (5.18), the square root term from Eqs. (5.12) and
(5.14) can be expressed as

. 

√√√√ p2
t

(1 + εlP (
pt√
f (u)

))
− f (u)u2pθ

2

. = pθ

√
u20 − u2 + rS(u3 − u30) + εlP pt rSu20

2
(u0 − u) (5.19) 

Expanding the right side of (5.14) and keeping only first order terms in . rSu0
gives 

.
dθ

du
= − 1√

u20−u2+rS(u3−u30)+
εlP pt rSu20

2 (u0−u)

. (5.20) 

= −
(

1√
u20−u2

− rS
2

(
(u3−u30)

(u20−u2)
3/2 + εlP pt

2
u20(u0−u)

(u20−u2)
3/2

))
(5.21)
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•? Exercise 

5.4. Integrate u between 0 and .π/2 and show that: 

.

∫ π/2

0

dθ

du
du = −π

2
+ rSu0(1 − εlP pt

4
) (5.22) 

Hint Change variable .u = u0 cos (φ) to obtain elementary integrals. The value of the 
primitives at .φ = 0 can be obtained from l’Hospital rule. 

In formula (5.22) , . u0 can be replaced by . 1
β
since we are expanding . θ to first order 

in the parameter . rSu0.

The total deflection angle takes also into account the angular change between 
the lens and the observer. This amounts to multiply by a factor of 2 the deflection. 
Finally, the deflection angle is 

.δθ = 2rS
β

(
1 − εlP pt

4

)
(5.23) 

The deflection angle depends linearly on the energy . pt of the photon and is larger 
than the Schwarzschild angle in the supraluminous case (.ε = −1) 

5.3.2.4 Propagation Time 
Equation (5.13) is the starting point to obtain the propagation time on individual
photons paths. Introducing . β from Eq. (5.16) , . dt

du
can be separated into 2 terms: 

.
dt

du
�
⎛
⎝ (1 + εlP pt

2 )(1 − (
3εlP pt

2
√

f (u)
))

βf (u)

⎞
⎠
(

pθ

u2f (u)pr

)
. (5.24) 

Recalling that .f (u) = 1 − rSu, the left parenthesis can be expressed as 

. 
1

β

(
1 − 3εlP pt

2
√

f (u)

)
(1 + εlP pt2)

f
= 1

β

(
(1 − εlP pt ) + rSu(1 − 7

4
εlP pt )

)

(5.25) 

and using 

.f (u)pr = pθ

√
u20 − u2 + rS(u3 − u30) + εlP pt rSu20

2
(u0 − u) (5.26)
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Eq. (5.24) transforms into

. 
dt

du
� (1−εlP pt )+rSu(1− 7

4 εlP pt )

β
1

u2

√
u20−u2+rS(u3−u30)+

εlP pt rSu20
2 (u0−u)

� (1−εlP pt )+rSu(1− 7
4 εlP pt )

β

(
1

u2
√

u20−u2
− rS(u3−u30)

2u2(u20−u2)3/2
− rSεlP ptu

2
0(u0−u)

4u2(u20−u2)3/2

)

•? Exercise 

5.5. Keeping the first order term in .rSu0, show that 

.
dt

du
= J1 + J2 + J3 (5.27) 

with

.J1 = (1 − εlP pt )

β

⎛
⎝ 1

u2
√

u20 − u2

⎞
⎠ , (5.28) 

.J2 = rS

β

⎛
⎝ 1

u

√
u20 − u2

− 1

2

(u3 − u30)

u2(u20 − u2)3/2

⎞
⎠ (5.29) 

and

.J3 = − rSεlP pt

β

⎛
⎝ 7

4u
√

u20 − u2
+ 1

2

(u30 − u3)

u2(u20 − u2)3/2
+ 1

4

u0
2(u0 − u)

u2(u20 − u2)3/2

⎞
⎠ (5.30) 

The impact parameter . β has, from Eq. (5.17) , a .rSu0 dependence which needs to 
be taken into account in the propagation time calculation. 

•? Exercise 

5.6. Using Eq. (5.17), transform Eq. (5.27) into

.
dt

du
= J ′

1 + J ′
2 + J ′

3 (5.31)
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with 

.J ′
1 = (1 − εlP pt )

u0

u2
√

u20 − u2
, (5.32) 

.J ′
2 = rSu0

⎛
⎝ 1

u

√
u20 − u2

− 1

2

(u3 − u30)

u2(u20 − u2)3/2
− 1

2

u0

u2
√

u20 − u2

⎞
⎠ (5.33) 

and

.J ′
3 = (5.34) 

. −rSu0εlP pt

⎛
⎝ 7

4u
√

u20 − u2
+ 1

2

(u30 − u3)

u2(u20 − u2)3/2
+ 1

4

u0
2(u0 − u)

u2(u20 − u2)3/2
− 3

4

u0

u2
√

u20 − u2

⎞
⎠

Equation (5.31) can now be integrated. Defining the angle . φ by . u = u0 cosφ

as in Sect. (5.3.2.3), the integrals .
∫

J ′
1du,

∫
J ′
2du,

∫
J ′
3du, can be expressed as a 

function of . φ.

•? Exercise 

5.7. Show that 

.

∫
J ′
3du = −rSεlP pt

(
3

4

1 − cosφ

sinφ
+ 3

2
ln

1 + sinφ

cosφ

)
(5.35) 

Summing the three contributions, the propagation time is 

. 

∫
dt

du
du = (1 − εlP pt )

1

u0
(tanφ)

+rS(1 − 3

2
εlP pt )

(
ln

1 + sinφ

cosφ
+ 1

2

1 − cosφ

sinφ

)
(5.36)
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To obtain the propagation time of the light emitted by a source at S to an observer 
at O (see Fig. 5.1), expression (5.36) is first applied to the LS part of the photon
trajectory, then to the OL part. On the LS part .φ = arccosR0/DLS, and Eq. (5.36) 
gives:

.TLS = (1 − εlP pt )

√
D2

LS − R2
0 (5.37) 

. + rS(1 − 3

2
εlP pt )

⎛
⎝ln DLS +

√
D2

LS − R2
0

R0
+ 1

2

√
DLS − R0

DLS + R0

⎞
⎠

A similar expression holds for the OL part of the photon trajectory. The total time 
delay measured with a satellite in the solar system is obtained by multiplying by a 
factor of 2 to account for the return trip of the photon. 

. �T = 2(TLS + TOL) = 2

(
(1 − εlP pt )(

√
D2

LS − R2
0 +

√
D2

OL − R2
0)

+ rS(1 − 3

2
εlP pt )

⎛
⎝ln DLS +

√
D2

LS − R2
0

R0
+ ln

DOL +
√

D2
OL − R2

0

R0

⎞
⎠

+ 1

2

(√
DLS − R0

DLS + R0
+
√

DOL − R0

DOL + R0

))
. (5.38) 

5.3.3 More Realistic Lenses 

Most cosmic lenses, especially macro-lenses, are not well described by the Schwarz-
schild model. A simple and popular model used by astronomers is the singular 
isothermal lens (SIL) model. In the SIL model, the intervening galaxy has a mass 
distribution with density: 

.ρ(r) = ρ0a
2

r2
(5.39) 

where a is a characteristic length. The Gauss theorem gives the gravitational field
.g(r) as a function of density . ρ0 and scale . a :

.4πr2g(r) = −4πGM(r) = −4πG(4πρ0a
2r) (5.40) 

Hence:

.g(r) = −4πGρ0
a2

r
(5.41)
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The velocity dispersion at radius a is .v2c = 2σ 2
v = GM(a)

a
= 4πGρ0a

2 (. vc is the 
circular velocity, it has been assumed that the relation between the circular velocity 
and the velocity dispersion is .v2c = 2σ 2

v ), so that finally 

.g(r) = −2σ 2
v

r
(5.42) 

The gravitational potential of the SIL lens is thus

.USIL(r) = 2σ 2
v ln r (5.43) 

Except for the Schwarzschild lens, lensing models are generally given in 
isotropic coordinates (for more details and the motivation for this choice, see section 
4.2 of [44]). Working with isotropic coordinates instead of a Schwarzschild-like 
metric greatly simplifies lensing calculations. In the next section, we will discuss 
how moving to isotropic coordinates affects the non Lorentz invariant part of the 
Hamiltonian (5.11) .

5.3.4 Isotropic Coordinates 

To move to isotropic coordinates and keep equations of motions invariant, one needs 
to make a canonical transformation. 

The relevant coordinate transformation is 

.t ′ = t . (5.44) 

r ′ = r ′(r) = fr(r). (5.45) 

θ ′ = θ . (5.46) 

φ′ = φ (5.47) 

and the associated canonical transformation is

.F2 = tp′
t + fr(r)p

′
r + θpθ ′ + φpφ′ (5.48) 

The initial momenta .pt , pr are related to the transformed momenta .p′
t , p

′
r by 

.pt = p′
t . (5.49) 

pr = ∂F2

∂r
= ∂(r ′p′

r )

∂r
= p′

r

∂r ′

∂r
(5.50)

Before moving to Lorentz non-conserving Hamiltonians, it is worth discussing the
transformation with a Lorentz-conserving Schwarzschild lens.
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5.3.4.1 Lorentz Conserving Schwarzschild Lenses 
Starting from 

.H = 1

2

(
p2

t

f (r)
− f (r)p2

r − 1

r2
(p2

θ + 1

sin θ2
p2

φ)

)
(5.51) 

we want to find the coordinate transformation (5.45) which transforms the spatial
part of the momenta into an isotropic form. That is H is changed to

.H ′ = 1

2

(
p2

t

h(r ′)
− g(r ′)

(
p2

r ′ − 1

r ′2 (p2
θ + 1

sin θ2
p2

φ)

))
(5.52) 

where g and h are functions to be determined.
Identifying the corresponding terms: 

.g(r ′)p2
r ′ = f (r)p2

r = f (r)p2
r ′

(
dr ′

dr

)2

. (5.53) 

g(r ′)
r ′2 = 1

r2
(5.54) 

and eliminating .g(r ′), one gets 

.

(
dr ′

r ′

)2

=
(

dr

r

)2 1

f (r)
(5.55) 

Using .f (r) = (1 − rS
r
) for a Schwarzschild lens, one has 

.
dr ′

r ′ = dr

r

√
(1 − rS

r
)

= dy√
(y2 − y)

(5.56) 

with . y = r/rS.

Writing .y2 − y = (y − 1/2)2 − 1/4 and setting .y − 1/2 = 1/2 cosh t, one has 
.dy = 1/2 sinh tdt and .y2 − y = 1/4 sinh2 t. Then 

. ln (r ′/r0) = t = cosh−1 (2y − 1) = cosh−1
(
2r

rS
− 1

)
(5.57) 

Using .cosh−1(x) = ln (x + √
x2 − 1), Eq. (5.57) becomes

.
r ′

r0
= 2r

rS
− 1 + 2

rS

√
r2 − rrS (5.58)
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The value of . r0 is found by imposing that .limr→∞ r ′ = r. One finds .r0 = rS/4 and 

.2r ′ = r − rS

2
+
√

r2 − rrS . (5.59) 

One has further the identity

.(r − rS

2
+
√

r2 − rrS)(r − rS

2
−
√

r2 − rrS) = r2S

4
(5.60) 

Dividing Eq. (5.60) by Eq. (5.59) , one obtains

.r − rS

2
−
√

r2 − rrS = r2S

8r ′ , (5.61) 

so that

.r = rS

2
+ r ′ + r2S

16r ′ = r ′ (1 + rS

4r ′
)2

, (5.62) 

(for a derivation directly from the Schwarzschild metric, see [42], chap. 14). 
The h and g functions are 

.g(r ′) = 1

(1 + rS
4r ′ )4

= 1 − rS

r ′ + o(
rS

r ′ ). (5.63) 

h(r ′) = 1 − rS

r ′(1 + rS
4r ′ )4

= 1 − rS

r ′ + o(
rS

r ′ ) (5.64) 

g and h turn out to be equal to f to first order in . rS. This is not true in general as we 
now see. 

5.3.5 Other Lorentz-Invariant Lenses 

The general case is 

.g(r ′) = (1 − V (r ′)) (5.65) 

where V is related to the gravitational potential .U(r) through .V = 2U
c2

. Then from 
Eq. (5.54) ,

.r = r ′
√
1 − V (r ′)

(5.66)
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Using now Eq. (5.54) , . dr
dr ′ = 1−V (r ′)+r ′V ′(r ′)/2

(
√
1−V (r ′))3 and 

.f (r) = g(r ′)( dr

dr ′ )
2 = (1 − V (r ′) + r ′V ′(r ′)/2)2

(1 − V (r ′))2
(5.67) 

To gain some intuition on the solutions of these equation, let’s take an example. 
If .V (r) = C/rβ, then .1 − V (r) + r dV

dr
= 1 − (1 + β/2)V (r) and 

.f (r) = (1 − βV (r ′)) = (1 − βV (r) + O(V 2)) (5.68) 

This example can be readily generalized. If .V (r) = ∑
i Ci/rβi , then . V ′(r) =

−∑i Ciβi/rβi+1 and 

.f (r) = (1 −
∑

i

Ciβi/rβi + O(V 2)) (5.69) 

It is clear from this example that in the general case moving from Schwarzschild 
to isotropic coordinates changes the expression of the f (or V ) function. 

5.3.6 Lorentz Non-invariant Lenses 

The derivation of the non-Lorentz invariant Hamiltonian in isotropic form is now 
left as exercise for the reader. 

•? Exercise 

5.8. In the case of a Schwarzschild lens, show that the canonical transformation from 
Eq. (5.48) changes Hamiltonian (5.11) to an isotropic form.
Solution Using the canonical transformation to isotropic coordinates (Eq. (5.48) ) changes
Hamiltonian (5.11) to

.H = − p2
t

f (r)
+
(
1 + εlP

pt√
f (r)

)
f (r)P2. (5.70) 

where . P2 = p2
r + 1

r2
pθ

2.

As noted before, lensing metrics (or equivalently Hamiltonians) are generally 
given in isotropic coordinates (see [44]), with functions .g(r) = 1 − 2U(r)

c2
and 

.h(r) = 1
1+ 2U(r)

c2

� g. Based on the Schwarzschild lens example, we now assume
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that Lorentz non-conserving Hamiltonians in isotropic coordinates can be described 
by Hamitonian (5.70) with . f (r) = 1 − 2U(r)

c2
.

5.3.7 Galaxy Lensing 

This section applies the formalism described in [19] on Hamiltonian (5.70) . The aim
is to describe the modification of galaxy lensing due to Lorentz Invariance violation
in the photon propagation. Hence the function .U(r) in .f (r) = 1 − 2U(r)

c2
is the 

gravitational potential of a galaxy. Hamilton’s equation are obtained by derivating 
w.r.t the affine parameter . λ giving 

. 
dpt

dλ
= −∂H

∂t
= 0

dt

dλ
= ∂H

∂pt

= −2
pt

f (r)
+ (

εlP√
f (r)

))P2

dxα

dλ
= ∂H

∂pα

= 2f (r)pα(1 + εlP (
pt√
f (r)

))

dpα

dλ
= − ∂H

∂xα
= −∂αf (r)

(
p2

t

f (r)2
+ P2(1 + εlP (

pt

2
√

f (r)
))

)

The mass constraint relevant to photon motion is .H = 0. It gives a relation between 
.| P |, .f (r) and . pt

.
pt

| P | = f

√
1 + εlP pt√

f
� f

(
1 + εlP pt

2
√

f

)
(5.71) 

Hamilton’s equation can be transformed using the euclidian line element . dl2 =∑3
1 dxα

2 to give the evolution of t and . pα with . l.

The relation between l and . λ is 

.
dl

dλ
= −2f (r) | P |

(
1 + εlP

pt√
f (r)

)
(5.72) 

The next step is to eliminate . λ.

.
dpα

dl
= ∂αf (r) | P |

(
2 + εlP (

3pt

2
√

f (r)
)
)

2f (r)
(
1 + εlP

pt√
f (r)

) . (5.73) 

dt

dl
= pt

f 2(r) | P |
(
1 − εlP pt√

f

)
− εlP | P |

2
√

f (r)

(
1 − εlP pt√

f

)
(5.74)
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In Eq. (5.73) .∂αf (r) = 2∂αU(r)/c2 is a first order quantity in .U/c2. To first 
order in .U/c2, the evolution of momenta is thus given by 

.
dpα

dl
= (2/c2)∂αU(r) | P |

(
1 − εlP

pt

4

)
(5.75) 

The right side of Eq. (5.74) is the sum of two terms:

. I1 = pt

f 2(r) | P | (1 − εlP pt√
f

)

= (1 − εlP pt

2
) − 2U/c2(1 − 3

4
εlP pt ) + O(U2/c4)

and 

. I2 = −(
εlP | P |
2f (r)1/2

)(1 − εlP pt√
f

) = −(
εlP pt

2f (r)3/2
) + O(lP

2pt
2)

= −(
εlP pt

2
)(1 − 3U/c2) .

Summing the 2 contributions gives 

.
dt

dl
= (I1 + I2) = (1 − εlP pt ) − 2U/c2(1 − 3

2
εlP pt ) . (5.76) 

The travel time .TOS is obtained by integrating . dt
dl

over the photon trajectory from 
source to observer. This is done by approximating the photon trajectory (Fig. 5.1) as  
two straight lines, one from the source to the lens and the other from the lens to the 
observer, in accordance with the thin lens approximation. The result is 

.TOS =
∫

dl

(
(1 − εlP pt ) − 2U/c2(1 − 3

2
εlP pt )

)
. (5.77) 

The structure of the .TOS integral ((5.77) ) reminds of the Fermat potential encoun-
tered in usual photon lensing [44]. Using the potential .U(r) of the SIL model 
(Eq. (5.43)) in Eq. (5.77) gives:

. TOS = (zL + 1)
(1
2
(1 − εlP pt )(

1

DOL

+ 1

DLS

)

(ζ − η)2 − 2πσ 2
v (1 − 3

2
εlP pt )|ζ | + T0

)
(5.78) 

The .(zL + 1) factor has to be included in order to compare Eq. (5.78) to delays of
cosmological lenses. See [44], section 4.6, for a derivation.
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The absolute value of the deflection angle is obtained from Eq. (5.75) (see [18] 
for details). 

.α = 2πσ 2
v

(
1 − εlP

pt

4

)
sgn(ζ ). (5.79) 

The lens equation for the SIL model is: 

.ζ − η = sgn(ζ )lE, (5.80) 

with the Einstein length . lE defined by 

.lE = 4πσ 2
v

(
1 − εlP (

pt

4 )
)
DOLDLS

(DOL + DLS)
(5.81) 

Equation (5.80) has 2 solutions for .|η| ≤ lE. These solutions are 

.ζ+ = lE + η. (5.82) 

ζ− = η − lE (5.83) 

Since .(ζ+ − η)2 = (ζ− − η)2 = l2E, only the second term in Eq. (5.78) contributes
to the time delay between images. This term depends on

.|ζ+| − |ζ−| = 2η. (5.84) 

Using Eq. (5.78), the time delay between the . ζ± images is 

.�T = −4(zL + 1)πσ 2
v (1 − 3

2
εlP pt )η = �T (pt = 0)(1 − 3

2
εlP pt ) . (5.85) 

A similar expression for the time delay between images was derived by a 
completely different method in reference [11]. In contrast, the expression for the 
Einstein length (Eq. (5.81)) differs from that obtained in [11]. 

Other gravity models predict a similar variation of the delay between lens images 
with energy. Since .�T scales linearly with .σ 2

v , hence with . G, an equation similar 
to Eq. (5.85) would be obtained in gravity models with an energy-dependent . G. In 
rainbow gravity models [29], the components of the Schwarzchild metric become 
energy-dependent: 

.dτ 2 = 1 − 2GM
r

f (E)2
dt2 − 1

g(E)2

(
dr2

1 − 2GM
r

+ r2d�2

)
.
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The photon velocity is .v = g(E)
f (E)

, so that the time delay scales as the ratio . k(E) =
f (E)
g(E).

The time delay in rainbow gravity is thus 

.�T = �T (pt = 0)
G(pt )

G(pt = 0)
= �T (pt = 0) · k(pt ). (5.86) 

Following reference [10], the .k(E) function is parametrized as 

.k(E) = 1√
1 − α( E

MP
)s

= 1 + α

2

(
E

MP

)s

, (5.87) 

where .MP = 1.22 1019 GeV is the Planck mass. 

5.3.8 High Energy Lenses 

As mentioned in Sect. 5.2, time-delays and image locations are routinely measured 
for strong lensing systems. Data are taken in passbands ranging from radio to high or 
very-high energies. To constrain quantum gravity models, the most straightforward 
idea is to exploit the potential change of image location with energy [15]. However 
present day high-energy instruments have angular resolutions of the order of arc-
minutes, while the typical separation of lens images is one or two order of magnitude 
smaller, as explained in Sect. 5.2. 

On the other hand, arrival delays between images of strong lensing systems are 
easily measurable, but with only a limited precision of the order of a few percent. 
Delay measurements at different energies are needed to exploit Eq. (5.85) . While
many strong lensing systems have delay measurements at several wavelength, only
2 strong lensing systems are known to have high-energy emission, namely blazars
PKS1830-211 and JVAS B0218+357.

5.3.9 PKS 1830-211 

PKS 1830-211 is a bright quasar at redshift .zS = 2.5, lensed by galaxy at . zL = 0.89.
Two very clear compact images (A and B) separated by an Einstein ring are seen 
on radio images. The time-delay between the compact images has been measured 
in radio and microwaves. A third faint image was found recently using the ALMA 
array of radiotelescopes [34]. The lens structure has been elucidated and the delays 
between images have been predicted to be .TAB = 26− 29 days and .TAC somewhat 
larger [34]. A time delay .TAB = 264−5 days has been measured in the radio passband 
at 8.6 GHz [28] and a time delay .TAB = 245−4 days in the millimeter wavelengths 
[47]. Evidence for .TAB = 27.1±0.5 day has been found in the high-energy passband
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Table 5.1 Measurements of the time-delay of JVAS B0218. Data are reprinted with permission 

Passband Energy (eV) Time-delay (days) Data from reference 

Radio (8.4 GHz) .3.5 10−5 11.25 . ± 0.55 [12] ©2018 the author(s). 

Radio (15 GHz) .6.2 10−5 11.3. ± 0.4 [12] ©2018 the author(s). 

High energy .108 − 3 1011 11.46 . ± 0.16 [13] ©2014 AAS. All rights 
reserved. 

Very high energy .5 e10 − 3e11 11.9 . ± 0.4 Present worka 

a See main text 

[5], but was not confirmed by later studies [2, 6]. The situation concerning blazar 
PKS 1830-211 is thus confuse. 

5.3.10 JVAS B0218+357 

JVAS B0218+357 is a bright quasar located at redshift .zS = 0.944 and lensed 
by galaxy at .zL = 0.685. Radio images show 2 compact images and an Einstein 
ring. The time delay between the compact images is well measured in several radio 
pass-bands (8, 15, 5 GHz) and high energy gamma-rays (Fermi-LAT). The photon 
energies in these measurements span over 15 orders of magnitude. The measured 
values of time delays are listed in Table 5.1. 

The MAGIC collaboration observed JVAS B0218+357 in response to a Fermi-
LAT alert. They found a delayed flare with a slightly different shape. The lensing 
time-delay in the 100-GeV passband can be estimated by comparing the time of 
maximum of the MAGIC flare to the time of maximum of the Fermi-LAT flare. The 
value is shown in Table 5.1. 

•? Exercise 

5.9. Constrain the linear and quadratic dependence of the lensing time-delay with the 
values of Table 5.1. 
Solution The linear fit gives a slope value of .α = 5 10−3 ± 10−3 day/GeV. The slope is 
significant, but the measurements have large systematic errors. At the 90% confidence level 
(C.L.), one has 

.α < 7 10−3day/GeV. (5.88) 

The quadratic fit gives a slope value of .α′ = 5.2 10−5±1.210−5 day/GeV. 2. At the 90%CL, 
one has .α′ < 7.510−5 day/GeV. 2.
JVAS B0218 is well modelled by a SIL model [7]. Using Eq. (5.85) , the limit on the linear
slope (5.88) translates into a limit on . lP , or alternatively on the Planck scale. The limit
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obtained from Eq. (5.88) for a linear dependence and .ε = −1 is 

.
1

lP
> 2.4 TeV(90%C.L.) (5.89) 

Since the value of . α′ is significantly positive, the data exclude completely a linear 
dependence for .ε = 1. However, it may be more appropriate to refer to the expected limit 
which is the limit based on the errors. The expected limit is 

.
1

lP
> 17 TeV(90%C.L.) (5.90) 

for both the super- and supra-luminic case. The same limit can be translated into a limit
on rainbow models parameters by using parametrization (5.87). Using .s = 1, one obtains 
.α < 5 · 1016 at the 90% C.L. The quadratic case is also interesting for rainbow models. 
Using .s = 2, one obtains .α < 2 · 1034 at the 90% C.L. 

5.3.11 Comparison to Other Astrophysical Limits 

The limits obtained with JVAS B0218+357 are smaller than the limits obtained by 
the direct observations of bursts from active galactic nuclei (see for instance [1]) or 
gamma-ray bursts by 11 to 16 orders of magnitude. In the studies of bursts from 
active galactic nuclei, the travel time of light is very large, typically .1017 light-
seconds. Even when the uncertainty on the emission time of various wavelengths 
is large (of the order of 1 day for instance), the limit on . 1

lp
is of the order of . 1016

GeV for a TeV observation. In the study of lensing systems, the emission time is 
well defined and the theory can be well motivated, as in the case of DSR. However 
lensing time-delays are at most of the order of .108 light-seconds, Even with a very 
good measurement of the delay of the order of 0.1 day, the limit on . 1

lp
can be at most 

of the order of .107 GeV. 
Several authors (for instance [10,14,16]) have used solar system tests of General 

Relativity to put constraints on rainbow or similar models. The drawback of this 
approach is that only radio or visible light measurements can be used. The limit 
then relies on the accuracy of the deflection or time delay measurements. Taking 
for instance the accuracy of .2 · 10−5 obtained on the delay measurement by the 
Cassini mission and a comparison of radio and visible light observations to separate 
the General Relativity and quantum gravity contribution, one would expect, from 
Eq. (5.38), limits on . 1

lp
of the order of a few hundred keV at most. 

Other authors (for instance [15, 20]) have advocated the using position measure-
ments of lensed images to put constraints on quantum gravity models. However 
accurate image position measurements with photons of more than a few keV do 
not seem possible with the present technology. Reference [15] puts 95% C.L. limits 
of order 10 keV on . 1

lp
with observations from the Chandra X-ray instrument. In 

contrast with accurate position measurements, precise time-delays between images
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have been measured up to the 100 GeV energy range. The .> 107 fold increase 
in energy of the observed photons explains the factor of .108 improvement of limit 
(5.90) over previous results.

This concludes the discussion of the influence of non-Lorentz invariant disper-
sion relations in the Hamiltonian picture. It has been demonstrated how to determine 
features of lensing images from non-Lorentz invariant Hamilton functions explicitly. 

Next, the influence of deviations from local Lorentz invariance on Lensing 
images is discussed, on the basis of Finsler geometry. 

5.4 Towards a Theory of Gravitational Lensing in Finsler 
Spacetimes 

In standard general relativity gravity is coded in a pseudo-Riemannian metric 
.gμν(x)dxμdxμ of Lorentzian signature. Correspondingly, the geodesics in this 
spacetime are the solutions of the Euler-Lagrange equations determined by a 
Lagrangian 

.L(x, v) = 1

2
gμνv

μvν . (5.91) 

This has the consequence that on each tangent space we have the symmetry of the
ordinary Lorentz group of (special) relativity. Now Finsler geometry is based on the
idea of replacing the Lagrangian (5.91) by a more general Lagrangian that is still 
homogenous with respect to the velocity coordinates .v = (

v0, v1, v2, v3
)
but not 

necessarily a quadratic form. Obviously, in a Finsler spacetime there is no invariance 
with respect to the Lorentz group. As a matter of fact, the symmetry group of a 
Finsler spacetime can be very complicated, see Gallego and Piccione [17]. 

A full-fledged theory of gravitational lensing has not yet been developed for 
Finsler spacetimes. However, several mathematical results are known which are 
relevant in view of lensing. In the following we give an overview on these results. 

5.4.1 Definition and Basic Properties of Finsler Spacetimes 

The following is an appropriate working definition of a Finsler spacetime. 

Definition 5.1. A Finsler spacetime is a 4-dimensional manifold M with a 
Lagrangian function L that satisfies the following properties: 

(a) L is a real-valued function on the tangent bundle T M  minus the zero section, 
i.e., .L(x, v) is defined for all .(x, v) ∈ T M with .v �= 0. 

(b) L is positively homogeneous of degree two with respect to v, i.e., 

.L(x, kv) = k2L(x, v) for all k ∈ R with k > 0 . (5.92)
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(c) The Finsler metric 

.gμν(x, v) = 1

2

∂2L(x, v)

∂vμ∂vν
(5.93) 

is well-defined and has Lorentzian signature .(−+++) for all .(x, v) with .v �= 0. 

Whenever working with a Finsler spacetime we use the summation convention for 
greek indices that take the values 0,1,2,3. 

We call L the Finsler Lagrangian henceforth. A vector v at x is called timelike if 
.L(x, v) < 0, lightlike if .L(x, v) = 0 and spacelike if .L(x, v) > 0. 

It is a standard exercise to check that condition (b) of Definition 5.1 implies the 
identities 

.
∂L(x, v)

∂vμ
vμ = 2L(x, v) , . (5.94) 

∂L(x, v)

∂vμ
= gμν(x, v) vν , . (5.95) 

L(x, v) = 1

2
gμν(x, v) vμ vν . (5.96) 

The non-degeneracy of the Finsler metric implies that the Euler-Lagrange
equations

.
d

ds

∂L(x, ẋ)

∂ẋμ
− ∂L(x, ẋ)

∂xμ
= 0 (5.97) 

admit a unique solution .x(s) for each initial condition .(x(0), ẋ(0)) with .ẋ(0) �= 0. 
These solution curves are called the (affinely parametrized) geodesics of the Finsler 
spacetime. Homogeneity of the Lagrangian implies that L is a constant of motion, 
so one can classify the geodesics as timelike if .L < 0, lightlike if .L = 0 and 
spacelike if .L > 0. The timelike geodesics are to be interpreted as the worldlines 
of freely falling particles and the lightlike geodesics are to be interpreted as light 
rays. With this interpretation, which can be motivated by a modified version of the 
Ehlers-Pirani-Schild axiomatic approach to spacetime theory, see Bernal, Javaloyes 
and Sánchez [9], Finsler spacetimes provide a geometric framework for a theory of 
gravity that includes general relativity as a special case. Of course, for a complete 
theory one would also need a Finsler generalization of Einstein’s field equation. 
Such generalizations have been suggested by various authors and are still a matter 
of debate, see in particular Rutz [43], Pfeifer and Wohlfarth [41] and Hohmann, 
Pfeifer and Voicu [23]. The latter paper clarifies the relation between the field 
equations suggested in the other two. In the following, we will restrict to kinematic 
considerations, i.e., we will not consider any field equation.
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Finsler geometry was introduced originally by Paul Finsler in his 1918 doctoral 
dissertation. He considered Finsler metrics that are positive definite and for several 
decades the entire mathematical literature on Finsler geometry was restricted to 
this case. The definition of a Finsler structure with indefinite metric, in particular 
with Lorentzian signature, was first given by Beem [8] in 1970. If restricted to the 
physically interesting case of a Finsler structure with Lorentzian signature on a 4-
dimensional manifold, our Definition 5.1 coincides with Beem’s. However, over 
the last years it was found that for several applications it is actually desirable or 
even necessary to modify this definition by requiring that the Finsler metric is well-
defined and of Lorentzian signature almost everywhere, rather than everywhere, on 
the tangent bundle minus the zero section. As outlined by Laemmerzahl et al. [27], 
this modification is necessary if one wants to include a certain class of static Finsler 
spacetimes where one encounters the situation that the Finsler metric fails to be 
well-defined on a set of measure zero. Another modification of Beem’s definition 
was brought forward by Pfeifer and Wohlfarth [40] and used in several follow-up 
papers. They also allow for a violation of regularity on a set of measure zero and 
in addition they modify condition (b) by requiring the Lagrangian to be positively 
homogeneous of some degree which may be different from two. 

We mention that there are alternative approaches to Finsler spacetimes. There 
is a number of papers where the Lagrangian is defined only on a conical subset of 
the tangent space at each point. This approach was pioneered by Asanov [3]. In the 
original work of Asanov, the Finsler Lagrangian is defined only for “admissible” 
vectors, i.e., on vectors inside a cone which is to be interpreted as the set of 
timelike vectors. This is clearly too weak for a theory of lensing because there is no 
satisfactory definition of lightlike vectors in this approach. We mention, however, 
that the Asanov definition has been modified by Javaloyes and Sanchez [24] to  
resolve this problem. 

In a Finsler spacetime we can distinguish a particular parametrization for each 
timelike curve which generalizes the notion of proper time well known from general 
relativity. In the Finsler case, we say that a timelike curve .γ (τ) is parametrized by 
proper time if 

.gμν

(
γ (τ), dγ (τ)/dτ

)dγ μ(τ)

dτ

dγ ν(τ )

dτ
= −c2 (5.98) 

where c is the vacuum speed of light. Clearly, if the Finsler metric is independent of
v, this reduces to the standard definition of proper time in general relativity.

We have defined a Finsler spacetime here in terms of a Lagrangian. However, the
non-degeneracy of the Finsler metric allows us to pass to a completely equivalent
description in terms of a Hamiltonian, thereby meeting the formalism that was used
in the first part of this paper. To that end we have to introduce the canonical momenta

.pμ = gμν(x, v) vν (5.99)
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and to define the Hamiltonian 

.H(x, p) = vμ ∂L(x, v)

∂vμ
− L(x, v) = L(x, v) , (5.100) 

where .(x, p) and .(x, v) are related by (5.99). H is positively homogeneous of 
degree two, .H(x, kp) = k2H(x, p) for .k > 0, and its Hessian . gμν(x, p) =
∂2H(x, p)/(∂pμ∂pν) is the inverse of .gμν(x, v), thus non-degenerate with 
Lorentzian signature. The projections to M of the solutions of Hamilton’s equations 
with .H = 0 are precisely the affinely parametrized lightlike geodesics. So we 
may work in a Hamiltonian formalism on the cotangent bundle, rather than in a 
Lagrangian formalism on the tangent bundle, whenever we wish to do so. 

The Hamiltonian formulation is particularly useful for treating symmetries. 
In general relativity, symmetries are described in terms of Killing vector fields. 
An appropriately generalized notion can be defined on Finsler spacetimes in the 
following way. We call a vector field .Kμ(x)∂μ a Killing vector field if . Kμ(x)pμ

has vanishing Poisson bracket with the Hamiltonian, 

.{H(x, p),Kμ(x)pμ} = 0 . (5.101) 

Here the Poisson bracket is defined in the familiar way for any two functions . f (x, p)

and .h(x, p), 

.{f (x, p), h(x, p)} = ∂f (x, p)

∂xμ

∂h(x, p)

∂pμ

− ∂h(x, p)

∂xμ

∂f (x, p)

∂pμ

. (5.102) 

If written out, the Finslerian Killing Eq. (5.101) reads 

.Kμ ∂gρσ

∂xμ
+ ∂Kτ

∂xν
ẋν ∂gρσ

∂ẋτ
+ ∂Kτ

∂xρ
gτσ + ∂Kτ

∂xσ
gρτ = 0 . (5.103) 

It was first given (for positive definite Finsler metrics) by Knebelman [25]. 
Clearly, (5.101) is equivalent to the condition that .Kμ(x)pμ is constant along 

any geodesic. More generally, one calls .Kμ(x) a conformal Killing vector field if 

.{e�(x,p)H(x, p),Kμ(x)pμ} = 0 (5.104) 

with some function .�(x, p). In this case .Kμ(x)pμ is constant along every lightlike 
geodesic, although not in general along timelike or spacelike geodesics.
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•? Exercise 

5.10. Prove the last statement. Given that (5.104) holds, show that .Kμ(x)pμ is constant 
along lightlike geodesics of L. 

5.4.2 Light Cone Structure and Fermat’s Principle 

In a Finsler spacetime, at each point x the set of all tangent vectors .v �= 0 with 
.L(x, v) < 0 may have arbitrarily many connected components; correspondingly, 
there may be arbitrarily many “light cones”. The light cones have the following 
properties. 

Proposition 5.1. Fix a point x in a Finsler spacetime .(M,L). Let .TxM be the 

tangent space at x and .
o

T xM = {
(x, v) ∈ TxM|v �= 0

}
. Let .ZxM be a connected 

component of .
{
(x, v) ∈ o

T xM
∣∣L(x, v) < 0

}
and let .CxM be the boundary of . ZxM

in .
o

T xM . Then the following is true. 

(a) .ZxM is an open convex cone in .TxM . 
(b) .CxM is a cone in .TxM and a closed .C∞ submanifold of codimension one in 

.
o

T xM . 
(c) .gμν(x,w)wμ uν < 0 for all .(x,w) ∈ CxM and .(x, u) ∈ ZxM . 

For a proof we refer to Perlick [37]. Minguzzi [32] has analysed the light cone 
structure in Finsler spacetimes more deeply and he found that, under surprisingly 
mild conditions, there are exactly two light cones, one future and one past light-
cone, at each point. Minguzzi’s results also show that it is not a meaningful approach 
to model birefringence by a single Finsler structure. Birefringence is well known 
to occur in crystals and it is indeed possible to model the light rays in a uniaxial 
crystal as the lightlike geodesics of two Finsler structures, see Perlick [36], but not 
as the lightlike geodesics of a single Finsler structure with multiple light cones. 
Analogously, one would have to use two Finsler structures in a hypothetical Finsler 
gravity theory where birefringence occurs in vacuum. 

For gravitational lensing it is often useful to characterize the light rays by a 
variational principle. For an arbitrary general-relativistic spacetime it is indeed 
possible to prove that light rays satisfy a version of Fermat’s principle: If one fixes 
a point p (observation event) and a timelike curve . γ (worldline of a light source), 
among all past-oriented lightlike curves from p to . γ the lightlike geodesics make 
the arrival time extremal. Here the arrival time refers to the parametrization of .γ
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which may be chosen arbitrarily. For this general-relativistic Fermat princple we 
refer to Temple [45] for a version restricted to a local normal neighbourhood, to 
Kovner [26] for a formulation of the general principle and to Perlick [35] for  a  
complete proof. The relevance of Fermat’s principle in view of lensing is discussed 
e.g. in the book by Schneider, Ehlers and Falco [44]. Here we are interested in 
the question of whether a similar variational principle holds true for light rays in a 
Finsler spacetime. 

To that end we fix, in a Finsler spacetime .(M,L), a point p and a timelike curve 
. γ . In applications to lensing the parametrization of . γ , which may be arbitrary, is to 
be interpreted as past-oriented. At each point of . γ , the tangent vector determines 
one connected component of the light cone. As the trial curves for our variational 
principle we choose all lightlike curves from p to . γ whose tangent vector, on arrival 
at . γ , belong to the connected component of the light cone that is selected by the 
tangent vector of . γ . (Here part (c) of Proposition 5.1 is relevant.) On the set of trial 
curves we define the arrival time functional by assigning to each trial curve the 
parameter value of . γ at the point of arrival. Then the following version of Fermat’s 
principle is true: 

Theorem 5.1. A trial curve is a geodesic if and only if it is a stationary point of the 
arrival time functional. 

Loosely speaking, this means that among all ways to go from p to . γ (backwards 
in time) at the speed of light, the actual light rays choose those paths that make the 
travel time extremal. For a precise mathematical formulation and a proof we refer 
to Perlick [37]. 

Obviously, the mathematical theorem is independent of whether the parametriza-
tion of . γ is interpreted as past-ponting or as future-pointing. If one wants to 
formulate the variational principle in analogy to the classical Fermat principle, 
one would interpret the parametrization of . γ as future-pointing. In applications to 
lensing, however, we are interested in light rays that arrive at the observation event 
p; that is why we prefer to think of the parametrization as past-pointing. 

If the Finsler metric is independent of v, the theorem reduces to the one that was 
formulated by Kovner [26] and proven by Perlick [35]. As shown in the latter paper, 
in this case only local minima and saddles, but no local maxima, of the arrival time 
may occur. It is likely that the same is true in all Finsler spacetimes, but as far as we 
know this has not been proven so far. 

As an important technical detail it should be mentioned that the results reviewed 
in this subsection rely on the above-given definition of Finsler spacetimes, i.e., 
it is assumed that the Finsler metric is well-defined and of Lorentzian signature 
everywhere, and not only almost everywhere, on the tangent bundle minus the zero 
section. If this regularity condition of the Finsler metric fails to hold on a set of 
measure zero that includes a lightlike vector w at x, the set of all lightlike vectors 
at x may fail to be a differentiable submanifold near w and the proof of Fermat’s 
principle given in Perlick [37] has to be modified a bit. One would expect that the 
theorem is still true but this has not actually been worked out.
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5.4.3 Measuring Angles in the Sky 

For any theoretical description of gravitational lensing it is indispensable to assign 
an angle to a pair of light rays that arrive at the observer. In general relativity this 
notion is given in a very natural way: The set of all light rays that arrive at a point p is 
in one-to-one correspondence with the set of all one-dimensional lightlike subspaces 
of the tangent space at p. This set, which we will call . Sp, is diffeomorphic to the 
2-sphere . S2 and can be interpreted as the sky at p. If an observer with 4-velocity u 
has been chosen at p, we can orthogonally project each one-dimensional lightlike 
subspace into the orthocomplement of u which carries the usual 3-dimensional 
Euclidean geometry. In this way we can identify the sky . Sp with the set of unit 
vectors orthogonal to u, see Fig. 5.2 where one of the three spatial dimensions is 
omitted, so the sphere . Sp is represented by a circle. We can then assign an angle 
to any pair of points in . Sp, just by using the ordinary notion of an angle between 
vectors in Euclidean geometry. Clearly, all observers at p receive the same light 
rays, so they see the same sky. However, they assign different angles to any two 
points of the sky. The transformation is provided by the standard aberration formula 

.cosϑ ′ = cosϑ − v
c

1 − v
c
cosϑ

(5.105) 

which is derived in any text-book on special relativity. Here . ϑ denotes the angle 
between a light ray and the direction of relative motion as measured by one observer 
and . ϑ ′ denotes the analogous angle as measured by the other observer; v is the 
relative velocity. 

If we try to carry this construction over into the Finsler setting, we have to face 
two problems. Firstly, the set of timelike vectors at a point may have more than two 
connected components, so there may be multiple light cones. If we define the sky 
. Sp along the same lines as above, then the points of . Sp will not be in a one-to-

Fig. 5.2 The sky of an observer
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one correspondence to the points of the two-sphere . S2. Probably there is only one 
way of resolving this problem: One has to restrict to those Finsler spacetimes where 
the set of timelike vectors at a point .p ∈ M does have exactly two components, 
one being interpreted as the set of past-pointing timelike vectors and the other one 
as the set of future-pointing timelike vectors. It was already mentioned that this 
restriction is comparatively mild. We can then define the sky . Sp as the set of all 
one-dimensional lightlike subspaces at p that are tangent to the boundary of the past 
cone. This makes sure that the points of . Sp are in one-to-one correspondence to the 
points of the two-sphere . S2. Secondly, even in this case it is not at all clear how the 
choice of an observer would allow to assign an angle to any two points of . Sp: The  
method from general relativity does not carry over because in a Finsler spacetime 
the definition of an “orthocomplement” is ambiguous. This second problem is a 
major stumbling block on the way towards a viable theory of gravitational lensing 
in Finsler spacetimes. 

At least from a mathematical point of view, it seems natural to define the 
orthocomplement of a vector u at x as the set of all v such that . gμν(x, u)uμvν = 0 .

For any non-zero u the orthocomplement of u is indeed a 3-dimensional vector 
space. However, it is not true that the orthocomplement of a timelike u carries a 
Euclidean metric. Moreover, this definition has the somewhat unwanted property 
that u is not necessarily in the orthocomplement of v if v is in the orthocomplement 
of u. Even more importantly, it is difficult to associate this definition with an 
operational procedure. In general relativity, the orthocomplement of a timelike 
vector gets its physical meaning from Einstein’s radar method: If one fixes a 
timelike curve parametrized by proper time, one calls an event q off the worldline 
simultaneous with an event p on the worldline if the time a light ray needs from 
the worldline to q and back to the worldline is divided into two equal halves by 
p. Then the tangent space to the 3-dimensional manifold of all events that are 
simultaneous to a certain event on the worldline is the orthocomplent of the tangent 
vector to the worldline at this point. It was shown by Pfeifer [38] that in a Finsler 
spacetime this radar construction can also be carried through but that then the 
“radar orthocomplement” of a vector is quite different from the above given formal 
orthocomplement. In general, the radar orthocomplement is not even a vector space. 
(Pfeifer’s paper is based on a definition of Finsler spacetimes that is slightly different 
from our’s, but this is not relevant here.) So it seems fair to say that in a Finsler 
spacetime it is still not clear how to define orthogonality in a satisfactory way. 

However, it may be possible to define angles in the sky without any direct 
reference to orthogonality. Minguzzi [33] has shown that in a Finsler spacetime 
where the sky . Sp is diffemorphic to the two-dimensional sphere . S2 one can 
construct a (positive definite) Riemannian metric on . Sp once an observer at p has 
been chosen. The distance with respect to this metric can be viewed as a way 
of measuring angles in the sky. Minguzzi has also shown that the metric in . Sp

undergoes a conformal transformation if the observer is changed. This implies, in 
particular, that circles are mapped onto circles.
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From a mathematical point of view Minguzzi’s construction is quite satisfactory. 
What is still missing is a link with an operational procedure, i.e., a prescription of 
how to measure in practice angles in the sky. 

5.4.4 Light Deflection in Spherically Symmetric and Static Finsler 
Spacetimes 

According to general relativity the vacuum spacetime around a spherically symmet-
ric body is necessarily static and described by the Schwarzschild metric. Calculating 
the light deflection in this spacetime is one of the basic exercises in the theory of 
gravitational lensing. If one takes the Finsler modification of the spacetime metric 
seriously, one has to replace the Schwarzschild metric by a Finsler spacetime metric 
and to investigate how this affects the light deflection formula. In this subsection we 
review some results on this score that have been found by Laemmerzahl et al. [27]. 

The basic idea is to add a Finsler perturbation to the Schwarzschild metric that 
preserves spherical symmetry and staticity. More precisely, the Finsler Lagrangian 
is assumed to be given in coordinates .x = (t, r, ϑ, ϕ) and to be of the form 

.2L(x, ẋ)=(htt+c2ψ0
)
ṫ2+
((

hijhkl+ψijkl

)
ẋi ẋj ẋkẋl

) 1
2

(5.106) 

where .hμνdxμdxν is the Schwarzschild metric, 

. hμνdxμdxν = −
(
1−2GM

c2r

)
c2dt2+

(
1−2GM

c2r

)−1
dr2+r2

(
sin2ϑ dϕ2+dϑ2

)
(5.107) 

and the summation convention is used for latin indices that take values 1, 2, 3. Here 
c denotes the vacuum speed of light, G denotes Newton’s gravitational constant and 
M is the mass of the gravitating body according to the unperturbed metric. The time 
perturbation . ψ0 is a function of r only and the spatial perturbation .ψijkl depends on 
r , . ϕ and . ϑ in the following form: 

. ψijkl ẋ
i ẋj ẋkẋl = ψ1(r)ṙ

4+ψ2(r)r
2ṙ2
(
sin2ϑ ϕ̇2+ϑ̇2)+ψ3(r)r

4(sin2ϑ ϕ̇2+ϑ̇2)2 .

(5.108) 

This is the general form the .ψijkl must have in order to preserve spherical symmetry, 
i.e., in order to assure that the usual generators of spatial rotations form a Lie algebra 
of Killing vector fields that is isometric to so(3).
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•? Exercise 

5.11. Show that 

.X1 = sinϕ∂ϑ + cotϑ cosϕ∂ϕ, X2 = − cosϕ∂ϑ + cotϑ sinϕ∂ϕ, X3 = ∂ϕ , (5.109) 

are Killing vector fields of L given in (5.106), with (5.107) and (5.108) . For guidance see
also [41, Sec. V.B]. For a more detailed analysis of spherically symmetric Finsler spacetimes 
we refer to McCarthy and Rutz [30, 31] 

In addition to preserving spherical symmetry, the perturbations also preserve the 
staticity of the metric, i.e., . ∂t is a timelike Killing vector field and there are no 
spatio-temporal cross-terms. 

Note that the fourth-order term .ψijkl ẋ
i ẋj ẋkẋl can be viewed as the leading-order 

term in a general Finsler power–law perturbation of the spatial part of the metric. 
One could of course also consider a third-order term but this seems not desirable 
because it would break the reflection symmetry .vi → −vi on the tangent space. 
In this sense our ansatz gives the lowest-order non-trivial Finsler perturbation that 
preserves the symmetries of the spacetime. 

As the Schwarzschild metric is experimentally well tested, the perturbation 
functions .ψ1(r), .ψ2(r) and .ψ3(r) and their derivatives .ψ ′

1(r), .ψ
′
2(r) and . ψ ′

3(r)

are certainly small. Differentiability and smallness of the .ψA(r) guarantee that the 
Lagrangian .L(x, v) is real-valued, and the Finsler metric (5.93) is non-degenerate 
with Lorentzian signature for almost all .(x, v) with .v �= 0 . The only points where 
this condition is violated are the points where the spatial velocity components are 
all zero, .(vr , vϑ , vϕ) = (0, 0, 0), but  .vt �= 0. At these points, the Finsler metric 
gives undetermined expressions. However, it was shown by Laemmerzahl et al. [27] 
that even if we choose an initial velocity for which the metric is undetermined, the 
Euler-Lagrange equation (5.97) has a unique solution which is determined from 
neighbouring solutions by continuous extension. 

Note that, by (5.107) and (5.108), the two-dimensional spacelike manifold . 
{
t =

const., r = const.
}
is a “round sphere”, i.e., it is isometric to the standard 2-sphere 

in Euclidean 3-space. In the unperturbed Schwarzschild spacetime, this sphere has 
area .4πr2 whereas in the perturbed spacetime it has area .4πr2(1 + ψ3). 

However, as we are free to change the radius coordinate it is no restriction of 
generality if we require that also in the perturbed spacetime the sphere at radius r 
has area .4πr2. Then .ψ3 = 0 and only three perturbation functions . ψ0, . ψ1 and . ψ2
are left. 

For calculating the light deflection in the perturbed spacetime we have to consider 
a lightlike geodesic that comes in from infinity and goes to infinity. Because of the 
symmetry it is no restriction of generality if we assume that the geodesics is in the 
equatorial plane, .ϑ = π/2. Moreover, as we assume that the perturbation functions
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are small, we may linearize the Lagrangian with respect to them. This results in 

.2L(x, ẋ) = (1 + φ0)htt ṫ
2 + (1 + φ1)hrr ṙ

2 + r2ϕ̇2 + φ2hrrr
2ṙ2ϕ̇2

hrr ṙ2 + r2ϕ̇2 (5.110) 

where we have introduced modified perturbation functions

.φ0 = c2ψ0

htt

, φ1 = ψ1

2h 2
rr

, φ2 = ψ2hrr − ψ1

2h 2
rr

. (5.111) 

Clearly, the Lagrangian (5.110) comes from a pseudo-Riemannian metric if and 
only if .φ2 = 0. In other words, . φ2 is a measure for the “Finslerity” of the perturbed 
spacetime. 

For a light ray that starts at a source at radius . rS , goes through a minimum radius 
. rm and reaches an observer at radius . rO , the deflection angle .�ϕ0 in the unperturbed 
Schwarzschild spacetime is well known to be given by the integral formula 

.π + �ϕ0 =
( ∫ rS

rm

+
∫ rO

rm

) dr√
A(r)

, (5.112) 

where

.A(r) = r4
(
p(rm) − p(r)

)
, p(r) = r−2

(
1 − 2GM

c2r

)
. (5.113) 

If the observer and the source are both far away from the centre, the angle .�ϕ0 can 
be measured, and has been measured in the gravitational field of the Sun during 
the famous 1919 Solar eclipse expedition led by Arthur Eddington, in the following 
way: When comparing the position of light sources near the Sun with their positions 
half a year earlier, when the Sun was not in the neighbourhood, one notices a radial 
displacement by .�ϕ0 in the positions. The same method carries over to the Finsler 
case provided that the spacetime is still asymptotically flat, i.e., provided that the 
perturbation functions fall off sufficiently quickly for .r → 0. When the observer 
is in a region where the spacetime can be assumed as being flat (i.e., Minkowski 
spacetime) the problem with measuring angles that was discussed in the preceding 
subsection does of course not exist. 

As proved by Laemmerzahl et al. [27], the deflection angle .�ϕ in the perturbed 
spacetime equals 

.�ϕ = �ϕ0 +
( ∫ rS

rm

+
∫ rO

rm

) α(r) dr

2
√

A(r)
. (5.114)
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where 

. α(r) = φ1(r) − φ2(r)
2p(rm) − 3p(r)

p(rm)
− (φ0(rm) − φ0(r)

) p(rm)

p(rm) − p(r)
.

(5.115) 

•? Exercise 

5.12. Use the Finsler geodesic equation and the constants of motion energy and angular 
momentum in spherical symmetry for the Finsler Lagrangian (5.110) to derive (5.114) .

We see that by measuring the deflection angle alone one cannot disentangle the 
Finslerity . φ2 from the other perturbation functions. By comparing with observations 
Laemmerzahl et al. [27] found that in the gravitational field of the Sun 

.|α(r)| � 2 × 10−9 . (5.116) 

In the same paper an analogous integral formula was derived for the travel time of
light. Also in this case, all three perturbation functions . φ0, . φ1 and . φ2 occur. 

5.4.5 The Redshift of Light and Applications to Cosmology 

In general relativity there is a universal formula for the redshift under which an 
observer sees a light source. This formula has a very natural generalization for 
Finsler spacetimes that was found by Hasse and Perlick [21]. For reviewing this 
result, we need the notion of proper time in a Finsler spacetime, recall (5.98). 

Let us assume that we have two timelike curves, .γ (τ) and .γ̃ (τ̃ ), both 
parametrized by proper time, and an affinely parametrized lightlike geodesic . x(s)

from an event .x(s1) = γ (τ1) on . γ to an event .x(s2) = γ̃ (τ̃ 2) on . γ̃ , see Fig. 5.3. 
Then the redshift z assigned to this light ray is 

.1 + z =
gμν

(
x(s1), ẋ(s1)

)
ẋν(s1)

dγ μ

dτ
(τ1)

gρσ

(
x(s2), ẋ(s2)

)
ẋσ (s2)

dγ̃ ρ

dτ̃
(τ̃ 2)

. (5.117) 

This formula for the redshift differs from the corresponding formula in general
relativity only by the fact that now the metric has a second argument. It was derived
in two different ways by Hasse and Perlick [21]. For the first method we have to 
recall that we have assigned a canonical momentum .p(s) , see  (5.99), to a light ray
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Fig. 5.3 Illustration of the 
redshift formula.The picture 
is taken from [21]. Copyright 
by the American Physical 
Society, all rights reserved 

.x(s) when we considered the Hamiltonian formalism. Now assume that an observer, 
whose worldline .γ (τ) is parametrized by proper time, crosses this light ray at an 
event .x(s1) = γ (τ1). Then we call 

.ω(s1) = −pμ(s1)
dγ μ

dτ
(τ1) (5.118) 

the frequency of the light ray with respect to . γ . Similarly, if another observer, whose 
worldline .γ̃ (τ̃ ) is again parametrized by proper time, crosses the light ray at an event 
.x(s2) = γ̃ (τ̃ 2), we call 

.ω(s2) = −pμ(s2)
dγ̃ μ

dτ̃
(τ̃ 2) (5.119) 

the frequency of the light ray with respect to . γ̃ . The right-hand side of (5.117) 
is precisely the ratio of the frequencies .ω(s2)/ω(s1). The second method is more 
geometrical. One considers two light rays emitted by . γ at proper times . τ and .τ+�τ . 
They will be received by . γ̃ at proper times . ̃τ and .τ̃ + �τ̃ . The right-hand side of 
(5.117) equals the ratio .�τ̃/�τ in the limit that .�τ → 0.



234 J.-F. Glicenstein and V. Perlick

The Finslerian redshift formula becomes particularly simple if . γ and . γ̃ are 
integral curves of a vector field .V μ(x) that is proportional to a conformal Killing 
vector field .Kμ(x), recall (5.104), 

.V μ(x) = ef (x)Kμ(x) . (5.120) 

Then we can use the fact that .Kμ
(
x(s)

)
pμ(s) = gμν

(
x(s), ẋ(s)

)
Kμ
(
x(s)

)
ẋν(s) is 

independent of s and the redshift formula can be rewritten as 

.ln(1 + z) = f
(
x(s2)

)− f
(
x(s1)

)
. (5.121) 

In this case we say that f is a redshift potential.
Hasse and Perlick [21] illustrate the redshift formula with two examples. One 

of them is a cosmological Finsler spacetime where a redshift potential exists. The 
model is a perturbation of a Robertson-Walker spacetime, constructed in analogy 
to the model in the preceding section that was a perturbation of the Schwarzschild 
spacetime. The Finsler Lagrangian is given in coordinates .x = (t, r, ϑ, ϕ) and reads 

. 2L(x, ẋ) = −c2 ṫ2
(
1 + φ0(t)

)

. + S(t)2
(
ṙ2 + �(r)2(ϑ̇2 + sin2ϑ ϕ̇2)

)(
1 + φ1(t)

)

. +
φ2(t)S

2c2 ṫ2
(
ṙ2 + �(r)2(ϑ̇2 + sin2ϑ ϕ̇2)

)

S(t)2
(
ṙ2 + �(r)2(ϑ̇2 + sin2ϑ ϕ̇2)

)
+ c2 ṫ2

(5.122) 

where . � is one of the following three functions of r: 

.�(r)2 =

⎧⎪⎨
⎪⎩

k−1sin2
(√

kr
)

for k > 0

r2 for k = 0

|k|−1sinh2
(√|k| r) for k < 0

(5.123) 

The perturbations .φ0(t), .φ1(t) and .φ2(t) preserve the symmetries of the underlying 
Robertson-Walker spacetime, i.e., there are six spacelike Killing vector fields which 
express the fact that the spacetime is spatially homogeneous and isotropic and . ∂t is a 
conformal Killing vector field. The latter implies the existence of a redshift potential 
which greatly simplifies the calculations. 

Whereas the perturbation .φ0(t) changes the time measurement, the perturbation 
.φ1(t) changes the length measurement. By contrast, .φ2(t) is a genuine Finsler 
perturbation which may again be called the “Finslerity”. As we are free to change 
the time coordinate, we may require .φ0(t) = 0 without loss of generality. Then t
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gives proper time along the t-lines in the perturbed as well as in the unperturbed 
spacetime. 

In complete analogy to the unperturbed situation, in the perturbed spacetime 
the notions of area distance .DA and luminosity distance .DL can be defined for 
an emitter and a receiver whose worldlines are integral curves of . ∂t . With the help 
of the redshift potential it can then be shown that they are related by the equation 

.DL = (1 + z)2
(
1 − φ2(t2)

4
+ φ2(t1)

4

)
DA (5.124) 

where . t1 is the time when the light signal is emitted and . t2 is the time when it is 
received, see Hasse and Perlick [21] for a proof. Equation (5.124) generalizes the 
well known reciprocity theorem, also known as Etherington’s law. Note that the 
deviation from the traditional version is determined by the Finslerity . φ2 alone. 

Hasse and Perlick [21] also derive the generalization of the Lemaître-Hubble law, 
i.e., of the linearized relation beween (area or luminosity) distance and redshift. It 
reads 

.DA = c S(t2)

S′(t2)

(
1 − φ2(t2)

4
− S′(t2)

S(t2)

(φ′
1(t2)

2
+ φ′

2(t2)

4

)
z + O(z2) . (5.125) 

For .DL the .O(z2) terms are different, but the linearized law is the same. So in 
contrast to the Etherington law, the distance-redshift relation is modified not only 
by the Finslerity but also by .φ1(t). 

For further results on the distance-redshift relation in Finsler spacetimes we 
refer to Hohmann and Pfeifer [22]. Whereas our approach was purely kinematical, 
considering perturbations of a Robertson-walker spacetime without assuming the 
validity of a particular field equation, the work by Hohmann and Pfeifer makes use 
of the field equation that was introduced by Pfeifer and Wohlfarth [41]. 

Summary and Outlook 

In this chapter we have demonstrated how the Hamiltonian and the Lagrangian 
approach can be used for studying gravitational lensing in theories with violation 
of Lorentz invariance. In the first part we have learned how to calculate the image 
position and delay of lenses in the context of DSR models. We have obtained 
results for Schwarzschild lenses and for the more realistic SIL model, which 
describes galaxy lensing. The time-delay between the images has been shown to 
depend linearly on the energy (Eq. 5.85). Several lensing systems had their delays 
between images measured in different passbands. The delay between the compact 
images was measured in the GeV and TeV passbands in only one lensing system, 
JVAS B0218+357. In the future, other lensing system may be detected in the 
GeV and TeV band and could be monitored in upcoming facilities such as the
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Cherenkov Telescope Array (CTA) [19]. Measurements of time-delays will thus 
provide constraints on DSR models. 

In the second part we have concentrated on gravitational lensing features in 
Finsler space-times. We have seen that the Lagrangian—or Hamiltonian—approach 
is well suited for investigating these features. Some important partial results in this 
direction have already been achieved; this includes the characterization of light rays 
in terms of a variational principle (i.e., a Finsler version of Fermat’s principle) and 
a general redshift formula. However, there are still open questions which have to be 
answered before a full-fledged theory of Finsler lensing can be formulated. At the 
center of the problems is the difficulty of operationally defining how angles in the 
sky are to be measured. This has to be left for future studies. 
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Part II 

Observational Effects Beyond Special and 
General Relativity: From Cosmic Scales, via 

Compact Objects to the Lab 

Leaving the more fundamental models from Part I behind, we enter the discussion of 
the imprint of modified and quantum gravity on cosmic messengers, astrophysical 
systems and laboratory sized experiments. 

Since the detection of gravitational waves in 2016 multi-messenger astronomy 
consists of combining the data of neutrino-, cosmic-ray-, gamma-ray- and gravita-
tional wave telescopes to investigate the properties of the gravitational interaction. In 
Chap. 6 the search for Lorentz invariance violation from the individual messengers 
and multi-messenger analyses is discussed. 

One of the most exciting laboratories revealing properties of the gravitational 
interaction are Neutron stars, since the predictions of their characteristics are 
sensitive to the underlying model of gravity, as we will see in Chap. 7. In particular 
the existence and form of the universal relations and the quasi-normal mode 
spectrum is one major source of information. 

Chapter 8 turns the discussion towards black holes, whose existence has been 
directly demonstrated in gravitational wave observations and with the direct images 
provided by the Event Horizon Telescope in 2019 and 2022. The question discussed 
is whether the obtained data lead to the conclusion that the black holes are 
Kerr Black Holes predicted by general relativity, or possibly differ from these, 
as predicted by modified theories of gravity. In Chap. 9 further details, on how 
information about the characteristics of a black hole are extracted from gravitational 
wave signals are presented. 

Are the just mentioned observations really pointing towards a black hole, or are 
they compatible with matter configurations which nearly look like black holes from 
far? This question is discussed in Chap. 10. Objects which are candidates for such 
astrophysical systems are Boson stars. Their main difference to a black hole is that 
they do not possess a horizon, however, from far, it might be difficult to distinguish 
them from black holes. Moreover, Boson stars are natural counterparts to Neutron 
stars, and could serve as dark matter candidates. 

In Chap. 11 we leave the strong gravity regime and the impact of modified gravity 
on the evolution of stars is discussed. Here, mostly, corrections to the Newtonian
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potential play a role. However, this role is significant and provides clear tests of 
modified gravity. 

Another way to test modified gravity is to observe pulsars, as is discussed in 
Chap. 12. These serve as best clocks in space and in strong gravity. Deviation of their 
orbits from the ones predicted by general relativity can be detected to high accuracy. 
Pulsar timing allows for a precise determination of the so called Post Kepplerian 
Parameters, which can be predicted from the theory under consideration and then 
be constraint. 

Possible deviations from the Newtonian potential become relevant in short 
distance experiments in laboratories. A particular sensitive way to search for such 
weak field deviations employs the Casimir effect. In Chap. 13, the details on how 
the measurement of the Casimir effect can be used to learn about the properties of 
the gravitational interaction at small distances is presented. 

In the IIIrd part of the book, the topic will be the interaction between quantum 
matter and gravity.



6Cosmic Searches for Lorentz Invariance 
Violation 

Carlos Pérez de los Heros and Tomislav Terzić 

Abstract 

Cosmic messengers (gamma rays, cosmic rays, neutrinos and gravitational 
waves) provide a powerful complementary way to search for Lorentz invariance 
violating effects to laboratory-based experiments. The long baselines and high 
energies involved make Cherenkov telescopes, air-shower arrays, neutrino tele-
scopes and gravitational wave detectors unique tools to probe the expected tiny 
effects that the breaking of Lorentz invariance would cause in the propagation 
of these messengers, in comparison with the standard scenario. In this chapter 
we explain the expected effects that the mentioned detectors can measure and 
summarize current results of searches for Lorentz violation. 

6.1 Introduction 

The invariance of physical laws under Lorentz transformations is a fundamental 
requirement that has successfully guided the development of our current theory 
describing the basic constituents of matter and their interactions, the Standard Model 
of Particle Physics. Its meaning, that experimental results are independent of the 
orientation and velocity of the frame of reference, seems also a reasonable criterion 
for any physical theory. Therefore any deviation from this, in principle, hard-wired 
requirement of the Standard Model would indicate the emergence of new physics 
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at some given energy scale where the theory would break down, see Chap. 1. We  
do know that the Standard Model is not the ultimate description of nature, even if 
only because it does not describe Gravity alongside the other fundamental forces. 
But there are other reasons why the Standard Model needs to be extended, like the 
existence of neutrino masses, the strong CP problem or the uncomfortably, to some, 
number of free parameters in the model that an extended theory could account for. 
Besides, astrophysical observations, like the existence of dark matter or dark energy, 
need ultimately to be explained from a fundamental physics point of view and, 
whatever that explanation might turn out to be, it can not come from within the 
Standard Model. Not all the extensions of the Standard Model require or predict 
Lorentz invariance violation (LIV) but, contrarily, the observation of LIV effects 
would undoubtedly point to physics beyond the Standard Model. 

Breaking or deformations of Lorentz invariance are expected in models of 
quantum gravity with a minimal fundamental length that must be an invariant for all 
reference frames. This leads to a breakdown of Lorentz invariance at energies near 
the Planck scale. A consequence is that ultrarelativistic particles (small Compton 
wavelengths) propagating in vacuum between two points (i.e., source and detector) 
will perceive this quantum structure of space-time and cover the distance in a 
different time compared to propagation through classical, continuous, space-time. 
But LIV is not necessarily connected to the existence of a discrete space-time. 
Lorentz invariance breaking operators can be added in an effective field theory 
formulated in standard space-time. 

From an experimental point of view, searches for LIV tend to be carried out in a 
model independent way, just parameterizing the effect of LIV in power expansions 
of the free particle Lagrangian as we discuss below, and setting limits on the 
parameters from the lack of observation of any LIV effect. In particular the effect 
of LIV in the propagation of a particle can be parameterized quite generically as 
a modification of the dispersion relation, which acquires corrections at a given 
high-energy scale denoted below by .EQG. The usual starting point of experimental 
searches for Lorentz invariance violation (LIV) is therefore the modified dispersion 
relation 

.E2
i = m2

i c
4 + p2

i c
2

[
1 +

∞∑
n=1

η(i)
n

(
pic

E
(i)
QG,n

)n]
, (6.1) 

where the index i represents the particle type (e.g. photon, electron, proton, neutrino, 
pion, etc.), c is the standard special-relativistic invariant speed of light, . Ei, . pi, 
and .mi are the particle’s energy, momentum, and rest mass, respectively (n.b. 
for photons .mγ = 0). The series expansion in the square brackets represents 
a modification to the standard Lorentz invariant dispersion relation, presumably 
caused by quantum gravity. Each term is characterised by .E(i)

QG,n, the energy level 
at which that particular contribution becomes relevant. Typically, these are expected 
to be on the scale of the Planck energy, but it does not necessarily need to be so.
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The parameter .η(i)
n is either .+1 or . −1. It determines the sign of the modifying 

contribution, corresponding to superluminal or subluminal effects respectively. 
It is important to stress that the modified dispersion relation is not a consequence 

of any particular model of quantum gravity. Equation (6.1) is a rather simple  
parameterization, a model used to test LIV. A possible detection of an effect will not 
necessarily prove any particular theory of quantum gravity. However, it will trigger 
research to determine the cause and nature of the violation. LIV can be formally 
incorporated in extensions of the Standard Model in the form of effective theories 
that explicitly include LIV terms in a consistent manner. The most popular of these 
approaches is the Standard Model Extension (SME) [1, 2], whose connection to 
String theory was discussed in Chap. 1. The SME is a renormalizable quantum 
field theory that inherits the .SU(3) × SU(2) × U(1) group structure of the SM 
but extends its Hamiltonian to include general Lorentz violating terms. These terms 
introduce new effects like energy-dependent velocity of masless particles, modified 
interactions, modified neutrino oscillations, a possible direction dependence of the 
photon polarisation, photon instability, CPT violation or the possibility of . ν − ν̄

mixing or neutrino bremsstrahlung, giving rise to a rich phenomenology [3–6]. 
Although we will not go deep in discussing the underlying theories in this chapter 

(we refer the interested reader to Chaps. 1 and 2 for discussions on theory and 
phenomenology), it is worth mentioning that there are other scenarios than the SME 
in which the Lorentz symmetry is not strictly preserved as we know it, as in doubly 
special relativity (DSR) models [7, 8]. The underlying principles of the SME and 
DSR are fundamentally different. As mentioned above, the SME is an effective 
theory that adds Lorentz violating terms to the Standard Model. On the contrary, 
DSR, keeps the speed of light c as an observer invariant and a limiting propagation 
speed for low-energy photons, but adds an additional observer invariant in the form 
of a fundamental energy .EQG. Typically, .EQG is taken as the Planck energy but, 
in some models, it can be orders of magnitude below it. In order to accommodate 
this new invariant, Lorentz symmetry needs to be deformed, which in turn leads to 
deformed expressions for conservation laws, resulting in rather different predictions 
on the propagation of particles. In addition, some phenomena expected in LIV are 
not allowed in DSR. We will point these out as we go along. 

Although no experimental evidence of violation of Lorentz invariance has been 
found yet, experimental searches on many fronts are being carried out, from labora-
tory experiments [9–12] to astrophysical probes, the focus of this chapter. In what 
follows we describe the effects to be expected from LIV using cosmic messengers 
as probes, the experimental techniques used and the current experimental limits 
obtained with Cherenkov telescope arrays, neutrino telescopes, air shower arrays, 
and gravitational wave detectors.
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6.2 Cosmic Messengers as a Probe of LIV 

The cosmic messengers carrying information about processes in the universe are 
Gamma Rays, Neutrinos, Cosmic Rays and Gravitational waves. In what follows, 
we will discuss all of these, and how they are used to detect deviations from local 
Lorentz invariance. 

6.2.1 Gamma Rays 

Gamma radiation constitutes a significant portion of the electromagnetic spectrum. 
Astrophysicists classify every photon with energy above 100 keV as a gamma ray, 
regardless of the process in which it was created. Considering that the most energetic 
photon detected up to date was a 1.4 PeV (.1.4 × 1015 eV) [13], the gamma-ray band 
spans over more than 10 orders of magnitude in energy. 

Compared to some other cosmic messengers (e.g. neutrinos in Sect. 6.2.2), 
gamma rays are relatively easily detected and, since they are electrically neutral, 
they propagate on straight lines (compared to cosmic rays, see Sect. 6.2.3), meaning 
that their direction of arrival points towards their source. These characteristics, 
combined with their high energies, make gamma rays superb probes of the most 
energetic processes in the universe, particularly convenient for searches of LIV. 

6.2.1.1 Gamma Ray Detectors 
Gamma rays do not penetrate the atmosphere. Therefore, gamma-ray detectors 
either need to be placed on satellites in orbits above the Earth’s atmosphere, or 
the atmosphere needs to be used as a target in the detection process. In either 
case, the underlying process is fundamentally the same, though at different scales. 
When a gamma ray enters the atmosphere, it interacts with atomic nuclei in the 
air. It is absorbed and an electron–positron pair is created. Both of them lose 
energy through interactions with other nuclei, emitting additional gamma rays in the 
process through bremsstrahlung. These secondary gamma rays are also absorbed, 
and new e. −–e. + pairs are created. A cascade of particles, known as extensive air 
shower (EAS), develops for as long as bremsstrahlung is the preferred way for 
electrons to lose energy. Charged particles in the cascade can be energetic enough 
to propagate faster than light through the medium, instantaneously polarising 
molecules in the air as they pass through. As the molecules coherently depolarise, 
they emit flashes of so-called Cherenkov radiation, which peaks in the ultraviolet 
band. Photomultiplier tubes in Cherenkov detectors record the Cherenkov light 
emitted as a final consequence of a gamma ray penetrating the atmosphere. Shower 
images are usually ellipse-shaped, with the longer axis pointing towards the position 
of the gamma-ray source in the camera, while the image size is connected to the 
energy of the primary particle. Using imaging techniques, energies and directions 
of primary gamma rays are estimated.
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Showers induced by gamma rays contain predominantly electrons, positrons and 
photons, and their developments is governed through electromagnetic interaction. 
For that reason, they are often referred to as electromagnetic showers. Cosmic rays 
also induce extensive air showers, with several subtle but important differences. 
Unlike gamma rays, primary cosmic rays survive interactions with atomic nuclei 
in the medium. More importantly, in addition to the electromagnetic, the weak 
and strong interactions play important roles in the shower development. As a 
consequence, the so-called hadronic showers are composed of secondary baryons, 
mesons (such as kaons or pions), and leptons (electrons, muons, neutrinos, etc.). 
Hadronic showers often contain electromagnetic sub-showers. 

Hadronic showers are less homogeneous than gamma showers, which can be 
used to classify the type of the primary particle. As far as gamma-ray observations 
are concerned, cosmic rays constitute background, and their rate is in most cases 
much higher. That means that the region in the detector where the signal is expected 
will be contaminated with background events. The background flux is usually 
estimated from another region in the detector where no sources of gamma rays are 
expected. It is important to note that while the number of background events in 
the signal region can be estimated, as of yet there is no way of determining which 
specific event belongs to the signal and which to the background. This is quite a 
drawback in research which is performed on single events, which is the case in 
some LIV studies. 

The most important present-day Cherenkov telescopes are the High Energy 
Stereoscopic System H.E.S.S. (https://www.mpi-hd.mpg.de/hfm/HESS, [14, 15]), 
the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) (https://magic.mpp. 
mpg.de, [16, 17]) and the Very Energetic Radiation Imaging Telescope Array 
System (VERITAS) (https://veritas.sao.arizona.edu, [18]), while the next generation 
Cherenkov experiment, the Cherenkov Telescope Array (CTA) (https://www.cta-
observatory.org, [19]) is currently being constructed. More details on the extensive 
air showers and Cherenkov effect one can find in [20, 21], while for a detailed 
review of data analysis techniques in Cherenkov telescopes we refer interested 
reader to [22]. 

We already mentioned that the shower size is correlated to the energy of the 
primary particle. Therefore, the detector design will strongly depend on the targeted 
energy range. Starting with the lowest energies, satellite detectors are used to detect 
gamma rays with energies up to few hundred GeV. For example the Fermi Large 
Area Telescope (Fermi-LAT) (https://fermi.gsfc.nasa.gov/science/instruments/lat. 
html, [23]) is composed from two main parts. The first part consists of layers of 
conversion foils and tracking detectors, where a gamma ray is converted to an e. −–e. +
pair, and their trajectories are tracked to determine the direction of primary gamma 
ray. Showers are initiated in the calorimeter placed just below, where the energies of 
all shower constituents are summed to measure the energy of the primary particle. 
Fermi-LAT is sensitive in the energy range 20 MeV–300 GeV. Lower energies can be 
accessed if Compton scattering is used in the detector instead of pair creation. Some 
future space detectors, e.g. enhanced.ASTROGAM (e-ASTROGAM) [24], or the 
All-sky Medium Energy Gamma-ray Observatory (AMEGO) (https://asd.gsfc.nasa.
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gov/amego/index.html, [25]), will combine these processes to access lower energies, 
as well as measure the gamma-ray polarisation. Another deciding factor for detector 
design selection is the rate of gamma rays, which, as a general rule, falls off as 
a power-law of energy, requiring larger detector collection areas to access higher 
energies. The collection area of Fermi-LAT of .� 1 m. 2 is too small to detect a 
relevant number of gamma rays with energies above .∼ 300 GeV. In addition, the 
showers at these energies are too big to fit in the calorimeter, making gamma-ray 
energy reconstruction unfeasible. 

Cherenkov telescopes on the ground are, on the other hand, sensitive to gamma 
rays with energies from . ∼10 GeV to . �100 TeV. Showers below the low energy 
threshold produce Cherenkov radiation too weak to be detected and can not be 
properly reconstructed with these instruments. As we go to higher energies, gamma 
rays become too rare, and air showers too extended to be detected with Cherenkov 
telescopes. However, charged particles within the showers reach the ground and 
can be detected by water Cherenkov detectors. Experiments such as the High 
Altitude Water Cherenkov Observatory (HAWC) (https://www.hawc-observatory. 
org, [26]) employ arrays of water containers with photomultipliers, which record 
flashes of Cherenkov light in the water, not unlike water neutrino detectors (see 
Sect. 6.2.2). There are also hybrid detectors, as the Large High Altitude Air Shower 
Observatory (LHAASO) (http://english.ihep.cas.cn/lhaaso, [27]), which combine 
several detection techniques to detect the highest energies and to suppress the 
background. It is important to notice the significant overlap in energies covered 
by detectors of different types, which is essential for cross-instrumental calibration 
and collaboration. 

While the gamma-ray detection technique is fundamentally the same in all these 
instruments, the implementations, and therefore the observation strategies, are quite 
different. Instruments onboard the Fermi satellite have a wide field of view. The 
Fermi-LAT field of view covers almost 20% of the sky, and mostly observes in the 
sky survey mode. It scans the entire sky in 3 hours, with any given point remaining 
in the field of view continuously for at least 30 minutes. Cherenkov telescopes, on 
the other hand, observe only small portions of the sky at the time, with fields of 
view of up to .∼5 deg. Therefore, they perform pointed observations, with usually 
only one source in the field of view. Considering that Cherenkov telescopes rely on 
detecting flashes of optical and UV light in the air, they cannot be used during the 
day, or in bad weather. Satellite detectors, do not suffer of such restrictions. Water 
Cherenkov detectors have a field of view comparable to Fermi-LAT (e.g. HAWC 
instantaneously covers 15% of the sky) and also perform sky surveys. However, 
unlike satellite-borne detectors or Cherenkov telescopes, they cannot be pointed 
nor repositioned. Water Cherenkov detectors also use photomultipliers, but these 
are enclosed in light-tight water tanks, so their duty cycle is close to 100%, as in 
satellite detectors. 

6.2.1.2 Effects of Lorentz Invariance Violation 
Effects of modified photon dispersion relation can be most generally classified in 
two categories: (i) modification of the propagation speed, and (ii) modifications of 
photon interactions.
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Energy Dependent Group Velocity 
Assuming that the group velocity still corresponds to the derivative of energy with 
respect to momentum, one can easily derive from Eq. (6.1) 

.vγ = ∂Eγ

∂pγ

� c

[
1 +

∞∑
n=1

ηn

n + 1

2

(
E

EQG,n

)n
]

. (6.2) 

Obviously, the modification introduced in the photon dispersion relation makes the 
modified photon group velocity energy dependent, and different from c. Depending 
on the value of . ηn, the group velocity can be greater or less than the standard 
speed of light. These two behaviours are known as superluminal (.ηn = +1) and 
subluminal (.ηn = −1), respectively. 

Assuming that the photon speed is not constant but that it depends on energy, two 
photons of different energies will have different times of flight (often abbreviated: 
ToF). Therefore, by comparing times of flight of photons of different energies, we 
can calculate the difference in their speeds. Based on the derivation by Jacob & 
Piran in [28], the delay in the arrival times of two photons of different energies, 
emitted at the same time from the same source at redshift . zs is given by: 

.�t = t2 − t1 � −ηn

n + 1

2

En
2 − En

1

En
QG,n

Dn(zs). (6.3) 

where . t1 and . t2 designate the times of flight of photons of energies .E1 and . E2, 
respectively.

•? Exercise 
6.1. Starting from the dispersion relation for photons (Eq. (6.1)), calculate modified 

photon group velocity (Eq. (6.2)). Derive the expression for the arrival time delay between 
two photons emitted at the same time. 
Hint: follow the procedure from [28]. 

Notice that the time delay can be either positive or negative. E.g., for superlu-
minal behaviour, and .E2 > E1, . t ′2 will be shorter than . t ′1, and .�t ′ will be negative. 
.Dn(zs) accounts for the distance of the source. The expression most commonly used 
in experimental tests was proposed in [28]: 

.Dn(zs) = 1

H0

zs∫
0

(1 + z)n√
�m (1 + z)3 + �Λ

dz. (6.4)
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. H0, . �m, and .�Λ are the Hubble constant, the matter density parameter, and the dark-
energy density parameter. This expression was derived from LIV. DSR can result in 
different distance contributions, depending on the assumptions under which it was 
obtained. One of the results in the DSR framework and the LIV contribution, as well 
as the sensitivity of experimental tests to each of them were compared in [29]. It is 
the only study performed so far in which different phenomenological models are 
compared on experimental data. 

DSR with a specific choice of parameters can lead to expression (6.4). Details of 
dependence on the redshift notwithstanding, .Dn(zs) serves as a natural amplifier for 
time delay. 

Vacuum Birefringence 
Certain aspects of LIV allow photon group velocity to depend not only on the photon 
energy, but also on the polarisation. This effect is known as vacuum birefringence. 
In this scenario, the modified photon dispersion relation will be given as 

.E2± = p2c2
(

1 ± pc

EQG,1

)
, (6.5) 

where . ± represent different circular polarisation states (see, e.g., [30]). This will 
lead to different propagation velocities for different polarisation states, which will 
finally result in a rotation of the polarisation vector of a linearly polarised wave. The 
rotation angle will depend on the energy of the photon and the distance to the source 

.�θ � E2

EQG,1
D1(zs), (6.6) 

where E denotes the measured energy of the photon, and .D1(zs) is given in Eq. (6.4) 
for .n = 1. Photon birefringence arises in the Standard Model extension from mass 
dimension five operators, which corresponds to .n = 1 modification of the photon 
dispersion relation. For .n = 2, both polarisation states will have the dispersion 
relation modified in the same way. 

Anomalous Gamma-Ray Absorption 
Modifying a particle dispersion relation can affect its interactions, either through 
modifying the kinematics or dynamics of a process, or both. This can lead to 
different reaction thresholds and process rates (i.e. decay widths and cross sections) 
compared to the ones predicted within the Standard Model. Such processes, 
most relevant for astrophysics, are synchrotron radiation, Compton scattering, 
Breit–Wheeler and Bethe–Heitler process, etc. Other phenomena, such as vacuum 
Cherenkov radiation, photon decay, or photon splitting, are kinematically forbidden 
under standard special relativity, but become possible if Lorentz symmetry is 
broken. 

As we already argued in Sect. 6.1, not all these effects will be present in DSR. 
Take photon stability as an example: if there is no preferred frame of reference (as



6 Cosmic Searches for Lorentz Invariance Violation 249

is the case in DSR), photons should decay in all frames or none. Otherwise, one 
observer would see the process take place, while an observer in another equivalent 
frame would see it as forbidden. This situation is contradictory to requirement of 
equivalent inertial frames. In addition, DSR is still in its development phase, and 
the formality is still not fully understood. Therefore, at this stage, one still cannot 
calculate cross sections. 

Another important aspect to note is that photons are not the only particles 
involved in these processes. Most commonly they will also involve electrons, which 
poses the question of whether all particles are equally affected by LIV. 

Finally, while these effects refer to different processes, they all have a similar net 
result, which is changing a number of emitted or detected gamma rays at different 
energies. Therefore, measuring these effects boils down to measuring spectra of 
astrophysical sources and searching for anomalous behaviour. Let us discuss details 
with an example. 

The universe is filled with low-energy background electromagnetic radiation, 
usually classified as radio background (RB), cosmic microwave background (CMB), 
and extragalactic background light (EBL). Gamma rays of very high energies can 
interact with the photons from the background fields to create electron–positron 
pairs and are therefore absorbed in these processes. As a rule of thumb in the special-
relativistic scenario, the higher energy of a gamma ray, the more likely it is to be 
absorbed, which results in the softening of the spectrum. The optical depth of the 
universe to the gamma rays is given as: 

.τ(E, zs) =
∫ zs

0

dl

dz
dz

∫ 1

−1

1 − cos θ ′

2
d cos θ ′

∫ ∞

ε′
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σγ γ (s) n
(
ε′, z

)
dε′. (6.7) 

It depends on the comoving number density of background photons per unit 
energy, here marked as .n

(
ε′, z

)
, and the cross section given in standard quantum 

electrodynamics as 
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with 

.β(s) =
[
−4m2

ec
4

s

]1/2

, (6.9) 

and s being the invariant mass. The integrals run (right to left) over all background 
photon energies, . ε′, scattering angles, . θ ′, and the thickness of the medium between 
the source and the observer. Primed variables are given in the interaction comoving 
frame. Therefore, . ε′

th denotes reaction threshold for the Breit–Wheeler process in the
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comoving frame. The expression for .dl/dz depends on the adopted cosmological 
model. For the . ΛCDM cosmology, it is given as: 

.
dl

dz
= c

H0 (1 + z)
√

�m (1 + z)3 + �Λ

. (6.10) 

Violation of Lorentz symmetry can result in the modification of the kinematics or 
dynamics of the process. It can be relatively easy to show that the reaction threshold 
changes to [31] 

.ε′
th = 2m2
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E′(1 − cos θ ′)
− ηn
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EQG,n

)n
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while the invariant mass becomes 

.s = 2E′ε′(1 − cos θ ′) + ηn

(
E′

EQG,n

)n

E′2. (6.12)

•? Exercise 
6.2. Work out the reaction threshold and the invariant mass for the Breit–Wheeler process 

in standard special relativity, and in LIV. Compare your results to Eqs. (6.11) and (6.12). 
Hint: Start by calculating the reaction threshold and invariant mass in the special-relativistic 
scenario. Then repeat the exercise using modified dispersion relation of the gamma ray. Note 
that in the latter case, because of the violation of the Lorentz symmetry, the calculation has 
to be done in the laboratory frame. 

In both cases, the first term is the same as in the special relativity, while the 
second term is a consequence of the modification of the photon dispersion relation. 
The net result of these modifications is that, depending on the value of . ηn, the  
gamma-ray absorption by the background fields will be weaker (for .ηn = −1, 
i.e. subluminal behaviour), or stronger (for .ηn = +1, i.e. superluminal behaviour) 
than in standard special-relativistic case. In other words, the universe will be most 
transparent to gamma rays in subluminal scenario, and least transparent in the 
superluminal scenario. Modified gamma-ray absorption is shown in Fig. 6.1. This  
phenomenon of modified universe transparency will be reflected on the observed 
spectra of astrophysical sources. To be specific, superluminal scenario will result in 
the observed spectra to appear even softer than the standard absorption. There is no 
clear way of resolving the effect of LIV in the superluminal scenario from what is 
expected in standard physics. Subluminal behaviour, on the other hand, will lead to 
harder spectra. On top of that, at high enough gamma-ray energies, the absorption
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Fig. 6.1 Gamma-ray absorption coefficients as a function of gamma-ray energy for a source at 
redshift .zs = 0.6. The subluminal (here marked by .S = −1) and superluminal (here marked 
by .S = +1) scenarios are represented in the upper and lower plots, respectively. The standard 
special-relativistic scenario is represented by solid black lines in bot plots, while dashed lines 
represent modified absorption for different values of quantum gravity energy scale. In all cases . n =
1 modification was considered. The dot-dashed blue line represents another effect investigated by 
the authors not connected to LIV. Figure adopted from [32]. ©AAS. Reproduced with permissions. 
All rights reserved
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will cease entirely, and provided there is emission at those energies, the spectrum 
will correspond to the source intrinsic one. These features could be detected in the 
spectra, provided the source emits gamma rays at high enough energies. 

We will not discuss here other possible consequences of LIV in so many details. 
However, we will say that, if real, they have similar effects on the observed spectra. 
For example, in the superluminal scenario the photon can become unstable and 
decay into an electron–positron pair, or split in several lower-energy photons, 
where splitting in three photons is the most dominant channel. As a result, not all 
emitted gamma rays will reach the detector. The effect is similar to the gamma-
ray absorption by the EBL, especially in the superluminal case. However, photon 
decay and splitting would be seen as a cutoff in the spectra, rather than a gradual 
attenuation. Just as Breit–Wheeler process can be modified in LIV, so can the 
Bethe–Heitler, which describes gamma-ray interactions with an atomic nucleus. To 
be specific, the cross section in the subluminal scenario is significantly smaller, 
while in the superluminal scenario it remains quite similar to the standard special-
relativistic one. In either case the number of gamma rays reaching Earth will not 
change with respect to standard special relativity. However, a smaller cross section 
means that particle showers will develop deeper in the atmosphere. Consequently, 
fewer showers will be detected, resulting in the observed spectra resembling the 
scenario of superluminal EBL absorption. 

6.2.1.3 Analysis Methods 
Several analysis methods have been proposed to test energy-dependent photon 
group velocity. Here we will focus on the maximum likelihood (ML) estimation 
method, most often employed by experimentalists. It is a powerful statistical method 
applicable to various problems. Alternative analysis methods can be found in e.g. 
[33–39] (see [40] for a comparative discussion). 

We will first discuss the application in the time of flight measurements, for which 
this method was developed and first introduced in [41]. We start by defining a 
probability density function (PDF) for a photon of energy E to be detected at a 
time t , under certain conditions: 

.f (s)(E, t) =
∫ ∞

0
G(E,Etrue) Aeff(Etrue, t)�(t ′, Etrue) dEtrue. (6.13) 

All our knowledge and assumptions about the emission process and the measure-
ment technique are contained in this expression. In particular:

• Energy resolution and bias, .G(E,Etrue), takes into account imperfections of 
the instrument. It is the probability for a gamma ray of energy .Etrue to be 
reconstructed as E. For this reason, the integral goes over all possible values 
of .Etrue.

• Instrument acceptance, .Aeff(Etrue, t), sometimes also called effective area or 
collection area, is the probability for the instrument to detect a gamma ray 
of energy .Etrue at a moment t . This function will be null for energies outside



6 Cosmic Searches for Lorentz Invariance Violation 253

of the instrument sensitivity range. Dependence on time represents changing 
observation conditions.

• Emission and propagation effects are contained in .�(Etrue, t
′). This includes 

the energy and temporal distribution of gamma rays at the emission, as well as 
propagation effects. The latter in turn include the redshift of the gamma-ray 
energy, gamma-ray absorption on the background radiation, or effects induced 
by LIV. The emission time . t ′ is related to the detection time t in the following 
way: 

.t ′ = t + ξnE
n
true, (6.14) 

where the parameter . ξn represents the strength of the LIV effect. It is introduced 
in the following way to facilitate numerical computations: 

.ξn = −ηn

n + 1
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1

En
QG,n

Dn(zs). (6.15) 

Note that Eq. (6.14) contains only the LIV-induced modification to the time of 
flight. An additive constant, corresponding to the energy-independent time of 
flight between the source and detector, which is the same for all photons, does 
not affect the final result, and is usually ignored. 

Obviously, the probability of detecting a photon of a certain energy at a given 
time will depend on the assumed distribution of gamma rays at the emission, the 
so-called emission template. While gamma-ray detectors are capable of precise 
measurements of arrival times for each photon, our ability to estimate the emission 
time for each photon emitted from an astronomical object is limited at best. 
Therefore, in order to make precise measurements on LIV, the emission time needs 
to be constrained in some way. Unlike in laboratory experiments, astrophysicists 
cannot control their sources. But we can choose the most adequate ones for a 
particular study. In this case, sources with strong and fast changes of flux make a 
good choice. Sources of highly variable gamma-ray flux are pulsars, gamma-ray 
bursts (GRB), and active galactic nuclei (AGN) in high-emission states, usually 
called flares. 

Pulsars, with their millisecond pulses, provide a very strong constraint on the 
emission time, and are very reliable. On the other hand, only a handful of pulsars 
have been detected at energies of a few 100 GeV and above, and all of them inside 
the Milky Way, thus the LIV effects, if any, are less amplified by the distance. 
Gamma-ray bursts are violent explosions, usually associated with collapses of 
massive stars into black holes or mergers of binary neutron stars. These transient 
events are energetic enough to be seen in other galaxies and at large redshifts, and 
their short duration and variability provide strong constraints on the emission time. 
However they are entirely unpredictable. Instruments onboard the Fermi satellite are 
capable of detecting numerous GRBs because of their wide field of view. Cherenkov 
telescopes, on the other hand, observe only small portions of the sky at the time,
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and rely on other instruments to alert them of ongoing GRBs. However, repointing 
takes time, making GRBs notoriously difficult to catch. In addition, the signal above 
.∼100 GeV from GRBs at redshifts above .zs = 1 is attenuated because of gamma-
ray absorption on extragalactic background light, posing an additional difficulty. 
So far, only four GRBs were significantly detected with Cherenkov telescopes, and 
only one was used for LIV study. We will take a closer look into that case shortly. 
Active galactic nuclei are persistent strong sources of gamma rays at distances from 
very small to large redshifts. However, steady emission is not particularly useful 
for time of flight studies. Flaring episodes, on the other hand, are characterised by 
fast changes of flux, which constrain the emission time and also provide richer data 
samples of gamma rays. Although the flux variability in AGN flares is not as fast as 
in pulsars or GRBs, these states of enhanced emission last longer than GRBs, can 
sometimes be predicted from observations in lower-energy bands, and are in general 
easier to catch.

•? Exercise 
6.3. Generate a data sample of 1000 gamma rays. Each event should be characterised 

with emission time t , given in seconds, and energy E, given in GeV. Let the distribution 
of emission times follow normal distribution, and distribution of energies follow a power 
law .�(E) ∝ E−γ , with .γ = 2.5. Use Eq. (6.14) to calculate the detection time for each 
gamma ray assuming they were emitted from a source at redshift 0.5 and . EQG = EPl =
1.22 × 1019 GeV. Plot the distribution of arrival times and compare it to the distribution of 
the emission times. Do the same both for .n = 1 and .n = 2. Repeat the exercise for different 
values of .EQG and different redshifts. 

Note that the same exercise could be performed for neutrinos, as well as cosmic rays. 
What is the problem when using cosmic rays for such analysis? 

Now, let us consider an example of LIV study performed on gamma-ray burst 
GRB 190114C observed by the MAGIC telescopes [42], which was the first such 
study done on a gamma-ray data observed by Cherenkov telescopes. The MAGIC 
telescopes detected GRB 190114C above 1 TeV in energy [43]. The observations 
started 62 seconds after the burst, with the light curve showing smooth decay of 
the flux. The MAGIC observations results are shown in Fig. 6.2 with black points. 
Note that the scales are logarithmic, meaning that the flux changes very quickly. 
However, the decay is a monotone power law. One can easily demonstrate that 
adding an energy-dependent time delay to individual gamma rays will not change 
the overall shape of the light curve, therefore making it virtually impossible to 
resolve source-intrinsic effects from the ones induced by LIV. Fortunately, experts 
in gamma-ray bursts managed to create model of the gamma-ray emission based 
on observations in lower energy bands combined with theoretical inferences [44]. 
The result is represented with a full black line in Fig. 6.2. Using this model as a 
template for the temporal distribution of events provides a very strong handle on
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Fig. 6.2 Light curve of GRB 190114C above 300 GeV. Black points represent measured flux by 
the MAGIC telescopes. The full black line represents the emission template as reported in [44]. 
Reprinted from [42]. ©2020 APS. Reproduced with permissions. All rights reserved 

energy-dependent time delay. A very sharp peak in flux will strongly dominate the 
probability density function (Eq. 6.13). In this case, no change of spectrum with 
time was detected, so the entire emission template was obtained by folding the light 
curve with the observed spectrum. 

Once we have the probability density function for each event in the data sample, 
we combine them in the likelihood function. It is the combined probability that a 
given set of data would be produced from some value of a parameter of the chosen 
statistical model (see, e.g., [45]). In our case, the data are .NON events in the signal 
region, and the parameter of interest is the LIV parameter . ξn (see Eq. 6.15). We 
construct the likelihood function by multiplying the complete probability density 
functions of all events in the signal region 

. L(ξn)=
NON∏
i=1

(
p

(s)
i

f (s)(Ei, ti)∫ Emax
Emin

dE
∫ tmax
tmin

f (s)(E, t)dt
+p

(b)
i

f (b)(Ei, ti)∫ Emax
Emin

dE
∫ tmax
tmin

f (b)(E, t)dt

)
.

(6.16) 

The product goes over all events in the signal region. As noted in Sect. 6.2.1.1, 
the signal region contains also some background events, which also need to be 
taken into account. The superscripts “s” and “b” stand for signal and background, 
respectively. .p(s)

i is the probability that event i belongs to the signal, and respectively 
for background. The probability density function for background (.f (b)(Ei, ti)) 
is similar to the one for signal, given in Eq. (6.13). The energy and temporal 
distributions of the background events is not necessarily the same as for the signal,



256 C. Pérez de los Heros and T. Terzić

while the instrument effects should be the same. However, the most important 
difference is that we do not consider a time delay in background. While it may 
be present, we do not exactly know the sources of the background effects, so we 
cannot determine the event distributions at the source; we only consider them at the 
detector. Putting it simply, we do not care what happens with the background, we 
just acknowledge that it is present. 

Now that we have all the components of the likelihood function, we maximise it 
for . ξn. To be more precise, we define test statistics (TS) as 

.L(ξn) = −2 ln
L0(ξn)

L(ξn)
, (6.17) 

where . L0 corresponds to the likelihood function for the null model. According to 
the Wilks’ theorem, the test statistics asymptotically approaches the . χ2 distribution 
under the null hypothesis [46]. The value of . ξn for which L has minimum is the 
estimation of the true value that we are looking for. This procedure enables us also 
to determine the statistical significance of the measured value of . ξn, as well as to  
produce confidence intervals. The strongest constraints on the energy-dependent 
photon group velocity for the order .n = 1 were set based on the observation of 
GRB 090510 with Fermi-LAT to .E(−)

QG,1 > 2.2 × 1019 GeV and . E(+)
QG,1 > 3.9 ×

1019 GeV, for subluminal and superluminal scenario, respectively [35]. As discussed 
in [40], the sensitivity to quantum gravity energy scales is some what different for 
orders .n = 1 and .n = 2 (see Table 6.1). 

Thanks to the very fast change of flux and relatively large redshift of 
GRB 090510 the sensitivity to the 1st order modification was very high. When 
it comes to the 2nd order modification, the maximal energy in the sample carries 
more weight compared to other two parameters. That is where Cherenkov telescopes 
have the advantage over space detectors, and why the strongest constraints for the 
order .n = 2 were set based on the observation of the blazar Mrk 501 with the 
H.E.S.S. telescopes: .E(−)

QG,2 > 8.5 × 1010 GeV and .E(+)
QG,2 > 7.3 × 1010 GeV, for 

subluminal and superluminal scenario, respectively [47]. The GRB 190114C had 
all three requirements met to a high degree, and while the LIV constraints were not 
the most constraining in either scenario, they were very close and supporting the 
results from the studies performed on GRB 090510 and Mrk 501. 

From the experimental point of view, the maximum likelihood method is a very 
natural tool because it allows to directly include the information on the detector 
response in the analysis. Moreover, any other unknown can be introduced as a 

Table 6.1 Sensitivity to .EQG,n considering characteristics of the source and the sample. .Emax is 
the highest gamma-ray energy in the sample, .tvar is the shortest variability timescale in the light 
curve, and . zs is the redshift of the source 

.EQG,1 .∝ .Emax .t−1
var . z∼1

s

.EQG,2 .∝ .Emax .t
−1/2
var .z

∼2/3
s
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nuisance parameter. On the other hand, one obvious downside of this approach 
is that it requires making certain assumptions about the emission processes and 
propagation of gamma rays. Our present knowledge of astrophysical sources is 
not nearly good enough to predict the exact emission time of each particular 
photon. Moreover, it is quite possible that the source-intrinsic processes are energy 
correlated, which could mimic or disguise effects of LIV (see, e.g., [48, 49]). It will 
still be quite some time before our understanding of sources emission mechanisms 
becomes precise enough to describe correlations. For the time being, a clever 
workaround is to combine sources at different distances. While the time delay 
coming from LIV clearly depends on the distance between the source and the 
detector, the source intrinsic processes are not expected to be distance dependent. 
Furthermore, different types of sources have different emission mechanisms, so by 
combining them in a single analysis the effect of possible correlations in source-
intrinsic processes is decreased. This method was explored in [29]. So far, only a 
proof of concept was demonstrated on Monte Carlo simulations, with a study on 
real data promised to follow soon. 

Probability density, likelihood, and test statistics, as statistical methods, are 
also used to search for other effects of LIV. Many astrophysical sources emit 
polarised photons. Provided that the polarisation of emitted light is known, one can 
measure the birefringence effect by comparing polarisation of the detected photons 
to the expected polarisation at the emission. However, even if there is no way 
of establishing the angle of polarisation at the emission, some processes, such as 
synchrotron radiation, emit strongly polarised photons. If the angle of rotation of the 
polarisation depends on the photon energy, after crossing astrophysical distances, 
the signal will be depolarised. Therefore, one can measure the degree of polarisation 
in the signal against expected degree of polarisation when no LIV is assumed. Such 
study was performed in [50], using broadband optical polarimetry of 1278 AGN and 
GRBs. Unfortunately, it is virtually impossible to measure gamma-ray polarisation 
with detection techniques which rely on particle showers. The highest energies 
used to measure vacuum birefringence were a few hundred keV. As modest as this 
may be compared to the PeV energies accessible to us nowadays, depolarisation 
measurements placed very strong constraints on the energy-dependent polarisation 
hypothesis. 

As explained in Sect. 6.2.1.2, subluminal scenario can induce measurable fea-
tures in the observed spectra of gamma-ray sources. Such features have not been 
detected so far, but strong constrains have been set to the quantum gravity energy 
scales. As in the time of flight studies, we do not know exactly the intrinsic spectra 
of sources that we observe. However, we do have certain expectations based on our 
knowledge of our sources. In universe transparency studies, as in the case of active 
galactic nucleus Mrk 501 observed with the H.E.S.S. telescopes shown in Fig. 6.3, 
one starts by assuming a source-intrinsic spectrum. In this case, a simple power law 
was assumed. Then, an absorbed spectrum is calculated using a certain EBL model 
(in this case, the authors decided on the one from [51]) and assuming no LIV, and 
fitted to the data. The resulting spectrum is shown with a black line in Fig. 6.3. Then
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Fig. 6.3 Spectral energy distribution of blazar Mrk 501 observed with the H.E.S.S. telescopes. 
The black points and full black line represent the fit to the EBL-attenuated spectrum. A simple 
power law was assumed for the intrinsic spectrum. The expected spectrum observed for the same 
intrinsic shape but considering subluminal scenario with .n = 1 and the quantum gravity energy 
scale corresponding to the Planck energy is represented by the dashed red line. Reprinted from 
[47]. ©AAS. Reproduced with permissions. All rights reserved 

the procedure is repeated for different values of .EQG to test hypotheses of different 
levels of LIV. For each value of .EQG test statistics is computed according to 

.T S = χ2(EQG) − χ2(EQG → ∞), (6.18) 

where .EQG → ∞ corresponds to no LIV. Putting all test statistics together creates 
a test statistics profile, which, in a similar manner as in the time of flight studies, 
allows estimating confidence intervals and constraining the quantum gravity energy 
scales. 

In the study described here, it was assumed that electron dispersion relation 
is not modified, and the only effect of LIV is modified kinematics of the Breit– 
Wheeler process. How solid are these assumptions? If we had to take into account 
modifications of dispersion relations of several particles, and consider different LIV 
effects on top of that, it would be virtually impossible to obtain a very significant 
result. Fortunately, there are other types of studies which constrain these other 
effects, allowing us to neglect them. Let us start with the modification of electron 
dispersion relation. The modifying term in the electron dispersion relation for 
.n = 1 was constrained based on the synchrotron radiation from the Crab nebula 
to seven orders of magnitude above the Planck energy [52]. Compton scattering is
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one of the most important processes for production of gamma rays in AGN. LIV 
could also result in anomalous Compton scattering, which would compete with 
other processes and effects, making them extremely difficult to resolve. However, 
based on several combined arguments, it was shown that possible LIV effects 
on the Compton scattering were unlikely to be relevant in realistic astrophysical 
environments [32]. Photon decay and splitting is only possible in the superluminal 
scenario, with no equivalent process in the subluminal scenario. As we argued 
earlier, gamma-ray absorption in the superluminal scenario becomes even stronger, 
and very difficult to resolve from source-intrinsic effects, which is why anomalous 
absorption is usually tested in the subluminal scenario. In that case, there is no 
danger of photon instability contaminating the results. However, if electromagnetic 
shower development in the atmosphere was modified in subluminal LIV scenario, 
it would have the opposite effect to the subluminal LIV gamma-ray absorption, and 
the two effects would compete against each other. It was, therefore, essential to test 
for one of these effects in an environment where the other was not present. The 
effect on the shower development was tested on the gamma rays from the Crab 
Nebula [53]. The Crab Nebula is located .2.0 ± 0.5 kpc from Earth, which is a too 
short distance for gamma-ray absorption on EBL to be significant, providing a clean 
data sample to constrain anomalous shower development. Influence of LIV on the 
extensive air shower development was constrained to .EQG,2 > 2.1×1011 GeV (note 
that only order .n = 2 was constrained). Considering all these constraints, gives us 
ground to test anomalous gamma-ray absorption independently. As in the time of 
flight studies, multiple sources can also be used to test the anomalous gamma-ray 
absorption. Eighteen spectra from six different AGN were used in [54] to set the  
strongest constraints on universe transparency to date: .EQG,1 > 6.9 × 1019 GeV 
and .EQG,2 > 1.6 × 1012 GeV. 

6.2.2 Neutrinos 

Neutrinos are excellent cosmic messengers since they are electrically neutral and 
interact only weakly (and gravitationally). They can therefore reach us without 
deflection or appreciable absorption directly from their sources. But they are very 
difficult to detect and that poses an experimental challenge. The ingenuity of 
experimentalists has made it possible to build large neutrino telescopes that can 
collect enough events to extract statistically meaningful measurements. Neutrino 
telescopes are large-volume detectors using open transparent media like water 
or ice both as a target and as Cherenkov medium. They detect the Cherenkov 
radiation emitted by particles produced in high-energy neutrino interactions and 
are able to reconstruct the original direction and energy of the neutrino from this 
information [55]. They are deployed at great depths to reduce the copious flux of 
muons produced in cosmic ray interactions in the atmosphere that leave tracks in 
the detectors. Although the main reason to build neutrino telescopes is to study the 
universe with high-energy neutrinos, were high-energy refers to neutrino energies 
above a few tens of GeV and up to several PeV, they have proved to be highly



260 C. Pérez de los Heros and T. Terzić

versatile detectors capable of addressing many topics related to fundamental physics 
in a competitive way to accelerator experiments [56–59]. 

The detector sizes, typically . O(km. 3), are determined by the weak astrophysical 
neutrino flux they are built to study and by the tiny neutrino cross section 
with matter. There are currently three large neutrino telescopes in operation, 
IceCube (https://icecube.wisc.edu, [60]) at the geographic South Pole, KM3NET 
(https:www.km3net.org, [61]) in the Mediterranean sea and Baikal in lake Baikal 
(https://baikalgvd.jinr.ru, [62]). An additional project, P-ONE (https://www.pacific-
neutrino.org, [63]) is under R&D in the Pacific ocean, off the coast of Canada, 
while ANTARES (https://antares.in2p3.fr, [64]), the predecessor of KM3NET off 
the coast of Toulon, in the Mediterranean, has recently been decommissioned after 
sixteen years of operation. Smaller underground neutrino detectors with an energy 
threshold of a few MeV, like Super-Kamiokande (https://www-sk.icrr.u-tokyo.ac.jp/ 
sk/index-e.html, [65]), are complementary to their high-energy brothers in energy 
reach and can also competitively address fundamental physics topics. 

The common design feature of all these detectors is an array of optical modules 
monitoring a volume of a transparent medium. The exact design of the optical 
modules depends on the detector, but in essence an optical module consists of 
one, or several, photomultiplier tubes with associated electronics to timestamp and 
digitize the detected signal. Charged-current neutrino interactions of any flavour on 
a nucleon N , .νl + N → X + l, will produce the corresponding lepton, l, along 
with a cascade of particles X at the interaction vertex from the hadronization and 
decays of the interaction products, see Fig. 6.4. The muon produced in charged-
current . νμ interactions can travel several kilometers in matter, depending on material 
and energy. At the energies of importance in neutrino telescopes, muons lose 
energy mainly through bremsstrahlung, direct electron-positron production and 
photonuclear interactions when they traverse the detector medium. These processes 

Fig. 6.4 Typical event patterns in a large-scale neutrino telescope. Left: A muon track from a . νμ

interaction. Right: The signature of the cascade of particles produced in a . νe or . ντ charged-current 
interaction or any flavour neutral-current. Each coloured dot represents a hit optical module. The 
size of the dot is proportional to the amount of light detected and the colour code is related to 
the relative timing of light detection: red denotes earlier hits, blue corresponds to later hits. Figure 
from [56], © Springer Nature. Reproduced under CC-BY-4.0 license
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increase with energy but the energy loss scales as .1/m2
μ or .1/mμ for bremsstrahlung 

and pair production respectively. So high energetic muons will still penetrate long 
distances in media like water or ice, leaving a track in the detector which follows 
the original direction of the neutrino. Electrons from charged-current . νe interactions 
lose energy mainly to bremsstrahlung due to their lower mass, creating gamma rays 
that induce an electromagnetic shower in the close vicinity of the interaction. Taus 
from . ντ interactions are too short lived to leave a track and they also produce a 
cascade at the production point (which is indistinguishable from the decay point) 
that is very difficult to tell apart from an electromagnetic cascade of a charged-
current . νe interaction. Only taus of energies larger than 10s of PeV (not detected 
so far) can travel a few tens of meters before decaying, leaving a track between the 
production and decay points. Neutral-current interactions, .νl + N → X + νl , where 
the outgoing neutrino is not detected, will also leave a cascade-type signature in the 
detector at the interaction point. The absolute time resolution of the optical modules 
must be of the order of a ns to allow precise event reconstruction, and the detector 
is calibrated so that the amount of light detected can be translated to the total energy 
of the neutrino. Additionally, the global timing of the detector is kept synchronized 
to a master GPS also to the ns level to be able to do astronomy. 

These measurements, neutrino arrival time, pointing accuracy and energy res-
olution, define the performance of a neutrino telescope. Typically the energy 
reconstruction for cascades is better than for events producing a muon (if this one 
is not contained, i.e., is produced and decays, in the detector volume). The typical 
energy resolution for cascade events in a neutrino telescope, depending on design, is 
10% or better, while for through-going tracks it can be more than double that. Note 
that the geometric instrumented volume of a neutrino telescope does not coincide 
with its effective detection volume. The latter depends on the signal searched for 
and the event energy, so the effective volume of a neutrino telescope is analysis 
dependent and it can be both larger or smaller than the geometric volume. 

There are several ways to use high energy neutrinos to search for LIV effects 
and there are excellent reviews on the subject [4, 6, 66–69] but we will concentrate 
here on two techniques that are especially relevant for the topic of this book: 
measuring the relative arrival times of the different messengers in a multi-messenger 
observation of a transient event, like a supernova, GRB, or flaring AGN, or to 
use neutrino oscillations, an interference phenomenon, which can provide a very 
sensitive probe of new physics. 

Multi-Messenger Observations 
In this approach the LIV signature is a deviation in the speed of propagation of 
energetic neutrinos with respect to electromagnetic radiation in the form of relative 
time of arrival. The time difference with respect to the standard (no LIV) scenario 
can be both positive (delay) or negative (pre-arrival) of high energy neutrinos with 
respect to photons. As for studies performed on gamma-rays alone, GRBs and 
flaring AGN are excellent candidates for these multi-messenger studies as well, 
see Sect. 6.2.1.2. The effect on the propagation of high energy neutrinos can be 
parameterized quite generically as a modification of the dispersion relation, as
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was done in Eq. (6.1). Note that at the energies of relevance, . O(TeV) and above, 
neutrinos can be considered as massless particles in these studies. In practice there 
are two problems with this approach. First, the propagation time difference is 
redshift-dependent (see Eq. 6.3), and only about 20% of the well localized GRBs 
have an accurately measured redshift. The second problem is related to the reliability 
of the clock, i.e., to what extent neutrinos are emitted at the same time as, or 
close enough to, the burst of gamma rays. The evolution of GRBs pre, during 
and post the gamma-ray emission that is considered the time of the burst is still 
rather poorly known, and neutrinos could be emitted before, contemporaneously 
or after the gamma rays [70]. Indeed the fireball model of GRBs [71, 72] predicts 
that neutrinos can be emitted in different energy ranges during the precursor, burst 
and afterglow phases of a GRB. Searches for neutrino emission from GRBs with 
neutrino telescopes are therefore sometimes performed within a time window of 
up to several days around the detected time of the burst in gamma rays [73]. It 
will be difficult to assign a difference between the arrival time of neutrinos and 
electromagnetic radiation from a single GRB to LIV effects if indeed neutrino 
emission from a GRB is detected in the future. There have been several proposals 
to try to ameliorate this problem by using similar populations of GRBs. Assuming 
that the production of neutrinos and photons is similar in similar GRBs, the intrinsic 
relative delay between neutrinos and photons due to production processes at the 
source should be independent of distance, while it should depend on distance if 
the delay is due to LIV effects during propagation [74]. A similar experimental 
approach is to consider that if the arrival time correlation between gamma rays 
and neutrinos from GRBs follows a systematic pattern, e.g., neutrinos that can be 
associated with the position in the sky of an ensemble of similar GRBs, are detected 
systematically later or earlier than the electromagnetic radiation, that could indicate 
the effect of LIV [75]. However, it would still be difficult to unambiguously allocate 
such effect to LIV, instead of a common production mechanism of neutrinos in 
GRBs. We need to advance our knowledge on the sequence of physical processes 
that lead and follow a GRB event (a relativistically expanding environment, still 
poorly known) in order to further distinguish with confidence new physics effects in 
such objects. Note also that these methods depend on an accurate measurement of 
the distance (redshift) of the GRBs. 

Even if the detection of an anomalous effect in the propagation of neutrinos 
would need a quite detailed knowledge of the time evolution of the source in 
order to unambiguously assign it to LIV effects, the non-observation of an unusual 
propagation can be used to limit the LIV scale without such knowledge of the 
source. Indeed the only two extragalactic objects that have been identified as 
neutrino sources so far, the supernova SN1987A and the blazar TXS 0506-056, have 
been used to such effect. 

The supernova SN1987A was the first celestial object to be detected in neutrinos, 
along with optical, X-ray and radio observations [76]. The other object is the 
blazar TXS 0506-056, which has been identified as a neutrino source as well as 
an optical, gamma ray and radio source [77]. These two objects provide an actual 
example on how the ideas mentioned in the previous paragraph can be adapted to
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set strong limits on the scale of LIV effects. SN1987A was a supernova in the Large 
Magellanic Cloud, at a distance of 51.4 kpc, observed on February 23rd 1987. 
A total of 25 neutrinos were detected by three neutrino detectors in operation at 
the time (Kamiokande [78], IMB [79] and Baksan [80]. See also [81]) during a 
short time interval of about 13 seconds, three hours before the visible light was 
detected. The total amount and energy of the detected neutrinos (. O(10) MeV) and 
the duration of the burst was found to be in accordance with the predictions of 
how a type-II supernova forms [82]. A supernova explosion is a complex process 
where neutrinos are expected to be produced during different stages of the explosion 
through different process (. β decays of star material, . e+ and . e− capture by nucleons 
or .e+e− and . νν̄ annihilations) while they are thermalized through elastic scattering 
with nucleons, electrons and positrons. Although all neutrino flavours escape within 
a few seconds during the collapse, if one could follow the different phases of the 
explosion with subsecond resolution, the development of the relative neutrino flux 
per flavour can be predicted as the collapsing star goes through distinct density 
phases. Different neutrino flavours feel different opacities in the medium due to 
their specific flavour-dependent interactions, and free streaming from the system 
occurs at different times. However none of the detectors mentioned above had such 
timing resolution, neither sensitivity to all neutrino flavours. The neutrinos detected 
from SN1987A were probably . ̄νe, through the process .ν̄e +p → n+ e+, which has 
a dominant cross section over the process .νe + e− → νe + e− at MeV energies 
(the Kamiokande collaboration estimated that only one neutrino among the 12 
detected originated from the latter process). But neither a detailed picture of neutrino 
emission, nor of the relative time of neutrino emission with respect to photon release 
is necessary to set a limit on LIV using the neutrino signal from Kamiokande, 
IMB and Baksan. LIV effects on the propagation of neutrinos would result in an 
energy-dependent arrival time (see Eq. (6.3) in the case of known redshifts . zs), so 
the measured time span of the burst in the detectors, 13 seconds, can be used to set 
a limit on the strength of LIV effects, without any further knowledge of the neutrino 
emission sequence at the source. 

Crude as it is, this method gave at the time a much better limit on the scale 
of LIV than any obtained from neutrino beams in accelerators. If LIV effects 
on the propagation of neutrinos are parametrized at first order as . v/c = [1 ±
(E/EQG)] (compare with Eq. 6.2 for n=1), a limit on .EQG can be set requiring 
that the time spread in the arrival of the neutrinos is not larger than the observed 
window. This gives a 95% confidence level limit .EQG > 2.7(2.5) × 1010 GeV 
for subluminal(superluminal) neutrinos (and .EQG > 4.6(4.1) × 104 GeV if the 
dependence on energy is quadratic, i.e., .(E/EQG)2) [38]. These are limits that are 
about five orders of magnitude more constraining than similar ones obtained from 
an analysis of MINOS data [83]. 

The second object that has been used to extract limits on LIV is the blazar 
TXS 0506-056. This blazar has a redshift .z = 0.3365 ± 0.0010 and it is known 
to present flaring episodes, as Fig. 6.5 illustrates for the case of gamma rays. On 
September 22nd 2017 IceCube detected a neutrino with an estimated energy of 
290 TeV from the direction of this object (vertical red dashed line in Fig. 6.5) in
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Fig. 6.5 Gamma-ray flux of TXS 0506+056 versus time, integrated above 800 MeV. The green 
vertical band denotes the gamma-ray flare of 2017/2018. The vertical red dashed line marks 
the IceCube neutrino alert IceCube-170922A and the vertical yellow band the neutrino flare 
detected by IceCube in archived data from 2014. Reprinted from [84]. ©AAS. Reproduced with 
permissions. All rights reserved 

coincidence with a gamma-ray flaring period of several weeks. Even if the neutrino 
emission time can not be assigned to a given specific gamma-ray flare to be able to 
assign a common clock between photons and neutrinos, the fact that neutrinos are 
detected within about 10 days of the photons can be already used to extract limits 
on the difference between their respective velocities in vacuum in a similar way as 
discussed above for SN1987A [85, 86]. A difference in velocity between neutrinos 
and electromagnetic radiation induces a difference in arrival time of .�t = �v D, 
where D is the distance to the object. Assuming a LIV effect linearly proportional 
to energy, .�v = −E/EQG where .EQG has the same interpretation as above, a limit 
of 10 days in . �t translates into a limit of .EQG � 3 × 1016 GeV. This is still below 
the Plank mass, where quantum gravity Lorentz violating effects are assumed to 
surface. But it is a much more restrictive limit that the one obtained from SN1987A, 
illustrating the strength of using cosmological distances in these kind of studies. 

From the experimental point of view, there is a distinctive difference between 
using supernovae neutrinos with energy of a few ten MeV or high energy astrophys-
ical neutrinos of TeV energies and above. MeV neutrinos do not provide a precise 
pointing in neutrino detectors and the association of a MeV neutrino burst with a 
supernova is done purely on timing. The electrons and positrons produced in the 
reactions .νe +e− → νe +e− and .ν̄e +p → n+e+ quickly scatter (and the positron 
annihilates), losing information from the direction of the incoming neutrino (the 
angular distribution of the SuperK and IMB SN1983A events is practically isotropic 
with respect to the position of the source). For larger, km.

3-size, neutrino telescopes 
the situation is not better due to the large distance between optical sensors, up to 
. O(100) m, in comparison with the short electron (and positron) tracks of less than 
a meter length (the mean free path of a 10 MeV electron in water/ice is about 5.6 
cm [87]). However, the copious neutrino flux expected from a supernova explosion 
(between .1057−1058 neutrinos in total) induces an increase of events in the detectors
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during a few seconds, which constitutes the signal. In the case of neutrino telescopes 
a supernova signal would consist of a coherent increase in optical sensor noise 
across the whole array for the few seconds of the burst, but without the possibility of 
identifying individual electrons or positrons from the neutrino interactions, neither 
with the possibility of pointing to the source, e.g. [87]. 

On the other hand, TeV-PeV neutrinos accompanying GRBs or AGN flares are 
extremely rare and good pointing is needed to associate the neutrino with the object, 
which is only achieved with the long muon tracks produced in charged-current . νμ

interactions. Therefore, of the three neutrino flavours, only one is usable in practice 
if a precise association with the position of the source is required. The advantage is 
that the expected background from atmospheric neutrinos from the same direction 
and within the chosen time window can be negligible, less than 0.01 events in a 
kilometer cube detector during the time of a few seconds burst, or a few events if 
the time window is of the order of several days (of course larger time windows allow 
for a higher probability of background sneaking in, weakening the usefulness of the 
method). 

There is another way of using multimessenger probes to study LIV effects 
without the need of relative timing by taking into account the fact that LIV allows 
processes like “vacuum neutrino bremsstrahlung”,1 

.ν → νγ [88]. In this scenario, 
the astrophysical neutrino flux would be a source of gamma rays, contributing to 
the total diffuse flux that has been measured by different experiments, e.g. [89]. 
By requiring that neutrino bremsstrahlung due to LIV should not contribute to the 
diffuse gamma-ray flux in a way that contradicts the measurement, a limit on the 
strength of LIV can be established. Another consequence of the above mentioned 
process, along with .ν → νe+e−, which is also allowed in LIV models [90], 
would be a new “GZK-like” effect (see Sect. 6.2.3) for high energy neutrinos. 
Astrophysical neutrinos would lose energy during their propagation, appearing at 
lower energies in the spectrum and showing a cutoff at an energy scale that depends 
on the LIV strength. The observation of astrophysical neutrinos up to a given energy 
can thus be used to set limits on LIV [69, 91–95]. These two methods rely on a 
precise measurement of the astrophysical neutrino flux and knowledge of whether 
it presents a cutoff or not (and at what energy if that is the case), something that is 
not established at this point. Still, the sheer observation of the first PeV neutrinos by 
IceCube, implying that any cutoff in the neutrino spectrum lies above such energy, 
allowed to improve limits on several LIV-coefficients of the SME by up to 20 orders 
of magnitude (!) with respect to previous limits at the time [96]. 

Flavour Interferometry 
This technique makes use of the two classes of “beam” that a neutrino telescope is 
subject to: the copious, but relatively short-baseline (at most Earth-diameter), atmo-

1 This process is usually known as vacuum Cherenkov emission although it does not really 
resemble Cherenkov radiation since the usual Cherenkov radiation is emitted by the media which 
the relativistic particle traverses, not by direct radiation from the particle itself. 
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spheric neutrino flux or the much weaker, but cosmological-baseline, astrophysical 
flux. Both have their advantages and disadvantages. 

The advantage of using atmospheric neutrinos to address new physics with 
neutrino telescopes is that the flux is relatively well known. “Conventional” 
atmospheric neutrinos arise mainly from the decay of pions and kaons produced 
in cosmic ray interactions and their spectrum follows a power-law as .�(E) ∝ E−γ , 
with . γ typically quoted as .−3.7, although the actual index depends on the energy 
range under consideration. This flux has been measured by several experiments to 
a good agreement with theoretical calculations [97]. A “prompt” component arises 
from the decay of heavier D. s and B. s mesons containing a charm or bottom quark. 
This prompt flux can become comparable to the conventional atmospheric neutrino 
spectrum at energies above several hundred TeV. Incidentally, this is the energy 
where the astrophysical neutrino flux becomes also stronger than the conventional 
atmospheric neutrino flux, so the prompt flux remains undetected so far. IceCube 
measurements of the neutrino flux above 100 TeV provide only upper limits on the 
contribution of the prompt flux, with a lower limit compatible with zero [98]. 

Without entering into the known details of neutrino oscillation theory (see, 
e.g., [99] for a review) let us just mention a few facts that will be useful to understand 
how they can be used to detect LIV effects. Assuming a two-flavour scenario for 
illustration purposes, a neutrino state of flavour . α, .|να〉, can be expressed as a 
superposition of the mass states 1 and 2, with masses . m1 and . m2 respectively, 

.|να(t)〉 = −sinθe−iH1t |ν1〉 + cosθe−iH2t |ν2〉 , (6.19) 

where the Hamiltonian for free-propagating neutrinos, .H1,2, is based on the 
dispersion relation .E2

i = p2
i + m2

i (.i = 1, 2) and . θ is the “mixing angle”, used 
to parametrize the mass composition of the flavour state while keeping unitarity. 
The neutrino flavour at the detector, .|να〉, is related to the flavour at production, 
.
∣∣νβ

〉
, by the known relation 

.|να〉 =
∑

β=e,μ,τ

P
(
νβ → να

) ∣∣νβ

〉
S , (6.20) 

where S stands for “source” and the transition probability .P
(
νβ → να

)
represents 

the standard flavor oscillations in the absence of new physics, which is linearly pro-
portional to the square mass difference of the mass eigenstates and the propagation 
length, and inversely proportional to the neutrino energy, 

.P
(
νβ → να

) = sin22θsin2

(
�m2

1,2L

4E

)
(6.21) 

where .�m2
1,2 = m2

2 − m2
1, measured in .eV 2, E is measured in GeV and L in km, 

and where it has been assumed that neutrinos are relativistic and one can set . t ∼ L

in Eq. (6.19), the distance traveled between production and detection.



6 Cosmic Searches for Lorentz Invariance Violation 267

•? Exercise 
6.4. Derive the neutrino flavour transition probability for a two-flavour scenario (see 

Eq. 6.21). Then repeat the derivation assuming modified neutrino dispersion relation to 
obtain Eq. 6.22. 
Hint: follow the procedure from [100]. 

Figure 6.6 illustrates the idea behind using atmospheric neutrinos to measure 
neutrino oscillations. If the neutrino energy can be measured to a suitable precision, 
and it can in neutrino telescopes, then the path-length from production to the 
detector is related to the arrival direction of the neutrino, which in local detector 

Fig. 6.6 Measuring neutrino oscillations with atmospheric neutrinos. Since the flavour oscillation 
probability depends on the path-length from production to detector, a measurement of such path-
length for atmospheric neutrinos is the zenith angle they arrive to the detector. A measurement 
of zenith angle and energy shows the typical flavour oscillation pattern, as shown in Fig. 6.7. 
Illustration courtesy of IceCube collaboration. All rights reserved
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Fig. 6.7 .νμ → νμ survival probability, denoted as the color code, as a function of energy and 
arrival direction between vertically up-going (.cosθz = −1) and horizontal (.cosθz = 0). Upper: 
Standard oscillation scenario. Lower: Oscillations under the assumption of a Lorentz-violating 
term proportional to energy with strength set to the current limit. Plots courtesy of B. Skrzypek. 
All rights reserved 

coordinates is the zenith angle. So a measurement of .L/E is possible in Eq. (6.21). 
The left plot of Fig. 6.7 shows the expected atmospheric . νμ disappearance proba-
bility under the assumption of standard oscillations as a function of neutrino energy 
and arrival direction.
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As a simple illustration on how anomalous flavour-changing effects due to 
Lorentz invariance violation can modify the energy and zenith angle distributions of 
atmospheric neutrinos let us consider the following simple example. As mentioned 
above, one of the effects of LIV can be the modification of the dispersion relation for 
massive particles (Eq. 6.1). Let us assume here for generality that the parameter . η is 
eigenstate dependent, . ηi (here . η can still be positive or negative, but is not restricted 
to values .±1 any more). Under this assumption, the Hamiltonian in Eq. (6.19) 
is different from the free-propagation case, and a similar calculation that yields 
Eq. (6.21) now gives (e.g. [100]), 

.P
(
νβ → να

) = sin22θsin2

(
�m2

1,2L

4E
+ �ηEn+1L

4En
P

)
(6.22) 

where .�η = η2 − η1. If .�η = 0, i.e., there is no difference in the propagation 
of the two neutrino mass eigenstates due to LIV effects, we recover the standard 
oscillation formula of Eq. (6.21). Note that in this scenario neutrino oscillations are 
only sensitive to differences in the strength of LIV effects on mass eigenstates, and 
not on the individual . ηs, in a similar way that standard oscillations are sensitive 
to the difference of the masses squared and not to individual masses. The previous 
parameterization of LIV effects on neutrino propagation provides a useful way to 
perform experimental searches, since the parameters .�η and n can be probed by 
measuring L and E in neutrino telescopes and comparing the result to the expected 
oscillation pattern without LIV. The most common way to extract limits on LIV 
effects is by using oscillograms, two-dimensional plots of the oscillation probability 
versus E and .cos(θz), as the ones shown in Fig. 6.7. By comparing the data with the 
expected pattern of a LIV model, the parameters of the model in question can be 
constrained [100, 101]. Note that in the example shown in the right plot of Fig. 6.7 
the effects of LIV appear at high energies, where neutrino telescopes are specially 
sensitive with respect to smaller neutrino detectors or accelerator experiments. 
Indeed Super-Kamiokande data were readily used already in 1999 to search for an 
anomalous oscillation pattern due to new physics, among it LIV, and limits set at 
the level of .|1 − βν | < 10−24, where . βν represents the neutrino velocity in units of 
c [102]. 

A rather straightforward way to search for LIV effects with atmospheric neutri-
nos is to exploit the fact that the relatively short distance of travel for horizontal 
neutrinos (.cos(θz) = 0) is not enough to develop any appreciable spectral distortion 
due to LIV, even at high energies. However, the effect becomes maximal for up-
going neutrinos crossing the Earth (.cos(θz) = −1.0), as can be seen on the right 
plot of Fig. 6.7. So the ratio of transition probabilities of vertical events to horizontal 
events can be used to determine, or set limits to, LIV parameters within a given 
model. Indeed the Super-Kamiokande, ANTARES and IceCube collaborations have 
performed searches for LIV using this technique [100, 101, 103]. The left plot of 
Fig. 6.8 shows such ratio from a search for LIV effects with atmospheric neutrinos 
by the IceCube collaboration. An example of how specific parameters of the Lorentz
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Fig. 6.8 Upper: Ratio of the arrival probability of vertical to horizontal events in IceCube, as a 
function of energy. The coloured lines show the prediction for different strength of LIV effects, 
defined as different values of the relevant parameters in the SME Hamiltonian. The null hypothesis 
(expected event ratio under standard oscillations) is shown as the dashed, straight horizontal line. 
Data is shown as the black dots with accompanying statistical error bars. Lower: Example of the 
excluded parameter space for one of the SME coefficients responsible for LIV. The parameter . c(6)

μμ

represents the contribution to Lorentz violation that can be extracted from muon disappearance 
measurements. The parameter . ρ6 represents the total strength of the Lorentz violation effect. 
The super/sub-script 6 indicates the dimension of the operator in the SME Hamiltonian. The 
best-fit point is shown by the yellow cross and the blue (red) region is excluded at 99% (90%) 
confidence level respectively. Both figures reproduced from [103]. ©Springer Nature. Reproduced 
with permissions. All rights reserved
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invariance terms in the Lagrangian can be constrained is shown in the right plot of 
Fig. 6.8, with more examples available in the additional material of reference [103]. 
This is a simple and powerful approach to access LIV effects in the neutrino sector, 
thanks to the high sensitivity that the oscillation patterns shows to deviations from 
the standard scenario. 

An intriguing possibility of breaking Lorentz invariance is the introduction of an 
anisotropy in the space-time (equivalently, a preferred spatial direction) due to the 
coupling of the Lorentz violation terms with the neutrino propagation vector . p. This  
will induce an oscillation probability that is dependent on the arrival direction of 
the atmospheric neutrinos which, since the detector is fixed to the Earth, means 
a time-dependent event rate at the detector in the form of a sinusoidal neutrino 
disappearance signal. Searches for such an effect have been performed with IceCube 
data by measuring the event rate as a function of right ascension and, even with a 
limited data sample [104], competitive constraints were set to the coefficients of the 
SME Hamiltonian responsible for the predicted anisotropy. This is an effect that can 
also be searched for with accelerator neutrino beams at a complementary energy 
regime as has been reported in [105–107]. An equivalent analysis was performed by 
the SNO collaboration, but using solar neutrinos [108]. In this case the pathlength 
is the radius of the orbit of the Earth and the expectation is a modulation on the 
oscillation probability of electron neutrinos over the course of a year, as the Earth 
moves in the frame of the Sun. The results of the SNO analysis set limits for the 
first time on 38 previously unconstrained parameters of the SME and confirmed that 
LIV effects do not occur below an energy scale of about .1017 GeV. 

However, the most sensitive search for LIV effects is achieved with astrophysical 
neutrinos. The extremely long path-lengths can compensate the weak expected 
effects and the results of searches can probe up to the Planck regime. In principle 
this approach relies on an assumption about the original neutrino flavour ratio 
at the source, something unknown, and on the shape of the neutrino energy 
spectrum, something currently measured with limited precision [98]. If neutrinos 
in astrophysical sources are produced in pion and kaon decays, the same flavour 
ratio at the source is expected as in atmospheric neutrinos, .νe : νμ : ντ = 1 : 2 : 0. 
But that might not be the case in scenarios with strong magnetic fields, where muons 
can lose a significant fraction of their energy before decaying, and the high energy 
neutrinos produced arise only from the direct pion decay. In this case the expected 
flavour composition at the source is .νe : νμ : ντ = 0 : 1 : 0 [109]. On the other 
hand, neutron-rich sources can emit neutrinos through neutron decay producing a 
flavour composition at the source of .νe : νμ : ντ = 1 : 0 : 0 (although this scenario 
seems to be disfavoured by current IceCube data [110]). It would seem therefore 
that an exact knowledge of the initial flavour composition at the source is key to be 
able to study LIV effects arising during cosmological propagation of neutrinos. In 
practice, however, the dependence on the source flavour composition is ameliorated 
since the flavour composition at Earth, after the neutrinos travel over cosmological 
distances, is reduced to a small region around .νe : νμ : ντ = 1 : 1 : 1 in the flavour 
parameter space, practically independent of the original flavour composition at the 
source. The left plot of Fig. 6.9 illustrates this effect [111]. The three axes of the
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Fig. 6.9 Upper: Allowed neutrino flavour composition at Earth (colored areas) when different 
flavour compositions at the source are assumed (corresponding colour point). The original flavour 
composition is washed out by standard oscillations over cosmological distances. The three axes 
of the plot show the fraction of each neutrino flavour, with pure . νe, pure . νμ and pure . ντ at 
the respective vertices. Current neutrino oscillation parameters have been used. Any measured 
flavour ratio of astrophysical neutrinos outside the coloured areas would point to new physics, 
rather independently of any source composition. Figure from [111]. © APS. Reproduced 
with permission. All rights reserved. Lower: Current measurement of the flavour triangle with
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plot show the fraction .α(e,μ,τ) of each neutrino flavour, with pure . νe, pure . νμ and 
pure . ντ at the respective vertices. The fraction of each flavour at any point in the 
triangle is obtained by projecting the point onto each axis in the order (e, . μ, . τ ) 
and in the direction that points closer to the origin of each axis, so that the sum of 
the projections is one. The coloured regions show the allowed flavour composition 
at Earth starting from a flavour composition at the source indicated by the color 
code, assuming standard oscillations and no new physics. Although there is some 
“memory” of the source flavour ratio, the allowed flavour compositions at Earth 
concentrate around well delimited regions. A measured flavour ratio outside these 
regions points to new physics. This is a very powerful method to access new physics 
effects, not only due to LIV [112], in a way that does not depend on relative 
arrival timing between different messengers and it is quite independent of the 
neutrino production process at origin. The right plot of Fig. 6.9 shows results from 
the IceCube collaboration obtained with the high-energy astrophysical neutrino 
flux [113]. The white cross in the plot marks the best-fit point from the analysis 
and the allowed 68 and 95% confidence level regions on the flavour composition 
of astrophysical neutrinos are marked with the white lines. The plot shows that 
current data is still compatible with the expectation of standard oscillations and 
typical source flavour compositions, marked by the orange, red and green points 
in the upper-left caption of the figure with the same color. More data is needed to 
reduce the allowed regions and make a more precise measurement of the flavour 
ratio to be able to establish if any deviation from the null hypothesis (no LIV) is 
present. 

6.2.3 Cosmic Rays 

While any particle arriving at the Earth from outer space can be considered a cosmic 
ray, in this section we will just focus on protons and heavier nuclei of ultrahigh 
energies (.1018 eV and above). 

The interaction of a cosmic ray with an atom in the higher atmosphere, typically 
occurring at an altitude of about 25–30 km, produces a cascade of particles that 
develops through the atmosphere reaching a maximum particle density at a depth 
that depends on the interaction energy. Stable particles can reach the ground over an 
area that can cover several km. 2. The direction and energy of the primary cosmic ray 

. �

Fig. 6.9 (continued) astrophysical neutrinos by the IceCube collaboration. The best-fit point 
is marked with a white cross (“x”) and the 68% and 95% contours are indicated with the 
white lines. The orange, red and green points mark the expected composition at the detector 
from the assumptions at source given in the upper-left caption of the figure with the same 
color. Although a neutron-rich source composition is disfavoured, the results are compatible 
with standard oscillations and a source flavour composition of both .νe : νμ : ντ = 1 : 2 : 0 or 
.νe : νμ : ντ = 0 : 1 : 0. Figure from [113]. © AAS. Reproduced with permission. All rights 
reserved 
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Fig. 6.10 Illustration of the hybrid detection of an air shower in the Pierre Auger Observatory. The 
white dots represent the surface water Cherenkov tanks while the semicircles show the location 
and field of view of the fluorescence telescopes. The red line represents the original direction 
of the primary cosmic ray. The blue curve shows the shower particle density as a function of 
atmospheric depth, directly accessible through the measurement of fluorescence light by the four 
telescopes. Muons and electrons that reach the surface trigger several of the water Cherenkov 
tanks, represented by the coloured dots. Reproduced from [116]. ©APS/Carin Cain. Reproduced 
with permissions. All rights reserved 

are reconstructed with the help of large surface arrays of particle detectors.2 Due to 
the impossibility to tightly instrument such large surface areas, air shower arrays 
are segmented detectors, consisting of “stations” separated by a given distance 
and specialized in detecting electrons and muons. We already discussed water 
Cherenkov tanks and/or scintillators in Sect. 6.2.1. They are commonly used to 
detect the electromagnetic component of the shower at ground level, but the array 
can be supplemented with telescopes that detect the fluorescence light produced 
by the excitation of nitrogen atoms in the atmosphere during the development of 
the particle shower, see Fig. 6.10. The largest air shower arrays in operation are 
the Pierre Auger Observatory in Argentina (https://www.auger.org, [117]), Large

2 Cosmic rays can also be detected directly by placing particle detectors in space, e.g. [114, 115], 
although the necessarily small detection area of these kind of detectors limit their energy reach and 
detection rate. 

https://www.auger.org
https://www.auger.org
https://www.auger.org
https://www.auger.org
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High Altitude Air Shower Observatory (LHAASO) in Tibet [118] and the Telescope 
Array in Utah (http://telescopearray.org, [119]), with primary energy thresholds of 
.1017, .1012, and .1016.5 eV respectively. The development and ground footprint of 
an air shower started by a high energetic gamma, a proton or heavy nucleus are 
slightly different, and they can be distinguished. In this section we discuss only the 
cosmic ray detection capabilities of air shower arrays since photon detection has 
been discussed in Sect. 6.2.1.

•? Exercise 
6.5. A cosmic ray (proton) propagates towards Earth with the kinetic energy T and scatters 

on a stationary proton in the atmosphere. Calculate the kinetic energies of these two protons 
in the center of mass system. What is the cosmic ray energy that would be equivalent to 
proton–proton collision at the LHC at 14 TeV? 

The original direction of the cosmic ray primary can be obtained by measuring 
the relative arrival time to each detector unit of the particles that reach the ground, 
while the amount of particles detected at the ground is a proxy for the primary 
energy. Both the measurement of primary direction and energy is aided by the 
measurement of the fluorescence light during the development of the shower in the 
atmosphere. Note that the estimation of the energy of the primary relies in detailed 
Monte Carlo simulations of particle production and decay during the development 
of the particle shower, which in turn relies on physical quantities like cross sections 
that have been measured in the laboratory, but not at the center of mass energies 
reached in cosmic ray interactions (the threshold energy of the Pierre Auger array 
in the CM frame, a .1017 eV proton hitting a stationary nucleon in the atmosphere, 
is comparable with the 14 TeV CM energy at the LHC). Particle production in air 
showers also involve processes that can not be perturbatively calculated in QCD, 
so there is a degree of model dependency in the translation of measured particle 
multiplicity at ground level and primary energy. 

The main difference between cosmic rays and the messengers considered in the 
previous sections is that cosmic rays are electrically charged and their propagation 
over astrophysical distances is affected by intergalactic and galactic magnetic fields. 
Given the poorly known structure and distribution of intergalactic magnetic fields, 
it is difficult to precisely know above which energy a cosmic ray can point to its 
source, but it seems clear that one needs energies above .1018 eV to achieve pointing 
of order a degree resolution [120]. This means that cosmic ray sources can not 
be located as precisely as in the case of gammas or neutrinos, neither can cosmic 
rays be used in coincidence with electromagnetic or neutrino emission to measure 
relative arrival times. 

However, there are still tests of LIV that can be performed with the observed 
cosmic ray flux without the need to identify the sources. And there are two

http://telescopearray.org
http://telescopearray.org
http://telescopearray.org
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levels at which this can be done: either by looking into LIV effects during the 
propagation of the cosmic rays, or by looking for LIV effects in the development 
of the particle shower once the cosmic ray has interacted in the atmosphere. 
Note that the predictions on how a particle shower evolves (production cross 
sections of different particle species, lifetimes and particle propagation and energy 
losses in a medium) are based on Lorentz invariant Standard Model processes. 
Modified particle kinematics due to LIV will modify the expected relative particle 
composition and spectrum of air showers at the surface, so any deviation from the 
expected signal in an air shower detector can be interpreted as new physics. This is 
easier said than done, since the underlying assumption is then that the development 
of a particle shower is precisely understood in terms of standard processes and their 
uncertainties, which is currently far from obvious at energies beyond those available 
at accelerators or beyond the regime where perturbative QCD can be used. 

Calculations on particle shower development assuming LIV effects can of course 
still be done to evaluate what signatures experimentalists should be aware of and at 
what strength level they should appear, given current constraints on LIV. But an 
atmospheric particle shower is a complex system and if individual LIV parameters 
are introduced, for example, as a modified dispersion relation as in Eq. (6.1) for  
each particle type, the amount of new parameters makes it difficult to make concrete 
predictions. So simplifications are usually done where LIV is introduced for some 
particle type but not for others (Fig. 6.11). 

Fig. 6.11 Attenuation length of cosmic rays due to photo-pion production as a function of energy 
for different LIV coefficients [123]. .δhad,0 = 0 represents the standard non-LIV case, while 
stronger LIV effects make the universe more transparent for high energy cosmic rays, challenging 
the standard interpretation of the GZK cutoff. Figure from [129], reproduced under the CC BY 4.0 
license
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For example if one focuses on muon production in cosmic ray showers, LIV 
processes as .μ → e+γ or .νμ → νe+γ will change the muon density of the shower 
at ground level. Additionally, the injection of e’s and . γ ’s during the development of 
the shower due to the above processes will induce electromagnetic cascades within 
the main shower. This anomalous electromagnetic component of the shower can be 
detected by fluorescence detectors and it will also change the electron density at 
ground level. The effect will be more pronounced for inclined showers due to the 
longer shower development. The effect of LIV on the muon decay probability can 
be parameterized as 

.� = 1

γ τ0
+ η

γ 3

τ0
, (6.23) 

where . τ0 is the standard muon lifetime, . γ is the usual Lorentz factor and . η is the 
parameter describing the strength of LIV [121]. A measurement of the electron 
and muon composition of cosmic ray showers at ground level can thus be used 
to set a limit on . η. Even with the relatively limited data on inclined air showers 
existing at the time, the authors in [121] could set a limit on .η < 10−25, which 
was competitive at the time with limits derived from atomic physics or the absence 
of a Greisen–Zatsepin–Kuzmin (GZK) cutoff (see below). A similar argument 
can be developed considering the effect of LIV on atmospheric neutrinos, which 
distorts the standard pion decay kinematics and therefore the atmospheric neutrino 
spectrum. When considering the measured atmospheric muon-neutrino spectrum, 
the dispersion relation (Eq. (6.1)) can be simplified to 

.E2 = m2 + p2(1 + η), (6.24) 

where now . η is the parameter describing the strength of LIV, and is not limited to 
values . ±1. Using this probe, a limit on the strength of LIV effects can be set at a 
level of .10−13, see Fig. 6.12, although under certain model assumptions [122]. 

One of the predicted distinctive features of the cosmic ray energy spectrum is the 
existence of a cutoff at an energy above .EGZK ≈ 6×1019 eV due to the interaction of 
protons with the cosmic microwave background and the extra-galactic background 
light. Although protons are rare with respect to heavier nuclei at ultrahigh energies, 
let us consider a proton with an energy larger than .EGZK. In that case, the process 
.p + γCMB → �(1232) → p + π0 (or .→ n + π+ with the subsequent decay of the 
neutron into .p + e− + ν̄e), will result in a proton of a lower energy, where .γCMB is a 
photon from the all-permeating cosmic microwave background with a mean energy 
in the current epoch of .6 × 10−4 eV. The above process has an energy threshold of 
.EGZK ≥ (m2

� − m2
p)/2E2

γ CMB
, so a proton with .E > EGZK will rapidly lose energy 

through pion photoproduction until its energy falls below .EGZK. A similar effect 
happens for heavier nuclei, which are broken into lighter nuclei of lower energy 
by photo-dissociation. The GZK cutoff is therefore a universal limitation for the 
propagation of cosmic rays. It means that if a cosmic ray with an energy . E > EGZK
is detected, it either comes from quite close in the universe (the mean free path for
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Fig. 6.12 Expected atmospheric muon neutrino energy spectrum for different values of LIV 
strength, denoted by the parameter . α (dashed, dotted and dash-dotted curves) compared with 
experimental measurements by different detectors. . α has the same interpretation as . η in Eq. (6.24). 
Figure reprinted from [122]. Copyright 2022 by the American Physical Society. All rights reserved 

a proton with .E > EGZK is about 10 Mpc, quite independent of the initial energy), 
or some non-standard physics like LIV is at play in its propagation. Turning the 
argument around, the observation of the GZK cutoff [124, 125] sets a limit on the 
strength of LIV effects.

•? Exercise 
6.6. Calculate the threshold energy for the GZK cutoff. 

There is one caveat in this argument and it is that the position of the GZK cutoff 
we observe is the entangled effect of production at the source and propagation 
through cosmic distances. If LIV effects become important above a given energy 
that is achieved during the acceleration or production of the cosmic rays, as well as
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during propagation, we do not have a way to disentangle these two sources of LIV. 
Usually, though, it is effects during propagation, through the assumption of non-
standard particle dispersion relations or anomalous thresholds for photo-production, 
that are used to probe LIV with cosmic rays [126–128]. Figure 6.11 illustrates 
the effect that different strengths of LIV (parameterized by the coefficients . δ, see  
Eq. (6.26) below) have on the attenuation length of cosmic rays. Simulations of 
the propagation of ultrahigh energy cosmic rays including LIV show that they will 
interact less with the background photons and they can propagate further than they 
would do in the absence of LIV. This is the basis for using the observed cosmic ray 
spectrum to set limits on the . δ parameters. Given that LIV effects should appear 
at high energies (we do not have any evidence for LIV at the energies reached at 
accelerators), the modifying term in Eq. (6.1) is necessarily small, and redefining 

.δi,n = ηi,n

En
QG

(6.25) 

where n represents the order of LIV and i denotes a particle species, Eq. (6.1) can 
be recast as a power expansion in energy, 

.E2
i = p2

i + m2
i + �N

n=0δi,nE
2+n
i (6.26) 

Measurements of the energy spectrum and cosmic ray flux composition at 
ultrahigh energies by the Pierre Auger Observatory, see Fig. 6.13, leave little room 
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Fig. 6.13 Energy spectrum for standard (non-LIV) cosmic ray propagation (brown curve) com-
pared to the Pierre Auger Observatory data (black dots). Different colors denote the contribution 
from different mass numbers (A=1, 2<A<4 and 5<A<22 in red, grey and green, respectively). 
Figure from [129], reproduced under the CC BY 4.0 license



280 C. Pérez de los Heros and T. Terzić

for LIV effects in the propagation of ultrahigh energy cosmic rays and allow to 
set very stringent limits on several . δ parameters for hadrons: .δhad,0 < 10−19, 
.δhad,1 < 10−38 eV −1 and .δhad,2 < 10−57 eV −2 at 5. σ confidence level [129]. 
The difficulty in this kind of analysis is the modeling of the “standard” propa-
gation scenario against which data are compared. On the astrophysical side, the 
distribution of the diffuse extra-galactic background light is difficult to asses due 
to the large local backgrounds. On the particle physics side, photo-nuclear cross 
sections need to be extrapolated over several orders of magnitude in energy with 
respect to measured values. These unknowns add uncertainties to the simulations 
of extensive air showers and therefore on the extracted mass composition through 
the measured .Xmax , the depth at which the shower contains the maximum number 
of particles. Meaningful limits on LIV coefficients can still be set as long as the 
characteristics of the observed cosmic ray spectrum and composition are compatible 
with expectations within uncertainties. But a detailed understanding of the standard 
model physics in the propagation and interaction of ultrahigh energy cosmic rays is 
needed if ever a deviation from expectations is to be explained by new physics. 

There is another process linked to the existence of LIV that can also lead to a 
suppression of ultrahigh energy cosmic rays: “gravitational Cherenkov radiation”, 
an effect that has been argued that could take place when the speed of a particle 
exceeds the speed of propagation of gravity. In the presence of LIV the radiation of 
a graviton by cosmic rays with speeds larger than the speed of gravitational waves 
would result in an unconventional energy loss of the particle, which could become 
observable over cosmological travel distances as a lack of cosmic rays above certain 
energy. Therefore, the observation of ultrahigh energy cosmic rays can be used to set 
stringent limits on the strength of LIV. Using the SME as a benchmark, the authors 
in [130] arrive at an expression for the limit on the coefficients . sd responsible for 
LIV as 

.sd(p̂) <

√
F(d)

GNE2d−5L
(6.27) 

where d is the mass dimension of the corresponding operator in the SME, . F is a 
dimensionless numerical factor that depends on d but also on the particle species 
under consideration, .GN is Newton’s constant and E and L are the energy and 
travel distance of the cosmic ray which arrives at Earth from the direction . p̂. Since 
LIV effects can depend on the direction of arrival of cosmic rays, the s coefficients 
further depend on orientation in a solar-centered coordinate system through the 
quantum number j when expressed as an expansion in spherical harmonics, . sd(p̂) =∑

Yj,m(p̂)sd
j,m. Assuming a value of the order of Mpc for L, typical distance to the 

closest AGN, constraints on . sd for different dimensions (order of . sd < 10−14, 10−30

GeV. −2, .10−46 GeV. −4 for .d = 4, 6, 8 respectively, slightly dependent on orientation 
through the quantum number j ) have been set from the measured energies of cosmic 
rays [130]. These are quite competitive constraints from a quite simple analysis,
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which shows again the advantage of using cosmic messengers to probe tiny new 
physics effects. 

6.2.4 Gravitational Waves 

September 14th, 2015 marked the beginning of gravitational-wave astronomy with 
the direct detection of the event GW150914 [131] by the LIGO (https://www.ligo. 
caltech.edu) and Virgo (https://www.virgo-gw.eu, [132]) collaborations, an event 
compatible with the signal predicted by general relativity for the spiral and merger 
of two black holes of 36 and 29 solar masses. Since then, several black hole and 
neutron star mergers have been detected. Gravitational waves, along with cosmic 
rays and neutrinos, complete our non-electromagnetic probes of the universe and, 
as those other messengers, also provide a glimpse into fundamental physics. 

Gravitational effects can be used to search for LIV effects either in the grav-
itational sector alone (through the dependence of the gravitational wave speed 
on frequency and/or arrival direction) or in relation to the propagation of other 
messengers (using the collapse of binary systems to provide a clock for the event 
and comparing arrival times with other messengers as far as their emission can 
be assumed to be simultaneous). These are the same kind of tests that we have 
mentioned with other messengers above, but provide a useful complementary probe 
into new physics at the Planck scale. 

If we concentrate on the specific tests that can be done with information from 
the propagation of gravitational waves alone,3 the handles that can be used are 
the deformation of the waveform due to different propagation speeds for different 
frequencies (dispersion) and changes in the polarisation modes (birefringence) with 
respect to the expected signal without LIV. The SME can also be used here as a 
generic tool to test LIV effects in an effective way by writing the Lagrangian as an 
expansion of terms of mass dimension d in a linearized metric, .gμν = ημν + hμν , 
where .hμν is understood as a perturbation to the flat Minkowski metric .ημν [133]. 
In the case of strong dispersion or birefringence effects the gravitational wave event 
might be “diluted” and fall under the detector threshold, not producing the typical 
chirp signature. As with other messengers, multiple observations from different 
directions in the sky are necessary to study LIV effects with gravitational waves 
since Lorentz violation can depend on direction: the above mentioned effect can 
render observations of gravitational waves from a given direction difficult if indeed 
LIV is at play. 

The event GW150914 alone was already used in [134] to set limits on LIV 
coefficients with dimension 4 and 5 from the absence of a splitting in the signal 
polarisation modes. This sets constraints in the dispersion relation of gravitational 
waves when written as a function of Lorentz violating coefficients. However the

3 Tests using relative timing with respect to other messengers or direction-dependent observables 
are similar to what was discussed in Sect. 6.2.2 

https://www.ligo.caltech.edu
https://www.ligo.caltech.edu
https://www.ligo.caltech.edu
https://www.ligo.caltech.edu
https://www.ligo.caltech.edu
https://www.virgo-gw.eu
https://www.virgo-gw.eu
https://www.virgo-gw.eu
https://www.virgo-gw.eu
https://www.virgo-gw.eu


282 C. Pérez de los Heros and T. Terzić

strongest limits on modifications of the propagation of gravitational waves currently 
come from analyses of the LIGO/Virgo collaborations themselves using the events 
collected in the GWTC-1 catalog [135, 136]. Taking a pure phenomenological 
approach, a Lorentz-violating dispersion relation for GWs can be parameterized 
as 

.E2 = p2c2 + Aαpαcα. (6.28) 

Limits on the coefficients .Aα can be set by comparing the characteristics of the 
detected signals with the predicted waveforms obtained from general relativity (see 
Fig. 6.14). 

As just argued, cataclysmic events produce gravitational waves over a short 
period of time that provide a timing for the emission that, in conjunction with other 
messengers, can be used to probe general relativity and deviations thereof. 

Fig. 6.14 90% upper limits on the parameter . Aα . Blue triangles denote the results obtained on 
GW150914, GW151226, and GW170104, which are updated with respect to the results previously 
published in [137]. Grey diamonds represent results obtained jointly on GW150914, GW151012, 
GW151226, GW170104, GW170608, GW170729, GW170809, GW170814, GW170818, and 
GW170823. The scale of PeV was chosen because it is equivalent to 250 Hz, which is close to the 
frequencies in which gravitational wave detectors LIGO and Virgo are the most sensitive. Figure 
reprinted from [136]. Copyright 2022 by the American Physical Society. All rights reserved
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A further source of gravitational waves are non-spherically symmetric rotating 
neutron stars (pulsars). Due to the strong gravity on their surface, it is difficult for a 
neutron star to maintain mass distribution irregularities or asymmetric deformations 
that would make it non spherical. But the distribution of the magnetic field inside 
the star, internal convection or accretion from a close companion can cause a small 
ellipticity . ε on rotating neutron stars of the order of .ε < 10−8 − 10−6 [138]. 
Since pulsars can be found relatively close and well spatially resolved, a detection 
of continuous, practically monochromatic gravitational waves from a pulsar would 
provide a unique additional way to test general relativity, but deviations of it as well, 
i.e. LIV effects [139,140]. The existence of a preferred direction in space, a source of 
LIV, can modify the rotation of free neutron stars by producing a torque that forces 
the angular momentum of the star to precess around an axis aligned with the spatial 
preferred direction. This process results in the continuous emission of gravitational 
waves with a different spectrum than those emitted by non-spheroidal stars just 
rotating in isotropic space. Searches for continuous emission of gravitational waves 
from rotating pulsars have been carried out, although without success so far [141] 
since the expected frequency of the gravitational waves from rotating neutron stars 
(about 1 Hz) lies near the lower sensitivity limit of current detectors. 

Third-generation gravitational wave detectors currently in R&D, like the Einstein 
Telescope [142], will be able to increase the detection sensitivity to frequencies as 
low as 1 Hz (the current lower threshold of LIGO is about 10 Hz) while space-based 
interferometers like LISA [143] will have a peak sensitivity at .10−2 Hz, sufficient to 
explore gravitational wave emission from binaries in our Galaxy and vastly increase 
the sensitivity to deviations from general relativity [144]. 

6.3 Outlook 

Cosmic searches for Lorentz invariance violation are an attempt at probing effects 
of quantum gravity. The formulation of a quantum theory of gravity proved to be 
quite a challenge so far. An experimental detection of a possible effect of quantum 
gravity, hinting at what the quantum nature of gravity might be, could be decisive 
for reaching this paramount scientific goal. However, quantum gravity is expected to 
manifest at energies on the order of Planck scale, far beyond the reach of accelerator 
experiments. That is where experiments with cosmic messengers come into play. 
The energies of astrophysical gamma rays, neutrinos, and cosmic rays can be orders 
of magnitude higher than energies attainable in accelerators, and more likely to 
probe quantum gravity. In addition, these messengers traverse enormous distances, 
over which tiny effects of quantum gravity are expected to accumulate enough to be 
detected. 

The highest measured energies of cosmic messengers are still orders of magni-
tude below the Planck scale, so what is really tested are effective theories which 
emulate consequences of quantum gravity at lower energies. LIV as one possible 
effect of quantum gravity can be introduced by adding terms in the Standard Model 
Extension, while modifying dispersion relation as in Eq. (6.1) is a very simple way
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of modelling physics outside of Standard Model. Modifying the dispersion relations 
of particles leads to a plethora of possible new effects. Some of these, such as 
energy-dependent group velocity of massless particles, photon instability, vacuum 
bremsstrahlung or Cherenkov radiation, vacuum birefringence, etc. are forbidden 
in the standard special-relativistic scenario. On the other hand, propagation speed 
of massive particles, particle interaction thresholds (e.g. gamma-ray absorption on 
the background photon fields, GZK cutoff), neutrino flavour oscillations, etc. are 
modified with respect to the same phenomena predicted by the standard physics. 

Detectors of cosmic messengers already yielded some important results in the 
searches for traces of Lorentz invariance violation. So far, no such effects were 
found. However, strong constraints have been set on some of LIV parameters. The 
energy scale at which LIV effects could manifest for some of them has been bounded 
to above the Planck energy; in some cases, even several orders of magnitude above. 
A census of experimental tests and limits on LIV can be found in the QG-MM 
Catalogue [145],4 created and maintained by the COST Action 18108. 

Experimental studies will surely become more sensitive and keep probing new 
regions of parameter space, especially with the introduction of new experiments 
such as CTA [146, 147], IceCube-Gen2, KM3NET and the third generation of 
gravitational wave detectors. However, the vast majority of these test were per-
formed using single messenger data sets. In fact, only a handful astrophysical events 
were confirmed as multi-messenger until now. With more sensitive instruments, we 
expect to detect multi-messenger events at a greater rate, enabling more frequent and 
more sensitive multi-messenger tests of LIV, leading us closer to be able to paint the 
whole picture of what quantum gravity might have in stock. 

6.4 Further Reading 

It is impossible in such a short review to give credit to all the relevant work published 
in the subject by theorists and experimentalists. Since we have tried to keep the 
references to the point, we list here a few additional papers that, even without the 
aim of being comprehensive, can be useful for a reader interested in the subject of 
this chapter:

• The COST Action CA18108 “Quantum gravity phenomenology in the multi-
messenger approach” has published a comprehensive review of theory, phe-
nomenology, and experimental searches for effects of quantum gravity in 
astrophysical observations “Quantum gravity phenomenology at the dawn of the 
multi-messenger era—A review” [127].

• A detailed description of LIV studies performed with Cherenkov telescopes can 
be found in [40] and references therein. Various effects, analysis methods, and 
results are mutually compared and discussed.

4 https://qg-mm.unizar.es/wiki/. 
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• We already mentioned some these, but it does not hurt to repeat: there are 
excellent reviews on the phenomenology and signatures of LIV in high energy 
neutrinos [4, 6, 66–69, 91, 148].

• The ingredients needed for searches for LIV with cosmic rays are well covered 
in [149],

• The search for fundamental physics with gravitational waves is covered in [150], 
[144], and [133]. 
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7Neutron Stars 

Jutta Kunz 

Abstract 

Neutron stars are highly compact astrophysical objects and therefore of utmost 
relevance to learn about theories of gravity. Whereas the proper equation of 
state of the nuclear matter inside neutron stars is not yet known, and a wide 
range of equations of state is still compatible with observations, this uncertainty 
can be overcome to a large extent, when dimensionless neutron star properties 
are considered. In this case universal relations between neutron star properties 
and for the gravitational radiation in the form of quasi-normal modes arise. 
These universal relations can be rather distinct for alternative theories of gravity 
as compared to General Relativity. Moreover, the presence of new degrees of 
freedom in alternative theories of gravity leads to further types of gravitational 
radiation, that may be revealed by pulsar observations and gravitational wave 
detectors. Here an introduction to neutron stars, their properties and universal 
relations is presented, followed by two examples of alternative theories of gravity 
featuring interesting effects for neutrons stars. 

7.1 Introduction 

When massive stars with initial mass .M � 8M� have burnt the nuclear fuel in 
their core gravitational collapse results, leaving behind a highly compact remnant, a 
neutron star or a black hole. (The latter will be discussed in the next Chaps. 8 and 9.) 
While predicted shortly after the discovery of the neutron [1], neutron stars were 
only observed in the late 60s, when very regular radio pulses appeared in the data 
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taken by Jocelyn Bell [2]. The radio pulses were emitted by a pulsar, now known 
as PSR B1919+21, a rapidly rotating neutron star with misaligned magnetic field. 
Ever since numerous pulsars including a double pulsar have been discovered [3–7]. 
The extreme regularity of these pulses allows for high precision tests of General 
Relativity and severe constraints for various alternative theories of gravity (see e.g. 
[8, 9]). 

On the theoretical side, Tolman, Oppenheimer and Volkoff (TOV) considered 
in the 30s already the description of neutron stars, deriving and solving the TOV 
equations for a simple equation of state (EOS) of the nuclear matter, namely a 
cold Fermi gas [10, 11]. This work had profound implications, since it showed that 
neutron stars can be supported against the gravitational pull only up to a maximum 
mass, while beyond this mass the collapse of the stellar core will continue and 
lead to a black hole. The value of the maximum mass depends of course on the 
EOS for the nuclear matter. The proper EOS for nuclear matter under such extreme 
conditions as present in neutron stars is still unknown, though [12–14]). 

In recent years much progress has been made based on the discovery of 
gravitational waves and the advent of multi-messenger astronomy [15–17]. In 
particular, the observation of GW170817, where the merger of a neutron star binary 
was reported and analyzed led to new constraints on the neutron star EOS, since it 
allowed to put constraints on the tidal effects experienced by the coalescing bodies 
and on the neutron star radii [18]. Further analysis also hinted at a new value (range) 
for the maximum mass of neutron stars [19,20]. Previous observations of pulsars had 
already revealed the existence of neutron stars with masses of about 2 solar masses 
[21–23]. 

In the following we will focus mainly on static neutron stars. We will start with 
the derivation of the TOV equations, and then address a set of important neutron star 
properties. Besides their mass and radius, we will consider their moment of inertia, 
their rotational quadrupole moment and their tidal deformability. Subsequently we 
will address seismology of neutron stars. Thus we will consider the normal modes 
and quasi-normal modes (QNMs) of neutron stars, representing their reaction to 
perturbations. The uncertainty of the EOS reflected in the neutron star properties 
and QNMs will then be largely reduced with the help of universal relations (see 
e.g. [24, 25]). Our final concern will be the consideration of neutron stars in a set 
of alternative gravity theories featuring an additional scalar degree of freedom, 
where we will highlight some interesting new aspects as compared to General 
Relativity. 

7.2 Static Neutron Stars 

7.2.1 Tolman-Oppenheimer-Volkoff Equations 

In General Relativity (GR) static neutron stars are obtained by solving the Tolman-
Oppenheimer-Volkoff (TOV) equations for a given equation of state (EOS) of the 
nuclear matter. We will now derive this set of equations.
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To this end we start from the Einstein equations 

.Gμν = Rμν − 1

2
gμνR = 8πGTμν, (7.1) 

and employ the stress-energy tensor of an isotropic perfect fluid describing the
nuclear matter

.Tμν = (ρ + P) uμuν + gμνP, (7.2) 

whose four-velocity in the rest system is .uμ = (
ut , 0, 0, 0

)
. In mixed co-

and contravariant components the stress-energy tensor then reads . T
μ
ν =

diag(−ρ, P, P, P ) with energy density . ρ and pressure P . 
A convenient metric ansatz for static spherically symmetric neutron stars is given 

by 

.ds2 = gμνdxμdxν = −e2�(r)dt2 + e2�(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (7.3) 

which contains two unknown functions, .�(r) and .�(r), where the latter can be 
expressed in terms of the mass function . m(r)

.e2�(r) = 1

1 − 2m(r)
r

. (7.4)

•? Exercise 
7.1. Show that the Einstein Tensor becomes with this ansatz 

.G00 = e2� 2m′

r2 , . (7.5) 

Grr = 2

r

(

�′ − m

r2

(
1 − 2m

r

)−1
)

, . (7.6) 

Gθθ = r2
[(

�′′+�′2)
(

1−2m

r

)
+�′

r

(
1−m′−m

r

)
− 1

r2

(
m′−m

r

)]
, . (7.7) 

Gϕϕ = sin2 θGθθ . (7.8)
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From the Einstein equations .G0
0 = κT 0

0 and .Gr
r = κT r

r (.κ = 8πG) we find 

.m′ = κ

2
ρr2, . (7.9) 

�′ =
κ
2 r3P + m

(
1 − 2m

r

)
r2

. (7.10) 

Employing these two equations in the Einstein equation .Gθ
θ = κT θ

θ using 

.�′′ = d

dr
�′ = d

dr

⎛

⎝
κ
2 r3P + m

(
1 − 2m

r

)
r2

⎞

⎠ (7.11) 

we obtain the equation for pressure P , where we can identify the Newtonian part
(underlined) and the relativistic corrections

.P ′ = −mρ

r2

(
1 + P

ρ

) (
1 + κ

2

P

m
r3

) (
1 − 2m

r

)−1

. (7.12) 

The system of equations (7.9), (7.10) and (7.12) are the  TOV equations, represent-
ing three equations for four unknowns. Therefore we have to provide an EOS . ρ(P )

in order to solve the equations. 
A relatively simple EOS is the so-called polytropic EOS 

.ρ = P

� − 1
+

(
P

K

)�

, (7.13) 

where . � is the adiabatic index and K the polytropic constant. Many realistic EOSs 
can be parametrized as piecewise polytropic EOSs (see e.g. [26]). 

Neutron stars are compact objects with a given radius R. Outside this radius 
the pressure and the density vanish. Therefore, the exterior is simply described 
by the Schwarzschild spacetime. Asymptotic flatness requires that the function . �
satisfies .�(∞) = 0. The mass function .m(r) assumes its asymptotic value M at 
the surface of the star, where M corresponds to the mass of the neutron star in 
geometric units. At the center regularity requires that .m(0) = 0. The density and 
the pressure at the center are .ρc(Pc) and .Pc = P(0), respectively. . Pc is a free 
parameter. 

By varying the central pressure a family of neutron star solutions for a given EOS 
is obtained. The mass-radius relation of numerous such families of neutron stars 
is shown in Fig. 7.1. Clearly, there is a strong EOS dependence of the mass-radius 
relation. Observations of high mass pulsars constrain the EOSs, however, since their 
maximum mass should allow for the measured mass values [21–23].
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Fig. 7.1 Mass-radius relation of neutron stars in GR: mass M (in solar masses . M�) vs radius R 
(in km) for numerous EOSs. The horizontal lines indicate high mass pulsars, the data was obtained 
from [21] ©2010 Macmillan Publishers Limited. All rights reserved; [23] ©the Author(s), under 
exclusive license to Springer Nature Limited 2019; and [27] ©2021 by Annual Reviews under CC 
BY 4.0 license. The upper left corner marks the causality limit obtained in [28] ©2022 The Authors 
under CC BY 4.0 license. Data reprinted with permission 

7.2.2 Properties 

While the mass and radius of a neutron star are easily obtained, once an equation 
of state and a central pressure are specified, further properties of interest typically 
involve perturbation theory around the TOV background solution. In lowest order 
perturbation theory the moment of inertia I is obtained. To this end, we consider a 
slowly rotating neutron star, that rotates with uniform angular velocity . � around the 
axis .θ = 0 (. π ). The metric then acquires a non-diagonal component 

.δgtφ = −εω r2 sin2 θ, (7.14) 

where . ε is a perturbation bookkeeping parameter, and the new metric function . ω
arising from the rotation needs to be determined. All other rotational effects in 
the metric are of higher order. This also holds for the effects on the density and 
pressure, which are even functions under time reversal. The fluid velocity receives 
a contribution 

.δUμ = (
0, 0, 0, ε�Ut

)
, (7.15) 

where .Ut = e−� is the time-component in the non-rotating frame.
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The slow rotation induces a new component in the stress-energy tensor 

.δTtφ = r2 (ρ + P) ε (ω − �) sin2 θ − Pεω r2 sin2 θ. (7.16) 

A priori, the new function . ω could depend on two coordinates, r and . θ . Moreover, 
the resulting partial differential equation does not separate, therefore an expansion 
of . ω in terms of vector spherical harmonics should be made [29, 30]. Inspection of 
the boundary conditions w.r.t. regularity and asymptotic flatness shows, however, 
that only a single l can contribute, .l = 1, leaving . ω as a function of r only, 
determined by 

. ω′′ +
(

4

r
− �′ − �′

)
ω′ − 2

[
�′′ + (

�′ − �′)
(

�′ + 1

r

)]
ω

+ 2κe2� [Pω + (ρ + P) (� − ω)] = 0. (7.17)

•? Exercise 
7.2. Assume .ω = ω(r) and derive the Einstein tensor for the metric 

.ds2 = −e2�(r)dt2 + e2�(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
− 2εω r2 sin2 θdtdφ, (7.18) 

to first order in . ε. Consider the energy-momentum tensor component (7.16) , and show that
the . tφ component of the Einstein equations is given by (7.17) .

Expansion at infinity allows to extract the angular momentum J 

.ω(r) = 2J

r3 + O(
1

r5 ), (7.19) 

and the moment of inertia I , since .J = I�. When calculating the moment of 
inertia for various EOSs, one obtains a large variation of its value for neutron 
stars with the same mass, as expected from the large variation of the radii, shown 
in Fig. 7.1 (see e.g. [31]). This is illustrated in Fig. 7.2, where the moment of 
inertia is shown versus the mass (Fig. 7.2a) and the radius (Fig. 7.2b) for several 
EOSs. 

Of considerable interest is also the quadrupole moment Q that is induced by 
rotation. However, to extract the quadrupole moment one has to go to second order 
in . �. As shown by Hartle and Thorne [29,32,33] the appropriate parametrization of
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(a) 

(b) 

Fig. 7.2 Moment of inertia I of neutron stars in GR: (a, upper) I (in solar masses .M� times the 
squared solar gravitational radius . RS ) vs mass  M (in solar masses .M�); (b, lower)  I vs radius R 
(in km) for several EOSs 

the metric is given by 

. ds2 = − e2�
[
1 + 2ε2 (h0 + h2P2)

]
dt2 + e2�

[
1 + 2e2�ε2 (m0 + m2P2) /r

]
dr2

+ r2
[
1 + 2ε2 (v2 − h2) P2

] [
dθ2 + sin2 θ (dφ − εωdt)2

]
, (7.20)
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where . P2 is the Legendre polynomial .P2 = (
3 cos2 θ − 1

)
/2, and . h0, . h2, . m0, . m2

and . v2 are radial functions. The density and pressure possess analogous second 
order terms. After solving the resulting set of differential equations the quadrupole 
moment Q can be read from the asymptotic behavior [29, 32, 33] 

.h2(r) → Q

r3 . (7.21) 

A further important property of neutron stars is their tidal deformability [34]. In 
this case one considers a binary system, where the tidal forces of the companion 
compact object deform the neutron star [33–35]. The tidal Love number . λ is related 
to the tidal quadrupole moment and is obtained by placing the neutron star into an 
external quadrupolar tidal field. The appropriate ansatz for the perturbations then 
consists of a subset of the previous ansatz for the rotational quadrupole moment 
with .ω = h0 = m0 = 0 [33]. The boundary conditions are of course different, since 
an external quadrupole field is present. The asymptotic form of the function . h2, 

.h2 → a−2r
2 + a−1r + a3

r3 , (7.22) 

then provides the tidal Love number . λ

.λ = a3

3a−2
. (7.23) 

In a similar manner one can also obtain the higher multipole moments and the higher
Love numbers [24]. 

7.2.3 Quasi-Normal Modes 

Asteroseismology allows to extract important information on the stability and 
ringdown of neutron stars, when perturbed (see e.g. [36, 37]). Neutron stars possess 
a rich spectrum of modes, associated with the nuclear matter and the gravitational 
field. Since General Relativity features gravitational waves starting with quadrupole 
(.l = 2) radiation, QNMs arise when .l ≥ 2. These possess a complex eigenvalue . ω
whose real part is the characteristic frequency .ωR of the mode, while the imaginary 
part . ωI represents its decay rate. 

The linear perturbations of the metric Ansatz and the fluid read [38] 

.gμν = g(0)
μν (r) + εhμν(t, r, θ, ϕ) , . (7.24) 

ρ = ρ0(r) + εδρ(t, r, θ, ϕ) , . (7.25) 

p = p0(r) + εδp(t, r, θ, ϕ) , . (7.26) 

uμ = u(0)
μ (r) + εδuμ(t, r, θ, ϕ) , (7.27)
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where the superscript .(0) denotes the static and spherically symmetric background 
solutions. The perturbations, in contrast, depend on all four coordinates. 

To proceed one then expands the perturbations in tensorial spherical harmonics 
characterized by multipole numbers l and m [39]. The high symmetry of the 
background solutions then leads to a split of the perturbations into two separate 
classes: axial perturbations and polar perturbations. Axial perturbations transform 
as .(−1)l+1 under parity, and therefore do not couple to the fluid. They are pure 
space-time modes. Polar modes on the other hand are parity-even and transform as 
.(−1)l . These include the perturbations of the pressure and energy density of the 
fluid. 

Expansion and Fourier decomposition of the axial perturbations of the metric 
yields 

. h(axial)
μν

=
∑

l,m

∫

⎡

⎢
⎢⎢
⎣

0 0 −h0
1

sin θ
∂
∂φ

Ylm h0 sin θ ∂
∂θ

Ylm

0 0 −h1
1

sin θ
∂
∂φ

Ylm h1 sin θ ∂
∂θ

Ylm

−h0
1

sin θ
∂
∂φ

Ylm −h1
1

sin θ
∂
∂φ

Ylm 0 0

h0 sin θ ∂
∂θ

Ylm h1 sin θ ∂
∂θ

Ylm 0 0

⎤

⎥
⎥⎥
⎦

e−iωt dω, (7.28) 

whereas for polar perturbations one finds

. h
(polar)
μν

=
∑

l,m

∫
⎡

⎢
⎢
⎣

rle2νH0Ylm −iωrl+1H1Ylm 0 0
−iωrl+1H1Ylm rle2λH2Ylm 0 0

0 0 rl+2KYlm 0
0 0 0 rl+2 sin2 θKYlm

⎤

⎥
⎥
⎦

e−iωt dω , (7.29) 

(using .(t, r, θ, ϕ) order for the matrix). The corresponding decomposition of the 
density and the pressure of the fluid inside the star is 

.δρ =
∑

l,m

∫
rlE1Ylme−iωt dω , δp =

∑

l,m

∫
rl�1Ylme−iωt dω , (7.30)
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and the perturbation of the velocity is 

.δuμ =
∑

l,m

∫
⎡

⎢⎢
⎣

1
2 rleνH0Ylm

rliωe−ν
(
eλW/r − rH1

)
Ylm

−iωrle−νV ∂θYlm

−iωrle−νV ∂φYlm

⎤

⎥⎥
⎦ e−iωt dω , (7.31) 

while outside the star there is no fluid, of course. All perturbation functions depend
only on the radial coordinate r , the multipole numbers l, m, and the complex
eigenvalue . ω. (In contrast to the previous section, here . ω is just a complex number, 
not a function.) The resulting systems of ordinary differential equations must then 
be simplified by specific choices of gauge and solved subject to an appropriate set 
of boundary conditions. These boundary conditions require regularity at the center 
of the star and a purely outgoing wave behavior at infinity. Moreover, they require 
continuity of the metric perturbation functions and their derivatives at the border 
of the star, where the pressure and the energy density vanish. Together all these 
requirements then select a discrete set of values for the complex eigenvalue . ω for a 
given l, representing the fundamental frequency and its overtones (see e.g. [40, 41] 
for further details). In Sect. 9.3.1, further details on QNMs will also be discussed in 
the context of BHs. 

The fundamental f mode .(l = 2) in GR is illustrated in Fig. 7.3, where the 
frequency .ωR (Fig. 7.3a) and the decay time .τ = 1/ωI (Fig. 7.3b) are shown 
versus the mass of the neutron stars for several EOSs. The figure reveals clearly 
the significant dependence of the modes on the EOS. 

7.3 Universal Relations 

As discussed above, dimensionful neutron star properties depend significantly on the 
employed EOS. If, however, properly scaled dimensionless quantities are considered 
instead, an important set of universal relations arises in GR, which exhibit only little 
EOS dependence. 

7.3.1 I -Love-Q Relations 

In geometric units the so-called compactness C is a simple dimensionless quantity. 
It represents the ratio of the mass M and the radius R of a neutron star, .C = M/R. 
The compactness of neutron stars ranges typically in the interval .0.1 < C < 0.3, 
while a Schwarzschild black hole has a compactness of .C = 0.5, since its horizon 
radius is given by .R = 2M . Clearly, compactness is a relevant physical property, 
and being dimensionless, it is a suitable candidate to feature in universal relations. 

A first  universal relation can thus be envisaged that exhibits a suitably scaled 
moment of inertia . Ī versus the compactness C. Since .J = �I , a dimensionless
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(a) 

(b) 

Fig. 7.3 Fundamental f mode (. l = 2) of neutron stars in GR: (a) frequency .ωR (in kHz) vs mass 
M (in solar masses .M�); (b) decay time .τ = 1/ωI (in s) vs mass M (in solar masses . M�) for  
several EOSs 

moment of inertia is obtained in geometric units in terms of .Ī = I/M3. (Recall, 
that .J/M2 is dimensionless.) This .Ī -C relation is demonstrated in Fig. 7.4 for 
several EOSs. While dependence on the EOS has been reduced considerably for 
these dimensionless quantities as compared to the dimensionful quantities I , M and 
R shown in Fig. 7.2, this relation is less impressive than the I -Love-Q relations 
discussed in the following.
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Fig. 7.4 Upper figure: Universal .Ī -C relation for several EOSs. Lower figure: Relative deviation 
of a value F from the best fit . Ffit

Table 7.1 Best fit coefficients in (7.32) for the relations between the variables . Ī , . Q̄ and . ̄λ. Data  
taken from [24] ©2017 Elsevier B.V. All rights reserved. Data reprinted with permissions. Earlier 
approaches towards this latest data have been already published in [42] 

.yi .xi .ai .bi .ci .di . ei

.Ī .λ̄ 1.496 0.05951 0.02238 .−6.953 × 10−4 . 8.345 × 10−6

.Ī .Q̄ 1.393 0.5471 0.03028 0.01926 . 4.434 × 10−4

.Q̄ .λ̄ 0.1940 0.09163 0.04812 .−4.283 × 10−3 . 1.245 × 10−4

Besides the dimensionless moment of inertia . Ī the dimensionless quadrupole 
moment .Q̄ = QM/J 2 and the dimensionless Love number .λ̄ = λ/M5 feature 
prominently in the I -Love-Q relations. These relations do not involve the compact-
ness, but consider only the dimensionless quantities . Ī , . ̄λ and . Q̄. Obtained by Yagi 
and Yunes [24, 42], the truly remarkable I -Love, I -Q, and Q-Love relations can be 
expressed as simple curves of the type 

. ln yi = ai + bi ln xi + ci(ln xi)
2 + di(ln xi)

3 + ei(ln xi)
4, (7.32) 

where . yi represent the first and . xi the second dimensionless quantity, as seen in 
Tables 7.1 and 7.2, where the coefficients . ai to . ei yield an excellent fit to the data of 
a very large number of EOSs with very different properties of the matter of the star 
[24, 42]. In fact, the deviations of the data from the best fit shown are below 1%. 

Analogous relations can be considered for the higher multipole moments and 
higher Love numbers. In the usual nomenclature the mass corresponds to the lowest 
mass moment .M = M0 and the angular momentum to the lowest current moment
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Table 7.2 Best fit coefficients in (7.32) for the relations between the variables . S̄3, .M̄4 and . Q̄. 
Data taken from [24] ©2017 Elsevier B.V and [48] ©2014. The American Astronomical Society. 
All rights reserved. Data reprinted with permissions 

.yi .xi .ai .bi .ci .di . ei

.S̄3 .Q̄ .3.131 × 10−3 2.071 .−0.7152 0.2458 . −0.03309

8.337.M̄4 .Q̄ .−0.02287 3.849 .−1.540 0.5863 . − × 10−2

.J = S1. Higher mass moments possess even index, .M2l , and higher current 
moments odd index, .S2l+1 [39, 43–46]. The quadrupole moment then corresponds 
to .Q = M2. Higher tidal mass and current moments are referred to as . λn [47]. 
Examples of universal relations for higher moments are exhibited in Table II 
[24,48]. These represent the .S̄3-. Q̄ and .M̄4-. Q̄ relations, that possess larger deviations 
(4% and 10%) than the I -Love-Q relations. 

In this connection the expression three hair relations was coined [24,48]. This is 
a generalization of the no-hair (two hair relation), highlighting that Kerr black holes 
are fully determined by only two quantities (hairs), their mass and their angular 
momentum. In the three hair relations of neutron stars the additional quantity 
besides the mass and the angular momentum is the quadrupole moment [24, 48]. 
In contrast to the two hair relation of black holes, the three hair relations of 
neutron stars are only approximate relations. Their validity for neutron stars has 
been associated with an approximate symmetry that emerges at high compactness: 
the self-similarity of isodensity surfaces [24, 49]. 

7.3.2 Quasi-Normal Modes 

Universal relations arise also in the study of quasi-normal modes. As illustrated 
above, quasi-normal modes feature a considerable dependence on the EOS. How-
ever, Anderson and Kokkotas pointed out rather early that universal relations may 
reduce this EOS dependence significantly [36,50], as confirmed in numerous further 
studies, e.g., [51–58]. 

A set of universal relations for the fundamental f mode of neutron stars 
is illustrated in Fig. 7.5, where Fig. 7.5a and b exhibit the dimensionless scaled 
frequency .MωR/c and the dimensionless scaled decay rate .MωI/c, respectively, 
versus the compactness .C = M/R for several EOSs. Analogous relations are 
shown in Fig. 7.5c and d, where instead of the compactness C the so-called effective 
compactness .η = √

M3/I = Ī−1/2 was used, that is based on the dimensionless 
moment of inertia . Ī . It was introduced in [55], where also the following best fit was 
provided for the f mode 

.MωR = −0.0047 + 0.133η + 0.575η2, MωI = 0.00694η4 − 0.0256η6.
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(a) (b) 

(c) (d) 

Fig. 7.5 Universal relation for the fundamental f mode (.l = 2) of neutron stars in GR: (a, upper 
left) scaled frequency .MωR /c vs compactness .C = M/R; (b, upper right) scaled decay rate . MωI /c

vs compactness .C = M/R for several EOSs; (c, lower left) and (d, lower right) analogous, but vs 
the effective compactness . η = √

M3/I

The parametrization in terms of the effective compactness reduces the errors (as 
compared to the compactness) and is therefore preferable. Various further universal 
relations for the quasi-normal modes have been found, among them for instance 
a relation between the scaled frequency of a mode and the scaled damping rate 
[56, 57]. 

Universal relations can be of use in many different circumstances [24]. First of 
all, they can be employed to extract further information on neutron star properties 
not yet known from explicit measurements. In case of the lowest moments, for 
instance, the I -Love-Q relations would allow to obtain any two of the three 
quantities, once the third one would be measured [24], while the seven lowest 
moments could be obtained from measurements of the mass, rotation period and 
moment of inertia with the help of the three-hair-relations [48]. On the other hand, 
in the case of the quasi-normal mode measurement of an axial or polar mode would 
allow the determination of the mass M and the moment of inertia I of a star by 
invoking the .MωR-. η and .MωI -. η relations [55]. Moreover, the radius R might be 
extracted and conclusions with respect to the EOS might be possible. Currently 
universal relations are already employed to reduce degeneracies in the analysis of 
gravitational waves [24]. Last but not least, as discussed next universal relations 
also provide a means to test alternative gravity theories.
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7.4 Neutron Stars in Alternative Gravity Theories 

Studies of alternative gravity theories are motivated largely by the quest for a theory 
of quantum gravity and by cosmological issues like dark matter and dark energy, 
see also the discussions in the previous Chaps. 1–5. Such theories typically involve 
new degrees of freedom, with the simplest being a real scalar field (see Sects. 4.4.4 
and 4.4.5 for torsion-scalar gravity theories for example). If indeed such additional 
degrees of freedom would be present, their consequences might not only resolve 
the issues intended, but they might also have observable consequences that could 
be tested by observations in the solar system or observations of black holes and 
neutron stars and gravitational waves emitted by these compact objects [59–62]. 
In the following neutron stars will be discussed for two widely employed types of 
alternative gravity theories. 

7.4.1 Scalar-Tensor-Theories 

Scalar-tensor theories introduce in addition to the gravitational metric tensor field a 
gravitational scalar field (see e.g. [63–66]). A generic action for such scalar-tensor 
theories is given by 

. S = 1

16πG

∫
d4x

√−g̃
[
F(�)R̃−Z(�)g̃μν∂μ�∂ν�−2U(�)

]
+Sm

[
�m; g̃μν

]
,

(7.33) 

where the tilde indicates that the respective quantities are in the so-called Jordan
frame, . � is the gravitational scalar field, and . Sm denotes any additional matter fields 
. �m. In the Jordan frame the gravitational scalar field does not couple directly to the 
matter fields and the weak equivalence principle is retained. The functions . F(�)

and .Z(�) cannot be chosen arbitrary, but need to meet some physical restrictions 
[67]. 

While neutron stars can be studied directly in the Jordan frame, it is typically 
more convenient to transform to the so-called Einstein frame, which can be achieved 
by means of a conformal transformation of the metric .gμν = F(�)g̃μν , and an 
associated transformation of the gravitational scalar field denoted by . ϕ now [64– 
66]. 

.

(
dϕ

d�

)2

= 3

4

(
dln(F (�))

d�

)2

+ Z(�)

2F(�)
. (7.34) 

In the Einstein frame, the action then reads

. S = 1

16πG

∫
d4x

√−g
[
R− 2gμν∂μϕ∂νϕ − 4V (ϕ)

] + Sm[�m; A2(ϕ)gμν],
(7.35)
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where the Einstein frame quantities are denoted without tilde, and the following 
relations hold 

.A(ϕ) = F−1/2(�) , 2V (ϕ) = U(�)F−2(�). (7.36) 

In the simplest case the scalar potential is chosen to vanish, .U(�) = 0 = V (ϕ). 
The gravitational scalar field is then massless and has no self-interactions.

•? Exercise 
7.3. Show that variation of the action (7.35) leads to the Einstein equations 

.Rμν − 1

2
gμνR = 2∂μϕ∂νϕ − gμνg

αβ∂αϕ∂βϕ + 8πTμν (7.37) 

and gravitational scalar field equation

.∇μ∇μϕ = −4πk(ϕ)T , (7.38) 

where .T = T
μ
μ , and .k(ϕ) = d ln(A(ϕ))

dϕ
. 

The function .A(ϕ) determines the coupling between the scalar field and the 
matter. The stress-energy tensor .T̃μν is provided in the physical Jordan frame and 
then transformed into the Einstein frame 

.Tμν = A2T̃μν, (7.39) 

where the Bianchi identities yield

.∇μT μ
ν = k(ϕ)T ∂νϕ. (7.40) 

The freedom in the choice of coupling function .A(ϕ) leads to different types of 
scalar-tensor theories, and thus different consequences for neutron stars in these 
theories. At the same time it leads to a variety of physical effects, that can be 
compared to observations and thus result in more or less stringent constraints 
from observations. Brans-Dicke theory, for instance, is obtained for the simple 
parametrization .A = eκϕ , i.e., .k(ϕ) = κ with constant . κ , addressed further below 
[63]. Here another coupling function is considered, 

.A(ϕ) = e
1
2 βϕ2

, k(ϕ) = βϕ, (7.41) 

that leads to the interesting phenomenon of spontaneous scalarization of neutron
stars, discovered by Damour and Esposito-Farèse [68].
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Spontaneous scalarization in neutron stars is matter induced. It can arise in 
theories with coupling functions, that possess a quadratic dependence on the 
gravitational scalar field such that it satisfies a Klein-Gordon type equation with 
an effective mass, i.e., 

.∇μ∇μϕ = m2
effϕ. (7.42) 

In that case the GR neutron star solutions remain solutions of the scalar-tensor
theory, since for vanishing scalar field the equations reduce to the GR equations.
However, in addition to the GR solutions new solutions with a gravitational scalar
field may arise, when the neutron matter represents a sufficiently strong source to
induce a tachyonic instability, .m2

eff = −4πGβT < 0. While typical neutron stars 
possess .T = 3p −ρ < 0, so .β < 0 must be chosen for spontaneous scalarization to 
occur, both T and . β could also be positive, but in this case the neutron stars would 
need a pressure dominated core [69, 70]. 

When evaluating a family of GR neutron stars by increasing the central pressure, 
at some point a neutron star with a zero mode arises. Beyond this point scalarization 
sets in, and a branch of scalarized neutron stars is present in addition to the GR 
neutron stars. In fact, GR neutron stars then possess an unstable mode, whereas the 
scalarized neutron stars become the physically preferred stable configurations (see, 
e.g., [68, 71]). The scalar field at the center of the star and the scalar charge are 
largely independent of the EOS, and thus basically universal, only depending on the 
gravitational potential at the center of the neutron star [31]. 

Pulsar observations have by now virtually excluded the possibility of sponta-
neous scalarization of neutron stars for the simplest case of a massless scalar field 
[72]. These conclusions are based on the expected effects of dipolar and thus scalar 
radiation on the orbits of the compact objects. However, the inclusion of a genuine 
mass term with a sufficiently large mass for the scalar field allows to circumvent 
these observational constraints, since the dipolar radiation becomes rather negligible 
when the orbital separation of a binary star system is much larger than the scalar 
field Compton wavelength [73]. Evaluation of the properties and quasi-normal 
modes of scalarized neutron stars with a massive gravitational scalar field also 
leads to universal relations (see e.g., [74–76]). Depending on the strength of the 
scalarization, they may differ significantly from those of neutron stars in GR. 

7.4.2 f (R) Theories 

In .f (R) theories the gravitational action is no longer given by the curvature scalar 
. R, but by some function of the curvature scalar, .f (R) [77–79]. A particular well-
motivated such theory is based on 

.f (R) = R+ aR2 , (7.43)
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since this model (called the Starobinsky model) is capable to predict the inflationary 
phase of the early universe consistent with observations. .f (R) theories can also be 
transformed to the Einstein frame, since from a mathematical point of view they are 
equivalent to scalar-tensor theories. As shown in [80,81] such a transformation then 
leads to a scalar field with a Brans-Dicke type coupling function and a scalar field 
potential 

.A(ϕ) = e
− 1√

3
ϕ

, V (ϕ) = 3m2
ϕ

2

(
1 − e

− 2ϕ√
3
)2

. (7.44) 

The scalar field mass .mϕ is identified in the transformation from the coefficient of 
the . ϕ2 term of the potential .V (ϕ), that arises in the transformation, and is thus a 
function of the coupling constant a of the .f (R) theory considered, .mϕ = 1/

√
6a. 

The parameter a therefore determines the mass of the scalar field, and can be chosen 
well within the current observational window [73].

•? Exercise 
7.4. Transform (7.43) into a scalar tensor theory. Follow the steps which were outlined in

Sect. 4.4.5 for teleparallel .f (G) theories of gravity. 

Besides leading to distinct I -Love-Q relations (see e.g., [82, 83]), this . f (R)

theory has a distinct spectrum of quasi-normal modes [28, 84–86]. In particular, 
in contrast to GR, monopole (.l = 0) and dipole (.l = 1) radiation arises due to the 
additional degree of freedom. In GR neutron stars possess only .l = 0 normal modes. 
But in such an .f (R) theory, these modes become propagating modes. Interestingly, 
these modes feature a very small decay rate . ωI , which means that they are ultra long-
lived [85]. Moreover, the scale of the frequency . ωR is determined by the neutron star 
size for small Compton wavelength .Lϕ = 1/mϕ of the scalar field, while for large 
. Lϕ the frequency follows . Lϕ . 

The universal relations for quasi-normal modes exhibit distinct features, as well, 
and therefore might be exploited to put further bounds on such a theory [28, 84]. 
Figure 7.6 illustrates a set of universal relations for the fundamental f mode (.l = 2) 
for two values of the scalar mass .mϕ for this .f (R) theory, analogous to Fig. 7.5 
for GR. Due to the presence of the new degree of freedom, however, this f mode 
is not the only polar quadrupole (.l = 2) mode. There is an additional scalar . l = 2
mode present, and there are also the scalar dipole and monopole modes, all of them 
exhibiting universal relations [28].
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Fig. 7.6 Universal relation for the fundamental f mode (.l = 2) of neutron stars in . f (R) =
R+aR2 theory with .mϕ = 0.0108 neV and 0.1084 neV: (left) scaled frequency .MωR /c vs effective 

compactness .η = √
M3/I (right) scaled decay rate .MωI /c vs effective compactness . η = √

M3/I

for several EOSs. For comparison also the GR relations are shown 

7.5 Conclusion 

Since neutron stars are highly compact objects, they represent ideal astrophysical 
objects to learn about gravity. While the current lack of knowledge of the physical 
EOS of nuclear matter under these extreme conditions leads to larger ranges of 
possible values of their physical properties and their emitted radiation, the presence 
of universal relations, which are rather independent of the EOS, reduces these 
uncertainties to a large extent. Moreover, universal relations may be rather different 
for GR and for alternative theories of gravity, thus allowing to put bounds on 
such theories once the corresponding measurements will have been achieved with 
sufficient accuracy. 

Acknowledgments I would like to thank the organizers for the invitation to the interesting 
meeting Signatures and experimental searches for modified and quantum gravity. I would also like 
to thank my collaborators and here, in particular, Jose Luis Blázquez-Salcedo and Vincent Preut, 
for providing the above figures. Furthermore, I would like to gratefully acknowledge support by 
the DFG Research Training Group 1620 Models of Gravity and the COST Actions CA15117 and 
CA16104. 

References 

1. W. Baade, F. Zwicky, Proc. Natl. Acad. Sci. 20(5), 254 (1934) 
2. A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Nature 217, 709 (1968) 
3. J.H. Taylor, R.N. Manchester, A.G. Lyne, Astrophys. J. Suppl. 88, 529 (1993) 
4. M. Kramer, J.F. Bell, R.N. Manchester, A.G. Lyne, F. Camilo, I.H. Stairs, N. D’Amico, 

V.M. Kaspi, G. Hobbs, D.J. Morris et al., Mon. Not. Roy. Astron. Soc. 342, 1299 (2003) 
5. M. Burgay, N. D’Amico, A. Possenti, R.N. Manchester, A.G. Lyne, B.C. Joshi, 

M.A. McLaughlin, M. Kramer, J.M. Sarkissian, F. Camilo et al., Nature 426, 531 (2003) 
6. A.A. Abdo et al., [Fermi-LAT], Astrophys. J. Suppl. 208, 17 (2013) 
7. The EPN Database of Pulsar Profiles: http://www.epta.eu.org/epndb/ 
8. I.H. Stairs, Living Rev. Rel. 6, 5 (2003)

http://www.epta.eu.org/epndb/
http://www.epta.eu.org/epndb/
http://www.epta.eu.org/epndb/
http://www.epta.eu.org/epndb/
http://www.epta.eu.org/epndb/
http://www.epta.eu.org/epndb/


312 J. Kunz

9. M. Kramer, I.H. Stairs, R.N. Manchester, N. Wex, A.T. Deller, W.A. Coles, M. Ali, M. Burgay, 
F. Camilo, I. Cognard et al., Phys. Rev. X 11(4), 041050 (2021) 

10. R.C. Tolman, Phys. Rev. 55, 364 (1939) 
11. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939) 
12. J.M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485 (2012) 
13. F. Özel, P. Freire, Ann. Rev. Astron. Astrophys. 54, 401 (2016) 
14. G. Baym, T. Hatsuda, T. Kojo, P.D. Powell, Y. Song, T. Takatsuka, Rep. Prog. Phys. 81, 056902 

(2018) 
15. B.P. Abbott et al., [LIGO Scientific and Virgo], Phys. Rev. Lett. 116, 061102 (2016) 
16. B.P. Abbott et al., [LIGO Scientific and Virgo], Phys. Rev. Lett. 119, 161101 (2017) 
17. B.P. Abbott et al., [LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat 

Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 
1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, 
ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), 
AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, 
TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical 
Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, 
MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, 
Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, 
High Time Resolution Universe Survey, RIMAS, RATIR and SKA South Africa/MeerKAT], 
Astrophys. J. Lett. 848, L12 (2017) 

18. B.P. Abbott et al., [LIGO Scientific and Virgo], Phys. Rev. Lett. 121, 161101 (2018) 
19. J. Alsing, H.O. Silva, E. Berti, Mon. Not. Roy. Astron. Soc. 478, 1377 (2018) 
20. L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. Lett. 852, L25 (2018) 
21. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010) 
22. J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, 

C. Bassa, V.S. Dhillon, T. Driebe et al., Science 340, 6131 (2013) 
23. H.T. Cromartie et al., [NANOGrav], Nat. Astron. 4, 72 (2019) 
24. K. Yagi, N. Yunes, Phys. Rep. 681, 1 (2017) 
25. D.D. Doneva, G. Pappas, Astrophys. Space Sci. Libr. 457, 737 (2018) 
26. J.S. Read, B.D. Lackey, B.J. Owen, J.L. Friedman, Phys. Rev. D 79, 124032 (2009) 
27. J.M. Lattimer, Ann. Rev. Nucl. Part. Sci. 71, 433 (2021) 
28. J.L. Blázquez-Salcedo, B. Kleihaus, J. Kunz, Universe 8, 153 (2022) 
29. J.B. Hartle, Astrophys. J. 150, 1005 (1967) 
30. H. Sotani, Phys. Rev. D 86, 124036 (2012) 
31. Z. Altaha Motahar, J.L. Blázquez-Salcedo, B. Kleihaus, J. Kunz, Phys. Rev. D 96, 064046 

(2017) 
32. J.B. Hartle, K.S. Thorne, Astrophys. J. 153, 807 (1968) 
33. P. Pani, E. Berti, Phys. Rev. D 90, 024025 (2014) 
34. T. Hinderer, Astrophys. J. 677, 1216 (2008) 
35. K. Yagi, N. Yunes, Phys. Rev. D 88, 023009 (2013) 
36. N. Andersson, K.D. Kokkotas, Mon. Not. Roy. Astron. Soc. 299, 1059 (1998) 
37. K.D. Kokkotas, B.G. Schmidt, Living Rev. Rel. 2, 2 (1999) 
38. K.S. Thorne, A. Campolattaro, Astrophys. J. 149, 591 (1967). Erratum: Astrophys. J. 152, 673 

(1968) 
39. K.S. Thorne, Rev. Mod. Phys. 52, 299 (1980) 
40. L. Lindblom, S.L. Detweiler, Astrophys. J. Suppl. 53, 73 (1983) 
41. S.L. Detweiler, L. Lindblom, Astrophys. J. 292, 12 (1985) 
42. K. Yagi, N. Yunes, Science 341, 365 (2013) 
43. R.P. Geroch, J. Math. Phys. 11, 2580 (1970) 
44. R.O. Hansen, J. Math. Phys. 15, 46 (1974) 
45. C. Hoenselaers, Z. Perjes, Class. Quant. Grav. 10, 375 (1993) 
46. T.P. Sotiriou, T.A. Apostolatos, Class. Quant. Grav. 21, 5727 (2004) 
47. T. Damour, A. Nagar, Phys. Rev. D 80, 084035 (2009)



7 Neutron Stars 313

48. L.C. Stein, K. Yagi, N. Yunes, Astrophys. J. 788, 15 (2014) 
49. K. Yagi, L.C. Stein, G. Pappas, N. Yunes, T.A. Apostolatos, Phys. Rev. D 90, 063010 (2014) 
50. N. Andersson, K.D. Kokkotas, Phys. Rev. Lett. 77, 4134 (1996) 
51. K.D. Kokkotas, T.A. Apostolatos, N. Andersson, Mon. Not. Roy. Astron. Soc. 320, 307 (2001) 
52. O. Benhar, E. Berti, V. Ferrari, Mon. Not. Roy. Astron. Soc. 310, 797 (1999) 
53. O. Benhar, V. Ferrari, L. Gualtieri, Phys. Rev. D 70, 124015 (2004) 
54. L.K. Tsui, P.T. Leung, Mon. Not. Roy. Astron. Soc. 357, 1029 (2005) 
55. H.K. Lau, P.T. Leung, L.M. Lin, Astrophys. J. 714, 1234 (2010) 
56. J.L. Blazquez-Salcedo, L.M. Gonzalez-Romero, F. Navarro-Lerida, Phys. Rev. D 87, 104042 

(2013) 
57. J.L. Blázquez-Salcedo, L.M. González-Romero, F. Navarro-Lérida, Phys. Rev. D 89, 044006 

(2014) 
58. C. Chirenti, G.H. de Souza, W. Kastaun, Phys. Rev. D 91, 044034 (2015) 
59. C.M. Will, Living Rev. Rel. 9, 3 (2006) 
60. V. Faraoni, S. Capozziello, Fundam. Theor. Phys. 170 (2010) 
61. E. Berti et al., Class. Quant. Grav. 32, 243001 (2015) 
62. E.N. Saridakis et al., Modified Gravity and Cosmology - An Update by the CANTATA Network, 

ed. by E.N. Saridakis, R. Lazkoz, V. Salzano, P.V. Moniz, S. Capozziello, J.B. Jiménez, M. De 
Laurentis, G.J. Olmo. Springer (2021). ISBN: 978-3-030-83714-3. https://link.springer.com/ 
book/10.1007/978-3-030-83715-0 

63. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961) 
64. T. Damour, G. Esposito-Farese, Class. Quant. Grav. 9, 2093 (1992) 
65. T. Damour, G. Esposito-Farese, Phys. Rev. D 54, 1474 (1996) 
66. Y. Fujii, K. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge University Press, 

Cambridge, 2007) 
67. G. Esposito-Farese, D. Polarski, Phys. Rev. D 63, 063504 (2001) 
68. T. Damour, G. Esposito-Farese, Phys. Rev. Lett. 70, 2220 (1993) 
69. R.F.P. Mendes, Phys. Rev. D 91, 064024 (2015) 
70. R.F.P. Mendes, N. Ortiz, Phys. Rev. D 93, 124035 (2016) 
71. R.F.P. Mendes, N. Ortiz, Phys. Rev. Lett. 120, 201104 (2018) 
72. J. Zhao, P.C.C. Freire, M. Kramer, L. Shao, N. Wex, Class. Quant. Grav. 39, 11LT01 (2022) 
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8Black Holes: On the Universality of the Kerr 
Hypothesis 

Carlos A. R. Herdeiro 

Abstract 

To what extent are all astrophysical, dark, compact objects both black holes 
(BHs) and described by the Kerr geometry? We embark on the exercise of 
defying the universality of this remarkable idea, often called the “Kerr hypoth-
esis”. After establishing its rationale and timeliness, we define a minimal set 
of reasonability criteria for alternative models of dark compact objects. Then, 
as proof of principle, we discuss concrete, dynamically robust non-Kerr BHs 
and horizonless imitators, that (1) pass the basic theoretical, and in particular 
dynamical, tests, (2) match (some of the) state of the art astrophysical observables 
and (3) only emerge at some (macroscopic) scales. These examples illustrate 
how the universality (at all macroscopic scales) of the Kerr hypothesis can be 
challenged. 

8.1 The Kerr Hypothesis 

The elegant Kerr metric [1, 2], 

. ds2 = −�

�

(
dt − a sin2 θdφ

)2 + �

�
dr2 + �dθ2 + sin2 θ

�
[adt − (r2 + a2)dφ]2 ,

(8.1) 

where .� ≡ r2 + a2 cos2 θ , .� ≡ r2 − 2Mr + a2, is the currently accepted model 
to describe the phenomenology of all astrophysical black hole (BH) candidates. 
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Since (8.1) is only described by two macroscopic parameters, the mass M and
angular momentum Ma of the BH, this is clearly an economical scenario. The
very same (almost featureless) theoretical model describes astrophysical objects
ranging, at least, 10 orders of magnitude in mass. There is evidence for BHs in the
stellar mass range, from . ∼ .M� to . ∼100 .M�, obtained from X-ray binaries [3] and 
gravitational wave (GW) detections [4–6] and in the supermassive range, from . ∼105

to .1010
.M�, as radio sources [3], from Very Large Base Line Interferometry [7] 

and infrared observations in our own galactic centre [8, 9]. According to the “Kerr 
hypothesis” these BHs have exactly the same spacetime structure, simply rescaled 
by the mass, and with only one extra macroscopic degree of freedom, their spin. If 
true, this is remarkable. As we have seen in the previous Chap. 7, Neutron stars for 
example lead to a much larger variety of spacetime structures. 

The goal of this chapter is to discuss, with concrete proof of concept models, 
the possibility if (and under which circumstances) astrophysical BH candidates 
could be described by something else rather than the Kerr geometry in some range 
of (macroscopic) scales,1 both in view of theoretical consistency, in particular 
dynamics, as well as in view of the current observational developments. 

8.2 Non-Kerrness: Guiding Principles and Testing Grounds 

Non-Kerr models for astrophysical BH candidates must obey theoretical reasonabil-
ity criteria. Here is a possible minimal list [10]: 

1. to appear in well motivated and consistent physical theories. In the case of Kerr, 
this is vacuum General Relativity (GR), which, albeit an incomplete theory, due 
e.g. to singularities, within its regime of validity fulfills this criterion; 

2. to have a dynamical formation mechanism, which for Kerr is gravitational 
collapse [11], together with accretion and mergers; 

3. to be sufficiently stable, meaning it can play a role in astrophysical or cosmo-
logical time scales. For Kerr in GR, mode stability has been established long 
ago [12]. 

The two last criteria establish dynamical robustness. This is one of the unifying 
principles of the models discussed below: there should be a route for forming them 
and they should be sufficiently stable against the unavoidable perturbations in any 
realistic environment. This is a restrictive criterion. Some models of alternative 
BHs or horizonless compact objects, e.g. wormholes, have no established formation 
mechanism.

1 It is widely accepted that sufficiently microscopic BHs will require quantum gravity effects. This 
is not the range of scales we shall be interested in, but rather macroscopic scales for which there is 
astrophysical evidence for BHs. 
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Being a good theoretical model in the sense of the previous paragraph is 
not, however, enough to describe Nature. The model must give rise to all the 
correct phenomenology attributed to astrophysical BHs, both in the electromagnetic 
and GWs channels. At the moment, there is not (yet?) clear tension between 
observations and the Kerr model. But the limitations of GR (e.g. the unavoidable 
singularities behind BH horizons [13]) and of the standard model (SM) of particle 
physics (which fails to explain, say, dark matter) leverage us to consider non-Kerr 
models and how much we can distinguish them from the paradigm, with state of the 
art observables. Moreover, we should bear in mind that, at the moment, we are not 
testing simultaneously (i.e. for the same mass range) all these observables. Thus, 
degeneracy in any single observable (even if not in all), for some model, may be of 
interest. 

The first class of state of the art strong gravity observables, to test against, comes 
from GWs. Amongst the many detections, a most interesting (and intriguing) one 
is GW190521 [14]. Key novel aspects of this event include: (i) the very massive 
progenitors, of about 85 and 66 .M�, meaning that, within the uncertainties, at least 
one is in the so called “pair instability supernova gap”, a gap in the mass spectrum 
starting somewhere between 45 and 55 .M� wherein BHs cannot form from the 
collapse of massive stars according to standard stellar evolution [15]. So, how did 
the progenitors of this event come to be? (ii) it is a low frequency event, implying 
there is no inspiral in the observed signal, leaving room to speculate about the true 
nature of the event. Thus, GW190521 (and similar events) promises to be a fertile 
ground for theoretical modelling, in particular for testing the Kerr hypothesis. A 
detailed discussion about how one can obtain information about the structure of 
BHs from GW observations, is exemplified in the next Chap. 9. 

A second remarkable observable is the first image of a BH—M87*—resolving 
horizon scale structure [7]. Since this observation is probing the strong gravity 
region of a few Schwarzschild radii, even though it has only been done for a single 
BH and even though there may be a non negligible impact of the astrophysical 
environment, which is not fully under control, it is worth understanding how it can 
be used to confirm the Kerr hypothesis or constrain deviations thereof, by comparing 
the shadow [16, 17] and emission ring in the M87* image with non-Kerr models. 

8.3 Non-Kerrness: Two Families of Examples 

The Carter-Robinson uniqueness theorem [18–20] establishes that physically rea-
sonable BHs in vacuum GR fall into the family (8.1) . Hence they are rather
featureless; they have no-hair [21]. Thus, to find non-Kerr BHs, one must either 
include matter in GR or consider modified gravity theories (such as for example 
the ones which have been discussed in Chaps. 3 and 4). This is necessary but not 
sufficient. For instance, including minimally coupled matter fields, with standard 
kinetic terms and obeying (say) the dominant energy condition is rather restrictive; 
it prevents non-Kerr BHs in many models. This conclusion has been established 
by model-specific no-hair theorems [22, 23]. Some of these theorems are powerful
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since they do not require much, a paradigmatic example being Bekenstein’s theorem 
ruling out BH “hair” of a real scalar field minimally coupled to Einstein’s gravity, 
possibly with a mass term or even some classes of self interactions [24]. Still, 
theorems have assumptions, and dropping some of them one may (sometimes) find 
reasonable scenarios where new BHs emerge. 

Here, we shall be interested both in examples in GR with minimally coupled 
scalar (or massive vector) fields, where the usual theorems are circumvented in a 
subtle way, by a property called “symmetry non-inheritance”, and in models beyond 
GR where the theorems are circumvented by the use of non-minimal couplings. In 
either case, the theoretical foundation will invoke new physics which introduces a 
new scale. Moreover, in both cases, the non-Kerr BHs co-exist with Kerr as solutions 
of the model. At some scales, however, the former emerge dynamically from the 
latter. In other words, the Kerr solution becomes unstable due to some new physics 
and a new preferred state emerges. 

The first family is in GR but with matter beyond the SM, in fact ultralight bosonic 
particles, that have been proposed as dark matter candidates [25–27]. The two basic 
members of this family are described by the action (.G = 1 = c) 

.S(s) =
∫

d4x
√−g

[
R

16π
+ L(s)

]
, (8.2) 

where .L(0) = −�̄, α�,α − μ2�̄� and .L(1) = −F̄αβFαβ/4 − μ2ĀαAα/2 for the 
scalar (.s = 0) and vector (.s = 1) cases, respectively. . � and .Aμ are a complex 
scalar and vector field, .F = dA and overbar denotes complex conjugate. The field 
mass introduces a new scale, . μ, which is an inverse length, and which, for the 
scenario herein, is taken to be ultralight, with mass between .10−10 to .10−20 eV. 
Kerr BHs with a horizon scale comparable to the Compton wavelength of this new 
particle, become (efficiently) unstable against a process called superradiance [28], 
transferring part of their energy and angular momentum to a scalar cloud around the 
BH, which becomes a “BH with synchronised (scalar or Proca) hair” [29, 30], and 
different from Kerr. These BHs were first reported in [31] and [32] for the scalar 
and Proca case, respectively.

•? Exercise 
8.1. Derive the field equations for action (8.2) for .s = 0 and .s = 1. Are the field equations 

for .s = 1 gauge invariant under the transformation .Aμ → A′
μ = Aμ + ∂μf ?
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The second family is beyond GR, in modified gravity. A member of this family is 
the extended scalar-tensor Gauss-Bonnet (eSTGB) model, described by the action 

. S = 1

16π

∫
d4x

√−g
[
R − 2∂μφ∂μφ + λ2f (φ)(RμναβRμναβ − 4RμνR

μν + R2)
]
,

(8.3) 

where . φ is a real scalar field and .f (φ) an yet unspecified coupling function. 
The Gauss-Bonnet (GB) coupling introduces a new scale . λ, which has units of 
length. Then, BHs with a horizon scale comparable to this new scale, can undergo 
a strong gravity phase transition, spontaneous scalarisation [33, 34].2 This leads, 
dynamically, to new types of BHs, dubbed “scalarised BHs”. 

Model (8.2) also accommodates horizonless compact objects known as “bosonic
stars”, scalar [36–38] or vector [39–41]. (See also the detailed discussion about 
Boson stars in Chap. 10.) The latter are also known as “Proca stars”. Some of 
these solutions are dynamically robust [42, 43] and have a formation mechanism, 
via a process called “gravitational cooling” [43–46]. When the new scale, . μ is in 
the aforementioned range, between .10−10 to .10−20 eV, the maximal mass of these 
bosonic stars is in the astrophysical range of .1 − 1010

.M�, and these objects mimic 
the mass of astrophysical BHs. Scalar and vector bosonic stars have some interesting 
differences which will be emphasised in the examples below concerning the (BH) 
imitation game. 

8.4 Non-Kerr BHs: The Example of Synchronisation 

8.4.1 Dynamical Considerations 

Dynamical synchronisation occurs in many systems, both in biology, e.g. com-
munities of fireflies or crickets, and in physics, e.g. sets of metronomes or 
pendulums [47]. In these systems, individual cycles converge dynamically to the 
same phase due to appropriate interactions, yielding a configuration that would 
otherwise look fine-tuned. 

In Newtonian gravitational dynamics, synchronisation occurs in binary systems 
of extended objects, such as planets or stars [48]. Tidal effects tend to synchronise 
and lock orbital and rotational periods. This effect led the moon to always show the 
same face towards the Earth, and the Earth is (very slowly) tending to show the same 
face towards the moon. This is a ubiquitous behaviour observed in all planets-moons 
of the solar system. 

In the context of relativistic gravity, the aforementioned BHs with synchronised 
bosonic hair can be interpreted as synchronised configurations (hence the name).

2 Spontaneous scalarisation was first proposed for neutron stars, in a different model [35], see also 
the discussion in Sect. 7.4.1. 
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The synchronisation condition reads .H = ω/m [31, 49, 50], where .H is the 
horizon angular velocity, and .ω/m is the phase angular velocity of the bosonic 
field, which has a dependence .� ∼ e−i(ωt−mϕ), where . � represents either . � or 
. Aμ; .t, ϕ are the time and azimuthal coordinates of the stationary and axisymmetric 
spacetime; . ω is the frequency of the bosonic field’s harmonic time dependence and 
m is an integer azimuthal harmonic index. This condition is stating that the phase of 
the field is co-rotating in synchrony with the horizon. Are these synchronous hairy 
BHs attained dynamically, as in the case of the fireflies or pendulums? 

There is indeed one dynamical channel that leads to synchronisation: the process 
of superradiance. Fully non-linear numerical simulations have been successfully 
performed when the bosonic field is the Proca one [29]. They have shown that the 
process of superradiant rotational energy extraction spins down the BH, saturates 
and a new equilibrium state is attained, precisely when the BH and the dominant 
superradiant mode obey .H = ω/m. These simulations obtained a maximum of 
. ∼9% of energy transfer from the BH into the bosonic cloud. This is close to the 
maximum expected in the evolution of the dominant superradiant mode, which is 
.∼10%, also for the scalar case [51]. Using the data from these simulations the new 
equilibrium state was identified with a BH with synchronised Proca hair [30]. 

We thus have a process creating a new sort of BH, which takes some time scale. 
But the time scale depends crucially on a resonance between the Compton wave-
length of the fundamental boson .1/μ and the Schwarzschild radius of the BH, .∼ M . 
Maximal efficiency occurs when they are similar, .Mμ ∼ 1 [52]. Otherwise the time 
scale quickly grows and becomes larger than the Cosmological time sufficiently 
far from the sweet spot. This therefore selects a mass scale of BHs: depending on 
the sort of mass of the fundamental boson, BHs in a certain (narrow) mass range 
become hairy, but outside this range they (effectively) do not [10]. The punch line is 
that, under the assumption a single ultralight boson with some mass . μ exists, non-
Kerrness would manifest itself only for BHs in some narrow mass range around 
.1/μ. Observational evidence for such non-Kerrness would therefore identify . μ. 

There may be other formation channels for these synchronised BHs, in particular, 
from mergers of bosonic stars, both scalar and vector [53]. There is a key difference 
in this latter channel: superradiance forms a synchronised configuration by spinning 
down the BH. In this new channel, mergers of bosonic stars lead to a synchronised 
system by spinning up the BH that results from the merger, and which accretes part 
of the field remnant. In the latter case, however, fine tuning seems necessary [53]. 

8.4.2 Comparison with Observations 

Can we constrain BHs with synchronised hair with current observations? Con-
cerning GWs, both the perturbation theory (for the ringdown) and fully non-linear 
dynamical evolutions (for the inspiral and merger) remain essentially unexplored 
(but see [54]). Concerning shadows, on the other hand, more progress has been 
achieved, e.g. [55, 56].
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Fig. 8.1 Shadow and lensing of a Kerr BH (left) and a BH with synchronised scalar hair (right) 
with the same ADM mass and angular momentum, using a background image of Infant Stars in 
the Small Magellanic cloud from the Hubble space telescope. Adapted from the results in [55]. 
©American Physical Society. Reproduced with permissions. All rights reserved 

This family of BHs with synchronised hair interpolates between vacuum Kerr 
BHs and bosonic stars. Consequently, close to the Kerr limit phenomenological 
differences are as small as desired (compared to Kerr) due to the continuity of 
the solutions; but sufficiently far away they are large and can become huge in 
the solution space region close to bosonic stars. Figure 8.1 shows lensing images 
obtained by ray tracing for these BHs and comparing with Kerr [57], using 
an aesthetically appealing starry sky as the light source, rather than a realistic 
astrophysical environment. The hairy BH shown (righ panel) has the same mass 
and angular momentum as the Kerr one (left panel), but 75% of the mass and 85% 
of the angular momentum are stored in the scalar field (rather than the horizon). 
One can see that due to the transfer of part of the energy and spin of the BH to 
the scalar “hair” the actual shadow is considerably smaller than that of a Kerr BH 
with the same total mass and spin and comparable observation conditions. Actually 
it is about 25% smaller in terms of the average radius, which seems to exclude 
this particular example of hairy BH as a good model for M87* with current EHT 
observations. This illustrates how sufficiently large departures from Kerr can be 
falsified even with current observations. However, how are the differences in the 
dynamically viable region, assuming formation from superradiance? 

In the dynamically most interesting region of the parameter space, where the 
hairy BHs can form from Kerr in an astrophysical time scale and are stable (against 
higher superradiant modes) for at least a Hubble time [10], the differences are 
generically small. Recall that only about . ∼10% of the Kerr BH mass can be 
transferred to the bosonic cloud. Yet. . . this is a  non-negligible amount of mass for a 
6 billion solar masses BH like M87*. Analysing in this region of the parameter space 
if the M87* image could then distinguish the hairy BH from Kerr, one concludes 
that all dynamically viable BHs could be mistaken for a Kerr BH within the current
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error bars [56]. This conclusion seems quite natural, since roughly, the error in the 
measurement of the emission ring diameter is about 10%. 

The conclusion is the following. Consider that an ultralight (dark matter) particle 
with a mass of .∼10−20 eV exists in Nature, so that .μMM87∗ ∼ 1. Then, as M87* 
grew throughout its history to its current mass, superradiance became efficient 
around its current mass, and endowed it with synchronised hair, a process that took a 
few million years. The (current) hairy M87* BH is effectively stable against higher 
superradiant modes, for a Hubble time. In this scenario, M87* is not a Kerr BH, but 
rather a BH with synchronised hair. However, the current Event Horizon Telescope 
precision would not be able to tell the difference. Observe, moreover, that all other 
BHs with a mass smaller than .�109M� would not become hairy, as superradiance 
is not efficient. They would be Kerr BHs. 

8.5 Non-Kerr BHs: The Example of Scalarisation 

We now consider a different scenario wherein non-Kerr BHs also arise dynamically, 
for some scales, but via a different instability of Kerr BHs: spontaneous scalarisa-
tion. 

In the landscape of modified gravity models there are question marks on the well-
posedness and theoretical consistency of many of them. A fairly well motivated class 
of models with higher curvature corrections is the class of eSTGB models (8.3) .
Here, the model is defined by the choice of the coupling between the GB and the
scalar field, .f (φ). Choosing a dilatonic coupling, .f (φ) ∼ eβφ , which is motivated, 
say, by string theory or dimensional reduction (in a somewhat similar way to the 
emergence of the Chern-Simons gravity from string theory, which was discussed 
in Chap. 1), Schwarzschild/Kerr BHs are not solutions; there are new BHs which 
are stable (in some regime) and which have a qualitatively new feature, namely 
a minimal BH size [58, 59]. This can be interpreted as due to a repulsive effect, 
sourced by the GB term, that destabilises the horizon when the GB term becomes 
dominant, i.e. for sufficiently small BHs. 

Changing the scalar-curvature coupling into a more general .f (φ), there are 
various interesting cousin models. For example, one can consider shift-symmetric 
models, which are close to the previous dilatonic model but with this additional 
shift-symmetry. BHs in this model have been constructed [60, 61] and shown to 
exhibit dynamical formation [62]. On the other hand, the condition . df/dφ(φ =
0) = 0, yields a class of models admitting both vacuum GR and scalarised BHs [33, 
34, 63]. Moreover, depending on the sign of .d2f/dφ2(φ = 0), the GR BHs may 
be unstable in some scales, i.e. when .M/λ is smaller than some threshold, which 
suggests the non-GR BHs could emerge dynamically, via spontaneous scalarisation. 
Entropic considerations support this possibility in some models, e.g. [33, 64]. 

In the case of these models, the fully dynamical process has not been established, 
but there are dynamical results showing the exponential growth and saturation of 
a self-interacting scalar field in the decoupling limit [65]. Moreover, fully non-
linear numerical evolutions could be performed of the spontaneous scalarisation
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of a Reissner-Nordström BH in a cousin model, showing the phenomenon occurs 
dynamically and leads to a perturbatively stable scalarised BH [66]. 

The scalarised Kerr BHs that would be the endpoint of the scalarisation process 
were first constructed in [64] (see also [67]), in model (8.3) with . f (φ) = (1 −
e−βφ2)/(2β). Choosing this coupling is illustrative. Some properties (but not all) of 
the scalarised solutions are universal for all couplings allowing scalarisation, e.g. the 
threshold between Kerr and scalarised BHs. All solutions (as in the case of the BHs 
with synchronised hair) are numerical. Consider first static, spherical BHs, taking 
. λ as fixed (new) scale. For sufficiently large BHs as compared to . λ (greater than 
. ∼ 0.6) there are only Schwarzschild BHs. No scalarised BHs exist. Decreasing the 
mass of the BH, Schwarzschild BHs becomes unstable against scalarisation and the 
scalarised BHs appear. These are stable, at least against radial perturbations up to 
some smaller size, where the scalarised BHs cease to be stable [68]. So, there is 
a window of sizes where scalarised BHs are stable and dynamically preferred to 
Schwarzschild. 

The effect of the angular momentum is interesting: spin suppresses the effects of 
scalarisation [64]. This spin suppression of the non-Kerrness can be seen using the 
diagnosis of the associated shadows—Fig. 8.2. Using the same background image 
as before, one sees that for non-spinning BHs (top panels), the distinction is visible 
with a naked eye: the Schwarzschild BH shadow (left panel) and that of a scalarised 
BH with the same mass and under similar observation conditions (right panel) are 
clearly different. The latter is in the perturbatively stable region. But as the spin 
parameter increases (bottom panels) the difference is suppressed and even for still 
fairly low spins, say .j ∼ 0.5, they become negligible. 

In [64] a comparison with the Event Horizon Telescope data was performed. 
Taking into account that very little is known about the spin of M87*, however, this 
comparison is not very informative. Even in the most optimistic scenario (for this 
model) where the spin is low, one can only put a rather weak constraint on the new 
scale that the model introduces. 

Let us close this discussion on spontaneous scalarisation with a different class 
of models that introduces a new twist. In the models we have just discussed, 
the Kretschmann scalar of the vacuum BH is providing the instability, endowing 
scalar perturbations with a tachyonic mass. This Kretschmann scalar is positive 
for Schwarzschild. For Kerr it starts to become negative (around the poles) for the 
dimensionless spin, .j > 0.5. Thus, if we consider models with the opposite coupling 
sign, only sufficiently fast spinning BHs will scalarise. This has been called “spin 
induced scalarisation” [69]. 

In [70] (see also [71]) the domain of existence of the corresponding BHs was 
explored, for the same illustrative coupling as before. Whereas in the model before, 
spin quenched the Kerr deviations, now spin enhances the Kerr deviations; in fact it 
is mandatory. So, this illustrates how there are models in which only some BHs, 
either with small or with large spin can differ from Kerr, which moreover only 
occurs for some mass scales. In the case of spin induced scalarisation a detailed
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Fig. 8.2 Shadow and lensing of scalarised BHs (right panels) and Schwarzschild/Kerr BHs (right 
panels) with the same ADM mass and angular momentum, using the same background image 
as in Fig. 8.1. Adapted from [64]. Figure credit: ©Americal Physical Society. Reproduced with 
permissions. All rights reserved 

phenomenological study of the solutions, namely of the shadows, has not yet been 
reported. 

8.6 The Imitation Game: Non-BHs Mimicking BH Observables 

Let us now discuss “the imitation game”, or how non-BHs can mimic some (even if 
not all) BH observables. 

There are several motivations to consider BH mimickers, e.g., the singularity 
problem of BHs. This has led to many models of horizonless compact objects that 
could behave as BH imitators. It has been pointed out, however, that an imitator
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needs to have a light ring (LR) to mimic the BH ringdown [72]. LRs also play a key 
role in determining the edge of the shadow [73]. Thus, it seems that for compact 
object to mimic the most strong field current observations they need to possess LRs 
(and are then called “ultra-compact”). 

There may be, however, a generic possible issue with horizonless ultracompact 
objects. A theorem established in [74] states that for generic equilibrium ultracom-
pact objects, resulting from a smooth, incomplete gravitational collapse, (thus, for 
which there is plausible formation mechanism) LRs come in pairs and one is stable. 
A stable LR has been suggested to trigger a (non-linear) spacetime instability [75], 
as massless perturbations can pile up in its vicinity. Not much is known about this 
instability or its timescale, but it raises a shadow of doubt about the dynamical 
robustness of horizonless, ultracompact objects. 

Let us therefore ask the question if real data, like a true GW event or the 
Event Horizon Telescope M87* observation could be imitated by a compact 
object mimicker that does not have LRs. Interestingly, as the following case study 
examples indicate the answer is yes in both cases. 

8.6.1 Mimicking a GW Event 

Let us first address the imitation of a GW event. In GR coupled to ultralight bosonic 
fields, there has been, for many years, developments in evolving scalar and vector 
boson stars dynamically, using numerical relativity techniques [42]. In 2019 an 
unexpected difference between spinning scalar and vector bosonic stars was found: 
the most fundamental spinning scalar boson stars develop a non-axisymmetric 
instability [43]. When this instability kicks in, these stars collapse into a BH. On the 
other hand, this instability is absent in the cousin Proca model. Indeed, even if one 
perturbs considerably a spinning Proca star, no instability is seen. So, spinning Proca 
stars, without self-interactions, are dynamically robust, unlike their scalar cousins. 

Given the dynamically robustness of spinning Proca Stars, recently we consid-
ered simulations of mergers of spinning Proca stars and compared them with real 
data, in particular with the intriguing event GW190521 commented on earlier. We 
have found, through a Bayesian analysis, that a collision of two spinning Proca stars 
actually fits slightly better the data than the vanilla binary BH model that was used 
by the LIGO-Virgo collaboration [76]. 

It follows that if, even just as a proof of concept, one takes seriously the Proca 
model, we can use the data to infer the mass of the ultralight bosonic (in this case 
vector) particle. We have obtained a mass of around .8 × 10−13 eV. More similar 
events are needed to confirm this possibility. In the most likely case scenario this is 
just a proof of concept showing (1) how there can be degeneracy in real data between 
two very different models and (2) how one could extract physical information about 
a new fundamental, dark matter particle from GW data (in this case the mass of 
the boson). Note that the colliding Proca stars are compact but not ultracompact, so 
they do not have LRs. Of course, in a much more exciting possibility, a potential
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confirmation of the bosonic star scenario would be a first hint for the long sought 
dark matter nature. 

Under this rationale, one may ask why could this event be such a Proca star 
collision and not the other events detected so far? The point is again mass selection. 
The mass of the ultralight bosonic particle determines the maximal mass of the 
corresponding stars. For the above quoted ultralight boson, this mass turns out to 
be about . ∼173 .M�. All other events correspond to a smaller final mass. Since we 
have observed BH formation, due to the ringdown, then these cannot be Proca star 
collisions. For the Proca star collisions to form a BH they have to overshoot this 
limit, which requires events as massive as GW190521. 

8.6.2 Mimicking a BH Shadow Without LRs 

Let us now address the imitation of a BH shadow by a mimicker without LRs. 
In a generic stationary and axi-symmetric BH spacetime, one can associate the 

edge of the BH shadow to a set of photon bound orbits, which we refer to as 
“fundamental photon orbits” [73]. In the Schwarzschild case, all of these are planar 
LRs. In the Kerr case they are called “spherical photon orbits”, since they have a 
constant radial Boyer-Lindquist coordinate. 

In a real astrophysical environment, however, an effective shadow seen may 
depend on the details of the light source. This was nicely illustrated in [77], 
where GR magnetohydrodynamic (GRMHD) simulations were performed on the 
background of BHs and of some models of static scalar boson stars. None of these 
stars have LRs (or a horizon); yet, some could produce an effective shadow, where 
others did not. In all boson stars models considered, they admitted stable timelike 
circular orbits until their very centre; but in the case where an effective shadow was 
seen the angular velocity of the timelike circular orbits attains a maximum at some 
non-zero areal radius . R. This new scale is observed to determine the inner edge 
of the accretion disk in the simulations, under some assumptions, including that the 
loss of angular momentum of the orbiting matter is driven by the magneto-rotational 
instability and that the radiation relevant for the BH shadow observations is mostly 
due to synchroton emission. There are, however, two caveats for the models in [77] 
that produce an effective shadow, to be seriously considered as imitators. First, the 
imitation is not perfect, since the effective shadow is considerably smaller than that 
of a comparable Scwharzschild BH with the same mass. Secondly, the boson stars 
producing an effective shadow are perturbatively unstable. 

It turns out, as discussed in [78], that this imitation game works better for 
Proca stars (rather than scalar boson stars). Within the stable branch of spherical, 
fundamental Proca stars, there are solutions that display the necessary new scale, 
that is, for which the timelike circular orbit with the maximal angular velocity is 
at some radius .R 	= 0. One can even choose a particular solution for which this 
new scale equals the location of the Innermost Stable Circular Orbit (ISCO) of a 
Schwarzschild BH with the same mass. So, there is a dynamically robust solution
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Fig. 8.3 Shadow and lensing of the Proca star discussed in the text and of a comparable 
Schwarzschild BH, both illuminated by a thin, equatorial accretion disk, at two different obser-
vation angles. The bottom images are blurred to mimic current observational limitations. Adapted 
from [78]. Figure credit: ©IOP Science. Reproduced with permissions. All rights reserved 

that, under some accretion models yields an accretion disk morphology mimicking 
that of a Schwarzschild BH of the same mass. 

To check the potential shadow degeneracy, in [78] ray tracing images were 
produced considering a simplified astrophysical setup, wherein the only radiation 
source is an opaque and thin accretion disk located on the equatorial plane around 
the central compact object. The disk has an inner edge with an areal radius . R =
6M in both spacetimes. The most interesting case for degeneracy occurs for an 
observer close to the poles (to match the estimated angle at which M87*, was 
observed from Earth)—Fig. 8.3. For this angle, the images of the Schwarzschild 
(top left panel) and Proca star (top middle left panel) look similar, although some 
finer additional lensing features are still visible in the Schwarzschild case. But 
these subtle differences are washed away if one applies a Gaussian blurring filter 
to the images, to mimic the current observations limited angular resolution, of the 
order of the compact object itself. The images so obtained are shown below the 
corresponding unblurred image, and are essentially indistinguishable. 

On the other hand, a near equatorial observation leads to fairly different images. 
The Schwarzschild one (top middle right panel) resembles the BH shape displayed 
in the Hollywood movie “Interstellar”, whereas the Proca star simply looks like a 
flat accretion disk with a hole in it, as seen from the side (top right panel). This 
is because the gravitational potential well of the Proca star is shallow and so the 
bending of light it produces is weak. Consequently, the accretion disk has an almost 
flat spacetime appearance. Applying the same blurring as before, even with limited 
resolution, the two objects could be distinguished. Let us stress that full GRMHD 
analysis and ray-tracing in the background of this Proca star are required to fully 
settle the question: to what degree can it imitate a BH observation? The case built



328 C. A. R. Herdeiro

herein, nonetheless, clearly confirms a potential degeneracy, but only under some 
observation conditions. And these Proca stars do not have LRs and are dynamically 
stable. 

8.7 Concluding Remarks 

Let us close with two following final remarks. Firstly, all these models we have 
discussed have caveats; but they illustrate theoretical possibilities of dynamically 
robust non-Kerr BHs, or BH imitators, that could manifest themselves only at some 
specific scales of mass and spin. Secondly, that producing detailed phenomenology 
will constrain the model and the corresponding (admittedly exotic) physics or, in 
the best case scenario, provide a smoking gun to this new physics. 
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9Probing the Horizon of Black Holes with 
Gravitational Waves 

Elisa Maggio 

Abstract 

Gravitational waves open the possibility to investigate the nature of compact 
objects and probe the horizons of black holes. Some models of modified gravity 
predict the presence of horizonless and singularity-free compact objects. Such 
dark compact objects would emit a gravitational-wave signal which differs from 
the standard black hole scenario. In this chapter, we overview the phenomenol-
ogy of dark compact objects by analysing their characteristic frequencies in the 
ringdown and the emission of gravitational-wave echoes in the postmerger signal. 
We show that future gravitational-wave detectors will allow us to perform model-
independent tests of the black hole paradigm. 

9.1 Tests of the Black Hole Paradigm 

Black holes (BHs) are the end result of the gravitational collapse and the most 
compact objects in the Universe. According to the no-hair theorems of general 
relativity (GR), any compact object heavier than a few solar masses is well described 
by the Kerr geometry [1, 2]. Kerr BHs are determined uniquely by two parameters, 
i.e., their mass M and angular momentum J defined through the dimensionless 
spin parameter .χ ≡ J/M2 [3]. Therefore, any observation of deviation from the 
properties of Kerr BHs would be an indication of a departure from GR, see also the 
discussion in the previous Chap. 8. 

Gravitational waves (GWs) provide a unique channel for probing the nature 
of astrophysical sources. The GW signal emitted by the coalescence of compact 
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binaries is characterized by three main stages: the inspiral, when the two bodies 
spiral in towards each other as they loose energy into gravitational radiation; the 
merger, when the two bodies coalesce; and the ringdown, when the final remnant 
relaxes to an equilibrium solution. In particular, the analysis of the ringdown would 
allow us to infer the properties of the compact remnants. 

The ringdown is dominated by the complex characteristic frequencies of the 
remnant, the so-called quasi-normal modes (QNMs) (which are derived similarly 
as it was explained for Neutron Stars in Sect. 7.2.3), which describe the response of 
the compact object to a perturbation [4], i.e. 

.ω�mn = ωR,�mn + iωI,�mn , (9.1) 

where .ωR/I,�mn ∈ Re. Each mode is described by three integers, namely the 
angular number of the perturbation . � (where .� ≥ 0), the azimuthal number of the 
perturbation m (such that .|m| ≤ �), and the overtone number n (where .n ≥ 0). The 
fundamental mode with .n = 0 corresponds to the mode with the smallest imaginary 
part. The ringdown is modeled as a sum of exponentially damped sinusoids whose 
frequencies .f�mn (damping times .τ�mn) are related to the real (imaginary) part of 
the QNMs of the remnant via 

.f�mn = ωR,�mn/(2π) , . (9.2) 

τ�mn = −1/ωI,�mn . (9.3) 

Therefore, from the detection of the ringdown signal it is possible to infer the QNMs
of the remnant and understand the nature of the latter.

The fundamental QNM has been observed in the ringdown of several GW 
events [5]. The ringdown detections are compatible with Kerr BH remnants, 
however the characterization of the remnant requires further analyses. Indeed, the 
measurement of one complex QNM allows us only to estimate the mass and the 
spin of the remnant. A test of the BH paradigm would require the identification of 
at least two QNMs in the ringdown. Next generation detectors, e.g. the space-based 
interferometer LISA, will allow for tests of the BH paradigm with unprecedented 
precision [6]. 

9.2 Horizonless Compact Objects 

On the theoretical side, the presence of horizons in Kerr BHs poses some issues. In 
particular, the horizon hides a curvature singularity with infinite tidal forces where 
the Einstein equations break down. Moreover, the spacetime within the horizon can 
contain closed time-like hypersurfaces that violate causality. 

Several attempts to regularize the BH solution predict the existence of hori-
zonless and singularity-free compact objects [7]. Some models are solutions to 
quantum-gravity extensions of GR, e.g. the fuzzball in string theory as an ensemble
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of a large number of regular and horizonless microstate geometries with the same 
asymptotic charges of a BH [8]. Other models of horizonless compact objects are 
solutions to GR in the presence of dark matter or exotic fields, e.g. boson stars 
as self-gravitating solutions formed by massive bosonic fields which are coupled 
minimally to GR [9], see the discussion in Chaps. 8 and 10. 

Horizonless compact objects can mimic BHs in terms of electromagnetic obser-
vations since they can be as compact as BHs [10]. For example, the observation 
of the supermassive object at the center of the galaxy M87 by the Event Horizon 
Telescope constrained weakly some models of horizonless compact objects [11]. 
Moreover, horizonless compact objects can be used to study GW events in the 
mass gap between neutron stars and BHs and due to pair-instability supernova 
processes [12, 13]. 

In this context, horizonless compact objects allow us to quantify the existence 
of horizons in astrophysical sources. We analyse a generic model of dark compact 
object which deviate from a BH for two parameters [14]: 

• the compactness, which is defined as the inverse of the effective radius of the 
object in units of mass, i.e. .C = M/r0, where 

.r0 = r+(1 + ε) (9.4) 

is the location of the effective radius of the object and . r+ = M
(
1 + √

1 − χ2
)

is the horizon of a Kerr BH. Depending on their compactness, two categories 
of horizonless compact objects can be distinguished: compact objects whose 
effective radius is comparable with the light ring of BHs, i.e. .ε ≈ 0.1, 1; and 
ultracompact objects with Planckian corrections at the horizon scale due to 
quantum fluctuations, i.e. .ε ≈ 10−40. The two categories of horizonless compact 
objects give rise to different fingerprints in the GW signal. In particular, a merger 
remnant with .ε ≈ 0.1, 1 would emit a ringdown signal which differs from the 
BH ringdown at early stages, whereas an ultracompact horizonless object would 
emit a modulated train of GW echoes at late times, as discussed in Sect. 9.3.2; 

• the “darkness”, which is related to the reflectivity of the compact object . R(ω)

at its effective radius. The BH is a totally absorbing object with .R = 0 at 
the horizon, whereas a horizonless compact object can have . 0 ≤ |R(ω)|2 ≤ 1
depending on its interior structure. The .|R(ω)|2 = 1 case describes a perfectly 
reflecting object of perturbations moving towards the object. This is the case, 
for example, of neutron stars where the absorption of radiation through viscosity 
is negligible. Intermediate values of .R(ω) describe partially absorbing compact 
objects due to dissipation, viscosity, fluid mode excitations, nonlinear effects, etc.



336 E. Maggio

9.3 Phenomenology 

Let us derive the GW signatures of horizonless compact objects in the postmerger 
phase of compact binary coalescences. In this section, we overview the quasi-normal 
mode spectrum and the GW signal in the time domain at variance with the BH case. 

9.3.1 Quasi-Normal Mode Spectrum 

For simplicity, let us analyse a static and spherically symmetric horizonless compact 
object. Let us assume that GR is a reliable approximation outside the radius of the 
object and some modifications appear at the horizon scale. Owing to the Birkhoff 
theorem, the exterior spacetime is described by the Schwarzschild metric 

.ds2 = −f (r)dt2 + 1

f (r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (9.5) 

where .(t, r, θ, φ) are the Boyer-Lindquist coordinates and .f (r) = 1 − 2M/r . 
The radius of the compact object is located as in Eq. (9.4), where . r+ = 2M
is the horizon of a Schwarzschild BH. In order to derive the QNM spectrum of 
the horizonless compact object, let us perturb the background geometry with a 
gravitational perturbation. The radial component of the gravitational perturbation 
is governed by a second-order differential equation [15, 16] 

.
d2ψ(r)

dr2∗
+

[
ω2 − V (r)

]
ψ(r) = 0 , (9.6) 

where . r∗ is the tortoise coordinate defined such that .dr∗/dr = 1/f (r) with . f (r) =
1 − 2M/r , and the effective potential reads 

.Vaxial(r) = f (r)

[
�(� + 1)

r2
− 6M

r3

]
, . (9.7) 

Vpolar(r) = 2f (r)

[
q2(q + 1)r3 + 3q2Mr2 + 9M2(qr + M)

r3(qr + 3M)2

]
, (9.8) 

for axial and polar perturbations, respectively, with parity .(−1)�+1 and .(−1)�, where 
.q = (� − 1)(� + 2)/2. Figure 9.1 shows the effective potential as a function of the 
tortoise coordinate for a BH (top panel) and a horizonless compact object (bottom 
panel). The effective potentials display a peak approximately at the light ring, . r ≈
3M , which is the unstable circular orbit of photons around the compact object. In the 
BH case, the perturbation is purely ingoing towards the horizon; whereas in the case 
of a horizonless compact object, the absence of the horizon implies the existence of 
a cavity between the radius of the object and the light ring. The cavity can support
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Fig. 9.1 Effective potential as a function of the tortoise coordinate of a Schwarzschild BH (top 
panel) and a static horizonless compact object with radius .r0 = 2M(1+ε) (bottom panel), for axial 
(continuous line) and polar (dashed line) .� = 2 gravitational perturbations. The effective potential 
has a peak approximately at the light ring, .r ≈ 3M . In the case of a horizonless compact object, 
the effective potential features a cavity between the radius of the object and the light ring. Adapted 
from [7]. © Springer Nature. Reproduced under CC-BY-4.0 license 

trapped modes that are responsible for a completely different QNM spectrum with 
respect to the BH case. 

By adding two boundary conditions to Eq. (9.6) , the system defines an eigenvalue
problem whose complex eigenvalues are the QNMs of the object. At infinity, we
impose that the perturbation is a purely outgoing wave, i.e.

.ψ(r) ∼ eiωr∗ , as r∗ → +∞ . (9.9) 

In the case of a horizonless ultracompact object (.ε � 1), the perturbation can be 
decomposed a superposition of ingoing and outgoing waves at the radius of the 
object, i.e. 

.ψ(r) ∼ Cin(ω)e−iωr∗ + Cout(ω)eiωr∗ , as r∗ → r0∗ , (9.10) 

where the reflectivity of the compact object is defined as [17] 

.R(ω) = Cout(ω)

Cin(ω)
e2iωr0∗ . (9.11) 

Let us derive the fundamental (.n = 0) .� = 2 QNM which is the mode with the 
longest damping time (in the static and spherically symmetric case, the QNMs do 
not depend on the azimuthal number m). Figure 9.2 shows the QNM spectrum of a 
horizonless ultracompact object with a perfectly reflecting surface .

(|R(ω)|2 = 1
)
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Fig. 9.2 QNM spectrum of a perfectly reflecting horizonless compact object with radius . r0 =
2M(1 + ε) and .ε ∈ (10−10, 10−2) compared to the fundamental .� = 2 QNM of a Schwarzschild 
BH. Axial and polar modes are not isospectral as in the BH case. As .ε → 0, the QNM spectrum 
is low-frequencies and long-lived. Modified from [18] and  [14]. © APS. Reproduced with 
permissions. All rights reserved 

and .ε ∈ (
10−10, 10−2

)
from the left to the right of the plot compared to the 

fundamental .� = 2 QNM of a Schwarzschild BH, i.e. 

.MωBH = 0.3737 − i0.08896 . (9.12) 

A first important signature of horizonless compact object is the breaking of 
isospectrality between axial and polar modes differently from BHs in GR. Indeed, 
Schwarzschild BHs have a unique QNM spectrum [4] despite the effective potentials 
for axial and polar perturbations differ from each other (see Eqs. (9.7) , (9.8) ). Con-
versely, the radius of horizonless compact objects is responsible for the appearance
of a mode doublet for axial and polar QNMs.

•? Exercise 
9.1. The isospectrality of axial and polar modes in BHs can be demonstrated from the 

Darboux transformation between the Regge-Wheeler and Zerilli wave functions governing 
axial and polar modes, respectively, both satisfying Eq. (9.6) , i.e.

.ψRW = A
dψZ

dr∗
+ B(r)ψZ , (9.13) 

where

.A = −M

[
iωM + 1

3
q(q + 1)

]−1

, . (9.14) 

B(r) = q(q + 1)(qr + 3M)r2 + 9M2(r − 2M)

r2(qr + 3M)[q(q + 1) + 3iωM] . (9.15)
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Demonstrate that the BH boundary condition .ψ = Cin(ω)e
−iωr∗ as .r → 2M for both Regge-

Wheeler and Zerilli wave functions satisfies the Darboux transformation in Eq. (9.13) .
Conversely, demonstrate that the boundary condition of a horizonless ultracompact object
in Eq. (9.10) does not satisfy the Darboux transformation in Eq. (9.13) .

Furthermore, a relevant feature of horizonless compact objects is that the QNM 
spectrum is low-frequency and long-lived in the limit .ε → 0. For example, the 
fundamental .� = 2 QNMs of a perfectly reflecting compact object with . ε = 10−10

are: 

.Mωaxial = 0.07470 − i2.299 × 10−9 , . (9.16) 

Mωpolar = 0.03791 − i2.739 × 10−11 . (9.17) 

This finding might seem surprising since, in the limit of a compactness close to the
BH case, the QNM spectrum of a horizonless compact object deviates significantly
from the BH QNM spectrum. A key role is played by the boundary condition in
Eq. (9.10) , particularly by the fact that the reflective properties of a horizonless
compact object differ generically from the totally absorbing BH case.

Low-frequency QNMs can be understood in terms of the trapped modes between 
the radius of the compact object and the light ring, as shown in Fig. 9.1. The real part 
of the QNMs depends on the width of the cavity in the effective potential, whereas 
the imaginary part of the QNMs depends on the amplification factor of the modes 
in the cavity and the reflectivity at the radius of the compact object. For .ε � 1, the  
QNMs can be derived analytically in the low-frequency regime as [7, 19–21] 

.ωR ∼ − π

2|r0∗ | (p + 1) , . (9.18) 

ωI ∼ − β2�

|r0∗ | (2MωR)2�+2 , (9.19) 

where .
√

β2� = (�−2)!(�+2)!
(2�)!(2�+1)!! and p is a positive odd (even) integer for polar (axial) 

modes. The real part of the QNMs scales with the compactness of the object as . ωR ∼
| log ε|−1, whereas the imaginary part of the QNMs scales as .ωI ∼ −| log ε|−(2�+3). 

Let us notice that the boundary condition in Eq. (9.10) can be imposed at the
radius of the compact object when .ε � 1 and the effective potential is vanishing. 
To derive the QNMs of horizonless compact objects with any compactness, we can 
make use of the membrane paradigm. The original BHs membrane paradigm states 
that a static observer outside the BH horizon can replace the interior of the perturbed 
BH by a fictitious membrane located at the horizon [22, 23]. The generalisation of 
the membrane paradigm to horizonless compact objects allows us to describe any 
compact object with a Schwarzschild exterior where no specific model is assumed 
for the object’s interior. The compactness of the horizonless object is generic and
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the reflectivity of the object is mapped in terms of the properties of the fictitious 
membrane. 

The Israel-Darmois junction conditions fix the properties of the fictious mem-
brane relating the exterior and the interior spacetime to the radius of the compact 
object, i.e. [24, 25] 

.[[Kab − Khab]] = −8πTab , [[hab]] = 0 , (9.20) 

where .hab is the induced metric on the membrane, .Kab is the extrinsic curvature, 
.K = Kabh

ab, .Tab is the membrane stress-energy tensor, and .[[...]] is the jump of 
a quantity across the membrane (detailed definitions of the above quantities are in 
Ref. [26]). For the membrane paradigm, the fictitious membrane is such that the 
extrinsic curvature of the interior spacetime vanishes. As a consequence, Eq. (9.20) 
impose that the fictitious membrane is a viscous fluid with stress-energy tensor

.Tab = ρuaub + (p − ζΘ)γab − 2ησab , (9.21) 

where . η and . ζ are the shear and bulk viscosities of the fluid, . ρ, p and . ua are 
the density, pressure and 3-velocity of the fluid, .Θ = ua

;a is the expansion, . σab

is the shear tensor, and the semicolon is the covariant derivative compatible with 
the induced metric. BHs are described by the following values of the shear and bulk 
viscosities of the membrane: 

.ηBH = 1

16π
, ζBH = − 1

16π
; (9.22) 

whereas horizonless compact objects have values of the shear and bulk viscosities
which are generically complex and frequency dependent. For a specific model for
the interior of the compact object, the shear and the bulk viscosities are uniquely
determined. The junction conditions in Eq. (9.20) with the stress-energy tensor in
Eq. (9.21) allow us to derive the boundary conditions at the radius of the horizonless
compact object, i.e. [26] 

.
dψ(r0)/dr∗

ψ(r0)
= − iω

16πη
− r20Vaxial(r0)

2(r0 − 3M)
, axial , . (9.23) 

dψ(r0)/dr∗
ψ(r0)

= −16πiηω + G(r0, ω, η, ζ ) , polar , (9.24) 

where .G(r0, ω, η, ζ ) is a cumbersome function given in Ref. [26]. The boundary 
conditions in Eqs. (9.23) , (9.24) describe a horizonless object with any compactness
whose reflective properties are mapped in terms of the shear and bulk viscosities of
the fictitious membrane.
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•? Exercise 
9.2. 

1. 1. Demonstrate that, in the limit (.r0 → 2M), the axial boundary condition in Eq. (9.23) 
reduces to a purely ingoing wave when the condition in Eq. (9.22) is satisfied.

2. 2. For .ε � 1, the axial boundary condition in Eq. (9.23) reduces to the boundary
condition in Eq. (9.10) for horizonless ultracompact objects. Derive that the relation
between the reflectivity of the compact object and the shear viscosity of the membrane
is in the large-frequency limit:

.|R|2 =
(
1 − η/ηBH

1 + η/ηBH

)2

. (9.25) 

This shows that a compact object is a perfect absorber of high-frequency waves (. |R|2 =
0) if .η = ηBH, whereas it is a perfect reflector of high-frequency waves (.|R|2 = 1) when  
either .η = 0 or .η → ∞. 

Figure 9.3 shows the ratio of the real (left panel) and imaginary (right panel) part 
of the QNMs of a horizonless compact object to the fundamental .� = 2 QNM of a 
Schwarzschild BH as a function of the compactness. Let us notice that as .ε → 0, the  
QNM spectrum of the horizonless compact object coincides with the BH spectrum. 
This is because a horizonless compact object with the shear and bulk viscosities 
as in Eq. (9.22) has the same reflective properties of a BH. For relatively large
values of . ε, the compactness of the object decreases and the QNMs deviate from the 
BH QNM. The highlighted regions are the maximum allowed deviation (with . 90%
credibility) for the least-damped QNM in the event GW150914, and correspond to 

Fig. 9.3 Real (left panel) and imaginary (right panel) part of the QNMs of a horizonless compact 
object described by a fictitious fluid with shear viscosity .η = ηBH and bulk viscosity . ζ = ζBH
compared to the fundamental .� = 2 QNM of a Schwarzschild BH, as a function of . ε where the 
radius of the object is located at .r0 = 2M(1+ε). The highlighted region is the maximum deviation 
(with .90% credibility) for the least-damped QNM in the event GW150914 [27]. Horizonless 
compact objects with .ε � 0.1 are compatible with current measurement accuracies. Adapted 
from [26]. ©APS. Reproduced with permissions. All rights reserved
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.∼ 16% and .∼ 33% for the real and imaginary part of the QNM, respectively [27]. 
Figure 9.3 shows that horizonless compact objects with .ε � 0.1 are compatible 
with current measurement accuracies. Next-generation detectors would allow us to 
set more stringent constraints on the radius of compact objects. 

9.3.2 Gravitational-Waves Echoes 

In this section, we shall analyse the modifications that would appear in the post-
merger GW signal if the remnant of a compact binary coalescence is a horizonless 
compact object. The phenomenology depends strongly on the compactness of the 
object. In particular, if the remnant is a horizonless ultracompact object (.ε � 1) the  
prompt ringdown would be nearly indistinguishable from the BH ringdown since 
it is due to the excitation of the light ring that occurs approximately at the same 
location as shown in Fig. 9.1. Afterwards, some trapped modes travel within the 
cavity of the effective potential and are reflected back at the radius of the compact 
object. After the interaction with the light ring, an additional GW signal is emitted 
at infinity in the form a GW echo. Multiple reflections of the trapped modes in the 
cavity can give rise to a train of GW echoes. 

The left panel of Fig. 9.4 shows the GW signal that would be emitted in the case 
of a horizonless compact object compared to the BH case. The delay time between 
subsequent GW echoes is fixed and depends on the width of the cavity, i.e. the 
compactness of the object. The delay time is computed as the round-trip time of the 
radiation to travel in the cavity between the light ring and the radius of the compact 
object. In the static and spherically symmetric case [18], 

.τecho = 2
∫ 3M

r0

dr

f (r)
∼ 2M

[
1 − 2ε − 2 log (2ε)

]
. (9.26) 

Fig. 9.4 Left panel: GW echoes emitted in the postmerger signal by an ultracompact horizonless 
object (.ε � 1) with different reflective properties parametrised by the shear viscosity . η of the 
membrane. Right panel: Ringdown of an horizonless compact object with small compactness (. ε �
0.01) and the same reflective properties of a BH (.η = ηBH). The ringdown signal is modified due 
to the interference of the first GW echo with the prompt ringdown. Adapted from [26]. Copyright 
by the American Physical Society, all rights reserved
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The logarithmic dependence in Eq. (9.26) allows us to detect even Planckian
corrections at the horizon scale (.ε ∼ lPlanck/M) few  . ms after the merger with a 
remnant of .M ∼ 10M. The amplitude of the GW echoes depends on the reflective 
properties of the compact object, as shown in the left panel of Fig. 9.4 for several 
values of the shear viscosity of the fictitious membrane. Furthermore, the light 
ring acts as a frequency-dependent high-pass filter, i.e. each GW echo has a lower 
frequency content than the previous one. At late times, the GW signal is dominated 
by the low-frequency QNMs of the horizonless compact object shown in Fig. 9.2. 

If the remnant of a binary coalescence is a horizonless compact object with 
small compactness (.ε � 0.01), the GW phenomenology in the postmerger signal 
would be different. In particular, the delay time of the first GW echo in Eq. (9.26) 
would be comparable with the decay time of the prompt ringdown, i.e. . τringdown =
−1/ωI,BH ≈ 10M . Therefore, the first GW echo would interfere with the prompt 
ringdown as shown in the right panel of Fig. 9.4. Finally, subsequent GW echoes are 
suppressed because the cavity between the light ring and the radius of the compact 
object is so small that does not trap the modes efficiently. 

9.4 Detectability 

Several searches for GW echoes have been performed based on matched-filter tech-
niques and unmodeled searches [7,28]. In the time domain, some phenomenological 
templates are based on inspiral-merger-ringdown templates in GR with additional 
parameters related to the morphology of GW echoes [29] and the superposition 
of sine-Gaussians with free parameters [30]. In the frequency domain, some 
waveform templates depend explicitly on the physical parameters of the horizonless 
compact object, i.e., its compactness and reflectivity [31–33]. Moreover, some 
unmodeled searches have been performed based on the superposition of generalized 
wavelets [34] and with Fourier windows [35]. 

Tentative evidence for GW echoes has been reported in the events of the first 
and second observing runs of LIGO and Virgo [29, 35], followed by independent 
searches arguing that the statistical significance of GW echoes is consistent with 
noise [36–39]. Furthermore, no evidene for GW echoes has been reported in the 
third observing run of the LIGO, Virgo, KAGRA collaboration [5]. 

The next generation detectors have promising prospects of testing the BH 
paradigm. The ground-based observatories Einstein Telescope [40] and Cosmic 
Explorer [41] will observe GWs with an overall improvement of the signal-to-noise 
ratio by an order of magnitude than current detectors. Moreover, the future space-
based interferometer LISA [42] will detect GWs in the .10−4 − 1Hz frequency band 
from a variety of astrophysical sources. The sensitivity of the detectors will allow us 
to resolve the QNMs at percent level and perform multiple tests of the BH paradigm 
with the detection of higher modes. 

Figure 9.5 shows the relative percentage difference between the fundamental 
.� = 2 QNM of a Schwarzschild BH and the fundamental .� = 2 QNMs of a  
horizonless compact object with radius .r0 = 2M(1 + ε) and reflectivity defined
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Fig. 9.5 Relative percentage difference of the real (left panels) and imaginary (right panels) part 
of the QNMs of a horizonless compact object to the fundamental QNM of a Schwarzschild BH for 
axial (top panels) and polar (bottom panels) perturbations. The dashed areas are the regions that 
would be excluded by individual measurements of the real and imaginary part of the QNMs by 
next-generation detectors. The plot shows that next-generation detectors will allow us to constraint 
the whole region of the .(ε, η) parameter space shown in the diagram. Adapted from [26]. Copyright 
by the American Physical Society, all rights reserved 

by the shear viscosity of the fictitious membrane. The QNM spectrum is a function 
of the parameter . ε (x-axis) and the shear viscosity of the fictitious membrane 
.0 ≤ η ≤ ηBH (y-axis) where .η = 0 describes a perfectly reflecting compact object 
and .η = ηBH describes a totally absorbing compact object. The left (right) panels 
show the relative percentage difference of the real (imaginary) part of the QNMs 
for axial and polar perturbations in the top and bottom panels, respectively. The 
dashed areas are the regions of the .(ε, η) parameter space that would be excluded 
by individual measurements of the real and imaginary part of the fundamental 
QNM with next-generation detectors whose accuracy is assumed to be an order 
of magnitude better than current detectors [27]. Figure 9.5 shows that almost the 
whole region of the .(ε, η) parameter space would be constrained. Therefore, next-
generation detectors will allow us to set very stringent constraints on the radius and 
the reflective properties of compact objects.
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10Boson Stars 

Yakov Shnir 

Abstract 

We review particle-like configurations of complex scalar field, localized by grav-
ity, so-called boson stars. In the simplest case, these solutions posses spherical 
symmetry, they may arise in the massive Einstein-Klein-Gordon theory with 
global .U(1) symmetry, as gravitationally bounded lumps of scalar condensate. 
Further, there are spinning axially symmetric boson stars which possess non-
zero angular momentum, and a variety of non-trivial multipolar stationary 
configurations without any continuous symmetries. In this short overview we 
discuss important dynamic properties of the boson stars, concentrating on recent 
results on the construction of multicomponent constellations of boson stars. 

10.1 Q-Balls and Boson Stars 

One of the most interesting directions in modern theoretical physics is related with 
investigation of spatially localized field configurations with finite energy bounded 
by gravity, see i.e. [1–4] for detailed review. The idea that the gravitational attraction 
may stabilize a fundamental matter field, was pioneered by Wheeler [5], who 
considered classical self-gravitating lumps of electromagnetic field, so-called geons. 
The geon is a localized regular solution of the coupled system of the field equations 
of the Einstein-Maxwell theory. Notably, Wheeler emphasized the unstability of 
geons with respect to linear perturbations of the fields. 

From a modern perspective, the geons represent a soliton, a field configuration 
which may exist in diverse non-linear models in a wide variety of physical 
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contexts. Roughly speaking, the solitons can be can be divided into two groups, 
the topological and non-topological solitons, see e.g. [6, 7]. Topological solitons, 
like kinks, vortices, monopoles or skyrmions, are characterized by a conserved 
topological charge. This is not a property of non-topological solitons which occur in 
various non-linear systems with an unbroken global symmetry. A typical example 
in Minkovski spacetime are Q-balls, they represent time-dependent lumps of a 
complex scalar field with a stationary oscillating phase [8–10]. 

It was pointed out by Kaup [11], Feinblum and McKinley [12], and subsequently 
by Ruffini and Bonazzola [13], that stable localized soliton-type configurations, 
now dubbed as boson stars (BSs) may arise as the complex scalar field becomes 
coupled to gravity. In the simplest case, spherically symmetric boson star rep-
resent a particle-like self-gravitating asymptotically flat stationary solution of 
the (.3 + 1)-dimensional Einstein-Klein-Gordon (EKG) theory. In this model the 
scalar field possess a mass term only, without self-interaction. The corresponding 
configurations can be considered as lumps of the scalar condensate, macroscopic 
quantum state, which is prevented from gravitationally collapsing by Heisenberg. ′s 
uncertainty principle. These mini-boson stars do not have a regular flat spacetime 
limit. On the contrary, the BSs in the models with polynomial potentials [14, 15], 
or in the two-component Einstein-Friedberg-Lee-Sirlin model [16], are linked to 
the corresponding flat space Q-balls. The BSs in the model with a repulsive 
self-interaction [17] are more massive than the mini-boson stars in the EKG 
model, further, inclusion of a sextic potential [14–16] allows for existence of very 
massive and highly compact objects, near of the threshold of gravitational collapse 
[18,19]. Clearly, these configurations resemble neutron stars (which were discussed 
in Chap. 7), further astrophysical applications of BSs include consideration of 
hypothetical weakly-interacting ultralight component of cosmological dark matter 
[20, 21], axions [22, 23], and black hole mimickers [24–26], see also the discussion 
in Chap. 8. Bosons stars attracted a lot of attention in study of their evolution in 
binaries and in search for gravitational-wave signals produced by collision of BSs 
[27–29], see also Chap. 9. 

Both Q-balls and BSs have a harmonic time dependence with a constant angular 
frequency . ω, they carry a Noether charge Q associated with an unbroken continuous 
global .U(1) symmetry. This charge is proportional to the frequency . ω and represents 
the boson particle number of the configurations. Further, there are charged Q-
balls in gauged models with local .U(1) symmetry [30–38]. The presence of 
the electromagnetic interaction affects the properties of the gauged Q-balls, in 
particular, they may exist for a restricted range of values of the gauge coupling. 
Charged BSs arise in extended Einstein-Maxwell-scalar theories, these solutions 
were studied in [39–44]. Besides, BSs exist in the asymptotically anti-de Sitter 
spacetime [45, 46]. 

In Minkowski spacetime, Q-balls exist only within a restricted interval of values 
of the angular frequency . ω: there is a maximal value .ωmax , which corresponds to 
the mass of the scalar excitations, and some minimal value .ωmin, that depends on 
the form of the potential. Notably, .ωmin = 0 in the two-component Friedberg-Lee-
Sirlin (FLS) model [9, 47, 48]. Both the mass M and the charge Q diverge, as the
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frequency . ω approaches the limiting values. Typically, there are two branches of flat 
space Q-balls, merging and ending at the minimal values of charge and mass. This 
bifurcation corresponds to some critical value of the frequency .ωcr ∈ [ωmin, ωmax], 
from where they increase monotonically towards both limiting values of . ω. 

The situation is different for BSs: coupling of the scalar field to gravity modifies 
the critical behavior pattern of the configurations. The fundamental branch of the 
solutions starts off from the perturbative excitations at .ω ∼ ωmax , at which both 
the mass and the charge trivialize (rather than diverge). Then, the BSs exhibit a 
spiral-like frequency dependence of the charge and the mass, where both quantities 
tend to some finite limiting values at the centers of the corresponding spirals 
[16]. Qualitatively, the appearance of the frequency-mass spiral may be related to 
oscillations in the force balance between the repulsive scalar interaction and the 
gravitational attraction in equilibria [49]. This spiraling behavior is reminiscent of 
the mass radius relation of neutron stars beyond the maximum mass star. 

Simplest BSs are spherically symmetric, for each fundamental solutions there 
exist a tower of radially excited states, which possess some number of nodes in 
profile of the scalar field [1, 16, 50]. The mass of these excited solution is higher, 
than the mass of the corresponding fundamental boson star with the same angular 
frequency . ω, however the properties of the spherically symmetric excited BSs are 
not very different from those of the nodeless boson stars. Also multi-state BSs have 
been studied, these configurations represent spherically symmetric superposition 
of the fundamental and the first excited solutions [51]. The radial pulsations and 
radiation of BSs were studied in numerical relativity [19, 52, 53], the solutions are 
shown to be stable on the first branch. 

Rotating BSs are axially symmetric, they possess non-zero angular momentum 
J which is quantized in terms of the charge, .J = nQ [14, 15, 54, 55]. In other 
words, the BSs do not admit slow rotating limit. Rotating BSs possess some peculiar 
geometrical features, in particular, ergo-regions may arise for such solutions [15, 
56]. Interestingly, radially excited rotating BSs do not exhibit a spiraling behavior; 
instead, the second branch extends back to the upper critical value of the frequency 
.ωmax , forming a loop [57]. 

Both axially-symmetric spinning Q-balls in Minkowski spacetime and the 
rotating BSs may be either symmetric with respect to reflections in the equatorial 
plane, .θ → π − θ , or antisymmetric. The solutions of the first type are referred 
to as parity-even, while the configurations of the second type are termed parity-odd 
[14, 15, 58–60], for each value of integer winding number n, there should be two 
types of spinning solutions possessing different parity. 

Notably, the character of the scalar interaction between Q-balls and BSs depends 
on their relative phase [61, 62], If the solitons are in phase, the scalar interaction 
is attractive, if they are out of phase, there is a repulsive scalar force between 
them. Thus, a pair of boson stars may exist as a saddle point solution of the EKG 
model [63–65]. Furthermore, scalar repulsion can be balanced by the gravitational 
attraction in various multicomponent bounded systems of BSs [64, 65]. 

Below we briefly review the basic properties of boson stars and discuss multi-
component BS configurations constructed recently in [64, 65].
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10.2 The Model: Action, Field Equations, and Global Charges 

We consider a massive complex scalar field . Φ, which is minimally coupled to 
Einstein’s gravity in an asymptotically flat .(3 + 1)-dimensional space-time. The 
corresponding action of the system is 

.S =
∫

d4x
√−g

[
R

16πG
− 1

2
gμν

(
Φ∗

, μΦ, ν + Φ∗
, νΦ,μ

) − U(|Φ|2)
]

, (10.1) 

where R is the Ricci scalar curvature, G is Newton’s constant, the asterisk denotes
complex conjugation, . U denotes the scalar field potential and we employ the usual 
compact notation .Φ,μ ≡ ∂μΦ. 

Variation of the action (10.1) with respect to the metric leads to the Einstein 
equations 

.Eμν ≡ Rμν − 1

2
gμνR − 8πG Tμν = 0 , (10.2) 

where

. Tμν ≡ Φ∗
,μΦ,ν + Φ∗

,νΦ,μ − gμν

[
1

2
gστ (Φ∗

,σ Φ,τ + Φ∗
,τΦ,σ ) + U(|Φ|2)

]
,

(10.3) 

is the stress-energy tensor of the scalar field.
The corresponding equation of motion of the scalar field is the non-linear Klein-

Gordon equation 

.

(
� − dU

d|Φ|2
)

Φ = 0 , (10.4) 

where . � represents the covariant d’Alembert operator. 

•? Exercise 
10.1. Verify (10.2) to (10.4) .

The solutions considered below have a static line-element (with a timelike 
Killing vector field .ξ = ∂t ), being topologically trivial and globally regular, . i.e.
without an event horizon or conical singularities, while the scalar field is finite and 
smooth everywhere. Also, they approach asymptotically the Minkowski spacetime
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background. Their mass M can be obtained from the respective Komar expressions 
[66], 

.M = 2
∫

Σ

Rμνn
μξνdV = 2

∫
Σ

(
Tμν − 1

2
gμν T γ

γ

)
nμξνdV . (10.5) 

Here . Σ denotes a spacelike hypersurface (with the volume element dV ), while . nμ

is a time-like vector normal to . Σ , .nμnμ = −1. 
The axially symmetric spinning boson stars are characterized by the mass M and 

by the angular momentum 

.J = −
∫

Σ

Rμνn
μηνdV = −

∫
Σ

(
Tμν − 1

2
gμν T γ

γ

)
nμηνdV (10.6) 

where the second commuting Killing vector field is .η = ∂ϕ . 
The action (10.1) is invariant with respect to the global .U(1) transformations of 

the complex scalar field, .φ → φeiχ , where . χ is a constant. The following Noether 
4-current is associated with this symmetry 

.jμ = −i(Φ∂μΦ∗ − Φ∗∂μΦ) . (10.7) 

It follows that integrating the timelike component of this 4-current in a spacelike
slice . Σ yields a second conserved quantity—the Noether charge: 

.Q =
∫

Σ

jμnμdV . (10.8) 

Semiclassically, the charge Q can be interpreted as a measure of the number of 
scalar quanta condensed in the BS. There is the quantization relation for the angular 
momentum of the scalar field J (10.6), .J = nQ [55]. 

10.2.1 Potential 

In the simplest case of the non-self interacting EKG model, the potential contains 
just the mass term, .U = μ2|Φ|2, where parameter . μ yields the mass of the 
scalar field. The corresponding mini-BSs represent a gravitationally bound system 
of globally regular massive interacting bosons, it does not possess the flat space 
limit. It should be noted that in the EKG model the natural units are set by the mass 
parameter . μ and by the effective gravitational coupling .α2 = 4πG. They can be 
rescaled away via transformations of the coordinates and the field, .xμ → xμ/μ, 
.Φ → Φ/α. Note that the scalar field frequency changes accordingly, .ω → ω/μ. 

The quartic self-interaction potential 

.U = λ|Φ|4 + μ2|Φ|2 , (10.9)
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was considered in many works, see e.g. [17, 67, 68]. Such potential can stabilize 
excited BSs, however the corresponding solutions do not posses the flat space limit. 

The non-renormalizable self-interacting sixtic potential, originally proposed in 
[69, 70] 

.U = ν|Φ|6 − λ|Φ|4 + μ2|Φ|2 (10.10) 

allows for the existence of very massive BSs, they are linked to the corresponding
Q-balls on a Minkowski spacetime background [14,16,59,60]. Similar to the case of 
the EKG model, two of the parameters of the model (10.1), (10.10) can be absorbed 
into a redefinition of the coordinates together with a rescaling of the scalar field, 

. xμ → a

μ
xμ , Φ →

√
μ

ν1/4
√

a
Φ ,

where a is an arbitrary constant. Thus, the potential of the rescaled model becomes 

. U = |Φ|6 − λ̃|Φ|4 + a2|Φ|2

with the usual choice .λ̃ = aλ
μ

√
ν

= 2 and .a2 = 1.1. 

•? Exercise 
10.2. Derive the action for the rescaled model, by employing the rescaling in (10.1) with  

(10.10). 

Then the dimensionless effective gravitational coupling becomes .α2 = 4πGμ

a
√

ν
. 

Evidently, for large values of the gravitational coupling, the nonlinearity of the 
potential (10.10) becomes suppressed and the system approaches the EKG model 
with its corresponding mBS solutions. However, as the gravitational attraction 
remains relatively weak, the scalar interaction becomes more important, it allows 
for existence of very large massive BSs. 

The sixtic potential (10.10) can be considered as a limiting form of the periodic 
axion potential which describes a real quantized scalar field . Φ, 

. U = mafa (1 − cos(Φ/fa))

where . fa is the axion decay constant and . ma is the mass of the axion [22, 23]. 
Certainly, there are many other possible choices of a potential term for the boson 

stars. In particular, there is a class of flat potentials arising in the models with gauge-



10 Boson Stars 353

and gravity-mediated supersymmetry breaking mechanism [71,72]. Such potentials 
may be of the logarithmic or the exponential form, for example [71, 73] 

. U = μ2η2
[
1 − exp

(
−Φ2

η2

)]

where . μ is the mass of the scalar field . Φ and the parameter . η is defines the mass 
scale below which supersymmetry is broken. 

Domain of existence of the BSs is determined by the form of the potential. The 
maximal value .ωmax corresponds to the mass of the scalar excitations .μ2 = dU

d|Φ|2 , 
the minimal value .ωmin depends on explicit form of the potential and on the strength 
of the gravitational coupling . α. Hereafter we assume that .μ = 1, without loss of 
generality, hence in the EKG model .ωmax = 1. Since the Planck mass is defined as 
.MPl = 1/

√
G, the EKG BSs can be interpreted as macroscopic quantum states, 

they are prevented from gravitational collapse by the uncertainty principle. The 
critical mass of the EKG BSs is .M ≈ M2

P l/μ [11], more massive BSs become 
unstable w.r.t. linear fluctuations [74, 75]. In the models with non-linear potentials, 
like (10.9), (10.10), the BSs may have larger mass, they represent lumps of a 
macroscopic self-gravitating Bose-Einstein condensate. In the discussion below we 
mainly focus on the microscopic BSs in the EKG model and fix the value of the 
gravitational coupling .α = 0.5. 

10.2.2 The Ansatz and the Field Equations 

For the stationary spinning scalar field we can adopt a general Ansatz with a 
harmonic time dependence: 

.Φ = f (r, θ, ϕ)e−i(ωt+nϕ), (10.11) 

where .r, θ, ϕ are the usual spherical coordinates, .ω ≥ 0 is the angular frequency, 
.n ∈ Z is the azimuthal winding number, and .f (r, θ, ϕ) is a real spatial profile 
function. Notably, harmonic time dependency of the scalar field does not affect the 
physical quantities, like the stress-energy tensor (10.3). On the other hand, it allows 
us to evade scaling arguments of the Derrick’s theorem [76], which does not support 
existence of static scalar soliton solutions in three spatial dimensions. 

Allowing an angular dependence for the profile function of the BSs requires 
considering a metric Ansatz with sufficient generality. In particular, considering 
configurations with .n = 0, which carry no angular momentum, we can make use of 
the line element without any spatial isometries 

. ds2 = −F0dt2 + F1dr2 + F2(rdθ + S1dr)2 + F3(r sin θdϕ + S2dr + S3rdθ)2

(10.12)
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where seven metric functions .F0, F1, F2, F3 and .S1, S2, S3 depend on spherical 
coordinates .r, θ, ϕ [65]. 

By substituting the ansatz (10.11) into the scalar field Eq. (10.4) we obtain 

. 

1√−g

∂

∂r

(
grr√−g

∂f

∂r

)
+ 1√−g

∂

∂θ

(
gθθ√−g

∂f

∂θ

)
+ 1√−g

∂

∂ϕ

(
gϕϕ√−g

∂f

∂r

)

− (n2gϕϕ − 2gϕt + ω2gtt )f = dU

d|φ|2 f

(10.13) 

Note that on the spatial asymptotic the metric approaches the Minkowski 
spacetime, then the field Eq. (10.13) tends to the usual Klein-Gordon equation with 
general solution for the scalar field .f ∼ ∑

l,n Rl(r)Yln(θ, ϕ). Here the radial part is 

.Rl(r) ∼ 1√
r
K

l+ 1
2
(r,

√
μ2 − ω2) (10.14) 

where .K
l+ 1

2
is the modified Bessel function of the first kind of order l and . Yln(θ, ϕ)

are the real spherical harmonics, which form a complete basis on the sphere . S2

and integers .l ≥ n are the usual quantum numbers. Because of central character of 
gravitational interaction, this basis remains for any scalar multipole configuration of 
the BSs. Furthermore, for each particular set of values of the quantum numbers . l, n, 
there are two types of the solutions, the parity even for even l and the parity-odd 
for odd l. They are symmetric and anti-symmetric, respectively, under a reflection 
along the equatorial plane. The spherical harmonics .Yln(θ, ϕ) possess 2n .ϕ-zeros, 
each describing a nodal longitude line and .l − n .θ -zeros, each yielding a nodal 
latitude line. These nodal distributions define a multipolar configuration of BSs [65] 
briefly discussed below. 

Simplest BSs are spherically symmetric [11–13], in such a case . l = n = 0
and the profile function depends on the radial coordinate only, .f = f (r). The  
corresponding line element can be reduced to the Schwarzschild type metric, it can 
be written as 

.ds2 = −N(r)σ 2(r)dt2 + dr2

N(r)
+ r2(dθ2 + r2 sin2 θ dϕ2) (10.15) 

with .N(r) = 1 − 2m(r)/r . Here  .m(r) is so-called mass function, the Arnowitz-
Deser-Misner (ADM) mass of the BS is .M = limr→∞ m(r). Clearly, the angular 
momentum of such BS is zero. 

The resulting system of coupled ordinary differential equations on three radial 
functions .f (r), σ (r) and .m(r) can be solved numerically, using, for example a 
shooting method [77]. Along with the fundamental nodeless mode, there is an 
infinite tower of radial excitations of the BSs [1,16], they are classified according to 
the number of nodes k of the scalar profile function .f (r), see Fig. 10.1.
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Fig. 10.1 The profile functions of the scalar field (left) and the metric component . g00 (right) of 
the non-rotating .n = 0 fundamental Einstein-Klein-Gordon boson star .k = 0 and its first three 
radial excitations are displayed on the first branch of solutions at .ω = 0.90 as functions of the 
radial coordinate
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Fig. 10.2 Non-rotating .n = 0 fundamental (.k = 0) and radially excited (.k = 1, 2) Einstein-
Klein-Gordon boson stars. The mass of the solutions (left plot) and the minimal values of the 
metric component .g00(0) (right plot) are displayed as functions of the angular frequency . ω

The fundamental nodeless ground state solution is an analog of the 1s hydrogen 
orbital. This branch of BSs emerges from the vacuum fluctuations with angular part 
. Y00 at the maximal frequency .ωmax , given by the boson mass. Notably, unlike the 
case of Q-balls in flat space, where mass and charge diverge, these quantities vanish 
in this limit. Decreasing the frequency yields the fundamental branch of solutions 
which terminates at the first backbending of the curve, at which point it moves 
toward larger frequencies, as seen in Fig. 10.2. These solutions are stable with 
respect to linear perturbations [50]. The curve then follows a spiraling/oscillating 
pattern, with successive backbendings, while the minimum of the metric compo-
nent .g00(0) and the maximum of the scalar profile function .f (0) show damped 
oscillations [16]. Both mass and charge tend to some finite limiting values at the 
centers of the corresponding spirals, see Fig. 10.2. Qualitatively, the appearance 
of the frequency-mass spiral may be related to oscillations in the alternating force 
balance between the repulsive scalar interaction and the gravitational attraction in 
equilibria. There is an infinite set of branches, leading towards a critical solution at
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the center of the spiral. Plotting the Q (instead of M) also yields similar curves. The 
extremal values of the scalar field profile function and the metric function . g00 at the 
center of the star do not seem to be finite, with .fmax diverging and .g

(min)
00 vanishing 

in this limit. 
The radially excited spherically symmetric BSs also exhibit such spiraling 

behavior, as seen in Fig. 10.2. They emerge similarly from the vacuum at the 
maximal frequency. These BSs posses higher mass, increase of the nodal number 
k leads to increase of the minimal critical frequency .ωmin, as seen in Fig. 10.2, left  
plot. 

•? Exercise 
10.3. Using the Ansatz (10.11) with .n = 0 and the Schwarzschild type metric (10.15) 

derive the system of coupled ordinary differential equations on three radial functions 
.f (r), σ (r) and .m(r) for the spherically symmetric Q-ball in the Einstein-Klein-Gordon 
theory. 

Stationary spinning BSs are axially symmetric, their angular momentum is 
quantized in units of the azimuthal winding number, .J = nQ [14, 15, 59]. Similar 
to the case of non-rotating spherically symmetric BSs, they exhibit an analogous 
spiralling frequency/mass dependence. The rotating BSs exist in the EKG model 
[54,55,58,78] and in the model with solitonic potential (10.10) [14,15] as well as in  
other systems. The mass and the charge of the rotating BSs are much higher than the 
fundamental spherically symmetric counterparts, as seen in Fig. 10.3. The energy 
density distribution of these solutions is torus-like, the scalar field is vanishing at 
the origin, it possess a maximal value in the equatorial plane.
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Fig. 10.3 Rotating Einstein-Klein-Gordon boson stars. The mass of the solutions (left plot) and 
the minimal values of the metric component .g00 (right plot) are displayed as functions of the 
angular frequency .ω
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Remarkably, rapidly rotating BSs develop an ergoregion where the Killing vector 
field .ξ = ∂t becomes spacelike [15, 78], or equally, .gtt < 0. Topologically, this 
region represent a torus. The existence of ergoregions is typical for a Kerr black 
hole, for the BSs it is an indication of instability of the configuration. The instability 
mechanism is related to the rotational superradiance [79], an excited relativistic 
BSs decays into less energetic state via emission of scalar quanta and gravitational 
waves. On the other hand, for the Kerr black hole with synchronized scalar hair 
[80, 81] the superradiance mechanism may induce transitions from the .n = 0 state 
to higher n solutions [82]. 

The frequency dependence of rotating nodeless axially symmetric BSs is similar 
to that of the fundamental .n = 0 solutions, the mass (and the angular momentum) 
form a spiral, as . ω varies, while the minimum of the metric component . g00 and the 
maximum of the scalar function f shows damped oscillations, see Fig. 10.3. The  
minimal value of the angular frequency .ωmin is decreasing as the winding number 
n increases. Further, for each value of integer winding number n, there are two 
types of spinning BSs possessing different parity, so called parity-even and parity-
odd rotating hairy BHs [14,15,58–60]. These configurations are symmetric or anti-
symmetric, respectively, with respect to a reflection through the equatorial plane, 
i.e. under .θ → π − θ . In other words, the scalar field of the parity-odd BSs posses 
an angular node at .θ = π/2. 

The energy density distribution of rotating BSs with positive parity forms a torus, 
while the energy density of rotating parity-odd BSs corresponds to a double torus, 
see see Fig. 10.4. More generally, there is a sequence of angularly excited BSs with 
some number of nodes of the scalar field in .θ -direction [83], which are closely 
related to the real spherical harmonics .Ylm(θ, ϕ). For example, the angular part of 
the .n = 1 spinning parity-even BSs corresponds to the harmonic .Y11 while the 
angular part of the corresponding parity-odd BSs corresponds to the harmonic . Y21, 

Fig. 10.4 Einstein-Klein-Gordon boson stars. Surfaces of constant energy density of the (i) 
fundamental .n = 0 solution; (ii) parity-even .n = 1 rotating boson star; (iii) parity-odd . n = 1
rotating boson star; and (iv) angularly excited parity-even .n = 1 boson star, from left to right, all 
configurations at .ω = 0.92 on the first branch at .α = 0.5
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Fig. 10.5 Rotating parity-odd Einstein-Klein-Gordon boson stars. The mass of the solutions (left 
plot) and the minimal values of the metric component . g00 (right plot) are displayed as functions of 
the angular frequency . ω

the triple torus configuration, displayed in the right plot of Fig. 10.4, corresponds to 
the harmonic . Y31, etc.  

The mass and the charge of both parity-even and parity-odd EKG BSs exhibit 
similar spiraling behavior, cf Figs. 10.3 and 10.5. However, the situation becomes 
different for the rotating radially excited axially symmetric BSs with non-zero 
angular momentum [57]. In such a case, there are two branches of solutions, 
merging and ending at the minimal values of the charge and the mass of the 
configurations, the second branch extends all the way back to the upper critical 
value of the frequency .ωmax , forming a loop. 

Notably, the gravitational interaction stabilizes the parity-odd BSs even in the 
limit .n = 0. This axially-symmetric configuration with zero angular momentum 
represents a pair of boson stars, a saddle point solution of the EKG model [63–65, 
84]. Its existence is related to a delicate force balance between the repulsive scalar 
interaction and gravity. Indeed, if the flat space Q-balls are in phase, they attract 
each other, if they are out of phase, there is a repulsive scalar force between them 
[61, 62]. The inversion of the sign of the scalar field function . Φ under reflections 
.θ → π − θ corresponds to the shift of the phase .ω → ω + π . Hence, the static pair 
of BSs with a single node of the scalar field on the symmetry axis, can be thought 
of as the limit of negative parity spinning configurations considered in [15]. 

The curves of the mass/frequency dependency of the pair of BSs are different 
from the case of a single spherical BS [64]. Instead of the paradigmatic spiraling 
curve one finds a truncated scenario with only two branches, ending at a limiting 
solution with finite values of ADM mass and Noether charge. 

Furthermore, scalar repulsion can be balanced by the gravitational attraction in 
various multicomponent bounded systems of BSs [64, 65]. Figure 10.6 displays an 
overview of a selection of multipolar EKG BSs with various structure of nodes 
[65]. Constructing these solutions we do not impose any restrictions of symmetry, 
they all arise as corresponding linearized perturbations of the scalar field in the 
asymptotic region, as . ω approaches the mass threshold. Gravitational attraction
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Fig. 10.6 Surfaces of constant energy density for a selection of multicomponent BSs in the EKG 
model. Reprinted (without modification) from [65]. . © 2021 The Authors of [65], under the CC BY 
4.0 license 

Fig. 10.7 Chains of BSs with one to five constituents on the first branch for .α = 0.25 at . ω/μ =
0.80: 3d plots of the .U(1) scalar charge distributions (upper row) and the scalar field . Φ (bottom 
row) versus the coordinates .ρ = r sin θ and . z = r cos θ

stabilizes the excitations with nodal structure of the . Φ(r, θ, ϕ) ∼ Rk(r)Yln(θ, ϕ))

wavefunctions. As the angular frequency decreases, the mass and the charge of 
the multicomponent configurations increase, however, the nodal structure remains 
unaffected [65]. Similar to the fundamental spherically symmetric solution, the 
fundamental branch of the multicomponent BSs ends in a spiraling/oscillating 
pattern. Clearly, all these solutions do not exist in Minkowsky space-time. 

Analogous multipolar configurations with zero angular momentum exist in 
models with various potentials. For example, the chains of BSs in the system with 
sixtic potential (10.10) were discussed in [64]. Figure 10.7 exhibits a few examples 
of these chains. 

In such a case the pattern of dynamical evolution of the multicomponent BSs 
becomes different from the above-discussed EKG systems. Chains with an odd
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number of constituents show a spiraling behavior for their mass and charge in terms 
of their angular frequency, similarly to a single fundamental BS, as long as the 
gravitational coupling is relatively small. For larger coupling however, the spiral 
is replaced by a lace with two ends approaching the mass threshold, each branch 
corresponding to the dominance of either of the two states, and with a self-crossing. 
In other words, the branch of odd chains bifurcates with the fundamental branch of 
radially excited spherical boson stars. 

For the even chains we do not observe the endless spiraling scenario, on the 
second, or on the third branch the configuration evolves toward a limiting solution 
which retain basically two central constituents, whose metric function . g00 exhibits 
two sharp peaks, reaching a very small value, while the scalar field features two 
sharp opposite extrema located right at the location of these peaks [64]. 
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11Stellar and Substellar Objects in Modified 
Gravity 

Aneta Wojnar 

Abstract 

The last findings on stellar and substellar objects in modified gravity are pre-
sented, allowing a reader to quickly jump into this topic. Early stellar evolution of 
low-mass stars, cooling models of brown dwarfs and giant gaseous exoplanets as 
well as internal structure of terrestrial planets are discussed. Moreover, possible 
test of models of gravity with the use of the discussed objects are proposed. 

11.1 Basic Equations 

There are modifications to the Einstein’s gravity which turn out to survive, 
depending on the features of a given theory of gravity, in the non-relativistic limit 
derived from their fully relativistic equations. That is, some of those proposals 
modify Newtonian gravity, which is commonly used to describe stellar objects, such 
as the Sun and other stars of the Main Sequence. Those equations are also used to 
study the substellar family, starting with brown dwarf stars, giant gaseous planets, 
and even those more similar to the Earth. Therefore, there has appeared a need to 
explore non-relativistic objects not only for the consistency in describing different 
astrophysical bodies and gravitational phenomena with the use of the same theory 
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of gravity1 but this fact is also an opportunity to understand the nature of the theory, 
since we better understand the density regimes of such objects. Moreover, since data 
sets of the discussed stars and exoplanets as well as the accuracy of the observations 
are still growing, the objects described by non-relativistic equations can be used to 
constrain some of the gravitational proposals, as presented in the further part of this 
chapter. 

Before discussing the recent findings regarding the topic of non-relativistic 
objects in modified gravity, we will go through a suitable formalism needed to study 
low-mass stars and other objects living in the cold and dark edge of the Hertzsprung-
Russell diagram (see the Fig. 11.1 and basic literature [1–4]). 

As a working theory we will consider Palatini .f (R̄) gravity for the Starobinsky 
model 

.f (R̄) = R̄ + βR̄2, (11.1) 

where . β is the theory parameter,2 but similar results as the ones presented here 
are expected to happen in any theory of gravity which alters Newtonian limit. To 
read more about Palatini gravity, see [5], because we will now focus directly on the 
modified hydrostatic equilibrium equation without its derivation [6–12]. Therefore, 
we will consider a toy-model of a star or planet, that is, a spherical-symmetric low-
mass object without taking into account nonsphericity, magnetic fields, and time-
dependency, described by the non-relativistic hydrostatic equilibrium equation with 
modifications given by the Palatini .f (R̄) gravity 

.p′ = −gρ(1 + κc2β[rρ′ − 3ρ]) , (11.2) 

where prime denotes the derivative with respect to the radius coordinate r , . κ =
−8πG/c4, G and c are Newtonian constant and speed of light, respectively. The 
quantity g is the surface gravity, approximated on the object’s atmosphere as a 
constant value (.ratmosphere ≈ R, where R is the radius of the object): 

.g ≡ Gm(r)

r2
∼ GM

R2
= constant, (11.3) 

where .M = m(R). We will consider only the usual definition for the mass function 
(however, see the discussion in [12, 13] on modified gravity issues) 

.m′(r) = 4πr2ρ(r). (11.4)

1 However the “which one?” is a question which many physicists try to answer. 
2 In the further part, we will introduce the rescaled model parameter . α to simplify some expression; 
see the discussion after (11.12). 
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Fig. 11.1 The sketch of the low-temperature region of the evolutionary Hertzsprung-Russell 
diagram for astrophysical objects discussed in this chapter (the proportions of the evolution and 
scales are not preserved). A baby star is travelling along the Hayashi track till it reaches the Main 
Sequence, possibly burning lithium and deuterium. Depending on the star’s mass, the object can 
reach theMain Sequence (MMSM—MinimumMain SequenceMass indicated as stars with masses 
.∼ 0.08M� for hydrogen burning) as a fully convective star (MFCM—Maximal Fully Convective 
Mass marked), or it can develop a radiative core (it happens for stars with masses .∼ 0.6M�) and  
then move along the Henyey track. The Hayashi forbidden zone as well as region occupied by 
brown dwarfs are also indicated. Giant gaseous planets can be found in the colder and dimmer 
region of the diagram 

Using (11.4) and (11.3), the Eq. (11.2) can be written as 

.p′ = −gρ
(
1 + 8β

g

c2r

)
. (11.5)

One of the most important elements in the star’s or planet’s modelling is the
heat transport through object’s interior and its atmosphere. A simple and common
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criterion which determines which kind of the energy transport takes place is given 
by the Schwarzschild one [14, 15]: 

.∇rad ≤ ∇ad pure diffusive radiative or conductive transport. (11.6) 

∇rad > ∇ad adiabatic convection is present locally. (11.7) 

The gradient stands for the temperature T variation with depth

.∇rad :=
(

d ln T

d lnp

)

rad

, (11.8) 

while .∇ad is the adiabatic temperature gradient, which in case of perfect, monatomic 
gas has a constant value .∇ad = 0.4. The Schwarzschild criterion turns out to be 
modified in Palatini gravity compared to GR [9], (the additional contribution is 
multiplied by the parameter . β), 

.∇rad = 3κrclp

16πacGmT 4

(
1 + 8β

Gm

c2r3

)−1

, (11.9) 

with l being the local luminosity, the constant .a = 7.57× 10−15 erg

cm3K4 the radiation 
density while . κrc is the radiative and/or conductive opacity. The additional . β−term, 
depending on the sign of the parameter, has a stabilizing or destabilizing effect. On 
the other hand, the adiabatic gradient .∇ad is a constant value for particular cases, as 
we will see in the further part. 

Regarding the microscopic description of matter, an approximation which we 
will be using here is the polytropic equation of state (EoS): 

.p = Kρ1+ 1
n , (11.10) 

It is good enough for our purposes, particularly taking into account the fact that
K , since it depends on the composition of the fluid, carries information about
the interactions between particles, the effects of electron degeneracy, and phase
transitions,...[16]. We will use at least 3 different polytropic EoS, depending on the 
physical situation. On the other hand, the value of the polytropic index n is related 
to the class of the astrophysical objects we study [17]. The simplest case we will 
deal with is a fully convective objects with the interior modelled by non-relativistic 
degenerate electron gas for which .n = 3/2 while K is given by [1]: 

.K = 1

20

(
3

π

) 2
3 h2

me

1

(μemu)
5
3

. (11.11) 

It is always useful in the case of analytic EoS to write it in the polytropic form
(11.10) since there exists a very convenient approach, called the Lane-Emden (LE) 
formalism, allowing to rewrite all relevant equations in the dimensionless form. It 
can be shown that for our particular model of gravity the Eq. (11.5) transforms into
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the modified Lane-Emden equation [6] 

.
1

ξ

d2

dξ2

[√
�ξ

(
θ − 2α

n + 1
θn+1

)]
= − (� + 1

2ξ
d�
dξ

)2√
�

θn, (11.12) 

where .� = 1 + 2αθn and the rescaled modifed gravity parameter (from now on 
multiplying the contribution beyond GR to star evolution) is 

. α = κc2βρc.

The dimensionless . θ and . ξ are defined in the following way 

.r = rcξ, ρ = ρcθ
n, p = pcθ

n+1, r2c = (n + 1)pc

4πGρ2
c

, (11.13) 

with . pc and . ρc being the core values of pressure and density, respectively. 

•? Exercise 
11.1. Derive the Lane-Emden equation (11.12) with the use of the definitions (11.13)) 

The Eq. (11.12) can be solved numerically, and its solution . θ provides star’s 
mass, radius, central density, and temperature: 

.M = 4πr3c ρcωn, R = γn

(
K

G

) n
3−n

M
1−n
n−3 , . (11.14) 

ρc = δn

(
3M

4πR3

)
, T = Kμ

kB

ρ
1
n
c θn, (11.15) 

where . kB is Boltzmann’s constant, . μ the mean molecular weight while . ξR is the 
dimensionless radius for which .θ(ξR) = 0. In the case of the model of gravity used 
here the constants (11.16) and (11.18) appearing in the above equations also include 
modifications [7] but it is not a common feature of modified gravity (see the case of 
Horndeski gravity, for instance [18], or in Eddington-inspired Born-Infeld gravity, 
[19]): 

.ωn = − ξ2�
3
2

1 + 1
2ξ

�ξ

�

dθ

dξ
|ξ=ξR

, . (11.16) 

γn = (4π)
1

n−3 (n + 1)
n

3−n ω
n−1
3−n
n ξR, . (11.17) 

δn = − ξR

3 �
− 1
2

1+ 1
2 ξ

�ξ
�

dθ
dξ

|ξ=ξR

. (11.18)
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•? Exercise 
11.2. Use the LE formalism to rewrite (11.5) and  (11.9) as  

.p′ = −gρ

(
1 − 4α

3δ

)
, ∇rad = 3κrclp

16πacGmT 4

(
1 − 4α

3δ

)−1

. (11.19) 

Notice that index n in the parameter . δ (11.18) has been skipped. 

Some of the objects we will consider in those notes are massive enough to burn 
light elements in their core; it can be either hydrogen, deuterium, or lithium. The 
product of any of those energy generation processes is luminosity, which can be 
obtained by the integration of the below expression: 

.
dLburning

dr
= 4πr2ε̇ρ. (11.20) 

The energy generation rate . ̇ε is a function of energy density, temperature, and stellar 
composition, however it can be approximated as a power-low function of the two 
first [20]. The energy produced in the core is radiated through the surface and can 
be expressed by the Stefan-Boltzmann law (L is luminosity) 

.L = 4πf σT 4
eff R2, (11.21) 

where . σ is the Stefan-Boltzmann constant. We have added the factor .f ≤ 1 which 
allows to include planets, which obviously radiate less than the black-body with the 
same effective temperature .Teff . This particular temperature (as well as other parts 
of atmosphere modelling) is usually difficult to determine and can carry significant 
uncertainties. Notwithstanding, there is a tool which we will often use when we look 
for some characteristics of the atmosphere. It is the optical depth . τ , averaged over 
the object’s atmosphere, see e.g. [1, 2]): 

.τ(r) = κ̄

∫ ∞

r

ρdr, (11.22) 

where . ̄κ is a mean opacity. In the further part, since we will mainly work with the 
objects whose atmospheres have low temperatures, we will use Rosseland mean 
opacities which are given by the simple Kramers’ law 

.κ̄ = κ0p
uT w, (11.23)
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where . κ0, u and w are values depending on different opacity regimes [3, 21]. We 
will also assume that the atmosphere is made of particles satisfying the ideal gas 
relation (. NA is the Avogardo constant) 

.ρ = μp

NAkBT
. (11.24) 

•? Exercise 
11.3. Use the polytropic EoS (11.10) to rewrite above as 

.p = K̃T 1+n, K̃ =
(

NAkB

μ

)1+n

K−n. (11.25) 

Notice thate K can be shown to be a function of solutions of the modified Lane-
Emden equation, an therefore it depends on the theory of gravity [9]. 

11.2 Pre-Main Sequence Phase 

In the following section we will discuss some of the processes related to the early 
stellar evolution. Before reaching the Main Sequence, a baby star being on the so-
called Hayashi track still contracts, decreasing its luminosity but not changing too 
much its surface temperature. Often the conditions present in the core are sufficient 
to burn light elements such as deuterium and lithium for instance, however in order 
to burn hydrogen, the temperature in the star’s core must be much higher than in 
the lithium’s case. Moreover, during its journey down along the Hayashi track the 
pre-Main Sequence star is fully convective apart from its radiative atmosphere. As 
already mentioned, because of the gravitational contractions the physical conditions 
in the core are changing and it may happen that the convective core will become 
radiative. In such a situation, the star will follow subsequently the Henyey track. 
This phase is much shorten than Hayashi one, it is followed by more massive stars 
(see the Fig. 11.1), and will not be discussed here. The radiative core development, 
hydrogen burning, and other processes related to the early stellar evolution not only 
depend on the star’s mass but also on a theory of gravity, as we will see in the 
following subsections. 

11.2.1 Hayashi Track 

The photosphere is defined at the radius for which the optical depth (11.22) with 
mean opacity . κ is equaled to . 2/3. Using this relation in order to integrate the
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hydrostatic equilibrium Eq. (11.5) with .r = R and .M = m(R), and applying the 
absorption law (11.23) for a stellar atmosphere dominated by .H− in the temperature 

range .3000 < T < 6000K with .κ0 ≈ 1.371 × 10−33Zμ
1
2 and .u = 1

2 , w = 8.5, 
where .Z = 0.02 is solar metallicity [2], one gets 

.pph = 8.12 × 1014

⎛
⎝M

(
1 − 4α

3δ

)

LT 4.5
ph Zμ

1
2

⎞
⎠

2
3

, (11.26) 

in which the Stefan-Boltzmann law .L = 4πσR2T 4
ph with .Teff |r=R

≡ Tph was 
already used. On the other hand, from (11.25) taken on the photosphere with . n =
3/2 and applying the Stefan-Boltzmann law again, we have 

.Tph = 9.196 × 10−6

⎛
⎝L

3
2 Mp2

phμ
5

−θ ′ξ5R

⎞
⎠

1
11

. (11.27) 

The pressure appearing above is the pressure of the atmosphere; therefore, using
(11.26) and rescaling mass and luminosity to the solar values .M� and . L�, 
respectively, we can finally write 

.Tph = 2487.77μ
13
51

(
L

L�

) 1
102

(
M

M�

) 7
51

⎛
⎜⎜⎜⎜⎝

(
1− 4α

3δ
Z

) 4
3

ξ5R

√−θ ′

⎞
⎟⎟⎟⎟⎠

1
17

K. (11.28) 

•? Exercise 
11.4. Derive the above Hayashi track and see how it differs with respect to various values 

of the parameter . α and the Lane-Emden functions. 

The obtained formula relates the effective temperature and luminosity of the 
pre-main sequence star for a given mass M and mean molecular weight . μ. That 
is, it provides an evolutionary track called Hayashi track [22]. Those tracks, being 
almost vertical lines on the right-hand side of the H-R diagram, are followed by the 
baby stars until they develop the radiative core, or they reach the Main Sequence. 
Immediately we observe that the effective temperature is nearly constant; but also 
notice that the temperature coefficient is too low—it is caused by our toy-model 
assumptions, mainly related to the atmosphere modelling. However, this simplified
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analysis allows us to agree that indeed modified gravity shifts the curves (see the 
figure 2 in [9]), leading to the possibility of constraining models of gravity by 
studying T Tauri stars [23] positioned nearby the Hayashi forbidden zone (see the 
Fig. 11.1). 

11.2.2 Lithium Burning 

In the fully convective stars (in such a case we may assume that the star is well-
mixed) with mass M and hydrogen fraction X, the depletion rate is given by the 
expression 

.M
df

dt
= − Xf

mH

∫ M

0
ρ〈σv〉dM, (11.29) 

where f is the lithium-to-hydrogen ratio. The non-resonant reaction rate for the 
temperature .T < 6 × 106 K is  

.NA〈σv〉 = SfscrT
−2/3
c6 exp

[
−aT

− 1
3

c6

]
cm3

sg
, (11.30) 

where .Tc6 ≡ Tc/106 K and .fscr is the screening correction factor, while . S = 7.2 ×
1010 and .a = 84.72 are dimensionless parameters in the fit to the reaction rate 
.
7Li(p, α) 4He [24–26]. The Lane-Emden formalism for Palatini gravity provides the 
expressions for the central temperature . Tc and central density . ρc (11.15). However, 
instead of the simplest polytropic model (11.11), we need to take into account an 
arbitrary electron degeneracy degree . Ψ and mean molecular weight .μeff , and thus 
the radius is 

.
R

R�
≈ 7.1 × 10−2γ

μeff μ
2
3
e F

2
3
1/2(Ψ )

(
0.1M�

M

) 1
3

, (11.31) 

where .Fn(Ψ ) is the nth order Fermi-Dirac function. Inserting the quantities . Tc, . ρc, 
and R given by the Lane-Emden formalism, changing the variables to the spatial 
ones, and assuming that the burning process is restricted to the central region of the 
star (so then we can use the near center solution of LE) the depletion rate (11.29) 
can be written as [10] 

. 
d

dt
lnf = −6.54

(
X

0.7

) (
0.6

μeff

)3 (
0.1M�

M

)2

× Sfscra
7u− 17

2 e−u

(
1 + 7

u

)− 3
2

ξ2R(−θ ′(ξR)), (11.32) 

where .u ≡ aT
−1/3
6 .
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•? Exercise 
11.5. Find the central density and central density from the Lane-Emden formalism. 

Substitute them to Eq. (11.29) to get the above expression. For the near center solution 
in Palatini gravity, see the formula (11.43). 

In order to proceed further, we need to find the dependence on time of the central 
temperature parameter u, which can be obtained from the Stefan-Boltzman equation 
together with the virial theorem 

.L = 4πR2T 4
eff = −3

7
�

GM2

R2

dR

dt
. (11.33) 

The factor . � stands for modified gravity effects on the equation (in Palatini 
quadratic model .� = 1 for .n = 3/2). 

•? Exercise 
11.6. Find that the above relations provides the radius and luminosity as functions of time 

during the contraction phase 

.
R

R�
= 0.85�

1
3

(
M

0.1M�

) 2
3

(
3000K

Teff

) 4
3

(
Myr

t

) 1
3

. (11.34) 

L

L�
= 5.25 × 10−2�

(
M

0.1M�

) 4
3

(
Teff

3000K

) 4
3

(
Myr

t

) 2
3

, (11.35) 

with the contraction time given as

.tcont ≡ − R

dR/dt
≈ 841.91

(
3000K

Teff

)4 (
0.1M�

M

)
(11.36) 

×
(

0.6

μeff

)3 (
Tc

3 × 106K

)3 ξ2R(−θ ′(ξR))�

δ2
Myr.

Using Eqs. (11.34) and (11.31) it is possible to express the central temperature 
. Tc with the time during the contraction epoch, which results as 

. 
u

a
= 1.15

(
M

0.1M�

)2/9
(

μeF1/2(η)

t6T
4
3eff

)2/9

×
(

ξ5R�2/3(−θ ′(ξR))2/3

γ δ2/3

)1/3

,

(11.37) 

where .T3eff ≡ Teff /3000K and .t6 ≡ t/106.
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Let us focus now on stars with masses .M < 0.2M� such that the degeneracy 
effects are insignificant and .μ̇eff can be neglected when compared to . Ṙ. Then, we 
can write the depletion rate as 

. 
dlnf
du = 1.15 × 1013 T −4

3eff

(
X

0.7

) (
0.6

μeff

)6 (
M�
M

)3

× Sfscra
16u− 37

2 e−u

(
1 − 21

2u

)
ξ4R(−θ ′(ξR))2�

δ2
. (11.38) 

The above equation can be integrated from .u0 = ∞ to u (.F ≡ lnf0
f
): 

. F = 1.15 × 1013
X

0.7

(
0.6

μeff

)6 (
M�
M

)3
Sfscra

16g(u)

T3eff

ξ4R(−θ ′(ξR))2�

δ2
,

(11.39) 

where .g(u) = u−37/2e−u − 29Γ (−37/2, u) while .Γ (−37/2, u) is an upper 
incomplete gamma function. Notice that this expression depends on the functions 
. ξR , . θ ′, . δ, and the central temperature, given by the Eq. (11.37), which are derived 
from the solution of the modified Lane-Emden equation (11.12). Therefore, they 
differ with respect to their GR values making that the . 7Li abundance depends on the 
gravity model. 

One obtains the central temperature . Tc from .u(F) for a given depletion . F. 
The star’s age, radius, and luminosity are given by the Eqs. (11.36), (11.34), and 
(11.35). Let us emphasize that all these values depend on the model of gravity, 
clearly altering the pre-Main Sequence stage of the stellar evolution. Moreover, age 
determination techniques which are based on lithium abundance measurements are 
not model-independent: they do depend on a model of gravity used, as presented 
above (see details in [10]). 

11.2.3 Approaching the Main Sequence: Hydrogen Burning 

The process of becoming a true star is related to the stable hydrogen burning. It 
means that the energy produced in this reaction is radiated away through the star’s 
atmosphere, and that the pressure appearing there because of the energy transport 
balances the gravitational contraction. When a star contracts, the central temperature 
increases and when it reaches the values .∼ 3× 106 K in the core, the thermonuclear 
ignition of hydrogen starts. There are three reactions responsible for this process: 
.p + p → d + e+ + νe, p + e− + p → d + νe, p + d → 3He + γ , where the first 
one is slow and a bottle-neck for the lower-mass objects; that is, it stands behind 
the Minimum Main Sequence Mass (MMSM) term. It was demonstrated that the
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energy generation rate per unit mass for the hydrogen ignition process can be well 
described by the power law form [20, 27] 

.ε̇pp = ε̇c

(
T

Tc

)s (
ρ

ρc

)u−1

, ε̇c = ε0T
s
c ρu−1

c , (11.40) 

where the two exponents can be approximated as .s ≈ 6.31 and .u ≈ 2.28, while 
.ε̇0 ≈ 3.4 × 10−9 ergs g. −1s. −1. For a baby star with the hydrogen fraction . X = 0.75
the number of baryons per electron in low-mass stars is .μe ≈ 1.143. 

Using the energy generation rate (11.40) and luminosity (11.20) formulae, we 
can integrate the latter over the stellar volume (.M−1 = M/(0.1M�)): 

. 
LHB

L�
= 4πr3c ρcε̇c

∫ ξR

0
ξ2θn(u+ 2

3 s)dξ = 1.53 × 107Ψ 10.15

(Ψ + αd)16.46

δ5.4873/2 M11.977
−1

ω3/2γ
16.46
3/2

,

(11.41) 

where we used the Lane-Emden formalism with

.K = (3π2)2/3h̄

5mem
5/3
H μ

5/3
e

(
1 + αd

Ψ

)
, (11.42) 

and the near center solution of the LE equation which is . θ(ξ ≈ 0) = 1 − ξ2

6 ∼
exp

(
− ξ2

6

)
for Palatini .f (R) gravity. Here, .αd ≡ 5μe/2μ ≈ 4.82. 

•? Exercise 
11.7. Show that for the considered model of gravity, the near center solution of the Lane-

Emden equation is 

.θ(ξ ≈ 0) = 1 − ξ2

6
∼ exp

(
− ξ2

6

)
(11.43) 

Now we will focus on finding the photospheric luminosity which must be equaled 
to (11.41) in order to have a star as a stable system. Therefore, the surface gravity 
(11.3) needs to be rewritten wrt the Lane-Emden variables: 

.g = 3.15 × 106

γ 2
3/2

M
5/3
−1

(
1 + αd

Ψ

)−2
cm/s2. (11.44)



11 Stellar and Substellar Objects in Modified Gravity 375

The most tricky part is to find the photospheric temperature. Usually it is obtained 
from matching the specific entropy of the gas and metallic phases of the H-He 
mixture [27] (here without the phase transition points [16]) 

.Tph = 1.8 × 106
ρ0.42

ph

Ψ 1.545
K . (11.45) 

Applying these two results into (11.5) and (11.24) one writes the photospheric 
energy density as (.κ−2 = κR/(10−2 cm2g−1), . κR is Rosseland’s mean opacity): 

.
ρph

g/cm3 = 5.28 × 10−5M1.17
−1

(
1 + 8β g

c2R

κ−2

)0.7
Ψ 1.09

γ 1.41
3/2

(
1 + αd

Ψ

)−1.41
. (11.46) 

Notice that here we are using again the Starobisky parameter . β, which introduces 
the modification term to the GR equation (that is, for .β = 0, we recover the GR 
case). Inserting it into .Tph and using the stellar luminosity (11.21) we find 

.Lph = 28.18L�
M1.305

−1

γ 2.366
3/2 Ψ 4.351

×
(
1 + 8β g

c2R

κ−2

)1.183 (
1 + αd

Ψ

)−0.366
. (11.47) 

Finally, writing .LHB = Lph and performing non-complicated algebra: 

. MMMSM
−1 = 0.290

γ 1.32
3/2 ω0.09

3/2

δ0.513/2

(αd + Ψ )1.509

Ψ 1.325

⎛
⎜⎝1 − 1.31α

(
αd+Ψ

Ψ

)4

δ3/2κ−2

⎞
⎟⎠

0.111

(11.48) 

we have derived the MMSM.3 It is clearly modified by our model of gravity not 
only by the parameter . α, but also by the solutions of the LE Eq. (11.12), manifested 
by .γ, ω, and . δ. 

11.3 Low-Mass Main Sequence Stars 

In every stellar modelling one needs to determine which kind of the energy transport 
mechanism is present in each particular layer of the given star. It is usually given by 
the Schwarzschild criterion (11.9) which is also altered by the model of gravity [9]. 
Using that result we will demonstrate that the mass limit of fully convective stars on 
the Main Sequence is shifted and can have a significant effect on how we model the

3 We have used the relation between the Starobinsky parameter . β and rescaled parameter . α again. 



376 A. Wojnar

stars from this mass range. Newtonian-based models predict that Main Sequence 
stars’ interiors with masses smaller than .∼ 0.6M� are fully convective. 

Since the star’s luminosity decreases when it contracts following the Hayashi 
track, it may happen that there appears a radiative zone in the star’s interior, and 
then the star will start following the Henyey track [28–30]. In the case of the 
low-mass stars, however, the fully convective baby star may also reach the Main 
Sequence without developing a radiative core. In order to deal with such a situation, 
the decreasing luminosity in the Schwarschild condition for the radiative core 
development condition (it happens when .∇rad = ∇ad , where in our simplified 
model .∇ad = 0.4) cannot be lower than the luminosity of H burning (11.41). 
Therefore, the modified Schwarzschild criterion, after inserting (11.21) and (11.15) 
with homology contaction argument, provides the minimum luminosity for the 
radiative core development: 

.Lmin = 9.89 × 107L�
δ1.0643/2 ( 34δ3/2 − α)

ξ8.67(−θ ′)1.73

(
Teff

κ0

)0.8

M4.4
−1 , (11.49) 

where we have used the Kramer’s absorption law (11.23) with .u = 1 and .w = −4.5. 
Thus, a star on the onset of the radiative core development will reach the Main 
Sequence when .Lmin = LHB ; so the mass of the maximal fully convective star on 
the Main Sequence is given by the following expression: 

.M−1 = 1.7
μ0.9T 0.11

eff (αd + Ψ )2.173

Ψ 1.34κ0.11
0

γ 2.173ω0.132

δ0.583/2 ξ1.14(−θ ′)0.23
. (11.50) 

Let us firstly focus on the GR case, that is, when .α = 0. Considering a star with 
.αd = 4.82, the degree of the degeneracy electron pressure as .Ψ = 9.4, and the 
mean molecular weight .μ = 0.618 with .Teff = 4000K, the maximal mass of the 
fully convective star on the Main Sequence is: 

.M = 4.86M�κ−0.11
0 . (11.51) 

We notice immediately that the final value does depend on the opacity. Considering
two Kramers’ opacities: the total bound-free and free-free estimated to be (in
.cm2g−1), [2] 

.κ
bf

0 ≈ 4 × 1025μ
Z(1 + X)

NAkB

, κ
ff

0 ≈ 4 × 1022μ
(X + Y )(1 + X)

NAkB

, (11.52) 

the corresponding masses, for .X = 0.75 and .Z = 0.02, are  

.Mbf = 0.099M�, Mff = 0.135M�, (11.53)
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respectively. The obtained masses, as we expected, are too low—it is a result of 
our simplified analysis, mainly related to the atmosphere’s description and gas 
behaviour in the considered pressure and temperature regimes. However, we may 
use the obtained values as reference to compare the result arriving from modified 
gravity: depending on the parameter’s value, the masses can even differ around . 50%
[9]. 

11.4 Aborted Stars: Brown Dwarfs 

Let us discuss a family of objects which do not satisfy necessary conditions in 
their core to ignite hydrogen4 and subsequently to enter the Main Sequence phase. 
Such an object will radiate away all stored energy, being a result of gravitational 
contraction and eventual light elements burning in the early stage’s evolution. It will 
stop contracting when the electron degeneracy pressure balances the gravitational 
pulling, and consequently it will be cooling down with time. In order to study a 
simple but accurate cooling model of brown dwarfs, we need to consider a more 
realistic description of matter, as the brown dwarf stars are composed of the mixture 
of degenerate and ideal gas states at finite temperature. It turns out however that 
such an EoS can be rewritten in the polytropic form for .n = 3/2 [16], but with more 

complicated polytropic function with .K = Cμ
− 5

3
e (1 + b + aη), where the constant 

.C = 1013 cm4g−2/3s−2, .a = 5
2μeμ

−1
1 , while the number of baryons per electron 

is represented by . μe. Here, we use .η = Ψ −1 as the electron degeneracy parameter, 
while . μ1 takes into account ionization, and it is defined as 

.
1

μ1
= (1 + xH+)X + Y

4
, (11.54) 

where .xH+ is the ionization fraction of hydrogen X (Y stand for helium one) and 
depends on the phase transitions points [31]. Besides, the quantity b is 

.b = − 5

16
ηln(1 + e−1/η) + 15

8
η2

(
π2

3
+ Li2[−e−1/η]

)
, (11.55) 

where .Li2 denotes the second order polylogarithm function and the degeneracy 
parameter is given as .η = kBT

μF
. Therefore, we can still use the LE formalism for our 

purposes, that is, we can express the star’s central pressure, radius, central density, 

and temperature .Tc = Kμ
kB

ρ
1
n
c as functions of the above parameters; we will see 

soon that the degeneracy parameter depends on time because of the still ongoing 
gravitational contraction.

4 some massive brown dwarfs do burn hydrogen, however the process is not stable (.LHB �= Lph) 
and since although there is some energy production, the object radiates more than produces, 
therefore it is cooling down and following the BDs’ evolution. 
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As already commented, the most uncertain part of our calculations is related to 
the photospheric values of, for instance, effective temperature. In brown dwarfs’ 
case one usually uses the entropy method, that is, matching the entropy of non-
ionized molecular mixture of H and He at the atmosphere to the interior one, 
composed mainly of degenerate electron gas [16, 27]: 

.Sinterior = 3

2

kBNA

μ1mod

(lnη + 12.7065) + C1, (11.56) 

where . C1 is an integration constant of the first law of thermodynamics and .μ1mod is 
modified . μ1 at the photosphere (see the details and its form in [11,16]. The matching 
provides the effective temperature as 

.Teff = b1 × 106ρ0.4
ph ην K, (11.57) 

where the parameters . b1 and . ν depend on the specific model describing the 
phase transition between a metallic H and He state in the BD’s interior and the 
photosphere composed of molecular ones [31]. Following the analogous steps as in 
the Sect. (11.2.3), one gets the photospheric temperature as 

. Teff = 2.558 × 104 K

κ0.286
R γ 0.572

(
M

M�

)0.4764 η0.714νb0.7141

(1 + b + aη)0.571

(
1 − 1.33

α

δ

)0.286
,

(11.58) 

where .μe = 1.143 was used. That allows to find the luminosity of the brown dwarf; 
hence using the Stefan-Boltzman equation one gets: 

.L = 0.0721L�
κ1.1424
R γ 0.286

(
M

M�

)1.239 η2.856νb2.8561

(1 + b + aη)0.2848

(
1 − 1.33

α

δ

)1.143
. (11.59) 

The above luminosity depends on time since the electron degeneracy . η does. To 
find such a relation for the latter one [27,32], let us consider the pace of cooling and 
contraction given by the first and the second law of thermodynamics 

.
dE

dt
+ p

dV

dt
= T

dS

dt
= ε̇ − ∂L

∂M
, (11.60) 

in which the energy generation term . ̇ε is negligible in brown dwarfs. We can 
integrate the above equation over mass to find 

.
dσ

dt

[∫
NAkBT dM

]
= −L, (11.61)
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where L is a surface luminosity and we have defined .σ = S/kBNA. The  LE  
polytropic relations allow to get rid of T and . ρ and write down 

.
dσ

dt

NAAμeη

C(1 + b + aη)

∫
pdV = −L, (11.62) 

where .A = (3πh̄3NA)
2
3 /(2me) ≈ 4.166×10−11. The integral in the above equation 

can be simply found to be .
∫

pdV = 2
7�GM2

R
with .� = 1 for .n = 3/2 in Palatini 

gravity [7, 10]. 

•? Exercise 
11.8. Show that using the entropy formula (11.56) one can easily get the entropy rate as 

(let us recall that .σ = S/kBNA): 

.
dσ

dt
= 1.5

μ1mod

1

η

dη

dt
. (11.63) 

Inserting the above expression into (11.62) together with the luminosity (11.59) 
gives us the evolutionary equation for the degeneracy parameter . η

.
dη

dt
= − 1.1634 × 10−18b2.8561 μ1mod

κ1.1424
R μ

8/3
e

(
M�
M

)1.094

(11.64) 

× η2.856ν(1 + b + aη)1.715
γ 0.7143

�

(
1 − 1.33

α

δ

)1.143
.

This equation, together with the luminosity Eq. (11.59) and initial conditions . η = 1
at .t = 0, provides the cooling process model for a brown dwarf star in Palatini 
.f (R̄) gravity. To see how modified gravity affects such an evolution after solving 
these equations numerically,5 see [11]. 

11.5 (Exo)-Planets 

As we will see, some theories of gravity can change the giant planets’ evolution, and 
may also affect the internal structure of gaseous and terrestrial ones. This fact can 
change our understanding of the Solar System’s formation, as well as it can be used 
to constrain different gravitational proposals when observational and experimental 
data with high accuracy are at our disposal. Missions such as ESA’s Cosmic Visions6 

5 https://github.com/mariabenitocst/brown_dwarfs_palatini 
6 https://www.esa.int/Science_Exploration/Space_Science/Voyage_2050_sets_sail_ESA_chooses_ 
future_science_mission_themes

https://github.com/mariabenitocst/brown_dwarfs_palatini
https://github.com/mariabenitocst/brown_dwarfs_palatini
https://github.com/mariabenitocst/brown_dwarfs_palatini
https://github.com/mariabenitocst/brown_dwarfs_palatini
https://github.com/mariabenitocst/brown_dwarfs_palatini
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will bring soon more data on the physical properties of Jupiter-like planets, while 
improved seismic experiments [33], as well as those performed in laboratories [34], 
or with the use of the new generation of the neutrinos’ telescopes [35] will provide 
more information about the matter behaviour in the Earth’s core and its more exact 
composition. 

11.5.1 Jovian Planets 

Giant gaseous planets, although their formation processes differs significantly from 
the one followed by stars and brown dwarfs [3, 4], do also contract and cool down 
until it reaches the thermal equilibrium, that is, when the received energy from its 
parent star is equalled to the energy radiated away from the surface of the planet. 
Their inner description is quite similar to the one of brown dwarfs’; however, the 
main difference in the cooling process between these two substellar object is that 
the jovian planets possess an additional source of energy provided by the parent 
star which cannot be ignored. When a planet with the radius . Rp and in the distance 
.Rsp from its parent star is in the mentioned thermal equilibrium, it means that its 
equilibrium temperature 

.(1 − Ap)

(
Rp

2Rsp

)2

Ls = 4πf σT 4
eqR2

p, (11.65) 

where . Ap is an albedo of the planet while . Ls the star’s luminosity, is equalled to its 
effective one. However, when we are dealing with some additional energy sources 
such as for instance gravitational contraction, Ohmic heating, or tidal forces, it is 
not so since the planets radiates more than it receives. Therefore, we need a relation 
between these two temperatures; it is derived from the radiative transport equation 
with the use of Eddington’s approximation [2]: 

.4T 4 = 3τ(T 4
eff − T 4

eq) + 2(T 4
eff + T 4

eq), (11.66) 

where T is the stratification temperature in the atmosphere while . τ is the optical 
depth. This will allow, when we integrate the Eq. (11.19) with (11.23), to write down 
the atmospheric pressure as (see [36] for .w = 4): 

. pu+1
w �=4 = 4

w
4 g

3κ0

u + 1

1 − w
4

(
1 − 4α

3δ

)
T −1−

(
(3τT− + 2T+)1−

w
4 − (2T+)1−

w
4

)
,

(11.67) 

where we have defined .T− := T 4
eff − T 4

eq and .T+ := T 4
eff + T 4

eq . The atmosphere 
is radiative so there must exist a region in which the convective transport of energy 
in the planet’s interior becomes radiative. In order to find this boundary, we will use



11 Stellar and Substellar Objects in Modified Gravity 381

the Schwarzschild criterion (11.9) to find the critical depth in which the radiative 
process is replaced with the convective one: 

.τc = 2

3

T+
T−

((
1 + 8

5

( w
4 − 1

u + 1

)) 1
w
4 −1 − 1

)
, w �= 4 (11.68) 

Substituting those expressions into (11.67) and (11.66) we may write the formulas 
for the boundary pressure and temperature 

.pu+1
conv = 8g

15κ0

4
w
4

(
1 − 4α

3δ

)

T−(2T+)w−1

(
5(u + 1)

5u + 8w
4 − 3

)
, . (11.69) 

T 4
conv = T+

2

(
5u + 8w

4 − 3

5(u + 1)

)w
4 −1

, w �= 4. (11.70) 

On the other hand, to describe the planet’s convective interior, let us consider a
combination of pressures [37] 

.p = p1 + p2, (11.71) 

where . p1 is pressure arising from electron degeneracy, given by the polytropic EoS 
(11.10) with .n = 3/2, while . p2 is pressure of ideal gas (11.24). 

•? Exercise 
11.9. Show that such a mixture can be again written as a polytrope [32]. 

Matching the above interior pressure with (11.69) provides a relation between 
the effective temperature .Teff with the radius of the planet . Rp which depends on 
modified gravity: 

. T
5
8u+ w

4 − 3
8+ T− = CG−uM

1
3 (2−u)
p R−(u+3)

p μ
5
2 (u+1)k

− 5
2 (u+1)

B

× γ u+1(Gγ −1M
1
3
p Rp − K)

5
2 (u+1)

(
1 − 4α

3δ

)
(11.72) 

where C is a constant depending on the opacity constants u and w:

.Cw �=4 = 16

15κ0
2

5
8 (1+u)+ w

4

(
5u + 8w

4 − 3

5(u + 1)

)1+ 5
8 (1+u)( w

4 −1)

. (11.73)
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Since the contraction of the planet is a quasi-equilibrium process, the planet’s 
luminosity is a sum of the total energy absorbed by the planet and the internal energy 
such that for a polytrope with .n = 3/2 [11] we may write 

.Lp = (1 − Ap)

(
Rp

2Rsp

)2

Ls − 3

7

GM2
p

R2
p

dRp

dt
. (11.74) 

Using (11.21), (11.23) and integrating it from an initial radius . R0 to the final one 
. RF , and inserting (11.72) to get rid of . T− we can derive the cooling equation for 
jovian planets: 

. t = −3

7

GM
4
3
p k

5
2 (u+1)
B κ0

πacγμ
5
2 (u+1)K

3
2u+ 5

2 C

(
1 − 4α

3δ

)−1 ∫ xp

x0

(T 4
eff + T 4

eq)
5
8u+ w

4 − 3
8 dx

x1−u(x − 1)
5
2 (u+1)

.

This, together with (11.72) providing the effective temperature for a given radius 
allows to find the age of the planet which clearly differ from the values given by 
Newtonian physics (see the figure 2 and tables 1–2 in [36]). 

11.5.2 Terrestrial Planets 

In this section we will just comment some findings regarding the rocky planets, such 
as for example the Earth and Mars. Although the numerical analysis demonstrates 
that we should not expect a large degeneracy in the mass-radius plots for the Earth-
sized and smaller planets7 [13]—however have a look on a more realistic approach 
in [39,40]—it turns out that there is a considerable difference in the density profiles 
.ρ(r), which could be used to constrain and test models of gravity. Knowing what is 
the density profile in a given planet allows to obtain the polar moment of inertia . C
(. Rp is the planet’s radius) 

.C = 8π

3

∫ Rp

0
ρ(r)r4dr. (11.75) 

The density profiles provide information on the number of layers composed of dif-
ferent materials (that is, EoS), and their boundaries. The inner structure of the Earth
is given by the PREM model [41–44] being a result of the seismic data analysis, 
while the martian interior will be known soon, when the Seismic Experiment for 
Interior Structure from NASA’s MARS InSight Mission’s seismometer8 provides 
the required data.

7 in the case of larger terrestrial planets we observe a significant difference, making the exoplanet’s 
composition more difficult to determine [13, 38]. 
8 https://mars.nasa.gov/insight/spacecraft/instruments/seis/ 

https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
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Since density profiles (central and boundary values of density/pressure, and 
layers’ thickness) are slightly different in modified gravity than those obtained from 
Newtonian gravity, it means that this fact has an influence on the polar moment 
of inertia (11.75), yielding different results for different models of gravity. Such a 
phenomenon can be compare with the observational value . C provided by precession 
rate .dη/dt being caused by gravitational torques from the Sun [45]: 

.
dη

dt
= −3

2
J2 cos ε(1 − e2)

n2

ω

MR2

C
(11.76) 

where the orbital eccentricity e, obliquity . ε, the rotation rate . ω, the effective mean 
motion n and the gravitational harmonic coefficient . J2 are well-known with high 
accuracy for the Solar System planets, especially for the Earth [46] and Mars [47– 
49]. Therefore, the computed polar moment of inertia from a given model of gravity 
must agree with the observational one provided by (11.76). That procedure, when 
the theoretical modelling improved, can be a powerful tool to test theories of gravity 
which alters Newtonian equations. 

11.6 Summary 

Many theories of gravity happen to introduce additional terms to the hydrostatic 
equilibrium equation. This fact however, as we could see in this brief review of the 
current research, has a non-trivial effect on many processes occurring in the stellar 
and substellar interiors. Therefore, modelling evolutionary phases and compositions 
of those objects must be undertaken carefully, rather expecting changes on each step 
than assuming that because of the weaker gravitational field some processes will 
undergo in the same way as in GR or Newtonian case. Although most of the results 
presented here concern toy-model approach, it provided a necessary insight into a 
kind of modifications one has to take into account during modelling more realistic 
objects. 

Acknowledgments This work was supported by the EU through the European Regional Devel-
opment Fund CoE program TK133 “The Dark Side of the Universe". 
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12Radio Pulsars as a Laboratory 
for Strong-Field Gravity Tests 

Lijing Shao 

Abstract 

General relativity offers a classical description to gravitation and spacetime, and 
is a cornerstone for modern physics. It has passed a number of empirical tests 
with flying colours, mostly in the weak-gravity regimes, but nowadays also in 
the strong-gravity regimes. Radio pulsars provide one of the earliest extrasolar 
laboratories for gravity tests. They, in possession of strongly self-gravitating 
bodies, i.e. neutron stars, are playing a unique role in the studies of strong-field 
gravity. Radio timing of binary pulsars enables very precise measurements of 
system parameters, and the pulsar timing technology is extremely sensitive to 
various types of changes in the orbital dynamics. If an alternative gravity theory 
causes modifications to binary orbital evolution with respect to general relativity, 
the theory prediction can be confronted with timing results. In this chapter, we 
review the basic concepts in using radio pulsars for strong-field gravity tests, with 
the aid of some recent examples in this regard, including tests of gravitational 
dipolar radiation, massive gravity theories, and the strong equivalence principle. 
With more sensitive radio telescopes coming online, pulsars are to provide even 
more dedicated tests of strong gravity in the near future. 
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12.1 Introduction 

Pulsars are rotating magnetized neutron stars. On the one hand, due to their large 
moment of inertia (.I ∼ 1038 kgm2) and usually small external torque, their rotation 
is extremely stable. If a pulsar sweeps a radiating beam in the direction of the Earth, 
a radio pulse could be recorded using large-area telescopes for each rotation. As 
fundamentally known in physics, such a periodic signal can be viewed as a clock. 
Therefore, pulsars are famously recognized as astrophysical clocks in astronomy. 
Even better, thanks to a sophisticated technique called pulsar timing [58], pulsar 
astronomers can accurately record a number of periodic pulse signals. These pulses’ 
times of arrival are compared with atomic clocks at the telescope sites. Some of 
these observations can be carried out and last for decades. From a large number of 
times of arrival of these pulse signals, the physical properties of pulsar systems are 
inferred to a great precision [39]. For example, a recent study with 16 years of timing 
data of the Double Pulsar,1 PSR J0737. −3039A/B, gives the rotational frequency of 
pulsar A in the binary system [37], 

.ν = 44.05406864196281(17)Hz . (12.1) 

It has sixteen significant digits, and the numbers in the parenthesis give the
uncertainty of the last-two digits. Such a precision rivals the precision of atomic
clocks on the Earth [30], and also it possibly calls for an extension of the usual 
use of floating numbers in computer numerics for future precision pulsar timing 
experiments. Pulsars are truly precision clocks. 

•? Exercise 
12.1. During the 16 years of observation, how many cycles have PSR J0737. −3039A 

rotated? 

On the other hand, neutron stars are the densest objects known that are made 
of standard-model materials. For such a compact object, gravity plays a vital role 
in shaping its internal structure and affecting its external dynamics. As explicitly 
demonstrated by Damour and Esposito-Farèse [16], if gravity is described by an 
alternative theory to the general relativity—in their case, a class of scalar-tensor 
gravity theories—nonperturbative phase-transition-like behaviours might happen 
for neutron stars, resulting in large deviations from general relativity in the strong 
field of neutron stars [17, 25, 46]. These large deviations will manifest in the timing

1 Currently, PSR J0737. −3039A/B is the only discovered double neutron star system whose two 
neutron stars were both detected as pulsars [14, 41, 49], known as Pulsar A and Pulsar B. 
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data of pulsars in some way (cf. Sect. 12.2), and they could provide smoking-gun 
signals for gravity theories regarding the strong-field properties. Combining the 
strong-field nature of neutron stars and the precision measurements of times of 
arrival, radio pulsars are truly ideal to test alternative theories of gravity [51,63,64], 
augmenting what have been done in the weak field of the Solar System [65], and 
complementing what are recently being performed with gravitational waves [3–5] 
and black hole shadows [6–8, 50]. 

Currently, more than three thousands of radio pulsars are discovered2 [43]. The 
most useful subset of pulsars in testing alternative gravity theories are millisecond 
pulsars in clean binaries.3 Their times of arrival at telescopes are imprinted with 
information from the following sources: 

1. the Solar system dynamics which affect the motion of radio telescopes; 
2. the binary dynamics which are resulted from the mutual gravitational interaction 

between the two binary components; and 
3. the interstellar medium which affects the propagation of radio waves in a 

frequency-dependent way, in terms of dispersion, scattering, and so on. 

A formalism, which includes the above effects and connects the proper time of the 
pulse signals in the pulsar frame to the observed coordinate time at the telescopes, 
is called a pulsar timing model. One of the widely used timing models for binary 
pulsars is the Damour-Deruelle timing model [15]. It is a phenomenological model 
that applies to a large set of alternative gravity theories which are possibly being the 
underlying theory for the binary’s orbital motion. 

In the Damour-Deruelle timing model, a handful of parameterized post-Keplerian 
(PPK) parameters are introduced for generic Lorentz-invariant extensions of gravity 
theories [19]. The values of PPK parameters differ in different gravity theories. 
Therefore, measurements of these PPK parameters can be converted into constraints 
on parameters in the alternative gravity theories. The most frequently used PPK 
parameters include . ω̇, . Ṗb, . γ , r , and s. The PPK parameter . ω̇ describes the periastron 
advance of the binary orbit, the PPK parameter . Ṗb describes the orbital period 
decay caused by the radiation of gravitational waves, the PPK parameter . γ describes 
combined effects from the Doppler time delay and gravitational time delay, and the 
PPK parameters .(r, s) describe the Shapiro time delay imprinted by the spacetime 
curvature of the companion star. The values of these five PPK parameters in the

2 https://www.atnf.csiro.au/people/pulsar/psrcat/. 
3 In one case, a pulsar in a triple system, PSR J0337+1715, provides the best limit on the strong 
equivalence principle [9, 47, 59]. 

https://www.atnf.csiro.au/people/pulsar/psrcat/
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general relativity are given in Damour and Deruelle [15] and Lorimer and Kramer 
[39], 

.ω̇ = 3

(
Pb

2π

)−5/3

(T�M)2/3
(
1 − e2

)−1
, . (12.2) 

Ṗb = −192π

5

(
Pb

2π

)−5/3 (
1 + 73

24
e2 + 37

96
e4

) (
1 − e2

)−7/2
T
5/3
� mAmBM−1/3 , . 

(12.3) 

γ = e

(
Pb

2π

)1/3

T
2/3
� M−4/3mB(mA + 2mB) , . (12.4) 

r = T�mB , . (12.5) 

s = x

(
Pb

2π

)−2/3

T
−1/3
� M2/3m−1

B , (12.6) 

where . Pb and e are respectively the orbital period and orbital eccentricity, . mA
and .mB are the masses of the pulsar and its companion in unit of the Solar mass 
(. M�), the total mass .M ≡ mA + mB, and .T� ≡ GM�/c3 = 4.925490947μs. 
Equations (12.2)–(12.6) take different forms in alternative gravity theories, often 
with dependence on the extra charges of the binary components in the theory, e.g., 
these PPK parameters depend on scalar charges of the pulsar and its companion 
in the scalar-tensor theory [17]. In pulsar-timing observation, each PPK parameter 
is independently measured. Eventually, for a gravity theory to pass the tests from 
pulsar timing, it should give consistent predictions to all the measured values of 
PPK parameters with a unique set of physical parameters of the binary system. 
These consistency checks are often illustrated in the mass-mass diagram. For an 
example, in Fig. 12.1 the measurements of three PPK parameters, . ω̇, . γ , and . Ṗb, 
from the Hulse-Taylor pulsar PSR B1913+16, give consistent component masses 
when the general relativistic Eqs. (12.2)–(12.4) are used [61]. Therefore, general 
relativity passes the tests posed by the Hulse-Taylor pulsar [61]. 

•? Exercise 
12.2. For the Hulse-Taylor pulsar PSR B1913+16, the following parameters are measured 

directly via pulsar timing: .Pb = 0.322997448918(3) d, .e = 0.6171340(4), . ω̇ =
4.226585(4) deg yr−1, and  .γ = 0.004307(4) s [61]. Assuming general relativity, please 
derive the two component masses for this binary system. 

In this following, we will give a few more concrete and recent examples where 
binary pulsars play a key role in limiting alternative gravity theories, including 
the gravitational dipolar radiation in the scalar-tensor gravity (Sect. 12.2), two
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Fig. 12.1 Consistency of 
general relativity in 
describing three measured 
PPK parameters (. ω̇, . γ , and  
. Ṗb) from PSR B1913+16 in 
the mass-mass diagram [61] 

classes of massive gravity theories (Sect. 12.3), and the strong equivalence principle 
(Sect. 12.4). These examples are by no means complete, and certainly reflect 
the somehow biased topics that the author is interested in. A short perspective 
discussion is given in Sect. 12.5. For more extensive reviews on using radio pulsars 
for gravity tests, readers are referred to Refs. [35, 42, 51, 57, 63, 64]. 

12.2 Strong-Field Effects and Gravitational Dipolar Radiation 

Scalar-tensor gravity theories represent a well posed, healthy extension of Einstein’s 
general relativity by including a nonminimally coupled scalar field in the Lagrangian 
of gravity [10, 13, 65]; see also Sects. 4.4.4 and 7.4.1 for the discussion of gravity 
theories involving additional scalar fields as mediator of the gravitational interac-
tion. Shortly after the first discovery of the Hulse-Taylor binary pulsar, Eardley [24] 
pointed out that a gravitational dipolar radiation could be used as a discriminant for 
such a class of gravity theories. An extra dipolar radiation term can be tested with 
the PPK parameter . Ṗb. Investigation along this line was boosted by the theoretical 
discovery that in a slightly extended version of the original scalar-tensor gravity, 
nonperturbative effects develop for certain neutron stars [16, 17]. The so-called 
spontaneous scalarization (see also Sect. 7.4.1 for more details) introduces a much 
enhanced gravitational dipolar radiation for a scalarized neutron star in a binary. 
The dipolar radiation in principle can even dominate over the quadrupolar radiation 
predicted by the general relativity in binary pulsar observations [cf. Eq. (12.3)], but 
still keeping all weak-field gravity tests satisfied. This enters the regime of strong-
field gravity tests, where weak-field tests have a rather limited power.
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A general class of scalar-tensor gravity theories have the following action in the 
Einstein frame, 

. S = c4

16πG∗

∫
d4x

c

√−g∗
[
R∗ − 2gμν∗ ∂μϕ∂νϕ − V (ϕ)

] + Sm

[
ψm;A2(ϕ)g∗

μν

]
,

(12.7) 

where .g
μν∗ and . R∗ are the metric tensor and Ricci scalar respectively, .ψm collec-

tively denotes standard-model matter fields, . ϕ is an extra scalar field, and quantities 
with stars are in the Einstein frame. The novel aspect lies in the fact that it is a 
conformal metric .A2(ϕ)g∗

μν instead of .g∗
μν itself that couples to matter fields. Such 

a nonminimal coupling is important for the discussions below. 
The class of scalar-tensor gravity theories carefully examined by Damour and 

Esposito-Farèse [16, 17] has 

.V (ϕ) = 0 , . (12.8) 

A(ϕ) = exp
(
β0ϕ

2/2
)

, . (12.9) 

α0 = β0ϕ0 , (12.10) 

where . ϕ0 is the asymptotic value of . ϕ at infinity, and . α0 and . β0 are two theory 
parameters. This is the class of scalar-tensor theories, sometimes denoted as 
.T1(α0, β0) and called the Damour-Esposito-Farèse theory, that are most widely 
confronted with pulsar observations [28, 53, 63, 71]. 

•? Exercise 
12.3. Derive field equations for the Damour-Esposito-Farèse theory. 

•? Exercise 
12.4. Based on the field equations, derive the modified Tolman-Oppenheimer-Volkoff 

equations for the Damour-Esposito-Farèse theory, for a spherically symmetric neutron star. 

By integrating the modified Tolman-Oppenheimer-Volkoff equations derived 
from theory (12.7), one gets a boost in a neutron star’s scalar charge when its 
mass reaches a critical point. This phenomenon is understood from the viewpoint 
of Landau’s phase transition theory when a tachyonic instability kicks in and
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Fig. 12.2 Blue curves show the effective scalar charge in the Damour-Esposito-Farèse scalar-
tensor gravity theory with .|α0| =  10−5 and, from top to bottom, .β0 = −4.8, −4.6,−4.4,−4.2. 
The AP4 equation of state is assumed in the calculation. Triangles show the observational bounds 
from binary pulsars [53, 71] and gravitational waves [1, 2] at the 90% confidence level. The mass 
uncertainty for these neutron stars is indicated at the 68% confidence level 

a new branch of neutron star solutions with scalar charges are energetically 
favored [ 25, 34, 46]. We define the effective scalar charge of a neutron star [16], 

.αA ≡ ∂ lnmA

∂ϕ0
, (12.11) 

which is a representative quantity characterizing the strength of deviation from
general relativity. In Fig. 12.2, example curves for the effective scalar charge as a 
function of neutron star mass are given in blue lines from top to bottom for . β0 =
−4.8,−4.6,−4.4,−4.2, assuming the AP4 equation of state and .|α0| = 10−5. As  
we can easily seen, indeed that for certain mass range of neutron stars, .|αA| can be 
very large while keeping its value very small in weak-gravity fields. 

The emission of gravitational dipolar radiation in a binary pulsar is proportional 
to the difference in the effective scalar couplings of the two binary components A 
and B, and to the leading order, it contributes to an additional decay rate of orbital 
period via [17], 

. Ṗ
dipole
b = −2πG∗

c3

(
1 + e2

2

)(
1 − e2

)−5/2
(
2π

Pb

)
mAmB

M
(αA − αB)2 .

(12.12) 

While neutron stars have significant scalar charges, white dwarfs, being weak-field
objects, are hardly different from their counterparts in general relativity with a van-
ishingly small scalar charge .αB � α0 → 0, where . α0 is well constrained by Solar 
System weak-field tests [65]. Therefore, neutron-star white-dwarf binaries turn out
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to be the most sensitive probe in this regard [28, 53]. Recently, a new study [71] 
shows explicitly that neutron-star neutron-star binaries with a significant difference 
in the masses of binary components are also excellent laboratories. Therefore, to 
test the gravitational dipolar radiation in scalar-tensor gravity, asymmetric binary 
pulsars are needed4 [63]. 

•? Exercise 
12.5. When the dipolar-radiation-induced orbital decay is comparable to the quadrupolar-

radiation-induced orbital decay for the Hulse-Taylor pulsar? Derive the critical value for the 
effective scalar charge. 

Some illustration for a specific equation of state, AP4, is given in Fig. 12.2, 
along with constraints on the gravitational dipolar radiation from seven binary pul-
sars [71]: five neutron-star white-dwarf binaries (PSRs J0348+0432, J1012+5307, 
J1738+0333, J1909. −3744, and J2222. −0137) and two asymmetric neutron-star 
neutron-star binaries (PSRs J0737. −3039A and J1913+1102). For comparison, we 
also show a constraint from the first binary neutron star merger observed via 
gravitational waves [2]. In principle, the uncertainty in the superanuclear neutron-
star matter is entangled with strong-field gravity tests [48]. Nevertheless, nowadays 
we have enough well-measured binary pulsar systems to populate the whole mass 
range for neutron stars, and a combined study [53, 71] has verified that for each 
reasonable equation of state, the possibility for spontaneous scalarization in the 
Damour-Esposito-Farèse scalar-tensor gravity theory is very low. Following the 
method developed by Shao et al. [53], a dedicated Bayesian parameter-estimation 
study combining the above-mentioned seven pulsar systems has basically closed the 
possibility of developing spontaneous scalarization for an effective scalar coupling 
larger than .10−2 for the theory given by Eqs. (12.7)–(12.10), no matter of the 
underlying yet-uncertain equation of state for supranuclear neutron-star matters. 

It is worth to mention that, when performing Markov-chain Monte Carlo 
Bayesian parameter estimation, the integration of the modified Tolman-
Oppenheimer-Volkoff equations needs to be carried out by more than millions of 
times on the fly thus computationally expensive. Recently, reduced-order surrogate 
models, which extract dominating features to represent accurate enough integration 
results, were bulit to aid the speedup of the calculation [29, 70]. The codes of 
these reduced-order surrogate models are publicly available at https://github. 
com/BenjaminDbb/pySTGROM and https://github.com/mh-guo/pySTGROMX for 
community use.

4 Unfortunately, we have not detected yet suitable neutron-star black-hole binaries for this test, 
which are also potentially very good testbeds [38]. 

https://github.com/BenjaminDbb/pySTGROM
https://github.com/BenjaminDbb/pySTGROM
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https://github.com/mh-guo/pySTGROMX
https://github.com/mh-guo/pySTGROMX
https://github.com/mh-guo/pySTGROMX
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Although the original Damour-Esposito-Farèse scalar-tensor gravity theory is 
disfavored by binary pulsar timing results, in further extended, generic scalar-tensor 
gravity theories, neutron stars can still be scalarized. This is particularly true for a 
massive scalar-tensor theory with .V (ϕ) ∼ m2ϕ2 when the Compton wavelength 
of the scalar field is smaller than the orbital separation of the binary [45, 66, 69]. 
Basically the modification with respect to the general relativity in the orbital 
dynamics is suppressed exponentially in a Yukawa fashion. Fortuitously, without 
giving much details, such kind of massive scalar-tensor theories can be efficiently 
probed via the tidal deformability measurement in gravitational waves [1,31,32]. In 
this sense, a combination of pulsar timing data and gravitational wave data is called 
for to probe a larger parameter space for scalar-tensor gravity theories [53]. 

In the past few years, other variants of scalar-tensor gravity theories triggered 
great enthusiasm. Some of them not only give scalarized neutron stars, but also 
scalarized black holes, in contrast to the no-hair theorem. A particularly interesting 
class of such theory includes a topological Gauss-Bonnet term, 

.G = Rαβγ δR
αβγ δ − 4RαβRαβ + R2 , (12.13) 

coupling to the scalar field [23, 56, 67]. In Eq. (12.13), .Rαβγ δ and .Rαβ are the 
Riemann tensor and Ricci tensor respectively. Preliminary constraints on the scalar-
Gauss-Bonnet gravity from binary pulsars are presented by Danchev et al. [20]. 
This is a new field where observations of compact objects including neutron stars 
and black holes are crucial to reveal the strong-field information of gravitation. 

12.3 Radiative Effects in Massive Gravity Theories 

Radiative tests from binary pulsars are powerful, as the related PPK parameter, . Ṗb, 
can be very well measured from a long-term timing project on suitable pulsars [19]. 
This parameter improves with observational time span .Tobs quite fast, as .T

−5/2
obs . The  

orbital decay rate . Ṗb is not only useful for constraining the dipolar gravitational 
wave emission, but also in other radiative aspects of gravitation, for example, in 
constraining the extra radiation caused by a certain model of the breaking down of 
the Lorentz symmetry [68],5 or a nonzero mass of gravitons [21, 26, 44, 55]. Here 
we give a brief introduction to the latter. 

In general relativity, the hypothetical quantum particle for gravity, graviton, is 
a massless spin-2 particle. However, massive gravity theories are found to provide 
interesting phenomena related to the evolution of the Universe, e.g. the accelerated 
expansion and dark energy [21]. Therefore, probing the upper bounds of the graviton 
mass is fundamentally important to field theories and cosmology studies, and it is 
one of the central topics in gravitational physics.

5 Recall that there are numerous different models of Lorentz invariance violation or doubly special 
relativity, see Chaps. 1 or 2. 
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One of the early study of using binary pulsars to test the graviton mass was 
performed by Finn and Sutton in 2002 [26]. They investigated a linearized gravity 
with a massive graviton with the action, 

. S = 1

64π

∫
d4x

[
∂λhμν∂

λhμν − 2∂νhμν∂λh
μλ + 2∂νhμν∂

μh

− ∂μh∂μh − 32πhμνT
μν + m2

g

(
hμνh

μν − 1

2
h2

) ]
,

(12.14) 

where the last term gives a unique graviton mass under certain conditions6 [26] 
while the others are just linearized expansions from the Einstein-Hilbert action with 
.hμν ≡ gμν −ημν and .h ≡ h

μ
μ. It was shown that extra gravitational wave radiation 

exists in theory (12.14), which results in a fractional change in the orbital decay 
rate, by Finn and Sutton [26] 

.
Ṗb − ṖGR

b

ṖGR
b

= 5

24

(
1 − e2

)3
1 + 73

24e
2 + 37

96e
4

(
Pb

2πh̄

)2

m2
g . (12.16) 

Here .ṖGR
b is the value predicted by the general relativity in Eq. (12.3). Notice that 

the fractional change is proportional to .∝ P 2
b m2

g. Therefore, if the precision of . Ṗb
is given, binary pulsars with larger orbits have a larger figure of merit for the test. 
However, usually, the precision of . Ṗb crucially depends on the orbital size, and it 
turns out that, still, binary pulsars with smaller orbits have a larger figure of merit. 

The most recent constraint in this Finn-Sutton framework was provided by 
a combination of multiple best-timed binary pulsars with a Bayesian statistical 
treatment. A collection of nine best-timed binary pulsars (PSRs J0348+0432, 
J0737. −3039, J1012+5307, B1534+12, J1713+0747, J1738+0333, J1909. −3744, 
B1913+16, and J2222. −0137) provide a tight bound on the graviton mass, 

.mg < 5.2 × 10−21 eV/c2, (90% C.L.) , (12.17) 

using a uniform prior in .lnmg [44]. This limit is not the strongest limit on the 
graviton mass [22]. However, from a theoretical point of view, it is a bound from 
binary orbital dynamics, complementary to, e.g. the kinematic dispersion-relation 

6 The conditions are that (i) the wave equation takes a standard form for the trace-reversed metric 
perturbation . ̄hμν

.

(
� − m2

g

)
h̄μν + 16πTμν = 0 , (12.15) 

and the theory recovers the general relativity in the limit when .mg → 0, namely, there is no van 
Dam-Veltman-Zakharov discontinuity [26].
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tests from the LIGO/Virgo/KAGRA observation of gravitational waves [5]. It is 
worth mentioning that the theory (12.14) has some drawbacks including ghosts and 
instability [22, 26], and here it is only used as a strawman target for illustration. 

•? Exercise 
12.6. Derive the lower limit for the Compton wavelength of gravitons from Eq. (12.17). 

It is interesting to note, that in different massive gravity theories, the dependence 
of the extra radiation on the graviton mass is in general different. It depends on 
the specifics of the illustrated gravity theory. This is due to the deep fundamental 
principles in the designs of a number of variants of massive gravity theories. For 
example, in a cosmologically motivated massive gravity theory, known as the cubic 
Galileon theory with the action [21], 

. S =
∫

d4x

[
−1

4
hμν(Eh)μν + hμνTμν

2MPl
− 3

4
(∂ϕ)2

(
1 + 1

3m2
gMPl

�ϕ

)
+ ϕT

2MPl

]
,

(12.18) 

the specific way of the addition of the scalar field . ϕ introduces the so-called 
screening mechanism, thus avoids the stringent constraints from the Solar System, 
yet provides important changes to the cosmological evolution. In the action (12.18), 
. ϕ is the Galileon scalar field, .Tμν is the matter energy-momentum tensor, .T ≡ T

μ
μ, 

.MPl is the Planck mass, and 

.(Eh)μν ≡ −1

2
�hμν + · · · (12.19) 

is the Lichnerowicz operator. For a central massive body with massM , the screening
radius is .r� = (

M/16m2
gM

2
Pl

)1/3, within which, the theory exhibits strong couplings 
and it reduces to the canonical gravity. 

•? Exercise 
12.7. By knowing that the Earth is within the screening radius of the Sun, derive the upper 

limit of graviton mass in the cubic Galileon theory. 

According to de Rham et al. [21], though with a screening mechanism to suppress 
modification at the high density region within . r�, this cubic Galileon theory predicts
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a different scaling behaviour for the gravitational radiation. For a system with a 
typical length scale L, the  fifth-force suppression factor is .∼ (

L/r�
)3/2, and the 

suppression factor for the gravitational radiation is .∼ (Pb/r�)
3/2. As for a binary 

system, one has .L ∼ vPb where v is a characteristic velocity. Therefore, the 
gravitational radiation is, compared with the fifth force, less suppressed by a factor 
of .v3/2, and it provides a valuable window to look for evidence of this theory via 
radiative channels, for example, in binary pulsar systems. 

Analytic radiative powers were worked out by de Rham et al. [21], and the extra 
radiative channels include monopolar radiation, dipolar radiation, and quadrupolar 
radiation. For binary pulsar systems with different orbital periods and orbital 
eccentricities, the dominate radiation channel can be different [55]. For the current 
set of binary pulsars, the quadrupole radiation is the dominating factor among the 
extra channels [21, 55]. 

The most up-to-date constraint from binary pulsars is 

.mg < 2 × 10−28 eV/c2, (95% C.L.) , (12.20) 

for the cubic Galileon theory, and the cumulative probability distributions of the
graviton mass are given in Fig. 12.3 for two different priors [55]. Such a tight 
constraint was obtained from the combination of fourteen best-timed binary pulsar 
systems, including PSRs J0348+0432, J0437. −4715, J0613. −0200, J0737. −3039, 
J1012+5307, J1022+1001, J1141. −6545, B1534+12, J1713+0747, J1738+0333, 
J1756. −2251, J1909. −3744, B1913+16, and J2222. −0137. One should keep in 
mind that, the limit (12.20) is theory specific, and in this situation, only applies 
to the cubic Galileon theory given in Eq. (12.18). Nonetheless, it provides an 
interesting example that for a gravity theory designed for cosmological purposes 
at corresponding lengthscales, binary pulsar systems with astronomical lengthscales 
still provide intriguing and useful bounds. It is an illustration of using binary pulsars 

Fig. 12.3 Cumulative 
probability for the graviton 
mass with two different priors 
in the cubic Galileon 
theory [55]. Shaded regions 
show the excluded graviton 
mass values at the 95% 
confidence level
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in the studies of cosmology by examining the modification to binary orbits brought 
by a cosmologically-motivated modified gravity. 

12.4 Strong Equivalence Principle and Dark Matters 

Binary pulsars are not only useful for the radiative tests introduced in the above 
sections, they also provide superb limiting power in the conservative aspects of 
gravitational dynamics for orbital evolutions. Below we introduce an example of 
examining the strong equivalence principle via the conservative dynamics of binary 
pulsars [18, 72], and its extension to test certain interesting properties of dark 
matters [54, 60]. 

As discovered by Damour and Schäfer [18], a perturbed binary orbit with an 
equivalence-principle-violating abnormal acceleration has a characteristic evolution 
in its orbital elements. The notable change is the appearance of a vectorized 
superposition of two eccentricity vectors for the real orbital eccentricity. It provides 
a graphical understanding of the underlying dynamics for a binary in presence 
of equivalence principle violations. The real orbital eccentricity vector, . e(t), is  
an addition of a rotating normal eccentricity vector, .eR(t), in its post-Newtonian 
fashion, and an extra abnormal eccentricity vector, . e�, which is time independent 
and whose length is proportional to the Eötvös parameter, . �, describing the 
violation of the equivalence principle. If .� = 0, the abnormal eccentricity vector 
.e� = 0 and it returns to the precessing case in the general relavitity. A graphical 
illustration is given in Fig. 12.4. As we discussed in Sect. 12.1, the pulsar timing 

Fig. 12.4 Graphical illustration of the time-varying orbital eccentricity vector, . e(t), for  a binary  
pulsar, in the presence of strong equivalence principle violation [18]. The orbital eccentricity vector 
evolves according to .e(t) = e� + eR(t), where .eR(t) is the usual precessing eccentricity vector in 
the general relativity, and the constant abnormal eccentricity is in the direction of . a⊥, which  is  the  
projection of the external Galactic acceleration in the orbital plane 
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technique is very sensitive to tiny changes in the orbit, and such a change can be 
captured in pulsar timing data [18]. 

At the beginning, such a scenario was applied to a few binary pulsars in a 
statistical sense by marginalizing over some unknown angles to obtain constraints 
on the violation of the equivalence principle [18]. Later it was implemented to 
a handful of binary pulsars with an improved statistical methodology to better 
account for the movements of binary pulsars in the Milky Way [63]. Then, with 
better data and more information about binary pulsar systems, a direct method was 
developed [27]. The direct method not only can constrain the equivalence principle 
violation, but in principle can detect it if it exists. 

The most stringent limit using binary pulsars comes from a precisely timed long-
orbital-period binary pulsar, PSR J1713+0747 [72], as larger orbits have higher 
figures of merit in such a test [18]. Using the improved direct method, the limit 
on the Eötvös parameter from PSR J1713+0747 is [72], 

.|�| < 2 × 10−3 , (95% C.L.) . (12.21) 

Though it is much less limiting than the earlier constraint obtained from the Solar
System [60, 65], the limit (12.21) encodes strong-field effects. For example, in the 
case of the aforementioned scalar-tensor gravity, the strong-field version of Eötvös 
parameter will be very different from its weak-field counterpart [27]. Therefore, 
such a limit from neutron stars is a standalone bound and applicable to the strong 
version of equivalence principle [51, 63]. 

The limit (12.21) is not only interesting to gravitational physics, it also has its 
value when we look at it from a different angle. As we now know, the binary pulsar 
is actually immersed in the ocean of dark matters in the Milky Way. As we have 
not really understood what the very nature of dark matter is, the above method for 
testing the equivalence principle provides a non-traditional probe to dark matter’s 
properties. Shao et al. [54] proposed a method where such a limit, with a proper 
handle, can be converted to the interaction properties between dark matters and 
ordinary matters. 

If there is a long-range fifth force between dark matter particles and ordinary 
matter fields, as many field theories will suggest [60], it is likely to introduce an 
apparent violation of the strong equivalence principle if we have not taken the fifth 
force into account in our standard assumptions. The role of the Galactic acceleration 
in Fig. 12.4, whose projection on the orbital plane is . a⊥, is replaced by the attraction 
of dark matters to the binary system. The difference in the acceleration to two binary 
components (a neutron star and a white dwarf in the case of PSR J1713+0747), 
described by . �, is replaced by a quantity related to the long-range fifth-force 
between dark matters and ordinary standard-model matters [54]. 

Detailed analysis of PSR J1713+0747 [54] took into consideration of the Galactic 
distribution of dark matters, and gave a very different bound in nature that could 
be obtained from terrestrial experiments [60]. The current observational data of 
PSR J1713+0747 already imply that, if there is such a long-range fifth force between 
dark matters and ordinary matters, its magnitude should be no more than 1% of



12 Radio Pulsars as a Laboratory for Strong-Field Gravity Tests 399

the gravitational force between them. Such a limit provides a useful complement 
to other types of dark-matter experiments, which are usually looking for short-
range forces between the hypothesized dark-matter particles and the standard-model 
particles [60], including the searches in underground laboratories, particle colliders, 
and X-ray/.γ -ray observations via high-energy satellites. 

12.5 Summary 

In this chapter, we present some basic concepts of using binary pulsars as fun-
damental clocks in a curved spacetime to probe various types of modifications 
to the binary orbits. These modifications could have been caused by a modified 
gravity theory or some other new physics like a long-range fifth force between 
dark matters and ordinary matters. As pulsar timing provides us with very accurate 
measurements, it puts constraints on tiny changes caused by an alternative gravity 
theory other than the general relativity. Moreover, neutron stars are intrinsically 
strong-gravity objects, and nonperturbative aspects of the strong-field gravity can 
also be studied via radio pulsar experiments. Actually, quite many strong-field limits 
are still best provided by pulsar timing experiments, even nowadays in presence 
of new types of observations like gravitational waves and black hole shadows. A 
careful study shows that the limits from pulsar timing are actually complementary 
to those from gravitational wave detections and black hole shadows [8, 53]. Proper 
combinations of these strong-gravity experiments could provide a more complete 
landscape to gravitation in the strong-field . 

Solely focusing on the radio pulsar side, the timing experiments can be carried 
out for decades, in particular for some interesting systems like the Hulse-Taylor 
pulsar PSR B1913+16 [61] and the Double Pulsar PSR J0737. −3039A/B [37]. 
Long-term observations improve the precision of PPK parameters with the obser-
vational time span . Tobs. For examples, the precision in the orbital decay parameter, 
. Ṗb, improves very fast, as .T −5/2

obs , and the precision in the periastron advance 

rate, . ω̇, improves as .T −3/2
obs . Furthermore, the sensitivity of radio telescopes is also 

improving, notably with the Five-hundred-meter Aperture Spherical Telescope in 
China [33, 40] and the Square Kilometre Array in South Africa and Australia [52, 
62]. The former has already been operating for a couple of years, while the latter 
has also entered the construction phase recently. The improvement in the sensitivity 
of radio telescopes directly converts to improvements in the timing precision. 
Therefore, the real improvement for PPK parameters is faster than the theoretical 
power law predictions. Last but not the least, radio telescopes are also continuously 
discovering new pulsar systems, and some of these systems with suitable system 
properties will contribute to strong-field gravity tests. We are even looking forward 
to discovering yet-undetected binary pulsar systems like neutron-star black-hole 
binaries with short orbital periods .Pb � 1 day or pulsars around the Sgr A. ∗ black 
hole with orbital periods .Pb � 10 years [11, 12, 38], which will provide completely 
new gravity tests in the strong-field regimes [36].
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Abstract 

The Standard Model of elementary particles and their interactions does not 
include the gravitational interaction and faces problems in understanding dark 
matter, dark energy, strong CP violation etc. To solve these problems, many 
predictions of new light elementary particles and hypothetical interactions have 
been made. These predictions can be constrained by many means including 
measuring the Casimir force caused by the zero-point and thermal fluctuations. 
After discussing the theory of the Casimir effect, the strongest constraints on the 
power-type and Yukawa-type corrections to Newtonian gravity, following from 
measuring the Casimir force are considered. Next, the problems of dark matter, 
dark energy and their probable constituents are discussed. This is followed by an 
analysis of constraints on the dark matter particles, including axions and axion-
like particles, obtained from the Casimir effect. The question of whether the 
Casimir effect can be used for constraining the spin-dependent interactions is 
considered. Then the constraints on the dark energy particles, like chameleons 
and symmetrons, are examined. In all cases we discuss not only measurements 
of the Casimir force but some other relevant table-top experiments as well. 
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In conclusion, the prospects of the Casimir effect for constraining theoretical 
predictions beyond the Standard Model are summarized. 

13.1 Introduction: Gravity, the Standard Model and Beyond 

The gravitational force is familiar to everybody from the day-to-day experience. If 
some body is released, it falls to earth under the influence of gravitational attraction. 
The laws of free fall were experimentally discovered by Galileo Galilei who found 
that in a vacuum the bodies of different weight fall with a uniform acceleration and 
reach the earth concurrently. This great (and somewhat counterintuitive) result was 
later derived theoretically by Newton from his second law and law of gravity under 
a fundamental assumption that the inertial and gravitational masses are equal (the 
equivalence principle). 

It is common knowledge that according to Newton’s law of gravity two point 
masses . m1 and . m2 separated by a distance r attract each other with the force 

.Fgr(r) = −dVgr(r)

dr
= −G

m1m2

r2 , (13.1) 

where G is the gravitational constant and .Vgr is the gravitational interaction energy 

.Vgr(r) = −G
m1m2

r
. (13.2) 

Einstein’s general relativity theory [1] changed seriously the conceptual pat-
tern of gravity. According to this theory, gravity is a curved space-time whose 
geometrical properties are determined not only by the masses of material bodies 
but by all components of their stress-energy tensor. It is important, however, that 
corrections to (13.1) and (13.2) predicted by the general relativity theory for mass 
and separation scales characteristic of a physical laboratory are negligibly small [2]. 
The gravitational force ensures the stability of planets, solar system, galaxies, and 
determines the structure and evolution of the whole Universe. 

Another force which manifests itself in day-to-day life is the electromagnetic 
one. The classical theory of this force was created by Maxwell and is known as 
classical electrodynamics [3]. Unlike the gravitational force which is universal and 
acts between all material bodies, the electromagnetic force acts only between bodies 
possessing electric charges. The Maxwell theory describes only the classical aspects 
of electromagnetic interaction, whereas the full picture is given by quantum elec-
trodynamics [4] created in the middle of the last century by Feynman, Schwinger, 
Tonomaga, and Dyson. Electromagnetic forces bind nuclei and electrons into atoms, 
create chemical bonds which make possible the existence of molecules. They are 
responsible for the structure of crystal lattices and are heavily used in electronics 
and all modern technologies.
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Two other types of fundamental forces existing in nature, weak and strong 
interaction, are entirely quantum. They are not visible to the naked eye. The weak 
interaction is responsible for a decay of many elementary particles whereas the 
strong interaction binds protons and neutrons into atomic nuclei. In the middle of 
sixties of the last century, Weinberg, Salam and Glashow developed the unified the-
ory of weak and electromagnetic interactions [5]. For electromagnetic interaction, 
the intermediate particles between electrically charged particles (the so-called force 
carriers) are the massless photons. Photons are the specific case of gauge bosons, 
i.e., particles of spin one which mediate different interactions. The force carriers for 
a weak interaction between particles are the three massive bosons, two of which, 
.W+ and .W−, are electrically charged and one, . Z0, is neutral. 

By the middle of seventies, owing to works by Nambu, Gross, Wilczek, Politzer 
and other scientists, the theory of strong interactions had been elaborated. According 
to this theory, strongly interacting particles, e.g., protons and neutrons, consist of 
quarks possessing spin 1/2 and the new type of charge called color. Unlike the 
electric charge, which may be either positive or negative, the color charge has 
three different values (and respective anticolors). The force carriers for a strong 
interaction between quarks are eight massless gauge bosons called gluons which 
bear the color charges. Due to this the theory of strong interactions was called 
quantum chromodynamics [6]. 

The Standard Model is a unified theory of the three fundamental interactions— 
electromagnetic, weak, and strong [7]. According to the Standard Model, there 
are three pairs (generations) of quarks possessing the color charge and three pairs 
of spin 1/2 particles called leptons (the most familiar of them are electrons and 
respective electronic neutrinos). There are also as many antiquarks and antileptons 
as quarks and leptons. Next, the Standard Model includes the force carriers of 
electromagnetic, weak and strong interactions, i.e., photons, three massive bosons, 
.W+,W−, Z0, and eight gluons. Finally, an important element of the Standard 
Model is the heavy particle of zero spin called the Higgs boson predicted by 
Higgs in 1964, which is responsible for a generation of masses of other elementary 
particles. By now all the above elements of the Standard Model were observed in the 
accelerator experiments and many other theoretical predictions made on this basis 
found their experimental confirmation. 

Great successes of the Standard Model in particle physics do not mean, however, 
that we already have the theory of everything. The major problem is that the 
general relativity theory remains to be isolated from the Standard Model, and 
the gravitational force avoids unification with other three fundamental interactions 
in spite of persistent efforts undertaken during several decades. Both Newtonian 
gravity and Einstein’s general relativity are the entirely classical theories. However, 
for a description of physical phenomena happening in the close proximity of space-
time singularities predicted by the general relativity theory, one evidently needs 
some theory which takes into account the quantum effects. There are also unresolved 
problems of dark matter and dark energy which are observed only indirectly through 
their gravitational interactions but are not explained in the context of the Standard 
Model. It should be mentioned also that at short distances below a micrometer
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the Newton law (13.1) lacks of experimental confirmation and leaves a room for 
modifications at the cost of different quantum effects. 

There are also other serious problems of the Standard Model. Among them 
one should mention the hierarchy problem, i.e., an unanswered question of why 
there is a difference by the factor of .1024 between the strength of weak and 
gravitational interactions, the problem of neutrino mass, which was zero in the 
original formulation of the model but turns out to be nonzero according to precise 
measurements, and the problem of an asymmetry between matter and antimatter. An 
important problem is also the strong CP violation (i.e., the violation of invariance 
relative to the charge conjugation accompanied by the parity transformation) which 
is admitted by the formalism of quantum chromodynamics but is not observed in 
experiments involving only the strong interaction. 

All these problems are widely discussed in the literature, and many theoret-
ical approaches to their resolution are proposed in the framework of extended 
standard model, supersymmetry, supergravity [8], and string theory [9] (see also 
the discussions in Part I of this book) The mentioned approaches go beyond the 
Standard Model and introduce additional particles, interactions, and symmetries 
leading to some theoretical predictions which can be verified experimentally using 
the powerful high energy accelerators, astrophysical observations, and laboratory 
experiments. 

Below we consider some of these predictions which can be verified in 
experiments on measuring the Casimir force arising between two closely spaced 
uncharged material bodies due to the zero-point and thermal fluctuations of the 
electromagnetic field. As it is shown below, these relatively cheap and compact 
laboratory experiments can compete with huge accelerators in testing some 
important theoretical predictions beyond the Standard Model. 

13.2 Electromagnetic Casimir Force and the Quantum Vacuum 

In 1948, Casimir [10] considered two parallel, uncharged ideal metal planes in 
vacuum at zero temperature spaced at a distance a and calculated the zero-point 
energy of the electromagnetic field in the presence and in the absence of these 
planes, i.e., in free space. The case with the planes differs in that the tangential 
component of electric field and the normal component of magnetic induction vanish 
on their surfaces. Casimir considered a difference between the zero-point energies 
per unit area in the presence and in the absence of planes 

.E(a) = h̄

∫ ∞

0

k⊥dk⊥
2π

( ∞∑
l=0

′
ωk⊥,l − a

π

∫ ∞

0
dkzωk

)
, (13.3) 

where .k = (kx, ky, kz) is the wave vector, .k⊥ =
√

k2
x + k2

y is the magnitude of the 

wave vector projection on the planes, the prime on the summation sign divides the
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term with .l = 0 by 2, and the frequencies of the zero-point oscillations are given by 
the following expressions: 

.ωk⊥,l = c

√
k2⊥ +

(
πl

a

)2

, ωk = c

√
k2⊥ + k2

z . (13.4) 

•? Exercise 
13.1. Verify the expression for .ωk⊥,l in Eq. 13.4. Consult [11] for details. 

Although both terms on the right-hand side of (13.3) are infinitely large, their 
difference is finite. Using the Abel-Plana formula for a difference between the sum 
and the integral [12], one obtains 

.E(a) = −π2h̄c

a3

∫ ∞

0
ydy

∫ ∞

y

√
t2 − y2

e2πt − 1
dt. (13.5) 

Then, calculating the integrals in (13.5), one arrives at the famous Casimir result 

.E(a) = − π2

720

h̄c

a3 (13.6) 

and at respective expression for the Casimir force per unit area of the plates

.P(a) = −dE(a)

da
= − π2

240

h̄c

a4
, (13.7) 

i.e., the Casimir pressure. This pressure is some kind of a macroscopic quantum
effect determined entirely by the zero-point oscillations of quantized electromag-
netic field. Thus, for two ideal metal planes separated by a distance .a = 1μm we  
obtain from (13.7) an attractive pressure .P(a) = −1.3 mPa. 

In a physical laboratory we deal not with ideal metals but with real material 
bodies made of metallic, dielectric or semiconductor materials. In 1955, Lifshitz 
[13] created the general theory describing the free energy and force arising 
between two thick material plates (semispaces) spaced at a separation a in thermal 
equilibrium with the environment at temperature T . The material properties in 
this theory were characterized by the dielectric permittivities .ε(n)(ω) of the first 
and second plates (.n = 1, 2). Later the Lifshitz results were generalized for the 
plates possessing magnetic properties characterized by the magnetic permeabilities 
.μ(n)(ω) [14].
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In the framework of the Lifshitz theory, the free energy of interaction caused by 
the zero-point and thermal fluctuations of the electromagnetic field per unit area of 
the plates is given by Lifshitz [13] and Bordag et al. [11] 

. F(a, T ) = kBT

2π

∞∑
l=0

′ ∫ ∞

0
k⊥dk⊥

∑
α

ln
[
1 − r(1)

α (iξl, k⊥)r(2)
α (iξl, k⊥)e−2aql

]
,

(13.8) 

where . kB is the Boltzmann constant, .ξl = 2πkBT l/h̄ are the Matsubara frequencies, 

.ql =
√

k2⊥ + ξ2
l /c2, and the reflection coefficients for two independent polarizations 

of the electromagnetic field, transverse magnetic (.α = TM) and transverse electric 
(.α = TE), are given by 

. r
(n)
TM(iξl, k⊥) = ε(n)(iξl)ql − k(n)(iξl, k⊥)

ε(n)(iξl)ql + k(n)(iξl, k⊥)
,

r
(n)
TE (iξl, k⊥) = μ(n)(iξl)ql − k(n)(iξl, k⊥)

μ(n)(iξl)ql + k(n)(iξl, k⊥)
, (13.9) 

where

.k(n)(iξl, k⊥) =
√

k2⊥ + ε(n)(iξl)μ(n)(iξl)
ξ2
l

c2 . (13.10) 

In a similar way, the Casimir force per unit area of real material plates is 
expressed as 

. P(a, T ) = −∂F(a, T )

∂a
= −kBT

π

∞∑
l=0

′ ∫ ∞

0
qlk⊥dk⊥

×
∑
α

[
e2aql

r
(1)
α (iξl, k⊥)r

(2)
α (iξl, k⊥)

− 1

]−1

. (13.11) 

Taking into account that ideal metal is the perfect reflector, so that 

.r
(n)
TM(iξl, k⊥) = −r

(n)
TE (iξl, k⊥) = 1 (13.12) 

at all . ξl , at .T = 0 one obtains from (13.8) and (13.11) the Casimir results (13.6) 
and (13.7). In the limiting case of small separations, (13.8) and (13.11) describe the 
familiar van der Waals force which depends on . ̄h but does not depend on the speed 
of light c. In the opposite limiting case of large separations, the resulting free energy 
and force do not depend either on . ̄h or c. This is the so-called classical regime where 
the Casimir interaction depends only on T .
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Precise measurements of the Casimir force allowing quantitative comparison 
between experiment and theory were performed by means of an atomic force 
microscope, whose sharp tip was replaced with a relatively large sphere, and a 
micromechanical torsional oscillator (see [11, 15] for a review). All these experi-
ments measured the Casimir force not between two parallel plates but between a 
sphere and a plate. The Casimir force between a sphere of radius R and a plate 
.FSP (a, T ) can be calculated in the framework of the Lifshitz theory using the 
proximity force approximation [11, 15] 

.FSP (a, T ) = 2πRF(a, T ), (13.13) 

where the Casimir free energy between two parallel plates . F is given by the Lifshitz 
formula (13.8). Exact calculations of the Casimir force in sphere-plate geometry 
using the scattering approach [16–19] and the gradient expansion [20–24] have  
shown that the errors introduced by (13.13) are less than .a/R, i.e., less than a 
fraction of a percent in the most of experimental configurations. 

By calculating the derivative of (13.13) with respect to separation, one can 
express another quantity measured in many experiments, i.e., the gradient of the 
Casimir force in sphere-plate geometry via the Casimir force (13.11) per unit area 
of two parallel plates 

.
∂

∂a
FSP (a, T ) = −2πRP(a, T ). (13.14) 

For comparison of theoretical predictions with the measurement data of precise 
experiments, one should compute the Casimir free energy (13.8) and the Casimir 
pressure (13.11) with sufficient precision. To do so, one needs to have the values 
of dielectric permittivities of plate materials at sufficiently large number of pure 
imaginary Matsubara frequencies. This is usually achieved by means of the 
Kramers-Kronig relation using the measured optical data for the complex indices 
of refraction of plate materials. In doing so the terms of the Lifshitz formulas (13.8) 
and (13.11) with .l = 0 play an important role in obtaining the physically correct 
results. 

Unfortunately, the optical data are available at only sufficiently high frequencies 
.ω � ωmin. Because of this, the obtained dielectric permittivity is usually extrapo-
lated down to zero frequency using some theoretical model. For experiments with 
metallic test bodies, which are used below for testing the predictions beyond the 
Standard Model, the most reasonable extrapolation seems to be by means of the 
well tested Drude model. In this case, the dielectric permittivities of plate materials 
take the form 

.ε
(n)
D (iξl) = ε(n)

c (iξl) + ω2
p,n

ξl(ξl + γn)
, (13.15)
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where .ε
(n)
c (iξl) is a contribution due to core electrons determined by the optical data, 

.ωp,n is the plasma frequency and . γn is the relaxation parameter. 
It turned out, however, that the measurement data of all precise experiments with 

nonmagnetic (Au) metals [25–33] and magnetic (Ni) metals [34–37] exclude the 
theoretical predictions of the Lifshitz theory using the dielectric functions (13.15). 
Specifically, for two test bodies made of Ni a disagreement between experiment and 
theory in measurements of the differential Casimir force is up to a factor of 1000 
[37]. If, however, one makes an extrapolation by means of the plasma model, i.e., 
puts .γn = 0 in (13.15), 

.ε(n)
p (iξl) = ε(n)

c (iξl) + ω2
p,n

ξ2
l

, (13.16) 

the predictions of the Lifshitz theory come to a very good agreement with the
measurement data of all precise experiments [25–37]. 

This situations calls for some clarification because at low frequencies conduction 
electrons really possess relaxation properties described by the phenomenological 
parameter . γn. It is then unclear why one should put .γn = 0 in computations of 
the Casimir force. Although the ultimate answer to this question is not found yet, 
theory suggests some plausible explanation. First of all, it was proven [38–41] that 
for metals with perfect crystal lattices the Casimir entropy calculated using the 
dielectric permittivity (13.15) violates the third law of thermodynamics, the Nernst 
heat theorem, but satisfies it if the permittivity (13.16) is used. 

Next, for graphene, which is a novel 2D material [42], the dielectric permittivity 
is not of a model character. At low energies characteristic for the Casimir effect, the 
dielectric properties of graphene can be calculated on the basis of first principles 
of quantum electrodynamics at nonzero temperature using the polarization tensor in 
(2+1)-dimensional space-time [43, 44]. It was found that graphene is described by 
two spatially nonlocal dielectric permittivities, i.e., depending on both the frequency 
. ω and the 2D wave vector . k [45, 46]. The Lifshitz theory using these permittivities 
turned out to be in perfect agreement with measurements of the Casimir force from 
graphene [47–50] and with the Nernst heat theorem [51–55]. 

This suggests that the model dielectric permittivity (13.15), which is well-
checked for the propagating electromagnetic waves on the mass shell in vacuum, 
may be inapplicable to the evanescent (off-the-mass-shell) waves. The latter con-
tribute essentially to the Casimir free energy and force (13.8) and (13.11) caused 
by the electromagnetic fluctuations. First steps on the road to justification of 
this conjecture were made by the recently proposed spatially nonlocal dielectric 
permittivities which describe nearly the same response, as does the Drude model, to 
the propagating waves but an alternative response to the evanescent ones [56, 57]. 
The Lifshitz theory employing these permittivities is in as good agreement with 
measurements of the Casimir force between nonmagnetic metals and with the 
Nernst heat theorem as when it uses the plasma model (13.16) [56–58]. Recently
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it was also shown that it agrees equally well with measurements of the Casimir 
force between magnetic metals [57, 59]. 

By and large one can conclude that although there is a continuing discussion 
in the literature on theoretical description of the Casimir interaction between real 
material bodies (see [60] for a review), the predictions of the Lifshitz theory are 
now found in good agreement with the measurement data of all precise experiments 
and the measure of this agreement can be used for constraining the hypothetical 
forces of nonelectromagnetic origin. 

13.3 Testing the Power-Type Corrections to Newtonian Gravity 
from the Casimir Effect 

From the point of view of quantum field theory, the gravitational interaction energy 
(13.2) can be considered as originating from an exchange of one massless particle 
between two massive particles .m1 and . m2. Exactly in this way the Coulomb 
potential is derived in quantum electrodynamics by considering an exchange of one 
photon between two charged particles. 

The Standard Model does not contain massless particles in a free state except 
of photons (gluons are confined inside of barions). There are, however, massless 
particles predicted by some extensions of the Standard Model. For instance, theory 
of electroweak interactions with an extended Higgs sector predicts pseudoscalar 
massless particles called arions [61]. An exchange of one arion between electrons 
belonging to atoms of two neighboring test bodies leads to the spin-dependent 
effective potential which averages to zero when integrating over their volumes. The 
spin-independent effective potential decreasing with separation as .r−3 arises from 
the process of two-arions exchange [62]. 

In a similar way, the effective potential decreasing with separation as .r−5 arises 
from an exchange of neutrino-antineutrino pair between two neutrons [63, 64]. The 
power-type potentials result also from an exchange of even numbers of goldstinos 
which are the massless fermions introduced in the theoretical schemes with a 
spontaneously broken supersymmetry [65] and other predicted particles. 

Taking into account that the power-type interactions with different powers 
coexist with the gravitational potential, the resulting interaction energy is usually 
represented as 

.Vl(r) = −Gm1m2

r

[
1 + Λl

( r0

r

)l−1
]

, (13.17) 

where . Λl is the dimensionless interaction constant, .l = 1, 2, 3, . . ., and . r0 with 
the dimension of length is introduced to preserve the dimension of energy for .Vl(r). 
Following many authors, we put .r0 = 1 F = 10−15 m. For .l = 1, the quantity 
.1+Λ1 has the meaning of a factor connecting the values of inertial and gravitational 
masses, for .l = 3 the second term in (13.17) presents a correction to the Newtonian
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potential due to an exchange of two arions, and for .l = 5—due to an exchange of 
neutrino-antineutrino pair. 

The power-type corrections to Newton’s law arise not only due to an exchange 
of massless hypothetical particles but in extensions of the Standard Model which 
exploit the extra-dimensional unification schemes with noncompact but warped 
extra dimensions. In this case, the modified gravitational interaction energy at 
separations .r � Kw takes the form [66, 67] 

.V3(r) = −Gm1m2

r

(
1 + 2

3K2
wr2

)
, (13.18) 

where .Kw is the warping scale. This is the potential of the form of (13.17) with 
.Λ3 = 2/(3K2

wr2
0 ). 

Constraints on the values of interaction constant .Λl with different l can be 
obtained from the gravitational experiments of Eötvos and Cavendish type. In the 
Eötvos-type experiments one verifies a validity of the equivalence principle, i.e., 
places limits on possible deviations between the inertial and gravitational masses. 
Using (13.17), these limits can be recalculated in the constraints on . Λ1. Thus, 
from the most precise short-range Eötvos-type experiments [68, 69] the constraint 
.|Λ1| � 1 × 10−9 was obtained. 

In the Cavendish-type experiments, one measures probable deviations of the 
force acting between two bodies from the Newton law (13.1). From the power-type 
interaction energy (13.17) one finds the respective force 

.Fl(r) = −dVl(r)

dr
= −Gm1m2

r2

[
1 + lΛl

( r0

r

)l−1
]

. (13.19) 

Then the constraints on .Λl can be found from the measured limits on the 
dimensionless quantity 

.εl = 1

rFl(r)

d

dr

[
r2Fl(r)

]
, (13.20) 

which is equal to zero if .Λl = 0, i.e., no power-type interaction in addition to 
gravity is present. Using this approach, from the Cavendish-type experiment [70] the  
following constraints on . Λl were obtained [71]: .|Λ2| � 4.5×108, .|Λ3| � 1.3×1020, 
.|Λ4| � 4.9 × 1031, .|Λ5| � 1.5 × 1043. 

In [62, 72] it was suggested to obtain constraints on the power-type interactions 
from measurements of the Casimir force. The Casimir force .FLP (a) between 
a spherical lens of centimeter-size radius and a plate both made of quartz was 
measured at distances . a � 1μm in [73] with a relative error .
F/FLP ≈ 10%, 
where .
F is the absolute error. In the limits of this error, the measurement data 
were found to be in agreement with theoretical predictions of the Lifshitz theory. 

Any hypothetical interaction energy of power type between an atom of the lens 
at a point . r1 and an atom of the plate at a point . r2 is given by (13.17) where .r =
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|r1 − r2|. Then, the total interaction force between the experimental test bodies (the 
lens and the plate) is given by the integration over their volumes . V1 and . V2 with 
subsequent negative differentiation with respect to the distance a of their closest 
approach 

.FLP
l (a) = −n1n2

∂

∂a

∫
V1

d3r1

∫
V2

d3r2Vl(|r1 − r2|), (13.21) 

where . n1 and . n2 are the numbers of atoms per unit volume of the first and second 
test bodies. In doing so, one can neglect by the Newtonian contribution on the right-
hand side of (13.21) because it is negligibly small as compared to the experimental 
error in the micrometer separation range. 

Taking into account that no additional interaction was observed within the limits 
of measurement errors, the constraints on . Λl with .l = 1, 2, 3, 4, and 5 were obtained 
from the inequality [62, 72] 

.|FLP
l (a)| � 
F(a). (13.22) 

Among these constraints, that ones on .Λ2 and .Λ3 turned out to be stronger as 
compared with constraints found from older Cavendish-type experiments available 
in 1987 [74]. 

It would be interesting to estimate potentialities of modern measurements of 
the Casimir force for constraining the power-type interactions. For this purpose 
we consider the most recent experiment [33] on measuring the Casimir force 
between an Au-coted sphere of .R = 149.7μm radius and an Au-coated plate in 
the micrometer separation range. The sphere is spaced at a height a above the plate. 
To estimate the strongest constraints that could be obtained from the experiments of 
this kind, we consider both the sphere and the plate as all-gold (in real experiment 
the sapphire sphere and silicon plate were coated with Au films of 250 and 150 nm 
thicknesses, respectively). The plate can be considered as infinitely large because its 
size was much larger then the sphere radius. 

Let the plate top be in the plane .z = 0 and an atom of the sphere has the 
coordinates .r1 = (0, 0, z). For all powers .l � 3 in (13.17) the plate can be 
considered as infinitely thick. The atom-plate force arising due to the second 
contribution on the right-hand side of (13.17) is given by 

. FAP
l (a) = Gm1m2n2Λlr

l−1
0

∂

∂z

∫
V2

d3r2
1

|r1 − r2|l−1

= − 2π

l − 2
Gρ2m1Λlr

l−1
0

1

zl−2
, (13.23) 

where .ρ2 = m2n2 is the mass density of the plate material (Au).
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•? Exercise 
13.2. Derive (13.23) by performing integration in the cylindrical coordinate system.

Now we integrate (13.23) over the volume of a sphere. The density of atoms at a 
height .z � a in thin horizontal layer of the sphere is given by 

.πn1

[
2R(z − a) − (z − a)2

]
. (13.24) 

Then, the sphere-plate force is found by integrating (13.23) with the weight 
(13.24) 

.FSP
l (a) = − 2π2

l − 2
Gρ1ρ2Λlr

l−1
0

∫ 2R+a

a

2R(z − a) − (z − a)2

zl−2 dz, (13.25) 

where .ρ1 = m1n1 is the mass density of the sphere material (in our case also Au). 
Introducing the new integration variable .t = z−a, we rewrite (13.25) in the form 

.FSP
l (a) = − 2π2

l − 2
Gρ1ρ2Λlr

l−1
0

∫ 2R

0

2Rt − t2

(a + t)l−2 dt. (13.26) 

Finally, calculating the integral in (13.26), one arrives at 

.FSP
l (a) = − 2π2

l − 2
GΛlρ1ρ2

rl−1
0 R3

al−2 2F1(l − 2, 2; 3;−2Ra−1), (13.27) 

where .2F1(a, b; c; z) is the hypergeometric function. 
Substituting (13.27) in place of .FLP

l in (13.22), one finds the strongest con-
straints on . Λl obtainable from the experiment [33] if it would be performed with the 
all-gold test bodies. The numerical analysis shows that the most strong constraints 
follow at .a = 3μm where .
F(a) = 2.2 fN [33]. The obtained constraints are: 
.|Λ3| � 1.3 × 1023, .|Λ4| � 1.8 × 1034, and .|Λ5| � 5.6 × 1044. It is seen that these 
constraints are weaker than those mentioned above following from the Cavendish-
type experiment [70, 71]. 

The case of .l = 2 should be considered separately. In this case, it is necessary to 
take into account the finite thickness of the plate .D = 50μm because for .l = 2 an 
integral over the plate of infinitely large thickness (i.e., over the semispace) diverges.
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Table 13.1 The strongest 
constraints on the constants 
of power-type hypothetical 
interaction following from the 
Eötvos-type (line 1) and 
Cavendish-type (lines 2–5) 
experiments 

l .|Λl |max . |Λl |max

1 .1 × 10−9 [68] .1 × 10−9 [68] 

2 .4.5 × 108 [71] .3.7 × 108 [75] 

3 .1.3 × 1020 [71] .7.5 × 1019 [75] 

4 .4.9 × 1031 [71] .2.2 × 1031 [75] 

5 .1.5 × 1043 [71] .6.7 × 1042 [75] 

By performing calculations in the same way as above, one obtains 

. FSP
2 (a) = −2π2

3
ρ1ρ2GΛ2r0

[
2RD(2a + 2R + D) + (a + 3R)a2 ln

a + 2R

a

−(a + D)2(a + 3R + D) ln
a + 2R + D

a + D
+ 4R3 ln

a + 2R + D

a + 2R

]
.

(13.28) 

Substituting (13.28) in (13.22) in place of .FLP
l and using .
F(a) = 2.2 fN, one 

finds .|Λ2| � 2.85 × 1012. This is again a much weaker constraint than that obtained 
in [71] based on the Cavendish-type experiment [70]. One can conclude that the 
short-separation Cavendish-type experiments are more prospective for constraining 
the power-type hypothetical interactions than measurements of the Casimir force. 

This conclusion finds further confirmation from the recently performed 
Cavendish-type experiment which presents an improved test of Newton’s 
gravitational law at short separations [75]. The constraints on . Λl with . l = 2, 3, 4,  
and 5 obtained in this work are somewhat stronger than those cited above [70, 71]. 
In Table 13.1 (line 1) we present the strongest constraint on .Λ1 following from 
the Eötvos-type experiment [68]. In columns 2 and 3 (lines 2–5), the strongest 
constraints .Λl with .l = 2, 3, 4, and 5 following from the Cavendish-type 
experiments [71] and [75], respectively, are presented. As is seen in Table 13.1, 
the strength of constraints quickly drops with increase of the interaction power. 

13.4 Testing the Yukawa-Type Corrections to Newtonian 
Gravity from the Casimir Effect 

The interaction energy of Yukawa type between two pointlike particles (atoms or 
molecules) separated by a distance r arises due to an exchange of one light scalar 
particle. The Standard Model considered in Sect. 13.1 contains only one scalar 
particle, the Higgs boson, which is very heavy and cannot serve as an exchange 
boson in long-range interactions. The extensions of the Standard Model predict, 
however, a number of light scalar particles such as moduli [76], which arise in 
supersymmetric theories, dilaton [77], which appears in extra-dimensional models 
with the varying volume of compactified dimensions, scalar axion [78], which is
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a superpartner of an axion, etc. (see Sect. 13.5 and also the discussions on scalar-
teleparallel and scalar-tensor theories in Chaps. 4, 7 and 10). 

Similar to the power-type interactions, the interaction of Yukawa type between 
two particles of masses . m1 and . m2 coexists with gravity and is usually parametrized 
as 

.VYu(r) = −Gm1m2

r

(
1 + αe−r/λ

)
, (13.29) 

where . α is the dimensionless interaction constant and . λ is the interaction range 
having the meaning of the Compton wavelength of exchange scalar particle of mass 
. ms : .λ = h̄/(msc). 

Another prediction of the Yukawa-type correction to Newton’s gravitational law 
comes from the extra-dimensional models with compact extra dimensions and low-
energy compactification scale [79, 80]. In the framework of this approach beyond 
the Standard Model, the space-time has .D = 4 + N dimensions where N extra 
dimensions are compactified at relatively low Planck energy scale in D dimensions 

.E
(D)
Pl =

(
h̄1+Nc5+N

GD

) 1
2+N

∼ 1 TeV. (13.30) 

Here, .GD is the gravitational constant in the extended D-dimensional space-time 
.GD = GN and .N ∼ RN∗ , . R∗ being the size of compact manifold. 

In fact the approach under consideration was suggested as a possible solution 
of hierarchy problem discussed in Sect. 13.1 since due to (13.30) the characteristic 
energy scales of the gravitational and gauge interactions of the Standard Model 
coincide. In doing so the size of compact manifold is given by Arkani-Hamed et al. 
[80] 

.R∗ ∼ h̄c

E
(D)
Pl

[
EPl

E
(D)
Pl

] 2
N

∼ 10
32−17N

N , (13.31) 

where the usual Planck energy .EPl = (h̄c5/G)1/2 ∼ 1019 GeV. 
According to the developed approach, the standard Newton law (13.1) and (13.2) 

is not valid in D-dimensional space-time. It was shown [81, 82] that at separations 
.r � R∗ the gravitational interaction energy takes the form (13.29) with .λ ∼ R∗. 
Although for one extra dimension (. N = 1) Eq. (13.31) leads to too large . R∗ ∼
1015 cm, which is excluded by the tests of Newton’s law in the solar system [83], for 
.N = 2 and 3 (13.31) leads to the more realistic results .R∗ ∼ 1 mm and .R∗ ∼ 5 nm, 
respectively. This means that a search for deviations from the Newton law at short 
distances is not only a quest for hypothetical particles, but for extra dimensions as 
well.
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Constraints on the parameters of Yukawa-type interaction . α and . λ can be 
obtained from the Cavendish-type experiments. The potential energy (13.29) results 
in the force acting between two particles . m1 and . m2

.FYu(r) = −dVYu(r)

dr
= −Gm1m2

r2

[
1 + αe−r/λ

(
1 + r

λ

)]
. (13.32) 

Then the quantity

.εYu = 1

rFYu(r)

d

dr

[
r2FYu(r)

]
(13.33) 

is not equal to zero due to a nonzero strength of the Yukawa force . α. The  
deviation of this quantity from zero (if any) could be determined from the results 
of Cavendish-type experiments. Depending on the range of . λ, different Cavendish-
type experiments lead to the strongest constraints on . α. For .8μm < λ < 9μm 
the most strong constraints follow from the short-range test of Newtonian gravity 
at 20 micrometers [84]. The Cavendish-type experiment [70], already discussed in 
Sect. 13.3 in the context of power-type interactions, leads to the strongest constraints 
on . α within the wide interaction range .9μm < λ < 4 mm [71]. It should be noted, 
however, that in the part of this interval .40μm < λ < 0.35 mm the obtained results 
have been strengthened by up to a factor of 3 in the refined experiment [75] which 
was also mentioned in Sect. 13.3. Finally, an older Cavendish-type experiment [85] 
performed at larger separations allows obtaining the strongest constraints on . α in 
the range .4 mm < λ < 1 cm. In the range of even larger . λ, unrelated to the Casimir 
force, the strongest constraints on . α follow from the Eötvos-type experiments 
[69, 86]. 

In Fig. 13.1, we present the constraints on . α obtained from different gravitational 
experiments by the line labeled gr. Only the range of . λ below .66μm is included 
neighboring to the region considered below where the strongest constraints on . α
follow from experiments performed in the Casimir regime. The values of parameters 
of the Yukawa-type interaction belonging to the area of .(λ, α) plane above the 
line are excluded by the results of Cavendish-type experiments mentioned above, 
whereas the area of the same plane below the line is allowed. At .λ = 8μm the line 
gr intersects with the end of the line Casimir-less which is discussed below in this 
section. 

As is seen in Fig. 13.1, the strength of constraints obtained from gravitational 
experiments quickly drops with decreasing . λ. As an example, for .r = λ = 10μm 
the Cavendish-type experiments do not exclude an existence of the Yukawa-type 
force between two particles which exceeds the Newtonian gravitational force by the 
factor of . 104. This means that the Newtonian law of gravitation lacks of sufficient 
experimental confirmation at short separations which prevents obtaining strong 
constraints on some other forces from gravitational experiments. 

In fact at separations of the order of micrometer and less the main background 
force between two material bodies far exceeding the gravitational interaction is the
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Fig. 13.1 Constraints on the interaction constant . α of Yukawa-type interaction are shown as 
functions of the interaction range . λ by the lines labeled gr and Casimir-less obtained from the 
gravitational and Casimir-less experiments, respectively. The regions of .(λ, α) plane above each 
line are excluded and below are allowed 

Casimir force considered in Sect. 13.2. In [87] it was suggested to constrain the 
hypothetical Yukawa-type interaction from experiments on measuring the van der 
Waals and Casimir forces. 

Similar to the case of power-type interactions, the Yukawa-type force acting 
between two test bodies spaced at a closest separation a can be obtained by an 
integration of the interaction energy (13.29) over their volumes with subsequent 
negative differentiation with respect to a 

.F
V1V2
Yu (a) = −n1n2

∂

∂a

∫
V1

d3r1

∫
V2

d3r2VYu(|r1 − r2|). (13.34)
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Taking into account that within the experimental error .
F(a) the measured 
Casimir force was found to be in agreement with theoretical predictions, the 
constraints on .FYu can be found from the inequality 

.|FV1V2
Yu (a)| � 
F(a). (13.35) 

Following this approach, the first constraints on the Yukawa-type interaction with
.λ < 20 cm were obtained [87] from two experiments [73, 88] performed long ago. 

During the last 20 years many experiments on measuring the Casimir interaction 
have been performed (some of them are mentioned in Sect. 13.2). All these 
experiments use the configuration of a sphere above a plate which surfaces may be 
coated by some additional material layers or covered with sinusoidal corrugations. 
We start with the simplest configuration of a smooth sphere of radius R at 
the closest separation a above a large smooth plate of thickness D. We again  
consider an atom .m1 of the sphere at a height z above the plate and integrate 
the Yukawa interaction energy (13.29) over the plate volume . V2 with subsequent 
negative differentiation according to (13.34). As explained above, the contribution 
of gravitational interaction can be neglected. Then, similar to (13.23), for the atom-
plate force one obtains 

.FAP
Yu (z) = −2πGρ2m1αλe−z/λ

(
1 − e−D/λ

)
. (13.36) 

•? Exercise 
13.3. Derive (13.36) using the cylindrical coordinate system.

Now we integrate (13.36) over the sphere volume using (13.24) and obtain the 
Yukawa-type force acting between a sphere and a plate [89] 

. FAP
Yu (a) = −2π2Gρ1ρ2αλ

(
1 − e−D/λ

) ∫ 2R+a

a

dz
[
2R(z − a) − (z − a)2

]
e−z/λ

= −4π2Gρ1ρ2αλ3
(

1 − e−D/λ
)

e−a/λ�(R.λ), (13.37) 

where the following notation is introduced

.�(r, λ) = r − λ + (r + λ)e−2r/λ. (13.38) 

The strongest current constraints on the Yukawa-type force in the wide interac-
tion range from 10 nm to . 8μm follow from four experiments of the Casimir physics.
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Fig. 13.2 Constraints on the 
interaction constant . α of 
Yukawa-type interaction are 
shown as functions of the 
interaction range . λ by the 
lines labeled 1, 2, 3, 
Casimir-less, and gr obtained 
from measuring the lateral 
and normal Casimir forces 
between the sinusoidally 
corrugated surfaces, effective 
Casimir pressure, from the 
Casimir-less experiment, and 
gravitational experiments, 
respectively. The regions of 
.(λ, α) plane above each line 
are excluded and below are 
allowed 

The first of them is devoted to measurements of the lateral Casimir force between 
the surfaces of a sphere and a plate covered with coaxial longitudinal sinusoidal 
corrugations and coated with an Au film [90, 91]. This experiment was performed 
by means of an atomic force microscope. 

The respective constraints were obtained in [92]. For this purpose, the interaction 
energy of Yukawa type between the corrugated test bodies was calculated by 
integrating (13.29) over their volumes, and the lateral force was found by the 
negative differentiation of the obtained result with respect to the phase shift between 
corrugations (see [92] for details). The obtained constraints cover a wide interaction 
range but currently they are the strongest ones only in the narrow region . 10 nm <

λ < 11.6 nm (see the line labeled 1 in Fig. 13.2). 
The second experiment, also performed by using an atomic force microscope, is 

on measuring the usual (normal) Casimir force between the sinusoidally corrugated 
Au-coated surfaces of a sphere and a plate under some angle between the corruga-
tion axes [93, 94]. The constraints on the Yukawa parameters . α and . λ, following 
from this experiment, were obtained in [95]. Currently, these constraints remain the
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strongest ones in the region .11.6 nm < λ < 17.2 nm. They are shown by the line 
labeled 2 in Fig. 13.2. 

In the next, third, experiment the effective Casimir force per unit area of two 
Au-coated plates (i.e., the effective Casimir pressure) was determined by means of 
a micromechanical torsional oscillator [27, 28]. In fact it was recalculated from the 
directly measured gradient of the Casimir force, . F ′

sp, between a sphere and a plate 
using (13.14). In the same way, calculating the gradient of (13.37) one finds from 
(13.14) the Yukawa-type pressure between two parallel plates 

.PYu(a) = −2πGρ1ρ2αλ2
(

1 − e−D/λ
)

e−a/λ. (13.39) 

Here, following [27,28], we took into account that .λ 	 R leading to .�(R, λ) ≈ R. 
In this experiment, the test bodies were not homogeneous. A sapphire sphere of 

density .ρs = 4.1 g/cm3 was coated with the first layer of Cr with density . ρCr =
7.14 g/cm3 and thickness .
1 = 10 nm, and then with the second, external, layer 
of Au of density .ρAu = 19.28 g/cm3 and thickness .
2 = 180 nm. The plate was 
made of Si with density .ρSi = 2.33 g/cm3 and coated with a layer of Cr of thickness 
.
1 = 10 nm and external layer of Au of thickness .
̃2 = 210 nm. Taking into 
account that the layers contribute to the Casimir pressure additively, we obtain from 
(13.39) the following expression valid in the experimental configuration 

. PYu(a) = −2πGαλ2e−a/λ
[
ρAu − (ρAu − ρCr)e

−
2/λ − (ρCr − ρs)e
−(
2+
1)/λ

]

×
[
ρAu − (ρAu − ρCr)e

−
̃2/λ − (ρCr − ρSi)e
−(
̃2+
1)/λ

]
. (13.40) 

The constraints on the Yukawa parameters . α and . λ were obtained from the 
inequality 

.|PYu(a)| � 
P(a), (13.41) 

where the experimental error .
P(a) in measuring the effective Casimir pressure, 
with which the theoretical predictions of the Lifshitz theory were confirmed, was 
determined at the 95% confidence level. Currently, the constraints obtained from this 
experiment are the strongest ones over the interaction range .17.2 nm < λ < 39 nm. 
They are found from (13.41) at .a = 180 nm where .
P(a) = 4.8 mPa [27, 28] and 
shown by the line labeled 3 in Fig. 13.2. 

The last, fourth, experiment leading to the strongest constraints on the Yukawa-
type interaction over a wide interaction range .39 nm < λ < 8μm is performed 
in such a way, that the contribution of the Casimir force to the measured signal 
is nullified [96]. This was achieved by measuring the differential force between 
a sphere of .R = 149.3μm radius and an especially structured plate using a 
micromechanical torsional oscillator. The sphere made of sapphire was coated with 
a .
1 = 10 nm layer of Cr and .
2 = 250 nm layer of Au. The plate consisted of Si
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and Au parts of .D = 2.1μm thickness both coated with a Cr and Au overlayers of 
thicknesses .
1 = 10 nm and .
̃2 = 150 nm, respectively. 

The Casimir forces between a sphere and two halves of the patterned Au-Si plate 
are equal because the thickness of an Au overlayer is sufficiently large in order it 
could be considered as a semispace [11]. As a result, when the sphere is moved 
back and forth above the patterned plate, the measured differential force is equal 
to a difference of the Yukawa-type forces between a sphere and two halves of the 
plate. Using (13.37) with .�(R, λ) ≈ R and taking into account the Au and Cr layers 
covering the test bodies, the differential Yukawa-type force takes the form 

. FSP
Yu,Au(a) − FSP

Yu,Si(a) = −4π2Gαλ3R(ρAu − ρSi)e
−(a+
̃2+
1)/λ

(
1 − e−D/λ

)

×
[
ρAu − (ρAu − ρCr)e

−
2/λ − (ρCr − ρs)e
−(
2+
1)/λ

]
. (13.42) 

The constraints have been obtained from the inequality 

.|FSP
Yu,Au(a) − FSP

Yu,Si(a)| � �(a), (13.43) 

where a sensitivity of the setup to force differences .�(a) is equal to a fraction 
of 1 fN. Note that both the residual electric and Newtonian gravitational forces 
contribute well below this sensitivity [96]. The strongest current constraints of . α and 
. λ obtained from (13.43) extend over a wide interaction range .40 nm < λ < 8μm 
(see the line labeled Casimir-less in Fig. 13.2). 

Thus, Fig. 13.2 presents the strongest constraints on the Yukawa-type interaction 
obtained from Casimir physics. Almost all these constraints with except of the 
region from 10 to 39 nm are obtained in [96] which is the fourth experiment 
discussed above. At .λ = 8μm the constraints found from the differential force 
measurements (which are also called the Casimir-less experiment) are of the same 
strength as the constraints found from the Cavendish-type experiments. At larger . λ
the strongest constraints are shown by a beginning of the line labeled gr reproduced 
from Fig. 13.1. 

In Fig. 13.3 we reproduce the beginning of the line labeled Casimir-less in 
Fig. 13.2 on an enlarged scale in order to better demonstrate the constraints 
obtained in the range .10 nm < λ < 39 nm [27, 28, 92, 95] from the experiments 
[27, 28, 90, 91, 93, 94] (i.e., from the first, second and third experiments discussed 
above). In this figure, the lines labeled n also indicate the strongest constraints on the 
Yukawa-type interaction obtained at .λ < 10 nm from the experiments on neutron 
scattering [97, 98] (in the region .0.03 nm < λ < 0.1 nm the strongest constraints 
follow from the experiment using a pulsed neutron beam [99]). 

There are also many other papers in the scientific literature devoted to constrain-
ing the Yukawa-type corrections to Newtonian gravity from the Casimir effect (see, 
e.g., [100–104]). The constraints obtained there are, however, somewhat weaker 
than the current strongest constraints presented in Figs. 13.2 and 13.3. It should be 
mentioned that in the range of extremely small . λ the constraints on . α have been
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Fig. 13.3 Constraints on the 
interaction constant . α of 
Yukawa-type interaction are 
shown as functions of the 
interaction range . λ by the 
lines labeled n, 1, 2, 3, and 
Casimir-less, obtained from 
the experiments on neutron 
scattering, measuring the 
lateral and normal Casimir 
force between the 
sinusoidally corrugated 
surfaces, effective Casimir 
pressure, and from the 
Casimir-less experiment, 
respectively. The regions of 
.(λ, α) plane above each line 
are excluded and below are 
allowed 

obtained from spectroscopic measurements in simple atomic systems like hydrogen 
and deuterium whose spectra can be calculated and measured with high precision. 
Thus, it was found that in the range .2 × 10−4 nm < λ < 20 nm the maximum 
strength of Yukawa interaction varies from .2 × 1027 to .2 × 1025 [105]. 

13.5 Dark Matter, Dark Energy and Their Hypothetical 
Constituents 

According to astrophysical observations, the visible matter in the form of stars, 
galaxies, planets and radiation constitutes only about 5% of the total mass of the 
Universe. By studying stellar motion in the neighborhood of our galaxy 90 years 
ago, Oort found [106] that the galaxy mass must be much larger than the mass of 
all stars belonging to it. At the same time, an application of the virial theorem to 
the Coma cluster of galaxies by Zwicky [107] resulted in a much larger mass than 
that found by summing up the masses of all observed galaxies belonging to this 
cluster. In succeeding years, these results received ample recognition. Presently it
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is generally agreed that the dark matter, which reveals itself only gravitationally, is 
not composed of elementary particles of the Standard Model listed in Sect. 13.1 and 
adds up approximately 27% of the Universe energy. 

The problem of what dark matter is remains unresolved. There are many 
approaches to its resolution which consider some hypothetical particles introduced 
in different theoretical schemes beyond the Standard Model as possible constituents 
of dark matter. Among these particles are axions, arions, massive neutrinos, weakly 
interacting massive particles (WIMP) etc. The possibility to explain the observa-
tional data by a modification of the gravitational theory in place of compensating for 
a deficiency in matter is also investigated. All these approaches are widely discussed 
in the literature [108–112]. 

During the last few years, the major support from astrophysics and cosmology 
was received by the model of cold dark matter. This model suggests that the 
constituents of dark matter are light particles which were produced at the first stages 
of the Universe evolution and became nonrelativistic long ago. The best candidate 
of this kind is a pseudoscalar Nambu-Goldstone boson called an axion. 

This particle was introduced [78, 113, 114] for solving the problem of strong CP 
violation in quantum chromodynamics mentioned in Sect. 13.1, i.e., independently 
of the problem of dark matter. The point is that all the experimental data show 
that strong interactions are CP invariant and the electric dipole moment of a 
neutron is equal to zero. In contrast to these facts, the vacuum state of quantum 
chromodynamics depends on an angle . θ which violates the CP invariance and allows 
a nonzero electric dipole moment of a neutron. To resolve this contradiction between 
experiment and theory, Peccei and Quinn [78] introduced the new symmetry which 
received their names. In doing so the emergence of axions is a direct consequence 
of the violation of this symmetry [113, 114]. 

Later it was understood that axions and other axionlike particles arise in many 
extensions of the Standard Model. They can interact with particles of the Standard 
Model, e.g., with photons, electrons and nucleons, and lead to a number of processes 
which could be observed both in the laboratory experiments and in astrophysics and 
cosmology (see [108–112, 115–121] for a review). The question arises whether it is 
possible to constrain the parameters of axions from the Casimir effect. This question 
is considered below in Sects. 13.6 and 13.7. 

Another unresolved problem of modern physics is the problem of dark energy. In 
the end of twentieth century, the observations of supernovae demonstrated that an 
expansion of the Universe is accelerating [122]. This fact is in some contradiction 
with expectations based on the general relativity theory and the properties of matter 
described by the Standard Model because the gravitational interaction of usual 
matter is attractive and should make the Universe expansion slower. 

The concept of dark energy, i.e., some new kind of invisible matter which 
causes a repulsion, was introduced in numerous discussions of this problem. One 
approach to its resolution goes back to Einstein’s cosmological constant which 
is closely connected with the problem of the quantum vacuum. According to the 
observational data, the dark energy constitutes as much as approximately 68% 
of the Universe energy. This corresponds to some background medium (physical
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vacuum) possessing the energy density of .ε ≈ 10−9 J/m. 3. In order that this medium 
could accelerate the Universe expansion, it should possess the equation of state 
.P = −ε<0, i.e., the negative pressure. 

The cosmological term .Λgik , where .gik is the metrical tensor, when added to 
Einstein’s equations of general relativity theory, results in just this equation of state. 
In doing so, the value of . Λ is determined by the above value of . ε determined from 
the observed acceleration of the Universe expansion 

.Λ = 8πGε ≈ 2 × 10−52m−2. (13.44) 

It was argued, however, that quantum field theory using a cutoff at the Planck 
momentum .pP l = EPl/c leads to quite a different value of the vacuum energy 
density .εvac ≈ 10111J/m. 3 which is different from . ε determined from observations by 
the factor of .10120 [123,124]. If to take into account that the vacuum energy density 
admits an interpretation in term of the cosmological constant [125], it becomes clear 
why this discrepancy by the factor of .10120 was called the vacuum catastrophe [126]. 

Another approach to the understanding of dark energy attempts to model it by the 
fields and respective particles with unusual physical properties. One of the models 
of this kind introduces the real self-interacting scalar field . φ with a variable mass 
called chameleon [127]. The distinctive feature of chameleon particles is that they 
become heavier in more dense environments and lighter in free space. 

Another model similar in spirit suggests that the interaction constant of the 
self-interacting real scalar field with usual matter depends on the density in the 
environment. The fields and particles of this kind are called symmetrons [128–130]. 
Symmetrons interact with usual matter described by the Standard Model weaker if 
the density of the environment is higher. 

There are also other hypothetical particles which could lead to the negative 
pressure and help to understand the accelerating expansion of the Universe. For 
instance, the negative pressure originates from the Maxwell stress-energy tensor of 
massive photons in the Maxwell-Proca electrodynamics [131]. 

If the exotic particles, such as chameleons, symmetrons, massive photons etc., 
exist in nature, this should lead to some additional forces between the closely 
spaced macrobodies. In Sect. 13.8 the possibility of constraining these forces from 
measurements of the Casimir force is discussed. 

13.6 Constraining Dark Matter Particles from the Casimir Effect 

As was mentioned in previous section, the main candidate for the role of a dark 
matter particle is light pseudoscalar particle called an axion which can interact 
with photons, electrons, and nucleons. It can be easily seen that the interaction of 
axions with photons and electrons does not lead to sufficiently large forces between 
the closely spaced bodies which could be constrained from measurements of the 
Casimir force. These interactions of axions are investigated by other means. For 
example, the conversion process of photons into axions in strong magnetic field (the
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so-called Primakoff process) is used for an axion search in astrophysics [132] (see 
also reviews [117–120] for already obtained constraints on interactions of axions 
with photons and electrons). 

Here, we concentrate our attention on the interaction of axions with nucleons 
(neutrons and protons) which could lead to some noticeable additional force 
between two neighboring bodies. The interaction Lagrangian density between the 
originally introduced axion field .a(x) and the fermionic field .ψ(x) is given by 
[115, 118] 

.Lpv(x) = g

2ma

h̄2ψ̄(x)γ5γμψa(x)∂μa(x), (13.45) 

where g is the dimensionless interaction constant, .ma is the axion mass, . γμ with 
. μ = 0, 1, 2, 3 and . γ5 are the Dirac matrices. The Lagrangian density (13.45) is  
called pseudovector. It describes the interaction of fermions with pseudo Nambu-
Goldstone bosons. 

Various extensions of the Standard Model called the Grand Unified Theories 
(GUT) introdice the axionlike particles which interact with fermions through the 
pseudoscalar Lagrangian density [115, 118, 133] 

.Lps(x) = −igh̄cψ̄(x)γ5ψ(x)a(x). (13.46) 

Unlike (13.45), which contains a dimensional effective interaction constant .g/ma , 
the Lagrangian density (13.46) results in a renormalizable field theory. 

When one considers an exchange of a single axion between two nucleons of mass 
m belonging to the closely spaced test bodies, both Lagrangian densities (13.45) and 
(13.46) lead to the common effective potential energy [134, 135] 

. Van(r; σ 1, σ 2) = g2h̄3

16πm2c

[
(σ 1 ·n)(σ 2 ·n)

(
m2

ac
2

h̄2r
+ 3mac

h̄r2 + 3

r3

)

− (σ 1 · σ 2)

(
mac

h̄r2 + 1

r3

)]
, (13.47) 

where .r = |r1 − r2| is a distance between nucleons, .σ 1, σ 2 are their spins, and 
.n = (r1 − r2)/r is the unit vector along the line connecting these nucleons. 

The effective interaction energy (13.47) depends on the spins of nucleons and the 
respective force averages to zero after a summation over the volumes of unpolarized 
test bodies. Because of this, using (13.47), the parameters of axion g and .ma can 
not be constrained from experiments on measuring the Casimir force discussed 
in Sect. 13.2 (the possibilities of constraining the spin-dependent interactions are 
considered in the next section). 

There is, however, the possibility to obtain the spin-independent interaction 
energy between two nucleons by considering the process of two-axion exchange. 
If the Lagrangian density (13.46) is used, the effective interaction energy is given
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by [83, 136, 137] 

.Vaan(r) = − g4h̄2

32π3m2

ma

r2 K1

(
2macr

h̄

)
, (13.48) 

where .K1(z) is the modified Bessel function of the second kind. 
In the case of Lagrangian density (13.45), the respective field theory is nonrenor-

malizable. As a result, the effective interaction energy between nucleons due to 
an exchange of two axions is not yet available (see [138] for more details). This 
means that measurements of the Casimir force can be used for constraining only 
the parameters of GUT axions described by the pseudoscalar Lagrangian density 
(13.46). 

Similar to the cases of power-type and Yukawa-type interactions in (13.21) and 
(13.34), the hypothetical force between two experimental test bodies due to two-
axion exchange of their nucleons is given by 

.Faan(a) = −n1n2
∂

∂a

∫
V1

d3r1

∫
V2

d3r2Vaan(|r1 − r2|), (13.49) 

where a is the closest distance between these bodies and .n1, n2 are the numbers of 
nucleons per unit volume of their materials. 

We consider first a homogeneous Au sphere above a homogeneous Si plate of 
thickness D which is assumed to be infinitely large. Substituting (13.48) in (13.49) 
and using the integral representation [139] 

.
K1(z)

z
=

∫ ∞

1
du

√
u2 − 1e−zu, (13.50) 

one obtains

. FSP
aan(a) = −πmah̄

2

m2m2
H

C1C2

∫ ∞

1
du

√
u2 − 1

u

(
1 − e−2macuD/h̄

)

×
∫ 2R+a

a

[
2R(z − a) − (z − a)2

]
e−2macuz/h̄dz. (13.51) 

Here, the coefficients .C1 and .C2 are defined for a sphere and a plate materials, 
respectively, in the following way: 

.C1,2 = ρ1,2
g2

an

4π

(
Z1,2

μ1,2
+ N1,2

μ1,2

)
, (13.52) 

where .Z1,2 and .N1,2 are the numbers of protons and the mean number of neutrons 
in the sphere and plate atoms, respectively, and .μ1,2 = m1,2/mH are defined as the 
mean masses of a sphere and a plate atoms divided by the mass of atomic hydrogen.
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By integrating in (13.51) with respect to z, one obtains 

. FSP
aan(a) = − πh̄4

2mam2m2
Hc2

C1C2

∫ ∞

1
du

√
u2 − 1

u3
e−2macua/h̄

×
(

1 − e−2macuD/h̄
)

χ

(
R,

macu

h̄

)
, (13.53) 

where the function .χ(r, z) similar to .�(r, λ) in (13.38) is defined as 

.χ(r, z) = r − 1

2z
+

(
r + 1

2z

)
e−4rz. (13.54) 

The strongest constraints on the parameters of axionlike particles were obtained 
[140] from the differential measurements where the contribution of the Casimir 
force was nullified [96]. This experiment was already discussed in Sect. 13.4. Taking 
into account the structure of the plate consisting of Au and Si halves, as well as 
additional Cr and Au layers (see Sect. 13.4), and using (13.53), the differential force 
in the experimental configuration takes the form 

. FSP
aan,Au(a) − FSP

aan,Si(a) = − πh̄4

2mam2m2
Hc2

(CAu − CSi)

∫ ∞

1
du

√
u2 − 1

u3

× e−2macu(a+
̃2+
1)/h̄
(

1 − e−2macuD/h̄
)

X

(
macu

h̄

)
, (13.55) 

where the following notation is introduced

. X(z) = CAu

[
χ(R, z) − e−2z
2χ(R − 
2, z)

]

+ CCre
−2z
2

[
χ(R − 
2, z) − e−2z
1χ(R − 
2 − 
1, z)

]

+ Cse
−2z(
2+
1)χ(R − 
2 − 
1, z) (13.56) 

and the values of all coefficients C for Au, Cr, Si, and sapphire can be calculated by
using (13.52) and numerical data for all involved quantities presented in [83]. 

The constraints on the parameters of hypothetical forces due to two-axion 
exchange between nucleons follow from the inequality 

.|FSP
aan,Au(a) − FSP

aan,Si(a)| � �(a), (13.57) 

where .�(a) is the setup sensitivity to force differences in the experiment [96]. This 
inequality is similar to (13.43) used in constraining the interaction of Yukawa type. 
The strongest current constraints on the coupling constant of axions to nucleons g 
follow from (13.57) in the region of axion masses .4.9 meV < mac

2 < 0.5 eV.
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Fig. 13.4 Constraints on the coupling constant .g2/(4π) of axions to nucleons are shown as 
functions of the axion mass .mac

2 by the lines labeled Casimir-less and H. 2 obtained from the 
Casimir-less experiment and from measuring dipole-dipole forces between protons in the beam 
of molecular hydrogen, respectively. The regions of .[mac

2, g2/(4π)] plane above each line are 
excluded and below are allowed 

In Fig. 13.4 the obtained constraints are shown by the line labeled Casimir-less. 
Similar to all previous figures, the values of axion parameters belonging to the area 
of .[mac

2, g2/(4π)] plane above the line are excluded by the results of differential 
force measurements whereas the plane area below the line is allowed. 

For .mac
2 > 0.5 eV the strongest current constraints on g are obtained by 

comparing with theory the measurement results for the dipole-dipole forces between 
two protons in the beam of molecular hydrogen [141, 142]. They are shown by 
the line labeled H. 2 in Fig. 13.4. In this experiment, the additional force between 
protons arises due to an exchange of one axion and is described by the spin-
dependent interaction energy (13.47). As a result, for sufficiently large .ma the 
obtained constraints on g are much stronger than those found from the differential 
force measurements. What is more, the constraints of line H. 2 are valid both for the 
originally introduced axions whose interaction with nucleons is described by the
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Fig. 13.5 Constraints on the 
coupling constant .g2/(4π) of 
axions to nucleons are shown 
as functions of the axion mass 
.mac

2 by the lines labeled m, 
gr. 1, gr. 2, and Casimir-less 
obtained from the 
magnetometer measurements, 
Cavendish-type experiment, 
measuring the minimum 
force of gravitational 
strength, and from the 
Casimir-less experiment, 
respectively. The regions of 
.[mac

2, g2/(4π)] plane above 
each line are excluded and 
below are allowed 

Lagrangian density (13.45) and for axionlike particles with respective Lagrangian 
density (13.46). 

In the region of axion masses .mac
2 < 4.9 meV the strongest constraints of 

g follow from gravitational experiments. In Fig. 13.5, the line labeled gr. 1 shows 
the constraints on g found [71] from the Cavendish-type experiment [70]. These 
constraints are the strongest ones in the region of axion masses . 1μeV < mac

2 <

0.676 meV. Within the relatively short range of axion masses . 0.676 meV < mac
2 <

4.9 meV the strongest constraints were obtained [138] by using the planar torsional 
oscillator for measuring the minimum force of gravitational strength [143, 144]. 
The respective constraints are shown by the line labeled gr. 2 in Fig. 13.5. The  
gravitational constraints shown by the lines gr. 1 and gr. 2 are valid for only the 
axionlike particles whose interaction with nucleons is described by the Lagrangian 
density (13.46) because in the gravitational experiments the test bodies used are 
unpolarized. 

For the smallest axion masses .mac
2 < 1μeV, the strongest constraints on g were 

again obtained from considering the spin-dependent forces which arise due to a 
one-axion exchange in the comagnetometer measurements using the spin-polarized
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K and . 3He atoms and the . 3He spin source [145]. These constraints are shown by 
the line labeled m in Fig. 13.5. They are valid for all types of axions and axionlike 
particles. 

The competitive constraints on the parameters of axionlike particles were 
obtained also from several other experiments on measuring the Casimir interaction 
(see, e.g., [103,104,146–151]). They are, however, weaker than those shown by the 
line labeled Casimir-less and H. 2 in Fig. 13.4. 

13.7 Could the Casimir Effect be Used For Testing 
Spin-Dependent Interactions? 

As explained in the previous section, the process of one-axion exchange between 
two nucleons described by the pseudovector Lagrangian density (13.45) results 
in the spin-dependent interaction energy (13.47) which does not lead to any 
additional force between two unpolarized test bodies. The parameters of originally 
introduced axions described by this interaction energy were constrained using, e.g., 
the magnetometer measurements or from measuring dipole-dipole forces between 
protons (see Sect. 13.6). 

There are also other predictions of spin-dependent interactions beyond the 
Standard Model. In fact the coupling constant of axions to nucleons considered 
above describes either the pseudoscalar or pseudovector interactions. This can be 
notated as .g ≡ gP . In addition to the one-axion exchange, it is possible to consider 
an exchange of one light vector particle between two nucleons with a vector and 
axial vector couplings. This corresponds to the following Lagrangian density: 

.LV A(x) = h̄cψ̄(x)γ μ(gV + gAγ5)ψ(x)Aμ(x). (13.58) 

This Lagrangian density results in the effective spin-dependent interaction 
energies between two nucleons [145] 

.V1(r) = g2
A

4πr
h̄(σ 1 · σ 2)e

−mAcr/h̄ (13.59) 

or

.V2(r) = −gAgV

4πm
h̄2([σ 1 × σ 2] ·n)

(
mAc

h̄r
+ 1

r2

)
e−mAcr/h̄, (13.60) 

where .mA is the mass of a vector field . Aμ. The parameters of the interaction energies 
(13.59) and (13.60) were constrained by the same comagnetometer measurements 
[145] which have already been used in Sect. 13.6 for constraining the interaction 
energy (13.47). 

Below we discuss the possibility of constraining the spin-dependent interaction 
energy (13.47) from measuring the effective Casimir pressure. For this purpose it
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was proposed [152] to use the Casimir plates made of silicon carbide (SiC) with 
aligned nuclear spins. It has been known that the nuclear spin of . 29Si is equal to 
1/2 owing to the presence of one neutron with an uncompensated spin. In native 
Si there is only 4.68% of the isotope . 29Si. In nanotechnology, however, the special 
procedures are elaborated for growing the isotopically controlled bulk Si [153]. 

In [152] it was assumed that a fraction of Si atoms . κ in both plates is polarized in 
some definite direction due to the polarization of their nuclear spins (it was shown 
that an additional force due to the electronic polarization does not permit to obtain 
competitive constraints on the coupling constant of axions to electrons). In order to 
obtain the nonzero additional force between plates due to one-axion exchange, the 
atomic polarization should be perpendicular to the plates and directed either in one 
direction or in the opposite directions [152]. 

Under these conditions, by integrating the interaction energy (13.47) over the 
volumes of two parallel plates of density . ρ and thickness D, for the force per unit 
area of the plates (i.e., pressure) one obtains [152] 

.Pan(a) = ±g2 κ2ρ2h̄3

8m2m2
Hc

e−maca/h̄
(

1 − e−macD/h̄
)2

. (13.61) 

The force (13.61) could be constrained from the experiments [27, 28] on mea-
suring the effective Casimir pressure using a micromechanical torsional oscillator if 
the test bodies were made of SiC with aligned nuclear spins. Similar to (13.41), in 
this case the constraints are obtained from the inequality 

.|Pan(a)| � 
P(a). (13.62) 

For the pressure (13.61), the strongest constraints follow at .a = 300 nm, where 
.
P(a) = 0.22 mPa [27, 28], under the conditions that .κ = 1 and .D � h̄/(mac), 
i.e., the plates are sufficiently thick. The density of SiC is .ρ = 3.21 g/cm3. The most  
strong constraint that can be placed in this way on axions and axionlike particles 
with .ma = 0.0126 eV is .g2/(4π) � 4.43 × 10−5 [152], which is weaker than that 
found from the Casimir-less experiment (see Fig. 13.4) but is applicable to all kinds 
of axions. 

An experiment on measuring the Casimir pressure between parallel plates with 
aligned nuclear spins can be also used for constraining the interaction of axions with 
nucleons from a simultaneous account of one- and two-axion exchange. In this case 
the constraints are obtained from the inequality 

.|Pan(a) + Paan(a)| � 
P(a). (13.63) 

Here the additional pressure between two thick plates due to one-axion exchange
is given by (13.61), where the last factor on the right-hand side is replaced with 
unity, and .Paan is obtained by integration of the interaction energy (13.48) over the
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volumes of both plates 

.Paan(a) = − C2
SiCh̄3

2m2m2
Hc

∫ ∞

1
du

√
u2 − 1

u2
e−2macau/h̄. (13.64) 

The constant .CSiC is defined as in (13.52) using the numerical data presented in 
[83]. 

It has been shown [152] that using (13.63) in the region of axion masses below 
1 eV one could obtain up to an order of magnitude stronger constraints on the 
coupling of axions with nucleons than from (13.62). These constraints, however, 
would be valid only for the GUT axions which interaction with nucleons is described 
by the pseudoscalar Lagrangian density (13.46). 

13.8 Constraining Dark Energy Particles from the Casimir Effect 

Axions considered above as the most probable constituents of dark matter are 
the Nambu-Goldstone bosons, which appear in the formalism of quantum field 
theory when some symmetry (in this case the Peccei-Quinn symmetry) is broken 
both spontaneously (i.e., the vacuum is not invariant) and dynamically (i.e., in the 
Lagrangian). Although these particles are not the part of the Standarn Model, they 
can be considered as its natural supplement. The axionlike particles introduced later 
also fall into the standard pattern of quantum field theory. 

The particles proposed as the possible constituents of dark energy (chameleons, 
symmetrons, etc., see Sect. 13.5) are quite different. Unlike all conventional ele-
mentary particles, the properties of these particles depend on the environmental 
conditions. 

We begin with chameleons whose mass is larger, i.e., the interaction range is 
shorter, in environments with higher energy density (see Sect. 13.5). Mathematically 
chameleons are described by the real self-interacting scalar field . � possessing a 
variable mass. In the static case, this field satisfies the simplest equation of the form 
[127, 154]: 

.
� = 1

(h̄c)4

∂V (�)

∂�
+ ρ

M
eh̄�/(Mc), (13.65) 

where M is the typical mass of conventional particles forming the background
matter of density . ρ and .V (�) is the self-interaction which decreases monotonically 
with increasing . �. 

An interaction between chameleons and background matter with density . ρ in 
(13.65) implies that the effective interaction potential describing the chameleon field 
is given by 

.Veff(�) = V (�) + ρh̄3c5eh̄�/(Mc). (13.66)
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Although the self-interaction V is assumed to be monotonic, this effective potential 
takes the minimum value for . �0 satisfying the condition 

.
∂V (�0)

∂�
+ ρ(h̄c)4

M
eh̄�0/(Mc) = 0. (13.67) 

Then the mass of the field . �0 is given by 

.m2
�0

≡ 1

h̄2c6

∂2Veff(�0)

∂�2
= 1

h̄2c6

∂2V (�0)

∂�2
+ ρ

M2

(
h̄

c

)3

eh̄�0/(Mc) (13.68) 

and depends on the background mass density . ρ. 
According to the above assumption, V is a decreasing function of . �. Then, 

.∂V/∂� is negative and monotonously increasing whereas .∂2V/∂�2 is positive and 
decreasing. According to (13.68), this means that we have larger .m�0 and smaller 
. �0 for larger values of the background mass density . ρ [127]. 

There are different possible forms of the chameleon self-interaction suggested in 
the literature [127, 154, 155], e.g., 

.V (�) = E4
(

E

h̄c�

)n

, V (�) = E4
0 eEn/(h̄c�)n (13.69) 

or

.V (�) = E4
0

[
1 +

(
E

h̄c�

)n]
, (13.70) 

where . E0 and E are the quantities with a dimension of energy and . n = 1, 2, 3, etc.  
According to [154], if the chameleon field is responsible for the presently observed 
acceleration of the Universe, it should be .E0 ≈ 2.4 × 10−12 GeV. 

Similar to axions, an exchange of chameleons between two constituent particles 
of two closely spaced test bodies results in some additional force. The constraints on 
this force can be obtained from experiments on measuring the Casimir force [154]. 
In this case, however, both the additional force and constraints on it strongly depend 
not only on the specific experimental setup but also on the form of chameleon self-
interaction and other related parameters (see [154–156] for some specific results 
obtained in the configuration of two parallel plates and a sphere above a plate with 
different models of self-interaction). 

Another hypothetical particle mentioned in Sect. 13.5 as a possible constituent of 
dark energy is a symmetron whose interaction with usual matter becomes weaker 
with increasing mass density of the environment [128, 129]. In the static case the
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symmetron field . �s satisfies the equation [128–130] 

.
�s = 1

(h̄c)4

∂V s(�s)

∂�s

+
[

h̄

c

ρ

M2
−

(
μc

h̄

)2
]

�s, (13.71) 

where . V s is the symmetron self-interaction and . μ is the symmetron mass. 
The respective effective potential leading to the right-hand side of (13.71) is  

given by Hinterbichler et al. [130] 

.V s
eff(�s) = V s(�s) + 1

2
(h̄c)4

[
h̄

c

ρ

M2
−

(
μc

h̄

)2
]

�2
s , (13.72) 

where the self-interaction of a symmetron field takes the standard form

.V s(�s) = 1

4
λ�4

s , (13.73) 

and . λ is a dimensionless constant. 
The effective potential (13.72), (13.73) takes the minimum value for . �s = �s,0

satisfying the condition 

.λ�3
s,0 + (h̄c)4

[
h̄

c

ρ

M2 −
(

μc

h̄

)2
]

�s,0 = 0. (13.74) 

If the density of background matter .ρ < ρ0 = c3M2μ2/h̄3, the minimum value 
of .V s

eff is attained at 

.�s,0 = (h̄c)2

√
λ

[(
μc

h̄

)2

− h̄

c

ρ

M2

]1/2

. (13.75) 

Under the opposite condition .ρ > ρ0, the minimum value of .V s
eff is at .�s,0 = 0. 

Thus, if .ρ < ρ0 the reflection symmetry is broken and the vacuum expectation 
value of .�s,0 takes a nonzero value. By contrast, in the regions of high density of 
background matter .ρ > ρ0, the vacuum expectation value of .�s,0 turns into zero. 

The exchange of symmetrons between two closely spaced material bodies results 
in some additional force which was calculated in [157] for the experimental 
configurations of two parallel plates and a sphere above a plate. According to 
the results of [157], strong constraints on the parameters of a symmetron can be 
obtained from measurements of the Casimir force in these configurations. These 
measurements, however, are not yet performed. Prospects in constraining various 
hypothetical interactions beyond the Standard Model and some other laboratory 
experiments are discussed in the next section.
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13.9 Outlook 

Many experiments on measuring the Casimir interaction mentioned above were 
performed entirely in an effort to investigate the Casimir effect. This means that 
the constraints on corrections to Newtonian gravity and axionlike particles discussed 
above were obtained as some kind of by-product. In [158] some improvements in the 
configurations of experiments employing both smooth and sinusoidally corrugated 
surfaces of a sphere and a plate were suggested which allow obtaining up to an 
order of magnitude stronger constraints. Specifically, for the configurations with 
corrugated surfaces this could be reached by using smaller corrugation periods and 
larger corrugation amplitudes [158]. 

There are many proposals of new Casimir experiments aimed for testing gravity 
and predictions beyond the Standard Model at short distances. Thus, it is suggested 
to measure the Casimir pressure between two parallel plates at separations up 
to 10–20 . μm (Casimir and Non-Newtonian Force Experiment called CANNEX) 
[159–163]. This experiment promises obtaining stronger constraints not only on 
non-Newtonian gravity and axionlike particles, but also on chameleon, symmetron 
and some other theoretical predictions beyond the Standard Model. 

The Casimir-Polder interaction between two atoms or an atom and a cavity wall 
can also be used for constraining the hypothetical interactions. The constraints on 
an axion to nucleon coupling constant obtained in this way [146] were mentioned in 
Sect. 13.6. In [164] it was suggested to measure the Casimir-Polder force between a 
Rb atom and a movable Si plate screened with an Au film. This makes it possible to 
strengthen constraints on the Yukawa interaction constant . α in the interaction range 
around 1 . μm. According to [165], the measured deviations of the Casimir-Polder 
force between two polarized particles, arising for photons of nonzero mass, from 
the standard one calculated for massless photons can be used for constraining the 
extradimensional unification models. 

An interesting method for detecting the interaction of axion with nucleons by 
means of a levitated optomechanical system was suggested in [166]. In fact this is 
a version of the Casimir-less experiment [96] where the contribution of the Casimir 
force is nullified (see Sects. 13.4 and 13.6). The suggested method could further 
strengthen the already obtained constraints on the coupling constant of axions to 
nucleons and on the Yukawa-type corrections to Newtonian gravity. 

There are also many proposed laboratory experiments which are not closely 
related to the Casimir physics but could lead to constraints on the hypothetical 
interactions in the same or neighboring regions of parameters as the Casimir effect. 
Some of them are discussed below. 

Thus, the neutron interferometry already used for constraining the Yukawa-type 
forces (see Sect. 13.4) has large potential for improving the obtained constraints. 
Several experiments of this kind have been performed and suggested pursuing this 
goal (see, e.g., [167–171]).
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There is a continuing interest in the literature to constraining the power-type, 
Yukawa-type and other hypothetical interactions by means of atomic and molecular 
spectroscopy. A few experiments of this kind await for their realization [172–174]. 

It has been known that the levitated nanoparticle sensors are sensitive to the 
static forces down to .10−17 N. In [175] it was suggested to use such sensors for 
obtaining constraints on the Yukawa-type corrections to Newtonian gravity. The 
optomechanical methods exploiting the levitated sensors were proposed also for 
constraining the hypothetical interaction of Yukawa type [176]. 

Recent literature also contains information on already performed experiment 
constraining the exotic interaction between moving polarized electrons and unpo-
larized nucleons by means of a magnetic force microscope [177], on the general 
scheme allowing an extraction of constraints on any specific model from different 
experiments [178], and on a compressed ultrafast photography system using 
temporal lensing for probing short-range gravity [179]. 

Interest in all these topics has quickened in the past few years. One may expect 
that measurements of the Casimir force and related table-top laboratory experiments 
will furnish insights into the nature of some theoretical predictions beyond the 
Standard Model and their relationship to reality. 
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Part III 

Quantum Systems and Gravity 

Form the observational consequences of modified and quantum, gravity in cosmic, 
astrophysical and laboratory sized setups, as they were discussed in Part II, we move 
on to the interaction of quantum matter with gravity. The laboratory sized setups 
involving quantum effects test the properties of the weak gravitational field to very 
high precession. 

Chapter 14 discusses quantum test of gravity, i.e., tests of gravity with quantum 
states of matter like optical cavities, cold atom interferometry and Bose-Einstein 
condensates. Their advantage, compared to classical tests, lies in a high accuracy 
and the insights about the coupling between quantum matter and gravity. They 
mainly test deviations from the Newtonian potential due to additional scalar fields 
emerging from modified gravity or low energy limits of String theory. 

The question about the coupling between quantum matter and gravity is picked 
up again in Chap. 15, where the impact of the gravitational field of a plane 
electromagnetic wave on different neutral fields, like scalars, spinors and vectors 
is presented. In this way the indirect coupling between neutral fields, via gravity, to 
the electromagnetic field can be predicted, and the universality of the gravity matter 
coupling can be tested. 

Last but not least Chap. 16 discusses the Newtonian weak field limit of quantum 
field theory on curved spacetimes, including the backreaction of quantum fields on 
the gravitational field, and thus the non-relativistic limit of the coupling of rela-
tivistic quantum fields to gravity. It is demonstrated that a systematic mathematical 
treatment ensures that no coupling terms are missed in the non-relativistic . c−1

expansion of the field equations and what consequences can be deduced from the 
semi-classical Einstein equations.



14Quantum Tests of Gravity 

Sven Herrmann and Dennis Rätzel 

Abstract 

We give an introduction to quantum tests of gravity including simple exercises. 
The first part comprises a brief review of the foundations and the status of 
laboratory-based tests of gravity. In the second part, we discuss a specific plat-
form for quantum tests of gravity represented by cold atom interferometry (CAI) 
in detail and introduce the non-expert reader to its basic operation principles. 
The motivation for quantum tests of gravity has two aspects that will both be 
addressed. The first is technical and based on the fact that quantum technology 
devices such as CAI are intrinsically very sensitive and allow for highly accurate 
measurements. As such they may simply help to perform otherwise classical test 
experiments at improved accuracy. The second motivation roots in the quantum 
nature of the applied test masses which opens avenues to test gravity theory in 
ways that are not available with classical systems. We briefly discuss some of the 
proposed ideas and point the reader to the related literature for further reading. 

14.1 Introduction 

Experimental tests of gravitation have been on the agenda of science since the early 
days of Galilei and Newton. However, due to the weakness of the gravitational force, 
the first proper gravitational experiment in a laboratory was performed much later 
by Cavendish who used it to precisely measure the gravitational constant. In general, 
one can define laboratory tests or local tests of gravity as those where one has control 
over the complete measurement system directly affected by the gravitational field 
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and can perform repeated preparations and measurements. Following the famous 
experiment by Cavendish, there have been many similar laboratory experiments in 
the last 200 years measuring the gravitational force with increasing precision on 
scales down to micrometer distances and millimeter-sized masses [1–4], (as has 
also been discussed in Chap. 13, in context of the Casimir effect). However, tests 
of gravity are not restricted to force measurements. Since general relativity has 
extended the realm of gravitation to the very fabric of space and time, laboratory 
tests of gravity comprise tests of fundamental principles like the equivalence 
principle. 

In this work, we focus on a particular branch of laboratory tests, that is, tests that 
employ quantum systems as sensors. Instead of providing a comprehensive review, 
we want to give a concise and self-contained introduction to the topic for beginners. 
To this end, in the first part, we give a short non-comprehensive wrap-up of the main 
features of gravity that can be tested in experiments and mention a few examples of 
tests with quantum sensors. In the second part, we provide details about a specific 
experimental platform for quantum tests of gravity, cold atom interferometry (CAI). 

14.2 Some Lab-Testable Features of Gravity 

As mentioned above, gravity’s manifestations are manifold and as such are potential 
laboratory tests. We start right away with the most obvious. 

14.2.1 The Gravitational Force 

Indeed, the first feature of gravity that has been tested many times and is still a 
central element of tests of gravity is its manifestation as a force between masses. 
The first proper laboratory test of this kind was the one performed by Cavendish. 
It consists of a torsion balance: essentially, two spherical masses connected by a 
rod which is suspended from a wire that is attached to its center (see Fig. 14.1). 
Two more spherical masses are then brought close to those of the torsion balance to 
measure the resulting gravitational force between the masses. The torsion balance is 
still an important element of experimental gravity research today [1]. A particularly 
important feature and basis for its success is that it is fairly insensitive to time 
dependent gravitational acceleration generated by changes in the surrounding mass 
distribution. 

A millimeter-scale implementation of the torsion balance concept has recently 
been used for the measurement of the gravitational force between gold spheres of 
less than .100 mg [4]. This experiment was based on a light beam that is reflected 
from a mirror attached to the rod of the torsion balance, and thus, is part of the wider 
field of optomechanics. Some experimental platforms in this field have already 
entered the quantum regime [6]. With decreasing size and increasing control, torsion 
balances may eventually also enter this regime, where the ultimate precision is 
dominated by quantum fluctuations [7]. Very small and precise sensor systems are
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Fig. 14.1 Original drawing of the torsion balance used by Henry Cavendish for his experiment 
[5] 

particularly interesting for tests of gravity at short distances, which we will discuss 
in the following. 

14.2.1.1 Gravity at Short Distances 
At short distances, one can test for deviations from Newton’s gravitational force 
law that are strongly distance dependent. A well motivated form of a deformed 
gravitational force law is that corresponding to a Yukawa potential acting on a 
spherical probe mass m in the presence of a spherical source mass . MS

.V (r) = −G
MSm

r

[
1 + αe−r/λ

]
, (14.1) 

where . α describes a modified strength and . λ a modified range of the interaction. For 
.α ≈ 1, that is an interaction of comparable strength to gravity, experiments down 
to .λ ≈ 10 . μm have been performed using torsion pendula or microcantilevers [1]. 
For more details on tests of Yukawa corrections to Newton’s law with help of force 
measurements at short distances, see Sect. 13.4. 

A particular motivation for modifications of the Yukawa type comes from scalar 
tensor theories of gravity where a scalar field is added to the metric tensor of space-
time to explain the observed acceleration of the universe that is phenomenologically 
described as “dark energy” [8]. As the nature of dark energy is one of the most
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pressing unsolved puzzles in physics and there are only few ideas as to where it 
should originate from, the community has a strong interest in investigating this 
possibility. However, Yukawa-like modifications of the gravitational force have been 
already constrained to a high degree by laboratory tests [1–3]. 

14.2.1.2 Screened Scalar Fields 
A modification of the simple addition of a scalar field is the inclusion of self 
interaction that can lead to a screening mechanism that suppresses effects of the 
scalar field in regions of significant mass densities thus evading its straightforward 
detection [8]. A specific class of candidate models of this type are chameleon fields, 
whose equations of motion are defined by a Lagrangian that contains an effective 
potential density of the form 

.Veff(φ) = V (φ) + Vint (φ). (14.2) 

The first term describes a self-interaction of the form

.V(φ) = �4+n

φn
(14.3) 

(in natural units) where . � needs to be on the order of the observed value of the 
cosmological constant .�0 = 2.4 meV in order to link such a Chameleon field to dark 
energy and accelerated cosmic expansion. The second term describes interaction of 
the field with ordinary matter, and for the simplest case of universal coupling can be 
written as 

.Vint = ρ

M
φ. (14.4) 

The parameter M has the dimension of mass and is expected to be on the order
respectively below the level of the Planck mass .MPl . Thus there are essentially 
two parameters that need to be constrained in order to rule out the existence of a 
Chameleon field of given n (Fig. 14.2). 

The goal of an experiment would then be to measure the anomalous gravitational 
force next to a source mass. Given a spherical source mass .MS and a spherical probe 
mass m, this anomalous force is given as [11] 

.FC = GMSm

r2

[
1 + αC

(
1 + r

λC

)
e−r/λC f (RP /λC, r/λc)

]
, (14.5) 

where . αC and . λC are the modified strength and modified range in the sense of the 
Yukawa potentials above , respectively, which depend on M , . � as well as the radius 
and the density of the source mass. The function .f (RP /λC, r/λC) is a form factor 
that depends on the mass m and radius .RP of the probe sphere and converges to 1 
for .RP /λC → 0. The modified strength can be written as .αC = 2ζSζP (MPl/M)2, 
where . ζS and . ζP are screening factors of the source sphere and the probe sphere
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Fig. 14.2 Left plot: experimental bounds on Yukawa parameters . α and . λ. Redrawn from Fig. 8 
of [9] ©2015 IOP Publishing Ltd, all rights reserved, and recent results presented in figure 6 of [10] 
©2020 American Physical Society. All rights reserved. Right plot: bounds on mass and energy-
scale chameleon field parameters M and . � for .n = 1 as compiled in Ref [8] ©The Authors 2018. 
Distributed under CC-BY 4.0 license 

respectively. . ζS , . ζP and .λC decrease for increasing background density. This is 
where the screening mechanism takes place, that is, the anomalous contribution 
to .FC only becomes visible in high vacuum, for example, in an experiment with 
a vacuum chamber. Furthermore, the screening factors . ζS and . ζP decrease with 
increasing density and radius of the source sphere and the probe sphere, respectively. 
A way to maximize . ζP would be to use smaller and smaller probe masses, which 
is not trivial with the usual torsion balance experiments. Instead one can use atoms 
as probe masses as in the CAI experiments that will be discussed in more detail in 
Sect. 14.3. Another type of quantum systems that have been used as test masses is 
neutrons [8]. 

•? Exercise 
14.1. Calculate the gravitational force due to the Yukawa potential in Eq. (14.1) and

compare with Eq. (14.5) for .RP /λC → 0. Show that in the short distance limit . r/λ → 0
only a modification of Newton’s gravitational constant remains. 

14.2.2 The Equivalence Principle(s) 

The experimental basis of General Relativity is set in the Einstein Equivalence 
Principle (EEP), which following [12] comprises the Weak Equivalence Principle 
(WEP), Local Lorentz Invariance (LLI) and the Local Position Invariance (LPI). The
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EEP is of fundamental importance as it supports the description of gravity based on 
a metric tensor [12]. 

14.2.2.1 The Weak Equivalence Principle 
The WEP is the statement that all point-like masses follow the same trajectory in 
a gravitational field independently of their material properties. Deviations from the 
WEP are conventionally parameterized by the Eötvös parameter 

.η = 2
gA − gB

gA + gB

, (14.6) 

where . gA and . gA are the gravitational accelerations experienced by objects A and B 
in the same gravitational field. When the anomalous chameleon force in Eq. (14.5) 
is associated with gravity, it is obvious that the acceleration of two spherical masses 
of the same mass but different density will, in general, be different. This would be a 
case of violating the WEP. 

In the context of general relativity, the WEP is formulated as universality of 
propagation of free-falling test particles along time-like geodesics. That is, if the 
WEP is fulfilled, the trajectory . γ of a point-like mass will always be governed by 
the geodesic equation 

.γ̈ μ = −
μ
νργ̇ ν γ̇ ρ , (14.7) 

where .

μ
νρ are the Christoffel symbols defined through the metric tensor of the 

spacetime, . γ̇ ν is the tangent to the curve . γ and the derivative is taken with respect 
to the curve’s affine parameter. 

Obviously, the WEP can only be tested approximately as no real point-like mass 
can be used. In a realistic experiment, a test could be based on, for example, the free 
fall of masses with different compositions in the gravitational field of the earth or 
force measurements between a source mass and test masses like in torsion balance 
experiments. 

14.2.2.2 Local Lorentz Invariance 
The principle of LLI states that the outcome of any local non-gravitational exper-
iment is independent of the velocity of the freely-falling reference frame in which 
it is performed. This implies, for example, that the speed of light is the same in 
all reference systems. Corresponding tests date back even to the pre-relativity times 
with the Michelson-Morley interferometer experiment [13]. A detailed review of the 
current state of tests of LLI can be found in [14], and see also the discussion about 
breaking or deforming LLI in Chaps. 1 and 2 as well as the constraints from cosmic 
messengers in Chap. 6. 

To quantify the precision at which LLI is confirmed by experiments, tests may 
be based on the Robertson–Mansouri–Sexl framework [15, 16] or on an extension 
of the standard model of particle physics (SME) that allows for violation of 
Lorentz invariance [17, 18]. The latter uses general, Lorentz invariance violating
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scalar expressions formed from fields and dimensionless tensors to extend the 
fundamental Lagrangian underlying each sector of the SME. From this the dynamics 
and modified equations of motion are derived and the observable consequences of 
broken Lorentz symmetry in precision experiments are modeled. In [19] Bailey and 
Kostelecky have extended this concept of SME to include also a possible violation 
of Lorentz invariance for gravitational experiments at the post-Newtonian level. One 
consequence of Lorentz invariance violation found there, is an anisotropy contained 
in the elements of a dimensionless tensor . ̄s introduced into the Lagrangian that 
describes gravitational interaction of two point-like masses m and M at a separation 
of . r: 

.L = 1

2
mv2 + G

Mm

2r

(
2 + 3s̄00 + s̄jk r̂j r̂k − 3s̄0j vj − s̄0j r̂j vkr̂k

)
, (14.8) 

where .r̂ = r/r . Another approach to LLI violation in gravity has been formulated 
by Nordtvedt much earlier in an anisotropic PPN formalism with a Lagrangian of 
similar form, the parameters of which find corresponding counterparts in the various 
elements of the SME tensor . ̄s [20]. 

14.2.2.3 Local Position Invariance 
The principle of LPI states that the outcome of any local non-gravitational exper-
iment is independent of where and when in the universe it is performed. One 
important consequence of LPI is the constancy of the fundamental constants that 
is tested in various ways by direct measurements of these constants (see [21] for a  
detailed review). Another consequence is the Universality of Gravitational Redshift 
(UGR) [22], which states that rates of clocks at different positions are related by the 
gravitational redshift. 

Gravitational redshift has been tested in various ways starting from the first 
famous experiment by Pound and Rebka [23] utilizing the Mössbauer effect to 
obtain extremely narrow resonance lines of a crystal and sending photons up in a 
tower. The most obvious test principle is to employ highly precise clocks placed 
at different heights and a simple clock comparison [24, 25]. The corresponding 
test theory to quantify deviations of the predictions of general relativity is a one-
parametric deviation of the gravitational redshift formula .z = (1 + α)�V/c2. The  
parameter . α has been constrained to the level .10−5 by tests with clocks in space 
[24] and in a tower [25]. 

Although all of the described tests employ quantum systems, their quantumness 
is not of fundamental importance for the test strategy. For example, the quantum 
properties of optical clocks are only used to obtain very high precision. In Sect. 14.3 
and in the following, we will discuss a few examples, where tests are based on 
quantum properties of the sensors.
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14.2.3 Quantum Features of Gravity 

Quantum properties of the sensing systems are essential when quantum features of 
gravity are to be tested in laboratory experiments. Tests of two particular features 
have been widely discussed: the Heisenberg algebra of position and momentum 
of point particles and the degree at which gravity is a quantum coherent media-
tor. Deformations of the Heisenberg algebra—often associated with Generalized 
Uncertainty Principles (GUP)—can be motivated from a minimal length scale 
associated with quantized gravity [26] and may be tested, for example, by precision 
measurement of the Lamb shift, Landau levels, and the tunneling current in a 
scanning tunneling microscope [27]. Note that deformations of the Heisenberg 
algebra can also have an imprint in the dynamics of macroscopic systems (as implied 
by the correspondence principle, see e.g. [28]), and thus, may be restricted, for 
example, by experiments with macroscopic oscillators (see e.g. [29, 30]) or tests 
of the WEP [31]. If gravity may be described by a fully quantized theory, it should 
act as a quantum coherent mediator. That is, given a gravitating system in a coherent 
superposition of states, where each would lead to a different gravitational field, the 
resulting effect on a quantum test particle should be a coherent superposition as 
well. This would then lead, for example, to the creation of entanglement between the 
source system and test particle, which may be measured in an experiment [32, 33]. 
Let us assume that two spheres of mass m that are freely falling are each brought 
into a spatial superposition state such that they are either closer together or further 
apart as depicted in Fig. 14.3. Neglecting the dispersion of the wave packets of the 
spheres and the change of momentum induced by the gravitational interaction, the 
only remaining element of the time evolution of the joint state of the two spheres is 
the accumulation of distance dependent phases. Then, the initial state evolves as 

. (|L〉1 + |R〉1)(|L〉2 + |R〉2)/2 → e
i Gm2t

h̄d |L〉1|L〉2/2 + e
i Gm2t

h̄(d−�x) |R〉1|L〉2/2
(14.9) 

+e
i Gm2t

h̄(d+�x) |L〉1|R〉2/2 + e
i Gm2 t

h̄d |R〉1|R〉2/2 ,

Fig. 14.3 Gravitational interaction of two masses in coherent superposition states of positions. 
If gravity is fundamentally quantum, the interaction should lead to the creation of entanglement 
[32, 33]
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where d is the initial/average distance between the spheres and .�x is the distance 
between the two positions of the superposition state of each sphere. For general 
t , this state cannot be written as a product of separated states of each sphere, and 
thus, the state is entangled. The entanglement may then be certified by correlated 
measurements on the two spheres [32]. A similar experiment can be envisioned 
based on gravitationally interacting optomechanical systems [34–36]. 

Then, it is the question what one can learn about gravity from quantum coherent 
mediation beyond that gravity is compatible with the superposition principle. 
For example, one can argue that gravity needs to be quantized to ensure that 
relativistic causality holds [37, 38]. The very least one can do is to exclude some 
frameworks that describe the coupling of quantum matter via classical gravity such 
as semiclassical gravity and Classical Channel Gravity [39]. 

•? Exercise 
14.2. Derive Eq. (14.9) for the setup in Fig. 14.3 from the Schrödinger equation as 

described in the text. 

14.3. The entanglement of the state on the right hand side of Eq. (14.9) can be estimated
with the linear entropy .SL = 1 − Tr1[ρ̂2

1 ], where .ρ̂1 = Tr2[ρ̂] is the reduced density matrix 
of mass 1 after the trace has been performed over the Hilbert space of mass 2. Assuming 
that .|L〉 and .|R〉 are orthogonal states for both masses, show that the linear entropy is . SL =
sin2(Gm2t�x2/(d2(d − �x)))/2. For .�x = d/3, .d = 300μm and .m = 10−14 kg find the 
smallest value for t for which . SL is maximized. 

14.3 Tests of Classical Gravity with CAI 

After the discussion of potential features of gravity that can be tested in experiments, 
in this section, we will present details of a specific category of tests performed with 
quantum systems: matter wave interferometry with cold atoms. 

14.3.1 Light-Pulse CAI: Basic Concepts 

Matter wave interferometry as discussed in the following builds on very cold, dilute 
gases of neutral atoms. For such atomic ensembles the quantum-mechanical de 
Broglie wavelength is a function of temperature T as given by 

.λdB(T ) = h√
2πmkBT

. (14.10) 

At lowest temperatures .λdB may even become comparable to the interatomic 
distances. In this regime the wave characteristics of the ensemble become apparent,
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and with bosonic atoms even a phase transition to a Bose-Einstein Condensate 
(BEC) eventually occurs. 

To perform interferometry with such atoms requires the matter wave equivalent 
of a beamsplitter. Here, this is realized by interaction with short laser pulses. 
Such a beamsplitter creates a spatially delocalized superposition of the atomic 
wave function which then evolves along different paths of the interferometer and 
is coherently manipulated by further beamsplitters or mirrors. The partial wave 
packets eventually interfere in the output ports of a final beamsplitter, and from 
the observed number of atoms in those ports the relative accumulated phase is 
determined. This phase depends sensitively on the action of inertial and gravitational 
forces, which couple to the atoms during free evolution of the superposition. 

The measurements we describe below all rely on the phase evolution of freely 
falling atoms, with no external fields applied for levitation or guiding. A lot 
of research has been done on guided interferometry as well, but no precision 
measurements of gravity have been reported from that work yet, thus it is not 
covered here. Also note that for most purposes the phase evolution throughout 
the interferometer can be treated semiclassically, i.e. with classical light fields, and 
the interferometer paths are usually taken to be the classical trajectories of a point 
particle at the center of mass of the partial atomic wave functions. 

14.3.1.1 Matter Wave Source 
Two steps are most commonly applied to cool a dilute gas to the required level of 
. μK and below. The first is laser cooling in a magneto-optical trap (MOT) followed 
by a so called optical molasses. This provides an ensemble of typically up to . 109

atoms at few . μK temperature. Many CAI measurements start from such a molasses, 
possibly applying some velocity selection of the atoms to provide the necessary 
coherence for subsequent interferometry. 

To obtain even lower temperature, evaporative cooling in a conservative magnetic 
or optical trapping potential can be applied. This reduces the temperature and 
particle number to typically few 100 nK and .106 atoms or less. If at the same time 
the ensemble density is maintained sufficiently high, quantum degeneracy and Bose-
Einstein condensation (BEC) may be achieved. 

Using a BEC rather than a molasses allows for better spatial coherence and 
reduced spatial spreading of the free falling atomic cloud. With a BEC the 
interaction driven expansion can be as low as mm/s and less as compared to several 
cm/s for a thermal cloud of atoms. This helps to reduce systematic errors and to 
extend the free evolution time in an interferometer measurement. Furthermore, the 
velocity spread of the BEC is less than the momentum separation imparted at the 
beamsplitters. Thus, the interferometer paths can be distinctly delocalized and the 
expanding clouds in the different paths do not overlap. The cost of using a BEC 
on the other hand is a substantially higher complexity of the setup when combining 
laser and evaporative cooling, as well as the reduced atom number and thus reduced 
signal to noise ratio. 

Atomic species that are typically used in CAI are those that can be easily 
laser cooled. In the first place, these are alkali atoms such as Li, Na, Rb, K and
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Cs which feature only one valence electron and thus simple hyperfine spectra. In 
particular . 87Rb and . 133Cs have been the work horses applied in many CAI precision 
experiments. For the bosonic isotopes evaporative cooling has allowed to achieve 
Bose-Einstein condensation with most such alkali atoms. There the evaporative 
cooling efficiency depends largely on the atoms’ collisional scattering properties, 
which determines how well the ensemble rethermalizes during evaporative cooling. 
More recent CAI measurements have also employed Earth-Alkali group-II elements 
such as Sr or Yb. This group of elements is commonly used in optical clocks based 
on cold atoms. The required cooling techniques are usually more involved due to the 
more complex energy level structure, but some features of these atoms make them 
very attractive in precision CAI measurements. For example interferometry with 
some of these isotopes is much less sensitive to magnetic field variations. Also, 
the narrow clock transition and thus long lived excited state they provide, allows 
for single-photon beamsplitting. In CAI applications with very long baselines, this 
provides an important advantage over two-photon processes (see below) as used for 
Alkali atoms. 

14.3.1.2 Matter Wave Beamsplitters and Mirrors 
Coherent matter wave beamsplitters and mirrors for cold atoms can be achieved by 
interaction with short laser pulses. Most often these are two-photon processes that 
transfer momentum kicks of two photons to an atom. We briefly describe the most 
common implementations of these below and discuss their respective benefits and 
drawbacks. 

Stimulated Raman Transition 
A stimulated two-photon Raman transition couples two hyperfine levels of the 
ground state of an atom, .|g1〉 and .|g2〉, via an excited state . |e〉, as shown in Fig. 14.4a. 
Here, the two laser beams of frequencies . ω1 and . ω2 are detuned by . � with respect 
to the optical transition thus avoiding spontaneous emission from the intermediate 
excited state. This forms an effective two-level system and Rabi oscillations can be 

Fig. 14.4 Schematic representation of (a) stimulated Raman transition, (b) Bragg diffraction and 
(c) Bloch oscillations. For the latter two exemplary subsequent two-photon transitions are shown. 

The recoil frequency shift is given by .ωr = h̄k2

2m
, where .k = k1 ≈ k2 is the laser wave vector
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driven between the coupled states where the effective Rabi frequency is combined 
from the single-photon Rabi frequencies .�1,�2 as .� = �1�2

4�
. With pulses of 

duration . τ such that .�τ = π/2 a superposition of the two hyperfine states is 
obtained, while complete state inversion requires .�τ = π . 

Using such a two-photon transition offers two main advantages over a single-
photon transition: First, the coupled hyperfine states are long lived and spontaneous 
emission can be neglected. Second, it is only the difference frequency of the two 
laser beams that needs to be accurately tuned to resonance. This frequency is 
typically in the GHz regime and can be controlled much more easily than the optical 
laser frequency as would be required for a single-photon transition. 

In order to obtain a matter wave beamsplitter or mirror from this configuration the 
two laser beams need to be counter-propagating such that the recoil from absorbed 
.(h̄k1) and emitted .(h̄k2) photons add up. Then, for a .π/2-pulse a delocalized 
superposition of atoms in different hyperfine and momentum states is obtained, 
where the two partial wave packets separate with a relative velocity of two photon 
recoils .h̄k1 + h̄k2 ≈ 2h̄k on the order of few cm/s. 

Bragg Diffraction 
Coherent coupling of two momentum states separated by .2h̄k can also be obtained 
by absorption and stimulated emission of photons within the same internal state 
as depicted in Fig. 14.4b. In this case, the frequency difference of the exchanged 
photons is typically on the order of kHz and matches the energy difference of 
the momentum states. For long pulses i.e. with a Fourier width that is smaller 
than the momentum separation, this process can be viewed equivalently to Bragg 
diffraction of the matter wave on a moving optical lattice. Since the atoms remain 
in the same internal state upon diffraction, several systematic errors due to state 
dependent phase shifts can be avoided. A drawback though is that the output ports 
of the interferometer cannot be discriminated by state selective detection any more. 
Instead, they need to separate after a time of flight for independent spatially resolved 
detection, which requires that the ensemble expansion is reduced below the recoil 
velocity. This is either achieved with evaporatively cooled atoms and BEC or with 
strong velocity selection on a molasses. 

As with regular Bragg diffraction, high-order diffraction transferring multiples 
of photon momenta is also possible. However, the required laser intensity scales 
strongly with the order of such multi-photon processes, which typically limits their 
use to lower orders and specific applications. 

Bloch Oscillations 
Bloch oscillations offer a convenient way to transfer multiple pairs of photon recoils 
in n subsequent two-photon processes. For this, atoms are adiabatically loaded 
into an optical lattice and then accelerated along with the lattice by adiabatically 
sweeping the detuning of the lasers forming the lattice (see Fig. 14.4c). Such Bloch 
oscillations have been used to transfer thousands of photon recoils, and have allowed 
to form large area interferometers. For beam splitting, they are usually combined
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Fig. 14.5 Mach-Zehnder geometry of a cold atom gravimeter. Dashed trajectories are in absence 
of gravity, solid lines indicate trajectories of atoms in free fall bent by gravitational acceleration. 
In this depiction beamsplitters and mirrors are formed by laser pulses that are retro-reflected. With 
two frequency components . ω1 and . ω2 in each pulse a moving lattice with counter propagating 
wave vectors . k1 and . k2 forms 

with an initial splitting process of either Bragg or Raman type, to allow the distinct 
loading and subsequent acceleration of either interferometer arm into the lattice. 

14.3.1.3 Phase Evolution and Interferometry 
To illustrate the phase evolution in an atom interferometer, we consider a sequence 
of .π/2 − π − π/2 pulses spanning a Mach-Zehnder geometry as depicted in 
Fig. 14.5. This configuration is the most relevant one for the topic of precision 
measurements of gravity as discussed here, and is typically used in CAI gravimeters. 
Other pulse sequences and interferometer topologies are also possible providing 
different sensitivity or common mode suppression to certain phase contributions. 

In any interferometer, the total accumulated phase difference can be decomposed 
into contributions of different origin as 

.�tot = �prop + �light + �sep. (14.11) 

The first contribution is that from the free evolution of the matter wave in either
path. Using the path integral approach, the action along the classical paths . 
i can 
be calculated from the Lagrangian of the system as in 

.S
i
=

∫


i

Li (ri(t), vi(t))dt (14.12) 

which we use to obtain the phase difference between the upper (u) and lower (l)
interferometer paths

.�prop = (S
u − S
l
)/h̄. (14.13)
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The second contribution is due to the interaction of the atoms with the laser light 
during beamsplitter and mirror pulses. Upon each interaction with the laser light 
field, a phase factor is added to the matter wave function as in 

.|i〉 → iexp(keffz(t))|f 〉 |f 〉 → iexp(−keffz(t))|i〉, (14.14) 

where we use the so called effective wave vector .keff = k1 + k2 ≈ 2k. All phases 
thus imparted on the atoms in the upper and the lower path respectively are added 
up and contribute to the total phase difference as 

.�light =
∑


u

φu −
∑


l

φl. (14.15) 

Finally, the last term is due to a possible displacement of the interfering portions
of the matter wave at the final beamsplitter. Such a displacement could occur if for
example a gravity gradient prevents symmetric closure of the interferometer:

.�sep = p0�z

h̄
. (14.16) 

Here . p0 is the average momentum of the atoms at the output and .�z the separation 
of upper and lower path at this position. 

An evaluation of all the above contributions for a Mach-Zehnder interferometer 
as in Fig. 14.5 and for a homogeneous gravitational field results in 

.�tot = keffT
2g. (14.17) 

A few remarks on this result are in order: 

• The gravitational acceleration is linked to the measurement quantity (phase) by 
a remarkably simple scale factor: .S = keffT

2. This scaling depends only on the 
laser frequencies (.keff = (ω1 + ω2)/c), that can be fixed according to universal 
atomic properties and on the timing of the pulse sequence. Thus it is not subject 
to an instrument specific calibration and does not suffer from drifts and ageing as 
in many classical gravimeter instruments such as spring gravimeters. Also these 
quantities can be determined very precisely which has allowed CAI gravimeters 
to achieve the most accurate absolute measurements of local free fall acceleration 
to date. 

• The dynamic range of the interferometer can be adjusted simply by changing the 
pulse separation time. The latter enters quadratically, thus even very large scale 
factors on the order of .S > 106 can be realized with .T > 1s. This enables highly 
sensitive measurements. 

• At this leading order, the above equation comprises only phase contributions 
from interaction with the laser light. Indeed, the underlying measurement
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principle can be thought of as using the laser wavefronts like a ruler to determine 
the free fall distance over time intervals T and 2T . 

•? Exercise 
14.4. Retrace the derivation of Eq. (14.17) by evaluating Eqs. (14.12)–(14.15) using the 

Lagrangian of a point mass in free fall in a homogeneous gravitational field. For the laser 
phases added to upper and lower path consider .φi = keffzi with i indicating the different 
instances of interaction during the sequence. 

14.3.1.4 Interferometer Read-Out 
The normalized relative population .P = (n2 −n1)/(n2 +n1) of the two output ports 
of the interferometer depends on the interferometer phase as 

.P(�tot) ∼ C × cos(�tot). (14.18) 

Here .C ≤ 1 accounts for the finite contrast of the interferometer. A change in phase 
leads to a change in relative population that can be detected at the output of the 
interferometer. This is typically done either by illuminating the atoms with resonant 
laser light and collecting the resulting fluorescence or by imaging the shadow of 
the ensemble due to absorption on a camera (the latter typically only with ultra-
cold, dense ensembles). From this the total number of atoms in either port can be 
determined. Ultimately, this detection is limited by shot noise respectively quantum 
projection noise, that is the signal to noise ratio scales as .1/

√
N where . N = n2 +

n1 is the total number of atoms. At the center of the fringe the uncertainty in . �
due to shot noise thus is .σ� = 1/(C

√
N). Considering an atom shot noise limited 

gravimeter with leading order phase shift as given in Eq. (14.17), we can estimate 
the statistical uncertainty in a measurement of local gravity as 

.σg = 1

C
√

N

1

nkeffT 2 . (14.19) 

Here n indicates the number of two-photon transitions used for beam splitting.
Obviously the sensitivity can be increased either by extending pulse separation
time T i.e. extending the free fall time or by using so called Large-Momentum-
Transfer (LMT) beamsplitters that transfer n multiples of two-photon momenta,
such as high order Bragg diffraction or Bloch oscillations. A third possibility is
to overcome the standard quantum limit by using momentum entangled atoms in
the interferometer. Here the fundamental detection noise scales as .1/N rather than 
.1/

√
N which could ultimately further boost precision tests of fundamental physics 

with these instruments.
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14.3.2 CAI Precision Tests of Gravity 

With the basic idea of a CAI gravimeter established above, it is now easy to see how 
these instruments are employed in tests of gravity. In particular, the quantum nature 
of the applied test masses opens new avenues to test gravity theory in ways that are 
not available with classical tests. We will briefly address some of the proposed ideas 
and point the reader to the related literature for further reading. 

14.3.2.1 Measurements of Local Free Fall Acceleration g and Gravity 
Gradients 

Extremely accurate gravimeters have been realized in atomic fountain setups 
following the scheme shown in Fig. 14.5. There, interferometer times of 2T close 
to 1 second have been realized resulting in a large scale factor and thus sensitive 
measurements of local gravitational acceleration at .2 × 10−8 m/s. 2/.

√
Hz and an 

overall absolute uncertainty of few parts in .109 [40]. Even mobile devices of this 
kind are being developed today, which is of high interest in geodesy, particularly 
in areas where classical gravimeters cannot be employed such as in airborne or 
shipborne measurement campaigns [41, 42]. One current limitation in these devices 
is due to the thermal spread of the atomic cloud in combination with wavefront 
distortions of the beamsplitters and efforts using compact BEC gravimeters are 
currently pursued to overcome this. Besides gravimetry also gravity gradiometry 
with cold atoms is done, where simply two such gravimeters are operated in close 
proximity on two atomic ensembles, typically sharing the same beamsplitter lasers 
possibly even within the same vacuum system. These measurements benefit from 
common mode suppression of various error sources such as laser phase noise or 
vibrations and have been able to measure gravity gradients as low as .4×10−10 g/m. 
An elegant way to extract the differential phase and thus . δg in these measurements 
is to use ellipse fitting, where the fringes are plotted on x and y axis. Since both 
interferometers use the same scale factor common phase fluctuations map out an 
ellipse while the differential phase determines the eccentricity of the ellipse and can 
be determined from a respective fit. 

In terms of testing fundamental physics, precision measurements of local gravi-
tational acceleration g have been used to test Lorentz invariance in the gravitational 
sector of an extension of the standard model of particle physics (SME) that 
incorporates a violation of Lorentz invariance. This was done by using precision 
gravimetry data from an atomic fountain recorded over several days and corrected 
for tidal effects from sun and moon [43]. As the laboratory rotates along with Earth’s 
rotation a corresponding anisotropy in the residual gravitational acceleration might 
indicate a violation of Lorentz invariance. No such anisotropy could be found and 
together with similar analysis of lunar laser ranging data [44], these measurements 
provide stringent bounds on elements of the tensor . ̄s of Eq. (14.8) down to the level  
of .10−9.
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14.3.2.2 Measurements of Newton’s Constant G 
Several experiments have used cold atom interferometry to perform a precision 
measurement of Newton’s constant G by measuring the phase shift due to the 
gravitational force of a nearby source mass on the atomic ensemble. Typically these 
apply a gravity gradiometer as described above and thus rely on common mode 
cancellation of several important systematic errors and noise sources. To allow for a 
measurement of G, they employ a pair of heavy source masses next to the setup and 
symmetrically alternate their distance with respect to the atoms from measurement 
run to measurement run. From the observed modulation of the local gravity gradient, 
the value of G can then be derived. 

These experiments have reached a precision at the level of 150 ppm [45–47] 
and provide an important alternative experimental approach to measuring G as 
compared to Cavendish type torsion pendulum experiments. Such systematically 
different experiments are especially important, because different precision measure-
ments of G have resulted in values severely differing by hundreds of ppm, while at 
the same time each claiming an accuracy at the level of few tens of ppm, and so 
far there seems to be no convergence towards an agreed upon value at this level of 
accuracy. 

To obtain a measurement of G from CAI, similar to the most sensitive tests 
with macroscopic test masses, requires a further improvement by about a factor of 
five in both statistical and systematic uncertainties. The first should be attainable 
by significantly longer measurement campaigns of weeks rather than days and 
possibly increased number of atoms. The second will need, among several other 
improvements, atomic clouds with reduced size and momentum spread as well as 
source masses of better homogeneity. 

14.3.2.3 Gravity at Short Distance 
Gravity gradient measurements as just presented also allow to perform sensitive 
tests of the Newtonian force law in the form of the Yukawa potential of Eq. (14.1) .
In [48] a horizontal CAI gradiometer has been shown to enable a constraint on . α at 
the .8 × 10−3 level on the length scale of .λ = 0.1 m. While this still falls into the 
region already excluded by other experiments, an improvement down to the level 
of .α < 10−5 appears feasible, thus extending beyond the excluded parameter space 
shown in the left panel of Fig. 14.2. To achieve that, the atom to source mass distance 
would need to be reduced from 10 mm to the level of 1 mm at closest proximity. Also 
the source mass would need to be increased about tenfold to 5000 kg. 

14.3.2.4 Screened Scalar Fields 
CAI experiments are particularly well suited for the search for screened scalar 
fields because (1) they are performed in a high vacuum with reduced background 
mass density and (2) they the provide very high sensitivity with almost point-like 
test masses. These are important benefits when it comes to detecting chameleon 
fields, because it suppresses the screening significantly in comparison to tests with 
macroscopic masses (e.g. with optomechanical systems [11]).
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In a CAI search for chameleon fields one would aim to detect an anomalous 
gravitational acceleration of atoms next to a source mass .MS of the form 

.a = GMS

r2

[

1 + 2ζSζa

(
MPl

M

)2
]

, (14.20) 

as follows from Eq. (14.5) for .RP /λC, r/λC → 0 (compare with [49]). 
A specific experiment to improve bounds on the parameters of the chameleon 

field M and . � using atom interferometry has been presented in [50]. There a 
CAI accelerometer has been implemented with the atoms in direct vicinity to a 
gravitational, cylindric source mass. Alternating the position of the source mass 
from close to distant in subsequent measurement runs, allowed to take differential 
measurements and isolate the gravitational acceleration of the test mass from that 
of Earth and other nearby objects. A potential anomaly in gravitational acceleration 
could be restricted to .(9 ± 24) nm/s. 2 by this experiment. Considering Eq. (14.5) 
and the parameter space shown in the right panel of Fig. 14.2, this excludes mass 
scales up to .M < 10−5MPl at .� = 2.4 meV which is the value consistent with the 
observed cosmological expansion. 

14.3.2.5 Tests of the WEP 
A selection of WEP tests based on cold atom interferometry and their respective 
results is presented in Table 14.1. The simplest way to test the WEP with CAI, 
is to operate a CAI gravimeter with two different atomic species A and B and 
compare the measured free fall acceleration g with each species to obtain the 
Eötvös parameter (14.6). This has been done for example by Fray et al. [51] who  
operated an instrument with interleaving single runs with different isotopes of Rb. 
More recent such tests prepare a mixture of both atomic species with superimposed 
centers of mass and then run the two interferometer sequences simultaneously. This 
way, systematic errors from gravity gradients or temporal variations can be largely 
suppressed. For a comparison of two different isotopes of the same atomic species, 
it is even possible to use the same beam splitting lasers with both ensembles. This 
allows for a good match in scale factors and a strong suppression of laser phase 
noise in the differential measurement. Comparisons of atomic species of different 
chemical elements on the other hand typically require different laser systems and 
are thus more complex. Yet of course, they offer a much larger and possibly more 
interesting variety of test mass pairs. 

The most accurate test based on CAI so far has been reported in [52]. From a 
comparison of 87Rb and 85Rb they obtained a limit of . η = (1.6 ± 1.8 ± 3.4) ×
10−12. This experiment applied a fountain setup with a large baseline of 10 m, as 
well as evaporatively cooled atoms and sequential Bragg beamsplitters allowing 
for a momentum separation of .12 h̄k. The main systematic uncertainties were due to 
differential AC Stark shifts on the two isotopes as well as from the initial kinematics 
of the ensembles (center of mass displacements and velocity differences). Some 
mitigation to the latter was achieved by adjusting the laser frequencies during the 
sequence [53–55]. To further reduce also the effects of AC Stark shifts requires 
larger laser detuning and thus upgrading the laser system power in the future.
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Table 14.1 WEP tests based on cold atoms. (a) Comparison of a CAI vs a FG5 gravimeter i.e. a 
falling corner cube. (b) Comparison of bosonic vs fermionic isotopes, done by Bloch oscillations 
in an optical lattice. (c) Comparison of atoms in different magnetic substates .mF = ±1. (d)  
Comparison of atoms with different spin i.e.in different hyperfine states. (e) Comparison of atoms 
in superposition of hyperfine states. The data of this table has been collected from the references 
given in the last column of the table 

Laboratory Year Test masses Eötvös limit Citation 

Stanford, Palo Alto 2001 . 133Cs / FG5 .a) .(7.0 ± 7.0) × 10−9 [40] ©2001 
IOP Publishing 
Ltd 

MPQ, Garching 2004 87Rb/85Rb .(1.2 ± 1.7) × 10−7 [51] ©2004 
American 
Physical 
Society 

SYRTE, Paris 2010 87Rb/ FG5 .a) .(4.3 ± 6.4) × 10−9 [86] ©2010 
BIPM and IOP 
Publishing Ltd 

ONERA, Palaiseau 2013 87Rb/85Rb .(1.2 ± 3.2) × 10−7 [87] ©2013 
American 
Physical 
Society 

LENS, Florence 2014 . 88Sr/. 87Sr .b) .(0.2 ± 1.6) × 10−7 [81] ©2014 
American 
Physical 
Society 

Wuhan 2015 87Rb/85Rb .(2.8 ± 3.0) × 10−8 [88] ©2015 
American 
Physical 
Society 

Wuhan 2016 87Rb .c) .(0.2 ± 1.2) × 10−7 [80] ©2016 
American 
Physical 
Society 

LENS, Florence 2017 87Rb .d) e) .(3.3 ± 2.9) × 10−9 [84] ©2017 
TheAuthors 

IQO, Hannover 2020 87Rb/39K .(−1.9 ± 3.7) × 10−7 [57] ©2020 
TheAuthors 

Stanford, Palo Alto 2020 87Rb/85Rb .(1.6±1.8±3.4)×10−12 [52] ©2020 
American 
Physical 
Society 

Wuhan 2021 87Rb/85Rb .d) .< 4.1 × 10−10 [89] ©2021 
American 
Physical 
Society
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With respect to a comparison of atomic species of different chemical elements, 
the most accurate test has been reported by Schlippert et al. [56] and Albers et al. 
[57] with an Eötvös parameter .η = (−1.9 ± 3.2) × 10−7. This experiment did a 
comparison of 87Rb and 39K over a rather short baseline (.T = 41 ms) and applied 
laser beamsplitters at different wavelengths of 780 nm and 767 nm. The accuracy 
was limited by phase uncertainties arising from wavefront aberrations that are 
sampled by the thermally expanding molasses as well as magnetic field gradients. 
Further improvements might thus be achieved by implementing evaporative cooling 
and thus a reduction of the ensemble spreading as well as improvements on the 
magnetic shielding. 

Now, obviously classical tests have already achieved significantly better preci-
sion down to .η < 2 × 10−14. What then should be the interest in such CAI tests of 
the WEP? Two aspects can be emphasized here: 

First, CAI is still a maturing technology and its potential is by far not yet fully 
explored. We can still expect significant progress overcoming current technical 
limitations, which will ultimately allow to surpass classical measurements. For 
example, several long baseline facilities are being or have been set up [60], [61] to  
employ and investigate the use of significantly enhanced scale factors S. Besides 
the continuing work of [52], this comprises plans to have a comparison of the 
free fall of 170Yb and 87Rb with .10−13 sensitivity in a 10 m baseline setup in 
Hannover, Germany [61]. Also LMT beamsplitters are investigated to further boost 
the sensitivity. These coherently transfer 2n photon momenta to increase the scaling, 
with n on the order of hundreds and ultimately aiming beyond a thousand. Finally, 
major efforts are currently underway to investigate interferometry with entangled 
atoms. This will offer a way to overcome the limit set by quantum projection noise as 
pointed out above. With these developments ongoing, CAI tests of the WEP should 
achieve significant improvements in the future. 

In order to push their sensitivity to the ultimate limits, quantum tests of the 
WEP will need to eventually overcome the limited free fall time of an Earth-bound 
setup, similar as done with the classical WEP test of the MICROSCOPE mission. 
Such a space-based quantum test has been proposed and has been studied by a 
European consortium in the framework of the ESA Cosmic Vision program in 2014 
[62, 63]. There, a comparison of 87Rb and 85Rb at the .10−15 level was targeted, 
but the mission proposal was not selected mostly for lack of space readiness of the 
required CAI technology. Technology and space qualification has since been further 
advanced for example with the first BECs prepared in space in 2017 [64] and in 
orbit in 2018 [65]. At the same time, the hard requirements on source preparation 
demanding control of center of mass overlap and center of mass velocity at the nm 
and nm/s level could also be relaxed by orders of magnitude as discussed in [66,67]. 
This now allows to target space-based tests even at the .10−17 level and with different 
atomic species such as 87Rb and 41K. 

The second point to be emphasized is that CAI tests allow to target aspects, which 
may either be not as easily accessible in classical tests or which are inherently 
quantum in nature. They also contribute a novel set of test mass combinations to 
be used complementary to classical tests (Table 14.2). Test mass pairs e.g. in [68] or  
[69] have been selected in order to maximize a potential WEP violation signal due to
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Table 14.2 Test mass pairs and their respective charge differences, with charges coupling to a 
violation of WEP, as described in [58] ©2012 IOP Publishing Ltd. All rights reserved and [59]. 
Data reused with permissions 

Test mass pair .�Q1 × 104 .�Q2 × 104 .�fe+p−n × 102 . �fe+p+n × 104

Ti/Pt 19.92 26.65 

Ti/Be −15.46 −70.20 1.48 −4.16 
87Rb/85Rb 0.84 −0.79 −1.01 1.81 
87Rb/39K −6.69 −23.69 −6.31 1.90 
87Rb/170Yb −12.87 −13.92 −1.36 −8.64 
87Sr/88Sr 0.42 −0.39 −0.49 2.04 
87Sr/114Cd −2.62 −6.95 −2.3 −2.11 

hypothetical charges that couple to gravity and are linked to the respective baryon, 
proton or neutron numbers, such as a dilaton charge [58,70–72]. Similarly, CAI tests 
can be done on combinations of atoms with favourable proton/neutron ratios. For 
example a comparison of Li isotopes has been identified to be particularly promising 
in this respect [73]. Obviously, a classical test comparing different isotopes of this 
kind is not as readily available as it is in a CAI measurement. 

Classical tests of the universality of free fall (UFF) on the other hand have already 
applied spin polarized or rotating test masses e.g. in [74]. This is because one 
possible UFF violation scenario is based on spin-gravity or spin-torsion coupling 
[75–79]. With atoms in well defined spin states, CAI experiments are particularly 
suited for these kind of tests. Thus, an experiment has been done that tested the free 
fall of Rb atoms with different spin orientations [80]. Also the free fall of bosonic 
. 87Sr and fermionic . 88Sr has been compared using Bloch oscillations in a vertical 
optical lattice [81] .  

Further, even a quantum version of the equivalence principle could be tested. 
A formulation of such a principle has been proposed by Zych and Brukner [82] 
and Orlando et al. [83], requiring the equivalence of inertial and gravitational rest 
mass energy. In this model, atoms in different internal energy eigenstates represent 
interesting test mass pairs. Consequently, in [51, 84] free fall comparisons of Rb 
atoms in different hyperfine ground states have been performed. In particular, also 
the equivalence of off-diagonal elements of the quantum mechanical mass-energy 
operator can be probed if the atoms are prepared in a superposition of internal energy 
eigenstates, which is not feasible in classical tests. Such a measurement was done in 
a gravity gradiometer configuration in [84], comparing Rb atoms in a superposition 
of the hyperfine ground states against Rb atoms prepared in a single hyperfine state. 
From this, off-diagonal elements of the mass-energy operator were limited to . <
5 × 10−8. 

Finally, an experiment that should significantly extend the concept of a quantum 
test of the WEP has been devised, aiming to compare the free fall of entangled atom 
pairs. In [85] they outline a viable experimental procedure for such a measurement 
and estimate a feasible sensitivity of .η < 10−7.
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•? Exercise 
14.5. Consider Eq. (14.19) and how this translates into sensitivity with respect to the 

Eötvös parameter (14.6). Use some typical numbers for a Rb atomic fountain (.λ = 780 nm) 
to estimate the attainable sensitivity in a WEP test, e.g. .T = 500 ms, .N = 106, .n = 2, 
and .C = 0.5 with Rb isotopes. Which combination of particle number, pulse separation 
time, photon momenta would be needed to achieve the level of .η < 10−13 in a single 
measurement run of a future high precision test. 

14.3.2.6 Gravitational Redshift and CAI 
Many tests of Local Position Invariance probe the universality of the gravitational 
redshift in highly accurate atomic clocks of different types as they move through the 
gravitational potential of Earth and sun. While these clocks operate on principles 
of quantum physics, these tests are conceptually still classical, as simply worldlines 
of point-like, independent clocks are considered and assigned with the respective 
general relativistic proper time. In the microscopic quantum mechanical description 
of these clocks however, time is only a global parameter and the concept of proper 
time does not apply. 

In recent years, the quantum nature of such tests has thus been scrutinized 
and in particular CAI experiments have been proposed that strive to perform 
measurements of the gravitational redshift within the quantum realm. Initially the 
discussion was fueled by claims of a redshift test based on a reanalysis of a CAI 
gravimeter experiment [90]. This has been generally dismissed as not viable for 
any interferometer where interfering atoms are prepared in energy eigenstates and 
travel in a homogeneous gravitational field [91,92]. Further experimental proposals 
then laid out how general relativistic proper time in a CAI might manifest itself 
by a decrease of the visibility of interferometer fringes. This was based on the 
notion that proper time labeling the interferometer arms at different gravitational 
potential might provide which-way information [93]. Further, clock interferometry 
schemes have been presented that might allow to directly measure the gravitational 
redshift within a CAI. For that, atoms in either interferometer arm at different 
gravitational potential would generally need to be prepared in a superposition state 
i.e. representing a quantum clock [92]. However, all of these proposed experiments 
come with tremendous technical challenges. To provide either a measurable contrast 
loss or even a phase shift from time dilation, they require a combination of 
seconds of free evolution as well as superposition of states that are separated by 
an optical frequency, rather than the usual microwave splitting of hyperfine states. 
Very long baseline interferometry such as in [61] and the use of single-photon 
transitions in Earth-Alkali atoms such as Sr or Yb might be able to meet these 
requirements though. Indeed, a recent proposal has shown a realistic path towards 
an implementation [94]. In particular this proposal also addresses the technical 
challenges of how to create a superposition of atoms in either path with just one 
laser and presents a viable solution.
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14.3.3 Testing Quantum Features of Gravity and Search for 
Signatures of Quantum Gravity 

Residual effects from a yet unknown quantum gravity might be revealed by low-
energy, laboratory experiments of highest precision. CAI experiments in particular 
could be well suited to perform such quantum gravity phenomenology. A possible 
such signature could be a violation of the Weak Equivalence Principle as discussed 
above. Other such deviations from standard physics that CAIs could reveal are 
fundamental decoherence, modifications to the spreading of wave packets or 
modified energy-momentum relations. The latter can be probed sensitively in CAI 
precision measurements of the photon recoil, which typically apply a Ramsey-Bordé 
geometry (four .π/2 pulses) and have achieved the ppb level of accuracy [95]. In 
[96] it has been shown how such measurements provide bounds on parameters of 
modified dispersion relations that can be phenomenologically derived from quantum 
gravity models such as loop quantum gravity. Other such phenomenological models 
have argued for fundamental decoherence arising from space-time fluctuations at 
Planck scales [97] as well as an anomalous spreading of wave packets [98]. 

•? Exercise 
14.6. In principle, the methods of light-pulse CAI may also be employed for an 

experimental test of the coherent mediation of gravity as described in Sect. 14.2.3. An  
optical dipole transition of a nano-particle, for example, provided by an embedded two-
level system, may be addressed for momentum transfer via Bragg diffraction to coherently 
split the center-of-mass wave function of the nano-particle. Let us assume that the nano-
particle has a mass of .10−14 kg and a momentum of .2000h̄keff is transferred to the particle 
with .keff ≈ 2π/λ and .λ ∼ 800 nm. Calculate the spread of the particle’s wave function after 
. 1 s of free-fall time by calculating the velocity difference from the transferred momentum. 
Can this experiment be used to test gravity as a quantum coherent mediator in practice? 

14.4 Summary 

We hope that it has become evident that the general notion of quantum tests of 
gravity comprises a huge variety of different experimental setups and regimes 
of gravity from quantum enhanced sensing of gravitational forces and tests of 
principles that are at the foundations of general relativity to tests of quantum 
properties of gravity. In the case of force sensing and tests of fundamental principles, 
advantages of employing quantum systems are, on the one hand, the high level of 
control over these systems (e.g. ultra-cold atoms, optomechanical sensors at their 
motional ground state), on the other hand, the possibility to employ non-classical 
states to overcome the shot noise limit of measurement precision. In the case of tests 
of quantum properties of gravity, the quantum properties of the employed systems
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are absolutely essential as we may only be able to study the non-classical response of 
the gravitational field through the creation of non-classical states of gravitationally 
interacting quantum systems. The community of researchers working in the field of 
quantum tests of gravity has grown extensively in recent years and we expect this 
trend to continue. With the concentrated effort of these many researchers and the 
increasing experimental control and variety of experimental setups, we expect to 
see many advances as the century of quantum technologies is unfolding. 
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15The Gravity of Light 

Jan W. van Holten 

Abstract 

The gravitational field of an idealized plane-wave solution of the Maxwell 
equations can be described in closed form. After discussing this particular 
solution of the Einstein-Maxwell equations, the motion of neutral test particles, 
which are sensitive only to the gravitational background field, is analyzed. This 
is followed by a corresponding analysis of the dynamics of neutral fields in the 
particular Einstein-Maxwell background, considering scalars, Majorana spinors 
and abelian vector fields, respectively. 

15.1 Light and Gravity 

Light and gravity provide the main tools for studying the universe at large; gravity, 
as it determines the interactions and paths of celestial bodies, and light as it 
makes them visible to us and enables us to unravel their properties. The theoretical 
descriptions of light, as a form of electromagnetism, and gravity have much in 
common. The classical theories of electromagnetism and gravity are both local 
relativistic field theories; these fields carry physical degrees of freedom propagating 
energy, momentum and angular momentum at a finite speed c, commonly referred 
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to as the speed of light, even though gravity, and also the color charges of subatomic 
particles, propagate their interactions at the same universal speed as well.1 

Of course, at the microscopic level electromagnetism is more than a classical 
field theory, as quantum effects become essential to its propagation and interaction 
with matter in the form of electrons and other charged particles. A similar change in 
the way gravity behaves in this domain is expected as well, although experimental 
confirmation of these ideas has as yet remained out of reach. 

Even though the sources of gravity and electromagnetism are different, with grav-
ity coupling to the local density of energy and momentum, and electromagnetism to 
the local density of electric charges and currents, the corresponding physical degrees 
of freedom (classical fields in the macroscopic world) do influence each other, but in 
an asymmetric way. The present chapter is dedicated to a discussion of some aspects 
of this mutual interaction. Unless specified otherwise (when numerical estimates are 
required) units are used in which the speed of light is unity: .c = 1. 

15.2 Einstein-Maxwell Theory 

General Relativity (GR), the classical theory of gravity, states that space-time is 
endowed with a geometry, encoded in the metric . gμν , determined by the distribution 
of all combined energy- and momentum-densities. This geometry expresses itself in 
the motion of matter and light in the universe. For the interaction between gravity 
and electromagnetic fields this results in an Einstein equation specifying the Ricci 
curvature in terms of the electro-magnetic energy-momentum tensor: 

.Rμν − 1

2
gμνR = −8πGTμν[F ], (15.1) 

with the local energy-momentum density of electromagnetic fields given by 

.Tμν[F ] = FμλF
λ

ν − 1

4
gμνFκλF

κλ. (15.2) 

At the same time the classical dynamics of the electromagnetic field is specified by 
the generalized Maxwell equations in a space-time with given dynamical metric: 

.DμFμν = ∂μFμν + �
μ

μλ Fλν + � ν
μλ Fμλ = −jν, (15.3) 

where . jν is the electric charge-current density, and .� ν
μλ the Riemann-Christoffel 

connection. In the absence of charges and currents: .jν = 0, Eqs. (15.1)–(15.3) form  
a closed system describing gravity interacting with dynamical electromagnetic fields

1 For a discussion of the role of the universal constant c characterizing the relations between inertial 
frames, see ref. [1]. 
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in otherwise empty space; this set-up applies in particular to the coupling of gravity 
with electromagnetic radiation. 

•? Exercise 
15.1. Show that (15.1)–(15.3) can be derived by variational calculus from the action 

. S[g,A] =
∫

M

d4x
√− det g

(
− R

8πG
+ αFμνF

μν + βAμjν

)
, Fμν = ∂μAν − ∂νAμ .

(15.4) 

Determine . α and . β. 

In places where the energy-momentum density of the electromagnetic field is 
small compared to the Ricci-curvature determined by external sources, such as 
the sun or compact bodies like neutron stars or black holes, one can to first 
approximation neglect the contribution of the electromagnetic fields to the curvature 
and describe the electromagnetic fields outside the external source regions by 
Maxwell equations in the gravitational background of the external sources. This 
approach is usually taken in studies of gravitational lensing, which offered one of 
the first tests of GR: observing the bending of light by the sun [2]; and in a more 
extreme case the recent observations of a black-hole shadow by the Event Horizon 
Telescope [3]. 

However, as Eq. (15.1) indicates, curvature can also be induced by electromag-
netic fields themselves, even though this requires rather extreme electromagnetic 
energy densities. Indeed, according to this equation (temporarily reinstating the 
speed of light c) the curvature R measured in .1/m2 corresponding to an energy 
flux . 
 in .W/m2 is numerically of the order 

.
R

1/m2 ∼ 8πG

c5

 � 2 × 10−52 


1W/m2 . (15.5) 

Measuring the curvature due to even intense electromagnetic radiation will therefore 
be an even more extreme challenge than the curvature due to the collision of very 
distant black holes and neutron stars [4]. In the following sections a more precise 
analysis is presented.



480 J. W. van Holten

15.3 Plane Waves 

An complete radiative solution of the Einstein-Maxwell equations is that of a plane 
electromagnetic wave of infinite width, which is accompanied by a parallel plane 
gravitational wave of pp-type [5–11]. With the wave propagating in the z-direction, 
it is convenient to use light-cone co-ordinates .u = t − z and .v = t + z; the traveling 
plane-wave solution of the electromagnetic field is then expressed in terms of a 
transverse vector potential 

.Ai(u) =
∫ ∞

∞
dk

2π
(ai(k) sin ku + bi(k) cos ku) , (15.6) 

where .i = (1, 2) labels the directions in the transverse x-y-plane; the corresponding 
electric and magnetic field strengths are given by 

.Ei(u) = −εijBj (u) = Fui(u) , (15.7) 

where .ε12 = −ε21 = +1 whilst .ε11 = ε22 = 0. Such solutions can take the form of 
wave packets of finite lengths carrying a finite energy flux per unit area. Specifically 
in the absence of external sources of curvature the energy density in the transverse 
plane is constant and the transverse geometry can be taken to be flat; the energy 
flux is then given in terms of the energy-momentum tensor by the only non-zero 
component 

.Tuu(u) = FuiF
i

u = 1

2

(
E2 + B2

)
(u), (15.8) 

provided the metric is of the Brinkmann type 

.ds2 = −dudv − 
(u, xi)du2 + dxi 2, (15.9) 

which is flat in the x-y-plane as required. In this Brinkmann geometry the only 
non-zero components of the Riemann curvature and Ricci tensor are 

.Ruiuj = −1

2
∂i∂j
, Ruu = −1

2

(
∂2x + ∂2y

)

. (15.10) 

•? Exercise 
15.2. Show that the Einstein Eq. (15.1) then reduces to a single equation linking the uu-

components of the Ricci and energy-momentum tensor: 

.

(
∂2x + ∂2y

)

 = 8πG

(
E2 + B2

)
. (15.11)
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The general solution of this inhomogeneous linear equation for the gravitational 
potential, the metric component .
(u, xi), is  

.
 = 2πG
(
x2 + y2

) (
E2 + B2

)
+ 
0, (15.12) 

where .
0(u, xi) is an arbitrary solution of the homogeneous equation 

.

(
∂2x + ∂2y

)

0 = 0. (15.13) 

These solutions of the homogeneous equation represent pure gravitational waves of 
pp-type [5]: 

.
0 = κ+(u)
(
x2 − y2

)
+ 2κ×(u)xy. (15.14) 

Equation (15.10) then implies that the co-efficients .κ+,×(u) represent the compo-
nents of the corresponding Riemann tensor in the transverse plane: 

.R
(0)
uiuj = −

(
κ+ κ×
κ× κ+

)
. (15.15) 

Under a rotation in the transverse plane over an angle . ϕ they transform as 
quadrupole components: 

.

(
κ ′+
κ ′×

)
=

(
cos 2ϕ − sin 2ϕ
sin 2ϕ cos 2ϕ

) (
κ+
κ×

)
. (15.16) 

In contrast, the special solution (15.12) of the inhomogenous equation proportional 
to the energy density of the electromagnetic field: .
 − 
0 ∼ x2 + y2, is of  
monopole type, being invariant under rotations in the transverse plane. Thus the 
plane electromagnetic wave is accompanied by a scalar gravitational wave, on which 
a free gravitational wave of quadrupole type can be superimposed. 

15.4 Motion in the Background of a Plane Wave 

Classical motion of electrically neutral particles in the background of this specific 
gravitational wave is described in terms of geodesics [10, 11]. The worldline 
.Xμ(τ) = (U(τ), V (τ),X(τ), Y (τ )), in light cone coordinates, of a massive particle 
parametrized by the proper time . τ is restricted by the constraint 

.U̇ V̇ − 
(U,Xi)U̇2 + Ẋ2 + Ẏ 2 = 1, (15.17)
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with the overdot denoting a proper-time derivative. This constraint is one of the 
integrals of motion of the geodesic equation 

.Ẍμ + �
μ

λν (X)ẊλẊν = 0, (15.18) 

The existence of a Killing vector of the metric defined by . ∂v implies another constant 
of motion 

.U̇ = γ = constant. (15.19) 

As by definition of the laboratory velocity .va = dXa/dT (where .a = 1, 2, 3 labels 
spatial components only) we get 

.
dU

dT
= 1 − vz, (15.20) 

it follows from a rewriting of the constraint (15.17) that 

.
1 − v2

(1 − vz)2
+ 
 = 1

γ 2 . (15.21) 

As .dU = γ dτ , the geodesic equations in the transverse plane can be written 
alternatively as 

.
d2Xi

dU2 + 1

2

∂


∂Xi
= 0. (15.22) 

In particular for the electromagnetic wave (15.12) these equations simplify to those 
of a 2-dimensional parametric oscillator: 

.
d2Xi

dU2 + 2πG
(
E2 + B2

)
Xi = 0. (15.23) 

In the special case .2πG(E2 + B2) = μ2 = constant the solutions take the form 

.Xi(U) = Xi
0 cosμ(U − U0). (15.24) 

In this case the non-zero components of the Riemann tensor are 

.Ruiuj = −μ2δij . (15.25) 

Therefore the remarkable consequence is, that the geodesics oscillate in the trans-
verse plane at a frequency proportional to the square root of the curvature. Scattering 
of neutral test particles with a wavetrain of finite length has been discussed in this 
formalism in refs. [10, 11] and references therein.
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15.5 Scalar Fields in a Plane-Wave Background 

The gravitational field of the light wave can be probed by neutral test particles, as 
discussed in the previous section, or by electrically neutral fields of scalar, vector 
or spinor type, which at the classical level are sensitive only to the non-trivial 
gravitational background. At the quantum level these fields can describe e.g. pions, 
photons or neutrinos. As a first example we discuss a massive real scalar field S, 
with action 

. 

I [S] = −1

2

∫
d4x

√−g
(
gμν∂μS∂νS + m2S2

)

=
∫

d4x

(
2∂uS∂vS − 2
(∂vS)2 − 1

2
(∂xS)2 − 1

2
(∂yS)2 − m2

2
S2

)
,

(15.26) 

where . ∇⊥ represents the gradient in the transverse plane. The corresponding field 
equation is 

.

(
4∂u∂v − 4
∂2v − ∂2x − ∂2y + m2

)
S = 0. (15.27) 

•? Exercise 
15.3. Verify (15.27). 

To solve this equation we introduce the expansion 

.S(u, v, xi) =
∫

dqds

2π
κ(q, s; xi)e

i(qv+su), (15.28) 

with .κ∗(q, s; xi) = κ(−q,−s; xi). Note that in terms if standard space-time co-
ordinates we get 

. qv + su = (q + s)t + (q − s)z ≡ Et + pz ⇔ q = 1

2
(E + p) ,

s = 1

2
(E − p) . (15.29)
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The field equation then contstrains the amplitudes in the expansion to solutions of 

.

(
−∂2x − ∂2y + 4q2
 − 4sq + m2

)
κ = 0. (15.30) 

For the special case (15.25) with constant energy density . Tuu this equation becomes 
that of a 2-dimensional harmonic quantum oscillator: 

.

(
−∂2x − ∂2y + ω2

q(x2 + y2) − 4sq + m2
)

κ = 0, (15.31) 

where .ωq = 2μ|q|. Introducing the notation .ξi = √
ωq xi the solutions are of the 

form 

.κ(q, s; xi) =
∞∑

n1,n2=0

cn1n2(q, s)Hn1(ξ1)Hn2(ξ2)e
−(ξ21+ξ22 )/2, (15.32) 

where the .Hn(ξ) are standard Hermite polynomials. It follows that the energy and 
momentum dispersion relation is quantized according to 

.E2 = p2 + m2 + 2(n1 + n2 + 1)ωq. (15.33) 

15.6 Spinor Fields in a Plane-Wave Background 

Our second example is a Majorana spinor field .� = �c ≡ C�̄T , where C is the 
charge conjugation operator and T denotes transposition in spinor space (for our 
conventions on the Dirac algebra including charge conjugation, see the Appendix); 
such a field can describe e.g. neutrinos of Majorana type. 

As spinor fields are primarily defined in Minkowski space, we need to introduce 
the formalism of translating between the curved space-time manifold and the flat 
local tangent space-time; this is achieved by the use of vierbein-fields . ea

μ such that 

.gμν = ηabe
a
μeb

ν. (15.34) 

Here a labels vector components in the local Minkowski space, and . μ does the same 
thing in the curved space-time manifold. Using the vierbein fields one can define 1-
forms .Ea = ea

μdxμ, which for the metric (15.9) have the component form 

.Ea =
(
1

2
(dv + (
 + 1)du) , dx, dy,

1

2
(dv + (
 − 1)du)

)
. (15.35) 

Defining the inverse vierbein . e
μ
a by 

.eμ
ae

a
ν = δμ

ν , (15.36)
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there is a corresponding gradient operator 

.∇a = eμ
a∂μ = (

∂u + (1 − 
)∂v, ∂x, ∂y,−∂u + (1 + 
)∂v

)
. (15.37) 

•? Exercise 
15.4. Check the property 15.36. 

In order for the metric to be covariantly constant, the vierbein must satisfy the 
more general condition 

.dEa = ωa
b ∧ Eb, (15.38) 

where the antisymmetric-tensor valued 1-form .ωab = −ωba = ω ab
μ dxμ defines the 

spin connection. For the special vierbein (15.35) it is reduced to the form 

.ωa
b = ω a

u b du, ω a
u b = −1

2

⎛
⎜⎜⎝

0 ∂x
 ∂y
 0
∂x
 0 0 −∂x


∂y
 0 0 −∂y


0 ∂x
 ∂y
 0

⎞
⎟⎟⎠ , (15.39) 

modulo an arbitrary local Lorentz transformation in tangent space. 
Defining .ω bc

a = ω bc
μ e

μ
a , the curved-space Dirac operator now is 

.γ ·D = γ a

(
∇a − 1

2
ω bc

a σbc

)
. (15.40) 

For our special metrics (15.9) or vierbeins (15.35) a great simplification is, that 
the spin-connection term .ω bc

a σbc actually vanishes after contraction with . γ a [9]; 
therefore the Dirac operator simplifies to 

.γ ·D = γ a∇a = −i

(
0 σi∇i + ∇0

−σi∇i + ∇0 0

)
, (15.41) 

and in the 2-component notation introduced in the Appendix the Dirac equation 
becomes: 

.

2∂vχ2 − (
∂x + i∂y

)
χ1 = imχ∗

1 ,

(
∂x − i∂y

)
χ2 − 2 (∂u − 
∂v) χ1 = imχ∗

2 .

(15.42)
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The complex conjugate components . χ∗ can be eliminated by applying the complex 
conjugate Dirac equation to get 

.

(
4∂u∂v − 4
∂2v − ∂2x − ∂2y + m2

)
χ1 = 0,

(
4∂u∂v − 4
∂2v − ∂2x − ∂2y + m2

)
χ2 = 2

(
∂x + i∂y

)

∂vχ1.

(15.43) 

Therefore the general solution for . χ1 is fully analoguous to that for the scalar field 
S, with the same spectrum of energy and momentum states; in contrast, the general 
solution for . χ2 consists of a special solution, defined in terms of the solution for 
. χ1 by the right-hand side of the second Eq. (15.43), plus an arbitrary solution of 
the homogeneous free Klein-Gordon equation, as for . χ1. Therefore all solutions 
are found to have a structure similar to the scalar field, except that any non-trivial 
solution . χ1 is accompanied by a special dependend solution for . χ2 constructed from 
. χ1 by 

. 

[
−

(
∂2x + ∂2y

)
+ m2

]
χ2 = 2(∂x + i∂y) (∂u − 
∂v) χ1 − 2im (∂u − 
∂v) χ∗

1 .

(15.44) 

15.7 Massless Abelian Vector Fields in a Plane-Wave 
Background 

Finally we describe the propagation of a massless abelian vector field .a = aμ∂μ in 
the plane-wave gravitational background. The Maxwell-action for this field in light 
cone coordinates takes the form 

. 

I [a] =
∫

dudvdxdy
[
(∂uav − ∂vau)

2 + (∂uai − ∂iau)(∂vai − ∂iav)

−
(∂vai − ∂iav)
2 − 1

8

(
∂iaj − ∂jai

)2]
.

(15.45) 

The resulting field equations are 

. 

4∂u∂vav − �⊥av − 2∂v

(
∂uav + ∂vau − 1

2
∂iai

)
= 0,

4∂u∂vau − �⊥au − 2∂u

(
∂uav + ∂vau − 1

2
∂iai

)
+ 2∂i [
(∂iav − ∂vai)] = 0,

−2∂u∂vai + 1

2
�⊥ai + ∂i

(
∂uav + ∂vau − 1

2
∂jaj

)
− 2∂v [
(∂iav − ∂vai)] = 0.

(15.46)
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Gauge transformations .a′
μ = aμ + ∂μ� can be used to simplify these equations. 

First note that we can take 

.∂ua
′
v + ∂va

′
u − 1

2
∂ia

′
i = 0, (15.47) 

by taking . � as the solution of 

.

(
−4∂u∂v + ∂2x + ∂2y

)
� = 2 (∂uav + ∂vau) − ∂iai . (15.48) 

The remaining field equations are 

.

4∂u∂va
′
v −

(
∂2x + ∂2y

)
a′
v = 0,

4∂u∂va
′
u −

(
∂2x + ∂2y

)
a′
u + 2∂i

[



(
∂ia

′
v − ∂va

′
i

)] = 0,

4∂u∂va
′
i −

(
∂2x + ∂2y

)
a′
i + 4∂v

[



(
∂ia

′
v − ∂va

′
i

)] = 0.

(15.49) 

Next we can still make a residual gauge transformation to eliminate . a′
v by taking . �′

restricted by 

.

(
−4∂u∂v + ∂2x + ∂2y

)
�′ = 0, a′′

v = a′
v + ∂v�

′ = 0. (15.50) 

Then the gauge contraint (15.47) reduces to 

.∂va
′′
u = 1

2
∂ia

′′
i . (15.51) 

Therefore we are left with 

.

4∂u∂va
′′
u − 4
∂2v a′′

u −
(
∂2x + ∂2y

)
a′′
u = 2∂i
 ∂va

′′
i ,

4∂u∂va
′′
i − 4
∂2v a′′

i −
(
∂2x + ∂2y

)
a′′
i = 0.

(15.52) 

•? Exercise 
15.5. Verify (15.52).
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This set of equations looks similar to that of the Majorana-Dirac equations in the 
previous section: the transverse components . a′′

i are solutions of the scalar Klein-
Gordon equation, accompanied by a special fixed solution . ̄a′′

u : 

. − (∂2x + ∂2y ) ā′′
u = −2∂i

[
(∂u − 
∂v) a′′

i

]
. (15.53) 

But in contrast to the Majorana-Dirac case there is no independent dynamical 
solution for . a′′

u , as for vanishing .a
′′
i = 0 the homogeneous equation for . a′′

u implies 
its vanishing as well: 

.∂va
′′
u = 0 and

(
∂2x + ∂2y

)
a′′
u = 0. (15.54) 

These conditions do not allow normalizable solutions for . a′′
u ; in fact, for . a

′′
i = 0

the longitudinal component . a′′
u can be gauged away by a third residual gauge 

transformation with a gauge function . �′′ satisfying the constraints 

.a′′′
u = a′′

u + ∂u�
′′ = 0, ∂v�

′′ = 0, (∂2x + ∂2y )�′′ = 0. (15.55) 

Therefore the transverse components are the only dynamical ones, taking the same 
form as solutions of the massless scalar wave equation, with the same spectrum of 
energy and momentum, whilst .a′′

u = ā′′
u is a dependend field fixed entirely in terms 

of the transverse components by Eq. (15.53). 

15.8 Conclusions 

In summary, in the above it has been shown that the equations of motion of 
neutral test particles, and the field equations of neutral scalar fields, Majorana-
Dirac spinor fields and abelian vector fields can all be solved in the background of 
gravitational pp-waves such as those accompanying infinite plane electromagnetic 
waves. For energy-momentum density of the source field constant in time, such 
as that of a circularly polarized plane light wave, a distinct signature is, that 
test particles oscillate in the transverse plane of the wave, whilst the spectrum 
of transverse momentum of the fields becomes discrete. Because of the small 
curvature to be expected from such waves, these effects will be difficult to observe; 
moreover, in realistic conditions beams of electromagnetic wave will be of finite 
width, introducing modifications to the above conclusions which still have to 
be considered. Nevertheless, as a matter of principle the scattering of neutral 
particles by beams of electromagnetic waves will be another test in establishing 
the universality and dynamics of gravitational interactions.
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Appendix: Spinors and the Dirac Algebra 

Spinor fields in curved space-time are most easily described in the tangent 
Minkowski space, using the vierbein formulation to translate the results to the 
curved space-time manifold. We use the flat-space representation of the Dirac 
algebra in which . γ5 is diagonal: 

.γ0 = i

(
0 1
1 0

)
, γi =

(
0 −iσi

iσi 0

)
, γ5 =

(
1 0
0 −1

)
, (15.56) 

such that for . a = (0, 1, 2, 3)

. {γa, γb} = 2ηab1, γ 2
5 = 1, {γ5, γa} = 0. (15.57) 

The generators of the Lorentz transformations on spinors are defined by 

.σab = 1

4
[γa, γb] , (15.58) 

with commutation relations 

. [σab, σcd ] = ηadσbc − ηacσbd − ηbdσac + ηbcσad . (15.59) 

Hermitean conjugation is achieved by 

.γ †
a = γ0γaγ0. (15.60) 

The charge conjugation operator C is defined by 

.C = C† = C−1 = −CT = γ2γ0 =
(

σ2 0
0 −σ2

)
, (15.61) 

such that 

.C−1γaC = −γ T
a . (15.62) 

If the spinor . � is a solution of the Dirac equation in Minkowski space 

. (γ · ∂ + m)� = 0, (15.63) 

then this is also true for the charge-conjugate: 

.�c = C�̄T = −γ2�
∗ ⇒ (γ · ∂ + m)�c = 0. (15.64)
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The Majorana constraint .�c = � reduces the number of independent spinor 
components from 4 to 2 complex ones. This makes it easy to work in terms of 
2-component spinors .(χ, η) which are eigenspinors of . γ5, by the decomposition 

.� = �c =
[

χ

η

]
η = −iσ2χ

∗. (15.65) 
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Domenico Giulini, André Großardt, and Philip K. Schwartz 

Abstract 

In this chapter we deal with several issues one encounters when trying to 
couple quantum matter to classical gravitational fields. We start with a general 
background discussion and then move on to two more technical sections. In 
the first technical part we consider the question how the Hamiltonian of a 
composite two-particle system in an external gravitational field can be computed 
in a systematic post-Newtonian setting without backreaction. This enables us to 
reliably estimate the consistency and completeness of less systematic and more 
intuitive approaches that attempt to solve this problem by adding ‘relativistic 
effects’ by hand. In the second technical part we consider the question of 
how quantum matter may act as source for classical gravitational fields via the 
semiclassical Einstein equations. Statements to the effect that this approach is 
fundamentally inconsistent are critically reviewed. 
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16.1 Introduction and Preliminary Discussion 

The central concern of this contribution is the relation between gravity—as 
described by the classical (i.e. not quantised) theory of General Relativity 
(henceforth abbreviated by GR)—and the theory of all other ‘interactions’, which 
are described by relativistic quantum (field) theories (henceforth abbreviated by 
RQFT).1 To this end, we will address several specific technical as well as conceptual 
issues which we consider important. Some of these issues can be resolved (we 
believe), whereas others may perhaps require rethinking before any resolution can 
be proposed. 

In this first section we wish to share and discuss a few thoughts concerning 
the relation of ‘gravity’ on one side, and ‘matter’ on the other. This preliminary 
discussion is not only meant to set the stage for the later, more technical parts of this 
contribution, but also tries to convey a sense of appreciation for the distinguishing 
features of the ‘gravitational interaction’. 

In Sect. 16.2 we first show how to systematically incorporate in form of a post-
Newtonian expansion the interaction of an electromagnetically bound model-atom 
(consisting of two charged point particles) with an external gravitational field. A sec-
ond part of that section revisits in some detail the question of allegedly ‘anomalous’ 
couplings of internal energies to the centre-of-mass motion of composite systems. 

Section 16.3 deals with the question of backreaction, i.e. how quantum matter 
might source a classical gravitational field. Much debated issues concerning con-
sistency and causality are addressed in separate subsections, as well as alternative 
schemes to that of semiclassical gravity, like collapse models. 

16.1.1 Why Care? 

We recall Einstein’s equations2 

.Rμν − 1

2
R gμν = 8πG

c4
Tμν , (16.1) 

which relate the spacetime metric g to the matter content, though the matter does
not determine the metric. More precisely, the ten components .Tμν comprising the 
matter’s energy and momentum densities and flux-densities, determine the 10 Ricci 
components out of the 20 Riemann curvature components. The metric carries its

1 Note that we distinguish the general notion of quantum field theory from the specific form it takes 
in presence of Poincaré invariance, in which case we write RQFT. 
2 Our conventions are the usual ones: .Rμν := Rλ

μλν is the Ricci tensor if .Rλ
μσν denotes the 

Riemann tensor, .R := gμνRμν is the Ricci scalar, .Tμν denote the covariant components of the 
energy-momentum tensor with .T00 := T (e0, e0) the energy-density for the observer characterised 
by the unit timelike vector . e0. G is Newton’s gravitational constant and c the speed of light in 
vacuum. Our signature convention is ‘mostly plus’ .(−,+,+,+). 
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own degrees of freedom, over and above those of the matter, which are capable to 
transport physical quantities like energy and momentum from one material system 
to another through spacetime regions which are entirely devoid of any matter. This 
happens, for example, if a distant binary star-system emits gravitational waves to 
a detector on Earth. According to GR, the mere existence of spacetime is logically 
independent of the existence of matter. Hence we arrive at the following dichotomy 
of our fundamental laws: 

• Gravity is modelled by classical GR. It requires a spacetime consisting of a 
pair .(M, g), where . M is a 4-dimensional differentiable manifold and g denotes 
a Lorentzian metric on it. The latter determines a connection, the Levi–Civita 
connection for g, and hence an inertial structure (see below). The coupling 
between spacetime and matter—sometimes referred to as backreaction—is then 
given by Einstein’s equations (16.1). Classical matter is described by fields on . M
(i.e. sections in various vector bundles over . M) the dynamics of which usually 
follows from a Lagrange density . L from which we also obtain the energy-
momentum tensor .Tμν through the functional derivative .δL/δgμν . 

• Fundamentally, matter is modelled by quantum field theories. In a Poincaré 
invariant context, states of quantum fields are commonly defined as elements of 
the (bosonic or fermionic) Fock space .F±(H) over a single-particle Hilbert space 
. H, usually (and loosely speaking) the space of positive-frequency solutions of 
some (classical) field equation on flat Minkowski spacetime. The dynamical laws 
of these fields are determined by their interactions with each other as defined 
by the total Lagrange density . L—leading to the common picture where forces 
between fermionic particles are carried by gauge bosons. 

Attempts to cure this division at the level of the most fundamental theories by 
replacing the classical spacetime structure and Einstein’s equations by concepts 
more compatible with the Hilbert space structure of matter are summarised under the 
label of ‘quantum gravity’ and have so far not led to any generally accepted scheme. 
Less pervasive ‘escape strategies’ are those in which gravity stays classical. Treating 
gravity and matter with different mathematical principles need not necessarily result 
in inconsistencies. Two aspects of such strategies should be distinguished: 

1. Ignoring backreaction means to take a fixed, generally curved, spacetime . (M, g)

and consider quantum fields on it. At least in the regime in which the energy-
momentum density of the fields is small enough compared to that of the sources 
of the background gravitational field, this approach will provide a sensible 
approximation. The difficult task remains to formulate quantum field theory 
without Poincaré invariance (or any other maximal symmetry, like de Sitter or 
anti-de Sitter). In spite of much mathematical progress over the last decades [1– 
3], which also shows how many of the familiar concepts of RQFT fail to exist in 
Quantum Field Theory in Curved Spacetime (henceforth abbreviated by QFTCS)
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due to the lack of Poincaré invariance, QFTCS is still far from being able to 
address and answer specific physical problems with the desired certainty.3 

However, when considering weak gravitational fields, i.e. small deviations 
from Minkowskian geometry, and small velocities of the systems involved, we 
may restrict ourselves to fixed-particle sectors. The systems are then effectively 
described by the corresponding minimally coupled relativistic wave equations, 
and a post-Newtonian expansion of these equations in the parameter .c−1 yields 
a systematic post-Newtonian description of quantum systems in gravitational 
fields. In Sect. 16.2, we will explore this strategy in detail and discuss related 
issues. 

2. Inclusion of backreaction in a ‘classical-quantum scheme’ must mean to consider 
the matter’s energy-momentum tensor .Tμν on the right-hand side of the classical 
equation (16.1) as a classical field, like, e.g., the expectation value of the energy-
momentum tensor in some state. In that case, the metric will acquire a dependence
on that state, which also re-couples to the evolution of the state via the matter
equations (which contain the metric). This will effectively cause a non-linearity
in the dynamical evolution of the quantum state.

Semiclassical models of this kind are widely believed to be inconsistent and/or
unphysical. However, when making statements along this line, one needs to
be particularly careful, and such claims of inconsistency often turn out to be
founded in implicit assumptions. An important aspect is the precise theoretical
description of the reduction of quantum states upon measurement (or, rather, the
lack thereof). In Sect. 16.3, we will discuss these and related issues concerning 
the gravitational backreaction of quantum matter on a classical spacetime. 

16.1.2 A Note on the Equivalence Principle 

The equivalence principle is commonly viewed as the core assumption of GR. In 
the proper sense of the word, it is a heuristic principle, characterising the coupling 
of gravity to any sort of (classical) matter, the dynamical laws of which have 
already been formulated in a way compatible with Special Relativity, i.e. in a 
Poincaré invariant form. In connection with matter described by ordinary Quantum 
Mechanics (henceforth abbreviated QM) this principle loses its heuristic power, one 
obvious reason being the lack of Poincaré invariance of the Schrödinger equation. 
Speculations of whether QM violates the equivalence principle per se have a long

3 The furthest developed mathematically rigorous approach to QFTCS uses methods from algebraic 
quantum field theory, and has led, for example, to the notion of locally covariant quantum field 
theories on curved spacetimes. Among other results, this allows to transfer (properly formulated 
versions of) the spin-statistics and CPT theorems from RQFT to QFTCS (see, in particular, chapter 
4 of [3]). As is well-known, QFTCS is also of fundamental importance for the physics of black 
holes, leading to the emission of Hawking radiation [4], and is believed to play an important role 
in relativistic cosmology [5]. 
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history and are still ongoing. In that situation we find it useful to reflect on the 
meaning of this principle. 

The perhaps most concise way to state the implication of the equivalence 
principle, as it is realised in GR, is to say that the coupling to gravity is exclusively 
furnished via one and the same geometry that is common to all matter components. 
It does not say, e.g., that all ‘pieces of matter’ fall alike (in a way only depending 
on the initial conditions but not on the inner composition and nature of the ‘piece’). 
This latter statement is only true for the highly idealised concept of a ‘test particle’, 
the degree of approximate realisation of which strongly depends on the physical 
context. 

Indeed, a ‘test particle’ must have an extent much less than the curvature radius 
of the ambient spacetime, for otherwise it cannot probe the local gravitational 
field. On the other hand, its extent must be much larger than its own gravitational 
radius .GM/c2, for otherwise its own gravity dominates the ambient one and also 
its binding energy becomes of the order of its rest energy. Furthermore it may 
not have any appreciable spin angular momentum, higher mass-multipole moment 
(quadrupole and higher), charge, etc. We emphasise that such qualities need not 
disappear with vanishing size [6]. We leave it to the reader to come up with those 
physical properties that may still be varied within the set of ‘test particles’. 

Hence, according to GR, the centre of mass of a banana will not describe the 
same worldline as that of an apple for the same initial conditions, due to the 
higher quadrupole moment of the former, which couples to the spacetime curvature. 
Adding spin angular momentum with respect to the centre of mass will again 
influence its trajectory, again due to curvature couplings.4 Nothing of that sort is, 
of course, in violation of the equivalence principle, since all these deviations can be 
fully accounted for by a single spacetime geometry. 

Likewise, in QM, the ‘centre’ of a wave packet need not fall on the same 
trajectory as a point particle for equivalent initial conditions. Also, the wave 
behaviour of the former does depend on the inertial mass of the particle it represents 
(as the de Broglie wavelength does). Again, this does not per se contradict the 
equivalence principle, as sometimes suggested following a famous argument by 
Salecker (and contradicted by Feynman) made during the famous 1957 Chapel 
Hill conference [8, chapter 23]. In fact, in can be proven that any solution to the 
Schrödinger equation in a homogeneous (though arbitrarily time dependent) force 
field is obtained from a solution of the force-free equation by translating it along 
the integral flow of a classical solution curve and multiplying it with an appropriate 
space- and time-dependent phase factor [9]. This implies that the spatial probability 
distribution falls exactly like a continuous dust cloud of classical particles with 
identical initial velocities. If the particles’ spatial paths only depend on the ratio 
of the gravitational to the inertial mass, then so does the ‘path’ of the probability

4 The spin-curvature coupling is already present in the standard (lowest order) pole-dipole 
approximation of the Mathisson–Papapetrou–Dixon equation, the quadrupole coupling appears 
in the next order; see, e.g., the beautiful review [7]. 
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distribution. Note that this statement is exact and holds for all solutions to the 
Schrödinger equation, not just those approximating classical behaviour. 

•? Exercise 
16.1 More precisely, the above statement is as follows: if .F(t) is a homogeneous force 

field and .V (t, x) = −x ·F(t) the corresponding potential that appears in the Schrödinger 
equation, then any solution . ψ of the latter is of the form .

(
exp(iα) ψ ′) ◦ 	−1, where  . ψ ′

is a solution of the free Schrödinger equation, .	 : R4 → R
4 is the flow map . (t, x) �→

	(t, x) := (t, x + ξ(t)), corresponding to a classical solution of .mξ̈(t) = F(t) with initial 
condition .ξ(t = 0) = 0 and arbitrary initial velocity, and .α(t, x) is a phase factor for which 
an explicit integral formula can be written down depending on . ξ(t). 

Prove this theorem and derive the integral formula for .α(t, x). (If you get stuck, see [9, 
section 3].) 

Finally we also emphasise that the often used ‘equality of inertial and grav-
itational mass’ expresses the equivalence principle only in restricted physical 
situations, and then only in the context of Newtonian gravity. Only if the Newtonian 
laws of free fall apply does that equality ensure the universality of free fall (for 
unstructured bodies). On the other hand, in GR, we do not have an unambiguous way 
to even define the notion of (passive) gravitational mass of a body interacting with 
others. Here, the equivalence principle should really be formulated in an invariant 
way that is independent of representation dependent definitions of ‘masses’. We will 
have much more to say about this in Sect. 16.2.2. 

16.1.3 Forces versus Inertial Structure 

At this point we also wish to recall another aspect concerning the dichotomy 
between our theory of gravity on one hand, and our theories of fundamental matter 
on the other. The latter comprise the standard model, which is a field-theoretic 
description of the weak, strong, and electromagnetic forces. On the other hand, 
according to GR, gravity is not a force but rather unified with the inertial structure. 
For that reason one sometimes speaks of the ‘gravito-inertial field’ (rather than 
just ‘gravitational field’). The geometric structure representing this field is the 
connection. Only after the connection is known, and the inertial motion thereby 
specified, does it make sense to speak of forces: a force is, by definition, the cause 
for deviations from inertial motion. 

A mathematically distinguishing feature of the gravito-inertial field in com-
parison with other fundamental fields, that is often not sufficiently appreciated, 
is that the set of connections is an affine space, not a vector space (like the
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set of sections in a vector bundle). This means that there is no such thing as 
a ‘zero connection’ and hence no spacetime ‘free’ of gravitation/inertia. True, 
a flat connection may—in affine charts—be represented by identically vanishing 
coefficients, like in Minkowski space endowed with affine (inertial) coordinates, but 
that clearly does not mean that inertia—and hence gravity—is somehow ‘absent’ in 
any reasonably invariant way. Hence, whereas it makes sense to say that a certain 
region of spacetime is ‘free’ of electromagnetic fields, it makes no sense to make 
such a statement for gravity. 

In passing we note that the notion of a ‘geometric object’ is not at all restricted 
to tensor fields; see, e.g., [10]. Tensor fields transform linearly under changes 
of coordinates (or diffeomorphisms) whereas connections have an affine (i.e. 
inhomogeneous) transformation property. Yet it clearly remains true in both cases 
that the coefficients are known in all coordinate systems if they are known in a single 
one. That, in fact, is often taken as a working definition of a ‘geometric object’; 
e.g., [11, § 4.13, pp. 84–87]. In particular, this applies to connections on the tangent 
bundle (like the Levi–Civita connection) that can be used together with the metric 
to algebraically form other geometric objects, which need not be tensors. 

In order for the above statement to make sense, that a certain region of spacetime 
is ‘free of gravity’, ‘gravity’ would have to be identified with a tensor field with all 
tensor-space values, in particular zero, as admissible states. Note that the metric 
itself does not fall into that class, since, e.g., the zero section is not admissible 
so that the set of gravitational states is not a vector space. Such a vector space 
structure is achieved if one chooses a fixed background connection as reference 
and represents the ‘gravitational field’ as the difference of the physical connection 
to that reference. But then the latter defines a background structure that explicitly 
breaks diffeomorphism invariance down to the subgroup of those diffeomorphisms 
preserving that background. Alternatively, ‘zero gravity’ is also sometimes taken 
to mean ‘zero curvature’ [12]. But that re-introduces the old dichotomy between 
gravity and inertia (inertial forces clearly exist in flat Minkowski space) that GR 
had so successfully overcome, their unification being the heart of the equivalence 
principle, just like background independence is.5 For further discussions of these 
general aspects we refer to [14–16]. 

The inertial structure of flat Minkowski space is also deeply rooted in its 
symmetry properties and hence in all theories of interactions except gravity. In 
fact, the inertial structure endows Minkowski space with the structure of a four-
dimensional real affine space in which an open subset in the set of all ‘straight 
lines’, namely the timelike ones, represent inertial motion of ‘test particles’. It 
can be shown [17] that the subgroup within the group of bijections of Minkowski 
space that consists of those bijections that preserve this inertial structure (i.e. map 
timelike straight lines to timelike straight lines) is the group generated by Poincaré

5 Einstein considered the unification of inertia and gravity to be the distinctive physical achieve-
ment of GR, not the fact that it can be formulated in purely geometric terms, which he regarded 
more a matter of semantics rather than physics; see [13]. 
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transformations and homotheties.6 The latter are eliminated if, e.g., a measure 
of length is provided at least along any of the inertial straight lines (a ‘clock’). 
In that sense the inertial structure alone almost determines the Poincaré group 
without further assumptions. Note in particular that no continuity or other regularity 
assumption enters the proof of this result. Now, according to Felix Klein’s ‘Erlanger 
Programm’ [18] geometries and their automorphism groups are two sides of the 
same coin. Hence, the Poincaré group, which lies at the heart of fundamental 
theories of matter, is the algebraic expression of the inertial structure, which is of 
geometric nature. 

In special-relativistic theories the inertial structure is fixed once and for all in a 
way that is entirely independent of the matter content. In contrast, the dynamics of 
the matter clearly does depend on the inertial structure. Hence this dependence is 
unidirectional. In that sense Minkowski space and the Poincaré group are absolute 
structures, something to be abandoned according to the principles that led to GR. 
An alternative approach how to give up the absolute structure of Minkowski space 
is to ‘gauge’ Poincaré symmetry, as discussed in Chaps. 3 and 4. That abandoning 
global Poincaré symmetry will likely imply a major revision in the concepts of 
quantum field theory should be obvious by once more recalling the central role the 
Poincaré group and its representation theory plays there, e.g., regarding the concepts 
of ‘particle’ and ‘elementary’. 

For the highly idealised concept of test particles, an inertial structure reduces to 
the concept of a path structure. The latter assigns a unique path in spacetime to any 
pair consisting of a point and one-dimensional subspace in the tangent space at that 
point. In other words, the path is universal for all ‘test particles’, only depending 
on the initial conditions, but not on other contingent properties the particle may 
still have. The path structure in GR is special in a twofold way: first, the paths 
are geodesics for some linear connection; second, the connection is the Levi–Civita 
connection for some metric. It has been worked out in precise mathematical terms 
how to characterise such special path structures [19, 20]. 

The important point we wish to stress and keep in mind at this point is the 
distinction between ‘forces’ on one side, and ‘inertial structure’ on the other. The 
fields in the standard model account for forces, whereas the field in GR accounts for 
the inertial structure. The former have a natural ‘zero’ value, representing physical 
absence, but that does not apply for the latter; spacetime cannot be without inertial 
structure. Moreover, the former are quantised, the latter is—so far—only understood 
classically. 

Different attitudes exist as to whether and how the conceptual difference just 
discussed should be overcome. Whereas some feel it would be desirable to 
reformulate gravity in a way more like the other ‘forces’, others believe just the 
opposite and stress the physical significance of that difference. For example, in the

6 Homotheties are scalings about any centre point, i.e. maps of the form .x �→ x′ := a(x −x0)+x0, 
where . x0 is any point in Minkowski space, the ‘centre’ of the homothety, and a is a non-zero real 
number, its ‘scaling’ parameter. 
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first case, the ‘graviton’—a word often epitomising the believed quantum nature of 
gravity—is taken to mediate gravity in the same sense as the other gauge bosons 
mediate the other forces. In the second case, this would not make sense and the 
programme to ‘quantise gravity’ is presumably no more plausible than that of 
‘general-relativising’ RQFT or ‘gravitizing Quantum Mechanics’ [21]. 

Another attitude towards the relation between gravity and matter or inertial 
structures and forces is that gravity is subordinate to matter, an accompanying 
phenomenon based on certain collective matter degrees of freedom. This is also 
sometimes expressed by saying that gravity is an emergent phenomenon. In this 
instance, GR would have a status comparable to, say, the Navier–Stokes equation of 
hydrodynamics, which also describes collective degrees of freedom that eventually 
can be reduced to those of the fluid’s constituents. In such a picture, the microscopic 
state of matter fully determines the state of the gravitational field, which has no own 
propagating degrees of freedom. Gravitational waves are then, like sound waves, 
collective excitations of an underlying and more fundamental field of matter. The 
idea that the state of matter and their interactions should completely determine the 
inertial structure predates GR and goes back to the critique that Ernst Mach voiced 
in his book [22] on mechanics on Newton’s interpretation of his [Newton’s] famous 
bucket experiment. Einstein made this idea into what he called ‘Mach’s Principle’ 
on which he based many heuristic considerations during the formative years of GR. 
Remarkably, even in 1918, well more than two years after the final formulation of 
GR, Einstein explicitly named Mach’s Principle as an essential and indispensable 
part of GR, next to the principle of relativity and the principle of equivalence [23].7 

Clearly, the mathematical structure of GR does not support Einstein’s version of 
Mach’s principle. According to GR, the gravitational field has its own degrees of 
freedom that propagate causally, albeit the causal structure with respect to which 
this statement is true is not a fixed background structure but rather determined 
by the evolving field itself. That remark holds irrespective of gauge dependent 
appearances of Einstein’s equations, in which certain components of the field 
may seem to propagate instantaneously due to the fact that they obey elliptic 
rather than hyperbolic equations. But that is just as deceptive as in ordinary 
electrodynamics, where, e.g., in the Coulomb gauge the scalar potential obeys an 
elliptic Poisson equation whereas the transversal part of the vector potential obeys 
a hyperbolic d’Alembert equation with respect to the transverse current density8 as 
source; see, e.g., [25] and [26, exercise 6.20, pp. 291–292]. This remark becomes 
important in the recent debates on alleged inferences of quantisation of gravity from 
gravitationally induced entanglement; see [27] and references therein.

7 For a comprehensive account on the meanings and significance of Mach’s Principle see [24]. 
8 Note that the transverse current density is a non-local and non-causal function of the physical 
current density. 
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16.1.4 Foundations of General Relativity and the Role of Quantum 
Mechanics 

One way to ‘understand’ the foundations of a physical theory is to axiomatise it, 
that is, to rigorously deduce it from a minimal set of assumptions. The latter should 
be operationally meaningful though they will in most cases be highly idealised. 
Attempts to axiomatise GR face the problem to somehow represent ‘clocks’ and 
‘rods’, which from a physical point of view are highly complex systems. The 
strongest simplification is to reduce them to point particles and light rays, by means 
of which one may define an inertial structure and a conformal structure as in the EPS 
scheme of Ehlers et al. [28, 29]. In that scheme the ‘particles’ represent the inertial 
structure and are given by unparameterised timelike worldlines, which the axioms 
force to be unparameterised geodesics (also known as autoparallels) of a torsion-
free connection. The ‘particles’ are therefore just an equivalence class of torsion-free 
connections which share the same autoparallels.9 The ‘light rays’ in the EPS scheme 
determine a conformal equivalence class of metrics. A compatibility axiom requires 
that the ‘light rays’ are suitable limits of the ‘particles’, i.e. that the generators of 
the metric light cones (which are conformal invariants) are suitable limits of the 
unparameterised timelike geodesics. All this does not yet lead to a semi-Riemannian 
structure but rather to a Weyl structure consisting of a triple .(M, [g],∇), where 
. M is a smooth 4-d differentiable manifold, . [g] is a conformal equivalence class 
of metrics, and . ∇ is a torsion-free connection that satisfies .∇λgμν = ϕλgμν for 
some 1-form . ϕ depending on the representative g of . [g]. If  .g′

μν = exp(�)gμν then 
.ϕ′

λ = ϕλ + ∂λ�. Hence, we may also identify a Weyl structure with equivalence 
classes .[(g, ϕ)] of pairs .(g, ϕ), where .(g, ϕ) ∼ (g′, ϕ′) if and only if there exists a 
smooth function .� : M → R such that .g′ = exp(�)g and .ϕ′ − ϕ = d�. Such an 
equivalence class .[(g, ϕ)] determines a unique torsion-free connection . ∇ such that 
for any representative .(g, ϕ) one has .∇g = ϕ ⊗ g. This would be equivalent to a 
semi-Riemannian structure if and only if . ϕ is exact, .ϕ = df , in which case there is a 
representative .(g, ϕ) so that .ϕ = 0 and .∇g = 0, i.e., . ∇ is the Levi–Civita connection 
for g. EPS close this gap in physical terms by simply stating as an additional axiom 
that there are no so-called ‘second clock effects’, which amounts to just .dϕ = 0 and 
hence (at least local) exactness. 

Now, a somewhat surprising result is that instead of this postulate, the gap can 
also be closed by the requirement that the WKB limit of the massive Dirac and/or 
Klein–Gordon field in a Weylian spacetime is such that the rays (integral lines of the 
gradient of the eikonal) are just the ‘particles’ [30]. This is an entirely new aspect 
concerning the relation between QM and GR. It suggests that QM can, in fact, also 
play a positive role in laying the foundations to GR, rather than just cause trouble. 
An unexpected twist to the story indeed!

9 Two connections .λ
μν and .̂λ

μν are equivalent in that sense if and only if there exists a covector 

field . Vμ such that .̂λ
μν − λ

μν = δλ
μVν − δλ

ν Vμ. 
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16.2 Quantum Matter on Classical Gravitational Backgrounds 

In this section, we will discuss the description of quantum matter systems on a fixed 
classical background spacetime—i.e. we consider the matter fields as ‘test systems’ 
probing the gravitational field and neglect their backreaction onto it. As explained at 
the end of Sect. 16.1.1, the generally accepted theoretical framework for this setting 
is QFTCS. However, notwithstanding its formal and conceptual successes, QFTCS 
is mathematically and conceptually very ‘heavy’, and its relation to (approximately) 
Galilei-symmetric physics, which for example is relevant for the description of 
quantum-optical experiments (as discussed in Chap. 14), is not as well understood 
as one might suspect. 

As long as one is only interested in the effect of background Newtonian gravity 
on quantum systems (the experimental study of which is discussed in Chap. 14 
as well), this does not pose a problem: one may simply include the background 
Newtonian gravitational potential . 	 into the Hamiltonian describing the system in 
the usual way, leading to a Schrödinger equation that for a single bosonic particle of 
mass m, only subject to gravity, is of the form 

.ih̄∂t� =
(

− h̄2

2m
∇2 + m	

)

�. (16.2) 

This simple coupling of Galilei-invariant QM to Newtonian gravity has been
extensively tested in the gravitational field of the earth, beginning with neutron
interferometry in the Colella–Overhauser–Werner (COW) experiment in 1975 [31] 
and leading to modern light-pulse atom interferometers, which for example provide 
the most sensitive gravimeters to date [32]. However, as soon as one is interested 
in post-Newtonian effects of gravity on quantum systems, one needs a method 
either to describe the respective situation in terms of QFTCS proper or to include 
‘post-Newtonian corrections’ into the Schrödinger equation above. Note that such 
post-Newtonian effects can be of two different kinds: they either correspond to post-
Newtonian couplings of the ‘Newtonian’ potential . 	, or are couplings to those 
parts of the multi-component Einsteinian gravitational field that—as a matter of 
principle—simply do not exist in the scalar Newtonian theory, i.e. couplings to the 
vectorial (gravitomagnetic) and tensorial (gravitational waves) components. 

Apart from the obvious fundamental theoretical interest in post-Newtonian 
gravitational effects in quantum systems, recently there has also been increased 
interest from an experimentally-oriented point of view, since the ever-increasing 
precision of quantum experiments is expected to allow for the detection of novel 
‘relativistic effects’ that were not considered before. In particular, for composite 
systems one expects post-Newtonian couplings between internal and external (i.e. 
centre-of-mass) degrees of freedom of both non-gravitational and gravitational 
origin, which might lead, e.g., to quantum dephasing [33–35]. 

The occurrence of such post-Newtonian couplings may on a heuristic level be 
understood based on the notion of ‘relativistic effects’ known from classical physics:
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formally replacing, in the spirit of the ‘mass defect’, the mass parameter in the 
single-particle Hamiltonian for a quantum system under Newtonian gravity by the 
rest mass M of a composite system plus its internal energy .Hint divided by . c2, we  
obtain a coupling between the internal and external degrees of freedom according 
to 

.Hsingle particle(p, r,m) = p2

2m
+ m	(r). (16.3a) 

→ Hcomposite = Hsingle particle(P,R,M + Hint/c
2)

= P2

2(M + Hint/c2)
+ (M + Hint/c

2)	(R)

= P2

2M

(
1 − Hint

Mc2

)
+ (M + Hint/c

2)	(R) + O
(
c−4
)
,

(16.3b) 

where . P and . R denote the ‘central coordinates’ of the composite system, i.e. 
total momentum and some appropriate centre of mass coordinate. Another way 
to heuristically motivate such a post-Newtonian internal–external coupling is the 
replacement, in the Schrödinger equation describing the internal dynamics, ‘.t → τ ’ 
of coordinate time by proper time of the central worldline—since the internal 
degrees of freedom experience special-relativistic and gravitational time dilation, 
so the argument goes, they will become coupled to the central dynamics [33,34,36]. 

Of course, such heuristic motivations of post-Newtonian couplings have great 
suggestive value. They are, however, conceptually dangerous for several reasons: 
Firstly, such treatments guarantee neither completeness nor independence of the 
suggested ‘novel relativistic effects’—one might, on the one hand, overlook some 
effects, while on the other hand double-counting others (as would have been the 
case in our example above, had we included both the ‘mass defect’ and ‘relativistic 
time dilation’). Secondly, those descriptions rely fundamentally on semiclassical 
notions such as central worldlines, and thus presuppose (a) separability (at least 
approximately) of the total state of the system into an external and an internal 
part—even though interactions, leading to entanglement, are precisely the point 
of interest!—, and (b) a semiclassical nature of the external state. Of course, for 
some applications—e.g. in atom interferometry—these assumptions may be well-
suited; nevertheless a fundamental understanding of the post-Newtonian coupling of 
quantum systems to gravitational fields should be independent of such assumptions. 

Therefore, to correctly and completely describe quantum systems in gravitational 
fields, a systematic treatment is needed, starting from well-established first princi-
ples and properly deriving a full theoretical description. Only such a systematic 
approach is complete and free of redundancies, and therefore can allow for reliable 
predictions when applied, for example, to experimental situations. As said before, 
in the end such a properly relativistic description should emerge from QFTCS. 
However, as long as we are only interested in low-order ‘relativistic corrections’
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to the Newtonian coupling to gravity, consider approximately stationary spacetimes 
(such that there is a consistent notion of particles), and stay below the energy 
threshold of pair production, we may avoid the use of the complex framework 
of QFTCS. Instead, we may restrict ourselves to a fixed-particle sector, in which 
the theory is effectively described by classical field equations, and in this sector 
employ a post-Newtonian expansion framework as an easier method for systematic 
description of quantum systems under gravity. This essentially seems to be the only 
straightforward way to apply the equivalence principle to usual Galilei-invariant 
QM: to first deform Galilei to Poincaré invariance (the deformation parameter being 
. c−1), then apply the minimal coupling scheme, dictated by the equivalence principle 
and providing the couplings to the gravitational field at least up to additional 
curvature terms, and then contract again by a post-Newtonian expansion in the 
deformation parameter . c−1. 

In Sect. 16.2.1, we are going to describe such a systematic post-Newtonian 
expansion framework applicable to the description of model quantum systems. This 
framework enables us in particular to derive a full description of a simple toy model 
of a two-particle atom to order . c−2, which will be explained in Sect. 16.2.1.2. 
In particular, this provides a proper derivation of the above-mentioned internal– 
external couplings. However, we will encounter ‘anomalous’ couplings of the 
internal kinetic and potential energies to the Newtonian gravitational potential: 
depending on the choice of coordinates in which the internal degrees of freedom 
are described, one does not get the heuristically expected coupling from (16.3) ,
but the different energy forms couple differently. This phenomenon of ‘anomalous’
couplings appears quite generally in the context of the post-Newtonian description
of composite systems under gravity. In Sect. 16.2.2, we will discuss these issues 
from a more general point of view, in the context of diffeomorphism-invariant field 
theory: we will make precise and critically evaluate arguments by Carlip [37] about 
the emergence of such ‘anomalous’ couplings and their possible elimination by 
application of diffeomorphisms. The content of Sect. 16.2.1 already appeared in the 
cited literature, whereas that of Sect. 16.2.2 is new. 

16.2.1 Systematic Description of Model Systems in Post-Newtonian 
Gravity 

In order to be able to perform a post-Newtonian expansion of a (locally) Poincaré-
invariant theory, which perturbatively includes post-Newtonian effects on top of 
a Newtonian description, we need some background structures that enable us to 
speak of ‘weak gravitational fields’, ‘small velocities’, and space and time as 
separate notions. For these background structures, we take a background metric in 
combination with a background time evolution vector field, which is hypersurface 
orthogonal, timelike, and of constant length with respect to the background metric: 
The time evolution field gives us a .3 + 1 decomposition of spacetime into time 
(its integral curves) and space (the leaves of its orthogonal distribution), while also
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being a reference for the definition of ‘slow movements’. Similarly, the background 
metric serves as reference point for the ‘absence’ of gravitational fields.10 

Concretely, we take as background spacetime Minkowski spacetime .(M, η) and 
as background time evolution vector field a timelike geodesic vector field u on 
.(M, η), with Minkowski square .η(u, u) = −c2 (where c is the velocity of light). 
u can be interpreted as the four-velocity field of a family of inertial observers 
in background Minkowski spacetime to which we will refer our post-Newtonian 
expansions. The physical spacetime metric g will be a perturbation on top of the 
background Minkowski metric . η. On the three-dimensional leaves of ‘space’, which 
are .η-orthogonal to u, we have two Riemannian metrics: a flat metric . δ induced by 
the background metric . η, as well as the physical spatial metric .(3)g induced by the 
physical metric g. 

Introducing coordinates .(xμ) = (x0 = ct, xa) adapted to the background 
structures, i.e. such that in these coordinates the Minkowski metric takes its usual 
component form .(ημν) = diag(−1, 1, 1, 1) and the time evolution field is . u =
∂/∂t , we may express all the following post-Newtonian computations in those 
coordinates, which will make the results look like usual Newtonian results plus 
post-Newtonian corrections. Note, however, that the results themselves are of course 
independent of the coordinates chosen to express them. 

As the expansion parameter in powers of which we organise our post-Newtonian 
expansion, we take the inverse of the velocity of light, . c−1. That is, we will expand 
all relevant quantities as formal power series in the parameter . c−1. The term of 
order . c0 in such a series corresponds to the Newtonian limit, while the higher-
order terms are the post-Newtonian corrections. Formally, the Newtonian limit is 
obtained as the .c → ∞ limit of the series. Of course, analytically speaking, a 
‘Taylor expansion’ in a dimensionful parameter like c does not make sense (and 
even less so any limit in which c is varied, since it is a constant of nature); only 
for dimensionless parameters can a meaningful ‘small-parameter approximation’ be 
made. Nevertheless, as a convenient device to keep track of post-Newtonian effects, 
such a formal expansion is perfectly fine, enabling us to view the post-Newtonian 
theory as a formal deformation of its Newtonian counterpart.11 Note also that for 
the expansion of some objects, terms of negative order in .c−1 will appear, such that 
strictly speaking we are dealing with formal Laurent series. For a series with non-
vanishing terms of negative order, the formal Newtonian .c → ∞ limit does not 
exist.

10 The size of deviations from these reference points is measured by means of the Euclidean metric 
defined by the (Lorentzian) background metric .g(0) and the time evolution vector field u as . gEuc :=
g(0) − 2 u�⊗u�

g(0)(u,u)
, where .u� = g(0)(u, · ) is the one-form associated to u via . g(0). 

11 In physical realisations of a Newtonian limit, the corresponding expansion parameter has to be 
chosen as the dimensionless ratio of some typical velocity of the system under consideration to the 
speed of light. For some discussion of the relationship of formal ‘.c → ∞’ limits to actual physical 
approximations, see, e.g., section II B of reference [38]. 
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In order to obtain a consistent Newtonian limit, we need to identify the time 
coordinate t (defined as the flow parameter along the background time evolution 
field u) with Newtonian absolute time. Therefore, we have to treat t as being of 
order . c0 in our formal post-Newtonian expansion. Note that this implies that the 
timelike coordinate .x0 = ct with physical dimension of length is to be treated as 
of order . c1, differently to the spacelike coordinate functions . xa to which we assign 
order . c0. This necessity of treating the time direction differently from spacelike 
directions in the consideration of the formal relationship between Poincaré- and 
Galilei-symmetric theories is well-known: it arises, for example, in the context of 
Newton–Cartan gravity (i.e. geometrised Newtonian gravity) [39, 40], or in the Lie 
algebra contraction from the Poincaré to the Galilei algebra [41,42]. Due to this, for 
example the Minkowski metric 

.η = ημν dx
μ ⊗ dxν = −c2dt2 + dx2 (16.4) 

consists of a temporal part of order . c2 and a spatial part of order . c0. 
We expand the components of the inverse of the physical spacetime metric as 

formal power series 

.gμν = ημν +
∞∑

k=1

c−kg
μν

(k) , (16.5) 

with the lowest-order terms assumed to be given by the components of the inverse
Minkowski metric, and the higher-order coefficients .g

μν

(k) being arbitrary. Likewise, 
this could have been given by the corresponding power series expansion of the 
metric; here we choose to expand the inverse metric for later notational simplicity. 

An important example for a post-Newtonian metric is the Eddington–Robertson 
parametrised post-Newtonian metric, given by 

.gER–PPN =
(

−1 − 2
	

c2
− 2β

	2

c4

)
c2dt2+

(
1 − 2γ

	

c2

)
dx2+O

(
c−4
)
. (16.6) 

Note that this is the power series expansion of the metric itself and not its inverse.
The dimensionless Eddington–Robertson parameters . β and . γ account for possible 
deviations from GR. For the case of GR, which corresponds to the values . β = γ =
1, the metric (16.6) solves the Einstein field equations in a .c−1-expansion for a static 
source, with . 	 being the Newtonian gravitational potential of the source. The family 
of metrics for different values of .β, γ then form a ‘test theory’, enabling tests of 
GR against possible different metric theories of gravity. The Eddington–Robertson 
metric is the most simple example of a metric in the general parameterised post-
Newtonian (henceforth abbreviated by PPN) formalism, which provides a general 
framework of metric test theories of gravity in the weak-field regime. For a detailed 
discussion, see [43, 44].
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16.2.1.1 Single Particles 
Based on the post-Newtonian expansion framework introduced above, we now dis-
cuss the systematic description of single, free quantum particles in post-Newtonian 
gravitational fields. Performing a WKB-inspired formal expansion of classical 
relativistic field equations, we will arrive at a Schrödinger equation with post-
Newtonian corrections [45–49]. We will motivate the consideration of the classical 
field equations from QFTCS, and briefly explain the expansion of the minimally 
coupled Klein–Gordon equation as an example. Details of the discussion may be 
found in [48, 49]. Related discussions for a massive Dirac field are contained in 
[50, 51], and in terms of a systematic post-Newtonian approximation in Fermi 
normal coordinates with respect to a rotating frame along an accelerated worldline 
in [52]. 

The consideration of the classical relativistic field theories for the description of 
the one-particle sector of the quantised theory may be motivated as follows. On a 
globally hyperbolic, stationary spacetime, for a given relativistic free field theory, 
there is a preferred Fock space representation of the field observables in QFTCS 
(and thus a preferred notion of particles). Loosely speaking,12 the construction of 
this representation works as follows [1]: We consider classical solutions of the given 
relativistic field equation, and among those we pick out the subspace of ‘positive-
frequency solutions’ with respect to the stationarity Killing field. Completing the 
positive-frequency subspace with respect to the ‘field inner product’ (i.e. the Klein– 
Gordon inner product for Klein–Gordon fields, or the Dirac inner product for Dirac 
fields, etc.), we obtain a ‘one-particle Hilbert space’. The Hilbert space for the 
quantum field theory, on which the field operators can be represented, is then the 
bosonic or fermionic Fock space over this ‘one-particle space’, according to the 
spin of the field. 

This means that, in the framework of QFTCS, the one-particle sector of a given 
free relativistic quantum field theory on a globally hyperbolic stationary spacetime 
is described by the positive-frequency solutions (in an appropriate sense) of the 
classical field equation, with the corresponding inner product. This is the underlying 
reason for the effective description of the one-particle sector of the quantum theory 
by the classical field theory—which in the literature is often called consideration of 
the ‘first-quantised theory’—working so well, as long as one is concerned only with 
processes far enough below the threshold of pair production. 

For a non-stationary spacetime, the above motivation of course breaks down: 
there is no time translation symmetry and, therefore, not even a natural notion of 
particles in QFTCS. However, as long as we assume the background time evolution 
vector field u to be approximately Killing for the physical spacetime metric g, on  
a heuristic level we can still expect perturbative ‘positive-frequency’ solutions of 
classical field equations to lead to approximately correct predictions regarding the

12 For details and caveats of the construction, we refer to the extensive discussion in the monograph 
by Wald [1]; see Sect. 4.3 and references therein for the case of Klein–Gordon fields, as well as 
section 4.7 for fermionic and other higher-spin fields. 
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observations of observers moving along the orbits of u. Thus, from QFTCS we 
are led to the consideration of formal perturbative expansions of relativistic field 
equations on curved spacetimes as the natural means for the description of single 
quantum particles in post-Newtonian gravitational fields. 

Assuming a formal power series expansion of the inverse physical spacetime 
metric as in (16.5) , we are able to (in principle) obtain the post-Newtonian expansion
of any relativistic field equation in complete generality, by making a WKB-inspired
power series ansatz for positive-frequency solutions. Using this procedure, we may
obtain the Schrödinger equation that describes the corresponding one-particle states
to arbitrary post-Newtonian order, in a completely systematic fashion. Specifically,
for a minimally coupled scalar field, a brief outline of this procedure is as follows
(see [48, 49] for details): 

The minimally coupled Klein–Gordon equation is 

.

(
� − m2c2

h̄2

)
�KG = 0, (16.7) 

where .� = gμν∇μ∇ν is the d’Alembert operator of the spacetime metric g. 
Expressing the covariant derivatives in terms of the components of the metric and 
inserting the formal power series expansion (16.5) , we obtain an expansion of the
d’Alembert operator in powers of . c−1. In this process, we have to express the 
expansion coefficients of the metric components .gμν in terms of those of the inverse 
metric components . gμν , which is possible by use of a formal Neumann series and 
the Cauchy product formula for products of infinite series. We then make the WKB-
inspired ansatz 

.�KG = exp

(
ic2

h̄
S

)
ψ , ψ =

∞∑

k=0

c−kak (16.8) 

for the Klein–Gordon field [47], where we assume .S, ak to be independent of 
the expansion parameter . c−1. Inserting this ansatz into the Klein–Gordon equa-
tion (16.7) with expanded d’Alembert operator, we may then compare coefficients
of powers of .c−1 in order to obtain equations for S and the . ak . At the lowest ocurring 
order . c4, we obtain that S depends solely on time; the equation at order . c3 is then 
identically satisfied. At order . c2, the equation gives us .(∂tS)2 = m2; since we are 
interested in positive-frequency solutions, we choose 

.S = −mt (16.9) 

(discarding the constant of integration, which would lead to an irrelevant global 
phase). This means that for such solutions, the function . ψ from (16.8) is the Klein–
Gordon field with the ‘rest-energy phase factor’ .exp(−imc2t/h̄) separated off. At 
order . c1, the Klein–Gordon equation then leads to the requirement 

.g00
(1) = 0 (16.10)
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for the metric, which is satisfied in any metric theory of gravity that reproduces the 
correct equations of motion for test particles in the Newtonian limit. 

•? Exercise 
16.2 

(i) Compute the derivatives .∂μ�KG and .∂μ∂ν�KG of the ansatz (16.8) for the Klein–
Gordon field.

(ii) Using the derivatives of .�KG and the d’Alembert operator .� = −c−2∂2t + � in 
Minkowski spacetime, determine the lowest-order terms in the .c−1 expansion of the 
Klein–Gordon equation (16.7). Show that the leading-order equation, at order . c4, leads 
to .∂tS = 0. Show that the equation at order . c3 is identically satisfied, and use the order 
. c2 equation to determine S. Finally, show that the . c0 term leads to the free Schrödinger 
equation for . a0. 

(iii) Instead of Minkowski spacetime, we now consider a ‘Newtonian’ metric given by 
.g = −(1+2 φ

c2
)c2dt2+dx2+O(c−2

)
. For a general metric g, the d’Alembert operator 

acting on functions is given by 

. �f = ∇μ∇μf = 1√−g
∂μ(

√−ggμν∂νf ),

where .
√−g denotes the square root of minus the determinant of the matrix of metric 

components. Compute .�f for the Newtonian metric to order .c−2 in terms of partial 
space and time derivatives .∂a, ∂t . (Be careful: .∂0 = ∂

∂(ct)
= c−1∂t !) 

Analogously to the Minkowski calculation, show that the .c−1 expansion of the 
Klein–Gordon equation in the Newtonian metric to order . c0 leads to a Schrödinger 
equation for . a0 including the Newtonian potential . φ. 

Hint: the inverse metric has components .g00 = −1 + 2 φ

c2
+ (c−4), .g0a = (c−3), 

.gab = δab + (c−2
)
. For the determinant term, use . 1√−g

∂μ
√−g = − 1

2gρσ ∂μgρσ . 

Using these results, we can then obtain a general, expanded version of the Klein– 
Gordon equation. This fully expanded equation is rather horrendously complicated 
(see the appendix of [48]), but it can nevertheless be written down in its entirety. 
From it, we may read off, order by order, equations for the coefficient functions 
. ak . After obtaining the equations for all the . ak up to a fixed order n,13 we may 
recombine them into an equation for . ψ to order . c−n, which takes the form of 
a Schrödinger equation plus higher-order post-Newtonian corrections. The inner 
product on the Hilbert space in which the ‘wave functions’ . ψ described by this

13 In this process, when considering higher orders, the equations for . ak begin to involve time 
derivatives of the lower-order functions . al . To eliminate those, we have to re-use the already derived 
equations for the lower-order . al , in order to in the end obtain an equation for . ψ which takes the 
form of a Schrödinger equation. 
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Schrödinger equation live can be obtained by inserting the ansatz (16.8) into the
Klein–Gordon inner product and expanding it to the desired order in . c−1. Since 
the Klein–Gordon inner product involves time derivatives of the fields, we have 
to use the derived Schrödinger equation in this process. After this has been done, 
we have a concrete representation of the (approximate) one-particle sector of the 
Klein–Gordon quantum field theory in our post-Newtonian spacetime in terms of 
a Schrödinger equation and an inner product for ‘wave functions’ . ψ living on 
three-dimensional space as defined by our background structures. Regarding the 
interpretation of the natural position operator that we obtain for the post-Newtonian 
theory, which in this representation of the Hilbert space is given by multiplication of 
wave functions by coordinate position . xa , we note that it arises—up to higher-order 
corrections—from the operator in the one-particle sector of Klein–Gordon theory 
which multiplies the Klein–Gordon fields by coordinate position . xa . In the case 
of Minkowski spacetime, this operator is the well-known Newton–Wigner position 
operator [53, 54]. 

As a last step, one may perform a unitary transformation such that, in the new 
representation, the position operator is still given by multiplication with . xa , but  the  
inner product of the theory takes the form of a ‘flat’ . L2 inner product 

.〈ψf, ϕf〉f :=
∫

d3x ψf ϕf (16.11) 

over coordinate space .{xa} (instead of the expanded Klein–Gordon inner product) 
[46, 48]. This means that the ‘flat wave functions’ . ψf in this representation are in 
fact scalar densities on three-space. The necessary transformation may be read off 
order by order from the expanded Klein–Gordon inner product, and may then be 
used to compute the Schrödinger equation in this ‘flat’ representation. 

Concretely, to first order in .c−1 the general Schrödinger equation thus obtained, 
in the ‘flat’ representation, takes the form 

. ih̄∂tψf =
[

− h̄2

2m
∇2 − 1

2

{
g0a

(1),−ih̄∂a

}
+ m

2
g00

(2)

+ c−1
(

1

2m
(−ih̄)∂a

(
gab

(1)(−ih̄)∂b

)

+ m

2
g00

(3) − 1

2

{
g0a

(2),−ih̄∂a

}
− h̄2

8m
[∇2tr(ηg−1

(1) )]
)

+ O
(
c−2
)]

ψf,

(16.12) 

where .∇2 = δab∂a∂b is the ‘flat’ background Laplacian operator, and . {A,B} =
AB + BA denotes the anticommutator. Comparing this result to the .c−1-expanded 
classical Hamiltonian of a point particle in a curved metric, it turns out that (adopting 
a specific ordering scheme) all terms apart from the last one may be obtained by 
naive canonical quantisation of that classical Hamiltonian.
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For concrete post-Newtonian metrics, some of the generic expansion coefficients 
from (16.5) vanish, which simplifies the necessary computations. For the case of
the Eddington–Robertson PPN metric (16.6) , the derivation is not difficult (but
somewhat tedious) to carry out completely, resulting in the Hamiltonian

. HER–PPN
f = − h̄2

2m
∇2 + m	 + 1

c2

(
− h̄4

8m3∇4 − 3h̄2

4m
γ (∇2	) − h̄2

2m
(2γ + 1)	∇2

− h̄2

2m
(2γ + 1)(∂a	)δab∂b + (2β − 1)

m	2

2

)
+ O

(
c−4
)

(16.13a) 

in the ‘flat’ representation.14 Comparing this to the classical Hamiltonian for a point 
particle in the Eddington–Robertson metric 

. HER–PPN
class = p2

2m
+ m	 + 1

c2

(
− p4

8m3
+ 2γ + 1

2m
p2	 + (2β − 1)

m	2

2

)
+ O

(
c−4
)
,

(16.13b) 

we see that by canonical quantisation we would not in general be able to reproduce 
the quantum Hamiltonian by using a specific ordering scheme, but would have 
to choose the ordering scheme depending on the value of . γ . However, this 
ambiguity is due to the term in (16.13a) proportional to .∇2	, which by the 
Newtonian gravitational field equation is proportional to the mass density of the 
matter generating the gravitational field. Therefore, when the quantum system is 
localised outside of the generating matter, we may describe it by simple canonical 
quantisation of the classical point-particle theory, quantising the .p2	 term in the 
‘obvious’ symmetric ordering .p · 	p. 

•> Conclusion 16.1 

Formal .c−1-expansions of classical relativistic wave equations in post-Newtonian 
spacetimes provide a systematic method for the description of single free quantum 
particles in post-Newtonian gravitational background fields, motivated from the 
framework of QFTCS.

14 We note that this Hamiltonian may also be obtained by a very similar, but more explicitly WKB-
like method in which the logarithm of the Klein–Gordon field is expanded in . c−1; see  [46]. 
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•> Conclusion 16.2 

For the description of single free spin-0 quantum particles in a background post-
Newtonian gravitational field as described by the Eddington–Robertson PPN metric, 
naive canonical quantisation of free point particle dynamics gives the same result as 
QFTCS-inspired post-Newtonian expansion of the Klein–Gordon equation, up to 
terms that vanish outside the matter distribution generating the gravitational field. 

16.2.1.2 Composite Systems 
In this section, we will describe a systematic method for the derivation of a 
complete Hamiltonian description of an electromagnetically bound two-particle 
quantum system in a post-Newtonian gravitational background field described 
by the Eddington–Robertson PPN metric to order . c−2. Extending the systematic 
calculation by Sonnleitner and Barnett for the non-gravitational case [55] to the  
gravitational situation, this provides a properly relativistic derivation of the coupling 
of composite quantum systems to post-Newtonian gravity, without the need to 
‘guess’ this coupling based on heuristic ‘relativistic effects’. We aim to keep the 
present discussion rather short; full details may be found in chapter 4 of [49] and, in 
a somewhat less general form, in [56]. 

The idea of the non-gravitational derivation by Sonnleitner and Barnett, taking 
place in Minkowski spacetime, is as follows [55] (compare Fig. 16.1). Sonnleit-
ner and Barnett start from the classical special-relativistic Lagrangian describing 
two point particles of arbitrary masses and opposite and equal electric charges, 
interacting with electromagnetic potentials. They then split the electromagnetic 
potentials into ‘internal’ (i.e. generated by the particles) and ‘external’ parts, employ 
the Coulomb gauge, and solve the Maxwell equations for the internal part to 
lowest order in . c−1, expressing the solutions in terms of the particles’ positions 

Fig. 16.1 Strategy of the derivation of an ‘approximately relativistic’ Hamiltonian for a toy 
hydrogenic system without gravity by Sonnleitner and Barnett in [55]
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and velocities. Re-inserting the internal solutions into the classical Lagrangian,15 

expanding it to order . c−2, and performing a Legendre transformation, they arrive 
at a classical Hamiltonian describing the system in the post-Newtonian regime. By 
canonically quantising this classical Hamiltonian and performing a Power–Zienau– 
Woolley (PZW) unitary transformation together with a multipolar expansion of the 
external electromagnetic field, they then obtain a quantum ‘multipolar Hamiltonian’ 
.H[mult.]. This describes the two particles as quantum particles, interacting with each 
other through the (eliminated) internal and with the external electromagnetic fields. 
The PZW transformation is a standard method in quantum optics, used to transform 
a Hamiltonian describing interactions of particles with the electromagnetic field 
from a minimally coupled form in terms of the potentials to a multipolar form in 
terms of the field strengths. Finally, Sonnleitner and Barnett introduce Newtonian 
centre of mass and relative coordinates and the corresponding canonical momenta, 
arriving at a ‘centre of mass Hamiltonian’ .H[com]. This has an interpretation in terms 
of central and internal dynamics of a ‘composite particle’, coupled to each other via 
the formal replacement .m → M + Hint/c

2 in the central Hamiltonian as in the 
heuristic motivation (16.3), as well as to the external electromagnetic field.16 

15 In the method as presented by Sonnleitner and Barnett in [55], a small inconsistency arises at this 
point. If we want to keep the external vector potential as a dynamical variable in the action, then 
on the one hand, its equations of motion have to be the vacuum Maxwell equations, while on the 
other hand, it has to enter the equations of motion of the particles. For the Lagrangian which arises 
from directly inserting the internal potentials, this is indeed the case: variation of the corresponding 
action leads to the desired equations of motion. However, this Lagrangian contains second-order 
time derivatives of the particle positions, such that one cannot employ conventional Hamiltonian 
formalism. 

Sonnleitner and Barnett disregard the second-order time derivative terms, arguing that they are 
related to formally diverging backreaction terms. However, this is again problematic: these terms 
would have been the ones ensuring the vacuum Maxwell equations as equations of motion for the 
external potential; without them, the Lagrangian gives, again, the sourced Maxwell equations for 
the external potential, and the formalism becomes inconsistent. 

We may avoid this inconsistency by simply treating the external electromagnetic potentials 
as given background fields instead of dynamical variables. This ensures the consistency of the 
equations of motion while still allowing us to perform the internal–external field split. An extensive 
discussion of this point may be found in chapter 4 of [49]. Note that this inconsistency was 
addressed neither by Sonnleitner and Barnett in [55] nor in our (two of the present authors’) article 
[56]. 
16 In addition to the ‘internal’ part of the Hamiltonian describing the internal motion of the 
atom, the ‘central’ part describing the motion of the centre-of-mass degrees of freedom together 
with the expected internal–external coupling, and the part describing the interaction with the 
external electromagnetic field, there arises a ‘cross term’ Hamiltonian . HX. This contains additional 
couplings between the internal degrees of freedom and the central momentum. Sonnleitner and 
Barnett continue with the construction of a canonical transformation that eliminates these cross 
terms. Of course, for a thorough description of physical situations, e.g. in experiments, one cannot 
simply assume that the resulting new coordinates correspond to the physically realised observables, 
but has to be careful to express all results in terms of operationally clearly defined quantities. A 
similar issue will become relevant in the gravitational case, as discussed below.
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We are now going to explain how to extend this method in order to include a 
weak gravitational background field, described by the Eddington–Robertson PPN 
metric (16.6) . Our geometric post-Newtonian expansion scheme described in the
beginning of Sect. 16.2.1, based on the background Minkowski metric . η and the 
time evolution field u, allows us to include gravity very easily, at least conceptually 
speaking: in our adapted coordinates .(ct, xa) we may repeat all the steps of the 
derivation by Sonnleitner and Barnett, the only difference being that we now start 
from the general-relativistic action describing our particles and fields in the curved 
spacetime geometry as given by .gER–PPN. This leads to ‘gravitational corrections’ 
being included in virtually all steps of the derivation, i.e. additional terms includ-
ing the gravitational potential . 	. Finally, geometric operations appearing in the 
resulting Hamiltonian may be re-written in terms of the physical spacetime metric, 
whereby some terms obtain a somewhat more intuitive interpretation in terms of 
metric quantities. 

The action we start from, in which our particles and fields are minimally coupled 
to the spacetime metric .g = gER–PPN, reads as follows: 

. Stotal = −c2
2∑

i=1

mi

∫
dt
√

−gμν ṙ
μ
i ṙν

i /c2

+
∫

dt d3x
√−g

(
−ε0c

2

4
FμνF

μν + JμAμ

)
. (16.14) 

Here, . mi are the masses of the particles, .rμ
i (t) the coordinates of their worldlines, 

.
√−g denotes the square root of minus the determinant of the matrix of metric 
components, .Aμ are the components of the total electromagnetic four-potential, 
.Fμν = ∂μAν − ∂νAμ are the components of the field strength, and . Jμ = jμ/

√−g

are the components of the current four-vector field of the particles. The current 
density j , which is a vector field density, is given by 

.jμ(t, x) =
2∑

i=1

eiδ
(3)(x − ri (t))ṙ

μ
i (t), (16.15) 

where .e1 = −e2 =: e are the electric charges of the particles and .δ(3) is the three-
dimensional Dirac delta distribution. 

By inserting the Eddington–Robertson metric into the kinetic terms of the 
particles and expanding in . c−1, we obtain ‘gravitational corrections’ to the kinetic 
terms. These may then very easily be directly included into the derivation by 
Sonnleitner and Barnett. For the electromagnetic fields as well, the computation 
does not pose any intrinsic difficulties: the Maxwell equations in the gravitational 
field may be written in terms of the gravity-free Maxwell equations, which allows 
to perturbatively include the gravitational effects on top of the ‘internal’ potential 
solutions from the non-gravitational case. The derivation of this result however 
turns out to be quite lengthy, in particular if we do not neglect derivatives of the
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gravitational potential . 	. Full details of the calculations may be found in chapter 4 
of [49].17 

The resulting Hamiltonian takes the symbolic form18 

.H[com],total = HC + HA + HAL + O
(
c−4
)
, (16.16a) 

where .HAL describes the atom-light interaction, i.e. the interaction of our system 
with the external electromagnetic fields, .HC can be interpreted as describing the 
dynamics of the central degrees of freedom, and .HA the internal atomic motion. 
The latter two are given by 

. HC = P2

2M

[
1 − 1

Mc2

(
p2

2μ
− e2

4πε0r

)]
+
[
M + 1

c2

(
p2

2μ
− e2

4πε0r

)]
	(R)

− P4

8M3c2
+ 2γ + 1

2Mc2
P ·	(R)P + (2β − 1)

M	(R)2

2c2
, . (16.16b) 

HA =
(
1 + 2γ

	(R)

c2

)
p2

2μ
−
(
1 + γ

	(R)

c2

)
e2

4πε0r

− M − 3μ

M

p4

8μ3c2
− e2

4πε0

1

2μMc2

(
p · 1

r
p + p · r 1

r3
r ·p

)

− 2γ + 1

2Mc2

�m

μ
p · (r · ∇	(R))p + (γ + 1)

e2

4πε0r

�m

2Mc2
r ·∇	(R),

(16.16c) 

where .R,P are the central position and momentum, .r,p are the relative position 
and momentum, .M,μ are the total and reduced mass of the system, respectively, 
and .�m = m1 − m2 the mass difference [49]. In these expressions, ‘dot products’ 
of three-vectors are taken with respect to the flat metric . δ induced on three-space by 
the background Minkowski metric . η, e.g. .r = √δabrarb and .p2 = δabpapb. 

The ‘physical spatial metric’ . (3)g, i.e. the metric on three-space induced by the 
physical spacetime metric .g = gER–PPN, is given as 

.
(3)g =

(
1 − 2γ

	

c2

)
δ + O

(
c−4
)

(16.17a) 

(compare the Eddington–Robertson metric (16.6) ), from which we see that its
inverse is

.
(3)g−1 =

(
1 + 2γ

	

c2

)
δ−1 + O

(
c−4
)
. (16.17b)

17 Note that for simplicity, in our article [56] we neglected derivatives of . 	 in the treatment of the 
electromagnetic fields. 
18 To simplify the presentation, here we leave out the ‘cross terms’ . HX that arise in our gravitational 
case exactly as in the non-gravitational case; see footnote 16 on page 512. We also leave out an 
additional cross term . 2γ+1

2Mc2
[P · (r ·∇	(R))pr + H.c.] involving the derivative of the gravitational 

potential, since it is irrelevant for the following general discussion. 
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Thus we may rewrite the kinetic and Coulomb interaction terms from . HA in (16.16c) 
in terms of . (3)g as 

.

(
1 + 2γ

	(R)

c2

)
p2

2μ
=

(3)g−1[R](p,p)

2μ
+ O

(
c−4
)
, . (16.18a) 

−
(
1 + γ

	(R)

c2

)
e2

4πε0r
= − e2

4πε0
√

(3)g[R](r, r) + O
(
c−4
)
. (16.18b) 

In this form, these terms look like the usual kinetic and Coulomb interaction 
energies from atomic physics in Galilei-invariant QM, only with the Euclidean 
metric used to measure distance and momentum-squared replaced by the physical 
spatial metric. Thus the internal atomic Hamiltonian takes the form 

. HA =
(3)g−1[R](p,p)

2μ
− e2

4πε0
√

(3)g[R](r, r)
+ (c−2 SR & ‘Darwin’ corrections + c−2∇	 term) + O

(
c−4
)
.

(16.19a) 

The internal–external coupling terms that we have included into the central Hamil-
tonian . HC in (16.16b) may then be expressed in terms of . HA, leading to 

. HC = P2

2M

(
1 − HA

Mc2

)
+
(

M + HA

c2

)
	(R)

− P4

8M3c2
+ 2γ + 1

2Mc2
P · 	(R)P + (2β − 1)

M	(R)2

2c2
+ O

(
c−4
)
.

(16.19b) 

Comparing this to the Hamiltonian for a single particle in the Eddington–Robertson 
metric (16.13) , we see that this has the form

.HC = HER–PPN
single particle(P,Q,M + HA/c2) + O

(
c−4
)
. (16.20) 

Thus, starting from first principles our calculation supports the heuristic picture of 
a ‘composite point particle’ whose mass is given, according to the ‘mass defect’, by 
the total rest mass plus the internal energy divided by . c2. 

•> Conclusion 16.3 

Composite quantum systems in post-Newtonian gravity can be described in a sys-
tematic and properly relativistic way, starting from well-understood first principles. 
The results confirm, to some extent, the heuristically motivated internal–external 
couplings from the ‘mass defect’ picture as in (16.3).
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Note that this interpretation in terms of a ‘composite point particle’ whose 
internal energy contributes to its mass—the ‘inertial’ one in the kinetic term as well 
as the ‘gravitational’ one coupling to . 	—depends crucially on the rewriting (16.18) 
of the internal atomic energies in terms of the momentum-squared and distance as
measured with the ‘physical spatial metric’ . (3)g. Instead, we could have chosen to 
interpret as internal kinetic and interaction energies the terms 

.H
backgr.
A,kin. = δ−1(p,p)

2μ
= p2

2μ
, . (16.21a) 

H
backgr.
A,interact. = − e2

4πε0
√

δ(r, r)
= − e2

4πε0r
(16.21b) 

expressed with the background spatial metric . δ. This would have meant to take as 
internal energy the part 

. H
backgr.
A = p2

2μ
− e2

4πε0r
+ (c−2 SR & ‘Darwin’ corrections

+ c−2∇	 term) + O
(
c−4
)

(16.22) 

of the total Hamiltonian. Then we would have had to interpret the left-over . γ terms 
from . HA as part of the central Hamiltonian, giving it the form 

. H
backgr.
C = HC + 2γ

	(R)

c2

p2

2μ
− γ

	(R)

c2

e2

4πε0r

= P2

2M

(

1 − H
backgr.
A

Mc2

)

+
[

M + H
backgr.
A

c2
+ γ

c2

(
2
p2

2μ
− e2

4πε0r

)]

	(R)

− P4

8M3c2
+ 2γ + 1

2Mc2
P · 	(R)P + (2β − 1)

M	(R)2

2c2
+ O

(
c−4
)
.

(16.23) 

Naively looking at this equation, we could have concluded that not only does the
internal energy (16.22) of the composite system contribute differently to the inertial
and the (passive) gravitational masses of the composite particle, but also that internal
kinetic and interaction energies (16.21) contribute differently to the (passive)
gravitational mass. That is, we might have concluded an ‘anomalous coupling’ of
internal energies to the gravitational potential . 	. Note that, due to the virial theorem, 
the time average of the additional coupling term .2H backgr.

A,kin. + H
backgr.
A,interact. vanishes, 

which for stationary states solves the apparent interpretational tension regarding the 
‘composite point particle’ picture [37, 57, 58]. 

One might be tempted to argue that ‘real’ physical distances and times as 
measured by ‘rods and clocks’ are the ones as defined by the physical spacetime
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metric g, and that therefore the ‘correct’ way to express internal energies is in 
terms of metric quantities with respect to g (as we did before in (16.18) ), which
makes the ‘anomalous’ couplings go away. However, this supposed argument is
not sufficient to argue for or against the absence of such couplings in all physical
situations: just because the Hamiltonian looks natural when expressed in terms of
g, we do not know anything about the state of the system. The state might, a priori,
have been prepared in a way that is sensitive not only to lengths as defined by g,
but also to some other geometric structures.19 For a proper analysis of physical 
situations, e.g. in experiments, one has (in principle) to describe the whole situation, 
including all preparation and measurement procedures, in terms of operationally 
defined quantities, and express all predicted results in terms of these operational 
quantities. 

•> Conclusion 16.4 

Although metric lengths are usually interpreted as being measured by ‘rods and 
clocks’, they are not necessarily operationally realised in physical situations. 
Therefore, for a proper assessment if ‘anomalous’ couplings of internal energies 
to the gravitational potential are physically relevant, it is not sufficient to show that 
they are eliminated from the Hamiltonian by rewriting the coupling in terms of 
metric lengths—a proper analysis needs to describe the whole situation in terms of 
operationally defined quantities. 

16.2.2 Seemingly Anomalous Couplings of Internal Energies—A 
Perspective from Diffeomorphism Invariance 

Towards the end of the previous section, we have seen a specific example of 
the emergence of ‘anomalous’ couplings of internal energies to the Newtonian 
potential in the systematic (post-)Newtonian description of composite systems 
in gravitational fields: when the internal energies are written in terms of met-
ric quantities with respect to the background metric, defining the ‘absence’ of 
gravitational fields, the ‘gravitational mass’ multiplying the Newtonian potential 
in lowest order contains, in addition to the rest mass, not only a contribution of 
total internal energy divided by . c2, but an additional contribution proportional to 
.(2 kinetic energy + potential energy). When the internal energies are expressed 
in terms of metric quantities with respect to the physical metric, instead, these 
‘anomalous’ couplings disappear from the Hamiltonian (since they are ‘absorbed’ 
into the definitions of the metric lengths). We also noticed that the time average of 
the additional coupling term vanishes due to the virial theorem.

19 For example, spatial light propagation in a static spacetime is described by the so-called optical 
metric, which is determined by the spacetime metric g and the staticity Killing field. 
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Such apparently ‘anomalous’ coupling terms are not special to quantum-theoretic 
descriptions of composite systems. They typically appear in post-Newtonian 
descriptions of the dynamics of composite systems in GR. This was already noted 
early in the history of GR, like, e.g., in 1938 by Eddington and Clark in their 
approximate formulation of the dynamics of n gravitationally interacting point 
masses [59]. They found an expression for the total active gravitational mass of 
the system (by looking at the asymptotic form of the metric) that was given by 
the sum of the individual masses, three times the internal kinetic energy, and 
twice the internal potential energy. This differs from the simple sum of all three 
energies (rest, kinetic, and potential) by .(2 kinetic energy + potential energy), so  
as if the active gravitational mass did not match the sum of all energies (divided 
by . c2). However, as they also immediately noted, and as was well known from 
the Newtonian theory of gravitating point masses [60], the apparent excess energy 
.(2 kinetic energy + potential energy) equals the second time-derivative of the total 
moment of inertia, which (being a total time derivative) clearly vanishes for bounded 
motions upon forming the time average. 

In this section we aim to give more general arguments on the appearance of such 
seemingly ‘anomalous’ couplings and the possibility to ‘hide’ them by coordinate 
redefinitions. Our exposition is based on a discussion by Carlip [37], in which he 
speaks of employing ‘general covariance’ to argue about the ‘anomalous’ couplings. 
We will make the underlying assumptions of this argumentation more explicit, in 
particular emphasising the importance of background structures for the arguments— 
namely, the background metric . η and time evolution field u, as introduced in 
the beginning of Sect. 16.2.1. Apart from being essential for the very definition 
of the notion of ‘weak fields’, this background structure is also important when 
considering the matter energy-momentum tensor, which is only defined with respect 
to a metric. 

In order to be more precise, we will avoid the somewhat diffuse terminology 
‘general covariance’ and speak of diffeomorphism invariance instead. In fact, this is 
more than just linguistic pedantry: as we will see, it is an important conceptual 
point that we consider active diffeomorphisms rather than just passive changes 
of coordinates. The main difference is that the latter necessarily affect all fields, 
whereas the former may be selectively applied to some fields, while leaving invariant 
others. This we apply, e.g., to keep a meaningful distinction between dynamic fields, 
which get acted upon by the diffeomorphisms, and background fields, which are left 
invariant. Furthermore, we make precise the claim [37] that by arguments based on 
the vanishing of ‘anomalous’ coupling terms, one may prove the special-relativistic 
virial theorem. 

Note that for the arguments in this section, quantisation of matter is not needed, 
and we will argue in the language of classical Lagrangian field theory. 

16.2.2.1 The Mathematical Setting 
Let . M be the spacetime manifold. We will consider matter fields . � which are 
sections in some natural vector bundle E on . M. We emphasise the condition of 
naturality, which implies that each diffeomorphism .ϕ ∈ Diff(M) has a naturally
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associated lift to the total space E [61]. More precisely, this means that associated 
to each .ϕ ∈ Diff(M) we have a unique vector bundle isomorphism . (ϕ̂, ϕ) : E → E

consisting of a family of linear isomorphisms 

.ϕ̂p : Ep → Eϕ(p) (16.24) 

depending smoothly on the point .p ∈M, in such a way as to satisfy .îdM = idE and 
.ϕ̂1 ◦ ϕ2 = ϕ̂1 ◦ ϕ̂2. We also assume that . ϕ̂ depends ‘smoothly’ on . ϕ in a weak sense 
that will be made precise below. Examples of natural bundles are all vector bundles 
associated to the (general linear) frame bundle of . M.20 The space of sections . (E)

then carries a natural pushforward action of the diffeomorphism group, 

.Diff(M) × (E) � (ϕ,�) �→ ϕ∗� := ϕ̂ ◦ � ◦ ϕ−1 ∈ (E). (16.25) 

It is this pushforward that we need to be ‘smooth’ in . ϕ in a weak sense: for . ϕt the 
local flow of any vector field X, we assume .(ϕt )∗� to depend smoothly on t , such 

that the Lie derivative .LX� = d
dt (ϕ−t )∗�

∣
∣∣
t=0

exists and we have 

.(ϕt )∗� = � − tLX� + O
(
t2
)
. (16.26) 

Let now .S : Lor(M) × (E) × O(M) → R, (g,�, V ) �→ S[g,�;V ] be the 
matter action, taking as inputs a Lorentzian metric g on . M, a matter configuration 
. �, and an open ‘region of integration’ V in . M. (We do not necessarily need 
the action be defined as an integral over some Lagrangian density, as long as the 
assumptions we make in the following make sense and are satisfied. However, action 
integrals in this usual sense provide the most important class of actions.) Usually we 
will take the integration region V infinite in space but finite in time, such as to render 
the action finite. We define the matter energy-momentum tensor by the functional 
derivative21 

.
δS

δgμν

[g,�;V ] =: 1

2c

√| det g| T μν[g,�], (16.27)

20 Note that a priori this excludes spinor fields, as spinor bundles do not admit natural lifts of 
general diffeomorphisms, but only of paths of isometries that start at the identity, being associated 
to the bundle of ‘spin frames’, i.e. a spin structure, which is a double cover of the bundle 
of orthonormal frames. Below, most of our arguments employ ‘infinitesimal’ diffeomorphisms, 
i.e. Lie derivatives of fields with respect to vector fields. Here the same comment applies. Lie 
derivatives of sections in E only exist if vector fields on . M lift to vector fields on the total space 
of the frame bundle. For spinor fields, this is a priori not the case, unless the vector field generates 
an isometry (i.e., is a Killing field). Lie derivatives for spinor fields with respect to general vector 
fields can be defined relative to an extra prescription for lifting the vector field to the frame bundle 
[62, 63]. 
21 This is simply the Hilbert energy-momentum tensor, i.e. the energy-momentum tensor which 
would appear on the right-hand side of Einstein’s equations if we added the Einstein–Hilbert action 
as the dynamical action for the metric g. 
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i.e., by demanding that it satisfy 

. S[g + g̃, �;V ] = S[g,�;V ] + 1

2c

∫

V

d4x
√| det g| T μν[g,�]g̃μν + O

(
g̃2
)

= S[g,�;V ] + 1

2c

∫

V

dvolg T μν[g,�]g̃μν + O
(
g̃2
)

(16.28) 

for any sufficiently small symmetric two-tensor . g̃, where .dvolg denotes the Rieman-
nian volume form of g. Note that the assumption of this functional derivative being 
well-defined and independent of the integration region V amounts to a restriction on 
the possible matter actions S—for example, double integrals over V are excluded. 
We also assume the energy-momentum tensor to depend locally on the matter 
fields, meaning that .supp(T [g,�]) ⊆ supp(�).22 For example, this holds for any 
action that is an integral over a Lagrangian density containing at most finitely many 
derivatives of . �. 

Our fundamental assumption is that the matter action be diffeomorphism invari-
ant, i.e. that for any diffeomorphism .ϕ ∈ Diff(M) we have 

.S[ϕ∗g, ϕ∗�;ϕ(V )] = S[g,�;V ] (16.29) 

for all .g,�, V .23 Note that for a theory formulated in differential-geometric terms, 
this will essentially always be the case, as long as no background structures enter 
the definition of the action S. 

In order to analyse the coupling of the matter fields to weak post-Newtonian 
gravity, we again need background structures in order to define the notions of weak 
gravity and small velocities. As in Sect. 16.2.1, we take as background spacetime 
Minkowski spacetime .(M, η), and a background time evolution vector field u on 
it that is geodesic with respect to . η and has Minkowski square .η(u, u) = −c2. 
As before, for convenience we choose global Lorentzian coordinates . (x0 = ct, xa)

on .(M, η) adapted to u, i.e. coordinates such that .(ημν) = diag(−1, 1, 1, 1) and 
.u = ∂/∂t , in which we will work and to which we will refer all components 

22 Recall that .supp(f ) denotes the closure of the set of points at which f assumes a non-zero value. 
Hence, the complement of the support is open and consists of those points for which there exist 
open neighbourhoods restricted to which f is identically zero. Now, . supp(T [g,�]) ⊆ supp(�)

is equivalent to the statement that the complement of .supp(�) is contained in the complement of 
.supp(T [g,ψ]), i.e. that whenever . � vanishes identically in some open neighbourhood, so does 
.supp(T [g,�]). This is, e.g., the case if .T [g,�](x) depends on .�(x) and finitely many derivatives 
of . � at x. 
23 As is well-known, diffeomorphism invariance of the action implies diffeomorphism covariance 
of the energy-momentum tensor, i.e. 

. T [ϕ∗g, ϕ∗�] = ϕ∗(T [g,�]).
The proof of this is as follows. Let g be a Lorentzian metric on . M, . ̃g a symmetric covariant tensor 
field, . � a matter field and . ϕ a diffeomorphism. By the definition of the energy-momentum tensor,
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of tensors in the following. However, the general discussion in the following will 
depend only on the geometric structures . η and u, while being independent of the 
choice of coordinates. 

16.2.2.2 The Reaction to Weak Gravity: Emergence of Seemingly 
Anomalous Couplings 

We now consider a metric which is a (small) perturbation of the background 
Minkowski metric, .g = η + h. The matter action then takes the form 

.S[η + h,�;V ] = S[η,�;V ] + 1

2c

∫

V

dvolη T μν[η,�]hμν + O
(
h2
)

(16.30) 

of a ‘non-gravitational’ background term plus an interaction term. This is the
interaction term considered in [37]. As integration region, we consider some 
‘sandwich’ .V = I × R3 of spacetime, for a finite temporal interval I . 

Let us now consider a perturbation .hμν = −2	
c2

δμν , which is just of the form 
determined by the linearised Einstein equations to leading order in a small-velocity 
approximation for the sourcing matter. The components .δμν are those of the tensor 
field .(4)δ := η + 2u� ⊗ u�/c2, where .u� = η(u, · ) is the one-form associated (via 
. η) to the vector field u that defines the reference with respect to which the motion 
of the source is considered slow. In background-adapted coordinates, . δμν is just the 
Kronecker delta. The interaction term in the Lagrangian function then takes the form 

.Lint(t) = −
∫

{ct}×R3
d3x

	

c2
δμνT

μν[η,�]. (16.31a) 

for . ε sufficiently small we have 

. S[ϕ∗(g + εg̃), ϕ∗�; ϕ(V )] − S[ϕ∗g, ϕ∗�; ϕ(V )]

= ε
1

2c

∫

ϕ(V )

dvolϕ∗g T μν [ϕ∗g, ϕ∗�](ϕ∗g̃)μν + O
(
ε2
)

= ε
1

2c

∫

ϕ(V )

ϕ∗
(
dvolg

(
ϕ∗(T [ϕ∗g, ϕ∗�]))μν

g̃μν

)
+ O

(
ε2
)

= ε
1

2c

∫

V

dvolg
(
ϕ∗(T [ϕ∗g, ϕ∗�]))μν

g̃μν + O
(
ε2
)

where we used that the pushforward commutes with tensor products and contractions, and that the 
Riemannian volume form of the pushforward metric .ϕ∗g is the pushforward of the volume form of 
the original metric. If, now, the matter action is diffeomorphism invariant, the above expression is 
also equal to 

. S[g + εg̃,�; V ] − S[g,�; V ] = ε
1

2c

∫

V

dvolg T μν [g,�]g̃μν + O
(
ε2
)
.

Since . ̃g was arbitrary, this implies .ϕ∗(T [ϕ∗g, ϕ∗�]) = T [g,�], i.e., the covariance law 
.T [ϕ∗g, ϕ∗�] = ϕ∗(T [g,�]).
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Assuming that the Newtonian potential . 	 is approximately constant over the extent 
of our system, this becomes 

.Lint(t) = −	(t, x̄)
1

c2

∫

{ct}×R3
d3x δμνT

μν[η,�], (16.31b) 

where . ̄x are the spatial coordinates of some point inside the system. Thus, the 
expression 

.Mg = 1

c2

∫

{ct}×R3
d3x δμνT

μν[η,�] (16.32) 

features as the ‘gravitational mass’ of the system in linear order, i.e. the quantity 
coupling to the Newtonian potential. 

At this point, we see how the ‘anomalous’ coupling terms arise: the energy of 
our system . �, with respect to the background structures . η and u, is given as 

.E =
∫

{ct}×R3
d3x T 00[η,�], (16.33) 

while the ‘gravitational mass’ (16.32) receives the additional contribution

.Mgc
2 − E =

3∑

a=1

∫

{ct}×R3
d3x T aa[η,�] (16.34) 

on top of that energy. For a massive point particle on a worldline . z(t) = (ct, z(t))
in a general metric, the energy-momentum tensor is given by 

.T
μν
part.[g, z](x) = mc√| det g|(x)

δ(3)(x − z(t))
żμ(t)żν(t)√−g(ż(t), ż(t))

, (16.35) 

so the energy (16.33) and the ‘anomalous’ term (16.34) evaluate to

. Epart. = mc2 + m

2
ż(t)2 + O

(
c−2
)

=: mc2 + Ekin.,Newt. + O
(
c−2
)
, . (16.36a) 

(Mgc
2 − E)part. = 2Ekin.,Newt. + O

(
c−2
)
. (16.36b) 

•? Exercise 
16.3 Using the energy-momentum tensor for a point particle, derive (16.36).
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In contrast, for ‘ultra-relativistic’ matter, e.g. the electromagnetic field, the 
energy-momentum tensor is traceless, .gμνT

μν
ultra-rel.[g,�] = 0. For Minkowski 

spacetime, this directly implies .T 00
ultra-rel.[η,�] = ∑3

a=1 T aa
ultra-rel.[η,�], resulting 

in 

.(Mgc
2 − E)ultra-rel. = Eultra-rel.. (16.37) 

Hence, for a system of slowly moving charged particles, interacting exclusively by
their electromagnetic field, Eqs. (16.36b) and (16.37) combine to . (2 kinetic energy+
potential energy), which is just the ‘anomalous’ coupling term that we encountered 
for the specific calculation in Sect. 16.2.1.2. Following [37] it is thus shown to be of 
general origin. 

16.2.2.3 Anomalous Couplings and Diffeomorphism Invariance 
We will now show that the apparently ‘anomalous’ gravitational coupling 
term (16.34) in the action depends on the representative of the diffeomorphism
equivalence class of gravitational fields. In other words, it can be removed
by actively transforming the field of metric perturbations by some appropriate
diffeomorphism. To make this explicit, we consider a general diffeomorphism . ϕ

by which we transform the physical metric .g = η + h and matter field . �. The  
transformed metric .ϕ∗g is again to be considered as a perturbation of the same 
background metric . η. Hence, .ϕ∗g =: η + h′ with 

.h′ = ϕ∗g − η = ϕ∗h + ϕ∗η − η. (16.38) 

Note that here, as already announced before, it is crucial that we think of the
diffeomorphism . ϕ as an active transformation of fields, and not just a passive 
coordinate change. Only an active transformation allows to transform one field while 
keeping others fixed. 

Assuming diffeomorphism invariance of the matter action, we obtain 

. S[η + h,�;V ] = S[η + h′, ϕ∗�;ϕ(V )]

= S[η, ϕ∗�;ϕ(V )] + 1

2c

∫

ϕ(V )

dvolη T μν[η, ϕ∗�]h′
μν + O

(
h′2). (16.39) 

Comparing to (16.30) , we see that under the transformation the background term
has changed, as well as the term coupling to the metric perturbation.

Now we specialise again to the situation considered in the previous section, 
where the initial metric perturbation was of the form .hμν = −2	

c2
δμν , with potential 

. 	 approximately constant over the extent of the system. We define a (linearised) 
diffeomorphism . ϕ that rescales space by a factor of .1 − 	

c2
in that part of spacetime
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containing the system, i.e. on .supp(�). This  . ϕ leaves invariant each ‘spatial leaf’ 
.{ct} × R3 ⊂ V (as a set), and transforms the metric perturbation into the form24 

.h′
μν = −2

	

c2
δ0μδ0ν on supp(ϕ∗�). (16.40) 

Put differently, application of . ϕ ‘transforms away’ all components of the metric 
perturbation apart from the 00 component over the extent of the system. Note that 
we have to assume that . 	 be (approximately) constant over the system not only in 
space, but also in the temporal direction: if it changed over time, the diffeomorphism 
would have to scale space differently at different times, thereby introducing mixed 
spatio-temporal terms . h′

0a in the metric perturbation.25 

At this point, the assumption of locality of the energy-momentum tensor in 
its matter-field argument comes into play: due to this locality, the transformed 
perturbation has the ‘purely temporal’ form (16.40) also on . supp(T [η, ϕ∗�]) ⊆
supp(ϕ∗�). Therefore, transforming by . ϕ, the action (16.39) may be written in the
form

.S[η+h,�;V ] = S[η, ϕ∗�;V ]−1

c

∫

V

dvolη
	

c2
T 00[η, ϕ∗�]+O

(
h′2), (16.41) 

24 In coordinate-free language, we have .h′ = −2 	
c2

u�⊗u�

c2
on .supp(ϕ∗�). 

25 In detail, the (linearised) diffeomorphism . ϕ accomplishing this transformation can in our setting 
be described as follows (we refrain from giving coordinate-independent constructions): Consider 
the vector field with components 

. X0 = 0, Xa = −	(x̄)
c2

ξ(x)(xa − x̄a) .

Here . ̄xa are the coordinates of a fixed spatial reference position within the body, i.e. within 
.supp(�), and  . ξ is a function that is constantly 1 on .supp(�) and falls off rapidly to zero outside. 
Defining . ϕ to be the diffeomorphism generated by X (i.e. the flow for unit time) and writing 
.ε := 	(x̄)/c2 for brevity, by the definition of the Lie derivative we have 

. h′ + η = ϕ∗(η + h)

= η + h −LX(η + h) + O
(
ε2
)

= η + h −LXη + O
(
ε2
)

,

since h itself is of order . ε. This means .h′ = h −LXη (up to higher order terms), or in components 

. h′
μν = hμν − ∂μXν − ∂νXμ .

By our choice of X the new metric perturbation takes on the desired form (16.40) (up to terms of
order . ε2) on  .supp(�). To conclude that it has this form also on .supp(ϕ∗�) = ϕ(supp(�)), note 
that for any function f we have .f ◦ ϕ = f +LXf + O(ε2), such that 

. f = O
(
ε2
)
on U �⇒ f = O

(
ε2
)
on ϕ(U).

Applying this to .U = supp(�) and .f = hμb, we obtain (16.40).
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and the transformed interaction term is 

.Lint,new(t) = −	(t, x̄)
1

c2

∫

{ct}×R3
d3x T 00[η, ϕ∗�]. (16.42) 

The quantity that now appears as the ‘gravitational mass’ (after the transformation
by . ϕ) is the spatial integral of the energy density .T 00[η, ϕ∗�] of the transformed 
system on the Minkowski background. We stress once more that the background 
fields . η and u are always the same, so that in particular the notion of ‘energy density’ 
for the original and the transformed fields is the same, namely .T 00 = T (u�/c, u�/c). 

We see that in the new diffeomorphism-equivalent representation an ‘anomalous’ 
coupling as in (16.32) no longer exists. Moreover, we note that in the new
representation the spatial part of the metric is just of Euclidean form. Thus, the new
representation expresses the quantities which describe the state of the system in a
form in which the spatial metric in the rest-frame of the observer u is Euclidean.
This is precisely the representation which we observed in the concrete example
of Sect. 16.2.1.2 to eliminate the disturbing coupling terms from the Hamiltonian. 
Hence we see that our previous example may be considered as a special case of 
a general law, according to which apparently ‘anomalous’ couplings disappear in 
particular, metrically preferred representations.26 

16.2.2.4 Dynamical Consequences of Diffeomorphism Invariance: The 
Virial Theorem 

Carlip [37] claimed that his discussion of the elimination of the seemingly anoma-
lous coupling terms by ‘general covariance’ might even be seen as a derivation of 
the special-relativistic virial theorem: since by the application of spatial rescaling 
diffeomorphisms as in the previous section we may arbitrarily alter the term 
coupling .

∫
d4x

∑3
a=1 T aa to the Newtonian potential, but the ‘physical coupling’ 

ought not depend on our ‘choice of gauge’, we are supposed to conclude that 
this integral must vanish. This is just the statement of the special-relativistic virial 
theorem, a discussion of which may be found in [64, § 34]. 

This argument seems too good to be true: it should be clear that a statement 
such as the virial theorem cannot be derived from kinematical assumptions (such 
as diffeomorphism invariance of the action) alone; some dynamical assumption 
is needed (usually, one takes local energy-momentum conservation, also called 
‘closedness’ of the system under consideration, i.e. .∂μT μν = 0). Looking at the 
transformation behaviour (16.39) of the matter action in weak gravity under the
action of a diffeomorphism, we see that the proposed argument breaks down due
to the fact that not only the coupling term but also the ‘background term’ changes,

26 ‘Metrically preferred’ means in our case that the pushforward . ϕ∗ transforms the physical spatial 
metric .(3)g = g|{t=const.} into the flat background spatial metric .δ = η|{t=const.}, such that the 
.η-length of a transformed spacelike vector .ϕ∗v is the same as the g-length of the original vector v. 
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from .S[η,�;V ] in (16.30) to .S[η, ϕ∗�;ϕ(V )] in (16.39) . Therefore, without any
further assumptions, we cannot deduce equality of the two coupling terms.

However, the desired conclusion (virial theorem) can be drawn if 

.
δS

δ�
[η,�;V ] = 0 under variations vanishing on ∂V, (16.43) 

i.e. if we assume that the matter field configuration . � solve the equations of motion 
(on the Minkowski background). The precise argument runs as follows: Fix an . ε >

0, and let X be a vector field on V that vanishes on the boundary . ∂V . Let  . ϕ be 
the flow-diffeomorphism associated to X for flow parameter . ε. Writing . ϕ∗� =
� − εLX� + O(ε2), we see that to leading order in . ε the difference . ϕ∗� − �

vanishes on . ∂V , such that the field equation (16.43) implies

.S[η, ϕ∗�;V ] = S[η,�;V ] + O
(
ε2
)
. (16.44) 

Expanding in . ε, we also directly obtain 

.T μν[η, ϕ∗�] = T μν[η,�] + O(ε). (16.45) 

On the other hand, combining (16.30) and (16.39) , we have

. S[η,�;V ] + 1

2c

∫

V

dvolη T μν[η,�]hμν + O
(
h2
)

= S[η, ϕ∗�;V ] + 1

2c

∫

V

dvolη T μν[η, ϕ∗�]h′
μν + O

(
h′2), (16.46) 

where . h′ is given by (16.38) in terms of . η, h and . ϕ. Assuming h, and therefore also 
. h′, to be of order . ε, we may combine (16.46) with equality of the background terms
up to quadratic terms in . ε (16.44) and equality of the energy-momentum tensor up
to linear terms (16.45) , and obtain

.0 =
∫

V

dvolη T μν[η,�](hμν − h′
μν). (16.47) 

We now want to apply this equation to the situation considered in the previous 
section, taking .V = [0, ct] × R3, .hμν = −2	

c2
δμν with a constant . 	, and . ϕ a 

diffeomorphism that scales space on .supp(�), such as to obtain . h′
μν = −2	

c2
δ0μδ0ν

there. If we were able to apply (16.47) to these ingredients, we could conclude a
statement about .

∑3
a=1 T aa[η,�]. However, we are met with an obstacle: in the 

derivation of (16.47) , we needed that the vector field generating the diffeomorphism
vanish on the boundary . ∂V . At the spatial boundary of V , i.e. at ‘spatial infinity’, 
this does not pose a problem if we assume that . � have spatially compact support— 
we then need . ϕ to scale space only in a finite spatial region, and may take its
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generator X to fall rapidly to zero outside. At the temporal boundary of V however, 
we apply the same spatial rescaling as at all other times, and the generating vector 
field does not vanish. Therefore, in our situation, (16.47) only holds up to a boundary
term on the temporal boundary of V , arising from the failure of (16.44) . If, however,
we assume this boundary term to be local in . �, it vanishes when we take the average 
over larger and larger time intervals (since .supp(�) is spatially compact). Thus, we 
arrive at the special-relativistic virial theorem: 

. lim
t→∞

1

t

∫

[0,ct]×R3
d4x

3∑

a=1

T aa[η,�] = 0 . (16.48) 

We thus have shown that by a suitable adaptation of Carlip’s argument from [37], 
one can indeed prove the virial theorem. 

Note that we may, in fact, easily deduce local energy-momentum conservation 
from (16.47): According to (16.38), for .h = O(ε) we have in general 

.hμν − h′
μν = ε(LXη)μν + O

(
ε2
)

= 2ε∂(μXν) + O
(
ε2
)

. (16.49) 

Thus, for vector fields X vanishing on the boundary . ∂V , (16.47) implies

. 0 =
∫

V

dvolη T μν[η,�]∂(μXν)

=
∫

V

dvolη T μν[η,�]∂μXν

= −
∫

V

dvolη ∂μT μν[η,�]Xν , (16.50) 

which, due to X being arbitrary, implies .∂μT μν[η,�] = 0. 

•> Conclusion 16.5 

Seemingly anomalous coupling terms of internal energies of a composite system 
to the Newtonian gravitational potential depend on the chosen representative of 
the diffeomorphism equivalence class of fields. In other words, they are gauge 
dependent and may be eliminated from the action by choosing an appropriate 
representative (i.e. by ‘choosing a gauge’). However, as already stressed in the 
discussion in Sect. 16.2.1.2, this is not sufficient to argue for or against the physical 
relevance of such coupling terms: in a sense, the coupling terms have simply 
been ‘hidden’ by the field redefinition .� → ϕ∗�. The question of operational 
significance in concrete physical situations is still the important one, which cannot
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be answered by simple ‘kinematic’ arguments as the one discussed in this section, 
without any assumptions about the complete physical situation.27 

Notwithstanding the non-viability of such arguments for answering questions 
about the physical relevance of such couplings, by making the additional dynamical 
assumption of the field solving the equations of motion, arguments based on 
diffeomorphism invariance may be used to prove the special-relativistic virial 
theorem. 

16.3 Quantum Matter with Gravitational Backreaction 

The objective of most research in ‘quantum gravity’ focuses on the question how 
gravity can be quantised (and the consequences of this endeavour, as discussed in 
Chaps. 1 and 2). Taking a step back, before asking for the how, one may first ask 
if the gravitational field should be quantised at all. Of course, this presupposes a 
reasonable definition of what it means for gravity to be quantised—which is the 
defining feature that makes a theory a quantum theory? 

Einstein’s equations (16.1) can be understood as describing a field .gμν(x) on 
spacetime. From this point of view, one may find it reasonable to apply the same 
quantisation rules to solutions .gμν(x) of Einstein’s equations that one applies, for 
instance, to the classical solutions . ψ of the Dirac equation in order to arrive at 
fermionic quantum fields. However, .gμν(x) is not simply a field on spacetime; it 
describes the metric and further differential-geometric properties of spacetime itself. 
Einstein’s equations can only be understood as equations of a field on spacetime in a 
perturbative sense: by separating the metric .gμν → gμν+hμν into some background 
metric .gμν and only treating the variation .hμν with respect to that background as a 
field living on the  background defined by . gμν . 

From a more philosophical point of view, one may ask whether such an artificial 
splitting of the structure of spacetime into background and field is a more plausible 
approach (even if in the end physical predictions would turn out to be independent 
of the way in which the splitting is done) than the alternative that gravity is 
fundamentally different and spacetime cannot simply be quantised in the same way 
as matter fields. In any case, the perturbative quantisation in the exact same way 
as for matter fields cannot be ultimately correct, because it is known to result in 
non-renormalisable divergences [65, 66]. 

We can avoid the ambiguity about what it means to quantise gravity altogether by 
asking the opposite: can we construct a theory that consistently combines (classical) 
GR with quantum matter, specifically, that solves the problem of defining the right-

27 In that respect we contradict the immediate conclusion drawn in [58, p. 6], that ‘correctly 
defining internal energies yields the true and unique gravitational mass and exposes the validity 
of the equivalence principle’. We also contradict the implicit statement made in this quotation, 
namely that the validity of the equivalence principle hinges on the equality of various notions of 
‘mass’, the definitions of which are—as we have just seen—gauge dependent. 
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hand side in Einstein’s equations from quantum matter fields? Any theory that 
accomplishes this, we want to refer to as semiclassical gravity. 

16.3.1 Semiclassical Gravity Sourced by Mean Energy-Momentum 

Once a proper mathematical model for quantum fields in curved spacetime has 
been established, one can define an energy-momentum operator .T̂μν via canonical 
quantisation of the corresponding classical object. An obvious way to include 
the gravitational backreaction of these fields are the semiclassical Einstein equa-
tions [67, 68] 

.Rμν − 1

2
R gμν = 8πG

c4

〈
T̂μν

〉
, (16.51) 

where . 〈T̂μν〉 = 〈�| T̂μν |�〉 denotes the expectation value in the state . |�〉 ∈ F±(H)

of the matter field. This choice of right-hand side ensures the correct classical limit 
to Einstein’s equations (16.1) .

The proper Hilbert space structure for modelling quantum states in curved 
spacetime provided, the expectation value is readily defined. The classical energy-
momentum tensor, however, is generally quadratic in the fields. A straightforward 
substitution of classical fields by field operators .φ → φ̂ results in an object . T̂μν(x)

which includes two-point correlation functions such as . 〈φ̂(x)φ̂(x′)〉 at the same 
spacetime point .x = x′, which diverge. Therefore, in addition to the classical 
definition of .Tμν an appropriate renormalisation procedure is required, which results 
in a certain ambiguity of .T̂μν(x). It has been shown by Wald [1, 69, 70] that 
the renormalised energy-momentum operator compatible with the semiclassical 
Einstein equations (16.51) can be defined in an axiomatic way, requiring:

1. For any two orthogonal states .〈�|	〉 = 0 the matrix elements .〈�| T̂μν |	〉 agree 
with those obtained by the formal substitution .φ → φ̂ of classical fields with 
field operators in the classical energy-momentum tensor. 

2. In flat Minkowski spacetime the renormalised .T̂μν reduces to the normal ordered 
energy-momentum operator obtained by substituting .φ → φ̂. 

3. Expectation values of the renormalised energy-momentum operator are covari-
antly conserved: .∇μ 〈T̂μν〉 = 0. 

4. Causality holds in the sense that only changes in the metric in the causal past of 
some spacetime point p can affect the value of . 〈T̂μν〉 at p. 

The renormalised .T̂μν satisfying these axioms is uniquely determined up to the 
addition of local curvature terms.
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16.3.1.1 The Nonrelativistic Limit of Semiclassical Gravity 
In order to arrive at a nonrelativistic28 Schrödinger equation for semiclassical 
gravity, one can follow the usual procedure to derive the Newtonian limit of 
Einstein’s equations via the linearised theory, combined with the assumption of slow 
velocities of the sourcing matter [71]. The metric is written as .gμν = ημν +hμν with 
a perturbation .hμν around flat Minkowski spacetime. Introducing the trace-reversed 
metric .hμν = hμν − 1

2ημνη
ρσ hρσ and applying the de Donder gauge condition 

.∂νhμν = 0, Einstein’s equations to linear order in the metric perturbation yield the 
wave equations 

.�hμν = −16π G

c4

〈
T̂μν

〉
, (16.52) 

.� = ∇μ∇μ being the d’Alembert operator. In the weak field, nonrelativistic limit, 
the behaviour is dominated by the 00-component, and the d’Alembert operator can 
be approximated by the flat space Laplace operator . ∇2, neglecting time derivative 

terms of order . c−2. Defining the Newtonian potential .	 = − c2

4 h00 and the mass 

density operator .ρ̂ = T̂00/c
2, one finds the Poisson equation 

.∇2	 = 4π G
〈
ρ̂
〉
. (16.53) 

For a single field of mass m particles, we can define the N -particle state

. |�N 〉 = 1√
N !
∫

d3x1 · · · d3xN�N(t, x1, . . . , xN)ψ̂†(x1) · · · ψ̂†(xN) |0〉
(16.54) 

with the nonrelativistic field operators . ψ̂ and N -particle wave function . �N . The  
mass density operator29 .ρ̂(x) = mψ̂†(x)ψ̂(x) has the time dependent expectation 
value 

. 
〈
ρ̂(x)

〉
N

= 〈�N | mψ̂†(x)ψ̂(x) |�N 〉

= m

N∑

i=1

∫
⎛

⎝
N∏

j=1

d3xj

⎞

⎠ δ(3)(x − xi ) |�N(t, x1, . . . , xN)|2 , (16.55)

28 Note that here we employ the common, yet somewhat misleading, adjective ‘nonrelativistic’ to 
designate Galilei-invariant dynamical laws in distinction from ‘relativistic’ ones, which then are 
those obeying Poincaré invariance. Nevertheless, we want to emphasise that it is not the validity 
of the physical relativity principle that distinguishes both cases; rather, their difference lies in the 
way in which that principle is implemented. 
29 Note that, contrary to perturbatively quantised gravity, all expressions derived from . ρ̂ in 
semiclassical gravity are well-defined, and there is no need for renormalisation. 
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and specifically .
〈
ρ̂
〉 = m|ψ |2 for a single particle with wave function .ψ(t, x). 

Integrating the Poisson equation (16.53) results in the potential

. 	(t, x) = −G

∫
d3x′

〈
ρ̂(x′)

〉

|x − x′|

= −Gm

N∑

i=1

∫
⎛

⎝
N∏

j=1

d3xj

⎞

⎠ |�N(t, x1, . . . , xN)|2
|x − xi | . (16.56) 

Given the classical spacetime structure corresponding to the Newtonian gravitation
potential (16.56), the problem is that of Sect. 16.2: what is the Schrödinger equation 
that follows for the dynamics of matter in said classical spacetime? 

The plausible answer, confirmed for the external homogeneous potential in the 
earth’s gravity [31], is that the potential should enter the Hamiltonian in the usual 
way, i.e. the Hamilton operator for the evolution of N particles in the position basis 
should be 

.ĤN =
N∑

i=1

(
p̂2i
2m

+ m	(t, xi )

)

+ Vmatter , (16.57) 

where .p̂ = −ih̄∇ is the momentum operator and the potential .Vmatter contains all 
external and internal non-gravitational forces. The resulting Schrödinger equation 
.ih̄∂t�N = ĤN�N is called the (N -particle) Schrödinger–Newton equation. Due to 
the wave function dependence of the gravitational potential (16.56) , it is a nonlinear
Schrödinger equation which for the case .N = 1 of a single particle reads 

.ih̄∂tψ(t, x) =
[

− h̄2

2m
∇2 − Gm2

∫
d3x′

∣∣ψ(t, x′)
∣∣2

|x − x′| + Vext

]

ψ(t, x) . (16.58) 

The gravitational term describes a self-interaction: the particle is attracted by a
distribution of its mass m with the probability density .

∣
∣ψ
∣
∣2. Furthermore, the 

balance between this gravitational self-attraction and the free spreading of the 
Schrödinger equation results in the existence of stationary solutions [72]. 

Despite its nonlinearity, the Schrödinger–Newton equation maintains many of 
the typical properties from linear QM. Specifically, the norm of the wave function 
is conserved, .∂t

∫
d3x|ψ(t, x)|2 = 0, allowing for a probabilistic interpretation as 

in standard QM. Note also that at any given time the uncertainty relation between 
non-commuting observables remains intact. Arguments that semiclassical gravity 
would violate position-momentum uncertainty [73], therefore, do not apply to 
semiclassical gravity based on the semiclassical Einstein equations. In any case, 
a violation of the uncertainty relation would only constitute a testable deviation 
from standard QM and not an inconsistency, as long as its magnitude is not in 
contradiction to experimentally established values.
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•? Exercise 
16.4 The single particle Schrödinger–Newton equation can be derived from the 

Lagrangian density 

. L = ih̄

2

(
ψ∗∂tψ − ψ∂tψ

∗)− h̄2

2m
|∇ψ |2 − Vext|ψ |2 − m

2
	|ψ |2

by variation with respect to the independent variables . ψ and . ψ∗, taking into account that . 	
is itself a convolution .	 = U ∗ ∣∣ψ∣∣2 of the potential .U(x) = −Gm/|x| with the magnitude 
squared of the wave function. Show this, and that the conserved Noether charge for the 
symmetry under phase transformations .ψ → eiαψ is the norm of the wave function. 

It is sometimes claimed [74,75] that the Schrödinger–Newton equation would not 
follow as the weak field nonrelativistic limit of the semiclassical Einstein equations. 
The criticism is based on the observation that in analogy with quantum electrody-
namics one would expect the nonrelativistic, second-quantised Hamiltonian acting 
on Fock space states to take the form 

.Ĥqg = − h̄2

2m

∫
d3x ψ̂†(x)∇2ψ̂(x) − G

∫∫
d3x d3x′ ρ̂(x)ρ̂(x′)

|x − x′| . (16.59) 

This Hamiltonian results in divergent matrix elements which can be cured either by 
the introduction of a regularised mass density operator [74] .ρ̂reg(x), smeared over 
some spatial region around . x, or by replacing the product of mass density operators 
by its normal ordered equivalent .: ρ̂(x)ρ̂(x′) : = m2ψ̂†(x)ψ̂†(x′)ψ̂(x)ψ̂(x′). This  
procedure removes the self-interaction30 at the level of single particles, and yields 
a linear Schrödinger equation. This is, in fact, the Hamiltonian one would expect 
from quantised gravity. With respect to semiclassical gravity, however, assuming 
an analogy to quantum electrodynamics amounts to circular reasoning. The two 
occurrences of . ρ̂ in Eq. (16.59) stem from the nonrelativistic limit of the coupling
.∼ hμνT

μν in the linearised combined action for gravity and matter. From a 
quantum gravity perspective, one expects both terms to be subject to canonical 
quantisation. In the semiclassical theory, on the other hand, one would only quantise 
the matter part .T μν , whereas the metric perturbation remains classical. Instead of 
the Hamiltonian (16.59) one has [71] 

.Ĥsc = − h̄2

2m

∫
d3x ψ̂†(x)∇2ψ̂(x) − G

∫∫
d3x d3x′ ρ̂(x)

〈
ρ̂(x′)

〉

|x − x′| , (16.60) 

with the first-quantised potential (16.56).

30 Exactly as in quantum electrodynamics, the self-interaction does not appear at tree level but is 
reintroduced via higher loop orders. 
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Although the proper derivation of a nonrelativistic Schrödinger equation from 
quantum fields in curved spacetime is an unsolved question (cf. Sect. 16.2), the true 
conflict that makes many question the validity of the Schrödinger–Newton equation 
is not its derivability from the semiclassical Einstein equations. Reading between the 
lines, one finds that what the critique [74, 75] of the Schrödinger–Newton equation 
is actually based on are its ‘problematic consequences’ with regard to its connection 
to the observed reality. 

16.3.2 Consistency of Semiclassical Gravity 

Historically, the question whether semiclassical gravity is consistent already con-
cerned physicists in the early days of quantum field theory. During the Chapel Hill 
conference [8], Feynman proposed the following thought experiment: 

Suppose we have an object with spin which goes through a Stern-Gerlach experiment. Say 
it has spin 1/2, so it comes to one of two counters. Connect the counters by means of rods, 
etc., to an indicator which is either up when the object arrives at counter 1, or down when 
the object arrives at counter 2. Suppose the indicator is a little ball, 1 cm in diameter. 

Now, how do we analyze this experiment according to quantum mechanics? We have 
an amplitude that the ball is up, and an amplitude that the ball is down. That is, we have 
an amplitude (from a wave function) that the spin of an electron in the first part of the 
equipment is either up or down. And if we imagine that the ball can be analyzed through the 
interconnections up to this dimension (.≈ 1 cm) by the quantum mechanics, then before we 
make an observation we still have to give an amplitude that the ball is up and an amplitude 
that the ball is down. Now, since the ball is big enough to produce a real gravitational field 
(we know there’s a field there, since Coulomb measured it with a 1 cm ball) we could use 
that gravitational field to move another ball, and amplify that, and use the connections to 
the second ball as the measuring equipment. 

Denoting with . |↑〉 and . |↓〉 the spin eigenstates and with .|U 〉 and .|D〉 the corre-
sponding final states of the ball, the experiment amounts to creating an entangled 
state 

. |�〉 = 1√
2

(|↑〉 ⊗ |U 〉 + |↓〉 ⊗ |D〉) . (16.61) 

For the second ball to move into a position consistent with measurement outcomes
for the position of the first ball, according to Feynman, the gravitational field should
possess an amplitude as well. And indeed, the gravitational potential according to
semiclassical gravity would be that of half the mass at position U and the other half
at position D, regardless of the measurement outcome for the position of the first
ball.

This has been noticed and put to the test by Page and Geilker [76]. In their 
experiment, the link between the quantum states . |↑〉 or . |↓〉 and the position of the 
first ball was as classical as it can be: it consisted of measuring the emission of . γ
rays from a cobalt-60 source over 30 seconds, walking over to another table,31 and

31 Whether it was literally or only metaphorically another table is not clear from their paper. 
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setting the position of a torsion balance into one of two positions depending on the 
measured emission (above/below average). To nobody’s surprise, the experiment 
confirms that whenever . |↑〉 is measured the gravitational field is that of a ball at 
position U and vice versa. This allows two possible conclusions: 

1. the gravitational field must, in fact, possess an amplitude, or 
2. the state of the system under consideration has not been the entangled 

state (16.61) .

That (16.61) cannot be the full story should, however, be old news to anyone
who has ever encountered the quantum measurement problem [77,78] before. Only 
in a many worlds interpretation [79] is the system expected to be in this state 
still after the spin measurement—with all the corresponding difficulties [80] of  
such an interpretation. The consequence of the Page–Geilker experiment is that 
semiclassical gravity is incompatible with a no-collapse interpretation of QM. 

•> Conclusion 16.6 

Semiclassical gravity, i.e. Eq. (16.51) for a single quantum field, is incomplete.
There must be a dynamical process, connected with the spin measurement, that leads
to an objective reduction of the wave function:

. |�〉 →
{

|↑〉 ⊗ |U 〉 with probability 50%

|↓〉 ⊗ |D〉 with probability 50% .
(16.62) 

Page and Geilker are well aware of this possibility. They refute it, because a
wave function collapse described by Eq. (16.62) seems to blatantly contradict the
covariant conservation of energy-momentum, Wald’s third axiom.

Interestingly, a similar argument could be made to refute QM, at least if defined
in the traditional way [81], including the postulate that the wave function after a 
measurement does not evolve from the wave function before measurement accord-
ing to the Schrödinger equation, but rather through projection on the corresponding 
eigenstate. In the same way, one could simply postulate that the combined state 
.(g,�) for metric and quantum field collapses upon ‘measurement’, in violation 
of the semiclassical Einstein equations, and continues to evolve according to 
semiclassical gravity thereafter. Of course, one then faces the same measurement 
problem as in standard quantum theory, the crucial difference being that a many 
worlds or ‘operational’ interpretation is not only difficult to reconcile with Born’s 
rule but also in conflict with the observed reality. 

If one does not take an agnostic point of view about measurement (as commonly 
accepted in non-gravitational quantum physics), semiclassical gravity requires the 
introduction of an objective collapse, with the instantaneous collapse (16.62) being
only an effective, nonrelativistic description. We conclude:
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•> Conclusion 16.7 

The objective reduction dynamics (16.62) , required to render semiclassical gravity
a complete theory (Conclusion 16.6), is the nonrelativistic limit of a relativistic
dynamical law for the fields compatible with the conservation law

.∇μ
〈
T̂μν

〉
= 0 . (16.63) 

This leaves us with three options, none of which can be excluded, as of yet:

1. A consistent model for collapse, compatible with the conservation law (16.63) ,
the Born rule probabilities (16.62) (or rather the generalisation to arbitrary states),
as well as all other observations in quantum theory, especially the violation of
Bell’s inequalities, is fundamentally impossible.

2. There is a new process, to be modelled outside the formalism for quantum 
fields on curved spacetime with backreaction, that provides an explanation of 
the collapse (16.62) compatible with (16.63) .

3. A consistent explanation for the effective collapse (16.62) can be given within the
theory of semiclassical gravity (by taking into account all matter fields and their
interactions).

Clearly, the first possibility is the perspective taken by Page and Geilker, among 
many others, and would necessitate some sort of quantisation of GR if it were true. 
The second possibility includes relativistic generalisations of collapse models [82]. 
The last certainly constitutes the most interesting alternative, that the explanation 
of wave function collapse could somehow lie within semiclassical gravity itself, 
although it is also the most speculative one. 

16.3.2.1 The Role of the Density Operator and Its Dynamics 
The quantum mechanical measurement postulate (16.62) predicts stochastic out-
comes. Semiclassical gravity by itself, on the contrary, is a deterministic model—as
are QM and quantum field theory without the collapse postulate. On the other
hand, even in classical, deterministic theories stochastic phenomena are a regular
occurrence in situations of many degrees of freedoms with incomplete information
about the precise initial conditions.

The quantum mechanical formalism deals with these twofold statistics with 
the introduction of the density operator: given an ensemble .{(pj , |ψj 〉)}j of pure 
Hilbert space states . |ψj 〉 that are expected with classical probabilities . pj , the  
density operator of the system is given by 

.�̂ =
∑

j

pj

∣
∣ψj

〉 〈
ψj

∣
∣ . (16.64)
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Two ensembles are called equivalent if they have the same density operator. The 
probability for any outcome o of a projective measurement of an operator . Ô is given 
by the trace .tr |o〉 〈o|�〉 of the projector on the corresponding eigenstate32 . |o〉 to o 
and the density operator. The information accessible via projective measurements 
is, therefore, entirely encoded in . ̂�. 

The density operator serves a second role in conventional QM. Pure states in a 
composite Hilbert space, .|�〉 ∈ H1 ⊗H2, are generally entangled (non-separable). 
There is no pure state . |ψ1〉 ∈ H1 from which one could obtain probabilities for 
measurement outcomes of an operator .Ô1 ∈ End(H1). Instead, if .�̂ = |�〉 〈�| is 
the (pure state) density operator, the probabilities for . Ô1 can be derived from the 
partial trace .�̂1 = trH2 �̂ over the second Hilbert space. 

For a linear Hamiltonian, the time evolution of the Hilbert space states . |ψj 〉 in 
Eq. (16.64) induces the time evolution law .ih̄∂t �̂ = [Ĥ , �̂] for the density operator. 
It has a closed form, implying that equivalence of ensembles is a property preserved 
under time evolution. Even the partial trace . ̂�1 for a subsystem obeys a closed time 
evolution law—in the case of a Markovian dynamics a master equation in Lindblad 
form .h̄∂t �̂ = −i[Ĥ , �̂] + h̄L(�̂)—which is linear in . ̂� (although not generally 
unitary). 

Considering, instead, the nonlinear evolution law (16.58) , the spatial density
matrix .�t (x, x′) =∑j pjψj (t, x)ψ∗

j (t, x′) evolves according to 

. ∂t�t (x, x′) = − i

h̄
[Ĥ0, �t (x, x′)] +

∑

j

iGm2

h̄
pjψj (t, x)ψ∗

j (t, x′)

×
∫

d3x′′∣∣ψj (t, x′′)
∣∣2
(

1

|x − x′′| − 1

|x′ − x′′|
)

. (16.65) 

It does not have a closed form and, therefore, does not preserve equivalence of
ensembles. Although it is possible to calculate a density operator at any given time
in order to obtain probabilistic predictions, the dynamics cannot be described in
terms of the density operator for nonlinear systems.

Example

Let . |ψ1,2〉 be stationary solutions of the Schrödinger–Newton equation (16.58) 
centred around . x1,2, respectively, and define . |ψ±〉 = 1√

2
( |ψ1〉 ± |ψ2〉); 

note that those superposition states are time dependent. The ensemble . A =
{( 12 , |ψ1〉), ( 12 , |ψ2〉)} then has the constant density matrix .�A(x, x′). The ensem-
ble .B = {( 12 , |ψ+〉), ( 12 , |ψ−〉)} has the same initial density matrix. Nonetheless, 
its density matrix evolves in time.

32 We assume, for simplicity, that operators have non-degenerate spectra, although the generalisa-
tion to degenerate eigenvalues is straightforward. 
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The stationary wave functions .ψj (x) are real valued and assumed to be sharply 
peaked around . xj . The initial wave functions .ψ±(0, x) then are real valued, as 
well, and in absence of an external potential, .Vext = 0, one finds 

. ψ±(t, x) = exp

[

− it

h̄

(
p̂2

2m
− Gm2

∫
d3x′

∣∣ψ±(0, x′)
∣∣2

|x − x′|

)]

ψ±(0, x)

≈ exp [−it (L1 +L2)]ψ±(0, x)

≈
[
1 − it (L1 +L2) − t2

2

(
L2
1 +L2

2 + {L1,L2}
)]

ψ±(0, x) ,

(16.66) 

where we approximated the . ψj as sharply peaked in the first step, and used the 
Zassenhaus formula expanding to quadratic order in time in the second, defining 

.Lj = p̂2

4h̄m
− Gm2

2h̄
∣∣x − xj

∣∣ . (16.67) 

This approximates the nonlinear evolution by the application of a linear operator.
Similarly, the stationarity of the .ψj (x) implies they must be close to states in the 
kernel of the operators .1 − exp(−itLj ). Linearising in . x and ignoring constant 
phase contributions, we have 

. ψ±(t, x) ≈ ψ±(0, x) − it√
2

(L2ψ1(x) ±L1ψ2(x))

− t2

2
√
2

(
L2
2ψ1(x) ±L2

1ψ2(x) + [L1,L2] (ψ1(x) ∓ ψ2(x))
)

,

(16.68) 

and thus the difference in the diagonal elements of the density matrix is

. �P(x) = �B(x, x) − �A(x, x)

≈ t2

2

(
(L2ψ1(x))2 − ψ1(x)L2

2ψ1(x) − ψ1(x)[L1,L2]ψ1(x)

+(L1ψ2(x))2 − ψ2(x)L2
1ψ2(x) − ψ2(x)[L2,L1]ψ2(x)

)
.

(16.69) 

It is tedious and not particularly insightful to attempt to evaluate these expres-
sions explicitly. Nonetheless, we can get a good idea of the dynamics, consid-
ering that the operators . L1 acting on . ψ2 and vice versa induce a motion of the 
peaks comparable to the gravitational attraction between two particles, with both
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the gravitational mass and the kinetic energy split equally between the two peaks 
of the superposition. �

16.3.3 Causality of Semiclassical Gravity 

The property discussed in the previous subsection, that equivalent ensembles evolve 
into distinguishable ones, has consequences for the possibility to send signals faster 
than light. Although the possibility of faster-than-light signalling has been discussed 
before [73], the argument is often attributed to Gisin [83] who introduces the 
following lemma:33 

Lemma 16.1 Let .{(pj , |ψj 〉)}j=1,...,n and .{(qk, |χk〉)}k=1,...,m be two equivalent 
ensembles of states .

∣∣ψj

〉
, .|χk〉 ∈ H. Let . K be a complex Hilbert space of dimension 

.l ≥ max(n,m). Then there are two orthonormal bases .{ |αi〉}i=1,...,l , . { |βi〉}i=1,...,l
of . K and a state vector .|�〉 ∈ H⊗K such that 

. |�〉 =
n∑

j=1

√
pj

∣∣ψj

〉⊗ ∣∣αj

〉 =
m∑

k=1

√
qk |χk〉 ⊗ |βk〉 . (16.70) 

The state .|�〉 has the reduced density matrix 

.�̂H =
n∑

j=1

pj

∣∣ψj

〉 〈
ψj

∣∣ =
m∑

k=1

qk |χk〉 〈χk|−3pt〉 (16.71) 

when traced over the Hilbert space . K. Enter Harvey and Krista, both adept exper-
imenters stationed in remote locations. At an earlier time, the state .|�〉 has been 
prepared and distributed such that Harvey is able to perform local measurements 
with respect to operators in . H. Krista, on the other hand, can decide to perform 
a measurement with respect to one of the self-adjoint operators .Â, B̂ ∈ End(K), 
whose matrices are diagonal relative to the bases .{|αi〉}i and .{|βi〉}i , respectively. 
According to the quantum mechanical measurement postulate, the global state after 
Krista’s measurement is one of the projections 

. |�〉 → |αi〉 〈αi |�〉
|〈αi |�〉| = |ψi〉 ⊗ |αi〉 with probabilitypi (16.72) 

if she chooses to measure with respect to . Â, and one of the projections 

. |�〉 → |βi〉 〈βi |�〉
|〈βi |�〉| = |χi〉 ⊗ |βi〉 with probabilityqi (16.73)

33 See appendix B of the preprint version of reference [84] for a complete proof. 
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if she chooses to measure with respect to . B̂. Due to the separability of the 
collapsed states (16.72) and (16.73) , and without knowledge about Krista’s mea-
surement outcome, Harvey’s subsystem is then represented by the ensembles
.{(pj , |ψj 〉)}j=1,...,n and .{(qk, |χk〉)}k=1,...,m, respectively. Being equivalent ensem-
bles, these are described by the same density operator (16.71) .

The crucial ascertainment is now that, because with a linear dynamical law
equivalent ensembles remain equivalent, Harvey has no means to detect which
ensemble he is dealing with. The probabilities of all possible measurements he can
perform on the Hilbert space . H are fully determined by .�̂H(t) at any time t . With 
a nonlinear evolution law, on the other hand, the two ensembles evolve differently, 
as discussed in the previous subsection for the example of the Schrödinger–Newton 
equation. After some finite time t they become distinguishable. If Krista and Harvey 
previously agreed to encode a binary signal with Krista’s choice of basis, then this 
signal reaches Harvey before any light signal could, provided the distance between 
them is larger than ct . 

Before jumping to the conclusion that this sort of faster-than-light signalling is 
detrimental to semiclassical gravity, one may at least consider a series of potential 
loopholes in the argument: 

1. The fact that a state .|�〉 ∈ H ⊗ K with the property (16.70) exists does not
necessarily imply that this state can ever be created as the consequence of some
dynamical law, given the initial conditions of the universe. There is at least a
theoretical possibility that the dynamics are such that they prevent physical states
from ever approaching such a state.

2. Standard quantum (field) theory permits only local interactions. Hence, the 
entangled state .|�〉 must ultimately be created locally (either directly or via some 
third system) and brought to Krista’s and Harvey’s locations at separation . d ≤ ct0
in final time . t0. The nonlinear evolution that results in the distinguishability of 
the initially equivalent ensembles, therefore, already acts during the time interval 
.[−t0, 0] of separation, and not only during the time interval .[0, t] after Krista’s 
measurement. The initial state .|�(t = 0)〉 is then itself the result of the nonlinear 
evolution and cannot simply be assumed to be of the form (16.70) .

3. Projective measurement with an instantaneous collapse as in Eqs. (16.72) 
and (16.73) is a frame dependent assumption, already in obvious contradiction
with relativity. Without a Lorentz invariant formulation of the collapse, one could
justifiably ask why one should even bother about the possibility of faster-than-
light signalling in a nonrelativistic model.

4. Even if one accepts the possibility of faster-than-light signalling, notwithstanding 
the three previous points, it is not evident that this specific form of signalling 
would result in a conflict with causality. Such a conflict would occur if Harvey 
used a second entangled system to signal back to Krista and that second signal 
would arrive at Krista’s location before she makes her choice of basis. This 
procedure requires two measurement processes which must be instantaneous in
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different frames of reference. Hence, a complete thought experiment for causality 
violation goes beyond the scenario considered above. 

Regarding the third point, specifically, and taking into account the requirement 
for an objective collapse of the wave function established above, one would 
like to consider a scenario for faster-than-light signalling including the collapse 
dynamics. Relativistic models for the wave function collapse are still only sparsely 
developed [85]. 

Penrose [86, 87] suggests that collapse should occur in such a way that a 
spatial superposition of two classical states decays into a classical state with a rate 
proportional to the gravitational self-energy between the mass distributions belong-
ing to the two states in superposition. Diósi’s nonrelativistic collapse model [88] 
implements this idea. It also requires the introduction of a length scale . rc, acting 
as a cutoff in order to prevent divergences. Conforming with other nonrelativistic 
collapse models, it is based on a stochastic evolution law for Hilbert space states 
and a linear evolution of the density operator. 

If we maintain the idea of a cutoff length scale and only focus on superposition 
states of two wave functions .ψ1,2 narrowly peaked around . x1,2, respectively, we can 
give a more ad hoc description of collapse: 

Whenever a superposition .ψ(x) = αψ1(x) + βψ2(x) of two narrowly peaked 
wave functions .ψ1(x) ∼ δ(3)(x − x1) and .ψ2(x) ∼ δ(3)(x − x2) for a particle 
of mass m exceeds the cutoff scale, .|x1 − x2| ≥ rc, the state undergoes a 
collapse 

.ψ(x) →
{

ψ1(x) with probability |α|2
ψ2(x) with probability |β|2 (16.74) 

within the time scale

.τc = h̄ rc

Gm2 . (16.75) 

This prototype of a collapse dynamics remains agnostic about the dynamics of 
more complex states that are not simple superpositions of two localised peaks of a 
single particle wave function. 

For a spatial separation below . rc, as well as in addition to the collapse 
dynamics for larger separations, an evolution according to the Schrödinger–Newton
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equation (16.58) is assumed. It predicts that the two peaks, initially at . x1,2, shift  
towards 

.̃x1 = x1 − x1 − x2
|x1 − x2| |α|2δx , x̃2 = x2 + x1 − x2

|x1 − x2| |β|2δx , (16.76) 

decreasing their initial distance .�x = |x1 − x2| by 

.δx ≈ Gmt2

2�x2 , (16.77) 

where we assume .δx � �x. In order to resolve this decrease against the expected 
value .δx = 0 for a classical mixture of the states .ψ1,2 with probabilities . 

∣∣α
∣∣2

and .
∣∣β
∣∣2, it must be larger than the free spreading of the wave function. Due to 

the position-momentum uncertainty relation, this spreading for a state with initial 
position uncertainty . δξ and momentum uncertainty . δp is limited by 

.δξ + t

m
δp ≥ δξ + h̄t

2m δξ
=
√

h̄t

2m

(
ζ + 1

ζ

)
≥
√
2h̄t

m
, (16.78) 

and hence the minimal resolution after time t is

. δx4 ≥ 4h̄2t2

m2
(16.77) = 8h̄2 δx �x2

Gm3 ⇒ m3 ≥ 8h̄2 �x2

Gδx3 � 8h̄2

Gδx
.

(16.79) 

Therefore, a minimum mass is required in order to achieve the necessary resolution.
However, if we account for a dynamical collapse of the wave function according to
the above ad hoc description, a larger mass implies a faster collapse and we must
take care that the superposition is maintained throughout the entire time t of the
experiment by requiring .t < τc. One then has 

. rc = Gm2 τc

h̄
>

Gm2 t

h̄

(16.77)=
√
2Gm3 �x2 δx

h̄2

(16.79) ≥ 4�x2

δx
� �x � δx .

(16.80) 

Any shift . δx above the length scale . rc would always remain unobservable, because 
the collapse happens too fast. Combining Eqs. (16.80) and (16.79) yields

.rc ≥ 32h̄2

Gm3

(
�x

δx

)4

� 32h̄2

Gm3 . (16.81)
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This limit only holds for separations above the size of the particle, .�x > 2R. For  a  
spherical particle with homogeneous mass density one then finds 

.m = 4π

3
ρ R3 <

π

6
ρ �x3 ⇒ rc �

(
6912 h̄2

π3 Gρ3

)1/10

, (16.82) 

which implies that any value for . rc below 140 nm makes it impossible to resolve the 
required separation even for the densest elements. 

For separations .�x < 2R one finds instead of Eq. (16.77) that

.δx ≈ 2π

3
Gρ �x t2

(
1 + O

(
�x

R

))
. (16.83) 

Inserting this into Eq. (16.79) yields

.δx4 ≥ 4h̄2t2

m2 = 6 h̄2 δx

π Gρ �x m2 ⇒ δx ≥
(

6 h̄2

π Gρ �x m2

)1/3

(16.84) 

and instead of Eq. (16.80) one finds, using .2R > �x > δx and (16.84) ,

.rc >

√
3Gm4 δx

2π ρ h̄2 �x
> R . (16.85) 

The radius is limited by the condition (16.84), which with .�x < 2R yields 

.R3 >
δx3

8
≥ 3 h̄2

4π Gρ �x m2 = 27 h̄2

64π3 Gρ3 �x R6 >
27 h̄2

128π3 Gρ3 R7 (16.86) 

implying

.rc >

(
27 h̄2

128π3 Gρ3

)1/10

� 50 nm . (16.87) 

These minimum values required for . rc are orders of magnitude above the 
parameter range usually assumed in collapse models, as well as above parameters 
excluded by observation. For instance, levitated nanoparticles [89] only pose a 
limit at about .rc � 1 fm. Even the recent underground tests [90], which consider 
radiation emission rather than spatial superposition states and are of limited use 
for constraining the prototype collapse dynamics used here, only restrict the 
cutoff parameter of the Diósi model to .rc � 500 pm. If there is a consistent 
relativistic description of collapse that approximates the prototypical model here 
for nonrelativistic superpositions of two sharp peaks, there is a large parameter 
range for which it would effectively prevent at least the most simple ideas to use the
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nonlinearity of the Schrödinger–Newton equation for faster-than-light signalling, 
while being perfectly consistent with observation. 

16.3.4 Other Schemes to Include Backreaction for Quantum Matter 
on a Classical Spacetime 

So far, we have only discussed the specific model for semiclassical gravity described 
by the semiclassical Einstein equations (16.51) . The definition of semiclassical
gravity given at the beginning of Sect. 16.3 also allows for other ways to introduce 
quantum matter as the source of curvature in Einstein’s equations. 

One alternative presents itself in the context of collapse models [82]. In these 
models, the Fock space state obeys a stochastic differential equation, e.g., 

. |dψ〉t =
[

− i

h̄
Ĥ dt + √

γ

∫
d3x

(
ρ̂reg(x) − 〈ρ̂reg(x)〉t

)
dW(t, x)

−γ

2

∫
d3x

(
ρ̂reg(x) − 〈ρ̂reg(x)〉t

)2 dt
]
|ψ〉t (16.88) 

in the continuous spontaneous localisation (CSL) model, where . Ĥ is the usual 
Hamiltonian, .ρ̂reg the regularised mass density operator, .W(t, x) describes an 
ensemble of independent stochastic Wiener processes (one for every point . x), and . γ

is a free coupling parameter. A second free parameter comes from the regularisation 
length scale . rc for the mass density . ρ̂reg. The density operator satisfies the stochastic 
master equation 

. d�̂(t) = − i

h̄

[
Ĥ , �̂(t)

]
dt − γ

8h̄2
[
ρ̂reg(x),

[
ρ̂reg(x), �̂(t)

]]
dt

+ γ

2h̄2

{
ρ̂reg(x) − 〈ρ̂reg(x)〉, �̂(t)

}
dW(t, x) . (16.89) 

The characteristic feature of collapse models is that after averaging over the noise
term in the second line of (16.89) , the density operator satisfies the linear Gorini–
Kossakowski–Sudarshan–Lindblad equation [91, 92] (i.e., a master equation in 
Lindblad form), which ensures that equivalent ensembles evolve into equivalent 
ensembles and no faster-than-light signalling can occur, as detailed in the previous 
subsection. 

An intuitive way to couple the mass density to gravity, as pointed out by Tilloy 
and Diósi [93], is then to use the signal 

.ρ(t, x) = 〈ρ̂reg(x)〉t + δρt , (16.90)
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where . δρt are the noise fluctuations resulting from the stochastic part in the second 
line of Eq. (16.89) . One obtains a classical Newtonian potential

.	(t, x) = −G

∫
d3x′ ρ(t, x′)

|x − x′| , (16.91) 

entering into the Schrödinger equation instead of the potential (16.56) . In the
language of standard quantum physics, (16.90) can be interpreted as the information
retrievable via weak measurement of the mass density, which is then fed back
into the dynamics as the source of the gravitational field. The joint dynamics
contain decoherence terms both from the stochastic noise and from the gravitational
potential [93, 94]. In the language of collapse models, the gravitational field is 
sourced by the collapse events (flashes) in spacetime [95]. 

Related is the concept of hybrid classical-quantum dynamics [96]. Let . H be a 
Hilbert space of some quantum system and .M ∼= R2n a classical phase space. Then 
a hybrid state is given by 

.�̂cq :M→ End(H) with
∫

M
dz tr�̂cq(z) = 1 , (16.92) 

i.e., by assigning a subnormalised density matrix to every point in phase space. It
can be understood as the product .�̂cq = ∫ dz �c(z) |z〉 〈z|⊗�̂q(z) of a density matrix 
. ̂�q for the quantum system and a probability distribution .�c(z) of the orthonormal 
classical phase space states . |z〉. This formalism has been used by Albers et al. [97] 
in order to couple a scalar quantum field to classical scalar gravity. Oppenheim [98] 
recently proposed a model based on the ADM formalism [99] of GR,  which  
describes a Hamiltonian evolution of 3-manifolds with a time parameter t . The  
classical phase space . M is formed by the 3-metrics g and their canonical momenta 
. π . The Hamiltonian and momentum constraints H and . P i in the ADM Lagrangian, 

.L = −gij ∂tπ
ij − NH − NiP

i − 2∂i

(
πijNj − 1

2
πNi + ∇iN

√
g

)
, (16.93) 

where N , . Ni are the lapse and shift function, respectively, .π = gijπ
ij denotes the 

trace, g the metric determinant, and the covariant derivative . ∇ is taken with respect 
to the 3-metric, are then replaced by corresponding operators, 

.H = −√
g

[
R + g−1

(
1

2
π2 − πijπij

)]
Î + f αβL̂†

αL̂β . (16.94) 

P i = −2∇jπ
ij Î + g

αβ
i L̂†

αL̂β , (16.95) 

acting on hybrid states, with . ̂I the identity, . L̂α a set of Lindblad operators, and . f αβ , 
.g

αβ
i coefficient functions on 3-space which depend on the classical state .(g, π). The  

scalar curvature R is, again, to be taken with respect to the 3-metric g.
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This formalism allows for a consistent semiclassical theory without the need to 
introduce any explicit assumptions about wave function collapse. It is, however, a 
probabilistic theory of statistical ensembles of 3-metrics rather than a deterministic 
theory for a single spacetime. The large freedom of choice for the proper Lindblad 
operators and coefficient functions makes it currently difficult to arrive at experi-
mental predictions. 

Finally, Kent [100, 101] has developed a framework of causal quantum theory. 
Consider a time orientable, globally hyperbolic Lorentzian 4-manifold . (M, g)

with a foliation .M = ∪t∈RSt of spacelike hypersurfaces . St , that allows to 
define a unitary evolution law .ψ(t, x) = U(t, t0)ψ(t0, x) with the initial wave 
function34 defined on . St0 . Further assume a set of local measurement events . Mi =
(ti , xi; Ôi, |oi〉) (.i = 1, . . . , n) of eigenstates .|oi〉 of operators . Ôi at spacetime 
points .(ti , xi ∈ Sti ) ∈ M which are time-ordered, .t0 < t1 < t2 < · · · < tn < t . 
In standard quantum theory, the final state is obtained as the unitary evolution with 
.U(t, t0) conditioned over the measurement outcomes: 

.ψ(t, x) = U(t, tn)

⎛

⎝
∏

i=n,n−1,...,1

|oi〉 〈oi | U(ti, ti−1)

⎞

⎠ψ(t0, x) . (16.96) 

In the causal theory proposed by Kent, for any point .x ∈ St the time evolution 
law (16.96) holds, however with the important distinction that only those mea-
surement events . Mi with .(ti , xi ) in the past light cone of .(t, x) are conditioned 
over. This results in a definition of local states and predictions that differ from 
standard quantum theory, although thus far not being in any obvious contradiction 
with observation. 

A nonlinear modification of the dynamics based on these local states does not 
result in the problem of faster-than-light signalling discussed previously. One could, 
therefore, attempt to formulate a semiclassical theory of gravity in which spacetime 
curvature is sourced by the local states, in order to avoid issues with causality. To 
date, such a model has not been developed. 

16.4 Concluding Remarks 

In the winter semester 1923/24, Max Born delivered a lecture on the Bohr– 
Sommerfeld quantisation in atomic physics which he subsequently published as 
a book entitled ‘Atommechanik’ [102]. In that book he laid out with almost 
axiomatic precision the known formal principles from classical physics, like the 
Hamilton–Jacobi theory and its application to perturbation theory (which had 
proved very successful in astronomy), and their application to the Bohr–Sommerfeld

34 More generally, one can consider a quantum field operator evolving between Cauchy surfaces 
according to the Tomonaga–Schwinger equation. 
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quantisation. At that time it was clear to everyone in the field that this loose 
collection of rather ad-hoc ‘quantisation rules’ would eventually be replaced by 
something with a proper logical foundation, a real theory. So why did Born put all 
his efforts into that book project, given the premature state of a real understanding? 
His own answer is this: ‘... we are attempting a deductive presentation of atomic 
theory. The reservations, that the theory is not sufficiently developed, I wish to 
disperse with the remark that we are dealing with a test case, a logical experiment, 
the meaning of which just lies in the determination of the limits to which the 
principles of atomic and quantum physics succeed, and to pave the ways which 
shall lead us beyond those limits.’ 

Our contribution to this collection should likewise be regarded as a ‘logical 
experiment’, the meaning of which lies in in the determination of the limits to which 
classical or semi-classical gravity can be combined with quantum mechanics. In the 
same vein, we believe that from these considerations we will receive useful hints as 
to where we really need to go beyond those limits. 

On these grounds, we propose a pragmatic attitude which puts first things first: 
From an experimental point of view, the interface of classical gravity and quantum 
mechanics on the one hand as well as semiclassical gravity on the other hand 
present promising opportunities. Systematic post-Newtonian descriptions of the 
coupling between quantum matter and gravity make reliable testable predictions 
as to the influence of the gravitational field on the dynamics of quantum systems. 
Likewise, both the Schrödinger–Newton equation and models for objective wave 
function collapse offer concrete experimental possibilities. Experiments of this type 
require comparably small improvements over existing technology, and should be 
fully explored, with the hope that they yield effects that can guide us towards 
the correct fundamental theory. From the theoretical perspective, one should take 
conceptual challenges within the established fundamental theories—such as the 
ones presented by us—seriously in order to understand the precise breaking points 
of GR and RQFT. A more thorough understanding of where exactly they fail (and 
to which extent) when considered jointly is expected to reveal valuable information 
for the search of a fully consistent theory of gravitating quantum matter. 
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