
 123

LN
BI

P
47

2

15th International Conference, SWQD 2023
Munich, Germany, May 23–25, 2023
Proceedings

Software Quality
Higher Software Quality through
Zero Waste Development

Daniel Mendez · Dietmar Winkler ·
Johannes Kross · Stefan Biffl ·
Johannes Bergsmann (Eds.)

Lecture Notes
in Business Information Processing 472

Series Editors
Wil van der Aalst , RWTH Aachen University, Aachen, Germany
Sudha Ram , University of Arizona, Tucson, AZ, USA
Michael Rosemann , Queensland University of Technology, Brisbane, QLD,
Australia
Clemens Szyperski, Microsoft Research, Redmond, WA, USA
Giancarlo Guizzardi , University of Twente, Enschede, The Netherlands

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0001-6053-1311
https://orcid.org/0000-0003-3303-2896
https://orcid.org/0000-0002-3452-553X

LNBIP reports state-of-the-art results in areas related to business information systems
and industrial application software development – timely, at a high level, and in both
printed and electronic form.

The type of material published includes

• Proceedings (published in time for the respective event)
• Postproceedings (consisting of thoroughly revised and/or extended final papers)
• Other edited monographs (such as, for example, project reports or invited volumes)
• Tutorials (coherently integrated collections of lectures given at advanced courses,

seminars, schools, etc.)
• Award-winning or exceptional theses

LNBIP is abstracted/indexed in DBLP, EI and Scopus. LNBIP volumes are also
submitted for the inclusion in ISI Proceedings.

Daniel Mendez · Dietmar Winkler ·
Johannes Kross · Stefan Biffl ·
Johannes Bergsmann
Editors

Software Quality
Higher Software Quality through
Zero Waste Development

15th International Conference, SWQD 2023
Munich, Germany, May 23–25, 2023
Proceedings

Editors
Daniel Mendez
Blekinge Institute of Technology
Karlskrona, Sweden

Johannes Kross
fortiss GmbH
Munich, Germany

Johannes Bergsmann
Software Quality Lab GmbH
Linz, Austria

Dietmar Winkler
Austrian Center for Digital Production
(CDP), SBA Research gGmbH
Vienna, Austria

TU Wien
Vienna, Austria

Stefan Biffl
TU Wien
Vienna, Austria

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-031-31487-2 ISBN 978-3-031-31488-9 (eBook)
https://doi.org/10.1007/978-3-031-31488-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0619-6027
https://orcid.org/0000-0002-4743-3124
https://orcid.org/0000-0002-3413-7780
https://doi.org/10.1007/978-3-031-31488-9

Message from the General Chair

The Software Quality Days (SWQD) conference and tools fair was first organized in
2009 and has since then grown to be the largest yearly conferences on software quality
in Europe, with a strong and vibrant community. The program of the SWQD conference
was designed to encompass a stimulating mixture of practice-oriented presentations,
scientific presentations of new research topics, tutorials, and an exhibition area for tool
vendors and other organizations in the area of software quality.

This professional symposium and conference offered a range of comprehensive and
valuable opportunities for advanced professional training, new ideas, and networking
with a series of keynote speeches, professional lectures, exhibits, and tutorials.

The SWQD conference welcomes anyone interested in software quality including:
software process and quality managers, test managers, software testers, product man-
agers, agile masters, project managers, software architects, software designers, require-
ments engineers, user interface designers, software developers, IT managers, release
managers, development managers, application managers, and many more.

SWQD2023 tookplace inMunich,May23–25, 2023, andwas organized bySoftware
Quality Lab GmbH, Austria, TU Wien, Austria, Institute of Information Systems Engi-
neering, Austria, and Blekinge Institute of Technology, Sweden. The guiding conference
topic of SWQD 2023 was “Higher Software Quality through Zero Waste Development”,
as changed product, process, and service requirements, e.g., distributed engineering
projects, mobile applications, involvement of heterogeneous disciplines and stakehold-
ers, extended application areas, and new technologies include new challenges and might
require new and adapted methods and tools to support quality assurance activities early.

May 2023 Johannes Bergsmann

Message from the Scientific Program Chairs

The 15th Software Quality Days (SWQD) conference and tools fair brought together
researchers and practitioners from business, industry, and academia working on quality
assurance and qualitymanagement for software engineering and information technology.
The SWQD conference is one of the largest software quality conferences in Europe.

Over the past years, we received a growing number of scientific contributions to
the SWQD symposium. Starting back in 2012, the SWQD symposium included a ded-
icated scientific program published in scientific proceedings. In this fifteenth edition,
we received an overall number of 10 high-quality submissions from researchers across
Europe, whichwere each peer-reviewed in a single-blind process by 3 ormore reviewers.
Out of these submissions, we selected 4 contributions as full papers, yielding an accep-
tance rate of 40%. Further, we accepted 2 short papers representing promising research
directions to spark discussions between researchers and practitioners on promising work
in progress. This year, we have one scientific keynote speaker for the scientific program,
who contributed an invited paper.

The main topics from academia and industry focused on Systems and Software
Quality Management Methods, Improvements of Software Development Methods and
Processes, Latest Trends and Emerging Topics in Software Quality, and Testing and
Software Quality Assurance.

To support dissemination and collaboration with practitioners, scientific presenta-
tions were integrated into topic-oriented practical tracks. This book is structured accord-
ing to topics following the guiding conference topic “Higher Software Quality through
Zero Waste Development”:

• Social Aspects in Software Engineering
• Requirements Engineering
• Software Quality Assurance
• Software Testing
• Software Metrics
• Software Defect Prediction

May 2023 Daniel Mendez
Dietmar Winkler
Johannes Kross

Organization

Organizing Committee

General Chair

Johannes Bergsmann Software Quality Lab GmbH, Austria

Scientific Program Co-chairs

Daniel Mendez Blekinge Institute of Technology, Sweden
Dietmar Winkler Austrian Center for Digital Production (CDP),

SBA Research gGmbH, and TU Wien, Austria
Johannes Kross fortiss GmbH, Germany

Proceedings Chair

Dietmar Winkler Austrian Center for Digital Production (CDP),
SBA Research gGmbH, and TU Wien, Austria

Organizing & Publicity Chair

Petra Bergsmann Software Quality Lab GmbH, Austria

Program Committee

Matthias Book University of Iceland, Iceland
Maya Daneva University of Twente, The Netherlands
Oscar Dieste Universidad Politécnica de Madrid, Spain
Frank Elberzhager Fraunhofer IESE, Germany
Michael Felderer German Aerospace Center, Germany
Gordon Fraser University of Passau, Germany
Nauman Ghazi Blekinge Institute of Technology, Sweden
Roman Haas CQSE GmbH, Germany
Jens Heidrich Fraunhofer IESE, Germany
Frank Houdek Daimler AG, Germany

x Organization

Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro,
Brazil

Helena Holmstrom-Olsson University of Malmö, Sweden
Marco Kurhmann Reutlingen University, Germany
Eda Marchetti ISTI-CNR, Italy
Kristof Meixner TU Wien, Austria
Paula Monteiro University of Minho, Portugal
Jürgen Münch Reutlingen University, Germany
Oscar Pastor Universitat Politècnica de València, Valencia,

Spain
Dietmar Pfahl University of Tartu, Estonia
Rick Rabiser Johannes Kepler University Linz, Austria
Rudolf Ramler Software Competence Center Hagenberg, Austria
Miroslaw Staron University of Gothenburg, Sweden
Andreas Vogelsang University of Cologne, Germany
Rini Van Solingen Delft University of Technology, The Netherlands
Henning Femmer FH Südwestfalen, Germany
Sebastian Voss FH Aachen, Germany
Stefan Wagner University of Stuttgart, Germany

Additional Reviewer

Lisa Sonnleitner

Contents

Social Aspects in Software Engineering

Conflicting Interests in the Hybrid Workplace: Five Perspectives
to Consider . 3

Darja Smite

Requirements Engineering

Requirements Quality vs. Process and Stakeholders’ Well-Being: A Case
of a Nordic Bank . 17

Emil Lind, Javier Gonzalez-Huerta, and Emil Alégroth

Software Defect Prediction

Outlier Mining Techniques for Software Defect Prediction 41
Tim Cech, Daniel Atzberger, Willy Scheibel, Sanjay Misra,
and Jürgen Döllner

Software Testing

Applying a Genetic Algorithm for Test Suite Reduction in Industry 63
Philipp Stadler, Reinhold Plösch, and Rudolf Ramler

Software Metrics

A Catalog of Source Code Metrics – A Tertiary Study . 87
Umar Iftikhar, Nauman Bin Ali, Jürgen Börstler, and Muhammad Usman

Software Quality Assurance

Software Quality Assessment: Defect Life Cycle, Software Defect Profile,
Its Types and Misalignments . 109

Oleksandr Gordieiev, Daria Gordieieva, and Austen Rainer

xii Contents

Comparing Anomaly Detection and Classification Algorithms: A Case
Study in Two Domains . 121

Miroslaw Staron, Helena Odenstedt Hergés, Linda Block,
and Martin Sjödin

Author Index . 137

Social Aspects in Software Engineering

Conflicting Interests in the Hybrid Workplace:
Five Perspectives to Consider

Darja Smite1,2(B)

1 Blekinge Institute of Technology, Karlskrona, Sweden
darja.smite@bth.se

2 SINTEF Digital, Trondheim, Norway

Abstract. One clear legacy from the COVID-19 pandemic is the widespread
adoption of remote work and flexible work arrangements, especially in tech com-
panies. However, the practicability of remote working has raised a significant
debate. The preferences for remote work vary greatly even among the employ-
ees of the same company. Individual wishes for remote vs office work can be
often found anywhere on the spectrum from fully remote work to fully onsite with
the hybrid working options of a varying degree in the middle. The most obvious
common denominator in this situation is full flexibility, i.e., letting people decide
when they want to work where. However, such one-fits-all strategy does not really
fit anybody. Instead, it gives rise to several inherent conflicts of interest. In this
position paper, we summarize opinions and experiences about remote work in five
fictional personas as collective images based on extensive research: quantitative
data, research interviews, and informal discussions with both employees andman-
agers in tech companies, including Spotify, Ericsson, Telenor, Tieto, SONY, and
many others. We conclude that increased flexibility at work leads to the conflict
of individual interests of increased personal flexibility, team interest of efficient
teamwork and corporate interests of preserving efficiency, company culture, and
retaining the talents.

Keywords: Work-from-home ·WFH · Remote work · Hybrid work ·Managers

1 Introduction

The COVID-19 pandemic forced employees in tech companies (and beyond) worldwide
to abruptly transition from full time work in the office to working entirely from home
(WFH). Although WFH is not a new phenomenon (Pratt, 1984), the extent and the
widespread adoption of remote work is unprecedented. Our observations two years
later, after reopening of the societies, clearly suggest that many offices are half-empty
(Smite et al., 2022a), employees request increased flexibility (Barrero et al., 2021a;
Nguyen and Armoogum, 2021; Smite et al., 2023a) and new hires increasingly seek jobs
that can be done remotely (Barrero et al., 2021a). In hindsight, the better-than-expected
experiences with remote work during the pandemic seem to have forever changed the
turn of the history in the magnitude of experience and perception of working from home

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Mendez et al. (Eds.): SWQD 2023, LNBIP 472, pp. 3–13, 2023.
https://doi.org/10.1007/978-3-031-31488-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31488-9_1&domain=pdf
http://orcid.org/0000-0003-1744-3118
https://doi.org/10.1007/978-3-031-31488-9_1

4 D. Smite

(WFH) (Barrero et al., 2021a; Smite et al., 2023b). The dramatic shift in attitudes towards
WFH over the pandemic swung from stigmatization of remote workers (Pratt, 1984) to
increasing stigmatization of the slightest restrictions of remote working (Smite et al.,
2023b). The latter are evidenced in an increasing readiness to resign and the rate of actual
resignations (Barrero et al., 2021b) and the numerous publicly leaked or published letters
of complains addressing corporate management that prohibits or limits WFH (e.g., the
published exchange of letters at Apple1). Flexibility is desired by employees due to the
perceived increase in productivity (often self-reported), job satisfaction, and well-being
(Pratt, 1984; Russo et al. 2021; Smite et al., 2022a). Additional reasons for not willing
to work in the office include unwillingness to commute, more comfortable conditions
in the home office, convenience for running personal routines while at home, schedule
full of online meetings, good weather conditions and the very habit of working from
home (Smite et al., 2022a). So why would companies prohibit or limit remote work?
The answer to this question is twofold.

On the one hand, it is a managerial issue. Remote work is associated with significant
managerial challenges (Bailey and Kurland 2002). Managers repeatedly raise the ques-
tion of whether “working-from-home” would not lead to “shirking from home” (Bloom
et al., 2015). Many workers question and criticize the typical “Theory X style” manage-
ment (McGregor, 1960) with a low perception of self-efficacy who do not trust the very
ability of the employees to handle remote infrastructure, solve situations independently,
manage time properly or work without supervision (Silva-C 2019). Such managers typ-
ically have a skeptical attitude towards remote work (Silva-C 2019). Despite increasing
interest in agile ways of working and democratization of the workplace2 (Olsson and
Bosch, 2016), we must remember that corporate agility in large traditional corporations
as well as in many regions with high power distance (even in tech industry) have not
yet made a sufficient impact. Therefore, traditional management by direct supervision is
admittedly still the most prefer management style. But even in modern companies with
high levels of trust and autonomy granted to employees, managers repeatedly complain
about the increased challenges of detecting and resolving conflicts when employees are
completely or partially remote (Smite et al., 2023b).

On the other hand, the very notion of corporate culture is suddenly at stake. The
“out of sight, out of mind” work mode has significantly increased the individualistic
thinking and the “I over We” attitude. Researchers warn about the decreasing team
efficiency (Miller et al. 2021; Tkalich et al., 2022), decreasing intensity of cross-company
collaboration and the lack of new ties (Yang et al., 2021; Smite et al., 2023b), arguably
decreased innovation capacity (Yang et al., 2021), and increasing risk of attrition due
to deteriorating sense of belonging (Mortensen and Edmondson, 2023). The inherent
conflict here is between the corporate interest in leveraging team efficiency, networked
behavior, innovation and retention, and the individual interests in personal productivity
and well-being.

1 Apple employee letters to the Apple executive team signed by 3184 employees https://applet
ogether.org/hotnews/thoughts-on-office-bound-work.html (Accessed on 2023-03-15).

2 Democratization of the companies includes organizing less-hierarchically, larger autonomy
given to the employees, great emphasis on employee empowerment, self-organization and
self-management.

https://appletogether.org/hotnews/thoughts-on-office-bound-work.html

Conflicting Interests in the Hybrid Workplace 5

In this short position paper summarizing the keynote speech,we lay out five important
perspectives on the practicability of WFH to consider. These are based on the extensive
research: empirical data, as well as research interviews and informal discussions with
both employees and managers in tech companies, including Spotify, Ericsson, Telenor,
Tieto, SONY, and many others, and published research articles documenting the pan-
demic and post-pandemic experiences with WFH, remote and hybrid working in tech
companies.

2 The Five Perspectives on Work from Home

Early studies of work from home show that remote work is not for everybody. While a
large groupof professionals feelsmore productiveworking fromhomeand enjoys a better
work-life balance, others report feeling unproductive, isolated, and burned out because
of long work hours and the inability to separate work and private life when working
from home (Russo et al., 2021; Smite et al., 2022b; Smite et al., 2023b). Evidently,
employees with the opposite experiences will have completely different perspectives on
the efficiency of remote work. The following figuremaps preferences of employees from
different companies on the spectrum of work arrangements (see Fig. 1). The portrayed
picture shows the difficulty of modern management with no distinct country-specific
peculiarities. The preferences seem to relate to corporate culture, but at the same time,
they differ greatly within the same company too.

Fig. 1. Employee preferences for WFH (taken from (Smite et al., 2023a))

In the following, we describe five perspectives based on testimonies from practition-
ers (engineers and managers) who have been a part of our research since the pandemic.

6 D. Smite

The offered narratives portray fictional personas representing a collective image and
featuring opinions, experiences, and aspects of character from multiple practitioners,
thus not traceable to a single individual.

2.1 Remote and Hybrid Workers: A Flexibility is Every Employees Dream

The study of pioneers working from home or doing home telework published in 1984
starts with a futuristic vision of the white-collar labor force working in home offices
(Pratt, 1984). Teleworkers of the past included “self-disciplined full-time clerical women
seeking income at reduced personal expense, managerial and professional mothers want-
ing to nurture young children without dropping completely behind in their careers; and
male managers or professionals who value the part-time integration of work and family
life more than they do a competition for further advancement in their organizations”
(Pratt, 1984). Three decades later, WFH is a norm across industries and countries and
flexibility tops the list of most desirable benefits among the new hires (Barrero et al.,
2021b). And while some companies still consider WFH as a conditional privilege, in the
eyes of the employees it is more often than not viewed as their right.

Most proponents of the right towork fromhome are actually not consideringworking
remotely fulltime but rather find themselves on a spectrum of hybrid work arrangements
with a varying degree of remote work and work in the office (Smite et al., 2023b) (see
also Fig. 1). In other words, the point for many is not to never leave home, but to be able
to make autonomous decisions about where to conduct work duties.

John works in a large company with the office in the city center, 45 minutes of a
train ride away from his home. One way. It’s a Wednesday, the day when John
normally commutes to the office to socialize, hold onsite meetings and work with
others, as well as train in the gym. Yet, it is a sunny spring day, and it sounds more
tempting to stay at home and take a long walk with his dog in the afternoon, and
maybe even do the laundry that is still waiting for some attention after the hiking
trip on the weekend. John yawns and says to himself: “Today, I will stay and work
from home”. No, no, do not suspect John of being selfish or sloppy with work. He
is a very responsible employee. He knows what to do, he has more than ten years
of experience in the current position in the company. He will also start working
earlier (on the expense of the morning shower and commute time). He will connect
via a videoconference with his teammates for the daily synch meeting with a cup
of coffee and a bun, optimizing the time spent on having breakfast. In fact, John is
also likely to eat a light lunch at the desk, while reading and answering emails. It’s
just that commuting on such a sunny day sounds like a very bad idea. Upon return
from the long walk, John will check how much work is done and how much is left
and decide whether a couple of evening work hours are necessary to compensate
for the longwalk. Ormaybe he will invite Jane, his teammate and close neighbor to
take a walk together and discuss the challenge she has faced recently. Previously,
both of them have been onsite workers, but now they mostly meet for walks when
working from home. Jane does not like commuting at all. The bottom line is – John
is in control of his progress and schedule, and this flexibility feels great.

Conflicting Interests in the Hybrid Workplace 7

John is a typical example of the proponents of increased flexibility at work. Like
Apple employees, he considers himself responsible and capable to work autonomously.
Like many, he does not choose to work entirely remotely but prefers erratic presence in
the sense that it is driven by his needs and wants rather than a predefined schedule.

2.2 Remote Employees: In Hybrid Teams We Are Second-Class Citizens

Individual freedom and flexibility come at a cost. The fact that one can make decisions
about his or herworkplace independentlymeans that their colleagues cando the same. For
some, decisions towork from home depend on goodweather conditions and convenience
for running personal routines at home, for many others it is about the unwillingness,
inconvenience or length of commute, superior ability to focus in the absence of office
noise and peer interruptions, more comfortable working, better coffee or food, or simply
a matter of habit acquired during the pandemic forced WFH (Smite et al., 2022b).
Unfortunately, the other side of the flexibility coin is the erratic office presence and
inability to rely on collaborators being there when needed. While work in a fully remote
or fully onsite team provides the level playing field experiences, work in hybrid teams
is a different matter. In hybrid teams teammates alter days of work in the office with
WFH days in an unplanned and unpredictable manner (Smite et al., 2023c) and thus
experience reduced team cohesion, alienation of remoters and increased coordination
difficulties (O’Leary and Mortensen, 2010; Santos and Ralph, 2022).

Jane works for the same company as John. They are both members of a hybrid
team of eight engineers. During the pandemic, Jane moved from her tiny studio
apartment to a larger apartment in the suburbs, where she has a home office with
a garden view and a cat as a companion. It’s much more comfortable to work from
home, besides she hates trains. Jane is in the office for special occasions and large
gatherings demanding everyone’s presence. In contrast, some other colleagues
are almost always onsite, four-five days per week. These are Jack (their team
lead), Tanja and Bob. Fridays are the casual days when even these three may
be remote. The most popular office days are Thursdays, when the local canteen
serves pancakes. These are the days when Sonja and John are frequently onsite.
Although Jane’s team has worked together for a few years now, there is a feeling
that remote work has resulted in a certain level of detachment. For her, there are
fewer jokes exchanged with colleagues, no casual pair programming sessions and
even the usual queries fromBobwho is themost junior teammate are gone since she
works remotely. In fact, there is another more junior teammate, Thomas, who has
joined them during the last year. But Thomas lives in another town and works fully
remotely, thus nobody has met him in person yet. Jane concludes that most of her
challenges are probably because she is so rarely in the office, therefore, nothing
to complain about. She still jokes with John when they arrange joint afternoon
walks. Who knows, maybe the others, who are onsite also have the light humorous
atmosphere they once had all together.

Jane is a typical example of a remoter who works in a hybrid team and experiences
what we call the feeling of being a “second class citizen” to the ones who are onsite.

8 D. Smite

Because Jane is a remoter, her onsite teammates do not reach out to her with questions,
and she is unable to fully engage and follow what is going on, leading to the fear of
missing out (FOMO) (Tkalich et al., 2022). It is possible that employees like Jane are
likely to experience a more prominent decrease in job satisfaction than post-pandemic
first hires because in contrast to the young generation of the employees they have expe-
rienced the more intense teamwork in the office from the pre-pandemic times but had to
switch to working predominantly or entirely from home for one reason or the other.

2.3 Onsite Employees: Socialization is Essential for Social Wellbeing

Researchers distinguish between extraverts with high socialization needs and introverts
with low socialization needs. Many thus assume that introverts are not very motivated
to work in the office. Our observations, however, suggest that extraverts satisfy their
socialization needs in various ways, be it in the office or outside of the work context,
while introverts highly depend on the social connections at work.

Bob is a young employee, who has joined the company shortly before the pandemic.
He feels lucky to have managed to establish good relations with his colleagues
before switching to the work from home mode because he is introverted and shy to
reach out to people, he is not very familiar with. Remote work was very tough for
him, especially because he is not very experienced. Working in isolation for Bob
means that whenever he encounters a problem, he can get stuck for hours. In the
office, Bob is more likely to ask for help and get unblocked. Similarly, during online
meetings, Bob takes a passive role, while in an onsite meeting he is more likely to
express his opinion or ask questions. Therefore, Bob celebrated the reopening of
the offices when he could return to the fulltime office work. Unfortunately for Bob,
not all of his teammates decided to return. But there are Jack (their team lead)
and Tanja, who have both become his main mentors and friends. Then again,
Sonja and John appear in the office every now and then, with a varying intensity.
They would not have the same status of the go-to-persons for Bob, but he feels
comfortable around them. Finally, he misses Jane, who used to be his mentor
before the pandemic, but she has moved out of the city and pays very infrequent
visits to the office. He feels their bond has deteriorated.

Bob represents the population of inexperienced employees who are introverted but is
likely to demonstratemany typical behaviors of introverts in general. Employees likeBob
form a vulnerable group of people whose work experience have changed dramatically
with the rise of remote and hybrid work. Unlike the common belief, many companies
report many introverts predominantly working in the office. The social ties and mean-
ingful relations at work is what attracts them, not the superior comfort at work or any
other practical motivation. And this is why, it is so important for the representatives from
this group to meet others at work too.

2.4 Managers: Remote Work is a Managerial Nightmare

One of the main reasons why remote work was stigmatized and unexploited in the past
relates to the managerial hurdles associated with employees working “behind a curtain”

Conflicting Interests in the Hybrid Workplace 9

(Bailey and Kurland 2002). Many remote work promoters have questioned the demands
of office presence, criticizing the managers for the lack of trust in employees and the
overreliance on direct supervision. But is this the main reason why managers want the
employees back in the office?

Jack is a team lead of a team of eight engineers. Since the pandemic, his job under-
went major transformations. First, everyone in the team was forced to work from
home during the pandemic. A lot of Jack’s time went into supporting the mental
well-being of the employees and ensuring that everyone has the practical support
needed to carry out their tasks from home. Although being significantly challenged
to follow up with what is going on, Jack remembers the pandemic all remote period
as a level-playing field experience, because everyone was online. With the reopen-
ing of the society and the offices, Jack’s team members have expressed different
preferences for organizing their work. Some work fully onsite, some choose to
work hybrid and turn up every now and then, while others work predominantly
remotely. Leading a team with such diverse preferences is not an easy task. Jack
would not mind if everybody was remote or onsite, because it would provide simi-
lar work experiences among like-minded people. He personally likes working from
home too. What Jack does not like is the inability to satisfy everybody’s needs. For
example, Bob and Tommy are relatively inexperienced and require support and
mentoring from others, but Tommy is not in the office to observe his colleagues
at work and receive a proper mentoring, while Bob has depended on the few col-
leagues who are in the office. Tanja, who is Bob’s go-to person started to complain
about the frequent interruptions. The burden of mentoring is evidently no longer
equally distributed among the experienced members of the team. Further, when
tensions in the team emerge, they are no longer visible to Jack. At least, when the
tensions involve the remoters. In the past, Jack would spot when someone’s body
language or tone of voice changed and could follow up on what was going on.
Detecting and resolving conflicts has become much more difficult in the hybrid
work setup, as is the ability to provide satisfactory experiences for everyone dur-
ing a hybrid meeting. Jack puts effort into moderating the hybrid meetings so that
everybody has an opportunity to speak up, but similarly to the other onsiters he
often gravitates towards those physically close in the room. To fight the feeling
of detachment and sub-group formation, Jack considers requesting everyone to
commute to the office at least a couple of days per week. But to be honest, Jack
feels that his job satisfaction has dramatically decreased and considers pursuing
the career as a consultant that he has once started.

It’s reasonable to say that Jack is a representative of a rather typical team lead whose
job tasks and the very nature of work has dramatically changed since the pandemic.
Unlike the popular opinion that the promotion of office presence isTaylorism that belongs
to the past, work in the office does provide the richest opportunities for managers to
support the employees, as well as the employees to seek and receive support, from
the managers and colleagues. We thus encourage to see the good intentions behind the
manager’s call for office presence. Satisfying everyone when their needs are anywhere

10 D. Smite

on the onsite-hybrid-remote spectrum, and which furthermore may change at any given
day, is truly an impossible task.

2.5 Managers: Remote Work is the Fall of Corporate Culture and Innovation

Finally, we conclude with the perspective of the managers responsible for the overall
performance and atmosphere at work. Their work profile has also changed, similarly
to team leads. However, the responsibility they carry is much higher. With the growing
flexibility demands, they find themselves in front of an inherent conflict. Rooted in the
strong believe that offices are not just walls but hubs that foster collaboration, community
formation, sense of belonging, idea and information exchange, managers naturally tend
to emphasize the importance of office presence. Some might even say that innovation is
grounded in the spontaneous interactions at the coffee machines.

Michael, Jack’smanager, is a head of the unit responsible for 22 engineering teams
situated on two floors of the central office in the city, and a member of the corpo-
rate leadership group. Since the reopening of the offices, the employee well-being
and office presence are discussed in the company leadership forum on a regular
basis. One important reason for this is the growing number of resignations among
the recent hires and the decrease in the sense of belonging scores in the bi-annual
employee satisfaction survey. Michael and his leadership team has worked hard to
find a strategy that would satisfy most of their employees. Concrete measures have
been already taken to attract the employees back, including massive renovations
and investments into mimicking the home coziness at the workplace by replacing
cubicles with sofa areas for informal interaction, increasing the number of plants
and art pieces, and even upgrading the coffee machines and local canteen offer-
ing with pancakes once a week, which seem to be very popular. Yet, the offices
are mostly half-empty, and the managers are now considering forcing the office
presence with two or three mandatory office days per week.

Michael represents those managers who did not embrace the hybrid working (or “the
new norm”) and continue believing in the importance and value of the office interactions.
These managers are not against the flexibility per se. After all, many tech companies had
someflexibility evenbefore the pandemic.However, they see noothermeans to guarantee
efficiency, innovation, corporate loyalty and employee retention, other than through
the office presence. Therefore, after a relaxed period of flexible working immediately
following the pandemic, some companies introduce or consider introducing mandatory
office presence, together with other attempts to lure the employees back into the offices
(Smite et al., 2023a).

3 Concluding Remarks

The five perspectives on work from home described in this position paper illustrate
the conflicting needs among the different employees and among the employees and
the managers on different levels. In the following, we first summarize the different
perspectives and then discuss the implications for practice to address the emerging

Conflicting Interests in the Hybrid Workplace 11

challenges with the rise of WFH. A summary of the five perspectives emerging from our
empirical studies are summarized in Table 1 together with the benefits and challenges
of each of the emphasized interest groups.

Table 1. Summary of the Five Emerging Perspectives on Remote Work From Home.

Perspective Office presence Experiences with WFH

Employees working fully or
partially remotely

Erratic office presence on
the need and want basis

+ Increased flexibility
+ Control over own schedule
+ Avoidance of long commute
+ Time spent on commute

Remote employees working
in hybrid teams

In the office for special
occasions demanding
presence only

+More comfortable conditions
+ Time spent on commute
– Fear of missing out (FOMO)
– Lack of awareness about others
– Feeling of detachment in the
team

Introverted, shy and
inexperienced employees
working in hybrid teams

Predominantly in the office – Reduced social circle,
interactions primarily with
onsiters, due to being shyness

– Passive in online meetings

Team managers Predominantly in the office – Onsiters overloaded with
queries

– Mentoring efforts not evenly
distributed inside the team

– Decreased ability to detect and
resolve tensions

– Hard to moderate hybrid
meeting in a way that provides
equal experiences for remoters
and onsiters

– Decreased job satisfaction with
the managerial role and duties

Company managers Predominantly in the office – Increased investments into
office space renovations

– Increased risk of resignation
– Decreased sense of belonging
among employees

Notably, the perspectives highlighted here are limited to the ones emerging from the
empirical studies and by nomeans portray the complete picture. Other perspectives could
be included, for example, of managers with positive attitudes, extraverted employees
working onsite, employees working in fully remote teams, etc.

Evidently, the experiences summarized in Table 1 can be characterized asmixed from
the individual perspective as there are both positive and negative aspects for different
individual employees, and rather negative from the managerial perspective, confirming

12 D. Smite

the view point that remote work is full of managerial issues (Bailey and Kurland, 2002).
However, we also emphasize that this is primarily due to the hybrid work arrangement
and inability to find a one-fits-all strategy for organizing the work in a team with diverse
preferences. Future work thus needs to focus on better understanding the differences
between managing hybrid and fully remote teams, as well as on exploring the benefits
of increased remote work on the team and organizational level.

Acknowledgement. This research is funded by the Swedish Knowledge Foundation within the
WorkFlex project (KK-Hög grant 2022/0047) and the S.E.R.T. research profile project (grant
2018/010).

References

Barrero, J.M., Bloom, N., Davis, S.J.: Why working from home will stick (no. w28731). National
Bureau of Economic Research (2021a)

Barrero, J.M., Bloom,N., Davis, S.J.: Letmework from home, or i will find another job. University
of Chicago, Becker Friedman Institute for Economics Working Paper, 2021-87 (2021b)

Bailey, D.E., Kurland, N.B.: A review of telework research: findings, new directions, and lessons
for the study of modern work. J. Organ. Behav. Int. J. Ind. Occup. Organ. Psychol. Behav.
23(4), 383–400 (2002)

Bloom, N., Liang, J., Roberts, J., Ying, Z.J.: Does working from home work? Evidence from a
Chinese experiment. Q. J. Econ. 130(1), 165–218 (2015)

McGregor, D.M.: The human side of enterprise. In: Readings in Managerial Psychology, pp. 310–
321. The University of Chicago Press (1960)

Miller, C., Rodeghero, P., Storey, M.A., Ford, D., Zimmermann, T.: How was your weekend?
Software development teams working from home during COVID-19. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pp. 624–636 (2021)

Mortensen, M., Edmondson, A.C.: Rethink Your Employee Value Proposition: Offer your people
more than just flexibility. Harvard Bus. Rev. 101(1–2), 45–49 (2023)

Nguyen,M.H.,Armoogum, J.: Perception and preference for home-based telework in theCovid-19
era: a gender-based analysis in Hanoi, Vietnam. Sustainability 13(6), 3179 (2021)

Olsson,H.H.,Bosch, J.:Nomorebosses? In:Abrahamsson, P., Jedlitschka,A.,Duc,A.N., Felderer,
M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 86–101. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49094-6_6

O’Leary, M.B., Mortensen, M.: Go (con) figure: subgroups, imbalance, and isolates in geograph-
ically dispersed teams. Organ. Sci. 21(1), 115–131 (2010)

Pratt, J.H.: Home teleworking: a study of its pioneers. Technol. Forecast. Soc. Change 25(1), 1–14
(1984)

Russo, D., Hanel, P.H.P., Altnickel, S., van Berkel, N.: Predictors of well-being and productivity
among software professionals during the COVID-19 pandemic – a longitudinal study. Empir.
Softw. Eng. 26(4), 1–63 (2021). https://doi.org/10.1007/s10664-021-09945-9

de Souza Santos, R.E., Ralph, P.: Practices to improve teamwork in software development during
the COVID-19 pandemic: an ethnographic study. In: Proceedings of the 15th International
Conference on Cooperative and Human Aspects of Software Engineering, pp. 81–85 (2022)

Silva-C, A.: The attitude of managers toward telework, why is it so difficult to adopt it in
organizations? Technol. Soc. 59, 101133 (2019)

https://doi.org/10.1007/978-3-319-49094-6_6
https://doi.org/10.1007/s10664-021-09945-9

Conflicting Interests in the Hybrid Workplace 13

Smite, D., et al.: Half-empty offices in flexible work arrangements: why are employees not return-
ing? In: Taibi, D., Kuhrmann, M., Mikkonen, T., Klünder, J., Abrahamsson, P. (eds.) Product-
Focused Software Process Improvement. PROFES 2022 LNCS, vol. 13709, pp. 252–261.
Springer, Cham (2022a). https://doi.org/10.1007/978-3-031-21388-5_18

Smite, D., Tkalich, A., Moe, N.B., Papatheocharous, E., Klotins, E., Buvik, M.P.: Changes in per-
ceived productivity of software engineers during COVID-19 pandemic: the voice of evidence.
J. Syst. Softw. 186, 111197 (2022b)

Smite, D., Moe, N.B., Hildrum, J., Gonzalez Huerta, J., Mendez, D.: Work-from-home is here to
stay: call for flexibility in post-pandemic work policies. J. Syst. Softw. 195, 111552 (2023a)

Šmite, D., Moe, N.B., Klotins, E., Gonzalez-Huerta, J.: From forced working-from-home to
voluntary working-from-anywhere: two revolutions in telework. J. Syst. Softw. 195, 111509
(2023b)

Smite, D. Christensen, E.L., Tell, P., Russo, D.: The future workplace: characterizing the spectrum
of hybrid work arrangements for software teams. IEEE Softw. 40(2), 34–42 (2023c)

Tkalich, A., Šmite, D., Andersen, N.H., Moe, N.B.: What happens to psychological safety when
going remote? IEEE Softw. (2022, in press)

Yang, L., et al.: The effects of remote work on collaboration among information workers. Nat.
Hum. Behav. 6(1), 43–54 (2021)

https://doi.org/10.1007/978-3-031-21388-5_18

Requirements Engineering

Requirements Quality vs. Process
and Stakeholders’ Well-Being: A Case

of a Nordic Bank

Emil Lind, Javier Gonzalez-Huerta(B) , and Emil Alégroth

Software Engineering Research Lab SERL, Blekinge Institute of Technology,
371 79 Karlskrona, Sweden

{emil.lind,javier.gonzalez.huerta,emil.alegroth}@bth.se

Abstract. Requirements are key artefacts to describe the intended pur-
pose of a software system. The quality of requirements is crucial for
deciding what to do next, impacting the development process’ effective-
ness and efficiency. However, we know very little about the connection
between practitioners’ perceptions regarding requirements quality and
its impact on the process or the feelings of the professionals involved in
the development process.
Objectives: This study investigates: i) How software development

practitioners define requirements quality, ii) how the perceived quality of
requirements impact process and stakeholders’ well-being, and iii) what
are the causes and potential solutions for poor-quality requirements.
Method: This study was performed as a descriptive interview study

at a sub-organization of a Nordic bank that develops its own web and
mobile apps. The data collection comprises interviews with 20 practi-
tioners, including requirements engineers, developers, testers, and newly
employed developers, with five interviewees from each group.
Results: The results show that different roles have different views on

what makes a requirement good quality. Participants highlighted that,
in general, they experience negative emotions, more work, and overhead
communication when they work with requirements they perceive to be of
poor quality. The practitioners also describe positive effects on their per-
formance and positive feelings when they work with requirements that
they perceive to be good.

Keywords: Requirements Engineering · Requirements Quality ·
Human Factors · Empirical Study

1 Introduction

Requirements are crucial for developing software-intensive products and services
since they are the main link between the business value and its implementa-
tion. As such, the consequences of issues—Poor quality such as incompleteness
or ambiguity—with requirements might lead to a project or product failure

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Mendez et al. (Eds.): SWQD 2023, LNBIP 472, pp. 17–37, 2023.
https://doi.org/10.1007/978-3-031-31488-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31488-9_2&domain=pdf
http://orcid.org/0000-0003-1350-7030
http://orcid.org/0000-0001-7526-3727
https://doi.org/10.1007/978-3-031-31488-9_2

18 E. Lind et al.

[12,16,17]. Requirements are used by multiple roles, including developers, testers,
and user experience designers in their daily work [7]. Therefore, requirements
quality has a profound, direct impact on the outcome of the different down-
stream activities in the development process and on the quality of the final
product itself [7].

Moreover, changes to requirements have an intrinsic relationship to project
failure and results in projects not being finished within time or budget con-
straints [21]. Changes to requirements, before and after release, affect the differ-
ent development activities [9,11], for instance, by forcing the re-prioritization of
tasks and effort allocation.

Several standards define how to write good requirements (e.g., ISO29148 [10]
or IREB [2]) and have also been studied in several research works (e.g., [7,17]).
These works aim to provide an objective, general view of how a good quality
requirement should be, although there is still a lack of a holistic perspective on
quality factors on requirements [9]. Moreover, from a practitioner’s view, there is
a lack of understanding regarding what they perceive as good - or bad- require-
ments and how they affect their daily work. Following Femmer’s and Vogelsang’s
activity-based view on requirements and their quality [7], it is highly relevant
to identify the practitioners’ view on requirements quality and how practition-
ers subjectively define it. The reason is that standards are often too general or
imprecise to be applied in different industries. Following this reasoning, eliciting
developers’, testers’, and requirements engineers’ experiences and how they are
affected by what they perceive to be bad requirements - compared to what they
perceive to be good requirements - is therefore of importance. The reason is that
the practitioners’ needs may not align with what is prioritized in the standards.
Thus, research into the phenomenon provides insights into these practitioners’
ways of working and inputs for future improvements to said requirements stan-
dards.

There are research works that analyze the impact of good/bad requirements
on the project outcomes (e.g., [4,12,16–18]). However, these are either based on
questionnaire surveys or directly based on static analysis techniques. Thereby
leaving a gap in knowledge from empirical case studies that go deeper, through
interviews and focus groups, to understand the consequences of good and bad
quality requirements as the practitioners perceive them.

This study investigates the differences in how practitioners from different
roles define good and bad requirements, i.e., what characteristics make require-
ments good quality. Additionally, the study aims to determine the impact prac-
titioners experience from good or bad quality requirements in their work, work-
load, and well-being. Furthermore, the study also aims to find the perceived
causes and potential solutions to poor quality requirements. The goal is also to
gain an understanding of requirements quality, which is essential first to align
with existing standards but also to understand what are good-enough require-
ments that allow organizations to prioritize requirements for implementation
that add value to the product [5].

Requirements Quality vs. Process and Stakeholders’ Well-being 19

The remainder of the paper is structured as follows: Section 2 discusses
related research in the area. Section 3 describes the research methodology fol-
lowed in the interview study. Section 4 reports the main results of the study.
Section 5 discusses the main findings. In Sect. 6 we discuss the limitations and
threats to the validity. Finally, Sect. 7 draws the main conclusions and discusses
further works.

2 Related Work

Requirements Engineering (RE) in general and specific RE methods are well
represented in the body of scientific knowledge. There are also recommendations
and guidelines for working with RE and even quality standards for requirements
(e.g., [2,10]).

The NaPiRE [16,17] project, which involves more than 200 companies in
10 countries, has mapped several kinds of bad requirements with factors for
project failure or linked these requirements problems with project delays or
budget overruns. Similarly, several studies (e.g., [4,11,12,21]) have tried to find
relationships between requirements quality to requirements (i.e., requirements
smells [6]). However, what is still unclear is what the impact of these smells
would be. Femmer and Vogelsang [7] found a relationship between the quality
of requirements and the quality in use of the software system being developed.
Frattini et al. [9] developed an ontology, scrutinizing 105 research primary stud-
ies, with the goal of providing a more harmonized view of requirements quality
factors.

However, neither the NaPiRE project nor the studies mentioned above have
considered the different perceptions of what good or bad requirements are for
different roles or the effect that bad requirements might have on the practitioners’
work, workload and well-being. Well-being, especially stress has been found as an
important factor for hindering collaborative work and technical practices [15].
All these aspects are essential to define good-enough requirements that allow
organizations to prioritize requirements for implementation that add value to
the product [5], thus motivating their study in the area of RE.

3 Research Methodology

The study addressed the following research questions:

– RQ1 How do software development practitioners define requirements quality?
– RQ2 How does the perceived quality of requirements impact the work and

wellbeing of practitioners in software development?
– RQ3 What are the perceived causes and potential solutions of the poor qual-

ity of requirements?

The intent is to map the effects of low-quality requirements (as per RQ1), as
perceived by requirements engineers, developers, and testers, to the enjoyment of

20 E. Lind et al.

Stakeholders
• Stakeholders identify a need

• Needs are evaluated and
prioritized.

• Creation of high abstract level
requirements

Software engineering
team
• Sanity checks are performed

for the requirements

meetings with the
practitioners involved.

Developers
• Developers implement the

functionality and graphic
described in the
requirements.

• If a defect is found by the
tester the requirements and
the defect description are
sent back to developers to
correct the defect.

•

•

Upon completion
When the implementation
seems correct the requirements
are marked as completed and
ready for release.
Future tests will be performed
as regression tests to ensure
that functionality and graphics
are still according to
requirements.

Requirements
engineers
• Requirements engineers

break the high level
requirements into more
detailed requirements by
performing investigation

stakeholders (including
developers)

Testers
• Testers check the

implementation to ensure it
is according to requirements
and there are no defects.

• If a defect is found, the tester
sends the implementation,
the requirements and the
defect description back to
developers to correct the
defect.

Fig. 1. Requirements Workflow

work, stress, and well-being in general, as the perception of their colleagues, orga-
nization, and workload. Hence, the results lean into the human factors domain
of software engineering or behavioural software engineering [13]. Such results,
albeit often less tangible than technical factors, are essential for the general
understanding of software engineering.

3.1 Context, Case, and Unit of Analysis

To address the research questions mentioned above, we conducted an interview
study in an industrial setting comprising twentyfive interviews with software
development practitioners. We conducted the study in a sub-organization of a
Nordic bank1 which develops mobile and web apps for the bank’s end-users,
therefore belonging to the financial technology (fintech) domain.

The organization has development teams organized into different areas, such
as product areas or business/domain areas, referred to as projects. On average,
the development teams consist of 10 to 12 employees and contain roles such as
requirements engineers, testers, developers, UX designers, and scrum masters.
Note that the studied organization, although has incorporated many agile rituals
and practices, carries out requirements engineering, development and software
testing in a waterfall-like process, i.e., there is a hand-over between requirements
engineers to developers and later from developers to testers. Figure 1 provides a
visual, brief overview of the development workflow used at the organization.

In this study, we focus on four different units of analysis, i.e., requirements
engineers, testers, software developers with more than one year of experience
at the organization and recently recruited software developers. Employees from
each group were selected, by a hybrid of convenience and random sampling [14],

1 Fictitious name to preserve anonymity.

Requirements Quality vs. Process and Stakeholders’ Well-being 21

Table 1. Demographic information of the interview participants, including interviewee
Id, participant’s working location, and years of experience within the organisation

Interviewee Id (including role) Location Experience

Requirements Engineering 1 Sweden <5 years

Requirements Engineering 2 Sweden >5 years

Requirements Engineering 3 Baltic Country >5 years

Requirements Engineering 4 Sweden <5 years

Requirements Engineering 5 Sweden >5 years

Developer 1 Sweden <5 years

Developer 2 Sweden <5 years

Developer 3 Sweden >5 years

Developer 4 Sweden <5 years

Developer 5 Sweden <5 years

Tester 1 Sweden >5 years

Tester 2 Baltic Country <5 years

Tester 3 Baltic Country <5 years

Tester 4 Sweden <5 years

Tester 5 Baltic Country <5 years

Recently recruited developer 1 Sweden <3 months

Recently recruited developer 2 Sweden <3 months

Recently recruited developer 3 Sweden <3 months

Recently recruited developer 4 Sweden <3 months

Recently recruited developer 5 Sweden <3 months

from different projects and geographic locations to acquire a more representa-
tive sample inside the organization. The hybrid sampling consisted of using a
list of employees with suitable characteristics for the study provided by man-
agers at the organization. We refer to this as hybrid sampling since the authors
had limited control over which participants were added to the list, i.e. the par-
ticipants’ managers ultimately were the ones suggesting their participation in
the study. We selected the organization also by convenience since it is one of
the partner companies in an ongoing research project that focuses, among other
topics, on addressing the quality degradation of software assets. Table 1 details
the participants’ demographic information.

The recently recruited developers were an opportunity-based unit of analysis,
interviewed to complement the results from the study’s three central units of
analysis (i.e., requirements engineers, testers, and developers). We sampled these
participants following the same approach as the other participants. However, the
sample frame of potential participants was much smaller, i.e. only employees with
less than four months of employment were eligible. However, since we exercised
no control over the selection, we still classify it as hybrid convenience and random
selection.

In total, we conducted interviews with 20 participants; five requirements
engineers, five developers, five testers, and five recently recruited developers. We
interviewed the recently recruited developers twice, the first time when they had
finished or were close to finishing their onboarding at the organization and the

22 E. Lind et al.

second time when they had worked for a few more months at the organization2

Therefore the total number of interviews conducted in the study was 25.
To ensure anonymity, we clustered the participants’ experience into groups

of more than five years, less than five years (the requirement for participating
was at least a year in the organization), and three months or less for the recently
recruited developers.

3.2 Data Collection

Data for this interview study was collected using semi-structured interviews. The
first part of the interview guide aimed at answering RQ1, whilst the second part
of the interview aimed at answering RQ2 and RQ3.

Each interview took thirty to sixty minutes, following a predefined interview
guide3, recorded with audio and video, and later transcribed to text. The inter-
view guide consisted of 16 predefined questions for the testers and developers
that had worked in the organization for at least one year. For requirements engi-
neers, the interview guide consisted of 24 predefined questions, 19 predefined
questions for the first interview with the recently recruited developers and 15
predefined questions for the second interview with the recently recruited devel-
opers. Although the interview guides varied depending on the interviewees’ roles,
the semantic information gathered aimed at providing complementing answers
to the research questions. The guides also had questions that are not mapped
to any specific research question. We added these additional questions to gather
supplementary information to understand the context and to interpret the inter-
view results that contributed to the research questions. The number of predefined
questions was decided to give enough time to ask follow-up questions.

3.3 Data Analysis

The interviews were analyzed using thematic analysis [1,3]. Open coding was
used, where codes were generated based on the semantic meaning of statements
from the interview transcripts, using mainly a deductive approach [3]. We used
the coded information and the associated quotes to synthesize evidence from the
collected data. This evidence-driven analysis approach was suitable for answering
the research questions due to the study’s descriptive nature.

We added the codes incrementally from the interview results. As stated, the
codes were formulated based on the semantic meaning of the interviewees’ state-
ments. When another statement was found to contain similar semantic informa-
tion, said the statement was marked with the same code. We did not restrict

2 Although the analysis of the differences between these two interview instances is out
of the scope of this paper.

3 The interview guide is available in the companion materials in Zenodo DOI:
10.5281/zenodo.7306032.

https://doi.org/10.5281/zenodo.7306032

Requirements Quality vs. Process and Stakeholders’ Well-being 23

coding to a 1-to-1 mapping between codes and statements. Hence, we could code
a statement with one or several codes. We stored all extracted statements from
the transcripts with the codes in the code books for consistency.

The rationale for using coding was to provide an overview of the data to con-
nect statements and observations to draw higher-level conclusions. For example,
the statement “Requirements are changed with time. We do not work in water-
fall projects when a requirement is thought to be completed, cannot be changed,
and then handed over to the developer. We have a parallel work in which we
often realize that something was not expressed in a good way, it is often that we
change the wording or more things a bit”. was coded with the code “Changes
during development”. Similarly, the statement; “We mostly work with drafting
the requirements during the sprint as they are not complete when we bring them
into the sprint, so a part of our task is to make an investigation” were coded
with the same code.

The coding resulted in synthesized themes organized in a document with
related codes and key sentences. After the themes had been defined, they were
used to draw conclusions on the appropriate level of abstraction to answer the
research questions.

As thematic coding, with semantic equivalence partitioning, is subject to
researcher bias, the first author validated the coding scheme with the second and
third authors. We conducted this validation in the early stages of the analysis
process. This was achieved by providing the second and third authors with an
interview transcript and the codebook. The authors coded the corresponding
transcript using the codebook. After the coding, the results were compared based
on similarity. Results showed a high similarity: 74% of the codes matched. We
calculated this percentage as the number of sentences tagged with the same
codes divided by the total number of coded sentences. This result was considered
sufficient for the first author to proceed with the rest of the coding.

4 Results

This section presents the results of the interview study. First, we summarize how
requirements are handled and utilized in Nordic Bank, and the perceived preva-
lence of bad requirements. The results that aim at answering research questions
RQ1, R2, and RQ3 are presented in Subsects. 4.2, 4.3, and 4.4, respectively.

4.1 Requirements Engineering Process at Nordic Bank

This subsection presents the results that the participants provided in regard
to the ways Nordic Bank utilizes requirements during the development process.
We also include a brief analysis of the prevalence of bad requirements in the
organization.

24 E. Lind et al.

Fig. 2. Requirements work-process-related codes

Workprocess. Figure 2 presents the code book for the codes related to how
requirements are handled during the development process. Four testers reported
that they were involved in the requirements engineering process and performed
requirements quality assurance activities. The developers also mentioned that
within their teams, they carry out requirements refinement activities—Activities
aimed at improving the content and understandability of the requirements—
before the requirement reaches the status of ready-to-develop.

Participants mentioned that it is possible to update the requirements once the
development has started, but in those cases, all stakeholders should be informed
about the change. Finally, it was reported that it is a common practice to split
requirements into smaller tasks to be carried out by the team or other teams.

Bad Requirements Prevalence. The testers involved in the quality assurance
process for the requirements stated that the requirements, in general, in their
understanding, were of good quality. Additionally, they stated that they write
preliminary test cases for all requirements, including edge case tests. Despite
these efforts, they still discover many defects when they test the implementation.
One interviewee stated, “I think the quality is quite high, but that does not mean
that if the requirements are good, the developers won’t make mistakes and bugs
[...] It would seem that we have bad user stories if I say that I give back 75%
of the stories for fixing because I find bugs”. The same tester thought that it
was mostly the developers’ own fault and not caused by bad requirements, “It
is not that they don’t understand or that might not mean that the requirements
are bad, but this is just that they might not read the story enough or maybe
interpret something differently”.

A statement from a tester that did not perform QA checks on requirements
before handing them to developers stated, “It’s important that I as a tester
and the developers both understand it [the requirement] as it is written” when
describing good requirements. Another interviewee stated, regarding require-
ments quality, “If you are new in an area and in your role, then there is a higher
demand on the quality of the requirements”. Another tester involved with the RE
process experienced that defects, in one-third to half of the times, were caused

Requirements Quality vs. Process and Stakeholders’ Well-being 25

Fig. 3. Quality Characteristics of Good and Bad Requirements

by bad requirements “It’s like 50–50. It doesn’t need to be bad requirements; it
might be that some developer has missed something. But maybe less than 50%,
maybe 30% are bad requirements”. However, because the actual requirements
were not analyzed in the study, the testers’ experiences are still unverified. The
developers, testers, and requirements engineers agreed upon one point: refine-
ment meetings are part of their RE-process. Still, they estimated the frequency
of bad requirements to be about 10–25% of the requirements.

4.2 RQ1: How Software Development Practitioners Define
Requirements Quality?

Figure 3 illustrates the requirements quality characteristics mentioned by the
participants. The number of mentions accounts for each interviewee that men-
tioned each quality characteristic during the interviews.

Every interviewee mentioned clear as a characteristic of a good requirement.
However, as clear might have multiple interpretations of what it means, which
also can vary among roles, some interviewees might have mentioned this charac-
teristic as a collective term for other characteristics, e.g., unambiguous and/or
complete. Regardless, it seems that clarity, associated with ease of understand-
ing, is considered a pivotal characteristic for all interviewees. A tester said when
describing good characteristics of requirements that “Clarity is, as mentioned,
a keyword here, and there can be several different aspects that can make it [a
requirement] clear”.

The characteristic complete was described by every developer, and most
testers agreed that requirements have to be complete when they receive them.
Some testers pointed out that changing a requirement while in testing would
make the process much more complex. Only three requirements engineers explic-
itly mentioned complete as a characteristic of good requirements. However, one
of those three requirements engineers pointed out that they accept, in their team,

26 E. Lind et al.

Fig. 4. Codebook: Characteristics of “good” requirements, with codes and descriptions
of “good” requirements. Opposite descriptions would characterize “bad” requirements.

changing parts of requirements after developers receive them if they are aware
of those likely changes. Figure 4 presents the codebook with the description of
the quality characteristics as discussed with the interviewees.

4.3 RQ2: How Does the Perceived Quality of Requirements Impact
the Work of Practitioners of Software Development?

In general, participants experience that bad requirements cause delays in devel-
opment, that activities take longer, and that they need to perform tasks that
they perceive someone else should have done. One possible cause of these experi-
ences is the need for more communication within the team or with other teams or
stakeholders. The interviewees also reported that good requirements positively
impact in general, e.g., on code quality, shorten development time, or improve
work satisfaction. In contrast, bad requirements harm code quality, cost or work
satisfaction. Figure 5 presents the codebook with the main themes that emerged
from the interview transcript analysis regarding RQ2.

Requirements Quality vs. Process and Stakeholders’ Well-being 27

Fig. 5. Codebook: Impact of the quality of requirements

Fig. 6. Codebook: Causes, solutions and improvements for “bad” requirements

28 E. Lind et al.

Table 2. Mapping Codebook Characteristics to the ISO [10] and IREB [2] standards.

Codes from
Codebook

ISO [10] Characteristics
& Attributes

IREB [2] Characteristics
& Attributes

Clear Unambiguous, Comprehensible. Unambiguous, Understandable

Concrete - -

Complete Complete Complete, Avoid incomplete
conditions

Correct Correct -

Purpose Necessary Necessary

Feasible - -

Easy to adjust - -

Relevant for Appropriate -
Stakeholders

Short
Description

- Short and well-structured sentences

Not-too-detailed - -

Well Structured - -

Terminology Avoid open-ended non-verifiable
terms, avoid subjective language

Defining and consistently using a
uniform terminology, avoid vague
or, ambiguous terms and phrases

Logical - -

Traceable - Traceable

Testable Verifiable Verifiable

Not-an-epic - -

4.4 RQ3: What are the Perceived Causes and Potential Solutions
of the Poor Quality of Requirements?

Figure 6 reports the code book with descriptions of the themes related to causes,
challenges, potential solutions and process improvements to address low-quality
requirements.

The requirements engineers’ most common suggestion for the cause of the
poor requirements quality was that they got too tight deadlines that the team
did not have any control over. Another plausible cause was stated to be a lack of
agreement on what constitutes a good (or bad) requirement. One of the improve-
ments suggested by the interviewees was retrospective meetings for requirements
engineers between different teams. Another alternative is to have some form of
forum or other platforms for the requirements engineers to share knowledge,
experience, and ideas and have workshops to share knowledge within the organi-
zation. Lastly, a suggestion was to move the responsibility and control over dead-
lines from managers to the development teams.

Requirements Quality vs. Process and Stakeholders’ Well-being 29

5 Discussion

5.1 RQ1: How Do Software Development Practitioners Define
Requirements Quality?

In this subsection, we discuss the main quality characteristics highlighted by
the participants, mapping them to the quality characteristics included in the
ISO [10] and IREB [2].

Table 2 shows the mapping between the different characteristics highlighted
by the participants to the ones in the standards.

As mentioned in Sect. 4.2, most developers and testers agree that a require-
ment has to be complete when they receive it. However, some testers do not
necessarily agree that the requirements must be complete when the developers
receive them. Requirements engineers argue that requirements are artefacts that
can change during development. Testers do not mind if changes occur, but when
the functionality is implemented and sent to them for testing, the requirements
should be complete so that they can be verified.

One developer expressed that they worked in a team with a requirement stan-
dard that did not require the requirements to be complete when the developers
received them. Instead, the norm in this team was that the requirements engi-
neer would perform their own investigations while developers worked on parts of
the requirement that were considered to be “done”. Similarly, other interviewees
stated that working with incomplete requirements in their team was possible.

Some interviewees said that a requirement needs to give the stakeholders
insight into the requirement’s purpose and when it is considered done, i.e., the
definition of done. Some quotes are “The ones that make developers understand
the scope”. “To understand the purpose of what we want to achieve”. Hence, not
only should the requirements describe the functionality but also the acceptance
criteria.

One could argue that the requirements engineers should focus on domain
knowledge and present requirements to the developers and testers that convey
this knowledge. One participant expressed that the consequence of the lack of
technical knowledge is that the requirements engineers do not know what is
possible to implement and what is not, nor what limitations exist in one platform
but not in another when they create features for both.

A subject that most interviewees brought up was that they perceived that a
requirement should be written for the Stakeholders that will use it. “It depends
on the developer, the business analyst or the tester how they want it written”.
“In our team are several different roles that should understand it; our APO [agile
product owner] looks at different parts than what our developer does”. Regarding
how to deem a requirement, whether it is good or bad, a developer said: “Maybe
it’s not the ones that have the most insight in a user story [requirement] that
should judge if it’s ready for development, but maybe those that have lesser
knowledge in the area are the better persons to ask if it’s clear enough for them
to understand what they are supposed to do”. They base their subjective view

30 E. Lind et al.

on their technical and domain knowledge about the subject, which allows them
to deal with assumptions more accurately.

5.2 RQ2: How Does the Perceived Quality of Requirements Impact
the Work of Practitioners of Software Development?

Bad Requirements Require More Communication. Communication
among requirements engineers, developers, testers, or other development teams,
was the go-to practice for solving issues with the requirements for developers and
testers. The logical outcome of this way of working is longer development time
and an additional burden placed on the development team. A burden that could
have been mitigated if the requirement had been better upfront. A developer
stated, “Like I said earlier, a lot of the time that I want to put on programming
is instead put on communication with BA:s [Business Analysts], UX [user expe-
rience] and other developers that have knowledge about what I’m working on.
One does not develop so much; it is very much investigation work”.

Most interviewees, independent of role, have described that communication
is different when working with good requirements compared to working with
bad ones. One of the most mentioned differences is that more communication is
needed within the team or with other stakeholders when working with a require-
ment perceived as bad. As stated by one of the interviewees, “Bad requirements
generally result in that the time you could have put into making a good require-
ment from the beginning is instead spent on setting up meetings or communicate
on the fly”.

Another consequence of bad requirements commonly mentioned was ripple
effects. As expressed by one of the requirements engineers: “If I get questions
[about a requirement] then I understand that I have forgotten something or
haven’t been clear with something. That will make it take more time, there will
be user stories [requirements] that stays, sprint after sprint, and will have to be
brought back to me for further investigations”.

Another essential aspect is understanding of the area, domain and business
rules for the requirements. This includes all the work connected to them, directly
affecting the team’s communication. A statement from the interviews was: “A
lot of the understanding of a requirement is that you create a form of consensus.
If you have a basic understanding of what needs to be done and how to solve
it, then the requirements don’t need to be formulated in the same way as if you
didn’t have it [the basic understanding]”.

According to Zowghi and Nurmul [21], the more often developers and cus-
tomers communicate during the RE process, the less volatile the requirements
become. In the organization where this study was performed, the requirements
engineers acted as product owners (customers).

Increased Workload and Doing Someone Else’s Work. Participants
described that additional work with incorrect information resulted in having

Requirements Quality vs. Process and Stakeholders’ Well-being 31

to redo the work after correcting the information. The quality of the require-
ment impacts this challenge, e.g. a clear, well-written and complete requirement
might be easier to implement and test than one where the information is faulty.

Bad requirements can cause ripple effects in overhead communication, espe-
cially incomplete requirements cause such ripple effects and increased workload.
As stated by the interviewees: “This slows us down. So, it’s kind of a joint work
with the whole team, how we are coping with bad requirements, it’s kind of
more work for the developers then of course for the testers.”, “Bad requirements
create more work for us, testers because then we need to return to the business
people, and the developers might have to rework something, so it leads to more
work or rework”. A severe consequence of receiving bad requirements is when a
bad requirement is misunderstood by both developers and testers, implemented,
and released. As expressed by one of the interviewees, “Then you realize that
what came out in production is not correct, but we both [developer and tester]
thought that it looked correct because ‘that is how it should work’, then it can
end up very wrong”. A requirements engineer said, “Sometimes one can write
bad requirements, and it is developed according to them, and then you have to
redo the work”.

Four out of five requirements engineers have described those bad requirements
they create also impact their work. The requirements engineer who did not
experience an impact described that the questions did not impact them and that
they viewed a part of their work as being prepared to explain the requirements
to developers and testers. “You can foresee that you might get questions and
that you are the one that will get the bad feedback on the requirements”.

Interviewees experience not enough analysis performed on some of the
requirements perceived as bad before handing them over to developers. In these
cases, developers have to do work that they consider someone else should have
done but which is required to overcome the lack in quality of the requirements.
Most often, they need to perform investigations by going through documenta-
tion or contacting colleagues or other stakeholders, similar to what requirements
engineers do when creating the requirements. The implications of this additional
work are increased workload and work time in the development process, reduced
work satisfaction and increased cost. Additionally, sometimes, the developers
find out that someone else has to perform work before they can do anything
leading to dependencies and blocking of requirements.

5.3 Effects on Morale

The Interviewees were asked to express how they feel when they work with bad
and good requirements. We asked the requirements engineers how it feels to work
with creating requirements. Three of them mentioned that, when working with
challenging requirements or receiving requirements from stakeholders that they
perceive are bad, they feel frustration, stress, anger, and exhaustion. “Exhausting
is a word that comes to mind first”. “It can be anger and understanding that
some people don’t have the same approach you have”.

32 E. Lind et al.

Two requirements engineers did not mention receiving bad requirements.
However, when describing how it felt when they created challenging require-
ments, they experienced it to be educational but also challenging in a positive
way as they learn from the challenge, “The challenge is in itself educational. I
don’t see it as something negative but rather something that I learn from”. One
of the reasons for the big difference in the positive and negative experiences of
challenges when creating requirements could be related to the type of challenge
they encountered. The challenges that the two requirements engineers described
a positive view and feelings from working with challenging requirements were:
(i) finding out stakeholders to contact for information; (ii) challenges with some
terminology; (iii) how to get all the information from different sources together;
and (vi) to write the requirements in a clear way for the developers and testers.

The three requirements engineers that had a negative experience when work-
ing with challenging requirements described challenges such as: (i) technical
debt, e.g., legacy code, that affected the creation of requirements, (ii) that the
test environment was perceived as unstable, (iii) that some areas of the orga-
nization do not have any clear owner, (iv) that legal and compliance aspects
are difficult to work with, and (v) that the roadmap can be drastically changed
without any heads-up by the managers.

When the requirements engineers are working with requirements they have
made that the developers or testers perceive to be bad requirements, they
describe that it feels sad and stressful, that it impacts their self-esteem, and that
it drains their energy. “It results in that I feel more stressed, I get less good work
done, and it affects one’s own self-esteem”. When working with requirements
that they did not experience as challenging and when creating requirements
that developers and testers perceived to be good, the requirements engineers
describe it as fun and satisfying. Most testers described that they experienced
stress, frustration, a feeling of disappointment or dissatisfaction, and a loss of
interest when they worked with bad requirements. As stated by two intervie-
wees: “When you have to talk with people, or when insecurity arises, you have
to read it over and over again, you get frustrated. I lose interest if it is too bad”;
“Frustrating, and stressful. I might be maybe angry, or I might be disappointed”.
They also explained that their work became less efficient and often resulted in
more work because they had to communicate to other team members and often
perform their tests again.

Feelings described by the interviewed developers when they received require-
ments they perceived as bad were: exhaustion, stress, frustration, a feeling of
sadness, that they get feeling of doing something pointless, ineffective, and a
waste of time, and that it was not fun when they worked with bad requirements.
As stated by one interviewee: “Facepalm [interviewee put their hand on their
forehead], it’s a waste of time. Just a waste of time, resources, and energy”,
“One gets sad and feels simply unproductive. You want the hours you put down
on your work to be meaningful”. On the contrary, in general, the developers
said they experienced positive feelings and that more work was done when they
worked with good requirements. One from each of the two developer groups,

Requirements Quality vs. Process and Stakeholders’ Well-being 33

newly employed developers and developers that have worked for at least a few
years, said they were not negatively emotionally affected by the bad require-
ments. One interviewee stated: “Business as usual [laughing]. You can usually
do something about bad requirements before you start working on them”. Still,
one of the interviewees described strong positive feelings when working with
good requirements, “Effective. It’s stronger feelings when you have a clear good
requirement that you can just work through”.

It is generally believed that morale has an impact on productivity. However, it
has been difficult to prove in software engineering since both morale and produc-
tivity are difficult to measure [19,20]. Work morale can also affect a company’s
attraction and retention of employees. One possible consequence of lowered work
morale could be that employees decide to leave the organization, “Our develop-
ers are the ones that produce something of value, and if they are angry or sad
over something that was possible to go live with, then we risk losing them. To
onboard new developers is not a bed of roses”. The quality of requirements that
a requirements engineer work with might affect their and other Stakeholders’
morale. However, work morale can also be affected by more factors such as work
environment or compensation.

5.4 RQ3: What are the Perceived Causes and Potential Solutions
of the Poor Quality of Requirements?

Potential Causes for Poor Quality Requirements. The organization has
not adopted any norms for good requirements, and none of the interviewees had
heard or experienced any form of such organization-wide norms or standards.
However, several shared courses in the subject are available to the organiza-
tion’s employees. One requirements engineer said: “I have covered the ones that
come with the courses introduced in this company from different phases, such
as ‘simplify’, ‘SWAP’, and now ‘SAFE”’. The closest to a shared norm that a
few interviewees mentioned was ‘SWAP’ and the branching that derives from it,
“What we can lean on is ‘SWAP’ and the different branches that derive from
it. But I wouldn’t say that there is any statement of ‘this is how you structure
requirements at this company’. It is more from team to team”.

A developer whose team requires that all requirements have to be complete
before the developers receive them and that no changes are allowed, stated that
they experienced that they still got incomplete requirements. He perceives a lack
of knowledge or information by the requirements engineers.“Then we [the devel-
opers] need to step in and explain technically what is possible and what is not for
the different platforms. It results in us more or less educating our requirements
engineers”. This statement highlights a possible root cause of the low quality of
requirements, i.e., the requirements engineers lack technical knowledge.

Potential Solutions and Improvements. Some interviewees had suggestions
for how to solve the different causes for bad requirements that have arisen in
the interviews. One of the long-term solutions is to enable more communication

34 E. Lind et al.

between requirements engineers across the organization in some form of plat-
form. One example given was to have retrospective meetings between require-
ments engineers, another to have a forum dedicated to RE, and a third would
be to have a form of meeting for sharing knowledge, similar to tech talks that
developers have. As a complement to introducing a knowledge-sharing platform
for requirements engineers, one could argue that a norm for creating require-
ments should be shared across the organization. This use of RE forums could
be especially beneficial for organizations with several requirements engineers
with different backgrounds and knowledge of requirements engineering, similar
to the studied organization. One possibility is that such norms might naturally
be developed and polished by the practitioners as a consequence of the activities
and sharing of the knowledge-sharing platform. Another suggestion from inter-
viewees as a short-term solution was to move the control of the deadlines for
projects that development teams worked on to the development teams. Thus,
the requirements do not get rushed and enable a more agile way of working since
fixed deadlines are more an aspect of the waterfall principles. However, one can
speculate that such a change in the organization might be costly should the
deadlines be moved forward repeatedly with delayed releases. Nevertheless, one
can also argue that it can ease the quality assurance process. In addition, the
practitioners would be less stressed and feel more work satisfaction. Hopefully,
there should be fewer defects and less rework, possibly covering the extra cost
that allows development teams to move deadlines forward might bring.

The expressed need for a platform dedicated to knowledge sharing between
requirements engineers could indicate that the organization might benefit from
an organization-wide norm for requirements engineering. However, many inter-
viewees expressed a strong willingness to have flexibility and freedom in their
work and their team’s ways of working. Therefore it should be considered to
ensure that such a norm will be kept on a supporting level that does not encroach
on the practitioners’ creativity.

Almost all interviewees, if not all, concur that if the organization experience
more significant benefits to not having a standard norm, an improvement that
the organization already should consider is a platform for knowledge sharing
between requirements engineers. Imposing an organization-wide norm can hinder
autonomy and heterogeneousness in the teams’ ways of working.

There are several possibilities for how this platform could take shape. A
straightforward example could be to have a forum dedicated to the RE-process
and encouragement to the requirements engineers to use it and share the knowl-
edge amongst themselves. Another example could be to have something like
the tech talks developers have, in which they can share news, knowledge, and
insights. Some requirements engineers interviewed also asked for retrospectives
for the requirements process, which they experienced a lack of. The participants
also suggested the use of templates and quality gates for requirements (i.e., not
starting to work with low-quality requirements until they reach a certain quality
level) as potential solutions to mitigate the effects of low-quality requirements.

Requirements Quality vs. Process and Stakeholders’ Well-being 35

6 Threats to Validity

This section discusses threats to validity from four perspectives: construct valid-
ity, external validity, and reliability.

Construct Validity. Construct validity is concerned with whether the studied
measures reflect the constructs the researcher has in mind and what is stated in
the research questions. The first author designed the flexible interview protocol
and then reviewed it with the second and third authors. We acknowledge that
the participants do not include all the relevant stakeholders in the organization.
We tried mitigating this threat by involving participants with different roles and
varying expertise from the companies.

External Validity concerns the extent to which the findings can be generalized
outside of the studied case and whether they apply to other organizations. One
of the misunderstandings about case study research is the inability to generalize
from a single case [8]. However, we have tried to build a theory to understand
requirements quality, the impact of low-quality requirements, and causes and
potential solutions by building analytic generalization through theories instead
of gaining statistical generalizabilty. We have provided the characteristics of the
case under analysis to allow us to evaluate its generalizability. However, still,
further replications are needed to verify the results.

Reliability concerns whether the data and analysis are independent of the
researchers. To increase the reliability, the second and third authors validated
the coding scheme and the coding process by independently coding an interview
transcript. The results of this independent coding matched for 74% of the codes.

7 Conclusions and Further Work

In this paper, we have presented an interview study to analyze how: (i) practi-
tioners from different roles define good and bad requirements; (ii) how the quality
of the requirements impacts their work; and (iii) what might be the causes for
poor quality requirements, as well as potential solutions and improvements.

The results regarding the quality characteristics for requirements show that,
although all interviewees agree that requirements should be clear, there is a wide
range of views regarding the need to work with complete requirements. The par-
ticipants highlighted that, in general, they experienced negative emotions, more
work, and overhead communication when they worked with requirements they
perceived to be of low quality. The participants suggested Requirements Engi-
neering retrospectives, the use of templates, and quality gates for requirements
(i.e., not starting to work with low-quality requirements until they reach a certain
quality level) as potential improvements and solutions for low-quality require-
ments. Participants also suggested creating a requirements engineering forum
(or guild) to disseminate requirements engineering knowledge better.

The most relevant further work is the replication of this study in other organi-
zations to verify the results. Our preliminary results highlight some improvement

36 E. Lind et al.

areas that could be explored through longitudinal case studies or action research.
Examples of those areas are the effects of establishing a knowledge-sharing forum
for requirements engineers in organizations; or evaluating the cost, risk, and ben-
efits of moving the control of deadlines from management to development teams
in agile software development companies. These research areas could bring rele-
vant results for researchers and software development organizations.

Acknowledgements. This research was supported by the KKS foundation through
the SHADE KKS Hög project (Ref: 20170176) and through the KKS SERT Research
Profile project (Ref. 2018010) Blekinge Institute of Technology.

References

1. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualit. Res. Psychol.
3, 77–101 (2006). https://doi.org/10.1191/1478088706qp063oa

2. Bühne, S., Glinz, M., van Louenhoud, H., Staal, S.: IREB Certified Professional
for Requiremetns Engineering. CPRE Foundation Level - Syllabus. Standard,
IREB, Karlsruhue, Germany (2022). https://www.ireb.org/content/downloads/2-
cpre-foundation-level-syllabus-3-0/cpre foundationlevel syllabus en v.3.1.pdf

3. Cruzes, D.S., Dyb̊a, T.: Recommended steps for thematic synthesis in software
engineering. In: International Symposium on Empirical Software Engineering and
Measurement, Banff, AB, Canada, pp. 275–284 (2011)

4. Damian, D., Chisan, J.: An empirical study of the complex relationships between
requirements engineering processes and other processes that lead to payoffs in
productivity, quality, and risk management. IEEE Trans. Softw. Eng. 32(7), 433–
453 (2006). https://doi.org/10.1109/TSE.2006.61

5. Ernst, N., Kazman, R., Delange, J.: Technical Debt in Practice: How to Find It
and Fix It. MIT Press, Cambridge (2021)

6. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. J. Syst. Softw. 123, 190–213 (2017). https://doi.org/10.1016/
j.jss.2016.02.047

7. Femmer, H., Vogelsang, A.: Requirements quality is quality in use. IEEE Softw.
36, 83–91 (2019). https://doi.org/10.1109/MS.2018.110161823

8. Flyvbjerg, B.: Five misunderstandings about case-study research. Qual. Inq. 12,
219–245 (2006). https://doi.org/10.1177/1077800405284363

9. Frattini, J., Montgomery, L., Fischbach, J., Unterkalmsteiner, M., Mendez, D.,
Fucci, D.: A live extensible ontology of quality factors for textual requirements.
In: 30th IEEE International Requirements Engineering Conference, pp. 274–280
(2022)

10. ISO/IEC/IEEE: ISO/IEC/IEEE 29148:2018 international standard - systems and
software engineering - lifecycle processes - requirements engineering. Standard,
ISO/IEC/IEEE, Geneva, CH (2018)

11. Javed, T., Maqsood, M.E., Durrani, Q.S.: A study to investigate the impact of
requirements instability on software defects. ACM-SIGSOFT Softw. Eng. Notes
29(3), 1–7 (2004). https://doi.org/10.1145/986710.986727

12. Kamata, M.I., Tamai, T.: How does requirements quality relate to project success
or failure? In: 15th IEEE International Requirements Engineering Conference (RE
2007), pp. 69–78 (2007)

https://doi.org/10.1191/1478088706qp063oa
https://www.ireb.org/content/downloads/2-cpre-foundation-level-syllabus-3-0/cpre_foundationlevel_syllabus_en_v.3.1.pdf
https://www.ireb.org/content/downloads/2-cpre-foundation-level-syllabus-3-0/cpre_foundationlevel_syllabus_en_v.3.1.pdf
https://doi.org/10.1109/TSE.2006.61
https://doi.org/10.1016/j.jss.2016.02.047
https://doi.org/10.1016/j.jss.2016.02.047
https://doi.org/10.1109/MS.2018.110161823
https://doi.org/10.1177/1077800405284363
https://doi.org/10.1145/986710.986727

Requirements Quality vs. Process and Stakeholders’ Well-being 37

13. Lenberg, P., Feldt, R., Wallgren, L.G.: Towards a behavioral software engineering.
In: Proceedings of the 7th International Workshop on Cooperative and Human
Aspects of Software Engineering. ACM, Hyderabad (2014)

14. Lin̊aker, J., Sulaman, S.M., Höst, M., Mello, R.M.D.: Guidelines for conducting
surveys in software engineering v. 1.1. Technical report, Department of Computer
Science, Lund University, Lund, Sweden (2015)

15. Meier, A., Kropp, M., Anslow, C., Biddle, R.: Stress in agile software development:
practices and outcomes. In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018.
LNBIP, vol. 314, pp. 259–266. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91602-6 18

16. Fernández, D.M., et al.: Naming the pain in requirements engineering. Empir.
Softw. Eng. 22(5), 2298–2338 (2016). https://doi.org/10.1007/s10664-016-9451-7

17. Mendez, D.: Supporting requirements-engineering research that industry needs:
the NaPiRE initiative. IEEE Softw. 35, 112–116 (2017). https://doi.org/10.1109/
MS.2017.4541045

18. Rempel, P., Mäder, P.: Preventing defects: the impact of requirements traceability
completeness on software quality. IEEE Trans. Softw. Eng. 43(8), 777–797 (2017).
https://doi.org/10.1109/TSE.2016.2622264

19. Storey, M.A., Zimmermann, T., Bird, C., Czerwonka, J., Murphy, B.,
Kalliamvakou, E.: Towards a theory of software developer job satisfaction and
perceived productivity. IEEE Trans. Softw. Eng. 47, 2125–2142 (2021). https://
doi.org/10.1109/TSE.2019.2944354

20. Weakliem, D.L., Frenkel, S.J.: Morale and workplace performance. Work Occup.
33, 335–361 (2016). https://doi.org/10.1177/0730888406290054

21. Zowghi, D., Nurmuliani, N.: A study of the impact of requirements volatility on
software project performance. In: Proceedings - Asia-Pacific Software Engineering
Conference, APSEC, pp. 3–11. IEEE, Gold Coast (2002)

https://doi.org/10.1007/978-3-319-91602-6_18
https://doi.org/10.1007/978-3-319-91602-6_18
https://doi.org/10.1007/s10664-016-9451-7
https://doi.org/10.1109/MS.2017.4541045
https://doi.org/10.1109/MS.2017.4541045
https://doi.org/10.1109/TSE.2016.2622264
https://doi.org/10.1109/TSE.2019.2944354
https://doi.org/10.1109/TSE.2019.2944354
https://doi.org/10.1177/0730888406290054

Software Defect Prediction

Outlier Mining Techniques for Software
Defect Prediction

Tim Cech1(B) , Daniel Atzberger1, Willy Scheibel1 , Sanjay Misra2 ,
and Jürgen Döllner1

1 Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam,
Potsdam, Germany

{tim.cech,daniel.atzberger,willy.scheibel,
juergen.doellner}@hpi.uni-potsdam.de

2 Department of Computer Science and Communication, Østfold University College,
Halden, Norway

sanjay.misra@hiof.no

Abstract. Using software metrics as a method of quantification of soft-
ware, various approaches were proposed for locating defect-prone source
code units within software projects. Most of these approaches rely on
supervised learning algorithms, which require labeled data for adjusting
their parameters during the learning phase. Usually, such labeled train-
ing data is not available. Unsupervised algorithms do not require training
data and can therefore help to overcome this limitation.

In this work, we evaluate the effect of unsupervised learning by means
of cluster-based algorithms and outlier mining algorithms for the task
of defect prediction, i.e., locating defect-prone source code units. We
investigate the effect of various class balancing and feature compressing
techniques as preprocessing steps and show how sliding windows can be
used to capture time series of source code metrics. We evaluate the Isola-
tion Forest and Local Outlier Factor, as representants of outlier mining
techniques. Our experiments on three publicly available datasets, con-
taining a total of 11 software projects, indicate that the consideration
of time series can improve static examinations by up to 3%. The results
further show that supervised algorithms can outperform unsupervised
approaches on all projects. Among all unsupervised approaches, the Iso-
lation Forest achieves the best accuracy on 10 out of 11 projects.

Keywords: Software Defect Prediction · Unsupervised Learning ·
Outlier Mining

1 Introduction

Software defects reduce the added value for the customer or lead to an increased
effort in development if they have to be corrected later in development [31]. There-
fore, the timely detection of defective source code units is a central theme of code
quality. Classically, unit tests and integration tests are used for the early detection
of defective code units by testing the respective units for their functionality [32].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Mendez et al. (Eds.): SWQD 2023, LNBIP 472, pp. 41–60, 2023.
https://doi.org/10.1007/978-3-031-31488-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31488-9_3&domain=pdf
http://orcid.org/0000-0001-8688-2419
http://orcid.org/0000-0002-7885-9857
http://orcid.org/0000-0002-3556-9331
https://doi.org/10.1007/978-3-031-31488-9_3

42 T. Cech et al.

In practice, however, it is often untenable to test all functionalities, or the potential
for defects is not yet known to the developers at the time the software is developed.
Software metrics, which describe various aspects of the complexity and quality
of the source code, can be used complementary to monitoring the development
of large software systems. A distinction is made between static code metrics and
process metrics. Static code metrics, such as Lines of Code (LOC), McCabe Com-
plexity (MCCC), or Nesting Level (NL), measure aspects of a software project at
a specific point in time, i.e., a source code revision. In contrast, process metrics
describe the change between two revisions, e.g., the number of developers involved
in a commit or the number of changed LOC [42]. Based on those metrics, statis-
tical analyses can be applied to locate defect-prone source code units [21].

Various Machine Learning (ML) techniques have been used for detecting
defect-prone source code units using software metrics. Most approaches use
supervised ML techniques on static code metrics of a single revision [21,31].
Supervised approaches require a labeled training dataset, which is challenging
to obtain, since usually no records of the defect history that can be used for
labeling are kept [3,29]. In this case, another approach is desirable, that does
not require the project to have a history of labeled defects. We focus on the
usage of unsupervised training techniques, which were investigated recently to
overcome this issue [27,37,39]. Previous research with unsupervised methods
indicates that even basic approaches provide acceptable results [37]. However,
in general, they achieve weaker results compared to supervised techniques [16].
Recent results by Moshtari et al. show that the distribution of defects within a
software project follows the Pareto principle, i.e., a small fraction of the source
code units contain a large part of the defects [27]. Furthermore, defective source
code units are also distinct from non-defective code units in terms of metrics
and can therefore be treated as outliers [27].

Motivated by this result, we extend the work of Moshtari et al. to time
series of metrics by comparing unsupervised learning algorithms by means of
cluster-based algorithms and outlier mining algorithms with basic supervised
approaches. For it, we want to study if any approach is superior to others.
Subsequently, we will not address questions about the nature of defects but
inherit their definitions from the creators of each dataset. We describe each
source code unit by a sequence of software metrics using sliding windows and a
subsequent feature compression technique. We then apply the respective defect
prediction algorithm to locate defect-prone source code units. In summary, we
make the following contributions:

1. We present a computational experiment comparing basic supervised, cluster-
based techniques and outlier techniques addressing common pitfalls by Fea-
ture Compression and Class Balancing.

2. We present the use of sliding windows for modeling a time series of software
metrics.

3. We introduce the application of the Isolation Forest and Local Outlier Factor,
as examples of outlier mining algorithms, for the task of locating defect-prone
source code units.

Outlier Mining Techniques for Software Defect Prediction 43

4. We present an evaluation pipeline for comparing unsupervised and supervised
defect prediction algorithms, and conduct experiments on three publicly avail-
able datasets for a total of 11 software projects.

The remainder of this work is structured as follows: Sect. 2 studies related
work on defect prediction techniques. In Sect. 3, we elaborate on our approach.
The computational experiment to investigate the research questions above are
detailed in Sect. 4 and the results are presented in the Sect. 5. We conclude with
a discussion and possible threats to validity in Sect. 6 and suggest conclusions
and future work in Sect. 7.

2 Related Work

Supervised and unsupervised approaches can be distinguished in the field of
ML. We focus on unsupervised software defect prediction, and thus, study the
related work for unsupervised models in more detail. In contrast, we only give
a high-level view of the field of supervised defect prediction. Additionally, many
preprocessing methods were already evaluated in the literature, showing that
the choice of the combination of the most adequate preprocessing method and
model is non-trivial [4,35].

Unsupervised Approaches. Yang et al. were one of the first who applied unsu-
pervised learning techniques for effort-aware defect prediction [39]. Effort-aware
defect prediction describes the attempt to predict defects while taking into
account the effort required to check them. Based on their results, the authors
suggest that (basic) unsupervised models can outperform supervised models in
terms of recall when taking the file size, and therefore the effort of units that
need to be reviewed, into account. In subsequent research, this effect was put
into perspective by Fu and Menzies as well as Huang et al. [12,16]. Before, Nam
and Kim already argued that unsupervised approaches can be beneficial because
they do not need historical training data, which can be hard to obtain for defect
prediction [29].

Subsequently, several studies were conducted exploring different, more com-
plex unsupervised approaches for defect prediction. Albahli combines several
(also unsupervised) models resulting in an accuracy of 81% on a dataset con-
taining seven open-source projects [2]. Xu et al. reviewed 40 cluster-based
approaches and observed that these achieve similar results to typical supervised
approaches [37]. Zhang et al. also found that unsupervised models are competi-
tive to supervised models that were trained on another project [40].

Studies on 16 software projects by Moshtari et al. showed that the distribu-
tion of defects over a software project follows the Pareto principle, i.e., a large
part of the defects is contained in a small part of the units [27]. Assuming that the
defective units also differ significantly from the majority concerning their met-
rics, the localization of defects can be considered an outlier problem. Moshtari
et al. investigated the use of five proximity-based outlier mining techniques. The
best results were achieved using the k nearest neighbor (kNN) algorithm.

44 T. Cech et al.

. . .

F1 in Vi F1 in Vi+1 F1 in Vi+2 F1 in Vi+3 F1 in Vi+n

commiti,1 = (p(i,1),1, . . . , p(i,1),k)
commiti,2 = (p(i,2),1, . . . , p(i,2),k)

. . .

commiti+1,1 = (p(i+1,1),1, . . . , p(i+1,1),k)
commiti+1,2 = (p(i+1,2),1, . . . , p(i+1,2),k)

. . .

commiti+1,1 = (p(i+1,1),1, . . . , p(i+1,1),k)
commiti+1,2 = (p(i+1,2),1, . . . , p(i+1,2),k)

. . .

filei,1 = (commiti,1, commiti+1,1, commiti+2,1)
filei,2 = (commiti,2, commiti+1,2, commiti+2,2)

. . .

Feature Compression:
file prei,1 = (x(i,1),1, . . . , x(i,1),s)
file prei,2 = (x(i,2),1, . . . , x(i,2),s)
. . .

Sliding
Window

Fig. 1. An example visualization for our preprocessing pipeline on process metrics.
The process metrics that describe the change between revision i and i + 1 in Filej are
given by commiti,j = (p(i,j),1, . . . , (p(i,j),k). The process metrics of three commits of
File Fj are collected in the vector filei,j = (commiti,j, commiti+1,j, commiti+2,j). The
compressed vector describing Fj is given by file prei,j = (x(i,j),1, . . . , x(i,j),s).

Supervised Approaches. Several literature reviews were conducted, e.g., by
Rathore et al., Li et al., and Wahono, summarizing various supervised approaches
in different use-cases with different metrics and models [21,31]. Liu et al. already
considered a time series of code and process metrics for defect prediction [23]. By
training a Recurrent Neural Network (RNN) on nine projects of the PROMISE
dataset [34], the new model was able to outperform basic models using code
and process metrics in terms of cost-effectiveness, the Schott-Knott-Test, and
Win/Tie/Loss. Another recently studied approach is the usage of Cross Project
Defect Prediction (CPDP) [3]. Here, the defect prediction model is trained on
another project, which has labeled data available. After the completion of the
training phase, the model tries to predict defects in the target project. CPDP
has only achieved limited success [3,42]. Yan et al. discovered that for a certain
dataset, unsupervised within-project defect prediction outperforms supervised
CPDP models [38].

Data Preprocessing. Several studies were conducted concerning the general pre-
processing steps required before creating the actual defect prediction model.
Mende provides a general overview of several pitfalls and aspects that should be
considered when constructing a model for defect prediction [25]. In this work,
we focus on a selected subset of those aspects, namely feature compression tech-
niques for all models and balancing techniques for supervised models. Kondo et
al. suggest that supervised models profit most from techniques that filter metrics,
therefore preserving the original meaning [19]. In contrast, unsupervised models
profited most from synthetic methods that combine several original metrics in a
new synthetic one. Zhu et al. support the claim that Autoencoder can be a useful
feature compression technique [41]. Another aspect of preprocessing is concerned
with the question of how to handle imbalanced datasets, which are typical for
defect prediction tasks [27]. Tantithamthavorn et al. investigated that the choice
of the balancing technique is non-trivial and should be considered carefully [35].

Outlier Mining Techniques for Software Defect Prediction 45

Unsupervised Learning

Supervised Learning

Preprocessing

Feature
Compression

Class
Balancing

Train-Test-
Split

Train
Model

Predict
Defects

Feature
Compression

Predict
Defects

Fig. 2. Comparing the workflow for defect prediction with an unsupervised vs. super-
vised model. The workflow with an unsupervised model is much simpler because the
imbalance of the dataset, overfitting, and the requirement of labels are not an issue.

This result is supported by Mahmood et al. who also investigated the effect of
imbalance on the performance of supervised defect predictors [24].

3 Data Preprocessing and Modeling

In this section, we detail our approach for locating defect-prone source code units
by using unsupervised learning algorithms on time series of source code metrics.
Assuming that defects differ significantly in their metrics from non-defective
samples, we adopt the idea of Moshtari et al. and apply outlier techniques for
locating defect-prone source code units [27]. For this purpose, we additionally
adopt an idea from Ding et al., who demonstrated in another use case that a
sliding window can be used to capture an evolution of metrics to improve the
quality of outlier mining [10]. This results in the basic workflow shown in Fig. 1.

Sliding Windows. Sliding windows are a technique known from stream data pro-
cessing to analyze data-intensive data streams [9], i.e., several data samples are
combined and viewed coherently [10]. For example, instead of just investigating
metrics between two commits, all the changes in two consecutive commits are
gathered into one feature vector. If, for example, five different process metrics
are considered and the Window Size (WS) is three, then each file or sample is
represented by a 15-dimensional vector. As this results in a high-dimensional
vector, we apply feature compression techniques to reduce the size of the feature
vector to overcome the Curse of Dimensionality [36].

Processing Pipeline. After gathering the data in an high-dimensional feature
space using sliding windows, we preprocess the data to prepare them for predic-
tion. Figure 2 compares the different preprocessing and prediction pipelines for
supervised and unsupervised learning. Both pipelines are including the task of
feature compression. Afterwards, as Bennin et al. showed for supervised tech-
niques, the balancing of the defect and non-faulty class is desirable [4]. Since
unsupervised techniques do not inherently distinguish between faulty and non-
faulty samples, this preprocessing step is only applicable to supervised learning.

46 T. Cech et al.

Furthermore, supervised learning distinguishes between a training phase and a
test phase, which use separate datasets. A train-test split is required to avoid
overfitting [13]. Finally, all models are evaluated using the test set for supervised
models and the whole dataset for unsupervised models.

We investigate a selection of basic supervised and unsupervised models. We
deemed those models suitable because they are used in several studies or more
complex models built upon them [21,37].

Feature Compression. The gathered data suffers from high dimensionality. Many
models produce worse results on a high-dimensional space, as the number of sam-
ples required to generalize grows exponentially with the number of features. This
effect is denoted as the Curse of Dimensionality [36]. To avoid this, an additional
preprocessing step transfers the data samples to a lower-dimensional space as
shown in Fig. 1. In addition, Jiarpakdee et al. also suggest that even if the fea-
ture vector in and of itself is not already very high-dimensional, it may still be
worthwhile to remove features [17]. Especially removing high correlations of indi-
vidual variables from the data is usually desirable. Substantial differences can
be observed between supervised and unsupervised learning techniques regard-
ing Feature Compression [19]. For example, supervised learning predictors favor
those techniques that preserve the original context of the metrics. This is also
desirable in terms of the interpretability of the model. Unsupervised learning
methods would benefit in particular from those techniques that construct new
synthetic features from the given features. In this work, we focus on the fol-
lowing feature selection and synthesization techniques: The Variance Inflation
Factor (VIF) [26], Autoencoders (AE) [19,41], and Feature agglomeration (FA).
FA refers to a technique to filter correlated variables by repeated clustering. Met-
rics are merged if they are highly correlated leading to a more dense clustering.

Class Balancing. For supervised learning techniques, it can be beneficial to bal-
ance between the defect (faulty) class and a non-defect (non-faulty) class in the
training dataset [4]. This is especially true since the defect class usually follows
the Pareto principle [27]. Tantithamthavorn et al. found that the choice of a
balancing technique has a significant impact onto the classification result, thus
different upsampling techniques may lead to different results [35]. We considered
three different upsampling techniques: Synthetic Minority Over-sampling Tech-
nique (SMOTE) [8], the MAHAKIL algorithm [5] and an Euclidean Noise (EN)
technique. EN is a quick-to-execute naive technique. New samples are generated
by offsetting each sample of the defect class with a noise signal drawn from a
normal distribution.

Supervised Learning Techniques. Supervised learning is divided in a training
and a test phase. In the training phase, labeled data is used for learning an
abstraction of the data, which is subsequently used for predicting unseen data.
We consider the following supervised learning techniques: Random Forest (RF),
Support Vector Machines (SVM), Logistic Regression (LR), Naive Bayes (NB)

Outlier Mining Techniques for Software Defect Prediction 47

Table 1. An overview about the investigated datasets. LOC refers to the lines of code
metric, P means project, and FPP means files per project. The Unified GitHub dataset
and Jureczko only report on versions of projects with no specific time-frame stated.

Dataset # P # FPP Time Frame Type Metrics jit Metric

Change Burst 1 6 728 One week Process Changed LOC

Unified GitHub 10 ≈ 1,000 Sporadic Static & Process LOC

Jureczko 13 max. 250 Sporadic Static LOC

model, and Multi-Layer Perceptron (MLP) [33]. In addition, we combine the
models above to an Ensemble (ES) with majority voting as the final decision rule.

Unsupervised Learning Techniques. In contrast to supervised learning, unsuper-
vised learning does not distinguish between a training and test phase, because
no labels are involved when applying them to data. Since labels are not used for
unsupervised learning, we assigned which detected structure in our dataset is
identified with the faulty class and the non-faulty class. We identify the smaller
structure (fewer samples belong to the structure) as the cluster of the faulty
class, since the number of defects is usually smaller [27]. We only had to make
an exception for the mcMMO project, where the situation is reversed.

We consider two different unsupervised learning approaches. First, we use
cluster-based techniques, which were previously already investigated e.g. by Xu
et al. [37] or Li et al. [20]. Second, we additionally use the property found by
Moshtari et al. that the metrics of defective source code units often have excep-
tional values [27]. Therefore outlier mining techniques are applicable.

Cluster-based techniques create clusters according to a criterion defined by
the model, e.g., the density or similarity of sample regions. In contrast to
Moshtari et al., we only investigate cluster-based techniques that allow us to
set the number of clusters to the number of our target classes (defect and non-
defect) [27]. Specifically, we study the following cluster-based techniques: The
k-Means (kM) algorithm with k = 2, because our target has two classes [37]
and the MeanShift (MS) algorithm with orphans [14]. Orphans are samples that
do not belong to any density structure or would significantly change the den-
sity structure of the detected clusters if they were forcibly assigned to a cluster
[14]. We identify the orphans as faulty samples and the remaining structures as
non-faulty samples.

In contrast, outlier mining describes another set of techniques that focus on
the process of detecting conspicuous data samples, i.e., to identify anomalies
in the given dataset. Outliers are characterized as samples that are significant
dissimilar to the majority of samples. So, outlier mining rather investigates dis-
similarities in the dataset instead of similarities like cluster-based techniques.
We investigate the following outlier mining techniques: The Local Outlier Fac-
tor (LOF) and an Isolation Forest (IF) [22].

48 T. Cech et al.

4 Computational Experiment

We evaluate our basic models with the pipeline described in Sect. 3 on the Change
Burst dataset [28], the Unified GitHub dataset [11], and the Jureczko dataset [18].
Our data pipeline is based on scikit-learn1 and Tensorflow with Keras2 library
in Python. Those libraries are implementing all our investigated basic models
as well as our preprocessing techniques, excluded the SMOTE and MAHAKIL
algorithm for which the implementation is given in the auxiliary material. We
evaluate our results in terms of precision, recall, F1-score, accuracy as well as a
Just-in-time-accuracy (JIT-accuracy). For consistency, we set the random seed
to 42 to make our results deterministic and repeatable. For supervised models,
we used a stratified train-test-split: 60% of the data was used for training and
the remaining 40% for testing. From now on, we refer to a model as a specific
combination of a basic supervised or unsupervised such as RF, with a feature
compression—for all basic models—and a class balancing technique —for super-
vised models only. According to the no-free-lunch-theorem the outcome of a
classification result is generally data dependent, so the evaluation on more than
one project and set of metrics is necessary [1]. Therefore, for a reliable evalu-
ation, we used the three previously mentioned publicly available datasets. For
each dataset, one file of a project is considered as one sample (file-level).

We summarized our datasets in Table 1. In detail, we used the following
datasets:

– The Change Burst dataset contains process metrics, hence change rates
between two commits for the Eclipse project [28]. A so called Burst rep-
resents the changes during a week. We have chosen the first Gap containing
10 bursts, since only few defects are fixed or newly introduced into the code,
providing a stample number of samples for each class (faulty and non-faulty).

– The Unified GitHub dataset captures a wide variety of both static and
process-oriented metrics for more than ten projects [11]. In contrast to the
Change Burst dataset, the reported revisions are further apart in time (for
details, cf. auxiliary material), therefore a number of files are created or
deleted between two revisions. Therefore, the number of faulty and non-faulty
samples is more volatile. We will only examine projects which report at least
two defective modules over all revisions, because with no or only one defective
module the SMOTE and MAHAKIL technique is not applicable. Also, it is
impossible to learn any abstraction from exactly one example.

– Lastly, the Jureczko dataset offers a small collection of metrics for a larger
number of projects [18].

The Change Burst dataset allows the most stable evaluation, because the
number of files is constant and also the number of faulty and non-faulty samples
is comparably constant. We will also test our findings on the Unified GitHub
dataset. The Jureczko dataset has the most disadvantageous characteristics to
1 https://scikit-learn.org.
2 https://www.tensorflow.org/ and https://keras.io/.

https://scikit-learn.org
https://www.tensorflow.org/
https://keras.io/

Outlier Mining Techniques for Software Defect Prediction 49

allow a meaningful evaluation because it suffers from the same problems as the
Unified GitHub dataset, i.e., the sample size total and per class is changing often
and only reports on a small number of metrics. We therefore provide the results
for the Jureczko dataset only in the auxiliary material for additional validation
of our findings.

Quality Measures. Bowes et al. argued that such metrics should be used from
which the original confusion matrix can be derived easily [7]. Therefore, we
choose precision and recall for both classes as well as the weighted average.
Additionally, we captured the F1-scores for the positive and negative class. Fur-
thermore, we captured two kinds of accuracy metrics. The classic accuracy is
defined as the ratio between the sum of true positives and true negatives divided
by the number of samples.

In addition, we define a JIT-accuracy (accjit). Let S be the set of all samples.
Then, let TP ⊆ S denote the set of all true positives, let TN ⊆ S denote the set
of all true negatives and let f(s) be a mapping from the sample to the reciprocal
normalized lines of (changed) code of the sample ((Changed) LOC), then the
JIT-accuracy is given by:

accjit =
∑

s∈TP∪TN s · f (s)
∑

t∈S t · f (t)
This is to favor classifications that identify small faulty samples correctly and

penalize results that incorrectly suggest a particularly large change for review.
By determining precision, recall, and F1-score for each of the classes, we show
how well the predictor can handle the individual classes, and to that extent we
circumvent the criticism of these values that is raised by Powers [30] or Hemmati
et al. [15], for example.

Optimization of Hyperparameters. Unlike unsupervised models, supervised mod-
els usually need to be optimized during training time since they use a set of hyper-
paramaters [6]. For optimization, we use a random search with 50 iterations and
five stratified validation folds [6]. We had to make an exception for SVMs, since
their training time can be exhaustive depending on the choice of hyperparame-
ters, therefore they are only optimized with five iterations and three folds. We
have reported the full list of optimized attributes in our auxiliary material.

Additionally, we have to determine a WS for gathering the data (cf. Sect. 3).
We used a Grid Search for optimization of this hyperparameter with the integer
values 1–10 [6]. A WS of 1 means, that the model does not profit from the
windowing aspect of our approach. We gathered data with according WS of 1–10
and let the models predict the defects in the next revision. We have chosen 10 as
an upper bound since a burst in the ChangeBurst dataset contains ten revisions
and no project in the Unified GitHub dataset report metrics for more than ten
revisions for gathering and one for testing for a total of eleven revisions. In case
of WS = 10 for the ChangeBurst dataset, the target variable is derived from the
first revision of the second burst. Since a significant number of files is deleted

50 T. Cech et al.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

Accuracy

W
in
do

w
Si
ze

(W
S)

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

F1-score

KM-FA IF-VIF KM-AE

Fig. 3. Comparing WS by accuracy and F1-score for the Eclipse project. The usage
of a sliding window can improve the quality of unsupervised models by 1–3%. The
positive effect is already visible if we use WS = 2.

and created between revisions for projects from the Unified GitHub dataset, we
only evaluated on files that are present in all revisions. Since the Change Burst
dataset captures the metrics more timely, only few files are created or deleted
between revisions. The number of samples overall and per-class is more stable.

5 Results

We collect results regarding three questions. First we consider which influence the
choice of the WS has on the performance of our models. Regarding the second
question, we examine which supervised or unsupervised model performs best
for multiple projects. We investigate the ten projects from the Unified GitHub
dataset and one burst from the Change Burst dataset for Eclipse for a total
of 11 projects. The third question compares the performance of supervised and
unsupervised models. Again, we examine our 11 projects and the Eclipse project
in more detail.

In general, we only consider results, if they can exceed a F1-score of 10%
in the faulty class, because models that show worse results do not provide an
useful abstraction for finding defects, which is the main task in this paper. For
completeness, however, those results are included in the auxiliary material.

5.1 Choice of the Window Size

We can observe two kinds of behavior when varying the WS of our sliding win-
dow. On the one hand, Fig. 3 shows the standard case that we observed for our

Outlier Mining Techniques for Software Defect Prediction 51

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Accuracy

W
in
do

w
Si
ze

(W
S)

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

F1-score

KM-FA IF-VIF KM-AE

Fig. 4. For the hazelcast project the usage of a sliding window decreases the quality
of unsupervised models. For WS = 2 the effect is comparatively small, but the loss in
quality increases for larger WS.

0 0.2 0.4 0.6 0.8 1

titan

oryx

orientdb

neo4j

mcMMO

MapDB

image-loader

hazelcast

elasticsearch

eclipse

antlr4

Accuracy

P
ro
je
ct

N
am

e

0 0.2 0.4 0.6 0.8 1

titan

oryx

orientdb

neo4j

mcMMO

MapDB

image-loader

hazelcast

elasticsearch

eclipse

antlr4

F1-score

KM-FA IF-VIF KM-AE

Fig. 5. The IF with VIF shows the best or one of the best accuracy for 10 out of 11
software projects and best F1-scores for 8 out of 11 software projects. k-Means is better
for the Android-Universal-Image-Loader (image-loader).

52 T. Cech et al.

0 0.2 0.4 0.6 0.8 1

titan

oryx

orientdb

neo4j

mcMMO

MapDB

image-loader

hazelcast

elasticsearch

eclipse

antlr4

Accuracy

P
ro
je
ct

N
am

e

0 0.2 0.4 0.6 0.8 1

titan

oryx

orientdb

neo4j

mcMMO

MapDB

image-loader

hazelcast

elasticsearch

eclipse

antlr4

F1-score

RF-VIF-MA IF-VIF ES-VIF-MA

Fig. 6. The ensemble of all single supervised models (majority voting) with VIF and
MA upsampling outperforms the IF in 11 out of 11 cases. Also a single model, e.g., the
optimized RF with VIF and MA outperforms the best unsupervised model in 8 out of
11 cases.

(here unsupervised) models. The models are showing a better accuracy and over-
all weighted F1-score for a WS greater 1. For WS 2 to 5 the result is similar. For
greater WS, the performance do not change or became worse. On the other hand,
some models have shown a different behavior on a different project. In this case,
the usage of a sliding window decreased the accuracy and F1-score. This effect
is most significant for the hazelcast project as shown in Fig. 4. We can not test
as many WS for hazelcast as for the Eclipse project, since the Unified GitHub
Dataset only reports metrics for nine revisions and we require at least one revi-
sion for testing. The quality measures are decreasing for larger WS but the effect
is comparably small for WS 2 and increases for larger WS. Thus, a WS greater
than 1 is not beneficial for all combinations of model and project. Overall 612 (96
unsupervised and 516 supervised) different project-model combinations3 benefit
from a WS larger than 1, additional 206 (37 unsupervised and 169 supervised) nei-
ther benefit nor take a loss, and only 414 (43 unsupervised and 371 supervised)
report a decrease in the macro averaged F1-score, which additionally take into
account the size of both classes, so that not already a change in the distribution
between the size of the faulty and non-faulty class can influence our result. Over-
all, approximated 33% of the model-project combinations are not improved by our

3 For completeness, here, we also evaluated the possibility to use no Balancing or no
Feature Compression technique. Those results are—as expected—weaker (cf. auxil-
iary material).

Outlier Mining Techniques for Software Defect Prediction 53

−0.04 −0.02 0 0.02

ES-FA-EN
ES-FA-MA

ES-FA-SMOTE
ES-VIF-MA

ES-VIF-SMOTE
IF-AE
IF-FA

LR-FA-MA
kM-AE
LOF-AE
LOF-FA

NB-FA-EN
NB-FA-MA

NB-FA-SMOTE
NB-VIF-EN
NB-VIF-MA

NB-VIF-SMOTE
RF-VIF-EN

RF-VIF-SMOTE
SVM-FA-MA
SVM-VIF-MA

Accuracy against IF-VIF
−0.04 −0.02 0 0.02

F1-score against IF-VIF

Fig. 7. Ten supervised models outperform the reference model IF-VIF (which scored
85% in all metrics) for the Eclipse project in terms of accuracy and F1-score, but
already five of them are variations of our ensemble model. Otherwise, only the NB
model and some variations of SVMs are better models. Models, that are at least 3%
worse in both measures than the IF-VIF model are omitted.

windowing technique, 50% do profit and about 17% are indifferent to the usage
of a sliding window. Further analyses of our results show that the size of the last
group shrinks with larger WS and more models either profit or not profit from the
use of sliding windows. Also, as stated before, the quality decreases fast for larger
WS, while the increase does not grow as fast as the decrease.

This effect can be caused by different aspects of the different datasets. Most
of the models reporting a decrease in accuracy or F1-score are evaluated with a
project from the Unified GitHub dataset. For those projects, the sample size is
very small and the share of faulty samples comparably great, since we can only
evaluate on those files that are present in all revisions for consistency reasons,
making the result dependent on only few samples. Also, in accordance with the
no-free-lunch-theorem, a larger WS may simply be not suitable for the concrete
model or set of metrics (e.g., static code metrics) [1].

It is desirable to evaluate models with a constant WS for comparability. We
set our WS to 2, since—for this value—the decrease for the minority of models is
relatively small, while the increase for the majority of models is almost as good
as possible. In contrast, we have chosen variable WS for the Jureczko dataset to
allow for the widest possible range of WS. This allows us to obtain additional
validation for our findings, since we can test more WSs.

5.2 Outlier Models Compared to Other Cluster-Based Models

We investigate four different unsupervised algorithms (IF, LOF, kM, MS) with
three different feature compression techniques (AE, FA, VIF). Table 2 shows that

54 T. Cech et al.

Table 2. The table shows the average weighted Precision, Recall, and F1-score over
both classes and the overall accuracy of all unsupervised models, which exceeded a
weighted F1-score of 10% in the faulty class. Isolation Forest and k-Means are the best
unsupervised models.

IF kM LOF MS
A
E

F
A

V
IF

A
E

F
A

A
E

F
A

V
IF

F
A

V
IF

Precision 84 84 85 84 85 77 75 75 81 81

Recall 84 85 85 86 86 84 83 82 78 81

F1-score 84 85 85 82 79 79 78 78 80 81

Accuracy 84 85 85 86 78 86 83 82 78 81
70%

80%

90%

100%

from all of the unsupervised models the IF and the kM algorithm performed best.
Unexpectedly, the IF with the VIF performed most consistent with a score of
85% followed closely by the IF with FA and kM with AE. In contrast to other
unsupervised models, IF seem to actually prefer VIF as feature compression
technique. Indeed, our evaluation reveals that in 10 out of 11 projects the IF
performs better or is as good with VIF rather than FA in terms of accuracy and
in 9 out of 11 projects in terms of the overall weighted F1-score of both classes.
So unlike previously mentioned by Kondo et al., IF as an unsupervised outlier
mining model prefers a non-synthetic feature compression technique for most of
the 11 projects [19]. Table 2 and our further evaluation (cf. auxiliary material)
suggests that an IF with VIF is in the context of our computational experiment
the best outlier mining algorithm and kM with AE or FA are the best cluster-
based models. In Fig. 5, we further investigate those three models. The figure
shows that indeed the IF with VIF is the top model among those models for our
11 example projects, achieving the best predicting scores for 10 out of 11 projects
in terms of accuracy and 9 out of 11 projects in terms of the overall weighted
F1-score. Therefore, an IF is indeed a strong contender for unsupervised defect
prediction, since they perform consistently over several projects.

5.3 Unsupervised vs. Supervised Models

Table 3 compares quality measures from all supervised models in addition to
the IF with VIF for the Eclipse project. The best model is the ensemble of all
supervised models (first three rows), outperforming the IF (next three rows) as
consistent as possible on 11 out of 11 projects (Fig. 6). The IF performs not worse
than any single supervised model. It is as good as one of the weaker supervised
models. Although, single supervised model like a RF can outperform an IF quite
consistently in 9 out of 11 interms of accuarcy and in 8 out of 11 cases in terms of
the F1-score. Figure 7 highlights that for the Eclipse project only a comparably
small number of models can outperform our IF. As discussed in the previous

Outlier Mining Techniques for Software Defect Prediction 55

Table 3. The table shows that many supervised models outperform an IF. We evalu-
ated our models using over both classes averaged weighted Precision, Recall, F1-score,
and overall Accuracy. The IF is still better than some models.

ES IF LR
Ensemble Iso. Forest Logistic Regression

F
A
-E

N

F
A
-M

A

F
A
-S

M
O
T
E

V
IF

-E
N

V
IF

-M
A

V
IF

-S
M

O
T
E

A
E

F
A

V
IF

F
A
-E

N

F
A
-M

A

F
A
-S

M
O
T
E

V
IF

-E
N

V
IF

-M
A

V
IF

-S
M

O
T
E

Precision 86 87 86 87 87 87 84 84 85 87 88 87 87 87 87

Recall 87 88 87 78 87 86 84 85 85 79 80 78 78 78 78

F1-score 86 87 86 81 87 86 84 85 85 82 83 80 81 81 81

Accuracy 87 88 87 78 87 86 84 85 85 79 80 78 78 78 78
70%

80%

90%

100%

NB RF SVM
Naive Bayes Random Forest Sup. Vector Machine

F
A
-E

N

F
A
-M

A

F
A
-S

M
O
T
E

V
IF

-E
N

V
IF

-M
A

V
IF

-S
M

O
T
E

F
A
-E

N

F
A
-M

A

F
A
-S

M
O
T
E

V
IF

-E
N

V
IF

-M
A

V
IF

-S
M

O
T
E

F
A
-E

N

F
A
-M

A

F
A
-S

M
O
T
E

V
IF

-E
N

V
IF

-M
A

V
IF

-S
M

O
T
E

Precision 86 85 86 86 87 86 86 87 86 87 87 87 86 86 86 85 85 85

Recall 86 87 86 85 85 85 79 78 80 81 76 81 75 88 75 80 87 80

F1-score 86 86 86 85 86 85 81 81 82 83 79 83 78 86 78 82 83 82

Accuracy 86 87 86 85 85 85 79 78 80 81 76 81 75 88 75 80 87 80

section, the other unsupervised models can achieve a better result for this specific
project and dataset in terms of accuracy, but fail to do this consistently on other
projects or in terms of another metric like the F1-score. As before, the ensembled
model can achieve better results. It alone already represents half of the cases in
which the IF was worse than a supervised model. Interestingly, for this project,
no variation of the RF model can outperform our IF model, though here in place
the NB model does so relatively consistently.

To summarize, the supervised models or at least the ensemble of supervised
models show better results than an IF or any other unsupervised technique.

6 Discussion and Threats to Validity

We compared several basic models. Overall, outlier mining with IF with VIF has
shown the best results among the unsupervised defect prediction techniques.
However, several supervised models especially the ensemble of all supervised
models seems to outperform any unsupervised technique. However, this effect is
put into perspective by several additional requirements for training those models.
On the one hand, we had to assume a history of recorded labels for the project,

56 T. Cech et al.

which is generally not the case in an industrial context [3,42]. Furthermore, we
also favored supervised models by performing more preprocessing steps (class
balancing, train-test-split, etc.), which are not required for unsupervised models.
In addition, unsupervised models do not require a training phase. Therefore,
we spent a significant amount of additional effort to train supervised models
compared to unsupervised ones.

We premised several assumptions to make our sliding window technique
applicable to our dataset. First, we have not distinguished whether there is
one or more defects present in a given file. If a dataset reported more than
one defect for the file, we assigned it the label for the faulty class. Second, the
datasets reported a numerical label for a defect. Therefore, we could not track
the case that a defect may be fixed inside of our window and another one is
newly introduced. We only predict whether or not a defect is present in the
file in the next revision of the software project. We set the random seed dur-
ing our data processing to a constant value anywhere where randomness was
involved. This, on the one hand, allows us to reproduce our results easily, but
on the other hand raises the concern that we could only achieve those results for
those specific seeds. However, we achieved our results analyzing several projects
and since we did not optimize the seed for each project, it is very unlikely that
this seed is especially beneficial for all our investigated projects. Usually, espe-
cially for supervised models one would use a random train-test split and a k-fold
cross validation. However, here this step would increase the training time for
our supervised models even further by the factor k, because also feature com-
pression and class balancing would have to be repeated for each fold. This step
would therefore undue favor our supervised models, since no training, and thus,
no validation is required for unsupervised models. This is especially true since
we already used a simple k-fold cross validation during optimization (only one
iteration per hyperparameter set with 5 respectively 3 stratified folds).

In general, it is not possible to transfer results from one dataset to another
due to the no-free-lunch theorem without restrictions [1]. Consequently, our
results could be different on a different dataset or with different optimization
techniques or, for example, different class balancing techniques. However, in
the context of our computational experiment, it seems highly recommended to
also seriously consider unsupervised techniques for defect prediction because
we achieved our results from the evaluation of 11 projects and different sets of
metrics. Here, the IF with VIF were also able to achieve a fairly consistent clas-
sification result. If the results of Bowes et al. can be extended to unsupervised
techniques in future work, unsupervised techniques could also be used to reli-
ably detect a certain class of defects [7]. Supervised models could subsequently
specialize in those types of defects that are not so easily detectable by outlier
mining techniques. In this way, a combination of supervised and unsupervised
techniques could represent a simplification of previous methods, as already noted
by Fu and Menzies [12].

We found some anomalies during our research. For example, as shown in
Fig. 3, KM-FA did especially poorly for window size 8. As stated before, there is

Outlier Mining Techniques for Software Defect Prediction 57

no guarantee that a model performing well on one dataset will perform as well on
a similar but different dataset [1]. We suspect that this anomaly is an example
of such an effect. Furthermore, most of our techniques maximized around 85%
in any metric, which could be considered unacceptable for practical use. But, we
purposefully concentrated on studying only basic models to get a basic overview
of the performances of different methods so that a lower-than-usual quality can
be expected.

In summary, it has been demonstrated that it can be beneficial to use unsu-
pervised techniques, especially an IF, for defect prediction especially if no train-
ing labels are available and a fast prediction is desirable. This contrasts earlier
results, which suggests that supervised techniques will usually outperform unsu-
pervised techniques (cf. Huang et al. [16]).

7 Conclusions and Future Work

Using software metrics for defect prediction is widely used and typically viewed as
a classification task, i.e., a supervised learning task. However, supervised learning
techniques require a training dataset with training labels and require more (pre-)
processing steps. Consequently, we proposed an approach using outlier mining
techniques on time series of process metrics to reduce the processing steps.

The evaluation indicates that the proposed method is competitive to single
basic supervised models. However, an ensemble of all basic supervised models
outperforms any single unsupervised technique on all 11 projects. We still advo-
cate the use of unsupervised models. Due to their ease of use and simplicity, they
are more suitable as they require less development and execution time and no
labels are required for training. In detail, the experiments are suggesting that an
Isolation Forest with the Variance Inflation Factor used for feature compression
is the most consistent option for predicting defects in an unsupervised fashion.
However, other unsupervised models, e.g., the k-Means algorithm may perform
better in certain cases.

Future research has to find a criterion to decide when which technique should
be used to further improve an ensemble of models. We also suggest that further
research should be conducted to investigate more complex unsupervised tech-
niques for defect prediction, more preprocessing dimensions, and the explain-
ability of models. Future research might also investigate more quality measures,
e.g., the number of falsely reported files until the first hit when ordering the files
according to their lines of code. In addition, a quantitative study evaluating our
approach in an industrial setting may be beneficial.

Auxiliary Material. The auxiliary material to this paper is provided under:
https://t1p.de/SoftwareQualityDays.

Acknowledgement. We thank the anonymous reviewers for their valuable feed-
back. This work was partially funded by the German Ministry for Education and
Research (BMBF) through grants 01IS20088B (“KnowhowAnalyzer”) and 01IS22062
(“AI research group FFS-AI”).

https://t1p.de/SoftwareQualityDays

58 T. Cech et al.

References

1. Adam, S.P., Alexandropoulos, S.-A.N., Pardalos, P.M., Vrahatis, M.N.: No free
lunch theorem: a review. In: Demetriou, I.C., Pardalos, P.M. (eds.) Approximation
and Optimization. SOIA, vol. 145, pp. 57–82. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-12767-1 5

2. Albahli, S.: A deep ensemble learning method for effort-aware just-in-time defect
prediction. Future Internet 11(12), 246 (2019). https://doi.org/10.3390/fi11120246

3. Amasaki, S.: Cross-version defect prediction using cross-project defect prediction
approaches: does it work? In: Proc. 14th International Conference on Predictive
Models and Data Analytics in Software Engineering (PROMISE 2018), pp. 32–41.
ACM (2018). https://doi.org/10.1145/3273934.3273938

4. Bennin, K.E., Keung, J., Monden, A., Kamei, Y., Ubayashi, N.: Investigating
the effects of balanced training and testing datasets on effort-aware fault pre-
diction models. In: Proc. 40th Annual Computer Software and Applications Con-
ference (COMPSAC 2016), pp. 154–163. IEEE (2016). https://doi.org/10.1109/
COMPSAC.2016.144

5. Bennin, K.E., Keung, J., Phannachitta, P., Monden, A., Mensah, S.: Mahakil:
diversity based oversampling approach to alleviate the class imbalance issue in soft-
ware defect prediction. IEEE Trans. Softw. Eng. 44(6), 534–550 (2018). https://
doi.org/10.1109/TSE.2017.2731766

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization.
J. Mach. Learn. Res. 13(10), 281–305 (2012). https://jmlr.org/papers/v13/
bergstra12a.html

7. Bowes, D., Hall, T., Gray, D.: Comparing the performance of fault prediction mod-
els which report multiple performance measures: recomputing the confusion matrix.
In: Proc. 8th International Conference on Predictive Models in Software Engi-
neering (PROMISE 2012), pp. 109–118. ACM (2012). https://doi.org/10.1145/
2365324.2365338

8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002).
https://doi.org/10.1613/jair.953

9. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Catch the moment: maintaining closed
frequent itemsets over a data stream sliding window. Knowl. Inf. Syst. 10(3), 265–
294 (2006). https://doi.org/10.1007/s10115-006-0003-0

10. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algo-
rithm for streaming data using sliding window. IFAC Proc. Vol. 46(20), 12–17
(2013). https://doi.org/10.3182/20130902-3-CN-3020.00044

11. Ferenc, R., Tóth, Z., Ladányi, G., Siket, I., Gyimóthy, T.: A public unified bug
dataset for java. In: Proc. 14th International Conference on Predictive Models
and Data Analytics in Software Engineering (PROMISE 2018), pp. 12–21. ACM
(2018). https://doi.org/10.1145/3273934.3273936

12. Fu, W., Menzies, T.: Revisiting unsupervised learning for defect prediction. In:
Proc. 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2017), pp. 72–83. ACM (2017). https://doi.org/10.1145/3106237.3106257

13. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12
(2004). https://doi.org/10.1021/ci0342472

14. He, Z., Fan, B., Cheng, T., Wang, S.Y., Tan, C.H.: A mean-shift algorithm for
large-scale planar maximal covering location problems. Eur. J. Oper. Res. 250(1),
65–76 (2016). https://doi.org/10.1016/j.ejor.2015.09.006

https://doi.org/10.1007/978-3-030-12767-1_5
https://doi.org/10.1007/978-3-030-12767-1_5
https://doi.org/10.3390/fi11120246
https://doi.org/10.1145/3273934.3273938
https://doi.org/10.1109/COMPSAC.2016.144
https://doi.org/10.1109/COMPSAC.2016.144
https://doi.org/10.1109/TSE.2017.2731766
https://doi.org/10.1109/TSE.2017.2731766
https://jmlr.org/papers/v13/bergstra12a.html
https://jmlr.org/papers/v13/bergstra12a.html
https://doi.org/10.1145/2365324.2365338
https://doi.org/10.1145/2365324.2365338
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/s10115-006-0003-0
https://doi.org/10.3182/20130902-3-CN-3020.00044
https://doi.org/10.1145/3273934.3273936
https://doi.org/10.1145/3106237.3106257
https://doi.org/10.1021/ci0342472
https://doi.org/10.1016/j.ejor.2015.09.006

Outlier Mining Techniques for Software Defect Prediction 59

15. Hemmati, H., et al.: The MSR cookbook: mining a decade of research. In: Proc.
10th Working Conference on Mining Software Repositories (MSR 2013), pp. 343–
352. IEEE (2013). https://doi.org/10.1109/MSR.2013.6624048

16. Huang, Q., Xia, X., Lo, D.: Supervised vs unsupervised models: a holistic look at
effort-aware just-in-time defect prediction. In: Proc. International Conference on
Software Maintenance and Evolution (ICSME 2017), pp. 159–170. IEEE (2017).
https://doi.org/10.1109/ICSME.2017.51

17. Jiarpakdee, J., Tantithamthavorn, C., Hassan, A.E.: The impact of correlated met-
rics on the interpretation of defect models. IEEE Trans. Softw. Eng. 47(2), 320–331
(2021). https://doi.org/10.1109/TSE.2019.2891758

18. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with
regard to defect prediction. In: Proc. 6th International Conference on Predictive
Models in Software Engineering (PROMISE 2010). ACM (2010). https://doi.org/
10.1145/1868328.1868342

19. Kondo, M., Bezemer, C.-P., Kamei, Y., Hassan, A.E., Mizuno, O.: The impact
of feature reduction techniques on defect prediction models. Empir. Softw. Eng.
24(4), 1925–1963 (2019). https://doi.org/10.1007/s10664-018-9679-5

20. Li, N., Shepperd, M., Guo, Y.: A systematic review of unsupervised learning tech-
niques for software defect prediction. Inf. Softw. Technol. 122, 106287 (2020).
https://doi.org/10.1016/j.infsof.2020.106287

21. Li, Z., Jing, X.Y., Zhu, X.: Progress on approaches to software defect prediction.
IET Softw. 12(3), 161–175 (2018). https://doi.org/10.1049/iet-sen.2017.0148

22. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proc. 8th International
Conference on Data Mining (ICDM 2008), pp. 413–422. IEEE (2008). https://doi.
org/10.1109/ICDM.2008.17

23. Liu, Y., Li, Y., Guo, J., Zhou, Y., Xu, B.: Connecting software metrics across
versions to predict defects. In: Proc. 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER 2018), pp. 232–243. IEEE (2018).
https://doi.org/10.1109/SANER.2018.8330212

24. Mahmood, Z., Bowes, D., Lane, P.C.R., Hall, T.: What is the impact of imbalance
on software defect prediction performance? In: Proc. 11th International Conference
on Predictive Models and Data Analytics in Software Engineering (PROMISE
2015), pp. 1–4. ACM (2015). https://doi.org/10.1145/2810146.2810150

25. Mende, T.: Replication of defect prediction studies: problems, pitfalls and rec-
ommendations. In: Proc. 6th International Conference on Predictive Models in
Software Engineering (PROMISE 2010), pp. 1–10. ACM (2010). https://doi.org/
10.1145/1868328.1868336

26. Miles, J.: Tolerance and Variance Inflation Factor. Wiley (2014). https://doi.org/
10.1002/9781118445112.stat06593

27. Moshtari, S., Santos, J.C., Mirakhorli, M., Okutan, A.: Looking for software
defects? First find the nonconformists. In: Proc. 20th International Working Con-
ference on Source Code Analysis and Manipulation (SCAM 2020), pp. 75–86. IEEE
(2020). https://doi.org/10.1109/SCAM51674.2020.00014

28. Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., Murphy, B.: Change bursts
as defect predictors. In: Proc. 21st International Symposium on Software Reliability
Engineering (ISSRE 2010), pp. 309–318. IEEE (2010). https://doi.org/10.1109/
ISSRE.2010.25

29. Nam, J., Kim, S.: CLAMI: defect prediction on unlabeled datasets. In: Proc. 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2015), pp. 452–463 (2015). https://doi.org/10.1109/ASE.2015.56

https://doi.org/10.1109/MSR.2013.6624048
https://doi.org/10.1109/ICSME.2017.51
https://doi.org/10.1109/TSE.2019.2891758
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1007/s10664-018-9679-5
https://doi.org/10.1016/j.infsof.2020.106287
https://doi.org/10.1049/iet-sen.2017.0148
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/SANER.2018.8330212
https://doi.org/10.1145/2810146.2810150
https://doi.org/10.1145/1868328.1868336
https://doi.org/10.1145/1868328.1868336
https://doi.org/10.1002/9781118445112.stat06593
https://doi.org/10.1002/9781118445112.stat06593
https://doi.org/10.1109/SCAM51674.2020.00014
https://doi.org/10.1109/ISSRE.2010.25
https://doi.org/10.1109/ISSRE.2010.25
https://doi.org/10.1109/ASE.2015.56

60 T. Cech et al.

30. Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63
(2011)

31. Rathore, S.S., Kumar, S.: A study on software fault prediction techniques. Artif.
Intell. Rev. 51(2), 255–327 (2017). https://doi.org/10.1007/s10462-017-9563-5

32. Runeson, P.: A survey of unit testing practices. IEEE Softw. 23(4), 22–29 (2006).
https://doi.org/10.1109/MS.2006.91

33. Saravanan, R., Sujatha, P.: A state of art techniques on machine learning algo-
rithms: a perspective of supervised learning approaches in data classification.
In: 2018 Second International Conference on Intelligent Computing and Control
Systems (ICICCS), pp. 945–949 (2018). https://doi.org/10.1109/ICCONS.2018.
8663155

34. Sayyad Shirabad, J., Menzies, T.: The PROMISE repository of software engineer-
ing databases. School of Information Technology and Engineering, University of
Ottawa, Canada (2005)

35. Tantithamthavorn, C., Hassan, A.E., Matsumoto, K.: The impact of class rebalanc-
ing techniques on the performance and interpretation of defect prediction models.
IEEE Trans. Softw. Eng. 46(11), 1200–1219 (2020). https://doi.org/10.1109/TSE.
2018.2876537

36. Verleysen, M., François, D.: The curse of dimensionality in data mining and time
series prediction. In: Cabestany, J., Prieto, A., Sandoval, F. (eds.) IWANN 2005.
LNCS, vol. 3512, pp. 758–770. Springer, Heidelberg (2005). https://doi.org/10.
1007/11494669 93

37. Xu, Z., et al.: Clustering-based unsupervised models, data analytics for defect
prediction, empirical study. J. Syst. Softw. 172, 110862 (2021). https://doi.org/
10.1016/j.jss.2020.110862

38. Yan, M., Fang, Y., Lo, D., Xia, X., Zhang, X.: File-level defect prediction: unsu-
pervised vs. supervised models. In: Proc. ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM 2017), pp. 344–353.
IEE/ACM (2017). https://doi.org/10.1109/ESEM.2017.48

39. Yang, Y., et al.: Effort-aware just-in-time defect prediction: simple unsupervised
models could be better than supervised models. In: Proc. 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016), pp.
157–168. ACM (2016). https://doi.org/10.1145/2950290.2950353

40. Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E.: Cross-project defect prediction using a
connectivity-based unsupervised classifier. In: Proc. IEEE/ACM 38th International
Conference on Software Engineering (ICSE 2016), pp. 309–320 (2016). https://doi.
org/10.1145/2884781.2884839

41. Zhu, K., Zhang, N., Ying, S., Zhu, D.: Within-project and cross-project just-in-
time defect prediction based on denoising autoencoder and convolutional neural
network. IET Softw. 14(3), 185–195 (2020). https://doi.org/10.1049/iet-sen.2019.
0278

42. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In: Proc.
7th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE
2009), pp. 91–100. ACM (2009). https://doi.org/10.1145/1595696.1595713

https://doi.org/10.1007/s10462-017-9563-5
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1109/ICCONS.2018.8663155
https://doi.org/10.1109/ICCONS.2018.8663155
https://doi.org/10.1109/TSE.2018.2876537
https://doi.org/10.1109/TSE.2018.2876537
https://doi.org/10.1007/11494669_93
https://doi.org/10.1007/11494669_93
https://doi.org/10.1016/j.jss.2020.110862
https://doi.org/10.1016/j.jss.2020.110862
https://doi.org/10.1109/ESEM.2017.48
https://doi.org/10.1145/2950290.2950353
https://doi.org/10.1145/2884781.2884839
https://doi.org/10.1145/2884781.2884839
https://doi.org/10.1049/iet-sen.2019.0278
https://doi.org/10.1049/iet-sen.2019.0278
https://doi.org/10.1145/1595696.1595713

Software Testing

Applying a Genetic Algorithm for Test
Suite Reduction in Industry

Philipp Stadler1, Reinhold Plösch1, and Rudolf Ramler2(B)

1 Johannes Kepler University Linz, Linz, Austria
{philipp.stadler,reinhold.plosch}@jku.at

2 Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria
rudolf.ramler@scch.at

Abstract. Time and cost of test execution increases when regression
test suites grow over time. Techniques for test suite reduction have been
proposed to streamline frequent test execution in continuous integration
and to optimize the set of tests without sacrificing coverage and fault
detection. In this paper we report on the design of a genetic algorithm
to tackle the underlying optimization problem in context of an industry
project from a software company developing tools for test automation.
The prototypical implementation of the algorithm has been applied to the
project’s test suite containing several hundred test cases. We achieved
an optimal solution with a 28% reduction of test cases. The evalua-
tion of the reduced test suite using higher-level coverage and mutation
analyses showed a minimal loss of coverage. The results demonstrated
that the genetic algorithm can be successfully applied in industry and
the achieved results are able to satisfy the requirements of the studied
project. Nevertheless, major challenges have been identified by applying
the approach in industry. They are related to the reliable collection of
test execution data from previous test runs and dealing with test suites
containing tests exhibiting unpredictable side-effects and flakiness.

Keywords: software testing · test suite optimization · test suite
minimisation · genetic algorithm

1 Introduction

Whenever a software system is modified, bugs and unintended side-effects may
be introduced. Regression testing is the process of re-testing the functionality
of a new version of a software system by executing the test suite inherited from
its previous version. The goal of this process is to ensure that the modifications
made to a software system do not affect the existing, unchanged functionality [1].

Regression testing is a highly important quality assurance measure. However,
it is also a time consuming and costly activity since a large part of the function-
ality of the software system has to be re-tested when a new version is released,
even if only small changes have been made. Furthermore, the regression test-
ing effort increases with every new software version that adds new functionality
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Mendez et al. (Eds.): SWQD 2023, LNBIP 472, pp. 63–83, 2023.
https://doi.org/10.1007/978-3-031-31488-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31488-9_4&domain=pdf
http://orcid.org/0000-0001-9903-6107
https://doi.org/10.1007/978-3-031-31488-9_4

64 P. Stadler et al.

and new tests to the regression test suite. This effect has been found to be par-
ticularly challenging with increasing emphasis on systematic reuse and shorter
development cycles [2] as well as the introduction of continuous delivery [3] and
continuous integration [4,5].

In reaction to the constantly increasing effort required for regression testing,
a broad spectrum of methods has been proposed to optimize the regression
tests [1]. The overall goal of these methods is to minimize the number of test
cases that have to be executed in a regression test cycle. Typical approaches are
reducing the regression test suite by removing redundant test cases [6], selecting
a set of specific test cases from the full regression test suite for a test execution
cycle [7], or by prioritising the test cases for execution so that faults are detected
earlier in the regression test run [8].

The core of all of these approaches is an optimization problem. In this paper
a genetic algorithm is proposed to tackle that problem in order to reduce the
test cases of a regression test suite while preserving the coverage of the origi-
nal test suite. Genetic algorithms have been found useful to solve a wide range
of optimization problems, including regression test optimization (e.g., [9–12]).
Our genetic algorithm for test suite reduction (Sect. 3) has been designed and
implemented according to the requirements derived from a real-world indus-
try project, which is described in Sect. 2. The proposed genetic algorithm was
applied on the test suite of the industry project (Sect. 4). The resulting reduc-
tion of this test suite was evaluated using code coverage and mutation analysis
(Sect. 5). The industry application demonstrated the feasibility and usefulness
of the proposed approach. However, it also revealed a number of lessons learned
about the obstacles we faced when performing test suite reduction in a real-world
industry setting.

2 Research Approach

The research objective of the work reported in this paper is to demonstrate
the applicability of a test suite reduction approach using a genetic algorithm in
industry. Our research approach is based on the methodology and guidelines
for design science by Wieringa [13]. In the following, we describe the industry
context and the steps we conducted in order to achieve this objective.

2.1 Industry Context and Requirements

The software development project, where our genetic algorithm has been applied
for test suite reduction, is developing the software tool Devmate1. It is the core
product of our industry partner Automated Software Testing GmbH, a start-up
company located in Austria.

Devmate is a testing tool designed to increase the efficiency of the software
test automation process by means of combining AI and machine learning tech-
nologies for test case generation. The objective of applying our genetic algorithm
1 https://www.devmate.software.

https://www.devmate.software

Genetic Algorithm for Test Suite Reduction 65

in context of this particular industry project has been twofold: First, the project
maintains a comprehensive set comprising several hundred automated test cases
that provides a suitable target for test suite reduction, which will help the project
to streamline test execution in their continuous integration process. Second, the
genetic algorithm designed for test suite reduction is also considered as a rele-
vant approach to be possibly integrated in the tool itself, which is developed in
the project.

Due to this context, following requirements for the application of the pro-
posed genetic algorithm have been defined:

– Test suite maintainability: Test suite reduction is often associated with the
reduction of test execution time. In our case, however, the main consideration
was the maintainability of the test suite. The tool Devmate is specialised in
the automatic generation of test cases. The introduction of duplicated or
unnecessary test cases into a test suite should therefore be avoided in order
to keep the maintainability high. Thus, the genetic algorithm should be able
to reduce the number of test cases in a test suite without significantly lowering
the statement coverage.

– Language independent: The tool Devmate is developed in Java and the test
cases are also implemented in the Java programming language. However, the
genetic algorithm and the prototype implementation had to be designed to be
independent from the specifics of a particular programming language or tech-
nology, so they remain applicable to test suites using multiple programming
languages from which test execution histories can be recorded.

– Tool independent: The genetic algorithm design should not rely on the test
execution histories provided by a specific coverage tool or format. Our test
suite reduction approach relies on test execution histories that are recorded
by using existing code coverage tools. Since such coverage tools are typically
developed and optimized for a specific programming language, it must be
ensured that the genetic algorithm is applicable to the test execution histories
produced by different coverage tools.

– Modular application: The genetic algorithm should be able to reduce the
test cases of a test suite entirely as well as partially to maintain flexibility
about future application scenarios. The different possible needs regarding the
granularity of test suite reduction range from the reduction of all of a test
suite’s test cases, to the reduction of a test suite’s test cases from specific
packages, classes or even from individual methods. This requirement implies
scalability to test suites with a large number of test cases and, at the same
time, to test suites with only a few test cases. Test suite reduction should
provide meaningful results in both cases.

– Fast results: Test suite reduction is a complex optimization problem that
typically requires a significant overhead for producing optimal solutions on
large test suites with highly interdependent test cases [14,15]. In order to
support integration in the tool Devmate, however, the genetic algorithm is
required to produce fast results for selecting test cases to be excluded from
generated test suites while maintaining the same level of coverage.

66 P. Stadler et al.

2.2 Development and Evaluation Procedure

Overall, the development and evaluation procedure comprises 5 steps in order
to achieve our research objective. First, the industry context and requirements
are defined as necessary basis for our work. Then, the genetic algorithm is
designed and implemented. In the last two steps, the proposed approach is
applied and evaluated in context of the selected industry project. Figure 1 pro-
vides an overview of these steps, which are described in detail below.

Requirements
elicita�on from
industry context

Gene�c algorithm
design

Prototype
implementa�on

Applica�on in
industry project

Evalua�on in
industry project

Coverage

Muta�on
score

Coverage

Muta�on
score

Original
test suite Reduced

test suite

1

2

3

4

5

Fig. 1. Development and evaluation procedure

1. Requirements elicitation from industry context. Together with our
industry partner we defined requirements and success criteria for test suite
reduction. Furthermore, a real-world project has been selected for applying
the proposed approach. This project provided a suite of automated test cases
as basis for evaluating the optimization results. Besides more general goals
mentioned above, the core goal of this work is to reduce the number of test
cases in a way that the original coverage can mostly be achieved.

2. Design of a genetic algorithm that can be used to optimize an existing
test suite (i.e., reduce redundant test cases) based on coverage information.

Genetic Algorithm for Test Suite Reduction 67

In our design, we followed the basic principles and recommendations for
genetic algorithms suggested by related work.

3. Prototype implementation. A prototype tool for test suite reduction using
the designed genetic algorithm was developed in Python. It uses test execution
data collected from our industry partner’s project as input and produces a
suggestion for an optimized test suite as output.

4. Application in industry project. Test execution data was collected with
the open source coverage tool OpenClover2 and converted into a format pro-
cessable by our prototype. The result, i.e., the proposed reduction of test
cases, was subsequently applied to the existing test suite, a snapshot of the
test suite from the Devmate project.

5. Evaluation in industry project. For evaluating the proposed test suite
reduction approach in context of a real-world industry project, coverage and
mutation measurements were taken from the reduced test suite and com-
pared to the data from the original test suite to identify any differences.
We applied a different coverage tool (JaCoCo3) and, in addition, mutation
testing with PIT4 to obtain independent measurements. Furthermore, orga-
nizational challenges and technical obstacles recorded throughout the entire
process were used as basis for a qualitative evaluation.

3 Genetic Algorithm Design

In this section we describe the design of the genetic algorithm used for optimizing
an existing test suite. It relies on information about past test executions. These
test histories are basically the execution traces of the test cases, representing
the information about which line, statement, or branch is covered by which test.

Table 1 shows the test histories comprising information of covered statements
of 5 test cases. The test execution information is necessary for the coverage
determination of a given test suite respectively the fitness calculation of a given
chromosome. For example, a test suite TS1 containing test case tc4 has a lower
fitness than a test suite TS2 containing test case tc5, since only 9 instead of 15
statements out of a total of 16 statements are covered by 1 test case.

3.1 Population

The first step of the design of our genetic algorithm concerns the initialization
of the population, i.e. a number of arbitrary test suites. These test suites are
represented by binary arrays. They are generated from the set of available test
cases by randomly selecting which test cases will be executed in which test suite.
An exemplary population based on the test cases of Table 1 is shown in Table 2.

2 https://openclover.org/.
3 https://www.jacoco.org.
4 https://pitest.org.

https://openclover.org/
https://www.jacoco.org
https://pitest.org

68 P. Stadler et al.

Table 1. Test histories

Statement Test case

tc1 tc2 tc3 tc4 tc5

S1 x x x x x

S2 x x x x x

S3 x x x x x

S4 x x x x x

S5 x x x x x

S6 x x

S7 x x

S8 x x

S9 x x x x x

S10 x x x x x

S11 x x x

S12 x x

S13 x x x x x

S14 x x

S15 x x

S16 x x

Table 2. Population with its binary representation of test suites

Chromosome/test suite Gene/test case tci

1 2 3 4 5

TS1 0 0 0 0 1

TS2 0 0 0 1 0

TS3 1 1 0 0 0

TS4 1 1 1 1 1

TS5 1 1 0 1 1

The binary values of the arrays indicate whether a test case will be executed
or not. For example, only the gene tc5 of the chromosome TS1 was set to 1,
which means that the test suite TS1 only contains test case tc5 for execution.

3.2 Fitness Calculation

In the second step, the chromosomes of the generated population are evaluated.
Therefore a fitness function representing the optimization problem is defined,
which is then used to evaluate every chromosome of the population.

The optimisation problem at hand is to find a test suite that maximises
coverage and minimises the amount of test case executions. The second part
of the optimisation, i.e. the amount of test case executions, can be determined
on the basis of the binary representations of each test suite (see Table 2) by

Genetic Algorithm for Test Suite Reduction 69

summing up the genes. For the first part of the optimisation, i.e. the coverage of
a test suite, the test histories of the included test cases are combined to a binary
representation. Table 3 shows such a combined binary representation based on
the population from Table 2 and the test histories from Table 1.

Table 3. Binary representation of the combined test histories

Chromosome/test suite Covered statement Si

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TS1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

TS2 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0

TS3 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0

TS4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TS5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The binary values of the cells indicate whether a statement is covered by the
test cases of a test suite or not. The coverage of a test suite can therefore be
calculated by summing up the binary values and dividing them by the number of
total statements. For example, test suite TS4 and test suite TS5 have a coverage
of 100 percent, since all statements are covered.

These fitness values are used to determine the fittest chromosome of a popula-
tion by ranking the chromosomes according to our definition of the optimisation
problem (see Table 4).

3.3 Fittest Chromosome

The third step of the genetic algorithm design provides that the present fittest
chromosome, i.e. the fittest chromosome within a population, is compared to the
overall fittest chromosome, i.e. the fittest chromosome across all populations.

According to our definition of the optimisation problem, the fittest chromo-
some is the test suite that maximises coverage and minimises the amount of test
case executions. When we evaluate the fitness values in Table 4, the test suite
TS5 is the present fittest chromosome, because it achieves the highest coverage
with the lowest number of test cases.

Table 4. Determination of the fittest chromosome

Chromosome/test suite Number of genes/test cases Coverage of statements

TS5 4 100%

TS4 5 100%

TS1 1 94%

TS3 2 62%

TS2 1 56%

70 P. Stadler et al.

After determining the present fittest chromosome CP , a comparison with the
overall fittest chromosome CO is performed. First, it is evaluated whether CP

has a greater coverage than CO. If this is the case, CP becomes the new overall
fittest chromosome. If the coverage of the two chromosomes is the same, then the
number of test cases is compared. If CP has fewer test cases than CO, CP becomes
the new overall fittest chromosome. In all other cases CO remains unchanged,
i.e. in those cases where the CP achieves smaller coverage or comprises a larger
number of test cases than CO.

Note that the comparison between CP and CO can only be performed after
the first iteration of running the genetic algorithm, since no overall fittest chro-
mosome exists in the first iteration.

3.4 Biologically Inspired Operations

In the fifth step, the biologically inspired operations selection, crossover and
mutation are applied to the current population for generating a new population.
These operations are executed several times and in sequence on the current
population’s chromosomes. The result of a single execution is a new chromosome
that is added to the new population.

To generate a new chromosome, a selection operation is first applied to the
current population. This selection operation selects two random chromosomes,
also called parents, whereby the selection of parents is not purely by chance.
Instead, a specific bias is introduced so that fitter chromosomes are preferred
in the selection process. This ensures that the fitness of the new population
increases with high probability, which means that the chance of finding fitter
chromosomes increases. For example, the so-called tournament selection repre-
sents such a method. In this method, the selection is done by comparing the
fitness of an arbitrary number of chromosomes derived from the current pop-
ulation. The fittest chromosome found in this comparison becomes one parent
and the same process is repeated to select the second parent. Other selection
methods [16,17] are, for example, the roulette wheel selection, rank selection, or
stochastic universal sampling.

After the parents have been selected, a crossover operation is applied. It gen-
erates a new chromosome, also called child, by mixing the genes of the parents.
The mixing depends on the chosen method of crossover. For example, the single-
point crossover is a method that splits the genes of the parents at a randomly
selected point. The result are two gene segments per parent, where one of these
segments is swapped with each other. Other crossover methods [16,17] are, for
example, the multi-point crossover or the uniform crossover.

Before the child is finally added to the new population, a mutation operation
is applied. A mutation operation basically alters one or more of the child’s genes
to generate a new chromosome, which is called mutant. This is done to cover the
available search space more effectively. Since our genetic algorithm works with
binary representations of test suites, it is sufficient to flip one or more randomly
chosen binary values of the child’s genes.

Genetic Algorithm for Test Suite Reduction 71

Table 5 shows an exemplary application of a single-point crossover and a
bit-flip mutation. The selected parents are the test suites TS3 and TS5 from
Table 2.

Table 5. Selection, crossover and mutation

Selection Gene/test case tci

1 2 3 4 5

TS3 1 1 0 0 0

TS5 1 1 0 1 1

Crossover TS3 gene segment 1 TS5 gene segment 2

Child 1 1 0 1 1

Mutation TS3 gene segment 1 Bit-Flip

Mutant 1 1 0 1 0

The biologically inspired operations are executed several times to create a
new population with the same number of chromosomes as the current population.
It consists of mutants, generated chromosomes from the crossover operation (i.e.
children), as well as chromosomes from the current population. The proportion
of mutants, children and current chromosomes in the new population is defined
by the so-called crossover threshold and the mutation probability.

The crossover threshold defines the proportion of the current chromosomes
(survivors) and newly generated chromosomes in the new population. For exam-
ple, a threshold of 75% means that the new population consists of 25% sur-
vivors and 75% newly generated chromosomes. The mutation probability, on
the other hand, defines the probability of whether a chromosome generated by
the crossover operation will be mutated by the mutation operation or not. This
means that the newly generated chromosomes can be either children or mutants.
Typically the mutation probability is rather low so that the genetic algorithm
does not get reduced to a random search. However, mutation is necessary to
introduce and maintain diversity in the new population.

3.5 Evolution and Termination

With the new population at hand all steps beginning with the fitness calculation
are repeated until a termination condition is reached. A termination condition
can be the continuity of an overall fittest chromosome or the exceeding of a
certain evolution. How the termination condition is chosen depends to a large
extent on the optimisation problem being solved and on the parameters of the
algorithm, i.e., population size, crossover threshold, and mutation probability.

The result of the proposed genetic algorithm is the overall fittest chromosome
found. This chromosome represents a test suite which maximises statement cov-
erage and minimises the amount of test case executions. Table 6 shows three

72 P. Stadler et al.

possible test suites, which have been generated by multiple runs based on the
test histories of Table 1.

Table 6. Results

Test suite Test cases Covered statements

Result1 tc3, tc5 S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16

Result2 tc3, tc4 S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16

Result3 tc2, tc5 S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16

The reason why the proposed genetic algorithm generates different results
over various runs is mainly due to the small size of the given optimisation prob-
lem and the used fitness calculation that only considers statement coverage and
the number of test case executions. However, it has the advantage that the fit-
ness calculation can easily be extended respectively adapted, for example, by
considering the execution time or the priority of the test cases.

4 Industry Application

A prototype of the designed genetic algorithm was developed in Python and
applied in a real-world project of our industry partner. First, the test execution
histories were collected with an open source coverage tool, namely OpenClover,
and converted into the JSON format processable by our prototype. The result,
i.e., the proposed reduction of test cases, was subsequently applied to the existing
test suite. In addition, coverage measures from another coverage tool (JaCoco)
and from mutation testing (based on PIT), were used to evaluate the quality of
the test suite reduction.

4.1 Original Test Suite

The test suite from our industry project consisted of a total of 389 test cases.
Overall, this test suite reached a coverage of 68.3%. of the source code, measured
with the tool OpenClover. The coverage measurement shows that 20 out of 34
source code packages were covered. OpenClover calculates only a single coverage
value per package, which is a combination of statement and branch coverage,
considering the number of methods entered.

A problem was encountered during collecting measurement data from muta-
tion testing. Some of the code exercised by the test cases accessed the file system
to read or write documents. Since mutation testing involves injecting mutants,
i.e. potentially faulty changes into the code, the execution of the test suite was
prohibited by the mutation testing tool PIT in order to protect the file system
from corrupting changes. To solve this problem, we had to remove 143 test cases
from the test suite. After removing the problematic test cases with file access,

Genetic Algorithm for Test Suite Reduction 73

the adjusted test suite contained 246 test cases. This test suite achieved a code
coverage of 57% and an average mutation score of 52%.

Table 7 lists the detailed measurement results for the packages P1 to P34.
The column OpenClover shows the reported combined coverage values and the
number of executed test cases per package. (Note: A test case is associated to
every package covered by this test, i.e., individual test cases may be counted
several times in the column Tests.) The tool JaCoCo allows to measure coverage
values for statement and branch coverage individually. The measurements from
PIT are divided into the columns injected mutants, killed mutants, and coverage.
Injected mutants represents the number of modifications introduced in the source
code and killed mutants represents the number of modifications, which were
detected by the executed test cases. Finally, the column coverage contains the
reported mutation coverage according to PIT.

It has to be noted that JaCoCo as well as PIT report NaN as result for 3
packages. The reason is that some of the packages are located in different modules
and no coverage is reported by JaCoCo and PIT for packages of a module with
no test cases. OpenClover, however, aggregates the coverage data from modules
and therefore the coverage is reported for the affected packages as they are tested
based on another module’s test cases.

4.2 Test Suite Reduction Using Genetic Algorithm

The genetic algorithm was applied to the recorded test execution histories with
following parameter settings: a population size of 20, a crossover threshold of
0.65 using a rank selection and uniform crossover, a mutation probability of 0.35
using a bit-flip mutation, and a termination condition of 200 evolutions. These
parameter settings showed the most promising results across several applications.

We repeated the application of the genetic algorithm with these settings
multiple times to obtain a range of results for our evaluation. The different values
obtained from individual runs are an effect of the randomness of the genetic
algorithm, even when these runs are executed with the exact same parameter
settings. The results from five different applications are shown in Table 8.

The multiple applications of the proposed genetic algorithm achieved an aver-
age reduction of 67.6 test cases, which corresponds to an average reduction of
the test suite to 72.5% of it’s original size.

The best reduction was achieved by genetic algorithm application A4 with
74 reduced test cases, compared to application A3 with only 63 reduced test
cases. The average execution time of the genetic algorithm needed to compute
the optimization was 139.8 s. The execution time differences between the five
runs are marginal.

74 P. Stadler et al.

Table 7. Coverage measurements from the original test suite

Package OpenClover JaCoCo PIT

Coverage Tests Statement Branch Injected Killed Coverage

P1 100% 100 NaN NaN NaN NaN NaN

P2 100% 7 100% 100% 11 11 100%

P3 98% 114 97% 100% 32 28 88%

P4 97% 140 NaN NaN NaN NaN NaN

P5 91% 55 91% 67% 99 40 40%

P6 90% 64 96% 83% 14 12 86%

P7 81% 7 85% 70% 19 16 84%

P8 81% 21 88% 75% 8 0 0%

P9 77% 160 63% 35% 159 72 45%

P10 75% 148 NaN NaN NaN NaN NaN

P11 73% 120 70% 58% 104 60 58%

P12 65% 10 64% 50% 31 19 61%

P13 65% 24 69% 63% 98 73 74%

P14 60% 113 42% 18% 391 113 29%

P15 43% 41 31% 44% 21 11 52%

P16 37% 103 39% 16% 42 8 19%

P17 35% 8 45% 0% 7 3 43%

P18 34% 59 26% 33% 22 8 36%

P19 13% 4 12% 30% 23 3 13%

P20 0% 0 63% 63% 321 172 54%

P21 0% 0 0% 0% 669 0 0%

P22 0% 0 0% 0% 602 0 0%

P23 0% 0 0% 0% 582 0 0%

P24 0% 0 0% 0% 551 0 0%

P25 0% 0 0% 0% 48 0 0%

P26 0% 0 0% 0% 33 0 0%

P27 0% 0 0% 0% 16 0 0%

P28 0% 0 0% 0% 13 0 0%

P29 0% 0 0% 0% 4 0 0%

P30 0% 0 0% 0% 0 0 0%

P31 0% 0 0% 0% 0 0 0%

P32 0% 0 0% 0% 0 0 0%

P33 0% 0 0% 0% 0 0 0%

P34 0% 0 0% 0% 0 0 0%

Genetic Algorithm for Test Suite Reduction 75

Table 8. Results of the genetic algorithm applications

Application Number of reduced tests Reduced test suite size Algorithm execution

A1 –66 73.2 % 139 s

A2 –68 72.4 % 138 s

A3 –63 74.4 % 142 s

A4 –74 69.9 % 141 s

A5 –67 72.8 % 139 s

4.3 Reduced Test Suite

The genetic algorithm application run A2 from Table 8 is the one closest to the
average reduction. We applied the results from this run to reduce the test suite
for further evaluation.

The output of a genetic algorithm application is a list of test cases, indicating
for each of them whether it should be kept or whether it can be removed from
the existing test suite. According to the genetic algorithm application A2, 68 test
cases can be safely removed from the existing test suite without reducing code
coverage according to the measurement performed with OpenClover. Further-
more, in order to evaluate the reduced test suite and the possible influence of
the used covereage tool, the coverage measurement and mutation analysis were
repeated on the reduced test suite with JaCoCo and PIT.

Table 9 shows the measurement results obtained for the packages P1 to P20,
i.e. only the packages that exhibited a coverage in the existing test suite. Overall,
the reduced test suite achieved a total coverage of 56.9% with only 178 tests exe-
cuted. This corresponds to an overall coverage loss of 0.1% with a 28% reduction
of test case executions. Regarding the average mutation coverage, a loss of 1%
was observed, i.e. the test suite has an average mutation coverage of 51%.

5 Evaluation and Discussion

In this section we analyze the achieved reduction of test cases based on the
coverage measurements provided by OpenClover, which we then compare to the
coverage measurements from JaCoCo and the mutation score from PIT. Finally,
we discuss our observations and the lessons learned from the application in con-
text of the industry project.

5.1 Reduction of Test Cases

As basis for our evaluation of the achieved results, the measurements from the
original test suite were subtracted from the of the reduced test suite. Table 10
provides an overview of the computed differences per package.

From the measurement differences for OpenClover one can observe that a
reduction of test case was achieved for all packages (except for package P20,

76 P. Stadler et al.

Table 9. Coverage measurements from the reduced test suite

Package OpenClover JaCoCo PIT

Coverage Tests Statement Branch Injected Killed Coverage

P1 100% 90 NaN NaN NaN NaN NaN

P2 88% 2 98% 58% 11 10 91%

P3 97% 82 97% 100% 32 28 88%

P4 97% 123 NaN NaN NaN NaN NaN

P5 91% 46 91% 67% 99 39 39%

P6 90% 49 96% 83% 14 12 86%

P7 81% 5 85% 70% 19 16 84%

P8 81% 16 88% 75% 8 0 0%

P9 77% 133 63% 35% 159 72 45%

P10 75% 129 NaN NaN NaN NaN NaN

P11 73% 101 70% 58% 104 60 58%

P12 65% 7 64% 46% 31 18 58%

P13 64% 21 68% 59% 98 71 72%

P14 60% 98 42% 18% 391 113 29%

P15 43% 32 31% 44% 21 11 52%

P16 37% 89 39% 16% 42 8 19%

P17 35% 7 45% 0% 7 3 43%

P18 34% 54 26% 33% 22 8 36%

P19 13% 3 12% 20% 23 2 9%

P20 0% 0 63% 63% 321 143 45%

which did not contain any associated test cases in the original test suite). For
most packages, a significant number of associated tests could be reduced. For
example, up to –32 for package P3, which is a reduction of 28%. The average
reduction is -10.55 tests per package (median –9). Despite this reduction, the
coverage of the original test suite was preserved for all packages except one.

For package P2 a coverage loss of 12% was recorded. The reason is that the
coverage values reported by OpenClover are a combination of statement coverage
and branch coverage, while only statement coverage has been considered as basis
for the optimization by our genetic algorithm. The code in package P2 contains
two if statements without else branches, for which the corresponding test cases
were missed in the optimization process.

5.2 Coverage and Mutation Analysis

For a more detailed evaluation, we also used JaCoCo to record statement and
branch coverage. These measurements show a loss of statement coverage of –2%
at package P2 and –1% at package P13 as well as a loss in branch coverage of

Genetic Algorithm for Test Suite Reduction 77

Table 10. Measurement differences

Package OpenClover JaCoCo PIT

Coverage Tests Statement Branch Injected Killed Coverage

P1 0% –10 NaN NaN NaN NaN NaN

P2 –12% –5 –2% –42% 0 –1 –9%

P3 0% –32 0% 0% 0 0 0%

P4 0% –17 NaN NaN NaN NaN NaN

P5 0% –9 0% 0% 0 –1 –1%

P6 0% –15 0% 0% 0 0 0%

P7 0% –2 0% 0% 0 0 0%

P8 0% –5 0% 0% 0 0 0%

P9 0% –27 0% 0% 0 0 0%

P10 0% –19 NaN NaN NaN NaN NaN

P11 0% –19 0% 0% 0 0 0%

P12 0% –3 0% –4% 0 –1 –3%

P13 0% –3 –1% –4% 0 –2 –2%

P14 0% –15 0% 0% 0 0 0%

P15 0% –9 0% 0% 0 0 0%

P16 0% –14 0% 0% 0 0 0%

P17 0% –1 0% 0% 0 0 0%

P18 0% –5 0% 0% 0 0 0%

P19 0% –1 0% –10% 0 –1 –4%

P20 0% 0 0% 0% 0 –29 –9%

up to –42% at package P2. A loss in branch coverage is also shown at package
P12 and P19, for which statement coverage has been preserved. These the differ-
ences in the measurements are a result of JaCoCo analyzing coverage differently
than OpenClover5 and at a more detailed level, including conditional statements
containing combined conditions6.

The evaluation using PIT for mutation analysis shows similar results. A loss
in mutation coverage has been found in packages that already exhibited a loss
in branch coverage (P2, P12, P13 and P19) as well as in two other packages (P5

and P20). The majority of the surviving mutants are associated to package P20.
These mutants survived because OpenClover did not associate any test cases to
this package (see Table 7) and, thus, no test execution histories were available
for the correct optimization by the genetic algorithm.

5 https://stackoverflow.com/questions/24369631/clover-and-jacoco-give-different-
code-coverage-results.

6 https://stackoverflow.com/questions/63492529/why-is-jacoco-coverage-report-for-
branches-saying-if-a-b-c-is-actually-6.

https://stackoverflow.com/questions/24369631/clover-and-jacoco-give-different-code-coverage-results
https://stackoverflow.com/questions/24369631/clover-and-jacoco-give-different-code-coverage-results
https://stackoverflow.com/questions/63492529/why-is-jacoco-coverage-report-for-branches-saying-if-a-b-c-is-actually-6
https://stackoverflow.com/questions/63492529/why-is-jacoco-coverage-report-for-branches-saying-if-a-b-c-is-actually-6

78 P. Stadler et al.

Table 11. Surviving mutants by mutation operator and package

Package Mutation operator Sum

Return values Negate conditionals Void method call

P2 1 1

P5 1 1

P12 1 1

P13 1 1 2

P19 1 1

P20 3 26 29

Sum 4 5 26 35

Overall, a total of 35 mutants survived due to the reduction of test cases.
These mutants can be traced back to four different mutators, which are mutation
operations changing specific aspects of the program under test. Table 11 shows
the surviving mutants by mutator and source code package. We performed a
detailed analysis of the source code locations containing survived mutants which
provided following insights.

– The mutator void method call caused 26 of the survived mutants. This muta-
tion operation removes calls to void methods. Affected code locations con-
tained calls to methods of the class StringConcatenation, which were all
located in package P20 neglected by in the optimization process.

– Another 5 mutants were caused by the mutator negate conditionals, a muta-
tion operation that substitutes conditionals to their negated counterparts.
This operation affected conditional cases of several if statements in package
P20 as well as if statements in P13 and P19 using combined conditions (i.e.,
condition including the logical operator OR). They were missed in the optimi-
sation process due to the insufficient level of detail in the coverage measures
provided by OpenClover.

– The remaining 4 were introduced by the mutator return values in the packages
P2, P5, P12 and P13. This mutation operation changes the return values of
methods depending on their return type. For example, return values of type
boolean are changed to true or false, string and collection are changed to
empty strings and empty collections, primitives (int, char, etc.) are changed
to 0, and other return values are simply set to null. The affected code locations
were three getter methods and a lambda expression for filtering a collection.
The mutants survived because the affected statements were called from the
tested method but their coverage was not associated with the source package,
which is why it was not considered in the optimization by the genetic algo-
rithm. These mutants can be avoided by revising the optimization approach
to also consider indirectly coverage, i.e., covered code residing outside the
tested package.

Genetic Algorithm for Test Suite Reduction 79

5.3 Observations and Lessons Learned

We encountered several issues and obstacles when we applied the proposed
genetic algorithm for test suite reduction in the industry project. Most of them
are not a consequence of using a genetic algorithm to address the underlying
optimization problem. They are technical issues related to the implementation
of the test cases in the project’s regression test suite as well as specific issues
introduced by the tools used for collecting coverage data and test execution
histories.

In the following we discuss these issues and their consequences for applying
test suite reduction in practice. Furthermore, we also provide insights and general
lessons learned from designing and implementing our approach according to the
requirements from industry.

Successful Reduction of Test Cases. First of all, the successful reduction of
test cases from the project’s regression test suit has to be emphasized. As shown
in the previous section, the proposed genetic algorithm was able to reduce the size
of the provided test suite without significantly affecting the coverage measure
used in the optimization process. Overall, 68 test cases were removed with a
marginal coverage loss of 0.1%. The size of reduction relates to a noticeable
speed-up in test execution in the industry project, where the tests are frequently
run as part of the continuous integration cycle.

Improving Efficiency over Effectiveness. Related research on regression
test optimization emphasizes the goal of safe regression testing [18,19] that aims
to prevents any loss of coverage. In contrast, our industry application showed
that in practice some loss of coverage and even a marginal reduction of the
ability to find all bugs is acceptable. As long as the full regression test suite is
still executed from time to time, no bugs will be missed in the final, released
version of the software system. This can be achieved by using the optimized test
suite, for example, in continuous integration to speed up test execution and by
periodically running the entire test suite in nightly builds. The trade-off between
improving efficiency and effectiveness is also discussed in [20], where the authors
point out that test suit reduction should not result in a permanent removal of
test cases from the regression test suite.

Time Requirements for Optimization. While our approach using a genetic
algorithm was able to provide significant and practically relevant optimization
results, it turned out that – based on our prototypical implementation – the
run-time of the optimization does not fulfill our initially defined requirements. In
order to provide an improvement in terms of efficiency, the time required for the
optimization process and the execution of the reduced test suite should be less
than running the original test suite. The average execution time of the genetic
algorithm needed to compute the optimization was 139.8 s (see Table 8), which
is more than the execution time of the original test suite. Thus, our suggestion

80 P. Stadler et al.

is to run the optimization only occasionally, e.g., when major changes of the
test suite or the system under test have been made. Furthermore, there is still
potential to optimize the implementation of the genetic algorithm, in particular
by following an incremental optimization process [21] where the initialisation of
the population is based on previous optimal solutions.

Pitfalls of Mutation Analysis. Mutation analysis was used in the evaluation
of the proposed approach. In this process we encountered the issues that the
code exercised by some of the test cases accessed the file system to read and
write documents. Mutating this code was prohibited by the tool PIT in order to
prevent corrupting changes made to the file system. As a consequence, we were
not able to include the associated test cases in our evaluation. 143 test cases were
excluded and the evaluation was finally performed with an adjusted test suite.
From the perspective of the proposed optimization approach, this step would
not have been necessary since there were no limitations in collecting coverage
data from all tests including those we had to exclude. However, the described
issue affected the evaluation of our work.

Difficulties in Obtaining Reliable Coverage Measurements. In our work
we used three different tools for measuring code and mutation coverage. Open-
Clover, a freely available open source tool, was used to collect information about
test execution histories that are the basis for our genetic algorithm. JaCoCo,
another open source coverage tool, was used in our evaluation as a control
instance to verify the coverage reported by OpenClover. The mutation test-
ing tool PIT was used in the evaluation to determine the quality of the reduced
test suite. Besides the issues described above regarding the use of PIT on code
that accesses the file system, we also encountered the problem that JaCoCo as
well as PIT did not report coverage values for three packages (NaN entries in
Table 7), since coverage measures are not aggregated to packages in the same
way as by OpenClover. On the other hand, OpenClover did not record any data
for one of the packages while JaCoCo did. The reason is still under investigation.
Users have to be aware that such issues caused by missing data can have a severe
impact on the genetic algorithm’s ability to completely and reliably optimise the
existing test suite.

Tool-Dependent Coverage Measurement Differences. Our evaluation
using different coverage tools also revealed that different coverage measurement
values are reported by different tools for the same tests. Even when we neglect
the issue that one tool does not provide measurements for a specific package
although the other does, and vice versa, the coverage measurements provided by
both tools are not comparable. These discrepancies have several reasons. One
reason is the specific way how each tool reports coverage measures, e.g., Open-
Clover reports a combination of statement and branch coverage and considers
the number of methods entered. Another reason are differences in how coverage

Genetic Algorithm for Test Suite Reduction 81

is measured, e.g., JaCoCo distinguishes conditional statements considering also
individual conditions combined by logical operators. Hence, although both tools
report branch coverage, these sometimes subtle and hard to notice differences
cause discrepancies that ultimately result in a coverage loss in the optimiza-
tion process (see Table 10). Nevertheless, irregularities between the measurement
results of different coverage tools are also reported in the literature [22,23] and
approaches relying on coverage measurements have to be implemented in a tool-
agnostic way. Our implementation, for example, uses a tool-independent format
for coverage data as input for the genetic algorithm. So even if the coverage tool
changes due to a different programming language or due to the availability of
another tool or a new version, performing test suite reductions is still possible
with the proposed genetic algorithm.

6 Summary

In this paper we presented an approach for regression test suite reduction based
on a genetic algorithm. We designed the genetic algorithm to tackle the under-
lying optimization problem according to the requirements derived from a real-
world industry project of a software company developing tools for test automa-
tion. The prototypical implementation of the algorithm has been applied to the
project’s test suite containing several hundred test cases. It successfully achieved
an optimal solution with a 28% reduction of test cases. A total of 68 test cases
were removed from the original test suite.

The evaluation of the reduced test suite using additional coverage and muta-
tion analyses showed a marginal loss of coverage: an overall coverage loss of 0.1%
and an average mutation coverage loss of 1%. These results demonstrate that the
genetic algorithm can be successfully applied in industry and the achieved results
are able to satisfy the requirements of the studied project. Nevertheless, issues
and obstacles have been identified by applying the approach in industry. They
are related to tool-specific issues hindering the reliable collection of test execu-
tion data as basis for the proposed optimisation approach, the need to exclude
of test cases and source code with side-effects from the evaluation with mutation
analysis, high run-time requirements for performing the optimizations, as well
as discrepancies in coverage measurements between different coverage tools that
may even result in an unintended coverage loss in the optimization process.

To get a better understanding of the potential negative effects of these issues
in test suite reduction in a practice, we plan to apply the proposed genetic algo-
rithm also on test suites from other projects using different tools and technolo-
gies. This work has already been started, leading to the observation of further
obstacles resulting from custom test runners interfering with the execution of
optimized test suites. Thus, we see the need to devote further work to investi-
gate test suite reduction in industry environments.

Acknowledgements. This work was partially supported by the Austrian Research
Promotion Agency (FFG) in the frame of the COMET competence center SCCH
[892418].

82 P. Stadler et al.

References

1. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

2. Engström, E., Runeson, P.: A qualitative survey of regression testing practices. In:
Ali Babar, M., Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp.
3–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13792-1 3

3. Gmeiner, J., Ramler, R., Haslinger, J.: Automated testing in the continuous deliv-
ery pipeline: a case study of an online company. In: 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 1–6. IEEE (2015)

4. Elbaum, S., Rothermel, G., Penix, J.: Techniques for improving regression testing
in continuous integration development environments. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 235–245 (2014)

5. Shi, A., Zhao, P., Marinov, D.: Understanding and improving regression test selec-
tion in continuous integration. In: IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), vol. 2019, pp. 228–238. IEEE (2019)

6. Khan, S.U.R., Lee, S.P., Javaid, N., Abdul, W.: A systematic review on test
suite reduction: approaches, experiment’s quality evaluation, and guidelines. IEEE
Access 6, 11816–11841 (2018)

7. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Inf. Softw. Technol. 52(1), 14–30 (2010)

8. Khatibsyarbini, M., Isa, M.A., Jawawi, D.N., Tumeng, R.: Test case prioritization
approaches in regression testing: a systematic literature review. Inf. Softw. Technol.
93, 74–93 (2018)

9. He, Z.F., Sheng, B.K., Ye, C.Q, et al.: A genetic algorithm for test-suite reduction.
In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 1,
pp. 133–139. IEEE (2005)

10. Ma, X., Sheng, B., Ye, C.: Test-suite reduction using genetic algorithm. In: Cao,
J., Nejdl, W., Xu, M. (eds.) APPT 2005. LNCS, vol. 3756, pp. 253–262. Springer,
Heidelberg (2005). https://doi.org/10.1007/11573937 28

11. Nachiyappan, S., Vimaladevi, A., SelvaLakshmi, C.: An evolutionary algorithm for
regression test suite reduction. In: 2010 International Conference on Communica-
tion and Computational Intelligence (INCOCCI), pp. 503–508. IEEE (2010)

12. Wang, S., Ali, S., Gotlieb, A.: Minimizing test suites in software product lines using
weight-based genetic algorithms. In: Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation, pp. 1493–1500 (2013)

13. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

14. Buchgeher, G., Ernstbrunner, C., Ramler, R., Lusser, M.: Towards tool-support for
test case selection in manual regression testing. In: 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops, pp. 74–79.
IEEE (2013)

15. Ramler, R., Salomon, C., Buchgeher, G., Lusser, M.: Tool support for change-
based regression testing: an industry experience report. In: Winkler, D., Biffl, S.,
Bergsmann, J. (eds.) SWQD 2017. LNBIP, vol. 269, pp. 133–152. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-49421-0 10

16. Goldberg, D.E.: Genetic Algorithms. Pearson Education, London (2013)

https://doi.org/10.1007/978-3-642-13792-1_3
https://doi.org/10.1007/11573937_28
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-319-49421-0_10

Genetic Algorithm for Test Suite Reduction 83

17. Kramer, O.: Genetic Algorithms. In: Genetic Algorithm Essentials, pp. 11–19.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52156-5

18. Orso, A., Shi, N., Harrold, M.J.: Scaling regression testing to large software sys-
tems. ACM SIGSOFT Softw. Eng. Notes 29(6), 241–251 (2004)

19. Haider, A.A., Nadeem, A., Akram, S.: Safe regression test suite optimization: a
review. In: 2016 International Conference on Open Source Systems & Technologies
(ICOSST), pp. 7–12. IEEE (2016)

20. Ali, N., et al.: On the search for industry-relevant regression testing research.
Empir. Softw. Eng. 24(4), 2020–2055 (2019). https://doi.org/10.1007/s10664-018-
9670-1

21. Duan, K., Fong, S., Siu, S.W., Song, W., Guan, S.S.U.: Adaptive incremental
genetic algorithm for task scheduling in cloud environments. Symmetry 10(5), 168
(2018)

22. Alemerien, K., Magel, K.: Examining the effectiveness of testing coverage tools: an
empirical study. Int. J. Softw. Eng. Appl. 8(5), 139–162 (2014)

23. Horváth, F., Gergely, T., Beszédes, Á., Tengeri, D., Balogh, G., Gyimóthy, T.:
Code coverage differences of java bytecode and source code instrumentation tools.
Softw. Qual. J. 27, 79–123 (2019)

https://doi.org/10.1007/978-3-319-52156-5
https://doi.org/10.1007/s10664-018-9670-1
https://doi.org/10.1007/s10664-018-9670-1

Software Metrics

A Catalog of Source Code
Metrics – A Tertiary Study

Umar Iftikhar(B), Nauman Bin Ali, Jürgen Börstler, and Muhammad Usman

Blekinge Institute of Technology, Karlskrona, Sweden
umar.iftikhar@bth.se

https://www.bth.se

Abstract. Context: A large number of source code metrics are reported
in the literature. It is necessary to systematically collect, describe and
classify source code metrics to support research and practice.

Objective: We aim to utilize existing secondary studies to develop
a catalog of source code metrics together with their descriptions. The
catalog will also provide information about which units of code (e.g.,
operators, operands, lines of code, variables, parameters, code blocks, or
functions) are used to measure the internal quality attributes and the
scope on which they are collected.

Method: We conducted a tertiary study to identify secondary studies
reporting source code metrics. We have classified the source code metrics
according to the measured internal quality attributes, the units of code
used in the measures, and the scope at which the source code metrics
are collected.

Results: From 711 secondary studies, we identified 52 relevant sec-
ondary studies. We reported 423 source code metrics together with their
descriptions and the internal quality attributes they measure. Source
code metrics predominantly incorporate function as a unit of code to
measure internal quality attributes. In contrast, several source code met-
rics use more than one unit of code when measuring internal quality
attributes. Nearly 51% of the source code metrics are collected at the
class scope, while almost 12% and 15% of source code metrics are col-
lected at module and application levels, respectively.

Conclusions: Researchers and practitioners can use the extensive cata-
log to assess which source code metrics meet their individual needs based
on the description and classification scheme presented.

Keywords: Internal quality attributes · Code measurement · Code
quality · Tertiary study · Source code metrics

1 Introduction

During software development or evaluating open-source components before
incorporating them into the codebase, measuring the quality of the software
product is essential. One of the objective methods to measure the quality of a
software product is through source code metrics.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Mendez et al. (Eds.): SWQD 2023, LNBIP 472, pp. 87–106, 2023.
https://doi.org/10.1007/978-3-031-31488-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31488-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-31488-9_5

88 U. Iftikhar et al.

Fenton and Bieman [19] classify quality attributes of a software product into
internal and external quality attributes. Internal quality attributes of the source
code relate to source code characteristics without accounting for the execution
environment. In contrast, external quality attributes relate to how the source
code behaves in the context of a specific environment. Several studies have shown
a link between internal quality attributes and underlying issues in source code,
such as code smells [27] and code decay [8]. Similarly, studies have also measured
internal quality attributes to investigate the impact of code refactoring [29]. By
assessing the internal attributes of the codebase regularly, practitioners can avoid
introducing anti-patterns and incurring technical debt.

Source code metrics are often used to measure the internal quality attributes
of the software. Several source code metrics have been proposed over the years.
Some of the popular metric suites include Halstead metrics [20], McCabe com-
plexity metric [37], Chidamber & Kemerer (CK) metrics [15] and Li & Henry
metrics [34]. Source code metrics are utilized in several cases, e.g., defect prone-
ness [23], bug prediction [42], assessing domain-specific software [49], and in
evaluating the implementation of software product lines [36].

Source code metrics use information regarding a software product’s structure
and size and provide numerical values mapped to quality attributes [33]. While
measuring, source code metrics target various units of code. These units of code
are measured at different scope levels (e.g., at application, class, module, or
function level) to gain insight into specific aspects and areas of code. As an
illustrated example, number of methods (NOM) is described as “count of all the
methods defined in a class” [9]. In this case, we measure the size of the source
code by measuring a unit of code method, and the scope of the measurement is
at the class level.

The large number of secondary studies reporting source code metrics pro-
vides an opportunity to collect and categorize source code metrics. Through
a tertiary study, we aim to provide an extensive catalog of source code metrics
reported in secondary studies, their descriptions, and classifications. The catalog
of source code metrics, along with definitions and measured internal attributes,
the scope of measurement can be a starting point in identifying and selecting
suitable source code metrics for the specific measurement needs of researchers
and practitioners.

In our previous work [25], we investigated the strength of the evidence linking
source code metrics with internal and external quality attributes from 15 sec-
ondary studies. The aim of the current tertiary study is to provide an extensive
catalog of the source code metrics reported in secondary studies.

The paper is structured as follows. Section 2 presents the related work, fol-
lowed by Sect. 3 on methodology. We discuss the threats to validity in Sect. 4 and
the results in Sect. 5. Section 6 summarizes our reflections on the results while
Sect. 7 concludes the review.

A Catalog of Source Code Metrics - A Tertiary Study 89

2 Related Work

Several systematic studies have synthesized source code metrics reported in the
literature. Nunez et al. [39] conducted a mapping study that classified more than
300 source code metrics according to four programming paradigms, supported
extraction tools, systems used for benchmarking and topics studied from primary
studies between 2010 and 2015. However, the study does not report descriptions
of the source code metrics.

Saraiva et al. [43] identified 67 aspect-oriented source code metrics to measure
software maintainability and reported 15 aspect-oriented metrics reported by at
least two primary studies. The study is limited to only one quality attribute, i.e.,
maintainability, and does not report aspect-oriented metrics for other quality
attributes. Hernandez-Gonzalez et al. [21] focused only on design-level metrics
and summarized 26 design-level source code metrics from 15 primary studies.
Caulo et al. [13] proposed a taxonomy of 512 metrics that can be used for
software fault prediction. These studies have specified limited scope and thus do
not provide a holistic classification of the source code metrics along with their
descriptions.

Arisholm et al. [6] proposed a classification of dynamic coupling metrics based
on granularity, entity, and scope, though their study is limited to dynamic cou-
pling metrics only.

In contrast, several studies provide descriptions of the frequently used source
code metrics, including Briand et al. [11], Sharma et al. [45], Kaur et al. [28] but
only include descriptions for the source code metrics which are part of a source
code metric suite.

Lacerda et al. [31] have conducted a tertiary study on a closely related topic
of code smells and refactoring. While the tertiary study does not report any
source code metrics, the secondary studies included several source code metrics
for code smell detection and comparing refactoring improvements. As mentioned
in Sect. 3.1, we have included the secondary studies reported by Lacerda et al.
[31] in the list of publications considered for selection criteria.

To our knowledge, no systematic study reports a catalog of source code met-
rics and classifies them by units of code and scope. We report source code metrics
aggregated in secondary studies, with no limitations on the years a secondary
study was published and without limiting the scope to a particular programming
paradigm. We also report descriptions of all the source code metrics extracted in
these studies. A comparison of the secondary and tertiary studies on the subject
is provided in Table 1.

3 Methodology

We used the guidelines by Kitchenham et al. [30] in this tertiary study to answer
the following research question:

90 U. Iftikhar et al.

Table 1. Comparison of secondary and tertiary studies on source code metrics

Studies Source Years covered Focus Limitations

Saraiva
et al. [44]

138 primary
studies

1992–2011 Aspect-oriented metrics for
maintainability

Other quality attributes, e.g.,
reliability are not in the scope

Nunez et al.
[39]

226 primary
studies

2010–2015 Source code metrics for AOP,
OOP, FOP, tools used,
datasets used

Component-based metrics are not
reported, source code metrics
definitions are not provided

Hernandez-
Gonzalez
et al. [21]

15 primary
studies

1997–2016 Design level metrics Scope focused on design level
metrics; search years covered,
primary studies used are not
reported

Caulo et al.
[13]

196 primary
studies

1991–2017 Metrics for fault prediction Scope focused on fault-prediction
source code metrics only

Our earlier
study [25]

15 secondary
studies

1985–2020 (based
on the included
primary studies)

Strength of evidence linking
source code metrics and
quality attributes

Only investigate reported link
between source code metrics and
external quality attributes

Present
study

52 secondary
studies on
source code

1976–2020 (based
on the included
primary studies)

Catalog of source code
metrics to measure quality
attributes, report various
uses of source code metrics,
e.g., bad smells detection

Secondary studies used as the
source

RQ 1: Which source code metrics are used in the secondary studies to
measure internal (code quality) attributes?

RQ 1.1: Which units of code are used to measure the internal (code
quality) attributes?

RQ 1.2: At which scope are the internal (code quality) attributes mea-
sured?

3.1 Search Strategy

We followed the guidelines by Petersen et al. [41] and searched in one indexing
(Scopus) and two publisher databases (IEEE Xplore and ACM digital library).
ACM and IEEE are among the most relevant publishers of research in software
engineering [14,48] while Scopus is one of the largest indexing services cover-
ing published articles from several publishers [3,10]. Source code metrics are
often reported in the context of measuring quality attributes. Thus, we utilized
a keyword-based search [4,30] as our primary search strategy. The search string
consisted of six blocks; the first block contains synonyms for source code, the
second block focuses on quality attributes measured, and the third block restricts
the search results to systematic studies. The remaining three blocks limit the
search results to articles and conference papers in the area of computer science
written in English. We also incorporated synonyms for metrics, such as “mea-
sure” and “indicator” to improve the search string.

A Catalog of Source Code Metrics - A Tertiary Study 91

As depicted in Fig. 1, we identified keywords from ISO/IEC 25010:2011 [38]
and a set of 14 relevant papers already known to the authors due to their domain
expertise (see KnownSetOfPapers in the online supplement [24]) to formulate our
search string given in Table 2. The search string in Table 2 was also adapted to
ACM and IEEE.

We used a set of 11 secondary studies (see Validation set(QGS) in the online
supplement [24]) as a quasi-gold standard (QGS) [30] to evaluate the effectiveness
of the search string. Two authors independently formulated the QGS, which
included of 11 secondary studies [47]. We executed the search string in February
2021, which captured eight of the 11 (precision 1.46% and recall 73%) studies
mentioned in the QGS. To improve the search coverage, we supplemented our
search results with the secondary studies covered by Lacerda et al. [31] as they
are relevant to our topic (these studies are italicized in Table 8). After removing
duplicates, we found 711 unique publications (see Fig. 2).

Table 2. Search string used for automated search in the study

Search string

TITLE-ABS-KEY (((“code” OR “software program” OR “software product” OR “software application” OR
“software system” OR “object oriented” OR “aspect oriented” OR “feature oriented”)

AND

(“quality” OR “smell*” OR “pattern” OR “functional suitability” OR “performance” OR “efficiency” OR
“compatibility” OR “usability” OR “reliability” OR “security” OR “maintainability” OR “portability” OR
“analyzability” OR “modifiability” OR “testability” OR “compliance” OR “stability” OR “comprehension”
OR “understandability” OR “understanding” OR “maintenance” OR “modularity” OR “reusability” OR
“changeability” OR “evolvability” OR “modification” OR “testability” OR “evolution” OR “readability” OR
“metric*” OR “measur*” OR “indicator” OR “refactoring”))

AND

(“systematic review” OR “systematic literature review” OR “systematic map” OR “systematic mapping” OR
“tertiary study” OR “tertiary review” OR “mapping study” OR “multivocal literature review” OR
“multivocal literature mapping”))

AND

(LIMIT-TO (DOCTYPE , “re”) OR LIMIT-TO (DOCTYPE , “ar”) OR LIMIT-TO (DOCTYPE , “cp”))

AND

(LIMIT-TO (SUBJAREA , “COMP”) OR LIMIT-TO (SUBJAREA , “ENGI”))

AND

(LIMIT-TO (LANGUAGE , “English”))

3.2 Selection Process

We used the criteria described in Table 3 to select relevant papers from the
search results. Papers fulfilling the Boolean expression (C0 AND C1 AND C2
AND (C3 OR C4)) were selected for full-text reading. We retained papers for the
next phase if there were indications that the full text of a paper might contain
relevant information. Papers that only fulfilled C5 were excluded.

As a first step, the first author excluded publications with less than eight
pages and not written in English. We excluded systematic studies with less than
eight pages as such studies are unlikely to report sufficiently detailed literature
review methods and results. Out of the 711 search results in Fig. 2, the first

92 U. Iftikhar et al.

Fig. 1. Search string generation and validation steps

author identified 163 publications that did not meet the page and language
requirements according to Table 3 and were excluded.

Table 3. Inclusion/exclusion criteria used in the tertiary study

Inclusion Criteria

C0 Publications in English language and with length of at least eight pages

C1 Peer-reviewed workshop, journal or conference publications

C2 Publications claiming to have systematically studied available literature, i.e., systematic literature
studies (SLRs or SMSs) or multivocal literature studies (MLRs, MLMs)

C3 Papers that identify, describe source code metrics to measure internal quality attributes or
determine levels of code quality (e.g., work on quality measurement or code smells)

C4 Papers that relate source code metrics/quality attributes/code refactoring/code smells to external
quality attributes

Exclusion Criteria

C5 Publications that are about only external quality attributes of software product/system/service, or
about the quality of other artifacts like defect reports, test code, or test cases i.e., studies not
related to source code metrics

We conducted a pilot round of the selection process [2,30] to improve its
objectivity and to develop a shared understanding of the topic. The piloting
step involved all four authors and 12 randomly selected papers from the search
results, which were assessed independently by all authors as relevant, irrelevant,
or maybe relevant. An initial agreement percentage of 58% was achieved, which
is moderate. To reduce the chances of misalignment between authors and to
improve the moderate initial agreement, the selection criteria were discussed
during a meeting to improve the shared understanding.

From the remaining 548 secondary studies, the first author applied the selec-
tion criteria to all secondary studies, while the second, third, and fourth author
were randomly assigned 182 secondary studies each, thus ensuring that each pub-
lication is reviewed by two authors. Decision making process suggested by [2,26],
was utilised. A secondary study was excluded if it was resolved as “irrelevant”
and it was included if it was agreed upon as “maybe” or “included” by both
authors. The initial agreement among the author-pairs was 73%. The average

A Catalog of Source Code Metrics - A Tertiary Study 93

Cohen-Kappa inter-rater agreement between author-pairs was 0.64, which is sub-
stantial agreement [17,32]. The disagreements during this round were resolved
through discussion. After the study selection based on title and abstract, 413
secondary studies were excluded.

We have used a modified adaptive reading method [40] to conclude the rele-
vance of papers included in the previous step. We read the paper’s research ques-
tions, introduction, and conclusion sections to decide its relevance. The selection
criteria listed in Table 3 were used to ascertain the relevance. The second author
reviewed all papers excluded in this stage to reduce the likelihood of excluding
a relevant publication. During the adaptive reading of the secondary studies,
36 secondary studies were further identified as not meeting the selection crite-
ria. These excluded studies were reviewed by the second author leading to 99
secondary studies being retained for full-text reading.

During the full-text reading stage, the full text for one secondary study [46]
was not available (besides our best efforts), thus, it was excluded. Two papers
were identified as the same secondary studies [50,51], and the most recent of the
two secondary studies [50] was retained. The first author further identified 40
secondary studies as irrelevant to the scope, which the second and fourth authors
reviewed. The authors agreed on excluding 38 secondary studies. After discus-
sion, the remaining two secondary studies were included giving 59 secondary
studies for quality assessment and data extraction.

Fig. 2. Selection process results (The count depicts included secondary studies at each
stage)

3.3 Data Extraction

Table 4 presents the data extraction form used.

Piloting of the Data Extraction. To validate the data extraction form,
the first and third authors independently extracted the data from a randomly
selected secondary study from the validation set [24]. The authors agreed on
76% of the data extracted for one randomly selected paper. The differences were
discussed and resolved. The threats related to data validity are further discussed
in Sect. 4.

94 U. Iftikhar et al.

Table 4. Data extraction form used in the study

Data Extracted

– Metadata: (author, title, publication venues, publication date)

– Search: (time period covered in the search)

– Source code quality attribute that are the secondary study’s focus: (from the research questions)

– Name and acronym of the source code metric (any metrics for which the measured entity is source code or its attributes).

– Description of the source code metrica

– Name of the external quality attribute/sub-attribute (i.e., maintainability, reliability, security, functionality, performance,
compatibility, usability, or portability [19,38]) measured by the source code metric

– Name of the internal quality attribute (i.e., coupling, cohesion, complexity, inheritance, or size [19]) measured by the
source code metric.

– Programming paradigm

– Application domain
a when no description of the source code metric was available in the secondary study,
we searched in the referenced primary studies.

Validation of the Data Extraction. After data extraction by the first author
on all included secondary studies, the fourth author randomly reviewed 5%
source code metrics, internal quality attributes, and classifications assigned. The
fourth author agreed with 55% of the data entries, while there were “minor
issues” with 25% and 20% data entries highlighted as “major issues.” The
authors discussed the issues in a meeting, and the first author took remedial
action to resolve the highlighted minor and major issues throughout the dataset.

3.4 Quality Assessment of the Secondary Studies

For this tertiary study, the criteria proposed by Budgen et al. [12] to answer
the five DARE [1] questions were used (see online [24]). After piloting the qual-
ity assessment criteria on one study to improve shared understanding, the first
author applied the DARE quality criteria on all studies followed by post-hoc
validation on 10% secondary studies by the fourth author. We used the qual-
ity assessment score to remove low-quality secondary studies [30]. Inspired by
[16,22], we removed secondary studies that score 1.5 (of 5).

After removing secondary studies with scores less than or equal to 1.5, 52
secondary studies remained. As DARE is not designed to evaluate the quality
of multi-vocal reviews, quality assessment-based selection was not applied to
MLRs. The secondary studies removed due to low DARE scores are listed online
[24]. Detailed results of quality assessment are also reported online [24].

3.5 Categorization of Source Code Metrics

We read all the source code metric names and their descriptions to identify the
units of code measured and the scope at which the values of source code metrics
are reported. We used a bottom-up approach to identify the units of code stated
in the source code metric descriptions. The definitions of the units of code are
shown in Table 5 while the definition of scope are available online [24]. To identify
unique source code metrics, we referred to the descriptions of the source code
metric. Source code metrics with the same descriptions are treated as duplicates
and are combined.

A Catalog of Source Code Metrics - A Tertiary Study 95

Table 5. Descriptions of units of code used for categorization

Name Description

Operators This includes mathematical, assignment and logical operation

Operands This includes inputs and variables needed to perform a mathematical, logical or assignment operation

Variables For our classification, they include attributes or variable declarations

Lines of code A single source code statement. This include composite code statements, logical lines of code,
executable lines of code, commands, point cut declarations

Comments Comments that are part of the source code files

Parameters Parameters include the parameters declared in method declaration, definition and its implementation

Code Blocks Code block which span more than a line of code. It could be several lines of code inside a function, code
expressions, conditional blocks of code, switch statements and variation point that span several lines of
code

Functions The methods (public, private, protected, abstract, virtual, setters, getters) or operations in a class,
procedures or routines (procedural programming languages), advices (aspect oriented programming),
refined/constant/base features (feature oriented programming (FOP))

Function Calls This includes the different method calls, message requests between classes, modules, packages or
components

Classes We include sub-classes, super classes, classes that use instances of other classes, inherited classes,
parent classes, children classes, cross-cutting concerns (aspect oriented programming (AOP)),
base/constant/refined features classes (feature oriented programming (FOP))

Modules We use this terminology to loosely classify collection of classes, components, packages, libraries,
sub-packages, sub-systems

Others In the case where the software construct being measured is not clearly stated, or when stated construct
is a feature or concern

4 Threats to Validity

In the discussion below, we use the classification of threats by Ampatzoglou et
al. [5].

Study Selection. During study selection, we included steps to improve the
objectivity of the process. We carefully designed the inclusion/exclusion criteria
before the selection process. All authors participated in the pilot rounds, and
at least two authors evaluated the relevance of each secondary study. The inter-
rater agreement was calculated and reported for all author pairs. All secondary
studies that were excluded in the adaptive reading and full-text reading phases
by the first author were reviewed by the second author. Since we excluded sec-
ondary studies with less than eight pages, some source code metrics may be
excluded from our catalog. However, we believe the number of excluded source
code metrics to be small and unlikely to change the overall results significantly.

Data Validity. The third author validated the data extraction form designed
after discussion. We also piloted the data extraction as recommended by Kitchen-
ham et al. [30] on 10% of the secondary studies. A post-hoc data validation was
performed on randomly selected 5% secondary studies with corrective actions
taken to resolve the differences. As the data extraction from secondary studies
is a manual process, there is a possibility of errors in data extraction given the
large data extracted for the given study.

96 U. Iftikhar et al.

Research Validity. We have reported the search string used, databases used,
and the inclusion/exclusion criteria to improve the repeatability of the tertiary
study. We regularly updated the design document of the tertiary study and
recorded all intermediate results in the protocol document.

Double Counting. Double counting of extracted data can occur in a tertiary
study when included secondary studies use the same primary study as their
source of information. It may lead to overstating a particular result when a
tertiary study aggregates findings from multiple secondary studies that utilized
the same primary studies. To avoid double counting, we preferred not to perform
any quantitative aggregations of results across secondary studies.

5 Results and Analysis

Of the 52 included secondary studies reporting source code metrics (see Table 8),
31 are systematic literature reviews (SLRs), 20 are systematic mapping studies
(SMSs), and one is a multi-vocal literature review (MLM). The earliest study
was published in 2009, and 69% (36 out of 52) were published 2015–2020.

The included secondary studies report 423 source code metrics which mea-
sure internal quality attributes at different scopes. Due to space limitations, the
complete list is available online [24]. Figure 3 shows a screenshot of the online
catalog. CK metrics are among the most commonly reported source code met-
rics. Apart from the CK metrics suite, other frequently reported metric suites
include McCabe, and QMOOD metrics.

Among the included secondary studies, 59% (31 out of 52) secondary stud-
ies report source code metrics for specific programming paradigms such as
aspect-oriented (AOP), feature-oriented (FOP), procedural, and object-oriented
(OOP). Source code metrics used in OOP are reported in 46% (24 out of 52)
of the secondary studies, while source code metrics used in AOP are reported
in 12% (six out of 52) of the secondary studies. Eight (15%) secondary studies
report source code metrics used in the procedural paradigm, while source code
metrics used in FOP are reported in three secondary studies. Over 50 source
code metrics are reported for more than one programming paradigm.

The secondary studies use source code metrics to assess external quality
attributes (27 secondary studies), evaluate software-product line implementa-
tions (four secondary studies), measure the impact of code refactoring (two sec-
ondary studies), and detect source code smells (five secondary studies).

5.1 Internal Quality Attributes

The secondary studies report 14 quality attributes measured by source code met-
rics which we mapped into six internal quality attributes, as shown in Table 6.
The descriptions of the internal quality attributes [24] are based on Fenton and
Bieman [19] and Bansiya and Davis [9]. Coupling, size, and complexity are the

A Catalog of Source Code Metrics - A Tertiary Study 97

Fig. 3. Screenshot of the online catalog of source code metrics

most frequently reported internal quality attributes, with 161 source code met-
rics reporting coupling and 78 source code metrics reporting the complexity
of the source code. Complexity is the most frequently reported internal qual-
ity attribute, with 88% (46 out of 52) secondary studies reporting source code
metrics for it. Certain source code metrics are commonly reported. Frequently
reported inheritance metrics include Depth of inheritance tree (DIT) and Num-
ber of Children (NOC). Similarly, frequently reported complexity metrics include
Weighted method per class (WMC), McCabe’s cyclomatic complexity (CC), and
Response for a class (RFC).

5.2 Units of Code in Source Code Metrics to Measure Internal
Quality Attributes

We identified 26 units of code utilized in the source code metrics descriptions,
which we mapped to 13 categories of units of code [24]. Source code metrics either
use a single unit of code or a combination of two or more units of code to measure
the reported internal quality attribute. Out of the 423 source code metrics that
measure an internal quality attribute, 25% (107 out of 423) of the source code
metrics incorporate multiple units of code to measure internal quality attributes.
Standalone units of code are more frequently used than composite units of code,
with 75% of source code metrics using standalone units of code. functions (106
source code metrics) and classes (69 source code metrics) are among the most

98 U. Iftikhar et al.

Table 6. Number of unique source code metrics (column Metrics) reported in included
secondary studies, categorized by commonly referred internal quality attributes (col-
umn Attribute)

Attribute Metrics Studies

Cohesion 56 S01, S02, S03, S05, S06, S07, S08, S09, S10, S11, S13, S14, S15, S16, S17, S18, S19,
S20, S22, S24, S25, S26, S27, S28, S29, S30, S31, S32, S34, S36, S37, S38, S41, S42,
S44, S46, S47, S49, S50, S51

Complexity 78 S01, S02, S03, S05, S06, S07, S08, S09, S10, S11, S12, S13, S14, S15, S16, S17, S18,
S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S36,
S37, S38, S40, S41, S42, S43, S46, S47, S48, S49, S50, S51

Coupling 161 S01, S02, S03, S05, S06, S07, S08, S09, S10, S11, S13, S14, S15, S16, S17, S18, S19,
S20, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S34, S36, S37, S38, S40,
S41, S43, S44, S45, S46, S47, S49, S50, S51

Inheritance 34 S01, S02, S03, S05, S06, S07, S08, S09, S10, S11, S13, S14, S15, S16, S17, S19, S20,
S22, S24, S25, S26, S27, S28, S29, S30, S31, S34, S36, S37, S38, S41, S44, S46, S47,
S48, S49, S50, S51

Size 61 S01, S02, S03, S05, S06, S08, S09, S10, S11, S12, S13, S15, S16, S17, S19, S20, S21,
S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38,
S40, S41, S42, S43, S44, S46, S47, S48, S49, S51, S52

Others 33 S01, S02, S05, S06, S08, S09, S11, S16, S17, S19, S20, S24, S25, S26, S27, S29, S31,
S34, S36, S37, S38, S45, S49, S51

frequently used standalone units of code. Among the frequently used composite
units of code, classes & functions (25 source code metrics), and functions &
variables (34 source code metrics) are used together. The frequently used units
of code vary for different internal quality attributes. Source code metrics for
coupling predominantly use classes, and functions & variables. In contrast, size-
related source code metrics rely equally on lines of code, classes, in addition
to functions. Complexity-focused source code metrics analyze the code blocks,
operators & operands, and functions to measure source code’s complexity.

5.3 Scope of Source Code Metric Evaluation

The identified scope [24] categorize the source code at six levels of abstraction:
application - module - class - function - code-block - lines of code. The results
of the scope are depicted in Table 7. Source code metrics are most frequently
evaluated at the class level, followed by module and application levels. Among
source code metrics that report internal quality attributes, 216 evaluate source
code metrics at the class level. Evaluation of source code metrics at the class level
is the predominant trend when the scope of individual internal quality attributes
is analyzed, followed by evaluation at the others and application level. Coupling
metrics have the highest percentage, 102 out of 161 (63%), among reported
internal quality attributes to be evaluated at the class level. Intuitively, none of
the source code metrics are evaluated at lines of code. Only a small subset of
source code metrics (three source code metrics) are assessed below the function
level, suggesting that the lowest meaningful scope is at the function level.

One method to utilize the catalog is filtering the source code metrics list
using the internal quality attribute of interest, required scope, and unit of code.

A Catalog of Source Code Metrics - A Tertiary Study 99

The results can act as a good starting point for determining source code metrics
available for the specific needs of the catalog user. As an example, selecting
complexity as the internal quality attribute of choice, scope as function, and unit
of code as code blocks provides 21 source code metrics and their descriptions.

Table 7. Scope identified for source code metrics in secondary studies

Scope Cohesion Complexity Coupling Inheritance Size Others Total

Application 6 16 16 6 15 3 62

Module 10 8 22 2 4 3 49

Class 30 23 102 20 26 15 216

Functions 4 11 1 1 4 0 21

Code Blocks 0 1 0 0 1 1 3

Others 6 19 20 5 11 11 72

Total 56 78 161 34 61 33 423

6 Discussion

Our tertiary review provides a catalog of source code metrics and their descrip-
tions for researchers and practitioners. We classified the source code metrics
based on units of code used to measure internal quality attributes and the scope
at which the measured values are reported. We have reported six internal quality
attributes measured by source code metrics in the included studies. However, we
did not find any source code metrics for internal quality attributes such as mes-
saging and hierarchies, as defined in [9]. It suggests that the two internal quality
attributes are less relevant to the included secondary studies’ scope, and the two
internal quality attributes have received less focus in the literature. Our results
show that almost 38% of the reported source code metrics relate to coupling and
nearly 18% measure complexity. Arvanitoue et al. [7] also observe complexity
and coupling as the most studied internal quality attributes.

Our results show that the CK metrics suite [15] is one of the most frequently
used metric suites, which is consistent with other studies (e.g. [39]). Compared
to Nunez et al.’s SMS [39], we report more unique source code metrics (423 in
comparison to 300) and provide descriptions for source code metrics that may
aid researchers and practitioners alike.

One of the challenges in source code metrics is the lack of standardization of
names and descriptions. Several studies [18,35,44] have highlighted the incon-
sistency of metrics’ names and acronyms, which may lead to a proliferation of
source code metrics. We report 61 unique source code metrics referred to in the
literature with more than one acronym (e.g., cyclomatic complexity is assigned
several acronyms such as CC, cyclo, MVG, and V(G)). In the cases where the
metric’s name is not specified along with the acronym, it may mislead the audi-
ence. Using metrics’ names and descriptions, we further identified 150 source

100 U. Iftikhar et al.

code metrics that use similar units of code while aggregating the units of code
at different scope levels (e.g., lines of code, lines of feature code, lines of con-
cern code). We considered these as essentially similar source code metrics and
reported them as similar source code metrics accordingly. However, we observed
that the lack of standardization of names of source code metrics remains an open
issue. This affects the utility provided by various source code metrics.

We observe that the units of code and scope vary when a particular program-
ming paradigm is considered. Intuitively, such a variation is expected as different
programming paradigms focus more on certain scopes than others. We note that
source code metrics for feature-oriented programming are predominantly mea-
sured at the feature level or concern level, which we have classified as others.
The most often measured units of code for procedural languages are operators
& operands, which are more frequently assessed at the application level. Source
code metrics reported for the object-oriented programming paradigm measure
functions as units of code and predominantly collect metrics at the class level
of scope. One possible reason for the difference is that applications written in
procedural languages have different code structure compared to object-oriented
applications, and the size of the application being investigated may also vary.

In the included studies, we observed a lack of source code metrics explicitly
designed for contemporary programming languages, such as Python, Go, and
Kotlin. While several open-source measurement tools exist, summarising these
source code metrics may improve the utilization of appropriate source code met-
rics for contemporary programming languages.

Please note that the catalog currently does not provide information about
which reported measurement tools also support source code metrics. Future work
can report the available tool support for the reported source code metrics to
improve the usability of the catalog for practitioners.

7 Conclusions

We analyzed 52 systematic studies reporting 423 unique source code metrics,
which we have compiled into a catalog. We have intentionally excluded metrics
related to change, architecture, and testing for the catalog. We have categorized
the source code metrics in the catalog according to the units of code and the
scope.

Our results show that source code metrics predominantly measure function-
level units of code such as methods, advices, procedures, and routines. Further-
more, source code metrics frequently report values at the class level instead of
higher scope levels, such as at the module or application level.

When reporting the catalog of source code metrics, we have not considered
the validation status of the presented source code metrics. One of the future
works can supplement the catalog to include the validation status of the reported
source code metrics, thus improving the usability of the catalog.

Acknowledgment. This work has been supported by ELLIIT, a Strategic Area
within IT and Mobile Communications, funded by the Swedish Government. The work

A Catalog of Source Code Metrics - A Tertiary Study 101

has also been supported by the OSIR project funded by the Swedish Knowledge Foun-
dation (grant number 20190081).

Appendix

Table 8. List of included secondary studies (PS: No. of primary studies, QS: Quality
score)

Title Study
type

Publ
year

PS Start
year

End
year

QS Focus

S01 A Systematic Literature Review on Bad
Smells-5W’s: Which, When, What, Who,
Where

SLR 2021 351 1990 2017 2.5 Bad Smells

S02 Evolution of quality assessment in SPL:
A systematic mapping

SMS 2020 63 2000 2019 2.5 Design Approach
Evaluation

S03 A systematic literature review on
empirical studies towards prediction of
software maintainability

SLR 2020 36 1990 2019 4 Maintainability

S04 Evaluating code readability and legibility:
An examination of human-centric studies

SLR 2020 54 2016 2019 3 Maintainability

S05 Software smell detection techniques: A
systematic literature review

SLR 2020 145 1993 2018 3 Bad Smells

S06 A Tool-Based perspective on software
code maintainability metrics: A
Systematic Literature Review

SLR 2020 43 2000 2019 3

S07 A systematic review of software usability
studies

SLR 2020 150 1990 2016 4 Usability

S08 Metrics in automotive software
development: A systematic literature
review

SLR 2020 38 1990 2018 3 Source code
metrics

S09 Machine learning techniques for software
bug prediction: A systematic review

SLR 2020 31 2014 2020 2.5 Reliability

S10 How does object-oriented code refactoring
influence software quality? Research
landscape and challenges

SMS 2019 142 2000 2017 4.5 Refactoring

S11 Metrics for analyzing variability and its
implementation in software product lines:
A systematic literature review

SLR 2019 29 2007 2017 3.5 Source code
metrics

S12 Software quality assessment model: a
systematic mapping study

SMS 2019 31 1998 2015 3 Quality
assessment
models and
measurement

S13 A survey on software testability SMS 2019 208 1982 2017 2 Maintainability

S14 A survey on software coupling relations
and tools

SLR 2019 136 2002 2017 2.5 Internal quality
attributes

S15 Software quality measurement in software
engineering project: A systematic
literature review

SLR 2019 38 1984 2005 2 Quality
assessment
models and
measurement

S16 A systematic literature review and
meta-analysis on cross project defect
prediction

SLR 2019 30 2008 2015 4 Reliability

(continued)

102 U. Iftikhar et al.

Table 8. (continued)

Title Study
type

Publ
year

PS Start
year

End
year

QS Focus

S17 Empirical studies on software product
maintainability prediction: A systematic
mapping and review

SMS 2019 82 2000 2018 4 Maintainability

S18 A systematic literature review on the
detection of smells and their evolution in
object-oriented and service-oriented
systems

SLR 2019 78 2000 2017 4 Bad Smells

S19 A Systematic Literature Review on
empirical analysis of the relationship
between code smells and software quality
attributes

SLR 2019 74 1997 2018 5 Bad Smells

S20 Software change prediction: A systematic
review and future guidelines

SLR 2019 38 2000 2019 4.5 Maintainability

S21 The impact of code smells on software
bugs: A systematic literature review

SLR 2018 18 2007 2017 2.5 Bad Smells

S22 Mapping the field of software life cycle
security metrics

SMS 2018 71 2000 2017 3 Security

S23 Smells in software test code: A survey of
knowledge in industry and academia

MLM 2019 166 2001 2016 - Bad Smells

S24 Coupling and cohesion metrics for
object-oriented software: A systematic
mapping study

SMS 2018 129 1991 2017 2 Internal quality
attributes

S25 Empirical evaluation of the impact of
object-oriented code refactoring on
quality attributes: A systematic literature
review

SLR 2018 76 2001 2015 4.5 Refactoring

S26 A systematic review on search-based
refactoring

SLR 2017 71 2000 2016 2.5 Refactoring

S27 Software maintainability: Systematic
literature review and current trends

SLR 2016 96 1991 2015 3.5 Maintainability

S28 Metrics and statistical techniques used to
evaluate internal quality of
object-oriented software: A systematic
mapping

SMS 2016 79 2004 2013 2 Internal quality
attributes

S29 Software change prediction: A literature
review

SLR 2016 20 1998 2011 2.5 Maintainability

S30 Open source software evolution: A
systematic literature review (part 1 2)

SLR 2016 190 1997 2016 2 Software
Evolution

S31 Empirical evidence on the link between
object-oriented measures and external
quality attributes: A systematic literature
review

SLR 2015 99 1996 2011 4.5 Muliple External
Attributes

S32 Software metrics for measuring the
understandability of architectural
structures - A systematic mapping study

SMS 2015 25 1990 2013 4 Maintainability

S33 How have we evaluated software pattern
application? A systematic mapping study
of research design practices

SMS 2015 27 2000 2014 4.5 Design Patterns

S34 Software fault prediction: A systematic
mapping study

SMS 2016 70 2002 2014 2 Reliability

S35 Software product size measurement
methods: A systematic mapping study

SMS 2014 208 1982 2014 2 Internal quality
attributes

S36 Empirical evidence of code decay: A
systematic mapping study

SMS 2013 30 1999 2013 4 Bad Smells

(continued)

A Catalog of Source Code Metrics - A Tertiary Study 103

Table 8. (continued)

Title Study
type

Publ
year

PS Start
year

End
year

QS Focus

S37 A systematic mapping study on software
product line evolution: From legacy
system re-engineering to product line
refactoring

SMS 2013 74 1997 2012 2.5 Software
Evolution

S38 Software fault prediction metrics: A
systematic literature review

SLR 2013 106 1990 2011 4 Reliability

S39 Software clone detection: A systematic
review

SLR 2013 213 1997 2011 3.5 Bad Smells

S40 A mapping study to investigate
component-based software system metrics

SMS 2013 36 2000 2010 3.5 Source code
metrics

S41 A systematic review of the empirical
validation of object-oriented metrics
towards fault-proneness prediction

SLR 2013 29 1995 2012 4 Reliability

S42 A systematic review of quality attributes
and measures for software product lines

SLR 2012 35 1996 2012 3 Source code
metrics

S43 A systematic review of studies of open
source software evolution

SLR 2010 41 1976 2009 2.5 Software
Evolution

S44 A systematic review of comparative
evidence of aspect-oriented programming

SLR 2010 22 1997 2008 4 Source code
metrics

S45 Software architecture degradation in open
source software: A systematic literature
review

SLR 2020 74 2000 2019 4 Bad Smells

S46 A mapping study on design-time quality
attributes and metrics

SMS 2017 154 1976 2015 2.5 Source code
metrics

S47 What’s up with software metrics? - A
preliminary mapping study

SMS 2010 100 2000 2005 2 Source code
metrics

S48 A systematic review of software
maintainability prediction and metrics

SLR 2009 15 1985 2008 4 Maintainability

S49 Source code metrics: A systematic
mapping study

SMS 2017 226 2010 2015 4 Source code
metrics

S50 A survey of search-based refactoring for
software maintenance

SMS 2018 50 1999 2016 3 Refactoring

S51 A review of code smell mining techniques SLR 2015 46 1999 2015 3 Bad Smells

S52 Software design smell detection: a
systematic mapping study

SMS 2018 395 2000 2017 3 Bad Smells

References

1. The Centre for Reviews and Dissemination (CRD) Database of Abstracts of
Reviews of Effects (DARE). https://www.crd.york.ac.uk/CRDWeb/. Accessed 20
Oct 2022

2. Ali, N.B., Petersen, K.: Evaluating strategies for study selection in systematic
literature studies. In: Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, pp. 1–4 (2014)

3. Ali, N.B., Tanveer, B.: A comparison of citation sources for reference and citation-
based search in systematic literature reviews. e-informatica Soft. Eng. J. 16, 220106
(2022)

4. Ali, N.B., Usman, M.: Reliability of search in systematic reviews: towards a quality
assessment framework for the automated-search strategy. Inf. Softw. Technol. 99,
133–147 (2018)

https://www.crd.york.ac.uk/CRDWeb/

104 U. Iftikhar et al.

5. Ampatzoglou, A., Bibi, S., Avgeriou, P., Chatzigeorgiou, A.: Guidelines for man-
aging threats to validity of secondary studies in software engineering. In: Contem-
porary Empirical Methods in Software Engineering, pp. 415–441. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-32489-6 15

6. Arisholm, E., Briand, L., Foyen, A.: Dynamic coupling measurement for object-
oriented software. IEEE Trans. Softw. Eng. 30(8), 491–506 (2004)

7. Arvanitou, E., Ampatzoglou, A., Chatzigeorgiou, A., Galster, M., Avgeriou, P.: A
mapping study on design-time quality attributes and metrics. J. Syst. Softw. 127,
52–77 (2017)

8. Bandi, A., Williams, B., Allen, E.: Empirical evidence of code decay: a systematic
mapping study. In: Proceedings - Working Conference on Reverse Engineering,
WCRE, pp. 341–350 (2013)

9. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Softw. Eng. 28(1), 4–17 (2002)

10. Barros-Justo, J.L., Benitti, F.B., Matalonga, S.: Trends in software reuse research:
a tertiary study. Comput. Stand. Interfaces 66, 103352 (2019)

11. Briand, L.C., Wüst, J.: Empirical studies of quality models in object-oriented sys-
tems. Adv. Comput. 56, 97–166 (2002)

12. Budgen, D., Brereton, P., Williams, N., Drummond, S.: What support do system-
atic reviews provide for evidence-informed teaching about software engineering
practice?. e-informatica Softw. Eng. J. 14(1), 7–60 (2020)

13. Caulo, M., Scanniello, G.: A taxonomy of metrics for software fault prediction. In:
2020 46th Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), pp. 429–436. IEEE (2020)

14. Chen, L., Babar, M.A., Zhang, H.: Towards an evidence-based understanding
of electronic data sources. In: 14th International Conference on Evaluation and
Assessment in Software Engineering (EASE), pp. 1–4 (2010)

15. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

16. Curcio, K., Santana, R., Reinehr, S., Malucelli, A.: Usability in agile software
development: a tertiary study. Comput. Stand. Interfaces 64, 61–77 (2019)

17. El Emam, K.: Benchmarking kappa: interrater agreement in software process
assessments. Empir. Softw. Eng. 4(2), 113–133 (1999)

18. El-Sharkawy, S., Yamagishi-Eichler, N., Schmid, K.: Metrics for analyzing vari-
ability and its implementation in software product lines: a systematic literature
review. Inf. Softw. Technol. 106, 1–30 (2019)

19. Fenton, N., Bieman, J.: Software Metrics: A Rigorous and Practical Approach.
CRC Press, Boca Raton (2019)

20. Halstead, M.H.: Elements of Software Science. Elsevier Science Ltd., Amsterdam
(1977)

21. Hernandez-Gonzalez, E.Y., Sanchez-Garcia, A.J., Cortes-Verdin, M.K., Perez-
Arriaga, J.C.: Quality metrics in software design: a systematic review. In: Pro-
ceedings of the 7th International Conference in Software Engineering Research
and Innovation, pp. 80–86 (2019)

22. Hoda, R., Salleh, N., Grundy, J., Tee, H.M.: Systematic literature reviews in agile
software development: a tertiary study. Inf. Softw. Technol. 85, 60–70 (2017)

23. Hosseini, S., Turhan, B., Gunarathna, D.: A systematic literature review and meta-
analysis on cross project defect prediction. IEEE Trans. Softw. Eng. 45(2), 111–147
(2019)

https://doi.org/10.1007/978-3-030-32489-6_15

A Catalog of Source Code Metrics - A Tertiary Study 105

24. Iftikhar, U., Ali, N.B., Börstler, J., Usman, M.: Dataset for a catalog of source
code metrics - a tertiary study. https://doi.org/10.5281/zenodo.7219870. Accessed
20 Oct 2022

25. Iftikhar, U., Ali, N.B., Börstler, J., Usman, M.: A tertiary study on links between
source code metrics and external quality attributes. Information and Software
Technology (Submitted)

26. Jabangwe, R., Börstler, J., Šmite, D., Wohlin, C.: Empirical evidence on the link
between object-oriented measures and external quality attributes: a systematic
literature review. Empir. Softw. Eng. 20(3), 640–693 (2015)

27. Kaur, A.: A systematic literature review on empirical analysis of the relationship
between code smells and software quality attributes. Arch. Comput. Methods Eng.
27(4), 1267–1296 (2019). https://doi.org/10.1007/s11831-019-09348-6

28. Kaur, A., Kaur, K., Pathak, K.: A proposed new model for maintainability index
of open source software. In: Infocom Technologies and Optimization Proceedings
of 3rd International Conference on Reliability, pp. 1–6 (2014)

29. Kaur, S., Singh, P.: How does object-oriented code refactoring influence software
quality? Research landscape and challenges. J. Syst. Softw. 157, 110394 (2019)

30. Kitchenham, B.A., Budgen, D., Brereton, P.: Evidence-Based Software Engineering
and Systematic Reviews, vol. 4. CRC Press, Boca Raton (2015)

31. Lacerda, G., Petrillo, F., Pimenta, M., Guéhéneuc, Y.G.: Code smells and refac-
toring: a tertiary systematic review of challenges and observations. J. Syst. Softw.
167, 110610 (2020)

32. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33, 159–174 (1977)

33. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice: Using Software
Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems. Springer, Cham (2007)

34. Li, W.: Another metric suite for object-oriented programming. J. Syst. Softw.
44(2), 155–162 (1998)

35. Malhotra, R., Chug, A.: Software maintainability: systematic literature review and
current trends. Int. J. Softw. Eng. Knowl. Eng. 26(08), 1221–1253 (2016)

36. Martins, L., Afonso, P.J., Freire, A., Costa, H.: Evolution of quality assessment in
SPL: a systematic mapping. IET Softw. 14(6), 572–581 (2020)

37. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320
(1976)

38. de Normalización, O.I.: ISO-IEC 25010: 2011 systems and software engineering-
systems and software quality requirements and evaluation (square)-system and
software quality models. International Organization for Standardization, Geneva,
Switzerland (2011)

39. Nuñez-Varela, A.S., Pérez-Gonzalez, H.G., Mart́ınez-Perez, F.E., Soubervielle-
Montalvo, C.: Source code metrics: a systematic mapping study. J. Syst. Softw.
128, 164–197 (2017)

40. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: 12th International Conference on Evaluation and Assess-
ment in Software Engineering (EASE) 12, pp. 1–10 (2008)

41. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic
mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18
(2015)

42. Saharudin, S., Wei, K., Na, K.: Machine learning techniques for software bug pre-
diction: a systematic review. J. Comput. Sci. 16(11), 1558–1569 (2020)

https://doi.org/10.5281/zenodo.7219870
https://doi.org/10.1007/s11831-019-09348-6

106 U. Iftikhar et al.

43. Saraiva, J., et al.: Aspect-oriented software maintenance metrics: a systematic map-
ping study. IET Semin. Digest 2012(1), 253–262 (2012)

44. Saraiva, J., Soares, S., Castor, F.: Towards a catalog of object-oriented software
maintainability metrics. In: 2013 4th International Workshop on Emerging Trends
in Software Metrics (WETSoM), pp. 84–87. IEEE, San Francisco, CA (2013)

45. Sharma, A., Dubey, S.K.: Comparison of software quality metrics for object-
oriented system. Int. J. Comput. Sci. Manage. Stud. (IJCSMS) 12, 12–24 (2012)

46. Sreeji, K., Lakshmi, C.: A systematic literature review: recent trends and open
issues in software refactoring. Int. J. Appl. Eng. Res. 10(18), 39696–39707 (2015)

47. Tran, H.K.V., Börstler, J., bin Ali, N., Unterkalmsteiner, M.: How good are my
search strings? Reflections on using an existing review as a quasi-gold standard.
e-Informatica Softw. Eng. J. 16(1), 220103 (2022)

48. Turner, M.: Digital libraries and search engines for software engineering research:
an overview. Keele University, UK (2010)

49. Vogel, M., et al.: Metrics in automotive software development: a systematic liter-
ature review. J. Softw. Evol. Process 33(2), e2296 (2021)

50. Yan, M., Xia, X., Zhang, X., Xu, L., Yang, D., Li, S.: Software quality assessment
model: a systematic mapping study. Sci. China Inf. Sci. 62(9), 1–18 (2019). https://
doi.org/10.1007/s11432-018-9608-3

51. Yan, M., Xia, X., Zhang, X., Xu, L., Yang, D.: A systematic mapping study of
quality assessment models for software products. In: 2017 International Conference
on Software Analysis, Testing and Evolution (SATE), pp. 63–71. IEEE (2017)

https://doi.org/10.1007/s11432-018-9608-3
https://doi.org/10.1007/s11432-018-9608-3

Software Quality Assurance

Software Quality Assessment: Defect Life Cycle,
Software Defect Profile, Its Types

and Misalignments

Oleksandr Gordieiev1,2(B) , Daria Gordieieva1,2 , and Austen Rainer1

1 Queen’s University Belfast, Belfast BT9 5BN, UK
{o.gordieiev,d.gordieieva,a.rainer}@qub.ac.uk

2 Lutsk National Technical University, Lutsk 43018, Ukraine

Abstract. In order to understand the causes and consequences of software defects,
it is necessary to investigate a software defect life cycle. This article proposes a
general structure of the software defect life cycle model. A more detailed analysis
of the life cycle of a defect makes it possible to present its modifications in the
form of pathological chains. During the injection of software defects, not only are
individual software defects used, but also their various sets in the formof a software
defect profile. The software defect profile consists of a taxonomyof types of defects
and factual defects distributed according to these types. During defect injection,
certain changes in the software defect profile occur in the form of inconsistencies
in terms of the types of defects and their quantity. Such inconsistencies are called
misalignments. Based on the analysis of misalignments in the software defect
profile, conclusions about the software quality and the software assessment process
quality are drawn. Throughout its life cycle, the software defect profile undergoes
several changes from injection to an analysis of test results. As a result of such
changes, different types of profiles are formed. The analysis of the mismatches of
the types of software defect profiles made it possible to determine the full set of
possible variants of such misalignments. In general, the article presents results at
a more theoretical level with some small examples.

Keywords: software defect injection · software defect profile · software defect
life cycle · software defect profile misalignments

1 Introduction and Formulation of the Problem

Software development is inextricably linked to and depends on the software quality
assurance process. The primary task of software quality assurance is the assessment
of quality. Since the starting point of the development of software engineering [1],
many different approaches, methods, techniques and tools have been developed for
software quality assessment. The approach to quality assessment, which is based on the
injection of software defects, has been used for decades. This approach is based on the
artificial injection of defects into the software and its further testing. Defect injection
is used to assess the quality of testing (processes, groups of testers, test suites), fault

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Mendez et al. (Eds.): SWQD 2023, LNBIP 472, pp. 109–120, 2023.
https://doi.org/10.1007/978-3-031-31488-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31488-9_6&domain=pdf
http://orcid.org/0000-0003-2517-9388
http://orcid.org/0000-0003-0474-3138
http://orcid.org/0000-0001-8868-263X
https://doi.org/10.1007/978-3-031-31488-9_6

110 O. Gordieiev et al.

tolerance mechanisms and finding hidden defects. Recently, the importance of using
such an approach has increased due to the inclusion of defect injection techniques in
known international standards [2] as mandatory for application in the development of
critical software. Despite the simplicity of understanding the software quality assessment
approach based on defect injection, there are many unsolved or partially solved tasks for
its implementation in the form of separate models, methods and tools. Such tasks include
the description and the presentation of the defect life cycle model and the software defect
profile [3] and the influence of the analysis of themisalignments of the obtained software
defect profiles on decision-making regarding the level of software quality in general, etc.
A software defect is a result that has certain causes and consequences. The causes, as
a rule, are mistakes of developers, and the consequences can be expressed in faults or
failures of information systems. A software defect profile is an ordered set of defects
consisting of a software defect profile taxonomy and specific defects that correspond to
it. Amisalignment of software defect profile is the inconsistency between types of defect
profiles in part of specific software defects, for example, between a profile of injected
software defects and a profile of software discovered defects.

Software defects have been analyzed and studied since the emergence of software
engineering as a separate engineering direction [1]. Since that time, the direction of soft-
ware quality assurance has crystallized and it is successfully developing within software
engineering. Many approaches, methods, techniques and tools were developed to ensure
software quality. Despite this, problems with the appearance of software defects still
exist today [4, 5]. According to the authors of the article, when the studying software
defects, it is advisable, primarily, to research the software defect itself in more detail
and describe its life cycle as part of the software development process. Known models
describing the software defect life cycle have a number of disadvantages. For example,
the defect flow chart and defect life cycle [6, 7] are more general and mostly illustrative
(graphic). The existing works do not fully consider the software defect in detail [8, 9],
do not research it at all or do not fully consider the cause-and-effect relationships of
the appearance of software defects [10, 11]. The software defect life cycle (SDFLC) in
context with the software development life cycle [12, 13] was not reviewed as well.

Articles devoted to software quality assessment using software defect injection are
quite diverse in their goals and tasks. In article [14], in part of a model of the feasibility
of using defect injection for software quality assessment, only the problem of assessing
the expediency of defect injecting is raised, but there is no presentation in the form of a
separate model or method. Misalignments in the profile of software defects in existing
works are usually considered as a comparison of the profile of defects that are injected
and the profile of defects detected during software testing [15]. Software defect profile
life cycle and software defect profile misalignments did not receive a detailed and formal
description [16], however, the need for a deeper study of the types of profiles of software
defects and software defect profile life cycle is considered in the articles [14–16].

In this regard, the goal of the article is a detailed presentation and description of the
life cycle of a software defect, aswell as to studydifferent variants of themisalignments of
software defect profiles during software defect injection for software quality assessment.

The article is logically divided into two parts: the first (Sect. 2) is the presentation
and the description of the software defect life cycle as a white box, and the second

Software Quality Assessment 111

(Sects. 3–4) is the presentation and the description of the software defect profile, its types
and misalignments as well as the analysis of its misalignments in the software quality
assessment process using defect injection. I.e. the concept of the material presentation
is as follows: at the beginning the software defect life cycle, its pathological chains and
defect life cycle in a V-shaped model were represented. The following is a software
defect profile, its types and variants of misalignments. The article ends with a simple
example and conclusions.

2 Software Defect Life Cycle

The software defect life cycle will be considered based on the following basic sequence
«developer mistake - software failure»: developer’s (operator’s) mistake (white back-
ground), software defect or bug (light gray background), calculation error (light gray
background) during software operation, fault and failure (black background) (see Fig. 1).

Mistake
(M)

Defect(D),
bug(B)

Error
(E)

Fault
(F)

Failure
(FR)

Fig. 1. Sequence «developer’s mistake - software failure»

Based on the sequence «developer’s mistake – software failure», we will form the
basic structure of a software defect life cycle. Such structure includes the following
basic components: sources (causes) (white background), results (light gray background),
aftermaths (black background) and side effects (dark gray background) (see Fig. 2). For
better identification of the elements of thefigures, the background schemeof designations
for Fig. 2 will be similar for subsequent figures - developments of the software defect life
cycle. First of all, for the result to occur – a defect (D) and a calculation error (E) - there
must be a cause or source, as a rule, these are mistakes (M) of developers or operators. A
defect in the software leads to a calculation error. The aftermaths of a calculation error
are a fault (F) or a failure (FR). It is also worth noting that software defects can lead to
a vulnerability (V), through which attackers can gain unauthorized access (UA) to the
software and ultimately lead to fault or failure (see Fig. 2). Thus, the set of elements of
SDFLC consists of 7 elements and will have the following view (1).

Amore detailed analysis of SDFLCmade it possible to detail it and form the so-called
modifications of SDFLC, which were called «pathological chains». Pathological chains
are a sequence of interconnected events that can occur during the development and use of
human-computer systems software, starting from a developer’s (operator’s) mistake and
endingwith the failure of the information system as awhole. Let us consider the structure
of the pathological chain. It includes the following elements: operator’s (or developer’s)
mistake (OM), developmentmistake (DM), hidden defect in software (HD), active defect
in software (AD), error calculation (E), fault (F), failure (FR), created vulnerability
(CV), activated vulnerability (AV), unauthorized control (UC), unauthorized access to
data (UA) (Fig. 3).

112 O. Gordieiev et al.

Thus, the set of elements of the pathological chain, the modification of the life cycle
of a software defect, has expanded to 11 elements and will already have the following
refined form (2).

M D E

FR

F

V UA

1. Sources

(causes)
2.Results

3.Aftermaths

4. Side

effects

Fig. 2. General structure of SDFLC

OM

HD E

FR

F

CV AV

DM

UC

UA

AD

Fig. 3. Structure of the pathological chain

SDFLC = {M ,D,E,FR,F,V ,UA} (1)

SDFLC =
{
OM ,DM ,HD,AD,E,
FR,F,CV ,AV ,UC,UA

}
(2)

There are physical, design, coding and interaction pathological chains. Let us
consider them in more detail:

1. Physical pathological chain. The nature of the origin of this chain is physical, that is,
it is physical defects or malfunctions of the hardware. The elements of such a chain
will be denoted by an index - the letter «p» (physical) (Fig. 4). The set of elements of
such a chain is practically identical to the set of elements of a unified structure. A new
element is added to the physical pathological chain – hardware wear (HW) (white
background). It is believed that hardware wear is also a source of software defects
(Fig. 4). Note that the set of elements of the pathological chain, the modification of
the SDFLC, has increased to 12 elements and has had the following refined form
(3). An example of a defect corresponding to this pathological chain and models of
impact hardware defect to software are described in [17].

2. Design pathological chain. For this pathological chain, design defects will be con-
sidered. The elements of such a chain will be denoted by an index – the letters
«des» (design) (see Fig. 5). The set of elements of the design pathological chain,
the modification of the software defect life cycle, will have the following specified
form (4). An example impact mistake in software design corresponding to the design
pathological chain and its impact on software defect is described in [18].

SDFLCp =
{
OMp,DMp,HDp,ADp,Ep,FRp,

Fp,HWp,CVp,AVp,UCp,UAp

}
(3)

SDFLCdes =
{
OMdes,DMdes,HDdes,ADdes,Edes,

FRdes,Fdes,CVdes,AVdes,UCdes,UAdes

}
(4)

Software Quality Assessment 113

OMp

HDp Ep

FRp

Fp

CVp AVp

DMp

UCp

UAp

HWp

ADp

Fig. 4. Physical pathological chain

OMdes

HDdes Edes

FRdes

Fdes

VCdes VAdes

DMdes

UCdes

UAdes

ADdes

Fig. 5. Design pathological chain

3. Coding pathological chain. Software coding defects will be considered here. The
elements of such a chain will be denoted by an index - the letters «cod» (coding)
(see Fig. 6). The set of elements of the coding pathological chain, the modification of
the software defect life cycle, will have the following form (5). Examples of software
coding defect types corresponding to this pathological chain is described in [19].

4. Interaction pathological chain. In this pathological chain, it is the interaction defects
in the information system that are implied. The elements of such a chain will be
denoted by an index - the letter «i» (interaction) (Fig. 7). The set of elements of the
interaction pathological chain, modification of the software defect life cycle, will
have the following form (6). This is a general pathological chain, which is detailed
by several pathological chains associated with hardware wear or complete (partial)
failure of hardware, as well as with informational influence as a result of cyber
attacks.

OMcod

HDcod Ecod

FRcod

Fcod

VCcod VAcod

DMcod

UCcod

UAcod

ADcod

Fig. 6. Coding pathological chain

OMi

HDi Ei

FRi

Fi

VCi VAi

DMi

UCi

UAi

ADi

Fig. 7. Interaction pathological chain

SDFLCcod =
{
OMcod ,DMcod ,HDcod ,ADcod ,Ecod ,

FRcod ,Fcod ,CVcod ,AVcod ,UCcod ,UAcod

}
(5)

SDFLCi =
{
OMi,DMi,HDi,ADi,Ei,

FRi,Fi,CVi,AVi,UCi,UAi

}
(6)

Several types can be distinguished in the general interaction pathological chain.
These include:

114 O. Gordieiev et al.

a. Interaction pathological chain as a result of physical influence. In general the chain
is similar to the nature of the emergence of an interaction pathological chain, but
as a result of physical influence. The elements of such a chain will be denoted by
an index - the letters «pi» (physical interaction) (Fig. 8). The set of elements of the
interaction pathological chain as a result of physical influence, the modification of
the life cycle of a software defect, will have the following form (7). For example,
physical defects of the FPGA module can affect the interaction with information
systems or the information-control system.

b. Interaction pathological chain as a result of informational influence. The nature of
the origin of this chain, in general, is similar to the nature of the emergence of an
interaction pathological chain, but with clarification - as a result of informational
influence. The elements of such a chain will be denoted by an index - the letter
«ii» (information interaction) (see Fig. 9). The set of elements of the interaction
pathological chain as a result of the informational influence, the modification of the
life cycle of a software defect, will have the following form (8). An example of such
a pathological chain can be a successful cyber attack on an information system, as a
result of which the attacking party gets the opportunity to influence to replace or to
distort information.

OMpi HDpi Epi

FRpi

Fpi

VCpi VApiDMpi

UCpi

UApi

HWpi

ADpi

Fig. 8. Interaction pathological chain as a
result of physical influence

OMii

HDii Eii

FRii

Fii

VCii VAii

DMii

UCii

UAii

ADii

Fig. 9. Interaction pathological chain as a
result of informational influence

SDFLCpi =
{
OMpi,DMpi,HDpi,ADpi,Epi,

FRpi,Fpi,CVpi,AVpi,UCpi,UApi

}
(7)

SDFLCii =
{
OMii,DMii,HDii,ADii,Eii,

FRii,Fii,CVii,AVii,UCii,UAii

}
(8)

It is worth noting that the SDFLC is not always linear (one-level), in the form in
which it is graphically presented in Fig. 1, 2, 3, 4, 5, 6, 7, 8 and 9. Such non-linearity
is associated with the evolution of software defects within the software development
life cycle. For example, let us consider the evolution of a defect according to the V-
shaped model, which is used in the development of critical software. The defect may
appear at the first stage «1. Planning of project and requirements» and be a software
requirement defect (gradient background). When verifying the requirements at stage «2.
Analysis of product requirements» such a defect may not be detected, that is, it will

Software Quality Assessment 115

become a hidden defect (dotted background). Evolving, the defect can move to the next
stage of development «3. Software architecture development» (cross background) or to
«4. Detailed design» (background with vertical lines) or even further - to the stage «5.
Coding» (background with oblique lines). Such evolution of a software defect can be
carried out from stage to stage of the software development life cycle, until it manifests
itself during the execution or testing of the developed software (see Fig. 10). Thus, the
defect can evolve from HD1 to HD5 (marked with different backgrounds) as they are
physically different defects. At stage «5. Coding» the evolution of the software defect
also stops at the following stages «6. Modular testing», «7. Integration and testing»,
«8. System acceptance testing» and «9. Production, operation, support» (all defects are
marked with a background with oblique lines). The defect moves from stage to stage of
testing inside software until the moment of detection of a software defect. It should be
noted that at each stage of software development, a defect from a hidden state (HD) can
move to an active state (AD), i.e. it can be detected by testers and fixed.

OM

E
FR

F

CV AV

DM

UC

UA

ADHD1

HD2

HD3

HD4

HD5

1. Planning

of project and

requirements

2. Analysis of product

requirements

3. Software architecture

development

4. Detailed

design

5. Coding

6. Modular

testing

7. Integration

and testing

8. System

acceptance testing

9. Production,

operation, support

HD5

HD5

HD5

HD5

S
oftw

are defect evolution

AD3

AD4

AD5

AD5

AD5

AD5

HD5

AD2

Fig. 10. Graphical representation of software defect evolution taking into account the V-shaped
model of software development

3 Software Defect Profile

A software defect profile consists of a software defect profile taxonomy and specific
defects that correspond to this taxonomy. That is, each type of defect corresponds to
a certain number of real defects. The nomenclature of software defects types and the
quantity of software defects are not a constant value and depend on the specific software
defect profile. The structure of the taxonomy of software defects types is presented in
the hierarchical form (see Fig. 11) or faceted structure (see Fig. 12). Each profile can be
described as follows:

116 O. Gordieiev et al.

– Taxonomy of Profile of Defects (TPDtts(i)) - is described by the set of SoftWare
Defects Types (taxons) (SWDTtts(i)), the Set of Classification FeaTures of software
defects (SCFTtts(i)), the adjacency table for describing subordination in a hierarchical
structure, a correspondence table for establishing correspondence between taxons
and classification features in hierarchical and facet structures. Note that tts - a type
of taxonomic structure – can take the values H – hierarchical structure or F – faceted
structure, i – defect profile number. An example of a software defect profile description
as a hierarchical structure is represented (Fig. 11) - SWDTH(i): 1- Coding defects, 1.1 –
mathematical defects, 1.1.1 – addition operation, 1.1.2 – subtraction operation, 1.1.3 –
division operation, 1.2 – logical defects, 1.2.1 –operation «and», 1.2.2 –operation
«or».

1.1 1.2

1C1

C2

C3 1.1.1

1.1.2

1.1.3 1.2.1 1.2.2

Software Defect Profile (SDP) in the form of

a hierarchical structure

TPD H(i)

SWDTH(i)

SCFTH(i)

SWDH(i)
SWDTDCH(i)

Fig. 11. Taxonomy of software defects
types in the form of a hierarchical structure

3.1 3.2 3.3

2.1 2.2

1.1 1,2 1.3

3.4 3.5

C1

C2

C3

1.4 1.5

Software Defect Profile (SDP) in the form of

a faceted structure

TPD F(i)

SCFTF(i)

SWDTDCF(i)

SWDF(i)

SWDTF(i)

Fig. 12. Taxonomy of software defects types in
the form of a faceted structure

– SoftWare Defects (SWDtts(i));
– Software Defects to Types of Defects Correspondence (SWDTDCtts(i)), i.e. by the set
of corresponding predicates (relationship) «defect-type of defect», as well as a table
of descriptions of specific defects.

Thus, the Software Defect Profile (SDP) is described by three elements - the taxon-
omy of the defect profile, the set of defects and the relationship «defect-type of defect»
(9).

In turn, the elements of the software defect profile represent the following separate
sets – the profile defects taxonomy includes a set of classification features and a set of
defects types (10).

SDPi =
{
TPDtts(i), SWDtts(i), SWDTDCtts(i)

}
(9)

TPDi =
{
SWDTtts(i), SCFTtts(i)

}
(10)

Since the classification features are necessary only for the formation of the taxonomy
structure, they are not used to describe the actual software defect. It is also worth noting
that the actual defects, their types and relations are also separated sets: SWD = {swdi}ni=0,

Software Quality Assessment 117

SWDT = {swdti}ni=0, SWDTDC = {swdtdci}ni=0. Therefore, each defect is described by
the ratio (swdtdc) of the defect (swd) and its type (swdt) as follows (11):

swdi swdtdc swdtj, (11)

where i – is the actual defect number, j – is the defect type number.

4 Software Defect Profile Types and Software Defects Profile
Misalignments

The software defect profile from the moment of its formation to the detection of defects
during testing and verification undergoes certain natural changes. Let us consider and
describe the life cycle of the software defect profile. To describe the life cycle of the
software profile, we introduce the following necessary formulations and sets of defect
profiles, the names of which will be equivalent to the names of the profile types:

– Forecasted Taxonomy of Profile of Defects (FTPD) – a taxonomy of software defects
types that reflects the potential types of defects that may be contained in software. It
is usually presented in the form of a hierarchical or faceted structure;

– Forecasted Quantity of Profile of Defects (FQPD) – the number of defects that could
potentially be in the software;

– Forecasted Profile of Defects (FPD) – profile of defects, which represents the cor-
respondence between the predicted taxonomy of software defect types and real
defects, the number of which corresponds to the predicted number of software defects.
FPD = {fpdi}ni=0 – set of defects of Forecasted Profile of Defects;

– Injected Profile of Defects (IPD) is a defects profile that is a subset of the predicted
software defect profile. Real defects included in this profile are injected into the
software. IPD = {ipdi}ni=0 – set of defects of Injected Profile of Defects;

– Profile ofAllDiscoveredDefects (PADD) – profile of defects thatwere discovered dur-
ing software testing. PADD = {paddi}ni=0 – set of defects of Profile of All Discovered
Defects;

– Profile of New Discovered Defects (PNDD) – profile of defects that were discovered
during testing and are not injected defects. PNDD = {pnddi}ni=0 – set of defects of
Profile of New Discovered Defects;

– Profile of Discovered and Injected Defects (PDID) – profile of defects that were
detected during testing and are previously injected defects. PDID = {pdidi}ni=0 – set
of defects of Profile of Discovered and Injected Defects;

– Profile of Not Discovered and Injected Defects (PNDID) – profile of defects that were
previously injected and not detected during testing. PNDID = {pndidi}ni=0 – set of
defects of Profile of Not Discovered and Injected Defects.

We will present and describe different variants of combinations of defects in the
resulting software defect profiles before and after testing and verification. Such variants
of combinations of defects are the misalignments of types of software defect profiles.

We will assume that the set of defects is a combination of factual (real) defects, each
of which corresponds to the type of defects and physically exists. Next, we will present

118 O. Gordieiev et al.

and describe such misalignments in more detail. Table 1 presents the possible variants
of profiles misalignments.

Table 1. Variants of misalignments types of software defect profiles

1 2 3 4 5

IPD FPD

IPD FPD

FPD IPD

≠

∩ ≠ ∅

>

⎧
⎪
⎨
⎪
⎩

IPD PADD PDID

PNDD PNDID

= =

= = ∅
⎧
⎨
⎩ \

IPD PADD

PNDD PADD IPD

PDID IPD

PNDID

∈

=

=

= ∅

⎧
⎪⎪
⎨
⎪
⎪⎩

IPD PADD

IPD PADD

IPD PADD

≠

∩ ≠ ∅

>

⎧
⎪
⎨
⎪
⎩

\

\

IPD PADD

PNDD PADD IPD

PDID IPD PADD

IPD PADD

PNDID IPD PADD

IPD PADD

≠

=

= ∩

∩ ≠ ∅

=

=

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

6 7 8 9 10

\

\

IPD PADD

PNDD PADD IPD

PDID IPD PADD

IPD PADD

PNDID IPD PADD

IPD PADD

≠

=

= ∩

∩ ≠ ∅

=

<

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

\

\

IPD PADD

PNDD PADD IPD

PDID IPD PADD

IPD PADD

PNDID IPD PADD

IPD PADD

≠

=

= ∩

∩ ≠ ∅

=

>

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

IPD PADD

IPD PADD

PNDD PADD

PDID

PNDID IPD

IPD PADD

≠

∩ = ∅

=

= ∅

=

=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

IPD PADD

IPD PADD

PNDD PADD

PDID

PNDID IPD

PADD IPD

≠

∩ = ∅

=

= ∅

=

>

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

IPD PADD

IPD PADD

PNDD PADD

PDID

PNDID IPD

IPD PADD

≠

∩ = ∅

=

= ∅

=

>

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Example. Let us consider an example of injection of software defects. The object of
defect injection is a tool for the support of software requirements profile quality assess-
ment, which is used to assess the quality of the requirements profile. In particular, it
is used for assessment of the 5th chapter «Assurance of computer security on stage of
development» of the draft of the new standard «Requirements to computer security of
NPP Instrumentation and Control Systems (NPP I&C)» developed by the Ukrainian
state regulatory body was selected [20].

15 defects of various types were injected into the program code. During the testing
of the tool, 17 defects were discovered, of which 14 – injected and discovered during
testing (PDID), 1 – injected and not discovered during testing (PNDID), and 3 – new
defects (PNDD). Such a variant falls under misalignment № 6 (according to the Table
2). The reason for such a variant is the insufficient completeness and accuracy of the test
sets for assessment quality of the set of requirements.

5 Conclusions

In the article the software defect evolution was formally presented, starting with the rea-
sons that led to its occurrence and ending with possible consequences. A more detailed

Software Quality Assessment 119

representation of the life cycle model of a software defect in the form of a set of patho-
logical chains allows one to take into account the peculiarities of the variety of states of
a software defect.

The article presents and describes the software defect profile and its types during
the injection of defects, which make it possible to trace the main transformations of the
software defect profile, and the emerging mismatches of the types of software defect
profiles allowing a more in-depth assessment of software quality.

It is advisable to direct further research to the study of defects of the second type and
the phenomenon of mutation of defects and on the development of the model of software
defect analysis focused on assessing the quality of software based on the injecting of
software defects. In this direction, a separate task is the study of the life cycle of defects
during the development and implementation of defect injection procedures, which are
used to assess the functional safety of FPGA projects for local information and control
systems of NPPs. At the same time, the software defect life cycle can be clarified, and
the number of its modifications can increase.

Of course, a separate future work should be devoted to the presentation and detailed
description of a practical case.

Acknowledgment. This research is supported by the British Academy.

References

1. Software Engineering. Report on a conference sponsored by the NATO science commit-
tee, Garmisch, Germany, October 1968, http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
nato1968.PDF. Accessed 07 Aug 2022

2. NUREG/CR-7151-2012. Development of a Fault Injection-Based Dependability Assessment
Methodology for Digital I&C Systems. Volume 1–4. U.S. Nuclear Regulatory Commission

3. Watts, H., Daughtrey, T.: The software quality profile. In: Fundamental Concepts for the
Software Quality Engineer, pp. 3–17. American Society for Quality (2002)

4. Gopal, K., Jadoo, S., Ramgoolam, J., Devi, V.: Software quality problems in requirement
engineering and proposed solutions for an organization in mauritius. Int. J. Comput. Appl.
137(2), 23–31 (2016). https://doi.org/10.5120/ijca2016908698

5. Gao, J., Zhang, L., Zhao, F., Zhai, Y.: Research on software defect classification. In: IEEE
3rd Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), New York, pp. 748–754. IEEE Press (2019). https://doi.org/10.1109/ITNEC.2019.
8729440

6. Defect Flow Chart. https://creately.com/diagram/example/idva2npq2/defect-flow-chart-cla
ssic. Accessed 03 Nov 2023

7. Defect Life Cycle. https://creately.com/diagram/example/jjik56un1/defect-life-cycle.
Accessed 03 Nov 2023

8. Shaikh, S., Changan, L., Rasheed, M., Rizwan, S.: Wide research on software defect model
with overgeneralization problems. In: 2nd International Conference on Computing, Mathe-
matics and Engineering Technologies (iCoMET), New York, pp. 1–6. IEEE Press (2019).
https://doi.org/10.1109/ICOMET.2019.8673510

9. Han, W., Jiang, H., Lu, T., Zhang, X., Li, W.: Software defect model based on similarity and
association rule. Int. J. Multimed. Ubiquit. Eng. 10(7), 1–10 (2015)

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
https://doi.org/10.5120/ijca2016908698
https://doi.org/10.1109/ITNEC.2019.8729440
https://creately.com/diagram/example/idva2npq2/defect-flow-chart-classic
https://creately.com/diagram/example/jjik56un1/defect-life-cycle
https://doi.org/10.1109/ICOMET.2019.8673510

120 O. Gordieiev et al.

10. Frattini, F., Pietrantuono, R., Russo, S.: Reproducibility of software bugs. In: Fiondella, L.,
Puliafito, A. (eds.) Principles of Performance andReliabilityModeling andEvaluation. SSRE,
pp. 551–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30599-8_21

11. Singh, P.: Learning from software defect datasets. In: 5th International Conference on Signal
Processing, Computing and Control (ISPCC), New York, pp. 58–63. IEEE Press (2019).
https://doi.org/10.1109/ISPCC48220.2019.8988366

12. Rahman, A., Nurdatillah, H.: Defect management life cycle process for software quality
improvement. In: 3rd International Conference on Artificial Intelligence, Modelling & Sim-
ulation (AIMS-2015), New York, pp. 241–244. IEEE Press (2015). https://doi.org/10.1109/
AIMS.2015.47

13. Alba, A.B., Zúber, A.H., Fruchier, J.C.: Verdict analysis and defect life cycle management in
test automation environments. In: 8th International Conference on Software Process Improve-
ment (CIMPS),NewYork, pp. 1–6. IEEEPress (2019). https://doi.org/10.1109/CIMPS49236.
2019.9082436

14. Feinbube, L., Pirl, L., Polze, A.: Software fault injection: a practical perspective. In: García
Márquez, F.P., Papaelias, M. (eds.) Dependability Engineering, (2017). https://www.intech
open.com/chapters/56668. https://doi.org/10.5772/intechopen.70427.Accessed 27 June 2022

15. Gordeyev, A., Kharchenko, V., Andrashov, A.: Case-based software reliability assessmentby
fault injection unified procedures. In: International Workshop on Software Engineering in
East and South Europe (SEESE), pp. 1–8. Association for Computing Machinery, New York
(2008). https://doi.org/10.1145/1370868.1370870

16. Natella, R., Cotroneo, D., Madeira, H.: Assessing dependability with software fault injection:
a survey. ACM Comput. Surv. 48(3), 1–55 (2016). https://doi.org/10.1145/2841425

17. Park, J., Kim, H.-J., Shin, J.-H., Baik, J.: An embedded software reliability model with
consideration of hardware related software failures. In: IEEE Sixth International Conference
on Software Security and Reliability, New York, pp. 207–214. IEEE Press (2012). https://doi.
org/10.1109/SERE.2012.10

18. D’Ambros, M., Bacchelli, A., Lanza, M.: On the impact of design flaws on software defects.
In: 10th International Conference on Quality Software, New York, pp. 23–31. IEEE Press
(2010). https://doi.org/10.1109/QSIC.2010.58

19. Huckle, T., Neckel, T.: Bits and Bugs: A Scientific and Historical Review of Software Failures
in Computational Science. Society for Industrial and Applied Mathematics (2019)

20. Gordieiev,O.,Gordieieva,D., Tryfonov,A.,Dokukin,V.,Odarushchenko,E.:Method and tool
for support of software requirements profile quality assessment. In: 11th IEEE International
Conference on Dependable Systems, Services and Technologies (DESSERT), New York,
pp. 72–79. IEEE Press (2020). https://doi.org/10.1109/DESSERT50317.2020.9125020

https://doi.org/10.1007/978-3-319-30599-8_21
https://doi.org/10.1109/ISPCC48220.2019.8988366
https://doi.org/10.1109/AIMS.2015.47
https://doi.org/10.1109/CIMPS49236.2019.9082436
https://www.intechopen.com/chapters/56668
https://doi.org/10.5772/intechopen.70427
https://doi.org/10.1145/1370868.1370870
https://doi.org/10.1145/2841425
https://doi.org/10.1109/SERE.2012.10
https://doi.org/10.1109/QSIC.2010.58
https://doi.org/10.1109/DESSERT50317.2020.9125020

Comparing Anomaly Detection and
Classification Algorithms: A Case Study

in Two Domains

Miroslaw Staron1(B) , Helena Odenstedt Hergés2,3 , Linda Block3 ,
and Martin Sjödin3

1 Chalmers | University of Gothenburg, Gothenburg, Sweden
miroslaw.staron@gu.se

2 Sahlgrenska University Hospital, Gothenburg, Sweden
3 Ericsson AB, Gothenburg, Sweden

{helena.odenstedt,linda.block}@vgregion.se, martin.sjodin@ericsson.se

Abstract. Utilizing large data sets in practical scenarios usually
requires identifying, annotating and classifying rare events or anomalies.
Although several methods exists, there are two classes of algorithms:
anomaly detection algorithms and classification algorithms. Both types
of algorithms have different characteristics and in this paper, we set out
to compare them on two cases. We use data from a neurointensive care
unit and from microwave radio transmissions. We apply Isolation Forest
and Random Forest algorithms to find events in the data that occur with
a frequency of ca. 1%. The results show that classification algorithms
(Random Forest) perform better and can achieve up to 100% accuracy,
while the anomaly detection algorithms (Isolation Forest) can achieve
only 73% at best. Based on the results, we conclude that it is better
to invest in annotating data á priori and use classification algorithms,
despite the lower costs of using the anomaly detection algorithms.

Keywords: Machine learning · neuro-intensive care ·
telecommunication

1 Introduction

Detecting anomalies in data is an important application of machine learning.
There are several algorithms and methods specifically designed for this purpose,
e.g., Isolation Forest [16], Minimum Covariant Analysis [13] or Local Outlier
Detection [2]. These algorithms are usually based on statistical properties of
the dataset and identify data points which are different from the other ones.
Their main advantage is the ability to identify outliers in any dataset without
the need to manually annotate the datapoints. However, their major limitation
is that the identified anomalies (outliers) are not based on the domain of the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Mendez et al. (Eds.): SWQD 2023, LNBIP 472, pp. 121–136, 2023.
https://doi.org/10.1007/978-3-031-31488-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31488-9_7&domain=pdf
http://orcid.org/0000-0002-9052-0864
http://orcid.org/0000-0002-5146-0205
http://orcid.org/0000-0002-7736-0093
https://doi.org/10.1007/978-3-031-31488-9_7

122 M. Staron et al.

dataset, meaning that the outliers can be valid data points, just appearing with
a low frequency – so called rare events.

On the other hand, there are over 1,000 algorithms for supervised machine
learning (not even counting all possible deep learning models/architectures) [8].
These algorithms take annotated data as input and use it to identify dependencies
in the data. The main advantage of these algorithms is that they can be trained
to recognize data points relevant for the domain. However, the main disadvan-
tage is that these algorithms require human annotators and that the frequency of
anomalies plays a significant role in the performance of the algorithms – the more
frequent these anomalies are, the better the performances of the trained model.

Although there are studies comparing algorithms for anomaly detection, e.g.,
the study by Omar et al. [20] or Entanbouly et al. [7], these studies focus on single
domains and only on the anomaly detection algorithms. Therefore, in this study,
we set out to compare anomaly detection algorithms with classification algorithms
in two different domains – telecommunication signal analysis and neuro-critical
care. These two cases provide us with the unique opportunity to explore these
algorithms on datasets that originate from computer-generated signals (telecom-
munication) or patients (neuro-intensive care). We focus on the research questions
that unites the neuro-critical care and telecommunication signal analysis, namely:

Which machine learning data analysis pipeline is best for rare, specific events
in large multidimensional data sets from critically ill patients and Microwave
signals?

We address this problem by conducting a case study at two organizations –
a collaboration between Ericsson AB (a telecommunication equipment manufac-
turer) and Sahlgrenska University Hospital (development of algorithms for detec-
tion of cerebral ischema). The problem manifests itself differently in both domains,
and our goal was to study which of the existing ML (machine learning) techniques
can be used in both cases, at the same time as to evaluate the methods for anomaly
detection vs. methods for classification. The most interesting part of this study is
the ability to use two, very different, types of data – a computer generated network
communication signal (which should be predictable given the generation param-
eters) and a set of signals from patients (which differ given the natural variations
between the patients and the characteristics of their conditions).

In addition to the evaluation of the algorithms, we discuss the challenges
when applying and comparing algorithms on cross-disciplinary projects. Technol-
ogy transfer is one of the crucial success factors for software engineering research
and development [26] and therefore researchers, working on the development of
fundamental technologies, must validate their findings in multiple domains in
order to ensure that the technology is robust and generally applicable. By work-
ing with two different partners, we contribute with insights on how to increase
the portability of results between these two, seemingly different, domains.

The remaining of the paper is structured as follows. Section 2 describes the
problem which we use to establish a common collaboration platform. Section 3
describes the algorithms used in our study. Section 4 describes the datasets and

Comparing Anomaly Detection and Classification Algorithms 123

the experiment set-up. Section 5 shows the results of applying these two types of
algorithms on our data. Finally, Sect. 6 describes the conclusion from our study.

2 Rare Events in Large Datasets – Unifying Problem

Detecting rare and specific events in large data sets is a problem where both
machine learning methods and domain applications require in-depth studies [12].
The machine learning challenges lie in the ability to balance classes (specific
events are significantly less frequent than the baseline data points) and reducing
noise (class and attribute noise). The domain challenges lie in the ability to
identify these events (consensus on what a baseline/anomaly/specific event is),
describe them (characteristics of the specific event) as well as reducing the effect
of confounding factors on the data labelling. In our project, the specific events
are: anomalies in the radio signal strengths caused by weather disturbances [5]
and cerebral ischemia development in critically ill patients [3,28].

In critically ill patients, especially in a surgical environment, this problem is
experienced when diagnosing specific conditions, in our case cerebral ischemia
(stroke). Cerebral ischemia can develop over time, but the event, or period of
time associated with this event, is much shorter than other events (e.g. anesthe-
sia, surgery-related events) and needs to be identified from noisy data [14,18].
Multiple physiological signals will be recorded in the critical care setting of
patients undergoing thrombectomy, i.e. an endovascular intervention to remove
a blood clot in order to restore cerebral circulation. The complexity of physio-
logical data, for example irregularities in Heart Rate Variability (HRV) data, is
that it is highly dependent on patient related factors and therefore no algorithms
are currently available that can be applied out-of-the-box. The existing methods
are still not robust enough for reliable use in a clinical environment [25].

In the telecommunication networks of microwave links, this problem is experi-
enced when finding disturbances in signals [22]. These disturbances can relate to
environmental events (e.g. rain, snow [24]), equipment malfunction (e.g. broken
antenna [9]) or geographical placement (e.g. radio signal reflection over water). In
this project, we aim to find methods that will allow the radio network operators
to identify the types of signal disturbances and to reduce the need of costly man-
ual equipment troubleshooting and maintenance such as sending out a technical
team to high-altitude antennas.

Figure 1 presents the similarities of the pattern between a NIRS (Near-
Infrared Spectroscopy) signal during the clamping of the carotid artery and
the drop of radio signal strength caused by a disturbance.

Despite the visible similarities, the two domain applications have differences.
First, the variability between entities is different. In the telecommunication
domain, as signals are generated by radio antennas, the variability can be pre-
dicted (e.g., the frequency is configured for each entity/link, and stays the same
during the entire signal transmission). In the healthcare domain, the variability
is due to the fact that the signal is generated by a device attached to a patient,
and the data can vary due to physiological, medical and clinical factors. Each

124 M. Staron et al.

Fig. 1. Illustration of the similarity of the problem between the patient signal analysis
and telecommunication signal analysis.

person has natural variability in the data, e.g., heart rate variability, which is
not as stable as the computer-generated telecommunication signal.

Table 1 summarizes the similarities and differences in the two application
domains from the perspective of using machine learning. The differences were
identified by the research team through observations and discussions with the
practitioners.

Table 1. Differences and similarities between the two domains.

Category ICU Microwave links

Data collection automated, through
dedicated equipment

automated, through
dedicated equipment

Entity patient link

Number of signals 5 (NIRS, ABP, EEG, ECG,
RESP)

2 (Tx, Rx)

Sampling frequency 250 Hz 500 Hz 0.1 Hz

Number of rare
events in a dataset

ca. 8% data points (30 min
out of 6 h)

<1% of data points (30 min
per week)

The context of two domains, with similarities in data, but differences in the
domain, with the access to practitioners from both domains, provides us with
a unique opportunity to study the limitations of machine learning methods. In
particular, we can study the advantages and disadvantages of anomaly detection
algorithms and classification algorithms.

However, in our project, we focus on the comparison between algorithm types,
as we want to understand whether it is better to identify rare events by treating

Comparing Anomaly Detection and Classification Algorithms 125

them as anomalies or whether these anomalies should be treated as unbalanced
classes.

3 Machine Learning Methods Used

Traditionally, machine learning methods used in both domain are similar –
they are based on supervised learning and unsupervised learning, e.g., as shown
by Komorowski [14] or Musumeci et al. [19]. Therefore, the machine learning
pipeline is similar for both domains, as presented in Fig. 2. The pipeline starts
with the extraction of data from the measured entities – critically ill patients
and microvawe radio links.

Fig. 2. Machine learning pipeline used in our study. The pipeline is used for both
algorithms, with the except for labelling, which is not needed for IF.

For the critically ill patients we use a dedicated equipment – Moberg CNS
monitor. The Moberg CNS monitor is a monitoring device capable of collecting
data from multiple devices in high frequency (250 Hz–1000 Hz). The Moberg
CNS monitor is connected to the Phillips IntelliVue monitor and to the NIRS-
monitor. The system also allows for addition of annotations, i.e., label the data
during the clinical procedures in the operating room. The largest advantage,
however, is the fact that the Moberg monitor collects all signals with exactly the
same timestamp, which is crucial for the analysis of the signals together.

For the microwave links, we use the data collected as part of company’s agree-
ments with operators to monitor and improve the operations of the equipment.
The data is collected in form of raw signal strength (Tx power, transmit power
and Rx, receive power) and the location of the transmitter and receiver. The
data is collected in a frequency 1 Hz. The content of the transmitted data is not
collected or used in the analysis.

The data is then processed in a similar way. First, we import the data into
a Python environment, using the Pandas library. We extract features specific
for each domain and then we apply the machine learning algorithms. From the
five signals (NIRS, ABP, EEG, ECG, RESP) we extract 48 features in total.
From the telecommunication signal strength (Rx), we extract eight features,
which characterize the signal – e.g. variation in signal during the minute, stan-
dard deviation, mean signal strength. We only use the Rx power as it is the
characteristics that is influenced by the disturbance.

In the final stage we use the machine learning anomaly detection and clas-
sification algorithms. The results are visualized using the t-SNE diagrams [17]
and confusion matrices. We use the standard performance metrics of accuracy,
precision, and recall to compare the results. We visualize them using dashboards
specific for each of the domains [21,29].

126 M. Staron et al.

3.1 Anomaly Detection Algorithms

Anomaly detection is linked to the definition of an anomaly and in our case, we
use the definition of an anomaly that is “anomaly is a sudden and short-lived
deviation from the normal operation of the network” [1]. The definition has two
important components, which are crucial to our study. The first component is
the fact that the anomaly is within a network – either a network of telecom-
munication nodes or a set of signals from the sensors attached to patients. The
second component is the fact that the anomaly is short-lived – the duration can
differ, but in general it is significantly shorter than the duration of the normal
operations.

We can classify algorithms to detect anomalies in data into a number of
categories, as proposed by Thudumu et al. [31] or in a wider context by Habeeb
et al. [11]:

– Distance-based techniques, where an algorithm measures the distance
between a reference data point (e.g., an average) and the current data point;
the larger the distance, the more likely the data point is an anomaly.

– Clustering-based techniques, where an algorithm clusters similar data points
and identifies the ones that are either in very small clusters or very distant
from all existing clusters.

– Density-based techniques, where an algorithm finds data points that are not
close to others and therefore can be considered as anomalies.

– Classification-based techniques, where algorithms are trained on example
anomalies in order to find similar patterns in the data (which we discuss
in Sect. 3.2).

In our work, in order to make the analysis pipeline as similar as possible,
and because we use data labelled by specialized physicians, we use Isolation
forest as the algorithm [16]. Isolation forest is an ensemble-based classification
algorithm, which is based on decision trees, and is therefore analog to Random
forest classification algorithm because of that. However, since it is an unsuper-
vised algorithm (does not require labelling), it is similar to clustering algorithms
with that respect. The main rationale behind this algorithm is that when a forest
of random trees collectively produce shorter path lengths in the decision trees
for some particular data points, then these data points are highly likely to be
anomalies [16].

An important property of anomaly identification algorithms, including the
classification-based techniques like the Isolation forest, is their dependency on
the input data. The anomalies are in relation to the input data, which means
that when the input data properties change, the algorithm needs to be re-trained.
This also means that the smaller the number of data points, the more data points
can become anomalies relatively, while the more data points, the anomalies will
be fewer. The same dependency is about the variability of the data – the more
variability (e.g., in patient signals), the lower number of anomalous data points,
as variability is classified as normal data variability, not anomalous.

Comparing Anomaly Detection and Classification Algorithms 127

For the radio link data, we also use a simple threshold technique to automat-
ically identify an anomaly. Since the data is generated by a radio antenna, there
should be a minimal variation in the signal strength and therefore all instances
of lower signal strength can be considered as anomalies, but without a known
source of the anomaly. In other words, this approach allows to quickly identify
candidate anomalies, without assigning any classes to it.

3.2 Classification Algorithms

Classification algorithms use the input data to identify patterns and to replicate
them on new data. Since they have been used in machine learning almost from
the beginning of the existence of the field, there are more than 1,000 such algo-
rithms, excluding the different types of artificial neural networks. There exist
event frameworks that allow for automated selection and tuning of the best
classification algorithm [8].

By contrast to the anomaly detection algorithms, we label data points explic-
itly which data points are anomalous and which are not. However, this comes
with a cost of annotation and the so-called “imbalanced class problem” [23]. The
imbalanced class problem is a problem in which the number of data points in
each class is not equal, in particular when one of the classes is much smaller than
other classes. This means that the algorithm cannot be trained to distinguish
between the classes, as the algorithm can optimize to ignore the imbalanced class
without penalty to the performance.

In our study, we chose Random forest [4] algorithm, which is closely related
in rationale with the Isolation forest algorithm for anomaly detection. Random
forest uses a set of decision trees to train an ensemble of classifiers and use voting
strategies to find the best class for a given data point. The algorithm is robust
to such aspects as dataset size, balance between classes, number of features and
even the number/depth of the decision trees.

4 Data Collection and Analysis Methods

We collect data from two sources, as indicated in Table 1: radio links data (Tx
and Rx signals) and patients connected to ICU equipment.

For each radio link, we collect the transmission power (Tx) and receive
power (Rx) data, which is submitted by the radio network operators. We know
the exact location of the link, which allows us to use weather data to annotate
an anomaly as related to precipitation or other events.

We define the anomaly in the radio signal as a sudden and transient loss of
signal strength. An anomaly can be caused by weather phenomena (like precip-
itation, wind), temporary equipment failure, or obstruction in the signal path
(e.g., construction crane).

To annotate this data with weather related anomalies, we use openly available
Swedish weather data from the Swedish Weather Authority (SMHI, [30]). The
meteorological data contains precipitation observations with up to one minute

128 M. Staron et al.

frequency. The precipitation data contains the amount of precipitation, mm per
square meter per minute, and therefore we use a threshold of 0.5 as annotation.
If the amount of precipitation is lower than this threshold, we annotate the data
point as not-precipitation; if it is higher, we annotate it as precipitation.

In the ICU, the following sensors are attached to the patient as the source
of data:

– ECG (Electro Cardiography), which we use to analyze heart rate variability
(HRV). HRV can be defined as a physiological biomarker for the autonomous
nervous system and cerebral ischemia has been found to be associated with
decreased HRV [27],

– EEG (Electroencephalography), which we use to analyze brain activity. EEG
is a physiological monitoring technique used to register the brain’s electrical
activity generated from the cerebral neurons [10],

– ABP (Arterial Blood Pressure), which we use to monitor the patient’s blood
pressure,

– SpO2 (Blood Oxygen Saturation), which we use to monitor the oxygen satu-
ration in arterial blood, and

– NIRS (Near-infrared Spectroscopy), which we use to monitor regional oxy-
genation in cerebral tissue NIRS is a non-invasive monitoring technique that
measures oxygenation in tissues by monitoring light absorption of oxygenated
and deoxygenated haemoglobin. NIRS can be used for cerebral oximetry [15].

The signals are recorded by a dedicated equipment, called Moberg monitor
(MMM) [6]. MMM provides us with the possibility to record the same time for
all signals. In order to process the signals in a uniform way, we need to have
the timestamps synchronized. The same timestamp is crucial because we need
the synchronized signals for feature extraction. MMM overrides the timestamps
of the original sensors and provides the same timestamp for all signals. MMM
provides the ability to add the labels to the signals during the data collection. We
use that when the physicians add events to the data stream during the operation,
for example: start of anaesthesia, clamping of carotid artery, opening of carotid
artery, end of anaesthesia and post-operative care.

We defined an anomaly here as a sudden and transient change of signal
caused by the deteriorated cerebral blood flow. Although such an anomaly can
be caused by such conditions as cerebral ischemia, cerebral vasoconstriction,
thrombus in cerebral arteries, we collect data from patients undergoing carotid
surgery (according to our ethical permission).

Once the data is collected and annotated, we use a t-SNE (t-student distri-
bution Stochastic Network Embedding, [17]) to visualize the multidimensional
feature vectors in two dimensional plots. When we apply the anomaly detec-
tion or classification algorithms (Isolation forest, Random forest) we measure
the accuracy, precision and recall. For the Isolation forest, the accuracy, preci-
sion and recall are calculated after the algorithm is applied – first we obtain the
classification of a data point to be anomaly (or not) and then we check with
the annotated label. For the Random forest, the labels are part of the training
of the algorithm (classes) and therefore the algorithm performance metrics are

Comparing Anomaly Detection and Classification Algorithms 129

obtained by splitting the data into training and testing datasets (70% vs. 30%
respectively).

In addition to the performance measures, we plot confusion matrices to scru-
tinize quality of the results.

5 Results

For radio network analysis, the data that is collected contains two classes
– one is the normal operation and then there is the anomalous operation. The
t-SNE plot of the data is in Fig. 3. The diagram shows that there are two distinct
groups – normal operation points and anomalous points. It shows that these two
groups are inherently different, as they form two separate groups. The overlaying
value of the classification using the Isolation forest algorithm, however, identifies
both anomalous and normal operation points as anomalies. This is shown by the
black rectangles being on top of both the normal operation points and anomalous
operation points.

The fact that the anomalies are identified with the two groups, and not
only in one group, indicates that there is Isolation forest does not consider the
precipitation as an anomaly. Isolation forest identifies other variations in the
data as anomalies. The confusion matrix is in Fig. 4a for Isolation forest, and
it shows that, indeed, the algorithm is unable to identify precipitation as an
anomaly.

However, when applying the Random forest algorithm, the confusion matrix,
shown in Fig. 4b, shows a different result for the test data. The classification is
indeed very accurate and all anomalous data points are identified as anomalies.

For the ICU, the visualization of the data points using t-SNE is presented in
Fig. 5. The number of classes in the data from ICU is larger and therefore there
are more events/classes in the diagram. The results of applying the Isolation
forest algorithm to this dataset is visualized by adding the rectangles around
the data points classified as anomalous.

The diagram shows that the Isolation forest identifies anomalous data points
in a similar way as it does for the radio signal analysis. The anomalous data
points belong to all classes, which indicates that the algorithm is not good for
the identifying the clamp even (which is anomalous with respect to the other
events). For the calculation of accuracy, precision and recall metrics, to make
the analysis similar to the radio network analysis, we regard all classes, except
for the clamping of artery, as one. Thus we obtain two classes which we can
compare to the anomaly analysis (clamping of artery vs. non-clamped artery).
When we plot the confusion matrix, Fig. 6a, for the Isolation forest, the results
are similar for the radio network analysis.

130 M. Staron et al.

Fig. 3. t-SNE distribution of data points in telecommunication domain.

Fig. 4. Confusion matrices for the radio network signal classification.

The confusion matrix for two classes is in Fig. 6b for Random forest. In the
right-hand side of the figure, we can observe that the results are similar as for

Comparing Anomaly Detection and Classification Algorithms 131

Fig. 5. t-SNE distribution of data points. Colors correspond to events during the
carotid surgery. The blue boxes indicate data points identified as anomalous by Isola-
tion forest. (Color figure online)

the telecommunication network signal analysis – Random forest seems to classify
the events much better. However, there is one wrongly classified data point – an
anomaly classified as a normal operation.

As the data from patients contains more events than normal and anomalous,
we can use the Random forest classifier to identify all events (which cannot be
done by using Isolation forest, as it only identifies anomalies). The confusion
matrix is in Fig. 7 for Random forest. The figure shows that the classification is
very accurate and only one data point (row 2) is classified incorrectly as Surgery
pre-clamp instead of Clamping of artery.

132 M. Staron et al.

Fig. 6. Confusion matrices for the ICU data, for two classes classification.

Fig. 7. Confusion matrix for ICU, with multiclass classification.

5.1 Comparison of Algorithms

The performance measures, presented in Fig. 8 show that generally, the perfor-
mance of the Random forest classifier is higher than the performance of the
Isolation forest – for each of the performance metrics.

Comparing Anomaly Detection and Classification Algorithms 133

Fig. 8. Performance of machine learning algorithms for both data sets.

Since we only have two classes, the accuracy value of 0.63 for the Isolation
forest, shows that the value is close to chance (0.56). Using the Random forest
classifier increases the accuracy of the classification of anomalies to 1.0, which
is exact. This is also shown in the confusion matrix.

We have also observed that the data from the telecommunication domain,
i.e. computer-generated, leads to slightly better results because it is generated.
There are no incorrect classifications when using the Random forest algorithm.
This can be caused by the fact that the ICU data can contain noise introduced
during the clinical procedures or during the annotation of the data. It can also
show that there is a natural degree of similarity between different events as
the patient-generated data has natural variability (e.g., all hearts beat slightly
different).

5.2 Lesson’s Learned

In addition to the evaluation of the algorithms in this setting, we have also found
a number of important facts from the study.

First, we observed that the definition of what an anomaly is gives more
benefit than the algorithm used to identify it. Although finding anomalies
is important, it is often a proxy for finding specific kinds of anomalies. Even in
the domain of radio signal analysis, the most important part is to know what the
anomaly is (or what it could be caused by) in order to find a proper action plan
to either prevent such anomalies or reduce their effects. Statistical anomalies
are of less interest as they can be caused by unknown, and therefore irrelevant,
factors.

Therefore, we found that it is better to discuss rare events rather than anoma-
lies. Rare events can be described and classified, whereas anomalies can remain
to be undefined and unknown. This helps to select the right algorithms.

134 M. Staron et al.

We also found that despite the obvious differences, the fields of radio
link signal analysis and ICU patient signal analyses are relatively sim-
ilar. The differences in the results seem to be caused by the difference in algo-
rithms/models rather than the difference in the domains. The origins of the
signals and their number did not significantly influence the results, but the fact
that Isolation forest uses statistics and Random forest uses annotations make a
whole lot of difference. This leads us to the conclusion that working with multi-
ple domains increases the robustness of the results – given similar results in two
domains, we are more certain about the source of variability in the results.

6 Conclusions

In this study, we set out to compare two types of algorithms for identifying
infrequent data points in large data sets – so called anomalies or rare events.
These infrequent data points are of importance as they can indicate abnormal
operation of equipment, e.g., in the telecommunication radio network analysis,
or certain clinical conditions, e.g., the cerebral ischemia in stroke patients.

We compared Random forest and Isolation forest algorithms, which are con-
ceptually very similar, despite targeting different classes of problems – classifi-
cation of data (Random forest) vs. anomaly identification (Isolation forest). The
results show that the classification algorithm outperforms the anomaly analysis
algorithms – 100% accuracy compared to 73% accuracy. We have also found that
the initial effort put into annotation of the data leads to more actionable results.
The algorithms provide the information what kind of anomaly it is and therefore
the user can take the appropriate action.

In our further work, we intend to expand the study to compare data from
more domains and complement these algorithms with the AutoML approach to
find the optimal algorithm for the data from each domain.

References

1. Ahmed, T., Oreshkin, B., Coates, M.: Machine learning approaches to network
anomaly detection. In: Proceedings of the 2nd USENIX Workshop on Tackling
Computer Systems Problems with Machine Learning Techniques, pp. 1–6. USENIX
Association (2007)

2. Alghushairy, O., Alsini, R., Soule, T., Ma, X.: A review of local outlier factor
algorithms for outlier detection in big data streams. Big Data Cogn. Comput.
5(1), 1 (2020)

3. Block, L., El-Merhi, A., Liljencrantz, J., Naredi, S., Staron, M., Odenstedt Hergès,
H.: Cerebral ischemia detection using artificial intelligence (CIDAI) - a study pro-
tocol. Acta Anaesthesiol. Scand. 64(9), 1335–1342 (2020)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Chwala, C., Kunstmann, H.: Commercial microwave link networks for rainfall

observation: assessment of the current status and future challenges. Wiley Inter-
discip. Rev. Water 6(2), e1337 (2019)

Comparing Anomaly Detection and Classification Algorithms 135

6. Citerio, G., et al.: Data collection and interpretation. Neurocrit. Care 22(3), 360–
368 (2015)

7. Eltanbouly, S., Bashendy, M., AlNaimi, N., Chkirbene, Z., Erbad, A.: Machine
learning techniques for network anomaly detection: a survey. In: 2020 IEEE Inter-
national Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp.
156–162. IEEE (2020)

8. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-sklearn
2.0: hands-free AutoML via meta-learning. arXiv preprint arXiv:2007.04074 (2020)

9. Gao, Y., Ao, H., Wang, K., Zhou, W., Li, Y.: The diagnosis of wired network mal-
functions based on big data and traffic prediction: an overview. In: 2015 4th Inter-
national Conference on Computer Science and Network Technology (ICCSNT),
vol. 1, pp. 1204–1208. IEEE (2015)

10. Gaspard, N.: Current clinical evidence supporting the use of continuous EEG mon-
itoring for delayed cerebral ischemia detection. J. Clin. Neurophysiol. 33(3), 211–
216 (2016)

11. Habeeb, R.A.A., Nasaruddin, F., Gani, A., Hashem, I.A.T., Ahmed, E., Imran, M.:
Real-time big data processing for anomaly detection: a survey. Int. J. Inf. Manage.
45, 289–307 (2019)

12. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learn-
ing from class-imbalanced data: review of methods and applications. Expert Syst.
Appl. 73, 220–239 (2017)

13. Hubert, M., Debruyne, M., Rousseeuw, P.J.: Minimum covariance determinant and
extensions. Wiley Interdiscip. Rev. Comput. Stat. 10(3), e1421 (2018)

14. Komorowski, M.: Artificial intelligence in intensive care: are we there yet? Intensive
Care Med. 45(9), 1298–1300 (2019). https://doi.org/10.1007/s00134-019-05662-6

15. Lewis, C., Parulkar, S.D., Bebawy, J., Sherwani, S., Hogue, C.W.: Cerebral neu-
romonitoring during cardiac surgery: a critical appraisal with an emphasis on near-
infrared spectroscopy. J. Cardiothorac. Vasc. Anesth. 32(5), 2313–2322 (2018)

16. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422. IEEE (2008)

17. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9(11), 2579–2605 (2008)

18. Maringer, E.F., Shiland, J., Brodie, D.: There’s more to medicine than machines.
Intensive Care Med. 44(6), 930–931 (2018)

19. Musumeci, F., et al.: Supervised and semi-supervised learning for failure identifi-
cation in microwave networks. IEEE Trans. Netw. Serv. Manage. 18(2), 1934–1945
(2020)

20. Omar, S., Ngadi, A., Jebur, H.H.: Machine learning techniques for anomaly detec-
tion: an overview. Int. J. Comput. Appl. 79(2) (2013)

21. Pandazo, K., Shollo, A., Staron, M., Meding, W.: Presenting software metrics indi-
cators: a case study. In: Proceedings of the 20th International Conference on Soft-
ware Product and Process Measurement (MENSURA), vol. 20 (2010)

22. Polz, J., Chwala, C., Graf, M., Kunstmann, H.: Rain event detection in commer-
cial microwave link attenuation data using convolutional neural networks. Atmos.
Meas. Tech. 13(7), 3835–3853 (2020)

23. Provost, F.: Machine learning from imbalanced data sets 101. In: Proceedings of
the AAAI’2000 Workshop on Imbalanced Data Sets, vol. 68, pp. 1–3. AAAI Press
(2000)

24. Pudashine, J., et al.: Deep learning for an improved prediction of rainfall retrievals
from commercial microwave links. Water Resour. Res. 56(7) (2020)

http://arxiv.org/abs/2007.04074
https://doi.org/10.1007/s00134-019-05662-6

136 M. Staron et al.

25. Ramos, L.A., et al.: Machine learning improves prediction of delayed cerebral
ischemia in patients with subarachnoid hemorrhage. J. Neurointerv. Surg. 11(5),
497–502 (2019)

26. Sandberg, A., Pareto, L., Arts, T.: Agile collaborative research: action principles
for industry-academia collaboration. IEEE Softw. 28(4), 74–83 (2011)

27. Schmidt, J.M.: Heart rate variability for the early detection of delayed cerebral
ischemia. J. Clin. Neurophysiol. 33(3), 268–274 (2016)

28. Staron, M., et al.: Robust machine learning in critical care - software engineering
and medical perspectives. In: 2021 IEEE/ACM 1st Workshop on AI Engineering-
Software Engineering for AI (WAIN), pp. 62–69. IEEE (2021)

29. Staron, M., Meding, W., Caiman, M.: Improving completeness of measurement
systems for monitoring software development workflows. In: Winkler, D., Biffl,
S., Bergsmann, J. (eds.) SWQD 2013. LNBIP, vol. 133, pp. 230–243. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35702-2 14

30. Swedish Meteorological Institute: SMHI öppna data meteorologiska observationer
(2017). https://www.smhi.se

31. Thudumu, S., Branch, P., Jin, J., Singh, J.J.: A comprehensive survey of anomaly
detection techniques for high dimensional big data. J. Big Data 7(1), 1–30 (2020).
https://doi.org/10.1186/s40537-020-00320-x

https://doi.org/10.1007/978-3-642-35702-2_14
https://www.smhi.se
https://doi.org/10.1186/s40537-020-00320-x

Author Index

A
Alégroth, Emil 17
Ali, Nauman Bin 87
Atzberger, Daniel 41

B
Block, Linda 121
Börstler, Jürgen 87

C
Cech, Tim 41

D
Döllner, Jürgen 41

G
Gonzalez-Huerta, Javier 17
Gordieieva, Daria 109
Gordieiev, Oleksandr 109

H
Hergés, Helena Odenstedt 121

I
Iftikhar, Umar 87

L
Lind, Emil 17

M
Misra, Sanjay 41

P
Plösch, Reinhold 63

R
Rainer, Austen 109
Ramler, Rudolf 63

S
Scheibel, Willy 41
Sjödin, Martin 121
Smite, Darja 3
Stadler, Philipp 63
Staron, Miroslaw 121

U
Usman, Muhammad 87

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
D. Mendez et al. (Eds.): SWQD 2023, LNBIP 472, p. 137, 2023.
https://doi.org/10.1007/978-3-031-31488-9

https://doi.org/10.1007/978-3-031-31488-9

	 Message from the General Chair
	 Message from the Scientific Program Chairs
	 Organization
	 Contents
	Social Aspects in Software Engineering
	Conflicting Interests in the Hybrid Workplace: Five Perspectives to Consider
	1 Introduction
	2 The Five Perspectives on Work from Home
	2.1 Remote and Hybrid Workers: A Flexibility is Every Employees Dream
	2.2 Remote Employees: In Hybrid Teams We Are Second-Class Citizens
	2.3 Onsite Employees: Socialization is Essential for Social Wellbeing
	2.4 Managers: Remote Work is a Managerial Nightmare
	2.5 Managers: Remote Work is the Fall of Corporate Culture and Innovation

	3 Concluding Remarks
	References

	Requirements Engineering
	Requirements Quality vs. Process and Stakeholders' Well-Being: A Case of a Nordic Bank
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Context, Case, and Unit of Analysis
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	4.1 Requirements Engineering Process at Nordic Bank
	4.2 RQ1: How Software Development Practitioners Define Requirements Quality?
	4.3 RQ2: How Does the Perceived Quality of Requirements Impact the Work of Practitioners of Software Development?
	4.4 RQ3: What are the Perceived Causes and Potential Solutions of the Poor Quality of Requirements?

	5 Discussion
	5.1 RQ1: How Do Software Development Practitioners Define Requirements Quality?
	5.2 RQ2: How Does the Perceived Quality of Requirements Impact the Work of Practitioners of Software Development?
	5.3 Effects on Morale
	5.4 RQ3: What are the Perceived Causes and Potential Solutions of the Poor Quality of Requirements?

	6 Threats to Validity
	7 Conclusions and Further Work
	References

	Software Defect Prediction
	Outlier Mining Techniques for Software Defect Prediction
	1 Introduction
	2 Related Work
	3 Data Preprocessing and Modeling
	4 Computational Experiment
	5 Results
	5.1 Choice of the Window Size
	5.2 Outlier Models Compared to Other Cluster-Based Models
	5.3 Unsupervised vs. Supervised Models

	6 Discussion and Threats to Validity
	7 Conclusions and Future Work
	References

	Software Testing
	Applying a Genetic Algorithm for Test Suite Reduction in Industry
	1 Introduction
	2 Research Approach
	2.1 Industry Context and Requirements
	2.2 Development and Evaluation Procedure

	3 Genetic Algorithm Design
	3.1 Population
	3.2 Fitness Calculation
	3.3 Fittest Chromosome
	3.4 Biologically Inspired Operations
	3.5 Evolution and Termination

	4 Industry Application
	4.1 Original Test Suite
	4.2 Test Suite Reduction Using Genetic Algorithm
	4.3 Reduced Test Suite

	5 Evaluation and Discussion
	5.1 Reduction of Test Cases
	5.2 Coverage and Mutation Analysis
	5.3 Observations and Lessons Learned

	6 Summary
	References

	Software Metrics
	A Catalog of Source Code Metrics – A Tertiary Study
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Search Strategy
	3.2 Selection Process
	3.3 Data Extraction
	3.4 Quality Assessment of the Secondary Studies
	3.5 Categorization of Source Code Metrics

	4 Threats to Validity
	5 Results and Analysis
	5.1 Internal Quality Attributes
	5.2 Units of Code in Source Code Metrics to Measure Internal Quality Attributes
	5.3 Scope of Source Code Metric Evaluation

	6 Discussion
	7 Conclusions
	References

	Software Quality Assurance
	Software Quality Assessment: Defect Life Cycle, Software Defect Profile, Its Types and Misalignments
	1 Introduction and Formulation of the Problem
	2 Software Defect Life Cycle
	3 Software Defect Profile
	4 Software Defect Profile Types and Software Defects Profile Misalignments
	5 Conclusions
	References

	Comparing Anomaly Detection and Classification Algorithms: A Case Study in Two Domains
	1 Introduction
	2 Rare Events in Large Datasets – Unifying Problem
	3 Machine Learning Methods Used
	3.1 Anomaly Detection Algorithms
	3.2 Classification Algorithms

	4 Data Collection and Analysis Methods
	5 Results
	5.1 Comparison of Algorithms
	5.2 Lesson's Learned

	6 Conclusions
	References

	Author Index

